
Accredited Standards Committee
X3. INFORMATION PROCESSING SYSTEMS·

Doc. No.: X3Jll/88-003
Date: 11 January 1988

Project: 381-D
Reply to: Thomas Plum

Rationale for
Draft Proposed American National Standard

for Information Systems

Programming Language C

·Opera'tin~ uDder tb e procedure. of The American NatioDal St&Ddard. IDl'titute

X3 Secretariat: Computer and Business Equipment Manufacturers Association
31.1 First Street. N.W .. Suite 500. Washington DC 20001-2178

Tel: 202-737-8888
Fax: 202-638-4922

UNIX is a regutered trademark of AT&T.
DEC and PDP-ll are trademara of Digital Equipment Corporo.tion.
Ada ;3 a regutered trademark of th.e United Statu Government, Ada Joint Progro.m Office.
POSIX ;3 a trademark of IEEE.

Contents

1 INTRODUCTION
1.1 Purpose . .
1.2 Scope .
1.3 References....
1.4 Organization of the document
1.5 Base documents ...
1.6 Definitions of terms .
1.7 Compliance . . .
1.8 Future directions

1
1
4
4
4
5
5
6
8

2 ENVIRONMENT
2.1 Conceptual models

2.1.1 Translation environment.
2.1.2 Execution environments

2.2 Environmental considerations ..
2.2.1 Character sets .
2.2.2 Character display semantics.
2.2.3 Signals and interrupts
2.2.4 Environmental limits .

9
9
9
11
13
13
16
16
17

3 LANGUAGE
3.1 Lexical Elements

3.1.1 Keywords
3.1.2 Identifiers
3.1.3 Constants
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

String literals
Operators ..
Punctuators .
Header names .
Preprocessing numbers .
Comments .

19
19
19
19
27
30
31
32
32
32
32
33
33

3.2 Conversions.........
3.2.1 Arithmetic operands

III

IV CONTENTS

3.2.2 Other operands .
3.3 Expressions .

3.3.1 Primary expressions
3.3.2 Postfix operators
3.3.3 Unary operators ..
3.3.4 Cast operators ...
3.3.5 Multiplicative operators
3.3.6 Additive operators ..
3.3.7 Bitwise shift operators
3.3.8 Relational operators
3.3.9 Equality operators ..
3.3.10 Bitwise AND operator
3.3.11 Bitwise exclusive OR operator
3.3.12 Bitwise inclusive OR operator.
3.3.13 Logical AND operator
3.3.14 Logical OR operator .
3.3.15 Conditional operator.
3.3.16 Assignment operators
3.3.17 Comma operator

3.4 Constant Expressions
3.5 Declarations .

3.5.1 Storage-class specifiers .
3.5.2 Type specifiers
3.5.3 Declarators...
3.5.4 Type names ...
3.5.5 Type definitions
3.5.6 Initialization ..
Statements
3.6.1 Labeled statements.

35
37
39
39
42
43
44
44
45
45
45
46
46
46
46
46
46
46
48
48
49
49
49
53
55
55
56
57
57
57
57
57
58
58
58
58
60
60
60
61
62
66
66
66

3.6

3.6.2 Compound statement, or block
3.6.3 Expression and null statements
3.6.4 Selection statements
3.6.5 Iteration statements
3.6.6 Jump statements . .

3.7 External definitions
3.7.1 Function definitions
3.7.2 External object definitions .

3.8 Preprocessing directives ...
3.8.1 Conditional inclusion.
3.8.2 Source file inclusion
3.8.3 Macro replacement
3.8.4 Line control . . .
3.8.5 Error directive
3.8.6 Pragma directive

CONTENTS v

3.8.7 Null directive
3.8.8 Predefined macro names .

3.9 Future language directions .
3.9.1 External names .
3.9.2 Character escape sequences
3.9.3 Storage-class specifiers
3.9.4 Function declarators
3.9.5 Function definitions

66
66
67
67
67
67
67
67

4 LmRARY
4.1 Introduction .

4.1.1 Definitions of terms
4.1.2 Headers .
4.1.3
4.1.4
4.1.5
4.1.6

Errors <erno. h> .
Limits <float.h> and <limits.h> .
Common definitions <stddef .h>
Use of library functions

69
69
69
69
70
71
71
72

4.2 Diagnostics <assert. h> 73
4.2.1 Program diagnostics . . 73

4.3 Character Handling <ctype .h> 73
4.3.1 Character testing functions 74
4.3.2 Character case mapping functions 75

4.4 Localization <locale .h> 75
4.4.1 Locale control. 77
4.4.2 Numeric formatting convention inquiry 77

4.5 Mathematics <math.h>. 77
4.5.1 Treatment of error conditions 78
4.5.2 Trigonometric functions . . . 79
4.5.3 Hyperbolic functions. 79
4.5.4 Exponential and logarithmic functions 79
4.5.5 Power functions. 80
4.5.6 Nearest integer, absolute value, and remainder functions. 80

4.6 Non-local jumps <setjmp.h> ... 81
4.6.1 Save calling environment 81
4.6.2 Restore calling environment 82

4.7 Signal Handling <signal. h> . 82
4.7.1 Specify signal handling. . 83
4.7.2 Send signal 83

4.8 Variable Arguments <stdarg. h> 83
.4.8.1 Variable argument list access macros . 84

4.9 Inpu~/Output <stdio .h> 85
4.9.1 Introduction 86
4.9.2 Streams
4.9.3 Files.....

86
88

X3Jll!88-003

VI

4.9.4 Operations on files .
4.9.5 File access functions
4.9.6 Formatted input/output functions
4.9.7 Character input/output functions .
4.9.8 Direct input/output functions.
4.9.9 File positioning functions
4.9.10 Error-handling functions ..

4.10 General Utilities <stdlib .h> ...
4.10.1 String conversion functions
4.10.2 Pseudo-random sequence generation functions .
4.10.3 Memory management functions
4.10.4 Communication with the environment
4.10.5 Searching and sorting utilities.
4.10.6 Integer arithmetic functions.
4.10.7 Multibyte character functions
4.10.8 Multibyte string functions.

4.11 STRING HANDLING <string .h>
4.11.1 String function conventions
4.11.2 Copying functions ...
4.11.3 Concatenation functions
4.11.4 Comparison functions
4.11.5 Search functions '" .
4.11.6 Miscellaneous functions

4.12 DATE AND TIME <time.h>
4.12.1 Components of time ..
4.12.2 Time manipulation functions
4.12.3 Time conversion functions.

4.13 Future library directions .
4.13.1 Errors <ermo.h> .
4.13.2 Character handling <ctype .h>
4.13.3 Localization <locale .h> .,
4.13.4 Mathematics <math.h> ...
4.13.5 Signal handling <signal.h> .
4.13.6 Input/output <stdio.h> ..
4.13.7 String handling <string. h> .

5 APPENDICES

CONTENTS

88
89
90
92
94
94
95
96
96
96
97
98
100
100
101
101
101
101
102
102
103
103
104
104
104
104
106
107
107
107
107
107
107
107
107

109

-,

Section 1

INTRODUCTION

This Rationale summarizes the deliberations of X3Jll, the Technical Committee
charged by ANSI with devising a standard for the C programming language. It is
being published along with the draft Standard to assist the process of formal public
review.

The X3J 11Committee represents a cross-section of the C community: it consists
of over forty members representing hardware manufacturers, vendors of compilers
and other software development tools, software designers, consultants, academics,
authors, applications programmers, and others. In the course of its deliberations, it
has reviewed related American and international standards both published and in
progress. It has attempted to be responsive to the concerns of the broader commu-
nity: as of September 1987, it had received and reviewed over 150 letters, including
dozens of formal comments from the first public review, suggesting modifications
and additions to the various preliminary drafts of the Standard.

The Committee continues to encourage the submission of letters identifying any
errors or putting forth suggestions. It will consider and respond to all correspon-
dence received.

1.1 Purpose

The Committee's overall goal was to develop a clear, consistent, and unambiguous
Standard for the C programming language which codifies the common, existing def-
inition of C and which promotes the portability of user programs across C language
environments.

The X3Jll charter clearly mandates the Committee to codify,common ezisting
practice. The Committee has held fast to precedent wherever this was clear and
unambiguous. The vast majority of the language defined by the Standard is precisely
the same as is defined in Appendix A of The C Programming Language by Brian
Kernighan and Dennis Ritchie, (hereinafter K&R) and as is implemented in almost
all C translators.

K&R is not the only source of "existing practice." Much work has been done over

1

2 Section 1. INTRODUCTION

the years to improve the C language by addressing its weaknesses. The Committee
has formalized enhancements of proven value which have become part of the various
dialects of C.

Existing practice, however, has not always been consistent. Various dialects
of C have approached problems in different and sometimes diametrically opposed
ways. This divergence has happened for several reasons. First, K&R, which has
served as the language specification for almost all C translators, is imprecise in some
areas (thereby allowing divergent interpretations), and it does not address some
issues (such as a complete specification of a library) important for code portability.
Second, as the language has matured over the years, various extensions have been
added in different dialects to address limitations and weaknesses of the language;
these extensions have not been consistent across dialects.

One of the Committee's goals was to consider such areas of divergence and to
establish a set of clear, unambiguous rules consistent with the rest of the language.
This effort included the consideration of extensions made in various C dialects, the
specification of a complete set of required library functions, and the development of
a complete, correct syntax for C.

The work of the Committee was in large part a balancing act. The Committee
has tried to improve portability while retaining the definition of certain features of
C as machine-dependent. It attempted to incorporate valuable new ideas without
disrupting the basic structure and fabric of the language. It tried to develop a clear
and consistent language without invalidating existing programs. All of the goals were
important and each decision was weighed in the light of sometimes contradictory
requirements in an attempt to reach a workable compromise.

In specifying a standard language, the Committee used several guiding principles,
the most important of which are:

Existing codle is important, existing implementations are not. A large body
of C code exists of considerable commercial value. Every attempt has been made
to ensure that the bulk of this code will be acceptable to any implementation con-
forming to the Standard. The Committee did not want to force most programmers
to modify their C programs just to have them accepted by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by which
to define C: it is assumed that all existing implementations must change somewhat
to conform to the Standard.

C code can be portable. Although the C language was originally born with the
UNIX operating system on the DEC PDP-ll, it has since been implemented on a
wide variety of computers and operating systems. It has also seen considerable use
in cross-compilation of code for embedded systems to be executed in a free-standing
environment. The Committee has attempted to specify the language and the library
to be as widely implementable as possible, while recognizing that a system must meet
certain minimum criteria to be considered a viable host or target for the language.

C code can be non-portable. Although it strove to give programmers the op-
portunity to write truly portable programs, the Committee did not want to force'

1.1. Purpose 3

programmers into writing portably, to preclude the use of C as a "high-level as-
sembler": the ability to write machine-specific code is one of the strengths of C.
It is this principle which largely motivates drawing the distinction between strictly
conforming program and conforming program (§1.7).
Avoid "quiet changes." Any change to widespread practice altering the meaning
of existing code causes problems. Changes that cause code to be 80 ill-formed as to
require diagnostic messages are at least easy to detect. AB much as seemed possible
consistent with its other goals, the Committee has avoided changes that quietly
alter one valid program to another with different semantics, that cause a working
program to work differently without notice. In those places where this principle is
violated, the Rationale points out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some nu-
meric~l limits have been added to the Standard to give both implementors and
programmers a better understanding of what must be provided by an implemen-
tation, of what can be expected and depended upon "to exist. These limits are
presented as minimum maxima (i.e., lower limits placed on the values of upper lim-
its specifiedby an implementation) with the understanding that any implementor is
at liberty to provide higher limits than the Standard mandates. Any program that
takes advantage of these more tolerant limits is not strictly conforming, however,
since other implementations are at liberty to enforce the mandated limits. "
Keep the spirit of C. The Committee kept as a major goal to preserve the
traditional spirit of C. There are many facets of the spirit of C, but the essence is
a community sentiment of the underlying principles upon which the C language is
based. Some of the facets of the spirit of C can be summarized in phrases like

• Trust the programmer.
«Don't prevent the programmer from doing what needs to be done.
eKeep the language small and simple.
eProvide only one way to do an operation.
eMake it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code
generation is one of the most important strengths of C. To help ensure that no code
explosion occurs for what appears to be a very simple operation, many operations
are defined to be how the target machine's hardware does it rather than by a general
abstract rule. An example of this willingness to livewith what the machine does can
be seen in the rules that govern the widening of char objects for use in expressions:
whether the values of char objects widen to signed or unsigned quantities typically
depends on which byte operation is more efficient on the target machine.

One of the goals of the Committee was not to interfere with the ability of trans-
lators to generate compact, efficientcode. In several cases the Committee has intro-
duced features to improve the possible efficiencyof the generated code; for instance,
floating point operations may be performed in .single-precisionif both operands are
float rather than double.

X3Jll/88-003

4 Section 1. INTRODUCTION

1.2 Scope

This Rationale focuses primarily on additions, clarifications, and changes made to
the language as described in the Base Documents (see §1.5). It is not a rationale for
the C language as a whole: the Committee was charged with codifying an existing
language, not designing a new one. No attempt is made in this Rationale to defend
the pre-existing syntax of the language, such as the syntax of declarations or the
binding of operators.

The Standard is contrived as carefully as possible to permit a broad range of im-
plementations, from direct interpreters to highly optimizing compilers with separate
linkers, from ROM-based embedded microcomputers to multi-user multi-processing
host systems. A certain amount of specialized terminology has therefore been cho-
sen to minimize the 'bias toward compiler implementations shown in the Base Doc-
uments.

The Rationale discusses some language or library features which were not
adopted into the Standard. These are usually features which are popular in some C
implementations, so that a user of "hose implementations might question why they
do not appear in the Standard.

1.3 References

1.4 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible, to fa-
cilitate finding relevant discussions. Where a given discussion touches on several
areas, attempts have been made to include cross-references within the text. Such
references, unless they specify the Standard or the Rationale, are deliberately am-
biguous.'

As for the organization of the Standard itself, Base Documents existed only for
Sections 3 (Language) and 4 (Library) of the Standard. Section 1 (Introduction)
was modeled after the introductory matter in several other standards for procedural
languages. Section 2 (Environment) was added to fill a need, identified from the
start, to place a C program in context and describe the way it interacts with its
surroundings. The Appendices were added as a repository for related material not
included in the Standard itself, or to bring together in a single place information
about a topic which was scattered throughout the Standard.

Just as the Standard proper excludes all examples, footnotes, references, and
appendices, this rationale is not part 0/ the Standard. The C language is defined
by the Standard alone. IT any part of this Rationale is not in accord with that
definition, the Committee would very much like to be so informed.

1.5. Base-documents 5

1.5 Base documents

The Base Document for Section 3 (Language) was "The C Reference Manual" by
Dennis M. Ritchie, which was used for several years within AT&T Bell Labora-
tories and reflects enhancements to C within the UNIX environment. A version
of this manual was published as Appendix A of The C Programming Languoge by
Kernighan and Ritchie (K&R). Several deviations in the Base Document from K&R
were challenged during Committee deliberations, but most changes from K&R ul-
timately included in the Standard were readily endorsed by the Committee since
they were widely known and accepted outside the UNIX user community.

The Base Document for Section 4 (Library) was the 198-1 fur/group Standard.
(jusr Igroup is a UNIX system users group.) In defining what a UNIX-like environ-
ment looks like to an applications programmer writing in C, lusr/group was obliged
to describe library functions usable in any C environment. The Committee found
[ust Igroup's work to be an excellent codification of existing practice in defining
C libraries, once the UNIX-specificfunctions had been removed.

The work begun by /usr / group is being continued by the IEEE Committee 1003
to define a portable operating system interface ("POSIX") based on the UNIX
environment. The X3Jll Committee has been working with IEEE 1003 to resolve
potential areas of overlap or conflict between the two Committees. The result of
this coordination has been to divide responsibility for standardizing library functions
into two areas. Those functions needed for a C implementation in any environment
are the responsibility of X3Jl1 and are included in the Standard. IEEE 1003retains
responsibility for those functions which are operating-system-specific; the (POSIX)
standard will refer to the ANSI C Standard for C library function definitions.

Many of the discussions in this Rationale employ the formula "feature X has
been changed (added, removed) because " The changes (additions, removals)
should be understood as being with respect to the appropriate Base Document.

1.6 Definitions of terms

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached
after considerable discussion, about the fundamental nature of the memory organi-
zation of a C environment:

• All objects in C must be representable as a contiguous sequence of bytes,.each
of which is at least 8 bits wide.

• A cha.r (or signed cha.r or unsigned cha.r) occupies exactly one byte.

(Thus, for instance, on a machine with 3S-bit words, a byte can be defined to consist
of 9, 12, 18, or 36 bits, these numbers being all the exact divisors of 36which are not
less than 8.) These strictures codify the widespread presumption that any object
can be treated as an array of char's whose size is given by the sizeof operator with
that object's type as its operand.

X3Jl1/88-003

6 Section 1. INTRODUCTION

These definitions do not preclude "holes" in struct's or int's containing bit
fields. Such holes are in fact often mandated by alignment and packing requirements.
The holes simply do not participate in representing the (composite) value of an
object.

The definition of object does not employ the notion of type. Thus an object has
no type in and of itself. However, since an object may only be designated by an
lualue (see §3.2.2.1), the phrase "the type of an object" is taken to mean, here and
in the Standard, "the type of the lvalue designating this object," and "the value of
an object" means "the contents of the object interpreted as a value of the type of
the lvalue designating the object."

The concept of multi-byte character has been added to C to support very large
character sets. See §2.2.1.2.

The terms unspecified behavior, undefined behavior, and implementation-defined be-
havior are used to categorize the result of writing programs whose properties the
Standard does not, or cannot, completely describe. The goal of adopting this cate-
gorization is to allow a certain variety among implementations which permits quality
of implementation to be an active force in the marketplace as well as to allow certain
popular extensions, without removing the cachet of conformance to the Standard.
An appendix to the Standard, §A.6, catalogs those behaviors which fall into one of
these three categories.

Unspecified behavior gives the implementor some latitude in translating pro-
grams.

Undefined behavior gives the implementor license not to catch certain program
errors that are difficult to diagnose. It also identifies areas of possible conforming
language extension: the implementor may augment the language by providing a
definition of the officially undefined behavior.

Implementation-defined behavior gives an implementor the freedom to choose
the appropriate approach, but requires that this choice be explained to the user.
Behaviors designated as implementation-defined are generally those in which a user
could make meaningful coding decisions based on the implementation definition.
Implementors should bear in mind this criterion when deciding how extensive an
implementation definition ought to be.

1.7 Compliance

The three-fold definition of compliance is used to broaden the population of con-
forming programs and distinguish between conforming programs using a single im-
plementation and portable conforming programs.

A strictly conforming program is another term for a maximally portable program.
The goal is to give the programmer a fighting chance to make powerful C programs
that are also highly portable, without demeaning perfectly useful C programs that
happen not to be portable. Thus the adverb strictly.

1.7. Compliance 7

By defining conforming implementations in terms of the programs they accept,
the Standard leaves open the door for a broad class of extensions as part of a
conforming implementation. By defining both conforming hosted and conforming
freestanding implementations, the Standard recognizes the use of C to write such
programs as operating systems and ROM-based applications, as wellas moreconven-
tional hosted applications. Beyond this two-level scheme, no additional subsetting
is defined for C, since the Committee felt strongly that too many levels dilutes the
effectivenessof a standard.

Conforming program is thus the most tolerant of all categories, since only one
conforming implementation need accept a program to rule it conforming. The pri-
mary limitation on this license is §2.1.1.3.

Diverse sections of the Standard comprise the "treaty" between programmers
and implementors regarding various name spaces - if the programmer followsthe
rules of the Standard the implementation will not impose any further restrictions
or surprises:

• A strictly conformingprogram can use only a restricted subset of the identifiers
that begin with underscore (§4.1.2). Identifiers and keywords are distinct
(§3.1.1). Otherwise, programmers can use whatever internal names they wish,
and be guaranteed that these names will not conflict with implementation-
defined identifiers. (Note, however, the class of identifiers which are identified
in §4.13as possible future library names.)

• The external functions defined in, or called within, a portable program can be
named whatever the programmer wishes, as long as these names are distinct
from the external names defined by the Standard library (§4). External names
in a maximally portable program must be distinct within the first 6 characters
mapped into one case (§3.1.2).

• A maximally portable program cannot, of course, assume any language key-
words other than those defined in the Standard.

• Each function called within a maximally portable program must either be
defined within some source file of the program or else be a function in the
Standard library;

One proposal long entertained by the Committee was to mandate that each im-
plementation have a translate-time switch for turning off extensions and making
a pure Standard-conforming implementation. It was pointed out, however, that
virtually every translate-time switch setting effectively creates a different "imple-
mentation," howeverclosemay be the effect of translating with two different switch
settings. Whether an implementor chooses to offer a family of conforming imple-
mentations, or to offeran assortment of non-conformingimplementations alongwith
one that conforms, was not the business of the Committee to mandate. The Stan-
dard therefore confines itself to describing conformance, and merely suggests areas
where extensions will not compromise conformance.

XSJll/88-00S

8 Section 1. INTRODUCTION

Other proposals rejected more quickly were to provide a validation suite, and to
provide the source code for an acceptable library. Both were recognized to be major
undertakings, and both were seen to compromise the integrity of the Standard by
giving concrete examples that might bear more weight than the Standard itself. The
potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic
debuggers lies outside the mandate of the Committee. However, the Committee
has taken pains to allow such programs to work with conforming programs and
implementations.

1.8 Future directions

Section 2

ENVIRONMENT

Because C has seen widespread use as a cross-compiled language, a clear distinction
must be made between translation and execution environments. The preprocessor,
for instance, is permitted to evaluate the expression in a .i:f statement using the
long integer arithmetic native to the translation environment: these integers must
comprise at least 32 bits, but need not match the number of bits in the execution
environment. Other translate-time arithmetic, however, such as type casting and
floating arithmetic, must more closely model the execution environment regardless
of translation environment.

2.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The Committee has found
that describing various aspects of the C language, library, and environment in terms
of concrete models best serves discussion and presentation. Every attempt has been
made to craft the models so that implementors are constrained only insofar as they
must bring about the same result, 48 if they had implemented the presentation
model; often enough the clearest model would make for the worst implementation.

2.1.1 Translation environment

2.1.1.1 Program structure

The terms 80urce file, external linkage, linked, libraries, and executable program all
imply a conventional compiler-linker combination. All of these concepts have shaped
the semantics of C, however, and are inescapable even in an interpreted environment.
Thus, while implementations are not required to support separate compilation and
linking with libraries, in some ways they must behave as if they do.

2.1.1.2 Translation phases

Perhaps the greatest undesirable diversity among existing C implementations can be
found in preprocessing. Admittedly a distinct, and primitive language superimposed

9

· .
10 Section 2. ENVIRONMENT

upon C, the preprocessing commands accreted over time, with little central direction,
and with even less precision in their documentation. This evolution has resulted in
a variety of local features, each with its ardent adherents: the Base Document offers
little clear basis for choosing one over the other.

The consensus of the Committee is that preprocessing should be simple and
overt, that it should sacrifice power for clarity. For instance, the macro invocation
f (a, b) should assuredly have two actual arguments, even if b expands to c. d;
and the formal definition of t· must call for exactly two arguments. Above all,
the preprocessing sub-language should be specified precisely enough to minimize or
eliminate dialect formation.

To clarify the nature of preprocessing, the translation from source text to tokens
is spelled out as a number of separate phases. The separate phases need not actually
be present in the translator, but the net effect must be as if they were. The phases
need not be performed in a separate preprocessor, although the definition certainly
permits this common practice. Since the preprocessor need not know anything
about the specific properties of the target, a machine-independent implementation
is permissible.

The Committee deemed that it was outside the scope of its mandate to require
the output of the preprocessing phases be available as a separate translator output
fi~. .

The phases oj translation are spelled out to resolve the numerous questions
raised about the precedence of different parses. Can a 'define begin a comment?
(No.) Is beckslash /new-Iine permitted within a trigraph? (No.) Must a comment
be contained within one 'include file? (Yes.) And so on. The Rationale section
on preprocessing (§3.8) discusses the reasons for many of the particular decisions
which shaped the specification of the phases of translation.

A backslash immediately before a new-line has long been used to continue string
literals, as well as preprocessing command lines. In the interest of easing machine

- generation of C, and of transporting code to machines with restrictive physical
line lengths, the Committee generalized this mechanism to permit any token to be
continued by interposing a backslash/new-line sequence.

2.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax
error or constraint violation, the Standard performs two important services. First, it
gives teeth to the concept of erroneous progra.ffl, since a conforming implementation
must distinguish such a program from a valid one. Second, it severely constrains
the nature of extensions permissible to a conforming implementation.

The Standard says nothing about the nature of the diagnostic message, which
could simply be "syntax error", with no hint of where the error occurs. (An
implementation must, of course, describe. what translator output constitutes a di-
agnostic message, so that the user can recognize it as suca.) The Committee ulti-

2.1; Conceptual models 11

mately decided that any diagnostic activity beyond this level is an issue of quGlit, of
implementa.tion, and that market forces would encourage more useful diagnostics.
Nevertheless, the Committee felt that at least some significant class of errors must
be diagnosed, and the class specified should be recognizable by all translators.

The Standard does not forbid extensions, but such extensions must not inval-
idate strictly conforming programs. The translator must diagnose the use of such
extensions, or allow them to be disabled as discussed in §1.7. Otherwise, extensions
to a conformingCimplementation lie in such realms as definingsemantics for syntax
to which no semantics is ascribed by the Standard, or giving meaning to undefined
behavior.

2.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization
of static storage by executable code, as well as by data translated into the program
Image.

2.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by
constraining them.

2.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of
detail in order to give programmers a reasonable chance of writing programs which
are portable among such environments.

The behavior of the arguments to main, and of the interaction of exit, main
and atexit (see §4.10.4.2)has been codified to curb some unwanted variety in the
representation of argv strings, and in the meaning of values returned by lIlain.

The specification of arge and argv as arguments to main recognizes extensive
prior practice. argv [argc] is required to be a null pointer to provide a redundant
check for the end of the list, also on the basis of common practice.

main is the only function that may port ably be declared either with zero or two
arguments. (The number of arguments must ordinarily match exactly between invo-
cation and definition.) This special case simply recognizes the widespread practice
of leaving off the arguments to lIlainwhen the program does not access the program
argument strings. While many implementations support more than two arguments
to main. such practice is neither blessed nor forbidden by the Standard; a program
that defines main with three arguments is not strictly conforming. (See Standard
§A.6.5.1.) .

Command line I/O redirection is not mandated by the Standard; this was deemed
to be a feature of the underlying operating system rather than the C language.

X3Jll/88-003

12 Section 2. ENVIRONMENT

2.1.2.3 Program execution

Because C expressions can contain side effects, issues of sequencing are important
in expression evaluation. (See §3.3.) Most operators impose no sequencing require-
ments, but a few operators impose sequence points upon the evaluation: comma,
logical-AND, logical-OR, and conditional. For example, in the expression (i • 1.
a[i] = 0) the side effect (alteration to storage) specified by i • 1 must be com-
pleted before the expression a [~) ,.. 0 is evaluated.

Other sequence points are imposed by statement execution and completion of
evaluation of a full expression. (See §3.6). Thus in fnC ++a), the incrementation
of a must be completed before tn is called. In i = 1; a [i) •• 0; the side-effect
of i = 1 must be complete before a [i] = 0 is evaluated. (An appendix to the
Standard, §A.2, lists all the sequence points of the language.)

The notion of agreement has to do with the relationship between the abstract
machine defining the semantics and an actual implementation. An agreement point
for some object or class of objects is a sequence point at which the value of the
object(s) in the real implementation must agree with the value prescribed by the
abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically
reduce execution times. In a loop like

sum ,.. 0;
for (i •• 0; i < N; ++i)

sum += a [i] ;

both sum and i might be profitably kept in registers during the execution of the
loop. Thus, the actual memory objects designated by sum and i would not change
state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as
device drivers and memory-mapped I/O. The following loop looks almost identical
to the previous example, but the specification of volatile ensures that each assign-
ment to *ttyport takes place in the same sequence, and with the same values, as
the (hypothetical) abstract machine would have done.

volatile short *ttyport;
1* .. , */
tor (i • 0; i < N; ++i)

*ttyport • a[i);

Another common optimization is to pre-compute common subexpressions. In
this loop:

volatile short *ttyport;
short mask1. mas~;
1* .. , *1
tor (i • 0; i < N; ++i)

*ttyport • a[i] ~ mask1 ~ mask2;

-,

2.2. Environmental considerations 13

evaluation of the subexpression maskl " mask2 could be performed prior to the
loop in the real implementation, assuming that neither maskl nor mask2 appear as
an operand of the address-of operator anywhere in the function. In the abstract
machine, of course, this subexpression is re-evaluated at each loop iteration, but
the real implementation is not required to mimic this repetitiveness, because the
variables maskl and mask2 are not volatile and the same results are obtained
either way.

The previous example shows that a sub expression can be pre-computed in the
real implementation. A question sometimes asked regarding optimization is, "Is the
rearrangement still conforming if the pre-computed expression might raise a signal
(such as division by zero)?" Fortunately for optimizers, the answer is "Yes," be-
cause any evaluation that raises a computational signal has fallen into an undefined
behavior (§3.3), for which any action is allowable.

Behavior is described in terms of an 4bstr4ct m4chine to underscore, once again,
that the Standard mandates results 4S if certain mechanisms are used, without
requiring those actual mechanisms in the implementation. The Standard specifies
agreement points at which the value of an object or class of objects in an implemen-
tation must agree with the value ascribed by the abstract semantics.

An appendix to the Standard, §A.2, lists the sequence points specified in the
body of the Standard.

The class of inter4ctive devices is intended to include at least asynchronous ter-
minals, or paired display screens and keyboards. An implementation may extend the
definition to include other input and output devices, or even netwerk inter-program
connections, provided they obey the Standard's characterization of interactivity.

2.2 Environmental considerations

2.2.1 Character sets

The Committee ultimately came to remarkable unanimity on the subject of character
set requirements. There was strong sentiment that C should not be tied to ASCII,
despite its heritage and despite the precedent of Ada being defined in terms of ASCII.
Rather, an implementation is required to provide a unique character code for each
of the printable graphics used by C, and for each of the control codes representable
by an escape sequence. Translation and execution environments may have different
character sets, but each must meet this requirement in its own way. The goal is to
ensure that a conforming implementation can translate a C translator written in C.

For this reason, and economy of description, source code is described 48 if it
undergoes the same translation as text that is input by the standard library I/O rou-
tines: each line is terminated by some new-line character, regardless of its external
representation.

X3Jll/88-003

14 Section 2. ENVIRONMENT

2.2.1.1 Trigrapb sequences

Trigraph sequences have been introduced as alternate spellings of some characters
to allow the implementation of C in character sets which do not provide a sufficient
number of non-alphabetic graphics.

Implementations are required to support these alternate spellings, even if the
character set in use is ASCII, to allow transportation of code from systems which
must use the trigraphs.

The Committee faced a serious problem in trying to define a character set for C.
Not all of the character sets in general use have the right number of characters, nor
do they support the graphical symbols that C users expect to see. For instance, many
character sets for languages other than English resemble ASCII except that codes
used for graphic characters in ASCII are instead used for extra alphabetic characters
or diacritical marks. C relies upon a richer set of graphic characters than most other
programming languages, so the representation of programs in character sets other
than ASCII is a greater problem than for most other programming languages.

The International Standards Organization (ISO) uses three technical terms to
describe character sets: repertoire, collating sequence, and codeset. The repertoire is
the set of distinct printable characters. The term abstracts the notion of printable
character from any particular representation; the glyphs R, R, R, R, R, R, and !R all
represent the same element of the repertoire, upper-case-R, which is distinct from
lower-case-r. Having decided on the repertoire to be used (C needs a repertoire of
96 characters), one can then pick a collating sequence which corresponds to the in-
ternal representation in a computer. The repertoire and collating sequence together
form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating
sequence altogether (it is of no importance to the language), and then find ways of
expressing the repertoire in a way that should give no problems with currently
popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately the ASCII reper-
toire is not a subset of all other commonly used character sets, and widespread
practice in Europe is not to implement all of ASCII either, but use some parts of
its collating sequence for special national characters.

The solution is an internationally agreed-upon repertoire,in terms of which
an international representation of C can be defined. The ISO has defined such a
standard: ISO 646 describes an intlariant subset of ASCII.

The characters in the ASCII repertoire used by C and absent from the ISO 646
repertoire are:

Given this repertoire, the Committee faced the problem of defining representations
for the absent characters. The obvious idea of defining two-character escape se-
quences fails because C uses all the characters which are in the ISO 646 repertoire:

2.2. Ellvironmental considerations 15

no single escape character is available. The best that can be done is to use a trigrtJph •
- an escape digraph followedby a distinguishing character.

11 was selected as the escape digraph because it is not used anywhere else in C
(except in literals and constants, as noted below); it suggests that something unusual
is going on. The third character was chosen with an eye to graphical similarity to
the character being represented.

Trigraphs can generally be surrounded by white space when they are used, al-
lowing them to stand out.

The sequence 11 cannot currently occur anywhere in a legal C program except
in strings, character constants, comments, or header names. The character escape
sequence '\1' (see §3.1.3.4)was introduced to allow two adjacent question-marks
in such contexts to be represented as 1\1, a form distinct from the escape digraph.

QUIET CHANGE

Programs with character sequences such as 11! in string constants,
character constants, or header names will now produce different results.

2.2.1.2 Multibyte characters

The "byte = character" orientation of C works well for text in Western alphabets,
where the size of the character set is under 256. The fit is rather uncomfortable for
languages such as Japanese and Chinese, where the-repertoire of ideograms numbers
in the thousands or tens of thousands.

Internally, such character sets can be represented as numeric codes, and it is
merely necessary to choose the appropriate integral type to hold any such character.

Externally, whether in the filesmanipulated by a program, or in the text of the
source files themselves, a conversion between these large codes and the various byte
media is necessary.

The support in C of large character sets is based on these principles:

• Multibyte encodings of large character sets are necessary in I/O operations,
in source text comments, and in source text string and character literals.

• No existing multibyte encoding is mandated in preference to any other; no
widespread existing encoding should be precluded.

• The null character (, \0') may not be used as part of a multibyte encoding,
except for the one-byte null character itself. This allows existing functions
which manipulate strings transparently to work with multibyte sequences.

• Shift encodings (which interpret byte sequences in part on the basis of some
state information) must start out in a known (default) shift state under certain
circumstances, such as the start of string literals.

• The minimum number of absolutely necessary library functions is introduced.
(See §4.1O.7.)

X3Jl1/88-003

16 Section 2. ENVIRONMENT

2.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying "format
effecting actions on display devices," and provides printable escape sequences for
each of them. These character codes are clearly modelled after ASCII control codes,
and the mnemonic letters used to specify their escape sequences reflect this her-
itage. Nevertheless, they are internal codes for specifying the format of a display
in an environment-independent manner; they must be written to a text file to effect
formatting on a display device. The Standard states quite clearly that the exter-
nal representation of a text file (or data stream) may well differ from the internal
form, both in character codes and number of characters needed to represent a single
internal code.

The distinction between internal and external codes most needs emphasis with
respect to new-line. ANSI X3L2 (Codes and Character Sets) uses the term to re-
fer to an external code used for information interchange whose display semantics
specify a move to the next line. Both ANSI X3L2 and ISO 646 deprecate the com-
bination of the motion to the next line with a motion to the initial position on the
line. The C Standard, on the other hand, uses new-line to designate the end-of-line
internal code represented by the escape sequence '\n I. While this ambiguity is
perhaps unfortunate, use of the term in the latter sense is nearly universal within
the C community. But the knowledge that this internal code has numerous ex-
ternal representations, depending upon operating system and medium, is equally
widespread,

The alert sequence (, \a t) has been added by popular demand, to replace, for
instance, the ASCII BEL code explicitly coded as '\007'.

Proposals to add '\e' for ASCII ESC (, \033 ') were not adopted because other
popular character sets such as EBCDIC have no obvious equivalent. (See §3.1.3.4.)

The vertical tab sequence (, \ v ') was added sincemany existing implementations
support it, and since it is convenient to have a designation within the language for
all the defined white space characters.

The semantics ofthe motion control escape sequencescarefully avoid the Western
alphabet assumptions that printing advances left-to-right and top-ta-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly
effect vertical tabs (for instance), the Standard emphasizes that the semantics merely
describe intent.

2.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The Committee con-
cluded that about the only thing a strictly conforming program can do in a signal
handler is to assign a value to a volatile static variable which can be written.
uninterruptedly and promptly return. (The header <signal.h> specifies a type
sig_atomic_t which can be 80 written.) It is further guaranteed that a signal han-
dler will not corrupt the automatic storage of an instantiation of any executing

2.2. Environmental considerations 11

function, even if that function is called within the signal handler.
No such guarantees can be extended to library functions, with the explicit ex-

ceptions of longjmp (§4.6.2.1) and signal (§4.7.1.1), since the library functions
may be arbitrarily interrelated and since some of them have profound effect on the
environment.

Calls to longjmp are problematic, despite the assurances of §4.6.2.1. The.signal
could have occurred during the execution of some library function which was in the
process of updating external state and/or static variables.

A second signal for the same handler could occur before the first is processed,
and the Standard makes no guarantees as to what happens to the second signal.

2.2.4 Environmental limits

The Committee agreed that the Standard must say something about certain capa-
cities and limitations, but just how to enforce these treaty points was the topic of
considerable debate.

2.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and compile
some program that meets each of the stated limits. This criterion was felt to give
a useful latitude to the implementor in meeting these limits. While a deficient
implementation could probably contrive a program that meets this requirement, yet
still succeed in being useless, the Committee felt that such ingenuity would probably
require more work than making something useful. The sense of the Committee is
that implementors should not construe the translation limits as the values of hard-
wired parameters, but rather as a set of criteria by which an implementation will
be judged.

Some of the limits chosen represent interesting compromises. The goal was to
allow reasonably large portable programs to be written, without placing excessive
burdens on reasonably small implementations.

The minimum maximum limit of 257 cases in a switch statement allows coding
of lexical routines which can branch on any character (one of at least 256 values) or
on the value EOF.

2.2.4.2 Numerical limits

In addition to the discussion below, see §4.1.4.

Sizes of integral types <limits. h> Such a large body of C code has been
developed for 8-bit byte machines that the integer sizes in such environments must
be considered normative. The prescribed limits are minima: an implementation
on a machine with 9-bit bytes can be conforming, as can an implementation that
defines int to be the same width as long. The negative limits have been chosen to
accommodate ones-complement or sign-magnitude implementations, as well as the

X3Jll/88-003

18 Section 2. ENVIRONMENT

more usual twos-complement. The limits for the maxima and minima of unsigned
types are specified as unsigned constants (e.g., 66636u) to avoid surprising widenings
of expressions involving these extrema.

CHAR...BITS makes available the number of bits in a char object. The Committee
saw little utility in adding such macros for other data types.

Characteristics of floating types <:float. h>' The characterization of floating
point follows, with minor changes, that of the FORTRAN standardization commit-
tee (X3J3).1 The Committee chose to follow the FORTRAN model in some part
out of a concern for FORTRAN-to-C translation, and in large part out of deference
to the FORTRAN committee's greater experience with fine points of floating point
usage.

Single precision (32-bit) floating point is considered adequate to support a con-
forming C implementation. Thus the minimum maxima constraining Boating types
are extremely permissive.

The Committee has also endeavored to accommodate the IEEE 754 Boating
point standard by not adopting any constraints on Boating point which are contrary
to this standard.

;"" lS!!e X3J3 working document 58-101.

Section 3

LANGUAGE

W.hile more formal methods of language definition were explored, the Committee
decided early on to employ the style of the Base Document, i.e., Backus-Naur Form
for the syntax and prose for the constraints and semantics. Anything more ambitious
was considered to be likely to delay the Standard, and to make it less accessible to
its audience.

3.1 Lexical Elements

The Standard endeavors to bring preprocessing more closely into line with the token
orientation of the language proper. To do so requires that at least some information
about white space be retained through the early phases oftranslation (see §2.1.1.2).
It also requires that an inverse mapping be defined from tokens back to source
characters (see §3.8.3).

3.1.1 Keywords

Several keywords have been added: const, enum, noalias, signed, void, and
volatile.

As much as possible, however, new features have been added by overloading ex-
isting keywords, as, for example, long double instead of extended. It is recognized
that each added keyword will require some existing code that used it as an identi-
fier to be rewritten. No meaningful programs are known to be quietly changed by
adding the new keywords.

The keywords entry, fortran, and asm have not been included since they were
either never used, or are not portable. Uses of fortran and asm as kevwords are
noted as common extensions.

3.1.2 Identifiers

While an implementation is not obliged to remember more than the first 31 charac-
ters of an :';~ntiner for the purpose of name matching, the programmer is effectively

19

20 Section 3. LANGUAGE

prohibited from intentionally creating two different identifiers that are the same in
the first 31 characters. Implementations may therefore store the full identifier; they
are not obliged to truncate to 3l.

The decision to extend significance to 31 characters for internal names was made
with little opposition, but the decision to retain the old six-character case-insensitive
restriction on significance of external names was most painful. While strong senti-
ment was expressed for making C "right" by requiring longer names everywhere, the
Committee recognized that the language must, for years to come, coexist with other
languages and with older assemblers and linkers. Rather than undermine support
for the Standard, the severe restrictions have been retained.

The Committee has decided to label as obsolescent the practice of providing
different identifier significance for internal and external identifers, thereby signalling
its intent that some future version of the C Standard require 31-character case-
sensitive external name significance, and thereby encouraging new implementations
to support such significance. . .

Three solutions to the external identifier length/case problem were explored,
each with its own set of problems:

1. Label any C implementation without at least 91-character, case-sensitive sig-
nificance in external identifiers as non-standard. This is unacceptable since
the whole reason for a standard is portability, and many systems today simply
do not provide such a name space.

2. Require a C implementation which cannot provide Bl-character, case-sensitive
significance to map long identifiers into the identifier name space that it can
provide. This option quickly becomes very complex for large, multi-source
programs, since a program-wide database has to be maintained for all modules
to avoid giving two different identifiers the same actual external name. It also
interferes with source code debuggers and cross reference programs, which
generally work with the short mapped names, since the source-code name used
by the programmer would likely bear little resemblance to the name actually
generated.

3. Require a C implementation which cannot provide 91-character, case-sensitive
significance to rewrite the linker, assembler, debugger, any other language
translators which use the linker, etc. This is not always practical, since
the C implementor might not be providing the linker, etc. Indeed, on some
systems only the manufacturer's linker can be used, either because the format
of the resulting program file is not documented, or because the ability to create
program files is restricted to secure programs.

Because of the decision to restrict significance of external identifiers to six case-
insensitive characters, C programmers are faced with these choices when writing
portable programs:

3.1. Lexical Elements 21

1. Make sure that external identifiers are unique within the first six characters,
and use only one case within the name. A unique six-character prefix could be
used, followed by an underscore, followed by a longer, more descriptive name:

extern int a_xvz_real_long_name;
extern int a_rwt_real_long_name2;

2. Use the prefix method described above, and then use ~efine statements to
provide a longer, more descriptive name for the unique name, such as:

#define real_long_name a_xvz_real_long_name
#define real_long_name2 a_rwt_real_long_name2

Note that overuse of this technique might result in exceeding the limit on the
number of allowed #define macros, or some other implementation limit.

3. Use longer and/or multi-case external names, and limit the portability of the
programs to systems that support the longer names.

4. Declare all exported items (or pointers thereto) in a single data structure
and export that structure. The technique can reduce the number of external
identifiers to one per translation unit; member names within the structure are
internal identifiers, hence can have full significance. The principal drawback
of this technique is that functions can only be exported by reference, not by
name; on many systems this entails a run-time overhead on each function call.

QUIET CHANGE

A program that depends upon internal identifiers matching only in the
first (say) eight characters may change to one with distinct objects for
each variant spelling of the identifier.

3.1.2.1 Scopes of identifiers

The Standard has separated from the overloaded keywords for storage classes the
various concepts of scope, linkage, name space, and storAge durAtion. (See §3.1.2.2,
§3.1.2.3, §3.1.2.4.) This has traditionally been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have
file scope even when introduced within a block. The Base Document is vague on
this point, and has been interpreted differently by different implementations. For
example, the following fragment would be valid in the file scope scheme, while invalid
in the block scope scheme:

typedef struct data d_struct

first.(){

X3Jll/88-003

22 Section 3. LANGUAGE

extern d_struct tunc();
1* ... *1

}

secondO {
d_struct n • tunc();

}

While it was generally agreed that it is poor practice to take advantage of an external
. declaration once it had gone out of scope, some argued that a translator had to
remember the declaration for checking anyway, so why not acknowledge this? The
compromise adopted was to decree essentially that block scope rules apply, but that
a conforming implementation need not diagnose a failure to redeclare an external
identifier that had gone out of scope (undefined beham·or).

QUIET CHANGE

A program relying on file scope rules may be valid under block scope
rules but behave differently - for instance, if d-atruct were defined as
type float rather than struct data in the example above.

3.1.2~2 Linkages of identifiers

The Standard requires that the first declaration, implicit or explicit, of an identifier
specify (by the presence or absence of the keyword static) whether the identifier
has internal or external linkage. This requirement allows for one-pass compilation
in an implementation which must treat internal linkage items differently than ex-
ternal linkage items. An example of such an implementation is one which produces
intermediate assembler code, and which therefore must construct names for internal
.Iinkage items to circumvent identifier length and/or case restrictions in the target
assembler.

Existing practice in this area is inconsistent. Some implementations have avoided
the renaming problem simply by restricting internal linkage names by the same rules
as for external linkage. Others have disallowed a static declaration followed later by
a defining instance, even though such constructs are necessary to declare mutually
recursive static functions. The requirements adopted in the Standard may call for
changes in some existing programs, but allow for maximum flexibility.

The definition model to be used for objects with external linkage was a major stan-
dardization issue. The basic problem was to decide which declarations of an object
define storage for the object, and which merely reference an existing object. A re-
lated problem was whether multiple definitions of storage are allowed, or only one
is acceptable. Existing implementations of C exhibit at least four different models,
listed here in order of increasing restrictiveness:

3.1. Lexical Elements 23

Common Every object declaration with external linkage (whether or not the key-
word extern appears in the declaration] creates a definition of storage. When
all of the modules are combined together, each definition with the same name
is located at the same address in memory. (The name is derived from common
storage in FORTRAN.) This model was the intent of the original designer of
C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword extern (whether it is used out-
side of the scope of a function or not) in a declaration indicates a pure reference
(ref), which does not define storage. Somewherein all of the translation units,
at least one definition (def) of the object must exist. An external definition
is indicated by an object declaration in file scope containing no storage class
indication. A reference without a corresponding definition is an error. Some-
implementations also will not generate a reference for items which arede-,
dared with the extern keyword, but are never used within the code. The
UNIX operating system C compiler and linker implement this model, which
is recognized as a common extension to the C language (§A.6.4.11). UNIX
C programs which take advantage of this model are standard conforming in
their environment, but are not maximally porta.ble.

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one
definition is allowed. Again, some implementations may decide not to put out
references to items that are not used. This is the model specified in K&R and
in the Base Document.

Initialization This model requires an explicit initialization to define stora.ge. All
other declarations are references.

The Figure demonstrates the differences between the models.
The model adopted in the Standard is a combination of features of the strict

ref/def model and the initialization model. As in the strict ref/def model, only a
single translation unit contains the definition of a given object - many environ-
ments cannot effectivelyor efficientlysupport the "distributed definition" inherent
in the common or relaxed ref/def approaches. However, either an initialization, or
an appropriate declaration without storage class specifier (see §3.7), serves as the
external definition. This composite approach was chosen to accommodate as wide
a range of environments and existing implementations as possible.

3.1.2.3 Name spaces of identifiers

Implementations have varied considerably in the number of separate name spaces
maintained. The position adopted in the Standard is to permit as many separate
name spaces as can be distinguished by context, except that all tags (struct, union,
and enum)comprise a single name space.

X3Jl1/88-003

---<------

24 Section 3. LANGUAGE

Figure 3.1: Comparison of identifier linkage models

I Model II File 1 I File 2
common

extern int i;
mainO {

i II: 1;
secondO;

}

extern int i;
secondO {

third(i);
}

Relaxed Ref/Def

int i;
mainO {

}

i = 1;
secondO; I }

I

int i;
secondO {

third(i);

Strict Ref/Def

int i;
mainO {

i ••1;
secondO;

}

extern int i;
secondO {

third(i);
}

Initializer

int i •• 0;
mainO {

i ••1;
secondO;

}

int i;
secondO {

third(i);
}

-.

3.1. Lexical Elements 25

3.1.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block
that declares local storage. (See §3.6.2.) While many implementations allocate
the maximum depth of automatic storage upon entry to a function, some explicitly
allocate and deallocate on block entry and exit. The latter are required to assure that
local storage is allocated regardless of the path into the block (although initializers
in automatic declarations are not executed unless the block is entered from the top).

To effect true reentrancy for functions in the presence of signals raised asyn-
chronously (see §2.2.3)'an implementation must assure that the storage for func-
tion return values has automatic duration. This means that the caller must allocate
automatic storage for the return value and communicate its location to the called
function: (The typical case of return registers for small types conforms to this re-
quirement: the calling convention of the implementation implicitly communicates
the return location to the called function.)

3.1.2.5 Types

Several new types have been added:

void
void *
signed char
unsigned char
unsigned short
unsigned long
long double

New designations forexisting types have been added:

signed short for short
signed int for int
signed long for long

void is used primarily as the typemark for a function which returns no result. It
may also be used, in any context where the value of an expression is to be discarded,
to indicate explicitly that a value is ignored by writing the cast (void). Finally, a
function prototype list that has no arguments is written as f (void), because f ()
retains its' old meaning that nothing is said about the arguments.

A "pointer to void," void *, is a generic pointer, capable 'of pointing to any
(data) object without truncation. A pointer to void must have the same represen-
tation as a pointer to character; this rule allow existing programs which call library
functions (such as memcpy and malloc) to continue to work. A pointer to void
may not be dereferenced, although such a pointer may be converted to a. normal
pointer type which may be dereferenced. Pointers to other types coerce silently to
and from void * in assignments, function prototypes, comparisons, and conditional

X3Jll/88-003

26 Section 3. LANG UAGE

expressions, whereas other pointer type clashes are invalid. It is undefined what
will happen if a pointer of some type is converted to void *, and then the void *
pointer is converted to a type with a stricter alignment requirement.

Three types of char are specified: signed, plain, and unargned. A plain char
may be represented as either signed or unsigned, depending upon the implementa-
tion, as in prior practice. The type signed char was introduced to make available
a one-byte signed integer type on those systems which implement plain char as
unsigned. For reasons of symmetry, the keyword signed is allowed as part of the
type name of other integral types.

Two varieties of the integral types are specified: signed and unsigned. If neither
specifier is used, signed is assumed. In the Base Document the only unsigned type
is unsigned into

The keyword unsigned is something of a misnomer, suggesting as it does arith-
metic that is non-negative but capable of overflow. The semantics of the C type
unsigned is that of modulus, or wrap-around, arithmetic, for which overflow has
no meaning. The result of an unsigned arithmetic operation is thus always defined,
whereas the result of a signed operation may (in principle) be undefined. In prac-
tice, on twos-complement machines, both types often give the same result for all
operators except division, modulus, right shift, and comparisons. Hence there has
been a lack of sensitivity in the C community to the differences between signed and
unsigned arithmetic (see §3.2.1.1).

The Committee has explicitly restricted the C language to binary architectures,
on the grounds that this stricture was implicit in any case:

• Bit-fields are specified by a number of bits, with no mention of "invalid integer"
representation. The only reasonable encoding for such bit-fields is binary:

• The integer formats for printf suggest no provision for "illegal integer" values,
implying that any result of bitwise manipulation produces an integer result
which can be printed by print:!.

• All methods of specifying integer constants - decimal, hex, and octal -
specify an integer value. No method independent of integers is defined for
specifying "bit-string constants." Only a binary encoding provides a complete
one-to-one mapping between bit strings and integer values.

The restriction to "binary numeration systems" rules out such curiosities as Gray
code, and makes possible arithmetic definitions of the bitwise operators on unsigned
types (see §3.3.3.3, §3.3.7, §3.3.10, §3.3.11, §3.3.12).

A new floating type long double has been added to C. The long double type
must offer at least as much precision as the type double. Several architectures.
support more than two floating types and thus can map a distinct machine type
onto this additional C type. Several architectures which only support two float-
ing point types can also take advantage of the three C types by mapping the less
precise type onto float and double, and designating the more precise type long

3.1. Lexical Elements 27

dou~le. Architectures in which this mapping might be desirable include those in
which single-precision floats offer at least as much precision as most other ma-
chines's double-precision, or those on which single-precision is considerably more
efficient than double-precision. Thus the common C floating types would map onto
an efficient implementation type, but the more precise type would still be available
to those programmers who require its use.

To avoid confusion, long :float as a synonym for double has been retired.

Enumerations permit the declaration of named constants in a more convenient and
structured fashion than #def ine 'so Both enumeration constants and variables be-
have like integer types for the sake of type checking, however.

The Committee considered several alternatives for enumeration types in C:

1. leave them out;

2. include them as definitions of integer constants;
. .

3. include them in the weakly typed form of the UNIX C compiler;

4. include them with strong typing, as, for example, in Pascal.

The Committee adopted the second alternative on the grounds that this approach
most clearly reflects common practice. Doing away with enumerations altogether
would invalidate a fair amount of existing code; stronger typing than integer creates
problems, for instance, with arrays indexed by enumerations.

3.1.2.6 Compatible type and composite type

The notions of compatible types and composite type have been introduced to discuss
those situations in wliich type declarations need not be identical. These terms are
especially useful in explaining the relationship between an incomplete type and a
complete type.

3.1.3 Constants

In folding and converting constants, an implementation must use at least as much
precision as is provided by the target environment. However,it is not required to use
exactly the same precision as the target, since this would require a cross compiler
to simulate target arithmetic at translation time.

The Committee considered the introduction of structure constants. Although it
agreed that structure literals would occasionally be useful, its policy has been not to
invent new features unless a strong need exists. Since the language already allows
for initialized const structure objects, the need for inline anonymous structured
constants seems less than pressing.

Several implementation difficultiesbeset structure constants. All other forms of
constants are "self typing" - the type of the constant is evident from its lexical

X3Jll/88-003

28 Section 3. LANGUAGE

structure. Structure constants would require either an explicit type mark, or typing
by context; either approach is considered to require increased complexity in the
design of the translator, and either approach would also require as much, if not
more, care on the part of the programmer as using an initialized structure object.

3.1.3.1 Floating constants

Consistent with existing practice, a floating point constant has been defined to have
type double. Since the Standard now allows expressions that contain only :float
operands to be performed in :float arithmetic (see §3.2.1.5) rather than double, a
method of expressing explicit float constants is desirable. The new long double
type raises similar issues.

Thus the F and L suffixes have been added to convey type information with
floating constants, much like the L suffix for long integers. The default type of
floating constants remains double, for compatibility· with prior practice. Lower
case f and 1are also allowed as suffixes.

Note that the run-time selection of the decimal point character by set Icc a.Le

(§4.4.1) has no effect on the syntax of C source text: the decimal point character is
always period.

3.1.3.2 Integer constants

The rule that the default type of a decimal integer constant is either int, long, or
unsigned long, depending on which type is large enough to hold the valuewithout
overflow,simplifies the use of constants.

The suffixesU and u have been added to specify unsigned numbers.
Unlike decimal constants, octal and hexadecimal constants too large to be ints

are typed as unsigned int (ifwithin range of that type), since it is more likelythat
they represent bit patterns or masks, which are generally best treated as unsigned,
rather than "real" numbers.

Little support was expressed for the old practice of permitting the digits 8 and 9
in an octal constant, 80 it has been dropped.

A proposal to add binary constants was rejected due to lack of precedent and
insufficient utility.

Despite a concern that a lower-caseL could be taken for the numeral one at the
end of an integral (or floating) literal, the Committee rejected proposals to remove
this usage, primarily on the grounds of sanctioning existing practice.

The rules given for typing integer constants were carefully worked out in accor-
dance with the Committee's deliberations on integral promotion rules (see §3.2.1.1).

3.1.3.3 Enumeration constants

Whereas an enumeration variable may have any integer type that correctly repre-
sents all its values when widened to int, an enumeration constant is only usable as
the value of an expression. Hence its type is simply into (See §3.1.2.5.)

3.1. Lexical Elements 29

3.1.3.4 Character constants

The digits 8 and 9 are no longer permitted in octal escape sequences. (Cf. octal
constants, §3.1.3.2.)

The alert escape sequence has been added (see §2.2.2).
Hexadecimal escape sequences, beginning with \x, have been adopted, with

precedent in several existing implementations. (Little sentiment was garnered for
providing \X as well.) The escape sequence extends to the first non-hex-digit char-
acter, thus providing the capability of expressing any character constant no matter
how large the type char is. String concatenation can be used to specify a hex-digit
character following a hexadecimal escape sequence:

char a[] = "\xif" "f" ;
char bE] = {'\xif'. 'f'. '\O'};

These two initializations give a and b the same string value.
The Committee has chosen to reserve all lower case letters not currently used

for future escape sequences (undefined beham·or). All other characters with no cur-
rent meaning are left to the implementor for extensions (implementation-defined
behavior). No portable meaning is assigned to multi-character constants or ones
containing other than the mandated source character set (implementation-defined
behavior) .

The Committee considered proposals to add the character constant '\e' to
represent the ASCII ESC (t \033 ') character. This proposal was based upon the use
of ESC as the initial character of most control sequences in common terminal driving
disciplines, such as ANSI X3.64. However, this usage has no obvious counterpart
in other popular character codes, such as EBCDIC. A programmer merely wishing
to avoid having to type \033 to represent the ESC character in an ASCIIjX3.64
environment, may, instead of writing

printf("\033[10;10h%d\n". somevalue);.

write:

#define Ese "\033"

printf(Ese " [lO;lOh'd\n". somevalue);

Notwithstanding the general rule that literal constants are non-negative", a char-
acter constant containing one character is effectively preceded with a (char) cast
and hence may yield a negative value if plain char is represented the same as signed
char. This simply reflects widespread past practice and was deemed too dangerous
to change.

1_3 is an expression: unary minus with operand 3.

X3Jll/88-003

30 Section 3. LANGUAGE

QUIET CHANGE

A constant of the form '\078' fs valid, but now has different meaning.
It now denotes a character constant whose value is the (implementation-
defined) combination of the values of the two characters '\07' and '8'.
The old meaning is the character whose code is 078 == 0100 == 64.

QUIET CHANGE

A constant of the form I \a I or I \x' now may have different meaning.
The old meaning, if any, was implementation dependent.

An L prefix distinguishes wide character constants. (See §2.2.1.2.)

3.1.4 String literals

String literals are specified to be unmodifiable. This specification allows imple-
mentations to share copies of strings with identical text, to place string literals in
read-only memory, and perform certain optimizations. However, string literals do
not have the type array of const char, in order to avoid the problems of pointer
type checking, particularly with library functions, since assigning a pointer to const
char to a plain pointer to char is not valid. Those members of the Committee who
insisted that string literals should be modifiable were content to have this practice
designated a common extension (see §A.6.5.5).

Existing code which modifies string literals can be made strictly conforming by
replacing the string literal with an initialized static character array. For instance,

char *p. *make_temp(char *str);
/* ... */

p = make_temp("tempXXX");
/* make_temp overwrites the literal */
/* with a unique name */

can be changed to:

char *p. *make_temp(char *str);
/* .,. */

{

static char template[] • "tempXIX";
p • make_tempe template);

}

A long string can be continued across multiple lines by using the backslesh-
newline line continuation, but this practice requires that the continuation of the
string start in the first position of the next line. To permit more flexible layout,
and to solve some preprocessing problems (see §3.8.3), the Committee introduced
HuriliJ literal concatenation. Two string literals in a row are pasted together (with

3.1. Lexical Elements 31

no null character in the middle) to make one combined string Iiteral. This addition
to the C language allows a programmer to extend a string literal beyond the end of
a physical line without having to use the backslash-newline mechanism and thereby
destroying the indentation scheme of the program. An explicit concatenation op-
erator was not introduced because the concatenation is a lexical construct rather
than a run-time operation.
without concatenation:

/* say the column is this wide */
alpha - "abcdefghijklm\

nopqrstuvwxyz"
with concatenation:

/* say the column is this wide */
alpha = "abcdefghijklm"

"nopqrstuvwxyz";

QUIET CHANGE

A string of the form "\078" is valid, but now has different meaning.
(See §3.1.3.)

QUIET CHANGE

A string of the form "\a" or "\x" now has different meaning. (See
§3.1.3.)

QUIET CHANGE

It is neither required nor forbidden that identical string literals be rep-
resented by a single copy of the string in memory; a program depending.
upon either scheme may behave differently.

An L prefix distinguishes wide string literals. (See §2.2.1.2.)

3.1.5 Operators

Assignment operators of the form -+, described Il~ old /a.shioned even in K&:R,have
been dropped.

The form +- is now defined to be a single token, not two, 80 no white space is
permitted within it; no compelling case could be made for permitting such white
space.

QUIET CHANGE

Expressions of the form x--3 change meaning with the loss of the old-
style assignment operators.

X3Jll/88-003

32 Section 3. LANGUAGE

The operator' has been added in preprocessing statements; within a 'define it
causes the macro argument followingto be converted to a string literal.

The operator •• has also been added in preprocessing statements: within a
'define it causes the tokens on either side to be p48ted to make a single new token.
See §3.8.3 for further discussion of these preprocessing operators.

3.1.6 Punctuators

The punctuator . .. (ellipsis)has been added to denote a variable number of trailing
arguments in a function prototype. (See §3.5.3.3.)

3.1.7 Header names

Header names, in preprocessing commands such as , obey distinct tokenization rules;
hence they are identified as distinct tokens. Attempting to treat quote-enclosed
header names as string literals creates a contorted description of preprocessing, and
the problems of treatingangle-bracket-enclosed header names as a sequence of C
tokens is even more severe.

3.1.8 Preprocessing numbers

The notion of preprocessing number has been introduced to simplify the description
of preprocessing.

3.1.9 Comments

The Committee considered proposals to allow comments to nest. The main argu-
ment for nesting comments is that it allow programmers to "comment out" code.
The Committee rejected this proposal on the grounds that comments should be used
for adding documentation to a program, and that preferable mechanisms already
exist for source code exclusion. For example,

.if 0
/* this code is bracketed out because ... */
code_to_be_excluded();
.endU

Preprocessing directives such as this prevent the enclosed code from being scanned
by later translation phases. Bracketed material can include comments and other,
nested, regions of bracketed code.

Another way of accomplishing these goals is with an if statement:

if (0) {
/* this code is bracketed out because .,. */
code_to_be_excluded();

}

Many modern compilers will generate no code for this it statement.

3.2. Conversions 33

3.2 Conversions

3.2.1 Arithmetic operands

3.2.1.1 Characters and integers

Since the publication of K&R, a serious divergence has occurred among implemen-
tations of C in the evolution of integral promotion rules. Implementations fall into
two major camps, which may be characterized as un8igned pre8erving and value
pre8erving. The difference between these approaches centers on the treatment of
unsigned char and unsigned short, when widened by the integral promotions,
but the decision has an impact on the typing of constants as well (see §3.1.3.2).

The unsigned preserving approach calls for promoting the two smaller unsigned
types to unsigned into This is a simple rule, and yields a type which is independent
of execution environment.

The value presermng approach calls for promoting those types to signed int,
if that type can properly represent all the values of the original type, and otherwise
for promoting those types to unsigned into Thus, if the execution environment
represents short as something smaller than int, unsigned short becomes int;
otherwise it becomes unsigned into

Both schemes give the same answer in the vast majority of cases, and both
give the same effective result in even more cases in implementations with twos-
complement arithmetic and quiet wraparound on signed overfiow - that is, in most
current implementations. 10 such implementations, differences between the two only
appear when these two conditions are both true:

1. An expression involving an unsigned char or unsigned short produces an
int-wide result in which the sign bit is set: i.e., either a unary operation on
such a type, or a binary operation in which the other operand is an int or
"narrower" type.

2. The result of the preceding expression is used in a context in which its signed-
ness is significant:

• sizeo:f(int) < sizeo:r(long) and it is in a context where it must be
widened to a long type, or

• it is the left operand of the right-shift operator (in an implementation
where this shift is defined as arithmetic), or

• it is either operand of I, I, <, <-, >, or >-.

10 such circumstances a genuine ambiguity of interpretation arises. The result
must be dubbed que8tionabl1l Bigned, since a case can be made for either the signed or
unsigned interpretation. Exactly the same ambiguity arises whenever an unsigned
int confronts a signed int across an operator, and the signed int has a negative
value. (Neither scheme does any better, or any worse, in resolving the ambiguity
of this confrontation.) Suddenly, the negative signed int becomes a very large

X3Jl1/88-003

34 Section 3. LANGUAGE

unsigned int, which may be surprising -'or it may be exactly what is desired by
a knowledgable programmer. Of course, all 01 the8e ambiguitie8 can be avoided by
a judicious use 01 caet«.

One of the important outcomes of exploring this problem is the understanding
that high-quality compilers might do well to look for such questionable code and
offer (optional) diagnostics, and that conscientious instructors might do well to warn
programmers of the problems of implicit type conversions.

The unsigned preserving rules' greatly increase the number of situations where
unsigned int confronts signed int to yield a questionably signed result, whereas
the value preserving rules minimize such confrontations. Thus, the value preserving
rules were considered to be safer for the novice, or unwary, programmer. Mter much
discussion, the Committee decided in favor of value preserving rules, despite the fact
that the UNIX C compilers had evolved in the direction of unsigned preserving.

QUIET CHANGE

A program that depends upon unsigned preserving arithmetic conver-
sions will behave differently, probably without complaint. This is con-
sidered the most serious semantic change made by the Committee to a
widespread current practice.

The Standard clarifies that the integral promotion rules also apply to bit-fields.

3.2.1.2 Signedand unsigned integers

Precise rules are now provided for converting to and from unsigned integers. On a
twos-complement machine, the operation is still virtual (no change ofrepresentation
is required), but the rules are now stated independent of representation.

3.2.1.3 Floating and integral

There was strong agreement that floating values should truncate toward zero when
converted to an integral type, the specification adopted in the Standard. Although
the Base Document permitted negative floating values to truncate away from zero,
no Committee member knew of current hardware that functions in such a manner.

3.2.1.4 Floating types

The Standard, unlike the Base Document, does not require rounding in the double
to float conversion. The new IEEE floating point processor chips control floating
to integral conversion with the same mode bits, as for double-precision to single-
precision conversion; since truncation-toward-zero is the appropriate setting for C
in the former case, it would be expensive to require such implementations to round
to float.

3.2. Conversions 35

3.2.1.5 Usual arithmetic conversions

The rules in the Standard for these conversions are slight modifications of those
in the Base Document: the modifications accommodate the added types and the
value preserving rules (see §3.2.1.1). Explicit license has been added to perform
calculations in a "wider" type than absolutely necessary, since this can sometimes
produce smaller and faster code (not to mention the correct answer more often).
Calculations can also be performed in a "narrower" type, by the 48 if rule, so long
as the same end result is obtained. Explicit casting can always be used to obtain
exactly the intermediate types required.

The Committee relaxed the requirement that :float operands be converted to
double. An implementation may still choose to convert.

QUIET CHANGE

Expressions with float operands may now be computed at lower preci-
sion. The Base Document specified that all floating point operations be
done in double.

3.2.2 Other operands

3.2.2.1 Lvalues and function designators

A difference of opinion within the C community has centered around the meaning
of lualue, one group considering an lvalue to be any kind of object locator, another
group holding that an lvalue is meaningful on the left side of an assigning operator.
The Committee has adopted the definition of lvalue as an object locator. The term
modifiable loalue is used for the second of the above concepts.

The role of array objects has been a classic source of confusion in C, in large
part because of the numerous contexts in which an array reference is converted to
a pointer to its first element. While this conversion neatly handles the semantics
of subscripting, the fact that a [i] is itself a modifiable lvalue while a is not has
puzzled many students of the language. A more precise description has therefore
been incorporated in the Standard, in the hopes of combatting this confusion.

array of % is converted to pointer to % just in those .cases where an lvalue is not
per.rrritted. .

function returning % is converted to pointer to function returning % similarly.

3.2.2.2 void

The description of operators and expressions is simplified by saying that void yields
a value, with the understanding that the value has no valid states.

3.2.2.3 Pointers

C has now been implemented on a wide range of architectures. While some of
these architectures feature uniform pointers which are the size of some integer type,

X3Jll!88-003

36 Section 3. LANGUAGE

maximally portable code may not assume any necessary correspondence between
different pointer types and the integral types.

The use of void * ("pointer to void") as a generic object pointer type is an
invention of the Committee. Adoption of this type was stimulated by the desire to
specify function prototype arguments that either quietly convert arbitrary pointers
(as in fread) or complain if the argument type does not exactly match (as in
strcmp). Nothing is said about pointers to functions, which may be incommensurate
with object pointers and/or integers.

Since pointers and integers are now considered incommensurate, the only integer
that can be safely converted to a pointer is the constant O. The result of converting
any other integer to a pointer is machine dependent.

Consequences of the treatment of pointer types in the Standard include:

• A pointer to void may be converted to a pointer to an object of any type.

• A pointer to any object of any type may be converted to a pointer to void.

• If a pointer to an object is converted to a pointer to void and back again to
the original pointer type, the result compares equal to original pointer.

• It is invalid to convert a pointer to an object of any type to a pointer to an
object of a different type without an explicit cast.

• Even with an explicit cast, it is invalid to convert a function pointer to an
object pointer or a pointer to void, or vice-versa.

• It is invalid to convert a pointer to a function of one type to a pointer to a
function of a different type without a cast.

• Pointers to functions that have different parameter-type information (includ-
ing the "old-style" absence of parameter-type information) are different types.

Implicit in the Standard is the notion of invalid pointers. In discussing pointers, the
Standard typically refers to "a pointer to an object" or "a pointer to a function" or
"a null pointer." A special case in address arithmetic allows for a pointer to just
past the end of an array. Any other pointer is invalid.

An invalid pointer might be created in several ways. An arbitrary value can be
assigned (via a cast) to a pointer variable. (This could even create a valid pointer,
depending on the value.) A pointer to an object becomes invalid if the memory
containing the object is deallocated. Pointer arithmetic can produce pointers outside
the range of an array.

Regardless how an invalid pointer is created, any use of it yields undefined
behavior. Even assignment, comparison with a null pointer constant, or comparison
with itself, might on some systems result in an exception.

Consider a hypothetical segmented architecture, on which pointers comprise a
segment descriptor and an offset. Suppose that segments are relatively small, so

-.

3.3. Expressions 37

that large arrays are allocated in multiple segments. While the segments are valid
(allocated, mapped to real memory), the hardware, operating system, or C imple-
mentation can make these multiple segments behave like a single object: pointer
arithmetic and relational operators use the defined mapping the impose the proper
order on the elements of the array. Once the memory is deallocated, the mapping
is no longer guaranteed to exist; use of the segment descriptor might now cause an
exception, or the hardware addressing logicmight return meaningless data.

3.3 Expressions

Several closely-related topics are involved in the precise specification of expression
evaluation: precedence, associativity, grouping, sequence points, agreement points,
order of evaluation, and interleaving. The latter three terms are discussedin §2.1.2.3.

The rules of precedence are encoded into the syntactic rules for each operator.
For example, the syntax for additive-expression includes the rule

additive-expression + multiplicative-expression

which implies that a+b=c parses as a+(b=c). The rules of associatiVity are similarly
encoded into the syntactic rules. For example, the syntax for assignment-expression
includes the rule

unary-expression assignment-operator assignment-expression

which implies that a=b=c parses as a- (b=c).
With rules of precedence and associativity thus embodied in the syntax rules, the

Standard specifies,in general, the grouping (association of operands with operators)
in an expression. The Base Document describes C as a language in which the
operands of successiveidentical commutative associative operators can be regrouped.
The Committee has decided to remove this licensefrom the Standard, thus bringing
C into accord with most other major high-level languages.

This change was motivated primarily by the desire to make C more suitable
for floating point programming. Floating point arithmetic does not obey many of
the mathematical rules that real arithmetic does. For instance, the two expressions
(a+b)+c and a+Ib+c) may well yield different results: suppose that b is greater
than 0, a equals -b, and c is positive but substantially smaller than b. (That is,
suppose c/b is less than DBL..EPSILON.) Then (a+b)+c is O+c,or e, while a+Ib+e)
equals a+b, or O. That is to say, floating point addition (and multiplication) is not
associative.

The Base Document's rule imposes a high cost on translation of numerical code
to C. Much numerical code is written in FORTRAN, which does provide a no-
regrouping guarantee; indeed, this is the normal semantic interpretation in most
high-level languages other than C. The Base Document's advice, "rewrite using
explicit temporaries," is burdensome to those with tens or hundreds of thousands

X3Jl1/88-003

38 Section 3. LANGUAGE

of lines to code to convert, a conversion which in most other respects could be done
automatically.

Elimination of the regrouping rule does not in fact prohibit much regrouping
of integer expressions. The bitwise logical operators can be arbitrarily regrouped,
since any regrouping gives the same result as if the expression had not been re-
grouped. This is also true of integer addition and multiplication in implementations
with twos-complement arithmetic and silent wraparound on overflow. Indeed, in
any implementation, regroupings which do not introduce overflows behave as if no
regrouping had occurred. (Results may also differ in such an implementation if the
expression as written results in overflows: in such a case the behavior is undefined,
so any regrouping couldn't be any worse.)

The types of lvalues that may be used to access an object have been restricted so
that an optimizer is not required to make worst-case aliasing assumptions.

In practice, aliasing arises with the use of pointers. A contrived example to
illustrate the issues is

int a;

void feint * b)
{

a •• 1;
*b •• 2;
g(a);

}

It is tempting to generate the call to g as if the source expression were g (1), but b
might point to a, so this optimization is not safe. On the other hand, consider

int a;
void f(double * b)
{

a • 1;
*b • 2,0;
g(a);

}

Again the optimization is incorrect only if b points to a. However, this would
only have come about if the address of a were somewhere cast to (double*). The
Committee has decided that such dubious possibilities need not be allowed for.

In principle, then, aliasing only need be allowed for when the lvalues all have the
same type. In practice, the Committee has recognized certain prevalent exceptions:

• The lvalue types may differ in signedness. In the common range, a signed
integral type and its unsigned variant have the same representation; it was
felt that an appreciable body of existing code is not "strictly typed" in this
area.

--
3.3. Expressions 39

• Character pointer types are often used in the bytewisemanipulation of objects;
a byte stored through such a character pointer may well end up in an object
of any type .

• A qualified version of the object's type, though formally it. different type, pro-
vides the same interpretation of the value of the object.

Structure and union types also have problematic aliasing properties:

struct fi{ float f; int i;};

void f(struct fi * fip. int * ip)
{

static struct fi a z {2.0. 1};
*ip = 2;
*:fip :& a;
g(*ip);

*:fip = a;
*ip :& 2;
g(fip->i) ;.

}

It is not safe to optimize to first call to g as g(2), or the second as g(1), since the
call to f could quite legitimately have been

struct:fi x:
:f(tx. tx.i);

These observations explain the other exception to the same-type principle.

3.3.1 Primary expressions

A primary expressionmay be void (parenthesized call to a function returning void),
a function designator (identifier or parenthesized function designator), an lvalue
(identifier or parenthesized lvalue), or simply a value expression. Constraints ensure
that a void primary expression is no part of a further expression, except that a void
expression may be cast to void.

3.3.2 Postfix operators

3.3.2.1 Array subscripting

The Committee found no reason to disallow the symmetry that permits a [i] to be
written as i [a] .

~3Jll/88-003

40 Section 3. LANGUAGE

3.3.2.2 FUnction calls

Pointers to functions may be used either as (*pf) () or as pf (). The latter con-
struct, not sanctioned in the Base Document, appears in some present versions of
C, is unambiguous, invalidates no old code, and can be an important shorthand.
The shorthand is useful for packages that present only one external name, which
designates a structure full of pointers to objects and functions: member functions
can be called as graphics.open(file) instead of (*graphics.open) (file).

The treatment of function designators can lead to some curious, but valid, syn-
tactic forms. Given the declarations:

int f(), (*pf)();

then all of the followingexpressions are valid function ~alls:

(tt) 0; f 0; (*f) 0; (**t) 0; (***1) 0 ;
piC); (*pf)(); (**p:f)(); (***p:f)();

The first expression on each line was discussed in the previous paragraph. The
second is conventional usage. All subsequent expressions take advantage of the
implicit conversionofa function designator to a pointer value, in nearly all expression
contexts. The Committee sawno real harm in allowingthese forms; outlawing forms
like (*f) 0, while still permitting *a (for int a[]), simply seemed more trouble
than it was worth.

The rule for implicit declaration of functions has been retained, but various past
ambiguities have been resolved by describing this usage in terms of a corresponding
explicit declaration.

For compatibility with past practice, all argument promotions occur as described
in the Base Document in the absence of a prototype declaration, including the (not
alwaysdesirable) promotion offloat to double. A prototype gives the implementor
explicit license to pass a :float as a float rather than a double, or a char as a
char rather than an int, or an argument in a special register, etc. If the definition
of a function in the presence of a prototype would cause the function to expect other
than the default promotion types, then clearly the calls to this function must be
made in the presence of a compatible prototype.

To clarify this and other relationships between function calls and function defi-
nitions, the Standard describes an equivalencebetween a function call or definition
which does occur in the presence of a prototype and one that does not.

Thus a prototyped function with no "narrow" types and no variable argument
list must be callable in the absence of a prototype, since the types actually passed in
a call are equivalent to the explicit function definition prototype. This constraint is
necessary to retain compatibility with past usage of library functions. (See §4.1.3.)

This provision constrains the latitude of an implementor because the parame-
ter passing conventions of prototype and non-prototype function calls must he the

3.3. Expressions 41

same for functions accepting. a fixed number of arguments. Implementations in en-
vironments where efficient function calling mechanisms are available must, in effect,
use the efficient calling sequence either in all "fixed argument list" calls or in none.
Since efficient calling sequences often do not allow for variable argument functions,
the fixed part of a variable argument list may be passed in a completely different
fashion than in a fixed argument list with the same number and type of arguments.

The existing practice of omitting trailing parameters in a call if it is known that
the parameters will not be used has consistently been discouraged. Since omission
of such parameters creates an inequivalence between the call and the declaration,
the behavior in such cases is undefined, and a maximally portable program will
avoid this usage. Hence an implementation is free to implement a function calling
mechanism for fixed argument lists which wouid (perhaps fatally] fail if the wrong
number or type of arguments were to be provided.

Strictly speaking then, calls to print! are obliged to be in the scope of a pro-
totype (as by #include <8tdio.h», but existing implementations are not obliged
to fail on such a lapse. (The behavior is undefinel).

3.3.2.3 Structure and union members

Since the language now permits structure parameters, structure assignment and
functions returning structures, the concept of a 8tructure expres8ion is now part of
the C language. A structure value can be produced by an assignment, by a function
call, by a comma operator expression or by a conditional operator expression:

81 •• (s2 ••83)
sf(x)
(x , 81)
x ? 81 : s2

In these cases, the result is not an lvalue; hence it cannot be assigned to nor can its
address be taken.

Simila.rly, x. y is an lvalue only if x is an lvalue. Thus none of the following valid
expressions are Ivalues:

s:f(3).a
(sl=s2).&
«i··6)?81:82).a
(x.81).a

Even when x .y is an lvalue, it may not be modifiable:

const 8truct S 81;
a1.a •• 3; /* invalid */

The Standard requires that an implementation diagnose a con8traint error in the
case that the member of a structure or union designated by the identifier following
a member selection operator (. or - » does not appear in the type of the structure

X3Jll/88-00~

42 Section 3. LANGUAGE

or union designated by the first operand. The Base Document is unclear on this
point.

3.3.2.4 Postfix increment and decrement operators

The Committee has not endorsed the practice in some implementations of consid-
ering post-increment and post-decrement operator expressionsto be lvalues.

3.3.3 Unary operators

3.3.3.1 Prefix increment and decrement .operators

See §3.3.2.4.

3.3.3.2 Address' and indirection operators

Some implementations have not allowedthe" operator to be applied to an array or
a function. (The construct was permitted in early versions of C, then later made
optional.) The Committee has endorsed the construct since it is unambiguous, and
since data abstraction is enhanced by allowing the important " operator to apply
uniformly to any addressable entity.

3.3.3.3 Unary arithmetic operators

Unary plus was adopted by the Committee from several implementations, for sym-
metry with unary minus.

The bitwise complement operator - , and the other bitwise operators, have
now been defined arithmetically for unsigned operands. Such operations are well-
defined because of the restriction of integral representations to "binary numeration
systems." (See §3.1.2.5.)

3.3.3.4 The sizeo! operator

It is fundamental to the correct usage of functions such as malloc and fread that
sizeoi (char) be exactly one. In practice, this means that a byte in C terms is
the smallest unit of storage, even if this unit is 36 bits wide; and all objects are
comprised of an integral number of these smallest units. (See §l.6.)

The Standard, like the Base Document, definesthe result of the sizeof operator
to be a constant of an unsigned integral type. Common implementations, and
common usage, have often presumed that the resulting type is into Old code that
depends on this behavior has never been portable to implementations that define
the result to be a type other than into The Committee did not feel it was proper
to change the language to protect incorrect code.

The type of sizeof, whatever it is, is published (in the library header
<stdde:f .h> as size_t, since it is useful for the programmer to be able to refer
to this type. This requirement implicitly restricts size_t to be a synonym for an

3.3. Expressions 43

existing unsigned integer type, thus quashing any notion that the largest declarable
object might be too big to span even with an unsigned long. This also restricts
the maximum number of elements that may be declared in an array, since for any
array a of N elements,

N •• sizeof(a)/sizeof(a[O])

Thus size_t is also a convenient type for array sizes, and is so used in several library
functions. (See §4.9.8.1, §4.9.8.2, §4.10.3.1,etc.)

The Standard specifies that the argument to sizeof can be any value except a
bit field, a void expression, or a function designator. This generality allows for
interesting environmental enquiries; given the declarations

int *p. *q;

these expressions determine the size of the type used for ...

sizeof(F(x»
sizeof(p-q)

F's return value */
pointer difference */

(The last type is of course available as ptrdifLt in <stddef .h>.)

3,3.4 Cast operators

A (void) cast is explicitly permitted, more for documentation than for utility.

Nothing portable can be said about casting integers to pointers, or vice versa, since
the two are now incommensurate.

The definition of these conversions adopted in the Standard resembles that in
the Base Document, but with several significant differences. The Base Document
required that a pointer successfully converted to an integer must be guaranteed to
be convertible back to the same pointer. This integer-to-pointer conversion is now
specified as implementa.tion-defined. While a high-quality implementation would
preserve the same address value whenever possible, it was considered impractical to
require that the identical representation be preserved. The Committee noted that,
on some current machine implementations, identical representations are required for
efficient code generation for pointer comparisons and arithmetic operations.

The conversion of the integer constant 0 to a pointer is defined similarly to the
Base Document. The resulting pointer must not address any object, must appear to
be equal to an integer value of 0, and may be assigned to or compared for equality
with any other pointer. This definition does not necessarily imply a representation
by a bit pattern of all zeros: an implementation could, for instance, use Borneaddress
which causes a hardware trap when dereferenced.

The type char must have the least strict alignment of any type, so char * has often
been used as a portable type for representing arbitrary object pointers. ·This usage

X3Jll/88-003

44 Section 3. LANG UAGE

creates an unfortunate confusion between the ideas of arbitrary pointer and character
or string pointer. The new type void *, which has the same representation as char
*, is therefore preferable for arbitrary pointers.

It is possible to cast a pointer of some qualified type (§3.5.2.4) to an unqualified
version of that type. Since the qualifier defines some special access or aliasing
property, however, any dereference of the cast pointer results in undefined behavior.

3.3.5 Multiplicative operators

There was considerable sentiment for giving more portable semantics to division
(and hence remainder) by specifying some way of giving less machine dependent
results for negative operands. Few Committee members wanted to require this by
default, lest existing fast code be gravely slowed. One suggestion was to make
signed int a type distinct from plain int, and require better-defined semantics for
signed int division and remainder. This suggestion was opposed on the grounds
that effectively adding several types would have consequences out of proportion to
the benefit to be obtained; the Committee twice rejected this approach. Instead the
Committee has adopted new library functions di v and Idi v which produce integral
quotient and remainder with well-definedsign semantics. (See §4.10.6.2,§4.10.6.3.)

The Committee rejected extending the X operator to work on floating types;
such usage would duplicate the facility provided by tmod. (See §4.5.6.5.)

3.3.6 Additive operators

As with the sizeot operator, implementations have taken different approaches in
defining a type for the difference between two pointers (see §3.3.3.4). It is important
that this type be signed, in order to obtain proper algebraic ordering when dealing
with pointers within the same array. However, the magnitude of a pointer difference
can be as large as the size of the largest object that can be declared. [And since that
is an unsigned type, the difference between two pointers may cause an overflow.)

The type of pointer minus pointer is defined to be int in K&R. The Stan-
dard defines the result of this operation to be a signed integer, the size of which
is implementation-defined. The type is published as ptrditf_t, in the standard
header <stddef .h>. Old code recompiled by a conforming compiler may no longer
work if the implementation defines the result of such an operation to be a type other
than int and if the program depended on the result to be of type into This behavior
was considered by the Committee to be correctable. Overflowwas considered not
to break old code since it was undefined by K&R. Mismatch of types between ac-
tual and formal argument declarations is correctable by including a properly defined
function prototype in the scope of the function invocation.

All important endorsement of widespread practice is the requirement that a
pointer can always be incremented to just past the end of an array, with no fear of
overflowor wraparound:

--
3.3. Expressions 45

SOMETYPEarray[SPAN];
1* ... *1
for (p = ~array[O]; p < ~array[SPAN]; p++)

This stipulation merely requires that every object be followed by one byte whose
address is representable. That byte can be the first byte of the next object declared
for all but the last object located in a contiguous segment of memory. (In the exam-
ple, the address ctarray [SPAN] must address a byte following the highest element
of array.) Since the pointer expression p+l need not (and should not) be derefer-
enced, it is unnecessary to leave room for a complete object of size sizeof (*p).

In the case of p-l, on the other hand, an entire object would have to be allocated
prior to the array of objects that p traverses, so decrement loops that run off the
bottom of an array may fail. This restriction allows segmented architectures, for
instance, to place objects at the start of a range of addressable memory.

3.3.7 Bitwise shift operators

See §3.3.3.3 for a discussion of the arithmetic definition of these operators.
The description of shift operators in K&R suggests that shifting by a long count

should force the left operand to be widened to long before being shifted. A more
intuitive practice, endorsed by the Committee, is that the type of the shift count
has no bearing on the type of the result.

QUIET CHANGE

Shifting by a long count no longer coerces the shifted operand to long.

The Committee has affirmed the freedom in implementation granted by the Base
Document in not requiring the signed right shift operation to sign extend, since such
a requirement might slow down fast code and since the usefulness of sign extended
shifts is marginal. (Shifting a negative twos-complement integer arithmetically right
one place is not the same as dividing by two!)

3.3.8 Relational. operators

For an explanation of why the pointer comparison of the objec:t pointer P with the
pointer expression P+l is always safe, see Rationale §3.3.6.

3.3.9 Equality operators

The Committee considered, on more than one occasion, permitting comparison of
structures for equality. Such proposals foundered on the problem of holes in struc-
tures. A byte-wise comparison of two structures would require that the holes as-
suredly be set to zero so that all holes would compare equal, a difficult task for
automatic or dynamically allocated variables. (The possibility of union-type ele-
ments in a structure raises insuperable problems with this approach.) Otherwise

X3Jll/88-003

46 Section 3. LANGUAGE

the implementation would have to be prepared to break a structure comparison into
an arbitrary number of member comparisons; a seemingly simple expression could
thus expand into a substantial stretch of code, which is contrary to the spirit 0/ C.

In pointer comparisons, one of the operands may be of type void *. In partic-
ular, this allows NULL, which can be defined as (void *)0, to be compared to any
object pointer.

3.3.10 Bitwise AND operator

See §3.3.3.3 for a discussion of the arithmetic definition of the bitwise operators.

3.3.11 Bitwise exclusive OR operator

See §3.3.3.3.

3.3.12 Bitwise inclusive OR operator

See §3.3.3.3.

3.3.13 LogicalAND operator

3.3.14 Logical OR operator

3.3.15 Conditional operator

The syntactic restrictions on the middle operand of the conditional operator have
been relaxed to include more than just logical-OR-expre"ion: several extant imple-
mentations have adopted this practice.

The type of a conditional operator expression can be void, a structure, or a
union; most other operators do not deal with such types. The rules for balancing
type between pointer and integer have, however, been tightened, since now only the

- constant 0 can portably be coerced to pointer.
The Standard allows one of the second or third operands to be of type void *, if

the other is a pointer type. This permits NULL, which can be defined as void *, to
be one of the operands. Since the result of such a conditional expression is void *,
an appropriate cast must be used.

3.3.16 Assignment operators

Certain syntactic forms of assignment operators have been discontinued, and others
tightened up (see §3.1.5).

The storage assignment need not take place until the next sequence point. (A
restriction in earlier drafts that the storage take place before the value of the ex-
pression is used has been removed.) AB a consequence, a straightforward syntactic
test for ambiguous expressions can be stated. Some definitions: A side effect is a
storage to any data object, or a read of a volatile object. An ambiguoU8 expression is

3.3. ExpreSsions 47

one whose value depends upon the order in which side effects are evaluated. A pure
function is one with no side effects; an impure function is any other. A ,equenced
ezpre88ion is one whose major operator defines a sequence point: comma, Irlr, II,
or conditional operator; an un8equenced ezpresa10n is any other. We can then say
that an unsequenced expression is ambiguous if more than one operand invokes any
impure function, or if more than one operand contains an lvalue referencing the
same object and one or more operands specify a side-effect to that object. Further,
any expression containing an ambiguous expression is ambiguous.

The optimization rules for factoring out assignments can also be stated. Let
X(i •S) be an expression which contains no impure functions or sequenced operators,
and suppose that X contains a storage S(i) to i. The storage expressions, and
related expressions, are

S(i): Sval(i) : Snew(i):
++i i+1 i+1
i++ i i+1
--i i-1 i-1
i-- i i-1
i II: Y Y y
i op· Y i op Y i op Y

Then X(i ,S) can be replaced by either

(T •• i, i •• Snew(i), X(T,Sval»

or

(T •• X(i.Sval), i •• Snew(i), T)

provided that neither i nor y have side effects themselves.

3.3.16.1 Simple assignment

Structure assignment has been added: its use was foreshadowed even in K&R, and
many existing implementations already support it.

The rules for type compatibility in assignment also apply to argument compati-
bility between actual argument expressions and their corresponding argument types
in a function prototype.

An implementation need not correctly perform an assignment between over-
lapping operands. Overlapping operands occur most naturally in a union, where
assigning one field to another. is often desirable to effect a type conversion in place;
the assignment may well work properly in all simple cases, but it is not maximally
portable. Maximally portable code should use a temporary variable as an interme-
diate in such an assignment.

X3Jll/88-003

48 Section 3. LANGUAGE

3.3.16.2 Compound assignment

The importance of requiring that the left operand lvalue be evaluated only once is
not a question of efficiency,although that is one compelling reason for using the
compound assignment operators. Rather, it is to assure that any side effects of
evaluating the left operand are predictable.

3.3.17 Comma operator

The left operand of a comma operator may be void, since only the right-hand
operator is relevant to the type of the expression.

The example in the Standard clarifiesthat commas separating arguments "bind"
tighter than the comma operator in expressions.

3.4 Constant Expressions

To clarify existing practice, several varieties of constant expression have been iden-
tified:

The expression following#if (§3.8.1)must expand to integer constants, the special
operator defined, and operators with no side effects. No environmental inquiries
can be made, since all arithmetic is done as translate-time (signed or unsigned)
long integers, and casts are disallowed. The restriction to translate-time arithmetic
frees an implementation from having to perform execution-environment arithmetic
in the host environment. It does not preclude an implementation from doing so -
the implementation may simply define "translate-time arithmetic" to be that of the
target.

Unsigned arithmetic is performed in these expressions (according to the default
widening rules) when unsigned operands are involved; this rule allows for unsur-
prising arithmetic involving very large constants (i.e, those whose type is unsigned
long) since they cannot be represented as long or constants explicitly marked as
unsigned.

Character codes and escape sequences, when evaluated in #if expressions, may
be interpreted in the source character set, the execution character set, or some other
implementation-defined character set. This latitude re8ects the diversity of existing
practice, especially in cross-compilers.

An integral con8tant expre8sion must involve only numbers knowable at translate
time, and operators with no side effects. Casts and the sizeof operator may be
used to interrogate the execution environment.
Static initializer8 include integral constant expressions, alongwith floating constants
and simple addressing expressions. An implementation must accept arbitrary ex-
pressions involving floating and integral numbers and side-effect-freeoperators in
arithmetic initiaiizers, but it is at liberty to turn such initializers into executable
code which is invoked prior to program startup (see §2.1.2.2); this scheme might

--
3.5. Declarations 49

impos~ some requirements on linkers or runtime library code in some implementa-
tions.

The translation environment must not produce a less accurate value for a
Boating-point initializer than the execution environment, but it is at liberty to do
better. Thus a static initializer may well be slightly different than the same ex-
pression computed at execution time. However, requiring exactly the same result in
translation and execution environments was deemed to be an intolerable burden on
many cross-compilers.

QUIET CHANGE

A program that uses 'if expressions to -determine properties of the
execution environment may now get different answers.

3.5 Declarations

The Committee decided that empty declarations. are invalid (except for a special case
with tags, see §3.5.2.3, and the case of enumerations such as enum {zero, one} ;,
see §3.5.2.2). While many seemingly silly constructs are tolerated in other parts
of the language in the interest of facilitating the machine generation of C, empty
declarations were considered sufficiently easy to avoid:

The practice of placing the storage class specifier other than first in a declaration
has been branded as obsolescent (See §3.9.3.) The Committee feels it desirable to
rule out such constructs as

enum { aaa, aab,
/* ete */

zzy, zzz } typedef a2z;

in some future standard.

3.5.1 Storage-class specifiers

Because the address of a register variable cannot be taken, objects of storage class
register effectively exist in a space distinct from other objects. (Functions occupy
yet a third address space). This makes them candidates for optimal placement, the
usual reason for declaring registers, but it also makes them candidates for more
aggressive optimization.

The practice ofrepresenting register variables as wider types (as when register
char is quietly changed to register int) is no longer acceptable.

3.5.2 Type specifiers

Several new type specifiers have been added: signed, canst, volatile, enum, and
void. long float has been retired and long double has been added, along with a
plethora of integer types. The Committee's reasons for each of these additions, and
the one deletion, are given in section §3.1.2.5 of this document.

X3Jll/88.003

50 Section 3. LANGUAGE

3.5.2.1 Structure and union specifiers

Three types of bit fields are now defined: "plain" int calls for implementation-
defined signedness (as in the Base Document), signed int calls for assuredly signed
fields, and unsigned int calls for unsigned fields. The old constraints on bit fields
crossing word boundaries have been relaxed, since so many properties of bit fields
are implementation dependent anyway.

The layout of structures is determined only to a limited extent:

• no hole may occur at the beginning;

• members occupy increasing storage addresses; and

• if necessary, a hole is placed on the end to make the structure big enough to
pack tightly into arrays and maintain proper alignment.

Since some existing implementations, in the interest of enhanced access time, leave
internal holes larger than absolutely necessary, it is not clear that a deterministic
method can be given for traversing a structure field by field.

To clarify what is meant by the notion that "all the fields of a union occupy the
same storage," the Standard specifies that a pointer to a union, when suitably cast,
points to each member (or, in the case of a bit-field member, to the storage unit
containing the bit field).

3.5.2.2 Enumeration specifiers

3.5.2.3 Structure and union tags

As with all block structured languages that also permit forward references, C has a
problem with structure and union tags. If one wants to declare, within a block, two
mutually referencing structures, one must write something like:

struct x { struct y *P; /* */ };
struct y {struct x *q; /* */ };

But if struct y is already defined in a containing block, the first field of struct x
will refer to the older declaration.

Thus special semantics has been given to the form:

struct y;
It now hides the outer declaration of y, and "opens" a new instance in the current
block.

QUIET CHANGE

The empty declaration struct x: is no longer innocuous.

--
3.5. Declarations 51

3.6.2.4 Type qualifiers

The Committee has added to C three t,pe fualifier8: conat, volatile, and
noalias. Individually and in combination they specify the assumptions a compiler
can and must make when accessing an object through an lvalue.

The syntax and semantics of const were borrowedfrom C++j the concept itself
has appeared in other languages. volatile and noaliaa are inventions of the
Committee; they follow the syntactic model of const.

Type qualifiers were introduced in part to provide greater control over opti-
mization. Several important optimization techniques are based on the principle of
"cacheing": under certain circumstances the compiler can remember the last value
accessed (read or written) from a location, and-use this retained value the next time
that location is read. {Thememory, or "cache", is typically a hardware register.} If
this memory is a machine register, for instance, the code can be smaller and faster
using the register rather than accessing external memory.

The three basic qualifiers can be characterized by the restrictions they impose
on access and cacheing:

const No writes through this lvalue. In the absence of this qualifier, writes may
occur through this lvalue.

volatile No cacheing through this lvalue: each operation in the abstract semantics
must be performed. (That is, no cacheing assumptions may be made, since
the location is not guaranteed to contain any previous value.) In the absence
of this qualifier, the contents of the designated location may be assumed to be
unchanged (except for possible aliasing.)

noalias Cacheing through this lvalue is not invalidated by accesses through any
other lvalue during the activation of the procedure in which is lvalue is used.
(Note that noalias encourages optimizations, while volatile discourages
optimizations.)

_A translator design with no cacheing optimizations can effectively ignore the
type qualifiers, except insofar as they affect assignment compatibility.

It would have been possible, of course, to specify a nonconat keyword instead of
const, and similarly for nonvolatile and alias. The senses of these three concepts
in the Standard were chosen to assure that the default, unqualified, case was the
most common, that it corresponded most clearly to traditional practice in the use
of Ivalue expressions.

Eight combinations of the three qualifiers is poesible: each defines a useful set of
lvalue properties. The next several paragraphs describe typical uses of these quali-
fiers.

The translator may assume, for an unqualified lvalue, that it may read or write
the referenced object, that the value of this object is not changed except by ex-
plicitly programmed actions in the current thread of control, but that other lvalue
expressions could reference the same object.

X3Jll/88-003

52 Section 3. LANGUAGE

const is specified in such a way that an implementation is at liberty to put const
objects in read-only storage, and is encouraged to diagnose obvious attempts to
modify them, but is not required to track down all the subtle ways that such checking
can be subverted. A function parameter is declared const, then the referencedobject
is not changed (through that lvalue) in the body of the function - the parameter
is read-only.

A static volatile object is an appropriate model for a memory-mapped I/O
register. Implementors of C translators should take into account relevant hardware
details on the target systems when implementing accesses to volatile objects. For
instance, the hardware logic of a system may require that a two-byte memory-
mapped register not be accessedwith byte operations; a compiler for such a system
would have to assure that no such instructions were generated, even if the source
code only accesses one byte of the register. Whether read-modify-write instructions
can be used on such device registers must alsobe considered. Whatever decisionsare
adopted on such issues must be documented, as volatile access is implementation-
defined. A volatile object is an appropriate model for a variable shared among
multiple processes.

Declaring a pointer-type function parameter to be noalias enjoins the caller of
that function to assure that the object referenced by that pointer overlaps with no
other parameter object. Using noalias on object declarations is an important tech-
nique in FORTRAN-to-C translation - FORTRAN specifiesnonaliasing semantics
for objects, whether referenced directly or via parameters.

A static const volatile object appropriately models a memory-mapped input
port, such as a real-time clock. Similarly, a const volatile object models a varieble
which can be altered by another process but not by this one.

A const noalias pointer-type parameter references an object whose value is
guaranteed not to change during the activation of the procedure.

A volatile noalias pointer-type parameter refers to a volatile object referenced
by no other lvalue in the procedure (or in any procedure called directly or indirectly
by this procedure). This guarantees that the value of no non-volatile object in the
procedures or its callees is affected by any access through this parameter.

A const volatile noalias pointer-type parameter (surely an unusual beast!)
combines the properties of the previous two accessqualifiers. Reads of the referenced
object do not alter the value of any object accessed through any non-volatile lvalue.

Although the type qualifiers are formally treated as definingnew types they actually
serve as modifiers of declarators. Thus the declarations

const s1:ruct s Hnt a. b;} x;
struct s y;

declare x as a const object, but not y. The const property can be associated with
the aggregate type by means of a type definition:

typedef const struct s {int a.b;} stype;

3.5. Declarations 53

stype x;
stype y;

In these declarations the const property is associated with the declarator stype, 80

x and yare both const objects. .
The Committee considered making const and volatile storage classes, but this

would have ruled out any number of desirable constructs, such as const members
of structures and variable pointers to const types.

A cast of a value to a qualified type has no effect; the qualification (volatile,
say) can have no effect on the access since it has occurred prior to the cast. H it is
necessary to access a non-volatile object using volatile semantics, the technique is
to cast the address of the object to the appropriate pointer-to-qualified type, then
dereference that pointer.

3.5.3 Declarators

The function prototype syntax was adapted from C++. (See §3.3.2.2 and §3.5.3.3)
Some current implementations have a limit of six type modifiers (function re-

turning, array of, pointer to), the limit used in Ritchie's original compiler. This
limit has been raised to twelve since the original limit has proven insufficient in
some cases; in particular, it did not allow for FORTRAN-to-C translation, since
FORTRAN allows for seven subscripts. (Some users have reported using nine or ten
levels, particularly in machine-generated C code.)

3.5.3.1 Pointer declarators

A pointer declarator may now its own type qualifiers, to specify the attributes of the
pointer itself, as opposed to those of the reference type. The construct is borrowed
from C++.

conat; int * means (variable) pointer to constant int, and int * const; means
constant pointer to (variable) int, just as in C++, from which these constructs
were adopted. (And mutatis mutandis for the other type qualifiers.) As with other
aspects of C type declarators, judicious use of typedef statements can clarify the
code.

3.5.3.2 Array declarators

The concept of compo,ite type8 (§3.1.2.6) was introduced to provide for the accretion
of information from incomplete declarations, such as array declarations with miss-
ing size, and function declarations with missing prototype (argument declarations).
Type declarators are therefore said to specify compatible types if they agree except
for the fact that one provides less information of this sort than the other.

The declaration of O-length arrays is invalid, under the general principle of not
providing for O-length objects. The only common use of this construct has been in
the declaration of dynamically allocated variable-size arrays, such as

XSJll/88-00S

54 Section 3. LANG UAGE

struct segment {
short int count;
char c[N];

};

struct segment * new_segment(const int length);
{

segment * result;
result • malloc(sizeo! segment + (length-N));
result->count • length;
return result;

}

In such usage, Nwould be 0 and (length-N) would be written as length. But this
paradigm works just as well, as written, if N is 1. .

3.5.3.3 Function declarators (including prototypes)

The function prototype mechanism is one of the most useful additions to the C lan-
guage. The feature, of course, has precedent in many of the Algol-derived languages
of the past 25 years. The particular form adopted in the Standard is based in large
part upon C++.

Function prototypes provide a powerful translation-time error detection capa-
bility. In traditional C practice without prototypes, it is extremely difficult for the
translator to detect errors (wrong number or type of arguments) in calls to func-
tions declared in another source file. Detection of such errors has either occurred at
runtime, or through the use of auxiliary software tools.

In function calls not in scope of a function prototype, integral arguments have the
integral widening conversions applied and float arguments are widened to double.
It is thus impossible in such a call to pass an unconverted char or float argument.
Function prototypes give the programmer explicit control over the function argu-
ment type conversions, so that the often inappropriate and sometimes inefficient
default widening rules for arguments can be suppressed by the implementation.
Modifications of function interfaces are easier in cases where the actual arguments
are still assignment compatible with the new formal parameter type - only the
function definition and its prototype need to be rewritten in this case; no function
calls need be rewritten.

Allowing' an optional identifier to appear in a function prototype serves two
purposes:

• the programmer can associate a meaningful name with each argument position
for documentation purposes, and

• a function declarator and a function prototype can use the same syntax. The
consistent syntax makes it easier for new users of C to learn the language. Au-

3.5. Decleretioas 55

tomatic generation of function prototype declarators from function definitions
is also facilitated.

Optimizers can also take advantage of function prototype information. Consider
this example:

extern int strcmp(const char * string1.
const char * string2)

void func2(int x)
{

char * str1. * str2 ;
/* ... */

x s strcmp(strl. str2)
/* ...*/

}

The optimizer knows that the pointers passed to strcmp are not used to assign new
values to any objects that the pointers reference. Hence the optimizer can make less
conservative assumptions about the side effects of strcmp than would otherwise be
necessary. ,

The Standard requires that calls to functions taking a variable number of argu-
ments must occur in the presence of a prototype (using the trailing ellipsis notation
•...). An implementation may thus assume that all other functions are called with
a fixed argument list, and may therefore use possibly more efficient calling sequences.

3.5.4 Type names

Empty parentheses within a type name are always taken as meaning function Vlith
unspecified arguments and never as (unnecessary) parentheses around the elided
identifier. This specification avoids an ambiguity by fiat.

3.5.5 Type definitions

A typedef may only be redeclared in an inner block with a declaration that explicitly
contains a type name: This rule avoids the ambiguity about whether to take the
typedef as the type name or the candidate for .redeclaration.

Some implementations of C have allowed type specifiers to be added to a type
defined using typedef. Thus

typedef short int small ;
unsigned small x ;

would give x the type unsigned short into The Committee decided that since
this interpretation may be difficult to provide in many implementations, and since
it defeats much of the utility of typedet as a data abstraction mechanism, such type
modifications are invalid. This decision is incorporated in the rules of §3.5.2.

A proposed type of operator was rejected on the grounds of insufficient utility.

X3Jl1!88-003

56 Section 3. LANGUAGE

3.5.6 Initialization

An implementation might conceivably have codes for Boating zero and/or null
pointer other than all bits zero. In such a case, the implementation must fill out an
incomplete initializer with the various appropriate representations of zero; it may
not just fill the area with zero bytes.

The Committee considered proposals for permitting automatic aggregate initial-
izers to consist of a brace-enclosed series of arbitrary (execute-time) expressions,
instead of just those usable for a translate-time static Initializer. However, cases
like this were troubling:

int x[2] z { f(x[l]). g(x[O]) };

Rather than determine a set of rules which would avoid pathological cases and yet
not seem too arbitrary, the Committee elected to permit only static initializers. Con-
sequently, an implementation may choose to build a hidden static aggregate, using
the same machinery as for other aggregate initializers, then copy that aggregate to
the automatic variable upon block entry.

A structure expression, such as a call to a function returning the appropriate
structure type, is permitted as an automatic structure initializer, since the usage
seems unproblematic.

For programmer convenience, even though it is a minor irregularity in initializer
semantics, the trailing null character in a string literal need not initialize an array
element, as ill:

char mesg[5] = "help!" ;

(Some widely used implementations provide precedent.)
The Base Document allows a trailing comma in an initializer at the end of an

initializer-list. The Standard has retained this syntax, since it provides Bexibilityin
adding or deleting members from an initializer list, and simplifiesmachine generation
of such lists.

Various implementations have parsed aggregate initializers with partially elided
braces differently. The Standard has reaffirmed the (top-down) parse described in
the Base Document. Although the construct is allowed, and its parse well defined,
the Committee urges programmers to avoid partially elided initialisers: such initial-
izations can be quite confusing to read.

QUIET CHANGE

Code which relies on a bottom-up parse of aggregate initializers with
partially elided braces will not yield the expected initialized object.

The Committee has adopted the rule (already used successfUllyin some implemen-
tations) that the first member of the union is the candidate for initialization. Other

3.6. Statements 57

notations for union initialization were considered, but none seemed of sufficient merit
to outweigh the lack of prior art.

This rule has a parallel with the initialization of structures. Members of struc-
tures are initialized in the sequence in which they are declared. The same can now
be said of unions, with the significant difference that only one union member (the
first) can be initialized.

3.6 Statements

3.6.1 Labeled statements

Since label definition and label reference are syntactically distinctive contexts, labels
are established as a separate name space.

3.6.2 Compound statement, or block

The Committee considered proposals for forbidding a goto into a block from outside,
since such a restriction would make possible much easier flow optimization and would
avoid the whole issue of initializing auto storage (see §3.1.2.4). The Committee
rejected such a ban out of fear of invalidating working code (however undisciplined)
and out of concern for those producing machine-generated C.

3.6.3 Expression and null statements

The void cast is not needed in an expression statement, since any value is always
discarded. Some checking compilers prefer this reassurance, however, for functions
that return objects of types other than void.

3.6.4 Selection statements

3.6.4.1 The if statement

See §3.6.2.

3.6.4.2 The switch statement

The controlling expression of a Bwitch statement may now have any integral type,
even unsigned long. Floating types were rejected for switch statements since exact
equality in floating point is not portable.

case labels are first converted to the type of the controlling expression of the
switch, then checked for equality with other labels; no two may match after conver-
sion.

Case ranges (of the form 10 .. hi) were seriously considered, but ultimately
not adopted in the Standard on the grounds that

it added no new capability, just a problematic coding convenience. The construct
seems to promise more than it could be mandated to deliver:

X3Jll/88-003

58 Section 3. LANGUAGE

• A great deal of code (or jump table space) might be generated for an innocent-
looking case range such as 0 .. 66636.

• The range 'A' .. 'Z' would specify all the integers between the character code
for A and that for Z. In some common character sets this range would include
non-alphabetic characters, and in others it might not include all the alphabetic
characters (especially in non-English character sets).

No serious consideration was given to making the switch more structured, as in
Pascal, out of fear of invalidating working code.

QUIET CHANGE

long expressions and constants in switch statements are no longer trun-
cated to into

3.6.5 Iteration statements

3.6.5.1 The while statement

3.6.5.2 The do statement

3.6.5.3 The f or statement

3.6.6 Jump statements

3.6.6.1 The goto statement

See §3.6.2.

3.6.6.2 The continue statement

The Committee rejected proposed enhancements to continue and break which
_would allow specification of an iteration statement other than the immediately en-
closing one, on grounds of insufficient prior art.

3.6.6.3 The break'statement

See §3.6.6.2.

3.6.6.4: The return statement

3.7 External definitions

3.1.1 Function definitions

A function definition may have its old form (and say nothing about arguments on
calls), or it may be introduced by a prototype (which affects argument checking and
coercion on subsequent calls). (See also §3.1.2.2.)

--
3.7. External definitions 59

To avoid a nasty ambiguity, the Standard bans the use of typedet names as formal
parameters. For instance, in translating the text

int f(size_t, a_to b_t. c_t, d_t. e_t, f_t. g_t,
h_t. i_to j_t. k_t. l_t. m_t. n_t, o_t.
p_t, q_t, r_t. s_t)

the translator determines that the construct can only be a prototype declaration as
soon as it scans the first size_to In the absence of this rule, it might be necessary
to see the token following the right parenthesis that closes the parameter list, which
would require a sizeable look-ahead, before deciding whether the text under scrutiny
is a prototype declaration or an old-style function header definition.

An argument list must be explicitly present in the declarator; it cannot be inherited -
from a typedef (see §3.5.3.3). That is to say, given the definition

typedef int p(int q. int r);

the following fragment is invalid:

p funk /* weird */
{ return q + r ; }

Some current implementations rewrite the type of a (for instance) char parameter
as if it were declared int, since the argument is known to be passed as an int
(in the absence of prototypes). The Standard requires, however, that the received
argument be converted 48 if by assignment upon function entry. Type rewriting is
thus no longer permissible.

QUIET CHANGE

Functions that depend on char or short parameter types being widened
to int, or float to double, may behave differently.

The assignment conversion for argument passing often requires no executable code.
In most twos-complement machines, a short or char is a contiguous subset of the
bytes comprising the int actually passed (for even the most unusual byte orderings),
so that assignment conversion is effected by adjusting the address of the argument
(if .necessary) and rewriting its type.

For an argument declared float, however, an explicit conversion must usually
be performed from the double actually passed to the float desired. Not many
implementations can subset the bytes of a double to get a float. (Even those that
apparently permit simple truncation often get the wrong answer on certain negative
numbers.)

Some current implementations permit an argument to be masked by a declaration
of the same identifier in the outermost block of a function. This usage is almost

1(3J11/88-003

60 . Section 3. LANGUAGE

always an erroneous attempt by a novice C programmer to declare the argument;
it is rarely the result of a deliberate attempt to render the argument unreachable.
The Committee decided, therefore, that arguments are effectively declared in the
outermost block, and hence cannot be quietly redeclared in that block.

The Committee considered.it important that a function taking a variable number
of arguments, such as print!, be expressible port ably in C.' Hence, the Committee
devoted much time to exploring methods of traversing variable argument lists. One
proposal was to require arguments to be passed as a "brick" (i.e., a contiguous area
of memory), the layout of which would be sufficientlywell specified that a portable
method of traversing the brick could be determined.

Several diverse implementations, however, can implement argument passing
more efficiently if the arguments are not required to be contiguous. Thus, the
Committee decided to hide the implementation details of determining the location
of successiveelements of an argument list behind a standard set of macros (see §4.8).

3.1.2 External 0bject definitions

See §3.1.2.2.

3.8 Preprocessing directives

For an overviewof the philosophy behind the preprocessor, see §2.1.1.2.
Different implementations have had different notions about whether white space

is permissible before and/or after the. signalling a preprocessor line. The Com-
mittee decided to allow any white space before the " and horizontal white space
(spaces or tabs) between the. and the directive, since the white space introduces
no ambiguity, causes no particular processing problems, and allowsmaximum flex-
ibility in coding style. Note that similar considerations apply for comments, which
are reduced to white space early in the phases of translation (§2.1.1.2):

/* here a. comment */ .if BLAH
./* there a comment */ if BLAH
it /* every-

where a comment */ BLAlI
The lines all illustrate legitimate placement of comments.

3.S.1 Conditional inclusion

For a discussion of evaluation of expressions following.if, see §3.4.
The operator defined has been added to make possible writing boolean com-

binations of defined flags with one another and with other inclusion conditions. If
the identifier defined were to be defined as a macro, defined(I) would mean the
macro expansion in C text proper and the operator expression in a preprocessing

-.

3.8. Preprocessing directives 61

directive (or else that the operator would no longer be available). To avoid this
problem, such a definition is not permitted (§3.8.8).

'e lif has been added to minimize the stacking of 'endif directives in multi-way
conditionals.

Processing of skipped material is defined such that an implementation need only
examine a logical line for the' and then for a directive name. Thus, assuming that
xxx is undefined, in this example:

ifndef xxx
de! ine xxx "abc"
elif xxx > 0

/* ... */
endif

an implementation is not required to diagnose an error for the elif statement, even
though if it were processed, a syntactic error would be detected.

Various proposals were considered for permitting text other than comments at
the end of directives, particularly 'endif and 'else, presumably to label them for
easier matchup with their corresponding tif directives. The Committee rejected
all such proposals because of the difficulty of specifying exactly what would be
permitted, and how the translator would have to process it.

Various proposals were considered for permitting additional unary expressions
to be used for the purpose of testing for the system type, testing for the presence of
a file before #include, and other extensions to the preprocessing language. These
proposals were all rejected on the grounds of insufficient prior art and/or insufficient
utility.

3.8.2 Source file inclusion

Specification of the 'include directive raises distinctive grammatical problems be-
cause the file name is conventionally parsed quite differently than an "ordinary"
token sequence:

• The angle brackets are not operators, but delimiters.

• The double quotes do not delimit a string literal with all its defined escape
sequences. (In some systems, backslash is a legitimate character in a filename.)
The construct just looks like a string literal.

• White space or characters not in the C repertoire may be permissible and
significant within either or both forms.

These points in the description of phases of translation are of particular relevance
to the parse of the 'include directive:

X3J.11/88-003

--~----

62 . Section 3. LANGUAGE

• Any character otherwise unrecognized during tokenization is an instance of
an "invalid token." As with valid tokens, the spelling is retained 80 that
later phases can, if necessary, map a token sequence (back) into a sequence of
characters.

• Preprocessing phases must maintain the spelling of preprocessing tokens; the
filename is based on the original spelling of the tokens, not on any interpreta-
tion of escape sequences.

• The filename on the 'inc lude (and • line) directive, if it does not begin with
n or <, is macro expanded prior to execution of the directive. Allowingmacros
in the inc lude directive facilitates the parameterization of include file names,
an important issue in transportability.

The file search rules used for the filename in the #inc 1ude directive were left as
implementation-defined. The Standard intends that the rules which are eventually
provided by the implementor correspond as closely as possible to the original K&R
rules. The primary reason that explicit rules were not included in the Standard
is the infeasibility of describing a portable file system structure. It was consid-
ered unacceptable to include UNIX-likedirectory rules due to significant differences
between this structure and other popular commercial file system structures.

A special case involving search rules is nested include files. In UNIX C an
include statement found within an include file entails a search for the named file
relative to the file system directory that holds the outer 'include. Other imple-
mentations, including the earlier UNIX C described in K&R, always search relative
to the same current directory. The Committee decided, in principle, in favor of the
K&R approach, but was unable to provide explicit search rules as explained above.
The Standard therefore just specifies that searching is done "in association with the
original source file."

Section §2.2.4.1on translation limits contains the required number of nesting levels
for include files. The limits chosen were intended to reflect reasonable needs for
users constrained by reasonable system resources available to implementors.

By defining a failure to read an include file as a syntax error, the Standard requires
that the failure be diagnosed. More than one proposal was presented for some form
of conditional include, or a directive such as 'iiincludable, but none were accepted
by the Committee due to lack of prior art.

3.8.3 Macro replacement

The specification ofmacro definition and replacement in the Standard was based on
these principles:

• Interfere with existing code as little as possible.

3.B. Preprocessing directives 63

• Keep the preprocessing model simple and uniform.

• Allow macros to be used wherever functions can be.

• Define macro expansion such that it produces the same token sequence whether
the macro calls appear in open text, in macro arguments, or in macro defini-
tions. .

Preprocessing is specified in such a way that it can be implemented as a separate
(text-to-text) pre-pass or as a (token-oriented) portion of the compiler itself. Thus,
the preprocessing grammar is specified in terms of tokens.

However, the new-line character must be a token during preprocessing, because
the preprocessing grammar is line-oriented. The presence or absence of white space is
also important in several contexts, such as between the macro name and a following
parenthesis in a #define directive. To avoid overly constraining the implementation,
the Standard allows the preservation of each white space character (which is easy for
a text-to-text pre-pass) or the mapping of white space into a single "white space"
token (which is easier for token-oriented translators).

The Committee desired to disallow "pernicious redefinitions" such as
(in header1.h)

#de! ine NBUFS 10

(in header2.h)

#define NBUFS 12

which are clearly invitations to serious bugs in a program. There remained,
however, the question of "benign redefinitions," such as

(in headerl.h)

#define NULL_DEV 0

(in header2.h)

#define NULL_DEV 0
The Committee concluded that safe programming practice is better served by

allowing benign redefinition where the definitions are the same. This allows inde-
pendent headers to specify their understanding of the proper value for a symbol of
interest to each, with diagnostics generated only if the definitions differ.

The definitions are considered "the same" if the identifier-lists, token sequences,
and white-space (ignoring the spelling of non-empty White-space) in the two defini-
tions are identical.

Existing implementations have differed on whether keywords can be redefined by
macro definitions. The Committee has decided to allow this usage; it sees such

X3Jll/88-003

64 Section 3. LANGUAGE

redefinition as useful during the transition from existing to Standard-conforming
translators.

These definitions illustrate possible uses:

define char signed char
define sizeof (int) sizeof
define void int
define const

The first case might be useful in moving extant code from a signed-char imple-
mentation to one in which char is unsigned. The second case might be useful in
adapting codewhich assumes that sizeof results in an int value. The redefinitions
of void and const could be useful in retrofitting more modern C code to an older
implementation. .

3.S.3.1 Argument substitution

3.S.3.2 The # operator

Some implementations have decided to replace identifiers found within a string lit-
eral if they match a macro argument name. The replacement text is a "stringized"
form of the actual argument token sequence. This practice appears to be contrary
to the definition, in K&R~of preprocessing in terms of token sequences. The Com-
mittee declined to elaborate the syntax of string literals to the point where this
practice could be condoned. However,since the facility provided by this mechanism
seems to be widely used, the Committee introduced a more tractable mechanism of
comparable power.

The # operator has been introduced for stringizing. It may only be used in a
#define expansion. It causes the formal parameter name followingto be replaced
by a string literal formed by stringizing the actual argument token sequence. In
conjunction with string literal concatenation (see §3.1.4), use of this operator per-
mits the construction of strings as effectivelyas by identifier replacement within a
string. An example in the Standard illustrates this feature.

One problem with defining the effect of stringizing is the treatment of white
space occurring in macro definitions. Where this could be discarded in the past, now
upwards of one logicallineworth (over500characters) may have to be retained. As a
compromise between token-based and character-based preprocessing disciplines, the
Committee decided to permit white space to be retained 8.8 one bit of information:
none or one. Arbitrary white space is replaced in the string by one space character.

The remaining problem with stringizing was to associate a "spelling" with each
token. (The problem arises in token-based preprocessors, which might, for instance,
convert a numeric literal to a canonical or internal representation, losing information
about base, leading D's, etc.) In the interest of simplicity, the Committee decided
that each token should expand to just those characters used to specify it in the
original source text.

3.B. Preprocessing directives 65

QUIET CHANGE
A macro that relies on formal parameter substitution within a string
literal will produce different results.

3.8.3.3 The ## operator

Another facility relied on in much current practice but not specified in the Base Doc-
ument is "token pasting," or building a new token by macro argument substitution.
One existing implementation is to replace a comment within a macro expansion
by zero characters, instead of the single space called for in K&R. The Committee
considered this practice unacceptable.

As with "stringizing," the facility was considered desirable, but not the extant
implementation of this facility, so the Committee invented another preprocessing
operator. The ## operator within a macro expansion causes concatenation of the
tokens on either side of it into a new composite token. The specification of this
pasting operator is based on these principles:

• Paste operations are explicit in the source.

• The ## operator is associative.

• A formal parameter as an operand for ## is not expanded before pasting.

• A normal operand for ## is not expanded before pasting.

• Pasting does not cross macro replacement boundaries.

• The token resulting from a paste operation is subject to further macroexpan-
sion.

These principles codify the essential features of prior art, and are consistent with
the specification of the stringizing operator.

3.8.3.4 Rescanning and further replacement

A problem faced by most current preprocessors is how to use a macro name in its
expansion without suffering "recursive death." The Committee agreed simply to
turn off the definition of a macro for the duration of the expansion of that macro.
An example of this feature is included in the Standard.

3.8.3.5 Scope of macro definitions

Some pre-Standard implementations maintain a stack of #det ine instances for each
identifier; t:unde:f simply pops the stack. The Committee agreed that more than
one level of #det ine was more prone to error than utility.

It is explicitly permitted to t:undef a macro that has no current definition. This
capability is exploited in conjunction with the standard library (see §4.1.3).

X3Jl1/88-003

66 Section 3. LANGUAGE

3.8.4 Line control

Aside from giving to values to -L1NE_ and J1LE_ (see §3.8.8), the effect ofUine
is unspecified. A good implementation will presumably provide line and file infor-
mation in conjunction with most diagnostics.

3.8.5 Error directive

The directive terror has been introduced to provide an explicit mechanism for
forcing translation to fail under certain conditions. (Formally the Standard only
requires, can only require, that a diagnostic be issued when the terror directive is
effected. It is the intent of the Committee, however, that translation cease imme-
diately upon encountering this directive, if this is feasible in the implementation;
further diagnostics on text beyond the directive are apt to be of little value.) Tra-
ditionally such failure has had to be forced by inserting text so ill-formed that the
translator gagged on it.

3.8.6 Pragma directive

The #pragma directive has been added as the universal method for extending the
space of directives.

3.8.1 Null directive

The existing practice of using empty # lines for spacing is supported in the Standard.

3.8.8 Predefined macro names

The rule that these macros may not be redefined or undefined reduces the complex-
ity of the name space that the programmer and implementor must understand; it
recognizes that these macros have special built-in properties.

The macrosDATE_ and _TIME_ have been added to make available the time of
translation. A particular format for the expansion of these macros has been specified
to aid in parsing strings initialized by them.

The macros -LlNE_ and _..FlLE-,have been added to give programmers access
to the source line number and file name.

The macro ~TDC_ allows for conditional translation on whether the translator
claims to be standard-conforming or not. It is defined as having value 1; future ver-
sions of the Standard could define it as 2, 3, ... , to allow for conditional compilation
on which version of the Standard a translator conforms to. This macro should be
of use in the transition toward conformance to the Standard.

3.9. Future language directions 67

3.9 Future language directions

This section includes specific mention of the future direction in which the Com-
mittee intends to extend and/or restrict the language. The contents of this section
should be considered as quite likely to become a part of the next version of the Stan-
dard. Implementors are advised that failure to take heed of the points mentioned
herein is considered undesirable for a conforming hosted or freestanding implemen-
tation. Users are advised that failure to take heed of the points mentioned herein
is considered undesirable for a conforming program.

3.9.1 External names

3.9.2 Character escape sequences

3.9.3 Storage-class specifiers

See §:3.5.1.

3.9.4 Function declarators

The characterization as obsolescent of the use of the "old style" {unction declarations
and definitions.- that is, the traditional style not using prototypes - signals the
Committee's intent that the new prototype style should eventually replace the old
style.

The case for the prototype style is presented in §3.3.2.2 and §3.5.3.3. The gist
of this case is that the new syntax addresses some of the most glaring weaknesses
of.the language defined in the Base Document, that the new style is superior to the
old style on every count.

It was obviously out of the question to remove syntax used in the overwhelming
majority of extant C code, so the Standard specifies two ways of writing function
declarations and function definitions. Characterizing the old style as obsolescent is
meant to discourage its use, and to serve as a strong endorsement by the Committee
of the new style. It confidently expects that approval and adoption of the prototype
style will make it feasible for some future C Standard to remove the old style syntax.

3.9.5. Function definitions

See §3.9.4.

X3Jll/88-003

68 Section 3. LANGUAGE

Section 4

LIBRARY

4.1 Introduction

The Base Document for this section of the Standard was the 198~ /UlJr/ group Stan-
dard. The jusrjgroup document contains definitions of some facilities which were
specific to the UNIX Operating System and not relevant to other operating envi-
ronments, such as pipes, ioctls, file access permissions and process control facilities.
Those definitions were dropped from the Standard. Some other functions were ex-
cluded from the Standard because they were non-portable or were ill-defined.

Other facilities not in the library Base Document but present in many UNIX
implementations, such as the curses (terminal-independent screen handling) library.
were considered to be more complex and less essential than the facilities of the Base
Document; these functions were not added to the Standard.

4.1.1 Definitions of terms

The decimal-point character is the character used in the input or output of floating
point numbers, and may be changed by setlocde. This is a library construct; the
decimal point in numeric literals in C source text is always period.

4.1.2 Headers

Whereas in prior practice only certain library functions have been associated with
header files, the Standard now mandates that all library functions have a header.
Several headers have therefore been added, and the contents of a few old ones have
been changed.

In many implementations the names of headers are the names of files in special
directories. This implementation technique is not required, however: the Standard
makes no assumptions about the form that a file name may take on any system.
Headers may thus have a special status if an implementation so chooses. Standard
headers may even be built into a translator, provided that their contents do not
become "known" until after they are explicitly included. One purpose of permitting

69

70 Section 4. LffiRARY

these header "files" to be "built in" to the translator is to allow an implementation
of the C language as an interpreter in an an-hosted environment, where the only
"file" support may be a network interface.

The Committee decided to make library headers "idempotent" - they should
includable any number of times, and includable in any order. This requirement,
which reflects widespread existing practice, may necessitate some protective wrap-
pers within the headers, to avoid, for instance, redefinitions of typedefs. To ensure
that such protective wrapping can be made to work, and to ensure proper seoping
of typedefs, headers may only be included outside of any declaration.

To give implementors maximum latitude in packing library functions into files, all
external identifiers defined by the library are reserved (in a hosted environment).
This means, in effect, that no user supplied external' names may match library
names, not even if the user function has the same specification. Thus, for instance,
strtod may be defined in the same object module as print:f, with no fear that
link-time confiicts will occur. Equally, strtod may call printf, or printf may call
strtod, for whatever reason, with no fear that the wrong function will be called.

Also reserved for the implementor are all external identifiers beginning with an
underscore, and all other identifiers beginning with an underscore followed by a
capital letter or an underscore. This gives a space of names for writing the numer-
ous behind-the-scenes internal macros and functions .a library needs to do its job
properly.

With these exceptions, the Standard assures the programmer that all other iden-
tifiers are available, with no fear of unexpected collisions when moving programs
from one implementation to another. (Note, in particular, that part of the name
space of internal identifiers beginning with underscore is available to the user -
translator implementors have not been the only ones to find use for "hidden" names.)
C is such a portable language in many respects that this issue of "name space pollu-
tion" is currently one of the principal barriers to writing completely portable code.
"Therefore the Standard assures that macro and typedef names are reserved only if
the associated header is explicitly included.

4.1.3 Errors
<errno.h>

<errno .h> is a header invented to encapsulate the error handling mechanism used
by many of the library routines. 1

The error reporting machinery centered about the setting of errno is generally
regarded with tolerance at best. It requires a "pathological coupling" between li-
brary functions and makes use of a static writable memory cell, which interferes
with the construction of shareable libraries. Nevertheless, the Committee preferred

lIn earlier dra.fiBof the Standard, errno and related macroe were defined in <atddef .h>. When
the Committee decided that the other definition8'in this header were of such general uiility that
they should be required even in freestanding environmeniB,it created <errno .h>.

4.1. Introduction 71

to standardize this existing, however deficient, machinery rather than invent some-
thing more ambitious.

The definition of errno as an lvalue macro grants implementors the license to
expand it to something like *_errno..addrO, where the function returns a pointer
to the (current) modifiable copy of errno .

4.1.4 Limits
<float .h> and <limits .h>

Both <float. h> and <limits. h> are inventions. Included in these headers are
various parameters of the execution environment which are potentially useful at
compile time, and which are difficult or impossible to determine by other means .

. The availability of this information in headers provides a portable way of tun--
ing a program to different environments. Another possible method of determining
some of this information is to evaluate arithmetic expressions in the preprocessing
statements. Requiring that preprocessing always yield the same results as run-time
arithmetic, however, would cause problems for portable compilers (themselves writ-
ten in C) or for cross compilers, which would then be required to implement the
(possibly wildly different) arithmetic of the target machine on the host machine.
(See §3.4.)

<float .h> makes available to programmers a set of useful quantities for numerical
analysis. (See §2.2.4.2.) This set of quantities has seen widespread use for such anal-
ysis, in C and in other languages, and was recommended by the numerical analysts
on the Committee. The set was chosen so as not to prejudice an implementation's
selection of floating-point representation.

Most of the limits in <float .h> are specified to be general double expressions
rather than restricted constant expressions

• to allow use of values which cannot readily (or, in some cases, cannot possibly)
be constructed as manifest constants, and

• to allow for run-time selection of Boating-point properties, as is possible, for
instance, in IEEE-854 implementations.

4.1.5 Common definitions
<stddef.h>

<stddef .h> is a header invented to provide definitions of several macros used
widely in conjunction with the library: ptrdiff_t (see §3.3.6), size_t (see §3.3.3.4),
.char _t (see §3.1.3.4), and NULL. Including any header that references one of these
macros will also define it, an exception to the usual library rule that each macro or
function belongs to exactly one header. .

NULL can be defined as any null pointer .constant. Thus existing code can retain
definitions of NULL as 0 or OL, but an implementation may choose to define it as

X3Jll/88-003

-------~------------------------------------

72 Section 4. LIBRARY

(void *)0; this latter form of definition is convenient on architectures where the
pointer size(s) doees) not equal the size of any integer type. It has never been wise
to use NULL in place of an arbitrary pointer as a function argument, however, since
pointers to different types need not be the same size. The library avoids this problem
by providing special macros for the arguments to signal, the one library function
that might see a null function pointer.

The off setof macro has been added to provide a portable means of determining
the offset, in bytes, of a member within its structure.

In many implementations, it could be defined as one of

(size_t)l«(s_name*)O)->m_name)

or

or, where Xis some predeclared address (or 0) and A(Z) is defined as «char*)tZ),

(size_t)(A((s_name*)X~>m_name) - A(X »

It was not feasible, however, to mandate any single one of these forms as a construct
guaranteed to be portable.

Other implementations may choose to expand this macro as a call to a built-in
function that interrogates the translator's symbol table.

4.1.6 Use of library functions

To make usage more uniform for both implementor and programmer, the Standard
requires that every library function (unless specifically noted otherwise) must be
represented as an actual function, in case a program wishes to pass its address as
a parameter to another function. On the other hand, every library function is now
a candidate for redefinition, in its associated header, as a macro, provided that the
macro .performs a "safe" evaluation of its arguments, i.e., it evaluates each of the
arguments exactly once and parenthesizes them thoroughly, and provided that its
top-level operator is such that the execution of the macro is not interleaved with
other expressions. (See-§3.2j in the general case the macro expansion x can be
converted to the non-interleaved form (0. x).) Two exceptions are the macros
getc and putc, which may evaluate their arguments in an unsafe manner. (See
§4.9.7.5.)

If a program requires that a library facility be implemented as an actual function,
not as a macro, then the macro name, if any, may be erased by using the tunde:f
preprocessing directive (see §3.8.3).

All library prototypes are specified in terms of the "widened" types: an argu-
ment formerly declared as char is now written as into This ensures that most
library functions can be called with or without a prototype in scope (see §3.3.2.2),
thus maintaining backwards compatibility with existing, pre-Standard, code. Note,

4.2. Diagnostics<assert .h> 73

however, that since functions like printf and scanf use variable-length argument
lists, they must be called in the scope of a prototype.

The Standard contains an example showing how certain library functions may
be "built in" in an implementation that remains conforming.

4.2 Diagnostics
<assert.h>

4.2.1 Program diagnostics

4.2.1.1 The assert macro

Some implementations tolerate an arbitrary scalar expression as the argument to
assert, but the Committee decided to require correct operation only for int ex-
pressions. For the sake of implementors, no hard and fast format for the output
of a failing assertion is required; but the Standard mandates enough machinery to
replicate the form shown in the footnote.

It can be difficult or impossible to make assert a true function, so it is restricted
to macro form only.

To minimize the number of different methods for program termination, assert
is now defined in terms of the abort function.

Note that defining the macro NDEBUG to disable assertions may change the be-
havior of a program with no failing assertion if any argument expression to assert
has side-effects, because the expression is no longer evaluated.

It is possible to turn assertions off and on in different functions within a transla-
tion unit by defining (or undefining) NDEBUG and including <assert. h> again. The
implementation of this behavior in <assert .h> is simple: undefine any previous
definition of assert before providing the new one. Thus the header might look like

hndef assert
.ifdd NDEBUG
tdefine assert(ignore)

.else
extern voId _gripe(char =expr , char *file. int line);
'define assert(expr) \

{if (expr) _gripe('expr. __FlLE__ . __LlNE__);}
.endU

4.3 Character Handling
<ctype .h>

Pains were taken to eliminate any ASCII dependencies from the definition of the
character handling functions. One notable result of this policy was the elimination
of the function i sasc ii, both because of the name and because its function was hard

X3Jll/88-003

74 Section 4. LIBRARY

to generalize. Nevertheless, the character functions are often most clearly explained
in concrete terms, so ASCn is used frequently to express examples.

Since these functions are often used primarily as macros, tbeir domain is re-
stricted to the small positive integers representable in an unsigned char, plus the
value of EOF. EOF is traditionally -1, but may be any negative integer, and hence
distinguishable from any valid character code. These macros may thus be efficiently
implemented by using the argument as an index into a small array of attributes.

The Standard (§4.13.1) warns that names beginning with is and to, when these
are followed by lower-case letters, are subject to future use in adding items to
<ctype.h>.

4.3.1 Character testing functions

The definitions of printing character and control character have been generalized
from ASCII.

4.3.1.1 The isalnum function

4.3.1.2 The isalpha function

The Standard specifies that the set of letters, in the default locale, comprises the 26
upper-case and 26 lower-case letters of the Latin (English) alphabet. This set may
vary in a locale-specific fashion (that is, under control of the setloc:ale function,
§4.4) so long as

• isupper(c) implies isalpha(c)

• islower(c) implies isalpha(c)

• isspace(c) , ispunct(c) , iscntrl(c), or isdigit(c) implies lisalpha(c)

4.3.1.3 The iscntrl function

4.3.1.4 The isdigit function

4.3.1.5 The isgraph function

4.3.1.6 The islower function

4.3.1.7 The isprint function

4.3.1.8 The ispunct function

4.3.1.9 The isspace function

isspace is widely used within the library as the working definition of white space.

4.~. LOcalization <locale. h> 75

4.3.1.10 The isupper function

4.3.1.11 The isxdigi t function

4.3.2 Character case mapping functions

Earlier libraries had (almost equivalent) macros, _tolo.er and _toupper, for these
functions. The Standard now permits any library function to be additionally im-
plemented as a macro; the underlying function must still be present. _toupper and
_tolower are thus unnecessary ana were dropped as part of the general standard-
ization of library macros.

4.3.2.1 The tolower function

4.3.2.2 The toupper function

4.4 Localization
<locale.h>

C has become an international language. Users of the language outside the United
States have been forced to deal with the various Americanisms built into the stan-
dard library routines.

Areas aft'ectedby international considerations include:

Alphabet. The English language uses 26 letters derived from the Latin alphabet.
This set of letters sufficesfor English, Swahili, and Hawaiian; all other living
languages use either the Latin alphabet plus other characters, or other, non-
Latin alphabets or syllabaries.

In English, each letter has an upper-case and lower-caseform. The German
"sharp S", £\, occurs only in lower-case. European French usually omits die-
criticals on upper-case letters. Some languages do not have the concept of two
cases.

Collation. In both EBCDIC and ASCII the code for 'z' is greater than the code
for 'a', and so on for other letters in the alphabet, so a "machine sort" gives
not unreasonable results for ordering strings. In contrast, most European
languages use a codeset resembling ASCII in which some of the codes used
in ASCII for punctuation characters are used for alphabetic characters. (See
§2.2.1.) The ordering of these codes is not alphabetic. In some languages
letters with diacritics sort as separate letters; in others they should be collated
just as the unmarked form. In Spanish, "11" sorts as a single letter following
"l"; in German, "£\" sorts like "ss".

Formatting of numbers and currency amounts. In the United States the pe-
riod is invariably used for the decimal point; this usage is built into the defi-
nitions of such functions as printf and scam. Prevalent practice in several

X3Jll/88-003

76 Section 4. LffiRARY

major European countries is to use a comma; a raised dot is employed in some
locales. Similarly, in the United States a comma is used to separate groups of
three digits to the left of the decimal point; a period is common in Europe, and
in some countries digits are are not grouped by threes. In printing currency
amounts, the currency symbol (which may be more than one character) may
precede, follow, or be embedded in the digits.

Date and time. The standard function asctime returns a string which includes
abbreviations for month and weekday names, and returns the various elements
in a format which might be considered unusual even in its country of origin.

Various common date formats include

1776-07-04 ISO Format
4.7.76 customary central European and

British usage
7/4/76 customary U.S. usage
4.VII.76 Italian usage
76186 Julian date (YYDDD)
O4JUL76 airline usage
Thursday, July 4, 1776 full U.S. format
Donnerstag, 4. Juli 1776 full German format

Time formats are also quite diverse:

3:30 PM
1530
15h.30
15.30
15:30

customary U.S. and British format
U.S. military format
Italian usage
German usage
common European usage

The Committee has introduced mechanisms into the C library to allow these and
other issues to be treated in the appropriate locale-specific manner.

The localization features of the Standard are based on these principles:

English for C source. The C language proper is based on English. Keywords
are based on English words. A program which uses "national characters" in
identifiers is not strictly conforming. (Use of national characters in comments
is strictly conforming, though what happens when such a program is printed
in a different locale is unspecified.) The decimal point must be a period in C
source, and no thousands delimiter may be used.

Runtime 8el~tability. The locale must be selectable at runtime, from an
implementation-defined set of possibilities. Translate-time selection does not

4.5. Mathematics <math.h> 77

offer sufficient flexibility, Software vendors do not want to supply different
object forms of their programs in different locales. Users do not want to use
different versions of a program just because they deal with several different
locales.

Function interface. Locale is changed by calling a function, thus allowing the im-
plementation to recognize the change, rather than by, say, changing a memory
location that contains the decimal point character.

Immediate effect. When a new locale is selected, affected functions reBectthe
change immediately. (This is not meant to imply if a signal-handling function
were to change the selected locale and return to a library function, that the
return value from that library function must be completely correct with respect
to the new locale.)

4.4.1 Locale control
4004 ••1.1 The setlocale function

set locale provides the mechanism for controlling loca.le-8pecific features of the
library. The category argument allows parts of the library to be localized as neces-
sary without changing the entire locale-specific environment. Specifying the locale
argument as a string gives an implementation maximum Bexibility in providing a
set of locales. For instance, an implementation could map the argument string into
the name of a file containing appropriate localization parameters - these files could
then be added and modified without requiring any recompilation of a localizable
program.

4.4.2 Numeric formatting convention inquiry

4:.4:.2.1 The localeconv function

The localeconv function gives a programmer access to information about how
to format numeric quantities (monetary or otherwise). This sort of interface was
considered preferable to defining conversion functions directly: even with a specified
locale, the set of distinct formats that can be constructed from these elements is
large, and the ones desired very application-dependent.

4.5 Mathematics
<math.h>

For historical reasons, the math library is only defined for the Boating type double,
All the names formed by appending f or I to a name in <lIath. h> are reserved to
allow for the definition of float and long double libraries.

The functions ecvt, fevt, and gcvt have been dropped since their capability is
available through sprint:!.

X3Jl1/88-003

78 Section 4. LIBRARY

Traditionally, HUGE_VAL has been defined as a manifest constant that approxi-
mates the largest representable double value. As an approximation to infinity it is
problematic. As a function return value indicating overflow, it can cause trouble if
first assigned to a float before testing, since a float may not necessarily hold all
values representable in a double.

After considering several alternatives, the Committee decided to generalize
HUGE .•.VAL to a positive double expression, so that it could be expressed as an exter-
nal identifier naming a location initialized precisely with hexadecimal bit patterns.
It can even be a special encoding for machine infinity, on implementations that
support such codes. It need not be representable as a :float, however.

Similarly, domain errors in the past were typically indicated by a zero return,
which is not necessarily distinguishable from a valid result. The Committee agreed
to make the return value for domain errors implementation-defined, so that special
machine codes can be used to advantage. This makes possible an implementation
of the math library in accordance with the IEEE P854 proposal on Boating point
representation and arithmetic.

4.5.1 Treatment of error conditions

Whether underflow should be considered a range error, and cause errno to be set,
is specified as implementation-defined since detection of underflow is inefficient on
some systems.

The Committee considered the adoption of the matherr capability from UNIX
System V. In this feature of that system's math library, any error (such as overflow
or underflow) results in a call from the library function to a user-defined exception
handler named matherr. The Committee rejected this approach for several reasons:

• This style is incompatible with popular floating point implementations, such
as IEEE (with its special return codes), or that of VAX/VMS.

• It conflicts with the error-handling style of FORTRAN, thus making it more
difficult to translate useful bodies of mathematical code from that language
to C.

• It requires the math library to be reentrant (since math routines could be
called from matherr), which may complicate some implementations .

•. It introduces a new style of library interface: a user-defined library function
with a library-defined name. Note, by way of comparison, the signal and
exit handling mechanisms, which provide a way of "registering" user-defined
functions.

--
4.5. Mathematics <math.h> 79

4.5.2 Trigonomefric functions

4.5.2.1 The aces function

4.5.2.2 The asin function

4.5.2.3 The' atan function

4.5.2.4 The atan2 function

For range issues, see §4.5.2.3.
atan2(0 .• 0.) is defined as a domain error instead of a range error, in those

environments in which it is necessary to treat it as an error; the behavior is slightly
more useful. It is not necessary to treat this expression as an error in an environment
using IEEE floating point formats.

4.5.2.5 The cos function

4.5.2.6 The sin function

4.5.2.7 The tan function

4.5.3 Hyperbolic functions

4.5.3.1 The eosh function

4.5.3.2 The sinh function

4.5.3.3 The tanh function

4.5.4 Exponential and logarithmic functions

4.5.4.1 The exp function

4.5.4.2 The frexp function

The functions frexp, Idexp, and modf are primitives used by the remainder of the
library. There was some sentiment for dropping them for the same reasons that
ecvt, fevt, and gcvt were dropped, but their adherents rescued them for general
use.

4.5.4.3 The Idexp function

See §4.5.4.2.

4.5.4~4 The log function

Whether log (0.) is a domain error or a range error is arguable. The choice
in the Standard, ,.ange error, is for compatibility with IEEE P854. Some such
implementations would represent the result as -00, in which case no error is raised.

X3Jll/88-003

80 Section 4. LIBRARY

4.5.4.5 The log10 function

See §4.5.4.4.

4.5.4.6 The modi function

See §4.5.4.2.

4.5.5 Power functions

4.5.5.1 The pow function

4.5.5.2 The sqrt function

IEEE P854, unlike the Standard, requires sqrt (-0.) to return a negatively signed
magnitude-zero result. This is an issue on implementations that support a neg-
ative floating zero. The Standard specifies that taking the square root of a neg-
ative number (in the mathematical sense: less than 0) is a domain error which
requires the function to return an implementation-defined value. This rule permits
implementations to support either the IEEE P854 or vendor-specific floating point

. representations.

4.5.6 Nearest integer, absolute value, and remainder functions

4.5.6.1 The ceil function

4.5.6.2 The tabs function

Adding an absolute value operator was rejected by the Committee. An implemen-
tation can provide a built-in function for efficiency.

4.5.6.3 The floor function

4.5.6.4 The fmod function

fmod is defined even if the quotient x/y is not representable - the implementation
of this function is properly by scaled subtraction rather than division.

The result offmod(x,O.O) is either a domain error or 0.0; the result always lies
between 0.0 and y, so specifying the non-erroneous result as 0.0 simply recognizes
the limit case.

The Committee considered and rejected a proposal to use the remainder oper-
ator ~ for this {unction; the operators in general correspond to hardware facilities,
and fmod is not supported in hardware on most machines.

4.6. Non-local jumps <setjmp.h> 81

4.6 Non-local jumps
<setjmp.h>

jmp.buf must be an array type for compatibility with existing practice: programs
typically omit the address operator before a jllp.buf argument, even though a
pointer to the argument is desired, not the value of the argument itself. Thus, a
scalar or struct type is unsuitable. Note that a one-element array of the appropriate
type is a valid definition.

setjmp is constrained to be a macro only: in some implementations the infor-
mation necessary to restore context is only available while executing the function
making to call to setjmp.

4.6.1 Save calling environment

4.6.1.1 The setjmp macro

One proposed requirement on setjmp is that it be usable like any other function
- that it be callable in any expression context, and that the expression evaluate
correctly whether the return from setjmp is direct or via a call to longjmp. Un-
fortunately, any implementation of setjmp as a conventional called function cannot
know enough about the calling environment to save any temporary registers or dy-
namic stack locations used part way through an expression evaluation. (A s8tjmp
macro seems to help only if it expands to inline assembly code or a call to a special
built-in function.) The temporaries may be correct on the initial call to set jmp,
but are not likely to be on any return initiated by a corresponding call to longj mp.
These considerations dictated the constraint that setjmp be called only from within
fairly simple expressions, ones not likely to need temporary storage.

An alternative proposal considered by the Committee is to require that imple-
mentations recognize that calling s8tjmp is a special case,2 and hence that they
take whatever precautions are necessary to restore the s8tjmp environment prop-
erly upon a longj mp call. This proposal was rejected on grounds of consistency:
implementations are currently allowed to implement library functions specially, but
no other situations re.quire special treatment.

4.6.2 Restore calling environment

4~6.2.1 The longjmp function

The Committee also considered requiring that a call to longj mprestore the (set j mp)
calling environment fully - that upon execution of a longjmp, all local variables
in the environment of set j mphave the values they did at the time of the longj mp
call. Register variables create problems with thie idea. Unfortunately, the best that

2This proposal was considered prior to the adcption of the stricture that aetjap be a macro. It
can be considered u equivalent to proposing that th,! aetjap macro expand to a ca.llto a special
built-in compiler function.

X3Jll/88-003

82 Section 4. LIBRARY

many implementations attempt with register variables is to save them (in jmp...but)
at the time of the initial setjmp call, then restore them to that state on each return
initiated by a longj mpcall. Since compilers are certainly at liberty to change register
variables to automatic, it is not obvious that a register declaration will indeed be
rolled back. And since compilers are at liberty to change automatic variables to
register (if their addresses are never taken), it is not obvious that an automatic
declaration will not be rolled back. Hence the vague wording. In fact, the only
reliable way to ensure that a local variable retain the value it had at the time of the
call to longj mpis to define it with the volatile attribute.

Some implementations leave a process in a special state while a signal is being
handled. An explicit reassurance must be givento the environment when the signal
handler is done. To keep this job manageable, the Committee agreed to restrict
longj mpto only one level of signal handling.

The longj mpfunction should not be called in an exit handler (i.e., a function
registered with the atexit function (see §4.10A.2)), since it might jump to some
code which is no longer in scope.

4.7 Signal Handling
<signal.h>

This facility has been retained from the Base Document since the Committee felt
it important to provide some standard mechanism for dealing with exceptional pro-
gram conditions. Thus a subset of the signals defined in UNIXwere retained in the
Standard, along with the basic mechanisms of declaring signal handlers and (with
adaptations, see §4.7.2.1) raising signals. For a discussion of the problems created
by including signals, see §2.2.3.

The signal machinery contains many misnomers: SIGFPE, SIGILL, and SIGSEGV
have their roots in PDP-ll hardware terminology, but the names are too entrenched
.to change. A conforming implementation is not required to field any hardware
interrupts.

The Committee has reserved the space of names beginning with SIG to permit
implementations to add local names to <signal. h>. This implies that such names
should not be otherwise used in a C source file which includes <signal. h>.

4.7.1 Specify signal handling

4.7.1.1 The signal fwlctioD

When a signal occurs the normal flowof control of a program is interrupted. If a sig-
nal occurs that is being trapped by a signal handler, that handler is invoked. When
it is finished, execution continues at the point at which the signal occurred. This
arrangement could cause problems if the signal handler invokes a library function
that was being executed at the time of the signal. Since library functions are not
guaranteed to he re-entrant, they should not be called from a signal handler that

4.8. VariableArguments <stdarg. h> 83

returns. (See §2.2.3.) A specific exception to this rule has been granted for calls
to signal from within the signal handler; otherwise, the handler could not reliably
reset the signal.

The specification that some signals may be effectively set to SIG..IGN instead of
SIGJ)FL at program startup allows programs under UNIX systems to inherit this
effective setting from parent processes. .

For performance reasons, UNIX does not reset SIGILL to default handling when
the handler is called (usually to emulate missing instructions). This treatment is
sanctioned by specifying that whether reset occurs for SIGILL is implementation-
defined.

4.7.2 Send signal

4.7.2.1 The raise function

The function raise replaces the Base Document's kill function. The latter has an
extra argument which refers to the "process ID" affected by the signal. Since the
execution model of the Standard does not deal with multi-processing, the Committee
deemed it preferable to introduce a function which requires no (dummy) process
argument. The Committee anticipates that IEEE 1003 will wish to standardize the
kill function in the POSIX specification.

4.8 Variable Arguments
<stdarg.h>

For a discussion of argument passing issues, see §3.7.1.
These macros, modeled after the UNIX <varargs. h> macros, have been added

to enable the portable implementation in C of library functions such as print! and
scanf (see §4.9.6). Such implementation could otherwise be difficult, considering
newer machines that may pass arguments in machine registers rather than in. the
more traditional stack-oriented methods.

The definitions of these macros in the Standard differ from their forebears: they
have been extended to support argument lists that have a fixed set of arguments
preceding the variable list.

va-&tart and va-ug must exist as macros, since va-&tart uses an argument
that is passed by name and va-ug uses an argument which is the name of a data
type. Using tunde:f on these names leads to undefined behavior.

4.8.1 Variable argument list access macros

4.S.1.1 The va..start macro

va-&tart must be called within the body of the function whose argument list is to
be traversed. That function can then pass its va..l.ist pointer ap to other functions
to do the actual. traversal. (It can, of course, traverse the list itself.)

X8Jll!88-008

84 Section 4. LIBRARY

The parmN argument to va..start is an aid to writing conforming ANSI C code
for existing C implementations. Many implementations can use the second param-
eter within the structure of existing C language constructs to derive the address of
the first variable argument. (Declaring parmN to be of storage class register would
interfere with use of these constructs; hence the effect of such a declaration is un-
defined behavior. Other restrictions on the type of parmN are imposed for the same
reason.) New implementations may choose to use hidden machinery that ignores
the second argument to va..start, possibly even hiding a function call inside the
macro.

Multiple va...list variables can be in use simulaneously in the same function;
each requires its own (nested) calls to va..start and va.end.

4.8.1.2 The va.arg macro

Changing an arbitrary type name into a type name which is a pointer to that type
could require sophisticated rewriting. To allow the implementation of va..a.rg as a
macro, va..a.rg need only correctly handle those type names that can be transformed
into the appropriate pointer type by appending a*', which handles most simple cases.
When using these macros it is important to remember that the type of an argument
in a variable argument list will never be an integer type smaller than int, nor will
it ever be float. (See §3.5.3.3.)

va..a.rg can only be used to access the value of an argument, not to obtain its
address.

4.8.1.3 The va.and macro

va.end must also be called from within the body of the function having the variable
argument list. In many implementations, this is a do-nothing operation; but those
implementations that need it probably need it badly.

4.9 Input ZOutput
<stdio.h>

Many implementations of the C runtime environment (most notably the UNIX oper-
ating system) provide, aside from the standard I/0 library (fopen, fclose, fread,
fwrite, fseek), a set of unbuffered I/O services (open, close, read, wri te, lseek).
The Committee has decided not to standardize the latter set of functions.

A suggested semantics for these functions in the UNIX world may be found in
the emerging IEEE PlOO3 standard. The standard I/O library functions use a file
pointer for referring to the desired I/O stream. The unbuffered I/0 services use a
file descriptor (a small integer) to refer to the desired I/O stream.

Due to weak implementations of the standard I/O library, many implementars
have assumed that the standard I/O library was used far small records and that the
unbuffered I/O library was used for large records. However, a good implementation

4.9. Input/Output <stdio .h> 85

of the standard I/O library can match the performance of the unbuffered services
on large records. The user also has the capability of tuning the performance of the
standard I/O library (with setvbuf) tu suit the application.

Some subtle differences between the two sets of services can make the implemen-
tation of the unbuffered I/O services difficult:

• The model of a file used in the unbuffered I/O services is an array of characters.
Many C environments do not support this file model.

• Difficulties arise when handling the new-line character. Many hosts use con-
ventions other than an in-stream new-line character to mark the end of a line.
The unbuffered I/O services assume that no translation occurs between the
program's data and the file data when performing I/O, so either the new-line
character translation would be lost (which breaks programs) or the implemen-
tor must be aware of the new-line translation (which results in non-portable
programs).

• On UNIX systems, file descriptors 0, 1, and 2 correspond to the standard
input, output, and error streams. This convention may be problematic for
other systems in that (1) file descriptors 0, 1, and 2 may not be available
or may be reserved for another purpose, (2) the operating system may use a
different set of services for terminal I/O than file I/O.

In summary, the Committee chose not to standardize the unbuffered I/O services
because:

• They duplicate the facilities provided by the standard I/O services.

• The performance of the standard I/O services can be the same or better than
the unbuffered I/O services.

• The unbuffered I/O file model may not be appropriate for many C language
environments.

4.9.1 Introduction

The macros _IOFBF, _IOLBF, _IONBF are enumerations of the third argument to
setvbuf, a function adopted from UNIX System V.

SEEK_CUR, SEEK..END, and SEEK.BET have been moved to <stdio .h> from a header
specified in the Base Document and not retained in the Standard.

OPEN..MAX and TMP..MAX are added environmental limits of some interest to pro-
grams that manipulate multiple temporary files.

4.9.2 Streams

C inherited its notion of text streams from the UNIX environment in which it was
born. Having each line delimited by a single new-line character, regardless of the

X3Jll/88-003

86 Section 4. LffiRARY

characteristics of the actual terminal, supported a simple model of text as a sort of
arbitrary length scroll or "galley." Having a channel that is "transparent" (no file
structure or reserved data encodings) eliminated the need for a distinction between
text and binary streams.

Many other environments have different properties, however. IT a program writ-
ten in C is to produce a text file digestible by other programs, by text editors in
particular, it must conform to the text formatting conventions of that environment.

The I/O facilities defined by the Standard are both more complex and more
restrictive than the ancestral I/O facilities of UNIX. This is justified on pragmatic
grounds: most of the differences, restrictions and omissions exist to permit C I/O
implementations in environments which differ from the UNIX I/O model.

Troublesome aspects of the stream concept include:

The definition of lines. In the UNIX model, division of a file into lines is effected
by new-line characters. Different techniques are used by other systems - lines
may be separated by CR-LF (carriage return, line feed) or by unrecorded
areas on the recording medium, or each line may be prefixed by its length.
The Standard addresses this diversity by specifying that new-line be used as
a line separator at the program level, but then permitting an implementation
to transform the data read or written to conform to the conventions of the
environment.

Some environments represent text lines as blank-filled fixed-length records.
Thus the Standard specifies that it is implementation-defined whether trailing
blanks are removed from a line on input. (This specification also addresses
the problems of environments which represent text as variable-length records, .
but do not allow a record length of 0: an empty line may be written as a
one-character record containing a blank, and the blank is stripped on input.)

Transparency. Some programs require access to external data without modifica-
tion. For instance, transformation of CR-LF to new-line character is usually
not desirable when object code is processed. The Standard defines two stream
types, text and binary, to allow a program to define, when a file is opened,
whether the preservation of its exact contents or of its line structure is more
important in an environment which cannot accurately reflect both.

Random access. The UNIX I/O model features random access to data in a file,
indexed by character number. On systems where a new-line character pro-
cessed by the program represents an unknown number of physically recorded
characters, this simple mechanism cannot be consistently supported for text
streams. The Standard abstracts the significant properties of random access
for text streams: the ability to determine the current file position and then
later reposition the file to the same location. ftell returns a file position
indicator, which has no necessary interpretation except that an f seek opera-
tion with that indicator value will position the file to the same place. Thus

4.9. Input/Output <stdio.h> 87

an implementation may encode whatever file positioning information is most
appropriate for a text file, subject only to the constraint that the encoding
be representable as a long. Use of fgetpos and fsetpos removes even this
constraint.

Buffering. UNIX allows the program to control the extent and type of buffering
for various purposes. For example, a program can provide its own large I/O
buffer to improve efficiency, or can request unbuffered terminal I/O to process
each input character as it is entered. Other systems do not necessarily support
this generality. Some systems provide only line-at-a-time access to terminal
input; some systems support program-allocated buffers only by copying data
to and from system-allocated buffers for processing. Buffering is addressed
in the Standard by specifying UNIX-like setbuf and setvbuf functions, but
permitting great .latitude in their implementation. A conforming library need
neither attempt the impossible nor respond to a program attempt to improve
efficiency by introducing additional overhead.

Thus, the Standard imposes a clear distinction between text streams, which must
be mapped to suit local custom, and binary streams, for which no mapping takes
place. Local custom on UNIX (and related) systems is of course to treat the two
sorts of streams identically, and nothing in the Standard requires any changes to
this practice.

Even the specification of binary streams requires some changes to accommodate
a wide range of systems. Because many systems do not keep track of the length of a
file to the nearest byte, an arbitrary number of characters may appear on the end of
a binary stream directed to a file. The Standard cannot forbid this implementation,
but does require that this padding consist only of null characters. The alternative
would be to restrict C to producing binary files digestible only by other C programs;
this alternative runs counter to the spirit of C.

The set of characters required to be preserved in text stream I/O are those needed
for writing C programs; the intent is the Standard should permit a C translator to
be written in a maximally portable fashion. Control characters such as backspace
are not required for this purpose, so their handling in text streams is not mandated.

It was agreed that some minimum maximum line length must be mandated; 254
was chosen.

4.9.3 Files

The as if principle is once again invoked to define the nature of input and output
in terms of just two functions, fgetc and fputc. The actual primitives in a given
system may be quite different.

Buffering, and unbuffering, is defined in a way suggesting the desired interactive
behavior; but an implementation may still be conforming even if delays (in a network
or terminal controller) prevent' output from appearing in time. It is the intent that
matters here.

X3Jll/88-003

88 Section 4. LffiRARY

No constraints are imposed upon file names, except that they must be repre-
sentable as strings (with no embedded null characters).

4.9.4 Operations on files

4.9.4.1 The remove function

The Base Document provides the unlink system call to remove files. The UNIX-
specific definition of this function prompted the Committee to replace it with a
portable function.

4.9.4.2 The rename function

This function has been added to provide a system-independent atomic operation
to change the name of an existing file; the Base Document only provided the link
system call, which gives the file a new name without removing old one, and which
is extremely system-dependent.

The Committee considered a proposal that rename should quietly copy a file
if simple renaming couldn't be performed in some context, but rejected this as
potentially too expensive at execution time.

rename is meant to give access to an underlying facility of the execution envi-
ronment's operating system. When the new name is the name of an existing file,
some systems allow the renaming (and delete the old file or make it inaccessible
by that name), while others prohibit the operation. The effect of rename is thus
implementation- defin ed.

4.9.4.3 The tmpfile function

The tmpfile function is intended to allow users to create binary "scratch" files.
The as if principle implies that the information in such a file need never actually
be stored on a file-structured device.

The temporary file is created in binary update mode, because it will presumably
be first written and then read as transparently as possible. Trailing null-character
padding may cause problems for some existing programs.

4.9.4.4 The tmpnam function

This function allows for more control than tmpt ile: a file can be opened in binary
mode or text mode, and files are not erased at completion.

4.9.5 File access functions

4.9.5.1 The f cLoae function

On some operating systems it is difficult, or impossible, to create a file unless some-
thing is written to the file. A maximally portable program which relies on a file
being created must write something to the associated stream before closing it.

4.9. Input/Output <stdio .h> 89

4.9.5.2 The tflush function

4.9.5.3 The topen function

The b type modifier has been added to deal with the text/binary dichotomy (see
§4.9.2). Because of the limited ability to seek within text files (see §4.9.9.1), an
implementation is at liberty to treat the old update + modes as if b were also
specified. Table 4.1 tabulates the capabilities and actions associated with the various
specified mode string arguments to topen.

Table 4.1: File and stream properties of fopen modes

II r I w' I a I r+ i w+ I a+
file must exist before open vi vi

old file contents discarded on open vi vi

stream can be read vi vi vi vi

stream can be written vii vi vi Y Y
stream can be written only at end y y

Other specifications for files, such as record length and block size, are not speci-
fied in the Standard, due to their widely varying characteristics in different operating
environments. Changes to file access modes and buffer sizes may be specified us-
ing the setvbuf function. (See §4.9.5.6.) An implementation may choose to allow
additional file specifications as part of the mode string argument. For instance,

filel c fopen(tilelname,"wb,reclen-SO");

might be a reasonable way, on a system which provides record-oriented binary files,
for an implementation to allow a programmer to specify record length.

A change of input/output direction on an update file is only allowed following a
fseek, rewind, or fflush operation, since these are precisely the functions which
assure that the I/O buffer has been Bushed.

The Standard (§4.9.2) imposes the requirement that binary files not be trun-
cated when they are updated. This rule does not preclude an implementation from
supporting additional file types that do truncate when written to, even when they
are opened with the same sort of fopen call. Magnetic tape files are an example of
a file type that must be handled this way. (On most tape hardware it is impossible
to write to a tape without destroying immediately following data.) Hence tape files
are not "binary files" within the meaning of the Standard. A conforming hosted
implementation must provide (and document) at least one file type (on disk, most
likely) that behaves exactly as specified in the Standard.

X3Jl1/88-003

----------------~~-

90 Section 4. LIBRARY

4.9.5.4 The freopen function

4.9.5.5 The setbuf function

setbuf is subsumed by setvbu:f, but has been retained for compatibility with old
code.

4.9.5.6 The setvbuf function

setvbu:f has been adopted from UNIX System V, both to control the nature of
stream buffering and to specify the size of I/O buffers. An implementation is not
required to make actual use of a buffer provided for a stream, so a program must
never expect the buffer's contents to reflect I/O operations. Further, the Standard
does not require that the requested buffering be implemented; it merely mandates a
standard mechanism for requesting whatever buffering services might be provided.

Although three types of buffering are defined, an implementation may choose
to make one or more of them equivalent. For example, a library may choose to
implement line-buffering for binary files as equivalent to unbuffered I/O or may
choose to always implement full-buffering as equivalent to line-buffering.

The general principle is to provide portable code with a means of requesting the
most appropriate popular buffering style, but not to require an implementation to
support these styles.

4.9.6 Formatted input/output functions
4.9.6.1 The fprintf function

Use of the Lmodifier with Boating conversions has been added to deal with formatted
output of the new type long double.

Note that the ~x and h formats expect a corresponding int argument; UX or
Ux must be supplied with a long int argument.

The conversion specification ~p has been added for pointer conversion, since
the size of a pointer is not necessarily the same as the size of an into Because
an implementation may support more than one size of pointer, the corresponding
argument is expected to be a (void *) pointer.

The h format has been added to permit ascertaining the number of characters
converted up to that point in the current invocation of the formatter.

Some pre-Standard implementations switch formats for ~ at an exponent of-3
instead of (the Standard's) -4: existing code which requires the format switch at -3
will have to be changed.

Some existing implementations provide ~ and ~O as synonyms or replacements
for %ld and no. The Committee considered the latter notation preferable.

The Committee has reserved lower case conversion specifiers for future standard-
ization.

_The use of leading zero in field widths to specify zero padding has been super-
seded by a precision field. The older mechanism has been retained.

4.9. Inpllt/Output <stdio.h> 91

Some implementations have provided the format %r as a means of indirectly
passing a variable-length argument list. The functions vfprintf, etc., are considered
to be a more controlled method of effecting this indirection, so tr was not adopted
in the Standard. (See §4.9.6.7.)

4.9.6.2 The fseanf function

The specification of fscan:! is based in part on these principles:

• As soon as one specified conversion fails, the whole function invocation fails.

• One-character pushback is sufficient for the implementation of :!scanfj

• If a "flawed field" is detected, no value is stored for the corresponding argu-
ment.

• The conversions performed by :fscan:! are compatible with those performed
by strtod and strtol.

Input pointer conversion with %phas been added, although it is obviously risky,
for symmetry with fprintf. The ti format has been added to permit the scanner
to determine the radix of the number in the input stream; the h format has been
added to make available the number of characters scanned thus far in the current
invocation of the scanner.

White space is now defined by the isspace function. (See §4.3.1.9.)
An implementation must not use the ungetc function to perform the necessary

one-character pushback. In particular, since the unmatched text is left "unread,"
the file position indicator as reported by the :!tell function must be the position
of the character remaining to be read. Furthermore, if the unread characters were
themselves pushed back via ungetc calls, the pushback in f sc an:! must not affect
the push-back stack in ungetc. A scanf call that matches N characters from a
stream must leave the stream in the same state as if N consecutive getc calls had
been issued.

4.9.6.3 The print:! function

See comments of section §4.9.6.1 above.

4.9.6.4 The scan:! function

See comments in section §4.9.6.2 above.

4.9.6.5 The sprintf function

See §4.9.6.1 for comments on output formatting.
In the interests of minimizing redundancy, sprintf has subsumed the older,

rather uncommon, ecvt, fcvt, and gevt.

X3Jl1/88-003

92 Section 4. LIBRARY

4.9.6.6 The Bsean! function

The behavior of BBcanf on encountering end of string has been clarified. See also
comments in section §4.9.6.2 above.

4.9.6.7 The V'fprintf function

The functions vfprintf, vprintf, and vsprintf have been adopted from UNIX
System V to facilitate writing special purpose formatted output functions.

.4.9.6.8 The vprintf function

See §4.9.6.7.

4.9.6.9 The vsprintf function

.See §4.9.6.7.

4.9.'1 Character input/output functions

4.9.7.1 The fgetc function

Because much existing code assumes that tgetc and fputc are the actual functions
equivalent to the macros getc and putc, the Standard requires that they not be
implemented as macros.

4.9.7.2 The fgets function

This function subsumes gets, which has no limit to prevent storage overwrite on
arbitrary input (see §4.9.7.7).

4.9.7.3 The fputc function

See §4.9.7.1.

4.9.7.4 The fputs function

4.9.7.5 The getc function

getc and putc have often been implemented as unsafe macros, since it is difficult in
such a macro to touch the stream argument only once. Since this danger is common
in prior art, these two functions are explicitly permitted to evaluate stream more
than once.

4.9.7.6 The getchar function

4.9.7.7 The gets function

See §4.9.7.2.

4.9. Input/Output <stdio.h> 93

'.
4.9.1.8 The putc function

See §4.9.7.5.

4.9.1.9 The putchar function

4.9.1.10 The puts function

puts (s) is not exactly equivalent to fputs (stdout. s); puts also writes a new line
after the argument string. This incompatibility reflects existing practice.

4.9.1.11 The ungetc function

The Base Document requires that at least one character be read before ungetc is
called, in certain implementation-specific cases. The Committee has removed this
requirement, thus obliging a FILE structure to have room to store one character of
pushback regardless of the state of the buffer; it felt that this degree of generality
makes clearer the ways in which the function may be used.

It is permissible to push back a different character than that which was read;
this accords with common existing practice. The last-in, first-out nature of ungetc
has been clarified.

ungetc is typically used to handle algorithms, such as tokenization, which involve
one-character lookahead in text files. fseek and itell are used for random access,
typically in binary files. So that these disparate file-handling disciplines are not
unnecessarily linked, the value of the file position indicator immediately after ungetc
has been specified as indeterminate.

Existing practice relies on two different models of the effect of ungetc. One
model can be characterized as writing the pushed-back character "on top of" the
previous character. This model implies an implementation in which the pushed-
back characters are stored within the file buffer and bookkeeping is performed by
setting the file position indicator to the previous character position. (Care must be
taken in this model to recover the overwritten character values when the pushed-
back characters are discarded as a result of other operations on the stream.) The
other model can be characterized as pushing the character "between" the current
character and the previous character. This implies an implementation in which the
pushed-back characters are specially buffered (within the FILE structure, say) and
accounted for by a flag or count. In this model it is natural not to move the file
position indicator. The indeterminacy of the file position indicator while pushed-
back characters exist accommodates both models.

Mandating either model (by specifying the effect of ungetc on the file posi-
tion indicator) creates problems with implementations that have assumed the other
model. Requiring the file position indicator not to change after ungetc would ne-
cessitate changes in programs which combine random access and tokenization on
text files, and rely on the file position indicator marking the end of a token even
after pushback. Requiring the file position indicator to back up would create severe

X3Jll/88-003

94 Section 4. LIBRARY

implementation problems in certain environments, since in some file organizations it
can be impossible to find the previous input character position without having read
the file sequentially to the point in question. (Consider, for instance, a sequential
file of variable-length records in which a line is represented as a count field followed
by the characters in the line. The file position indicator must encode a character
position as the position of the count field plus an offset into the line; from the posi-
tion of the count field and the length of the line, the next count field can be found.
Insufficient information is available for finding the previous count field, so backing
up from the first character of a line necessitates, in the general case, a sequential
read from the start of the file.)

4.9.8 Direct input Zoutput functions

4.9.S.1 The fread function

s iz e rt is the appropriate type both for an object size and for an array bound (see
§3.3.3A), so this is the type of size and nelem.

4.9.8.2 The fwri te function

See §4.9.8.1.

4.9.9 Pile positioning functions

4.9.9.1 The fgetpos function

fgetpos and fsetpos have been added to allow random access operations on files
which are tOI;)large to handle with beek and :rtell.

4.9.9.2 . The !seek function

Whereas a binary file can be treated as an ordered sequence of bytes, counting from
zero, a text file need not map one-to-one to its internal representation (see §4.9.2).
Thus, only seeks to an earlier reported position are permitted for text files. The need
to encode both record position and position within a record in a long value may
constrain the size of text files upon which fseek-ftell can be used considerably
more than binary files.

Given these restrictions, the Committee still felt that this function has enough
utility, and is used in sufficient existing code, to warrant its retention in the Stan-
dard. tgetpos and tsetpos have been added to deal with files which are too large
handle with f seek and ftell.

The !seek function will reset the end-of-file flag for the stream; the error flag is
not changed unless an error occurs, when it will be set.

4.10. General Utilities <stdlib.h> 95

4.9.9.3 The fsetpos function

4.9.9.4 The !tell function

ftell can fail for at least two reasons:

• the stream is associated with a terminal, or some other file type for which file
position indicator is meaningless; or

• the file may be positioned at a location not representable in a long into

Thus a method for Hell to report failure-has been specified.
See also §4.9.9.1.

4.9.9.5 The rewind function

Resetting the end-of-file and error indicators was added to the specification of
rewind to make the specification more logically consistent.

4.9.10 Error-handling functions

4.9.10.1 The clearerr function

4.9.10.2 The feof function

4.9.10.3 The ferror function

At various times, the Committee considered providing a form ofperrorthat delivers
up an error string version of errno without performing any output. It ultimately de-
cided to provide this capability in a separate function, strerror. (See §4.11.6.1).

4.10 General Utilities
<stdlib.h>

The header <stdlib.~> was invented by the Committee to hold an assortment of
functions that were otherwise homeless.

4.10:1 String conversion functions

4.10.1.1 The atof function

atof, atoi, and atol are subsumed by strtod and strtol, but have been retained
because they are used extensively in existing code.

4.10.1.2 The atoi function

See §4.1O.1.1.

X3Jll/88-003

96 Section 4. LlBRARY

4.10.1.3 The atol function

See §4.10.1.1.

4.10.1.4 The strtod function

strtod and strtol have been adopted (from UNIX System V) because they offer
more control over the conversion process, and because they are required not to
produce unexpected results on overflow during conversion.

The requirement that errno be set to EDOMwhen the argument string does not
begin with a valid number string allows easy checking for invalid input.

4.10.1.5 The strtol function

See §4.10..1.4.

4.10.1.6 The strtoul function

strtoul was introduced by the Committee to provide a facility like strtol for
unsigned long values. Simply using strtol in such cases could result in overflow
upon conversion.

4.10.2 Pseudo-random sequence generation functions

4.10.2.1 The rand function

The Committee decided that an implementation should be allowed to provide a rand
function which generates the best random sequence possible in that implementation,
and therefore mandated no standard algorithm. It recognized the value, however,
of being able to generate the same pseudo-random sequence in different implemen-:
tations, and so it has published. as an example in the Standard an algorithm thatl

generates the same pseudo-random sequence in any conforming implementation,
given the same seed.

4.10.2.2 The srand function

4.10.3 Memory management functions

The treatment of null pointers and O-length allocation requests in the definition of
these functions was in part guided by a desire to support this paradigm:

OBJ * p; 1* pOinter to a variable list of OBJ's *1

1* initial allocation *1
p • (OBJ *) calloc(O. sizeof(OBJ»;
/* .. , */

4.10. General Utilities <stdlib.h> 97

/* reallocations until size settles */
while(/* list changes size to c */) {

p = (OBJ *) realloc«void *)P. c*sizeof(OBJ»;
/* .., */

}

This coding style, not necessarily endorsed by the Committee, is reported to be in
widespread use.

Some implementations have returned non-null values for allocation requests of
o bytes. Although this strategy has the theoretical advantage of distinguishing be-
tween "nothing" and "zero" (an unallocated pointer vs. a pointer to zero-length
space), it has the more compelling theoretical disadvantage of requiring the concept
of a zero-length object. Since such objects cannot be declared; the only way they
could come into existence would be through such allocation requests. The Com-
mittee has decided not to accept the idea of zero-length objects. The allocation
functions are therefore required to return a null pointer for an allocation request
of zero bytes. Note that the adopted definition does not preclude the paradigm
outlined above.

QUIET CHANGE

A program which relies on size-Dallocation requests returning a non-null
pointer will behave differently.

Some implementations provide a function (often called alloca) which allocatesthe
requested object from automatic storage; the object is automatically freed when the
calling function exits. Such a function is not efficiently implement able in a variety
of environments, so it was not adopted in the Standard.

4.10.3.1 The calloc function

Both nelem and elsize must be of type size_t, for reasons similar to those for
fread (see §4.9.8.1). .

If an implementation elects not to represent all zero-valued scalars as all bits
zero, then calloc may have astonishing results in existing programs transported
there.

4.10.3.2 The free function

The Standard makes clear that a program may only free that which has been al-
located, that an allocation may only be freed once, and that a region may not be
accessed once it is freed. Some implementations allow more dangerous license. The
null pointer is specified as a valid argument to this function to reduce the need for
special-case coding.

X3Jll/88-003

98 Section 4. LIBRARY

4.10.3.3 The malloc function

4.10.3.4 The realloc function

A null first argument is permissible. If the first argument is not null, and the second
argument is 0, then the call frees the memory pointed to by the first argument, and
a null argument is returned; this specification is consistent with the policy of not
allowing zero-size objects.

4.10.4 Communication with the environment

4.10.4.1 The abort function

The Committee vacillated over whether a call to abort should return if the signal
SIGABRT is caught or ignored. To minimize astonishment, the final decision was tha.t
abort never returns. However, this can not be guaranteed if the program calls the
longj mp function in a signal handler invoked via the atexi t mechanism.

4.10.4.2 The at exit function

atexi t provides a program with a convenient way to clean up the environment before
it exits, even if the exit is an abnormal one. It is adapted from the Whitesmiths
C run-time library function onexi t.

An alternative was to use the SIGTERM facility of the signal/raise machinery, but
that would not give the last-in first-out stacking of multiple functions so useful with
atexit.

It is the responsibility of the library to maintain the chain of registered functions
so that they are invoked in the correct sequence upon program exit.

4.10.4.3 The exit function

The argument to exit is a status indication returned to the invoking environment.
In the UNIX operating system, a value of 0 is the successful return code from a
program. As usage of C has spread beyond UNIX, exit (0) has often been retained
as an idiom indicating successful termination, even on operating systems with dif-
ferent systems of return codes. This usage is thus recognized as standard. There
has never been a portable way of indicating a non-successful termination, since the
arguments to exit are then implementation-defined. The macro EXI T..F AlLURE ha.ve
been added to provide such a capability. (EXIT...stJCCESS has been added as well.)

The environment during atexi t handling has been specified to clarify the status
of automatic variables and the order of processing of wrapup operations. Only
variables defined with static storage class and defined outside of a function body are
accessible during the execution of exit handlers.

4.10. General Utilities <stdlib. h> 99

4.10.4.4 The getenv function

The definition of getenv is designed to accommodate both implementations that
have all in-memory read-only environment strings and those that may have to read
an environment string into a static buffer. Hence the pointer returned by the getenv
function points to a string not modifiable by the caller. If an attempt is made to
change this string, the behavior of future calls to getenv is undefined.

A corresponding putenv function was omitted from the Standard, since its util-
ity outside a multi-process environment is questionable, and since its definition is
properly the domain of an operating system standard.

4.10.4.5 The system function

The system function allows a program to suspend its execution temporarily in order
to run another program to completion. .

Information may be passed to the called program in three ways: through
command-line argument strings, through the environment, and (most portably)
through data files. Before calling the system function, the calling program should
close all such data files.

Information may be returned from the called program in two ways: through
the implementation-defined return value (in many implementations, the termina-
tion status code which is the argument to the exit function is returned by the
implementation to the caller as the value returned by the system function), and
(most portably) through data files.

If the environment is interactive, information may also be exchanged with users
of interactive devices.

Some implementations offer built-in programs called "commands" (for example,
"date") which may provide useful information to an application program via the
system function. The Standard does not attempt to characterize such commands,
and their use is not portable. .

On the other hand, the use of the system function is portable, provided the
implementation supports the capability. The Standard permits the application to
ascertain this by calling the system function with a null pointer argument. Whether
more levels of nesting are supported can also be ascertained this way; assuming more
than one such level is obviously dangerous.

4.10.5 Searching and sorting utilities

4.10.5.1 The bsearch function

4.10.5.2 The qsort function

4.10.6 Integer arithmetic functions

abs was moved from <math. h> as it was the only function in that library which did
not involve double arithmetic. Some programs have included <math.h> solely to

X3Jll/88-003

100 Section 4. LffiRARY

gain access to abs, but in some implementations this results in unused floating-point
run-time routines becoming part of the translated program.

4.10.6.1 The abs function

The Committee rejected proposals to add an absolute value operator to the language.
An implementation can provide a built-in function for efficiency.

4.10.6.2 The div function

. .

di v and Idi v provide a well-specified semantics for signed integral division and
remainder operations. The semantics were adopted to be the same as in FORTRAN.
Since these functions return both the quotient and the remainder, they also serve as
a convenient way of efficiently modelling underlying hardware that computes both
results as part of the same operation. Table 4.2 summarizes the semantics of these
functions.

Ta.ble 4.2: Results of di v and ldi v

I numer I denom II quot I rem I
7 3 2 1

-7 3 -2 -1
7 -3 -2 1

-7 -3 2 -1

Divide-by-zero is described as undefined behamor rather than as setting errno
to EDOM. The program can as easily check for a zero divisor before a division as
for an error code afterwards, and the adopted scheme reduces the burden on the
function.

4.10.6.3 The labs function

4.10.6.4 The ldi v function

4.10.1 Multibyte character functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.11.· STRING HANDLING <string.h> 101

.
4.10.7.1 The mblen function

4.10.7.2 The mbtowc function

4.10.7.3 The wctomb function

4.10.8 Multibyte string functions

See §2.2.1.2 for an overall discussion of multibyte character representations and wide
characters.

4.10.8.1 The mbstowcs function

4.10.8.2 The wcstombs function

4.11 STRING HANDLING
<string.h>

The Committee felt that the functions in this section were all excellent candidates
for replacement by high-performance built-in operations. Hence many simple func-
tions have been retained, and! several added, just to leave the door open for better
implementations of these common operations.

The Standard reserves function names beginning with str or memfor possible
future use.

4.11.1 String function conventions

memcpy, memset, memcmp,and-aeeehr have been adopted from several existing im-
plementations. The general goal was to provide equivalent capabilities for three
types of byte sequences:

• null-terminated strings (str-),

• null-terminated strings with a maximum length (strn-), and

• transparent data of specified length (mem-).

4.11.2 Copying functions

A block copy routine should be "right": it should work correctly even if the blocks
being copied overlap. Otherwise it is more difficult to correctly code such overlapping
copy operations, and portability suffers because the optimal C-coded algorithm on
one machine may be horribly slow on another.

A block copy routine should be "fast": it should be implementable as a few inline
instructions which take maximum advantage of any block copy provisions of the
hardware. Checking for overlapping copies produces too much code for convenient
inlining in many implementations. The programmer knows in a great many cases

X3Jll/88-003

102 Section 4. LIBRARY

that the two blocks cannot possibly overlap, so the space and time overhead are for
naught.

These arguments are contradictory but each is compelling. Therefore the Stan-
dard mandates two block copy functions: memmoveis required to work correctly
even if the source and destination overlap, while memcpy can presume nonoverlap-
ping operands and be optimized accordingly.

4.11.2.1 The memcpy function

4.11.2.2 The memmovefunction

Since memmove is mandated to work even with overlapping operands, it is only
function in the library whose pointer arguments (other than file pointers) are not
qualified noalias.

4.11.2.3 The strcpy function

4.11.2.4 The strncpy function

strncpy was initially introduced into the C library to deal with fixed-length name
fields in structures such as directory entries. Such fields are not used in the same
way as strings: the trailing null is unnecessary for a maximum-length field, and set-
ting trailing bytes for shorter names to null assures efficient field-wise comparisons.
strncpy is not by origin a "bounded strcpy," and the Committee has preferred to
recognize existing practice rather than alter the function to better suit it to such
use.

4.11.3 Concatenation functions

4.11.3.1 The strcat function

4.11.3.2 The strncat function

Note that this function may add n+l characters to the string.

4.11.4 Comparison functions

4.11.4.1 The memcmpfunction

See §4.11.1.

4.11.4.2 The strcmp function

4.11.4.3 The strcoll function

strcoll and strxfrm provide for locale-specific string sorting. strcoll is intended
for applications in which the number of comparisons is small; strxfrm is more
appropriate when items are to be compared a number of times - the cost of trans-
formation is then only paid once.

4.11. STRING HANDLING <str:ing.h> 103

4.11.4.4 The strncmp function

4.11.4.5 The strxfrm function

See §4.11.4.3.

4.11.5 Search functions

4.11.5.1 The memchr function

See §4.11.1.

4.11.5.2 The strchr function

4.11.5.3 The strcspn function

4.11.5.4 The strpbrk function

4.11.5.5 The strrchr function

4.11.5.6 The strspn function

4.11.5.7 The strstr function

The strstr function is an invention of the Committee. It is included as a hook for
efficient substring algorithms, or for built-in substring instructions.

4.11.5.8 The strtok function

This function has been included to provide a convenient solution to many simple
problems of lexical analysis, such as scanning command line arguments.

4.11.6 Miscellaneous functions

4.11.6.1 The memset function

See §4.11.1, and §4.10.3.1.

4.11.6.2 The strerror function

This function is a descendant of perror (see §4.9.IOA). It is defined such that it
can return a 'pointer to an in-memory read-only string, or can copy a string into a
static buffer on each call.

4.11.6.3 The strlen function

This function is now specified as returning a value of type size_to (See §3.3.3.4.)

X3Jll/88-003

104 Section 4. LIBRARY

4.12 DATE AND TIME
<time.h>

4.12.1 Components of time

The types cLock.t; and time_t are arithmetic because values of these types must,
in accordance with existing practice, on occasion be compared with -1 (a "don't-
know" indication) suitably cast. No arithmetic properties of these types are defined
by the Standard, however, in order to allow implementations the maximum flexi-
bility in choosing ranges, precisions, and representations most appropriate to their
intended application. The representation need not be a count of some basic unit;
an implementation might conceivably represent different components of a temporal
value as subfields of an integral type.

Many C environments do not support the Base Document library concepts of
daylight savings or time zones. Both notions are defined geographically and politi-
cally, and thus may require more knowledge about the real world than an implemen-
tation can support. Hence the Standard specifies the date and time functions such
that. information about DST and time zones is not required. The Base Document
function tzset, which would require dealing with time zones, has been excluded
altogether. An implementation reports that information about DST is not available
by setting the tm.-isdst field in a broken-down time to a negative value. An imple-
mentation may return a null pointer from a call to gmtime if information about the
displacement between Universal Time (nee GMT) and local time is not available.

4.12.2 Time manipulation functions

4.12.2.1 The clock function

The function is intended for measuring intervals of execution time, in whatever units
an implementation desires. The conflicting goals of high resolution, long interval
capacity, and low timer overhead must be balanced carefully in the light of this
intended use.

4.12.2.2 The di:f:ftime function

difftime is an invention of the Committee. It is provided so that an implementation
can store an indication of the date/time value in the most efficient format possible
and still provide a method of calculating the difference between two times.

4.12.2.3 The mktime function

mktime was invented by the Committee to complete the set of time functions. With
this function it' becomes possible to perform portable calculations involving clock
times and broken-down times.

4.12. DATE AND TIME <time .h> 105

The rules on the ranges of the fields within the *timeptr record are crafted to"
permit useful arithmetic to be done. For instance, here is a paradigm for continuing
some loop for an hour:

'include <time.h>
struct tm when;

now;
deadline;

/* ... */
now = time(O);
when = *localtime(&now);
when.tm_hour += 1; /* result is in the range [1.24] */
deadline = mktime(kwhen);

print:f("Loop will finish: ~s\n". asctime(lrwhen»;
while (difftime(time(O).deadline»O) whatever();

The specification of mktime guarantees that the addition to the tm..hour field pro-
duces the correct result even when the new value of tm...hour is 24, i.e., a value
outside the range ever returned by a library function in a struct tm object.

One of the reasons for adding this function is to replace the capability to do
such arithmetic which is lost when a programmer cannot depend on time_t being
an integral multiple of some known time unit.

Several readers of earlier versions of this Rationale have pointed out apparent
problems in this example if now is just before a transition into or out of daylight
savings time. However, when. tm..isdst tags what sort of time was the basis of the
calculation. Implementors, take heed.

4.12.2.4 The time function

Since no measure is given for how precise an implementation's best approximation
to the current time must be, an implementation could always return the same date,
instead of a more honest -1. This is, of course, not the intent.

4.12.8 Time conversion functions

4.12.3.1 The asctime function

Although the name of this function suggests a conflict with the principle of removing
ASCII dependencies from the Standard, the name has been retained due to prior art.
For the same reason of existing practice, a proposal to remove the newline character
from the string format was not adopted. Proposals to allow for the use of languages
other than English in naming weekdays and months met with objections on grounds
of prior art, and on grounds that a truly international version of this function was
difficult to specify: three-letter abbreviation of weekday and month names is not

X3Jll/88-003

106 Section 4. LIBRARY

universally conventional, for instance. The strftime function (§4.12.3.5) provides
appropriate facilities for locale-specific date and time strings.

4.12.3.2 The ctime function

4.12.3.3 The gmtime function

This function has been retained, despite objections that GMT - that is,Coordi-
nated Universal Time (UTC) - is not available in some implementations, since UTC
is a useful and widespread standard representation of time. If UTC is not available,
a null pointer may be returned.

4.12.3.4 The local time function

4.12.3.5 The strftime function

strftime provides a way of formatting the date and time in the appropriate locale-
specific fashion, using the ~c, h, and Uformat specifiers. More generally, it allows
the programmer to tailor whatever date and time format is appropriate for a given
application. The facility is based on the UNIX system date command. See §4.4 for
further discussion of locale specification.

4.13 Future library directions

4.13.1 Errors <errno. h>

4.13.2 Character handling <ctype .h>

4.13.3 Localization <locale. h>

4.13.4 Mathematics <math. h>

A.13.5 Signal handling <signal.h>

4.13.6 Input / output <stdio. h>

4.13.'1 String handling <string .h>

Section 5

APPENDICES

Most of the material in the appendices is not new. It is simply a summary of
information in the Standard, collated for the convenience of users of the Standard.

New (advisory) information is found in §A.5 (common warnings) and in §A.6.5
(common extensions). The section on common extensions is provided in part to give
programmers even further information which may be useful in avoiding features of
local dialects of C.

107

Index

198~ /usr/group Standard, 5, 69

abort function, 73, 98
abs function, 100
abstract machine, 12, 13
Ada programming language, 13
agreement point, 12, 37
aliasing, 38
alignment, 5
alloca function, nonstandard, 91
ANSI X3.64 character set standard, 29
ANSI X3L2 Committee (Codes and

Character Sets)' 16
argc and argv parameters to main

function, 11
argument promotion, 40
as if principle, 9,10,13,35,38,59,88
ASCII character code, 13, 14, 16, 29,

73, 75, 106
asctime function, 106
asm keyword, nonstandard, 19
assert macro, 13
<assert. h> header, 73
associativity, 37
at exit function, 11, 82, 98, 99
ato! function, 96
atoi function, 96
atol function, 96

Backus-Naur Form, 19
benign redefinition, 63
binary numeration systems, 26, 42
bit, 5
bit fields, 50
break keyword, 58
byte, 5,42

C++ programming language, 53, 54
caHoc function, 98
case ranges, 57
cfree function, 98
clock function, 104
.cLockrt type, 104
codeset, 14, 75
collating sequence, 14
comments, 32
common extension, 19,23,30, 109
common storage, 23
compatible types, 21, 53
compliance, 6
composite type, 27, 53
concatenation, 30
conforming implementation,

freestanding, 1
conforming implementation, hosted, 7
conforming program, 3
const keyword, 19,49
constant expressions, 48
constraint error, 41
continue keyword, 58
control character, 74
conversions, 33
cross-compilation, 9, 27, 49, 11
<ctype .h> header, 73
curses screen-handling package, non-

standard, 69

data abstraction, 42
-DATE_ macro, 66
DEe PDP.11, 2
decimal-point character, 69
declarations, 49

108

INDEX-

defined preprocessing operator, 48,
60

diagnostics, 3, 10, 34,63,66
diiftime function, 105
di v function, 44, 100

EBCDIC character set, 16, 29, 75
EDOMmacro, 96
#elif preprocessing directive, 61
#else preprocessing directive, 61
#endif preprocessing directive, 61
entry keyword, nonstandard, 19
enum keyword, 19, 49
enumerations, 27, 28, 49
EOF macro, 74
errno macro, 70, 71, 78, 95, 96
<errno .h> header, 70
erroneous program, 10
terror preprocessing directive, 66
executable program, 9
exi t function, 11, 99
expression, ambiguous, 46
expression, sequenced, 47
expression, unsequenced, 47
expressions, 37
external identifiers, 20
external linkage, 9

fclose function, 85
fflush function, 89
fgetc function, 88,92
fgetpos function, 94
igets function, 92
...FILE macro, 66
file pointer, 85
file position indicator, 87, 95
FILE type, 93
<float .h> header, 18, 71
bod function, 44, 80
fopen function, 85, 89
fortran keyword, nonstandard, 19
FORTRAN programming language,

23, 53, 100
FORTRAN-to-C translation, 18, 37,

78

109

fputc function, 88
fread function, 85, 94
frexp function, 79
fscanf function, 91
fseek function, 85, 87, 89, 95
ftell function, 87
full expression, 12
function definition, 58
function prototypes, 54
function, pure, 47
future directions, 67
fwrite function, 85

getc function, 72,93
getenv function, 99
gmtime function, 104, 106
goto keyword, 57
Gray code, 26
Greenwich Mean Time (GMT), 106
grouping, 37

header names, 32
hosted environment, 11
HUGE.:.VALmacro, 78

IEEE 1003 portable operating sys-
tem interface standardization
committee, 5, 83, 85

IEEE 754 floating point standard, 18
IEEE P854 floating point standardiza-

tion committee, 71, 78, 80
.if preprocessing directive, 9, 49
implementation-defined behavior, 6,

29,30,50,78,80,83,86,88
'include preprocessing directive, 32,

61
integral constant expression, 48
integral promotions, 33, 54
interactive devices, 13
interleaving, 37
International Standards Organization

(ISO), 14
internationalization, 106
isascii function, 73
ISO 646, 14

X3Jll/88-00S

110

isspace function, 74, 91

j mp_buf type, 81

Kernighan, Brian, 5
kill function, 83

labels, 57
ldexp function, 79
ldi v function, 44, 100
lexical elements, 19
libraries, 9
<limits.h> header, 17,71
..LINE macro, 66
linkage, 21, 22
linked,9
locale, 74
localeconv function, 77
<locale. h> header, 75
locale-specific behavior, 74, 76,77,103
log function, 80
long double type, 26, 28, 49, 90
longjmp function, 17, 81,98
lvalue, 6, 35, 38, 41, 42, 48
lvalue, modifiable, 35

machine generation of C, 10, 49, 53,
56, 57

main function, 11
manifest constant, 78
matherr function, nonstandard, 78
<math.h> header, 77,100
memchr function, 101 .
memcmpfunction, 101
memcpy function, 101, 102
memmovefunction, 102
memset function, 101
mktime function, 105
mod! function, 79
multibyte characters, 6, 15, 101
multi-processing, 83

name space, 21
new-line, 16
noalias keyword, 19, 102

INDEX

NULL macro, 46, 71, 72
null pointer constant, 71

object, 5,6
obsolescent features, 20, 67
of! seto:f macro, 72
ones-complement arithmetic, 17
onexi t function, 98
optimization, 49
order of evaluation, 37

Pascal programming language, 27, 58
perror function, 95, 104
phases of translation, 9, 10
pointer subtraction, 44
pointers, invalid, 36
POSIX portable operating system in-

. terface standard, IEEE, 83
#pragma preprocessing directive, 66
precedence, operator, 37
preprocessing, 9, 10, 19,30,32,60, 71,

72
primary expression, 39
print! function, 26·, 73, 83
printing character, 74
program startup, 11, 48
prototype, function, 58, 67
ptrdi:fLt type, 43, 44, 71
putc function, 72, 93
puts function, 93

quality of implementation, 11
quiet change, 3, 15, 19, 21, 22, 30, 31,

34, 35, 45, 49, 50, 56, 58, 59,
65,97

raise function, 83
rand function, 96
register keyword, 49
remove function, 88
rename function, 88
repertoire, character set, 14
rewind, 89, 95
Ritchie, Dennis M., 5, 23

safe evaluation, 72

INDEX

scant function, 73,83
scope, lexical, 21
sequence points, 12, 37
setbuf function, 87, 90
setjmp function, 81
<setjmp.h> header, 81
setlocale function, 74, 77
setvbuf function, 85, 86, 87, 89, 90
side effect, 46
SIGABRT macro, 98
sig..atomic_t type, 16
SIGILL macro, 83
signal function, 13, 16, 17,25, 72, 82,

98
<signal.h> header, 16,82
signed keyword, 19,49
sign-magnitude representation, 17
SIGTERM macro, 98
sizeof keyword, 5, 42, 43, 44, 48
size_t type, 42, 71, 94, 98, 104
source file, 9
spirit of C, 4.6
sprintf function, 77
sscam function, 92 .
statements, 57
static initializers, 48
<stdarg. h> header, 83
..5TDC macro, 66
<stddef .h> header, 42,43,44, 71
<stdio.h> header, 85,86
<stdlib.h> header, 96
storage duration, 21
strcoll function, 103
streams,86 .
streams, binary, 87
streams, text, 87
strerror function, 95, 104
strftime function, 106
strictly conforming program, 3, 6, 11
<string.h> header, 101
stringizing, 64
strlen function, 104
strncat function, 102
strncpy function, 102

111

strstr'function, 103
strtod function, 96
strtok function, 103
strtol function, 96
structure types, 50
stmn function, 103
system function, 99

tags, 49
time function, 106
TlME macro, 66
<time.h> header, 104
time_t type, 104
tm..isdst field, 104
tmpfile function, 88
tmpnam function, 89
token pasting, 32, 65
trigraph sequences, 14
twos-complement representation, 26
type modifier, 53
typede:f keyword, 53, 55, 59

#unde:f preprocessing directive, 72, 84
undefined behavior, 6, 11, 13, 22, 26,

29,41,44,84,99,100
ungetc function, 91, 93
UNIX operating system, 2, 34,62,69,

78,82,83,85,86,88,92
unlink function, 88
unsigned preserving, 33
unspecified behavior, 6, 66
/usr/group (UNIX system users

group), 69

va..arg macro, 84
va..list type, 84
value preserving, 33
<varargs .h> header, 83
va..start macro, 84
VAX/VMS operating system, 78
vfprintf function, 91, 92
void * type, 25, 36,44,46,90
void keyword, 19, 49
volatile keyword, 19, 49
vprintf function, 92

X3Jll/88-003

112

vsprintf function, 92

wcha.r_t type, 71
white space, 19
wide characters, 30, 31
widened types, 72

INDEX

	Title Page
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References
	1.4 Organization of the document
	1.5 Base documents
	1.6 Definitions of terms
	1.7 Compliance
	1.8 Future directions

	2. Environment
	2.1 Conceptual models
	2.2 Environmental considerations

	3. Language
	3.1 Lexical Elements
	3.2 Conversions
	3.3 Expressions
	3.4 Constant Expressions
	3.5 Declarations
	3.6 Statements
	3.7 External definitions
	3.8 Preprocessing directives
	3.9 Future language directions

	4. Library
	4.1 Introduction
	4.2 Diagnostics
	4.3 Character Handling
	4.4 Localization
	4.5 Mathematics
	4.6 Non-local jumps
	4.7 Signal Handling
	4.8 Variable Arguments
	4.9 Input/Output
	4.10 General Utilities
	4.11 String Handling
	4.12 Date and Time
	4.13 Future library directions

	5. Appendices
	Index

