Draft Proposed

American National Standard

Programming Language ¢

This draft standard is published for-a
period of public reviev and comment and si
ballot of Accredited Srandards Committes X3,
Processing Systems. Comments reccived dyring
will be considered and ansvered. Commento
approval of this draft ags an Ameriecan Na
should so indicate including their reaso
Revievw period will run from February 12y
1988,

f Al]l comments should be returnad as soon gﬁ g@ﬁﬁible ha% nﬁt
H later than April 12, 1988 to:

X3 Secretariat/CBEH&
311 First Street, N.W.
Suite 300
Vashingten, DC 20001-2178

A copy of the comments should be sent to:
Board of Standards Review
American National Standards Indtitute
1430 Broadway
New York, NY 1001B
Prepared by

Technical Committee X3Jil - Programming Lamguage C

Averedited Standards Committee

X3 - Information Processing Systems

Secretariat: Compue’ . .. Susiness Equi

PRICE: When ordsred in the Contiasata) 1. S.: SGS 00
Outside of the Continental U.S. : §B84.50

r

“&*ﬁssﬁc;ation*%;ﬁ__

.

i

PN
PO
z i

P-4
-
. -
e

edi. ... siandards Commitlee Doc. No.: X3J11/88-001
CINFCTMATION PROCESSING SYSTEMS® Bate. January 11, 1988

T 381D
g;_rgzi; X3J11/86-157

Reply to: bavid F. Prosser

Draft Proposed American National Standard for Information
Systems -— Programming Language C

ABSTRACT

{This abstract is not a part of American National Standard for Information Systems
— Programming Language C, X3.777.1988 }

This Standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is tc promote portability,
reliability, maintainability, and efficient execution of C language programs on a variety of
¢OmMpUting systems.

Sections are included that detail the C language itself and the contents of the C
language execution library. Appendices summarize aspeets of both of them, and
enumesrats factors that influence the portability of C programs.

While this Standard is intended to guide knowledgeable C language programmers as
well as implementors of C language translation systems, the document itsell is not
designed 10 serve as a tutorial.

*Dperatng under the procecures af The American Nations! Standacds Ipgitue.

X3 Secretarar: Compater and Busingss Egqupment Manufactyrers Assotation - Tak: 2027737.8888
314 Furst Sireer, N W, Suste 500, Washington, DC 200012178 Fax: 202/636-4522

DRAFT

Draft Proposed American National Standard
for Information Systems — Programming Language C -

i . CONTENTS

1. INTRODUCTION . . . + « « + v + « .

11
1.2
1.3
14
1.5
1.6
LT
1.8

21

22

PURPOSE « . v « & .
SCOPE . . .+ . . . v 4 . .
REFERENCES . . .

ORGANIZATION OF THE DOCUMENT
BASE DOCUMENTS .. . + . .
DEFINITIONS OF TERMS
COMPLIANCE « . « .
FUTURE DIRECTIONS

.
L]

.- & 8 & w4

ENVIRONMENT . . e e w e e e

CONCEPTUAL MODELS e e b o=

2.1.1 Translationp environment B

2.1.2 Execution environments i
ENVIRONMENTAL CONSIDERATIONS .
22,1 Character sets 11

2.2,2 Character display semanties 13
2.2.3 Signals and interrgpts 13

224 Epvironmental limits 14

3 . IJ{&IV GLAGE L] * . . * L] * " + - ¥ -

3.1

3.2

33

LE}HCALELEMENTS e h e e e e e .
311 Keywords 20

212 identifiers 20

3.1.3 Constants 28

3.1.4 String literals 31

3.1.5 Operators 32

3.16 Punctuators 32

3.1.7 Header names 32

3.1.8 Freprocessing numbers 33

319 Comments 34
CONVERSIONS +« . +
3.2.1 Arithmetic operands 35

322 Other operands 37
EXPRESSIONS . . + + + « « + « &
3.3.1 Primary exprassicns 40

3.3.2 Postfix operators 40

3.3.3 Unary operators 44

3.3.4 Castoperstors 48

3.5 Multiplicative operators 47

3.3.6 Additive operators 48

3.3.7 Bitwise shift operators 49

3.3.8 Relational operators 49

3.3.9 Equality operators 50

3.2.1¢ Bitwise AND cperator 51

3.3.1} Bitwise exclusive OR operator 51
3.3.12 Bitwise inclusive OR operator 51
3.3.13 Logical AND operator 52

3.3.14 Logical OR operator 52

-i-
DRAFT

O BN B3 MY B BD e e e

o
-

1%
19

35

38

34
3.5

3.6

3.7

38

39

3.3.15 Conditional operator 52

3.3.16 Assignment operators 53

3.3.17 Comma operator 55
CONSTANTEXPRESSIONS .-.

DECLARATIONS . + + « « v v o « « &

3.5.1 Storage-clase specifiers 50
3.5.2 Typespecifiers 50
3.5.3 Type qualifiers 064
3.5.4 Declarators 86
355 ‘Typenames 70
3.5.86 Type definitions 71
3.5.7 Initialization 72
STATEMENTS
3.6.1 Labeled stataments 76
356.2 Compound statement, or block 75

363 Expression apd null statements 77

3.6.4 Selection statements 78

3.8.5 [lieration statements 79

3668 Jump statements 80

EXTERNAL DEFINITIONS
3.7.1 Function definitions 82

3.7.2 External object definitions 84
PREPROCESSING DIRECTIVES
3.8.1 Conditional inclusion 87

3.8.2 Source file inclusion 88

3.8.3 Macro replacement 90

384 Line control 94

3.8.5 Error directive 84

388 Pragma directive 85

3.8.7 Null directive 95

388 Predefined macronames 95

FUTURE LANGUAGE DIRECTIONS
3.9.1 Externalnames 96 -

3.8.2 Character escape sequences 86

3.9.3 Storage-class specifiers 98

3.94 Function declarators 96

3.95 Function definitions 96

L} L] - - - . -

. LERARY L] - L] - . - - . - - - L] - L] L

4.1

4.2

4.3

4.4

4.5

INTRODUCTION
4.1.} Definitions of terms 47

4.1.2 Headers 97

4.1.3 Errors <errno.h> §8

4,14 Limits <float.h> and <limits.h> @%
4.1.5 Common definitions <gtddef . h> 88
418 Use of library functions 99
DIAGNOSTICS <aggert.bi>
4.2.1 Program diagnostics 101

CHARACTER HANDLING <ctypa.B> . . .
4.3.1 Character testing functions 102 _
4.3.2 Character case mapping functions 104
LOCALIZATION <locale.>
4.4.1 Locale control 106

44.2 Numeric formatting convention inquiry 108
MATHEMATICS <math.2>»

.ii-
DRAFT

56
58

3

82

88

96

97
97

101

102

106

11t

45.1 ‘Treatment of error conditions I1l}
4.5.2 Trigovometric functions 11}
4.5.3 Hyperbolic functions 113
4.5.4 Exponential and logarithmic functions 114
4.5.5 Power fupctions 115
4.5.6 Nearest integer, absolute value, and remainder funetions 116
46 NON-LOCAL JUMPS <sgetjmp.h> + . . . 118
4.5.1 Save calling environment 118
4.6.2 Restore czlling environment 119
4.7 SIGNAL HANDLING <pignal.d> « + . « + . . 120
4.7.1 Specify signal handling 120
472 Send signal 121
48 VARIABLE ARGUMENTS <stdaTg. B> . . . & + 4+ « & 4« « » o . 122
4.8.1 Variable argument list access macros 122 '
4.9 INPUT/OUTPUT <stdio. B> . . o « v ¢ & « « = 4 o » » « . 124
4.8.1 Introduction 124
49.2 Streams 125
483 Files 125
4.84 Operations on files 127
4.9.5 File access functions 128
4.9.6 Formatted input/output functions 131
487 Character input/output functions 141
4.9.2 Direct input/output functions 144
4.9.9 File positioning lunctions 145
4£.9.10 Error-handling functions 147
4.10 GENERAL UTILITIES <8tdX1B.3> . . .+ « ¢ & « o + o + + » . 14%
4.10.1 String conversion functions 149 . C .
4.10.2 Pzevdo-random sequence generation functions 133
4.10.3 Memory management functions 154
4.10.4 Communicstion with the environment 155
4.16.5 Searching and sorting utilities 157
4.10.6 Integer azithmetic functions 158
4.10.7 Multibyte character functions 3159
4.10.8 Muitibyte string functions 161
4,11 STRING HANDLING <string.h> « « . . 182
4.11.1 String function conventions 162
4.11.2 Copying functions 162
4.11.3 Concatenation funetions 163
4.11.4 Comparison functions 164
4.11.5 Search functions 166
4.11.6 Miscelianeous functions 168
412 DATEANDTIME <time. h> + 4 + + =« v 4 « « « « 170
4.12.1 Components of time 170
4.12.2 Time maznipulation functions 170
4.12.3 Time conversion funetions 172
413 FUTURELIBRARYDIRECTIONS + « . « « . . 178
_4.13.} Errors <arrno.h> 178
413.2 Character handling <ctype.h> 178
4.13.3 Localization <locale.h> 176
4.13.4 Mathematics <math.h> 176
4.13.5 Signal handling <signal .h> 176
..... _ 4.13.8 Input/output <stdio.h> 176
4.13.7 General utilities <stdlid.b> 175
4.13.8 String handling <string.k> 176

- i -

DRAFT

A APPENDICES . v « o v v v w o o v u o o
Al LANGUAGE SYNTAXSUMMARY

A2
Al

A4
AD
AB

Al

All
Al2
Al3

Lexical grammar 177
Phrase structure grammar 18}
Preprocessing directives 188

SEQUENCEPOINTS« . . .
LIBRARYSUMMARY

Add
A3.2
A3
Ald
A3.5
A38
AlT
AlS8
A.3.8
A3.10
A3.1%
Ad.12
A3.12

ERRGRES <arrno.h> I89

COMMON DEFINITIONS <stddef .h> 189
DIAGNOSTICS <assert.h> 189
CHARACTER HANDLING <ctype.h> 188
LOCALIZATION <locale.h> 189
MATHEMATICS <math.h> 190
NON-LOCAL JUMPS <setimp.h> 180
SIGNAL HANDLING <signal.h> 190
VARIABLE ARGUMENTS <gtdarg.h> 190
INPUT/QUTPUT <ptdle.k> 181
GENERAL UTLLITIES <gtdlib.h> 193
STRING HANDLING <stripg.h> 184
DATE AND TIME <time h> 194

IMPLEMENTATIONLIMITS . . . « ,
COMMONWARNINGE
PORTABILITYISSUES
A8.1 Unspecified behavior 198

AS2
AB3
Ab.4
ABS5
INDEX

Undefined behsvior 199
Implementation-defined behavior 203
Locale-specific Behavior 207
Common extensions 207

L] * - - - - - » - - - . . . - =

177
177

138
188

185
197
198

209

- FOREWORD .

(This foreword is not a part of American National Standard for Information Systems -
Programming Language C, X3.77%.1988.)

-

American National Standard Programming Language C specifies the syntax and semantics
of programs written in the C programming language. It specifies the C program’s interactions
with the execution environmert via input and ouiput data. [t also specifies restriciions and
limjts imposed upen conforming implementations of ¢ language translators.

The standard was developed by the X3J11 Technical Committee on the C Programming
Language under project 381-D by American National Standards Committee on Computers and
Information Processing (X3). SPARC document number 83-078 describes the purpose of this
project to “‘provide an unambiguocus and machine-independent definition of the language C.”

The need for a single clearly defined standard had arisen in the C community due to 3
rapidiy sxpanding use of the { programming language and the variety of differing transiator
implementations that had been and were being developed. The existence of similar but
incompatible implementations was s serious problem for program developers who wished to
develop code that would compile and execute a5 expected in several different environments,

Part of this problem could be traced to the fact that implementors did not have an

. adequate definition of the C language upon which to base their implementations. The de facta

C programming language standard, The C Programming Language by Brian W, Kernighan and
Dennis M. Ritchie, is an excellent book; however, it is not precizse or complete encugh to specify
the C language fully. In addition, the language has grown over vears of use to incotporate new
ideas in programming and %o address some of the weaknesses of the original language.

American National Standard Frogramming Language C addresses the problems of both the
program developer and the translator implementor by specifying the C language precisely.

The work of X3J11 began in the summer of 1883, based on the several documents that were
made available 1o the Committee (see §1.5, Base Documents). The Committee divided the
effort intc three pieces: the environtnent, the language, and the library. A complete
specification in each of these areas is necessary if truly portable programs are to be developed.
Each of these areas is addressed in the Standard. The Committee evaluated many proposals
for additions, deletions, and changes to the base documents during its deliberations. A
concerted effort was made to codify existing practice wherever unambiguocus and consistent
practice could be identified. However, where no consistent practice could be identified, the
Committee worked to establish eclear ruies that were consistent with the overall Savor of the
language.

This document was approved as an American National Standard by the American National
Siandards Institute {(ANSI} oo DD MM, 1988. Suggesticns for improvement of this Standard
are welcome. They shouid be sent to the American National Standards Institute, 1430
Broadway, New York, NY 10018,

The Standard was processed and approved for submittal to ANSI by the American National
Siandards Committee on Computers and Information Processing, X3. Committee approval of
the Standard does not necessarily imply that all members voted for its approval. At the time
that it approved this Standard, the X3 Commitiee had the fojlowing members:

Organization Name of Hepresenialrve

{To be completed on approval of the Standard.)

Technical Committee X3J11 on the C Programming Language had the following members at
the time they forwarded this document to X3 for processing as an American National Standard:

- Y-

DRAFT

Oflecers

Chair

Vice-Chair

Secretary

International Representative
Vocabulary Representative
Technieal leadership
Environment Subcommittee Chairs
Language Subcommittee Chair
Library Subcommittee Chair
Draft Redactor

Rationale Redactor

Membership

Ralph Phraner

P. 1. Plauger

Randy Hudson

Jim Brodis
Thomas Plum Plum Hall -
P. 1. Plauger

P. J. Plauger
Steve Hersee
Andrew Johnson

Whitesmiths, Ltd.
Whitesmiths, Lid.
Lattice, Ing.
Prime Computer

Raiph Ryan Microsoft-
. Phraner Associates
Lawrence Rosler AT&T :
Whitesmiths, Ltd.
David F. Presser ATET
Lawrence Rosler ATET
intermetrics, Ine.

In the foliowing list, unmarked names denote principal members and * denotes alternate

members.

David F. Prosser, AT&T

Elizabeth Crockett, AT&T* (X3H2 SQL liaison)
Donaid Kretsch, AT&T (IEEE P1003.1 liaison)
Jim Baumbach, Advanced Computer Techniques

J. Stephen Adamcayk, Advanced Computer Techniques*

Paul Hohensee, Alliant Computer Systems

Bob Gottlieb, Alliant Computer Systams*

Neal Weidenhofer, Amdahi

Stanley Swinarski, Apoile Computer

Chris Brown, Apple Computers

Ed Wells, Arinc

Tom Ketterhagen Arine®

David Strauss, Bell Communications Research
Bili Puig, Bell Communications Research®

Bob Fervis, Bortand International

Michele Fogelson Barabash, Boston Systems Office
Rose Thomson, Boston Systemy Office*

Maurice Fathi, COSMIC

Daniel Mickey, Chemical Abstracts Service
Thomas Mimlitch, Chemical Abstracts Service®
Edward Brigegs, Citibank

Firmc Freire, Cobra

Jim Patterson, Cognos

George Eberhardt, Computer Intovations
Dave Nesthery, Computer Innovations*

Jozeph Bibbo, Computrition

Steve Davies, Concurrent Computer Corporation
Lioyd Irons, Cormorant Communications

Tom MacDonald, Cray Research

Lynne Johnson, Cray Research®

Larry Lane, Cray Research*

.-

DRAFT

Michae] Meissner, Data General
Mark Harris, Data General®
James Stanley, Data Systems Analysts

* Samuet Kendall, Deift Consulting

Randy Meyers, Digital Equipment Cotporation
David Moore, Digital Equipment Corporation®
Bern Patel, EDS

Dmitry Lenkov, Everest Solutions

Frank Farance, Farance Jnc.

Peter Hayes, Farance Inc.*

Florin Jordan, Floradin

Philip Provin, General Electric Information Services
Arroid Robbins, Georgia Tech

Grahamn Barber, Gould

Gary Jeter, Harris Computer Systems Division
Saliy Staff, Harris Computer Systems Division®
Sue Meloy, Hewlett Packard

Michelle Ruscetta, Hewlett Packard®

Thomas Osten, Honeywell Information Systems
Pavid Kayden, Honeywell Information Systems*
Thomas Keliy, HCR Corporation

Paul Jackson, HCR Corporation®

Shawn Elliott, IBM

Larry Breed, IBM" _

Dan Lau, Intet

Randy Hudsen, intermetrics, Inc.

Keith Winter, International Computers Led.
Honey Schrecker, Intarnational Computers Ltd *
Svein Davidsen, LS] Logic Ltd.

Jobn Kaminski, Language Processory

David Yost, Laurel Arts

Kelly O'Hair, Lawrence Livermore Laboratory
Chuck Rasbold, Lawrence Livermore Laboratory®
Bob Weaver, Los Alamos National Laboratory
Lidia Eberhart, MODCOMP :
Courtaey Prodehl, Mark Williams Co.
Jackiin Kotikian, Masscomp

Michael Kearns, Metalink

Tom Pennelio, MetaWare Incorporated
Dave Weil, Microsoft

Ralph Ryan, Microsofi®

Kim Kempi, Microware Systems

Bruce Qlsen, Mosaic Technologies

Michael Paton, Motorola

Rick Schubert, NCR

Brian Johnson, NCR*

Joseph Muellier, National Semiconductor
Derek Godirey, National Semiconductor?
Jimt Upperman, National Bureau of Standards
James W. Williams, Naval Research Laboratory
Lisa Simon, OCLC

Pau! Amaranth, Oakland University
Michze! Rolle, Oracle

Barry Hedquist, Perennial

Sassan Hazeghi, Peritus International
James Holmlund, Peritus Internationat®*
Ralph Phransr, Phraner Associates
Thomas Pium, Plem Hali

Chris Skelly, Plum Hall*

Andrew Johneon, Pritne Computer

Jane Karp, Prime Computer*

Daniel J. Conrad, Prismatics

Ed Ramsey, Purdue University

Chris DeVoney, Que Corporasion

Richard Relph, RARE Ipe.

Jon Tulk, Rabbit Sofiware

Terry Colhigan, Rationai Systems

Qliver Bradley, SAS Institute

Alan Beale, SAS Institute”

Larry Jones, SDRC

John Corbin, SE] Informatiorn Technology
Larry Rosenthal, Sierra Systems'
Purshotam Rajani, Spruce Techoclogy
Savu Savulescu, Stagg Systems

Peter Darnell, Stellar

Lee Cooprider, Stellar*

Paui Gilmartiin, Storage Technology

Steve Muchnick, Sun Microsystems

John M. Hausman, Tandem

Ed Kit, Tandem*

Samuel Harbison, Tartan Laboratories
Manfred Knetmeyer, Technicare Corp

}im Besemer, Tektronix

Reid Tatge, Texas Instruments

Rey Jaeschke, The C Joumal

Michze] Banahan, The Instruction Set, Ltd.

DRAFT

- ¥ii s

Monika Khushf, Tymiabs

Morgsn Jones, Tymlabs®

Don Bixler, Unisys

Steve Bartels, Unigys*

Glenda Berkheimer, Unigys*

G. E. Millard, University of Edinburgh
Graham Andrews, University of Edinburgh*

. Fred Blonder, University of Maryland

R. lordaa Kreindler, University of Southern California
Mike Carmody, University of Waterioo
Douglas Gwyzn, US Army

C. Dale Pierce, US Army?

Joseph Musacehia, Wang Labs

Fred Rozakis, Wang Labs*

P. 1 Plauger, Whiteamiths, l.td.

Kim Leeper, Wick Hilt Associates Ltd,
Mark Wittenberg, Zehntel

Robert Bradbury

Lim Brodie

Neil Danjels

Stephen Desch

Michael Duily

Phillip Escus

D. Bugh Redelmeier

Roger Wilks

10

15

a5

Draft Proposed American National Standard for Information

S.sterns — Programming Language C

. INTRODUCTION
1.1 PURPOSE

This Standard specifies the form and establishes the interpretation of programs

written in the C programming language.’

1.2 SCOPE

This Standard specifies:

the representation of C programs;

the syntax and constraints of the C lang. ge;

the semantic rules for interpreting C programs;

the representation of input data to be processed by C programs;

the representation of cutput data produced by C programs;

the restrictions and limits imposed by a conforming implementation of C,
This Standard does not specify:

the mechanism by which C programs are sransformed for use by a data-processing
system;

the mechanism by which C programs are invoked for use by a data-processing system;
the mechanism by which input data are transformed for use by a C program;

the mechanism by which output data are transformed after being produced by a C
program;

the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing systemn or the capacity of a particular processor;

all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

I. This Standard is designed to promote the portability of € programs among » variety of data-
processing systems. It is intended for use by implementors and knowledgeabie programmers, and is
not & tutenal. 1t is sccompanied by @ Rationale documeny that explains many of the decisions of the
Technical Comuittee that produced it.

£l

January 11, 1488 §1.2
DRAFT

Proposed C Standard 2 INTRODUCTION

10

L5

20

30

35

40

45

§1.3

1.3 REFERENCES

1. *“The C Reference Manual” by Dennia M. Ritchie, a version of which was published
in The C Programming Language by Briac W. Kernighan and Dennis M. Ritchis,
Prentice-Hall, Inc., (1878}, Copyright owned by AT&T.

2. 108§ fwsr/group Stendard by the fusr/group Standards Committee, Santa Clara,
California, USA (November, 1984). -

3. American National Dictionary for Information Procesaing Systems, Information
Processing Systems Technical Report ANSI X3/TR-1-82 {1882).

4. ISQ 646-1983 Invariant Code Set,
IELE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).
6. ISO 4217 Codes for the Representation of Currency and Funds.
1.4 ORGANIZATIOCN OF THE DOCUMENT
This document is divided into four major sections:
this introduction;
the characteristics of environments that translate and execute C programs;

the language syniax, constraints, and semantics;

the library facilities,

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in the section or
elsewhere in the Standard. References are used to refer to other related sections. A set of
appendices summarizes information contained in the Standard. Neither tha abstract, the
foreword, examples, {ootnotes, references, nor appendices are part of the Standard,

1.5 BASE DOCUMENTS

The language section {§3) is derived from “The C Reference Manual” by Dennis M.
Ritchie, & version of which was published as Appendix A of The O Programming
Language by Brian W. Kernighan and Dennis. M. Ritchie, Prentice-Hall, Ine., 1978;
copyright owned by AT&T.

The library section {§4) is based on the 1484 /uar/grounp Standard by the /usr/group
Standards Committee, Santa Clara, California, USA (November 14, 1984),

1.6 DEFINITIONS OF TERMS

In this Standard, “shall” is to be interpreted as a requirement on an implementation
Or ol & program; conversely, “shall not.” is to be interpreted as a prohibition.

The {ollowing terms are used in this document

« Implementation «~ a particular set of software, running in a particular transiation
suvironment under particular conirol options, that performs translation of programs
for, and supports execution of functions in, a particular execution environment.

+ Bit -~ the unit of data storage in the execution environment large enough to held an
object that may have one of two values, It need not be possible to express the addreas
of each individual bit of an object.

+ Byte — the unit of data storage in the execution environment large enough tc hold a
single chareeter in the basic character set of the execution environment. It shall be
possible to express the address of each individual byte of an object uniquely. A byteis
composed af = contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit: the most significant bit is

January 11, 1988 §1.6
DRAFT

Proposed C Standard “ 3 - INTRODUCTION

10

15

20

25

30

33

40

§1.8

called the Iu'g&-orc’gr bit.

QObject — a region of data storage in the execution environment, the contents of which
can represent values. Except for bit-fields, objects are composed of contiguous
sequences of one or more bytes, the number, order, and encoding of which are either
explicitly specified or implementation-defined.

e Multibyte character — a sequence of one or more bytes representing a single character

in the extended character set of either the source of the execution environment. The
extended character set is a superset of the basic character set.

« Alignment - 8 requirement that objects of a particular type be located on storage

boundaries with addresses that are particular multiples of a byte address.

« Argument — an expression in the comma-separated list bounded by the parentheses

in a function call expression, or a sequence of preprocessing tokens ip the comma-
separated list bounded by the pareniheses in a function-like macro invocation. Also
known as “‘actual argument’ or “sctual parameter.”

Parameter — an object declared as part of a function declaration or definition that
scquires a value on entry to the function, or an identifier {rom the comma-separated
fist bounded by the parentheses immediately following the macro name in a function-
like macro definition, Alse known as “formal argument” or “formal parameter.”

Unspecified behavior -~ behavior, for a correct program construct and correct data,
for which the Standard imposes no reguirements.

Undefined behsvior — behavior, upon use of 3 nonportabie or erroneous program
construct, of erroneous data, or of indeterminately-valued objects, for which the
Standard imposes no requirements. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behsaving during
transiation or program execution in & documented msnner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a
translation or execution {with the issuance of 2 diagnostic message}.

If a *“'shall” or “shall not"” regquirement that appears outside of a comsiraint is
viclated, the behavior is undefined. Undefined behavior is otherwise indicated in this
Standard by the words “undefined behavior’” or by the omission of any explicit
definition of behavior. There is no difference iz emphasis among these three; they all
deseribe “behavior that is undefined.” :

Implementation-defined behavior — behavior, for a torrect program construct and
correct data, that depends on the characteristics of the implementation and that each
implementation shaill document.

Locale-specific behavior — behavior that depends on local conventiona of nationality,
culture, and language that each implementation shall document.

Diagnostic message — a message belonging to an implementation-defined subset of the
implementation’s message output.

Constraints — syntactic and semantic restrictions by which the exposition of language
elements 15 to be interpreted.

. Tmp]ementation limits — restrictions imposed upon programs by the implementation.

¢ Forward references — references to iater sections of the Standard that contain

additionzl information relevant to this section.

Other terms are defined at their first appearance, indicated by italic type. Terms

explicitly defined in this Standard are not to be presumed to refer implicitly to similar
terms defined elsewhere. Terms not defined in this Standard are to be interpreted

January 11, 1988) §1.6
DRAFT

Proposed C Standard R INTRCDUCTION

10

15

20

25

30

35

according to the American Nolional Diclionary for Information Proccasing Systems,
Information Processing Systems Technical Report ANSI X3/TR-1-82 (1982),

Forward references: localization (§4.4).
Exampies

An example of unspecified behavior is the order in which the arguments to a-function
are evalusated.

An example of undefined behavior is the behavior on integer overflow.

An example of implementation-defined behavior is the propagation of the high-order
bit when a signed integer is shifted right.

An example of locale-specific behavior is whether the i#lower function returns true
for characters other than the 26 lower-case English letters.

Forward references: bitwise shift operators (§3.3.7}, expressions {§3.3}, function cails
(§3.3.2.2}, the tslower function (§4.3.1.8),

1.7 COMPLIANCE

A strietly conforming program shall use only those features of the Ianguage and library
specified in this Standard. It shall not produce cutput dependent on any unspecified,
undefined, or implementation-defined behavior, and shall not exceed any minimum
implementation hmit.

The two forms of conforming implementation are hosted and freestanding. A
conforming hosted rmplemenigtion shall accept any strictly conforming program. A
conforming frecatanding smplementation shall accept any stricily conforming program in
which the use of the features specified in the library section [§4) is confined to the
contents of the standard headers <float.h>», <limits.h>, <sgtdarg.h>, and
<gtddef . h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of a strictly conforming
program.

A eonforming progrem is one that is accepteble to & conlorming impiementation ?

An implementation shall be accompanied by 3 document that defines all
implementation-defined characteristics and ali extensions.

Forward refersnces: limits <ficat, h> and <limits.h> (§4.1.4), variable arguments
<stdarg.h> (§4.8), common definitions <gtddef .h> (§4.1.5).

2. Strictly conforming programs are intended to be maximally portable. Conforming programs may
depend upon nonportable features of a conforming implementation.

§1.6

January 11, 1988 ' §1.7
DRAFT

Proposed C Standard 5 INTRCDUCTION

1.8 FUTURE DIRECTIONS

With the introduction of new devices and extended character sets, new features may
be added to the Standard. Subsections in the language and library sections warn
implementors and programmers of usages which, though valid in themselves, may conflict

5 with future additions.

€ertain features sre obsolescent, which means that they may be considered for
withdrawal ip future revisions of the Standard. They are retained in ihe Standard
because of their widespread use, but their use in new implementations {for
implementation features) or new programs (for language or library features) is

10 discouraged.

Forward references: future language directions {§3.9.9), future library directions
(§4.13).

£1.8 January 11, 1088 §1.8
DRAFT

Proposed C Standard 6 ENVIRONMENT

0

20

33

40

45

ENVIRONMENT

An implementation translates C source fies and executes C programs in two differing
datas-processing-system environments, which will be called the iransistion environment
and the erecution environmenf in this Standard. Their characteristics define and
constrain the resulis of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations. -

Forward references: In the environment section (§2), only a few of many possible
forward references have been noted.

2.1 CONCEPTUAL MODEL_S
2.1.1 Translation environment
2.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is
kept in units called source files in this Standard. A source file together with all the
headers and source files included via the preprocessing directive #1nclude, less any
source lines skipped by any of the conditional inclusion preprocessing directives, is calied
a iranslation unil. Previously translated translation units may be preserved individually
or in libraries. The separate translation units of a program communicate by calls to
functions whose identifiers have external linkage, by manipulation of objects whose
identifiers have external linkage, and by manipulation of data files. Translation units
may be separately translated and then later linked to produce an executable program.

Forward references: conditional inclusion {§3.8.1), linkages of identifiers (§3.1.2.2},
source file inclusion (§3.8.2).

2.1.1.2 Transiation phases

Theaprecedence among the syntax cules of translation is épeciﬁed by the following
phases,

1. Physical source fle characters are mapped to the source character set {introducing
new-line characters for end-of-line indicators) if necessary. Trigraph sequences are
replaced by corresponding single-character internal representations.

2. Each instance of a new-line tharacter and an immediately preceding backslash
character is deleted, splicing physical source lines to form logical sourse lines. A
source file that is not empty shall end in a new-line character, which shall vot be
immediately preceded by a backsiash character.

3. The source file is decomposed into preprocessing tokens? and sequences of white-
space characters (including comments). A source file shall not end in a partial
preprocessing token or comment. Each comment is replaced by one space character.
New-line characters are retained. Whether each sequence of other white-space
characters is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macro invocations are expanded. A
#include preprocessing directive causes the named header or source file to be
processed from phase 1 through phase 4, recursively.

8, Implementations must behave as if these separate phases occur, even though many are typicaliy
folded together o practice.

4. As described in §31, the process of dividing @ source file's characters into preprocessing tokems is
context-dependent. For exampie, see the handiing of < within a #include preprocessing directive.

§2.

Japuary 11, 1988 §2.1.1.2
DRAFT

ENVIRONMENT _ 7 CONCEPTUAL MODELS

10

15

25

30

35

40

445

50

5. Escape sequences in character constants and string literals are converted to single
characters in the execution characier set.

- 8. Adjacent character string literal tokens are concatenated and adjacent wide string

liters] tokens are concatenated.

7.. White-space ¢i:a.ucters separating tokens are no longer significant. Preprocessing
tokens are converted into tokens. The resulting tokens are syntactically and
semantically analyzed and translated.

8. All external object and function references are resolved. Library components are
linked to satisly externa! references to functions and abjects not defined in the
current translation. AH such translator output is eollected into & program image
which contains information needed for execution in its execution environment.

Forward references: lexical elements (§3.1), preprocessing directives (§3.8).
2.1.1.3 Diagnostics

A conforming implementation shall produce st least one diagnostic message (identified
in an implementation-defined manner) for every translation unit that contains s violation
of any syntax rule or constraint. Dizgnostic messages need not be produced in other
circumstances.

2.1.2 Execution environments

Two execution envircnments are defined: frecstanding and hosted. In both cases,
program ataertup occurs when a designated C function is called by the execution
environment. All ohjeects in static storage shall be ifnidiaiized (set to their initial values)
before program startup. The manner and timing of such initialization are ot-herwme
unspecified. Program termination returns control 1o the execution environment.

Forward references: initialization (§3.5.7).
2.1.2.1 Freestanding environment

In a freestanding environment (in which C program exscution may take place without
anty benefit of an operating system), the name and type of the function ¢alied at program
startup are implementation-defined. There sre otherwise no reserved external identifiers.
Any library facilities available to a freestanding program are implementatiogi-defined.

The effect of program termination in s freestanding environment is implementation.
defined.

2.1.2.2 Hosted environment

A bosted environment need not be provided, but shall conform to the following
specifications if present.

Program startup

The function called at program startup is named main. The implementation declares
no prototype for this function, It can be defined with no parameters:

int main{veid) { /=... %/}

or with two parameters (referred to here as arge and argyv, though any names may be
used, as they are Jocal 1o the function in which they are declared):

int main(int arge, char wargv(i) { /«...+/ }

If they are defined, the parameters to the nain function shall cbey the following
consiraints:

§2.1.1.2 January 11, 1988 §2.1.2.2

DRAFT

ENVIRONMENT 8 CONCEPTUAL MODELS

10

15

20

25

33

40

45

» The value of arge shall be nonnegative.
+ argyv{arge] shall be a null pointer.

o If the value of argc is greater than gero, the array members argv{0] through
argviargc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup.
The intent is to supply to the program information determined prior to program
startup from elsewhere in the hosted environment. if the host environment is not
capable of supplying strings with letters in both upper-case and lower-case, the
implementation shall ensure that she strings are received in Jower-case,

» I the value of argc is greater than sero, the string pointed to by argv [0] represents’

the progrem name, the initial character of which shall be the null characser if the
program pame is not available from the host environment. If the value of arge is
greater than one, the strings pointed to by argvii] through argviarge-i]
represent the program parameters.

+ The parameters arge and argy and the strings pointed to by the aTgv array shall be
modifiable by the program, and retain their last-stored values between program
startup and program termination,

Progesm execution

In a hosted environment, a program may use all the functions, macros, type
definitions, and objects described in the library section (§4).

Program terminxtion

A return from the initial cali to the main function is equivalent to calling the exit
function with the value returned by the main function as its argument. If the main
function executes a return that specifies no value, the termination siatus returned to the
host environment is undefined.

Forward references: the exit function {§4.10.4.3).
2.1.2.3 Program execution

The semantic descriptions in this Standard describe the behavior of an abstract
machine in which issues of oplimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations are all side ¢ffects, which are changes in the state of the
execution environment, Evaluation of an expression may produce side effects. At certain
specified points in the execution sequence called sequence potnts, all side effects of
previous evaluations shall be complete and no side effects of subseguent evaluations shall
have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics.
An actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no needed side effects are produced (including any caused
by calling a function or accessing a volatile object}).

When the processing of the abstract machine is interrupted by receips of a signal, cly
the values of objects as of the previous sequence point may be relied on. Objects that

may be modified between the previous sequence point and the next sequence point need

not have received their correct values yeot.

An instance of each object with automatic storage duration is associated with each
eattry inte a block., Such an object exists and retains its last-stored value during the
execution of the block and while the block is suspended (by a call of a function or receipt
of a signal).

§2.1.2.2 January 11, 1988 §2.1.2.3

DRAFT

ENVIRONMENT 9 CONCEPTUAL MODELS

5

10

15

20

30

a5

40

45

The lenast requirements on a conforming implementation are:

» At sequence points, volatile objects are stable in the sense that previous evaluations
are complete and subsequent evaluations have not yet occurred. '

» At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

+ The input and output dynamics of interactive devices shall take place as specified in
§4.9.3. The intent of these requiremente is that unbuffered or line-buffered sutput
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences betwesn abstract and actual semanties may be defined
by each implementation.

Examples

An implementation might define a one«to-one correspondence between abstrasct and
actual semanticz: at every sequence point, the values of the actual objects would agree
with those specified by the abstract semantics. The keyword volatile would then be
redundant.

Alternatively, an implementation might perform various optimisations within each
transiation unit, such that the actual semantics would agree with the abstract semantics
only when making function calls across transiation unit boundariss. In such an
implementation, at the time of asch function entry and function return where the calling
function and the calied function are in different translation units, the valuss of all
externally linked objects and of all objeets accessible via pointers therein would agree
with the abstract semantics. Furthermore, at the time of each such function eniry the
values of the parameters of the called function and of all objects accessible via pointers
therein would agree with the abstract semantics. In this type of implementation, obijects
referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, &s well as other implementation-defined
restrictions.

In executing the fragment

char ¢i, <2,
VL PO 74
cl = ¢l + ¢g&;

the “integral promotions™ require that the sbstract machine promote the value of each
variable to 1nt size and then add the two i2%s and truncate the sum. Provided the
addition of two chars can be done without creating an overflow exception, the actual
execution need only produce the same result, possibly omitting the promotions.

Similarly, in the fragment

float 1, 12,
double d;
FA TN

- f1 = 12 = 4;

the multiplication may be executed using single-precision arithmetic if the
implementation cap ascertain that the result would be the same as if it were executed
using double-precision arithmetic {for example, if d were replaced by the constant 2.0,
which has type double}. Alternatively, an operation invelving only ints or floats may
be executed using double-precision operations if neither range nor precision is lost
thereby.

§2.1.2.3 January 11, 1088 §2.1.2.3

DRAFT

ENVIRONMENT 10 CONCEPTUAL MODELS

Forward references: files (§4.9.3), sequence points (§3.3, §3.8), the 9ignal function .
(§4.7), type qualifiers (§3.5.3). _

§2.1.2.3 Jangagy;;: %988 §2.1.2.3

ENVIRONMENT 11 ENVIRONMENTAL CONSIDERATIONS

10

20

25

30

40

2.2 ENVIRONMENTAL CONSIDERATIONS
2.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the
set in which source files are written, and the set interpreted in the execution
environment. The values of the. characters in the execution character set are
implementation-defined; which characters are added beyond those required by this
section is locale-specific.

In a character constant or string literal, characters in the execution character set shall
be represented by corresponding characters in the source character set or by escape
sequences consisting of the backslash \ followed by one or more characters. A byte with
2! bits set to O, called the null charaeter, shal] exist in the bagic execution character set;
it is used to terminate a character string literal.

At least the following characters shall be in the basic source and basic exscution
character sets: the 26 upper-case letters of the English alphabet

A B CDETFGHTIJI KL
N O P Q R S T UV W X Y 2

the 28 lower-case letters of the English alphabet

2 b ¢c @& ¢ £ g b i J ¥ 1 ®
n & p QT 8 L ¥ VvV W X ¥y 2

the 10 decimal digits
0 1 2 38 4 5 8 7 B 9
the following 29 graphic churacters

R 3 TN S0 N U T
€ o= > 0 [N] { t } ~

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. In both the socurce and execution basic character seis, the value associnted
with each character in the above list of decimal digits shall be one greater than the value
of the previous. In source files, there shall be some way of indicating the end of each line
of text; this Standard treats such an end-of-line indicator as if it were a single new.line
character. In the execution character set, there shall be control characters representing
alert, backspace, carriage return, and pew line. If any other characters are encountered
in a source file {except in a preprocessing token, a character constant, s string literal, or a
comment}, the behavior is undefined.

»

Forward references: character constants (§3.1.3.4), preprocessing directives (§3.8},
string literals (§3.1.4), comments {§3.1.8).

2.2.1.3 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph sequences®) are replaced with the corresponding single character.

5. The trigraph sequences spable the input of characters that are not defined in the ISO 646-1983
Iovariant Code Set, which is a subset of the seven-bit ASCI code set.

§2.2

Japuary 11, 1988 §2.2.1.1
DRAFT

ENVIRONMENT 12 ENVIRONMENTAL CONSIDERATIONS

=
?2(
T/
7}
pet
7L
TPl
e
7P~

T AW ey i @

10 No other trigraph sequences exist., Each ? that does not begin one of the trigraphs listed
above is not changed.

Example

15

The following source line
printf {*ER???/n"*);

becomes {after replacement of the trigraph sequence 77 /)

printf ("En?\n"):

2.2.1.2 Multibyte characters

20

The source character set may contain multibyte characters, used to represent

characters in the extended character set. The execution character set may also contain
multibyte characiers, which need not have the same encoding as for the source character
set. For both character sets, the following shall hold:

+ The single-byte characters defined in §2.2.1 shall be present.

25 » The presence, meaning, and representation of any additional characters is locale-

30

35 -
4 .
§2.2.1.1

specific,

A multibyte character may have s atate-dependent encoding, wherein esch sequence of
multibyte characters begins in an initial shift state and eniers other shift stotes when
specific multibyte characters are encountered in the sequence. While in the initial
shift state, all single<byte characters retain their usual interpretation and do not alter
the shift state, The interpretation for subsequent bytes in the sequence is a function
of the current shift state.

A byte with all bits zero shall be interpreted as a null character independent of shilt
state, '

A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For the seurce character set, the following shall hold:

A comment, string literal, or character constant shall begin and end in the initial shift
state.

A comment, string literal, or character constant shall consist of a sequence of valid
multibyte characters.

January k1, 1988 §2.2.1.2
DRAFT

ENVIRONMENT 13 ENVIRONMENTAL CONSIDERATIONS

10

is

20

25

a5

2.2.2 Character display semantics

The sctive position is that location on s display device where the pext characier
cutput by the fpute function would appear. The intent of writing a printable character
(as defined by the igprint function) to a display device is to display a graphie
representation of that character at the sctive pesition and then sdvance the active
position to the next position op the current line. The direction of printing is locale-
specifie. I the active position is at the final position of a line {if there is one), the
behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (elert) Produces an audibie or visible alert. The active position shall not be changed.

\b {backspace) Moves the active position to the position of the previous character. If the
active position is at the initial position of 2 line, the behavior is unspecified.

\f (form feed) Moves the sctive position to the initial position st the start of the next
logica) page.

\o (new line) Moves the active position to the initia] position of the next jine.
1T (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal 2ab) Moves the active position to the next horizontal tabulation pasition
on the current line. If the active position is at or past the last defined horizontal
sabulation position, the behavior is unspecified.

\v (vertical tab} Moves the active position to the initial position of the next vertical
tabulation position. I the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a single char cbject. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
Standard.

Forward references: the fputc function (§4.9.7.8), the 1sprint function (§4.3.1.7).
2.2.3 Signals and interrupts

Functions shall be implemented sych that they may be interrupted at any time by o
signal, and may be called by a signal handler with no alieration te control flow, to
function return values, or to cbjects with automatic storage duration belonging to earlier
invocations. All such objects shall be maintained outside the function smape {the
instructions that comprise the executable representation of a function) on a per-
invoeation basis. The function image itself shall not be modified during its execution.

Except for the Bignal function, the functions in the standard library are npot
guarantesd to be reentrant snd may modify objects with static storage duration.

Forward references: the signal function (§4.7.1.1).

§2.2.2 January 11, 1988 §2.2.3

DRAFT

ENVIRONMENT 14 ENVIRCNMENTAL CONSIDERATIONS

10

20

25

30

2.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the envirenmental limits on
a conforming implementation,

2.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one pmgram that
contains at least one instance of every one of the following limits:®

« 15 nesting levels of compound statements, iteration control steuctures, and selection

control structures

8 nesting levels of conditioral inclusion

12 pointer, array, and function declarators (in any combinations] modifying an

arithmetie, 8 structure, a unjon, or an incomplete type in a declaration
31 declarators nested by parentheses within a full declarator

32 expressions nested by parentheses within a full axpression

31 significant initial characters in an internal identifier or 3 macsro name
§ significant initial characters in an external identifier

511 external identifiers in one translation unit

127 identifiers with block scope in one block

1024 macro identifiers simultapecusly defined in one translation unit
31 parameters in one function definition

31 argumeﬁts in one function eal)

31 parameters in one macro definition

31 argumeats in one maere Invocation

309 characters in a logical source line

509 characters in a character string literal or wide string literal (after concatenation)

32767 bytes in an object {in a hosted environment r.:nly}

8 nesting levels for #included files

257 case labels for a switch statement (excluding those for any nested switch

statements)
127 members in a single structure or union

127 enumeration constants ip & single snumeration

15 levels of nested structure or union definitions in a single struct-declaration-list

6. Implementations should avoid imposing fized translation limits whenever possible.

§2.24

January 11, 1988
DRAFT

§2.2.4.1

ENVIRONMENT 15 ENVIRONMENTAL CONSIDERATIONS

2,2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this section,
which shall be specified in the headers <1imits h> and <float. h>.

5 Sizes of integral types <lieits h>

ib

15 .

25 »

30

35 »

-+

40

§2.2.4.2

The values given below shall be replaced by constant expressions suitable for use in
#1f preprocessing directives. Their implementation-defined values shall be
greater in magnitude (absolute value} to those shown, with the same sign.

maximum number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

minimum value for an object of type 5igned char
SCHAR_MIN -127

maximum value for an object of type signed char
SCHAR_MAX +127

maximum value {or an cbject of type unsigned char
UCHAR_MAX 255U

minimum value for an object of type char
CHAR_MIN ace below

maximum value {or an object of type char
CHAR_MAX sce below

maximum nusmber of bytes in & multibyte character, for any supported locale
MB_LEN_ MAX 1

minimum value for an object of type ghort int
SHRT_MIN -32767

maximum value for an object of type short int
SHRT MAX +32787

maximum value for an object of type unsigned short int
USHRT MAX 8EEABU

minimuie value for an object of type 10t
INT MIN ~-22787

maximum value for an cbiect of type int
INT_MAX +32787

maximum value for an object of tyrs unsigned int
UINT_ MAX : 6E52bU

minimum value for an object of type long int
LONG_MIN w2147483647

maximun value for an object of type long int
LONG MAX +2147483647

maximum value for an object of type unsigned long int
ULONG_MAX. 42040872050

¢qual or

If the value of an object of type chaT sign-extends when used in an expression, the
value of CHAR_MIN shall be the same as that of SCHAR_MIN and the value of CHAR MAX
shall be ths same as that of SCHAR _MAX. If the value of an object of type char does not
sign-extend when used in an expression, the value of CHAR_MIN shall be 0 and the value

45 of CHAR_MAX shall be the same as that of UCHAR MAX.

‘January 11, 1988
DRAFT

£2.2.4.2

ENVIRONMENT 16 ENVIRONMENTAL CONSIDERATIONS

Characteristics of floating types <float b>

The characteristics of Boating types are defined i terms of 3 model that describes a
representation of foating-point numbers and values that provide information about an

5 implementation’s floating-point arithmetic. The following parameters are used to define
the model for each fioating-point type:
s sign (£ 1) -
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimum ey, and a maximum ¢u,,)
10 r precision {the number of base-} digits in the mantissa)
A nonnegative integers less than & {the mantissa digits)
A normalized Boating-point number z {f; > 0 if z » D) is defined by the following
model:
»
r= X "X ¥ fi X =%, it € 6 <
I 1%

15 Of the values in the <float.h> header, FLT_RADIX shall be & constant expression
suitable for use in #1f preprocessing directives; all other values need not be constant
expressions. Al] except FLT_RADIX and FLT_ROUNDS have separate names for all three

- fioating-point types, The foating-point model reprasentation is provided for all valyes
except FLT _ROUNDS.

20 The reunding mode for Hoating-point addition iz characterized by the value of
FLT_ROUNDS:

-1 indeterminable
o toward zero
1 Lo nearest :
25 2 tcward positive infinity
3 toward negative infinity
All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.
The vajues given in the following list shall be replaced by implementation-defined
expressions that shall be equal or greater in magnitude {absolute value) to those shown,
30 with the same sign.
» radix of exponent representation, b
FLT_RADIX 2
s number of base-FLT_RADIX digits in the flesting-point mantissa, p
FLT_MANT_DIG .
35 DBL_MANT_DIG
LDBL MANT DIG
. . . 1 if&isapowercl]d
« number of decimal digits of precision, l(p = 1) x logud j + 9o otherwise
FLT DIG]
DBL_DIG i0
40 LDBL DIG 10
« minimum negative integer such that FLT_RADIX raised to that power minus 1 is a
normalized floating-point number, ep
§2.242 January 11, 1888 §2.242

DRAFT

ENVIRONMENT 17 ENVIRONMENTAL CONSIDERATIONS

FLT_MIN_EXP
DBL_MIN_EXP
1DBL_MIN_EXP)
» minimum negative integer such that 10 raised to that power is in the range of
5 normalized floating-point numbers, | log;ob ™" 'l
FLT_MIN_10_EXP ~37
DBL_MIN_10 EXP ~37
LDBL_MIN_10_EXP ~37
» maximum integer such that FLT_RADIX raised to that power minus 1 is a
16 representable finite floating-point number, ¢4,
FLT_MAY_EXP
DBL_MAX_EXP
LDBL_MA¥_EXP

« maximum integer such that 10 raised to that power is in the range of representable
15 finite floating-point numbers, | logo{(l — ¥~P)x ™)

FLT_MAX_10_EXP +87
DEL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

The values given in the focllowing list shall be replaced by impiementation-defined
20 expressions with values that shall be equal to or greater than those shown.

« maximum representable finite Boating-point number, (1 = $77) x b*==

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL MAX 1E+37
25 The values given in the following list shall be replaced by implementation-defined

expressions with values that shall be equal to or smaller than those shown.

» minimum positive floating-point number z such that 1.0 + z» 1.0, b*?

FLT _EPSILON 1E-E
DBL_EPSILON . 3E-9
30 LDBL_EPSILON 1E~9
+ minimum pormalized positive floating-point number, $°™ ™}
FLT_MIN . 1E-37
DBL_MIN . 1E~-37
LDBL._MIN 1E-87
Exsmples

The following describes an artificial Hoating-point representation that meets the
minimum requirements of the Standard, and the appropriate values in a <f103t1.1>
header for type float:

—]
- 40 r= aX 18°X T fix 167, ~31< e 432
dom]

§2.2.4.2 | January 11, 1988 ' §2.2.4.2
- DRAFT

ENVIRONMENT . 18 ENVIRONMENTAL CONSIDERATIONS

FILT_RADIX : 18
FLT_MANT_DIG. &
FLT_EPSILON 9.53674316E-07F
FLT DIG 6
5 FLT_MIN_EXP -31
FLT_MIN 2.938735BBE~30F N
FLT MIN_10_EXP -39
FLT_MAX_EXP +a2
FLT_MAX 3.40282347E+38F
10 FLT MAX_10_EXP +38

The following describes Roating-point representations that also meet the requirements:
for single-precision and double-precision normalized numbers in the J[EEE Standard for
Binary Floating-Point Arithmetic {ANSI/IEEE $Std 754-1985),7 and the appropriate values
in 8 <float.h> header for types float and double:

4
15 zyw e X 2% T fix 27k, —125< < +128
kwm}

]
zom X 22X T fix27h «1021< e +102¢
k)

FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-0TF

20 FLT _DIG §
FLT_MIN_EXP ~128
FLT MIN 1.17549435E-36F
FLT_MIN_10_EXP ~37
FLT_MAX_EXP +128

25 FLT_MAX 3.40282347E+36F
FLT_MAX_10_EXP +38
DBL_MANT pi6 53
DBL_EPSILON 2.2204460402503131E-16
DBL_DIG 16

30 DBL_MIN_EXP ~-1021
DBL_MIN 2.225073858507201E-308
DBL_MIN_10_EXP ~307
DBL_MAX_EXP +1024
DBL_MAX 1.797693134962316E+308

35 DBL_MAX_10_EXP +308

The values shown sbove for FLT_EPSILON and DBL _EFSILUN are appropriate for the
ANSI/IEEE Std 754-1985 default rounding mode (to nearest). Their values may differ for
other rounding modes.

40 Forward references: conditional inclusion {§3.8.1).

7. The floating-point model in that standard sums powers of & from zero, so the values of the sxponent
limits are one less than shown here.

§2.2.4.2 | January 11, 1988 - §2.2.4.2
| DRAFT

Proposed C Standard 18 LANGUAGE

25

35

40

43

S0

§3.

3. LANGUAGE

In the syntax notation used in the language section {§3), symtactic categories
fnonterminals) are indicated by italsc type, and literal words and characters (terminals)
by dold type. A colon {:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words “one of.”” An
optional symbol is indicated by the subscript “‘opt,” so that

{ ezprcu:'on”‘ }
indicates ah optional expression enclosed in braces.
3.1 LEXICAL ELEMENTS
Syntax

token:
keyword
identifier
conetant
siring-literal
operator
punciualor

preproccasing-token:
keader-name
identifier
pp-rumber
character-constant
string-literal
operator
punciuatior
each non-white-spree character that cannot be one of the above

Constraints

Each preprocessing token that is converted to & token shall have the lexical form of a
keyword, an identifier, & constant, a string literal, an operator, or a punctuator,

Semantics

A token is the minimal lexical element of the language in translation phases 7 and B.
The categories of tokens are: keywords, identificrs, conslants, string Iiterals, aperators,
and punctuatora, A prepraccssing token is the minimal lexical element of the language in
translation phases 3 through 8. The categories of preprocessing token are: header names,
identifiers, preprocessing numbers, character constanfe, siring liersls, operators,
punciuators, and single non-white-space charseters that do not lexically match the other
preprocessing token categories, If a ! or a ™ character metches the last category, the
behavior is undefined. Comments {described later) and the characters space, horizontal
tak, pew-line, vertical tab, and form-feed-—collectively calied white spose—can separate
preprocessing tokens, As described in §3.8, in certain circumstances during
preprocessing, white space (or the abseunce thereof) serves as more than preprocessing
token separation. White space may appear within a preprocessing token only as part of &
header name or between the quotation characters in a character constant or string literal.

If the mput stream has been parsed into preprocessing tokens up to a given character,
the next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token.

January 11, 1988 §3.1
DRAFT

LANGUAGE 20 LEXICAL ELEMENTS

Examples

The program fragment 1EX is parsed ss a preprocessing number token {one that is not

a valid Boating or integer constant token), even though a parse as the pair of

preprocessing tokeas 1 and Ex might produce a valid expression {for example, if EX were

5 =2 macro defined as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing
number {one that is a valid floating constant token), whether or not E is a macro Hame.

The program fragment x+++++y is parsed as x ++ ++ + vy, which viclates a
consiraint on increment operators, even though the parse x ++ + ++ y might yield a
correct expression.

Forward references: character constants (§3.1.3.4), comments {§3.1.9), expressions
{§3.3), floating constants (§3.1.3.1), header names {§3.1.7), macro replacement (§3.8.3),
preprocessing directives (§3.8), preprocessing numbers {§3.1.8), postfix increment and
decrement operavors {§3.3.2.4), string literals (§3.1.4).

3.1.1 Keywords

The Tollowing tokens {entirely in lower-case} are reserved (in translation phases 7 and
8) for use as keywords, and shall not be used otherwise: :

auto extern glgned
20 break float slzaeo?
case for static
char goto gtruct
const if ~ switch
continuve int typedef
23 default long union
do noalias ungigned.
deuble reglster vold
else retura velatile
enunm Bhort while
3.1.2 Identifiers
Syntax
wdentificr:
35 nondigit -
tdentifier nondigit

tdentifier digit

nondigit: one of

. 88 D e d e f gk 1 J kK 1 =
40 2o p 4 r B L U VvV W X ¥ 2
A B C D E F G H I J KL M
N 0P QR B T U V W X Y Z
digit: one of
0 1 2 3 4 5 & 7 8 ¢
Deseription
An identifier is a sequence of nondigit characters (including the underseore _ and the -
lower-case and upper-case letiers} and digits. The first character shall be a nondigit
charaeter, : '
§3.1 January 11, 1988 §3.1.2

DRAFT

LANGUAGE ' 21 LEXICAL ELEMENTS

10

Gomtrsin{s

in translation phases 7 and 8, an identifier shall not consist of the same sequence of
characters as a keyword.

Semantics

An identifier denctes an object, a function, or one of the following entities that will be
described later; a tag or 3 member of & structure, union, or enumeration; & typedef name;
a label name; or 4 macroc name. A member of an enumeration is called an enumeration
conatant. Macro names sre pot considered lurther here, because prior to the semantic
phase of program translation any occurrences of macrc names in the source file are

replaced by the preprocessing token sequences that constitute iheir macre definitions,

15

20

25

30

35

40

45

There is no specific limit on the maximum lengih of an identifier. I identifiers that
are intended to denote the same entity differ in any character, the behavior is undefined.

Implementation limita

The implementation shall treat at least the first 31 characters of an interne! nome {a
macro pame or sn identifier that does not _have external linkage} as significant.
Corresponding lower-case and upper-case leiters are different. The implementation may
further restrict the significance of an e¢xfernal name {an identifier that has external
linkage) to six characters and may ignore distinctions of alphabetical case for such
names ® These limitations on identifiers are all implementation-defined.

Forward references: linkages of identifiers (§3.1.2.2), macro replacement {§3.8.3).
3.1.2.1 Scopes of identifiers

An identifier is vissble (i.a., can be used} only within a region of program text ealled its
seope. There are four kinds of seopes: function, file, block, and function prototyne. {A
Juncelion prototype is a declaration of a function that declares the types of its parameters.)

A labe] name is the only kind of identifier that has function scope. It can be used {in
a3 gOtO statement} anywhere in the function in which it appears, and is declared
implicitly by its syntactic appearance {followed by a : and s statement). Labe] names
shall be unique within & fanction,

Every other identifier has scope determined by the placement of its declaration {in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the ideatifier has file scope, which
terminates at the end of the transiation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter identifiers in
a function definitivn, the ideatifier has block scope, which terminates at the } that closes
the associated block. 1f the declarstor or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype {not part of a
fyncijon definition), the identifier has function protolype scope, which terminates at the
end of the function declarator. If an outer declaration of a lexically identical identifier
exists in the same name space, it is hidden until the current scope terminates, after which
it again becomes visible,

Structure, union, and enumeration tags have scope that begins just after the
appearance of the tag in a type specifier that declares the tag. Each enumeration
constant has scope that begins just after the appenrance of its defining enumerator in an
enumerator list. Any other identifier has seope that begins just after the completion of

i £, See "“future language directions'’ (§2.9.1).

§3.1.2

January 11, 1588 $3.1.2.1
DRAFT '

LANGUAGE - 23 LEXICAL ELEMENTS

10

15

25

30

35

4G

45

its declarator.

Forward references: compound statement, or block (§3.6.2), declaratione {§3.5),
enumeration specifiers {§3.5.2.2), function calls (§3.3.2.2), function declarators {including
prototypes) (§3.5.4.3), function definitions (§3.7.1), the goto statement {§3.6.8.1}, labeled
statements {§8.6.1), name spaces of identifiers (§3.1.2.3), source file inclusion (§3.8.2), tags
(§3.5.2.3), type specifiers (§3.5.2). -

3.1.2.2 Linkages of identifiers

An identifier declared in different scopes ot in the same scope more than once can be
made to refer to the same object or function by a process calied finkege. There are three
kinda of linkage: external, internal, and none,

In the set of translation units and libraties that constitutes an entire progratn, eack
instance of a particular identifier with ezternal linkage denotes the same object or
function. Within one translation unit, each instance of an identifier with snierne! linkage
denotes the same object or function. Identifiers with no linkage dencte unique entities.

U the declaration of an identifier for an objeet or a function has file scope and contains
the storage-class specifier static, the identifier has internal linkage. '

If the declaration of an identifier for an cbject or 2 funetion contains the storage-class
specifier axtars, the identifier has the same linkage as any visible declaration of the
identifier with file scope. If there is no visibie declaration with file scope, the identifier
has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, ita
linkage is determined exactly as if it were declared with the storage-class specifier
extern. I the declaration of an identifier for an object has file scope and no storage-
claas specifier, its linkage is external.,

The following identifiers have no linkage: an identifier declared to be anything other
than an object or a function; an identifier declared to be a function parameter; an
identifier declared to be an object inside a block without the storage-class specifier
extern.

If, withiz a translation unit, the same identifier appesrs with both internal and
external linkage, the behavior is undefined.

Forward references: compound statement, or block (§3.6.2), declarations (§3.5},
expressions (§3.3), external definitions (§3.7), the 8izeof operator (§3.3.3.4).

3.1.2.3 Name spaces of identifiers

K more than one declaration of a particular identifier is visible a{ any point in a
transiation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separate name apaces for various categories of identifiers, as follows:

» Iabel namea (disambiguated by the syntax of the labsl declaration and use);

o the tags of structures, unions, and enumerations; {even though they are disambigunated
by the preceding struct, union, or snum keyword, there is only one name space for
tags;)

» the members of structures or unions; each structure or union has a separate name

space for its members (disambiguated by the type of the expression used to access the
member via the . or <> operator};

+ all other identifiers, called ordinary ideniifiers (deciared in ordinary declarztors or as
enumeration consiants). '

§3.1.2.1 : January 11, 1988 . §3.1.2.3

DRAFT

LANGUAGE 23 LEXICAL ELEMENTS

10

13

20

25

30

35

40

49

Forward references: declarators {§3.5.4), enumeration specifiers {§3.5.2.2), labeled
statements (§3.6.1), structure and union specifiers (§3.5.2.1), structure and uunion
members (§3.3.2.3), tags {§3.5.2.3),

3.1.2.4 'Storage durations of objects

An object has a sforage duration that determines its lifetime. There are two storage
durations: static and automatie,

An object declared with external or internal linksge, or with the storage-class specifier
static has stafic slorage duration. For such an object, storage is reserved and its stored
value is initialized only once, prior to program startup. The objectr exlsts and retains its
last-stored value throughout the execution of the entire program.?

An object declared with no linkage and without the storage-class specifier gtatic has
aulomatie alorage durabtion. Storage is guaranteed to be reserved for & new instance of
such an object on each normal entry into the block in which it is declared, or on a jump
from outside the block to a label in the block or in an enclosed block. If an jnitializasion
is specified for the value stored in the object, it is performed on each normal entry, but
not if the block is entered by a jump to 2 label. Siorage for the object is no longer
guaraniteed to be reserved when execution of the block ends in any way. (Entering an
enclosed block suspends but does not end execution of the enciosing block, Calling a
funetion that returns suspends but does not end execution of the block contzining the
call} The value of s pointer that referred to an objeet with sutomatie storage duration
that is po longer guaranieed to be reserved is indeterminate.

Forward references: compound statement, or block (§3.8.2), function calls (§3 3.2.2),
initislization {(§3.5.7).

3.1.2.5 Typesn

The meaning of a value stored in an object or returned by a function is determined by
the fype of the expression used to access it. (An identifier deciared to be an abjeet is the
simplest such expression; the type is specified in the declaration of the identifier.} Types
are partitioned into object typea (types shat describe objects), funetion types (types that
describe functions), and tncomplete iypes {types that describe objects but lack
information needed to determine their sizes).

An object declared as type ¢har is large enough to store any member of the basic
execution character set. l a member of the required source character set eoumerated in
§2.2.1 is stored in & char object, its value is gusranteed to be positive. I other
guantities are stored in a char object, the behavior is implementation-defined: the values
are treated as either signed or nonnegative integers.

There are four signed snleger types, designated as gigned char, short int, int,
and long int. (The signed integer and other types may be designated in several
additional ways, as described in §3.5.2)

An object declared as type 8igned char occupies the same amount of storage as a
“plain™ char object. A “plain” int object bas the natural size suggested by the
architecture of the execution environment {Jarge encugh to contain any value in the range
INT_MIN tc INT MAX as defined in the header <limits.h>). In the list of signed
integer types above, the range of values of each type is a subrange of the values of the
next type in the list.

9. In the case of a volatiie object, the Iast store may not be explicit in the program.

§3.1.2.3 January 11, 1988 §3.1.2.5

DPRAFT

LANGUAGE 24 LEXICAL ELEMENTS

10

i3

20

25

30

35

40

45

For each of the signed integer types, there is a corresponding (but different) vnsigned
integer type (designated with the keyword unsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The range
of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same. A
computation involving umsigned operands can never overflow, because a result that
cannot be repressnted by the resulting unsigned integer type is reduced modulo the
number that is one greater than the largest value that can be represented by the resulting
unsigned integer type.

There are three floating fypes, designated as float, double, and 1oﬁg double.
The set of values of the type f1oat is & subset of the set of values of the type doubdlae;
the set of values of the type double is a subset of the set of values of the type long
doudble. :

The type char, the signed and unsigned integer types, and the Hoating types are
collectively called the basic types. Even if the implementation defines two or more basie
types to have the same representation, they are nevertheless different types.

There are three characlcr types, designated as char, signed char, and unsigned
chaT.

An enumerdation comprises a set of named integer constant values. Each distinct
enumeration constitutes a different enumerated type.

The vo1d type comprises an empty set of values; it is an incomplete type that cannot
be completed,

Any number of derived Iypes can be constructed from the basic, enumerated, and
incomplete types, as follows: :

s An arrey type describes & contiguously allocated set of objects with a particular
membet object type, called the efement fype. Array types are characterized by their
element type and by the number of members of the array. An array type is said to be
derived from its element type, and if its element type is T, the array type is
sotnetimes called “array of 7. The construction of an array type from an element
type is called “arpay type darivation.”

o A structure fype describes a sequentially allocated set of member objects, each of
which has an optionally specified name and possibly distinct type. ’

s A union lype describes an overlapping set of member objects, each of which bas an
optionally specified name and possibly distinet type.

o A funchion type describes s function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said io be derived from its return type, snd if its return type is T, the
function type is sometimes called “function returning T."* The construction of a
functicu type from & return type is called *function type derivation.”

+ A pointer lype may be derived {rom a function type, an object type, or an incomplete
type, called the referenced type. A pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced type T is sometimes called “pointer to T.” The construction of a
pointer type from a referenced type is called “pointer type derivation.”

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integral types. The represestiations of integral types shall define values
by use of 3 pure binary numeration systemn.'® The representations of flcating types are

§3.1.25 January 11, 1988 83125

DRAFT

LANGUAGE ' 25 LEXICAL ELEMENTS

10

18

25

30

35

40

unspeciﬁedj

Integral and floating types are coliectively called ardthmetic fypea, Arithmetic types
and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregete types.t!

A pointer to vo1d shall have the same representation as s pointer to character, Other
pointer types need not have the same representation.

An array type of unknown size is an incomplete type. It is completed, for an identifier
of that type, by specilying the size in a later declaration (with internal or external
linkage}. A structure or union type of unknown content (as described in §3.5.2.3) is an .
incomplete type. It is completed, for all declarations of that type, by declaring the same
structure or union tag with its defining content later in the same scope.

Array, function, and pointer types are collectively called derfved declarator types. A
declarator type derivation from a type T is the construction of a derived declarator type
from 7T by the application of an array, a function, or a pointer type derivation to T

A type is characterized by its top fype, which is either the first type named in
describing a derived type, or the type itaell if the type consists of no derived tipes.
{Thus the type designated ag “float *" is called “pointer to float” and its top type is
a pointer type, not a floating type.)

A type has guolificd type if its top type is specified with a type qualifier; otherwise it
has unguaiificd typc. The type qualifiers const, hoalias, and volatile respectively
designate consi-gualified type, nocliga-gualified type, and volatsle-gualified type '* For
each qualified type there is an unqgualified type that is specified the same way as the
qualified type, but without any Lype qualifiers in its top type. This type iz known as the
ungualified version of the qualified type. Similarly, there are appropristely qualified
versions of types (such as a const-qualified version of a type}, just as there are
appropriately non-qualified versions of types (such as a non-const-qualified version of a
type). ‘

Forward references: character constants (§3.1.3.4), declarations (§3.5), tags (§3.5.2.3),
type qualifiers {§3.5.3).

3.1.2.6 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for
determining whether two types are compatible are described in §3.5.2 for type specifiers,
in $3.5.3 for type qualifiers, and in §3.5.4 for deciarators.’®* Moreover, two structure,
union, or snuroeration tyvpes declared in separate translation units are compatible if they
have the same number of members, the same member names, and compatible member
types. For two structures, the members are in the same order. For two enumerstions,
the members have the same values.

All declarations that refer to the same cbjiect or funetion shall have compatible type;
otherwise the behavior is undefined.

10. A positional representation lor integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powerswf 2. (Adapted from the American National Dictionary for Information Processing Systems.)

11. Note that aggregate type does not include union type becazuse an object with union type can only
contam one member at a time

12. There are seven distinct combinations of qualified types.
13. Two types need not be identical to be compatible.

§3.1.2.5 Jannary 11, 1988 §3.1.2.6

DRAFT

LANGUAGE 26 LEXICAL ELEMENTS

A composite lype can be constructed [rom two types that are compatible; it is a type
that is compatible with both of the two types and has the following additions:

« If one type is an array of known size, the composite type is an array of that size,

¢ If only one type is a function type with a parameter type list {a function prototype),
5 the composite type is s function prototype with the parameter type list,

+ If boih types have parameter type lists, the type of cach parameter in the composite
parameter type list is the compasite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as
10 another declaration for tha identifier, the type of the identifier becomes the composite
type.

Example
Given the following two file acope declarations:

15 int £{int {=){), double {*}{3]);
it £{int (=) {char =), double (»)([1);

The resulting composite type for the function is:
int f{int (x){char =), doubls {*)[3]);

20 Forward references: declarators (§3.5.4), enureration specifiers {§3.5.2.2), structure
and union specifiers {§3.5.2.1), type definitions (§3.5.8), type qualifiers {§3.5.3), type
specifiers (§3.5.2).

3.1.3 Constants

Syntax
conslanl:
Hoating-conatant
nfeger-conalant
30 enumeration-conatant
character-conatant
Constraints

The value of a constant shall be in the range of representable values for its type,

Semantics

Each constant has a type, determined by its form and value, as detailed later.
3.1.3.1 Floating constants
Syntas

foating-constani:

Jractional-constant ezpoment-part ‘ﬂodting-suﬁix

. . f
digit-sequence exponent-pavt ﬁoattny-asﬁz”t o7

45 fractional-eonstant:
d:'gi!‘aequence”t . digil-sequence
digit-acquence .

exrponent.part;
e signo tds'y:'(-uqusncc
50 . E signopt digel-seguence

§3.1.286 nga};y;;: ?88 §3.1.3.1

LANGUAGE 27 LEXICAL ELEMENTS

sign: one of
s -

digit-sequence:
digit

5 digii-sequence digil
flosting-suffiz. one of
f 1 F L
Description
10 A fBoating constant has a velue puart that may be followed by an esponent ;mﬂ and &
suffix that specifies jts type. The components of the value part may include a digit
sequence representing the whole-number part, foliowed by a period {.), followed by a
digit sequence representing the fraction part. The components of the exponent part are
an ¢ or E followed by an exponent consisting of an optionally signed digit sequence,
15 Either the whole-number part or the fraction part shall be present; either the period or
the sxponent part shall be present,
Semantics
The value part is interpreted as a decimal rational number; the digit sequence in the
20 exponent part is interpreted as a decimal integer. The exponent indicates the power of 10
by which the value part is to be scaled. I the scaled value is in the range of
representable values (for its type) but cannot be represented exactiy, the result is either
the nesrest higher or nearest lower value, chosen in an implementstion-defined manner.
An unsuffixed floating constant bhas type doudle. If suffixed by the lester f or F, it
25 has type float. Il suffixed by the letter 1 or L, it has type 1ong double.
3.1.3.2 Integer constants
Syntax
30 inleger-conalgnt:
decimal-conatan! inleger-suffiz
. opt
octal-conatant mlager-wﬂ?zﬁ :
heradecimal-conatant s'nlepcreauﬁzopt
decimeal-constant:
35 ronzero-digil
deetmal-constant digi?
ociel-constant,
0 .
octal-constant octal-digit
40 hezodecimal-constani:
Ox hezadecemal-digit
OX kezadeesmal-digit
hezadeeimal-constant hezadecimal-digit
nonzero-digil: one of
45 - 1 2 3 4 5 6 7 B §
‘ oetal-digit: one of
0 1 2 3 4 & & 7
§3.1.3.1 January 11, 1988 §3.1.3.2

DRAFT

LANGUAGE ' 28 LEXICAL ELEMENTS

i¢

15

20

25

30

35

45

50

hezadecimal-digit: one
' o 1 2
a b ¢
A B C

of
3 4 65 6 T 8 ¢
a e I
b E F
integerauffis:
unsigned-suffiz long-suffiz

\ t
long-sufiiz uuaugned»auﬁ:”

op!
unsigned-suffiz: one of
u U

long-suffiz: one of
1 L
Deacription

An integer constant begins with a digit, but has no period or exponent part. It may
have a prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consisis of a sequence of decimal
digits. An octal constant consists of the prefix 0 optionally {ollowed by a sequencze of the
digits © through 7 only. A hexadecimal constant consists of the prefix Ox or 0X followed
by a sequence of the decimal digits and the letsers a {or A) through £ (or F} with values
10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base
8; that of a hexadecimal constant, base 18. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value
can be represented. Unsuffixed decimal: int, long int, unsigned long int;
unsuffixed octal or hexadecimal: int, unsigned int, long int, unsigned long int;
suffixed by the letter u or U: unsigned int, unsigned long int; suffixed by the letter
lorl:long int, unsigned long int; suffixed by both the letters u or Uand 1 or L:
unstgned long int.

3.1.3.3 Enumeration constanta
Syntax

engmerclion-conslant;
tdentifier

Semantica
An identifier declared as an enumeration constant has type int.
Forward references: ennmemﬁion speciﬁefs {§3.5.2.2).
3.1.3.4 Character constants
Syntax

characier-conatgnt:
'eochar-sequence’

L?¢-chgr-scquence’

c-char-sequence.
e-char
c-char-sequence ¢-char

§3.1.3.2 January 11, 1988 §3.1.3.4

DRAFT

LANGUAGE : 29 LEXICAL ELEMENTS

cacape-aequence
5 eacape-seguence’
aimpleecacope-acguence
octal-cacape-aequence
tezadeeimal-cacape-acquence
simple-cacape-seguence: one of
10 AR LIRS S AN
AT DAY DAY SEAY TN SN TN 4
cclol-eacape-sequence:
\ octel-digit
_ N\ oclal-digit oclal-diget
157 N\ octal.-digit oetei-digit oetul-diget
hezadecsmal-cacape-sequence:
\X hezadecimal-digit
hezadecimal-escape-sequence hezadecimal-diget
20 Deascription

An integer character constant is & sequence of one or more multibyte characters
enclosed in single-quotes, as in ‘X’ or ‘ab’. A wide character constant is the same,
except prefixed by the letter L. With a few exceptions detsiled later, the sharacters are
any characters in the source character ast; they are mapped in an implementation-defined

25 manner to characters in the execution character set. ' '

The single-quote ’, the double-quote *, the guestion-mark 7, the backsiash \, and
arbitrary integral values, are representable secording to the following table of escape
sequences:

single-quote * \?
30 double-quote * \"
questiop-mark ? \P
backslash \ A\
octal integer \ectal digits
_ bexadecimal integer \Xhezadecimal digits
35 The double-quote * and guestion-mark T are representable either by themselves or by
the escape sequences * and \? respectively, but the single-quote ’ and the backslash \
shall be represented, respectively, by the escape sequences * and \\.

The octal digits that follow the backslash ip an octal escape sequencs are taken to be
part of the comstruction of a singie character for an integer character constant or of &

40 single wide character for a wide character constant. The numerical value of the octal
integer so formed specifies the vaiue of the desired character.

The hexadecimal digits that follow the backslash and the letter X in & hexadecimal
escape sequence are taken to be part of the construction of a single character for an
integer character constant or of a single wide character for a wide character constant.

45 The numerical value of the hexadecimal integer so formed specifies the value of the
desired character,

In addition, certain nongraphic characters are representable by escape sequences-
consisting of the backslash \ followed by a lower-case fetter: \a, \b, \Z, \n, \r, \¢, and
\v." If any other escape sequence is encountered, the behavior is undefined.®

§3.1.3.4 January 11, 1988 §3.1.3.4

e-char: .
any charzcter in the source character set except
the single-quote ’, backslash \, or new-line character

DRAFT

LANGUAGE 30 LEXICAL ELEMENTS

)

15

20

25

30

35

40

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of.

representable values for the unsigned type corresponding to its type.
Semantics

An integer character constant bas type int. The value of an integer character
constant containing a single character that maps into a character in the basic execution
character set is the numerical value of the representation of the mapped character
interpreted as an integer. The value of an integer character constant containing more
than one character, or containing a character or escape sequence not represented in the
basic execution character set, iz implementation-defined. In particular, in an
implementation in which type char is treated the same as signed char, the high-order
bit position of a single-character integer character constant is treated as a sign bit.

A wide character constant bas type wechar_ %, an integral type defined in the
<stddef > header. The value of & wide character constant containing a single
multibyte character that maps into a character in the extended execution character set is
the code corresponding to that multibyte character, as defined by the mbtowe function,
with an implementation-defined current locale. The value of a wide character constant
containing more than one multibyte character, or containing a multibyve character or
escape sequence not represented in the extended execution character set, is
implementation-defined.

Examples
The construction \0’ is commonly used 1o represent the null character,

Consider implementations that use two's-complement representation for integers and
eight bits for objects that have type char. In an implementation in which type char is
treated the same az signed char, the integer character constant ‘\XFF’ has the value
w~1; if type ¢har is treated the same as unsigned char, the character constant ‘\x¥F’
has the value + 255 . :

Even if eight bits are used for objects that have type char, the construetion !\ 2123
specifies an integer character constant containing only one character. (The value of this
single-characier constani is implementation.defined and violutes the above constraint.}
To specify an integer character consiant containing the two characters whose values are
0x12 and '3, the consiruction *\0223' may be used, since a hexadecimal escape
sequence is terminated only by a non-hexadecimal character. {The value of this twoe
character constant is implementation-defined alsc.)

Even if 12 or more bits are used for objects that have type wchar_t, the construction
L7\1234' specifies the implementation-defined value that resuits from the combination
of the values 0123 and *4°.

Forward references: characters and integers (§3.2.1.1) common definitions
<gtdderf .h> (§4.1.5), the mbtowe function (§4.10.7.2).

14. The semantics of these characters were discuased in §2.2.2.
15. See "“future language directions” (§3.9.2).

§3.1.2.4 January 11, 1988 §3.1.3.4

DRAFT

LANGUAGE 3 LEXICAL ELEMENTS

10

I3

20

25

30

40

3.1.4 String literals

Syntax
string-isteral:
*a-char-sequesnce *
L‘a-char-acqucnc: F
opt
s-char-sequence:
s-char
s-char-seguence s-char
s-char;
any character in the soyrce character set except
the double-quote *, backslash \, or new-line character
escape-sequence '
Desecription

A character siring literal is a sequence of zero or more multibyte characters enclosed
in double-quotes, as in "xy2*. A wide string literal is the same, except prefixed by the
letrer L.

The same considerations apply to each character in a character string literal or a wide
string literal as if it were in an integer character constant or a wide character constant,
except that the single-quote ! is representable either by itself or by the escape sequence
\’, but the double-quote ® shall be represented by the escape sequence *,

Semuantics

A character string literal has static storage duration and type “array of char,” and is
initialized with the given characters. A wide string literal has static storage duration and
type “array of webkar_t,” and is initislized with the codes corresponding to the given
multibyte charncters. Character string literals that are adjacent tokens are concatenated
into & single character string literal. A null character is ther appended.!® Likewise,
adjacent wide string literal tokens are concatenated intc a single wide atring literal to
which a code with value rero is then appended. If a character string Hteral token is
adjacent 1o a wide string literal token, the behavior is undefined. '

Identical string literals of either form need not be distinct. I the program attempts to
modify a string litersl of either form, the behavior is undefined.

Example
This pair of adjacent character string literals
“\xi2® 3+

produces a single character string literal containing the two characters whose values are
\x12 and ‘37, because escape sequences are converied into single characters in the
execution character set just prior to adjacent string literal concatenstion.

Forward references: common definitions <stddef .h> (§4.1.5).

-

16. A character string literal need not be a string (see §4.1.1), becguse a hult character may be embedded
in it by a \O escape sagquence. :

§3.1.4 Janusary 11, 1988 §3.14

DRAFT

LANGUAGE 32 LEXICAL ELEMENTS

3.1.5 Operators
Syntax

gperator: one of

5 {1 €)Y . =
e —— F E + = =~ t pgizeof -
/S B O€¢C »> < > &= = = 1= "~ | £ ||
? .
= %= /= = +m == <<= 3= = = =
10 ., R #%
Constrainta
The operators [J, { }, and ? : shall oceur in pairs, possibly separated by expressions.
The operators # and ## shall oceur in maero-defining preprocessing directives only.
Semantics
An operator specifies an operation to be performed [an evaluation) that yields a value,
or yields a designator, or produces a side ¢ffect, or a combination thereof. An operand is
an entity on which an operator acts.
Forward references: expressions (§3.3), macro replacement (§3.8.3).
3.1.6 Punctuators
25 Syntax
puncluafor: one of
L1 ¢y £ » = , = = ; ... #
Constraiats

a0 The punctuators [], { }, and £)} shall oceur in pairs, possibly separated by
expressions, declarations, or statements. The punetuator # shall occur in preprocessing
directives only.

Semantics _

35 A punctuator is a symbol that has independent syntaetic and semantic significance
but does not specify an operation to be performed that yields a value. Depending on
context, the same symbol may also represent an operator or part of an operator.
Forward references: expressions {§3.3), declarations {§3.5), preprocessing directives

40 (§3:8), statements (§3.8).

3.1.7 Header names
Syntax '
45 header-neme:
Chechar-sequence>
"g-char-sequence”®
A-char-sequence:
hA-char
50 hechar-acquence h-char
hechar:
any character in the source character set except
the new-line character and >
§3.1.5 ‘ January 11, 1988 §3.1.7

DRAFT

LANGUAGE 38 | LEXICAL ELEMENTS

g-cﬁuar-uqusncc:
g-cher
g-char-sequence g-char
g-char:
5 any character in the source character set except
= the new-line character and *
Constraints

Header name preprocessing tokens shall only sppear within a #include preprocessing
10 directive.

Semantics

The character sequences in both forms of header names are mapped in an
implementation-deBned manner to headers or external source file names as specified in
15 §3.8.2.

If the characters ’, \, *, or /* oceur in the character sequence between the < and >
delimiters, the behavior is undefined. Simiiarly, if the characters ', \, or /# occur in the
character sequence between the * delimiters, the behavior is undefinad.’?

%0 Example
The {ollowing sequence of characters:

0x3<i/a.h>lel
#include <1/5.0>
#define tonst kenbere$

— 25 forms the following sequence of preprocessing tokens (with each individual preprocessing
token delimited by a { on the left and a } on the right).

{ox3}{<}{1}{/}{a}{ }(n}{>}{1e2}
{#}{include} {<1/a.h>}
{#}{define} {conzr}{. }{menber}{e}{$}

Forward references: source file incjusion {§3.8.2).

3.1.8 Preprocessing numbers

35 Swyntax
pp-number:
dipit
digst
pp-number digit
40 pp-number nondigst

ppsnumber @ sign
pp-number E sign
py-number .

45 Description

A preprocessing number begins with a digit optionally preceded by a period (.) and
msay be followed by letiers, underscores, digits, periods, and e+, &—, E+, or E- character
sequences. '

17. Thus, sequences of characters that resemble escape sequences cause undefined behavior.

§3.1.7 January 11, 1988 §3.1.8
PRAF T

LANGUAGE 34 LEXICAL ELEMENTS

Preprac_;ssing number tokens lexically include all foating and integer constant tokens.

Semantics

A preprocessing pumber does not have type or a value; it must be converted (as part
5 of phuse 7) to a foating constant token or an integer constant token to acquire both.

3.1.9 Comments

Except within s character constant, a string literal, or a comment, the characters /#
introduce a comment. The contents of a comment are exzmined only to identify
10 multibyte characters and to find the characters #/ that terminate it.?

18. Thus comments do not nest.

' §3.1.8 January 11, 1988 §3.1.9
DRAFT

LANGUAGE 35 CONVERSIONS

10

15

- 20

30

35

40

45

3.2 CONVERSIONS

Several operators convert operand valves from one type to another automatically.
This section specifies the result required from such an implicit conversion, ax well as
those that result from a cast operation {an caplicit conversion). The list in §3.2.1.5
summarites the conversions performed by most ordinary operators; it is supplemented as
required by the discussion of each operator in §3.3.

Conversion of an operand values to & compatible type causes no change.
Forward references: cast operators (§3.3.4).
3.2.1 Arithmetic operands
3.2.1.1 Characters and integers

A char, a shoTt 1%, or an int bit-feld, or their signed or unsigned varieties, or an
object that has enumeration type, msay be used in an expression wherever an int may be
used. I an int can represent all values of the original type, the value is converted to an
int; otherwise it is converted to an ungigned int., These are called the integral
promotions.) '

The integral promotions preserve value including sign. As discussed earlier, whether »
“plain’ eDRT is treated s signed is implementation-dafined.

Forward references: enumeration specifiers {§3.5.2.2), structure and union specifiers
(§3.5.2.1).

3.2.1.2 Signed and unsigned integers

When an unsigned integer is converted to another integral type, if the value can be
represented by the new type, iis value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater gize, if
the value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the
unsigned integer has greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer; the value is converted to unsigned by adding to it
one gz;eater than the largest number that can be represented in the unsigned integer
type.!

When an integer is demoted to an unsigned integer with smaller size, the result is the
nonnegative remainder on division by the number one greater than the largest unsigned
number that can be represented in the type with smaller size. When an integer is
demoted to a signed integer with smaller size, or an unsigned integer is converted to its
corresponding signed imteger, i the- value cannot be represented the result is
implementation-defined.

3.2.1.3 Floating and integral

When a value of floating type 35 converted to integral type, the fractional part is
discarded. If the value of the integral part caunot be represepted by the integral type,
the behavior is undefined. ®

- .

10. In 2 two's-complement representation, there is no sctual change in the bit pattern except filling the
high-order bits with copies of the sign bit if the unsighed integer has greater size.

20. The remaindering operation done wher a value of integral type is converted to unsigned type need
pot be done when a value of Boating type is converted to unsigned type. Thus the range of portabie
values is {0,Utype MAX« 1}

§3.2

January 11, 1988 §3.2.13
DRAFT '

LANGUAGE 38 CONVERSIONS

10

15

20

25

30

33

When a value of integral type is converted to Boating type, if the value being
converted is in the range of values that can be represented but cannot be repreaented
exactly, the result is either the nearest higher or nearest lower value, chosen in an
tmplementation-defined manner.

3.2.1.4 Floating types

When a f10at is promoted to double or long double, or a double is proﬁated to
long double, its value is unchanged.

When a double is demoted to £10a% or a long double to double or float, if the
value being converted is outside the range of values that can be represented, ihe behavior
is= undefined. If the value being converted is in the range of values that can be
reprezented but cannot be represented exactly, the result is either the nearsst higher or
nearest fower value, chosen in an implementation-defined manner.

3.2.1.5 Usnal arithmetic conversions

Many binary operators that expect operands of arithmetic type cause conversions and
vield result types in a similar way. The purpose is to yield a commen type, which is salso
the type of the result. This pattern is called the usual srithmelic converstons:

First, if either operand has type long double, the other operand is converted to
long doudle.

Otherwise, i either operand has type doudle, the other operand is converted to
double.

Otherwise, if either operand has type float, the other cperand is converted to
tloat.

Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:

If either operand has type unmigned long 1int, the other operand is
converted to unsigned long 1nt.

Otherwise, if one operand has type long int and the other has type
unsigned int, if s long 1nt can represent all values of an unaigned int,
the operand of type unpigned int is converted to 1ong int; otherwise both
operands are converted to unsigned long int.

Otherwise, if either operand has type long int, the other operand is
converted to long int.

Otherwise, if either operand has type unsigned int, t.he other operand is
converted to unsigned 1nt.

Otherwise, both operands have type 1nt,

The values of operands and of the results of expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.

§3.2.1.3 . January 11, 1988 §3.2.1.5

DRAFT

LANGUAGE 37 CONVERSIONS

10

15

20

30

35

3.2.2 Other operands .
3.2.2.1 Lvalues and function designators

An lvalue iz an expression {with an object type or an incomplete type other than
v01d} that designates 2n object.?? When an object is said to have a particular type, the
type is specified by the lvalue used to designate the object. A modifiadle lvalue is an
Ivalue that does not have array type, does not have an incomplete type, does not have a
const-qualified type, and if it is a structure or union, does not have any member
(including, recursively, any member of ali contained structures or unions) with a const-
quahified type.

Except when it is the operand of the s1zenf operator, the unary & operator, the ++
operator, the —~ operator, or the left operand of the . operator or an assignment
operator, an ivalue that does pot have srray type is converted to the value stored in the
designated object (and is no longer an Ivalue). If the Ivalue has qualified type, the value
has the unqualified version of the type of the Ivalue; otherwise the value has the type of
the Ivalue. If the lvalue has an incompiete type and does not have array type, the
behavior is undefined.

Except when it is the operand of the sizeof operator or the unary & operator, oris a
character string literal used to initialize an array of characters, or is s wide string literal
used to initialize an array with element type compatible with wohar_t, en lvalue that
has type “‘array of fype’’ is converted to an expression that has type “pointer to type”
that points to the initial member of the array object and is not an lvalue.

A funciion designator is an expression that has function type. Except when it is the
operand of the s1zeot operator® or the unary & operator, a function designator with
type “function returning fype”’ is ¢converted 0 an expression that bas type “pointer to
function returning fype.”

Forward references: address and indirection operators {§3.3.3.2), assignment operators
{§3.3.18}, common definitions <gtddef.h> (§4.1.5}, initialization (§3.5.7), postfix
in¢rement and decrement operators {§3.3.2.4}, prefix increment and decrement operators
{§3.3.3.1), the gizeof operator (§3.3.3.4), structure and union members {§3.3.2.3),

3.2.2.2 void

The {nonexistent} value of a void ezpression (an expression that has type void) shall
not be used in any way, and implicit or explicit conversions (except to void} shall not be
applied to such ap expression. I an expression of any other type occurs in s context
where a void expression is required, its value or designator is discarded. (A void
expression is evaluated for its side effects.)

23, The name “Ivalue’” comes oniginally from the assignment expression Ei = E2, in which the [eft
operand £1 must be s {(modiBable} value. It is perbaps better considsred as representing an object
“locator value.' What is sometimes called “rvalue” ig in this Standard described as the “vaiue of an
expression '’

An obvious exampie of an Ivalue is an identifier of an object. As a further exampie, if E is a unary
expression that is a pointer to an object, +E is an lvalue that designates the object o which E points.

22 Because this conversion does not octur, the operand of the sizeof operator remains 2 function

designator and viclates the constraint in §3.8.3.4.

§3.2.2 January i1, 1088 §3.2.2.2

DRAFT

LANGUAGE 38 CONVERSIONS

3.2.2.3 Pointers

A pointer to veid may be converted to a pointer to Qny incomplete or chjsct type. A
pointer to any incomplete or cbject type may be converted to a pointer to void and back
again; the resuit shall compare equal to the original pointer,

5 A pointer to a non-¢g-qualified type may be converted to & pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall Tompare
equal.

An integral constant expression with the value 0, or such an expression cast to type
void #, is called a sull pointer consignt. U a null pointer constant is assigned to or
10 compared for equality to a pointer, the constant is converted to a pointer of that type. -
Such s pointer, called a null posnter, is guaranteed to compare unequal to & pointer to
any object or funetion.

Two null peinters, converted through possibly different sequences of casts to pointer
types, shall compare equal.

Forward references: cast operators (§3.3.4), equality operators (§3.3.9), simple
assignment {§3.5.16.1).

Y

§3.2.0.2 Jm;aﬁy ;;‘ %988 ‘ §3.2.2.3

LANGUAGE 3g EXPRESSIONS

3.3 EXPRESSIONS

An erpression is a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
5 performs a combination thereol.

Between the previous snd next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be accessed only to determine the value to be stored ®

Except as indicated by the syntax® or otherwise specified later (for the function-eall
10 operator (), &&, ||, 7:, and comms operators}, the order of svaluation of sybexpressions
and the order in which side effects take place are both unspecified.

Some operstors {the unaty operator -, and the binary operstors <<, >>, & =~ and |,
collectively described as bitwise operators) shall have operands that have integral type.
These operators return values that depend on the internal representations of integers,

15 and thus have implementation-defined aspects for signe=d types.

If an exeeption occurs during the evaluation of an expression {that is, il the result is
niot mathematically defined or not representable), the behavior is undefined.

An object shall have its stored value accessed only by an lvalue that has one of the
following types:®

20« the declared type of the object,
+ a qualified version of the declared type of the object,

a type that is the sigeed or unsigued type corresponding to the declared type of the
object, '

E]

a type that is the signed or unsigned type corresponding to a qualified version of the
25 declared type of the object,

an aggregate or union type that includes one of the aforementioned types smong its
members (including, recursively, s member of a subaggregate or contained union), or

« a character type.

23, This paragraph renders undefined statement expressions such as
i ++3 + 1
while aliowing

1 =1 = 1;

24. The syntay specifies the precadence of oparators in the evaluation of an expression, which iz the same
ac the order of the major subsections of this section, highest pracedance first. Thus, for example, the
expressions allowed as the operands of the binary + operator (?3\3.6} shall be those expressions defined
in §331 through §3.3.6. The exceptions sre cast sxpressions (53.3,4} as operands of unary operators
{§3.3.3), and an operand contained betwezen any of the foliowing pairs of operators: groupin
parentir=ees () {§3.3.1), subscripting brackets [) (§3.3.2.1), function-call parenthases () (§3.3.2.2),
and the conditional operator ¥ (§2.3.15).

Within rach major subsection, the operators have the same precedence. Leff- or right-associativity is
indicated in each subsection by the syntax for the expressions discussed therein.

25. The intent of this list is t¢ specily those circumstances in which an object may or may not be aliased.

§3.3 January 11, 1988 , §3.3
: DRAFT

LANGUAGE 40 EXPRESSIONS

3.3.1 Primary expressions

Syntax
primary-exrpresaion’
5 idenlifier
constant -
string-literal
(expresaion)
10 Semantics
An identifier is a primary expression, provided it has been declared as desigrating an
object (in which case it is an lvalue} or a function (in which case it is a function
designator).
A copstant is & primary expression. Its type depends on its form, as detailed in §3.1.3.
15 A string literal is a primary expression. It is'an]value with type as detailed in §3.1.4,
A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, 2 function
designator, or & void expression.
Forward references: declarations (§3.5),
3.3.2 Postfix operators
25 Syntax
postfiz-cxpression:
Primary-erpression
poslfiz-ezpression [erpression]
posifiz-expression (argumenl-expresston-iist)
. . , opt
30 poslfiz-expression . sdenlifier
posifiz-expression ~> {denbifier
posifiz-czpression ++
gostfiz-ezpression --
argument-cxpression-lisl:
35 aasignmenl-czpression
argument-cepression-list , assignment-expression
3.3.2.1 Array subscripting '
40 Conatraints
One of the expressions shall have type “pointer to object iype,” the other expression
shall have integral type, and the result has type “type.”
Semantics
45 A postfix expression followed by an expression in squars brackets [] is a subscripted
designation of 8 member of an array object. The definition of the subseript operator []
is that E1[E2] is identical to (®(E1+(E2))). Because of the conversion rules that
apply to the binary + operator, if E1 iz an array object {equivaiently, a pointer to the
initial member of an array object} and E2 is an integer, E1[E2] designates the E2-th
50 member of EX (counting {rom z2ero}.
Successive subscript operators designate a member of s multi-dimensional array
object. If E is an n-dimensionsl arrcy 2 2} ik uimensions $X X ... Xk, then E (used
83 other than an lvalue) is converted to a pointer to an (n—1}-dimensional array with
dimensions X ... X k. If the unary » operator is applied to this pointer explicitly, or
§3.3.1 January 11, 1888 . §3.3.2.1

DRAFT

LANGUAGE ' 41 EXPRESSIONS

10

15

20

25

30

35

40

implicitly as a result of subscripting, the result is the poinied-to (nw 1}dimensional array,
which itsell is converted into a pointer if used as other than an Ivalue, It foliows from
this that arrays are stored in row-major order (last subscript varies {astest).

Example
Consider the array object defined by the deciarstion
int x[3] [5];

Here x is & 3X 5 array of 1nts; more precisely, X is an array of three member objects, each
of which is an array of five ints. In the expression x[1], which is equivalent to
{={x+{1})), % is first converted to a pointer to the initial array of five 1nts. Then 1 is
adjusted according to the type of x, which conceptually entails multiplying 1 by the size
of the object to which the pointer points, namely an array of five 1nt objects. The
results are added and indirection is applied to yvield an array of five 1nts. When used in
the expression x [1] {J3, that in turn is converted to a pointer to the first of the ints, so

. x{1]11{]] yields an 1nt.

Forward references: additive operators (§3.3.6), address and indirection operators
{§3.3.3.2), array declarators {§3.5.4.2),

3.3.2.2 Funection calle
Constraints

The expression that denotes the called function® shall have type pointer to function
returning void or returning an object type other than array.

If the expression that denotes the called function has a type that includes a prototype,
the number of arguments shall agres with the number of parameters, Each argument
shall have a type such that its value may be assigned to an object with the unqualified
version of the type of its corresponding parameter,

Sermantics

A postfix expression followed by parentheses () containing a pessibly empty, comma-
separated list of expressions is a function call. The posifix expression denotes the called
funetion. The list of expressicns specifies the arguments to the function. '

If the expression that precedes the parenthesized argument list in & function call
consists solely of an identifier, and if no declaration is visible for this identifier, the
identifier is implicitly declared exactly as if, in the innermost block containing the
function ¢all, the declaration

extern int -sdentifier();
appeared.?’ ‘

An arguinent may be an expression of any object type. In preparing for the cali to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.® The value of the function call expression is spetified in

26. Mast. often, thiz is the resylt of converting an identifier that is a function designator.

27. That i€ a function with external linkage and no information sbout its parameters that returns an
int. If in fact the function does not return an 1nt, the behavior is undefined.

28, A fupction may change the values of its parameters, but these changes cannot affect the values of the
arguments. Op the other hand, it 15 possible £ pass a pointer to an object, and the function may
change the valye of the object pointed t0. A parameter declared to bave array or function type is
eonveried to a parameter with a pointer type as described in §3.2.2.1.

§3.3.2.1 | January 11, 1988 §3.3.2.2

DRAFT

LANGUAGE 42 EXPRESSIONS

16

135

20

25

30

35

40

50

§3.6.6.4.

Il no function prototype declarator is visible at the function call, the integral
promotions are performed on each argument and arguments that have type £10at are
promoted to double. These are called the defauit argument promotions. i the number
of arguments does not agree with the number of parameters, the behavior is undefined. ¥
no function prototype declarator is visible where the function is defined, and the. fypes of
the arguments after promotion are not compatible with those of the parameters after
promotion, the bebavior is undefined. If a function prototype declarator is visibie where
the function is defined, and the types of the arguments after promotion are zot
companbie with the 'types of the parameters, or if t-he function prototype ends with an
ellipsis (, ...}, the behavior is undefined.

If a function prototype declarator ia visible at the function call, the arguments are
implicitly converted, as if by assignment, to the types of the corresponding parameters.
The ellipsis notation in a function prototype declarator canses argument {ype conversion
to stop after the last declared parameter.. The defauls argument promotions are
performed on trailing arguments. If a parameter is declared with a type that is not
compatible after the default argument promotions, and a function prototype of
compatible type is not visible where the function is defined, and a call is executed, the
bebavior is undefined.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not sompared with those of the parameters in & functio definition that
does not include a function prototype declarator,

The order of evaluation of the function designaior, the arguments, and subexpressions
within the arguments is unspecified, but there is & sequence point before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any
chain of other functions.

Example
In the funstion eall
(ept{£100]) (£20, 13} + £4())

the functions £1, £2, 13, and 4 may be called in any order. Al side effects shall be
completed before the funetion pointed to by pf{f1 ()] is entered.

Forward references: function declarators {including prototypes) {§3.5.4.3}, function
definitions {§3.7.1}, the return statement (§3.6.6.4}, simple assignment (§3.3.16.1).

3.3.2.3 Structure and union members
Constraints

The first operand of the . operator shall have a qualified or unqgualified structure or
unior type, and the second operand shall name a member of that type.

The first operand of the -> operator shall have type “pointer to gqualified or
unqualified strueture” or “pointer to qualified or unqualified union,” and the second
opersnd shall name a member of the type pointed to.

Semantics

A postfix expression followed by a dot . and an identifier designates a member of a
structure or union object. The vaiue is that of the named member, and is an Ivalue if the
first expression i1s an lvalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated memper.

§3.3.2.2 January 11, 1988 §3.3.2.3

DRAFT

LANGUAGE 43 EXPRESSIONS

10

i3

25

30

i

40

A postfix expression followed by an arrow > and an identifier designates a member of
a structure or union cbject. The value is that of the named member of the object to
which the first expression points, and is an lvalue.® If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated
member.)

With one exception, if a member of 8 union object is accessed after a value has heen
stored in a different member of the object, the behavior is implementation-defined. One
special guarantee is made in order to simplify the use of unions: If & union contains
several structures that share s common initial sequence, and il the union object currently
contains one of these structures, it is permitted to inspect the common initial part of any
of them.

Example

If f is a function returning 2 structure or union, and X is 2 member of that stTucture
or union, £ {) .x is a valid posifix expressicn but is not an lvalue.

The foilowing is 2 valid fragment:

unicn {
struct {
int gllvypes;
} n;
struct
int type;
int irtnode,
} ni;
gtruct {
int _ Lype;
doudble doublenode;
} nf;
}ou;
fe. %/

v.of.type = i;
u.nf.doublenocde = 3.14;
%, . w/f
i1f {a.n.alltypes == 1)
/... %/ ginu.nf . doublenvde) /*,...%/

Forweard refsrences: address and indirection operators (§3.3.3.2), structure and union
specifiers {§3.5.2.1).

3.3.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have qualified or
ungualified scalar type and shal be a modifiable ivalue.

29, If #E is a valid pointer expression (where X is the “address-of’' operator, which generates a pointer to
its operand) the expression (XE)->MOS is the same as 5. MOS.

§3.3.2,3 ' January 11, 1988 1 §3.3.2.4

DRAFT

LANGUAGE 14 EXPRESSIONS

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. {That is, the value I of the
appropriate type is added to it.} See the discussions of additive operators and compound

5 assignment for information on constraints, types and conversions and the effects of
operations on pointers. The side effeet of updating the stored value of the operand shall
oceur between the previous and the next sequence point.

The postfix ~~ operator is analogous to the postfix ++ operator, except that the value
of the operand is decremented (that is, the value 1 of the appropriate type is subtracted
10 from it).
Forward references: additive operators {(§3.3.8), compound assignment (§3.3.16.2).
3.3.3 Unary operators '
Syntax
LNATrP-CIPresston.
postfir-cxpression
+4 Unary-crpression
20 —= MAGrY-CTPTLoAION
unary-operalor caaliexpression
glzaol unery-crpression
sizeof (type-name)
unary-operator: one of
25 E ox + - ~ 1
3.3.3.1 Prefix increment and decrement operators
Constralnts
-30 ‘The operand of the prefix increment or decrement operator shall have qualified or
unqgualified scalar type and shall be a modifiable Ivalue,
Semantics
The value of the operand of the prefix ++ operator is incremented. The result is the
35 new value of the operand after incrementation. The expression ++E is equivalent to
(E+=1). See the discussions of additive operators and compound assignment for
information on constrainis, types, side effects, and conversions and the effects of
operations on pointers.
The prefix <~ operator is analogous to the prefix ++ operator, except that the value of
40 the operand is decremented.
Forward references: additive operators {§3.2.6), compound assignment {§3.3.16.2).
3.3.3.2 Address and indirection operators
Constraints
The operand cf the unary & operator shall be either a function designator or an Ivalue
that designates an object that is not a bit-field and is not declared with the register
storage-class specifier.
50 The operand of the unary * operator shall have pointer type.
Semantics
The result of the unary & {address-of) operator is a pointer (o he object or function
designated by its operand. If the operand has type “Iype,” the result has type “pointer
55 to type.” '
§3.3.24 ' January 11, 1988 §8.3.3.2

DRAFT

LANGUAGE 45 EXPRESSIONS

10

20

25

35

40

The unary » operator denotes indirection. If the operand points to a function, the
result is » function designator; if it points to an cbject, the result is an lvalue designating
the object. Il the operand has type ‘“‘pointer to fype,” the result has type “iype.” If an

invalid value has besn nssigned to the pointer, the behavior of the unary * operator is
undefined ®

Forward references: storage-class specifiers (§3.5.1), structure and wvnion specifiers
(§3.5.2.1).

3.3.3.3 Unary arithmetic operators
Constraints

The operand of the unary + operator shall have scalar type; of the unary - operator,
arithmetic type; of the ~ operator, integral type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integral promotion
is performed on the operand, and the result has the promoted type.

The result of the unary -~ operator is the negative of its operand. The integral
promotion is performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its operand (that is, each bit
in the result is set if and only if the corresponding bit in the converted operand is not
set). The integral promotion is performed on the operand, and the result has the
promoted type. The expression ~E is equivaient to (ULONG_MAX~E} if E has fype
unsigned long, to (VINT_MAX-E) il E kas any other unsigned type. (The constants
ULONG_MAX znd UINT_MAX ars defined in the header <Zimits.h>.)

The result of the logical negation operator | is 0 if the value of its operand comparss
unequal to {J, 1 i the value of its operand compares equal to 0. The result has type 1nt.
The expression !E is squivalent to (0=+E).

Forward references: limits <f10at%.b> and <1121%8.0> (§4.1.4).
3.3.3.4 The sizeof operator
Constraints

The s1zeof operator shall not be applied to an expression that has function type or
an incomplete type, to the parenthesized name of such a type, or to an lvalue that
designates a bit-field object.

Semantics

The gizeof operator yields the size {in bytes) of its operand, which may be an
expression or the parenthesized name of & type. The size is determined from the type of
the operand, which is not itself evaluated. The result is an integer constant.

30. It is always true that if E is a function designator or an Ivalue, *&E is & function designator or an
ivalue equal to E.

H *P is-ap ivalue and T is the name of an object pointer type, the cast expression #(TIP 15 an lvalue
that has a type compatible with that to whick T points.

Among the invalid valuee for dereferencing a pointer by the unary * operator are s null pointer
constant, s address inappropriately aligned for the type of object pointed io, or the address of an
object that has automatic storage durastion when execuiion of the block in which the object is
declared and of all enciosed blocks has terminated.

§3.3.3.2 January 11, 1988 §3.3.3.4

DRAFT

LANGUAGE o EXPRESSIONS

10

15

35

40

45

When applied to an operand that has type char, unsigned char, or signed ehar,
{or » qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the array.? When applied to an operand
that bas structure or union type, the resuit is the total number of bytes in such an
object, including internal and trailing padding.

The value of the result is implementation-defined, and its type {an unsigned integral
type) is 81ze_t defined in the <stddef .k> header.

Examples

A principal use of the sizeof operator i3 in communication with routines such as
storage 2llocators and 1/O systems. A storage-allocation function might accept & size (in
bytea) of an object to allocate and return a pointer to void. For example:

extern vold #alloc();
double =»dp = alloc(sizeof #dp};

The implementation of the alloc function should ensyre that its return value is aligned
suitably for conversion to a pointer to double.

Another use of the sizeo! coperator is to compute the number of members in an
array:

sizeaf array / silzecf arraylo]

Forward references: common definitions <stddef.h> (§4.1.5), declarations (§3.5),
structure snd union specifiers {(§3.5.2.1), type names {§3.5.5).

3.3.4 Cast operators

Syntax
caat-ecpression.
Unary-expreasion
{ type-name } cast-expression
Constraints

Unless the type name specifies void type, the tvpe name shall specify scalar type and
the operand shall have scalar type.

Semantics

Preceding an expression by a parenthesized type mame converts the value of the
expression to the named type. This coustruction is called a cast 3 A cast that specifies
an implicit conversion or no conversion has no effect on the type or value of an
expression.

Conversions that involve pointers (other than a pointer to void converted to or from
& pointer to an object type or an incomplete type) shall be specified by means of an
explicit cast; they have implementation-defined aspects:

A pointer may be converted to an integral type. The site of integer required and
the result are implementation-defined. If the space provided is not long enough, the
bebavior is undefined.

31. When applied to a parameter declared to have array of function type, the 812ecf operator yields the
size of the pointer obtained by converting as in §3.2.2.1; see §3.7 1.

32, A cast does not yield an |value.

§3.3.34 Janusry 11, 1988 §3.3.4

DRAFT

LANGUAGE 47 EXPRESSIONS

i0

15

An arbitrary integer may be converted to a pointer. The resylt is implementation-
defined.®

A pointer to a const-qualified type may be converted to a pointer to the non-const-
qualified version of the type. If an attempt is made to modify the pointed-to object
by means of the converted pointer, the behavior is undefined.

" A pointer to a noalias-qualified type or volatile-qualified type may be converted to =
pointer to, respectively, sthe non-noalias-qualified version of the type or the non-
volatile-qualified version of the type. If the pointed.to object is referred to by
means of the converted pointer, the behavior is undefined.

A pointer to an object or incomplete type may be converted to a pointer to a

different object type or a different incomplete type. The resulting pointer might not
be valid if it is improperly aligned for the type pointed to. It is guaranteed,
however, that a pointer to an object of a given alignment may be converted to a
peinter to an object of the same alignment or a fess strict alignment and back again;
the result shall compsare equal to the original pointer. {An object that hss type
char has the least strict alignment.)

A pointer to 8 function of one type may be converted to a pointer to a function of
another-type and back again; the result shall compare equal to the original pointer,
If n converted pointer is used to cali a function that has a type that is not
compatible with the type of the called function, the behavior is undefined.

Forward references: esquality operators {§3.3.8), lunction declarators {including

prototypes) (§3.5.4.3), type names (§3.5.5).

25

30

35

40

45

3.3.5 Multiplicative operators

Syntax
mulliplicative-czproasion:
caoi-caprezaion
multiplicative-cxpression & cast-expresaion
multiplicative-czpression / caaf-expression
multipiicative-eczpression % cost-cxpression
Constraints '

Each of the operands shall have arithmetic type. The operands of the % operator shall
have integral type,

Semanticy
The usual arithmetic conversions are performed on the vperands.
The resuit of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by
the second; the result of the § operstor is the remainder. In both operations, if the value
of the second operand is zero, the behavior is undefined.

When integers are divided and the division is inexact, if both operands are positive
the result of the / operator is the Iargest integer less than the algebraic quotient and the

- resutt of the § operator is positive. If either operand is negative, whether the resuit of

33. The mapping functions for conv_ertiﬁg 4 poipter t¢ an integer or b integer to & pointer are intended
to be consistent with the addressing structure of the executiop environment.

§3.3.4

Januxry 11, 1988 ' §3.3.5
DRAFT

LANGUAGE 48 EXPRESSIONS

10

15

20

35

40

the / operator is the largest integer less than the algebraic quotient or the smallest
integer greater than the algebraic quotient is implementation-defined, as is the sign of the
result of the § operator. If the quotient a/b is representakble, the expression {a/b)+*b +
a%b shall equal =.

3.3.8 Additive operators

Syniax
additive-czpreagion.
multiplicalive-cxpression
additive-ezpression + multiplicalive-ezpression
additive-ezpression — multipiicetive-expression
Constraints

For addition, either both operands shall have arithinetic type, or one operand shall be
a pointer to an object and the other shall have integral type. (Incrementing is equivalent
to adding 1.)

For subtraction, one of the following shali hold:

« both operands have arithmetie type;

s both operands are pointers to objects that have compatible type;
« both operands are pointers to objecis that have qualified or unqualified versions of
compatible types; or
» the left operand is & pointer to an object and the right operand has integral type.
{Decrementing is equivalent to subtracting 1.)
Semantics

if both operands have arithmetic type, the usual arithmetic conversions are performed
on them.

The result of the binary + operator is the sum of the operands.

The result of the binary ~ operator is the difference resuiting from the subtraction of
the second operand from the first. '

When an expression that has integral type is added to or subtracted from a pointer,
the integral value is first multiplied by the size of the object pointed to. The resuit has
the type of the pointer opersnd. If the pointer operand points to a member of an array
object, and the array object is large enough, the result points to another member of the
same array object, appropriately offset from the original metnber. Thus if P poibts to a
member of an array cbject, the expression P+1 points to the next member of the array
objeet. Unless both the pointer operand and the result point to 2 member of the same
array object, oF one past the last member of the array object, the bebavior is undefined.
Unless both the pointer operand and the result point to a member of the same array
object, the behavior is undefined if the result iz used as the operand of a unary =
cperator.

When two pointers to members of the same array object are subtracted, the difference

- is divided by the size of & member. The result represents the difference of the subscripts

45

50

§3.3.5

of the two array members. The size of the result is implementation-defined, and its type
(a signed integral type} is ptrdiff t defined in the <ptddef h> header. As with any
other arithmetic overflow, if the result does not fit in the space provided, the bebavior is
undefined. If two pointers that do not point to members of the same array object are
subtracted, the behavior is undefined. However, if P points to the last member of au
array object, the expression (P+1) -~ P has the value I, even though P+1 does not point
1o 2 member of the array object.

January 11, 1988 §3.3.6
DRAFT

LANGUAGE 49 ' EXPRESSIONS

~ Forwatd references: common definitions <stddef . h> (§4.1.5).

106

15

20

25

a0

40

3.3.7 Bitwise shilt operators
Syntax

shift-ezpression:
edditivecezpression
shifl-cxpreasion << additivesexpreasion
shiftscxpreasion >> addilive-cxpression

Constraints
Each of the operands shall have integral type.
Semantica

The integral promotions are performed on each of the operands. The type of the
result is that of the promoted left operand. If the value of the right operand ia negative
or is greater than or equal to the width in bits of the promoted left operand, the behavior
is undefined.

The result of E1 << E2 is EL left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the resnlt is E1 multiplied by the
quantity, 2 raised to the power E2, reduced modulo ULONG MAX+1 if E1 has type
unsigned lohg, UINT _MAX+1 otherwise. (The constants ULONG_MAX and UINT_MAX
are defined in the header <11imits.h>)

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned
1ype or if EX has » signed type and s nonnegative vaive, the value of the result is the
integral part of the quotient of E1 divided by the quantity, 2 raised to the power E2. If
E1 has & signed type and a negative value, the resulting value is implementation-defined.

2.3.8 Relational operators
Syntax

relalional-czpression:
ahift-czpression
releliongi-czpression < ahifi-ezpression
relolional-expression > shifl-ezpreseion
relational-cxpression <= shift-czpression
relafional-czpression >= ahifi-czpression

Constraints
One of the following shall hoid:

» both operands have arithmetic type;

- » both operands are pointers to compatible object types;

45

50

§3.3.6

+ both operands are pointers to compatible incomplete types; or

+ both operands are pointers to objects that have qualified or unqualified versions of
compatible types.

Semantica

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. II' the objects pointed to are members of the
same aggregate object, pointers to structure members declared later compare higher than

January 11, 1988 §3.3.8
DRAFT

LANGUAGE 50 EXPRESSIONS

10

15

20

30

36

pointers to-members declared earlier in the structure, and pointers to array elements with
larger subscript values compate higher than pointers to elements of the same array with
lower subscript values. All pointers to members of the same union object compare equal.
If the objects pointed to are not members of the same aggregate or union object, the
result is undefined, with the following excaption. If P points to the last member of an
artay object, the pointer sxpression P+1 compares higher than P, even though P+1 does
not point to @ member of the array object. -

Each of the operators < (less than}, > (greater than), <= (less than or equal to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false
The result has type int.

3.3.9 Equality operators

Syntax
cqualily-czpression:
relationai-ezpression
equality-expreasion == relationdl-ezpression
equality-expression |= relational-cxpression
Constraints

" One of the following shall hold:
both operands have arithmetic type;

both operands are poiaters to compatible types;

s both operands are pointers to objects that have qualified or unquslified versions of
compatible types;

one operand is a pointer to an object or an incomplete type and the other is a pointer
to vyold; or

s one¢ operand is & pointer and the other is a null pointer constant.
Semantics

~ The == (equal to) and the != {not equal to) operators are analogous to the relational
operators except for their lower precedence 3

If two pointers to objects or incomplete types compare equal, they point to the same
object. If two pointers to functions compare equal, they point to the same function. If
two pointers peint to the same object or function, they compare equal® If one of the
operands is a pointer to an object or incomplete type and the other has type pointer to
void, the pointer to an object or incomplete type is converted to type pointer to void.

34. The expression a<b<c is not interpreted as in ordinary Imathematics. As the syntax indicates, it
means (a<b}<¢; in other words, "'if 4 is Jess than b compare I to ¢; otherwise compare 0 to ¢

35, Because of the precedendes, a<b == e<d is | whenever a<b and ¢<d have the same trutb-vajue.

36.1f invalid prior pointer operations, such as accesses cuiside array bounds, produced undefined
bekavier, the effect of subsequent comparisons is undefined.

§3.3.3 January 11, 1988 §3.3.9

DRAFT

LANGUAGE 51 EXPRESSIONS

15

25

36

35

40

45

3.3.10 Bi-—twise AND onerator
Syniax

AND-czpreasion:
cquality-ezpression
AND-ezpression & equality-czpression

Constraints
Esach of the operands shall have integral type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each
bit in the result is set if and only if eack of the corresponding bits in the converted
operands is set). :

' 3.3.11 Bitwise exclusive OR operator

Syntax

exclusive-OR-expression;
AND-ezpression
erclusive-OR-cepression ~ AND-cxzpreasion

Constraints
Each of the operands shall have integral type.
Semantics _
The usual arithmetic conversions are performed on the operands.

The result of the ™ operator is the bitwise exclusive OR of the operands (that is, each
bit iz the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

3.3.12 Bitwise inclusive OR operator
Syntax

insivavee-OF-expreasion:
cxelusive. OR-cxpression
tnelusive-OR-ezpreesion | exclusive- OR-ezpression

Constrainta
Each of the operands shall have integral type.
Semnantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each
bit in the result is set if and only if at ieast one of the corresponding bits in the converted
operands is set).

§3.3.10 January 11, 1988 §3.8.12

DRAFT

LANGUAGE 52 EXPRESSIONS

3.3.13 Logical AND operator
Syntax
logical-AND-ezpression:

5 inelusive-OR-ezpression
logical- AND-ezpression XE inclusive-OR-expression
Constraints
Each of the operands shall have scalar type.
Semantica

The XE operator shall yield 1 if both of its operands compare unequal to @, otherwise
it yields 0. The result has type int.

Unlike the bitwise binary & operator, the &R operator guarantees |eft-to-right

15 evaluation; there is a sequence point after the evaluation of the first operand. If the first
operand compares equal to 0, the second operand is not evalusated.
3.3.14 Logical OR operator
20 Svntax
logieal- OR-expression:
logical-AND-czpression
fogicalsORcexpression || logseal AND<cxpression
25 Constraints
Each of the operands shall have scalar type.
Semantics .
The || operator shall yield 1 if either of its operands compare unegual to 0, otherwise
30 it yields 0. The result has type 1nt.

Unlike the bitwise | operator, the || operator guarantees leftetoeright evaluation:
there is a sequence point after the evaluation of the frst operand. If the first operand
compares unequal to 0, the second operand is not evaluated.

35 3.3.15 Conditional operator
Syntax
canditional-czpreasion:
logical-OR-czpression
40 logical-OR-czpression 7 czpression : conditional-czpression
Constraints
The first operand shall have scalar type.
Oune of the following shall hold for the second and third operands:
43 « both operands have arithmetic type;
» both operands have compatible structure or union types;
¢ both operands have void type:
+ both operaads are pointers to compaiible types;
» both operands are pointers to aobjects that have qualified or ungualified versions of
80 compatible types;
§3.3.13 January 11, 1988 $3.3.15

DRAFT

LANGUAGE 53 EXPRESSIONS

1o

15

20

30

35

40

. » ont ope?and is a pointer and the other is a null pointer constant; or

» one operand is a pointer to an ohject or incomplete type and the other is 2 pointer to
volid or e pointer to a qualified version of void.

Semantics

The first operand is evaluated; there iz a sequence point after its evalustion. The
second operand is evaluated only if the first compares unegual to ¢; the third operand is
evaluated only if the first compares equal to 0; the value of the second or third operand
(whichever is evaluated) is the result.’

If both the second and third operands have arithmetic type, the nsual aristhmetic
conversions are performed to bring thewm to a common type and the result has that type,
If both the operands have structure or union type, the result has that type. If both
operands have void type, the result has void type.

I both the second and third operands are pointers or one is & null pointer constant
and the other is & pointer, she result type is & pointer to a type qualified with all the type
qualifiers of the types pointed-to by both operands. Furthermore, if both operands are
pointers to compatible types or differently qualified versions of a compatible type, the
result has the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to ¥oid or a qualified
version of void, in which case the other operand is converted to type pointer to void,
and the resujt bas that type.

3.3.18 Assignment operators
Syntax

adsigrment-erpreasion:
condilional-expression
unary-erpression assignment-opernior sssiignment-crpreesion

aastgnmeni-operator: one of
_ = #= /= K= 4= == (<= o= = = =
Constraints
An assignment operator shall have a modifiable Jvalue as its left operand.
Semantics

An assignment operator stores z value in the object designated by the left operand.
An assignment expression has the value of the left operand after the assignment, but is
not an lvalue. The type of an assighment expression is the type of the left operand unless
the left operand has gqualified type, in which case it is the unqualified version of the type
of the left operand. The side efisct of updating the stored valus of the left operand shali
coeur between the previous and the next sequence point.

The order of evaluation of the operands is unspecified.

37. A conditional expressio:i does not yield an lvalue.

§3.3.15 Janusry 11, 1988 §3.3.16

DRAFT

LANGUAGE 54 EXPRESSICONS

10

15

20

30

35

45

3.3.18.1 éim'ple assignment
Counstrainta

One of the following skall hold:
both operands have arithmastic type;

» the left operand has qualified arithmetic type and the right has arithmetic type;
« both operands have compatible structure or union types;

« the left operand has a qualified version of a structure or union type compatible with
the type of the right;

» both operands are pointers to compatible types;

* one operand is a pointer to an object or incomplete type and the other is a pointer to
vold;

+ the left operand is a pointer and the right is a null pointer constant; or

+ both operands are pointers, and the left is a pointer to a qualified version of the type
pointed to by the right.

Semantics

In simple gasignment (=), the value of the right operand is converted to the type of the .
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is accessed from another object that overlaps in
any way the storage of the first object, then the overlap shall be exaet and the two
objects shall have qualified or unqualified versions of s compatible type; otherwise the
behavior is undefined.

Example
Io the program fragment

int f(void);

char ¢;

VL U ¥

/e 2/ ((e = £Q)) == =1) /.. .%/

the 10t value returned by the function may be truncated when stored in the char, and
then converted back to int width prior to the comparison. In an implementation in
which “plain™ char behaves the same as unsigned char (and char is narrower than
t1nt}, the result of the conversion cannot be negative, so the operands of the comparison
can never compare equal. Therefore, for full portability the variable ¢ should be declared
as int.

3.3.16.2 Compound assignment
Constraints

For the operators += and == only, either the left operand shall be a pointer to an
object type and the right shall have integral type, ar the left operand shall have qualified
or unqualified arithmesic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

§3.3.16.1 . January 11, 1988 - §3.3.18.2

DRAFT

LANGUAGE 55 EXPRESSIONS

10

| 1]

20

Semxntica.

A campoand ussignment of the form EX ep= E2 differs from the simple ass;gnmenb
expression E1 = E1 op (E2) only in that the Ivalue £1 is evaluated only once.

3.3.17 Comma operator

Syntax
ezpression:
easignment-cIpression
czpresston , ssatgnmeni-crpression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has
its type and value ® .

Exsmple

As indicated by the syntax, in contexts where s comma is a punctuator {in lists of
arguments Lo functions and lists of initializers} the comma operator as described in this
section cannot appear. On the other hand, it can be used within s parenthesized
expression or within the second expression of a conditional operator in such contexts. In
the function call :

f{a, {(t=3, t+2),)
the function has three arguments, the second of which has the value 5.

Forward references: initialization (§3.S.?},

38. A eomma opérator does not yield an hvalue.

§3.3.16.2 January 11, 1988 §3.83.17

DRAFT

LANGUAGE 56 CONSTANT EXFRESSIONS

10

15

M

25

30

35

40

3.4 CONSTANT EXPRESSIONS
Sypiax

constant-ezpression:
conditienal-expression

Description =

A constani czpression can be evaluated during compilation rather than runtime, and
accordingly may be used in any place that a constant may be.

Conatraints

Constant expressions shall not contain assignment, increment, decrement, funciion-
call, or comma operators, except when they are contsined within the operand of a
sizeof operator.®

Each constant expression shall evaluate to a constant that is in the range of
representable values for its type.

Semanticn

An expression that evaluates to a constant is required in several contexts.¥® If the
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at lesst ss great as if the expression were being evaluated m the sxecution
environient.

An integral constant ezpression shall have integral type and shall only have operands
that are integer constants, enumerstion consiante, character constants, slzeof
expressions, and floating conztants that are the immediste operands of casts. Cast
operators in an integrai constant expression shall only convert arithmetic types L7
integral types, except as part of an operand to the §1ze0f operator.

More Iatitude is permitted for constant expressions in initializers. Such a constant
expression shall evaluate 1o one of the following:

« an arithmetic constant expression,
s an address constant, or
» an address constant for an object type plus or minus an integral coustant sxpression.

An grithmetic conetent erpression shall have arithmetic type and shall only have
operands that are integer coustants, Soating constants, enumeration constants, character

- constants, and sizeof expressions. Cast operators in an srithmetic constant expression

shall only convery arithmetic types to arithmetic types, except as part of an cperand to
the s12eof operator.

An oddress constan! is a pointer to an lvalue designating an object of static storage
duration, or to a function designator: it shall be created explicitly, using the unary &
operator, or implicitly, by the use of an expression of array or function type. The array-
subseript {] and member-access . and => operators, the address & and indirection *
unary operators, and pointer casts may be ysed in the creation an address constani, but

35. The operand of a 81ze0f operator 1s not evaluated, and thus any operator may be used.

#0. An integral constant expression must be used to specify the size of a bit-field mamber of a structure,
the vaiue of an enumeration constant, the size of an array, or the value of a cas® constasnt. Further
constraints that apply to the integral constant expressions used in conditional-inciusion preprocessing
directives are discussed in §3.8.1.

§3.4

January 11, 1988 §3.4
DPRAFT

LANGUAGE 57 CONSTANT EXPRESSIONS

the value of an object shall not be accessed by use of these operators,

The semantic rules for the evaluanon of a constant expression are the same as for
non-constant expressions. 4

5 Forward references: initialization (§3.5.7).

41. Thus in the following initialization,
- stesic int Lt = 2 |1l ¢t 7 ©;

the expression is a valid integral constant expression with value one.

§3.4 January 11, 1088 §3.4

LANGUAGE 58 DECLARATIONS

10

15

20

a5

30

33

40

3.5 DECLARATIONS
Syntax

declargtion:

declaration-apeeificrs init-decfaramr-liat”‘ H

declaration-apecificra:
storage-class-specifier duiarsﬁon-apecsﬁerao
typerapecifier dcc!arch’an-cpcciﬁcrca ¢
type-qualificr dcc!aratioa-apeciﬁenow

gt

snit-deelarator-list:
inif-declarator
intl-declarator-liat , intl-declaraler

inst-declarator:
declarator
declarator = snitializer

Constraints

A declaration shall declare at least a declarator, a tag, or the members of an
enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the
identifier (in a declarator or type specifier) with the satne scope and in the same name
space,

All declarations in the same acope that refer to the same object or function shall
specify compatible types.

Semantics

A declaration speciies the interpretation and attributes of a set of identifiers. A
declaration that also causes storage Lo be reserved for an object or function named by an
identifier is a defintiron 2

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The
init~deciarator-list is 2 comma-separated sequence of declarators, ench of which may have
additional tyvpe information, or an initializer, or both. The dsclarators contain the
identifiers (if any) being deciared.

I an identifier for an object is declared with no lickage, the type for the object shall
be complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

Forward references: declarators (§3.5.4), enumeration specifiers (§3.5.2.2),
initialization {§3.5.7), tags (§3.5.2.3}. .

42. Function definitions have a diferent syntax, described in §37.1.

§3.5

Jsnuary 11, 1988 §3.5
DRAFT :

LANGUAGE 59 DECLARATIONS

20

30

35

40

3.5.1 Storage-class specifiers
Syntax

storage.class-specifier:
typedef
extern
gtatic
YA
register

Consatraints

At most one storage-class specifier may be given in the declaration specifiers in 2
declaration

Semantics

The typedef specifier is called a “‘storage-class specifier” for syntactic convenience
only; it is discussed in §3.5.6. The meanings of the various linksages and storage durations
were discussed in §3.1.2.2 and §3.1.2.4.

A declaration of an identifier for an object with storage-class specifier register
suggests that access Lo the object be as fast as possible. The types of such objecis and

the number of such declarations in each block that are effective are implementation-
defined

The declaration of an identifier for a function thst has block scope shali have no
explicit storage«class specifier other than extersn,

Forward references: type definitions (§3.56.8).

' 3.5.2 Type specifiers

Syntax -

type-speesifier:
void
char
short
int
long
flost
double
slgned
unsigned
struct-or-union-specifier
enum~specifier
fypedef-name

43. See Vfusure language directions” (§3.9.3}.

a4, The implementation may treat any register dsclaration simply as an auto deciaration. However,
whether or not addressabie storage 1s actually used, the address of any part of an object declared with
storage-class specifier Tegister may not be computed, either explicitly {by use of the unary k
0pe§raat-or aa)s discussed 1n §3.3.8.2) or implicitly (by converting an array name %o & pointer as discussed
in §3.2.2.1).

§3.5.1

January 31, 1988 §3.5.2
DRAFT

LANGUAGE 60 DECLARATIONS

Constraints

Each list of type specifiers shall be one of the following sets; the type specifiers may
occur in any order, possibly intermixed with the other declaration specifiers.

+ ¥Old
5 s char -
+ signed char
+ ynsigned char
» ghort, signad ghort, short int, or signed short int
« unsigned shory, or Ynsigned short iat
10 » int, signed, signed int, orno tyi)e specifiers
+ UDSigned, or unsigned int
« lohg, elgned long, long int, or #igned long int
« ungigned long,or ynsigned long int
o Tloat
15« doudle
s long double
» struct-or-union specifier
» enum-specifier
s typedef-name
Semanties

Specifiers for structures, unions, and enumerations are discussed in §3.5.2.1 through
§3.5.2.3. Declarations of typedef names are discussed in §3.5.6. The characteristics of the
other types are discussed in §3.1.2.5,

25 In each of the above comma-separated lists, each set of type specifiers designate the
same type, .

Forward references: epumeration specifiers {§3.5.2.2), structure and union specifiers
(§3.5.2.1), tags (§3.5.2.3}, type definitions (§3.5.6).

3.5.2.1 Structure and union specifiers
Syntax -

struct-or-union-apecifier:
as struct-or-union id:ntt'ﬁcrp‘ { struct-declaration.list }
struct-or-unton sdenicfier

strucl-er-union:
Btruct
union

40 struct-deciaration-liat:
struct-declaration
atruct-declaration-lat siruci-decleration

siruct-declaration:
specifier-gqualificr-liat struct-declarator-list ;

§3.52 - January 11, 1988 §3.5.2.1
) DRAFT

LANGUAGE 61 DECLARATIONS

15

20

30

35

40

spccifier-gualificr-liat: : :
type-apecifier epcc:ﬁer-qwhﬁer-!fstpﬂ-
type-guclifier apecifier- qunﬁﬁcr-ﬁatopt

strvci-declaraipr-list:

slruct-declaraior
- slruct-declarator-list | struct-decigrator
struct-declarator:
declargior
a‘ccfaratorﬁpt . conatani-crpression
Constraints

A structure or union shall not contain a member with incomplets or function type.
Hence it shall not contain an instance of itsell (but may contain a pointer to an instance
of itself}.

The expression that specifies the width of a bit-field shall be an integral constant
expression that has nonnegative value that shall not exceed the number of bits in an
ordinary cbject of compatible type. II the valve is zero, the declaration shall have no
deciarator.

Semantics

As discussed in §3.1.2.5, & structure is a type consisting of a sequence of named
members, whose storage is alloceted in ap ordered sequence, and & union jg 2 type
consisting of a sequence of named members, whose storage overlap.

Structure and union specifiers have the same form.

The presence of & struci-declaration-list in a struct-or-union-specifier declares a new
type, within a translation unit. The struet-declaration-list is a sequence of declarations
for the members of the structure or union. The type is incomplete until after the } that
terminates the Hst. '

A member of a structure or union may have any object type. In addition, a member
may be declared to consist of a specified number of bits {including & sign bit, if any).
Such & member is called a Bit-field;*® its width is preceded by a colon.

A bit-field may have type int, unpigned int, or signed int. Whether the high-
order bit position of & “plain’’ int bit-field is treated as a sign bit is implementation-
defined. A bit-field is interpreted as an integral type consisting of the specified number of
bits.

An implementation tnay allocate any addressable storage unit large enough to hold a
bit-field. H enough space remains, a bit-field that immediately follows another bit-field in
& structure shall be packed into edjacent bits of the same unit. Jf insufficient space
remains, whether & bit-field that does not fit is put into the next unit or overlaps
adjacent units is implementation-defined. The order of allocation of bit-fields within a
unit {high-order to low-order or low-order to high-order] is implementation-defined. The
alignment of the addressable storage unit is unspecified.

A bit-field declaration with nc declarator, but only a colon and & width, indicates an
unfimed bit-field.** As a special case of this, a bit-field with a width of 0 indicates that

45. The unary & Saddress-of} operator may a0t be applied to a bit-field object; thus there are no pointers
Lo Or arrays o

bit-field objects.

46. An unnamed bit-field is useful for padding to conform to externally-imposed layouts.

§3.5.2.1 January 11, 1988 §3.5.2.1

DRAFT ’

LANGUAGE 62 DECLARATIONS

i0

15

20

25

35

40

45

no further bit-field it to be packed into the unit in which the prevmus bit-feld, if any,
was placed. :

Each non-bit-field member of a structure or union object is aligned in an
implementation-defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declarsd. A pointer to
2 structure object, suitably cast, points to its initial member {or il that member is a bit-
field, then to the unit in which it resides}, and vice versa. There may therefore be
unnamed hoies within a'structure object, but not at its beginning, as necessary to achieve
the appropriate alignment. There may also be unnamed padding at the end of a
structire, 45 necessary.to achieve the appropna&e alignment were the structure to be a
member of an array.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably cast, points to each of its members (or i & member is & btt.-ﬁeld
then to the unit in which it resides), and vice versa.

3.5.2.2 Enumeration specifiers
Syntax

enum-specifier:
snun idcntiﬁerﬁ ; { enumerator-ist }
enum identifier

enumerator-ital:
enymerglor
enumeraior-list , cnumercior

enumerator:
enumeralion-conatani
eaumeralion-constant = constanf-ezpression

Constraints

The expression that defines the value of an enumeration constant shall be an integral
constant expression that has & value representable as an int,

Semanties

The identifiers in an enumerator list are declared as constants that have type 11t and
may appear wherever such are permitted* An enumerator with = defines its
enumeration constant as the vaiue of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no =
defines its enumeration constant as the value of the constant expression obtained by
adding I to the value of the previous enumeration constant. {Both forms of enumerators
may produce enumeration constants with values that duplicste other values in the same
epumeration.} The enumerators of an snumeration are slso known ss its members.

Each enumeratad type shall be compatible with an integer type; the choice of type is
implementation-defined.

47. Thus, the identifiers of enumeration constants in the same scope shall all be distinct from each other
and from other identifiers declared in ordinary declarators,

§3.5.2.1 January 11, 1988 . §ds.a22

DRAFT

LANGUAGE 83 DECLARATIONS

i0

15

25

30

33

40

Example)
"enum hue { chartreuse, burgundy, claret=20, winedark };
F4 N ¥
enum hua col, *Cp;
VL N
cel = eclaret;
Cp = kool
fe, . %)

/e, . »/ (xcp != burgundy) /=...»/

makes hue the tag of an enumeration, and then declares col as an object that has that
type and cp as a pointer to an object that has that type. The epumerated values are in
the set {0, 1, 20, 21}.

3.5.2.3 Tags
A type specifier of the form

atruel-or-union identifier { sirvel-declaration-list }
or
enus identificr { enumerator-fist }

deciares the identifier to be the teg of the structure, union, or enumeration specified by
the list. The fist defines the atructure conlent, univn content, or enumeration conlent. A
subsequent declaration that uses the tag and that omits the bracketed list specifies the
declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form
struct-or-union sdenlifier

occurs prior to the deciaration that defires the content, the structure or union is an
incomplete type. It declares a tag that specifies s type that may be used only when the
size of an object of the specified type is not needed.*® I the type is to be completed,
another declaration of the tag in the same scope {but not in an enclosed block, which
declares 8 new type known only wishin that block) shall define the content. A declaration
of the form

struct-or-union tdentifier ;

specifies a structure or union type and declares a tag, both visible only within the scope
in which the declaration occurs. It specifies & new type distinet from any type with the
same tag in an enclosing scope.

A type specifier of the form

struct-or-union { struci-declaration-lial }
ar
enum { enwmeralor-list }

specifies & new structure, union, or enumerated type, within the translation unit, that can
only be referred to by the declaration of which it is & part.®

48, It is not peeded, for example, when e typedef name is deciared to be a specifier for a structure or
union, or when 2 pointer to or a fupetion returning a structure or union is being declared. The
specification shall be complete before such a function 15 called or defined.

45. Of coutse, when the deciaration is of a typedef name, subsequent declarations can make use of the
typedef name to declare ohjects having the specified structure, union, or snumerated type.

§8522 January 11, 1888 - §3.5.2.3

DRAFT

LANGUAGE 64 DECLARATIONS

Examples
This mechanism allows declaration of a self-referential structure.

struct tnede {

5 int count;
gtruct tnode sieft, =right; -
};
specifies a structure that contains an integer and two pointers to objects of the same
type. Once this declaration has been given, the declaration

10 Etruct tnode 5, *gp,;
declares g to be an object of the given type and gp to be a pointer to an object of the
given type. With these declarations, the expression sp->left refers to the left struce
tnode pointer of the object to which Bp peints; the expression s.right->count
designates the count member of the right struct tnode pointed to from s.

15 The following alternative formulation uses the typedet mechanism:

typede! struct tnode TNODE;

struct tnode {
int count;
TNODE *left, #right;

20 3.
THODE ®, *EP,;
To tlustrate the use of prior declaration of a tag to specify a pair of mutually-
referential structures, the declaratjons

struct s1 { struct B2 #*82p; /*...%/ },; /% D1 »/

25 struct 52 { struct g1 =8ip; /*...»/ };: /% D2 =/ _
specify a pair of structures that contain pointers 1o each other. Note, however, that if 82
were already declared as & tag in an enclosing acope, the declaration D1 would refer to 41,
not to the tag %2 declared in D2. To eliminate this context sensitivity, the otherwise
vacucus declaration

30 struct 82;
may be inserted ahead of Di. This declares a new tag €2 in the inner scope; the
declaration D2 then completes the specification of the new type.

Forward references: type definitions (§3.5.6).
3.5.3 Type qualifiers
Syntax
type-gualifier:
40 eonst
noalias
volatile
Constraints .
45 The same type qualifier shall not appear more than once in the same specifier list or
qualifier list, either directly or vis one or more typedefs.
Semantics
The propert;ies associated with qual.led types are meaningful only for expressions that
50 are lvalues.®
§3.5.2.3 January 11, 1988 : §3.5.3

™ a4 ™M

LANGUAGE 65 DECLARATIONS

B

10

15

20

25

30

35

40

An |value contains zero or more identifiers known as ite hendies; it the lvalue has
noalias-qualified type, they are noeliae handiesa. The handles of an lvalue are those
identifiers found by recursive application of the following rules:

s If an expression is an identifier, the identifier is the handle.

s I an expression is a constant, stripg literal, function call expression, or sizeof
expression, it contains no handle.

s If an expression is a parenthesized expression, cast expression, or sn expression with a
unary operator, the handles {if any) are contained in the expression operand.

« If an expression is s conditional expression, the handles (if any] are contained in both
the second and third cperands.

o If an expression is an assignment expression, or member access expression, the bandles
(if eny) are contained in the left operand.

*

If an expression is a comma expression, the handles (if any) are contained in the right
operand,

» Otherwise, an expression is an array subscriplt expression or an expression with a
binary operator, and the handies (if any} are contained in the operand with pointer
type.

If the noalias-qualified lvalues that contain a particular noalias handle had instead had
the non-noalias-qualified version of their types, the set of all objects accessible by these
lvalues constitute the actual objecte of the particular noalias handle. For each distinct
noalias handle, it is unspecified whether the handle is associated with its actual objects or
is associated with its virtual objerts, 3 zet of distinct objects with the same sizes and
addresses as those of the actual objects. The behsvior of 5 program that depends upon &
specific implementation choice is undefined. '

The virtual cbjects, if and when created or reinitialized, acquire the last-stored valyes
of the actual objects. The virtual objects may be created at any sequence point within &
function for which the storage of the object declared by s noalias handle is guaranteed to
be reserved. If one or more of the virtual objects of & noalias handle have been modified
through use of the noalias handle, they have pending valuce if the actual objects do not
have the same values. If and only if there are pending values, all the stored values of the
virtual objects of a particular noalias handle may be assigned to their corresponding
actual objects at any sequence point; this is synchronizing the pending values. At the -
return of a function after whose execution the storage of the object declared by the
noalias handle is no Jonger guarantced to be reserved, the pending values shall be
synchronized.

If an argument expi'assion E is a pointer to a poalias-qualified type and the lvalue
#{E) would contain a particular noalias handle, then the following occur for the actual
and virtual objects of the noalias handie:

« At the function call sequence point, pending values {if any) are synchronized.

« Just after the return from the function, the virtual objects (if any} are reinitialized.®

50. The implementatios may place & ¢onet object that is not volatile in a read-only region of storzge.

51. If the calied function has a type that includes a prototype and the type of the parameter is a pointer
t0 a const- and noalias-qualified type, this assignment can be suppressed, as the calied fometion
— cannst modify the designated object through this parameter.

§3.5.3 | January 11, 1988 | §3.5.3

DRAFT

LANGUAGE ' 66 DECLARATIONS

10

15

20

30

35

40

An ob;ect that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to
such an object shall be evaluated strictly according to the sequence rules of the abstract
machine, a8 described in §2.1.2.3. Furthermore, at every sequence point the value last
stored in the cbject shall agree with that prescribed by the abstract machine, except as
modified by the unknown factors mentioned previously.®® What constitutes an access 1o
an object that has volatile-gualified type is implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is
so-qualified, not the array type. If the specification of 2 function type includes any type
qualifiers, the behavior is undefined.®®

For two gualified types to be compatible, both shall have the identically qualified
version of a compatible type; the order of type qualifiers within a list of specifiers or
qualifiers does not aflect the specified type.

Examples
An object declared
| extern const volatile imt real_time_clock;
mey be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct 8 { int mem: } cs = { 1 };

SBLTUCT 8 BCE. /% the objeci ncs i2 modifiable »/

typedef int A[2]{3];

const A a = {{4, 5, B8}, {7, 8, 9}}; /% arrey of array of consgt int &/
int *pi;

const 1nt #peil.

nes = o8 /% valid »/
Cf = TIOS; /% viclatea modifieble lvalve comtramt Jor = %/
pi = kncs.mex; /+ pglid »/

Pi ke men; S« violales lype constrainis for = x/
pci = Ecs.mem; /% valid =/
p1L = afo0l; /% invalid: a[0] has type ‘‘const int » 7' =/

The {ollowing are examples of some ivalues and their handles:
tot {2}, D[3]{4], =£(), 1, sp, *=xq;

a{1]. /% handle:a =/
pl1}[2}; . /= handle: b =/
*(1 = 4, p}; /% handle:p =/
we{q + 1); /% handle: g »/
*1{); /% no hendle %/

= {int *)123; /% no hendle =/

52, A volatile declaration may be used to describe an object corresponding to 2 memory-mapped
input/output port or an object accessed by an asynchmnousiy interrupting funetion. Actions on
objects so_deciared shall mot be “‘optimized out” by an implementation or reordered except as
permitted by the rules {or evaluating expressions.)

53. Both of thase can only occur through the use of t.ypedefs

§3.5.3

January 11, 1988 ' §3.5.2
DRAFT

LANGUAGE 87 DECLARATIONS

10

15

20

25

35

40

45

3.5.4 Declarators
Syntax

declarator:
poa'nternpt direct-declarator

deireci-declarator:

sdeniifier

{ declarator)

direct-declaraior [eoncinnt-ezpruu'onopt 1
direct-declarator { parameter-type-liat)

direct-declarator id‘entiﬁer—h’ctoﬂ b

pointer;
] typc-gufiﬁcr-!istop
» typc-quah'ﬁzr-h‘atnpt potnter

type~gqualifier-list:
type-gualifier
type-gualifier-list type-qualifier

parameter-type-list:
paramefer-iist
perameter-isal |

paramelerist:
parameter-deciargtion
parameler-lisi , parameter-declaraiion

parameter-declaralion:
decleration-specificrs declarator
declaration-specifiers abatrccz-dec!umtara

tdentificr-losi;

dentifier
identifier-fist , tdentifier

ot

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with
the scope, storage duration, and type indicated by the declaration specifiers.

In the following sui:ssect.ions, sonsider & declaration
T b1

where T contains the declaration specifiers that specify a type T(such as int)and Diisa
declarator that contains an identifier ident. The type specified for the identifier ident in
the various forms of declarator is described inductivaly using this notation.

i, in the declaration “T D1,"” D1 has the form
sdentifier
then the type specified for fdenfis T.
I, in the declaration T D1,” D1 has the form
(D)

then ident has the type specified by the declaration “T D.”” Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complex

§3.64 January 11, 1988 §3.5.4

DRAFT

LANGUAGE 638 DECLARATIONS

10

15

25

30

40

45

-

declarators may be altered by parentheses.
Imiplementation limite

The implementation shall allow the speciication of types that have at least 12 pointer,
array, and function declaraters (in any valid combinations) modifying an arithmetic, a
structure, a union, or an incomplete type, either directly or via cnz or more typedefs.

Forward references: type definitions {§3.5.8). -
3.5.4.1 Pointer declarators
Semanties

If, in the declaration “T D1,” Dt has the form

D
gl
snd the type specified for ident in the declaration “T D" is “derived-declarator-type-lisi
T, then the type specified for ident ia “derived-declarator-type-list type-qualifier-list
pointer to T.”" For each type qualifier in the list, ¢dent is a so-qualified pointer.

* fype-quaith er-h'stﬁ

For two pointer types to be compatible, both shall be identically qualified and hoth
shall be pointers t6 compatible types. .

Examples

The following pair of declarations demonstrates the difference between a ‘‘variable

_pointer to a constant value” and a “‘constant pointer to a variable value.”

censt 1nt *ptr_ to_conetant,
iat =copst constant_ptr;

The contents of the ¢const int pointed to by ptr_to_constant shall not be modified,
but ptr_to_constant itsell may be changed to point to another comst 1nt,
Similarly, the contents of the int pointed to by constant ptr may be modified, but
constant ptr itsell shall aiways point to the same location.

The declaration of the constant pointer comstant_ptr may be clarified by including
a definition for the type “pointer to int.”

typedef int wint_ptr;
const int_ptr constant ptr;

declares congtant_ptr as an object that has type “const-qualified pointer to int.”
3.5.4.2 Array declarators
Constraints

The sxpression that specifies the size of an array shall be as integral constant
expression that has a value greater than zero.

Semantics
If, in the declaration T D1, D1 has the form
apt)

ard the type specified for {dent in the declaration *'T D” is “derived.declarator-type.list
T,” then the type specified for ident is *derived-declarator-type-list array of T."™ If the

D {¢onatent-c2presaton

54. When several “array of’ specifications are adjacent, 2 multi-dimensional array is declared.

§3.5.4 | January 11, 1988 §3.5.4.2

DRAFT

LANGUAGE 69 DECLARATIONS

10

size is not present, the array type is an incomplete type.

For two array types to be compatible, both shall have compatible element types, and
if both size specifiers are present, they shall have the same value.

Examples
fleoat fa[l3l, =afpl17]; _
declares an array of f10at numbers and an array of pointers to £10at numbers.
Note the distinction between the declarations

extern int *=x;
extern int y[);

The first declares x to be a pointer 10 1nt; the second declares y to be an array of 1nt of
unspecified size (an incomplete type}, the storage for which is defined elsewhere.

- Forward references: function definitions (§3.7.1), initialization {§3.5.7).

20

30

35

40

3.5.4.3 Function declarators (including prototypes)
Constraints

A funection declarator shall not specify a return type that iz & funetion type or an
array type. :

The only storage-ciass specifier that shall oceur in » parameter declaration is
Teglister,

An identifier list in & function declarator that is not part of a function definition shall
be empty.

Semanties _
If, in the declaration “T Di,” D1 has the form

D{parameter-type-lrss)
or
D{ sdcnhﬁer-{utapt}

and the type spacified for sdent in the declaration “T D" is “derived-declerator-type-list
T, then the type specified for fdent is “derived-declarator-type-iist function returning
T.l’

‘A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function. If the list terminates with an ellipsis {, ...}, no information
about the number or types of the parameters after the comma is supplied.® The special
case of void as the only item in the list specifies that the function has no paramsters.

The storage-ciass specifier in the declarastion specifiers for a parameter deciaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for & function definition.

An identifier list declares only the identifiers of the parameters of the function. An
empty list in a funetion declarator that is part of a function definition specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
funciion definition specifies that no information about the number or types of the

55. The mactos defined in the <stdarg .b> header {§4.8) may be used 10 access parameters that {ollow

an

eliipsis.

§2.5.4.2 January 11, 1988 §3.54.3

DRAFT

LANGUAGE 70 DECLARATIONS

10

15

20

25

3¢

35

40

parmmeters is supplied.%

For two function types to be compatible, bath shsll specify compatible return types
Moreover, the parameter type lists, il both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by
a function declarator that is not part of a function definition asnd that contains an smpty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains an identifier list, both shall agree in the
number of parameters, and each identifier has type compatible with the corresponding
prototype parameter if the type that results from the application of the default argument
promaotions to the type of the identifier is compatible with the type of the corresponding
prototype parameter. {For eack parameter declared with function or array type, its type
for these comparisons is the one that results from conversion to a pointer type, as in
§3.7.1. For each parameter deciared with qualified type, its type for these comparisons is
the unqualified version of its declared type.) '

Examples
The declaration
int f{void), *21p(), (=pf1)();

declares a function I with no parameters returning an int, s function fip with no
parameter specification returning a pointer to an int, and & pointer pf1 to & functicn
with no parameter specification returning an int. It is especially uselul to compare the
last two. The binding of «21p(} is # (£1p ()), so that the declaration suggests, and the
same comstruction in ap expression requires, the calling of a function £1p, and then using
indirection through the pointer result to yield an int. In the declarator {»pf4) (), the
extra parentheses are necessary to indicate that indirection through a pointer to =
function yields a function designator, which is then used to call the function; it returns
an 1nt.

If the declaration occurs outside of any function, the identifiers have file scope and
external linkage. If the declaration occurs inside a function, the identifiers of the
functions £ and fip have block scope and external linkage, and the identifier of the
pointer pf1 has block acope and no linkage.

Here are two more intricate examples,
int (»apfi(3])(int sx, int =y);

declares an array apfi of three pointers to functions returning int. Each of these
functions has two parameters that are pointers to int, The identifiers x and y are
declared for descriptive purposes only and go out of scope at the end of the declaration of
apfi. The declaration

int (*fpfi(i_nz.(*)%iong), iat}){xnt, ...);

declares a function £pfl that returns a pointer to a function returning an int. The
function £p21 has two parameters: 2 pointer to a function returning an in% (with one
parameter of type long), and an int. The pointer returned by fpfi points to a

58. See “fyture language directions” {(§3.2.4).
37. If both function types are ‘‘old styls ™ parameter types are not compared.

§3.5.4.3 Japuary 11, 1088 §3.5.4.3

DRAFT

LANGUAGE 71 DECLARATIONS

10

13

20

25

a0

35

45

function &ﬂ;t has at least one parameter, which has type 10%.
Forward references: function definitions {§3.7.1), type names {§3.5.5).
3.5.5 Type names

Syntax

type-name:

specifier-qualifier-list abatmc!—dederator” :

cbatract-declarator:
poinfer
pot'ﬂ.uf”: direct-abstraci-declaretor

divect-abelract-declerqior:
{ alsiract-declarator }
direct-absiract-declarator [conslant-czpression]

. . . p
dlrccbabslract-dccl‘aratar”t { parumc:sr-type-hat”t 3

Semantics

In several contexts it is desired to specify a type. This is accomplished using a type
name, which is syptactically a declaration for 2 function or an object of that type that
omits the identifier,%

Examples
The constructiots

(a) int

(b} int

(e} int *[3)

(d) int (*) [3]

(e) int &()

(f) int (%) {void)

(g) irt (sconst []) (unzignad int, ...)

name respactivaly the types (2) 1n%, (b} pointer to 1nt, (¢} array of three pointers to
int, (d) pointer to an array of three ints, (¢) function with no parameter specification
returning a pointer to 1nt, {I) pointer to function with ne parameters returning an 1nt,
and {g) array of an unspecified number of tonstant pointers to functions, each with one
parameter that has type ungigned int and an unspecified number of other parameters,
returning an int.

3.5.6 Type definitions
Syntax

typedef-name:
identifier

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be 8 typedel name that specifies the type specified for the identifier in the
way_described in §3.5.4. A typedef declaration does not introduce a mew type, orly &

58. As indicated by the syntax, erapty parentheses in a type name are interpreted as “function with no
parameter specification,” rather than redyndant parentheses around the ommitted identifier.

§3.5.4.3 January 11, 1988 - §358

DRAFT

LANGUAGE 72 DECLARATIONS

synonym for the type so speciﬁed. That is, in the following declarations:

typedaf T type ldemni;
type_ident D,

type_ident is defined as a typedef name with the type specified by the declaration
specifiers in T (known as 77, and the identifier in D has the type “derived-declarator-
type-fiat T where the derived-declarator-type-list is specified by the declarators of D. A
typedel name shares the same name space as other identifiers declared in ordipary
declarators. If the identifier is redeclared in an inner scope, the type specifiers shall not
be omitted in the inner declaration.

Examples
After

typedef int MILES, KLICKSP();
typedef struct { doudle re, i#; } complex;

185 the construstions
MILES distance;
extern KLICKSP »metricp;
complex z, wzp;
are all valid declarations. The type of digtance is 4nt, that of metricp is “pointer to
20 function with no parameter specification returning 12at,” and that of z is the specified
structure; zp is a pointer to such a structure. The object digtance has a type
compatible with any other 1nt object.
After the declarations
o typedaf struct s1 { 1nt x; } Ti, *tpl;
25 typedef struct 82 { int x; } 12, =up2;
type t1 and the type pointed to by tpt are compatible. Type ti is alse compatible with
type struct £1, but not compatible with the types BtTUCt 82, ©2, the type pointed to
by tp2, and int.
30 3.5.7 Initialization
Syntax
snttializer:
gastgnmenl-ezpresdion
35 { instializes-iist }
A inttializer.dtat ,)
nstializer-Lat:
fnitiglizer
tnitializer-list , insticlizer
Constraints

There shall be neo more initializers in an initializer list than there are objects to be
initialized.

The type of the entity to be initialized shall be an object type or an array of unknown

45 size.

Al! the expressions in an initializer for an object that bas static storage duration or in
an initializer list for am object that has aggregate or uniom type shall be constant
eXpressions.

§3.58 January 11, 1988 §3.5.7

DRAFT

LANGUAGE 73 DECLARATIONS

10

15

20

25

30

35

40

¥ the declaration of an identifier has block scope, and the identifier has exterpal or
internal linkage, there shall be no initializer for the identifier.

Semantiea
An initializer specifies the initial value stored in an object.

I an object that has static storage duration is not initialized explicitly, it is initialized
implicitly as if every member that has arithmetic type were pssigned 0 and every member
that has pointer type were assigned & null pointer constant. If an object that hes
automatic storage duration is not initialized explicitly, its value is indeterminate. b

The initializer for a scalar shall be & single expression, optionally enclosed in braces.
The initial vaiue of the object is that of the expression; the same {ype constraints and
conversions as for simple assignment appiy.

A brace-enclosed initializer for a union object initializes the member that appears first
in the declaration list of the union type.

The initializer for a structure or union object that has automatic storage duration
either shall be an initializer list as described below, or shall be a single expression that
has compatible strueture or union type. In the latter case, the initial value of the object
is that of the expression.

The rest of this section deals with initializers for objects that have aggregate or union
type.

An array of charactars may be initialized by a character string literal, optionally
enclosed in braces. Suecessive characters of the character string literal {including the
terminating null character if there is room or if the array is of unknown size) initialise the
members of the srray.

An array with element type compatible with wehar t may be initialized by & wide
string litersl, optionally enclosed in braces. Successive codes of the wide string literal
{inciuding the terminating sero-valued code if there is room or if the array it of unknown
size) initialize the members of the array.

Otherwise, the initializer for an objeet that has aggregate type shall be a brace-
enclosad list of initializers for the members of the aggregate, written in inereasing
subscript or member order; and the initialiser for an object that has union type shall be &
brace-enclosed initializer for the first member of the union.

H ihe aggregate contains members that are aggregates or unions, or if the first
member of & union i8 an aggregate or unionm, the rules apply recursively to the
subaggregates or contained unions. H the initializer of o subaggregate or contained union
begins with a left brace, the succeeding initializers initialize the members of the
subaggregate or the first member of the contained union. Otherwise, only emough
initializers from the list are taken to sccount for the members of the first subaggregate or
the first member of the contained union; any remajning initializers are left to ipitialize
the next member of the aggregate of which the current subaggregate or contained union is
8 part. :

H there are fewer initializers in & list than there are members of an aggregate, the
remainder of the aggregate ghall be initialized implicitly the same as objects that have
static storage duration.

59. Un

§3.5.7

fike in the base document, any automatic duratzon object may be initialized,

January 11, 1988 §3.5.7
DRAFT

LANGUAGE 74 DECLARATIONS

If an array of unknown size is initialized, its size is determined by the number of
initializers provided for its members. At the end of its initializer list, the array iz no
longer an incomplete type,

5 Examples
The declaration _
int x{] = {1, 3, § };
defines and initializes X as a one-dimensional array object that has three members, as no
size was specified and there are three initializers,

10 float y(4]1([3] = {

{ 1 * 3‘ 5 }J

{2 4, 8 3},

{3, 5, 71},
}:

15 in a definition with a fully bracketed initialization: §, 8, and 5§ initialize the frst row of
the array object y (0], namely y{0] {0], ¥(0) {13, and y[0] [2]. Likewise the next
two lines initialize y£11 and y{231. The initializer ends early, so ¥y [3] is initialized with
zeros. Precisely the same effect could bave been achieved by

float y{4}[3) = {
20 1, 3, &5, 2, 4, 8, 8, &, 7
};
‘The initializer for y[0] does not begin with a left brace, so three items from the list are
used. Likewise the next three are tsken suecessively for y[1] and y[2]. Also,
float z[4][3] = {
25 {1y, {23 (82 {4
1 ¥
initializes the first column of z as specified and initializes the rest with zeros,
struet { iot &3], v; } w[l ={ {213} 23
is a definition with an inconsistently bracketed initialization. It defines an 2rray with two
30 member structures: wl0] .af0] is 1 and w[1] .20} is 2; all the other elements are rero,
~ The declaration
short ql4][3](2) = {
{1},
{ 2.8},
35 {4,5, 61}
}.
contains an incompletely but consistently bracketed initialization. It defines a three-
dimensional array object: q[O0J [{0] is 1, q[1}{0] {0] is 2, q[1] (0] [1]} is 3, and 4,
5, and 6 initialize q[2] [0] [0], q[2] [C] (1], and q[2] {1} [0], respectively; all the

40 rest are zero. The initializer for g[0] [0] [0] does not begin with a left brace, so up to
six items from the current list may be used. There is only one, so the values for the
remaining five members are initialized with zero. Likewise, the initializers for
ql[11 [0]1 [0} and ql2][0] [@]) do not begin with a left brace, so each uses up to six
items, initializing their respective two-dimensional subaggregates. If there had been more

45 than six items in any of the lists, a diagnostic message would oceur. The same
initialization result could have been achieved by:

§3.5.7 ‘ January 11, 1988 §3.5.7

DRAFT

LANGUAGE 75 DECLARATIONS

short ql4][31(2] = {
1 » P o & Q * ot o £l
2, 3, 0, 0, 0, 0,
4, &, 8
5 };
or by:
short ql4][31[2] = {
{
{1},
10 .
{
{2, 81},
},
{
15 {4, 53},
{8},
}
3
in a fully-bracketed form.
20 Note that the fully-bracketed and minimally-bracketed forms of initialization are, in

general, less likely to cause confusion.
Finally, the declaration
char s8{j = "abc*, tI{3] = "abc",

defines “‘plain’’ char array objects & and © whose members are initialized with character
25 string literals. This declaration is identical to

char s£[] = { 'af, v, ‘!, N0’),
(] =4 "a’, ', "¢’ };

The contents of the arrays are modifiable, On the other hand, the declaration
char *p = “abe";

30 defines a character pointer p that is initialized to point to an object with type “array of
char’ whose members are initialized with a character string literal. I an attempt is
made to use p to modify the contents of the array, the behavior is undefined.

Forward references: common definitions <gtddef .bh> (§4.1.5). °

§3.5.7 . Japuary 11, 1988 : £3.5.7
DRAFT

LANGUAGE 78 STATEMENTS

10

15

20

28

35

40

50

§3.6

3.6 STATEMENTS
Syntax

slatement:
labeled-statement
tompound-statement
crpression-statement
aclection-statement
fleration-slaiement
Jump.statemnent

Semantics

A statement specifies an action 10 be performed. Except as indicated, statements are
executed in sequence.

A full ezpreasion is an expression that is not part of another expression. Each of the
following is a full expression: an initializer; the expression in an expression statement; the
controlling expression of & selection statement {11 or switch); the controlling expression
of a while or do statement; the three express:ons of a for statement; the expresswn ina
returs statement. The end of a full expressicn is a sequence paint.

Forward references: expression and nuli statemesnts {§3.6.3), selection statements
{§3.6.4), iteration statements {§3.6.5), the return statement (§3.6.6.4).

3.8.1 Labeled statements
Syntax

labeled-statement:
identificr © statement
ea5@ consfanl-erpression @ sletement
default : statement

Conntraints

A case or default label shali appear only in s Bwitch statement, Further
constraints on such labels are discussed under the gwitch statement.

Semanties

Any statement may be preceded by a prefix that declares an identifier as a iabel name.
Labels in themselves do not alter the flow of control, which continues ummpeded across
them.

Forward references: the goto statement {(§3.6.6.1), the switch statement (§3.6.4.2).
3.8.2 Compound statement, or block
Syntax

eompound-statement.

{ declaration.list stetemcn!-it';ta?t }

opt
declaration-list:
declaration
declaration-list declaralion
statement-list:
statemeni

-séatemeni-list siafernent

January 11, 1988 £§3.6.2
DRAFT

LANGUAGE 77 STATEMENTS

10

15

25

30

35

40

Semmticau

A compound statem.at (also ealled a block) allows a set of statements to be grouped
into one synitactic unit, which may have its own set of declarations and initializations (as
discussed in §3.1.2.4). The initializers of objects that have automatic storage duration are
evaluated and the values are stored in the objects in the order their declarators appear in
the transiation unit.

3.6.3 Expression and null statements
Syntax
ezércan'on-atctemmt:
ezpression, .
Semnantics

The expression in an expression statement is evaluated as a void expression for its side
effects.®?

A null atatement (consisting of just a semicolon) performs no operations.
Examples

1f-a functicn call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression 1o & void
expression by means of a cast:

iat p{int);
VAN 7
{void) p(0);

In the program fragment

thar »g;
FL A ¥
whiie- (es++ = \O')

*

a null statement is used to supply an empty loop body to the iteration statement.

A nul] statement may also be used to ¢arry a label just before the cloging } of a
compound statement.

while (loopl) {

VL AN 7
while (loeop2) {
FL IR 74

if (wsnt_out)
goto end Joopi;

/e, ./
}
/e, .5/
end_loopl: |

}

60. Such as assigniments, and fubetior calls which have side effects.

§3.6.2

Japuary 11,1988 §3.6.3
DRAFT

LANGUAGE 78 STATEMENTS

15

25

30

35

40

43

50

Forward references: iteration statements {§3.6.5).
3.6.4 Selection statements
Syntax

seleciion-statement: :
it (expression) statement -
1f { exzpression) statement elge sistement
switch (erpression) slatement

Semantics

A selection statement aslects among a set of statements depending on the value of a
controlling expression.

3.6.4.1 The if statement
Constraints

The controlling expression of an 1f statement shall have sealar type.
Semantics

In both lorms, the first substatement is executed if the expression compares unequal
te 0. In the elge form, the second substatement is execuied if the expression compares
aqua] to 0. If the first substatement is reached via a label, the second substatement is not
executed.

An else is associated with the lexically immediately preceding else-less 1f that is in
the same block (but not in an enclosed block). :

3.8.4.2 The svitch statement
Constraints

The contrelling expression of a switch statement shall have integral type. The
expression of each case label shall be an integral constant expression. No two of the
case constant expressions in the same switch statement shall have the same value after
conversion. There may be at mest one defaul?t Iabel in a switeh statement. (Any
enclosed switch statement may have a default label or ¢case constant expressions
with wvalues that duplicate cage constant expressions in the enclosing switeh
statement.)

Sermantics

A gwitch statement causes control to jump to, into, or past the statement that is the
swileh body, depending on the value of a controlling expression, and on the presence of a
default label and the values of any case |abeis on or in the switch body. A cage or
default labe! is accessible only within the ciosest enclosing switch statement.

The integral promotions are performed on the controlling expression. The constant
expression in each case label i converted to the promoted type of the contrelling
sxpression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there is
a dofault label, control jumps to the labeled statement. If no converted cage constant
expression matches and there is no default label, none of the statements in thé switch
body is executed. '

Implementation limits

As discussed previously (§2.2.4.1}, the implementation may limit the number of case
vaiues in 2 switch statement.

§3.6.3 January 11, 1988 ' §3.6.4.2

DRAFT

LANGUAGE 79 STATEMENTS

i0

25

30

35

3.8.5 Iteration statements .

Syntax
stergticn-siatement;
whila (e¢zpreeasion) steletment
do stalement while { ezpression) ;
for ¢ expression, o ; c:prsuwuopt : crpression,, .,) statement
Constraints

The controlling expression of an iteration statement shall have scalar type.
Semantics

An iteration statement causes a statement called the loop body to be executed
repeatedly until the controlling expression compares equal to 0.

3.6.5.1 The while statement

The evaluation of the controlling expression takes place before each exscution of the
loop body.

3.6.5.2 The do staterment

The evaluation of the controlling expression takes place after each execution of the
ioop body.

3.6.5.3 The for statement
Except for the bebavior of a ¢continue statement in the Joop body, the statement
for (ezpresaion-l | expression-2 ; cxpression-§) sta'_f.cmgnt
and the sequence of statemnents

erpresaton-4

while (ezpresaion-£) {
atatemnent
ezpression-9 |

}
are equivalent.®

Both expresaion-l and ezpression.§ may be omitted. Each is evaluated as a void
expression. An omitted ezpression-2is replaced by » nonzero constant.

Forward references: the continue statement {§3.6.6.2).

61, Thus ezpression-] specifies initialization for the loop; ezpression-2, the controlling expression,
specifies an evaluation made before sach itetation, such that execution of the leop continues unéil the
expression compares equal to 0, ezpression-§ specifies an operation (such as incrementing) that is
performed after sach iteration.

§3.6.5

January 11, 1988 §3853
DRAFT

LANGUAGE 80 STATEMENTS

10

15

20

25

35

3.8 1 ump statemnents

Syntax
Fump-stefement:
goto identsfier ;
continne ;
break ; -
raturn e:preagwuom .
Semantics '

A jump statement causes an unconditional jump to another place,
3.6.8.1 The goto statement

Constraints

The identifier in 8 goto statement shall name a label located somewhere in the
eurrent function.

Semsantics

" A goto statement causes an unconditional jump to the statement prefixed by the
named label in the current function.

3.6.6.2 The continue siatement
Constraints

A continue statement shall appear only in or as a loop body.
Semantics

A continue sistement causes & jump to the loop-continuation portion of the smallest
enclosing iteration statement; that iz, to the end of the loop body. More precisely, in
each of the statements

while (/%.. .%/) { do { tor (/=...%/) {
FL R ¥4 FE U ¥ YL N ¥
continue; ¢ontinue; continue;
L 7 FE R ¥ L N ¥

contin: ; contin: ; gontin: ;

} } while (/% . .%/); }

unless the continue statement shown is in an enclosed iteration statement {in which
case it is interpreted within that statement), it is equivalent to goto contin;

3.8.6.3 The break statement
Constraints

A break statementi shall appear only in or as a switch body or ioop body.
Semantics

A Dbreak statement terminates execution of the smallest enclosing switeh or
iteration statement,

§2. Following the contin: label is a null statement.

§3.6.6

January 11, 1988 §3.6.6.3
"DRAFT

LANGUAGE 81 STATEMENTS

10

15

3.60.8.4 The return statement

- Constraints

A Teturr statement with an expression shall not appear in a function whose return
type is void.

Semnantics

A return statement terminates execution of the current function and returns control
to its caller. A function may have any sumber of return statements, with and without
expressions.

If a return statement with an expression is exscuted, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from that of the function in which it appears, it is converted as if it were
assigned to an object of that type.

If a return statement without an expression is executed, and the value of the
function call is used by the caller, the behavior is undefined. Reaching the } that
terminates a fune¢tion is equivalent to executing a return statement without an
expression.

§3.6.5.4 January iI, 1988 §3.6.6.4

DRAFT

LANGUAGE 82 ' EXTERNAL DEFINITIONS

10

25

36

35

3.7 EXTERNAL DEFINITIONS

Syntax
translation-unit:
cxternal-deciaraiion
franalalion-unil external-declarction
ezlernal-deelarction:
Juncison-dzfinition
declaration
Constraints

The storage-class specifiers auto and regisﬁr shall not appear in the declaration
specifiers in an external declaration.

Semantics

As discussed in §2.1.1.1, the unit of program text alter preprocessing is a translation
unit, which consists of a sequence of external declarations. These are described as
“external” because they appear outside any [function {and hence have file scope). As
discussed in §3.5, a declaration that alsc causes storage to be reserved for an object ora
function named by the identifier is a definition.

An external definition is an external declaration that is alse a definition of a function
or an object. If an identifier declared with external linkage is used in an expression {other
than as part of the operand of a 81zeof operstor), somewhere in the entire program
there shail be exactly one external definition for the identifier.®®

3.7.1 Function definitions
Syntax
fenciion-definition:

decfaratwu-apectﬁeﬂop! declarator dec!arntwmi:ataﬂ

Constraints

The identifier declared in a function definition {which is the name of the function)
shall have a function type, as specified by the declarator portion of the function
definition **

The return: type of a function shall be v014 or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern
or statice.

63. Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

64. The intent is that the top type in a function definition cannot be inherited {rom a typede!:

t.ypedsf 1ot F{void): /= type F is “'function of no argements returning 0% %/
/* t and g both have type compatible with F =/
{ /x . %/} /» WRONG: syntax/conatrainl ervor «/
0 { /. =/} /% WRONG: deciares that g réturna g function */
mt. f{void) { fe. . %/} /» RIGHT: t kas type compatible with F »/
int g{) { /% . %/} /% RIGHT: g has type compatibie withF +/
F *elvoid) { /*_ . %/ } /% @ returns o pointer to g futiction %/
F s{{e)){void) { /%.. =/ } /* same: parentheses trrelevant &/
int («fp) {voiag). /% fp pointafv a function that has type F */
F »Fp. /% Fp points fo ¢ function that has fgpe F =/
§3.7 January 11, 1688 ' §3.7.1

DRAFT

composnd-slalement

LANGUAGE : 83 EXTERNAL DEFINITIONS

10

156

20

25

30

35

40

If the declarator includes a parameter type list, the declaration of cach parameter
shall include an identifier (except for the special case of a paraineter list cuusisting of a
single parameter of type vo14, in which there shall not be an identifier). No declaration
list shall follow.

Il the declarator includes an identifier list, only the identifiers it names shall be
declared in the declaration list. An identifier declared as a typedef name shall not be
redeclared as a parameter. The declarations in the declarstion list shall contain no
storage-class specifier other than register and no initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes s parameter type list, the
list also specifies the types of all the parameters; such s declarator also serves as a
funstion prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,”® the types of the parameters may be declared in s
foliowing declaration Hst. Any paramster that is not declared has type int,

If a function that accepts a variable number of arguments is defined without a
parameter type list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of the argument expression shall be converted to
the type of its corresponding parameter, as if by assignment to the parameter. Array
expressions and function designators as argumenis are converted to pointers before the
call. A declaration of = parameter as “array of fype’ shall be adjusted to “pointer to
type,” and a declaration of a parameter as “lunction returning type” shall be adjusted to
“pointer to function returning type,” as in §3.2.2.1.

Each parameter has automatic storage duration. Its identifier is an lvalue®® The
Iayout of the storage for parameters is uaspecified.

Examples
extern int max(int &, int b)

{
return & > b T & . b;

}

Here extern is the storage-class specifier and int is the type specifier {each of which
may be omitted as those are the defaults); max{int %, 1nt b) is the function
declarator; and .

{returna >b ?a : b: }

is the function body. The following similar definition uses the identifier-list form for the
parameter declarations:

extern 1int msax(a, b)
int a, b;
{
return 2 > » T a4 : b,
}

65. See “'future language directions” (§3.8.5).

66. A parameter is in effect declared at the head of the compound statement that constitutes the function
body, and therefore may not be redeclared in the function body {exeept in an enciosed biock}

§3.7.1

January 11, 1688 §3.7.1
DRAFT .

LANGUAGE 84 . EXTERNAL DEFINITIONS

16

15

25

30

40

45

§3.7.1

Here int », b; is the declaration list for the parameters, which may be omitted because
those are the defaults. The difference between these two definitions is that the first form
acis as a prototype declaration that forces conversion of the arguments of subsequent
calls to the function, whereas the aecond form does not.

To pass one function to another, one might say

int f(voigd); -
/5. . .=/
g{f):

Note that £ must be declared explicitly in the calling funetion, as its appearance in the
expression E{f)} was not followed by (. Then the definition of g might read

g{int (=funcpl)(void))
{

}

or, equivalently,

/e .. wf (efunep){) /= or funep() ./

g{int func(void})

{
J. .. xf fune() /v or {sfunci(} ... =/
}
3.7.2 External object definitions
Semantics

If the declaration of an identifier for an object has Ele scope and an 1mtmhzer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an iitializer,
and without a storage-class specifier or with the storage-class specifier static,
constitytes a fentelive definidion. H a transiation unit contains one or more tentative
definiticns for an identifier, and the transiation unit contains no external definition for
that identifier, then the behavior is exactly as i the translation unit contains a fle scope
declaration of that ideatifier, with the composite type as of the end of the translation
unit, with an initializer equal to 0.

II the declaration of an identifier for an object is a tentative definition and has
internal linkage, the declared type shall not be an incomplete type.

Examples
int 11 = & /% definition, ezlernal linkage %/
Stiatlic int 12 = 2; /% definiison, snternal inkage */
externs int 13 = 3; /% definition, externgl linkage »/
int 14; /% tentative definition, external linkage n/
static int 1i5; /% tentative definition, internal iinkage &/
1nt 11, /% valid tentative definition, refers to previous »/
int 12; /% §8.1.2.2 renders wndefined, linkage disagreement »/
int 13, /% palid tentative definition, vefere to previous o/
int 14; /% valid tentetive definition, refers to previous &/ -
int 15: /% §8.1.2 2 renders undefined, linkege disagreement »/

January ki, 1988 £§3.7.2

DRAFT

LANGUAGE

§3.7.2

axtern
extern
extern
aItern
extern

int
int
int
it
int

1x;
12;
13;
14
i5;

85 EXTERNAL DEFINITIONS

/% refers Lo previows, whose inkage (s external 2/
/% refera $o previows, whose linkage ia snternal %/
/% refers to previess, whose linkage vs external v/
/% refers to previous, whose linkage o czterngl n/
/* refera to previows, whoae linkage 40 internal »/

January 11, 1988
DRAFT

§3.7.2

LANGUAGE - ' 86

3.8 PREPROCESSING DIRECTIVES

PREPROCESSING DIRECTIVES

ot

Y replecemenit-list new-line

£3.8

Syntax
5 preprocessing-file:
#roup
group:
group-part
group group-part
10 group-part;
pp-fakenso :mw-h'ne
if-acction
controi-iine
tf-section: _
15 if-group chfwyrupa”t efu-yrupoﬂ endif-line
if-group:;
it conatanl-crpreasion new-line grovp,,
1fdef identificr new-line group
tfnde! sdentifier new-line grau;
20 eltf-groupe.
elif-group
elif-groups elif-group
elif-group:
% elif conslani-cpression new-line group
25 elee-proup:
else netw-line Jrovp o
endif-line;
endif fnew-line
condrai-line:
30 # include pp-fokens new-fine
% define identifier replacement-list new-line
define identifier lparen uien!:ﬁetuhat
undef identifier new-line
line pp-tokens new-line
35 # error pp- tolum new~line
& pragms pp- -tokens. opt new-line
® neu-fine ‘
iparen:
the left-parenthesis character without preceding white-space
40 replacement.-lisl:
pp‘!okens”t
pp-tokena:
preprocessing-token
pp-tokens preprocessing-doken
45 new-line:
the new-iine character
§3.8 Ianuary 11, 1588

DRAFT

LANGUAGE 87 . PREPROCESSING DIRECTIVES

10

18

15
W

30

40

Ducriptio;

A preprocessing directive consists of a sequence of preprocessing tokens that begins
with a # preprocessing token that is the first characier in the source file {optionally after
white space containing no new-line characters) or that follows white space containing at
lsast one new-line character, and ended by the next new.line character ¥

Congtrsintu_

The only white-space characters that shall appear between preprocessing tokens
within a preprocessing directive (from just after the introducing # preprocessing token
through just before the terminating new-line charncter) are space and horisontaltab
(including spaces that have replaced comments in transistion phase 3).

Semantics

The implementation car process and skip sections of source Sles conditionally, include
other source files, and replace macros. These capabilities are called preprocessing,
because conceptually they oceur before transiation of the resulting tranalation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

3.8.1 Conditional inclusion
Constraints

Constant expressions were discussed in §3.4. Additional restrictions apply w a
constant expression that controls conditional inciusion: The expression shall be an

integral constant expression that shall not contsin » g8izeof operator, s cast, or an
enumeration constant. It may contain unary expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 il the identifier is currently defined as a macro name {that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an
intervening #undef directive}, 0 if it is not.

Each preprocessing token that remains after all macro replacements have oceurred
shali be in the lexical form of & token.

Semantics
Preprocessing directives of the forms

if consignl-cxpression new-line grosp

ellf consfani-czpression new-line graup”‘

check whether the controlling constant expression evaluates 1o nonzero.

Prior to evaluation, macro invocations im the Bst of preprocessing tokens that will
become the controlling eonstant expression are replaced {except for those macro names
modified by defined}, just as in normal text. The defined operator shall explicitly
appear in the original list of preprocessing tokens. After all replacements are Bnished the

67. Thus preprocessing directives are commonly called “lines” These “himes’’ have no other syntactic
significanes, ae all white space is equivalent excepl in certain situations during preprocessing (see the
character string literal creation operator in §3.8.3.2, for example).

53.8

January 11, 1988 §38.1
DRAFT

LANGUAGE 88 PREPROCESSING DIRECTIVES

10

i5

20

25

35

40

resulting preprocessing tokens are converted into tokens and then (before the controlling
constant expression is evaluated), all remaining identifiers are replaced with OL and each
integer constant not elready suffixed with 1 or L is considered to be additionally suffixed
with L, Then the usual arithmetic conversions apply during the evalustion of the
expression, which takes place using arithmetic that has at least the ranges specified in
§2.2.4.2. This includes interpreting character constants, which may involve converting
escape sequences intc c¢harscters. Whether the numeric value for these character
constants matches the value obtained when an identical character constant occurs in an
expression (other than within s #1f or #elif dirsetive) is implementation-defined.®
Alzo, whether s single-character character constant may bave s negative value is
implementation-defined.

Preprocessing directives of the forma

1fdet sdenlifier new-line grovy,

1fndef sdentifier new-line group:t

pt

check whether the identifier is or in not eurrently defined as a macro oame, Their
conditions are equivalent to #1f defined identifier and #1f 'defined sdentifier
respectively,

Each directive’s condition is checked in order. If it evaluates to false {zero), the group
that it controls is skipped: directives are processed only through the pame that
determines the directive in order to keep track of the lavel of nested conditionals; the rest
of the directives’ preprocessing tokens are ignored, as are the other preprocessing tokens
in the group, QOnly the first group whose control condition evaiuates 1o true (nongero) is
processed. If none of the conditions evaluates to true, and there is & #01 8¢ directive, the
group controlled by the #else is processed; lacking & #elge directive, all the groups
until the #endif ure skipped.®®

Forward references: macro replacement (§3.8.3), source file inclusion (§3.8.2).
3.8.2 Source file inclusion
Constraints

A #include directive shall identify a header or source fle that can be processed by
the implementation.

Semantics
A preprocessing directive of the form
inclyde <A-thar-sequenced> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified character sequence between the < and > delimiters, and causes the
replacement of that directive by the entire contents of the header. How the places are
specified or the header identified is implementation-defined.

63. Thus the constant expression in the foliowing #1f directive and Lf statement is not guaranteed to
evzluate to the same vaiue in these two contexts.

x1f 'z' - fa’ == 25
1Y (Yt - fg! == 283

69. As indicated by the syntax, a preprocessing token shall not follow » #else or #endif directive
before the terminating new-fine character However, comments may appear anywhere in a source file,
inciuding within a preprocessing directive.

§381 _ January 11, 1988 : §3.8.2

DRAFT

LANGUAGE 88 PREPROCESSING DIRECTIVES

10

15

20

25

30

35

40

A preproé;ssing directive of the form *
inciude "g-char-scquence” neweline

causes the replacement of that directive by the entire contents of the source fle identified
by the specified character sequence between the * delimiters. The named source file is
searched for in an implementation-defined mwanner. I this search is not supported, or if
the search fails, the directive is reprocessed as if it read

include <h-char-seguenced neuline

with the identical contained character sequence {including > characters, if any) from the
original directive,

A preprocessing directive of the form
include pp-lokens new-line

{that does not match one of the two previous forms) is permitied. The preprocessing

tokens sfter include in the directive are processed just as in normal text. {Each

identifier currently defined as s macro name is replaced by its replacement list of
preprocessitig tokens.) The directive resulting after sll replacements thall match one of
the two previous forms.™ The method by whith a sequence of preprocessing tokens
between a < and & > preprocessing token pair or a pair of * characters is combined into a
single header name preprocessing token is implementation-defined.

There shall be an implementation-defined mapping betwees the character sequence
and the external source file name. The implementation shall provide unique mappings for
sequences consisting of one or more letters {as defined in §2.2.1) followed by & period {.)
snd a single letter. The implementation may ignore the distinctions of slphabetical case
angd resirict the mapping to six sigrificant characters before the periocl.

A #include preprocessing directive may appear in a source file that has blun read
because of a #include directive in another file, up te an implementatico.defined nesting
limit (see §2.2.4.1).

Exarples
The most common uses of #include preprocessing directives are sis in the following:

#include <gtdic.h>
#include “wyprog.h*

This example illustrates a macro-replaced #include directive:

#4if YERDION == }

#define INCFILE ®verel.nh®
 #elif VERSION ==

Ndefine INCFILE ‘*verg2l.h*® .

/o end so on =/

#else

#dafine INCFILE “vergN.h*
#endi?f
fe.. e/
#include INCFILE

#0. Note that adjacent string !iterals are not concatenated into a singie string literal (see the transistion
phases in §2.1.1.2); thus an expansion that results in two string literals is an invalid directive.

£§3.8.2 January 11, 1988 §3.8.2

DRAFT

LANGUAGE ' 90 PREPROCESSING DIRECTIVES

10

15

20

25

30

35

4G

Forward references: macro replacement (§3.8.3).
3.8.3 Macro replacement '
Constraints

Two replacement lists are identical if and caly if the preprocessing tokens in both
have the same number, ordering, spelling, 'and white-space separation, where all white-
space separations are considered identical, -

An identifier currently defined as & macre without use of lparen (an object-like macro)
may be redefined by ancther #dafina preprocessing directive provided that the second
definition is an object-like macro definition and the ¢two replacement lists are identical.

An identifier currently defined as a macro using Iparen (& function-like macro) may be
redefined by another #define preprocessing directive provided that the second definition
is & function-like macro definition that has the same number and spelling of parameters,
and the two replacement lists are identical.

The number of arguments in an invocation of & function-like macro shall agree with
the number of parameters in the macro definition, and there shall exist a) preprocessing
token that tarminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope, ’

Semagptics

The identifier immediately following the define is called the macro ngme. Any
white-ypace characters preceding or following the replacement list of preprocessing tokens
are not considered part of the replacement list for either form of macro.

If » # preprocessing token, followed by a name, oceurs lexically at the point at which s
preprocessing directive could begin, the name is not sybject to macro replacement.

A preprocessing directive of the form
tatine identifier replecement-list new-line

defines an cbject-like macro that causes each subsequent instance of the macro pame’™ to
be replaced by the replacement list of preprocessing tokens that constitute the remainder
of the directive. The replacement list is then rescanned for more macro names as
specified below.

A preprocessing directive of the form
define identifieriparen l'd:ﬂttﬁer-h'ﬂ”!) replacement-list new-line

defines 8 function-like macro with arguments, similar syntactically to a functioa call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #define
preprocessing directive, Each subsequent instance of the function-like macro nasme
followed by a (as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching)
preprocessing token, skipping intervening matched pairs of left and right parenthesis

-

© 71 Since, by macro-replacement time, all character constants and string hiterals are tokens, not sequences
of characters possibly containing identifier-like subsequences (see §2.1.1.2, translation phases}, they
are never scanned for maero hames or pararmeters.

§3.8.2 January 11, 1088 . 5383

DRAFT

LANGUAGE ' 91

10

15

30

40

50

ad

PREPROCESSING DIRECTIVES

preprocessing tokens. Within the sequente of preprocessing tokens making up an
invocation of & function-like macro, .pew-line ia considered a normal white-space
character.

The sequence of preprocessing tokens bounded by the outside-most matching
parentheses forms the list of arguments for the function-like macro. The individual
arguments within the list are separated by comma preprocessing tokens, but comma
preprocessing tokens bounded by nested parentheses do not separate arguments. If any
argument consists of no preprocessing tokens, the behavior is nodefined, I there are
sequences of preprocessing tokens within the list of arguments that would otherwise act
as preprocessing directives, the behavior is undefined.

3.8.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a # or #¥% preprocessing token or followed by a £# preprocessing token (see below), iz
replaced by the corresponding argument after all tnacroe contained therein have been
expanded. Before being substituted, each srgument’s preprocessing tokens are completely
macro replaced as if they formed the rest of the source file; no other preprocessing tokens
are available.

3.8.3.2 The % operator
Constraints

Each # preprocessing token in the replacement list for s function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list,

Semantics

- If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the torresponding argument.,
Each occurrence of white space between the srgument’s preprocessing tokens becomes a
single space character in the characier siring literal. White space before the first
preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is
retained in the character string litersl. This requires special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each *
and \ character of a character constant or string literal (including the delimiting *
characters). The order of evaluation of # operators is unspecified.

3.8.3.3 The %2 operstor
Constraints

A #% preprocessing token shall mot oceur at the beginning or at the end of a
replacement list for either form of macro definition.

Semantics

If, in the replacement list, a parametsr is immediately preceded or followed by a #%
preprocessing token, the parameter is replaced by the correspending argument’s
preprocassing token seguence.

For both object-like and function-like macre invocations, before the replacement list is
resxamined for more macro names to replace, each instance of a ## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatensted with the following preprocessing token. If the result is not a valid
preprocessing token, the behavior is undefined. The resulting token is svailable for
further macro replacement. The order of evaluation of ## operators is unspecified.

§3.8.3 Japuary 11, 1888 §3.8.8.3

DRAFT

LANGUAGE 82 PREPROCESSING DIRECTIVES

3.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted, the resulting
preprocessing token sequence is rescanned with the rest of the source file’s preprocessing

5 tokens for more macro names to replace. _

If the name of the macro being replaced is found during this scan of the replacement
list {not including the rest of the source file’s preprocessing tokens), it is not replaced,
Further, if any nested replacements encounter the name of the macro being replaced, it is
not replaced. These nonreplaced matro name preprocessing tokens are no loager

10 available for further replacement even if they are later (reexamined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

The resalting completely macro-replaced preprocessing toksn sequence is not
processed as & preprocessing directive even if it resembles one,

15 3.8.3.5 Scope of macro definitions

A macro definition laste (independent of bilock structure) until a corresponding
#undef directive is encountered or (if none is encountered) until the epd of the
translation unit,

A preprocessing directive of the form

a6 # undsf identifier new-ifne
causes the specified identifier no longer to be deﬁned a5 & MACTO DAMS. It is ignored if the
specified identifier is not currently defined as & macro name.
Examples
25 The simplest use of this facility is to define a “manifest copstant,” as ip
#define TABSIZE 100
1nt table [TABSIZE];
The loliowing defines s function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the srguments
30 =mnd of genersting in-line code without the overhead of function calling. It has the
disadvantages of evaluating one or the other of its arguments a second time (including
side effects) and of geperating more code than a function if invoked several times.
#detfine max(a, b) ({a) > () * (a) : (b))
The parentheses ensure that the arguments and the resulting expression are bound
35 properly.
To illustrate the rules for redefinition and reexsmination, the sequence
§3.835.3 January 11, 1988 53.83.5

DRAFT

LANGUAGE | 93 PREPROCESSING DIRECTIVES

#dafkne L 3
#define f(a) £(x = (a)}

#undef x
#define x 2
5 #define g £
f#define z zi0}
#define h gl~
#define mla) alw)
#deflne w 0.1
10 #define t{a} a
T y+1) + £(2(2)) % vl (g){V) + t3(1);
g{x+(3,4)-v) | b B) & =
(€S0 1¢)
resuits in
15 (2 = (y+13) + £42 = (2(2 » (2{0]0303 % 2(2 » {(0)) + ©(1):
2{(2 » (2+(3,4)-0.18)) | £(2 = (~ B)) & £{2 « {0,1))*n(0,1);
To illusirate the rules for creating character string literals and concatenating tokens,
the sequence
#define str(s) t e
20 #define xatris) grrix)
#define debug(s, t) priptf(*x* # g *= %4, " # ¢t *= %5", \
X M g, X NE L)
#define INCFILE(D) vers ## n /* from previows #include czample »/
#define glue(a, B} a ®%# D
25 #define xgluela, b) glue(a, b)
define HIGHELOW "hello"
#define LOW LOW *, worla*
dedug(i, 2):
fputs {str(strocap(*abe\0d*, "ade®, '\4') /» this goes away =/
30 == Q) str{: ®\n), B); :
#inclyde xstr(INCFILE{2) .h)
glue (HIGH, LOW)
xglue (HIGH, LOW)
results in
35 printf(*x= =1= == %4, x* =2" *= %¥5", xi, x2);
fputs {(*strocep{\"abc\\0d\"*, *abc\", \\4') == 0" ": @\p", s5);
#inclode *vers2. h" {after mecro replacement, before file sceces)
“hello"
*hello” ", worlad"
40 or, afier concatenation of the characier string liverals,
printr{"xi= %4, x2= %Xs*. x1. x2).
fputs(*strocep(\"abe\\0d*, *adc\". '\\4’) == 0: @\n", &):
#include *vers2.h" fafter maero replacement, before file acceeas)
- *hello*
45 *hello, world* _
Space around the # and ## tokens in the macro definition is optional.
And finally, to demonstrate the redefinition rules, the following sequence is valid,
§3.8.3.5 January 11, 1088 §3.8.3.5

DRAFT

LANGUAGE . o4 PREPROCESSING DIRECTIVES

10

15

25

30

35

zdefine CBJ_LIKE (1~1)

#define OBJ_LIKE - /» white space =/ (i~1) /% other «/
#define FTN_LIKE(a) (&)

#define FIN_LIKE(3 J{ /% note the white space =/ \

a /¢ other stuff oz this line
/)
But the following redefinitions are invalid: -

#define OBJ _LIKE (0 /* different loken sequence o/

#define 0OBJ LIXE (1 = 1) /% different while spuce */
#define FTN _LIKE(d) (a) /% different parameter wsage »/
#define FTN_LIKE(B) (b) /% different parameter spelling «f

3.8.4 Line control
Constraints

The string literal, if present, shall be a chua’eter string literal,
Semantica

The line number of the current source line is cne greater than the number of new-line
characters read or introduced in transiation phase I (§2.1.1.2) while processing t.he souree
file 1o the current token.

A preprocessing directive of the form
lipe digil-ecquence new-line

causes the implementation to behave as if the following sequence of source lines bagins

with & source line that has a line number as specified by the digit sequence {interpreted as

a decimal integer). _
A preprocessing directive of the form
line digit-aequence siring-titeral new-line

sets the line number similarly and changes the presutned name of the source file to be the
characters contained within the character string literal.

A preprocessing directive of the form
line ppelokens newsiine

{that does not match one of the two previous forms) is permitted. The preprocessing
tokens after 1ine on the directive are processed just as in normal text {each identifier
currently defined as a macro name is replaced by its replacemment list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

3.8.5 Error directive
Semantics
A preprocsssing directive of the form
B arror pp-lokcmaﬂ new-fine
causes the implementsation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

£§3.8.35 . January 11, 1988 §3.8.5

DRAFT

LANGUAGE

g5 PREPROCESSING DIRECTIVES

3.8.6 Pragma directive

‘Semnatics

A breprocessing directive of the form

pragna pp-tol;nn opt new-fine

causes the implementation to behave in an nmpiemcutat:on-deﬁned manner. Any pragma
that is not recognized by the implementation is ignored.

3.8.7 Null directive

Semantics

A preptrocessing directive of the form

neoweline

has no effect,

3.8.8 Predefined macro names

The following macro names shall be defined by the implementation:
__LINE__
__FILE__

20 __DATE__

25 _ TIME__

81pC

The line number of the current source line {a decimal constant),
The presumed name of the source file {n character string literal).

The date of transiation of the source file (& character string liters] of the
form *MaE dd yyyy*, where the names of the months are the same as those
generated by the apctine function, and the brst character of ¢4 15 a space
character if the wvalue is less than 10). If the date of transiation is pot
available, an implementation-defined valid date shall be supplied.

The time of translation of the source file (a character string litersl of the
form "bhh:mm:88" as in the time generated by the asctime function). If
the time of translation is not available, an implementation-defined valid time
shall be supplied.

the decimal constant 1.7%

30 The values of the predefined macros {except for __LINE _ and _ _FILE_ _) remain
constant throughout the translation unit.

Nooe of thess macro names, nor the identifier defined, shall be the subject of 5
#define or s #undef preprocessing directive. All predefined macrc names shall begin
with 3 leading underscore foliowed by an upper-case letter or & second underscore.

Forward references: the asctime function (§4.12.3.1).

amby

72. Thus indicsting a Standard-conlorming implementation.

§3.88

January 11, 1988 §3.8.8
DRAFT

LANGUAGE 96 FUTURE LANGUAGE DIRECTIONS

0

20

§3.8

3.0 FUTURE LANGUAGE DIRECTIONS
3.9.1 External names

Restriction of the significance of an external name to fewer than 231 characters or to
cnly one case is an obsolescent feature that is a concession to existing implementations.

3.9.2 Character escape sequences

Lower-case letters as escape sequences are reserved for future standardization. “Other
characters may be used in extensions.

3.9.3 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the
declaration specifiers in a deelaration is an obsolescent feature,

3.9.4 Function declaratora

The use of function declarators with empty parentheses (not prototype-format
parameter type declarstors) is an obsolescent feature.

3.9.5 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an cbsolescent
feature.

January 11, 1688 §3.93
DRAFT

Proposed C Standard 7 LIBRARY

10

1%

25

30

35

40

45

4. LIBRARY

4.1 INTRODUCTION
4.1.1 Definitions of terms

A atring is an array of characters terminated by a null character, It is represented by
a pointer to its initial {Jowest addressed) character and its length is the pumber of
cbaracters preceding the null character.

A leiter is a printing character in the execution character set corresponding to any of
the 52 required lower-case and upper-case Jetter characters in the source character set,
listed in §2.2.1,

The decimal-poin? characier is the character used by functions that convert Boating-
point numbers to or from character sequences to denote the beginning of the fractional
part of such character sequences.’ It is represented in the text and examples by a peried,
but may be changed by the petlocalie function.

Forward references: the getlocale function {(§4.4.1.1).
4.1.2 Headers

Esch library function is declared in a header,” whose contents are made available by
the #include preprocessing directive. The header declares a set of relaied functions,
plus any pecessary types and additional macros nesded to facilitate their use. Each
beader declares and defines only those identifiers listed in its associated section. All
externs] identifiers declared in any of the headers are reserved, whether or not the
associated header is included. All external identifiers that begin with an underscore are
reserved. All other identifiers that begin with an underscore and ejther an npper-case
letter or another underscore are reserved. if the program defines an external identifier
with the same pame as a reserved external identifier, ever in a semantically equivalent
form, the bebavior is uvndefined.

The standard headers are

<assert.b> <locale.k> <stddef .h>
<ctype. k> <gath.h> <gtdic.h>
<errpe.b> <set}imp.h> <gtdlid.h>
<fiocat.b> <Fignal.:> <BLTing.bh>
<limits.h> <gtdarg.b> <tize.h>

If & file with the same pame as ope of the above < and > delimited sequences of
characters, not provided as part of the implementation, is placed in any of the standard
places for a souree file to be inciuded, the bebavior is undefined.

Headers may be included in any order; each may be included more than once in a
given scope, with no eflect different from being included only once, except that the effect
of including <agmert.h> depends on the definition of NDEBUG. I uted, a header shall be
included outside of any external declaration or definition, and it shall Arst be included
before the first reference to any of the functions or objscts it declares, or to any of the
types or macros it defines.

73. The functions that make use of the decimal-point character are localeconv, fprintf, fecant,
priptf, scasf, sprintf, secand viprintd vprintf, veprintf, atof, and strted

74. A header is not Decessatily a soures file, nor are the < and > delimited sequences of characters o
header names necessarily valid source file names.

84,

Japuary i1, 1988 §4.1.2
DRAFT

LIBRARY 98 INTRODUCTION

10

15

20

25

30

30

Forward ::eferenew diagnostics (§4.2). |
4.1.3 Errors <errno.h>

The header <arrno.h> defines several mareros, all relating to the reporting of error

_conditions.

The macros are

EDDM
ERANGE

whick expand to distinct nonsero integral constant expressions; and
arrao

which expands to & modifiable lvalue’™ that has type 1nt, the value of which is set to a
positive error tumber by several library functions. It is initialized to gero st program
startup, but is never set to zero by any library funetion.” The value of errno may be
set to nontersc by a library function call whether or not there is an error, provided the use
of errho is not documented in the description of the function in the Standard.

Additional macre definitions, beginning with E and an upper-case letter,”” may also be
specified by the implementation.

4.1.4 Limitas <float.h> and <limits.hL>

The headers <f1oat.b> and <1imi1t® . h> define severa) macros that expand to
various limits and parameters.

The macros, their meanings, and their minimum magnitudes are linted in §2.2.4.2.
4.1.5 Common definitions <stddef.h>

Some of the following types and macros ars defined in several headers referred to in
the descriptions of the functions declared in that header. They are also defined in 2
cominon standard header, <gtddef .b>.

The types are
ptraiff t
which is the signed integral type of the result of subtracting two pointers;
Bize_t
which is the unsigned integral type of the result of the 81ze0f operator; and
wchar_t

wkich is an integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales; the
null character shalf have the code value zero and each character defined in §2.2.1 shall
have s code value equal to its value when used ss the lone character in an integer
character constant.

75. The macro errne need not be the identifier of an object. It might be & medifiable Ivalue resulting
from a function call (for example, ¥_errac{)}).

78, Thus, a program that uses errno for error checking should set it to zero before a library function
call, then inspect it before a subsequent library function call.

77. See “'future library directions” (§4.13.1).

§4.1.2

January 11, 1988 £4.1.5
DRAFT

LIBRARY 09 INTRODUCTION

The macros are
NULL :
which expands to an impiementation-defined null pointer constant; and
offseso! {iype, ddentifier)

5 which expands to an integral constant expression that has type size_%, the value of
which is the offset in bytes, to the structure member {designated by sdentifier), from the
beginning of its structure (designated by type). (If the specified member is a bit~field, the
behavior is undefined.)

16 Forward references: localization (§4.4).
4.1.6 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the

detailed descriptions that follow. If an argument tc a function bas an invalid value {suck

15 s s vajue outside the domain of the function, or & pointer outside the sddress space of

© - the program, or & null pointer), the behavior is undefined. Any function declared in &

hesder may be implemented as a macro defined in the header, 80 2 library function should

not be declared explicitly if its header is included. Any macro definition of a function can

be suppressed locally by enclosing the name of the function in parentheses, because the

' 20 name is then not followed by the left parenmthesis that indicates expsnsion of a macro

function name. For the same syntactic reason, it is permitted to take the address of »

library function even if it is also defined as a macro. The use of #undef to remove any

macro definition will alsc ensure that an sctual function is referred t0. Any invoeation of

a library function that is implemented as » macro will expand to code that evaluates each

25 of its arguments exactly once, fully protected by parentheses where necessary, so it is

generally sale tn use arbitrary expressions as arguments. Likewise, those Tunction-like

macros described in the following sections may be inveked in an expression anywhere »
function with a compatible returp type could be called.™

Provided that a Hbrary function can be declared without reference to any type defined

30 in a header, it is also permissibie to declare the functicn, either explicitly or implicitly,

and use it without including its associated header. If & fupction that accepis & varisble

number of arguments is not declared {explicitly or by inciuding its associated header), the
behavior is undefined.

78. Because externa! identifiers and some macrc names beginding with an underscore are reserved,
impiementationt mMmay provide apecial semantics for such names. For example, the identifier
BUILTIN abs could be used to indicate generation of in-iine code for the ubs function Thus the
Bppropriate header could specily

sdefipe abs(x) BUILTIN abe(x)

for a tompiler whose code generator will accept it
In this manner a user desiring to guarantee that s given library function such as abg will be 3
genuine fyncticn may write

 #undef sbe

whether the implementation's header provides & maero impiementation of abs or a builtin
impiementation. The prototype for the function, which precedes and is hidden by any macro
degnition, is thereby reveaied also

§4.1.5 * Japuary 11, 1988 . £4.1.6
DRAFT '

LIBRARY 100 INTRODUCTION

Examples -
The fupction atol may be used in any of severa! ways:
s by use of its associated header {possibly generating a macro expansion}

#include <stdlid.h>
5 Jx_ ../
1 = atoi(str);

-

¢ by use of its associated header (assuredly generating a true function reference)

#include <Btdlib.h>
#undaf atel

10 Ve N ¥4
i = stol(str);

or

#include <gtdiid. h>
Fe N 7
15 1 = (atoi) (str);

« by explicit deciarstion

extern int stol{congt nosliag char =);
Sx, %/
i = atel{str):

20 » by implicit declaration

VLTS V4
1 = atoi(str);

§4.1.6 Jspuary 11, 1988 3418
’ DRAFT -

LIBRARY 101 DIAGNOSTICS <aggart.h>

10

20

25

4.2 DIAGNOSTICS <assert.h>
The header <asgert.h> defines *he #3371t macro and refers to asother macro,
NDEBUG

which is not defined by <assert. h>. f NDEBUG is defined as s macro name at the point
in the source file where <agsert._h> is included, the apgert macro is defined simply as

#define asserv(ignore)

The assert macre shall be implemented as a macro, not as an actual function. If the
macre definition is suppressed in order to aceess an actual function, the behavior is
undefined.

4.2.1 Program diagnostics
4.2.1.3 The assert macro
Synopsia

#include <assert.h>
vold assert{int expression);

Description

The &888rt macro puts diagnosties into programs. When it is executed, if
expression is false {that is, compares equal to 0), the R8seTt macro writes information
about the particular call shat failed {including the text of the argument, the name of the
source file, and the source line number — the latter are respectively the values of the
preprocessing macros __FILE and _ _LINE__) on the standard error file in an
implementation-defined format.™ It then calls the abort function.

Returna
The aggart macro returns no value,

Forward references: the abort function (§4.10.4.1).

79. The tnessage writter might be of the form

§4.2

Assertion failed. expreasion, file zyz, line ann

January 11, 1988 $4.2.1.1
DRAFT

LIBRARY 102 CHARACTER HANDLING <ctype.b>

4.3 CHARACTER HANDLING <ctype.h>

The header <ctype.h> declares several functions useful for testing and mapping

characters® In all cases the argument is an int, the value of which shall be

5 representable as an unsigned char or shall equal the value of the macro EOF. If the
argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have no implementation-defined aspects in the *C" locale are noted below. -

The term priniing chargcter refers to a member of an implementation-defined set of
10 ceharacters; each of which occupies one printing position on a display device; the term
cantrol chardacter refers to 3 member of an implementation-defined set of characters that

are not printing characters.®

Forward references: EOF (§4.9.1), localization (§4.4).
4.3.1 Character testing functions

The functions in this section return nonzero (true) if and only if the value of the
argument ¢ conforms to that in the description of the function.

20 4.3.1.1 The 1szalnum function
Eynopsis

#include <ctype . B>
10t isalnus{int ¢);

Deicripﬁon
The 1sslnum function tests for any character for which isalpha or imdigit is
true,
30 4.3.1.2 The icalpha function
Synopeis

#include <ctype.h>
int imzlpha{int ¢);

Deaeription

The 1salpha function tests for any character for which 1gupper or islower is
true, or any of an implementation-defined set of characters for which none of i1scntrl,
isdigit, igpunct, or 1espace is true. In the "C* jocale, 18alpha returns true only

40 for the characters for which 1gupper or 1slower is trye.

4.3.1.3 The iscntrl function
Synopsis

45 #include <ctype.h>
1nt iscnvri(int c),;

" 80, See ‘future library directions'’ ($4.13.2).

" B81.in an implementation that uses the seven-bit ASCH character set, the printing characters are those
whose values lie from 0%x20 (sg‘ac‘} through Ox7E {tilde), the control characters are those whose values
lie from O [NUL) through Ox1F (US), and the character ox7F (DEL}.

§4.3 January 11, 1988 §4.3.1.3
DRAFT

LIBRARY 103 CHARACTER HANDLING <ctype.bh>

10

Deacription

The 1scntrl function tesis for any control character,
4.3.1.4 The 1sdigi¢ function
Syoopsis

#include <ctype.bd>
int isdigit(dint ¢);

Description
The 18digit function tests for any decimal-digit character (as defined in §2.2.1).
4.3.1.5 The isgraph function

15 Synopsis
#include <ctype.bd>
int 1sgraph{int c¢);
Description
20 The 1agraph function tests for any printing character except space (' f).
4.3.1.8 The islower function
Synopsis
25 #include <ctype.h>
int islower(int cl);
Description
The 1siower function tests for any lower.case letter or any of an implementation-
30 defined set of characters for which none of 1sentrl, igdigic, §spunct, or isgpace is
true. In the "C* locale, 18lower returns true only for the charncters defined as lower-
case jetters {as dafined in §2.2.1).
4.3.1.7 The isprint funetion
Synopsis
#include <ctype.h>
int isprist(int c);
40 Description
The 1sprint function tests for any printing character including space (! *}).
4.3.1.8 The ispunct function
45 Synopsis
#include <ctype.h>
int ispumct(int c):
Description
50 The ispunct function tests for any printing character except space (') or a
character for which 1salnum is true,
$43.1.3 January 11, 1988 §4.3.1.8

DRAFT

LIBRARY 1046 CHARACTER HANDLING <ctype.h>

10

30

40

45

4.3.1.9 The isspace function
Synopais

#include <ciype.h>
int 1zspace(int ¢);

Description

The isspace function tests for the standard white-space characters or for any of an
implementation-defined set of characters for which i1palnum is false. The atandard
white-space characters are the following: space (¥ 7}, form feed (’\£'), new-line {\2'}),
carriage return (\r’), borizontal tab {’\v’}), and vertical tab (\v’). In the *C" locale,
1sspace returns true caly for the standard white-space characters. :

4.3.1.10 The isupper function
Synopais

#include <ctype.bh>
int isupper{int c¢);

Description

The 1supper function tests for any upper-case letter or any of an implementation-
defined set of characters for which pone of isentrl, 1adiglt, 18puUNCS, or 1ESpACR is
true. In the *C* locale, 1gupper returns true only for the characters defined as upper-
case letters (as defined in §2.2.1).

4.3.1.11 The isxdigit function
Synopsis

#include <ctype.h>
int texdigit(int c);

Description

The 1mxdigit Function tests for any hexadecimal-digit character (as defined in
§3.1.3.2).

4.3.2 Character case mapping functions
4.3.2.1 The toclowser function
Sypopnia

#include <ctype.b>
int tolower(int ¢);

Description

The tolowsr function converts an upper-case letter to the corresponding lower-case
letter,

Returns

I the argument is an upper-case jetter, the tolower function returas the
corresponding lower-case letter if there is obe; otherwise the argument is returned
unchanged. In the *C* locale, tolower maps only the charascters for which 1supper is
true to the corresponding characters for which 1alower is true. '

§4.3.19 Janusry 11, 1088 . §4.3.2.1

DRAFT

LIBRARY - 105 CHARACTER HANDLING <ctype.X>

4.3.2.2 The toupper function

Synopsis o
#include <ctype.h>
5 int toupper(int ¢);
Deseription
The toupper function converts s lower-case letter to the corresponding upper-case
tetter.
Returns

I the argument i= a Jower-case letter, the toupper function returns the
corresponding upper-case letter if there is one; otherwise the argument is returned
unchanged. In the "C* locale, toupper maps cnly the characters for which 1slower is

15 true to the corresponding characiers for which 1supper is true.

§4.3.2.2 Jmuaéy x;. '}sss §4.3.2.2
"DRA

LIBRARY

i0

15

" 20

25

30

35

40

4.4 LOCALIZATION <locale.h>

108

LOCALIZATION <iocale . h>

The header <locale.h> declares two functions, cne type, and defines several macrce,

The type is
sirue

t lconv

which contains members reiated to the formatting of tumeric values. The atrecture shail
contain at least the foliowing members, in any order. The semantics of the memivers and
their normal ranges is explained in §4.4.2.1. In the *C* Joecale, the members shall have
the values specified in the comments,

char
char
char
char
char
char
char
char
char
. el
char
char
¢har
char
char
char
char

wdeciral_point;
«thousands_s5ep.
=grouplag;
=int_curr_gyabol,
kCUrrency _syambol;
spon_decimal_potnt;
spon_thousands_sep;
*Ron_grouping:
spositive_sign,
xnegative _sign.
frac digite;

pP_CE _precedes;
p_sep_by_s=pace;
n_cs_precedes;
n_sep Dy_space;
P_S1ED_posn;

n_sign posn;

Vi
/=
Fi
/%
/e
/.
L
/*
i
P
S
/»
Fd
/»
/.
Je
/.

l_ﬂ .-/
L2 */
- -/
LR ‘/
LL Y
=a ‘/
LE] ‘./
e '/
- ‘/
LA ¥
CHAR_MAX
CHAR_MAX
CHAR_NAX
CHAR_MAX
CHAR_MAX
CHAR_MAX
CHAR_MAX

The macros defined are NULL (described in §4.1.5); and

LC_ALL
LC_COLLATE
L& CTYPE

LC_MONETARY
LC_ NUMERIC

Le T

ME

»/
w/
%/
»/
»/
s/
w/

which expand to distinct integral constant expressions, suitable for use as the first
argument to the getlocale function. Additional macro definitions, beginning with the
characters LC_ and an upper-case letter,* may also be specified by the implementation.

4.4.1 Locale contro}
4.4.1.1 The setiocale function

Synopsis
#inct

ude <locale. k>

char sgetlocale(int category, const noalias char slocaled;

82, See “Tuture library directions” (§413.3}.

§4.4 .

January 11, 1988

DRAFT

§4.4.1.1

LIBRARY - ’ 107 LOCALIZATION <iocale.h>

10

is

20

25

30

35

Description.

The setlocale function selects the appropriaie portion of the program’s locale as
specified by the categoTy and locale arguments. The setlovale function may be
used to change or query the program's entire current locsle or portions thereof. The
value LC_ALL for category names the program’s entire locale; the other values for
category name only 8 portion of the program’s locale. LC COLLATE affects the
bebavior of the strcoll and strxfras functions. L.C_CTYPE aflects the behavior of the
character handling functions™ and the multibyte functions. LC_MONETARY affects the
monetary formatting information returned by the locsleconv function, LC_KUMERIC
aflects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the non-monetary formatting information returned
by the 1oeslecony function. LC_TIME affects the behavior of the strftize function.

A value of "C*® for locale specifies the minimal environment for C translation; a
value of "* for locale specifies the implementation-defined native environment. Other
implementation-defined strings may be pessed as the second argument to setlocals.

At program startup, the equivalent of
setlocals(LC_ALL, "C%;;
Is executed,

The implementation shall behave as if no library function ealls the setlocale
funetion. '

Returna

H a pointer to a string is given for 1ocale and the selection can be honored, the
setlocale function returns the string asscciated with the specified category for the

_new jocale. If the selection cannot be honored, the getlocale function returne » nuil

pointer and the program’s locale is not changed.

A pull pointer for locals causes the setlocale function to return the string
associated with the category for the program’s current Jocale; the program’s locale is
not changed,

The string returned by the petlocale function is such that a subseguent call with
that string and its associated category will restore that part of the program’s locale. The
string returned shall not be modified by the program, but may be overwritten by a
subsequent call to the setlocsal e function.

Forward references: formatted input/ocutput functions (§4.9.6), the multibyte
character functions {84.10.7), the mukibyte string functions (§4.10.8), string conversion
functions (§4.10.1}, the strooll function (§4.11.4.3), the stritvine function {§4.12.3.5),
the strxfTe function (§4.11.4.5).

£

23. The only functions 1n §4.3 whose hehavior is not afected by the current locale are i8digit and
isxdigit.

§4.4.1.1 Junuary 11, 1088 34.4.1.1

DRAFT

LIBRARY

10

Is

25

30

35

40

45

§4.4.2

108 LOCALIZATION <locale.b>

4.4.2 Numeric formatting convention inquiry
4.4.2.1 The localeconv function

Synopsis
#include <locale.h>
etruct leonv slocaleconv(vold):
Dencription | -~
The localecony function sets the components of ap object with type svrucy

lcony with values appropriate for the formatting of numeric quantlt:es {mouetary and
otherwise)} according to the rules of the current locale.

The members of the structure with type char ® are strings, any of which {except
decinal point) can point to **, to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
nutmbers, any of which can be CHAR_MAX to indicate that the value is not available in the
current locale. The members include the following:

char

char

char

char

char

char

char

char

char

char

char

*decimal_polnt
The decimal-point character used to format non-monetary quantities.

=thousands_sep
The character used to separate groups of digits to the left of the decimal-
point character in formatied non-monstary quantities.

sgrouping
-A string whose elements indicate the size of each group of digits in formatted
nOn-monetary quantities.

*int_curr_syabol
The international currency symbal applicabie to the current locale, left-
justified within u four-character space-padded field. The character sequences
shall be iz mccordance with those specified in: ISO (217 Codea for the
Representation of Cerrency and Funds.

seurrency_syebol
The jocal currency symbol applicable to the current locale.

smon_deciaal point
The decimal-point used to format monetary quantitiss,

snonh_thousands_sep
The separator for groups of digits to zhe left of the decimal-point in
formatted monetary quantities.

*Bon_grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.

*positive_sign
The string used to indicate a nonnegative-valued formatted monetary
guantity.

*nagative_align .
The string used to indicate a negative-valued formatted monetary qusntity.

frac_digite
The number of fractional digits {those to the right of the decimal-point) to be
displayed in a formatted monetary quantity.

January 11, 1988 §4.4.2.1
DRAFT

LIBRARY 108

10

13-

20

25

30

35

40

45

LOCALIZATION <locale.h>

char p_cs precedes
Set to | or 0 if the currency_symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity.

char p_siep_by_Bpaca
Set to | or 0 if the currency_symbol respectively is or is not separated by
a space from the value for » Donnegative formatied monetary quantity,

char n_¢s_precedes .
Set 10 | or O if the currency_syabol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

char B_sep by Epace
Set to 1 or 0 if the currency_syabol respectively is or is not separated by
a space {rom the value for a negative formatted monetary quantity.

char p_sign_posn ' _
Set to a value indicating the pesitioning of the positive_gign for a
nonnegative formatted monetary quantity.

char n_sign_posn
Set to a value indiesting the pesitioning of the negative gign for a
negative formatied monetary quantity. -

The clements of grouping and mon_grouping are interpreted according to the
foliowing:

MAX_CHAR No further grouping is to be performed.

o] The previous element is to be repeatedly used for the remainder of the
digits.
other The value is the number of digits that comprise the current group. The

pext element is examined to determine the size of the next group of digits ta
the left of the rurrent group.

The value of p_sign_posu and n_sign_posn is interpreted according to the
following: ‘

© Parentheses surround the quantity snd eurrency_symbel.

The sign string precedes the quantity and currency symbol.
The sign string succeeds the quantity and currency_symbol.
The sign string immediately precedes the currency_ﬁynbol.

- W N s

The sign string immediately succeeds the currency_sysbol.

The impiementation. shall behave as if no library function ealls the localeconv
function.

Returns

The Iocaleconv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to the localeconv function. In addition, ealls to the
gatlocale function with categories LC_ALL, LU_MONETARY, or LC_NUMERIC may
overwrite the contents of the structure.

Examples

The following table illustrates the rules used by four countries 1o format monetary
Guantities, '

§4.4.2.1 January 11, 1988 §4.4.2.1

DRAFT

LIBRARY 110 LOCALIZATION <locale.h>

Country’ Positive format Negative formut International format
Faly L.1.234 -L.1.234 1TL.1.234
Netherlands F 1.234.58 F -1.,234.58 NLG 1.234,58
Norway kri.234,56 kri.234,56- NOK 1.234,58

5 Switzerland SFre.1,234 .88 &SFrg.1,234.58C CHF 1,234.58

For these four countries, the respective values for the monetary members of the
structure returned by localecony are: :

Italy Netherlands Norway Switgerland
int_eurr _symbol *ITL." *NLG " "NOK * “CHF *

10 currency_sysbol *L.* *F* *¥r* "SFre."
aon_decimal point »e .. .- ...
mon_thousande_sep .= .. - . .
mon_grouping *\3* 3 *\3* "\3"
positlve sign "o . .. us

15 negative sign i N —n e
frac_digits o 2 2 2
p_cs_yprecedes 1 1 1 1
p_Bep_bY_s8pace 0 1 0 o
R_cB_precedes 1 1 i 1

20 n_sep_by_space ¢ 1 0 0
p_eign_posn 1 1 1 1
n_sign posn i 4 2 2

§44.21 January 11, 1988 , §4.4.2.1

DRAFT

LIBRARY | 111 MATHEMATICS <math.h>

10

15

20

40

4.5 MATHEMATICS <math.h>

The header <matl.h> declares several mathematical functions and defines one maero.
The functions take double-precision arguments and return double-precision values™
Integer srithmetic functions and conversion functions are discussed later.

The macro defined is
HUGE_VAL
which expands to a positive double expreasion, not necessarily representable as a £10at.

Forward references: integer arithmetic functions (§4.16.8), the atof function
{§4.10.1.1}, the Btrtod function {§4.10.1.4).

4.5.1 Treatment of error conditions

The behavior of each of these functions is defined for all representabls valuss of its
input arguments. Each function shall execute as if it were 8 single operstion, without
generaiing any externally visible exceptions.

For all functions, a doemain errar oecurs if an input argument is outside the domain
over which the mathematical funetion is defined. On a domain error, the function
returns an implementation-defined value; the vslue of the macro EDOM is stored in
eTrrno.

Similarly, a range error oceurs if the result of the function cannot be represented as &
aouble value. If the resuit overflows {the magnitude of the result is so Jarge that it
cannot be represented in an object of the specified type), the function returns the value of
the macro HUGE_VAL, with the same sign as the correct value of the function; the value
of the macro ERANGE is stored in errno. I the result underflows (the magnitude of the
result is so small that it cannot be represented in an object of the specified type), the
function returns zero; whether the integer expression errno scquires the value of the
macre ERANGE is implementation-defined.

4.5.2 Trigonometric functions
4.5.2.1 The ac¢os function
Synopsis

#incliude <path.>
double acos(doudle X}

Description

The acos function computes the principal value of the arc cosine of x. A domain
error occurs for arguments not in the range [-1, 4 1].

Returns

The scos function returns the arc cosine in the range [0, 7} radians.

P

84. See “future library directions™ {§4.134)

£4.5

January 11, 1988 §4.5.2.1
DPRATFT

LIBRARY 112 MATHEMATICS <math.bh>

a0

35

40

80

4.5.2.2 The asin function
Synopsis

#include <path.h>
double ssin(doudble X};

Description

The asin function computes the principal value of the arc sine of x. A domasili error
occurs for arguments not in the range [-1, +1].

Returns -

The agin function returns the arc sine in the range -n/2, + #/2] radians.
4.5.2.3 The atan function
Synopsis

#incliude <eath.h>
double atan{double x).

Description

The atan function computes the principal value of the arc tangent of x.
Returns '

The atan function returns the arc tangent in the ran.ge .[-3/2, +n/2] radians.
4.5.2.4 The atan2 function
Synopsis

#include <math.h> .
double atan2{doudle y, doudle x):

Description

The atan2 function computes the principal value of the are tangent of y/x, using the
signs of both arguments to determine the quadrant of the return value. A domain error
ovcurs if both arguments are zero and y/x cannot be represented.

Returns

The atan2 function returns the are tangent of ¥/, in the range |-m, + x| radians.
4.5.2.5 The cos function
Synopsis

#include <math. h>
doubtle cos{double x);

Deseription

The cos function computes the cosine of X {measured in radians). A large magnitude
argument may vield s result with little or no significance.

Returns

The ¢¢8 function returns the cosine value.

§45.2.2 January 11, 1988 §4.5.2.5

DRAFT

LIBRARY 113 MATHEMATICS <asth.bh>

4.5.2.8 The gin function
Synopsis
#include <mpath.h>

5 ¢oudle min(doudle x);
Description
'I:he #1n function computes the sine of x {measured in radians). A large magnitude
argument may yield a result with little or no significance,
Returns
The gin function returns the sine value.
4.5.2.7 The tan function
Synopsis
o #include <math . h’>
double tan(double x);
20 Description
The tsn function returns the tangent of X (messured in radians). A lafge magnitude
argument may yield a resuit with little or no significance.
Returns
28 The tan function returns the tangent value,
4.5.3 Hyperbolic functions
4.5.3.1 The cosh function
Synopeis
#include <math . L>
double cosh{double x};
35 Description
The corh function computes the hyperbolic cosine of X. A range error oceurs if the
magnitude of x is too large.
Returns
40 The cos8l function returns the hyperbolic cosine value.
4.5.3.2 The sinh function
Synopais
45 #include <math.b>
double pgiph{double x);
Description
The ginh funciion computes the hyperbolic sine of X. A range error oceurs if the
50 magnitude of % is too large.
Returns
The 818k function returns the hyperbolic sine value,
§4.5.2.6 Jsnuary 11, 1888 §4.5.3.2

DRAFT

LIBRARY 114 MATHEMATICS <math.b>

4.5.3.3 The tanh function
Synopsis
#2include <math.h>

5 double tanh{doudble x);
Description
The tank function ¢computes the hyperbolic tangent of x. -
I0 Returns
The tanh lunction returns the hyperbolic tangent value,
4.5.4 Exponential and logarithmic functiona
i5 4.5.4.1 The exp function |
Synopsis B
#inciude <math.h>
doubtle exp{doudble X3
Description
The exp function eomputes the sxponential function of X. A range error oceurs if the
magnitude of ¥ it too largs.
25 Returns
- The axp function returns the exponential value,
4.5.4.2 The frexp function
. 30 SBynopsis
#include <math.h>
double frexp(double valus, noalias 3ipt *exp);
Description
35 The fTexp function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the int object pointed to by exp.
Returns
The frexp function returns the value X, such that x is & double with magnitude in
40 the interval {1/2, 1) or zero, and value equals X times 2 raised vo the power »exp. If
value is zero, both parts of the result are zero.
4.5.4.3 The ldexp function
45 Synopsis
#include <math.h>
double ldexp{double x, int exp);
Deuscription
50 The 1dexp function multiplies a floating-point number by an integral power of 2. A
TADEE ETTOr MAY OCCUr. .
Raturns
The 1dexp function returns the value of X times 2 raised to the power #xp.
§45.3.3 January 11, 1988 §4.5.4.3

DRAFT

LIBRARY ‘ 115 MATHEMATICS <sath.h>

5 double log(doudble 3);
Description
The 1og function computes the natural logarithm of X. A domain error occurs if the
argument is negative. A Tange error occurs if the argument is rere and the logarithm of
10 zero cannot be represented.
Returns
The 1og function returns the natural logarithm.
15 4.5.4.5 The 1ogi0 function
Sypopsis
#incliude <math.b>
double logit{double x);
Description
The 10g10 function computes the base-ten logarithm of 2. A domain error occurs if
the argument is negative. A range error occurs if the argument is yero and the logarithm
of zero cannot be represented.
Returns
The 1og10 function returns the base-ten logarithm.
4.5.4.8 The modf function
Sybopsie
#ipeluds <math.h>
doublae modf (double vaiue, noalias doudble =iptr):
35 Description
The modf function breaks the argument value inte integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to by 1ptr.
40 Returns
The modf {function returns the signed fractional part of value.
4.5.5 Power functions
45 4.5.5.1 The pow function
Synopsis
#include <math.h>
double pow(doudble x, double y);
"Description
The pow function computes X raised to the power y. A domain error oceurs if- X is
pegative and y is not an integer. A domain error occurs il the result canmot be
represented when X is zero and y is less than or equal to 2ero. A range error may occur.
§4.5.4.4 January 1, 1888 §4.53.5.1

4.5.4.4 The log function
Synopsls
- #ineclude <Bsth.h>

PRAFT

LIBRARY i16 ' MATHEMATICS <aath.h>

10

25

30

35

55

Returns

The pow function returns the value of X raised to the power ¥,
4.5.5.2 The sqrt function
Synopsia

#include <math.h>
double sgrt(double x); -

Description

The sqrt function computes the nonnegative square root of x. A domain error oceurs
if the argument is negative.

Returns
The 8qrt function returns the value of the square root.
4.5.8 Nearest integer, absolute value, and remainder functions
4.5.6.1 The ceil function
Synopsis

#include <math.h>
double cei) (double x);

Description
The ce1l function computes the smallest integral value not fess than x,
Returna

The ce1l function returns the smallest integral value not less than X, sxpressed 2s a
double.

4.5.86.2 The fabs function
Synopsis

#include <path.h>
double fabs(double x).

Deseription
The fabg unction computes the absclute value of a Hoating-point number x.
Returns
The fabs function returns the absolute value of x.
4.5.6.3 The floor function
Synopasis

#include <gath.h>
double floor{doudle IX);

Description
The £1cor function computes the largest integer not greater than X.
Returns

The floor function returns the largest integer not greater than x, expressed as a
double.

§4.5.5.1 January 11, 1988 - 84583

DRAFT

LIBRARY 117 MATHEMATICS <math.h>

4.5.8.4 The fmod function
Synopris

#incelude <math.h>
B double fmod(double x, double ¥y);

Description
The 804 function computes the foating-point remainder of X/Y.
10 Returns

The feod function returns the value ¥ — i+ ¥, for some integer 7 such that, if y is
nonzero, the result has the same sign as ¥ and magnitude less than the magnitude of y.
I y is zero, whether & domain error occurs or the fmod function returns sero is
implementation-defined.

84564 Jm}l)ml;}’ 1;, ;988 §4.5.64
A

LIBRARY 118 NON-LOCAL JUMPS <petimp.h>

10

15

25

30

35

4.8 NON.LOCAL JUMPS <setjmp.h>

The header <getjap.h> defines the macro setimp, and deciares one function and
one type, for bypassing the normal function call and return discipline®

The type declared is
imp_buf

which is an array type suitable for holding the information needed to restore s calling
environement, ‘

The getjap macro shall be implemented as & macro, not as an actual function. I the
macro definition is suppressed in order to access an actual function, the bebavior is
undefined.

4.8.1 Save calling environment
4.6.1.1 The setjmp macro
Synopais

#ipclude <getjiap.hb>
i1nt setimp(imp_buf env);

Deseription

The sat]up macro saves its calling environment in its jmp_buf argument for later
use by the longmp function.

Returnas

If the return is from a direet invocation, the get jep macro returns the valye zaro, I
the return is from a call to the 1ongimp function, the setj%p macro returns & nonzero

value.

Eunvironmental eonstraint
An invocation of the #et]sp macro shall appear only in one of the foliowing contexta:
» the entire controlling expression of a selection or iteration statement;

» one operand of a relational or equality operator with the other operand an integral
constant expression, with the resulting expression being the entire controlling
expression of a selection or iteration statement;

s the operand of & unary | operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

« the entire expression of an expression statement {possibly cast to vo1d}.

85. These functions are useful for dealing with unusual conditions encountered in a low-level function of a
program.

§4.8

January 11, 1888 §4.6.1.1
DRAFT

LIBRARY 119 NON-LOCAL JUMPS <setinp.b>

10

15

20

25

4.8.2 Restore calling environment
4.8.2.1 The longjmp function
Synopsis

#include <getimp.h>
void longjep(iep duf eanv, int w¥al);

Description

The longinp function restores the environment saved by the most recent itivocation
of the metimp macro in the same invocation of the program, with the corresponding
imp_buf argument. If there has been no such invoeation, or if the funstion containing
the invocation of the setjmp macro has terminated execution®™ in the interim, the

_behavior is undefined.

All accessible objects bave values as of the time 1ongi®p was called, except that the
values of objects of automatic storage duration that do not have volatile type and
have been changed between the getinp invocation and long jup call are indeterminate.

As it bypasses the usua!l function ¢all and return mechanisms, the longimp function
shall execute correctly in contexts of interrupts, signals and any of their sasocisted
functions. However, if the longi®p function is invoked from a nested signal handler
{that is, from a function itvoked ss a result of a signe! raised during the handling of
another signal}, the behavior js undefined.

Returns

After longinp is completed, program execution continues as if the corresponding
invocation of the setjmp macro bad just returned the value specified by val. The
longjmp funciion cannot cause the Beti DD macro to revurn the value 0; if val is O, the
#etjmp macro returns the value 1. -

e

86. For example, by executing a retura statement or because another longjimp call has caused 2
transfer 10 & P&LJBP [vocaton in a function earlier in the set of nested calls.

§4.6.2 - January 13, 1983 §4.8.2.1

DRAFT

LIBRARY 120 SIGNAL HANDLING <signal.h>

4.7 SIGNAL HANDLING <signal.h>

The header <signal .h> declares » type and two functions and defnes several
macros, for handling various signaele (conditions that may be reported during progeam
5 execution).

The type defined is
#1g_atomic_t -

which is the integral type of an object that can be accessed as ap atomic entity, even in
the presenee of asynchronous interrupts,

10 The macros defined are
8IG_DFL
SIG_ERR
SIG_IGN
which expand to distinct constant expressions that have type compatible with the second
15 argument to and the return value of the gignal function, aad whose value compares
unequal to the address of any declarable function; and the following, esch of which

expands to a positive integral constant axpression that is the signal number
corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

20 SIGFPE an erroneous arithmetic operation, suck as zero divide or an operation
resulting io overfliow

SIGILL detection of an invalid function image, such as an illegal instruction
SIGINT receipt of an interactive attention signal
SIGSEGV an invalid access to storage

25 SIGTERM a termination request sent to the program

An implementation nesd not generate any of thess signals, except as & result of
explicit calls to the rasse function. Additional signals and pointers to undeclarabie
functions, with macro definitions beginning, respectively, with the letters SIG and an
upper-case letter or with SIG_ and an upper-case letter,¥ may also be specified by the

30 implementation. The complete set of signals, their semaptics, and their default handling
is implementation«defined; al! signal values shall be positive, '

4.7.1 Specify signal handling
35 4.7.1.1 The signal function
Synapais

#include <gignal.h>
void (esignal{int sig, void (=fumc)(int)))(1nt);

87. See “future itbrary directions” {§4.135). The names of the signal sumbers reflect the following terms
{regpect.we!y}' abort, fioating-point sxception, iilegal instruetion, interrupt, segmentation vicistion,
and termipation.

§4.7 Japuary 11, 1988 §4.7.1.1
. DRAFT

LIBRARY 121 SIGNAL HANDLING <signsl.b>

10

15

20

25

30

35

45

Deseription

The #igna) function chooses one of three ways in which receipt of the signal number
g1g is to be subsequently handled. I the value of func is S$I6_DFIL,, default handiing for
that signal will occur. H the value of fune is SIG_IGN, the signal will be ignored.
Otherwise, fune shall point to a function $0 be called when that signal occurs. Such a
function is ealled a signal handler,

When a signal occurs, if fune points to a fupction, first the equivalent of
signal(irig SIG_DFL); is executed or an implementation-defined blocking of the
signal is performed. (Il' the value of sig is SIGILL, whether the reset to SIG_DFL
occurs is implementation-defined.) Next the equivalent of (#func) (sig); is executed.
The function fusc may terminate by executing a Toturn statement or by calling the
abort, exit, or longimp function. If fune executes a TeLUTH statement and the valye
of sig was SIGFPE or any other implementation-defined value corresponding to a
computationsal exception, the behavior is undefined. Otherwise, the program will resume
execution at the point it was interrupted.

It the signal occurs other than as the rezult of calling the abort or raige function,
the behavior is undefined if the signal handler ealls any function in the standard library
other than the signsed function itself or refers tc any object with static storage duration
other than by assigning a value 1o n static storage durstion variable of type volatile
gig_stoeic_t. Furthermore, if such s call o the wigral function results in a
SIG_ERR return, the value of eTTno is indeterminate,

At program startup, the equivalent of
signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the
equivalent of

s1gnal(8ig, SIG_DFL);
is executed for all other signals defined by the implementation.
The implementation shall bebave as if ne library function calls the signal function.
Returns

If the request can be bonored, the signal function returns the value of func for the
previous call to 81gnal for the specified signal s1g, Otherwise, s value of SIG_ERR is
returned and a positive value is stored in errao.

Forward references: the abert function (§4.10.4.1).
4.7.2 Send signal

4.7.2.1 The Taise function

Synopsis

#include <gignsl.h>
int raise(int sig),

Description
The raise function sends the signal g1g to the executing program.
Returns

The ratse function returns tero if successiul, ponzero if unsuccessful.

$4.7.1.1 January 11, 1988 §4.7.2.1

DRAFT

LERARY 122 VARIABLE ARGUMENTS <gtdarg.h>

1)

13

20

30

35

40

45

§4.8

4.8 VARIABLE ARGUMENTS <stdarg.h>

The header <stdarg.k> declares a type and defines three macros, for sdvancing
through a list of arguments whose number and types are not known to the called function
when it is translated,

A funetion msy be ealled with a varisble number of arguments of varying types. As
deseribed in §3.7.1, its parameter list contains one or more paramsters. The rightmost
parameter plays a special role in the access mechanism, and will be designated parmN in
this description.

The type declared is
vs_l1Bt

which is a type suitable for holding information needed by the macrcs va start,
va_arg, and va_end. The called function shall declare an object (referred to as ap in
this section) having type va_l1ist. The object ap may be passed as an argument to
another function; if that function invokes the va_arg macro with parameter ap, the
value of ap in the calling function is indeterminate and shall be passed to the va_ond
macro prior 1o any further reference to ap.

4.8.1 Variable argument list access macros

The va_start, va_arg, and va_end macros described in this section shall be
implemented as macros, not as sctual functions. I a macre definition is suppressed in
order to access an actual function, the behavier is undafined.

4.8.1.1 The va_start macro
Synopsis

#include <gtdarg.k>
vold va_start{va_list ap, permA);

Description
The va_start macre shall be executed before any access to the unnamed arguments.
The va_gtart macro initializes ap for subsequent use by va_srg and va_end.

The parameter parmN is the identiBer of the rightmost parameter in the variable
parameter list in the function definition {the one just before the , .. .). If the parameter
parmN is declared with the regiater storage class with a fubnction or array type, or
with a type that is not compatible with the type that results after application of the
default argument promotions, the hehavioy is undefined.

Returns

The va_start macro returns no value.
4.8.1.2 The va_arg macro
Synopsis

#include <stdarg.h>
type va_argiva_list ap, Iype);

Description

The va_arg macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap shall be the same as the va_l1st ap initialized
by va_start. Each invocation of va_arg modifies ap so that the “values of succeasive
arguments are returned in turn. The paramster type is 8 type name specified such that
the type of a pointer to an object that has the specified type can be obtained simply by

January 11, 1988 §4.8.1.2
DRAFT

LIBRARY 123 VARIABLE ARGUMENTS <stdarg.k>

5

10

20

25

39

35

40

45

postfixing & 5 to type. If there is no actual next argument, or if fype is not eompatible
with the type of the sactual next argument (as promoted according to the de!‘nult
argument >romotionsj, the bebavior is undefined.

Returns

The first invocation of the va_srg macro after that of the ya_start macro returns
the value of the argument after that specified by parmN. Successive invoeations return
the values of the remaining arguments in succeasion.

4.8.1.3 The va_end macro
Synopsia

#include <stdarg.h>
vold va_end(vas_list ap),

Description

The va_end macro facilitates a normal reiurn from the function whose variable
argument list was referred to by the expansion of vé_#tart that initialized the va_litet
ap. The va_end macro may modify ap so that it is no longer usable (without an
intervening invocation of va_start) If there is no corresponding invocation of the

va_Etart macro, or if the va_end macro is not invoked before the return, the behavior
is undefined.

Returns
The va_end macro returns no value.
Exampie '

The function £1 gathers into an array a list of arguments that are pointers (o strings
{but not more tian MAXARGS arguments), then passes the array as a single argument to
fupction £2. The number of pointers is specified by the first argument to £i.

#include <BLASTE.b>
#define MAXARGS 31

void f1{int n_pire. ...J

{
va_list ap.
char =array [MAXARGS];
ist pLr_ne = O]

if {n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start{ap. ©_ptrs);
while (ptr_ume < n_pirs)
aTTay [ptr_no++] = va_arg(ap, char *);
va_end(ap);
£2(n_ptrs, array):
}

Each cal) to £1 shall have visible the definition of the function or & declaration such as
void f£i{int, ...):

§4.8.1.2 January 11, 1988 §4.8.1.3

DRAFT

LIBRARY 124 INPUT/OQUTPUT <stdio.h>

10

15

30

35

§4.9

4.9 INPUT/OUTPUT <stdio h>
4.9.1 Introduction

The header <gtdio. > declares three types, several macros, and many functions for
performing input and output. “
The types declared are s1ze_t (described in §4.1.5);
FILE -

which is an object type capable of recording all the information needed to control a
stream, such as its file position indicator, a pointer 16 its associated buffer, and indicators
vo record whether a read/write error has occurred and whether end-of-fle has been
reached; and

fpos ¢

which is an object type capable of mordmg all the ml‘ormataon needed to specify
uniquely every position within s file,

The macros are NULL (described in §4.1.5);

_10FBF
_10LBF
T10NBF

which expand to distinct integral constant expressions, =zuitable for use as the third
argument to the setvbuf function;

BUFSIZ

which expands to an integral constant expression, which is the size of the buffer used by
the serbuf function; :

EOF

which expands to & negative integral constant expression that is returned by several
functions to indicate end-of-file, that is, no more input from a stream;
FOPEN_MAX

which expands to an integral constant expression that is the minimum number of fles
that the implementation guarantess can be open simultaceously:

FILENAME_MAX

which expands to an integral constant expression that is the maximum length for a file
name string that the implementation guarantees can be opened;

L_taphas
which expands to an integral constant expression that is the size of a character array
large enough to hold a temporary file name string genersted by the tapnam function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to distinet integral constant expressions, suitable for use as the third
argument to the fseek function;

TMP_MAX

which expands to an integral constant expression that is the minimum number of unique
file names that shall be generated by the tmpnam function;

January 11, 1988 §4.9.1
DRAFT

LIBRARY 125 INPUT/OUTPUT <stdio.b>

10

15

20

25

30

35

40

45

-

gtderr o
stdin *
stadout

which are expressions of type “pointer %o FILE" that point to the FILE objects
aasociated, respectively, with the standard error, input, and cuiput sireams.

Forward references: files {§4.9.3), the f38eX function {§4.9.9.2), streams (£4.9.2}, the
tapnas function (§4.9.4.4).

4.9.2 Streams-

Input and output, whether to or from physical devices such as terminals and tape
drives, or whether to or from files supported on structured storage devices, are mapped
into logical data sfreama, whose properties are more uniform than their diverse sources
and sinks. Two forms of mapping are supported, for test strcame and for binary
sircams =)

A text stream is an ordered ssquence of charscters compoeed into {fines, esch line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires s terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and ocutput to conform to differing
¢conventions for representing text in the host environment. Thus, there need not be a
ont-to-one correspondence between the characters in a stream and those in the exterpal
representation. Data read in from s text stream will necessarily compare eqgual to the
data that were earlier written out to thst stream only if: the data consist only of
printable characters and the control characters horizontsl tab and sew-line; no new-line
character it immedintely preceded by space characters; and the last character is & new-
line character. Whether space characters that are written out immediately before » new.
line character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparesitly record
internal data. Data read in from & binary stream shall eompare equal 10 the data that
were carlier written out to thai stream, under the same implementation. Such a stream
may, however, bave an implementation-defined number of NUL characters appended.

Environmental limits

An implementation shall support text files with lires containing at least 254
characters, including the terminating new-Jine character. The value of the macro BUFSIZ
shsll be at lenst 256.

4.9.3 Files

A siream is pssociated with an external file (which may be s physical device) by
opentng a file, which may involve ereating a new file, Creating an existing fie causes its
former contents to be discarded, if necessary, so that it appears as if npewly created. If a
file can support positioning requests {such as a disk fle, as opposed to & terminal), then a
file position indicator®™ associated with the stream is positioned at the start (character
number gero) of the fil, ynless the file is opened with sppend mode in which case it is
implementation-defined whether the file position indicator is positioned at the beginning

88 An

implementation need not distinguish between text streams and binary streams In such an

implemeptation, thers need be no new-line characters in & text stream por any Jimit to the length of a
line.

89 Th

is is described in the Base Document as a file pornfer. That term is not used in this Standard to

— avoid confusion with & pointer 1o an object that has type FILE.

e

§4.9.1

January 11, 1988 §4.9.3
DRAFT :

LIBRARY 128 " INPUT/OUTPUT <stdlo.b>

10

15

2%

30

35

40

45

or the end of the file. The fle position indicator is maintained by subsequent reads,
writes, and positioning requests, to facilitate an orderly progression through the file. All
input takes place as if characters were read by successive calis to the fgetc function; all
cutput takes place as if characters were written by successive calls to the fpute function.

Binary files are not truncated, sxcept as defined in §4.9.5.3. Whether a write on a text
stream causes the sssociated file to be truncated bevond that point is impiementation-
defined.

When a stream is wnbuffersd, characters are intended to appear from the source or st
the destination as soon as possible. Otherwise characters may be accumylated and
transmitted to or from the host environment as a biock. When a stream is fully buflered,
charactiers are transmitted to or from the host environment as a block when s buffer is
Blled. When a stream is line duffered, characters are intended to be transmitted to or
from the host environment as a block when » new-line character is encountered, when a
bufler is Alled, or when input isx requested on any line buffered or unbuffered stream.
Support for these characteristics is implementation-defined, and may be affected via the
motbuf and setvbuf functions.

A file may be disassociated from its controlling stream by closing the file. Output
streams are flushed [any unwritten buffer contents are transmitted to the host
environment) before the stream is disassociated from the file. Whether a file of zere
length {on which no characters have been written by an output streatm) actually exists is
implementation-definad.

The file may b subsequently reopened, by the same or another program execution,
and its contents reclaimed or modified (if it can be repositioned st its start). If the main
funetion returns to its original caller, or if the ax1t function iz called, all open files xre
closed (henee all output streams are fushed} before program termination. Other paths to

_ brogram termination, such as calling the abort function, need not close all files properly.

The address of the FILE object used to control a stream: may be significant; a copy of
a FILE object may not necessarily serve in place of the original,

At program startup, three text streams are predefined and need not be opened
explicitly — etanderd inpu? (for reading conventional input), standard output (for writing
conventional output), and stendard error (for writing diagnostic output). When opened,
the standard error stream is not fully buffered; the standard input and standard output
streams are fully buffered if and only if the stream can be determined not to refer to an
intaractive device,

Functions that open additional {nontemporary) files require a file name, which is a
string. The rules for composing valid file names are implementation-defined. Whether
the same file can be simultaneously open multiple times is also implementation-defined.

Environmental limits

The value of the macro FOPEN_MAX shall be at least eight, including the three
standard text streams.

Forward references: the X1t function (§4.10.4.3), the fgetc function {§4.9.7.1), the
¢pute function (§4.8.7.3), the metduf function (§4.9.5.3), the setvbuf function
(§4.9.5.6).

§4.9.3 January 11, 1988 §4.9.3

DRAFT

LIBRARY : 127 INPUT/OUTPUT <stalo.h>

10

3

20

25

30

40

4.9.4 Operations on files
4.9.4.2 The remove function
Synopais

#include <Btdio.h>
ipt remove{const noalias char wifilename);

Description

The remove function causes the fle whose pame is the string pointed to by
filename to be no longer accessible by that name. A subsequent attempt to open that
file ysing that name will fail, unless it is created anew. If the file is open, the bebavior of
the Temove function is implementation-defined.

Returns

The remove function returns sers if the operation succeeds, nonzero if it fails.
4.9.4.2 The rename function
Synopsis

#inciuvde <stdio.b>
int rename{const noallias c¢har »=0ld, const noslias char enew);

Description

The renane function causes the file whose name is the siring pointed to by 014 to be
benceforth known by the name given by the string pointed to by new. The file named
©14d is effectively removed, If & file named by the string pointed to by new exists prior to
the call to the Tensme function, the behavior is implementation-defined,

Returns

The Tename function returns sero if the operstion succeeds, nongere if it fails,™ in
which case if the Ble existed previously it is still known by its original name.

4.8.4.3 The tmpfile function
Synopsia

#include <stdic.h>
FILE =tmpfile(void);

Description

The tmpfile funetion creates 8 temporary binary file that will automatically be
removed when it is closed or at program termination. I the program terminates
abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode. :

Returns

The tepfile function returns a pointer to the stream of the file that it created. If
the file cannot be created, the tmpfile lunction returns a null pointer.

90. Among the Teasons the implementation may cause the rename tunction to fail are that the file is
open or that il iz necessary to copy its contents to effectuate its renaming. .

§4.8.4 January 11, 1988 §4.0.4.3

DRAFT

LIBRARY ‘128 INPUT/OUTPUT <stdio.b>

0

15

20

25

35

40

Forward references: the fopon function (§4.9.5.3).
4.9.4.4 The tompnam function
Synopais

#include <stdio.h>
char »tapnan(noalias char =s);

Description

The taponam function generates s string that is pot the same as the pame of an
existing file.”!

The tmpnam function generates a different string each time it is called, up to
TMP_MAX times. II it is called more than TMP _MAX times, the behavior is
implementation-defined.

The implementation shall bebave as if no library function calis the tmpnan function.
Returns

If the argument is a null pbinter, the tapnan funciion lesves its result in an internal
static object and returns s pointer to that object. Subseguent calls to the tmpnanm

- funetion mdy modify the aame object. I the argument is not & nuli pointer, it is sasumed

to point to an array of at least I._tapnam characters; the tapnam function writes its
result in that array and returns the argument as its value.

Eavironmental limits
The value of the macro TMP_MAX shall be at least 25.
4.9.5 File access functions
4.8.5.1 The fclose funciion
Synopsis

#1nclude <stdic. h>
int fclose{FILE sstream);

Description

The felose function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to
the host snvironment to be written to the file; any unread buffered data are discarded.
The stream is disassociated from the file. If the associated buffer was automatically
allocated, it is deallocated.

Returnas

The foclome function returns zero if the stream was succmfulljr closed, or EOF if any
errors were detected or if the sireamn was already closed.

¢1, Files created using strings generated by the tmpoam funclion are temporary only in the sénse that
their names should not collide with those generated by conventional naming rules for the
impiementation, It is still necessary o use the remove function to remove such fles when their use is
anded, and befors progran termination.

§4.9.43 - January 11, 1988 _ §4.9.5.1

DRAFT

'LIBRARY 120 INPUT/OUTPUT <stdio.h>

io

20

25

30

35

40

45

4.9.5.2 The f£flush function
Synopsia

#inc:@u&e _<8t.dio.h'>
11t f1iush(FILE sptream);

Description

If strear points 1o an output stream or an update stream in which the most recent
operation was output, the £11ugh function causes sny unwritten data for that stream to
be delivared to the host environment to be written to the file; otherwise, the behsvior is
undefined.

Returns
The £21ush function réturns EOF if s write error occurs, otherwise sero.

Forward references: the ungetc function {§4.6.7.11).

'4.9.5.3 The fopen function

Synopsis

#include <stdioc.h>»
FILE sfopen{congt noaliass char sfilenams,
CONSt noallas char wmode):

Description

The fopen function cpens the file whose name is the string pointed to by f1lenane,
and associates a stream with it.

‘The argument mcde points to a string beginning with one of the following sequences:*

= open text e for reading

“yt create text file for writing, or truncate to tero length

‘gt sppend; open or create text file for writing at end-of-fle

“rp" open binary file for reading

Swh" crente binary file for writing, or truncate to zero length

*abe sppend; open or create binary Ble for writing at end-of-file

sret open text file for update (reading and writing)

“ye¥ create text file for update, or truncate to sero length

" append; open or create text file for update, writing at end-of-fije
Br+b® pr Srh+* open binary file for update (reading and writing)

“w+bd" or “"wb+* create binary file for update, or truncate to sero length

“a+b* or "ab+" append; open or create binary file for update, writing at end-of-le

Opening a file with read mode ('’ as the first character in the mode argument) fails
if the file does not exist or cannot be read.

Opening a file with append mode (’a’ us the first charscter in the mode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening ¢alls to the fweek function. In some implementations, opening
s binary file with append mode (D' as the second or third character in the mode
argument} may initially position the file position indiestor for the stream beyond the last
davs written, because of NUL padding.

$2, Additiona} characters may follow these sequences.

:§4.9.5.2 January 11, 1988 §54.8.53

DRAFT

LIBRARY 130 INPUT/OUTPUT <stdio.b>

15

20

25

When a file is opened with update mode {'+' as the second or third character in the
pods argument), both input and output may be performed on the sssociated stream.
However, output tmay not be directly foliowed by input without an intervening call 1o the
fflush function or to a file positioning function (fseek, f8etpos, or rewind}, apd
input may not be directly followed by output without an intervening call to s file
positioning function, unless the input operation encounters end-of-file. Opening a file
with update mods may open or ereate & binary stream in some implementations.

Whesn opened, a stream is fully buffered if and only if it can be determined not | 1o refer
to an interactive device.

Returns

The fopen function returas a pointer to the sbject controlling the stream. If the
open operation fails, fopen returns a nuli pointer.

Forward references: file positioning functions (§4.9.8).
4.9.5.4 The freopen function
Synopais

#ineclude <gtdio.b> :
FILE »freopen{const hoalias char =filename,
cOnEt nOallias char smodé, FILE =stream);

Description

The freopen function opens the file whose name is the string pointed to by
filename and associates the stream pointed to by stream with it. The mode srgument
is used just as in the fopen function ™

The freopen function first attempts to close any file that may be associated with the
specified stream. Failure to close the file successfully is ignored.

Returns

The frecpen function returns a nul! pointer if the open oparation fails. Otherwise,
freopen returns the value of 8trean.

4.9.5.8 The satduf funetion
Synopeis

#include <gtdlo.h>
vold setbuf (FILE estream, noslias char s»buf):;

Description

Except that it returns no value, the getbuf function is equivalent to the setvbuf
function invoked with the values IOFBF for mode and BUFSIZ for size, or {if buf is s
null pointer), with the value _IONBF for mode.

Returns

The setbuf function returns no value.

93. The primary use of the frecpen function is to change the Ble associated with 2 standard text stream
(svaarr, stdin, or s1dout), as those identifiers need ot be modifiable Ivalyes to which the value
returned by the fopan function may be assigned.

§4.953 . January 11, 1988 §4.9.5.5

DRAFT

LIBRARY 18 INPUT/OUTPUT <stdio. 2>

16

1 3]

20

25

35

40

45

Forward references: the setybuf function (§4.9.5.8).
4.9.5.6 The getvbuf funection
Synopsis

#incliude <stdio.h>
int setvbuf (FILE estream, moaliag char =huf, int sode,
= 8ize_t ®ize);

Description

The setvbuf function may be used after the stream pointed tc by streans has been
associated with an open file but before it is read or written. The argument mode
determines how Stream will be buffered, as follows: _IOFBF causes input/output to be
fully buffered; TDLBF causes output to be line buflered; _I10NBF causes input/output to
be unbufféred. If Duf is not a null pointer, the array it points to may be used instead of
a buffer allocated by the setvbuf function.® The argument size specifies the size of
the array. The contents of the array at any time are indeterminate.

Returns

The setvbuf function returns zerc on success, or nonzere if an invalid value is given
for mode or if the request canaot be honored.,

4.9.8 Formatted input/output functions
4.8.0.1 The fprint{ function

Synopsis
#include <gtdio.b>

iat fprintf(FILE sstream, const nealias char sforsat, ...);
Description '

The fprintf function writes output to the stream pointed toc by streax, under
control of the string pointed to by format that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is
undefined, If the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The fprivtf function returns when the end of the
format string is encoubtered.

The format shall be 2 multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zerc or more directives: ordinary meitibyte
characters {not %), which are copied unchanged to the ocutput stream; and conversion
specifications, each of which resuits in fetching sero or more subsequent arguments. Each
conversion specification is introduced by the character . After the %, the following
appear in sequence:

» Zero or more flags that modify the meaning of the conversion specification.

+ An optional decimal integer specifying s minimum field width % ¥ the copverted
value has fewer characters than the field width, it will be padded with spaces on the
keft {or right, if the left adjustment fag, described later, has been given) to the Beld
width.

¢4. The buffler must have a lifetime at least as graat as the open stream, mo the stream should be closed
befars & bufler that has aytomatic storage duration is deallocated upon biock exit.

o5, Note that O is taken as a Bag, not as the beginning of a Heid widib.

£4.0.5.5 _ January 11, 1988. §4.9.6.1

DRAFT

LIBRARY 132 INPUT/QUTPUT <stdio.h>

e An optional precision that gives the minimum number of digits to appear for the q,1,

i0

15

o, u, X, and X conversions, the number of digits to appesr alter the decimal-point
character for e, E, and f conversions, the maximum number of significant digits for
the g and G conversions, or the maximum number of characters to be written from a
string in ® conversion. The precision takes the form of & period {.} followed by an
optional decimal integer; if the integer is omitted, it is treated as zerc.

An optional b specifying that a following 4, 1, ¢, u, X, or X conversion specifier applies
to a short int or unsigned short int argument (the argument will have been
promoted according to the integral promotions, and ita valuze shall be converted o
ghort int or unsigned short int before printing); s opticnal N specifying that a
following n conversion specifier applies to a pointer to a shors int argument; an
optional 1 specifying that a following d, 1, 0, 1, I, or X conversion specifier applies to
a long int or uvhsigned long 10t argument; an optional 1 specifying that a
following & conversion specifier applies to a pointer to s Jong 13t srgument; or an
optionsl L apecifying that a following o, E, f, g, or G conversion apecifier applies to a
long doudblie argument. If an b, 1, or L appears with apy other conversion specifier,
the behavior is undefined.

¢ A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk » instesd of a digit

20 string. In this case, an 1nt argument supplies the feld width or precision. The
srguments specifying field width or precision, or both, shall appesr {in that order) before
the argument {if any) to be converted. A negative field width argument is taken as & -
flag followed by a pesitive field width. A negative precision argument is taken as if it
were missing.

25

The flag characters and their meanings are
" The resuit of the conversion wili be left-justified witkin the field.

The result of a signed canversion will always begin with a plus or minus sign.

space I the first character of a signed conversion is not & eign, & space will be prepended

30 =

35

40

to the result. U the space and + fiags both appear, the spece fSag will be ignored.

The result is to be converted to an “altersate form.” For ¢ conversion, it
increases the precision to force the first digit of the result to be & 1ero.” For x (o7
X} conversion, & nonzero result will have Ox (or OX) prepended to it. For o, E, 1,
g, and G conversions, the result will always contain a decimal-point character,
even il no digits follow it (pormally, a decimal-point character appears in the
result of these conversions only if a digit follows it}. For g and G conversions,
trailing teros will mot be removed from the result. For other conversions, the
behavior is undefined.

Ford, 1,0,u,x, X, ¢ E I g and G conversions, leading zeros {following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and ~ flags both appear, the O fiag will be ignored. For 4, 1,
o, 8, x, and X conversions, if a precision is specified, the O fag will be ignored.
For other conversions, the behavior is undefined.

The conversion specifiers and their meanings are

¢.1,0,12,%,X The 1nt argument is converted to signed decimal (@ or 1), unsigned octal

45

§4.8.0.1

{0), unsigned decimal (u), or unsigned hexadecimal notation (X or X}); the
letters abcdel are used for x conversion and the letters ABCDEF for X
conversion, The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
w3l L. cxpanded with leading zeros. The default precision is 1. The

January 11, 1988 - §4.848.1
DRAFT

LIBRARY 133 INPUT /OUTPUT <stdio.b>

10

15

20

25

30

40

result of copverting s sero value with an explicit precision of sero is no
characters. o

4 The double argument is converted to decimal potatiop i the style
[-/ddd.ddd, where the number of digits alter the decimal-point charscter
is equal to the precision specifiestion. If the precision it missing, it is
taken as §; if the precision is explicitly tero, no decimal-point character
appears. If o decimal-point character appears, at least one digit appears

* before it. The value is rounded to the appropriate number of digits,

e kB The double argument it converted in the style /-/d dddes dd, where
there is one digit before the decimal-point character {which is nonsero if
the argument iz nonzero) and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; il the precision is
tero, no decimel-point character sppears. The value is rounded to the
appropriate number of digits. The E conversion specifier will produce &
number with E instead of @ introducing the exponenrt. The exponent
always contains st lesst two digits, I the vslue is rero, the exponent is
sero.

g.G The doudble argumest is converted in style £ or & {or in style E in the
case of & G conversion specifier), with the precision specifying the number
of significant digits. If an explicit precision is zero, it is taken as 5. The
style used depends on the value converted; siyle e will be used only if the
exponent resulting from such & conversion is leas than ~4 or greater than
or equal to the precision. Trailing zeros are removed from the fractional
portion of the result; a decimal-point character appears only if it is
followed by a digit.

c The fat argument is converted to an unsigned char, and the resulting
charscter is written.

] The argument shall be a pointer to an array of characters. Characters
from the array are written up to {dbut not including} a terminating null
character; if the precision is specified, no more than that many characters
are written. If the precision is not specified or is grester than the size of
the array, the array shall contain a null character.

P The argument shall be » pointer to voild. The value of the pointer is
converted to a sequence of printable characters, in an impiementation-
defined mannper,

n The argument shall be a pointer to an integer into which is writlen the
number of characters written to the output stream so {ar by this call to
fprintf. No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.®®

If any argument is, or points to, a union or an sggregate {except for an array of
characters using %8 conversion, or a pointer cast to be & pointer to vold using ¥p
conversion), the behavior is undefined,

6. See *{uture library directions™ {§4.13.6).

§4.9.6.1 January 11, 1988 §4.9.8.1

DRAFT

LIBRARY 134 INPUT/OUTPUT <ptdic. h>

10

i3

20

30

35

40

45

In no case does a nonexistent or small feid width cause truneation of s feld; if the
result of & conversion is wider than the feld widih, the field is expanded to contain the
CODYVETMON Tesuit.

Returne

The fprints funetion returns the number of characters transmitted, or a negative
value if an output error occurred.

Environmental limit

The minimum value for the maximum number of characters produced by any asingle
conversion shal! be at least 509.

Examples

To print a date and time in the form *Sunday, July 3, 10:02,” where weekday and
RORLK are pointers to sirings:

#include <stdioc.h>
fprintf(stdout, *¥Xs, %5 %4, X.2¢:%.2d\n*,
weekday, moath, day, hour, min),

To priat 7 to five decimal places:

#inelude <path.h>
#include <gtdio.bh>
fprintf(stdout, *pl = %X.5f\n", 4 » atan(1.0));

4.9.8.2 The fscanf function
Synaopais

#include <gtdio . h> :
int fzcanf (FILE sstresnm, const noaliae char =formas, ...);

Description

The fgeanf function reads input from the siream pointed to by strTeaxm, under

" control of the string pointed to by format that specifies the sdmissible input sequences

and how they are to be converted for sssignment, using subsequent arguments as pointers
to the objects to receive the comverted input. If there are insufficient arguments for the
format, the behavior is undefined. If the format is exhausted while arguments remain,
the excess argumenis are evaluated but otherwise ignored.

The format shall be & multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (oot %); or a conversion specification. Each
conversion specification is introduced by the character §. After the ¥, the following
appear in sequence;

« An opticnal assignment-suppressing character =,
+ An optional decimal integer that specifies the maximum feld width.

e An optiopal B, 1 or L indicating the sige of the receiving abject. The conversion
specifiers 4, 1, 1, 0, and X may be preceded by B to indicate that the corresponding
argument is a pointer to ghort int rather than a pointer to 0%, or by 1 to indicate
that it is a peinter to long int. Similarly, the conversion specifier u may be
preceded by b to indicate that the corresponding argument is a pointer t¢ unsigned
short Lnt rather than a pointer 1o ungigned int, or by 1 to indicate that it is a
pointer to un&ign=d long int. Finelly, the conversion specifiers &, £, and g toay be
preceded by 1 to in-'icate th-% .. corresponding argument is a pointer to doudble
rather than a pointer to flost, or by L t¢ indicate a pointer to long double. If an

§4.986.1 January 11, 1988 : §4.98.2

DRAFT

LIBRARY 185 INPUT/OUTPUT <stdie.n>

10

15

20

25

30

35

40

45

h, I, or L appears with any other conversion specifier, the behavior is undefined.

» A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fpcant function executes each directive of the format in turn. If a direetive
fails, as detailed below, the facanf function returns. Failures are deseribed as input
faijures {duc to the unavailability of input characters}, or matching failures {due to
inappropriste input).

A directive composed of white apace is executed by reading input up to the first non-
white-space character {which remains unread), or until ao more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next
character of the stream. If the character differs from the one compmmg the directive,
the directive fails, and the character remains unread.

A directive that is & conversion specification defines a set ol' matching input sequences,
as described below for each apecifier. A conversion specification is executed in the
following steps:

Input white-space characters (as specified by the igspace function) are skipped,
unless the specification includes a [, ¢, or B specifier.

An input item is read from the stream, unless the specification includes ap B specifier.
An input item is defined as the longest sequence of input echaracters {up to any specified
maximum field width) which is an initial subsequence of a matehing sequence. The first
characser, if any, after the input item remains unread. If the Jength of the input item is
rero, the execution of the directive fails: this eondition is a matching failure, unleas an .
error prevented input from the stream, in which ease it is an input failure.

Except in the case of a % specifier, the input item {or, in the case of s ¥n directive, the
count of input charaeters) is ronveried to a type appropriate to the conversion specifier.
If the input item is not & matching sequence, the executiop of the directive fails: this
condition is & matching failure. Unjess assignment suppression was indicated by a =, the
result of the conversion is placed in the object pointed to by the first argument foliowing
the forsat argument that has not already received & conversion result. If this object
does not have an appropriate type, or il the result of the conversion cannot be
represented in the space provided, the behavior is undefined,

The {foliowing conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose formst is the same ns
expected for the subject sequence of the gtrtol function with the value 10 for
the base argument. The corresponding argument shail be a pointer Lo integer,

i Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of the Btrtol funciion with the vaiue O for the basge
argument. The corresponding argument shall be & pointer to inveger.

o Matches an optiocnally signed octal integer, whase format is the name a8 expecied
for the subject sequence of the strtonl function with the value B for the base
argument. The corresponding argument shall be a pointer 1o unsigned integer,

u Matche: an optionally signed decimal integer, whose format is the same as

- expected for the subject sequence of the gtrtoul function with the value 10 for

the base argument. The corresponding argument shall be a pointer to unsigned
integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtoul funetion with the value 16 for
the base argument. The corresponding argument shall be a pointer to mmsned

§4.9.6.2 January 11, 1988 §4.9.8.2

DRAFT

LIBRARY

10

15

20

25

30

]

136 INPUT/OUTPUT <stdio.h>

integer.

Matiches sn optionslly signed Boating-point number, whose format is the same as
expected for the subject string of the strtod function. The cotresponding
argument shall be s pointer to Reating.

Matches a sequence of non-white-space characters, The corresponding argument
shall be & pointer to the initial character of an array large enough to aceept the
sequence and a terminating null character, which will be added automatically.

Matches 2 nonempty sequence of characters from a set of expected characters {the
scaneet). The corresponding asgument shall be a pointer to the initial character
of an array large enough to accept the sequence and a terminating null character,
which will be added automatically. The conversion specifier includes all
subseguent characters in the format siring, up to and including the matching
right bracket (1). The characters between the brackets (the scanlfist} compriae
the scanset, unless the chararter after the Jeft bracket is a cireumflex (7}, in
which case the scanset contsins all characters that do not appear in the scanlist
between the circumilex and the right bracket. Ax s special case, if the conversion
specifier begins with [} or [*], the right bracket character is in the scanlist and
the next right bracket character is the matching right bracket that snds the
specification, If a - character is ip the scanlist and is not the first, nor the second
where the frst character is a =, nor the last character, the behavior is
implementation-defined.

Matches a sequence of characters of the number specified by the field width (1 if
po field width is present in the directive). The corresponding argutnent shall be a
pointer to the initial character of an array large snough to accept the sequence.
No null character is added.

Matches an implementation-defined set of sequences, which should be the same as
the set of sequences that may be produced by the Xp conversion of the fprintf
function. The corresponding argument shall be a pointer to s pointer to void.
The interpretation of the lnput item is hmplementation-defined; however, for any
input item other than a value converted earlier duricg the same program
execution, the behavior of the Xp conversion is yadefined.

No input is consumed. The corresponding argument shal! be a pointer to integer
into which is 1o be written the number of characters read from the input stream
so far by this call to the fecant function. Execytion of & %o directive does pot
increment the assignment count returned at the completion of execution of the
fscar! function.

Matches a single X; no conversion or assignment occurs.

If a conversion specification is invalid, the behavior is undefined ¥’

The conversion specifiers e, g, and x may be capitalised. However, the use of upper
40 case is ignored.

If end-of-Ble is encountered during imput, conversion is terminated, [end-of-file
occurs before any characters matching the current directive have been read (other than
leading white space, where permitted}, execution of the current directive terminates with
an input failure; otherwise, unless execution of the current directive is terminated with a

45 matching failure, execution of the {ollowing directive (if any) is terminated with an input

¢7. See “future library directions' {(§4.13.6).

§4.9.6.2

January 11, 1988 - §4.86.2
DRAFT

LIBRARY 137 INPUT/OUTPUT <stdio.b>

10

15

20

235

30

40

failure.

If conversion terminktes on a conflicting input character, the offending input character
is left unread in the input stream. Trailing white space (including new-line characters) is
ielt unread unless matched by & directive. The success of literal matches and suppressed
assignments is pot directly determminable other than via the ¥n directive.

Retn;.rm

The fscan? function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the fecant function returns the pumber of input
items sssigned, which can be fewer than provided for, or even sero, in the event of an
early conflict between an input character and the format.

Exaraplea
The call:

#include <pidic.h>
int n, 1; fleat x; char nxme[B50];
= fescanfi{stdin, *Haks%s*, &ki, &x, name) ;.

with the input line:
25 54 .32E~1 thORpBOL

will assign to n the value 3, to { the value 25, to 2z the value 5.432, and name will contain
thompeoni0. Or '

#include <gtdio.h>
int 1; float X. char unemel50].
fgcan? (stdin, *"R2a%f%«d X[01234587851*, 21, Ekx. name);

with input:
56788 0123 B8aT2

will assign to ¢ the value 58 and to z the value 788.0, will skip 0123, and mame will
contain S8\0. The pext character read from the input stream will be a.

To accept repeatedly from 8t41n & gquantity, s unit of messure and an item name:

#include <stdio.h>
10t count; flost gquanpt; char unite(21], 1temi21];
while ({feof(stdin) &z !ferror{stdin)) {
count = fgcen?(stdin, *KIX20s of %208*,
. &quant, gnits, 1tem);
fscans (stdin, "¥*["\nl*):
}

H ihe gtdin stream contains the following lines:

2 quartg of oll

-12.Bdegress Ceiglus

lots of luck

10.0LBS of fertilizer
100erge. 0l BRErgy

the exscution of the above example will be equivalent to the following sssignments:

84982 - January 11, 1988 §4.6.6.2

DRAFT

LIBRARY 138 INPUT/OUTPUT <stdio.bh>

-

2; strepy(units, “quarts®); strepy(item, ®oile);

qusnt =
count = 3J;
guant = -12.8; strcpy(unite, "degrees®);
count = 2; /e« *C* fails to match Yo' s/
5 count = O; /% "1' falle to match "%I* =/
quant = 10.0; strepy(units, *LBS"); strepy(item, *fertilizer®);
court = 3; .
count = 0; /% "100e”" falls 1o match *%f* =/ -
count = EQOF;
Forward references: the strtod function (§4.10.1.4), the strtol function (§4.10.1.5},
the gtrtoul furetion (§4.10.1.6}.
4.9.6.3 The printf function
Synopsis
#include <stdio.h>»
int printf{const moalias char »foreat, ...);
20 Description
The printf function is equivalent to fprimtf with the argument atdout
interposed before the arguments to printt.
Returns
25 The printf function returns the number of characters transmitted, or a pegative
value if an ontput error occurred.
4.8.6.4 The scanf function
30 Synopais
#include <etdio. hd>
int scanf(const nomliss ckar =formal, ...);
Description
35 The scanf function is eguivalent to facanf with the argument gtdin interposed
before the arguments to gcanf.
Returns
The @canf function returns the value of the macre EDF if an input failure occurs
40 before any conversion. Otherwise, the scan? function returns the pumber of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
conflict between an input character and the format,
4.8.8.5 The gprintf function
Synopsis
#include <gtdio. h>
int sprintf{noalias char =&, const noalias char =format., ...):
50 Description
The sprinv! function is equivalent to fprintf, except that the argument 8 specifies
‘an array into which the generated output is to be written, rather than to a stream. A
nul} character is writien at the end of the charaeters writfen; it is not counted as part of
the returned sum. If copying takes place between objects that overlap, the behavior is
535 undefiped.
§4.9.6.2 o January 11, 1888 . 4885

DRAFT

LIBRARY 138 INPUT /OUTPUT <stdio.h>

10

15

20

30

335

Returns

The sprintf function returns the number of charatters written in the array, not
counting the terminating null character.

4.9.8.8 The sscanf function
Bynopsis

#include <girdio k>
int sscoanf{congl noAlias Char =3,
const Bonliing char =format, ...):

Description

The sscant function is equivalent to fecAnt, except that the argument g specifies a
string from which the input is to be obtained, rather than from a stream. Reaching the
end of the string is equivsient to encountering end-of-fie for the fgcans function. I

‘eopying takes place between objeets that overlap, the behavior is undefined.

Returns

The sacanf function returns the value of the macro EOF if an input Tailure oceurs
before any conversion, Otherwise, the 88canf function returns the number of input
iterns assigned, which can be fewer then provided for, or even zero, in the event of an
carly conflict between an input character and the format,

4.9.6,7 The viprintf funection
Synopsis

#include <stdarg.h>

#include <midio.h>

irt viprintf (FILE setream, const necalias char sforaast,
va_list arg),

Description

The vfprintf function is equivalent to fprinty, with the variable argument list
replaced by arg, which has been initialized by the va start macro (and possibly
subsequent va_arg calls). The vIprints function does not invoke the va_end macro.

Returns

The viprint! function returns the number of characters transmitied, or » negative
value if an output error oceurred.

Example

The following shows the use of the vfprintf function in & general error-reporting
routine.

§4.9.6.5 January 11, 1988 §4.9.6.7

DRAFT

.

10

INPUT/OUTPUT <atdio.h>

LIBRARY 140
ginclude <stdarg.h>
#luclude <stdlo.h>
vold error{char sfunction_name, char sforsat, ...)
{
ve_li8l args; _
va_start(args, forast);
/* print out naze of function causeling error =/
Tprintf(siderr, "ERRUR 1n %s: ®, functlion_zame);
/¢ print out remainder of message */
viprintf (tderr, format, args);
va_end (args);
y
4.8.8.8 The vprintf function
Synopsis

30

38

40

45

#include <gtdarg.bh>
#include <stdie . h>
1nt vprintf(comet nosliam char =format, va_list arg);

Description

The vprintf function is equivalent to printf, with the varigble argument list
replaced by arg, which has been initialized by the va_start macro (and possibly
subsequent va_arg calls). The vprintf function does not invoke the va_and macro.

Returns

The vprintf function returns the number of charuzers transmitted, or a negst:ve
value if an output error occurred.

4.9.869 The vesprint? function
Synopsis

#include <gtdarg.h>

zinclude <8tdlo.h>

int vsprintf(noalias char s, const noaliass char sformat,
va_list argl;

Desacription

The veprintf function is equivalent to sprintf, with the variable argument list
replaced by arg, which has been initialized by the va_start macro {and possibly
subsequent va_arg calis} The veprintf function does not invoke the va_end macro.

Returns

The vaprintf function returns the number of characters written in the array, not
counting the terminating null character.

§4.9.6.7 January 11, 1988 49069

DRAFT

LIBRARY 141 INPUT/OUTPUT <staio.h>

it

15

20

3¢

35

40

45

4.0.7 Character input/output functions
4.9.7.1 The fgetc function

Synopsis
#include <stdic.h>
int fgete(FILE wgtrean);
Description
The fgete function obtains the next character {if present} as an unsigred char
converted to an int, from the input stream pointed to by stream, and advances the
associated file position indicator for the stream (if defined).
Returns
The £getc function returas the pext character from the input stream pointed to by’
strean. I the stream is at end-of-file, the end-of-Ble indicator for the stream is set and
fgetc returns EOF. If a read error occurs, the error indicator for the stream is set and
fgetc returns EOF.%
4.9.7.2 The fgets function
Synopsin
#include <stdioc.h>
char sfgets(noaliss char «g, int n, FILE sgtream);
Description
The fgets function reads at most one iess than the number of characters specified by
n {rem the stream pointed to by straak into the array pointed to by 8. No additional
characters are read after a new-line ¢haracter (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the srray.
Returns
The fgets function returns & if successful. H epd-of-file is encountered snd no
characters have been read into the array, the contents of the array remain unchanged and
a pull pointer is returned. If a read error oceurs during the aoperation, the arrsy contents
are indeterminate and a null pointer is returned.
4.9.7.3 The fputc function
Synopsis
#include <stdic.n>
tnt fputc(int ¢, FILE #strean);
Description
The tputc funciion writes the character specified by ¢ (converted 1o an uzgigned

char} to the cutput stream pointed to by streas, at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
sppropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stresam.

—

98. An end-of-file and 2 resd error can be distinguished by use of the fecf and ferror functions.

£4.8.7 © Japuary 137, 1088 o 84,973

DRAFT

LIBRARY 142 INPUT/QUTPUT <gtdio.h>

5 4.9.7.4 The fputs function
Synopsis
#include <stdio.h> -
int fputs(const noalias char =8, FILE =gtreaa);
Dencription
. The fputse function writes the string pointed to by 8 to the stream pointed to by
gtream. The terminating null character is not writter.
15 Returns _ _

The fputs function returns EOF if an error occurs; otherwise it returns a nonnegative
value. :
4.8.7.5 The get< function
Synopsis

#include <stdio . h>
int getc(FILE astreanm};
25 Description

The getc function is equivalent to fgetc, except that if it is implemented as a
macre, it may evaluate Stream more than once, 30 the argument should never be an
expression with side effects,

30 Returne '

The gote function returns the next character from the input stream pointed to by
streas. If the stream is at end-of-Bie, the end-of-file indicator for the stream is set and
getc returns EOF. If a read error occurs, the error indicator for the stream is set and
getc returas EOF.
4.9.7.8 The getchar function
Synopsis

#include <gtdio h>
40 int getchar(void);
Description _
The getchar funetion is equivalent to getc with the argument stdin.
45 Returns

The getehar function returns the next character from the input stream pointed to
by swdin. If the stream is st esnd-ol-file, the end-of-file indicator for the stream is set
and getchar returns EQF. If a read error occurs, the error indicator for the stream is set
and getchar returns EOF, '

§4.9.7.3 . January 11, 1988 . §4.9.78

Returns

The fpute function returns the character written. If a write error oceurs, the error
indicator for the stream is set and fpute returns EOF.

DRAFT

LIBRARY 143 ' INPUT/OUTPUT «<steio.h2>

10

15

30

40

45

50

4.9.7.7 The gots function

Synopsis

#include <stdio.h>
cher sgete(poaliag char &)

Description

The gets function reads eharacters from the input stream pointed to by grdis, into
the array pointed to by 8, until end-of-file is encountered or a new-line character is read.
Any new-line character is discarded, and a null character is written immediately after the
1ast character read into the array.

Returns

The gets function returns B il successful. If end-of-file is encountered and no
characters have been read into the array, the coptents of the array remain unchanged and
a null pointer is returned. ¥ a read error occurs during the operasion, the array contents
are indeterminate and a null pointer is returned.

4.9.7.8 The putc function
Synopsls

#include <stdio.h>
int pute{int ¢, FILE estream);

Pescription

The putc function is equivalent to fpute, except that il it is implemented as a
macre, it may evaluste streaw more thas once, so the argument should never be an
sxpression with side effects.

Returns

The putc function returns the character written. H a write error occurs, the error
indicator for the stream is set and pute returns EOF.

4.9.7.9 The putchar function
Synopsis

#include <stdio.h>
izt putchar{int e¢);

Description
The putchar function is equivalent to pute with the second argument stdout.
Returns

The putchar function resurns the character written. If a write error occurs, the error
indicator for the stream is set and putchar returns EOF.

4.9.7.10 The pute function
Synopsis

#include <sgtdio.h>
int puts{const hoalias char =s5);
Deseription
The puts fupction writes the string pointed to by & to the stream pointed o by
s1dout, and appends s new.ine character to the output. The terminating pull charscter

is not writtea.

§4.9.7.7 January 11, 1688 | §4.8.7.10

DRAFT

LIBRARY 144 INPUT/OUTPUT <stdio. h>

18

15

20

25

30

40

45

50

Returna)

The puts function returns EOF if an error occurs; otherwise it returns » ponnegative -
value.

€.9.7.11 The ungetc function ‘
Synopsis

#include <gtdio.h>
int ungetc{int c, FILE *stream);

Description

The ungetc function pushes the character specified by ¢ (converted to an unsigned
char) back onto the input stream pointed to by stream. The pushed-back characters
will be returned by subsequent reads on that stream in the reverse order of their pushing.
A syccessiyl intervening call {with the stream pointed to by strear) to a file positioning
function (feeek, fsetpos, or rewind} discards any pushed-back charscters for the
stream. The external siorage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many
times on the same stream without an intervening read or fle positioning operation on
that stream, the operation may fail.

If the value of ¢ equals that of the macro EOF, the operation fails and the input
stream is unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream.
The value of the file position indicator for the stream after reading or discarding all
pushed-hack characters shall be the same as it was before the characters were pushed
back. For a text stream, the value of its file position indicator after a successful eall to
the upgetc function is unspecified until all pushed-back characters are read or discarded.
For a binary stream, its file position indicator is decremented by each sucecessful call to
the ungete funetion; if its value was zero before a call, it is indeterminate after the call.

Returns

The ungetc funciion returns the character pushed back after conversion, or EOF if
the operation fails. .

Forward references: file positioning functions {§4.9.9).
4.9.8 Direct input/output functions
4.9.8.1 The fread function

Synaopsls

#incliude '<¢t.dio.h>
g1ze_t fread(noallas void +ptr, size t size, siZze t nmeab,
FILE »streun):

Description

The fread function reads, into the array pointed to by ptr, up to nmemd membars
whose size is specified by #1222, from the stream pointed to by strean. The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
read. I an error occurs, the resulting value of the file position indicator for the stream is
indeterminate. If a partial member is read, its value is indeterminate.

§4.8.7.10 January 11, 1988 §4.8.8.1

DRAFT

LIBRARY 145 INPUT/OUTPUT <stdin.n>

Returns

The fraad function returns the number of members successfully read, which may be
less than nmemb if a read error or end-ol-file is encountered. If size or nmemd is zero,
fTead returns sero and the contents of the arrsy and the state of the stream remain

5 unchanged.
4.9.8.2 The fwrite function
Synopsis
10 #include <stdic.h>
gize_t fwrite(const noaliass vold »ptr, size t size,
size_t mmemb, FILE *stream);
Description
15 The fwrite function writes, from the array pointed to by ptr, up to nmemd
members whose size is specified by $£12e, to the stream pointed to by stream. The file
position indieator for the stream {if defined) is advanced by the number of characters
successfully written. II an error occurs, the resulting value of the file position indicator
for the stream is indeterminate.
Returns '
The fwrite function returns the number of members successfully written, which will
be less than nmend ogply if a write error is encountersd.
25 4.9.9 File positioning functions
4.9.6.1 The fgetpos function
Synopsais
30 #include <stdio.h>
int fgetpos(FILE sstream, noaliss fpos_t epos);
Description
The fgetpos function stores the current value of the file position indicator for the
35 stream pointed to by strean in the object pointed to by pes. The value stored contains
unspecified information usable by the fsetpos function for repositioning the stream to
its position at the time of the call 10 the 1getpos function.
Returns
40 If successful, the fgetpos function returns zero; on failure, the fgetpos function
returns nonzerc and stores an implementation-defned positive vaiue in @rrno.
Forward references: the fgetpos function (§4.9.9.3).
45 4.9.9.2 The fseek function
Synopais
#include <stdic.b>
int fseex(FILE sstream, long int offsget, int whence);
Description
The faeek function sets the file position indicator for the stream pointed to by
ELYSGRN. .
For a binary stream, the new position, measured in characters from the beginning of
55 the file, is obtained by adding of f8et to the position specified by whence. The specified
point is the beginning of the file for SEEK_SET, the current position in the file for
§4.9.8.1 January 11, 1988 . £4.9.8.2

DRAFT

LIBRARY 148 INPUT/OUTPUT <staic.h>

SEEX_CUR, or end-of-file for SEEK_END. A binary stream need not meaningfully support
fgeek calls with » whence valye of SEEK_END.

For & text stream, either offget shall be zero, or of fret shall be a value returned
by an earlisr call to the ftell funetion on the same stresin and whencs shall be

§ SEEX_SET.

A successful eall 1o the feaak function clears the end-of-file indicator for the stream
and undoes any sfects of the ungeate function on the same stream. After an fgeek call,
the next operation on an update stream may be esither input or output.

10 Returns

The fgeek function returns nonzero only for an improper request.

Forward references: the ftell function {§4.59.9.4).

15 4.9.9.3 The fsetpor function

Synopsia
' #include <gtdio.h>

int feetpos(FILE estream, const noalias fpos_t #pos);
Description

The feetpos function sets the file position indicator for the stream pointed to by
stread according o the value of the object pointed to by pos, which shall be a value
returned by an earlier call to the fgetposg function on the same stream.

25 A successful call o the fsetpos function clears the end-of-fle indicator for the
stream and uyndoes any effects of the ungete function on the same stream. After an
fsotpos call, the next operation oo an update siream may be either input or cutput.
Returns

30 I successful, the fsetpos function returns zero; on failure, the f5etpos function
returns nontero and stores an implementation-defined positive value in erTno.
4.9.9.4 The ftell function

35 Synopsis

#inciude <stdio.h>
leng 1nt ftell(FILE »stream);
Deacription ,

40 The ftell function obtains the current value of the file position indicator for the
strearm pointed to by stream. For a binary stream, the value is the number of
characters from the beginning of the file. For a text stream, its file position. indicator
¢ontains unspecified information, usable by the faseex function for returning the file
position indicator for the stream to its position at the time of the frall call: the

45 difference between two such return values is not necessarily a meaningful measure of the
number of ¢characters written or read.

Returns

If successful, the ftell function returns the current value of the file position

50 indicator for the stream. On failure, the £tell function returns ~IL and stores an
implementation-defined positive vajue in erroo.

§4.9.9.2 January 11, 1088 ' : §4.99.4

DRAFT

LIBRARY ' 147 INPUT/OUTPUT <stdio.h>

10

20

25

3.

4.9.9.5 The Tewind funetion
Synopsir .

#include <gtdio.bh>

vold rewind{FILE satress);
Description

The rewind function sets the file position indicator for the stresm pointed to by
gtrean to the beginning of the file. It is equivalent to

(void)feeax(stresr, OL, BEEK_SET)
except that the error indicator for the stream is also cleared.
Returns
The rewind function returns no value,
4.9.10 Error-handling funections
4.8.10.1 The clearerr function
Synopsis

#include <gtdio.h>
vold clearerr{FILE *stream);

Description

The clearerr function clears the end-of-Gle and error indicators {or the stream
pointed to by stream.

Returns

The clearsrr function returns no value,
4.9.10.2 The fecf function
Synopsis

#incivde <gtdic.hd>
int feo?(FILE wsiresm);

Description

The feof function tests the epd-of-file indicator for the stream pointed to by
strean.

Returas

The feof function returns nonzero only if the end-of-file indicator is set for strean.
4.9.10.3 The ferror function
Synopsis

#ineluds <gtdio.h>
int ferror(FILE *stream);

Description
The ferror function tests the error indicator for the stream pointed to by strean,
Returns)

The ferror function returns nonzero only if the error indicator is set for Rtream.

§4.9.95 January 11, 1988 §4.9.10.5

DRAFT

LIBRARY - 148 INPUT/OUTPUT <etdic.b>

4.9.10.4 The perror function
Synopsis

#include <stdio.h>
5 vold perror{const noslias char =s8);

Description

The perror lunction maps the error number in the integer expression ¢rrnc to an

error message. It writes a line to the standard error stream thus: first (if is not = null

10 pointer and the character pointed to by 8 is not the null character), the string pointed to
by & followed by a colon and » space; then an appropriste error message string followed

by a new-line character. The contents of the error message strings are the same as those

returned by the strerror function with argument orrno, which are implementation-
dafined.

Returns
The perror function returas no value.

Forward references: the strerror function [§4.11.8.2).

§4.9.10.4 January 11, 1988 §4.9.104
DRAFT

LIBRARY ' 149 GENERAL UTILITIES <stdlid. h>

10

16

20

4.10 GENERAL UTILITIES <stdlib.n>

The header <ptdli™ . h> deciarc. four types and several functions of general utility,
and defines seversl macros.®

The types declared are 81ze_t snd wehar_t (both described in §4.1.5),
- divt
whit;i: is & structure type that is the type of the value returned by the div funetion, and
ldiv_ %
which is & structure type that is the type of the value returned by the 1d1iv funetion.
The macros defined are NULL {described in §4.1.5);
EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integral expressions that may be used ns the argument to the axit
function to return unsuccessiul or successful termination status, respectively, 1o the host
environment; '

RAND_MAX

which expands to an integral constant expression, the value of which is the maximum
value returned by the rand function; and

MB_CUR_MAX

.which expandz to a positive integer expression whose value iz the maximum sumber of

25

30

bytes in a multibyte characier for the extended character set specified by the current
locale (category LC_CTYPE), and whose value is never greater than MB_LEN MAX.

4.10.1 Stiring conversion functions

The functions atof, stol, and atol need not affect the value of the integer
expression errnc on an error. H the value of the resuit cannot be represented, the
behavior is undefined.

4.10.1.1 The atof function
Synopsia

#include <stdlid.h>
double atof{cohst Boaliasg ¢har enpir);

Description

The atof function converts the initial portion of the string pointed to by Bptr to
double representation. Except for the behavior on error, it is equivalent to

striod{nptr, (char **)NULL)

99. See “‘future library directions™ {§4.13.7).

§4.10

January 11, 1688 §4.10.1.1
DRAFT

L

LIBRARY ' 150 GENERAL UTILITIES <a%dlib.b>

10

15

20

25

30

40

30

55

Returns 3

The atof lunciion returns the converted valye.
Forward references: the strtod function {(§4.10.1.4).
4.10.1.2 The stol function
Synopsis

#lnclude <stdllib.h>
int atoi(const nosliae char saptr);

Description

The atol function converts the initial portion of the string pointed to by nptr to
int representation. Except for the behavior on error, it is equivalent to

(1nt)strrol{nptr, (char =e)NULL, 10)
Returns
The atol function returns the converted value.
Forward references: the strtol function {§4.10.1.5).
4.10.1.3 The atol fusnction

. Bynopsis

ginelude <grdlid k>
long 1nt atol{(conskt noallas char #»uptr);

Deseription

The a0l function converts the initial portion of the string pointed to by aptr to
long int representation. Except for the behavior on error, it is equivalent to

strrol{nptr, (char »s)NULL, 10)
Returns
The atol funetion returns the converted value,
Forward references: the strtol function {§4.10.1.5).
4.10.1.4 The strted function
Synopsais

#include <stdlib.h>)
double strtod(const noalias char *pptr,
char » noalias =andpir),;

Description

The strrvod function ¢converis the initial portion of the string pointed to by nptr to
double representation. First it decomposes the input string into three parta: an initial,
possibly empty, sequence of white-spsce characters (as specified by the issgpace
function), a subject sequence resembling a foating-point constant; and a fnal string of
one orf more unrecognized characters, including the terminsting null charscter of the
input string. Then it attempts to convert the subject sequence to a fosting-point
number, and returns the result. '

The expected form of the subject sequence is an optional plus or minus sign, then a
sequence of digits optionally containing a decimal-point character, then an optional
exponent part as defined in $3.1.3.1, but no floating suffix,. The subject saquence is
defined as the longest subsequence of the input string, starting with the frsi non-white.

§4.10.1.1 January 11, 1888 §4.10.1.4

DRAFT

LIBRARY 151 GENERAL UTLITIES <stdlid.b>

10

15

30

35

40

415

space character, that is an initial subsequence of a sequence of the expected form. The
subject sequance contains ne characters if the input siring is 2mpty or consiate entirely of
white space, or if the first non.-white-space character is other than a sign, a digit, or s
decimal-point character.

If the subject sequence has the expected form, the sequence of characters starting with
the first digit or the decimal-point character {whickever occurs first) is interpreted as »
fosting constant according to the rules of §3.1.3.1, except that the decimal-point
character is used in place of s period, and that if neither an sxponent part nor & decimal-
point character appears, a deciroal point is sssumed to follow the last digit in the string.
if the subject sequence begine with a minus sign, the value resulting from the conversion
is negated. A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

In other than the ®C" locale, other implementation-defined subject sequence forms
may be accepted.

if the subject sequence is empty or does pot have the expected form, ho conversion is
performed; the value of 8pLY is stored in the object pointed to by sndptr, provided that
endptr is not a null pointer.

Returns

The strtod function returns the converted value, if any. If no conversion could be
performed, tero is returned. If the correct value would cause overfiow, plus or minus
HUGE_VAL is resurned (according to the sign of the value), and the value of the macro
ERANGE is stored in errpno. If the correct value would cause underflow, rero is returned
and the value of the macro ERANGE is stored in errno.

4.10.1.5 The strtol function
Synopsis

#include <gtdlib.h>
long int striol (conBt noslias char #nptr,
char ¢ noaliac sendptr, ist base);

Description

The strtol function converts the initial portion of the string pointed to by nptr to
iong int represeptation. First it decomposes the input string into three parts: sn
initial, possibly empty, sequence of white-space characters (as specified by the igspace
function), a subject sequence resembling an integer represented in some radix determined
by the value of base, and s final string of one or more unrecognized characters, including
the terminating nuil character of the input string. Then it attempts to convert the
subject sequence to an integer, and returns the result.

If the value of base is tero, the expected form of the subject sequence is that of an
integer constant as described in §3.1.3.2, optionally preceded by a plus or minus sign, but
not including an integer suffix. If the value of base is between 2 and 36, the expected
form of the subject sequence is & seguence of letters and digits representing an integer
with the radix specified by base, optionally preceded by a plus or minus sign, but not
including an integer sutfix. The letters from & {or A} through Z {or Z} are ascribed the
values 10 to 35; only letters whose ascribed values are less than that of base are
permiitted. If the value of bage is 16, the characters Ox or OX may optionally precede the
sequence of letters and digits, following the sign if present.

The subject sequence is defined as the Jongest subsequence of the input string,
starting with the first non.white-space character, that is an initial subsequence of a
sequence of the sxpected form. The subject sequence contains no characters if the input
string is empty or consists ebtirely of white space, or if the first non-white-space

§4.10.1.4 January 11, 1988 : §4.10.1.5

DRAFT

LIBRARY 152 GENERAL UTILITIES <atd11id.h>

10

15

25

30

35

40

45

50

character is other than a sign or a permissible Jetter or digit.

If the subject sequence has the expecied form and the value of base is zero, the
sequence of characters starting with the first digit is interpreted as an integer constant
according to the rules of §3.1.3.2. If the subject sequence bas the expected form apd the
value of bagé is between 2 and 38, it is used as the base for conversion, ascribing to each
letter its value as given above, If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final string is stored in
the object pointed to by andptr, provided that endptr is not a null pointer,

In other than the *C® locale, other implementation-defined subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the sxpected form, no tonversion is”
performed; the value of RpLr is stored in the object polnted to by endptr, provided that
endptr is not a null pointer.

Returnas

The strtol funciion returns the converted value, if any. H no cooversion eould be
performed, azero is returned. If the correct value would canae overfiow, LONG_MAX or
LONG_MIN is returned (according to the sign of the value} and t.hr. value of the macro
ERANGE is stored in errno.

4.10.1,8 The strtoul function
Synopeis

#include <ptdlid.h>
uneigned long int stritoul {comst noaliss char snptr,
ehar * noaliss »endptr, int bage);

Deseription

The strtoul function converts the initial portion of the string pointed to by nptr to
unsigned long int representation. First it decomposes the input string into three
parts: an initial, possibly empty, sequence of whitesspace charscters (as specified by the
t1sspace function), a subject sequence resembling an unsigned integer represented in
some radix determined by the value of basge, and & final string of one or more
unrecognized characters, including the terminating null character of the input string.
Then it attempts to convert the subject sequence io ap unsigned integer, and returns the
result,

If the value of base is rerc, the expected form of the subject sequence is that of an’
integer constant as described in §3.1.3.2, optionaily preceded by 2 plus or minus sign, but
not including an integer suffix. If the value of base is between 2 and 36, the expected
form of the subject sequence is a sequence of letters and digits representing an integer
with the radix specified by base, optionally preceded by a plus or minus sign, but not
including an integer suffix. The letters from 8 {or A) through z {or Z} are ascribed the
values 10 to 3%5; only letters whose ascribed values are less than that of baze are
permitted. If the value of base is 16, the characters OX or 0X may opticnally precede the
sequence of Jetters and digits, following the sign if present.

The subject sequence is defined as the longest subsequence of the input siring,
starting with the first non-while-space character, thai is an initial subsequence of a
sequence of the expected form. The subject sequence contains no characters if the input
string is empty or cousists entirely of white space, or if the first non-white-space
character ia other than a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the
sequence of charzcters siarting with the frst digit is interpreted as an integer constsnt

§4.10.1L.5 January 11, 1088 : . §4.10.1.8

DRAFT

LIBRARY ' 1523 GENERAL UTILITIES <gtd11b.h>

nccording to the rules of §3.1.9.2. If the subject sequence has the expected form and the

value of bage is between 2 and 36, it is used as the baae for conversion, aseribing to each .
letter its value as given above. A pointer to the fiz~! string is siored in the object pointed

to by endptr, provided that endptr is oot s null pointer.

b In other than the “C" locale, other implementation-defined subject sequence forms
may be accepted.

H the subject sequence is empty or does pot bave the expected form, ae conversion is
perforimed; the value of RpUT is stored in the object pointed to by endptr, provided that
endptr is not a null pointer,

Returns

The strioul function returns the converted value, if any. If no conversion could be
performed, 1ero is returned. X the correct value would cause overflow, ULDONG_MAX is
returned, and the value of the macro ERANGE is stored in arrao.

4.10.2 Pseudo-random sequence generation functions
4.10.2.1 The rand funetion
20 Synopsis

#include <s51dlib . h>
int rand{void);

Deseription

25 The rand function computes & sequence of pseudo-random integers in the range O to

RARD MAX,
The implementation shall behave as if no library function calls the rand function.
Returns
30 The rand function returns & pseudo-random integer.
Environmental litait
The value of the RAN‘D“m macro shall be at Jeast 32767,
35 4.10.2.2 The srand function
Synopsis

#include <gtdlid.h>
void srapd{unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequepce of pseudo-randem
numbers to be returned by subsequent calls to rand. If srand is then calied with the
same seed value, the sequence of pseudo-random numbers will be repeated. If rand is

45 calied before any calls to 8s7and have been made, the same sequence will be generated as
when Brand is first called with a seed value of 1.

Returns
The srand function returns no value.
Example

The following functions define a portable implementation of rand and sraad.
Specifying the semantics makes it possible to determine reproducibly the behavior of
prozrams that use pseudo-random sequences. This facilisates the testing of portable

55 applications in different implementations.

§4.10.1.6 Jaguary 11, 1988 §4.10.2.2
DRAFT

LIBRARY 154 GENERAL UTILITIES <gtdlib.h®

10

i3

20

30

35

40

45

statle unsigned long int next = i

int rand{veid)

{
next = next * 1103515246 + 12345; _
return (unsigned int) (mext/85635) % 32788;
}
veld srand(unsigned 1nt Beed)
{
next = seed;
3

4.10.3 Memory management functions

The order and contiguity of storage alloeated by successive calls to the calloc,
malloe, and realiloc functions is unspecified. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object
and then used to access such ap object in the space allocsted {until the space is explicitly
freed or reallocated}. Each suck allocation shall yield a pointer to an object disjoint from
any other object. The pointer returned points to the start (lowest byte address} of the
allocsted space. If the space cannot be allocated, a null pointer is returned. I the size of
the space reguested is 3e¢ro, the behavior is implementation-defined; the value retyrned
shall be either a null pointer or & unique pointer. The value of s pointer that refers to
freed space is indeterminate,

4.10.3.1 The ¢alleoce function
Synopsis

#include <gtdiid.h>
void »calloc(size_t nmenb, slze_t size);

Description

The ¢alloe funetion allocates space for an array of amend object,s each of whose size
is size. The space is initialized to all bits zerc.!™

Returns

The calloc function returns either a nul} pointer or a pointer to the allocated space.
4.10.3.2 The free function
Synopsis

#1nclude <gtdlid.h>
void free(noalias vold sptr);
Description .
The free function causes the space pointed to by ptr to be dealiocated, that is,
made available for further allocation. I ptr is 8 null pointer, no action occurs.

QOtherwise if the argument does not match 2 pointer earlisr returned by the calloe,
malloe, or realloe function, or if the space has been deallocated by & call to free or
reallos, the behavior is undefined.

100. Note that this need not be the same s the reprasentation of ficating-point 2ero or a null pomter
constant.

§4.10.2.2 January 11, 1988 £4.10.3.2

DRAFT

LIBRARY 155 GENERAL UTILITIES <std411b.)2>

Returns

The free function returns no value,

5 4.10.3.3 The malloc function
Synopsis '
#include <gtdlib. h>
veild smalloc{size_t size);
Deacription
The malloc function allocates space for an object whose sise iz specified by g12¢ and
whose value is indeterminage.
15 Returns
The malloce function returns either a null pointer or a pointer to the allocated space,
4.10.3.4 The realloc function
20 Synopsis
#1pnelude <stdlid.h>
vold erealloc(noalias void *pir, size_t size);
Description
23 The realloc function changes the size of the object pointed to by ptr to the size
specified by pize. The contents of the object will be unchanged up to the leaser of the
new and oid sizes. If the new size is larger, the value of the newly allocated partiop of the
objsct is indeterminate. I ptr is a null pointer, the reallioc fupction behsves Jike the
malloc function for the specified size. Otherwise, if ptr does not match a pointer
30 earlier returned by the callod, malloc, or realloc function, or if the space has been
deallocated by a call to the ITee or Tealloc function, the behavior is undeBined. I the
space cannot be allocated, the object pointed to by ptr is unchanged. If 8ize is sero
and ptr is not a null pointer, the object it points to is freed.
35 Returns
The reallec function returns either & null pointer or & pointer to the possibly moved
allocated space,
4.10.4 Communication with the environment
4.10.4.1 The abert function
Synopais
#include <stdlid . ho>
43 void abert(volid);
Description
The abort function causes abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output
50 streams are flushed or open streams closed or temporary files removed is implementation-
defined. An implementation-defined form of the statuz wnewccessfu! termination is
retuPned to the host environment by means of the fupction csll raise (SIGABRT).
Returns
53 The abort function cannot return to its caller,
§4.10.3.2 January 11, 1988 §4.10.4.1

DRAFT

LIBRARY 156 GENERAL UTILITIES <stdiib.h>

15

25

35

40

4.10.4.2 The atexit function
Synopsia

#include <gtdalib.h>
int atexit(void (=func)(voild));

Description

The atexit function registers the function pointed to by fune, to be called without
arguments at normal program termination.

Implementation limita
The implementation shall support the registration of at least 32 funetions.
Returna ' _
The atexit function retyrns tero if the registration succeeds, nonzero if it fails.
Forward references: the axit function (§4.10.4.3).
4.10.4.3 The exit function
Synopais

ginclude <etdiid . h>
void exit{int status);

Description
The exit {unction causes normal program termination to occur.

First, all functions registered by the atexit function are called, in the reverse order
of their registration.'® The execution environment of these exit handlers is as if the
pain function called at program startup bad returned: if an objest created during
program execution with automatic storage duration is accessed, the bebhavior is undefined.

Next, all opsn output streams are flushed, all open streams are closed, and sl files
created by the tapfile function are removed.

Finally, control is returned to the host environment. If the value of ptatus is zero or
EXIT_SUCCESS, an implementation-defined form of the status suceessful lermination is
returned. If the value of gtatus is EXIT_FAILURE, ar implementation-defined form of
the siatus unsuccessfui fermination is retymed. Otherwise the status returned is
implementation-defined.

Returns

The exit {unction cannot return to its caller.
4.10.4.4 The getenv function
Synopeia

#include <stdlid.h>
char mgetenv(const zoalias char *name);

10t. Each function i3 called as many times as it was registered.

§4.10.4.2 January 11, 1988 §4.10.4.4

DRAFT

LIBRARY 187 GENERAL UTILITIES <stdlid.b>

20

15

25

35

45

Deacription

The geﬁenv function searches an environment iiat, provided by the bost envirenment,
for a string that matches the string pointed to by name. The set of environment names
and the methed for altering the environment list are implementation-defined.

The implementation shall behave s if no library function calls the geteny function.
Returns

The getonv function returns s pointer to a string asscciated with the matched list
member. The array pointed to shall not be modified by the program, but may be
overwritten by a subseguent call to the gotenv function. If the specified name cannot be
found, & null pointer iz returned.

4£.10.4.5 The system function
Synopsis

#ineluds <ptdlib.h>
iot system(const noalias char sstring);

Dercription

The systen function passes the string pointed to by string to the host environment
to be executed by & command progesser in an implementation-defined manner. A null
pointer may be used for BLTIng to inguire whether & command processor exists.

Returns

If the argument is & null peinter, the systam function returns nonsero only if a
command processor is svailable. If the argument is not a gull pointer, the systen
function returns an implementation-defined value,

4.10.5 Searching and sorting utilities
4.10.5.1 The bsearch function
Synopsis

#include <ptdlid.h>
void sbsearch(const noallas void skey,
colft noalies void =base,
glze_t nmemd, size L size,
int (=compar) (const noslias void e,
const noaliae vold »));

Description

The bsearch function searches an array of nmamb objects, the initial member of
which is pointed to by base, for a member that matches the objsct pointed to by ksy.
The size of each member of the array is specified by Bize.

The contents of the array shall be in ascending sorted order according to a comparison
function pointed to by compar,'® which is called with two arguments that point to the
Xey object and t0 an array member, iz that order. The function shall return an integer
Jeas than, equal to, or greater than zero if the key object is considered, respectively, to be
less thas, 1o match, or to be greater than the array member.

102. Notice that the key-to-member comparison imduces an ordering on the array .'

§4.10.4.4 January 11, 1988 §4.10.5.1

DRAFT

LIBRARY 158 . GENERAL UTILITIES <stdiid.b>

Returna

The bgearch function returns s pointer to a matehing member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
5 matched is unspecified.

4.10.5.2 The geort function
Synopsis -

10 #include <stdlidb.h>
void geort{noaliss vold sbaxe, gize t nmexb, size t sizZe,
int (scompar)(const noslias void s,
CORSY ROAlLIRE void *));

15 Description

The gsort function sorts an array of hmemnb objects, the initial member of which is
pointed to by base. The size of each object is specified by Bize.

The contents of the array xre sorted in sscending order sccording to & comparison
function pointed to by compar, which is called with two arguments that point to the
20 objects being compared. The function shall return an integer less than, equal to, or

greater than gero if the first argument is considered to be respectively less than, equal to,

or greater than the second,
Ii two members compare as equal, their order in the sorted array is unspecified,
25 Returns
The qsort function returns no value. _
4.10.8 Integer arithimetic functions
30 4.10.8.1 The abs funection
Synopeais

#include <stdlid .h>
int abs(iot }J;

Description

The abs function computes the absolute value of an integer §. If the result cannot be
represented, the behavior is undefined '™

40 Returns
The abs function returas the absolute value.
4.10.8.2 The div function
45 EBynopeis

#include <s%dlib.h>
div_t div(int numer, int denom);

104. In a two's complement representation, the absolute value of the most negative number canbot be
represented. .)

§4.10.5.1 Japuary 11, 1888 §4.10.6.2
PRAFT

LIBRARY 15¢ GENERAL UTILITIES <gtd1ib.b>

Description

The dilv function computes the quotient and remainder of the division of the
numerator nuper by the denominator denom. If the division is inexact, the sign of the
resulting quotient is that of the algebraic quotient, and the magnitude of the resulting

quotient is the largest integer less than the magnitude of the algebraic quotient. If the
result cannot be represented, the behavior is undefined; otherwise, quot » denoa +
res shall equal numer.
Returns
Hy The div function returns a structure of type div_t, comprising both the guotient
and the remainder. The structure shall contain the following members, in either order.,
int quot; /% guotient %/
int ren; /% remainder »/ .
15 4.10.8.3 The ladbg function .
Syvnopeia
#include <gtdlid . b>
long int labe{long int 3);
Description
The labds function is similar to the 8bs function, except that the argument and the
returned value eack have type long int.
95 4.10.8.4 The 1d1v function
Synopsia
#include <stdlib.b>
ldiv_t 1div{(lopg int numer, long int denowr);
Description
The 1adiv function is similar to the d1v function, except that the arguments and the
members of the returned structure (which has type 1div_t) all have type long int.
35 4.10.7 Multibyte character functions
The behavior of the muitibyte character functions is affected by the LC_CTYPE
category of the current locale, For a state-dependent encoding, each function is placed
into its initial state by s call for which its character pointer argument, &, is a null
pointer. Subsequent calls with & as other than a null pointer cause the internal state of
40 the function to be altered as necessary. A call with & as a null pointer cavses these
functions to return 2 nhontero value if sncodings have state dependency, and 2ero
ctherwise. .
4.10.7.1 The wblen function
Synopsis
#include <Ftdlid . b>
int mdlen(const noalias char #s, size t n);
50 Denscription
I 8 is pot a pall pointer, the mblen function determines the number of bytes
comprising the multibyte character pointed to by 8. It is equivalent 1o
mbtowe ({wehar t #)0, 8§, B);
§4.10.6.2 January 11, 1988 - §4.10.7.1

DRAFT

LIBRARY 180 GENERAL UTILITIES <std4lib.h>

15

20

30

40

£5

Returns -

If & is a nufl pointer, the mblen functiol returhs » nonzero or xero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If 8 i
not & null pointer, the ablen function either returns 0 (if 8 points to the null character),
or returns the number of bytes that comprise the converted muitibyte character (if the
next 0 or fewer bytes form a valid multibyte character), or returns -1 (if they do not form
a valid muitibyte character). -

Forward references: the sbtowe funetion_{g-l.m.?.‘.?).
4.10.7.2 The mbtowe function
Synopais

#include <gtdlld.h>
int mbtowe(noallag wehar t spwe, const noRliss char »w,
size_t n); -

Description

If & is not a null pointer, the 2btowe function determines the number of bytss that
comprise the multibyte character pointed to by . It then determines the code for value
of iype wehar_t that corresponds to that multibyte character. (The value of the code
corresponding o the null character is zero.) If the multibyte character is valid and pwe is
oot a null pointer, the abtowe function stores the code in the object pointed to by pwe.
At most b characters will be examined, starting at the character pointed to by 8.

Returns

K s is a null pointer, the mbtowe function returns u nomzere or gerc value, if
multibyte character encodings, respectively, do or do not have state-dependent encodings.
il 8 is not & null pointer, the mbtowe function either returns O [if & points to the null
character), or returns the number of bytes that comprise the converted multibyte

"character (if the next 1 or [ewer bytes form s valid multibyte character), or returns -1 {if

they do not form a valid multibyte character).

In no ease will the value returned be greater than n or the value of the MB_CUR_MAX
macro.

4.10.7.3 The wctomb function
Synopais

#include <gtdlib. h>
int wetomb(noslias char *s3, welar t wohar),

Description

The wotomb fynction determines the number of bytes needed to represent the
multibyte character corresponding to the tode whose value is webar {including any
change in shift state}. 1t stores the multibyte character representsation in the array object
pointed to by 8 (if is not a null pointer). At most MB_CUR_MAX characters are stored.
If the value of wehar is zero, the wotomb function is left in the initial shift state.

Returns

If 8 is a nuil pointer, the wetomd function returns a nontero or zero value, if
multibyte character encodings, respectively, do or do not have state-dependent encodings.
If B is not a null pointer, the woctonb function returns -1 if the value of wehar does not
correspond to & valid multibyte character, or returns the number of bytes that comprise
the multibyte character correspondins to the valn: of wvehar.

§4.10.7.1 January 11, 1988 §4.10.7.3

DRAFT

LIBRARY 161 GENERAL UTILITIES <st811b.h>

16

20

25

40

45

In no case will the value returned be greater than the value of the NB_CUR_MAX
macro.

4.10.8 Mu]tibyte string functions

The bebavior of the multibyte string functions is aflected by the LC_CTYPE category
of the current locale,

4.10.8.1 The mbstowce function
Synopsis

#lnclude <stdlid n>
gize_t mbstowcs{noalias wchar_t spwes,
const noalias char sg, eize it n);

Description

The nbstowcs function converts a sequence of multibyte characters that begins in
the initial shift state from the array pointed to by 8 into s sequence of corresponding
codes and stores these codes into the array pointed to by pwes, stopping after n codes are
stored or & code with value ser¢ (a converted null character) is stored. Each multibyte
character is converted as if by a call to the mbtowe function, except that the shift state
of the sbtowe function is not affected.

No more than 1 elements will be modified in the array pointed to by pwes.
Returns

I an invalid multibyte character is encountered, the mbstowes funmction retyrns
{(size_t)-1. Otherwise, the nbatowes function returns the number of srray elements
modified, not- including & terminating zero code, if any '™

£.10.8.2 The wcetombe function
Synopsis

#lncliude <stdlidb.bh>
Bize_t wchtombs(noalias char ss,
const Doaliss wchar_t spwes, size_t &)

Description

The wcstombs function converts a sequence of codes that correspond to multibyte
characters from the array pointed to by pwcs into a sequence of multibyte characters
that begins in the initial shift state and stores these multibyte characters into the array
pointed o by 8, stopping if a muitibyte character would exceed the limit of n total bytes
or if & null character is stored, Each code is converted as if by s call to the wotomd
function, except that the shift state of the wetomd function is not affected.

No more than & bytes will be modified in the arrsy pointed to by 8.
Returns

If & code is encountered that does not correspond to a valid multibyie character, the
weatombg function returns (size_t)-1. {therwise, the weatombs function retums
the number of bytes modified, not including a terminating null character, if any.!™

104. The array will not be null- or zero-tarminated if the value returned is n.

£4.10.7.3 January 11, 1988 _ §4.10.8.2

DRAFT

LIBRARY 162 STRING HANDLING <gtring.h>

10

33

40

45

4.11 STRING HANDLING <string.h>
4.11.1 String function conventions

The header <string.h> declares one type and several functions, and defines one
macro useful for mmxpuintm; arrays of characters and other objects treated ax arrays of
characters.'® The type is gize_t and the macro is NULL {both described in §4.1.5).
Various methods are used for determining the Jengths of the arrays, but in ail cases »
char * or void * argument points to the initial {lowest nddressed} character ‘of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

4.11.2 Copying functions
4.11.2.1 The memcpy funetion
Synopnis

#include <giring.h> -
void smemcpy(noalias void =51, const noaliag vold =g2,
ize_t 1)

Dencription

The memepy function copies B characters from the object pointed to by £2 into the
object pointed to by 81. If copying tskes piace between objects that overlap, the
behavior is undefined.

Returns

The meacpy function returns the value of 81.
4.11.2.2 The memmove function
Synopsis

#inelude <giring.h>
vold =memzcve{vold wsl, const vold =82, size_t n);

Deacription

The zemmove function copies & characters from the object pointed to by 82 into the
object pointed to by s1. Copying between objects that overlap shall take place correctly.

Returnas

The memsove function returns the value of 8.
4,11.2.3 The strepy function
Synopsis

#include <string.h>
char »gtrepy{noalias char sgl, const noalias char »s2);

Desecription

The gtrepy function copies the string pointed to by B2 (including the terminating
null character} into the array pointed to by g1. If copying takes place between objects
that overlap, the behavior is undefined.

105. See “future library directions' (§4.13.8}.

§4.11

January 11, 1988 §4.11.2.3
DRAFT

LIBRARY 163 STRING HANDLING <string.»>

15

20

Returns

The strepy function returns the value of a1,
4.11.2.4 The strncpy fuaction
Synopsis

#include <atring.h>
char =strocpy{noalias c¢har #si, const moalias char =2,
gize_t 1),

Description

The strncpy function copies not more than B characters (stopping after a null
character is copied) from the array pointed to by 82 to the array pointed to by 51.'% Jf
copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by 82 is a string that is shorter than B characters, null
characters are appended to the copy in the srray pointed to by 81, until & characters in
ali have been written.)

Returns

The strnepy function returns the value of g1.
4.11.3 Concatenation functions
4.11.3.1 The strcat function
Svnopais

#includs <string.h>
char =gtreat(noaliag char *5i, CODRL NOAliag ChAT *82);

Description

The gtTeat function appends a copy of the string pointed to by 82 (including the
terminating pull character} to the end of the string pointed to by ml. The initial
character of 82 overwrites the null characier at the end of 8i. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The gtreat function returns the value of §1.
4.11.3.2 The strancat function
Synopais

#ineclude <ptring.h>
chat sstrncat(noaliag chayr sgl, const noaliaw char »e2,
#ize_t 1)

Description

The strncat function appends not more than n characters (stopping before a null
character is appended) from the array pointed to by £2 to the end of the string pointed
to by g1, The initial character of 82 overwrites the nuil character at the end of 31, A

50 terminating nuil character is slways appended to the result Y If copying takes place

106. Thus, if thers is no null character in the first n characters of the array pointed to by 82, the result
will not be null-terminated.

107. Thus the aumber of characters that may end up in the array pointed to by s1 s strien{milen+l

§4.11.2.3 | January 11, 1988 §4.11,8.2

DRAFT

LIBRARY 184 STRING HANDLING <gtring.h>

between objécts that overlap, the behavior is undefined.
Returns '
The strocat function returns the value of #£1.
Forward references: the gtrlen function {§4.11.6.3).
4.11.4 Comparison functions -

The sign of the value returned by the comparison functions is determined by the sign
10 of the difference between the values of the first pair of characters that differ in the objects
being compared. If one of the characters has its high-order bit set, the sign of the result

is implementation-defined.

4.11.4.1 The momcmp function
Synopsis

#include <mirimg.h>
int eemcep{const noaliass void *si1, const noaliag void »8%,
Rize_t n),

Description

The mesncap function compares the first 1 characters of the object pointed to by a2
io the object pointed to by #1.'%®

25 Returos

The mewcnp function returns ap integer greatsr than, equal to, or less than Tere,
according as the object pointed to by 81 is greater than, equal to, or leas than the object
pointed to by 82.

30 4.11.4.2 The strcmp funetion
Synopsis

#incliude <string. h>
int gtremp(eonst noalias Char sgl, const poaliag obar *82);

Description

The Btremp lunction compares the string pointed to by BI to the string pointed to
by 82,

40 Returns

The streep function returns an integer greater than, equal to, or less than zero,
according as the string pointed to by 81 is greater than, equal to, or lass than the string
pointed to by 82,

108, The contents of “holes'’ used as ;rudding for purpoess of alignment within structure objects are
indetermipate, uniess the contents of the entire object bave been set explicitly, as by the calloc or
memset function. Strings shorter than their alioceted space and unions may aise cause probiems in
COmMpParison.

§4.11.3.2 January 11, 1988 54.11.4.2
DRAFT

LIBRARY ' 165 STRING HANDLING <string.h>

4.11.4.3 The strcoll function

Synopsis
#include <gtripg.h> o
5 int strcoll(conat noalfas char *sf, copst noaliass char *82);
Deqpript‘ion

The streoll funciion returns an integer greater than, equal to, or less than zero,

sceording as the string pointed to by €1 is greater than, equal to, or less than the airing

10 pointed 1o by 82. The comparison is based on strings interpreted as appropriate to the
program’s Jocale.

4.11.4.4 The surncep function
15 Synopsis

#incivde <string h>
int strocep(const noaliss char *sl, const noalias char w»s2,
size_t n);

20 Description

The ptrncep function compares not more than 8 characters {stopping after a pull
character is compared) from the array pointed to by 81 to the array pointed to by 2.

Returns
25 The straerp function returns an integer greater than, equal to, or Jess than zero,

according as the possibly null-terminated array pointed to by 8L is greater than, equal 1o,
or less than the possibly null-terminated array pointed to by 2.

4.11.4.5 The strxfrm function
Synopsis

#inclugde <gLring.h>
size_t strxfre{poslias char sgl, conet pcaliss char ss2,
size_t 1n);

Description

The strxfra function transforms the string pointed to by %2 sad places the
resulting string into the array pointed to by 81. The transformation is such that if the
streep function is applied to two transformed strings, it returns a value greater than,

40 equal o, or less than zero, corresponding to the result of the gtreoll function applied
to the same two original strings. No more than n characiers are placed into the resulting
array pointed 16 by 81, including the terminating null character. If copying takes place
between objects that overlap, the behavior is undefined.

45 Returns

The ptrxfre function returns the length of the transformed string (not including the
terminating null character). If the value returned is n or more, the contents of the array
pointed to by 81 are indeterminate.

50 Example

The value of the following expression is the size of the array needed to hold the
vransformation of the string pointed to by &.

1 + gtrzfre{NULL, 5, 0}

.. *

§4.11.43 Jan;a&y 1;: .}988 §4.11.4.5
A .

LIBRARY 166 STRING HANDLING <string. 2>

4,11.5 Search functions
4.11.5.1 The memchr function

5 Synopsis .
#include <giring.h>
¥014 +memchr(coset Boalilas void sz, 1int c, 81Ze_T 2);
Description -
10 The memchr function locates the first occurrence of ¢ [converted to an unsigned
char) in the initial & characters of the object pointed to by 8.
Returns
The nemchr function returns a pointer io the located character, or a null pointer il
15 the character does not oceur in the object.
4.11.5.2 The strchr function
Synopsis
20 #1ipclude <string.h>
char sstrcar{const noalias char »s, int ¢}
Description
The stredr function locates the first occurrence of & {converted to a char) in the
25 string pointed to by 8. The terminsting null character is considered to be part of the
string.
Returns
The mtrehr function returns & pointer to the located character, or a null pointer if
30 the character does oot occur in the siring.
4.11.5.3 The strcspn function
Synopsis
35 #include <string.h>
£i1ze_t streospn{const noalias cher #sil,
const noalissg char %g2);
Description
40 The strospn function computes the lengih of the maximumn initial segment of the
string pointed to by 81 which consists entirely of characters not from the string pointed
to by £2.
Returns
45 The strespn function returns the langth of the segment.
4£.11.5.4 The strpbrk function
Synopain
50 #include <pLring.h>
char »strpbrk(congt noalizg char =81, -
const noalias char =s2);
Description
55 The strpbrk functicn locates the Brst occurrence in the string pointed to by 81 of
any character from the string pointed to by =%
§4.115 : Japuary 11, 1988 §4.11.5.4

DRAFT

LIBRARY 167 STRING HANDLING <gtring.h>

Returns
b The strpdrk function returns a pointer to the character, or & null pointer if no
character from B2 oceurs in 81,
4.11.5.5 The strrchr function
Synopsia

#include <gtrimg.h>
10 char s@trrchr(const noaliss char =3, int ¢);

Description

The strrebr function locates the last occurrence of ¢ {converted 1o & char) in the
string pointed to by 8. The terminating aull charaeter is considered to be part of the
15 string. :

Returns

The strrchr function refurns a pointer to the character, or a null pointer if ¢ does
Bot oecur in the string.

4.11.5.6 The strspn function
Synopsis

#include <SLTing.h>
25 #ize_t strspn(const noalias char »F1, CODSt NORl1SE ChaT eEZ);

Description

The gtrspr function computes the length of the maximutp initial sexment of the
string pointed to by 81 which consists entirely of characters from the string pointed to by
30 s2.

Returnps
The strepa function returns the length of the segment.
35 4.11.5.7 The strstr function |
Synopsis

#include <siring.h>
char =strstr{const poalias char =81, const nNoalias char #g2);

Description

The strstr function locates the first occurrence in the string pointed to by 81 of the
sequence of characters (excluding the terminating null character) in the string pointed to
by 82

Returns

The strstr function returns s pointer 1o the located string, or & null pointer if the
string is not found. If 82 peints to a atring with zero length, the function returns a3,

50 4.11.5.8 The strtok function

Syncpeis

#include <string.h>
char =strtok(noallas char 51, cohft Noalias char »82),

§4.11.5.4 ' Jangaéy l;: ;‘988 §4.11.5.8
A

LIBRARY 168 STRING HANDLING <string.h>

10

i5

20

30

35

40

45

Dencription

A sequence of calls to the strtok function breaks the atring pointed to by a1 into a
sequence of tokens, each of which is delimited by a character from the siring pointed to
by 82. The first call in the sequence has 81 as its first sargument, and is followed by calls
with a pull pointer as their first argument. The separator string pointed to by 52 may be
different from cali to call.

The EBrst call in the sequence searches the string pointed to by =1 for the first
character that is not contained in the current separator string pointed to by 82. If no
such character is found, then there are no tokens in the string pointed to by 81 and the
gtrioX function returns s null pointer. M such a charaeter is found, it is the start of the
first token.

The gtriok function then searches from there for a character that is contained in the
current separator string. If no such character is found, the current token extends to the .
end of the string poinied to by 81, and subsequent searches for a token will return a nuli
pointer. If such a character is found, it is overwritten by a null character, which
terminates the current token. The strick Function saves a pointer to the following
character, from which the next search for a token will start.

Ea.c£ subsequent call, with = null pointer as the value of the first argument, staris
searching from the saved pointer and behaves as described above.

The implementation shali behave as if no library function calls the strtok function.

Returns

The gtrtok function returns a pointer to the first character of a token, or a null
pointer if there is no token,

Example

#include <string.h>
gtatic char str[] = *Pa??%b,, . #HcY;

char *t;

t = gtriok{str, *"*"); /* L points to the loken "a™ a/
t = strtok({NULL, *,%); /& t points to the token “72b* =/
t = SLTtok{NULL, *#,"). /® t poinis fo the loken *c% =/
t = striok{NULL, *?%); /% t isa null pointer =/

4.11.8 Miscellaneous functions
4.11.86.1 The memset function

Synopsin .
#include <string.h>
void smemset(ooalias vold *8, int c, size_t nl};
Description
The marset function copies the value of ¢ (converted to an ungigned char) into
each of the first n characters of the object pointed to by &.

Returns -

The memset function returns the value of 8.

§4.11.58 Japuary 11, 1988 . | §4.1181

DRAFT

LIBRARY ' 168 STRING HANDLING <atring.hn>

4.11.6.2 The strerrer function
Syno_sis
#include <string.h>
5 char sstrerror(int errnum);
Description
The strerror function maps the error number in arroum to an error message string.
10 Returns

The strerror function raturns a pointer to the string, the contents of which are
implementation-defined. The array pointed to shall not be modified by the program, but
may be overwritten by a subsequent call to the strerror function.

i5 4.11.8.3 The strlen function
Synopsis

#include <string.h>
size_t strlen(c¢onst moaliaf char #§);

_Pescription
The strlon function computes the length of the stiring pointed to by =.

Returns

25 The strlen function returns the number of characters that precede the terminating
null character.

§4.11.6.2 | January 11, 1988 §4.11.6.3
DRAFT

LIBRARY 170 DATE AND TIME <time.h>

10

15

20

25

30

40

45

50

§4.12

4.12 DATE AND TIME <time.h>
4.12.1 Components of time

The header <time.h> defines two macros, and declares four types and several
functions for manipulsting time. Many funetions deal with a zalender time that
represents the current date (sccording to the Gregorian calendar} and time. Some
funetions deal with locaf time, whick is the calendar time expressed for some specific time
sone, and with Daylipht Saving Time, which is & temporary change in the algoriftim for
determining local time. The local time zone and Daylight Saving Time are
implementation-definad.

The macros defined are NULL (described in §4.1.5); snd
CLK_TCK
which is the number per second of the value returned by the ¢lock function.
The types declared are size_t {described in §4.1.5);
clock_t
and
time_¢
which are arithmeti¢ types capable of representing timmes; and

sLruct tm

which holds the components of a calendsr time, called the broken-down time. The
structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.

int te_gec; /& scconds after the minute ~ [0, 59/ s/
10t te_min; /% minules sfter the hour — [0, 59 &/
int ta_hour; /w hours since midnight — [0, £8] o/
int ta_mday; /= deyof the month — (I, 81] »/

int te_wkon; /® monthe since Jonuary — [0, 11} =/
int ta yesr; /x gearsstnce (800 »/

int ta_wday; /& deysasince Sundey — [0, 8] =/

int tm_yday; /* deys since Janwary I — [0, 365] »/
int ta_isdst; /= Daglight Seving Time flag &/

The value of t®_1s8dst is positive il Daylight Saving Time is in eflect, rero if Daylight
Saving Time is not in effect, and negative if the information is not available.

4.12.2 Time manipulation functions
4.12.2.1 The clock function
Synopsis

#include <time.h>
clock_t clock(void);

Description
The clock function determines the processor time used.
Returns

The clock function returns the implementation’s best approximation to the processor
time used by the program since the beginning of an implementation-defined era related
only to the program invocation. To determine the time in seconds, the value returned by
the clock function should be divided by the value of the macre CLK_TCK. If the

January 11, 1988 . §4.12.2.1
DRAFT

LIBRARY 171 DATE AND TIME <time.n>

i0

15

20

25

30

35

40

415

processor time used is pot available or its value cannot be represented, the function
returns the value (ol “ek_t)~1,

4.12.2.2 The a17fvime function
Synopsis

#incilude <time.h>
doudle difftime{time_t timel, time_t timsd);

Description

The d1fftime function computes the difference between two calendar times: timal
- tizeO.

Returns

The difftize funclion returns the difference expressed in seconds as a double.
4.12.2.3 The mktime function
Synopsis

#include <time.bh> \
tine_t sktime(noalias struct ta stimepir);

Pescription

The mktime function converts the broken-down time, expressed a2 local time, in the
structure pointed to by timepty into s ealendar time valus with the same encoding as
that of the values returned by the time function. The original values of the ta_wdny
and te_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated above.*™ On successful
completion, the vaiues of the tm_wday and ta_yday components of the structure are ses
appropriately, and the other components are set 1o represent the specified calendar time,
but with their values forced to the ranges indicated above; the final value of ta_mday is
not set until tm_mon and LR_year are determined.

Returnos

The mktime funclion returns the specified calendar time encoded as » value of type
time_t. If the calendar time cannot be represented, the function returns the value
{time_1)-1.

Example
What day of the week is July 4, 20017

#incliude <stdlc.h>
#inciude <time . bh>
static const char econst wday[l = {
*Sunday®, "Monday', "Tuemsday®, “"Wednasday®,
*Thureday®, *Friday®, "Saturday®, "-unknown~*
};
struct tm time _str;

108. Thus a positive or zero value for tm isdst causes the sktime function ihitially o presume that

Daylight Saving Time, respectively, isor is not in effect for the specified time. A negative value for
ton 3edgt causes the miktizme funciion to attempl to determine whether Dayiight Saving Time is in
efféct for the specified time.

§4.122.1 January 11, 1988 §4.12.2.3

DRAFT

LIBRARY ‘ 172 _ DATE AND TIME <time.bh>

10

15

20

25

30

40

Timge_Otr.ta _year = 2001 - 1200;
time_eir.te_mon =7~1;
time_sir.te_mday = 4;
tise_str.ta_hour = O
tisme_str.tm_xln = 0;
tima_stir.ta_sec = 1
time_str.tm_isdst = -i; -
if (aktime(BLime_ sLr) == ~i)
time_gLr.ta_wday = 7,
printf(*%s5\n*, wdayl[tise_str tas_wdayl);
4.12.2.4 The time function
Synopsis
#include <time h>
time_t time{noalias time_t ttiaar)
Description
The time functicn determines the current calendar time, The encodmg of the value
is unspecified.
Returns
The time function retyrns the implementstion’s best approximation to the current
calendar time. The value (time_t) -1 is returned if the calendar time is not available.
If tizer is not a null pointer, the return value is also assigned to the object it points to.
4.12.3 Time conversion functions
Except for the ptritine function, these functions return values in one of two static
objects: a broken-down time structure and a character array. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the
cther funetions. The implementation shall behave as if no other library functions eall
" these functions.
4.12.3.1 The asctime function
Synopsia
#include <time.h>
char vasctime(const noalias struct ta *timeptr);
Deseription

The agctims function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 18 01:03:52 1973\n\0
using the equivalent of the following algorithm.

§4.12.2.3 : . January 11, 1988 §4.12.3.1

DRAFT

LIBRARY 173 DATE AND TIME <time.h>

10

15

20

25

30

35

40

50

char *asctime(const noaliag Rtruct ta stimepir)
{
static const char wday namef{7][3] = {
_ *Sun®, *Mon*, *Tue", *Wed*, *Thu", *"Fri®, "Sat"
}

static const char mon_name{i2] (3] = {
=Jan*, *Fab*, *"Mar®, *Apr=®, "May", *Jun",
Jui®, "Aug, *Sep*, "Dere, °"Nov®, *Dec*

}:
gtatic char result{26]:

sprint?{result, *%.3s %.38%3c¢ ¥.24:%.2¢:%.2d Xd\n",
wéay_name [timeptr~>tm_wdayl,
eon_nase [timeptr->ta_mon},
timeptr->ta mday, timeptr->ta_hour,
Timeplr->ta_min, tilmsepir->te_sec,
1600 + timepir->tm_year):

return result;

¥

Returns

The agctine function returns & pointer to the string.
4.12.3.2 The ctime function
Synopsis

#icclude <time.bh>
¢har sctime(const noaliss vime U etimer);

Description

The ctime function converts the calendar time pointed to by timer to local time in
the form of a string. It is equivalent to

asctime(localtime(tiner))
Returns

The etise function returns the pointer returned by the asctime function with that
broken-down time as argument,

Forward references: the localtime function (§4.12.3.4).
4.12.3.3 The gnotime function
Synopsis '

#include <time.b>
struct te sgatime(const noalias time_t wiimer),

Dencription

The gatime function converts the calendar timne pointed to by timer into a broken-
down time, expressed as Coordinated Universal Time {UTC).

Retuarns

The gutime function returns a pointer Lo that abject, or a null pointer if UTC is not
available.

£4.72.3.1 January 11, 1988 §4.12.3.3

DRAFT

LIBRARY ir4 DATE AND TIME <tima.h>

20

25

3c

40

45

50

55

4.12.34 The localtime function
Synocpsis

#include <time. h>
stTuct tm *localtime(CONnsSt noalias time_t stimer);

Deacription

The localtime function converts the calendar time pointed o by timer into a
broken-down time, expressed as jocal time.

Returna

The localtime function returns a pointer to that object.
4.12.3.5 The gtrftime function
Synopsis

#include <time.h>

size_t strftime(noalias char e&, size_t maxeiza,
COREL NOAlias char «format,
const noallas struct s stimepir);

Description

The stritime function places characters into the array pointed to by 8 as controlled
by the string pointed to by format. The format shall be a multibyte character sequence,
beginning and ending in its initial sbify state, The format string consists of 2ero or more
conversion specifications and ordinary muitibyte charscters. A conversion specification
consists of a X character followed by a character that determines the conversion
specification’s behavior. All ordinary multibyte characters (including the terminating
null character) are copied unchanged into the array. I copying takes place between
objects that overlap, the behavior is undefined. No more than maxsize characters are
placed into the array. Each conversion specification is replaced by appropriate characters
as deseribed in the following list. The appropriate characters are determined by the
program's locale and by the values contained in the structure pointed to by timeptr.

%a is replaced by the locale’s abbreviated weekday name.

XA is replaced by the Jocale’s full weekday name.

%t is replaced by the Jocaie’s abbreviated month name.

%¥B is replaced by the locaie’s fu)l month name.

%c is replaced by the locale’s appropriate date and time representation.

Xd s replaced by the day of the month as a decimal number {01-31}.

%H is replaced by the hour {24-hour clock) as a decimal number (00-23},

%I is replaced by the hour {12-hour clock) as a decimal number (01-12).

%] is replaced by the day of the year as a decimal number {001-366).

%R is repiaced by the month as a decimal number (01-12}.

%M is replaced by the minute as a decimal pumber (00-56).

Xp is replaced by the locale’s equivalent of either AM or PM.

XS is replaced by the second as & decimal number {C0-58).

%U is replaced by the week number of the year {Sunday as the ﬁrst day of the week)
as a decimal number (00-53}.

Xw is replaced by the weekday as a decimal number [0 {Sunday}8). =

%W is replaced by the week number of the year {Monday as the first day of the wesk)
as 3 decimal number (00-53).

%x is replaced by the locale’s appropriate date representation.

%X is *eplaced by the locale’s appropriate time representation.

¥y is ;eplaced by the year without century a5 8 decimal number {00-99).

%Y is replaced by the year with century as & decimal number.

§4.12.3.4 January 11, 1988 ' §4.12.3.5

DRAFT

LIBRARY 175 . DATE AND TIME <time.h>

%2 is replaced by the time mone pame, or by no characters il no time sone is
determinable.
X% is replaced by .

If a conversion specification is not one of the above, the behavior is undefined.
Returnas

If the total number of resulting characters including the terminating pull character is
not more than maxgize, the atrftime function returns the number of characters
placed into the array pointed to by £ not including the terminating null character.

10 Otherwise, rero is returned and the contents of the array are indeterminate.

£§4.12.3.5 January 11, 1688 §4.12.3.5
DRAFT

LIBRARY 178 FUTURE LIBRARY DIRECTIONS

10

13

20

25

30

§4.13

4.13 FUTURE LIBRARY DIRECTIONS

The following names are grouped under individual headers for convenjesce. All
external names described below are reserved no matter what headers are included by the

prograt. _
4.13.1 Errors <errno.h>
Macros that begin with E and xn upper-case letter ([oliowed by any combination of

digits, letters and underscore} may be added to the declarations in the <errno.h>
header.

4.13.2 Character handling <ctype.h>

Function narnes that begin with either 1# or to, and a lower-cane letter {followed by
any combination of digits, letters and underscore) may be added to the declarations in
the <ctype.h> header,

4.13.3 Loecalization <locale.h>

Macros that begin with LC_ and an upper-case letter (followed by any combination of
digits, letters and ubderscore) may be added to the definitions in the <locale.B>
header.

4.13.4 Mathematices <math.h>

The names of all existing functions declared in the <math.h> header, suffixed with
or 1, are reserved respectively for corresponding functions with £1o0at and long double
arguments and return values,

4.13.5 Signal handling <signal.h>

Macros that begin with either SIG and an upper-case letter or SIG_ and an upper-
case letter (hliowed by any ecombination of digits, letters and underscore] may be added
to the definitions in the <g1gnal .h> header.

4.13.8 Input/output <stdio.h>

- Lower-ease letters may be added to the conversion specifiers in fprintf and fscanf.
Other characters may be used in extensions.

4.13.7 General utilities <stdlib.h>

Function names that begin with str and a lower-case leiter {followed by any
combination of digits, letters and underseore) may be added to the declarations in the
<Btdlib.h> header.

4.13.8 String handling <string.h>

Function names that begin with BLT, mem, or wCg and a lower-case Jetter (followed by
any combination of digits, letters and underscore) Inay be added to the declarations in
the <gtring.h> header.

January 11, 1988 i §4.13.8
DRAFT

Proposed C Siandard 177 . APPENDICES

A. APPENDICES

{These sppendices are not & part of American Naticoal Standaid for Information Systems
- Programming Language C, X3.777-1988.)

These appendices collect information that appears io the Standard, and are not neceasarily
complete,

A.l LANGUAGE SYNTAX SUMMARY
The notation is described in the introduction to §3 (Language).

A.l.1 Lexical grammar
A.1.1.1 Tokens

{§3.1) token:

keyword

identifier

constanlt

alring-literal

operaior

punciualor -

(§3.1}) preproccssing-token:
header-name
identifier
py-number
thareeter-consiant
slring-literal
opereior
punciuaieor
each non-white-space character that cannot be one of the above

A.1.1.2 Keywords
{§3.1.1) keyword: one of

auto extern signed
break float gizeof
cage for static
char goto BLruct
const if sFwWiteh
continue int typedes
default long union

do noglias unsigned
double Tagister void
alse ° return vyolatlle
enue short while

A.1.1.3 Identifiers
(§3.1.2) ddentifier:

nondigt
tdentifier nondigit
identificr digst

EA. January 11, 1988 §A.1.1.3
DRAFT

APPENDICES 178 LANGUAGE SYNTAX SUMMARY

{§3.1.2) mondigit. one of

- & b ¢ d e f g b 1 } X I n
T o p ¢ r £ t u v w x ¥y 2
A B C D EVF G H I 2 K L u
E 0 P Q R 8 T VUV W X Y 2
(§3.1.2) digit: one of -
0 1 2 3 4 8 6 7 8 ¢
"A.l.1.4 Constants
{§3.1.3) conatant:
Hoaling-constant
inieger-conatant

enumeralion-constan!
charaecler-congtgn

(§3.1.3.1) flosting-conatant:
Jractional-constant srpoﬂent-ycﬂo rﬁoatt’nruﬂ‘i:
digil-sequence exponent-pert ﬂ“!’""“ﬁ’ap:

(§3.1.3.1) fractiengi-consignt: .
digit-ae guence, digit-szquence
digit-scguence .

opl

t -

{§3.1.3.1) ecxponent-part
8 ciguo td:'yt't-uquncc
B aignoﬂ digit-sequence
(§3.1.3.1) asgn: one of

. - -

(§3.1.3.1} digit-sequence:
digit
digit-sequence digit
(83.1.3.1}) flscting-suffir: one of
f 1 F L

(§3.1.3.2) integer-conatant:
decimaloconstant integer-suffiz
oclal-constant integer-suffia
hezadecimal.constant integcr-nﬂizp

{§3.1.3.2}) decimal-constant:
nonrero-digit
deeimal-conslant dipit

opt

54

(§3.1.3.2) oectai-constant:
o
octal-conslant octeil-digit

(§3.1.3.2) hexedecimai-constant:
OX heradecimal-diget
OX heredecimul-digst
hersdecimal-constant hezedecimeal-digit

{§3.1.3.2) nonzero-digst: ome of
1 2 3 4 5 8 7T 8 9

§A.1.1.3 Jan{)naéy;;: ;.988 - §A114

APPENDICES ' 179

{§3.1.3.2}) octal-digit: one of
: ¢ 1 2 83 4 5 6 7

{§3.1.3.2) hezadecsmal-digit: one of
0 1 2 3 4
a b ¢ ¢ @

A B C D E

(§3.1.3.2) ;;'nteyer-nlﬂiz:
unsigned-suffiz long-suffiz
long-suffiz unaipned-suffiz

E &8 7 8 9
4
F

opt
opl
(§3.1.3.2) unaigned-ssfiz: ope of

n U '

(§3.1.3.2) fong-suffiz: one of
1 L

(§3.1.3.3) enumeration-constant:
identifier

{§3.1.3.4) charscter-conatant:
'e-char-sequence’
L'e-cher-sequence’

{§3.1.3.4) c-char-scquence:
c-char
c-char-sequence c-char

{83.1.3.4) ¢-char:

LANGUAGE SYNTAX SUMMARY

any character in the source character set except
the single-quote /, backslash \, or new-line character

escgpe-aequense

{§3.1.3.4} cocapc-acquence:
simpic-cacape-sequence
octgl-cacape-sequence
hezadecimal-escapec-seguence

(§3.1.3.4) aimple-cacape-seguence. one of
VOONT AT N
\a \b A\ \m Ar A\t \¥

(6§3.1.3.4] octai-cacape-sequence:
\ octal-digit
\ octal-degit octal-digit
\ ecetal-digit ectal-digit octel-digit

{(§3.1.3.4) hezadecimal-cscape-acquence:
N hezadecrmai-digit

heradecimal-cacape-scquence hezadeeimal-digit

A.1.1.5 String literals

(83.1.4) string-literal:
- *s.char-scquence .*
L*a-char-scguenc api.

{§3.1.4) s-char-sequence.
s-char
s-char-sequence 2thar

§A.1.14 January 11, 1988

DRAFT

§A.1.L5

APPENDICES 186 LANGUAGE SYNTAX SUMMARY

(§3.1.4) e-char: -
any character in the source character set except
the double-quote ®, hackslash \, or new-line character

eacape-acquence
A.1.1.8 Operators
(§3.1.5) operator: oneof . ' -
1 ¢) . =
++ == X ® =+ = =~ 1 gize0f
/S & €< > € > <= dx =z 1= ~ | xx |}
r
z= k= /T %Y= 4= -m C<m 3>= K= "= |=

, ® up
A.1.1.7 Punciuators

(§3.1.6) punciuator: ons of
1P €)Yy £}y » , i, #
A.1.1.8 Header names

(§3.1.7} header-neme:
<h-char-sequence>
® g-char-sequence®

{§3.1.7) h-char-scguence:
h-char
h-char-seguence h-char

(83.1.7) h-char
any character in the source character set except
the new-line character and >

{83.1.7) g-chor-seguenes:
f-chcr
gcharssequence g-char

(§3.1.7) g-char:
any character in the source character set except
the new-line character and ®

A.1.1.9 Preproceasing numbers

{§3.1.8) pp-number:
digit
. digit
pp-nsmber digit
pp-number nondigi?
pp-number @ #gr
pp-number E #ign
pp-number .

BALLS January 11, 1988 §A.1.1.8
DRAFT

APPENDICES 181 LANGUAGE SYNTAX SUMMARY

A.1.2 Phrase structure grammar
A.1.2.1 Expressions

{§3.3.1) primary-cxpression:
edentifier
constunt
slring-liters!
(expresaion)

(§3.3.2) postfiz-expression:
primary-ctpression
postfiz-czpression [cxpression)
postfiz.expression (ﬁrgumen(-e:prcul'on-ll'sta
postfiz-expression . identifier
postfir-expreasion —~> {dentifier
postfiz-erpression ~+
postfiz-ezpression ==

pt)

{§3.3.2) argumenteezpression.ist:
asstgnmeni-cIpression
argumeniiezpreasion-hisl | gssignment-czpression

{§3.3.3) unary-expression:
postfiz-capression
+% YNGry-eIpresIion
—= ungry-crpression
ungry-operator casl-ezpresaton
g8lzeof unary-crpression
sizeof (type-name)

{$3.3.3) unary.operator: one of
g x & = m 3

(§3.3.4) cast-crpression:
unary-crpresaion
(typc-name) casl-cxpression

{§3.3.5) multiplicative-cxpreaeion:
cast-ezpreagion
multiplicative-ezpression » ¢casl-capreesion
mulhiplicative-ezpression / cast-czpredsion
mulliphicative-czpression % cast-czpreasion

{(§3.3.6) additive-cxpression:
mulliphicative-cxpression
additive-czpression + muliiplicative-ezpression
edditive-czpression — multiplicative-czpression

(§3.3.7) ashift-czpression:
sdditive-capression
shift-ezpression << cdditive-cxpression
shifli-ezpression >> additive-expression

§A.1.2 January 11, 1988 §A.1.21
DRAFT

APPENDICES 182 LANGUAGE SYNTAX SUMMARY

{§3.3.8) relational-expression:
shrft-ezpression
relationgi-cxpression < shift-expreasion
relalional-cxpression > shift-expression
relational-cxpression <= shift-ezpreasion
relotional-czpressson >= shifl-czpreasion

{§3.3.9) equality-cxpression: -
relalional-czpression .
equalily-expression == refational-ezpression
equalily-erprestion |= relational-czpression

(§3.3.10) AND-czpression:
cquality-czpression
AND-expression & equality-cxpression

{§3.3.11} ezceluaive.OR-szpression: .
AND-ezpression
ezelugive-ORezpreasion = AND.czpression

(53.3.12} inclusive-OR-cxpression:
exelusive-OF ezpression .
melusive-OR-expression | exclvaive-OR-cxpression

(§3.3.13) logical-AND-ezpression:
sncluaive-OH-czpression
logieal-AND-expreasion X inclusive-OR-expression

(§3.3.14) logical-OR-expression:
lagical-AND-expression
dogical-OR-ezpression | | logicall AND-e2pression

(§3.3.18) conditionai-ezpression:
' logseel-OR-ezpression
logical-OR-ezpression * ezpression : conditional-expression

(§3.3.18) assignment-crpression:
conditional-ezpreasion
wnary-ezpresston aadignment-operaior srsignment-erpression

{§3.3.18) assignment-pperaior: one of
= k= /= K= 4z =z gz 3> F= = =

{§3.3.17}) eapression:
assignmeni-czpression
¢Tpression , assignmeni-cIpresaion

{§3.4) conatani-ezpression:
eonditiongl-ezpression

A.1.2.2 Declarationa

(§3.5) declaration:
declaration-specifiers s'ui:-dcc!cutor-k’cro

ot
(§3.5) decloration-specifiers:
slorege-class-specifier e‘cca’aration-spccs'ﬁcrso
type-apeeifier declaralion-apecifiers

type-qualifier declamtiou-ayuiﬁeﬂo

pt

pi

§A.1.2.1 January 11, 1688 §A4.1.2.2
DRAFT

APPENDICES i83 LANGUAGE SYNTAX SUMMARY

{§3.5) init-declaraior-list:
_inil-dcclaraior
intl-decleralor-list |, inil-declareior

{§3.5) init-declerator:
declarator
declarctor = inslishizer .

(§3.5.1} storage-closs-specifier:
typedes
extern
Btatic
auto
regigter

{§3.5.2) type-specifier:
veld
char
short
int
long ' -
float :
double
signed -
unsigned
siruci-or-union-specificr
enum-specifier
typedef-name

3.5.2.1) stru¢t-or-unton-specifier: :
P
struci-or-wnion identifier = { siruci-declarstion-liat }
atryeteor-union identifier

{§3.5.2.1) struel-or-union:
BLYuUCL
unlion

(§3.5.2.1) atruct-deciaration-list:
alryctsdeclaration
sirvci-declaration-list struct-decleration

{§3.5.2.1) airuci-deciaration:
speefier-qualifier-itat struet-declerator.list

{(§3.5.2.1) specifier-gualifier-list:
type-apecifier apecifier-qualifier-list
type-gualifier speciﬁar—qtah'ﬁcr—lia!”[
{§3.5.2.1) struct.declarator-list:

struci-deciarator
straci-declerator-hist , strucl-declarator

{63.5.2.1) etruct-declorater:
= declarator
declarator,

{§3.5.2.2) enum-specifier:
anum identifier ¢ { cremerator-list }
enus vdentificr

pt : consteni-czpression

§AL122 . January 11, 1688 §A.1.2.2
DRAFT

APPENDICES 184 LANGUAGE SYNTAX SUMMARY

{8§3.5.2.2) enumerctor-list:
enumeralor
enumergtor-dial , enumeralor

(§3.5.2.2) enumersior:
enumeralton-conslant
cnxmeration-conatent = ¢onslont-czpresiion

(§3.5.3) type-qualifier:
congt
noalias
volatile

(§3.5.4) declarator:
pa:’nfer”t direct-declarstor

(§3.5.4) direct-declaraior:

sdentifier

¢ declorator)

direet-declarator [comtsnt-ezpreus'cnapt 1
direct-declarator { parameter-type-list) ‘

direci-declarcior (a’dcntuﬁcr—h’lt”g)

(§3.5.4) pointer:
* fype-quolificr-iiat
* type-quah'ﬁer-h'at”t roinler

(§3.5.4) type-gualifier-list:
T type-gualifier
fype~guaiifier-hial type-gqualificr

(§3.5.4) parameter-type-list:
paremeter-list
paramecter-list |

(§3.5.4) parameler-list:
parameter-declaration
paremeler-liat , parameter-declaraiton

{§3.5.4) parameter-declaration:
decloration-apeeifiers declevelor
declaration-specifiers abatrcct-deel«ra!ara

{83.5.4) 1dentificr-list:

identifier .
sdentifier-tiat |, identifier

pt

{§3.5.5) type-name:
specetfier-qualifier-list sbsirac t~d¢ca‘¢mtor°

pt
(§3.5.5) abatract-declarator:
peinter
pm’nterp?‘ direct-abstract-deciarator

{§3.5.5) direct-sbotract-deciarator:
C abatract-declgrator)
Jl'rcct-abstracl-dcchmtor” [comtlnt-c:prcuioﬂo ;]
&s’rzc.‘.-ubatuct-dednrataro;t { parnmctcr-typc-fiatcpt)

§A.1.2.2 . January 11, 1988 5A.1.2.2
DRAFT

APPENDICES

(53.5.6)

(53.5.7)

(§3.5.7)

185

typedef-name:

sdentifier
inttralizer:

assignmenl-ezpression

{ tinitealizer-list }

{ snitializercst , }
initializer-list:

miltalizer

snsfighzer-fist , snilsalizer

A.1,2.3 Statements
(§3.6) statement:

(83.6.1)

(§3.6.2)

{§3.6.2)

(§3.5.2)

(§3.6.3)

(§3.6.4)

{83.6.5)

(§3.6.8}

§A.1.2.2

labeled-staiement
tompound-slalemen!
czpression-sielcment
selection-atatement
ileration.statement
Jump-glatement

labeled-sfstement:
identifier : aloternent
case conalent-czpression
default alafement

: stalement

compound-aslatement;

{ dec!urctwn-ha:apt nalement-lss!op(}
declaration-iist:

deelaration

declaration-list declaralion

slatement-listL:
statement
statement-list statement

ezpresston-algiement:

CTIPression :
P opt

selection-statement:
1f { capresaion) slatement

LANGUAGE SYNTAX SUMMARY

11 { capression) slolement elEe slolement

8witclh (expression)} stelement

tteration-statemen!:
while { ezpression) slalement
do slatement while { expression)

for { ezpression . | eapression ,

pi
Jump-atatement:

goto wdentifier ;
gontinue ;

break ;

Teturn t.‘-',‘prcﬂwﬂny! ;

January 11, 1988
DRAFT

expresaion) atatement

§A.1.2.3

APPENDICES 188 LANGUAGE SYNTAX SUMMARY

A.1.2.4 External definitions

(§3.7) translation-unit;
external-declaration
transletion-unit ezterual—dcc!amla’ou

(33.7} eaternal-declaration:
function-definition
declaration

{(§3.7.1} function-definition:

declaration-ap uiﬁsn”t deelorafor declaration-list _ eomposnd-staiement

epi
A.1.3 Preprocessing directives
(53.8) preprocessing-file:
group
{§3.8) prowp:
group-part
group group-parf
{§3.8) grovp-part:
pp-tokens , meu-iine

if-ae etion’
control-line

(§3.8.1) if-section:

f-group v:h_i'-grrr.i1.:;uwr else-yraspoﬂ endif-line
(§3.8.1) if-group:

if zonstani-cxpression new~iine yroup

1fdaf sdentifier newsfine group,

1inde! identifier new-line graup
(§3.8.1) elifegroups:

clif-group

ehif-groups elifsgroup
(83.8.1} clifogroup:

elif conastenf-czpression new-line group
(§3.8.1) else-group:

else new-iine group
(§3.8.1) endif-line:

endif new-line

opt

op!

control-line;
(63.8.2) # ipclude pp-tokens new-line
{53.8.3) # define sdentifier replacement-diat new-line
(§3.8.3) # define sdentifier iparen sden!tﬁer«lut) replacement-list new-line
(§3.8.3) # undef sdeniifier new-ling
(§3.8.4) # line pp-tokens new-line
{§3.8.5) # error pp-tokens . mew-line
(§3.8.6) # pragma pp- tcl‘cnao , mew-line
{§3.8.7) # new-line

{§3.8.3) lparen:
the lefi-parenthesis character without preceding white space

§A.1.2.4 Jenuaty 11, 1988 §A.1.3

DRAFT

- APPENDICES 187 LANGUAGE SYNTAX SUMMARY

{§3.8.3) replacement-list:
pp»tokmao

(§3.8} pp-tokens:
preprocessing-token
pp-tokens preprocessing-token
[§3.8) new-line:
the new-line character

pt

§A.1.3 January 11, 1988 L §A13
DRAFT

APPENDICES 188 SEQUENCE PCINTS

A.2 SEQUENCE POINTS

The following are the sequence points described in §2.1.2.3.
e The call to a function, after the arguments have been evaluated (§3.8.2.2}.

s The end of the firat operand of the following operstors: logical AND k& {§3.3.13); logical OR
11 (§3.3.14); conditional ? (§3.3.15); comma , (§3.3.17).

« The end of a full expression: an initializer (§3.5.7); the expression in an expression statement
(§3.6.3); the controlling expression of & selection statement {if or switch) {§3.8.4); the
controlling expreasion of & while or 4o statement {§3.6.5); the three expressions of a for
statement (§3.6.5.3}; the expression in a retura statement {§3.6.6.4).

§A2 X January 11, 1988 A2
DRAFT '

APPENDICES 189 LIBRARY SUMMARY

A.3 LIBRARY SUMMARY
A.3.1 ERRORS <errnec.n>

EDOM
ERANGE
4Irrno

A.3.2 COMMON DEFINITIONS <stddef.h>

NULL _ :
offaetof {iype, identifier)
prraiff_t

size_t

wehar_t

A.3.3 DIAGNOSTICS <assert.h>

KDEBUG
void seserv(int expression);

A.3.4 CHARACTER HANDLING <ctype.h>

ipt isslpumr{int ¢);
int issipna{int ¢);
int iscutrl{int c¢);
ipt isdigit{int ¢);
int isgraph{ist c);
int islower (1nt ¢);
int isprimt(int ¢);
int ispunct{int c);
int isepace(int c);
ipt isupper{int ¢);
int isxdigit{int ¢),
int tolower(int ¢);
int toupper(int ¢),

A.3.5 LOCALIZATION <locale.h>

LC ALL

LC COLLATE

L CTYPE

LC MONETARY

LC_NUMERIC

LC_TIME

NULL

struct leconv

char *setlocale(int category, const noalias char »locale);
fLrutt leony slocaleconv(vold):

|

A3 Janyary 11, 1988 §A.3.5
, DRAFT .

e

APPENDICES 190

A.3.8 MATHEMATICS <math.h>

HUGE_VAL

double acos{doubie x);

double ssin(double x);

double atan(double x);

double atanZ(double y, double x);

doudble cos{double x);

doudble sin{double x);

double tan(double IX); -

doydle cosh{double x);

double pinh{double x)}:

doukle vtanb{double x);

double exp(double x);

double frexp(doudle value, noalias int %exp);
double ldexp(doudle X, int exp);

double log{double x);

double logiO{doudble x);

doudle modf(double value, noalias double *1ptr):

~ doudle pow{double x, double y);

doubla sgri(doudble x);
double ceil{double x):
double fabg({double x):
double floor{double x);
double fmod(double x, doudle y);

A.3.7 NON-LOCAL JUMPS <setjmp.h>

Inp-_but
izt sevjap(imp _buf env);
volid longjmp(jmp buf env, int val);

A.3.8 SIGNAL HANDLING <sighal.h>

§1g_atomic_t
SIG_DFL

SIG_ERR

S1G_IGN

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM .

void (ssignal(int sig, void (*func){int))){int);
int raise{int sig);

A.3.9 VARIABLE ARGUMENTS <stdarg.h>

§A.3.5

va_list

vold va_start(va_list ap, parmi)};
type va_arg(va_list ap, type);
vold va_end(va_list ap);

January 11, 1888
DRAFT

§A.3.9

APPENDICES 101 ‘ LIBRARY SUMMARY

A.3.10 INPUT/OUTPUT <stdio.h>

_I0FBF
_JOLBF --
_I0NBF
BUFSIZ
EQF
FILE
FILENAME MAX
FOPEN MAX
fpos_t
L_tzpnam
NULL
SEEK_CUR
SEEX_END
SEEX_SET
size_t
gtderr
. ptdin
stdout,
TMP_MAX
int Temove{const Noalilng chiar =fillename);
ist renams (const noallass char sold, consgt noalias char snew);
FILE »tapfile(void);
char stmprnam(noalisg char =g);
int feloge (FILE #gtrean)
int fflusk(FILE sstrear); _
FILE »fopen(const nosliag char =fiiename,
CONEt DOALIGE CRAT wmode);
FILE sfreopen(const noaliasg char sfilename,
const noalise char =mode, FILE sstresn);
vold setbuf (FILE sgtTera, noaliag clar sbut);
1ot setvbuf (FILE sgtream, noaliss char sbuf, int modae,
size_t size);

ipt fprintf(FILE sstress, conet noalias char sformat, ...J);
int tecanf (FILE *streax, const noalias char »foTma%, ...J;
int printf (const noalias char =*format, .
int scanf (const Boalias char «forsat, ...);
int sprintf(noalias char ®s, const noaliag char eformat, ...);
int egcanf(const ncallas char g,

cOnst noalias char »format, ...);

1nt vipriptf (FILE wetrear, CODSL noalias char =formst,
va_list arg);

int vprintf(coast noallas char sforast, va_list arg).

int veprintf{ncalias char »s, coust moalias char =format,
va_1l11i8t arg);

int fgetc(FILE *etrean);

char sfgets{noalias char #»g, ist 1, FILE sstream);

ist fputc{int ¢, FILE estream);

int fpute{const moslias char s, FILE *stream);

int getc(FILE #strean);

int getchar(vold};

char »gets(noalias char #8).

1nt putc(int ¢, FILE *gtream);

int putchar(int ¢);

§A.3.10 January 11, 1988 $A.3.10
PRAFT

APPENDICES 192 LIBRARY SUMMARY

int puts(const noaliss char #s);

int ungete(int ¢, FILE =ptream);

8120 _t fread(noslias void »pir, size_t wize, size t nmsad,
FILE sgtrean) s

pize t fwrite(const noallas vold wptr, size_t size,
size_t nmwesb, FILE egtreaam};

int fgetpos(FILE sstresm, noallas fpo&_% *poR);

int feeek(FILE sstrealk, 10Dg int offset, 1nt whence);

1nt feetpos (FILE «stream, const noslias fpos_t *pos);

long int ftell(FILE sgtream);

void rewind(FILE sstream};

void cleaTerr(FILE sstreus);

10t feof (FILE »stream);

10t ferror(FILE sstream);

void perror{const noallas char esg);

§A.3.10 Jangag 1;, 1988 - BAS.10
AFT

APPENDICES 188 - LIBRARY SUMMARY

A.3.11 GENERAL UTILITIES <stdlib.h>

EXIT_FAILURE

EXIT_SUCCESS

MB_CUR_MAX

NULL

RAND_MAX

div_t

laiv ¢t

size_1t

wechar_t

double atof(const moalias char saptr);

int atoli{const noaliass char =npty);

long 1nt atol{const BoaAllas char snptr);

double striod{conpt poalias ¢har snptr,
char * noalias wendptr);

long int striol(const noallss char saprr,
¢har = noalias =endptr, int base);

unsigned long int stricul{(const noalias char snptr,
char = neoalias =endptr, int baze);

int rand(veid):

void srand{ungigned int sesd);

void scalloc(gize_t nmemd, size_t size);

vold free{nosliac void #pir);

vold smalloc(size_t ei2e);.

void sreslloc(nosliss vold *pLr, sizs t size);

void abort{vold};

int zxtexit(vold (sfunc)(void});

void exit(int status);

char sgetenv(const noaliss char ename);

int systex(const noalias char =string);

volid stsaarch{const noslias void skey,
const noslias vold sbase,
Blze_1 amoRb, Slz¢_U Bize,
int (=compar) (const noaliak void =,

const nosliss vold »));

void qsort{noslias volid sbase, size_U nmemb, slze 1 size,
int (scomrpar){const noalias veid =*,
const noalias void *});

int abs{int 1);

dgiv_t div{int numer, int denom);

long int labs{long imt 3};

ldilv_t 1div(long 1nt numer, long ipt denom);

irt mblen{const noalias char =g, 8126_% n);

int abtowc{poalias wchar_t =pwc, const Doalias char »s,
size_t n);

int wetomdb(nosliss char o5, wehar _t wobhar),

Bize_t mbstowcs(noalias wchar_t *pwes,

- cODBY Noalias char s, size_t n);

£1ze_t westombs(noalias Char s,
CON8Y nNoalizs wolar t »pwes, Eize_t 1),

§A.3.II0 Jan;s;y 1;: ;938 A3.11
A .

APPENDICES . 194 LIBRARY SUMMARY

A.3.12 STRING BANDLING <string.h>

NULL
slze_t
" vo1d smemcpy(noalias vold #sl, const noallias vold *s2,
glze_t n);
void smeamove({vold #8i, conet void 82, size t n); .
char sstrcpy{noalias ckar »sil, const noslias char *82); -
char sstrocpyi{ncelias char *si, conBt NORll&g ChATr =82,
s51ze_t n); '
char sstrcat{noalias char *gi, const nosllas char »s2);
char sstracat{nocalias char »s!, const noaliss char wgl,
size_1t B).
int memcap{const noalias vold =gi, congt noalias void g2,
size T n).
iot strewp{conet noalias char *sl, const noaliis char »§2);
int streoll(const Doalias char +si, conet noslias char »g2);
int strocap(const noalias char #gl, const noalias char =52,
$ize_t D);
size_t straxfrm{noalias char #«sl, const noallas char =s2,
size_t n);
void #=memchr(const noalias void *s, int ¢, size_t n);
ehar #gtrohr{congt noaliss char »g, int ¢}
g1ze_t strespu(const noslisag char #21, const noallag char #s2).
char *strpdrk(const noallas char *51, const noaliae ¢har =s2),;
char sstrrehr{const noalias char #g, int ¢}
size_ t strepn(const moaliag char seil, congt moalias char =@2);
char setrstr{const nOaliass char *21, const noalias char #82);
char sstrtok(nosliss char *pl, const noalias char =82);
void smenget(noalias void *g, int o, Biza ¢ n);
¢har sstrerror{int erroua);
glze_t strilen(const noalias char ¢g);

A.3.13 DATE AND TIME <time.h>

CLK_TCK

NULL

ciock_t

time_1T

glze_t

struct ta

clock_t clock(void);

doudle difftime{time_t timei, time_t tipe();

time_t aktime(nosliag struct tem =timeptr);

time_t time(noalias time 1t stimper);

char *agctime(const nosliag pLruct ta *timepir);

char sctims(const noalias time_t stimer);

struct ta sgatime(const noalias time t stimer);

struct ta slocaltige{const nosliag time_t stimer):

size v stritise(nosliag char »p, giZe b maxsize,
const noallas char =formats, ' ¢
const noaliss struet tx stimeptr);

§A3.11) Janli)lal;y 1;‘, ';988 §A3.13
A

APPENDICES

"A.4 IMPLEMENTATION LIMITS

The least contents of s header <1imits 1> are given below, in alphabetic order. The
minimum magnitudes shown shail be replaced by implementation-defined magnitudes with the
same sign. The values shall all be constant expressions suitable for use in #1f preprocessing

105

directives. The components are deseribed further in §2.2. 4.2,

#define
#daefine
#define
#define
#define
#define
#define
#define
#definve
#dellne
#define
#éafine
#define
#define
#define
#define

The least contents of a header <f1oat . h> are given below, in alphabetic order. The value
of FLT RADIX shall be a constant expression suitable for use in #1{ preprocessing directives.
Values that need not be constant expressions shall be supplied for all other components. The
minunum magnitudes shown for integers and exponents shall be replaced by implementation

CHAR_BIT
CHAR_MAX
CHAR_MIN
MB_LEN_MAX
INT_MAX
INT_KIN
LONG_MAX
LONG_MIN
SCHAR_MAX
SCHAR MIN
SHRT MAX
SHRT MIN
UCHAR_MAX
UINT MAX
ULONG_MAX
USHRT_MAX

UCHAR_MAX or SCHAR MAX
O or SCHAR_MIN

1
+32767
-32767

+2147463647

~2147483847
+127
w127
32787
-32787

2880
85535V
4294087205V
85535y

IMPLEMENTATION LIMITS

defined magnitudes with the same sign. The components are described further in §2.2.4.2.

§A.4

January 11, 18988
DRAFT

§A4

. Pt

§A.4

#define
#dafine
#define
#dafine
#define
#define
#define
#dafine
#define
#define
#define
#define
#define
#define
#define
#dafine
x#define
#define
#define
#delline
#define
#¥gefine
#define
#define
#define
#define
#dafine
¥defina
#define

DBL_DIG
DBL_EPSILON
DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBEL_MAX_EXP
DBL_MIN
DBL_MIN 10 _EXP
DBL_MIN_EXP
FLT DIG

FLT EPSILON
FLT_MANT DIG
FLT_MAX

FLT MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FL.T_MIN_EXP
FLT_RADIX
FLT_ROUNDS
LDBL_DIG
LDBL_EPSILON
LDBL_MANT_DIG
LDBL_ MAX

LDBL_MAX_10 EXP

LDBL_MAX_EXP
LDBL_MIN

LDBL_MIN_10 EXP

LDBL_MIN EXP

i9¢

January 11, 1988
DRAFT

10

1E-9

1E+37
+37

1E-37
-37
1iE-5

1E+37
+37

1E-37
=37

16
1E-D

1E+37
+37

1E~37
~37

IMPLEMENTATION LIMITS

§A4

APPENDICES 187 - COMMON WARNINGS

A.5 COMMON WARNINGS

An implementation may jtnerate warnings in many situations, none of which is specified as
part of the Standard. The foliowing are a few of the more commeon situations.

« A Block with initialization of &n object that has sutomatic storage duration is jumped into
(§3.2.2.4).

« A charscter constant includes more than one character (§3.1.3.4).
o The characters /* are found in a comment {§3.1.7).

o An implicit narrowing conversion is encountered, such as the assignment of a Jong int ora
double tc an 18t, or a pointer to Yoid to & pointer 1o any type of object other than char

{§3.2).

+ An "unordered” binary operator {not comma, £& or | |) contains » side-eflect to an ivalue
in one operand, and a side-effect to, or an access to the value of, the identical lvalue in the
other operand (§3.3}.

« A function is called but no prototype has been supplied {§3.3.2.2).

s« The srgutnents in & function eall do not sgree in autmber and sype with those of the
parameters in s function definition that is not 2 prototype (§3.3.2.2).

« An object is defined but not used (§3.5).

s A value is given to an object of an enumersation type other than by assignment of an
enumeration constani that is & member of that type or an enumeration variable that has »
compatible 1ype (§3.5.2.2}.

+ An aggregate has a partiy bracketed initialization (§3.5.7).
« A statement cannot be reached (§3.6}.
¢ A statement with no apparent efect is encountered (§3.8).
- a A constant expression is used a= the controliing expréssion of & selection statement {(§3.6.4).
» A function has returs statements with and without expressions {§3.8.6.4).

« An incorrectly formed preprocessing group is encountered while skipping a preprocessing
group (§3.8.1).

¢ An unrecognized #pragna directive is encountered (§3.8.6).

§A.5 Japuary 11, 1988 ' . §AS
DRAFT

JFPPE s , 198 PGRTABILITY ISSUES

.8 “ORTABILITY ISSUES
This appendix collects some information about portability that appears in the Standard.
"1.8.1 Unspecified behavior
The following are unspecified:
+ The manner and timing of static initialiration (§2.1.2).

» The behavior if a printable character is written when the active position is at the fnal
position of a line (§2.2.2).

o The behavior if a backspace character is written when the active position is at the initial
position of » line (§2.2.2).

¢ The behavior if & horizontal tab character is written when the active position is at or past
the Jast defined horizontal tabulation position (§2.2.2).

» The behavior if a vertical tab character is written when the active position is at or past the
jast defined vertical tabulation position {§2.2.2).

« The representations of Hoating types (§3.1.2.5).

¢ The order in which expressions are evaluated — in any order conforming to the precedence
rules, even in the presence of parentheses (§3.3}

» The order in which side effects take place (§3.3).

s The order in which the funciion designator and the arguments in a fupction call are
evaluated {§3.3.2.2).

o The alignment of the addressable storage unit allocated to hold a bit-field (§3.5.2.1).

+ Whether 3 distinct noalias handle is associated with the actual object or a virtual object
(§3.5.3).

o The iayout of storage for parsmeters {§3.7.1},
» The order in which # and ## operations sre evaluated during macro substitution {§3.8.3.3).

» The value of the file position indicstor after x successfyl call to the yngete function for a
text stream, until all pushed-back characters are read or discarded {§4.9.7.11).

¢ The details of the value stored by the fgetpog funciion on success {$4.9.9.1).

» The details of the value returned by the ftell function for a text stream oh success
{§4.9.5.4).

« The order and contiguity of storage allocated by the calloc, malloe, and resllioee
funetions (§4.10.3).

« Which of two members that compars a5 equal is retyrned by the baeareh function
{84.10.5.1},

» The order in an array sorted by the gsort functicn of two members that compare as equal
(§4.10.5.2}.

« The encoding of the calendar time returned by the time function (§4.12.2.3),

A8 January 11, 1888 . §A8.
DRAFT

APPENDICES 198 PORTABILITY ISSUES

A.8.2 Undefined behavior

The bebavior in the following tircums'ances is uniefined:

s A nonempty source fle does not end in a new-line character, ends i newsline charscter

immediately preceded by a backsiash charscter, or ends in a partial preprocessing token or
comment (§2.1.1.2).

» A character not in the required character set is encountered in » source file, except in a

preprocessing token, a character constant, s string literal, or a8 comment {§2.2.1).

A comment, string literal, or character constant contains an invalid multibyte character or
does not begin and end in the initial shift state {§2.2.1.2).

An unmatched ’ or * character is encountered on a logical source line during tokenization

(§3.1}.

The same identifier is used more than once as a labe] in the same function (§3.1.2.1).
Arn identifier is used that is not visible in the current scope (§3.1.2.1).

Identifiers that are intended to denote the same entity differ in any character {§3.1.2).

The same identifier has both internal and external iinkage 18 the same translation unit
{§3.1.2.2).

Axn identifier with -external linkage is used but there does not exist exactly one external
definition in the program for the identifier (§3.1.2.2).

There exists more than one declaration of an identifier with file scope with po linkage in the
same name space (§3.1.2.3).

The value siored in » peinter that referred to an object with aut-o:nanc st»ouge duration is
vsed (§3.1.2.4).

Two declarations of the same object or function specify types that are not compatible
(§3.1.2.8).

An unspecified escape sequence is encountered in a character constant or s string Literal
{§3.1.3.4).

An attempt is made to modify a string literal of either form (§3.1.4}.
A character string literal token is adjacent to a wide string literal token (§3.1.4).

The characters 7, \, *, or /# are entountered between the < and > delimiters or the
characters ', \, or /% are encountered between the * delimiters in the two forms of &
header name preprocessing token {§3.1.7).

An arithmetic conversion produces a result that esnnot be represent.ed in the space
provided (§3.2.1).

An ivalue with an incompiete type is used in a context that requires the value of the
designated object (§3.2.2.1}.

Thbe value of a void expression is used or an implicit conversion (except to void) is applied
0 a void expression (§3.2.2.2).

An object is modified more than once, or is modified and accessed other than w determine
the neW value, between two sequence points (§3.3).

An arithmetic operation is invalid {such as division or modulus by 0} or produces a result
that cannot be represented in the space provided (such as overflow or underflow) (§3.3).

An objeet lias its stored value accessed by an lvalue that does not have one of the following
types: uhe declared type of the object, a qualified version of the declared type of the object,

5A62 Jonuary 11, 1088 §A.6.2

DRAFT

APPENDICES 200 PORTABILITY ISSUES

the signed or unsigned type corresponding to the declared type of the objeet, the signed or
unsigned type corresponding to & qualified version of the decixred type of the object, an
aggregste or union type that {recursively) inciudes one of the aforementioned types among
its members, or a character type {§3.3).

s An argument to s function is a void expression {§3.3.2.2).

» For a lunction call with no function prototype deciarstor visible, the number of uﬁmﬁnu
does not agree with the number of parameters (§3.3.2.2).

« For a function call with no function prototype declarator visible, no function prototype
declarator is visible when the function is defined, and the types of the arguments alter
promotion do not agree with those of the parameters alter promotion {§3.3.2.2).

+ A fynction prototype declarator is visible when & function is defined, aud a parameter is
declared with a type that is affecied by the default argument promotions, and a function is
ealled with no semantically equivalent prototype visible (§3.3.2.2).

o A function that accepts & variable number of arguments is called, but no prototype
declarator with the ellipsis notation is visible (§3.3.2.2}.

» A function is called with a function prototype declarator visible, and a parameter is
declared with a type that is affected by the default argument promotions, but no
semantically equivalent prototype is visible when the function is defined (§3.3.2.2).

o An invalid array reference, null pointer reference, or reference Lo an object declared with
automatic storage duration in a terminated block occurs {§3.3.3.2).

¢ A pointer Lo a function is converted to point to a function of a different type and used to
call a function of a type other than the original type {§3.3.4).

« A pointer to s function is converiad to a pointer to an bbject or a pointer to an object is
converted to & pointer to a function (§3.3.4).

« A pointer is converted to other than an integral or pointer type (£3.3.4).

s An attempt is made to modify an object declared with constequalified type by means of a
pointer 1o a non-const-qualified type (§3.3.4).

* An object declared with noalias-qualified type is referred to by means of a pointer to & non-
noalias-qualified type {§3.3.4).

s An object declared with volatile-qualified type is referred to by means of a pointer to a
non-volatile-qualified type (§3.3.4).

» A pointer that is not to a member of an array object is added to or subtracted from (§3.3.6).
¢ Pointers that are not to the same array object are subtracted (§3.3.8).

o An expression is shifted by & negative number or by an smount greater than or equal to the
width in bits of the expression being shifted (§3.3.7).

» Pointers are compared using a relational operator that do not point 1o the same aggregate
or union (§3.3.8). :

» An object is assigned to an overlapping object (§3.3.16.1).

« Ap identifier for an object is declared with no linkage and the type of the object is
incomplete after its declarator, or after its init-declarator if it has an initializer (§3.5).

« A function is declared at block scope with a storsge-class specifier other than extern
{§3.5.1).

¢ A program depends on twe noalias handlas referring to the same object or on two noalias
handles referring to distinet objects {§3.5.3).

§A.6.2 Jnauary 11, 1988 jA6.2
DRAFT

APPENDICES 201 PORTABILITY ISSUES

L d

The value of an urinitialized objest that has automatic storage dyration is used before a
value is assigned {§3.5.7}.

An object with aggregate or union type with sl.at.ic st.orage duration has a non-brace
enclosed initinlizer, or an object with aggregate or umion type with automatic storage
duration bas sither a single expression initializer with a type other than that of the object
or a nop-brace-enclosed initislizer (§3.5.7).

The value of a function is used, but no value was returned (§3.6.6.4).

A function that accepts a variable number of arguments is defined without » parameter
type list that ends with the ellipsis notation (§3.7.1).

An identifier for an object with internal linkage and an incomplete type is deciared with a
tentative definition (§3.7.2}.

The token “‘defined” is generated during the expansion of a #1if or #elif preprocessing
directive {§3.8.1).

The #include preprocessing directive that results after expansion does not match cne of
the two header name forms {§3.8.2).

A macro argument consists of no preprocessing tokens {§3.8.3).

There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise met as preprocessing directive lines {§3.8.3).

The resuit of the preprocessing concatenation operator ## is not a valid preprocessing token
{§3.8.3).

The #lire preprocessing directive that results after expansion does not match one of the
two well-defined forms {§3.8.4).

One of the following identifiers is the subject of a #define or #undef preprocessing
directive: defined, _ LINE__, FILE _, _DATE__, _ TIME__, or _ SIDC__
(53.8.8).

The effect if the program redefines a reserved externsl ;denmﬁer (54.1.2).

The effect if s standard beader is included within an externsal definition or is included for
the first time after the first reference to any of the funetions or sbjeets it declares, or te any
of the types or macros it defines (§4.1.2).

The parameter identifier of an offsetof mactro designates a bit-field member of a
structure {§4.1.5).

A library function xrgument has an invalid value, unless the behavior is specified explicitly
(84.1.8).

A library function that accepts & variable number of arguments is not declared {§4.1.6).
The macro definition of a&ReTt is suppressed (o obtain access to an actual function (§4.2).
The argument to » character handling function is out of the domsin (§4.3).

The macro definition of setImp is suppressed to obtain access to an sctual function {§4.6).

An invocation of the BeTjRP macro occurs in a context other than as the controlling
expression in a selection or iteration statement, or in a comparison with an integral
constant expression (possibly as implied by the unary ! operator} as the controlling
expression of a selection or iteration statement, or as an expression statement {possibly cast
to vo1d) (§4.6.1.1).

The value of an object of automatic storage class that doss not have volatile-qualified type
has beer changed batween a setimp invocation and & longjmp call {§4.6.2.1).

§A.8.2 January 11, 1988 §A.6.2

DRAFT

APPENDICES | 202 ' PORTABILITY ISSUES

« The longjap function is invoked lrom & nested signal routine (§4.8.2.1).

» A signal ceeurs other than as the result of calling the abort or raime function, and the
signal handler calls any function in the standard library other than the signal function -
itself or relers Lo any object with static storage duration other than by assigning a value to
a static starage duration varisble of type volatile sig_atomic_t (§4.7.1.1}

e The value of errno is referred to after a signal occurs other than as the result of ealling the
abort or raise function and the corresponding signal handler calls the signal Tunction
such that it returns the value SIC_ERR (§4.7.1.1}.

¢ The maecro va_arg is invoked with the parameter op that was passed to & fupetion that
invoked the macro va_arg with the same parameter {§4.8),

» The macro definition of va_start, va _arg, or va_end or a combination thereof is '
suppressed to obtain access to an actual function {34.8. 1)

o The parameter parmN of 2 va_sgtart macro is declared with the register storsge ciass,
or with a function or afray type, or with a type that ix not compatible with the type that
rosults after application of the default argument promotions {§4.8.1.1).

o There is no actual next argument for a va_Aarg macro invocation (§4.8.1.2).

« The type of the actual next argument in & variable argument lise disagrees with the type
specifisd by the va_arg macro (§4.8.1.2).

s The va_end macro is invoked without & corresponding invocation of the va_start macre
(§4.8.1.3). \

+ A return occurs from a function with a variable srgument list initialized by the va_start
macro before the va_and macro is invoked (§4.8.1.3).

» The stream for the ££ush function points to an input stream or Lo an upda.te stream in
which the most recent operation was input (§4.8.5.2),

s« An output operation on sn update stream is followed by an input operation without an
intervening cxll to the £21ugh function or a fle positioning funetion, or an input operation
on sn update stream is followed by an output operation without an intarvening call 1o s #ile
positioning function {§4.8.5.3).

« The format for the £printf or I3cant function does not match the argument list (§4.9.8).

« An invalid conversion specification is found in the format for the fprintf or fscant
function (§4.9.8).

» A conversion specification for the fprintf function contains an h or 1 with a conversion
specifier other than ¢, 3, 1,0, 4, X, or X, or an L with a conversion specifier other than e, E,
£, g or G {§4.9.6.1}.

s A conversion specification for the fprintf function contains a # flag with a conversion
specifier otherthan o, X, X, ¢, E, £, g, or G {§4.9.6.1).

o A conversion specification for the fprintf function contains a O flag with a conversion
specifier other than d, 1, 0,10, X, X, e,E, 1, g, or G (§4.9.6.1).

« A XX conversion specification for the fprintf function contains characters between the
pair of % characters {§4.9.6.1).

s An aggregate or union, of a pointer to sh aggregate or union is an argument to the
fprintf function, except for the conversion specifiers K8 (for an array of characters} or ¥p
(for a pointer to void) [84.9.6.1).

« A single conversion by the fprintf function produces more than 500 characters of cutput
(§4.9.6.7".

§A.5.2 January 11, 1888 . 3A82
DRAFT

APPENDICES 203 ' FORTABLLITY ISSUES

= A conversion i_peciﬁcat.ion for the fscant function contains an b or 1 with a conversion .
specifier other than 4, 4, n, 0, 1, or X, or ar L with a conversion specifier otu:r than e, £,
or g (§4.8.8.2).

s A pointer value printed by %p conversion by the fprintf function during a previous
program execution is the argument for %p conversion by the fscanf function (§4.9.6.2).

o The result of a conversion by the fscanf function csnnot be represented in the space
provided, or the receiving object does not have an appropriate type (§4.9.6.2).

« The result of converting a string to a number by the atof, atol, or atel funetion cannot
be represented (§4.10.1).

» The value of a pointer that refers to space dealiocated by a call to the free or reslloc
function is referred to (§4.10.3}.

» The pointer argument to the free or realloc function does not match a pointer earlier
returned by calloc, malloc, or realloc, or the object pointed to has been deallocated
by s call 1o free or Tealloc (§4.10.3).

e Wken called by the exit function, a function registered by the atexit function accesses
an object created during program execution with automatic storage duration {§4.10.4.3).

 » The result of an integer arithmetic function (abs, div, labs, or 1div} cannot be
represented (§4.10.6).

» An array written to by a copying or concatenation function is too small {§4.11.2, §4.11.3).

+ An object is copied to an overlapping object by the memepy, strepy, or straepy function
(54-11.2).

s An invalid conversion speclﬁcamon is found in the format for the strftime function
{§4.12.3.5).

A.8.3 Implementation-delined behavior

Fach implementation shall document its behavior in each of the areas listed in this section.
The foliowing are implementation-defined:

A.8.3.1 Environment
» The semantics of the arguments 1o »ain {§2.1.2.2).
» What constitutes an interactive device {§2.1.2.3).
A.0.3.2 ldentifiers

¢+ The pumber of significant initial characters {beyond 31} in an identifier without external
linkage (§3.1.2). .

+ The number of significant initial characters (beyond 8} in an identifier with external linkage
(§3.1.2).

+ Whether case distinctions are significant in an identifier with external linkage {§3.1.2).
A.8.3.3 Characters '

» The characters in the source and executiop character sets, except as explicitly specified in
the Standard (§2.2.1).

» The pumber and order of chars in an int (§2.2.4.2). These differences are invisible to
isolated programs that do not indulge in type punning (for example, by converting a pointer
to 1nt to & pointer to char and inspecting the pointed-to storage), but shall be accounted
for when conforming to externally-imposed storage layouts.

§A8.2 January i1, ;988 §A6.3.3
DRAF

APPENDICES 204 : PORTABILITY ISSUES

s The number and order of bits in a character in the sxecution character set (§2.2.4.2).

+» The mapping of characters in the source character set (in character constants and string
iiterals) to characters in the execution character set (§3.1.3.4).

» The value of an integer character constant that contains a character or escape sequence not
represented in the basic execution character set or the extended character set for a wide
character constant (§3.1.3.4). -

o The value of an integer character constant that contains more than one character or a wide
character constant that contains more than one multibyte character {§3.1.3.4).

¢ The current locale used to convert multibyte characters into corresponding codes for a wide
character constant {§3.1.3.4).

o Whether a2 “plain’ char is treated as signed or unsigned {§3.2.1.1).
A.8.3.4 Integers
o The representations and sets of values of the various types of integers (§3.1.2.5).

» The resuit of converting sn integer to a shorter signed integer, or the result ¢f converting an
unsigned integer to a signed integer of equal length, if the value canpot be represented
(§3.2.1.2). :

¢ The results of bitwise aperations on sighed integers (§3.3).

+ The sign of the remainder on integer division (§3.2.5).

s The result of a right shift of a negative-valued signed integral type (§3.3.7).
A.6.3.5 Floating point |

¢ The representations and sets of values of the various types of foating-point numnbers
{§3.1.2.5).

o The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value {§3.2.1.3).

s The direction of truncation when a Bosting-peint number is converted to a narrower
floating-point number (§3.2.1.4).

» The properties of floating.-point arithmetic {(§3.3).
A.8.3.8 Arrays and pointers

+ The type of integer required to hold the maximum size of an array ~- that is, the type of
the §1ze0f operator, 1ze_t (§3.3.3.4, §4.1.1).

» The result of casting a pointer to an integer or viee versa (§3.3.4).

« The type of integer requi'red to hold the difference between two pointers to members of the
same artay, ptrdiff_t {§3.3.5, §4.1.1). '

A.8.3.7 Registers

» The number of Tegister objects that can actually be placed in registers and the set of
valid types (§3.5.1).

A.8.3.8 Structures, unions, enumerations, and bit-fields . -
» A member of a uniot abject is accessed using a member of a different type (§3.3.2.3).

« The padding and alignment of members of structures (§3.5.2.1). This should preseat no
problem unless binary data written by oue implementation are read by another.

a Whelher a *plain” 10t bitefield is treated as s s1gned int bit-field or as an unsigned
int bit-field {§3.5.2.1).

§A6.3.3 January 11, 1888 §A8.38
DRAFT

AFPENDICES 205 PORTABILITY ISSUES

« Whether 8 bit-field that does not fit into the space remaining ip an 10t is put into the next
1nt (§3.5.2.1).

The order of allocation of bit-fields within an LBt (§3.5.2.1}.
o Whether a bit-field can straddle a starage.unit boundary (§3.5.2.1),

The integer type chosen to represent the values of an enumeration type {§3.5.2.2).
A.8.3.9 Qualifiers |

=« What constitutes an access to an object that has volatile-qualified type {§3.5.5.3).
A.6.3.10 Declarators

+ The maximum number of declarators that may modify an arithmetic, structure, or union
type {§3.5.4).

A.6.3.11 Statements
+ The maximum number of case values in a ewitch statement (§3.6.4.2).
A.6.3.12 Preprocessing directives

» Whether the value of a single~character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the
execution character set. Whether such a character constant may have a negative value
{(§3.8.1). '

+ The method for locating ineludable source files (§3.8.2).

» The support of quoted names for includable source files (§3.8.2).
» The mapping of scurce file character sequences {§3.8.2).

» The behavior on each recognized #pragma directive (§3.8.6).

e The definitions for _ DATE__ and __TIME__ when respectively, the date apd time of
transiation are pot available {§3.8.8).

A.6.3.13 Library functions
s The null pointer constant to which the macro NULL expands {§4.1.5).

The diagnostic printed by and the termination behavior of the apsert function (§4.2).

» The sets of characters itested for by the 1salnum, isalpha, iscntrl, islower,
isprint, and 1gupper functions (§4.3.1}.

+ The values returned by the mathematics functions on domain errors (§4.5.1).

Whether the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors (§4.5.1).

« Whether a3 domain error occurs or gero is returnsd when the fmod function has s second
argument of zero {§4.5.6.4), '

» The set of signals for the signal function {84.7.1.1).
» The semantics for each signal recognized by the s1gnal function {§4.7.1.1).

~» The default handling and the handling at program startup for each signal recognized by the
Bignal function (§4.7.1.1}.

o If the equivalent of Bignal (8ig, SIG_DFL):; is not executed prior to the call of a signal
handler, the blocking of the signal that iz parformed (§4.7.1.1).

» Whether the default handling is reset if the SIGILL signal is received by & handler specified
to the signal function {§4.7.1.1).

§A.6.3.8 . January 11, 1988 §A.6.3.13
DRAFT

APPENDICES 208 FORTABILITY ISSUES

o Whether the last line of a text stream requires a terminating new-line character (§4.9.2).

« Whether space characters that are writtez out to a text stream immediately before s new-
line character appear when read in (§4.9.2).

o The number of NUL characters that may be sppended to data written to a binary stream
{§4.9.2).

o Whether the file pasition indicator of an append mode stream is initially positioned at the
beginning or end of the file (§4.9.3}.

e,

» Whether a write o a text stream causes the associated file to be truncated beyond that
point {§4.9.3).

¢ The characteristics of file buffering (§4.9.3).
+ Whether a zero-length file actually exists (§4.9.3).
o The rules for composing valid file names (§4.9.3).
 » Whether the same file can be open multiple times {§4.9.3).
» The effect of the remove function on an open file (§4.9.4.1),
¢ The effect if a file with the new name exists prior to a call to the rename function (§4.9.4.2).
« The output for Xp conversion in the £prints function (§4.9.6.1}.
¢ The input for &p conversion in the fscant function (§4.9.6.2).

¢ The interpretation of a = character that is neither the first nor the last character in the
scanlist for %[conversion in the fscant function (§4.9.6.2).

« The value to which the macro errnao is set by the fgetpos or ftell function on failure
(§4.9.9.1, §4.9.9.4).

¢ The messages generated by the perror function {84.9.10.4).

+ The bezhavior of the ¢alloe, malloc, or Teslloc function if the size requested is zero
{§4.10.3).

» The behavior of the abort function with regard to open and temporary files (§4.10.4.1).

+ The status returned by the exit function if the value of the argument is other than zero,
EXIT_ SUCCESS, or EXIT FAILURE (§4.10.4.8).

s The set of environment names and the method for ait.ermg the environment list used by the
gevenv function (§4.10.4.4).

¢ The contents and mode of execution of the string by the systen function {§4.10.4.5}.

o The sign of the value returned by a comparison function {(memcap, streap, or strucap)
when one of the first pair of characters that differ has its high-order bit set (§4.11.4).

» The contents of the error message strings returned by the strerror function (§4.11.6.2).
+ The local time zone and Daylight Saving Time (§4.12.1).
» The era for the clock function {§4.12.2.1}.

§A.8.3.13 ’ Jan;a;{y ;; ’}sas §A.6.3.13

APPENDICES 207 PORTABILITY ISSUES

A.8.4 Loecale-specifie Behavior
The following characteristics of a hosted environment are locale-specific:
_« The content of the execution character set, in addition to the required characters (§2.2.1).
¢ The direction of printing (§2.2.2).
v The decimal-point character (§4.1.1).

» The implementation-defined aspects of character testing and case mapping functions (§4.8).

The collation sequence of the execution character set (§4.11.4.4).
« The formats for time and date {(§4.12.3.5).
A.8.5 Common extensions

The foliowing extensions are widely used in many systems, but are not portable to all
implementsations. The inclusion of any extension that may cause & strictly conforming program
to become invalid renders an implementatior nonconforming. Examples of such extensions are
new keywords, or predefined macros or library functions with names that do not begin with an
underscore.

A.8.5.1 Envirooment arguments

In a hosted environment, the main function receives a third argument, ¢har senvp([],
that points to a null-terminated array of pointers te char, each of which points to a string
that provides information about the environment for this execution of the process (§2.1.2.2).

A.8.5.2 Specialized identifiers

Characters other than the underscore _, letters, and digits, that are not defined in the
_required source character set {such as the dollar sign 8, or characters in national character sets)
may appear in an identifier (§3.1.2).

A.8.5.3 Lengths and cases of identifiers

All characters in identifiers (with or without external linkage) are significant and caze
distinctions are observed (§3.1.2),

" A.6.5.4 Scopes of identifiers

A function ideatifier, or the identifier of an object the declarstion of which coutains the
keyword extern, has file scope (§3.1.2.1).

A.6.5.5 Writable string literals
String literals are modifiable. Identical string literals shall be distinet {§3.1,4}:
A.8.5.8 Other arithmetic types

Other arithmetic types, such ss long lobg int, and their appropriate conversions are
defined (§3.2.2.1).

A.6.5.7 Function pointer casts

A pointer to an object or to void may be cast to 8 pointer to a function, allowing data to
be invoked as a function (§3.3.4). A pointer to a function may be cast to a pointer to an object
or to void, allowing a function to be inspected or modified (for example, by a debugger)
(§3.3.4}.

§A 64 . Jenuary 11, 1988 §A8.5.7
DRAFT

APPENDICES 208 PORTABILITY ISSUES

A.8.5.8 Noa-int bit-field typen

Types other than int, ungigned int, or migned 11t can be declared as bit-fields, with
appropriaste maximum widths {§3.5.2.1). :

A.8.5.9 The fortran keyword

The forsran type specifier may be used in a function declaration to indicate that fanction
linkage suitable for FORTRAN is to be generated, or that different representations for external
namea are to be gensrated (§3.5.4.3).

A.8.5.10 The asz keyword

The asm keyword may be used to insert assembly-language code directly into the translator
output. The most common implementation is via a statement of the form

asm (charascter-siring-literal) ;
(§3.8).
A.6.5.11 Multiple external definitions

There sy be more than one external definition for the identifier of an object, with or
without the explicit use of the keyword axtern, If the definitions disagres, or more than one is
initialized, the behavior is undefined {§3.7.2).

A.8.5.12 Empty macro arguments
A macro argument may consist of no preprocessing tokens {§3.8.3).
A.8.5.13 Predefined macro names

Macro names that do not begin with an underscore, describing the translation and
execution environments, may be defined by the implementation before translation begins
(§3.8.8).

A.8.5.14 Extra argumenis for signal handlers

Handlers for specific signals may be called with exira arguments iz addition to the signal
number (§4.7.1.1}.

A.8.5.15 Additional stream types and filecopening modes

Additional mappings from files to streams may be supported (§4.2.2), and additional file-

opening modes may be specified by characters appended to the mode argument of the fopen
function {§4.8.5.3).

A.8.5.18 Defined file position indicator

The fie position indicator is decremented by each successful call to the ungete function for
a text stream, except if its value was zeroc before a cali {§4.9.7.11),

§A.8.5.8 Janga}.?f 4&1;.5 ésgs §A.6.5.16

APPENDICES 209

A.7 INDEX

Only major raferences are listed.

¢ logical negation operator, 3.3.3.3

{= ipequality operator, 3.3.8

operator, 3.1.5, 3.8.3

punctuator, 3.1.6, 3.8

#% operator, 3.1.5, 8.8.3

% remainder operator, 3.3.%

%= remainder assignment operator, 3.5.16.2

‘& address operater, 3.3.3.2

& bitwise AND operstor, 3.3.10
&% logical AND operator, 3.3.13
&= bitwise AND assignment operator, 3.3.16.2
{) cast operator, 3.3.4
{) function-call operator, 3.3.2.2
{) parentheses punctuator, 3.1.6, 3.5.4.3
* indirection operator, 3.3.3.2
multiplication operator, 3.3.5
* asterisk punctuator, 3.1.6, 3.5.4.1
»= multiplication assigninent operator, 3.3.16.2
+ addition operator, 3.3.6
+ unary plus operator, 3.3.3.3
++ postfix increment operator, 3.3.2.4
=+« prefix increment operator, 3.3.3.1
+# addition assignment operator, 8.3.168.2
. tomma operator, 3.3.17
. ... ellipsis, unspecified parameters, 3.5.4.3
- subtraction operator, 3.3.6
-~ upary minus operator, 3.3.3.3
—- postfix decrement operator, 3.3.2.4
-~ prefix decrement operator, 3.3.3.1
== subtraction assignment operatcr, 3.3.18.2
~> structure/union pointer operator, 3.3.2.3
. structure/union member operator, $.3.2.3
. ellipsis punctuator, 8.1.6, 3.5.4.3
/ division operator, 3.3.5
/% &/ comment delimiters, 3.1.7
/= division assignment operator, 3.3.16.2

' : colon punctuator, 3.1.6, 3.5.2.1

;. semicolon punctuator, 3.1.8, 3.5, 3.6.3

< less-than operator, 3.3.8

<< left-shifi operator, 3.3.7

<<= left-shift assignment operator, 3.3.16.2
<= less-than-or-equal-to operator, 3.3.8

= equal-sign punctuator, 3.1.6, 3.5, 3.5.7

= simple assignment operator, 3.3.18.1

== squsl-tt operater, 3.3.9

> greater-than operator, 3.3.8

>= greater-than-or-equalto operator, 3.3.8
>> right-shift operator, 3.3.7

>>x right-shift assignment operator, 3.3.16.2
? : conditional operator, 3.3.15

77t trigraph sequence, |, 2.2.1.1

INDEX

t?7 trigraph aequence, =, 2.2.1.1

?? { trigraph sequence, [, 2.2.1.1

??) trigraph sequence, }, 2.2.1.1

7~ trigraph sequence, ~, 2.2.1.1

??/ trigraph sequence, \, 2.2.1.1

??< trigraph sequence, {, 2.2.1.1

?2= trigraph sequence, #, 2.2.1.1

??» trigraph sequence, }, 2.2.1.1

[} array subscript operator, 3.3.2.1

{ 3 brackets punciuator, 3.1.8, 3.3.2.1, 3.5.4.2
\ backsiash character, 2.2.1

* double-quote-character escape sequence, 3.1.3.4
\? single-quote-character escape sequence, 3.1.3.4
\? guestion-mark escape sequence, 3.1.5.4

\\ backslash-character escape sequence, 3.1.3.4
\O null charaeter, 2.2.1, 3.1.3.4, 3.1 .4

\& nlert escape sequence, 2.2.2, 3.1.5.4

\b backspace escape sequence, 2.2.2, 3.1.3.4

\f form-Teed escape sequence, 2.2.2, 3.1.3.4

\ID new-line escape sequence, 2.2.2, 3.1.3.4
\ociel digite octal-character escape sequence, 3.1.3.4
\T carriage-return escape sequence, 2.2.2, 3.1.3.4
\t horirontal-tab escape sequence, 2.2.2, 3.1.34
\¥ vertical-tab escape sequence, 2.2.2, 3.1.5.4
\Xhez digils hexadecimal-character escape sequence, 3.1.3.4
= exclusive OR operator, 3.3.11

= exclusive OR assignmenst operator, 3.3.16.2
{) braces punctustor, 3.1.6, 3.5,7, 3.6.2

| inclusive OR operator, 3.3.12

t= inclusive OR assignment operator, 3.3.18.2
11 logical OR operator, 3.3.14

~ bitwise complement operator, 3.3.3.3
__DATE__ macto, 3.8.8

__FILE__ maero, 3.2.8,4.2.1

T LINE__ macro, 3.8.8, 4.2.1

__STDC__ macro, 3.8.8

__AIME__ macro, 3.8.8

_IOFBF mactro, 4.9.1, 4.9.5.6

__IOLBF macro, 4.9.1, 4.9.5.6

_ICNEF macro, 4.9.1, 4956

abort function, 4.2.1.1, 4.10.4.1

abg function, 4,10.8.1

absolute-valpe functions, 4.5.6.2, 4.10.6.1
sbstrast declarator, type name, 3.5.5

abstract machine, 2.1.2.3

abstract semantics, 2.1.2.3

acos function, 4.5.2.1

active position, 2.2.2

actual object, 3.5.3

addition assignment operator, +=, 3.3.16.2
addition operator, +, 3.3.6

§A7 January 11, 1988) §A.7
PRAFT

APPENDICES 210

additive expressions, 3.3.8

address operator, £, 3.3.3.2

aggregate type, 3.1.2.5

alert escape sequence, \&, 2.2.2, 3.1.3.4
alignment, definition of, 1.6

slignment of structure members, 3.5.2.1
AND operator, bitwise, &, 3.3.10

AND operator, logical, &8, 3.3.13

argc parameter, Raln function, 2.1.2.2
argument, function, 3.3.2.2

argument, 1.6 .
argument promotion, defanlt, 3.3.2.2
aTgv parameter, main function, 2.1.2.2
arithmetic conversions, usual, 3.2.1.5
arithmetic operators, unary, 3.3.3.3
arithmetic type, 3.1.2.5

array declarator, 3.5.4.2

array parameter, 3.7.1

array subscript operator, [}, 3.3.2.1
array type, 3.1.2.%

array type cenversion, 3.2.2.1

arrow operator, ->, 8.3.2.3

ASCI ¢haracter set, 2.2.1.1

asctime functiion, 4.12.3.1

agin function, 4.5.2.2

aggert macro, £.2.1.1

aegert b header, 4.2

assignment opsrators, 3.3.18

asterisk punctuator, *, 3.1.6, 3.5.4.1
atan function, 4.5.2.3

atan? function, 4.5.24

avexit function, 4.10.4.2

atofl function, 4.10.1.1

atol function, 4.10.1.2

atol function, 4.10.1.3

auto storage-class specifier, 3.5.1
automatie storage, reentrancy, 2.1.2.3, 2.2.3
automatis storage duration, 3.1.2.4
backslash character, \, 2.1.1.2, 221
backspace escape sequence, \b, 2.2.2, 3.1.3 4
base documents, 1.5 '

basic type, 3.1.2.5

binary stream, 4.8.2

bit, definition of, 1.6

bit, high-order, 1.6

bit, low-order, 1.6

bit-field structure member, 3.5.2.1
bitwise operators, 3.3, 3.3.7, 3.3.10, 3.3.11, 8.3.12
block, 3.6.2

block identifier scope, 3.1.2.1

bold type convention, 3

braces punctuater, { }, 3.1.6,3.5.7, 3.6.2
brackets punctuator; { 1, 8.1.6,3.3.2.1, 3.5.4.2
break statement, 3.5.8, 3.6.6.2
broken-down-time type, 4.12.1

§A7

January 11, 1988

INDEX

bsearch function, 4.10.5.1

BUFSIZ macro, 4.0.1, 4.9.2, 4955

byte, definition of, 1.6

C program, 2.1.1.}

C Standard, dsfinition of terms, 1.6

C Standard, organization of decument, 1.4
C Standard, purpose of, 1.1

C Standard, references, 1.3

C Standard, scope, restrictions and limits, 1.2
calloc function, 4.10.3.1
carriage~retyrn escape ssquence, \r, 2.2.2, 3.1.3.4
case label, 3.6.1, 3.64.2

case mapping functions, 4.3.2

cast expressions, 3.3.4

cast operator, £ }, 3.3.4

cell funciion, 4.5.6.1

char typs, 3.1.2.%, 3.2.L.1, 3.5.2

CHAR BIT macro, 2.2.4.2

CHAR MAX macro, 2.2.4.2

CHAR MIN macro, 2.2.4.2

character case mapping functions, £.3.2
character constant, 2.1.1.2, 2.2.1, 3.1.3 .4
character display semaantics, 2.2.2
character handling header, 4.3

character input/outpus functions, 4.9.7
character sets, 2.2.1

charaeter siring litersl, 2.1.1.2, 3.1.4
characier testing functions, 4.3.1
character type, 3.1.2.5, 3.2.2.1, 8.5.7
character type conversion, 3.2.1.1
clearerr function, 4.6.10.1

CLK_TCK macro, 4.12.}1, 4.12.2.1

¢lock funetion, £.12.2.1

clock t type, 4.12.1,4.12.2.1

collating szequence, character set, 2.2.1
colon punctuator, :, 3.1.6, 3.5.2.1
comma operator, ,, 3.3.17

command processor, 4.10.4.3

comment delimiters, /x #/ 3.1.9
sominents, 2.1.1.2, 3.1, 3.1.9

comparison functions, 4.11.4

compatible type, 3.1.2.8, 3.5.2, 5.5.3,3.5.4
cempletnent operator, ~, 3.3.3.3
compiiance, 1.7

composite type, 3.1.2.6

compound assignment operators, 3.3.16.2
compound statement, 3.6.2
concatenation functions, 4.11.3 =
conceptual models, 2.1

conditional inclusion, 3.8.1

conditjonal operator, ? :, 3.3.15
conforming freestanding implementation, 1.7
confa.. ing hosied implementation, 1.7
conforming implementation, L.7
conforming program, 1.7

§A.7

DRAFT

APFENDICES 211

const-qualified type, 3.1.2.5, 3.2.2.1, 3.5.3
consgt typs qualifier, 3.5.3

constant, character, 3.1.3.4

constant, enumeration, 3.1.2, 3.1.3.3
constant, Roating, 3.1.3.1

¢onstant, integer, 3.1.3.2

constant, primary expression, 3.3.1
constant expressions, 3.4

constants, 3.1.3

constrainty, definition of, 1.6

content, structure/union /enumeration, 3.5.2.3
contiguity, memory aliocation, 4.10.3
continue statement, 3.6.8, 3.66.2
control characters, 2.2.1, 4.3.1,4.2.13
conversion, arithmetic operands, 3.2.1
conversion, array, 3.2.2.1

eonversion, characters and integers, 3.2.1.1
cenversion, explicit, 3.2

eonversion, floating and integral, 3.2.1.3

" econversion, floating types, 3.2.1.4, 3.2.1.5

conversion, function, 3.2.2.1

conversion, function arguments, 3.3.2.2, 3.7.1
conversion, implicit, 3.2

conversion, pointer, 3.2.2.1, 3.2.2.3

conversion, signed and unsigned int.egers,- 3212

conversion, void type, 3.2.2.2

.cenversions, 3.2 :

conversions, neual arithmetic, 3.2.1.5
eopying functions, 4.11.2

cos function, 4.5.2.5

cosh function, 4.5.3.1

ctime function, 4.12.3.2

ctype.h header, 4.3

data streams, 4.8.2

date and time header, 4.12

PBL_ macros, 2.2.4.2

decimal constant, 3.1.3.2

decimal digits, 2.2.1

decimal-point character, 4.1.1
declaration specifiers, 3.5

declarations, 3.5

declarators, 5.56.4

declarator type derivation, 3.1.2.5, 3.5.4
decrement operator, postfix, ——, 3.3.24
decrement operator, prefix, ——, 3.3.3.1
default srgument promotions, 3.3.2.2
defauls label, 3.6.1, 3.64.2

#define preprocessing directive, 3.8.3
defined preprocessing operator, 3.8.1
definition, 3.5

derived declarator types, 3.1.2.5
derived types, 3.1.2.5

device input/output, 2.1.2.3
diagnostics, 2.1.1.3 '

diagrostics, apgert. h, 4.2

INDEX

difftime function, 4.12.2.2

direct input /foutput functions, 4.9.8
display device, 2.2.2

41iv function, 4.10.8.2

div_t type, 4.10

division assignment operstor, /=, 3.3.18.2
division operator, /, 3.3.5

do statement, 3.6.5, 3.6.5.2
documentation of implementation, 1.7
domain error, £.5.1

dot operator, ., 3.3.2.3

aouble type, 3.1.2.5, 3.1.8.1, 3.5.2
double type conversion, 3.2.1.4, 3.2.1.5
double-precision arithmetic, 2.1.2.3
element type, 3.1.2.5

EDOM macre, 4.1.3, 4.5, 4.5.1

#ellf! preprocessing directive, 3.8.1
ellipsis, unspecified parameters, , ..., 3.5.4.3
#e)lse preprocessing directive, 3.8.1
else siatement, 3.56.4, 3.6.4.1
end-of-file macro, EOF, 4.3, 4.8.1
end-of-line indicator, 2.2.1

#endif preproeessing directive, 3.8.1
enuk type, 3.1.2.5, §.5.2, 3.5.2.2
enumerated types, 3.1.2.5

enumeration constant, 3.1.2, 3.1.3.3
enumeration content, 3.5.2.3
enumeration members, 3.5.2.2
epumerstion specifiers, 3.5.2.2
epumeration tag, 3.5.2.3

enumerator, 3.5.2.2

environment, 2

envircnment functions, 4.10.4
enrvironment list, 4.10.4.4
environmental considerations, 2.2
environmental limits, 2.2.4

EOF macro, 4.3, 4.9.1

equal-sign punciustor, =, 3.1.5, 3.5, 3.5.7
equal-to operator, ==, 3.3.9

equsality expressions, 3.3.9

ERAKGE macro, 4.1.3, 4.5, 4.5.1, 4,10, 4.10.1

arrno macro, 4.1.3,4.5.1, 4.7.1.1, 4.8.10.4, 4.10.1

errno.h header, 4.1.3

error, domain, 4.5.1

error, range, 4.5.1

error conditions, 4.5.1

error handling functions, 4.9.10, 4.11.62
#arTor preprocessing directive, 3.8.5
escape sequences, 2.2.1, 2.2.2, §.1.34
evaluation, 3.1.5, 3.3

exception, 3.3

exclusive OR assignment operator, "=, 3.3.16.2
exclusive OR operator, =, 3.3.11

executable program, 2.1.1.1

execution snvironment, charscter sets, 2.2.1

AT January 11, 1888 A7
PRAFT

APPENDICES

execution environment limits, 2.2.4.2
execution environments, 2.1.2
execution sequence, 2.1.2.3, 3.8

exit function, 2.1.2.2, 4.10.4.3
EXIT_FAILURE macro, 4.10, 4.10.4.3
EXIT_SUCCESS macro, 4.10, 4.10.4.3
explieit conversion, 3.2

a#xp function, 4.5.4.1

exponent part, floating constant, 3.1.3.1

exponential functions, £.5.4
expression, 3.3

expression, full, 3.8
expression, primary, 3.3.1
expression, unary, 3.3.3
expression statement, 3.6.3

212 INDEX

form-feed character, 2.2.1, 3.1

form-feed escape sequence, \f, 2.2.2, 3.1.3.4
formatted input/output functions, 4¢.9.6
forward references, definition of, 1.6
fpos_t object type, 4.9.1

fprintf function, 4.9.6.1

fputc function, 2.2.2, 4.9.7.3

fputs function, 4.9.7.4

fread function, 4.9.8.1

free function, 4.10.2.2

freestanding execution environment, 2.1.2, 2.1.2.1
treopen function, 4.8.5.4

fraxp lfunction, 4.5.4.2

fgcsnf function, 4.86.2

feoek function, 4.9.8.2

€X T8N storage-class specifier, 3.1.2.2, 3.5.1, 3.7 fsgetpos function, 4.9.9.3

external definitions, 3.7

external identifiers, underscore, 4.1.2
external linkage, 3.1.2.2

external name, 3.1.2

external object definitions, 3.7.2
fabs function, 4.5.6.2

fclose function, 4.9.5.1

teo! function, 4.9.10.2

ferror function, 4.9.10.3
f#lush function, 4.8.5.2

fgetce funciion, 4.8.7.1

fgetpos function, 4.9.8.1 -
fgets function, 4.9.7.2
FILENAME MAYX, £9.1

file, ¢losing, 4.9.3

EHle, creating, 4.9.3

Ale, opening, 4.9.3

Rie access functions, 4.9.5

file identifier scope, 3.1.2.1, 3.7

file name, 4.8.8

FILE object type, 4.9.1

file operations, 4.9.4

file position indicator, 4.8.3

fle positioning functions, 4.9.9
files, 4.9.3 :
float type, 3.1.2.5, 3.5.2

float type convesrsion, 3.2.1.4, 3.2.1.5
float . h header, 1.7,2.2.4.2, 4.1.4
Hoating arithmetic functions, 4.5.8
Hoating constants, 3.1.3.1

Roating suffix, f or F, 3.1.3.1
floating types, 3.1.2.5
Roating-point numbers, 3.1.25
floor function, 4.5.6.3

FLT_ macros, 2.2.4.2

fmoad funetion, £.5.6.4

fopen function, 4.9.5.3
FOPEN_MAX macro, 4.8.1, 4.8.3
for statement, 3.6.5, 3.6.5.3

§A.7

ftell Munction, 4.9.9.4

full expression, 3.8

fully buffered stream, 4.5.3

function, definition of, 1.8, 3.5.4.3
function, recursive call, 3.3.2.2

function argument, 3.3.2.2

function body, 3.7, 3.7.1

function cail, 3.3.2.2

function call, library, 4.1.6

Tunction declarator, 3.5.4.3

function definition, 3.5.4.3, 3.7.1

function designator, 3.2.2.1

function identifier scope, 3.1.2.1

function image, 2.2.3

function library, 2.1.1.1, 4.18

function parameter, 2.1.2.2, 3.3.2.2
function prototype, 3.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1
function prototype identifier scope, 3.1.2.1
funetion reture, 3.6.5.4

Tunetion type, 3.1.2.5

function type conversion, 3.2.2.1
function-call operator, {), 3.3.2.2

future directions, 1.8, 3.9, 4.13

future language directions, 3.9

future library directions, 4.13

fwrite funciion, 49.8.2

general utility library, 4.10

getc function, 4.9.7.5

getchar function, 4.9.7.6

geteny function, 4.10.4.4

geta function, 4.9.7.7

gatime function, 4.12.3.3

goto statement, 3.1.2.1, 3.6.1, 3.8.8, 3661
graphic characters, 2.2.1

greater-than operater, >, 3.3.8
graatar-than-or-equal-to operator, >=, 3.3.8
handle, nealiss, 3.5.5 ¢ S

handle object, 3.5.3

header names, 3.1, 3.1.7, 3.8.2

Janusry 11, 1688 §A.7
DRAFT

APPENDICES 213

headers, 4.1.2 ..

hexadecimal constant; 3.1.3.2

bexadecimal digit, 3.1.3.2, 3.1.3.4

hexadecimal escape sequence, 3.1.3.4

high-order bit, 1.8

horizontal-tab character, 2.2.1, 3.1
horizontal-tab escape sequence, \%, 2.2.2, 3.1.3.4
hosted execution environment, 2.1.2, 2.1.2.2
HUGE_VAL macro, 4.5, 4.5.1, 4.10.1.4
hyperbolie funetions, 4.5.3

identifier, 3.1.2, 3.3.1

identifier, maximum length, 3.1.2

identifier, reservad, 4.1.2

identifier linkage, 3.1.2.2

identifier list, 3.5.4

identifier name space, 3.1 2.3

identifier scope, 3.1.2.1

identifier type, 3.1.2.5

IEEE ficating-point arithmetic standard, 2.2.4.2

_ #1if preprocessing directive, 3.8, §.8.1

1T statement, 3.6.4, 3.6.4.1

#1tdef preprocessing directive, 3.8, 3.8.1
#¥ifndef preprocessing directive, 3.8, 3.8.1
implementation, definition of, 1.8
implementation limits, 1.8, 2.2.4
implementation-defined behavior, 1.8

implicit conversion, 3.2

#include preprocessing directive, 2.1.1.2, 382
inclusive OR assignment operator, {=, 3.3.16.2
inclusive OR operator, |, 3.3.12

incomplete type, 3.1.2.5

inerement operator, postfix, ++, 3.3.2.4
increment operator, prefix, ++, 3.3.3.1
indirection operator, *, 3.3.3.2

inequality operator, !=, 3.3.9

initialization, 2.1.2, 3.1.2.4, 3.2.2.1, 8.5.7, 3.6.2
initializer, string literal, 3.2.2.1, 3.5.7
initializer braces, 3.5.7

initial shift state, 2.2.1.2, 4.10.7
input/output, device, 2.1.2.3

input/output header, 4.9

10t type, 3.1.2.5,3.1.3.2,3.2.1.1,3.2.1.2,3.5.2
INT_MAX macro, 2.2.4.2

INT _MIN macre, 2.24.2

integer arithmetic functions, 4.10.6

integer character constant, 3.1.3.4

integer constants, 3.1.3.2

integer suffix, 3.1.3.2

integer type, 3.1.2.5

integer type conversion; 3.2.1.1, 3.2.1.2
integral constant expression, 3.4

integral promotions, 2.1.2.3, 3.2.1.1

integral type, 8.1.2.5

integral type conversion, 3.2.1.3

interactive device, 2.1.2.3,4.9.3, 4.8.5.3

INDEX

internal linkage, 3.1.2.2

intersal name, 3.1.2

interrupt handler, 2.1.2.3, 2.2.3, 4.7

igalnunm function, 4.8.1.1

isalphs function, 4.3.1.2

1scatrl function, 4.3.1.3

18d1git function, 4.3.1.4

isgraph function, 4.3.1.5

iglovwer function, 4.3.1.8

1SO 4217 Currency and Funds Representation, 1.3, 4.4.2.1
1SC 648 Invariant Code Set, 1.3, 2.2.1.1
isprint fuoction, 2.2.2, 43.1.7
ispunct function, 4.3.1.8
isspace function, 4.3.1.9
isupper funetion, 4.3.1.10
isxdigit function, 4.3.1.11

italic type convention, 3

iteration statements, 3.6.5

i=p buf array, 4.8

jump statements, 3.5.6

keywords, 3.1.1

L_tapnaa macro, £.9.1

label name, 3.1.2.1, 3.1.2.3

Iabeled statements, 3.6.1

labs function, 4.10.6.3

languages, 3

Iangusage, future directions, 3.9
LC_ALL, 4.4 ‘
LC_COLLATE, 4.4

LC_CTYPE, 4.4

LC_MONKETARY, 4.4

LC_NUMERIC, 4.4

LC_TIME, 4.4

lconvy structure type, 4.4

LDBL_ macres, 2.2.4.2

ldaxp function, 4.5.4.3

1d1iy function, 4.10.5.4

ldiv_t type, 4.10

leading underscore in identifiers, 4,1.2
left-shift assignmeni operator, <<=, 3.3.16.2
left~-shift operator, <<, 3.83.7

lengih function, 4.11.8.3

less-than operator, <, 3.3.8
less-than-or-equal-to operater, <=, 3.3.8
letter, 4.1.1

jexical elements, 2.1.1.2, 3.1
library, 2.1.1.1, 4

library, future directions, 4.13
iibrary functions, use of, 4.1.6
Library terms, 4.1.1

Limits, snvironmental, 2.2.4

limits, pumerical, 2.2.4.2

limits, translation, 2.2.4.1

1imits .k header, 1.7,2.2.4.2, 4.1.4
line buffered stream, 4.9.3

§A.Y January 11, 1988 ‘ §A.7
DRAFT

APPENDICES

line number, 3.8.4

#line preprocessing directive, 3.8.4 -~

lines, 2.1.1.2, 3.8, 4.9.2

linkages of identifiers, 3.1.2.2

locale, definition of, 1.8

locale . h header, 4.4

localecony function, 4.4.2.1

localization, 4.4

localtime function, 4.12.3.4

log function, 4.5.4.4

1og10 function, 4.5.4.5

legarithmic functions, 4.5.4

logical AND operator, &2, 3.3.13

logical negation operator, !, 3.3.3.3

logical OR operator, | |, 3.3.14

logical source lines, 2.1.1.2

long double suffix, 1 er L, 3.1.8.1

long double type, 3.1.2.5, 3.1.3.1, 3.5.2
long double type conversion, 3.2.1.4, 3.2.1.5
long 1int type, 3.1.2.5,3.2.1.2,3.5.2

long integer suffix, 1 or L, 3.1.3.2

LORG_MAX macro, 2.2.4.2

LONG_MIN macro, 2.2.4.2

longjmp function, 4.6.2.1

low-order bit, 1.6

Ivalue, 3.2.2.1, 3.3.1, 3.3.2.4, 3.3.3.1, 3.3.16
macro function vs. definition, 4.1.6

macro haine definition, 2.2.4.1

macro names, predefined, 3.8.8

~ macro replacement, 3.8.3

azin function, 2.1.2.2

malloc funetion, 4.10.3.3

math. b header, 4.5

mblen function, 4.13.7.1

nabkgstowes function, 4.10.8.3

mbtowe function, 4.10.7.2
member-access operators, .
eeachr function, 4.11.5.1
remenp function, 4.11.4.1
remepy function, 4.11.2.1
nesmova funetion, 4,11.2.2

memory management functions, 4.10.3
nemset function, 4.11.6.1

minus operator, unary, —, 3.3.3.3
aktime function, 4.12.2.3

modf function, 4.5.4.8

modifisble Ivalue, 3.2.2.1

modulus function, 4.5 4.8

and ->,3.3.23

214

NDEBUG macro, 4.2

nearest-integer functions, 4.5.6

new.line character, 2.1.1.2, 2.2.1, 3.1, 3.8, 3.5.4
new-line escape sequence, \n, 2.2.2, 3.1.3 4
noalias-qualified type, 3.1.2.5, 3.5.3
noalias handle, 3.5.3

noalisg type qualifier, 3.5.3
nongraphic characters, 2.2.2, 3.1.3.4
nonlocal jumps header, 4.8
not-equal-to operator, t=, 3.3.9
NUL padding of binary streams, 4.9.2

null eharaster, \O, 2.2.1, 3.1.3.4, 3.1 .4

NULL macro, 4.1.5

null pointer, 3.2.2.3

null pointer constant, 23.2.2.3

null preprocessing direstive, 3.8.7

null statement, 3.8.3

numbet, foating-point, 3.1.2.5

numerieal limits, 2.2.4.2

object, definition of, 1.5

object type, 3.1.2.5

cbsolesennce, 1.8, 3.8, 4.13

octal constant, 3.1.3.2

octal digit, 3.1.3.2, 3.1.3.4

octal escape sequence, 3.1.3.4

offgetof macro, 4.1.5

operand, 3.1.5,3.3 :

operating system, 2.1.2.1, £.10.4.5

operator, unary, 3.3.3

operators, 3.1.5, 3.3

OR assignment operater, exclusive, "=, 3.3.16.2
OR assignment operator, inclusive, |=, 3.3.16.2
OR cperator, sxclusive, =, 3.3.11

OR operator, inclusive, {, 3.3.12

OR operator, logical, | §, 3.3.14

order of memory allo¢ation, £.10.3

order of evaluation of expression, 3.3

ordinary identifier name space, 3.1.2.3
padding, NUL, 4.9.2

parameter, ellipsis, , ..., 3.5.4.3

parameter, function, 3.3.2.2

parameter, maln function, 2.1.2.2

parameier, 1.6

parametsr type list, 3.5.4.3

parameters, program, 2.1.2.2

parenthsses punctuator, ('), 3.1.6, 2.5.4.3
parenthesized expression, 3.3.3

pending vaiue, 3.5.3

——

multibyte characters, 2.2.1.2, 3.1.3.4, 4.10.7, 4. 10.8perror funetion, 49.104

muitibyte functions, 4.10.7, 4,1C.8
multiplication assignment operator, »=, 3.3.18.2
multiplication operator, », 3.3.5

multiplicative expressions, 3.3.5

name, file, 4.9.3

name spaces of identifiers, 3.1.2.3

§AT

January 11, 1988
DRAFT

physical source lines, 2.1.1.2

plus operator, unary, +, 3.3.3.3

pointer, null, 3.2.2.3 i

pointer declarator, 3.5.4.1 | .
pointer operater, ->, 3.3.2.3

pointer to function returning type, 3.3.2.2

SA.7

APPENDICES

pointer type, 3.1.2.5

- poihter type conversion, 3.2.2.1, 3.2.2.3

portability of implementations, 1.7
position indicator, fle, 4.9.3 _
postfix decrement operator, =~, 3.3.2.4
postiix expressions, 3.3.2

postfix increment operator, ++, 3.3.2.4
po¥ funciion, 4.5.5.1

power functions, 4.5.5

#pragma preprocessing directive, 3.8.6
precedence of expression operators, 3.3
precedence of syntax rules, 2.1.1.2
predefined macro names, 3.8.8

prefix decrement operator, ~~, 3.3.3.1
prefix increment operator, ++, 3.3.3.1
preprocessing coficatenation, 2.1.1.2, 3.8.3
preprocessing directives, 2.1.1.2, 3.8
preprocessing numbers, 3.1, 3.1.8
preprocessing tokens, 2.1.1.2, 3.1, 3.8
primary expressions, 3.3.1

printf function, 4.9.8.3

printing characters, 2.2.2, 4.3.1, 4.3.1.7
program, conforming, 1.7

program, strictly conforming, 1.7
program diaguostics, 4.2.1

program exectition, 2.1.2.3

program file, 2.1.1.1

program image, 2.1.1.2

program name, argv[0], 2.1.2.2
program parameters, 2.1.2.2

progratm startup, 2.1.2, 2,121, 2.1.2.2
program structure, 2.1.1.1

215

INDEX

remainder assignment operator, %=, £.3.16.2
remainder operator, ¥, 3.3.5

Texcve function, 4.9.4.1

Tenane function, 4.59.4.2

restore calling environment function, 4.6.2.1
reserved identifiers, 4.1.2

return statement, 3.6.8, 3.6.6.4

rewind function, 4.9.0.5

right-shift assignment operator, >>=, 3.3.16.2
right-shift operator, »>, 3.3.7

rvalue, 3.2.2.1

save calling environment function, 4.6.1.1
scalar type, 3.1.2.5

scanf function, 4.9.6.4

SCHAR_MAX macro, 2.2.4.2

SCHAR _MIN macro, 2.2.4.2

acope of identifiers, 3.1.2.1

aesrch functions, 4.10.5.1, 4.11 .8
SBEEK_CUR macro, 4.9.1

SEEK_ERD macro, 4.8.1

SEEX_SET macro, 4.0.1

sejection statements, 3.8.4

semicolon punctuator, ;, 3.1.8, 3.5, 3.63
sequence points, 2.1.2.3, 3.3, 3.6

setduf fancsion, 4.8.5.5

set]sp macro, 4.56.1.1

set]ep.h header, 4.6

getiocale function, 4.4.1.1

setvbul function, 4.9.5.6

shift expressions, 3.3.7

shift states, 2.2.1.2, 4.10.7

shoTt 1Mt type, 3.1.2.5,3.5.2

program termination, 2.1.2, 2.1.2.1, 2.1.2.2, 2.1.2.3 short int type conversion, 3.2.1.1

promotions, default argument, 3.3.2.2
promotions, integral, 2.1.2.3, 3.2.1.1

prototype, function, 8.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1

pseudo-random sequence functions, 4.10.2
ptrdiff_t vype, 4.15

punctuators, 3.1.6

putc function, ¢.9.7.8 _

putchar fupction, 4.9.7.9

puts function, 4.8.7.10

qsort function, 4.16.5.2

quaiified types, 3.1.2.3

raise function, 4.7.2.1

rand function, 4.310.2.1

RAND MAX macro, 4.10, 4.10.2.1

range errgr, 4.5.1

realloc fuaction, 4.310.3.4

recursive function call, 3.3.2.2
reentrancy, 2.1.2.8, 2.2.3

referenced type, 3.1.2.5

register storage-class specifier, 3.5.1
relational expressicns, 3.3.8

reliability of data, interrupied, 2.1.2.3

SHRT_MAX maerc, 2.2.4.2

SHRT_MIN macro, 2.2.4.2

side effects, 2.1.2.3, 8.3

sig atomic v type, 4.7

S1G_DFL macro, 4.7

SIG_ERR macro, 4.7

SIG_IGN macere, 4.7

SIGABRT macro, 4.7, 4.10.4.1

SIGFPE macro, 4.7

SIGILL macro, 4.7

SIGINT macro, 4.7

E1CSESLV macro, 4.7

SIGTERM macro, 4.7

signal function, 4.7.1.1

signal handler, 2.2.3, 4.7.1.1

81gnal . b header, 4.7

signals, 2.1.2.3,2.2.3, 4.7

gigned char, 3.1.2.5

signed char type conversion, 3.2.1.1
signed integer types, 3.1.2.5, 3.1.3.2, 3.2.1.2
gilgned type, 3.1.2.5, 3.5.2

simple assignment operator, =, 8.3.16.1

A7 Yanuary 11, 1088 §A.7

DRAFT

APPENDICES 2186

g1in function, £.5.2.8

single-precision arithmetic, 2.1.2.3

sinh function, 4.5.3.2

size_t type, 4.1.5

slzeol cperator, 3.3.3.4

sort function, 4.10.5.2

source character set, 2.2.1

souree file inclusion, 3.8.2

source files, 2.1.1.1

source text, 2.1.1.2

space character, 2.1.1.2, 22,1, 3.1
gprintf function, 4.9.6.5

sqrt function, 4.5.5.2

srand function, 4.10.2.2

sscanf function, 4.9.6.6

standard streams, 4.9.1, 4.9.3

standard header, 103t .k, 1.7, 2.2.4.2, 4.1.4
standard header, 1imite . h, 1.7, 2.2.4.2, 4.1 4
standard header, stdarg b, 17,48
standard Header, stddef . h, 1.7, 4.1.5
atate-dependent encoding, 2.2.1.2, 4.10.7
statements, 3.6

statie storage duration, 3.1.2.4

gtatic storage-class specifier, 3.5.1, 3.7
gtdarg . b header, 1.7, 4.8

stddef .b header, 1.7, 4.1.5

stderr file, 4.9.1, 4.9.3

ptdin file, 4.9.3,4.8.3

B1d10.h header, 4.9

8Ld11b .k header, £.10

stdouy file, £9.1,4.6.3

storage duration, 3.1.2.4

storage-class specifier, 3.53.1

svreat function, 4.11.3.2

strehr function, 4.11.5.2

stremp function, 4.11.4.2

streoll function, 4.11.4.3

strepy function, 4.11.2.3

strespn function, 4.11.5.3

stream, fully buffered, 4.9.3

stream, line buffered, 4.9.3

stream, standard error, 8tderr,4.9.1,493
stream, standard input, stdin, 4.9.1,4.9.3
stream, standard output, stdout, 4.9.1, 4.9.3
stream, unbuffered, 4.9.3

sireams, 4.9.2

Btrerror function, 4.11.6.2

srritime function, 4.12.3.5

strictly conforming pregram, 1.7

string, 4.1.1

string conversion functions, 4.10.1

string handling header, 4.11

string length, 4.1.1, 4.11.6.3

string literal, 2.1.1.2, 2.2.1, 3.1.4, 3.3.1, 3.5.7
string.h header, 4.11

INDEX

strlen function, 4.11.6.3
stracat function, 4.11.3.2
stracap function, 4.11.4.4
strucpy function, 4.11.2.4
strpbrk function, 4.11.5.4
strrchr function, 4.11.5.5
#tT8ph function, 4.51.5.6
stretr function, 4.11.5.7
surtod function, 4.10.1.4
strtok function, 4.11.5.8
strtol fuaction, 4.10.1.5
strtoul funetion, 4,10.1.8
structure/union arrow operator, >, 3.3.2.3
structure/union content, 3.5.2.3
structure/union dot operator, ., 3.3.2.3
structure/union member name apace, 3.1.2.3
structure,/ynion specifiers, 3.5.2.1
structure/union tag, 3.5.2.3

structure/union type, 3.1.2.5, 3.5.2.1
strxfra function, 4.11.4.5

subtraction assignment operator, ~=, 3.3.18.2
subtraction operator, «, 3.3.8

suffix, floating consatant, 3.1.3.1

suffix, integer constant, 3.1.3.2

switeh body, 3.6.4.2

switch case label, 3.6.1, 3.6.4.2

switeh default label, 3.6.1, 3.8.4.2

switch statement, 3.6.4, 3.6.4.2

syntactic categorics, 3

syntax notation, 3

syntax ruiea, precedence of, 2.1.1.2

gyster function, 4.10.4.5

tab characters, 2.2.1

tabs, white space, 3.1

tag, enumeration, 3.5.2.3

tag, structure/union, 3.5.2.3

tag name space, 3.1.2.3

tan function, 4.5.2.7

tanh function, 4.5.3.3

tentative definitions, 3.7.2

text siream, 4.2.2

time components, 4.12.1

time conversion functions, 4,12.3

tine function, 4.12.2.4

time manipulation functions, 4.12.2

time . b header, 4.12

time_t type, 4.12.1

LR structure type, 4.12.1

TMP_MAX macro, 4.9.1

tupfile function, 4.5.4.3

tupnam function, 4.8.4.4

tokens, 2.1.1.2, 3.}, 38

wolower function, 4.3.2.1

top type, 3.1.2.5

toupper functicn, 4.3.2.2

§A.T ‘ January 11, 1988 ' ' $A.7
DRAFT

APPENDICES 217 INDEX

translation environmtent, 2.1.4 viprintf function, 4.9.6.7

‘wranslation iimits, 2.2.4.2 virtual object, 3.5.3

translation phases, 2.1.1.2 visibility of identifiers, 3.1.2.1 -
translation unit, 2.1.1.1, 3.7 void expression, 3.2.2.2
trigonometric functions, 4.5.2 vold function parameter, 3.5.4.3
trigraph sequences, 2.1.1.2, 2.2.1.1 vold type, 3.1.2.5 3.5.2

type, character, 3.1.2.5, 3.2.2.1, 3.5.7 voild type conversion, 3.2.2.2

type, compatible, 3.1.2.6, 352,353,354 volatile storage, 2.1.2.3

type, composite, 3.1.2.6 volatile-qualified type, 3.1.2.5, 3.5.3
type, const-qualified, 3.1.2.5, 3.5.3 volatile type qualifier, 3.5.3
type, function, 3.1.2.5 vprintf function, 4.9.8.8

type, incomplete, 3.1.2.5 veprintf funciion, £.6.6.9

type, noalias-qualified, 3.1.2.5, 3.5.3 wohar tiype, 3.1.3.4,3.1.4, 3.5.7, 4.1.5, 4.10
type, object, 3.1.2.5 wegtonbs funetion, 4.10.8.2

type, qualified, 3.1.2.5 wetorb funetion, 4.16.7.3

type, ungualified, 3.1.2.5 while statament, 3.6.5, 3.6.5.1
type, volatile-qualified, 3.1.2.5, 3.5.3 white space, 2.1.1.2, 3.1, 3.8, 4.3.1.0
type conversions, 3.2 wide character constant, 3.1.3.4
type definitions, 3.5.6 wide string literal, 2.1.1.2, 3.1.4

t¥pe names, 3.5.5

sype specifiers, 3.5.2

type qualifiers, 3.5.3

typedef specifier, 3.5.1, 3.5.2, 3.5.86
types, 3.1.2.5

UCHAR MAX macro, 2.2.4.2

UINT_MAX macro, 2.2.4.2

ULDNG_MAX macro, 2.2.4.2

unary arithmetic operators, 3.3.3.3
unary expressions, 3.5.3

ULATY Minus operator, —, 3.3.3.3

unary opsrators, 3.3.3

unary plus operator, +, 3.3.3.3
unbuffered stream, 4.9.3

#undef preprocessing directive, 3.8, 3.8.3, 4.1.8
undefined behavior, 1.6

underscore, leading, in identifiers, 4.1.2
ungetc funciion, 4.6.7.11

union tag, 3.5.2.3

union type specifier, 3.1.2.5,3.5.2,35.2.1
uvnqualified type, 3.1.2.5

unsigned integer suffix, w or U, 3.1.3.2
unsigned integer types, 3.1.2.5, 3.1.3.2
ungigned type conversion, 3.2.1.2
unsigned type, 3.1.2.5, 3,2.1.2, 3.5.2
unspecified behsvior, 1.6

USHRT_MAX macro, 2.24.2

usual arithmetic conversions, 3.2.1.5
va_ATg macro, 4.8.1.2

va_end macro, 4.8.1.3

va_list type, 4.8

va_StaTt macro, 4.8.1.1 _

value part, floating conatant, 3.1.3.1
variable arguments header, 4.8
vertical-tab character, 2,2.1, 3.1
vertical-tab escape sequence, \v, 2.2.2, 3.1.34

§A.7 January 11, 1988 EA.T
DRAFT

APPENDICES s INDEX

BA.T January 1%, 1988 AT
DRAFT

	Title Page
	Table of Contents
	Forward

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References
	1.4 Organization of the document
	1.5 Base documents
	1.6 Definitions of terms
	1.7 Compliance
	1.8 Future directions

	2. Environment
	2.1 Conceptual models
	2.2 Environmental considerations

	3. Language
	3.1 Lexical elements
	3.2 Conversions
	3.3 Expressions
	3.4 Constant Expressions
	3.5 Declarations
	3.6 Statements
	3.7 External definitions
	3.8 Preprocessing directives
	3.9 Future language directions

	4. Library
	4.1 Introduction
	4.2 Diagnostics
	4.3 Character handling
	4.4 Localization
	4.5 Mathematics
	4.6 Non-local jumps
	4.7 Signal handling
	4.8 Variable arguments
	4.9 Input/Output
	4.10 General Utilities
	4.11 String handling
	4.12 Date and Time
	4.13 Future library directions

	A. Appendices
	A.1 Language syntax summary
	A.2 Sequence points
	A.3 Library summary
	A.4 Implementation limits
	A.5 Common warnings
	A.6 Portability Issues

	Index

