MPE/IX POSIX Compliance Testing
Using Lint Scanner

HP 3000 MPE/iX Computer Systems
Edition 1

(D Preateis

Manufacturing Part Number: B2476-90004
E1191

U.S.A. November 1991



Notice

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1990, 1992 by Hewlett-Packard Company




Contents

1. Overview
2. Hardware and Software Requirements

3. Getting Started

Contents of Tape Archive. . ... .. 10
MPE/iX POSIX Header Files . .. ... .. e e 10
ANSI C Lib Header Files . ... ... 10
MPE/IX POSIX Library Files . .. .. .. e e e 11

Installing the MPE/iX POSIX Library Files. . .. ... ... . . . . i 12

4. Using the MPE/iX Library Standard with Lint

Testing Your Application Against the MPE/iX POSIX Standard ...................... 14
What to Dowith the ResUlts . .. ... ... e 15
LIMItationS . . . . .ot 16

5. Interpreting the Result

OUutpUt EXampPIes . . .. 20
EXample L .. 20
File-Specific Data. . . . . .. ... 20
SumMMaAry Data. . . ... e 20
EXample 2 . . 21
File-Specific Data. . . . ... ... 21
SumMMaAry Data. . . ... e 21
Guidelines for Data interpretation . . ......... . 23




Contents




NOTE

Overview

This document describes how to use the UNIX lint  utility to test
ANSI C applications for MPE/iX POSIX compliance. It is intended for
use by UNIX application developers who are evaluating porting their
applications(s) to the HP 3000 MPE/iX platform. Output from this test
should be forwarded to the following address for review and
interpretation by the appropriate HP representative.

All customers should send their output, as well as the name and
number of a technical contact, to the following address:

Hewlett-Packard

Commercial Systems Division

19447 Pruneridge Ave.

Cupertino, CA 95014

Attn: MPE/iX POSIX Scanner Results

Please send your output file via the media on which you received the
original scanner files from HP. This will help us continue to provide this
service at minimal cost.




Overview

6 Chapter1



Hardware and Software
Requirements

While no specific hardware requirements exist, the user must be
running a UNIX based operating system with a working lint  utility
that supports both the -Aa and the -I options, or their equivalents.
These options are defined as follows:

-Aa Invoke lint  in ANSI mode
-l Specify search path for #include <>  files

Also required are two archive files, mpeinclude.tar and mpelibtar
which contain the files defining the MPE/iX POSIX standard. You
should have received these files on the tape entitled, MPE/iX POSIX
Declarations for Use with Lint Scanner, in conjunction with this
documentation.

Applications to be tested for compliance must be ANSI C compliant.




Hardware and Software Requirements

8 Chapter2



Getting Started

You should have received a tape archive entitled, MPE/iX POSIX
Declarations for Use with Lint Scanner.




Getting Started
Contents of Tape Archive

Contents of Tape Archive

This documentation includes two archive files, mpeinclude.tar and
mpelib.tar . These archive files are comprised of the MPE/iX POSIX
header files, ANSI C library header files, an MPE/iX POSIX library file,
and an MPE/iX POSIX library declarations file.

MPE/iX POSIX Header Files

The following files are included in the mpeinclude.tar archive file:
= /sys/stat.h

= /sysitypes.h

* /sys/wait.h

= time.h

* limits.h

= dirent.h

= signal.h

= unistd.h

= errno.h

e fentl.h

ANSI C Lib Header Files

The following files are included in the mpeinclude.tar archive file:
= assert.h
= float.h
e param.h
= stddef.h
= ctype.h
= times.h
= local.h
< stdlib.h
= malloc.h
= string.h

« values.h

10 Chapter3



Getting Started
Contents of Tape Archive

= math.h
= stdarg.h
e varargs.h
= setjmp.h
= stdio.h

MPE/iX POSIX Library Files
The following files are included in the mpelib.ta r archive file:
e posix.c  (source declarations file)

e |lib-Iposix.In (library file)

Chapter 3 11



Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Getting Started
Installing the MPE/iX POSIX Library Files

Installing the MPE/iX POSIX Library Files

Follow the instructions below to install the MPE/iX POSIX archive files
onto your system.

Restore the two tar files from the tape entitled. MPE/iX POSIX
Declarations for Use with Lint Scanner, into a working directory on
your system.

Make two new directories called mpeinclude and mpelib :
:mkdir mpeinclude

:mkdir mpelib

Change directory to mpeinclude

:cd mpeinclude

Assuming that mpeinclude.tar is in the parent directory, then
unarchive these files:

‘tar xvf ../mpeinclude.tar
Change directory to mpelib :
:cd ../mpelib

Assuming that mpelib.tar is in the parent directory, then unarchive
the files:

‘tar xvf ../mpelib.tar

12 Chapter3



NOTE

Using the MPE/iX Library
Standard with Lint

The following is a preparation checklist of items that may need
attention before attempting to test your application against the MPE/iX
Library Standard:

1. Besure that your application is ANSI C compliant before attempting
to test against the MPE/iX Library.

2. Be sure that your files are compiled and free of errors before
attempting to check for POSIX compliance.

3. Check your application for #include <>  statements. If these exist,
then you will need to use the -1 option when running lint ~ with the
MPE/iX POSIX Library.

If your application is not ANSI C compliant or you do not have an
equivalent to the lint -I option, you should contact your HP
representative for an alternate means for MPE/iX POSIX compliance
testing.

13



Parameters

lint Options

Using the MPE/iX Library Standard with Lint
Testing Your Application Against the MPE/iX POSIX Standard

Testing Your Application Against the MPE/iX
POSIX Standard

The following is the syntax for invoking lint ~ with the necessary
options in order to test your application against the MPE./iX POSIX
standard:

Jlint -hanvb -Aa -lI/mpeinclude - | /yourhdrdir \
-D_POSIX_SOURCE *.c /mpelib/llib-Iposix.In > result

Where:
*c Application source files.
-hanvb lint options; see descriptions below.
/mpeinclude HP-supplied MPE/iX POSIX header
files.
/yourhdrdir The path for any #include <> header
files.
-D_POSIX_SOURCE MPE/iX POSIX flag.
/mpelib/llib-Iposix.in HP-supplied MPE/iX POSIX library
file.
result The output file.
-h Do not apply heuristic tests that attempt to intuitively
find bugs, improve style, and reduce waste.
-n Do not check for compatibility with either the standard
or the portable lint  library.
-a Suppress messages about assignment of long values to
variables that are not long.
-b Suppress messages about break statements that cannot
be reached.
-V Suppress messages about unused arguments and
functions.
-Aa Invoke lint  in ANSI mode.

-l Change the algorithm for searching for #include <>
files whose names do not begin with “/” to look in
mpeinclude before looking in the directories on the
standard list.

14 Chapter4



NOTE

Using the MPE/iX Library Standard with Lint
What to Do with the Results

What to Do with the Results

Once the lint  utility has been run using your application with the
MPE/iX library files, then the output file, result, should be forwarded to
the appropriate HP representative. This representative will then
review the results and contact you for a more detailed discussion
concerning the effort of porting your application to the MPE/iX
platform.

You may, if you choose, refer to the following chapter on hints for doing
some evaluation tasks on your own. In order to obtain a thorough and
accurate evaluation of your results, however, you must submit your
output file to your Hp representative for review.

All customers should send their output, as well as the name and
number of technical contact, to the following address:

Hewlett-Packard

Commercial Systems Division

19447 Pruneridge Ave.

Cupertino, CA 95014

Attn: MPE/iX POSIX Scanner Results

Please send your output file via the media on which you received the
original scanner files from HP. This will help us continue to provide this
service at minimal cost.

Chapter 4 15



Using the MPE/iX Library Standard with Lint
Limitations

Limitations

The following are limitations to be considered when testing your
application for MPE/iX POSIX compliance via the lint  utility.

1. lint can only check C source files with the suffix .c or .In .

2. The -l option of lint , or its equivalent, must be used to specify the
search path for any #include <> files. If it is not used, then lint
will not find these files and report them as non-POSIX compliant.

3. The application should be ANSI C standard, and the -Aa option of
lint  should be used in order to test for compliance.

4. The following C header files are defined in the POSIX 1003.1
standard, but are not supported for the first release of MPE/iX
POSIX:

e <grp.h>
Contains the structure definition for an entry from the group
database as retuned by the function getgrnam()

e <pwd.h>
Contains the structure definition for an entry from the user
database as returned by the functions getpwuid() and
getpwnam() .

- <tarh>
Contains the symbolic constants used in the tar header block.

5. The following POSIX functions are defined in the POSIX 1003.1
standard, but are not supported for the first release of MPE/iX
POSIX:

- access

- ctermid

e dup2

= execle

- execlp

- execve

- execvp

= fpathconf
= getgroups
= pathconf

16 Chapter4



- pipe

= setpgid
= setsid

= sysconf
- tcgetpgrp
- tcsetpgrp
- ttyname

If these functions are called, lint

Using the MPE/iX Library Standard with Lint
Limitations

will report them as undefined.

Chapter 4

17



Using the MPE/iX Library Standard with Lint
Limitations

18 Chapter4



WARNING

Interpreting the Result

This chapter provides some hints for interpreting the data that is
obtained from the compliance testing using the lint  utility. The output
file may be very large, but this should not be cause for alarm, since
much of the data will be duplicative in nature. For evaluation purposes,
summary information provided by your HP representative upon review
of output should be sufficient. The rest of the data should prove useful
as a reference should you decide to port your application.

The output file will be structured so that file-specific data is presented
first, followed by a summary of findings by category. This chapter will
present examples of each and then provide some ways of filtering out
the data that will be useful in evaluation.

General guidelines for interpreting results are given in this
chapter. All results, however, should be reviewed with the
appropriate HP representative to ensure that a thorough and
accurate evaluation of porting effort is obtained.

19



Interpreting the Result
Output Examples

Output Examples

The following are examples of output from the file-specific and the
summary sections of the lint  report.

Example 1

This output is the result of lint  run against a very small application
coded so that it was non-conformant. The purpose here is just to
illustrate a simple example of output format.

File-Specific Data

The following output sample is specific to the file, xyz.c . The first line
states that in line 2 of xyz.c , lint  was unable to locate the include file
referenced, in this case xxx.h . The lines that follow flag an undefined
variable, i , and present several warnings. The user should fix the
undefined variable, but the warnings my be ignored.

xyz.c: 2: Can't find include file xxx.h

Xyz.c

(11) “" undefined

(11) warning: “i” may be used before set

(12) warning: “path” may be used before set

(14) warning: “main” returns random value to invocation environment

Summary Data

This output sample is the summary section printed out after the
file-specific information. It has divided its messages into three
categories:

= name used but not defined
< function argument () used inconsistently
= function returns value which is always ignored

This information is useful for identifying unknown procedures, or
procedures with calling sequences that differ from the MPE/iX POSIX
standard.

name used but not defined
foo xyz.c(11)
mktemp xyz.c(13)
function argument ( number ) used inconsistently

chmod( arg 2) llib-1c(537) :: xyz.c(12)
function returns value which is always ignored
chmod

20 Chapter5



Interpreting the Result
Output Examples

Example 2

This example presents actual data excerpts from the output file of
running lint  against a large, internal database application. This
example illustrates the format of syntax errors, as well as numerous
categories that may appear in the summary section.

File-Specific Data

The following excerpt relates to the file, BsCrType.c . While the
warnings may be ignored, the syntax errors should be investigated and
corrected.

bs/BsCrType.c:
in.h(79) syntax error:
struct{u_chars_bl,s b2,s b3,s b4;}S_un_b;

in.h((80) syntax error:
struct { u_shorts wl,s w2;}S un_w;

in.h(81) syntax error:
u_long S_addr;

in.h(120) syntax error:
u_short sin_port;

BsCrType.c

(43) warning: “ji" unused in function “BsCrTupleType”

(38) warning: “newtypekid” unused in function “BsCrTupleType”
(98) warning: “i" unused in function “BsCrSetType”

(94) warning: “lastcomptid” unused in function “BsCrSetType”

Summary Data

The following excerpts are examples of the categories and summary
information provided in the latter part of the output file.

name used but not defined
UtWksplnit  UtWksp.h(109)
gethostname ClLogin.c(115)

name defined but never used
callcode  oaciEval.c(66)
xlload Xsaux.c(69)

Chapter 5 21



Interpreting the Result
Output Examples

name declared but never used or defined
rresvport  socket.h(247)
OaciSetLastResult  oaciEval.c(59)

<vex>
name multiply declared
main BsMain.c(41) :: CIDrvr.c(890)
DmiTempSecNum DmiGlobal.h(32) :: DmiGlobal.h(32)

value type used inconsistently
strlen stdc.c(335) :: BsDelSec.C(130)
strlen stdc.c(335) :: BsDelSec.c(131)

value type declared inconsistently
buffer ~ C1Drvr.c(78) :: sqlxdvr.c(418)
lang oacilnit.c(31) : : OmFunStr.c(79)

function argument ( number ) used inconsistently
memcpy(arg 1) stdc.c(274) :: BsBlobs.c(50)
memcpy( arg 2) stdc.c(274) :: BsBlobs.c(50)

function used with a variable number of arguments
strtod stdc.c(196) :: CIDrvr.c(311)
strtod stdc.c(196) :: CIDrvr.c(318)

function value is used, but none returned
OaciParseQuote  OaciResetErr  OmLogSt
SvNewClient IglinputHandler ~ fdopen

function returns value which is always ignored
InTupleAdd StDestroySemiCache  OaciPreProcess
InTypeGetChild  tpparse  OaciPrepareResult

function returns value which is sometimes ignored
push_nargs InBagRemoveAt InTupleGetAt
strcpy  sprintf  putchyte

22 Chapter5



Interpreting the Result
Guidelines for Data interpretation

Guidelines for Data interpretation

The following are guidelines for identifying potential portability
problems in your application.

1. grep for “Can’t find include file” in the output file. For example:
:fgrep -n “Can’t find include file” result

Here, we used the output file, result, from Example 1 and obtained
the following:

1:xyz.c: 2: Can't find include file xxx.h

fgrep finds the pattern on line 1 of result. If xxx.h is your file, then
you must use the -1 option of lint  to specify the location of the
include directory and run lint  again.

2. grep for “syntax error” in the output file. For example:
fgrep -n “syntax error:” result

Here, we used the output file, result, from Example 2 and obtained
the following:

2:in.h(79) syntax error:
5:in.h(80) syntax error:
8:in.h(81) syntax error:
11:in.h(120) syntax error:

fgrep finds several occurrences of this string in the output file
(lines 2, 5, 8 and 11). The syntax errors all occur in the file, in.h
These errors may be caused by missing include files or
incompatibilities between MPE/iX and your UNIX system. These
should be investigated and corrected before attempting to port.

3. grep for “undefined” in the output file. For example:
:fgrep -n “undefined” result

Here, we used the output file, result, from Example 1 and obtained
the following:

5:(11) “i” undefined

fgrep finds one occurrence of this string in the output file in line 5.

The error occurred on line 11 of some file. To find which file has the
error, look in the output file, line 5, and see what the current file is.
This error should be corrected, and lint  should be run against the
application once it has no compilation errors.

4. grep for “too many errors” in the output file. For example:

:fgrep -n “too many errors” result

Chapter 5 23



Interpreting the Result
Guidelines for Data interpretation

Here, we used the output file, result, which appears as follows:

BsInitNo.c

(27) “NameToOiddefArray” undefined

(27) type error in array expression

(27) operand for the indirection operator “*” should have non-void
pointer type

(27) struct/union name required before “.”
(27) type error in array expression

(27) operand for the indirection operator “*” should have non-void
pointer type

(27) warning: “NameToOiddefArray” may be used before set

(30) “NameToOiddefArray” undefined

(30) type error in array expression

(30) operand for the indirection operator “*” should have non-void
pointer type

(30) struct/union name required before “.”
(30) address operator “&” should not be applied to this operand
(30) struct/union name required before “.”
(30) left-hand side of “=" should be an Ivalue
(30)

***x cannot recover from this error ****

too many errors
The output from the grep is:
23:t00 many errors

fgrep finds one occurrence of this string in the output file in line 23.
The errors that are listed for this file should be corrected and lint
should be run again.

NOTE lint  will stop checking a source file if it encounters a certain number of
errors; the limit is system-specific. To obtain more accurate evaluation
results, the errors noted for the file should be corrected, and lint
should be run again.

5. grep for “cannot recover from earlier errors” in the output file. For
example:

:fgrep -n “cannot recover from earlier errors” result
Here, we used the output file, result, which appeared as follows:

cl/ClLogin.c:
in.h(79) syntax error:
struct{u_chars_bl,s b2,s b3,s b4;}S un_b;

in.h(80) syntac error:
struct {u_shorts_wl,s 2;}S_un_w;

in.h(81) syntax error:
u_long S_addr;

24 Chapter5



Interpreting the Result
Guidelines for Data interpretation

in.h(120) syntax error:
u_short sin_port;

socket.h(79) syntax error:
u_short sa_family; /* address family */

socket.h(85) syntax error:
u_short sp_family; /* address family */

ClLogin.c

(234) struct/union “sockaddr_in” does not contain member “sin_port”
(234) left-hand side of “=" shold be an Ivalue

(235) struct/union “sockaddr_in” does not contain member “sin_addr”
(235) address operator “&” should not be applied to this operand
(236) cannot recover from earlier errors: goodbye!

The output from the grep is:
(236) cannot recover from earlier errors: goodbye!

fgrep finds one occurrence of this string in the output file in line
236. Look in the output file to see what file this corresponds to and
correct the errors noted. Then run lint  again.

6. grep for the following categories to locate summary information
within the output file identifying potential compatibility problems:

= name used but not defined

Function names listed here will be non-POSIX according to the
MPE/iX standard

= value type used inconsistent! y
For example:
strlen stdc.c(335) :: BsDelSec.c(130)

This example notes that the function, strlen , defined in stdc.c
line 335, is used in an inconsistent manner in BsDelSec.c ,
line 130, according to type.

= value type declared inconsistently
For example:
lang oacilnit.c(31) :: OmFunStr.c(79)

This means that lang is declared differently in oacilnit.c ,
line 31, than in OmFunStr.c , line 79.

= function argument (number) used inconsistently
For example:

function argument ( number ) used inconsistently
chmod(arg 2) posix.c(106) :: xyz.c(12)

Chapter 5 25



Interpreting the Result
Guidelines for Data interpretation

This means that chmod is defined in posix.c , line 106, and called
by xyz.c , line 12. You can compare your use of the function with
the actual declaration found in posix.c  in the /mpe.ib  directory.

function used with a variable number of arguments
For example:
strtod stdc.c(196) :: CIDrvr.c(318)

This means that the call to the strtod  function uses a different
number of arguments in CIDrvr.c |, line 318, than as defined in
stdc.c , line 196.

See Example 2, in the examples section of this chapter for other
categories that are output, but of no particular use in identifying
portability problems.

26

Chapter5



