
HP 3000 Computer Systems

HP Transact

Documentation Update Notice

ABCDE

HP Part No. 32247-90028

Printed in U.S.A.

Seventh Edition, Update #1

E1096

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright c1981{1988, 1990, 1992, 1994, 1996 by Hewlett-Packard Company

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1981 32247A.00.00

Second Edition December 1982 32247A.00.03

Update #1 June 1983 32247A.01.01

Update #2 February 1985 32247A.02.02

Fourth Edition October 1987 32247A.03.07

Update #1 July 1988 32247A.06.00 & 30138A.00.00

Fifth Edition February 1990 32247A.07.02 & 30138A.02.01

Sixth Edition September 1992 32247A.09.00 & 30138A.04.00

Seventh Edition April 1994 32247A.10.00 & 30138A.05.00

Update #1 October 1996 32247A.11.00 & 30138A.06.00

October 1996 iii

About This Manual

This manual is a reference for programming in the Transact programming language. It
assumes that you have a working knowledge of computer programming and the HP 3000
computer system, including the subsystems TurboIMAGE and VPLUS. The manual contains
the following chapters and appendixes:

Chapter 1, \Introduction to Transact," describes the features and bene�ts of Transact.

Chapter 2, \Program Structure," describes the program structure of Transact.

Chapter 3, \Data Items," discusses data item de�nitions, names, types, sizes, as well as
parent and child items, compound items, array subscripting, and de�ning and handling
arrays.

Chapter 4, \Transact Registers," describes registers, the areas of data storage in Transact,
and how they work.

Chapter 5, \User Interface," describes the three modes of user interface: command
sequence, character mode, and block mode using VPLUS.

Chapter 6, \Accessing Databases and Files," describes how to use databases, KSAM �les,
and MPE �les with Transact.

Chapter 7, \Error Handling," explains the error handling process and the e�ect of the
STATUS option on various verbs.

Chapter 8, \Verbs," provides detailed descriptions of the Transact verbs.

Chapter 9, \Running Transact," tells how to compile and execute Transact programs and
control execution at run time.

Chapter 10, \Transact Test Facility," explains how to use the test facility, which is a major
aid in program testing, integration, and optimization.

Chapter 11, \TRANDEBUG," describes Transact/iX's symbolic debugging facility. It also
provides a tutorial introduction to using the debugger and a dictionary of all TRANDEBUG
commands.

Appendix A, \Flowcharts of File and Database Operations," contains owcharts showing
the �le and database procedures called when Transact verbs perform �le and database
operations.

Appendix B, \Transact/iX Migration Guide," provides guidelines for migrating Transact/V
programs to native mode Transact/iX programs on an MPE/iX system.

Appendix C, \Optimizing Transact Applications," provides guidelines for optimizing the
run-time performance and e�ciency of Transact applications.

Appendix D, \Architected Call Interface," explains how to call existing Transact/iX
subprograms from COBOL or Pascal.

Appendix E, \Native Language Support," describes how Transact provides access to MPE
native language support at compile time and run time.

iv October 1996

Introducing MPE/iX

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In Hewlett-Packard documentation and in talking with other HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a supersest of
MPE XL. All programs written for MPE XL will run without change under MPE/iX, and you
can continue to use MPE XL system documentation.

Finally, you may encounter references to MPE V, an HP 3000 operating system that is not
based on the PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900)
HP 3000s in what is known as compatibility mode (CM).

October 1996 v

Transact Enhancements

This edition of the manual includes descriptions of the enhancements that have been made to
Transact. Here is a list of these enhancements and where they are located in the manual.

Enhancement Location

ALIGN Option for LIST Chapter 8

ASCII Function for LET Chapter 8

CALL, STATUS Chapter 8

CHAR Function for MOVE Chapter 8

COL Function for MOVE Chapter 8

Expand Intrinsic Support of DEFINE(INTRINSIC) Chapter 8

LENGTH Function for LET Chapter 8

LOWER Function for MOVE Chapter 8

POSITION Function for LET Chapter 8

PROPER Function for MOVE Chapter 8

PROPER Modi�er for SET and RESET Chapter 8

SPACE Function for MOVE Chapter 8

STRING Function for MOVE Chapter 8

UPPER Function for MOVE Chapter 8

VALUE Function for LET Chapter 8

WORKFILE Option for FIND Chapter 8

CHCK Compiler Option Chapter 9

This update to the manual includes two additional enhancements to Transact. These
enhancements and their location in the manual are:

Literal string parameters and numeric constant parameters can now be passed in the
PROC verb. Also, for Transact/iX only, default values are passed for null parameters in
option-extensible system routines. See Chapter 8.

A method is provided for increased decimal precision in arithmetic expressions (IF, LET,
REPEAT, and WHILE verbs) via the new !PRECISION compiler command. See Chapters
8 and 9.

vi October 1996

LIST OF EFFECTIVE PAGES

The List of E�ective Pages gives the date of the current edition and of any pages changed
in updates to that edition. Within the manual, any page changed since the last edition is
indicated by printing the date the changes were made on the bottom of the page. Substantive
changes are marked with a vertical bar in the margin. Changes due simply to changes in
pagination or the correction of typographical errors may or may not be so dated and marked.
If an update is incorporated when an edition is reprinted, these bars are removed but the
dates remain. No information is incorporated into a reprinting unless it appears as a prior
update.

E�ective Pages Date

ii-b to ii-c (this \List of E�ective Pages") Oct 1996
iii to iv Oct 1996
3-9 to 3-10 Oct 1996
6-7 to 6-8 Oct 1996
7-1 to 7-2 Oct 1996
7-11 to 7-12 Oct 1996
8 Oct 1996
9 Oct 1996
11-41 to 11-42 Oct 1996
B-5 to B-6 Oct 1996
B-9 to B-10 Oct 1996
D-3 to D-4 Oct 1996
Index-1 to Index-14 Oct 1996

ii-b vii

Data Types and Databases

There are several di�erences between the data types for databases and those for Transact.
The main di�erence is that databases require all data items to be de�ned as whole words on
word (16-bit) boundaries. To maintain consistency, you can de�ne a data item in Transact
with an odd number of bytes, but specify that the data item be stored in whole words. For
example, you can de�ne a data item in Transact as 9(5,0,6) to specify 5 digits, stored as 6
bytes.

This example illustrates the second di�erence between databases and Transact data types.
Databases do not have a numeric ASCII string data type. This di�erence does not cause
problems. Transact automatically converts any numeric ASCII (data type 9) data items to
alphanumerics (data type X) before use. When data is transferred into a Transact type 9 data
item, Transact checks to make sure the data is numeric.

Data Types and Data Dictionaries

You can create a data dictionary in which you de�ne the data items, databases, forms �les,
MPE �les, and KSAM �les to be used in Transact programs. The use of a data dictionary as
a central location for data de�nitions and attributes allows you to change existing de�nitions
and attributes easily and dynamically. The data dictionary does not supply the data itself,
which must come from MPE or KSAM �les, databases, forms �les, or the user.

There is an exact correspondence between the data item de�nitions available with Transact
and either Dictionary/V or System Dictionary. Thus, when a Transact program uses a data
item de�ned in a data dictionary, it is as if it were de�ned in the program's DEFINE(ITEM)
statement. All data item attributes can be resolved from the data dictionary when Transact
compiles the program. If Dictionary/V items are to be resolved at Transact/V run time, all
attributes except for heading or entry text, edit masks, and sub-items, can be resolved.

Transact allows you to use either Dictionary/V or System Dictionary or both in one program.
If you do not specify, Transact assumes Dictionary/V, by default. To use System Dictionary,
you must include special compiler commands in your source �le. These commands are
described in Chapter 9.

When Transact takes data item de�nitions from System Dictionary, only attributes de�ned
at the data item level can be accessed. Any attributes de�ned at the relationship levels are
inaccessible, since Transact commands can include only the item name and provide no way
for transmitting context information. Therefore, if an item is to have di�erent attributes in
di�erent contexts, System Dictionary must contain a separate item name and de�nition for
each di�erent set of attributes. If the data in System Dictionary is structured so as to support
Hewlett-Packard's information management software (such as BRW), it is recommended
that dual dictionaries (or domains) be maintained|one to support Information Management
applications and the other to support Transact applications. In the System Dictionary that
supports Transact applications, data items can then be rede�ned as often as necessary.

When de�ning data items which are extracted from System Dictionary or Dictionary/V for
use in a Transact application, you should note that Transact only supports data item names
that are up to 16 characters long.

If a data dictionary is being used, the Transact compiler looks for any unde�ned data items
in the appropriate data dictionary. If it cannot �nd the data items in the data dictionary, it
issues a warning message.

October 1996 Data Items 3-9

When the Transact/V processor interprets the p-code, it, too, looks in the Dictionary/V
data dictionary for unde�ned data items, including those which could not be resolved
from a System Dictionary data dictionary. These data items can be those not satis�ed
during compilation or data items de�ned to be satis�ed at run time by a DEFINE(ITEM)
item-name * statement. If the processor cannot �nd the data items in the data dictionary, it
issues an error message and terminates processing.

Transact/iX programs do not look in the Dictionary/V data dictionary at run time. Any
items that are not resolved at compile time for Transact/iX will generate a run-time error
when they are used.

At compile time, all data item attributes can be resolved from their data dictionary
de�nitions. At run time, the Transact/V processor can only resolve such basic data item
attributes as type, size, decimal length, and storage length. However, it does not get such
secondary attributes as heading or entry text and edit masks.

Transact can resolve VPLUS forms �le and form de�nitions and data set and �le layout
de�nitions only at compile time.

Parent Items and Child Items

A single data item can contain other data items, called child items. A data item containing
child items is called a parent item. For example, a data item containing a date can be
composed of three child items: month, day, and year, in any order you choose. A child item
itself can be a parent item, and it can contain child items. In this case, it would be both a
child item and a parent item.

You de�ne the relationship of a child to its parent by including, in the child item's de�nition,
the parent item's name and the position of the child item within the parent item. Child items
need not be of the same type as parent items. A parent item need not be completely rede�ned
by its child items. For example, a parent item that is 10 characters long may have a single
child item that is 4 characters long starting in the second character position of the parent
item. Refer to the DEFINE(ITEM) description in Chapter 8 for details about de�ning parent
and child items.

Only the parent item name can be added to the list register; the child item names cannot.
Child item names may, however, be used in a PROMPT or DATA statement to prompt the
user for these values. Child items may also be speci�ed in the LIST= options of statements
that access VPLUS forms. Transact understands that these data item names are part of the
parent item, and transfers the data accordingly. Transact makes the connection between
parent and child items through the DEFINE(ITEM) or a data dictionary de�nition of their
relation. This parent/child relationship can be resolved from a data dictionary only at compile
time, not at run time. The child items can be the elements of an array, which is the parent
item.

3-10 Data Items October 1996

Using the LOCK Option with the Database Access Verbs

The LOCK option applies to all database access verbs, which include DELETE, FIND, GET,
OUTPUT, PUT, REPLACE, and UPDATE. The LOCK option can be used to override the
SET(OPTION) NOLOCK statement for any speci�c verb. Tables 6-2 and 6-3 show how
locking is applied with the possible combinations of locking methods for database and MPE
and KSAM �les, respectively. See the description of the individual verbs in Chapter 8 for
more information. There is also a LOCK option that applies to the LOGTRAN verb, which is
discussed in the next subsection.

When using the PERFORM= option with an iterative database verb such as FIND, adding
the LOCK option will help to ensure data consistency when there are concurrent processes
modifying, adding, or deleting database records. For more information about database
integrity and the PERFORM= option, see \Suppression of Optimization" under the FIND
statement in Chapter 8.

Table 6-2 Understanding Database Locking

Automatic Locking

Combined With:

Transact Verbs

FIND OUTPUT GET PUT DELETE UPDATE REPLACE

No options A A A B* C* B* C*

LOCK option B B B B B B B

LOCK option and SET(OPTION) NOLOCK B B B B B B B

SET(OPTION) NOLOCK only A A A A A A A

A = No locks
B = Lock for the entire verb
C = Lock and unlock for each record retrieved
* = Lock if database opened with mode 1; otherwise no locks

Table 6-3 Understanding KSAM and MPE File Locking

Automatic Locking

Combined With:

Transact Verbs

FIND OUTPUT GET PUT DELETE* UPDATE REPLACE

No options C C C C C C C

LOCK option B B B B B B B

LOCK option and SET(OPTION) NOLOCK B B B B B B B

SET(OPTION) NOLOCK only A A A A A A A

SET(OPTION) NOLOCK and
LOCK option on SYSTEM statement

A A A A A A A

A = No locks
B = Lock for the entire verb
C = If lock is speci�ed in SYSTEM statement, lock and unlock for each record retrieved
* = Delete not allowed on an MPE �le

October 1996 Accessing Databases and Files 6-7

Using the LOCK Option with the LOGTRAN Statement

Locking across a transaction can be handled by transaction-level locking executed when you
specify the LOCK option on the LOGTRAN statement. Transaction locking can be used with
or without database logging. The syntax is:

LOGTRAN(BEGIN) base,log-message[,option-list];

where option-list includes the LOCK option in the following format:

LOCK(setname[(cond)][,setname[(cond)]]...)

You specify setname as a list of data set names separated by commas or as a @ sign to specify
that the entire database (such as the base speci�ed in the SYSTEM statement) is locked. You
can also specify a lock condition parameter, cond , which can be COND or UNCOND, representing
conditional or unconditional locking, respectively. The default is conditional locking. The data
sets speci�ed are locked at the set level when Transact encounters the LOGTRAN(BEGIN) or
LOGTRAN(XBEGIN) statements. The data sets are unlocked when Transact encounters a
corresponding LOGTRAN(END), LOGTRAN(XEND), or LOGTRAN(XUNDO) statement
with the same database name (same database access path).

When using the LOCK option on the LOGTRAN statement, you should also specify the
SET(OPTION) NOLOCK statement to ensure that automatic locking is not activated for any
database access verbs within your transaction. The SET(OPTION) NOLOCK statement does
not a�ect transaction locking. To re-activate automatic locking, use the RESET(OPTION)
LOCK statement. In the example shown here, transaction level locking is used to lock two
data sets in two di�erent databases. Transaction locking is also used in the second version of
the subsequent example.

SYSTEM LOCKS,BASE=BASE1(";"),BASE2(";");

DEFINE(ITEM) X1 X(10):

X2 X(10);

SET(OPTION) NOLOCK;

PROMPT X1:X2;

LOGTRAN(BEGIN) $HOME," Lock Base1 Set ",LOCK(Base1master);

LOGTRAN(BEGIN) BASE2," Lock Base2 Set ",LOCK(Base2master);

PUT Base1master,LIST=(X1);

PUT Base2master,LIST=(X2);

LOGTRAN(END) BASE2," Unlock Base2 Set ";

LOGTRAN(END) $HOME," Unlock Base1 Set ";

EXIT;

6-8 Accessing Databases and Files October 1996

7

Error Handling

Transact has a signi�cant amount of error processing built into the run-time environment.
This chapter explains the error handling process and the e�ect of the STATUS option on
various verbs, especially when errors are detected. The topics covered are:

Automatic error handling

Using the STATUS option

Compiler error messages

Processor error messages

Using EXPLAIN

Trap handling

October 1996 Error Handling 7-1

Automatic Error Handling

Transact automatically traps various types of errors encountered during the execution of a
program and takes certain predetermined actions. Transact traps errors during data entry,
during database or �le operations, and during arithmetic calculations in LET expressions.

Data Entry Errors

Transact validates a value entered as a response to a data entry prompt. This is done
according to attributes de�ned for the data item in a data dictionary or the Transact
program|that is, data type, �eld size, decimal �eld length, integer �eld length. If it detects
an error during validation, it issues an appropriate error message on the terminal and reissues
the data entry prompt.

Database or File Operation Errors

Transact assumes that a data set or �le error was caused by an incorrect user input|for
example, by the user specifying an incorrect value for a key item. (Other types of software
error conditions should be eliminated before the program is put into production mode.) If
Transact detects an error, it generates an error message and returns program control to an
appropriate statement preceding the data set or �le operation.

The return location can be the start of the command sequence. In this case, the program
reissues the command prompt to allow the user to start over with a command. The return
location can be to a data entry prompt too. For instance, if an error occurs on the second
of two database or �le operation verbs and there is a data entry prompt between the two,
the return location is the prompt statement immediately following the �rst database or �le
operation.

The intention of the logic that determines the return location is to restart at a program point
that allows a corrected value to be entered, one that will not cause the error to recur. If
you choose to use automatic error handling, do not include statements between the prompts
and �le or database access verbs which may alter the data used in the operation. This is
important because automatic error handling re-executes all statements between where the
error occurred (such as the �le or database operation) and where the data was collected
(such as the PROMPT verb). Ignoring this caution may give you unanticipated results. For
example:

(1) LET (COUNTER) = 0;

(2) PROMPT DATA-ITEM; PROMPT(KEY) DATA-ITEM;

(3) LET (COUNTER) = (COUNTER) + 1;

(4) FIND (DATA-ITEM); FIND DATASET1;

(5) PUT DATASET2, LIST=(DATA-ITEM,COUNTER);

7-2 Error Handling October 1996

Example

This example shows what is displayed when you enter EXPLAIN TVB 1070 at the command
line:

DATABASE BUFFER NOT ON WORD BOUNDARY (1070)

The data buffer for a database operation must start on a word

boundary. If necessary, insert a one-character fill item before

the first data item of the database list or use the ALIGN option

of the LIST verb.

MSG GROUP: Transact/V
MSG CATALOG: RAPIDCAT.PUB.SYS

MSG KEY: TVB 1070

For more examples of using EXPLAIN, see the MPE V Commands Reference manual.

Trap Handling

Traps occur when Transact encounters speci�c arithmetic errors, Pascal library errors, or a
control-y is issued. When an arithmetic trap is discovered in a Transact program, an error
is issued and processing stops. Transact does not always process traps in the same way
depending on whether they occur in the main program, a called subprogram, an Inform
system, or an ACI subprogram. The di�erent types of processing for Transact trap handling
are described below.

Trap handling can also be modi�ed by speci�cally calling the trap intrinsics via the PROC
verb.

System Initialization

Arithmetic traps are armed and enabled during initialization of a Transact program.
ARITRAP and XARITRAP are called to enable and arm the arithmetic traps. Control-y
traps are also enabled during initialization by issuing the XCONTRAP intrinsic. For
Transact/iX, the Pascal library traps are set by calling XLIBTRAP.

PROC

When calling a subprogram (other than a Transact subprogram) using the PROC call, you
can select the TRAP or NOTRAP option. If no option is selected, the default TRAP option
is used. When the TRAP option is used, any arithmetic or library traps that occur in the
subprogram result in an error message. The subprogram terminates, and control is returned
to the main program. If NOTRAP is speci�ed in the PROC statement, all arithmetic traps
are ignored in the subprogram, and processing continues as if no problems occurred. No status
or information is passed back to the main program with either option. Online and batch
modes are processed in the same way.

October 1996 Error Handling 7-11

CALL

When calling a Transact subprogram, arithmetic traps and control-y are not disabled. Trap
handling in the main program is the same throughout the Transact subprogram. In batch
mode, the called subprogram issues an error message and terminates. Control is returned to
the main program and processing continues.

When calling an Inform or Report program, control-y is �rst disabled then re-enabled after
the Inform or Report program completes. Arithmetic traps are not enabled or disabled. The
arithmetic trap that is set at the time of the call is used throughout the Inform or Report
program.

ACI

When the Architected Call Interface (ACI) intrinsic TL CALL TRANSACT is used to call
a Transact subprogram from another language, the main program's arithmetic trap handling
is saved, then re-enabled before returning to the main program. The Transact subprogram
enables arithmetic and library traps during initialization. HPENBLTRAP is called to enable
arithmetic traps, then XARITRAP is called to arm them. XLIBTRAP is called to arm the
library traps. For more information about ACI see Appendix D.

LET

The LET verb has two modes for handling errors. The default mode is automatic, and occurs
when the error message is displayed and processing continues to the next statement. The
other mode, error branching, occurs when an error branch is speci�ed in the LET statement.
When certain errors are encountered, control is transferred to the error branch, and no
error message is displayed. When the default mode is used in batch mode, an error on the
LET verb will cause the program to terminate. For more information see the LET verb in
Chapter 8.

IF, REPEAT, WHILE

When an arithmetic error occurs in the IF, REPEAT, or WHILE statements, an error
message is displayed, and processing continues to the next statement. In batch mode, the
error causes the program to stop. For more information see the IF, REPEAT, or WHILE
statements in Chapter 8.

7-12 Error Handling October 1996

8

Transact Verbs

This chapter contains detailed speci�cations for using Transact verbs. The verb speci�cations
are arranged in alphabetic order for easy reference. Each speci�cation contains a single
phrase description of the verb's functions. The verb's syntax is listed, followed by a general
description of the syntax and how the verb is used.

The syntax for most of the verbs is described in terms of statement parts. The speci�cations
for each statement part are provided in detail.

Some verbs, however, have modi�ers that change both the syntax and the function of the
verb. These verbs are described in terms of \syntax" options. Each syntax option description
consists of the syntax for that option followed by a description of the statement parts.
Information common to the verb regardless of the particular syntax option precedes the
description of the individual syntax options. Verbs with syntax options include DATA,
DEFINE, LET, LIST, PROMPT, RESET, and SET.

Examples are provided wherever applicable. The examples are either included within the
syntax descriptions, or they follow the entire verb description.

October 1996 Transact Verbs 8-1

CALL

Transfers execution to another Transact program or to a Report/V or Inform/V program.

Syntax

CALL �le-name
�
(
�
password,

��
mode

�
)
��
,option-list

�
;

CALL passes control to another Transact program or to a Report/V or Inform/V program.
The called program operates as if it were the main program, but it shares all or part of the
calling program's data register space. The called program returns to the calling program with
an EXIT statement. The calling program then resumes execution of the statement following
the CALL statement.

When a CALL from a main program is executed, any open �les or data sets remain open
across the call. However, when the called program is an Inform/V or Report/V program, the
database passwords must be speci�ed again. The passwords can be speci�ed programmatically
from the terminal or in the stream �le.

When a CALL from a called system is executed, �les opened by the system that made the call
do not remain open for use by the system it calls.

While a called Transact program is executing, both the calling program and the called
program are in the memory stack and share the data register. Called Inform/V or Report/V
programs do not share the same memory stack or data register.

If a called Report/V or Inform/V program uses any database or data �le named in the
SYSTEM statement of the calling Transact program, that database or �le must be opened in
a non-exclusive mode. Furthermore, the open mode must be compatible with the open mode
used by Report/V or Inform/V (default mode 5), or the open mode used by Report/V or
Inform/V must be altered to be compatible with the mode used by Transact. Any database
locks should be released before the CALL statement.

The Transact/iX compiler can generate code for two di�erent types of calls, referred to as
\static" and \dynamic" calls.

Static calls are direct procedure calls to the called program. Static calls must meet the
following requirements:

The name of the called program must be available at load time.

Either the object code for the called program must be in an RL or in an RSOM �le at link
time or the executable code for the called program must be in an XL at load time.

a literal program name must be used in the CALL statement.

The DYNAMIC CALLS option must be o�.

Dynamic calls use the MPE/iX HPGETPROCPLABEL intrinsic to load the called program
at run time. Dynamic calls must meet the following requirements:

The object code for the called program must be in an XL. However, only those programs
that are actually called at run time need to be present in the XL.

Either a variable program name must be used in the CALL statement or the
DYNAMIC CALLS option must be on.

8-2 Transact Verbs October 1996

CALL

The name of the called program does not need to be available until run time.

There are advantages and disadvantages to both types of call. The primary advantage of
static calls over dynamic calls is superior run-time performance. Dynamic calls must use
HPGETPROCPLABEL whenever a CALL statement is executed, and this intrinsic must
search the various libraries and load the requested program. With static calls, the called
programs are loaded when the main program is loaded and the run-time overhead is negligible
for most applications.

However, dynamic calls have the advantage that the name does not need to be known at
compile time. Therefore, CALL statements that use a variable for the called program name
are always compiled as dynamic calls.

A further advantage is that dynamic calls do not require the object code for the called
programs to be available until the CALL statement is actually executed. Therefore, dynamic
calls allow a main program to be executed even if some of the called programs it references
have not yet been compiled (or even written), as long as the main program does not attempt
to actually call any of the missing programs.

Statement Parts

�le-name The name of one of the following:

Another Transact program (as speci�ed in a SYSTEM statement).

A Report/V program (as speci�ed in a REPORT statement).

An Inform/V program (as speci�ed in the report name of the catalog).

If �le-name names an Inform/V �le or Report/V �le, the \Report" or
\Inform" option must be speci�ed in the option-list . �le-name can also be
speci�ed as (item-name[(subscript)]), where item-name is the name of an item
that contains the name of the program or report to be executed. A subscript
is allowed if the referenced item is an array. (See \Array Subscripting" in
Chapter 3.)

�le-name can be fully quali�ed as �le-name.group.account

If (item-name[(subscript)]) is speci�ed, the call is generated dynamically
at run time. If �le-name is speci�ed, then the call can be either static or
dynamic, depending on the compile options speci�ed. (See the discussion of
compiler options in Chapter 9.)

password A password for access to the database used by the called program. This
parameter is optional, required only if the called program does not specify a
database password in its SYSTEM statement or if the database is not already
opened by the called program. Transact prompts for a password at run time
if it is not speci�ed here. If the password is in both places, the password
speci�ed in the SYSTEM statement of the called program takes precedence.

password can be speci�ed as:

\text-string" The database password.

item-name
[(subscript)]

The name of an item containing the database password. A
subscript is allowed if the item being referenced is an array
item.

October 1996 Transact Verbs 8-3

CALL

It is possible to supply the called program with more than one password. This
can be accomplished by de�ning a compound item of type X or U, where the
size of each element in the compound is 8 characters.

If a list of passwords is passed to the called program, the �rst password on the
list is used to open the �rst database speci�ed in the SYSTEM statement, the
second password on the list is used to open the second database speci�ed, and
so on.

If only one password is passed, it opens the �rst database speci�ed in the
SYSTEM statement with that password as well as subsequent speci�ed
databases that have no password.

mode The mode in which the database used by the called program is to be opened.
This parameter is optional, and can be speci�ed here if the SYSTEM
statement in the called program does not specify it; if mode is speci�ed both
places, the mode speci�ed in the called program takes precedence. Mode can
be speci�ed as:

digit Number 1 to 8. Default=1. A digit is only valid when calling
another Transact program.

item-name
[(subscript)]

Name of item containing mode value. A subscript is allowed if
the item being referenced is an array item.

It is possible to specify a list of modes to be passed to the called program. It
is done by passing a compound item of type I(2). The mode list can be passed
only if a password list is also passed. Like the password list, the mode list is
used to open each of the databases speci�ed in the SYSTEM statement with a
di�erent mode.

option-list One or more of the following options separated by commas:

DATA=item-name
[(subscript)]

The location in the data register of the calling program
where a called Transact program can begin using space.
This space includes the location of the speci�ed item. If
item-name is an *", the called program cannot use any
space already used by the calling program. A subscript
is allowed if the item being referenced is an array item.
(See \Array Subscripting" in Chapter 3.) Although the
contents of the data register can be passed via a CALL
statement, the list register contents are not. Therefore,
the called program must set up its own list register
before execution.

If no DATA= is speci�ed, the called system will start
overlaying the calling program's data register with its
own list/data registers. The item must start on a 16-bit
boundary.

SIZE=number The number of 16-bit words of data register space that a
called Transact program can use. If DATA=item-name
is also speci�ed, space starts at the location assigned
to item-name. This space cannot be larger than the
number of unused 16-bit words in the data register and
must start on a 16-bit word boundary.

8-4 Transact Verbs October 1996

CALL

Note When Transact CALLs a Transact subprogram, the data register space
allocated to the subprogram is determined by the DATA= and SIZE=
parameters of the CALL statement, not the DATA= option of the SYSTEM
statement in the called program. The maximum size of the data register,
however, is determined by the DATA= option of the main program's SYSTEM
statement.

SWAP A request to write part of the caller's stack space out to
a temporary MPE �le before the CALL is made. When
control is transferred back to the calling program, the
MPE �le is read back and the stack is restored.

Use of the SWAP option increases the number of nested
calls that can be made before stack space is exhausted.
There is some overhead, however, associated with using
the SWAP option. Therefore it should be used only if
available stack space is very limited.

INFORM A request to run the Inform/V report speci�ed by
�le-name . None of the Inform/V menus are displayed.
If needed, a database password is prompted for. After
the Inform/V report is complete, control returns to the
statement following the call.

REPORT A request to run the Report/V report speci�ed by
�le-name . If needed, a database password is prompted
for. After the report is complete, control returns to the
statement following the call.

STATUS When the STATUS option is used, the success of a
CALLed Transact program is described by the value
in the 32-bit status register. After a called program
completes, Transact sets the calling program's 32-bit
status register to one of the values in the table below.

Status

Register Value

Meaning

0 No errors were detected by Transact
within the called program.

-2 An error was detected by Transact
within the called program.

A 0 will be returned in the status register in cases where
the error is handled by the programmer or end user. A 0
will be returned in the following cases:

Data errors or command errors for interactive
programs occur.

Error messages are suppressed by the subprogram
using the STATUS option or the NOMSG option.

October 1996 Transact Verbs 8-5

CALL

Error messages are suppressed by the ERROR=
option on the LET verb.

When the STATUS option is not used on the CALL
verb, Transact does not alter the calling program's
status register.

The STATUS option can be used only with called
Transact programs. The Transact compiler returns an
INVALID OPTION error message when used with called
Report/V and Inform/V programs.

Limitations on the CALL Statement

The following limitations apply to the CALL statement when you use the Transact/iX
compiler:

Calls from a Transact/iX program can only be made to Transact programs that have been
compiled with the Transact/iX compiler. The called program must be linked to the calling
program in one of the ways described above.

The SWAP option is not supported by Transact/iX and is ignored if it appears on a CALL
statement. Since MPE/iX systems have far more data space than MPE V systems, this
option is not needed.

The Transact/iX compiler issues an informational message if the SWAP option is encountered:

*INFO: THE 'SWAP' OPTION FOR THE CALL VERB IS NOT NECESSARY ON AN MPE/iX SYSTEM

Floating Point Format

When passing parameters or data that access real numbers, the called program must be
compiled with the same real-number format as the main program.

Examples

The �rst example calls the INVMGT program, provides a password for opening any databases
used by INVMGT, and allows the database to be opened in mode 7 for exclusive read access.
INVMGT can use data register space beginning at the item named ORDER, and it can use
1000 16-bit words of space.

CALL INVMGT ("X43",7),

DATA = ORDER,

SIZE = 1000;

In the next example, the user is prompted for the name of the application to run. Then the
password needed to access the database is retrieved from the PASSWORD-DSET detail set.

DATA(MATCH) SYSNAME("Enter name of application to run :");
SET(KEY) LIST(USER);

GET(CHAIN) PASSWORD-DSET, LIST(SYSNAME, PASSWORD);

CALL (SYSNAME) (PASSWORD, 5),

DATA=*;

8-6 Transact Verbs October 1996

CALL

The next example shows how multiple passwords and multiple modes can be passed to a
called program.

DEFINE(ITEM) PASSWORD-LIST 2 X(8) :
MODE-LIST 2 I(2) :

MODE-ITEM I(2) = MODE-LIST(1);

MOVE (PASSWORD-LIST) = "PASS1 PASS2 ";

LET (MODE-ITEM) = 1;

LET OFFSET(MODE-ITEM) = 2;

LET (MODE-ITEM) = 5;

CALL ORDPROC (PASSWORD-LIST,MODE-LIST), DATA=*;

This example shows the programs MAIN and CALC. MAIN uses a CALL verb with and
without the STATUS option. The status register is initialized to the value \111" and tested
after each CALL verb for the expected status register value. Without a STATUS option on
the CALL verb, MAIN's status register will not be changed. When a STATUS option is
used, the status register will be set to -2 because of the arithmetic error in the caller program
CALC.

In the called program CALC, the arithmetic operation fails. Although the LET verb results in
an error, the status register for CALC is unchanged.

SYSTEM MAIN;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS,INIT:PSTATUS,INIT;

LET STATUS = 111;

<<Example of CALL verb without the STATUS option.>>

CALL CALC, DATA=ZEROS;

IF STATUS = 111 then display "MAIN's STATUS IS STILL 111.";

<<Example of CALL verb with the STATUS option.>>
CALL CALC, DATA=ZEROS,STATUS;

IF STATUS = -2 THEN DISPLAY "MAIN's STATUS IS NOW -2.";

EXIT;

END;

October 1996 Transact Verbs 8-7

CALL

SYSTEM CALC;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);
LIST ZEROS:PSTATUS;

LET STATUS = 222;

LET (ZEROS) = (ZEROS) / (ZEROS);

<<Causes an arithmetic error.>>

LET (PSTATUS) = STATUS;

DISPLAY "CALC's STATUS REGISTER AFTER ERROR>>",LINE=2:PSTATUS,NOHEAD;

EXIT;

END;

************************** RESULTS *****************************

ERROR: INTEGER DIVIDE BY ZERO (PROG 54,6) [CALC]

CALC's STATUS REGISTER AFTER ERROR>> 222

MAIN's STATUS IS STILL 111.

*ERROR: INTEGER DIVIDED BY ZERO (PROG 54,6) [CALC]

CALC's STATUS REGISTER AFTER ERROR>> 222

MAIN's STATUS IS NOW -2.

This example shows modi�cations to the programs MAIN and CALC. The program MAIN
uses the CALL verb with and without the STATUS option. The status register is still set to
the value \111" and tested after each CALL verb for the expected status. Without a STATUS
option on the CALL verb, MAIN's status register will not be changed. When a STATUS
option is used, MAIN's status register will be set to 0 because the error in the called program
is handled by the called program.

In the called program CALC, we still perform an arithmetic operation which causes an error.
The ERROR= option which has been added causes the status register to be set to a value of 3
when the arithmetic operation fails. The status register is not shared between programs, but
the program MAIN displays or checks the value stored in shared item PSTATUS.

SYSTEM MAIN;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS,INIT:PSTATUS,INIT;

LET STATUS = 111;

<<Example of CALL verb without the STATUS option.>>

CALL CALC, DATA=ZEROS;

IF STATUS = 111 then display "MAIN's STATUS IS STILL 111.";

<<Example of CALL verb with the STATUS option.>>

CALL CALC, DATA=ZEROS,STATUS;

IF STATUS = 0 THEN DISPLAY "MAIN's STATUS IS NOW 0.";

DISPLAY "PSTATUS has a value of: ":PSTATUS,NOHEAD;

EXIT;

END;

SYSTEM CALC;

8-8 Transact Verbs October 1996

CALL

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS:PSTATUS;
LET (ZEROS) = (ZEROS) / (ZEROS), ERROR= NEXT-LINE(*);

<<Causes an error>>

NEXT-LINE;

LET (PSTATUS) = STATUS;

<<See LET verb for table of STATUS values. >>

DISPLAY "CALC's STATUS REGISTER AFTER ERROR>> ",LINE=2:PSTATUS,NOHEAD;

EXIT;

END;

************************** RESULTS *****************************

CALC's STATUS REGISTER AFTER ERROR>> 3

MAIN's STATUS IS STILL 111.

CALC's STATUS REGISTER AFTER ERROR>> 3

MAIN's STATUS IS NOW 0.

PSTATUS has a value of: 3

END OF PROGRAM

October 1996 Transact Verbs 8-9

CLOSE

Closes an MPE or KSAM �le, a data set or database, or a VPLUS forms �le.

Syntax

CLOSE �le-name
�
,option-list

�
;

CLOSE closes and rewinds an MPE or KSAM �le or a data set, or closes the entire database.
Except to rewind or set a �le or data set to its beginning, you need not use CLOSE. Transact
automatically closes all �les and data sets at the end of a command sequence and at the end
of a program.

You typically use CLOSE to set a �le or data set to its beginning when you are planning to
use the STATUS option with a database access verb that performs serial or reverse serial
access. These verbs are FIND, GET, DELETE, and OUTPUT which have (SERIAL) and
(RSERIAL) modi�ers. You would also use CLOSE before a FILE(SORT) statement.

The CLOSE statement has the following special forms:

CLOSE
$FORMLIST

Closes the spool �le used by the VPRINTFORM intrinsic of VPLUS.

CLOSE
$PRINT

Closes the print �le TRANLIST. This statement is useful for directing
output to the printer using SET(OPTION) PRINT without terminating your
program.

CLOSE
$VPLS

Closes the terminal block mode and the active VPLUS forms �le, releasing the
memory space used by VPLUS in the DB-DL stack area (Transact/V only).
This relieves the contention for DB-DL stack memory between VPLUS and
other subsystems such as DSG/3000. Do not use between a SET(FORM) verb
and another forms verb.

For a discussion about using CLOSE during dynamic transactions, see the \Database Close"
section in Chapter 6.

Statement Parts

�le-name The �le or data set to be closed. If the data set is not in the home base
as de�ned in the SYSTEM statement, you must specify the base name in
parentheses as follows:

set-name(base-name)

You can close an entire database by specifying �le-name as a database with
the following format:

@[(base-name)]

To close the home base, omit base-name; to close any other base, specify a
base-name.

8-10 Transact Verbs October 1996

CLOSE

option-list One or more of the following options separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and the stack pointer for
the list register is set to the data item item-name.
Transact generates an error at execution time if
the item cannot be found in the list register. The
item-name must be a parent.

If you do not specify an item name, as in
ERROR=label ();, the list register is cleared.
If you use an * instead of item-name, as in
ERROR=label (*);, then the list register is not
touched. For more information, see \Automatic Error
Handling" in Chapter 7.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You may have to add
status checking to your code if you use this option.

When STATUS is speci�ed, the e�ect of a CLOSE
statement is described by the 32-bit integer value in
the status register:

Status

Register Value

Meaning

0 The CLOSE operation was successful.

>0 For a description of the condition that occurred,
refer to the database or MPE/KSAM �le
system error documentation that corresponds to
the value.

See \Using the STATUS Option" in Chapter 7.

Examples

You can use the STATUS option with CLOSE to do exit processing on an error. For example:

CLOSE KSAM-FILE,

STATUS;

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

The statement below closes the �le ACCREC. If an error occurs, it passes control to the
statement labeled FIX and sets the list register to CUST-NAME.

CLOSE ACCREC,

ERROR = FIX (CUST-NAME);

October 1996 Transact Verbs 8-11

DATA

Prompts for a value and changes the appropriate location in the data, argument, match,
and/or update registers.

Syntax

DATA[(modi�er)][item-name][("prompt-string")][,option-list][:item-name...] ... ;

DATA prompts the user for a value and, depending on the syntax option chosen, places the
value in one or more registers. The registers a�ected depend on the verb modi�er. Available
modi�ers are:

none Places value in data register. (See Syntax Option 1.)

ITEM Prompts for item name and if found, places value in data register. (See Syntax
Option 2.)

KEY Places value in argument register. (See Syntax Option 3.)

MATCH Places value in data register. Sets up match criteria in match register. (See
Syntax Option 4.)

PATH Places value in data register and in argument register. (See Syntax Option 5.)

SET Places value in data register unless user presses carriage return. (See Syntax
Option 6.)

UPDATE Places value in data register. Places item name and value in update register. (See
Syntax Option 7.)

The user enters a value in response to a prompt-string or to the item-name. At execution
time, Transact validates the input value as to type, length, and other characteristics de�ned
in the data dictionary or by a DEFINE(ITEM) statement. It validates the data before the
register is modi�ed. If Transact detects an error, then it displays an appropriate error message
and reissues the prompt.

With native language support, Transact validates numeric data using the thousands and
decimal indicators of the language in e�ect. (See Appendix E, \Native Language Support" for
more information.)

You normally use the DATA verb to change the value for a data item that has already been
speci�ed in the list register. DATA searches the list register from the top of the stack to the
bottom to �nd the requested item-name. If there are multiple occurrences of the same item in
the list register, it uses the last one placed on the list.

8-12 Transact Verbs October 1996

DATA

Statement Parts

modi�er Changes or enhances the action of DATA; often indicates the register to
which the input value should be added or the register whose value should be
changed. The Syntax Options subsection below describes the impact of each
modi�er in detail.

item-name The name of the data item in the list register whose value should be added or
changed in the appropriate register.

* The item at the top of the list register; that is, the one referenced by the last
LIST or PROMPT statement unless explicitly changed by a more recent SET
or RESET command.

prmpt-string The string that prompts the user for the input value; if not speci�ed, the
user is prompted by the item name or by an entry text speci�ed in the
DEFINE(ITEM) statement or in the data dictionary, if one exists.

optn-list A �eld specifying how the data should be formatted and/or other checks to be
performed on the entered value. Include one or more of the following options
(separated by commas) unless you use the ITEM modi�er (Syntax Option 2):

BLANKS Does not suppress leading blanks supplied in
the input value; leading and trailing blanks are
normally stripped.

CHECK=set-name Checks input value against the master set
set-name to ensure that the value already
exists. If the condition is not met at execution
time, Transact displays an appropriate error
message and reissues the prompt. You cannot
use this option with a KSAM or MPE �le, in a
DATA(MATCH) statement, nor with child items.

CHECKNOT=set-name Checks input value against the master set
set-name to ensure that the value does not
already exist. If the option condition is not
met at execution time, then Transact issues
an appropriate error message and reissues the
prompt. You cannot use this option with a KSAM
or MPE �le, in a DATA(MATCH) statement, nor
with child items.

NOECHO Does not echo the input value to the terminal.

NULL Fills item with ASCII null characters (binary
zeros) instead of blanks.

RIGHT Right-justi�es the input value within the register
�eld.

October 1996 Transact Verbs 8-13

DATA

STATUS Suppresses normal processing of \]" and \]]",
which cause an escape to a higher processing or
command level.

Status

Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control
subsequent processing by testing the contents of
the register with an IF statement.

If the CHECK or CHECKNOT option is also
used, then \]", \]]", a carriage return, or one or
more blanks suppress the DATA operation and
control passes to the next statement.

Syntax Options

(1) DATA {item-name[(subscript)]}[("prmpt-string)"][,optn-list][:item-name . . .] . . . ;

{ * }

DATA with no modi�er places the value entered as a response to prompt-string in the data
register. It is added in an area associated with the current data item if *" is used or with
item-name if it is speci�ed. item-name can be modi�ed with subscript if the referenced item is
an array item. (See \Array Subscripting" in Chapter 3.)

(2) DATA(ITEM) "prompt-string"[,REPEAT];

The ITEM modi�er is typically used to update or correct one or more values in the data
register. DATA(ITEM) issues a prompt prompt-string to request an item name. When the
user enters an item name in response to this prompt, Transact looks for this item in the list
register. If the item name cannot be found, it displays an error message and reissues the
prompt. If the item name is in the list register, this item name is issued as a second prompt
to which the user responds with a value. If the entered value passes all edit checks, it is placed
in the data register area associated with the item name. Otherwise, the user is prompted for
another value. If the user responds with a \]", Transact reissues the prompt-string prompt. If
the user responds with \]]", Transact returns to command mode.

If you use the REPEAT option, then the operation is repeated until a termination character (]
or]]) or a null response (carriage return) is entered in response to the prompt-string prompt.

8-14 Transact Verbs October 1996

DATA

(3) DATA(KEY) {item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(KEY) places the value entered as a response to prompt-string in the argument register.
If item-name is speci�ed, this name is used as the prompt for user input, unless this name is
overridden by a prompt-string. If *" is speci�ed, then the current name in key register is
used as the prompt for user input. The key register is changed by this verb only if it is empty.
If the key register is not empty, this verb does not change the item name already in the key
register.

(4) DATA(MATCH) {item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(MATCH) places the value entered as a response to item-name or prompt-string in the
data register. You cannot specify either CHECK= or CHECKNOT= with DATA(MATCH).
It places the value in the data register in an area associated with the current data item if
the *" is used or in an area associated with a named data item if an item name is speci�ed.
The item name and value are also placed in the match register as a selection criterion for
subsequent database or �le operations.

If the item name is an unsubscripted array, only the value of the �rst element of the array will
be set in the data register. This value from the data register will be set up as match criterion
in the match register.

You should note that when a single key value is entered for the match, Transact performs a
chained read on the data set if the item is a search or key item. However, if a range of values
or non-key value is speci�ed, a serial read is performed.

User responses to the DATA(MATCH) prompt are further explained in the discussion
of \Match Register" in Chapter 4. (See also \MATCH Speci�cation Characters" and
\Responding to a MATCH Prompt" in Chapter 5.) The MATCH modi�er allows one or more
of the option-list items allowed with all DATA options. (See list above.) You may also select
one of the following options, which specify that a match selection is to be performed on a
basis other than equality.

If you specify one of the options listed below, the entire user input is treated as a single value.
The match speci�cation characters described in Chapter 5 are not allowed as user input with
the options listed below.

MATCH option-list :

NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the use of

trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use of trailing

\^^" on input
TRAILER Matched item must end with the input string; equivalent to the use of a

leading \^" on input

October 1996 Transact Verbs 8-15

DATA

For example, if the program contains the data statement

DATA(MATCH) CUSTNO,GE;

and if the user responds to the prompt by entering 079333, then only customer numbers
greater than or equal to 079333 will be selected.

(5) DATA(PATH){item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(PATH) places the value entered as a response to prompt-string in the data register.
The value is placed in the data register in an area associated with the current data item if
the *" is used or with item-name if it is speci�ed. The value is also placed in the argument
register and the item name in the key register for subsequent keyed access to KSAM �les or
data sets. The key register is changed by this verb only if it is empty. If the key register is not
empty, this verb does not change the item name already there.

(6) DATA(SET) {item-name[(subscript)]}[("prompt-string")][,option-list]

{ * }

[:item-name . . .] . . . ;

The primary use of the SET modi�er is to update values in the data register for existing
items in the list register. DATA(SET) places the value entered as a response to item-name
or prompt-string in the data register. It is placed in the data register in an area associated
with item-name, if it is used, or with the current item if *" is used. item-name may be
modi�ed with (subscripts) if the referenced item is an array item. (See \Array Subscripting"
in Chapter 3.)

If the user responds to the prompt with a carriage return, then the existing value in the data
register is not touched. Note that this di�ers from the other DATA statements which add
blanks to the data register if the user responds with a carriage return.

If you use the CHECK= or CHECKNOT= options and the speci�ed condition is not met,
the item remains in the data register. In this case, you should reset the data register to the
previous item to avoid creating an endless loop should the user respond with a carriage return
to the reissued prompt. Both CHECK= and CHECKNOT= look for the item in the master
set even if the user enters a carriage return.

A special option, SHOW, is available only with the (SET) modi�er. SHOW causes the old
value to appear in the prompt for a new value. This allows the user to see what the item will
contain if a carriage return is entered. The values are displayed left justi�ed, with trailing
blanks suppressed. One blank is displayed when an alphanumeric item is all blank. The
SHOW option can only be used in the DATA(SET) statement. The following example uses
the SHOW option:

DEFINE(ITEM) PRODUCT X(40):

QUANTITY I(3);

LIST PRODUCT,INIT:

QUANTITY,INIT;

DATA(SET) PRODUCT,SHOW:

QUANTITY,SHOW;

8-16 Transact Verbs October 1996

DATA

This example causes the following prompts to be displayed the �rst time data is entered:

PRODUCT(=)>

QUANTITY(=0)>

If the values \grapefruit" and \10" are entered, the prompts appear like this when displayed
again:

PRODUCT(=grapefruit)>

QUANTITY(=10)>

If an alphanumeric string is longer than 30 characters, the �rst 30 characters are displayed:

PRODUCT(=mason valley delightful grapef...)>

The trailing periods (. . .) indicate that the value is too long.

(7) DATA(UPDATE) {item-name}[("prompt-string")][,option-list]

{ * }

[:item-name . . .] . . . ;

DATA(UPDATE) places the value entered as a response to prompt-string in the data register.
It is placed in the data register in an area associated with the current data item if the *"
is used or with item name if it is speci�ed. The item name and value are also placed in the
update register for subsequent use with the REPLACE verb.

Examples

This example asks the user for an account number, which is placed in the argument register
for subsequent access to the ACCOUNT-MASTER set. The value is checked �rst, however,
to see if it already exists in ACCOUNT-MASTER. If it does not, then an error message is
displayed and the prompt is reissued.

DATA(KEY) ACCT-NO ("Account number?"),

CHECK=ACCOUNT-MASTER;

This example asks the user for a response. If the response is a carriage return, the data
register is not changed. If a value is entered, the new value replaces the existing value in the
data register space allocated to the item QUANTITY.

DATA(SET) QUANTITY("New stock quantity?");

In response to the prompt for ADDRESS, the user can enter the entire address with each item
separated by commas; or the user can enter one item of the address at a time. If the entire
address is entered at once, the remaining item prompts are not issued.

DATA ADDRESS ("Enter customer address"):

CITY ("Enter city"):

STATE ("Enter 2-letter state code"):

ZIP ("Enter 5-digit zip code");

For example, the following dialogue could occur:

Enter customer address> 312 Alba Road, San Jose, CA, 95050

October 1996 Transact Verbs 8-17

DATA

Alternatively, if the user wants to wait for each prompt, the dialogue could be:

Enter customer address> 312 Alba Road

Enter city> San Jose

Enter 2-letter state code> CA

Enter 5-digit zip code> 95050

In either case, the entered data is moved to the data register locations associated with
ADDRESS, CITY, STATE, and ZIP. If the user presses �Return� in response to any single
prompt, the associated area of the data register is set to blanks. If you want �Return� to leave
the existing data, you must use a DATA(SET) statement.

8-18 Transact Verbs October 1996

DEFINE

DEFINE

Speci�es de�nitions of item names, names of MPE V system intrinsics, or segmented program
control labels to be used by the compiler.

Syntax

DEFINE(modi�er) de�nition-list;

The DEFINE statement is used to de�ne items, entry points into program segments, or
intrinsics called with the PROC statement. DEFINE statements are generally the �rst
statements that follow the SYSTEM statement in a Transact program.

The function of the DEFINE statement depends on the modi�er you choose, and for
DEFINE(ITEM) on the particular syntax option. The allowed modi�ers are:

ENTRY De�nes a program control label within a segment as global to the entire
program. (See Syntax Option 1.)

INTRINSIC De�nes an MPE V system intrinsic to be called by the PROC verb. (See
Syntax Option 2.)

ITEM De�nes one or more item names. (See Syntax Option 3.)

De�nes a synonym for an item name. (See Syntax Option 4.)

De�nes a marker item, which is a position in the list register. (See Syntax
Option 5.)

De�nes an item name whose attributes are to be satis�ed at execution time.
(See Syntax Option 6.) (Transact/V Only)

The de�nition-list depends on the modi�er, or syntax option, you choose.

Syntax Options

(1) DEFINE(ENTRY) label[:label] . . . ;

The ENTRY modi�er causes a statement label within a program segment to be global to
the whole program so that statements in any segment can reference this label. You need not
de�ne entry point labels within the root segment (segment 0).

(2) DEFINE(INTRINSIC) intrinsic-name[:intrinsic-name] . . . ;

The INTRINSIC modi�er de�nes MPE V system intrinsics that are called by the PROC verb.
Declaring the intrinsic in this manner causes Transact to load the intrinsic at system startup.

If you include an intrinsic name that is not recognized by the compiler, a compile time
error message will be issued. If this occurs, remove the unrecognized intrinsic from the
DEFINE(INTRINSIC) statement. If the DEFINE(INTRINSIC) statement is removed,
Transact tries to load the intrinsic when the intrinsic is called with a PROC statement.
Intrinsics speci�ed with the DEFINE(INTRINSIC) statement are resolved at system startup
from SL.PUB.SYS.

October 1996 Transact Verbs 8-19

DEFINE

(3) DEFINE(ITEM) item-name [count]

[type(size[,decimal-length[,storage-length]])]

[=parent-name[(position)]]

[,ALIAS=(alias-reference)]

[,COMPUTE=arithmetic-expression]

[,EDIT="edit-mask"]

[,ENTRY="entry-text"]

[,HEAD="heading-text"]

[,INIT=[value|(BINARY(value))|(HEX(value))|(OCTAL(value))]]

[,OPT]

[:item-name . . .] . . . ;

This option de�nes an item-name not de�ned in the data dictionary. It can also be used to
rede�ne items already de�ned in the data dictionary. Any number of item-names, separated
by colons (:) can be speci�ed in a single DEFINE(ITEM) statement. (See Chapter 3, \Data
Items," for detailed descriptions of data types.)

item-name The name of a data item or system variable to which the de�nition
applies.

When it refers to a data item, item-name identi�es an item that
exists in a database or �le used by the Transact program or that
is to be used as a temporary variable. This item may or may not
be included in the data dictionary. The �rst character must be
alphanumeric, and the other characters may be alphabetic (A-Z,
upper or lowercase), digits (0-9), or any ASCII characters except
, ; : = < > () " or a blank space. The item-name can be up to 16
characters long.

Five system variables can be speci�ed as an item-name: $CPU,
$DATELINE, $PAGE, $TIME, and $TODAY. Note that only the
EDIT= and HEAD= options are valid with these variables.

count The number of occurrences of the item if it is a sub item within a
compound item. (All of the sub items have the same attributes.)

Example: DEFINE(ITEM) SUB 24 X(30);

SUB is de�ned as a compound item that has 24 30-character sub
items.

type The data type:

X = any ASCII character

U = uppercase alphanumeric string

9 = numeric ASCII string (leading zeros stripped)

Z = zoned decimal (COBOL format)

P = packed decimal (COBOL comp-3)

I = integer number

J = integer number (COBOL comp)

K = logical value (absolute binary)

R = real, or floating point, number

E = real, scientific notation

8-20 Transact Verbs October 1996

DEFINE

If type is followed by a \+", then the item is unsigned, and can
have positive values only. Data entry values are validated as
positive and, if the type is Z or P, positive unsigned value formats
are generated. Items de�ned as type E are displayed in the format:
n.nnE+nn, but cannot be entered in this format; they may be
entered as integer or real numbers. (See Chapter 3, \Data Items,"
for detailed descriptions of data types.)

Note Transact's \E" item type is di�erent from the TurboIMAGE \E" item type
that is de�ned as IEEE real.

size The number of characters in an alphanumeric string or the number
of digits, plus decimal point if any, in a numeric �eld.

Transact adds a display character for the sign to the speci�ed
size of numeric items (types Z, P, I, J, K, R, and E) unless the
item type is de�ned as positive only with a \+". You should be
aware of this extra display character when transferring data to
VPLUS numeric �elds. (See Table 3-3 for the relation between the
speci�ed size, its storage allocation, and display requirements.)

If both type and size are omitted, the dictionary de�nition of the
item is used.

decimal-length The number of decimal places in a zoned, packed, integer,
or oating point number, if any. For Z and P types only,
the maximum decimal-length is 1 less than the maximum
storage-length of the item.

storage-length The byte length of the storage area for the data item, which
overrides the length calculated by the compiler from the type, size,
and decimal length values.

Storage length of X and U type items is limited only by the size
of the data register. The maximum size of the numeric item types
9, Z, P, I, J, and K is 27 digits or characters, unless a decimal is
included in which case the maximum size is 28 characters or digits
including the decimal point. For R and E types, the maximum
recommended size is 22 characters and digits, to allow for 17
accurate digits in the mantissa, a decimal point, the sign of the
exponent, the letter E, and 2 digits for the exponent.

=parent-name The name of the parent if you are de�ning a child item; rede�nes
all or part of a parent item name de�ned elsewhere in the
program or in the dictionary. (Similar to an equivalence in SPL or
FORTRAN.)

October 1996 Transact Verbs 8-21

DEFINE

The following is an example of rede�nition of a parent item de�ned
as \NAME".

DEFINE(ITEM) NAME X(32):
FNAME X(10)=NAME(1):

MIDINIT X(1)=NAME(11):

LNAME X(21)=NAME(12);

When working with KSAM or MPE �les, it is useful to de�ne the
record as a parent item and the �elds as child items. (See the
example in the description of the SYSTEM verb.)

position The byte position in the parent item that is the starting position
of the child item. Begin counting at position 1. The default is 1.

In the following example, the child item YEAR starts in position 1
of the parent item DATE, MONTH starts in position 3, and DAY
in position 5.

DEFINE(ITEM) DATE X(6):

YEAR X(2)=DATE:

MONTH X(2)=DATE(3):

DAY X(2)=DATE(5);

ALIAS=(alias-reference) Other names (aliases) by which item-name is known, where
(alias-reference) has the form:

(item-name1 [(�le-list1) [,item-name2[(�le-list2)]]...])

The item de�ned as item-name is called item-name1 in any of
the �les or data sets in �le-list1 , item-name2 in any of the �les in
�le-list2 , and so forth. If �le-list1 is omitted, item-name1 is the
only alias-reference allowed. A �le list may consist of �le or data
set names separated by commas. If a referenced data set is not in
the home base speci�ed in the SYSTEM statement, the base name
must be speci�ed as set-name(base-name).

Note that Transact does not retrieve alias de�nitions from the
dictionary. You must de�ne any aliases in a DEFINE(ITEM)
statement in your program.

An alias ensures that when you reference item-name in your
program, this name is associated with the other names by which
the item is known in �les or data sets. You always reference such
an item by its primary name, not its alias.

The following example de�nes the item QTY-ORD, which is
known in the �le ORDERS as QUANTITY and in the �le
ORD-MAST as QUANT-ORD. Note that all aliases must have the
same storage length as the data item value referenced in the data
set or �le.

<<Use name QTY-ORD in program>>

DEFINE(ITEM) QTY-ORD I(4), ALIAS=(QUANTITY(ORDERS),

QUANT-ORD(ORD-MAST));

8-22 Transact Verbs October 1996

DEFINE

COMPUTE= arithmetic-
expression

An arithmetic expression that speci�es the computation to be
performed before the item is used in a DISPLAY, OUTPUT,
or LET statement. It may contain two or more variables
separated by one or more arithmetic operators. Use the form
shown for the LET statement.

EDIT=\edit-string" Default edit mask used for the item's value in any display. (See
the DISPLAY and FORMAT statements for a description of
the edit mask feature.) When a numeric value to be printed
is too large for the edit mask, a series of pound signs (#) are
printed in place of the value, to indicate an overow.

ENTRY=\entry-text" Text string used as the default prompt string for the item
when used by the PROMPT and DATA statements.

HEAD=\heading-text" Text string used as the default heading for the item in any
display function.

INIT=[value] Initial value moved into the item each time it is added to the
list register. The INIT parameter on the LIST verb overrides
this parameter. If this parameter appears without a value,
the item is initialized to zero for numeric or blank for ASCII,
eliminating the need to use the INIT parameter with the LIST
verb. For example:

DEFINE(ITEM) CODE I(3), INIT=999;

DEFINE(ITEM) QUANTITY I(3), INIT=;

The INIT= option works similarly to the LET verb. If an
array is being initialized, each element in the array is initialized
to value.

This option also allows initialization of I, J, and K types in
terms of a binary, octal, or hexadecimal base. The number
speci�ed is treated as a signed, 32-bit number. Enough storage
must be allocated to hold the speci�ed number.

The following examples illustrate the use of this option.

The �rst example de�nes an initial value of �1. Two bytes of
storage are su�cient.

DEFINE(ITEM) OCT1 I(5,,2), INIT=(OCTAL(377777777777));

The second example de�nes an initial value of -2. Two bytes of
storage are su�cient.

DEFINE(ITEM) OCT2 I(5,,2), INIT=(OCTAL(377777777776));

The third example de�nes an initial value of 65535. Two bytes
of storage are not su�cient so four bytes must be allocated.

DEFINE(ITEM) HEX1 I(5,,4), INIT=(HEX(ffff));

The fourth example de�nes an initial value of -32768. Two
bytes of storage are not su�cient so four bytes must be
allocated.

October 1996 Transact Verbs 8-23

DEFINE

DEFINE(ITEM) HEX2 I(5,,4), INIT=(HEX(ffff8000));

The last example de�nes an initial value of 2147483647, the
maximum possible using a binary, octal, or hexadecimal base.
Eight bytes of storage are required.

DEFINE(ITEM) HEX3 I(10,,8), INIT=(HEX(7fffffff));

The INIT= option cannot be used for child items.

Note Initializing a positive type with a negative value results in a run-time error.

OPT OPT is used in combination with the compiler control option,
OPT@, OPTE, OPTH, OPTI, and OPTP. When OPT is
speci�ed for an item, the compiler does not store the item's
textual name in the p-code �le if the OPTI control option
has been speci�ed. OPT, used in conjunction with the above
compiler control options, saves data segment stack space at
execution time. (See Chapter 9 for a discussion of the OPT@,
OPTE, OPTH, OPTI, and OPTP compiler options.)

It is your responsibility to ensure that the item's textual name
is not required within the program. An item name is needed
for a prompt string, display item heading, or for the LIST=
option of verbs that access a database.

(4) DEFINE(ITEM) item-name=item-name1

This option de�nes a synonym for an item de�ned elsewhere in the program or in the
dictionary. Other item attributes may not be de�ned using this syntax option.

item-name A synonym for item-name1 where item-name1 is de�ned elsewhere in
the program or in the dictionary. item-name assumes the de�nition of
item-name1 , but Transact always references item-name1 in any �le or data
set operation.

Use this option to provide an alternate name for an item. The synonym
item-name exists only while the program executes; it is not an item name in a
�le or data set, or the dictionary. For example:

DEFINE(ITEM) PROD-NO 9(10):

PRODUCT-NUM=PROD-NO;

This statement de�nes the item PROD-NO as a type 9 10-digit item, and
de�nes PRODUCT-NUM as a synonym for PROD-NO. The same item can
now be called either PRODUCT-NUM or PROD-NO within the program.

(5) DEFINE(ITEM) item-name @[:item-name @] . . . ;

This option de�nes a marker item. A marker item marks a point in the list register,
but it reserves no space in the data register. The marker item must be de�ned with the
DEFINE(ITEM) statement and placed in the list register with the LIST statement.

8-24 Transact Verbs October 1996

DEFINE

A marker item can be referenced by list pointer operations and list range options. Marker
items are useful in conjunction with the SET modi�er on the PROMPT verb. The
PROMPT(SET) statement causes the contents of the list register to be de�ned at execution
time.

The following sequence of Transact statements shows an appropriate use of the marker item:

DEFINE(ITEM) MARKER1 @: MARKER2 @;

LIST MARKER1;

PROMPT(SET) EMPL:DEPT:PHONE:ROOM:LOCATION;

LIST MARKER2;

UPDATE EMPLOYEES,LIST=(MARKER1:MARKER2);

The �rst statement de�nes MARKER1 and MARKER2. The second statement assigns space
in the list register to MARKER1. The third statement prompts for new information about
employees. It is not known which and how much information will be entered. When data
entry is complete, a second marker is assigned in the list register. Then the EMPLOYEES �le
is updated with all the information in the list and data registers between MARKER1 and
MARKER2. (This example assumes that the current entry has been set up appropriately by a
previous get of the EMPLOYEES data set.)

You might know only the start and end positions of the data entered, but not how many
entries will be made. By placing marker items in the list register using the LIST statement,
you are able to pass a variable number of items to the EMPLOYEES �le.

(6) DEFINE(ITEM) item-name *[:item-name *] . . . ;

This option de�nes an item name whose attributes should be satis�ed at execution time rather
than by the compiler at compile time. Note that only the basic attributes can be resolved
at execution time; these are count, type, size, decimal-length, and storage length, not such
secondary attributes as heading text or entry text.

Note This format is not valid in Transact/iX.

Examples

The following example shows how to de�ne a key item (called KEY-NUM) for KSAM �le
access, assuming the key is a 10-character item starting in byte 3 of an 80-character record.

DEFINE(ITEM) RECORD X(80):

DEL-CODE I(2) = RECORD(1):

KEY-NUM X(10)= RECORD(3);

MOVE (KEY-NUM) = "A123456789"; <<Assign value to key >>

SET(KEY) LIST(KEY-NUM); <<Use key value to find chain head>>

FIND(CHAIN) KFILE,

LIST=(RECORD); <<Read entire record >>

October 1996 Transact Verbs 8-25

DEFINE

In another example, a portion of a key is de�ned as a \generic key":

DEFINE(ITEM) RECORD X(80):

DEL-CODE I(2) = RECORD(1):
KEY-NUM X(10) = RECORD(3):

GEN-KEY X(2) = RECORD(3);

The key search is similar to that shown above; use the generic key (GEN-KEY) value to locate
all records with key values starting with the same �rst two characters.

8-26 Transact Verbs October 1996

DELETE

DELETE

Deletes KSAM �les or data set entries. DELETE cannot be used with MPE �les.

Syntax

DELETE
�
(modi�er)

�
�le-name

�
,option-list

�
;

DELETE speci�es the deletion of one or more KSAM �le entries or data set entries. For
multiple deletions, the entries to be deleted are determined by match criteria speci�ed in the
match register. If you do not specify match criteria for a multiple deletion, DELETE deletes
all entries in a chain or in the entire �le or data set, depending on the modi�er.

If you are performing dynamic transactions (Transact/iX only), be aware that transactions
have a length limit. For a discussion about how DELETE is a�ected by this limitation, see
\Limitations" under \Dynamic Roll-back" in Chapter 6.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify type of access to the KSAM �le or data set, choose one of the
following modi�ers:

none Deletes an entry from a master set based on the key value in
the argument register; this option does not use the match
register.

CHAIN Deletes entries from a detail set or a KSAM chain. The
entries must meet any match criteria set up in the match
register. The contents of the key and argument registers
specify the chain in which the deletion is to occur. If no
match criteria are speci�ed, all entries are deleted. If match
criteria is used, all items speci�ed in the match register must
be included in a LIST= option.

CURRENT Deletes the last entry that was accessed from the KSAM �le
or data set.

DIRECT Deletes the entry stored at the speci�ed record number in a
KSAM �le, a detail set, or a master set. Before using this
modi�er, you must store the record number as a 32-bit integer
in the item speci�ed by the RECNO= option.

PRIMARY Deletes the master set entry stored at the primary address of
a synonym chain. The primary address is located through the
key value in the argument register.

October 1996 Transact Verbs 8-27

DELETE

Note DELETE(PRIMARY) deletes only one entry at the primary location, and the
secondary entry, if any, automatically migrates to the primary location after
the delete.

RCHAIN Deletes entries from a detail set or a KSAM chain in the same
manner as the CHAIN option, only in reverse order. For a
KSAM �le, this operation is identical to CHAIN.

RSERIAL Deletes entries from a data set in the same manner as the
SERIAL option, except in reverse order. For a KSAM �le,
this operation is identical to SERIAL.

SERIAL Deletes entries in serial mode from a KSAM �le or from a
data set that meet any match criteria set up in the match
register. If no match criteria are speci�ed, all entries are
deleted. If match criteria are speci�ed, the match items must
be included in a LIST= option.

�le-name The KSAM �le or data set to be accessed in the deletion. If the data set is
not in the home base as de�ned in the SYSTEM statement, the base name
must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following options, separated by commas:

ERROR=label
[([item-name])]

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and the stack pointer for
the list register is set to the data item item-name.
Transact generates an error at execution time if
the item cannot be found in the list register. The
item-name must be a parent.

If you omit item-name, as in ERROR = label();, the
list register is cleared. If you use an *" instead of
item-name, as in ERROR = label (*);, then the list
register is not touched.

LIST=(range-list) The list of items from the list register to be used for
the DELETE operation. For data sets, no child items
can be speci�ed in the range list.

If the LIST= option is omitted with any modi�er, all
the items named in the list register are used.

When the LIST= option is used, only the items
speci�ed in a LIST= option have their match
conditions applied when the items are included in the
match register. When the LIST= option is omitted,
items which appear in the list register and the
match register have their match conditions applied.
Otherwise, the match conditions for an item are
ignored.

8-28 Transact Verbs October 1996

DELETE

The match register can be used only with the
modi�ers CHAIN, RCHAIN, SERIAL, or RSERIAL.

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM=
is executed, and then the delete is performed.

For all options of range-list , the data items selected
are the result of scanning the data items in the list
register from top to bottom, where top is the most
recent entry added to the list register. (See Chapter 4
for more information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items they
cause DELETE to access include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

then data items A, B, C, D, and D are
selected. For database �les, an error

October 1996 Transact Verbs 8-29

DELETE

is returned if duplicate entries are
selected.

If item-nameX and item-nameY
are marker items (see the
DEFINE(ITEM) verb) and if there
are no data items between the two on
the list register, no database access is
performed.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from
the list register. For databases, data
items can be speci�ed in any order.
For KSAM �les, data items must
be speci�ed in the order of their
occurrence in the physical record.
This order need not match the order
of the data items on the list register.
This option is less e�cient to use than
the options listed above.

(@) Speci�es a range of all data items
of �le-name as de�ned in the data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or
form as de�ned in the dictionary. This
order need not match the order of the
data items in the list register.

() A null data item list. That is, delete
the entry or entries, but do not
retrieve any data.

LOCK Locks the speci�ed �le or database. If a data set is
being accessed, the lock is set the whole time that
DELETE executes. If LOCK is not speci�ed but the
database is opened in mode 1, which requires a lock,
the lock speci�ed by the type of automatic locking in
e�ect is active while the entry is processed by any

8-30 Transact Verbs October 1996

DELETE

PERFORM= statements, but is unlocked briey
before the next entry is retrieved.

For a KSAM �le, if LOCK is not speci�ed on
DELETE but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed
by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved. (DELETE is
not allowed on MPE �les.)

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the DELETE verb.

A database opened in mode 1 must be locked while
DELETE executes. For transaction locking, you can
use the LOCK option on the LOGTRAN verb instead
of the LOCK option on DELETE if SET(OPTION)
NOLOCK is speci�ed. If a lock is not speci�ed (for a
database opened in mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for
more information.

NOCOUNT Suppresses the message normally generated to indicate
the number of deleted entries.

NOMATCH Ignores any match criteria set up in the match
register.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for
every entry retrieved by the DELETE verb before the
DELETE operation. The entries can be optionally
selected by match criteria.

This option allows operations to be performed on
retrieved entries without having to code loop-control
logic. You can nest up to a maximum of ten
PERFORM options.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must de�ne
item-name to contain the 32-bit integer number
(I(9,,4)) of the record to be deleted.

With other modi�ers, Transact returns the record
number of the deleted record in the 32-bit integer
item-name.

The item-name can be modi�ed with subscript if
the referenced item is an array item. (See \Array
Subscripting" in Chapter 3.)

SINGLE Deletes only the �rst selected entry.

October 1996 Transact Verbs 8-31

DELETE

SOPT Suppresses the optimization of database calls. This
option is primarily intended to support a database
operation in a performed routine that is called
recursively. The option allows a di�erent path for
the same detail set to be used at each recursive
entry, rather than optimizing to the same path. It
also suppresses generation of a call list of *" after
the �rst call is made. Use SOPT if you are calling
TurboIMAGE through the PROC or CALL verbs. For
an example of how SOPT is used, see \Examples"
at the end of the FIND verb description. For more
detailed information about SOPT, see \Suppression of
Optimization versus WORKFILE" under the FIND
verb in this chapter.

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." You may want to add
status checking to your code if you use this option.
When STATUS is speci�ed, the e�ect of a DELETE
statement is described by the 32-bit integer value in
the status register:

Status

Register Value

Meaning

0 The DELETE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation corresponding to the value.

STATUS causes the following with DELETE:

Normal multiple accesses/deletions become single.

The normal rewind done by the DELETE is
suppressed, so CLOSE should be used before
DELETE(SERIAL) or DELETE(RSERIAL).

The normal �nd of the chain head by the DELETE
is suppressed, so PATH should be used before
DELETE(CHAIN) or DELETE(RCHAIN).

See \Using the STATUS Option" in Chapter 7.

8-32 Transact Verbs October 1996

DELETE

Examples

In the following example, the programmer wants to be sure that an entry is not in
MASTER-SET. Therefore, there are two acceptable conditions: either a status register value
of zero (delete successful) or a status register value of 17 (database error 17|record not
found) is acceptable.

DELETE MASTER-SET,

LIST=(KEY-ITEM),

STATUS;

IF STATUS = 17,0 THEN

DISPLAY "ENTRY REMOVED"

ELSE

DO
DISPLAY "ERROR ON DELETE FROM MASTER-SET";

GO TO ERROR-CLEANUP;

DOEND;

This example deletes all entries that contain a DEBT-LEVEL less than the number entered by
the user. DEBT-LEVEL is required in the LIST= option because DELETE reads each record
in the chain into the data register area associated with DEBT-LEVEL in order to check the
match criteria before deleting the entry.

PROMPT(MATCH) DEBT-LEVEL,LT;

DELETE(CHAIN) DEBT-DETL,

LIST=(DEBT-LEVEL);

This example deletes only the last entry in the data set that matches the zip code entered by
the user.

PROMPT(MATCH) ZIP ("DELETE ZIP CODE");

DELETE(RSERIAL) DETAIL-SET,

SINGLE,

LIST=(NAME:ZIP),

PERFORM=LISTIT;

October 1996 Transact Verbs 8-33

DISPLAY

Produces a display of values from the data register.

Syntax

DISPLAY[([[TABLE],[FILE=mpe-�le]])][display-list] ...;

DISPLAY generates a display from values in the data register. The display can be formatted
and enhanced by character strings speci�ed in the display-list . If you do not specify a format,
the display can be formatted by any active FORMAT verb.

Statement Parts

none or TABLE
without display-list

Transact generates a display according to the speci�cations of an
active FORMAT statement. If there is none, the following default
formatting occurs:

Values are displayed in the order in which they appear in the data
register.

A heading consisting of one of the following is displayed before each
line:

the heading speci�ed by the HEAD= option in a DEFINE(ITEM)
statement,

the heading taken from the dictionary, or

the associated data item name in the list register.

Each value is displayed in a �eld whose length is the greater of the
data item size or the heading length.

A single blank character separates each value �eld. If a �eld cannot
�t on the current display line, then the �eld begins on a new line.

TABLE with
display-list

Headings are displayed only at the top of each new page in the
information display.

mpe-�le The name of an MPE �le that will receive the output from the
DISPLAY statement.

display-list The display list contains one or more display �elds and their
formatting parameters, as shown in the following format:

[display-�eld][,format-parameter]...

[:display-�eld[,format-parameter]...]...;

Several �elds can be displayed. The �elds and their formatting
parameters are separated by commas; the �eld/format-parameter
combinations are separated from each other by colons. If you omit
display-list , the display is formatted as described under \none" and
\TABLE".

8-34 Transact Verbs October 1996

DISPLAY

display-�eld The following options can be used for display �elds:

A reference to a data item name in the list register
(the data item name can be subscripted if the item
referenced is an array item).

A child item name whose parent item is in the list
register.

A character string delimited by quotation marks.

If no display �eld is speci�ed, Transact defaults to a
NULL (" ") character string.

If the requested item cannot be found in the list
register, then Transact generates an error at execution
time.

Five system variables can also be used as display
�elds. As noted, some are a�ected by native language
support. (See Appendix E, \Native Language
Support," for more information.)

$CPU Displays the cumulative amount
of CPU time used by the Transact
program, in milliseconds.

$DATELINE Displays the current date and time
in the form Tue, Apr 14, 1992, 3:07
P.M. The format is a�ected by native
language support.

$PAGE Displays the current page number.

$TIME Displays the current time; the default
format is HH:MM AA (for example,
03:07 PM). The format is a�ected by
native language support.

$TODAY Displays the current date; the default
format is MM/DD/YY (for example,
04/14/92). The format is a�ected by
native language support.

Note Text can be displayed only in columns 1 through 79. Column 80 is reserved
for the carriage control character.

format-parameters One or more of the following formatting parameters can follow the
display �eld name:

CCTL=number Issues a carriage control code of number
(decimal representation) for the display
line containing the associated display �eld.
Carriage control codes are found in the MPE
Intrinsics Manual . Note that the use of

October 1996 Transact Verbs 8-35

DISPLAY

CCTL=number and LINE, NOCRLF, or
ROW, may a�ect output due to conicting
values. Valid range is 30{1025.

CENTER Centers a display �eld on a line. The entire
�eld, including leading or trailing blanks, is
centered.

COL=number Starts the display �eld in the absolute column
position speci�ed by number . The �rst column
position is 1. Maximum is 299.

If the display is already at a column position
equal to or greater than the line width of the
display device, the �eld is truncated if:

it is a character �eld, or
pound signs are displayed for a numeric �eld.

If no part of the �eld �ts, it is not displayed.

EDIT=\edit-string" Characters that designate edit masks.
The following characters have special
meanings when used in the edit-string for all
display-�eld s except system variables $TIME
and $TODAY:

^ Inserts the character from the source
data �eld into this position in the
display �eld.

Z Suppresses leading zeros. Note that
you must use an uppercase Z.

$ Adds business (single character)
currency symbol. If the
language-de�ned currency symbol
precedes, then the symbol is oated.
If the symbol succeeds, then it follows
the last character of the number
and the edit mask is shifted left
one character to leave room. If the
symbol imbeds, it replaces the radix
(decimal point or equivalent). If no
business currency symbol is de�ned
for the current language, then \$"
edit characters are treated the same
as \other" edit characters, explained
below.

Note In Transact/iX native language mode, the pound sterling currency sign ($)
does not oat the way the dollar sign ($) does in a displayed �eld with the
edit mask. To get the pound sign to oat, change your terminal con�guration
to KEYBOARD=UK. When you specify the edit mask, use the dollar sign in
place of the pound sign. The pound sign will then be displayed.

8-36 Transact Verbs October 1996

DISPLAY

Note The number of digits available for the source number depends on the type of
currency symbol. Thus, the same value might cause a �eld overow in some
languages and not in others.

* Fills �eld with asterisks.

. Aligns the implied decimal point
as speci�ed in the dictionary or
in a DEFINE(ITEM) de�nition
statement with this edit character
in the edit mask and outputs the
language-de�ned radix character.

! Ignores the implied decimal place
and replaces this character with a
language de�ned radix character.

, Outputs the language-de�ned
thousands separator character
(numeric only).

(Surrounds negative values with
parentheses (must be last character in
edit mask).

All \other" characters, which mean any
character not de�ned above in the list of
special characters, are treated as insert
characters. For example:

EDIT="@@@@@@.@@"

displays entered data as:

@@@@@@.@@

To denote numeric data type 9, Z, P, I, J, K,
R, or E negative values with a trailing \-",
\CR", or \DR", add a trailing \-", \CR", or
\DR" to the edit string. Some edit-string
examples follow:

Number Edit String Result

1234 $$,$$$!^^ $l2.34

123456 $$,$$$!^^ $1,234.56

123456 ***,**$!^^ *$1,234.56

000009 ZZZZ!^^ .09

475.49 XXX,XXX.XX XXX,XXX.XX

-123456 $$,$$$!^^CR $1,234.56CR

-123456 Z,ZZZ!^^- $1,234.56-

230485 ^^/^^/^^ 23/04/85

System variables (except $DATELINE) can
also be edited. The edit mask characters just

October 1996 Transact Verbs 8-37

DISPLAY

de�ned can be used for $CPU and $PAGE.
Special editing characters are used for $TIME
and $TODAY. For $TIME, characters in the
edit-mask string are processed as follows:

H Displays the hour with no leading
blank or zero if hour < 10.

ZH Displays the hour with leading blank
if hours < 10.

HH Displays the hour with leading zero if
hours < 10.

24 Displays the hour as expressed on a
24-hours clock; used as a pre�x to H.

M Displays the minute with no leading
blank or zero if minute < 10.

ZM Displays the minute with leading
blank if minute < 10.

MM Displays the minute with leading zero
if minute < 10.

S Displays the second with no leading
blank or zero if second < 10.

ZS Displays the second with leading
blank if second < 10.

SS Displays the second with leading zero
if second < 10.

T Displays the tenth of a second.

A Displays the next letter in the AM or
PM sequence in uppercase.

a Displays the next letter in the AM or
PM sequence in lowercase.

AA Displays both letters in the AM or
PM sequence in uppercase.

aa Displays both letters in the AM or
PM sequence in lowercase.

Except for \a", all other $TIME edit
mask characters must be in uppercase. All
characters other than edit mask characters are
inserted on a character by character basis.

8-38 Transact Verbs October 1996

DISPLAY

Here are some examples of how edit masks
change the format of the $TIME value 3:07:32
PM:

Edit Mask Displayed Time

HH:MM:SS 03:07:32

24H:M:S 15:7:32

H:MM:SS a.a. 3:07:32 p.m.

ZH:ZM:SS AA 3: 7:32 PM

For $TODAY, characters in the edit mask
string are processed as follows:

D Displays the day of the month with no
leading blank or zero if day < 10.

ZD Displays the day of the month with
leading blank if day < 10.

DD Displays the day of the month with
leading zero if day of the month < 10.

DDD Displays the Julian day of year.

M Displays the month with no leading
blank or zero if month < 10.

ZM Displays the month with leading blank
if month < 10.

MM Displays the month with leading zero
if month < 10.

nM Displays the �rst n letters of month
name in uppercase; if n > number of
letters in month name, trailing blanks
are not inserted.

nm Displays the �rst n letters of month
name in lowercase except for the �rst
letter, which appears in uppercase.

YY Displays the last two digits in current
year.

YYYY Displays the current year.

nW Displays the �rst n letters of day of
week in uppercase; if n > length of
the week name, no trailing blanks are
inserted.

nw Displays the �rst n letters of day of
week in lowercase except for the �rst
letter, which appears in uppercase.

All edit string characters must be in
uppercase, except for \m" and \w". All

October 1996 Transact Verbs 8-39

DISPLAY

characters not de�ned as an edit string
character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY
date April 14, 1992, make it appear as follows:

Edit Mask Displayed Date

3w. 3m DD, YYYY Tue. Apr 14, 1992

DD 3M, YY 14 APR, 92

M-DD-YY 4-14-92

MM/DD/YY 04/14/92

DDD, YYYY 105, 1992

Note When a numeric value to be printed is too large for the edit mask, a series of
pound signs (#) are printed in place of the value, to indicate an overow.

HEAD=\character-
string"

Uses the character-string rather than the
default, which is the heading from the
dictionary, the heading from DEFINE(ITEM),
or the item or system variable name.

JOIN[=number] Places this number of spaces between the last
non-blank character of the current line and the
�rst character of the current display �eld. To
concatenate the character strings, use JOIN=0.
The default is 1; valid range is 0{299.

LEFT Left-justi�es the data item value in the display
�eld. This is the default speci�cation.

LINE[=number] Starts the next display �eld on a new line or
on a line after a line skip count speci�ed by
number . If the print device being used can
overprint and you want it to do so, you should
specify LINE=0. [LINE=0 and LINE= cause a
carriage return but no line feed.] The default
is 1; maximum is 99.

LNG=number Truncates the display �eld to this number of
characters. If this option refers to a compound
item, then that item is displayed within a
display �eld length of number . If necessary,
new lines are generated. Range is 1{299.

NEED=number Prints the current line at the top of the next
page if there are fewer than the speci�ed
number of lines between the current line and
the bottom of the page. If you are grouping
a set of items together on a single line, the

8-40 Transact Verbs October 1996

DISPLAY

NEED= must appear with the �rst item.
Range is 1{99.

NOCRLF Does not issue a carriage return and line feed
for the display line containing the display �eld.
This parameter allows you to print output
from the next DISPLAY statement on the
same line where the previous display left o�.
NOCRLF is processed when a listing goes to
the terminal or printer. If the listing is sent to
a disk �le, the option is ignored.

NOHEAD Suppresses the default heading for this item
reference.

NOSIGN A numeric display �eld is always positive and
no sign position is required in the display �eld.
If a negative value occurs, the display �eld
contains a string of minus signs (-).

PAGE[=number] Starts the display �eld on a new page or on
a page after a page skip count speci�ed by
number . The default is 1; maximum is 99.

RIGHT Right-justi�es the data item value in the
display �eld.

ROW=number Places the display �eld at absolute line
location number . The �rst line position is
1. If the display is already at a line position
greater than number , then LINE=1 is in e�ect.
Maximum is 99.

SPACE[=number] Places this number of spaces between the end
of the previous display �eld and the start of
the current display �eld. To concatenate �elds,
use SPACE=0. Default is 1; maximum is 299.

TITLE Displays the associated display �eld and any
preceding display �elds only at the start
of each new page for which this statement
applies.

TRUNCATE Truncates this display �eld if it overows the
end of the display line; if �eld is a numeric
type, displays pound signs and does not
truncate.

ZERO[E]S Right-justi�es a numeric data value in the
display �eld and inserts leading zeros.

October 1996 Transact Verbs 8-41

DISPLAY

Redirecting Output To A File

The formatted output generated by DISPLAY can be redirected to a speci�ed �le by using
the FILE= option. This feature allows you to generate multiple reports and to save each in
a di�erent �le. The only requirement is that the speci�ed �le must �rst be identi�ed by a
corresponding SYSTEM statement using the FILE= option. If the �le is not de�ned in the
SYSTEM statement, an INVALID FILE NAME error will occur during compilation. The
default output width for DISPLAY is 79 characters.

When using this option, the DISPLAY verb sets the status register to indicate the number of
characters written to the speci�ed �le or �1 to indicate an end-of-�le. The status register is
not altered unless the FILE= option is used.

When using SET(OPTION) PRINT, the output �le must be built with records = 133
characters.

Examples

Assuming the items NAME, ADDRESS, CITY, DISCOUNT, and CUR-BAL have been
de�ned and also speci�ed in a LIST statement, the following code:

DISPLAY NAME, COL=5:

ADDRESS, SPACE=3:

CITY, SPACE=5:

"DISCOUNT RATE IS", LINE=2, COL=5:

DISCOUNT, NOHEAD:

"%", JOIN=0:

"CURRENT BALANCE IS", SPACE=10:
CUR-BAL, EDIT="$,$$$,$$$.^^", NOHEAD;

results in the following display:

NAME ADDRESS CITY

SMITH R 3304 ROCKY ROAD COLORADO SPRINGS

DISCOUNT RATE IS 7.5% CURRENT BALANCE IS $14,734.05

The following example illustrates the use of the TABLE modi�er and the TITLE option:

DISPLAY(TABLE)

"CUSTOMER LIST", COL=25, TITLE:

CUST-NO, LINE=2:

FIRST-NAME, SPACE=3:

LAST-NAME, JOIN=3:

STREET-ADDR, SPACE=3:

CITY, SPACE=3:

ZIP, SPACE=3;

8-42 Transact Verbs October 1996

DISPLAY

This statement produces a display that prints the title \CUSTOMER LIST" at the start of
each page as a result of the TITLE option, and only prints the item heads once on each page
as a result of the TABLE modi�er. For example,

CUSTOMER LIST

CUST-NO: FIRST-NAME: LAST-NAME: STREET-ADDR: CITY: ZIP:

22431 John Jones 5 Main Avenue Centerville 12345

34567 Mary Smith 123 4th St. Roseville 95747

The following example shows the use of the FILE= option to redirect formatted output.
It routes EMPLOYEE-NAME, EMPLOYEE-ADDRESS, and SALARY to the MPE �le
\REPORT."

DISPLAY(FILE=REPORT) EMPLOYEE-NAME: EMPLOYEE-ADDRESS: SALARY;

October 1996 Transact Verbs 8-43

END

Returns control to next higher level or structure.

Syntax

END[modi�er];

The function of the END verb depends on the modi�ers used.

Statement Parts

To specify the impact of the END verb, use one of the following modi�ers:

none At the end of a command sequence, control returns to command level (the
current command if the REPEAT quali�er is in e�ect) or to the beginning of
a current level.

At the end of a program, issues the message EXIT OR RESTART (E/R)? to
which you can respond with an E to exit from the program or an R to restart
the program. Necessary only if program branches can cause more than one
program end.

RESTART causes the following things to happen:

List, key, update, match, and argument registers are reset (the data register
is not reset).

The work space is reset.

Stack markers Z and DL are reset.

MPE, KSAM, and form �les are closed.

(LEVEL) The end of the current level. This causes control to fall through the level to
the statement following the END(LEVEL) statement and resets the registers
to whatever their conditions were immediately before the level sequence
began.

If you use END without (LEVEL) to terminate a level, Transact generates a
loop after the �rst execution of the level. The loop begins at the top of the
level. The registers are reset to whatever their values were at the beginning of
the level.

Information on levels is contained in the description of the LEVEL verb in
this chapter.

system-name The end of the executing program (name speci�ed in the SYSTEM
statement); necessary if program is one of several included in a text �le. The
registers are reset.

(SEQUENCE) The end of a command sequence; control passes unconditionally back to
command level. The registers are reset.

8-44 Transact Verbs October 1996

END

Examples

In this example, END terminates the command sequence and clears the program registers.

$$ADD:

$PROGRAM:

PROMPT(PATH) PROG-NAME:

VERSION:

DESCRIPTION;

PUT PROGRAMS,

LIST=(PROG-NAME:DESCRIPTION);

END;

The following example terminates the program PROG1.

SYSTEM PROG1;

.

<<process program code>>

.

END PROG1;

This example terminates processing of the level, resets the program registers to their state
before to the LEVEL statement, and returns control to the LEVEL statement.

LEVEL;

.

<<process level code>>

.

END;

The following example terminates processing of the level, resets the program registers to their
state before the LEVEL statement, and passes control to the next statement. In this case, the
next statement is the �rst statement following the label, NEXT.

LEVEL;

.

<<process level code>>

.

END(LEVEL);

NEXT:

October 1996 Transact Verbs 8-45

EXIT

Generates an exit from the Transact program to MPE or from a called Transact program to
the calling Transact program.

Syntax

EXIT;

EXIT causes control to return to the operating system from a main program. If Transact
was processing a called program, control returns to the calling program where processing
continues.

Unlike END, EXIT does not issue the EXIT OR RESTART (E/R)? prompt.

8-46 Transact Verbs October 1996

FILE

FILE

Reads, writes, updates, sorts, and otherwise operates on MPE �les.

Syntax

FILE(modi�er) �le-name
�
,option-list

�
;

FILE speci�es operations on any MPE �le de�ned in the SYSTEM statement. The operations
that FILE performs are determined by the following verb modi�ers:

CLOSE Closes the speci�ed �le. (See Syntax Option 1.)

CONTROL Performs an FCONTROL operation. (See Syntax Option 2.)

OPEN Opens speci�ed �le. (See Syntax Option 3.)

READ Reads record from speci�ed �le. (See Syntax Option 4.)

SORT Sorts speci�ed �le. (See Syntax Option 5.)

UPDATE Replaces current record in speci�ed �le. (See Syntax Option 6.)

WRITE Writes record to speci�ed �le. (See Syntax Option 7.)

Several of the above FILE operations can be performed by other Transact verbs.

For: FILE(CLOSE) Use: CLOSE

FILE(READ) GET or FIND

FILE(UPDATE) UPDATE

FILE(WRITE) PUT

The Transact verbs in the right column are more general; they apply to data sets and KSAM
�les as well as to MPE �les. They also provide more options, but they are not as e�cient as
the FILE verb for simple MPE �le operations.

Statement Parts

modi�er For the meaning of particular modi�ers, see the syntax options below.

�le-name The name of the �le as de�ned in the SYSTEM statement, including the back
reference indicator (*) if applicable. A �le is opened automatically the �rst
time it is referenced.

option-list The allowed options for option-list are unique to each syntax option.

Syntax Options

(1) FILE(CLOSE) �le-name;

FILE(CLOSE) closes the �le identi�ed by �le-name . If $PRINT is speci�ed as the �le name,
the print �le TRANLIST is closed.

October 1996 Transact Verbs 8-47

FILE

(2) FILE(CONTROL) �le-name,CODE=number[,PARM=item-name[(subscript)]];

FILE(CONTROL) speci�es that the FCONTROL operation designated by CODE=number is
to be performed. The value of number must be an unsigned integer (See the FCONTROL
intrinsic description in the MPE Intrinsics Manual for the meaning of number .) Any
value supplied or returned by the FILE(CONTROL) operation uses the data register �eld
identi�ed by PARM=item-name. The item-name may be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.) FILE(CONTROL) is the only statement
that performs the FCONTROL functions on an MPE �le.

To set a time-out interval for a DATA, INPUT, or PROMPT verb, use CODE=4 and let
item-name equal the number of seconds of the time-out interval. In this case, �le-name is the
name of a dummy �le de�ned in the SYSTEM STATEMENT. At run time, you should set up
a �le equation, FILE �le-name = $STDLIST, using the dummy �le speci�ed in your program.

The FILE(CONTROL) statement only applies to the next access to the terminal, so it should
appear immediately before the data entry statement to which it applies. (See the example at
the end of this subsection.)

(3)FILE(OPEN) �le-name,LIST=(item-name1:item-name2);

FILE(OPEN) opens the �le identi�ed by �le-name . It is required only with the FILE(SORT)
operation. It structures the list register with item-name1 through item-name2 for the
subsequent sort. This operation is required only if the �le already exists and it is to be sorted
by the system.

FILE(OPEN) is the only statement that opens an MPE �le.

(4) FILE(READ) �le-name,LIST=(item-name1:item-name2);

FILE(READ) reads a single record from the �le identi�ed by �le-name and moves the record
contents to the portion of the data register corresponding to item-name1 through item-name2
in the list register. At the completion of the operation, the status register contains either the
number of characters read or �1 to indicate end-of-�le.

(5) FILE(SORT) �le-name {,SORT=(item-name1:item-name2) };

{,SORT=(item-name1[(ASC)][,item-name2[(ASC)]] . . .)};

[(DES)] [(DES)]

FILE(SORT) executes the HP 3000 SORT utility to sort an existing �le. The sort instruction
can consist of (1) a range of items in the order that they are to be sorted (ascending order
only), or (2) a list of items or sub items in the order that they are to be sorted and a
speci�cation of ascending (default) or descending order.

Provided that the access mode of SORT is de�ned for the �le, an end-of-�le is automatically
written into the �le before the sort, and the �le is rewound following the sort. The temporary
sort �le is purged upon exit of the Transact program.

MPE �les can also be sorted with the FIND statement, but FILE(SORT) is more e�cient.

8-48 Transact Verbs October 1996

FILE

(6) FILE(UPDATE) �le-name,LIST=(item-name1:item-name2);

FILE(UPDATE) replaces the current record in the �le identi�ed by �le-name . The record
contents are de�ned by item-name1 through item-name2 in the list register.

(7) FILE(WRITE) �le-name,LIST=(item-name1:item-name2);

FILE(WRITE) writes a single record to the �le identi�ed by �le-name . The record contents
are de�ned by item-name1 through item-name2 in the list register. At the completion of the
operation, the status register contains 0 if the operation was successful or an unde�ned value
if the operation was not successful.

Examples

The FILE(CONTROL) statement causes FCONTROL operation 7 to be performed; that is, it
spaces the tape forward to the tape mark. The value it returns is placed in the data register
�eld speci�ed by LNUM. (See the MPE Intrinsics Manual for more information regarding
FCONTROL.)

SYSTEM TEST,

BASE=INVTRY,

FILE=TAPE(WRITE(NEW),80,1,5000),...;

.

.

FILE(CONTROL) TAPE,

CODE=7,

PARM=LNUM;

This example maps the data register for a subsequent FILE(SORT).

ITEM A X(10):

B X(20):

C X(15);

:

FILE(OPEN) DATAFILE,

LIST=(A:C);

October 1996 Transact Verbs 8-49

FILE

This example is a complete program that can be used to familiarize yourself with setting a
time-out interval before a data entry statement. Note that there are two loops, one nested in
the other, with time-out applied only to the second PROMPT statement. The following �le
equate must be set at run time for the following program:

:FILE TERM=$STDLIST

SYSTEM TIMEO, FILE=TERM;

DEFINE(ITEM) TIME-OUT I(4):

NUMBER I(4);

LEVEL;

PROMPT TIME-OUT;

LEVEL;

FILE(CONTROL) TERM,CODE=4,PARM=TIME-OUT;

PROMPT NUMBER;

IF STATUS = -4 THEN DISPLAY "TIME OUT!";

8-50 Transact Verbs October 1996

FIND

FIND

Performs multiple retrievals from a �le or data set.

Syntax

FIND
�
(modi�er)

�
�le-name

�
,option-list

�
;

FIND executes multiple retrievals from a �le or data set and places retrieved data in the data
register one entry at a time. It is usually used with a PERFORM= option to execute a block
of statements that processes each record retrieved.

When using the match register to select records, each record is placed in the data register
before it is tested for selection against the match register. At the end of a FIND, the area of
the data register speci�ed in the LIST= option contains the last record retrieved. This may
not be the last record selected by the match criteria.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify the type of access to the �le or data set, choose one of the following
modi�ers:

none Retrieves an entry from a master set based on the key value
in the argument register. This option does not use the match
register.

CHAIN Retrieves entries from a KSAM �le key or a detail chain. The
entries must meet any match criteria set up in the match
register in order to be selected. The contents of the key and
argument registers specify the chain or KSAM key in which
the retrieval is to occur. If no match criteria are speci�ed, all
entries on the chain are selected. Items used in the match
criteria must be included in the LIST= option.

CURRENT Retrieves the last entry that was accessed from the �le or
data set.

DIRECT Retrieves the entry stored at a speci�ed record number
from an MPE or KSAM �le or a data set. Before using this
modi�er, you must store the record number as a 32-bit integer
in the item referenced by the RECNO= option.

PRIMARY Retrieves the master set entry stored at the primary address
of a synonym chain. The primary address is located through
the key value contained in the argument register.

October 1996 Transact Verbs 8-51

FIND

RCHAIN Retrieves entries from a detail set in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Retrieves entries from a data set in the same manner as
the SERIAL option, except in reverse order. If an equal
match without match characters exists, Transact will convert
an RSERIAL option to an RCHAIN option to improve
the application's e�ciency. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Retrieves entries in serial mode from an MPE or KSAM �le
or a data set that meet any match criteria set up in the
match register. If an equal match without match characters
exists, Transact will convert an SERIAL option to an CHAIN
option to improve the application's e�ciency. If no match
criteria are speci�ed, all entries are selected. If match criteria
are speci�ed, the match items must be included in a LIST=
option of the FIND statement.

Note FIND(SERIAL) or FIND(RSERIAL) with the PERFORM= option on a
master set will skip entries if a delete is done within the perform, and a
secondary entry migrates to the position of the deleted entry. (Transact/V
Only.)

�le-name The �le or data set to be accessed by the retrieval operation. If the data set
is not in the home base as de�ned in the SYSTEM statement, the base name
must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following options, separated by commas:

ERROR=label
[([item-name])]

Suppresses the default error return Transact normally
takes. Instead, the program branches to the statement
identi�ed by label , and the stack pointer for the list
register is set to the data item item-name. Transact
generates an error at execution time if the item cannot
be found in the list register. The item-name must be
a parent.

If you do not specify an item-name, as in
ERROR=label ();, the list register is reset to empty.
If you use an *" instead of item-name, as in
ERROR=label (*);, then the list register is not
touched. For more information, see \Automatic Error
Handling," in Chapter 7.

LIST=(range-list) The list of items from the list register to be used for
the FIND operation. For data sets, no child items can
be speci�ed in the range list.

If the LIST= option is omitted with any modi�er, all
the items named in the list register are used.

8-52 Transact Verbs October 1996

FIND

When the LIST= option is used, only the items
speci�ed in a LIST= option have their match
conditions applied when the items are included in the
match register. When the LIST= option is omitted,
items which appear in the list register and the
match register have their match conditions applied.
Otherwise, the match conditions for an item are
ignored. The match register can be used only with the
modi�ers CHAIN, RCHAIN, SERIAL, or RSERIAL.

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM=
is executed, and then the retrieval is performed.

For all options of range-list , the data items selected
are the result of scanning the data items in the
list register from top to bottom, where top is the
last or most recent entry. (See Chapter 4 for more
information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items they
cause FIND to access include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

October 1996 Transact Verbs 8-53

FIND

then data items A, B, C, D, and D are
selected. For database �les, an error
is returned if duplicate entries are
selected.

If item-nameX and item-nameY
are marker items (see the
DEFINE(ITEM) verb), and if there
are no data items between the two on
the list register, no database access is
performed.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the
list register. For databases, data items
can be speci�ed in any order. For
KSAM and MPE �les, data items
must be speci�ed in the order of their
occurrence in the physical record.
This order need not match the order
of the data items on the list register.
This option incurs some system
overhead.

(@) Speci�es a range of all data items
of �le-name as de�ned in the data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or

8-54 Transact Verbs October 1996

FIND

form as de�ned in the data dictionary.
This order need not match the order
of the data items in the list register.

() A null data item list. That is, the
entry or entries are read, but do not
retrieve any data.

LOCK Locks the speci�ed �le or database. The lock is active
the whole time that the FIND executes. If LOCK is
not speci�ed and a TurboIMAGE data set is being
accessed, no locking is done.

For a KSAM or MPE �le, if LOCK is not speci�ed
on FIND but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed
by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved. Including the
LOCK option overrides SET(OPTION) NOLOCK for
the execution of the FIND verb.

For transaction locking, you can use the LOCK option
on the LOGTRAN verb instead of the LOCK option
on FIND if SET(OPTION) NOLOCK is speci�ed.

See \Database and File Locking" in Chapter 6 for
more information on locking.

NOMATCH Ignores any match criteria set up in the match
register.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for
every entry retrieved by FIND. The entries can be
optionally selected by MATCH criteria, in which case
control is transferred only for the selected entries.
This option allows operations to be performed on
retrieved entries without the need to code loop-control
logic.

You can nest up to 10 PERFORM= options.

RECNO=item-name
[(subscript)]

The item-name can be subscripted if an array item
is being referenced. (See \Array Subscripting" in
Chapter 2.) With the DIRECT modi�er, you must
de�ne item-name to contain the 32-bit integer number
(I(9,,4)) of the record to be retrieved.

With other modi�ers, Transact returns the record
number of the retrieved item in item-name.

SINGLE Retrieves only the �rst selected entry.

October 1996 Transact Verbs 8-55

FIND

SOPT Suppresses the optimization of database calls. SOPT
forces Transact to re-establish its path, list, and record
pointers before each record is used. Use SOPT if you
are calling TurboIMAGE through the PROC or CALL
verbs within a PERFORM option, or if you use the
same FIND verb recursively for TurboIMAGE access.
For an example of how SOPT is used, see \Examples"
at the end of the FIND verb description.

SORT=(item-name1[(ASC)] [,item-name2[(ASC)]

[(DES)] [(DES)]])

FIND creates a work �le of the records selected when
the SORT option is speci�ed. FIND sorts each data
entry or record by item-name1 and, optionally,
item-name2 , and so forth. The key items in the
SORT= option must also be included in the LIST=
option (they can be child items); the items in the
LIST= option are the record de�nition for the sort
�le. You can specify ascending (ASC) or descending
(DES) sort order for each item. The default is
ascending order.

The FIND statement only creates and sorts if a
PERFORM= option is also included, and it always
performs the sort before processing the perform
statements. The processing sequence for a sort is:

�rst, passes each record of data to the data register,

retrieves each selected record,

then writes each selected record to the sort �le,

sorts the sort �le by any speci�ed items, and

passes each record one by one to the PERFORM=
statements.

The sort �le size is determined by the SYSTEM
statement.

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." You may want to add
status checking to your code if you use this option.

When STATUS is speci�ed, the e�ect of a FIND
statement is described by the 32-bit integer value in
the status register:

8-56 Transact Verbs October 1996

FIND

Status

Register Value

Meaning

0 The FIND operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation that corresponds to the
value.

STATUS causes the following with FIND:

Normal multiple accesses become single.

The normal rewind done by the FIND is suppressed,
so CLOSE should be used before FIND(SERIAL).

The normal �nd of the chain head is suppressed, so
PATH should be used before FIND(CHAIN).

See \Using the STATUS Option" in Chapter 7 for a
discussion of how to use STATUS data.

WORKFILE FIND creates a work �le of the records selected when
the WORKFILE option is speci�ed. The FIND
statement only creates the work �le if a PERFORM
option is also included. The processing sequence for a
work �le is:

�rst, passes each record of data to the data register,

evaluates each record selecting those that meet the
MATCH criteria,

then writes each selected record to the work �le,

passes each record one by one to the PERFORM
statements.

If the SORT and WORKFILE options are both used
in a single verb, the work �le is sorted according to
the SORT option.

Suppression of Optimization versus WORKFILE

Transact's features resolve issues associated with retaining the correct location in a �le or
data set on multiple retrieval verbs (OUTPUT, FIND, DELETE, REPLACE) when the
PERFORM procedure also operates on the same �le or data set. These multiple retrieval
verbs are optimized to avoid repositioning them before each record or entry is read.

Automatic Optimization

Transact tries to optimize the TurboIMAGE/KSAM interface for the set of multiple retrieval
verbs. If Transact determines that the current multiple retrieval verb is the only verb
accessing the �le or data set within a program, optimization can occur.

October 1996 Transact Verbs 8-57

FIND

Automatic Suppression of Optimization

Transact automatically suppresses the optimization of TurboIMAGE and KSAM calls when
more than one verb accesses the same �le or data set within a program. On multiple retrieval
verbs, automatic suppression allows a di�erent path for each access of the �le or data set.
This feature is always active.

Automatic suppression of optimization occurs when:

both a FIND verb and its PERFORM option access data set X.

both a FIND verb and its PERFORM option access KSAM �le Y.

Suppression of Optimization Limitations

There are situations where the automatic suppression of optimization is limited. It is either
not invoked, or optimization is not su�cient to prevent multiple retrieval verbs from losing
their location in the �le or data set. These situations are described below.

The SOPT Option

Transact cannot detect the need for suppression of optimization in three speci�c situations.
The SOPT option on multiple retrieval verbs is intended to handle these situations where
suppression is needed but is not activated automatically. This can occur under the following
situations:

The PERFORM option is a recursive call.

A PROC verb is used within the PERFORM option to call a procedure that accesses the
same �le or data set as the multiple retrieval verb.

A CALL verb is used within the PERFORM option to call another Transact system that
accesses the same �le or data set as the multiple retrieval verb.

Corrupted Location in the File/Data Set

Adding, deleting, updating, or replacing more than one record from within the PERFORM
option procedure of a multiple retrieval verb can cause the multiple retrieval verb to lose its
location if the current and next/previous logical records in the chain are deleted.

Revisiting a Record

When records are added, updated, or replaced from within the PERFORM procedure, these
new or changed records can be retrieved a second time by the multiple retrieval verb. The
speci�c conditions where an updated or added record can be retrieved a second time depend
on the access mode of the multiple retrieval verb. For a multiple retrieval verb using the
CHAIN or RCHAIN modi�er where the key item is a sorted key, revisiting can occur:

When a PUT verb adds a record between the current record and the last record in the
chain.

When a REPLACE verb updates any item, and the TurboIMAGE critical item update is
OFF.

When an UPDATE verb updates a sort item or extended sort item, and the TurboIMAGE
critical item update is ON.

8-58 Transact Verbs October 1996

FIND

When a REPLACE verb is used to replace a key value other than the key in the current
path.

When multiple PUTs, UPDATEs, REPLACEs, or DELETEs are done within the
PERFORM option procedure, and the last operation is not a delete of the current record for
the multiple retrieval verb.

For a multiple retrieval verb using the SERIAL or RSERIAL modi�er, revisiting may occur:

When a PUT verb adds a record to the data set.

When a REPLACE verb update is used to replace a record in the data set.

Note With the CHAIN and RCHAIN access method, SORTED keys can cause
revisiting of an entry. Transact multiple retrieval verbs retain the original end
of chain location and stop processing after this record is read. Therefore, any
records added to the chain after the original end of the chain record will not
be processed.

Using the WORKFILE Option to Remedy Optimization Limitations

The WORKFILE option can be used to remedy these optimization limitations, but other
options can yield better performance.

In situations where it is undesirable to have new or modi�ed records reread by the multiple
retrieval verb, you can use two tactics:

If the access is CHAIN or RCHAIN and the key item is a sorted key, the access direction
can be changed to place added/updated records on a part of the chain you have already
processed. If the access is SERIAL or RSERIAL, there is no way to control access to
eliminate new or updated records.

For either SERIAL or CHAIN access, the MATCH register can be used to �lter out records
that have already been processed. If the current record is to be deleted by the PERFORM
option, do this as the last operation against the data set.

Using the WORKFILE Option

If none of the above techniques allow the multiple retrieval verb to process the �le or data set
as desired, you can use the WORKFILE option. In terms of performance, this option is the
least desirable of any of the methods mentioned above. This option should be used under the
following speci�c circumstances:

When multiple PUTs, DELETEs, UPDATEs, or REPLACEs done within the PERFORM
procedure of a multiple retrieval verb cause the multiple retrieval verb to lose its location.

When no other method for eliminating reprocessing records added to the �le or data set via
a REPLACE, UPDATE, or PUT can be found and reprocessing would damage the record.

When the PERFORM procedure alters the MATCH register in such a way that the
MATCH conditions are no longer valid for the calling multiple retrieval verb.

October 1996 Transact Verbs 8-59

FIND

Examples

In the following example of FIND, use of the STATUS option suppresses automatic error
handling. The STATUS option enables you to perform a routine to control operations when
an end of chain or broken chain occurs.

SET(KEY) LIST(KEY-ITEM);

PATH DETAIL-SET;

GET-NEXT:

FIND(CHAIN) DETAIL-SET,STATUS,

PERFORM=PROCESS-AN-ENTRY;

IF STATUS=18 THEN <<Broken chain >>

DO
PERFORM UNDO-TRANSACTION;

EXIT;

DOEND;

IF STATUS=15 THEN <<End of chain >>

END

ELSE

IF STATUS=0 THEN <<Successful operation >>

GO TO GET-NEXT

ELSE

GO TO ERROR-CLEANUP;

Instead of using the STATUS option, (such as using automatic error handling), you could set
up a procedure to see if a speci�c entry exists in a chain. When you test the status register,
you would get the number of records found.

SET(KEY) LIST(KEY-ITEM);

SET(MATCH) LIST(DATA-ITEM3);

FIND(CHAIN) DETAIL-SET,
LIST=(DATA-ITEM3),SINGLE;

IF STATUS=0 <<then no entries found>>...

When the STATUS option is not in e�ect for a FIND(CHAIN) or FIND(RCHAIN) operation
on a detail set, the status register contains a �1 when the argument value is not in the master
set.

The following example uses a PERFORM= option to test data values in each retrieved entry.
The routine TEST1 is performed on every record retrieved by FIND(CHAIN).

FIND(CHAIN) DET,

LIST=(A:H),

PERFORM=TEST1;

PERFORM GRAND-TOTAL;

END;

TEST1:

IF (A) = "AUGUST" THEN

PERFORM PRINT-IT;

RETURN;
PRINT-IT:

LET (SUB) = (SUB) + (AMOUNT);

8-60 Transact Verbs October 1996

FIND

.

.

DISPLAY ...;
RETURN;

The following example shows a method for traversing a pair of data sets organized in a tree
structure. It uses a recursive routine; that is, the routine NEXT calls itself.

Assume that the database TREE has the following structure:

LIST PARENT: CHILD;

DATA PARENT;

MOVE (CHILD) = (PARENT); <<Initially parent and child must have >>

<<value entered by user. >>

PERFORM NEXT;
DISPLAY "Tree Traversal Complete";

EXIT;

NEXT:

MOVE (PARENT) = (CHILD); <<Child item at this level becomes >>

<<parent at next level. >>

SET(KEY) LIST(PARENT); <<PARENT is key to search for next level. >>

DISPLAY;

FIND(CHAIN) TREE-DETAIL, <<Find next level in tree and retrieve >>

LIST=(CHILD), <<child (future parent), then call this >>

PERFORM=NEXT, <<routine again until there are no more >>

SOPT; <<child chains. SOPT is needed to allow >>

<<a different path at each level of the >>

<<recursion. >>

DISPLAY;

RETURN;

October 1996 Transact Verbs 8-61

FIND

When you use a PERFORM= option in a FIND (or any other �le access statement that
allows this option), and execute other �le access statements within the PERFORM=
routine, Transact creates a chain of key/argument registers to keep track of which chain
you are following. Each time the program returns from a PERFORM= routine, one set of
key/argument values is removed. For example:

LIST PROD-NUM:

PROD-CODE:

DESCRIPTION;

DATA(KEY) PROD-NUM; <<Set up 1st key/argument pair. >>

FIND(CHAIN) PROD-DETAIL,

LIST=(PROD-NUM:DESCRIPTION),

SORT=(PROD-NUM,PROD-CODE),

PERFORM=TESTIT;

EXIT;

TESTIT:

DISPLAY "In TESTIT routine";

DATA(KEY) PROD-NUM; <<Set up 2nd key/argument pair. >>

FIND(CHAIN) PROD-DETAIL,

LIST=(PROD-NUM:DESCRIPTION);

DISPLAY;

RETURN;

The next example sorts the entries in data set ORDER-DET in primary sequence by
ORD-NO and in secondary sequence by PROD-NO. As it sorts, it passes the sorted entries to
the PERFORM= statements at the label DISPLAY-IT to be displayed in sorted order.

SORT-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:
SHIP-DATE:

FIND(SERIAL) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

SORT=(ORD-NO,PROD-NO),

PERFORM=DISPLAY-IT;

.

.

DISPLAY-IT:

DISPLAY "Order List by Product Number", LINE=2:

ORD-NO, NOHEAD, COL=5:

PROD-NO, NOHEAD, COL=20:

QTY-ORD, NOHEAD, COL=35:

SHIP-DATE, NOHEAD, COL=50;

8-62 Transact Verbs October 1996

FIND

This example shows the use of the WORKFILE option. All quali�ed records have their
record number written to a work �le. This �le will be used to retrieve records instead of the
TurboIMAGE chain. This example assumes that SHIP-DATE is a sort or search item within
the TurboIMAGE data set ORDER-DET.

READ-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:

SHIP-DATE:

FIND(CHAIN) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

WORKFILE,

PERFORM=INCDATE;

.

.

INCDATE:

LET (SHIP-DATE)=(SHIP-DATE)+3;

UPDATE ORDER-DET,

LIST=(ORD-NO:SHIP-DATE);

October 1996 Transact Verbs 8-63

FORMAT

Speci�es the format of information displayed by the OUTPUT verb or by an unformatted
DISPLAY verb.

Syntax

FORMAT display-list;

FORMAT speci�es the format of a display and the inclusion of any character strings to
enhance the display. You use it in conjunction with the OUTPUT verb or an unformatted
DISPLAY verb. Use the FORMAT/OUTPUT statement combination when you want to
generate a display from more than one entry in a particular data set or �le.

The FORMAT statement must precede the DISPLAY or OUTPUT statement it formats. A
FORMAT statement in PERFORM procedure associated with an OUTPUT statement does
not format that OUTPUT, though it may format another OUTPUT or DISPLAY statement
within the PERFORM= procedure.

The speci�cations in a FORMAT statement are used by the next OUTPUT statement or by
the next unformatted DISPLAY statement. The FORMAT speci�cations cannot be re-used
unless program control passes through that FORMAT statement again. Format speci�cations
are reset to default values after each FORMAT statement is used by the OUTPUT or
DISPLAY statement.

When native language support is used, the decimal and thousands indicators are language
sensitive. As indicated below, some of the EDIT= mask characters are also language sensitive.
(See Appendix E, \Native Language Support," for more information.)

The default format is:

Displays the values in the order in which they appear in the data register.

Accompanies each value with a heading consisting of:

the heading speci�ed for that value in a HEAD= option of a DEFINE(ITEM) statement,

the heading taken from a data dictionary de�nition of the item, or

the associated data item name in the list register.

Each value is displayed in a �eld whose length is either the data item size or the heading
length, whichever is longer.

A single blank character separates each value �eld from the next. If a �eld cannot �t on the
current display line, then the �eld begins on a new line.

8-64 Transact Verbs October 1996

FORMAT

Statement Parts

display-list The display list contains one or more display �elds and their formatting
parameters separated by a colon. The �elds are separated from their
formatting parameters by commas as shown below:

display-�eld[,format-parameter]...

[:display-�eld[,format-parameter]...]...

If you omit display-list , the display is formatted according to the default
format described earlier in this verb description.

display-�eld The following options can be used for display �elds:

A reference to a data item name in the list register (the
item name may be subscripted if an array item is being
referenced).

A child item name whose parent item is in the list register,
or

A character string delimited by quotation marks.

If the requested item cannot be found in the list register, then
Transact generates an error at execution time.

Five system variables can also be used as display �elds.
As noted, some are a�ected by native language support.
(See Appendix E, \Native Language Support," for more
information.)

$CPU displays the cumulative amount of CPU
time used by the Transact program, in
milliseconds.

$DATELINE displays the current date and time in the
form Tue, Apr 14, 1992, 3:07 P.M. The
format is a�ected by native language support.

$PAGE displays the current page number.

$TIME displays the current time; the default format
is HH:MM AA (for example, 03:07 PM). The
format is a�ected by native language support.

$TODAY displays the current date; the default format
is MM/DD/YY (for example, 04/14/92). The
format is a�ected by native language support.

format-
parameters

One or more of the following formatting parameters can follow the display
�eld name:

CCTL=number Issues a carriage control code of number (decimal
representation) for the display line containing the
associated display �eld. Carriage control codes (octal
representation) are found in the MPE Intrinsics
Manual . Note that the use of CCTL=number and

October 1996 Transact Verbs 8-65

FORMAT

LINE, NOCLRF, or ROW, may a�ect output due to
conicting values. Valid range is 30{1025.

CENTER Centers a display �eld on a line. The entire �eld,
including leading or trailing blanks, is centered.

COL=number Starts the display �eld in the absolute column position
speci�ed by number . The �rst column position is 1.
Maximum is 299.

If the display is already at a column position equal to
or greater than the line width of the display device,
the �eld is truncated if:

it is a character �eld, or
pound signs are displayed for a numeric �eld.

If no part of the �eld �ts, it is not displayed.

EDIT=\edit-string" Characters that designate edit masks. The following
characters have special meanings when used in the
edit-string for all display-�elds except the system
variables $TIME and $TODAY:

^ Inserts the character from the source data
�eld into this position in the display �eld.

Z Suppresses leading zeros. Note that you must
use an uppercase Z.

$ Adds business (single character) currency
symbol. If the language-de�ned currency
symbol precedes, then the symbol is oated.
If the symbol succeeds, then it follows the last
character of the number and the edit mask is
shifted left one character to leave room. If the
symbol imbeds, it replaces the radix (decimal
point or equivalent). If no business currency
symbol is de�ned for the current language,
then \$" edit characters are treated the same
as \other" edit characters, explained below.

Note The number of digits available for the source number depends on the type of
currency symbol. Thus, the same value might cause a �eld overow in some
languages and not in others.

* Fills �eld with leading asterisks.

. Aligns the implied decimal point as speci�ed
in a data dictionary or in a DEFINE(ITEM)
de�nition statement with this edit character
in the edit mask and output the language
de�ned radix character.

8-66 Transact Verbs October 1996

FORMAT

! Ignores the implied decimal place and
replaces this character with a language
de�ned decimal character.

' Outputs the language de�ned thousands
separator character (numeric only).

(Surrounds negative values with parentheses
(must be last character in the edit mask).

All \other" characters, which means any character
not de�ned above in the list of special characters, are
treated as insert characters. For example:

EDIT="@@@@@@.@@"

displays entered data as:

@@@@@@.@@

To denote numeric data type 9, Z, P, I, J, K, R, or E
negative values with a trailing \-", \CR", or \DR",
add a trailing \-", \CR", or \DR" to the edit string.
Some edit-string examples follow:

Number Edit String Result

1234 $$,$$$!^^ $l2.34

123456 $$,$$$!^^ $1,234.56

123456 ***,**$!^^ *$1,234.56

000009 ZZZZ!^^ .09

475.49 XXX,XXX.XX XXX,XXX.XX

-123456 $$,$$$!^^CR $1,234.56CR

-123456 Z,ZZZ!^^- $1,234.56-

230479 ^^/^^/^^ 23/04/79

System variables (except $DATELINE) can also be
edited. The edit mask characters just de�ned can be
used for $CPU and $PAGE. Special editing characters
are used for $TIME and $TODAY.

For $TIME, characters in the edit mask string are
processed as follows:

H Displays the hour with no leading blank or
zero if hour < 10.

ZH Displays the hour with leading blank if hour
< 10.

HH Displays the hour with leading zero if hour <
10.

24 Displays the hour as expressed on a 24-hour
clock; used as a pre�x to H.

M Displays the minute with no leading blank or
zero if minute < 10.

October 1996 Transact Verbs 8-67

FORMAT

ZM Displays the minute with leading blank if
minute < 10.

MM Displays the minute with leading zero if
minute < 10.

S Displays the second with no leading blank or
zero if second < 10.

ZS Displays the second with leading blank if
second < 10.

SS Displays the second with leading zero if
second < 10.

T Displays the tenth of a second.

A Displays the next letter in the AM or PM
sequence in uppercase.

a Displays the next letter in the AM or PM
sequence in lowercase.

AA Displays both letters in the AM or PM
sequence in uppercase.

aa Displays both letters in the AM or PM
sequence in lowercase.

Except for \a", all other $TIME edit mask characters
must be in uppercase. All characters other than
edit mask characters are inserted on a character by
character basis.

Here are some examples of how edit masks change the
format of the $TIME value 3:07:32 PM:

Edit Mask Displayed Time

HH:MM:SS 03:07:32

24H:M:S 15:7:32

H:MM:SS a.a. 3:07:32 p.m.

ZH:ZM:SS AA 3: 7:32 PM

For $TODAY, characters in the edit mask string are
processed as follows:

D Displays the day of the month with no
leading blank or zero if day < 10.

ZD Displays the day of the month with leading
blank if day < 10.

DD Displays the day of the month with leading
zero if day of the month < 10.

DDD Displays the Julian day of year.

M Displays the month with no leading blank or
zero if month < 10.

8-68 Transact Verbs October 1996

FORMAT

ZM Displays the month with leading blank if
month < 10.

MM Displays the month with leading zero if
month < 10.

nM Displays the �rst n letters of month name in
uppercase; if n > number of letters in month
name, trailing blanks are not inserted.

nm Displays the �rst n letters of month name in
lowercase except for the �rst letter, which
appears in uppercase.

YY Displays the last two digits in current year.

YYYY Displays the current year.

nW Displays the �rst n letters of day of week in
uppercase; if n > length of the week name, no
trailing blanks are inserted.

nw Displays the �rst n letters of day of week in
lowercase except for the �rst letter, which
appears in uppercase.

All edit string characters must be in uppercase, except
for \m" and \w". All characters not de�ned as an
edit string character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY date April
14, 1992, make it appear as follows:

Edit Mask Displayed Date

3w. 3m DD, YYYY Tue. Apr 14, 1992

DD 3M, YY 14 APR 92

M-DD-YY 4-14-92

MM/DD/YY 04/14/92

DDD, YYYY 105, 1992

Note When a numeric value to be printed is too large for the edit mask, a series of
pound signs (#) are printed in place of the value, to indicate an overow.

HEAD=\character-
string"

Uses the character-string as the heading rather
than the default, which is the heading from a data
dictionary, the heading from DEFINE(ITEM), or the
item or system variable name.

JOIN[=number] Places this number of spaces between the last
non-blank character of the current line and the �rst
character of the current display �eld. To concatenate

October 1996 Transact Verbs 8-69

FORMAT

the character strings, use JOIN=0. The default is 1;
valid range is 0{299.

LEFT Left-justi�es the data item value in the display �eld.
This is the default speci�cation.

LINE[=number] Starts the display �eld on a new line or on a line after
a line skip count speci�ed by number . If the print
device being used can overprint and you want it to do
so, you should specify LINE=0. [LINE=0 and LINE=
cause a carriage return but no line feed.] The default
is 1; maximum is 99.

LNG=number Truncates the display �eld to this number of
characters. If this option refers to a compound
item, then that item is displayed within a display
�eld length of number . If necessary, new lines are
generated. Range is 1{299.

NEED=number Prints the current line at the top of the next page
if there are fewer than the speci�ed number of lines
between the current line and the bottom of the page.
If you are grouping a set of items together on a single
line, the NEED= must appear with the �rst item on
the page. Range is 1{99.

NOCRLF Does not issue a carriage return and line feed for the
display line containing the display �eld. NOCRLF
is processed when a listing goes to the terminal or
printer. If the listing is sent to a disk �le, the option is
ignored.

NOHEAD Suppresses the default heading for this item reference.

NOSIGN Allows no sign position in the display �eld. If a
negative value occurs, the display �eld contains a
string of minus signs (-).

PAGE[=number] Starts the display �eld on a new page or on a page
after a page skip count speci�ed by number . The
default is 1; maximum is 99.

RIGHT Right-justi�es the data item value in the display �eld.

ROW=number Places the display �eld at absolute line location
number . The �rst line position is 1. If the display is
already at a line position greater than number , then
LINE=1 is in e�ect. Maximum is 99.

SPACE[=number] Places this number of spaces between the end of the
previous display �eld and the start of the current
display �eld. To concatenate �elds, use SPACE=0.
Default is 1; maximum is 299.

TITLE Displays the associated display �eld and any preceding
display �elds only at the start of each new page for
which this statement applies.

8-70 Transact Verbs October 1996

FORMAT

TRUNCATE Truncates this display �eld if a character �eld
overows the end of the display line; display pound
signs if �eld is numeric.

ZERO[E]S Right-justi�es a numeric data value in the display �eld
and inserts leading zeros.

Examples

The following example uses an OUTPUT statement to retrieve information from a data set
DETAIL and then display it in a format set up by the preceding FORMAT statement. All
headings are suppressed by the �rst SET(OPTION) statement, rather than by NOHEAD
options for individual items. The �nal RESET(OPTION) statement resets the NOHEAD
option for subsequent displays.

SET(OPTION) NOHEAD;

FORMAT "Mailing List:",COL=15:

" ",LINE=3,TITLE:

FIRST-NAME,COL=5,LINE:

ADDRESS,COL=5,LINE:

CITY,COL=5,LINE:
",",JOIN=0:

STATE:

ZIP,COL=30;

OUTPUT(SERIAL) DETAIL;

RESET(OPTION) NOHEAD;

This code produces the following:

Mailing List:

Harry Swartz

1 Main St.

Anywhere, CA 12345

October 1996 Transact Verbs 8-71

GET

Moves data to the data register from a data set, �le, or formatted screen.

Syntax

GET
�
(modi�er)

�
source

�
,option-list

�
;

GET retrieves a single entry from a data set or KSAM or MPE �le after rewinding the �le or
data set. It is also used to move data values into the data register from a terminal under the
control of a VPLUS screen.

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none For master sets, retrieves a master set entry based on the
value in the argument register. For MPE �les, the next entry
is serially read. For KSAM �les, this option does not use the
match register.

CHAIN Retrieves an entry from a detail set or KSAM chain. It
retrieves the �rst entry to meet any match criteria set up in
the match register. The matching items must be included
in a LIST= option. The contents of the key and argument
registers specify the chain in which the retrieval occurs. If no
match criteria are speci�ed, it retrieves the �rst entry in the
chain. If no matching entry is found, GET issues a run-time
error.

CURRENT Retrieves the last entry that was accessed from the data set
or the MPE or KSAM �le.

DIRECT Retrieves the entry stored at a speci�ed record number in an
MPE or KSAM �le, or a detail or master set. Before using
this modi�er, you must store the record number as a 32-bit
integer in the item speci�ed in the RECNO= option.

FORM GET(FORM) displays a VPLUS form on any VPLUS
compatible terminal and then waits for the user to press
ENTER to transfer data from the form to the data register.
If the user presses a function key instead of ENTER, no data
is transferred unless the AUTOREAD option is used.

KEY Executes a calculated access on a master set using the key
and argument register contents, but transfers no data. The
LIST= option cannot be speci�ed with this modi�er. (Use
GET with no modi�er for a calculated retrieval from a master
set.)

This modi�er is most useful when you combine it with the
ERROR and/or NOFIND options to check for the existence of

8-72 Transact Verbs October 1996

GET

a key value in a master set. It allows programmatic control of
the result of the checking. It is the equivalent of a CHECK or
CHECKNOT on a PROMPT statement.

PRIMARY Retrieves the master set entry stored at the primary address
of a synonym chain. The primary address is located through
the key value contained in the argument register.

RCHAIN Retrieves an entry from a detail set or a KSAM chain in the
same manner as the CHAIN option, only in reverse order. For
a KSAM �le this operation is identical to CHAIN.

RSERIAL Retrieves an entry from a data set in the same manner as
the SERIAL option, except in reverse order. If an equal
match without match characters exists, Transact will convert
an RSERIAL option to an RCHAIN option to improve
the application's e�ciency. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Retrieves an entry in serial mode from an MPE or KSAM
�le or a detail or master set. It retrieves the �rst entry that
matches any match criteria set up in the match register. If an
equal match without match characters exists, Transact will
convert an SERIAL option to an CHAIN option to improve
the application's e�ciency. If no match criteria are speci�ed,
it retrieves the �rst entry in the �le or data set. The match
items must be included in a LIST= option. If no entry
matches or if the �le is empty, GET issues a run-time error.

source The �le, data set, or form to be accessed by the retrieval operation. If the
data set is not in the home base as de�ned in the SYSTEM statement, the
base name must be speci�ed in parentheses as follows:

set-name(base-name)

For GET(FORM) only, source can be speci�ed as any of the following:

form-name Name of the form to be displayed by GET(FORM).

(item-name
[(subscript)])

Name of an item that contains the name of the form to be
displayed by GET(FORM). subscript can be included if the
referenced item is an array item. (See \Array Subscripting" in
Chapter 3.)

* Displays the form identi�ed by the \current" form name; that
is, the form name most recently speci�ed in a statement that
references VPLUS forms. Note that this option is not the
same as the CURRENT option (described under option-list),
which indicates the currently displayed form.

& Displays the form identi�ed as the \next" form name;
that is, the form name de�ned as \NEXT FORM" in the
FORMSPEC de�nition of the current form, where current
form means the form name most recently speci�ed in a
statement that references VPLUS forms.

October 1996 Transact Verbs 8-73

GET

option-list The LIST option is available with or without the FORM modi�er. Other
options, described below, are restricted for use as speci�ed.

LIST=(range-
list)

The list of items from the list register to be used for the GET
operation. For GET(FORM) ONLY, items in the range list
can be child items.

If the LIST= option is omitted for GET(FORM), the list of
items named in the list register, and either in the SYSTEM
statement or the data dictionary for the form are used.

The LIST= option should not be used when specifying an
asterisk (*) as the source.

When the LIST= option is used, only the items speci�ed in a
LIST= option have their match conditions applied when the
items are included in the match register. When the LIST=
option is omitted, items which appear in the list register
and the match register have their match conditions applied.
Otherwise, the match conditions for an item are ignored.

The match register can be used only with the modi�ers
CHAIN, RCHAIN, SERIAL, or RSERIAL.

For all options of range-list , the data items selected are the
result of scanning the data items in the list register from top
to bottom, where top is the last or most recent entry. (See
Chapter 4 for more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE
data sets and 128 items for VPLUS forms also exists.

All item names speci�ed must be parent items.

The options for range-list and the data items they cause GET
to retrieve include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY . In other
words, the list register is scanned for the
occurrence of item-nameY closest to the
top of the list register. From that entry, the
list register is scanned for item-nameX .
All data items between are selected. An
error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or
excluded from the range, depending on their
position on the list register. For example, if
range-list is A:D and the list register is as
shown,

8-74 Transact Verbs October 1996

GET

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and
if there are no data items between the two
on the list register, no database access is
performed.

(item-nameX:) All data items in the range from the last
entry through the occurrence of item-nameX
closest to the top of the list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to the top
through the bottom of the list register.

(item-nameX,
item-nameY ,
. . .
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and MPE
�les or for VPLUS forms, data items must be
speci�ed in the order of their occurrence in
the physical record or form. This order need
not match the order of the data items on the
list register. Does not include child items in
the list unless they are de�ned in the VPLUS
form. This option is less e�cient to use than
the options listed above.

(@) Speci�es a range of all data items of �le-name
as de�ned in a data dictionary. The range-list
is de�ned as item-name1:item-namen for the
�le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or
form as de�ned in the data dictionary. This
order need not match the order of the data
items in the list register.

October 1996 Transact Verbs 8-75

GET

() A null data item list. That is, accesses the �le
or data set, but does not retrieve any data.

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes.
Instead, branches to the statement identi�ed by label , and sets
the stack pointer for the list register to the data item item-name.
Transact generates an error at execution time if the item cannot be
found in the list register. The item-name must be a parent.

If you specify no item-name, as in ERROR=label ();, the list register
is reset to empty. If you use an *" instead of item-name, as in
ERROR=label (*);, then the list register is not changed. For more
information, see \Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database. The lock is active the whole time
that the GET executes. If LOCK is not speci�ed and a TurboIMAGE
data set is being accessed, no locking is done.

For a KSAM or MPE �le, if LOCK is not speci�ed on GET but is
speci�ed for the �le in the SYSTEM statement. The �le is then
locked before each entry is retrieved, remains locked while the entry
is processed by any PERFORM= statements, and is unlocked briey
before the next entry is retrieved.

Including the LOCK option overrides SET(OPTION) NOLOCK for
the execution of the GET verb.

For transaction locking, you can use the LOCK option on
the LOGTRAN verb instead of the LOCK option on GET if
SET(OPTION) NOLOCK is speci�ed.

For more information on locking, see \Database and File Locking" in
Chapter 6.

NOFIND Ensures that a matching entry is not present in the referenced master
set. If such an entry is found, an error message is generated. If the
STATUS option has also been speci�ed, the code returned in the
STATUS register for the error condition is 1, meaning that a record
was found.

NOMATCH Ignores any match criteria set up in the match register.

NOMSG Suppresses the standard error message produced as a result of a �le or
database error. All other error actions occur.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must de�ne item-name to contain
the 32-bit integer. number (I(9,,4)) of the record to be retrieved.

With other modi�ers, Transact returns the record number of the
retrieved record in the 32-bit integer item-name.

The item-name can be modi�ed with subscript if the referenced item
is an array item. (See \Array Subscripting" in Chapter 3.)

8-76 Transact Verbs October 1996

GET

STATUS Suppresses the action de�ned in the Chapter 7 under \Automatic
Error Handling." You may want to add status checking to your code if
you use this option.

When STATUS is speci�ed, the e�ect of a GET statement is described
by the 32-bit integer value in the status register:

Status

Register Value

Meaning

0 The GET operation was successful.

�1 A KSAM or MPE end-of-�le condition for serial
read or end-of-chain for chain read has occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation that corresponds to the
value.

1 If NOFIND is used and the record is found.

STATUS causes the following with GET:

The normal rewind done by the GET is suppressed, so CLOSE
should be used before GET(SERIAL).

The normal �nd of the chain head by the GET is suppressed, so
PATH should be used before GET(CHAIN).

See \Using the STATUS Option" in Chapter 7.

Options Available Only With the Form Modifier

APPEND Appends the next form to the form speci�ed in this statement,
overriding any freeze or append condition speci�ed for the form in
its FORMSPEC de�nition. APPEND sets the FREEZAPP �eld of
the VPLUS comarea to 1.

AUTOREAD Accepts any function key not speci�ed in an Fn=label option to
transfer data from the form to the data register. If a key has
been speci�ed in an Fn=label option, GET does not execute
AUTOREAD for that key.

CLEAR Clears the previously displayed form when the requested form
is displayed, overriding any freeze or append condition speci�ed
for the form in its FORMSPEC de�nition. CLEAR sets the
FREEZAPP �eld of the VPLUS comarea to zero.

CURRENT Uses the form currently displayed on the terminal screen; that is,
it performs all the GET(FORM) processing except retrieving and
displaying the form. Use this option to avoid the processing that
normally occurs when a new form is displayed.

CURSOR=�eld-namej
item-name[(subscript)]

Positions the cursor within the speci�ed �eld. Field-name identi�es
the �eld and the item-name names the item identifying the �eld.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

October 1996 Transact Verbs 8-77

GET

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs the �eld edits de�ned in the FORMSPEC de�nition
immediately before displaying the form.

FKEY=item-name
[(subscript)]

Moves the number of the function key the operator presses in this
retrieval operation to the single word integer (I(4)) item-name.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.) The function
key is determined by the contents of the �eld LAST-KEY in the
VPLUS comarea. It can have a value of 0 through 8, inclusive,
where 0 indicates the ENTER key and 1 through 8 indicate
function keys 1 through 8, respectively. Note that pressing �f8�
returns an 8 in the item �eld and does not cause an automatic
exit.

Fn[(AUTOREAD)]=
label

Control passes to the labelled statement if the operator presses
function key n. This option can be repeated for each desired
function key as many times as necessary in a single GET(FORM)
statement. If (AUTOREAD) is included, transfers the data from
the form to the data register before going to the speci�ed label.
F0, or ENTER, always transfers data. This option is cancelled by
the STATUS option.

FREEZE Freezes the speci�ed form and appends the next form to the
speci�ed form, overriding any freeze or append conditions speci�ed
for the form in the FORMSPEC de�nition. FREEZE sets the
FREEZAPP �eld of the VPLUS comarea to 2.

INIT Initializes the �elds in a VPLUS form to any initial values
speci�ed for the form by FORMSPEC, or performs any Init Phase
processing speci�ed for the form by FORMSPEC. The INIT
processing is performed before the form is displayed on the screen.

STATUS Suppresses the display of VPLUS �eld edit error messages in
window; Transact conversion messages are sent to the window.
Transfer control immediately back to the program after the user
has pressed ENTER or the appropriate function key. The STATUS
option suppresses any branch speci�ed by Fn= label . If �eld edit
errors exist, Transact sets the value of the status �eld to a negative
count of the number of errors (given by the NUMERRS �eld of the
VPLUS comarea). Otherwise, the value in the status �eld is 0.

WINDOW= ([�eld ,]
message)

Places a message in the window area of the screen and, optionally,
enhances a �eld in the form. The �elds �eld and message can be
speci�ed as follows:

�eld Either the name of the data item for the �eld to
be enhanced, or an item-name[(subscript)] within
parentheses which will contain the data item of the
�eld to be enhanced at run time.

8-78 Transact Verbs October 1996

GET

message Either a string enclosed in quotation marks
that speci�es the message to be displayed, or
an item-name[(subscript)] within parentheses
containing the message string to be displayed in
the window.

Examples

The following example shows the use of the WINDOW option when the �eld name and the
message are speci�ed directly.

GET(FORM) FORM1,

INIT,

LIST=()

WINDOW=(field1,"This field must be numeric.");

In the following example, both the �eld and the message are speci�ed through an item-name
reference:

DEFINE(ITEM) ENHANCE U(16):

MESSAGE U(72);

MOVE (ENHANCE) = "field1";
MOVE (MESSAGE) = "This field must be numeric.";...
GET(FORM) *,

INIT,

WINDOW=((ENHANCE),(MESSAGE));

The �rst entry in the chain is retrieved from the data set DETAIL using the items
CUST-NAME through CUST-PHONE in the list register.

PROMPT(PATH) CUST-NO;

LIST CUST-NAME:

CUST-PHONE;

GET(CHAIN) DETAIL,

LIST=(CUST-NAME:CUST-PHONE);

The �rst GET retrieves the last record in the chain. The second GET reads the chain in
reverse order until a record matches the criteria set up by the DATA(MATCH) statement.

PROMPT(PATH) CUST-ID;

LIST CUST-NAME:

CUST-PHONE;

GET(RCHAIN) DETAIL, LIST=(CUST-NAME:CUST-PHONE);...
DATA(PATH) CUST-ID;

DATA(MATCH) CUST-NAME;

GET(RCHAIN) DETAIL, LIST=(CUST-NAME:CUST-PHONE);

October 1996 Transact Verbs 8-79

GET

This statement displays the form CUSTFORM, performs any initialization speci�ed by
FORMSPEC, retrieves values entered into the form, performs any FORMSPEC edits, and
then transfers the entered values to the data register areas associated with the speci�ed list
items.

GET(FORM) CUSTFORM, INIT, LIST=(CUST-NAME, CUST-ADDR, CUST-PHONE);

In the following example, GET with the STATUS option allows you to process the
\nonexistent permanent �le" error yourself. This coding lets you access a �le that may be in
another account by setting up a �le equation through a PROC call to the command intrinsic.

<<1st access, no CLOSE required before SERIAL operation>>

GET(SERIAL) DATA-FILE, LIST=(A:N), STATUS;

IF STATUS <> 0 THEN <<An error occurred, check further >>

IF STATUS <> 52 THEN <<Error is other than expected >>

GO TO ERROR-CLEANUP

ELSE <<52 - Nonexistent permanent file >>

DO

LET (CR) = 8205; <<8205 = space,carriage return >>

<<Could have used (CR)=3360 for carriage>>

<<return,space >>

MOVE (COM-STRING) = "FILE DATAFILE=DATAFILE.PUB.OTHERONE"+(CR);

<<Try opening DATAFILE in another group >>

PROC COMMAND (%(COM-STRING),(ERROR),(PARM));

IF (ERROR) <> 0 THEN <<Command error >>

GO TO ERROR-CLEANUP;

<<Try again, give up if unsuccessful >>

GET(SERIAL) DATA-FILE, LIST=(A:N), STATUS;

IF STATUS <> 0 THEN GO TO ERROR-CLEANUP;

DOEND;

8-80 Transact Verbs October 1996

GET

The following example shows a method for \structured programming" with VPLUS forms.
Each RETURN statement passes control back to the PERFORM statement.

START:
DISPLAY "Start of program";

PERFORM GETINFO;

DISPLAY "End of program";

EXIT;

GETINFO:

GET(FORM) MENU,

F1=ADD,

F2=UPDATE,

F3=DELETE,

F4=LIST,

F5=START,

F6=START,

F7=START,

F8=ENDIT;

<<Process ENTER here>>

.

.

.

ADD:

<<Process F1 here>>

RETURN;

UPDATE:

<<Process F2 here>>

RETURN;

DELETE:

<<Process F3 here>>

RETURN;
LIST:

<<Process F4 here>>

RETURN;

ENDIT:

EXIT;

An alternate method is to use the FKEY=item-name construct, and then test the value of
item-name with an IF statement.

October 1996 Transact Verbs 8-81

GO TO

Transfers control to a labeled Transact statement.

Syntax

GO TO label;

GO TO speci�es an unconditional branch to the statement identi�ed by label.

Statement Parts

label The label to which the program should branch.

Example

The following statement transfers control to the statement labeled \NEW-TOTAL".

GO TO NEW-TOTAL;

8-82 Transact Verbs October 1996

IF

IF

Performs a speci�ed action based on a conditional test.

Syntax

IF condition-clause THEN statement
�
ELSE statement

�
;

IF speci�es tests to be performed on test-variables . IF introduces a condition-clause, which
contains one or more conditions, each made up of a test-variable, a relational-operator , and
one or more values . Multiple conditions are joined by AND or OR. If the condition clause is
true, then the speci�ed statement is performed. You can provide an alternate statement to be
performed if the condition is not true by including the ELSE clause. If you do not include an
ELSE clause and the condition is not true, control passes to the statement following the IF
statement.

Note Do not terminate the statement preceding the ELSE clause with a semicolon
(;).

Statement Parts

condition-
clause

One or more conditions, connected by AND or OR, where

AND A logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR A logical inclusive OR. The condition clause is true if any of the
conditions is true; it is false if all of the conditions are false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value [,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to
item-name. The item-name can be subscripted
if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names
and/or constants. The expression is evaluated
before the comparison is made.

Note An arithmetic-expression must be enclosed in square brackets ([]).

October 1996 Transact Verbs 8-83

IF

EXCLA-
MATION

Current status of the automatic null response
to a prompt set by a user responding with an
exclamation point (!) to a prompt. (See \Data
Entry Control Characters" in Chapter 5.) If the
null response is set, the EXCLAMATION test
variable is a positive integer. If it is not set, it is
zero. The default is 0.

FIELD Current status of FIELD command identi�er.
If a user quali�es a command with FIELD,
the FIELD test variable is a positive integer.
Otherwise, it is a negative integer. The default is
<0.

INPUT The last value input in response to the INPUT
prompt.

PRINT Current status of PRINT or TPRINT command
quali�er. The PRINT test variable is an integer
greater than zero and less than 10. If a command
is quali�ed with TPRINT, PRINT is an integer
greater than 10. If neither quali�er is used,
PRINT is a negative integer. The default is <0.

REPEAT Current status of REPEAT command quali�er.
If a user quali�es a command with REPEAT,
the REPEAT test variable is a positive integer.
Otherwise, REPEAT is a negative integer. The
default is <0.

SORT Current status of SORT command quali�er. If a
user quali�es a command with SORT, the value
of the SORT test variable is a positive integer.
Otherwise SORT is a negative integer. The
default is <0.

STATUS The 32-bit integer value of the status register set
by the last data set or �le operation, data entry
prompt, or external procedure call.

relational
operator

Speci�es the relation between the test-variable and the value. It
can be one of the following:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal
to

8-84 Transact Verbs October 1996

IF

value The value against which the test-variable is compared. The value
can be an arithmetic expression that will be evaluated before the
comparison is made.

The allowed value depends on the test variable, as shown in the
comparison below. Alphanumeric strings must be enclosed in
quotation marks.

If the
test-variable is:

The value must be:

item name Then value must be an alphanumeric string,
a numeric value, an arithmetic expression, a
reference to a variable as in (item-name), or a
class condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or
an expression, or a reference to a variable as in
(item-name).

INPUT An alphanumeric string.

EXCLA-
MATION

A positive or negative integer or expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer number or expression.

If more than one value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the
test-variable is equal to value1 OR value2 OR . . . valuen. In
other words, a comma in a series of values is interpreted as an
OR.

When the relational operator is \<>", the action is taken if
the test-variable is not equal to value1 AND value2 AND . . .
valuen. In other words, a comma in a series of values is
interpreted as an AND when the operator is \<>".

When the test variable is an item-name, the value can be one
of the following class conditionals, which are used to determine
whether a string is all numeric or alphabetic. The operator can
only be \=" or \<>".

NUMERIC This class condition includes the ASCII
characters 0 through 9 and a single
operational leading sign. Leading and trailing
blanks around both the number and sign are
ignored. Decimal points are not allowed in
NUMERIC data. This class test is only valid
when the item has the type X, U, 9, or Z, or
when the item is in the input register.

October 1996 Transact Verbs 8-85

IF

ALPHABETIC This class condition includes all ASCII native
language alphabetic characters (upper and
lowercase) and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

ALPHABETIC-
LOWER

This class condition includes all ASCII
lowercase native language alphabetic
characters and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

ALPHABETIC-
UPPER

This class condition includes all ASCII
uppercase native language alphabetic
characters and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

statement Any simple or compound Transact statement; a compound
statement is one or more statements bracketed by a DO/DOEND
pair.

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.

Truth values are established for simple relational conditions.

Truth values are established for simple class conditions.

Multiple value conditions are evaluated.

Truth values are established for complex AND conditions.

Truth values are established for complex OR conditions.

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

8-86 Transact Verbs October 1996

IF

Examples

This statement causes a program branch to the \PROCEED" label if \YES" or \Y" was
input in response to the INPUT prompt. If INPUT contains any other value, control passes to
the next statement.

IF INPUT = "YES", "Y" THEN

GO TO PROCEED;

This statement causes a program branch to the \TOO-HIGH" label if the data register value
for the item-name COUNT is greater than 3.

IF (COUNT) > 3 THEN
GO TO TOO-HIGH;

This statement causes an exit from the current command sequence if the status register value
does not equal 0.

IF STATUS <> 0 THEN END;

The statements within the �rst DO/DOEND pair execute if the value in the input register
is \Y". Otherwise, if the value for A equals the value for B, the statements at the label
SAME-PART are executed. The value for D is moved to the space reserved for A if:

INPUT does not equal \Y", and

A equals B, and

A equals C, and

D is less than 50.

The statements at label MORE-INFO are executed if:

INPUT does not equal \Y", and

A does not equal B.

IF INPUT = "Y" THEN

DO

DISPLAY "PART NUMBER IS": PART-NO;

PERFORM ADD-INFO;

DOEND

ELSE IF (A) = (B) THEN

DO

DISPLAY "DUPLICATE ENTRY";

PERFORM SAME-PART;

IF (A) = (C) THEN

IF (D) < 50 THEN

MOVE (A) = (D);
DOEND

ELSE PERFORM MORE-INFO;

The next example gives the user a choice between two activities. The second ELSE construct
checks to see that the user did one of the two speci�ed activities. If he did not, a message

October 1996 Transact Verbs 8-87

IF

is displayed, and control returns to the label OPTION at the third line, so that the user is
prompted again.

SYSTEM IFS;
DEFINE(ITEM) FIELD I(2);

OPTION:

PROMPT FIELD;

IF (FIELD) = 1 THEN

DO

DISPLAY "FIELD = 1";

DOEND

ELSE

DO

IF (FIELD) = 2 THEN

DO

DISPLAY "FIELD = 2";

DOEND

ELSE

DO

DISPLAY "YOU MUST ENTER 1 OR 2";

GO TO OPTION;

DOEND;

DOEND;

END;

The next examples demonstrate how to use complex conditionals.

IF (LAST-NAME) = "SMITH" AND (FIRST-NAME) = "JACK" THEN ...

IF (ACCT-BALANCE) < 0 OR (LOAN-AMOUNT) >= (LOAN-MAX) THEN ...

IF (RENTAL-OFFICE) = "098","978","656" AND

(CUST-NO-PREFIX) = (PREFERRED-PREFIX) OR
(CUST-NAME) = "ABCINC" THEN ...

WHILE (BALANCE) < 0 AND STATUS = 0

DO

GET(CHAIN) CUST-DETAIL,STATUS;

LET (BALANCE) = (BALANCE) + (AMOUNT);

DOEND;

REPEAT

DO

LET (TOTAL-OVERDUE) = (TOTAL-OVERDUE) + (AMT-OVERDUE);

FIND(SERIAL) CUST-INVOICE,STATUS;

DOEND

UNTIL (TOTAL-OVERDUE) > 999999.99 OR

(TOTAL-OVERDUE) > (MIN-OVERDUE) AND

(CUST-CODE) = "NEW";

8-88 Transact Verbs October 1996

IF

The next examples demonstrate the use of the relational operator \<>" with multiple values.

IF (STATE) <> "OR","CA","CO","VA" THEN ...

WHILE (PART-NO-PREFIX) <> (PROTOTYPE),(DEVELOPMENT)

GET(CHAIN) PART-DETAIL,STATUS;

The next examples demonstrate the use of class conditionals.

IF INPUT = ALPHABETIC THEN ... ELSE ...;

DATA (PART-NUMBER);

IF (PART-NUMBER) <> NUMERIC THEN ...;

The next example demonstrates the use of multiple expressions in test-variables or in values .

IF (AREA) = [(LENGTH)*(WIDTH)],[(BASE)*(HEIGHT)*.5],

[(3.1416)*(RADIUS)**2] THEN ...;

REPEAT

FIND(SERIAL) STK-ON-HAND,STATUS

UNTIL ((WEIGHT) > [(KILO-PER-METER) * (METERS)] AND

(METERS) > (MIN-LENGTH) OR

(PRICE) > [(UNIT-PRICE) * (KILO-PER-METER) * (METERS)]);

IF [(DELAY) * (DFACTOR)] = [(COUNT) * 3] THEN ...;

October 1996 Transact Verbs 8-89

INPUT

Prompts for a value and places it in the input register.

Syntax

INPUT "prompt-string"
�
,option-list

�
;

INPUT generates a prompt that requests a user response. Usually the value input as a
response to prompt-string is tested by a subsequent IF statement. The response can be used
to programmatically change program ow during execution. Transact upshifts all entered
values. The value returned by INPUT cannot be displayed or moved. Thus, INPUT is useful
mainly to test a user response. To save or display a user response, you should use another
verb, such as DATA or PROMPT, that transfers the response to an item de�ned in your
program.

Statement Parts

prompt-string The prompt that appears on the user's terminal. It must be enclosed within
quotes.

option-list cOne or more of the following options separated by commas:

BLANKS Does not suppress leading blanks supplied in the input value.

NOECHO Does not echo the input value to the terminal.

STATUS Suppresses normal processing of \]" and \]]", which cause an
escape to a higher processing or command level.

Status

Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control subsequent
processing by testing the contents of the register with an IF
statement.

8-90 Transact Verbs October 1996

INPUT

Examples

This example shows a typical use of the INPUT verb. INPUT accepts a user response, and
then the IF statement tests for a particular value of this response.

INPUT "DO YOU WISH THE REPORT ON THE LINE PRINTER?";

IF INPUT = "Y", "YES" THEN

DO

SET(OPTION) PRINT;

DISPLAY "LINE PRINTER SELECTED FOR OPTION PRINT";

DOEND;

October 1996 Transact Verbs 8-91

ITEM

De�nes variables for use in the program that have not been de�ned in a data dictionary. The
DEFINE(ITEM) verb is preferred. See DEFINE(ITEM) in this chapter for syntax option
descriptions and additional information.

8-92 Transact Verbs October 1996

LET

LET

Speci�es arithmetic operations.

Syntax

LET destination-variable = arithmetic-expression
�
,ERROR=label

�
(
�
item-name

�
)
� �
;

The LET verb is primarily used to perform arithmetic operations.

Note At one time the LET verb was also used to manipulate arrays through an
optional syntax variation that used the LET OFFSET option. However, the
current version of Transact supports subscripting of arrays so that use of the
LET OFFSET is no longer necessary. Although it is now recommended that
you use subscripts to manipulate arrays, the LET OFFSET option is still
available and is described later to aid in maintaining older Transact programs.

LET, unlike MOVE, checks that the data types of items being assigned are compatible with
the item to which they are assigned. If necessary, LET performs type conversion.

Statement Parts

destination-
variable

An item name that identi�es a location in the data register, or Transact-
de�ned name of a special purpose register. The result of the operation is
placed in this variable. The destination variable may be any of the names
listed below. All of the names except item-name are stored in a special
area outside the list and data registers. They are, therefore, not a�ected by
SET(STACK) or RESET(STACK).

(item-name
[(subscript)])

The computed or assigned value of item-name. The
item-name identi�es a location in the data register. The
item-name can be subscripted if an array item is referenced.
(See \Array Subscripting" in Chapter 3.)

LINE An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the computed or
assigned value of the line counter for the current line of
terminal display or line printer output.

OFFSET
(item-name)

An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the o�set of an item
starting at position zero.

PAGE An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the computed or
assigned value of the page counter.

PLINE An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the computed or
assigned value of the line counter for the current line of line
printer output.

October 1996 Transact Verbs 8-93

LET

STATUS An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the computed or
assigned value of the status register.

TLINE An integer, de�ned as I(5,,2) in Transact/V or de�ned as
I(10,,4) in Transact/iX, that contains the computed or
assigned value of the line counter for the current line of
terminal display output.

arithmetic-
expression

A single source, or multiple sources connected by arithmetic operators in the
format:

[-]source1 [operator source2] . . . [operator sourcen]

[-] If the expression is preceded by a minus sign, its negative is
assigned.

Note If a positive-only integer is set to a negative number, an error occurs. The
value of the speci�ed item will be unde�ned. Since the outcome is unde�ned,
you should not rely on this procedure to zero out values. Instead, use the
ERROR= option to branch to a label and negate the desired �elds.

source An item-name[(subscript)] within parentheses, a numeric
constant, one of the Transact-de�ned names listed above
under the description of destination-variable, or one of the
functions listed below and described later in this verb.

The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

function ASCII

LENGTH

LN

LOG

POSITION

SQRT
VALUE

operator + addition
� subtraction
* multiplication
/ division giving the quotient
// division giving the remainder
** exponentiation

ERROR=label
[([item-name])]

An option to cause branching on arithmetic errors. In addition to branching
and resetting the list register, this option causes the status register to be set
to a value that identi�es the type of error. (See \Error Branching" later in
the description of this verb.)

8-94 Transact Verbs October 1996

LET

label The label to which the program is to branch when an arithmetic
error is encountered.

item-name The point to which the list register is to be reset before branching
to the error label. If you do not specify an item-name (for
example, ERROR=label () or ERROR=label), the list register
is reset to empty. If you specify an asterisk (for example,
ERROR=label (*)), the list register is not changed.

The order of precedence for arithmetic operators is:

** exponentiation
// division giving remainder
/ division giving quotient
* multiplication
� subtraction
+ addition

You can change the order of evaluation by using square brackets. For example, the following
two statements may yield di�erent results:

LET (A)=(B) + (C)/(D);

LET (A)=[(B) + (C)]/(D);

Invalid Values Cause Differing Results

If a problem occurs within a LET statement, the results obtained with Transact/V and
Transact/iX may di�er. Transact/V will try to substitute a zero for the invalid value and
continue with the assignment. Transact/iX will leave the existing value intact and not
re-assign the target. This occurs under the following situations:

Unsubscripted source array is shorter than unsubscripted target array.
Item is invalid.
Subscript for a source array is invalid.
Argument for a function is invalid.

To avoid the arithmetic di�erences, use the same number of elements for unsubscripted arrays,
and do not use X or U data types in an arithmetic expression.

Functions

The following sections describe the functions available within the LET verb, including
parameters and examples. These functions can be used whenever an expression can be used.
An additional set of parentheses around item parameters is optional. For example, SQRT(Z)
and SQRT((Z)) are both acceptable.

A function cannot be embedded or nested in another function. In the following example, the
compiler will treat LOG as an array item and generate a warning if LOG is not de�ned.

LET (A) = SQRT(LOG(100.0));

The ERROR= option causes the branch to a label to be taken when speci�c errors occur
while processing a function just as speci�c errors in a LET statement without a function cause
such a branch to be taken.

October 1996 Transact Verbs 8-95

LET

ASCII

The ASCII function converts the �rst character of a string to the number for its ASCII code.
The result will be a number between 0 and 255 inclusive. This function is only valid for string
constants and data items of type X or U.

Syntax

ASCII(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (CODE) = ASCII("A");

Before After

CODE I(5) 0 65

LET (CODE) = ASCII((ARRAY(2)));

Before After

ARRAY(2) X(4) BCDE BCDE

CODE I(5) 123 66

8-96 Transact Verbs October 1996

LET

LENGTH

The LENGTH function returns the length in characters of a string by returning the integer
index of the position of the last non-blank character in the string. Embedded blanks are
included in this count, but trailing blanks are not included. Nulls are considered valid
characters and are counted.

When calculating the length of an X or U item, the maximum length will be the display
length. This function is only valid for string constants and data items of type X or U.

Syntax

LENGTH(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (COUNT) = LENGTH("ttAPPLEt");

Before After

COUNT I(5) 0 7

LET (COUNT) = LENGTH((ARRAY(2)));

Before After

ARRAY(2) X(7) ABCtDEt ABCtDEt
COUNT I(5) 0 6

LET (COUNT) = LENGTH("tttt");

Before After

COUNT I(5) 0 0

October 1996 Transact Verbs 8-97

LET

LN

The LN function computes the natural logarithm of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, LN(A) and LN((A))
are both acceptable.

Syntax

LN(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = LN(100.0);

Before After

RESULT R(6,2,4) 0.00 4.61

LET (RESULT) = LN((ARRAY(2)));

Before After

ARRAY(2) R(6,2,4) 10.00 10.00

RESULT R(6,2,4) 0.00 2.30

Errors

If the value of the parameter is zero or less, an error message is issued to indicate a
computational error has occurred.

8-98 Transact Verbs October 1996

LET

LOG

The LOG function computes the common logarithm to the base 10 of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, LOG(A) and
LOG((A)) are both acceptable.

Syntax

LOG(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = LOG(100.0);

Before After

RESULT R(6,2,4) 0.00 2.0

LET (RESULT) = LOG((ARRAY(2)));

Before After
ARRAY(2) R(6,2,4) 10.00 10.00

RESULT R(6,2,4) 0.00 1.00

Errors

If the value of the parameter is zero or less, an error message is issued to indicate a
computational error has occurred.

October 1996 Transact Verbs 8-99

LET

POSITION

The POSITION function returns the integer index of the position of the �rst occurrence of the
second string in the �rst string. Trailing blanks in both strings are ignored. Hence, a string
only consisting of blanks cannot be found.

If no match is found, then 0 is returned. This function is case sensitive (for example, \a" does
not match \A").

This function is only valid for string constants and data items of type X or U. The display
length will be used when calculating the length of a data it of type X or U.

Syntax

POSITION(

�
(item-name1

�
(subscript)

�
)

"character-string1"

�
,

�
(item-name2

�
(subscript)

�
)

"character-string2"

�
)

Examples

LET (INDEX) = POSITION("GOODtDOG","Z");

Before After

INDEX I(5) 99 0

LET (INDEX) = POSITION((STRING1),"D");

Before After

STRING1 X(8) BADtDOGt BADtDOGt
INDEX I(5) 99 3

Note In the following example note that the trailing blanks in both arguments are
ignored.

LET (INDEX) = POSITION((STRING1),(STRING2(4)));

Before After

STRING1 X(8) BANANAtt BANANAtt
STRING2(4) X(4) NAtt NAtt
INDEX I(5) 99 3

8-100 Transact Verbs October 1996

LET

SQRT

The SQRT function computes the square root of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, SQRT(A) and
SQRT((A)) are both acceptable.

Syntax

SQRT(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = SQRT(100.0);

Before After

RESULT R(6,2,4) 0.00 10.00

LET (RESULT) = SQRT((ARRAY(2)));

Before After
ARRAY(2) I(5) 64 64

RESULT I(5) 0 8

Errors

If the value of the parameter is less than zero, an error message is issued to indicate a
computational error has occurred.

October 1996 Transact Verbs 8-101

LET

VALUE

The VALUE function returns the numerical value of a string containing the character
representation of an integer or a oating point number. Leading blanks are ignored. An initial
plus or minus sign is allowed. The number is then terminated by one of the following: (1) the
�rst character that would not be valid in the number; (2) the end of the de�ned length of the
item; or (3) a delimiter de�ned via the SET(DELIMITER) verb.

With Native Language Support, Transact validates numeric data using the thousands and
decimal indicators of the language in e�ect. (See Appendix E, \Native Language Support,"
for more information.) If a number is not represented in the string, then 0 is returned.
Scienti�c notation (type E) is not parsed in the string.

When searching through an item, the last character searched depends upon the data type. For
an X or U item, the display length is used to get the last character. For an item de�ned as I,
J, Z, P, K, R, or 9, the value function operates in the same way as a LET assignment.

Syntax

VALUE(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (NUM) = VALUE("-3A");

Before After

NUM I(5) 0 -3

LET (NUM) = VALUE("tt+43.21ABC");

Before After

NUM R(6,2,4) 0.0 43.21

LET (NUM) = VALUE((ARRAY(2)));

Before After

ARRAY(2) X(4) 42t3 42t3
NUM I(5) 0 42

LET (NUM) = VALUE("ttA3A");

Before After

NUM I(5) 0 0

LET (NUM) = VALUE(".52Time");

Before After

NUM R(6,2,4) 0.0 0.52

8-102 Transact Verbs October 1996

LET

LET (NUM) = VALUE(I);
Before After

NUM I(5) 0 12345

I I(5) 12345 12345

LET (NUM) = VALUE("123-456");

Before After

NUM I(5) 0 123

Syntax Options

(1) LET (variable)=[-]arithmetic-expression;

Choose this option to place a single value or the result of an arithmetic operation into a
location in the data register variable or into one of the Transact-de�ned names allowed for the
destination variable. The following are examples of this syntax option:

LET (SUBTOTAL)=(SUBTOTAL) + (AMOUNT); <<Add values of AMOUNT and SUBTOTAL>>

<<and place result in SUBTOTAL >>

LET (PERCENT)=9.8; <<Set value of PERCENT to 9.8 >>

LET (INVERSE)=1/(DIVISOR); <<Calculate inverse value >>

LET (CNT)=-(CNT); <<Negate value of CNT >>

LET (DEDUCTION)=-[(SUBTOTAL)-(BENEFIT)]; <<The result of subtracting >>

<<BENEFIT from SUBTOTAL is >>

<<negated and placed in DEDUCTION>>

LET PAGE=200; <<Set page counter to 200 >>

LET LINE=60-(REMAINING-LINES); <<Calculate value of current line >>

LET (STAT) = STATUS; <<Set STAT to contents of status >>

<<register >>

LET STATUS = STATUS+1; <<Increment value of status register>>

LET STATUS = 0; <<Clear status register>>

<< Set UNIT-PRICE, but if an arithmetic error occurs, branch >>

<< to CALC-ERROR label and reset list register at UNIT-PRICE. >>

LET (UNIT-PRICE) = (SUBTOTAL-PRICE)/(QUANTITY),ERROR=CALC-ERROR(UNIT-PRICE);

October 1996 Transact Verbs 8-103

LET

Note The LET verb is primarily used to perform arithmetic operations on numeric
items. No error is generated if a character (X or U type) item is used and
processing continues for that character type, but the results may not be as
expected. (Use MOVE to handle character items.)

When LET is used with character items, be aware that the display length is used to determine
the size of the item. If the destination item is de�ned with a display length equal to or larger
than the source, the entire source is placed in the destination. If the destination is de�ned
with a display length smaller than the source, the source value is truncated on the right when
placed in the destination. The following example demonstrates how di�erent display lengths
a�ect the result.

SYSTEM T6100;

DEFINE(ITEM) SMALL X(5,,6):

LARGE X(6,,6);

LIST SMALL:

LARGE;

<<LET uses the display length as the size of the item>>

MOVE (SMALL) = "12345"; <<Small has "12345 " in storage >>

DISPLAY SMALL; <<Small displays "12345" >>

LET (SMALL) = -(SMALL); <<Small has "-12345" in storage >>

DISPLAY SMALL; <<Small displays "-1234" >>

LET (LARGE) = (SMALL); <<Large has "-1234 " in storage >>

DISPLAY SMALL: LARGE; <<Both display "-1234" >>

EXIT;

(2) LET OFFSET(item-name)=[-]arithmetic-expression

(item-name) Identi�es an ordinary data item or a child item.

[-]arithmetic -
expression

Is as de�ned earlier for the LET verb, except that in this context the variables
may not be subscripted.

This option of the LET verb sets the value of OFFSET for a particular item. It allows you to
refer to a child item within a parent item by telling Transact the byte location at which the
item begins.

8-104 Transact Verbs October 1996

LET

Note It is strongly recommended that you address array items by using subscripts.
This discussion is included for those dealing with older versions of Transact
programs written before subscripting of arrays was implemented. In any case,
the LET OFFSET and subscripting should not be used together. Doing so
may cause the program to update the data registers in areas outside the limits
of the item referenced and could lead to unpredictable results. Since this was
previously the only way to manipulate arrays, no error will be generated. (See
\Array Subscripts" in Chapter 3.)

By changing the value of OFFSET, you can refer to any child item within the parent item.
Suppose an array and its child items are de�ned as follows:

Initially, the OFFSET of YEAR within SALES is 0, which actually refers to byte position 1 of
SALES. That is, YEAR(1)= SALES(1), and, therefore, YEAR refers to the �rst 10 bytes of
SALES. To refer to other elements of SALES, you must change the OFFSET of YEAR. You
can do it as follows (where element-size is expressed in bytes):

LET OFFSET(YEAR)=(element-number - 1) * element-size

For example, to point to the third element of SALES, which is 10 bytes long, and then move a
value to that element, use the following statements:

LET OFFSET(YEAR)= 2 * 10; << (3rd element-1) * element size >>

MOVE (YEAR)=(VALUE-STRING);

To access and display the second and third positions, use the following statements:

SYSTEM TEST;

DEFINE(ITEM) SALES 3X(10):

YEAR X(10)=SALES(1);

PROMPT SALES;

DISPLAY SALES;

DISPLAY YEAR;

LET OFFSET(YEAR)= 1 * 10; <<Access 2nd element of SALES (2-1) >>

DISPLAY YEAR;

LET OFFSET(YEAR)= 2 * 10; <<Access 3rd element of SALES (3-1) >>

DISPLAY YEAR;

END;

Note that the o�set is counted from zero. Thus, to access the second position in SALES, you
specify an o�set of 1; to access the third position of SALES, you specify an o�set of 2.

October 1996 Transact Verbs 8-105

LET

It is possible to step through a parent item using the following form of the LET statement:

LET OFFSET(child-item)=OFFSET(child-item)+(byte-length-of-child-item)

For example, assuming the same array SALES, you can specify the next child item as follows:

LET OFFSET(YEAR) = OFFSET(YEAR) + 10

You can also use the OFFSET option of LET to manipulate complex arrays. Consider the
complex array of sales �gures shown in Figure 8-1. Its compound items are district, year, and
month. Each cell, which is a child item, contains a sales �gure in integer format. Note that
each value in each cell requires four bytes of storage.

This SALES matrix requires the following DEFINE(ITEM) statement:

DEFINE(ITEM) SALES-ARRAY X(144):

DIST 2 X(72) = SALES-ARRAY:

YEAR 3 X(24) = DIST:

MONTH 12 X(2) = YEAR:

SALES I(4,,2) = MONTH;

The �fth line of the DEFINE statement above rede�nes MONTH as SALES to further identify
the data being stored.

Figure 8-1. Complex Array of Sales Figures.

To locate the position of one SALES element within the array, you must use three LET
OFFSET statements. To locate the byte position of the second district of the third year of the
seventh month, use the following three LET OFFSET statements:

LET OFFSET(DIST) = OFFSET(DIST) + 1 * 72;
LET OFFSET(YEAR) = OFFSET(YEAR) + 2 * 24;

LET OFFSET(MONTH) = OFFSET(MONTH) + 6 * 2;

8-106 Transact Verbs October 1996

LET

Since OFFSET leaves the pointer at the last position referenced, it is necessary to either
reset the pointer before further manipulation or plan the next OFFSET in terms of the
current position. The following statements reset all o�sets to zero, representing the position
SALES(1,1,1).

LET OFFSET(DIST) = 0;

LET OFFSET(YEAR) = 0;

LET OFFSET(MONTH) = 0;

When assigning a value to an array, LET assigns each element in the array to that value. If a
subscript is speci�ed, then only that element is assigned the value. All other elements remain
unchanged.

For example, ARRAY-A is de�ned as 4X(2), and ARRAY-B is de�ned as 4I(5,,2).

MOVE (TEMP-X) = "ND";

LET (ARRAY-A) = (TEMP-X); <<Sets all elements in ARRAY-A >>

DISPLAY ARRAY-A;

MOVE (TEMP-X) = "YR";

LET (ARRAY-A(2)) = (TEMP-X); <<Sets second elements only in ARRAY-A>>

DISPLAY ARRAY-A;

LET (ARRAY-B) = 67; <<Sets all elements in ARRAY-B >>

DISPLAY ARRAY-B;

LET (ARRAY-B(3)) = 78; <<Sets third element in ARRAY-B >>

DISPLAY ARRAY-B;

Rounding

To determine how rounding is done in Transact, it is necessary to understand how Transact
performs arithmetic operations. In general, if you want arithmetic results to be rounded
instead of truncated to a desired precision, you should ensure that the operands, including
constants, have at least one more digit of precision than the desired result.

Transact uses one of three di�erent methods to process arithmetic expressions. The three
methods are:

double integer arithmetic

long real arithmetic

packed decimal arithmetic

The �rst two methods, double integer and long real arithmetic, are used only if the values
meet particular criteria. When these criteria are not met, the third method, packed decimal,
is used by default. Since packed decimal arithmetic is slower than the other two methods, it
is advisable to use variables that meet the criteria for one of the other two methods whenever
possible.

October 1996 Transact Verbs 8-107

LET

The factors that determine the method to be used are:

Whether the expression consists of a single operation or multiple operations.

Data types of the destination variable and the operands.

The number of decimal places de�ned for the destination variable and the operands.

Storage length of the destination variable and the operands.

32-Bit Integer Arithmetic

To qualify for 32-bit integer arithmetic, an expression must meet all of the following
conditions:

The expression must consist of only one operation and that operation can only be +, -, =,
or unary minus.

The data types of the destination variable and the operands must be either I or J. Numeric
constants cannot be used.

The number of decimal places must be identical in target item and both operands.

Storage length of destination variable and all operands must be 16-bits.

When 32-bit integer arithmetic is used, the target item and the operands are converted to
32-bit integers before the operation is performed. The �nal result is rounded to the precision
of the destination variable and then converted back to a 16-bit integer. Although the operands
are converted to 32-bit integers before computation, the �nal result for 16-bit integers should
lie between -32768 and 32767.

The following is an example of 32-bit integer arithmetic:

SYSTEM ARIT02;

DEFINE(ITEM) I1 I(4,1):

I2 I(4,1):

I3 I(4,1);

LIST I1:

I2:

I3;

LET (I1) = 45.99; << Packed decimal arithmetic >>

LET (I2) = 35.99; << Packed decimal arithmetic >>

LET (I3) = (I1) + (I2); << Double integer arithmetic >>

DISPLAY;

EXIT;

When the program is run, the values displayed are:

I1 = 46.0

I2 = 36.0

I3 = 82.0

8-108 Transact Verbs October 1996

LET

64-Bit Real Arithmetic

To qualify for the 64-bit (long) real method of operation, the operands must meet all of the
following conditions:

The expression must consist of a single operation which must be +, -, *, /, //, =, unary
minus, LN, LOG, SQRT, or **.

The destination variable and the operands must all be of data type R or E. Numeric
constants can be used; they are converted to the type of the destination variable.

The storage length of all three variables should be 32-bit or 64-bit.

For 64-bit real arithmetic, if the destination variable and the operands are not already 64-bit
real, they are converted to 64-bit real before the operation is performed. The �nal result is
converted back to the size of the destination variable. The internal value of the �nal item
may carry more precision than its de�ned decimal count. Hence, for subsequent 64-bit real
arithmetic, the internal value carrying more precision will be used. On the other hand, for
subsequent packed decimal arithmetic (see the following discussion), the internal value will be
rounded according to the de�ned precision and then will be used. The internal value will be
rounded up for DISPLAY statements.

For example,

SYSTEM LONGRL;

DEFINE(ITEM) REAL1 R(8): << No decimal place. >>

REAL2 R(8,2):

REAL3 R(8,2);

LIST REAL1:

REAL2:

REAL3;

LET (REAL1) = 1440 / 900; << 64-Bit Real >>

The display value of REAL1 is 2 (rounded). Internally the value is 1.5555553436279 L+00.. In
subsequent 64-bit real arithmetic, the internal value of REAL1 1.555555. will be used.

LET (REAL2) = (REAL1) + (REAL1);

In subsequent packed decimal arithmetic, REAL1 and REAL2 will be rounded before
computation.

LET (REAL3) = (REAL1) * (REAL2) / 3.11;

DISPLAY REAL1: REAL2: REAL3;

The values displayed are as follows:

REAL1 = 2

REAL2 = 3.11

REAL3 = 2.00

October 1996 Transact Verbs 8-109

LET

Packed Decimal Arithmetic

If the values in an expression do not meet the criteria for processing by either the 32-bit
integer or 64-bit real methods, then the packed decimal method is used.

In this approach, an arithmetic expression is processed according to the rules of precedence
described earlier.

Before computation, the data types of the destination variable and operands are converted
to P - - packed P(27,0,14) - - if the operation is +, -, *, /, //, =, or unary minus. For
the remaining functions, such as SQRT, LOG, LN, exponentiation, and so on, the operands
and destination variable are converted to 64-bit real. If this function is an intermediate
operation, the result is converted to data type P and stacked for continuing with the rest of
the expression. Any operands of type R or E that carry greater precision due to previous long
real arithmetic are rounded according to the precision de�ned for packed decimal arithmetic.

While an expression is being evaluated according to the rules of precedence, each intermediate
computational result is computed to the highest precision of the two operands and the
destination item. If the precision of the expression is greater than the precision of the
destination item, the result is rounded to the precision of the destination item. For example,
3.0/2.0 would produce 1.5 as an intermediate result, which would round to 2 if stored in a
receiving item with no decimal places. Unlike COBOL, Transact does not maintain extra
precision just for rounding. Thus some division operations may result in a loss of precision.
For example, 3/2 produces 1 instead of 1.5 for an intermediate result if the destination
variable has no decimal precision.

To ensure that precision is not lost, either the receiving item must have the desired precision
(at least one decimal place greater than in the arithmetic expression) or all operands in the
entire expression must have the desired precision. For applications that require the destination
variable to have fewer or zero decimal places, a two-step arithmetic sequence is recommended.
The destination variable of the �rst LET should have an adequate number of decimal places
for processing the whole expression and then the second LET statement should contain a
simple assignment (=) to an integer item having fewer or zero decimal places. The following
example shows this technique.

SYSTEM PAKDEC;

DEFINE(ITEM) R1 R(6): << No decimal place >>

R2 R(11,5): << More decimal places >>

I3 I(9,2); << Fewer decimal places >>

8-110 Transact Verbs October 1996

LET

Example 1

The LET statement below uses the destination variable R1, which has no decimal places.
Compare the �nal results with the next LET statement.

LET (R1) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

| |

.9999

| |

1

| |

.9999

| |
11588.8410

| |

11589 (ROUNDED)

Example 2

The LET statement below uses the destination variable R2, which has �ve decimal places.

LET (R2) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

| |

.99993

| |

1.60000

| |

1.59989

| |

18542.72510

| |

18542.72510

The LET statement below does a simple assignment to the item I3, which has two decimal
places. The result is rounded. This is a packed decimal operation, since data types are
di�erent. The internal value of I3 does not carry extra precision.

LET (I3) = (R2);

| |

18542.73 (ROUNDED)

October 1996 Transact Verbs 8-111

LET

The next two examples show the e�ect of using either 2 or 5 digits of decimal precision on the
�rst example above.

Example 3

Suppose the following was included in the source �le:

!PRECISION(2)

The original LET statement assigning a value to item R1 (Example 1) is now evaluated as
shown below. The major di�erence from the original evaluation is that 1440/900 is treated as
1.60 rather than 1 which a�ects all subsequent intermediate results.

LET (R1) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

| |

.9999

| |

1.60

| |

1.5998

| |

18541.6820

| |

18542 (ROUNDED)

Example 4

Now replace the !PRECISION statement above with the following statement:

!PRECISION(5)

The original LET statement assigning a value to item R1 (Example 1) is now evaluated as
shown below. This LET statement is evaluated the same as in Example 2, except that here it
is rounded for the �nal assignment.

LET (R1) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

| |

.99993

| |

1.60000

| |
1.59989

| |

18542.72510

| |

18543 (ROUNDED)

Note The result of the LET statement assigning a value to item R2 in Example 2
is not altered by changing the minimum decimal precision to either 2 or 5.
Since the destination variable is de�ned with 5 decimal digits, all intermediate
results automatically maintain at least 5 digits of decimal precision.

For more information about !PRECISION, see \Compiler Commands" in Chapter 9.

8-112 Transact Verbs October 1996

LEVEL

LEVEL

De�nes processing levels within a program.

Syntax

LEVEL
�
(label(

�
item-name

�
))
�
;

LEVEL speci�es a new processing level. LEVEL allows repeated entries and retention of
information during data entry and eliminates redundant data entry operations. The data
register, key register, match register, list register, update register, SET(DELIMITER) and
SET(OPTION) are unique to that level. When an end of level occurs, these registers and
settings are reset to the condition they were in on entering the level.

Statement Parts

label The statement to which the program should branch at the end of the level
sequence if the user enters \]" in reply to a program prompt.

item-name The location in the list register where the pointer is to be set.

If you do not specify item-name, for example, LEVEL(label ());, the list
register is reset to empty.

If you use an *" instead of item-name, as in LEVEL(label (*));, the list
register is reset to the condition it was in on entering the level.

Exits From LEVEL Sequences

If no label is speci�ed, four types of exits from LEVEL sequences are possible;. two of which
the user controls and two of which the programmer controls. They are described below.

] When the user enters \]" in response to any prompt in a level sequence,
control passes to the previous processing level, which may be the command
level or to the label speci�ed in LEVEL(label). Any changes made to the
match, list, or update registers within the level are reset to their original
state.

]] When the user enters \]]" in response to any prompt in a level sequence,
control passes to the Transact command level, or if not in a command
sequence, Transact issues the EXIT or RESTART(E/R)> prompt.

END(LEVEL) The end of the current level. This causes control to fall through to the
statement following the END(LEVEL) statement and resets the match, list, or
update registers to whatever their conditions were immediately before the last
level sequence began.

END If you use END without (LEVEL) to terminate a level, Transact generates a
loop after the �rst execution of the level. The loop begins at the top of the
level. The match, list, or update registers are reset to whatever their values
were at the beginning of the level.

October 1996 Transact Verbs 8-113

LEVEL

Examples

Nested level sequences are possible, as this example shows. The following statements minimize
the data entry required for a sequence of entries for a time card. It requires values for year
and month, then multiple entries for employee. Each level change provides the opportunity for
the user to enter data.

PROMPT YEAR:

MONTH;

LEVEL;

PROMPT EMPLOYEE;

LEVEL;

PROMPT DAY;

LEVEL;
PROMPT ACTIVITY: <<A loop through this level resets >>

HOURS; <<list REGISTER and data register for >>

PUT TIME-RECORD; <<these data items (activity, hours). >>

END;

END;

END;

Execution of these statements causes a prompt for each data item value and then a loop at
the lowest level. When the user has entered all activity items for a speci�c day, he or she
should enter a \]" in response to \ACTIVITY". Control passes to the next higher level and
user is prompted with \DAY". When all days have been entered for one employee, the user
should enter \]" in response to \DAY". Control passes to the next higher level and the user is
then prompted for the next employee.

8-114 Transact Verbs October 1996

LIST

LIST

Adds item names to list, key, match, and/or update registers.

Syntax

LIST
�
(modi�er)

�
item-name

�
,option-list

��
:item-name

�
,option-list

� �
...;

LIST adds data item names to the list, key, match, and/or update registers. The register
a�ected depends on the verb modi�er. You can choose from the following:

none Adds speci�ed item name to list register, reserves space, and, optionally, places
value in data register. (See Syntax Option 1.)

AUTO Adds the names of all items in a dictionary associated with the speci�ed �le to
the list register or adds all items de�ned in the program plus all items resolved
from the dictionary to the list register. (See Syntax Option 2.)

KEY Places speci�ed item name in key register. (See Syntax Option 3.)

MATCH Adds speci�ed item name to list register and copies existing value for that item
from the data register to the match register. (See Syntax Option 4.)

PATH Adds speci�ed item name to list register and places it in key register. (See Syntax
Option 5.)

UPDATE Adds speci�ed item name to list register and copies value for that item from the
data register to the update register. (See Syntax Option 6.)

Consider the following when setting up your list register:

For use with database access, list items may be in any position in the register. However,
consecutive order allows simpler range lists in the data management statements.

For use with KSAM or MPE �les or VPLUS forms, list items can be in any position in the
register. However, with the LIST= option, the items must be speci�ed in the same order as
the items occur in the physical �le or form.

Child item names cannot be speci�ed as list items in a LIST statement. Instead, the
associated parent item name must be speci�ed.

System variables cannot be put in a LIST statement. They can only be used in DISPLAY
or FORMAT statements.

See Chapter 4, \Transact Registers," for a discussion of adding items to the LIST register
multiple times.

October 1996 Transact Verbs 8-115

LIST

Statement Parts

modi�er A change or enhancement to the action of LIST; often the register to which the
input value should be added or the register whose value should be changed.

item-name The item-name to be added or changed in the list, key, match, or update
registers; must not be a child item name.

option-list Values speci�c to Syntax Options (1) and (3).

Syntax Options

(1) LIST item-name[,option-list]

LIST with no modi�er adds the item-name to the list register and reserves space in the data
register. If you do not include an option from the list below, Transact does not change the
original contents of the data register. If you choose an option from the list below, it places the
corresponding value in the data register.

option-list Speci�es a value to be placed in the data register. Note that the options listed
below are not variable names and need not be de�ned in a DEFINE(ITEM)
statement or in a dictionary. The formats of these options are not a�ected by the
choice of language in the SET(LANGUAGE) statement.

ACCOUNT An X(8) item that contains the account name from the system
log on.

ALIGN Forces the item to be aligned on a 16-bit boundary on
Transact/V and on a 32-bit boundary on Transact/iX.

Note Only compile time alignment is supported.

DATE An X(6) item that contains the current system date in
MMDDYY format. If the data item size is not six characters,
then truncation or blank �ll occurs. This option is normally used
to set up a data item that is to contain the current date.

DATE/C An X(8) item that contains the current system date in
YYYYMMDD format.

DATE/D An X(6) item that contains the current system date in
DDMMYY format.

DATE/J An X(5) item that contains the current system date in Julian
YYDDD format.

DATE/L An X(27) item that contains the current system date/time
message.

DATE/Y An X(6) item that contains the current system date in
YYMMDD format.

GROUP An X(8) item that contains the group name from system log on.

HOME-
GROUP

An X(8) item that contains the home group of the logged on user.

8-116 Transact Verbs October 1996

LIST

INIT[IALIZE] Blanks if the data item type is an alphanumeric string, or binary
zero for all other types.

PASSWORD An X(8) item that contains the �rst password value entered
during Transact system log on.

PROCTIME An I(9) item that contains the 32-bit integer of process CPU time
in milliseconds.

TERMID An I(4) item that contains the terminal logical device number.

TIME An X(8) item that contains the current time in HHMMSSTT
format.

TIMER An I(9) item that contains the 32-bit integer of system time in
milliseconds.

SESSION An X(1) item than contains an \S" or a \J" to indicate that the
current process is running as a session or a job, respectively.

USER An X(8) item that contains the user name from the system logon.

For example, the following statements de�ne the item MYPASS, move it to the list register,
allocate it space in the data register, and place the user's password in that space:

DEFINE(ITEM) MYPASS X(8);

LIST MYPASS, PASSWORD;

(2) LIST(AUTO) f�le-name[,option-list];

f @[,option-list];

LIST(AUTO) �le-name adds the names of all the items in the speci�ed �le to the list register.
�le-name can refer to a form, a �le, or a data set, but not a database or forms �le. Transact
uses the dictionary to acquire the item names, and a compiler error results if �le-name is not
de�ned in a dictionary or if it has no item names associated with it. Alias de�nitions are not
retrieved from the dictionary.

The option INIT sets blanks to the data item if its type is an alphanumeric string or sets
binary zero to the data item for all other data types. When the DEFN option is used during
program compilation, all item names in the speci�ed �le will be included in the compile listing
and it will give the name and relative list register position of each item.

The option ALIGN forces the item to be aligned on a 16-bit boundary on Transact/V and on
a 32-bit boundary on Transact/iX. The �rst item with LIST(AUTO) �lename ,ALIGN will be
aligned.

LIST(AUTO) @ causes Transact to place all the user-de�ned data items in the program into
the list register in the order in which they are encountered during compilation. This includes
items resolved from the dictionary. The option INIT sets blanks to the data item if its type is
an alphanumeric string or sets binary zero to the data item for all other data types. All items
with LIST(AUTO)@,ALIGN will be aligned.

When multiple LIST(AUTO) statements are issued for di�erent �les that have some items
in common, you must ensure that the resultant structure of the list register will support the
statements that follow.

October 1996 Transact Verbs 8-117

LIST

(3) LIST(KEY) item-name;

LIST(KEY) places item-name in the key register only.

(4) LIST(MATCH) item-name[,option-list];

LIST(MATCH) adds item-name to the list register and copies the existing value from the
data register into the match register as a selection criterion for subsequent �le or data set
operations. MATCH is typically used when a previous retrieval operation has placed a value
in the data register and that value is now to be used for the next selection criterion. The
item-name for the new data item list may di�er from the item-name used for the previous
retrieval. Matching with alphanumeric data is a�ected by the native language set by a
SET(LANGUAGE) statement. For more information, see Appendix E, \Native Language
Support."

The following values for option-list specify a match selection to be performed on a basis other
than equality.

option-list : Any of the following options can be selected:
ALIGN Forces the item to be aligned on a 16-bit boundary in Transact/V

and on a 32-bit boundary in Transact/iX
NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the

use of trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use

of trailing \^^" on input
TRAILER Matched item must end with the input string; equivalent to the

use of a leading \^" on input

(5) LIST(PATH) item-name[,option-list];

LIST(PATH) adds item-name to the list register and places it in the key register.

The ALIGN option forces the item to be aligned on a 16-bit boundary in Transact/V and on a
32-bit boundary in Transact/iX.

(6) LIST(UPDATE) item-name[,option-name];

LIST(UPDATE) adds item-name to the list register and places the value already in the
data register into the update register for a subsequent data set or �le operation using the
REPLACE verb.

The ALIGN option forces the item to be aligned on a 16-bit boundary in Transact/V and on a
32-bit boundary in Transact/iX.

8-118 Transact Verbs October 1996

LIST

Examples

The �rst example places item names NAME, ADDRESS, CITY, and DATE in the list register
and reserves areas for their values in the data register. The areas for NAME, ADDRESS, and
CITY are initialized to blanks and the area for DATE is initialized to the current system date
in MMDDYY format.

DEFINE(ITEM) NAME X(20):

ADDRESS X(20):

CITY X(10):

DATE X(6);

LIST NAME,INIT:

ADDRESS,INIT:

CITY,INIT:
DATE,DATE;

The data register is your stack. It is never cleared; it is only mapped and remapped through
the list register. To illustrate this point, consider the following example that references
two databases. In one, a customer name is identi�ed by two items, LAST-NAME and
FIRST-NAME; in the other, the same name is identi�ed by a single item, CUST-NAME.

SYSTEM TEST1,

BASE=CUST-BASE,

PROD-BASE;

DEFINE(ITEM) LAST-NAME X(10):

FIRST-NAME X(10):

CUST-NAME X(20);

LIST LAST-NAME: FIRST-NAME; <<Map data register with LIST statement>>

GET CUST-MAST,

LIST=(LAST-NAME:FIRST-NAME); <<Retrieve name, move to data register >>

RESET(STACK) LIST; <<Reset list register to its beginning >>

LIST CUST-NAME; <<Map same data with new list register >>

PUT CUST-INFO(PROD-BASE),

LIST=(CUST-NAME); <<Write name to other database >>

END TEST1;

Note that the list register was reset programmatically with the RESET(STACK) statement.

The next example shows the use of LIST(AUTO) to include all de�ned items in the list
register and initialize them.

LIST(AUTO) @,INIT;

The next example is used to put dictionary items for a �le in the list register.

LIST(AUTO) PASSENGER-DTL;

October 1996 Transact Verbs 8-119

LIST

In the next example, the company code is used to retrieve and display data from one data set
(CO-MSTR) and then the same value, renamed by LIST(PATH) as the department code, is
used to access another data set (DEPT-MSTR).

PROMPT(PATH) COMPANY-CODE, <<Get company code for subsequent retrieval>>

CHECK=CO-MSTR; <<from CO-MSTR data set >>

LIST A:

B:

C;

OUTPUT CO-MSTR;

RESET(STACK) LIST;

LIST(PATH) DEPT-CODE; <<Use same value as department code for >>

LIST X: <<subsequent retrieval from DEPT-MSTR >>

Y:

Z;

OUTPUT DEPT-MSTR;

In the following example, Transact resets the list register automatically when a new command
sequence starts. Because Transact resets the list register at the start of each new command
sequence, you should de�ne any global variables before the �rst command sequence, and then
rede�ne the global variables within each command sequence preceding any local variables.
For example, suppose the variables, \VENDOR-ID" and \VENDOR-NAME" are to be used
by both sequences UPDATE PRODUCT and UPDATE VENDOR. Before executing either
sequence, you can de�ne these items and place values for them in the data register. In order
to retain these values, all you need do is remap the list register at the start of each sequence.

LIST VENDOR-ID: << Map global variables in list reg. >>

VENDOR-NAME;

DATA VENDOR-ID: << Prompt user for data >>

VENDOR-NAME;

$$UPDATE: << New command sequence - >>

$PRODUCT: << Transact resets list register >>
LIST VENDOR-ID: << Remap global variables >>

VENDOR-NAME:

PROD-NUM: << Variables local to UPDATE PRODUCT >>

DESCRIPTION;

$VENDOR: << Transact resets list register again >>

LIST VENDOR-ID: << Remap global variables >>

VENDOR-NAME:

VENDOR-ADDRESS: << Variables local to UPDATE VENDOR >>

VENDOR-ZIP;

8-120 Transact Verbs October 1996

LIST

The next example shows how the DATE/C option is used.

SYSTEM DATES;

DEFINE(ITEM) TODAYS-DATE X(8):

TODAYS-YEAR X(4) = TODAYS-DATE(1):

TODAYS-MONTH X(2) = TODAYS-DATE(5):

TODAYS-DAY X(2) = TODAYS-DATE(7);

LIST TODAYS-DATE, DATE/C;

DISPLAY "TODAY'S DATE:

":TODAYS-DATE,NOHEAD,EDIT="^^^^/^^/^^";

DISPLAY "FORMATTED DATE: ", LINE=2:

TODAYS-MONTH, NOHEAD, SPACE=0:

"/", SPACE=0:

TODAYS-DAY, NOHEAD, SPACE=0:

"/", SPACE=0:

TODAYS-YEAR,. NOHEAD, SPACE=0;

EXIT;

The output from this example is:

TODAY'S DATE: 1992/08/18

FORMATTED DATE: 08/18/1992

The last example shows how the ALIGN option causes item1 and item3 to be word-aligned in
the list register. Item2 will follow item1 and may or may not be aligned, depending on length
of item1 .

LIST item1,ALIGN;

item2;

item3,INIT,ALIGN;

October 1996 Transact Verbs 8-121

LOGTRAN

Makes the database calls needed to maintain the database log �les and optionally performs
database transaction locking.

Syntax

LOGTRAN(modi�er) base, log-message
�
,option-list

�
;

LOGTRAN is used to de�ne a static or dynamic logical transaction for database transaction
logging or locking purposes. If this verb is to be used for database logging and recovery,
several steps must �rst be completed before the statement can be used. If this verb is to be
used for transaction locking, no preliminary steps need to be taken. See the discussions of
transaction logging in the TurboIMAGE reference manuals for more information regarding
static and dynamic transactions.

Transact �le access verbs lock at the start of execution for a statement and unlock before the
next statement. Therefore, other processes can modify the data during a logical transaction
covered by LOGTRAN if the transaction comprises more than one statement. It is therefore
always advisable to lock the transaction being logged.

If LOGTRAN is used for locking, it should be used consistently throughout all programs, and
databases and data sets should be locked and unlocked in the same order by all programs.
LOGTRAN locking should not be mixed with Transact's automatic locking. Automatic
locks should be disabled by SET(OPTION) NOLOCK, and automatic error handling
should be disabled by specifying the STATUS option. Multiple LOGTRAN locks can only
be issued on di�erent data sets in a database with an intervening LOGTRAN(END) or
LOGTRAN(XEND) verb on that database. See \Database and File Locking" in Chapter 6 for
more information.

Statement Parts

modi�er Speci�es the type of operation.

BEGIN Starts a static transaction and writes a record to the log �le if
user logging is enabled.

Optionally, BEGIN locks the data sets speci�ed in SET(LIST).
The LOCK option should be speci�ed unless the PROC
statement is used for locking.

The LOGTRAN(BEGIN) statement must always be paired
with a LOGTRAN(END) statement to mark the beginning
and end of a static transaction for a given database. No other
LOGTRAN(BEGIN) or LOGTRAN(END) statement referencing
the same database access path can appear between a pair of
LOGTRAN(BEGIN) and LOGTRAN(END) statements.

MEMO Writes a log record in the log �le to provide more information
about the logical transaction if user logging is enabled.

END Ends a static transaction and writes a record to the log �le if user
logging is enabled.

8-122 Transact Verbs October 1996

LOGTRAN

Unlocks the database locked by its corresponding
LOGTRAN(BEGIN) statement.

The LOGTRAN(END) statement must always be preceded by a
LOGTRAN(BEGIN) statement. No other LOGTRAN(BEGIN)
or LOGTRAN(END) statement referencing the same database
access path can appear between a pair of LOGTRAN(BEGIN)
and LOGTRAN(END) statements.

Note The following modi�ers, XBEGIN, XEND, and XUNDO, apply to
Transact/iX only. They support the TurboIMAGE/XL dynamic roll-back
feature that provides MPE/iX transaction management logging.

XBEGIN Starts a dynamic transaction and writes a record to the log �le if
user logging is enabled.

Optionally, XBEGIN locks the data sets speci�ed in SETLIST.
The lock option should be speci�ed unless the PROC statement is
used for locking.

Nesting of dynamic or static transactions within a dynamic
transaction is not allowed when using the same database access
path. The LOGTRAN(XBEGIN) statement must always
be paired with a LOGTRAN(XEND) statement to mark
the beginning and end of a dynamic transaction. No other
LOGTRAN(BEGIN), LOGTRAN(END), LOGTRAN(XBEGIN),
or LOGTRAN(XEND) statement can appear between a
matching pair of LOGTRAN(XBEGIN) and LOGTRAN(XEND)
statements for a speci�c database access path.

XEND Ends a dynamic transaction and writes a record to the log �le if
user logging is enabled.

Unlocks the database locked by its corresponding
LOGTRAN(XBEGIN) statement. The LOGTRAN(XEND)
statement must always be preceded by a LOGTRAN(XBEGIN)
statement to mark the beginning and end of a dynamic
transaction. No other LOGTRAN(BEGIN), LOGTRAN(END),
LOGTRAN(XBEGIN), or LOGTRAN(XEND) statement can
appear between a matching pair of LOGTRAN(XBEGIN) or
LOGTRAN(XEND) statements for a speci�c database access
path. Also, LOGTRAN(XEND) cannot be called after a call has
been made to LOGTRAN(XUNDO).

XUNDO Rolls back the modi�cations associated with a dynamic
transaction and writes a record to the log �le if user logging is
enabled.

Unlocks the database locked by its corresponding
LOGTRAN(XBEGIN) statement.

The LOGTRAN(XUNDO) statement must always be preceded
by a LOGTRAN(XBEGIN) statement to mark the beginning of
a dynamic transaction. LOGTRAN(XUNDO) cannot be called

October 1996 Transact Verbs 8-123

LOGTRAN

to roll back a transaction started by a LOGTRAN(BEGIN)
statement. Also, LOGTRAN(XUNDO) cannot be called after
a call has been made to LOGTRAN(XEND) for that speci�c
database access path.

base The database to be logged. It must be one of the following:

$HOME This special name indicates that the home database is to be
logged.

Note Using the actual home base name in the LOGTRAN statement causes a
compiler error.

base-name The name of the database to be logged (when the database is
other than the home base).

log-message The log-message parameter is required for all LOGTRAN verbs. It must be one
of the following:

(item-name
[(subscript)])

The name of a data item that contains the text string (up to
512 bytes long) to be written to the log �le. This item must
begin on a 16-bit word boundary. The item-name can be
subscripted if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

\message-string" The text string (up to 512 bytes long) to be written on the
log �le.

option-list One or more of the following, separated by commas.

LOCK(setlist) This option causes the data sets speci�ed in the setlist to be
locked. This option is only valid with the LOGTRAN(BEGIN)
or LOGTRAN(XBEGIN) statements, with the locks
remaining in e�ect until the corresponding LOGTRAN(END),
LOGTRAN(XEND) or LOGTRAN(XUNDO) is encountered.

The setlist is of the form:

(setname[cond][,setname[cond] . . .)

setname The name of the data set to be locked. If the
entire database is to be locked the user can
substitute @ for setname.

cond The lock condition, either COND for conditional
lock or UNCOND for unconditional locking.
COND is the default.

Note When locking multiple data sets, Multiple Rin (MR) capability must be in
e�ect. You should also list data sets in the order in which they appear in the
database for added compatibility with non-Transact Applications. (See the
TurboIMAGE/XL Database Management System Reference Manual for more
information.)

8-124 Transact Verbs October 1996

LOGTRAN

NOMSG Suppresses the standard error message produced as a result of a
database error. It is recommended that STATUS is used with this
option.

STATUS Suppresses the actions de�ned in Chapter 7 under \Automatic
Error Handling." You will need to add code to check the value of
STATUS. When STATUS is speci�ed, the e�ect of a LOGTRAN
statement is described by the 32-bit integer value in the status
register:

Status

Register Value

Meaning

0 The LOGTRAN operation was successful.

<> 0 This is the database error code. (See the
TurboIMAGE/XL Database Management
System Reference Manual .)

See \Using the STATUS Option" in Chapter 7 for more
information.

Examples

The �rst example begins a transaction and locks the entire PERSON database conditionally.

LOGTRAN(BEGIN) PERSON, "BEGIN LOGGING DATABASE", LOCK(@);

This example begins a transaction, locks the data set NAME unconditionally, and locks the
data set ADDRESS unconditionally.

LOGTRAN(BEGIN) $HOME, (MSG), LOCK(NAME(UNCOND), ADDRESS(UNCOND));

This example begins a transaction and locks the home base conditionally.

LOGTRAN(BEGIN) $HOME, (MSG), LOCK(@(COND));

This example ends a transaction and unlocks any data sets in $HOME that have been locked.

LOGTRAN(END) $HOME, (MSG);

This example begins a dynamic transaction and locks the entire home database conditionally.

LOGTRAN(XBEGIN) $HOME, "BEGIN DYNAMIC TXN LOGGING", LOCK(@);

The next example begins a dynamic transaction for the PEOPLE database and locks the
NAME data set conditionally and the ADDRESS data set unconditionally.

LOGTRAN(XBEGIN) PEOPLE, (MSG), LOCK(NAME, ADDRESS(UNCOND));

This example shows how to begin a dynamic transaction with programmer's control of
locking. This would be done if the Transact locking scheme for LOGTRAN(XBEGIN) was not
adequate.

SET(OPTION) NOLOCK;

LET (MODE) = 1;

:

:

October 1996 Transact Verbs 8-125

LOGTRAN

:

PROC DBLOCK(BASE(CUSTOMERS),

SET(NAMES),

(MODE),

STATUS(DB));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO LOCK-ERROR;

LOGTRAN(XBEGIN) $HOME, (MSG);

This example ends a transaction and unlocks any data sets or database locked by the
corresponding LOGTRAN(XBEGIN).

LOGTRAN(XEND) $HOME, "END OF DYNAMIC TXN LOGGING";

The next example shows how to end a dynamic transaction with programmer's control of
locking. It assumes that the LOCK option on LOGTRAN(XBEGIN) was NOT used.

SET(OPTION) NOLOCK;

LET (MODE) = 1;

:

:

:

LOGTRAN(XEND) $HOME, (MSG);

PROC DBUNLOCK(BASE(CUSTOMERS),

SET(NAMES),

(MODE),

STATUS(DB));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO UNLOCK-ERROR;

The next example shows how to end a dynamic transaction when the contents of the logging
bu�er in memory should be written to disk (Mode 2 of DBXEND). This would be used for
critical transactions. It is assumed that locks are held throughout the transaction and that
unlocking is the responsibility of the programmer.

Note The DBXEND call must precede the call to DBUNLOCK or TurboIMAGE
will return an error.

SET(OPTION) NOLOCK;

LET (MODE) = 2;

:

:

PROC DBUNLOCK(BASE(CUSTOMERS),

(MSG),

8-126 Transact Verbs October 1996

(MODE),

STATUS(DB),

(NUMBYTES));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO DBXEND-ERROR;

The last example rolls back a transaction that was previously started by
LOGTRAN(XBEGIN).

LOGTRAN(XUNDO) EMPLOYEES, (MSG);

October 1996 Transact Verbs 8-127

MOVE

Places data into a speci�ed data register space.

Syntax

MOVE (destination-variable) = source-expression;

MOVE places data into the data register location speci�ed by destination-variable. You
should use MOVE particularly when you want to move a character string into a data
register location. Unlike LET, MOVE does not check data types during the operation. If
it is necessary to convert data types between the source and the destination, you must use
the LET verb to do so. Since MOVE does not check data types during the operation, a
destination-variable of type U could contain lowercase alphanumeric characters.

When moving items of di�erent lengths, values are truncated or �lled on the right. Numeric
data types I, J, Z, P, K, R, E, and 9 are �lled with nulls, and alphanumeric data types X and
U are �lled with blanks.

Note In Transact/iX the �ll character for data type 9 is blank.

The display length of the source data item is used to determine the number of characters
moved for data types U and X. Storage length is used for all data types when using
justi�cation of a literal. For unsubscripted arrays using justi�cation, storage length is used for
all data types.

Note The destination-variable is used to hold any intermediate results when
processing the source-expression . See \Special Considerations" later in this
verb for potential side e�ects.

Statement Parts

destination-variable can be the following:

(item-name
[(subscript)])

Speci�es that you want the data moved into the data register location
identi�ed by item-name. The item-name can be subscripted if an array
item is being referenced. (See \Array Subscripting" in Chapter 3.)

source-expression is de�ned below with detailed explanations following:8>>>>>>><
>>>>>>>:

�
�
�
(item-name

�
(subscript)

�
)�

�
�
"character-string"�

�
�
string-function

format-function

source1
�
operator source2

�
. . .

STATUS(parm)

9>>>>>>>=
>>>>>>>;

8-128 Transact Verbs October 1996

MOVE

[�](item-name
[(subscript)])

The value in the data register location for item-name. If you include the
minus sign (�), then the source value is placed in the destination �eld
with opposite justi�cation. That is, source data that is right-justi�ed is
left-justi�ed in the destination �eld and vice versa.

The item-name can be subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

[�]"character-
string"

A programmer-de�ned character string. If you include the minus sign
(�), then the source �eld is right-justi�ed in the destination �eld. If
character-string is null, as in "", then the receiving �eld is �lled with
binary zeros. To �ll the �eld with blanks, use a space, " ", for the
character string.

[�]string-function Any of the functions listed below, each of which has a character string
as its result. If you include the minus sign (�), then the source value is
placed in the destination �eld with opposite justi�cation. That is, source
data that is right-justi�ed is left-justi�ed in the destination �eld and
vice versa. (See \Functions" later in the description of this verb for a
description of each function and its parameters.)

CHAR

LOWER

PROPER

STRING

UPPER

format-function Either of the two functions listed below, each of which operates on the
destination �eld. A minus sign is not allowed before a format-function.
(See \Functions" later in the description of this verb for a description of
each function and its parameters.)

COL

SPACE

source1 operator
source2 ...
operator sourcen

The source can be an (item-name[(subscript)]), a "character-string",
a string-function , or a format-function. The operator can be +, �, and
both operators can be used in the same expression (a minus sign is not
allowed before a format-function). The plus sign concatenates the items
and strips trailing blanks. The minus sign removes the next item.

Items and strings to be combined are speci�ed in the order of their
intended concatenation or removal. Leading blanks in the strings to be
concatenated are not stripped before concatenation.

STATUS(parm) Moves a value to the destination �eld, depending on the value of parm. If
parm is:

DB Moves status block used in last database call to the data
register location speci�ed by destination-variable.

BASE Moves the database name referenced in the last
database call to the data register location speci�ed by
destination-variable.

October 1996 Transact Verbs 8-129

MOVE

FILE Moves the name of the data set or �le referenced by the
last database, KSAM, or MPE call to the data register
location speci�ed by destination-variable.

Special Considerations

The destination-variable on the left of the \=" sign will be used as a temporary variable to
hold intermediate values necessary when calculating the result of the source-expression on the
right of the \=" sign. Some important points should be noted:

The operands in the source-expression are processed in the order referenced (i.e. left to
right).

If the source-expression contains multiple operators, the destination-variable must be
de�ned large enough to hold any intermediate values or truncation will occur. For example,

MOVE (A) = (B) + (C) � (D);

(A) must be large enough to hold the result of (B) + (C). Failure to do so will cause the
intermediate result to be truncated before removing the value of (D). A detailed example
follows:

MOVE (NAME) = (FNAME) + (LNAME) - "SON";

Before After

FNAME X(05) DAVID DAVID

LNAME X(06) BENSON BENSON

NAME X(10) JEFFBENNER DAVIDBENSO

If the source-expression used on the right of the \=" sign also contains the destination-
variable, the value of the destination-variable may have changed which could cause
unexpected results. For example,

MOVE (A) = (B) + (C) + (A);

the reference to (A) on the right will have the result of (B) + (C) in it when it is used in
the calculation. The best strategy is to avoid using (A) on the right after two operators. A
detailed example follows:

MOVE (NAME) = (FNAME) + (LNAME) + (NAME);

Before After

FNAME X(08) Johntttt Johntttt
LNAME X(08) Paultttt Paultttt
NAME X(16) Jonesttttttttttt JohnPaulJohnPaul

If the source-expression contains a child item and the destination-variable is an overlapping
child item of the same parent, the destination variable may contain unexpected results. For
example:

DEFINE(ITEM) PARENT X(5):

CHILD1 X(3) = PARENT(1):

CHILD2 X(3) = PARENT(3);

LIST PARENT,INIT;

MOVE (PARENT) = "AABBB";
MOVE (CHILD2) = (CHILD1);

8-130 Transact Verbs October 1996

MOVE

After the move, CHILD2 contains \AAA", not \AAB", because the move is done as follows:

1. The �rst A is moved from position 1 to position 3.

2. The second A is moved from position 2 to position 4.

3. The third character has already been replaced by step 1, and is now A; the third step is
therefore to move A from position 3 to position 5.

When a MOVE contains more than two operands, the Transact compiler will split the
MOVE into multiple MOVE statements of two operands each. The following statement:

MOVE (A) = (B) + (C) � (D);

will be split into the following:

MOVE (A) = (B) + (C);

MOVE (A) = (A) � (D);

When a function is the �rst operand in a MOVE statement, the MOVE will be split into
multiple MOVE statements. Consider the following statement:

MOVE (A) = UPPER(B) + (C) � (D);

The Transact compiler will split the MOVE into the following statements:

MOVE (A) = UPPER(B);

MOVE (A) = (A) + (C);

MOVE (A) = (A) � (D);

Functions

The following sections describe the string functions (CHAR, LOWER, PROPER, STRING,
and UPPER) and format functions (COL and SPACE) that are only available within the
MOVE verb, including parameters and examples.

The string functions return values based on the operation performed on the source-variable.
The format functions operate on the destination-variable.

A leading minus sign (�) is not allowed with a format function. A compiler error will be
generated when a minus sign immediately precedes a format function.

October 1996 Transact Verbs 8-131

MOVE

CHAR

The CHAR function returns the character equivalent of a numerical ASCII code. The
argument is a number between 0 and 255 inclusive. Arguments outside the range of 0 to 255
will return a blank.

Syntax

CHAR(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

MOVE (STRING) = CHAR((NUM));

Before After

NUM I(4) 65 65

STRING X(4) XYZt Attt

MOVE (STRING(2)) = CHAR(97);

Before After

STRING(2) U(4) XYZt attt

MOVE (STRING(2)) = �CHAR(97);

Before After

STRING(2) U(4) XYZt ttta

8-132 Transact Verbs October 1996

MOVE

COL

The COL function moves a string into the destination beginning at the speci�ed column
position. The �rst column position is 1. Any bytes in the destination to the left of the column
position will be unchanged.

Syntax

COL(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,position)

where position is either a data item name in parentheses or a numeric constant. The position
parameter indicates the byte in the destination where the string will begin. If position is
greater than the number of bytes in the destination, nothing is moved.

Examples

MOVE (ADDRESS) = (NUMBER) + COL((STREET),(POS));

Before After

ADDRESS X(16) abcdefghijklmnop 125ttHardwickttt
POS I(4) 6 6

NUMBER X(4) 125t 125t
STREET X(10) Hardwicktt Hardwicktt

MOVE (ADDRESS) = COL((STREET),(POS));

Before After

ADDRESS X(16) abcdefghijklmnop abcdeHardwickttt
POS I(4) 6 6

STREET X(10) Hardwicktt Hardwicktt

Errors

A position value less than 0 is the only error speci�c to the COL function. If an error is
encountered while processing the COL function, the string will be moved to the destination
using the default position value of 1. A message describing the error condition is also
displayed. Processing continues if Transact is running online, but will stop if Transact is
running in batch mode.

October 1996 Transact Verbs 8-133

MOVE

LOWER

The LOWER function returns a string in which all letters are converted to lowercase. Any
non-alphabetic characters remain unchanged.

Syntax

LOWER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = LOWER((NAME));

Before After

NAME X(8) BROWNtJt browntjt

MOVE (LNAME) = LOWER("SMITH");

Before After

LNAME U(4) ABCD smit

MOVE (ACTION(2)) = LOWER((VERB((I)))) + "ed";

Before After

I I(5) 4 4

VERB(4) X(4) JUMP JUMP

ACTION(2) X(6) TURNSt jumped

8-134 Transact Verbs October 1996

MOVE

PROPER

The PROPER function returns a string in which a letter in the �rst character position and
each letter immediately following a special character are converted to uppercase. All other
characters remain unchanged.

The default set of special characters as used by PROPER are !"#$%&'()*+,-
./:;<=>?@[\]^_`{|}~ and the blank character.

To change the set of characters that cause the next letter to be upshifted, see the SET and
RESET verbs later in this chapter.

Syntax

PROPER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = PROPER((NAME));

Before After

NAME X(8) browntjt BrowntJt

MOVE (LNAME) = PROPER("smith,j");

Before After

LNAME U(7) ABCDttt Smith,J

MOVE (LNAME) = PROPER("SMITH,J");

Before After

LNAME U(7) ABCDttt SMITH,J

MOVE (LNAME) = PROPER((NAME));

Before After

NAME X(5) smith smith

LNAME X(6) ABCDtt Smitht

MOVE (LNAME) = PROPER("mr.john smith (hp)");

Before After

LNAME X(18) ABCDt...t Mr.JohntSmitht(Hp)

October 1996 Transact Verbs 8-135

MOVE

MOVE (LNAME) = PROPER((NAME));

Before After
NAME X(7) atandtb atandtb
LNAME X(7) ABCDEtt AtAndtB

MOVE (ACTION(2)) = PROPER((VERB((I)))) + "ed";

Before After

I I(5) 3 3

VERB(3) X(4) JUMP JUMP

ACTION(2) X(6) TURNSt JUMPed

MOVE (LNAME) = PROPER("a1b,c.d!e&f g(h]i;");

Before After

LNAME X(18) ABCDt...t A1b,C.D!E&FtG(H]I;

8-136 Transact Verbs October 1996

MOVE

SPACE

The SPACE function moves the speci�ed number of spaces into the destination before moving
the string.

Syntax

SPACE(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,space-size)

where space-size is either a data item name in parentheses or a numeric constant. The
space-size parameter indicates the number of spaces to be moved to the destination before
moving the string.

Examples

MOVE (NAME) = (LNAME) + SPACE(FNAME,1) + SPACE(INITIAL,1);

Before After

LNAME X(6) Doettt Doettt
FNAME X(6) Johntt Johntt
INITIAL X(2) Qt Qt
NAME X(14) abcdefghijklmn DoetJohntQtttt

Errors

A space-size value less than 0 is the only error speci�c to the SPACE function. If an error is
encountered while processing the SPACE function, the string will be moved to the destination
using the default space-size value of 0. A message is also displayed describing the error
condition. Processing continues if Transact is running online, but will stop if Transact is
running in batch mode.

October 1996 Transact Verbs 8-137

MOVE

STRING

The STRING function returns a string that is taken from another string beginning at a given
position for a given length.

Syntax

STRING(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,position,length)

where position and length are either data item names in parentheses or numeric constants.
The position parameter indicates the byte at which the substring begins. The length
parameter indicates the number of bytes to move. If length + position would extend beyond
the end of the source string, the substring returned will be padded a corresponding number of
trailing spaces.

Examples

MOVE (NAME) = STRING((NAME),1,3);

Before After

NAME X(8) BROWNtJt BROttttt

MOVE (LNAME) = STRING("SMITH",(POS),(LEN));

Before After

POS I(4) 3 3

LEN I(4) 2 2

LNAME X(6) ABCDtt ITtttt

MOVE (LNAME) = STRING((NAME),(POS),4);

Before After

POS I(5) 2 2

NAME X(5) SMITH SMITH

LNAME X(6) ABCDtt MITHtt

MOVE (ACTION(2)) = STRING((VERB((I))),(POS(3)),(LEN((I)))) + " ";

Before After
I I(5) 4 4

VERB(4) X(4) JUMP JUMP

POS(3) I(4) 1 1

LEN(4) I(4) 3 3

ACTION(2) X(6) TURNSt JUMtt

The next two examples demonstrate the use of functions with concatenation. Removal can
produce di�erent results:

MOVE (X10) = "Rapid Team" � ("a",20,1) � "p";

Before After

X10 X(10) ABCttttttt RaidtTeamt

8-138 Transact Verbs October 1996

MOVE

The string function returns a null, therefore nothing is removed.

MOVE (X5) = STRING ("a",20,1);

MOVE (X10) = "Rapid Team" � (X5) � "p";

Before After

X5 X(5) ABCDE ttttt
X10 X(10) XYZttttttt RaidTeamtt

The string function returns a null, however when a null is moved to an X type item, it is
converted to blanks. A blank is then removed in the second MOVE statement.

Errors

If an error is encountered while processing the STRING function, an appropriate default
string is returned by the function depending on the destination's data type (spaces for X
and U types and nulls for all other types). A message is also displayed describing the error
condition. Processing continues if Transact is running online but will stop if Transact is
running in batch mode. The only errors speci�c to the STRING function are:

Position parameter <0

Length parameter <0

October 1996 Transact Verbs 8-139

MOVE

UPPER

The UPPER function returns a string in which all letters are converted to uppercase.
Non-alphabetic characters remain unchanged.

Syntax

UPPER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = UPPER((NAME));

Before After

NAME X(8) browntjt BROWNtJt

MOVE (LNAME) = UPPER("smith");

Before After

LNAME U(6) abcdtt SMITHt

MOVE (LNAME) = UPPER((NAME));

Before After

NAME X(5) smith smith

LNAME X(6) abcdef SMITHt

MOVE (ADDRESS) = UPPER("123tMain");

Before After

ADDRESS X(8) abcdefgh 123tMAIN

MOVE (ACTION(2)) = UPPER((VERB((I)))) + "ed";

Before After

I I(5) 1 1

VERB(1) X(4) jump jump

ACTION(2) X(6) turnst JUMPed

MOVE (LNAME) = UPPER((NAME));

Before After

NAME X(7,,7) abcdefg abcdefg

LNAME X(6,,7) JOHNtJt ABCDEFG

In the preceding example using a storage length of 7, the item LNAME will contain
ABCDEFG in the data register, but when displayed, LNAME will only display the �rst 6
characters, ABCDEF.

8-140 Transact Verbs October 1996

MOVE

Examples

The �rst example copies the values for FIELD-A into FIELD-B.

MOVE (FIELD-B) = (FIELD-A);

Before After

FIELD-A X(4) SAMt SAMt <<no change>>

FIELD-B X(5) CHUCK SAMtt

The next example moves the �rst two characters of DATE into MONTH.

MOVE (MONTH) = (DATE);

Before After

DATE X(6) 100770 100770 <<no change>>

MONTH X(2) 12 10

The next example shows concatenation. Note that the trailing blanks in FIELD1 are stripped
when the two �elds are concatenated.

MOVE (NEWFIELD) = (FIELD1) + (FIELD2);

Before After

FIELD1 X(4) ABtt ABtt <<no change>>

FIELD2 X(3) CDE CDE <<no change>>

NEWFIELD X(6) 123456 ABCDEt

The following example shows the removal of internal characters:

MOVE (DATE) = (FDATE) � (SLASH);

Before After

FDATE X(8) 01/31/82 01/31/82 <<no change>>

SLASH X(1) / / <<no change>>

DATE X(6) tttttt 013182

The next example shows justi�cation:

MOVE (FIELDY) = �(FIELDX);

Before After

FIELDX X(4) ABCt ABCt <<no change>>

FIELDY X(4) 1234 tABC

October 1996 Transact Verbs 8-141

MOVE

The next examples show justi�cations using �elds of di�erent lengths.

MOVE (FIELDB) = �(FIELDA);

Before After

FIELDA X(4) XYZt XYZt

FIELDB X(8) 12345678 tttttXYZ

MOVE (FIELDA) = �(FIELDB);

Before After

FIELDA X(4) XYZt 1234

FIELDB X(8) 123456tt 123456tt

MOVE (FIELDA) = �(FIELDB);

Before After

FIELDA X(4) XYZt t123

FIELDB X(8) 123ttttt 123ttttt

The following example demonstrates the use of MOVE with numeric data items of di�erent
lengths.

SYSTEM T6121;

DEFINE(ITEM) INTARRAY 10 I(4):

INT I(4);

LIST INTARRAY: INT;

LET (INT) = 65;

MOVE (INTARRAY) = (INT);

DISPLAY INTARRAY;

EXIT;

The result in INTARRAY is the �rst element has 65 and all others have 0 because MOVE �lls
numeric type items with zeros when the source length is smaller than the destination. Be sure
that the de�nitions of the source and destinations are the same, since no type conversion is
performed by MOVE.

When assigning a value to an array, the MOVE verb treats the array as a simple compound
item and moves each byte one at a time until the end of the value or the end of the array,
whichever comes �rst. The remaining elements are �lled with blanks (if 9, X, or U data types)
or �lled with null characters (if numeric data types).

If a subscript is speci�ed, only that element is assigned the value and all other subscripts
remain unchanged.

For example, if ARRAY-X is de�ned as 6X(2) and ARRAY-I is de�ned as 4I(5,,2).

8-142 Transact Verbs October 1996

MOVE

MOVE (ARRAY-X) = "abcdefgh"; <<Sets 1st element to ab; 2nd to cd, etc.>>

MOVE (ARRAY-X(2)) = "ZZ"; <<Sets 2nd element to ZZ.>>

LET (TEMP-I) = 67;

MOVE (ARRAY-I) = (TEMP-I); <<Sets 1st element to 67 and rest >>

<<to nulls (binary 0).>>

LET (TEMP-I) = 78;

MOVE (ARRAY-I(4)) = (TEMP-I); <<Sets only 4th element to 78.>>

See Chapter 3 for more information on handling arrays.

October 1996 Transact Verbs 8-143

OUTPUT

Performs a multiple data retrieval from a �le or data set and displays the data.

Syntax

OUTPUT
�
(modi�er)

�
�le-name

�
,option-list

�
;

OUTPUT speci�es a database or �le retrieval operation. It adds each retrieved record to the
data register, but only selects for output those records that satisfy any selection criteria in the
match register. For each selected record, OUTPUT displays all the items in the current list
register. If you want to select items from the list register, you should precede the OUTPUT
statement with a FORMAT statement.

The OUTPUT statement displays the selected entries after PERFORM= statements are
executed. This allows you to display the results of PERFORM= statements. However, this
makes nesting of OUTPUT statements di�cult. The output from the most deeply nested
OUTPUT statement is displayed �rst. To produce nested output in the more usual order,
you can use a FIND statement to retrieve the data with a PERFORM= option to display the
data.

If a FORMAT statement appears before the OUTPUT statement, then the display is
formatted according to the speci�cations in that statement. If there is no preceding FORMAT
statement, the display is formatted according to the default format described below. Once
all entries have been displayed according to a preceding FORMAT statement, subsequent
OUTPUT statements revert to the default format unless control passes again through a
FORMAT statement.

The default format for OUTPUT is:

Displays values in the order in which they appear in data register.

Accompanies each value with a heading consisting of:

the heading speci�ed for that value in a HEAD= option of a DEFINE(ITEM) statement,

the heading taken from a dictionary de�nition of the item, or

the associated data item name in the list register.

Displays each value in a �eld whose length is either the data item size or the heading length,
whichever is longer.

A single blank character separates each value �eld from the next. If a �eld cannot �t on the
current display line, then the �eld begins on a new line.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

8-144 Transact Verbs October 1996

OUTPUT

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none Retrieves an entry from a master set based on the key value
in the argument register. This option does not use the match
register.

CHAIN Retrieves entries from a KSAM �le key or a detail chain. The
entries must meet any match criteria set in the match register
in order to be collected. The contents of the key and argument
registers specify the chain or KSAM key in which the retrieval
is to occur. If no match criteria are speci�ed, all entries are
selected. If match criteria are speci�ed, the match items must be
included in a LIST= option of the OUTPUT statement.

CURRENT Retrieves the last entry that was accessed from the MPE or
KSAM �le or data set.

DIRECT Retrieves the entry stored at a speci�ed record number from an
MPE or KSAM �le or a data set. Before using this modi�er,
store the record number as a 32-bit integer I(10,,4) in the item
referenced by the RECNO= option.

PRIMARY Retrieves the master set entry stored at the primary address of a
synonym chain. The primary address is located through the key
value contained in the argument register.

RCHAIN Retrieves entries from a detail set in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Retrieves entries from a data set in the same manner as the
SERIAL option, except in reverse order. For a KSAM or MPE
�le, this operation is identical to SERIAL.

SERIAL Retrieves entries in serial mode from an MPE or KSAM �le or
a data set that meet any match criteria set up in the match
register. If no match criteria are speci�ed, all entries are selected.
If match criteria are speci�ed, the match items must be included
in a LIST= option of the OUTPUT statement.

�le-name The �le or data set to be accessed by the retrieval operation. If the data set is
not in the home base as de�ned in the SYSTEM statement, the base name must
be speci�ed in parentheses as follows:

set-name(base-name)

option-list : One or more of the following options separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and Transact sets the list
register pointer to the data item item-name. Transact
generates an error at execution time if the item cannot

October 1996 Transact Verbs 8-145

OUTPUT

be found in the list register. The item-name must be a
parent.

If you do not specify an item-name, as in
ERROR=label ();, the list register is reset to empty. If you
use an *" instead of item-name, as in ERROR=label (*);,
then the list register is not changed. For more
information, see \Automatic Error Handling" in Chapter
7.

LIST=(range-list) The list of items from the list register to be used for the
data retrieval portion of the OUTPUT operation. The
display portion follows the same rules as the DISPLAY
statement. If the LIST= option is omitted, the entire list
register is used for the data retrieval.

Only the items speci�ed in a LIST= option have their
match conditions applied if match conditions are set up
in the match register. (The match register can be used
only with the modi�ers CHAIN, RCHAIN, SERIAL, or
RSERIAL.)

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM= is
executed.

For all options of range-list , the data items selected are
the result of scanning the data items in the list register
from top to bottom, where top is the last or most recent
entry. (See Chapter 4 for more information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a range
for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items retrieved by
OUTPUT include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY . In
other words, the list register is scanned
for the occurrence of item-nameY closest
to the top of the list register. From that
entry, the list register is scanned for
item-nameX . All data items between
are selected. An error is returned if
item-nameX is between item-nameY and
the top of the list register.

Duplicate data items can be included or
excluded from the range, depending on
their position on the list register. For

8-146 Transact Verbs October 1996

OUTPUT

example, if range-list is A:D and the list
register is as shown,

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are
marker items, and if there are no data
items between the two on the list register,
no database access is performed. (See the
DEFINE(ITEM) verb description.)

(item-nameX) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the list
register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and
MPE �les or for VPLUS forms, data
items must be speci�ed in the order of
their occurrence in the physical record
or form. This order need not match
the order of the data items on the list
register. Do not include child items in
the list unless they are associated with a
VPLUS forms �le. This option incurs
some system overhead.

(@) Speci�es a range of all data
items of �le-name as de�ned in a
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the data

October 1996 Transact Verbs 8-147

OUTPUT

dictionary. The data items are speci�ed
in the order of their occurrence in the
physical record or form as de�ned in the
data dictionary. This order need not
match the order of the data items in the
list register.

() A null data item list. Accesses the �le or
data set, but does not retrieve any data.

LOCK Locks the speci�ed �le or database. The lock is active the
entire time that the OUTPUT executes. If LOCK is not
speci�ed and a TurboIMAGE data set is being accessed,
no locking is done.

When a KSAM or MPE �le is being accessed, if LOCK is
not speci�ed on the OUTPUT statement but is speci�ed
for the �le in the SYSTEM statement, then the �le is
locked before each entry is retrieved, remains locked while
the entry is processed by any PERFORM= statements,
but is unlocked briey before the next entry is retrieved.

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the OUTPUT verb.

For transaction locking, you can use the LOCK option
on the LOGTRAN verb instead of the LOCK option on
OUTPUT if SET(OPTION) NOLOCK is speci�ed.

See \Database and File Locking" in Chapter 6 for more
information on locking.

NOCOUNT Suppresses the message normally generated to indicate the
number of entries found.

NOHEAD Suppresses default headings for the displayed values.

NOMATCH Ignores any match criteria set up in the match register.
This option is useful if you want to leave the match
register set up but do not want to use it.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error. All other error recovery
actions occur.

PERFORM=label Executes the code following the speci�ed label for every
entry retrieved by the OUTPUT operation. The entries
can be optionally selected by MATCH criteria, in which
case the PERFORM= statements are executed only for
the selected entries.

This option allows operations to be performed on
retrieved entries without having to code loop control logic.
You can nest up to 10 PERFORM= options.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must initialize
item-name to contain the 32-bit integer number (I(10,,4))

8-148 Transact Verbs October 1996

OUTPUT

of the record to be retrieved. With other modi�ers,
Transact returns the record number of the retrieved
record in item-name, a 32-bit integer (I(10,,4)).

The item-name can be subscripted if an array item is
being referenced. (See \Array Subscripting" in Chapter
3.)

SINGLE Retrieves and displays only the �rst entry that satis�es
any selection criteria.

SOPT Suppresses the optimization of database calls. This option
is primarily intended to support a database operation
in a performed routine that is called recursively. The
option allows a di�erent path for the same detail set to be
used at each recursive entry, rather than optimizing to
the same path. It also suppresses generation of a call list
of *" after the �rst call is made. Use SOPT if you are
calling TurboIMAGE through the PROC or CALL verbs.
For an example of how SOPT is used, see \Examples" at
the end of the FIND verb. For more detailed information
on SOPT, see \Suppression of Optimization versus
WORKFILE" in the FIND statement of this chapter.

SORT=[(item-name1:item-name2)] (item-name3[(ASC)]

[(DES)]

[,item-name4[(ASC)]]...);

[(DES)]

This option sorts each occurrence of item-name3 and,
optionally, item-name4 , and so forth. The list used to
de�ne the sort �le record is either the range of items
speci�ed by item-name1 :item-name2 , or if item-name1
and item-name2 are omitted, the entire list register. You
can use the optional range to prevent unneeded variables
from being written to the sort �le. In general, only send
to the sort �le the items that will be formatted for output.

The OUTPUT statement always sorts after processing any
PERFORM= statements. The processing sequence for the
sort is:

�rst, retrieves each selected record,

then, executes any PERFORM= statements,

then, writes the speci�ed items to the sort �le, and,
after writing all the records to the sort �le,

sorts the sort �le, and

displays the sorted output.

The SYSTEM statement determines the size of the sort
�le.

October 1996 Transact Verbs 8-149

OUTPUT

You can specify either ascending or descending sort order.
The default is ascending order. (See the FIND verb
description for a di�erent processing sequence.)

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You will need to add code
to check the value of STATUS, as shown in the example
below. When STATUS is speci�ed, the e�ect of an
OUTPUT statement is described by the 32-bit integer
value in the status register:

Status

Register Value

Meaning

0 The OUTPUT operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation corresponding to the value.

STATUS causes the following with OUTPUT:

Normal multiple accesses become single.

The normal rewind done by OUTPUT is suppressed, so
CLOSE should be used before OUTPUT(SERIAL).

The normal �nd of the chain head by OUTPUT
is suppressed, so PATH should be used before
OUTPUT(CHAIN).

See \Using the STATUS Option" in Chapter 7.

Examples

The following two examples of OUTPUT retrieve data according to a value entered by the
user. Then they display the data according to the preceding FORMAT statement.

Example 1 Example 2

LIST NAME: PROMPT(PATH) CUST-NO;

ADDRESS: LIST COMPANY:

CITY: CO-ADDR:

ZIP; CO-STATE:

PROMPT(KEY) CUST-NO; ZIP;

FORMAT NAME,COL=5: FORMAT COMPANY,COL=5:

ADDRESS,COL=20: CO-ADDR,COL=40:

CITY,SPACE=5: CO-STATE,LINE,COL=5:

ZIP,SPACE=5; ZIP,COL=40;

OUTPUT MASTER, OUTPUT(CHAIN) DETAIL,

LIST=(NAME:ZIP); LIST=(COMPANY:ZIP);

8-150 Transact Verbs October 1996

OUTPUT

The following example retrieves the entries that satisfy the match criterion LAST-NAME =
"Smith" from the data set CUSTOMER, then sorts the entries according to FIRST-NAME
and displays only the sorted names.

LIST LAST-NAME:

FIRST-NAME;

MOVE (LAST-NAME) = "Smith";

SET(MATCH) LIST(LAST-NAME);

FORMAT LAST-NAME: << Items to be displayed. >>

FIRST-NAME, JOIN=2;

OUTPUT(SERIAL) CUSTOMER,

NOCOUNT, NOHEAD,

SORT=(FIRST-NAME); << Sort on first name. >>

The resulting display looks like:

Smith Abraham

Smith John

Smith Joseph

Smith Mary

Smith Thomas

In the next example, some of the items selected for sorting and displaying are calculated in a
PERFORM= routine.

LIST INV-NO:

PRICE:

QUANTITY:

AMOUNT:

TOT-AMT;

OUTPUT(SERIAL) INVENTRY,

LIST=(INV-NO:QUANTITY), PERFORM=TOTAL,

SORT=(INV-NO:AMOUNT) (AMOUNT);

TOTAL:

LET (AMOUNT) = (PRICE) * (QUANTITY);

LET (TOT-AMT) = (TOT-AMT) + (AMOUNT);

RETURN;

October 1996 Transact Verbs 8-151

PATH

Establishes a chained access path to a data set or a KSAM �le.

Syntax

PATH �le-name
�
,option-list

�
;

PATH uses the key and argument registers that correspond to the KSAM key for setting up
chained access for the KSAM �le or chained access for a detail data set. If you do not include
a STATUS option in the PATH statement, the status register is set to the number of entries in
the chain of a detail set. The number of entries is not returned for a KSAM �le.

You must use a PATH statement to establish the path for chained access to a KSAM �le or
a data set when the STATUS option is included in a subsequent data access statement. The
PATH verb cannot be used with MPE �les.

PATH performs �le and key validations during program execution. If the attributes do not
match the current database or �le, an error message is displayed.

Statement Parts

�le-name The KSAM �le or data set to be accessed. If the data set is not in the home
base as de�ned in the SYSTEM statement, the base name must be speci�ed
in parentheses as follows:

set-name(base-name)

If you specify a set name and do not include the STATUS option, the status
register is set to the number of entries in the data set chain; the status
register will not contain the number of entries for a KSAM �le.

option-list One or more of the following �elds, separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and Transact sets the list
register pointer to the data item item-name. Transact
generates an error at execution time if the item cannot
be found in the list register. The item-name must be
a parent.

If you do not specify an item-name, as in
ERROR=label (), the list register is reset to empty.
If you use an *" instead of item-name, as in
ERROR=label (*), then the list register is not
changed. For more information, see \Automatic Error
Handling," in Chapter 7.

LIST=(range-list) Used only with KSAM �les to map out a record. The
list option is needed to locate the key in the KSAM
record.

8-152 Transact Verbs October 1996

PATH

For all options of range-list , the data items selected
are the result of scanning the data items in the
list register from top to bottom, where top is the
last or most recent entry. (See Chapter 4 for more
information on registers.)

All item names speci�ed must be parent items.

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range.

The options for range-list and the records upon which
they operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

then data items A, B, C, D, and D are
selected.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

October 1996 Transact Verbs 8-153

PATH

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the
list register. For KSAM �les, data
items must be speci�ed in the order
of their occurrence in the physical
record. This order need not match
the order of the data items on the
list register. This option incurs some
system overhead.

(@) Speci�es a range of all data items
of �le-name as de�ned in a data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or
form as de�ned in the data dictionary.
This order need not match the order
of the data items in the list register.

() A null data item list. Operates on the
�le but does not retrieve any data.

NOMSG Suppresses the standard error message produced by
Transact as a result of a �le or database error.

8-154 Transact Verbs October 1996

PATH

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You will need to add
code to check the value of STATUS. When STATUS is
speci�ed, the e�ect of a PATH statement is described
by the value in a 32-bit integer status register:

Status

Register Value

Meaning

0 The PATH operation was successful.

�1 A KSAM end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to the database or KSAM �le system error
documentation that corresponds to the value.

Note that when STATUS is omitted, the status
register contains a �1 if the argument value for a
PATH operation on a detail set is not found in the
associated master set. (See Table 7-4 for other status
register values.)

Examples

The following example uses a PATH statement to locate the head of a KSAM chain, and then
retrieves the �rst item in that chain.

LIST DEL-WORD:

CUST-NO:

LAST-NAME:

FIRST-NAME:

INITIAL;

PROMPT(KEY) CUST-NO ("Enter Customer Number");

<<Set up key/arg registers >>

PATH KFILE, <<Locate head of chain in KFILE >>

LIST=(DEL-WORD:INITIAL); <<Map KFILE record >>

IF STATUS <> 0 THEN

GET(CHAIN) KFILE, <<Retrieve first record >>

STATUS,

LIST=(DEL-WORD:INITIAL);

The next example uses a PATH statement to determine the number of records in a detail set.

PROMPT(PATH) CUST-NO;

PATH CUST-DETAIL;
LET (NUM-RECS) = STATUS;

DISPLAY NUM-RECS, NOHEAD:

"Records in this Path";

October 1996 Transact Verbs 8-155

PATH

PATH is required before you use the STATUS option in a database access statement because
the STATUS option suppresses the usual determination of a chain head. In the following
example, the PATH statement is needed prior to the FIND(CHAIN) statement that includes a
STATUS option:

SET(KEY) LIST(CUST-NO);

PATH CUST-DETAIL;

GET-NEXT:

FIND(CHAIN) CUST-DETAIL,

LIST=(CUST-NO:ZIP),

STATUS,

PERFORM=PROCESS-ENTRY;

IF STATUS <> 0 THEN

GO TO ERROR-ROUTINE

ELSE

GO TO GET-NEXT;

Note that the STATUS option also suppresses the normal multiple retrieval performed by
FIND; you must speci�cally code the loop logic.

8-156 Transact Verbs October 1996

PERFORM

PERFORM

Transfers control to a labeled statement.

Syntax

PERFORM label;

PERFORM transfers execution to the statement identi�ed by label . Execution continues until
one of the following is encountered:

RETURN Returns control to the statement immediately following the corresponding
PERFORM statement.

END Speci�es the end of the current processing level and returns control to the
previous processing level, or to command level if no previous processing level is
active within the perform block.

another
label

Speci�es the end of the current command sequence. The compiler generates an
END statement and the e�ect is the same as END.

PERFORM statements can be nested up to a maximum of 75 levels. Note that this di�ers
from PERFORM= options in data management verbs, which allow a maximum of 10 levels
of nesting. Although GO TO statements can branch into and out of PERFORM statement
loops, this is not generally good coding practice.

Statement Parts

label The label that identi�es the sequence of statements called by PERFORM.

Examples

When the response to INPUT causes a transfer to the label ADD-IT, the statements between
ADD-IT and RETURN execute. Control then returns to the PROMPT statement that
immediately follows the IF statement.

IF INPUT = "YES", "Y" THEN

PERFORM ADD-IT

ELSE GO TO GET-ACCT;

PROMPT INV-NUM("Invoice Number"), RIGHT;...
END;

ADD-IT:

PUT CUST-FILE, LIST=(NAME:ZIP);

LET (NUM) = (NUM) + 1;

DISPLAY NAME, COL=5, NOHEAD:

"HAS BEEN ADDED TO CUSTOMER FILE.", JOIN;

RETURN;

October 1996 Transact Verbs 8-157

PROC

Calls a procedure that has been placed into a segmented library �le (SL) for Transact/V or
compatibility mode. PROC also calls procedures from an executable library (XL) for native
mode programs on Transact/iX.

Syntax

PROC procedure-name
�
(parameter-list)

��
,option-list

�
;

Transact/V

PROC calls an MPE system intrinsic or other compiled procedure that is resident in an
SL �le. SL �les are searched and procedures and intrinsics are dynamically loaded in the
following order: logon group SL, logon account SL, system SL.

The PROC statement does not directly support intrinsics with an optional number of
parameters (Option Variable Intrinsics); you may call such intrinsics by using a bit map to
specify the parameters you want passed. Bit maps are always required for any PROC call to
an option variable intrinsic or user de�ned procedure. They are passed by value as the last
parameter in a parameter list. A bit map is formed by setting a string of bits to one or zero,
depending on whether a parameter is passed or not passed, respectively. The bit string is then
right-justi�ed in a 16- or 32-bit word (depending on the number of possible parameters) and
converted into an integer value. This value is passed to the option variable procedure as the
last parameter. See the SPL Reference Manual for more information on Option Variable bit
maps.

All system intrinsics called can be declared in a DEFINE(INTRINSIC) statement. When this
is done, the intrinsics are resolved only from the system SL.

Transact/iX

The Transact PROC verb is the same, in e�ect, under MPE V and MPE/iX. It is used to
call procedures written in other languages. The primary point to be aware of is that both
Transact subprograms and routines written in other languages must reside in an executable
library (XL) or be linked into your program if they are to be called by a Transact program
under MPE/iX. Switch routines must be written for any user de�ned subroutines running in
compatibility mode, including all SPL routines.

Two features, the PROCALIGNED 16/32/64 compiler options and the %n alignment
options, allow you to tune applications with respect to the overhead needed for calling
external procedures. The PROCALIGNED 16/32/64 compiler options are discussed in detail
under \Transact/iX Compiler Options" in Chapter 9. The parameter alignment options are
described later in this section.

A third feature, the PROCINTRINSIC compiler option, is designed to ease the migration of
programs that call system intrinsics. Compiler options are discussed in Chapter 9.

8-158 Transact Verbs October 1996

PROC

Another item to note is that no conversion between IEEE oating point (real) numbers and
HP3000 oating point numbers is attempted. When passing parameters or data that access
real numbers, the called procedure or intrinsic must be compiled with the same real number
format as the main program. (See \Floating Point Formats" in Appendix B.)

Statement Parts

procedure-name The name under which the procedure is listed in the SL or XL.

parameter-list The items in the parameter-list specify one or more parameters that are
passed between the Transact program and the external procedure. The
list can contain any number of variables, constants, and literals separated
by commas. The order in which you place them is determined by the
order in which the called procedure expects them. The only exception
is that a function return variable can be placed anywhere in the list; a
function return variable is indicated by a preceding \&".

The following special characters can precede any item-name parameter or
key word parameter:

% Passes the given parameter by byte address (by reference).

Passes the given parameter by value rather than by reference.

& Copies the function value returned by the intrinsic to the �eld in
the data register associated with the given item, or to the status
register. Only one such designated parameter can be included in the
parameter-list , and it can appear anywhere in the list.

The default (no special character) passes an item-name or key word
parameter by a 16-bit address. \Character-string" parameters are only
passed by reference, and numeric-constant parameters are only passed by
value.

You can indicate to the called procedure the existence of a null parameter
by placing consecutive commas on the list. Transact passes a 16-bit value
of zero for this null parameter. Use two commas if the parameter has a
32-bit value, and is passed by value. Use one comma if the parameter is
passed by reference.

You can also indicate a null parameter by placing "" as the parameter.

All addresses speci�ed by the items in parameter-list are 16-bit addresses.
If you want to specify a byte address, precede the item-name with
\%". For example, ITEM(NUM) speci�es a 16-bit address, whereas
%ITEM(NUM) speci�es a byte address. PROC does not automatically
align data parameters on 16-bit boundaries.

Note Transact does not verify that parameters are correctly set up. You must verify
this before attempting to call a procedure.

October 1996 Transact Verbs 8-159

PROC

The parameter-list may consist of any of the following:

(item-name
[(subscript)])

Address of a logical array containing the value of
an item in the data register. Use this parameter to
pass any values de�ned in your program. It is up
to you to make sure that the item is on a 16-bit
boundary in the data register if you want to pass a
16-bit address. The beginning of the data register
is on a 16-bit boundary; if you add items with an
odd number of bytes, you should add a dummy �ll
character to retain 16-bit boundaries.

\character-string" A programmer-de�ned character string. If
character-string is null, as in "", the parameter
is �lled with binary zeros. Use a space for the
character string, " " to �ll the �eld with blanks.
The default is that the character-string is passed
by a 16-bit address (by reference). Precede the
character-string with a \%" sign to pass it by a
byte address. You can only pass character-strings
for those parameters expecting a reference. For
more information, see \Character-String and
Numeric-Constant Parameters" later in this verb.

numeric-constant A numeric value. The numeric-constant is
passed by value. You do not need to precede
this parameter with a \#". You can only
pass numeric-constants for those parameters
expecting a value. For more information, see
\Character-String and Numeric-Constant
Parameters" later in this verb.

You can include any of the following key words in a parameter-list . If the
key word has an argument, it must immediately follow the key word with
no intervening blanks. Transact supplies a value (usually an address)
whenever it �nds one of these key words in a parameter list.

ARG Address of a logical array containing the argument
value currently associated with the key for data set
or �le operations.

ARGLNG Address of a 16-bit integer (I(5,,2)) containing the
byte length of the argument value.

BASE[(base-name)] Address of a logical array containing the name of
the given database preceded by the two-character
base-id supplied by the database, and followed by
a blank character. If no base-name is speci�ed,
then the home base is assumed. Note, the home
base cannot be speci�ed.

BASELNG
[(base-name)]

Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given base-name, including the
terminating blank.

8-160 Transact Verbs October 1996

PROC

BYTE(item-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the value of the given item.

COUNT(item-name) Address of a 16-bit integer (I(5,,2)) containing
any subitem occurrence count for the given item.
A value of 1 means that the given item is not a
compound type containing subitems.

DECIMAL
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
decimal place count for the given item.

FILEID(�le-name) Address of a 16-bit integer (I(5,,2)) containing
the identi�er assigned to �le-name by MPE when
the �le was opened by this process. The following
special �les can also be used in conjunction with
the FILEID parameter:

TRANIN Transact input �le

TRANOUT Transact output �le

TRANLIST Transact printer output �le

INPUT Address of the logical array containing the value
that was last input in response to an INPUT
statement prompt.

INPUTLNG Address of a 16-bit integer (I(5,,2)) containing the
byte length of the input value.

ITEM(item-name) Address of a logical array containing the name of
the given item.

ITEMLNG
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given item name.

KEY Address of a logical array containing the name of
the data item currently used as a key for data set
or �le operations. The data item name must be
terminated by a semicolon (;).

KEYLNG Address of a 16-bit integer (I(5,,2)) containing
the byte length of the data item name in the key,
including the terminating semicolon.

POSITION
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
position (the byte o�set) of a child item within
its parent item. This parameter is set to �1 to
indicate that there is no parent item.

SET(set-name) Address of a logical array containing the name of
the given data set followed by a blank.

SETLNG(set-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given data set name, including
the terminating blank.

October 1996 Transact Verbs 8-161

PROC

SIZE(item-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the display or entry format for the
given item.

STATUS Address of the lower order 16 bits of the 32-bit
status register set by Transact. If the STATUS
parameter is NOT used, then the 32-bit status
register is set to one of the condition codes
generated by the called procedure (CCL, CCE, or
CCG).

Condition codes are de�ned as follows:

CCL = �1
CCE = 0
CCG = +1

Condition codes in the status register can be
tested with a subsequent IF statement. For
example:

IF STATUS < 0 THEN GO TO CCL-PROCESS;

where CCL-PROCESS will handle a CCL
condition.

Upon exiting from PROC, the entire 32 bits of the
status register is set to the value in the lower order
16 bits of the status register.

STATUS(DB) Address of the condition word block returned by
the database. (The discussion of MOVE explains
how to use this value.)

STATUS(IN) Address of a 16-bit integer (I(5,,2)) containing
the STATUS value following the most recent user
input statement (PROMPT, DATA, or INPUT).
(See the appropriate verb for the interpretation of
the STATUS value.)

TYPE(item-name) Address of a 16-bit integer (I(5,,2)) containing a
code that represents the data type of item-name.
The code represents the data type by its position
in the sequence: X, U, 9, Z, P, I, J, K, R, E, @;
thus, the code corresponds to a data type as
follows:

0=X, 1=U, 2=9, 3=Z, 4=P, 5=I, 6=J, 7=K, 8=R,
9=E, and 10=@ (the marker item)

VCOM(form-�le) Address of the logical array containing the VPLUS
communication area being used for the referenced
form-�le. (See the discussion of the VPLS option
under SET(OPTION) in this chapter.)

8-162 Transact Verbs October 1996

PROC

option-list One or more of the following options can follow the parameter list, separated
by commas:

UNLOAD (This option is for Transact/V only.) Unloads the procedure
being called following execution; that is, removes it from
the Loader Segment Table. By default, Transact leaves an
entry in the Loader Segment Table for each called procedure
after it executes. Only use this option if you do not need the
procedure again. Otherwise, Transact incurs extra overhead
loading the procedure the next time it is called.

For Transact/iX, all procedures are bound at link time or as a
part of the RUN command. If you use the UNLOAD option
you will get the compile message:

INFO: THE `UNLOAD' OPTION FOR THE PROC VERB HAS NO MEANING

ON AN MPE/IX SYSTEM.

NOTRAP Ignores any arithmetic trap detected in the operation of the
procedure. By default, Transact issues an error message
and terminates the called procedure when it encounters an
arithmetic error.

NOLOAD Loads the called program the �rst time it is called rather than
when the program is initiated. By default, Transact loads all
external procedures when it initiates the calling program.

Used in combination with UNLOAD for Transact/V only,
this option can save Loader Segment Table space. NOLOAD
is ignored if the called procedure is an MPE system intrinsic
declared in a DEFINE(INTRINSIC) statement; if you want
such a procedure to be loaded dynamically, do not include it
in a DEFINE(INTRINSIC) statement.

Note The following option should not be used with Transact/iX.

language Used to specify the language in which the procedure is
written: Pascal, COBOL, FORTRAN, BASIC, or SPL. This
option is needed to call COBOL procedures to avoid an
arithmetic trap when the stack exceeds 16K 16-bit words.

Parameters Passed by Byte Address

An option is available on the PROC verb to specify alignment on individual reference
parameters passed by byte address. This option is only available for item variables; it is not
used for character-string parameters. This option takes the form \%n", where n can be 8, 16,
32, or 64, as follows:

%8 Align parameter on an 8-bit boundary (this is the default)

%16 Align parameter on a 16-bit boundary

October 1996 Transact Verbs 8-163

PROC

%32 Align parameter on a 32-bit boundary

%64 Align parameter on a 64-bit boundary

The alignment option must precede the parameter a�ected. For example,

PROC GETNAME (%32(NAME));

This option takes precedence over the PROCALIGNED 16/32/64 options for the individual
parameter. It is only active for the Transact/iX compiler. Under the Transact/V processor,
all parameters passed on a greater than 8-bit boundary are treated as 16-bit address
parameters. When PROCINTRINSIC is speci�ed, but the alignment check is less than that
required by the intrinsic de�nition in SYSINTR.PUB.SYS, an error occurs at run time.

Parameters Passed by Value or by Reference

Transact/V does not check passed parameters to verify that they are of the same type as
the parameters expected by the called procedure. The Transact/iX compiler checks calls
to system intrinsics, verifying that reference parameters are passed by reference and value
parameters are passed by value. An informational message is reported if a parameter is not
passed in the expected way.

For example, the ASCII intrinsic expects the �rst parameter to be passed by value. If,
instead, it is passed by reference using the PROC verb, the Transact/iX compiler issues the
following informational messages:

*INFO: PROC PARAMETER 1 WAS PASSED BY REFERENCE WHEN VALUE EXPECTED

*INFO: ERRORS IN PROC PARAMETERS TO 'ASCII' WILL CAUSE A RUN TIME ERROR

At run time, the following error occurs when the PROC ASCII statement is encountered:

*ERROR: PARAMETER SPECIFICATION ERRORS PREVENTED PROC CALL

Transact/V programs that take advantage of no type checking may require that you write
a procedure to provide the same functionality as the intrinsic being accessed. For example,
since no parameter type checking is done on calls to user de�ned procedures, you can code a
procedure which has the same parameters as the intrinsic and which merely calls the intrinsic.
In Transact/iX, you would then use the PROC verb to call this procedure rather than the
intrinsic, passing the parameters in the same way as when the intrinsic was called directly.

Character-String and Numeric-Constant Parameters

For Transact/V, numeric-constant parameters are passed by value. If the number passed is
four digits or less (from -9999 to 9999), the number is assumed to be a 16-bit integer such as
I(4,,2). If more than four digits, the number is assumed to be a 32-bit integer such as I(9,,4).
A number passed with a decimal point is truncated to an integer value.

To pass a 32-bit integer parameter with four digits or less, precede the integer with zeros
until the integer is at least �ve digits long. The following example shows the integer 48 being
passed as a 32-bit value because it is preceded by three zeros.

PROC DASCII(00048, 10, %(ASCIIEQV), &(NUMCHAR));

" "
32-bit 16-bit

For Transact/iX, character-strings and numeric-constants passed as parameters for system
intrinsics are veri�ed according to the data type for which they are being passed (the

8-164 Transact Verbs October 1996

PROC

data type of the formal parameter of the system intrinsic). This checking of the data
type is performed when the PROCINTRINSIC compiler option is speci�ed. When the
PROCINTRINSIC compiler option is speci�ed or the DEFINE(INTRINSIC) verb is used,
the numeric constant parameters are type-checked to be 16-bit integers such as I(4,,2). You
can bypass this limitation by adding the procedure to the SYSINTR �le or using variable
parameters instead of constants. Numeric-constants must be less than 11 characters (a sign
plus 10 digits including the decimal point).

Accessing COBOL Subroutines

When the Transact/iX compiler generates the procedure name in the PROC statement,
hyphens are left standing|they are neither converted to underscores nor removed. On
the other hand, COBOL II/iX converts hyphens to underscores. Therefore, a COBOL II
subroutine that is recognized by Transact/V in compatibility mode will not be recognized
when it is recompiled using COBOL II/iX and linked or loaded with a Transact/iX program.
To make the names consistent, specify the COBOL II/iX compiler option that removes
hyphens from COBOL subroutine names or use underscores instead of hyphens when naming
COBOL subroutines that will be used under Transact.

Option Variable Procedures

Option variable procedures do not exist under MPE/iX. The Transact/iX compiler
only supports calls to option variable intrinsics if the intrinsic is declared in a
DEFINE(INTRINSIC) statement or the PROCINTRINSIC option is speci�ed when compiled.
The bit map included as part of the parameter list is ignored and the remaining parameters
are checked as speci�ed in SYSINTR.PUB.SYS. No implicit type conversions are performed.

User-de�ned option variable procedures must be accessed either through a switch to a
compatibility mode routine or conversion to �xed parameter procedures and recompilation
with a native mode compiler. The �rst option is the only option available to users of SPL
procedures who do not want to recode these routines in a native MPE/iX language.

Null Parameters

Under Transact/iX versions prior to A.06.00, all null parameters for option-extensible
intrinsics must be designated by single commas. Transact/iX version A.06.00 and later use
default parameters for system intrinsics where null parameters appear. Default parameters
are also used where the procedure invocation speci�es less than the maximum number
of parameters for an option-extensible routine. Commas are not necessary after the last
speci�ed parameter for system intrinsics that have the EXTENSIBLE option. See the
Pascal/iX Reference Manual and Pascal/iX Programmer's Guide for more information on the
EXTENSIBLE option.

The Transact/V convention of using two or four consecutive commas to denote a null 32-bit or
64-bit value parameter is interpreted by Transact/iX as denoting two or four null parameters.

You can avoid this incompatibility by modifying the source so all 32-bit and 64-bit value
parameters of option-extensible intrinsics are passed. Another method is to modify the
Transact code to use only single commas in place of 32-bit or 64-bit null value parameters, but
this method makes the modi�ed source code incompatible with Transact/V.

Null parameters passed to user-de�ned procedures under Transact/V cause 16-bit zeros to be
passed under Transact/iX.

October 1996 Transact Verbs 8-165

PROC

Locating Procedures

Under Transact/V, there are two library search methods for resolving procedures accessed via
the PROC verb. If the procedure name has not been included in a DEFINE(INTRINSIC)
statement, the SL's are searched as follows: the logon group, the PUB group in the logon
account, and �nally, the PUB.SYS group. If the procedure name has been included in a
DEFINE(INTRINSIC) statement, SL.PUB.SYS will be searched. Under Transact/iX, the
libraries and the order in which they are searched must be speci�ed at either link or run time.

The libraries and the order in which they are searched by processes CREATED and
ACTIVATED by Transact/iX must be speci�ed in the :RUN command used to run the
Transact/iX program. The LIBSEARCH bits on CREATE and ACTIVATE should be set to
\NO" to force the create process to use the LIBLIST speci�ed on the :RUN command.

Double Buffering Parameters

By default, Transact/iX generates code to double bu�er all reference parameters (parameters
passed by address) if they are not preceded by \%", \#", or \&". The double bu�ered
alignment is determined from the type and size of the data item passed via the PROC call.
However, since double bu�ering is ine�cient, the compiler options PROCALIGNED 16/32/64
should be used whenever possible to bypass double bu�ering.

Examples

The format of the intrinsic ASCII in the MPE Intrinsics Manual is:

I LV IV BA

numchar:=ASCII(word,base,string);

The PROC verb to call the ASCII intrinsic has the following format:

PROC ASCII (#(WORD),#(BASE),%(STRING),&(NUMCHAR));

WORD, BASE, and STRING are program variables that correspond to the parameters of the
intrinsic and NUMCHAR is a functional return variable to which the procedure returns the
number of characters translated by the ASCII intrinsic. Note that NUMCHAR is at the end
of the PROC parameter list rather than in its position in the intrinsic de�nition. WORD and
BASE are preceded by a \#" symbol because they are passed by value; STRING is a byte
address as indicated by the preceding \%". For additional examples of the PROC verb, see
\Migration Examples" in Appendix B.

The example below calls the VPLUS procedure VPRINTFORM to print a form on the line
printer.

SYSTEM TEST,

VPLS=CUSTFORM; << Form definition in DICTIONARY. >>

DEFINE(ITEM) PRINTCNTL I(2):

PAGECNTL I(2):...
DEFINE(INTRINSIC) VPRINTFORM;...
PRINT:

LIST PRINTCNTL:

8-166 Transact Verbs October 1996

PROC

PAGECNTL;

LET (PRINTCNTL) = 1; << Underline fields >>
LET (PAGECNTL) = 0; << CR/LF off >>

PROC VPRINTFORM (VCOM(CUSTFORM),

(PRINTCNTL),

(PAGECNTL));

Note that Transact supplies the comarea location for the forms �le CUSTFORM
automatically through the parameter VCOM(�le name).

The MAP parameter sets up a bit map for an intrinsic that is type OPTION VARIABLE.

The following example calls the intrinsics CREATE and ACTIVATE. (See the MPE Intrinsics
Reference Manual for the syntax of these intrinsics.) Since both intrinsics are Option
Variable, a bit map (MAP) is included at the end to indicate which parameters to pass.
Because this map and the CFLAG parameter are passed by value, they are preceded by a \#"
symbol.

DEFINE(ITEM) ROUTINE X(20): <<Process name >>

CPIN I(4): <<PIN of process >>

CFLAG I(4),INIT=(BINARY(1000001)):

<<Flags >>

MAP I(4),INIT=(BINARY(1010100000));

<<Bit map for optional parameters >>

$$A:

LIST ROUTINE,INIT:

CPIN,INIT:

CFLAG:

MAP;

DATA ROUTINE("WHICH PROCESS?");

PROC CREATE (%(ROUTINE),,(CPIN),,#(CFLAG),,,,,,#(MAP));

LET (MAP) = 3;

LET (CFLAG) = 3;

PROC ACTIVATE (#(CPIN),#(CFLAG),#(MAP));

END;

The LET and second PROC statement above can also be replaced with the PROC statement
below. This statement passes numeric constants as well as variable parameters.

PROC ACTIVATE (#(CPIN),3,3);

The following example shows the use of the FWRITE intrinsic in conjunction with the
Transact terminal output �le TRANOUT:

SYSTEM DEMO01;

DEFINE(INTRINSIC) FWRITE;

October 1996 Transact Verbs 8-167

PROC

DEFINE(ITEM) MSG X(30):

COUNT I(4):

CONTROL I(4);

LIST MSG : COUNT : CONTROL;

MOVE (MSG) = "HELLO THERE WORLD!!";

LET (COUNT) = -19;

LET (CONTROL) = 0;

PROC FWRITE (#FILEID(TRANOUT), (MSG), #(COUNT), #(CONTROL));

The next example calls the database intrinsic DBCLOSE using the BASE, SET, and STATUS
key-word parameters.

SYSTEM TEST, BASE=CUSTOMER ("MANAGER");

DEFINE(ITEM) MODE I(2);

DEFINE(INTRINSIC) DBCLOSE;...
LET (MODE) = 5;

PROC DBCLOSE(BASE,

SET(CUST-MAST),

(MODE),

STATUS(DB));

The next example shows a call to DSG/3000 intrinsics. The data register size is increased
because of DSG requirements:

SYSTEM DSG, DATA=4000,10;

DEFINE(ITEM) GRAF 1415 I+(2,,2):

GRAFSIZE I(4,,2):

LANG I(1,,2);

LIST GRAF:GRAFSIZE:LANG;

LET (GRAFSIZE) = 1415;

LET (LANG) = 0;

PROC GINITGRAF((GRAF),(GRAFSIZE),(LANG));

DISPLAY "Return from GINITGRAF";

The next example calls the BRW intrinsic BRWEXEC to execute a report on line.

SYSTEM TEST;

DEFINE(ITEM) BRW-COMAREA X(300):

RETURN-STATUS I(4) = BRW-COMAREA(1):

ERROR-PARM I(4) = BRW-COMAREA(3);

DEFINE(ITEM) BRW-PARAMETERS X(176):

MAX-NUM-PARMS I(4) = BRW-PARAMETERS(1):

ACTUAL-NUM-PARMS I(4) = BRW-PARAMETERS(3):

PARM-NAME-1 X(20) = BRW-PARAMETERS(5):

PARM-TYPE-1 I(4) = BRW-PARAMETERS(25):

PARMRESULT-TYPE1 I(4) = BRW-PARAMETERS(27):

RESULT-LENGTH-1 I(4) = BRW-PARAMETERS(29):
PARM-MODE-1 I(4) = BRW-PARAMETERS(31):

UPSHIFT-1 I(4) = BRW-PARAMETERS(33):

8-168 Transact Verbs October 1996

PROC

PARM-VALUE-1 X(55) = BRW-PARAMETERS(35):

RESERVE-1 X(1) = BRW-PARAMETERS(90):

PARM-NAME-2 X(20) = BRW-PARAMETERS(91):
PARM-TYPE-2 I(4) = BRW-PARAMETERS(111):

PARMRESULT-TYPE2 I(4) = BRW-PARAMETERS(113):

RESULT-LENGTH-2 I(4) = BRW-PARAMETERS(115):

PARM-MODE-2 I(4) = BRW-PARAMETERS(117):

UPSHIFT-2 I(4) = BRW-PARAMETERS(119):

PARM-VALUE-2 X(55) = BRW-PARAMETERS(121):

RESERVE-2 X(1) = BRW-PARAMETERS(176);

LIST BRW-COMAREA:

BRW-PARAMETERS;

LET (MAX-NUM-PARMS) = 2;

LET (ACTUAL-NUM-PARMS) = 1;

MOVE (PARM-NAME-1) = "$REPORT";

.

.

.

PROC BRWEXEC((BRW-COMAREA),(BRW-PARAMETERS));

The next example shows a call to the compiler library routine DABS' to determine the
absolute value of a number.

SYSTEM ABSTST;

DEFINE(ITEM) REALVALUE R(8,2,8), INIT=-128.8:

RESULT R(8,2,8), INIT=;

LIST REALVALUE: RESULT;

DISPLAY REALVALUE: RESULT;

PROC DABS'(#(REALVALUE),&(RESULT));

DISPLAY REALVALUE: RESULT;

END;

There are two things to check when using the compiler library:

Make sure you use the PROCINTRINSIC compiler option for Transact/iX and the
DEFINE(INTRINSIC) statement for Transact/V.

Verify that all parameter types match the function parameters and function return.

In addition, be aware that parameters passed by value are preceded by a \#" (pound sign).
The last parameter is the function return and it is preceded by a \&" (ampersand).

The last example is a Transact program that calls BRW.

Prior to running the program, we used BRW to design a report and compile the report into a
BRW execution �le named BRWEXECR. The Transact program uses VPLUS to present the

October 1996 Transact Verbs 8-169

PROC

user with a main menu of options. If the user enters option 1, the BRW report is executed.
The PROC calls result in the BRW Report Selection menu being displayed with the name of
the report requested already �lled in. The user then requests the report the same as when
running BRW directly.

SYSTEM BRW,VPLS=MYFF(MAINMENU(SELECTION));

DEFINE(ITEM) BRW-COMAREA X(106):

BRW-STATUS I(4) = BRW-COMAREA:

BRW-ERROR I(4) = BRW-COMAREA(3):

BRW-COM-LENGTH I(4) = BRW-COMAREA(5):

BRW-EXEC-FILE. X(36)= BRW-COMAREA(7):

BRW-DEFAULTS I(4), INIT=0:

SELECTION I+(1);

LIST BRW-COMAREA:

BRW-DEFAULTS:

SELECTION;

LET (BRW-COM-LENGTH) = 50;

GET(FORM) MAINMENU;

IF (SELECTION) = 1 THEN

DO

PROC BRWINITREQUEST ((BRW-COMAREA));

MOVE (BRW-EXEC-FILE) = "BRWEXECR";

PROC BRWSTARTREQUEST ((BRW-COMAREA),

(BRW-DEFAULTS));

PROC BRWSTOPREQUEST ((BRW-COMAREA));

DOEND;

EXIT;

Below are some miscellaneous PROC examples that pass character string parameters and
numeric constants as parameters.

PROC ASCII (65,10,%(STRING),&(NUMCHAR));

PROC VPRINTFORM (VCOM(CUSTFORM),1,0);

PROC CREATE (%(ROUTINE),"",(CPIN),"",65,,,,,,672);

PROC DBCLOSE (BASE,SET(CUST-MAST),5,STATUS(DB));

PROC FWRITE (#FILEID(TRANOUT), "HELLO THERE WORLD!!", -19, 0);

PROC DABS' (-128,&(RESULT));

8-170 Transact Verbs October 1996

PROMPT

PROMPT

Accepts input from the user terminal and places the supplied values into the list, data,
argument, match, and/or update registers.

Syntax

PROMPT[(modi�er)] item-name[("prompt-string")][,option-list]

[:item-name[("prompt-string")][,option-list]]...;

PROMPT prompts the user for values and, depending on the syntax option chosen, places the
value in one or more registers. The register a�ected depends on the verb modi�er. You can
choose from the following:

none Adds item name to list register and input value to data register. (See Syntax
Option 1.)

KEY Adds item name to key register and adds input value to argument register. (See
Syntax Option 2.)

MATCH Adds item name to list and match registers and adds input value to data register.
Also sets up input value in match register as a match criterion. (See Syntax
Option 3.)

PATH Adds item name to list and key registers, and adds input value to data and
argument registers. (See Syntax Option 4.)

SET Adds item name to list register and adds input value to data register, unless
response is a carriage return. (See Syntax Option 5.)

UPDATE Adds item name to list and update registers and input value to data register; also
adds input value to update register for subsequent replace operation. (See Syntax
Option 6.)

PROMPT is used to set up and perform a data entry operation, usually for a subsequent
data set or �le operation. At execution time it prompts the user with a prompt string, the
entry text associated with the item, or with the item name to request the value of the data
item. An entry text can be associated with an item in a dictionary or in the DEFINE(ITEM)
de�nition of the item.

Transact validates the input value as to type, length, or any other characteristics speci�ed
in a dictionary or in a DEFINE(ITEM) statement before it modi�es the speci�ed register.
If Transact detects an error, it displays an appropriate error message and reissues the
prompt automatically. With native language support, Transact validates numeric data using
the thousands and decimal indicators of the language in e�ect. For more information, see
Appendix E, \Native Language Support."

October 1996 Transact Verbs 8-171

PROMPT

Statement Parts

modi�er Changes or enhances the PROMPT verb. Usually determines the register in
which to place the item name and the register to which the input value should
be added or the register whose value should be changed.

item-name The name of the data item to be placed in the list register and/or another
register, and whose value should be added to or changed in the data register
and/or another register. The item name cannot be the name of a child item.

prompt-string The string that prompts the terminal user for the input value. If omitted, the
prompt is the entry text associated with the item. If there is no entry text,
the prompt is the item name.

option-list A �eld specifying how the data should be formatted and/or other checks to be
performed on the value.

Choose one or more of the following options (separated by commas) for any
syntax option. (See Syntax Option 3, PROMPT(MATCH) for additional
options.)

BLANKS Does not suppress leading blanks supplied in the input
value. (Leading and trailing blanks are normally stripped.)

CHECK=
set-name

Checks the input value against the master set set-name
to ensure that a corresponding search item value already
exists. If the value is not in the data set at execution time,
Transact displays an appropriate error message and reissues
the prompt.

Note The CHECK= or CHECKNOT= options cannot be used to check
against MPE or KSAM �les, nor can either option be included in a
PROMPT(MATCH) statement. Also, if the CHECK= or CHECKNOT=
option is used with STATUS, then \]", \]]", or a carriage return suppresses the
data set operation and control passes to the next statement.

CHECKNOT=
set-name

Checks input value against the master set set-name to
ensure that a corresponding search item value does not
already exist. If the value is in the data set at execution
time, Transact displays an appropriate error message and
reissues the prompt.

NOECHO Does not echo the input value to the terminal. If omitted,
the input value is displayed on the terminal.

RIGHT Right-justi�es the input value within the data register �eld.
By default, the input value is left-justi�ed.

STATUS Suppresses normal processing of \]" and \]]", which cause
an escape to a higher processing or command level.

8-172 Transact Verbs October 1996

PROMPT

Status

Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control subsequent
processing by testing the contents of the register with an IF
statement.

Syntax Options

(1) PROMPT item-name[(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT with no modi�er adds the item-name to the list register and the input value to the
data register.

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

Note Only compile time alignment is supported.

(2) PROMPT(KEY) item-name[(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT(KEY) places the item-name in the key register and the input value in the
argument register. The data item and its value are used as a retrieval key for a subsequent
data set or �le operation. When there is more than one item-name in a PROMPT(KEY)
statement, only the �nal item-name and value are retained in the key and argument registers.

Note The PROMPT(KEY) statement is the only form of the PROMPT statement
that does not update the list register or data register.

(3) PROMPT(MATCH) item-name[(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT(MATCH) adds the item-name to the list and match registers. In addition, it adds
the input value to the data register and also sets up this value as a selection criterion in the
match register for a subsequent database or �le operation.

October 1996 Transact Verbs 8-173

PROMPT

The user response to PROMPT(MATCH) can be any of the valid selection criteria described
under \Responding to a MATCH Prompt" in Chapter 5. If the response is a carriage return,
then all values for the data item are selected. If the response contains several values separated
by connectors, only the �rst value is placed in the data register space for the item. If a
particular value is input, then all entries that match the associated data item are selected.

If the item name is an unsubscripted array, only the value of the �rst element of the array
will be set in the data register. This value from the data register will be set up as a match
criterion in the match register.

The MATCH modi�er allows one or more of the option-list items listed under
\Statement Parts", except for CHECK= and CHECKNOT=, which are not allowed in a
PROMPT(MATCH) statement. Additionally, you can select one of the following options to
specify that a match selection is to be performed on a basis other than equality.

If you specify one of the options listed below, the entire user input is treated as a single value.
The match speci�cation characters described in Chapter 5 are not allowed as user input with
the options listed below.

option-list : Any of the following options can be selected:

ALIGN Forces the item to be aligned on a 16-bit boundary in Transact/V
and on a 32-bit boundary in Transact/iX

NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the

use of trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use

of trailing \^^" on input
TRAILER Matched item must end with the input string; equivalent to the

use of a leading \^" on input

For example, for the following command and response sequence, the database or �le entries
selected will contain EMPL values starting with \LIT", AGE values less than 35, and LOS
values greater than or equal to 5:

PROMPT(MATCH) EMPL:

AGE, LT:

LOS, GE;

EMPL> LIT^

AGE> 35

LOS> 5

(4) PROMPT(PATH) item-name[(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT(PATH) adds the item-name to the list register and the key register. In addition,
the input value is added to the data register and the argument register. Use this modi�er
to set up a data item for a data set or �le operation and its value for use as a retrieval key.
When there is more than one item-name in a PROMPT(PATH) statement, only the �nal
item-name and value are retained in the key and argument registers.

8-174 Transact Verbs October 1996

PROMPT

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

(5) PROMPT(SET) item-name [(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT(SET) adds the item-name to the list register and the input value to the data
register only if the input value is not a carriage return. If the user responds to the prompt
with a carriage return, no additions are made to the list and data registers. The modi�er is
primarily used to set up a data item list for a data set or �le operation using the UPDATE
verb, where the user controls that list by means of his or her responses.

For example, the following PROMPT(SET) statement and the responses to its prompts
produce a list register content of \PHONE" and \ROOM" and a data register content of the
associated supplied values. Note that if you use the CHECK option and the item is not found
in the data set, you must clear this value from the match register with RESET(MATCH)
before you reissue the prompt.

PROMPT(SET) EMPL:

DEPT:

PHONE:

ROOM:

LOCATION;

EMPL>

DEPT>

PHONE> 278

ROOM> 312

LOCATION>

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

(6) PROMPT(UPDATE) item-name[(\prompt-string")][,option-list][:item-name . . .] . . . ;

PROMPT(UPDATE) adds the item-name to the list and update registers, and adds the
input value to the data register. In addition, it sets up the input value in the update register
for a subsequent data set or �le operation using REPLACE. When a subsequent REPLACE
statement is executed, it replaces any value for the speci�ed data item with the value added to
the update register.

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

Examples

This example causes a sequence of prompts to be displayed:

$$ADD: <<Add a new record >>

$CUSTOMER:

PROMPT CUST-NAME("CUSTOMER'S NAME"):

CUST-ADDR:

CUST-CITY:

CUST-PHONE;

October 1996 Transact Verbs 8-175

PROMPT

This example is a result of the above code.

CUSTOMER'S NAME>

CUST-ADDR>
CUST-CITY>

CUST-PHONE>

The following example adds a new customer number to the data set and then adds
transactions for that customer. It checks to make sure that the customer number entered by
the user is not already in the data set and that the transactions apply to a customer number
that is in the data set.

$$ADD: <<Add new customer >>

$CUSTOMER:

PROMPT(PATH) CUST-NUMBER, CHECKNOT=CUST-MASTER;...
PUT CUST-MASTER;

$TRANS:

PROMPT(PATH) CUST-NUMBER, CHECK=CUST-MASTER;

PROMPT INV-NUMBER: AMOUNT;...
PUT CUST-DETAIL;

The last example shows how the ALIGN option word-aligns SELECT-CODE in the list
register.

PROMPT(MATCH) SELECT-CODE, ALIGN;

8-176 Transact Verbs October 1996

PUT

PUT

Moves data from the data register to a �le, data set, or a VPLUS form.

Syntax

PUT
�
(modi�er)

�
destination

�
,option-list

�
;

PUT moves an entry from the list and data registers into a �le or a data set; or it displays
data in a VPLUS form.

Statement Parts

modi�er To specify the type of access from the data set or �le, choose one of the following
modi�ers.

none Adds an entry, based on the list and data registers, into a �le or a
data set.

FORM Displays a VPLUS form on any VPLUS compatible terminal, and
moves data to the form from the data register. If this modi�er is
not used, the destination must be a �le or data set.

destination The �le, data set, or form to be accessed in the write operation.

If the destination is a data set that is not in the home base as de�ned in the
SYSTEM statement, the base name must be speci�ed in parentheses as follows:

set-name(base-name)

In a PUT(FORM) statement, the destination must identify a form in a forms �le
that was named in the SYSTEM statement. For PUT(FORM) only, destination
can be speci�ed as any of the following:

form-name Name of the form to be displayed by PUT(FORM).

(item-name
[(subscript)])

Name of an item that contains the name of the form to be
displayed by PUT(FORM). The item-name can be subscripted if
an array item is being referenced. (See \Array Subscripting" in
Chapter 3.)

* Displays the form identi�ed by the \current" form name. That
is the form name most recently speci�ed in a statement that
references VPLUS forms. Note that this option is not the same
as the CURRENT option (described under option-list) that
indicates the currently displayed form.

& Displays the form identi�ed as the \next" form name. That is
the form name de�ned as \NEXT FORM" in the FORMSPEC
de�nition of the current form.

October 1996 Transact Verbs 8-177

PUT

option-list The LIST= option and the STATUS option are always available. The other
options described below, may be used only without or only with the FORM
modi�er.

The list of items from the list register to be used for the PUT operation. For data
sets, no child items can be speci�ed in the range list. For PUT(FORM) only,
items in the range list can be child items.

If the LIST= option is omitted with any modi�er except FORM, all the
items named in the list register are used. If the LIST option is omitted for
PUT(FORM), the list of items in the list register, and either in the SYSTEM
statement or the data dictionary for the form are used.

The LIST= option should not be used when specifying an asterisk (*) as the
source.

LIST=
(range-list)

The list of items from the list register to be used for the PUT
operation. For PUT(FORM) only, items in the range list can be
child items.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE data
sets and 128 items for VPLUS forms also exists.

All item names speci�ed must be parent items for �les or data
sets.

The options for range-list and the records upon which they
operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from item-nameX
through the last occurrence of item-nameY .

In other words, the list register is scanned for
the occurrence of item-nameY closest to the
top of the list register. From that entry, the list
register is scanned for item-nameX . All data
items between are selected. An error is returned
if item-nameX is between item-nameY and the
top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as follows,

8-178 Transact Verbs October 1996

PUT

then data items A, B, C, D, and D are selected.
For database �les, an error is returned if
duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see DEFINE(ITEM) verb) and if there are
no data items between the two in the list register,
no database access is performed.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For databases, data items can be speci�ed in any
order. For KSAM and MPE �les and VPLUS
forms, data items must be speci�ed in the order
of their occurrence in the physical record or form.
This order need not match the order of the data
items on the list register. Do not include child
items in the list unless they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range list of all data items of
destination as de�ned in a dictionary. This range
is de�ned as item-name-1:item-name-n for the
�le.

(#) Speci�es an enumeration of all data items of
destination as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or form
as de�ned in the dictionary. This order need not
match the order of the data items in the list
register.

October 1996 Transact Verbs 8-179

PUT

() A null data item list. That is, accesses the �le
or data set, or displays the form, but does not
transfer any data.

STATUS Suppresses the action de�ned in Chapter 7 under \Automatic
Error Handling." If you use this option, you should program your
own error handling procedures.

When STATUS is speci�ed, the e�ect of a PUT statement is
described by the 32-bit integer value in the status register:

Status

Register Value

Meaning

0 The PUT operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the condition that occurred,
refer to the condition word or MPE/KSAM �le
system error documentation corresponding to
the value.

When the STATUS option is placed on the PUT(FORM), the
PUT(FORM) only writes to the form. It does not read the
function keys or the data from the form to the VPLUS bu�er.
For additional information, see the PUT owcharts in Appendix
A.

PUT with the STATUS option could be used as shown in one of
the examples shown in the Examples section.

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes.
Instead, the program branches to the statement identi�ed by
label , and Transact sets the list register pointer to the data item
item-name. Transact generates an error at execution time if the
item cannot be found in the list register. The item-name must be
a parent.

If you do not specify an item-name, as in ERROR=label (), the list
register is reset to empty. If you use an *" instead of item-name,
as in ERROR=label (*), then the list register is not changed. For
more information, see \Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database. If a data set is being accessed,
the lock is set the whole time that PUT executes. If the LOCK
option is not speci�ed but the database is opened in mode 1, then
automatic locking will execute the lock.

For a KSAM or MPE �le, if LOCK is not speci�ed on PUT but
is speci�ed for the �le in the SYSTEM statement, then the �le
is locked before each entry is retrieved, remains locked while
the entry is processed by any PERFORM= statements, but is
unlocked briey before the next entry is retrieved.

8-180 Transact Verbs October 1996

PUT

Including the LOCK option will override the SET(OPTION)
NOLOCK for the execution of the PUT verb.

A database opened in mode 1 must be locked while PUT executes.
For transaction locking, you can use the LOCK option on
the LOGTRAN verb instead of the LOCK option on PUT if
SET(OPTION) NOLOCK is speci�ed. If a lock is not speci�ed
(for a database opened in mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for more
information on locking.

NOMSG Suppresses the standard error message produced by Transact as a
result of a �le or database error.

RECNO=item-name
[(subscript)]

Places the record number of the new entry into the data register
space for item-name. Item-name must be de�ned as a 32-bit
integer, such as I(10,,4). It can be subscripted if an array item is
being referenced. (See \Array Subscripting" in Chapter 3.)

Options Available Only With the Form Modifier

APPEND Appends the next form to the speci�ed form, overriding any freeze
or append condition speci�ed for the form in its FORMSPEC
de�nition. APPEND sets the FREEZAPP �eld of the VPLUS
comarea to 1.

CLEAR Clears the previously displayed form when the requested form
is displayed, overriding any freeze or append condition speci�ed
for the form in its FORMSPEC de�nition. CLEAR resets the
FREEZAPP �eld of the VPLUS comarea to zero.

CURRENT Uses the form currently displayed on the terminal screen. That is,
performs all the PUT(FORM) processing except retrieving and
displaying the form. Use this option to avoid the processing that
normally occurs when a new form is displayed.

CURSOR=�eld-namej
item-name[(subscript)]

Positions the cursor within the speci�ed �eld. The �eld-name
identi�es the �eld and the item-name identi�es the item which
names the �eld. The item-name can be subscripted if an array
item is being referenced. (See \Array Subscripting" in Chapter 3.)

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs the �eld edits de�ned in the FORMSPEC de�nition for
the form immediately before displaying it.

FKEY=item-name
[(subscript)]

Moves the number of the function key pressed by the user in this
operation to a 16-bit integer item-name. The function key number
is a digit from 1 through 8 for function keys �f1� through �f8�, or
zero for the ENTER key. Transact determines which function key
was pressed from the value of the �eld LAST-KEY in the VPLUS

October 1996 Transact Verbs 8-181

PUT

comarea. The item-name may be subscripted if an array item is
being referenced. (See \Array Subscripting" in Chapter 3.)

Fn=label Control passes to the labeled statement if the user presses function
key n. n can have a value of 0 through 8, inclusive, where zero
indicates the ENTER key. This option can be repeated as many
times as necessary in a single PUT(FORM) statement.

FREEZE Freezes the speci�ed form on the screen and appends the next form
to it, overriding any freeze or append condition speci�ed for the
form in its FORMSPEC de�nition. FREEZE sets the FREEZAPP
�eld of the VPLUS comarea to 2.

INIT Initializes the �elds in the displayed form to any initial values
de�ned for the form by FORMSPEC, or performs any Init Phase
processing speci�ed for the form by FORMSPEC. PUT(FORM)
performs the INIT processing before it transfers any data from the
data register and before it displays the form on the screen.

WAIT=[Fn] Does not return control to the program until the terminal user
has pressed the function key n. n can have a value of 0 through
8, where 1 through 8 indicate the keys �f1� through �f8� and 0
indicates the ENTER key.

If the user presses any function key other than one requested by
the WAIT option, Transact displays a message in the window and
waits for the next function key to be pressed. If Fn is any key
other than �f8�, the �f8� exit function is disabled.

If Fn is omitted, PUT(FORM) waits until any function key is
pressed. If the user presses any of the function keys �f1� through
�f7�, the next record will be PUT; �f8� retains its exit function.

If the WAIT option is omitted altogether, PUT(FORM) clears
the screen and returns control to the program immediately after
displaying the form with its data.

For example:

PUT(FORM) (FORMNAME), << Display form named in FORMNAME >>

LIST=(A:C),

WAIT=; << Wait for user to press any key >>

WINDOW= ([�eld,]
message)

Places a message in the window area of the screen and, optionally,
enhances a �eld in the form. The �elds �eld and message can be
speci�ed as follows:

�eld Either the name of the data item for the �eld to
be enhanced, or an item-name within parentheses
which will contain the data item of the �eld to be
enhanced at run time.

8-182 Transact Verbs October 1996

PUT

message Either a \string" in quotes that speci�es the
message to be displayed, or an item-name within
parentheses containing the message string to be
displayed in the window.

The following example shows this option when the
�eld name and message are speci�ed directly:

PUT(FORM) FORM1,
LIST=(A,C,E),

WINDOW=(A,"Press f1 if data is correct."),

WAIT=F1;

In the next example, both the �eld and the
message are speci�ed through an item-name
reference:

DEFINE(ITEM) ENHANCE U(16):

MESSAGE U(72);

MOVE (ENHANCE) = "FIELD1";

MOVE (MESSAGE) = "This field may not be changed";

PUT(FORM) *, << Display current form >>

LIST=(),

WINDOW=((ENHANCE),(MESSAGE));

Examples

The following command sequence prompts for new customer information and adds this
information to the customer master �le:

$$ADD:

$CUSTOMER:

PROMPT CUST-NO:

CUST-NAME:

CUST-ADDR:

CUST-CITY:

CUST-STATE:

CUST-ZIP;

PUT CUST-MAST, LIST=(CUST-NO:CUST-ZIP);

October 1996 Transact Verbs 8-183

PUT

The next example displays a header form and then appends a form with data to the header.
After appending the data form 10 times, each time with new data, the program asks the
user if he wants to continue. The data to be displayed is taken from the data register; the
particular items are determined by the LIST= option. In this example, the data in the data
register is retrieved from a data set by the FIND statement.

LIST CUST-NO:

LAST-NAME:

FIRST-NAME:

COUNT;

PUT(FORM) HEADER, << Freeze header form on screen >>

LIST=(),

FREEZE;

LET (COUNT) = 0;

FIND(SERIAL) CUSTOMER, << Get data from database >>

LIST=(CUST-NO:FIRST-NAME),

PERFORM=LIST-FORM;...
LIST-FORM:

IF (COUNT) < 10 THEN << Append data form 9 times >>

DO

LET (COUNT) = (COUNT) + 1;

PUT(FORM) CUSTLIST,

LIST=(CUST-NO:FIRST-NAME),

APPEND;

DOEND

ELSE

DO

LET (COUNT) = 0;

PUT(FORM) CUSTLIST, << At 10th iteration, >>
LIST=(CUST-NO:FIRST-NAME), << wait for user input >>

WINDOW=("Press any function key to continue"),

APPEND,

WAIT=;

DOEND;

RETURN;

8-184 Transact Verbs October 1996

PUT

This example shows how the LIST=(#) option works, given a data set de�ned as follows:

NAME: SUP-MASTER, MANUAL(13/12,18), DISC1;

ENTRY: SUPPLIER(1),
STREET-ADD,

CITY,

STATE,

ZIP;

CAPACITY: 200;

The statement:

PUT SUP-MASTER,LIST=(#);

is equivalent to the statement:

PUT SUP-MASTER,LIST=(SUPPLIER,STREET-ADD,CITY,STATE,ZIP);

Use PUT with the STATUS option to check for error conditions. This example writes to an
overow �le and issues an error message when the data set is full.

PUT DATA-SET,

LIST=(A:N),

STATUS;

IF STATUS <> 0 THEN << Error, check it out >>

IF STATUS <> 16 THEN << Unexpected error >>

GO TO ERROR-CLEANUP

ELSE << Write to overflow >>

DO << Set full >>

PUT OVERFLOW,

LIST=(A:N),

STATUS;

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

DISPLAY "OVERFLOW FILE USED";
DOEND;

October 1996 Transact Verbs 8-185

REPEAT

Repeats execution of a simple or compound statement until a speci�ed condition is true.

Syntax

REPEAT statement UNTIL condition-clause;

When REPEAT is encountered, the simple or compound statement following it is executed
and then the condition-clause is tested. The condition-clause includes one or more conditions,
each made up of a test-variable, a relational-operator , and one or more values . Multiple
conditions are joined by AND or OR. Execution of the statement following REPEAT
continues until the test gives a value of true.

Statement Parts

statement A simple or compound Transact statement can follow REPEAT. A compound
statement is bracketed with a DO/DOEND pair.

condition-
clause

One or more conditions, connected by AND or OR, where

AND is a logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR is a logical inclusive OR. The condition clause is true if any of the
conditions is true; it is false if all of the conditions are false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value[,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to item-name.
The item-name may be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names and/or
constants. The expression is evaluated before the comparison is
made. (See LET verb for more information.)

Note An arithmetic-expression must be enclosed in square brackets ([]).

EXCLA-
MATION

Current status of the automatic null response to a prompt set by
a user responding with an exclamation point (!) to a prompt.
(See \Data Entry Control Characters" in Chapter 5.) If the null
response is set, the EXCLAMATION test variable is a positive
integer; if not set, it is zero. The default is 0.

8-186 Transact Verbs October 1996

REPEAT

FIELD Current status of FIELD command quali�er. If a user quali�es
a command with FIELD, the FIELD test variable is a positive
integer. Otherwise, it is a negative integer. The default is <0.

INPUT The last value input in response to the INPUT prompt.

PRINT Current status of PRINT or TPRINT command quali�er. If the
user quali�es a command with PRINT, the PRINT test variable
is an integer greater than zero and less than 10; if a command is
quali�ed with TPRINT, PRINT is an integer greater than 10; if
neither quali�er is used, PRINT is a negative integer. The default
is < 0.

REPEAT Current status of REPEAT command quali�er. If the user
quali�es a command with REPEAT, the REPEAT test variable is
a positive integer; otherwise, REPEAT is a negative integer. The
default is < 0.

SORT Current status of SORT command quali�er. If the user quali�es
a command with SORT, the value of the SORT test variable is
a positive integer; otherwise SORT is a negative integer. The
default is < 0.

STATUS The value of the 32-bit status register set by the last data set or
�le operation, data entry prompt, or external procedure call.

relational-
operator

Speci�es the relation between the test-variable and the value. It can be one of the
following:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

value Any of test variable values or the value against which the test-variable is
compared. The value may be an arithmetic expression, which will be evaluated
before the comparison is made. The allowed value depends on the test variable,
as shown in the comparison below. Alphanumeric strings must be enclosed in
quotation marks.

If the test-
variable is:

The value must be:

item-name An alphanumeric string, a numeric value, an arithmetic
expression, a reference to a variable as in (item-name) or a class
condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or an expression, or a
reference to a variable as in (item-name). (See the LET verb for
more information.)

INPUT An alphanumeric string.

October 1996 Transact Verbs 8-187

REPEAT

EXCLA-
MATION

A positive or negative integer, or an expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer or an expression.

If more than one value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the test-variable is
equal to value1 OR value2 OR . . . valuen. In other words, a comma in a series
of values is interpreted as an OR.

When the relational operator is \<>", the action is taken if the test-variable is
not equal to value1 AND value2 AND . . . valuen. In other words, a comma in
a series of values is interpreted as an AND when the operator is \<>".

When the test variable is an item-name, the value can be one of the following
class conditionals, which are used to determine whether a string is all numeric or
alphabetic. The operator can only be \=" or \<>".

NUMERIC This class condition includes the ASCII characters 0 through
9 and a single operational leading sign. Leading and trailing
blanks around both the number and sign are ignored.
Decimal points are not allowed in NUMERIC data. This class
test is only valid when the item has the type X, U, 9, or Z, or
when the item is in the input register.

ALPHABETIC This class condition includes all ASCII native language
alphabetic characters (upper and lowercase) and space. This
class test is only valid for item names of type X or U.

ALPHABETIC-
LOWER

This class condition includes all ASCII lowercase native
language alphabetic characters and space. This class test is
only valid for type X or U.

ALPHABETIC-
UPPER

This class condition includes all ASCII uppercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.
Truth values are established for simple relational conditions.
Truth values are established for simple class conditions.
Multiple value conditions are evaluated.
Truth values are established for complex AND conditions.
Truth values are established for complex OR conditions.

8-188 Transact Verbs October 1996

REPEAT

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

Examples

The following example performs the compound statement between the DO/DOEND pair until
the value of OFFICE-CODE exceeds 49.

REPEAT

DO

GET(SERIAL) MASTER;...
PUT SEQFILE;

DOEND

UNTIL (OFFICE-CODE) > 49;

The following are two examples of using the REPEAT verb:

REPEAT

DO

LET (TOTAL-OVERDUE) = (TOTAL-OVERDUE) + (AMT-OVERDUE);

FIND(SERIAL) CUST-INVOICE,STATUS;

DOEND

UNTIL (TOTAL-OVERDUE) > 999999.99 OR

(TOTAL-OVERDUE) > (MIN-OVERDUE) AND

(CUST-CODE) = "NEW";

REPEAT

FIND(SERIAL) STK-ON-HAND,STATUS

UNTIL ((WEIGHT) > [(KILO-PER-METER) * (METERS)] AND
(METERS) > (MIN-LENGTH) OR

(PRICE) > [(UNIT-PRICE) * (KILO-PER-METER) * (METERS)]);

October 1996 Transact Verbs 8-189

REPLACE

Changes the values contained in a KSAM or MPE record or a data set entry.

Syntax

REPLACE
�
(modi�er)

�
�le-name

�
,option-list

�
;

REPLACE allows you to replace one or more records or entries in a �le or data set.
REPLACE uses the values in the update register as the new values for the updated entries.
REPLACE di�ers from UPDATE in that it allows you to change search or sort items in a
data set as well as key items in a KSAM �le, and because it can perform a series of changes to
a �le or data set.

Note that it only replaces key (search) items in a manual master set if there are no detail set
entries linked to that key. It does not replace detail set entries with search items that do not
exist in manual master sets associated with that detail.

The REPLACE operation does the following steps:

1. It retrieves a data record from the �le or data set and places it in the data register area
speci�ed by the LIST= option of REPLACE, overwriting any prior data in this area.

2. It checks whether this record contains values that match any selection criteria set up in the
match register. If the retrieved data does not meet the match criteria, it returns to step 1
to retrieve the next record. If the record meets the selection criteria speci�ed in the match
register, or if there are no match criteria, it �rst performs any PERFORM= processing;
then it executes steps 3 through 5.

3. It replaces the values in the data register of the items to be updated with the values in
the update register. Or, if there are no values in the update register, it uses the current
values in the data register. The update register can be set up by a routine speci�ed in
a PERFORM= option since the PERFORM= processing is done prior to the actual
replacement. A PERFORM= routine can also be used to place new values directly into the
data register.

4. It writes a new record with updated values from the data register to the �le or data set and
then deletes the old record.

5. It returns to step 1 unless the end of the �le or chain has been reached, or unless the
SINGLE option or the CURRENT modi�er has speci�ed replacement of a single entry
only. At the end of the �le or chain or if only retrieving a single entry, it goes to the next
statement.

To use REPLACE e�ectively, do the followings:

1. Specify the entries to update. Set up the key and argument registers if you are using
REPLACE with no modi�er or with the CHAIN or RCHAIN modi�ers. Set up the match
register if you want to replace particular entries when you use the CHAIN, RCHAIN,
SERIAL, or RSERIAL modi�ers.

If you plan to replace a key item in a master set, then delete all chains linked to that item
from associated detail sets.

8-190 Transact Verbs October 1996

REPLACE

2. Get the new values and place them in the update register or, if you are not using the
update register, in the data register. Note that REPLACE always uses the values in
the update register if there are any. You can get the new values from a user with a
DATA(UPDATE) or PROMPT(UPDATE) statement, or you can place them directly in
the update register with a SET(UPDATE) statement. When you update multiple entries
with di�erent values, you should set up the update or data register in a routine identi�ed
by a PERFORM= option of the REPLACE statement. Otherwise, the same items are
updated with the same values in each of the multiple entries.

3. Use the REPLACE statement to replace the selected entries, or to replace all entries if no
match criteria are speci�ed. Make sure that the entire record or entry is speci�ed in a
LIST= option. Otherwise, REPLACE will write null values into items not speci�ed in the
list register when it writes the updated entry back to the �le or data set.

Note Before using REPLACE, you must �rst set the SYSTEM statement access
mode to \UPDATE."

REPLACE adds the updated record and deletes the original entry so that any data item that
has not been speci�ed in the list register will have a null value after the operation. This is
why you should make sure that the list register contains every data item name in the set
entry. If a chained or serial access mode is speci�ed (multiple entry updates), the data items
to be updated must have been speci�ed in the update register by using the PROMPT, DATA,
LIST, or SET statements with the UPDATE option.

REPLACE with the UPDATE option only replaces that part of the record or entry that is not
a search or sort item. Unlike the other forms of REPLACE, it does not delete the original
entry and replace it with a new entry. Thus, for this option, only update items, not the whole
record, need be present in the list register.

If you are performing dynamic transactions (Transact/iX only), be aware that transactions
have a length limit. For a discussion about how REPLACE is a�ected by this limitation, see
\Limitations" under \Dynamic Roll-back" in Chapter 6.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none Updates an entry in a master set based on the key value in the
argument register; this option does not use the match register. If
the manual master key is to be changed, there must not be any
entries in detail sets linked to the old manual master key item.

CHAIN Updates entries in a detail set or KSAM chain based on the key
value in the argument register. The entries must meet any match
selection criteria in the match register. If no match criteria are
speci�ed, all entries are updated. If the search item is to be

October 1996 Transact Verbs 8-191

REPLACE

changed in a chain linked to a manual master set, the new item
must exist in the associated master set.

CURRENT Updates the last entry that was accessed from the �le or data set.
This modi�er only replaces one entry, overriding the iterative
capability of REPLACE.

DIRECT Updates the entry stored at the speci�ed record number. The
entry may not be de�ned as a child item. Before using this
modi�er, you must store the record number as a 32-bit integer
I(10,,4) in the item referenced by the RECNO option.

PRIMARY Updates the master set entry stored at the primary address of a
synonym chain. The primary address is located through the key
value contained in the argument register.

RCHAIN Updates entries in a detail set chain in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Updates entries from a �le in the same manner as the SERIAL
option, except in reverse order. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Updates entries that meet any match criteria set up in the match
register in a serial mode. If no match criteria are speci�ed, all
entries are updated. Note that you cannot use this modi�er to
replace key items in the master set. This modi�er forces the
UPDATE option on a master set if you are not matching on key
items.

�le-name The KSAM or MPE �le or the data set to be accessed by the replace operation.
If the data set is not in the home base as de�ned in the SYSTEM statement, the
base name must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following �elds, separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact normally
takes. Instead, the program branches to the statement
identi�ed by label , and Transact sets the list register pointer
to the data item item-name. Transact generates an error at
execution time if the item cannot be found in the list register.
The item-name must be a parent.

If you do not specify an item-name, as in ERROR=label ();,
the list register is reset to empty. If you use an *" instead
of item-name, as in ERROR=label (*);, then the list register
is not changed. For more information, see \Automatic Error
Handling" in Chapter 7.

LIST=(range-list) The list of items from the list register to be used for the
REPLACE operation. For data sets, no child items can be
speci�ed in the range list.

8-192 Transact Verbs October 1996

REPLACE

If the LIST= option is omitted with any modi�er, all the
items named in the list register are used.

When the LIST= option is used, only the items speci�ed in a
LIST= option have their match conditions applied when the
items are included in the match register. When the LIST=
option is omitted, items which appear in the list register
and the match register have their match conditions applied.
Otherwise, the match conditions for an item are ignored.

The match register can be used only with the modi�ers
CHAIN, RCHAIN, SERIAL, or RSERIAL.

All item names speci�ed must be parent items.

The options for range-list include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items range from item-nameX
through item-nameY . In other words, the list
register is scanned for the occurrence of item
nameY closest to the top of the list register.
From that entry, the list register is scanned
for item-nameX . All data items between are
selected. An error is returned if item-nameX
is between item-nameY and the top of the
list register.

Duplicate data items can be included or
excluded from the range, depending on their
position on the list register. For example, if
range-list is A:D and the list register is as
shown,

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and
if there are no data items between the two
on the list register, no database access is
performed.

October 1996 Transact Verbs 8-193

REPLACE

(item-nameX:) All data items in the range from the last
entry through the occurrence of item-nameX
closest to the top of the list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to the top
through the bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and MPE
�les, data items must be speci�ed in the order
of their occurrence in the physical record.
This order need not match the order of the
data items on the list register. Does not
include child items in the list unless they are
associated with a VPLUS forms �le. This
option incurs some system overhead.

(@) Speci�es a range of all data items of �le-name
as de�ned in a data dictionary. The range-list
is de�ned as item-name1:item-namen for the
�le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or
form as de�ned in the dictionary. This order
need not match the order of the data items in
the list register.

() A null data item list. That is, accesses the �le
or data set, but does not transfer any data.

LOCK Locks the speci�ed �le or database. If a data set is being
accessed, the lock is set the entire time that REPLACE
executes. If the LOCK option is not speci�ed but the
database is opened in mode 1, the lock speci�ed by the type
of automatic locking in e�ect is active while the entry is
processed by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved.

For a KSAM or MPE �le, if LOCK is not speci�ed on
REPLACE but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed by any
PERFORM= statements, but is unlocked briey before the
next entry is retrieved.

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the REPLACE verb.

A database opened in mode 1 must be locked while
REPLACE executes. For transaction locking, you can use

8-194 Transact Verbs October 1996

REPLACE

the LOCK option on the LOGTRAN verb instead of the
LOCK option on REPLACE if SET(OPTION) NOLOCK is
speci�ed. If a lock is not speci�ed (for a database opened in
mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for more
information.

NOCOUNT Suppresses the message normally generated by Transact to
indicate the number of updated entries.

NOMATCH Ignores any match criteria set up in the match register.

NOMSG Suppresses the standard error message produced by Transact
as a result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for every
entry retrieved by the REPLACE verb before replacing the
values in the entry. The entries can be optionally selected by
MATCH criteria.

This option allows you to perform operations on retrieved
entries without your having to code loop control logic.
It is also useful for setting up the update register for the
replacement. You can nest up to 10 PERFORM= options.

The use of PERFORM forces application of the UPDATE
option on master sets.

RECNO=
item-name
[(subscript)]

The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

With the DIRECT modi�er, you must de�ne item-name to
contain the 32-bit integer number I(10,,4) of the record to be
updated.

With other modi�ers, Transact returns the record number of
the replaced record in the 32-bit integer I(10,,4) item-name.

SINGLE Updates only the �rst selected entry, and then proceeds with
the statement following REPLACE.

SOPT Suppresses Transact optimization of database calls. This
option is primarily intended to support a database operation
in a performed routine that is called recursively. The option
allows a di�erent path to the same detail set to be used at
each recursive entry, rather than optimizing to the same path.
It also suppresses generation of a call list of *" after the
�rst call is made. Use SOPT if you are calling TurboIMAGE
through the PROC or CALL verbs. For an example of how
SOPT is used, see \Examples" at the end of the FIND verb
description. For more detailed information about SOPT, see
\Suppression of Optimization versus WORKFILE" under the
FIND verb in this chapter.

October 1996 Transact Verbs 8-195

REPLACE

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." Use of this option requires that
you program your own error handling procedures.

When STATUS is speci�ed, the e�ect of a REPLACE
statement is described by the value in the 32-bit status
register:

Status

Register Value

Meaning

0 The REPLACE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the condition that occurred,
see the database or MPE/KSAM �le system
error documentation that corresponds to the
value.

STATUS causes the following with REPLACE:

Makes the normal multiple accesses single.

Suppresses the normal rewind done by REPLACE, so
CLOSE should be used before REPLACE(SERIAL).

Suppresses the normal �nd of the chain head
by REPLACE, so PATH should be used before
REPLACE(CHAIN). (See the example below.)

UPDATE When this option is used with Transact/iX versions that
are prior to A.04.00, REPLACE does not update search
or sort items. It should be used to perform an iterative
update on a data set or �le where you do not want to change
search or sort items. You should use this option when
replacing a non-key item in a manual master set. Otherwise,
a DUPLICATE KEY IN MASTER error occurs when
REPLACE adds the new entry.

When UPDATE is used on Transact/iX versions A.04.00 and
later and the database is enabled for critical item update,
search and sort items are updated. If critical item update
is not enabled, UPDATE operates as it did prior to version
A.04.00. See the TurboIMAGE/XL Database Management
System Reference Manual for more information.

8-196 Transact Verbs October 1996

REPLACE

Examples

The �rst example replaces a search item value in a master set with a new value. Before
making the replacement, it makes sure that a detail set linked to the master set through
CUST-NO has no entries with the value being replaced.

PROMPT(PATH) CUST-NO ("Enter customer number to be changed");

FIND(CHAIN) SALES-DET, LIST=(); <<Look for old number in detail set >>

IF STATUS <> 0 THEN <<and, if chain exists, delete it. >>

DO

DISPLAY "Before replacing customer number, delete from SALES-DET";

PERFORM DELETE-SALES-REC;

DOEND;

<< No chains linked to this customer number; so continue with update. >>

LIST LAST-NAME: <<Set up rest of list register >>

FIRST-NAME:

STREET-ADDR:

CITY:

STATE:

ZIP;

REPLACE CUST-MAST, <<Replace specified customer number >>

LIST=(CUST-NO:ZIP), <<with new number entered in >>

PERFORM=GET-NEW-NAME; <<GET-NEW-NAME routine >>...
GET-NEW-NAME:

DATA(UPDATE) CUST-NO ("Enter new customer number");

RETURN;

The following example uses marker items to declare a range. If a key item is involved,
this code logs the change and uses REPLACE instead of UPDATE to make the change.
(Remember that you cannot be sure which items are in a list delimited by marker items.)
STATUS must be used to capture the error of attempting to update a key or sort item:

UPDATE DETAIL-SET,

LIST=(MARKER1:MARKER2),

STATUS;

IF STATUS <> 0 THEN <<Error, Check it out >>

IF STATUS <> 41 THEN <<Unexpected >>

GO TO ERROR-CLEANUP

ELSE <<Log and complete update >>
DO

PUT LOG-FILE,

LIST=(MARKER1:MARKER2);

REPLACE(CURRENT) DETAIL-SET,

STATUS,

LIST=(MARKER1:MARKER2);

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

DOEND;

October 1996 Transact Verbs 8-197

REPLACE

The following example replaces each occurrence of a non-key item, ZIP, with a new value. It
asks the user to enter the value to be replaced as a match criterion for the retrieval. Before
making the replacement, it uses a PERFORM= routine to display the existing record and ask
the user for a new value:

LIST LAST-NAME: <<Set up list for update >>

FIRST-NAME:

STREET-ADDR:

CITY;

PROMPT(MATCH) ZIP ("Enter ZIP code to be replaced");

REPLACE(SERIAL) MAIL-LIST-DETL, <<Replace each occurrence of specified>>

LIST=(LAST-NAME:ZIP), <<zip code, a non-key item. >>

UPDATE,

PERFORM=GET-ZIP;

EXIT;

GET-ZIP:

DISPLAY;

DATA(UPDATE) ZIP ("Enter new ZIP code");

RETURN;

The next example changes the product number in a master set PRODUCT-MAST, and then
updates the related detail entries in the associated detail set PROD-DETL. When the detail
set entries have all been updated, it deletes the master entry for the old product number for
PRODUCT-MAST.

PROMPT PROD-NO ("Enter new product number"):

DESCRIPTION ("Enter a one line description");

PUT PRODUCT-MAST,

LIST=(PROD-NO:DESCRIPTION);

SET(UPDATE) LIST(PROD-NO); <<Set up update register with >>

<<new value >>

DATA(KEY) PROD-NO <<Set up key and argument registers >>

("Enter product number to be changed");

RESET(STACK) LIST; <<Release stack space >>

<<Now, update the product number in each entry of the associated detail set>>

DISPLAY "Updating product number in PROD-DETL", LINE2;

LIST PROD-NO: <<Allocate space for PROD-DETL entry >>

INVOICE-NO:

QTY-SOLD:

QTY-IN-STOCK;

REPLACE(CHAIN) PROD-DETL, <<Replace each entry in detail set >>

LIST=(PROD-NO:QTY-IN-STOCK);

RESET(STACK) LIST;

DELETE PRODUCT-MAST, <<Delete old entry from master set >>

LIST=();

8-198 Transact Verbs October 1996

RESET

RESET

Resets execution control parameters, the match or update registers, the list register stack
pointer, or delimiter values.

Syntax

RESET(modi�er) [target];

The function of RESET depends on the verb's modi�er, and the di�erent modi�ers determine
the syntax of the statement. The allowed modi�ers and the associated syntax options are:

COMMAND Clears user responses from the input bu�er. (See Syntax Option 1.)

DELIMITER Resets delimiter values to Transact defaults. (See Syntax Option 2.)

LANGUAGE Resets any SET(LANGUAGE) commands issued in the program.

OPTION Resets various execution control parameters or the match and update
registers. (See Syntax Option 3.)

PROPER Resets delimiters for upshifting the next letter. (See Syntax Option 4.)

STACK Resets the stack pointer for the list register. (See Syntax Option 5.)

Syntax Options

(1) RESET(COMMAND);

RESET(COMMAND) clears the input bu�er, TRANIN, that contains the responses to
prompts issued by a Transact program. This option is particularly useful to clear unprocessed
responses from the input bu�er when there is a need to reissue a prompt. Unprocessed
responses can occur when the user responds to multiple prompts with a series of responses
separated by a currently de�ned delimiter. For example:

GET-NAME:

DATA CUST-NO ("Please enter a customer number and name"):

CUST-NAME;

SET(KEY) LIST(CUST-NO);

FIND CUST-MAST;

IF STATUS=0 THEN <<CUST-NO not found >>

DO

DISPLAY "Invalid Customer Number. Please re-enter.";

RESET(COMMAND); <<Clear input buffer before returning >>

GO TO GET-NAME;

DOEND;

When the DATA program is run, suppose the prompt and response are:

Please enter a customer number and name> 30335, Jones, James

Without the RESET(COMMAND) statement, the unprocessed response \James" would
appear to Transact as a response to the CUST-NO prompt.

October 1996 Transact Verbs 8-199

RESET

(2) RESET(DELIMITER);

RESET(DELIMITER) resets the delimiters used in input �elds to the defaults of \," and \=".
(See \Field Delimiters" in Chapter 5.)

(3) RESET(OPTION) option-list ;

RESET(OPTION) is used to reset any options that have been changed by means of the SET
verb. It is also used to reset the match and update registers.

option-list One or more of the following �elds, separated by commas:

AUTOLOAD Resets the AUTOLOAD option. Forms are not automatically
loaded into local form storage before they are displayed.

END Resets the END option. If END or \]" or \]]" is encountered
during execution, control passes to the end of sequence.

FIELD Resets the FIELD option. The lengths of prompted-for
�elds are not indicated on 264X series terminals. See
SET(OPTION) in the SET verb description for more
information.

FORMSTORE=
(form-store-list)

Unloads the VPLUS forms in form-store-list from the
local form storage memory of a forms caching terminal.
Form-store-list can either be a list of VPLUS forms separated
by commas. Or, it can be the name, enclosed in an additional
set of parentheses, of a data item containing such a list.
Forms belonging to di�erent families can appear in the
same list. To use local form storage, you must include the
FSTORESIZE parameter in the SYSTEM verb. (See the
FSTORESIZE parameter in the SYSTEM verb entry in this
chapter.)

The RESET(OPTION) FORMSTORE statement should
only be used when lookahead loading is disabled and only
to make room in local storage for new forms. For example,
if you know that one form is signi�cantly larger than the
others and is not used later in the program, you can explicitly
unload it to make room for new forms, rather than relying on
lookahead loading to choose the best form to unload. The
RESET(OPTION) FORMSTORE statement is not required
in any other situation. Chapter 5 contains more information
about the SET(OPTION) FORMSTORE statement under
\Local Form Storage".

The following example unloads four forms:

RESET(OPTION) FORMSTORE=(MENU,ADDPROD,CHGPROD,DELPROD);

8-200 Transact Verbs October 1996

RESET

The following commands do the same as above with a data
name speci�ed as form-store-list :

DEFINE(ITEM) FORMLIST X(40);...
LIST FORMLIST;

MOVE (FORMLIST) = "MENU,ADDPROD,CHGPROD,DELPROD";

RESET(OPTION) FORMSTORE=((FORMLIST));

Note When local form storage is enabled, VPLUS automatically con�gures the HP
2626A and HP 2626W terminals to use datacomm port 1 and removes the
HPWORD con�guration from the HP 2626W terminal.

MATCH item-list Clears the MATCH register so that you can set up new match
criteria. This option can also be used to selectively delete
item entries. Here is the format you would use:

RESET(OPTION) MATCH [LIST({[item-name]})];

{ * }

If there is an entry in the match register with the speci�ed
name, it will be deleted. An asterisk (*) can be used in place
of the item name to delete the last entry added to the list
register. In either case, if more than one such entry exists in
the match register (such as multiple selection criterion in an
OR chain), all will be deleted.

Only entries that were created in the current level can be
deleted. The error message: ITEM TO BE DELETED NOT FOUND

IN MATCH REGISTER is issued at run time if the item speci�ed
is not found in the set of entries for the current level.

NOHEAD Resets the NOHEAD option. Data item headings are to be
generated on any subsequent displays set up by DISPLAY or
OUTPUT statements.

NOLOCK Re-enables automatic locking disabled by a previous
SET(OPTION) NOLOCK.

NOLOOKAHEAD Re-enables lookahead loading. VPLUS forms are loaded
into local form storage according to the sequence de�ned in
FORMSPEC. Lookahead is the default loading option for
local form storage in Transact.

PRINT Resets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the user
terminal.

SORT Resets the SORT option. Any listings generated by
subsequent OUTPUT statements are not sorted before
display.

SUPPRESS Resets the SUPPRESS option. Multiple blank lines sent to
the display device are not to be suppressed.

October 1996 Transact Verbs 8-201

RESET

TPRINT Resets the TPRINT option. Any displays generated by
the DISPLAY or OUTPUT statements and directed to the
terminal are not line printer formatted.

UPDATE item-list Clears the UPDATE register so you can set up new update
parameters. This option can also be used to selectively delete
item entries. Here is the format you would use:

RESET(OPTION) UPDATE [LIST({[item-name})];

{ * }

If there is an entry in the update register with the speci�ed
name, it will be deleted. An asterisk (*) can be used in place
of the item name to delete the last entry added to the list
register.

Only entries that were created in the current level can be
deleted. The error message ITEM TO BE DELETED NOT FOUND

IN UPDATE REGISTER will be issued at run time if the item
speci�ed is not found in the set of entries for the current level.

VPLS Indicates to Transact that the terminal is no longer in block
mode. Error messages are no longer sent to the window. (See
the SET(OPTION) VPLS description.)

If SET(OPTION) VPLS=item-name has been speci�ed,
you must follow this statement with a RESET(OPTION)
VPLS statement. The VPLS option causes RESET to
write the contents of item-name back to the VPLUS
comarea. Only as much of the comarea as was transferred
by SET(OPTION) VPLS is written back to the VPLUS
comarea by RESET(OPTION) VPLS. You must not include
any Transact statement that references VPLUS forms
between the SET(OPTION) VPLS=item-name and the
RESET(OPTION) VPLS statements. If you do, Transact
returns to command mode and issues an error message.

(4) RESET(PROPER);

RESET(PROPER) resets the delimiters back to the default characters that cause the next
letter to be upshifted by the PROPER function of the MOVE verb. The default set of special
characters as used by PROPER function are !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ and the
blank character.

(5) RESET(STACK) LIST;

RESET(STACK) resets the list register so that a new list can be generated by PROMPT and
LIST statements. The contents of the data register are not touched.

(6) RESET(LANGUAGE);

RESET(LANGUAGE) resets any SET(LANGUAGE) commands issued in the program.

8-202 Transact Verbs October 1996

RESET

Examples

This example removes all current match criteria and item update values from the match and
update registers.

RESET(OPTION)

MATCH,

UPDATE;

This example resets the list register to its beginning so you can use the same area for new list
items.

RESET(STACK) LIST;

The following examples show how to use the MATCH option to delete speci�c items from the
match register. The �rst example sets up the match register.

MOVE (name) = "Fred";

SET(MATCH) LIST(NAME);

MOVE (name) = "Bud";

SET(MATCH) LIST(NAME);

SET(MATCH) LIST(ADDRESS);

SET(MATCH) LIST(ZIP);

This example deletes \ADDRESS" from the match register.

RESET(OPTION) MATCH LIST(ADDRESS);

This example deletes both \NAME" entries from the match register.

RESET(OPTION) MATCH LIST(NAME);

This example causes the error message ITEM TO BE DELETED NOT FOUND IN MATCH
REGISTER to be issued, because \AGE" is an item in the match register.

RESET(OPTION) MATCH LIST(AGE);

The following example shows what happens when using the UPDATE option to delete an
item not added in the entries for the current level. This example will result in an error since
\NAME" was not added in the current level.

SET(UPDATE) LIST(NAME);

LEVEL;
SET(UPDATE) LIST(ADDRESS);

RESET(OPTION) UPDATE LIST(NAME);

END(LEVEL);

The following example shows how to use the RESET(PROPER) option to reset the delimiters
back to the default characters.

SET(PROPER) " -;,:0123456789";

:

RESET(PROPER);

October 1996 Transact Verbs 8-203

RESET

MOVE (NAME) = PROPER((NAME));

Before After
NAME X(12) 1doe'stjoe,p 1doe'StJoe,P

SET(PROPER) ". & -";

:

RESET(PROPER);

MOVE (LNAME) = PROPER("mr.&ms.smith-jones");

Before After

LNAME X(18) Mr.tJohntSmith,jr. Mr.&Ms.Smith-Jones

8-204 Transact Verbs October 1996

RETURN

RETURN

Terminates a PERFORM block.

Syntax

RETURN
�
(level)

�
;

RETURN transfers control from a PERFORM block to another statement. RETURN is also
used to return to a database access loop called with the PERFORM option.

Statement Parts

none Transfers control to the statement immediately following the last PERFORM
statement executed; also used to return to database access loop called with the
PERFORM option.

level Transfers control to the statement immediately following one of the previous
PERFORM statements in the command sequence.

If level is: then Transact:

1-128 Skips that many PERFORM levels and transfers control to the
statement following the correct PERFORM statement.

@ Transfers control to the statement following the top PERFORM
statement in the current command sequence. Control passes
through all active perform levels.

Examples on the next page show how the RETURN verb works.

October 1996 Transact Verbs 8-205

RETURN

Examples

MAIN:

PERFORM A;

EXIT;

.

.

A:

PERFORM B;
.

.

RETURN;

B:

PERFORM C;

.

.

RETURN;

C:

PERFORM D;

.

.

RETURN;

D:

PERFORM E;

.

.

RETURN;

E:

.

.

IF (VALUE)="SAM" THEN

RETURN; <<Transfer control to first >>

<<statement following PERFORM E; >>

IF (VALUE)="ALLAN" THEN

RETURN(1); <<Transfers control to first >>
<<statement following PERFORM D; >>

IF (VALUE)="BROWN" THEN

RETURN(@); <<Transfers control to first >>

<<statement following PERFORM A; >>

8-206 Transact Verbs October 1996

SET

SET

Alters execution control parameters, sets the match, update, or key registers, sets the list
register stack pointer, sets up data for subsequent display on a VPLUS form, or sets alternate
delimiters.

Syntax

SET(modi�er) target;

The function of SET depends on the verb's modi�er, and the di�erent modi�ers determine the
syntax of the statement. The allowed modi�ers and the associated syntax options are:

COMMAND Speci�es Transact commands. (See Syntax Option 1.)

DELIMITER Speci�es Transact delimiters. (See Syntax Option 2.)

FORM Speci�es data transfer to a VPLUS form bu�er for subsequent display. (See
Syntax Option 3.)

KEY Sets the value of the key and argument registers. (See Syntax Option 4.)

LANGUAGE Speci�es the native language used by Transact. (See Syntax Option 5.)

MATCH Sets up match selection criteria in the match register. (See Syntax Option 6.)

OPTION Speci�es various execution control parameters. (See Syntax Option 7.)

PROPER Speci�es delimiters for upshifting the next letter. (See Syntax Option 8.)

STACK Changes the value of the stack pointer for the list register. (See Syntax
Option 9.)

UPDATE Sets the value of the update register. (See Syntax Option 10.)

The DELIMITER, KEY, OPTION, and UPDATE modi�ers are restored at the end of a
LEVEL.

Syntax Options

(1) SET(COMMAND) argument ;

SET(COMMAND) programmatically invokes command mode and performs any command
identi�ed in argument .

argument The commands speci�ed in the argument parameter can be any of the
following:

EXIT Generates an exit from Transact; control passes to the
operating system or calling program.

INITIALIZE Generates an exit from the current program and causes
Transact to prompt for a di�erent program name, which it
will then initiate.

COMMAND
[(command-
label)]

Lists the commands or subcommands de�ned in the currently
loaded program. If a particular command-label is speci�ed, it

October 1996 Transact Verbs 8-207

SET

lists all the subcommands associated with that command; if
no command-label , it lists all the commands in the program.

\input-string" Speci�es possible user responses to command prompts
and/or to prompts issued by PROMPT, DATA, or INPUT
statements. This construct allows the program to simulate
user responses to prompts. This option transfers control
to and executes any command sequences speci�ed by
input-string . The code does not return automatically to the
point from which it was called. The maximum length of the
input-string is 256 characters.

Examples of SET(COMMAND)

This statement lists all the commands in the current program and returns to the next
statement.

SET(COMMAND) COMMAND;

This statement lists all the subcommands in the command sequence beginning with $$ADD
and returns to the next statement.

SET(COMMAND) COMMAND(ADD);

This statement executes ADD ELEMENT until the user enters \]" or \]]". It then returns to
command mode and issues the \>" prompt for another command.

SET(COMMAND) "REPEAT ADD ELEMENT";

This statement executes the code associated with the command/subcommand:

SET(COMMAND) "ADD CUSTOMER";

and results in:

$$ADD:

$CUSTOMER:

It does not return.

(2) SET(DELIMITER) \delimiter-string";

SET(DELIMITER) replaces Transact's input �eld delimiters (\," and \=" described in
Chapter 5) with the delimiter characters speci�ed in the delimiter string. A blank is not a
valid delimiter. A maximum of eight characters can be de�ned as a delimiter-string .

For example:

If delimiter-
string is:

Then Transact:

\#/" recognizes the characters \#" and \/" as �eld delimiters.

\" "" recognizes quotation marks as �eld delimiters.

\ " recognizes no delimiters, which means the user cannot enter multiple �eld
responses.

8-208 Transact Verbs October 1996

SET

(3) SET(FORM) form[,option-list];

SET(FORM) is used prior to another statement that actually displays the form. It can be
used to transfer data to the VPLUS form bu�er for subsequent display by a GET(FORM),
PUT(FORM), or UPDATE(FORM) statement. It can also be used to set up window
messages and �eld enhancements for subsequent displays.

However, even though the SET(FORM) statement performs a VGETBUFFER (when there
are items to transfer), the data returned from the VPLUS form bu�er is not made available to
the programmer. This is because the data is not directly transferred to the data register, but
to an internal bu�er.

Used with the LIST= option, SET(FORM) allows you to initialize �elds in a VPLUS form
with values from the data register rather than with values speci�ed through FORMSPEC.
The internal bu�er holding the data from the VPLUS form bu�er is partially or completely
overlaid with data from the data register, depending on the items speci�ed in the LIST=
option. Once the overlay is complete, the VPUTBUFFER intrinsic is used to move the data
back to the VPLUS form bu�er.

With the inclusion of other options, SET(FORM) also provides form sequence control for the
speci�ed form and for the next form after that form.

SET(FORM) opens the forms �le, but not the terminal. By default, Transact gets records
formatted for a 264X terminal. If a di�erent terminal is being used, a verb which opens the
terminal (e.g., GET(FORM) or PUT(FORM)) should precede the SET. Information will
therefore be available to tell SET to use a di�erent format.

form A form in the VPLUS forms �le that is used for the subsequent display. It can be
speci�ed as one of the following:

form-name Name of the form as de�ned by FORMSPEC.

(item-name
[(subscript)])

Name of an item that contains the form name. It can be
subscripted if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

* The form identi�ed by the \current" form name; that is, the
form name most recently speci�ed in a Transact statement that
references VPLUS forms. Note that this does not necessarily
mean the form currently displayed.

& The form identi�ed as the \next" form name; that is, the form
name de�ned as \NEXT FORM" in the FORMSPEC de�nition
of the current form.

option-list One or more of the following options, separated by commas, should be speci�ed in
a SET(FORM) statement:

Note The scope of the APPEND, CLEAR, and FREEZE options is both the
previous form (accessed by the last form speci�cation before this SET
operation) and the current form. Therefore, if the CLEAR option is used, not
only will the previous form be CLEARed when the speci�ed form is displayed,
but also the current form will be CLEARed when the next form is displayed.
This happens regardless of the FORMSPEC de�nitions of the two forms.

October 1996 Transact Verbs 8-209

SET

APPEND Appends the next form to the speci�ed form, overriding any
current or next form processing speci�ed for the form in its
FORMSPEC de�nition. APPEND sets the FREEZAPP �eld of
the VPLUS comarea to 1.

CLEAR Clears the speci�ed form when the next form is displayed,
overriding any freeze or append condition speci�ed for the form in
its FORMSPEC de�nition. CLEAR sets the FREEZAPP �eld of
the VPLUS comarea to zero.

CURSOR=
�eld-namej
item-name
[(subscript)]

Positions the cursor within the speci�ed �eld. The �eld-name
identi�es the �eld and the item-name identi�es the item which
names the �eld. The item-name can be subscripted if an array
item is being referenced. (See \Array Subscripting" in Chapter
3.)

If this option is omitted, the cursor is positioned in the form's
default �eld.

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT After transferring data to the form, perform any �eld edits
speci�ed in the FORMSPEC de�nition for the form.

FREEZE Freezes the speci�ed form on the screen when the next form is
displayed, and append the next form to it. FREEZE sets the
FREEZAPP �eld of the VPLUS comarea to 2.

INIT Initializes the �elds in the speci�ed form to any initial values
de�ned for the forms by FORMSPEC, or performs any Init Phase
processing speci�ed for the form by FORMSPEC.

LIST=
(range-list)

The list of items from the list register to be transferred from the
data register to the VPLUS bu�er for subsequent processing. The
list can include child items. If this option is omitted, items that
appear in both the list register and SYSTEM de�nition for the
form are transferred.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names and a limit of 128 items speci�ed by a range.

The options for range-list and the records upon which they
operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from item-nameX
through item-nameY . In other words, the
list register is scanned for the occurrence of

8-210 Transact Verbs October 1996

SET

item-nameY closest to the top of the list register.
From that entry, the list register is scanned for
item-nameX . All data items between are selected.
An error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as shown,

then data items A, B, C, D, and D are selected.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For VPLUS forms, data items must be speci�ed
in the order of their occurrence in the form. This
order need not match the order of the data items
on the list register. Child items can be included
in the list as long as they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range of all data items of form as
de�ned in a dictionary. The range-list is de�ned
as item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data items of form
as de�ned in the data dictionary. The data items
are speci�ed in the order of their occurrence in
the form as de�ned in the dictionary. This order
need not match the order of the data items in the
list register.

() A null data item list. Does not retrieve any data.

October 1996 Transact Verbs 8-211

SET

WINDOW=
([�eld],
message)

Places a message in the window area of the screen and,
optionally, enhances a �eld in the form. The enhancement is
done according to the de�nition of the form in FORMSPEC. If
the LIST=() option is in e�ect, the window message overwrites
any previous window messages for the form, but the �eld
enhancement is in addition to any �eld enhancement already on
the form. The parameters �eld and message can be speci�ed as
follows:

�eld Either the name of the �eld to be enhanced, or
an item-name[(subscript)] within parentheses
whose data register value is the name of the
�eld to be enhanced. The item-name can be
subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

message Either a "string" of characters within quotes that
comprises the message to be displayed, or an
item-name[(subscript)] within parentheses whose
data register value is the message string to be
displayed in the window. The item-name can be
subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

Examples of SET(FORM)

This statement clears any prior forms from the screen when a subsequent statement displays
the form MENU. If MENU is the current form, this statement clears the MENU when the
next form is displayed, regardless of the value of the MENU's FREEZAPP option.

SET(FORM) MENU,

CLEAR;

This example moves a value from the data register area identi�ed by LIST-DATE to the
VPLUS bu�er for subsequent display by GET(FORM). It also sets up a �eld to be enhanced
and a message for display when GET(FORM) displays LIST-FORM.

SET(FORM) LIST-FORM,

LIST=(LIST-DATE),

WINDOW=(LIST-DATE,"Only enter orders for this date");
GET(FORM) *,

LIST=(ORDER-NO:QTY-ON-HAND);

8-212 Transact Verbs October 1996

SET

This example is highly general. The �rst PUT(FORM) statement displays whatever form is
identi�ed by FORMNAME and freezes that form on the screen. SET(FORM) then speci�es
that the value of ITEM-A is to be displayed and enhanced in the next form and also speci�es
a message (MESSAGE) to be issued when the next form is displayed by the subsequent
PUT(FORM) statement.

PUT(FORM) (FORMNAME), FREEZE;

SET(FORM) &,

LIST=(ITEM-A),

WINDOW=((ITEM-A), (MESSAGE));

PUT(FORM) *,

WAIT=F1;

(4) SET(KEY) LIST (fitem-nameg);

f * g

SET(KEY) sets the key and argument registers to the values associated with item-name in
the list and data registers. Transact generates an error message at execution time if the item
name cannot be found in the list register. You typically use this modi�er on multiple data set
operations where the necessary key value has been retrieved by a previous operation. If an * is
used as the item-name, the last item added to the list register is used.

Examples of SET(KEY)

The example below identi�es the key as the item named ACCT-NO and moves the associated
value in the data register to the argument register for the subsequent data set retrieval by the
OUTPUT statement.

SET(KEY) LIST(ACCT-NO);

OUTPUT(CHAIN) ORDER-DETAIL,

LIST=(ACCT-NO:QTY-ON-HAND);

(5) SET(LANGUAGE) [language[,STATUS]];

The SET(LANGUAGE) statement allows the programmer to specify or change the native
language at run time. The user can either specify a literal language name or number in
quotes (which is checked at compile time) or give the name of an item which will contain the
language number at run time. This item must begin on a 32-bit storage boundary. It can be
subscripted if an array item is being referenced.

If the operation is successful, Transact sets the status register to the number of the language
in e�ect before the language is changed. If an error results, Transact returns the error message
to the user, sets the status register to �1, and leaves the native language unchanged. If
STATUS is speci�ed, Transact suppresses the error message, and the contents of the status
register is the same as described above.

If you omit language, Transact sets the status register to the number of the current language
and then resets the language number to 0 (NATIVE-3000). A compiler error results if the
STATUS option is speci�ed without language. For more information see Appendix E, \Native
Language Support."

October 1996 Transact Verbs 8-213

SET

This is a spacer page added to retain proper pagination.

This is the end of the spacer page.

8-214 Transact Verbs October 1996

SET

MOVE (STATE) = "CA";

SET(MATCH) LIST(STATE);

MOVE (STATE) = "NM";
SET(MATCH) LIST(STATE);

LET (DATE) = 010192;

SET(MATCH) LIST(DATE), GE;

+---+

| STATE STATE DATE |

| equal to OR equal to AND greater than |

| "CA" "NM" 010192 |

+---+

(7) SET(OPTION) option-list ;

SET(OPTION) and one or more option �elds included in option-list set the Transact
command options or override default execution parameters. The options in option-list are
separated by commas.

option-list Select one or more of the following options:

AUTOLOAD Causes VPLUS forms to be loaded automatically into the
local form storage of the terminal at the time the form is
displayed if the FSTORESIZE parameter is speci�ed in the
SYSTEM statement. Chapter 5 contains more information
about the AUTOLOAD option under \Local Form Storage".

DEPTH=number Sets the terminal display area depth to a line count of
number . The default value is 22. The depth value de�nes
how many lines are displayed on the terminal before Transact
automatically generates the prompt \CONTINUE(Y/N)?".
This option allows the video terminal user to view a listing
in a controlled page mode. If number is 0, information is
displayed continuously on the terminal, with no generation of
the \CONTINUE (Y/N)?" prompt.

END=label Transact branches to the statement marked label if an end
of sequence is encountered, either by an explicit or implicit
END or by \]" or \]]" input in response to a prompt at
execution time. This control function can be re-assigned to
a di�erent label or reset at any point in the program logic.
By default, the list register is reset before the END sequence
block executes. However, if a REPEAT option or command
is in e�ect, the list register is not reset until the END block
is executed.Once the END block is executed, this option is
automatically reset.

FIELD[=\ab"] Enhances or changes the prompts for data item �elds on the
terminal display. (This option with no parameter has the
same e�ect as the FIELD command quali�er, described in
Chapter 5.) By default, an item name prompt issued by a
PROMPT or DATA statement shows the item name followed
by the character \>".

October 1996 Transact Verbs 8-215

SET

The parameters a and b specify alternate display options,
where a speci�es the leading prompt character, b speci�es
the trailing prompt character. If a is a caret, \^", then the
leading prompt character is suppressed. If both a and b are
omitted, the FIELD option encloses the response �eld with
the delimiters \>" and \<".

If the statement is: then the prompt is:

SET(OPTION) FIELD; NAME> field-length <

SET(OPTION) FIELD=":"; NAME:

SET(OPTION) FIELD="^"; NAME

SET(OPTION) FIELD="[]"; NAME[field-length]

Note that the cursor is positioned in the second character
position following the left delimiter. If no delimiter is used,
the cursor is positioned in the second character position
following the �eld name.

Normally b sets the trailing prompt character to its value;
however, if b is one of the characters \A" through \O" or
\@", entry �elds are enhanced as described in the forms
caching terminal user handbooks. For example:

SET(OPTION) FIELD= " J";

This statement enhances the response �eld with half bright
inverse video.

Transact enhances (or delimits) the number of spaces that
represent the �eld length, except in two circumstances:

If the �eld being prompted for is longer than the space
available on the current line on the screen, Transact only
enhances (or marks with a right delimiter) the rest of the
line.

The length of the response to a DATA(MATCH) or
PROMPT(MATCH) prompt cannot be known in advance,
since the response might include operators and multiple
values. Therefore, Transact highlights or delimits only the
rest of the line.

FORMSTORE=
(form-store-list)

Loads the VPLUS forms in form-store-list into local storage
memory of a forms caching terminal. This reduces datacomm
overhead with frequently used forms and causes the form to
appear all at once instead of being painted line by line on the
screen.

Form-store-list can either be a list of VPLUS forms separated
by commas or the name, enclosed in an additional set of
parentheses, of a data item containing such a list. The data
item can be subscripted. Forms belonging to di�erent families
can appear in the same list.

8-216 Transact Verbs October 1996

SET

To use local form storage, you must include the
FSTORESIZE parameter in the SYSTEM verb. (See the
FSTORESIZE parameter in the SYSTEM verb entry in this
chapter.)

The RESET(OPTION) FORMSTORE statement is
not required with the SET(OPTION) FORMSTORE
statement. (See the explanation of the RESET(OPTION)
FORMSTORE statement in the RESET verb description in
this chapter. Chapter 5 contains more information about the
SET(OPTION) FORMSTORE statement under \Local Form
Storage".)

The following example loads four forms.

SET(OPTION) FORMSTORE=(MENU,ADDPROD,CHGPROD,DELPROD);

The following commands do the same as above with a data
name speci�ed as form-store-list .

DEFINE(ITEM) FORMLIST X(40);...
LIST FORMLIST;

MOVE (FORMLIST) = "MENU,ADDPROD,CHGPROD,DELPROD";

SET(OPTION) FORMSTORE=((FORMLIST));

Note When local form storage is enabled, VPLUS automatically con�gures the
2626A and 2626W terminals to use datacomm port 1 and removes the
HPWORD con�guration from the 2626W terminal.

HEAD Generates headings for the next DISPLAY verb encountered
with the TABLE option, regardless of page position.

LEFT Left-justi�es data items for any subsequent displays set up
by the DISPLAY or OUTPUT statements. Since this is the
default option, it is normally used to reset justi�cation after a
SET(OPTION) RIGHT or ZEROS statement.

NOBANNER Suppresses the default page banner containing date, time,
and page number on any subsequent displays set up by the
DISPLAY or OUTPUT statements. The default printer page
depth then becomes 60.

NOHEAD Suppresses data item headings on any subsequent displays set
up by the DISPLAY or OUTPUT statements.

NOLOCK Disables the automatic locking of a database opened in mode
1 for a DELETE, PUT, REPLACE, or UPDATE operation.
NOLOCK does not reset the LOCK option speci�ed with
a database access verb (DELETE, FIND, GET, OUTPUT,
PUT, REPLACE, or UPDATE). Use NOLOCK when you
want to set up data set or data item locks through a PROC
statement or when you are locking with the LOCK option on

October 1996 Transact Verbs 8-217

SET

the LOGTRAN verb. (See Chapter 6 for more information on
locking.) The NOLOCK option is turned o� when processing
crosses a barrier between command sequences. Therefore,
NOLOCK must be set in each command sequence to which it
applies.

NOLOOKAHEAD Disables look-ahead loading, which is the default option when
local form storage is used. Setting the NOLOOKAHEAD
option has the e�ect of protecting explicitly loaded forms
from being overwritten by automatically loaded forms.
Chapter 5 contains more information about look-ahead
loading under \Local Form Storage".

PALIGN=number Right-justi�es the prompts on a display device to column
number on the display screen.

PDEPTH=number Sets the printer page depth to a line count of number . The
default value is 58 unless the NOBANNER option is speci�ed,
in which case the default value is 60. If number is 0, the page
heading is suppressed on any subsequent displays directed to
the printer.

PRINT Sets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the line
printer instead of to the user terminal. This option has the
same e�ect as the PRINT command quali�er. (See Chapter
5.)

You can redirect results to the printer immediately by
using this option before issuing a DISPLAY or OUTPUT
statement, and then closing the print �le with a CLOSE
$PRINT statement. For example:

SET(OPTION) PRINT;

DISPLAY "PRINT THIS NOW";

CLOSE $PRINT;

PROMPT=number Sets the line feed count between prompts issued by the
PROMPT, DATA, or INPUT statements to number . The
default value is 1.

PWIDTH=number Sets the printer line width to a character count of number .
The default value for PWIDTH is 132 and the maximum is
152.

REPEAT Sets the REPEAT option. At execution time, Transact
repeats the associated statement sequence until the user
enters one of the following special characters:

] Terminates execution of the current command
sequence and passes control to the �rst statement
in the sequence. However, if there is an active
SET(OPTION) END= label, the block introduced by
label is executed before control is passed to the �rst
statement of the command sequence.

8-218 Transact Verbs October 1996

SET

]] Terminates repeated execution of this command
sequence and passes control to command mode
regardless of the command level or subcommand
level. However, if there is an active SET(OPTION)
END= label statement, the block introduced by label
is executed before control is passed to command
mode.

The list register is reset before the current command
sequence is repeated.

The user can enter \REPEAT" and then a command name
during execution to control a loop. This option has the same
e�ect as the REPEAT command quali�er. Information on
this procedure is in Chapter 5 under \Command Quali�ers."

RIGHT Right-justi�es data item values for any subsequent displays
set up by the DISPLAY or OUTPUT statements.

SORT Sets the SORT option. Any listing generated by subsequent
OUTPUT statements is sorted before display. The sort is
performed in the order that the display �elds appear in the
list register. This option has the same e�ect as the SORT
command quali�er. (See \Command Quali�ers" in Chapter
5.)

SUPPRESS Suppress blank lines of data; only the �rst of a series of blank
lines is sent to the line printer.

TABLE Right-justi�es numeric �elds and left-justi�es alphabetic �elds
for display.

TPRINT Sets the TPRINT option. Any displays generated by the
DISPLAY or OUTPUT statements and directed to the
terminal are line printer formatted. This option has the same
e�ect as the TPRINT command quali�er. (See \Command
Quali�ers" in Chapter 5.)

VPLS=item-name
[(subscript)]

Informs Transact that you want to reference the VPLUS
comarea directly. It directs error messages to the window, and
moves the VPLUS comarea to the area in the data register
identi�ed by item-name. The item-name can be subscripted if
an array item is being referenced. (See \Array Subscripting"
in Chapter 3.)

Item-name is the name of a data �eld containing all or part of
the VPLUS comarea, depending on the size of the speci�ed
item. When this option is used as much of the current
VPLUS comarea as will �t in the speci�ed item is moved to
the data register area associated with that item. You can
then examine or change comarea �elds.

A SET(OPTION) VPLS statement must be followed by a
RESET(OPTION) VPLS statement before any Transact
statements can be used to manipulate the forms within the

October 1996 Transact Verbs 8-219

SET

same Transact system and level. Otherwise, Transact returns
to command mode and issues an error message.

If you plan to open the forms �le and terminal with PROC
statements, you should use a SET(OPTION) VPLS statement
just before you place the terminal in block mode with a call
to VOPENTERM. Reset with a RESET(OPTION) VPLS
statement following the call to VCLOSETERM to return the
terminal to character mode. If you do not call VOPENTERM
or VCLOSETERM directly, or if you do not plan to reference
the comarea directly, you need not use SET(OPTION) VPLS.
Instead, in these cases, use the VCOM parameter of the
PROC statement. (See the PROC verb description.)

If the VPLUS form is already open, you can use this option
in conjunction with a RESET(OPTION) VPLS statement to
retrieve or change comarea values.

For example, you could change the window enhancement in
the VPLUS comarea:

DEFINE(ITEM) COMAREA X(16): <<First eight words, comarea >>

WINDOW-ENH X(1) <<Right byte of eighth word >>

= COMAREA(16);

LIST COMAREA;
...

UPDATE(FORM) *;

SET(OPTION) VPLS=COMAREA;

MOVE (WINDOW-ENH)="K"; <<Half bright, inverse video >>

RESET(OPTION) VPLS;

WIDTH=number Sets the terminal line width to a character count of number .
The default value is 79.

ZERO[E]S Right-justi�es numeric data item values and inserts leading
zeros for any subsequent displays set up by the DISPLAY or
OUTPUT statements.

Examples of SET(OPTION)

This statement aligns the prompt character on column 25, with two blank lines between the
prompt lines.

SET(OPTION) PALIGN25,PROMPT=2;

This statement sorts subsequent OUTPUT listings to the terminal. It suppresses item
headings and suppresses the usually automatic \CONTINUE (Y/N)?" prompt.

SET(OPTION) NOHEAD,SORT,DEPTH=0;

8-220 Transact Verbs October 1996

SET

(8) SET(PROPER) \delimiter-string";

SET(PROPER) replaces the default characters that cause the next letter to be upshifted with
the delimiter characters speci�ed in the delimiter string. This statement is used in conjunction
with the PROPER function on the MOVE verb. A maximum of 256 characters can be de�ned
as the delimiter-string . The double quote character (") can be made one of these delimiter
characters by including 2 consecutive double quotes ("") anywhere in the delimiter-string . Use
the RESET(PROPER) verb to reset the delimiter which was set to the default set.

Examples of SET(PROPER)

SET(PROPER) " -;,:""0123456789";

MOVE (NAME) = PROPER((NAME));

Before After

NAME X(12) 1doe'stjoe,p 1Doe'stJoe,P

SET(PROPER) " .&";

MOVE (LNAME) = PROPER("mr.&ms.smith-jones");

Before After

LNAME X(18) Mr.tJohntSmith,jr. Mr.&Ms.Smith-jones

(9) SET(STACK) LIST (fitem-nameg);

f * g

SET(STACK) moves the stack pointer for the list register from the current position to the
one identi�ed by item-name. Transact begins the search at the data item prior to the current
(last) one in the list register and performs a reverse scan to the beginning of the list. Transact
generates an error at execution time if it cannot �nd the data item in the list register. The
scan does not move the stack pointer, which is moved only when the search �nds the �rst
occurrence of the data item. The stack pointer will not be moved if item-name is the current
data item and it occurs only once in the list register. When the stack pointer moves down the
list register, the items above the new current item are removed from the list register. When a
data item has more than one appearance in the list register, each occurrence can be located by
using additional SET(STACK) statements.

You typically use SET(STACK) to manipulate the list register for more than one �le or data
set operation or to rede�ne the data register contents. You can choose to rede�ne the data
register contents for the following reasons:

To transfer values from one data item to another in a di�erent set,

To access sub�elds of a data item by adding several item names in place of the original item
name, or

To manipulate data item arrays.

Examples of SET(STACK)

To move the stack pointer for the list register from the current data item to the item
immediately prior to it, use the following format:

SET(STACK) LIST(*);

October 1996 Transact Verbs 8-221

SET

The next statement moves the stack pointer back to the item PROD-NO and removes all
items above it. If PROD-NO appears more than once in the list register, the pointer is set to
the �rst occurrence of this item going back down the list; that is, the item nearest the top of
the list register stack.

SET(STACK) LIST(PROD-NO);

(10) SET(UPDATE) LIST(fitem-nameg);

f * g

SET(UPDATE) speci�es that the item-name in the list register and the current value for
item-name in the data register are to be placed in the update register for a subsequent �le or
data set operation using the REPLACE verb. If * is used as the item name, the current item
name is used.

Note A child item value placed in the UPDATE register is overridden by its parent's
value if the parent value was placed in the update register before it.

8-222 Transact Verbs October 1996

SYSTEM

SYSTEM

Names the Transact program and any databases, �les, or forms �les that are used by the
program.

Syntax

SYSTEM program-name
�
,de�nition-list

�
;

The SYSTEM statement names the program and describes databases, �les, or forms �les that
the program uses. It overrides the default space allocations that Transact uses. It must be the
�rst statement in the program.

Statement Parts

program-name A 1 to 6 character string of letters or digits that names the program.
Transact/V stores the output from the compiler in a �le called \IPxxxxxx"
where \xxxxxx" is the program name. program-name is also used to call up
the program for execution when the user enters it in response to Transact/V's
SYSTEM NAME> prompt.

de�nition-list Description of the �les or data sets used during execution. Each de�nition list
describes a �le. Within the de�nition list, the �elds can be in any order and
separated by commas.

BANNER=\text" Causes the text string to be placed at the top left
position on every page of line printer output generated
during execution of the program.

BASE=base-name1[([\password"][,[mode]

[,[optlock][,[basetype]]]])]

[,base-name2[([\password"][,[mode]

[,[optlock][,[basetype]]]])]] . . .

base-name The name of a database used in the program.
This database has the attributes described in the
TurboIMAGE/V or XL Database Management System
Reference Manual . The base-name1 is termed the
home base and any references in the program to this
database must not include a base quali�er. The name
of the home base is stored in the system variable
$HOME.

The BASE description opens the database. The home
base can be opened a second time by repeating its
name in the database list in the SYSTEM statement.
This feature allows two independent and concurrent
access paths to the same detail set without losing path
position in either access. This might be necessary for
a secondary access of a detail set during processing of
a primary access path in the same data set.

October 1996 Transact Verbs 8-223

SYSTEM

References to data sets in bases other than the home
base must be quali�ed by including the name of the
database in parentheses following the data set name:

set-name(base-name)

If one or more of the following three quali�ers are
used, they must all be enclosed in parentheses.

base-type The oating-point type speci�cation for the database.
The valid types are HP3000 16 and HP3000 32.

HP3000 16 speci�es that the database requires HP
oating point format. HP3000 32 speci�es that the
database requires IEEE oating point format. If no
type is speci�ed here or as a Transact/iX compiler
option, HP3000 32 is assumed by Transact/iX. For
Transact/V, HP3000 16 is assumed.

password Used by Transact for opening the database. If no
password is provided, at execution time Transact
prompts with

PASSWORD FOR base-name>

If the user enters an incorrect password, Transact
issues an error message and then prompts again for
the password.

For Transact/iX, up to three password prompts are
issued. If the password is still invalid, the program
will end. In batch mode for both Transact/V and
Transact/iX, if the password is invalid on the �rst
response, the batch job ends.

mode Used by Transact for opening the database. For
Transact/V, this speci�cation overrides any mode
given by the user at execution time in response
to the SYSTEM NAME> prompt. For Transact/iX,
this speci�cation overrides a mode speci�ed by the
TRANDBMODE environment variable. The default is
1.

If dynamic transactions are being performed
(Transact/iX only), DBOPEN mode 2 cannot be used.

For more information about access modes, see
\Database Access" in Chapter 5.

For example, to specify the database STORE to be
opened with the password \MANAGER" in mode 1:

SYSTEM MYPROG,

BASESTORE("MANAGER",1);

8-224 Transact Verbs October 1996

SYSTEM

optlock Speci�es whether or not optimized database locking is
to be used. It can be a value of 0 or 1. The default =
0. (See Chapter 6 for more details.)

0 Tells Transact to always lock unconditionally
at the database level.

1 Tells Transact to lock conditionally at the
optimum level which avoids a deadlock with
other Transact programs.

DATA=data-length, data-count

data-length The maximum 16-bit word size of the data register.
The DATA=data-length speci�cations given in a main
program establish the maximum data register size
used by all called programs and take precedence
over any DATA=data-length speci�cations in called
programs. The default is 1024 16-bit words.

data-count The maximum number of items allowed in the list
register. The DATA=,data-count speci�cations
given in a main program do not establish the
number of entries in the list register used by all
called programs nor does it take precedence over
any \DATA=,data-count" speci�cations in called
programs. Default=256 items.

FILE=�le-name1

[([access][(�le-option-list)]

[,[record-length][,[blocking-factor]

[,[�le-size][,[extents][,[initial-allocation]

[,[�le-code]]]]]]])]

[,�le-name2 . . .] . . .

�le-name The MPE �le name assigned or to be assigned to the
�le. A back-referenced �le name using a leading *" is
permitted.

access One of the following access modes: READ, WRITE,
SAVE, APPEND, R/W (read/write), UPDATE,
SORT. SORT is identical to UPDATE with the
additional SORT capability. In other words, an
end-of-�le is automatically written into the �le before
the SORT, and the �le is rewound following the
SORT. It is recommended that you generally use
UPDATE rather than READ or WRITE as this access
is required to use either the REPLACE or UPDATE
statements. The default is READ.

�le-option-list Any of the following �elds provided that they do not
conict in meaning: OLD, NEW, TEMP, $STDLIST,
$NEWPASS, $OLDPASS, $STDIN, $STDINDX,
$NULL, ASCII, CCTL, SHARE, LOCK, NOFILE,
HP3000 16, HP3000 32. (See FOPEN in MPE or

October 1996 Transact Verbs 8-225

SYSTEM

MPE/iX Intrinsics Manual for a detailed explanation
of these options and terms.)

The default is OLD (old �le), binary, no carriage
control, and �le equation permitted.

A temporary MPE �le de�ned for WRITE access
with the option TEMP is purged when Transact exits
if Transact automatically opens and closes the �le.
However, it is not purged when Transact exits if the
CLOSE verb is used programmatically. It is purged
immediately whenever the FILE(CLOSE) verb is used.

HP3000 16 speci�es that the �le requires HP
oating point format. HP3000 32 speci�es that
the �le requires IEEE oating point format. If no
type is speci�ed here or as a Transact/iX compile
option, HP3000 32 is assumed by Transact/iX. For
Transact/V, HP3000 16 is assumed.

record-length Record length of records in �le. A positive value
indicates words, a negative value indicates bytes.
Default is byte length required by �le operation.

blocking-factor Blocking factor used to block records. The default is 1
record/block.

�le-size Size of the �le in records. The default is 10000
records.

extents Number of extents used by the �le. The default is 10
extents.

initial-allocation Initial allocation of extents. The default is 1 extent.

�le-code MPE �le code for the �le. The default is 0.

For example, to de�ne a �le with Read/Write access,
40 words per record, a blocking factor of 3 records per
block, and a �le size of 100 records:

SYSTEM FREC,

FILEWORK(R/W,40,3,100);

8-226 Transact Verbs October 1996

SYSTEM

In an MPE �le or a KSAM �le, you can then de�ne
the entire record as a parent item, and de�ne
individual �elds as child items. This allows you to
access the entire record by its parent name, and also
refer to individual �elds. For example:

DEFINE(ITEM) RECORD X(80):

ITEM1 X(25) = RECORD(1):

ITEM2 X(30) = RECORD(26):

ITEM3 X(15) = RECORD(56):

ITEM4 X(10) = RECORD(71);

LIST RECORD;

GET(SERIAL) WORK,

LIST=(RECORD);

DISPLAY ITEM1: ITEM2: ITEM3: ITEM4;

DATA(SET) ITEM1: ITEM2: ITEM3: ITEM4;...

FSTORESIZE=formstoresize

formstoresize The number of forms allowed to be stored in the
terminal, speci�ed as a number from �1 to 255. The
2626A terminal can store up to four forms. The
forms directory on the 2624B can contain up to 255
depending on the form size, the type of datacomm
network, and the memory capacity of the individual
terminal.

If formstoresize is 0 to 255, VPLUS automatically
con�gures the 2626A and 2626W terminals to use
datacomm port 1 and removes the HPWORD
con�guration from the 2626W terminal.

If 0 is speci�ed, local form storage is not performed.
VPLUS con�gures the 2626A and 2626W terminals as
explained above.

If �1 is speci�ed, no local form storage is performed.
VPLUS does not change any terminal con�guration,
and either terminal port can be used.

If the FSTORESIZE parameter is not speci�ed, the
FORM'STOR'SIZE �eld in the VPLUS comarea is
set to �1, so that no local form storage is performed.
VPLUS does not change any terminal con�guration,
and either terminal port can be used. See \Local
Form Storage" in Chapter 5 for more information.

KSAM=�le-name1 [(access [(�le-option-list)])]

[,�le-name2 ...] ...

�le-name Name of a KSAM data �le.

October 1996 Transact Verbs 8-227

SYSTEM

access One of the following access modes: READ, WRITE,
R/W, (read/write), UPDATE, SAVE, APPEND. The
default is READ.

�le-option-list Any of the following �elds provided that they do not
conict in meaning: OLD, $STDLIST, $NEWPASS,
$OLDPASS, $STDIN, $STDINDX, $NULL, ASCII,
CCTL, SHARE, LOCK, NOFILE. (See FOPEN in
the KSAM/3000 Reference Manual for a detailed
explanation of these options and terms.)

Defaults are OLD (old �le), binary, no carriage
control, and �le equation permitted.

OPTION=option For Transact/V, either enable or disable the test
facility for this program execution; option can be
either one of the following:

TEST Enables the TEST facility during
execution of the Transact/V program.

NOTEST Disables the TEST facility during
execution of the Transact/V program.
The default is TEST.

This option is ignored by Transact/iX.

SIGNON=\text" Causes the text string to be displayed as a sign on
message each time the program is executed. For
example:

SYSTEM MYPROG,

SIGNON="Test Version of MYPROG A02.31"

SORT=number Speci�es the number of records in the sort �le. The
default is 10,000.

VPLS=�le-name1[(form-name1[(item-list1)] . . .)]

[,�le-name2 . . .] . . .

�le-name The name of a VPLUS forms �le that is used in the
program. Every forms �le referenced in a Transact
program must be speci�ed in the SYSTEM statement.

form-name The name of a form de�ned within the VPLUS forms
�le. If omitted, the dictionary de�nitions of all the
forms in the speci�ed forms �le are used.

For example, if forms �le CUSTFORM has a
dictionary de�nition, you can specify:

SYSTEM MYPROG,

VPLS=CUSTFORM;

8-228 Transact Verbs October 1996

SYSTEM

If not, you must name each form in the forms �le.
For example, assuming CUSTFORM has three forms,
MENU, FORM1, and FORM2; MENU has no �elds,
FORM1 has 3 �elds, and FORM2 has 4 �elds:

SYSTEM MYPROG,

VPLS=CUSTFORM(MENU(),

FORM1(F1,F2,F3),

FORM2(F4,F5,F6,F7));

item-list A list of item names used in the program, in the order
in which they appear on the VPLUS form, which is
in a left to right and top to bottom direction. The
names need not be the same as the names speci�ed for
the �elds by FORMSPEC, but the items must have
the same display lengths as the �elds. If omitted, the
dictionary de�nitions of all the �elds in the speci�ed
form are used.

For example, suppose the �elds in FORM2 are de�ned
in the dictionary:

SYSTEM MYPROG,

VPLS=CUSTFORM

(MENU(),

FORM1(F1,F2,F3),

FORM2);

WORK=work-length, work-count

work-length The maximum 16-bit word size of the work area
containing the match, update, and input registers.
This work area is used by Transact/V to set
up temporary values used during execution of
the program. The default is 256. Transact/iX
automatically allocates enough room for all temporary
variables, so the work-length option has no a�ect on a
Transact/iX program.

work-count The maximum number of entries allowed in the work
area for Transact/V. The default is 64. Transact/iX
automatically allocates entries for the work area, so
work-count has no e�ect on a Transact/iX program.

WORKFILE=number Speci�es the number of records in the work �le. The
default is 10,000 records. This option replaces the
SORT=number option which remains available for
backward compatibility.

October 1996 Transact Verbs 8-229

UPDATE

Modi�es a single entry in a KSAM or MPE �le or in a data set, or modi�es a VPLUS form.

Syntax

UPDATE
�
(FORM)

�
destination

�
,option-list

�
;

UPDATE modi�es data items that are not key search or sort items in a master or detail set
entry. The item to be updated must have been retrieved by a prior FIND or GET statement.
When used with the FORM modi�er, UPDATE modi�es and redisplays a currently displayed
VPLUS form.

In versions of Transact/iX A.04.00 and later, UPDATE modi�es key search or sort items in
a master or detail data set entry when critical item update is enabled for the database. The
UPDATE verb does not use the update register. The new value must be placed in the data
register before UPDATE is executed. The value can be retrieved from a user, or from a data
set or �le.

To update a non-key value with UPDATE, do the following:

1. Fetch the record or entry to update and place it in the data register. You can do this with
a GET or FIND statement. If you want to update several entries, updating the same item
in each entry with a di�erent value, use a FIND statement with a PERFORM= option that
calls a routine containing the UPDATE statement. If you want to update a single entry,
use a GET statement.

2. Place the new value in the data register. You can get the new value from a data set
or �le, or from the user. If you are getting a value from the user, a PROMPT(SET) or
DATA(SET) statement is useful, since it allows the user to choose whether to leave an
existing value in the data register or enter a new value.

3. Use the UPDATE statement to write the new values to the entry or record. Since
UPDATE always updates the last entry retrieved, it needs no access modi�ers. You must
include the names of any items to be updated in a LIST= option.

If you want to update several entries, updating the same data item in each entry with the
same value, you should use the REPLACE statement rather than the UPDATE statement.
(See the REPLACE verb description.)

Note Before using UPDATE, you must �rst set the SYSTEM statement access
mode to \UPDATE".

8-230 Transact Verbs October 1996

UPDATE

Statement Parts

FORM Causes this verb to transfer data from the data register to a VPLUS form
displayed at a VPLUS compatible terminal by PUT(FORM) or GET(FORM). If
the requested form is not currently displayed on the terminal, an error results. If
this modi�er is not speci�ed, the destination must be a data set or �le.

destination The name of a �le, data set, or form to be updated.

If destination identi�es a data set that is not in the home base as de�ned in the
SYSTEM statement, the base name must be speci�ed in parentheses as follows:

set-name(base-name)

In an UPDATE(FORM) statement, the destination must identify a form in a
forms �le that was named in the SYSTEM statement. For UPDATE(FORM),
destination can be speci�ed as any of the following:

form-name Name of a form to be updated by UPDATE(FORM).

(item-name
[(subscript)])

Name of an item whose data register location contains the name
of the form to be updated by UPDATE(FORM). The item-name
can be subscripted if an array item is referenced. (See \Array
Subscripting" in Chapter 3.)

* The form identi�ed by the \current" form name; that is, the form
name most recently speci�ed in a statement that references a
VPLUS form. Note that this does not necessarily mean the form
currently displayed.

& The form identi�ed as the \next" form name; that is, the form
name speci�ed as the \NEXT FORM" in the FORMSPEC
de�nition of the current form.

option-list The LIST= option is always available. Other options, described below, can be
used only with or only without the FORM modi�er.

LIST=
(range-list)

The list of items from the list register to be used for the
UPDATE operation. For data sets, no child items can be
speci�ed in the range list. For UPDATE(FORM) only, items in
the range list can be child items.

If the LIST= option is omitted with any modi�er except
UPDATE(FORM), all the items in the list register, and either in
the SYSTEM statement or the data dictionary for the form are
used.

The LIST= option should not be used when specifying an
asterisk (*) as the source.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE data
sets and 128 items for VPLUS forms also exists.

October 1996 Transact Verbs 8-231

UPDATE

All item names speci�ed must be parent items when not using the
FORM modi�er. The options for range-list and the records or
forms they update include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from item-nameX
through item-nameY . In other words, the
list register is scanned for the occurrence of
item-nameY closest to the top of the list register.
From that entry, the list register is scanned for
item-nameX . All data items between are selected.
An error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as shown,

then data items A, B, C, D, and D are selected.
For database �les, an error is returned if
duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and if
there are no data items between the two on the
list register, no database access is performed.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For databases, data items can be speci�ed in any
order. For KSAM and MPE �les or for VPLUS
forms, data items must be speci�ed in the order
of their occurrence in the physical record or form.
This order need not match the order of the data
items on the list register. Do not include child

8-232 Transact Verbs October 1996

UPDATE

items in the list unless they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range of all data items of �le-name as
de�ned in a dictionary. The range-list is de�ned
as item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary. The
data items are speci�ed in the order of their
occurrence in the physical record or form as
de�ned in the dictionary. This order need not
match the order of the data items in the list
register.

() A null data item list. That is, access the �le or
data set, but do not transfer any data.

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes. Instead,
the program branches to the statement identi�ed by label , and Transact sets
the list register pointer to the data item item-name. Transact generates an
error at execution time if the item cannot be found in the list register. The
item-name must be a parent.

If you specify no item-name, as in ERROR=label ();, the list register is reset
to empty. If you use an *" instead of item-name as in ERROR=label (*);,
then the list register is not changed. For more information, see the discussion
\Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database for the duration of the UPDATE. For
databases, if this option is not speci�ed on UPDATE when the database has
been opened with mode 1, then automatic locking will execute the lock.

For a KSAM or MPE �le, if LOCK is not speci�ed on UPDATE but is
speci�ed for the �le in the SYSTEM statement, then the �le is locked before
each entry is retrieved, remains locked while the entry is processed by any
PERFORM= statements, but is unlocked briey before the next entry is
retrieved.

Including the LOCK option overrides SET(OPTION) NOLOCK for the
execution of the UPDATE verb.

For transaction locking, you can use the LOCK option on the LOGTRAN
verb instead of the LOCK option on UPDATE if SET(OPTION) NOLOCK is
speci�ed.

See \Database and File Locking" in Chapter 6 for more information on
locking.

NOMSG The standard error message produced by Transact as a result of a �le or
database error is to be suppressed.

October 1996 Transact Verbs 8-233

UPDATE

STATUS Suppresses the actions de�ned in Chapter 7 under \Automatic Error
Handling." This option allows you to program your own error handling
procedures. When STATUS is speci�ed, the e�ect of an UPDATE statement
is described by the value in the 32-bit integer status register:

Status

Register Value

Meaning

0 The UPDATE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the. condition that
occurred, refer to database or MPE/KSAM �le
system error documentation that corresponds to
the value.

See \Using the STATUS Option" in Chapter 7 for details on how to use the
STATUS data.

Options Available Only With the Form Modifier

APPEND Appends the next form to the speci�ed form, overriding any freeze or append
condition speci�ed for the form in its FORMSPEC de�nition. APPEND sets
the FREEZAPP �eld of the VPLUS comarea to 1.

CLEAR Clears the previously displayed form when the requested form is displayed,
overriding any freeze or append condition speci�ed for the form in its
FORMSPEC de�nition. CLEAR sets the FREEZAPP �eld of the VPLUS
comarea to zero.

CURSOR=
�eld-name
jitem-name
[(subscript)]

Positions the cursor within the speci�ed �eld. Field-name identi�es the
�eld and the item-name identi�es the item which names the �eld. The
item-name can be subscripted if an array item is being referenced. (See
\Array Subscripting" in Chapter 3.)

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs any �eld edits de�ned in the FORMSPEC de�nition immediately
before redisplaying the form.

FKEY=
item-name
[(subscript)]

Moves the number of the function key pressed by the operator in this
operation to a 16-bit integer I(5,,2) item-name. The function key number
is a digit from 1 through 8 for function keys f1 through f8, or zero for the
ENTER key. Transact determines which function key was pressed from the
value of the �eld LAST-KEY in the VPLUS comarea. The item name can be
subscripted if an array item is being referenced. (See \Array Subscripting" in
Chapter 3.)

Fn=label Control passes to the labeled statement if the operator presses function key n.
n can have a value of 0 through 8, inclusive, where zero indicates the ENTER

8-234 Transact Verbs October 1996

UPDATE

key. This option can be repeated as many times as necessary in a single
UPDATE(FORM) statement.

FREEZE Freezes the speci�ed form on the screen and appends the next form to
it, overriding any freeze or append condition speci�ed for the form in its
FORMSPEC de�nition. FREEZE sets the FREEZAPP �eld of the VPLUS
comarea to 2.

INIT Initializes the �elds in a VPLUS form to values de�ned by the forms design
utility FORMSPEC and perform any Init Phase processing before transferring
data.

WAIT=[Fn] Does not return control to the program until the terminal user has pressed
function key n. n can have a value of 0 through 8, where 1 through 8 indicate
the keys f1 through f8 and 0 indicates the ENTER key. If Fn is any key other
than f8, the f8 exit function is disabled.

If the user presses a di�erent function key, Transact sends a message to the
window saying which key is expected.

If Fn is omitted, then UPDATE(FORM) waits until any function key is
pressed.

WINDOW=
([�eld,]
message)

Places a message in the window area of the screen and, optionally, enhances a
�eld on the form. The �elds �eld and message can be speci�ed as follows:

�eld Either the name of the �eld to be enhanced, or an
item-name[(subscript)] within parentheses that will contain
the data item of the �eld to be enhanced at run time.

message Either a \string" enclosed in quotation marks that speci�es
the message to be displayed, or an item-name[(subscript)]
within parentheses containing the message string to be
displayed in the window.

Examples

This example prompts the user for the values required to �nd a record. After it is retrieved,
the user is prompted for the new quantity for the item and the record is updated. Note that
the LIST= option for both the retrieval and the update only need specify the item to be
updated.

PROMPT(PATH) INV-NMBR ("INVOICE NUMBER");

PROMPT(MATCH) ITEM-NUM ("ITEM NUMBER");

LIST ITEM-QTY;

GET(CHAIN) ORDER-LINE,

LIST=(ITEM-QTY);

DISPLAY;

DATA(SET) ITEM-QTY

("Enter new quantity or press return to keep old quantity");

UPDATE ORDER-LINE,

LIST=(ITEM-QTY);

October 1996 Transact Verbs 8-235

UPDATE

The next example is similar, except that it allows the user to update all the entries in a chain,
rather than a single entry.

PROMPT(PATH) INV-NMBR ("INVOICE NUMBER");
PROMPT(MATCH) ITEM-NUM ("ITEM NUMBER");

LIST ITEM-QTY;

FIND(CHAIN) ORDER-LINE,

LIST=(ITEM-QTY),

PERFORM=UPDATE-QTY;...
UPDATE-QTY:

DISPLAY;

DATA(SET) ITEM-QTY

("Enter new quantity or press return to keep old quantity");

UPDATE ORDER-LINE,

LIST=(ITEM-QTY);

RETURN;

The following example uses marker items to declare a range. If a key item is involved, you
should log the attempt. STATUS must be used to capture the error of attempting to update a
key or sort item:

UPDATE DETAIL-SET,

LIST=(MARKER1:MARKER2),

STATUS;

IF STATUS <> 0 THEN <<Error, check it out >>

IF STATUS <> 41 THEN <<Unexpected error >>

GO TO ERROR-CLEANUP <<Log and complete update >>

ELSE

DO

PUT LOG-FILE,

LIST=(MARKER1:MARKER2);

DISPLAY "key update attempted";
DOEND;

The next example uses an UPDATE(FORM) statement to update the current form.
It highlights the item identi�ed in FIELD-ENH and sends the message contained in
WINDOW-MSG to the window area of the form:

DEFINE(ITEM) FIELD-ENH U(16): <<Contains name of field in VPLUS form.>>

WINDOW-MSG U(72); <<Contains message for VPLUS window. >>...
MOVE (FIELD-ENH) = "FIELD1";

MOVE (WINDOW-MSG) = "This field must be numeric";...
UPDATE(FORM) *,

WINDOW=((FIELD-ENH),

(WINDOW-MSG));

In this particular case, as a result of the prior MOVE statements, the UPDATE statement
highlights FIELD1 in the current form and displays the message \This �eld must be numeric"
in the window area of that form.

8-236 Transact Verbs October 1996

WHILE

WHILE

Repeatedly tests a condition clause and executes a simple or compound statement while the
condition is true.

Syntax

WHILE condition-clause statement;

WHILE causes Transact to test a condition-clause. The condition clause includes one or more
conditions, each made up of a test-variable, a relational-operator , and one or more values ;
multiple conditions are joined by AND or OR. If the result of that test is true, then the
statement following the condition is executed. Then the condition clause is tested again and
the process repeated while the result of the test is true. When the result of the test is false,
control passes to the statement following the WHILE statement .

Statement Parts

condition-
clause

One or more conditions, connected by AND or OR, where

AND A logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR A logical inclusive OR. The condition clause is true if any of
the conditions is true; it is false if all of the conditions are
false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value [,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to item-name.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names and/or
constants. The expression is evaluated before the comparison
is made. (See the LET verb for more information.)

Note An arithmetic-expression must be enclosed in square brackets ([]).

EXCLA-
MATION

Current status of the automatic null response
to a prompt set by a user responding with
an exclamation point (!) to a prompt.
(See \Data Entry Control Characters" in
Chapter 5.) If the null response is set, the

October 1996 Transact Verbs 8-237

WHILE

EXCLAMATION test variable is a positive
integer; if not set, it is zero. The default is 0.

FIELD Current status of FIELD command quali�er.
If a user quali�es a command with FIELD,
the FIELD test variable is a positive integer.
Otherwise, it is a negative integer. The
default is < 0.

INPUT The last value input in response to the
INPUT prompt.

PRINT Current status of PRINT or TPRINT
command quali�er. If a user quali�es a
command with PRINT, the PRINT test
variable is an integer greater than zero and
less than 10; if a command is quali�ed with
TPRINT, PRINT is an integer greater than
10; if neither quali�er is used, PRINT is a
negative integer. The default is <0.

REPEAT Current status of REPEAT command
quali�er. If a user quali�es a command with
REPEAT, the REPEAT test variable is a
positive integer; otherwise, REPEAT is a
negative integer. The default is < 0.

SORT Current status of SORT command quali�er.
If a user quali�es a command with SORT, the
value of the SORT test variable is a positive
integer; otherwise SORT is a negative integer.
The default is < 0.

STATUS The value of a 32-bit integer register set by
the last data set or �le operation, data entry
prompt, or external procedure call.

relational-
operator

Speci�es the relation between the test-variable and the values. It can be one
of the following:

= equal to
<> not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

value The value against which the test-variable is compared. The value can be an
arithmetic expression, which will be evaluated before the comparison is made.
The allowed value depends on the test variable, as shown in the comparison
below. Alphanumeric strings must be enclosed in quotation marks.

If the
test-variable is:

The value must be:

8-238 Transact Verbs October 1996

WHILE

item-name An alphanumeric string, a numeric value, an arithmetic
expression, a reference to a variable as in (item-name), or a
class condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or an expression,
or a reference to a variable as in (item-name).

INPUT An alphanumeric string.

EXCLA-
MATION

A positive or negative integer, or an
expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer or expression.

Alphanumeric strings must be enclosed in quotation marks. If more than one
value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the test-variable
is equal to value1 OR value2 OR . . . valuen. In other words, a comma in a
series of values is interpreted as an OR.

When the relational operator is \<>", the action is taken if the
test-variable is not equal to value1 AND value2 AND . . . valuen.

In other words, a comma in a series of values is interpreted as an AND
when the operator is \<>".

When the test variable is an item-name, the value can be one of the following
class conditionals, which are used to determine whether a string is all numeric
or alphabetic. The operator can only be \=" or \<>".

NUMERIC This class condition includes the ASCII characters 0 through
9 and a single operational leading sign. Leading and trailing
blanks around both the number and sign are ignored.
Decimal points are not allowed in NUMERIC data. This
class test is only valid when the item has the type X, U, 9,
or Z, or when the item is in the input register.

ALPHABETIC This class condition includes all ASCII native language
alphabetic characters (upper and lowercase) and space. This
class test is only valid for item names of type X or U.

ALPHABETIC-
LOWER

This class condition includes all ASCII lowercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

ALPHABETIC-
UPPER

This class condition includes all ASCII uppercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

statement Any simple or compound Transact statement; a compound statement is one or
more statements bracketed by a DO/DOEND pair.

October 1996 Transact Verbs 8-239

WHILE

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.
Truth values are established for simple relational conditions.
Truth values are established for simple class conditions.
Multiple value conditions are evaluated.
Truth values are established for complex AND conditions.
Truth values are established for complex OR conditions.

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

Examples

WHILE (SUB-TOTAL) >= 0

DO

GET(CHAIN) ORDERS;

.

.

.

LET (SUB-TOTAL)=(SUB-TOTAL) - (OUT-BAL);

DOEND;

WHILE (BALANCE) < 0 AND STATUS 0

DO

GET(CHAIN) CUST-DETAIL,STATUS;

LET (BALANCE) = (BALANCE) + (AMOUNT);

DOEND;

WHILE (PART-NO-PREFIX) <> (PROTOTYPE),(DEVELOPMENT)

GET(CHAIN) PART-DETAIL,STATUS;

8-240 Transact Verbs October 1996

WHILE

The next example sorts the entries in data set ORDER-DET in primary sequence by
ORD-NO and in secondary sequence by PROD-NO. As it sorts, it passes the sorted entries to
the PERFORM statements at the label DISPLAY to be displayed in sorted order.

SORT-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:

SHIP-DATE:

FIND(SERIAL) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

SORT=(ORD-NO,PROD-NO),

PERFORMDISPLAY;

.

.

DISPLAY:

DISPLAY "Order List by Product Number", LINE2:

ORD-NO, NOHEAD, COL5:

PROD-NO, NOHEAD, COL20:

QTY-ORD, NOHEAD, COL35:

SHIP-DATE, NOHEAD, COL50;

October 1996 Transact Verbs 8-241

9

Running Transact

A Transact program must be compiled before it can be executed. On MPE V systems, the
Transact/V compiler must convert the source code into intermediate processor code (p-code)
which is interpreted by the Transact/V processor at run time. On MPE/iX systems, the
Transact/iX compiler generates a native mode program �le. The Transact/V compiler and
processor may be used in compatibility mode on MPE/iX systems.

This chapter explains how to compile and run Transact programs using Transact/V and
Transact/iX, including

Compiler commands
Program segmentation
Reserved �le names
The Transact/V compiler
Executing Transact/V programs
The Transact/iX compiler
Controlling Transact/iX program execution
Compiling and executing Transact/iX programs
Compiler listings

The key di�erences between Transact/V and Transact/iX are detailed in Appendix B, \Native
Mode Transact/iX Migration Guide."

October 1996 Running Transact 9-1

Compiler Commands

You can place any of the following commands between any two statements in the source
program to control the compiled output, to conditionally compile blocks or code, or to control
which data dictionary is used. Because these commands are not language statements, do not
terminate them with a semicolon.

Compiler Output Commands

!COPYRIGHT

("text-string")
Causes the compiler to place the speci�ed text-string in the �rst record
of the code �le as a copyright notice. The text-string can be up to 500
characters long. This command can only be speci�ed once; usually, it
should follow the SYSTEM statement.

!INCLUDE(�le-name) Causes the compiler to include the Transact statements from a
speci�ed source �le (�le-name) that is not the source �le being
compiled. The �le-name statements are included at the point in the
listing where !INCLUDE appears and are compiled with the main
source �le. The �le-name can be a fully quali�ed name with �le group
and account. Up to 5 �les can be nested with !INCLUDE commands.

!LIST Writes subsequent source statements to the list �le. If LIST is
speci�ed in response to the CONTROL> prompt, !LIST has no e�ect.

!NOLIST Suppresses the listing of subsequent source statements. If NOLIST is
speci�ed in response to the CONTROL> prompt, !NOLIST has no
e�ect.

!PAGE Causes the compiler to skip to the top of the next page on the listing.

!PRECISION

([decimal-places])
The value of decimal-places determines the minimum number of
decimal places (i.e. digits to the right of the decimal point) that
is maintained for all packed-decimal intermediate results when
calculating the value of an arithmetic expression. This value is used
only if an expression's \default" evaluation method would have
maintained fewer decimal places. If decimal-places is not included
within the parentheses, the decimal precision is reset to the \default"
evaluation method.

The discussion of decimal precision later in this chapter provides
additional information about using this command. Also see the
discussion of rounding when using packed-decimal arithmetic under
the LET verb in Chapter 8.

!SEGMENT

[("text-string")]
Causes the compiler to segment the program and the resulting
code �le at this point in the source �le. The compiler displays the
speci�ed text-string on TRANOUT when it processes the !SEGMENT
command. The text string can be up to 500 characters long. The
discussion of segmentation later in this chapter tells why and how to
segment programs.

9-2 Running Transact October 1996

Conditional Compilation Commands

There are 10 conditional compilation switches that can be set to ON or OFF by the !SET
compiler command. The switches can then be queried by the !IF compiler command, and
compilation of the following block of code will depend on the value of the switch. The end of
the conditional block is marked by !ELSE or !ENDIF.

The following compiler commands are used to control conditional compilation:

!SET Xn={ON/OFF} Sets the compilation switch to ON or OFF. The default is OFF. Xn is
any member of the set X0, X1, X2, X3, X4, X5, X6, X7, X8, and X9.

!IF Xn={ON/OFF} Queries the named switch to determine its value. If the condition is
true, the following block of code is compiled. If the condition is false,
the following block is not compiled and control passes to the next
!ELSE or !ENDIF.

!ELSE Marks the beginning of a block of code that will or will not be
compiled, depending on the condition of the preceding !IF. If the
condition is false, the following code is compiled. If the condition
is true, the following code is not compiled. This optional command
allows you to de�ne an \either-or" situation, in which either one block
of code or another is compiled, depending on the value of a switch.

!ENDIF Terminates the inuence of an !IF. This command is required if an !IF
is used.

Other compiler commands can occur between !IF and !ELSE or !ENDIF.

For example,

!SET X1=ON...
!IF X1=ON

DISPLAY "THIS LITERAL WILL BE DISPLAYED BECAUSE X1 IS ON";

!SET X2=OFF

!ELSE
DISPLAY "THIS LITERAL WILL BE DISPLAYED IF X1 IS OFF";

!ENDIF

Besides switches X0-X9, there is an eleventh switch, XL. It is set to OFF automatically when
code is compiled with Transact/V and to ON when code is compiled with Transact/iX. You
can test this switch with the !IF command to control compilation. For example:

!IF XL=ON

SYSTEM MYPROG, << Compile these lines if using Transact/iX. >>

BASE=MYBASE(,,,HP3000_16),

FILE=MYFILE((HP3000_16));

!ELSE

SYSTEM MYPROG, << Compile these lines if using Transact/V. >>

BASE=MYBASE,

FILE=MYFILE;

!ENDIF

October 1996 Running Transact 9-3

System Dictionary Compiler Commands

The default data dictionary used by Transact is Dictionary/V. If you want to access System
Dictionary, use the following compiler commands:

!SYSDIC[(dictionary.group.
account)]

Causes the compiler to use the named System Dictionary to
resolve all forms �les, forms, �le de�nitions, and data items
not de�ned in DEFINE statements. Defaults to SYSDIC in
logon group and account. If System Dictionary is to be used,
this command is required and it must be the �rst System
Dictionary command included in the program.

!NOSYSDIC Ends access to System Dictionary and returns to Dictionary/V.

!DOMAIN[(domain)] Names the System Dictionary domain to be used. Defaults to
common domain.

!VERSIONSTATUS[(P/T/A)] Refers to the version to be used (production, test, or archive).
Defaults to P (production version).

!VERSION[(version)] Names the version to be used. Defaults to production version.
This parameter overrides the VERSIONSTATUS parameter.

!SCOPE[(scope[,
"password"])]

Names the scope and the password to be used. Defaults to DA
scope and prompting for the password.

You can change System Dictionary, DOMAIN, VERSIONSTATUS, VERSION, or SCOPE in
the middle of compilation by reissuing the appropriate compiler commands in the Transact
source. System Dictionary compiler commands can go between statements and even within
one statement|the SYSTEM statement (see example below). All of the System Dictionary
commands that are used to e�ect a single change should appear contiguously. Comments
should precede or follow the entire group of commands.

The command !NOSYSDIC causes the compiler to end access to the System Dictionary and
return to using Dictionary/V for any following data items not de�ned in the program.

For example, if you want to change domains while extracting forms-�le de�nitions, you can
embed compiler commands in the SYSTEM statement as follows:

!SYSDIC(SYSDIC.PUB.SYS)

!SCOPE(Transact,"password")

SYSTEM APPL1, VPLS = FORMF1,FORMF2, <--uses common domain

!DOMAIN(TEST)

FORMF3, <--uses test domain

!NOSYSDIC

FORMF4; <--uses Dictionary/V

9-4 Running Transact October 1996

Controlling Decimal Precision

The !PRECISION compiler command is used to force a minimum number of decimal places
(i.e. digits to the right of the decimal point) that will be maintained for all packed-decimal
intermediate results when calculating the value of an arithmetic expression. This value is used
only if the \default" evaluation method of an expression would have maintained fewer decimal
places. See the discussion of rounding when using packed-decimal arithmetic under the LET
verb in Chapter 8.

The !PRECISION compiler command in e�ect at the end of a compiled program will be used
for controlling the decimal precision used throughout the entire program. A warning is issued
for each additional !PRECISION compiler command after the �rst in a source �le indicating
that the decimal precision is being changed. At the end of the compile, a message is issued if
the \default" decimal precision is not in e�ect.

If a subprogram is called, the decimal precision with which that subprogram was compiled will
apply while it is executing. Upon return to the calling program, the decimal precision is reset
to the calling program's decimal precision.

A total of 27 digits are maintained for numbers in packed-decimal format (whole and decimal
parts). Care should be taken not to request too many digits of decimal precision. The result
of a multiplication temporarily uses at least double the number of decimal digits before any
rounding takes place. If enough digits are not available for the whole number portion of the
value, an overow condition occurs.

Use any of the following methods as a guide for taking advantage of the !PRECISION
compiler option.

The simplest method is to select a small number (2 to 6), which should ensure reasonable
decimal precision in the types of calculations used in the program. This should be su�cient
for the majority of programs.

A more precise method is to set the minimum decimal precision to at least one more than
the maximum number of digits de�ned to the right of the decimal point for all the items
and constants used in the program. You can re�ne this method by reviewing arithmetic
expressions throughout the program.

To take full advantage of the decimal precision available, use the following steps:

1. Determine the maximum number of digits to the left of the decimal point that might be
stored internally for any intermediate value created using packed-decimal arithmetic. For
example, if you multiply three values together that have the following maximum values:
99, 999.9, and 9999, then the maximum number of digits (to the left of the decimal
point) that the result stores is 9 (= 2 + 3 + 4). This value is referred to as LEFT.

2. Then the maximum decimal precision that the program allows is the result of the
following equation:

(27 - LEFT) / 2 (discard any remainder)

Note Regardless of the method you use, test the recompiled program for the
possibility of overow conditions.

October 1996 Running Transact 9-5

Program Segmentation

The Transact/V compiler produces compact p-code. This p-code is placed on the process
stack at execution time and therefore a�ects the size of the stack. Even though the Transact
p-code is compact, large programs may produce so much executable p-code that the process
stack becomes too large for the operating environment. Some programs produce a p-code �le
so large that the process stack cannot contain the p-code.

You can solve this problem by segmenting your program. Transact allows you to divide your
program into as many as 126 separate segments.

If you choose to segment your program, these segments can be overlaid in the processor stack
in memory. In addition to the root segment (segment 0), which is always in memory, only
the currently executing segment needs to be on the memory stack. When control transfers
to another segment, the new segment can overlay the segment currently in memory. This
technique allows the processor to execute within a smaller stack size than the size needed by
an entire program.

You divide a program into segments by including the !SEGMENT compiler command in
your source code wherever you want a new segment to start. You can place this command
between any two Transact statements. However, you should exercise judgement about where
you segment your program. For example, you should not segment within a loop construct.
And, for example, when a FIND or OUTPUT statement requires a PERFORM block, the
statement and the PERFORM block should be within the same segment. Program control
cannot automatically cross segment boundaries, unless you speci�cally de�ne entry points or
use command structures.

One way to force Transact to cross segment boundaries is to use a GO TO or PERFORM
statement to transfer control to a program control label in a di�erent segment and to de�ne
that label as an entry point. Entry point labels are necessary for transfers into any segment
other than your main program segment (segment 0, the \root" segment).

You de�ne a label as an entry point with a DEFINE(ENTRY) statement. Labels so de�ned
are global to your program. That is, they can be referenced from outside the segment in
which they appear. Labels de�ned within a segment are local to that segment.

Another way to control the use of segments is with command labels. When a user enters a
command, control transfers to the associated command label. As far as the user is concerned,
it does not matter in which segment a command label is coded. When the user speci�es a
particular command label identifying a particular sequence, the Transact processor makes sure
the segment containing that sequence is loaded into memory, if it is not there already.

The following information describes exactly how segmentation a�ects data items and
command or program labels.

All command and subcommand labels are global to the program in which they are declared.
That is, you can reference them from any segment. They must be unique within the entire
program.

All program control labels and data items declared before the �rst !SEGMENT command
are global to the program and can be referenced from any point.

Any program control label or data item declared after a !SEGMENT command is local to
that segment. A data item of the same name can be declared in another segment and its
separate de�nition is maintained.

9-6 Running Transact October 1996

If an item is de�ned in a data dictionary, but not in a DEFINE(ITEM) statement, it must
be referenced in the root segment in order to be used in any segment. If the program
references a child item that is de�ned in the data dictionary, then the parent must be
referenced either in the root segment or in the same segment as that in which the child is
referenced.

If you use the compile option DEFN in a segmented program, the compiler produces a list of
the e�ective ITEM de�nitions at the end of each segment.

When using local items in a segmented program, you need to explicitly clear the list, match,
and update registers at the end of the segment. Transact normally checks them when it
loads a new segment and issues a warning message if it �nds items. It does not clear them.
Furthermore, if you compile your program with the compile option OPTS, Transact does not
check the registers for local items. If items local to one segment remain in these registers
when another segment is executed, they may cause your program to malfunction or even
abort.

In addition to the speci�c considerations discussed above, you should always consider the
following general rules when segmenting your programs:

Stay in one segment for as long as possible. And, when you leave a segment, stay out for as
long as possible.

Try to de�ne segments of uniform size since stack space is allocated for the largest segment.

Put any routines that are used by many segments in the main (root) segment since it always
resides in memory along with whatever other segments happen to be loaded. However, try
to minimize the size of this segment as well.

Reserved File Names

Transact uses the following �les. These �le names must not be used in a Transact program or
in a �le equation while Transact is running. Any �le using the following �le-name conventions
could be overwritten without warning when Transact is used.

File Name Purpose

IPxxxxxx p-code �le

ITxxxxxx Trandebug �le (version A.04.00 and earlier)

IUxxxxxx Trandebug �le (version A.04.02 and later)

OUTPUT Used internally by Transact

where: xxxxxx is the SYSTEM name of the Transact program.

For example:

:file output=myfile

:tranxl myfile

When tranxl is executed, myfile will be overwritten.

October 1996 Running Transact 9-7

The Transact/V Compiler

This section explains how to run the Transact/V compiler under MPE V and MPE/iX
compatibility modes and describes the control options you can choose. It also describes a
compiler listing, tells how you can control listings, discusses program segmentation, and
describes how to control input sources to and output destinations from the compiler.

Figure 9-1 illustrates the steps used to compile and run a Transact program under MPE V.

Figure 9-1. Compiling and Executing a Transact Program under MPE V

You create Transact source programs using EDIT/3000 or another text editor. The source
code �le can be either numbered or unnumbered. Source statements are limited to 72
characters per line and can span multiple lines.

You request the Transact compiler to translate the source code into p-code with the following
command:

:RUN TRANCOMP.PUB.SYS

9-8 Running Transact October 1996

When you are running interactively at a terminal and responding to prompts, the compiler
prompts for the name of the �le containing the Transact source code:

SOURCE FILE> Enter the �le name under which the source code was saved.

LIST FILE> Enter a carriage return to direct the listing to your terminal ($STDLIST).
You can direct the listing to a line printer by responding with LP or you
can suppress the listing altogether by responding with NULL. These
are the more common responses. For other possible responses, see the
discussion of \Controlling Output Destinations from the Compiler."

The compiler will then prompt you to specify which control options are to be applied to the
translation:

CONTROL> Respond to this prompt by entering one or more of the following options
separated by commas. Any option can be preceded by NO to reverse its
e�ect.

LIST Generates a listing of the compiled source code. The default is
LIST.

DICT References a data dictionary (either Dictionary/V or System
Dictionary) to resolve data item de�nitions. The default is
DICT.

When this option is in e�ect, Transact uses Dictionary/V by
default. If you want to use System Dictionary, use the dictionary
commands described earlier in this chapter.

CODE Creates the p-code �le that is executed by the Transact
processor. The p-code �le is created only if no errors occur
during compilation. (See option XERR.) The default is CODE.

ERRS Lists compilation errors on $STDLIST, even if you direct a
listing elsewhere. The default is ERRS.

CHCK Causes Transact to check that all items referenced have been put
in the LIST register by either a LIST or PROMPT statement.
A warning at the end of each segment is generated for all
items that were not put in the LIST register. The default is
NOCHCK.

Note The use of the CHCK option does not guarantee that all run-time errors will
be eliminated for items not in the LIST register. The compiler does not know
the order of execution. This compiler option will only notify the programmer
of items that are never used in a LIST or PROMPT statement within the
segment the items are referenced.

DEFN Produces a listing of data-item de�nitions as part of the compiler
list output. The list covers all data items de�ned in your source
code and in a data dictionary. If LIST(AUTO) is included in
your program, the compiler listing includes the name and relative
list register position of each item placed in the list register.

The location of the items in the listing depends on the form of
LIST(AUTO) used and on whether the program is segmented.

October 1996 Running Transact 9-9

For LIST(AUTO) �lename , the items are always listed
right after the verb. For LIST(AUTO)@ in single segment
programs, items are listed at the end of the program listing.
For LIST(AUTO)@ in a multiple segment program, items are
listed at the end of each segment, except that items in the root
segment are listed at the end of the program. The default is
NODEFN.

OBJT Produces a listing of the p-code. The default is NOOBJT.

OPT@ Causes Transact not to store heading text, edit text, or
entry/prompt text of data items that are de�ned in a data
dictionary and are being used in the program to be compiled.
This optimizes the tables in the p-code �le so that the data
segment stack is reduced at execution time. This option is the
same as specifying OPTE, OPTH, and OPTP. If conicting
control options are speci�ed, then the last control option is in
e�ect. For example: OPT@,NOOPTH eliminates all text except
the heading. In contrast, NOOPTH,OPT@ eliminates all text.
See the option descriptions below for more information regarding
the individual options. Appendix C, \Optimizing Transact/V
Applications," provides additional information on this option
in conjunction with data stack optimization. The default is
NOOPT@.

OPTE Causes Transact not to store edit text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTE option should not be used if the edit mask
from a data dictionary is needed in the program. Appendix C
provides additional information on this option in conjunction
with data stack optimization. The default is NOOPTE.

OPTH Causes Transact not to store heading text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTH option should not be used if the data
item's heading text from a data dictionary is needed in the
program. Appendix C provides additional information on this
option in conjunction with data stack optimization. The default
is NOOPTH.

OPTI Causes Transact not to store the text name of the data item
de�ned using DEFINE(ITEM) with OPT option in the program.

Note that unlike OPT@, OPTE, OPTH, and OPTP options for
data items de�ned in a data dictionary, OPTI requires OPT to
be used with DEFINE(ITEM). This optimizes the tables in the
p-code �le so that the data segment stack is reduced at execution
time. Note also that the OPTI option should not be used if the
data item names are needed for prompt strings, display item

9-10 Running Transact October 1996

headings, SET(KEY) lists, and LIST= constructs. Appendix C
provides additional information on this option in conjunction
with data stack optimization. The default is NOOPTI.

OPTP Causes Transact not to store prompt text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTP option should not be used if the data item
names are needed for prompt strings and LIST= constructs. In
the absence of the prompt string from a dictionary, the item
name is used for prompting. Appendix C provides additional
information on this option in conjunction with data stack
optimization. The default is NOOPTP.

OPTS Optimizes multiple segment Transact programs only. When
you include this option, the processor does not check for local
segment items in the list, match, and update registers when
loading a new segment. Since such checks are essential for
debugging programs under development, this option should only
be used after a program is fully tested and ready for production.
Although OPTS speeds segment transfers, the program may
malfunction or terminate abnormally if a local item is left in a
register. The default is NOOPTS.

STAT Generates statistics on data stack usage. These values are useful
in deciding how program structural and/or coding di�erences
would improve the run-time performance of your program.
Appendix C provides additional information on this option
in conjunction with data stack optimization. The default is
NOSTAT.

XERR Creates a p-code �le even if errors are encountered in the
compilation. (See the CODE option.) The default is NOXERR.

XREF Generates a listing to provide a cross-reference to locations of
label de�nitions and their references. The default is NOXREF.

October 1996 Running Transact 9-11

Bypassing Transact/V Compiler Prompts

Two RUN command options can be used to bypass the Transact compiler prompts. These are
the PARM= and INFO= options that are speci�ed in the compiler invocation statement. The
PARM= option parameters identify your source �le and/or list �le:

Value

Formal

Designator Meaning

1 TRANTEXT Formal �le designator for source �le. If speci�ed, the
SOURCE FILE> prompt does not appear.

2 TRANLIST Formal �le designator for list �le. If speci�ed, the LIST
FILE> prompt does not appear. TRANLIST may be
equated to any �le.

3 TRANTEXT

TRANLIST

If used, neither the SOURCE FILE> nor the LIST
FILE> prompt appears.

The INFO= option accepts parameters identical with those used to respond to the
CONTROL> prompt. As illustrated in the following example, enclose the parameter in
quotation marks. If only blanks are included between the quotation marks, the default
compiler options take e�ect. If the INFO= option is used, the CONTROL> prompt does not
appear.

The following invocation produces two listings at the line printer after the source statements
in APPL01 are processed:

FILE TRANTEXT=APPL01

FILE TRANLIST;DEV=LP,,2

RUN TRANCOMP.PUB.SYS; PARM=3; INFO="DEFN, XREF"

You can direct the compiler to a �le for answers to its prompts. See \Controlling Input
Sources to the Compiler" later in this chapter. You can also compile a program by streaming
it as a batch job. To do this, set up the stream �le to contain the following MPE V
commands:

:STREAM

>!JOB jobname,username.acctname

>!RUN TRANCOMP.PUB.SYS

>�lename

>list-destination

>control-options

>!EOJ

Controlling Input Sources to the Transact/V Compiler

TRANIN is the formal �le designator that TRANCOMP uses when compiling with
Transact/V for responses to prompts such as system name, options, and list. The default
setting for TRANIN is $STDINX, but you can change the default using a �le equation. The
compiler then reads input from that �le until it encounters an end-of-�le condition. If it
reaches end-of-�le before all prompts are answered, it returns to $STDINX. (If TRANIN is an
EDIT/V �le, it must be unnumbered.)

9-12 Running Transact October 1996

TRANTEXT is the formal �le designator for the source code �le. Like TRANIN, it can be �le
equated to the name of another �le.

Controlling Output Destinations from the Transact/V Compiler

TRANLIST is the formal �le designator for the destination of compiler listings when you set
PARM=2 for the Transact compiler. When LP is the response to the LIST FILE> prompt,
the default device for TRANLIST is LP. You can, however, use a �le equation to change the
device. A �le equation or the destination default is activated when you respond to the LIST
FILE> prompt with LP.

If you simply want to redirect your compiler listing and no other compiler output, you can
respond to the LIST FILE> prompt with any of the following:

A carriage return or $STDLIST directs the compiler listing to the terminal in a session or to
the line printer in a batch job (TRANOUT).

LP directs the compiler listing to TRANLIST, which is the line printer unless a :FILE
command has speci�ed another device for TRANLIST.

NULL directs the compiler to display errors on the terminal in a session or to the line
printer in a batch job if ERRS is speci�ed, but other parts of the listing are suppressed.

$NULL directs the listing to a null �le, in e�ect suppressing the listing. (The preferred
response is NULL.)

A �le name directs the listing to a new disk �le. If a �le of the same name already exists,
the compiler asks if you want to purge the existing �le.

A �le name preceded by an *" directs the compiler to back reference a �le equation.

TRANOUT is the formal �le designator for output from the compiler that, by default, is sent
to the standard list device. (The default setting for $STDLIST is your terminal in session
mode, the line printer for a batch job.) You can use a �le equation to specify a device other
than $STDLIST for TRANOUT. If you do this, the compiler prompts, such as SOURCE
FILE>, the compiler listing, and any requested statistics or data item de�nitions appear on
that device. (Note that TRANOUT also controls processor output, including the SYSTEM
NAME> prompt.)

TRANCODE is the name of the p-code �le opened and used by the compiler. The default
maximum size of this �le is 1023 records. If the error message \BINARY FILE FULL"
is issued during compilation, use an MPE FILE command to increase the maximum
TRANCODE �le size. For example, to increase the size to 2000 records, use the following
FILE command:

:FILE TRANCODE;DISC=2000

To direct the compiled program to another group, use:

:FILE TRANCODE=TRANCODE.GROUP

October 1996 Running Transact 9-13

Executing Transact/V Programs

This section describes how to execute Transact programs and explains how to control input to
and output from the Transact processor.

Transact programs are executed (the p-code is interpreted) by running the Transact processor
with the MPE V RUN command:

:RUN TRANSACT.PUB.SYS

After an acknowledgement message, Transact issues the following prompt:

SYSTEM NAME>

Respond by entering the program's name as speci�ed in the SYSTEM statement of the
program you want to execute. In addition to this required response, you can specify one or
more optional responses separated by commas. These optional responses specify the mode
with which you want to open a database, and the test mode in which you want to execute,
followed optionally by the locations where you want testing to begin and/or end. The syntax
of a full response to the SYSTEM NAME> prompt is:

program-name [,mode [,test-mode [,start [,end]]]]

where:

program-name The name of the program as it appears in the SYSTEM statement in the
source program (required).

mode The mode to be used in opening any databases speci�ed in the program.
The mode consists of a single digit indicating one of the open modes to
be speci�ed for DBOPEN. If you do not specify a mode here or in the
SYSTEM statement of your program, Transact opens the databases in
mode 1. Mode 1 requires locking and allows concurrent modi�cations to
be made to a database. Any mode speci�ed in the SYSTEM statement
of the program takes precedence over a mode speci�ed here. See the
discussions in Chapter 6 on database access and understanding locking.

test-mode The test mode you want to use to debug your program. Test modes are
indicated by a one or two digit number. (The exact meaning of each test
mode is explained in Chapter 10.)

start The location where you want testing to begin. This is the internal location
number of a line of processor code, optionally preceded by a segment
number if it is in a segment other than segment 0. (See \Compiler
Listing" in this chapter.)

segment number.start.

end The location where you want testing to end. Specify as the internal
location number of a line of processor code, optionally preceded by a
segment number if end is in a segment other than segment 0, in the
format:

segment number.end.

9-14 Running Transact October 1996

For example, suppose you want to open any databases named in your program in mode 3, and
you want to execute in test mode 24 between internal locations 0 and 8. Respond to SYSTEM
NAME> as follows:

SYSTEM NAME> MYPROG,3,24,0,8

If the processor cannot �nd a p-code �le associated with the program name (\IPxxxxxx",
where \xxxxxx" is the program name), it generates an error message and reissues the
SYSTEM NAME> prompt. If you respond with a carriage return to the original or reissued
prompt, control returns to the MPE operating system.

You can use the INFO= option to bypass responding to the SYSTEM NAME> prompt. This
option enables you to specify a system name when you invoke the processor:

:RUN TRANSACT.PUB.SYS; INFO="APPL01.SOURCE"

Note that the INFO= parameters are enclosed in quotation marks. When the INFO= option
is used, the SYSTEM NAME> prompt does not appear.

Note Unlike the programs developed and executed under MPE control, a
Transact/V program can only be executed by running the Transact processor.
You cannot execute a Transact p-code �le with the MPE RUN command.

After it locates the p-code �le, the processor generates the following prompt if databases have
been de�ned in the SYSTEM statement and no password supplied:

PASSWORD FOR databasename>

You must enter the correct password to open any databases so speci�ed. If the password is
invalid, then you are prompted again for the correct password. If you enter a carriage return
in response to the second prompt, control returns to the SYSTEM NAME> prompt and you
can request another program or specify other modes. Be sure to enter the password exactly
as it is de�ned. For example, if it is de�ned with all uppercase letters, enter it in exactly that
way.

Once your program is executing, you can redisplay the SYSTEM NAME> prompt by pressing
the �Ctrl� Y key to stop execution and get the > prompt.

Controlling Input Sources to the Transact/V Processor

TRANIN is the formal �le designator for responses to prompts issued by the processor. The
default setting for TRANIN is $STDINX. You may, however, use a �le equation to change
that. The processor will then read input from the speci�ed �le or device until it encounters an
end-of-�le condition. If it reaches end-of-�le before all of the prompts are answered, it returns
to $STDINX.

When a �le equation is set for TRANIN and a Transact program calls Report, Inform, or
another Transact program, TRANIN will continue to be read. (When Report or Inform is
initiated from the command interpreter, it reads from REPIN or INFOIN, respectively.) The
input device is only opened once at the beginning of the main Transact program. Any called
system will share the input device or input �le.

TRANSORT is the name of the sort �le opened and used by the processor. The default size of
this �le is 10,000 records divided into 30 extents. The size of this �le can be altered by using
the SORT= or WORKFILE= options with the SYSTEM statement.

October 1996 Running Transact 9-15

If a larger or smaller sort �le is desired after the program has been compiled, use a �le
equation to change the size. This will override the settings in the SYSTEM statement. For
example, to reduce the sort �le size to 5,000 records, use the following MPE FILE command:

:FILE TRANSORT; DISC=5000

Controlling Output Destinations from the Transact/V Processor

TRANLIST is the formal �le designator for the destination of processor output that is
normally sent to the line printer. The default setting for TRANLIST is DEV=LP. You
can, however, change the list device by means of a �le equation. The �le equation or the
destination default is activated by the PRINT option to a command or by a SET(OPTION)
PRINT statement.

TRANOUT is the formal �le designator for output from the processor that is normally sent to
your terminal during a session or to the line printer during a batch job ($STDLIST). You can
direct such output to another �le or device by specifying TRANOUT in a �le equation. If you
do this, the SYSTEM NAME> prompt and other processor output is sent to the speci�ed �le
or device. (Note that TRANOUT is also the �le designator for output from the compiler.)

TRANVPLS is the name of the �le used by the processor to open the VPLUS terminal. If
VPLUS forms are to be directed to a device other than your terminal during program testing,
use a �le equation to specify a particular terminal. For example, suppose your terminal is
logical device 20 and you want the VPLUS forms displayed on another terminal, logical device
40, use the following �le equation:

:FILE TRANVPLS; DEV=40

If VPLUS is used in batch mode, TRANVPLS should be directed to a device capable of
handling VPLUS escape sequences or to $NULL.

TRANDUMP is the formal �le designator for the destination of test mode output if you
specify a negative test mode in response to the SYSTEM NAME> prompt. Normally,
test mode output is sent to your terminal in a session or to the line printer in a batch job
(TRANOUT). To send test mode output to another device, specify TRANDUMP in a �le
equation. This is particularly useful when you are using test mode with a program that uses
VPLUS, and you do not have another terminal handy for the VPLUS forms.

For example, you can direct test mode output to the line printer as follows:

SYSTEM NAME> VTEST,,-34 <---negative test mode directs

test output to TRANDUMP

You can also direct the test mode output to a disk �le by equating TRANDUMP with this
�le. For example, you can send your test mode output to a �le TEST with the following
commands:

:BUILD TEST; REC=-80,,F,ASCII

:FILE TRANDUMP=TEST

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34 <---test output goes to �le TEST

Test mode output from the program VTEST is saved in the �le TEST, which can be
examined or listed with a text editor after your program completes.

9-16 Running Transact October 1996

A third method is to defer test mode output by setting the output priority to 1. For example:

:FILE TRANDUMP; DEV=,1 <---priority 1 defers test mode output

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34

After your program executes, you can run SPOOK5.PUB.SYS for MPE/V or a text editor for
MPE/iX to examine the test mode information saved in a spool �le.

The Transact/iX Compiler

Compiling and executing a Transact program under MPE/iX requires three sets of procedures.
These sets can be accomplished one at a time by using three separate commands, or they can
be combined and accomplished by using two separate commands, or even by using a single
command. The commands you choose to use depend primarily on how you want to invoke
subroutines or subprograms.

The three sets of procedures you can use for compiling and executing Transact programs
under MPE/iX are as follows:

1. The Transact/iX compiler translates either a source code or p-code �le into binary form
and stores it as a Series 900 object module in a relocatable �le. Note that Transact/iX
can accept as input either an ASCII source �le or a p-code �le produced by Transact/V's
TRANCOMP program. If your input is an ASCII �le, the Transact/iX compiler �rst calls
Transact/V's TRANCOMP to create p-code, then produces the relocatable �le. This
relocatable Series 900 object module �le is called an RSOM �le.

2. The MPE/iX linker must prepare the RSOM �le for execution by binding procedures
in the RSOM together. The linker also performs other tasks such as de�ning the initial
requirements of the user data area. The MPE/iX LINKEDIT program may also be
required at this stage if procedures external to the RSOM are to be added to the RSOM.

3. The MPE/iX operating system must allocate and initiate the execution of the program.
External procedures referenced and stored in an executable library (XL) are bound to the
program at this time.

You can advance through each of these procedures independently, controlling the speci�cs of
each process along the way. In particular, it is possible to use the command TRANXL for the
�rst set of procedures, the command LINK for the second set, and the MPE/iX command
RUN progname for the third set. Alternatively, you can combine procedures with a single
command. For example, the command �le TRANXLLK performs the �rst and second sets
of procedures; the command �le TRANXLGO performs the �rst, second, and third sets of
procedures.

You can also use the MPE/iX RUN command to execute the Transact/iX compiler, which
is a program �le called TRAN.PUB.SYS. This command accomplishes only the �rst set of
procedures. It requires preceding �le equations and speci�cation of PARM values if you
choose to change any defaults.

Another MPE/iX program, LINKEDIT.PUB.SYS, is required for including subprograms that
are external to the RSOM �le into the RSOM �le.

October 1996 Running Transact 9-17

Transact/iX Compiler Options

Like compatibility mode TRANCOMP, the Transact/iX compiler allows you to control certain
compilation features by supplying compiler options via the INFO= parameter. These options
can be included on any of the commands that are used to invoke the Transact/iX compiler:
TRANXL, TRANXLLK, TRANXLGO, and RUN TRAN.PUB.SYS.

The Transact/iX compiler has the following options:

DYNAMIC CALLS Generates dynamic calls for all CALL statements in the program.
This allows a program to be executed even if some of the
programs that it calls are not available at load-time. Dynamic
calls are described in detail later in this chapter. The default is
NODYNAMIC CALLS.

HP3000 16 Uses the HP oating point format for all the �les and databases used
by this program. If the NOHP3000 16 option is speci�ed, then all
the �les are expected to use the IEEE oating point format. See
the \Floating Point Formats" section in Appendix B. The default is
NOHP3000 16.

PROCALIGNED 16 Causes the compiler to assume that all 16-bit aligned parameters are
correctly aligned on 16-bit boundaries and prevents it from double
bu�ering them on 16-bit boundaries. Using this option improves
run-time e�ciency, since the compiler only generates a run-time check
to ensure that these parameters are correctly aligned on a 16-bit
boundary. Double bu�ering still occurs if the following conditions are
all met: the procedure called is an intrinsic, the PROCINTRINSIC
option is speci�ed, and a greater than 16-bit alignment is required.

This is the recommended option for existing Transact programs, since
correct 16-bit alignment is already assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCALIGNED 32 Causes the compiler to assume that all 16-bit and 32-bit aligned
parameters are correctly aligned on 16-bit or 32-bit boundaries and
prevents it from double bu�ering them on 16-bit or 32-bit boundaries.
Using this option improves run-time e�ciency, since the compiler
only generates a run-time check to ensure that these parameters are
correctly aligned on a 16-bit or 32-bit boundary. Double bu�ering still
occurs if the following conditions are all met: the procedure called is
an intrinsic, the PROCINTRINSIC option is speci�ed, and a greater
than 16-bit or 32-bit alignment is required.

This option is primarily recommended for use with new Transact
programs in which the correct alignment of all 16-bit and 32-bit
procedure parameters is assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCALIGNED 64 Causes the compiler to assume that all 16-bit, 32-bit, and 64-bit
aligned parameters are correctly aligned on 16-bit, 32-bit, 64-bit
boundaries and inhibits double bu�ering. Using this option improves

9-18 Running Transact October 1996

run-time e�ciency, since the compiler only generates a run-time check
to ensure that these parameters are correctly aligned on a 16-bit,
32-bit, or 64-bit boundary.

This option is primarily recommended for use with new Transact
programs in which the correct alignment of all 16-bit, 32-bit, and
64-bit procedure parameters is assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCINTRINSIC Aids the migration of Transact/V systems containing intrinsic calls to
MPE/iX. This option is identical in e�ect to declaring intrinsics within
a DEFINE(INTRINSIC) statement. The Transact/iX compiler checks
all procedures referenced by the PROC verb to determine whether
or not they are de�ned in SYSINTR.PUB.SYS. When it �nds an
intrinsic, the compiler extracts from SYSINTR.PUB.SYS the intrinsic
name (corrected for case) and the number, type, and alignment of the
parameters used by the intrinsic.

This information is used at run time to set up the procedure call.
If this option is not used, the Transact/iX compiler downshifts all
procedure names not in the SYSINTR.PUB.SYS �le (in accordance
with the Series 900 procedure calling convention) and may result in
the procedure not being found in the executable library (XL).

A warning message is generated each time the compiler locates an
intrinsic that has not been declared in a DEFINE(INTRINSIC)
statement or if it does not �nd an intrinsic in SYSINTR.PUB.SYS
that was declared in a DEFINE(INTRINSIC) statement.
PROCINTRINSIC must be used if the program calls an intrinsic and
the intrinsic is not declared with DEFINE(INTRINSIC).

The default is NOPROCINTRINSIC.

TRANDEBUG Causes TRANDEBUG, the symbolic debugger, to be enabled when
the program is executed. See Chapter 11 for instructions using
TRANDEBUG.

SUBPROGRAM This option is used when compiling a program that will be called by
another Transact/iX compiled program. No outer block is generated
when the SUBPROGRAM option is speci�ed. The processing that is
normally done by the outer block is done by the calling program.

The Transact/iX compiler creates a single RSOM �le regardless of
how many SYSTEM statements are in a source �le. When a source
�le contains more than one system, the default is to compile the �rst
SYSTEM encountered with option NOSUBPROGRAM and those
remaining with the option SUBPROGRAM as they are assumed to be
subprograms called by the �rst system. Using the SUBPROGRAM
compiler option causes all the systems in the �le to be compiled with
the SUBPROGRAM option.

OPTIMIZE This option directs the compiler to generate level 1 optimized code.
Using this option causes the compile to be slower but produces object
modules that are more e�cient at run time.

October 1996 Running Transact 9-19

The default is NOOPTIMIZE.

TRANCOMP Options Available to the Transact/iX Compiler

In addition to the compiler options described above, the Transact/iX compiler also accepts
many of the compiler options available for TRANCOMP/V, described earlier in this chapter.
These are:

LIST OPTE

ERRS OPTP
CHCK OPTI

DEFN OPTS

OPT@ XREF

OPTH

The following TRANCOMP/V options are ignored by the Transact/iX compiler. Their
default values are shown to the right.

Ignored Option Default Value

DICT DICT

CODE CODE

OBJT NOOBJT

STAT NOSTAT

XERR NOXERR

OBJO NOOBJO

OBJH NOOBJH

When one of these compiler options is speci�ed, it is ignored if it speci�es the default value. If
it does not specify the default value, an informational message is generated by the compiler.
For example, if option NODICT were speci�ed, the following informational message would be
reported by the compiler:

*INFO: OPTION 'NODICT' IGNORED

Compiling Programs for Static Calls

The steps for compiling subprograms for use with static calls are as follows:

1. Compile the subprogram with either the :TRANXL command or :RUN TRAN.PUB.SYS.
Specify the SUBPROGRAM compiler option in the INFO string.

2. Use the LINKEDIT program to build the subprogram and add it to either an RL, an XL,
or the RSOM �le of the calling program.

These steps are shown in the examples that follow.

The steps for compiling and executing main programs are slightly di�erent, depending on
whether the subprogram is in an RL or an XL (i.e., depending on whether it will be accessed
at link time or run time). Subprograms in an XL require slightly more load time than
comparable programs in an RL, but they provide the same fast run-time performance.

When subprograms are in an RL, the compilation and linking are separate steps, so that the
main program can be linked to the RL at link time.

When subprograms are in an XL, the compilation and linking can be combined and done with
:TRANXLLK; then when the program is executed, the RUN command must include the name
of the XL �le.

9-20 Running Transact October 1996

The steps are shown in the following examples.

Example of Static Calls with Link-Time Linking

The �rst example shows how to compile and run programs using static calls with link-time
linking. Assume a main program called MAIN, which calls another program called
PROG using static calls. First, compile the subprogram PROG into PROGOBJ using the
SUBPROGRAM compiler option.

:TRANXL PROG, PROGOBJ; INFO="SUBPROGRAM"

Second, add the compiled program to an RL �le using LINKEDIT/XL.

:RUN LINKEDIT.PUB.SYS

LinkEd> BUILDRL PROGRL

LinkEd> ADDRL PROGOBJ

LinkEd> EXIT

Third, compile the main program like any other Transact/iX program.

:TRANXL MAIN, MAINOBJ

Fourth, link the main program with the RL �le containing the subprogram.

:LINK FROM=MAINOBJ; TO=MAINPROG; RL=PROGRL

Last, run the main program.

:RUN MAINPROG

Example of Static Calls with Load-Time Linking

This example shows how to use load-time linking with the same two programs used in the
example above. The steps for the subprogram are the same, except the responses to the
LINKEDIT prompts specify XL instead of RL.

First, compile the subprogram into PROGOBJ using the SUBPROGRAM compiler option.

:TRANXL PROG, PROGOBJ; INFO="SUBPROGRAM"

Second, add the compiled subprogram to an XL �le using LINKEDIT/XL.

:RUN LINKEDIT.PUB.SYS

LinkEd> BUILDXL PROGXL

LinkEd> ADDXL PROGOBJ

LinkEd> EXIT

Third, compile and link the main program like any other Transact/iX program. You can
combine these steps by using TRANXLLK, no special options are needed in this step.

:TRANXLLK MAIN, MAINPROG

Last, run the main program with the XL= option to name the XL �le containing the
subprogram.

:RUN MAINPROG; XL='PROGXL'

October 1996 Running Transact 9-21

Dynamic Calls

No special techniques or parameters are required to compile or link a Transact compiled
program which uses only dynamic calls. However, the command RUN progname must include
the XL = option, and an XL (the preceding example shows how to create an XL) containing
all the called programs must be available at run time.

Controlling Transact/iX Program Execution

Both Transact/V and Transact/iX use the formal �le designator, TRANIN, at run time
to respond to input prompts and database passwords. The default setting for TRANIN
is $STDINX. The program reads input from TRANIN until it encounters an end-of-�le
condition. If it reaches the end-of-�le before all prompts are answered, it returns to $STDINX
for additional input.

TRANSORT is the name of the sort �le opened and used by the processor. The default size of
this �le is 10,000 records divided into 30 extents. The size of this �le can be altered by using
the SORT= or WORKFILE= options on the SYSTEM statement. If a larger or smaller sort
�le is desired after the program has been compiled, use a �le equation to change its size. This
will override the settings in the SYSTEM statement. For example, to reduce the sort �le size
to 5,000 records use the following MPE FILE command:

:FILE TRANSORT; DISC=5000

Transact/iX Environment Variables

Two environment variables, TRANDBMODE and TRANDEBUG, are available with
Transact/iX:

TRANDBMODE

This environment variable provides a method for specifying the database open mode at run
time. Transact/V allows this same feature when responding to the system prompt.

The mode consists of a single digit that indicates one of the open modes to be speci�ed for
DBOPEN. If you do not specify a mode in the SYSTEM statement of your program or use
this environment variable, Transact opens the databases in mode 1. Any mode speci�ed
in the SYSTEM statement of the program takes precedence over a mode speci�ed by this
environment variable.

To use this feature, do the following:

At the MPE/iX system prompt, set the environment variable to contain the desired open
mode for the database at the time DBOPEN is called.

:SETVAR TRANDBMODE 5

(where 5 is the open mode)

Run the native mode Transact program as usual.

9-22 Running Transact October 1996

TRANDEBUG

For Transact programs that were compiled with the TRANDEBUG option, this environment
variable allows the user to disable and enable the TRANDEBUG debugger without
recompiling the program. (See \Disabling the Debugger" in Chapter 11.)

Compiling and Executing Transact/iX Programs

The following MPE/iX commands are used to compile and execute Transact/iX programs:

RUN TRAN.PUB.SYS Performs the same function as TRANXL but allows complete user
control over all optional features.

TRANXL Uses either an ASCII source �le or p-code as input; produces an
intermediate binary RSOM �le.

TRANXLLK Combines the functions of TRANXL and LINK.

TRANXLGO Combines the functions of TRANXL, LINK, and RUN.

LINK Uses an intermediate RSOM �le; produces a linked program �le.

LINKEDIT Adds procedures to the RSOM �le and produces a linked program
�le.

RUN progname Executes the program.

These commands are described on the following pages, in the order shown above.

October 1996 Running Transact 9-23

RUN TRAN.PUB.SYS

Invokes the Transact/iX compiler and produces an RSOM �le.

RUN TRAN.PUB.SYS [;PARM=parmnum][;INFO="text"]

For complete syntax of the RUN command, see the MPE/iX Commands Reference Manual .

The Transact/iX compiler is a program �le called TRAN.PUB.SYS. You can therefore use the
MPE/iX command RUN to invoke it and compile your program.

When you compile with the RUN command, The default source, object, and listing �les for
the compiler are $STDIN, $NEWPASS, and $STDLIST, respectively. To override these
default values, you must perform two steps:

1. Equate the non-default �le with its formal designator using an MPE/iX FILE command;

2. Select an appropriate value for the PARM parameter of the RUN command. This value
indicates which �les are not defaulted.

The compiler recognizes these formal �le designators:

Formal Designator File Usage

TRANTEXT Source �le
TRANOBJ Object �le (RSOM)
TRANLIST Listing �le

The PARM parameter of the RUN command indicates which �les appeared in the �le
equation. The compiler opens these �les instead of the default �les. The PARM parameter
accepts an integer value in the range 0 . . . 7. The integer value have the following meanings:

Value Files Present in FILE Commands

0 none
1 source
2 listing
3 listing, source
4 object
5 object, source
6 object, listing
7 object, listing, source

An error occurs if the PARM value indicates a �le for which no �le equation exists. On
the other hand, if a �le equation exists and the PARM value doesn't indicate that �le, the
compiler will use the default �le.

The RUN command also has an optional INFO parameter. The INFO string consists of
compiler options for the Transact/iX compiler. Valid compiler options are described earlier in
this chapter. The options can be arranged in any order.

9-24 Running Transact October 1996

TRANTEXT can be either an ASCII source �le or a p-code �le. When TRANTEXT contains
ASCII text, TRANCOMP is called to create p-code from the source �le, then it compiles the
p-code.

The default size of the RSOM �le is 4,000 records. For very large Transact programs, you
should increase the default with an MPE/iX FILE command before compiling the program.
For example, the following command increases the size of the RSOM �le to 15,000 records:

:FILE TRANOBJ=MYSOM;DISC=15000

If the RSOM �le size is not large enough, the following error is displayed:

*ERROR: error in writing to output file. (7204)

October 1996 Running Transact 9-25

TRANXL

Invokes the Transact/iX compiler and produces an RSOM �le.

TRANXL [text�le] [,[rl�le] [,[list�le]]] [;INFO = "text"]

The command TRANXL invokes the Transact/iX compiler and causes it to process the
speci�ed source �le and generate object code to a binary �le. All of the parameters of the
TRANXL command are optional; their default values are given below. If you do not include
an optional parameter, its default value is used automatically. TRANXL does not prompt for
missing parameters.

Statement Parts

text�le The name of the input �le read by the Transact/iX compiler. This can be
any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN, the
current input device, is the default �le. In a session, this is the terminal and
you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

rl�le The name of the relocatable SOM (RSOM) �le on which the compiler writes
the object code. If this parameter is omitted, the �le $NEWPASS is the
default �le.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.
If text�le is p-code, list�le contains only error messages.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the RSOM �le is 4,000 records. For very large Transact programs, you
should increase the default with an MPE/iX BUILD command before compiling the program.
For example, the following command increases the size of the RSOM �le to 15,000 records.

:BUILD MYSOM;DISC=15000;CODE=NMOBJ

If the RSOM �le size is not large enough, the following error is displayed:

*ERROR: error in writing to output file. (7204)

9-26 Running Transact October 1996

TRANXLLK

Compiles and links a source �le into an executable program �le.

TRANXLLK [text�le][,[prog�le] [,[list�le]]] [;INFO = "text"]

The command �le TRANXLLK compiles a Transact or p-code program into an RSOM
�le and then links that �le into a program �le. All of the parameters of the TRANXLLK
command are optional; the default values are given below.

Statement Parts

text�le The name of the input �le that the Transact/iX compiler reads. This can
be any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN,
the current input device, is the default �le. In a session, this is the terminal
and you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

prog�le The name of the program �le on which the linker writes the linked program.
If this parameter is omitted, the �le $NEWPASS is the default �le.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the intermediate RSOM �le, which is created by the Transact/iX compiler,
is 4,000 records. This �le size can not be altered when using the TRANXLLK command. You
must use TRANXL or run TRAN.PUB.SYS in these cases.

October 1996 Running Transact 9-27

TRANXLGO

Compiles, links, and executes a source �le.

TRANXLGO [text�le] [,[list�le]] [;INFO = "text"]

The command �le TRANXLGO compiles, links, and executes a Transact or p-code program.
All of the parameters of the TRANXLGO command are optional; the default values are given
below. After successful completion of TRANXLGO, the program �le is in the temporary �le
$OLDPASS that you can save using the MPE/iX SAVE command.

Statement Parts

text�le The name of the input �le that the Transact/iX compiler reads. This can
be any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN,
the current input device, is the default �le. In a session, this is the terminal
and you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the intermediate RSOM �le, which is created by the Transact/iX compiler,
is 4,000 records. This �le size can not be altered when using the TRANXLLK command. You
must use TRANXL or run TRAN.PUB.SYS in these cases.

9-28 Running Transact October 1996

LINK

Creates an executable program �le.

LINK [FROM=�le [,�le]...] [;TO=dest�le]

[;RL=rl�le]

[;XL=xl�le]

[;CAP=caplist]

[;STACK=maxstacksize]

[;HEAP=maxheapsize]

[;UNSAT=unsatname]

[;PARMCHECK=integer]

[;PRIVLEV=integer]

[;XLEAST=integer]

[;ENTRY=entryname]

[;NODEBUG]

[;NOSYM]

[;MAP]

[;SHOW]

For input, the LINK command uses the RSOM �le(s) produced by the Transact/iX compiler.
It prepares this binary code for execution by binding procedures together and de�ning the
requirements for the data area.

If the program is going to be accessing a subprogram in an RL, use the RL option to name
the library that contains the subprogram.

For complete documentation of the LINK command and all its parameters, see the MPE/iX
Commands Reference Manual .

October 1996 Running Transact 9-29

LINKEDIT

Accesses the Link Editor subsystem, where you can create program libraries and add routines
to them.

LINKEDIT

When you compile and execute Transact/iX programs, the Link Editor is used to build
subprograms and to add them to either an XL or RL. The Link Editor commands that are
most likely to be used are

BUILDRL

BUILDXL

ADDRL

ADDXL

For a complete description of all Link Editor commands, see the Link Editor XL Reference
Manual .

9-30 Running Transact October 1996

RUN progname

Executes the program �le produced by the MPE/iX linker.

RUN progname; [XL = "xlname[, xlname, ...]"]

The MPE/iX RUN command executes the linked program �le produced by the linker. Any
external procedures referenced and stored in an executable library are bound to the program
at this time.

If subprograms are stored in an XL, use the XL= option to reference the library that contains
the subprograms.

For complete syntax and details, see the MPE/iX Commands Reference Manual .

October 1996 Running Transact 9-31

Transact Compiler Listings

The following example shows the listing of a source program produced by the compiler using
all four default control options. The three columns of numbers on the left side of the listing
are described below.

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

Line Number

Internal Location

Nesting Level

1.000 SYSTEM COMPIL;

2.000 0000 IF (A) = (B)

3.000 0000 1 THEN DO

4.000 0000 1 DISPLAY "DUPLICATE ENTRY";

5.000 0005 1 IF (A) = (C)

6.000 0005 2 THEN IF (D) < 50

7.000 0008 2 THEN MOVE (A) = (D);

8.000 0013 1 DOEND;

9.000 0013 END;

CODE FILE STATUS: NEW

0 COMPILATION ERRORS

PROCESSOR TIME=00:00:01

ELAPSED TIME=00:00:03

Line Number Line number from the source listing.

Internal Location Internal location reference number of the statement on the associated
text line. These numbers are useful when TEST mode is used during
execution. (See Chapter 10.)

Nesting Level Nesting level indicator that is incremented by one when the compiler
encounters the start of a compound statement or a new level. It is
decremented by one when the compiler reaches the end of such a
compound statement or level.

9-32 Running Transact October 1996

The nesting level number changes at the line after the IF statement that introduces a new
level. If you have trouble tracking level numbers, it helps to include DO/DOEND pairs at
every level change, even though they are only required if you have compound statements. The
following example shows how DO/DOEND pairs clarify the structure of a program:

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000

2.000 SYSTEM TST04;

3.000 0000 DEFINE(ITEM) TEMP01 I(2):

4.000 0000 TEMP02 I(2):

5.000 0000 TEMP03 I(2);

6.000 0000 PROMPT TEMP01:TEMP02:TEMP03;

7.000 0003 IF (TEMP01) = 1 THEN

8.000 0003 1 DO

9.000 0003 1 IF (TEMP02) = 1 THEN

10.000 0006 2 DO

11.000 0006 2 IF (TEMP03) = 1 THEN

12.000 0009 3 GO TO OUT

13.000 0009 3 ELSE

14.000 0012 3 DO

15.000 0012 3 DISPLAY "AT LEVEL 3";

16.000 0014 3 LET (TEMP01) = 3;

17.000 0016 3 DOEND;

18.000 0016 2 DOEND;

19.000 0016 1 DOEND;

20.000 0016 IF (TEMP01) = 3 THEN

21.000 0016 1 DO

22.000 0016 1 DISPLAY "AT SECOND LEVEL 1"

23.000 0019 1 DOEND;

24.000 0021

25.000 0021 OUT:
26.000 0021 DISPLAY "AT THE END";

27.000 0023 EXIT;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=00:00:02

ELAPSED TIME=00:00:03

Transact Compiler Listings

The compiler listing generated by the Transact/iX and Transact/V compilers are the same
with two exceptions:

Transact/iX does not create a permanent p-code �le and hence the compiler listing does not
report the \CODE FILE STATUS".

The summation of compiler warnings is provided with Transact/iX and the
warning/error/compilation time message is formatted di�erently.

October 1996 Running Transact 9-33

DISPLAY ITEM

DISPLAY ITEM

Displays the value of a single item, several items, or all items in the data register.

Syntax

�
DISPLAY ITEM

DIT

��
item name list

�

item name list =

8>><
>>:

item1
�
(subscript)

�
:item2

�
(subscript)

�
item1

�
(subscript)

��
, . . . itemN

�
(subscript)

� �
item1

�
(subscript)

�
:

:item2
�
(subscript)

�

9>>=
>>;

Parameters

item The names of the valid items or range of items in the data register that are to
be displayed. These items can be child items.

subscript A list of numerical values of the form val1 , val2 , . . . valn used to select a
particular element in an array. If this parameter is omitted and the item
being displayed is an array, the entire array is displayed. If this parameter is
speci�ed and the item is not an array, an error message is displayed.

Discussion

This command allows you to display either selected items in the data register or all the items
in the data register. The item values are converted to their ASCII equivalents prior to display.
If an item cannot be successfully converted to ASCII or an overow occurs, the item value
appears as #s.

If an item cannot be displayed entirely on one line, it is formatted for multiple lines. If the
items being displayed cannot �t on a single screen, a CONTINUE(Y/N)? prompt is displayed
at the page breaks. If an item name is not speci�ed, all the items in the data register are
displayed.

Note Child items cannot be used when specifying a range of items to display.

Examples

The following examples display a single item, a range of items, and all items in the data
register.

TRANDEBUG> DISPLAY ITEM item1

ITEM1: ABCD

October 1996 TRANDEBUG 11-41

DISPLAY ITEM

TRANDEBUG> DISPLAY ITEM item1:item3

ITEM1: ABCD

ITEM2: 1234

ITEM3: 56.78

TRANDEBUG> DISPLAY ITEM

ITEM1: ABCD

ITEM2: 1234

ITEM3: 56.78

ITEM4: XYZ

11-42 TRANDEBUG October 1996

INITIALIZE

The Transact/iX compiler does not support the INITIALIZE built-in command nor the
INITIALIZE option of the SET(COMMAND) statement. To quit one program and begin
another, you must EXIT from the �rst program, then invoke the next program at the
MPE/iX command level.

If the INITIALIZE option is encountered during compilation, the following informational
message is issued:

*INFO: UNSUPPORTED COMMAND: SET(COMMAND) INITIALIZE

If the INITIALIZE option is encountered at run time, the following error message is issued:

* ERROR: UNSUPPORTED COMMAND: SET(COMMAND) INITIALIZE

The INITIALIZE option should be replaced with a program exit. You must then specify the
new program to be run at the MPE/iX command level.

Calls to Transact/V Subprograms

Calls to compatibility mode Transact/V subprograms are not supported by native mode
Transact/iX.

UNLOAD and NOLOAD Options in the PROC Verb

The UNLOAD and NOLOAD options on the PROC verb are inappropriate in Transact/iX
since procedures cannot be unloaded. If the UNLOAD option is encountered during
compilation, an informational message is generated. If the options are encountered at run
time, they are ignored. See the PROC verb in Chapter 8 for more information.

TRANIN

TRANIN is the formal �le designator used by TRANCOMP for responses to prompts by
the Transact/V compiler for the source �le, options, and list. This �le is not used for the
Transact/iX native mode compiler.

TRANIN is the format �le descriptor used at run time by both Transact/V and Transact/iX
to respond to input prompts and database passwords. TRANIN is used di�erently during run
time in Transact/iX. In Transact/V, the system name, database open mode, and test mode
can also be included in the TRANIN �le. Transact/iX does not have these additional features.

October 1996 Native Mode Transact/iX

Migration Guide

B-5

Features that Differ Between Transact/V and Transact/iX

The following features di�er in usage or in e�ect between Transact/V and native mode
Transact/iX:

Multiple systems in one �le

Parameters passed by value or by reference in the PROC verb

Parent and child values in SET(UPDATE)

ALIGN option of LIST and PROMPT verbs

Fill characters used for data type 9 with the MOVE verb

Arithmetic operations

Multiple Systems in One File

The Transact/V compiler creates a separate p-code �le for each SYSTEM statement in a
source �le. The native mode Transact/iX compiler creates a single RSOM �le regardless of
how many SYSTEM statements are in a source �le. The �rst system is compiled as a main
program and the remaining systems are compiled with the SUBPROGRAM option.

If the SUBPROGRAM option is provided in the INFO string when running the native mode
Transact/iX compiler, all systems in the source �le are compiled with the SUBPROGRAM
option. (See \Transact/iX Compiler Options" in Chapter 9.)

Parameters Passed by Value or by Reference in the PROC Verb

Transact/V does not do type checking on passed parameters. Transact/iX checks the calls
to system intrinsics to verify that reference parameters and value parameters are passed as
expected. For more information see the PROC verb in Chapter 8.

Parent and Child Values in SET(UPDATE)

In Transact/V, if a parent-item value is placed in the update register before a child-item
value, the parent value overrides the child value. In Transact/iX, however, the child value
overrides the parent value.

ALIGN Option of LIST and PROMPT Verbs.

In Transact/V, alignment is on 16-bit word boundaries. In MPE/iX, alignment is on 32-bit
word boundaries.

Fill Characters Used for Data Type 9 with the MOVE Verb

Null is the �ll character used for the 9 data type in a Transact/V MOVE. In a Transact/iX
MOVE, the �ll character is blank.

Arithmetic Operations

If a problem occurs within a LET statement, the results obtained with Transact/V and
Transact/iX may di�er. For additional information see the LET verb in Chapter 8.

B-6 Native Mode Transact/iX

Migration Guide

October 1996

Migration Examples

This section contains several examples of the typical kinds of migration changes.

Data File Real Number Conversion

The following program shows the conversion of oating point (real) numbers from the MPE
V format to the MPE/iX standard format. Note that the HP3000 16 option is applied to the
input �le and the HP3000 32 option is applied to the output �le. This causes item-name R4,
which is a real number, to be read as an MPE V format real number and to be written as an
MPE/iX standard format real number.

SYSTEM CONVRT,FILE=IN(READ(HP3000_16))

,FILE=OUT(WRITE(HP3000_32));
DEFINE(ITEM) X2 X(2):

I4 I(4):

I8 I(8):

R4 R(4);

LIST X2:I4:I8:R4;

FIND(SERIAL) IN,PERFORM=100-CONVERT;

EXIT;

100-CONVERT:

PUT OUT;

RETURN;

Procedures with Null 32 Bit Parameters

The following fragment of Transact/V code illustrates the Transact/V convention of two
commas to indicate a null 32-bit parameter.

SYSTEM EXAM1;

DEFINE(ITEM) FILE-NAME X(20):

FOPTION I(4):

AOPTION I(4):

FILENUM I(4):

BITMAP I(4);

DEFINE(INTRINSIC) FOPEN;

LIST FILE-NAME:

FOPTION:

AOPTION:
FILENUM:

BITMAP;

October 1996 Native Mode Transact/iX

Migration Guide

B-9

MOVE (FILE-NAME) = "OLDFILE";

LET (FOPTION) = 5; <<old ascii file>>

LET (AOPTION) = 0; <<read access>>
LET (BITMAP) = 7168; <<1110000000000 passing the first>>

<<three parameters >>

PROC FOPEN(%(FILE-NAME),

#(FOPTION),

#(AOPTION),

,,,,,,,,,,, <<note extra commas to denote null>>

&(FILENUM), <<values >>

#(BITMAP));

To modify this source program so that it is still compatible with Transact/V, you must pass
the �lesize parameter and replace the two commas currently used to denote a null �lesize with
the �lesize parameter and a single comma. The code fragment for this is shown below.

SYSTEM EXAM1;

DEFINE(ITEM) FILE-NAME X(20):

FOPTION I(4):

AOPTION I(4):
FILENUM I(4):

FILESIZE I(9): <<32 bit integer>>

BITMAP I(4);

DEFINE(INTRINSIC) FOPEN;

LIST FILE-NAME:

FOPTION:

AOPTION:

FILENUM:

FILESIZE,INIT:

BITMAP;

MOVE (FILE-NAME) = "OLDFILE";

LET (FOPTION) = 5; <<old ascii file>>

LET (AOPTION) = 0; <<read access>>

LET (BITMAP) = 7176; <<1110000001000 passing the first >>

<<three parameters and filesize >>

LET (FILESIZE) = 1023;

PROC FOPEN(%(FILE-NAME),

#(FOPTION),

#(AOPTION),

,,,,,,

#(FILESIZE),

,,, <<each comma denotes a parameter; >>

&(FILENUM), <<note that there is 1 fewer comma >>

#(BITMAP)); <<then there is in the above example.>>

B-10 Native Mode Transact/iX

Migration Guide

October 1996

Data Area Allocation

There are a few requirements for the data bu�er parameter that the calling program
must address. It must allocate the entire Transact/iX data register in the calling program
before the call. The data bu�er must be at least as large as the data register used in the
subprogram. If the bu�er is smaller than the amount of bytes that are placed in the LIST and
DATA register in the called Transact/iX subprogram, an error message will be issued in the
subprogram.

The values placed in the data bu�er by the calling program must ensure that the formats are
correct for Transact/iX as listed in Table 3-3 in Chapter 3. Values placed in the data bu�er
by the calling program should be double byte-aligned (16-bit) or the values will not be
interpreted correctly by the called Transact/iX code.

The data length parameter should be the same (or larger) as the size of the data bu�er .

Database and File Handling

When calling a Transact/iX subprogram, all the databases and �les speci�ed in the SYSTEM
statement are opened, regardless of whether or not they are accessed by the calling program.

When calling a Transact/iX subprogram, it is invoked by the main program. Only the
data bu�er is shared between the two programs. This intrinsic cannot preserve any database
or �le information during the call to the Transact/iX subprogram, such as current record
numbers. The calling program has sole responsibility for managing these issues.

VPLUS Forms

When the called Transact/iX subprogram uses VPLUS forms, the calling program must
ensure that the terminal is in character mode. The VPLUS comarea is not available to the
Transact/iX subprogram when it is called from a program written in a di�erent language. The
Transact/iX subprogram always assumes that the terminal is in character mode and returns
the terminal to character mode after �nishing execution.

Trap Handling

During the invocation of the ACI call, arithmetic trapping is enabled for the Transact/iX
subprogram with calls to HPENBLTRAP, XARITRAP, and XLIBTRAP. On returning from
the called system, the arithmetic trapping is reset to the state it was in prior to calling the
Transact/iX subprogram.

You should keep in mind that the trap handling in the Transact/iX subprogram may not be
the same as the trap handling in the main program.

October 1996 Architected Call Interface (ACI) D-3

Examples

The following examples illustrate how ACI is used to call a Transact/iX subprogram from a
Pascal program and from a COBOL program.

Pascal Code

program pastest(output);

$standard_level 'OS_FEATURES'$

type

system_name_type = packed array[1..7] of char; {system name plus blank}

nibble = 0..15; {for P types }

data_record = packed record {Data register}

x_item : packed array[1..8] of char; {X(8) }

i4_item : integer; {I(9) }

i2_item : shortint; {I(4) }

nine_item : packed array[1..6] of char; {9(6) }

j4_item : integer; {J(9) }

r4_item : real; {R(6) }

packed_item: packed array[1..6] of nibble; {P(5) }

filler : packed array[1..2014] of char; {Rest of Data reg. used}

end; {by called subprogram. }

var

data_buffer : data_record;

return_status : integer;
system_name : system_name_type;

procedure tl_call_transact

(

var system_name : system_name_type;

data_buffer : localanyptr;

data_length : integer;

var return_status: integer

); external;

D-4 Architected Call Interface (ACI) October 1996

Index

Special characters

!, 5-14, 8-37, 8-66, 8-83, 8-186, 8-237
$, 8-36, 8-66
(, 8-37, 8-67
*, 8-37, 8-66
,, 8-37, 8-66
., 8-37, 8-66
:$, 5-4
=, 5-15
], 5-14, 8-113, 8-218
]], 5-14, 8-113, 8-218
^, 5-15, 8-36, 8-66

2

24 edit characters, 8-38, 8-67

3

32-bit integer arithmetic, 8-108

A

AA and aa edit characters, 8-38, 8-68
A and a edit characters, 8-38, 8-68
ABORT command, 11-15
absolute binary, 3-4
access, key, 4-4
access mode, 6-2
ACCOUNT option, LIST verb, 8-116
ACI (Architected Call Interface), D-1
alias items, 3-17
ALIAS option, DEFINE verb, 8-22
alignment, in Transact/iX, 9-17
ALIGN option, LIST verb, 8-116, 8-118
ALPHABETIC test value, 8-85, 8-188, 8-239
-LOWER, 8-86, 8-188, 8-239
-UPPER, 8-86, 8-188, 8-239

APPEND option
GET verb, 8-77
PUT verb, 8-181
SET verb, 8-209
UPDATE verb, 8-234

applications optimization, C-1
Architected Call Interface (ACI), D-1
ARGLNG parameter, PROC verb, 8-160
ARG parameter, PROC verb, 8-160
argument register, 4-4

arithmetic operations, 8-103
arithmetic traps in TRANDEBUG, 11-13
arrays
items de�ned, 3-11
manipulating, 8-104
subscripting, 3-11

ASCII function, LET verb, 8-96
asterisk edit character, 8-37, 8-66
AUTOLOAD option
description, 5-12
RESET verb, 8-200
SET verb, 8-215

AUTO modi�er, LIST verb, 8-117
AUTOREAD option, GET verb, 8-77
AUTORPT command, 11-16

B

BANNER option, SYSTEM verb, 8-223
BASELNG parameter, PROC verb, 8-160
BASE option, SYSTEM verb, 8-223
BASE parameter, PROC verb, 8-160
batch processing, 9-11
binding data item attributes in Transact/iX,

B-4
BLANKS option
DATA verb, 8-14
INPUT verb, 8-90
PROMPT verb, 8-172

BREAK DELETE command, 11-18
BREAK LIST command, 11-20
BREAK SET command, 11-21
bu�er record, de�ning, 6-15
built-in commands, 5-6
BYTE parameter, PROC verb, 8-160

C

calling intrinsics or SL routines, 8-158
calling Transact/iX subprograms from COBOL

or Pascal, D-1
CALL verb, 8-2, C-20, C-28
caret symbol (^)
as edit character, 8-36, 8-66
as selection criterion, 5-15

CCTL option
DISPLAY verb, 8-35
FORMAT verb, 8-65

October 1996 Index-1

CENTER option
DISPLAY verb, 8-35
FORMAT verb, 8-66

chained access path, 8-152
CHAIN modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72
OUTPUT verb, 8-145
REPLACE verb, 8-191

character mode, 5-11
CHAR function, MOVE verb, 8-132
CHCK compiler option, 9-8
CHECKNOT option
DATA verb, 8-14
PROMPT verb, 8-172

CHECK option
DATA verb, 8-14
PROMPT verb, 8-172

child items, 3-10
CLEAR option
GET verb, 8-77
PUT verb, 8-181
SET verb, 8-210
UPDATE verb, 8-234

CLOSE modi�er, FILE verb, 8-47
CLOSE verb, 8-10
closing a database, 6-2
COBOL
calling Transact/iX subprograms, D-1
code, D-6
commands, D-7
data types, 3-4
subroutines with Transact/iX, 8-164

CODE compiler option, 9-8
COL function, MOVE verb, 8-133
COL option
DISPLAY verb, 8-35
FORMAT verb, 8-66

comma, 5-15
comma edit character, 8-37, 8-66
$$command, 5-4
: command, 11-14
command
built-in, 5-6
labels, 5-4
quali�ers, 5-6
sequences, 5-2

COMMAND argument, SET verb, 8-207
COMMAND modi�er
RESET verb, 8-199
SET verb, 8-207

COMMAND processor command, 5-6
comments, 2-7
compilation, 9-7

compiled output control, 9-2
compiler
bypassing prompts, 9-10
di�erences, 9-32
error messages, 7-8
execution, 9-7, 9-8
listings, 9-31
options, 9-8
options in Transact/iX, 9-17
output destination, 9-12
TRANCODE, 9-12
TRANIN, 9-11
TRANLIST, 9-10, 9-12
TRANOUT, 9-12
Transact/iX, 9-16
TRANTEXT, 9-10, 9-11

compiler commands
!COPYRIGHT, 9-2
!ELSE, 9-2
!ENDIF, 9-3
!IF, 9-2
!INCLUDE, 9-2
!LIST, 9-2
!NOLIST, 9-2
!PAGE, 9-2
!SEGMENT, 9-2
!SET, 9-2

compiling Transact/iX programs, 9-16, 9-22
compound data items, 3-11
compound statements, 2-5
COMPUTE option, DEFINE verb, 8-22
conditional test
IF verb, 8-83
REPEAT verb, 8-186
WHILE verb, 8-237

connector, 5-8
CONTINUE command, 11-24
CONTROL modi�er, FILE verb, 8-48
conversion, B-7
converting �le formats , B-8
converting programs, B-1
!COPYRIGHT compiler command, 9-2
COUNT parameter, PROC verb, 8-160
$CPU edit characters, 8-36
CPU seconds used, 3-2
$CPU variable, 3-2, 8-35
critical item update, 8-196
Ctrl Y, 5-14
operation break, 5-14
user responses, 5-14

currency symbol ($) edit character, 8-36, 8-66
CURRENT modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72

Index-2 October 1996

REPLACE verb, 8-192
CURRENT option
GET verb, 8-77
OUTPUT verb, 8-145
PUT verb, 8-181

CURSOR option
PUT verb, 8-181

CURSOR option, GET verb, 8-77, 8-210, 8-234

D

database
closing, 6-2
data dictionary, 3-9
locking, 6-3
opening, 6-1
opening mode, 9-13

DATA BREAK DELETE command, 11-25
DATA BREAK LIST command, 11-27
DATA BREAK REGISTER command, 11-28
DATA BREAK SET command, 11-30
data dictionaries, 3-9
data entry control characters, 5-14
data �le migration, B-8
data items, 3-2
adding to data register, 4-3
adding to list register, 4-3
alias items, 3-17
array items, 3-11
child items, 3-10
compound, 3-11
listed multiple times, 4-3
parent items, 3-10
removing from list register, 4-3
sizes, 3-3
types, 3-3

DATA LOG command, 11-33
DATA option
CALL verb, 8-4
SYSTEM verb, 8-225

data register, 4-2
managing, 4-3

data speci�cation, 3-9
data stack optimization, C-1
data storage
registers, 4-1
requirements, 4-3

data types, 3-3, 3-8
compatibility with databases, 3-9
compatibility with dictionaries, 3-9
compatibility with VPLUS, 3-8

data validation, 3-9
DATA verb, 4-7, 8-12
date and time variable, 3-2
$DATELINE edit characters, 8-36
$DATELINE variable, 3-2, 8-35

DATE option, LIST verb, 8-116
DBLOCK call, A-1
DBUNLOCK call, A-1
D, DD, and DDD edit characters, 8-39, 8-68
DECIMAL parameter, PROC verb, 8-160
DEFINE(ITEM) statement, 2-3
DEFINE verb, 8-19
DEFN command, 11-35
DEFN compiler option, 9-8
DELETE verb, 8-27, A-2
executing for a KSAM �le, A-3
executing for TurboIMAGE data set, A-2

deleting a breakpoint, 11-18
DELIMITER modi�er
RESET verb, 8-200
SET verb, 8-208

delimiters, 2-7, 5-15
blank, 2-7
comma, 2-7
equal sign, 2-7
parentheses, 2-7
semicolon, 2-7
with DOEND, 2-5

DEPTH option, SET verb, 8-215
DICT compiler option, 9-8
DIRECT modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72
OUTPUT verb, 8-145
REPLACE verb, 8-192

DISPLAY BASE command, 11-36
DISPLAY CALLS command, 11-37
DISPLAY COMAREA command, 11-38
DISPLAY FILE command, 11-39
displaying contents of comarea, 11-38
DISPLAY INPUT command, 11-40
DISPLAY ITEM command, 11-41
DISPLAY KEY command, 11-43
DISPLAY MATCH command, 11-44
DISPLAY PERFORM command, 11-45
DISPLAY STATUS command, 11-46
DISPLAY STATUSDB command, 11-47
DISPLAY STATUSIN command, 11-48
DISPLAY UPDATE command, 11-49
DISPLAY verb, 8-34
DO and DOEND statements, 2-5
!DOMAIN System Dictionary command, 9-3
double bu�ering parameters, Transact/iX, 8-165
dynamic calls, 8-2
compiling programs for, 9-21

DYNAMIC CALLS compiler option, 9-17
dynamic roll-back, 6-9

October 1996 Index-3

E

! edit character, 8-66
$ edit character, 8-66
(edit character, 8-67
* edit character, 8-66
, edit character, 8-66
. edit character, 8-66
^ edit character, 8-66
edit characters
!, 8-37, 8-66
$, 8-36, 8-66
(, 8-37, 8-67
*, 8-37, 8-66
,, 8-37, 8-66
., 8-37, 8-66
^, 8-36, 8-66, 8-68
24, 8-38, 8-67
AA and aa, 8-38, 8-68
A and a, 8-38, 8-68
D, DD, and DDD, 8-39, 8-68
for $CPU, 8-36
for $DATELINE, 8-36
for $PAGE, 8-36
for $TIME, 8-38
H and HH, 8-38, 8-67
M and MM, 8-38, 8-67, 8-68, 8-69
M, MM, and nM, 8-39
nM and nm, 8-39, 8-69
nW and nw, 8-39, 8-69
S and SS, 8-38, 8-68
T, 8-38, 8-68
YY and YYYY, 8-39, 8-69
Z, 8-36, 8-66
ZD, 8-39, 8-68
ZH, 8-38, 8-67
ZM, 8-38, 8-39, 8-67, 8-68
ZS, 8-38, 8-68

EDIT command, 11-50
EDIT option
DEFINE verb, 8-22
DISPLAY verb, 8-37
FORMAT verb, 8-66

!ELSE compiler command, 9-2
!ENDIF compiler command, 9-3
END option
RESET verb, 8-200
SET verb, 8-215

END verb, 8-44, 8-157
ENTRY modi�er, DEFINE verb, 8-19
ENTRY option, DEFINE verb, 8-22
entry point labels, 9-5
environment variables, 9-21
equals sign, 5-15
error branching, 8-112

error handling, 7-1
automatic, 7-2
status register, 4-7

error messages
compiler, 7-8
looking up, 7-10
searching catalogs, 7-10
system errors, 7-10
Transact processor, 7-9
warnings, 7-10

ERROR option
CLOSE verb, 8-10
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-76
LET verb, 8-94
OUTPUT verb, 8-146
PATH verb, 8-152
PUT verb, 8-180
REPLACE verb, 8-192
UPDATE verb, 8-233
when taken, 7-4

errors
database operation, 7-2, 7-6
data entry, 7-2, 7-5
�le operation, 7-2, 7-6
MPE/iX, 7-10
MPE V, 7-10
Transact, 7-10

ERRS compiler option, 9-8
exclamation point edit character, 8-37, 8-66
EXCLAMATION variable
IF verb, 8-83
REPEAT verb, 8-186
WHILE verb, 8-237

executing Transact/iX programs, 9-16, 9-22
EXIT argument, SET verb, 8-207
exiting from LEVEL sequences, 8-113
EXIT OR RESTART message, 8-44
EXIT processor command, 5-6
EXIT verb, 8-46
EXPLAIN subsystem, 7-10
external procedure, PROC verb, 8-158

F

FEDIT option
GET verb, 8-78
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-234

FIELD command quali�er, 5-6
�eld delimiters, 5-15
FIELD option
RESET verb, 8-200
SET verb, 8-215

Index-4 October 1996

FIELD variable
IF verb, 8-84
REPEAT verb, 8-186
WHILE verb, 8-238

�le format conversion, B-8
FILEID parameter, PROC verb, 8-160
�le locking, 6-3
�le names, reserved, 9-6
FILE option, SYSTEM verb, 8-225
FILE verb, 8-47
FIND verb, 8-51, A-4
executing for a KSAM �le, A-6
executing for an MPE �le, A-7
executing for a TurboIMAGE data set, A-4

FKEY option
GET verb, 8-78
PUT verb, 8-182
UPDATE verb, 8-234

oating point formats, B-2
FLOCK call, A-1
owcharts, A-1
Fn option
GET verb, 8-78
PUT verb, 8-182
UPDATE verb, 8-234

FOPEN call, A-1
formatting parameters
DISPLAY verb, 8-35
FORMAT verb, 8-65

FORMAT verb, 8-64
FORM modi�er
GET verb, 5-16, 8-72
PUT verb, 5-16, 8-177
SET verb, 8-208
UPDATE verb, 8-231

FORMSTORE option
RESET verb, 8-200
SET verb, 8-216

FREEZE option
GET verb, 8-78
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-235

FSTORESIZE option
description, 5-12
SYSTEM verb, 8-227

function keys, 5-16
FUNLOCK call, A-1

G

GET(FORM) verb, executing for a VPLUS
form, A-12

getting information online, 7-10
GET verb, 8-72, A-9
executing for a KSAM �le, A-10

executing for an MPE �le, A-11
executing for a TurboIMAGE data set, A-9

GO TO verb, 8-82
GROUP option, LIST verb, 8-116

H

H and HH edit characters, 8-38, 8-67
HEAD option
DEFINE verb, 8-22
DISPLAY verb, 8-40
FORMAT verb, 8-69
SET verb, 8-217

HELP command, 11-51
home base, 3-2, 8-223
HOMEGROUP option, LIST verb, 8-116
$HOME variable, 3-2
HP3000 16 compiler option, 9-17

I

!IF compiler command, 9-2
IF verb, 8-83
!INCLUDE compiler command, 9-2
INFO= option in Transact/iX, 9-17
INFO= option, RUN command
compiler, 9-10
processor, 9-14

information messages,Transact processor, 7-9
Inform/V option, CALL verb, 8-5
INITIALIZE argument, SET verb, 8-207
INITIALIZE command, under MPE/iX, B-5
INITIALIZE processor command, 5-6
INIT option
DEFINE verb, 8-24
GET verb, 8-78
LIST verb, 8-116
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-235

INPUTLNG parameter, PROC verb, 8-161
INPUT parameter, PROC verb, 8-160
input register, 4-6
INPUT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

INPUT verb, 4-7, 8-90
integer number, 3-4
interpreting Transact programs, 9-13
INTRINSIC modi�er, DEFINE verb, 8-19
intrinsics, calling, 8-158
invoking intrinsics or SL routines, 8-158
invoking other programs, 8-2
IPC (message) �les, 6-21
item attribute resolution, B-4

October 1996 Index-5

ITEMLNG parameter, PROC verb, 8-161
ITEM modi�er
DATA verb, 8-14
DEFINE verb, 8-19, 8-24, 8-25

ITEM parameter, PROC verb, 8-161
ITEM verb, 8-92

J

JOIN option
DISPLAY verb, 8-40
FORMAT verb, 8-69

K

KEYLNG parameter, PROC verb, 8-161
KEY modi�er
DATA verb, 8-15
GET verb, 8-72
LIST verb, 8-117
PROMPT verb, 8-173
SET verb, 8-213

KEY parameter, PROC verb, 8-161
key register, 4-4
key value, 4-4
KSAM �les, 6-15
CLOSE verb, 8-10
DELETE verb, 8-27
FIND verb, 8-51
LIST verb, 8-115
OUTPUT verb, 8-144
SYSTEM verb, 8-227
UPDATE verb, 8-230

KSAM option, SYSTEM verb, 8-227

L

LABEL BREAK SET command, 11-53
LABEL JUMP command, 11-55
labels, 8-157
command, 5-4
statement, 2-4
subcommand, 5-4

LANGUAGE modi�er, SET verb, 8-213
language option, PROC verb, 8-163
LEADER option
DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

LEFT option
DISPLAY verb, 8-40
FORMAT verb, 8-69
SET verb, 8-217

LENGTH function, LET verb, 8-97
LET verb, exponentiation, 8-94
LEVEL modi�er, END verb, 8-44, 8-113
LEVEL verb, 8-113

limitations, 6-13
LINE destination variable, LET verb, 8-93
LINE option
DISPLAY verb, 8-40
FORMAT verb, 8-69

LINE variable, 3-2
LINK command, 9-28
LINKEDIT command, 9-29
!LIST compiler command, 9-2
LIST compiler option, 9-8
list �le, 9-8
listing breakpoints, 11-20
listing data breakpoints, 11-27
LIST option
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-146
PATH verb, 8-152
PUT verb, 8-178
REPLACE verb, 8-192
SET verb, 8-210
UPDATE verb, 8-231

list register, 2-3, 4-2
managing, 4-3

list statement, 2-3
LIST verb, 4-7, 8-115
LN function, LET verb, 8-98
LNG option
DISPLAY verb, 8-40
FORMAT verb, 8-70

local form storage, 5-11, 5-13
LOC command, 11-56
locking, 6-9
across a transaction, 6-8
LOCK option, 6-7
optimized, 6-5
options available, 6-3

locking strategy with LOGTRAN, 6-10
LOCK option
DELETE verb, 8-30
FIND verb, 8-55
GET verb, 8-76
LOGTRAN verb, 8-124
OUTPUT verb, 8-148
PUT verb, 8-181
REPLACE verb, 8-194
UPDATE verb, 8-233
with database access verbs, 6-7
with �le access verbs, 6-7
with LOGTRAN statement, 6-8

LOG command, 11-57
LOG function, LET verb, 8-99
logical connector, 5-8
logical value, 3-4

Index-6 October 1996

LOGTRAN verb, 8-122
locking strategy, 6-10

look-ahead loading of forms, 5-12
LOWER function, MOVE verb, 8-134

M

M and MM edit characters, 8-38, 8-67, 8-68,
8-69

MATCH modi�er
DATA verb, 5-8, 8-15
LIST verb, 8-118
PROMPT verb, 5-8, 8-173
SET verb, 8-213

MATCH option, RESET verb, 8-201
MATCH prompt, 5-8, 5-15
match register, 4-5
match speci�cation characters, 5-15
message �les, 6-21
migration
checklist, B-11
examples, B-9
Transact/V data �les to native mode

Transact/iX, B-8
Transact/V programs to native mode

Transact/iX, B-1
Transact/V source programs to native mode

Transact/iX, B-7
M, MM, and nM edit characters, 8-39
mode
database access, 6-2
execution, 9-13

modi�ers, 2-4
MODIFY INPUT command, 11-59
MODIFY ITEM command, 11-60
MODIFY KEY command, 11-61
MODIFY MATCH command, 11-62
MODIFY STATUS command, 11-64
MODIFY UPDATE command, 11-65
MOVE verb, 8-128
string functions, 8-131

MPE �les, 6-15
automatic purging, 8-226
CLOSE verb, 8-10
LIST verb, 8-115

MPE/iX operating system, 9-16
MR (multiple RIN), 6-4
multiple-segment programs, C-14
data stack components, C-5

multiple systems in one �le, B-6

N

naming conventions
data items, 3-2
subcommand labels, 5-4
user-entered passwords, 5-5

native language support, E-1
called programs, E-2
date and time, E-3
IF and MATCH changes, E-3
intrinsic calls, E-3
numeric input, E-2
numeric output, E-2
RESET(LANGUAGE)statement, E-1
SET(LANGUAGE) statement, 8-213
upshifting and character types, E-3

NEED option
DISPLAY verb, 8-40
FORMAT verb, 8-70

negative values in edit string, 8-37, 8-67
nesting level, 9-31
examples, 9-32

nM and nm edit characters, 8-39, 8-69
NMDEBUG command, 11-67
NOBANNER option, SET verb, 8-217
NOCOUNT option
DELETE verb, 8-30
OUTPUT verb, 8-148
REPLACE verb, 8-195

NOCRLF option
DISPLAY verb, 8-41
FORMAT verb, 8-70

NOECHO option
DATA verb, 8-14
INPUT verb, 8-90
PROMPT verb, 8-172

NOFIND option, GET verb, 8-76
NOHEAD option
DISPLAY verb, 8-41
FORMAT verb, 8-70
OUTPUT verb, 8-148
RESET verb, 8-201
SET verb, 8-217

!NOLIST compiler command, 9-2
NOLOAD option, PROC verb, 8-162
NOLOCK option
RESET verb, 8-201
SET verb, 8-217

NOLOOKAHEAD option
description, 5-12
RESET verb, 8-201
SET verb, 8-218

NOMATCH option
DELETE verb, 8-30
FIND verb, 8-55
GET verb, 8-76
OUTPUT verb, 8-148
REPLACE verb, 8-195

NOMSG option
CLOSE verb, 8-11
DELETE verb, 8-30

October 1996 Index-7

FIND verb, 8-55
GET verb, 8-76
LOGTRAN verb, 8-124
OUTPUT verb, 8-148
PATH verb, 8-152
PUT verb, 8-181
REPLACE verb, 8-195
UPDATE verb, 8-233

NOSIGN option
DISPLAY verb, 8-41
FORMAT verb, 8-70

!NOSYSDIC System Dictionary command, 9-3
NOTEST option, SYSTEM verb, 8-228
NOTRAP option, PROC verb, 8-162
NULL option, DATA verb, 8-14
null parameters in Transact/iX, 8-164
null subcommand, 5-4
numeric ASCII string, 3-4
numeric parameters, 10-4
NUMERIC test value, 8-85, 8-188, 8-239
nW and nw edit characters, 8-39, 8-69

O

OBJT compiler option, 9-9
OFFSET variable, LET verb, 8-93
opening a database, 6-1
OPEN modi�er, FILE verb, 8-48
operation break, Ctrl Y, 5-14
operations, arithmetic, 8-103
OPT@ compiler option, 9-9, C-4
OPTE compiler option, 9-9, C-4
OPTH compiler option, 9-9, C-4
OPTI compiler option, 9-9, C-4
OPTIMIZE compiler option, 9-18
optimized locking, 6-5
optimizing applications, C-1
optimizing data stacks, C-1
optimizing processor time, C-33
optimizing programs, C-33
option-list, 2-5
OPTION modi�er
RESET verb, 8-200
SET verb, 8-215

OPTION option
SYSTEM verb, 8-228

option variable intrinsics, 8-158
option variable procedures, Transact/iX, 8-164
optlock parameter
description, 6-3
SYSTEM verb, 8-224

OPT option, DEFINE verb, 8-24
OPTP compiler option, 9-10
OPTS compiler option, 9-10, C-4
order of evaluation
in conditionals, 8-86, 8-188, 8-240

OUTPUT verb, 8-144, A-14
executing for a KSAM �le, A-15
executing for an MPE �le, A-16
executing for a TurboIMAGE data set, A-14

overlays, 9-5

P

packed decimal, 3-4
packed decimal arithmetic, 8-110
PAGE BACK command, 11-68
!PAGE compiler command, 9-2
$PAGE edit characters, 8-36
PAGE FORWARD command, 11-69
PAGE JUMP command, 11-70
page number variable, 3-2
PAGE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

$PAGE variable, 3-2, 8-35
PAGE variable, 3-2
LET verb, 8-93

PALIGN option, SET verb, 8-218
parent data items, 3-10
parenthesis edit character, 8-37, 8-67
PARM= RUN command option, 9-10
Pascal
calling Transact/iX subprograms, D-1
code, D-4
commands, D-5

passing control
to intrinsics or SL routines, 8-158
to other programs, 8-2

PASSWORD option, LIST verb, 8-117
passwords
commands and subcommands, 5-5

PATH modi�er
DATA verb, 8-16
PROMPT verb, 8-174

PATH option, LIST verb, 8-118
PATH verb, 8-152, A-17
executing for a KSAM �le, A-17
executing for a TurboIMAGE data set, A-17

p-code, 9-7
as input for Transact/iX, 9-16

PDEPTH option, SET verb, 8-218
PERFORM option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-148
REPLACE verb, 8-195

PERFORM verb, 8-157
period edit character, 8-37, 8-66
PLINE variable, 3-2
LET verb, 8-93

POSITION function, LET verb, 8-100

Index-8 October 1996

POSITION parameter, PROC verb, 8-161
precedence, rules of, 8-94
PRIMARY modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

PRINT command, 11-71
PRINT command quali�er, 5-6
PRINT option
REPEAT verb, 8-187
RESET verb, 8-201
SET verb, 8-218

PRINT variable
IF verb, 8-84
WHILE verb, 8-238

PROCALIGNED 16/32/64 compiler options,
9-17

processing command sequences, 5-4
processor
bypassing prompt, 9-14
input and output destinations, 9-14
redirecting VPLUS form output, 9-15
test mode output, 9-15
TRANDUMP, 9-15
TRANIN, 9-14
TRANLIST, 9-15
TRANOUT, 9-15
TRANSORT, 9-14, 9-21
TRANVPLS, 9-15

processor command quali�ers
FIELD, 5-6
PRINT, 5-6
REPEAT, 5-6
SORT, 5-7
TPRINT, 5-7

processor commands, 5-6
COMMAND, 5-6
EXIT, 5-6
INITIALIZE, 5-6
RESUME, 5-6
TEST, 5-6

processor time optimization, C-33
PROCINTRINSIC compiler option, 9-18
PROCTIME option, LIST verb, 8-117
PROC verb, 8-158
program
compilation, 9-7
optimization, C-33
overlays, 9-5
segmentation, 9-5

prompting for data, 8-12
PROMPT option, SET verb, 8-218
PROMPT verb, 4-7, 8-171

PROPER function, MOVE verb, 8-135
PUT(FORM) verb, executing on a VPLUS form,

A-19
PUT verb, 8-177, A-18
executing for a KSAM or MPE �le, A-18
executing for a TurboIMAGE data set, A-18

PWIDTH option, SET verb, 8-218

R

RCHAIN modi�er
DELETE verb, 8-28
FIND verb, 8-51
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

READ modi�er, FILE verb, 8-48
real arithmetic, 64-bit, 8-109
real numbers, 3-4
RECNO option
DELETE verb, 8-31
FIND verb, 8-55
GET verb, 8-76
OUTPUT verb, 8-148
PUT verb, 8-181
REPLACE verb, 8-195

registers, 4-1
argument register, 4-3
data register, 4-2
example, 4-9
input register, 4-6
in segmented programs, 9-6
key register, 4-3
list register, 4-2
match register, 4-5
setting values to, 8-12
status register, 4-7
update register, 4-6
verb modi�er summary, 4-7
write-only, 4-3

relational operators, 5-8
REPEAT command, 11-73
REPEAT command quali�er, 5-6
REPEAT option, SET verb, 8-218
REPEAT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

REPEAT verb, 8-186
REPLACE verb, 8-190, A-21
executing for a KSAM �le, A-22
executing for an MPE �le, A-23
executing for a TurboIMAGE data set, A-21

Report/V option, CALL verb, 8-6
reserved �le names, 9-6
reserved system variables, 3-2

October 1996 Index-9

reserved words, 2-8
RESET(LANGUAGE) statement, E-1
RESET verb, 8-199
responses, user
!, 8-83, 8-186, 8-237
], 8-218
]], 8-218

RESTART, 8-44
RESUME processor command, 5-6
RETURN verb, 8-157, 8-205
RIGHT option
DATA verb, 8-14
DISPLAY verb, 8-41
FORMAT verb, 8-70
PROMPT verb, 8-172
SET verb, 8-219

rounding, 8-107
ROW option
DISPLAY verb, 8-41
FORMAT verb, 8-70

RSERIAL modi�er
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

RSOM �le, 9-16
rules of precedence, 8-94
RUN command, 9-7, 9-10, 9-13
running Transact, 9-1, 9-13
RUN progname command, 9-30
run-time binding of data items, B-4
run-time environment, TRANDEBUG, 11-12
run-time features
not supported by Transact/iX, B-4
supported by Transact/iX, B-4

run-time stack, C-2
RUN TRAN.PUB.SYS command, 9-23

S

S and SS edit characters, 8-38, 8-68
SCAN option
DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

!SCOPE System Dictionary command, 9-3
!SEGMENT compiler command, 9-2
segmented programs, 9-5
compiler command, 9-2

selection criteria
MATCH prompt, 5-15
match register, 4-5
run time, 5-7

semicolon, with DOEND, 2-5
SEQUENCE modi�er, END verb, 8-44

SERIAL modi�er
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

SESSION option, LIST verb, 8-117
!SET compiler command, 9-2
SET(FORM) verb, executing for a VPLUS form,

A-24
SET(LANGUAGE) statement, E-1
SETLNG parameter, PROC verb, 8-161
SET modi�er
DATA verb, 8-16
PROMPT verb, 8-174

SET parameter, PROC verb, 8-161
setting a breakpoint, 11-21
at a data item, 11-30
at a data item value, 11-30
at a label, 11-53
at a register, 11-28

setting values to registers, 8-12
SET(UPDATE), parent and child values, B-6
SET verb, 8-207, A-24
SHOW option, DATA verb, 8-16
SIGNON option, SYSTEM verb, 8-228
SINGLE option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-149
REPLACE verb, 8-195

SIZE option, CALL verb, 8-4
SIZE parameter, PROC verb, 8-161
SL routines, calling, 8-158
SOPT option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-149
REPLACE verb, 8-195

SORT command, 11-74
SORT command quali�er, 5-7
SORT modi�er, FILE verb, 8-48
SORT option
FIND verb, 8-56
OUTPUT verb, 8-149
RESET verb, 8-201
SET verb, 8-219
SYSTEM verb, 8-228

SORT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

source code formatting, 2-6
source program migration, B-7
SPACE function, MOVE verb, 8-137

Index-10 October 1996

SPACE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

special characters, 5-14
special characters as selection criteria, 5-15
specifying language for the compiler and

processor, E-2
SQRT function, LET verb, 8-101
STACK modi�er
RESET verb, 8-202
SET verb, 8-221

STAT compiler option, 9-10, C-6
statement labels, 2-4
statements, 2-4
compound, 2-5
formatting, 2-6

static calls, 8-2
compiling programs for, 9-19

STATUS option
CALL verb, 8-5
CLOSE verb, 8-11
database and �le operation verbs, 7-6
data entry verbs, 7-5
DATA verb, 8-14
DELETE verb, 8-32
FIND verb, 8-56
GET verb, 8-76, 8-78
INPUT verb, 8-90
LOGTRAN verb, 8-125
OUTPUT verb, 8-149
PATH verb, 8-155
PROMPT verb, 8-172
PUT verb, 8-180
REPLACE verb, 8-195
UPDATE verb, 8-233

STATUS parameter, PROC verb, 8-161
status register, 4-7
testing with IF, 7-3

STATUS variable, 3-2
IF verb, 8-84
LET verb, 8-94
REPEAT verb, 8-187
WHILE verb, 8-238

$STDINX, 9-11
$STDLIST, 9-12
STEP command, 11-77
storage registers, 4-1
streamed batch job, 9-11
STRING function, MOVE verb, 8-138
string functions, MOVE verb, 8-131
$subcommand, 5-4
subcommand labels, 5-4
SUBPROGRAM compiler option, 9-18
SUPPRESS option
RESET verb, 8-201

SET verb, 8-219
SWAP option, CALL verb, 8-5, C-28
synonym, 8-24, 8-27, 8-51, 8-73, 8-145, 8-192
syntax options, de�ned, 8-1
!SYSDIC System Dictionary command, 9-3
System Dictionary, 3-9
System Dictionary commands, 9-3
!DOMAIN, 9-3
!NOSYSDIC, 9-3
!SCOPE, 9-3
!SYSDIC, 9-3
!VERSION, 9-3
!VERSIONSTATUS, 9-3

system error messages, 7-10
system errors, causes of, 7-10
SYSTEM NAME prompt, 9-13
SYSTEM statement, 2-3
access mode, 6-2

system variables, 3-2
SYSTEM verb, 2-3, 8-223
WORKFILE option, 8-229

T

TABLE modi�er, DISPLAY verb, 8-34
TABLE option, SET verb, 8-219
target, 2-5
TDBIGINIT �le, TRANDEBUG, 11-11
T edit character, 8-38, 8-68
TERMID option, LIST verb, 8-117
terminating TRANDEBUG, 11-15
TEST command processor, 5-6
TEST command test facility, 10-1
test modes, 10-4
output, 9-15
under MPE/iX, B-4

$TIME edit characters, 8-38
TIME option, LIST verb, 8-117
time out for terminal input, 8-48
TIMER option, LIST verb, 8-117
$TIME variable, 3-2, 8-35
time variable, 3-2
TITLE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

TLINE variable, 3-2
LET verb, 8-94

$TODAY edit characters, 8-39
$TODAY variable, 3-2, 8-35
TPRINT command, 11-79
TPRINT command quali�er, 5-7
TPRINT option
RESET verb, 8-201
SET verb, 8-219

TRACE command, 11-81
TRAILER option

October 1996 Index-11

DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

TRANCODE, 9-12
TRANDBMODE, 9-21
TRANDEBUG, 9-21, 11-1
accessing MPE/iX command interpreter,

11-14
alternative debug entry points, 11-12
arithmetic traps, 11-13
compatibility, 11-3
compiling with TRANDEBUG, 11-4
continuing program execution, 11-8
Ctrl-Y, 11-8
debugging VPLUS applications, 11-11
deleting a breakpoint, 11-18
disabling, 11-12
displaying contents of input register, 11-40
displaying data items, 11-9
displaying information about a database,

11-36
displaying information about an item, 11-35
displaying information about speci�c

MPE/KSAM �les, 11-39
displaying source code, 11-5
displaying the CALL stack, 11-37
displaying values of items in data register,

11-41
ending a session, 11-5
features and bene�ts, 11-1
listing breakpoints, 11-20
listing data breakpoints, 11-27
logging commands, 11-33
modifying data items, 11-9
redirecting VPLUS input and output, 11-11
repeating last command, 11-16
run-time environment, 11-12
setting a breakpoint, 11-21, 11-30
setting a breakpoint at a label, 11-53
setting a breakpoint at a register, 11-28
source code window, 11-5
starting a session, 11-5
startup �le, 11-11
stepping through program, 11-9
terminating execution, 11-15
tutorial, 11-4

TRANDEBUG commands
: , 11-14
ABORT, 11-15
AUTORPT, 11-16
BREAK DELETE, 11-18
BREAK LIST, 11-20
BREAK SET, 11-21
CONTINUE, 11-24
DATA BREAK DELETE, 11-25

DATA BREAK LIST, 11-27
DATA BREAK REGISTER, 11-28
DATA BREAK SET, 11-30
DATA LOG, 11-33
DEFN, 11-35
DISPLAY BASE, 11-36
DISPLAY CALLS, 11-37
DISPLAY COMAREA, 11-38
DISPLAY FILE, 11-39
DISPLAY INPUT, 11-40
DISPLAY ITEM, 11-41
DISPLAY KEY, 11-43
DISPLAY MATCH, 11-44
DISPLAY PERFORM, 11-45
DISPLAY STATUS, 11-46
DISPLAY STATUSDB, 11-47
DISPLAY STATUSIN, 11-48
DISPLAY UPDATE, 11-49
EDIT, 11-50
HELP, 11-51
LABEL BREAK SET, 11-53
LABEL JUMP, 11-55
LOC, 11-56
LOG, 11-57
MODIFY INPUT, 11-59
MODIFY ITEM, 11-60
MODIFY KEY, 11-61
MODIFY MATCH, 11-62
MODIFY STATUS, 11-64
MODIFY UPDATE, 11-65
NMDEBUG, 11-67
PAGE BACK, 11-68
PAGE FORWARD, 11-69
PAGE JUMP, 11-70
PRINT, 11-71
REPEAT, 11-73
SORT, 11-74
STEP, 11-77
TPRINT, 11-79
TRACE, 11-81
USE, 11-83
VERSION, 11-85
WINDOW LENGTH, 11-86
WINDOW OFF, 11-87
WINDOW ON, 11-88

TRANDEBUG compiler option, 9-18
TRANDUMP, 9-15
TRANIN �le designator, 9-11, 9-14
TRANLIST �le designator, 9-12, 9-15
TRANOUT �le designator, 9-2, 9-12, 9-15
Transact
error handling, 7-1
interpreting programs, 9-13
test facility, 10-1

transaction logging, 8-122

Index-12 October 1996

Transaction Manager (XM), 6-9
Transact/iX
alignment, 9-17
binding data item attributes, B-4
calling subprograms from COBOL, D-1
calling subprograms from Pascal, D-1
compiler options, 9-17
compiling programs, 9-16, 9-22
double bu�ering parameters, 8-165
executing programs, 9-16, 9-22
features, B-2
INITIALIZE command, B-5
migrating to, B-1
null parameters, 8-164
option variable procedures, 8-164
test modes not supported, B-4
TRANCOMP options used, 9-19
unsupported run-time features, B-4

Transact processor
error messages, 7-9
information messages, 7-9

Transact/V
features, B-4
migrating from, B-1

TRANSORT, 9-14, 9-21
TRANTEXT, 9-11
TRANVPLS, 9-15
TRANXL command, 9-25
TRANXLGO command, 9-27
TRANXLLK command, 9-26
TRUNCATE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

truncation, 8-107
TurboIMAGE
dynamic roll-back, 6-9
Transaction Manager, 6-9

TYPE parameter, PROC verb, 8-162

U

UNLOAD option, PROC verb, 8-162
UPDATE(FORM) verb, executing for a VPLUS

form, A-28
UPDATE modi�er
DATA verb, 8-17
FILE verb, 8-48
LIST verb, 8-118
PROMPT verb, 8-175
SET verb, 8-222

UPDATE option
REPLACE verb, 8-196
RESET verb, 8-202

update register, 4-6
parent and child values, B-6

UPDATE verb, 8-230, A-26

executing for a KSAM �le, A-26
executing for an MPE �le, A-27
executing for a TurboIMAGE data set, A-26

uppercase alphanumeric string, 3-4
UPPER function, MOVE verb, 8-140
upshift, 4-6
USE command, 11-83
USER option, LIST verb, 8-117
user responses
!, 5-14, 8-83, 8-186, 8-237
], 5-14, 8-218
]], 5-14, 8-218

V

VALUE function, LET verb, 8-102
VCOM parameter, PROC verb, 8-162
verbs, 2-4
CALL, 8-2
CLOSE, 8-10
DATA, 4-7, 8-12
DEFINE, 8-19
DELETE, 8-27
DISPLAY, 8-34
END, 8-44
EXIT, 8-46
FILE, 8-47
FIND, 8-51
FORMAT, 8-64
GET, 8-72
GO TO, 8-82
IF, 8-83
INPUT, 4-7, 8-90
ITEM, 8-92
LET, 8-93
LEVEL, 8-113
LIST, 4-7, 8-115
LOGTRAN, 8-122
MOVE, 8-128
OUTPUT, 8-144
PATH, 8-152
PERFORM, 8-157
PROC, 8-158
PROMPT, 4-7, 8-171
PUT, 8-177
REPEAT, 8-186
REPLACE, 8-190
RESET, 8-199
RETURN, 8-205
SET, 8-207
SYSTEM, 2-3, 8-223
UPDATE, 8-230
WHILE, 8-237

VERSION command, 11-85
!VERSIONSTATUS System Dictionary

command, 9-3

October 1996 Index-13

!VERSION System Dictionary command, 9-3
VPLS option
RESET verb, 8-202
SET verb, 8-219
SYSTEM verb, 8-228

VPLUS
closing forms �le, 8-10
forms, 5-16
GET(FORM), 5-16, 8-72
local form storage, 5-11
PUT(FORM), 5-16, 8-177
SET(FORM), 8-208
special keys, 5-16
SYSTEM verb, 8-228
TRANVPLS �le, 9-15
UPDATE(FORM), 8-231
VCLOSETERM, 8-220
VOPENTERM, 8-220

VPLUS interface, 5-11

W

WAIT option
PUT verb, 8-182
UPDATE verb, 8-235

warning messages, 7-8
WHILE verb, 8-237
WIDTH option, SET verb, 8-220
WINDOW LENGTH command, 11-86
WINDOW OFF command, 11-87
WINDOW ON command, 11-88

WINDOW option
GET verb, 8-78
PUT verb, 8-183
SET verb, 8-211
UPDATE verb, 8-235

WORKFILE option
FIND verb, 8-57
SYSTEM verb, 8-229

WORK option, SYSTEM verb, 8-229
WRITE modi�er, FILE verb, 8-49
write-only registers, 4-3

X

XERR compiler option, 9-10
XREF compiler option, 9-10

Y

YY and YYYY edit characters, 8-39, 8-69

Z

ZD edit characters, 8-39, 8-68
Z edit character, 8-36, 8-66
ZERO[E]S option
DISPLAY verb, 8-41
FORMAT verb, 8-70
SET verb, 8-220

ZH edit characters, 8-38, 8-67
ZM edit characters, 8-38, 8-39, 8-67, 8-68
zoned decimal, 3-4

ZS edit characters, 8-38, 8-68

Index-14 October 1996

	Top of Document
	About This Manual
	Introducing MPE/iX
	Transact Enhancements
	LIST OF EFFECTIVE PAGES
	Parent Items and Child Items

	Error Handling
	Automatic Error Handling
	Trap Handling

	Transact Verbs
	CALL
	CLOSE
	DATA
	DEFINE
	DELETE
	DISPLAY
	END
	EXIT
	FILE
	FIND
	FORMAT
	GET
	GO TO
	IF
	INPUT
	ITEM
	LET
	LEVEL
	LIST
	LOGTRAN
	MOVE
	OUTPUT
	PATH
	PERFORM
	PROC
	PROMPT
	PUT
	REPEAT
	REPLACE
	RESET
	RETURN
	SET
	SYSTEM
	UPDATE
	WHILE

	Running Transact
	Compiler Commands
	Program Segmentation
	The Transact/V Compiler
	Executing Transact/V Programs
	The Transact/iX Compiler
	Controlling Transact/iX Program Execution
	Compiling and Executing Transact/iX Programs
	RUN TRAN.PUB.SYS
	TRANXL
	TRANXLLK
	TRANXLGO
	LINK
	LINKEDIT
	RUN progname

	Transact Compiler Listings
	DISPLAY ITEM
	Features that Differ Between Transact/V and Transact/iX
	Migration Examples

	Index

