
JavaCI User’s Guide 
 

Introducing JavaCI 
 
JavaCI is a fusion of a Java Virtual Machine and the MPE/iX Command Interpreter.  The primary purpose 
of JavaCI is to provide faster startup time for Java processes.  This has been done creating a single Java 
class which can load and execute other Java classes, but which can also recognize and execute MPE/iX 
Command Interpreter commands.  This class essentially loops forever, writing out prompts and reading 
back in the requested command.  If a command to invoke Java is seen, the running VM can in most cases 
load and execute the requested Java class without needing to start a new Java VM.  Non-Java commands 
will be executed by the MPE/iX Command Interpreter via the HPCICOMMAND intrinsic. 
 
Ideally, the environment provided would by 100% compatible with the MPE/iX Command Interpreter, and 
provide 100% compatibility with Java as invoked from a non-JavaCI environment.  In reality, there are 
some functional differences from both sides. 
 

JavaCI and the Command Interpreter 
 
Several commands provided by the MPE/iX Command Interpreter are not executable programmatically via 
the HPCICOMMAND intrinsic.  Here is a list of those commands, and what JavaCI will do in each case: 
 ABORT  Not supported; See discussion on BREAK below 
 BYE  Exits the JavaCI 
 CHGROUP  Does a CHDIR instead.  This will put the user in the desired directory, but will  

not alter the group logged on to for purposes of accounting, or change the group 
reported by a :SHOWME command. 

 DATA  Not supported by JavaCI. 
 DO   See Discussion on REDO below 
 EOD  Not supported by JavaCI 
 EOJ  Not supported by JavaCI 
 EXIT  Exits the JavaCI 
 HELLO  Not supported by the JavaCI 
 JOB  Not supported by the JavaCI 
 LISTREDO  See discussion on REDO below  
 SETCATALOG Not supported by the JavaCI 
 REDO  See discussion on REDO below 
 RESUME  Not supported; see discussion on BREAK below 
 

Break, Abort, and Resume in the JavaCI 
 
JavaCI does not do anything to intercept or handle break.  In cases where JavaCI is started from the MPE 
CI, this means that BREAK will be handled by the underlying Command Interpreter process.  If JavaCI is 
started with the :NEWCI command, BREAK will be disabled.   
 
It would certainly be desirable for a CI-workalike such as JavaCI to provide the same functionality as 
BREAK within the MPE CI, but the interfaces that must be called to implement this functionality cannot be 
called from non-privileged-mode programs such as Java. 
 



Redo, Do, and Listredo in the JavaCI 
 
The MPE CI redo stack is not programmatically accessible, but redo functionality is such an important part 
of the CI that the functionality has been duplicated within the JavaCI.  The actual editing of command lines 
is done via the CI’s EDIT() evaluator function.  Maintenance of the redo stack and selecting entries from 
the stack for DO or REDO by position or pattern match are all done in Java code.   
 
The HPREDOSIZE CI variable, which sets and reports the size of the redo stack, is not programmatically 
readable.  Therefore, when JavaCI starts up it selects an arbitrary size of 50 entries for the redo stack.  If the 
HPREDOSIZE variable is changed via :SETVAR within the JavaCI, both the JavaCI’s redo stack size and 
the redo stack size of the ‘real’ MPE CI will be changed to the requested value. 
 

Command files and UDCs in the JavaCI 
 
When you enter an MPE command at the JavaCI prompt, MPE’s normal rules apply for invoking UDCs, 
command files, and built-in commands.  Note that any UDCs or Command Files will be executed solely by 
the MPE Command Interpreter, not by JavaCI.  Therefore, the blindingly fast execution of Java commands 
experienced from the JavaCI prompt will not be seen for Java commands that are part of command files or 
UDCs.   
 

The JavaCI prompt 
 
The Java prompt is based on the HPPROMPT environment variable, but is modified by prepending the 
string (JAVACI) to the prompt.  This is done so that users cannot ‘forget’ they are in the JavaCI 
environment, especially in cases where JavaCI behavior might be different from the MPE CI. 
 

Command Interpreter Extensions 
 
There is opportunity with JavaCI to add new MPE commands or otherwise enhance or extend the 
capabilities of the MPE Command Interpreter.  We have for the most part resisted this temptation, as our 
intent is to provide specific Java-related capabilities, not to build an incompatible CI replacement.  At this 
point, there are only two points where we deliberately added commands or functionality to the JavaCI 
environment that is not available in the MPE CI. 
 
The first of these is an implied run capability for Java.  If a command passes all the way through the normal 
CI processing (checking for commands, UDCs, and command files) without matching anything, then we 
test to see if it is a Java class.  The case-sensitive class name is checked for in each directory and jar file 
specified by the CLASSPATH CI variable.  If the command name (plus ‘.class’ extension) is found in any 
of the directories or jars, then the class is loaded and executed.  If no class is found, then the Unknown 
Command Name (CIERR 975) error is reported. 
 
The second extension is a new MPE command, :RESETCLASSLOADER.  This command will be 
introduced and explained under the ‘classloading’ heading in the next section. 
 

JavaCI and Java 
 
As mentioned at the start, the objective of JavaCI is to provide the same capabilities and behavior seen 
when Java is invoked from a CI or shell prompt, only with greater performance.   The greater performance 
comes in two areas.  The first is load time, and is quite dramatic.  Since the JavaVM and system classes are 



already loaded, when a command such as ‘java HelloWorld’ is encountered, it is only necessary to 
load the HelloWorld class and invoke its main method.   On low-end systems where the JavaVM startup for 
such a command might be in excess of 10 seconds, executing the same command from the JavaCI will 
complete in under one second. 
 
If the same command is executed yet again, performance will be even faster.  This is because the target 
class (HelloWorld in the above example) has already been loaded, and may have been compiled by the just-
in-time or the HotSpot compiler.  In the case of HotSpot, you may observe increasing performance across a 
number of runs of the same program, until it reaches a steady-state where the majority of the code within 
the program has been compiled.  (This is more likely to be observed for programs that have short run times; 
for long duration programs, most compilable code will have been compiled after the program runs once). 
 
Note that in order for classes to be run in the existing VM, it is important that no VM options be passed on 
the command line.  Options such as –verbose, -Xms16m (to change heap size), etc. specify attributes that 
cannot be changed once a virtual machine is running.  Since JavaCI is inside an already-running JVM, it 
cannot change these attributes of the JVM it is running inside of.  If any VM options are passed on a Java 
command line, a new instance of the JVM will be created to execute that command.  Subsequent 
commands that do not specify command-line options will continue to be executed by the JavaCI’s VM. 

Classloading 
 
JavaCI includes a customized classloader (known as the JCIClassLoader).  There were two reasons why a 
customized class loader was required. 
 
The first reason has to do with the CLASSPATH variable.   The normal Java classloader reads the 
CLASSPATH variable at the time the JVM is started, and then will not check it again.  Changes to the 
CLASSPATH variable or to the corresponding java.class.path property will not be recognized.  Because of 
the way JavaCI will typically be used, it is important that the user be able to do a :SETVAR on the 
CLASSPATH variable, and have this new CLASSPATH used in any subsequent invocations of the 
classloader.  The JavaCI program will reset the JCIClassLoader’s classpath each time Java is invoked. 
 
The second reason is to support class re-loading.  In a typical Java environment, if a class is loaded then it 
will not be re-loaded even if the underlying file (.class or .jar) changes.  This is unacceptable in the JavaCI 
environment, since the user could be editing a .java file, compiling it, testing it, and then repeating the 
cycle.  If the class was not reloaded, none of the changes made to the class would take effect until the user 
completely exited JavaCI. 
 
The rules for Java class loaders make this difficult; in particular, you cannot selectively reload a single 
class.  The only way to get any classes at all to reload is to completely replace the classloader, thus 
reloading all classes that were loaded with that classloader.   Although this is more expensive that reloading 
a single class, it is still far more efficient than restarting the entire Java VM. 
 
We’ve tried to optimize when we force a ‘reload of all classes’.  We currently do so in two situations.  The 
first is when the java compiler (javac) is invoked on a class that we have previously loaded through the 
JCIClassLoader.  This is a pretty clear-cut indication that the class contents have changed and we should 
reload.  The second case is whenever a user does a :SETVAR on the CLASSPATH variable.  In this case, 
it’s less clear whether a reload will actually be required, but it is entirely possible that the new 
CLASSPATH setting may cause some classes to be found at different locations that we previously loaded 
them from. 
 
There are all sorts of situations where we will not catch changes to class files or to the classpath that would 
necessitate a reload.  Any commands executed from UDCs or Command Files are not seen by JavaCI, and 
these may affect the environment.  If new classes are installed on the system, via FTP or other means, we 
will not recognize that these might be in positions where they should be loaded in place of our cached 
classes.  To handle all these unforeseeable cases, we have added a :RESETCLASSLOADER command that 



will cause a new instance of the JCIClassLoader to be created, and all classes previously loaded will be 
reloaded if they are needed again. 
 
Note that all of this behavior only works for classes loaded by our own JCIClassLoader.  We cannot reload 
classes that are loaded by the default system class loader.  For this reason, the recommended way to start 
the JavaCI program is with a classpath of null specified on the command line.  This way, the system class 
loader will not have access to anything on the CLASSPATH.  The system classes and JavaCI itself will be 
loaded by the system class loader, everything else will be loaded by the JCIClassLoader. 
 

Security 
 
As noted above, the JavaCI uses its own classloader.  It also uses its own SecurityManager, in order to 
prevent programs that call System.exit() from terminating the entire JavaCI program.  Installing 
ClassLoaders and SecurityManagers in the Java VM is a privileged operation, and requires special 
permission via the .java.policy file.   In order for JavaCI to work on your system, you must install a policy 
file which grants JavaCI these capabilities. 
 
Security files can be installed either systemwide or on a per-user basis.  The system-wide security policy 
file is /usr/local/java/<version>/jre/lib/security/java.policy.  The user-specific security policy is 
$HOME/.java.policy. 
 
The following file (at either user or system-wide level) is currently being used to test JavaCI: 
 
grant { 
  permission java.security.AllPermission; 
}; 
 
We are working on finding a more granular approach to give only the specific permissions required by 
JavaCI.  If you install this system-wide, it is recommended that you save the default java.policy file 
(perhaps renaming it to java.policy.default) so that it can be restored later. 
 

JavaCI and the POSIX shell 
 
A logical thing to ask at this point is whether we can provide the same JavaCI functionality for the POSIX 
shell.  The answer is probably yes.  While we believe it can be done, the approach must be different, 
because the POSIX system() command is not nearly as elegant and useful as HPCICOMMAND().  With 
HPCICOMMAND, we can set environment variables and have them persist.  But the POSIX system() call, 
which allows us to execute shell functions programmatically, is a one-shot deal; none of the context from 
an invocation of the command is preserved for later invocations.  So environment variables, .profile scripts, 
etc. are completely useless. 
 
The most likely design for implementing a JavaSh (or jsh) would be to have a shell process running at all 
times, with its stdin/stdout/stderr redirected to pipes, sockets, or message files.  The jsh would then provide 
the user interface and pass all non-java commands off to the shell process for execution.  
 
Since we have limited bandwidth within the lab to work on projects of this nature, we’d like to understand 
how important jsh functionality is, in relation to enhancements to JavaCI or other java-related functionality 
users might desire.   
 

Questions for Alpha Testers 
 



 Are any of the unimplemented commands important to handle in JavaCI? 
 Are there additional extensions to JavaCI that are desirable? 
 How important is a jsh (Java Shell) program similar to JavaCI? 
 How much does JavaCI help java startup performance in your environment? 
 Does JavaCI perceptibly improve Java runtime performance? 
 Is the JavaCI documentation (this document) adequate? 
 


