
X3 Project 381-0

Draft Proposed

American National Standard

Programming Language

This draft standard is published for'a
period of public review and comment and ~
ballot of Accredited Standards Committee xl
Processing Systems. Comments reccivedd9rll1g
will be considered and ansvexed , Comment"OJ;s','.
approval of this draft as an American Natl:~)).af"s..
should so indicate including their reas~~.f'The
Review period will run from February 12,"1)":7,;, to
1988.
All comments should be returned as SOOD"fj ,~~~1bleb\!~ n~t
later than April 12, 1988 to~

X3 Secretariat/CBEMA
311 First Street, N.Y.

Suite 500
Yashington, DC 20001-2178

A copy of the comments should be sent to:

Board of Standards Revie:w
American National Standards Institute

1430 Broadway
New York, NY 10018

Prepared by

Technical Committee X3Jll - ProgrammiQg ~nguage C
,,'.. ',:.;',:".

Accredited Standards Committee

X3 - Information Processing Syst,~ms

Secretariat: CompJ'

PRICE: Yhen ordered in the Continental U.s.: $65.00
Outside of the Continental U.S. $84.50

:j.v

',1} .

edL ." :1iandards Committee
!NF(.'MATION PROCESSING SYSTEMS·

Doc:. No.: X3Jll/88-:-001

Date: January 11. 1988
Project: 381-D

Ref. Doc.: X3Jll/86-157
Reply to: David F. Prosser

Draft Proposed American National Standard for Information
Systems - Programming Language C

ABSTRACT

(This abstract is not a part of American National Standard for Information Systems
- Programming Language C, X3.??~-1988.)

This Standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability, and efficient execution of C language programs on a variety of
computing systems.

Sections are included that detail the C language itself and the contents of the C
language execution library. Appendices summarize aspects of both of them, and
enumerate factors that influence the portability of C programs.

While this Standard is intended to guide knowledgeable C language programmers as
well as implementors of C language translation systems, the document itself is not
designed to serve as a tutorial.

·Op,r.rifl9 IIfld" the procrdll,n of TheA~ric.fI N.tio".' St."d.rds Inrrirure.
X3 Secr.tl' lit· Cornpllt., Ind Busi,,"s EQulpm.nt MlnuflCturtrS ASSOClltlon

311 Ftr" SHeet, N.VIi.,Suitt 500, VlilShlngton. DC20001 -2178
Tel: 202·737-8888
Fa.: 2021638-4922

DRAFT

Draft Proposed American National Standard
for Information Systems - Programming Language C .

CONTENTS

1. INTRODUCTION . · · · · · · 1
1.1 PURPOSE . · · · · · · · · · · 1
1.2 SCOPE . . · . · · · · · · · · · · 1
1.3 REFERENCES · ·' · · 2
1.4 O,RGANIZATION OF THE DOCUMENT 2
1.5 BASE DOCUMENTS · · 2
1.6 DEFINITIONS OF TERMS · · · · · · · · · · · · · 2
1.7 COMPLIANCE · · . · · · · · 4
1.8 FUTURE DIRECTIONS · · · · . · · · · · 5

2. EI\rvIRONMENT · . . · · · · · · · · · · · 6
2.1 CONCEPTUAL MODELS · 6

2.1.1 Translation environment 6
2.1.2 Execution environments 7

2.2 ENVnlONMENTAL CONSIDERATIONS 11
Character sets 112.2.1

2.2.2
2.2.3
2.2.4

Character display semantics
Signals and interrupts 13
Environmental limits 14,

13

3. LANGUAGE • • • • • •
3.1 LEXICAL ELEMENTS

3.1.1 Keywords 20
3.1.2 Identifiers 20
3.1.3 Constants 26
3.1.4 String literals 31
3.1.5 Operators 32
3.1.6 Punctuators 32
3.1.7 Header names 32
3.1.8 Preprocessing numbers 33
3.1.9 Comments 34

3.2 CONVERSIONS • • • • •
3.2.1 Arithmetic operands 35
3.2.2 Other operands 37

3.3 EXPRESSIONS • • • •

19
19

35

39
3.3.1 Primary expressions 40
3.3.2 Postfix operators 40
3.3.3 Unary operators 44
3.3.4 Cast operators 46
3.3.5 Multiplicative operators 47
3.3.6 Additive operators 48
3~3.7 Bitwise shift operators 49
3.3.8 Relational operators 49
3.3.9 Equality operators 50
3.3.10 Bitwise AND operator 51
3.3.11 Bitwise exclusive OR operator 51
3.3.12 Bitwise inclusive OR operator 51
3.3.13 Logical AND operator 52
3.3.14 Logical OR operator 52

-i-
DRAFT

3.3.15 Conditional operator 52
3.3.16 Assignment operators 53
3.3.17 Comma operator 55

3.4 CONSTANT EXPRESSIONS .'. • • • • •
3.5 .DECLARATIONS ••••••••

59

56
58

3.6

3.5.1 Storage-class specifiers
3.5.2 Type specifiers 59
3.5.3 Type qualifiers 64
3.5.4 Declarators 66
3.5.5 Type names 70
3.5.6 Type definitions 71
3.5.7 Initialization 72
STATEMENTS 76
3.6.1 Labeled statements 76
3.6.2 Compound statement, or block
3.6.3 Expression and null statements
3.6.4 Selection statements 78
3.6.5 Iteration statements 79
3.6.6 Jump statements 80

3.7 EXTERNAL DEFINITIONS
3.7.1 Function definitions 82
3.7.2 External object definitions 84

3.8 PREPROCESSING DmECTIVES
3.8.1 Conditional inclusion 87
3.8.2 Source file inclusion 88
3.8.3 Macro replacement 90
3.8.4 Line control 94
3.8.5 Error directive 94
3.8.6 Pragma directive 95
3.8.7 Null directive 95
3.8.8 Predefined macro names 95
FUTURE LANGUAGE DffiECTIONS •
3.9.1 External names 96-
3.9.2 Character escape sequences 96
3.9.3 Storage-class specifiers 96
3.9.4 Function declarators 96
3.9.5 Function definitions 96

76
77

82

86

3.9 96

4. LffiRARY • • • • • • • • •
4.1 INTRODUCTION • • • •

97
97

4.2

4.1.1 Definitions of terms 97
4.1.2 Headers 97
4.1.3 Errors <errno. h> 98
4.1.4 Limits <floa.t. h> and <11m1ts . h> 98
4.1.5 Common definitions <stddef. h> 98
4.1.6 Use of library (unctions 99
DIAGNOSTICS <assert. h> ••••••••
4.2.1 Program diagnostics 101
CHARACTER HANDLING <ctype. h> • • • • • •
4.3.1 Character testing (unctions 102
4.3.2 Character case mapping functions 104
LOCALIZATION <locale. h> • • •
4.4.1 Locale control 106
4.4.2 Numeric formatting convention inquiry 108
MATHEMATICS <math .h> • • • • • • 111

101

4.3 102

4.4 106

4.5

-ii-
DRAFT

4.5.1 Treatment of error conditions m
4.5.2 Trigonometric functions III
4.5.3 Hyperbolic functions U3
4.5.4 Exponential and logarithmic functions 114
4.5.5 Power functions U5
•. 5.6 Nearest integer, absolute value, and remainder functions U6

4.6 NON-LOCAL JUMPS <setjmp.h> •••••••••
4.6.1 Save calling environment 11S
4.6.2 Restore calling environment U9

4.7 SIGNAL HANDLING <s1gna.l. h> ••••••••••••••
4.7.1 Specify signal handling 120
4.7.2 Send signal 121

4.8 VARIABLE ARGUMENTS <stda.rg. h> •
4.8.1 Variable argument list access macros· 122

4.9 L1\lPUT/OUTPUT <std10. h> • • • •
4.9.1 Introduction 124
4.9.2 Streams 125
4.9.3 Files 125
4.9.4 Operations on files 127
4.9.5 File access functions 128
4.9.6 Formatted input/output functions 131
4.9.7 Character input/output functions 141
4.9.8 Direct input/output functions 144
4.9.9 File positioning functions 145
4.9.10 Error-handling functions 147

4.10 GENERAL UTILITIES <stdl1 b . h> • • • • •
4.10.1 String conversion functions 149
4.10.2 Pseudo-random sequence generation functions 153
4.10.3 Memory management functions 154
4.10.4 Communication with the environment 155
4.10.5 Searching and sorting utilities 157
4.10.6 Integer arithmetic functions 158
4.10.7 Multibyte character functions 159
4.10.8 Multibyte string functions 161

4.11 STRING HANDLING <str1ng. h>
4.11.1 String function conventions 162
4.11.2 Copying functions 162
4.11.3 Concatenation functions 163
4.11.4 Comparison functions 164
4.11.5 Search functions 166
4.11.6 Miscellaneous functions 168

4.12 DATE AND TIME <time. h>
4.12.1 Components of time 170
4.12.2 Time manipulation functions 170
4.12.3 Time conversion functions 172

4.13 FUTURE LmRARY DffiECTIONS • • • • • • • • • • • • • • •
4.13.1 Errors <errno. h> 176
+:13.2 Character handling <ctype. h> 176
4.13.3 Localization <loca.le. h> 176
4.13.4 Mathematics <.a.th. h> 176
4.13.5 Signal handling <s1gna.l. h> 176
4.13.6 Input/output <std10. h> 176
4.13.7 General utilities <stdl1b. h> 176
4.13.S String handling <string. h> 176

. . .

.

- iii -
DRAFT

us

120

122

124

149

162

170

176

A. APPENDICES . · · · · · . . . · 177
A.l LANGUAGE SYNTAX SUMMARY · · · · · · 177

A.Ll Lexical grammar 177
A.1.2 Phrase structure grammar 181
A.1.3 Preprocessing directives 186

A.2 SEQUENCE POINTS · · · · · · · · . . . · · · 188
A.3 LffiRARY SUMMARY · · · · · · · · · · · 189

A.3.l ERRORS <errno. h> 189
A.3.2 COMMON DEFINITIONS <stddef. h> 189
A.3.3 DIAGNOSTICS <assert. h> 189
A.3.4 CHARACTER HANDLING <ctype. h> 189
A.3.5 LOCALIZATION <locale. h> 189
A.3.6 ~THE~TICS <math.h> 190
A.3.'1 NON-LOCAL JUMPS <set jmp.h> 190
A.3.8 SIGNAL HANDLING <signal. h> 190
A.3.l~ VARlABLE ARGUMENTS <stdarg. h> 190
A.3.10 INPUT/OUTPUT <stdi0. h> 191
A.3.11 GENERAL UTILITIES <stdl1b. h> 193
A.3.12 STRING HANDLING <stUng. h> 194
A.3.Jl3 DATE AND TIME <time. h> 194

AA IMPLEMENTATION LIMITS • · · · · · · · · · 195
A.S CO~1MON WARNINGS · · · · · · · · 197
A.6 PORTABILITY ISSUES · · · · · · · · · · 198

A.6.1 Unspecified behavior 198
A.6.2 Undefined behavior 199
A.6.3 Implementation-defined behavior 203
A.6.4 Locale-specific Behavior 207
A.6.S Common extensions 207

A.7 INDEX · · · · · · · · . . . · · · · · · . . 209

- iv-
DRAFT

FOREWORD.
(This foreword is not a part of American National Standard for Information Systems -

Programming Language C, X3.1??-1988.)

American National Standard Programming Language C specifies the syntax and s'emantics
of programs written in the C programming language, It specifies the C program's interactions
with the.execution environment via input and output data. It also specifies restrictions and
limits imposed upon conforming implementations of C language translators.

The standard was developed by the X3Jll Technical Committee .on the C Programming
Language under project 381-D by American National Standards Committee on Computers and
Information Processing (X3). SPARC document number 83-079 describes the purpose of this
project to "provide an unambiguous and machine-independent definition of the language C."

The need for a single clearly defined standard had arisen in the C community due to a
rapidly expanding use of the C programming language and the variety of differing translator
implementations that had been and were being developed. The existence of similar but
incompatible implementations was a serious problem for program developers who wished to
develop code that would compile and execute as expected in several different environments.

Part of this problem could be traced to the fact that 'implementors did not have an
. adequate definition of the C language upon which to base their implementations. The de facto
C programming language standard, The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, is an excellent book; however, it is not precise or complete enough to specify
the C language fully. In addition, the language has grown over years of use to incorporate new
ideas in programming and to address some of the weaknesses of the original language.

American National Standard Programming Language C addresses the problems of both the
program developer and the translator implementor by specifying the C language precisely.

The work of X3Jll began in the summer of 1983, based on the several documents that were
made available to the Committee (see §1.S, Base Documents). The Committee divided the
effort into three pieces: the environment, the language, and the library. A complete
specification in each of these areas is necessary if truly portable programs are to be developed.
Each of these areas is addressed in the Standard. The Committee evaluated many proposals
for additions, deletions, and changes to the base documents during its deliberations. A
concerted effort was made to codify existing practice wherever unambiguous and consistent
practice could be identified. However, where no consistent practice could be identified, the
Committee worked to establish clear rules that were consistent with the overall flavor of the
language.

This document was approved as an American National Standard by the American National
Standards Institute (ANSI) on DD MM, 1988. Suggestions for improvement of this Standard
are welcome. They should be sent to the American National! Standards Institute, 1430
Broadway, New York, NY HK>18.

The Standard was processed and approved for submittal to ANSI by the American National
Standards Committee on Computers and Information Processing, X3. Committee approval of
the Standard does not necessarily imply that all members voted for its approval. At the time
that it approved this Standard, the X3 Committee had the following members:

Organization Name of Repre,entative

(To be completed on approval of the Standard.)

Technical Committee X3JU on the C Programming Language had the following members at
the time they forwarded this document to X3 for processing as an American National Standard:

-v-
DRAFT

Officers

Chair
Vice-Chair
Secretary
International Representative

Vocabulary Representative

Technical leadership

Environment Subcommittee Chairs

Language Subcommittee Chair
Library Subcommittee Chair
Draft Redactor

Rationale Redactor

MembeJ'Ship

Jim Brodie
Thomas Plum
P. J. Plauger
P. J. Plauger
Steve Hersee
Andrew Johnson

Plum Hall
Whitesmiths, Ltd.
Whitesmiths, Ltd.
Lattice, Ine:
Prime Computer

Ralph Ryan
Ralph Phraner
Lawrence RosIer
P. J. Plauger
David F. Prosser
Lawrence RosIer
Randy Hudson

Microsoft·
Phraner Associates
AT&T
Whitesmiths, Ltd.
AT&T
AT&T
Intermetrics, Inc.

In the following list, unmarked names denote principal members and • denotes alternate
members.

David F. Prosser, AT&T
Elizabeth Crockett, AT&T· (X3H2 SQL liaison)
Donald Kretsch, AT&T (IEEE PlOO3.1Iiaison)
Jim Baumbach, Advanced Computer Techniques
J. Stephen Adamczyk, Advanced Computer Techniques"
Paul Hohensee, Alliant Computer Systems
Bob Gottlieb, Alliant Computer Systems"
Neal Weidenhofer, Amdahl
Stanley Swiniarski, Apollo Computer
Chris Brown, Apple Computers
Ed Wells, Arinc
Tom Ketterhagen, Arinc"
David Strauss, Bell Communications Research
Bill Puig, Bell Communications Research"
Bob Jervis, Borland International
Michele Fogelson Barabash, Boston Systems Office
Rose Thomson, Boston Systems Office"
Maurice Fathi, COSMIC
Daniel Mickey, Chemical Abstracts Service
Thomas Mimlitch, Chemical Abstracts Service"
Edward Briggs, Citibank
Firmo Freire, Cobra
Jim Patterson, Cognos
George Eberhardt, Computer Innovations
Dave Neathery, Computer Innovaticns"
Joseph Bibbo, Computrition
Steve Davies, Concurrent Computer Corporation
Lloyd Irons, Cormorant Communications
Tom MacDonald, Cray Research
Lynne Johnson, Cray Research-
Larry Lane, Cray Research-

Michael Meissner, Data General
Mark Harris, Data General-
James Stanley, Data Systems Analysts
Samuel Kendall, Delft Consulting
Randy Meyers, Digital Equipment Corporation
David Moore, Digital Equipment Corporation-
Ben Patel, EDS
Dmitry Lenkov, Everest Solutions
Frank Farance, Farance Inc.
Peter Hayes, Farance Inc."
Florin Jordan, Floradin
Philip Provin, General Electric Information Services
Arnold Robbins, Georgia Tech
Graham Barber, Gould
Gary Jeter, Harris Computer Systems Division
Sally Staff, Harris Computer Systems Division"
Sue Meloy, Hewlett Packard
Michelle Ruscetta, Hewlett Packard"
Thomas Osten, Honeywell Information Systems
David Kayden, Honeywell Information Systems"
Thomas Kelly, HCR Corporation
Paul Jackson, HCR Corporaticn'"
Shawn Elliott, IBM
Larry Breed, IBM·
Dan Lau, Intel
Randy Hudson, Intermetrics, Inc.
Keith Winter, International Computers Ltd.
Honey Schrecker, International Computers Ltd."
Svein Davidsen, LSI Logic Ltd.
John Kaminski, Language Processors
David Yost, Laurel Arts

-vi-
DRAFT

-.
Kelly O'Hair, Lawrence Livermore Laboratory
Chuck Rasbold, Lawrence Livermore Laboratory"
Bob Weaver, Los Alamos National Laboratory
Lidia Eberhart, MODCm.{p
Courtney Prodehl, Mark Williams Co.
Jacklin Ko.tikian, Masscomp
Michael Kearns, MetaLink
Tom Pennello, MetaWare Incorporated
Dave Weil, Microsoft
Ralph Ryan, Microsoft"
Kim Kempf, Microware Systems
Bruce Olsen, Mosaic Technologies
Michael Paton, Motorola
Rick Schubert, NCR
Brian Johnson, NCR·
Joseph Mueller, National Semiconductor
Derek Godfrey, National Semiconductor"
Jim Upperman, National Bureau of Standards
James W Williams, Naval Research Laboratory
Lisa Simon, OCLC
Paul Amaranth, Oakland University
Michael Rolle, Oracle
Barry Hedquist, Perennial
Sassan Hazeghi, Peritus International
James Holmlund, Peritus International"
Ralph Phraner, Phraner Associates
Thomas Plum, Plum Hall
ChrIS Skelly, Plum Hall"
Andrew Johnson, Prime Computer
Jane Karp, Prime Computer"
Daniel J. Conrad, Prismatics
Ed Ramsey, Purdue University
Chris DeVoney, Que Corporation
Richard Relph, RARE Inc.
Jon Tulk. Rabbit Software
Terry Colligan, Rational Systems
Oliver Bradley, SAS Institute
Alan Beale, SAS Institute"
Larry Jones, SDRC
John Corbin, SEI Information Technology
Larry Rosenthal, Sierra Systems'
Purshotam Rajani, Spruce Technology
Savu Savulescu, Stagg Systems
Peter Darnell, Stellar
Lee Cooprider, Stellar"
Paul Gilmartin, Storage Technology
Steve Muchnick, Sun Microsystems
John M. 1ia.usman, Tandem
Ed KIt, Tandem"
Samuel Harbison, Tartan Laboratories
Manfred Knemeyer, Technicare Corp
Jim Besemer, Tektronix
Reid Tatge, Texas Instruments
Rex Jaeschke, The C Journal
Michael Banahan, The Instruction Set, Ltd.

- vii -DRAFT

Monika Khushf, Tymlabs
Morgan Jones,· Tymlabs"
Don Bixler, Unisys
Steve Bartels, Unisys"
Glenda Berkheimer, Unisys·
G. E. Millard, University of Edinburgh
Graham Andrews, University of Edinburgh"
Fred Blonder, University of Maryland
R. Jordan Kreindler, University of Southern California
Mike Carmody, University of Waterloo
Douglas Gwyn, US Army
C. Dale Pierce, US Army"
Joseph Musacchia, Wang Labs
Fred Rozakis, Wang Labs"
P. J. Plauger, Whitesmiths, Ltd.
Kim Leeper, Wick Hill Associates Ltd.
Mark Wittenberg, Zehntel
Robert Bradbury
Jim Brodie
Neil Daniels
Stephen Desofi
Michael Duffy
Phillip Escue
D Hugh Redelmeier
Roger Wilks

Draft Proposed American National Standard for Information
Systems - Programming Language C

1.-' INTRODUCTION
1.1 PURPOSE

5 This Standard specifies the form and establishes the interpretation of programs
written in the C programming language.'

1.2 SCOPE

This Standard specifies:

10 • the representation of C programs;

• the syntax and constraints of the Clang, .: ge;

• the semantic rules for interpreting C programs;

• the representation of input data to be processed by C programs;

• the representation of output data produced by C programs;

15 • the restrictions and limits imposed by a conforming implementation of C.

This Standard does not specify:

• the mechanism by which C programs are transformed for use by a data-processing
system;

• the mechanism by which C programs are invoked for use by a data-processing system;

20 • the mechanism by which input data are transformed for use by a C program;

• the mechanism by which output data are transformed after being produced by a C
program;

• the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

25 • all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1. This Standard is designed to promote the portability of C programs among a variety of data-
processing systems. It is Intended for use by implementors and knowledgeable programmers, and is
not a tutorial It is accompanied by a. Rationale document that explains many of the decisions of the
Technical Committee that produced it.

§l. January 11, 1988
DRAFT

§1.2

Proposed C Standard 2 INTRODUCTION

1.3 REF-ERENCES
1. "The C Reference Manual" by Dennis M. Ritchie, a version of which was published

in The 0 Programming Language by Brian W. Kernighan and Dennis M. Ritchie,
Prentice-Hall, Inc., (1978). Copyright owned by AT&T.

5 2. 198-4 /v,r/group Standard by the /usr/group Standards Committee, Santa. Clara.,
California, USA (November, 1984).

3. American National Dictionary for Information Procea,ing Syatem" Information
Processing Systems Technical Report ANSI X3/TR-1-82 (1982).

4. ISO 646-1983 Invariant Code Set.

10 5. IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

6. ISO 4217 Codes for the Representation of Currency and Funds.

1.4 ORGANIZATION OF THE DOCUMENT
This document is divided into four major sections:

15 1. this introduction;

2. the characteristics of environments that translate and execute C programs;

3. the language syntax, constraints, and semantics;

4. the library facilities.

Examples are provided to illustrate possible forms of the constructions described.
20 Footnotes are provided to emphasize consequences of the rules described in the section or

elsewhere in the Standard. References are used to refer to other related sections. A set of
appendices summarizes information contained in the Standard. Neither the abstract, the
foreword, examples, footnotes, references, nor appendices are part of the Standard.

25 1.5 BASE DOCUMENTS
The language section (§3) is derived from "The C Reference Manual" by Dennis M.

Ritchie, a version of which was published as Appendix A of The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978;
copyright owned by AT&T.

30 The library section (§4) is based on the 198-4 /u,r/group Standard by the /usr/group
Standards Committee, Santa Clara, California, USA (November 14, 1984).

1.6 DEFINITIONS OF TERMS
In this Standard, "shall" is to be interpreted as a requirement on an implementation

35 or on a program; conversely, "shall not" is to be interpreted as a prohibition.

The following terms are used in this document:

• Implementation - a particular set of software, running in a particular translation
environment under particular control options, that performs translation of programs
for, and supports execution of functions in, a particular execution environment.

40 • Bit - the unit of data storage in the execution environment large enough to hold an
object that may have one of two values. It need not be possible to express the .address
of each individual bit of an object .

• Byte - the unit of data storage in the execution environment large enough to hold a
single character in the basic character set of the execution environment. It shall be

45 possible to express the address of each individual byte of an object uniquely. A byte is
composed or .::.contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is

§1.3 January 11, 1988
DRAFT

§1.6

Proposed C Standard 3 INTRODUCTION

--
called the high-orC~r bit.

• Object - a region of data storage in the execution environment, the contents of which
can represent values. Except for bit-fields, objects are composed of contiguous
sequences of one or more bytes, the number, order, and encoding of which are either

5 explicitly specified or implementation-defined.

• Multibyte character - a sequence of one or more bytes representing a single character
in the extended character set of either the source or the execution environment. The
extended character set is a superset of the basic character set.

• Alignment - a requirement that objects of a particular type be located on storage
10 boundaries with addresses that are particular multiples of a byte address.

• Argument - an expression in the comma-separated list bounded by the parentheses
in a function call expression, or a sequence of preprocessing tokens in the comma-
separated list bounded by the parentheses in a function-like macro invocation. Also
known as "actual argument" or "actual parameter."

15 • Parameter - an object declared as part of a function declaration or definition that
acquires a value on entry to the function, or an identifier from the comma-separated
list bounded by the parentheses immediately following the macro name in a function-
like macro definition. Also known as "formal argument" or "formal parameter."

• Unspecified behavior - behavior, for a correct program construct and correct data,
20 for which the Standard imposes no requirements.

• Undefined behavior - behavior, upon use of a nonportable or erroneous program
construct, of erroneous data, or of indeterminately-valued objects, for which the
Standard imposes no requirements. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behaving during

25 translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a
translation or execution (with the issuance of a diagnostic message).

If a "shall" or "shall not" requirement that appears outside of a constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this

30 Standard by the words "undefined behavior" or by the omission of any explicit
definition of behavior. There is no difference in emphasis among these three; they all
describe "behavior that is undefined."

• Implementation-defined behavior - behavior, for a correct program construct and
correct data, that depends on the characteristics of the implementation and that each

35 implementation shall document.

• Locale-specific behavior - behavior that depends on local conventions of nationality,
culture, and language that each implementation shall document.

• Diagnostic message - a message belonging to an implementation-defined subset of the
implementation's message output.

40 • Constraints - syntactic and semantic restrictions by which the exposition of language
elements is to be interpreted.

• Implementation limits - restrictions imposed upon programs by the implementation.

• Forward references - references to later sections of the Standard that contain
additional information relevant to this section.

45 Other terms are defined at their first appearance, indicated by italic type. Terms
explicitly defined in this Standard are not to be presumed to refer implicitly to similar
terms defined elsewhere. Terms not defined in this Standard are to be interpreted

§1.6 January 11, 1988
DRAFT

§1.6

Proposed C Standard 4 INTRODUCTION

according ~-to the AmerieIJn NtJtionlJi DietionlJrll [or InJormatl'on Proee4IJing SlllJtemlJ,
Information Processing Systems Technical Report ANSI X3/TR-1-82 (1982).

Forwa:rd referellces: localization (§4.4).

Examples

An example of unspecified behavior is the order in which the arguments to a..Cunction
are evaluated.

An example of undefined behavior is the behavior on integer overBow.

10 An example C)1' implementation-defined behavior is the propagation of the high-order
bit when a signed integer is shifted right.

An example of locale-specific behavior is whether the 1s1oW'er function returns true
for characters other than the 26 lower-case English letters.

15 F'crwar-d refertmces: bitwise shift operators (§3.3.7), expressions (§3.3), function calls
(§3.3.2.2), the 1sloW'er function (§4.3.1.6).

1.7 COMPLIANCE
A Itl"ietly eonforming program shall use only those features of the language and library

20 specified in this Standard. It shall not produce output dependent on any unspecified,
undefined, or implementation-defined behavior, and shall not exceed any minimum
implementation limit.

The two forms of conforming implementation are hosted and freestanding. A
conforming hOlted implementation shall accept any strictly conforming program. A

25 eonforming freeltanding implementation shall accept any strictly conforming program in
which the use of the features specified in the library section (§4) is confined to the
contents of the standard headers <float.h>, <11m1ts.h>, <stdarg.h>, and
<stddef . h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of a strictly conforming

30 program.

A eonforming program is one that is acceptable to a conforming implementation.2

An implementation shall be accompanied by a document that defines all
implementation-defined characteristics and all extensions.

35 Forward references: limits <float. a> and <11m1 ts . h> (§4.1.4), variable arguments
<stdarg. h> (§4.8), common definitions <stddef . h> (§4.1.5).

2. Strictly conforming programs are intended to be maximally portable. Conforming programs may
depend upon nonportable features of a conforming implementation.

§1.6 January 11, 1988
DRAFT

§1.7

Proposed CStandard 5 INTRODUCTION

1.8 FUT_UREDm.ECTIONS
With the introduction of new devices and extended character sets, new features may

be added to the Standard. Subsections in the language and library sections warn
implementors and programmers of usages which, though valid in themselves, may conflict

5 with future additions.

Certain features are obeoleeeent, which means that they may be considered for
withdrawal in future revisions of the Standard. They are retained in the Standard
because of their widespread use, but their use in new implementations (for
implementation features) or new programs (Ior language or library features) is

10 discouraged.

Forward references: future language directions (§3.9.9), future library directions
(§4.13).

§1.8 January 11, 1988
DRAFT

§1.8

Proposed C Standard 6 ENVIRONMENT

2. ENVIRONMENT
An implementation translates C source files and executes C programs in two differing

data-processing-system environments, which will be called the translation environment
5 and the ezec'Iltion environment in this Standard. Their characteristics define and

constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In the environment section (§2), only a few of many possible
10 forward references have been noted.

2.1 CONCEPTUAL MODELS
2.1.1 Translation environment
2.1.1.1 Progra.m structure

A C program need not all be translated at the same time. The text of the program is
kept in units called aource file a in this Standard. A source file together with all the
headers and source files included via the preprocessing directive #1nclude, less any

20 source lines skipped by any of the conditional inclusion preprocessing directives, is called
a translation unit. Previously translated translation units may be preserved individually
or in libraries. The separate translation units of a program communicate by calls to'
functions whose identifiers have external linkage, by manipulation of objects whose
identifiers have external linkage, and by manipulation of data files. Translation units

25 may be separately translated and then later linked to produce an executable program.

Forward references: conditional inclusion (§3.8.1), linkages of identifiers (§3.1.2.2),
source file inclusion (§3.8.2).

30 2.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following
phases.f

1. Physical source file characters are mapped to the source character set (introducing
new-line characters for end-of-line indicators) if necessary. Trigraph sequences are

35 replaced by corresponding single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash
character is deleted, splicing physical source lines to form logical source lines. A
source file that is not empty shall end in a new-line character, which shall not be
immediately preceded by a backslash character.

40 3. The source file is decomposed into preprocessing tokens" and sequences of white-
space characters (including comments). A source file shall not end in a partial
preprocessing token or comment. Each comment is replaced by one space character.
New-line characters are retained. Whether each sequence of other white-space
characters is retained or replaced by one space character is implementation-defined.

45 4. Preprocessing directives are executed and macro invocations are expanded. A
#1ncl ude preprocessing directive causes the named header or source file to be
processed from phase 1 through phase 4, recursively.

3. Implementations must behave as if these separate phases occur, even though many are typically
folded together in practice.

4. & described in §31, the process of dividing a source file's characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #incl ude preprocessing directive.

§2. January 11, 1988
DRAFT

§2.1.1.2

ENVlRONMENT 7 CONCEPTUAL MODELS

5. Escape sequences in character constants and string literals are converted to single
characters in the execution chara ..ct.er set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string
literal tokens are concatenated.

5 7. White-space characters separating tokens are no longer significant. Preprocessing
tokens are converted into tokens. The resulting tokens are syntactically and
semantically analyzed and translated.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the

10 current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: lexical elements (§3.1), preprocessing directives (§3.8).

15 2.1.1.3 Diagnostics
A conforming implementation shall produce at least one diagnostic message (identified

in an implementation-defined manner) for every translation unit that contains a violation
of any syntax rule or constraint. Diagnostic messages 'need not be produced in other
circumstances.

2.1.2 Execut lon environments
Two execution environments are defined: Jree4tanding and Aoated. In both cases,

program 3tartup occurs when a designated C function is called by the exeeution
environment. All objects in static storage shall be initialized (set to their initial values)

25 before program startup. The manner and timing of such initialization are otherwise
unspecified. Program termination returns control to the execution environment.

Forward references: initialization (§3.5.7).

30 2.1.2.1 Freestanding environment
In a freestanding environment (in which C program execution may take place without

any benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. There are otherwise no reserved external identifiers.
Any library facilities available to a freestanding program are implementation-defined.

35 The effect of program termination in a freestanding environment is implementation-
defined.

2.1.2.2 Hosted environment
A hosted environment need not be provided, but shall conform to the following

40 specifications if present:

Program startup

The function called at program startup is named main. The implementation declares
no prototype for this function. It can be defined with no parameters:

int ma1n(vo1d) { /* ... */ }45
or with two parameters (referred to here as argc and argv, though any names may be
used, as they areloeal to the function in which they are declared):

1nt aa1n(int argc. char *argv[]) { /* ... */ }

It they are defined, the parameters to the main function shall obey the following
50 constraints:

§2.1.1.2 January 11, 1988
DRAFT

§2.1.2.2

ENVIRONMENT 8 CONCEPTUAL MODELS

• The value oC argc shall be nonnegative.

• argy [arge) shall be a null pointer.

• It the value oC argc is greater than zero, the array members argy [0) through
argy [argc-i] inclusive shall contain pointers to strings, which are given

5 implementation-defined values by the host environment prior to program ~tartup.
The intent is to supply to the program information determined prior to program
startup from elsewhere in the hosted environment. It the host environment is not
capable of supplying strings with letters in both upper-case and lower-case, the
implementation shall ensure that the strings are received in lower-case.

10 • If the value of argc is greater than zero, the string pointed to by argy [0] represents
the program name, the initial character of which shall be the null character iC the
program name is not available from the host environment. If the value of argc is
greater than one, the strings pointed to by argv [1] through argy Iargc-Ll
represent the programparameter&.

15 • The parameters argc and argy and the strings pointed to by the argy array shall be
modifiable by the program, and retain their last-stored values between program
startup and program termination.

Program execution

20 In a hosted environment, a program may use all the functions, macros, type
definitions, and objects described in the library section (§4).
Program termination

A return Cromthe initial call to the llain function is equivalent to calling the exit
25 function with the value returned by the lIa1n function as its argument. It the lIa1n

function executes a return that specifies no value, the termination scatus returned to the
host environment is undefined.

Forward references: the ex1 t function (§4.10.4.3).

2.1.2.3 Program execution
The semantic descriptions in this Standard describe the behavior of an abstract

machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
35 that does any of those operations are all .•ide effect ••, which are changes in the state of the

execution environment. Evaluation of an expression may produce side effects. At certain
specified points in the execution sequence called ••equence point ••, all side effects of
previous evaluations shall be complete and no side effects of subsequent evaluations shall
have taken place.

40 In the abstract machine, all expressions are evaluated as specified by the semantics.
An actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no needed side effects are produced (including any caused
by calling a function or accessing a volatile object).

When the processing oC the abstract machine is interrupted by receipt of a signal, only
45 the values of objects as oC the previous sequence point may be relied on. Objeets that

may be modified between the previous sequence point and the next sequence point need
not have received their correct values yet.

An instance of each object with automatic storage duration is associated with each
entry into a block. Such an object exists and retains its last-stored value during the

&0 execution of the block and while the block is suspended (by a call of a function or receipt
of a signal).

§2.1.2.2 January 11, 1988
DRAFT

§2.1.2.3

E~"V1RONMENT 9 CONCEPTUAL MODELS

The leut requirements on a conforming implementation are:

• At sequence points, volatile objects are stable in the sense that previous evaluations
are complete and subsequent evaluations have not yet occurred.

• At program termination,all data written into files shall be identical to the result that
5 execution of the program according to the abstract semantics would have produced.

• The input and output dynamics of interactive devices shall take place as specified in
§4.9.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

10 What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined
by each implementation.

Examples

15 An implementation might define a one-to-one correspondence between abstract and
actual semantics: at every sequence point, the values of the actual objects would agree
with those specified by the abstract semantics. The keyword volatlle would then be
redundant.

Alternatively, an implementation might perform various optimizations within each
20 translation unit, such that the actual semantics would agree with the abstract semantics

only when making function calls across translation unit boundaries. In such an
implementation, at the time of each function entry and function return where the calling
function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree

25 with the abstract, semantics. Furthermore, at the time of each such function entry the
values of the parameters of the called function and of all objects accessible via pointers
therein would agree with the abstract semantics. In this type of implementation,objects
referred to by interrupt service routines activated by the s1gnal function would require
explicit specification of volatlle storage, as well as other implementation-defined

30 restrictions.

In executing the fragment

char cl. c2;
1* ... *1
cl = cl + c2;

35 the "integral promotions" require that the abstract machine promote the value of each
variable to lnt size and then add the two :1.nts and truncate the sum. Provided the
addition of two chars can be done without creating an overflow exception, the actual
execution need only produce the same result, possibly omitting the promotions.

Similarly, in the fragment

40 float fl. f2;
double d;
1* ... *1
fl = f2 * d;

the multiplication may be executed using single-precision arithmetic if the
·45 implementation can ascertain that the result would be the same as if it were executed

using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double). Alternatively, an operation involving only lnts or floats may
be executed using double-precision operations if neither range nor precision is lost
thereby.

§2.1.2.3 January 11, IlJ88
DRAFT

§2.1.2.3

ENVIRONMENT 10 CONCEPTUAL MODELS

FOl'ward refel'enees: files (§4.9.3), sequence points (§3.3, §3.6), the signall function
(§4.7), type qualifiers (§3.5.3).

§2.1.2.3 January 11, 1988
DRAFT §2.1.2.3

ENVmONMENT 11 ENVIRONMENTAL CONSIDERATIONS

2.2 ENvrnONMENTAL CONSIDERATIONS
2.2.1 Character sets

5 Two sets of characters and their associated collating sequences shall be defined: the
set in which source files are written, and the set interpreted in the execution
environment. The values of the- characters in the execution character set are
impTementation-defined; which characters are added beyond those required by this
section is locale-specific.

10 In a character constant or string literal, characters in the execution character set shall
be represented by corresponding characters in the source character set or by ueape
"equenee8 consisting of the backslash \ followed by one or more characters. A byte with
all bits set to 0, called the null ch araeter, shall exist in the basic execution character set;
it is used to terminate a character string literal.

15 At least the following characters shall be in the basic source and basic execution
character sets: the 26 upper-case letters of the English alphabet

A B C D E F G H I J K L M
N 0 p Q R S T U V 'If X Y Z

the 26 lower-case letters of the English alphabet

20 a b c d e f g h 1 j k 1 •
n 0 p q r s t u v y :z: y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 g

the following 29 graphic characters

25 • # " I: () • + /
< = > ? [\] { }

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. In both the source and execution basic character sets, the value associated
with each character in the above list of decimal digits shall be one greater than the value

30 of the previous. In source files, there shall be some way of indicating the end of each line
of text; this Standard treats such an end-of-line indicator as if it were a single new-line
character. In the execution character set, there shall be control characters representing
alert, backspace, carriage return, and new line. If any other characters are encountered
in a source file (except in a preprocessing token, a character constant, a string literal, or a

35 comment), the behavior is undefined.

Forward referenees: character constants (§3.1.3.4), preprocessing directives (§3.8),
string literals (§3.1.4), comments (§3.1.9).

40 2.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph 8equeneei') are replaced with the corresponding single character.

5. The trigraph sequences enable the input of characters that are not defined in the ISO 6-46-1gS3
Invariant Code Set, which is a subset of the seven-bit ASCII code set.

§2.2 January 11, 1988
DRAFT

§2.2.1.1

ENVIRONMENT 12 ENVIRONMENTAL CONSIDERATIONS

5

??= #
??([
??/. \
??)]
??'
??< {
??! I
??> }
??-

10 No other trigraph sequences exist. Each? that does not begin one of the trigraphs listed
above is not changed.

Example

The following source line

15 printf(-Eh???/n-);

becomes (after replacement of the trigraph sequence ?? /)

print! C-Eh?\n-) ;

2.2.1.2 Multibyte characters

20 The source character set may contain multibyte characters, used to represent
characters in the extended character set. The execution character set may also contain
multibyte characters, which need not have the same encoding as for the source character
set. For both character sets, the following shall hold:

• The single-byte characters defined in §2.2.1 shall be present.

25 • The presence, meaning, and representation of any additional characters is locale-
specific.

• A multi byte character may have a date-dependent encoding, wherein each sequence of
multibyte characters begins in an initial ,hilt ,tate and enters other ,hilt ,tate, when
specific multibyte characters are encountered in the sequence. While in the initial

30 shift state, all single-byte characters retain their usual interpretation and do not alter
the shift state. The interpretation for subsequent bytes in the sequence is a function
of the current shift state.

• A byte with all bits zero shall be interpreted as a null character independent of shift
state.

35 • A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For the source character set, the following shall hold:

• A comment, string literal, or character constant shall begin and end in the initial shift
state.

40 • A comment, string literal, or character constant shall consist of a sequence of valid
multibyte characters.

§2.2.1.1 January 11, 1988
DRAFT

§2.2.1.2

ENVIRONMENT 13 ENVIRONMENTAL CONSIDERATIONS

2.2.2 Character display semantics
The Active poaition is that location on a display device where the next character

output by the fputc function would appear. The intent of writing a printable character
(as defined by the 1spr1nt function) to a display device is to display a graphic

5 representation of that character at the active position and then advance the active
position to the next position on the current line. The direction of printing is locale-
specific. If the active position is at the final position of a line (if there is one), the
behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
10 character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspace) Moves the active position to the position of the previous character. If the
active position is at the initial position of a line, the behavior is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next
15 logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\ t (horizontal tab) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal

20 tabulation position, the behavior is unspecified. .

\ V (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
25 which can be stored in a single char object. The external representations in a text file

need not be identical to the internal representations, and are outside the scope of this
Standard.

Forward references: the fputc function (§4.9.7.3), the 1spr1nt function (§4.3.1.7).

2.2.3 Signals and interrupts
Functions shall be implemented such that they may be interrupted at any time by a

signal, and may be called by a signal handler with no alteration to control Bow, to
function return values, or to objects with automatic storage duration belonging to earlier

35 invocations. All such objects shall be maintained outside the function imAge (the
instructions that comprise the executable representation of a function) on a per-
invocation basis. The function image itself shall not be modified during its execution.

Except for the s1gnal function, the functions in the standard library are not
guaranteed to be reentrant and may modify objects with static storage duration.

Forward references: the s1gnal function (§4.7.1.1).

§2.2.2 January 11, 1988
DRAFT

§2.2.3

ENVIRONMENT 14 ENVlRONMENTAL CONSIDERATIONS

2.2.4 Environmental limits
Both the translation and execution environments constrain the implementation of

language translators and libraries .. The following summarizes the environmental limits on
a conforming implementation.

2.2.4.1 Translation limits
The implementation shall be able to translate and execute at least one program that

contains at least one instance of every one of the following limits:"

• 15 nesting levels of compound statements, iteration control structures, and selection
10 control structures

• 8 nesting levels of conditional inclusion

• 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, a structure, a union, or an incomplete type in a declaration

• 31 declarators nested by parentheses within a full declarator

15 • 32 expressions nested by parentheses within a full expression

• 31 significant initial characters in an internal identifier or a macro name

• 6 significant initial characters in an external identifier

• 511 external identifiers in one translation unit

• 127 identifiers with block scope in one block

20 • 1024 macro identifiers simultaneously defined in one translation unit

• 31 parameters in one function definition

• 31 arguments in one function call

• 31 parameters in one macro definition

• 31 arguments in one macro invocation

25 • 509 characters in a logical source line

• 509 characters in a character string literal or wide string literal (after concatenation)

• 32767 bytes in an object (in a hosted environment only)

• 8 nesting levels for #1ncluded files

• 257 ca.se labels for a sw1 tch statement (excluding those for any nested sw1 tch
30 statements)

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

• 15 levels of nested structure or union definitions in a single struct-declaration-list

6. Implementations should avoid imposing fixed translation limits whenever possible.

§2.2.4 January 11, 1988
DRAFT

§2.2.4.1

ENVIRONMENT 15 ENVmONMENTAL CONSIDERATIONS

2.2.4.2 Numer-leal Iimlta
A conforming implementation shall document all the .limits specified in this seetion,

whieh shall be specified in the headers <11111ts. h> and <float. h>.

5 Sizes of integral types <11a1ts .h>

The values given below shall be replaced by eonstant expressions suitable for use in
#if preprocessing directives. Their implementation-defined values shall be equal or
greater in magnitude (absolute value) to those shown, with the same sign.

• maximum number of bits for smallest objeet that is not a bit-field (byte)
10 CHAR BIT 8

• minimum value for an object of type s1gned char
SCHAR MIN -127

• maximum value for an object of type s1gned char
SCHAR MAX +127

15 • maximum value for an object of type unsigned char
UCHAR MAX 255U

• minimum value for an objeet of type char
CHAR MIN lIee below

• maximum value for an object of type char
20 CHAR MAX lee below

• maximum number of bytes in a multibyte character. for any supported locale
MB LEN MAX 1

• minimum value for an object of type short 1nt
SHRT MIN -32767

25 • maximum value for an object of type short 1nt
SHRT MAX +32767

• maximum value for an object of type uns1gned short 1nt
USHRT MAX 65535U

• minimum value for an object of type 1nt
30 INT MIN -32767

• maximum value for an object of type 1nt
IN! MAX +32767

• maximum value for an object of type uns1gned 1nt
UINT MAX 65535U

35 • minimum value for an object of type long 1nt
LONG MIN -2147483647

• maximum value for an object of type long 1nt
LONG MAX +2147483647

• maximum value for an object of type uns1gned long 1nt
40 otONG MAX 4294967295U

If the value of an object of type char sign-extends when used in an expression, the
value of CHAR MIN shall be the same as that of SCHARMIN and the value of CHAR MAX
shall be the sa~e as that of SCHARMAX. If the value or an object of type char doe-; not
sign-extend when used in an expression, the value of CHAR_MINshall be 0 and the value

45 of CHAR_MAXshall be the same as that of UCHAR_MAX.

§2.2.4.2 January 11, 1988
DRAFT

§2.2.4.2

ENVffiONMENT 16 ENVffiONMENTAL CONSIDERATIONS

Charaeterfsties or fioating types <float .'h>
The characteristics of Boating types are defined in terms of a model that describes a

representation of Boating-point numbers and values that provide information about an
5 implementation's floating-point arithmetic. The following parameters are used to define

the model for each Boating-point type:

3

b
sign (::I: 1)
base or radix of exponent representation (an integer> 1)
exponent (an integer between a minimum emia and a maximum emu)
precision (the number of base-e digits in the mantissa)
nonnegative integers less than b (the mantissa digits)

10

A normalized Boating-point number :z (/1 > 0 if :z,-! 0) is defined by the following
model: ,

:z :z a X bt X E I. X b-It, emia:::; e :::; emu
It-I

15 Of the values in the <float.. h> header, FLT_RADIX shall be a constant expression
suitable for use in #If preprocessing directives; all other values need not be constant
expressions. All except FLT RADIX and FLT ROUNDS have separate names for all three
. Boating-point types. The B-;;ating-point mod-;l representation is provided for all values
except FL T_ROUNDS.

20 The rounding mode for Boating-point addition is characterized by the value of
FLT ROUNDS:

-1 indeterminable

25

o
1
2
3

toward zero
to nearest
reward positive infinity
toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal or greater in magnitude (absolute value) to those shown,

30 with the same sign.

• radix of exponent representation, b
FLT RADIX 2

• number of base-FLT_RADIX digits in the floating-point mantissa, p

FLT MAN! DIG- -35 DBL MANT DIG
LDBL MANT DIG

• number of decimal digits of precision, l(p - 1) X logl06 J + {0
1 if b is a power of 10
otherwise

40

FLT DIG
DBL DIG
LDBL DIG

6
10
10

• minimum negative integer such that FLT RADIX raised to that power minus 1 IS a
normalized floating-point number, emia

§2.2.4.2 January 11, 1988
DRAFT

§2.2.4.2

ENVIRONMENT 17 ENVIRONMENTAL CONSIDERATIONS

-- .FLT MIN EXP
DBL.MIN EXP- -LDBL MIN EXP

• minimum negative integer such that 10 raised to that power is in the range of
5 c~ormalized Boating-point numbers, r loglOb'am-1 1

FLT MIN 10 EXP- - -DBL MIN 10 EXP- - -LDBL MIN 10 EXP

-37
-37
-37

• maximum integer such that FLT RADIX raised to that power minus 1 is a
10 representable finite floating-point nu~ber, emu

FLT MAX EXP
DBL MAX EXP
LDBL MAX EXP

15
• maximum integer such that 10 raised to that power is iT the range of representable
finite floating-point numbers, lloglO((1 - b-") X bt~)

FLT MAX 10 EXP +37- - -DBL_MAX_10_EXP
LDBL MAX 10 EXP- --

+37
+37

The values given in the following list shall be replaced by implementation-defined
20 expressions with values that shall be equal to or greater than those shown.

• maximum representable finite Boating-point number, (1 - b-") X btlJll.l[

FLT MAX
DBL MAX
LDBL MAX

1E+37
1E+37
1E+37

25 The values given in the following list shall be replaced by implementation-defined
expressions with values that shall be equal to or smaller than those shown.

• minimum positive floating-point number z such that 1.0 + z ~ 1.0, b1-,

30

FLT EPSILON
DBL EPSILON
LDBL EPSILON

1E-5
1E-9
1E-9

• minimum normalized positive floating-point number, b'lDIl-l

FLT MIN
DBL MIN
LDBL MIN

1E-37
1E-37
1E-37

Examples

The following describes an artificial flcating-point representation that meets the
minimum requirements of the Standard, and the appropriate values in a <floa.t. h>
header for type float:

e
40 z == ! X 16' X E II< X 16-1<, - 31 $ e $ + 32

1<-1

§2.2.4.2 January 11, 1988
DRAFT

§2.2.4.2

ENVIRONMENT

5

FLT RADIX
FLT MANT DIG.- -FLT_EPSILON
FLT DIG
FLT_MIN_EXP
FLT MIN
FLT MIN 10 EXP- --FLT_MAX_EXP
FLT MAX
FLT MAX 10 EXP10

18 ENVIRONMENTAL CONSIDERATIONS

16
6

9.53674316E-07F
6

-31
2.93873588E-39F

-38
+32

3.40282347E+38F
+38

The following describes floating-point representations that also meet the requirements·
for single-precision and double-precision normalized numbers in the IEEE Standard lor
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985),1and the appropriate values
in a <float. h> header for types float and double:

24
15 z, - , X 2" X E I" X 2-", -125 ~ e ~ +128

"-I
53

Zd - , X 2t X E I" X 2-", -1021 ~ e ~ + 1024"-1
FLT RADIX 2
FLT MANT DIG 24- -FLT EPSILON 1.19200200E-07F

20 FLT DIG 6
FLT MIN EXP -125
FLT MIN 1.17540435E-38F
FLT MIN 10 EXP -37- --FLT MAX EXP +128

25 FLT MAX 3.40282347E+38F
FLT MAX 10 EXP +38- --DBL MANT DIG 53- -DBL_EPSILON 2.2204460492503131E-16
DBL DIG 15

30 DBL MIN EXP -1021- -DBL MIN 2.225073858507201E-308
DBL MIN 10 EXP -307- --DBL MAX EXP +1024- -DBL MAX 1.797693134862316E+308

35 DBL MAX 10 EXP +308- - --
The values shown above for FLT EPSILON and DBL EPSILON are appropriate for the

ANSI/IEEE Std 754-1985 default ro~nding mode (to ne~est). Their values may differ for
other rounding modes.

40 Forward references: conditional inclusion (§3.8.1).

7. The floating-point model in that standard sums powers of b from zero, so the values of the exponent
limits are one less than shown here.

§2.2.4.2 January 11, 1988
DRAFT

§2.2.4.2

Proposed C Standard 19 LANGUAGE

3.LANGUAGE
In the syntax notation used in the language section (§3), syntactic categories

(nonterminals) are indicated by italic type, and literal words and characters (terminals)
5 by bold type. A colon (:) following a nonterminal introduces its definition. Alternative

definitions are listed on separate lines, except when prefaced by the words "one of." An
optional symbol is indicated by the subscript "opt," so that

{ ezpreaaion t}op
indicates an optional expression enclosed in braces.

3.1 LEXICAL ELEMENTS
Syntax

token:
15 keyword

identifier
eonatant
&iring-Literal
operator
punctuator

preproc cuing-token:
header-name
identifier
pp-number
ch aracter-eonstant
atring-/iteral
operator
punctuator
each non-white-space character that cannot be one of the above

20

25

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, an operator, or a punctuator.

35 Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8.
The categories of tokens are: keyworda, identifiera, con&ianta, &tring literals, operatore,
and punctuatora. A preproceuing token is the minimal lexical element of the language in
translation phases 3 through 6. The categories of preprocessing token are: header namea,

40 identifier!, preproceuing number!, character con&lant!, &tring literals, operators,
punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a ' or a • character matches the last category, the
behavior is undefined. Comments (described later) and the characters space, horizontal
tab, new-line, vertical tab, and form-feed-collectively called white &pace-can separate

45 preprocessing tokens. As described in §3.8, in certain circumstances during
preprocessing, white space (or the absence thereof) serves as more than preprocessing
token separation. White space may appear within a preprocessing token only as part of a
header name or between the quotation characters in a character constant or ,string literal.

If the input stream has been parsed into preprocessing tokens up to a given character,
50 the next preprocessing token is the longest sequence of characters that could constitute a

preprocessing token.

§3. January 11, 1988
DRAFT

§3.1

LANGUAGE

20
auto extern
break' float
case for
char goto
const if
cont1nue 1nt
default long
do noal1as
double reg1ster
else return
enum short

3.1.2 Identifiers
Syntax

identifier:
nondigit·
identifier nondigit
identifier digit

non digit: one of
a b c d e
n' 0 p q r
A B C D E
N 0 p Q R

25

35

40

20

f g
s t
F G
S T

h 1
U. v
H I
U V

digit: one of
o 1 2 3 4 5 6 7 8 9

j k 1
y x y
J K L
W X Y

LEXICAL ELEMENTS

m
z
M
Z

Description

An identifier is a sequence of nondigit characters (including the underscore '~d the
lower-case and upper-case letters) and digits. The first character shall be a- nondigit
character.

Examples

The program fragment lEx is parsed as a preprocessing number token (one that is not
a valid Boating or integer constant token), even though a parse as the pair of
preprocessing tokens 1 and Ex might produce a valid expression (for example, if Ex were

5 a macro defined as +1). Similarly, the program fragment lEl is parsed as a preprocessing
number (one that is a valid floating constant token), whether or not E is a macro name.

The program fragment x+++++y is parsed as x ++ ++ + y, which violates a
constraint on increment operators, even though the parse x ++ + ++ y might yield a
correct expression.

Forward references: character constants (§3.1.3.4), comments (§3.1.9), expressions
(§3.3), Boating constants (§3.1.3.1), header names (§3.1.7), macro replacement (§3.8.3),
preprocessing directives (§3.8), preprocessing numbers (§3.1.8), postfix increment and
decrement operators (§3.3.2.4), string literals (§3.1.4).

3.1.1 Keywords
The following tokens (entirely in lower-case) are reserved (in translation phases 7 and

8) for use as keywords, and shall not be used otherwise: .

s1gned
s1zeof
stat1c
struct
sw1tch
typedef
un10n
uns1gned.
vo1d
volat1le
while

§3.1 January 11, 1988
DRAFT

§3.1.2

LANGUAGE 21 LEXlCAL ELEMENTS

--
Constraints

In translation phases 7 and 8, an identifier shall not consist of the same sequence of
characters as a keyword.

5 Semanties

An identifier denotes an object, a function, or one of the following entities that will be
described later: a tag or a member of a structure, union, or enumeration; a typedef name;
a label name; or a. macro name. A member of an enumeration is called an enumeration
con3tant. Macro names are not considered further here, because prior to the semantic

10 phase of program translation any occurrences of macro names in the source file are
replaced by the preprocessing token sequences that constitute their macro definitions.

There is no specific limit on the maximum length of an identifier. If identifiers that
are intended to denote the same entity differ in any character, the behavior is undefined.

15 Implementation limits

The implementation shall treat at least the first 31 characters of an internal name (a
macro name or an identifier that does not _have external linkage) as significant.
Corresponding lower-case and upper-case letters are different. The implementation may
further restrict the significance of an ezternal name (an identifier that has external

20 linkage) to six characters and may ignore distinctions of alphabetical case for such
names.s These limitations on identifiers are all implementation-defined.

Forward references: linkages of identifiers (§3.1.2.2), macro replacement (§3.8.3).

25 3.1.2.1 Scopes of identifiers
An identifier is vi3ible [i.e., can be used) only within a region of program text called its

seop e, There are four kinds of scopes: function, file, block, and function prototype, (A
function prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function seop«, It can be used (in
30 a goto statement) anywhere in the function in which it appears, and is declared

implicitly by its syntactic appearance (followed by a : and a statement). Label names
shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier

35 appears outside of any block or list of parameters, the identifier has file scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter identifiers in
a function definition, the identifier has block 6cope, which terminates at the} that closes
the associated block. If the declarator or type specifier that declares the identifier

40 appears within the list "ofparameter declarations in a function prototype (not part of a
function definition), the identifier has function prototype ecope , which terminates at the
end of the function declarator. If an outer declaration of a lexically identical identifier
exists in the same name space, it is hidden until the current scope terminates, after which
it again becomes visible.

45 Structure, union, and enumeration tags have scope that begins just after the
appearance of the tag in a type specifier that declares the tag. Each enumeration
constant has scope that begins just after the appearance of its defining enumerator in an
enumerator list. Any other identifier has scope that begins just after the completion of

8. See "future languagedirections" (§3.9.1).

§3.1.2 January 11, 1988
DRAFT

§3.1.2.1

LANGUAGE 22 LEXICAL ELEMENTS

its declarator.

Forward references: compound statement, or block (§3.6.2), declarations (§3.5),
enumeration specifiers (§3.5.2.2), function calls (§3.3.2.2), function declarators (including

5 prototypes) (§3.5.4.3), function definitions (§3.7.I), the goto statement (§3.6.6.I), labeled
statements (§3.6.I), name spaces of identifiers (§3.1.2.3), source file inclusion (§3.8.2), tags
(§3.5.2.3), type specifiers (§3.5.2).

3.1.2.2 Linkages of identifiers
10 An identifier declared in different scopes or in the same scope more than once can be

made to refer to the same object or function by a process called linkage. There are three
kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
instance of a particular identifier with ezternal linkage denotes the same object or

15 function. Within one translation unit, each instance of an identifier with internal linkage
denotes the same object or function. Identifiers with no linkage denote unique entities.

If the declaration of an identifier for an object or a function has file scope and contains
the storage-class specifier sta.tic, the identifier has internal linkage.

If the declaration of an identifier for an object or a function contains the storage-class
20 specifier extern, the identifier has the same linkage as any visible declaration of the

identifier with file scope. If there is no visible declaration with file scope, the identifier
has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its
linkage is determined exactly as if it were declared with the storage-class specifier

25 extern. If the declaration of an identifier for an object has file scope and no storage-
class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other
than an object or a function; an identifier declared to be a function parameter; an
identifier declared to be an object inside a block without the storage-class specifier

30 extern.

If, within a translation unit, the same identifier appears with both internal and
external linkage, the behavior is undefined.

Forward references: compound statement, or block (§3.6.2), declarations (§3.5),
35 expressions (§3.3), external definitions (§3.7), the sizeo! operator (§3.3.3.4).

3.1.2.3 Name spaces ot identifiers
If more than one declaration of a particular identifier is visible at any point in a

translation unit, the s.yntactic context disambiguates uses that refer to different entities.
40 Thus, there are separate name apace. for various categories of identifiers, as follows:

• label n4mea (disambiguated by the syntax of the label declaration and use);

• the t49a of structures, unions, and enumerations; (even though they are disambiguated
by the preceding struct, union, or enum keyword, there is only one name space for
tags;)

45 • the member» of structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the. or -) operator);

• all other identifiers, called ordinary identifiera (declared in ordinary deelarators or as
enumeration constants).

§3.1.2.1 January 11, 1988
DRAFT

§3.1.2.3

LANGUAGE 23 LEXICAL ELEMENTS

Forward rt;rerenee8: declarators (§3.5.4), enumeration specifiers (§3.5.2.2), labeled
statements (§3.6.1), structure and union specifiers (§3.5.2.1), structure and union
members (§3.3.2.3), tags (§3.5.2.3).

5 3.1.2.4 Stora.gedura.tions or objects
An object has a ,torage duration that determines its lifetime. There are two storage

durations: static and automatic.

An object declared with external or internal linkage, or with the storage-class specifier
static has ,tatic ,torage duration. For such an object, storage is reserved and its stored

10 value is initialized only once, prior to program startup. The object exists and retains its
last-stored value throughout the execution of the entire program.-

An object declared with no linkage and without the storage-class specifier static has
automatic ,torage duration. Storage is guaranteed to be reserved for a new instance of
such an object on each normal entry into the block in which it is declared, or on a jump

15 from outside the block to a label in the block or in an enclosed block. If an initialization
is specified for the value stored in the object, it is performed on each normal entry, but
not if the block is entered by a jump to a label. Storage for the object is no longer
guaranteed to be reserved when execution of the block ends in any way. (Entering an
enclosed block suspends but does not end execution of the enclosing block. Calling a

20 function that returns suspends but does not end execution of the block containing the
call.) The value of a pointer that referred to an object with automatic storage duration
that is no longer guaranteed to be reserved is indeterminate.

Forward references: compound statement, or block (§3.6.2), function calls (§3.3.2.2),
25 initialization (§3.5.7).

3.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by
the type of the expression used to access it. (An identifier declared to be an object is the

30 simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned into obiect typu (types that describe objects), function tllPu (types that
describe functions), and incomplete tllPu (types that describe objects but lack
information needed to determine their sizes).

An object declared as type char is large enough to store any member of the basic
35 execution character set. If a member of the required source character set enumerated in

§2.2.1 is stored in a char object, its value is guaranteed to be positive. If other
quantities are stored in a char object, the behavior is implementation-defined: the values
are treated as either signed or nonnegative integers.

There are four 'igncd integer type" designated as signed char, short int, 1nt,
40 and long 1nt. (The 'signed integer and other types may be designated in several

additional ways, as described in §3.5.2.)

An object declared as type signed char occupies the same amount of storage ns a
"plain" char object. A "plain" int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range

45 INT MIN to INT MAXas defined in the header <l1a1 ts .h». In the list of signed
inteier types aboie, the range of values of each type is a subrange of the values of the
next type in the list.

g. In the caseof a volatileobject, the last store may not be explicit in the program.

§3.1.2.3 January 11, 1988
DRAFT

§3.1.2.5

LANGUAGE 24 LEXICAL ELEMENTS

For each of the signed integer types, there is a corresponding (but different) un,igned
integer type (designated with the keyworduns1gned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The range
of nonnegative values of a signed integer type is a subrange of the corresponding unsigned

5 integer type, and the representation or the same value in each type is the same. A
computation involving unsigned operands can never overflow, because a resllolt that
cannot be represented by the resulting unsigned integer type is reduced modulo the
number that is one greater than the largest value that can be represented by the resulting
unsigned integer type.

10 There are three floating tyPel', designated as float, double, and long double.
The set of values of the type float is a subset of the set of values of the type double;
the set of values or the type double is a subset of the set of values of the type long
double.

The type char, the signed and unsigned integer types, and the floating types are
15 collectively called the ba,ic tYPel. Even if the implementation defines two or more basic

types to have the same representation, they are nevertheless different types.

There are three character typea, designated as char , s1gned cha.r, and unsigned
char.

An enumeration comprises a set of named integer constant values. Each distinct
20 enumeration constitutes a different enumerated type.

The vo1d type comprises an empty set of values; it is an incomplete type that cannot
be completed.

Any number of derived typel can be constructed from the basic, enumerated, and
incomplete types, as follows:

25 • An array type describes a contiguously allocated set of objects with a particular
member object type, called the element type. Array types are characterized by their
element type and by the number of members of the array . .An array type is said to be
derived from its element type, and ir its element type is T, the array type is
sometimes called "array of T." The construction of an array type from an element

30 type is called "array type derivation."

• A ,tructure type describes a sequentially allocated set of member objects, each of
which has an optionally specified name and possibly distinct type. .

• A union type describes an overlapping set of member objects, each of which has an
optionally specified name and possibly distinct type.

35 • A function type describes a Iunction with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type is T, the
function type is sometimes called "function returning T." The construction of a
function type from a return type is called "function type derivation."

40 • A pointer type may be derived from a function type, an object type, or an incomplete
type, called the referenced type. A pointer type describes an object whose value
provides a reference to an entity or the referenced type. A pointer type derived from
the referenced type T is sometimes called "pointer to T." The construction of a
pointer type from a referenced type is called "pointer type derivation."

45 These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integral typea. Tha :oepresentations of integral types shall define values
by use of a pure binary numeration system.IO The represent nt ions of floating types are

§3.1.2.5 January 11, 1988
DRAFT

§3.1.2.5

LANGUAGE 25 LEXIcAL ELEMENTS

-
unspecif ed.

Integral and floating types are collectively called arithmetic tvpce. Arithmetic types
and pointer types are collectively called ,cala,. tvpee. Array and structure types are
collectively called aggregate tvpee.ll

5 A pointer to void shall have the same representation as a pointer to character. Other
pointer types need not have the same representation.

An array type of unknown size is an incomplete type. It is completed, for an identifier
of that type, by specifying the size in a later declaration (with internal or external
linkage). A structure or union type of unknown content (as described in §3.5.2.3) is an

10 incomplete type. It is completed, for all declarations of that type, by declaring the same
structure or union tag with its defining content later in the same scope.

Array, function, and pointer types are collectively called derived declarator typee. A
declarator type derivation from a type T is the construction of a derived declarator type
from T by the application of an array, a function, or a pointer type derivation to T.

15 A type is characterized by its top type, which is either the first type named in
describing a derived type, or the type itself if the type consists of no derived types.
(Thus the type designated as "floa.t ." is called "pointer to floa.t" and its top type is
a pointer type, not a Boating type.)

A type has qua/iJir.d type if its top type is specified with a type qualifier; otherwise it
20 has vnqua/ijied type. The type qualifiers const, noalias, and volatile respectively

designate con,t.qualified tvpe, noaliae.qualified tvpe, and volatile.qualified tvpc .12 For
each qualified type there is an unqualified type that is specified the same way as the
qualified type, but without any type qualifiers in its top type. This type is known as the
unqualified vcreion of the qualified type. Similarly, there are appropriately qualified

25 versions of types (such as a ccnst-qualified version of a type), just as there are
appropriately non-qualified versions of types (such as a non-const-qualified version of a
type).

Forward references: character constants (§3.1.3.4), declarations (§3.5), tags (§3.5.2.3),
30 type qualifiers (§3.5.3).

3.1.2.6 Compatible type and composite type
Two types have compatible tvpe if their types are the same. Additional rules for

determining whether two types are compatible are described in §3.5.2 for type specifiers,
35 in §3.5.3 for type qualifiers, and in §3.5.4 for declarators.P Moreover, two structure,

union, or enumeration types declared in separate translation units are compatible if they
have the same number of members, the same member names, and compatible member
types. For two structures, the members are in the same order. For two enumerations,
the members have the same values.

40 All declarations that refer to the same object or function shall have compatible type;
otherwise the behavior is undefined.

10. A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successivebits are additive, begin with 1, and are multiplied by successiveintegral
powers-ef2. (Adapted from the American National Dictionary lor In/ormation Procelling Sy&tems.)

11. Note that aggregate type does not include union type because an object lvith union type can only
contain one member at a time

12. There are sevendistinct combinationsof qualifiedtypes.
13. Twotypes need not be identical to be compatible.

§3.1.2.5 January 11, 1988
DRAFT

§3.1.2.6

LA.NGUAGE 26 LEXICAL ELEMENTS

A comsosit« type can be constructed from two types that are compatible; it is a type
that is compatible with both of the two types and has the following additions:

• It one type is an array of known size, the composite type is an array of that size.

• It only one type is a function type with a parameter type list (a function prototype),
5 the composite type is a function prototype with the parameter type list.

• It both types have parameter type lists, the type of each parameter in the composite
parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with external or internal linkage declared in the same scope as
10 another declaration for that identifier, the type of the identifier becomes the composite

type.

Example

Given the following two file scope declarations:

lnt felnt e*)e), double e*) [3]);
lnt f(lnt e*)(char *), double <*) C));

15

The resulting composite type for the function is:

lnt felnt e*)echar *), double e*) [3J);
20 Forward references: declarators (§3.5.4), enumeration specifiers (§3.5.2.2), structure

and union specifiers (§3.5.2.1), type definitions (§3.5.6), type qualifiers (§3.5.3), type
specifiers (§3.5.2).

3.1.3 Constants
Syntax

30

condant:
floating-conltant
integer-condant
en umeration-conatant
character-conatant

Constraints

The value of a constant shall be in the range of representable values for its type.

Semantics

Each constant has a type, determined by its form and value, as detailed later.

3.1.3.1 Floating constants
Syntax

floating-conatant:
fractional-condant ezponent-part t floating-aujJiz t
d· . fl 011 jJi optglt-aequence tzponent-part oatlng-au z top

50

fra e tion el-eonetan t:
digit-aequence t . digit-aequence
d
. . op
Igtt-aequence .

ezponent-part:
e aign t digit-aequence
E . op d' .sIgn t Ig.t-aequenceop

45

§3.1.2.6 January 11, 1988
DRAFT

§3.1.3.1

LANGUAGE

5

27 LEXICAL ELEMENTS

,ign: one of
+

digit-,equenee:
digit
digit-,equence digi~

ftoating-,uffir: one of
f 1 F L

Description

10 A floating constant has a value part that may be followed by an exponent part and a
suffix that specifies its type. The components of the value part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part . The components of the exponent part are
an e or E followed by an exponent consisting of an optionally signed digit sequence.

15 Either the whole-number part or the fraction part shall be present; either the period or
the exponent part shall be present.

Semantics

The value part is interpreted as a decimal rational number; the digit sequence in the
20 exponent part is interpreted as a decimal integer. The exponent indicates the power of 10

by which the value part is to be scaled. If the scaled value is in the range of
representable values (for its type) but cannot be represented exactly, the result is either
the nearest higher or nearest lower value, chosen in an implementation-defined manner.

An unsuffixed Boating constant has type double. If suffixed by the letter f or F, it
25 has .type float. If suffixed by the letter 1 or L, it has type long double.

3.1.3.2 Integer constanta

Syntax

30

35

40

45

§3.1.3.1

integer-con,tant:
decimal-condant integer-,uffi% t

I . ffi opocta -con,tant anteger-,u % t
heradecimal-con,tant integeo,/.auffir top

decimal-condant:
nonzero-digit
decimal-con,tant digit

octal-constant:
o
octal-co'natant octal-digit,

h e%ade e imal-« on,ta n t:
Ox he%adecimal-digit
OX he%adecimal-digit
heradecimal-con,tant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

January 11, 1988
DRAFT

§3.1.3.2

LANGUAGE 28 LEXICAL ELEMENTS

--
hexadecimal-digit: one of

0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

5 integer-&uffiz:
un&igned-nffiz /ong-&uffiz t
/ong-&uffiz un&igned-nffi/Pt op

un&igned-nffiz: one of
u U

10 /ong-&uffiz: one of
1 L

Description

An integer constant begins with a digit, but has no period or exponent part. It may
15 have a prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix 0 optionally followed by a sequence of the
digits 0 through 7 only. A hexadecimal constant consists of the prefix Ox or OX followed
by a sequence of the decimal digits and the letters a (or A) through f (or F) with values

20 10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base
8; that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

25 The type of an integer constant is the first of the corresponding list in which its value
can be represented. Unsuffixed decimal: lnt, long int, unSigned long lnt;
unsuffixed octal or hexadecimal: lnt, uns rgned int, long int, unsigned long int;
suffixed by the letter u or U: unsigned int, unsigned long lnt; suffixed by the letter
1 or L: long int, unsigned long lnt; suffixed by both the letters u or U and 1 or L:

30 unsigned long into

3.1.3.3 Enumeration constants

Syntax

35 enumeration-conetent:
identifier

Semantics

An identifier declared as an enumeration constant has type into

Forward reterences: enumeration specifiers (§3.5.2.2).

3.1.3.4 Character constants

45 Syntax

50

eberecter-eonetent:
, c-char-&equence'
L' c-char-&equence I

c-char-dequence:
e-cher
c-char-&equence c-eh ar

§3.1.3.2 January 11, 1988
DRAFT

§3.1.3.4

LANGUAGE 29 LEXICAL ELEMENTS

e-char:
any character in the source character set except

the single-quote' , backslash \, or new-line character
ucapc-4cqucncc

5 C4capc-4equcncc:
4e'mple-e4capc-4cquence
o c tal-es» ap c-4equ ene e
hczadecimal-c4capc-4equcncc

4imple-ucapc-4equencc: one of
v \- \1 \\
\a \b \f \n \r \t \v

10

oc tel-est: ap e-seq« ene e:
\ octal-digit
\ octal-digit octal-digit

15 . \ octal-digit oetal-digit octal-digit

h cza deeim al-esc ap e-,equenc e:
\x hezadecimal-digit
hezadecimal-c4c ape-,equence h czad ecimal-digit

20 Description

An integer character constant is a sequence of one or more multibyte characters
enclosed in single-quotes, as in IX I or I a.b I. A wide character constant is the same,
except prefixed by the letter L. With a few exceptions detailed later, the characters are
any characters in the source character set; they are mapped in an implementation-defined

25 manner to characters in the execution character set.

The single-quote I, the double-quote -, the question-mark 1', the backslash \, and
arbitrary integral values, are representable according to the following table of escape
sequences:

30
single-quote '
double-quote -
question-mark ?
backslash \
octal integer
hexadecimal integer

\'
\-
\?
\\
\octal digit4
\xhezadecimal digit,

35 The double-quote - and question-mark l' are representable either by themselves or by
the escape sequences \. and \? respectively, but the single-quote ' and the backslash \
shall be represented, respectively, by the escape sequences \ I and \ \.

The octal digits that follow the backslash in an octal escape sequence are taken to be
part of the construction of a single character for an integer character constant or of a

40 single wide character for a wide character constant. The numerical value of the octal
integer so formed specifies the value of the desired character.

The hexadecimal digits that follow the backslash and the letter X in a hexadecimal
esc8,l;!e sequence are taken to be part of the construction of a single character for an
integer character constant or of a single wide character for a wide character constant.

45 The numerical value of the hexadecimal integer so formed specifies the value of the
desired character.

In addition, certain nongraphic characters are representable by escape sequences
consisting of the backslash \ followed by a lower-case letter: \a, \b, \f, \n, \r, \t, and
\ V. H IT any other escape sequence is encountered, the behavior is undefined.P

§3.1.3.4 January 11, 1988
DRAFT

§3.1.~:.4

LANGUAGE 30 LEXICAL ELEMENTS

Constraint.

The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the unsigned type corresponding to its type.

Semantics

An integer character constant has type int. The value of an integer character
constant containing a single character that maps into a character in the basic execution
character set is the numerical value of the representation of the mapped character

10 interpreted as an integer. The value of an integer character constant containing more
than one character, or containing a character or escape sequence not represented in the
basic execution character set, is implementation-defined. In particular, in an
implementation in which type char is treated the same as s1gned char, the high-order
bit position of a single-character integer character constant is treated as a sign bit.

15 A wide character constant has type wchar _t, an integral type defined in the
<stddef . h> header. The value of a wide character constant containing a single
multi byte character that maps into a character in the extended execution character set is
the code corresponding to that multibyte character, as defined by the mbtowc function,
with an implementation-defined current locale. The value of a wide character constant

20 containing more than one multibyte character, or containing a multibyte character or
escape sequence not represented in the extended execution character set, is
implementation-defined.

Examples

25 The construction '\0' is commonly used to represent the null character.

Consider implementations that use two's-complement representation for integers and
eight bits for objects that have type char. In an implementation in which type char is
treated the same as signed char, the integer- character constant ' \xFF' has the value
-1; if type char is treated the same as unsigned char, the character constant '\xFF'

30 has the value + 255 .

Even if eight bits are used for objects that have type cha.r, the construction I \x123'
specifies an integer character constant containing only one character. (The value of this
single-character constant is implementation-defined and violates the above constraint.)
To specify an integer character constant containing the two characters whose values are

35 ox12 and '3', the construction '\0223' may be used, since a hexadecimal escape
sequence is terminated only by a non-hexadecimal character. (The value of this two-
character constant is implementation-defined also.)

Even if 12 or more bits are used for objects that have type wcha.r t, the construction
L ' \ 1234' specifies the implementation-defined value that results fr;;m the combination

40 of the values 0123 and' 4' .

Forward references: characters and integers (§3.2.1.1) common definitions
<stddef .h> (§4.1.5), the abtowc function (§4.10.7.2).

1'{.The semanticsor these characterswerediscussedin §2.2.2.
15. See "future languagedirections" (§3.9.2).

§3.1.3.4 January 11, 1988
DRAFT

§3.1.3.4

LANGUAGE 31 LEXICAL ELEMENTS

3.1.4 String literals
Syntax

5
,tring-literal:

- ,-char-8equence -opt
L-8-char-8equence t-op

8-ehar-8equenee:
s-eh ar
8-ehar-8equenee 8-char

10 e-eh er:
any character in the source character set except

the double-quote .", backslash \, or new-line character
elCape-8equenee

15 Description

A character string literal is a sequence of zero or more multibyte characters enclosed
in double-quotes, as in -xyz·. A wide string literal is the same, except prefixed by the
letter L.

The same considerations apply to each character in a character string literal or a wide
20 string literal as if it were in an integer character constant or a wide character constant,

except that the single-quote I is representable either by itself or by the escape sequence
\ " but the double-quote - shall be represented by the escape sequence \ -.

Semantics

25 A character string literal has static storage duration and type "array of char," and is
initialized with the given characters. A wide string literal has static storage duration and
type "array of wchar t," and is initialized with the codes corresponding to the given
multibyte characters. Character string literals that are adjacent tokens are concatenated
into a single character string literal. A null character is then appended.18 Likewise,

30 adjacent wide string literal tokens are concatenated into a single wide string literal to
which a code with value zero is then appended. If a character string literal token is
adjacent to a wide string literal token, the behavior is undefined.

Identical string literals of either form need not be distinct. If the program attempts to
modify a string literal of either form, the behavior is undefined.

Example

This pair of adjacent character string literals

-\X12- -3-
produces a single character string literal containing the two characters whose values are

40 \x12 and '3', because escape sequences are converted into single characters in the
execution character set just prior to adjacent string literal concatenation.

Forward references: common definitions <stddef . h> (§4.1.5).

16.A character string literal need not be a string (see §4.1.1), becausea hull character may be embedded
in it by a \0 escapesequence.

§3.1.4 January 11, 1988
DRAFT

§3.1.4

LANGUAGE 32 LEXICAL ELEMENTS

3.1.5 Operators
Syntax

5
operator: one of

[] () ->
++ & * + s1zeof
/
?
= *= /= 1= += -= «= »= &= ~= 1=
1 « » < > <= >= != "

10 # ##

Constraints

The operators [J, (), and? : shall occur in pairs, possibly separated by expressions.
The operators # and ## shall occur in macro-defining preprocessing directives only.

Semantics

An operator specifies an operation to be performed (an evaluation) that yields a value,
or yields a designator, or produces a side effect, or a combination thereof. An operand is
an entity on which an operator acts.

Forward references: expressions (§3.3), macro replacement (§3.8.3).

3.1.6 Punctuators
25 Syntax

punctuator: one of
[J () {}* = #

Constraints

30 The punctuators [], (), and { } shall occur in pairs, possibly separated by
expressions, declarations, or statements. The punctuator # shall occur in preprocessing
directives only.

Semantics

35 A punctuator is a symbol that has independent syntactic and semantic significance
but does not specify an operation to be performed that yields a value. Depending on
context, the same symbol may also represent an operator or part of an operator.

Forward references: expressions (§3.3), declarations (§3.5), preprocessing directives
.40 (§3;8), statements (§3.6).

3.1.7 Header names
Syntax

50

header-name:
<h-ehar-/Jequenee>
- q-char.aequence-

h-char-aequence:
h·char
h-char-/Jequence h-char

45

h-char:
any character in the source character set except

the new-line character and >

§3.1.5 January 11, 1988
DRAFT

§3.1.7

LANGUAGE 33 LEXICAL ELEMENTS

-
q-char-.equence:

q-chor
q-chor-aequence q-chor

q-chor:
5 any character in the source character set except

the new-line character and •

Constraints

Header name preprocessing tokens shall only appear within a #1nclude preprocessing
10 directive.

Semantics

The character sequences in both forms of header names are mapped in an
implementation-defined manner to headers or external source file names as specified in

15 §3.8.2.

If the characters I, \, ., or /* occur in the character sequence between the < and >
delimiters, the behavior is undefined. Similarly, if the characters I, \, or /* occur in the
character sequence between the • delimiters, the behavior is undefined.l?

20 Example

The following sequence of characters:

O:z:3<1/a.h>le2
#lnclude <l/a.h>
#define const.memberOS

25 forms the following sequence of preprocessing tokens (with each individual preprocessing
token delimited by a { on the left and a} on the right).

{O:Z:3}{<}{1}{/}{a}{.}{h}{>}{le2}
{#}{include} {<l/a.h>}
{#}{define} {const}{.}{member}{O}{S}

Forward references: source file inclusion (§3.8.2).

3.1.8 Preprocessing numbers
35 Syntax

40

pp-number:
digit
. digit
",,-num~er digit
",,-number non digit
",,-number e aign
",,-number E aign
",,-number .

45 Description

A preprocessing number begins with a digit optionally preceded by a period (.) and
maybe followed by letters, underscores, digits, periods, and e+, e-, E+, or E- character
sequences.

17. Thus, sequences of characters that resemble escape sequences cause undefined behavior.

§3.1.7 January 11, 1988
DRAFT

§3.1.8

LANGUAGE 34 LEXICAL ELEMENTS

~-
Preprocessing number tokens lexically include all Boating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it must be converted (as part
5 of phase 7) to a floating constant token or an integer constant token to acquire both.

3.1.0 Comments
Except within a character constant, a string literal, or a comment, the characters 1*

introduce a comment. The contents of a comment are examined only to identify
10 multibyte characters and to find the characters */ that terminate it. IS

18. Thus commentsdo not nest.

§3.1.8 January 11, 1988
DRAFT

§3.1.9

LANGUAGE 35 CONVERSIONS

3.2 CONVERSIONS
Several operators convert operand values from one type to another automatically.

This section specifies the result required from such an implicit contler"ion, as well as
5 those that result from a cast operation (an ezplicit contler"ion). The list in §3.2.1.5

summarizes the conversions performed by most ordinary operators; it is supplemented as
required by the discussion of each operator in §3.3.

Conversion of an operand value to a compatible type causes no change.

10 Forward references: cast operators (§3.3.4).

3.2.1 Arithmetic operands
3.2.1.1 Characters and integers

15 A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an
object that has enumeration type, may be used in an expression wherever an int may be
used. If an int can represent all values of the original type, the value is converted to an
int; otherwise it is converted to an unsigned int. These are called the integral
promotion".

The integral promotions preserve value including sign. As discussed earlier, whether a
"plain" char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (§3.5.2.2), structure and union specifiers
(§3.5.2.1).
3.2.1.2 Signed and unsigned integers

When an unsigned integer is converted to another integral type, if the value can be
represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, if
30 the value of the signed integer is nonnegative, its value is unchanged. Otherwise: if the

unsigned integer has greater size, the signed integer is first promoted to the signed integer
corresponding to the unsigned integer; the value is converted to unsigned by adding to it
one greater than the largest number that can be represented in the unsigned integer
type.18

20

35 When an integer is demoted to an unsigned integer with smaller size, the result is the
nonnegative remainder on division by the number one greater than the largest unsigned
number that can be represented in the type with smaller size. When an integer is
demoted to a signed integer with smaller size, or an unsigned integer is converted to its
corresponding signed integer, if the' value cannot be represented the result is

40 implementation-defined.

3.2.1.3 Floating and integral
When a value of Boating type is converted to integral type, the fractional part is

discarded. If the value of the integral part cannot be represented by the integral type,
45 the behavior is undefined.20

19. In a tw~'s-complement representation, there is no actual change in the bit pattern except filling the
high-order bits with copies of the sign bit if the unsigned integer has greater size.

20. The remaindering operation done whim a value of integral type is converted to unsigned type need
not be done when a value of floating type is converted to unsigned type. Thus the range of portable
values is [O,Utype_MAX+ 1).

§3.2 January 11, 1988
DRAFT

§3.2.1.3

LANGUAGE 36 CONVERSIONS

When a value or integral type is converted to floating type, if the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner.

3.2.1.4 Floating types
When a float is promoted to double or long double, or a double is promoted to

long double, its value is unchanged.

When a double is demoted to float or a long double to double or float, if the
10 value being converted is outside the range oC values that can be represented, the behavior

is undefined. IC the value being converted is in the range oC values that can be
represented but cannot be represented exactly, the result is either the nearest higher or
nearest lower value, chosen in an implementation-defined manner.

15 3.2.1.5 Usual arithmetic conversions
Many binary operators that expect operands oC arithmetic type cause conversions and

yield result types in a similar way. The purpose is to yield a common type, which is also
the type of the result. This pattern is called the v&val arithmetic conver&ion&:

First, iC either operand has type long double, the other operand is converted to
20 long double.

Otherwise, if either operand has type double, the other operand is converted to
double.

Otherwise, iCeither operand has type float, the other operand is converted to
float.

25 Otherwise, the integral promotions are performed 011 both operands. Then the
Collowingrules are applied:

IC either operand has type unsigned long int, the other operand is
converted to unsigned long into

Otherwise, it one operand has type long int and the other has type
unsigned mt; iCa long int can represent all values of an unsigned int,
the operand ()C type unsigned int is converted to long inti otherwise both
operands are converted to unsigned long into

30

35

Otherwise, if either operand has type long int, the other operand is
converted to long into

Otherwise, if either operand has type unsigned mt; the other operand is
converted to unsigned into

Otherwise, both operands have type into

The values of operands and of the results oC expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.

§3.2.1.3 January 11, 1988
DRAFT

§3.2.1.5

LANGUAGE 37 CONVERSIONS

3.2.2 Other operands
3.2.2.1 Lvalues and function designators

AIl ivaiue is an expression (with an object type or an incomplete type other than
5 void) that designates an object.21 When an object is said to have a particular type, the

type is specified by the lvalue used to designate the object. A modifiable Iva/ue is an
lvalue that does not have array type, does not have an incomplete type, does not have a
const-qualified type, and if it is a structure or union, does not have any member
(including, recursively, any member of all contained structures or unions) with a coast-

10 qualified type.

Except when it is the operand of the sizeof operator, the unary a operator, the ++
operator, the -- operator, or the left operand of the . operator or an assignment
operator, an lvalue that does not have array type is converted to the value stored in the
designated object (and is no longer an Ivalue). If the lvalue has qualified type, the value

15 has the unqualified version of the type of the Ivalue; otherwise the value has the type of
the Ivalue. If the lvalue has an incomplete type and does not have array type, the
behavior is undefined.

Except when it is the operand of the s1zeof operator or the unary a operator, or is a
character string literal used to initialize an array of characters, or is a wide string literal

20 used to initialize an array with element type compatible with wcha.r t, an lvalue that
has type "array of type" is converted to an expression that has type-"pointer to type"
that points to the initial member of the array object and is not an lvalue.

A function de3ignatt>r is an expression that has function type. Except when it is the
operand of the sizeof operator22 or the unary a operator, a function designator with

25 type "function returning type" is converted to an expression that has type "pointer to
function returning type."

Forward refereneea: address and indirection operators (§3.3.3.2), assignment operators
(§3.3.16), common definitions <stddef. h> (§4.1.5), initialization (§3.5.7), postfix

30' increment and decrement operators (§3.3.2.4), prefix increment and decrement operators
(§3.3.3.1), the s1zeof operator (§3.3.3.4), structure and union members (§3.3.2.3).

3.2.2.2 void

The (nonexistent) value of a void ezpru8ion (an expression that has type void) shall
35 not be used in any way, and implicit or explicit conversions (except to VOid) shall not be

applied to such an expression. If an expression of any other type occurs in a context
where a void expression is required, its value or designator is discarded. (A void
expression is evaluated for its side effects.)

21. The name "lvalue " comes originally from the assignment expressionE1 = E2, in which the left
operand E1 must be a (modifiable)lvalue. It is perhaps better consideredas representing an object
"locator.value." What is sometimescalled "rvalue" is in this Standard describedas the "value of an
expression."
An obvious exampleof ~ lvalue is an identifier of an object. As a further example, if E is a unary
expressionthat is a pointer to an object, *E is an lvalue that designates the object to whichE pomts.

22. Because this conversion does not occur, the operand of the slzeof operator remains a function
designator and violates the constraint in §3.3.3.4.

§3.2.2 January 11, 1988
DRAFT

§3.2.2.2

LANGUAGE 38 CONVERSIONS

3.2.2.3 Pointers
A pointer to void may be converted to a pointer to any incomplete or object type. A

pointer to any incomplete or object type may be converted to a pointer to v01d and back
again; the result shall compare equal to the original pointer.

5 A pointer to a non-e-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare
equal.

An integral constant expression with the value 0, or such an expression cast to type
void ., is called a null pointer con6tant. If a null pointer constant is assigned to or

. 10 compared for equality to a pointer, the constant is converted to a pointer of that type.
Such a pointer, called a null pointer, is guaranteed to compare unequal to a pointer to
any object or function.

Two null pointers, converted through possibly different sequences of casts to pointer
types, shall compare equal.

Forwud references: cast operators (§3.3.4), equality operators (§3.3.9), simple
assignment (§3.3.16.1).

§3.2.2.3 January 11, 1988
DRAFT

§3.2.2.3

LANGUAGE 39 EXPRESSIONS

3.3 ExPRESSIONS
An expre&&ion is a sequence of operators and operands that specifies computatica of a

value, or that designates an object or a function, or that generates side effects, or that
5 performs a c~mbination thereof.

Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be accessed only to determine the value to be stored.23

Except as indicated by the syntax24 or otherwise specified later (for the function-call
10 operator 0, aa, I I, ?:, and comma operators), the order of evaluation of subexpressions

and the order in which side effects take place are both unspecified.

Some operators (the unary operator -, and the binary operators «, », a, -, and I,
collectively described as bitwi&e operator&) shall have operands that have integral type.
These operators return values that depend on the internal representarions of integers,

15 and thus have implementation-defined aspects for signed types.

If an exception occurs during the evaluation of an expression (tha.t is, if the result is
not mathematically defined or not representable), the behavior is undefined.

An object shall have its stored value accessed only by an lvalue' that has one of the
following types:20

20 • the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the
object,

~ a type that is the signed or unsigned type corresponding to a qualified version of the
25 declared type of the object,

• an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

• a character type.

23. This paragraph renders undefined statement expressions such as

1 = ++1 + 1;

while allowing

1 = 1 + 1;

24. The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subsections of this section, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary + operator (§3,3,5) shall be those expressions defined
in §3,3,1 through §3.3,5, The exceptions are cast expressions (§3,3.4) as operands of unary operators
(§3,3,3), and an operand contained between any of the following pairs of operators: grouping
parentheses 0 (§3,3,1), subscripting brackets [J (§3,3,2,1), function-call parentheses 0 (§3.3,2.2),
and the conditional operator'? : (§3.3.15),
Within each major subsection, the operators have the same precedence. Left- or right-associativity is
indicated in each subsection by the syntax for the expressions discussed therein,

25. The intent of this list is to specify those circumstances in which an object mayor may not be aliased.

§3.3 January 11, 1988
DRAFT

§3.3

LANGUAGE 40 EXPRESSIONS

3.3.1 Primary expressions
Syntax

5
prima'1l-eZprU4ion:

identifier
condant
4tring-literal
(erpreuion)

10 Semantics

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an Ivalue) or a function (in which case it is a function
designator). .

A constant is a primary expression. Its type depends on its form, as detailed in §3.1.3.

15 A string literal is a primary expression. It is' an lvalue with type as detailed in §3.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

Forward references: declarations (§3.5).

3.3.2 Postfix operators
25 Syntax

P 04 tfir-exp reesion:

30

prima'1l-erprU4ion
podfir-ezpreuion [ezpru4ion]
podfiz-ezpru4ion (argument-ezpreuion-/i4t t)

fi . ·d·ft. opPO&t z-ezpreulon . I enlt e,.
p04tfiz-ezprt:uion -) identifier
podfiz-ezpreuion ++
pOdfiz-ezpru4ion

argument-ezpre44ion-1i4t:
Gluignment-ezpru4ion
Glrgument-erpre44ion-lid , a44ignment-ezpre44ion

3.3.2.1 Array subacripting
40 Constraints

35

One of the expressions shall have type "pointer to object type," the other expression
shall have integral type, and the result has type "type."

Semantics

45 A postfix expression followed by an expression in square brackets [] is a subscripted
designation of a member of an array object. The definition of the subscript operator []
is that El [E2] is identical to (* (El + (E2))). Because of the conversion rules that
apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the
initial member of an array object) and E2 is an integer, E1 [E2] designates the E2-th

50 member of E1 (counting from zero).

Successive subscript operators designate a member of a multi-dimensional array
object. If E is an n-dimensional array :I~2) ;J':~h .iimensione '-xix ... X It, then E (used
as other than an Ivalue) is converted to a pointer to an (n-I}-dimensional array with
dimensions ix ... X k. If the unary * operator is applied to this pointer explicitly, or

§3.3.I January 11, 1988
DRAFT

§3.3.2.1

LANGUAGE 41 EXPRESSIONS

implicitly as a result of subscripting, the result is the pointed-to (n-l}-dimensional array,
which itself is converted into a pointer if used as other than an lvalue. It follows from
this that arrays are stored in row-major order (last subscript varies fastest).

5 Example

Consider the array object defined by the declaration

1nt x [3] [5] ;

Here x is a 3X 5 array of 1nts; more precisely, x is an array of three member objects, each
of which is an array of five 1nts. In the expression x (1), which is equivalent to

10 (* (x+ (1»), x is first converted to a pointer to the initial array of five 1nts. Then 1 is
adjusted according to the type of x, which conceptually entails multiplying 1 by the size
of the object to which the pointer points, namely an array of five 1nt objects. The
results are added and indirection is applied to yield an array of five 1nts. When used in
the expression X [1] [j], that in turn is converted to a pointer to the first of the 1nts, so

15 . x [1] [jJ yields an 1nt.

Forward references: additive operators (§3.3.6), address and indirection operators
(§3.3.3.2), array declarators (§3.5.4.2).

20 3.3.2.2 Function calls
Constraints

The expression that denotes the called function28 shall have type pointer to function
returning void or returning an object type other than array.

25 If the expression that denotes the called function has a type that includes a prototype,
the number of arguments shall agree with the number of parameters. Each argument
shall have a type such that its value may be assigned to an object with the unqualified
version of the type of its corresponding parameter.

30 Semantics

A postfix expression followed by parentheses 0 containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

If the expression that precedes the parenthesized argument list in a function call
35 consists solely of an identifier, and if no declaration is visible for this identifier, the

identifier is implicitly declared exactly as if, in the innermost block containing the
function call, the declaration

extern 1nt identifierO;

appeared.27

40 An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.28 The value of the function call expression is specified in

26. Most often, this is the result of converting an identifier that is a function designator.
27. That is7 a function with external linkage and no information about its parameters that returns an

int. If in fact the function does not return an int, the behavior is undefined.
28. A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possibJ.e to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type IS
converted to a parameter with a pointer type as described in §3.2.2.1.

§3.3.2.1 January 11, 1988
DRAFT

§3.3.2.2

LANGUAGE 42 EXPRESSIONS

§3.6.6.4.

If no function prototype declarator is visible at the function call, the integral
promotions are performed on each argument and arguments that have type float are
promoted to double. These are called the de/ault argument promotions, If the number

5 of arguments does not agree with the number of parameters, the behavior is undefined. If
no function prototype declarator is visible where the function is defined, and the..types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined. If a function prototype declarator is visible where
the function is defined, and the types of the arguments after promotion are not

10 compatible with the .types of the parameters, or if the function prototype ends with an
ellipsis (. . ..), the behavior is undefined.

If a function prototype declarator is visible at the function call, the arguments are
implicitly converted, as if by assignment, to the types of the corresponding parameters.
The ellipsis notation in a function prototype declarator causes argument type conversion

15 to stop after the last declared parameter .. The default argument promotions are
performed on trailing arguments. If & parameter is declared with a type that is not
compatible aft,er the default argument promotions, and a function prototype of
compatible type is not visible where the function is defined, and a call is executed, the
behavior is undefined.

20 No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

The order of evaluation of the function designator, the arguments, and subexpressions
within the arguments is unspecified, but there is a sequence point before the actual call.

25 Recursive function calls shall be permitted, both directly and indirectly through any
chain of other functions.

30

Example

In the function call

(*pf(UOJ) (f20. f30 + f40)

the functions f1, f2, f3, and f4 may be called in any order. All side effects shall be
completed before the function pointed to by pf (U0] is entered.

Forward references: function declarators (including prototypes) (§3.5.4.3), function
35 definitions (§3.7.1), the return statement (§3.6.6.4), simple assignment (§3.3.16.1).

3.3.2.3 Structure and union members
Constraints

40 The first operand of the . operator shall have a qualified or unqualified structure or
union type, and the second operand shall name a member of that type.

The first operand of the -) operator shall have type "pointer to qualified or
unqualified structure" or "pointer to qualified or unqualified union," and the second
operand shall name a member of the type pointed to.

Semantics

A postfix expression followed by a dot and an identifier designates a member of a
structure or union object. The value is that of the named member, and is an lvalue if the
first expression is an lvalue. If the first expression has qualified type, the result has the

50 so-qualified version of the type of the designated me~per.

§3.3.2.2 January 11, 1988
DRAFT

§3.3.2.3

LANGUAGE 43 EXPRESSIONS

20

A postfix expression followed by an arrow -) and an identifier designates a member of
a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an Ivalue.28 lC the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of -the designated

5 member. .

With one exception, if a member of a union object is accessed after a value has been
stored in a different member of the object, the behavior is implementation-defined. One
special guarantee is made in order to simplify the use of unions: lC a union contains
several structures that share a common initial sequence, and if the union object currently

10 contains one of these structures, it is permitted to inspect the common initial part of any
of them.

Example

IT f is a function returning a structure or union, and x is a member of that structure
15 or union, f 0 .x is a valid postfix expression but is not an lvalue.

The following is a valid fragment:

union {
struct {

1nt
} n;
struct {

1nt

alltypes;

1nt
type;
1ntnode;

25
} n1;
struct {

1nt
double

type;
doublenode;

} nf;

30
} u;
/* ... */
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

/* ... */ s1n(u.nf.doublenode) /* ... */
Forward references: address and indirection operators {§3.3.3.2}, structure and union
specifiers (§3.5.2.1).

40 3.3.2.4 Postfix Increment and decrement operators

35

Constraints

The operand of the postfix increment or decrement operator shall have qualified or
unqualified scalar type and shall be a modifiable lvalue.

29. If .tE is a valid pointer expression (where .t is the "address-of" operator, which generates a pointer to
its operand) the expression (.tE) ->MOS is the same as E. MOS.

§3.3.2.3 January 11, 1988
DRAFT

§3.3.2.4

LANGUAGE 44 EXPRESSIONS

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the
appropriate type is added to it.) See the discussions of additive operators and compound

5 assignment for information on constraints, types and conversions and the effects of
operations on pointers. The side effect of updating the stored value of the operand shall
occur between the previous and the next sequence point.

The postfix -- operator is analogous to the postfix ++ operator, except that the value
of the operand is decremented (that is, the value 1 of the appropriate type is subtracted

10 from it).

Forward references: additive operators (§3.3.6), compound assignment (§3.3:16.2).

3.3.3 Unary operators

Syntax

un ary-e:rpreuion:
p oetfiz-ezpreeeion
++ unary-e:rpreuion
-- unary-e:rpre&&ion
unary-operator ca&t-e:rpreuion
s1zeof unary-e:rpre&&ion
sizeof (type-name)

unary-operator: one of
a * +

3.3.3.1 Prefix increment and decrement operators

Constraint.

'30 The operand of the prefix increment or decrement operator shall have qualified or
unqualified scalar type and shall be a modifiable lvalue.

20

25

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the
35 new value of the operand after incrementation. The expression ++E is equivalent to

(E+=l). See the discussions of additive operators and compound assignment for
information on constraints, types, side effects, and conversions and the effects of
operations on pointers.

The prefix -- operator is analogous to the prefix ++ operator, except that the value of
40 the operand is decremented,

Forward references: additive operators (§3.3.6), compound assignment (§3.3.16.2).

3.3.3.2 Address and indirection operators

Constraints

The operand of the unary a operator shall be either a function designator or an lvalue
that designates an object that is not a bit-field and is not declared with the register
storage-class specifier. .

50 The operand of the unary * operator shall have pointer type.

Semantics

The result of the unary a (address-of) operator is a poir.t.er to' he object or function
designated by its operand. If the operand has type" type," the result has type "pointer

55 to type."

§3.3.2.4 January 11, 1988
DRAFT

§3.3.3.2

LANGUAGE 45 EXPRESSIONS

The unary * operator denotes indirection. If the operand points to a runction, the
result is a function designator; if it points to an object, the result is an lvalue designating
the object. If the operand has type "pointer to type," the result has type "type." If an
invalid value has been assigned to the pointer, the behavior or the unary * operator is

5 undefined.so

Forward references: storage-class specifiers (§3.5.1), structure and union specifiers
(§3.5.2.1).

10 3.3.3.3 Unary arithmetic operators
Constraints

The operand or the unary + operator shall have scalar type; or the unary - operator,
arithmetic type; or the - operator, integral type; or the! operator, scalar type.

Semantics

The result or the unary + operator is the value or its operand. The integral promotion
is performed on the operand, and the result has the promoted type.

The result or the unary - operator is the negative or its operand. The integral
20 promotion is performed on the operand, and the result has the promoted type.

The result or the - operator is the bitwise complement or its operand (that is, each bit
in the result is set if and only if the corresponding bit in the converted operand is not
set). The integral promotion is performed on the operand, and the result has the
promoted type. The expression -E is equivalent to (ULONGMAX-E) if E has type

25 unsigned long, to (UINT_MAX-E) if E has any other unsign;d type. (The constants
ULONG_MAX and UINT_MAX are defined in the header <11m1ts. h>.)

The result of the logical negation operator ! is ° if the value or its operand compares
unequal to 0, 1 if the value or its operand compares equal to 0. The result has type 1nt.
The expression !E is equivalent to (O==E).

Forward references: limits <floa.t. h> and <111111ts. h> (§4.1.4).

3.3.3.4 The s1zeof operator
35 Constraints

The s1zeof operator shall not be applied to an expression that has function type or
an incomplete type, to the parenthesized name or such a type, or to an lvalue that
designates a bit-field object.

40 Semantics

The s1zeof operator yields the size (in bytes) or its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type or
the operand, which is not itself evaluated. The result is an integer constant.

30. It is always true that if E is a function designator or an lvalue, -~ is a function designator or an
lvalue equal to E.
If -P is-an lvalue and T is the name of an object pointer type, the cast expression- (T) P is an lvalue
that has a type compatiblewith that to whichT points.
Among the invalid values for dereferencinga pointer by the unary - operator are a null pointer
constant an address inappropriately aligned for the type of object pointed to, or the address of an
object that has automatic storage duration when execution of the block in which the object is
declaredand of all enclosedblockshas terminated.

§3.3.3.2 January 11, 1988
DRAFT

§3.3.3.4

LANGUAGE 46 EXPRESSIONS

When ap-plied to an operand that has type char, unsigned char, or signed char,
(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the array.SI When applied to an operand
that has structure or union type, the result is the total number of bytes in such an

5 object, including internal and trailing padding.

The value of the "result is implementation-defined, and its type (an unsigned integral
type) is SlZe_t defined in the <stddef .h> header. -

Examples

10 A principal use of the s1zeof operator is in communication with routines such as
storage allocators and I/O systems. A storage- allocation function might accept a size (in
bytes) of an object to allocate and return a pointer to vo1d. For example:

extern vo1d *alloe();
double *dp = alloe(slzeof *dp);

15 The implementation of the alloe function should ensure that its return value is aligned
suitably for conversion to a pointer to double.

Another use of the slzeof operator is to compute the number of members in an
array:

slzeof array / slzeof array[o]

Forward references: common definitions <stddef. h> (§4.1.5), declarations (§3.5),
structure and union specifiers (§3.5.2.1), type names (§3.5.5).

3.3.4 Cast operators
Syntax

I:ad-ezpreuion:
unary-ezpre88ion
(type-name) east-ezpreseion

Constraints

Unless the type name specifies void type, the type name shall specify scalar type and
the operand shall have scalar type.

35 Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called a l:a8t.32 A cast that specifies
an implicit conversion or no -conversion has no effect on the type or value of all
expression.

40 Conversions that involve pointers (other than a pointer to vold converted to or from
a pointer to an object type or an incomplete type) shall be specified by means of an
explicit cast; they have implementation-defined aspects:

A pointer may be converted to an integral type. The size of integer required and
the result are implementation-defined. If the space provided is not long enough, the

45 behavior is undefined.

31.When applied to a parameter declared to have array or function type, the sizeof operator yields the
size of the pointer obtained by converting as in §3.2.2.1; see §3.7.1.

32. A cast does not yield an lvalue.

§3.3.3.4 January 11, 1988
DRAFT

§3.3.4

LANGUAGE 47 EXPRESSIONS

An arbitrary integer may be converted to a pointer. The result is implementation-
defined.33

A pointer to a const-qualified type may be converted to a pointer to the non-eonst-
qualified version of the type. It an attempt is made to modify the pointed-to object

5 by means of the converted pointer, the behavior is undefined.

-. A pointer to a noalias-qualified type or volatile-qualified type may be converted to a
pointer to, respectively, the non-noalias-qualified version of the type or the non-
volatile-qualified version of the type. It the pointed-to object is referred to by
means of the converted pointer, the behavior is undefined.

10 A pointer to an object or incomplete type may be converted to a pointer to a .
different object type or a different incomplete type. The resulting pointer might not
be valid if it is improperly aligned for the type pointed to. It is guaranteed,
however, that a pointer to an object of a given alignment may be converted to a
pointer to an object of the same alignment or a less strict alignment and back again;

15 the result shall compare equal to the original pointer. (An object that has type
char has the least strict alignment.)

A pointer to a function of one type may be converted to a pointer to a function of
another·type and back again; the result shall compare equal to the original pointer.
It a converted pointer is used to call a function that has a type that is not

20 compatible with the type of the called function, the behavior is undefined.

Forward references: equality operators (§3.3.9), function declarator'S (including
prototypes) (§3.5.4.3), type names (§3.5.5).

25 3.3.5 Multiplicative operators
Syntax

30

muitiplicative-ezpre"ion:
cut-ezpre"ion
muitipiicative-ezpre66ion * cut-ezpre66ion
muitipiicative-ezpre"ion / ca.t-ezpreuion
muitipiicative-ezpre66ion " ca6t-ezpre66ion

Constraints

35 Each of the operands shall have arithmetic type. The operands of the" operator shall
have integral type.

Semanticl'

The usual arithmetic conversions are performed on the operands.

40 The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by
the second; the result of the" operator is the remainder. In both operations, if the value
of the second operand is zero, the behavior is undefined.

When integers are divided and the division is inexact, if both operands are positive
45 the result of the / operator is the largest integer less than the algebraic quotient and the

resl1'tt of the" operator is positive. It either operand is negative, whether the result of

33. The mapping functions for convertinga pointer to an integer or an integer to a pointer are intended
to be consistentwith the addressingstructure of the executionenvironment.

§3.3.4 January 11, 1988
DRAFT

§3.3.5

----~-------.-----~

LANGUAGE 48 EXPRESSIONS

the / operator is the largest integer less than the algebraic quotient or the smallest
integer greater than the algebraic quotient is implementation-defined, as is the sign of the
result of the" operator. If the quotient a/b is representable, the expression (a/b) *b +
a"b shall equal a.

3.3.6 Additive operators
Syntax

10
addititJc-ezprcaaion:

multiplicatitJe-ezpreuion
addititJe-ezpreuion + multiplicatitJe-ezpruaion
addititJe-ezprcaaion - multiplicatitJe-ezpreuion

Constraints

15 For addition, either both operands shall have arithmetic type, or one operand shall be
a pointer to an object and the other shall have integral type. (Incrementing is equivalent
to adding 1.)

For subtraction, one of the following shall hold:

• both operands have arithmetic type; .

20 • both operands are pointers to objects that have compatible type;

• both operands are pointers to objects that have qualified or unqualified versions of
compatible types; or

• the left operand isa pointer to an object and the right operand has integral type.
(Decrementing is equivalent to subtracting 1.)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed
on~em. "

The result of the binary + operator is the sum of the operands.

30 The result of the binary - operator is the difference resulting from the subtraction of
the second operand from the first.

When an expression that has integral type is added to or subtracted from a pointer,
the integral value is first multiplied by the size of the object pointed to. The result has
the type of the pointer operand. If the pointer operand points to a member of an array

35 object, and the array object is large enough, the result points to another member of the
same array object, appropriately offset from the original member. Thus if P points to a
member of an array object, the expression P+l points to the next member of the array
object. Unless both the pointer operand and the result point to a member of the same
array object, or one past the last member of the array object, the behavior is undefined.

40 Unless both the pointer operand and the result point to a member of the same array
object, the behavior is undefined if the result is used as the operand of a unary *
operator.

When two pointers to members of the same array object are subtracted, the difference
is divided by the size of a member. The result represents the difference of the subscripts

45 of the two array members. The size of the result is implementation-defined, and its type
(a signed integral type) is ptrd1ff_t defined in the <stddef .h> header. ABwith any
other arithmetic overflow, if the result does not fit in the space provided, the behavior is
undefined. If two pointers that do not point to members of the same array object are
subtracted, the behavior is undefined. However, if P points to the last member of ~

50 array object, the expression (P+l) - P has the value 1, even though P+l does not point
to a member of the array object.

§3.3.5 January 11, 1988
DRAFT

§3.3.6

LANGUAGE 49 EXPRESSIONS

Forw&.,:,drete2'ences: common definitions <stddef .h> (§4.1.5).

3.3.7 Bitwise shift operators
Syntax

10

,hi/t-ezpreuion:
additive-ezpre"ion
,h,!t-ezpre"ion « additive-ezpre"ion
,h,!t-ezpre"ion > > additive-ezpre"ion

Constraints

Each of the operands shall have integral type.

15 Semantics

The integral promotions are performed on each of the operands. The type of the
result is that of the promoted left operand. II the value of the right operand is negative
or is greater than or equal to the width in bits of the promoted left operand, the behavior
is undefined.

20 The result of El « E2 is El left-shifted E2 bit positions; vacated bits are filled with
zeros. If El has an unsigned type, the value of the result is El multiplied by the
quantity, 2 raised to the power E2, reduced modulo ULONG MAX"'l if El has type
unsigned long, UINT MAX"'l otherwise. (The constants UU)"NG MAX and UIn MAX
are defined in the header- <l1mi ts. h>.) --

25 The result of El » E2 is El right-shifted E2 bit positions. II El has an unsigned
type or if El has a signed type and a nonnegative value, the value of the result is the
integral part of the quotient of El divided by the quantity, 2 raised to the power E2. II
El has a signed type and a negative value, the resulting value is implementation-defined.

30 3.3.8 Relational operators
Syntax

35

reiational-ezpre"io n:
,h,!t-ezpre"ion
relationel-ezpreseion < ,h,!t-ezpre"ion
relational-ezpru,ion > ,hi/t-ezpru,ion
relationel-ezpreesion <= ,h.!t-ezpre"ion
relationel-ezpression >= ,hi/t-ezpreuion

40 Constraints

One of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to compatible object types;

• both operands are pointers to compatible incomplete types; or

45 • both operands are pointers to objects that have qualified or unqualified versions of
compatible types.

Semantics

II both of the operands have arithmetic type, the usual arithmetic conversions are
50 performed.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. II the objects pointed to are members of the
same aggregate object, pointers to structure members declared later compare higher than

§3.3.6 January 11, 1988
DRAFT

§3.3.8

LANGUAGE 50 EXPRESSIONS

pointers to-members declared earlier in the structure, and pointers to array elements with
larger subscript values compare higher than pointers to elements of the same array with
lower subscript values. All pointers to members of the same union object compare equal.
If the objects pointed to are not members of the same aggregate or union object, the

5 result is undefined, with the following exception. If P points to the last member of an
array object, the pointer expression P+l compares higher than P, even though P+l does
not point to a member of the array object.

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.34

10 The result has type int.

3.3. 9 Equality operators
Syntax

15 equality-ezpre&lion:
reiational-ezpre4lion
equality-ezpre&lion == reiational.ezpreuion
equality-ezpreuion != relational-ezpre&&ion

20 Constraint.

. One of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to compatible types;

• both operands are pointers to objects that have qualified or unqualified versions of
25 compatible types;

• one operand is a pointer to an object or an incomplete type and the other is a pointer
to VOid; or

• one operand is a pointer and the other is a null pointer constant.

30 Semantics

The == (equal to) and the != (not equal to) operators are analogous to the relational
operators except for their lower precedence.so

If two pointers to objects or incomplete types compare equal, they point to the same
object. If two pointers to functions compare equal, they point to the same function. If

35 two pointers point to the same object or function, they compare equal.S8 If one of the
operands is a pointer to an object or incomplete type and the other has type pointer to
VOid, the pointer to an object or incomplete type is converted to type pointer to void.

34. The expression a.<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
means (a.<b) <e: in other words, "if a. is less than b compare 1 to c; otherwise compare 0 to c."

3S. Because of the precedences, a<b == c<d is 1 whenever a.<b and c<d have the same truth-value.
36. If invalid prior pointer" operations, such as accesses outside array bounds, produced undefined

behavior, the effect of subsequent comparisons is undefined.

§3.3.8 January ll, 1988
DRAFT

§3.3.9

LANGUAGE 51 EXPRESSIONS

3.3.10 Bitwise.A 'N'Doperator
Syntax

5
AND-ezpre33ion:

equality-ezpreaaion
AND-ezpre33ion a equality-ezpru3ion

Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary I; operator is the bitwise ANDof the operands (that is, each
bit in the result is set if and only if each of the corresponding bits in the converted

15 operands is set).

3.3.11 Bitwise exclusive OR operator
Syntax

20 e:uIU3ive-OR-ezpreuion:
AND-ezpreuion
ezeiuive-OR-ezpre33ion - AND-ezpreaaion

Constraints

25 Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the - operator is the bitwise exclusive OR of the operands (that is, each
30 bit in the result is set if and only if exactly one of the corresponding bits in the converted

operands is set).

3.3.12 Bitwise inclusive OR operator
35 Syntax

in eiu3ive -OR-ezp ression:
ezciu3ive-OR-ezpru3ion
ine/u3ive-OR-ezpreuion I ezciuive-OR-ezpreuion

40 Constraints

Each of the operands shall have integral type.

Semantics

The usual arithmetic conversions are performed on the operands.

45 The result of the I operator is the bitwise inclusive OR of the operands (that is, each
bit in the result is set if and only if at least one of the corresponding bits in the converted
ope~nds is set).

§3.3.10 January 11,1988
DRAFT

§3.3.12

LANGUAGE 52 EXPRESSIONS

3.3.13 L-ogicalAND operator
Syntax

5
/(ligica/·AND-ezpre88ion:

inclu8ive-OR-ezpre88ion
logical-AND-ezpreuion && inc/uive-OR-ezpru8ion

ConstraInts

Each of the operands shall have scalar type.

Semanth:.

The &,t operator shall yield 1 if both of its operands compare unequal to 0, otherwise
it yields O. The result has type into

Unlike: the bitwise binary & operator, the && operator guarantees left-to-right
15 evaluation; there is a sequence point after the evaluation of the first operand. If the first

operand compares equal to 0, the second operand is not evaluated.

3.3.14 Logical OR operator
20 Syntax

l(lIgical-OR-ezpreuion:
logical-AND-czpre88ion
/ogical-OR-ezpre88ion I I logical-AND-ezpre88ion

25 Constraints

Each of the operands shall have scalar type.

Semantiu

The I I operator shall yield 1 if either of its operands compare unequal to 0, otherwise
30 it yields O. The result has type into

Unlike the bitwise I operator, the II operator guarantees left-to-right evaluation;
there is a, sequence point after the evaluation of the first operand. If the first operand
compares unequal to 0, the second operand is not evaluated.

35 3.3.15 Conditional operator
Syntax

40

c(Inditiona/-ezpreuion:
10gie el- OR-ezpru8ion
logical-OR-ezpreuion ? ezpre&&ion conditional-ezpre88ion

Constraints

The fir'st operand shall have scalar type.

One of' the following shall bold for the second and third operands:

45 • both operands have arithmetic type;

• both operands have compatible structure or union types;

• both operands have void type;

• both operands are pointers to compatible types;

• both operands are pointers to objects that have qualified or unqualified versions of
50 compatible types;

§3.3.13 January 11, 1988
DRAFT

§3.3.15

LANGUAGE 53 EXPRESSIONS

• one operand is a pointer and the other is a null pointer constant; or

• one operand is a pointer to an object or incomplete type and the other is a pointer to
void or a pointer to a qualified version of void.

5 Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The
second operand is evaluated only if the first compares unequal to OJ the third operand is
evaluated only if the first compares equal to 0; the value of the second or third operand
(whichever is evaluated) is the result.37

10 If both the second and third operands have arithmetic type, the usual arithmetic
conversions are performed to bring them to a common type and the result has that type.
If both the operands have structure or union type, the result has that type. If both
operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant
15 and the other is a pointer, the result type is a pointer to a type qualified with all the type

qualifiers of the types pointed-to by both operands. Furthermore, if both operands are
pointers to compatible types or differently qualified versions of a compatible type, the
result has the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified

20 version of VOid, in which case the other operand is converted to type pointer to VOid,
and the result has that type.

3.3.16 Assignment operators
25 Syntax

30

a44ignment-e:zpreuion:
e onditional-e:zpreuion
un ary-e:zp ression a44;gnme n t- op era to r a40ign men t-ezpressio«

a88ignment-operator: one of
= *= /= 1= += -= «= »= &= -= 1=

Constraints

An assignment operator shall have a modifiable lvalue as its left operand.

35 Semantics

An assignment operator stores a value in the object designated by the left operand .
An assignment expression has the value of the left operand after the assignment, but is
not an lvalue. The type of an assignment expression is the type of the left operand unless
the left operand has qualified type, in which case it is the unqualified version of the type

40 of the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

The order of evaluation of the operands is unspecified.

37.A conditional expression does not yield an Ivalue.

§3.3.15 January 11, 1988
DRAFT

§3.3.16

---------------~-----~---

LANGUAGE 54 EXPRESSIONS

3.3.16.1 Sim·pleassignment
Constraints

One of the following shall hold:

5 • both operands have arithmetic type;

• the left operand has qualified arithmetic type and the right has arithmetic type;

• both operands have compatible structure or union types;

• the left operand has a qualified version of a structure or union type compatible with
the type of the right;

10 • both operands are pointers to compatible types;

• one operand is a pointer to an object or incomplete type and the other is a pointer to
vo i d:

• the left operand is a pointer and the right is a null pointer constant; or

• both operands are pointers, and the left is a pointer to a qualified version of the type
15 pointed to by the right.

Semantics

In simple 4&&ignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left

20 operand.

IT the value being stored in an object is accessed from another object that overlaps in
any way the storage of the first object, then the overlap shall be exact and the two
objects shall have qualified or unqualified versions of a compatible type; otherwise the
behavior is undefined.

Example

In the program fragment

lnt f(vold);
cha.r c;

30 1* *1
1* *1 «c = f(» == -1) 1* ... *1

the lnt value returned by the function may be truncated when stored in the cnar , and
.then converted back to int width prior to the comparison. In an implementation in
which "plain" char behaves the same as unsigned char (and char is narrower than

35 lnt), the result of the. conversion cannot be negative, so the operands of the comparison
can never compare equal. Therefore, for full portability the variable c should be declared
as int.

3.3.16.2 Compound assignment
Constraints

For the operators += and -= only, either the left operand shall be a pointer to an
object type and the right shall have integral type, or the left operand shall have qualified
or unqualified arithmetic type and the right shall have arithmetic type.

45 For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

§3.3.16.1 January 11, 1988
DRAFT

§3.3.16.2

LANGUAGE 55 EXPRESSIONS

Sernanclea.

A compound 4&&ignment of the form E1 op= E2 differs from the simple assignment
expression £1 = £1 op (£2) only in that the lvalue £1 is evaluated only once.

5 3.3.17 Comma operator
SYIltax

10

e:rpreuion:
4uignment-e:rpreuion
ezpression • (J&~ignment-e:rpreuion

Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has

15 its type and value.3s

Example

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of
arguments to functions and lists of initializers) the comma operator as described in this

20 section cannot appear. On the other hand, it can be used within a parenthesized
expression or within the second expression of a conditional operator in such contexts. In
the function 'call

f(a, (t=3,. t+2) , c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (§3.5.7).

38. A comma operator does not yield an lvalue.

§3.3.16.2 January 11, 1988
DRAFT

§3.3.17

LANGUAGE 56 CONSTANT EXPRESSIONS

--
3.4 CONSTANT EXPRESSIONS
Syntax

5 eon"tant-e:rpreuion:
eon ditio n al-erpr« .•.•ion

Description

A eon"tant ezpre .•.•ion can be evaluated during compilation rather than runtime, and
10 accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-
call, or comma operators, except when they are contained within the operand of a

15 s1zeof operator.sa

Each constant expression shall evaluate to a constant that is in the range of
representable values for its type.

Semantics

20 An expression that evaluates to a constant is required in several contexts.40 It the
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great .as if the expression were being evaluated in the execution
environment.

30

An integral eon&tant ezpr« .•.•ion shall have integral type and shall only have operands
that are integer constants, enumeration constants, character constants, s1zeof
expressions, and floating eonstante that are the immediate operands of casts. Cast
operators in an integral constant expression shall only convert arithmetic types to
integral types, except as part of an operand to the s1zeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall evaluate to one of the following:

• an arithmetic constant expression,

• an address constant, or

• an address constant for an object type plus or minus an integral constant expression.

An arithmetie eon"tant e:rpru"ion shall have arithmetic type and shall only have
35 operands that are integer constants, floating constants, enumeration constants, character

. constants, and s1zeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to
the s1zeof operator ..

25

An addre .•.• eon"tant is a pointer to an Ivalue designating an object of static storage
40 duration, or to a function designator; it shall be created explicitly, using the unary ~

operator, or implicitly, by the use of an expression of array or function type. The array-
subscript [] and member-access . and -> operators, the address ~ and indirection *
unary operators, and pointer casts may be used in the creation an address constant, but

39. The operand of a s1zeof operator is not evaluated, and thus any operator may be used.
40. An integral constant expression must be used to specify the size of a bit-field member of a structure,

the value of an enumeration constant, the size of an array, or the value of a case constant. Further
constraints that apply to the integral constant expressions used in conditional-inclusion preprocessing
directives are discussed in §3.8.1.

§3.4 January 11, 1988
DRAFT

§3.4

LANGUAGE 57 CONSTANT EXPRESSIONS

the value of an object shall not be accessed by use or these operators.

The semantic rules Cor the evaluation of a constant expression are the same as Cor
non-constant expressionsY

5 Forward references: initialization (§3.5.7).

41. Thus in the following initialization,

static lnt i = 2 I I 1 / 0;

the expression is a valid integral constant expression with value one.

~3.4 January 11, 1988 §3.4

LANGUAGE 58 DECLARATIONS

3.5 DECLARATIONS
Syntax

5 declaration:
declaration-apeelfiera init-declarator-liat t;. op

declaration-apeeifiera:
atorage-cla&&-&peeifier declaration-&pecifien t

fi d I· fi opt1lpe-&pecl er ee arataon-&pec. er« t
type-qualifier deelaration-apecifier& OPt

op10

15

init-d e elarator-list:
init-declaretor
init-declarator-/i&t • tnit-declarator

init-deelerator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator, a tag, or the members of an
20 enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the
identifier (in a declarator or type specifier) with the same scope and in the same name
space.

All declarations in the same scope that refer to the same object or function shall
25 specify compatible types.

Semantics

A deeleratio« specifies the interpretation and attributes of a set of identifiers. A
declaration that also causes storage to be reserved for an object or {unction named by an

30 identifier is a definition.42

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The
init-declarator-list is a comma-separated sequence of declarators, each of which may have
additional type information, or an initializer, or both. The declarators contain the

35 identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall
be complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

40 Forward references: declarators (§3.5.4), enumeration specifiers (§3.5.2.2),
initialization (§3.5.7), tags (§3.5.2.3).

42. Function definitionshave a differentsyntax, described in §3.7.1.

§3.5 _ January 11, 1988
DRAFT

§3.5

LANGUAGE 59 DECLARATIONS

3.5.1 Storage-class specifiers
Syntax

5
6torage-ela'88-8pecifi'er:

typedef
extern
static
auto
register

Constraints

At most one storage-class specifier may be given in the declaration specifiers in a
declaration. 43

15 Semantics

The typedef specifier is called a "storage-class specifier" for syntactic convenience
only; it is discussed in §3.5.6. The meanings of the various linkages and storage durations
were discussed in §3.1.2.2 and §3.1.2.4.

A declaration of an identifier for an object with storage-class specifier register
20 suggests that access to the object be as fast as possible. The types of such objects and

the number of such declarations in each block that are effective are -implementation-
defined."

The declaration of an identifier for a function that has block scope shall have no
explicit storage-class specifier other than extern.
Forward references: type definitions (§3.5.6).

3.5.2 Type specifiers
30 Syntax

35

type-8pecifier:
void
char
short
int
long
float
double
signed
unsigned
etruct-or-union-epeeifier
enum-/tpecificr
tllpede/-name

40

43. See "fuwre language directions" (§3.9.3).
44. The implementation may treat any register declaration simply as IUl a.uto declaration. However,

whether Of not addressable storage is actually used, the address of any part of an object declared with
storage-class specifier register may not be computed, either explicitly (by use of the unary ,t
operator as discussed in §3.3.3.2) or implicitly (by converting an array name to a pointer as discussed
in §3.2.2.1).

§3.5.1 January 11, 1988
DRAFT

§3.5.2

LANGUAGE 60 DECLARATIONS

Constraints

Each list of type specifiers shall be one of the following sets; the type specifiers may
occur in any order, possibly intermixed with the other declaration specifiers.

• void
5 • char

• signed char

• unsigned char

• short, signed short, short int, or signed short int

• unsigned short, or unsigned short lnt

10 • int, signed, signed int, or no type specifiers

• unsigned, or unsigned int

• long, signed long, long 1nt, or signed long 1nt

• unsigned long, or uns1gned long 1nt

• float
15 • double

• long double

• struct-or-union specifier

• enum-specifier

• typedef-name

Semanties
Specifiers for structures, unions, and enumerations are discussed in §3.5.2.1 through

§3.5.2.3. Declarations of typedef names are discussed in §3.5.6. The characteristics of the
other types are discussed in §3.1.2.5.

25 In each of the above comma-separated lists, each set of type specifiers designate the
same type.

Forward retereJ1Ces: enumeration specifiers (§3.5.2.2), structure and union specifiers .
(§3.5.2.1), tags (§3.5.2.3), type definitions (§3.5.6).

3.5.2.1 Structure and union specifiers

Syntax

35
etruct-or-union-specifier:

8t1"Uct-or-union identifier t { atruct-declaration-lid }
. 'd 'fi op8ll"Uct-or-un.on I enh er

40

struet-or-union:
st.ruct,
unf.cn

atruc t-d ecia ra tion-list:
atruct-declaration
atruct-declaration-liat druct-declaration

atruc t-d eelaratio»:
apeeifi« "-qualifier-liat str« c t-deel« rator-liet

§3.5.2 January ll, 1988
DRAFT

§3.5.2.1

LANGUAGE 61 DECLARATIONS

&pe cifi e r-qualifie r-list:
type-&pecifier &peeifier-qualifier-li&t (
type-qualifier &peeifier-qualifier-li&t OPtop

5
&truc t-de clarator-liet:

druct-declarator
&truet-deelarator-li&t , &truct-declarator

str« ct-deelarator:
declarator
declarator t condant-ezpre"ionop

Constraints

A structure or union shall not contain a member with incomplete or function type.
Hence it shall not contain an instance of itself (but may contain a pointer to an instance
of itself).

15 The expression that specifies the width of a bit-field shall be an integral constant
expression that has nonnegative value that shall not exceed the number of bits in an
ordinary object of compatible type. If the value is zero, the declaration shall have no
declarator.

20 Semantics

.A$ discussed in §3.1.2.5, a structure is a type consisting of a sequence of named
members, whose storage is allocated in an ordered sequence, and a union is a type
consisting of a sequence of named members, whose storage overlap.

Structure and union specifiers have the same form.

25 The presence of a struct-declaration-Iist in a struct-or-union-specifier declares a new
type, within a translation unit. The struet-declaration-Iist is a sequence of declarations
for the members of the structure or union. The type is incomplete until after the} that
terminates the list.

A member of a structure or union may have any object type. In addition, a member
30 may be declared to consist of a specified number of bits (including a sign bit, if any).

Such a member is called a bit-field;4s its width is preceded by a colon.

A bit-field may have type 1nt, uns1gned 1nt, or s1gned 1nt. Whether the high-
order bit position of a "plain" 1nt bit-field is treated as a sign bit is implementation-
defined. A bit-field is interpreted as an integral type consisting of the specified number of

35 bits.

An implementation' may allocate any addressable storage unit large enough to hold a
bit-field. If enough space remains, a bit-field that immediately follows another bit-field in
a structure shall be packed into adjacent bits of the same unit. If insufficient space
remains, whether a bit-field that does not fit is put into the next unit or overlaps

40 adjacent units is implementation-defined. The order of allocation of bit-fields within a
unit (high-order to low-order or low-order to high-order) is implementation-defined. The
alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.i" As a special case of this, a bit-field with a width of 0 indicates that

45. The unary a: (address-of) opera.tor may not be applied to a bit-field object; thus there are no pointers
to or arrays of bit-field objects

46. An unnamed bit-field. is useful for padding to conform to externally-imposed layouts.

§3.5.2.1 January 11, 1988
DRAFT

§3.5.2.1

LANGUAGE 62 DECLARATIONS

no further bit-field is to be packed into the unit in which the previous bit-field, if any,
was placed.

Each non-bit-field member of a structure or union object is aligned in an
implementation-defined manner ~ppropriate to its type.

5 Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pOinter to
a structure object, suitably cast, points to its initial member (or if that member is a bit-
field, then to the unit in which it resides), and vice versa. There may therefore be
unnamed holes within astrueture object, but not at its beginning, as necessary to achieve

10 the appropriate alignment. There may also be unnamed padding at the end of a
structure, as necessary" to achieve the appropriate alignment were the structure to be a
member of an array.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a

15 union object, suitably cast, points to each of its members (or if a member is a bit-field,
then to the unit in which it resides), and vice versa.

3.5.2.2 Enumeration specifiers

20 Syntax

enum-sp eeifier:
enum identifier t { enumerator-list }u fi openum , enh er

25
enumerator-1i6t:

enumerator
enumerator-lilt , enumerator

enumerator:
enumeration-eonlJiant
enumerationocon&tant = conafant.e%preuion

Constraints

The expression that defines the v8.Iueof an enumeration constant shall be an integral
constant expression that has a value representable as an int.

35 Semanties

The identifiers in an enumerator list are declared as constants that have type int and
may appear wherever such are permitted.V An enumerator with = defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its "enumeration constant is O. Each subsequent enumerator with no =

40 defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (Both forms of enumerators
may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

Each enumerated type shall be compatible with an integer type; the choice of type is
45 implementation-defined.

47. Thus, the identifiersof enumeration constants in the same scopeshall all be distinct from each other
and fromother identifiersdeclared in ordinary declarators.

§3.5.2.1 January 11, 1988
DRAFT

§3.5.2.2

LANGUAGE 63 DECLARATIONS

5

Example

'enum hue { chartreuse, burgundy, claret=20, w1nedark };
/* ... */
enum hue col, *cp;
/* ... */
col = claret;
cp = I:col;
/* */
/* */ (*cp != burgundy) /* ...*/

10 makes hue the tag of an enumeration, and then declares col as an object that has that
type and cp as a pointer to an object that has that type. The enumerated values are in
the set {O, 1, 20, 21}.

3.5.2.3 Tags
15 A type specifier of the form

street-or-union identifier { .truct-declaration-/id }
or

anum identifier { enumerator-list }

declares the identifier to be the tal of the structure, union, or enumeration specified by
20 the list. The list defines the &tructure content, union eontent, or enumeration content. A

subsequent declaration that uses the tag and that omits the bracketed list specifies the
declared structure, union, or enumerated type. Subsequent declarations in the same
scope shall omit the bracketed list.

If a type specifier of the form

25 struet-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an
incomplete type. It declares a tag that specifies a type that may be used only when the
size of an object of the specified type is not needed.·s If the type is to be completed,
another declaration of the tag in the same scope (but not in an enclosed block, which

30 declares a new type known only within that block) shall define the content. A declaration
of the form

&trud-or-union identifier

specifies a structure or union type and declares a tag, both visible only within the scope
in which the declaration occurs. It specifies a new type distinct from any type with the

35 same tag in an enclosing scope.

A type specifier of the form

struct-or-union { &truct-dedaration-/i.t }
or

enum { enumerator-list }

40 specifies a new structure, union, or enumerated type, within the translation unit, that can
only be referred to by the declaration of which it is a part.·e

48. It is not needed, for example, when a typedef name is declared to be a. specifier. for a structure or
union, or when a pointer to or a function returnmg a structure or union IS being declared. The
specification shall be complete before such a function IS called or defined.

49. or course, when the declaration is of a typedef name, subsequent declarations can make use of the
typedef name to declare objects having the specified structure, union, or enumerated type.

§3.5.2.2 January 11, 1988
DRAFT

§3.5.2.3

LANGUAGE DECLARATIONS64

5

Examples

This mechanism allows declaration of a self-referential structure.

struct tnode {
1nt count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same
type. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the
given type. With these declarations, the expression sp->left refers to the left struct
tnode pointer of the object to which sp points; the expression s. r1ght->count
designates the count member of the right struct tnode pointed to from s.

15 The following alternative formulation uses the typedef mechanism:

10

typedef struct tnode THODE;
struct tnode {

1nt count;
THODE-left, *r1ght;

20 } ;
THODEs, *sp;

To illustrate the use of prior declaration of a tag to specify a pair of mutually-
referential structures, the declarations

struct sl { struct s2 *s2p; /* */ }; /* Dl */
struct s2 { struct sl *slp; /* */ }; /* D2 */

specify a pair or structures that contain pointers to each other. Note, however, that if s2
were already declared as a tag in an enclosing scope, the declaration D1 would refer to it,
not to the tag 82 declared in D2. To eliminate this context sensitivity, the otherwise
vacuous declaration

25

30 struct s2;

may be inserted ahead or D1. This declares a new tag s2 in the inner scope; the
declaration D2 then completes the specification or the new type.

Forward references: type definitions (§3.5.6).

3.5.3 Type qualifiers
Syntax

40
type-qualifier:

const
noa11as
volatile

Constraints

45 The same type qualifier shall not appear more than once in the same specifier list or
qualifier list, either directly or via one or more typedefs.

Semantics

The properties associated with qua.:~1edtypes are meaningful only for expressions that
50 are Ivalues.60

§3.5.2~.3 January 11, 1988
T\n.t.1":",,"

§3.5.3

LANGUAGE 65 DECLARATIONS

An lvalue contains zero or more ideniifiers known as its handlea; if the lvalue has
noalias-qualified type, they are no alia« handlea. The handles of an lvalue are those
identifiers found by recursive application of the following rules:

• If an expression is an identifier, the identifier is the handle.

5 • If an expression is a constant, string literal, function call expression, or s1zeo!
expression, it contains no handle.

• If an expression is a parenthesized expression, cast expression, or an expression with a
unary operator, the handles (if any) are contained in the expression operand.

• If an expression is a conditional expression, the handles (if any) are contained in both
10 the second and third operands.

• If an expression is an assignment expression, or member access expression, the handles
(if any) are contained in the left operand.

• If an expression is a comma expression, the handles (if any) are contained in the right
operand.

15 • Otherwise, an expression is an array subscript expression or an expression with a
binary operator, and the handles (if any) are contained in the operand with pointer
type.

If the noalias-qualified lvalues that contain a particular noalias handle had instead had
the non-noalias-qualified version of their types, the set of all objects accessible by these

20 lvalues constitute the actual object' of the particular noalias handle. For each distinct
noaliashandle, it is unspecified whether the handle is associated with its actual objects or
is associated with its virtual object" a set of distinct objects with the same sizes and
addresses as those of the actual objects. The behavior of a program that depends upon a
specific implementation choice is undefined.

25 The virtual objects, if and when created or reinitialized, acquire the last-stored values
of the actual objects. The virtual objects may be created at any sequence point within a
function for which the storage of the object declared by a noalias handle is guaranteed to
be reserved. If one or more of the virtual objects of a noalias handle have been modified
through use of the noalias handle, they have pending value, if the actual objects- do not

30 have the same values. If and only if there are pending values, all the stored values of the
virtual objects of a particular noalias handle may be assigned to their corresponding
actual objects at any sequence point; this is ,ynchronizing the pending values. At the
return of a function after whose execution the storage of the object declared by the
noalias handle is DO longer guaranteed to be reserved, the pending values shall be

35 synchronized.

If an argument expression E is a pointer to a noalias-qualified type and the lvalue
* (E) would contain a particular noalias handle, then the following occur for the actual
and virtual objects of the noalias handle:

• At the function call sequence point, pending values (if any) are synchronized.

40 • Just after the return from the function, the virtual objects (if any) are reinitialized.f!

50. The implementation may place a const object that is not vola.tile in a read-only regionof storage.
5!. If the called function has a type that includes a prototype and the type.of the parameter is a pointer

to a const- and noalias-qualified type, this assignment can be suppressed, as the called function
cannot modify the designated object through this parameter.

§3.5.3 January 11, 1988
DRAFT

§3.5.3

LANGUAGE 66 DECLARATIONS

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring to
such an object shall be evaluated strictly according to the sequence rules of the abstract
machine, as described in §2.1.2.3. Furthermore, at every sequence point the value last

5 stored in the object shall agree with that prescribed by the abstract machine, except as
modified by the unknown factors mentioned previously.52 What ·constitutes an access to
an object that has volatile-qualified type is implementation-defined.

If the specification of an array type includes any type qualifiers, the element type is
so-qualified, not the array type. If the specification of a function type includes any type

10 qualifiers, the behavior is undefined.53 .

For two qualified types to be compatible, both shall have the identically qualified
version of a compatible type; the order of type qualifiers within a list of specifiers or
qualifiers does not affect the specified type.

15 Example.

An object declared

extern const volatile lnt real_time_clock;
may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

The following declarations and expressions illustrate the behavior when type qualifiers
20 modify an aggregate type:

25

const struct s { lnt mea; } cs = { 1 };
struct s ncs; I. the object nes i&modifiable .1
typedef lnt A[2] [3];
const A a = {{4, 5, 6}, {7, 8, g}}; I. array 01 array 01const lnt .1
lnt .pl;
const lnt .pcl;

I.
I·
I.
I·
1*
I·

vala'd *1
uiolatee modifiable Ivalue constraint lor = .1
valid *1
violate& type constraint« lor = *1
valid *1
invalid: a [0] ha& type "const lnt *" *1

nea = cs;

30

cs = ncs;
pi = ~ncs.mem;
pi = ~cs.mea;
pel = ~cs.mem;
pi = a[O);

The following are examples of some lvalues and their handles:

35

lnt a[2J, b (3J (4J , .fO, 1, .p, •• q;
a [1] ; I· handle: a *1
b[l][2J; 1* handle: b *1
.(1 = 4, p); I· handle: p ·1
"Cq+l); I. handle: q *1
fO; 1 no handle *1
*(1nt *)123; I· no handle .140

52. A vola.t1le declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be "optimized out" by an implementation or reordered except as
permitted by the rules for evaluating expressions.

53. Both of these can only occur through the use of typedefs.

§3.5.3 January 11, 1988
DRAFT

§3.5.3

LANGUAGE

5

10

15

20

25

67 DECLARATIONS

3.5.4 Declarators
Syntax

declarator:
pointer t direct-declarator

01'
dire ct-d eel arator:

identifier
(declarator)
direct-declarator [
direct-declarator (
direct-declarator (

con&tant-e:rpreuion t]
01'

parameter-t,pe-Ii&t)
identifier-li&t t)

01'
pointer:

• t,pe-qualifier-li&t t
I fi I· 01' •• t,pe-qua I er- I&t t pomter

01'
tvp e-qu alifier-/i,t:

type-qualIfier
type-qu alifier-liet type-qualzfier

p aram« ter-t,pe-/i&t:
p arameter-liet
parameter-/i&t

p arameter-list:
para me te rodecia ra tion
parameter-/i&t • parameter-declaration

parameter-declaration:
declaration-&pecifier, declarator
declaration-&peclfier, ab&tract-declarator t

01'
iden tifier-list:

identtfier
identifier-list • identifier

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with
the scope, storage duration, and type indicated by the declaration specifiers.

35 In the following subsections, consider a declaration

T Dl

where T contains the declaration specifiers that specify a type T (such as 1nt) and Dl is a
declarator that contains an identifier ident. The type specified for the identifier ident in
the various forms of declarator is described inductively using this notation.

40 If, in the declaration "TD1," D1 has the form

identifier

thenthe type specified for ident is T.

If, in the declaration "T Dl," Dl has the form

(D)
45 then ident has the type specified by the declaration "T D." Thus, a declarator in

parentheses is identical to the unparenthesized declarator, but the binding of complex

§3.5,4 January 11, 1988
DRAFT

§3.5,4

LANGUAGE 68 DECLARATIONS

declarators may be altered by parentheses.

Implementation limit.

The implementation shall allow the specification of types that have at least 12 pointer,
5 array, and function declarators (in any valid combinations) modiCyingan arithmetic, a

structure, a union, or an incomplete type, either directly or via one or more typedefs.

Forward references: type definitions (§3.5.6).

10 3.5.4.1 Pointer declarator.
Semantic.

IT, in the declaration "T D1," D1 has the Corm

* type-qualifier-/i&t t Dop
15 and the type specified Cor ident in the declaration "T D" is "derived-deelarator-type-list

T," then the type specified Cor ident is "derived-declarator-type-/i&t type-qualifier-list
pointer to T." For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both
shall be pointers to compatible types.

Example.

The following pair of declarations demonstrates the difference between a "variable
pointer to a constant value" and a "constant pointer to a variable value."

const 1nt *ptr_to_const~nt;
25 1nt *const const~nt_ptr;

The contents of the const 1nt pointed to by pt.r to consta.nt shall not be modified,
but ptr _ to _ const~nt itself may be change[to- point to another const 1nt.
Similarly, the contents of the 1nt pointed to by constant_ptr may be modified, but
constant_ptr itself shan always point to the same location.

30 The declaration of the constant pointer constant_ptr may be clarified by including
a definition for the type "pointer to 1nt."

typedef 1nt *1nt_ptr;
const1nt_ptr const~nt_ptr;

declares constant_ptr as an object that has type "const-qualified pointer to 1nt."

3.5.4.2 Array declarator.
Constraint.

The expression that specifies the size of an array shall be an integral constant
40 expression that has a value greater than zero.

Semantic.

IT, in the declaration "T D1," D1 has the Corm

D (eon&tant-erprcuion t]op
45 and the type specified for "dent in the declaration "T D" is "dcrivcd-dcelarator.type-/i&t

T," then the type specified for iden: is "dcrived-deelarator-type-li8t array of T. "".. If the

54. When several"array of" specificationsare adjacent, a multi-dimensionalarray is declared.

§3.5.4 January 11, 1988
DRAFT

§3.5.4.2

LANGUAGE 69 DECLARATIONS

size is not present, the array type is an incomplete type.

For two array types to be compatible, both shall have compatible element types, and
if both size specifiers are present, they shall have the same value.

5 Examples

float fa[ll], *afp[17];
declares an array offloat numbers and an array ofpointers to float numbers.

Note the distinction between the declarations

10
extern lnt *x;
extern lnt y[];

The first declares x to be a pointer to lnt; the second declares y to be an array of lnt of
unspecified size (an incomplete type), the storage Corwhich is defined elsewhere.

Forward r-efereneess function definitions (§3.7.1), initialization (§3.5.7).

3.5.4.3 Function dec lar-at.ors (including protot.ypes]

Constraints

A function declarator shall not specify a return type that is a function type or an
20 array type.

The only storage-class specifier that shall occur in a parameter declaration is
reglster.

An identifier list in a function declarator that is not part of a function definition shall
be empty.

Semantics

If, in the declaration "T D 1," D1 has the form

D (parameter-t1lpe-li&t)
or

30 D (identifier-/i,t t)
op

and the type specified for ident in the declaration "T D" is "derived-declarator-t1lpe-/i,t
T," then the type specified Cor ident is "derived-declarator-t1lpe-/i,t function returning
T."

A parameter type list specifies the types of, and may declare identifiers for, the
35 parameters or the function. If the list terminates with an ellipsis (, ...), no information

about the number or types or the parameters after the comma is supplied.6b The special
case or vold as the only item in the list specifies that the function has no parameters.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter

40 type list for a function definition.

An identifier list declares only the identifiers or the parameters of the function. An
empty list in a function declarator that is part of a function definition specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
runction definition specifies that no information about the number or types of the

55.The macros defined in the <stdarg. h> header (§4.8) may be used to access parameters that follow
an ellipsis.

§3.5.4.2 January 11, 1988
DRAFT

§3.5.4.3

LANGUAGE 70 DECLARATIONS

parameters is supplied.68

For two function types to be compatible, both shall specify compatible return types.57
Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have

5 compatible types. I! one type has a parameter type list .and the other type is specified by
a function declarator that is not part oC a Cunction definition and that contains u empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. I! one type has a parameter type list and the other type is

10 specified by a function definition that contains an identifier list, both shall agree in the
number of parameters, and each identifier has type compatible with the corresponding
prototype parameter ir the type that results from the application of the default argument
promotions to the type of the identifier is compatible with the type of the corresponding
prototype parameter. (For each parameter declared with function or array type, its type

15 Ior these comparisons is the one that results from conversion to a pointer type, as in
§3.7.1. For each parameter declared with qualified type, its type for these comparisons is
the unqualified version of its declared type.)

Examples

20 The declaration

lnt f (vold), *UpO, (*pU) 0;
declares a function f with no parameters returning an lnt; a function flp with no
parameter specification returning a pointer to an lnt, and a pointer pil to a function
with no parameter specification returning an lnt. It is especially useful to compare the

25 last two. The binding of *Up 0 is * (Up 0) ,so that the declaration suggests, and the
same construction in an expression requires, the calling of a function r rp, and then using
indirection through the pointer result to yield an lnt. In the declarator (*pU) 0, the
extra parentheses are necessary to indicate that indirection through a pointer to a
function yields a function designator, which is then used to call the function; it returns

30 an 1nt.

I! the declaration occurs outside of any function, the identifiers have file scope and
external linkage. I! the declaration occurs inside a function, the identifiers of the
functions f and Up have block scope and external linkage, and the identifier of the
pointer pf 1 has block scope and no linkage.

35 Here are two more intricate examples.

1nt (*apfl[3]) (lnt *x, lnt *y);

declares an array apfl of three pointers to functions returning 1nt. Each of these
functions has two parameters that are pointers to 1nt.. The identifiers % and yare
declared for descriptive purposes only and go out of scope at the end of the declaration of

40 apf 1. The declaration

lnt (*fpf1(lnt (*)\(1.ong), lot»(lot, ...);

declares a function fpfl that returns a pointer to a function returning an 1nt. The
function fpfl has two parameters: a pointer to a function returning an lot (with one
parameter of type long), and an 1nt. The pointer returned by fpU points to a

56.See "future language directions" (§3.9.4).
57.If both function types are "old style," parameter types are not compared.

§3.5.4.3 January 11, 1988
DRAFT

§3.5.4.3

LANGUAGE 71 DECLARATIONS

function th~t has at least one parameter, which has type int.

Forward references: function definitions (§3.7.1), type names (§3.5.5).

5 3.5.5 Type names
Syntax

10

tJlpe-name:
Ilpecifier·qualifier./i&t a6&tract·deeiarator t

. op
a6&trac t·d eelarator:

15

pointer
pointer t direct·ablltract·deeiaratorop

dire e t·a betr« e t·d e el arato r:
(abstract·declarator)
direct-abstract-declarator t
dire e t.ablliract-declarator OPt

op

[constant-expreseion t]- op
(parameter-type.lid t)op

Semantics

In several contexts it is desired to specify a type. This is accomplished using a type
20 name, which is syntactically a declaration for a function or an object of that type that

omits the identifier.os

Examples

The constructions

25 (a) int
(b) int *
(c) int * [3]
(d) int (*) [3]
(e) int *0
(f) int (*)(vo1d)
(g) int (*const [])(unsigned int, ...)

30

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to
int, (d) pointer to an array of three ints, (e) function with no parameter specification
returning a pointer to int, (f) pointer to function with no parameters returning an int,

35 and (g) array of an unspecified number of constant pointers to functions, each with one
parameter that has type uns i gned 1nt and an unspecified number of other parameters,
returning an into

3.5.6 Type definitions
Syntax

typedef-name:
identifier

45 Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the
way_described in §3.5.4. A typedef declaration does not introduce a new type, only a

58 . .As indicated by the syntax, empty parentheses in a type name are interpreted as "f~nction with no
parameter specification,"rather than redundant parenthesesaround the omitted Identifier.

§3.5.4.3 January 11, 1988
DRAFT

§3.5.6

LANGUAGE 72 DECLARATIONS

synonym for the type so specified. That is, in the following declarations:
typedef T type_ldent;
type_ldent D;

type ldent is defined as a typedef name with the type specified by the declaration
5 specifiers in T (known as Tj, and the identifier in D has the type "derived-dee/arator-

type-/i&t T" where the derived-declarator-type-li&t is specified by the declarators_of D. A
typedef name shares the same name space as other identifiers declared in ordinary
declarators. If the identifier is redeclared in an inner scope, the type specifiers shall not
be omitted in the inner declaration.

Examples

After

typedef lnt MILES. KLICKSP();
typedef struct { double reo 1m; } complex;

15 the constructions

MILES dlstance;
extern KLICKSP *metrlcp;
complex z. *zp;

are all valid declarations. The type of distance is lnt, that of metrlcp is "pointer to
20 function with no parameter specification returning int," and that of z is the specified

structure; zp is a pointer to such a structure. The object distance has a type
compatible with any other lnt object. .

After the declarations

typedef struct sl { lnt x; } tl. *tpl;
typedef struct s2 { lnt x; } t2. *tp2;

type tl and the type pointed to by tpl are compatible. Type t1 is also compatible with
type struct sl, but not compatible with the types struct s2, t2, the type pointed to
by tp2, and into

30 3.S.7 Initialization

25

Syntax

35

initialize»:
a&&ignment-erpreuion
{ initiaiizer-li&t }
{ initializer-/id • }

initializer-list:
in itializer
initia/izer-/i&t • initializer

Constraints

There shall be no more initializers in an initializer list than there are objects to be
initialized.

The type of the entity to be initialized shall be an object type or an array of unknown
45 size.

All the expressions in an initializer for an object that has static storage duration or in
an initializer list for an object that has aggregate or union type shall be constant
expressions.

§3.5.6 January 11, 1988
DRAFT

§3.5.7

LANGUAGE 73 DECLARATIONS

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, there shall be no initialiser for the identifier.

Semantics

5 An initializer specifies the initial value stored in an object.

If an object that has static storage duration is not initialized explicitly, it is initialized
implicitly as if every member that has arithmetic type were assigned 0 and every member
that has pointer type were assigned a null pointer constant. If an object that has
automatic storage duration is not initialized explicitly, its value is indeterminate.68

10 The initializer for a scalar shall be a single expression, optionally enclosed in braces.
The initial value of the object is that of the expression; the same type constraints and
conversions as for simple assignment apply.

A brace-enclosed initializer for a union object initializes the member that appears first
in the declaration list of the union type.

15 The initializer for a structure or union object that has automatic storage duration
either shall be an initializer list as described below, or shall be a single expression that
has compatible structure or union type. In the latter case, the initial value of the object
is that of the expression.

The rest of this section deals with initializers for objects that have aggregate or union
20 type.

An array of characters may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
members of the array.

25 An array with element type compatible with ychar _t may be initialized by a wide
string literal, optionally enclosed in braces. Successive codes of the wide string literal
(including the terminating zero-valued code if there is room or if the array is of unknown
size) initialize the members of the array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-
30 enclosed list of initializers tor the members of the aggregate, written in increasing

subscript or member order; and the initializer tor an object that has union type shall be a
brace-enclosed initializer for the first member of the union.

If the aggregate contains members that are aggregates or unions, or if the first
member of a union is an aggregate or union, the rules apply recursively to the

35 subaggregates or contained unions. If the initializer of a subaggregate or contained union
begins with a left brace, the succeeding initializers initialize the members of the
subaggregate or the first member of the contained union. Otherwise, only enough
initializers from the list are taken to account for the members of the first subaggregate or
the first member of the contained union; any remaining initializers are left to initialize

40 the next member of the aggregate of which the current subaggregate or contained union is
a part.

If there are fewer initializers in a list than there are members of an aggregate, the
remainder of the aggregate shall be initialized implicitly the same as objects that have
sta~ storage duration.

59. Unlike in the base document, any automatic duration object may be initialized.

§3.5:7 January 11, 1988
DRAFT

§3.5.7

LANGUAGE 74 DECLARATIONS

If an array oC unknown size is initialized, its size is determined by the number of
initializers provided Cor its members. At the end of its initializer list, the array is no
longer an incomplete type.

5 Examples

The declaration

1nt xC] = { 1, 3, 6 };
defines and initializes x as a one-dimensional array object that has three members, as no
size was specified and there are three initializers.

10 float y (4) [3] = {
{ 1, 3, 6 },
{ 2, 4, 6 } .
{ 3, 6, 7 },

} ;

15 i. a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of
the array object y [0], namely y [0] [0], Y [0] [1], and y [0] (2). Likewise the next
two lines initialize y (1) and y [2]. The initializer ends early, so y (3) is initialized with
zeros. Precisely the same effect could have been achieved by

float y (4)[3] = {
20 1, 3, 5, 2, 4, 6, 3, 6, 7

} ;

The initializer Cory [0] does not begin with a left brace, so three items from the list are
used. Likewise the next three are taken successively Cory [1] and y [2). Also,

float %(4) (3) = {
{ 1 }, { 2 }, { 3 }, { 4 }25

};

initializes the first column of % as specified and initializes the rest with zeros.

struct { 1nt a[3], b; } we] = { { 1 }, 2 };
is a definition with an inconsistently bracketed initialization. It defines an array with two

30 member structures: w [0] . a [0] is 1 and w [1] . a (0) is 2; all the other elements are zero.

The declaration

35

short q[4] (3][2] = {
{ 1 },
{2,'3},
{ 4, 6, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-
dimensional array object: q [0] [0] [oJ is 1, q [lJ [oJ [oJ is 2, q [lJ [0] [1] is 3, and 4,
5, and 6 initialize q [2) [0] [0), q [2J [OJ [1), and q (2) [1] [OJ, respectively; all the

40 rest are zero. The initializer Cor q [oJ tci [oJ does not begin with a left brace, so up to
six items from the current list may be used. There is only one, so the values for the
remaining five members are initialized with zero. Likewise, the initializers for
q [1) (0) [OJ and q [2) [0) [0) do not begin with a left brace, so each uses up to six
items, initializing their respective two-dimensional subaggregates. If there had been more

45 than six items in any of the lists, a diagnostic message would occur. The same
initialization result could have been achieved by:

§3.5.7 January 11, 1988
DRAFT

§3.5.7

LANGUAGE 75

5

sbort q [4J [3J [2J = {
1, e", 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

};

or by:

sbort q[4J [3J [2J = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
} ;

in a fully-bracketed form.

10

15

DECLARATIONS

20 Note that the fully-bracketed and minimally-bracketed forms of initialization are, in
general, less likely to cause confusion.

Finally, the declaration

cbar s[] = -abc-, t[3J = -abc-;

defines "plain" char array objects s and t whose members are initialized with character
25 string literals. This declaration is identical to

char s[J = { 'a', 'b', "c ", '\0' },
t[] = { 'a', 'b', 'c'};

The contents of the arrays are modifiable. On the other hand, the declaration

cbar *P = -abc-;

30 defines a character pointer p that is initialized to point to an object with type "array of
cnar " whose members are initialized with a character string literal. If an attempt is
made to use p to modify the contents of the array, the behavior is undefined.

Forward references: common definitions <stddef .b> (§4.1.5).

§3.5.7 January 11, 1988
DRAFT

§3.5.7

LANGUAGE 76 STATEMENTS

3.6 STATEMENTS
Syntax

5 &tatement:
labe/ed-,tatement
compound-,tatement
e:rpre"ion-,tatement
eelection-statement
iteration-,tatement
jump-,tatement

10

Semantics

A ,tatement specifies an action to be performed. Except as indicated, statements are
15 executed in sequence.

A lull expre"ion is an expression that is not part of another expression. Each of the
following is a full expression: an initializer; the expression in an expression statement; the
controlling expression of a selection statement (if or Bwi tch); the controlling expression
or a while or do statement; the three expressions or a for statement; the expression in a

20 return statement. The end of a full expression is a sequence point.

Forward references: expression and null statements (§3.6.3), selection statements
(§3.6.4), iteration statements (§3.6.5), the return statement (§3.6.6.4).

25 3.6.1 Labeled statements
Syntax

30

tab eled-etatement:
identifier : &tatement
case con,tant-e:rpre"ion
def aul t : Itatement

&tatement

Constraints

A case or default label shall appear only in a switch statement. Further
35 constraints on such labels are discussed under the Bwi tch statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the Bow of control, which continues unimpeded across

40 them.

Forward references: the go to statement (§3.6.6.1), the swi tch statement (§3.6.4.2).

3.6.2 Compound statement, or block
Syntax

compound-,tatement:
{ declaration-lilt t statement-list t}op op

50
de cia ra tion -list:

deelaration
deelaration-/ist declaration

etatement-list:
Itatement
Itatement-li,t ,tatement

§3.6 January 11, 1988
DRAFT

§3.6.2

LANGUAGE 77 STATEMENTS

Semantics

A compound 3tatcm, .••t (also called a block) allows a set or statements to be grouped
into one syntactic unit, which may have its own set or declarations and initializations (as
discussed in §3.1.2.4). The initializers or objects that have automatic storage duration are

5 evaluated and the values are stored in the objects in the order their declarators appear in
the translation unit.

3.6.3 Expression and null statements
10 Syntax

c:rprc33ion-3tatcmcnt:
c:rprcuion opt

Semantics

15 The expression in an expression statement is evaluated as a void expression Ior its side
effects.eo

A null etatement (consisting of just a semicolon) performs no operations.

Examples

20 Ifa function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void
expression by means of a cast:

1nt p(1nt);
1* ... *1

25 (vo1d)p(0);
In the program fragment

char *8;
1* ... *1
while' (*S++ != '\0')

30

35

a null statement is used to supply an empty loop body to the iteration statement.

A null statement may also be used to carry a label just before the closing} or a
compound statement.

while (loopl) {
1* ... *1
wh1le (loop2) {

J* ... *1
if (wa.nt_out)

goto end_loopl;
1* ... *140

}
1* ... *1

end loopl:
} -

60. Such as assignments, and function calls which have side effects.

§3.6.2 January 11, 1988
DRAFT

§3.6.3

LANGUAGE 78 STATEMENTS

Forward rererences: iteration statements (§3.6.5).

3.6.4 Selection statements
5 Syntax

,election-,tatement:
if (ezpre"ion) ,tatement
if (ezpreuion) ,tatement else ,tatement
swi tch (ezpreuion) ,tatement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

15 3.6.4.1 The if statement

Constraints

The controlling expression of an if statement shall have scalar type.

20 Semantics

In both forms, the first substatement is executed if the expression compares unequal
to O. In the else form, the second substatement is executed if the expression compares
equal to O. If the first substatement is reached via a label, the second substatement is not
executed.

25 An else is associated with the lexically immediately preceding else-less if that is in
the same block (but not in an enclosed block).

3.6.4.2 The 8\'1'1 tch statement

30 Constraints

The controlling expression of a SYi tch statement shall have integral type. The
expression of each case label shall be an integral constant expression. No two of the
case constant expressions in the same SYi tch statement shall have the same value after
conversion. There may be at most one default label in a SY1tch statement. (Any

35 enclosed SY1tch statement may have a default label or case constant expressions
with values that duplicate case constant expressions in the enclosing SY1tch
statement.)

Semantics

40 A SY1tch statement causes control to jump to, into, or past the statement that is the
,witch body, depending on the value of a controlling expression, and on the presence of a
defaul t label and the values of any case labels on or in the switch body. A case or
def aul t label is accessible only within the closest enclosing Sy1 tch statement.

The integral promotions are performed on the controlling expression. The constant
45 expression in each case label is converted to the promoted type of the controlling

expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there is
a defaul t label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no default label, none of the statements in the switch

50 body is executed. .

Implementation limits

As discussed previously (§2.2.4.1), the implementation may limit the number of case
values in a Syitch statement.

§3.6~3 January 11, 1988
DRAFT

§3.6.4.2

LANGUAGE 79 STATEMENTS

3.6.5 Iteration statements
Syntax

5
iteration-etatement:

whlle (ezpreuion) 3tatement
do 3tatement while (ezpru3ion)
for (ezpreuion t ; ezpre33ion top op ezpreuion opt) 3tatement

Constraints

10 The controlling expression of an iteration statement shall have scalar type.

Semantics

An iteration statement causes a statement called the loop body to be executed
repeatedly until the controlling expression compares equal to O.

3.6.5.1 The while statement

The evaluation of the controlling expression takes place before each execution of the
loop body.

20 3.6.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the
loop body.

3.6.5.3 The for statement
25 Except for the behavior of a continue statement in the loop body, the statement

for (ezpreuion-l ; ezpreuion-2 ; ezpreuion-9) 3ttitement

and the sequence of statements

ezpreuion-l ;
whi1 e (ezpreuion-2) {

atatement
ezpreuion-9

30

}

are equivalent.P!

Both ezpreuion-l and ezpreuion-9 may be omitted. Each is evaluated as a void
35 expression. An omitted ezpre33ion-2 is replaced by a nonzero constant.

Forward references: the continue statement (§3.6.6.2).

61. Thus ezpre&&ion-l specifies initialization for the loop; ezpression-B, the controlling expression,
specifies an evaluation made before each iteration, such that execution of the loop continues until the
expression compares equal to 0; ezpres&lon-S specifies an operation (such as incrementing) that IS
performed after each iteration.

§3.6.5 January 11, 1988
DRAFT

§3.6.5.3

LANGUAGE 80 STATEMENTS

3.6.6 Jump statements
Syntax

5
jump-datement:

go to identifier
continue ;
break ;
return e:rpreuion t. op

10 Semantics

A jump statement causes an unconditional jump to another place.

3.6.6.1 The got.o statement
15 Constraints

The identifier 10 a goto statement shall name a label located somewhere in the
current function.

Semantics

20 A goto statement causes an unconditional jump to the statement prefixed by the
named label in the current function.

3.6.6.2 The continue statement
25 Constraints

A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest
30 enclosing iteration statement; that is, to the end of the loop body. More precisely, in

each of the statements

while U* ... */) { do { for U* ... */) {
1* ... *1 1* ... *1 1* ... *1
continue; continue; continue;

35 1* ... *1 1* ... *1 1* ... *1
contin: , contin: contin: ,
} } while U* ... *n ; }

unless the continue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalent to go to contm: .02
3.6.6.3 The break statement
Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing swi tch or
iteration statement.

62. Following the cont1n: label is a null statement.

§3.6.6 JanuaryLl , 1988
DRAFT

§3.6.6.3

LANGUAGE 81 STATEMENTS

3.6.6.4 The return statement

Constraints

A return statement with an expression shall not appear in a function whose return
5 type is void.

SeD;lantiea

A return statement terminates execution of the current function and returns control
to its caller. A function may have any number of return statements, with and without

10 expressions.

If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from that of the function in which it appears, it is converted as if it were
assigned to an object of that type.

15 If a return statement without an expression is executed, and the value of the
function call is used by the caller, the behavior is undefined. Reaching the } that
terminates a function is equivalent to executing a return statement without an
expression.

§3.6.6.4 January 11, 1988
DRAFT

§3.6.6.4

LANGUAGE 82 EXTERNAL DEFINITIONS

3.7 EXTERNAL DEFINITIONS
Syntax

5 tran&la{ion-unit:
e:zternal-declaration
tran&lation-unit ezterna/-declaration

ezterna/-deelaration:
function-definition
declaration10

Constraints

The storage-class specifiers aut.o and reg1st.er shall not appear in the declaration
specifiers in an external declaration.

Semantics

As discussed in §2.1.1.1, the unit of program text after preprocessing is a translation
unit, which consists of a sequence of external declarations. These are described as
"external" because they appear outside any function ' (and hence have file scope). As

20 discussed in §3.5, a declaration that also causes storage to be reserved for an object or a
function named by the identifier is a definition.

An ezternal definition is an external declaration that is also a definition of a function
or an object. II an identifier declared with external linkage is used in an expression (other
than as part of the operand of a s1zeof operator), somewhere in the entire program

25 there shall be exactly one external definition for the identifier.'s

3.7.1 Function definitions
Syntax

30 fune tio nod efin itio n:
dec/aration-&pecifier, t declarator declaration-lilt t compound.,tatement~ ~ .

Constraints

The identifier declared in a function definition (which is the name of the function)
35 shall have a (unction type, as specified by the declarator portion of the function

definition.e•

The return type of a function shall be vo1d or an object type other than array.

The storage-class specifier, if any, in the declaration specifiers shall be either extern
or st.atic.

63. Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

64. The intent is that the top type in a function definition cannot be inherited from a typedef:

typedef lnt F(vOld);
F f. g;
F f { /* */ }
F g() { /* */ }
lnt f(vold) { /* ... */ }
lnt g() { /* ... */ }
F *e(vold) { /* ... */ }
F *«e» (void) { /* ... */
lnt (*fp) (void);
F *Fp;

/* type F i, "function of no argument' returning lnt" */
/* f and g both have type compatible with F */
/* WRONG: &yntaz/con&traint error */
/* WRONG: declare, that g return, a function */
/* RIGHT: f haB type compatible with F */
/» RIGHT: g h41 type compatible with F */
/» e return, a pointer to a function */

} 1* same: parenthese« irrelevant *1
1* fp point' to a function that ha, type F *1
1* Fp points to a function that hili type F *1

§3.7 January 11, 1988
DRAFT

§3.7.1

LANGUAGE 83 EXTERNAL DEFINITIONS

II the declarator includes a parameter type list, the declaration of each parameter
shall include an identifier (except for the special case of a parameter list cu.u.sisting of a
single parameter of type vOid, in which there shall not be an identifier). No declaration
list shall follow.

5 II the declarator includes an identifier list, only the identifiers it names shall be
declared in the declaration list. An identifier declared as a typedef name shall not be
red~clared as a parameter. The declarations in the declaration list shall contain no
storage-class specifier other than register and no initializations.

10 Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. II the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. II the

15 declarator includes an identifier list,eO the types of the parameters may be declared in a
following declaration list. Any parameter that is not declared hu type 1nt..

If a function that accepts a variable number of arguments is defined without a
parameter type list that ends with the ellipsis notation, the behavior is undefined.

On entry to the function the value of the argument expression shall be converted to
20 the type of its corresponding parameter, as if by assignment to the parameter. Array

expressions and function designators as arguments are converted to pointers before the
call. A declaration of a parameter as "array of type" shall be adjusted to "pointer to
type ," and a declaration ,of a parameter as "function returning type" shall be adjusted to
"pointer to function returning type," as in §3.2.2.1.

25 Each parameter has automatic storage duration. Its identifier is an lvalue.ee The
layout of the storage for parameters is unspecified.

Examples

ext.ern 1nt. .~x(1nt. ~. 1nt. b)
{30

ret.urn ~ > b ? ~ : b;
}

Here ext.ern is the storage-class specifier and int is the type specifier (each of which
may be omitted as those are the defaults); .~x(1nt. a. 1nt. b) is the function

35 declarator; and

{ ret.urn a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the
parameter declarations:

ext.ern int. aax(a. b)
1nt. a. b;
{

40

ret.urn a > b ? ~ b;
}

65, See "future language directions" (§3,9,5),
66. A parameter is in effect declared at the head of the compound statement that constitutes the function

body, and therefore may not be redeclared in the function body (except in an enclosed block).

§3.7.1 January 11, 1988
DRAFT

§3.7.1

LANGUAGE EXTERNAL DEFINITIONS

Here 1nt a, b; is the declaration list for the parameters, which may be omitted because
those are the defaults. The difference between these two definitions is that the first form
acts as a prototype declaration that forces conversion of the arguments of subsequent
calls to the function, whereas the second form does not.

S To pass one function to another, one might say

1nt f(vo1c1);
1* ... *1
g(f) ;

Note that f must be declared explicitly in the calling function, as its appearance in the
10 expression g(!) was not followed by (. Then the definition of g might read

g(1nt (*runcp)(vo1c1»
{

1* ... *f (*funcp) 0 1* or. funcp 0 ... *f
}

15 or, equivalently,

g(int func(voic1»
{

1* ... *f func() 1* or (*func)() ... *f
}

'3.7.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the
25 declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer,
and without a storage-class specifier or with the storage-class specifier static,
constitutes a tentative definition. If a translation unit contains one or more tentative
definitions for an identifier, and the translation unit contains no external definition for

30 that identifier, then the behavior is exactly as if the translation unit contains a file scope
declaration of that identifier, with the composite type as of the end of the translation
unit, with an initializer equal to O.

If the declaration of an identifier for an object is a tentative definition and has
internal linkage, the declared type shall not be an incomplete type.

Examples

1nt 11 = 1;'
static 1nt 12 = 2;

3;

1* definition, ezternallinkage *f
1* definition, internal linkage *f
f* definition, ezternallinkage *f
f* tentative definition, ezternallinka,e *f
f* tentative definition, internal linkage *f

1* valid tentative definition, refer« to previou, *1
1* §S.1.2.2 ,.ender, undefined, linkage dila,,.eement *f
f* valid tentative definition, refer« to previou, *1
f * valid tentative definition, refer» to p,.eviou, *I ,-
f* §S.1.2.2 ,.ende,., undefined, linkage dila,,.eement *f

40
extern 1nt 13 =
1nt 14;
stat1c 1nt 15;

1nt 11;
1nt 12;
1nt 13;
lnt 14;
1nt 15;

45

(

§3.7.1 January 11, 1988
DRAFT

§3.7.2

LANGUAGE

5

§3.7.2

85 EXTERNAL DEFINITIONS

extern 1nt 11; /* refer« to ,reviov" who,e linh,e ;. eztema/*/
extern 1nt 12; /* refer« to ,revio•• , who.e linkage i. intema/*/
extern 1nt 13; /* refer« to ,revio •• , who.e link4,e i. eztemcl */
extern 1nt 14; /* refer« to ,revio"., who.e linkage i. eztem41*/
extern 1nt 15; /* re/er. to ,reviov., who.e link4,e i. intemal */

January 11, 1988
DRAFT

§3.7.2

LANGUAGE

5

10

15

20

30

35

40

45

§3.8

86 PREPROCESSING DIRECTIVES

3.8 PREPROCESSING nffiECTIVES
Syntax

preprocu,ing-/ile:
group opt

group:
group-part
group group-part

group-part:
pp.token, t new-line
i/-,ection op
control-line

i/-,e etion:
if-group eli/-group, t e/,e-group t endi/-lineop op

iI-group:
#if
ifdef
1fndef

cOnltant-ezpru,ion new-line group t
'd fi I' opI entl er new- me group t
'd fi I' 01'I entr er new- me group t

01'
ell/-group.:

eli/-group
eli/-group' e/i/.group

eli/-group:
l~ el1f con,tant-ezpre"ion new-line group "op,

e/,e-group:
else new-line group top

endl/-/ine:
~~endU new-line

control-line:
include
define
define
under
line
error
praglla
#

pp.token. new-line
identifier replacement-li,t new-line
identifier Iparen identlfier-/i,t t)
'd Ii I' opI entl er new- me
pp-token, new-line
pp-token, t new-line

L op I'pp-to,.en, t new- me
I
, opnew-Ine .

replacement-li,t new-line

Iparen:
the left-parenthesis character without preceding white-space

replaeemcnt-/ilt:
pp-token, t

01'
pp-token,:

preproc euing-token
pp-token, preproce"ing-token

new-line:
the new-line character

January 11, 1988
DRAFT

§3,8

LANGUAGE 87 PREPROCESSING DmECTIVES

Description

A preprocessing directive consists or a sequence or preprocessing tokens that begins
with a # preprocessing token that is the first character in the source file (optionally after
white space containing no new-line characters) or that follows white space containing at

5 least one new-line character, and ended by the next new-line character.1?

Constraint.

The only white-space characters that shall appear between preprocessing tokens
within a preprocessing directive (from just after the introducing # preprocessing token

10 through just before the terminating new-line character) are space and horizontal-tab
(including spaces that have replaced comments in translation phase 3).

Semantic.

The implementation can process and skip sections or source files conditionally, include
15 other source files, and replace macros. These capabilities are called preproce"ing,

because conceptually they occur before translation or the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

20 3.8.1 Conditional inclusion
Constraints

Constant expressions were discussed in' §3.4. Additional restrictions apply to a.
constant expression that controls conditional inclusion: The expression shall be an
integral constant expression that shall not contain a lIizeof operator, a cast, or an
enumeration constant. It may contain unary expressions or the form

defined identifier

or

defined (identifier)

30 which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #deflne preprocessing directive without an
intervening #undef directive), 0 if it is not.

Each preprocessing token that remains after all macro replacements have occurred
shall be in the lexical Iorm or a token.

Semantic.

Preprocessing directives or the forms

if conalant-ezpre"ion new-line ,roup t
. I' op# ellf conllant-ezpre".on new- me ,roup top

40 check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will
become the controlling constant expression are replaced (except for those macro names
modified by defined), just as in normal text. The deflned operator shall explicitly
appear in the original list of preprocessing tokens. After all replacements are finished the

67. Thus preprocessing directives are commonly called "lines" These "hues': have no other syntactic
SIgnificance, as all whIte space IS equivalent except ID certain situattons during preprocessmg (see the
character string literal creation operator In §3.8.3.2, for example).

§3.8 January 11, 1988
DRAFT

§3.8.1

LANGUAGE 88 PREPROCESSING DIRECTIVES

resulting pre-processing tokens are converted into tokens and then (before the controlling
constant expression is evaluated), all remaining identifiers are replaced with OL IlJld each
integer cClDstant not already suffixed with 1 or L is considered to be additionally suffixed
with L. Then the usual arithmetic conversions apply during the evaluation of the

5 expreasion, which takes place using arithmetic that has at least the ranges specified 'in
§2.2.4.2. This includes interpreting character constants, which may involve converting
escape sequences into characters. Whether the numeric value ror these character
constants matches the value obtained when an identical character constant occurs in an
expression (other than within a #1f or #.l1f directive) is implementation-defined."

10 Also, whether a single-character character constant may have a negative value is
implementation-defined.

Preprocessing directives of the rorms

ifdef identifier new-line ,ro., t
f d f'd'':: I' op# 1 n e I entlJoer new- Ine ,ro., top

15 check whether the identifier is or is not currently defined as a macro name. Their
eonditions are equivalent to #if defined identifier and #if !defined identifier
respectively.

Each directive's condition is checked in order. II it evaluates to ralse (zero), the group
that it controls is skipped: directives are processed only through the name that

20 determines the directive in order to keep track of the level of nested conditionals; the rest
of the directives' preprocessing tokens are ignored, as are the other preprocessing tokens
in the group. Only the first group whose control condition evaluates to true (nonzero) is
processed. II none of the conditions evaluates. to true, and there is a #e1se directive, the
group controlled by the #else is processed; lacking a #e18. directive, all the groups

25 until the #end1f are skipped.se

Forward referencea: macro replacement (§3.8.3), source file inclusion (§3.8.2).

3.8.2 Source file inclusion
Constraints

A #incl ude directive shall identify a header or source file that can be processed by
the implementation.

35 Semantic.

A preprocessing directive or the form

include <h-char-,equence> new-line

searches a sequence of implementation-defined places for a. header identified uniquely by
the specified character sequence between the < and > delimiters, and causes the

40 replacement or that directive by the entire contents of the header. How the places are
specified or the header identified is implementation-defined.

68.Thus the constant expression in the following #if directive and 1f statement is not guaranteed to
evaluate to the same value in these two contexts,

#If 'z' - 'a' -- 25
if ('z' - 'a' == 25)

69.As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive
before the terminating new-line character However, comments may appear anywhere In a source file,
including within a preprocessing directive,

§3.8.1 January 11, 1988
DRAFT

§3.8.2

LANGUAGE 89 PREPRoCEsSING DmECTlVES

A preprocessing directive of the form

include - q.ehar.,eq"enee- new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified character sequence between the - delimiters, The named source file is

5 searched for in an implement.ation-defined manner. If this search is not supported, or if
the search fails, the directive is reprocessed as if it read

include <h.ehar.,equenee> new-line

with the identical contained character sequence (including > eharaetere, if any) from the
original directive.

10 A preprocessing directive of the form

include pp.token, new·line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after lncl ude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of

15 preprocessing tokens.) The directive resulting after all replacement! shall match one of
the two previous forms.70 The method by which a sequence of preprocessing tokens
between a < and a > preprocessing token pair or a pair of - characters is combined into a
single header name preprocessing token is implementation-defined.

There shall be an implementation-defined mapping between the character sequence
20 and the external source file name. The implementation shall provide unique mappings for

sequences consisting of one or more letters (as defined in §2.2.1) followed by a period (.)
and a single letter. The implementation may ignore the distinctions of alphebetical case
and restrict the mapping to six significant characters before the period.

A #1ncl ude preprocessing directive may appear in a source file that haa been read
25 because of a #lncl ude directive in another file, up to an implementaticn-defined nesting

limit (see §2.2.4.1).

Examples

The most common uses of #include preprocessing directives are ns in the following:

#include <stdio.b>
#1nclude -.yprog.b-

30

This example illustrates a macro-replaced #lncl ude directive:

#1f VERSION == 1
#define INCFILE -versl.b-

#e11f VERSION == 2
#def1ne INCFILE -vers2.b-

35

1* and '0 on *1
#else

40
#define INCFILE -versN.b-

#endif
1* ... *1
#include INCFILE

70. Note that adjacent string literals are not concatenated into. a single string literal (see the translation
phases in 12.112); thus an expansion that results In two stnng literals IS an Invalid directive.

§3.8.2 January 11, 1988
DRAFT

§3.8.2

LANGUAGE 90 PREPROCESSING DIRECTIVES

Forward refereneel: macro replacement (§3.8.3).
3.8.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both
have the same number, ordering, spelling, 'and white-space separation, where all white-
space separations are considered identical. .

10 An identifier currently defined as a macro without use of Iparen (an object-like macro)
may be redefined by another #def1ne preprocessing directive provided that the aecond
definition is an object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using lparen (a ,_nction-/ike macro) may be
redefined by another #def1ne preprocessing directive provided that the second definition

15 is a function-like macro definition that has the same number and spelling of parameters,
and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with
the number of parameters in the macro definition, and there shall exist a) preprocessing
token that terminates the invocation.

20 A parameter identifier in a Iunetion-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following the define is called the mllero nllme. Any
25 white-space characters preceding or following the replacement list of preprocessing tokens

are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by • name, occurs lexically at the point at which a
preprocessing directive could begin, the name is not subject to macro replacement.

A preprocessing directive of the form

def1ne identifier replacement-/i.t new-line30

defines an object-like macro that causes each subsequent instance of the macro name71 to
be replaced by the replacement list of preprocessing tokens that constitute the remainder
of the directive. The replacement list is then rescanned for more macro names as
specified below.

35 A preprocessing directive of the form

def1ne identifier Iparen identifier-/iat t) replacement-/i,t new-lineop
defines a function-like .macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the #def1ne

40 preprocessing directive. Each subsequent instance of the function-like macro name
followed by a (as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching)
preprocessing token, skipping intervening matched pairs of left and right parenthesis

71. SIDce, by macro-replacement time, all character constants and string literals are tokens, not se<\uences
of characters possibly containing identifier-like subsequences (see §2.1.1.2, translation phases), they
are never scanned for macro names or parameters.

§3.8.2 January 11, 1988
DRAFT

§3.8.3

LANGUAGE 91 PREPROCESSING DIRECTIVES

preprocessing tokens. Within the sequence ot preprocessing tokena making up an
invocation of a function-like macro, ,new-line is considered a normal white-apace
character.

The sequence of preprocessing tokens bounded by the outside-moat matching
5 parentheses forms the list of arguments for the function-like macro. The individual

arguments within the list are aeparated by comma preprocessing tokens, but comma
preprocessing tokens bounded by nested parentheses do not aeparate arguments. It any
argument consists of no preprocessing tokens, the behavior is undefined. It there are
sequences of preprocessing tokens within the list of arguments that would otherwise act

10 as preprocessing directives, the behavior is undefined.

3.8.3.1 Argument substitution
AIter the arguments for the invocation ot a function-like macro have been identified,

argument substitution takes place. A parameter in the replacement list, unless preceded
15 by a # or ## preprocessing token or followed by a ## preprocessing token (see below), is

replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument's preprocessing tokens are completely
macro replaced as if they formed the rest of the source file; no other preprocessing tokens
are available.

3.8.3.2 The # operator
Conatraints

Each # preprocessing token in the replacement list' for a function-like macro shall be
25 followed by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that

30 contains the spelling of the preprocessing token sequence ror the corresponding argument.
Each occurrence of white space between the argument's preprocessing tokens becomes a
single space character in the character string literal. White space before the first
preprocessing token and aIter the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is

35 retained in the character string literal. This requires special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each •
and \ character of a character constant or string literal (including the delimiting •
characters). The order of evaluation of # operators is unspecified.

40 3.8.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end or a
replacement list for either form of macro definition.

Semantics

If, in the replacement list, a parameter is immediately preceded or followed by a ##
preprocessing token, the parameter is replaced by the corresponding arS1~ment's
preprocessing token sequence.

50 For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. If the result is not a valid
preprocessing token, the behavior is undefined. The resulting token is available for

55 further macro replacement. The order of evaluation of ## operators is unspecified.

§3.8.3 January 11, 1988
DRAFT

§3.8.3.3

LANGUAGE PREPROCESSING DIRECTIVES

3.8.3.4 Reaeannlng and further replacement
After all parameters in the replacement list have been substituted, the resulting

preprocessing token sequence is reseanned with the rest of the source file's preprocessing
5 tokens for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement
list (not including ~he rest of the source file's preprocessing tokens], it is not replaced.
Further, if lI.nynested replacements encounter the name of the macro being replaced, it is
not replaced. These nonreplaced macro name preprocessing tokens are no longer

10 available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not
processed as a preprocessing directive even if it resembles one.

15 3.S.3.5 Scope or macro definitionl
A macro definition luts (independent of block structure) until a corresponding

#undef directive is encountered or (if none is encountered) until the end of the
translation unit.

A preprocessing directive of the form

ulldef identifier new-line20
causes the specified identifier no longer to be defined as a macro name. It is ignored if the
specified identifier is not currently defined as a macro name.

Examples

25 The simplest use of this facility is to define a "manifest constant," as in

#deflne TABSIZE 100

lnt table(TABSIZE);

The following defines a function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the arguments

30 and of generating in-line code without the overhead of function calling. It has the
disadvantages of evaluating one or the other of its arguments a second time {including
side effects} and of generating more code than a function if invoked several times.

#deflne max(a, b) «a) > (b) ? (a) : (b»

The parentheses ensure that the arguments and the resulting expression are bound
35 properly.

To illustrate the rules for redefinition and reexamination, the sequence

§3.8.3.3 January 11, 1988
DRAFT

§3.8.3.5

LANGUAGE 83 PREPROCESSING DIRECTIVES

#define % 3
#define f(a) f(% • (a»
#undef %
#define % 2

5 #define g f
#define z z [OJ
#define h g(-
#define II(a) a(w)
#define w 0,1

10 #define tea) a
f(y+l) + f(f(z» I t(t(g) (0) + t)(l);
g(%+(3,4)-w) I h 6) .t II

(f)-II (II) ;

results in

15 f(2 * (y+1» + f(2 • (f(2 • (z[O))) I f(2 • (0» + t(l);
f(2 * (2+(3,4)-0,1» I f(2 • (- 6» a f(2 * (0,1»-.(0,1);

To illustrate 'the rules for creating character string literals and concatenating tokens,
the sequence

25

#define 8tr(s) # 8
#define %str(s) str (B)
#define debugCs. t) pr1ntfC-%- # s -= Id, J:- # t -= Is-, \

% ## 8, % ## t)
#define INCFILE(n) vers ## n /* from previo., #include uample */

~define glue(a. b) a ## b
#define %glue(a, b) glue(a, b)
#define HIGHLOW -hello-
#define LOW LOW -, world-

20

debug (1. 2);
fputB(Btr(strncllpC-abc\Od-, -abc-, '\4') /* this goes away ./

30 == 0) str(: I\n), 8);
#include xstr(INCFILE(2).h)
glue(HIGH. LOW)
xglue(HIGH. LOW)

results in

35 printf(-%- 81- -= Id, %- -2- -= IB-, %1, %2);
fputs(-strncllp(\-abc\\Od\-, \-abc\-, '\\4') == 0- -: I\n-, s);
#include -vets2 .h- (after macro replacement, befor.e file acce,,)

-hello- -, world-
40 or, after concatenation of the character string literals,

printf(-xl= Id. %2= Is-, %1, %2);
fputs(-strncllp(\"abc\\Od\-, \-abc\-, '\\4') == 0: I\n-, .);
#include -verB2.h- (after macro replacement, before file "cce,,)
-hello-

45 -hello, world-
Space around the # and ## tokens in the macro definition is optional.

And finally, to demonstrate the redefinition rules, the following sequence is valid.

§3.8.3.5 January 11, 1988
DRAFT

§3.8.3.5

LANGUAGE PREPROCESSING DmECTIVES

#define OSJ LIKE (1-1)
#define OSJ LIKE I- white
#define FTN LIKE (a) (a)
#define FTN_LIKE(a)(

space -I (1-1) /- other *1

5
1* note the white space -I \

a I- other stuff on this l1ne
-I)

But the following redefinitions are invalid:

10

#def1ne OSJ LIKE (0) 1* different token ,equnce -I
#def1ne OSJ LIKE (1 - 1) 1* different white 'pace -I
#deUne FTN-LIKE(b) (a) 1* different parameter wl4,e *1
#deUne FTN:LIKE(b) (b) 1* different parameter 'pel/in, *1

3.8.4 Line control
15 Constraints

The string literal, ir present, shall be a character string literal.

Semantic.

The line number or the current source line is one greater than the number or new-line
20 characters read or introduced in translation phase 1 (§2.1.1.2) while processing the source

file to the current token.

A preprocessing directive or the form

l1ne digit.,equenee new·/ine

causes the implementation to behave as ir the following sequence or source lines begins
25 with a source line that has a line number as specified by the digit sequence (interpreted as

a decimal integer).

A preprocessing directive or the Iorm

11ne digit·,equence dn·ng·literal new·/ine

sets the line number similarly and changes the presumed name or the source file to be the
30 characters contained within the character string literal.

A preprocessing directive or the Iorm

l1ne pp.token, new-line

(that does not match one or the two previous forms] is permitted. The preprocessing
tokens after l1ne on the directive are processed just as in normal text (each identifier

35 currently defined as a macro name is replaced by its replacement list or preprocessing
tokens). The directive resulting after all replacements shall match one or the two
previous Iorms and is then processed as appropriate.

3.8.5 Error directive
Semantic.

A preprocessing directive or the Iorm

error pp-token, t new-lineop
causes the implementation to prod uce a diagnostic message that includes the specified

45 sequence or preprocessing tokens.

§3.8.3.5 January 11, 1988
DRAFT

§3.8.5

LANGUAGE 95 PREPROCESSING DJR.ECTIVES

3.8.6 Pragma directive
Semantics

A preprocessing directive of the form

5 # praglla ,,-tolen'Ol't new-line

causes the implementation to behave in an implementation-defined manner. Ax!y pragma
thatis not recognized by the implementation is ignored.

3.8.7 Null directive
Semantics

A preprocessing directive of the form

new-line

has no effect.

3.8.8 Predefined macro names
The following macro names shall be defined by the implementation:

LINE The line number of the current source line (a decimal constant).

__ FILE __ The presumed name of the source file (a character string literal).

20 DATE The date of translation of the source file (a character string literal of the
form ·MIIII dd rtrr .where the names of the months are the same as those
generated by the asct111. function, and the first character of dd is a apace
character if the value is less than 10). U the date of translation is not
available, an implementation-defined valid date shall be supplied.

25 TIME The time of translation of the source file (a character string literal of the
form •hh :1111 : ss· as in the time generated by the asct111. function). U
the time of translation is not available, an implementation-defined valid time
shall be supplied.

the decimal constant 1.72STDC
30 The values of the predefined macros (except for __ LINE__ and __ FILE __) remain

constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a
#def ine or a #undef preprocessing directive. All predefined macro names shall begin
with a leading underscore followed by an upper-case letter or a second underscore.

Forward references: the asct1ae function (§4.12.3.1).

72. Thus Indicating a Standard-conforming implementation.

(

§3.8.6 January 11, 1988
DRAFT

§3.8.8

LANGUAGE FUTt;'RE LANGUAGE DIRECTIONS

3.0 FUTURE LANGUAGE DffiECTIONS
3.0.1 External names

5 Restriction o(the significance o(aD ex~ernal name to (ewer than 31 characters or to
only one case is an obsolescent feature that is a concession to existing implementations.

3.0.2 Character escape sequences
Lower-case letters as escape sequences are reserved (or future standardization. -Other

10 characters may be used in extensions.

3.0.3 Storage-class specifiers
The placement o(a storage-clasr. specifier other than at the beginning oC the

declaration specifiers in a declaration is an obsolescent feature.

3.g.4 Function declarators
The use of (unction declarators with empty parentheses (not prototype-format

parameter type declarators) is an obsolescent feature.

20 3.g.5 Function definitions
The use of (unction definitions with separate parameter identifier and declaration lists

(not prototype-format parameter type and identifier declarators) is an obsolescent
feature.

§3.9 January 11, 1988
DRAFT

§3.9.S

Proposed C Standard 97 LIBRARY

4. LmRARY

5 4.1 IN'".fRODUCTION
4.1.1 Definitions or terms

A IIn'ng is an array of characters terminated by a null character. It is represented by
a pointer to its initial (lowest addressed) character and its length is the number or

10 characters preceding the null character.

A letter is a printing character in the execution character set corresponding to any or
the 52 required lower-case and upper-ease letter characters in the source character set,
listed in §2.2.1.

The decimal-point character is the character used by functions that convert ftoating-
15 point numbers to or from character sequences to denote the beginning of the rractional

part of such character sequences.73 It is represented in the text and examples by a period,
but may be changed by the setlocale runction.

Forward references: the .etlocale function (§•.•. i.i).

4.1.2 Headers
Each library function is declared in a huder,7. whose contents are made available by

the #incl ude preprocessing directive. The header declares a set of related functions,
plus any necessary types and additional macros needed to facilitate their use. Each

25 header declares and defines only those identifiers listed in its associated section. All
external identifiers declared in any or the headers are reserved, whether or not the
associated header is included. All external identifiers that begin with an underscore are
reserved. All other identifiers that begin with an underscore and either an upper-case
letter or another underscore are reserved. If the program defines an external identifier

30 with the same name as a reserved external identifier, even in a semantically equivalent
form, the behavior is undefined.

The standard headers are

35

<assert.h>
<ctype.h>
<errno.h>
<float. b>
<l1mits.b>

<locale.h>
<aa.tb.b>
<setjap.b>
<signal.b>
<stda.rg.b>

<stddef.b>
<stdio.h>
<stdl1b.b>
<string.b>
<time.h>

If a file with the same name as One or the above cand > delimited sequences or
characters, not provided as part of the implementation, is placed in any or the standard

40 places for a source file to be included, the behavior is undefined.

Headers may be included in any order; each may be included more than once in a
given scope, with no effect different rrom being included only once, except that the effect
of including <assert. b> depends on the definition of NDEBUG. If used, a header shall be
included outside of any external declaration or definition, and it shall first be included

45 before the first reference to any of the functions or objects it declares, or to any of the
types or macros it defines.

73. The fun~tions that make use of the decimal-point character are loca.leconv, fprint!, fscanf,
printf, sca.nf, sprlntf, sscanf, vfprintf,vprintf, vsprintf,atof,and strtod.

74. A header is not necessarily a source file, nor are the < and > delimited sequences of characters in
header names necessarily valid source file names.

§4. January 11, 1988
DRAFT

§4.1.2

LffiRARY 98 INTRODUCTION

Forward references: diagnostics (§4.2).

4.1.3 Errors <errno. h>
5 The header <errno. h> defines several macros, all relating to the reporting ot error

conditions.

The macros are

EDOM
£RANGE

10 which expand to distinct nonzero integral eonstant expressions; and

errno

which expands to a modifiable Ivalue76that has type 1nt, the value ot whieh is set to a
positive error number by several library functions. It is initialized to zero at program
startup, but is never set to zero by any library funetion.78 The value of errno may be

15 set to nonzero by a library function eall whether or not there is an error, provided the use
of errno is not documented in the description of the funetion in the Standard.

Additional maero definitions, beginning with E and an upper-ease letter,77 may also be
specified by the implementation.

20 4.1.4 Limits <float. h> and <11m1ts .h>
The headers <float. h> and <11.1 t8. h> define several maeros that expand to

various limits and parameters.

The macros, their meanings, and their minimum magnitudes are listed in §2.2.4.2.

25 4.1.5 Common definitions <stddef. h>
Some of the fcllowing types and macros are defined in several headers referred to in

the descriptions of the funetions declared in that header. They are also defined in a
common standard header, <8tddef .h>.

The types are

ptrd1ff_t

which is the signed integral type o(the result o(subtracting two pointers;

81ze t

which is the unsigned integral type of the result o(the 81zeof operator; and

wchar t

35 which is an integral 'type whose range o(values can represent disrinet codes (or all
members o(the largest extended character set specified among the supported locales; the
null character shall have the eode value zero and each eharaeter defined in §2.2.1 shall
have a code value equal to its value when used as the lone character in an integer

30

character constant.

75. The macro .rrno need not be the identifier of an object. It might be a modifiable IvaJue resulting
from a function call (for example, * errno 0). ~- .

76. Thus, a program that uses errno for error checking should set it to zero before a library function
call, then inspect it before a subsequent library function call.

77. See "future library directions" (§4.13.1)

§4.1.2 January 11, 1988
PRAFT

§4.1.5

LmRARY 99 INTRODUCTION

The macros are

NULL
which expands to an implementation-defined null pointer constanti and

of f setof (type, identifier)

5 which expands to an integral constant expression that has type 81z8 t, the value of
which is the offset in bytes, to the structure member (designated by ide;"'jier), from the
beginning of its structure (designated by type). (It the specified member is a bit-field, the
behavior is undefined.)

10 Forward references: localization (§4.4).

4.i.6 Use of library functions
Each of the following statements applies unless explicitly stated otherwise in the

detailed descriptions that follow. It an argument to a function has an invalid value (such
15 as a value outside the domain of the function, or a pointer outside the address space of

. the program, or a null pointer), the behavior is undefined. Any function declared ina
header may be implemented as a macro defined in the header, so a library function should
not be declared explicitly if its header is included. Any macro definition of a function can
be suppressed locally by enclosing the name of the function in parentheses, because the

20 name is then not followed by the left parenthesis that indicates expansion of a macro
function name. For the same syntactic reason, it is permitted to take the address of a
library function even if it is also defined as a macro. The use of #unc1ef to remove any
macro definition will also ensure that an actual function is referred to. AI1y invocation of
a library function that is implemented as a macro will expand to code that evaluates each

25 of its arguments exactly once, fully protected. by parentheses where necessary, so it is
generally safe to use arbitrary expressions as arguments. Likewise, those function-like
macros described in the following sections may be invoked in an expression anywhere a
function with a compatible return type could be called?8

Provided that a library function can be declared without reference to any type defined
30 in a header, it is also permissible to declare the function, either explicitly or implicitly,

and use it without including its associated header. It a function that accepts a variable
number of arguments is not declared (explicitly or by including its associated header), the
behavior is undefined.

78. Because external identifiers and some macro names beginning with an underscore are reserved,
Implementations may provide special semantics for such names. For example, the identifier
BUlL TIN a1;)scould be used to indicate generation of in-line code for the a1;)sfunction. Thus, the

approprlateheader could specify

_define a1;)s(x) _BUILTIN_a1;)s(x)
for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as a1;)s will be a
genuine function may write

_undef a1;)s
whether the implementation's header provides a macro implementation of a1;)s or a builtin
Implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also .

§4.1.5 January 11, 1988
DRAFT

§4.1.6

LIDRARY 100 INTRODUCTION

5

Example.--

The function ato1 may be used in anyot several ways:

• by use of its associated header (possiblygenerating a macro expansion)

#1Dclude <stdl1b.h>
/* ... */
1 = ato1(str);

• by use of its associated header (assuredly generating a true tunction reference]

#1Dclude <stdl1b.h>
#uDdef ato1
/* ... */
1 = ato1(str);

10

or

15

#iDclude <stdl1b.h>
/* ... */
1 = (atoi) (str);

• by explicit declaration

exterD iDt atoi(const noalias char *);
/* ... *;
1 = ato1(str);

20 • by implicit declaration

/* ... */
1 = ato1(str);

§4.1.6 January 11, 1988
DRAFT

.§4.1.6

LffiRARY 101 DIAGNOSTICS <~••• rt. b>

4.2 DIAGNOSTICS <assert. h>
The header <assert .b> defines-she ajs~rt macro and refers to another macro,

HDEBUG
-

5 which is not defined by <assert. b>. Ir HDEBUG is defined as a macro name at the point
in the source file where <assert. b> is included, the assert macro is defined simply as

#def1ne assert(1gnore)

The assert macro shall be implemented as a macro, not as an actual function. Ir the
macro definition is suppressed in order to access an actual function, the behavior is

10 undefined.

4.2.1 Program diagnostics
4.2.1.1 The a.ssert macro

Synopsis

#include <assert.b>
void assert(int expression);

20 Description

The assert macro puts diagnostics into programs. When it is executed, if
expression is false (that is, compares equal to 0), the a.ssert macro writes information
about the particular call that failed (includillg the text of the argument, the na.meof the
source file, and the source line number - the latter are respectively the values of the

25 preprocessing macros FILE and LINE) on the standard error file in an
implementation-defined-f~rmat.'n-It then-;alls th;"ibort function.

Return.

The assert macro returns no value.

Forward reference.: the abort function (§4.10.4.1).

7g, The message written might be of the form
Assertion failed ezprea6io'n, file zgz, line nnn

§4.2 January 11, 1988
DRAFT

§4.2.1.1

LIDRARY 102 CHARACTER HANDLING <ctype. h>

4.3 CHARACTER HANDLING <ctype. h>
The header <ctype. h> declares several functions useful for testing and mapping

characters.so In all cases the argument is an int, the value of which shall be
5 representable as an unsigned ch~r or shall equal the value of the macro EOF. Ir the

argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have no implementation-defined aspects in the ·C· locale are noted below. -

The term printin, character refers to a member of an implementation-defined set of
10 characters; each of which occupies one printing position on a display device; the term

control character refers to a member of an implementation-defined set of characters that
are not printing characters.11

Forward references: EOF (§4.9.1), localization (§4.4).

4.3.1 Character testing functions
The functions in this section return nonzero (true) if and only if the value of the

argument c conforms to that in the description of the function.

20 4.3.1.1 The 1salnum function

Synopsis

#include <ctype.h>
int is~lnu.(int c);

Description

The is~lnu. function tests for any character for which isalpha or isdigi t is
true.

30 4.3.1.2 Th.e 1ea.lpha function

Synopsis

#include <ctype.h>
int isalph~(int c);

Description

The is~lph~ function tests for any character for which isupper or is10wer is
true, or any of an implementation-defined set of characters for which none of iscntrl,
isdigi t, ispunct, or isspace is true. In the ·C· locale, isalph~ returns true only

40 for the characters for which isupper or is10wer is true.

4.3.1.3 The 1scntrl function

Synopsis

45 #include <ctype.h>
int iscntrl(int c);

80. See "future library directions" (§4.13.2).
81. In an implementation that uses the seven- bit ASCD character set, the printing characters are those

whose values lie from Ox20 (space) through Ox7E (tilde); the control characters are those whose values
lie from 0 (NUL) through OxlF (US), and the character Ox7F (DEL).

§4.3 January 11, 1988
DRAFT

§4.3.1.3

LIDRARY 103 CHARACTER HANDLING <c:type.b>

Description

The 1scntrl function tests for any eentrcl c"'"J'lt.cter.

•.3.1•• The 1sd1g1 t function

Synopsis

#1nclude <ctype.h>
1nt 1sdlg1t(1nt c:);

10 Description

The 1sd1gl t function test~ for any decimal-digit character (as defined in §2.2.l).

4.3.1.5 The 1sgra.ph function

15 Synopsis

#1nclude <ctype.b>
lnt lsgT&pb(lnt c);

Description

20 The 1sgT&pb function tests for any printing character except space (' ').

4.3.1.6 The 1s1ower function

Synopsis

25 #1nclude <ctype.b>
lnt lslower(lnt c);

Description

The ls10weT function tests for any lower-case letter or any of an implementation-
30 defined set of characters for which none or lscntrl, 1sdlg1 t,ispunct; or 1ssp&ce is

true. In the ·C· locale, 1slower returns true only for the characters defined as lower-
case letters (as defined in §2.2.1).

4.3.1.7 The 1spr1nt function

Synopsis

#lnclude <ctype.b>
lnt 1spr1nt(1nt c);

40 Description

The lsprlnt function tests for any printing character including space (' ').

4.3.1.8 The 1spunct function

45 Synopsis

#1nclude <ctype.b>
1nt 1spunct(1nt c);

Description

50 The 1spunct function tests for any printing character except space (' ') or a
character for which ls&lnua is true.

§4.3.1.3 January 11, 1988
DRAFT .

§4.3.1.8

LffiRARY 104 CHARACTER HANDLING <et.ype .h>

4.3.1.9 The 1sspa.ce function

Synopsis

#iDelude <et.ype.h>
5 iDt. i88paee(iDt. e);

Description

The isspace function tests ror the standard white-space characters or ror any or an
implementation-defined set of characters Ior which i8alDua is Ialse. The standard

10 white-space characters are the rollowing: space (' '), form reed (' \f '), new-line (' \D'),
carriage return ('\r'), horizontal tab ('\t.'), and vertical tab ('\v'). In the ·C· locale,
isspace returns true only for the standard white-space characters.

4.3.1.10 The 1supper function

Synopsis

#iDclude <ct.ype.h>
iDt. isupper(iDt c);

20 Description

The 1supper function tests for any upper-cue letter or any or an implementation-
defined set of characters for which none of 1scDtrl, 1sdig1 t., 1sPUDCt., or 1sspace is
true. In the ·C· locale, t suppe r returns true only for the characters defined as upper-
case letters (as defined in §2.2.1).

4.3.1.11 The 1sxd1g1t. (unction
Synopsis

#iDclude <et.ype.h>
30 iDt. 18Xdigit.(1Dt. c);

Description

The isxd1gi t function tests fer any hexadecimal-digit character (u defined in
§3.1.3.2).

4.3.2 Character ease mapping functions
4.3.2.1 The tolowar (unction

40 Synopsis

#1Delude <et.ype.h>
1Dt t.olower(int e);

Description

45 The t.olower function converts an upper-case letter to the corresponding .lower-case
letter.

Returns

It the argument is an upper-case letter, the tolower runction returns the
50 corresponding lower-case letter if there is one; otherwise the argument is returned

unchanged. In the ·C· locale, tolower maps only the characters for which 1supper is
true to the corresponding characters for which islower is true.

§4.3.1.9 January 11, 1988
DRAFT

§4.3.2.1

LIBRARY 105 CHARACTERHANDLD'lG<ctype.h>

5

4.3.2.2 The toupper (unction

SynopBis

#include <ctype.b>
1nt toupper(int c);

Description

The toupper function converts a lower-case letter to the corresponding upper-cue
letter.

ReturnB

If the argument is a lower-case letter, the toupper Cunction returns the
corresponding upper-case letter iC there is one; otherwise the argument is returned
unchanged. In the ·C· locale, toupper maps only the characters Corwhich islower is

15 true to the corresponding characters for which 1supper is true.

§4.3.2.2 January 11, 1988
DRAFT

§4.3.2.2

LIBRARY 106 LOCALIZATION <locale. h>

4.4 LOCALIZATION <locale. h>

5

The header <locale. h> declares two functions, one type, and defines Ileveralmacros.

The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall
contain at least the following members, in any order. The semantics of the memirers and
their normal ranges is explained in §4.4.2.1. In the ·C· locale, the members shall have
the values specified in the comments.

10 char .deciaal_point; /. • • ./
char • thousands_sep; /. •• ./
char .grouping; /. •• ./
char .1nt_curr_symbol; /. •• ./
char .currency_symbol; /. •• ./
char .mon_decimal_point; /. •• ./
char .mon_thousands_sep; /. •• ./
char •• on_group1ng; /. •• ./
char .pos1t1ve_s1gn; /. •• ./

. char -negat1ve_s1gn; /. •• -/
char frac_d1gits; /. CHAR MAX ./
char p_cs_precedes; /. CHAR MAX */
char p_sep_by_space; /. CHAR MAX ./
char n_cs_precedes; /* CHAR MAX ./
char n_sep_by_space; /* CHAR MAX ./
char p_sign_posn; /. CHAR MAX ./
char n_sign_posn; /* CHAR MAX */

The macros defined are NULL (described in §4.1.5); and

15

20

25

LC ALL- .LC COLLATE
30 LC CTYPE

LC MONETARY
LC NUMERIC
LC tIME

which expand to distinct integral constant expressions, suitable for use as the first
35 argument to the setlocale function. Additional macro definitions, beginning with the

characters LC _ and an upper-case letter,l2 may also be specified by the implementation.

4.4.1 Locale control
40 4.4.1.1 The setlocale function

Synopsis

#include <locale.h>
char .setlocale(1nt category, const noalias char *locale);

82. See "future library directions" (§4.13.3).

(

§4.4 . January 11, 1988
DRAFT

§4.4.1.1

LIBRARY 107 LOCALIZATION <loeale. h>

De.eription

The setlocale Cunction selects the appropriate portion oC the program'! locale as
specified by the category and locale arguments. The 89tlc'!.:ale Cunction may be
used to change or query the program's entire current locale or portions thereoC. The

5 value LC_ALL Cor category names the program's entire locale; the other values Cor
category name only a portion oC the program's locale. LC COLLATEaffects the
behavior of the strcoll and strxfrll functions. LC CTYPEaffects the behavior oC the
character handling functions83 and the multibyte fu~tions. LC MONETARYaffects the
monetary formatting information returned by the localeconv function. LC NUMERIC

10 affects the decimal-point character Cor the Cormatted input/output Cunction-; and the
string conversion functions, as well as the non-monetary Cormatting information returned
by the localeconv function. LC_TIMEaffects the behavior oC the strfUlle Cunction.

A value of ·C· Cor locale specifies the minimal environment Cor C translation; a
value of •• for locale specifies the implementation-defined native environment. Other

15 implementation-defined strings may be passed as the second argument to lJetlocale.

At program startup, the equivalent of

setlocale(LC_ALL, ·C·);

is executed.

The implementation shall behave as if no library function calls the setlocale.
20 function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the
lJetlocale function returns the string associated with the specified category Corthe

25 . new locale. If the selection eannc; be honored, the setlocale function returns a null
pointer and the program's locale is not changed.

A null pointer for locale causes the lJetlocale function to return the string
associated with the category for the program's current locale; the program's locale is
not changed.

30 The string returned by the setlocale function is such that a subsequent call with
that string and its associated category will restore that part of the program's locale. The
string returned shall not be modified by the program, but may be overwritten by a
subsequent call to the setlocale function.

35 Forward rererence.: formatted input/output functions (§4.9.6), the multibyte
character functions (§4.10.7), the multibyte string functions (§4.10.8), string conversion
functions (§4.10.1), the strcoll function (§4.1l.4.3), the strft111e function (§4.12.3.5),
the strxfrll function (§4.1l.4.5).

83.The only functions in §4.3whose behavior is not aBectedby the current locale are isdigi t and
isxdigit

§4.4.1.1 January 11, 1988
DRAFT

§4.4.1.1

LmRARY 108 LOCALIZATION <locale. b>

4.4.2 Numeric formatting convention inquiry
4.4.2.1 The localeconv function

5 SYDopsis

#include <locale.b>
struct lconv *localeconv(vo1d);

DescriptioD

10 The localeconv function sets the components of a.n object with type struct
lconv with values appropriate for the formatting of numeric qua.ntities (monetary and
otherwise) according to the rules of the current locale.

The members of the structure with type cbar * are strings, any of which (except
decimal pct nt.) can point to •• , to indicate that the value is not available in the

15 current l;;cale or is of zero length. The members with type cbar are nonnegative
numbers, any of which can be CHAR MAX to indicate that the value is not available in the
current locale. The members includ; the following:

char -decimal_point
The decimal-point character used to format ncn-monerary qua.ntities.

20 char .thousands_sap
The character used to separate groups of digits to the left of the decimal-
point character in formatted non-monetary quantities.

cha.r .group1ng
A string whose elements indicate the size of each group of digits in formatted

25 non-monetary qua.ntities.

char .1nt_curr_syabol
The international currency symbol applicable to the. current locale, left-
justified within a four-eharacter space-padded field. The character sequences
shall be in accordance with those specified in: ISO .£17 Oodu lor the

30 Repruentation 01 Ctlrrenc~ and Fund,.

char .currency_symbol
The local currency symbol applicable to the current locale.

char .mon_decimal_p01nt
The decimal-point used to format monetary quantities.

35 char .1l0D_thousands_sep
The separator for groups of digits to the left of the decimal-point in
formatted monetary quantities.

char .mon grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.40

char .positive sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char .negative_s1gn
45 The string used to indicate a negative-valued formatted monet.ary quantity.

char frac_dig1ts
The number of fractional digits (those to the right of the decimal-point) to be
displayed in a formatted monetary quantity.

§4.4.2 January 11, 1988
DRAFT

§4.4.2.1

LIBRARY 109 LOCALIZATION <loeale .11>

char p_cs~precedes
Set to 1 or 0 ir the currency_symbol respectively precedes or succeeds the
value for a nonnegative rormatted monetary quantity.

char p_sep_by_space
5 . Set to 1 or 0 if the currency _syabol respectively is or is not separated by

a space from the value Ior a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency _symbol respectively precedes or succeeds the
value for a negative Iormatted monetary quantity.

10 char n_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by
a space Irom the value fer a negative formatted monetary quantity.

char p_slgn_posn
Set to a value indicating the positioning or the posltlve_slgn for a

15 . nonnegative Iorrnatt.ed monetary quantity.

char n_slgn_posn
Set to a value indicating the positioning of the negatlve_slgn for a
negative formatted monetar.y quantity. .

The elements or grouping and aon_grouplng are interpreted according to the
20 following:

MAX CHAR No further grouping is to be performed.

o The previous element is to be repeatedly used ror the remainder or the
digits .

25
.The value is the number or digits that comprise the current group. The
next element is examined to determine the size or the next group or digits to
the left of the current group.

The value of p_slgn_posn and n_slgn_posn is interpreted according to the
Iollowing:

other

o Parentheses surround the quantity and currency_symbol.

30 1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

The implementation shall behave as ir no library Iunction calls the localeconv
35 function.

Returns

The localeconv Iunction returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be

40 overwritten by a subsequent call to the localeconv function. In addition, calls to the
setlocale function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may
overWrite the contents of the structure.

Examples

45 The following table illustrates the rules us~d by four countries to format monetary
quantities.

§4.4.2.1 January 11,- 1988
DRAFT

§4.4.2.1

(

LIBRARY

Country

5

Italy
Netherlands
Norway
Switzerland

Positive format

L.1.234
F 1.234,58
kr1.234,58
SFrs.1,234.58

110 LOCALIZATION <locale. h>

Negative format InteJ'l[lational format

-L.1.234 ITL.1.234
F -1.234,58 NLG 1.234,58
kr1.234,58- HOK 1.234,58
SFrs.1,234.58C CHF 1,234.58

For these four countries, the respective values ror the monetary members_or the
structure returned by localeconv are:

10
lnt_curr_sYllbol
currency_symbol
lIon_declmal~polnt
lIon_thousands_sep
mon_group1ng
poS! t1 ve_slgn
negatlve_slgn
frac_d1g1ts
p_cs_precedes
p_sep_by_space
n_cs_precedes
n_sep_by_space
p_slgn_posn
n_slgn_posn

15

20

§4.4.2.1

Italy

-ITL.-
-L. ---- -
-----o
1
o
1
o
1
1

Netherlands Norway

-NLG -
-F-

- -,- -
-HOK -
-kr-
- -.- -

-- ----- ---
2
1
1
1
1
1
4

2
1
o
1
o
1
2

January 11, 1988
DRAFT

Switzerland

-CHF -
-SFrs.-
- -
- -,
---C-
2
1
o
1
o
1
2

§4.4.2.1

LffiRARY 111 MATHEMATICS <.a~h.h>

4.5 MATHEMATICS <ma~h.h>
The header <Ila~h .)1> declares several mathematical (unctions and defines one macro.

The (unctions take double-precision arguments and return double-precision values."
5 Integer arithmetic (unctions and conversion (unctions are discussed later.

The macro defined is

HUGE_VAL

which expands to a positive double expression, not necessarily representable as a floa~.

10 Forward reference.: integer arithmetic (unctions (§•. 10.6), the a~of (unction
(§4.10.1.1), the st.rt.od (unction (§4.l0.1.4).

4.5.1 Treatment of error conditions
The behavior of each of these (unctions is defined (or all representable values of its

15 input arguments. Each (unction shall execute as if it were a single operation, without
generating any externally visible exceptions.

For all functions, a domain error occurs if an input argument is outside the domain
over which the mathematical function is defined. On a domain error, the function
returns an implementation-defined value; the value of the macro EDOM is stored in

20 errno.

Similarly, a range error occurs if the result of the function cannot be represented as a
double value. If the result overflows (the magnitude of the result is so large that it
cannot be represented in an object of the specified type), the function returns the value of
the macro HUGE VAL, with the same sign as the correct value of the function; the value

25 of the macro ERANGE is stored in er rne. If the result underBows (the magnitude of the
result is so small that it cannot be represented in an object of the specified type), the
function returns zero; whether the integer expression er rne acquires the value of the
macro ERANGE is implementation-defined.

30 4.5.2 Trigonometric functions
4.5.2.1 The acos function

35

Synopsis

#1nclude <Ilat.h.h>
double acos(double x);

Description

The acos function computes the principal value of the arc cosine of x. A domain
40 error occurs for arguments not in the range [-1, + IJ.

Return.

The acos function returns the arc cosine in the range [0, 1I'J radians.

84. See "future library directions" (§4.1~4)

§4.5 January 11, 1988
DRAFT

§4.5.2.1

LffiRARY 112 MATIiEMATICS <a&th.h>

4.5.2.2 TJie as1n tunetion

5

Synopsis

#1nclude <aath.h>
double as1n(double x);

Description

The as1n function computes the principal value of the are sine or x. A domain error
OCCUI'S for arguments not in the range [-1, + 1].

Return.

The a81n function returns the are sine in the range l-n/2, + ,,"/2)radians.
4.5.2.3 The a.ta.n function
Synopsis

#1nclude <aath.h>
double atan(double x);

20 Description

The a tan function computes the principal value of the are tangent of x.

Returns

The atan function returns the are tangent in the range [-,,"/2, + ,,"/2] radians.
4.5.2.4 The a.ta.n2 (unction

30

Synopsis

#1nclude <aath.h>
double atan2(double y. double x);

Description

The a tan2 function computes the principal value of the arc tangent of y Ix, using the
signs of both arguments to determine the quadrant of the return value. A domain error

35 occurs if both arguments are zero and y Ix cannot be represented.

Returns

The a tan2 function returns the arc tangent of y Ix, in the range [-7r, +""]radians.
40 4.5.2.5 The COB (unction

Synopsis

#1nclude <a'ath.h>
double cos(double x);

Description

The cos function computes the cosine of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

50 Returns

The cos function returns the cosine value.

§4.5.2.2 January 11, 1988
DRAFT

§4.5.2.5

LmRARY 113 MATIiEMATICS <aath. h>

4.5.2.6 The Bin function

Synopsis

#include <math.h>
double sin (double x);5

Description

The sin function computes the sine of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns

The sin function returns the sine value.

4.5.2.7 The ta.n function

Synopsis

#include <math.h>
double tan(double x);

20 Description

The tan function returns the tangent of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns

25 The tan function returns the tangent value.

4.5.3 Hyperbolic functions
4.5.3.1 The cosh function

Synopsis

#include <math.h>
double cosh(double x);

35 Description

The cosh funetion computes the hyperbolic cosine or x. A range error occurs if the
magnitude or x is too large.

Returns

40 The cosh function returns the hyperbolic cosine value.

4.5.3.2 The sinh f~nction

Synopsis

#include <math.h>
double sinh(double x);

Description

The s1nh function computes the hyperbolic sine of x. A range error occurs if the
50 magnitude or x is too large.

Returns

45

The s1nh function returns the hyperbolic sine value.

§4.5.2.6 January 11, 1988
DRAFT

§4.5.3.2

LIBRARY 114 MATHEMATICS <aath. h>

--
4.5.3.3 The tanh function
Synopsis

#1nclude <aath.h>
5 double tanh(double x);

Description

The tanh function computes the hyperbolic tangent of x.
10 Returns

The tanh function returns the hyperbolic tangent value.

4.5.4 Exponential and logarithmic functions
15 4.5.4.1 The exp function

Synopsis

#1nclude <aath.h>
double exp(double x);

Description

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

25 RetUl'D.8

. The exp function returns the exponential value.

4.5.4.2 The frexp function
30 Synopsis

#1nclude <aath.h>
double frexp(double value, noallas 1nt *exp);

Description

35 The frexp function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the 1nt object pointed to by expo

Returns

The frexp function returns the value x, such that X is a double with magnitude in
40 the interval [1/2, 1) or zero, and value equals x times 2 raised to the power *exp. If

val ue is zero, both parts of the result are zero.

4.5.4.3 The ldexp function
45 Synopsis

#1nclude <aath.h>
double ldexp(double x, lnt exp);

Description

50 The ldexp function multiplies a floating-point number by an integral power of 2. A
range error may occur.

RetUl'n8
The ldexp function returns the value of x times 2 raised to the power expo

§4.5.3.3 January 11, 1988
DRAFT

§4.5.4.3

LIBRARY 115 MATHEMATICS <aath.h>

(

.-
4.5.4.4 The log function

Synopaia

. #include <math.h>
5 double log(double x);

Description

The log function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero and the logarithm of

10 zero cannot be represented.

Returns

The log function returns the natural logarithm.

15 4.5.4.5 The log10 function

Synopsis

#1nclude <math.h>
double loglO(double x);

Description

The loglO function computes the base-ten logarithm of x. A domain error occurs if
the argument is negative. A range error occurs if the argument is zero and the logarithm
of zero cannot be represented.

Returns

The 1ogl 0 function returns the base-ten logarithm.

4.5.4.6 The mod! function

Synopsis

#1nclude <math.h>
double aod!(double value, noa11as double *1ptr);

35 Description

The mod! function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to by 1ptr.

40 Returns

The mad! function returns the signed fractional part of value.

4.5.5 Power (unctions
45 4.5.5.1 The pow function

Synopsis

#1nclude <aath.h>
double pow (double x. double y);

Description

The pow function computes x raised to the power y. A domain error oceurs if·x is
negative and y is not an integer. A domain error occurs if the result cannot be .
represented when x is zero and y is less than or equal to zero. A range error may occur.

§4.5,4,4 January 11, 1988
DRAFT

§4.5.5.1

LffiRARY 116 MATHEMATICS <aath. h>

Returns

The pOW' function returns the value of z raised to the power y.
4.5.5.2 The sqrttunction

Synopsis

#include <aath.h>
double sqrt(double z);

10 Description

The sqrt function computes the nonnegative square root of z. A domain error occurs
if the argument is negative.

Returns

15 The sqrt function returns the value of the square root.

4.S.6 Nearest integer, absolute value, and remainder functions
4.5.6.1 The ceil function

Synopsis

#lnclude <math.h>
double cell(double z);

25 Description

The ceil function computes the smallest integral value not less than x.

Returns

The ceil function returns the smallest integral value not less than z, expressed &S a
30 double.

4.5.6.2 The fa.bs function

Synopsis

35 #include <math.h>
double fabs(double z);

Description

The fabs function computes the absolute value of a floating-point number z.

Returns

The fabs function returns the absolute value of x .

4.5.6.3 The floor function

(

Synopsis

#include <aath.h>
double floor(double z);

50 Description

The floor function computes the largest integer not greater than z.

Returns

The floor function returns the largest integer not greater than x, expressed as a
55 double.

§4.5.5.1 January 11, 1988
DRAFT

§4.5.6.3

LIBRARY 117 MATHEMATICS <.ath. h>

--
4.5.6.4 The fmod fUDction
SYDopsis

#1nclude <.~tb.b>
double r.od(double x. double y);

Descl'iptioD

rhe r.od function computes the Boating-point remainder of x/yo

ID Retul'DS

5

The f.od function returns the value X - i. y, for some integer i such that, if y is
nonzero, the result has the same sign as X and magnitude less than the magnitude of y.
If Y is zero, whether a domain error occurs or the f.od function returns sero is
implementation-defined.

§4.5.6.4 January 11, 1988
DRAFT

§4.5.6.4

LIDRARY 118 NON-LOCAL JUMPS <aetjap. h>

4.6 NON-LOCAL JUMPS <setjmp.h>
The header <aetj lip, h> defines the macro setj liP, and declares one (unction and

one type, (or bypassing the normal (unction call and return discipline.86

5 The tyPe declared is

jap_buf

which is an array type suitable (or holding the information needed to restore a-calling
environment.

The setjlllp macro shall be implemented as a macro, not as an actual (unction. II the
10 macro definition is suppressed in order to access an actual (unction, the behavior is

undefined.

4.6.1 Save calling environment
15 4.6.1.1 The setjmp macro

Synopsis

#include <aetjllp.h>
int set j lip (jllp_buf env);

Deseription

The set j IIlpmacro saves its calling environment in its j lip_buf argument (or later
use by the longj IIlp(unction.

25 Returns

II the return is (rom a direct invocation, the setjllp macro returns the value zero. II
the return is (rom a call to the longjlllp (unction, the. setjllp macro returns a nonzero
value,

30 Environmental eonstraint

An invocation o(the setjllp macro shall appear only in one o(the following contexts:

• the entire controlling expression o(a selection or iteration statement;

• one operand of a relational or equality operator with the other operand an integral
constant expression, with the resulting expression being the entire controlling

35 expression of a selection or iteration statement;

• the operand o(a unary t operator with the' resulting expression being the entire
controlling expressicnof a selection or iteration statement; or

• the entire expressicn of an expression statement (possibly cast to VOid).

85. These functions are useful for dealingwith unusual conditionsencountered in a low-levelfunction of a
program. .

§4.6 January 11, 1988
DRAFT

§4.6.1.1

LmRARY 119 NON-LOCAL JUMPS <•• tjap.h>

4.6.2 Re-store calling environment
4.ft.2.l The longj mpfunction

5 Synopaia

#include <setjmp.b>
vo1d longjmp(jmp_bUf env, int val);

Description

10 The longj mp function restores the environment saved by the most recent invocation
of the setjllp macro in the same invocation of the program, with the corresponding
j mp_buf argument. II there has been no such invocation, or if the function containing
the invocation of the setj.p macro has terminated execution" in the interim, the
behavior is undefined.

15 All accessible objects have values as of the time longj lip was called, except that the
values of objects of automatic storage duration that do not have volatile type and
have been changed between the setjllp invocation and longjmp call are indeterminate.

As it bypasses the usual function call and return mechanisms, the longjllp function
shall execute correctly in contexts of interrupts, signals and any of their associated

20 functions. However, if the longjmp function is invoked from a nested signal handler
(that is, from a function invoked as a result of a signal raised during the handling of
another signal), the behavior is undefined.

Returns

25 Arter longjllp is completed, program execution continues as if the corresponding
invocation of the set j lip macro had just returned the value specified by val. The
longjmp function cannot cause the setjllp macro to return the value 0; if val is 0, the
setjllp macro returns the value 1.

86. For example, by executing a return statement or because another longjllp call has caused a
transfer to a setj mpinvocationin a Iunction earlier In the set of nested calls.

§4.6.2 January 11, 1988
DRAFT

§4.6.2.1

LIDRARY 120 SIGNAL HANDLING <slgnal . h>

4.7 SIGNAL HANDLING <signal. h>
The header <slgnal. h> declares & type and two functions and defines several

macros, tor handling various ligna/, (conditions that may be reported during J>rogra.m
5 _ execution).

The type defined is

s1g_ato.1c_t

which is the integral type ot an object that can be accessed as an atomic entity, even in
the presence of asynchronous interrupts.

10 The macros defined are

SIG DFL
SIG ERR
SIG IGN

which expand to distinct constant expressions that have type compatible with the second
15 argument to and the return value of the slgnal function, and whose value compares

unequal to the address ot any declarable function; and the following, each of which
expands to a positive integral constant expression that is the signal number
corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

20 SIGFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SIGILL detection of an invalid function image, such as an illegal instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

25 SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as & result of
explicit calls to the ra1se function. Additional signals and pointers to undeclarable
functions, with macro definitions beginning, respectively, with the letters SIG and an
upper-case letter or with SIG and an upper-case letter,87 may also be specified by the

30 implementation. The complet-; set of signals, their semantics, and their default handling
is implementation-defined; all signal values shall be positive.

4.7.1 Specify signal handling
35 4.7.1.1 The s1gn~1 function

Synopsis

#1nclude <s1gnal.h>
v01d (*s1gnal(1nt slg. vold (*func) (1nt))) (1nt);

87. See "future library directions" (§413.5). The names of the signal numbers reflect the following terms
(respectively) abort, floating-point exception, illegal instruction, interrupt, segmentation Violation,
and termination.

§4.7 January 11, 1988
DRA.FT

§4.7.1.1

LIBRARY 121 SIGNAL HANDLING <signal. h>

Description

The ~1gna.1 'unction chooses one of three ways in which receipt of the signal number
sig is to be subsequently handled. If the value of rune is SIG_DFL, default handling for
that signal will occur. If the value of func is SIG IGH, the signal will be ignored.

5 Otherwise, func shall point to a function to "be called when that signal occurs. Such a
function is called a ,i,n/lilaandier. "

When a signal occurs, if func points to a function, first the equivalent of
signal (slg, SIG_DFl.); is executed or an implementation-defined blocking of the
signal is performed. (If the value of Slg is SIGILL, whether the reset to SIG DFL

10 occurs is implementation-defined.) Next the equivalent of (-func) (slg); is exec~ted.
The function func may terminate by executing a return statement or by calling the
abort, exi t, or longj lip function. If func executes a return statement and the value
of sig was SIGFPE or any other implementation-defined value corresponding to a
computational exception, the behavior is undefined. Otherwise, the program will resume

15 execution at the point it was interrupted.

If the signal occurs other than as the result of calling the abort or raise function,
the behavior is undefined if the signal handler calls any function in the standard library
other than the Signal function itself or refers to any object with static storage duration
other than by assigning a value to a static storage duration variable of"type volat1le

20 Big_atollic_t. Furthermore, if such a call to the 8ignal function results in a
SIG_ERR return, the value or errno is indeterminate.

At program startup, the equivalent of

Blgnal(sig. SIG_IGH);

may be executed for some signals selected in an implementation-defined manner; the
25 equivalent of

signal(s1g. SIG_DFl.);

is executed for all other signals defined by the implementation.

The implementation shall behave as if no library function calls the Ugnal function.

30 Returns

If the request can be honored, the 8ignal function returns the value of func for the
previous call to B1gnal for the specified signal B1g. Otherwise, a value of SIG_ERR is
returned and a positive value is stored in errno.

35 Forward references: the abort function (§4.10.4.1).

4.7.2 Send signal .
4.7.2.1 The ra.ise funetion

Synopsis

#1nclude <signal.h>
int ralse(int sig);

45 Deseription

The raise function sends the signal s1g to the executing program.

RetUJ'DII

The raise function returns zero if successful, nonzero if unsuecessful.
50

§4.7.1.1 January 11, 1988
DRAFT

§4.7.2.1

LIBRARY 122 VARIABLEARGUMENTS <stdarg. h>

4.8 VARIABLEARGUMENTS <stdarg. h>
The header <stdarg. h> declares a type and defines three macros, (or advancing

through a list or arguments whose number and types are not known to the called runction
5 when it is translated.

A (unction may be called with a variable number or arguments o(varying types. As
described in §3.7.1, its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will be designated parmN in
this description.

10 The type declared is

va list

which is a type suitable (or holding information needed by the macros va_start,
va_arg, and va_end. The called (unction shall declare an object [referred to as ap in
this section) having type va_l1st. The object ap may be passed as an argument to

15 another (unction; i(that runction invokes the va_arg macro with parameter ap, the
value o(ap in the calling (unction is indeterminate and shall be passed to the va end
macro prior to any further reference to ap. -

4.8.1 Variable argument list access macros
20 The va_start, va_arg, and va_end macros described in this section shall be

implemented as macros, not as actual (unctions. U a macro definition is suppressed in
order to access an actual (unction, the behavior is undefined.

4.8.1.1 The va start macro
Synopsis

#1nclude <stdarg.h>
vo1d va_start(va_11st ap. pannAO;

30 De.criptioD

The va_start macro shall be executed before any access to the unnamed arguments.

The va_start macro initializes ap (or subsequent use by va_arg and va_end.

The parameter parmN is the identifier o(the rightmost parameter in the variable
parameter list in the (unction definition (the one just before the •...). U the parameter

35 pannN is declared with the reg1ster storage class, with a (unction or array type, or
with a type that is not compatible with the type that results after application of the
default argument promotions, the behavior is undefined.

ReturDa

40 The va_start macro returns no value.

4.8.1.2 The v&_&rg ma.cro
Synopsis

45 #1nclude <stdarg.h>
trpe va_arg(va_11st ap, trpe);

Description

The va_arg macro expands to an expression that has the type and value or the next
50 argument in the call. The parameter ap shall be the same as the va_list ap initialized

by va start. Each invocation or va arg modifies ap so that the values or successive
argum-;nts are returned in turn. The parameter type is a type name specified such that
the type or a pointer to an object that has the specified type can be obtained simply by

§4.8 January 11, 1988
DRAFT

§4.8.1.2

LIBRARY 123 VARIABLEARGUMENTS <8t.darg. h>

postfixing a '* to t,,,e. Ir there is no actual next argument, or it t,,,e is not compatible
with the type of the actual next argument (as promoted according to the deCault
argument)romotions), the behavior is undefined.

5 ReturlUl

The first invocation oC the va_arg macro alter that oC the va_8t.art. macro returns
the value of the argument after that specified by "armN. Successive invocations return
the values oC the remaining arguments in succession.

10 4.8.1.3 The va end macro

Synopsis

#lnclude <stdarg.b>
vold va_end(va_llst ap);

Deseription

The va end macro facilitates a normal return from the Cunction whose variable
argument li'it was referred to by the expansion of va_start that initialized the va_llst
ap. The va_end macro may modify ap so that it is no longer usable (without an

20 intervening invocation of va start). Ir there is no corresponding invocation of the
va_start macro, or if the va--=,endmacro is not invoked before the return, the behavior
is undefined.

Returns

25 The va end macro returns no value.

Example

The function f1 gathers into an array a list of arguments that are pointers to strings
(but not more t!lan MAXARGSarguments), then passes the array as a single argument to

30 function f2. The number oC pointers is specified by the first argument to f1.

#lnclude <stdarg.b>
#deflne MAXARGS 31

vold fl(lnt n_ptrs •...)
{

35 va l1st ap;
cbar *array[MAXARGS];
lnt ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va start(ap. n ptrs);
whIle (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap. cbar *);
va end(ap);
f2(n_ptrs. array);

40

45 }

Each call to f 1shall have visible the definition of the function or a declaration such as

void f1 (int. . ..);

§4.8.1.2 January 11, 1988
DRAFT

§4.8.1.3

LmRARY 124 INPUT/OUTPUT <stcUo . h>

4.0 INPUT jOUTPUT (std10. h>
(4.0.1 Introduction

5 The header <std10. b> declares three types, several macros, and many runctions ror
performing input and output.

The types declared are 81ze ~ t (described in §4.1.5);

FILE
which is an object type capable or recording all the inrormation needed to control a

10 stream, such as its file position indicator, a pointer: to its associated buffer, and indicators
to record whether a read/write error has occurred and whether end-or-file haa been
reached; and

fpos_t

which is an object type capable or recording all the information needed to specify
15 uniquely every position within a file.

The macros are NULL(described in §4.1.5);

IOFBF
IOLBF
IONBF

20 which expand to distinct integral constant expressions, suitable for use as the third
argument to the setvbuf Iunction;

BUFSIZ
which expands to an integral constant expression, which is the size or the buffer used by

(the setbuf runction;

25 EOF
which expands to a negative integral constant expression that is returned by several
functions to indicate end-of-file, that is, no more input from a stream;

FOPEN MAX
which expands to an integral constant expression that is the minimum number or files

30 that the implementation guarantees can be open simultaneously;

FILENAME MAX
which expands to an integral constant expression that is the maximum length Ior a file
name string that the implementation guarantees can be opened;

L_tapnu

35 which expands to an integral constant expression that is the size or a character array
large enough to hold a temporary file name string generated by the tapna.. Iunetion:

SEEK CUR
SEEK END
SEEK_SET

40 which expand to distinct integral constant expressions, suitable for use as the third
argument to the fseek function:

TMP MAX
which expands to an integral constant expression that is the minimum number or unique
file names that shall be generated by the tapna.. function;

§~.9 January 11, 1988
DRAFT

§4.9.!

LIDRARY 125 INPUT jOUTPUT <.t.410 .h>

atCSerr
atCS1D
atCSout

which are expressions of type "pointer to FILE" that point to the FILE objects
5 associated, respectively, with the standard error, input, and output streams.

Forward references: files (§4.9.3), the faeele function (§4.9.9.2), streams (§4.9.2), the
t.pDa. function (§4.9.4.4).

10 4.0.2 Streams·
Input and output, whether to or from physical devices such as terminals and tape

drives, or whether to or from files supported on structured storage devices, are mapped
into logical data ,tream" whose properties are more uniform than their diverse sources
and sinks. Two forms of mapping are supported, for tezt dream, and for 6inca,.,

15 ,tream,.88

A text stream is an ordered sequence of characters composed into linu, each line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires a terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and output to conform to differing

20 conventions for representing text in the host environment. Thus, there need not be a
one-to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the
data that were earlier writttll out to tha.t stream only if: the data consist only of
printable characters and the control characters horizontal tab and new-line; no new-line

25 character is immediately preceded by apace characters; and the IMt character is a new-
line character. Whether space characters that are written out immediately before a new-
line character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that

30 were earlier written out to that stream, under the same implementation. Such a stream
may, however, have an implementation-defined number of NUL characters appended.

Environmental limite

An implementation shall support text files with lines cont&lnlng at Ieast 254
35 characters, including the terminating new-line character. The value of the macro BUFSIZ

shall be at least 256.

4.9.3 Files
A stream is associated with an external file (which may be a physical device) by

40 opening a file, which may involve ereating a new file. Creating an existing file causes its
former contents to be discarded, if necessary, so that it appears as if newly created. If a
file can support positioning requests (such as a disk file, as opposed to a terminal), then a
file po,ition indieator88 associated with the stream is positioned at the start (character
number zero) of the file, unless the file is opened with append mode in which case it is

45 implementation-defined whether the file position indicator is positioned at the beginning

88. An implementation need not disting\1ishbetween text streams and binary streams. In such an
implementation. there need be no new-line characters in a text stream nor any limit to the length of a
line.

811. This is described in the Base Document as a file pointer. That term is not used in this Standard to
avoid confusionwith a pointer to an object that has type FlU

§4.9.1 January 11, 1988
DRAFT

§4.9.3

LIDRARY 126 INPUT jOUTPUT <8t.c110. h>

or the end or the file. The file position indicator is maintained by subsequent reads,
writes, and positioning requests, to racilitate an orderly progression through the file. All
input takes place as ir characters were read by successive calls to the fget.c: Cunction; all
output takes place as ir characters were written by successive calls to the fput.c: function.

5 Binary files are not truncated, except as defined in §4.9.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

(

When a stream is tlnhffered, characters are intended to appear frem the source or at
the destination as soon as possible, Otherwise characters may be accumulated and

10 transmitted to or from the host environment as a block. When a stream is /_11, hffered',
characters are transmitted to or rrom the host environment as a block when a buffer is
filled. When a stream is line hffered, characters are intended to be transmitted to or
from the host environment as a block when a new-line character is encountered, when a
buffer is filled, or when input is requested on any line buffered or unbuffered stream.

15 Support ror these characteristics is implementation-defined, and may be affected via the
8etbuf and 8etvbuf runctions.

A file may be disassociated Irom its controlling stream by elo.ing the file. Output
streams are Bushed (any unwritten buffer contents are transmitted to the host
environment) before the stream is disassociated rrom the file. Whether a file or zero

20 length (on which no characters have been written by an output stream) actually exists is
implementation-defined.

The file may be subsequently reopened, by the same or another program execution,
and its contents reclaimed or modified [if it can be repositioned at its start). IIthe .a1n
runction returns to its original caller, or ir the 8x1 t runction is called, all open files are

25 closed (hence all output streams are Bushed) before program termination. Other paths to
program termination, such as calling the abort. runction, need not close all files properly.

The address or the FILE object used to control a streaIlJ may be significant; a copy or
a FILE object may not necessarily serve in place or the original.

At program startup, three text streams are predefined and need not be opened
30 explicitly - dandard input (for reading conventional input), .tandard output [Ior writing

conventional output), and .tandard error (ror writing diagnostic output). When opened,
the standard error stream is not rully buffered; the standard input and standard output
streams are fully buffered ir and only ir the stream can be determined not to refer to an
interactive device.

35 Functions that open additional (nontemporary) files require a file name, which is a
string. The rules fer composing valid file names are implementation-defined. Whether
the same file can be simultaneously open multiple times is also implementation-defined.

Environmental limit.

40 The value or the macro FOPEN_MAXshall be at least eight, including the three
standard text streams.

Forward references: the 8x1 t function (§4.10.4.3), the fgetc: function (§4.9.7.1), the
fputc: runction (§4.9.7.3), the 88tbuf Iunetion (§4.9.5.5), the 88t.vbuf function

45 (§4.9.5.6).

§4.9.3 January 11, 1988
DRAF'T

§4.9.3

LIBRARY 127 INPUT jOUTPUT <.t410 .b>

(

4.g.4 Operations on files
4.9.4.1 The remove funetdon

5 Synopsis

#1nclude <std10.b>
1nt remove(const noa11as cbar .f11ename);

Description

10 The remove function causes the file whose name is the string pointed to by
filename to be no longer accessible by that name. A subsequent attempt to open that
file using that name will fail, unless it is created anew. If the file is open, the behavior oC
the remove function is implementation-defined.

15 Returns

The remove function returns zero if the operation succeeds, nonzero if it Cails.

4.9.4.2 The rena.me function

20 SYDopsis

#1nclude <std10.b>
1nt rename(const noa11as cbar .old, const noa11as cbar .new);

Description

25 The rename function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed to by new. The file named
old is effectively removed. If a file named by the string pointed to by new exists prior to
the call to the rename function, the behavior is implementation-defined.

30 ReturDS

The rename function returns zero if the operation succeeds, nonzero if it fails,to in
which case ·if the file existed previously it is still known by its original name.

4.9.4.3 The tmpf11e function

Synopsis

#1nclude <std10.b>
FILE .tmpf11e(vo1d);

40 DescriptioD

The tapUle function creates a temporary binary file that will automatically be
removed when it is closed or at program termination. If the program terminates
abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with ·wb+· mode.

Returns

The tmpf 11e function returns a pointer to the stream of the file that it created. If
the file cannot be created, the tapf11e function returns a null pointer.

QO.Among the reasons the implementationmay cause the renlLllle function to fail are that the file is
openor that it is necessaryto copy its contents to effectuateits renaming. .

§4.9.4 January 11, 1988
DRAFT

§4.9.4.3

LIBRARY 128 INPUT jOUTPUT <.tc1!o . h>

Forward referenees: the fopen function (§4.9.5.3).

4.9.4.4 The tmpna.mfunction

5 Synopsis

#lnclude <stdl0.h>
char .t.pna.(noallas char ••);

Description

10 The tapna.. function generates a string that is not the same as the name of an
existing file.81

The tllpna.. function generates a different string each time it is called, up to
TMP MAX times. If it is called more than TMP MAX times, the behavior is
impj;mentation-defined.

15 The implementation shall behave as if no library function calls the tmpnaa function.

Returns

If the argument is a null pointer, the t.pnam function leaves its result in an internal
static object and returns a pointer to that object. Subsequent calls to the tmpnaa

20 . function may modify the same object. If the argument is not a null pointer, it is &IIsumed
to point to an array of at least L_ t.pnaa characters; the tllpnaa function writes its
result in that array and returns the argument &IIits value.

Environmental limits

25 The value of the macro TMP MAX shall be at least 25.

4.0.5 File access functions
4.9.5.1 The fclose tunet.ion

Synopli,

#lnclude <stdl0.h>
lnt fclose(FILE .stream);

35 Description

The fclose function causes the stream pointed to by streu to be Bushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to
the host environment to be written to the file; any unread buffered data are discarded.
The stream is disassociated from the file. If the assoeiated buffer W&IIautomatically

40 allocated, it is deallocated.

Returns

The fclose function returns zero if the stream was successfully closed, or EOF if any
errors were detected or if the stream was already closed.

si. Files created using strings generated by the tmpnam function are temporary only in the sense tha.t
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use the remove function to remove such files when their use is
ended, and before program termination.

§4.9.4.3 January 11, 1988
DRAFT

§4.9.5.1

LIBRARY 129 INPUT/OUTPUT <sWi0 .h>

4.9.5.2 The fflush function

Synopsis

#include <&tdi0.h>
int fflusb(FILE .&treaa);

Description

If stream points to an output stream or an update stream in which the most recent
operation was output, the fflusb function causes any unwritten data for that stream to

10 be delivered to the host environment to be written to the file; otherwise, the behavior is
undefined.

5

Returns

The fflusb function returns EOFif a write error occurs, otherwise zero.

Forward references: the ungetc function (§4.9.7.11).

4.9.5.3 The fopen function

20 Synopsis

#include <stdi0.b>
FILE *fopen(const noalia& cbar .filename,

const noa11as cbar •• ode);

25 Deseription

The fopen function opens the file whose name is the string pointed to by filenue,
and associates a stream with it.

The argument .ode points to a string beginning with one or the following sequences:t2

• r· open text file for reading
30 ·w· create text file for writing, or truncate to zero length

• a· append; open or create text file Ior writing at end-of-file
• rb· open binary file for reading
•wb· create binary file for writing, or truncate to zero length
• ab· append; open or create binary file ror writing at end-or-file

35 ·r .•.• open text file for update (reading and writing)
·w.•.• create text file for update, or truncate to zero length
• a .•.• append; open or create text file for update, writing at end-of-file
·r"'b· or ·rb+· open binary file for update (reading and writing)
·w"'b· or ·wb .•.• create binary file for update, or truncate to zero length

40 • a"'b· or • ab .•.• append; open or create binary file fer update, writing at end-or-file

Opening a file with read mode (' t:' as the first character in the .ode argument) rails
if the file does not exist or cannot be read.

Opening a file with append mode (' a' as the first character in the .ode argument)
causes all subsequent writes to the file to be forced to the then current end-or-file,

45 regardless of intervening calls to the fleek function. In some implementations, opening
a binary file with append mode (' b' as the second or third character in the .ode
argument) may initially position the file position indicator for the stream beyond the last
data~ritten, because or NUL padding.

92.Additionalcharactersmay followthese sequences.

(

4.9.5.2 January 11, 1988
DRAFT

§4.9.5.3

LffiRARY 130 INPUT/OUTPUT <std10 .h>

When a file is opened with update mode (' +' as the second or third character in the
.ode argument), both input and output may be performed on the associated stream.
However, output may not be directly followed by input without an intervening call to the
fflush function or to a file positioning function (fseek, fsetpos, or rew1nd), and

5 input may not be directly' followed by output without an intervening call to a file
positioning function, unless the input operation encounters end-of-file. Opening a file
with update mode may open or create a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer
to an interactive device.

Returns

The fopen function returns a pointer to the object controlling the stream. It the
open operation fails, fopen returns a null pointer.

15 Forward references: file positioning functions (§4.9.9).

4.9.5.4 The freopen function

Synopsis

20 #1nclude <std10.h>
FILE .freopen(const noa11a8 char .f1lename.

const noa11as char •• ode. FILE -streaa);

(

Description

25 The freopen function opens the file whose name is the string pointed to by
f1lena.me and associates the stream pointed to by stream with it. The 1I0de argument
is used just as in the fopen function.83

The freopen function first attempts to close any file ~hat may be associated with the
specified stream. Failure to close the file successfully is ignored.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen returns the value of streaa.

35 4.9.5.5 The setbuf function

Synopsis

#1nclude <std10.h>
v01d setbuf(FILE -streaa, noa11as cha.r .buf);

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf
function invoked with the values _IOFBF for aode and BUFSIZ for size, or (if buf is a
null pointer), with the value IONBFfor aode.

Returns

The setbuf function returns no value.

g3. The primary use of the freopen function is to change the file associated with a standard text stream
(stC1err. stc1in. or stc1out). as those identifiers need not be modifiable Ivalues to which the value
returned by the fopen function may be assigned.

(

§4.9.5.3 January 11, 1988
DRAFT

§4.9.5.5

LIBRARY 131 INPUT/OUTPUT <.t.41o·. 11>

Forward reference.: the •• tvbuf function (§4.9.5.6).

4.9.5.8 The setvbuf function

5 Synop.i.

#1nclude <std10.h>
1nt setvbuf(FILE .streaa, noal1as char .buf, 1nt aode,

size t size);

(

10 Description

The setvbuf function may be used af'ter the stream pointed to by strea. hu been
associated with an open file but before it is read or written. The argument aode
determines how stream will be buffered, as follows: _IOFBF causes input/output to be
fully buffered; _IOLBF causes output to be line buffered; _IONBF causes input/output to

15 be unbuffered. If buf is not a null pointer, the array it points to may be used instead of
a buffer allocated by the setvbuf function.e4 The argument size specifies the size of
the array. The contents of the array at any time are indeterminate.

Returns

20 The setvbuf funetion returns zero on success, or nonzero if an invalid value is given
for lIode or if the request cannot be honored ..

4.g.6 Formatted input/output (unctions
25 4.9.6.1 The fprlntf runction

Synopsis

#include <stdi0.h>
int fprintf(FILE .stream, const noal1as char .for.at, ...);

Description

The fpr1ntf function writes output to the stream pointed to by .treul, under
control of the string pointed to by foraat that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is

35 undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The fpr1ntf function returns when the end of the
format string is encountered. .

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte

40 characters (not I), which are copied unchanged to the output stream; and conversion
specifications, each of whieh results in fetching zero or more subsequent arguments. Each
conversion specification' is introduced by the character I. After the I, the following
appear in sequence:

• Zero or more flol' that modify the meaning of the conversion speeification.

45 • An optional decimal integer specifying a minimum field width.lI11 If the converted
value has fewer characters than the field width, it will be padded with spaces on the
left (or right, if the left adjustment Bag, described later, has been given) to the field
width.

g4. The buffer must have a lifetime at least as great as the open stream, !IO the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit

gs. Note that 0 is taken as a Bag, not as the beginning of a field width.

(

§4.9.5.5 January 11, 1988.
DRAFT

§4.9.6.1

LIBRARY 132 INPUT/OUTPUT <8t.d10. h>

• An optional pree"'oft that gives the minimum number ot digits to appear tor the d. 1.
e, U, %. and X conversions, the number ot digits to appear after the decimal-point
character tor e, E, and f conversions, the maximum number ot significant digits tor
the g and G conversions, or the maximum number ot characters to be written trom a

5 string in s conversion. The precision takes the form or a period (.) tollowed by an
optional decimal integer; it the integer is omitted, it is treated as zero.

• An optional h specifying that a following d, 1. 0, U, %, or X conversion specifiet:...applies
to a short. 1nt. or uns1gned short. 1nt. argument (the argument will have been
promoted according to the integral promotions, and its value shall be converted to

10 short 1nt. or uns1gned short 1nt. before printing); an optional h specifying that a
tollowing n conversion specifier applies to a pointer to a ahort. 1nt. argument; an
optional 1 specirying that a following d. 1,0, u, %, or X conversion specifier applies to
a long 1nt. or uns1gned long 1nt. argument; an optional 1 specifying that a
following n conversion specifier applies to a pointer toa long 1nt. argument; or an

15 optional L specifying that a Iollowing e, E, f, g. or G conversion specifier applies to a
long ,c1ouble argument. If an h, 1, or L appears with any other conversion specifier,
the behavior is undefined.

• A character that specifies the type or conversion to be applied.

A field width or precision, or bosh, may be indicated by an asterisk * instead or a digit
20 string. Ita this case, an 1nt argument supplies the field width or precision. The

arguments specifying field width or precision, or both, shall appear (in that order) before
the argument [if any) to be converted. A negative field width argument is taken as a -
Bag followed by a positive field width. A negative precision argument is taken as ir it
were missing.

25 The Bag characters and their meanings are

The result ot the conversion will be left-just.ified within the field.

+ The result or a signed conversion will always begin with a plus or minus sign.

,paee If the first character or a signed conversion is not a sign, a space will be prepended
to the result. If the ,paee and + Bags both appear, the 'pllee flag will be ignored.

30 # The result is to be converted to an "alternate form." For 0 conversion, it
increases the precision to force the first digit of the result to be a sere.: For % (or
X) conversion, a nonzero result will have 0% (or OX) prepended to it. For e, E, f,
g, JLDdG conversions, the result will always contain a decimal-point character,
even if no digits Iollow it (normally, a decimal-point character appears in the
result of these conversions only if a digit follows it). For g and G conversions,
trailing zeros will not be removed from the result. For other conversions, the
behavior is und-efined.

For d, 1, 0, U, x, X, e, E, f, g, and G conversions, leading zeros (rollowing any
indication or sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag will be ignored. For d, 1,
0, u, z, and X conversions, if a precision is specified, the 0 flag will be ignored.
For other conversions, the behavior is undefined.

The conversion specifiers and their meanings are

d .1.0. u,Z. X The 1n t argument is converted to signed decimal (d or 1), unsigned octal
45 (0), unsigned decimal (u), or unsigned hexadecimal notation (% or X); the

letters abcdef are used ror % conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number ot digits to
appeal"; if the value being converted can be represented in fewer digits, it
~':!1L,. -::.::pandedwith leading zeros. The default precision is 1. The

o

35

40

§4.9.6.1 January 11, 1988
DRAFT

§4.9.6.1

LmRARY 133 INPUT jOUTPUT <8t410 •h>

e,E

result of converting a zero value with an explicit preeisien of sero ia no
characters.

The double argument is converted to decimal notation ill the style
/-Jddd.ddd, where the number of digits after the decimal.,.point character
is equal to the precision specification. If the precision ia missing, it ia
taken as 6; if the precision ia explicitly sero, no decimal-point character
appears. If a decimal-point character appears, at least one digit appears
before it. The value is rounded to the appropriate number oC digits.

The double argument ia converted in the style f-Jd.ddde± dd, where
there is one digit before the decimal-point character (which ia nonsero if
the argument is nensero] and the number of digits after it ia equal to the
precision; if the precision is missing, it is taken as 6; if the preciaion is
zero, no decimal-point character appears. The value is rounded to the
appropriate number of digits. The E conversion specifier will produce a
number with E instead of e introducing the exponent. The exponent
always contains at least two digits. If the value is sere, the exponent is
zero.

f

5

10

15

s

The double argument ia converted in style f or • (or in style E in the
case of a G conversion specifier), with the precision specifying the number
of significant digits. If an explicit precision ia sere, it ia taken as 1. The
style used depends on the value converted; style e will be used only if the
exponent resulting from sueh a eonversion is less than -c or greater than
or equal to the precision, Trailing zeros are removed from the fractional
portion of the result; a decimal-point character appears only if it is
followed by a digit.

The lnt argument is converted to an unslgned cb&r, and the resulting
character is written. ..

The argument shall be a pointer to an array of characters. Characters
from the array are writt-en up to (but not including) a terminating null
character; iCthe precision is specified, no more than that many characters
are written. If the precision is not specified or is greater than the size of
the array, the array shall contain a null character.

The argument shall be a pointer to void. The value of the pointer is
converted to a sequence oC printable characters, in an implementation-
defined manner.

The argument shall be a pointer to an integer into which is V1ritteft the
number of characters written to the output stream so far by this call to
fpr1nt·f. No argument is converted.

A " is written. No argument is converted. The complete conversion
specification shall be "".

If a conversion specification is invalid, the behavior is undefined.eo

g.G
20

25
('

30

p

35

n

40

If any argument is, or points to, a union or an aggregate (except Cor an array of
characters using "S conversion, or a pointer cast to be a pointer to void using "p
conversion), the behavior is undefined.

116. See "future library directions" (§4.13.6).

(

§4.9.6.1 January 11, 1988
DRAFT

§4.9.6.1

LIBRARY 134 INPUT /QUTPUT <8t.di0 .h>

In no cue does a nonexistent or small field width cause truncation or a field; it the
result or a conversion is wider than the field width, the field is expanded to contain the
conversion result.

5 ReturDa

The fprintf function returns the number or characters transmitted, or a negative
value it an output error occurred.

Environmental limit

10 The minimum value ror the maximum number or characters produced by any single
conversion shall be at least 509.

Examples

To print a date and time in the rorm "Sunday, July 3, 10:02," where weekday and
15 1II0nt.hare pointers to strings:

#1nclude <st.di0.h>
fprint.f(st.dOUt., -Is, Is Id, 1.2d:I.2d\n-,

weekday, month, day, hour, m1n);

To print 7T to five decimal places:

20 #include <mat.h.h>
#include <st.d10.h>
fprint.f(st.doUt., -p1 = 1.5f\n-, 4 • atan(1.0»;

4.9.6.2 The !scan! function
Synopsis

#incl~de <st.d10.h>
1nt.· fscanf(FILE .st.reaa. const. noa11as char .format. •...);

30 Delcription
The fscanf Iunetion reads input from the stream pointed to by stream, under

control of the string pointed to by format that specifies the admissible input sequences
and how they are to be converted for assignment, using subsequent arguments as pointers
to the objects to receive the converted input. It there are insufficient arguments for the

35 format, the behavior is undefined. It the format is exhausted while arguments remain,
the excess arguments are evaluated but otherwise ignored.

The rormat shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed or zero or more directives: one or more white-space
characters; an ordinary multibyte character (not I); or a conversion specification. Each

40 conversion specification is introduced by the character I. Arter the I, the following
appear in sequence:

- An optional assignment-suppressing character •.

• An optional decimal integer that specifies the maximum field width .

• An optional h, 1 or L indicating the size or the receiving object. The conversion
45 specifiers d, 1, n, 0, and X may be preceded by h to indicate that the corresponding

argument is a pointer to short 1nt. rather than a pointer to 1nt, or by 1 to indicate
that it is a pointer to long 1nt. Similarly, the conversion specifier u may be
preceded by h to indicate that the corresponding argument is a pointer to unsigned
short. 1nt. rather than a pointer to uns1gned mt; or by 1to indicate that it is a

50 pointer to unS1gMd long 1nt. Finally, the conversion specifiers e, f, and g may be
preceded by 1 to i.n,1icate.t.h~·t· .' :..,;corresponding argument is a pointer to double
rather than a pointer to float, or by L to indicate a pointer to long double. If an

§4.9.6.1 January 11, 1988
DRAFT

§4.9.6.2

LffiRARY 135 INPUT/OUTPUT <8t.d10. h>

h, 1, or L appears with any other cOBversionspecifier, the behavior is undefined .

• A character that specifies the type oC conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive oC the Cormat in turn. Ir a directive
5 Cails, as detailed below, the fecanf Iunetion returns. Failures are described as input

Cailures (due to the unavailability oC input characters), or matching railures (due to
inappropriate input).

A directive composed or white space is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read.

10 A directive that is an ordinary multibyte character is executed by reading the next
character of the stream. Ir the character differs Crom the one comprising the directive,
the directive fails, and the character remains unread.

A directive that is a conversion specification defines a set of matching input sequences,
as des-cribed below for each specifier. A conversion specification is executed in the

15 following steps:

Input white-space characters (as specified by the isspace Iunction] are skipped,
unless the specification includes a [, e, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier.
An input item is defined as the longest sequence of input characters (up to any specified

20 maximum field width) which' is an initial subsequence of a matching sequence. The first
character, if any, after the input item remains unread. If the length of the input item is
zero, the execution of the directive fails: this condition is a matching failure, unless an
error prevented input from the stream, in which case it is an input failure.

Except in the case of a I specifier, the input item (or, in the case or a In directive, the
25 count of input characters) is converted to a type appropriate to the conversion specifier.

If the input item is not a matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was indicated by a *, the
result of the conversion is placed in the object pointed to by the first argument following
the format argument that has not already received a conversion result. II this object

30 does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

35

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the st.rt.ol function with the value 10 for
the base argument. The corresponding argument shall be a pointer to integer.

1 Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 0 for the base
argument. The corresponding argument shall be a pointer to integer.

o Matches an optionally signed octal integer, whose rormat is the same as expected
for the subject sequence of the strt.oul function with the value 8 for the base
argument. The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected Cor the subject sequence of the st.rtoul function with the value 10 for
the base argument. The corresponding argument shall be a pointer to unsigned
integer.

Matches an optionally signed hexadecimal integer, whose format is the same as
expected Corthe subject sequence of the strtoul function with the value 16 r~r
the base argument. The corresponding argument shall be a pointer to unsigned

40

u

45

(

§4.9.6.2 January 11, 1988
DRAFT

§4.9.6.2

LffiRARY 136 INPUT/OUTPUT <stc110 . h>

integer.
e, f ,g Matches an optionally signed Boating-point number, whose format is the same aa

expected for the subject string of the strtod function. The corresponding
argument shall be a pointer to Boating.

S s Matches a sequence of non-white-space characters. The corresponding argument
shall be a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which will be added automatically.

10

IS

20

25

30

.35

Matches a nonempty sequence of characters from a set of expected characters (the
,can,el). The corresponding argument shall be a pointer to the initial character
of an array large enough to accept the sequence and a terminating null character,
which will be added automatically. The conversion specifier includes all
subsequent characters in the foraatstring, up to and including the matching
right bracket (J). The characters between the brackets (the ,can/ill) comprise
the scanset, unless the character &f'ter the left bracket is a circumflex (••.), in
which case the scanset contains all characters that do not appear in the scanlist
between the circumflex and the right bracket. As a special case, if the conversion
specifier begins with (] or (.•.], the right bracket character is in the scanlist and
the next right bracket character is the matching right bracket that ends the
specification. Ir a - character is in the seanlist and is not the first, nor the second
where the first character is a .•., nor the last character, the behavior is
implementation-defined.

Matches a sequence of characters of the number specified by the field width (1 if
no field width is present in the directive). The corresponding argument shall be a
pointer to the initial character of an array large enough to accept the sequence.
No null character is added.

Matches an implementation-defined set of sequences, which should be the same as
the set of sequences that may be produced by the Ip conversion of the fprintf
function. The corresponding argument shall be a pointer to a pointer to vo1d.
The interpretation of the input item is implementation-defined; however, for any
input item other than a value converted earlier during the same program
execution, the behavior of the Ip conversion is undefined.

No input is consumed. The corresponding argument shall be a pointer to integer
into which is to be written the number of characters read from the input stream
so far by this call to the fscanf function. Execution of a In directive does not
increment the assignment count returned at the completion of execution of the
fscanf function.

1 Matches a single I; no conversion or assignment occurs.

(

c

n

If a conversion specification is invalid, the behavior is undefined.f"

The conversion specifiers e, g, and X may be capitalized. However, the use of upper
40 case is ignored.

Ir end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other than
leading white space, where permitted), execution of the current directive terminates with
an input failure; otherwise, unless exeeution of the current directive is terminated with a

45 matching failure, execution of the following directive (if any) is terminated with an input

g7. See "future library directions" (§4.13.6).

§4.9.6.2 January 11, 1988
DRAFT

§<4.9.6.2

LIDRARY 137 INPUT/O~ <8t.410. h>

failure.

(

If eonversion terminates on a confticting input character, the offending input character
is left unread in the input stream. Trailing white space (including new-line characters) is
left unread unless matched by a directive. The success of literal matches and suppressed

5 assignments is not directly determinable other than via the In directive.

ReturDa

The fllcanf function returns the value or the macro EOF if an input railure OCcurs
before any conversion. Otherwise, the fllcanf runction returns the number of input

10 items assigned, which can be fewer than provided for, or even sere, in the event of an
early conftict between an input character and the format.

Examples

The call:

15 #1nclude <lItd10.b>
1nt n. 1; float x; cbar na.e[50);
n = fscanf(stdln. ald~flsa. ~1. ~. name);.

with the input line:

25 54.32E-1 tbompson

20 will assign to n the value 3, to i the value 25, to % the value 5.,(32, and ncme will contain
tbompson\O. Or:

#lnclude <stdl0.b>
lot 1; float x; cbar name [50] ;
fscanf(stdl0. aI2d~fl*d 1[0123456789J-, ~1. ~. naae);

25 with input:

56789 0123 561.72

will assign to i the value 56 and to % the value 789.0, will skip 0123, and Acme will
contain 56\0. The next character read from the input stream will be a.

To accept repeatedly from stdln a quantity, a unit of measure and an item name:

30 #lnclude <stdl0.b>
lnt count; float quant; cbar unlts[21], ltem[21];
wblle (!feof(std1n) &a Iferror(stdln» {

count = fscanf(lItd1n, -lfl20s of 1208-,
~quant, units, 1te.);

35 fscanf(stdln,-I*[A\n]a);
}

II the stdln stream contains the followinglines:

2 quarts of 011
-12.8degrees ~els1us

40 lots of luck
10.OLBS of fertilizer
100ergs of energy

the execution of the above example will be equivalent to the followingassignments:

§4.9.6.2. January 11, 1988
DRAFT

§.(.9.6.2

LmRARY 138 INPUT/OUTPUT <stdl0 .b>

quant = 2; strcpy(unlts, -quarts-); strcpy(ltea,
count = 3;
quant = -12.8; strcpy(unlts, -degrees-);
count = 2; 1* -C- fa1ls to aatcb -0- *1

5 count = 0; 1* -1- fa1ls to aatcb -If- *1
quant = 10.0; strcpy(unlts, ·LBS·); strcpy(ltea,
count = 3;
count = 0; 1* -100e- fa1ls to aatcb -If- *1
count = EOF;

Forward reterencn: the strtod function (§4.10.1.4), the strt01 function (§4.10.1.5),
the strtoul function (§4.10.1.6).

4.9.6.3 The printf function

Synop8ia

#lnc1ude <stdl0.b>
lnt prlntf(con8t noa11a8 char *for.at, ...);

20 Deacription

The prlntf function is equivalent to fprlntf with the argument stdout
interposed before the arguments to prlntf.

Return8

25 The printf function returns the number of characters transmitted, or a negative
value if an output error occurred.

4.9.6.4 The sca.nf function

30 Synopsia

#lnclude <stdl0.b>
lnt scanf(const noa11as char *for.at, ...);

De8cription

35 The scanf function is equivalent to fscanf with the argument std1n interposed
before the arguments to scanf.

Returns

The scanf function returns the value of the macro EOF if an input failure occurs
40 before any conversion. Otherwise, the scanf function returns the number of input items

assigned, which can be fewer than provided for, or even zero, in the event of an early
conflict between an input character and the format.

4.9.6.5 The sprintf function

Synop8is

#lnc1ude <stdl0.h>
lnt sprlntf(noa11as char._, const noal1as cbar *for.at, ...);

50 Description

The sprlntf function is equivalent to fpr1ntf, except that the argument s specifies
.an array into which the generated output is to be written, rather than to a stream. A
null character is written at the end of the characters written; it is not counted as part of
the returned sum. If copying takes place between objects that overlap, the behavior is

55 undefined.

§4.9.6.2 January 11, 1988
DRAFT

§~.9.6.5

LIBRARY 139 INPUT/OUTPUT <8t.d10 .11>

Retul'Da

The spr1ntf function returns the number oC characters written in the array, not
counting the terminating null character.

S 4.9.e.e The BBcanf function
Synopsis

#1nclude <8td10.11>
1nt sscanf(const noal1as char *s,

const noal1a8 char *for.at, ...);10

(

Description

The sacanr function is equivalent to fBcanf, except that the argument 8 specifies a
string from which the input is to be obtained, rather than Croma stream. Reaching the

15 end of the string is equivalent to encountering end-of-file Cor the fscanf Cunction. If
. copying takes place between objects that overlap, the behavior is undefined.

Retul'ns

The sBcanf function returns the value of the macro EOF if an input tailure occurs
20 before any conversion. Otherwise, the 8Bcan! function returns the number of input

items assigned, which can be fewer than provided Cor, or even zero, in the event oC an
early conBict between an input character and the format.

4.9.6.7 The vfprlntf function
Synopsis

#1nclude <stdarg.h>
#include <8td10.h>
1nt vfpr1ntf (FILE *stream.· const noalia8 char *format.,

va list arg);30

Description

The vfprintf Cunction is equivalent to fpr1ntf, with the variable argument list
replaced by ar'g, which has been initialized by the va_st.art macro (and possibly

35 subsequent va_arg calls). The vfpr1ntf Cunctiondoes not invoke the va_end macro.

Retul'ns

The vfprintf function returns the number of characters transmitted, or a negative
value ir an output error occurred.

Example

The Collowingshows the use of the vfprintf function in a general error-reporting
routine.

§4.9.6.S January 11, 1988
DRAFT

§4.9.6.7

LffiRARY 140 INPUT/OUTPUT <stcI10. h>

(
\

#include <stdarg.h>
#include <stdio.h>

void error(char *funct10n_name, char .for.at, ...)
{

5 . va,_l1st args;

va_start (args, for.at);
/_ print out name of function causing error */
fprintf(stderr, -ERROR in Is: -, function naae);
/* pr1nt out rema1nder of .essage */
vfprintf(stderr, format, args);
va_end(args);

10

(

}

4.9.6.8 The vpr1ntf function

Synopsis

#lnclude <Btdarg.h>
#lnclude <stdio.h>
lnt vprlntf(conBt noallas char -format, va_llst arg);

Deacription

The vprlnt! function is equivalent to prlnt!, with the variable argument list
replaced by arg, which has been initialized by the va_start macro (and possibly
subsequent va_arg calls). The vprlntf (unction does not invoke the va_end macro.

Returna

The vprintf function returns the number cf characters transmitted, or a negative
value if an output error occurred.

30 4.9.8.9 The vspr1ntf function

Synopais

#include <Btdarg.h>
#include <std10.h>

35 int vsprlntf(noallas char *s, const noalla8 char *format,
va list arg);

Description

The vspr1nt! (unction is equivalent to spr1ntf, with the variable argument list
40 replaced by arg, which has been initialized by the va_start macro (and" possibly

subsequent va_arg calls). The vspr1ntf function does not invoke the va_end macro.

Returna

The vspr1ntf (unction returns the number of characters written in the array, not
45 counting the terminating null character.

(

§4.9.6.7 January 11, 1988
DRAFT

§4.9.6.9

LIBRARY 141 INPUT/OUTPUT <stc110.11>

(

4.g.7 Ch_aracter. input/output functions
4.9.7.1 The fgete function

5 Synopaia

#lnclude <stdl0.h>
lnt fgetc(FILE *stream);

Description

10 The fgete function obtains the next character (if present) as an unsigned char
converted to an int, from the input stream pointed to by stream, and advances the
associated file position indicator for the stream (if defined).

Returns

15 The fgete function returns the next character from the input stream pointed to by
strea.m. If the stream is at end-of-file, the end-of-file indicator for the stream is set and
fgete returns EOF. If a read error occurs, the error indicator for the stream is set and
fgetc returns EOF.IS

20 4.9.7.2 The fgets function

Synopsis

#lnclude <stdl0.h>
cha.r *fgets(noallas char *s, int n. FILE .stream);

Description

The fgets function reads at most one less than the number of characters specified by
n from the stream pointed to by Itreaa into 'the array pointed to by s. No additional
characters are read after a new-line character (which is retained] or a1'ter end-of-file. A

30 null character is written immediately after the last character read into the array.

Returns

The f gets function returns s if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and

35 a null pointer is returned. If a read error occurs during the operation, the array contents
are indeterminate and a null pointer is returned.

4.9.7.3 The fpute function

40 Synopsis

#lnclude <stdl0.h>
lnt fputc(int c. FILE *streaa);

Description

45 The fputc funct.ion writes the character specified by e (converted to an unsigned
char) to the output stream pointed to by streaa, at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stream.

ss. An end-of-fileand a read error can be distinguishedby use of the feof and ferror functions.

§4.9.7 January 11, 1988
DRAFT

§4.9.7.3

LlBRARY 142 INPUT/OUTPUT <at.dio. h>

Returns

The fput.e {unction returns the character written. It a write error occurs, the error
indicator (or the stream is set and fput.e returns EOF.

5 4.g.7.4 The fputs function
Synopsia

#lnelude <st.dl0.h>
lnt. fput.s(eonst. noallas char .s, FILE .st.ream);

Description

The fput.s {unction writes the string pointed to by s to the stream pointed to by
st.ream. The terminating null character is not written.

15 Returns

The fput.s (unction returns EOFi{ an error occurs; otherwise it returns a nonnegative
value.

4.9.7.5 The get.e function
Synopsis

#lnelude <stdl~.h>
1nt gete(FILE .stream);

25 Description

The gete {unction is equivalent to fgetc, except that it it is implemented as a
macro, it may evaluate stream more than once, so the argument should never be an
expression with side effects.

30 Returns

The gete {unction returns the next character {rom the input stream pointed to by
stream. If the stream is at end-of-file, the end-of-file indicator {or the stream is set and
gete returns EOF. It a read error occurs, the error indicator (or the stream is set and
gete returns EOF.

4.9.7.6 The getehar function
Synopsis

#lnclude <stdl0.h>
lnt getehar(vold);40

Description

The get.ehar function is equivalent to gete with the argument st.d1n.

45 Returns

The get.ehar {unction returns the next character {rom the input stream pointed to
by stdln. It the stream is at end-of-file, the end-of-file indicator {or the stream is set
and getehar returns EOF. It a read error occurs, the error indicator {or the stream is set
and getehar returns EOF.

§4.9.7.3 January 11, i988
DRAFT

§4.9.7.6

LmRARY 143 INPUT/OUTPUT <at-di0 .h>

".9.7.7 The get-s function

Synopsis

#include <st-di0.h>
char *gets(noalias cha~*a)~

Description

The gets function reads characters from the input stream pointed to by atdin, into
the array pointed to by 8, until end-of-file is encountered or a new-line character is read.

10 Any new-line character is discarded, and a null character is written immediately alter the
last character read into the array.

5

ReturlUl

The gets function returns s if successful. II end-of-file is encountered and DO

15 characters have been read into the array, the contents of the array remain unchanged and
a null pointer is returned. II a read error occurs during the operation, the array contents
are indeterminate and a null pointer is returned.

4.9.7.8 The putc function

Synopsis

#include <atdi0.h>
int putc(int c, FILE .atream);

25 Description

The putc function is equivalent to fputc, except that if it is implemented IS a
macro, it may evaluate streu more than once, so the argument should never be an
expression with side effects.

30 Returns

The putc function returns the character written. II a write error occurs, the error
indicator for the stream is set and putc returns EOF.

4.9.7.9 The putcha.r function

Synopsis

#include <atdi0.h>
int putchar(1nt c);

40 Description

The put cnar function is equivalent to putc with the second argument atdout.

Returns

The putchar function returns the character written. II a write error occurs, the error
45 indicator for the stream is set and putchar returns EOF.

".9.7.10 The puts function

Synopsis

#include <stdi0.h>
int puta(const noa11as char *a);

Description

The puta function writes the string pointed to by a to the stream pointed to by
55 stdout, and appends a new-line character to the output. The terminating null character

is not written.

50

§4.9.7.7 January 11, 1988
DRAFT

§4.9.7.10

LmRARY 144 INPUT/OUTPUT <stcUO. h>

Returns

The puts Cunction returns EOF it an error occurs; otherwise it returns a nonnegative·
value.

4.G.7.11 The ungetc (unction

S)"nopsia

#1nclude <std10.h>
1nt ungetc(1nt C, FILE .streo);

Description

The ungetc Cunctionpushes the character specified by c (converted to an unsigned
char) back onto the input stream pointed to by streo. The pushed-back characters

15 will be returned by subsequent reads on that stream in the reverse order oC their pushing.
A successful intervening call (with the stream pointed to by stream) to a file positioning
function (fseek, fsetpos, or rewind) discards any pushed-back characters Cor the
stream. The external storage corresponding to the stream is unchanged.

10

One character oC pushback is guaranteed. Ir the ungetc Cunction is called too many
20 times on the same stream without an intervening read or file positioning operation on

that stream, the operation may fail. .

If the value of e equals that ot the macro EOF, the operation fails and the input
stream is unchanged.

A successful call to the ungetc function clears the end-of-file indicator tor the stream.
25 The value of the file position indicator for the stream af'ter reading or discarding all

pushed-back characters shall be the same as it was before the characters. were pushed
back. For a text stream, the value of its file position indicator af'ter a successful call to
the ungetc function is unspecified until all pushed-back characters are read or discarded.
For a binarY stream, its file position indicator is decremented by each successful call to

30 the ungetc function; if its value was zero before a call, it is indeterminate af'ter the call.

ReturDB

The ungetc function returns the character pushed back af'ter conversion, or EOF it
the operation tails.

Forward references: file positioning tunctions (§4.9.9).

4.g.8 Direet input/output funetions
40 4.9.8.1 The tread runction

S)"nopsia

#1nclude <std10.h>
81ze_t fread(noal1as void .ptr, size t size, size t nae.b,

FILE .streo);45
Description

The fread tunction reads, into the array pointed to by ptr, up to naeab members
whose size is specified by 81ze, Irom the stream pointed to by stream. The file position

50 indicator for the stream (it defined) is advanced by the number of characters successfully
read. If an error occurs, the resulting value Ot the file position indicator for the stream is
indeterminate. Ir a partial member is read, its value is indeterminate.

§4.9.7.10 January 11, 1988
DRAFT

§4.9.8.1

LIBRARY 145 INPUT/OUTPUT <.1;.d10. h>

Returns

The fr9s.d function returns the number of members successfully read, which may be
less than nDlembif a read error or end-of-file is encountered. Ir 81ze or naeab is sere,
fread returns zero and the contents of the array and the state of the stream remain

5 unchanged.

4.9.8.2 The fwr11;.e function

10

Synopsis

#lnclude <stdl0.h>
slze_t fwrlte(const noalias v01d .ptr, size t ulze,

slze t nmemb, FILE .streaa);

Description

15 The fwrl te function writes, from the array pointed to by ptr, up to naeab
members whose size is specified by slze, to the stream pointed to by streaa. The file
position indicator for the stream (if defined) is advanced by the number of characters
successfully written. II an error occurs, the resulting value of the file position indicator
for the stream is indeterminate.

Returns

The fwrl te function returns the number of members successfully written, which will
be less than nmeDlbonly if a write error is encountered.

25 4.9.9 File positioning functions
4.9.9.1 The fgetpos function
Synopsis

30 #lnclude <stdl0.h>
lnt fgetpos(FILE .stream, noallas fpos_t .pos);

Description

The f getpos function stores the current value of the file position indicator for the
35 stream pointed to by stream in the object pointed to by pos. The value stored contains

unspecified information usable by the fsetpos function for repositioning the stream to
its position at the time of the call to the fgetpos function.

Returns

40 II successful, the fgetpos function returns zero; on failure, the fgetpos function
returns nonzero and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (§4.9.9.3).

45 4.9.9.2 The fseek function
Synopsis

#lnclude <stdl0.h>
lnt fseek(FILE .streaa, long lnt offset, lnt whence);

Description

The fseek function sets the file position indicator for the stream pointed to by
8treo.

For a binary stream, the new position, measured in characters from the beginning of
55 the file, is obtained by adding offset to the position specified by whence. The specified

point is the beginning of the file for SEEK_SET, the current position in the file for

§4.9.8.1 January 11, 1988 .
DRAFT

§4.9.9.2

LIBRARY 146 INPUTjOUTPUT <std10 .h>

SEEK_CUR, or end-of-file for SEEK_END.A biDary stream need not mer.ningf'ullysupport
fseek calls with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned
by an earlier call to the ftell function on the same stream and whence shall be

5 SEEK SET.

A successful call to the fseek function clears the end-of-file indicator for the ~tream
and undoes any effects of the ungetc function on the same stream. After an fseek call.
the next operation on an update stream may be either input or output.

10 Returns

The fseek function returns nonzero only for an improper request.

Forward references: the ftell function (§4.9.9.4).

15 4.9.9.3 The fsetpos function
Synopsis

#1nclude <std10.h>
1ntfsetpos(FILE .stream, const noa11as fpos_t .pos);

Description

The fsetpos {unction sets the file position indicator (or the stream pointed to by
stream according to the value of the object pointed to by pos, which shall be a value
returned by an earlier call to the fgetpos function on the same stream.

25 A successful call to the flletpos function clears the end-of-file indicator for the
stream and undoes any effects of the ungetc function on the same stream. After an
f set-pos call, the next operation on an update stream may be either input or output,

Returns

30 If successful, the fsetpos function returns zero; on failure, the fsetpos function
returns nonzero and stores an implementation-defined positive value in errnc.

4.9.9.4 The ftell function

35 Synopsis

#1nclude <std10.h>
long 1nt ftell(FILE .strea.);

Description

40 The ftell function obtains the CUTJ'entvalue of the file position indicator for the
stream pointed to by streu. For a binary stream, the value is the number of
characters from the beginning of the file. For a text stream, its file position. indicator
contains unspecified information, usable by the fseek function for returning the file
position indicator for the stream to its position at the time of the ftell call; the

45 difference between two such return values is not necessarily a meaningful measure of the
number of characters written or read.

RetlU'DJI

If successful, the ftell function returns the current value of the file position
50 indicator for the stream. On failure, the ftell function returns -IL and stores an

implementation-defined positive value in errno.

§4.9.9.2 January 11, 1988
DRAFT

§4.9.9.4

LlBRARY 147 INPUT/OUTPUT <8W10 .h>

4.9.9.5 The rewind function

Synopsir

#include <stdi0.h>
5 void rewind(FlLE -stream);

Description

10

~.
The rewi nd function sets the file position indicator for the stream pointed to by

stream to the beginning of the file. It is equivalent to

(void)fseek(stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns

The rewind function returns no value.

4.0.10 Error-handling functions
4.9.10.1 The clearerr function

20 Synopsis

#include <stdi0.h>
void clearerr(FILE .stream);

Description

25 The clearerr function clears the end-of-file and error indicators for the Itream
pointed to by stream.

Returns

The clearerr function returns no value.

4.9.10.2 The feof function

Synopsis

#include <std10.h>
35 int feof(FILE .stream);

Description

The f eof function tests the end-of-file indicator for the stream pointed to by
strea.m.

Returns

The f eof function returns nonzero only if the end-of-fileindicator is set for stream.

4.9.10.3 The ferror function

Synopsis

#include <stdi0.h>
int ferror(FILE -stream);

50 Description

The f error function tests the error indicator for the stream pointed to by stream.

Returns

The f error function returns nonzero only if the error indicator is set for stream.

§4.9.9.5 January 11, 1988
DRAFT

§4.9.10.;;

LIBRARY 148 INPUT/OUTPUT <atc110 . h>

4.9.10.4 The perror function

Synopsis

#iDclude <stdi0.h>
void perror(coDst Doa11as char *s);

Description

The perror (unction maps the error number in the integer expression errDo to an
error message. It writes a line to the standard error stream thus: first (if • is not a null

10 pointer and the character pointed to by s is not the null character), the string pointed to
by s followed by a colon and a space; then an appropriate error message string followed
by a new-line character. The contents of the error message strings are the same as those
returned by the strerror function with argument er rnc, which are impiementaticn-
defined.

5

Returns

The perror function returns no value.

Forward references: the strerror (unction (§4.1l.6.2).

(

§4.9.10.4 January 11, 1988 .
DRAFT

§4.9.10.4

LIBRARY GENERAL UTU..ITIES<st411b.h>

4.10 GENERAL UTll..ITIES <s'td11b. h>
The header <std11',. h> declare; four types and several functions of general utility.

and defines several macros." ._

5 The types declared are s1ze_t and wchar_t (both described in §4.1.5).

41y t
..

which is a structure type that is the type of the value returned by the 41 y function, and

Id1v t

which is a structure type that is the type of the value returned by the 1d1 y function.

10 The macros defined are NULL(described in §4.1.5);

EXIT FAILURE

and

EXIT SUCCESS

which expand to integral expressions that may be used as the argument to the ex1 t
15 {unction to return unsuccessful or successful termination status, respectively, to the host

environment;

RANDMAX

which expands to an integral constant expression, the value or which is the maximum
value returned by the ra.nd {unction; and

20 MBCURMAX

.which expands to a positive integer expression whose value is the maximum number of
bytes in a multibyte character Ier the extended character set specified by the current
locale (category LC_CTYPE),and whose value is never greater than MB_LEN_MAX.

25 4.10.1 String conversion functions
The functions atof, at.o1, and at.ol need not affect the value of the integer

expression errno on an error. II the value or the result cannot be represented, the
behavior is undefined.

30 4.10.1.1 The a.t.o! function

Synopsis

#1nclude <st.d11b.h>
doUble at.of(const. noa11as'char *npt.r);

Description

The at.of {unction converts the initial portion of the string pointed to by npt.r to
double representation. Except for the behavior on error, it is equivalent to

strt.od(nptr, (char **)NULL)

QQ. See"future library directions" (§4.137)

§4.10 January 11, 1988
DRAFT

§4.10.1.1

LIBRARY 150 GENERALUTILITIES <stdllb.h>

Returns

The ato! function returns the converted value.

Forward references: the IItrtod function (§4.10.1.4).

4.10.1.2 The a.toi (unction

Synopsis

#lnclude <stdllb.h>
lnt ato1(const noal1a8 char *nptr);

Description

The ato1 function converts the initial portion of the string pointed to by nptr to
lnt representation. Except for the behavior on error, it is equivalent to

(1nt)strtol(nptr. (char **)NULL. 10)

Returns

The ato1 function returns the converted value.

20 Forward references: the strtol function (§4.10.1.5).

4.10.1.3 The atol function

10

15

25

Synopsis

#1nclude <stdllb.h>
long 1nt atol(const noallas char *nptr);

Description

The atol function converts the initial portion of the string pointed to by nptr to
30 long lnt representation, Except for the behavior on error, it is equivalent to

strtol(nptr, (char **)NULL, 10)
Returns

The atol function returns the converted value.

Forward references: the strtol function (§4.10.1.5).

4.10.1.4 The strtod function

40 Synopsis

#1nclude <stdllb.h>
double strtod(const noallas char *nptr.

char * noa11as *endptr);

I
',

45 Description

The strtod function converts the initial portion of the string pointed to by nptr to
double representation. First it decomposes the input string into three parts: an initial,
possibly empty, sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling a Boating-point constant; and a final string of

50 one or more unrecognized characters, including the terminating null character of the
input string. Then it attempts to convert the subject sequence to a Boating-point
number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a
sequence of digits optionally containing a decimal-point character, then an optional

55 exponent part as defined in §3.1.3.1, but no Boating suffix. The subject sequence is
defined as the longest subsequence of the input string, starting with the first Don-white-

§4.10.1.1 January 11, 1988
DRAFT

§4.10.1.4

LIBRARY 151 GENERAL UTn.ITIES <st.d11b.h>

space character, that is an initial subsequence ol a sequence ol the expected lorm. The
subject sequence contains no characters if' the input strinf' is empty or consists entirely of
white space, or il the first non-white-space character is other than a sign, a digit, or a
decimal-point character.

5 Ir the subject sequence has the expected form, the sequence of characters starting with
the first digit or the decimal-point character (whichever occurs first) is interpreted as a
80ating constant according to the rules of §3.1.3.1, except that the decimal-point
character is used in place ol a period, and that if neither an exponent part nor a decimal-
point character appears, a decimal point is assumed to rollow the last digit in the string.

10 If the subject sequence begins with a minus sign, the value resulting from the conversion
is negated. A pointer to the final string is stored in the object pointed to by endpt.r,
provided that endpt.r is not a null pointer.

In other than the •C· locale, other implementation-defined subject sequence forms
may be accepted.

15 Ir the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of npt.r is stored in the object pointed to by endpt.r, provided that
endpt.r is not a null pointer.

Returns

20 The st.rt.od Iunetion returns the converted value, ir any. Ir no conversion could be
performed, zero is returned. Ir the correct value would cause overflow, plus or minus
HUGE_VAL is returned (according to the sign of the value), and the value of the macro
ERANGE is stored in errno. U the correct value would cause underflow, zero is returned
and the value of the macro £RANGE is stored in errno.

4.10.1.5 The strtol function
Synopsis

#1nclude <st.d11b.b>
long lnt strtol(const noa11a8 cbar -npt.r.

char * noa11as *endptr. 1nt base);
30

Description

The strtol function converts the initial portion or the string pointed to by nptr to
35 long 1nt representation. First it decomposes the input string into three parts: an

initial, possibly empty, sequence or white-space characters (as specified by the 1sspace
Iunerion), a subject sequence resembling an integer represented in some radix determined
by the value or base, and a final string or one or more unrecognized characters, including
the terminating null character or the input string. Then it attempts to convert the

40 subject sequence to an integer, and returns the result.

If the value or base 'is zero, the expected Iorm or the subject sequence is that or an
integer constant as described in §3.1.3.2, optionally preceded by a plus or minus sign, but
not including an integer suffix. Ir the value or base is between ~:and 36, the expected
Iorm of the subject sequence is a sequence or letters and digits representing an integer

45 with the radix specified by base, optionally preceded by a plus or minus sign, but not
including an integer suffix. The letters from a (or A) through Z (or Z) are ascribed the
values 10 to 35; only letters whose ascribed values are less tban that or base are
perm1tted. Ir the value or base is 16, the characters 0% or OX may optionally precede the
sequence or letters and digits, Iollcwing the sign ir present.

50 The subject sequence is defined as the longest subsequence or the input atring,
starting with the first non-white-space character, that is an initial subsequence or a
sequence or ~he expected Iorm. The subject sequence contains no characters ir the input
string is empty or consists entirely or white space, or ir the first non-white-space

§4.10.1.4 January 11, 1988
DRAFT

§4.10.1.5

LIDRARY 152 GENERAL UTILITIES <8tc1l1b.h>

character is. other than a sign Or a permissible letter or digit.

It the subject sequence has the expected Corm and the value o(base is zero, the
sequence o(characters starting with the first digit is interpreted as an integer constant
according to the rules of §3.1.3.2. It the subject sequence has the expected (orm and the

5 value of base is between 2 and 36, it is used as the base (or conversion, ascribing to each
letter its value as given above. It the subject sequence begins with a minus sign, the
value resulting (rom the conversion is negated. A pointer to the final string is atored in
the object pointed to by enc1ptr, provided that enc1ptr is not a null pointer.

In other than the ·C· locale, other implementation-defined subject sequence (orms
10 may be accepted.

It the subject sequence is empty or does not have the expected (orm, no conversion is .
performed; the value of nptr is stored in the object pointed to by enc1ptr, provided that
endptr is not a null pointer.

15 RetuJ'u

The strtol function returns the converted value, if any. It no conversion could be
performed, zero is returned. It the correct value would cause overflow, LONG MAX or
LONG MIN is returned (according to the sign of the value), and the value of th-; macro
ERANGE is stored in errno. .

4.10.1.8 The strtoul fUDction

Synopsis

#1nclude <stdlib.h>
unSigned long int strtoul(const noal1as char *nptr,

char * noa11as *endptr, int base);
25

DeseJ'iption

The strtoul function converts the initial portion of the string pointed to by nptr to
30 unsigned long 1nt representation. First it decomposes the input string into three

parts: an initial, possibly empty, sequence o(white-space charaeters (M specified by the
1sspa.ce (unction), a subject sequence resembling an unsigned integer represented in
some radix determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character o(the input string.

35 Then it attempts to convert the subject sequence to an unsigned integer, and returns the
result.

It the value of base is zero, the expected (orm o(the subject sequence is that of an
integer constant as described in §3.1.3.2, optionally preceded by a plus or minus sign, but
not including an integer suffix. It the value of ba.se is between 2 and 36, the expected

40 form of the subject sequence is a sequence of letters and digits representing an integer
with the radix specified by base, optionally preceded by a plus or minus sign, but not
including an integer suffix. The letters (rom a (or A) through z (or Z) are ascribed the
values 10 to 35; only letters whose ascribed values are less than that o(base are
permitted. It the value of base is 16, the characters 0% or OXmay optionally precede the

45 sequence of letters and digits, following the sign if present.
The subject sequence is defined as the longest subsequence of the input string,

starting with the first non-white-space character, that is an initial subsequenee of a
sequence o(the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or i(the first non-white-space

50 character is other than a permissible letter or digit.

I! the subject sequence has the expected form and the value of base is zero, the
sequence o(characters ::;t.:..rtingwith th, first digit is interpreted as an integer constant

§4.10.1.5 January 11, 1988
DRAFT

§4.10.1.6

LmRARY 153 GENERALUTILITIES <st.cU1b.h>

according to the rules or §3.1.3.2. If the subjeet- sequence has the expected form and the
value of ba..se is between 2 and 36, it is used as the base Ior conversion, ascribing to each
letter its value as given above. A pointer to the fir:'.! string is stored in the object pointed
to by endptr, provided that endptr is not a null pointer.

5 In other than the • C· locale, other implementation-defined subject sequence rorms
may be accepted.

lr the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by Elndptr, provided that
endpt.r is not a I1Ullpointer.

Returns

The strtoul Iunetion returns the converted value, if' any. If no conversion could be
performed, zero is returned. If the correct value w()uld cause overflew, ULOHG MAX is
returned, and the value or the macro ERAHGE is stored in errno. -

4.10.2 Pseudo-random sequence generation functi4)ns
4.10.2.1 The ra.nd function

20 Synopsis

#1nclude <stdlib.b>
int orand (VOid) ;

25
Description

The rand Iunetien computes a sequence or pseudo-random integers in the range 0 to
RAND MAX.

(
The implementation shall behave as if no library function calls the rand function.

Retllrna

30 The rand function returns a pseudo-random integer.

Environmental limit

The value of the RAND MAX macro shall be at least 32767.

35 4.10.2.2 The sra.nd function
Synopsis

#include <stdlib.b>
void srand(unsigned int seed);

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is then called with the
same seed value, the sequence of pseudo-random numbers will be repeated. If rand is

45 called before any calls to srand have been made, the same sequence will be generated as
when srand is first called with a seed value of 1.

Returns

The srand function returns no value.

Example

The ° following functions define a portable implementation of rand and srand.
Specifying the semantics makes it possible to determine reproducibly the behavior of
pr0~rams that use pseudo-random sequences. This facilitates the testing of portable

55 applications in different implementations. .

§4.10.1.6 January 11, 1988
DRAFT

§4.10.2.2

LmRARY 154 GENERAL UTILITIES <8tc111b. 11>

static uns1gned long 1nt next = 1;

lnt rand(volc1)
{

5
nezt = ne%t * 1103515245 + 12345;
return (unsigned lnt) (ne%t/65536) I 32768;

}

vold srand(unslgnec1 lnt seed)
{

nezt = seed;
10 }

4.10.3 Memory management (unctions
The order and contiguity of storage allocated by successive calls to the calloc,

lIIalloe, and realloe functions is unspecified. The pointer returned if the allocation
15 succeeds is suitably aligned so that it may be assigned to a pointer to any type of object

and then used to access such an object in the space allocated (until the space is explicitly
freed or reallocated). Each such allocation shall yield a pointer to an object disjoint from
any other object. The pointer returned points to the start (lowest byte address) of the
allocated space. If the space cannot be allocated, a null pointer is returned. If the size of

20 the space requested is zero, the behavior is implementation-defined; the value returned
shall be either a null pointer or a unique pointer. The value of a pointer that refers to
freed space is indeterminate.

4.10.3.1 The ca.lloc function
Synopsis

#lnelude <stdllb.h>
vold *ealloe(slze_t naeab, slze t slzo);

30 Description

Th@ calloc funetion allocates space for an array of Dmelllbobjects, each of whose size
is siZe. The space is initialized to aUbits zero.loo

Returns

35 The calloc function returns either a null pointer or a pointer to the allocated space.

4.10.3.2 The free function
Synopsis

#lDclude <stdllb.h>
vold free(DQallaS vold *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated, that is,
45 made available for further allocation. If ptr is a Dull pointer, DO action occurs.

Otherwise, if the argument does not match a pointer earlier returned by the calloe,
aalloe, or realloc function, or if the space has been deallocated by a call to free or
realloe, the behavior is undefined.

40

100. Note that this need not be the same as the representation of fioatlDg-point zero or a null pointer
constant.

§4.10.2.2 January 11, 1988
DRAFT

§4.10.3.2

LIBRARY 155 GENERAL UTn.ITIES <.t.cU1b. h>

Returns
The free (unction returns no value.

5 4.10.3.3 The malloc function

(

Synopsis
#1nelude <8tdI1b.h>
v01d *malloe(s1ze_t 81ze);

Description
The malloe (unction allocates space (or an object whose size is specified by 81ze and

whose value is indeterminate.

15 Returns
The malloe (unction returns either a null pointer or a pointer to the allocated space.

4~10.3.4 The realloc function
20 . Synopsis

#1nelude <stdI1b.h>
v01d *realloe(noaI1as v01d *ptr, 81ze t. 81ze);

Description
25 The realloe (unction changes the size of the object pointed to by ptr to the size

specified by sae. The contents of the object will be unchanged up to the lesser of the
new and old sizes. Ir the new size is larger, the value o(the newly allocated portion of the
object is indeterminate. If ptr is a null pointer, the realloe (unction behaves like the
malloe (unction (or the specified size. Otherwise, if pt.r does not match a pointer

30 earlier returned by the calloe, .alloe, or realloe (unction, or i(the space has been
deallocated by a call to the free or realloc (unction, the behavior is undefined. Ir the
space cannot be allocated, the object pointed to by pt.r is unchanged. If 81zo is zero
and pt.r is not a null pointer, the object it points to is (reed.

35 Returns
The realloe function returns either a null pointer or a pointer to the possibly moved

allocated space.

4.10.4 Communication with the environment
4.10.4.1 The a.bort function
Synopsis

#1nclude <st~11b.h>
v01d abort(v01d);45

Description
The abort (unction causes abnormal program termination to occur, unless the signal

SIGABRT is being caught and the signal handler does not return. Whether open output
50 streams are Bushed or open streams closed or temporary files removed is implementation-

defined. An implementation-defined form of the status t1n6uCCU6!ul termination is
returned to the host environment by means of the function call ra1se (SIGABRT).

ReturDS
55 The abort (unction cannot return to its caller.

§4.10.3.2 January 11, 1988
DRAFT

§4.10.4.1

LIBRARY 156 GENERAL UTn..ITIES <lItdl1b.h>

4.10.4.2 The atex1t function

Synopsis

#1nclude <std11b.h>
1nt atex1t(vo1d (*func) (vo1d»;

Description

The atex1 t function registers the function pointed to by tunc, to be called without
arguments at normal program termination.

Implementation limit.

The implementation shall support the registration of at least 32 functions.

Returns

15 The atex1 t function returns zero ir the registration succeeds, nonzero ir it tails.

5

Forwud reference.: the ex1 t Iunetion (§4.10.4.3).

4.10.4.3 The ex1 t function
Synopsis

#1nclude <lItd11b.h>
vold exlt(lnt status);

25 Description

The exl t function causes normal program termination to occur.

First, all Iunetions registered by the atexl t function are called, in the reverse order
or their registration.IOI The execution environment or these exit handlers is as it the
.aln Iunctioa called at program startup had returned: it an object created during

30 program execution with automatic storage duration is accessed, the behavior is undefined.

Next, all open output streams are 8ushed, all open streams are closed, and all files
created by the tmpflle function are removed.

Finally, control is returned to the host environment. If the value or IItatu8 is zero or
EXIT_SUCCESS, an implementation-defined Iorm or the status ,ucce,,/u/ termination is

35 returned. If the value o(status is EXIT FAILURE, an implementation-defined Iorm or
the status unncce,,/u/ termination is ;eturned. Otherwise the status returned is
implementation-defined.

Returns

40 The exl t (unction cannot return to its caller.

4.10.4.4 The getenv function
Synopsis

#1nclude <std11b.h>
cbar *getenv(const noa11as cbar *na.e);

45

101. Each function IS called as many times as it was registered.

§4.10.4.2 January 11, 1988
DRAFT

§4.I0.4.4

LIBRARY 157 GENERAL UTILITIES <.t.cU1b. h>

(

Description

The getenv function searches an environment lut, provided by the host environment,
for a string that matches the string pointed to by nue. The set of environment names
and the method for altering the environment list are implementation-defined.

5 The implementation shall behave as if no library function calls the get.en? function.

Retu,rn.

The getenv function returns a pointer to a string associated with the matched list
member. The array pointed to shall not be modified by the program, but may be

10 overwritten by a subsequent call to the getenv function. If the specified name cannot be
found, a null pointer is returned.

4.10.4.5 The system function

15 Synopsis

#lnc1ude <std11b.h>
1nt system(const noa11as char .str1ng);

Description

20 The system function passes the string pointed to by IItr1ng to the host environment
to be executed by a command procc"or in an implementation-defined manner. A null
pointer may be used for str1ng to inquire whether a command processor exists.

Returns

If the argument is a null pointer, the system function returns nOnzero only if a
command processor is available. IJ' the argument is not a null pointer, the system
function returns an implementation-defined value.

25

4.10.5 Searching and sorting utilities
4.10.5.1 The bsea.rch function

35

Synopsis

#lnc1ude <std1lb.h>
vold .bsearch(const noa11as vold .key,

const noa11a8 vold .base,
slze t nmemb, slze t slze,
lnt '.compar) (const noa1las vold .,

const noa11as vold .»;
Description

The bsearch function searches an array of nmemb objects, the initial member of
which is pointed to by base, for a member that matches the object pointed to by key.
The size of each member of the array is specified by slze.

45 The contents of the array shall be in ascending sorted order according to a comparison
function pointed to by ceapar ,102 which is called with two arguments that point to the
key object and to an array member, in that order. The function shall return an integer
less than, equal to, or greater than zero if the key object is considered, respectively, to be
lesslhan, to match, or to be greater than the array member.

102.Noticethat the key-to-membercomparisonjndvceI an orderingon the array.

§4.10.4.4 January 11, 1988
DRAFT

§4.10.5.1

LIBRARY 158 GENERAL UTILITIES <stdl1b.h>

Returns

The bsearch function returns a pointer to a matching member of the array, or a null
pointer if no match is found. It two members compare as equal, which member is

5 matched is unspecified.

4.10.5.2 The qsort function
Synopsis

10 #1nclude <stdl1b.h>
void qsort(noal1a8 void *base, 81ze t n.eab, 81ze t 81ze,

1nt (*coapar) (const noal1&8 void .,
const no&l1as v01d .»;

15 Description

The qsort function sorts an array of nlie.b objects, the initial member of which is
pointed to by base. The size of each object is specified by s1ze.

The contents of the array are sorted in ascending order according to a comparison
function pointed to by ccapar , which is called with two arguments that point to the

20 objects being compared. The function shall return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal to,
or greater than the second.

If two members compare as equal, their order in the sorted array is unspecified.

25 Returns

The qsort function returns no value.

4.10.6 Integer arithmetic functions
30 4.10.6.1 The abs function

Synopsis

#1nclude <atdl1b.h>
1nt abs(1nt j);

Description

The aba function computes the absolute value of an integer j. It the result cannot be
represented, the behavior is undefined.103

40 Returns

The abs function returns the absolute value.

4.10.6.2 The d1 v runction
45 Synopsis

#1nclude <stdl1b.h>
d1v_t d1v(1nt nuaer, 1nt deno.);

103. In a two's complement representation, the absolute value of the most negative number cannot be
represen ted.

§4.10.5.1 January 11, 1988
DRAFT

54.10.6.2

LIBRARY 159 GENERALUTILITIES <8t..dl1b.h>

Deseriptio~

The d1V Iunction computes the quotient and remainder or the division or the
numerator nUller by the denominator denoa. Ir the division is inexact, the sign or the
resulting quotient is that or the algebraic quotient, and the magnitude or the resulting

5 quotient is the largest integer less than the magnitude or the algebraic quotient. Ir the
result cannot be represented, the behavior is undefined; otherwise, quot.. • denoa +
rell shall equal auaer.
Returns

10 The d1v function returns a structure or type d1v_t.., comprising both the quotient
and the remainder. The structure shall contain the following members, in either order.

1nt quot;
1nt rell;

/* q.otient */
/* remainder */

15 4.10.6.3 The labs function
Synopsis

.1nclude <stdl1b.b>
long 10t 1~b8(100g 10t j);

Description

The 1~bs function is similar to the abs function, except that the argument and. the
returned value each have type loog 1ot.

25 4.10.6.4 The ld! v funetion
Synopsis

.1oclude <8tdl1b.h>
Id1V_t.. Id1v(loog 10t ouaer. loog 1nt deooll);

Description

The Id1 v function is similar to the d1v runction, except that the arguments and the
members ofthe returned structure (which has type ld1 v_t) all have type long 1nt.

35 4.10.7 Multibyte character functions
The behavior or the multibyte character funetions is aft'ected by the LC CTYPE

category or the current locale. For a state-dependent encoding, each function isplaced
into its initial state by a call for which its character pointer argument, s, is a null
pointer. Subsequent calls with 8 as other than a null pointer cause the internal state or

40 the function to be altered as necessary. A call with 8 as a null pointer causes these
Iunctions to return a nonzero value ir encodings have state dependency, and zero
otherwise.

4.10.7.1 The mblen (unction
Synopsis

.1nclude <st..dl1b.h>
1nt.. ablen(coost oo~l1as char *s, s1ze t.. 0);

50 Deseription

Ir 8 is Dot a Dull pointer, the ablen Iuuetion determines the Dumber or bytes
comprising the multibyte character pointed to by s. It is equivalent to

abtowc«wch~r_t *)0, s, n);

§4.10.6.2 January 11, 1988
DRAFT

§4.10.7.1

LIBRARY 160 GENERAL UTILITIES <8t.dI1b.h>

Returns --

If s is a null pointer, the .blen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If. is
not a null pointer, the ableD function either returns 0 (if 8 points to the null character),

5 or returDS the number of bytes that comprise the converted multi byte character (if the
Dext n or (ewer bytes Iorm a valid multibyte character), or returns -1 (i(they do not (orm
a valid multibyte character).

Forward references: the abt.oyc (unction {§4.10.7.2).

4.10.7.2 The mbtowc function
Synopsis

#include <st.dlib.b>
int. mbt.owc(noalias wchar t. *pwc, const. noalias char *8,

siZe t n);
15

Description

If s is not a null pointer, the .btowc function determines the number o(bytes that
20 comprise the multibyte character pointed to by 8. It then determines the code (or value

of type wehar t that corresponds to that multibyte character. (The value o(the code
corresponding to the null character is zero.) If the multibyte character is valid and pwc is
not a null pointer, the .bt.owc function stores the eode in the object pointed to by pwc.
At most n characters will be examined, starting at the character pointed to by s.

Returns

If & is a null pointer, the abt.owe (unction returns a nonzero or zero value, if
multibyte character encodings, respectively, do or do not have state-dependent eneodings.
If & is not a null pointer, the abtowc function either returns 0 (if & points to the null

30 character), or returns the number of bytes that comprise the converted multibyte
.character (if the next n or fewer bytes form a valid multibyte chara.cter), or returns -1 (if
they do nOLform a valid multibyte character).

In no case will the value returned be greater than D or the value of the MB_CUR_MAX
macro.

4.10.7.3 The we't.ombfunction

Synopsis

#include <stdlib.b>
int. wctolllb(noa11a& char *&, wchar t wchar);

Description

The wetolllb function determines the number of bytes needed to represent the
multibyte character corresponding to the code whose value is ychar (including any

45 change in shift state). It stores the multibyte character representation in the array object
pointed to by s (if 8 is not a null pointer). At most MB_CUR_MAX characters are stored.
If the value of wcbar is zero, the wctoab function is left in the initial shift state.

40

RetUl'DS

50 If s is a null pointer, the wctoab (unction returns a nonzero or zero value, if
multibyte character encodings, respectively, do or do not have state-dependent encodings.
If 8 is not a null pointer, the wet.oab function returns -1 if the value of wcbar does not
correspond to a valid multibyte character, or returns the number of bytes that comprise
the multibyte character ccrrespcndin« to the VN": of 'Uehar.

§4.10.7.1 January 11, 1988
DRAFT

§4.10.7.3

LIBRARY 161 GENERAL UTn.ITJES <st4l1b.h>

In no case will the value returned be greater than the value of the MB_CUR_~
macro.

4.10.8 Multibyte string functions
5 The behavior of the multibyte string functions is aft'ected by the LC_ CTYPE category

of the current locale.

4.10.8.1 The mbstowcs function
10 Synopsis

#include <stdlib.h>
s1ze_t abstowcs(noallas wchar_t .pwcs,

const noallas char .s, S1ze t D);

15 Description

The mbstowcs function converts a sequence of multibyte characters that begins in
the initial shift state from the array pointed to by s into a sequence of corresponding
codes and stores these codes into the array pointed to by pwcs, stopping after n codes are
stored or a code with value zero (a converted null character) is stored. Each multibyte

20 character is converted as if by a call to the IIbtowc function, except that the shift state
of the Ilbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs.

Returns

25 If an invalid multibyte character is encountered, the abstowcs function returns
(size t) -1. Otherwise, the Ilbstowcs function returns the number of :U'rayelements
IDodified,not including a terminating zero code, if any.l04

4l.10.8.2 The wcstombs fUDCtiOD

Synopsis

#lnclude <stdlib.h>
slze_t wcstombs(noa11as char .s,

const noaliaswchar_t .pwcs. size t n);

Description

The wcstombs function converts a sequence of codes that correspond to multibyte
characters from the array pointed to by pwcs into a sequence of multibyte characters
that begins in the initial shift state and stores these multibyte characters into the array

40 pointed to by s, stopping if a multibyte character would exceed the limit of n total bytes
or if a null character is stored. Each code is converted as if by a call to the wctollb
function, except that the shift state of the wcto.b function is not aft'ected.

No more than n bytes will be modified in the array pointed to by s.

45 Returns

If a code is encountered that does not correspond to a valid multi byte character., the
wcstollbs function returns (s1ze t) -1. Otherwise, the wcstoabs function returns
the number of bytes modified, not including a terminating null character, if any.l04

IO<t. The array will not be null- or zero-terminated if the value returned is a.

§4.10.7.3 January 11, 1988
DRAFT

§4.10.8.2

LIDRARY 162 STRING HANDLING <string. h>

4.11 STRING HANDLING <str1ng. h>
4.11.1 String function conventions

5 The header <strlng. h> declares one type and several funetione, and defines one
macro useful for manipulating arrays or characters and other objects treated u arrays or
characters}06 The type is 81ze _t and the macro is HULL (both described in §4.1.5).
Various methods are used for determining the lengths of the arrays, but in all cues &

char * or vold * argument points to the initial (lowest addressed) character 'Or the
10 array. IT an array is accessed beyond the end or an object, the behavior is undefined.

4.11.2 Copying functions
4.11.2.1 The memcpy runction

Synopsis

#1nclude <strlng.h>
vold *memcpy(noallas vold *sl, const noa11as vold *s2.

siZe t n);

Description

The memcpy function copies n characters from the object pointed to by s2 into the
object pointed to by s1. IT copying takes place between objects that overlap, the
behavior is undefined.

Returns

The memcpy function returns the value or s1.

4.11.2.2 The memmove runction

(Synopsis

#lnclude <strlng.h>
vold *.emmove(vold *sl, const vold *s2. slze t n);

35 Description

The lIellllove function copies n characters Irom the object pointed to by s2 into the
object pointed to by 81. Copying between objects that overlap shall take place correctly.

Returns

40 The meallove Cunction returns the value of s1.

4.11.2.3 The strcpy runction

Synopsis

#lnclude <str1ng.h>
char *strcpy(noallas char *sl, const noa11as char *82);

Description

The strcpy function copies the string pointed to by 82 (including the terminating
50 null character) into the array pointed to by sl. IT copying takes place between objects

that overlap, the behavior is undefined.

45

10S. See "future library directions" (§4.13.8).

§4.1l January 11, 1988
DRAF.T

§4.11.2.3

LmRARY 163 STRING HANDLING ot.ring. h>

Returns

The strcpy (unction returns the value o(sl.

4.11.2.4 The strncpy function
Synopsis

#1nclude <str1ng.h>
char .strncpy(noa11as char .sl, const noa11as char .82,

size t n);

Description

The strncpy (unction copies not more than n characters (stopping after a null
character is copied) from the array pointed to by 82 to the array pointed to by s1.1De If
copying takes place between objects that overlap, the behavior is undefined.

15 If the array pointed to by s2 is a string that is shorter than n characters, null
characters are appended to the copy in the array pointed to by a1, until n characters in
all have been written.

Returns

20 The strncpy function returns the value o(s1.

4.11.3 Concatenation functions
4.11.3.1 The strcat function

Synopsis

#include <string.h>
char *strcat(noa11as char .sl, const noa11as char .s2);

30 Description

The strcat function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by s1. The initial
character of s2 overwrites the null character at the end of s1. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The strcat function returns the value or sl.

4.11.3.2 The strnca.t function

Synopsis

#include <string.h>
char .strncat(noalias char *sl, const noa11as char .s2,

s1ze t n);

Description

The strncat function appends not more than n characters (stopping before a null
character is appended) from the array pointed to by s2 to the end or the string pointed
to by s1. The initial character or s2 overwrites the null character at the end of s1. A

50 terminating null character is always appended to the result.107 If copying takes place

106. Thus, if there is no null character in the first n characters of the array pointed to by &2, the result
will not be null-terminated

107. Thus the number of characters that may end up in the array pointed to by U is strlen(U)+n+l.

§4.11.2.3 January 11, 1988
DRAFT

§4.11.3.2

LffiRARY 164 STRING HANDLING <str1ng. h>

between objects that overlap, the behavior is undefined.
Returu

The strncat (unction returns the value o(al.

Forward reterences: the strIen (unction (§4.11.6.3).

4.11.4 Comparison functions
The sign of the value returned by the comparison (unctions is determined by the sign

10 of the difference between the values o(the first pair o(characters that differ in the objects
being compared. If one o(the characters has its high-order bit set, the sign o(the result
is implementation-defined.

4.11.4.1 The memcmpfunction
Synopsis

#lnc1ude <strlng.h>
lnt aeacap(const noa11as void *sl, const noallas vo1d *s2,

slze_t D);
Description

The aellcap (unction compares the first n characters or the object pointed to by .2
to the object pointed to by SlY·

25 Returns

The aeacap (unction returns an integer greater than, equal to, or less than zero,
according as the object pointed to by sl is greater than, equal to, or less than the object
pointed to by s2.

30 4.11. '.2 The strcmp function
Synopsis

#lnclude <string.h>
lnt strcap(const noa11as char *al, const noa11as char *s2);

Description

The strcap(unction compares the string pointed to by sl to the string pointed to
by sz.

40 Returns

The strcIDp function returns an integer greater than, equal to, or less than zero,
according as the string pointed to by S1 is greater than, equal to, or less than the string
pointed to by s2.

lOB. The contents of "holes" used as padding for purposes of alignmentwithin structure objects are
indeterminate.unless the contents of the entire object have been set explicitly,as by the calloc or
memset function. Strings shorter than their allocatedspace and unionsmay also causeproblemsin
comparison.

§4.11.3.2 January 11, 1988
DRAFT

§4.11.4.2

LffiRARY 165 STRING HANDLING<st.r1ng. h>

4.11.4.3 The st.rcoll runction

Synopsis

#include <st.ring.h>
int. st.rcoll(const. noalias char .s1, const. noalias char •• 2);

Description

The st.rcoll funct.ion returns an integer greater than, equal to, or less than sero,
according as the string pointed to by 81 is greater than, equal to, or less than the string

10 pointed to by 82. The comparison is based on strings interpreted as appropriate to the
program's locale.

5

4.11.4.4 The strncmp runction
15 Synopsis

#include <str1ng.h>
lnt strncmp(const noallas char *sl, const noa11as char $s2,

s1ze_t n);

20 Description

The strncmp function compares not more than n characters (stopping af'ter & null
character is compared) from the array pointed to by 81 to the array pointed to by 82.

Returns

25 The strncmp funct.ion returns an integer greater than, equal to, or less than sere,
according as the possibly null-terminated array pointed to by 81 is greater than, equal to,
or less t.han the possibly null-terminated array pointed to by 82.

4.11.4.5 The strxfrm function
Synopsis

#1nclude <str1ng.b>
size t strxfra(noa11as char *81. con8t noa11as char $s2.

- siZe t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the
result.ing string into the array pointed to by sl. The transformation is such that if the
strcmp function is applied to t.wo transformed atrings, it returns a value greater than,

40 equal to, or less than zero, corresponding to the result of the strcoll function applied
to the same two original strings. No more than n characters are placed into the resulting
array pointed to by s i , including the terminating null character. If copying takes place
between objects that overlap, the behavior is undefined.

45 Returns

The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returned is n or more, the contents of the array
pointed to by sl are indeterminate.

50 EXlYDple

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + 8t~:frm(NULL, s. 0)

" ..

§4.llA.3 January 11, 1988
DRAFT

§4.11.4.5

LIBRARY 166 STRING HANDLING <str1ng. 1'1>

4.11.5 Search functions
4.11.5.1 The memchrfunction

5 Synopsis

#lnclude <strlng~1'1>
void .meachr(const noa11as void •• , lnt c, slze t D);

Description

10 The aeIDchr function locates the first occurrence of e (converted to an unslgned
Char) in the initial n characters of the object pointed to by s.

Returns

The lDelDchrfunction returns a pointer to the located character, or a null pointer if
15 the character does not occur in the object.

4.11.5.2 The strchr function
Synopsis

#include <str1ng.b>
char *strcbr(const noallas char *s, lnt c);

Description

The strcbr function locates the first occurrence of c (converted to a cbar) in the
25 string pointed to by s. The terminating null character is considered to be part of the

20

string.

Retul'ns

The strcbr function returns a pointer to the located character, or a null pointer if
30 the character does not occur in the string.

4.11.5.3 The strcspn function

Srnopaia

35 #lnclude <strlng.h>
slze t strcspn(const noallas cbar .sl,

- const noa11as char *s2);

Description

40 The BtrcBpn function computes the length of the maximum initial segment of the
string pointed to by al which consists entirely of characters not from the string pointed
to by s2.

Retul'ns

45 The atrcapn function returns the length of the segment.

4.11.5.4 The strpbrk function

Synopsis

50 #include <str1ng.h>
cbar .strpbrk(const noallas char *sl,

const noallas char *82);

(

Description

55 The strpbrk function locates the first occurrence in the string pointed to by 81 of
any character from the string pointed to by r:?.

§4.11.5 January 11, 1988
DRAF'f

§4.1l.5.4

LmRARY 167 STRING HANDLING<st.r1ng. 11>

10

Returns

The 8t.rpbrk function returns •• pointer to the character, or a null pointer 'it no
character from 82 occurs in 81.

4.11.5.5 The 8t.rrchr function

Syn()~.i.

#inclu~e <8t.r1ng.b>
cbar $st.rrcbr(const. noalias cbar $S, 1nt. c);

Description

The strrcbr function locates the last occurrence of e (converted to a cbar) in the
string pointed to by s. The terminating null character is considered to be part of the

15 string.

Returns

The 8trrcbr function returns a pointer to the character, or a null pointer if e does
not occur in the string.

4.11.5.6 The st.rspn function

Synop.is

#1nclu~e <string.b>
s1ze t strspn(const noa11as cbar $sl, const noa11as cbar $s2);

Description

The strspn function computes the length of the maximum initial segment of the
string pointed to by 81 which con~istsentirely of characters Cromthe string pointed to by

30 82.

25

Returns

The str8pn function returns the length of the segment.

35 4.11.5.7 The strstr function

Synopsis

#1nclu~e <str1ng.h>
ch~r *strstr(const noalias char $sl, const noa11as char $82);

Descriptio.n

The strstr function locates the first occurrence in the string pointed to by sl of the
sequence of characters (excluding the terminating null character) in the string pointed to
by s2

Returns

The strstr function returns a pointer to the located string, or a null pointer if the
string is not found. If 82 points to a string with zero length, the function returns 81.

50 4.11.5.8 The strtok function

Syn01-_i.

#1nclu~e <str1ng.h>
cbar *strtok(noa11as char *sl, const noa11as char *s2);

§4.11.5,4 . January 11, 1988
DRAFT

§4.1l.5.8

LmRARY 168 STRING HANDLING <8t.r1ng. h>

DescriptioD

A sequence o(calls te t.he 8trtok function breaks t.he st.ring pointed to by 111into a
sequence o(tokens, each o(which is delimited by a character (rom the string pointed to
by 82. The first call in the sequence has 81 as its first argument, and is followed by ealls

5 wit.h a null pointer as their first. argument. The separat.or string pointed to by 82 may be
different (rom call t.ocall.

The first eall in the sequence searches the string pointed to by 81 (or the first
character that is not cont.ained in the current separator string pointed to by 82. I(no
such charact.er is (ound,t.hen there are no tokens in the string pointed to by 81 and the

10 strtok (unction returns a null pointer. If such a character is found, it is the start of the
first. token.

The strtok functicn t.hen searches Cromthere Cor a character that i, contained in the
current separator st.ring. If no such character is found, the current token extends to the
end of the string pointed to by s1, and subsequent searches for a token will return a null

15 pointer. I(such a character is found, it is overwritten by a null character, which
terminates the current. token. The 8trtok function saves a pointer to the following
character, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

20 The implementation shall behave as if no library function calls the strtok function.

ReturDs

The strtok function returns a pointer to the first character oC a token, or a null
pointer if there is no token.

'Example

#include <atring.h>
statiC char str[J = -1'a1'1'1'b",#c-;
cbar *t;

30 t = strtok(str, -1'-) ; 1* t point. to the token -a- *1
t = strtok (NULL , ., -) ; 1* t point. to the token -1'1'b- *1
t = strtok (NULL , »«, -) ; 1* t point. to the toke« - c- *1
t = strtok (NULL , -1'-); 1* t i. /I null pointer *1

4.11.6 Miscellaneous (unctions35

4.11.6.1 The memset function
SYDopsis

#include <string.b>
Void *.emset(noalias void *s, int c, size t D);

DescriptioD

The .e.set function copies the value of e (converted to an unsigned caar) into
45 each of the first n characters of the object pointed to by s.

40

ReturDS

The .easet function returns the value of s.

§4.1l.5.8 January 11, 1988 .
DRAFT

. §4.1l.6.1

LIBRARY 169 STRING HANDLING<.tring. 11>

4.11.&.2 The strerror function
Syno~' :;i8

#include <str1ng.h>
5 char *strerror(int errnua);

Description

The strerror runction maps the error number in errnua to an error message string.

10 Returns

The strerror Iuneticn returns a pointer to the string, the contents or which are
implementation-defined. The array pointed to shall not be modified by the program, but
may be overwritten by a subsequent call to the strerror function.

15 4.11.&.3 The strlen function
Synopsis

#include <string.h>
size t strlen(const noal1as char *s);

. Description

The strlen Iuncrion computes the length or the string pointed to by •.

Returns

25 The strl en function returns the number of characters that precede the terminating
null character.

§4.11.6.2 January 11, 1988
DRAFT

§4.11.6.3

LIDRARY 170 DATE AND TIME <tl ••. b:>

4.12 DATE AND TWE <t1me. h>

4.12.1 Components of time
5 The header <tl ••. b> defines two macros, and declares four types and several

functions ror manipulating time. Many runctions deal with a calendar time that
represents the current date (according to the Gregorian calendar) and time. Some
runctions deal with local time, which is the calendar time expressed for some specific time
zone, and with Davlight Saving Time, which is a temporary change in the algoritnm Ior

10 determining local time. The local time lone and Daylight Saving Time are
implementation-defined.

The macros defined are NULL (described in §4.1.5)i and

CLK. TCK

which is the number per second or the value returned by the clock fuaetica.

15 The types declared are slze t (described in §4.1.5);

clock t

and

tll1e t

20
which are arithmetic types capable of representing times; and

struct tm

which holds the components or a calendar time, called the broken-down time. The
structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.

25
lnt tm_sec; f* ,econd, after the minute - /0, 59] *f
lnt ta_IIln; f* minute, after the hour - /0, 59] *f
lnt tll_bour; f*· hour, eine« midnight - /0, tS} *f
lnt tll_IIc1ay; /- day of the month - (1, Blj ./
lnt tll_IIon; f* month, since hI.nV4"11 - /0, 11} *f
lnt tll_year; f* rear, ,ince 1900 *f
lnt tll_wc1ay; f* day, ,ince Sunda'll - /0, 6] */
lnt tll_yc1ay; /- day, ,ince Ja nus "111 - /0, S65} -/
lnt tll_lsdst; f* Dav/ight Saving Time fta, *f

30

The value of tll lsdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is n~t in effect, and negative if the information is not available.

4.12.2 Time manipulation functions
4.12.2.1 The clock function

40 Synopsis

#lnclude <tll1e.b>
clock t clock(volc1);

(

Description

45 The clock function determines the processor time used.

Returns

The clock function returns the implementation's best approximation to the processor
time used .by the program since the beginning of an implementation-defined era related

50 only to the program invocation. To determine the time in seconds, the value returned by
the clock (unction should be divided by the V21ue of the macro CLK._TCK. II the

§4.12 January 11, 1988
DRAFT

§4.12.2.1

LIDRARY 171 DATE AND TIME <t1a •. h>

(
processor time used is not available or ita value cannot be represented, the function
returns t.h1!v'llue (c~ -.ck_t)-1.

4.12.2.2 The d1fft1me function

Synopaia

#1nclude <t1me.h>
double d1fft1me(t1me_t t1mel, t1a. t t1a.O);

10 Description

The d1fft1me function computes the difference between two calendar times: t1ael
- t1meO.

Returll8

15 The d1fft1me function returns t.he difference expressed in seconds as a double.

4.12.2.3 The mkt1me function

Synopsis

#1nclude <t1me.h>
t1me_t akt1me(noa11as struct ta *t1a.ptr);

Description

The IDkt1me function converts the broken-down time, expressed as local t.ime, in the
25 structure pointed to by tiaeptr into a calendar time value with the same encoding as

that of the values returned by t.he t1ae function. The original values of the tm_wday
and ta yday components of the structure are ignored, and the original values or the
other c~mponents are not restricted to the ranges indicated above.10Q On sueeeeeful
completion, the values of the tm_wday and ta_yday components of the structure are set

30 appropriately, and the other components are set to represent the specified calendar time,
but with their values forced to the ranges indicated above; the final value of ta_aday is
not set until tm_mon and tm_year are determined.

20

Returns

35 The mkt1me function returns the specified calendar time encoded as a value of type
t1me t. If the calendar time cannot be represented, the function returns the value
(t1Ile_t)-1.

Example

40 What. day of the week is July 4, 2001?

#1nclude <std10.h>
#1nclude <t1me.h>
stat1c: const char *const wday [J = {

-Sunday·, ·Monday·, -TuesdaY-, -Wednesday·,
·Thursday·, -Fr1day·, ·Saturday·, ·-unknown-·45

};
struct tm t1ae_str;

109 Thus a positive or zerovalue for tm isC1st causes the mktime function initially to presume that
Daylight Saving Time respectively,Is-or is not in effectfor the specifiedtime. A negativevalue for
tm isc1st causesthe 'mktime functIon to attempt to determinewhetherDaylightSavlDgTime is in
effectfor the specifiedtime.

§4.12.2.1 January 11, 1988
DRAFT

§4.12.2.3

LffiRARY 172 DATE AND TIME <t1a•.h>

2001 - 1000;
7 - 1;
4;
0;
0;

t1.e_str.t._sec = 1;
t1.e str.t. lsdst = -1;
1f (.kt1ae(&t1.e_str) == -1)

tlae str.t. wday = 7;
10 pr1ntf(·ls\n·, wday[t1ae_str.t._wday);

4.12.2.4 The t1me function

tla._str.ta_year =t1me str.t. .on =-t1me_str.t._aday =t1me str.t. hour =-5 t1me str.t•• 1n =-

Synopsis

15 #1nclude <t1.e.h>
t1me t t1l11e(noa11ast1me t *t1.er);

Deaeription

The t1me function determines the current calendar time. The encoding or the value
20 is unspecified.

Returna

The t1me Iunetion returns the implementation's best approximation to the current
calendar time. The value (t1ae_t)-1 isreturned ir the calendar time is not available.

25 II t1mer is not a null pointer, the return value isalso assigned to the object it points to.

4.12.3 Time conversion functions'
Except fer the atrft1.e funetion, these Cunctions return values in one oC two static

objects: a broken-down time structure and a character array. Execution oC any oC the
30 Cunctions may overwrite the inCormation returned in either oC these objects by any or the

other functions. The implementation shall behave as if no other library functions call
these functions.

4.12.3.1 The asct1me function
Synopsis

#1nelude <t1me.b>
char *asct1me(const noa11as struct tm *t1meptr);

40 Description

The a.set1mefunction converts the broken-down time in the structure pointed to by
t1aeptr into a string in the form

Sun Sep 16 01:03:52 1Q73\n\0
using the equivalent of the following algorithm.

(

§4.12.2.3 January 11, 1988
DRAFT

§4.12.3.1

LmRARY 173 DATE AND TIME <t.1••. h>

cbar .asc~1.e(const. noalias st.ruct. t.. *t.i.ept.r)
{

5

stat.ic con~t cbar Yday_~aae[7J [3J = {
-Sun- , -Mon-, -Tue-, -Wed-, -Thu-, -Fr1-, -Sat.-

};
.t.at.1c const. cbar .on_naae[12) [3] = {

-Jan-, -Feb-, -Mar- , -Apr- , -May- , -Jun-,
- Jul- , -Aug-, -Sep-, -Oct.-, -Nov-, -Dec-

};
10 static cbar result[26];

spr1ntf(result, -1.3s 1.3s13d 1.2d:I.2d:I.2d Id\n-,
Yday_name[t1meptr->ta_YdayJ,
mon_name[t1meptr->t.a_aon],
t.1meptr->tm_mday, t1aept.r->t.a_bour,
t1meptr->tm_m1n. t1meptr->ta_sec,
1900 • t1meptr->ta_year);

return result;

15

}

20 Returns

The asct1me function returns a pointer to the string.

4.12.3.2 The ct1me function
25 Synopsis

#1nclude <t1me.b>
cbar *ct.1ae(const. noa11as t1me_t. *t1aer);

Description

30 The ct1ae function converts the calendar time pointed to by t1mer to local time in
the form of a string. It is equivalent to

asct1me(localt1ae(t1mer»

Returns

35 The ct1ae function returns the pointer returned by the asct1ae function with that
broken-down time as argument.

Forwa.rd references: the local t1me function (§4.12.3.4).

40 4.12.3.3 The gmt1me function
Synopsis

#1nclude <t1me.b>
struct ta .gmt1~e(const noa11as time t. .t1mer);

Description

The gmt1me function converts the calendar time pointed to by t.iaer into a broken-
down time, expressed as Coordinat.edUniversal Time (UTC).

so Retarns

The gmt1ae function returns a pointer to that object, or a null pointer if UTC is not
available.

(

§4.J 2.3.1 January 11, 1988
DRAFT

§4.12.3.3

LffiRARY 174 DATE AND TIME <t1a •. h>

4.12.3.4 The local time fUDction

(

Synopsis

#1nclud. <t1 ••. h>
5 .truct t •• 10c~lt1 •• (con.t noalla8 tl •• t *tl •• r);

Description

The loc~l tl •• function converts the calendar time pointed to by t1 •• r into a
broken-down time, expressed as local time.

Returns

The loc~l tlae function returns a pointer to that object.

4.12.3.5 The strft1me function
Synopsis

#lnclude <tla •. h>
slze_t strftlm.(noallas char .S, slze_t .axslz.,

const noallas char .format,
20 const noallas struct t. *tlmeptr);

Description

The strftlme function places characters into the array pointed to by s as controlled
by the string pointed to by format. The format shall be a multi byte character sequence,

25 beginning and ending in its initial shift state. The form~t string consists of zero or more
conversion specifications and ordinary multibyte characters. A conversion specification
consists of a I character followed by a character that determines the conversion
specification's behavior. All ordinary multi byte characters (including the terminating
null character) are copied unchanged into the array. Ir copying takes place between

30 objects that overlap, the behavior is undefined. No more than aaxslze characters are
placed into the array. Each conversion specification is replaced by appropriate characterS
as described in the following list. The appropriate characters are determined by the
program's locale and by the values contained in the structure pointed to by t1aeptr.

la is replaced by the locale's abbreviated weekday name.
35 IA is replaced by the locale's full weekday name.

Ib is replaced by the locale's abbreviated month name.
IB is replaced by the locale's full month name.
Ie is replaced by the locale's appropriate date and time representation.
Id is replaced by the day of the month as a decimal number (01-31).

40 IH is replaced by the hour (24-hour clock) as a decimal number (00-23).
II is replaced by the hour (12-hour clock) as a decimal number (01-12).
11 is replaced by' the day of the year as a decimal number (001-366).
III is replaced by the month as a decimal number (01-12).
1M is replaced by the minute as a decimal number (00-S9).

45 Ip is replaced by the locale's equivalent of either AM or PM.
IS is replaced by the second as a decimal number (00-S9).
IU is replaced by the week number of the year (Sunday as the first day of the week)

as a decimal number (00-53).
Iw is replaced by the weekday as a decimal number [0 (Sunday)-6]. -

50 Iw is replaced by the week number of the year (Monday as the first day of the week)
as a decimal number (00-S3).

Ix is replaced by the locale's appropriate date representation.
IX is replaced by the locale's appropriate time representation.
~y is .e?laced by the year without century as a decimal number (00-99).

55 IY is replaced by the year with century as a decimal number.

§4.12.3.4 January 11, 1988
DRAFT

§4.12.3.5

LIDRARY 175 DATE AND TIME <t,1••. h>

IZ is replaced by the time lone name, or by no characters it no time lOne is
determinable.

"" is replaced by I.
It a conversion speeificationis not one or the above, the behavior is undefined.

Returna

It- the total number or resulting characters including the terminating null character is
not more than lIax81ze, the .t,rft,1I1e runction returns the number or characters
placed into the array pointed to by 8 not including the terminating null character.

10 Otherwise, zero is returned and the contents or the array are indeterminate.

§4.12.3.5 January 11, 1988
DRAFT

§4.12.3.5

LffiRARY 176 FUTIJRE LffiR,ARY DIRECTIONS

4.13 FUTURE LmRARY DmECTIONS
The following names are grouped under individual headers for convenience. All

external names described below are reserved no matter what headers are included by the
5 program.

4.13.1. Errors <errno. h>
Macros that begin with E and an upper-cue letter (followed by any combination of

digits, letters and underscore) may be added to the declarations in the <errno. h>
10 header.

4.13.2 Character handling <ctype. h>
Function names that begin with either 1. or to, and a lower-cue letter (followed by

any combination of digits, letters and underscore) may be added to the declarations in
15 the <ctype .h> header.

4.13.3 Localization <locale. h>
Macros that begin with LC_ and an upper-cue letter (followed by any combination of

digits, letters and underscore) may be added to the definitions in the <locale. h>
20 header.

4.13.4 Mathematics <math. h>
The names of all existing functions declared in the <1Ia.th. h> header, suffixed with f

or 1, are reserved respectively for corresponding functions with float and long double
25 arguments and return values.

4.13.5 Signal handling <signal. h>
Macros that begin with either SIG and an upper-cue letter or SIG and an upper-

cue Iett.er (Collowedby any combination of digits, letters and underscor~) may be added
30 to the definitions in the <B1gnal .h> header.

4.13.6 Input/output <stc1i0. h>
. Lower-ease letters may be added to the conversion specifiers in fprintf and fsca.n!.

Other characters may be used in extensions.

4.13.7 General utilities <stdlib. h>
Function names that begin with str and a lower-case letter (followed by any

combination of digits, letters and underscore) may be added to the declarations in the
<stdl1 b .h> header.

4.13.8 String handling <string. h>
Function names that begin with str, _e_, or wes and a lower-case letter (followed by

any combination of digits, letters and underscore) may be added to the declarations in
the <string. h> header.

(

§4.13 January 11, 1988
DRAFT

§4.13.8

Proposed C Standard 177 APPENDICES

A. APPENDICES
(These appendices are not a part of American Na.tional Standan1 for Information Systems

- Programming Language C, X3.!??-1988.)

These appendices collect information that appears in the Standard, and are not necessarily
complete.

A.I LANGUAGE SYNTAX SUMMARY
The notation is described in the introduction to §3 (Language).

A.I.I Lexieal grammar
A.1.1.1 Tokens

(§3.1) token:
keyword
identifier
eon,tant
,tring-/iteral
operator
punctuator

(§3.1) preproee"ing-token:
header-name
identifier
pp-number
eharaeter-eondant
,tring-/iteral
operator
punctuator
each non-white-space character that cannot be one of the above

A.1.1.2 Keywords
(§3.1.1) keyword: one of

auto extern signed
break float sizeof
case for statiC
char goto struct
const if switch
continue 1nt typedef
default long un10n
do noalias unsigned
double register void
else return volatile
enum short while

A.1.1.3 Identifiers

(§3.1.2) identifier:
nondi,it
identifier non digit
identifier di,it

§A. January 11, 1988
DRAFT

§A.l.l.3

APPENDICES 178 LANGUAGE SYNTAX SUMMARY

(§3.1.2) nondigit:- one of
a b e Cl e f g h 1 j It 1 •n 0 p q r s t. u V y X Y z
A B C D E F G H I J K L M
Ii a p Q R S T U V W x y Z

(§3.1.2) digit: one of
0 1 2 3 4 5 6 7 8 g

. A.1.1.4 Constanta
(§3.1.3) conat4nt:

jl04ting-conatant
integer-con&tant
envmer4 tio n-e onatant
ch 4rac ter-e onatant

(§3.1.3.1) jloating-conat4nt:
!r4etiona/-eon,tant e%ponent-p4rt t jl04ting-lVifi% t
.s : • jl OJ' ifi opluglt-aequence exponent-part oatlng-au % top

(§3.1.3.1) /raction41-conatant:
digit-aeqvence t . digit-aeqvence
d. . op
.g.t-aeqvence .

(§3.1.3.1) exponent-part:
e. aign t digit-,eqvence. op ~ ..E a.gn t a.gat-,eqvenceop

(§3.1.3.1) lign: one of
+

(§3.1.3.1) digit-.equence:
digit
digit-.equence digit

(§3.1.3.1) jlo4ting-nifi%: one of
f 1 F L

(§3.1.3.2) integer-conatant:
decim4/-conatant integer-lVifi% t

I . ifi opacta -eonatant Integer-au % t
h e%adeeimal-eon&tant intege7-nifiz top

(§3.1.3.2) decimal-eonat(lnt:
nonzero-digit
deeimal-eonltant digit

(§3.1.3.2) oetal-eonstant:
o
oet4/-eorltat4nt octal-digit

(§3.1.3.2) he%adeeim4/-ec'"&t4nt:
Ox hez4deeim4/-digit
OX hezGdeeim41-digit
he%4deeim4/-eon&tant hezadecimal-digit

(§3.1.3.2) nonzero-digit: one of
1 234 5 6 7 8 g

§A. 1. 1.3 January 11, 1988
DRAFT

§A.1.1.4

APPENDICES 179 LANGUAGE SYNTAX SUMMARY

(§3.1.3.2) octal-di,it: one of
0 1 2 3 4 6 6 7

(§3.1.3.2) hezadeeimal-di,it: one of
0 1 2 3 4 6 6 7 8 9
a b e d e f
A B C D E F

(§3.1.3.2) inte,er-lUffiz:
un,i,ned-,uffiz lon,-,uffiz t
long-lUffiz un,i,ned-,uffiz OJ)tOJ)

(§3.1.3.2) un,igned-,uffiz: one of
u U

(§3.1.3.2) long-,uffiz: one of
1 L

(§3.1.3.3) enumeration-eon,tant:
identifier

(§3.1.3.4) eharacter-eon,tant:
, c-ehar-,equenee'
L' e-ehar-.equenee'

(§3.1.3.4) e-ehar-,equenee:
c-char
c-char-ec:qvc:n" ,-char

(§3.1.3,4) e-ch er:
any character in the source character set except

the single-quote " baekslasb \, or new-line character
ese aJ)e-,equenc e

(§3.1.3.4) ucape·,equence:
.imp/e-uc ape-.equenc e
oetal-uc ape-.equence
hezadecimal-ucape·,equenee

(§3.1.3,4) ,imple-e,cape-,equence: one of
\' \- \? \\
\a \b \f \0 \r \t \v

(§3.1.3.4) octal-ucape-,equenee:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(§3.1.3,4) hezadecimal-ucape-,equence:
\x hezadeeimal-digit
hezad eeimal-ue ape-,equenee hezadeeimal-digit

A.1.1.5 String literals

(§3.1.4) Ilrin,-/iteral:
- ,-ehar-.equenee t-

011
L - ,-ehar-,equence t-

011

(

(§3.1.4) ,-ehar-,eqtlenee:
.-ehar
,-ehar-,equenee ,-char

§A.1.1.4 January 11, 1988
DRAFT

§A.1.1.5

APPENDICES 180 LANGUAGE SYNTAX SUMMARY

(§3.1.4) ,-char:-
any character in the source character set except

the double-quote ., backslash \, or new-line character
elcape-,eguence

A.1.1.6 Operators
(§3.1.5) operator: one of

(] () ->
++ a * + Biz.of
/ 1 « » < > <= >= -- 1= u II
l'
= *= /= 1= += -= «= »= a= "'= 1=

##

A.1.1.7 Punctuators
(§3.1.6) punctuator: one of

[] () {}*

A.1.1.8 Header names

(§3.1.7) header-name:
<h-char-,equence>
• q-char-,equence·

= #

(§3.1.7) h-char-,equence:
h-char
h-char-,equence h-char

(§3.1.7) h-char:
any character in the source character set except

the new-line character and >
(§3.1.7) q-char-,equence:

g-thar
g-char-,eguence q-eh ar

(§3.1.7) q-ch ar:
any character in the source character set except

the new-line character and •

A.1.1.9 Preprocessing numbers
(§3.1.8) pp-number:

di,it
. di,it
pp-number iJi,it
pp-nllmber nondi,;t
pp-number • ,i,"
pp-nllmber E ,i,n
pp-number .

§A.l.1.5 January 1.1, 1988
DRAFT

§A.l.I.9

APPENDICES 181 LANGUAGESYNTAXS~Y

A.1.2 Phrase structure grammar
A.1.2.1 Expressions

-(§3.3.1) -prima,.,-ezpre"ion:
identifier
conlJtant
.tring-/iteral
(ezprell3ion)

(§3.3.2) po.tfiz-ezpre •• ion:
prima'1/-ezprell3ion
po.tfiz-ezprell3ion [ezpre"ion)
polJtfiz-ezprea.ion (argument-ezprell3ion-lilJt t)

fi . 'd 'fi oppo.t z-eZprell310n . I enta er
po.tfiz-ezprell3ion -> identifier
po.tfiz- ezpre.lJion
polJtfiz-ezprell3ion

++

(§3.3.2) argument-ezpre"ion-liat:
alJlJignmen t-ezpreesion
argument-ezprell3ion-/i.t • all3ignment-ezpre"ion

(§3.3.3) vnary-ezpre"ion:
po.tfiz-ezprell3ion
++ "nary-ezprell3ion
-- vnary-ezpreuion
.nary-operator eut-ezprell3ion
s1zeof "na'1/-ezprell3ion
s1zeof (type-name)

(§3.3.3) unary-operator: one of
.t * +

(§3.3.4) calJt-ezprell3ion:
"n a'1/- ezprell3ion
(trpe-name) eut-ezpreuion

(§3.3.5) multipli« ative~ezpre"ion:
c4IJt-ezpre"ion
m"ltiplicative-ezprell3ion * ca.t-u:prea.ion
mv/tipiicative-ezpre"ion / c4IJt-ezpreaaion
multiplicative-ezpreuion I ca.t-ezprea.ion

(§3.3.6) additl've-ezpreuion:
mvltiplicative~ezpreuion
additive-ezpreuion + muitipiicative-ezpreuion
4dditive-ezprea.ion - multip/icative-ezprell3ion

(§3.3.7) .hift-ezpreuion:
additive-ezpreuion
.hllt-ezpre"ion « additive-ezprea,ion
.Jult-ezpreuion > > additive-ezprea.ion

§A.1.2 January 11, 1988
DRAFT

§A.1.2.1

APPENDICES 182 LANGUAGESYNTAXS~Y

(
(§3.3.8) reiational-upre"ion:

,h,lt-ezpre"ion
relational-ezpre"ion < ,hi/t-ezpre"ion
relational-ezpre"ion > ,h,lt-ezpre"ion
relational-ezpreuion <= ,hi/t-ezpreuion
relation al-ezpre"ion >= ,hi/t-ezpre"ion

(§3.3.9) equ/itv-ezpreuion:
relational-ezpreuion
equa/itv-ezpreuion == reiational-ezpreuion
equa/ilv-ezpru,ion ,= relational-ezpru,ion

(§3.3.10) AND-ezpre"ion:
equalitv-ezpreuion
AND-ezpre"ion .t equalit,-ezpre"ion

(§3.3.11) ezclulive-OR-ezpre"ion:
AND-ezpre"ion
ezc/ulive-OR-ezpre"ion - AND-ezprulion

(§3.3.12) inclulive-OR-ezpreuion:
ezclulive-OR-ezpre"ion.
inciUlive-OR-ezpre"ion I ezc/u,ive-OR-ezpre"ion

(§3.3.13) logical-AND-ezpreuion:
inclulive-OR-ezpreeeion
logical-AND-ezpre"ion .t.t inclu,ive-OR-ezpre"ion

(§3.3.14) logical-OR-ezpre"ion:
logical-AND-ezpre"ion
Jogical-OR-ezpre"ion I 1 logical-AND-ezprulion

(§3.3.15) conditional-ezpre"ion:
logical-OR-ezpre"ion
logical-OR-ezpre"ion ? ezpr~f~ion conditional.crpre"iofl

(§3.3.16) a"ignment-ezpre"ion:
conditional-ezpre"ion
una'1l-ezpre"ion a"ignment-operator a"ignment-ezpre"ion

(§3.3.16) a"ignment-operator: one or
= *= /= 1= += -=. «= »= - .--.- - 1=

(§3.3.17) ezpre"ion:
a"ignment-ezpre"ion
ezpre"ion , aalignment-ezpre"ion

(§3.4) conltant-ezpre"ion:
conditional-ezpre"ion

A.1.2.2 Declarations

(§3.5) declaration:
declaration-Ipecifier, init-declarator-/i,t t;

01'
(§3.5) declaration-,pecifier,:

,torage-cla,,-,pecifier declaration-,pecifier, t
·ft d I' 'fi 01't,pe-,pee. er ee arat,on-Ipeci er« t

t,pe-qvalifier declaration-,pecifier, ::t

§A.l.2.1 January 11, 1988
DRAFT

§A.1.2.2

APPENDICES 183 LANGUAGE SYNTAX SUMMARY

(§3.5) in it-de e/arator-/i,t:
. init-dee/arator
init-dee/ardor-/i.t • init-dee/arator

(§3.5) init-dedarator:
dee/arator
declarator = initia/izer

(§3.5.1) .tora,e-cla"-.peeifier:
typedef
extern
static
auto
register

(§3.5.2) tvpe-,peeifier:
void
char
short
1nt
long
float
double
s1gned
uns1gned
,tru et-or-II nion-,p eeifier
enum-,peeifier
tvpedej-name

(§3.5.2.1) ,tru e t-or-llnion-,peeifier:
.truet-or-union identifier t { ,tnlet-dee/aration-/ilt }

. 'd 'ji op,trvet-or-unlon I enh er

(§3.5.2.1) ,truet-or-union:
struct
un10n

(§3.5.2.1) Itruet-dee/aration-/i,t:
.tru et-dee/aration
,true t-dee/aration-/i,t .true t·declaration

(§3.5.2.1) Itruet-declaration:
'1'e eifier-qu aUfier-/i.t Itru e tadee/arator-li.t

(§3.5.2.1) ,peeifier-qua/,'jier-/i~t:
t,pe-.pee,'jier .peeifier-qua/l'jier-/i,t t
tvpe-qua/ifier .pe eifier-qua/ifier./i.t OPtop

(§3.5.2.1) .truet·declarator-/i.t:
,truet-dee/arator
,tnlet·dee/arator-/ilt • ,tnlet-declarator

(§3.5.2.1) .truet-declarator:
declarator
dee/arator opt : eonltant-e:rprea.ion

(§3.5.2.2) en.m-.peeifier:
enua identifier t { en"merator-/ilt }

'd 'ji openua , enh er

§A.1.2.2 January11,1988
DRAFT

§A.1.2.2

APPENDICES 184 LANGUAGESYNTAXS~Y

(§3.5.2.2) enumerator-lia(:
enumerator
enumerator-lid , en.mercator

(§3.5.2.2) enumerator:
enumeration-eon&tant
enumeration-eondant = eon&tanl-ezpre&&ion

(§3.5.3) type-qualifier:
const
noa11as
volat1le

(§3.5.4) deelarator:

(§3.5.4)

pointer t direct-deelarator
01'

direct-deelarator:
identifier
(deelarator)
direel-deelaralor [
direct-declarator (
direct-declarator (

eon&tanl-ezpreuion t]
01'

parameter-type-/i&t)
iden tifier-/ilt t)

01'
(§3.5.4) pointer:

•• type-quallfier-/i&t t
I fi I· 01' .•• tl'pe-qua I er- .&t t pOinterop

(§3.5.4) typ e-qualifier-/i&t:
. tl'pe-qual·fier

type-qua/ifier-/i,t typ e.qua/ifier

(§3.5.4) parameter-ll'pe-/id:
parameter-lilt
parameter-lilt

(§3.5.4) parameter-/i,t:
parameter-d eclaration
parameter./id , parameter-declaration

(§3.5.4) parameter-deelaration:
deelaration-&pee.fierl dee/arator
deeiaration-IpeClfier& a6,tract-deelarator t

op
(§3.5.4) identafier-/i&t:

identifier
identifier-li.t , identifier

(§3.5.5) type-name:
&pecifier-qua/ifier-/id a6&tract-dt.elarator t

01'
(§3.5.5) a6draet-deelarator:

pointer
pointer t direet-ahtraet-declaratorop

(§3.5.5) direet-a6,tract-d eelarator:
(a6,traet-declarator)
direet-a6dract-deelarator t [eonltant-ezpreuion t J

op I' 01')direet-a6&tract-deelarator t (parameter-type- lIt t
01' 01'

§A.1.2.2 January 11, 1988
DRAFT

§A.1.2.2

APPENDICES 185

(§3.5.6) tvpede/.'!ame:
identifier

(§3.5.7) initia/izer:
auignment.ezprea,ion
{ initia/izer·/i,t } .
{ initializer·/iat • }

(§3.5.7) initializer·/i,t:
initializer
initia/izer·liat , initia/izer

A.1.2.3 Statements

(§3.6) ,tatement:
labe/ed·datement
compound.,tatement
ezpreuion -st« temen t
,e/ee tion-et« tement
iter« tion-statemen t
[ump-statement

(§3.6.1) iabeled·&tatement:
identifier : ,tatement
case eon,tant·ezpreuion
default: ,tatement

,tatement

(§3.6.2) compound.,tatement:
{ declaration·/i,t t ,tatement·/id t}

01' 01'
(§3.6.2) declaration-list:

declaration
deeiaration·/i,t declaration

(§3.6.2) etatement-list:
,tatement
etatement-list ,tatement

LANGUAGE SYNTAX SUMMARY

(§3.6.3) erpre"ion·,tatement:
ezpreuion t ;

01'
(§3.6.4) selection-etatement:

if (ezpreuion) .tatement
1 f (ezpreuion) ,tatement else ,tatement
swi tch (ezprelllion) .tatement

(§3.6.5) iteration-statement:
while (erpreuion) datement
do .tatement while (ezpreuion)
for (ezpre"ion t ; ezprea.ion t

01' 01'
(§3.6.6) jump.,tatement:

goto identifier
continue ;
break ;
return ezpreuion opt

§A.l.2.2 January 11, 1988
DRAFT

ezpre"ion t) atatementop

§A.1.2.3

APPENDICES 186 LANGUAGESYNTAXS~Y

A.l.2.4 External definitions
(§3.7) tranalation-unit:

eztern a/-de el« ra tion
trana/ation-,mit ezternal-dec/aration

(§3.7) ezterna/-deelaration:
function-definition
deelaration

(§3.7.1) function-definition:
deelaration-apecifiera t declarator deelaration-/iat t compotlntl-atatementop op

A.l.3 Preprocessing directives
(§3.8) preproceaaing-file:

group top
(§3.8) group:

group-part
group group-part

• (§3.8) group-part:
pp-tokena t new-line
i/-aection op
control-line

(§3.8.1) if-eeetio«:
if-group eli/-group, t e/,e-Iroup t endi/-/ineop op

if- gro up:
#1f
1fdet
1fndet

conatant-ezprea,ion new-line Iroup t
.~ fi (. ~,"ent! er new- IRe Iroup t
'J fi I' opIllent! er new- IRe Iroup top

(§3.8.1)

(§3.8.1) elif- gro up a:
elif- group
eli/-group' eli/-group

(§3.8.1) eli/-group:
elit con,tant-czpreaaion new-line group top

(§3.8.1) e/ae-group:
else new-line group top

(§3.8.1) en dlf-/ine:
endif new-line

control-line:
(§3.8.2) # include
(§3.8.3) # def1ne
(§3.8.3) # def1ne
(§3.8.3) # undef
(§3.8.4) # line
(§3.8.5) # error
(§3.8.6) # pragma
(§3.8.7) #

pp-tokena new-line
identifier replacement-liat new-line
identifier Iparen identifier-liat t)
'J fi I' op,"ent. er new- .ne
pp-tokena new-line
pp-tokena t new-line

L op I'pp-to",ena t new- Ine
I
. op

new- Ine

replacement-lilt new-line

(§3.8.3) /paren:
the left-parenthesis character without preceding white space

. §A:1.2.4 January 11, 1988
DRAFT

§A.1.3

APPENDICES 187

(§3.8.3) replacement./ill:
pp.token6 opt

(§3.8) pp.token6:
preprocu6ing.token
,p.token6 preproeeuing.token

(§3.8) new.•line:
the new-line character

(

§A.l.3 January 11, 1988
DRAFT

LANGUAGE SYNTAX SUMMARY

§A.1.3

APPENDICES 188 SEQUENCE POINTS

A.2 SEQUE.NCE POINTS
The followingare the sequence points described in §2.1.2.3.

• The call to a function, after the arguments have been evaluated (§3.3.2.2).

• The end of the first operand of the following operators: logical AND .t.t (§3.3.13); logical OR
II (§3.3.14); conditional? (§3.3.15); comma, (§3.3.17).

• The end of II full expression: an initializer (§3.5.7)j the expression in an expression statement
(§3.6.3); the controlling expression of a selection statement (1f or 8w1tch) (§3.6A); the
controlling expression of a while or do statement (§3.6.5); the three expressions of a for
statement (§3.6.5.3); the expression in a return statement (§3.6.6.4).

(

§A.2 January 11, 1988
DRAFT

. §A.2

APPENDICES 189 LmRARY SUMMARY

A.3 LmRARY SUMMARY
A.3.1 ERRORS <errno. h>

EDOM
ERANGE
errno

A.3.2 COMMON DEFINITIONS <stddei'. h>
NULL
of fset.of(tJlpe. identifier)
pt.rd1ff_t.
size t.
wch~r t.

A.3.3 DIAGNOSTICS <assert. h>
NDEBUG
void assert.(int. expression);

A.3.4 CHARACTER HANDLING <ctype. h>

(

int. isalnum(int. c) ;
int. ualpha(int. c) ;
int. 1Scnt.rl(int c) ;
int. isdig1t.(int c) ;
1nt 1Sgraph(1nt c) ;
int. islower(int. c) ;
int. isprint.(int. c) ;
int. ispunct.(int. c) ;
int. 1Sspace(int. c) ;
int. 1Supper(int. c);
int. isxdigit.(int. c);
int. t.olower(int. c);
int. t.oupper(1nt. c);

A.3.S LOCALIZATION <locale. h>
LC ALL
LC COLLATE
LC CTYPE
LC MONETARY
LC NUMERIC
LC TIME
NULL
st.ruct.lconv
char *set.locale(int. cat.egory. const. noalias char *locale);
st.ruct.lconv *localeconv(void);

§A.3 January 11,1988
DRAFT

§A.3.5

APPENDICES 190

A.3.6 MATHEMATICS <math. h)
HUGE VAL
double acos(double x);
double aSln(double x);
double atan(double x);
double atan2(double y, double x);
double cos(double x);
double sln(double x);
double tan(double x);
double co.b(double x);
double slnb(double x);
double tanb(double x);
double exp(double x);
double frexp(double value, noallas lnt *exp);
double ldexp(double x, lnt exp);
double log (double x);
double loglO(double x);
double modf(double value, noallas double *lptr);
double pow (double x, double y);
double sqrt(double x);
double cell(double x);
double fabs(double x);
double floor(double x);
double fmod(double x, double y);

A.3.7 NON·LOCAL JUMPS <setjmp. h>
jmp:.,buf
lnt setjmp(jmp_buf env);
vold longjmp(jmp_buf env, lnt val);

A.3.S SIGNAL HANDLING <signal. h>
slg_atomlc_t
SIG DFL
SIG ERR
SIG IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
vold (*slgnal(lnt slg, vold (*func)(lnt»)(lnt);
lnt ralse(lnt slg);

A.3.9 VARIABLE ARGUMENTS <stdarg. h>
va llst
void va start(va llst ap, pannA0;
t,pe va arg (va list ap , type);
vold v&_end(va_llst ap);

§A.3.5 January 11, 1988
DRAFT

LIBRARY SUMMARY

§A.3.9

APPENDICES 191 LIBRARY SUMMARY

(

A.3.10 INPUT/OUTPUT <st,d10. h>
IOFBF
IOLBF
IONBF

BUFSIZ
EOF
FILE
FILENAME MAX
FOPEN MAX
fpos_t
L_t.pDa.
JruLL
SEEK CUR
SEEK END
SEEK SET
size t
stderr
std1D
stdout
TMP MAX
1Dt-remove(cODst Doalias char .fi1eDame);
iDt reDame(coDst Doalias char .old. CODst Doa11as char .Dew);
FILE .tmpf11e(void);
char *tmpDam(Doalias char .s);
1nt felose(FlLE ••trea.);
iDt fflush(FILE .stream);
FILE .fopeD(coDst Doalias char.fi1eDame.

CODSt Doalias char ••ode);
FILE .freopeD(coDst Doalias char .fi1eDame,

CODSt Doa11as char ••ode, FILE .stream);
void setbuf(FILE .stream, noa11as char .buf);
iDt setvbuf(FILE .stream, noa11as char .buf. iDt .ode,

siZe t siZe);
1Dt fpr1Dtf(FILE .stream, CODSt noalias char .format, ...);
1Dt fscaDf(FILE .stream, CODst Doa11as char .format, .,.);
1Dt pr1Dtf(cODst noalias cbar .rormat, ...);
1Dt scaDf(coDst noal1as cbar .for.at •...);
1Dt spr1Dtf(Doa11as cbar .S. CODSt Doal1as char .format •...);
1Dt sscaDf(coDst Doal1as char .s.

CODst Doal1as cbar .for.at, ...);
1Dt vfpr1Dtf(FILE .stream, const noa11as char .format,

va_l1st arg);
1Dt vpr1Dtf(cODst Doa11as cbar .for.at, va_list arg);
1Dt vspr1Dtf(Doa11as cbar .s. CODSt Doa11as char .format,

va l1st arg);
1Dt fgetc(FILE .stream);
cbar .fgets(Doa11as char .s, 1Dt D. FILE .stream);
1&t fputC(1Dt c, FILE .strea.);
1nt fputS(CODSt noal1as cbar .s, FILE *stream);
1nt getc(FILE .stream);
1Dt getcbar(v01d);
cbar *gets(Doa11as cb~r *s);
1Dt putC(1Dt c, FILE ~str~~);
lnt putcbar{lnt c);

(

§A.3.10 January 11, 1988
DRAFT

§A.3.10

APPENDICES 192 LIBRARY SUMMARY

lnt put~(const noal1as char *8);
1nt ungetc(1nt c. fILE .stream);
slze_t fread(noallas vold .ptr. 81ze_t 81ze. 81ze_t n.e.b,

FILE .stream);-
slze t fWTlte(const noallas vold .ptr, slze_t 81ze.

- 81ze_t n.e.b, FILE ••treaa);
lnt fgetpos(FILE .streaa, noallas fpos_t .pos);
lnt fseek(FILE .stream, long lnt offset, lnt whence);
lnt fsetpos(FILE .stream, const noallas fpos_t .pos);
long lnt ftell(FILE .stream);
vold rewlnd(FlLE .stream);
vold clearerr(FILE .stream);
lnt feof(FlLE .stream);
lnt ferror(FILE .stream);
vold perror(const noallas char .s);

(

§A.3.10 January 11, 1988
DRAFT

§A.3.10

APPENDICES 193 LIBRARY SUMMARY

A.3.11 GENERAL UTILITIES <s'td11b. h>
EXIT FAILURE
EXIT_SUCCESS
MB_CUR_MAX
NULL
RAND MAX
d1v_t
ldlv t
s1ze_t
wch~r t
double ~tof(const no~11as char *nptr);
1nt atol(const noal1as char *nptr);
long lnt atol(const noallas char *nptr);
double strtod(const noallas char *nptr.

ch~r * no~llas *endptr);
long lnt strtol(const noallas char *nptr,

char * no~ll~s *endptr, lnt b~se);
unslgned long lnt strtoul(const noallas c~~r *nptr,

ch~r * noallas *endptr, lnt base);
lnt rand(vold);
vold srand(unslgned lnt 8•• d);
vold .c~lloc(slze_t nmemb, slze_t slze);
vold free(no~llas vold *ptr);
vold *malloc(slze_t 11ze);
vold *realloc(noallas vold *ptr, slze t 81ze);
vold abort(vo1d);
lnt atexlt(vold (*func)(vold»;
vold exlt(1nt status);
char *getenv(const noallas char *naae);
lnt system(const noallas char *strlng);
vold *bsearch(const noallas vold *key,

const noallas vold *base,
slze t n.eab, slze t slze,
lnt (*coapar) (const noallas vold .,

const noallas vold .»;
vold qsort(noallas vold .base, slze t n.emb, slze t slze,

lnt (*co.par) (const noallas VOld *,
const noallas vold .»;

lnt abs(lnt j);
dlv t dlv(lnt nuaer, lnt denoa);
long lnt labs(long lnt j);
ldlv_t ldlv(long lnt nu.er, long lnt denom);
lnt .blen(const noallas char *s, alze_t n);
lnt abtowc(noallas wchar_t .pwc, const noallas char *s,

aiZe t n);
lnt wcto.b(noallas char *s, wchar_t ychar);
slze_t abstoycs(noallas ycbar_t *pwcs,

const noallas char *s, alze_t n);
slze_t ycstombs(noallas cbar *s,

const noallas ychar_t *pwcs, alze t n);

§A.3.10 January11, 1988
DRAFT

§A.3.11

APPENDICES 194 LIBRARY SUMMARY

(
A.3.12 STRING HANDLING <str1ng. h>

NULL
slze_t
vold .memcpy(noa11aa vold .al. conat noa11a8 vold .a2.

alze t n);
vold .memmove(vold .al. conat vold .a2. alze t D);
char .strcpy(noa11aa char .al. const noa11as-char .a2);
char .strncpy(noa11aa char .al. const noa11as char *s2.

size t n);
char .atrcat(noa11as char .sl. conat noa11aa char *s2);
char .strncat(noa11aa char .al. conat noa11as char .a2.

slze t n);
lnt memcmp(const noa11as vold .sl. const noa11as vold *s2.

slze_t n);
lnt strcmp(const noa11as char .sl. const noa11as char .s2);
lnt strc011(const noa11a8 char .al. const noa11as char .s2);
lnt strncmp(const noallas char .sl. const noa11as char *s2.

slZe t n);
slze t strifrm(noallas char .sl. const noa11as char .~2.

- slze t n);
vold ••emchr(const noa11as vold .a. lnt c. a1Z8 t D);
char *strchr(const noa11as char .s. lnt c); -
slze t'strcspn(const noa11as char .sl, const noa11as char *s2);
char-.strpbrk(const noa11as char .sl. const noa11as char *s2);
char .strrchr(const noa11as char .s, 1nt c);
81ze_t 8tr8pn(const noallas char .al. const noa11as char .a2);
char .strstr(const noa11as char .sl, const noa11as char .s2);
char .strtok(noallas char *sl, const noallas char *s2);
vold *memset(noallas vold *s, lnt c. SlZ8 t n);
c~ar .strerror(lnt errnum);
slze_t strlen(const noa11a8 ehar *a);

A.3.13 DATE AND TTh1E <t1me. h>
CLK TCK
NULL
clock t
tlme t
slze t
struct tm
clock t clock(vold);
double dlfftlme(tlme t t1mel, tlme t tlmeO);
tlme_t mkt1me(noallas struct t. *tlaeptr);
t1me t t1me(noal1as t1me t .t1mer);
char-*asct1me(const noalias struct t. *tlmeptr);
char *ctlm.(conat noa11aa tlme t *tlmer);
struct tm *gmtlm.(const noal1as tlme t *tlmer);
atruct tm *localt1.e(const noal1as time t *t1mer);
s1ze_t strftl.e(noaI1as char *s, slze_t-.axslze.

const noallas char *format,
const noallas struct t. *tlmeptr);

§A.3.1l January11, 1988
DRAFT

§A.3.13

APPENDICES 195 IMPLEMENTATION LIMITS

A.4 IM:PLEMENTATION LIMITS
The least contents of a header <11.1 t •. h> are given below, in alphabetic order. The

minimum magnitudes shown shall be replaced by implementation-defined magnitudes with the
same sign. The values shall all be constant expressions suitable for use in #1f preprocessing
directives. The components are described further in §2.2.4.2.

#def1ile CHAR BIT 8
#def1ne CHAR MAX UCHAR MAX or SCHAR MAX
#define CHAR MIN 0 or SCHAR MIN
#def1ne MB LEN MAX 1
#define INT MAX +32767
#def1ne INT MIN -32767
#define LONG MAX +2147483647
#define LONG MIN -2147483647
#define SCHAR MAX +127
#def1ne SCHAR MIN -127
#def1ne SHRTMAX +32767
#def1ne SHRT MIN -32767
#define UCHAR MAX 255U
#def1ne UINT MAX 65535U
#define ULONG MAX 42Q4Q672Q5U
#define USHRT MAX 65535U

The least contents of a header <floa.t.h> are given below, in alphabetic order. The value
of fl..T RADIX shall be a constant expression suitable for use in #1f preprocessing directives.
Values that need not be constant expressions shall be supplied for all other components. The
minimum magnitudes shown for integers and exponents shall be replaced by implementation-
defined magnitudes with the same sign. The components are described further in §2.2.4.2.

§A.4 January 11, 1988
DRAFT

§A.4

APPENDICES 196

#def1ne- DBL DIG 10
#def1ne DBL EPSILON 1£-g.
#deUne DBL_NANT_DIG
#def1ne DBL_MAX 1£+37
#def1ne DBL MAX 10 £XP +37- - -#deUne DBL MAX £XP- -#deUne DBL MIN 1£-37
#deUne DBL NIN 10 EXP -37- --#deUne DBL NIH EXP
#deUne FLT DIG 6
#deUne FLT EPSILON 1E-5
#def1ne FLT NANT DIG- -#def1ne FLT MAX 1£+37
#deUne FLT NAX 10 EXP "'37- - -#def1ne FLT MAX EXP
#def1ne FLT MIN 1E-37
#def1ne FLT MIN 10 EXP -37- --#deUne FLT MIN EXP
#def1ne FLT RADIX 2
#define FLT ROUNDS
#def1ne LDBL DIG 10
#define LDBL EPSILON 1£-;
#deUne LDBL NANT DIG- -#define LDBL_NAX 1E"'37
#def1ne LDBL_MAX_10_EXP +37
#deUne LDBL NAX EXP
#deUne LDBL NIN 1£-37

(#deUne LDBL NIN 10 EXP -37- --#deUne LDBL NIN EXP

§A.4 January 11, 1988
DRAFT

IMPLEMENTATION LIMITS

§A.4

APPENDICES 197 COMMON WARNINGS

A.S COMMON WARNINGS
An implementation may ;;enerate warnings in many situations, none or which is specified as

part of the Standard. The following are a few of the more common situations.

• A block with initialization of an object that has automatic storage duration is jumped into
(§3.1.2.4).

• A character constant includes more than one character (§3.1.3.4).

• The characters /* are found in a comment (§3.1.7).

• An implicit narrowing conversion is encountered, such as the assignment or a long int or a
double to an int, or a pointer to void to a pointer to any type or object other than char
(§3.2).

• An "unordered" binary operator (not comma, U or I I) contains a aide-effect to an lvalue
in one operand, and a side-effect to, or an access to the value of, the identicallvalue in the
other operand (§3.3).

• A function is called but no prototype has been supplied (§3.3.2.2).

• The arguments in a function call do not agree in number and type with those of the
parameters in a function definition that is not a prototype (§3.3.2.2).

• An object is defined but not used (§3.5).

• A value is given to an object of an enumeration type other than by assignment of an
enumeration constant that is a member of that type or an enumeration variable that has a
compatible type (§3.5.2.2).

• An aggregate has a partly bracketed initialization (§3.5.7).

• A statement cannot be reached (§3.6).

• A statement with no apparent effect is encountered (§3.6).

• A constant expression is used as the controlling expression of a selection statement (§3.6.4).

• A function has return statements with and without expressions (§3.6.6.4).

• An incorrectly formed preprocessing group is encountered while skipping a preprocessing
group (§3.8.1).

• An unrecognized #pragma directive is encountered (§3.8.6).

§A.5 January 11, 1988
DRAFT

§A.5

·.PPl~ (':.S 198 PORTABll..ITY ISSUES

..6 ':luRT ABILITY ISSUES
This appendix collects some informa.tion a.bout portability that appears in the Standard.

~\..6.1Unspecified behavior
The following are unspecified:

• The manner and timing or static initialization (§2.1.2).

• The behavior if a printable character is written when the active position IS at the final
position of a line (§2.2.2).

• The behavior if a backspace character is written when the active position is at the initial
position of a line (§2.2.2).

• The behavior if a horizontal tab character is written when the active position is at or past
the last defined horizontal tabulation position (§2.2.2).

• The behavior if a vertical tab character is written when the actin position is at or past the
last defined vertical tabulation position (§2.2.2).

• The representations of floating types (§3.1.2.5).

• The order in which expressions are evaluat ed - in any order conforming to the precedence
rules, even in the presence of parentheses (§3.3).

• The order in which side effects take place (§3.3).

• The order in which the function designator and the arguments in a function call are
evaluated (§3.3.2.2).

• The alignment of the addressable storage unit allocated to hold a bit-field (§3.5.2.1).

• Whether a distinct noalias handle is associat ed with the actual object or a virtual object
(§3.5.3).

• The layout of storage for parameters (§3.7.1).

• The order in which # and ## operations are evaluated during macro substitution (§3.8.3.3).

• The value or the file position indicator arter a successful call to the ungetc Iunetion for a
text stream, until all pushed-back characters are read or discarded (§4.9.7.11).

• The details of the value stored by the fgetpos function on success (§4.9.9.1).

• The details or the value returned by the ftell function for a text stream on success
(§4.9.9.4).

• The order and contiguity of storage allocated by the ca.11oe. ma.l1oc, and rea.l1oe
functions (§4.10.3).

• Which of two members that compare as equal is returned by the bsea.rch function
(§4.10.5.1).

• The order in an array sorted by the qsort function of two members that compare as equal
(§4.10.5.2).

• The encoding of the calendar time returned by the t1me function (§4.1~.~.3).

(

§A.6 January 11, 1988
DRAFT

9A.6.1

APPENDICES 199 PORTABJLI'IT ISSUES

A.6.2 Undefined behavior
The behavior in the following cireumsveneee is undefined:

• A nonempty source file does not end in a new-line character, ends in new-line character
immediately preceded by a backslash character, or ends in a partial preprocessing token or
comment (§2.1.1.2).

• A character not in the required character set is encountered in a source file, except in a
preprocessing token, a character constant, a string literal, or a comment (§2.2.1).

• A comment, string literal, or character constant contains an invalid multibyte character or
does not begin and end in the initial shift state (§2.2.1.2).

• An unmatched I or • character is encountered on a logical source line during tokenization
(§3.1).

• The same identifier is used more than once as a label in the same function (§3.1.2.1).

• An identifier is used that is not visible in the current scope (§3.1.2.1).

• Identifiers that are intended to denote the same entity differ in any character (§3.1.2).

• The same identifier has both internal and external linkage in the same translation unit
(§3.1.2.2).

• An identifier with external linkage is used but there does not exist exactly one external
definition in the program for the identifier (§3.1.2.2).

• There exists more than one declaration of an identifier with file scope with no linkage in the
same name space (§3.1.2.3).

• The value stored in a pointer that referred to an object with automatic storage duration is
used (§3.1.2.4). . .

• Two declarations of the same object or function specify types that are not compatible
(§3.1.2.6).

• An unspecified escape sequence is encountered in a character constant or a string literal
(§3.1.3.4).

• An attempt is made to modify a string literal of either form (§3.1A).

• A character string literal token is adjacent to a wide string literal token (§3.1.4).

• The characters I, \, ., or /* are encountered between the < and > delimiters or the
characters " \, or /* are encountered between the • delimiters in the two forms of a
header name preprocessing token (§3.1.7).

• An arithmetic conversion produces a result that cannot be represented in the space
provided (§3.2.1).

• An lvalue with an incomplete type is used in a context that requires the value of the
designated object (§3.2.2.1).

• The value of a void expression is used or an implicit conversion (except to void) is applied
to a void expression (§3.2.2.2).

• An object is modified more than once, or is modified and accessed other than to determine
the ne" value, between two seq1;lencepoints (§3.3).

• An arithmetic operation is invalid [such as division or modulus by 0) or produces a result
that cannot be represented in the space provided (such as overflow or underflow) (§3.3).

• An obiect has its stored value accessed by an Ivalue that does not have one of the following
types:' •.he declared type of the object, a qualified version of the declared type of the object,

§A.6.2 January 11, 1988
DRAFT

§A.6.2

APPENDICES 200 PORTABILITY ISSUES

the signed or unsigned type corresponding to the declared type o(the object, the signed or
unsigned type corresponding to a qualified version o(the declared t.ype o(t.he object., an
aggregate or union type that (recursively) includes one o(the aCorementioned t.ypes among
its members, or a character type (§3.3).

• An argument to a function is a void expression (§3.3.2.2).

• For a function call with no function prototype declarator visible, the number o(arguments
does not agree with the number o(parameters (§3.3.2.2).

• For a function call with no function prototype declarator visible, no function prototype
declarator is visible when the (unction is defined, and the types o(the arguments aCter
promotion do not agree with those of the parameters after promotion (§3.3.2.2).

• A function prototype declarator is visible when a function is defined, and a parameter is
declared with a type that is affected by the default argument promotions, and a function is
called with no semantically equivalent prototype visible (§3.3.2.2).

• A function that accepts a variable number of argument. is called, but no prototype
declarator with the ellipsis notation is visible (§3.3.2.2).

• A function is called with a function prototype declarator visible, and a parameter is
declared with a type that is affected by the default argument promotions, but no
semantically equivalent prototype is visible when the function is defined (§3.3.2.2).

• An invalid array reference, null pointer reference, or reference to an object declared with
automatic storage duration in a terminated block occurs (§3.3.3.2).

• A pointer to a function is converted to point to a function of a different type and used to
call a function of a type other than the original type (§3.3.4).

• A pointer to a function is converted to a pointer to an object or a pointer to an object is
converted to a pointer to a function (§3.3.4).

• A pointer is converted to other than an integral or pointer type (§3.3.4).

• An attempt is made to modify an object declared with const-qualified type by means of a
pointer to a non-eonst-qualified type (§3.3.4).

• An object declared with noalias-qualified type is referred to by means of a pointer to a non-
noalias-qualified type (§3.3.4).

• An object declared with volatile-qualified type is referred to by means of a pointer to a
non-volatile-qualified type (§3.3.4).

• A pointer that is not to a member of an array object is added to or subtracted from (§3.3.6).

• Pointers that are not to the same arr.ay object are subtracted (§3.3.6).

• An expression is shifted by a negative number or by an amount greater than or equal to the
width in bits of the expression being shifted (§3.~.7).

• Pointers are compared using a relational operator that do not point to the same aggregate
or union (§3.3.8).

• An object is assigned to an overlapping object (§3.3.16.1).

• An identifier for an object is declared with no linkage and the type of the object is
incomplete after its declarator, or after its init-declarator if it has an initializer (§3.5).

• A function is declared at block scope with a storage-class specifier other than extern
(§3.5.1).

e A program depends on two noalias handles referring to the same object or on two noalias
handles referring to distinct objects (§3.5.3).

§A.6.2 Jl'.nuary 11, 1988
DRAFT

§A.6.2

APPENDICES 201 PORTABD..ITY ISSUES

• The value of an un initialized object that has automatic storage duration is used before a
value is assigned (§3.5.7).

• An object with aggregate or union type with static storage duration haa a non-brace-
enclosed initializer, or an object with aggregate or union type with automatic storage
duration haa either a single expression initializer with a type other than that of the object
or a non-brace-enc!osed initializer (§3.5.7).

-.
• The value of a function is used, but no value waa returned (§3.6.6.4).

• A function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation (§3.7.1).

• An identifier for an object with internal linkage and an incomplete type is declared with a
tentative definition (§3.7.2).

• The token "defined" is generated during the expansion of a#if or #elif preprocessing
directive (§3.8.1).

• The #1nclude preprocessing directive that results after expansion does not match one of
the two header name forms (§3.8.2).

• A macro argument consists of no preprocessing tokens (§3.8.3).

• There are sequences of preprocessing tokens within the list of macro arguments that would
otherwise act as preprocessing directive lines (§3.8.3).

• The result of the preprocessing concatenation operator ## is not a valid preprocessing token
(§3.8.3).

(

• The #l1ne preprocessing directive that results after expansion does not match one of the
two well-defined forms (§3.8.4).

• One of the following identifiers is the subject of a #deUne or #undef preprocessing
directive: defil!ed, LINE, FILE, __ DATE__ , __ TIME __ , or __ STDC
(§3.8.8). -- -- -- --

• The effect if the program redefines a reserved external identifier (§4.1.2).

• The effect if a standard header is included within an external definition or is included for
the first time after the first reference to any of the functions or objects it declares, or to any
of the types or macros it defines (§4.1.2).

• The parameter identifier of an offsetof macro designates a bit-field member of a
structure (§4.1.5).

• A library function argument has an invalid value, unless the behavior is specified explicitly
(§4.1.6).

• A library function that accepts a variable number of arguments is not declared (§4.1.6).

• The macro definition of assert is suppressed to obtain access to an actual function (§4.2).

• The argument to a character handling function is out of the domain (§4.3).

• The macro definition of setj.p is suppressed to obtain access to an actual function (§4.6).

• An invocation of the setjap macro occurs in a context other than as the controlling
expression in a selection or iteration statement, or in a comparison with an integral
constant expression (possibly as implied by the unary ! operator) as the controlling
expression of a selection or iteration statement, or as an expression statement (possibly east
to V01d) (§4.6.1.1).

• The value of an object of automatic storage class that does not have volatile-qualified tYI~e
has been changed between a setjap invocation and a longjlllp call (§4.6.2.1). I

(

§A.6.2 January 11, 1988
DRAFT

§A.6.2

APPENDICES PORTABILITY ISSUES

(
• The 10ngJ ap function is invoked from a nested signal routine (§4.6.2.1).

• A signal occurs ot.her t.han as the result of calling the abort or ralse function, and the
signal handler calls any function in t.he standard library other than the slgnal function
itself or refers to any object with static storage duration. other than by assigning a value to
a static storage duration variable of type volat1le slg_atoalc_t (§4.7.1.1).

• The value of errno is referred to after a signal occurs other than as the result of calling the
abort or ralse function and the eorresponding signal handler calls the slgnal "function
such that it returns the value SIG_ERR (§4.7.1.1).

• The macro va_arg is invoked with the parameter ap that was passed to a function that
invoked the macro va_arg with the same parameter (§4.8).

• The macro definition of va_start, va_arg, or va_end or a combination thereof is
suppressed to obtain access to an actual function (§4.8.1).

• The parameter pa.rmN of a va_start macro is declared with the reglster storage class,
or with a function or array type, or with a type that is not compatible with the type that
results after applicat.ion of the default argument promotions (§4.8.1.1).

• There is no act.ual next argument for a va_arg macro invocation (§4.8.1.2).

• The type of the actual next argument in a variable argument list. disagrees wit.h the type
specified by the va_ arg macro (§4.8.1.2).

• The va end macro is invoked without a corresponding invocation of the va start macro
(§4.8.1.3). -

• A return occurs from a function with a variable argument list initialized by the va start
macro before the va_ end macro is invoked (§4.8.1.3). -

• The stream for the fflush function points to an input stream or to an update stream in
which the most recent operation was input (§4.9.5.2).

• An output operation on an update stream is followed by an input operation without an
intervening call to the f flush function or a file positioning function, or an input operation
on an update stream is followed by an output operation without an int.ervening call to a file
positioning function (§4.9.5.3).

• The format for the fprlntf or fscanf function does not match the argument list (§4.9.6).

• An invalid conversion specification is found in the format for the fpr1ntf or fscanf
function (§4.9.6).

• A conversion specification for the fpr1ntf function contains an h or 1with a conversion
specifier other t.han d, 1, n, 0, u, x, or X, or an L with a conversion specifier other than e, E,
f, g, or G (§4.9.6.1).

• A conversion specification for the fpr1ntf function contains a # flag with a conversion
specifier other than 0, x, X, e, E, t ,g, or G (§4.9.6.1).

• A conversion specification for the fprintf function contains a 0 flag with a conversion
specifier other than d, 1,0, u, x, X, e, E, f, g, or G (§4.9.6.1).

• A II conversion specification for the fprintf function contains characters between the
pair of I characters (§4.9.6.1).

• An aggregate or union, or a pointer to an aggregate or union is an argument OCtothe
fprint! function, except for the conversion specifiers Is (for an array of characters) or Ip
(for a pointer to Void) (§4.9.6.1).

• A single conversion by the fprintf function produces more than 509 characters of output
(§4.9.6.n,

§A.6.2 January 11, 1988
DRAFT

§A.6.2

APPENDICES 203 PORTABILITY ISSUES

• A conversion specification for the f scanf function contains an h or 1 with a conversion
specifier other than d, 1, n, 0, U, or x, or an L with a conversion specifier ot;".!r than 8, f,
or g (§4.9.6.2).

• A pointer value printed by Ip conversion by the fpr1ntf function during a previous
program execution is the argument for Ip conversion by the fscanf function (§(.9.6.2).

• The result of a conversion by the fscanf function cannot be represented in the space
provided, or the receiving object does not have an appropriate type (§4.9.6.2).

• The result of converting a string to a number by the atof, ato1, or atol function cannot
be represented (§4.10.1).

• The value of a pointer that refers to space deallocated by a call to the free or realloc
function is referred to (§4.10.3).

• The pointer argument to the free or realloc function does not match a pointer earlier
returned by calloc, Ilalloc, or realloc, or the object pointed to has been deallocated
by a call to free or realloc (§4.10.3).

• When called by the ex1 t function, a function registered by the atex1 t function accesses
an object created during program execution with automatic storage duration (§4.10.4.3).

• The result of an integer arithmetic function (abs, diV, labs, or Idiv) ·cannot be
represented (§4.1O.6).

• An array written to by a copying or concatenation function is too small (§4.11.2, §4.11.3).

•kl object is copied to an overlapping object by the Ilemcpy,strcpy, or strncpy function
(§4.11.2).

• An invalid conversion specification is found in the format for the strft1ae function
(§4.12.3.5).

A.6.3 Implementation-defined behavior
Each implementation shall document its behavior in each of the areas listed in this section.

The following are implementation-defined:

A.6.3.1 Environment
• The semantics of the arguments to aa1n (§2.1.2.2).

• What constitutes an interactive device (§2.1.2.3).

A.6.3.2 Identifiers
• The number of significant initial characters (beyond 31) in an identifier without external
linkage (§3.1.2).

• The number of significant initial characters (beyond 6) in an identifier with external linkage
(§3.1.2).

• Whether case distinctions are significant in an identifier with external linkage (§3.1.2).

A.6.3.3 Characters
• The characters in the source and execution character sets, except as explicitly specified in
the Standard (§2.2.1).

• The number and order of chars in an 1nt (§2.2.4.2). These differences are invisible to
isolated programs that do not indulge in type punning (for example, by converting a pointer
to 1nt to a pointer to char and inspecting the pointed-to storage), but shall be accounted
for when conforming to externally-imposed storage layouts. .

§A.6.2 January 11, 1988
DRAFT

§A.6.3.3

APPENDICES 204 PORTABILITY ISSUES

• The number and order of bits in a character in the execution character set (§2.2.4.2).

• The mapping of characters in the source character set (in character constants and string
literals) to characters in the execution character set (§3.1.3.4).

• The value of an integer character constant that contains a character or escape sequence not
represented in the basic execution character set or the extended character set for a wide
character constant (§3.1.3.4).

• The value of an integer character constant that contains more than one character or a wide
character constant that contains more than one multibyte character (§3.1.3.4).

• The current locale used to convert multi byte characters into corresponding codes for a wide
character constant (§3.1.3.4).

• Whether a "plain" char is treated as signed or unsigned (§3.2.1.1).

A.6.3.4 Integers
• The representations and sets of values of the various types of integers (§3.1.2.5).

• The result of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if -the value cannot be represented
(§3.2.1.2).

• The results of bitwise operations on signed integers (§3.3).

• The sign of the remainder on integer division (§3.3.5).

• The result of a right shift of a negative-valued signed integral type (§3.3.7).

A.6.3.5 Floating point
• The representations and sets of values .of the various types of Boating-point numbers
(§3.1.2.5).

• The direction of truncation when an integral number is converted to a Boating-point
number that cannot exactly represent the original value (§3.2.1.3).

• The direction of truncation when a Boating-point number is converted to a narrower
Boating-point number (§3.2.1.4).

• The properties of Boating-point arithmetic {§3.3}.

A.6.3.6 Arrays and pointers
• The type of integer required to hold the maximum size of an array - that is, the type of
the sizeof operator, size t (§3.3.3.4, §4.1.1).

• The result of casting a pointer to an integer or vice versa (§3.3.4).

• The type of integer required to hold the difference between two pointers to members of the
same array, ptrd1ff_t (§3.3.6, §4.1.1).

A.6.3.7 Registers

• The number of register objects that can actually be placed in registers and the set of
valid types (§3.5.1).

A.S.3.8 Structures, unions, enumerations, and bit-fields

• A member of a union object is accessed using a member of a different type (§3.3.2.3).

• The padding and alignment of members of structures (§3.5.2.1). This should present no
problem unless binary data written by one implementation are read by another.

• Whether a '~lain" int bit-field is treated as a Signed int bit-field or as an unsigned
int bit-field (§3.5.2.1).

§A.6.3.3 January 11, 1988
DRAF,T

§A.6.3.8

.APPENDICES 205 PORTABILITY ISSUES

• Whether a bit-field that does not fit into the space remaining in an 1nt is put into the next
1nt (§3.5.2.1).

• The order of allocation of bit-fields within an lnt (§3.5.2.1).

• Whether a bit-field can straddle it. storage-unit boundary (§3.5.2.1).

• The integer type chosen to represent the values or an enumeration type (§3.5.2,2).

A.6.3.9 Qualifiers

• What constitutes an access to an object that has volatile-qualified type (§3.5.5.3).

A.6.3.IO Declarators

• The maximum number of declarators that may modify an arithmetic, structure, or union
type (§3.5.4).

A.6.3.II Statements
• The maximum number of case values in a 8••1tch' statement (§3.6.4.2).

A.6.3.I2 Preprocessing directives
• Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the
execution character set. Whether such a character constant may have a negative value
(§3.8.1).

• The method for locating includable source files (§3.8.2).

• The support of quoted names for includable source files (§3.8.2).

• The mapping of source file character sequences (§3.8.2).

• The behavior on each recognized #praglla directive (§3.8.6).

• The definitions for DATE and _TIME_ when respectively, the date and time of
translation are not available (§3.8.8).

A.6.3.13 Library functions
• The null pointer constant to which the macro HULL expands (§4.1.5).

• The diagnostic printed by and the termination behavior of the assert function (§4.2).

• The sets of characters tested for by the 1salnulI, 1salpha, 1scntrl, 1s10wer,
1Spr1nt, and 1supper functions (§4.3.1).

• The values returned by the mathematics functions on domain errors (§4.5.1).

• Whether the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors (§4.5.1).

• Whether a domain error occurs or zero is returned when the fllod function has a second
argument of zero (§4.5.6.4).

• The set of signals for the Signal function (§4.7.1.1).

• The semantics for each signal recognized by the Signal function (§4.7.1.1).

• The d"!fault handling and the handling at program startup for each signal recognized by the
signal function (§4.7.1.1).

• If the equivalent of signal (S1g. SIG DFL); is not executed prior to the call of a signal
handler, the blocking of the signal that i; performed (§4.7 .1.1).

• Whether the default handling is reset if the SIGILL signal is received by a handler specified
to the signal (unction (§4.7.1.1).

§A.6.3.8 January 11, 1988
DRAFT

§A.6.3.13

.APPENDICES 206 PORTABILITY ISSUES

- .
• Whether the last line of a text stream requires a terminating new-line character (§4.9.2).

• Whether space characters that are written out to a text stream immediately before a new-
line character appear when read in (§4.9.2).

• The number of NUL characters that may be appended to data written to a binary stream
(§4.9.2).

• Whether the file position indicator of an append mode stream is initially positioned at the
beginning or end of the file (§4.9.3).

• Whether a write on a text stream causes the associated file to be truncated beyond that
point (§4.9.3).

• The characteristics of file buffering (§4.9.3).

• Whether a zero-length file actually exists (§4.9.3).

• The rules Corcomposing valid file names (§4.9.3).

• Whether the same file can be open multiple times (§4.9.3).

• The effect of the remove function on an open file (§4.9.4.1).

• The effect if a file with the new name exists prior to a call to the rename function (§4.9.4.2).

• The output for "p conversion in the fprintf function (§4.9.6.1).

• The input for "p conversion in the fseanf function (§4.9.6.2).

• The interpretation of a - character that is neither the first nor the last character in the
scanlist for" [c-onversionin the fseanf function (§4.9.6.2).

• The value to which the macro errno is set by the fgetpos or ftell function on failure
(§4.9.9.1, §4.9.9.4).

• The messages generated by the perror function (§4.9.10.4).

• The behavior oC the ealloe, malloe, or realloe function if the size requested is zero
(§4.1O.3).

• The behavior of the abort function with regard to open and temporary files (§4.10.4.1).

• The status returned by the ex1 t function if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE (§4.10.4.3).

• The set of environment names and the method Coraltering the environment list used by the
getanv function (§4.10.4.4).

• The contents and mode of execution of the string by the system function (§4.10.4.5).

• The sign of the value r~turned by a comparison function (memcmp, stremp, or strnemp)
when one of the first pair of characters that differ has its high-order bit set (§4.1l.4).

• The contents of the error message strings returned by the strerror function (§4.11.6.2).

• The local time zone and Daylight Saving Time (§4.12.1).

• The era for the clock function (§4.12.2.1).

§A.6.3.13 January 11, 1988
DRAFT

§A.6.3.13

APPENDICES 207 PORTABILITY ISSUES

A.6.4 Locale-specific Behavior
The following characteristics of a hosted environment are locale-specific:

• The content of the execution character set, in addition to the required characters (§2.2.1).

• The direction of printing (§2.2.2).

• The decimal-point character (§4.1.1).

• The implementation-defined aspects of character testing and case mapping functions (§4.3).

• The collation sequence of the execution character set (§4.11.4.4).

• The formats for time and date (§4.12.3.5).

A.6.S Common extensions
The following extensions are widely used in many systems, but are not portable to all

implementations. The inclusion of any extension that may cause a strictly conforming program
to become invalid renders an implementation nonconforming. Examples of such extensions are
new keywords, or predefined macros or library functions with names that do not begin with an
underscore.

A.6.S.! Environment arguments
In a hosted environment, the main function receives a third argument, char *envp [J ,

that points to a null-terminated array of pointers to char, each of which points to a string
that provides information about the environment for this execution of the process (§2.1.2.2).

A.6.S.2 Specia.lized identifiers

Characters other than the underscore ,letters, and digits, that are not defined in the
required source character set (such as the d~lar sign $, or characters in national charaetersete]
may appear in an identifier (§3.1.2).

A.6.S.3 Lengths and cases or identifiers
All characters in identifiers (with or without external linkage) are significant and ease

distinctions are observed (§3.1.2).

A.6.S.4 Scopes or identifiers
A function identifier, or the identifier of an object the declaration of which contains the

keyword extern, has file scope (§3.1.2.1).

A.6.S.S Writable string literals
String literals are modifiable. Identical string literals shall be distinct, (§3.1.4).

A.6.S.6 Other arithme~ic types
Other arithmetic types, such as long long int, and their appropriate conversions are

defined (§3.2.2.1).

A.6.S.7 Function pointer casts
A pointer to an object or to void may be cast to a pointer to a function, allowing data to

be invoked as a function (§3.3.4). A pointer to a function may be cast to a pointer to an object
or to vo1d, allowing a function to be inspected or modified (for example, by a debugger)
(§3.3.4).

§A.6.4 January 11, 1988
. DRAFT

§A.6.5.7

APPENDICES 208 PORTABILITY ISSUES

A.6.S.8 Non-1nt bit-field types
Types other than int, unsigned int, or signed int can be declared as bit-fields, with

appropriate maximum widths (§3.5.2.1).

A.6.S.9 The ·fortran keyword
The fortran type specifier may be used in a function declaration to indicate that lunction

linkage suitable for FORTRAN is to be generated, or that different representations for external
names are to be generated (§3.5.4.3).

A.6.S.IO The asm keyword
The as. keyword may be used to insert assembly-language code directly into the translator

output. The most common implementation is via a statement of the form

asm (cAaracter-6tn·ng-/iteral);

(§3.6).

A.6.S.11 Multiple external definitions
There may be more than one external definition for the identifier of an object, with or

without the explicit use of the keyword extern, If the definitions disagree, or more than one is
initialized, the behavior is undefined (§3.7.2).

A.6.S.12 Empty macro arguments
A macro argument may consist of no preprocessing tokens (§3.8.3).

A.6.S.13 Predefined macro names
Macro names that do not begin with an underscore, describing the translation and

execution environments, may be defined by the implementation before translation begins
(§3.8.8).

A.6.S.14 Extra arguments for signal handlers

Handlers for specific signals may be called with extra arguments in addition to the signal
number (§4.7.1.1).

A.6.S.IS Additional stream types and file-opening modes

Additional mappings from files to streams may be supported (§4.9.2), and additional file-
opening modes may be specified by characters appended to the mode argument of the fopen
function (§4.9.5.3).

A.6.S.16 Defined file position indicator
The file position indicator is decremented by each successful call to the ungetc function for

a text stream, except if its value was zero before a call (§4.9.7.11).

§A.6.5.8 January 11, 1988
DRAFT·

§A.6.5.16

APPENDICES

A.7 INDEX
Only major references are listed.

logical negation operator, 3.3.3.3
I= inequality operator, 3.3.9
operator, 3.1.5, 3.8.3
punctuator, 3.1.6, 3.8
operator, 3.1.5, 3.8.3
" remainder operator, 3.3.5,,= remainder assignment operator, 3.3.16.2
& address operator, 3.3.3.2
& bitwise AND operator, 3.3.10
&& logical AND operator, 3.3.13
&= bitwise AND assignment operator, 3.3.16.2
() cast operator, 3.3.4
() function-call operator, 3.3.2.2
() parentheses punctuator, 3.1.6, 3.5.4.3
* indirection operator, 3.3.3.2
* multiplication operator, 3.3.5
* asterisk punctuator, 3.1.6, 3.5.4.1
*= multiplication assignment operator, 3.3.16.2
+ addition operator, 3.3.6
+ unary plus operator, 3.3.3.3
++ postfix increment operator, 3.3.2.4
++ prefix increment operator, 3.3.3.1
+= addition assignment operator, 3.3.16.2
• comma operator, 3.3.17

... ellipsis, unspecified parameters, 3.5.4.3
- subtraction operator, 3.3.6
- unary minus operator, 3.3.3.3
-- postfix decrement operator, 3.3.2.4
-- prefix decrement operator, 3.3.3.1
-: subtraction assignment operator, 3.3.16.2
-> structure/union pointer operator, 3.3.2.3
· structure/union member operator, 3.3.2.3
· .. ellipsis punctuator, 3.1.6, 3.5.4.3
I division operator, 3.3.5
1* *1 comment delimiters, 3.1.7
1= division assignment operator, 3.3.16.2
: colon punctuator, 3.1.6, 3.5.,2.1
; semicolon punctuator, 3.1.6, 3.5, 3.6.3
< less-than operator, 3.3.8
« left-shift operator, 3.3.7
«= left-shift assignment operator, 3.3.16.2
<= less-than-or-equal-to operator, 3.3.8
= equal-sign punctuator, 3.1.6, 3.5, 3.5.7
= simple assignment operator, 3.3.16.1
== equal-to operator, 3.3.9
> greater-than operator, 3.3.8
>= greater-than-or-equal-to operator, 3.3.8
» right-shift operator, 3.3.7
»= right-shift assignment operator, 3.3.16.2
? : conditional operator, 3.3.15
??! trigraph sequence, I, 2.2.1.1

209 INDEX

??' trigraph sequence, -, 2.2.1.1
?? (trigraph sequence, [, 2.2.1.1
??) trigraph sequence, I,2.2.1.1
??- trigraph sequence, -, 2.2.1.1
?? / trigraph sequence, \, 2.2.1.1
??< trigraph sequence, {, 2.2.1.1
??= trigraph sequence, #, 2.2.1.1
??> trigraph sequence, }, 2.2.1.1
[] array subscript operator, 3.3.2.1
[] brackets punctuator, 3.1.6, 3.3.2.1, 3.5.4.2
\ backslash character, 2.2.1
\. double-quote-character escape sequence, 3.1.3.4
\' single-quote-character escape sequence, 3.1.3.4
\? question-mark escape sequence, 3.1.3.4
\ \ backslash-character escape sequence, 3.1.3.4
\0 null character, 2.2.1, 3.1.3.4, 3.1.4
\a alert escape sequence, 2.2.2, 3.1.3.4
\b backspace escape sequence, 2.2.2, 3.l.3.4
\f form-feed escape sequence, 2.2.2, 3.l.3.4
\n new-line escape sequence, 2.2.2, 3.1.3.4
\octal digite octal-character escape sequence, 3.1.3.4
\r carriage-return escape sequence, 2.2.2, 3.1.3.4
\ t. horizontal-tab escape sequence, 2.2.2, 3.1.3.4
\ v verrical-teb escape sequence, 2.2.2, 3.1.3.4
\xlaez digit, hexadecimal-character escape sequence, 3.1.3.4
- exclusive OR operator, 3.3.11
-= exclusive OR assignment operator, 3.3.16.2
{ } braces punctuator, 3.l.6, 3.5.7, 3.6.2
I inclusive OR operator, 3.3.12
I= inclusive OR assignment operator, 3.3.16.2
I I logical OR operator, 3.3.14
- bitwise complement operator, 3.3.3.3

DATE macro, 3.8.8
__ FILE __ macro, 3.8.8, 4.2.1
__ LlNE__ macro, 3.8.8, 4.2.1

STDC macro, 3.8.8
__ TIME__ macro, 3.8.8
_IOFBF macro, 4.0.1, 4.9.5.6
_lOLBF macro, 4.!U, 4.9.5.6
_lONBF macro, 4.9.1,4.9.5.6
abort. function, 4.2.l.1, 4.10.4.1
abs function, 4.10.6.1
absolute-value functions, 4.5.6.2, 4.10.6.1
abstract declarator, type name, 3.5.5
abstract machine, 2.1.2.3
abstract semantics, 2.l.2.3
acos function, 4.5.2.1
active position, 2.2.2
actual object, 3.5.3
addition assignment operator, +=, 3.3.16.2
addition operator, +,3.3.6

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

additive expressions, 3.3.6
address operator, a, 3.3.3.2
aggregate type, 3.1.2.5
alert escape sequence, \a, 2.2.2, 3.1.3.4
alignment, definition of, 1.6
alignment of structure members, 3.5.2.1
A1\1) operator, bitwise, a, 3.3.10
AND operator, logical, aa, 3.3.13
ar gc parameter, main function, 2.1.2.2
argument, function, 3.3.2.2
argument, 1.6
argument promotion, default, 3.3.2.2
argv parameter, main function, 2.1.2.2
arithmetic conversions, usual, 3.2.1.5
arithmetic operators, unary, 3.3.3.3
arithmetic type, 3.1.2.5
array declarator, 3.5.4.2
array parameter, 3.7.1
array subscript operator, [J, 3.3.2.1
array type, 3.1.2.5
array type conversion, 3.2.2.1
arrow operator, ->, 3.3.2.3
ASCII character set, 2.2.1.1
asctime function, 4.12.3.1
as.i n function, 4.5.2.2
assert macro, 4.2.1.1
assert.. Jl header, 4.2
assignment operators, 3.3.16
asterisk punctuator, .,3.1.6,3.5.4.1
at.an function, 4.5.2.3
atan2 function, 4.5.2.4
a t.exi t. function, 4.10.4.2
at.of function, 4.10.1.1
a t.oi function, 4.10.1.2
atol function, 4.10.1.3
auto storage-class specifier, 3.5.1
automatic storage, reentrancy, 2.1.2.3, 2.2.3
automatic storage duration, 3.1.2.4
backslash character, \, 2.1.1.2, 2.2.1
backspace escape sequence, \b, 2.2.2, 3.1.3.4
base documents, 1.5 .
basic type, 3.1.2.5
binary stream, 4.9.2
bit, definition of, 1.6
bit, high-order, 1.6
bit, low-order, 1.6
bit-field structure member, 3.5.2.1
bitwise operators, 3.3, 3.3.7, 3.3.10, 3.3.11, 3.3.12
block, 3.6.2
block identifier scope, 3.1.2.1
bold t.ype convention, 3
braces punctuator, { }, 3.1.6, 3.5.7, 3.6.2
brackets punctuator; [], 3.1.6, 3.3.2.1, 3.5.4.2
break statement, 3.6.6, 3.6.6.3
broken-down-time-type, 4.12.1

210 INDEX

bsearch function, 4.10.5.1
BUFSIZ macro, 4.9.1, 4.9.2, 4.9.5.5
byte, definition of, 1.6
C program, 2.1.1.1
C Standard, definition of terms, 1.6
C Standard, organization of document, 1.4
C Standard, purpose of, 1.1
C Standard, references, 1.3
C Standard, scope, restrictions and limits, 1.2
calloc function, 4.10.3.1
carriage-return escape sequence, \r, 2.2.2, 3.1.3.4
case label, 3.6.1, 3.6.4.2
case mapping functions, 4.3.2
cast expressions, 3.3.4
cast operator, (), 3.3.4
ceil function, 4.5.6.1
char type, 3.1.2.5, 3.2.1.1, 3.5.2
CHAR_BITmacro, 2.2.4.2
CHAR_MAXmacro, 2.2.4.2
CHARMINmacro, 2.2.4.2
char~ter case mapping functions, 4.3.2
character constant, 2.1.1.2, 2.2.1, 3.1.3.4
character display semantics, 2.2.2
character handling header, 4.3
character input/output functions, 4.9.7
character sets, 2.2.1
character string literal, 2.1.1.2, 3.1.4
character testing functions, 4.3.1
character type, 3.1.2.5, 3.2.2.1, 3.5.7
character type conversion, 3.2.1.1
clearerr function, 4.9.10.1
CLK_TCKmacro, 4.12.1, 4.12.2.1
clock function, 4.12.2.1
clock t. type, 4.12.1, 4.12.2.1
collati~ sequence, character set, 2.2.1
colon punctuator, :, 3.1.6, 3.5.2.1
comma operator, ., 3.3.17
command processor, 4.10.4.5
comment delimiters, / •• /,3.1.9
comments, 2.1.1.2, 3.1, 3.1.9
comparison functions, 4.11.4
compatible type, 3.1.2.6, 3.5.2, 3.5.3, 3.5.4
complement operator, -, 3.3.3.3
compliance, 1.7
composite type, 3.1.2.6
compound assignment operators, 3.3.16.2
compound statement, 3.6.2
concatenation functions, 4.11.3
conceptual models, 2.1
conditional inclusion, 3.8.1
conditional operator,? :, 3.3.15
conforming freestanding implementation, 1.7
confo. .:inb hosced implementation, 1.7
conforming implementation, 1.7
conforming program, 1.7

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

const-qualified type, 3.1.2.5, 3.2.2.1, 3.5.3
const type qualifier, 3.5.3
constant, character, 3.1.3.4
constant, enumeration, 3.1.2, 3.1.3.3
constant, Boating, 3.1.3.1
constant,integer, 3.1.3.2
constant,' primary expression, 3.3.1
constant expressions, 3.4
constants, 3.1.3
constraints, definition of, 1.6
content, structure/union/enumeration, 3.5.2.3
contiguity, memory allocation, 4.10.3
continue statement, 3.6.6, 3.6.6.2
control characters, 2.2.1,4.3.1,4.3.1.3
conversion, arithmetic operands, 3.2.1
conversion, array, 3.2.2.1
conversion, characters and integers, 3.2.1.1
conversion, explicit, 3.2
conversion, floating and integral, 3.2.1.3
conversion, Boating types, 3.2.1.4, 3.2.1.5
conversion, function, 3.2.2.1
conversion, function arguments, 3.3.2.2, 3.7.1
conversion, implicit, 3.2
conversion, pointer, 3.2.2.1, 3.2.2.3
conversion, signed and unsigned integers, 3.2.1.2
conversion, void type, 3.2.2.2
conversions, 3.2
conversions, usual arithmetic, 3.2.1.5
copying functions, 4.11.2
cos function, 4.5.2.5
cosh function, 4.5.3.1
ctime function, 4.12.3.2
ctype .h header, 4.3
data streams, 4.9.2
date and time header, 4.12
DBL_macros, 2.2.4.2
decimal constant, 3.1.3.2
decimal digits, 2.2.1
decimal-point character, 4.1.1
declaration specifiers, 3.5
declarations, 3.5
declarators, 3.5.4
declarator type derivation, 3.1.2.5, 3.5.4
decrement operator, postfix, --, 3.3.2.4
decrement operator, prefix, --, 3.3.3.1
default argument promotions, 3.3.2.2
defa.ul t label, 3.6.1, 3.6.4.2
#define....preprocessing directive, 3.8.3
defined preprocessing operator, 3.8.1
definition, 3.5
derived declarator types, 3.1.2.5
derived types, 3.1.2.5
device input/output, 2.1.2.3
diagnostics, 2.1.1.3
diagnostics, a.ssert. h, 4.2

211 INDEX

d1fft1ae function, 4.12.2.2
direct input/output functions, 4.9.8
display device, 2.2.2
di v {unction, 4.10.6.2
di v t type, 4.10
divWon assignment operator, /=, 3.3.16.2
division operator, /, 3.3.5
do statement, 3.6.5, 3.6.5.2
documentation of implementation, 1.7
domain error, 4.5.1
dot operator, .,3.3.2.3
double type, 3.1.2.5, 3.1.3.1, 3.5.2
double type conversion, 3.2.1.4, 3.2.1.5
double-precision arithmetic, 2.1.2.3
element type, 3.1.2.5
EDaMmacro, 4.1.3, 4.5, 4.5.1
#elif preprocessing directive, 3.8.1
ellipsis, unspecified parameters,. . .. , 3.5.4.3
#else preprocessing directive, 3.8.1
else statement, 3.6.4, 3.6.4.1
end-of-file macro, EaF, 4.3, 4.9.1
end-of-line indicator, 2.2.1
#endif preprocessing directive, 3.8.1
enum type, 3.1.2.5, 3.5.2, 3.5.2.2
enumerated types, 3.1.2.5
enumeration constant, 3.1.2, 3.1.3.3
enumeration content, 3.5.2.3
enumeration members, 3.5.2.2
enumeration specifiers, 3.5.2.2
enumeration tag, 3.5.2.3
enumerator, 3.5.2.2
environment, 2
environment functions, 4.10.4
environment list, 4.10.4.4
environmental considerations, 2.2
environmental limits, 2.2.4
EaF macro, 4.3, 4.9.1
equal-sign punctuator, =, 3.1.6, 3.5, 3.5.7
equal-to operator, ==, 3.3.9
equality expressions, 3.3.9
£RANGEmacro, 4.1.3, 4.5, 4.5.1, 4.10, 4.10.1
errno macro, 4.1.3, 4.5.1, 4.7.1.1, 4.9.10.4, 4.10.1
errno. h header, 4.1.3
error, domain, 4.5.1
error, range, 4.5.1
error conditions, 4.5.1
error handling functions, 4.9.10, 4.11.6.2
#error preprocessing directive, 3.8.5
escape sequences, 2.2.1, 2.2.2, 3.1.3.4
evaluation, 3.1.5, 3.3
exception, 3.3
exclusive OR assignment operator, -=, 3.3.16.2
exclusive OR operator, -, 3.3.11
executable program, 2.1.1.1
execution environment, character sets, 2.2.1

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

..
execution environment limits, 2.2.4.2
execution environments, 2.1.2
execution sequence, 2.1.2.3, 3.6
exi t function, 2.1.2.2, 4.10.4.3
EXIT_FAILURE macro, 4.10, 4.10.4.3
EXIT SUCCESS macro, 4.10, 4.10.4.3
explicit conversion, 3.2
exp function, 4.5.4.1
exponent part, Boating constant, 3.1.3.1
exponential functions, 4.5.4
expression, 3.3
expression, full, 3.6
expression, primary, 3.3.1
expression, unary, 3.3.3
expression statement, 3.6.3
extern storage-class specifier, 3.1.2.2, 3.5.1, 3.7
external definitions, 3.7
external identifiers, underscore, 4.1.2
external linkage, 3.1.2.2
external name, 3.1.2
external object definitions, 3.7.2
fabs function, 4.5.6.2
felose function, 4.9.5.1
feof (unction, 4.9.10.2
f error function, 4.9.10.3
if 1ush (unction, 4.9.5.2
fgete (unction, 4.9.7.1
fgetpos function, 4.9.9.1
fgets function, 4.9.7.2
FILENAME_MAX,4.9.1
file, elosing, 4.9.3
file, creating, 4.9.3
file, opening, 4.9.3
file access functions, 4.9.5
file identifier scope, 3.1.2.1, 3.7
file name, 4.9.3
FILE object type, 4.9.1
file operations, 4.9.4
file position indicator, 4.9.3
file positioning functions, 4.9.9
files, 4.9.3
float type, 3.1.2.5, 3.5.2
float type conversion, 3.2.1.4, 3.2.1.5
float. h header, 1.7,2.2.4.2,4.1.4
Boating arithmetic functions, 4.5.6
Boating constants, 3.1.3.1
Boating suffix, f or F, 3.1.3.1
Boating types, 3.1.2.5
Boating-point numbers, 3.1.2.5
floor function, 4.5.6.3
FLT_ macros, 2.2.4.2
fmod function, 4.5.6.4
fopen function, 4.9.5.3
FOPEN_MAXmacro, 4.9.1, 4.9.3
for statement, 3.6.5, 3.6.5.3

212 INDEX

form-Ieed character, 2.2.1, 3.1
form-feed escape sequence, \f, 2.2.2, 3.1.3.4
formatted input/output functions, 4.9.6
forward references, definition of, 1.6
fpos _ t object type, 4.9.1
fprintf function, 4.9.6.1
fputc function, 2.2.2, 4.9.7.3
fputs function, 4.9.7.4
fread function, 4.9.8.1
free function, 4.10.3.2
freestanding execution environment, 2.1.2, 2.1.2.1
freopen function, 4.9.5.4
frexp function, 4.5.4.2
fscanf function, 4.9.6.2
fseek function, 4.9.9.2
fsetpos function, 4.9.9.3
ftell function, 4.9.9.4
full expression, 3.6
fully buffered stream, 4.9.3
function, definition of, 1.6, 3.5.4.3
function, recursive call, 3.3.2.2
function argument, 3.3.2.2
function body, 3.7, 3.7.1
function call, 3.3.2.2
function call, library, 4.1.6
Iunction declarator, 3.5.4.3
function definition, 3.5.4.3, 3.7.1
function designator, 3.2.2.1
function identifier scope, 3.1.2.1
function image, 2.2.3
function library, 2.1.1.1, 4.1.6
function parameter, 2.1.2.2, 3.3.2.2
function prototype, 3.1.2..1, 3.3.2.2,3.5.4.3,3.7.1
function prototype identifier scope, 3.1.2.1
function return, 3.6.6.4
function type, 3.1.2.5
function type conversion, 3.2.2.1
Iunction-call operator, (), 3.3.2.2
future directions, 1.8, 3.9, 4.13
future language directions, 3.9
future library directions, 4.13
fui te function, 4.9.8.2
general utility library, 4.10
gete function, 4.9.7.5
getchar function, 4.9.7.6
getenv (unction, 4.10.4.4
gets function, 4.9.7.7
gllltil11e function, 4.12.3.3
goto statement, 3.1.2.1, 3.6.1, 3.6.6, 3.6.6.1
graphic characters, 2.2.1
greater-than operator, >, 3.3.8
greater-than-or-equal-to operator, >=, 3.3.8
handle, noalias, 3.!''.~.:r
handle object, 3.5.3
header names, 3.1, 3.1.7, 3.8.2

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

headers, 4.1.2 --
hexadecimal constant; 3.1.3.2
hexadecimal digit, 3.1.3~2, 3.1.3.4
hexadecimal escape sequence, 3.1.3.4
high-order bit, 1.6
horizontal-tab character, 2.2.1, 3.1
horizontal-tab escape sequence, \t, 2.2.2, 3.1.3.4
hosted execution environment, 2.1.2, 2.1.2.2
HUGE_VALmacro, 4.5, 4.5.1, 4.10.1.4
hyperbolic functions, 4.5.3
identifier, 3.1.2, 3.3.1
identifier, maximum length, 3.1.2
identifier, reserved, 4.1.2
identifier linkage, 3.1.2.2
identifier list, 3.5.4
identifier name space, 3.1.2.3
identifier scope, 3.1.2.1
identifier type, 3.1.2.5
IEEE floating-point arithmetic standard, 2.2.4.2

. #If preprocessing directive, 3.8, 3.8.1
If statement, 3.6.4, 3.6.4.1
#lfdef preprocessing directive, 3.8, 3.8.1
#1fndef preprocessing directive, 3.8, 3.8.1
implementation, definition or, 1.6
implementation limits, 1.6, 2.2.4
implementation-defined behavior, 1.6
implicit conversion, 3.2
#lnc 1ude preprocessing directive, 2.1.1.2, 3.8.2
inclusive OR assignment operator, 1=, 3.3.16.2
inclusive OR operator, 1,3.3.12
incomplete type, 3.1.2.5
increment operator, postfix, ++, 3.3.2.4
increment operator, prefix, ++, 3.3.3.1
indirection operator, *, 3.3.3.2
inequality operator, !=, 3.3.9
initialization, 2.1.2, 3.1.2.4, 3.2.2.1, 3.5.7, 3.6.2
initializer, string literal, 3.2.2.1, 3.5.7
initializer braces, 3.5.7
initial shift state, 2.2.1.2, 4.10.7
input/output, device, 2.1.2.3
input/output header, 4.9
lnt type, 3.1.2.5, 3.1.3.2, 3.2.'1.1, 3.2.1.2, 3.5.2
INT_MAXmacro, 2.2.4.2
INT MIN macro, 2.2.4.2
integer arithmetic functions, 4.10.6
integer character constant, 3.1.3.4
integer constants, 3.1.3.2
integer suffix, 3.1.3.2
integer type, 3.1.2.5
integer type conversion; 3.2.1.1, 3.2.1.2
integral constant expression, 3.4
integral promotions, 2.1.2.3,3.2.1.1
integral type, 3.1.2.5
integral type conversion, 3.2.1.3
interactive device, 2.1.2.3,. 4.9.3, 4.9.5.3

213 INDEX

internal linkage, 3.1.2.2
internal name, 3.1.2
interrupt handler, 2.1.2.3, 2.2.3, 4.1
1salnull (unction, 4.3.1.1
1salpha function, 4.3.1.2
1scntrl (unction, 4.3.1.3
lsdlg1 t (unction, 4.3.1.4
lsgraph (unction, 4.3.1.5
lslower (unction, 4.3.1.6
ISO 4217 Currency and Funds Representation, 1.3,4.4.2.1
ISO 646 Invariant Code Set, 1~3,2.2.1.1
lspr1nt (unction, 2.2.2, 4.3.1.7
lspunct (unction, 4.3.1.8
lsspace function, 4.3.1.9
lsupper function, 4.3.1.10
1S%dlgl t function, 4.3.1.11
italic type convention, 3
iteration statements, 3.6.5
Jllp_buf array, 4.6
jump statements, 3.6.6
keywords, 3.1.1
L tllpnall macro, 4.9.1
label name, 3.1.2.1, 3.1.2.3
labeled statements, 3.6.1
labs function, 4.10.6.3
language, 3
language, future directions, 3.9
LC_ALL,4.4
LC_COLLATE,4.4
LC_CTYPE,4.4
LC_MONETARY,4.4
LC_NUMERIC,4.4
LC_TIME,4.4
lconv structure type, 4.4
LDBL_ macros, 2.2.4.2
Idexp function, 4.5.4.3
ldl v function, 4.10.6.4
Idl v t type, 4.10
leading underscore in identifiers, 4.1.2
left-shift assignment operator, «=, 3.3.16.2
left-shift operator, «,3.3.7
length function, 4.11.6.3
less-than operator, <, 3.3.8
less-than-or-equal-to operator, <=, 3.3.8
letter, 4.1.1
lexical elements, 2.1.1.2, 3.1
library, 2.1.1.1, 4
library, future directions, 4.13
library functions, use of, 4.1.6
library terms, 4.1.1
limits, environmental, 2.2.4
limits, numerical, 2.2.4.2
limits, translation, 2.2.4.1
11al ts. h header, 1.7,2.2.4.2,4.1.4
line buffered stream, 4.9.3

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES 214 INDEX

line number, 3.8.4 NDEBUGmacro, 4.2
#11ne preprocessing directive, 3.8.4 nearest-integer functions, 4.5.6
lines, 2.1.1.2, 3.8, 4.9.2 new-line character, 2.1.1.2, 2.2.1, 3.1, 3.8, 3.8.4
linkages of identifiers, 3.1.2.2 new-line escape sequence, \n, 2.2.2, 3.1.3.4
locale, definition of, 1.6 noalias-qualified type, 3.1.2.5, 3.5.3
locale. h header, 4.4 noalias handle, 3.5.3
localeconv function, 4.4.2.1 noa11as type qualifier, 3.5.3
localization, 4.4 nongraphic characters, 2.2.2, 3.1.3.4
local t1me function, 4.12.3.4 ncnlocal jumps header, 4.6
log function, 4.5.4.4 not-equal-to operator, !=, 3.3.9
log10 function, 4.5:4.5 NUL padding of binary streams, 4.9.2
logarithmic functions, 4.5.4 null character, \0, 2.2.1, 3.1.3.4, 3.1.4
logicalAND operator, 1:1:, 3.3.13 NULLmacro, 4.1.5
logical negation operator, l , 3.3.3.3 null pointer, 3.2.2.3
logical OR operator, I I, 3.3.14 null pointer constant, 3.2.2.3
logical source lines, 2.1.1.2 null preprocessing directive, 3.8.7
long double suffix, 1 or L, 3.1.3.1 null statement, 3.6.3
long double type, 3.1.2.5,3.1.3.1, 3.5.2 number, floating-point, 3.1.2.5
long double type conversion, 3.2.1.4, 3.2.1.5 numerical limits, 2.2.4.2
long 1nt type, 3.1.2.5, 3.2.1.2, 3.5.2 object, definition of, 1.6
long integer suffix, I or L, 3.1.3.2 object type, 3.1.2.5
LONG_MAX macro, 2.2.4.2 obsolescence, 1.8, 3.9, 4.13
LONG_MIN macro, 2.2.4.2 octal constant, 3.1.3.2
Longj ap function, 4.6.2.1 octal digit, 3.1.3.2, 3.1.3.4
low-order bit, 1.6 octal escape sequence, 3.1.3.4
Ivalue , 3.2.2.1, 3.3.1, 3.3.2.4, 3.3.3.1, 3.3.16 o!!seto! macro, 4.1.5
macro function vs. definition, 4.1.6 operand, 3.1.5, 3.3
macro name definition, 2.2.4.1 operating system, 2.1.2.1, 4.10.4.5
macro names, predefined, 3.8.8 operator, unary, 3.3.3
macro replacement, 3.8.3 operators, 3.1.5, 3.3
ma1n function, 2.1.2.2 OR assignment operator, exclusive, -=, 3.3.16.2
ma.lloc function, 4.10.3.3 OR assignment operator, inclusive, 1=, 3.3.16.2
math. h header, 4.5 OR operator, exclusive, -, 3.3.11
mblen function, 4.10.7.1 OR operator, inclusive, 1,3.3.12
mbstoYcs function, 4.10.8.1 OR operator, logical, I I, 3.3.14
mbtowc function, 4.10.7.2 order of memory allocation, 4.10.3
member-access operators, . and ->, 3.3.2.3 order of evaluation of expression, 3.3
memchr function, 4.11.5.1 ordinary identifier name space, 3.1.2.3
memcmpfunction, 4.11.4.1 padding, NUL, 4.9.2
memcpy function, 4.11.2.1 parameter, ellipsis,. . .. , 3.5.4.3
memmovefunction, 4.11.2.2 . parameter, function, 3.3.2.2
memory management functions, 4.10.3 parameter, .a1n function, 2.1.2.2
memset function, 4.11.6.1 parameter, 1.6
minus operator, unary, -, 3.3.3.3 parameter type list, 3.5.4.3
mkt1me function, 4.12.2.3 parameters, program, 2.1.2.2
mod! function, 4.5.4.6 parentheses punctuator, (),3.1.6,3.5.4.3
modifiable lvalue, 3.2.2.1 parenthesized expression, 3.3.1
modulus function, 4.5.4.6 pending value, 3.5.3
multibyte characters, 2.2.1.2, 3.1.3.4, 4.10.7, 4.1O.8perror function, 4.9.10.4
multibyte functions, 4.10.7, 4.10.8 physical source lines, 2.1.1.2
multiplication assignment operator, *=,3.3.16.2 plus operator, unary, +. 3.3.3.3
multiplication operator, *,3.3.5 pointer, null, 3.2.2.3
multiplicative expressions, 3.3.5 pointer declarator, 3.5.4.1
name, file, 4.9.3 pointer operator, ->, 3.3.2.3
name spaces of ideptifiers, 3.1.2.3 pointer to function returning type, 3.3.2.2

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES 215 INDEX

pointer type, 3.1.2.5 remainder assignment operator, 1=, 3.3.16.2
pointer type conversion, 3.2.2.1, 3.2.2.3 remainder operator, I, 3.3.5
portability of implementations, 1.7 rellove function, 4.9.4.1
position indicator, file, 4.9.3 rena.me function, 4.9.4.2
postfix decrement operator, --, 3.3.2.4 restore calling environment function, 4.6.2.1
postfix expressions, 3.3.2 reserved identifiers, 4.1.2
postfix increment operator, ++, 3.3.2.4 return statement, 3.6.6, 3.6.6.4
pow function, 4.5.5.1 rewind function, 4.9.9.5
power functions, 4.5.5 right-shift assignment operator, »=, 3.3.16.2
#pra.gma. preprocessing directive, 3.8.6 right-shift operator, », 3.3.7
precedence of expression operators, 3.3 rvalue, 3.2.2.1
precedence of syntax rules, 2.1.1.2 save calling environment function, 4.6.1.1
predefined macro names, 3.8.8 scalar type, 3.1.2.5
prefix decrement operator, --, 3.3.3.1 sca.n! function, 4.9.6.4
prefix increment operator, ++, 3.3.3.1 SCHAR_MAXmacro, 2.2.4.2
preprocessing concatenation, 2.1.1.2, 3.8.3 SCHAR_MIN macro, 2.2.4.2
preprocessing directives, 2;1.1.2, 3.8 scope of identifiers, 3.1.2.1
preprocessing numbers, 3.1, 3.1.8 search functions, 4.10.5.1, 4.11.5
preprocessing tokens, 2.1.1.2, 3.1, 3.8 SEEK_CUR macro, 4.9.1
primary expressions, 3.3.1 SEEK_END macro, 4.9.1
printf function, 4.9.6.3 SEEK_SET macro, •. 9.1
printing characters, 2.2.2,4.3.1,4.3.1.7 selection statements, 3.6.4
program, conforming, 1.7 semicolon punctuator, ;, 3.1.6, 3.5, 3.6.3
program, strictly conforming, 1.7 sequence points, 2.1.2.3, 3.3, 3.6
program diagnostics, 4.2.1 set-but function, 4.9.5.5
program execution, 2.1.2.3 liIetjllp macro, 4.6.1.1
program file, 2.1.1.1 setlllp. h header, 4.6
program image, 2.1.1.2 set.locale function, 4.4.1.1
program name, argv (0) , 2.1.2.2 setvbuf function, 4.9.5.6
program parameters, 2.1.2.2 shift expressions, 3.3.7
program startup, 2.1.2, 2.1.2.1, 2.1.2.2 shift states, 2.2.1.2, 4.10.7
program structure, 2.1.1.1 short 1nt type, 3.1.2.5, 3.5.2
program termination, 2.1.2, 2.1.2.1, 2.1.2.2, 2.1.2.3 short 1nt type conversion, 3.2.1.1
promotions, default argument, 3.3.2.2 SHRT MAXmacro, 2.2.4.2
promotions, integral, 2.1.2.3,3.2.1.1 SHRT:MIN macro, 2.2.4.2
prototype, function, 3.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1 side effects, 2.1.2.3, 3.3
pseudo-random sequence functions, 4.10.2 sig_atollic_t type, 4.7
ptrd1ff_t type, 4.1.5 SIG_DFL macro, 4.7
punctuators,3.1.6 SIG_ERR macro, 4.7
putc function, 4.9.7.8 SIG_IGN macro, 4.7
putcha.r function, 4.9.7.9 SIGABRT macro, 4.7, 4.10.4.1
puts function, 4.9.7.10 SIGFPE macro, 4.7
qsort function, 4.10.5.2 SIGILL macro, 4.7
qualified types, 3.1.2.5 SIGINT macro, 4.7
ra.ise function, 4.7.2.1 SIGSEGV macro, 4.7
ra.nd function, 4.10.2.1 SIGTERM macro, 4.7
RAND MAX macro, 4.10, 4.10.2.1 Signal function, 4.7.1.1
range-err.Qr,4.5.1 signal handler, 2.2.3, 4.7.1.1
rea.lloc function, 4.10.3.4 signa.l. h header, 4.7
recursive function call, 3,3.2.2 signals, 2.Jl.2.3,2.2.3, 4.7
reentrancy, ~U.2.3, 2.2.3 signed char, 3.1.2.5
referenced type, 3.1.2.5 signed char type conversion, 3.2.1.1
register storage-class specifier, 3.5.1 signed integer types, 3.1.2.5, 3.1.3.2, 3.2.1.2
relational expressions, 3.3.8 signed type, 3.1.2.5, 3.5.2
reliability of data, interrupted, 2.1.2.3 simple assignment operator, =, 3.3.16.1

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

sin function, 4;5.2.6
single-precision arithmetic, 2.1.2.3
sinh function, 4.5.3.2
size_t type, 4.1.5
sizeof operator, 3.3.3.4
sort function, 4.10.5.2
source character set, 2.2.1
source file inclusion, 3.8.2
source files, 2.1.1.1
source text, 2.1.1.2
space character, 2.1.1.2, 2.2.1, 3.1
spr1ntf function, 4.9.6.5
sqrt function, 4.5.5.2
srand function, 4.10.2.2
ssean! function, 4.9.6.6
standard streams, 4.9.1, 4.9.3
standard header, float. h, 1.7, 2.2.4.2, 4.1.4
standard header, limits .h, 1.7,2.2.4.2,4.1.4
standard header, stdarg. h, 1.7, 4.8
standard Header, stddef . h, 1.7,4.1.5
state-dependent encoding, 2.2.1.2, 4.10.7
statements, 3.6
static storage duration, 3.1.2.4
static storage-class specifier, 3.5.1, 3.7
stda.r g .h header, 1.7, 4.8
stddef . h header, 1.7,4.1.5
stderr file, 4.9.1, 4.9.3
stdin file, 4.9.1, 4.9.3
stdio .h header, 4.9
stdlib. h header, 4.10
stdout file, 4.9.1, 4.9.S
storage duration, 3.1.2.4
storage-class specifier, 3.5.1
streat function, 4.11.3.2
strehr function, 4.11.5.2
stremp function, 4.11.4.2
streoll function, 4.11.4.3
strepy function, 4.11.2.3
strespn function, 4.11.5.3
stream, fully buffered, 4.9.3
stream, line buffered, 4.9.3.
stream, standard error, stderr, 4.9.1, 4.9.3
stream, standard input, stdin, 4.9.1, 4.9.3
stream, standard output, stdout, 4.9.1, 4.9.3
stream, unbuffered, 4.9.3
streams, 4.9.2
strerror function, 4.11.6.2
strftille function, 4.12.3.5
strictly conforming program, 1.7
string, 4.1.1
string conversion functions, 4.10.1
string handling header, 4.11
string length, 4.1.1; 4.11.6.3
string literal, 2.1.1.2, 2.2.1, 3.1.4, 3.3.1, 3.5.7
string. h header, 4.11

216 INDEX

strlen function, 4.11.6.3
strneat function, 4.11.3.2
strncmp function, 4.11.4.4
strncpy function, 4.11.2.4
strpbrk function, 4.11.5.4
strrchr function, 4.11.5.5
strspn function, 4.11.5.6
strstr function, 4.11.5.7
strtod function, 4.10.1.4
strtok function, 4.11.5.8
strtol function, 4.10.1.5
strtoul function, 4.10.1.6
structure/union arrow operator, ->, 3.3.2.3
structure/union content, 3.5.2.3
structure/union dot operator, .,3.3.2.3
structure/union member name space, 3.1.2.3
structure/union specifiers, 3.5.2.1
structure/union tag, 3.5.2.3
structure/union type, 3.1.2.5, 3.5.2.1
strxfrm function, 4.11.4.5
subtraction assignment operator, -=, 3.3.16.2
subtraction operator, -, 3.3.6
suffix, floating constant, 3.1.3.1
suffix, integer constant, 3.1.3.2
switch body, 3.6.4.2
switch case label, 3.6.1, 3.6.4.2
switch default label, 3.6.1, 3.6.4.2
swi teh statement, 3.6.4, 3.6.4.2
syntactic categories, 3
syntax notation, 3
syntax rules, precedence of, 2.1.1.2
system function, 4.10.4.5
tab characters, 2.2.1
tabs, white space, 3.1
tag, enumeration, 3.5.2.3
tag, structure/union, 3.5.2.3
tag name space, 3.1.2.3
tan function, 4.5.2.7
tanh function, 4.5.3.3
tentative definitions, 3.7.2
text stream, 4.9.2
time components, 4.12.1
time conversion functions, 4.12.3
time function, 4.12.2.4
time manipulation functions, 4.12.2
t1me .h header, 4.12
t1lle_t type, 4.12.1
tm structure type, 4.12.1
TMPMAXmacro, 4.9.1
tllpflle function, 4.9.4.3
tllpnam function, 4.9.4.4
tokens, 2.1.1.2, 3.1, 3.8
tolower function, 4.3.2.1
top type, 3.1.2.5
toupper function, 4.3.2.2

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

translation environment, 2.1.1
'~,ranslation limits, 2.2.4.2
translation phases, 2.1.1.2
translation unit, 2.1.1.1, 3.7
trigonometric functions, 4.5.2
trigraph sequences, 2..1.1.2, 2.2.1.1
type, character, 3.1.2.5, 3.2.2.1, 3.5.7
type, compatible, 3.1.2.6, 3.5.2, 3.5.3, 3.5.4
type, composite, 3.1.2.6
type, const-qualified, 3.1.2.5, 3.5.3
type, (unction, 3.1.2.5
type, incomplete, 3.1.2.5
type, noalias-qualified , 3.1.2.5, 3.5.3
type, object, 3.1.2.5
type, qualified, 3.1.2.5
type, unqualified, 3.1.2.5
type, volatile-qualified, 3.1.2.5, 3.5.3
type conversions, 3.2
type definitions, 3.5.6
type names, 3.5.5
type specifiers, 3.5.2
type qualifiers, 3.5.3
typedef specifier, 3.5.1, 3.5.2, 3.5.6
types, 3.1.2.5
UCHAR_MAXmacro, 2.2.4.2
UINT_MAXmacro, 2.2.4.2
ULONGMAXmacro, 2.2.4.2
unary ~ithmetic operators, 3.3.3.3
unary expressions, 3.3.3
unary minus operator, -, 3.3.3.3
unary operators, 3.3.3
unary plus operator, +, 3.3.3.3
unbuffered stream, 4.9.3
#undef preprocessing directive, 3.8, 3.8.3,4.1.6
undefined behavior, 1.6
underscore, leading, in identifiers, 4.1.2
ungetc function, 4.9.7.11
union tag, 3.5.2.3
union type specifier, 3.1.2.5, 3.5.2, 3.5.2.1
unqualified type, 3.1.2.5
unsigned integer suffix, u or U! 3.1.3.2
unsigned integer types, 3.1.2.5, 3.1.3.2
unsigned type conversion, 3.2.1.2
unsigned type, 3.1.2.5, 3.2.1.2, 3.5.2
unspecified behavior, 1.6
USHRl' MAXmacro, 2.2.4.2
usual a";ithmetic conversions, 3.2.1.5
va_arg m.,!lcro,4.8.1.2
va_end macro, 4.8.1.3
va_list type, 4.8
va_start macro, 4.8.1.1
value part, floating constant, 3.1.3.1
variable arguments header, 4.8
vertical-tab character, 2.2.1, 3.1
vertical-tab escape sequence, \ v, 2.2.2, 3.1.3.4

217 INDEX

vfprintf (unction, 4.9.6.7
virtual object, 3.5.3
visibility of identifiers, 3.1.2.1
void expression, 3.2.2.2
void function parameter, 3.5.4.3
void type, 3.1.2.5, 3.5.2
void type conversion, 3.2.2.2
volatile storage, 2.1.2.3
volatile-qualified type, 3.1.2.5, 3.5.3
volatile type qualifier, 3.5.3
vprintf (unction, 4.9.6.8
vspr1ntf (unction, 4.9.6.9
wcha.r_ t type, 3.1.3.4, 3.1.4, 3.5.7, 4.1.5, 4.10
wcstombs (unction, 4.10.8.2
wctollb (unction, 4.10.7.3
while statement, 3.6.5, 3.6.5.1
white space, 2.1.1.2, 3.1, 3.8, 4.3.1.9
wide character constant, 3.1.3.4
wide string literal, 2.1.1.2, 3.1.4

§A.7 January 11, 1988
DRAFT

§A.7

APPENDICES

§A.7

218 INDEX

January 11, 1988
DRAFT

§A.7

	Title Page
	Table of Contents
	Forward

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References
	1.4 Organization of the document
	1.5 Base documents
	1.6 Definitions of terms
	1.7 Compliance
	1.8 Future directions

	2. Environment
	2.1 Conceptual models
	2.2 Environmental considerations

	3. Language
	3.1 Lexical elements
	3.2 Conversions
	3.3 Expressions
	3.4 Constant Expressions
	3.5 Declarations
	3.6 Statements
	3.7 External definitions
	3.8 Preprocessing directives
	3.9 Future language directions

	4. Library
	4.1 Introduction
	4.2 Diagnostics
	4.3 Character handling
	4.4 Localization
	4.5 Mathematics
	4.6 Non-local jumps
	4.7 Signal handling
	4.8 Variable arguments
	4.9 Input/Output
	4.10 General Utilities
	4.11 String handling
	4.12 Date and Time
	4.13 Future library directions

	A. Appendices
	A.1 Language syntax summary
	A.2 Sequence points
	A.3 Library summary
	A.4 Implementation limits
	A.5 Common warnings
	A.6 Portability Issues

	Index

