
HP 3000 Computer Systems

HP Transact

Reference Manual

ABCDE

HP Part No. 32247-60003

Printed in U.S.A.

Seventh Edition

E0494

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright c1981, 1982{1985, 1986, 1987, 1988, 1990, 1992, 1994 by Hewlett-Packard
Company

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1981 32247A.00.00

Second Edition December 1982 32247A.00.03

Update #1 June 1983 32247A.01.01

Update #2 February 1985 32247A.02.02

Fourth Edition October 1987 32247A.03.07

Update #1 July 1988 32247A.06.00 & 30138A.00.00

Fifth Edition February 1990 32247A.07.02 & 30138A.02.01

Sixth Edition September 1992 32247A.09.00 & 30138A.04.00

Seventh Edition April 1994 32247A.10.00 & 30138A.05.00

iii

About This Manual

This manual is a reference for programming in the Transact programming language. It
assumes that you have a working knowledge of computer programming and the HP 3000
computer system, including the subsystems TurboIMAGE and VPLUS. The manual contains
the following chapters and appendixes:

Chapter 1, \Introduction to Transact," describes the features and bene�ts of Transact.

Chapter 2, \Program Structure," describes the program structure of Transact.

Chapter 3, \Data Items," discusses data item de�nitions, names, types, sizes, as well as
parent and child items, compound items, array subscripting, and de�ning and handling
arrays.

Chapter 4, \Transact Registers," describes registers, the areas of data storage in Transact,
and how they work.

Chapter 5, \User Interface," describes the three modes of user interface: command
sequence, character mode, and block mode using VPLUS.

Chapter 6, \Accessing Databases and Files," describes how to use databases, KSAM �les,
and MPE �les with Transact.

Chapter 7, \Error Handling," explains the error handling process and the e�ect of the
STATUS option on various verbs.

Chapter 8, \Verbs," provides detailed descriptions of the Transact verbs.

Chapter 9, \Running Transact," tells how to compile and execute Transact programs and
control execution at run time.

Chapter 10, \Transact Test Facility," explains how to use the test facility, which is a major
aid in program testing, integration, and optimization.

Chapter 11, \TRANDEBUG," describes Transact/iX's symbolic debugging facility. It also
provides a tutorial introduction to using the debugger and a dictionary of all TRANDEBUG
commands.

Appendix A, \Flowcharts of File and Database Operations," contains owcharts showing
the �le and database procedures called when Transact verbs perform �le and database
operations.

Appendix B, \Transact/iX Migration Guide," provides guidelines for migrating Transact/V
programs to native mode Transact/iX programs on an MPE/iX system.

Appendix C, \Optimizing Transact Applications," provides guidelines for optimizing the
run-time performance and e�ciency of Transact applications.

Appendix D, \Architected Call Interface," explains how to call existing Transact/iX
subprograms from COBOL or Pascal.

Appendix E, \Native Language Support," describes how Transact provides access to MPE
native language support at compile time and run time.

iv

Introducing MPE/iX

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In Hewlett-Packard documentation and in talking with other HP 3000 users, you will
encounter references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a supersest of
MPE XL. All programs written for MPE XL will run without change under MPE/iX, and you
can continue to use MPE XL system documentation.

Finally, you may encounter references to MPE V, an HP 3000 operating system that is not
based on the PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900)
HP 3000s in what is known as compatibility mode (CM).

v

Transact Enhancements

This edition of the manual includes descriptions of the enhancements that have been made to
Transact. Here is a list of these enhancements and where they are located in the manual.

Enhancement Location

ALIGN Option for LIST Chapter 8

ASCII Function for LET Chapter 8

CALL, STATUS Chapter 8

CHAR Function for MOVE Chapter 8

COL Function for MOVE Chapter 8

Expand Intrinsic Support of DEFINE(INTRINSIC) Chapter 8

LENGTH Function for LET Chapter 8

LOWER Function for MOVE Chapter 8

POSITION Function for LET Chapter 8

PROPER Function for MOVE Chapter 8

PROPER Modi�er for SET and RESET Chapter 8

SPACE Function for MOVE Chapter 8

STRING Function for MOVE Chapter 8

UPPER Function for MOVE Chapter 8

VALUE Function for LET Chapter 8

WORKFILE Option for FIND Chapter 8

CHCK Compiler Option Chapter 9

vi

Where to Find More Information

The following manuals and courses are recommended for additional reference or to practice
using Transact.

Reference Manuals

Title Part Number

MPE/V Commands Reference Manual 30000-90009

MPE/V Intrinsics Reference Manual 30000-90010

SPL/V Reference Manual 30000-90024

KSAM/3000 Reference Manual 30000-90079

TurboIMAGE/V Database Management System Reference Manual 32215-90050

VPLUS/3000 Reference Manual 32209-90001

Dictionary/3000 Reference Manual 32244-90001

HP System Dictionary/V User's Guide 32254-90001

HP System Dictionary/V Utilities Reference Manual 32254-90003

Report/V User's Guide 32245-90001

Inform/V User's Guide 32246-90001

Getting Started with Transact 32247-90007

MPE/iX Commands Reference Manual 32650-90003

MPE/iX Intrinsics Reference Manual 32650-90028

TurboIMAGE/XL Database Management System Reference Manual 30391-90001

HP System Dictionary/XL General Reference Manual 32256-90004

HP System Dictionary/XL Utilities Reference Manual 32256-90003

Self-Paced Courses

Title Part Number

Using Dictionary/V 22843B

Programming in Transact 22842A

vii

Conventions

UPPERCASE Within syntax statements, characters in uppercase must be entered
in exactly the order shown, though you can enter them in either
uppercase or lowercase. For example:

SHOWJOB

Valid entries: showjob ShowJob SHOWJOB

Invalid entries: shojwob ShoJob SHOW_JOB

italics Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual value. In
the following example, you must replace �lename with the name of the
�le you want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be entered
exactly as shown.

{ } Within syntax statements, braces enclose required elements. When
several elements within braces are stacked, you must select one. In the
following example, you must select ON or OFF:

SETMSG

�
ON

OFF

�

[] Within syntax statements, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter
and its delimiter are optional:

PURGE {�lename} [,TEMP]

When several elements with brackets are stacked, you can select any
one of the elements or none. In the following example, you can select
devicename or deviceclass or neither:

SHOWDEV [devicename]

[deviceclass]

viii

Conventions (continued)

[. . .] Within syntax statements, a horizontal ellipsis enclosed in brackets
indicates that you can repeatedly select elements that appear within
the immediately preceding pair of brackets or braces. In the following
example, you can select itemname and its delimiter zero or more
times. Each instance of itemname must be preceded by a comma:

[,itemname][...]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, the comma cannot precede the �rst instance of itemname:

[itemname][,...]

| . . . | Within syntax statements, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element that
appears within the immediately preceding pair of brackets or braces.
However, each element can be selected only one time. In the following
example, you must select ,A or ,B or ,A,B or ,B,A :

�
,A

,B

�
| . . . |

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, you must select A or B or AB or BA. The �rst element cannot
be preceded by a comma:

�
A

B

�
|, . . . |

. . . Within examples, horizontal or vertical ellipses indicate where portions
of the example are omitted.

t Within syntax statements, the space symbol t shows a required blank.
In the following example, you must separate modi�er and variable
with a blank:

SET[(modi�er)]t(variable);

underlining User input is underlined. For example:

PROMPT? response

In a syntax statement, brackets, braces, or ellipses are underlined if
you must enter them. For example:

COMMAND [[ParameterA]] = ParameterB

ix

Conventions (continued)
NNNNNNNNNNNNNNNNNNNNNNN
shading Within an example of interactive dialog,

NNNNNNNNNNNNNNNNNNNN
shaded characters indicate

user input or responses to prompts. In the following example,
NNNNNNNNNNNNNNNNN
OMEGA

is the user's response to the NEW NAME prompt:

NEW NAME?
NNNNNNNNNNNNNNNNN
OMEGA

� � The symbol � � indicates a key on the terminal's keyboard. For
example, �Ctrl� indicates the Control key.

�Ctrl� char �Ctrl� char indicates a control character. For example, �Ctrl� Y means
you have to simultaneously press the Control key and the Y key on the
keyboard.

base pre�xes The pre�xes %, #, and $ specify the numerical base of the value that
follows:

%num speci�es an octal number.

#num speci�es a decimal number.

$num speci�es a hexadecimal number.

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within its
bit �eld, the di�erent data �elds are described in the format bit
(bit:length), where bit is the �rst bit in the �eld and length is the
number of consecutive bits in the �eld. For example, Bits (13:3)

indicates bits 13, 14, and 15:

most significant least significant

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

| 0| | | | | | | | | | | | |13|14|15|

|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

Bit (0:1) Bits(13:3)

x

Contents

1. Introduction to Transact
Transact Features and Bene�ts . 1-2
Consistent Interface to HP File Structures 1-2
Integration with System Dictionary and Dictionary/V 1-2
Command Structure Reduces Coding Time 1-2
Development of Block-Mode or Character-Mode Applications 1-2
Examples . 1-3
Built-in Debugging Facilities . 1-3
Options for Producing Reports . 1-3
Additional Features . 1-4

2. Program Structure
SYSTEM Statement . 2-3
DEFINE(ITEM) Statement . 2-3
LIST Statement . 2-3
END and EXIT Statements . 2-4
Statements . 2-4
Labels . 2-4
Verbs . 2-4
Modi�ers . 2-4
Target . 2-5
Option-List . 2-5
Compound Statements . 2-5
Statement Formatting . 2-6

Comments . 2-7
Delimiters . 2-7
Reserved Words . 2-8

3. Data Items
Data Item De�nitions . 3-2
Data Item Names . 3-2
Data Item Types . 3-3
Data Item Sizes . 3-3
Data Type Compatibility . 3-8
Data Types and VPLUS . 3-8
Data Types and Databases . 3-9
Data Types and Data Dictionaries 3-9

Parent Items and Child Items . 3-10
Compound Items . 3-11
Array Subscripting . 3-11
De�ning and Handling Arrays . 3-12
Simple Arrays . 3-12

Contents-1

Complex Arrays . 3-14
Child Identi�ed as Simple Items 3-14
Child Items De�ned as Compound Items 3-15

Special Considerations . 3-16
Alias Items . 3-17
Using Dictionary De�nitions with Data Item Relations 3-17

4. Transact Registers
List and Data Registers . 4-2
Managing the List and Data Registers 4-3

Key and Argument Registers . 4-3
Key Register . 4-4
Argument Register . 4-4

Match Register . 4-5
Update Register . 4-6
Input Register . 4-6
Status Register . 4-7
How Registers Work . 4-7
Verbs and Registers . 4-7
Sample of Transact Coding . 4-8

5. User Interface
Command Sequences . 5-2
Processing Command Sequences 5-4
Command and Subcommand Labels 5-4
User-Entered Passwords for Commands and Subcommands 5-5
Built-in Commands . 5-6
Command Quali�ers . 5-6

DATA, INPUT, and PROMPT . 5-8
Responding to a MATCH Prompt 5-8

VPLUS Interface . 5-11
Local Form Storage . 5-11
Look-Ahead Loading . 5-12
Automatic Form Loading . 5-12
Local Form Storage Example . 5-13
Special Notes . 5-13

Special Characters and Keys That Control Execution 5-14
Control Y . 5-14
Data Entry Control Characters . 5-14
MATCH Speci�cation Characters 5-15
Field Delimiters . 5-15
Special Keys for Use with VPLUS Forms 5-16

Contents-2

6. Accessing Databases and Files
Using Databases . 6-2
Access Mode . 6-2

Database Close . 6-2
Database and File Locking . 6-3
Locking Options Available with Transact 6-3
Avoiding Deadlocks in Transact Programs 6-4
Understanding the Optimized Locking Scheme 6-5
Using the LOCK Option with the Database Access Verbs 6-7
Using the LOCK Option with the LOGTRAN Statement 6-8

Dynamic Roll-Back . 6-9
Locking . 6-9
Examples of Locking Strategy With LOGTRAN 6-10
Limitations . 6-13
DELETE Verb . 6-13
REPLACE Verb . 6-14

Database Unlocking . 6-14
Using KSAM and MPE Files . 6-15
De�ning a Bu�er Record . 6-15

General Format for Key-Driven Access 6-16
Traversing a KSAM File by Primary Key 6-17
Traversal by Alternate Key . 6-17
General Format for Generic Keys . 6-18
Search with Generic Key . 6-18
Simulating an Approximate Key Search 6-19
Chronological Traversal of a KSAM File 6-20
IPC Files . 6-21

7. Error Handling
Automatic Error Handling . 7-2
Data Entry Errors . 7-2
Database or File Operation Errors 7-2
Arithmetic Calculations . 7-4

Using the STATUS Option . 7-5
Data Entry Errors . 7-5
Database or File Operation Errors 7-6

Compiler Error Messages . 7-8
Transact/V Error Message Formats 7-8
Transact/iX Error Message Formats 7-8
Error-Info . 7-8

Run-time Error Messages . 7-9
Error Message Format . 7-9
Error-Info . 7-9
Program-Name . 7-10

Using EXPLAIN . 7-10
Example . 7-11

Contents-3

8. Transact Verbs
CALL . 8-2
CLOSE . 8-10
DATA . 8-12
DEFINE . 8-19
DELETE . 8-27
DISPLAY . 8-34
END . 8-44
EXIT . 8-46
FILE . 8-47
FIND . 8-51
FORMAT . 8-64
GET . 8-72
GO TO . 8-82
IF . 8-83
INPUT . 8-90
ITEM . 8-92
LET . 8-93
LEVEL . 8-113
LIST . 8-115
LOGTRAN . 8-122
MOVE . 8-128
OUTPUT . 8-144
PATH . 8-152
PERFORM . 8-157
PROC . 8-158
PROMPT . 8-171
PUT . 8-177
REPEAT . 8-186
REPLACE . 8-190
RESET . 8-199
RETURN . 8-205
SET . 8-207
SYSTEM . 8-223
UPDATE . 8-230
WHILE . 8-237

9. Running Transact
Compiler Commands . 9-2
Compiler Output Commands . 9-2
Conditional Compilation Commands 9-2
System Dictionary Compiler Commands 9-3

Program Segmentation . 9-5
Reserved File Names . 9-6
The Transact/V Compiler . 9-7
Bypassing Transact/V Compiler Prompts 9-11
Controlling Input Sources to the Transact/V Compiler 9-11
Controlling Output Destinations from the Transact/V Compiler 9-12

Executing Transact/V Programs . 9-13
Controlling Input Sources to the Transact/V Processor 9-14
Controlling Output Destinations from the Transact/V Processor 9-15

Contents-4

The Transact/iX Compiler . 9-16
Transact/iX Compiler Options . 9-17
TRANCOMP Options Available to the Transact/iX Compiler 9-19
Compiling Programs for Static Calls 9-19
Example of Static Calls with Link-Time Linking 9-20
Example of Static Calls with Load-Time Linking 9-20
Dynamic Calls . 9-21

Controlling Transact/iX Program Execution 9-21
Transact/iX Environment Variables 9-21
TRANDBMODE . 9-21
TRANDEBUG . 9-22

Compiling and Executing Transact/iX Programs 9-22
RUN TRAN.PUB.SYS . 9-23
TRANXL . 9-25
Statement Parts . 9-25

TRANXLLK . 9-26
Statement Parts . 9-26

TRANXLGO . 9-27
Statement Parts . 9-27

LINK . 9-28
LINKEDIT . 9-29
RUN progname . 9-30

Transact Compiler Listings . 9-31
Transact Compiler Listings . 9-32

10. Transact/V Test Facility
Statement Parts . 10-1
TEST Output . 10-2
Examples . 10-7
Test Mode 1 . 10-8
Test Mode 3 . 10-9
Test Mode 4 . 10-10
Direct Test Output to File . 10-11
Test Modes 22 through 25 . 10-12
Test Mode 25 . 10-13
Test Mode 34 . 10-15
Test Mode 42 . 10-18
Test Modes 101 and 102 . 10-20

11. Transact/iX Symbolic Debugger: TRANDEBUG
Overview . 11-1
Features and Bene�ts . 11-1
Symbolic Debugger . 11-1
Breakpoints . 11-1
Transact Display Functions . 11-2
Transact Modify Functions . 11-2
Program Execution Control . 11-2
MPE/iX Subsystem Support . 11-2
Source Code Window . 11-2
TRANDEBUG Log and Command Files 11-3
Arithmetic Trapping . 11-3

Contents-5

Control Y Trapping . 11-3
Online Help . 11-3
Compatibility . 11-3

Using TRANDEBUG . 11-4
Compiling with the TRANDEBUG Option 11-4
Starting and Ending TRANDEBUG Sessions 11-5
Displaying Source Code in TRANDEBUG 11-5
Setting a Breakpoint . 11-6
Continuing Program Execution . 11-8
Displaying the Values of Data Items 11-9
Modifying the Values of Data Items 11-9
Stepping Through a Program . 11-9

TRANDEBUG Startup Initialization File 11-11
Redirecting VPLUS Input and Output 11-11
Disabling the Debugger . 11-12
Alternative Debug Entry Points . 11-12
TRANDEBUG Run-Time Environment 11-12
Arithmetic Traps . 11-13
TRANDEBUG Commands . 11-13
: . 11-14
ABORT . 11-15
AUTORPT . 11-16
BREAK DELETE . 11-18
BREAK LIST . 11-20
BREAK SET . 11-21
CONTINUE . 11-24
DATA BREAK DELETE . 11-25
DATA BREAK LIST . 11-27
DATA BREAK REGISTER . 11-28
DATA BREAK SET . 11-30
DATA LOG . 11-33
DEFN . 11-35
DISPLAY BASE . 11-36
DISPLAY CALLS . 11-37
DISPLAY COMAREA . 11-38
DISPLAY FILE . 11-39
DISPLAY INPUT . 11-40
DISPLAY ITEM . 11-41
DISPLAY KEY . 11-43
DISPLAY MATCH . 11-44
DISPLAY PERFORMS . 11-45
DISPLAY STATUS . 11-46
DISPLAY STATUSDB . 11-47
DISPLAY STATUSIN . 11-48
DISPLAY UPDATE . 11-49
EDIT . 11-50
HELP . 11-51
LABEL BREAK SET . 11-53
LABEL JUMP . 11-55
LOC . 11-56
LOG . 11-57

Contents-6

MODIFY INPUT . 11-59
MODIFY ITEM . 11-60
MODIFY KEY . 11-61
MODIFY MATCH . 11-62
MODIFY STATUS . 11-64
MODIFY UPDATE . 11-65
NMDEBUG . 11-67
PAGE BACK . 11-68
PAGE FORWARD . 11-69
PAGE JUMP . 11-70
PRINT . 11-71
REPEAT . 11-73
SORT . 11-75
STEP . 11-77
TPRINT . 11-79
TRACE . 11-81
USE . 11-83
VERSION . 11-85
WINDOW LENGTH . 11-86
WINDOW OFF . 11-87
WINDOW ON . 11-88

A. Flowcharts of File and Database Operations
DELETE Charts . A-2
FIND Charts . A-4
GET Charts . A-9
OUTPUT Charts . A-14
PATH Charts . A-17
PUT Charts . A-18
REPLACE Charts . A-21
SET Charts . A-24
UPDATE Charts . A-26

B. Native Mode Transact/iX Migration Guide
Exclusive Transact/iX Features . B-2
Additional Compiler Options . B-2
Options on the PROC Verb: Parameters Passed by Byte Address B-2
Floating Point Formats . B-2
Dynamic Roll-Back . B-3
Critical Item Update . B-3
Symbolic Debugger . B-3

Exclusive Transact/V Features . B-4
MPE V-Related Compiler Options B-4
Run-Time Item Attribute Resolution (Binding) B-4
Test Modes . B-4
INITIALIZE . B-5
Calls to Transact/V Subprograms B-5
UNLOAD and NOLOAD Options in the PROC Verb B-5
TRANIN . B-5

Features that Di�er Between Transact/V and Transact/iX B-6
Multiple Systems in One File . B-6

Contents-7

Parameters Passed by Value or by Reference in the PROC Verb B-6
Parent and Child Values in SET(UPDATE) B-6
ALIGN Option of LIST and PROMPT Verbs. B-6
Fill Characters Used for Data Type 9 with the MOVE Verb B-6

Source Program Migration . B-7
Conversion . B-7

Data File Migration . B-8
File Format Conversion . B-8

Migration Examples . B-9
Data File Real Number Conversion B-9
Procedures with Null 32 Bit Parameters B-9

Migration Checklist . B-11

C. Optimizing Transact Applications
Run-Time Stack . C-2
Compiler Statistics . C-6
Single-Segment Programs . C-10
Multiple-Segment Programs . C-14
Programs Using CALLs Without the SWAP Option C-20
Programs Using CALLs with the SWAP Option C-28
Stack Usage Comparison . C-32

Processing Time Optimization . C-33

D. Architected Call Interface (ACI)
Introduction . D-1
Syntax . D-1
Parameters . D-1
Data Area Allocation . D-3
Database and File Handling . D-3
VPLUS Forms . D-3
Trap Handling . D-3
Examples . D-4
Pascal Code . D-4
Pascal Commands . D-5
COBOL Code . D-6
COBOL Commands . D-7
Pascal Code With Status . D-7

E. Native Language Support
The SET(LANGUAGE) Statement E-1
The RESET(LANGUAGE) Statement E-1
Specifying the Language for the Compiler and Processor E-2
Called Programs . E-2
Numeric Input . E-2
Numeric Output . E-2
Date and Time . E-3
IF and MATCH Changes . E-3
Upshifting and Character Types E-3
Intrinsics That Support Native Languages E-3
Examples: . E-3

Contents-8

Index

Contents-9

Figures

2-1. Sample Transact Program . 2-2
5-1. Program Using Command Sequences 5-3
8-1. Complex Array of Sales Figures. 8-106
9-1. Compiling and Executing a Transact Program under MPE V 9-7
11-1. The TRANDEBUG Screen . 11-5
11-2. TRANDEBUG Source Code Window 11-6
11-3. Sample Transact Program . 11-7
C-1. Data Stack Layout for a Single-Segment Transact Program C-3
C-2. Transact Compiler Statistics . C-8
C-3. Compiler Statistics Fields and Data Stack Components C-9
C-4. Compiler Statistics for a Single-Segment Program C-11
C-5. Data Stack of a Single-Segment Program C-12
C-6. Table Register Entities of a Single-Segment Program C-13
C-7. Compiler Statistics for a Multiple-Segment Program (1 of 3) C-15
C-8. Data Stack of a Multiple-Segment Program C-18
C-9. Table Register Entities of a Multiple-Segment Program C-19
C-10. Compiler Statistics for Program Using CALLs Without the SWAP Option (1

of 5) . C-21
C-11. Data Stack of Program Using CALLs Without the SWAP Option C-26
C-12. Table Register Entities of Main Program Using CALLs Without the SWAP

Option . C-27
C-13. Data Stack of Program Using CALLs With the SWAP Option (CALLed

Program is on the Stack) . C-29
C-14. Table Register Subsets for Main Program After CALLing Subprogram . . . C-30
C-15. Table Register Entities of Subprogram 4 C-31

Tables

2-1. Transact Delimiters and Their Functions 2-7
3-1. Transact Data Item Types . 3-3
3-2. Data Item Size . 3-4
3-3. Compatibility of VPLUS and Transact Data Types 3-8
4-1. Registers A�ected by Modi�ers on Speci�c Verbs 4-8
7-1. Circumstances that Determine Whether ERROR= Branch Is Taken during

Database and File Operations 7-4
7-2. Contents of Status Register After Data Entry Verbs 7-5
7-3. STATUS Option with Database and File Operation Verbs 7-6
7-4. Contents of Status Register Following Operations of Data Management Verbs

when STATUS Option Is NOT USED 7-7

Contents-10

C-1. Example of Data Stack Requirements C-32

Contents-11

1

Introduction to Transact

Transact is a high-level programming language used to develop transaction processing
applications. Designed as a procedural language, Transact combines the functionality of a
third generation language, such as COBOL or Pascal, with a comprehensive set of powerful,
high-level constructs that can perform several functions within a single statement.

Applications written in Transact require far fewer lines of code than those written in
traditional third generation languages. They are not only easier to write they are also easier
to understand and maintain. The result is signi�cantly lower development and maintenance
costs.

Transact/V is a compiler and intermediate code interpreter that runs on MPE V-based
HP 3000 systems. Transact/iX runs on MPE/iX systems. Included in Transact/iX are the
Transact/iX compiler that generates native mode object code as well as the Transact/V
compiler and interpreter.

Programmers can quickly port their applications written in Transact/V to MPE/iX
systems. Transact/V applications can be run on MPE/iX systems in compatibility mode.
Improved performance can be achieved by compiling your application in native mode. Unlike
Transact/V interpreted statements, native mode compiled Transact programs provide the user
with a performance level comparable to that of traditional third generation languages such as
COBOL and Pascal.

Introduction to Transact 1-1

Transact Features and Benefits

Consistent Interface to HP File Structures

A major strength of Transact is its integration with �le management facilities. Access to
TurboIMAGE databases, MPE �les, KSAM �les, and FORMSPEC forms �les support the
creation of a wide variety of transaction-oriented applications. The language syntax provides a
single interface for easy retrieval and update of all these �les.

Integration with System Dictionary and Dictionary/V

Data de�nitions and structures can be maintained in either System Dictionary or
Dictionary/V. Transact automatically resolves data and �le de�nitions during compile
through either of the dictionaries; Transact/V will dynamically resolve data de�nitions in
Dictionary/V.

Using a dictionary eliminates the need for data de�nitions within the program and provides
consistent data de�nitions across Transact applications. Dictionary entries can also be used
to set default prompt text for data elements, de�ne edit masks, and de�ne heading labels to
identify data when it is displayed.

Command Structure Reduces Coding Time

The command structure built into Transact relieves you from much of the coding usually
required to design menu-driven applications. You assign a label to a block of Transact
statements that accomplish a given task. The label is then identi�ed to the end user as a
command name.

Several command modi�ers can be used at execution time to enhance or modify the program
procedures that you set up. For example, you can direct a display to the printer, rather than
to the terminal. You can also request that information be sorted before it is displayed, or you
can request that a command be repeated.

Development of Block-Mode or Character-Mode Applications

The Transact integration with the VPLUS interface facilitates the use of block-mode
applications. The interface dramatically reduces the amount of work necessary to
communicate with VPLUS. A single statement handles the complete VPLUS interface, from
opening the terminal and forms �le through edit checking and data conversion. There is no
need to specify any low level intrinsics. Transact also contains statements that accept data
from a character-mode terminal with equal ease.

The following two sample Transact programs demonstrates the few lines of Transact code
necessary to retrieve data from a user and update a database.

1-2 Introduction to Transact

Examples

The �rst example shows the VPLUS form, PRODUCT-INFO, then waits for the user to enter
data in the �elds and press ENTER. The PRODUCT-INFO data set is then updated with the
data entered on the screen.

SYSTEM ENTRY, BASE=PRODCT, VPLS=PRODFORM;

LIST(AUTO) PRODUCT-INFO;

GET(FORM) PRODUCT-SCREEN;

PUT PRODUCT-INFO;

END;

The second example requests input from the user one �eld at a time: PROD-NUM,
PROD-NAME, and PROD-PRICE. The values entered for each of these prompts are then
written to the PRODUCT-INFO data set.

SYSTEM ENTRY2, BASE=PRODCT;

LIST(AUTO) PRODUCT-INFO;

PROMPT PROD-NUM:

PROD-NAME:

PROD-PRICE;

PUT PRODUCT-INFO;

END;

Built-in Debugging Facilities

An extensive, built-in test facility aids the programmer in debugging Transact/V programs.
The programmer can choose from a number of options that display di�erent information
as the program executes. TRANDEBUG is available in Transact/iX. TRANDEBUG is a
full-featured symbolic debugger which provides access to program data and source code as it
executes. This debugger allows for the display and modi�cation of data, as well as complete
breakpoint manipulation.

Options for Producing Reports

Transact provides two methods for generating reports. Transact can call prede�ned Business
Report Writer (BRW), Inform/V, and Report/V procedures, or it can de�ne reports within
the Transact source code.

When de�ning reports within the source code, the heading and edit masks can be retrieved
from either Dictionary/V or System Dictionary. Using a dictionary to de�ne the report
reduces the amount of work that you need to do. However, Transact provides the exibility to
de�ne the layout of the report within the source code.

Introduction to Transact 1-3

Additional Features

Transact has other features as well:

Automatic �le and data entry locking.

Automatic and programmatic error handling and recovery. These techniques simplify
Transact programming and help to ensure e�ective processing. When the processor
discovers an error, it automatically returns control to the program instruction where the
error most probably occurred, thus saving you from having to code error routines. You can,
however, override this automatic error handling.

Support for Dynamic Roll-back with TurboIMAGE/XL.

Ability to call procedures written in Transact and other languages such as COBOL,
FORTRAN, Pascal, and SPL as well as other Transact programs.

Transact programs can be called from COBOL and Pascal programs.

Ability to call system intrinsics.

Native language support.

The Transact/iX run-time library is included with every release of the MPE/iX operating
system, allowing native mode Transact programs to be run on any MPE/iX system.

1-4 Introduction to Transact

2

Program Structure

To program in the Transact language you must understand the Transact program structure,
which includes the following basic elements:

SYSTEM statement

DEFINE(ITEM) statement

LIST statement

END and EXIT statements

Statements

Comments

Delimiters

Reserved words

This chapter discusses each of these elements. Figure 2-1 shows a sample Transact program
with comments identifying the components of the program structure.

Program Structure 2-1

SYSTEM ORDINF, KSAM=ORDER(READ(OLD,ASCII)), <<SYSTEM Statement>>

SIGNON="Customer Order Information";

DEFINE(ITEM) CUST-NAME X(20): <<DEFINE(ITEM) Statement>>

ORDER-DATE X(8):

ORDER-NUMBER X(10):

AMOUNT-DUE I(5,,2);

LIST CUST-NAME: <<LIST Statement>>

ORDER-DATE:

ORDER-NUMBER:

AMOUNT-DUE;

<< Request the user enter the customer name >> <<Comment>>

<< for the order information needed. The >>

<< information is printed from each record >>

<< that matches the name entered by the user.>>

REPEAT <<verb>>

DO

<<verb modifier>>

#
DATA(MATCH) CUST-NAME ("ENTER CUSTOMER NAME ");

FIND(SERIAL) ORDER, LIST=(CUST-NAME:AMOUNT-DUE), PERFORM=PRINT-IT;

RESET(OPTION) MATCH LIST(CUST-NAME);

INPUT "MORE NAMES? (Y OR N)";

DOEND

UNTIL INPUT = "N";

EXIT; <<EXIT statement>>

PRINT-IT:

DISPLAY CUST-NAME: <<delimiters>>

ORDER-NUMBER: #
ORDER-DATE, EDIT="^^/^^/^^":

AMOUNT-DUE, EDIT="$$$$$!^^";

RETURN; <<end of PERFORM>>

END ORDINF; <<END statement>>

Figure 2-1. Sample Transact Program

2-2 Program Structure

SYSTEM Statement

The SYSTEM statement names the Transact program and any databases, MPE and KSAM
�les, and VPLUS forms that are used by the program. It can also override default space
allocations. The SYSTEM statement must be the �rst executable statement in any Transact
program, but it can be preceded by comments. The example in Figure 2-1 shows a SYSTEM
statement that names the program ORDINF, speci�es the name and access mode for the
ORDER KSAM �le, and even speci�es a message to identify the program when it is run. See
Chapter 8 for a detailed description of the SYSTEM statement.

DEFINE(ITEM) Statement

DEFINE(ITEM) statements are used to de�ne data items that are not de�ned in a data
dictionary, or to rede�ne data items that are de�ned in a data dictionary. If you use a data
dictionary, data items not de�ned in the data dictionary may include temporary variables or
any data items that you must explicitly rede�ne for your program. If you are not using a data
dictionary, then you must explicitly de�ne every data item in your program in one or more
DEFINE(ITEM) statements.

The DEFINE(ITEM) statement in Figure 2-1 de�nes the �elds in the ORDER KSAM �le
used in the ORDINF program.

Although DEFINE(ITEM) statements may appear anywhere in a program, it is a good
practice to place any needed statements immediately after the SYSTEM statement.
DEFINE(ITEM) statements that follow the SYSTEM statement de�ne data globally to
the Transact program. To de�ne data that is local to a program segment, include the
DEFINE(ITEM) statements in that segment. Program segmentation is discussed in Chapter
9. See Chapter 8 for detailed speci�cations for DEFINE(ITEM) statements.

LIST Statement

The list register is an integral part of any Transact program. It is manipulated by the
LIST verb and functions as a map for the data storage used by the Transact application.
A complete discussion of the list register can be found under \List and Data Registers" in
Chapter 4.

In Figure 2-1, the items used in the program are placed in the LIST register by the LIST
statement. See Chapter 8 for detailed speci�cations for LIST statements.

Program Structure 2-3

END and EXIT Statements

The END and EXIT statements are used to transfer control in a Transact program or to
terminate the program. The END statement returns control to the next higher level. The
EXIT statement terminates the Transact program. Both of these statements are used in
Figure 2-1. For further discussion of the END and EXIT statements, see Chapter 8.

Statements

Statements perform a Transact program's data processing functions. The general format for a
Transact statement is:

[label:] verb[(modi�er)] [target][,option-list];

These statement parts are described below, followed by a discussion of compound statements
and statement formatting. Other statement parts, including relational and arithmetic
operators, are listed with the verbs to which they apply. A statement is always terminated by
a semicolon. (Rules for punctuating statements are discussed in Table 2-1.)

Labels

Statement labels help to control program ow. They identify the point to which a conditional
or unconditional statement should branch. A statement label can be up to 32 characters
long, and it must begin with an alphabetic character. It is followed by a colon and one or
more Transact statements. The program shown in Figure 2-1 illustrates the statement label
PRINT-IT.

Verbs

Transact verbs are the heart of Transact statements. They are the action words for any
procedure. Verbs in Figure 2-1 include LIST, DATA, FIND, REPEAT, DISPLAY, RESET,
INPUT, EXIT, SYSTEM, DEFINE, RETURN, and END. Transact verbs are described in
detail in Chapter 8.

Modifiers

Modi�ers that change or enhance a verb's action are an integral part of the verb. Some
modi�ers specify how values entered by the user are used. Other modi�ers describe a �le
access method. Modi�ers are always enclosed within parentheses and must NOT be separated
from the preceding verb by a space. For example:

FIND(CHAIN) DET; is correct

FIND (CHAIN) DET; is NOT correct

In Figure 2-1, the verb FIND(SERIAL) has a di�erent function with the modi�er SERIAL
than it has as FIND without a modi�er. See Chapter 8 for further information on the
modi�ers for each verb.

2-4 Program Structure

Target

The target identi�es the program variable upon which the verb action is performed. It can
also identify the �le or database for a �le operation. Targets used in Figure 2-1 include the
KSAM �le ORDER and the data item CUST-NAME.

Option-List

A list of one or more options, separated by commas, can be speci�ed with certain verbs to
enhance their action. Some options tell how information should be formatted, while others
suppress regular processor operations. Examples of option-list options in Figure 2-1 are
PERFORM and LIST=(CUST-NAME:AMOUNT-DUE).

The verbs that allow options also have a target; options always follow the verb's target and
are separated from the target by a comma. Some verbs allow you to specify more than one
target/option-list combination by separating them with a colon, as follows:

verb(modi�er)

target1, option-list1:

target2, option-list2:

.

.

targetn, option-listn;

The verbs that allow such multiple target/option lists include DEFINE, DISPLAY, DATA,
LIST, and PROMPT; multiple target/option lists are not allowed with database or �le access
verbs. The DISPLAY statement in Figure 2-1 has multiple target/option lists.

Compound Statements

You can combine several Transact statements to form a compound statement. These can be
either unconditional or conditional. All compound statements are bracketed between a pair
of DO . . . DOEND statements. Compound statements also can be nested. The following
example shows an unconditional compound statement:

DO

PROMPT(MATCH) CUST-NO;

LIST NAME:

ADDRESS:

CITY:

ZIP;

OUTPUT MASTER, LIST=(CUST-NO:ZIP);

DOEND;

Program Structure 2-5

The next example shows a conditional compound statement.

IF (A) = (B) THEN

DO

LET (A) = (A) * (D);

LET (B) = (B) * (X);

DOEND

ELSE

DO

LET (A) = (A) * (C);

LET (B) = (B) * (Z);

DOEND;

The example in Figure 2-1 has a compound statement. Other examples of compound
statements can be found in the IF verb description in Chapter 8 and in the \Compiler
Listings" section in Chapter 9.

In the example immediately above, note that the �rst DOEND does not have the semicolon
(;) delimiter; the delimiter is used to end the entire compound statement. Individual
statements between the DO . . . DOEND pairs are terminated with a semicolon.

DOEND always requires a semicolon except under two circumstances: (1) just before ELSE,
or (2) just before UNTIL in a REPEAT statement.

Statement Formatting

A Transact source program contains program text in 72-column records (not including line
numbers). Program text can be entered in free format, but good programming practice
suggests that you use a paragraph and an indented structure. In general, you can read
and modify code more easily if you break the code into separate lines for labels, verbs, and
options, and use indentation freely. You can break lines of code in any place except in the
middle of a word. Thus, the following two statements would have the same e�ect:

MOVE (A)=(B); and MOVE (A)=

(B);

Note that the second line can start anywhere and no continuation indicator is required.
Words, however, cannot be split, and modi�ers cannot be separated from their verbs. The
following statements are illegal:

MO and FIND

VE (A)=(B); (CHAIN)

(verbs cannot be split) (verb(modi�er) is

considered a single word)

If a string within quotes is split between lines, it must become two quoted strings.

DISPLAY "THIS IS A"
" TEST";

2-6 Program Structure

Comments

Comments document a program but do not a�ect program execution. Comments appear
in the source code listing but do not generate any code. They can appear anywhere in the
statement line and are enclosed between pairs of angled brackets (<< and >>), as follows:

<<comment>>

Figure 2-1 includes several comments. The following example shows how a comment is used in
Transact code.

MOVENAME:

MOVE (OUT-NAME) = (IN-NAME); << Move input field to output field >>

Delimiters

Transact programs can contain �ve explicit delimiters, plus a blank. The Transact delimiters
and their functions are listed in Table 2-1. Figure 2-1 contains examples of how Transact
delimiters are used.

Table 2-1. Transact Delimiters and Their Functions

Delimiter Function

; Semicolon - terminates a statement.

: Colon - separates target/option phrases within statements, or serves as a
terminator for a label, a command label, or a subcommand label. Also speci�es a
range in LIST= options.

, Comma - separates options within a statement.

= Equal sign - when used in an option-list , denotes the value an item should take,
or serves as an assignment operator in MOVE and LET statements. Serves as a
relational operator in condition clauses or speci�es the label to which a program
should branch.

() Parentheses - enclose a modi�er or enclose an item name to reference its value.
Enclose certain PROC statement parameters. Other uses are noted in verb
speci�cations in Chapter 8.

blank Blank space - required as a delimiter between a verb or verb (modi�er) and its
target but must never appear between a verb and its modi�er. Can be used
where blanks are signi�cant place holders such as DISPLAY "A B C",
otherwise, blanks are ignored.

Program Structure 2-7

Reserved Words

The following list of words are used internally by Transact and may cause unexpected results
if used as item names or labels. These words should be avoided when writing Transact
programs.

AVERAGE
COUNT
MAXIMUM
MINIMUM
TOTAL

We do not recommend the use of Transact verbs or options as item names or labels.

2-8 Program Structure

3

Data Items

Data items are a signi�cant part of the Transact Language. It is important to understand the
di�erent data types when you are developing applications in Transact. This chapter describes
the following:

Data item de�nitions

Data item names

Data item types

Data item sizes

Data type compatibility

Parent items and child items

Compound items

Array subscripting

De�ning and handling arrays

Alias items

Using dictionary de�nitions with data item relations

Data Items 3-1

Data Item Definitions

The previous chapter described the use of the DEFINE(ITEM) statement to de�ne items for
use in the program. The DEFINE(ITEM) statement must specify the name and type of the
data.

A data dictionary can also be used to de�ne items. Data items de�ned in a Dictionary/V
data dictionary can be obtained at compile time by both the Transact/V and Transact/Ix
compilers or at execution time by Transact/V. Those de�ned in a System Dictionary data
dictionary can only be obtained at compile time for both Transact/V and Transact/iX.

Besides user-de�ned data item names, Transact also has a number of reserved system
variables. These variables are available to the Transact programmer and are not de�ned in a
DEFINE(ITEM) statement. The reserved system variables are described as follows:

LINE the value of the terminal or printer line counter.

PAGE the output page counter value.

PLINE the value of the printer line counter.

STATUS the current value of the status register.

TLINE the value of the terminal line counter.

$CPU the cumulative number of CPU seconds used by a Transact program.

$DATELINE the current date and time.

$HOME the name of the home or �rst database de�ned in the SYSTEM statement.

$PAGE the current page number.

$TIME the current time.

$TODAY today's date.

Data Item Names

The �rst character of a data item name must be alphanumeric. Subsequent characters can be
either alphabetic (A through Z), numeric (0 through 9), or any ASCII character other than
the following characters: , ; : = < > () " or blank. The name can be from 1 to 16 characters
long. For example, data items in Figure 2-1 include CUST-NAME, ORDER-DATE,
ORDER-NUMBER, and AMOUNT-DUE.

When you are referring to the speci�c value of a data item that is in the data register, you
must enclose the name in parentheses. (Registers are discussed in detail in Chapter 4.) When
you are referring to the name of the data item|its location in the list register|do not enclose
the name in parentheses. Notice the di�erence between

LIST CUST-NO;

which reserves space for CUST-NO in the list register, and

LET (CUST-NO)= 123;

which manipulates the value of CUST-NO.

3-2 Data Items

Data Item Types

Data items de�ned in a DEFINE(ITEM) statement or through Dictionary/V or the System
Dictionary can be one of ten types. Table 3-1 lists the ten types of data items and their
corresponding DEFINE(ITEM) code. You can specify that values must be positive by
following the type with a plus sign(+). Positive-only values never require an extra character to
display the sign.

Table 3-1. Transact Data Item Types

Item Type DEFINE(ITEM) Code

Alphanumeric string X

Uppercase alphanumeric string U

Numeric ASCII string (leading zeroes stripped), positive only 9

Integer number I

Integer number (COBOL comp) J

Zoned decimal (COBOL format) Z

Packed decimal (COBOL comp-3) P

Logical value (absolute binary) K

Real, oating point, commercial notation R

Real, oating point, scienti�c notation E

Data Item Sizes

The size of a data item is speci�ed by indicating the number of characters or digits you want
in each data item. Transact determines how much storage space is required for that number of
characters or digits based on the data item type. You may override the default storage space
either by specifying an exact storage size or the number of decimal digits|the number of
digits you want to the right of the decimal point in a numeric data item. Be sure that space is
allocated for the decimal point when you are computing data item sizes.

When data items are displayed, Transact generally requires the same number of display
characters as the size speci�ed in the DEFINE(ITEM) statement. Numeric data items must
allow an additional character for the sign unless the item is positive only. When determining
the space needed for displaying, add a space for the sign, even if the value to be displayed
happens to be positive.

Data Items 3-3

The following example identi�es each of the values used in an item de�nition:

Table 3-2. Data Item Size

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

X or U ASCII character string;
1 storage byte per speci�ed
character.

Same as storage. DISPLAY PIC X
or
DISPLAY PIC A

9 ASCII numeric string,
positive only; 1 storage byte
per speci�ed digit.

Same as storage. DISPLAY PIC X

I* Binary integer; default
storage length depends on
item size:

1 character per digit or
decimal point, plus one
character for a sign,
unless item is positive
only:

I(1) to I(4) = 2 bytes COMP S9
to S9(4)

I(5) to I(9) = 4 bytes I+(5) = 5 chars
I(5) = 6 chars
I(5,2) = 6 chars

COMP S9(5)
to S9(9)

I(10) to I(18)=8 bytes COMP S9(10)
to S9(18)

I(19) to I(27)=12 bytes (none)

3-4 Data Items

Table 3-2. Data Item Size (continued)

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

J* COBOL binary type; (use
for consistency with
TurboIMAGE type J):

J(1) to J(4) = 2 bytes COMP S9
to S9(4)

J(5) to J(9) = 4 bytes J(5) = 5 chars
J(5) = 6 chars
J(5,2) = 6 chars

COMP S9(5)
to S9(9)

J(10) to J(18) = 8 bytes COMP S9(10)
to S9(18)

J(19) to J(27) = 12 bytes (none)

*For I or J, any 16-bit integers can range between -32768 and 32767|de�ned as I(5,,2) or
J(5,,2). Any 32-bit integers can range between -2147483648 and +2147483647|de�ned
as I(10,,4) or J(10,,4). De�nitions of I or J types with storage lengths other than 2, 4, 8,
or 12 bytes get unde�ned results and can result in arithmetic traps.

Data Items 3-5

Table 3-2. Data Item Size (continued)

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

Z* Zoned decimal number;
1 storage byte per digit,
including sign, if any, which
is combined with the last
digit:

1 character per digit or
decimal point, plus 1
character for a sign,
unless item is positive
only:

Z+(10) = 10 bytes
Z(10) = 10 bytes

Z+(10) = 10 chars
Z(10) = 11 chars

DISPLAY PIC 9
DISPLAY PIC S9

P Packed decimal digit;
1 nibble(1/2 byte) per digit,
plus 1 nibble for the sign:

1 character per digit or
decimal point, plus 1
character for a sign,
unless item is positive
only:

COMP-3
PIC 9

P+(10) = 6 bytes
P(10) = 6 bytes
P(11) = 6 bytes

P+(10) = 10 chars
P(10) = 11 chars
P(10,2) = 11 chars

(Sign is stored even if item
is positive only.

*Zoned decimal data items are stored as a string of ASCII digits. For data items de�ned
as Z, the right-most digit is always overpunched with a sign indicator, a character
that represents both the sign and the right-most digit. The following table shows the
characters representing the overpunch.

Low-Order
Digit

Last Character
if Positive

Last Character
if Negative

0 f g

1 A J

2 B K
...

...
...

9 I R

For data items de�ned as Z+ (implying positive only), no overpunch occurs and the
right-most digit is unchanged. Z+ is stored like type 9.

The maximum size for 9, Z, P, I, J, and K data items is 27 characters unless the decimal point
is included. In that case, the maximum size is 28 characters. The maximum size for R and E
data items is 22 characters.

3-6 Data Items

Table 3-2. Data Item Size (continued)

Transact
Type

Transact Default
Storage Allocation

Transact Display
Requirements

COBOL
Type

K* SPL logical value; storage
length depends on item size:

1 character per digit
(K type items are
always positive):

(none)

K(1) to K(4) = 2 bytes
K(5) to K(9) = 4 bytes
K(10) to K(18) = 8 bytes
K(19) to K(27) = 12 bytes

K(10) = 10 chars
K(10,2) = 10 chars

R SPL Real or Long value:
R(1) to R(6) = 4 bytes
R(7) and above = 8 bytes

1 character per digit,
plus 1 character for a
sign, unless item is
positive only:

(none)

R+(5) = 5 chars
R(5) = 6 chars
R(5,2) = 6 chars
NOTE: Exponent is
not displayed.

E SPL Real or Long value;
stored exactly like R.

Displayed in format:
n.nnE+nn

(none)

Constant values may not be
entered in E format;
constant values entered in
other formats into E-type
items are displayed in
E-type format.

1 character per digit,
plus 1 character each
for the mantissa sign
(unless item is
positive), the decimal
point, the E, and the
exponent sign, plus 2
characters for the
exponent:

(E is not the same as the E
data type in TurboIMAGE.)

E(5) = 11 chars
E+(5) = 10 chars
E(5,2) = 10 chars

*For K, any 16-bit logical value can range between 0 and 65535 de�ned as K(5,,2). Any
32-bit logical value can range between 0 and 4,294,967,295 de�ned as K(10,,4).

Data Items 3-7

Data Type Compatibility

It is important to know exactly how Transact allocates storage for data items used with a
database or VPLUS form. Table 3-2 shows the storage allocated by Transact and the number
of characters required for display, based on the type of data item and its size. It also gives the
corresponding COBOL speci�cation as an aid to understanding the Transact data types.

When Transact programs use VPLUS, databases, and data dictionaries, the data type
compatibilities must be considered carefully. Data type compatibilities between Transact and
these systems are discussed in the following sections.

Data Types and VPLUS

Data items are displayed on and entered from VPLUS forms in the external display format.
Transact automatically converts between the display format and the Transact data type before
a value is displayed and after a value is entered. (See Table 3-2 for the display and storage
requirements.) It is important to remember that VPLUS does not add a character for the
sign to its numeric data types, whereas Transact does. For example, if you want to display a
5-digit numeric data item in a VPLUS form de�ned with a maximum size of 5 characters,
you must de�ne it in Transact as positive only. A VPLUS data item with a size of 5 digits
allows a maximum of 5 characters but a Transact data item de�ned as I(5) requires 6 display
characters.

Table 3-3. Compatibility of VPLUS and Transact Data Types

VPLUS Field of Length n Transact/V Compatible Types

CHAR All types with display length n.

DIG All positive only types of length n
(no decimal points permitted).

NUM(m) and IMP(m),
where m<n

9(n,m)
I(n-1,m)*
J(n-1,m)*
P(n-1,m)*
R(n-1,m)*
Z(n-1,m)*
E(n-1,m)*
X(n-1)

* The VPLUS �eld must be one character larger than the Transact �eld to
allow space for a plus or minus sign.

3-8 Data Items

Data Types and Databases

There are several di�erences between the data types for databases and those for Transact.
The main di�erence is that databases require all data items to be de�ned as whole words on
word (16-bit) boundaries. To maintain consistency, you can de�ne a data item in Transact
with an odd number of bytes, but specify that the data item be stored in whole words. For
example, you can de�ne a data item in Transact as 9(5,0,6) to specify 5 digits, stored as 6
bytes.

This example illustrates the second di�erence between databases and Transact data types.
Databases do not have a numeric ASCII string data type. This di�erence does not cause
problems. Transact automatically converts any numeric ASCII (data type 9) data items to
alphanumerics (data type X) before use. When data is transferred into a Transact type 9 data
item, Transact checks to make sure the data is numeric.

Data Types and Data Dictionaries

You can create a data dictionary in which you de�ne the data items, databases, forms �les,
MPE �les, and KSAM �les to be used in Transact programs. The use of a data dictionary as
a central location for data de�nitions and attributes allows you to change existing de�nitions
and attributes easily and dynamically. The data dictionary does not supply the data itself,
which must come from MPE or KSAM �les, databases, forms �les, or the user.

There is an exact correspondence between the data item de�nitions available with Transact
and either Dictionary/V or System Dictionary. Thus, when a Transact program uses a data
item de�ned in a data dictionary, it is as if it were de�ned in the program's DEFINE(ITEM)
statement. All data item attributes can be resolved from the data dictionary when Transact
compiles the program. If Dictionary/V items are to be resolved at Transact/V run time, all
attributes except for heading or entry text, edit masks, and sub-items, can be resolved.

Transact allows you to use either Dictionary/V or System Dictionary or both in one program.
If you do not specify, Transact assumes Dictionary/V, by default. To use System Dictionary,
you must include special compiler commands in your source �le. These commands are
described in Chapter 10.

When Transact takes data item de�nitions from System Dictionary, only attributes de�ned
at the data item level can be accessed. Any attributes de�ned at the relationship levels are
inaccessible, since Transact commands can include only the item name and provide no way
for transmitting context information. Therefore, if an item is to have di�erent attributes in
di�erent contexts, System Dictionary must contain a separate item name and de�nition for
each di�erent set of attributes. If the data in System Dictionary is structured so as to support
Hewlett-Packard's information management software (such as BRW), it is recommended
that dual dictionaries (or domains) be maintained|one to support Information Management
applications and the other to support Transact applications. In the System Dictionary that
supports Transact applications, data items can then be rede�ned as often as necessary.

When de�ning data items which are extracted from System Dictionary or Dictionary/V for
use in a Transact application, you should note that Transact only supports data item names
that are up to 16-characters long.

If a data dictionary is being used, the Transact compiler looks for any unde�ned data items
in the appropriate data dictionary. If it cannot �nd the data items in the data dictionary, it
issues a warning message.

Data Items 3-9

When the Transact/V processor interprets the p-code, it, too, looks in the Dictionary/V
data dictionary for unde�ned data items, including those which could not be resolved
from a System Dictionary data dictionary. These data items can be those not satis�ed
during compilation or data items de�ned to be satis�ed at run time by a DEFINE(ITEM)
item-name * statement. If the processor cannot �nd the data items in the data dictionary, it
issues an error message and terminates processing.

Transact/iX programs do not look in the Dictionary/V data dictionary at run time. Any
items that are not resolved at compile time for Transact/iX will generate a run-time error
when they are used.

At compile time, all data item attributes can be resolved from their data dictionary
de�nitions. At run time, the Transact/V processor can only resolve such basic data item
attributes as type, size, decimal length, and storage length. However, it does not get such
secondary attributes as heading or entry text and edit masks.

Transact can resolve VPLUS forms �le and form de�nitions and data set and �le layout
de�nitions only at compile time.

Parent Items and Child Items

A single data item can contain other data items, called child items. A data item containing
child items is called a parent item. For example, a data item containing a date can be
composed of three child items: month, day, and year, in any order you choose. A child item
itself can be a parent item, and it can contain child items. In this case, it would be both a
child item and a parent item.

You de�ne the relationship of a child to its parent by including, in the child item's de�nition,
the parent item's name and the position of the child item within the parent item. Child items
need not be of the same type as parent items. A parent item need not be completely rede�ned
by its child items. For example, a parent item that is 10 characters long may have a single
child item that is 4 characters long starting in the second character position of the parent
item. Refer to the DEFINE(ITEM) description in Chapter 8 for details about de�ning parent
and child items.

Only the parent item name can be added to the list register; the child item names cannot.
Child item names may, however, be used in a PROMPT or DATA statement to prompt the
user for these values. Child items may also be speci�ed in the LIST= options of statements
that access VPLUS forms. Transact understands that these data item names are part of the
parent item, and transfers the data accordingly. Transact makes the connection between
parent and child items through the DEFINE(ITEM) or a data dictionary de�nition of their
relation. This parent/child relationship can be resolved from a data dictionary only at compile
time, not at run time. The child items can be the elements of an array, which is the parent
item.

3-10 Data Items

Compound Items

Compound items are data items that are divided into smaller entities that repeat more
than once. They all have the same attributes (size, type, and number of decimal places).
Compound items can be thought of as arrays. They, too, are de�ned in the DEFINE(ITEM)
statement, if they are not already de�ned in the data dictionary. A speci�c occurrence of a
compound item is referenced by an o�set into the compound item, not by a data item name.
Only the compound item name can be added to the list register or referenced in a LIST=
option.

Array Subscripting

Occurrences of compound items and child items of compound items can be manipulated using
subscripting. Array subscripting is allowed within the context of most verbs except when the
Transact registers are being manipulated or updated. The only other case where subscripting
is not allowed is with data items included in the LIST= option for any of the input/output
verbs (such as DELETE, FILE, FIND, GET, PUT, REPLACE, and UPDATE). The error
message, \Subscript not permitted in this context," is displayed when such an attempt
is made. The discussions of verbs in Chapter 8 specify exactly when array subscripting is
allowed.

In contexts where subscripting is allowed, the following format is used:

(array-item[(subscript1[,subscript2 ...[,subscriptn]])])...

Parameters

array-item The array item must be either a compound item or a child item of a
compound item. This parameter is required.

(subscript) A subscript can consist of a data item, constant , or an arithmetic expression .
Subscripting is most e�cient if the subscript is either a constant, a 16-bit
integer item, or a simple expression (less than three operands) consisting of
16-bit integers, constants, or both. When a data item is used as a subscript,
it must be enclosed in parentheses within the subscript parentheses. This
parameter is optional. If no subscript is speci�ed, the array item is treated as
a single or compound data item.

The �rst subscript applies to the highest level of the compound item of which
the array item is the child. Each succeeding subscript refers to the next level
in the array. Once the �rst subscript value is speci�ed, any omitted values
will default automatically to 1. Since each level adds to the complexity of
the program, we recommend that the number of subscripts be kept at a
manageable level. The maximum number of allowable subscripts is 16.

Data Items 3-11

The subscript value is evaluated at run time to determine which occurrence of
the array item is to be referenced. A subscript value of 1 references the �rst
occurrence of the array; subscript values less than 1 or greater than 32,767 are
invalid.

Defining and Handling Arrays

Simple Arrays

The compound item is the simplest form of a Transact array. For example:

DEFINE(ITEM) INVOICE-NO 100 X(10);

De�nes 100 occurrences of an X(10) type item called INVOICE-NO. Graphically, this array
can be portrayed as follows:

-------------------------Occurrences of INVOICE-NO------------------------

> < 54 > < 55 > < 56 > < 57 > < 58 > < 59 > <

----|----------|----------|----------|----------|----------|----------|---

789N|ABC123456D|STX432849D|URE849328D|NVM215425N|WAS950789N|YUR956789N|BB

A
----|----------|----------|----------|----------|----------|----------|---

The value in INVOICE-NO(56) is URE849328D, the value in INVOICE-NO(59) is
YUR956789N, etc.

This array can be manipulated in the following manner:

MOVE(INVOICE-NO(4)) = (INVOICE-NO(80));

Assigns the eightieth occurrence of the array to the fourth occurrence of the array.

DISPLAY INVOICE-NO((INDEX));

Displays the occurrence of the array equal to the current value of the data item INDEX.

DISPLAY INVOICE-NO;

Displays the entire compound item. Transact treats references to unsubscripted arrays as
ordinary compound items. There is one exception to this rule. When the IF statement is used
with non-subscripted compound items, only the �rst element of the compound item is used for
the comparison.

The following example shows how the IF statement only compares the �rst element in an
array:

3-12 Data Items

SYSTEM T320;

DEFINE(ITEM) INVOICE-NO-A 100 X(10):
INVOICE-NO-B 100 X(10);

LIST INVOICE-NO-A:

INVOICE-NO-B;

MOVE (INVOICE-NO-A(1)) = "G200500001";

MOVE (INVOICE-NO-A(2)) = "9999999999";

MOVE (INVOICE-NO-B(1)) = "G200500001";

DISPLAY INVOICE-NO-A;

DISPLAY INVOICE-NO-B;

IF (INVOICE-NO-A) = (INVOICE-NO-B) THEN

DISPLAY "THE FIRST ELEMENTS ARE EQUAL"

ELSE

DISPLAY "THE FIRST ELEMENTS ARE NOT EQUAL";

MOVE (INVOICE-NO-B) = (INVOICE-NO-A);

DISPLAY INVOICE-N0-B;

EXIT;

The following output is generated by the above example program:

INVOICE-NO-A:

G200500001 9999999999

INVOICE-NO-B:

G200500001

THE FIRST ELEMENTS ARE EQUAL

INVOICE-NO-B

G200500001 9999999999

The example above shows the di�erence between the IF and MOVE statements with
non-subscripted compound items. The IF statement results in the invoice data items being
equal since Transact only compares the value of the �rst element of the array when this
statement is used.

Data Items 3-13

The last MOVE statement results in all elements of INVOICE-NO-A being copied to the
corresponding elements of INVOICE-N0-B.

Transact does not allow you to manipulate arrays with an occurrence count of 1. The
following example causes a run-time error message, \Cannot subscript a non-array item,"
to appear.

Move (one(1)) = "A";

An array with an occurrence count of 1 is considered a non-array item by Transact and
therefore cannot be used.

Complex Arrays

Complex arrays have one or more child items associated with each occurrence of the
compound parent item.

The child items may be de�ned as simple items or compound items. The child items can be
parent items with child items de�ned as well. Each child item de�nition that is a compound
item adds a level to the array de�nition. Each level is a rede�nition of its parent, thus
providing more detailed de�nition of the array.

Child Identified as Simple Items

The following is an example of a complex array de�nition whose array child items are de�ned
as simple items.

DEFINE(ITEM) INVOICE-NO 100 X(10):

INVOICE-PFX X(3) = INVOICE-NO(1):

INVOICE-SFX 9(6) = INVOICE-NO(4);

De�nes 100 occurrences of an X(10) type item called INVOICE-NO. In addition, it de�nes two
child items, INVOICE-PFX and INVOICE-SFX, for each element of the INVOICE-NO array.

Each of the child items can be subscripted even though they are not themselves compound
items. When subscripted, the value of the subscript applies to the compound parent item of
the child item referenced. This structure is very similar to a Pascal array of records structure.

Graphically, this structure can be portrayed in the following manner:

-----------------------Occurrences of INVOICE-NO -------------------------

> < 54 > < 55 > < 56 > < 57 > < 58 > < 59 > <

----|----------|----------|---------|----------|----------|----------|---

789N|ABC123456D|STX432849D|URE849328|NVM215425N|WAS950789N|YUR956789N|BBA

----|----------|----------|---------|----------|----------|----------|---

The value in INVOICE-NO(55) is STX432849D and the values in INVOICE-PFX(55) and
INVOICE-SFX(55) are STX and 432849, respectively.

For subscripting to work correctly, the total storage length of all child items de�ned in such a
structure must be less than or equal to the storage length for each occurrence of the parent.
Child elements must not span across occurrences of the parent. The following structures, for
example, would be incorrect:

3-14 Data Items

DEFINE(ITEM) INVOICE-NO 1000 X(1):

INVOICE-PFX X(3) = INVOICE-NO(1):

INVOICE-SFX 9(7) = INVOICE-NO(4);

This structure de�nes 1000 occurrences of an X(1) type item called INVOICE-NO. The child
items, totaling 10 bytes in storage length, cannot �t within a parent that is only 1 byte long.

DEFINE(ITEM) INVOICE-NO 100 X(10):

INVOICE-PFX X(4) = INVOICE-NO(1):

INVOICE-SFX 9(7) = INVOICE-NO(5);

This structure is incorrect because the child items total 11 bytes and thus cannot be de�ned
within a parent item that is 10 bytes long. However, this structure

DEFINE(ITEM) INVOICE-NO 100 X(10):

INVOICE-PFX X(4) = INVOICE-NO(1):

INVOICE-SFX 9(7) = INVOICE-NO(4);

is correct because, although the total storage lengths of child items is greater than the storage
length of the parent, the last byte of INVOICE-PFX and the �rst byte of INVOICE-SFX
overlap, thereby requiring only 10 bytes of total storage length.

Child Items Defined as Compound Items

The following example illustrates an array de�nition whose child items are de�ned as
compound items. For simplicity, this example assumes that all months are 28 days long. The
item YEAR will hold one character for each day of the year. YEAR is not de�ned as an array.
However, the de�nition of its child items MONTH, WEEK, and DAY rede�ne it into arrays
for easier data manipulation. Each of the child items are compound items; MONTH and
WEEK are also parent items. This de�nition contains three levels.

DEFINE(ITEM) YEAR X(336):

MONTH 12 X(28) = YEAR(1):

WEEK 4 X(7) = MONTH(1):

DAY 7 X(1) = WEEK(1);

The following example displays a speci�c day of the year:

DISPLAY DAY(2,1,5);

This verb statement displays the �fth day of the �rst week in the second month. Since
YEAR is not a compound item, the �rst subscript (2) refers to the highest level compound
item, MONTH. The next subscript (1) refers to the WEEK which is the next highest level
compound item. Finally, the last subscript (5), refers to the �fth occurrence of the compound
item, DAY.

The next example shows what happens when succeeding subscripts are omitted:

DISPLAY DAY(2);

Since the omitted subscripts default to 1, this is equivalent to (2,1,1) that displays the �rst
day of the �rst week in the second month.

When the number of subscripts exceeds the number of dimensions speci�ed by the DEFINE
statement, an error occurs. For example:

DISPLAY DAY(2,1,5,3);

Data Items 3-15

Obviously, there are not enough parent levels to justify four subscripts. This example will
result in an error and the message, "Too many subscripts for item," is displayed.

If the subscripts are larger than the speci�ed range an error occurs. For example:

DISPLAY DAY(999);

This example results in an error and the message, "Array subscript is out of range",

because 999 is beyond the 12 element de�nition.

Under some conditions, you may want to reference globally all of the elements in the array.
For example:

MOVE (YEAR) = " ";

Since there are no subscripts speci�ed, this will set all 336 elements to blanks by moving a
space to the �rst element of the year and �lling the remaining 335 elements with blanks. This
di�ers from the following example:

MOVE (DAY) = "1";

which sets the �rst character of DAY to a 1 as requested, then pads the remaining six
characters with blanks. In the next example, the subscript is speci�ed:

MOVE (DAY(1)) = "X";

which results in the element DAY (1,1,1) being set to an X. Since the length of the source and
destination are the same, no �lling is done.

Note Since Transact originally supported only single-level array subscripting,
the LET OFFSET construct was used to reference arrays with multiple
levels. This is no longer necessary. We strongly recommend that you address
array items by using subscripts. However, there may still be programs that
manipulate arrays in this manner. If this is the case, you should be careful not
to combine the use of the LET OFFSET verb with a subscripted item. Doing
so may cause the program to update the data register in areas outside the
limits of the item referenced and could lead to unpredictable results. Since
this was previously the only way to simulate arrays with multiple levels, no
error message is generated.

Special Considerations

If any level de�nition in an array structure has an occurrence of 1, it is ignored by Transact as
part of the array de�nition. For example,

DEFINE(ITEM) INVOICE-DATA X(1000):

INVOICE-NO 100 X(10) = INVOICE-DATA(1);

is a single level array of 100 invoice numbers. Any subscript applied to INVOICE-NO is
treated as a subscript to the INVOICE-NO array. Likewise,

DEFINE(ITEM) INVOICE-DATA 100 X(10):

INVOICE-NO X(10) = INVOICE-DATA(1);

is also a single-level array of 100 invoice numbers.

3-16 Data Items

By the same token,

DEFINE(ITEM) INVOICE-DATA X(1000):

INVOICE-NO 100 X(10) = INVOICE-DATA(1) :
INVOICE-PFX X(3) = INVOICE-NO(1) :

INVOICE-SFX 9(6) = INVOICE-NO(4) ;

is also a single-level array because INVOICE-DATA is not a compound item. The child items
of INVOICE-NO are simple items and do not add a level to the array structure.

Alias Items

Any data item can be assigned an alias-name|the alias is another name for the de�ned data
item. You would use an alias in a Transact program where the data dictionary de�nition of a
data item has the same de�nition but a di�erent name in a data set. The primary de�nition
in a data dictionary can be associated with one or more alias names to identify data items
in data sets that have di�erent names. The primary name is always used in the Transact
program. You must de�ne all alias relations with a DEFINE(ITEM) statement in your
program; Transact ignores alias de�nitions in a data dictionary.

Using Dictionary Definitions with Data Item Relations

You must use caution when using data dictionary de�nitions of parent/child relations,
compound/sub-item relations, and aliases. You must speci�cally de�ne an alias relation in
the DEFINE(ITEM) statement of your Transact program; any alias relations de�ned in a
data dictionary are ignored by Transact. The Transact processor recognizes parent/child and
compound/sub-item relations de�ned in a data dictionary, but you can only reserve space
in the list register for the parent or compound item. (For details, see the DEFINE(ITEM)
discussion in Chapter 8, and the sections \Parent Items and Child Items," \Compound
Items," and \Alias Items" in this chapter.)

Data Items 3-17

4

Transact Registers

The Transact language di�ers from many conventional languages (such as COBOL and
Pascal) in its use of dynamic, run-time \registers" to allocate and store data, control run-time
processing, and communicate run-time status. Because these registers are active when the
program is executing, you should always be aware of their values. Skillful manipulation of
these registers can greatly improve both program and programmer e�ciency.

This chapter describes the Transact registers and how they work, including:

List and data registers

Key and argument registers

Match register

Update register

Input register

Status register

Transact Registers 4-1

List and Data Registers

The list and data registers are used to allocate data storage space for data items manipulated
by the program. The data register has a default size of 1024 words, and it is the actual
storage area for the values of data items. By itself, however, this register does not di�erentiate
between the end of one item and the beginning of another. In order for the Transact program
to do this, the values in the data register must be mapped by the identi�ers in the list
register. Before a program can manipulate a data item, it must be \listed," or placed in the
list register by including a LIST statement in the program. For every data item that you
name in the LIST statement, Transact includes an identi�er in the list register. Transact uses
this identi�er to locate the correct value in the data register.

The order in which the data item identi�ers are listed in the list register determines the order
of the corresponding data item values in the data register. Data item identi�ers in the list
register and the corresponding space in the data register, are allocated in the order that the
data item names are speci�ed in the LIST statement. For example, if the �rst data item
identi�er added to the list register is for a data item called NAME, a 6-byte character string,
the �rst 6 bytes of the data register are allocated to hold the value of NAME. If the second
item identi�er in the list register is for a data item called ADDRESS that identi�es a 20-byte
character string, the next 20 bytes of storage space in the data register are reserved for the
value of ADDRESS.

Data item identi�ers and item values are added to the list register and data register starting
at the bottom and extending toward the top. The same data item can be added to the list
register and data register more than once in a single program. When this is done, only the
most recent addition of the data item is accessible by the program.

In many ways these registers behave like stacks, and it is helpful to think of them as such.

4-2 Transact Registers

Managing the List and Data Registers

When program execution begins, the list register is empty and the contents of the data
register are unde�ned. When the list register is empty, you cannot access the data register.
During the course of program execution, you add data item names to the list register, thereby
de�ning the data item space. Every data item added to the list register must have been
previously de�ned either in a DEFINE(ITEM) statement or in the data dictionary. Note that
child item names can not be added to the list register, only the parent item names.

Allocating space in the data register does not move the data into the register. Transact
provides a way to transfer data to the data register either interactively from a terminal
through prompts or a VPLUS form, or programmatically from �les, data sets, or through
assignment statements.

To minimize your data storage requirements, you should release the data register space
occupied by your data items when you are �nished using them. Transact can do this for you.
If you are using a command structure, Transact resets the list register whenever a command
sequence executes. If you are not using a command structure, you should manage your data
storage directly with Transact statements.

When data items are removed from the list register, they are removed from top to bottom;
that is, the last data item added is the �rst data item removed. The values, however,
corresponding to the data items removed from the list register, still exist in the data register.
You can access these values again by listing the data item again in the list register. It is
possible also to relist di�erent data items in the list register and rede�ne the values in the
data register.

When a data item is listed multiple times, the last occurrence of the data item in the data
register is the one that is used. To access a previous occurrence of the data item, you must
remove the current occurrence from the list register via the SET(STACK) verb.

Key and Argument Registers

The Transact processor uses the key and argument registers to perform keyed access to KSAM
�les or data sets. You must use these registers to perform keyed access to such �les. However,
you do not need to use these registers to access MPE �les or for serial access to data sets or
KSAM �les.

Both registers are write-only registers. That is, you can assign a data item name to the key
register and a value to the argument register, but you cannot read either register, nor can
you test their contents. The processor uses the contents of these registers for �le and data set
access, and a program can pass their values to an external procedure.

A unique pair of key and argument registers is made available with each level of nesting of the
PERFORM= option of the data management verbs. As many as ten levels can be declared.

Transact Registers 4-3

Key Register

The key register contains a single data item name that identi�es a key item in a KSAM �le
or a search item in a data set. The item name you place in the key register is used by the
processor to perform a keyed access to an existing record. The key register is not used to add
a new record or entry.

The key register is needed only when the key name must be speci�ed. It is needed to locate
a particular key in a KSAM �le and to locate the chain head in a detail data set. The key
register is not needed to access key items in manual or automatic master sets. There is only
one key (search) item in a master data set. Accordingly, that data item is \known" and need
not be speci�ed.

Argument Register

The argument register contains the value of the key item that is named in the key register.
The Transact processor uses this value to locate any records in a KSAM �le or a data set with
that key value. If you try to perform a keyed access without setting up the key and argument
registers, Transact issues an error message.

The argument register is needed when an actual key value is used to access a �le or data set.
If the key is known (as it is in a master set), you need not set up the key register, but you
must still set up the argument register, unless you want to access all the entries.

For example, suppose you have a detail data set from which you want to retrieve all product
numbers with the value A105. You can put the search item name (PROD-NO) in the key
register and the value (A105) in the argument register.

You can then use an appropriate Transact statement to retrieve any entries that contain a
product number with the value A105. Transact performs all the necessary database calls.

4-4 Transact Registers

Match Register

The match register contains the selection criteria for data retrieval operations. It holds a
set of data item names and selection criteria for each data item name in the set. The match
criteria determine which records are selected for retrieval from a data set or �le. Only those
records that meet the criteria are retrieved.

To use the match criteria, the match items must be in the list register, and they also must
be retrieved by the data management statement that uses the match criteria. Therefore, you
must add match items to the match register, add each data item to the list register, and
include each data item in a LIST= option of the data management statement. If a match item
is not speci�ed in the LIST= option, or the LIST= option is omitted and the match item is
not in the list register, the data management statement ignores the match criteria associated
with that data item.

You can specify as many match criteria as you want. Also, you can assign di�erent criteria
to the same data item or to di�erent data items, or specify the same criteria for di�erent
data items. By default, a Boolean AND connects selection criteria gathered from di�erent
PROMPT(MATCH) or DATA(MATCH) statements. A Boolean AND also connects selection
criteria from multiple SET(MATCH) statements unless the statements use the same data item
name and specify equality as the connector; such statements are joined by a Boolean OR.

For example, consider the following match register that contains four separate match criteria:

Entries in the match register can be cleared or selectively deleted by using the RESET verb
with the MATCH option. Users can also override the speci�c defaults with their responses
to a PROMPT(MATCH) or a DATA(MATCH) prompt. See \Responding to a MATCH
Prompt" in Chapter 5.

Transact Registers 4-5

Update Register

The update register holds pairs of update speci�cations. Each pair consists of a data item
name and a new value for that data item. These name/value pairs can be used to update
records in an MPE or KSAM �le or in a data set. The update register is only used with the
REPLACE verb to update one or more records. Entries in the update register can be cleared
or deleted selectively by using the RESET verb with the UPDATE option.

The update register operates on the data retrieved with data management verbs. The
retrieved data generally satis�es other criteria set up in the key register or in the match
register. The update register contains new values for data items in the selected entries. When
REPLACE executes, it retrieves each selected entry and places its current values in the data
register. It then replaces any values in the data register that have a corresponding value in
the update register. If a data item is not named in the update register, its value in the data
register is not changed. REPLACE then writes the updated entry back to the �le or data set.

For example, suppose you want to change the credit rating for all customers whose current
rating is \A" to \A1". You can set up the match register to contain the criterion CREDIT =
\A", then set up the update register with the new value for CREDIT.

Note You do not use the update register with the UPDATE verb nor would you
normally use it with REPLACE to update multiple entries with di�erent
values. The update register is particularly useful for making the same change
to multiple entries.

Input Register

The input register contains a character string entered by a user in response to a prompt
generated by the INPUT verb. Typically, the contents of the input register are tested with
an IF verb for a yes or no condition. Because the processor upshifts all responses, it is not
necessary to test for \YES" and \yes", for example. The contents of the input register cannot
be assigned to any data item or any other register.

4-6 Transact Registers

Status Register

The status register is a double word register that holds status information about the last
operation performed. The contents of the status register di�er depending on whether
Transact uses automatic error handling, or you control error handling programmatically. See
\Automatic Error Handling" and \Using the STATUS Option" in Chapter 7 for explanations
of the status register contents.

In either case, you can test the contents of the status register with an IF statement. You can
also assign the contents of the status register to a variable for subsequent display or testing.

How Registers Work

This section discusses the use of registers with Transact verbs. It also explains how registers
work using code extracted from a Transact program.

Verbs and Registers

The LIST, DATA, PROMPT, and INPUT verbs cause data to be placed into the various
registers. The following is an overview of how these four verbs work with the registers.

LIST causes a data item name to be placed in the list register. Appropriate space is
allocated in the data register.

DATA places values into space already allocated in the data register. These values come
from user input, because DATA causes a prompt.

PROMPT places the data item name in the list register. The value (supplied by the user) is
placed in the data register.

INPUT places a character string (supplied by the user) into the input register.

How LIST, DATA, and PROMPT behave is speci�ed by their modi�er. In addition to the
verbs listed above, all the database- and �le-access verbs (except PUT) and the assignment
verbs LET, SET, and MOVE, update the data register. The data access verbs get the data
from �les or databases. With LET, SET, and MOVE, the data is assigned in the program.

For example, PROMPT a�ects only the list and data registers, whereas PROMPT(PATH)
a�ects the list, data, key, and argument registers. If you only want to add data items to
the list register, use LIST with no modi�er; if you only want to add a data item to the key
register, use LIST(KEY). Table 4-1 shows how verbs and modi�ers work together to a�ect
registers.

Transact Registers 4-7

Table 4-1. Registers Affected by Modifiers on Specific Verbs

Register A�ected by
the Verb:

Modi�er Prompt List Data Input

none List
Data

List Data Input (1)

PATH List
Data
Key
Argument

List
Key

Data
Argument
Key (2)

-

KEY Key
Argument

Key Argument
Key (2)

-

MATCH List
Data
Match

List
Match

Data
Match

-

UPDATE List
Data
Update

List
Update

Data
Update

-

SET List (1)
Data (1)

- Data (1) -

ITEM - - Data (3) -

(1) Only if the user enters a value.
(2) If key register is empty.
(3) For the given data item.

Sample of Transact Coding

The following code extracted from a Transact program explains how registers work. It shows:

Data set operations and

Register activity.

4-8 Transact Registers

The code is shown in total �rst and is then broken down by statement.

LIST CUST-NAME:

CUST-ADDRESS;

PROMPT(PATH) CUST-NO;

GET CUSTOMERS

LIST=(CUST-NAME:CUST-ADDRESS);

PROMPT(PATH) PART-NO;

PROMPT QTY-ORDERED;

LIST COST;

LIST UNIT-PRICE:

PART-DESC:

QTY-ONHAND;

GET PARTS

LIST=(UNIT-PRICE:QTY-ONHAND);

IF (QTY-ORDERED) > (QTY-ONHAND) THEN

DISPLAY "Only": QTY-ONHAND, NOHEAD: "in stock"

ELSE

DO

LET (QTY-ONHAND)=(QTY-ONHAND) - (QTY-ORDERED);

UPDATE PARTS, LIST=(QTY-ONHAND);

LET (COST) = (UNIT-PRICE) * (QTY-ORDERED);

PUT ORDERS, LIST=(CUST-NO:COST);

DOEND;

The database that is referenced contains the three data sets shown below (PARTS,
CUSTOMERS, and ORDERS). The data items in each data set are also listed.

PARTS

M

---- PART-NO, UNIT-PRICE, PART-DESC, QTY-ONHAND

\ /

\/

CUSTOMERS

M

---- CUST-NO, CUST-NAME, CUST-ADDRESS

\ /

\/

ORDERS

D

---- PART-NO, QTY-ORDERED, COST, CUST-NO

\ /
\/

Transact Registers 4-9

The following �gures show how speci�c statements a�ect speci�c registers.

LIST CUST-NAME: CUST-ADDRESS;

CUST-NAME and CUST-ADDRESS are placed in the list register and space is reserved for
their values in the data register.

4-10 Transact Registers

PROMPT(PATH) CUST-NO;

Transact prompts the user for CUST-NO, and places the item name CUST-NO in the list and
key registers. It places the user's response in the data and argument registers.

GET CUSTOMERS LIST=(CUST-NAME:CUST-ADDRESS);

When Transact retrieves the appropriate record from the CUSTOMERS data set using the
key and argument values, it places the values for CUST-NAME and CUST-ADDRESS into
the data register.

Transact Registers 4-11

PROMPT(PATH) PART-NO;

Transact prompts the user for PART-NO and places the item name PART-NO into the list
and key registers overwriting any value already in the key register. It then places the value
entered by the user into the data and argument registers overwriting the previous values in
those registers.

PROMPT QTY-ORDERED;

Transact prompts the user for QTY-ORDERED, and places the item name QTY-ORDERED
in the list register. It places the value entered by the user into the data register.

4-12 Transact Registers

LIST COST;

Transact places COST in the list register and reserves space for its value in the data register.

LIST UNIT-PRICE: PART-DESC: QTY-ONHAND;

UNIT-PRICE, PART-DESC, and QTY-ONHAND are placed in the list register and space is
reserved for their values in the data register.

Transact Registers 4-13

GET PARTS, LIST=(UNIT-PRICE:QTY-ONHAND);

When the appropriate record is retrieved from the PARTS data set using the key and
argument values, values for UNIT-PRICE, PART-DESC, and QTY-ONHAND are placed in
the data register. Note that it is not necessary to specify PART-DESC here because it is in
the range between UNIT-PRICE and QTY-ONHAND.

IF (QTY-ORDERED) > (QTY-ONHAND) THEN

DISPLAY "Only": QTY-ONHAND, NOHEAD: "in stock";

ELSE

DO

LET (QTY-ONHAND) = (QTY-ONHAND) - (QTY-ORDERED);

This statement computes a new QTY-ONHAND value and places it in the data register.

4-14 Transact Registers

UPDATE PARTS, LIST=(QTY-ONHAND);

Updates the PARTS data set with the new QTY-ONHAND for the part entry that was the
last one accessed by the previous GET statement.

LET (COST) = (UNIT-PRICE) * (QTY-ORDERED);

PUT ORDERS, LIST=(CUST-NO:COST);

DOEND;

Computes the cost and places it in the data register. Updates the ORDERS data set with the
values from CUST-NO through COST.

Transact Registers 4-15

5

User Interface

Transact supports three modes of user interface which may be used singularly or jointly in any
Transact program. The three modes are:

Command sequences

Character mode using DATA, INPUT, and PROMPT verbs

Block mode data entry using VPLUS

This chapter discusses each of these modes as well as the use of special characters and keys
that a�ect the execution of the program.

User Interface 5-1

Command Sequences

You can structure the body of a Transact program around command sequences speci�cally
designed for a particular interactive interface to the program. A command sequence consists
of the statements placed between a command or a subcommand and the next command,
subcommand, or END statement, whichever comes �rst. One command sequence in Figure
5-1 begins with the statement following the subcommand $C and ends with the statement
preceding $PAYMENT. The statements after $P and before $$UPDATE are also considered a
command sequence.

Command sequences divide the Transact program into functional parts that make logical sense
to you and that are meaningful to the user.

One or more functions in a Transact program can be contained in a command sequence.
Each sequence is headed by a command label such as $$ADD or $$UPDATE and possibly
one or more subcommand labels such as $CUSTOMER. Command and subcommand labels
are followed by statements. Each sequence ends with another command label or an END
statement.

5-2 User Interface

SYSTEM CINFO,

BASE = CUST(,3,1);

$$ADD:

$$A:

$CUSTOMER: <<Add a new customer to the database>>

$C:

PROMPT CUST-NO("Enter customer number "):

CUST-NAME("Enter customer name "):

CUST-ADDR("Enter customer address ");

PUT CUST-MAST;

$PAYMENT: <<Add payment to A/R data set>>

$P:

PROMPT CUST-NO("Enter customer number "),

CHECK = CUST-MAST:
PDATE("Enter payment date "):

INV-NO("Enter invoice number "):

AMOUNT("Enter amount of payment ");

PUT AR-DETAIL;

$$UPDATE:

$$U:

$ADDRESS: <<Change customer's address>>

$A:

PROMPT CUST-ADDR("Enter customer address ");

UPDATE CUST-MAST, LIST=(CUST-ADDR);

$$DELETE:

$$D:

$CUSTOMER: <<Delete old customer from database>>

$C:

PROMPT(KEY) CUST-NO("Enter customer number ");

DELETE CUST-MAST;

END CINFO;

Figure 5-1. Program Using Command Sequences

User Interface 5-3

Processing Command Sequences

When Transact executes a program, it starts by executing any statements between the
SYSTEM statement and the �rst command label of the root segment. If there is no command
label in the root segment, Transact executes statements between the SYSTEM statement and
the end of the root segment. When Transact encounters the �rst command label, it issues
the prompting character > to tell the user to enter a command. The user must respond to
this prompt with a command name de�ned in the program followed by a subcommand name,
if there is one. The response that the user gives determines which command sequence is
executed.

Before each command sequence is executed, Transact resets all of the registers used for data
storage and other data management functions, although it does not actually clear any data.
Registers are described in Chapter 4.

When the sample program in Figure 5-1 is executed, the user might enter any of the following
in response to the prompting character:

> ADD CUSTOMER

> ADD PAYMENT

> UPDATE ADDRESS

> DELETE CUSTOMER

Command and Subcommand Labels

A command label is preceded by $$ and a subcommand label is preceded by $. Both are
followed by colons, as in:

$$command:

$subcommand:

Either label can contain from 1 to 16 characters in addition to the leading $$ or $. The label
must begin with an alphanumeric character. The remaining characters can be any characters
except the delimiters ($, ; : = < > () [] " or a blank). All command and subcommand
labels are global to the program and can be referenced from any program segment. (See
\Program Segmentation" in Chapter 9.)

You can provide the user with short forms for commands and subcommands. These short
forms are illustrated for each command and subcommand in Figure 5-1.

A command label must have at least one character following the $$, for example, $$A:.
A subcommand, however, can have a null value, as in $:. The following code shows a null
subcommand:

$$CHANGE:
$ADDRESS:

$:

5-4 User Interface

The null subcommand in this example allows the statements following it to be executed
whether the user enters:

> CHANGE ADDRESS

or merely

> CHANGE

User-Entered Passwords for Commands and Subcommands

You can require that a user enter a password to execute a command/subcommand sequence.
A password can be a 1-8 character string of any combination of alphanumeric or special
characters. Passwords must be speci�ed exactly as they were de�ned. Thus, if a password was
de�ned with all uppercase characters, then it must be speci�ed with all uppercase characters
in your program and entered by the user with all uppercase characters. To request passwords,
use the following syntax:

$$command("password"):

$subcommand("password"):

Consider the following code:

$$ADD("PQX2"):

$CUSTOMER:

When the user enters the command

> ADD CUSTOMER

Transact requests the password:

COMMAND PASSWORD>

In order to execute the statements associated with the command ADD CUSTOMER, the user
must enter the correct password, PQX2:

COMMAND PASSWORD> PQX2

Note that the password is in uppercase not pqx2 (lowercase). Passwords must be exact.

Subcommands as well as commands can require passwords:

$$ADD("PQX2"):

$CUSTOMER("MKC"):

When the user enters the command:

> ADD CUSTOMER

Transact requests both passwords:

COMMAND PASSWORD> PQX2

SEQUENCE PASSWORD> MKC

If the user enters an invalid command password, Transact responds with:

INVALID COMMAND PASSWORD

User Interface 5-5

If the user enters an invalid password for a subcommand (or sequence), Transact responds
with:

INVALID SUB-COMMAND PASSWORD

In either case, Transact issues a prompt for another command.

Built-in Commands

Certain commands are built into Transact and are available to the user if the program uses a
command structure. These commands inuence the execution of Transact and include the
following:

COMMAND [command-name] Lists all the commands, or lists all the subcommands
associated with the speci�ed command name, in the
currently loaded program. An *" will be displayed for null
subcommands.

EXIT Generates an exit from Transact.

INITIALIZE (Transact/V only) Generates an exit from the current program
and initiates the loading of a new program.

When you enter INITIALIZE, you are prompted with SYSTEM

NAME>.

RESUME Causes the resumption of a process that was interrupted by
a �Ctrl� Y. (�Ctrl� Y is explained later in this chapter under
\Special Characters that Control Program Execution".

TEST[,mode [,range]] (Transact/V only) Causes Transact to execute in test mode for
the speci�ed range; if no mode is speci�ed, test mode is turned
o�.

If you de�ne a command in your program with the same name as these built-in commands,
the program de�ned command takes precedence.

Command Qualifiers

Transact program commands, such as ADD CUSTOMER or UPDATE ADDRESS, can be
quali�ed by using command quali�ers. The quali�ers that are recognized by Transact include:

FIELD Indicates the prompted-for �eld length on HP 264X series terminals.

PRINT Directs output to the line printer instead of to the user's terminal.

REPEAT Repeats a command sequence until a termination character (\]") is entered
for a prompt other than the �rst �eld of a command sequence. Entering a
\]" for the �rst �eld prompt or \]]" for any �eld prompt returns control to
the command mode regardless of the level of command or subcommand.
However, if there is an active END sequence block speci�ed by the
\SET(OPTION) END=" statement, it is executed before passing control
to the �rst statement of a command sequence or returning to command
mode. The list register is reset before repeating a command sequence.

SORT Sorts any data generated by an output verb within the command sequence.
Entering a \]" from other than the �rst prompt returns the user to the �rst
prompt of the current command or subcommand.

5-6 User Interface

TPRINT Directs a line-printer-formatted display to the user's terminal.

The command string \DISPLAY COMPANY" causes a number of companies to be listed on
the terminal. The user can enter the command:

PRINT SORT DISPLAY COMPANY

This command produces a sorted list of companies on the line printer.

Transact can also accept match selection criteria if the command sequence contains a
PROMPT(MATCH) or a DATA(MATCH) statement. For example:

PRINT SORT DISPLAY COMPANY = DE^

This command produces on the line printer a sorted list of all company names beginning
with the letters \DE". (See \MATCH Speci�cation Characters" later in this chapter, for an
explanation of the character \^".)

The REPEAT option could be added to this command string:

REPEAT PRINT SORT DISPLAY COMPANY = DE^, G^

The command now produces on the line printer a sorted list of all company names beginning
with \DE" and a sorted list of all those beginning with \G".

The REPEAT option can be useful with commands that perform data entry. The command
REPEAT ADD TIME-SHEET causes the command sequence to repeat until the user enters a
terminating character.

Using FIELD accomplishes the same purpose as SET(OPTION) FIELD=\><". It causes the
�eld length of a prompted-for data item to be displayed. For example:

NAME> <

or

COMPANY> <

User Interface 5-7

DATA, INPUT, and PROMPT

Transact can perform a number of di�erent data entry functions in character mode with the
use of the DATA, INPUT, and PROMPT verbs.

The DATA and PROMPT verbs will prompt the user for a response to a prompt string or
item name. Transact will validate the data and prompt the user again if any errors are
detected. The major di�erence between the DATA and PROMPT verbs is the registers that
are updated. The PROMPT verb will add the item to the list register, whereas the DATA
verb will only update an item already on the list register. Depending on the modi�er used for
each verb, values would also be placed in the data, argument, match, and/or update registers.
The input value for the DATA and PROMPT verbs is usually used for subsequent �le and
data set operations.

The INPUT verb will prompt the user for a response to a prompt string. The value will be
placed in the INPUT register. The INPUT verb is used to test a user response.

Special characters that can be entered by the user in response to the prompt are discussed
later in this chapter. To get additional information and examples of the DATA, INPUT, and
PROMPT verbs, see Chapter 8. A discussion of the use of the MATCH modi�er with the
DATA and PROMPT verbs follows.

Responding to a MATCH Prompt

The MATCH modi�er, available with the PROMPT, DATA, and LIST verbs, provides a
powerful mechanism for specifying record selection criteria.

The response to a prompt issued by the PROMPT or DATA verb using the MATCH modi�er
is set up in the match register. Transact can use it in subsequent �le or data set accesses. It
provides a mechanism by which to specify at run time which records to access.

With native language support, the usage of the speci�ed language is reected in the relational
operators, the connectors, and the range indicator (such as, \TO"). See \Native Language
Support" in Appendix E for more information.

The response to the prompt can take the following general format:

{[relation] value1} {[relation] value2}

{ } [connector { }]...

{value1 TO value2 } {value3 TO value4 }

Where:

relation Is a relational operator for a condition that is other than equal; use
one of the following:

NE - not equal to (< >)
LT - less than (<)
LE - less than or equal to (<=)
GT - greater than (>)
GE - greater than or equal to (>=)

value A numeric value or a partial string speci�cation. A string with
embedded blanks must be enclosed in quotation marks.

TO Speci�es a range of values bounded by the value preceding and the
value following TO.

5-8 User Interface

connector A logical connector that is one of the following:

AND Speci�es that the record accessed must contain both
the value before and the value after this operator.

OR Speci�es that the record accessed must contain either
the value before or the value after this operator.

The precedence of these connectors is AND then OR.

To illustrate this syntax, assume the program contains the following PROMPT(MATCH)
statement:

PROMPT(MATCH) ITEM1 ("Enter match criteria for ITEM1");

When executed, this statement adds the item name, ITEM1, to the list register and issues the
speci�ed prompt. It then sets up the match register with criteria entered by the user. For
example:

Enter match criteria for ITEM1> GE 500 AND LE 1000

This response sets up the match register with two criteria, as shown below:

ITEM1 ITEM1

(equal to OR greater than) AND (less than OR equal to)

500 500 1000 1000

To further illustrate this syntax, the following examples are all legal responses to prompts
issued by DATA(MATCH) or PROMPT(MATCH) statements:

> 20 TO 30

This response sets up the match register to accept any value for the match item that is
between 20 and 30 inclusive. Note that the following response gives identical results:

> GE 20 AND LE 30

The following response sets up the match register to accept either the value \LAX" or
\CGY":

> LAX OR CGY

This next response sets up the match register to accept values beginning with \REG" or
values beginning with \SAS" and containing the value \CITY" in any position:

> REG^ OR SAS^ AND CITY^^

If you want to include one of the standard delimiters, comma, or equals, within a value,
you must enclose the value in quotes; or you must specify another delimiter with a
SET(DELIMITER) statement. For example, you could respond with:

> "San Diego, California"

This response ensures that the comma is included in the match register speci�cation.

User Interface 5-9

These examples illustrate how you can set up the match register with responses to
DATA(MATCH) or PROMPT(MATCH) statements. You can also set up the match register
in your program with SET(MATCH) statements. Using SET(MATCH), you can set up only
one selection speci�cation at a time, and you must also make sure the values used in the
match criteria are already in the data register. For example, the following four statements
place the same criteria in the match register as the response \A OR B" to the prompt issued
by a DATA(MATCH) CREDIT statement.

LET (CREDIT) = A;

SET(MATCH) LIST (CREDIT);

LET (CREDIT) = B;

SET(MATCH) LIST (CREDIT);

5-10 User Interface

VPLUS Interface

Transact uses a subset of the data management verbs (GET, PUT, SET, UPDATE) to access
and control VPLUS forms. Without making calls directly to VPLUS intrinsics, you can
retrieve data from forms, move data to forms, control the sequence of forms, manage function
keys, and send messages to the forms window. The VPLUS interface supports function key
labels on HP terminals and PCs using terminal emulators when such labels are de�ned in
FORMSPEC. It does not support the split screen feature of HP 262X terminals, nor does it
support data capture terminals.

Often, many di�erent functions are performed with a single Transact statement. For instance,
GET(FORM) does the following:

Gets and displays a form.

Reads data entered by the user.

Performs any edits speci�ed through FORMSPEC.

Highlights any �eld that contains errors and sends an error message to the window.

Transfers the data to the program.

Checks the data against the data de�nitions in the program, and again performs error
processing, if necessary.

Performs any �nish phase operations speci�ed by FORMSPEC.

Normally, Transact programs operate with the terminal in character mode. Using any VPLUS
interface verb places the terminal in block mode. Transact automatically switches back to
character mode for any operation, such as a DISPLAY statement, that requires character
mode.

VPLUS forms �les and form layouts can be de�ned in the data dictionary or in the SYSTEM
statement of a Transact program. When de�nitions are taken from the data dictionary,
a reference to a forms �le in the SYSTEM statement causes Transact to retrieve all the
forms de�ned in the forms �le for use at run time. You can also specify the form de�nitions
completely in the SYSTEM statement. This gives you the exibility of rede�ning �eld types
and �eld order to suit your own purposes. Also, you can specify within a forms �le only the
forms that are needed.

Local Form Storage

Transact supports VPLUS local form storage with all forms caching terminals. Local form
storage reduces datacomm overhead with frequently used forms and causes the form to be
displayed all at once instead of being painted on the screen line by line. This is accomplished
by placing the form into the terminal memory. Only form images are loaded|not associated
data.

The HP 2626A and HP 2626W terminals can store as many as four forms locally. The HP
2394A and HP 2624B terminals can store a maximum of 255 form names in their forms
directory. However, the number of actual form images they can store might be lower than
this, depending on the size of the forms and the size of the terminal memory. When the
terminal is not one of these types, the p-code generated for local form storage is ignored.

User Interface 5-11

The local form storage feature is enabled by the FSTORESIZE parameter of the SYSTEM
verb. This parameter speci�es the maximum number of forms to be loaded into the terminal
memory. The SET(OPTION) FORMSTORE statement causes the speci�ed forms to be
loaded into the terminal memory. The number of forms successfully loaded is returned to the
STATUS register. Transact suppresses any error messages resulting from overloading the
terminal's local form storage memory at run time. Refer to the VPLUS Reference Manual for
more information.

Note Transact VPLUS forms caching is implemented to operate within a single
Transact system level. Forms caching should not be used within both the
main system and a subsystem or between di�erent levels in a Transact
program.

Look-Ahead Loading

After local form storage is enabled, look-ahead loading is performed by default. With this
option, VPLUS loads the next form (as de�ned by the forms �le) before or after reading
data from the current form, depending on the type of datacomm being used. If the terminal
memory is full, VPLUS unloads the least recently used form (or forms) to make room. To
disable look-ahead loading, you use the SET(OPTION) NOLOOKAHEAD statement. The
RESET(OPTION) NOLOOKAHEAD statement can be used to enable look-ahead loading,
but it is needed only if the SET(OPTION) NOLOOKAHEAD statement was previously used
in the program.

You can still control which forms are loaded during look-ahead loading, but the forms you
specify can be unloaded to make room for the next form. If you are unfamiliar with VPLUS
local form storage, you should not disable look-ahead loading, since Transact and VPLUS
do most of the work for you. If you include the FSTORESIZE parameter in the SYSTEM
statement but do not use the SET(OPTION) FORMSTORE statement, local form storage is
still performed using look-ahead loading, even though forms are not explicitly loaded in the
program.

If look-ahead loading is disabled, VPLUS does not unload forms from local storage to make
room for new ones. To unload forms, you must use the RESET(OPTION) FORMSTORE
statement. This statement is used only to make room in local storage for new forms. For
example, if you know that one form is signi�cantly larger than the others and is not used
later in the program, you can explicitly unload it to make room for new forms, rather than
relying on look-ahead loading to choose the best form to unload. The RESET(OPTION)
FORMSTORE statement is not required in any other situation, since the local form storage
memory is purged at the end of the process.

Automatic Form Loading

Automatic form loading causes VPLUS to load each new form into local storage before
displaying it, if the form is not already in local storage. When the local form storage memory
is full, VPLUS unloads the least recently used form. You can enable automatic form loading
by using the SET(OPTION) AUTOLOAD statement.

5-12 User Interface

The two types of form loading di�er in that automatic form loading loads the current form,
while look-ahead loading loads the next form (as de�ned in FORMSPEC). When the form
sequence in FORMSPEC is not the one used in the application, look-ahead loading is usually
inappropriate. (For more information, see the discussions of the SYSTEM and SET verbs in
Chapter 8.)

Local Form Storage Example

The example shown below causes VPLUS to use automatic form loading with a maximum of
four forms. Local form storage is initialized to contain four forms. Any new form not already
in local form storage will be added after the least recently used form is deleted.

SYSTEM ORDDL, BASE=ORDMGT, VPLS=ORDMGTFF, FSTORESIZE = 4;

DEFINE(ITEM) FORMSLOADED I(4);

|

|

SET(OPTION) FORMSTORE =

(ORDMGTMENU,ADDCUST,CHGCUST,DELCUST); << Load forms >>

IF (FORMSLOADED) < 4 THEN

DO

<< Report form loading error >>

DOEND;

|

|

SET(OPTION) NOLOOKAHEAD; << Look-ahead off >>

SET(OPTION) AUTOLOAD; << Auto load enabled >>

Special Notes

If you enable local form storage, VPLUS automatically con�gures the HP 2626A and HP
2626W terminals to use datacomm port 1 and removes the HPWORD con�guration from
the HP 2626W. If local form storage is not enabled (that is, if the FSTORESIZE parameter
is omitted from the SYSTEM statement), then VPLUS does not disturb the con�gurations
of the terminals. The local form storage memory is wiped out if the user presses RESET or
REFRESH at run time, if the DISPLAY verb is used between forms, if the terminal goes out
of block mode, or if appending forms are used on the HP 2626A and HP 2626W terminals.

User Interface 5-13

Special Characters and Keys That Control Execution

Several categories of special characters and keys lend programmers and users powerful control
over Transact's program execution. These characters and keys include:

�Ctrl� Y

Data entry control characters

Match speci�cation characters

Field delimiters

Special keys for use with VPLUS forms

Control Y

Transact recognizes �Ctrl� Y entered from the user terminal as an operation break that returns
control to Transact.

You can use the �Ctrl� Y feature to halt program execution temporarily in order to enter a
TEST or COMMAND command. After using either of these commands, you can continue
execution by entering the command RESUME. This feature is especially useful during
Transact/V program debugging. For example, you can enter the command TEST followed by
a test-mode parameter when the program is temporarily halted. When you resume execution,
the program executes in the speci�ed test mode. (See Chapter 10 for a description of the test
facility.)

Data Entry Control Characters

Several special characters have a predetermined meaning to Transact. They should not be
used in any other way as a response to a data entry prompt. They include the following:

] Terminates the current operation. Control passes to the next higher
processing level, which can be the command level.

]] Terminates the current operation. Control passes to command level.

! Generates null responses for all subsequent prompts when entered as a
response to a data item prompt. It generates null responses for all subsequent
sub-item prompts within a compound item when entered as a response to a
compound item prompt.

In a command sequence, the e�ect of the ! response is terminated by the end of the command
sequence; if the prompt is not in a command sequence, the ! response remains in e�ect for
all subsequent prompts up to the beginning of a command sequence, if any. The e�ect of
the ! response is also terminated if control passes again through the statement to which the
end user responded with !. And, Transact terminates the e�ect of the ! when it performs
automatic error handling.

5-14 User Interface

MATCH Specification Characters

Several special characters help to set up match speci�cations and are used in response to
prompts issued by PROMPT(MATCH) and DATA(MATCH) statements. Because of their
special meaning, these characters should only be used for these purposes in character strings.
They include the following:

Single Caret(^) Indicates a partial-word selection criterion for alphanumeric string data
items.

If \^" is the last character of the entry, then the selection is based on
a search for database or data item values that start with the preceding
character string.

For example, when the user enters \DE^" in response to a prompt
generated by a PROMPT(MATCH) statement, all values starting with
the characters \DE" in a subsequent database or �le operation are
selected.

If \^" is the �rst character of the entry and it does not occur at the end
of the string, then values that end with the input string are selected.

For example, \^DE" would retrieve all data item values that end with
the characters \DE".

If the \^" character appears in any other position in the entry, values
are selected that have any character in this position.

For example, an entry of \^EF^G^" causes a selection of all values
having \EF" in the second and third positions and \G" in the �fth
position.

Double Caret (^^) Indicates another partial-word selection criterion for alphanumeric string
data items. When the user enters \^^" as the trailing characters in an
entry, the selection is based on a search for database or �le data item
values that contain the preceding character string anywhere within them.
For example, an entry of \DE^^" causes a selection of all data item values
that contain \DE" in any location.

Field Delimiters

Two characters are used as �eld delimiters for data entry. They cannot be used as part of
an input string unless the �eld delimiter characters have been suppressed or modi�ed by the
SET(DELIMITER) statement. These �eld delimiters are the comma (,) and the equals sign
(=).

If you want to use these characters as is, not as delimiters, you can do one of two things: You
can enclose text or responses containing these delimiters within quotes, or you can use a
SET(DELIMITER) statement to change Transact's default delimiters to some other character.

Blanks are not normally treated as delimiters; leading and trailing blanks are stripped from
responses unless they are enclosed in quotes. You can also use the BLANKS option with data
entry verbs (DATA, INPUT, and PROMPT) to allow leading blanks to be included in a
response.

User Interface 5-15

Whatever the delimiter, delimiters can be very useful for responding to prompts. When the
user knows the prompt sequence for a particular operation, then he or she does not have to
wait for prompts, but can enter a string of data �elds separated by delimiters. Transact takes
the appropriate action. For example, assuming the default delimiter, suppose a user responds
as follows to the command prompt:

>ADD TIME-SHEET = SMITH,77,3,2,V10400,100,. . . .

In this example, Transact recognizes the \," and \=" as delimiters, and associates each
response with the sequence of prompts that would normally be issued by the ADD
TIME-SHEET command.

Special Keys for Use with VPLUS Forms

Certain special keys can be used while processing VPLUS forms sequences:

�Enter� When used in a GET(FORM) operation: Normal edit processing as
de�ned in the VPLUS form de�nition is executed, and the data is
transferred to the data register. Control passes to the next statement
in the program.

When used in a PUT(FORM) operation with a WAIT= option:
control passes to the next statement in the program.

�f1� to �f7� Control passes to the next statement in the sequence.

�f8� Control returns to command level unless there are no commands to
execute, in which case the EXIT/RESTART> prompt is issued.

This is the default action caused by these keys; this action may be overridden by using the
FKEY= or the Fn= options with verbs that use the FORM modi�er.

5-16 User Interface

6

Accessing Databases and Files

Transact's data management facilities allow you to use databases, KSAM �les, and MPE �les
without making intrinsic calls. The data management interface is built into a common set of
verbs that use a common set of special purpose registers. This chapter covers:

Using databases with Transact.

Using KSAM and MPE �les with Transact.

When using databases, KSAM �les, and MPE �les through Transact, the verbs and modi�ers
specify particular functions. For example, FIND(CHAIN) retrieves all entries that have a
particular key value from a database or KSAM �le. The key value is speci�ed in the KEY
and ARGUMENT registers. Similarly, you can use FIND(SERIAL) to sequentially scan a
database, KSAM �le, or MPE �le for all entries that meet the selection criteria set up in the
MATCH register.

The exibility provided by each verb and modi�er is enhanced by the special registers. Please
see Chapter 4 for a description of the register functions. The following are examples of when
these special registers are used:

The key register contains the key for keyed selection.

The match register contains criteria for selecting particular records or entries.

The update register speci�es the data item to update and its new value.

The status register contains values used in error handling. With automatic error handling,
the status register is set to the number of selected records for the �le or database being
accessed. When automatic error handling is suppressed, the status register is set to the
subsystem error number if an error occurs.

Although you can take all data de�nitions from a data dictionary, in the SYSTEM statement
of the program you must name each �le or database used by your program. You need not
name the individual data sets. For a database, you can also specify a password, a locking
scheme, and an open mode in the SYSTEM statement. For a �le, you can specify the access
options (aoptions) and �le options (foptions) to be used when opening the �le.

Accessing Databases and Files 6-1

Using Databases

Transact opens the database at the start of your program. The SYSTEM statement's BASE
option allows you to de�ne the name of the database, the password, the type of access mode
to use in opening the database, and the locking scheme to use. For example:

SYSTEM MYSYS,BASE=DBASE("READER",1,1);

In this example, the database name is DBASE, the password is READER, the access mode is one
and the lock option (optlock) is one.

Access Mode

The access mode you choose on the SYSTEM statement determines the type of operation that
you can perform on the database as well as the types of operations other users can perform
concurrently. To simplify the de�nition of the various access modes, the following terminology
is used:

Read access allows the user to locate and read data entries. The FIND and GET statements
are used with read access.

Update access allows the user to replace values in all data items except search and sort data
items. Update access also provides read access. UPDATE, FIND, and GET statements are
used with update access.

Modify access allows the user to add and delete entries. Modify access also provides update
and read access. REPLACE, PUT, DELETE, FIND, GET, and UPDATE statements are
used with modify access.

For additional information on access modes, see the TurboIMAGE/V or TurboIMAGE/XL
Database Management Reference Manual .

Database Close

A database can be closed in Transact by:

Using the CLOSE verb

Calling DBCLOSE via the PROC statement

Ending the program

You can use the CLOSE verb to perform a database (DBCLOSE mode 1) or data set
(DBCLOSE mode 2) close. Rewinding a data set (DBCLOSE mode 3) is not done by
the CLOSE verb. However, rewinding the data set occurs automatically when serially (or
reverse-serially) reading data sets for the FIND, GET, and OUTPUT statements. If the
CLOSE verb is used in the middle of a dynamic transaction, a TurboIMAGE error message is
issued and the transaction is aborted.

You can use the PROC statement to call DBCLOSE at anytime in a Transact program. A
call to DBCLOSE mode 3 (rewind) is allowed within a dynamic transaction. However, if a call
is made to DBCLOSE mode 1 or mode 2, a TurboIMAGE error message is issued and the
dynamic transaction is aborted.

6-2 Accessing Databases and Files

A database is usually not closed until the program ends, at which time Transact automatically
closes the database. No transactions should be in process at this time. However, if a
transaction is in process, the transaction will be aborted and an error message will be issued.

Database and File Locking

It is important, especially for online interactive applications, to establish a locking strategy
at the time of system design. In general, locking is related to the transaction, the basic unit
of work performed against a database. Typically, a transaction consists of several Transact
statements to locate and modify data. Devising a locking scheme requires an understanding
of locking levels, unconditional versus conditional locking, how Transact handles locking, and
how access mode a�ects locking.

Locking Options Available with Transact

The Transact programmer has several options regarding database locking:

Not locking at all by specifying NOLOCK on a SET(OPTION) statement.

Allowing Transact to handle the locking automatically by using either:

Default locking|Transact locks at the database level. Choose this method of locking
by setting optlock to 0 on the SYSTEM statement. This is the default setting and
unconditional locking is used.

OR

Optimized locking|locks at the database, data set, or entry level, depending on the
operation. Choose this method of locking by setting optlock to 1 on the SYSTEM
statement. Conditional locking is used.

Using the LOCK option on the LOGTRAN statement. This allows you to specify locking
for a database, a data set, or for several data sets across a logical transaction. It also allows
you to specify conditional or unconditional locking. You must specify SET(OPTION)
NOLOCK prior to the LOGTRAN statement to ensure that automatic locking does not
operate for the verbs within the transaction.

Using the PROC statement to call the database-locking intrinsics (DBLOCK and
DBUNLOCK). See the TurboIMAGE/V or TurboIMAGE/XL Database Management
System Reference Manual for more information.

With no locking or with automatic locking, you have the additional capability of specifying
the LOCK option on individual database access verbs, as explained in "Using the LOCK
Option with the Database Access Verbs" later in this chapter.

Accessing Databases and Files 6-3

Avoiding Deadlocks in Transact Programs

A deadlock can also occur when there are conicting locks within a single program. This
is uncommon due to the error checking provided by Transact and the database, but can
occur if you mix locking methods injudiciously. For example, suppose that within a Transact
program you use DBLOCK through a PROC statement to lock a data set unconditionally.
Then you issue a data access verb, that invokes automatic default locking, to request an
unconditional lock on the database itself. The request for the database lock cannot complete
because the data set lock must be released �rst. But the data set lock cannot be released
because the program is waiting for the database lock to be granted. The result: deadlock due
to conicting locks within one program.

Caution The special MPE capability, Multiple RIN (MR), is required to complete
multiple, simultaneous locks on the same database. Transact provides this
capability. Use extreme caution when employing a multiple-lock strategy.
Hewlett-Packard does not accept responsibility for possible deadlocks or
system lockouts that could result from the improper use of the MR capability.

Recommendations:

Use multiple simultaneous locks only with conditional locking, not with
unconditional locking.

Use multiple simultaneous locks only if absolutely required, such as when
locking more than one database.

Use a consistent locking strategy. All programs using multiple, simultaneous
locks and concurrent access should lock at the same level and in the same
order .

In addition, if you are using Transact with unconditional locking and multiple,
simultaneous locks, there are two situations you should avoid or, at least,
handle very carefully. They are:

Using a �le equation so as to have two names for the same database, data
set, or data entry.

Combining Transact Default Locking with a PROC statement to call
DBLOCK and lock a data set or entry unconditionally.

With Default Locking, Transact uses unconditional locking at the database level. If you
implement multiple simultaneous locks and allow concurrent database access, either you must
develop a locking strategy that does not deadlock, or you must use one of the other methods
of locking available with Transact.

With Optimized Locking, Transact combines conditional locking at the appropriate level with
a retry loop, so that your program seems to wait until the lock is granted. However, Transact
retains control. If you press �Ctrl� Y, the program is interrupted and Transact returns to
command mode with a > prompt. There is no possibility of a deadlock.

You can use the LOCK option on the LOGTRAN statement to specify whether to use
conditional or unconditional locking and what locking level to use. Transact keeps track of
any locks applied for transaction locking and returns an error message if you attempt to issue
conicting locks. To take full advantage of this protection, we recommend that you do not
combine other methods of locking with transaction locking within the same program.

6-4 Accessing Databases and Files

Of course, if you choose not to use locking, creating a deadlock is impossible. This is only
recommended if combined with read-only or exclusive database access. Otherwise, you cannot
ensure data integrity.

Understanding the Optimized Locking Scheme

All locks applied by optimized locking are conditional. Table 6-1 shows the rules that
Transact uses for optimized locking when determining the level at which to lock. However, the
Transact programmer need not know these rules, since the rules are applied automatically.
The rules are presented for the programmer who needs to know the locking level to assure the
logical integrity of the database and to conform to a pre-established locking strategy.

Table 6-1 summarizes the conditions a�ecting the locking level. The �rst four columns
present the conditions as boxes, alternate possibilities appearing in the same column. For
example, if you are using the DELETE verb, you would pick the second box in the �rst
column. To the right of this box, you would �nd two boxes representing two groups of
modi�ers. If you are using the CHAIN modi�er, you would choose the top box. There are
two boxes to the right of this box. If a PERFORM appears in the DELETE statement,
you would choose the Using PERFORM? box. If the DELETE statement includes a
LOCK, then you would choose the Using LOCK? box in the next column. In the �nal
column, the Locking Level box, the entry "Database" indicates that the combination
"DELETE(CHAIN) . . . , LOCK,PERFORM= . . . " results in a database level lock.

Accessing Databases and Files 6-5

Table 6-1 Automatic Locking Using the Optimized Locking Scheme

Verb Modi�er Using
PERFORM?

Using
LOCK?

Locking
Level

FIND
OUTPUT

CHAIN
RCHAIN

Yes Yes Data Base

No No Lock

No Yes Entry

No No Lock

None
DIRECT
CURRENT
SERIAL
RSERIAL

Yes Yes Data Base

No No Lock

No Yes Data Set

No No Lock

DELETE
REPLACE

CHAIN
RCHAIN

Yes Yes Data Base

No Data Base

No Yes Entry/Set*

No Entry/Set*

None
DIRECT
CURRENT
SERIAL
RSERIAL

Yes Yes Data Base

No Data Base

No Yes Data Set

No Data Set

PUT
UPDATE

None Not Applicable Yes Data Set

No Data Set

GET CHAIN
RCHAIN

Not Applicable Yes Entry

No No Lock

None
DIRECT
CURRENT
SERIAL
RSERIAL

Not Applicable Yes Data Set

No No Lock

* The REPLACE verb locks at the entry level with the UPDATE option and at the set level
without the UPDATE option.

6-6 Accessing Databases and Files

Using the LOCK Option with the Database Access Verbs

The LOCK option applies to all database access verbs, which include DELETE, FIND, GET,
OUTPUT, PUT, REPLACE, and UPDATE. The LOCK option can be used to override the
SET(OPTION) NOLOCK statement for any speci�c verb. Tables 6-2 and 6-3 show how
locking is applied with the possible combinations of locking methods for database and MPE
and KSAM �les, respectively. See the description of the individual verbs in Chapter 8 for
more information. There is also a LOCK option that applies to the LOGTRAN verb, which is
discussed in the next subsection.

Table 6-2 Understanding Database Locking

Automatic Locking

Combined With:

Transact Verbs

FIND OUTPUT GET PUT DELETE UPDATE REPLACE

No options A A A B* C* B* C*

LOCK option B B B B B B B

LOCK option and SET(OPTION) NOLOCK B B B B B B B

SET(OPTION) NOLOCK only A A A A A A A

A = No locks
B = Lock for the entire verb
C = Lock and unlock for each record retrieved
* = Lock if database opened with mode 1; otherwise no locks

Table 6-3 Understanding KSAM and MPE File Locking

Automatic Locking

Combined With:

Transact Verbs

FIND OUTPUT GET PUT DELETE* UPDATE REPLACE

No options C C C C C C C

LOCK option B B B B B B B

LOCK option and SET(OPTION) NOLOCK B B B B B B B

SET(OPTION) NOLOCK only A A A A A A A

SET(OPTION) NOLOCK and
LOCK option on SYSTEM statement

A A A A A A A

A = No locks
B = Lock for the entire verb
C = If lock is speci�ed in SYSTEM statement, lock and unlock for each record retrieved
* = Delete not allowed on an MPE �le

Accessing Databases and Files 6-7

Using the LOCK Option with the LOGTRAN Statement

Locking across a transaction can be handled by transaction-level locking executed when you
specify the LOCK option on the LOGTRAN statement. Transaction locking can be used with
or without database logging. The syntax is:

LOGTRAN(BEGIN) base,log-message[,option-list];

where option-list includes the LOCK option in the following format:

LOCK(setname[(cond)][,setname[(cond)]]...)

You specify setname as a list of data set names separated by commas or as a @ sign to specify
that the entire database (such as the base speci�ed in the SYSTEM statement) is locked. You
can also specify a lock condition parameter, cond , which can be COND or UNCOND, representing
conditional or unconditional locking, respectively. The default is conditional locking. The data
sets speci�ed are locked at the set level when Transact encounters the LOGTRAN(BEGIN) or
LOGTRAN(XBEGIN) statements. The data sets are unlocked when Transact encounters a
corresponding LOGTRAN(END), LOGTRAN(XEND), or LOGTRAN(XUNDO) statement
with the same database name (same database access path).

When using the LOCK option on the LOGTRAN statement, you should also specify the
SET(OPTION) NOLOCK statement to ensure that automatic locking is not activated for any
database access verbs within your transaction. The SET(OPTION) NOLOCK statement does
not a�ect transaction locking. To re-activate automatic locking, use the RESET(OPTION)
LOCK statement. In the example shown here, transaction level locking is used to lock two
data sets in two di�erent databases. Transaction locking is also used in the second version of
the subsequent example.

SYSTEM LOCKS,BASE=BASE1(";"),BASE2(";");

DEFINE(ITEM) X1 X(10):

X2 X(10);

SET(OPTION) NOLOCK;

PROMPT X1:X2;

LOGTRAN(BEGIN) $HOME," Lock Base1 Set ",LOCK(Base1master);

LOGTRAN(BEGIN) BASE2," Lock Base2 Set ",LOCK(Base2master);

PUT Base1master,LIST=(X1);

PUT Base2master,LIST=(X2);

LOGTRAN(END) BASE2," Unlock Base2 Set ";

LOGTRAN(END) $HOME," Unlock Base1 Set ";

EXIT;

6-8 Accessing Databases and Files

Dynamic Roll-Back

The TurboIMAGE/iX dynamic roll-back feature is supported by Transact/iX. This section
briey explains how dynamic roll-back works.

TurboIMAGE/iX, through the use of Transaction Manager (XM), allows uncommitted logical
transactions to be rolled back dynamically (online) while other database activity is occurring.
This feature is accomplished through the use of three TurboIMAGE intrinsics: DBXBEGIN,
DBXEND, and DBXUNDO. These intrinsics are supported in Transact/iX by using the
LOGTRAN verb with modi�ers XBEGIN, XEND, and XUNDO.

Transact can compile dynamic roll-back code correctly on MPE V and in compatibility mode
on MPE/iX, but will issue a warning indicating that this is not supported. Transact/V and
Transact/CM will issue an error message if they encounter the dynamic roll-back instruction
p-code while processing the p-code �le.

For more detailed descriptions of dynamic roll-back, see the TurboIMAGE/XL Database
Management System Reference Manual.

Locking

To use dynamic roll-back, TurboIMAGE requires that applications have strong locking
(second level consistency). Strong locking means that DBLOCK is the �rst call for the
transaction and DBUNLOCK is the last call in the dynamic transaction. (DBUNLOCK
should be called immediately after DBXEND.) Because of this requirement, a dynamic
transaction does not allow the database to be opened in mode 2, which does not enforce
locking.

Transact requires two events for dynamic roll-back transactions:

Automatic locking must be disabled by issuing a SET(OPTION) NOLOCK statement prior
to the LOGTRAN statement. If this is not done, strong locking will not be possible and an
error message will be issued.

Assuming that SET(OPTION) NOLOCK has been issued, Transact automatically performs
strong locking when the LOCK option is used with LOGTRAN(XBEGIN).

If the LOCK option is not included on the LOGTRAN(XBEGIN) verb, the user takes all
responsibilities for locking.

If the user performs redundant locks or unlocks in the transaction before ending it (if opened
in mode 1), a TurboIMAGE error message is issued and the transaction is aborted.

If the necessary locking is not done prior to the LOGTRAN(XBEGIN), the transaction cannot
begin and a TurboIMAGE error message is issued.

If an error occurs inside a database transaction, any database access verbs used after that
error will return a status of -222. (See the TurboIMAGE/XL Database Management System
Reference Manual for an explanation of return status.) Only a LOGTRAN(XUNDO) is
allowed when a database transaction encounters an error.

Accessing Databases and Files 6-9

Examples of Locking Strategy With LOGTRAN

The �rst example is a simpli�ed roster program for an airline reservation system. Each
ight has a master data set record that contains the number of seats available on that ight.
This record is linked to a detail data set chain containing the list of passengers. The data
dictionary is assumed to contain all the necessary data about the database.

The ADD FLIGHT command sequence uses a PUT statement to add a ight record to the
master data set. NO-OF-SEATS contains the total number of seats on the ight when the
PUT statement is executed. Since optimized locking is in e�ect, FLIGHT-MAST is locked
at the data set level. If optimized locking were not speci�ed, the entire database would be
locked.

The ADD PASSENGER command sequence uses a GET statement to retrieve the number of
seats available on that ight from FLIGHT-MAST. Automatic locking would lock at the data
set level if the LOCK option were speci�ed, but in this example no locking is done at all. If
the number of seats is not zero, then the program subtracts 1 from NO-OF-SEATS and uses
an UPDATE statement to update the ight record and a PUT statement to add a passenger
record to ROSTER-DETL. Otherwise, a message is issued and a record is not added.

6-10 Accessing Databases and Files

SYSTEM FLIGHT,BASE=FLIGHT("SEATS",1,1)

$$ADD:

$FLIGHT:

PROMPT(PATH) FLIGHT;

PROMPT NO-OF-SEATS("Total number of seats available");

PUT FLIGHT-MAST;

$PASSENGER:

PROMPT PASSENGER;

PROMPT(PATH) FLIGHT;

LIST NO-OF-SEATS;

GET FLIGHT-MAST,LIST=(@);

IF STATUS=0 THEN

IF (NO-OF-SEATS) <> 0 THEN

DO

LET (NO-OF-SEATS) = (NO-OF-SEATS) - 1;

UPDATE FLIGHT-MAST,LIST=(@),STATUS;

IF STATUS=0 THEN

PUT ROSTER-DETL,LIST=(PASSENGER:FLIGHT);

DOEND

ELSE

DO

DISPLAY "Sorry, no more seats available."

DOEND;

$$ROSTERS:

LIST(AUTO) FLIGHT-MAST; << Flight,no-of-seats,passenger >>

FIND(SERIAL) FLIGHT-MAST,PERFORM= OUTPUT-ROSTER,LIST=(@);

END(SEQUENCE);

OUTPUT-ROSTER:

DISPLAY FLIGHT:NO-OF-SEATS;

SET(KEY) LIST(FLIGHT);

FORMAT PASSENGER;

OUTPUT(CHAIN) ROSTER-DETL,LIST=(PASSENGER);

RETURN;

If the program relies only on automatic locking, a problem can arise with this transaction in
a multi-user environment. If another process alters the same ight record in FLIGHT-MAST
between the GET statement and the UPDATE statement, then the quantity in
NO-OF-SEATS will be incorrect. Also, other processes accessing both FLIGHT-MAST and
ROSTER-DETL could get erroneous results between the UPDATE statement and the PUT
statement in the ADD PASSENGER transaction because the database is in an inconsistent
state. To insure data integrity both the FLIGHT-MAST and ROSTER-DETL data sets
should be locked just before the GET statement and unlocked at the end of the command
sequence.

Accessing Databases and Files 6-11

The following code does that:

SET(OPTION) NOLOCK;

LOGTRAN(BEGIN) $HOME, "Add passenger transaction",

LOCK(FLIGHT-MAST,ROSTER-DETL);

GET FLIGHT-MAST,LIST=(@);

IF (NO-OF-SEATS) <> 0 THEN

DO

LET (NO-OF-SEATS) = (NO-OF-SEATS) - 1;

UPDATE FLIGHT-MAST,LIST=(@),STATUS;

IF STATUS=0 THEN

PUT ROSTER-DETL,LIST=(PASSENGER:FLIGHT);

DOEND

ELSE

DO

DISPLAY "Sorry, no more seats available."

DOEND;

LOGTRAN(END) $HOME, "End of add passenger";

RESET(OPTION) LOCK;

Note that the LOGTRAN(END) statement is placed so that Transact encounters the
statement no matter which way the IF statement branches.

Finally, the ROSTERS command sequence (see preceding example) uses FIND and OUTPUT
statements to produce a report. FLIGHT-MAST supplies the ight identi�cation and number
of available seats; ROSTER-DETL supplies the names of the passengers. Automatic locking
does no locking because these are reporting statements and the LOCK option was not
included. If the FIND statement had LOCK on it, Transact would lock the entire database
for the entire FIND(SERIAL) because of the PERFORM= modi�er. A LOGTRAN(BEGIN)
statement with a LOCK option including the two data sets can be added just before the
FIND(SERIAL). This would lock just the two data sets for the entire transaction. Then a
LOGTRAN(END) statement immediately after the FIND(SERIAL) would unlock the data
sets.

The next example is the same as the example above, except that it includes dynamic
transaction logging instead of user logging.

To insure data integrity, both FLIGHT-MAST and ROSTER-DETL data sets are locked
prior to the GET statement (by the LOGTRAN verb). If something goes wrong while
adding a passenger to the ROSTER-DETL or updating the NO-OF-SEATS in the
FLIGHT-MAST data set, the transaction will be rolled back to the state it was in prior to the
LOGTRAN(XBEGIN).

6-12 Accessing Databases and Files

The following example shows how dynamic transactions are used:

SET(OPTION) NOLOCK;

LOGTRAN(XBEGIN) $HOME, "Add passenger transaction",

LOCK(FLIGHT-MAST,ROSTER-DETL);

GET FLIGHT-MAST,LIST=(@);

IF (NO-OF-SEATS) <> 0 THEN

DO

LET (NO-OF-SEATS) = (NO-OF-SEATS) - 1;

UPDATE FLIGHT-MAST,LIST=(@),STATUS;

IF STATUS = 0 THEN

PUT ROSTER-DETL,LIST=(PASSENGER:FLIGHT),STATUS;

DOEND

ELSE

DO

DISPLAY "Sorry, no more seats available."

DOEND;

IF STATUS <> 0 THEN

LOGTRAN(XUNDO) $HOME, "Roll-back passenger - cannot add"

ELSE

LOGTRAN(XEND) $HOME, "End of add passenger";

RESET(OPTION) LOCK;

Limitations

Transaction Manager (XM) allows a transaction to be up to 1 MB in length. This poses a
limitation for transactions. Some Transact verbs perform many iterations within a statement,
such as DELETE(CHAIN) and REPLACE(SERIAL), in which transactions can reach the
1 MB limit. If that limit is reached, the dynamic transaction is aborted and the partial
transaction is backed out.

The Transact verbs a�ected by dynamic transactions are PUT, UPDATE, DELETE, and
REPLACE. The PUT and UPDATE verbs are single iteration verbs so the limitation should
not a�ect them. However, DELETE and REPLACE are a�ected by this limitation so you
may want to use the following workarounds:

DELETE Verb

The DELETE verb can have many iterations when using the SERIAL, RSERIAL, CHAIN,
or RCHAIN modi�er that can cause the Transaction Manager limitation to be reached. If
there is a strong possibility of reaching the limit, you should use the FIND verb with the
PERFORM option as a workaround. The PERFORM routine should call dynamic transaction
logging for every n number of DELETE(CURRENT) records (where n is the number or
records deleted for each dynamic transaction that is shorter in length than the limitation), or
select a smaller set of records to delete by using the match register. For more information, see
the TurboIMAGE/XL Database Management System Reference Manual .

Accessing Databases and Files 6-13

REPLACE Verb

The REPLACE verb can have many iterations when using the SERIAL, RSERIAL, CHAIN,
or RCHAIN modi�er that can cause the Transaction Manager limitation to be reached. If
there is a strong possibility of reaching the limit, you should use the FIND verb with the
PERFORM option as a workaround. The PERFORM routine should call dynamic transaction
logging for every n number of REPLACE (CURRENT) records (where n is the number or
records deleted for each dynamic transaction that is shorter in length than the limitation), or
select a smaller set of records to replace by using the match register.

Database Unlocking

The �rst call to DBUNLOCK unlocks all previously-set locks for that database. The �rst call
to DBUNLOCK can be issued in several ways:

A PROC statement.

A LOGTRAN(XEND) statement, provided that the LOCK option was speci�ed on the
LOGTRAN(XBEGIN) statement.

A LOGTRAN(XUNDO) statement, provided that the LOCK option was speci�ed in the
LOGTRAN(XBEGIN) statement.

The end of the Transact/iX program.

If you are calling DBLOCK and DBUNLOCK with the PROC statement, we recommend
that you do all your locking/unlocking with the PROC statement. Combining LOGTRAN
locking/unlocking with calls to DBLOCK/DBUNLOCK can produce unexpected results or
errors.

6-14 Accessing Databases and Files

Using KSAM and MPE Files

When using KSAM and MPE �les, it is best to de�ne a bu�er record whose child items are
the pieces of the record. Then you can read, write, or list the record by the bu�er name and
also refer to the items individually.

Defining a Buffer Record

The following example shows how to de�ne a bu�er record that contains all �elds.

SYSTEMS FREC, FILE= WORK(ACCESS(R/W),40,3,100);

DEFINE(ITEM) BUFFER X(80):

ITEM1 X(25) = BUFFER(1):

ITEM2 X(30) = BUFFER(26):

ITEM3 X(15) = BUFFER(56):

ITEM4 X(10) = BUFFER(71);

LIST BUFFER;

GET(SERIAL) WORK, LIST=(BUFFER);

DISPLAY ITEM1:

ITEM2:

ITEM3:

ITEM4;

DATA(SET) ITEM1:
ITEM2:

ITEM3:

ITEM4;

END FREC;

The LIST= option must contain either the entire KSAM record bu�er or some beginning
portion of the record. In other words, Transact must know where the beginning of the bu�er
is to calculate key o�sets, since the �rst item in the LIST= option is used to determine where
the record starts. Transact needs this information to call FFINDBYKEY, which requires the
key position as one of its parameters.

Accessing Databases and Files 6-15

Table 6-4 Understanding the KSAM Interface

KSAM File Access

Transact Verb Key Type File De�ned As:

MPE File KSAM File

FIND(SERIAL) N/A Primary key sequence Chronological sequence

FIND(CHAIN) PRIMARY Reads chronological record
zero and then primary key
sequence until EOF

Primary key sequence

SECONDARY Same as primary Secondary key sequence

FIND None One record primary key
sequence

Error

PRIMARY Same as no key One record of primary key
value

SECONDARY Same as no key One record of secondary
key value

General Format for Key-Driven Access

With the construct shown below, you can set up a primary or secondary key (even a generic
search value) and read subsequent values in the key sequence. The only thing you cannot
do is set up a key value that doesn't exist. The �rst GET(CHAIN) determines the starting
position in the �le.

SYSTEM NAME, KSAM=FILENAME; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) RECORD 80 X(1):

KEYN X(5) = RECORD(1);

LIST RECORD;

MOVE (KEYN) = "VALUE"; << GIVE KEY A VALUE >>

SET(KEY) LIST(KEYN); << SET UP KEY/ARGUMENT REGISTERS >>

GET(CHAIN) FILENAME, LIST=(RECORD); << USE CHAINED ACCESS ON PRIMARY >>

<< KEY >>

REPEAT

DO
GET(CHAIN) FILENAME, LIST=(RECORD), STATUS;

DOEND

UNTIL STATUS <>0;

END NAME;

6-16 Accessing Databases and Files

Traversing a KSAM File by Primary Key

In this example, a KSAM �le is read in primary key sequence. Compare it with a later
example of how to read an MPE �le by primary key.

SYSTEM KPLAY4, KSAM=KTRAN3; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) KARRAY 80 X(1):

KEY1 X(5)= KARRAY(1); << DEFINE PRIMARY KEY >>

LIST KARRAY,INIT;

MOVE (KEY1)= "$$$$$"; << GIVE KEY A VALUE >>

SET(KEY) LIST(KEY1); << SETUP KEY/ARGUMENT REGISTERS >>

FIND(CHAIN) KTRAN3,LIST=(KARRAY), << USE CHAINED ACCESS ON >>

PERFORM=DISP; << PRIMARY KEY >>

EXIT;

DISP:

DISPLAY KARRAY;

RETURN;

END KPLAY4;

Traversal by Alternate Key

Here the �le is accessed by alternate key, where the key value is AAAAE.

SYSTEM KPLAY4, KSAM= KTRAN3; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) KARRAY 80 X(1):

KEY2 X(5) = KARRAY(2); << DEFINE ALTERNATE KEY >>

LIST KARRAY, INIT;

MOVE (KEY2)= "AAAAE"; << GIVE KEY A VALUE >>

SET(KEY) LIST (KEY2); << PUT KEY AND VALUE IN >>

<< KEY/ARGUMENT REGISTERS >>

FIND(CHAIN) KTRAN3,LIST=(KARRAY), << USE CHAINED ACCESS ON >>

PERFORM=DISP; << ALTERNATE KEY >>

EXIT;

Accessing Databases and Files 6-17

DISP:

DISPLAY KARRAY;

RETURN;

END KPLAY4;

General Format for Generic Keys

The way to set up the key register for a generic search is to de�ne a child item that is the
size of the search string and set up the Key/Argument registers with its name or value. For
example:

SYSTEM NAME, KSAM=FILENAME; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) RECORD X(80): << 80 BYTE RECORD >>

KEY1 X(5) = RECORD(1): << KEY IS FIRST FIVE CHAR >>

GEN X(2) = RECORD(1); << GENERIC SEARCH ITEM >>

LIST RECORD,INIT;

MOVE (GEN) = "AB"; << DEFINE GENERIC SEARCH VALUE >>

SET(KEY) LIST(GEN); << SETUP KEY/ARGUMENT REGISTER >>

FIND(CHAIN) FILENAME,LIST=(RECORD); << USE CHAINED ACCESS ON >>

<< GENERIC KEY >>

END NAME;

Search with Generic Key

Generic keys must be equal to or less than the length of the search value.

SYSTEM KPLAY4, KSAM=KTRAN3; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) KARRAY 80 X(1):

KEY X(5) = KARRAY(2): << ALTERNATE KEY >>

KGEN X(2) = KARRAY(2); << GENERIC SEARCH VALUE >>

LIST KARRAY, INIT;

DATA KGEN; << RETRIEVE GENERIC SEARCH >>

<< VALUE >>

6-18 Accessing Databases and Files

SET(KEY) LIST(KGEN); << SETUP KEY/ARGUMENT REGISTER >>

<< WITH SEARCH VALUE >>

FIND(CHAIN) KTRAN3,LIST=(KARRAY), << USE CHAINED ACCESS ON >>

PERFORM=DISP; << KSAM FILE >>

EXIT;

DISP:

DISPLAY KARRAY;

RETURN;

END KPLAY4;

Simulating an Approximate Key Search

Transact does not support true approximate key searches. This example shows a method of
using Transact to achieve the same results as with an approximate key search.

The �rst GET(CHAIN) determines the starting position in the �le. Subsequent reads follow
the key sequence and read all values greater than or equal to the key value de�ned. The initial
key value must exist.

SYSTEM APROX,KSAM=KTRAN3; << OPEN AS KSAM FILE >>

DEFINE(ITEM) KARRAY 80 X(1):

KEY1 X(5)=KARRAY(1); << DEFINE KEY >>

LIST KARRAY, INIT;

MOVE (KEY1)= "SSSSS"; << GIVE KEY INITIAL VALUE >>

SET(KEY) LIST(KEY1); << SETUP KEY/ARGUMENT REGISTER >>

GET(CHAIN) KTRAN3, LIST=(KARRAY); << USE GET(CHAIN) TO READ >>

DISPLAY; << FIRST RECORD >>

REPEAT << USE GET(CHAIN) WITH STATUS TO CONTINUE READING IN KEY >>

<< SEQUENCE AND TO PREVENT STOPPING WHEN KEY VALUE CHANGES >>

DO

GET(CHAIN) KTRAN3, LIST=(KARRAY),STATUS;

DISPLAY;

INPUT "DO YOU WANT TO CONTINUE (YES/NO)?";

DOEND

UNTIL INPUT = "NO";

END APROX;

Accessing Databases and Files 6-19

Chronological Traversal of a KSAM File

The �le is read in chronological sequence using FREADC.

SYSTEM KPLAY4, KSAM= KTRAN3; << OPEN AS A KSAM FILE >>

DEFINE(ITEM) KARRAY 80 X(1):

LIST KARRAY, INIT;

FIND(SERIAL) KTRAN3, LIST=(KARRAY), << ACCESS THE FILE SERIALLY >>

PERFORM=DISP;

EXIT;

DISP:

DISPLAY KARRAY;

RETURN;

END KPLAY4;

6-20 Accessing Databases and Files

IPC Files

If your Transact program is using IPC (message) �les, it is important to remember that one
program can open a message �le only for either reading or writing, not for both. Therefore, if
two processes are reading and writing to each other, two message �les are needed.

The following example shows two programs, both accessing the same IPC �le called MSG1.
The �rst program uses the �le for read only, and the second for write only. This message �le
was built outside of Transact with the MPE BUILD command, for example:

BUILD MSG1;MSG

The read program uses the GET statement instead of the FILE(READ) statement, so that
STATUS can be used to control error handling. If automatic error handling is used (such as
no STATUS option), the program aborts when it gets to the end of �le.

READ PROGRAM

SYSTEM MSGR,FILE=MSG1(READ(OLD));

DEFINE(ITEM) E X(256);

LIST E,INIT;

LOOP1:

GET(SERIAL) MSG1,LIST=(E),STATUS;
IF STATUS=-1 THEN

DO

END; << END PROGRAM >>

DOEND;

DISPLAY;

GO TO LOOP1;

WRITE PROGRAM

SYSTEM MSGW,FILE=MSG1(WRITE(OLD));

DEFINE(ITEM) E X(256);

LIST E,INIT;

LOOP1:

DATA E;

FILE(WRITE) MSG1,LIST=(E);

DISPLAY;

GO TO LOOP1;

Accessing Databases and Files 6-21

7

Error Handling

Transact has a signi�cant amount of error processing built into the run-time environment.
This chapter explains the error handling process and the e�ect of the STATUS option on
various verbs, especially when errors are detected. The topics covered are:

Automatic error handling

Using the STATUS option

Compiler error messages

Processor error messages

Using EXPLAIN

Error Handling 7-1

Automatic Error Handling

Transact automatically traps various types of errors encountered during the execution of a
program and takes certain predetermined actions. Transact traps errors during data entry,
during database or �le operations, and during arithmetic calculations in LET expressions.

Data Entry Errors

Transact validates a value entered as a response to a data entry prompt. This is done
according to attributes de�ned for the data item in a data dictionary or the Transact
program|that is, data type, �eld size, decimal �eld length, integer �eld length. If it detects
an error during validation, it issues an appropriate error message on the terminal and reissues
the data entry prompt.

Database or File Operation Errors

Transact assumes that a data set or �le error was caused by an incorrect user input|for
example, by the user specifying an incorrect value for a key item. (Other types of software
error conditions should be eliminated before the program is put into production mode.) If
Transact detects an error, it generates an error message and returns program control to an
appropriate statement preceding the data set or �le operation.

The return location can be the start of the command sequence. In this case, the program
reissues the command prompt to allow the user to start over with a command. The return
location can be to a data entry prompt too. For instance, if an error occurs on the second
of two database or �le operation verbs and there is a data entry prompt between the two,
the return location is the prompt statement immediately following the �rst database or �le
operation.

The intention of the logic that determines the return location is to restart at a program point
that allows a corrected value to be entered, one that will not cause the error to recur. If
you choose to use automatic error handling, do not include statements between the prompts
and �le or database access verbs which may alter the data used in the operation. This is
important because automatic error handling re-executes all statements between where the
error occurred (such as the �le or database operation) and where the data was collected
(such as the PROMPT verb). Ignoring this caution may give you unanticipated results. For
example:

(1) LET (COUNTER) = 0;

(2) PROMPT (DATA-ITEM);

(3) LET (COUNTER) = (COUNTER) + 1;

(4) FIND (DATA-ITEM);

(5) PUT DATASET, LIST=(DATA-ITEM,COUNTER);

7-2 Error Handling

Consider the following:

1. The user enters the data item in response to PROMPT in (2).

2. The program increments the counter from 0 to 1 in (3).

3. The data item entered in (2) causes an error in the FIND operation in (4).

4. Automatic error handling causes the program to repeat (2).

5. The user receives an error message from the database and is prompted again for
DATA-ITEM.

6. The user enters the corrected DATA-ITEM.

7. The program increments the counter from 1 to 2 in (3).

8. The FIND operation in (4) is now successful.

9. The PUT operation in (5) stores the count of 2|which may not be the desired result.

If you want to return to a location of your choice where you can process the error, you can use
the \ERROR=label" option on the associated �le or data set operation statement.

There are some conditions under which the ERROR= option is not taken when no entry is
found. This information is summarized in Table 7-1.

Table 7-4 shows the contents of the status register following a database or �le access
statement when the STATUS option is not used.

You can test the contents of the STATUS register with an IF statement within your own error
routines at a label speci�ed by the ERROR= option. You can display the contents of the
register by �rst assigning it to a 32-bit data item. The data item should be type I(10,,4) to
hold the maximum STATUS value. For example:

DEFINE(ITEM) STAT I(10,,4);

LIST STAT;

LET (STAT) = STATUS;

DISPLAY STAT;

In addition to branching, the ERROR= option sets a value to the status register to identify
the type of error.

Error Handling 7-3

Table 7-1.

Circumstances that Determine Whether ERROR= Branch Is Taken during

Database and File Operations

Modi�er
Chain
RChain

Serial
RSerial Direct Current Primary None

Database
or File
Error

No
entry

No
master

No
record

Invalid
record
number

No
current
record
de�ned

No
master

No
entry

No
master

Delete N Y N Y Y Y N/A Y

Delete (S) Y Y Y Y Y Y N/A Y

Find N N N Y N N N/A N

Find (S) Y Y Y Y N N N/A N

Get Y Y Y Y Y Y N/A Y

Get (S) Y Y Y Y Y Y N/A Y

Output N Y N Y Y Y N/A Y

Output (S) Y Y Y Y Y Y N/A Y

Path N/A N/A N/A N/A N/A N/A N N

Path (S) N/A N/A N/A N/A N/A N/A N Y

Put N/A N/A N/A N/A N/A N/A N/A Y

Put (S) N/A N/A N/A N/A N/A N/A N/A Y

Replace N Y N Y Y Y N/A Y

Replace (S) Y Y Y Y Y Y N/A Y

Y = Taken
N = Not taken
(S) = Status option used

Arithmetic Calculations

Arithmetic errors can be handled within a Transact program by including the ERROR=
option on the LET verb. (See a complete discussion under LET in Chapter 8.)

7-4 Error Handling

Using the STATUS Option

You can disable several aspects of Transact's automatic processing by using the STATUS
option. Using the STATUS option causes the status register to be set di�erently then when
the STATUS option is not used. You can then test the contents of the status register (by
using an IF statement) before deciding what further processing should be done. The STATUS
option has a di�erent e�ect depending on whether the statement in which it appears performs
data entry or accesses a database or �le.

You can assign a value to the status register with a LET statement. Thus, you can reset
status to zero with the following statement:

LET STATUS = 0;

Data Entry Errors

Under automatic error handling, the status register contains the number of characters entered
in response to the data entry verbs DATA, INPUT, and PROMPT.

When the user enters \]" or \]]" and the verb does not have a STATUS option, an escape to
the next processing level is generated as discussed in the \Data Entry Control Characters"
section in Chapter 5, \User Interface." The STATUS option suppresses the escape and allows
you to test the contents of the register before continuing processing.

Table 7-2 shows the contents of the status register when a data entry verb is used with and
without the STATUS option.

Table 7-2. Contents of Status Register After Data Entry Verbs

User Entry Status Register
with no

STATUS Option

Status Register
with the

STATUS Option

<CR> 0 0
ABC 3 3
blanks -3 -3
timeout -4 -4

] escape -1
]] escape -2

When the STATUS option is used with the CHECK or CHECKNOT option and the user
enters a blank, a carriage return, \]", or \]]", neither CHECK nor CHECKNOT will be
performed.

Transact validates data for data entry verbs whether or not the STATUS option is used.

Error Handling 7-5

Database or File Operation Errors

Specifying the STATUS option with database and �le operation verbs suppresses the
automatic error handling described above. Instead, you must determine further processing
according to the contents of the status register. When STATUS is speci�ed, the e�ect of the
operation is described by the value in the status register:

Status
Register Value

Meaning

0 The operation was successful.

-1 A KSAM or MPE end-of-�le condition for serial read or end-of-chain for chain read
has occurred.

>0 For a description of the condition that occurred, refer to the database condition word
or KSAM �le system error documentation corresponding to the value.

1 If NOFIND option or the GET verb is used and the record is found.

In addition, STATUS has the following e�ects:

It causes accesses and deletions that are normally multiple (iterative) to be single. This
a�ects the iterative verbs: DELETE, FIND, OUTPUT, and REPLACE.

It suppresses the location of the chain head when DELETE, FIND, GET, OUTPUT, or
REPLACE is used with the CHAIN modi�er. Before using these verbs with the CHAIN
modi�er, you must locate the chain head with the PATH verb.

It suppresses the normal rewind performed on a data set or �le when DELETE, FIND,
GET, OUTPUT, or REPLACE is used with a SERIAL modi�er. You should force a rewind
by closing the �le or data set before using any of these verbs with the SERIAL modi�er.

Table 7-3 summarizes the e�ect of STATUS with database and �le operation verbs.

Table 7-3. STATUS Option with Database and File Operation Verbs

Verb No Automatic
Error Handling
or Recovery

No CLOSE or
FIND Before the

Operation
(CHAIN and SERIAL

Modi�ers)

Multiple
Action

Suppressed

CLOSE X
DELETE X X X
FIND X X X
GET X X
OUTPUT X X X
PATH X
PUT X
REPLACE X X X
UPDATE X

7-6 Error Handling

Table 7-4 shows the contents of the status register when a data management verb is used
without the STATUS option.

Table 7-4.

Contents of Status Register Following Operations of Data Management Verbs

when STATUS Option Is NOT USED

Verb Status Register Value

Operation Successful Operation Not Successful

DELETE
FIND
OUTPUT
REPLACE

Number of entries or records
selected (not necessarily number
retrieved)

0 = No entries or records found*

-1 = No master entry
(FIND(CHAIN) and
FIND(RCHAIN) only*)

Otherwise unde�ned

GET
PUT
UPDATE

0 = One entry or record found -1 = Entry not found

Otherwise unde�ned

FILE(READ) Number of bytes read

Otherwise unde�ned

-1 = End of �le

PATH Number of records in detail data
set chain

0 = No detail set chain*

-1 = No master entry

Otherwise unde�ned

FILE(CLOSE)
FILE(CONTROL)
FILE(SORT)
FILE(UPDATE)
FILE(WRITE)

0 = Successful operation Unde�ned

* Entry not found does not always activate the ERROR= option; see Table 7-1.

For additional information about the STATUS option with these verbs, see Chapter 8,
\Transact Verbs."

Error Handling 7-7

Compiler Error Messages

The compilers for Transact/V and Transact/iX generate error messages with di�erent formats.

Transact/V Error Message Formats

Errors that resulted in the generation of no p-code or erroneous p-code. Unless you have
speci�ed the XERR compiler control option, no p-code �le is produced.

*** ERROR# n ^(error-info) error-message

Conditions detected by the compiler that do not completely follow Transact syntax rules.
However, they are correctable by the compiler in generating the p-code �le.

** WARNING# n ^(error-info) error-message

where \^" is positioned under the location in the statement line where the compiler detected
the error condition, and where n is the total number of errors reported at this point of the
compile of the program.

Transact/iX Error Message Formats

The Transact/iX compiler generates three types of error messages in addition to those
generated by the Transact/V compiler:

8<
:

*ERROR:

*INFO:

*WARNING:

9=
;error-message (error-info)

Error-Info

Error-Info takes the following form:

(type number)[code-location]

where:

type One of the following:
Transact/V TVA
Transact/iX TXF, TXG

number The error number for types TVA, TXF and TXG.

code-location (For Transact/iX only) The internal location (in the program) at
which the error occurred. (See the second column of numbers in the
program-compilation listing.)

7-8 Error Handling

Run-time Error Messages

Transact generates two types of error message: one type indicates actual errors, the other type
provides information to the user but does not indicate an actual error. Both types of message
are described below and in the appropriate reference manual for the indicated subsystem.

Error Message Format

Error messages are displayed in the following format:

�
*ERROR:

*INFO:

�
error-message (error-info)

�
program-name

�

Information messages are not errors but are conditions that the processor will tell the user
about. Also, messages that occur only in test modes are type INFO.

Error-Info

Whether appearing in an error or an information message, error-info can contain up to �ve of
the following �elds:

(type number [,code-location[,PARM(n)][,�le-name]]

where

type is one the following:

Transact/V TVB

Transact/iX TXA, TXB, TXC, TXD, TXE, TXH, TXI, TDEBUG

The following error types are derived from the indicated
subsystem. Consult the appropriate reference manual for an
explanation of the error condition.

IMAGE IMAGE/V or TurboIMAGE/V database error.

KSAM KSAM utility error or �le system error while operating on a
KSAM �le.

MPEF MPE �le system error.

VPLUS VPLUS data entry utility error.

number The error number for types TVB, TXA, TXB, TXC, TXD, TXE, TXH,
TXI, TDEBUG. For types IMAGE, KSAM, MPE, or VPLUS, it is a number
meaningful to the indicated subsystem.

code-location The internal location in the program at which the error occurred. (See the
second column of numbers on the program compilation listing.)

PARM(n) n is the �eld number on multiple data entry �elds at which the error was
detected. All of the following data entry �elds are ignored.

�le-name The name of the data set or �le that was involved in the error condition.

Error Handling 7-9

Program-Name

program-name can be one of the following:

Transact/V The system name from the SYSTEM statement.

The last one to six characters of the �le-name if the IP <name> �le is
renamed using an MPE command.

Transact/iX The system name from the SYSTEM statement.

The �le-name containing the Transact/iX program if an error occurs before
the system is established.

The procedure name of a called subprogram in an MPE executable library
(XL).

Using EXPLAIN

Use the EXPLAIN subsystem to obtain information about Transact error messages.
EXPLAIN tells you what causes the errors and what actions you can take to �x them.

When using EXPLAIN, you can provide parameters interactively or from the MPE command
line.

Command-line execution is convenient for looking up one message quickly. EXPLAIN performs
the command speci�ed on the command line and returns to the system prompt (:). For
example, to display information for the error message TVB 1030, enter:

:EXPLAIN TVB 1030

If you have several messages to look up, you can run the program interactively by entering
the EXPLAIN command without parameters. Look up one message after another by entering a
message type and number each time you see the EXPLAIN> prompt. If several messages have
the same type, you do not have to enter the type each time.

By default EXPLAIN uses the type of the last message explained or printed. You can enter
commands to print messages, search the message catalog, get online help, or exit the program.
For a list of your options at any prompt, type ?. If you don't understand a prompt, enter
HELP for an explanation.

The PRINT and FIND commands require additional information to execute. You are prompted
for this information if you do not supply it when entering the command. PRINT> or FIND>
precedes these prompts to remind you that you are not at the main EXPLAIN> prompt. To
break out of these commands without completing them, enter �CTRL� Y or EXIT at any prompt.

7-10 Error Handling

Example

This example shows what is displayed when you enter EXPLAIN TVB 1070 at the command
line:

DATABASE BUFFER NOT ON WORD BOUNDARY (1070)

The data buffer for a database operation must start on a word

boundary. If necessary, insert a one-character fill item before

the first data item of the database list or use the ALIGN option

of the LIST verb.

MSG GROUP: Transact/V
MSG CATALOG: RAPIDCAT.PUB.SYS

MSG KEY: TVB 1070

For more examples of using EXPLAIN, see the MPE V Commands Reference manual.

Error Handling 7-11

8

Transact Verbs

This chapter contains detailed speci�cations for using Transact verbs. The verb speci�cations
are arranged in alphabetic order for easy reference. Each speci�cation contains a single
phrase description of the verb's functions. The verb's syntax is listed, followed by a general
description of the syntax and how the verb is used.

The syntax for most of the verbs is described in terms of statement parts. The speci�cations
for each statement part are provided in detail.

Some verbs, however, have modi�ers that change both the syntax and the function of the
verb. These verbs are described in terms of \syntax" options. Each syntax option description
consists of the syntax for that option followed by a description of the statement parts.
Information common to the verb regardless of the particular syntax option precedes the
description of the individual syntax options. Verbs with syntax options include DATA,
DEFINE, LET, LIST, PROMPT, RESET, and SET.

Examples are provided wherever applicable. The examples are either included within the
syntax descriptions, or they follow the entire verb description.

Transact Verbs 8-1

CALL

Transfers execution to another Transact program or to a Report/V or Inform/V program.

Syntax

CALL �le-name
�
(
�
password,

��
mode

�
)
��
,option-list

�
;

CALL passes control to another Transact program or to a Report/V or Inform/V program.
The called program operates as if it were the main program, but it shares all or part of the
calling program's data register space. The called program returns to the calling program with
an EXIT statement. The calling program then resumes execution of the statement following
the CALL statement.

When a CALL from a main program is executed, any open �les or data sets remain open
across the call. However, when the called program is an Inform/V or Report/V program, the
database passwords must be speci�ed again. The passwords can be speci�ed programmatically
from the terminal or in the stream �le.

When a CALL from a called system is executed, �les opened by the system that made the call
do not remain open for use by the system it calls.

While a called Transact program is executing, both the calling program and the called
program are in the memory stack and share the data register. Called Inform/V or Report/V
programs do not share the same memory stack or data register.

If a called Report/V or Inform/V program uses any database or data �le named in the
SYSTEM statement of the calling Transact program, that database or �le must be opened in
a non-exclusive mode. Furthermore, the open mode must be compatible with the open mode
used by Report/V or Inform/V (default mode 5), or the open mode used by Report/V or
Inform/V must be altered to be compatible with the mode used by Transact. Any database
locks should be released before the CALL statement.

The Transact/iX compiler can generate code for two di�erent types of calls, referred to as
\static" and \dynamic" calls.

Static calls are direct procedure calls to the called program. Static calls must meet the
following requirements:

The name of the called program must be available at load time.

Either the object code for the called program must be in an RL or in an RSOM �le at link
time or the executable code for the called program must be in an XL at load time.

a literal program name must be used in the CALL statement.

The DYNAMIC CALLS option must be o�.

Dynamic calls use the MPE/iX HPGETPROCPLABEL intrinsic to load the called program
at run time. Dynamic calls must meet the following requirements:

The object code for the called program must be in an XL. However, only those programs
that are actually called at run time need to be present in the XL.

Either a variable program name must be used in the CALL statement or the
DYNAMIC CALLS option must be on.

8-2 Transact Verbs

CALL

The name of the called program does not need to be available until run time.

There are advantages and disadvantages to both types of call. The primary advantage of
static calls over dynamic calls is superior run-time performance. Dynamic calls must use
HPGETPROCPLABEL whenever a CALL statement is executed, and this intrinsic must
search the various libraries and load the requested program. With static calls, the called
programs are loaded when the main program is loaded and the run-time overhead is negligible
for most applications.

However, dynamic calls have the advantage that the name does not need to be known at
compile time. Therefore, CALL statements that use a variable for the called program name
are always compiled as dynamic calls.

A further advantage is that dynamic calls do not require the object code for the called
programs to be available until the CALL statement is actually executed. Therefore, dynamic
calls allow a main program to be executed even if some of the called programs it references
have not yet been compiled (or even written), as long as the main program does not attempt
to actually call any of the missing programs.

Statement Parts

�le-name The name of one of the following:

Another Transact program (as speci�ed in a SYSTEM statement).

A Report/V program (as speci�ed in a REPORT statement).

An Inform/V program (as speci�ed in the report name of the catalog).

If �le-name names an Inform/V �le or Report/V �le, the \Report" or
\Inform" option must be speci�ed in the option-list . �le-name can also be
speci�ed as (item-name[(subscript)]), where item-name is the name of an item
that contains the name of the program or report to be executed. A subscript
is allowed if the referenced item is an array. (See \Array Subscripting" in
Chapter 3.)

�le-name can be fully quali�ed as �le-name.group.account

If (item-name[(subscript)]) is speci�ed, the call is generated dynamically
at run time. If �le-name is speci�ed, then the call can be either static or
dynamic, depending on the compile options speci�ed. (See the discussion of
compiler options in Chapter 9.)

password A password for access to the database used by the called program. This
parameter is optional, required only if the called program does not specify a
database password in its SYSTEM statement or if the database is not already
opened by the called program. Transact prompts for a password at run time
if it is not speci�ed here. If the password is in both places, the password
speci�ed in the SYSTEM statement of the called program takes precedence.

password can be speci�ed as:

\text-string" The database password.

item-name
[(subscript)]

The name of an item containing the database password. A
subscript is allowed if the item being referenced is an array
item.

Transact Verbs 8-3

CALL

It is possible to supply the called program with more than one password. This
can be accomplished by de�ning a compound item of type X or U, where the
size of each element in the compound is 8 characters.

If a list of passwords is passed to the called program, the �rst password on the
list is used to open the �rst database speci�ed in the SYSTEM statement, the
second password on the list is used to open the second database speci�ed, and
so on.

If only one password is passed, it opens the �rst database speci�ed in the
SYSTEM statement with that password as well as subsequent speci�ed
databases that have no password.

mode The mode in which the database used by the called program is to be opened.
This parameter is optional, and can be speci�ed here if the SYSTEM
statement in the called program does not specify it; if mode is speci�ed both
places, the mode speci�ed in the called program takes precedence. Mode can
be speci�ed as:

digit Number 1 to 8. Default=1. A digit is only valid when calling
another Transact program.

item-name
[(subscript)]

Name of item containing mode value. A subscript is allowed if
the item being referenced is an array item.

It is possible to specify a list of modes to be passed to the called program. It
is done by passing a compound item of type I(2). The mode list can be passed
only if a password list is also passed. Like the password list, the mode list is
used to open each of the databases speci�ed in the SYSTEM statement with a
di�erent mode.

option-list One or more of the following options separated by commas:

DATA=item-name
[(subscript)]

The location in the data register of the calling program
where a called Transact program can begin using space.
This space includes the location of the speci�ed item. If
item-name is an *", the called program cannot use any
space already used by the calling program. A subscript
is allowed if the item being referenced is an array item.
(See \Array Subscripting" in Chapter 3.) Although the
contents of the data register can be passed via a CALL
statement, the list register contents are not. Therefore,
the called program must set up its own list register
before execution.

If no DATA= is speci�ed, the called system will start
overlaying the calling program's data register with its
own list/data registers. The item must start on a 16-bit
boundary.

SIZE=number The number of 16-bit words of data register space that a
called Transact program can use. If DATA=item-name
is also speci�ed, space starts at the location assigned
to item-name. This space cannot be larger than the
number of unused 16-bit words in the data register and
must start on a 16-bit word boundary.

8-4 Transact Verbs

CALL

Note When Transact CALLs a Transact subprogram, the data register space
allocated to the subprogram is determined by the DATA= and SIZE=
parameters of the CALL statement, not the DATA= option of the SYSTEM
statement in the called program. The maximum size of the data register,
however, is determined by the DATA= option of the main program's SYSTEM
statement.

SWAP A request to write part of the caller's stack space out to
a temporary MPE �le before the CALL is made. When
control is transferred back to the calling program, the
MPE �le is read back and the stack is restored.

Use of the SWAP option increases the number of nested
calls that can be made before stack space is exhausted.
There is some overhead, however, associated with using
the SWAP option. Therefore it should be used only if
available stack space is very limited.

INFORM A request to run the Inform/V report speci�ed by
�le-name . None of the Inform/V menus are displayed.
If needed, a database password is prompted for. After
the Inform/V report is complete, control returns to the
statement following the call.

REPORT A request to run the Report/V report speci�ed by
�le-name . If needed, a database password is prompted
for. After the report is complete, control returns to the
statement following the call.

STATUS When the STATUS option is used, the success of a
CALLed Transact program is described by the value
in the 32-bit status register. After a called program
completes, Transact sets the calling program's 32-bit
status register to one of the values in the table below.

Status
Register Value

Meaning

0 No errors were detected by Transact
within the called program.

-2 An error was detected by Transact
within the called program.

A 0 will be returned in the status register in cases where
the error is handled by the programmer or end user. A 0
will be returned in the following cases:

Data errors or command errors for interactive
programs occur.

Error messages are suppressed by the subprogram
using the STATUS option or the NOMSG option.

Transact Verbs 8-5

CALL

Error messages are suppressed by the ERROR=
option on the LET verb.

When the STATUS option is not used on the CALL
verb, Transact does not alter the calling program's
status register.

The STATUS option can be used only with called
Transact programs. The Transact compiler returns an
INVALID OPTION error message when used with called
Report/V and Inform/V programs.

Limitations on the CALL Statement

The following limitations apply to the CALL statement when you use the Transact/iX
compiler:

Calls from a Transact/iX program can only be made to Transact programs that have been
compiled with the Transact/iX compiler. The called program must be linked to the calling
program in one of the ways described above.

The SWAP option is not supported by Transact/iX and is ignored if it appears on a CALL
statement. Since MPE/iX systems have far more data space than MPE V systems, this
option is not needed.

The Transact/iX compiler issues an informational message if the SWAP option is encountered:

*INFO: THE 'SWAP' OPTION FOR THE CALL VERB IS NOT NECESSARY ON AN MPE/iX SYSTEM

Floating Point Format

When passing parameters or data that access real numbers, the called program must be
compiled with the same real-number format as the main program.

Examples

The �rst example calls the INVMGT program, provides a password for opening any databases
used by INVMGT, and allows the database to be opened in mode 7 for exclusive read access.
INVMGT can use data register space beginning at the item named ORDER, and it can use
1000 16-bit words of space.

CALL INVMGT ("X43",7),

DATA = ORDER,

SIZE = 1000;

In the next example, the user is prompted for the name of the application to run. Then the
password needed to access the database is retrieved from the PASSWORD-DSET detail set.

DATA(MATCH) SYSNAME("Enter name of application to run :");
SET(KEY) LIST(USER);

GET(CHAIN) PASSWORD-DSET, LIST(SYSNAME, PASSWORD);

CALL (SYSNAME) (PASSWORD, 5),

DATA=*;

8-6 Transact Verbs

CALL

The next example shows how multiple passwords and multiple modes can be passed to a
called program.

DEFINE(ITEM) PASSWORD-LIST 2 X(8) :
MODE-LIST 2 I(2) :

MODE-ITEM I(2) = MODE-LIST(1);

MOVE (PASSWORD-LIST) = "PASS1 PASS2 ";

LET (MODE-ITEM) = 1;

LET OFFSET(MODE-ITEM) = 2;

LET (MODE-ITEM) = 5;

CALL ORDPROC (PASSWORD-LIST,MODE-LIST), DATA=*;

This example shows the programs MAIN and CALC. MAIN uses a CALL verb with and
without the STATUS option. The status register is initialized to the value \111" and tested
after each CALL verb for the expected status register value. Without a STATUS option on
the CALL verb, MAIN's status register will not be changed. When a STATUS option is
used, the status register will be set to -2 because of the arithmetic error in the caller program
CALC.

In the called program CALC, the arithmetic operation fails. Although the LET verb results in
an error, the status register for CALC is unchanged.

SYSTEM MAIN;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS,INIT:PSTATUS,INIT;

LET STATUS = 111;

<<Example of CALL verb without the STATUS option.>>

CALL CALC, DATA=ZEROS;

IF STATUS = 111 then display "MAIN's STATUS IS STILL 111.";

<<Example of CALL verb with the STATUS option.>>
CALL CALC, DATA=ZEROS,STATUS;

IF STATUS = -2 THEN DISPLAY "MAIN's STATUS IS NOW -2.";

EXIT;

END;

Transact Verbs 8-7

CALL

SYSTEM CALC;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);
LIST ZEROS:PSTATUS;

LET STATUS = 222;

LET (ZEROS) = (ZEROS) / (ZEROS);

<<Causes an arithmetic error.>>

LET (PSTATUS) = STATUS;

DISPLAY "CALC's STATUS REGISTER AFTER ERROR>>",LINE=2:PSTATUS,NOHEAD;

EXIT;

END;

************************** RESULTS *****************************

ERROR: INTEGER DIVIDE BY ZERO (PROG 54,6) [CALC]

CALC's STATUS REGISTER AFTER ERROR>> 222

MAIN's STATUS IS STILL 111.

*ERROR: INTEGER DIVIDED BY ZERO (PROG 54,6) [CALC]

CALC's STATUS REGISTER AFTER ERROR>> 222

MAIN's STATUS IS NOW -2.

This example shows modi�cations to the programs MAIN and CALC. The program MAIN
uses the CALL verb with and without the STATUS option. The status register is still set to
the value \111" and tested after each CALL verb for the expected status. Without a STATUS
option on the CALL verb, MAIN's status register will not be changed. When a STATUS
option is used, MAIN's status register will be set to 0 because the error in the called program
is handled by the called program.

In the called program CALC, we still perform an arithmetic operation which causes an error.
The ERROR= option which has been added causes the status register to be set to a value of 3
when the arithmetic operation fails. The status register is not shared between programs, but
the program MAIN displays or checks the value stored in shared item PSTATUS.

SYSTEM MAIN;

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS,INIT:PSTATUS,INIT;

LET STATUS = 111;

<<Example of CALL verb without the STATUS option.>>

CALL CALC, DATA=ZEROS;

IF STATUS = 111 then display "MAIN's STATUS IS STILL 111.";

<<Example of CALL verb with the STATUS option.>>

CALL CALC, DATA=ZEROS,STATUS;

IF STATUS = 0 THEN DISPLAY "MAIN's STATUS IS NOW 0.";

DISPLAY "PSTATUS has a value of: ":PSTATUS,NOHEAD;

EXIT;

END;

SYSTEM CALC;

8-8 Transact Verbs

CALL

DEFINE(ITEM) ZEROS I(5,,2):

PSTATUS I(5,,4);

LIST ZEROS:PSTATUS;
LET (ZEROS) = (ZEROS) / (ZEROS), ERROR= NEXT-LINE(*);

<<Causes an error>>

NEXT-LINE;

LET (PSTATUS) = STATUS;

<<See LET verb for table of STATUS values. >>

DISPLAY "CALC's STATUS REGISTER AFTER ERROR>> ",LINE=2:PSTATUS,NOHEAD;

EXIT;

END;

************************** RESULTS *****************************

CALC's STATUS REGISTER AFTER ERROR>> 3

MAIN's STATUS IS STILL 111.

CALC's STATUS REGISTER AFTER ERROR>> 3

MAIN's STATUS IS NOW 0.

PSTATUS has a value of: 3

END OF PROGRAM

Transact Verbs 8-9

CLOSE

Closes an MPE or KSAM �le, a data set or database, or a VPLUS forms �le.

Syntax

CLOSE �le-name
�
,option-list

�
;

CLOSE closes and rewinds an MPE or KSAM �le or a data set, or closes the entire database.
Except to rewind or set a �le or data set to its beginning, you need not use CLOSE. Transact
automatically closes all �les and data sets at the end of a command sequence and at the end
of a program.

You typically use CLOSE to set a �le or data set to its beginning when you are planning to
use the STATUS option with a database access verb that performs serial or reverse serial
access. These verbs are FIND, GET, DELETE, and OUTPUT which have (SERIAL) and
(RSERIAL) modi�ers. You would also use CLOSE before a FILE(SORT) statement.

The CLOSE statement has the following special forms:

CLOSE
$FORMLIST

Closes the spool �le used by the VPRINTFORM intrinsic of VPLUS.

CLOSE
$PRINT

Closes the print �le TRANLIST. This statement is useful for directing
output to the printer using SET(OPTION) PRINT without terminating your
program.

CLOSE
$VPLS

Closes the terminal block mode and the active VPLUS forms �le, releasing the
memory space used by VPLUS in the DB-DL stack area (Transact/V only).
This relieves the contention for DB-DL stack memory between VPLUS and
other subsystems such as DSG/3000. Do not use between a SET(FORM) verb
and another forms verb.

For a discussion about using CLOSE during dynamic transactions, see the \Database Close"
section in Chapter 6.

Statement Parts

�le-name The �le or data set to be closed. If the data set is not in the home base
as de�ned in the SYSTEM statement, you must specify the base name in
parentheses as follows:

set-name(base-name)

You can close an entire database by specifying �le-name as a database with
the following format:

@[(base-name)]

To close the home base, omit base-name; to close any other base, specify a
base-name.

8-10 Transact Verbs

CLOSE

option-list One or more of the following options separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and the stack pointer for
the list register is set to the data item item-name.
Transact generates an error at execution time if
the item cannot be found in the list register. The
item-name must be a parent.

If you do not specify an item name, as in
ERROR=label ();, the list register is cleared.
If you use an * instead of item-name, as in
ERROR=label (*);, then the list register is not
touched. For more information, see \Automatic Error
Handling" in Chapter 7.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You may have to add
status checking to your code if you use this option.

When STATUS is speci�ed, the e�ect of a CLOSE
statement is described by the 32-bit integer value in
the status register:

Status
Register Value

Meaning

0 The CLOSE operation was successful.

>0 For a description of the condition that occurred,
refer to the database or MPE/KSAM �le
system error documentation that corresponds to
the value.

See \Using the STATUS Option" in Chapter 7.

Examples

You can use the STATUS option with CLOSE to do exit processing on an error. For example:

CLOSE KSAM-FILE,

STATUS;

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

The statement below closes the �le ACCREC. If an error occurs, it passes control to the
statement labeled FIX and sets the list register to CUST-NAME.

CLOSE ACCREC,

ERROR = FIX (CUST-NAME);

Transact Verbs 8-11

DATA

Prompts for a value and changes the appropriate location in the data, argument, match,
and/or update registers.

Syntax

DATA[(modi�er)][item-name][("prompt-string")][,option-list][:item-name...] ... ;

DATA prompts the user for a value and, depending on the syntax option chosen, places the
value in one or more registers. The registers a�ected depend on the verb modi�er. Available
modi�ers are:

none Places value in data register. (See Syntax Option 1.)

ITEM Prompts for item name and if found, places value in data register. (See Syntax
Option 2.)

KEY Places value in argument register. (See Syntax Option 3.)

MATCH Places value in data register. Sets up match criteria in match register. (See
Syntax Option 4.)

PATH Places value in data register and in argument register. (See Syntax Option 5.)

SET Places value in data register unless user presses carriage return. (See Syntax
Option 6.)

UPDATE Places value in data register. Places item name and value in update register. (See
Syntax Option 7.)

The user enters a value in response to a prompt-string or to the item-name. At execution
time, Transact validates the input value as to type, length, and other characteristics de�ned
in the data dictionary or by a DEFINE(ITEM) statement. It validates the data before the
register is modi�ed. If Transact detects an error, then it displays an appropriate error message
and reissues the prompt.

With native language support, Transact validates numeric data using the thousands and
decimal indicators of the language in e�ect. (See Appendix E, \Native Language Support" for
more information.)

You normally use the DATA verb to change the value for a data item that has already been
speci�ed in the list register. DATA searches the list register from the top of the stack to the
bottom to �nd the requested item-name. If there are multiple occurrences of the same item in
the list register, it uses the last one placed on the list.

8-12 Transact Verbs

DATA

Statement Parts

modi�er Changes or enhances the action of DATA; often indicates the register to
which the input value should be added or the register whose value should be
changed. The Syntax Options subsection below describes the impact of each
modi�er in detail.

item-name The name of the data item in the list register whose value should be added or
changed in the appropriate register.

* The item at the top of the list register; that is, the one referenced by the last
LIST or PROMPT statement unless explicitly changed by a more recent SET
or RESET command.

prompt-string The string that prompts the user for the input value; if not speci�ed, the
user is prompted by the item name or by an entry text speci�ed in the
DEFINE(ITEM) statement or in the data dictionary, if one exists.

option-list A �eld specifying how the data should be formatted and/or other checks to be
performed on the entered value. Include one or more of the following options
(separated by commas) unless you use the ITEM modi�er (Syntax Option 2):

BLANKS Does not suppress leading blanks supplied in
the input value; leading and trailing blanks are
normally stripped.

CHECK=set-name Checks input value against the master set
set-name to ensure that the value already
exists. If the condition is not met at execution
time, Transact displays an appropriate error
message and reissues the prompt. You cannot
use this option with a KSAM or MPE �le, in a
DATA(MATCH) statement, nor with child items.

CHECKNOT=set-name Checks input value against the master set
set-name to ensure that the value does not
already exist. If the option condition is not
met at execution time, then Transact issues
an appropriate error message and reissues the
prompt. You cannot use this option with a KSAM
or MPE �le, in a DATA(MATCH) statement, nor
with child items.

NOECHO Does not echo the input value to the terminal.

NULL Fills item with ASCII null characters (binary
zeros) instead of blanks.

RIGHT Right-justi�es the input value within the register
�eld.

Transact Verbs 8-13

DATA

STATUS Suppresses normal processing of \]" and \]]",
which cause an escape to a higher processing or
command level.

Status
Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control
subsequent processing by testing the contents of
the register with an IF statement.

If the CHECK or CHECKNOT option is also
used, then \]", \]]", a carriage return, or one or
more blanks suppress the DATA operation and
control passes to the next statement.

Syntax Options

(1) DATA {item-name[(subscript)]}[("prompt-string)"][,option-list][:item-name . . .] . . . ;

{ * }

DATA with no modi�er places the value entered as a response to prompt-string in the data
register. It is added in an area associated with the current data item if *" is used or with
item-name if it is speci�ed. item-name can be modi�ed with subscript if the referenced item is
an array item. (See \Array Subscripting" in Chapter 3.)

(2) DATA(ITEM) "prompt-string"[,REPEAT];

The ITEM modi�er is typically used to update or correct one or more values in the data
register. DATA(ITEM) issues a prompt prompt-string to request an item name. When the
user enters an item name in response to this prompt, Transact looks for this item in the list
register. If the item name cannot be found, it displays an error message and reissues the
prompt. If the item name is in the list register, this item name is issued as a second prompt
to which the user responds with a value. If the entered value passes all edit checks, it is placed
in the data register area associated with the item name. Otherwise, the user is prompted for
another value. If the user responds with a \]", Transact reissues the prompt-string prompt. If
the user responds with \]]", Transact returns to command mode.

If you use the REPEAT option, then the operation is repeated until a termination character (]
or]]) or a null response (carriage return) is entered in response to the prompt-string prompt.

8-14 Transact Verbs

DATA

(3) DATA(KEY) {item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(KEY) places the value entered as a response to prompt-string in the argument register.
If item-name is speci�ed, this name is used as the prompt for user input, unless this name is
overridden by a prompt-string. If *" is speci�ed, then the current name in key register is
used as the prompt for user input. The key register is changed by this verb only if it is empty.
If the key register is not empty, this verb does not change the item name already in the key
register.

(4) DATA(MATCH) {item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(MATCH) places the value entered as a response to item-name or prompt-string in the
data register. You cannot specify either CHECK= or CHECKNOT= with DATA(MATCH).
It places the value in the data register in an area associated with the current data item if
the *" is used or in an area associated with a named data item if an item name is speci�ed.
The item name and value are also placed in the match register as a selection criterion for
subsequent database or �le operations.

If the item name is an unsubscripted array, only the value of the �rst element of the array will
be set in the data register. This value from the data register will be set up as match criterion
in the match register.

You should note that when a single key value is entered for the match, Transact performs a
chained read on the data set if the item is a search or key item. However, if a range of values
or non-key value is speci�ed, a serial read is performed.

User responses to the DATA(MATCH) prompt are further explained in the discussion
of \Match Register" in Chapter 4. (See also \MATCH Speci�cation Characters" and
\Responding to a MATCH Prompt" in Chapter 5.) The MATCH modi�er allows one or more
of the option-list items allowed with all DATA options. (See list above.) You may also select
one of the following options, which specify that a match selection is to be performed on a
basis other than equality.

If you specify one of the options listed below, the entire user input is treated as a single value.
The match speci�cation characters described in Chapter 5 are not allowed as user input with
the options listed below.

MATCH option-list :

NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the use of

trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use of trailing

\^^" on input
TRAILER Matched item must end with the input string; equivalent to the use of a

leading \^" on input

Transact Verbs 8-15

DATA

For example, if the program contains the data statement

DATA(MATCH) CUSTNO,GE;

and if the user responds to the prompt by entering 079333, then only customer numbers
greater than or equal to 079333 will be selected.

(5) DATA(PATH){item-name}[("prompt-string")][,option-list][:item-name . . .] . . . ;

{ * }

DATA(PATH) places the value entered as a response to prompt-string in the data register.
The value is placed in the data register in an area associated with the current data item if
the *" is used or with item-name if it is speci�ed. The value is also placed in the argument
register and the item name in the key register for subsequent keyed access to KSAM �les or
data sets. The key register is changed by this verb only if it is empty. If the key register is not
empty, this verb does not change the item name already there.

(6) DATA(SET) {item-name[(subscript)]}[("prompt-string")][,option-list]

{ * }

[:item-name . . .] . . . ;

The primary use of the SET modi�er is to update values in the data register for existing
items in the list register. DATA(SET) places the value entered as a response to item-name
or prompt-string in the data register. It is placed in the data register in an area associated
with item-name, if it is used, or with the current item if *" is used. item-name may be
modi�ed with (subscripts) if the referenced item is an array item. (See \Array Subscripting"
in Chapter 3.)

If the user responds to the prompt with a carriage return, then the existing value in the data
register is not touched. Note that this di�ers from the other DATA statements which add
blanks to the data register if the user responds with a carriage return.

If you use the CHECK= or CHECKNOT= options and the speci�ed condition is not met,
the item remains in the data register. In this case, you should reset the data register to the
previous item to avoid creating an endless loop should the user respond with a carriage return
to the reissued prompt. Both CHECK= and CHECKNOT= look for the item in the master
set even if the user enters a carriage return.

A special option, SHOW, is available only with the (SET) modi�er. SHOW causes the old
value to appear in the prompt for a new value. This allows the user to see what the item will
contain if a carriage return is entered. The values are displayed left justi�ed, with trailing
blanks suppressed. One blank is displayed when an alphanumeric item is all blank. The
SHOW option can only be used in the DATA(SET) statement. The following example uses
the SHOW option:

DEFINE(ITEM) PRODUCT X(40):

QUANTITY I(3);

LIST PRODUCT,INIT:

QUANTITY,INIT;

DATA(SET) PRODUCT,SHOW:

QUANTITY,SHOW;

8-16 Transact Verbs

DATA

This example causes the following prompts to be displayed the �rst time data is entered:

PRODUCT(=)>

QUANTITY(=0)>

If the values \grapefruit" and \10" are entered, the prompts appear like this when displayed
again:

PRODUCT(=grapefruit)>

QUANTITY(=10)>

If an alphanumeric string is longer than 30 characters, the �rst 30 characters are displayed:

PRODUCT(=mason valley delightful grapef...)>

The trailing periods (. . .) indicate that the value is too long.

(7) DATA(UPDATE) {item-name}[("prompt-string")][,option-list]

{ * }

[:item-name . . .] . . . ;

DATA(UPDATE) places the value entered as a response to prompt-string in the data register.
It is placed in the data register in an area associated with the current data item if the *"
is used or with item name if it is speci�ed. The item name and value are also placed in the
update register for subsequent use with the REPLACE verb.

Examples

This example asks the user for an account number, which is placed in the argument register
for subsequent access to the ACCOUNT-MASTER set. The value is checked �rst, however,
to see if it already exists in ACCOUNT-MASTER. If it does not, then an error message is
displayed and the prompt is reissued.

DATA(KEY) ACCT-NO ("Account number?"),

CHECK=ACCOUNT-MASTER;

This example asks the user for a response. If the response is a carriage return, the data
register is not changed. If a value is entered, the new value replaces the existing value in the
data register space allocated to the item QUANTITY.

DATA(SET) QUANTITY("New stock quantity?");

In response to the prompt for ADDRESS, the user can enter the entire address with each item
separated by commas; or the user can enter one item of the address at a time. If the entire
address is entered at once, the remaining item prompts are not issued.

DATA ADDRESS ("Enter customer address"):

CITY ("Enter city"):

STATE ("Enter 2-letter state code"):

ZIP ("Enter 5-digit zip code");

For example, the following dialogue could occur:

Enter customer address> 312 Alba Road, San Jose, CA, 95050

Transact Verbs 8-17

DATA

Alternatively, if the user wants to wait for each prompt, the dialogue could be:

Enter customer address> 312 Alba Road

Enter city> San Jose

Enter 2-letter state code> CA

Enter 5-digit zip code> 95050

In either case, the entered data is moved to the data register locations associated with
ADDRESS, CITY, STATE, and ZIP. If the user presses �Return� in response to any single
prompt, the associated area of the data register is set to blanks. If you want �Return� to leave
the existing data, you must use a DATA(SET) statement.

8-18 Transact Verbs

DEFINE

DEFINE

Speci�es de�nitions of item names, names of MPE V system intrinsics, or segmented program
control labels to be used by the compiler.

Syntax

DEFINE(modi�er) de�nition-list;

The DEFINE statement is used to de�ne items, entry points into program segments, or
intrinsics called with the PROC statement. DEFINE statements are generally the �rst
statements that follow the SYSTEM statement in a Transact program.

The function of the DEFINE statement depends on the modi�er you choose, and for
DEFINE(ITEM) on the particular syntax option. The allowed modi�ers are:

ENTRY De�nes a program control label within a segment as global to the entire
program. (See Syntax Option 1.)

INTRINSIC De�nes an MPE V system intrinsic to be called by the PROC verb. (See
Syntax Option 2.)

ITEM De�nes one or more item names. (See Syntax Option 3.)

De�nes a synonym for an item name. (See Syntax Option 4.)

De�nes a marker item, which is a position in the list register. (See Syntax
Option 5.)

De�nes an item name whose attributes are to be satis�ed at execution time.
(See Syntax Option 6.) (Transact/V Only)

The de�nition-list depends on the modi�er, or syntax option, you choose.

Syntax Options

(1) DEFINE(ENTRY) label[:label] . . . ;

The ENTRY modi�er causes a statement label within a program segment to be global to
the whole program so that statements in any segment can reference this label. You need not
de�ne entry point labels within the root segment (segment 0).

(2) DEFINE(INTRINSIC) intrinsic-name[:intrinsic-name] . . . ;

The INTRINSIC modi�er de�nes MPE V system intrinsics that are called by the PROC verb.
Declaring the intrinsic in this manner causes Transact to load the intrinsic at system startup.

If you include an intrinsic name that is not recognized by the compiler, a compile time
error message will be issued. If this occurs, remove the unrecognized intrinsic from the
DEFINE(INTRINSIC) statement. If the DEFINE(INTRINSIC) statement is removed,
Transact tries to load the intrinsic when the intrinsic is called with a PROC statement.
Intrinsics speci�ed with the DEFINE(INTRINSIC) statement are resolved at system startup
from SL.PUB.SYS.

Transact Verbs 8-19

DEFINE

(3) DEFINE(ITEM) item-name [count]

[type(size[,decimal-length[,storage-length]])]

[=parent-name[(position)]]

[,ALIAS=(alias-reference)]

[,COMPUTE=arithmetic-expression]

[,EDIT="edit-mask"]

[,ENTRY="entry-text"]

[,HEAD="heading-text"]

[,INIT=[value|(BINARY(value))|(HEX(value))|(OCTAL(value))]

[,OPT]

[:item-name . . .] . . . ;

This option de�nes an item-name not de�ned in the data dictionary. It can also be used to
rede�ne items already de�ned in the data dictionary. Any number of item-name, separated
by colons (:) can be speci�ed in a single DEFINE(ITEM) statement. (See Chapter 3, \Data
Items," for detailed descriptions of data types.)

item-name The name of a data item or system variable to which the de�nition
applies.

When it refers to a data item, item-name identi�es an item that
exists in a database or �le used by the Transact program or that
is to be used as a temporary variable. This item may or may not
be included in the data dictionary. The �rst character must be
alphanumeric, and the other characters may be alphabetic (A-Z,
upper or lowercase), digits (0-9), or any ASCII characters except ,
; : = < > () " or a blank space. The item-name can be up to 16
characters long.

Five system variables can be speci�ed as an item-name: $CPU,
$DATELINE, $PAGE, $TIME, and $TODAY. Note that only the
EDIT= and HEAD= options are valid with these variables.

count The number of occurrences of the item if it is a sub item within a
compound item. (All of the sub items have the same attributes.)

Example: DEFINE(ITEM) SUB 24 X(30);

SUB is de�ned as a compound item that has 24 30-character sub
items.

type The data type:

X = any ASCII character

U = uppercase alphanumeric string

9 = numeric ASCII string (leading zeros stripped)

Z = zoned decimal (COBOL format)

P = packed decimal (COBOL comp-3)

I = integer number

J = integer number (COBOL comp)

K = logical value (absolute binary)

R = real, or floating point, number

E = real, scientific notation

8-20 Transact Verbs

DEFINE

If type is followed by a \+", then the item is unsigned, and can
have positive values only. Data entry values are validated as
positive and, if the type is Z or P, positive unsigned value formats
are generated. Items de�ned as type E are displayed in the format:
n.nnE+nn, but cannot be entered in this format; they may be
entered as integer or real numbers. (See Chapter 3, \Data Items,"
for detailed descriptions of data types.)

Note Transact's \E" item type is di�erent from the TurboIMAGE \E" item type
that is de�ned as IEEE real.

size The number of characters in an alphanumeric string or the number
of digits, plus decimal point if any, in a numeric �eld.

Transact adds a display character for the sign to the speci�ed
size of numeric items (types Z, P, I, J, K, R, and E) unless the
item type is de�ned as positive only with a \+". You should be
aware of this extra display character when transferring data to
VPLUS numeric �elds. (See Table 3-3 for the relation between the
speci�ed size, its storage allocation, and display requirements.)

If both type and size are omitted, the dictionary de�nition of the
item is used.

decimal-length The number of decimal places in a zoned, packed, integer,
or oating point number, if any. For Z and P types only,
the maximum decimal-length is 1 less than the maximum
storage-length of the item.

storage-length The byte length of the storage area for the data item, which
overrides the length calculated by the compiler from the type, size,
and decimal length values.

Storage length of X and U type items is limited only by the size
of the data register. The maximum size of the numeric item types
9, Z, P, I, J, and K is 27 digits or characters, unless a decimal is
included in which case the maximum size is 28 characters or digits
including the decimal point. For R and E types, the maximum
recommended size is 22 characters and digits, to allow for 17
accurate digits in the mantissa, a decimal point, the sign of the
exponent, the letter E, and 2 digits for the exponent.

=parent-name The name of the parent if you are de�ning a child item; rede�nes
all or part of a parent item name de�ned elsewhere in the
program or in the dictionary. (Similar to an equivalence in SPL or
FORTRAN.)

Transact Verbs 8-21

DEFINE

The following is an example of rede�nition of a parent item de�ned
as \NAME".

DEFINE(ITEM) NAME X(32):
FNAME X(10)=NAME(1):

MIDINIT X(1)=NAME(11):

LNAME X(21)=NAME(12);

When working with KSAM or MPE �les, it is useful to de�ne the
record as a parent item and the �elds as child items. (See the
example in the description of the SYSTEM verb.)

position The byte position in the parent item that is the starting position
of the child item. Begin counting at position 1. The default is 1.

In the following example, the child item YEAR starts in position 1
of the parent item DATE, MONTH starts in position 3, and DAY
in position 5.

DEFINE(ITEM) DATE X(6):

YEAR X(2)=DATE:

MONTH X(2)=DATE(3):

DAY X(2)=DATE(5);

ALIAS=(alias-reference) Other names (aliases) by which item-name is known, where
(alias-reference) has the form:

(item-name1 [(�le-list1) [,item-name2[(�le-list2)]]...])

The item de�ned as item-name is called item-name1 in any of
the �les or data sets in �le-list1 , item-name2 in any of the �les in
�le-list2 , and so forth. If �le-list1 is omitted, item-name1 is the
only alias-reference allowed. A �le list may consist of �le or data
set names separated by commas. If a referenced data set is not in
the home base speci�ed in the SYSTEM statement, the base name
must be speci�ed as set-name(base-name).

Note that Transact does not retrieve alias de�nitions from the
dictionary. You must de�ne any aliases in a DEFINE(ITEM)
statement in your program.

An alias ensures that when you reference item-name in your
program, this name is associated with the other names by which
the item is known in �les or data sets. You always reference such
an item by its primary name, not its alias.

The following example de�nes the item QTY-ORD, which is
known in the �le ORDERS as QUANTITY and in the �le
ORD-MAST as QUANT-ORD. Note that all aliases must have the
same storage length as the data item value referenced in the data
set or �le.

<<Use name QTY-ORD in program>>

DEFINE(ITEM) QTY-ORD I(4), ALIAS=(QUANTITY(ORDERS),

QUANT-ORD(ORD-MAST));

8-22 Transact Verbs

DEFINE

COMPUTE= arithmetic-
expression

An arithmetic expression that speci�es the computation to be
performed before the item is used in a DISPLAY, OUTPUT,
or LET statement. It may contain two or more variables
separated by one or more arithmetic operators. Use the form
shown for the LET statement.

EDIT=\edit-string" Default edit mask used for the item's value in any display. (See
the DISPLAY and FORMAT statements for a description of
the edit mask feature.) When a numeric value to be printed
is too large for the edit mask, a series of pound signs (#) are
printed in place of the value, to indicate an overow.

ENTRY=\entry-text" Text string used as the default prompt string for the item
when used by the PROMPT and DATA statements.

HEAD=\heading-text" Text string used as the default heading for the item in any
display function.

INIT=[value] Initial value moved into the item each time it is added to the
list register. The INIT parameter on the LIST verb overrides
this parameter. If this parameter appears without a value,
the item is initialized to zero for numeric or blank for ASCII,
eliminating the need to use the INIT parameter with the LIST
verb. For example:

DEFINE(ITEM) CODE I(3), INIT=999;

DEFINE(ITEM) QUANTITY I(3), INIT=;

The INIT= option works similarly to the LET verb. If an
array is being initialized, each element in the array is initialized
to value.

This option also allows initialization of I, J, and K types in
terms of a binary, octal, or hexadecimal base. The number
speci�ed is treated as a signed, 32-bit number. Enough storage
must be allocated to hold the speci�ed number.

The following examples illustrate the use of this option.

The �rst example de�nes an initial value of �1. Two bytes of
storage are su�cient.

DEFINE(ITEM) OCT1 I(5,,2), INIT=(OCTAL(377777777777));

The second example de�nes an initial value of -2. Two bytes of
storage are su�cient.

DEFINE(ITEM) OCT2 I(5,,2), INIT=(OCTAL(377777777776));

The third example de�nes an initial value of 65535. Two bytes
of storage are not su�cient so four bytes must be allocated.

DEFINE(ITEM) HEX1 I(5,,4), INIT=(HEX(ffff));

The fourth example de�nes an initial value of -32768. Two
bytes of storage are not su�cient so four bytes must be
allocated.

Transact Verbs 8-23

DEFINE

DEFINE(ITEM) HEX2 I(5,,4), INIT=(HEX(ffff8000));

The last example de�nes an initial value of 2147483647, the
maximum possible using a binary, octal, or hexadecimal base.
Eight bytes of storage are required.

DEFINE(ITEM) HEX3 I(10,,8), INIT=(HEX(7fffffff));

The INIT= option cannot be used for child items.

Note Initializing a positive type with a negative value results in a run-time error.

OPT OPT is used in combination with the compiler control option,
OPT@, OPTE, OPTH, OPTI, and OPTP. When OPT is
speci�ed for an item, the compiler does not store the item's
textual name in the p-code �le if the OPTI control option
has been speci�ed. OPT, used in conjunction with the above
compiler control options, saves data segment stack space at
execution time. (See Chapter 9 for a discussion of the OPT@,
OPTE, OPTH, OPTI, and OPTP compiler options.)

It is your responsibility to ensure that the item's textual name
is not required within the program. An item name is needed
for a prompt string, display item heading, or for the LIST=
option of verbs that access a database.

(4) DEFINE(ITEM) item-name=item-name1

This option de�nes a synonym for an item de�ned elsewhere in the program or in the
dictionary. Other item attributes may not be de�ned using this syntax option.

item-name A synonym for item-name1 where item-name1 is de�ned elsewhere in
the program or in the dictionary. item-name assumes the de�nition of
item-name1 , but Transact always references item-name1 in any �le or data
set operation.

Use this option to provide an alternate name for an item. The synonym
item-name exists only while the program executes; it is not an item name in a
�le or data set, or the dictionary. For example:

DEFINE(ITEM) PROD-NO 9(10):

PRODUCT-NUM=PROD-NO;

This statement de�nes the item PROD-NO as a type 9 10-digit item, and
de�nes PRODUCT-NUM as a synonym for PROD-NO. The same item can
now be called either PRODUCT-NUM or PROD-NO within the program.

(5) DEFINE(ITEM) item-name @[:item-name @] . . . ;

This option de�nes a marker item. A marker item marks a point in the list register,
but it reserves no space in the data register. The marker item must be de�ned with the
DEFINE(ITEM) statement and placed in the list register with the LIST statement.

8-24 Transact Verbs

DEFINE

A marker item can be referenced by list pointer operations and list range options. Marker
items are useful in conjunction with the SET modi�er on the PROMPT verb. The
PROMPT(SET) statement causes the contents of the list register to be de�ned at execution
time.

The following sequence of Transact statements shows an appropriate use of the marker item:

DEFINE(ITEM) MARKER1 @: MARKER2 @;

LIST MARKER1;

PROMPT(SET) EMPL:DEPT:PHONE:ROOM:LOCATION;

LIST MARKER2;

UPDATE EMPLOYEES,LIST=(MARKER1:MARKER2);

The �rst statement de�nes MARKER1 and MARKER2. The second statement assigns space
in the list register to MARKER1. The third statement prompts for new information about
employees. It is not known which and how much information will be entered. When data
entry is complete, a second marker is assigned in the list register. Then the EMPLOYEES �le
is updated with all the information in the list and data registers between MARKER1 and
MARKER2. (This example assumes that the current entry has been set up appropriately by a
previous get of the EMPLOYEES data set.)

You might know only the start and end positions of the data entered, but not how many
entries will be made. By placing marker items in the list register using the LIST statement,
you are able to pass a variable number of items to the EMPLOYEES �le.

(6) DEFINE(ITEM) item-name *[:item-name *] . . . ;

This option de�nes an item name whose attributes should be satis�ed at execution time rather
than by the compiler at compile time. Note that only the basic attributes can be resolved
at execution time; these are count, type, size, decimal-length, and storage length, not such
secondary attributes as heading text or entry text.

Note This format is not valid in Transact/iX.

Examples

The following example shows how to de�ne a key item (called KEY) for KSAM �le access,
assuming the key is a 10-character item starting in byte 3 of an 80-character record.

DEFINE(ITEM) RECORD X(80):

DEL-CODE I(2) = RECORD(1):

KEY X(10)= RECORD(3);

MOVE (KEY) = "A123456789"; <<Assign value to key >>

SET(KEY) LIST(KEY); <<Use key value to find chain head>>

FIND(CHAIN) KFILE,

LIST=(RECORD); <<Read entire record >>

Transact Verbs 8-25

DEFINE

In another example, a portion of a key is de�ned as a \generic key":

DEFINE(ITEM) RECORD X(80):

DEL-CODE I(2) = RECORD(1):
KEY X(10) = RECORD(3):

GEN-KEY X(2) = RECORD(3);

The key search is similar to that shown above; use the generic key (GEN-KEY) value to locate
all records with key values starting with the same �rst two characters.

8-26 Transact Verbs

DELETE

DELETE

Deletes KSAM �les or data set entries. DELETE cannot be used with MPE �les.

Syntax

DELETE
�
(modi�er)

�
�le-name

�
,option-list

�
;

DELETE speci�es the deletion of one or more KSAM �le entries or data set entries. For
multiple deletions, the entries to be deleted are determined by match criteria speci�ed in the
match register. If you do not specify match criteria for a multiple deletion, DELETE deletes
all entries in a chain or in the entire �le or data set, depending on the modi�er.

If you are performing dynamic transactions (Transact/iX only), be aware that transactions
have a length limit. For a discussion about how DELETE is a�ected by this limitation, see
\Limitations" under \Dynamic Roll-back" in Chapter 6.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify type of access to the KSAM �le or data set, choose one of the
following modi�ers:

none Deletes an entry from a master set based on the key value in
the argument register; this option does not use the match
register.

CHAIN Deletes entries from a detail set or a KSAM chain. The
entries must meet any match criteria set up in the match
register. The contents of the key and argument registers
specify the chain in which the deletion is to occur. If no
match criteria are speci�ed, all entries are deleted. If match
criteria is used, all items speci�ed in the match register must
be included in a LIST= option.

CURRENT Deletes the last entry that was accessed from the KSAM �le
or data set.

DIRECT Deletes the entry stored at the speci�ed record number in a
KSAM �le, a detail set, or a master set. Before using this
modi�er, you must store the record number as a 32-bit integer
in the item speci�ed by the RECNO= option.

PRIMARY Deletes the master set entry stored at the primary address of
a synonym chain. The primary address is located through the
key value in the argument register.

Transact Verbs 8-27

DELETE

Note DELETE(PRIMARY) deletes only one entry at the primary location, and the
secondary entry, if any, automatically migrates to the primary location after
the delete.

RCHAIN Deletes entries from a detail set or a KSAM chain in the same
manner as the CHAIN option, only in reverse order. For a
KSAM �le, this operation is identical to CHAIN.

RSERIAL Deletes entries from a data set in the same manner as the
SERIAL option, except in reverse order. For a KSAM �le,
this operation is identical to SERIAL.

SERIAL Deletes entries in serial mode from a KSAM �le or from a
data set that meet any match criteria set up in the match
register. If no match criteria are speci�ed, all entries are
deleted. If match criteria are speci�ed, the match items must
be included in a LIST= option.

�le-name The KSAM �le or data set to be accessed in the deletion. If the data set is
not in the home base as de�ned in the SYSTEM statement, the base name
must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following options, separated by commas:

ERROR=label
[([item-name])]

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and the stack pointer for
the list register is set to the data item item-name.
Transact generates an error at execution time if
the item cannot be found in the list register. The
item-name must be a parent.

If you omit item-name, as in ERROR = label();, the
list register is cleared. If you use an *" instead of
item-name, as in ERROR = label (*);, then the list
register is not touched.

LIST=(range-list) The list of items from the list register to be used for
the DELETE operation. For data sets, no child items
can be speci�ed in the range list.

If the LIST= option is omitted with any modi�er, all
the items named in the list register are used.

When the LIST= option is used, only the items
speci�ed in a LIST= option have their match
conditions applied when the items are included in the
match register. When the LIST= option is omitted,
items which appear in the list register and the
match register have their match conditions applied.
Otherwise, the match conditions for an item are
ignored.

8-28 Transact Verbs

DELETE

The match register can be used only with the
modi�ers CHAIN, RCHAIN, SERIAL, or RSERIAL.

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM=
is executed, and then the delete is performed.

For all options of range-list , the data items selected
are the result of scanning the data items in the list
register from top to bottom, where top is the most
recent entry added to the list register. (See Chapter 4
for more information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items they
cause DELETE to access include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

then data items A, B, C, D, and D are
selected. For database �les, an error

Transact Verbs 8-29

DELETE

is returned if duplicate entries are
selected.

If item-nameX and item-nameY
are marker items (see the
DEFINE(ITEM) verb) and if there
are no data items between the two on
the list register, no database access is
performed.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from
the list register. For databases, data
items can be speci�ed in any order.
For KSAM �les, data items must
be speci�ed in the order of their
occurrence in the physical record.
This order need not match the order
of the data items on the list register.
This option is less e�cient to use than
the options listed above.

(@) Speci�es a range of all data items
of �le-name as de�ned in the data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or
form as de�ned in the dictionary. This
order need not match the order of the
data items in the list register.

() A null data item list. That is, delete
the entry or entries, but do not
retrieve any data.

LOCK Locks the speci�ed �le or database. If a data set is
being accessed, the lock is set the whole time that
DELETE executes. If LOCK is not speci�ed but the
database is opened in mode 1, which requires a lock,
the lock speci�ed by the type of automatic locking in
e�ect is active while the entry is processed by any

8-30 Transact Verbs

DELETE

PERFORM= statements, but is unlocked briey
before the next entry is retrieved.

For a KSAM �le, if LOCK is not speci�ed on
DELETE but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed
by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved. (DELETE is
not allowed on MPE �les.)

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the DELETE verb.

A database opened in mode 1 must be locked while
DELETE executes. For transaction locking, you can
use the LOCK option on the LOGTRAN verb instead
of the LOCK option on DELETE if SET(OPTION)
NOLOCK is speci�ed. If a lock is not speci�ed (for a
database opened in mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for
more information.

NOCOUNT Suppresses the message normally generated to indicate
the number of deleted entries.

NOMATCH Ignores any match criteria set up in the match
register.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for
every entry retrieved by the DELETE verb before the
DELETE operation. The entries can be optionally
selected by match criteria.

This option allows operations to be performed on
retrieved entries without having to code loop-control
logic. You can nest up to a maximum of ten
PERFORM options.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must de�ne
item-name to contain the 32-bit integer number
(I(9,,4)) of the record to be deleted.

With other modi�ers, Transact returns the record
number of the deleted record in the 32-bit integer
item-name.

The item-name can be modi�ed with subscript if
the referenced item is an array item. (See \Array
Subscripting" in Chapter 3.)

SINGLE Deletes only the �rst selected entry.

Transact Verbs 8-31

DELETE

SOPT Suppresses the optimization of database calls. This
option is primarily intended to support a database
operation in a performed routine that is called
recursively. The option allows a di�erent path for
the same detail set to be used at each recursive
entry, rather than optimizing to the same path. It
also suppresses generation of a call list of *" after
the �rst call is made. Use SOPT if you are calling
TurboIMAGE through the PROC or CALL verbs. For
an example of how SOPT is used, see \Examples" at
the end of the FIND verb description.

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." You may want to add
status checking to your code if you use this option.
When STATUS is speci�ed, the e�ect of a DELETE
statement is described by the 32-bit integer value in
the status register:

Status
Register Value

Meaning

0 The DELETE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation corresponding to the value.

STATUS causes the following with DELETE:

Normal multiple accesses/deletions become single.

The normal rewind done by the DELETE is
suppressed, so CLOSE should be used before
DELETE(SERIAL) or DELETE(RSERIAL).

The normal �nd of the chain head by the DELETE
is suppressed, so PATH should be used before
DELETE(CHAIN) or DELETE(RCHAIN).

See \Using the STATUS Option" in Chapter 7.

8-32 Transact Verbs

DELETE

Examples

In the following example, the programmer wants to be sure that an entry is not in
MASTER-SET. Therefore, there are two acceptable conditions: either a status register value
of zero (delete successful) or a status register value of 17 (database error 17|record not
found) is acceptable.

DELETE MASTER-SET,

LIST=(KEY-ITEM),

STATUS;

IF STATUS = 17,0 THEN

DISPLAY "ENTRY REMOVED"

ELSE

DO
DISPLAY "ERROR ON DELETE FROM MASTER-SET";

GO TO ERROR-CLEANUP;

DOEND;

This example deletes all entries that contain a DEBT-LEVEL less than the number entered by
the user. DEBT-LEVEL is required in the LIST= option because DELETE reads each record
in the chain into the data register area associated with DEBT-LEVEL in order to check the
match criteria before deleting the entry.

PROMPT(MATCH) DEBT-LEVEL,LT;

DELETE(CHAIN) DEBT-DETL,

LIST=(DEBT-LEVEL);

This example deletes only the last entry in the data set that matches the zip code entered by
the user.

PROMPT(MATCH) ZIP ("DELETE ZIP CODE");

DELETE(RSERIAL) DETAIL-SET,

SINGLE,

LIST=(NAME:ZIP),

PERFORM=LISTIT;

Transact Verbs 8-33

DISPLAY

Produces a display of values from the data register.

Syntax

DISPLAY[([[TABLE],[FILE=mpe-�le]])][display-list] ...;

DISPLAY generates a display from values in the data register. The display can be formatted
and enhanced by character strings speci�ed in the display-list . If you do not specify a format,
the display can be formatted by any active FORMAT verb.

Statement Parts

none or TABLE
without display-list

Transact generates a display according to the speci�cations of an
active FORMAT statement. If there is none, the following default
formatting occurs:

Values are displayed in the order in which they appear in the data
register.

A heading consisting of one of the following is displayed before each
line:

the heading speci�ed by the HEAD= option in a DEFINE(ITEM)
statement,

the heading taken from the dictionary, or

the associated data item name in the list register.

Each value is displayed in a �eld whose length is the greater of the
data item size or the heading length.

A single blank character separates each value �eld. If a �eld cannot
�t on the current display line, then the �eld begins on a new line.

TABLE with
display-list

Headings are displayed only at the top of each new page in the
information display.

mpe-�le The name of an MPE �le that will receive the output from the
DISPLAY statement.

display-list The display list contains one or more display �elds and their
formatting parameters, as shown in the following format:

[display-�eld][,format-parameter]...

[:display-�eld[,format-parameter]...]...;

Several �elds can be displayed. The �elds and their formatting
parameters are separated by commas; the �eld/format-parameter
combinations are separated from each other by colons. If you omit
display-list , the display is formatted as described under \none" and
\TABLE".

8-34 Transact Verbs

DISPLAY

display-�eld The following options can be used for display �elds:

A reference to a data item name in the list register
(the data item name can be subscripted if the item
referenced is an array item).

A child item name whose parent item is in the list
register.

A character string delimited by quotation marks.

If no display �eld is speci�ed, Transact defaults to a
NULL (" ") character string.

If the requested item cannot be found in the list
register, then Transact generates an error at execution
time.

Five system variables can also be used as display
�elds. As noted, some are a�ected by native language
support. (See Appendix E, \Native Language
Support," for more information.)

$CPU Displays the cumulative amount
of CPU time used by the Transact
program, in milliseconds.

$DATELINE Displays the current date and time
in the form Tue, Apr 14, 1992, 3:07
P.M. The format is a�ected by native
language support.

$PAGE Displays the current page number.

$TIME Displays the current time; the default
format is HH:MM AA (for example,
03:07 PM). The format is a�ected by
native language support.

$TODAY Displays the current date; the default
format is MM/DD/YY (for example,
04/14/92). The format is a�ected by
native language support.

Note Text can be displayed only in columns 1 through 79. Column 80 is reserved
for the carriage control character.

format-parameters One or more of the following formatting parameters can follow the
display �eld name:

CCTL=number Issues a carriage control code of number
(decimal representation) for the display
line containing the associated display �eld.
Carriage control codes are found in the MPE
Intrinsics Manual . Note that the use of

Transact Verbs 8-35

DISPLAY

CCTL=number and LINE, NOCRLF, or
ROW, may a�ect output due to conicting
values.

CENTER Centers a display �eld on a line. The entire
�eld, including leading or trailing blanks, is
centered.

COL=number Starts the display �eld in the absolute column
position speci�ed by number . The �rst column
position is 1.

If the display is already at a column position
equal to or greater than the line width of the
display device, the �eld is truncated if:

it is a character �eld, or
pound signs are displayed for a numeric �eld.

If no part of the �eld �ts, it is not displayed.

EDIT=\edit-string" Characters that designate edit masks.
The following characters have special
meanings when used in the edit-string for all
display-�eld s except system variables $TIME
and $TODAY:

^ Inserts the character from the source
data �eld into this position in the
display �eld.

Z Suppresses leading zeros. Note that
you must use an uppercase Z.

$ Adds business (single character)
currency symbol. If the
language-de�ned currency symbol
precedes, then the symbol is oated.
If the symbol succeeds, then it follows
the last character of the number
and the edit mask is shifted left
one character to leave room. If the
symbol imbeds, it replaces the radix
(decimal point or equivalent). If no
business currency symbol is de�ned
for the current language, then \$"
edit characters are treated the same
as \other" edit characters, explained
below.

Note In Transact/iX native language mode, the pound sterling currency sign (#)
does not oat the way the dollar sign ($) does in a displayed �eld with the
edit mask. To get the pound sign to oat, change your terminal con�guration
to KEYBOARD=UK. When you specify the edit mask, use the dollar sign in
place of the pound sign. The pound sign will then be displayed.

8-36 Transact Verbs

DISPLAY

Note The number of digits available for the source number depends on the type of
currency symbol. Thus, the same value might cause a �eld overow in some
languages and not in others.

* Fills �eld with asterisks.

. Aligns the implied decimal point
as speci�ed in the dictionary or
in a DEFINE(ITEM) de�nition
statement with this edit character
in the edit mask and outputs the
language-de�ned radix character.

! Ignores the implied decimal place
and replaces this character with a
language de�ned radix character.

, Outputs the language-de�ned
thousands separator character
(numeric only).

(Surrounds negative values with
parentheses (must be last character in
edit mask).

All \other" characters, which mean any
character not de�ned above in the list of
special characters, are treated as insert
characters. For example:

EDIT="@@@@@@.@@"

displays entered data as:

@@@@@@.@@

To denote numeric data type 9, Z, P, I, J, K,
R, or E negative values with a trailing \-",
\CR", or \DR", add a trailing \-", \CR", or
\DR" to the edit string. Some edit-string
examples follow:

Number Edit String Result

1234 $$,$$$!^^ $l2.34

123456 $$,$$$!^^ $1,234.56

123456 ***,**$!^^ *$1,234.56

000009 ZZZZ!^^ .09

475.49 XXX,XXX.XX XXX,XXX.XX

-123456 $$,$$$!^^CR $1,234.56CR

-123456 Z,ZZZ!^^- $1,234.56-

230485 ^^/^^/^^ 23/04/85

System variables (except $DATELINE) can
also be edited. The edit mask characters just

Transact Verbs 8-37

DISPLAY

de�ned can be used for $CPU and $PAGE.
Special editing characters are used for $TIME
and $TODAY. For $TIME, characters in the
edit-mask string are processed as follows:

H Displays the hour with no leading
blank or zero if hour < 10.

ZH Displays the hour with leading blank
if hours < 10.

HH Displays the hour with leading zero if
hours < 10.

24 Displays the hour as expressed on a
24-hours clock; used as a pre�x to H.

M Displays the minute with no leading
blank or zero if minute < 10.

ZM Displays the minute with leading
blank if minute < 10.

MM Displays the minute with leading zero
if minute < 10.

S Displays the second with no leading
blank or zero if second < 10.

ZS Displays the second with leading
blank if second < 10.

SS Displays the second with leading zero
if second < 10.

T Displays the tenth of a second.

A Displays the next letter in the AM or
PM sequence in uppercase.

a Displays the next letter in the AM or
PM sequence in lowercase.

AA Displays both letters in the AM or
PM sequence in uppercase.

aa Displays both letters in the AM or
PM sequence in lowercase.

Except for \a", all other $TIME edit
mask characters must be in uppercase. All
characters other than edit mask characters are
inserted on a character by character basis.

8-38 Transact Verbs

DISPLAY

Here are some examples of how edit masks
change the format of the $TIME value 3:07:32
PM:

Edit Mask Displayed Time

HH:MM:SS 03:07:32

24H:M:S 15:7:32

H:MM:SS a.a 3:07:32 p.m.

ZH:ZM:SS AA 3: 7:32 PM

For $TODAY, characters in the edit mask
string are processed as follows:

D Displays the day of the month with no
leading blank or zero if day < 10.

ZD Displays the day of the month with
leading blank if day < 10.

DD Displays the day of the month with
leading zero if day of the month < 10.

DDD Displays the Julian day of year.

M Displays the month with no leading
blank or zero if month < 10.

ZM Displays the month with leading blank
if month < 10.

MM Displays the month with leading zero
if month < 10.

nM Displays the �rst n letters of month
name in uppercase; if n > number of
letters in month name, trailing blanks
are not inserted.

nm Displays the �rst n letters of month
name in lowercase except for the �rst
letter, which appears in uppercase.

YY Displays the last two digits in current
year.

YYYY Displays the current year.

nW Displays the �rst n letters of day of
week in uppercase; if n > length of
the week name, no trailing blanks are
inserted.

nw Displays the �rst n letters of day of
week in lowercase except for the �rst
letter, which appears in uppercase.

All edit string characters must be in
uppercase, except for \m" and \w". All

Transact Verbs 8-39

DISPLAY

characters not de�ned as an edit string
character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY
date April 14, 1992, make it appear as follows:

Edit Mask Displayed Date

3w 3m DD, YYYY Tue. Apr 14, 1992

DD 3M, YY 14 APR, 92

M-DD-YY 4-14-92

MM/DD/YY 04/14/92

DDD, YYYY 105, 1992

Note When a numeric value to be printed is too large for the edit mask, a series of
pound signs (#) are printed in place of the value, to indicate an overow.

HEAD=\character-
string"

Uses the character-string rather than the
default, which is the heading from the
dictionary, the heading from DEFINE(ITEM),
or the item or system variable name.

JOIN[=number] Places this number of spaces between the last
non-blank character of the current line and the
�rst character of the current display �eld. To
concatenate the character strings, use JOIN=0.
The default is 1.

LEFT Left-justi�es the data item value in the display
�eld. This is the default speci�cation.

LINE[=number] Starts the next display �eld on a new line or
on a line after a line skip count speci�ed by
number . If the print device being used can
overprint and you want it to do so, specify
LINE=0. The default is 1. LINE=0 and
LINE= (no number speci�ed) cause a carriage
return but no line feed. To accumulate output
from several display statements on one line,
use the parameter NOCRLF.

LNG=number Truncates the display �eld to this number of
characters. If this option refers to a compound
item, then that item is displayed within a
display �eld length of number . If necessary,
new lines are generated.

NEED=number Prints the current line at the top of the next
page if there are fewer than the speci�ed
number of lines between the current line and
the bottom of the page. If you are grouping

8-40 Transact Verbs

DISPLAY

a set of items together on a single line, the
NEED= must appear with the �rst item.

NOCRLF Does not issue a carriage return and line feed
for the display line containing the display �eld.
This parameter allows you to print output
from the next DISPLAY statement on the
same line where the previous display left o�.
NOCRLF is processed when a listing goes to
the terminal or printer. If the listing is sent to
a disk �le, the option is ignored.

NOHEAD Suppresses the default heading for this item
reference.

NOSIGN A numeric display �eld is always positive and
no sign position is required in the display �eld.
If a negative value occurs, the display �eld
contains a string of minus signs (-).

PAGE[=number] Starts the display �eld on a new page or on
a page after a page skip count speci�ed by
number . The default is 1.

RIGHT Right-justi�es the data item value in the
display �eld.

ROW=number Places the display �eld at absolute line
location number . The �rst line position is 1. If
the display is already at a line position greater
than number , then LINE=1 is in e�ect.

SPACE[=number] Places this number of spaces between the end
of the previous display �eld and the start of
the current display �eld. To concatenate �elds,
use SPACE=0. Default=1.

TITLE Displays the associated display �eld and any
preceding display �elds only at the start
of each new page for which this statement
applies.

TRUNCATE Truncates this display �eld if it overows the
end of the display line; if �eld is a numeric
type, displays pound signs and does not
truncate.

ZERO[E]S Right-justi�es a numeric data value in the
display �eld and inserts leading zeros.

Transact Verbs 8-41

DISPLAY

Redirecting Output To A File

The formatted output generated by DISPLAY can be redirected to a speci�ed �le by using
the FILE= option. This feature allows you to generate multiple reports and to save each in
a di�erent �le. The only requirement is that the speci�ed �le must �rst be identi�ed by a
corresponding SYSTEM statement using the FILE= option. If the �le is not de�ned in the
SYSTEM statement, an INVALID FILE NAME error will occur during compilation. The
default output width for DISPLAY is 79 characters.

When using this option, the DISPLAY verb sets the status register to indicate the number of
characters written to the speci�ed �le or �1 to indicate an end-of-�le. The status register is
not altered unless the FILE= option is used.

When using SET(OPTION) PRINT, the output �le must be built with records = 133
characters.

Examples

Assuming the items NAME, ADDRESS, CITY, DISCOUNT, and CUR-BAL have been
de�ned and also speci�ed in a LIST statement, the following code:

DISPLAY NAME, COL=5:

ADDRESS, SPACE=3:

CITY, SPACE=5:

"DISCOUNT RATE IS", LINE=2, COL=5:

DISCOUNT, NOHEAD:

"%", JOIN=0:

"CURRENT BALANCE IS", SPACE=10:
CUR-BAL, EDIT="$,$$$,$$$.^^", NOHEAD;

results in the following display:

NAME ADDRESS CITY

SMITH R 3304 ROCKY ROAD COLORADO SPRINGS

DISCOUNT RATE IS 7.5% CURRENT BALANCE IS $14,734.05

The following example illustrates the use of the TABLE modi�er and the TITLE option:

DISPLAY(TABLE)

"CUSTOMER LIST", COL=25, TITLE:

CUST-NO, LINE=2:

FIRST-NAME, SPACE=3:

LAST-NAME, JOIN=3:

STREET-ADDR, SPACE=3:

CITY, SPACE=3:

ZIP, SPACE=3;

8-42 Transact Verbs

DISPLAY

This statement produces a display that prints the title \CUSTOMER LIST" at the start of
each page as a result of the TITLE option, and only prints the item heads once on each page
as a result of the TABLE modi�er. For example,

CUSTOMER LIST

CUST-NO: FIRST-NAME: LAST-NAME: STREET-ADDR: CITY: ZIP:

22431 John Jones 5 Main Avenue Centerville 12345

34567 Mary Smith 123 4th St. Roseville 95747

The following example shows the use of the FILE= option to redirect formatted output.
It routes EMPLOYEE-NAME, EMPLOYEE-ADDRESS, and SALARY to the MPE �le
\REPORT."

DISPLAY(FILE=REPORT) EMPLOYEE-NAME: EMPLOYEE-ADDRESS: SALARY;

Transact Verbs 8-43

END

Returns control to next higher level or structure.

Syntax

END[modi�er];

The function of the END verb depends on the modi�ers used.

Statement Parts

To specify the impact of the END verb, use one of the following modi�ers:

none At the end of a command sequence, control returns to command level (the
current command if the REPEAT quali�er is in e�ect) or to the beginning of
a current level.

At the end of a program, issues the message EXIT OR RESTART (E/R)? to
which you can respond with an E to exit from the program or an R to restart
the program. Necessary only if program branches can cause more than one
program end.

RESTART causes the following things to happen:

List, key, update, match, and argument registers are reset (the data register
is not reset).

The work space is reset.

Stack markers Z and DL are reset.

MPE, KSAM, and form �les are closed.

(LEVEL) The end of the current level. This causes control to fall through the level to
the statement following the END(LEVEL) statement and resets the registers
to whatever their conditions were immediately before the level sequence
began.

If you use END without (LEVEL) to terminate a level, Transact generates a
loop after the �rst execution of the level. The loop begins at the top of the
level. The registers are reset to whatever their values were at the beginning of
the level.

Information on levels is contained in the description of the LEVEL verb in
this chapter.

system-name The end of the executing program (name speci�ed in the SYSTEM
statement); necessary if program is one of several included in a text �le. The
registers are reset.

(SEQUENCE) The end of a command sequence; control passes unconditionally back to
command level. The registers are reset.

8-44 Transact Verbs

END

Examples

In this example, END terminates the command sequence and clears the program registers.

$$ADD:

$PROGRAM:

PROMPT(PATH) PROG-NAME:

VERSION:

DESCRIPTION;

PUT PROGRAMS,

LIST=(PROG-NAME:DESCRIPTION);

END;

The following example terminates the program PROG1.

SYSTEM PROG1;

.

<<process program code>>

.

END PROG1;

This example terminates processing of the level, resets the program registers to their state
before to the LEVEL statement, and returns control to the LEVEL statement.

LEVEL;

.

<<process level code>>

.

END;

The following example terminates processing of the level, resets the program registers to their
state before the LEVEL statement, and passes control to the next statement. In this case, the
next statement is the �rst statement following the label, NEXT.

LEVEL;

.

<<process level code>>

.

END(LEVEL);

NEXT:

Transact Verbs 8-45

EXIT

Generates an exit from the Transact program to MPE or from a called Transact program to
the calling Transact program.

Syntax

EXIT;

EXIT causes control to return to the operating system from a main program. If Transact
was processing a called program, control returns to the calling program where processing
continues.

Unlike END, EXIT does not issue the EXIT OR RESTART (E/R)? prompt.

8-46 Transact Verbs

FILE

FILE

Reads, writes, updates, sorts, and otherwise operates on MPE �les.

Syntax

FILE(modi�er) �le-name
�
,option-list

�
;

FILE speci�es operations on any MPE �le de�ned in the SYSTEM statement. The operations
that FILE performs are determined by the following verb modi�ers:

CLOSE Closes the speci�ed �le. (See Syntax Option 1.)

CONTROL Performs an FCONTROL operation. (See Syntax Option 2.)

OPEN Opens speci�ed �le. (See Syntax Option 3.)

READ Reads record from speci�ed �le. (See Syntax Option 4.)

SORT Sorts speci�ed �le. (See Syntax Option 5.)

UPDATE Replaces current record in speci�ed �le. (See Syntax Option 6.)

WRITE Writes record to speci�ed �le. (See Syntax Option 7.)

Several of the above FILE operations can be performed by other Transact verbs.

For: FILE(CLOSE) Use: CLOSE

FILE(READ) GET or FIND

FILE(UPDATE) UPDATE

FILE(WRITE) PUT

The Transact verbs in the right column are more general; they apply to data sets and KSAM
�les as well as to MPE �les. They also provide more options, but they are not as e�cient as
the FILE verb for simple MPE �le operations.

Statement Parts

modi�er For the meaning of particular modi�ers, see the syntax options below.

�le-name The name of the �le as de�ned in the SYSTEM statement, including the back
reference indicator (*) if applicable. A �le is opened automatically the �rst
time it is referenced.

option-list The allowed options for option-list are unique to each syntax option.

Syntax Options

(1) FILE(CLOSE) �le-name;

FILE(CLOSE) closes the �le identi�ed by �le-name . If $PRINT is speci�ed as the �le name,
the print �le TRANLIST is closed.

Transact Verbs 8-47

FILE

(2) FILE(CONTROL) �le-name,CODE=number[,PARM=item-name[(subscript)]];

FILE(CONTROL) speci�es that the FCONTROL operation designated by CODE=number is
to be performed. The value of number must be an unsigned integer (See the FCONTROL
intrinsic description in the MPE Intrinsics Manual for the meaning of number .) Any
value supplied or returned by the FILE(CONTROL) operation uses the data register �eld
identi�ed by PARM=item-name. The item-name may be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.) FILE(CONTROL) is the only statement
that performs the FCONTROL functions on an MPE �le.

To set a time-out interval for a DATA, INPUT, or PROMPT verb, use CODE=4 and let
item-name equal the number of seconds of the time-out interval. In this case, �le-name is the
name of a dummy �le de�ned in the SYSTEM STATEMENT. At run time, you should set up
a �le equation, FILE �le-name = $STDLIST, using the dummy �le speci�ed in your program.

The FILE(CONTROL) statement only applies to the next access to the terminal, so it should
appear immediately before the data entry statement to which it applies. (See the example at
the end of this subsection.)

(3)FILE(OPEN) �le-name,LIST=(item-name1:item-name2);

FILE(OPEN) opens the �le identi�ed by �le-name . It is required only with the FILE(SORT)
operation. It structures the list register with item-name1 through item-name2 for the
subsequent sort. This operation is required only if the �le already exists and it is to be sorted
by the system.

FILE(OPEN) is the only statement that opens an MPE �le.

(4) FILE(READ) �le-name,LIST=(item-name1:item-name2);

FILE(READ) reads a single record from the �le identi�ed by �le-name and moves the record
contents to the portion of the data register corresponding to item-name1 through item-name2
in the list register. At the completion of the operation, the status register contains either the
number of characters read or �1 to indicate end-of-�le.

(5) FILE(SORT) �le-name {,SORT=(item-name1:item-name2) };

{,SORT=(item-name1[(ASC)][,item-name2[(ASC)]] . . .)};

[(DES)] [(DES)]

FILE(SORT) executes the HP 3000 SORT utility to sort an existing �le. The sort instruction
can consist of (1) a range of items in the order that they are to be sorted (ascending order
only), or (2) a list of items or sub items in the order that they are to be sorted and a
speci�cation of ascending (default) or descending order.

Provided that the access mode of SORT is de�ned for the �le, an end-of-�le is automatically
written into the �le before the sort, and the �le is rewound following the sort. The temporary
sort �le is purged upon exit of the Transact program.

MPE �les can also be sorted with the FIND statement, but FILE(SORT) is more e�cient.

8-48 Transact Verbs

FILE

(6) FILE(UPDATE) �le-name,LIST=(item-name1:item-name2);

FILE(UPDATE) replaces the current record in the �le identi�ed by �le-name . The record
contents are de�ned by item-name1 through item-name2 in the list register.

(7) FILE(WRITE) �le-name,LIST=(item-name1:item-name2);

FILE(WRITE) writes a single record to the �le identi�ed by �le-name . The record contents
are de�ned by item-name1 through item-name2 in the list register. At the completion of the
operation, the status register contains 0 if the operation was successful or an unde�ned value
if the operation was not successful.

Examples

The FILE(CONTROL) statement causes FCONTROL operation 7 to be performed; that is, it
spaces the tape forward to the tape mark. The value it returns is placed in the data register
�eld speci�ed by LNUM. (See the MPE Intrinsics Manual for more information regarding
FCONTROL.)

SYSTEM TEST,

BASE=INVTRY,

FILE=TAPE(WRITE(NEW),80,1,5000),...;

.

.

FILE(CONTROL) TAPE,

CODE=7,

PARM=LNUM;

This example maps the data register for a subsequent FILE(SORT).

ITEM A X(10):

B X(20):

C X(15);

:

FILE(OPEN) DATAFILE,

LIST=(A:C);

Transact Verbs 8-49

FILE

This example is a complete program that can be used to familiarize yourself with setting a
time-out interval before a data entry statement. Note that there are two loops, one nested in
the other, with time-out applied only to the second PROMPT statement. The following �le
equate must be set at run time for the following program:

:FILE TERM=$STDLIST

SYSTEM TIMEO, FILE=TERM;

DEFINE(ITEM) TIME-OUT I(4):

NUMBER I(4);

LEVEL;

PROMPT TIME-OUT;

LEVEL;

FILE(CONTROL) TERM,CODE=4,PARM=TIME-OUT;

PROMPT NUMBER;

IF STATUS = -4 THEN DISPLAY "TIME OUT!";

8-50 Transact Verbs

FIND

FIND

Performs multiple retrievals from a �le or data set.

Syntax

FIND
�
(modi�er)

�
�le-name

�
,option-list

�
;

FIND executes multiple retrievals from a �le or data set and places retrieved data in the data
register one entry at a time. It is usually used with a PERFORM= option to execute a block
of statements that processes each record retrieved.

When using the match register to select records, each record is placed in the data register
before it is tested for selection against the match register. At the end of a FIND, the area of
the data register speci�ed in the LIST= option contains the last record retrieved. This may
not be the last record selected by the match criteria.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify the type of access to the �le or data set, choose one of the following
modi�ers:

none Retrieves an entry from a master set based on the key value
in the argument register. This option does not use the match
register.

CHAIN Retrieves entries from a KSAM �le key or a detail chain. The
entries must meet any match criteria set up in the match
register in order to be selected. The contents of the key and
argument registers specify the chain or KSAM key in which
the retrieval is to occur. If no match criteria are speci�ed, all
entries on the chain are selected. Items used in the match
criteria must be included in the LIST= option.

CURRENT Retrieves the last entry that was accessed from the �le or
data set.

DIRECT Retrieves the entry stored at a speci�ed record number
from an MPE or KSAM �le or a data set. Before using this
modi�er, you must store the record number as a 32-bit integer
in the item referenced by the RECNO= option.

PRIMARY Retrieves the master set entry stored at the primary address
of a synonym chain. The primary address is located through
the key value contained in the argument register.

Transact Verbs 8-51

FIND

RCHAIN Retrieves entries from a detail set in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Retrieves entries from a data set in the same manner as
the SERIAL option, except in reverse order. If an equal
match without match characters exists, Transact will convert
an RSERIAL option to an RCHAIN option to improve
the application's e�ciency. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Retrieves entries in serial mode from an MPE or KSAM �le
or a data set that meet any match criteria set up in the
match register. If an equal match without match characters
exists, Transact will convert an SERIAL option to an CHAIN
option to improve the application's e�ciency. If no match
criteria are speci�ed, all entries are selected. If match criteria
are speci�ed, the match items must be included in a LIST=
option of the FIND statement.

Note FIND(SERIAL) or FIND(RSERIAL) with the PERFORM= option on a
master set will skip entries if a delete is done within the perform, and a
secondary entry migrates to the position of the deleted entry. (Transact/V
Only.)

�le-name The �le or data set to be accessed by the retrieval operation. If the data set
is not in the home base as de�ned in the SYSTEM statement, the base name
must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following options, separated by commas:

ERROR=label
[([item-name])]

Suppresses the default error return Transact normally
takes. Instead, the program branches to the statement
identi�ed by label , and the stack pointer for the list
register is set to the data item item-name. Transact
generates an error at execution time if the item cannot
be found in the list register. The item-name must be
a parent.

If you do not specify an item-name, as in
ERROR=label ();, the list register is reset to empty.
If you use an *" instead of item-name, as in
ERROR=label (*);, then the list register is not
touched. For more information, see \Automatic Error
Handling," in Chapter 7.

LIST=(range-list) The list of items from the list register to be used for
the FIND operation. For data sets, no child items can
be speci�ed in the range list.

If the LIST= option is omitted with any modi�er, all
the items named in the list register are used.

8-52 Transact Verbs

FIND

When the LIST= option is used, only the items
speci�ed in a LIST= option have their match
conditions applied when the items are included in the
match register. When the LIST= option is omitted,
items which appear in the list register and the
match register have their match conditions applied.
Otherwise, the match conditions for an item are
ignored. The match register can be used only with the
modi�ers CHAIN, RCHAIN, SERIAL, or RSERIAL.

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM=
is executed, and then the retrieval is performed.

For all options of range-list , the data items selected
are the result of scanning the data items in the
list register from top to bottom, where top is the
last or most recent entry. (See Chapter 4 for more
information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items they
cause FIND to access include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

Transact Verbs 8-53

FIND

then data items A, B, C, D, and D are
selected. For database �les, an error
is returned if duplicate entries are
selected.

If item-nameX and item-nameY
are marker items (see the
DEFINE(ITEM) verb), and if there
are no data items between the two on
the list register, no database access is
performed.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the
list register. For databases, data items
can be speci�ed in any order. For
KSAM and MPE �les, data items
must be speci�ed in the order of their
occurrence in the physical record.
This order need not match the order
of the data items on the list register.
This option incurs some system
overhead.

(@) Speci�es a range of all data items
of �le-name as de�ned in the data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or

8-54 Transact Verbs

FIND

form as de�ned in the data dictionary.
This order need not match the order
of the data items in the list register.

() A null data item list. That is, the
entry or entries are read, but do not
retrieve any data.

LOCK Locks the speci�ed �le or database. The lock is active
the whole time that the FIND executes. If LOCK is
not speci�ed and a TurboIMAGE data set is being
accessed, no locking is done.

For a KSAM or MPE �le, if LOCK is not speci�ed
on FIND but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed
by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved. Including the
LOCK option overrides SET(OPTION) NOLOCK for
the execution of the FIND verb.

For transaction locking, you can use the LOCK option
on the LOGTRAN verb instead of the LOCK option
on FIND if SET(OPTION) NOLOCK is speci�ed.

See \Database and File Locking" in Chapter 6 for
more information on locking.

NOMATCH Ignores any match criteria set up in the match
register.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for
every entry retrieved by FIND. The entries can be
optionally selected by MATCH criteria, in which case
control is transferred only for the selected entries.
This option allows operations to be performed on
retrieved entries without the need to code loop-control
logic.

You can nest up to 10 PERFORM= options.

RECNO=item-name
[(subscript)]

The item-name can be subscripted if an array item
is being referenced. (See \Array Subscripting" in
Chapter 2.) With the DIRECT modi�er, you must
de�ne item-name to contain the 32-bit integer number
(I(9,,4)) of the record to be retrieved.

With other modi�ers, Transact returns the record
number of the retrieved item in item-name.

SINGLE Retrieves only the �rst selected entry.

Transact Verbs 8-55

FIND

SOPT Suppresses the optimization of database calls. SOPT
forces Transact to re-establish its path, list, and record
pointers before each record is used. Use SOPT if you
are calling TurboIMAGE through the PROC or CALL
verbs within a PERFORM option, or if you use the
same FIND verb recursively for TurboIMAGE access.
For an example of how SOPT is used, see \Examples"
at the end of the FIND verb description.

SORT=(item-name1[(ASC)] [,item-name2[(ASC)]

[(DES)] [(DES)]])

FIND creates a work �le of the records selected when
the SORT option is speci�ed. FIND sorts each data
entry or record by item-name1 and, optionally,
item-name2 , and so forth. The key items in the
SORT= option must also be included in the LIST=
option (they can be child items); the items in the
LIST= option are the record de�nition for the sort
�le. You can specify ascending (ASC) or descending
(DES) sort order for each item. The default is
ascending order.

The FIND statement only creates and sorts if a
PERFORM= option is also included, and it always
performs the sort before processing the perform
statements. The processing sequence for a sort is:

�rst, passes each record of data to the data register,

retrieves each selected record,

then writes each selected record to the sort �le,

sorts the sort �le by any speci�ed items, and

passes each record one by one to the PERFORM=
statements.

The sort �le size is determined by the SYSTEM
statement.

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." You may want to add
status checking to your code if you use this option.

When STATUS is speci�ed, the e�ect of a FIND
statement is described by the 32-bit integer value in
the status register:

8-56 Transact Verbs

FIND

Status
Register Value

Meaning

0 The FIND operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation that corresponds to the
value.

STATUS causes the following with FIND:

Normal multiple accesses become single.

The normal rewind done by the FIND is suppressed,
so CLOSE should be used before FIND(SERIAL).

The normal �nd of the chain head is suppressed, so
PATH should be used before FIND(CHAIN).

See \Using the STATUS Option" in Chapter 7 for a
discussion of how to use STATUS data.

WORKFILE FIND creates a work �le of the records selected when
the WORKFILE option is speci�ed. The FIND
statement only creates the work �le if a PERFORM
option is also included. The processing sequence for a
work �le is:

�rst, passes each record of data to the data register,

evaluates each record selecting those that meet the
MATCH criteria,

then writes each selected record to the work �le,

passes each record one by one to the PERFORM
statements.

If the SORT and WORKFILE options are both used
in a single verb, the work �le is sorted according to
the SORT option.

Suppression of Optimization versus WORKFILE

Transact's features resolve issues associated with retaining the correct location in a �le or
data set on multiple retrieval verbs (OUTPUT, FIND, DELETE, REPLACE) when the
PERFORM procedure also operates on the same �le or data set. These multiple retrieval
verbs are optimized to avoid repositioning them before each record or entry is read.

Automatic Optimization

Transact tries to optimize the TurboIMAGE/KSAM interface for the set of multiple retrieval
verbs. If Transact determines that the current multiple retrieval verb is the only verb
accessing the �le or data set within a program, optimization can occur.

Transact Verbs 8-57

FIND

Automatic Suppression of Optimization

Transact automatically suppresses the optimization of TurboIMAGE and KSAM calls when
more than one verb accesses the same �le or data set within a program. On multiple retrieval
verbs, automatic suppression allows a di�erent path for each access of the �le or data set.
This feature is always active.

Automatic suppression of optimization occurs when:

both a FIND verb and its PERFORM option access data set X.

both a FIND verb and its PERFORM option access KSAM �le Y.

Suppression of Optimization Limitations

There are situations where the automatic suppression of optimization is limited. It is either
not invoked, or optimization is not su�cient to prevent multiple retrieval verbs from losing
their location in the �le or data set. These situations are described below.

The SOPT Option

Transact cannot detect the need for suppression of optimization in three speci�c situations.
The SOPT option on multiple retrieval verbs is intended to handle these situations where
suppression is needed but is not activated automatically. This can occur under the following
situations:

The PERFORM option is a recursive call.

A PROC verb is used within the PERFORM option to call a procedure that accesses the
same �le or data set as the multiple retrieval verb.

A CALL verb is used within the PERFORM option to call another Transact system that
accesses the same �le or data set as the multiple retrieval verb.

Corrupted Location in the File/Data Set

Adding, deleting, updating, or replacing more than one record from within the PERFORM
option procedure of a multiple retrieval verb can cause the multiple retrieval verb to lose its
location if the current and next/previous logical records in the chain are deleted.

Revisiting a Record

When records are added, updated, or replaced from within the PERFORM procedure, these
new or changed records can be retrieved a second time by the multiple retrieval verb. The
speci�c conditions where an updated or added record can be retrieved a second time depend
on the access mode of the multiple retrieval verb. For a multiple retrieval verb using the
CHAIN or RCHAIN modi�er where the key item is a sorted key, revisiting can occur:

When a PUT verb adds a record between the current record and the last record in the
chain.

When a REPLACE verb updates any item, and the TurboIMAGE critical item update is
OFF.

When an UPDATE verb updates a sort item or extended sort item, and the TurboIMAGE
critical item update is ON.

8-58 Transact Verbs

FIND

When a REPLACE verb is used to replace a key value other than the key in the current
path.

When multiple PUTs, UPDATEs, REPLACEs, or DELETEs are done within the
PERFORM option procedure, and the last operation is not a delete of the current record for
the multiple retrieval verb.

For a multiple retrieval verb using the SERIAL or RSERIAL modi�er, revisiting may occur:

When a PUT verb adds a record to the data set.

When a REPLACE verb update is used to replace a record in the data set.

Note With the CHAIN and RCHAIN access method, SORTED keys can cause
revisiting of an entry. Transact multiple retrieval verbs retain the original end
of chain location and stop processing after this record is read. Therefore, any
records added to the chain after the original end of the chain record will not
be processed.

Using the WORKFILE Option to Remedy Optimization Limitations

The WORKFILE option can be used to remedy these optimization limitations, but other
options can yield better performance.

In situations where it is undesirable to have new or modi�ed records reread by the multiple
retrieval verb, you can use two tactics:

If the access is CHAIN or RCHAIN and the key item is a sorted key, the access direction
can be changed to place added/updated records on a part of the chain you have already
processed. If the access is SERIAL or RSERIAL, there is no way to control access to
eliminate new or updated records.

For either SERIAL or CHAIN access, the MATCH register can be used to �lter out records
that have already been processed. If the current record is to be deleted by the PERFORM
option, do this as the last operation against the data set.

Using the WORKFILE Option

If none of the above techniques allow the multiple retrieval verb to process the �le or data set
as desired, you can use the WORKFILE option. In terms of performance, this option is the
least desirable of any of the methods mentioned above. This option should be used under the
following speci�c circumstances:

When multiple PUTs, DELETEs, UPDATEs, or REPLACEs done within the PERFORM
procedure of a multiple retrieval verb cause the multiple retrieval verb to lose its location.

When no other method for eliminating reprocessing records added to the �le or data set via
a REPLACE, UPDATE, or PUT can be found and reprocessing would damage the record.

When the PERFORM procedure alters the MATCH register in such a way that the
MATCH conditions are no longer valid for the calling multiple retrieval verb.

Transact Verbs 8-59

FIND

Examples

In the following example of FIND, use of the STATUS option suppresses automatic error
handling. The STATUS option enables you to perform a routine to control operations when
an end of chain or broken chain occurs.

SET(KEY) LIST(KEY-ITEM);

PATH DETAIL-SET;

GET-NEXT:

FIND(CHAIN) DETAIL-SET,STATUS,

PERFORM=PROCESS-AN-ENTRY;

IF STATUS=18 THEN <<Broken chain >>

DO
PERFORM UNDO-TRANSACTION;

EXIT;

DOEND;

IF STATUS=15 THEN <<End of chain >>

END

ELSE

IF STATUS=0 THEN <<Successful operation >>

GO TO GET-NEXT

ELSE

GO TO ERROR-CLEANUP;

Instead of using the STATUS option, (such as using automatic error handling), you could set
up a procedure to see if a speci�c entry exists in a chain. When you test the status register,
you would get the number of records found.

SET(KEY) LIST(KEY-ITEM);

SET(MATCH) LIST(DATA-ITEM3);

FIND(CHAIN) DETAIL-SET,
LIST=(DATA-ITEM3),SINGLE;

IF STATUS=0 <<then no entries found>>...

When the STATUS option is not in e�ect for a FIND(CHAIN) or FIND(RCHAIN) operation
on a detail set, the status register contains a �1 when the argument value is not in the master
set.

The following example uses a PERFORM= option to test data values in each retrieved entry.
The routine TEST1 is performed on every record retrieved by FIND(CHAIN).

FIND(CHAIN) DET,

LIST=(A:H),

PERFORM=TEST1;

PERFORM GRAND-TOTAL;

END;

TEST1:

IF (A) = "AUGUST" THEN

PERFORM PRINT-IT;

RETURN;
PRINT-IT:

LET (SUB) = (SUB) + (AMOUNT);

8-60 Transact Verbs

FIND

.

.

DISPLAY ...;
RETURN;

The following example shows a method for traversing a pair of data sets organized in a tree
structure. It uses a recursive routine; that is, the routine NEXT calls itself.

Assume that the database TREE has the following structure:

LIST PARENT: CHILD;

DATA PARENT;

MOVE (CHILD) = (PARENT); <<Initially parent and child must have >>

<<value entered by user. >>

PERFORM NEXT;
DISPLAY "Tree Traversal Complete";

EXIT;

NEXT:

MOVE (PARENT) = (CHILD); <<Child item at this level becomes >>

<<parent at next level. >>

SET(KEY) LIST(PARENT); <<PARENT is key to search for next level. >>

DISPLAY;

FIND(CHAIN) TREE-DETAIL, <<Find next level in tree and retrieve >>

LIST=(CHILD), <<child (future parent), then call this >>

PERFORM=NEXT, <<routine again until there are no more >>

SOPT; <<child chains. SOPT is needed to allow >>

<<a different path at each level of the >>

<<recursion. >>

DISPLAY;

RETURN;

Transact Verbs 8-61

FIND

When you use a PERFORM= option in a FIND (or any other �le access statement that
allows this option), and execute other �le access statements within the PERFORM=
routine, Transact creates a chain of key/argument registers to keep track of which chain
you are following. Each time the program returns from a PERFORM= routine, one set of
key/argument values is removed. For example:

LIST PROD-NUM:

PROD-CODE:

DESCRIPTION;

DATA(KEY) PROD-NUM; <<Set up 1st key/argument pair. >>

FIND(CHAIN) PROD-DETAIL,

LIST=(PROD-NUM:DESCRIPTION),

SORT=(PROD-NUM,PROD-CODE),

PERFORM=TESTIT;

EXIT;

TESTIT:

DISPLAY "In TESTIT routine";

DATA(KEY) PROD-NUM; <<Set up 2nd key/argument pair. >>

FIND(CHAIN) PROD-DETAIL,

LIST=(PROD-NUM:DESCRIPTION);

DISPLAY;

RETURN;

The next example sorts the entries in data set ORDER-DET in primary sequence by
ORD-NO and in secondary sequence by PROD-NO. As it sorts, it passes the sorted entries to
the PERFORM= statements at the label DISPLAY-IT to be displayed in sorted order.

SORT-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:
SHIP-DATE:

FIND(SERIAL) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

SORT=(ORD-NO,PROD-NO),

PERFORM=DISPLAY-IT;

.

.

DISPLAY-IT:

DISPLAY "Order List by Product Number", LINE=2:

ORD-NO, NOHEAD, COL=5:

PROD-NO, NOHEAD, COL=20:

QTY-ORD, NOHEAD, COL=35:

SHIP-DATE, NOHEAD, COL=50;

8-62 Transact Verbs

FIND

This example shows the use of the WORKFILE option. All quali�ed records have their
record number written to a work �le. This �le will be used to retrieve records instead of the
TurboIMAGE chain. This example assumes that SHIP-DATE is a sort or search item within
the TurboIMAGE data set ORDER-DET.

READ-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:

SHIP-DATE:

FIND(CHAIN) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

WORKFILE,

PERFORM=INCDATE;

.

.

INCDATE:

LET (SHIP-DATE)=(SHIP-DATE)+3;

UPDATE ORDER-DET,

LIST=(ORD-NO:SHIP-DATE);

Transact Verbs 8-63

FORMAT

Speci�es the format of information displayed by the OUTPUT verb or by an unformatted
DISPLAY verb.

Syntax

FORMAT display-list;

FORMAT speci�es the format of a display and the inclusion of any character strings to
enhance the display. You use it in conjunction with the OUTPUT verb or an unformatted
DISPLAY verb. Use the FORMAT/OUTPUT statement combination when you want to
generate a display from more than one entry in a particular data set or �le.

The FORMAT statement must precede the DISPLAY or OUTPUT statement it formats. A
FORMAT statement in PERFORM procedure associated with an OUTPUT statement does
not format that OUTPUT, though it may format another OUTPUT or DISPLAY statement
within the PERFORM= procedure.

The speci�cations in a FORMAT statement are used by the next OUTPUT statement or by
the next unformatted DISPLAY statement. The FORMAT speci�cations cannot be re-used
unless program control passes through that FORMAT statement again. Format speci�cations
are reset to default values after each FORMAT statement is used by the OUTPUT or
DISPLAY statement.

When native language support is used, the decimal and thousands indicators are language
sensitive. As indicated below, some of the EDIT= mask characters are also language sensitive.
(See Appendix E, \Native Language Support," for more information.)

The default format is:

Displays the values in the order in which they appear in the data register.

Accompanies each value with a heading consisting of:

the heading speci�ed for that value in a HEAD= option of a DEFINE(ITEM) statement,

the heading taken from a data dictionary de�nition of the item, or

the associated data item name in the list register.

Each value is displayed in a �eld whose length is either the data item size or the heading
length, whichever is longer.

A single blank character separates each value �eld from the next. If a �eld cannot �t on the
current display line, then the �eld begins on a new line.

8-64 Transact Verbs

FORMAT

Statement Parts

display-list The display list contains one or more display �elds and their formatting
parameters separated by a colon. The �elds are separated from their
formatting parameters by commas as shown below:

display-�eld[,format-parameter]...

[:display-�eld[,format-parameter]...]...

If you omit display-list , the display is formatted according to the default
format described earlier in this verb description.

display-�eld The following options can be used for display �elds:

A reference to a data item name in the list register (the
item name may be subscripted if an array item is being
referenced).

A child item name whose parent item is in the list register,
or

A character string delimited by quotation marks.

If the requested item cannot be found in the list register, then
Transact generates an error at execution time.

Five system variables can also be used as display �elds.
As noted, some are a�ected by native language support.
(See Appendix E, \Native Language Support," for more
information.)

$CPU displays the cumulative amount of CPU
time used by the Transact program, in
milliseconds.

$DATELINE displays the current date and time in the
form Tue, Apr 14, 1992, 3:07 P.M. The
format is a�ected by native language support.

$PAGE displays the current page number.

$TIME displays the current time; the default format
is HH:MM AA (for example, 03:07 PM). The
format is a�ected by native language support.

$TODAY displays the current date; the default format
is MM/DD/YY (for example, 04/14/92). The
format is a�ected by native language support.

format-
parameters

One or more of the following formatting parameters can follow the display
�eld name:

CCTL=number Issues a carriage control code of number (decimal
representation) for the display line containing the
associated display �eld. Carriage control codes (octal
representation) are found in the MPE Intrinsics
Manual . Note that the use of CCTL=number and

Transact Verbs 8-65

FORMAT

LINE, NOCLRF, or ROW, may a�ect output due to
conicting values.

CENTER Centers a display �eld on a line. The entire �eld,
including leading or trailing blanks, is centered.

COL=number Starts the display �eld in the absolute column position
speci�ed by number . The �rst column position is 1.

If the display is already at a column position equal to
or greater than the line width of the display device,
the �eld is truncated if:

it is a character �eld, or
pound signs are displayed for a numeric �eld.

If no part of the �eld �ts, it is not displayed.

EDIT=\edit-string" Characters that designate edit masks. The following
characters have special meanings when used in the
edit-string :

^ Inserts the character from the source data
�eld into this position in the display �eld.

Z Suppresses leading zeros. Note that you must
use an uppercase Z.

$ Adds business (single character) currency
symbol. If the language de�ned currency
symbol precedes, then the symbol is oated.
If the symbol succeeds, then it follows the last
character of the number and the edit mask is
shifted left one character to leave room. If the
symbol imbeds, it replaces the radix (decimal
point or equivalent). If no business currency
symbol is de�ned for the current language,
then \$" edit characters are treated the same
as \other" edit characters, explained below.

Note The number of digits available for the source number depends on the type of
currency symbol. Thus, the same value might cause a �eld overow in some
languages and not in others.

* Fills �eld with leading asterisks.

. Aligns the implied decimal point as speci�ed
in a data dictionary or in a DEFINE(ITEM)
de�nition statement with this edit character
in the edit mask and output the language
de�ned radix character.

! Ignores the implied decimal place and
replaces this character with a language
de�ned decimal character.

8-66 Transact Verbs

FORMAT

' Outputs the language de�ned thousands
separator character (numeric only).

(Surrounds negative values with parentheses
(must be last character in the edit mask).

All \other" characters, which means any character
not de�ned above in the list of special characters, are
treated as insert characters. For example:

EDIT="@@@@@@.@@"

displays entered data as:

@@@@@@.@@

To denote numeric data type 9, Z, P, I, J, K, R, or E
negative values with a trailing \-", \CR", or \DR",
add a trailing \-", \CR", or \DR" to the edit string.
Some edit-string examples follow:

Number Edit String Result

1234 $$,$$$!^^ $l2.34

123456 $$,$$$!^^ $1,234.56

123456 ***,**$!^^ *$1,234.56

000009 ZZZZ!^^ .09

475.49 XXX,XXX.XX XXX,XXX.XX

-123456 $$,$$$!^^CR $1,234.56CR

-123456 Z,ZZZ!^^- $1,234.56-

230479 ^^/^^/^^ 23/04/79

System variables (except $DATELINE) can also be
edited. The edit mask characters just de�ned can be
used for $CPU and $PAGE. Special editing characters
are used for $TIME and $TODAY.

For $TIME, characters in the edit mask string are
processed as follows:

H Displays the hour with no leading blank or
zero if hour < 10.

ZH Displays the hour with leading blank if hour
< 10.

HH Displays the hour with leading zero if hour <
10.

24 Displays the hour as expressed on a 24-hour
clock; used as a pre�x to H.

M Displays the minute with no leading blank or
zero if minute < 10.

ZM Displays the minute with leading blank if
minute < 10.

Transact Verbs 8-67

FORMAT

MM Displays the minute with leading zero if
minute < 10.

S Displays the second with no leading blank or
zero if second < 10.

ZS Displays the second with leading blank if
second < 10.

SS Displays the second with leading zero if
second < 10. idxjS and SS edit charactersj

T Displays the tenth of a second.

A Displays the next letter in the AM or PM
sequence in uppercase.

a Displays the next letter in the AM or PM
sequence in lowercase.

AA Displays both letters in the AM or PM
sequence in uppercase.

aa Displays both letters in the AM or PM
sequence in lowercase.

Except for \a", all other $TIME edit mask characters
must be in uppercase. All characters other than
edit mask characters are inserted on a character by
character basis.

Here are some examples of how edit masks change the
format of the $TIME value 3:07:32 PM:

Edit Mask Displayed Time

HH:MM:SS 03:07:32

24H:M:S 15:7:32

H:MM:SS a.a 3:07:32 p.m.

ZH:ZM:SS AA 3: 7:32 PM

For $TODAY, characters in the edit mask string are
processed as follows:

D Displays the day of the month with no
leading blank or zero if day < 10.

ZD Displays the day of the month with leading
blank if day < 10.

DD Displays the day of the month with leading
zero if day of the month < 10.

DDD Displays the Julian day of year.

M Displays the month with no leading blank or
zero if month < 10.

ZM Displays the month with leading blank if
month < 10.

8-68 Transact Verbs

FORMAT

MM Displays the month with leading zero if
month < 10.

nM Displays the �rst n letters of month name in
uppercase; if n > number of letters in month
name, trailing blanks are not inserted.

nm Displays the �rst n letters of month name in
lowercase except for the �rst letter, which
appears in uppercase.

YY Displays the last two digits in current year.

YYYY Displays the current year.

nW Displays the �rst n letters of day of week in
uppercase; if n > length of the week name, no
trailing blanks are inserted.

nw Displays the �rst n letters of day of week in
lowercase except for the �rst letter, which
appears in uppercase.

All edit string characters must be in uppercase, except
for \m" and \w". All characters not de�ned as an
edit string character are inserted on a character by
character basis.

Various edit masks applied to the $TODAY date April
14, 1992, make it appear as follows:

Edit Mask Displayed Date

3w. 3m DD, YYYY Tue. Apr 14, 1992

DD 3M, YY 14 APR 92
M-DD-YY 4-14-92

MM/DD/YY 04/14/92

DDD, YYYY 105, 1992

Note When a numeric value to be printed is too large for the edit mask, a series of
pound signs (#) are printed in place of the value, to indicate an overow.

HEAD=\character-
string"

Uses the character-string as the heading rather
than the default, which is the heading from a data
dictionary, the heading from DEFINE(ITEM), or the
item or system variable name.

JOIN[=number] Places this number of spaces between the last
non-blank character of the current line and the �rst
character of the current display �eld. To concatenate
the character strings, use JOIN=0. The default is 1.

LEFT Left-justi�es the data item value in the display �eld.
This is the default speci�cation.

Transact Verbs 8-69

FORMAT

LINE[=number] Starts the display �eld on a new line or on a line after
a line skip count speci�ed by number . If the print
device being used can over print and you want it to do
so, you should specify LINE=0. Line= gives a carriage
return but no line feed. The default is 1.

LNG=number Truncates the display �eld to this number of
characters. If this option refers to a compound
item, then that item is displayed within a display
�eld length of number . If necessary, new lines are
generated.

NEED=number Prints the current line at the top of the next page
if there are fewer than the speci�ed number of lines
between the current line and the bottom of the page.
If you are grouping a set of items together on a single
line, the NEED= must appear with the �rst item on
the page.

NOCRLF Does not issue a carriage return and line feed for the
display line containing the display �eld. NOCRLF
is processed when a listing goes to the terminal or
printer. If the listing is sent to a disk �le, the option is
ignored.

NOHEAD Suppresses the default heading for this item reference.

NOSIGN Allows no sign position in the display �eld. If a
negative value occurs, the display �eld contains a
string of minus signs (-).

PAGE[=number] Starts the display �eld on a new page or on a page
after a page skip count speci�ed by number . The
default is 1.

RIGHT Right-justi�es the data item value in the display �eld.

ROW=number Places the display �eld at absolute line location
number . The �rst line position is 1. If the display is
already at a line position greater than number , then
LINE=1 is in e�ect.

SPACE[=number] Places this number of spaces between the end of the
previous display �eld and the start of the current
display �eld. To concatenate �elds, use SPACE=0.
Default=1.

TITLE Displays the associated display �eld and any preceding
display �elds only at the start of each new page for
which this statement applies.

TRUNCATE Truncates this display �eld if a character �eld
overows the end of the display line; display pound
signs if �eld is numeric.

ZERO[E]S Right-justi�es a numeric data value in the display �eld
and inserts leading zeros.

8-70 Transact Verbs

FORMAT

Examples

The following example uses an OUTPUT statement to retrieve information from a data set
DETAIL and then display it in a format set up by the preceding FORMAT statement. All
headings are suppressed by the �rst SET(OPTION) statement, rather than by NOHEAD
options for individual items. The �nal RESET(OPTION) statement resets the NOHEAD
option for subsequent displays.

SET(OPTION) NOHEAD;

FORMAT "Mailing List:",COL=15:

" ",LINE=3,TITLE:

FIRST-NAME,COL=5,LINE:

ADDRESS,COL=5,LINE:

CITY,COL=5,LINE:
",",JOIN=0:

STATE:

ZIP,COL=30;

OUTPUT(SERIAL) DETAIL;

RESET(OPTION) NOHEAD;

This code produces the following:

Mailing List:

Harry Swartz

1 Main St.

Anywhere, CA 12345

Transact Verbs 8-71

GET

Moves data to the data register from a data set, �le, or formatted screen.

Syntax

GET
�
(modi�er)

�
source

�
,option-list

�
;

GET retrieves a single entry from a data set or KSAM or MPE �le after rewinding the �le or
data set. It is also used to move data values into the data register from a terminal under the
control of a VPLUS screen.

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none For master sets, retrieves a master set entry based on the
value in the argument register. For MPE �les, the next entry
is serially read. For KSAM �les, this option does not use the
match register.

CHAIN Retrieves an entry from a detail set or KSAM chain. It
retrieves the �rst entry to meet any match criteria set up in
the match register. The matching items must be included
in a LIST= option. The contents of the key and argument
registers specify the chain in which the retrieval occurs. If no
match criteria are speci�ed, it retrieves the �rst entry in the
chain. If no matching entry is found, GET issues a run-time
error.

CURRENT Retrieves the last entry that was accessed from the data set
or the MPE or KSAM �le.

DIRECT Retrieves the entry stored at a speci�ed record number in an
MPE or KSAM �le, or a detail or master set. Before using
this modi�er, you must store the record number as a 32-bit
integer in the item speci�ed in the RECNO= option.

FORM GET(FORM) displays a VPLUS form on any VPLUS
compatible terminal and then waits for the user to press
ENTER to transfer data from the form to the data register.
If the user presses a function key instead of ENTER, no data
is transferred unless the AUTOREAD option is used.

KEY Executes a calculated access on a master set using the key
and argument register contents, but transfers no data. The
LIST= option cannot be speci�ed with this modi�er. (Use
GET with no modi�er for a calculated retrieval from a master
set.)

This modi�er is most useful when you combine it with the
ERROR and/or NOFIND options to check for the existence of

8-72 Transact Verbs

GET

a key value in a master set. It allows programmatic control of
the result of the checking. It is the equivalent of a CHECK or
CHECKNOT on a PROMPT statement.

PRIMARY Retrieves the master set entry stored at the primary address
of a synonym chain. The primary address is located through
the key value contained in the argument register.

RCHAIN Retrieves an entry from a detail set or a KSAM chain in the
same manner as the CHAIN option, only in reverse order. For
a KSAM �le this operation is identical to CHAIN.

RSERIAL Retrieves an entry from a data set in the same manner as
the SERIAL option, except in reverse order. If an equal
match without match characters exists, Transact will convert
an RSERIAL option to an RCHAIN option to improve
the application's e�ciency. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Retrieves an entry in serial mode from an MPE or KSAM
�le or a detail or master set. It retrieves the �rst entry that
matches any match criteria set up in the match register. If an
equal match without match characters exists, Transact will
convert an SERIAL option to an CHAIN option to improve
the application's e�ciency. If no match criteria are speci�ed,
it retrieves the �rst entry in the �le or data set. The match
items must be included in a LIST= option. If no entry
matches or if the �le is empty, GET issues a run-time error.

source The �le, data set, or form to be accessed by the retrieval operation. If the
data set is not in the home base as de�ned in the SYSTEM statement, the
base name must be speci�ed in parentheses as follows:

set-name(base-name)

For GET(FORM) only, source can be speci�ed as any of the following:

form-name Name of the form to be displayed by GET(FORM).

(item-name
[(subscript)])

Name of an item that contains the name of the form to be
displayed by GET(FORM). subscript can be included if the
referenced item is an array item. (See \Array Subscripting" in
Chapter 3.)

* Displays the form identi�ed by the \current" form name; that
is, the form name most recently speci�ed in a statement that
references VPLUS forms. Note that this option is not the
same as the CURRENT option (described under option-list),
which indicates the currently displayed form.

& Displays the form identi�ed as the \next" form name;
that is, the form name de�ned as \NEXT FORM" in the
FORMSPEC de�nition of the current form, where current
form means the form name most recently speci�ed in a
statement that references VPLUS forms.

Transact Verbs 8-73

GET

option-list The LIST option is available with or without the FORM modi�er. Other
options, described below, are restricted for use as speci�ed.

LIST=(range-
list)

The list of items from the list register to be used for the GET
operation. For GET(FORM) ONLY, items in the range list
can be child items.

If the LIST= option is omitted for GET(FORM), the list of
items named in the list register, and either in the SYSTEM
statement or the data dictionary for the form are used.

The LIST= option should not be used when specifying an
asterisk (*) as the source.

When the LIST= option is used, only the items speci�ed in a
LIST= option have their match conditions applied when the
items are included in the match register. When the LIST=
option is omitted, items which appear in the list register
and the match register have their match conditions applied.
Otherwise, the match conditions for an item are ignored.

The match register can be used only with the modi�ers
CHAIN, RCHAIN, SERIAL, or RSERIAL.

For all options of range-list , the data items selected are the
result of scanning the data items in the list register from top
to bottom, where top is the last or most recent entry. (See
Chapter 4 for more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE
data sets and 128 items for VPLUS forms also exists.

All item names speci�ed must be parent items.

The options for range-list and the data items they cause GET
to retrieve include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY . In other
words, the list register is scanned for the
occurrence of item-nameY closest to the
top of the list register. From that entry, the
list register is scanned for item-nameX .
All data items between are selected. An
error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or
excluded from the range, depending on their
position on the list register. For example, if
range-list is A:D and the list register is as
shown,

8-74 Transact Verbs

GET

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and
if there are no data items between the two
on the list register, no database access is
performed.

(item-nameX:) All data items in the range from the last
entry through the occurrence of item-nameX
closest to the top of the list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to the top
through the bottom of the list register.

(item-nameX,
item-nameY ,
. . .
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and MPE
�les or for VPLUS forms, data items must be
speci�ed in the order of their occurrence in
the physical record or form. This order need
not match the order of the data items on the
list register. Does not include child items in
the list unless they are de�ned in the VPLUS
form. This option is less e�cient to use than
the options listed above.

(@) Speci�es a range of all data items of �le-name
as de�ned in a data dictionary. The range-list
is de�ned as item-name1:item-namen for the
�le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or
form as de�ned in the data dictionary. This
order need not match the order of the data
items in the list register.

Transact Verbs 8-75

GET

() A null data item list. That is, accesses the �le
or data set, but does not retrieve any data.

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes.
Instead, branches to the statement identi�ed by label , and sets
the stack pointer for the list register to the data item item-name.
Transact generates an error at execution time if the item cannot be
found in the list register. The item-name must be a parent.

If you specify no item-name, as in ERROR=label ();, the list register
is reset to empty. If you use an *" instead of item-name, as in
ERROR=label (*);, then the list register is not changed. For more
information, see \Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database. The lock is active the whole time
that the GET executes. If LOCK is not speci�ed and a TurboIMAGE
data set is being accessed, no locking is done.

For a KSAM or MPE �le, if LOCK is not speci�ed on GET but is
speci�ed for the �le in the SYSTEM statement. The �le is then
locked before each entry is retrieved, remains locked while the entry
is processed by any PERFORM= statements, and is unlocked briey
before the next entry is retrieved.

Including the LOCK option overrides SET(OPTION) NOLOCK for
the execution of the GET verb.

For transaction locking, you can use the LOCK option on
the LOGTRAN verb instead of the LOCK option on GET if
SET(OPTION) NOLOCK is speci�ed.

For more information on locking, see \Database and File Locking" in
Chapter 6.

NOFIND Ensures that a matching entry is not present in the referenced master
set. If such an entry is found, an error message is generated. If the
STATUS option has also been speci�ed, the code returned in the
STATUS register for the error condition is 1, meaning that a record
was found.

NOMATCH Ignores any match criteria set up in the match register.

NOMSG Suppresses the standard error message produced as a result of a �le or
database error. All other error actions occur.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must de�ne item-name to contain
the 32-bit integer. number (I(9,,4)) of the record to be retrieved.

With other modi�ers, Transact returns the record number of the
retrieved record in the 32-bit integer item-name.

The item-name can be modi�ed with subscript if the referenced item
is an array item. (See \Array Subscripting" in Chapter 3.)

8-76 Transact Verbs

GET

STATUS Suppresses the action de�ned in the Chapter 7 under \Automatic
Error Handling." You may want to add status checking to your code if
you use this option.

When STATUS is speci�ed, the e�ect of a GET statement is described
by the 32-bit integer value in the status register:

Status
Register Value

Meaning

0 The GET operation was successful.

�1 A KSAM or MPE end-of-�le condition for serial
read or end-of-chain for chain read has occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation that corresponds to the
value.

1 If NOFIND is used and the record is found.

STATUS causes the following with GET:

The normal rewind done by the GET is suppressed, so CLOSE
should be used before GET(SERIAL).

The normal �nd of the chain head by the GET is suppressed, so
PATH should be used before GET(CHAIN).

See \Using the STATUS Option" in Chapter 7.

Options Available Only With the Form Modifier

APPEND Appends the next form to the form speci�ed in this statement,
overriding any freeze or append condition speci�ed for the form in
its FORMSPEC de�nition. APPEND sets the FREEZAPP �eld of
the VPLUS comarea to 1.

AUTOREAD Accepts any function key not speci�ed in an Fn=label option to
transfer data from the form to the data register. If a key has
been speci�ed in an Fn=label option, GET does not execute
AUTOREAD for that key.

CLEAR Clears the previously displayed form when the requested form
is displayed, overriding any freeze or append condition speci�ed
for the form in its FORMSPEC de�nition. CLEAR sets the
FREEZAPP �eld of the VPLUS comarea to zero.

CURRENT Uses the form currently displayed on the terminal screen; that is,
it performs all the GET(FORM) processing except retrieving and
displaying the form. Use this option to avoid the processing that
normally occurs when a new form is displayed.

CURSOR=�eld-namej
item-name[(subscript)]

Positions the cursor within the speci�ed �eld. Field-name identi�es
the �eld and the item-name names the item identifying the �eld.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

Transact Verbs 8-77

GET

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs the �eld edits de�ned in the FORMSPEC de�nition
immediately before displaying the form.

FKEY=item-name
[(subscript)]

Moves the number of the function key the operator presses in this
retrieval operation to the single word integer (I(4)) item-name.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.) The function
key is determined by the contents of the �eld LAST-KEY in the
VPLUS comarea. It can have a value of 0 through 8, inclusive,
where 0 indicates the ENTER key and 1 through 8 indicate
function keys 1 through 8, respectively. Note that pressing �f8�
returns an 8 in the item �eld and does not cause an automatic
exit.

Fn[(AUTOREAD)]=
label

Control passes to the labelled statement if the operator presses
function key n. This option can be repeated for each desired
function key as many times as necessary in a single GET(FORM)
statement. If (AUTOREAD) is included, transfers the data from
the form to the data register before going to the speci�ed label.
F0, or ENTER, always transfers data. This option is cancelled by
the STATUS option.

FREEZE Freezes the speci�ed form and appends the next form to the
speci�ed form, overriding any freeze or append conditions speci�ed
for the form in the FORMSPEC de�nition. FREEZE sets the
FREEZAPP �eld of the VPLUS comarea to 2.

INIT Initializes the �elds in a VPLUS form to any initial values
speci�ed for the form by FORMSPEC, or performs any Init Phase
processing speci�ed for the form by FORMSPEC. The INIT
processing is performed before the form is displayed on the screen.

STATUS Suppresses the display of VPLUS �eld edit error messages in
window; Transact conversion messages are sent to the window.
Transfer control immediately back to the program after the user
has pressed ENTER or the appropriate function key. The STATUS
option suppresses any branch speci�ed by Fn= label . If �eld edit
errors exist, Transact sets the value of the status �eld to a negative
count of the number of errors (given by the NUMERRS �eld of the
VPLUS comarea). Otherwise, the value in the status �eld is 0.

WINDOW= ([�eld ,]
message)

Places a message in the window area of the screen and, optionally,
enhances a �eld in the form. The �elds �eld and message can be
speci�ed as follows:

�eld Either the name of the data item for the �eld to
be enhanced, or an item-name[(subscript)] within
parentheses which will contain the data item of the
�eld to be enhanced at run time.

8-78 Transact Verbs

GET

message Either a string enclosed in quotation marks
that speci�es the message to be displayed, or
an item-name[(subscript)] within parentheses
containing the message string to be displayed in
the window.

Examples

The following example shows the use of the WINDOW option when the �eld name and the
message are speci�ed directly.

GET(FORM) FORM1,

INIT,

LIST=()

WINDOW=(field1,"This field must be numeric.");

In the following example, both the �eld and the message are speci�ed through an item-name
reference:

DEFINE(ITEM) ENHANCE U(16):

MESSAGE U(72);

MOVE (ENHANCE) = "field1";
MOVE (MESSAGE) = "This field must be numeric.";...
GET(FORM) *,

INIT,

WINDOW=((ENHANCE),(MESSAGE));

The �rst entry in the chain is retrieved from the data set DETAIL using the items
CUST-NAME through CUST-PHONE in the list register.

PROMPT(PATH) CUST-NO;

LIST CUST-NAME:

CUST-PHONE;

GET(CHAIN) DETAIL,

LIST=(CUST-NAME:CUST-PHONE);

The �rst GET retrieves the last record in the chain. The second GET reads the chain in
reverse order until a record matches the criteria set up by the DATA(MATCH) statement.

PROMPT(PATH) CUST-ID;

LIST CUST-NAME:

CUST-PHONE;

GET(RCHAIN) DETAIL, LIST=(CUST-NAME:CUST-PHONE);...
DATA(PATH) CUST-ID;

DATA(MATCH) CUST-NAME;

GET(RCHAIN) DETAIL, LIST=(CUST-NAME:CUST-PHONE);

Transact Verbs 8-79

GET

This statement displays the form CUSTFORM, performs any initialization speci�ed by
FORMSPEC, retrieves values entered into the form, performs any FORMSPEC edits, and
then transfers the entered values to the data register areas associated with the speci�ed list
items.

GET(FORM) CUSTFORM, INIT, LIST=(CUST-NAME, CUST-ADDR, CUST-PHONE);

In the following example, GET with the STATUS option allows you to process the
\nonexistent permanent �le" error yourself. This coding lets you access a �le that may be in
another account by setting up a �le equation through a PROC call to the command intrinsic.

<<1st access, no CLOSE required before SERIAL operation>>

GET(SERIAL) DATA-FILE, LIST=(A:N), STATUS;

IF STATUS <> 0 THEN <<An error occurred, check further >>

IF STATUS <> 52 THEN <<Error is other than expected >>

GO TO ERROR-CLEANUP

ELSE <<52 - Nonexistent permanent file >>

DO

LET (CR) = 8205; <<8205 = space,carriage return >>

<<Could have used (CR)=3360 for carriage>>

<<return,space >>

MOVE (COM-STRING) = "FILE DATAFILE=DATAFILE.PUB.OTHERONE"+(CR);

<<Try opening DATAFILE in another group >>

PROC COMMAND (%(COM-STRING),(ERROR),(PARM));

IF (ERROR) <> 0 THEN <<Command error >>

GO TO ERROR-CLEANUP;

<<Try again, give up if unsuccessful >>

GET(SERIAL) DATA-FILE, LIST=(A:N), STATUS;

IF STATUS <> 0 THEN GO TO ERROR-CLEANUP;

DOEND;

8-80 Transact Verbs

GET

The following example shows a method for \structured programming" with VPLUS forms.
Each RETURN statement passes control back to the PERFORM statement.

START:
DISPLAY "Start of program";

PERFORM GETINFO;

DISPLAY "End of program";

EXIT;

GETINFO:

GET(FORM) MENU,

F1=ADD,

F2=UPDATE,

F3=DELETE,

F4=LIST,

F5=START,

F6=START,

F7=START,

F8=ENDIT;

<<Process ENTER here>>

.

.

.

ADD:

<<Process F1 here>>

RETURN;

UPDATE:

<<Process F2 here>>

RETURN;

DELETE:

<<Process F3 here>>

RETURN;
LIST:

<<Process F4 here>>

RETURN;

ENDIT:

EXIT;

An alternate method is to use the FKEY=item-name construct, and then test the value of
item-name with an IF statement.

Transact Verbs 8-81

GO TO

Transfers control to a labeled Transact statement.

Syntax

GO TO label;

GO TO speci�es an unconditional branch to the statement identi�ed by label.

Statement Parts

label The label to which the program should branch.

Example

The following statement transfers control to the statement labeled \NEW-TOTAL".

GO TO NEW-TOTAL;

8-82 Transact Verbs

IF

IF

Performs a speci�ed action based on a conditional test.

Syntax

IF condition-clause THEN statement
�
ELSE statement

�
;

IF speci�es tests to be performed on test-variables . IF introduces a condition-clause, which
contains one or more conditions, each made up of a test-variable, a relational-operator , and
one or more values . Multiple conditions are joined by AND or OR. If the condition clause is
true, then the speci�ed statement is performed. You can provide an alternate statement to be
performed if the condition is not true by including the ELSE clause. If you do not include an
ELSE clause and the condition is not true, control passes to the statement following the IF
statement.

Note Do not terminate the statement preceding the ELSE clause with a semicolon
(;).

Statement Parts

condition-
clause

One or more conditions, connected by AND or OR, where

AND A logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR A logical inclusive OR. The condition clause is true if any of the
conditions is true; it is false if all of the conditions are false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value [,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to
item-name. The item-name can be subscripted
if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names
and/or constants. The expression is evaluated
before the comparison is made.

Note An arithmetic-expression must be enclosed in square brackets ([]).

Transact Verbs 8-83

IF

EXCLA-
MATION

Current status of the automatic null response
to a prompt set by a user responding with an
exclamation point (!) to a prompt. (See \Data
Entry Control Characters" in Chapter 5.) If the
null response is set, the EXCLAMATION test
variable is a positive integer. If it is not set, it is
zero. The default is 0.

FIELD Current status of FIELD command identi�er.
If a user quali�es a command with FIELD,
the FIELD test variable is a positive integer.
Otherwise, it is a negative integer. The default is
<0.

INPUT The last value input in response to the INPUT
prompt.

PRINT Current status of PRINT or TPRINT command
quali�er. The PRINT test variable is an integer
greater than zero and less than 10. If a command
is quali�ed with TPRINT, PRINT is an integer
greater than 10. If neither quali�er is used,
PRINT is a negative integer. The default is <0.

REPEAT Current status of REPEAT command quali�er.
If a user quali�es a command with REPEAT,
the REPEAT test variable is a positive integer.
Otherwise, REPEAT is a negative integer. The
default is <0.

SORT Current status of SORT command quali�er. If a
user quali�es a command with SORT, the value
of the SORT test variable is a positive integer.
Otherwise SORT is a negative integer. The
default is <0.

STATUS The 32-bit integer value of the status register set
by the last data set or �le operation, data entry
prompt, or external procedure call.

relational
operator

Speci�es the relation between the test-variable and the value. It
can be one of the following:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal
to

8-84 Transact Verbs

IF

value The value against which the test-variable is compared. The value
can be an arithmetic expression that will be evaluated before the
comparison is made.

The allowed value depends on the test variable, as shown in the
comparison below. Alphanumeric strings must be enclosed in
quotation marks.

If the
test-variable is:

The value must be:

item name Then value must be an alphanumeric string,
a numeric value, an arithmetic expression, a
reference to a variable as in (item-name), or a
class condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or
an expression, or a reference to a variable as in
(item-name).

INPUT An alphanumeric string.

EXCLA-
MATION

A positive or negative integer or expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer number or expression.

If more than one value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the
test-variable is equal to value1 OR value2 OR . . . valuen. In
other words, a comma in a series of values is interpreted as an
OR.

When the relational operator is \<>", the action is taken if
the test-variable is not equal to value1 AND value2 AND . . .
valuen. In other words, a comma in a series of values is
interpreted as an AND when the operator is \<>".

When the test variable is an item-name, the value can be one
of the following class conditionals, which are used to determine
whether a string is all numeric or alphabetic. The operator can
only be \=" or \<>".

NUMERIC This class condition includes the ASCII
characters 0 through 9 and a single
operational leading sign. Leading and trailing
blanks around both the number and sign are
ignored. Decimal points are not allowed in
NUMERIC data. This class test is only valid
when the item has the type X, U, 9, or Z, or
when the item is in the input register.

Transact Verbs 8-85

IF

ALPHABETIC This class condition includes all ASCII native
language alphabetic characters (upper and
lowercase) and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

ALPHABETIC-
LOWER

This class condition includes all ASCII
lowercase native language alphabetic
characters and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

ALPHABETIC-
UPPER

This class condition includes all ASCII
uppercase native language alphabetic
characters and space. This class test is only
valid for items of type X or U or when the
item is in the input register.

statement Any simple or compound Transact statement; a compound
statement is one or more statements bracketed by a DO/DOEND
pair.

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.

Truth values are established for simple relational conditions.

Truth values are established for simple class conditions.

Multiple value conditions are evaluated.

Truth values are established for complex AND conditions.

Truth values are established for complex OR conditions.

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

8-86 Transact Verbs

IF

Examples

This statement causes a program branch to the \PROCEED" label if \YES" or \Y" was
input in response to the INPUT prompt. If INPUT contains any other value, control passes to
the next statement.

IF INPUT = "YES", "Y" THEN

GO TO PROCEED;

This statement causes a program branch to the \TOO-HIGH" label if the data register value
for the item-name COUNT is greater than 3.

IF (COUNT) > 3 THEN
GO TO TOO-HIGH;

This statement causes an exit from the current command sequence if the status register value
does not equal 0.

IF STATUS <> 0 THEN END;

The statements within the �rst DO/DOEND pair execute if the value in the input register
is \Y". Otherwise, if the value for A equals the value for B, the statements at the label
SAME-PART are executed. The value for D is moved to the space reserved for A if:

INPUT does not equal \Y", and

A equals B, and

A equals C, and

D is less than 50.

The statements at label MORE-INFO are executed if:

INPUT does not equal \Y", and

A does not equal B.

IF INPUT = "Y" THEN

DO

DISPLAY "PART NUMBER IS": PART-NO;

PERFORM ADD-INFO;

DOEND

ELSE IF (A) = (B) THEN

DO

DISPLAY "DUPLICATE ENTRY";

PERFORM SAME-PART;

IF (A) = (C) THEN

IF (D) < 50 THEN

MOVE (A) = (D);
DOEND

ELSE PERFORM MORE-INFO;

The next example gives the user a choice between two activities. The second ELSE construct
checks to see that the user did one of the two speci�ed activities. If he did not, a message

Transact Verbs 8-87

IF

is displayed, and control returns to the label OPTION at the third line, so that the user is
prompted again.

SYSTEM IFS;
DEFINE(ITEM) FIELD I(2);

OPTION:

PROMPT FIELD;

IF (FIELD) = 1 THEN

DO

DISPLAY "FIELD = 1";

DOEND

ELSE

DO

IF (FIELD) = 2 THEN

DO

DISPLAY "FIELD = 2";

DOEND

ELSE

DO

DISPLAY "YOU MUST ENTER 1 OR 2";

GO TO OPTION;

DOEND;

DOEND;

END;

The next examples demonstrate how to use complex conditionals.

IF (LAST-NAME) = "SMITH" AND (FIRST-NAME) = "JACK" THEN ...

IF (ACCT-BALANCE) < 0 OR (LOAN-AMOUNT) >= (LOAN-MAX) THEN ...

IF (RENTAL-OFFICE) = "098","978","656" AND

(CUST-NO-PREFIX) = (PREFERRED-PREFIX) OR
(CUST-NAME) = "ABCINC" THEN ...

WHILE (BALANCE) < 0 AND STATUS = 0

DO

GET(CHAIN) CUST-DETAIL,STATUS;

LET (BALANCE) = (BALANCE) + (AMOUNT);

DOEND;

REPEAT

DO

LET (TOTAL-OVERDUE) = (TOTAL-OVERDUE) + (AMT-OVERDUE);

FIND(SERIAL) CUST-INVOICE,STATUS;

DOEND

UNTIL (TOTAL-OVERDUE) > 999999.99 OR

(TOTAL-OVERDUE) > (MIN-OVERDUE) AND

(CUST-CODE) = "NEW";

8-88 Transact Verbs

IF

The next examples demonstrate the use of the relational operator \<>" with multiple values.

IF (STATE) <> "OR","CA","CO","VA" THEN ...

WHILE (PART-NO-PREFIX) <> (PROTOTYPE),(DEVELOPMENT)

GET(CHAIN) PART-DETAIL,STATUS;

The next examples demonstrate the use of class conditionals.

IF INPUT = ALPHABETIC THEN ... ELSE ...;

DATA (PART-NUMBER);

IF (PART-NUMBER) <> NUMERIC THEN ...;

The next example demonstrates the use of multiple expressions in test-variables or in values .

IF (AREA) = [(LENGTH)*(WIDTH)],[(BASE)*(HEIGHT)*.5],

[(3.1416)*(RADIUS)**2] THEN ...;

REPEAT

FIND(SERIAL) STK-ON-HAND,STATUS

UNTIL ((WEIGHT) > [(KILO-PER-METER) * (METERS)] AND

(METERS) > (MIN-LENGTH) OR

(PRICE) > [(UNIT-PRICE) * (KILO-PER-METER) * (METERS)]);

IF [(DELAY) * (DFACTOR)] = [(COUNT) * 3] THEN ...;

Transact Verbs 8-89

INPUT

Prompts for a value and places it in the input register.

Syntax

INPUT "prompt-string"
�
,option-list

�
;

INPUT generates a prompt that requests a user response. Usually the value input as a
response to prompt-string is tested by a subsequent IF statement. The response can be used
to programmatically change program ow during execution. Transact upshifts all entered
values. The value returned by INPUT cannot be displayed or moved. Thus, INPUT is useful
mainly to test a user response. To save or display a user response, you should use another
verb, such as DATA or PROMPT, that transfers the response to an item de�ned in your
program.

Statement Parts

prompt-string The prompt that appears on the user's terminal. It must be enclosed within
quotes.

option-list One or more of the following options separated by commas:

BLANKS Does not suppress leading blanks supplied in the input value.

NOECHO Does not echo the input value to the terminal.

STATUS Suppresses normal processing of \]" and \]]", which cause an
escape to a higher processing or command level.

Status
Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control subsequent
processing by testing the contents of the register with an IF
statement.

8-90 Transact Verbs

INPUT

Examples

This example shows a typical use of the INPUT verb. INPUT accepts a user response, and
then the IF statement tests for a particular value of this response.

INPUT "DO YOU WISH THE REPORT ON THE LINE PRINTER?";

IF INPUT = "Y", "YES" THEN

DO

SET(OPTION) PRINT;

DISPLAY "LINE PRINTER SELECTED FOR OPTION PRINT";

DOEND;

Transact Verbs 8-91

ITEM

De�nes variables for use in the program that have not been de�ned in a data dictionary. The
DEFINE(ITEM) verb is preferred. See DEFINE(ITEM) in this chapter for syntax option
descriptions and additional information.

8-92 Transact Verbs

LET

LET

Speci�es arithmetic operations. verbj

Syntax

LET destination-variable = arithmetic-expression
�
,ERROR=label

�
(
�
item-name

�
)
� �
;

The LET verb is primarily used to perform arithmetic operations.

Note At one time the LET verb was also used to manipulate arrays through an
optional syntax variation that used the LET OFFSET option. However, the
current version of Transact supports subscripting of arrays so that use of the
LET OFFSET is no longer necessary. Although it is now recommended that
you use subscripts to manipulate arrays, the LET OFFSET option is still
available and is described in this chapter to aid in maintaining older Transact
programs.

LET, unlike MOVE, checks that the data types of items being assigned are compatible with
the item to which they are assigned. If necessary, LET performs type conversion.

Statement Parts

destination-
variable

An item name that identi�es a location in the data register, or Transact-
de�ned name of a special purpose register. The result of the operation is
placed in this variable. The destination variable may be any of the names
listed below. All of the names except item-name are stored in a special
area outside the list and data registers. They are, therefore, not a�ected by
SET(STACK) or RESET(STACK).

(item-name
[(subscript)])

The computed or assigned value of item-name. The
item name identi�es a location in the data register. The
item-name can be subscripted if an array item is referenced.
(See \Array Subscripting" in Chapter 3.)

LINE An integer, de�ned as I (5,,2) in Transact/V or de�ned as
I (10,,4) in Transact/iX, that contains the computed or
assigned value of the line counter for the current line of
terminal display or line printer output.

OFFSET
(item-name)

An integer, de�ned as I (5,,2) in Transact/V or de�ned as I
(10,,4) in Transact/iX, that contains the o�set of an item
starting at position zero.

PAGE An integer, de�ned as I (5,,2) in Transact/V or de�ned as
I (10,,4) in Transact/iX, that contains the computed or
assigned value of the page counter.

PLINE An integer, de�ned as I (5,,2) in Transact/V or de�ned as
I (10,,4) in Transact/iX, that contains the computed or

Transact Verbs 8-93

LET

assigned value of the line counter for the current line of line
printer output.

STATUS An integer, de�ned as I (5,,2) in Transact/V or de�ned as
I (10,,4) in Transact/iX, that contains the computed or
assigned value of the status register.

TLINE An integer, de�ned as I (5,,2) in Transact/V or de�ned as
I (10,,4) in Transact/iX, that contains the computed or
assigned value of the line counter for the current line of
terminal display output.

arithmetic-
expression

A single source, or multiple sources connected by arithmetic operators in the
format:

[-]source1 [operator source2] . . . [operator sourcen]

[-] If the expression is preceded by a minus sign, its negative is
assigned.

Note If a positive-only integer is set to a negative number an error occurs. The
value of the speci�ed item will be unde�ned. Since the outcome is unde�ned,
you should not rely on this procedure to zero out values. Instead, use the
ERROR= option to branch to a label and negate the desired �elds.

source1 An item-name[(subscript)] within parentheses, a numeric
constant, one of the Transact-de�ned names listed above under
the description of destination-variable, or one of the functions
listed below and described later in this verb.

The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

function ASCII

LENGTH

LN

LOG

POSITION

SQRT

VALUE

operator + addition
� subtraction
* multiplication
/ division giving the quotient
// division giving the remainder
** exponentiation

source# The same as source1 .

ERROR=label
[([item-name])]

An option to cause branching on arithmetic errors. In addition to branching
and resetting the list register, this option causes the status register to be set
to a value that identi�es the type of error. (See \Error Handling" later in the
description of this verb.)

8-94 Transact Verbs

LET

label The label to which the program is to branch when an arithmetic
error is encountered.

item-name The point to which the list register is to be reset before branching
to the error label. If you do not specify an item-name (for
example, ERROR=label () or ERROR=label), the list register
is reset to empty. If you specify an asterisk (for example,
ERROR=label (*)), the list register is not changed.

The order of precedence for arithmetic operators is:

** exponentiation
// division giving remainder
/ division giving quotient
* multiplication
� subtraction
+ addition

You can change the order of evaluation by using square brackets. For example, the following
two statements may yield di�erent results:

LET (A)=(B) + (C)/(D);

LET (A)=[(B) + (C)]/(D);

Functions

The following sections describe the functions available within the LET verb, including
parameters and examples. These functions can be used whenever an expression can be used.
An additional set of parentheses around item parameters is optional. For example, SQRT(Z)
and SQRT((Z)) are both acceptable.

A function cannot be embedded or nested in another function. In the following example, the
compiler will treat LOG as an array item and generate a warning if LOG is not de�ned.

LET (A) = SQRT(LOG(100.0));

The ERROR= option causes the branch to a label to be taken when speci�c errors occur
while processing a function just as speci�c errors in a LET statement cause such a branch.

Transact Verbs 8-95

LET

ASCII

The ASCII function converts the �rst character of a string to the number for its ASCII code.
The result will be a number between 0 and 255 inclusive. This function is only valid for string
constants and data items of type X or U.

Syntax

ASCII(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (CODE) = ASCII("A");

Before After

CODE I(5) 0 65

LET (CODE) = ASCII((ARRAY(2)));

Before After

ARRAY(2) X(4) BCDE BCDE

CODE I(5) 123 66

8-96 Transact Verbs

LET

LENGTH

The LENGTH function returns the length in characters of a string by returning the integer
index of the position of the last non-blank character in the string. Embedded blanks are
included in this count, but trailing blanks are not included. Nulls are considered valid
characters and are counted.

When calculating the length of an X or U item, the maximum length will be the display
length. This function is only valid for string constants and data items of type X or U.

Syntax

LENGTH(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (COUNT) = LENGTH("ttAPPLEt");

Before After

COUNT I(5) 0 7

LET (COUNT) = LENGTH((ARRAY(2)));

Before After

ARRAY(2) X(7) ABCtDEt ABCtDEt
COUNT I(5) 0 6

LET (COUNT) = LENGTH("tttt");

Before After

COUNT I(5) 0 0

Transact Verbs 8-97

LET

LN

The LN function computes the natural logarithm of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, LN(A) and LN((A))
are both acceptable.

Syntax

LN(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = LN(100.0);

Before After

RESULT R(6,2,4) 0.00 4.61

LET (RESULT) = LN((ARRAY(2)));

Before After

ARRAY(2) R(6,2,4) 10.00 10.00

RESULT R(6,2,4) 0.00 2.30

Errors

If the value of the parameter is zero or less, an error message is issued to indicate a
computational error has occurred.

8-98 Transact Verbs

LET

LOG

The LOG function computes the common logarithm to the base 10 of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, LOG(A) and
LOG((A)) are both acceptable.

Syntax

LOG(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = LOG(100.0);

Before After

RESULT R(6,2,4) 0.00 2.0

LET (RESULT) = LOG((ARRAY(2)));

Before After
ARRAY(2) R(6,2,4) 10.00 10.00

RESULT R(6,2,4) 0.00 1.00

Errors

If the value of the parameter is zero or less, an error message is issued to indicate a
computational error has occurred.

Transact Verbs 8-99

LET

POSITION

The POSITION function returns the integer index of the position of the �rst occurrence of the
second string in the �rst string. Trailing blanks in both strings are ignored. Hence, a string
only consisting of blanks cannot be found.

If no match is found, then 0 is returned. This function is case sensitive (for example, \a" does
not match \A").

This function is only valid for string constants and data items of type X or U. The display
length will be used when calculating the length of a data it of type X or U.

Syntax

POSITION(

�
(item-name1

�
(subscript)

�
)

"character-string1"

�
,

�
(item-name2

�
(subscript)

�
)

"character-string2"

�
)

Examples

LET (INDEX) = POSITION("GOODtDOG","Z");

Before After

INDEX I(5) 99 0

LET (INDEX) = POSITION((STRING1),"D");

Before After

STRING1 X(8) BADtDOGt BADtDOGt
INDEX I(5) 99 3

Note In the following example note that the trailing blanks in both arguments are
ignored.

LET (INDEX) = POSITION((STRING1),(STRING2(4)));

Before After

STRING1 X(8) BANANAtt BANANAtt
STRING2(4) X(4) NAtt NAtt
INDEX I(5) 99 3

8-100 Transact Verbs

LET

SQRT

The SQRT function computes the square root of a number.

Note Previously, an additional set of parentheses was not allowed around an
item parameter in this function. This has been changed so that additional
parentheses around an item are optional. For example, SQRT(A) and
SQRT((A)) are both acceptable.

Syntax

SQRT(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

LET (RESULT) = SQRT(100.0);

Before After

RESULT R(6,2,4) 0.00 10.00

LET (RESULT) = SQRT((ARRAY(2)));

Before After
ARRAY(2) I(5) 64 64

RESULT I(5) 0 8

Errors

If the value of the parameter is less than zero, an error message is issued to indicate a
computational error has occurred.

Transact Verbs 8-101

LET

VALUE

The VALUE function returns the numerical value of a string containing the character
representation of an integer or a oating point number. Leading blanks are ignored. An initial
plus or minus sign is allowed. The number is then terminated by one of the following: (1) the
�rst character that would not be valid in the number; (2) the end of the de�ned length of the
item; or (3) a delimiter de�ned via the SET(DELIMITER) verb.

With Native Language Support, Transact validates numeric data using the thousands and
decimal indicators of the language in e�ect. (See Appendix E, \Native Language Support,"
for more information.) If a number is not represented in the string, then 0 is returned.
Scienti�c notation (type E) is not parsed in the string.

When searching through an item, the last character searched depends upon the data type. For
an X or U item, the display length is used to get the last character. For an item de�ned as I,
J, Z, P, K, R, or 9, the value function operates in the same way as a LET assignment.

Syntax

VALUE(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

LET (NUM) = VALUE("-3A");

Before After

NUM I(5) 0 -3

LET (NUM) = VALUE("tt+43.21ABC");

Before After

NUM R(6,2,4) 0.0 43.21

LET (NUM) = VALUE((ARRAY(2)));

Before After

ARRAY(2) X(4) 42t3 42t3
NUM I(5) 0 42

LET (NUM) = VALUE("ttA3A");

Before After

NUM I(5) 0 0

LET (NUM) = VALUE(".52Time");

Before After

NUM R(6,2,4) 0.0 0.52

8-102 Transact Verbs

LET

LET (NUM) = VALUE(I);
Before After

NUM I(5) 0 12345

I I(5) 12345 12345

LET (NUM) = VALUE("123-456");

Before After

NUM I(5) 0 123

Syntax Options

(1) LET (variable)=[-]arithmetic-expression;

Choose this option to place a single value or the result of an arithmetic operation into a
location in the data register variable or into one of the Transact-de�ned names allowed for the
destination variable. The following are examples of this syntax option:

LET (SUBTOTAL)=(SUBTOTAL) + (AMOUNT); <<Add values of AMOUNT and SUBTOTAL>>

<<and place result in SUBTOTAL >>

LET (PERCENT)=9.8; <<Set value of PERCENT to 9.8 >>

LET (INVERSE)=1/(DIVISOR); <<Calculate inverse value >>

LET (CNT)=-(CNT); <<Negate value of CNT >>

LET (DEDUCTION)=-[(SUBTOTAL)-(BENEFIT)]; <<The result of subtracting >>

<<BENEFIT from SUBTOTAL is >>

<<negated and placed in DEDUCTION>>

LET PAGE=200; <<Set page counter to 200 >>

LET LINE=60-(REMAINING-LINES); <<Calculate value of current line >>

LET (STAT) = STATUS; <<Set STAT to contents of status >>

<<register >>

LET STATUS = STATUS+1; <<Increment value of status register>>

LET STATUS = 0; <<Clear status register>>

<< Set UNIT-PRICE, but if an arithmetic error occurs, branch >>

<< to CALC-ERROR label and reset list register at UNIT-PRICE. >>

LET (UNIT-PRICE) = (SUBTOTAL-PRICE)/(QUANTITY),ERROR=CALC-ERROR(UNIT-PRICE);

Transact Verbs 8-103

LET

Note The LET verb is primarily used to perform arithmetic operations on numeric
items. No error is generated if a character (X or U type) item is used and
processing continues for that character type, but the results may not be as
expected. (Use MOVE to handle character items.)

When LET is used with character items, be aware that the display length is used to determine
the size of the item. If the destination item is de�ned with a display length equal to or larger
than the source, the entire source is placed in the destination. If the destination is de�ned
with a display length smaller than the source, the source value is truncated on the right when
placed in the destination. The following example demonstrates how di�erent display lengths
a�ect the result.

SYSTEM T6100;

DEFINE(ITEM) SMALL X(5,,6):

LARGE X(6,,6);

LIST SMALL:

LARGE;

<<LET uses the display length as the size of the item>>

MOVE (SMALL) = "12345"; <<Small has "12345 " in storage >>

DISPLAY SMALL; <<Small displays "12345" >>

LET (SMALL) = -(SMALL); <<Small has "-12345" in storage >>

DISPLAY SMALL; <<Small displays "-1234" >>

LET (LARGE) = (SMALL); <<Large has "-1234 " in storage >>

DISPLAY SMALL: LARGE; <<Both display "-1234" >>

EXIT;

(2) LET OFFSET(item-name)=[-]arithmetic-expression

(item-name) Identi�es an ordinary data item or a child item.

[-]arithmetic -
expression

Is as de�ned earlier for the LET verb, except that in this context the variables
may not be subscripted.

This option of the LET verb sets the value of OFFSET for a particular item. It allows you to
refer to a child item within a parent item by telling Transact the byte location at which the
item begins.

8-104 Transact Verbs

LET

Note It is strongly recommended that you address array items by using subscripts.
This discussion is included for those dealing with older versions of Transact
programs written before subscripting of arrays was implemented. In any case,
the LET OFFSET and subscripting should not be used together. Doing so
may cause the program to update the data registers in areas outside the limits
of the item referenced and could lead to unpredictable results. Since this was
previously the only way to manipulate arrays, no error will be generated. (See
\Array Subscripts" in Chapter 3.)

By changing the value of OFFSET, you can refer to any child item within the parent item.
Suppose an array and its child items are de�ned as follows:

Initially, the OFFSET of YEAR within SALES is 0, which actually refers to byte position 1 of
SALES. That is, YEAR(1)= SALES(1), and, therefore, YEAR refers to the �rst 10 bytes of
SALES. To refer to other elements of SALES, you must change the OFFSET of YEAR. You
can do it as follows (where element-size is expressed in bytes):

LET OFFSET(YEAR)=(element-number - 1) * element-size

For example, to point to the third element of SALES, which is 10 bytes long, and then move a
value to that element, use the following statements:

LET OFFSET(YEAR)= 2 * 10; << (3rd element-1) * element size >>

MOVE (YEAR)=(VALUE-STRING);

To access and display the second and third positions, use the following statements:

SYSTEM TEST;

DEFINE(ITEM) SALES 3X(10):

YEAR X(10)=SALES(1);

PROMPT SALES;

DISPLAY SALES;

DISPLAY YEAR;

LET OFFSET(YEAR)= 1 * 10; <<Access 2nd element of SALES (2-1) >>

DISPLAY YEAR;

LET OFFSET(YEAR)= 2 * 10; <<Access 3rd element of SALES (3-1) >>

DISPLAY YEAR;

END;

Note that the o�set is counted from zero. Thus, to access the second position in SALES, you
specify an o�set of 1; to access the third position of SALES, you specify an o�set of 2.

Transact Verbs 8-105

LET

It is possible to step through a parent item using the following form of the LET statement:

LET OFFSET(child-item)=OFFSET(child-item)+(byte-length-of-child-item)

For example, assuming the same array SALES, you can specify the next child item as follows:

LET OFFSET(YEAR) = OFFSET(YEAR) + 10

You can also use the OFFSET option of LET to manipulate complex arrays. Consider the
complex array of sales �gures shown in Figure 8-1. Its compound items are district, year, and
month. Each cell, which is a child item, contains a sales �gure in integer format. Note that
each value in each cell requires four bytes of storage.

This SALES matrix requires the following DEFINE(ITEM) statement:

DEFINE(ITEM) SALES-ARRAY X(144):

DIST 2 X(72) = SALES-ARRAY:

YEAR 3 X(24) = DIST:

MONTH 12 X(2) = YEAR:

SALES I(4,,2) = MONTH;

The �fth line of the DEFINE statement above rede�nes MONTH as SALES to further identify
the data being stored.

Figure 8-1. Complex Array of Sales Figures.

To locate the position of one SALES element within the array, you must use three LET
OFFSET statements. To locate the byte position of the second district of the third year of the
seventh month, use the following three LET OFFSET statements:

LET OFFSET(DIST) = OFFSET(DIST) + 1 * 72;
LET OFFSET(YEAR) = OFFSET(YEAR) + 2 * 24;

LET OFFSET(MONTH) = OFFSET(MONTH) + 6 * 2;

8-106 Transact Verbs

LET

Since OFFSET leaves the pointer at the last position referenced, it is necessary to either
reset the pointer before further manipulation or plan the next OFFSET in terms of the
current position. The following statements reset all o�sets to zero, representing the position
SALES(1,1,1).

LET OFFSET(DIST) = 0;

LET OFFSET(YEAR) = 0;

LET OFFSET(MONTH) = 0;

When assigning a value to an array, LET assigns each element in the array to that value. If a
subscript is speci�ed, then only that element is assigned the value. All other elements remain
unchanged.

For example, ARRAY-A is de�ned as 4X(2), and ARRAY-B is de�ned as 4I(5,,2).

MOVE (TEMP-X) = "ND";

LET (ARRAY-A) = (TEMP-X); <<Sets all elements in ARRAY-A >>

DISPLAY ARRAY-A;

MOVE (TEMP-X) = "YR";

LET (ARRAY-A(2)) = (TEMP-X); <<Sets second elements only in ARRAY-A>>

DISPLAY ARRAY-A;

LET (ARRAY-B) = 67; <<Sets all elements in ARRAY-B >>

DISPLAY ARRAY-B;

LET (ARRAY-B(3)) = 78; <<Sets third element in ARRAY-B >>

DISPLAY ARRAY-B;

Rounding

To determine how rounding is done in Transact, it is necessary to understand how Transact
performs arithmetic operations. In general, if you want arithmetic results to be rounded
instead of truncated to a desired precision, you should ensure that the operands have at least
one more digit of precision than the desired result.

Transact uses one of three di�erent methods to process arithmetic expressions. The three
methods are:

double integer arithmetic.

long real arithmetic.

packed decimal arithmetic.

The �rst two methods, double integer and long real arithmetic, are used only if the values
meet particular criteria. When these criteria are not met, the third method, packed decimal,
is used by default. Since packed decimal arithmetic is slower than the other two methods, it
is advisable to use variables that meet the criteria for one of the other two methods whenever
possible.

Transact Verbs 8-107

LET

The factors that determine the method to be used are:

Whether the expression consists of a single operation or multiple operations.

Data types of the destination variable and the operands.

The number of decimal places de�ned for the destination variable and the operands.

Storage length of the destination variable and the operands.

32-Bit Integer Arithmetic

To qualify for 32-bit integer arithmetic, an expression must meet all of the following
conditions:

The expression must consist of only one operation and that operation can only be +, -, =,
or unary minus.

The data types of the destination variable and the operands must be either I or J. Numeric
constants cannot be used.

The number of decimal places must be identical in target item and both operands.

Storage length of destination variable and all operands must be 16-bits.

When 32-bit integer arithmetic is used, the target item and the operands are converted to
32-bit integers before the operation is performed. The �nal result is rounded to the precision
of the destination variable and then converted back to a 16-bit integer. Although the operands
are converted to 32-bit integers before computation, the �nal result for 16-bit integers should
lie between -32768 and 32767.

Note DEFINE(ITEM) de�nes these items as 2-byte or 4-byte integers (I,J).

The following is an example of 32-bit integer arithmetic:

SYSTEM ARIT02;

DEFINE(ITEM) I1 I(4,1):

I2 I(4,1):

I3 I(4,1);

LIST I1:

I2:

I3;

LET (I1) = 45.99; << Packed decimal arithmetic >>

LET (I2) = 35.99; << Packed decimal arithmetic >>

LET (I3) = (I1) + (I2); << Double integer arithmetic >>

DISPLAY;

EXIT;

When the program is run, the values displayed are:

I1 = 46.0

I2 = 36.0
I3 = 82.0

8-108 Transact Verbs

LET

64-Bit Real Arithmetic

To qualify for the 64-bit (long) real method of operation, the operands must meet all of the
following conditions:

The expression must consist of a single operation which must be +, -, *, /, //, =, unary
minus, LN, LOG, SQRT, or **.

The destination variable and the operands must all be of data type R or E. Numeric
constants can be used; they are converted to the type of the destination variable.

The storage length of all three variables should be 32-bit or 64-bit.

For 64-bit real arithmetic, if the destination variable and the operands are not already 64-bit
real, they are converted to 64-bit real before the operation is performed. The �nal result is
converted back to the size of the destination variable. The internal value of the �nal item
may carry more precision than its de�ned decimal count. Hence, for subsequent 64-bit real
arithmetic, the internal value carrying more precision will be used. On the other hand, for
subsequent packed decimal arithmetic (see the following discussion), the internal value will be
rounded according to the de�ned precision and then will be used. The internal value will be
rounded up for DISPLAY statements.

For example,

SYSTEM LONGRL;

DEFINE(ITEM) REAL1 R(8): << No decimal place. >>

REAL2 R(8,2):

REAL3 R(8,2);

LIST REAL1:

REAL2:

REAL3;

LET (REAL1) = 1440 / 900; << 64-Bit Real >>

The display value of REAL1 is 2 (rounded). Internally the value is 1.5555553436279 L+00.. In
subsequent 64-bit real arithmetic, the internal value of REAL1 1.555555. will be used.

LET (REAL2) = (REAL1) + (REAL1);

In subsequent packed decimal arithmetic, REAL1 and REAL2 will be rounded before
computation.

LET (REAL3) = (REAL1) * (REAL2) / 3.11;

DISPLAY REAL1: REAL2: REAL3;

The values displayed are as follows:

REAL1 = 2

REAL2 = 3.11

REAL3 = 2.00

Transact Verbs 8-109

LET

Packed Decimal Arithmetic

If the values in an expression do not meet the criteria for processing by either the 32-bit
integer or 64-bit real methods, then the packed decimal method is used.

In this approach, an arithmetic expression is processed according to the rules of precedence
described earlier.

Before computation, the data types of the destination variable and operands are converted
to P - - packed P(27,0,14) - - if the operation is +, -, *, /, //, =, or unary minus. For
the remaining functions, such as SQRT, LOG, LN, exponentiation, and so on, the operands
and destination variable are converted to 64-bit real. If this function is an intermediate
operation, the result is converted to data type P and stacked for continuing with the rest of
the expression. Any operands of type R or E that carry greater precision due to previous long
real arithmetic are rounded according to the precision de�ned for packed decimal arithmetic.

While an expression is being evaluated according to the rules of precedence, each intermediate
computational result is computed to the highest precision of the two operands and the
destination item. If the precision of the expression is greater than the precision of the
destination item, the result is rounded to the precision of the destination item. For example,
3.0/2.0 would produce 1.5 as an intermediate result, which would round to 2 if stored in a
receiving item with no decimal places. Unlike COBOL, Transact does not maintain extra
precision just for rounding. Thus some division operations may result in a loss of precision.
For example, 3/2 produces 1 instead of 1.5 for an intermediate result if the destination
variable has no decimal precision.

To ensure that precision is not lost, either the receiving item must have the desired precision
(at least one decimal place greater than in the arithmetic expression) or all operands in the
entire expression must have the desired precision. For applications that require the destination
variable to have fewer or zero decimal places, a two-step arithmetic sequence is recommended.
The destination variable of the �rst LET should have an adequate number of decimal places
for processing the whole expression and then the second LET statement should contain a
simple assignment (=) to an integer item having fewer or zero decimal places. The following
example shows this technique.

SYSTEM PAKDEC;

DEFINE(ITEM) R1 R(6): << No decimal place >>

R2 R(11,5): << More decimal places >>

I3 I(9,2); << Fewer decimal places >>

8-110 Transact Verbs

LET

The LET statement below uses the destination variable R1, which has no decimal places.
Compare the �nal results with the next LET statement.

LET (R1) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

LET (R1) = 11590.0000 * [[6353.6100 / 6354] * [1440/900]];

| |

.9999

| |

1

| |

.9999

| |

11588.8410

| |

11589 (ROUNDED)

The LET statement below uses the destination variable R2, which has �ve decimal places.

LET (R2) = 11590.0000 * [[6353.6100 / 6354] * [[1440/900]];

| |

.99993

| |

1.60000

| |

1.59989

| |

18542.72510

| |
18542.72510

The LET statement below does a simple assignment to the item I3, which has two decimal
places. The result is rounded. This is a packed decimal operation, since data types are
di�erent. The internal value of I3 does not carry extra precision.

LET (I3) = (R2);

| |

18542.73 (ROUNDED)

Performance Considerations

The following guidelines will help you optimize arithmetic operations in your Transact
programs.

It is most e�cient to use 16-bit integer types (I or J) for single +, -, =, or negation
operations.

Use 64-bit reals (E or R) for single operations that include *, /, //, LN, LOG, SQRT, or
exponentiation, as well as +, -, =, or negation operations.

Transact Verbs 8-111

LET

Use packed decimal types (P) for all other operations.

Avoid mixing types within an operation.

Error Branching

The ERROR= option gives you the ability to handle arithmetic errors on calculation from
within Transact. In addition to branching to the speci�ed label and resetting the list register
to (item-name), ERROR= causes the status register to be set to one of the following values
that identi�es the type of error.

Value Type of Error

1 Attempt to assign a negative value to a positive item.

2 Invalid arithmetic �eld for item/invalid decimal digit.

3 Divide by zero.

4 Overow.

5 Underow.

6 LOG, LN, or SQRT function attempted on a negative number.

The following Transact errors cause the ERROR= branch to be taken:

User Errors:

16 - Attempt to assign negative value to an item.
17 - Invalid arithmetic �eld for an item.

Programmer Errors:

46 - Decimal divide by zero.
47 - Decimal overow.
48 - Extended precision divide by zero.
49 - Extended precision underow.
50 - Extended precision overow.
51 - Integer overow.
52 - Floating point overow.
53 - Floating point underow.
54 - Integer divide by zero.
55 - Floating point divide by zero.
76 - Attempted LN, LOG, or SQRT function on a negative number.
81 - Invalid decimal digit.
84 - Attempt SQRT function on a number that is less than zero.

The ERROR= option is very useful in trapping the above errors. Each of these errors will
generate an error message and the program will continue. The ERROR= option allows the
programmer to evaluate the error and determine how the program should proceed.

8-112 Transact Verbs

LEVEL

LEVEL

De�nes processing levels within a program.

Syntax

LEVEL
�
(label(

�
item-name

�
))
�
;

LEVEL speci�es a new processing level. LEVEL allows repeated entries and retention of
information during data entry and eliminates redundant data entry operations. The data
register, key register, match register, list register, update register, SET(DELIMITER) and
SET(OPTION) are unique to that level. When an end of level occurs, these registers and
settings are reset to the condition they were in on entering the level.

Statement Parts

label The statement to which the program should branch at the end of the level
sequence if the user enters \]" in reply to a program prompt.

item-name The location in the list register where the pointer is to be set.

If you do not specify item-name, for example, LEVEL(label ());, the list
register is reset to empty.

If you use an *" instead of item-name, as in LEVEL(label (*));, the list
register is reset to the condition it was in on entering the level.

Exits From LEVEL Sequences

If no label is speci�ed, four types of exits from LEVEL sequences are possible;. two of which
the user controls and two of which the programmer controls. They are described below.

] When the user enters \]" in response to any prompt in a level sequence,
control passes to the previous processing level, which may be the command
level or to the label speci�ed in LEVEL(label). Any changes made to the
match, list, or update registers within the level are reset to their original
state.

]] When the user enters \]]" in response to any prompt in a level sequence,
control passes to the Transact command level, or if not in a command
sequence, Transact issues the EXIT or RESTART(E/R)> prompt.

END(LEVEL) The end of the current level. This causes control to fall through to the
statement following the END(LEVEL) statement and resets the match, list, or
update registers to whatever their conditions were immediately before the last
level sequence began.

END If you use END without (LEVEL) to terminate a level, Transact generates a
loop after the �rst execution of the level. The loop begins at the top of the
level. The match, list, or update registers are reset to whatever their values
were at the beginning of the level.

Transact Verbs 8-113

LEVEL

Examples

Nested level sequences are possible, as this example shows. The following statements minimize
the data entry required for a sequence of entries for a time card. It requires values for year
and month, then multiple entries for employee. Each level change provides the opportunity for
the user to enter data.

PROMPT YEAR:

MONTH;

LEVEL;

PROMPT EMPLOYEE;

LEVEL;

PROMPT DAY;

LEVEL;
PROMPT ACTIVITY: <<A loop through this level resets >>

HOURS; <<list REGISTER and data register for >>

PUT TIME-RECORD; <<these data items (activity, hours). >>

END;

END;

END;

Execution of these statements causes a prompt for each data item value and then a loop at
the lowest level. When the user has entered all activity items for a speci�c day, he or she
should enter a \]" in response to \ACTIVITY". Control passes to the next higher level and
user is prompted with \DAY". When all days have been entered for one employee, the user
should enter \]" in response to \DAY". Control passes to the next higher level and the user is
then prompted for the next employee.

8-114 Transact Verbs

LIST

LIST

Adds item names to list, key, match, and/or update registers.

Syntax

LIST
�
(modi�er)

�
item-name

�
,option-list

��
:item-name

�
,option-list

� �
...;

LIST adds data item names to the list, key, match, and/or update registers. The register
a�ected depends on the verb modi�er. You can choose from the following:

none Adds speci�ed item name to list register, reserves space, and, optionally, places
value in data register. (See Syntax Option 1.)

AUTO Adds the names of all items in a dictionary associated with the speci�ed �le to
the list register or adds all items de�ned in the program plus all items resolved
from the dictionary to the list register. (See Syntax Option 2.)

KEY Places speci�ed item name in key register. (See Syntax Option 3.)

MATCH Adds speci�ed item name to list register and copies existing value for that item
from the data register to the match register. (See Syntax Option 4.)

PATH Adds speci�ed item name to list register and places it in key register. (See Syntax
Option 5.)

UPDATE Adds speci�ed item name to list register and copies value for that item from the
data register to the update register. (See Syntax Option 6.)

Consider the following when setting up your list register:

For use with database access, list items may be in any position in the register. However,
consecutive order allows simpler range lists in the data management statements.

For use with KSAM or MPE �les or VPLUS forms, list items can be in any position in the
register. However, with the LIST= option, the items must be speci�ed in the same order as
the items occur in the physical �le or form.

Child item names cannot be speci�ed as list items in a LIST statement. Instead, the
associated parent item name must be speci�ed.

System variables cannot be put in a LIST statement. They can only be used in DISPLAY
or FORMAT statements.

See Chapter 4, \Transact Registers," for a discussion of adding items to the LIST register
multiple times.

Transact Verbs 8-115

LIST

Statement Parts

modi�er A change or enhancement to the action of LIST; often the register to which the
input value should be added or the register whose value should be changed.

item-name The item-name to be added or changed in the list, key, match, or update
registers; must not be a child item name.

option-list Values speci�c to Syntax Options (1) and (3).

Syntax Options

(1) LIST item-name[,option-list]

LIST with no modi�er adds the item-name to the list register and reserves space in the data
register. If you do not include an option from the list below, Transact does not change the
original contents of the data register. If you choose an option from the list below, it places the
corresponding value in the data register.

option-list Speci�es a value to be placed in the data register. Note that the options listed
below are not variable names and need not be de�ned in a DEFINE(ITEM)
statement or in a dictionary. The formats of these options are not a�ected by the
choice of language in the SET(LANGUAGE) statement.

ACCOUNT An X(8) item that contains the account name from the system
log on.

ALIGN Forces the item to be aligned on a 16-bit boundary on
Transact/V and on a 32-bit boundary on Transact/iX.

Note Only compile time alignment is supported.

DATE An X(6) item that contains the current system date in
MMDDYY format. If the data item size is not six characters,
then truncation or blank �ll occurs. This option is normally used
to set up a data item that is to contain the current date.

DATE/C An X(8) item that contains the current system date in
YYYYMMDD format.

DATE/D An X(6) item that contains the current system date in
DDMMYY format.

DATE/J An X(5) item that contains the current system date in Julian
YYDDD format.

DATE/L An X(27) item that contains the current system date/time
message.

DATE/Y An X(6) item that contains the current system date in
YYMMDD format.

GROUP An X(8) item that contains the group name from system log on.

HOME-
GROUP

An X(8) item that contains the home group of the logged on user.

8-116 Transact Verbs

LIST

INIT[IALIZE] Blanks if the data item type is an alphanumeric string, or binary
zero for all other types.

PASSWORD An X(8) item that contains the �rst password value entered
during Transact system log on.

PROCTIME An I(9) item that contains the 32-bit integer of process CPU time
in milliseconds.

TERMID An I(4) item that contains the terminal logical device number.

TIME An X(8) item that contains the current time in HHMMSSTT
format.

TIMER An I(9) item that contains the 32-bit integer of system time in
milliseconds.

SESSION An X(1) item than contains an \S" or a \J" to indicate that the
current process is running as a session or a job, respectively.

USER An X(8) item that contains the user name from the system logon.

For example, the following statements de�ne the item MYPASS, move it to the list register,
allocate it space in the data register, and place the user's password in that space:

DEFINE(ITEM) MYPASS X(8);

LIST MYPASS, PASSWORD;

(2) LIST(AUTO) f�le-name[,option-list];

f @[,option-list];

LIST(AUTO) �le-name adds the names of all the items in the speci�ed �le to the list register.
�le-name can refer to a form, a �le, or a data set, but not a database or forms �le. Transact
uses the dictionary to acquire the item names, and a compiler error results if �le-name is not
de�ned in a dictionary or if it has no item names associated with it. Alias de�nitions are not
retrieved from the dictionary.

The option INIT sets blanks to the data item if its type is an alphanumeric string or sets
binary zero to the data item for all other data types. When the DEFN option is used during
program compilation, all item names in the speci�ed �le will be included in the compile listing
and it will give the name and relative list register position of each item.

The option ALIGN forces the item to be aligned on a 16-bit boundary on Transact/V and on
a 32-bit boundary on Transact/iX. The �rst item with LIST(AUTO) �lename ,ALIGN will be
aligned.

LIST(AUTO) @ causes Transact to place all the user-de�ned data items in the program into
the list register in the order in which they are encountered during compilation. This includes
items resolved from the dictionary. The option INIT sets blanks to the data item if its type is
an alphanumeric string or sets binary zero to the data item for all other data types. All items
with LIST(AUTO)@,ALIGN will be aligned.

When multiple LIST(AUTO) statements are issued for di�erent �les that have some items
in common, you must ensure that the resultant structure of the list register will support the
statements that follow.

Transact Verbs 8-117

LIST

(3) LIST(KEY) item-name;

LIST(KEY) places item-name in the key register only.

(4) LIST(MATCH) item-name[,option-list];

LIST(MATCH) adds item-name to the list register and copies the existing value from the
data register into the match register as a selection criterion for subsequent �le or data set
operations. MATCH is typically used when a previous retrieval operation has placed a value
in the data register and that value is now to be used for the next selection criterion. The
item-name for the new data item list may di�er from the item-name used for the previous
retrieval. Matching with alphanumeric data is a�ected by the native language set by a
SET(LANGUAGE) statement. For more information, see Appendix E, \Native Language
Support."

The following values for option-list specify a match selection to be performed on a basis other
than equality.

option-list : Any of the following options can be selected:
ALIGN Forces the item to be aligned on a 16-bit boundary in Transact/V

and on a 32-bit boundary in Transact/iX
NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the

use of trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use

of trailing \^^" on input
TRAILER Matched item must end with the input string; equivalent to the

use of a leading \^" on input

(5) LIST(PATH) item-name[,option-list];

LIST(PATH) adds item-name to the list register and places it in the key register.

The ALIGN option forces the item to be aligned on a 16-bit boundary in Transact/V and on a
32-bit boundary in Transact/iX.

(6) LIST(UPDATE) item-name[,option-name];

LIST(UPDATE) adds item-name to the list register and places the value already in the
data register into the update register for a subsequent data set or �le operation using the
REPLACE verb.

The ALIGN option forces the item to be aligned on a 16-bit boundary in Transact/V and on a
32-bit boundary in Transact/iX.

8-118 Transact Verbs

LIST

Examples

The �rst example places item names NAME, ADDRESS, CITY, and DATE in the list register
and reserves areas for their values in the data register. The areas for NAME, ADDRESS, and
CITY are initialized to blanks and the area for DATE is initialized to the current system date
in MMDDYY format.

DEFINE(ITEM) NAME X(20):

ADDRESS X(20):

CITY X(10):

DATE X(6);

LIST NAME,INIT:

ADDRESS,INIT:

CITY,INIT:
DATE,DATE;

The data register is your stack. It is never cleared; it is only mapped and remapped through
the list register. To illustrate this point, consider the following example that references
two databases. In one, a customer name is identi�ed by two items, LAST-NAME and
FIRST-NAME; in the other, the same name is identi�ed by a single item, CUST-NAME.

SYSTEM TEST1,

BASE=CUST-BASE,

PROD-BASE;

DEFINE(ITEM) LAST-NAME X(10):

FIRST-NAME X(10):

CUST-NAME X(20);

LIST LAST-NAME: FIRST-NAME; <<Map data register with LIST statement>>

GET CUST-MAST,

LIST=(LAST-NAME:FIRST-NAME); <<Retrieve name, move to data register >>

RESET(STACK) LIST; <<Reset list register to its beginning >>

LIST CUST-NAME; <<Map same data with new list register >>

PUT CUST-INFO(PROD-BASE),

LIST=(CUST-NAME); <<Write name to other database >>

END TEST1;

Note that the list register was reset programmatically with the RESET(STACK) statement.

The next example shows the use of LIST(AUTO) to include all de�ned items in the list
register and initialize them.

LIST(AUTO) @,INIT;

The next example is used to put dictionary items for a �le in the list register.

LIST(AUTO) PASSENGER-DTL;

Transact Verbs 8-119

LIST

In the next example, the company code is used to retrieve and display data from one data set
(CO-MSTR) and then the same value, renamed by LIST(PATH) as the department code, is
used to access another data set (DEPT-MSTR).

PROMPT(PATH) COMPANY-CODE, <<Get company code for subsequent retrieval>>

CHECK=CO-MSTR; <<from CO-MSTR data set >>

LIST A:

B:

C;

OUTPUT CO-MSTR;

RESET(STACK) LIST;

LIST(PATH) DEPT-CODE; <<Use same value as department code for >>

LIST X: <<subsequent retrieval from DEPT-MSTR >>

Y:

Z;

OUTPUT DEPT-MSTR;

In the following example, Transact resets the list register automatically when a new command
sequence starts. Because Transact resets the list register at the start of each new command
sequence, you should de�ne any global variables before the �rst command sequence, and then
rede�ne the global variables within each command sequence preceding any local variables.
For example, suppose the variables, \VENDOR-ID" and \VENDOR-NAME" are to be used
by both sequences UPDATE PRODUCT and UPDATE VENDOR. Before executing either
sequence, you can de�ne these items and place values for them in the data register. In order
to retain these values, all you need do is remap the list register at the start of each sequence.

LIST VENDOR-ID: << Map global variables in list reg. >>

VENDOR-NAME;

DATA VENDOR-ID: << Prompt user for data >>

VENDOR-NAME;

$$UPDATE: << New command sequence - >>

$PRODUCT: << Transact resets list register >>
LIST VENDOR-ID: << Remap global variables >>

VENDOR-NAME:

PROD-NUM: << Variables local to UPDATE PRODUCT >>

DESCRIPTION;

$VENDOR: << Transact resets list register again >>

LIST VENDOR-ID: << Remap global variables >>

VENDOR-NAME:

VENDOR-ADDRESS: << Variables local to UPDATE VENDOR >>

VENDOR-ZIP;

8-120 Transact Verbs

LIST

The next example shows how the DATE/C option is used.

SYSTEM DATES;

DEFINE(ITEM) TODAYS-DATE X(8):

TODAYS-YEAR X(4) = TODAYS-DATE(1):

TODAYS-MONTH X(2) = TODAYS-DATE(5):

TODAYS-DAY X(2) = TODAYS-DATE(7);

LIST TODAYS-DATE, DATE/C;

DISPLAY "TODAY'S DATE:

":TODAYS-DATE,NOHEAD,EDIT="^^^^/^^/^^";

DISPLAY "FORMATTED DATE: ", LINE=2:

TODAYS-MONTH, NOHEAD, SPACE=0:

"/", SPACE=0:

TODAYS-DAY, NOHEAD, SPACE=0:

"/", SPACE=0:

TODAYS-YEAR,. NOHEAD, SPACE=0;

EXIT;

The output from this example is:

TODAY'S DATE: 1992/08/18

FORMATTED DATE: 08/18/1992

The last example shows how the ALIGN option causes item1 and item3 to be word-aligned in
the list register. Item2 will follow item1 and may or may not be aligned, depending on length
of item1 .

LIST item1,ALIGN;

item2;

item3,INIT,ALIGN;

Transact Verbs 8-121

LOGTRAN

Makes the database calls needed to maintain the database log �les and optionally performs
database transaction locking.

Syntax

LOGTRAN(modi�er) base, log-message
�
,option-list

�
;

LOGTRAN is used to de�ne a static or dynamic logical transaction for database transaction
logging or locking purposes. If this verb is to be used for database logging and recovery,
several steps must �rst be completed before the statement can be used. If this verb is to be
used for transaction locking, no preliminary steps need to be taken. See the discussions of
transaction logging in the TurboIMAGE reference manuals for more information regarding
static and dynamic transactions.

Transact �le access verbs lock at the start of execution for a statement and unlock before the
next statement. Therefore, other processes can modify the data during a logical transaction
covered by LOGTRAN if the transaction comprises more than one statement. It is therefore
always advisable to lock the transaction being logged.

If LOGTRAN is used for locking, it should be used consistently throughout all programs, and
databases and data sets should be locked and unlocked in the same order by all programs.
LOGTRAN locking should not be mixed with Transact's automatic locking. Automatic
locks should be disabled by SET(OPTION) NOLOCK, and automatic error handling
should be disabled by specifying the STATUS option. Multiple LOGTRAN locks can only
be issued on di�erent data sets in a database with an intervening LOGTRAN(END) or
LOGTRAN(XEND) verb on that database. See \Database and File Locking" in Chapter 6 for
more information.

Statement Parts

modi�er Speci�es the type of operation.

BEGIN Starts a static transaction and writes a record to the log �le if
user logging is enabled.

Optionally, BEGIN locks the data sets speci�ed in SET(LIST).
The LOCK option should be speci�ed unless the PROC
statement is used for locking.

The LOGTRAN(BEGIN) statement must always be paired
with a LOGTRAN(END) statement to mark the beginning
and end of a static transaction for a given database. No other
LOGTRAN(BEGIN) or LOGTRAN(END) statement referencing
the same database access path can appear between a pair of
LOGTRAN(BEGIN) and LOGTRAN(END) statements.

MEMO Writes a log record in the log �le to provide more information
about the logical transaction if user logging is enabled.

END Ends a static transaction and writes a record to the log �le if user
logging is enabled.

8-122 Transact Verbs

LOGTRAN

Unlocks the database locked by its corresponding
LOGTRAN(BEGIN) statement.

The LOGTRAN(END) statement must always be preceded by a
LOGTRAN(BEGIN) statement. No other LOGTRAN(BEGIN)
or LOGTRAN(END) statement referencing the same database
access path can appear between a pair of LOGTRAN(BEGIN)
and LOGTRAN(END) statements.

Note The following modi�ers, XBEGIN, XEND, and XUNDO, apply to
Transact/iX only. They support the TurboIMAGE/XL dynamic roll-back
feature that provides MPE/iX transaction management logging.

XBEGIN Starts a dynamic transaction and writes a record to the log �le if
user logging is enabled.

Optionally, XBEGIN locks the data sets speci�ed in SETLIST.
The lock option should be speci�ed unless the PROC statement is
used for locking.

Nesting of dynamic or static transactions within a dynamic
transaction is not allowed when using the same database access
path. The LOGTRAN(XBEGIN) statement must always
be paired with a LOGTRAN(XEND) statement to mark
the beginning and end of a dynamic transaction. No other
LOGTRAN(BEGIN), LOGTRAN(END), LOGTRAN(XBEGIN),
or LOGTRAN(XEND) statement can appear between a
matching pair of LOGTRAN(XBEGIN) and LOGTRAN(XEND)
statements for a speci�c database access path.

XEND Ends a dynamic transaction and writes a record to the log �le if
user logging is enabled.

Unlocks the database locked by its corresponding
LOGTRAN(XBEGIN) statement. The LOGTRAN(XEND)
statement must always be preceded by a LOGTRAN(XBEGIN)
statement to mark the beginning and end of a dynamic
transaction. No other LOGTRAN(BEGIN), LOGTRAN(END),
LOGTRAN(XBEGIN), or LOGTRAN(XEND) statement can
appear between a matching pair of LOGTRAN(XBEGIN) or
LOGTRAN(XEND) statements for a speci�c database access
path. Also, LOGTRAN(XEND) cannot be called after a call has
been made to LOGTRAN(XUNDO).

XUNDO Rolls back the modi�cations associated with a dynamic
transaction and writes a record to the log �le if user logging is
enabled.

Unlocks the database locked by its corresponding
LOGTRAN(XBEGIN) statement.

The LOGTRAN(XUNDO) statement must always be preceded
by a LOGTRAN(XBEGIN) statement to mark the beginning of
a dynamic transaction. LOGTRAN(XUNDO) cannot be called

Transact Verbs 8-123

LOGTRAN

to roll back a transaction started by a LOGTRAN(BEGIN)
statement. Also, LOGTRAN(XUNDO) cannot be called after
a call has been made to LOGTRAN(XEND) for that speci�c
database access path.

base The database to be logged. It must be one of the following:

$HOME This special name indicates that the home database is to be
logged.

Note Using the actual home base name in the LOGTRAN statement causes a
compiler error.

base-name The name of the database to be logged (when the database is
other than the home base).

log-message The log-message parameter is required for all LOGTRAN verbs. It must be one
of the following:

(item-name
[(subscript)])

The name of a data item that contains the text string (up to
512 bytes long) to be written to the log �le. This item must
begin on a 16-bit word boundary. The item-name can be
subscripted if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

\message-string" The text string (up to 512 bytes long) to be written on the
log �le.

option-list One or more of the following, separated by commas.

LOCK(setlist) This option causes the data sets speci�ed in the setlist to be
locked. This option is only valid with the LOGTRAN(BEGIN)
or LOGTRAN(XBEGIN) statements, with the locks
remaining in e�ect until the corresponding LOGTRAN(END),
LOGTRAN(XEND) or LOGTRAN(XUNDO) is encountered.

The setlist is of the form:

(setname[cond][,setname[cond] . . .)

setname The name of the data set to be locked. If the
entire database is to be locked the user can
substitute @ for setname.

cond The lock condition, either COND for conditional
lock or UNCOND for unconditional locking.
COND is the default.

Note When locking multiple data sets, Multiple Rin (MR) capability must be in
e�ect. You should also list data sets in the order in which they appear in the
database for added compatibility with non-Transact Applications. (See the
TurboIMAGE/XL Database Management System Reference Manual for more
information.)

8-124 Transact Verbs

LOGTRAN

NOMSG Suppresses the standard error message produced as a result of a
database error. It is recommended that STATUS is used with this
option.

STATUS Suppresses the actions de�ned in Chapter 7 under \Automatic
Error Handling." You will need to add code to check the value of
STATUS. When STATUS is speci�ed, the e�ect of a LOGTRAN
statement is described by the 32-bit integer value in the status
register:

Status
Register Value

Meaning

0 The LOGTRAN operation was successful.

<> 0 This is the database error code. (See the
TurboIMAGE/XL Database Management
System Reference Manual .)

See \Using the STATUS Option" in Chapter 7 for more
information.

Examples

The �rst example begins a transaction and locks the entire PERSON database conditionally.

LOGTRAN(BEGIN) PERSON, "BEGIN LOGGING DATABASE", LOCK(@);

This example begins a transaction, locks the data set NAME unconditionally, and locks the
data set ADDRESS unconditionally.

LOGTRAN(BEGIN) $HOME, (MSG), LOCK(NAME(UNCOND), ADDRESS(UNCOND));

This example begins a transaction and locks the home base conditionally.

LOGTRAN(BEGIN) $HOME, (MSG), LOCK(@(COND));

This example ends a transaction and unlocks any data sets in $HOME that have been locked.

LOGTRAN(END) $HOME, (MSG);

This example begins a dynamic transaction and locks the entire home database conditionally.

LOGTRAN(XBEGIN) $HOME, "BEGIN DYNAMIC TXN LOGGING", LOCK(@);

The next example begins a dynamic transaction for the PEOPLE database and locks the
NAME data set conditionally and the ADDRESS data set unconditionally.

LOGTRAN(XBEGIN) PEOPLE, (MSG), LOCK(NAME, ADDRESS(UNCOND));

This example shows how to begin a dynamic transaction with programmer's control of
locking. This would be done if the Transact locking scheme for LOGTRAN(XBEGIN) was not
adequate.

SET(OPTION) NOLOCK;

LET (MODE) = 1;

:

:

Transact Verbs 8-125

LOGTRAN

:

PROC DBLOCK(BASE(CUSTOMERS),

SET(NAMES),

(MODE),

STATUS(DB));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO LOCK-ERROR;

LOGTRAN(XBEGIN) $HOME, (MSG);

This example ends a transaction and unlocks any data sets or database locked by the
corresponding LOGTRAN(XBEGIN).

LOGTRAN(XEND) $HOME, "END OF DYNAMIC TXN LOGGING";

The next example shows how to end a dynamic transaction with programmer's control of
locking. It assumes that the LOCK option on LOGTRAN(XBEGIN) was NOT used.

SET(OPTION) NOLOCK;

LET (MODE) = 1;

:

:

:

LOGTRAN(XEND) $HOME, (MSG);

PROC DBUNLOCK(BASE(CUSTOMERS),

SET(NAMES),

(MODE),

STATUS(DB));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO UNLOCK-ERROR;

The next example shows how to end a dynamic transaction when the contents of the logging
bu�er in memory should be written to disk (Mode 2 of DBXEND). This would be used for
critical transactions. It is assumed that locks are held throughout the transaction and that
unlocking is the responsibility of the programmer.

Note The DBXEND call must precede the call to DBUNLOCK or TurboIMAGE
will return an error.

SET(OPTION) NOLOCK;

LET (MODE) = 2;

:

:

PROC DBUNLOCK(BASE(CUSTOMERS),

(MSG),

8-126 Transact Verbs

(MODE),

STATUS(DB),

(NUMBYTES));

MOVE (CSTATUS) = STATUS(DB);

IF (CSTATUS) <> 0 THEN

GO TO DBXEND-ERROR;

The last example rolls back a transaction that was previously started by
LOGTRAN(XBEGIN).

LOGTRAN(XUNDO) EMPLOYEES, (MSG);

Transact Verbs 8-127

MOVE

Places data into a speci�ed data register space.

Syntax

MOVE (destination-variable) = source-expression;

MOVE places data into the data register location speci�ed by destination-variable. You
should use MOVE particularly when you want to move a character string into a data
register location. Unlike LET, MOVE does not check data types during the operation. If
it is necessary to convert data types between the source and the destination, you must use
the LET verb to do so. Since MOVE does not check data types during the operation, a
destination-variable of type U could contain lowercase alphanumeric characters.

When moving items of di�erent lengths, values are truncated or �lled on the right. Numeric
data types I, J, Z, P, K, R, E, and 9 are �lled with nulls, and alphanumeric data types X and
U are �lled with blanks.

Note In Transact/iX the �ll character for data type 9 is blank.

The display length of the source data item is used to determine the number of characters
moved for data types U and X. Storage length is used for all data types when using
justi�cation of a literal. For unsubscripted arrays using justi�cation, storage length is used for
all data types.

Note The destination-variable is used to hold any intermediate results when
processing the source-expression . See \Special Considerations" later in this
verb for potential side e�ects.

Statement Parts

destination-variable can be the following:

(item-name
[(subscript)])

Speci�es that you want the data moved into the data register location
identi�ed by item-name. The item-name can be subscripted if an array
item is being referenced. (See \Array Subscripting" in Chapter 3.)

source-expression is de�ned below with detailed explanations following:8>>>>>>><
>>>>>>>:

�
�
�
(item-name

�
(subscript)

�
)�

�
�
"character-string"�

�
�
string-function

format-function

source1
�
operator source2

�
. . .

STATUS(parm)

9>>>>>>>=
>>>>>>>;

8-128 Transact Verbs

MOVE

[�](item-name
[(subscript)])

The value in the data register location for item-name. If you include the
minus sign (�), then the source value is placed in the destination �eld
with opposite justi�cation. That is, source data that is right-justi�ed is
left-justi�ed in the destination �eld and vice versa.

The item-name can be subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

[�]"character-
string"

A programmer-de�ned character string. If you include the minus sign
(�), then the source �eld is right-justi�ed in the destination �eld. If
character-string is null, as in "", then the receiving �eld is �lled with
binary zeros. To �ll the �eld with blanks, use a space, " ", for the
character string.

[�]string-function Any of the functions listed below, each of which has a character string
as its result. If you include the minus sign (�), then the source value is
placed in the destination �eld with opposite justi�cation. That is, source
data that is right-justi�ed is left-justi�ed in the destination �eld and
vice versa. (See \Functions" later in the description of this verb for a
description of each function and its parameters.)

CHAR

LOWER

PROPER

STRING

UPPER

format-function Either of the two functions listed below, each of which operates on the
destination �eld. A minus sign is not allowed before a format-function.
(See \Functions" later in the description of this verb for a description of
each function and its parameters.)

COL

SPACE

source1 operator
source2 ...
operator sourcen

The source can be an (item-name[(subscript)]), a "character-string",
a string-function , or a format-function. The operator can be +, �, and
both operators can be used in the same expression (a minus sign is not
allowed before a format-function). The plus sign concatenates the items
and strips trailing blanks. The minus sign removes the next item.

Items and strings to be combined are speci�ed in the order of their
intended concatenation or removal. Leading blanks in the strings to be
concatenated are not stripped before concatenation.

STATUS(parm) Moves a value to the destination �eld, depending on the value of parm. If
parm is:

DB Moves status block used in last database call to the data
register location speci�ed by destination-variable.

BASE Moves the database name referenced in the last
database call to the data register location speci�ed by
destination-variable.

Transact Verbs 8-129

MOVE

FILE Moves the name of the data set or �le referenced by the
last database, KSAM, or MPE call to the data register
location speci�ed by destination-variable.

Special Considerations

The destination-variable on the left of the \=" sign will be used as a temporary variable to
hold intermediate values necessary when calculating the result of the source-expression on the
right of the \=" sign. Some important points should be noted:

The operands in the source-expression are processed in the order referenced (i.e. left to
right).

If the source-expression contains multiple operators, the destination-variable must be
de�ned large enough to hold any intermediate values or truncation will occur. For example,

MOVE (A) = (B) + (C) � (D);

(A) must be large enough to hold the result of (B) + (C). Failure to do so will cause the
intermediate result to be truncated before removing the value of (D). A detailed example
follows:

MOVE (NAME) = (FNAME) + (LNAME) - "SON";

Before After

FNAME X(05) DAVID DAVID

LNAME X(06) BENSON BENSON

NAME X(10) JEFFBENNER DAVIDBENSO

If the source-expression used on the right of the \=" sign also contains the destination-
variable, the value of the destination-variable may have changed which could cause
unexpected results. For example,

MOVE (A) = (B) + (C) + (A);

the reference to (A) on the right will have the result of (B) + (C) in it when it is used in
the calculation. The best strategy is to avoid using (A) on the right after two operators. A
detailed example follows:

MOVE (NAME) = (FNAME) + (LNAME) + (NAME);

Before After

FNAME X(08) Johntttt Johntttt
LNAME X(08) Paultttt Paultttt
NAME X(16) Jonesttttttttttt JohnPaulJohnPaul

If the source-expression contains a child item and the destination-variable is an overlapping
child item of the same parent, the destination variable may contain unexpected results. For
example:

DEFINE(ITEM) PARENT X(5):

CHILD1 X(3) = PARENT(1):

CHILD2 X(3) = PARENT(3);

LIST PARENT,INIT;

MOVE (PARENT) = "AABBB";
MOVE (CHILD2) = (CHILD1);

8-130 Transact Verbs

MOVE

After the move, CHILD2 contains \AAA", not \AAB", because the move is done as follows:

1. The �rst A is moved from position 1 to position 3.

2. The second A is moved from position 2 to position 4.

3. The third character has already been replaced by step 1, and is now A; the third step is
therefore to move A from position 3 to position 5.

When a MOVE contains more than two operands, the Transact compiler will split the
MOVE into multiple MOVE statements of two operands each. The following statement:

MOVE (A) = (B) + (C) � (D);

will be split into the following:

MOVE (A) = (B) + (C);

MOVE (A) = (A) � (D);

When a function is the �rst operand in a MOVE statement, the MOVE will be split into
multiple MOVE statements. Consider the following statement:

MOVE (A) = UPPER(B) + (C) � (D);

The Transact compiler will split the MOVE into the following statements:

MOVE (A) = UPPER(B);

MOVE (A) = (A) + (C);

MOVE (A) = (A) � (D);

Functions

The following sections describe the string functions (CHAR, LOWER, PROPER, STRING,
and UPPER) and format functions (COL and SPACE) that are only available within the
MOVE verb, including parameters and examples.

The string functions return values based on the operation performed on the source-variable.
The format functions operate on the destination-variable.

A leading minus sign (�) is not allowed with a format function. A compiler error will be
generated when a minus sign immediately precedes a format function.

Transact Verbs 8-131

MOVE

CHAR

The CHAR function returns the character equivalent of a numerical ASCII code. The
argument is a number between 0 and 255 inclusive. Arguments outside the range of 0 to 255
will return a blank.

Syntax

CHAR(

�
(item-name

�
(subscript)

�
)

numeric-constant

�
)

Examples

MOVE (STRING) = CHAR((NUM));

Before After

NUM I(4) 65 65

STRING X(4) XYZt Attt

MOVE (STRING(2)) = CHAR(97);

Before After

STRING(2) U(4) XYZt attt

MOVE (STRING(2)) = �CHAR(97);

Before After

STRING(2) U(4) XYZt ttta

8-132 Transact Verbs

MOVE

COL

The COL function moves a string into the destination beginning at the speci�ed column
position. The �rst column position is 1. Any bytes in the destination to the left of the column
position will be unchanged.

Syntax

COL(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,position)

where position is either a data item name in parentheses or a numeric constant. The position
parameter indicates the byte in the destination where the string will begin. If position is
greater than the number of bytes in the destination, nothing is moved.

Examples

MOVE (ADDRESS) = (NUMBER) + COL((STREET),(POS));

Before After

ADDRESS X(16) abcdefghijklmnop 125ttHardwickttt
POS I(4) 6 6

NUMBER X(4) 125t 125t
STREET X(10) Hardwicktt Hardwicktt

MOVE (ADDRESS) = COL((STREET),(POS));

Before After

ADDRESS X(16) abcdefghijklmnop abcdeHardwickttt
POS I(4) 6 6

STREET X(10) Hardwicktt Hardwicktt

Errors

A position value less than 0 is the only error speci�c to the COL function. If an error is
encountered while processing the COL function, the string will be moved to the destination
using the default position value of 1. A message describing the error condition is also
displayed. Processing continues if Transact is running online, but will stop if Transact is
running in batch mode.

Transact Verbs 8-133

MOVE

LOWER

The LOWER function returns a string in which all letters are converted to lowercase. Any
non-alphabetic characters remain unchanged.

Syntax

LOWER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = LOWER((NAME));

Before After

NAME X(8) BROWNtJt browntjt

MOVE (LNAME) = LOWER("SMITH");

Before After

LNAME U(4) ABCD smit

MOVE (ACTION(2)) = LOWER((VERB((I)))) + "ed";

Before After

I I(5) 4 4

VERB(4) X(4) JUMP JUMP

ACTION(2) X(6) TURNSt jumped

8-134 Transact Verbs

MOVE

PROPER

The PROPER function returns a string in which a letter in the �rst character position and
each letter immediately following a special character are converted to uppercase. All other
characters remain unchanged.

The default set of special characters as used by PROPER are !"#$%&'()*+,-
./:;<=>?@[\]^_`{|}~ and the blank character.

To change the set of characters that cause the next letter to be upshifted, see the SET and
RESET verbs later in this chapter.

Syntax

PROPER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = PROPER((NAME));

Before After

NAME X(8) browntjt BrowntJt

MOVE (LNAME) = PROPER("smith,j");

Before After

LNAME U(7) ABCDttt Smith,J

MOVE (LNAME) = PROPER("SMITH,J");

Before After

LNAME U(7) ABCDttt SMITH,J

MOVE (LNAME) = PROPER((NAME));

Before After

NAME X(5) smith smith

LNAME X(6) ABCDtt Smitht

MOVE (LNAME) = PROPER("mr.john smith (hp)");

Before After

LNAME X(18) ABCDt...t Mr.JohntSmitht(Hp)

Transact Verbs 8-135

MOVE

MOVE (LNAME) = PROPER((NAME));

Before After
NAME X(7) atandtb atandtb
LNAME X(7) ABCDEtt AtAndtB

MOVE (ACTION(2)) = PROPER((VERB((I)))) + "ed";

Before After

I I(5) 3 3

VERB(3) X(4) JUMP JUMP

ACTION(2) X(6) TURNSt JUMPed

MOVE (LNAME) = PROPER("a1b,c.d!e&f g(h]i;");

Before After

LNAME X(18) ABCDt...t A1b,C.D!E&FtG(H]I;

8-136 Transact Verbs

MOVE

SPACE

The SPACE function moves the speci�ed number of spaces into the destination before moving
the string.

Syntax

SPACE(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,space-size)

where space-size is either a data item name in parentheses or a numeric constant. The
space-size parameter indicates the number of spaces to be moved to the destination before
moving the string.

Examples

MOVE (NAME) = (LNAME) + SPACE(FNAME,1) + SPACE(INITIAL,1);

Before After

LNAME X(6) Doettt Doettt
FNAME X(6) Johntt Johntt
INITIAL X(2) Qt Qt
NAME X(14) abcdefghijklmn DoetJohntQtttt

Errors

A space-size value less than 0 is the only error speci�c to the SPACE function. If an error is
encountered while processing the SPACE function, the string will be moved to the destination
using the default space-size value of 0. A message is also displayed describing the error
condition. Processing continues if Transact is running online, but will stop if Transact is
running in batch mode.

Transact Verbs 8-137

MOVE

STRING

The STRING function returns a string that is taken from another string beginning at a given
position for a given length.

Syntax

STRING(

�
(item-name

�
(subscript)

�
)

"character-string"

�
,position,length)

where position and length are either data item names in parentheses or numeric constants.
The position parameter indicates the byte at which the substring begins. The length
parameter indicates the number of bytes to move. If length + position would extend beyond
the end of the source string, the substring returned will be padded a corresponding number of
trailing spaces.

Examples

MOVE (NAME) = STRING((NAME),1,3);

Before After

NAME X(8) BROWNtJt BROttttt

MOVE (LNAME) = STRING("SMITH",(POS),(LEN));

Before After

POS I(4) 3 3

LEN I(4) 2 2

LNAME X(6) ABCDtt ITtttt

MOVE (LNAME) = STRING((NAME),(POS),4);

Before After

POS I(5) 2 2

NAME X(5) SMITH SMITH

LNAME X(6) ABCDtt MITHtt

MOVE (ACTION(2)) = STRING((VERB((I))),(POS(3)),(LEN((I)))) + " ";

Before After
I I(5) 4 4

VERB(4) X(4) JUMP JUMP

POS(3) I(4) 1 1

LEN(4) I(4) 3 3

ACTION(2) X(6) TURNSt JUMtt

The next two examples demonstrate the use of functions with concatenation. Removal can
produce di�erent results:

MOVE (X10) = "Rapid Team" � ("a",20,1) � "p";

Before After

X10 X(10) ABCttttttt RaidtTeamt

8-138 Transact Verbs

MOVE

The string function returns a null, therefore nothing is removed.

MOVE (X5) = STRING ("a",20,1);

MOVE (X10) = "Rapid Team" � (X5) � "p";

Before After

X5 X(5) ABCDE ttttt
X10 X(10) XYZttttttt RaidTeamtt

The string function returns a null, however when a null is moved to an X type item, it is
converted to blanks. A blank is then removed in the second MOVE statement.

Errors

If an error is encountered while processing the STRING function, an appropriate default
string is returned by the function depending on the destination's data type (spaces for X
and U types and nulls for all other types). A message is also displayed describing the error
condition. Processing continues if Transact is running online but will stop if Transact is
running in batch mode. The only errors speci�c to the STRING function are:

Position parameter <0

Length parameter <0

Transact Verbs 8-139

MOVE

UPPER

The UPPER function returns a string in which all letters are converted to uppercase.
Non-alphabetic characters remain unchanged.

Syntax

UPPER(

�
(item-name

�
(subscript)

�
)

"character-string"

�
)

Examples

MOVE (NAME) = UPPER((NAME));

Before After

NAME X(8) browntjt BROWNtJt

MOVE (LNAME) = UPPER("smith");

Before After

LNAME U(6) abcdtt SMITHt

MOVE (LNAME) = UPPER((NAME));

Before After

NAME X(5) smith smith

LNAME X(6) abcdef SMITHt

MOVE (ADDRESS) = UPPER("123tMain");

Before After

ADDRESS X(8) abcdefgh 123tMAIN

MOVE (ACTION(2)) = UPPER((VERB((I)))) + "ed";

Before After

I I(5) 1 1

VERB(1) X(4) jump jump

ACTION(2) X(6) turnst JUMPed

MOVE (LNAME) = UPPER((NAME));

Before After

NAME X(7,,7) abcdefg abcdefg

LNAME X(6,,7) JOHNtJt ABCDEFG

In the preceding example using a storage length of 7, the item LNAME will contain
ABCDEFG in the data register, but when displayed, LNAME will only display the �rst 6
characters, ABCDEF.

8-140 Transact Verbs

MOVE

Examples

The �rst example copies the values for FIELD-A into FIELD-B.

MOVE (FIELD-B) = (FIELD-A);

Before After

FIELD-A X(4) SAMt SAMt <<no change>>

FIELD-B X(5) CHUCK SAMtt

The next example moves the �rst two characters of DATE into MONTH.

MOVE (MONTH) = (DATE);

Before After

DATE X(6) 100770 100770 <<no change>>

MONTH X(2) 12 10

The next example shows concatenation. Note that the trailing blanks in FIELD1 are stripped
when the two �elds are concatenated.

MOVE (NEWFIELD) = (FIELD1) + (FIELD2);

Before After

FIELD1 X(4) ABtt ABtt <<no change>>

FIELD2 X(3) CDE CDE <<no change>>

NEWFIELD X(6) 123456 ABCDEt

The following example shows the removal of internal characters:

MOVE (DATE) = (FDATE) � (SLASH);

Before After

FDATE X(8) 01/31/82 01/31/82 <<no change>>

SLASH X(1) / / <<no change>>

DATE X(6) tttttt 013182

The next example shows justi�cation:

MOVE (FIELDY) = �(FIELDX);

Before After

FIELDX X(4) ABCt ABCt <<no change>>

FIELDY X(4) 1234 tABC

Transact Verbs 8-141

MOVE

The next examples show justi�cations using �elds of di�erent lengths.

MOVE (FIELDB) = �(FIELDA);

Before After

FIELDA X(4) XYZt XYZt

FIELDB X(8) 12345678 tttttXYZ

MOVE (FIELDA) = �(FIELDB);

Before After

FIELDA X(4) XYZt 1234

FIELDB X(8) 123456tt 123456tt

MOVE (FIELDA) = �(FIELDB);

Before After

FIELDA X(4) XYZt t123

FIELDB X(8) 123ttttt 123ttttt

The following example demonstrates the use of MOVE with numeric data items of di�erent
lengths.

SYSTEM T6121;

DEFINE(ITEM) INTARRAY 10 I(4):

INT I(4);

LIST INTARRAY: INT;

LET (INT) = 65;

MOVE (INTARRAY) = (INT);

DISPLAY INTARRAY;

EXIT;

The result in INTARRAY is the �rst element has 65 and all others have 0 because MOVE �lls
numeric type items with zeros when the source length is smaller than the destination. Be sure
that the de�nitions of the source and destinations are the same, since no type conversion is
performed by MOVE.

When assigning a value to an array, the MOVE verb treats the array as a simple compound
item and moves each byte one at a time until the end of the value or the end of the array,
whichever comes �rst. The remaining elements are �lled with blanks (if 9, X, or U data types)
or �lled with null characters (if numeric data types).

If a subscript is speci�ed, only that element is assigned the value and all other subscripts
remain unchanged.

For example, if ARRAY-X is de�ned as 6X(2) and ARRAY-I is de�ned as 4I(5,,2).

8-142 Transact Verbs

MOVE

MOVE (ARRAY-X) = "abcdefgh"; <<Sets 1st element to ab; 2nd to cd, etc.>>

MOVE (ARRAY-X(2)) = "ZZ"; <<Sets 2nd element to ZZ.>>

LET (TEMP-I) = 67;

MOVE (ARRAY-I) = (TEMP-I); <<Sets 1st element to 67 and rest >>

<<to nulls (binary 0).>>

LET (TEMP-I) = 78;

MOVE (ARRAY-I(4)) = (TEMP-I); <<Sets only 4th element to 78.>>

See chapter 3 for more information on handling arrays.

Transact Verbs 8-143

OUTPUT

Performs a multiple data retrieval from a �le or data set and displays the data.

Syntax

OUTPUT
�
(modi�er)

�
�le-name

�
,option-list

�
;

OUTPUT speci�es a database or �le retrieval operation. It adds each retrieved record to the
data register, but only selects for output those records that satisfy any selection criteria in the
match register. For each selected record, OUTPUT displays all the items in the current list
register. If you want to select items from the list register, you should precede the OUTPUT
statement with a FORMAT statement.

The OUTPUT statement displays the selected entries after PERFORM= statements are
executed. This allows you to display the results of PERFORM= statements. However, this
makes nesting of OUTPUT statements di�cult. The output from the most deeply nested
OUTPUT statement is displayed �rst. To produce nested output in the more usual order,
you can use a FIND statement to retrieve the data with a PERFORM= option to display the
data.

If a FORMAT statement appears before the OUTPUT statement, then the display is
formatted according to the speci�cations in that statement. If there is no preceding FORMAT
statement, the display is formatted according to the default format described below. Once
all entries have been displayed according to a preceding FORMAT statement, subsequent
OUTPUT statements revert to the default format unless control passes again through a
FORMAT statement.

The default format for OUTPUT is:

Displays values in the order in which they appear in data register.

Accompanies each value with a heading consisting of:

the heading speci�ed for that value in a HEAD= option of a DEFINE(ITEM) statement,

the heading taken from a dictionary de�nition of the item, or

the associated data item name in the list register.

Displays each value in a �eld whose length is either the data item size or the heading length,
whichever is longer.

A single blank character separates each value �eld from the next. If a �eld cannot �t on the
current display line, then the �eld begins on a new line.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

8-144 Transact Verbs

OUTPUT

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none Retrieves an entry from a master set based on the key value
in the argument register. This option does not use the match
register.

CHAIN Retrieves entries from a KSAM �le key or a detail chain. The
entries must meet any match criteria set in the match register
in order to be collected. The contents of the key and argument
registers specify the chain or KSAM key in which the retrieval
is to occur. If no match criteria are speci�ed, all entries are
selected. If match criteria are speci�ed, the match items must be
included in a LIST= option of the OUTPUT statement.

CURRENT Retrieves the last entry that was accessed from the MPE or
KSAM �le or data set.

DIRECT Retrieves the entry stored at a speci�ed record number from an
MPE or KSAM �le or a data set. Before using this modi�er,
store the record number as a 32-bit integer I(10,,4) in the item
referenced by the RECNO= option.

PRIMARY Retrieves the master set entry stored at the primary address of a
synonym chain. The primary address is located through the key
value contained in the argument register.

RCHAIN Retrieves entries from a detail set in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Retrieves entries from a data set in the same manner as the
SERIAL option, except in reverse order. For a KSAM or MPE
�le, this operation is identical to SERIAL.

SERIAL Retrieves entries in serial mode from an MPE or KSAM �le or
a data set that meet any match criteria set up in the match
register. If no match criteria are speci�ed, all entries are selected.
If match criteria are speci�ed, the match items must be included
in a LIST= option of the OUTPUT statement.

�le-name The �le or data set to be accessed by the retrieval operation. If the data set is
not in the home base as de�ned in the SYSTEM statement, the base name must
be speci�ed in parentheses as follows:

set-name(base-name)

option-list : One or more of the following options separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and Transact sets the list
register pointer to the data item item-name. Transact
generates an error at execution time if the item cannot

Transact Verbs 8-145

OUTPUT

be found in the list register. The item-name must be a
parent.

If you do not specify an item-name, as in
ERROR=label ();, the list register is reset to empty. If you
use an *" instead of item-name, as in ERROR=label (*);,
then the list register is not changed. For more
information, see \Automatic Error Handling" in Chapter
7.

LIST=(range-list) The list of items from the list register to be used for the
data retrieval portion of the OUTPUT operation. The
display portion follows the same rules as the DISPLAY
statement. If the LIST= option is omitted, the entire list
register is used for the data retrieval.

Only the items speci�ed in a LIST= option have their
match conditions applied if match conditions are set up
in the match register. (The match register can be used
only with the modi�ers CHAIN, RCHAIN, SERIAL, or
RSERIAL.)

Each retrieved entry is placed in the area of the data
register indicated by LIST= before any PERFORM= is
executed.

For all options of range-list , the data items selected are
the result of scanning the data items in the list register
from top to bottom, where top is the last or most recent
entry. (See Chapter 4 for more information on registers.)

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a range
for a TurboIMAGE data set.

All item names speci�ed must be parent items.

The options for range-list and the data items retrieved by
OUTPUT include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY . In
other words, the list register is scanned
for the occurrence of item-nameY closest
to the top of the list register. From that
entry, the list register is scanned for
item-nameX . All data items between
are selected. An error is returned if
item-nameX is between item-nameY and
the top of the list register.

Duplicate data items can be included or
excluded from the range, depending on
their position on the list register. For

8-146 Transact Verbs

OUTPUT

example, if range-list is A:D and the list
register is as shown,

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are
marker items, and if there are no data
items between the two on the list register,
no database access is performed. (See the
DEFINE(ITEM) verb description.)

(item-nameX) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the list
register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and
MPE �les or for VPLUS forms, data
items must be speci�ed in the order of
their occurrence in the physical record
or form. This order need not match
the order of the data items on the list
register. Do not include child items in
the list unless they are associated with a
VPLUS forms �le. This option incurs
some system overhead.

(@) Speci�es a range of all data
items of �le-name as de�ned in a
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the data

Transact Verbs 8-147

OUTPUT

dictionary. The data items are speci�ed
in the order of their occurrence in the
physical record or form as de�ned in the
data dictionary. This order need not
match the order of the data items in the
list register.

() A null data item list. Accesses the �le or
data set, but does not retrieve any data.

LOCK Locks the speci�ed �le or database. The lock is active the
entire time that the OUTPUT executes. If LOCK is not
speci�ed and a TurboIMAGE data set is being accessed,
no locking is done.

When a KSAM or MPE �le is being accessed, if LOCK is
not speci�ed on the OUTPUT statement but is speci�ed
for the �le in the SYSTEM statement, then the �le is
locked before each entry is retrieved, remains locked while
the entry is processed by any PERFORM= statements,
but is unlocked briey before the next entry is retrieved.

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the OUTPUT verb.

For transaction locking, you can use the LOCK option
on the LOGTRAN verb instead of the LOCK option on
OUTPUT if SET(OPTION) NOLOCK is speci�ed.

See \Database and File Locking" in Chapter 6 for more
information on locking.

NOCOUNT Suppresses the message normally generated to indicate the
number of entries found.

NOHEAD Suppresses default headings for the displayed values.

NOMATCH Ignores any match criteria set up in the match register.
This option is useful if you want to leave the match
register set up but do not want to use it.

NOMSG Suppresses the standard error message produced as a
result of a �le or database error. All other error recovery
actions occur.

PERFORM=label Executes the code following the speci�ed label for every
entry retrieved by the OUTPUT operation. The entries
can be optionally selected by MATCH criteria, in which
case the PERFORM= statements are executed only for
the selected entries.

This option allows operations to be performed on
retrieved entries without having to code loop control logic.
You can nest up to 10 PERFORM= options.

RECNO=item-name
[(subscript)]

With the DIRECT modi�er, you must initialize
item-name to contain the 32-bit integer number (I(10,,4))

8-148 Transact Verbs

OUTPUT

of the record to be retrieved. With other modi�ers,
Transact returns the record number of the retrieved
record in item-name, a 32-bit integer (I(10,,4)).

The item-name can be subscripted if an array item is
being referenced. (See \Array Subscripting" in Chapter
3.)

SINGLE Retrieves and displays only the �rst entry that satis�es
any selection criteria.

SOPT Suppresses the optimization of database calls. This option
is primarily intended to support a database operation
in a performed routine that is called recursively. The
option allows a di�erent path for the same detail set to be
used at each recursive entry, rather than optimizing to
the same path. It also suppresses generation of a call list
of *" after the �rst call is made. Use SOPT if you are
calling TurboIMAGE through the PROC or CALL verbs.
For an example of how SOPT is used, see \Examples" at
the end of the FIND verb description.

SORT=[(item-name1:item-name2)] (item-name3[(ASC)]

[(DES)]

[,item-name4[(ASC)]]...);

[(DES)]

This option sorts each occurrence of item-name3 and,
optionally, item-name4 , and so forth. The list used to
de�ne the sort �le record is either the range of items
speci�ed by item-name1 :item-name2 , or if item-name1
and item-name2 are omitted, the entire list register. You
can use the optional range to prevent unneeded variables
from being written to the sort �le. In general, only send
to the sort �le the items that will be formatted for output.

The OUTPUT statement always sorts after processing any
PERFORM= statements. The processing sequence for the
sort is:

�rst, retrieves each selected record,

then, executes any PERFORM= statements,

then, writes the speci�ed items to the sort �le, and,
after writing all the records to the sort �le,

sorts the sort �le, and

displays the sorted output.

The SYSTEM statement determines the size of the sort
�le.

You can specify either ascending or descending sort order.
The default is ascending order. (See the FIND verb
description for a di�erent processing sequence.)

Transact Verbs 8-149

OUTPUT

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You will need to add code
to check the value of STATUS, as shown in the example
below. When STATUS is speci�ed, the e�ect of an
OUTPUT statement is described by the 32-bit integer
value in the status register:

Status
Register Value

Meaning

0 The OUTPUT operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to database or MPE/KSAM �le system
error documentation corresponding to the value.

STATUS causes the following with OUTPUT:

Normal multiple accesses become single.

The normal rewind done by OUTPUT is suppressed, so
CLOSE should be used before OUTPUT(SERIAL).

The normal �nd of the chain head by OUTPUT
is suppressed, so PATH should be used before
OUTPUT(CHAIN).

See \Using the STATUS Option" in Chapter 7.

Examples

The following two examples of OUTPUT retrieve data according to a value entered by the
user. Then they display the data according to the preceding FORMAT statement.

Example 1 Example 2

LIST NAME: PROMPT(PATH) CUST-NO;

ADDRESS: LIST COMPANY:

CITY: CO-ADDR:

ZIP; CO-STATE:

PROMPT(KEY) CUST-NO; ZIP

FORMAT NAME,COL=5: FORMAT COMPANY, COL=5:

ADDRESS,COL=20: CO-ADDR,COL=40:

CITY,SPACE=5: CO-STATE,LINE,COL=5:

ZIP,SPACE=5; ZIP, COL=40;

OUTPUT MASTER, OUTPUT(CHAIN) DETAIL,

LIST=(NAME:ZIP); LIST=(COMPANY:ZIP);

The following example retrieves the entries that satisfy the match criterion LAST-NAME =
Smith from the data set CUSTOMER, then sorts the entries according to FIRST-NAME and
displays only the sorted names.

LIST LAST-NAME:

8-150 Transact Verbs

OUTPUT

FIRST-NAME;

MOVE (LAST-NAME) = "Smith";
SET(MATCH) LIST(LAST-NAME);

FORMAT LAST-NAME: << Items to be displayed >>

FIRST-NAME, JOIN=2;

OUTPUT(SERIAL) CUSTOMER,

NOCOUNT, NOHEAD,

SORT=(FIRST-NAME); << Sort on first name >>

The resulting display looks like:

Smith Abraham

Smith John

Smith Joseph

Smith Mary

Smith Thomas

In the next example, some of the items selected for sorting and displaying are calculated in a
PERFORM= routine.

LIST INV-NO:

PRICE:

QUANTITY:

AMOUNT:

TOT-AMT;

OUTPUT(SERIAL) INVENTRY,

LIST=(INV-NO:QUANTITY), PERFORM=TOTAL,

SORT=(INV-NO:AMOUNT) (AMOUNT);

TOTAL:

LET (AMOUNT) = (PRICE) * (QUANTITY);

LET (TOT-AMT) = (TOT-AMT) + (AMOUNT);

RETURN;

Transact Verbs 8-151

PATH

Establishes a chained access path to a data set or a KSAM �le.

Syntax

PATH �le-name
�
,option-list

�
;

PATH uses the key and argument registers to establish a KSAM key in a KSAM �le or to
establish a detail set for chained access. If you do not include a STATUS option in the PATH
statement, the status register is set to the number of entries in the chain of a detail set. The
number of entries is not returned for a KSAM �le.

You must use a PATH statement to establish the path for chained access to a KSAM �le or
a data set when the STATUS option is included in a subsequent data access statement. The
PATH verb cannot be used with MPE �les.

PATH performs �le and key validations during program execution. If the attributes do not
match the current database or �le, an error message is displayed.

Statement Parts

�le-name The KSAM �le or data set to be accessed. If the data set is not in the home
base as de�ned in the SYSTEM statement, the base name must be speci�ed
in parentheses as follows:

set-name(base-name)

If you specify a set name and do not include the STATUS option, the status
register is set to the number of entries in the data set chain; the status
register will not contain the number of entries for a KSAM �le.

option-list One or more of the following �elds, separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact
normally takes. Instead, the program branches to the
statement identi�ed by label , and Transact sets the list
register pointer to the data item item-name. Transact
generates an error at execution time if the item cannot
be found in the list register. The item-name must be
a parent.

If you do not specify an item-name, as in
ERROR=label ();, the list register is reset to empty.
If you use an *" instead of item-name, as in
ERROR=label (*);, then the list register is not
changed. For more information, see \Automatic Error
Handling," in Chapter 7.

LIST=(range-list) Used only with KSAM �les to map out a record. The
list option is needed to locate the key in the KSAM
record.

8-152 Transact Verbs

PATH

For all options of range-list , the data items selected
are the result of scanning the data items in the
list register from top to bottom, where top is the
last or most recent entry. (See Chapter 4 for more
information on registers.)

All item names speci�ed must be parent items.

The LIST= option has a limit of 64 individually listed
item names and a limit of 255 items speci�ed by a
range.

The options for range-list and the records upon which
they operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from
item-nameX through item-nameY .
In other words, the list register
is scanned for the occurrence of
item-nameY closest to the top of the
list register. From that entry, the list
register is scanned for item-nameX .
All data items between are selected.
An error is returned if item-nameX is
between item-nameY and the top of
the list register.

Duplicate data items can be included
or excluded from the range, depending
on their position on the list register.
For example, if range-list is A:D and
the list register is as shown,

then data items A, B, C, D, and D are
selected.

(item-nameX:) All data items in the range from the
last entry through the occurrence of
item-nameX closest to the top of the
list register.

Transact Verbs 8-153

PATH

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to
the top through the bottom of the list
register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the
list register. For KSAM �les, data
items must be speci�ed in the order
of their occurrence in the physical
record. This order need not match
the order of the data items on the
list register. This option incurs some
system overhead.

(@) Speci�es a range of all data items
of �le-name as de�ned in a data
dictionary. The range-list is de�ned as
item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data
items of �le-name as de�ned in the
data dictionary. The data items
are speci�ed in the order of their
occurrence in the physical record or
form as de�ned in the data dictionary.
This order need not match the order
of the data items in the list register.

() A null data item list. Operates on the
�le but does not retrieve any data.

NOMSG Suppresses the standard error message produced by
Transact as a result of a �le or database error.

8-154 Transact Verbs

PATH

STATUS Suppresses the action de�ned in Chapter 7 under
\Automatic Error Handling." You will need to add
code to check the value of STATUS. When STATUS is
speci�ed, the e�ect of a PATH statement is described
by the value in a 32-bit integer status register:

Status
Register Value

Meaning

0 The PATH operation was successful.

�1 A KSAM end-of-�le condition occurred.

>0 For a description of the condition that occurred,
refer to the database or KSAM �le system error
documentation that corresponds to the value.

Note that when STATUS is omitted, the status
register contains a �1 if the argument value for a
PATH operation on a detail set is not found in the
associated master set. (See Table 8-2 for other status
register values.)

Examples

The following example uses a PATH statement to locate the head of a KSAM chain, and then
retrieves the �rst item in that chain.

LIST DEL-WORD:

CUST-NO:

LAST-NAME:

FIRST-NAME:

INITIAL;

PROMPT(KEY) CUST-NO ("Enter Customer Number");

<<Set up key/arg registers >>

PATH KFILE, <<Locate head of chain in KFILE >>

LIST=(DEL-WORD:INITIAL); <<Map KFILE record >>

IF STATUS <> 0 THEN

GET(CHAIN) KFILE, <<Retrieve first record >>

STATUS,

LIST=(DEL-WORD:INITIAL);

The next example uses a PATH statement to determine the number of records in a detail set.

PROMPT(PATH) CUST-NO;

PATH CUST-DETAIL;
LET (NUM-RECS) = STATUS;

DISPLAY NUM-RECS, NOHEAD:

"Records in this Path";

Transact Verbs 8-155

PATH

PATH is required before you use the STATUS option in a database access statement because
the STATUS option suppresses the usual determination of a chain head. In the following
example, the PATH statement is needed prior to the FIND(CHAIN) statement that includes a
STATUS option:

SET(KEY) LIST(CUST-NO);

PATH CUST-DETAIL;

GET-NEXT:

FIND(CHAIN) CUST-DETAIL,

LIST=(CUST-NO:ZIP),

STATUS,

PERFORM=PROCESS-ENTRY;

IF STATUS <> 0 THEN

GO TO ERROR-ROUTINE

ELSE

GO TO GET-NEXT;

Note that the STATUS option also suppresses the normal multiple retrieval performed by
FIND; you must speci�cally code the loop logic.

8-156 Transact Verbs

PERFORM

PERFORM

Transfers control to a labeled statement.

Syntax

PERFORM label;

PERFORM transfers execution to the statement identi�ed by label . Execution continues until
one of the following is encountered:

RETURN Returns control to the statement immediately following the corresponding
PERFORM statement.

END Speci�es the end of the current processing level and returns control to the
previous processing level, or to command level if no previous processing level is
active within the perform block.

another
label

Speci�es the end of the current command sequence. The compiler generates an
END statement and the e�ect is the same as END.

PERFORM statements can be nested up to a maximum of 75 levels. Note that this di�ers
from PERFORM= options in data management verbs, which allow a maximum of 10 levels
of nesting. Although GO TO statements can branch into and out of PERFORM statement
loops, this is not generally good coding practice.

Statement Parts

label The label that identi�es the sequence of statements called by PERFORM.

Examples

When the response to INPUT causes a transfer to the label ADD-IT, the statements between
ADD-IT and RETURN execute. Control then returns to the PROMPT statement that
immediately follows the IF statement.

IF INPUT = "YES", "Y" THEN

PERFORM ADD-IT

ELSE GO TO GET-ACCT;

PROMPT INV-NUM("Invoice Number"), RIGHT;...
END;

ADD-IT:

PUT CUST-FILE, LIST=(NAME:ZIP);

LET (NUM) = (NUM) + 1;

DISPLAY NAME, COL=5, NOHEAD:

"HAS BEEN ADDED TO CUSTOMER FILE.", JOIN;

RETURN;

Transact Verbs 8-157

PROC

Calls a procedure that has been placed into a segmented library �le (SL) for Transact/V or
compatibility mode. PROC also calls procedures from an executable library (XL) for native
mode programs on Transact/iX.

Syntax

PROC procedure-name
�
(parameter-list)

��
,option-list

�
;

Transact/V

PROC calls an MPE system intrinsic or other compiled procedure that is resident in an
SL �le. SL �les are searched and procedures and intrinsics are dynamically loaded in the
following order: logon group SL, logon account SL, system SL.

The PROC statement does not directly support intrinsics with an optional number of
parameters (Option Variable Intrinsics); you may call such intrinsics by using a bit map to
specify the parameters you want passed. Bit maps are always required for any PROC call to
an option variable intrinsic or user de�ned procedure. They are passed by value as the last
parameter in a parameter list. A bit map is formed by setting a string of bits to one or zero,
depending on whether a parameter is passed or not passed, respectively. The bit string is then
right-justi�ed in a 16- or 32-bit word (depending on the number of possible parameters) and
converted into an integer value. This value is passed to the option variable procedure as the
last parameter. See the SPL Reference Manual for more information on Option Variable bit
maps.

All system intrinsics called can be declared in a DEFINE(INTRINSIC) statement. When this
is done, the intrinsics are resolved only from the system SL.

Transact/iX

The Transact PROC verb is the same, in e�ect, under MPE V and MPE/iX. It is used to
call procedures written in other languages. The primary point to be aware of is that both
Transact subprograms and routines written in other languages must reside in an executable
library (XL) or be linked into your program if they are to be called by a Transact program
under MPE/iX. Switch routines must be written for any user de�ned subroutines running in
compatibility mode, including all SPL routines.

Two features, the PROCALIGNED 16/32/64 compiler options and the %n alignment
options, allow you to tune applications with respect to the overhead needed for calling
external procedures. The PROCALIGNED 16/32/64 compiler options are discussed in detail
under \Transact/iX Compiler Options" in Chapter 9. The parameter alignment options are
described later in this section.

A third feature, the PROCINTRINSIC compiler option, is designed to ease the migration of
programs that call system intrinsics. Compiler options are discussed in Chapter 9.

8-158 Transact Verbs

PROC

Another item to note is that no conversion between IEEE real and HP real is attempted.
When passing parameters or data that access real numbers, the called procedure or intrinsic
must be compiled with the same real number format as the main program. (See \Floating
Point Formats" in Appendix B.)

Statement Parts

procedure-name The name under which the procedure is listed in SL or XL.

parameter-list The items in the parameter-list specify one or more variables that are
passed between the Transact program and the external procedure. The
list can contain any number of variables, separated by commas. The order
in which you place the variables is determined by the order in which the
called procedure expects them. The only exception is that a function
return variable can be placed anywhere in the list; a function return
variable is indicated by a preceding \&".

The following special characters can precede any parameter:

% Passes the given parameter by byte address (by reference)

Passes the given parameter by value rather than by reference

& Copies the function value returned by the intrinsic to the �eld in
the data register associated with the given item, or to the status
register. Only one such designated parameter can be included in the
parameter-list , and it can appear anywhere in the list.

The default (no special character) passes a parameter by word address.

You can indicate to the called procedure the existence of a null parameter
by placing consecutive commas on the list. Transact passes a 16-bit value
of zero for this null parameter. Use two commas if the parameter has a
32-bit value, and is passed by value. Use one comma if the parameter is
passed by reference.

All addresses speci�ed by the items in parameter-list are 16-bit addresses.
If you want to specify a byte address, precede the item-name with
\%". For example, ITEM(NUM) speci�es a 16-bit address, whereas
%ITEM(NUM) speci�es a byte address. PROC does not automatically
align data parameters on 16-bit boundaries.

Note Transact does not verify that parameters are correctly set up. You must verify
this before attempting to call a procedure.

Transact Verbs 8-159

PROC

The parameter-list may consist of any of the following:

(item-name
[(subscript)])

Address of a logical array containing the value of
an item in the data register. Use this parameter to
pass any values de�ned in your program. It is up
to you to make sure that the item is on a 16-bit
boundary in the data register if you want to pass a
16-bit address. The beginning of the data register
is on a 16-bit boundary; if you add items with an
odd number of bytes, you should add a dummy �ll
character to retain 16-bit boundaries.

You can include any of the following key words in a parameter-list . If the
key word has an argument, it must immediately follow the key word with
no intervening blanks. Transact supplies a value (usually an address)
whenever it �nds one of these key words in a parameter list.

ARG Address of a logical array containing the argument
value currently associated with the key for data set
or �le operations.

ARGLNG Address of a 16-bit integer (I(5,,2)) containing the
byte length of the argument value.

BASE[(base-name)] Address of a logical array containing the name of
the given database preceded by the two-character
base-id supplied by the database, and followed by
a blank character. If no base-name is speci�ed,
then the home base is assumed. Note, the home
base cannot be speci�ed.

BASELNG
[(base-name)]

Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given base-name, including the
terminating blank.

BYTE(item-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the value of the given item.

COUNT(item-name) Address of a 16-bit integer (I(5,,2)) containing
any subitem occurrence count for the given item.
A value of 1 means that the given item is not a
compound type containing subitems.

DECIMAL
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
decimal place count for the given item.

FILEID(�le-name) Address of a 16-bit integer (I(5,,2)) containing
the identi�er assigned to �le-name by MPE when
the �le was opened by this process. The following
special �les can also be used in conjunction with
the FILEID parameter:

TRANIN Transact input �le

TRANOUT Transact output �le

TRANLIST Transact printer output �le

8-160 Transact Verbs

PROC

INPUT Address of the logical array containing the value
that was last input in response to an INPUT
statement prompt.

INPUTLNG Address of a 16-bit integer (I(5,,2)) containing the
byte length of the input value.

ITEM(item-name) Address of a logical array containing the name of
the given item.

ITEMLNG
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given item name.

KEY Address of a logical array containing the name of
the data item currently used as a key for data set
or �le operations. The data item name must be
terminated by a semicolon (;).

KEYLNG Address of a 16-bit integer (I(5,,2)) containing
the byte length of the data item name in the key,
including the terminating semicolon.

POSITION
(item-name)

Address of a 16-bit integer (I(5,,2)) containing the
position (the byte o�set) of a child item within
its parent item. This parameter is set to �1 to
indicate that there is no parent item.

SET(set-name) Address of a logical array containing the name of
the given data set followed by a blank.

SETLNG(set-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the given data set name, including
the terminating blank.

SIZE(item-name) Address of a 16-bit integer (I(5,,2)) containing the
byte length of the display or entry format for the
given item.

STATUS Address of the lower order 16-bits of the 32-bit
status register set by Transact. If the STATUS
parameter is NOT used, then the 32-bit status
register is set to one of the condition codes
generated by the called procedure (CCL, CCE, or
CCG).

Condition codes are de�ned as follows:

CCL = �1
CCE = 0
CCG = +1

Condition codes in the status register can be
tested with a subsequent IF statement. For
example:

IF STATUS < 0 THEN GO TO CCL-PROCESS;

Transact Verbs 8-161

PROC

where CCL-PROCESS will handle a CCL
condition.

Upon exiting from the PROC, the entire 32 bits of
the status register is set to the value in the lower
order 16 bits of the status register.

STATUS(DB) Address of the condition word block returned by
the database. (The discussion of MOVE explains
how to use this value.)

STATUS(IN) Address of a 16-bit integer (I(5,,2)) containing
the STATUS value following the most recent user
input statement (PROMPT, DATA, or INPUT).
(See the appropriate verb for the interpretation of
the STATUS value.)

TYPE(item-name) Address of a 16-bit integer (I(5,,2)) containing a
code that represents the data type of item-name.
The code represents the data type by its position
in the sequence: X, U, 9, Z, P, I, J, K, R, E, @;
thus, the code corresponds to a data type as
follows:

0=X, 1=U, 2=9, 3=Z, 4=P, 5=I, 6=J, 7=K, 8=R,
9=E, and 10=@ (the marker item)

VCOM(form-�le) Address of the logical array containing the VPLUS
communication area being used for the referenced
form-�le. (See the discussion of the VPLS option
under SET (OPTION) in this chapter.)

option-list One or more of the following options can follow the parameter list, separated
by commas:

UNLOAD (This option is for Transact/V only.) Unloads the procedure
being called following execution; that is, removes it from
the Loader Segment Table. By default, Transact leaves an
entry in the Loader Segment Table for each called procedure
after it executes. Only use this option if you do not need the
procedure again. Otherwise, Transact incurs extra overhead
loading the procedure the next time it is called.

For Transact/iX, all procedures are bound at link time or as a
part of the RUN command. If you use the UNLOAD option
you will get the compiled message:

INFO: THE `UNLOAD' OPTION FOR THE PROC VERB HAS NO MEANING

ON AN MPE/IX SYSTEM.

NOTRAP Ignores any arithmetic trap detected in the operation of the
procedure. By default, Transact issues an error message
and terminates the called procedure when it encounters an
arithmetic error.

8-162 Transact Verbs

PROC

NOLOAD Loads the called program the �rst time it is called rather than
when the program is initiated. By default, Transact loads all
external procedures when it initiates the calling program.

Used in combination with UNLOAD for Transact/V only,
this option can save Loader Segment Table space. NOLOAD
is ignored if the called procedure is an MPE system intrinsic
declared in a DEFINE(INTRINSIC) statement; if you want
such a procedure to be loaded dynamically, do not include it
in a DEFINE(INTRINSIC) statement.

Note The following option should not be used with Transact/iX.

language Used to specify the language in which the procedure is
written: Pascal, COBOL, FORTRAN, BASIC, or SPL. This
option is needed to call COBOL procedures to avoid an
arithmetic trap when the stack exceeds 16K 16-bit words.

Parameters Passed by Byte Address

An option is available on the PROC verb to specify alignment on individual reference
parameters passed by byte address. This option takes the form %n, where n can be 8, 16, 32,
or 64, as follows:

%8 Align parameter on an 8-bit boundary (this is the default)

%16 Align parameter on a 16-bit boundary

%32 Align parameter on a 32-bit boundary

%64 Align parameter on a 64-bit boundary

The alignment option must precede the parameter a�ected. For example,

PROC GETNAME (%32(NAME));

This option takes precedence over the PROCALIGNED 16/32/64 options for the individual
parameter. It is only active for the Transact/iX compiler. Under the Transact/V processor,
all parameters passed on a greater than 8-bit boundary are treated as 16-bit address
parameters. When PROCINTRINSIC is speci�ed, but the alignment check is less than that
required by the intrinsic de�nition in SYSINTR.PUB.SYS, an error occurs at run time.

Parameters Passed by Value or by Reference

Transact/V does not check passed parameters to verify that they are of the same type as
the parameters expected by the called procedure. The Transact/iX compiler checks calls
to system intrinsics, verifying that reference parameters are passed by reference and value
parameters are passed by value. An informational message is reported if a parameter is not
passed in the expected way.

Transact Verbs 8-163

PROC

For example, the ASCII intrinsic expects the �rst parameter to be passed by value. If,
instead, it is passed by reference using the PROC verb, the Transact/iX compiler issues the
following informational messages:

*INFO: PROC PARAMETER 1 WAS PASSED BY REFERENCE WHEN VALUE EXPECTED

*INFO: ERRORS IN PROC PARAMETERS TO 'ASCII' WILL CAUSE A RUN TIME ERROR

At run time, the following error occurs when the PROC ASCII statement is encountered:

*ERROR: PARAMETER SPECIFICATION ERRORS PREVENTED PROC CALL

Transact/V programs that take advantage of no type checking may require that you write
a procedure to provide the same functionality as the intrinsic being accessed. For example,
since no parameter type checking is done on calls to user de�ned procedures, you can code a
procedure which has the same parameters as the intrinsic and which merely calls the intrinsic.
In Transact/iX, you would then use the PROC verb to call this procedure rather than the
intrinsic, passing the parameters in the same way as when the intrinsic was called directly.

Accessing COBOL Subroutines

When the Transact/iX compiler generates the procedure name in the PROC statement,
hyphens are left standing|they are neither converted to underscores nor removed. On the
other hand, COBOL II/XL converts hyphens to underscores. Therefore, unless precautions
are taken, COBOL II subroutines that are recognized by Transact/V in compatibility mode
will not be recognized when the subroutine is recompiled using COBOL II/XL and linked
or loaded with a Transact/iX program. To make the names consistent, you can specify the
COBOL II/XL compiler option that removes hyphens from COBOL subroutine names or you
can use underscores instead of hyphens when naming any COBOL subroutines that will be
used under Transact.

Option Variable Procedures

Since option variable procedures do not exist under MPE/iX, the Transact/iX
compiler only supports calls to option variable intrinsics if the intrinsic is declared in a
DEFINE(INTRINSIC) statement or the PROCINTRINSIC option is speci�ed in the compile.
The bit map, included as part of the parameter list, is ignored and the remaining parameters
are checked in accordance with their speci�cation in SYSINTR.PUB.SYS. No implicit type
conversions are performed.

User-de�ned option variable procedures must either be accessed via a switch to a
compatibility mode routine or be converted to �xed parameter procedures and recompiled
with a native mode compiler. The former option is the only option available to users of SPL
procedures who do not want to recode these routines in a native MPE/iX language.

Null Parameters

Under Transact/iX, all null parameters for option-extensible intrinsics must be designated
by single commas. The Transact/V convention of using two or four consecutive commas to
denote a null 32-bit or 64-bit value parameter is interpreted by Transact/iX as denoting two
or four null parameters.

One method of getting around this incompatibility is to modify the source so that all 32-bit
and 64-bit value parameters of option-extensible intrinsics are passed. Another method
is to modify the Transact code to use only single commas in place of 32-bit or 64-bit null

8-164 Transact Verbs

PROC

value parameters. However, this method makes the modi�ed source code incompatible with
Transact/V.

Null parameters passed to user de�ned procedures under Transact/V cause 16-bit zeros to be
passed under Transact/iX.

Locating Procedures

Under Transact/V, there are two library search methods for resolving procedures accessed via
the PROC verb. If the procedure name has not been included in a DEFINE(INTRINSIC)
statement, the SL's are searched as follows: the logon group, the PUB group in the logon
account, and �nally, the PUB.SYS group. If the procedure name has been included in a
DEFINE(INTRINSIC) statement, SL.PUB.SYS will be searched. Under Transact/iX, the
libraries and the order in which they are searched must be speci�ed at either link or run time.

The libraries and the order in which they are searched by processes CREATED and
ACTIVATED by Transact/iX must be speci�ed in the :RUN command used to run the
Transact/iX program. The LIBSEARCH bits on CREATE and ACTIVATE should be set to
\NO" to force the create process to use the LIBLIST speci�ed on the :RUN command.

Double Buffering Parameters

By default, Transact/iX generates code to double bu�er all reference parameters (parameters
passed by address) if they are not preceded by "%", "#", or "&". The double bu�ered
alignment is determined from the type and size of the data item passed via the PROC call.
However, since double bu�ering is ine�cient, the compiler options PROCALIGNED 16/32/64
should be used whenever possible to bypass double bu�ering.

Examples

The format of the intrinsic ASCII in the MPE Intrinsics Manual is:

I LV IV BA

numchar:=ASCII(word,base,string);

The PROC verb to call the ASCII intrinsic has the following format:

PROC ASCII (#(WORD),#(BASE),%(STRING),&(NUMCHAR));

WORD, BASE, and STRING are program variables that correspond to the parameters of
the intrinsic and NUMCHAR is a functional return variable to which the procedure returns
the number of characters translated by the ASCII intrinsic. Note that NUMCHAR is at the
end of the PROC parameter list rather than in its position in the intrinsic de�nition. WORD
and BASE are preceded by a # symbol because they are passed by value; STRING is a byte
address as indicated by the preceding \%". For additional examples of the PROC verb, see
\Migration Examples" in Appendix B.

Transact Verbs 8-165

PROC

The example below calls the VPLUS procedure VPRINTFORM to print a form on the line
printer.

SYSTEM TEST,
VPLS=CUSTFORM; << Form definition in DICTIONARY. >>

DEFINE(ITEM) PRINTCNTL I(2):

PAGECNTL I(2):...
DEFINE(INTRINSIC) VPRINTFORM;...
PRINT:

LIST PRINTCNTL:

PAGECNTL;

LET (PRINTCNTL) = 1; << Underline fields >>

LET (PAGECNTL) = 0; << CR/LF off >>

PROC VPRINTFORM (VCOM(CUSTFORM),

(PRINTCNTL),

(PAGECNTL));

Note that Transact supplies the comarea location for the forms �le CUSTFORM
automatically through the parameter VCOM(�le name).

The MAP parameter sets up a bit map for an intrinsic that is type OPTION VARIABLE.

The following example calls the intrinsics CREATE and ACTIVATE. (See the MPE Intrinsics
Reference Manual for the syntax of these intrinsics.) Since both intrinsics are Option
Variable, a bit map (MAP) is included at the end to indicate which parameters to pass.
Because this map and the CFLAG parameter are passed by value, they are preceded by a #

symbol.

DEFINE(ITEM) ROUTINE X(20): <<Process name >>

CPIN I(4): <<PIN of process >>

CFLAG I(4),INIT=(BINARY(1000001)):

<<Flags >>

MAP I(4),INIT=(BINARY(1010100000);

<<Bit map for optional parameters >>

$$A:

LIST ROUTINE,INIT:

CPIN,INIT:

CFLAG:

MAP;

DATA ROUTINE("WHICH PROCESS?");

PROC CREATE (%(ROUTINE),,(CPIN),,#(CFLAG),,,,,,#(MAP));

LET (MAP) = 3;

LET (CFLAG) = 3;

PROC ACTIVATE (#(CPIN),#(CFLAG),#(MAP));

8-166 Transact Verbs

PROC

END;

The following example shows the use of the FWRITE intrinsic in conjunction with the
Transact terminal output �le TRANOUT:

SYSTEM DEMO01;

DEFINE(INTRINSIC) FWRITE;

DEFINE(ITEM) MSG X(30);

DEFINE(ITEM) COUNT I(4);

DEFINE(ITEM) CONTROL I(4);

LIST MSG : COUNT : CONTROL;

MOVE (MSG) = "HELLO THERE WORLD!!";

LET (COUNT) = -19;

LET (CONTROL) = 0;

PROC FWRITE (#FILEID(TRANOUT), (MSG), #(COUNT), #(CONTROL));

The next example calls the database intrinsic DBCLOSE using the BASE, SET, and STATUS
key-word parameters.

SYSTEM TEST, BASE=CUSTOMER ("MANAGER");

DEFINE(ITEM) MODE. I(2);

DEFINE(INTRINSIC) DBCLOSE;...
LET (MODE) = 5;

PROC DBCLOSE(BASE,

SET(CUST-MAST),

(MODE),

STATUS(DB));

The next example shows a call to DSG/3000 intrinsics. The data register size is increased
because of DSG requirements:

SYSTEM DSG, DATA=4000,10;

DEFINE(ITEM) GRAF 1415 I+(2,,2):

GRAFSIZE I(4,,2):

LANG I(1,,2);

LIST GRAF:GRAFSIZE:LANG;

LET (GRAFSIZE) = 1415;

LET (LANG) = 0;

PROC GINITGRAF((GRAF),(GRAFSIZE),(LANG));

DISPLAY "Return from GINITGRAF";

Transact Verbs 8-167

PROC

The next example calls the BRW intrinsic BRWEXEC to execute a report on line.

SYSTEM TEST;

DEFINE(ITEM) BRW-COMAREA X(300):
RETURN-STATUS I(4) = BRW-COMAREA(1):

ERROR-PARM I(4) = BRW-COMAREA(3);

DEFINE(ITEM) BRW-PARAMETERS X(176):

MAX-NUM-PARMS I(4) = BRW-PARAMETERS(1):

ACTUAL-NUM-PARMS I(4) = BRW-PARAMETERS(3):

PARM-NAME-1 X(20) = BRW-PARAMETERS(5):

PARM-TYPE-1 I(4) = BRW-PARAMETERS(25):

PARMRESULT-TYPE1 I(4) = BRW-PARAMETERS(27):

RESULT-LENGTH-1 I(4) = BRW-PARAMETERS(29):

PARM-MODE-1 I(4) = BRW-PARAMETERS(31):

UPSHIFT-1 I(4) = BRW-PARAMETERS(33):

PARM-VALUE-1 X(55) = BRW-PARAMETERS(35):

RESERVE-1 X(1) = BRW-PARAMETERS(90):

PARM-NAME-2 X(20) = BRW-PARAMETERS(91):

PARM-TYPE-2 I(4) = BRW-PARAMETERS(111):

PARMRESULT-TYPE2 I(4) = BRW-PARAMETERS(113):

RESULT-LENGTH-2 I(4) = BRW-PARAMETERS(115):

PARM-MODE-2 I(4) = BRW-PARAMETERS(117):

UPSHIFT-2 I(4) = BRW-PARAMETERS(119):

PARM-VALUE-2 X(55) = BRW-PARAMETERS(121):

RESERVE-2 X(1) = BRW-PARAMETERS(176);

LIST BRW-COMAREA:

BRW-PARAMETERS;

LET (MAX-NUM-PARMS) = 2;

LET (ACTUAL-NUM-PARMS) = 1;
MOVE (PARM-NAME-1) = "$REPORT";

.

.

.

PROC BRWEXEC((BRW-COMAREA),(BRW-PARAMETERS));

8-168 Transact Verbs

PROC

The next example shows a call to the compiler library routine DABS' to determine the
absolute value of a number.

SYSTEM ABSTST;

DEFINE(ITEM) REALVALUE R(8,2,8), INIT=-128.8:

RESULT R(8,2,8), INIT=;

LIST REALVALUE: RESULT;

DISPLAY REALVALUE: RESULT;

PROC DABS'(#(REALVALUE),&(RESULT));

DISPLAY REALVALUE: RESULT;

END;

There are two things to check when using the compiler library:

Make sure you use the PROCINTRINSIC compiler option for Transact/iX and the
DEFINE(INTRINSIC) statement for Transact/V.

Verify that all parameter types match the function parameters and function return.

In addition, be aware that parameters passed by value are preceded by a \#" (pound sign).
The last parameter is the function return and it is preceded by a \&" (ampersand).

The last example is a Transact program that calls BRW.

Prior to running the program, we used BRW to design a report and compile the report into a
BRW execution �le named BRWEXECR. The Transact program uses VPLUS to present the
user with a main menu of options. If the user enters option 1, the BRW report is executed.
The PROC calls result in the BRW Report Selection menu being displayed with the name of
the report requested already �lled in. The user then requests the report the same as when
running BRW directly.

Transact Verbs 8-169

PROC

SYSTEM BRW,VPLS=MYFF(MAINMENU(SELECTION));

DEFINE(ITEM) BRW-COMAREA X(106):
BRW-STATUS I(4) = BRW-COMAREA:

BRW-ERROR I(4) = BRW-COMAREA(3):

BRW-COM-LENGTH I(4) = BRW-COMAREA(5):

BRW-EXEC-FILE. X(36)= BRW-COMAREA(7):

BRW-DEFAULTS I(4), INIT=0:

SELECTION I+(1);

LIST BRW-COMAREA:

BRW-DEFAULTS:

SELECTION;

LET (BRW-COM-LENGTH) = 50;

GET(FORM) MAINMENU;

IF (SELECTION) = 1 THEN

DO

PROC BRWINITREQUEST ((BRW-COMAREA));

MOVE (BRW-EXEC-FILE) = "BRWEXECR";

PROC BRWSTARTREQUEST ((BRW-COMAREA),

(BRW-DEFAULTS));

PROC BRWSTOPREQUEST ((BRW-COMAREA));

DOEND;

EXIT;

8-170 Transact Verbs

PROMPT

PROMPT

Accepts input from the user terminal and places the supplied values into the list, data,
argument, match, and/or update registers.

Syntax

PROMPT[(modi�er)] item-name[("prompt-string")][,option-list]

[:item-name[("prompt-string")][,option-list]...;

PROMPT prompts the user for values and, depending on the syntax option chosen, places the
value in one or more registers. The register a�ected depends on the verb modi�er. You can
choose from the following:

none Adds item name to list register and input value to data register. (See Syntax
Option 1.)

KEY Adds item name to key register and adds input value to argument register. (See
Syntax Option 2.)

MATCH Adds item name to list and match registers and adds input value to data register.
Also sets up input value in match register as a match criterion. (See Syntax
Option 3.)

PATH Adds item name to list and key registers, and adds input value to data and
argument registers. (See Syntax Option 4.)

SET Adds item name to list register and adds input value to data register, unless
response is a carriage return. (See Syntax Option 5.)

UPDATE Adds item name to list and update registers and input value to data register; also
adds input value to update register for subsequent replace operation. (See Syntax
Option 6.)

PROMPT is used to set up and perform a data entry operation, usually for a subsequent
data set or �le operation. At execution time it prompts the user with a prompt string, the
entry text associated with the item, or with the item name to request the value of the data
item. An entry text can be associated with an item in a dictionary or in the DEFINE(ITEM)
de�nition of the item.

Transact validates the input value as to type, length, or any other characteristics speci�ed
in a dictionary or in a DEFINE(ITEM) statement before it modi�es the speci�ed register.
If Transact detects an error, it displays an appropriate error message and reissues the
prompt automatically. With native language support, Transact validates numeric data using
the thousands and decimal indicators of the language in e�ect. For more information, see
Appendix E, \Native Language Support."

Transact Verbs 8-171

PROMPT

Statement Parts

modi�er Changes or enhances the PROMPT verb. Usually determines the register in
which to place the item name and the register to which the input value should
be added or the register whose value should be changed.

item-name The name of the data item to be placed in the list register and/or another
register, and whose value should be added to or changed in the data register
and/or another register. The item name cannot be the name of a child item.

prompt-string The string that prompts the terminal user for the input value. If omitted, the
prompt is the entry text associated with the item. If there is no entry text,
the prompt is the item name.

option-list A �eld specifying how the data should be formatted and/or other checks to be
performed on the value.

Choose one or more of the following options (separated by commas) for any
syntax option. (See Syntax Option 3, PROMPT(MATCH) for additional
options.)

BLANKS Does not suppress leading blanks supplied in the input
value. (Leading and trailing blanks are normally stripped.)

CHECK=
set-name

Checks the input value against the master set set-name
to ensure that a corresponding search item value already
exists. If the value is not in the data set at execution time,
Transact displays an appropriate error message and reissues
the prompt.

Note The CHECK= or CHECKNOT= options cannot be used to check
against MPE or. KSAM �les, nor can either option be included in a
PROMPT(MATCH) statement. Also, if the CHECK= or CHECKNOT=
option is used with STATUS, then \]", \]]", or a carriage return suppresses the
data set operation and control passes to the next statement.

CHECKNOT=
set-name

Checks input value against the master set set-name to
ensure that a corresponding search item value does not
already exist. If the value is in the data set at execution
time, Transact displays an appropriate error message and
reissues the prompt.

NOECHO Does not echo the input value to the terminal. If omitted,
the input value is displayed on the terminal.

RIGHT Right-justi�es the input value within the data register �eld.
By default, the input value is left-justi�ed.

STATUS Suppresses normal processing of \]" and \]]", which cause
an escape to a higher processing or command level.

8-172 Transact Verbs

PROMPT

Status
Register Value

Meaning

�1 User entered a \]".

�2 User entered a \]]".

�3 User entered one or more blanks and no
non-blank characters.

�4 If timeout is enabled with a FILE(CONTROL)
statement, a timeout has occurred.

> 0 Number of characters (includes leading blanks if
BLANKS option is speci�ed); no trailing blanks
are counted.

The STATUS option allows you to control subsequent
processing by testing the contents of the register with an IF
statement.

Syntax Options

(1) PROMPT item-name [(\prompt-string")][,option-list];

PROMPT with no modi�er adds the item-name to the list register and the input value to the
data register.

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

Note Only compile time alignment is supported.

(2) PROMPT(KEY) item-name[(\prompt-string")][,option-list];

PROMPT(KEY) places the item-name in the key register and the input value in the
argument register. The data item and its value are used as a retrieval key for a subsequent
data set or �le operation.

(3) PROMPT(MATCH)item-name[(\prompt-string")][,option-list];

PROMPT(MATCH) adds the item-name to the list and match registers. In addition, it adds
the input value to the data register and also sets up this value as a selection criterion in the
match register for a subsequent database or �le operation.

The user response to PROMPT(MATCH) can be any of the valid selection criteria described
under \Responding to a MATCH Prompt" in Chapter 5. If the response is a carriage return,
then all values for the data item are selected. If the response contains several values separated
by connectors, only the �rst value is placed in the data register space for the item. If a
particular value is input, then all entries that match the associated data item are selected.

Transact Verbs 8-173

PROMPT

If the item name is an unsubscripted array, only the value of the �rst element of the array
will be set in the data register. This value from the data register will be set up as a match
criterion in the match register.

The MATCH modi�er allows one or more of the option-list items listed under
\Statement Parts", except for CHECK= and CHECK NOT=, which are not allowed in a
PROMPT(MATCH) statement. Additionally, you can select one of the following options to
specify that a match selection is to be performed on a basis other than equality.

If you specify one of the options listed below, the entire user input is treated as a single value.
The match speci�cation characters described in Chapter 5 are not allowed as user input with
the options listed below.

option-list : Any of the following options can be selected:

ALIGN Forces the item to be aligned on a 16-bit boundary in Transact/V
and on a 32-bit boundary in Transact/iX

NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the

use of trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use

of trailing \^^" on input
TRAILER Matched item must end with the input string; equivalent to the

use of a leading \^" on input

For example, for the following command and response sequence, the database or �le entries
selected will contain EMPL values starting with \LIT", AGE values less than 35, and LOS
values greater than or equal to 5:

PROMPT(MATCH) EMPL:

AGE, LT:

LOS, GE;

EMPL> LIT^

AGE> 35

LOS> 5

(4) PROMPT(PATH) item-name[(\prompt-string")][,option-list];

PROMPT(PATH) adds the item-name to the list register and the key register. In addition,
the input value is added to the data register and the argument register. Use this modi�er to
set up a data item for a data set or �le operation and its value for use as a retrieval key.

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

8-174 Transact Verbs

PROMPT

(5) PROMPT(SET) item-name [(\prompt-string")][,option-list];

PROMPT(SET) adds the item-name to the list register and the input value to the data
register only if the input value is not a carriage return. If the user responds to the prompt
with a carriage return, no additions are made to the list and data registers. The modi�er is
primarily used to set up a data item list for a data set or �le operation using the UPDATE
verb, where the user controls that list by means of his or her responses.

For example, the following PROMPT(SET) statement and the responses to its prompts
produce a list register content of \PHONE" and \ROOM" and a data register content of the
associated supplied values. Note that if you use the CHECK option and the item is not found
in the data set, you must clear this value from the match register with RESET(MATCH)
before you reissue the prompt.

PROMPT(SET) EMPL:

DEPT:

PHONE:

ROOM:

LOCATION;

EMPL>

DEPT>
PHONE> 278

ROOM> 312

LOCATION>

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

(6) PROMPT(UPDATE) item-name[(\prompt-string")][,option-list] [:item-name . . .] . . . ;

PROMPT(UPDATE) adds the item-name to the list and update registers, and adds the
input value to the data register. In addition, it sets up the input value in the update register
for a subsequent data set or �le operation using REPLACE. When a subsequent REPLACE
statement is executed, it replaces any value for the speci�ed data item with the value added to
the update register.

Specifying the ALIGN option forces the item to be aligned on a 16-bit boundary in
Transact/V and on a 32-bit boundary in Transact/iX.

Examples

This example causes a sequence of prompts to be displayed:

$$ADD: <<Add a new record >>

$CUSTOMER:

PROMPT CUST-NAME("CUSTOMER'S NAME"):

CUST-ADDR:

CUST-CITY:

CUST-PHONE;

Transact Verbs 8-175

PROMPT

This example is a result of the above code.

CUSTOMER'S NAME>

CUST-ADDR>
CUST-CITY>

CUST-PHONE>

The following example adds a new customer number to the data set and then adds
transactions for that customer. It checks to make sure that the customer number entered by
the user is not already in the data set and that the transactions apply to a customer number
that is in the data set.

$$ADD: <<Add new customer >>

$CUSTOMER:

PROMPT(PATH) CUST-NUMBER, CHECKNOTCUST-MASTER;...
PUT CUST-MASTER;

$TRANS:

PROMPT(PATH) CUST-NUMBER, CHECKCUST-MASTER;

PROMPT INV-NUMBER: AMOUNT;...
PUT CUST-DETAIL;

The last example shows how the ALIGN option word-aligns select-code in the list register.

PROMPT(MATCH)select-code,ALIGN;

8-176 Transact Verbs

PUT

PUT

Moves data from the data register to a �le, data set, or a VPLUS form.

Syntax

PUT
�
(modi�er)

�
destination

�
,option-list

�
;

PUT moves an entry from the list and data registers into a �le or a data set; or it displays
data in a VPLUS form.

Statement Parts

modi�er To specify the type of access from the data set or �le, choose one of the following
modi�ers.

none Adds an entry, based on the list and data registers, into a �le or a
data set.

FORM Displays a VPLUS form on any VPLUS compatible terminal, and
moves data to the form from the data register. If this modi�er is
not used, the destination must be a �le or data set.

destination The �le, data set, or form to be accessed in the write operation.

If the destination is a data set that is not in the home base as de�ned in the
SYSTEM statement, the base name must be speci�ed in parentheses as follows:

set-name(base-name)

In a PUT(FORM) statement, the destination must identify a form in a forms �le
that was named in the SYSTEM statement. For PUT(FORM) only, destination
can be speci�ed as any of the following:

form-name Name of the form to be displayed by PUT(FORM).

(item-name
[(subscript)])

Name of an item that contains the name of the form to be
displayed by PUT(FORM). The item-name can be subscripted if
an array item is being referenced. (See \Array Subscripting" in
Chapter 3.)

* Displays the form identi�ed by the \current" form name. That
is the form name most recently speci�ed in a statement that
references VPLUS forms. Note that this option is not the same
as the CURRENT option (described under option-list) that
indicates the currently displayed form.

& Displays the form identi�ed as the \next" form name. That is
the form name de�ned as \NEXT FORM" in the FORMSPEC
de�nition of the current form.

Transact Verbs 8-177

PUT

option-list The LIST= option and the STATUS option are always available. The other
options described below, may be used only without or only with the FORM
modi�er.

The list of items from the list register to be used for the PUT operation. For data
sets, no child items can be speci�ed in the range list. For PUT(FORM) only,
items in the range list can be child items.

If the LIST= option is omitted with any modi�er except FORM, all the
items named in the list register are used. If the LIST option is omitted for
PUT(FORM), the list of items in the list register, and either in the SYSTEM
statement or the data dictionary for the form are used.

The LIST= option should not be used when specifying an asterisk (*) as the
source.

LIST=
(range-list)

The list of items from the list register to be used for the PUT
operation. For PUT(FORM) only, items in the range list can be
child items.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE data
sets and 128 items for VPLUS forms also exists.

All item names speci�ed must be parent items for �les or data
sets.

The options for range-list and the records upon which they
operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from item-nameX
through the last occurrence of item-nameY .

In other words, the list register is scanned for
the occurrence of item-nameY closest to the
top of the list register. From that entry, the list
register is scanned for item-nameX . All data
items between are selected. An error is returned
if item-nameX is between item-nameY and the
top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as follows,

8-178 Transact Verbs

PUT

then data items A, B, C, D, and D are selected.
For database �les, an error is returned if
duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see DEFINE(ITEM) verb) and if there are
no data items between the two in the list register,
no database access is performed.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For databases, data items can be speci�ed in any
order. For KSAM and MPE �les and VPLUS
forms, data items must be speci�ed in the order
of their occurrence in the physical record or form.
This order need not match the order of the data
items on the list register. Do not include child
items in the list unless they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range list of all data items of
destination as de�ned in a dictionary. This range
is de�ned as item-name-1:item-name-n for the
�le.

(#) Speci�es an enumeration of all data items of
destination as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or form
as de�ned in the dictionary. This order need not
match the order of the data items in the list
register.

Transact Verbs 8-179

PUT

() A null data item list. That is, accesses the �le
or data set, or displays the form, but does not
transfer any data.

STATUS Suppresses the action de�ned in Chapter 7 under \Automatic
Error Handling." If you use this option, you should program your
own error handling procedures.

When STATUS is speci�ed, the e�ect of a PUT statement is
described by the 32-bit integer value in the status register:

Status
Register Value

Meaning

0 The PUT operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the condition that occurred,
refer to the condition word or MPE/KSAM �le
system error documentation corresponding to
the value.

PUT with the STATUS option could be used as shown in the
following example. When a data set is full, you may want to
write to an overow �le. To trap and display the full error
condition, you could use the following code:

PUT DATA-SET,

LIST=(A:N),

STATUS;

IF STATUS <> 0 THEN << Error, check it out >>

IF STATUS <> 16 THEN << Unexpected error >>

GO TO ERROR-CLEANUP

ELSE << Write to overflow >>

DO << Set full >>

PUT OVERFLOW,

LIST=(A:N),

STATUS;

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

DISPLAY "OVERFLOW FILE USED";

DOEND;

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes.
Instead, the program branches to the statement identi�ed by label ,
and Transact sets the list register pointer to the data item item-name.
Transact generates an error at execution time if the item cannot be
found in the list register. The item-name must be a parent.

If you do not specify an item-name, as in ERROR=label ();, the list
register is reset to empty. If you use an *" instead of item-name, as

8-180 Transact Verbs

PUT

in ERROR=label (*);, then the list register is not changed. For more
information, see \Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database. If a data set is being accessed, the
lock is set the whole time that PUT executes. If the LOCK option is
not speci�ed but the database is opened in mode 1, then automatic
locking will execute the lock.

For a KSAM or MPE �le, if LOCK is not speci�ed on PUT but
is speci�ed for the �le in the SYSTEM statement, then the �le is
locked before each entry is retrieved, remains locked while the entry
is processed by any PERFORM= statements, but is unlocked briey
before the next entry is retrieved.

Including the LOCK option will override the SET(OPTION)
NOLOCK for the execution of the PUT verb.

A database opened in mode 1 must be locked while PUT executes.
For transaction locking, you can use the LOCK option on
the LOGTRAN verb instead of the LOCK option on PUT if
SET(OPTION) NOLOCK is speci�ed. If a lock is not speci�ed (for a
database opened in mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for more information
on locking.

NOMSG Suppresses the standard error message produced by Transact as a
result of a �le or database error.

RECNO=item-name
[(subscript)]

Places the record number of the new entry into the data register space
for item-name. Item-name must be de�ned as a 32-bit integer. such
as I(10,,4). It can be subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

Options Available Only With the Form Modifier

APPEND Appends the next form to the speci�ed form, overriding any freeze or
append condition speci�ed for the form in its FORMSPEC de�nition.
APPEND sets the FREEZAPP �eld of the VPLUS comarea to 1.

CLEAR Clears the previously displayed form when the requested form is
displayed, overriding any freeze or append condition speci�ed for the
form in its FORMSPEC de�nition. CLEAR resets the FREEZAPP
�eld of the VPLUS comarea to zero.

CURRENT Uses the form currently displayed on the terminal screen. That
is, performs all the PUT(FORM) processing except retrieving and
displaying the form. Use this option to avoid the processing that
normally occurs when a new form is displayed.

CURSOR=�eld-name
item-name
[(subscript)]

Positions the cursor within the speci�ed �eld. The �eld-name
identi�es the �eld and the item-name identi�es the item which names
the �eld. The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

Transact Verbs 8-181

PUT

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs the �eld edits de�ned in the FORMSPEC de�nition for the
form immediately before displaying it.

FKEY=item-name
[(subscript)]

Moves the number of the function key pressed by the user in this
operation to the single word integer item-name. The function key
number is a digit from 1 through 8 for function keys �f1� through �f8�,
or zero for the ENTER key. Transact determines which function key
was pressed from the value of the �eld LAST-KEY in the VPLUS
comarea. The item-name may be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

Fn=label Control passes to the labeled statement if the user presses function key
n. n can have a value of 0 through 8, inclusive, where zero indicates
the ENTER key. This option can be repeated as many times as
necessary in a single PUT(FORM) statement.

FREEZE Freezes the speci�ed form on the screen and appends the next form to
it, overriding any freeze or append condition speci�ed for the form in
its FORMSPEC de�nition. FREEZE sets the FREEZAPP �eld of the
VPLUS comarea to 2.

INIT Initializes the �elds in the displayed form to any initial values de�ned
for the form by FORMSPEC, or performs any Init Phase processing
speci�ed for the form by FORMSPEC. PUT(FORM) performs the
INIT processing before it transfers any data from the data register and
before it displays the form on the screen.

WAIT=[Fn] Does not return control to the program until the terminal user has
pressed the function key n. n can have a value of 0 through 8, where
1 through 8 indicate the keys �f1� through �f8� and 0 indicates the
ENTER key.

If the user presses any function key other than one requested by the
WAIT option, Transact displays a message in the window and waits
for the next function key to be pressed. If Fn is any key other than
�f8�, the �f8� exit function is disabled.

If Fn is omitted, PUT(FORM) waits until any function key is pressed.
If the user presses any of the function keys �f1� through �f7�, the next
record will be PUT; �f8� retains its exit function.

If the WAIT option is omitted altogether, PUT(FORM) clears the
screen and returns control to the program immediately after displaying
the form with its data.

8-182 Transact Verbs

PUT

For example:

PUT(FORM) (FORMNAME), << Display form named in FORMNAME >>
LIST=(A:C),

WAIT=; << Wait for user to press any key >>

WINDOW= ([�eld,]
message)

Places a message in the window area of the screen and, optionally,
enhances a �eld in the form. The �elds �eld and message can be
speci�ed as follows:

�eld Either the name of the data item for the �eld to be
enhanced, or an item-name within parentheses which
will contain the data item of the �eld to be enhanced
at run time.

message Either a \string" in quotes that speci�es the message
to be displayed, or an item-name within parentheses
containing the message string to be displayed in the
window.

The following example shows this option when the
�eld name and message are speci�ed directly:

PUT(FORM) FORM1,

LIST=(A,C,E),

WINDOW=(A,"Press f1 if data is correct."),

WAIT=F1;

In the next example, both the �eld and the message
are speci�ed through an item-name reference:

DEFINE(ITEM) ENHANCE U(16):

MESSAGE U(72);

MOVE (ENHANCE) = "FIELD1";

MOVE (MESSAGE) = "This field may not be changed";

PUT(FORM) *, << Display current form >>

LIST=(),

WINDOW=((ENHANCE),(MESSAGE));

Examples

The following command sequence prompts for new customer information and adds this
information to the customer master �le:

$$ADD:

$CUSTOMER:

PROMPT CUST-NO:

CUST-NAME:

CUST-ADDR:

CUST-CITY:

CUST-STATE:

CUST-ZIP;

PUT CUST-MAST, LIST=(CUST-NO:CUST-ZIP);

Transact Verbs 8-183

PUT

The next example displays a header form and then appends a form with data to the header.
After appending the data form 10 times, each time with new data, the program asks the
user if he wants to continue. The data to be displayed is taken from the data register; the
particular items are determined by the LIST= option. In this example, the data in the data
register is retrieved from a data set by the FIND statement.

LIST CUST-NO:

LAST-NAME:

FIRST-NAME:

COUNT;

PUT(FORM) HEADER, << Freeze header form on screen >>

LIST=(),

FREEZE;

LET (COUNT) 0;

FIND(SERIAL) CUSTOMER, << Get data from database >>

LIST=(CUST-NO:FIRST-NAME),

PERFORMLIST-FORM;...
LIST-FORM:

IF (COUNT) < 10 THEN << Append data form 9 times >>

DO

LET (COUNT) = (COUNT) + 1;

PUT(FORM) CUSTLIST,

LIST=(CUST-NO:FIRST-NAME),

APPEND;

DOEND

ELSE

DO

LET (COUNT) = 0;

PUT(FORM) CUSTLIST, << At 10th iteration, >>
LIST=(CUST-NO:FIRST-NAME), << wait for user input >>

WINDOW=("Press any function key to continue"),

APPEND,

WAIT=;

DOEND;

RETURN;

8-184 Transact Verbs

PUT

The last example shows how the LIST=(#) option works, given a data set de�ned as follows:

NAME: SUP-MASTER, MANUAL(13/12,18), DISC1

ENTRY: SUPPLIER(1),
STREET-ADD,

CITY,

STATE,

ZIP,

CAPACITY: 200;

The statement:

PUT SUP-MASTER,LIST=(#);

is equivalent to the statement:

PUT SUP-MASTER,LIST=(SUPPLIER,STREET-ADD,CITY,STATE,ZIP);

Transact Verbs 8-185

REPEAT

Repeats execution of a simple or compound statement until a speci�ed condition is true.

Syntax

REPEAT statement UNTIL condition-clause;

When REPEAT is encountered, the simple or compound statement following it is executed
and then the condition-clause is tested. The condition-clause includes one or more conditions,
each made up of a test-variable, a relational-operator , and one or more values . Multiple
conditions are joined by AND or OR. Execution of the statement following REPEAT
continues until the test gives a value of true.

Statement Parts

statement A simple or compound Transact statement can follow REPEAT. A compound
statement is bracketed with a DO/DOEND pair.

condition-
clause

One or more conditions, connected by AND or OR, where

AND is a logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR is a logical inclusive OR. The condition clause is true if any of the
conditions is true; it is false if all of the conditions are false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value[,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to item-name.
The item-name may be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names and/or
constants. The expression is evaluated before the comparison is
made. (See LET verb for more information.)

Note An arithmetic-expression must be enclosed in square brackets ([]).

EXCLA-
MATION

Current status of the automatic null response to a prompt set by
a user responding with an exclamation point (!) to a prompt.
(See \Data Entry Control Characters" in Chapter 5.) If the null
response is set, the EXCLAMATION test variable is a positive
integer; if not set, it is zero. The default is 0.

8-186 Transact Verbs

REPEAT

FIELD Current status of FIELD command quali�er. If a user quali�es
a command with FIELD, the FIELD test variable is a positive
integer. Otherwise, it is a negative integer. The default is <0.

INPUT The last value input in response to the INPUT prompt.

PRINT Current status of PRINT or TPRINT command quali�er. If the
user quali�es a command with PRINT, the PRINT test variable
is an integer greater than zero and less than 10; if a command is
quali�ed with TPRINT, PRINT is an integer greater than 10; if
neither quali�er is used, PRINT is a negative integer. The default
is < 0.

REPEAT Current status of REPEAT command quali�er. If the user
quali�es a command with REPEAT, the REPEAT test variable is
a positive integer; otherwise, REPEAT is a negative integer. The
default is < 0.

SORT Current status of SORT command quali�er. If the user quali�es
a command with SORT, the value of the SORT test variable is
a positive integer; otherwise SORT is a negative integer. The
default is < 0.

STATUS The value of the 32-bit status register set by the last data set or
�le operation, data entry prompt, or external procedure call.

relational-
operator

Speci�es the relation between the test-variable and the value. It can be one of the
following:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

value Any of test variable values or the value against which the test-variable is
compared. The value may be an arithmetic expression, which will be evaluated
before the comparison is made. The allowed value depends on the test variable,
as shown in the comparison below. Alphanumeric strings must be enclosed in
quotation marks.

If the test-
variable is:

The value must be:

item-name An alphanumeric string, a numeric value, an arithmetic
expression, a reference to a variable as in (item-name) or a class
condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or an expression, or a
reference to a variable as in (item-name). (See the LET verb for
more information.)

INPUT An alphanumeric string.

Transact Verbs 8-187

REPEAT

EXCLA-
MATION

A positive or negative integer, or an expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer or an expression.

If more than one value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the test-variable is
equal to value1 OR value2 OR . . . valuen. In other words, a comma in a series
of values is interpreted as an OR.

When the relational operator is \<>", the action is taken if the test-variable is
not equal to value1 AND value2 AND . . . valuen. In other words, a comma in
a series of values is interpreted as an AND when the operator is \<>".

When the test variable is an item-name, the value can be one of the following
class conditionals, which are used to determine whether a string is all numeric or
alphabetic. The operator can only be \=" or \<>".

NUMERIC This class condition includes the ASCII characters 0 through
9 and a single operational leading sign. Leading and trailing
blanks around both the number and sign are ignored.
Decimal points are not allowed in NUMERIC data. This class
test is only valid when the item has the type X, U, 9, or Z, or
when the item is in the input register.

ALPHABETIC This class condition includes all ASCII native language
alphabetic characters (upper and lowercase) and space. This
class test is only valid for item names of type X or U.

ALPHABETIC-
LOWER

This class condition includes all ASCII lowercase native
language alphabetic characters and space. This class test is
only valid for type X or U.

ALPHABETIC-
UPPER

This class condition includes all ASCII uppercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.
Truth values are established for simple relational conditions.
Truth values are established for simple class conditions.
Multiple value conditions are evaluated.
Truth values are established for complex AND conditions.
Truth values are established for complex OR conditions.

8-188 Transact Verbs

REPEAT

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

Examples

The following example performs the compound statement between the DO/DOEND pair until
the value of OFFICE-CODE exceeds 49.

REPEAT

DO

GET(SERIAL) MASTER;...
PUT SEQFILE;

DOEND

UNTIL (OFFICE-CODE) > 49;

The following are two examples of using the REPEAT verb:

REPEAT

DO

LET (TOTAL-OVERDUE) = (TOTAL-OVERDUE) + (AMT-OVERDUE);

FIND(SERIAL) CUST-INVOICE,STATUS;

DOEND

UNTIL (TOTAL-OVERDUE) > 999999.99 OR

(TOTAL-OVERDUE) > (MIN-OVERDUE) AND

(CUST-CODE) = "NEW";

REPEAT

FIND(SERIAL) STK-ON-HAND,STATUS

UNTIL ((WEIGHT) > [(KILO-PER-METER) * (METERS)] AND
(METERS) > (MIN-LENGTH) OR

(PRICE) > [(UNIT-PRICE) * (KILO-PER-METER) * (METERS)]);

Transact Verbs 8-189

REPLACE

Changes the values contained in a KSAM or MPE record or a data set entry.

Syntax

REPLACE
�
(modi�er)

�
�le-name

�
,option-list

�
;

REPLACE allows you to replace one or more records or entries in a �le or data set.
REPLACE uses the values in the update register as the new values for the updated entries.
REPLACE di�ers from UPDATE in that it allows you to change search or sort items in a
data set as well as key items in a KSAM �le, and because it can perform a series of changes to
a �le or data set.

Note that it only replaces key (search) items in a manual master set if there are no detail set
entries linked to that key. It does not replace detail set entries with search items that do not
exist in manual master sets associated with that detail.

The REPLACE operation does the following steps:

1. It retrieves a data record from the �le or data set and places it in the data register area
speci�ed by the LIST= option of REPLACE, overwriting any prior data in this area.

2. It checks whether this record contains values that match any selection criteria set up in the
match register. If the retrieved data does not meet the match criteria, it returns to step 1
to retrieve the next record. If the record meets the selection criteria speci�ed in the match
register, or if there are no match criteria, it �rst performs any PERFORM= processing;
then it executes steps 3 through 5.

3. It replaces the values in the data register of the items to be updated with the values in
the update register. Or, if there are no values in the update register, it uses the current
values in the data register. The update register can be set up by a routine speci�ed in
a PERFORM= option since the PERFORM= processing is done prior to the actual
replacement. A PERFORM= routine can also be used to place new values directly into the
data register.

4. It writes a new record with updated values from the data register to the �le or data set and
then deletes the old record.

5. It returns to step 1 unless the end of the �le or chain has been reached, or unless the
SINGLE option or the CURRENT modi�er has speci�ed replacement of a single entry
only. At the end of the �le or chain or if only retrieving a single entry, it goes to the next
statement.

To use REPLACE e�ectively, do the followings:

1. Specify the entries to update. Set up the key and argument registers if you are using
REPLACE with no modi�er or with the CHAIN or RCHAIN modi�ers. Set up the match
register if you want to replace particular entries when you use the CHAIN, RCHAIN,
SERIAL, or RSERIAL modi�ers.

If you plan to replace a key item in a master set, then delete all chains linked to that item
from associated detail sets.

8-190 Transact Verbs

REPLACE

2. Get the new values and place them in the update register or, if you are not using the
update register, in the data register. Note that REPLACE always uses the values in
the update register if there are any. You can get the new values from a user with a
DATA(UPDATE) or PROMPT(UPDATE) statement, or you can place them directly in
the update register with a SET(UPDATE) statement. When you update multiple entries
with di�erent values, you should set up the update or data register in a routine identi�ed
by a PERFORM= option of the REPLACE statement. Otherwise, the same items are
updated with the same values in each of the multiple entries.

3. Use the REPLACE statement to replace the selected entries, or to replace all entries if no
match criteria are speci�ed. Make sure that the entire record or entry is speci�ed in a
LIST= option. Otherwise, REPLACE will write null values into items not speci�ed in the
list register when it writes the updated entry back to the �le or data set.

Note Before using REPLACE, you must �rst set the SYSTEM statement access
mode to \UPDATE."

REPLACE adds the updated record and deletes the original entry so that any data item that
has not been speci�ed in the list register will have a null value after the operation. This is
why you should make sure that the list register contains every data item name in the set
entry. If a chained or serial access mode is speci�ed (multiple entry updates), the data items
to be updated must have been speci�ed in the update register by using the PROMPT, DATA,
LIST, or SET statements with the UPDATE option.

REPLACE with the UPDATE option only replaces that part of the record or entry that is not
a search or sort item. Unlike the other forms of REPLACE, it does not delete the original
entry and replace it with a new entry. Thus, for this option, only update items, not the whole
record, need be present in the list register.

If you are performing dynamic transactions (Transact/iX only), be aware that transactions
have a length limit. For a discussion about how REPLACE is a�ected by this limitation, see
\Limitations" under \Dynamic Roll-back" in Chapter 6.

Note After the �rst retrieval, Transact uses an asterisk (*) for the call list to
optimize subsequent retrievals of that data set.

Statement Parts

modi�er To specify the type of access to the data set or �le, choose one of the following
modi�ers:

none Updates an entry in a master set based on the key value in the
argument register; this option does not use the match register. If
the manual master key is to be changed, there must not be any
entries in detail sets linked to the old manual master key item.

CHAIN Updates entries in a detail set or KSAM chain based on the key
value in the argument register. The entries must meet any match
selection criteria in the match register. If no match criteria are
speci�ed, all entries are updated. If the search item is to be

Transact Verbs 8-191

REPLACE

changed in a chain linked to a manual master set, the new item
must exist in the associated master set.

CURRENT Updates the last entry that was accessed from the �le or data set.
This modi�er only replaces one entry, overriding the iterative
capability of REPLACE.

DIRECT Updates the entry stored at the speci�ed record number. The
entry may not be de�ned as a child item. Before using this
modi�er, you must store the record number as a 32-bit integer
I(10,,4) in the item referenced by the RECNO option.

PRIMARY Updates the master set entry stored at the primary address of a
synonym chain. The primary address is located through the key
value contained in the argument register.

RCHAIN Updates entries in a detail set chain in the same manner as the
CHAIN option, only in reverse order. For a KSAM �le, this
operation is identical to CHAIN.

RSERIAL Updates entries from a �le in the same manner as the SERIAL
option, except in reverse order. For a KSAM or MPE �le, this
operation is identical to SERIAL.

SERIAL Updates entries that meet any match criteria set up in the match
register in a serial mode. If no match criteria are speci�ed, all
entries are updated. Note that you cannot use this modi�er to
replace key items in the master set. This modi�er forces the
UPDATE option on a master set if you are not matching on key
items.

�le-name The KSAM or MPE �le or the data set to be accessed by the replace operation.
If the data set is not in the home base as de�ned in the SYSTEM statement, the
base name must be speci�ed in parentheses as follows:

set-name(base-name)

option-list One or more of the following �elds, separated by commas:

ERROR=label
([item-name])

Suppresses the default error return that Transact normally
takes. Instead, the program branches to the statement
identi�ed by label , and Transact sets the list register pointer
to the data item item-name. Transact generates an error at
execution time if the item cannot be found in the list register.
The item-name must be a parent.

If you do not specify an item-name, as in ERROR=label ();,
the list register is reset to empty. If you use an *" instead
of item-name, as in ERROR=label (*);, then the list register
is not changed. For more information, see \Automatic Error
Handling" in Chapter 7.

LIST=(range-list) The list of items from the list register to be used for the
REPLACE operation. For data sets, no child items can be
speci�ed in the range list.

8-192 Transact Verbs

REPLACE

If the LIST= option is omitted with any modi�er, all the
items named in the list register are used.

When the LIST= option is used, only the items speci�ed in a
LIST= option have their match conditions applied when the
items are included in the match register. When the LIST=
option is omitted, items which appear in the list register
and the match register have their match conditions applied.
Otherwise, the match conditions for an item are ignored.

The match register can be used only with the modi�ers
CHAIN, RCHAIN, SERIAL, or RSERIAL.

All item names speci�ed must be parent items.

The options for range-list include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items range from item-nameX
through item-nameY . In other words, the list
register is scanned for the occurrence of item
nameY closest to the top of the list register.
From that entry, the list register is scanned
for item-nameX . All data items between are
selected. An error is returned if item-nameX
is between item-nameY and the top of the
list register.

Duplicate data items can be included or
excluded from the range, depending on their
position on the list register. For example, if
range-list is A:D and the list register is as
shown,

then data items A, B, C, D, and D are
selected. For database �les, an error is
returned if duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and
if there are no data items between the two
on the list register, no database access is
performed.

Transact Verbs 8-193

REPLACE

(item-nameX:) All data items in the range from the last
entry through the occurrence of item-nameX
closest to the top of the list register.

(:item-nameY) All data items in the range from the
occurrence of item-nameY closest to the top
through the bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list
register. For databases, data items can be
speci�ed in any order. For KSAM and MPE
�les, data items must be speci�ed in the order
of their occurrence in the physical record.
This order need not match the order of the
data items on the list register. Does not
include child items in the list unless they are
associated with a VPLUS forms �le. This
option incurs some system overhead.

(@) Speci�es a range of all data items of �le-name
as de�ned in a data dictionary. The range-list
is de�ned as item-name1:item-namen for the
�le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary.
The data items are speci�ed in the order of
their occurrence in the physical record or
form as de�ned in the dictionary. This order
need not match the order of the data items in
the list register.

() A null data item list. That is, accesses the �le
or data set, but does not transfer any data.

LOCK Locks the speci�ed �le or database. If a data set is being
accessed, the lock is set the entire time that REPLACE
executes. If the LOCK option is not speci�ed but the
database is opened in mode 1, the lock speci�ed by the type
of automatic locking in e�ect is active while the entry is
processed by any PERFORM= statements, but is unlocked
briey before the next entry is retrieved.

For a KSAM or MPE �le, if LOCK is not speci�ed on
REPLACE but is speci�ed for the �le in the SYSTEM
statement, then the �le is locked before each entry is
retrieved, remains locked while the entry is processed by any
PERFORM= statements, but is unlocked briey before the
next entry is retrieved.

Including the LOCK option overrides SET(OPTION)
NOLOCK for the execution of the REPLACE verb.

A database opened in mode 1 must be locked while
REPLACE executes. For transaction locking, you can use

8-194 Transact Verbs

REPLACE

the LOCK option on the LOGTRAN verb instead of the
LOCK option on REPLACE if SET(OPTION) NOLOCK is
speci�ed. If a lock is not speci�ed (for a database opened in
mode 1) an error is returned.

See \Database and File Locking" in Chapter 6 for more
information.

NOCOUNT Suppresses the message normally generated by Transact to
indicate the number of updated entries.

NOMATCH Ignores any match criteria set up in the match register.

NOMSG Suppresses the standard error message produced by Transact
as a result of a �le or database error.

PERFORM=label Executes the code following the speci�ed label for every
entry retrieved by the REPLACE verb before replacing the
values in the entry. The entries can be optionally selected by
MATCH criteria.

This option allows you to perform operations on retrieved
entries without your having to code loop control logic.
It is also useful for setting up the update register for the
replacement. You can nest up to 10 PERFORM= options.

The use of PERFORM forces application of the UPDATE
option on master sets.

RECNO=
item-name
[(subscript)]

The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

With the DIRECT modi�er, you must de�ne item-name to
contain the 32-bit integer number I(10,,4) of the record to be
updated.

With other modi�ers, Transact returns the record number of
the replaced record in the 32-bit integer I(10,,4) item-name.

SINGLE Updates only the �rst selected entry, and then proceeds with
the statement following REPLACE.

SOPT Suppresses Transact optimization of database calls. This
option is primarily intended to support a database operation
in a performed routine that is called recursively. The option
allows a di�erent path to the same detail set to be used at
each recursive entry, rather than optimizing to the same path.
It also suppresses generation of a call list of *" after the
�rst call is made. Use SOPT if you are calling TurboIMAGE
through the PROC or CALL verbs. For an example of how
SOPT is used, see \Examples" at the end of the FIND verb
description.

STATUS Suppresses the actions de�ned in Chapter 7 under
\Automatic Error Handling." Use of this option requires that
you program your own error handling procedures.

Transact Verbs 8-195

REPLACE

When STATUS is speci�ed, the e�ect of a REPLACE
statement is described by the value in the 32-bit status
register:

Status
Register Value

Meaning

0 The REPLACE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the condition that occurred,
see the database or MPE/KSAM �le system
error documentation that corresponds to the
value.

STATUS causes the following with REPLACE:

Makes the normal multiple accesses single.

Suppresses the normal rewind done by REPLACE, so
CLOSE should be used before REPLACE(SERIAL).

Suppresses the normal �nd of the chain head
by REPLACE, so PATH should be used before
REPLACE(CHAIN). (See the example below.)

UPDATE When this option is used with Transact/iX versions that
are prior to A.04.00, REPLACE does not update search
or sort items. It should be used to perform an iterative
update on a data set or �le where you do not want to change
search or sort items. You should use this option when
replacing a non-key item in a manual master set. Otherwise,
a DUPLICATE KEY IN MASTER error occurs when
REPLACE adds the new entry.

When UPDATE is used on Transact/iX versions A.04.00 and
later and the database is enabled for critical item update,
search and sort items are updated. If critical item update
is not enabled, UPDATE operates as it did prior to version
A.04.00. See the TurboIMAGE/XL Database Management
System Reference Manual for more information.

8-196 Transact Verbs

REPLACE

Examples

The �rst example replaces a search item value in a master set with a new value. Before
making the replacement, it makes sure that a detail set linked to the master set through
CUST-NO has no entries with the value being replaced.

PROMPT(PATH) CUST-NO ("Enter customer number to be changed");

FIND(CHAIN) SALES-DET, LIST=(); <<Look for old number in detail set >>

IF STATUS <> 0 THEN <<and, if chain exists, delete it. >>

DO

DISPLAY "Before replacing customer number, delete from SALES-DET";

PERFORM DELETE-SALES-REC;

DOEND;

<< No chains linked to this customer number; so continue with update. >>

LIST LAST-NAME: <<Set up rest of list register >>

FIRST-NAME:

STREET-ADDR:

CITY:

STATE:

ZIP;

REPLACE CUST-MAST, <<Replace specified customer number >>

LIST=(CUST-NO:ZIP), <<with new number entered in >>

PERFORM=GET-NEW-NAME; <<GET-NEW-NAME routine >>...
GET-NEW-NAME:

DATA(UPDATE) CUST-NO ("Enter new customer number");

RETURN;

The following example uses marker items to declare a range. If a key item is involved,
this code logs the change and uses REPLACE instead of UPDATE to make the change.
(Remember that you cannot be sure which items are in a list delimited by marker items.)
STATUS must be used to capture the error of attempting to update a key or sort item:

UPDATE DETAIL-SET,

LIST=(MARKER1:MARKER2),

STATUS;

IF STATUS <> 0 THEN <<Error, Check it out >>

IF STATUS <> 41 THEN <<Unexpected >>

GO TO ERROR-CLEANUP

ELSE <<Log and complete update >>
DO

PUT LOG-FILE,

LIST=(MARKER1:MARKER2);

REPLACE(CURRENT) DETAIL-SET,

STATUS,

LIST=(MARKER1:MARKER2);

IF STATUS <> 0 THEN

GO TO ERROR-CLEANUP;

DOEND;

Transact Verbs 8-197

REPLACE

The following example replaces each occurrence of a non-key item, ZIP, with a new value. It
asks the user to enter the value to be replaced as a match criterion for the retrieval. Before
making the replacement, it uses a PERFORM= routine to display the existing record and ask
the user for a new value:

LIST LAST-NAME: <<Set up list for update >>

FIRST-NAME:

STREET-ADDR:

CITY;

PROMPT(MATCH) ZIP ("Enter ZIP code to be replaced");

REPLACE(SERIAL) MAIL-LIST-DETL, <<Replace each occurrence of specified>>

LIST=(LAST-NAME:ZIP), <<zip code, a non-key item. >>

UPDATE,

PERFORM=GET-ZIP;

EXIT;

GET-ZIP:

DISPLAY;

DATA(UPDATE) ZIP ("Enter new ZIP code");

RETURN;

The next example changes the product number in a master set PRODUCT-MAST, and then
updates the related detail entries in the associated detail set PROD-DETL. When the detail
set entries have all been updated, it deletes the master entry for the old product number for
PRODUCT-MAST.

PROMPT PROD-NO ("Enter new product number"):

DESCRIPTION ("Enter a one line description");

PUT PRODUCT-MAST,

LIST=(PROD-NO:DESCRIPTION);

SET(UPDATE) LIST(PROD-NO); <<Set up update register with >>

<<new value >>

DATA(KEY) PROD-NO <<Set up key and argument registers >>

("Enter product number to be changed");

RESET(STACK) LIST; <<Release stack space >>

<<Now, update the product number in each entry of the associated detail set>>

DISPLAY "Updating product number in PROD-DETL", LINE2;

LIST PROD-NO: <<Allocate space for PROD-DETL entry >>

INVOICE-NO:

QTY-SOLD:

QTY-IN-STOCK;

REPLACE(CHAIN) PROD-DETL, <<Replace each entry in detail set >>

LIST=(PROD-NO:QTY-IN-STOCK);

RESET(STACK) LIST;

DELETE PRODUCT-MAST, <<Delete old entry from master set >>

LIST=();

8-198 Transact Verbs

RESET

RESET

Resets execution control parameters, the match or update registers, the list register stack
pointer, or delimiter values.

Syntax

RESET(modi�er) [target];

The function of RESET depends on the verb's modi�er, and the di�erent modi�ers determine
the syntax of the statement. The allowed modi�ers and the associated syntax options are:

COMMAND Clears user responses from the input bu�er. (See Syntax Option 1.)

DELIMITER Resets delimiter values to Transact defaults. (See Syntax Option 2.)

LANGUAGE Resets any SET(LANGUAGE) commands issued in the program.

OPTION Resets various execution control parameters or the match and update
registers. (See Syntax Option 3.)

PROPER Resets delimiters for upshifting the next letter. (See Syntax Option 4.)

STACK Resets the stack pointer for the list register. (See Syntax Option 5.)

Syntax Options

(1) RESET(COMMAND);

RESET(COMMAND) clears the input bu�er, TRANIN, that contains the responses to
prompts issued by a Transact program. This option is particularly useful to clear unprocessed
responses from the input bu�er when there is a need to reissue a prompt. Unprocessed
responses can occur when the user responds to multiple prompts with a series of responses
separated by a currently de�ned delimiter. For example:

GET-NAME:

DATA CUST-NO ("Please enter a customer number and name"):

CUST-NAME;

SET(KEY) LIST(CUST-NO);

FIND CUST-MAST;

IF STATUS=0 THEN <<CUST-NO not found >>

DO

DISPLAY "Invalid Customer Number. Please re-enter.";

RESET(COMMAND); <<Clear input buffer before returning >>

GO TO GET-NAME;

DOEND;

When the DATA program is run, suppose the prompt and response are:

Please enter a customer number and name> 30335, Jones, James

Without the RESET(COMMAND) statement, the unprocessed response \James" would
appear to Transact as a response to the CUST-NO prompt.

Transact Verbs 8-199

RESET

(2) RESET(DELIMITER);

RESET(DELIMITER) resets the delimiters used in input �elds to the defaults of \," and \=".
(See \Field Delimiters" in Chapter 5.)

(3) RESET(OPTION) option-list ;

RESET(OPTION) is used to reset any options that have been changed by means of the SET
verb. It is also used to reset the match and update registers.

option-list One or more of the following �elds, separated by commas:

AUTOLOAD Resets the AUTOLOAD option. Forms are not automatically
loaded into local form storage before they are displayed.

END Resets the END option. If END or \]" or \]]" is encountered
during execution, control passes to the end of sequence.

FIELD Resets the FIELD option. The lengths of prompted-for
�elds are not indicated on 264X series terminals. See
SET(OPTION) in the SET verb description for more
information.

FORMSTORE=
(form-store-list)

Unloads the VPLUS forms in form-store-list from the
local form storage memory of a forms caching terminal.
Form-store-list can either be a list of VPLUS forms separated
by commas. Or, it can be the name, enclosed in an additional
set of parentheses, of a data item containing such a list.
Forms belonging to di�erent families can appear in the
same list. To use local form storage, you must include the
FSTORESIZE parameter in the SYSTEM verb. (See the
FSTORESIZE parameter in the SYSTEM verb entry in this
chapter.)

The RESET(OPTION) FORMSTORE statement should
only be used when lookahead loading is disabled and only
to make room in local storage for new forms. For example,
if you know that one form is signi�cantly larger than the
others and is not used later in the program, you can explicitly
unload it to make room for new forms, rather than relying on
lookahead loading to choose the best form to unload. The
RESET(OPTION) FORMSTORE statement is not required
in any other situation. Chapter 5 contains more information
about the SET(OPTION) FORMSTORE statement under
\Local Form Storage".

The following example unloads four forms:

RESET(OPTION) FORMSTORE=(MENU,ADDPROD,CHGPROD,DELPROD);

8-200 Transact Verbs

RESET

The following commands do the same as above with a data
name speci�ed as form-store-list :

DEFINE(ITEM) FORMLIST X(40);...
LIST FORMLIST;

MOVE (FORMLIST) = "MENU,ADDPROD,CHGPROD,DELPROD";

RESET(OPTION) FORMSTORE=((FORMLIST));

Note When local form storage is enabled, VPLUS automatically con�gures the HP
2626A and HP 2626W terminals to use datacomm port 1 and removes the
HPWORD con�guration from the HP 2626W terminal.

MATCH item-list Clears the MATCH register so that you can set up new match
criteria. This option can also be used to selectively delete
item entries. Here is the format you would use:

RESET(OPTION) MATCH [LIST({[item-name]})];

{ * }

If there is an entry in the match register with the speci�ed
name, it will be deleted. An asterisk (*) can be used in place
of the item name to delete the last entry added to the list
register. In either case, if more than one such entry exists in
the match register (such as multiple selection criterion in an
OR chain), all will be deleted.

Only entries that were created in the current level can be
deleted. The error message: ITEM TO BE DELETED NOT FOUND

IN MATCH REGISTER is issued at run time if the item speci�ed
is not found in the set of entries for the current level.

NOHEAD Resets the NOHEAD option. Data item headings are to be
generated on any subsequent displays set up by DISPLAY or
OUTPUT statements.

NOLOCK Re-enables automatic locking disabled by a previous
SET(OPTION) NOLOCK.

NOLOOKAHEAD Re-enables lookahead loading. VPLUS forms are loaded
into local form storage according to the sequence de�ned in
FORMSPEC. Lookahead is the default loading option for
local form storage in Transact.

PRINT Resets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the user
terminal.

SORT Resets the SORT option. Any listings generated by
subsequent OUTPUT statements are not sorted before
display.

SUPPRESS Resets the SUPPRESS option. Multiple blank lines sent to
the display device are not to be suppressed.

Transact Verbs 8-201

RESET

TPRINT Resets the TPRINT option. Any displays generated by
the DISPLAY or OUTPUT statements and directed to the
terminal are not line printer formatted.

UPDATE item-list Clears the UPDATE register so you can set up new update
parameters. This option can also be used to selectively delete
item entries. Here is the format you would use:

RESET(OPTION) UPDATE [LIST({[item-name})];

{ * }

If there is an entry in the update register with the speci�ed
name, it will be deleted. An asterisk (*) can be used in place
of the item name to delete the last entry added to the list
register.

Only entries that were created in the current level can be
deleted. The error message ITEM TO BE DELETED NOT FOUND

IN UPDATE REGISTER will be issued at run time if the item
speci�ed is not found in the set of entries for the current level.

VPLS Indicates to Transact that the terminal is no longer in block
mode. Error messages are no longer sent to the window. (See
the SET(OPTION) VPLS description.)

If SET(OPTION) VPLS=item-name has been speci�ed,
you must follow this statement with a RESET(OPTION)
VPLS statement. The VPLS option causes RESET to
write the contents of item-name back to the VPLUS
comarea. Only as much of the comarea as was transferred
by SET(OPTION) VPLS is written back to the VPLUS
comarea by RESET(OPTION) VPLS. You must not include
any Transact statement that references VPLUS forms
between the SET(OPTION) VPLS=item-name and the
RESET(OPTION) VPLS statements. If you do, Transact
returns to command mode and issues an error message.

(4) RESET(PROPER);

RESET(PROPER) resets the delimiters back to the default characters that cause the next
letter to be upshifted by the PROPER function of the MOVE verb. The default set of special
characters as used by PROPER function are !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ and the
blank character.

(5) RESET(STACK) LIST;

RESET(STACK) resets the list register so that a new list can be generated by PROMPT and
LIST statements. The contents of the data register are not touched.

(6) RESET(LANGUAGE);

RESET(LANGUAGE) resets any SET(LANGUAGE) commands issued in the program.

8-202 Transact Verbs

RESET

Examples

This example removes all current match criteria and item update values from the match and
update registers.

RESET(OPTION)

MATCH,

UPDATE;

This example resets the list register to its beginning so you can use the same area for new list
items.

RESET(STACK) LIST;

The following examples show how to use the MATCH option to delete speci�c items from the
match register. The �rst example sets up the match register.

MOVE (name) = "Fred";

SET(MATCH) LIST(NAME);

MOVE (name) = "Bud";

SET(MATCH) LIST(NAME);

SET(MATCH) LIST(ADDRESS);

SET(MATCH) LIST(ZIP);

This example deletes \ADDRESS" from the match register.

RESET(OPTION) MATCH LIST(ADDRESS);

This example deletes both \NAME" entries from the match register.

RESET(OPTION) MATCH LIST(NAME);

This example causes the error message ITEM TO BE DELETED NOT FOUND IN MATCH
REGISTER to be issued, because \AGE" is an item in the match register.

RESET(OPTION) MATCH LIST(AGE);

The following example shows what happens when using the UPDATE option to delete an
item not added in the entries for the current level. This example will result in an error since
\NAME" was not added in the current level.

SET(UPDATE) LIST(NAME);

LEVEL;
SET(UPDATE) LIST(ADDRESS);

RESET(OPTION) UPDATE LIST(NAME);

END(LEVEL);

The following example shows how to use the RESET(PROPER) option to reset the delimiters
back to the default characters.

SET(PROPER) " -;,:0123456789";

:

RESET(PROPER);

Transact Verbs 8-203

RESET

MOVE (NAME) = PROPER((NAME));

Before After
NAME X(12) 1doe'stjoe,p 1doe'StJoe,P

SET(PROPER) ". & -";

:

RESET(PROPER);

MOVE (LNAME) = PROPER("mr.&ms.smith-jones");

Before After

LNAME X(18) Mr.tJohntSmith,jr. Mr.&Ms.Smith-Jones

8-204 Transact Verbs

RETURN

RETURN

Terminates a PERFORM block.

Syntax

RETURN
�
(level)

�
;

RETURN transfers control from a PERFORM block to another statement. RETURN is also
used to return to a database access loop called with the PERFORM option.

Statement Parts

none Transfers control to the statement immediately following the last PERFORM
statement executed; also used to return to database access loop called with the
PERFORM option.

level Transfers control to the statement immediately following one of the previous
PERFORM statements in the command sequence.

If level is: then Transact:

1-128 Skips that many PERFORM levels and transfers control to the
statement following the correct PERFORM statement.

@ Transfers control to the statement following the top PERFORM
statement in the current command sequence. Control passes
through all active perform levels.

Examples on the next page show how the RETURN verb works.

Transact Verbs 8-205

RETURN

Examples

MAIN:

PERFORM A;

EXIT;

.

.

A:

PERFORM B;
.

.

RETURN;

B:

PERFORM C;

.

.

RETURN;

C:

PERFORM D;

.

.

RETURN;

D:

PERFORM E;

.

.

RETURN;

E:

.

.

IF(VALUE)="SAM" THEN

RETURN; <<Transfer control to first >>

<<statement following PERFORME; >>

IF(VALUE)="ALLAN" THEN

RETURN(1); <<Transfers control to first >>
<<statement following PERFORMD; >>

IF(VALUE)="BROWN" THEN

RETURN(@); <<Transfers control to first >>

<<statement following PERFORMA; >>

8-206 Transact Verbs

SET

SET

Alters execution control parameters, sets the match, update, or key registers, sets the list
register stack pointer, sets up data for subsequent display on a VPLUS form, or sets alternate
delimiters.

Syntax

SET(modi�er) target;

The function of SET depends on the verb's modi�er, and the di�erent modi�ers determine the
syntax of the statement. The allowed modi�ers and the associated syntax options are:

COMMAND Speci�es Transact commands. (See Syntax Option 1.)

DELIMITER Speci�es Transact delimiters. (See Syntax Option 2.)

FORM Speci�es data transfer to a VPLUS form bu�er for subsequent display. (See
Syntax Option 3.)

KEY Sets the value of the key and argument registers. (See Syntax Option 4.)

LANGUAGE Speci�es the native language used by Transact. (See Syntax Option 5.)

MATCH Sets up match selection criteria in the match register. (See Syntax Option 6.)

OPTION Speci�es various execution control parameters. (See Syntax Option 7.)

PROPER Speci�es delimiters for upshifting the next letter. (See Syntax Option 8.)

STACK Changes the value of the stack pointer for the list register. (See Syntax
Option 9.)

UPDATE Sets the value of the update register. (See Syntax Option 10.)

The DELIMITER, KEY, OPTION, and UPDATE modi�ers are restored at the end of a
LEVEL.

Syntax Options

(1) SET(COMMAND) argument ;

SET(COMMAND) programmatically invokes command mode and performs any command
identi�ed in argument .

argument The commands speci�ed in the argument parameter can be any of the
following:

EXIT Generates an exit from Transact; control passes to the
operating system or calling program.

INITIALIZE Generates an exit from the current program and causes
Transact to prompt for a di�erent program name, which it
will then initiate.

COMMAND
[(command-
label)]

Lists the commands or subcommands de�ned in the currently
loaded program. If a particular command-label is speci�ed, it

Transact Verbs 8-207

SET

lists all the subcommands associated with that command; if
no command-label , it lists all the commands in the program.

\input-string" Speci�es possible user responses to command prompts
and/or to prompts issued by PROMPT, DATA, or INPUT
statements. This construct allows the program to simulate
user responses to prompts. This option transfers control
to and executes any command sequences speci�ed by
input-string . The code does not return automatically to the
point from which it was called. The maximum length of the
input-string is 256 characters.

Examples of SET(COMMAND)

This statement lists all the commands in the current program and returns to the next
statement.

SET(COMMAND) COMMAND;

This statement lists all the subcommands in the command sequence beginning with $$ADD
and returns to the next statement.

SET(COMMAND) COMMAND(ADD);

This statement executes ADD ELEMENT until the user enters \]" or \]]". It then returns to
command mode and issues the \>" prompt for another command.

SET(COMMAND) "REPEAT ADD ELEMENT";

This statement executes the code associated with the command/subcommand:

SET(COMMAND) "ADD CUSTOMER";

and results in:

$$ADD:

$CUSTOMER:

It does not return.

(2) SET(DELIMITER) \delimiter-string";

SET(DELIMITER) replaces Transact's input �eld delimiters (\," and \=" described in
Chapter 5) with the delimiter characters speci�ed in the delimiter string. A blank is not a
valid delimiter. A maximum of eight characters can be de�ned as a delimiter-string .

For example:

If delimiter-
string is:

Then Transact:

\#/" recognizes the characters \#" and \/" as �eld delimiters.

\" "" recognizes quotation marks as �eld delimiters.

\ " recognizes no delimiters, which means the user cannot enter multiple �eld
responses.

8-208 Transact Verbs

SET

(3) SET(FORM) form[,option-list];

SET(FORM) is used prior to another statement that actually displays the form. It can be
used to transfer data to the VPLUS form bu�er for subsequent display by a GET(FORM),
PUT(FORM), or UPDATE(FORM) statement. It can also be used to set up window
messages and �eld enhancements for subsequent displays.

However, even though the SET(FORM) statement performs a VGETBUFFER (when there
are items to transfer), the data returned from the VPLUS form bu�er is not made available to
the programmer. This is because the data is not directly transferred to the data register, but
to an internal bu�er.

Used with the LIST= option, SET(FORM) allows you to initialize �elds in a VPLUS form
with values from the data register rather than with values speci�ed through FORMSPEC.
The internal bu�er holding the data from the VPLUS form bu�er is partially or completely
overlaid with data from the data register, depending on the items speci�ed in the LIST=
option. Once the overlay is complete, the VPUTBUFFER intrinsic is used to move the data
back to the VPLUS form bu�er.

With the inclusion of other options, SET(FORM) also provides form sequence control for the
speci�ed form and for the next form after that form.

SET(FORM) opens the forms �le, but not the terminal. By default, Transact gets records
formatted for a 264X terminal. If a di�erent terminal is being used, a verb which opens the
terminal (e.g., GET(FORM) or PUT(FORM)) should precede the SET. Information will
therefore be available to tell SET to use a di�erent format.

form A form in the VPLUS forms �le that is used for the subsequent display. It can be
speci�ed as one of the following:

form-name Name of the form as de�ned by FORMSPEC.

(item-name
[(subscript)])

Name of an item that contains the form name. It can be
subscripted if an array item is being referenced. (See \Array
Subscripting" in Chapter 3.)

* The form identi�ed by the \current" form name; that is, the
form name most recently speci�ed in a Transact statement that
references VPLUS forms. Note that this does not necessarily
mean the form currently displayed.

& The form identi�ed as the \next" form name; that is, the form
name de�ned as \NEXT FORM" in the FORMSPEC de�nition
of the current form.

option-list One or more of the following options, separated by commas, should be speci�ed in
a SET(FORM) statement:

Note The scope of the APPEND, CLEAR, and FREEZE options is both the
previous form (accessed by the last form speci�cation before this SET
operation) and the current form. Therefore, if the CLEAR option is used, not
only will the previous form be CLEARed when the speci�ed form is displayed,
but also the current form will be CLEARed when the next form is displayed.
This happens regardless of the FORMSPEC de�nitions of the two forms.

Transact Verbs 8-209

SET

APPEND Appends the next form to the speci�ed form, overriding any
current or next form processing speci�ed for the form in its
FORMSPEC de�nition. APPEND sets the FREEZAPP �eld of
the VPLUS comarea to 1.

CLEAR Clears the speci�ed form when the next form is displayed,
overriding any freeze or append condition speci�ed for the form in
its FORMSPEC de�nition. CLEAR sets the FREEZAPP �eld of
the VPLUS comarea to zero.

CURSOR=
�eld-name
jitem-name
[(subscript)]

Positions the cursor within the speci�ed �eld. Field-name
identi�es the �eld and the item-name identi�es the item which
names the �eld. The item-name can be subscripted if an array
item is being referenced. (See \Array Subscripting" in Chapter
3.)

If this option is omitted, the cursor is positioned in the form's
default �eld.

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT After transferring data to the form, perform any �eld edits
speci�ed in the FORMSPEC de�nition for the form.

FREEZE Freezes the speci�ed form on the screen when the next form is
displayed, and append the next form to it. FREEZE sets the
FREEZAPP �eld of the VPLUS comarea to 2.

INIT Initializes the �elds in the speci�ed form to any initial values
de�ned for the forms by FORMSPEC, or performs any Init Phase
processing speci�ed for the form by FORMSPEC.

LIST=
(range-list)

The list of items from the list register to be transferred from the
data register to the VPLUS bu�er for subsequent. processing.
The list can include child items. If this option is omitted, items
that appear in both the list register and SYSTEM de�nition for
the form are transferred.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names and a limit of 128 items speci�ed by a range.

The options for range-list and the records upon which they
operate include the following:

(item-name) A single data item.

(item-nameX:
item-nameY)

All the data items in the range from item-nameX
through item-nameY . In other words, the
list register is scanned for the occurrence of

8-210 Transact Verbs

SET

item-nameY closest to the top of the list register.
From that entry, the list register is scanned for
item-nameX . All data items between are selected.
An error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as shown,

then data items A, B, C, D, and D are selected.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For VPLUS forms, data items must be speci�ed
in the order of their occurrence in the form. This
order need not match the order of the data items
on the list register. Child items can be included
in the list as long as they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range of all data items of form as
de�ned in a dictionary. The range-list is de�ned
as item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data items of form
as de�ned in the data dictionary. The data items
are speci�ed in the order of their occurrence in
the form as de�ned in the dictionary. This order
need not match the order of the data items in the
list register.

() A null data item list. Does not retrieve any data.

Transact Verbs 8-211

SET

WINDOW=
([�eld],
message)

Places a message in the window area of the screen and,
optionally, enhances a �eld in the form. The enhancement is
done according to the de�nition of the form in FORMSPEC. If
the LIST=() option is in e�ect, the window message overwrites
any previous window messages for the form, but the �eld
enhancement is in addition to any �eld enhancement already on
the form. The parameters �eld and message can be speci�ed as
follows:

�eld Either the name of the �eld to be enhanced, or
an item-name[(subscript)] within parentheses
whose data register value is the name of the
�eld to be enhanced. The item-name can be
subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

message Either a "string" of characters within quotes that
comprises the message to be displayed, or an
item-name[(subscript)] within parentheses whose
data register value is the message string to be
displayed in the window. The item-name can be
subscripted if an array item is being referenced.
(See \Array Subscripting" in Chapter 3.)

Examples of SET(FORM)

This statement clears any prior forms from the screen when a subsequent statement displays
the form MENU. If MENU is the current form, this statement clears the MENU when the
next form is displayed, regardless of the value of the MENU's FREEZAPP option.

SET(FORM) MENU,

CLEAR;

This example moves a value from the data register area identi�ed by LIST-DATE to the
VPLUS bu�er for subsequent display by GET(FORM). It also sets up a �eld to be enhanced
and a message for display when GET(FORM) displays LIST-FORM.

SET(FORM) LIST-FORM,

LIST=(LIST-DATE),

WINDOW=(LIST-DATE,"Only enter orders for this date");
GET(FORM) *,

LIST=(ORDER-NO:QTY-ON-HAND);

8-212 Transact Verbs

SET

This example is highly general. The �rst PUT(FORM) statement displays whatever form is
identi�ed by FORMNAME and freezes that form on the screen. SET(FORM) then speci�es
that the value of ITEM-A is to be displayed and enhanced in the next form and also speci�es
a message (MESSAGE) to be issued when the next form is displayed by the subsequent
PUT(FORM) statement.

PUT(FORM) (FORMNAME), FREEZE;

SET(FORM) &,

LIST=(ITEM-A),

WINDOW=((ITEM-A), (MESSAGE));

PUT(FORM) *,

WAIT=F1;

(4) SET(KEY) LIST (fitem-nameg);

f * g

SET(KEY) sets the key and argument registers to the values associated with item-name in
the list and data registers. Transact generates an error message at execution time if the item
name cannot be found in the list register. You typically use this modi�er on multiple data set
operations where the necessary key value has been retrieved by a previous operation. If an * is
used as the item-name, the last item added to the list register is used.

Examples of SET(KEY)

The example below identi�es the key as the item named ACCT-NO and moves the associated
value in the data register to the argument register for the subsequent data set retrieval by the
OUTPUT statement.

SET(KEY) LIST(ACCT-NO);

OUTPUT(CHAIN) ORDER-DETAIL,

LIST=(ACCT-NO:QTY-ON-HAND);

(5) SET(LANGUAGE) [language[,STATUS]];

The SET(LANGUAGE) statement allows the programmer to specify or change the native
language at run time. The user can either specify a literal language name or number in
quotes (which is checked at compile time) or give the name of an item which will contain the
language number at run time. This item must begin on a 32-bit storage boundary. It can be
subscripted if an array item is being referenced.

If the operation is successful, Transact sets the status register to the number of the language
in e�ect before the language is changed. If an error results, Transact returns the error message
to the user, sets the status register to �1, and leaves the native language unchanged. If
STATUS is speci�ed, Transact suppresses the error message, and the contents of the status
register is the same as described above.

If you omit language, Transact sets the status register to the number of the current language
and then resets the language number to 0 (NATIVE-3000). A compiler error results if the
STATUS option is speci�ed without language. For more information see Appendix E, \Native
Language Support."

Transact Verbs 8-213

SET

(6) SET(MATCH) LIST (fitem-nameg)[,option-list];

f * g

SET(MATCH) sets up a match criterion in the match register using the speci�ed item
name from the list register and its current value in the data register. If the item name is an
unsubscripted array, only the value in the data register for the �rst element of the array will
be set up as match criterion in the match register.

The resulting match criterion is used for subsequent data set and �le operations. By default,
the relation between the item name and its value is equality. You can choose another
relational operator from option-list . If an * is speci�ed, the last item added to the list register
is used.

You can set up as many match criteria as you desire using separate SET(MATCH) statements
for each. Match criteria set up with the same item name and no option, or the same item
name and one of the options LEADER, TRAILER, or SCAN, are joined by a logical OR;
those set up with di�erent item names or with one of the options NE, LT, LE, GT, or GE are
joined by a logical AND. (See the PROMPT(MATCH) and DATA(MATCH) descriptions in
this chapter for other ways to set up match criteria.)

option-list Any one of the following options can be selected:

NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to
LEADER Matched item must begin with the input string; equivalent to the use

of trailing \^" on input
SCAN Matched item must contain the input string; equivalent to the use of

trailing \^^" on input
TRAILER Matched item must end with the input string; equivalent to the use

of a leading \^" on input

Examples of SET(MATCH)

This example sets up the match register with the selection criterion shown below:

LET (QTY-ON-HAND) 10;

SET(MATCH) LIST (QTY-ON-HAND), LT;

+-------------+

| QTY-ON-HAND |

| less than |

| 10 |

+-------------+

These statements set up the match register with the selection criteria shown below. Note that
criteria with the same item name are joined by a logical OR, those with a di�erent name by
a logical AND. These criteria select entries whose value for STATE is either CA or NM and
whose value for DATE is 010192.

8-214 Transact Verbs

SET

MOVE (STATE) = "CA";

SET(MATCH) LIST(STATE);

MOVE (STATE) = "NM";
SET(MATCH) LIST(STATE);

LET (DATE) = 010192;

SET(MATCH) LIST(DATE), GE;

+---+

| STATE STATE DATE |

| equal to OR equal to AND greater than |

| "CA" "NM" 010192 |

+---+

(7) SET(OPTION) option-list ;

SET(OPTION) and one or more option �elds included in option-list set the Transact
command options or override default execution parameters. The options in option-list are
separated by commas.

option-list Select one or more of the following options:

AUTOLOAD Causes VPLUS forms to be loaded automatically into the
local form storage of the terminal at the time the form is
displayed if the FSTORESIZE parameter is speci�ed in the
SYSTEM statement. Chapter 5 contains more information
about the AUTOLOAD option under \Local Form Storage".

DEPTH=number Sets the terminal display area depth to a line count of
number . The default value is 22. The depth value de�nes
how many lines are displayed on the terminal before Transact
automatically generates the prompt \CONTINUE(Y/N)?".
This option allows the video terminal user to view a listing
in a controlled page mode. If number is 0, information is
displayed continuously on the terminal, with no generation of
the \CONTINUE (Y/N)?" prompt.

END=label Transact branches to the statement marked label if an end
of sequence is encountered, either by an explicit or implicit
END or by \]" or \]]" input in response to a prompt at
execution time. This control function can be re-assigned to
a di�erent label or reset at any point in the program logic.
By default, the list register is reset before the END sequence
block executes. However, if a REPEAT option or command
is in e�ect, the list register is not reset until the END block
is executed.Once the END block is executed, this option is
automatically reset.

FIELD[=\ab"] Enhances or changes the prompts for data item �elds on the
terminal display. (This option with no parameter has the
same e�ect as the FIELD command quali�er, described in
Chapter 5.) By default, an item name prompt issued by a
PROMPT or DATA statement shows the item name followed
by the character \>".

Transact Verbs 8-215

SET

The parameters a and b specify alternate display options,
where a speci�es the leading prompt character, b speci�es
the trailing prompt character. If a is a caret, \^", then the
leading prompt character is suppressed. If both a and b are
omitted, the FIELD option encloses the response �eld with
the delimiters \>" and \<".

If the statement is: then the prompt is:

SET(OPTION) FIELD; NAME> field-length <

SET(OPTION) FIELD=":"; NAME:

SET(OPTION) FIELD="^"; NAME

SET(OPTION) FIELD="[]"; NAME[field-length]

Note that the cursor is positioned in the second character
position following the left delimiter. If no delimiter is used,
the cursor is positioned in the second character position
following the �eld name.

Normally b sets the trailing prompt character to its value;
however, if b is one of the characters \A" through \O" or
\@", entry �elds are enhanced as described in the forms
caching terminal user handbooks. For example:

SET(OPTION) FIELD= " J";

This statement enhances the response �eld with half bright
inverse video.

Transact enhances (or delimits) the number of spaces that
represent the �eld length, except in two circumstances:

If the �eld being prompted for is longer than the space
available on the current line on the screen, Transact only
enhances (or marks with a right. delimiter) the rest of the
line.

The length of the response to a DATA(MATCH) or
PROMPT(MATCH) prompt cannot be known in advance,
since the response might include operators and multiple
values. Therefore, Transact highlights or delimits only the
rest of the line.

FORMSTORE=
(form-store-list)

Loads the VPLUS forms in form-store-list into local storage
memory of a forms caching terminal. This reduces datacomm
overhead with frequently used forms and causes the form to
appear all at once instead of being painted line by line on the
screen.

Form-store-list can either be a list of VPLUS forms separated
by commas or the name, enclosed in an additional set of
parentheses, of a data item containing such a list. The data
item can be subscripted. Forms belonging to di�erent families
can appear in the same list.

8-216 Transact Verbs

SET

To use local form storage, you must include the
FSTORESIZE parameter in the SYSTEM verb. (See the
FSTORESIZE parameter in the SYSTEM verb entry in this
chapter.)

The RESET(OPTION) FORMSTORE statement is
not required with the SET(OPTION) FORMSTORE
statement. (See the explanation of the RESET(OPTION)
FORMSTORE statement in the RESET verb description in
this chapter. Chapter 5 contains more information about the
SET(OPTION) FORMSTORE statement under \Local Form
Storage".)

The following example loads four forms.

SET(OPTION) FORMSTORE=(MENU,ADDPROD,CHGPROD,DELPROD);

The following commands do the same as above with a data
name speci�ed as form-store-list .

DEFINE(ITEM) FORMLIST X(40);...
LIST FORMLIST;

MOVE (FORMLIST) = "MENU,ADDPROD,CHGPROD,DELPROD";

SET(OPTION) FORMSTORE=((FORMLIST));

Note When local form storage is enabled, VPLUS automatically con�gures the
2626A and 2626W terminals to use datacomm port 1 and removes the
HPWORD con�guration from the 2626W terminal.

HEAD Generates headings for the next DISPLAY verb encountered
with the TABLE option, regardless of page position.

LEFT Left-justi�es data items for any subsequent displays set up
by the DISPLAY or OUTPUT statements. Since this is the
default option, it is normally used to reset justi�cation after a
SET(OPTION) RIGHT or ZEROS statement.

NOBANNER Suppresses the default page banner containing date, time,
and page number on any subsequent displays set up by the
DISPLAY or OUTPUT statements. The default printer page
depth then becomes 60.

NOHEAD Suppresses data item headings on any subsequent displays set
up by the DISPLAY or OUTPUT statements.

NOLOCK Disables the automatic locking of a database opened in mode
1 for a DELETE, PUT, REPLACE, or UPDATE operation.
NOLOCK does not reset the LOCK option speci�ed with
a database access verb (DELETE, FIND, GET, OUTPUT,
PUT, REPLACE, or UPDATE). Use NOLOCK when you
want to set up data set or data item locks through a PROC
statement or when you are locking with the LOCK option on

Transact Verbs 8-217

SET

the LOGTRAN verb. (See Chapter 6 for more information on
locking.) The NOLOCK option is turned o� when processing
crosses a barrier between command sequences. Therefore,
NOLOCK must be set in each command sequence to which it
applies.

NOLOOKAHEAD Disables look-ahead loading, which is the default option when
local form storage is used. Setting the NOLOOKAHEAD
option has the e�ect of protecting explicitly loaded forms
from being overwritten by automatically loaded forms.
Chapter 5 contains more information about look-ahead
loading under \Local Form Storage".

PALIGN=number Right-justi�es the prompts on a display device to column
number on the display screen.

PDEPTH=number Sets the printer page depth to a line count of number . The
default value is 58 unless the NOBANNER option is speci�ed,
in which case the default value is 60. If number is 0, the page
heading is suppressed on any subsequent displays directed to
the printer.

PRINT Sets the PRINT option. Any displays generated by the
DISPLAY or OUTPUT statements are directed to the line
printer instead of to the user terminal. This option has the
same e�ect as the PRINT command quali�er. (See Chapter
5.)

You can redirect results to the printer immediately by
using this option before issuing a DISPLAY or OUTPUT
statement, and then closing the print �le with a CLOSE
$PRINT statement. For example:

SET(OPTION) PRINT;

DISPLAY "PRINT THIS NOW";

CLOSE $PRINT;

PROMPT=number Sets the line feed count between prompts issued by the
PROMPT, DATA, or INPUT statements to number . The
default value is 1.

PWIDTH=number Sets the printer line width to a character count of number .
The default value for PWIDTH is 132 and the maximum is
152.

REPEAT Sets the REPEAT option. At execution time, Transact
repeats the associated statement sequence until the user
enters one of the following special characters:

] Terminates execution of the current command
sequence and passes control to the �rst statement
in the sequence. However, if there is an active
SET(OPTION) END= label, the block introduced by
label is executed before control is passed to the �rst
statement of the command sequence.

8-218 Transact Verbs

SET

]] Terminates repeated execution of this command
sequence and passes control to command mode
regardless of the command level or subcommand
level. However, if there is an active SET(OPTION)
END= label statement, the block introduced by label
is executed before control is passed to command
mode.

The list register is reset before the current command
sequence is repeated.

The user can enter \REPEAT" and then a command name
during execution to control a loop. This option has the same
e�ect as the REPEAT command quali�er. Information on
this procedure is in Chapter 5 under \Command Quali�ers."

RIGHT Right-justi�es data item values for any subsequent displays
set up by the DISPLAY or OUTPUT statements.

SORT Sets the SORT option. Any listing generated by subsequent
OUTPUT statements is sorted before display. The sort is
performed in the order that the display �elds appear in the
list register. This option has the same e�ect as the SORT
command quali�er. (See \Command Quali�ers" in Chapter
5.)

SUPPRESS Suppress blank lines of data; only the �rst of a series of blank
lines is sent to the line printer.

TABLE Right-justi�es numeric �elds and left-justi�es alphabetic �elds
for display.

TPRINT Sets the TPRINT option. Any displays generated by the
DISPLAY or OUTPUT statements and directed to the
terminal are line printer formatted. This option has the same
e�ect as the TPRINT command quali�er. (See \Command
Quali�ers" in Chapter 5.)

VPLS=item-name
[(subscript)]

Informs Transact that you want to reference the VPLUS
comarea directly. It directs error messages to the window, and
moves the VPLUS comarea to the area in the data register
identi�ed by item-name. The item-name can be subscripted if
an array item is being referenced. (See \Array Subscripting"
in Chapter 3.)

Item-name is the name of a data �eld containing all or part of
the VPLUS comarea, depending on the size of the speci�ed
item. When this option is used as much of the current
VPLUS comarea as will �t in the speci�ed item is moved to
the data register area associated with that item. You can
then examine or change comarea �elds.

A SET(OPTION) VPLS statement must be followed by a
RESET(OPTION) VPLS statement before any Transact
statements can be used to manipulate the forms within the

Transact Verbs 8-219

SET

same Transact system and level. Otherwise, Transact returns
to command mode and issues an error message.

If you plan to open the forms �le and terminal with PROC
statements, you should use a SET(OPTION) VPLS statement
just before you place the terminal in block mode with a call
to VOPENTERM. Reset with a RESET(OPTION) VPLS
statement following the call to VCLOSETERM to return the
terminal to character mode. If you do not call VOPENTERM
or VCLOSETERM directly, or if you do not plan to reference
the comarea directly, you need not use SET(OPTION) VPLS.
Instead, in these cases, use the VCOM parameter of the
PROC statement. (See the PROC verb description.)

If the VPLUS form is already open, you can use this option
in conjunction with a RESET(OPTION) VPLS statement to
retrieve or change comarea values.

For example, you could change the window enhancement in
the VPLUS comarea:

DEFINE(ITEM) COMAREA X(16): <<First eight words, comarea >>

WINDOW-ENH X(1) <<Right byte of eighth word >>

= COMAREA(16);

LIST COMAREA;
...

UPDATE(FORM) *;

SET(OPTION) VPLS=COMAREA;

MOVE (WINDOW-ENH)="K"; <<Half bright, inverse video >>

RESET(OPTION) VPLS;

WIDTH=number Sets the terminal line width to a character count of number .
The default value is 79.

ZERO[E]S Right-justi�es numeric data item values and inserts leading
zeros for any subsequent displays set up by the DISPLAY or
OUTPUT statements.

Examples of SET(OPTION)

This statement aligns the prompt character on column 25, with two blank lines between the
prompt lines.

SET(OPTION) PALIGN25,PROMPT=2;

This statement sorts subsequent OUTPUT listings to the terminal. It suppresses item
headings and suppresses the usually automatic \CONTINUE (Y/N)?" prompt.

SET(OPTION) NOHEAD,SORT,DEPTH=0;

8-220 Transact Verbs

SET

(8) SET(PROPER) \delimiter-string";

SET(PROPER) replaces the default characters that cause the next letter to be upshifted with
the delimiter characters speci�ed in the delimiter string. This statement is used in conjunction
with the PROPER function on the MOVE verb. A maximum of 256 characters can be de�ned
as the delimiter-string . The double quote character (") can be made one of these delimiter
characters by including 2 consecutive double quotes ("") anywhere in the delimiter-string . Use
the RESET(PROPER) verb to reset the delimiter which was set to the default set.

Examples of SET(PROPER)

SET(PROPER) " -;,:""0123456789";

MOVE (NAME) = PROPER((NAME));

Before After

NAME X(12) 1doe'stjoe,p 1Doe'stJoe,P

SET(PROPER) " .&";

MOVE (LNAME) = PROPER("mr.&ms.smith-jones");

Before After

LNAME X(18) Mr.tJohntSmith,jr. Mr.&Ms.Smith-jones

(9) SET(STACK) LIST (fitem-nameg);

f * g

SET(STACK) moves the stack pointer for the list register from the current position to the
one identi�ed by item-name. Transact begins the search at the data item prior to the current
(last) one in the list register and performs a reverse scan to the beginning of the list. Transact
generates an error at execution time if it cannot �nd the data item in the list register. The
scan does not move the stack pointer, which is moved only when the search �nds the �rst
occurrence of the data item. The stack pointer will not be moved if item-name is the current
data item and it occurs only once in the list register. When the stack pointer moves down the
list register, the items above the new current item are removed from the list register. When a
data item has more than one appearance in the list register, each occurrence can be located by
using additional SET(STACK) statements.

You typically use SET(STACK) to manipulate the list register for more than one �le or data
set operation or to rede�ne the data register contents. You can choose to rede�ne the data
register contents for the following reasons:

To transfer values from one data item to another in a di�erent set,

To access sub�elds of a data item by adding several item names in place of the original item
name, or

To manipulate data item arrays.

Examples of SET(STACK)

To move the stack pointer for the list register from the current data item to the item
immediately prior to it, use the following format:

SET(STACK) LIST(*);

Transact Verbs 8-221

SET

The next statement moves the stack pointer back to the item PROD-NO and removes all
items above it. If PROD-NO appears more than once in the list register, the pointer is set to
the �rst occurrence of this item going back down the list; that is, the item nearest the top of
the list register stack.

SET(STACK) LIST(PROD-NO);

(10) SET(UPDATE) LIST(fitem-nameg);

f * g

SET(UPDATE) speci�es that the item-name in the list register and the current value for
item-name in the data register are to be placed in the update register for a subsequent �le or
data set operation using the REPLACE verb. If * is used as the item name, the current item
name is used.

Note A child item value placed in the UPDATE register is overridden by its parent's
value if the parent value was placed in the update register before it.

8-222 Transact Verbs

SYSTEM

SYSTEM

Names the Transact program and any databases, �les, or forms �les that are used by the
program.

Syntax

SYSTEM program-name
�
,de�nition-list

�
;

The SYSTEM statement names the program and describes databases, �les, or forms �les that
the program uses. It overrides the default space allocations that Transact uses. It must be the
�rst statement in the program.

Statement Parts

program-name A 1 to 6 character string of letters or digits that names the program.
Transact stores the output from the compiler in a �le called \IPxxxxxx" where
\xxxxxx" is the program name. program-name is also used to call up the
program for execution when the user enters it in response to Transact/V's
SYSTEM NAME> prompt.

de�nition-list Description of the �les or data sets used during execution. Each de�nition list
describes a �le. Within the de�nition list, the �elds can be in any order and
separated by commas.

BANNER
\text"

Causes the text string to be placed at the top left position on
every page of line printer output generated during execution
of the program.

BASE=base-name1[(["password"][,[mode]

[,[optlock][,[basetype]]]])]

[,base-name2[(["password"][,[mode]

[,[optlock][,[basetype]]]]])]]...''

base-name The name of a database used in the program.
This database has the attributes described in the
TurboIMAGE/V or XL Database Management System
Reference Manual . The base-name1 is termed the home
base and any references in the program to this database
must not include a base quali�er. The name of the home
base is stored in the system variable $HOME.

The BASE description opens the database. The home
base can be opened a second time by repeating its name
in the database list in the SYSTEM statement. This
feature allows two independent and concurrent access
paths to the same detail set without losing path position
in either access. This might be necessary for a secondary
access of a detail set during processing of a primary access
path in the same data set.

Transact Verbs 8-223

SYSTEM

References to data sets in bases other than the home base
must be quali�ed by including the name of the database
in parentheses following the data set name:

set-name(base-name)

If one or more of the following three quali�ers are used,
they must all be enclosed in parentheses.

base-type The oating-point type speci�cation for the database.
The valid types are HP3000 16 and HP3000 32.

HP3000 16 speci�es that the �le requires HP oating
point format. HP3000 32 speci�es that the �le requires
IEEE oating point format. If no type is speci�ed,
HP3000 16 is assumed.

password Used by Transact for opening the database. If no
password is provided, at execution time Transact prompts
with

PASSWORD FOR base-name>

If the user enters an incorrect password, Transact
issues an error message and then prompts again for the
password.

For Transact/iX, up to three password prompts are
issued. If the password is still invalid, the program
will end. In batch mode for both Transact/V and
Transact/iX, if the password is invalid on the �rst
response, the batch job ends.

mode Used by Transact for opening the database. For
Transact/V, this speci�cation overrides any mode given
by the user at execution time in response to the SYSTEM
NAME> prompt. For Transact/iX, this speci�cation
overrides a mode speci�ed by the TRANDBMODE
environment variable. The default is 1.

If dynamic transactions are being performed (Transact/iX
only), DBOPEN mode 2 cannot be used.

For more information about access modes, see \Database
Access" in Chapter 5.

For example, to specify the database STORE to be
opened with the password \MANAGER" in mode 1:

SYSTEM MYPROG,

BASESTORE("MANAGER",1);

8-224 Transact Verbs

SYSTEM

optlock Speci�es whether or not optimized database locking is to
be used. It can be a value of 0 or 1. The default = 0.
(See Chapter 6 for more details.)

0 Tells Transact to always lock unconditionally at
the database level.

1 Tells Transact to lock conditionally at the
optimum level which avoids a deadlock with other
Transact programs.

DATA=data-length, data-count

data-length The maximum 16-bit word size of the data register.
The DATA=data-length speci�cations given in a main
program establish the maximum data register size
used by all called programs and take precedence
over any DATA=data-length speci�cations in called
programs. The default is 1024 16-bit words.

data-count The maximum number of items allowed in the list
register. The DATA=data-count speci�cations
given in a main program do not establish the
number of entries in the list register used by all
called programs nor does it take precedence over
any \DATA=,data-count" speci�cations in called
programs. Default=256 items.

FILE=�le-name1

[([access][(�le-option-list)]

[,[record-length][,[blocking-factor]

[,[�le-size][,[extents][,[initial-allocation]

[,[�le-code]]]]]]])]

[,�le-name2...]...

�le-name The MPE �le name assigned or to be assigned to the
�le. A back-referenced �le name using a leading *" is
permitted.

access One of the following access modes:. READ, WRITE,
SAVE, APPEND, R/W (read/write), UPDATE,
SORT. SORT is identical to UPDATE with the
additional SORT capability. In other words, an
end-of-�le is automatically written into the �le before
the SORT, and the �le is rewound following the
SORT. It is recommended that you generally use
UPDATE rather than READ or WRITE as this access
is required to use either the REPLACE or UPDATE
statements. The default is READ.

�le-option-list Any of the following �elds provided that they do
not conict in meaning: Any of the following �elds
provided that they do not conict in meaning:Any
of the following �elds provided that they do not
conict in meaning: OLD, NEW, TEMP, $STDLIST,

Transact Verbs 8-225

SYSTEM

$NEWPASS, $OLDPASS, $STDIN, $STDINDX,
$NULL, ASCII, CCTL, SHARE, LOCK, NOFILE,
HP3000 16, HP3000 32. (See FOPEN in MPE or
MPE/iX Intrinsics Manual for a detailed explanation
of these options and terms.)

The default is OLD (old �le), binary, no carriage
control, and �le equation permitted.

A temporary MPE �le de�ned for WRITE access
with the option TEMP is purged when Transact exits
if Transact automatically opens and closes the �le.
However, it is not purged when Transact exits if the
CLOSE verb is used programmatically. It is purged
immediately whenever the FILE(CLOSE) verb is used.

HP3000 16 speci�es that the �le requires HP oating
point format. HP3000 32 speci�es that the �le
requires IEEE oating point format. If neither
HP3000 16 or HP3000 32 is speci�ed, HP3000 16 is
assumed.

record-length Record length of records in �le. A positive value
indicates words, a negative value indicates bytes.
Default is byte length required by �le operation.

blocking-factor Blocking factor used to block records. The default is 1
record/block.

�le-size Size of the �le in records. The default is 10000
records.

extents Number of extents used by the �le. The default is 10
extents.

initial-allocation Initial allocation of extents. The default is 1 extent.

�le-code MPE �le code for the �le. The default is 0.

For example, to de�ne a �le with Read/Write access,
40 words per record, a blocking factor of 3 records per
block, and a �le size of 100 records:

SYSTEM FREC,

FILEWORK(R/W,40,3,100);

8-226 Transact Verbs

SYSTEM

In an MPE �le or a KSAM �le, you can then de�ne
the entire record as a parent item, and de�ne
individual �elds as child items. This allows you to
access the entire record by its parent name, and also
refer to individual �elds. For example:

DEFINE(ITEM) RECORD X(80):

ITEM1 X(25) = RECORD(1):

ITEM2 X(30) = RECORD(26):

ITEM3 X(15) = RECORD(56):

ITEM4 X(10) = RECORD(71);

LIST RECORD;

GET(SERIAL) WORK,

LIST=(RECORD);

DISPLAY ITEM1: ITEM2: ITEM3: ITEM4;

DATA(SET) ITEM1: ITEM2: ITEM3: ITEM4;...

FSTORESIZE=formstoresize

formstoresize The number of forms allowed to be stored in the
terminal, speci�ed as a number from �1 to 255. The
2626A terminal can store up to four forms. The
forms directory on the 2624B can contain up to 255
depending on the form size, the type of datacomm
network, and the memory capacity of the individual
terminal.

If formstoresize is 0 to 255, VPLUS automatically
con�gures the 2626A and 2626W terminals to use
datacomm port 1 and removes the HPWORD
con�guration from the 2626W terminal.

If 0 is speci�ed, local form storage is not performed.
VPLUS con�gures the 2626A and 2626W terminals as
explained above.

If �1 is speci�ed, no local form storage is performed.
VPLUS does not change any terminal con�guration,
and either terminal port can be used.

If the FSTORESIZE parameter is not speci�ed, the
FORM'STOR'SIZE �eld in the VPLUS comarea is
set to �1, so that no local form storage is performed.
VPLUS does not change any terminal con�guration,
and either terminal port can be used. See \Local
Form Storage" in Chapter 5 for more information.

KSAM=�le-name1 [(access [(�le-option-list])]

[,�le-name2 ...]

�le-name Name of a KSAM data �le.

Transact Verbs 8-227

SYSTEM

access One of the following access modes: READ, WRITE,
R/W, (read/write), UPDATE, SAVE, APPEND. The
default is READ.

�le-option-list Any of the following �elds provided that they do not
conict in meaning: OLD, $STDLIST, $NEWPASS,
$OLDPASS, $STDIN, $STDINDX, $NULL, ASCII,
CCTL, SHARE, LOCK, NOFILE. (See FOPEN in
the KSAM/3000 Reference Manual for a detailed
explanation of these options and terms.)

Defaults are OLD (old �le), binary, no carriage
control, and �le equation permitted.

OPTION= option For Transact/V, either enable or disable the test
facility for this program execution; option can be
either one of the following:

TEST Enables the TEST facility during
execution of the Transact/V program.

NOTEST Disables the TEST facility during
execution of the Transact/V program.
The default is TEST.

This option is ignored by Transact/iX.

SIGNON= \text" Causes the text string to be displayed as a sign on
message each time the program is executed. For
example:

SYSTEM MYPROG,

SIGNON="Test Version of MYPROG A02.31"

SORT= number Speci�es the number of records in the sort �le. The
default is 10,000.

VPLS=�le-name1[(form-name1[(item-list1)] . . .)] . . .

[,�le-name2[(. . .)] . . .] . . .

�le-name The name of a VPLUS forms �le that is used in the
program. Every forms �le referenced in a Transact
program must be speci�ed in the SYSTEM statement.

form-name The name of a form de�ned within the VPLUS forms
�le. If omitted, the dictionary de�nitions of all the
forms in the speci�ed forms �le are used.

For example, if forms �le CUSTFORM has a
dictionary de�nition, you can specify:

SYSTEM MYPROG,

VPLS=CUSTFORM;

8-228 Transact Verbs

SYSTEM

If not, you must name each form in the forms �le.
For example, assuming CUSTFORM has three forms,
MENU, FORM1, and FORM2; MENU has no �elds,
FORM1 has 3 �elds, and FORM2 has 4 �elds:

SYSTEM MYPROG,

VPLS=CUSTFORM(MENU(),

FORM1(F1,F2,F3),

FORM2(F4,F5,F6,F7));

item-list A list of item names used in the program, in the order
in which they appear on the VPLUS form, which is
in a left to right and top to bottom direction. The
names need not be the same as the names speci�ed for
the �elds by FORMSPEC, but the items must have
the same display lengths as the �elds. If omitted, the
dictionary de�nitions of all the �elds in the speci�ed
form are used.

For example, suppose the �elds in FORM2 are de�ned
in the dictionary:

SYSTEM MYPROG,

VPLS=CUSTFORM

(MENU(),

FORM1(F1,F2,F3),

FORM2);

WORK=work-length, work-count

work-length The maximum 16-bit word size of the work area
containing the match, update, and input registers.
This work area is used by Transact/V to set
up temporary values used during execution of
the program. The default is 256. Transact/iX
automatically allocates enough room for all temporary
variables, so the work-length option has no a�ect on a
Transact/iX program.

work-count The maximum number of entries allowed in the work
area for Transact/V. The default is 64. Transact/iX
automatically allocates entries for the work area, so
work-count has no e�ect on a Transact/iX program.

WORKFILE=number Speci�es the number of records in the work �le. The
default is 10,000 records. This option replaces the
SORT=number option which remains available for
backward compatibility.

Transact Verbs 8-229

UPDATE

Modi�es a single entry in a KSAM or MPE �le or in a data set, or modi�es a VPLUS form.

Syntax

UPDATE
�
(FORM)

�
destination

�
,option-list

�
;

UPDATE modi�es data items that are not key search or sort items in a master or detail set
entry. The item to be updated must have been retrieved by a prior FIND or GET statement.
When used with the FORM modi�er, UPDATE modi�es and redisplays a currently displayed
VPLUS form.

In versions of Transact/iX A.04.00 and later, UPDATE modi�es key search or sort items in
a master or detail data set entry when critical item update is enabled for the database. The
UPDATE verb does not use the update register. The new value must be placed in the data
register before UPDATE is executed. The value can be retrieved from a user, or from a data
set or �le.

To update a non-key value with UPDATE, do the following:

1. Fetch the record or entry to update and place it in the data register. You can do this with
a GET or FIND statement. If you want to update several entries, updating the same item
in each entry with a di�erent value, use a FIND statement with a PERFORM= option that
calls a routine containing the UPDATE statement. If you want to update a single entry,
use a GET statement.

2. Place the new value in the data register. You can get the new value from a data set
or �le, or from the user. If you are getting a value from the user, a PROMPT(SET) or
DATA(SET) statement is useful, since it allows the user to choose whether to leave an
existing value in the data register or enter a new value.

3. Use the UPDATE statement to write the new values to the entry or record. Since
UPDATE always updates the last entry retrieved, it needs no access modi�ers. You must
include the names of any items to be updated in a LIST= option.

If you want to update several entries, updating the same data item in each entry with the
same value, you should use the REPLACE statement rather than the UPDATE statement.
(See the REPLACE verb description.)

Note Before using UPDATE, you must �rst set the SYSTEM statement access
mode to \UPDATE".

8-230 Transact Verbs

UPDATE

Statement Parts

FORM Causes this verb to transfer data from the data register to a VPLUS form
displayed at a VPLUS compatible terminal by PUT(FORM) or GET(FORM). If
the requested form is not currently displayed on the terminal, an error results. If
this modi�er is not speci�ed, the destination must be a data set or �le.

destination The name of a �le, data set, or form to be updated.

If destination identi�es a data set that is not in the home base as de�ned in the
SYSTEM statement, the base name must be speci�ed in parentheses as follows:

set-name(base-name)

In an UPDATE(FORM) statement, the destination must identify a form in a
forms �le that was named in the SYSTEM statement. For UPDATE(FORM),
destination can be speci�ed as any of the following:

form-name Name of a form to be updated by UPDATE(FORM).

(item-name
[(subscript)])

Name of an item whose data register location contains the name
of the form to be updated by UPDATE(FORM). The item-name
can be subscripted if an array item is referenced. (See \Array
Subscripting" in Chapter 3.)

* The form identi�ed by the \current" form name; that is, the form
name most recently speci�ed in a statement that references a
VPLUS form. Note that this does not necessarily mean the form
currently displayed.

& The form identi�ed as the \next" form name; that is, the form
name speci�ed as the \NEXT FORM" in the FORMSPEC
de�nition of the current form.

option-list The LIST= option is always available. Other options, described below, can be
used only with or only without the FORM modi�er.

LIST=
(range-list)

The list of items from the list register to be used for the
UPDATE operation. For data sets, no child items can be
speci�ed in the range list. For UPDATE(FORM) only, items in
the range list can be child items.

If the LIST= option is omitted with any modi�er except
UPDATE(FORM), all the items in the list register, and either in
the SYSTEM statement or the data dictionary for the form are
used.

The LIST= option should not be used when specifying an
asterisk (*) as the source.

For all options of range-list , the data items selected are the result
of scanning the data items in the list register from top to bottom,
where top is the last or most recent entry. (See Chapter 4 for
more information on registers.)

The LIST= option has a limit of 64 individually listed item
names. A range limitation of 255 items for TurboIMAGE data
sets and 128 items for VPLUS forms also exists.

Transact Verbs 8-231

UPDATE

All item names speci�ed must be parent items when not using the
FORM modi�er. The options for range-list and the records or
forms they update include the following:

(item-name) A single data item.

(item-nameX:
item-name)

All the data items in the range from item-nameX
through item-nameY . In other words, the
list register is scanned for the occurrence of
item-nameY closest to the top of the list register.
From that entry, the list register is scanned for
item-nameX . All data items between are selected.
An error is returned if item-nameX is between
item-nameY and the top of the list register.

Duplicate data items can be included or excluded
from the range, depending on their position on
the list register. For example, if range-list is A:D
and the list register is as shown,

then data items A, B, C, D, and D are selected.
For database �les, an error is returned if
duplicate entries are selected.

If item-nameX and item-nameY are marker
items (see the DEFINE(ITEM) verb), and if
there are no data items between the two on the
list register, no database access is performed.

(item-nameX:) All data items in the range from the last entry
through the occurrence of item-nameX closest to
the top of the list register.

(:item-nameY) All data items in the range from the occurrence
of item-nameY closest to the top through the
bottom of the list register.

(item-nameX,
item-nameY,
...
item-nameZ)

The data items are selected from the list register.
For databases, data items can be speci�ed in any
order. For KSAM and MPE �les or for VPLUS
forms, data items must be speci�ed in the order
of their occurrence in the physical record or form.
This order need not match the order of the data
items on the list register. Do not include child

8-232 Transact Verbs

UPDATE

items in the list unless they are de�ned in the
VPLUS form. This option incurs some system
overhead.

(@) Speci�es a range of all data items of �le-name as
de�ned in a dictionary. The range-list is de�ned
as item-name1:item-namen for the �le.

(#) Speci�es an enumeration of all data items of
�le-name as de�ned in the data dictionary. The
data items are speci�ed in the order of their
occurrence in the physical record or form as
de�ned in the dictionary. This order need not
match the order of the data items in the list
register.

() A null data item list. That is, access the �le or
data set, but do not transfer any data.

Options Available Without the Form Modifier

ERROR=label
([item-name])

Suppresses the default error return that Transact normally takes. Instead,
the program branches to the statement identi�ed by label , and Transact sets
the list register pointer to the data item item-name. Transact generates an
error at execution time if the item cannot be found in the list register. The
item-name must be a parent.

If you specify no item-name, as in ERROR=label ();, the list register is reset
to empty. If you use an *" instead of item-name as in ERROR=label (*);,
then the list register is not changed. For more information, see the discussion
\Automatic Error Handling" in Chapter 7.

LOCK Locks the speci�ed �le or database for the duration of the UPDATE. For
databases, if this option is not speci�ed on UPDATE when the database has
been opened with mode 1, then automatic locking will execute the lock.

For a KSAM or MPE �le, if LOCK is not speci�ed on UPDATE but is
speci�ed for the �le in the SYSTEM statement, then the �le is locked before
each entry is retrieved, remains locked while the entry is processed by any
PERFORM= statements, but is unlocked briey before the next entry is
retrieved.

Including the LOCK option overrides SET(OPTION) NOLOCK for the
execution of the UPDATE verb.

For transaction locking, you can use the LOCK option on the LOGTRAN
verb instead of the LOCK option on UPDATE if SET(OPTION) NOLOCK is
speci�ed.

See \Database and File Locking" in Chapter 6 for more information on
locking.

NOMSG The standard error message produced by Transact as a result of a �le or
database error is to be suppressed.

Transact Verbs 8-233

UPDATE

STATUS Suppresses the actions de�ned in Chapter 7 under \Automatic Error
Handling." This option allows you to program your own error handling
procedures. When STATUS is speci�ed, the e�ect of an UPDATE statement
is described by the value in the 32-bit integer status register:

Status
Register Value

Meaning

0 The UPDATE operation was successful.

�1 A KSAM or MPE end-of-�le condition occurred.

> 0 For a description of the. condition that
occurred, refer to database or MPE/KSAM �le
system error documentation that corresponds to
the value.

See \Using the STATUS Option" in Chapter 7 for details on how to use the
STATUS data.

Options Available Only With the Form Modifier

APPEND Appends the next form to the speci�ed form, overriding any freeze or append
condition speci�ed for the form in its FORMSPEC de�nition. APPEND sets
the FREEZAPP �eld of the VPLUS comarea to 1.

CLEAR Clears the previously displayed form when the requested form is displayed,
overriding any freeze or append condition speci�ed for the form in its
FORMSPEC de�nition. CLEAR sets the FREEZAPP �eld of the VPLUS
comarea to zero.

CURSOR=
�eld-name
jitem-name
[(subscript)]

Positions the cursor within the speci�ed �eld. Field-name identi�es the
�eld and the item-name identi�es the item which names the �eld. The
item-name can be subscripted if an array item is being referenced. (See
\Array Subscripting" in Chapter 3.)

Note To ensure that the cursor will be positioned on the correct �eld, you must
have a one to one correspondence between the �elds de�ned in VPLUS.
Transact determines where to position the cursor by counting the �elds.

FEDIT Performs any �eld edits de�ned in the FORMSPEC de�nition immediately
before redisplaying the form.

FKEY=
item-name
[(subscript)]

Moves the number of the function key pressed by the operator in this
operation to a 16-bit integer I(5,,2) item-name. The function key number
is a digit from 1 through 8 for function keys f1 through f8, or zero for the
ENTER key. Transact determines which function key was pressed from the
value of the �eld LAST-KEY in the VPLUS comarea. The item name can be
subscripted if an array item is being referenced. (See \Array Subscripting" in
Chapter 3.)

Fn=label Control passes to the labeled statement if the operator presses function key n.
n can have a value of 0 through 8, inclusive, where zero indicates the ENTER

8-234 Transact Verbs

UPDATE

key. This option can be repeated as many times as necessary in a single
UPDATE(FORM) statement.

FREEZE Freezes the speci�ed form on the screen and appends the next form to
it, overriding any freeze or append condition speci�ed for the form in its
FORMSPEC de�nition. FREEZE sets the FREEZAPP �eld of the VPLUS
comarea to 2.

INIT Initializes the �elds in a VPLUS form to values de�ned by the forms design
utility FORMSPEC and perform any Init Phase processing before transferring
data.

WAIT=[Fn] Does not return control to the program until the terminal user has pressed
function key n. n can have a value of 0 through 8, where 1 through 8 indicate
the keys f1 through f8 and 0 indicates the ENTER key. If Fn is any key other
than f8, the f8 exit function is disabled.

If the user presses a di�erent function key, Transact sends a message to the
window saying which key is expected.

If Fn is omitted, then UPDATE(FORM) waits until any function key is
pressed.

WINDOW=
([�eld,]
message)

Places a message in the window area of the screen and, optionally, enhances a
�eld on the form. The �elds �eld and message can be speci�ed as follows:

�eld Either the name of the �eld to be enhanced, or an
item-name[(subscript)] within parentheses that will contain
the data item of the �eld to be enhanced at run time.

message Either a \string" enclosed in quotation marks that speci�es
the message to be displayed, or an item-name[(subscript)]
within parentheses containing the message string to be
displayed in the window.

Examples

This example prompts the user for the values required to �nd a record. After it is retrieved,
the user is prompted for the new quantity for the item and the record is updated. Note that
the LIST= option for both the retrieval and the update only need specify the item to be
updated.

PROMPT(PATH) INV-NMBR ("INVOICE NUMBER");

PROMPT(MATCH) ITEM-NUM ("ITEM NUMBER");

LIST ITEM-QTY;

GET(CHAIN) ORDER-LINE,

LIST=(ITEM-QTY);

DISPLAY;

DATA(SET) ITEM-QTY

("Enter new quantity or press return to keep old quantity");

UPDATE ORDER-LINE,

LIST=(ITEM-QTY);

Transact Verbs 8-235

UPDATE

The next example is similar, except that it allows the user to update all the entries in a chain,
rather than a single entry.

PROMPT(PATH) INV-NMBR ("INVOICE NUMBER");
PROMPT(MATCH) ITEM-NUM ("ITEM NUMBER");

LIST ITEM-QTY;

FIND(CHAIN) ORDER-LINE,

LIST=(ITEM-QTY),

PERFORMUPDATE-QTY;...
UPDATE-QTY:

DISPLAY;

DATA(SET) ITEM-QTY

("Enter new quantity or press return to keep old quantity");

UPDATE ORDER-LINE,

LIST=(ITEM-QTY);

RETURN;

The following example uses marker items to declare a range. If a key item is involved, you
should log the attempt. STATUS must be used to capture the error of attempting to update a
key or sort item:

UPDATE DETAIL-SET,

LIST=(MARKER1:MARKER2),

STATUS; STATUS;

IF STATUS <> 0 THEN <<Error, check it out >>

IF STATUS <> 41 THEN <<Unexpected error >>

GO TO ERROR-CLEANUP <<Log and complete update >>

ELSE

DO

PUT LOG-FILE,

LIST=(MARKER1:MARKER2);

DISPLAY "key update attempted";
DOEND;

The next example uses an UPDATE(FORM) statement to update the current form.
It highlights the item identi�ed in FIELD-ENH and sends the message contained in
WINDOW-MSG to the window area of the form:

DEFINE(ITEM) FIELD-ENH U(16): <<Contains name of field in VPLUS form.>>

WINDOW-MSG U(72); <<Contains message for VPLUS window. >>...
MOVE (FIELD-ENH) = "FIELD1";

MOVE (WINDOW-MSG) = "This field must be numeric";...
UPDATE(FORM) *,

WINDOW=((FIELD-ENH),

(WINDOW-MSG));

In this particular case, as a result of the prior MOVE statements, the UPDATE statement
highlights FIELD1 in the current form and displays the message \This �eld must be numeric"
in the window area of that form.

8-236 Transact Verbs

WHILE

WHILE

Repeatedly tests a condition clause and executes a simple or compound statement while the
condition is true.

Syntax

WHILE condition-clause statement;

WHILE causes Transact to test a condition-clause. The condition clause includes one or more
conditions, each made up of a test-variable, a relational-operator , and one or more values ;
multiple conditions are joined by AND or OR. If the result of that test is true, then the
statement following the condition is executed. Then the condition clause is tested again and
the process repeated while the result of the test is true. When the result of the test is false,
control passes to the statement following the WHILE statement .

Statement Parts

condition-
clause

One or more conditions, connected by AND or OR, where

AND A logical conjunction. The condition clause is true if all of the
conditions are true; it is false if one of the conditions is false.

OR A logical inclusive OR. The condition clause is true if any of
the conditions is true; it is false if all of the conditions are
false.

Each condition contains a test-variable, relational-operator , and one or more
values in the following format:

test-variable relational-operator value [,value] . . .

test-variable Can be one or more of the following:

(item-name
[(subscript)])

The value in the data register that corresponds to item-name.
The item-name can be subscripted if an array item is being
referenced. (See \Array Subscripting" in Chapter 3.)

[arithmetic
expression]

An arithmetic expression containing item names and/or
constants. The expression is evaluated before the comparison
is made. (See the LET verb for more information.)

Note An arithmetic-expression must be enclosed in square brackets ([]).

EXCLA-
MATION

Current status of the automatic null response
to a prompt set by a user responding with
an exclamation point (!) to a prompt.
(See \Data Entry Control Characters" in
Chapter 5.) If the null response is set, the

Transact Verbs 8-237

WHILE

EXCLAMATION test variable is a positive
integer; if not set, it is zero. The default is 0.

FIELD Current status of FIELD command quali�er.
If a user quali�es a command with FIELD,
the FIELD test variable is a positive integer.
Otherwise, it is a negative integer. The
default is < 0.

INPUT The last value input in response to the
INPUT prompt.

PRINT Current status of PRINT or TPRINT
command quali�er. If a user quali�es a
command with PRINT, the PRINT test
variable is an integer greater than zero and
less than 10; if a command is quali�ed with
TPRINT, PRINT is an integer greater than
10; if neither quali�er is used, PRINT is a
negative integer. The default is <0.

REPEAT Current status of REPEAT command
quali�er. If a user quali�es a command with
REPEAT, the REPEAT test variable is a
positive integer; otherwise, REPEAT is a
negative integer. The default is < 0.

SORT Current status of SORT command quali�er.
If a user quali�es a command with SORT, the
value of the SORT test variable is a positive
integer; otherwise SORT is a negative integer.
The default is < 0.

STATUS The value of a 32-bit integer register set by
the last data set or �le operation, data entry
prompt, or external procedure call.

relational-
operator

Speci�es the relation between the test-variable and the values. It can be one
of the following:

= equal to
<> not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

value The value against which the test-variable is compared. The value can be an
arithmetic expression, which will be evaluated before the comparison is made.
The allowed value depends on the test variable, as shown in the comparison
below. Alphanumeric strings must be enclosed in quotation marks.

If the
test-variable is:

The value must be:

8-238 Transact Verbs

WHILE

item-name An alphanumeric string, a numeric value, an arithmetic
expression, a reference to a variable as in (item-name), or a
class condition as described below.

[arithmetic
expression]

A numeric value, an arithmetic expression, or an expression,
or a reference to a variable as in (item-name).

INPUT An alphanumeric string.

EXCLA-
MATION

A positive or negative integer, or an
expression.

FIELD
PRINT
REPEAT
SORT

STATUS A 32-bit integer or expression.

Alphanumeric strings must be enclosed in quotation marks. If more than one
value is given, then:

The relational-operator can be only \=" or \<>".

When the relational operator is \=", the action is taken if the test-variable
is equal to value1 OR value2 OR . . . valuen. In other words, a comma in a
series of values is interpreted as an OR.

When the relational operator is \<>", the action is taken if the
test-variable is not equal to value1 AND value2 AND . . . valuen.

In other words, a comma in a series of values is interpreted as an AND
when the operator is \<>".

When the test variable is an item-name, the value can be one of the following
class conditionals, which are used to determine whether a string is all numeric
or alphabetic. The operator can only be \=" or \<>".

NUMERIC This class condition includes the ASCII characters 0 through
9 and a single operational leading sign. Leading and trailing
blanks around both the number and sign are ignored.
Decimal points are not allowed in NUMERIC data. This
class test is only valid when the item has the type X, U, 9,
or Z, or when the item is in the input register.

ALPHABETIC This class condition includes all ASCII native language
alphabetic characters (upper and lowercase) and space. This
class test is only valid for item names of type X or U.

ALPHABETIC-
LOWER

This class condition includes all ASCII lowercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

ALPHABETIC-
UPPER

This class condition includes all ASCII uppercase native
language alphabetic characters and space. This class test is
only valid for item names of type X or U.

statement Any simple or compound Transact statement; a compound statement is one or
more statements bracketed by a DO/DOEND pair.

Transact Verbs 8-239

WHILE

Order of Evaluation

When complex conditions are included, the operator precedence is:

Arithmetic expressions are evaluated.
Truth values are established for simple relational conditions.
Truth values are established for simple class conditions.
Multiple value conditions are evaluated.
Truth values are established for complex AND conditions.
Truth values are established for complex OR conditions.

Parentheses can be used to control the order of precedence when conditional clauses are being
evaluated. In multiple value conditions, evaluation terminates as soon as a truth value is
determined.

Examples

WHILE (SUB-TOTAL) >= 0

DO

GET(CHAIN) ORDERS;

.

.

.

LET (SUB-TOTAL)=(SUB-TOTAL) - (OUT-BAL);

DOEND;

WHILE (BALANCE) < 0 AND STATUS 0

DO

GET(CHAIN) CUST-DETAIL,STATUS;

LET (BALANCE) = (BALANCE) + (AMOUNT);

DOEND;

WHILE (PART-NO-PREFIX) <> (PROTOTYPE),(DEVELOPMENT)

GET(CHAIN) PART-DETAIL,STATUS;

8-240 Transact Verbs

WHILE

The next example sorts the entries in data set ORDER-DET in primary sequence by
ORD-NO and in secondary sequence by PROD-NO. As it sorts, it passes the sorted entries to
the PERFORM statements at the label DISPLAY to be displayed in sorted order.

SORT-FILE:

LIST ORD-NO:

PROD-NO:

DESCRIPTION:

QTY-ORD:

SHIP-DATE:

FIND(SERIAL) ORDER-DET,

LIST=(ORD-NO:SHIP-DATE),

SORT=(ORD-NO,PROD-NO),

PERFORMDISPLAY;

.

.

DISPLAY:

DISPLAY "Order List by Product Number", LINE2:

ORD-NO, NOHEAD, COL5:

PROD-NO, NOHEAD, COL20:

QTY-ORD, NOHEAD, COL35:

SHIP-DATE, NOHEAD, COL50;

Transact Verbs 8-241

9

Running Transact

A Transact program must be compiled before it can be executed. On MPE V systems, the
Transact/V compiler must convert the source code into intermediate processor code (p-code)
which is interpreted by the Transact/V processor at run time. On MPE/iX systems, the
Transact/iX compiler generates a native mode program �le. The Transact/V compiler and
processor may be used in compatibility mode on MPE/iX systems.

This chapter explains how to compile and run Transact programs using Transact/V and
Transact/iX, including

Compiler commands
Program segmentation
Reserved �le names
The Transact/V compiler
Executing Transact/V programs
The Transact/iX compiler
Controlling Transact/iX program execution
Compiling and executing Transact/iX programs
Compiler listings

The key di�erences between Transact/V and Transact/iX are detailed in Appendix B, \Native
Mode Transact/iX Migration Guide."

Running Transact 9-1

Compiler Commands

You can place any of the following commands between any two statements in the source
program to control the compiled output, to conditionally compile blocks or code, or to control
which data dictionary is used. Because these commands are not language statements, do not
terminate them with a semicolon.

Compiler Output Commands

!COPYRIGHT

("text-string")
Causes the compiler to place the speci�ed text-string in the �rst record
of the code �le as a copyright notice. The text-string can be up to 500
characters long. This command can only be speci�ed once; usually, it
should follow the SYSTEM statement.

!INCLUDE (�le-name) Causes the compiler to include the Transact statements from a
speci�ed source �le (�le-name) that is not the source �le being
compiled. The �le-name statements are included at the point in the
listing where !INCLUDE appears and are compiled with the main
source �le. The �le-name can be a fully quali�ed name with �le group
and account. Up to 5 �les can be nested with !INCLUDE commands.

!LIST Writes subsequent source statements to the list �le. If LIST is
speci�ed in response to the CONTROL> prompt, !LIST has no e�ect.

!NOLIST Suppresses the listing of subsequent source statements. If NOLIST is
speci�ed in response to the CONTROL> prompt, !NOLIST has no
e�ect.

!PAGE Causes the compiler to skip to the top of the next page on the listing.

!SEGMENT

[("text-string")]
Causes the compiler to segment the program and the resulting
code �le at this point in the source �le. The compiler displays the
speci�ed text-string on TRANOUT when it processes the !SEGMENT
command. The text string can be up to 500 characters long. The
discussion of segmentation later in this chapter tells why and how to
segment programs.

Conditional Compilation Commands

There are 10 conditional compilation switches that can be set to ON or OFF by the !SET
compiler command. The switches can then be queried by the !IF compiler command, and
compilation of the following block of code will depend on the value of the switch. The end of
the conditional block is marked by !ELSE or !ENDIF.

The following compiler commands are used to control conditional compilation:

!SET Xn{ON/OFF} Sets the compilation switch to ON or OFF. The default is OFF. Xn is
any member of the set X0, X1, X2, X3, X4, X5, X6, X7, X8, and X9.

!IF Xn={ON/OFF} Queries the named switch to determine its value. If the condition is
true, the following block of code is compiled. If the condition is false,
the following block is not compiled and control passes to the next
!ELSE or !ENDIF.

!ELSE Marks the beginning of a block of code that will or will not be
compiled, depending on the condition of the preceding !IF. If the

9-2 Running Transact

condition is false, the following code is compiled. If the condition
is true, the following code is not compiled. This optional command
allows you to de�ne an \either-or" situation, in which either one block
of code or another is compiled, depending on the value of a switch.

!ENDIF Terminates the inuence of an !IF. This command is required if an !IF
is used.

Other compiler commands can occur between !IF and !ELSE or !ENDIF.

For example,

!SET X1=ON

. . .

!IF X1=ON

DISPLAY "THIS LITERAL WILL BE DISPLAYED BECAUSE X1 IS ON";

!SET X2=OFF

!ELSE

DISPLAY "THIS LITERAL WILL BE DISPLAYED IF X1 IS OFF";

!ENDIF

In addition to the switches X0-X9, there is an eleventh switch, XL, which is set automatically
to OFF when code is compiled with Transact/V and to ON when code is compiled with
Transact/iX. This switch can be tested with the !IF command to control compilation. For
example:

!IF XL=ON

SYSTEM MYPROG, << Compile these lines if using Transact/iX. >>

BASE=MYBASE(,,,HP3000_16),

FILE=MYFILE((HP3000_16));

!ELSE
SYSTEM MYPROG, << Compile these lines if using Transact/V. >>

BASE=MYBASE,

FILE=MYFILE;

!ENDIF

System Dictionary Compiler Commands

The default data dictionary used by Transact is Dictionary/V. If you want to access System
Dictionary, use the following compiler commands:

!SYSDIC[(dictionary.group.
account)]

Causes the compiler to use the named System Dictionary to
resolve all forms �les, forms, �le de�nitions, and data items
not de�ned in DEFINE statements. Defaults to SYSDIC in
logon group and account. If System Dictionary is to be used,
this command is required and it must be the �rst System
Dictionary command included in the program.

!NOSYSDIC Ends access to System Dictionary and returns to Dictionary/V.

!DOMAIN[(domain)] Names the System Dictionary domain to be used. Defaults to
common domain.

Running Transact 9-3

!VERSIONSTATUS[(P/T/A)] Refers to the version to be used (production, test, or archive).
Defaults to P (production version).

!VERSION[(version)] Names the version to be used. Defaults to production version.
This parameter overrides the VERSIONSTATUS parameter.

!SCOPE[(scope[,
"password"])]

Names the scope and the password to be used. Defaults to DA
scope and prompting for the password.

You can change System Dictionary, DOMAIN, VERSIONSTATUS, VERSION, or SCOPE in
the middle of compilation by reissuing the appropriate compiler commands in the Transact
source. System Dictionary compiler commands can go between statements and even within
one statement|the SYSTEM statement (see example below). All of the System Dictionary
commands that are used to e�ect a single change should appear contiguously. Comments
should precede or follow the entire group of commands.

The command !NOSYSDIC causes the compiler to end access to the System Dictionary and
return to using Dictionary/V for any following data items not de�ned in the program.

For example, if you want to change domains while extracting forms-�le de�nitions, you can
embed compiler commands in the SYSTEM statement as follows:

!SYSDIC(SYSDIC.PUB.SYS)

!SCOPE (Transact,"password")

SYSTEM APPL1, VPLS = FORMF1,FORMF2, <--uses common domain

!DOMAIN(TEST)

FORMF3, <--uses test domain

!NOSYSDIC

FORMF4; <--uses Dictionary/V

9-4 Running Transact

Program Segmentation

The Transact/V compiler produces compact p-code. This p-code is placed on the process
stack at execution time and therefore a�ects the size of the stack. Even though the Transact
p-code is compact, large programs may produce so much executable p-code that the process
stack becomes too large for the operating environment. Some programs produce a p-code �le
so large that the process stack cannot contain the p-code.

You can solve this problem by segmenting your program. Transact allows you to divide your
program into as many as 126 separate segments.

If you choose to segment your program, these segments can be overlaid in the processor stack
in memory. In addition to the root segment (segment 0), which is always in memory, only
the currently executing segment needs to be on the memory stack. When control transfers
to another segment, the new segment can overlay the segment currently in memory. This
technique allows the processor to execute within a smaller stack size than the size needed by
an entire program.

You divide a program into segments by including the !SEGMENT compiler command in
your source code wherever you want a new segment to start. You can place this command
between any two Transact statements. However, you should exercise judgement about where
you segment your program. For example, you should not segment within a loop construct.
And, for example, when a FIND or OUTPUT statement requires a PERFORM block, the
statement and the PERFORM block should be within the same segment. Program control
cannot automatically cross segment boundaries, unless you speci�cally de�ne entry points or
use command structures.

One way to force Transact to cross segment boundaries is to use a GO TO or PERFORM
statement to transfer control to a program control label in a di�erent segment and to de�ne
that label as an entry point. Entry point labels are necessary for transfers into any segment
other than your main program segment (segment 0, the \root" segment).

You de�ne a label as an entry point with a DEFINE(ENTRY) statement. Labels so de�ned
are global to your program. That is, they can be referenced from outside the segment in
which they appear. Labels de�ned within a segment are local to that segment.

Another way to control the use of segments is with command labels. When a user enters a
command, control transfers to the associated command label. As far as the user is concerned,
it does not matter in which segment a command label is coded. When the user speci�es a
particular command label identifying a particular sequence, the Transact processor makes sure
the segment containing that sequence is loaded into memory, if it is not there already.

The following information describes exactly how segmentation a�ects data items and
command or program labels.

All command and subcommand labels are global to the program in which they are declared.
That is, you can reference them from any segment. They must be unique within the entire
program.

All program control labels and data items declared before the �rst !SEGMENT command
are global to the program and can be referenced from any point.

Any program control label or data item declared after a !SEGMENT command is local to
that segment. A data item of the same name can be declared in another segment and its
separate de�nition is maintained.

Running Transact 9-5

If an item is de�ned in a data dictionary, but not in a DEFINE(ITEM) statement, it must
be referenced in the root segment in order to be used in any segment. If the program
references a child item that is de�ned in the data dictionary, then the parent must be
referenced either in the root segment or in the same segment as that in which the child is
referenced.

If you use the compile option DEFN in a segmented program, the compiler produces a list of
the e�ective ITEM de�nitions at the end of each segment.

When using local items in a segmented program, you need to explicitly clear the list, match,
and update registers at the end of the segment. Transact normally checks them when it
loads a new segment and issues a warning message if it �nds items. It does not clear them.
Furthermore, if you compile your program with the compile option OPTS, Transact does not
check the registers for local items. If items local to one segment remain in these registers
when another segment is executed, they may cause your program to malfunction or even
abort.

In addition to the speci�c considerations discussed above, you should always consider the
following general rules when segmenting your programs:

Stay in one segment for as long as possible. And, when you leave a segment, stay out for as
long as possible.

Try to de�ne segments of uniform size since stack space is allocated for the largest segment.

Put any routines that are used by many segments in the main (root) segment since it always
resides in memory along with whatever other segments happen to be loaded. However, try
to minimize the size of this segment as well.

Reserved File Names

Transact uses the following �les. These �le names must not be used in a Transact program or
in a �le equation while Transact is running. Any �le using the following �le-name conventions
could be overwritten without warning when Transact is used.

File Name Purpose

IPxxxxxx p-code �le

ITxxxxxx Trandebug �le (version A.04.00 and earlier)

IUxxxxxx Trandebug �le (version A.04.02 and later)

OUTPUT Used internally by Transact

where: xxxxxx is the SYSTEM name of the Transact program.

For example:

:file output=myfile

:tranxl myfile

When tranxl is executed, myfile will be overwritten.

9-6 Running Transact

The Transact/V Compiler

This section explains how to run the Transact/V compiler under MPE V and MPE/iX
compatibility modes and describes the control options you can choose. It also describes a
compiler listing, tells how you can control listings, discusses program segmentation, and
describes how to control input sources to and output destinations from the compiler.

Figure 9-1 illustrates the steps used to compile and run a Transact program under MPE V.

Figure 9-1. Compiling and Executing a Transact Program under MPE V

You create Transact source programs using EDIT/3000 or another text editor. The source
code �le can be either numbered or unnumbered. Source statements are limited to 72
characters per line and can span multiple lines.

You request the Transact compiler to translate the source code into p-code with the following
command:

:RUN TRANCOMP.PUB.SYS

Running Transact 9-7

When you are running interactively at a terminal and responding to prompts, the compiler
prompts for the name of the �le containing the Transact source code:

SOURCE FILE> Enter the �le name under which the source code was saved.

LIST FILE> Enter a carriage return to direct the listing to your terminal ($STDLIST).
You can direct the listing to a line printer by responding with LP or you
can suppress the listing altogether by responding with NULL. These
are the more common responses. For other possible responses, see the
discussion of \Controlling Output Destinations from the Compiler."

The compiler will then prompt you to specify which control options are to be applied to the
translation:

CONTROL> Respond to this prompt by entering one or more of the following options
separated by commas. Any option can be preceded by NO to reverse its
e�ect.

LIST Generates a listing of the compiled source code. The default is
LIST.

DICT References a data dictionary (either Dictionary/V or System
Dictionary) to resolve data item de�nitions. The default is
DICT.

When this option is in e�ect, Transact uses Dictionary/V by
default. If you want to use System Dictionary, use the dictionary
commands described later in this chapter.

CODE Creates the p-code �le that is executed by the Transact
processor. The p-code �le is created only if no errors occur
during compilation. (See option XERR.) The default is CODE.

ERRS Lists compilation errors on $STDLIST, even if you direct a
listing elsewhere. The default is ERRS.

CHCK Causes Transact to check that all items referenced have been put
in the LIST register by either a LIST or PROMPT statement.
A warning at the end of each segment is generated for all
items that were not put in the LIST register. The default is
NOCHCK.

Note The use of the CHCK option does not guarantee that all run-time errors will
be eliminated for items not in the LIST register. The compiler does not know
the order of execution. This compiler option will only notify the programmer
of items that are never used in a LIST or PROMPT statement within the
segment the items are referenced.

DEFN Produces a listing of data-item de�nitions as part of the compiler
list output. The list covers all data items de�ned in your source
code and in a data dictionary. If LIST(AUTO) is included in
your program, the compiler listing includes the name and relative
list register position of each item placed in the list register.

The location of the items in the listing depends on the form of
LIST(AUTO) used and on whether the program is segmented.

9-8 Running Transact

For LIST(AUTO) �lename , the items are always listed
right after the verb. For LIST(AUTO)@ in single segment
programs, items are listed at the end of the program listing.
For LIST(AUTO)@ in a multiple segment program, items are
listed at the end of each segment, except that items in the root
segment are listed at the end of the program. The default is
NODEFN.

OBJT Produces a listing of the p-code. The default is NOOBJT.

OPT@ Causes Transact not to store heading text, edit text, or
entry/prompt text of data items that are de�ned in a data
dictionary and are being used in the program to be compiled.
This optimizes the tables in the p-code �le so that the data
segment stack is reduced at execution time. This option is the
same as specifying OPTE, OPTH, and OPTP. If conicting
control options are speci�ed, then the last control option is in
e�ect. For example: OPT@,NOOPTH eliminates all text except
the heading. In contrast, NOOPTH,OPT@ eliminates all text.
See the option descriptions below for more information regarding
the individual options. Appendix C, \Optimizing Transact/V
Applications," provides additional information on this option
in conjunction with data stack optimization. The default is
NOOPT@.

OPTE Causes Transact not to store edit text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTE option should not be used if the edit mask
from a data dictionary is needed in the program. Appendix C
provides additional information on this option in conjunction
with data stack optimization. The default is NOOPTE.

OPTH Causes Transact not to store heading text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTH option should not be used if the data
item's heading text from a data dictionary is needed in the
program. Appendix C provides additional information on this
option in conjunction with data stack optimization. The default
is NOOPTH.

OPTI Causes Transact not to store the text name of the data item
de�ned using DEFINE(ITEM) with OPT option in the program.

Note that unlike OPT@, OPTE, OPTH, and OPTP options for
data items de�ned in a data dictionary, OPTI requires OPT to
be used with DEFINE(ITEM). This optimizes the tables in the
p-code �le so that the data segment stack is reduced at execution
time. Note also that the OPTI option should not be used if the
data item names are needed for prompt strings, display item

Running Transact 9-9

headings, SET(KEY) lists, and LIST= constructs. Appendix C
provides additional information on this option in conjunction
with data stack optimization. The default is NOOPTI.

OPTP Causes Transact not to store prompt text of data items that are
de�ned in a data dictionary and are being used in the program
to be compiled. This optimizes the tables in the p-code �le so
that the data segment stack is reduced at execution time.

Note that the OPTP option should not be used if the data item
names are needed for prompt strings and LIST= constructs. In
the absence of the prompt string from a dictionary, the item
name is used for prompting. Appendix C provides additional
information on this option in conjunction with data stack
optimization. The default is NOOPTP.

OPTS Optimizes multiple segment Transact programs only. When
you include this option, the processor does not check for local
segment items in the list, match, and update registers when
loading a new segment. Since such checks are essential for
debugging programs under development, this option should only
be used after a program is fully tested and ready for production.
Although OPTS speeds segment transfers, the program may
malfunction or terminate abnormally if a local item is left in a
register. The default is NOOPTS.

STAT Generates statistics on data stack usage. These values are useful
in deciding how program structural and/or coding di�erences
would improve the run-time performance of your program.
Appendix C provides additional information on this option
in conjunction with data stack optimization. The default is
NOSTAT.

XERR Creates a p-code �le even if errors are encountered in the
compilation. (See the CODE option.) The default is NOXERR.

XREF Generates a listing to provide a cross-reference to locations of
label de�nitions and their references. The default is NOXREF.

9-10 Running Transact

Bypassing Transact/V Compiler Prompts

Two RUN command options can be used to bypass the Transact compiler prompts. These are
the PARM= and INFO= options that are speci�ed in the compiler invocation statement. The
PARM= option parameters identify your source �le and/or list �le:

Value
Formal

Designator Meaning

1 TRANTEXT Formal �le designator for source �le. If speci�ed, the
SOURCE FILE> prompt does not appear.

2 TRANLIST Formal �le designator for list �le. If speci�ed, the LIST
FILE> prompt does not appear. TRANLIST may be
equated to any �le.

3 TRANTEXT

TRANLIST

If used, neither the SOURCE FILE> nor the LIST
FILE> prompt appears.

The INFO= option accepts parameters identical with those used to respond to the
CONTROL> prompt. As illustrated in the following example, enclose the parameter in
quotation marks. If only blanks are included between the quotation marks, the default
compiler options take e�ect. If the INFO= option is used, the CONTROL> prompt does not
appear.

The following invocation produces two listings at the line printer after the source statements
in APPL01 are processed:

FILE TRANTEXT=APPL01

FILE TRANLIST;DEV=LP,,2

RUN TRANCOMP.PUB.SYS; PARM=3; INFO="DEFN, XREF"

You can direct the compiler to a �le for answers to its prompts. See \Controlling Input
Sources to the Compiler" later in this chapter. You can also compile a program by streaming
it as a batch job. To do this, set up the stream �le to contain the following MPE V
commands:

:STREAM

>!JOB jobname,username.acctname

>!RUN TRANCOMP.PUB.SYS

>�lename

>list-destination

>control-options

>!EOJ

Controlling Input Sources to the Transact/V Compiler

TRANIN is the formal �le designator that TRANCOMP uses when compiling with
Transact/V for responses to prompts such as system name, options, and list. The default
setting for TRANIN is $STDINX, but you can change the default using a �le equation. The
compiler then reads input from that �le until it encounters an end-of-�le condition. If it
reaches end-of-�le before all prompts are answered, it returns to $STDINX. (If TRANIN is an
EDIT/V �le, it must be unnumbered.)

Running Transact 9-11

TRANTEXT is the formal �le designator for the source code �le. Like TRANIN, it can be �le
equated to the name of another �le.

Controlling Output Destinations from the Transact/V Compiler

TRANLIST is the formal �le designator for the destination of compiler listings when you set
PARM=2 for the Transact compiler. When LP is the response to the LIST FILE> prompt,
the default device for TRANLIST is LP. You can, however, use a �le equation to change the
device. A �le equation or the destination default is activated when you respond to the LIST
FILE> prompt with LP.

If you simply want to redirect your compiler listing and no other compiler output, you can
respond to the LIST FILE> prompt with any of the following:

A carriage return or $STDLIST directs the compiler listing to the terminal in a session or to
the line printer in a batch job (TRANOUT).

LP directs the compiler listing to TRANLIST, which is the line printer unless a :FILE
command has speci�ed another device for TRANLIST.

NULL directs the compiler to display errors on the terminal in a session or to the line
printer in a batch job if ERRS is speci�ed, but other parts of the listing are suppressed.

$NULL directs the listing to a null �le, in e�ect suppressing the listing. (The preferred
response is NULL.)

A �le name directs the listing to a new disk �le. If a �le of the same name already exists,
the compiler asks if you want to purge the existing �le.

A �le name preceded by an *" directs the compiler to back reference a �le equation.

TRANOUT is the formal �le designator for output from the compiler that, by default, is sent
to the standard list device. (The default setting for $STDLIST is your terminal in session
mode, the line printer for a batch job.) You can use a �le equation to specify a device other
than $STDLIST for TRANOUT. If you do this, the compiler prompts, such as SOURCE
FILE>, the compiler listing, and any requested statistics or data item de�nitions appear on
that device. (Note that TRANOUT also controls processor output, including the SYSTEM
NAME> prompt.)

TRANCODE is the name of the p-code �le opened and used by the compiler. The default
maximum size of this �le is 1023 records. If the error message \BINARY FILE FULL"
is issued during compilation, use an MPE FILE command to increase the maximum
TRANCODE �le size. For example, to increase the size to 2000 records, use the following
FILE command:

:FILE TRANCODE;DISC=2000

To direct the compiled program to another group, use:

:FILE TRANCODE=TRANCODE.GROUP

9-12 Running Transact

Executing Transact/V Programs

This section describes how to execute Transact programs and explains how to control input to
and output from the Transact processor.

Transact programs are executed (the p-code is interpreted) by running the Transact processor
with the MPE V RUN command:

:RUN TRANSACT.PUB.SYS

After an acknowledgement message, Transact issues the following prompt:

SYSTEM NAME>

Respond by entering the program's name as speci�ed in the SYSTEM statement of the
program you want to execute. In addition to this required response, you can specify one or
more optional responses separated by commas. These optional responses specify the mode
with which you want to open a database, and the test mode in which you want to execute,
followed optionally by the locations where you want testing to begin and/or end. The syntax
of a full response to the SYSTEM NAME> prompt is:

program-name [,mode [,test-mode [,start [,end]]]]

where:

program-name The name of the program as it appears in the SYSTEM statement in the
source program (required).

mode The mode to be used in opening any databases speci�ed in the program.
The mode consists of a single digit indicating one of the open modes to
be speci�ed for DBOPEN. If you do not specify a mode here or in the
SYSTEM statement of your program, Transact opens the databases in
mode 1. Mode 1 requires locking and allows concurrent modi�cations to
be made to a database. Any mode speci�ed in the SYSTEM statement
of the program takes precedence over a mode speci�ed here. See the
discussions in Chapter 6 on database access and understanding locking.

test-mode The test mode you want to use to debug your program. Test modes are
indicated by a one or two digit number. (The exact meaning of each test
mode is explained in Chapter 10.)

start The location where you want testing to begin. This is the internal location
number of a line of processor code, optionally preceded by a segment
number if it is in a segment other than segment 0. (See \Compiler
Listing" in this chapter.)

segment number.start.

end The location where you want testing to end. Specify as the internal
location number of a line of processor code, optionally preceded by a
segment number if end is in a segment other than segment 0, in the
format:

segment number.end.

Running Transact 9-13

For example, suppose you want to open any databases named in your program in mode 3, and
you want to execute in test mode 24 between internal locations 0 and 8. Respond to SYSTEM
NAME> as follows:

SYSTEM NAME> MYPROG,3,24,0,8

If the processor cannot �nd a p-code �le associated with the program name (\IPxxxxxx",
where \xxxxxx" is the program name), it generates an error message and reissues the
SYSTEM NAME> prompt. If you respond with a carriage return to the original or reissued
prompt, control returns to the MPE operating system.

You can use the INFO= option to bypass responding to the SYSTEM NAME> prompt. This
option enables you to specify a system name when you invoke the processor:

:RUN TRANSACT.PUB.SYS; INFO="APPL01.SOURCE"

Note that the INFO= parameters are enclosed in quotation marks. When the INFO=option is
used, the SYSTEM NAME> prompt does not appear.

Note Unlike the programs developed and executed under MPE control, a Transact
program can only be executed by running the Transact processor. You cannot
execute a Transact p-code �le with the MPE RUN command.

After it locates the p-code �le, the processor generates the following prompt if databases have
been de�ned in the SYSTEM statement and no password supplied:

PASSWORD FOR databasename>

You must enter the correct password to open any databases so speci�ed. If the password is
invalid, then you are prompted again for the correct password. If you enter a carriage return
in response to the second prompt, control returns to the SYSTEM NAME> prompt and you
can request another program or specify other modes. Be sure to enter the password exactly
as it is de�ned. For example, if it is de�ned with all uppercase letters, enter it in exactly that
way.

Once your program is executing, you can redisplay the SYSTEM NAME> prompt by pressing
the �Ctrl� Y key to stop execution and get the > prompt.

Controlling Input Sources to the Transact/V Processor

TRANIN is the formal �le designator for responses to prompts issued by the processor. The
default setting for TRANIN is $STDINX. You may, however, use a �le equation to change
that. The processor will then read input from the speci�ed �le or device until it encounters an
end-of-�le condition. If it reaches end-of-�le before all of the prompts are answered, it returns
to $STDINX.

TRANSORT is the name of the sort �le opened and used by the processor. The default size of
this �le is 10,000 records divided into 30 extents. The size of this �le can be altered by using
the SORT= or WORKFILE= options with the SYSTEM statement.

If a larger or smaller sort �le is desired after the program has been compiled, use a �le
equation to change the size. This will override the settings in the SYSTEM statement. For
example, to reduce the sort �le size to 5,000 records, use the following MPE FILE command:

:FILE TRANSORT; DISC=5000

9-14 Running Transact

Controlling Output Destinations from the Transact/V Processor

TRANLIST is the formal �le designator for the destination of processor output that is
normally sent to the line printer. The default setting for TRANLIST is DEV=LP. You
can, however, change the list device by means of a �le equation. The �le equation or the
destination default is activated by the PRINT option to a command or by a SET(OPTION)
PRINT statement.

TRANOUT is the formal �le designator for output from the processor that is normally sent to
your terminal during a session or to the line printer during a batch job ($STDLIST). You can
direct such output to another �le or device by specifying TRANOUT in a �le equation. If you
do this, the SYSTEM NAME> prompt and other processor output is sent to the speci�ed �le
or device. (Note that TRANOUT is also the �le designator for output from the compiler.)

TRANVPLS is the name of the �le used by the processor to open the VPLUS terminal. If
VPLUS forms are to be directed to a device other than your terminal during program testing,
use a �le equation to specify a particular terminal. For example, suppose your terminal is
logical device 20 and you want the VPLUS forms displayed on another terminal, logical device
40, use the following �le equation:

:FILE TRANVPLS; DEV=40

TRANDUMP is the formal �le designator for the destination of test mode output if you
specify a negative test mode in response to the SYSTEM NAME> prompt. Normally,
test mode output is sent to your terminal in a session or to the line printer in a batch job
(TRANOUT). If you want test mode output to be sent to another device, you can specify
TRANDUMP in a �le equation. This is particularly useful when you are using test mode with
a program that uses VPLUS,and you do not have another terminal handy for the VPLUS
forms.

For example, you can direct test mode output to the line printer as follows:

SYSTEM NAME> VTEST,,-34 <---negative test mode directs

test output to TRANDUMP

You can also direct the test mode output to a disk �le by equating TRANDUMP with this
�le. For example, you can send your test mode output to a �le TEST with the following
commands:

:BUILD TEST; REC=-80,,F,ASCII

:FILE TRANDUMP=TEST

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34 <---test output goes to �le TEST

Test mode output from the program VTEST is saved in the �le TEST, which can be
examined or listed with a text editor after your program completes.

Running Transact 9-15

A third method is to defer test mode output by setting the output priority to 1. For example:

:FILE TRANDUMP; DEV=,1 <---priority 1 defers test mode output

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34

After your program executes, you can run SPOOK5.PUB.SYS to examine the test mode
information saved in a spool �le.

The Transact/iX Compiler

Compiling and executing a Transact program under MPE/iX requires three sets of procedures.
These sets can be accomplished one at a time by using three separate commands, or they can
be combined and accomplished by using two separate commands, or even by using a single
command. The commands you choose to use depend primarily on how you want to invoke
subroutines or subprograms.

The three sets of procedures you can use for compiling and executing Transact programs
under MPE/iX are as follows:

1. The Transact/iX compiler translates either a source code or p-code �le into binary form
and stores it as a Series 900 object module in a relocatable �le. Note that Transact/iX
can accept as input either an ASCII source �le or a p-code �le produced by Transact/V's
TRANCOMP program. If your input is an ASCII �le, the Transact/iX compiler �rst calls
Transact/V's TRANCOMP to create p-code, then produces the relocatable �le. This
relocatable Series 900 object module �le is called an RSOM �le.

2. The MPE/iX Linker must prepare the RSOM �le for execution by binding procedures
in the RSOM together. The linker also performs other tasks such as de�ning the initial
requirements of the user data area. The MPE/iX LINKEDIT program may also be
required at this stage if procedures external to the RSOM are to be added to the RSOM.

3. The MPE/iX operating system must allocate and initiate the execution of the program.
External procedures referenced and stored in an executable library (XL) are bound to the
program at this time.

You can advance through each of these procedures independently, controlling the speci�cs of
each process along the way. In particular, it is possible to use the command TRANXL for the
�rst set of procedures, the command LINK for the second set, and the MPE/iX command
RUN progname for the third set.

Alternatively, you can combine procedures with a single command. For example, the
command �le TRANXLLK performs the �rst and second sets of procedures; the command �le
TRANXLGO performs the �rst, second, and third sets of procedures.

You can also use the MPE/iX RUN command to execute the Transact/iX compiler, which
is a program �le called TRAN.PUB.SYS. This command accomplishes only the �rst set of
procedures. It requires preceding �le equations and speci�cation of PARM values if you
choose to change any defaults.

Another MPE/iX program, LINKEDIT.PUB.SYS, is required for including subprograms that
are external to the RSOM �le into the RSOM �le.

9-16 Running Transact

Transact/iX Compiler Options

Like compatibility mode TRANCOMP, the Transact/iX compiler allows you to control certain
compilation features by supplying compiler options via the INFO= parameter. These options
can be included on any of the commands that are used to invoke the Transact/iX compiler:
TRANXL, TRANXLLK, TRANXLGO, and RUN TRAN.PUB.SYS.

The Transact/iX compiler has the following options:

DYNAMIC CALLS Generates dynamic calls for all CALL statements in the program.
This allows a program to be executed even if some of the
programs that it calls are not available at load-time. Dynamic
calls are described in detail later in this chapter. The default is
NODYNAMIC CALLS.

HP3000 16 Uses the HP oating point format for all the �les and databases used
by this program. If the NOHP3000 16 option is speci�ed, then all
the �les are expected to use the IEEE oating point format. See
the \Floating Point Formats" section in Appendix B. The default is
NOHP3000 16.

PROCALIGNED 16 Causes the compiler to assume that all 16-bit aligned parameters are
correctly aligned on 16-bit boundaries and prevents it from double
bu�ering them on 16-bit boundaries. Using this option improves
run-time e�ciency, since the compiler only generates a run-time check
to ensure that these parameters are correctly aligned on a 16-bit
boundary. Double bu�ering still occurs if the following conditions are
all met: the procedure called is an intrinsic, the PROCINTRINSIC
option is speci�ed, and a greater than 16-bit alignment is required.

This is the recommended option for existing Transact programs, since
correct 16-bit alignment is already assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCALIGNED 32 Causes the compiler to assume that all 16-bit and 32-bit aligned
parameters are correctly aligned on 16-bit or 32-bit boundaries and
prevents it from double bu�ering them on 16-bit or 32-bit boundaries.
Using this option improves run-time e�ciency, since the compiler
only generates a run-time check to ensure that these parameters are
correctly aligned on a 16-bit or 32-bit boundary. Double bu�ering still
occurs if the following conditions are all met: the procedure called is
an intrinsic, the PROCINTRINSIC option is speci�ed, and a greater
than 16-bit or 32-bit alignment is required.

This option is primarily recommended for use with new Transact
programs in which the correct alignment of all 16-bit and 32-bit
procedure parameters is assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCALIGNED 64 Causes the compiler to assume that all 16-bit, 32-bit, and 64-bit
aligned parameters are correctly aligned on 16-bit, 32-bit, 64-bit
boundaries and inhibits double bu�ering. Using this option improves

Running Transact 9-17

run-time e�ciency, since the compiler only generates a run-time check
to ensure that these parameters are correctly aligned on a 16-bit,
32-bit, or 64-bit boundary.

This option is primarily recommended for use with new Transact
programs in which the correct alignment of all 16-bit, 32-bit, and
64-bit procedure parameters is assured.

The default is NOPROCALIGNED, if PROCALIGNED 16,
PROCALIGNED 32, or PROCALIGNED 64 is not speci�ed.

PROCINTRINSIC Aids the migration of Transact/V systems containing intrinsic calls to
MPE/iX. This option is identical in e�ect to declaring intrinsics within
a DEFINE(INTRINSIC) statement. The Transact/iX compiler checks
all procedures referenced by the PROC verb to determine whether
or not they are de�ned in SYSINTR.PUB.SYS. When it �nds an
intrinsic, the compiler extracts from SYSINTR.PUB.SYS the intrinsic
name (corrected for case) and the number, type, and alignment of the
parameters used by the intrinsic.

This information is used at run time to set up the procedure call.
If this option is not used, the Transact/iX compiler downshifts all
procedure names not in the SYSINTR.PUB.SYS �le (in accordance
with the Series 900 procedure calling convention) and may result in
the procedure not being found in the executable library (XL).

A warning message is generated each time the compiler locates an
intrinsic that has not been declared in a DEFINE(INTRINSIC)
statement or if it does not �nd an intrinsic in SYSINTR.PUB.SYS
that was declared in a DEFINE(INTRINSIC) statement.
PROCINTRINSIC must be used if the program calls an intrinsic and
the intrinsic is not declared with DEFINE(INTRINSIC).

The default is NOPROCINTRINSIC.

TRANDEBUG Causes TRANDEBUG, the symbolic debugger, to be enabled when
the program is executed. See Chapter 11 for instructions using
TRANDEBUG.

SUBPROGRAM This option is used when compiling a program that will be called by
another Transact/iX compiled program. No outer block is generated
when the SUBPROGRAM option is speci�ed. The processing that is
normally done by the outer block is done by the calling program.

The Transact/iX compiler creates a single RSOM �le regardless of
how many SYSTEM statements are in a source �le. When a source
�le contains more than one system, the default is to compile the �rst
SYSTEM encountered with option NOSUBPROGRAM and those
remaining with the option SUBPROGRAM as they are assumed to be
subprograms called by the �rst system. Using the SUBPROGRAM
compiler option causes all the systems in the �le to be compiled with
the SUBPROGRAM option.

OPTIMIZE This option directs the compiler to generate level 1 optimized code.
Using this option causes the compile to be slower but produces object
modules that are more e�cient at run time.

9-18 Running Transact

The default is NOOPTIMIZE.

TRANCOMP Options Available to the Transact/iX Compiler

In addition to the compiler options described above, the Transact/iX compiler also accepts
many of the compiler options available for TRANCOMP/V, described earlier in this chapter.
These are:

LIST OPTE

ERRS OPTP
CHCK OPTI

DEFN OPTS

OPT@ XREF

OPTH

The following TRANCOMP/V options are ignored by the Transact/iX compiler. Their
default values are shown to the right.

Ignored Option Default Value

DICT DICT

CODE CODE

OBJT NOOBJT

STAT NOSTAT

XERR NOXERR

OBJO NOOBJO

OBJH NOOBJH

When one of these compiler options is speci�ed, it is ignored if it speci�es the default value. If
it does not specify the default value, an informational message is generated by the compiler.
For example, if option NODICT were speci�ed, the following informational message would be
reported by the compiler:

*INFO: OPTION 'NODICT' IGNORED

Compiling Programs for Static Calls

The steps for compiling subprograms for use with static calls are as follows:

1. Compile the subprogram with either the :TRANXL command or :RUN TRAN.PUB.SYS.
Specify the SUBPROGRAM compiler option in the INFO string.

2. Use the LINKEDIT program to build the subprogram and add it to either an RL, an XL,
or the RSOM �le of the calling program.

These steps are shown in the examples that follow.

The steps for compiling and executing main programs are slightly di�erent, depending on
whether the subprogram is in an RL or an XL (i.e., depending on whether it will be accessed
at link time or run time). Subprograms in an XL require slightly more load time than
comparable programs in an RL, but they provide the same fast run-time performance.

When subprograms are in an RL, the compilation and linking are separate steps, so that the
main program can be linked to the RL at link time.

When subprograms are in an XL, the compilation and linking can be combined and done with
:TRANXLLK; then when the program is executed, the RUN command must include the name
of the XL �le.

Running Transact 9-19

The steps are shown in the following examples.

Example of Static Calls with Link-Time Linking

The �rst example shows how to compile and run programs using static calls with link-time
linking. Assume a main program called MAIN, which calls another program called
PROG using static calls. First, compile the subprogram PROG into PROGOBJ using the
SUBPROGRAM compiler option.

:TRANXL PROG, PROGOBJ; INFO="SUBPROGRAM"

Second, add the compiled program to an RL �le using LINKEDIT/XL.

:RUN LINKEDIT.PUB.SYS

LinkEd> BUILDRL PROGRL

LinkEd> ADDRL PROGOBJ

LinkEd> EXIT

Third, compile the main program like any other Transact/iX program.

:TRANXL MAIN, MAINOBJ

Fourth, link the main program with the RL �le containing the subprogram.

:LINK FROM=MAINOBJ; TO=MAINPROG; RL=PROGRL

Last, run the main program.

:RUN MAINPROG

Example of Static Calls with Load-Time Linking

This example shows how to use load-time linking with the same two programs used in the
example above. The steps for the subprogram are the same, except the responses to the
LINKEDIT prompts specify XL instead of RL.

First, compile the subprogram into PROGOBJ using the SUBPROGRAM compiler option.

:TRANXL PROG, PROGOBJ; INFO="SUBPROGRAM"

Second, add the compiled subprogram to an XL �le using LINKEDIT/XL.

:RUN LINKEDIT.PUB.SYS

LinkEd> BUILDXL PROGXL

LinkEd> ADDXL PROGOBJ

LinkEd> EXIT

Third, compile and link the main program like any other Transact/iX program. You can
combine these steps by using TRANXLLK, no special options are needed in this step.

:TRANXLLK MAIN, MAINPROG

Last, run the main program with the XL= option to name the XL �le containing the
subprogram.

:RUN MAINPROG; XL='PROGXL'

9-20 Running Transact

Dynamic Calls

No special techniques or parameters are required to compile or link a Transact compiled
program which uses only dynamic calls. However, the command RUN progname must include
the XL = option, and an XL (the preceding example shows how to create an XL) containing
all the called programs must be available at run time.

Controlling Transact/iX Program Execution

Both Transact/V and Transact/iX use the formal �le designator, TRANIN, at run time
to respond to input prompts and database passwords. The default setting for TRANIN
is $STDINX. The program reads input from TRANIN until it encounters an end-of-�le
condition. If it reaches the end-of-�le before all prompts are answered, it returns to $STDINX
for additional input.

TRANSORT is the name of the sort �le opened and used by the processor. The default size of
this �le is 10,000 records divided into 30 extents. The size of this �le can be altered by using
the SORT= or WORKFILE= options on the SYSTEM statement. If a larger or smaller sort
�le is desired after the program has been compiled, use a �le equation to change its size. This
will override the settings in the SYSTEM statement. For example, to reduce the sort �le size
to 5,000 records use the following MPE FILE command:

:FILE TRANSORT; DISC=5000

Transact/iX Environment Variables

Two environment variables, TRANDBMODE and TRANDEBUG, are available with
Transact/iX:

TRANDBMODE

This environment variable provides a method for specifying the database open mode at run
time. Transact/V allows this same feature when responding to the system prompt.

The mode consists of a single digit that indicates one of the open modes to be speci�ed for
DBOPEN. If you do not specify a mode in the SYSTEM statement of your program or use
this environment variable, Transact opens the databases in mode 1. Any mode speci�ed
in the SYSTEM statement of the program takes precedence over a mode speci�ed by this
environment variable.

To use this feature, do the following:

At the MPE/iX system prompt, set the environment variable to contain the desired open
mode for the database at the time DBOPEN is called.

:SETVAR TRANDBMODE 5

(where 5 is the open mode)

Run the native mode Transact program as usual.

Running Transact 9-21

TRANDEBUG

For Transact programs that were compiled with the TRANDEBUG option, this environment
variable allows the user to disable and enable the TRANDEBUG debugger without
recompiling the program. (See \Disabling the Debugger" in Chapter 11.)

Compiling and Executing Transact/iX Programs

The following MPE/iX commands are used to compile and execute Transact/iX programs:

RUN TRAN.PUB.SYS Performs the same function as TRANXL but allows complete user
control over all optional features.

TRANXL Uses either an ASCII source �le or p-code as input; produces an
intermediate binary RSOM �le.

TRANXLLK Combines the functions of TRANXL and LINK.

TRANXLGO Combines the functions of TRANXL, LINK, and RUN.

LINK Uses an intermediate RSOM �le; produces a linked program �le.

LINKEDIT Adds procedures to the RSOM �le and produces a linked program
�le.

RUN progname Executes the program.

These commands are described on the following pages, in the order shown above.

9-22 Running Transact

RUN TRAN.PUB.SYS

Invokes the Transact/iX compiler and produces an RSOM �le.

RUN TRAN.PUB.SYS [;PARM=parmnum][;INFO="text"]

For complete syntax of the RUN command, see the MPE/iX Commands Reference Manual .

The Transact/iX compiler is a program �le called TRAN.PUB.SYS. You can therefore use the
MPE/iX command RUN to invoke it and compile your program.

When you compile with the RUN command, The default source, object, and listing �les for
the compiler are $STDIN, $NEWPASS, and $STDLIST, respectively. To override these
default values, you must perform two steps:

1. Equate the non-default �le with its formal designator using an MPE/iX FILE command;

2. Select an appropriate value for the PARM parameter of the RUN command. This value
indicates which �les are not defaulted.

The compiler recognizes these formal �le designators:

Formal Designator File Usage
TRANTEXT Source �le
TRANOBJ Object �le (RSOM)
TRANLIST Listing �le

The PARM parameter of the RUN command indicates which �les appeared in the �le
equation. The compiler opens these �les instead of the default �les. The PARM parameter
accepts an integer value in the range 0 . . . 7. The integer value have the following meanings:

Value Files Present in FILE Commands
0 none
1 source
2 listing
3 listing, source
4 object
5 object, source
6 object, listing
7 object, listing, source

An error occurs if the PARM value indicates a �le for which no �le equation exists. On
the other hand, if a �le equation exists and the PARM value doesn't indicate that �le, the
compiler will use the default �le.

The RUN command also has an optional INFO parameter. The INFO string consists of
compiler options for the Transact/iX compiler. Valid compiler options are described earlier in
this chapter. The options can be arranged in any order.

Running Transact 9-23

TRANTEXT can be either an ASCII source �le or a p-code �le. When TRANTEXT contains
ASCII text, TRANCOMP is called to create p-code from the source �le, then it compiles the
p-code.

The default size of the RSOM �le is 4,000 records. For very large Transact programs, you
should increase the default with an MPE/iX FILE command before compiling the program.
For example, the following command increases the size of the RSOM �le to 15,000 records:

:FILE TRANOBJ=MYSOM;DISC=15000

If the RSOM �le size is not large enough, the following error is displayed:

*ERROR: error in writing to output file. (7204)

9-24 Running Transact

TRANXL

Invokes the Transact/iX compiler and produces an RSOM �le.

TRANXL [text�le] [,[rl�le] [,[list�le]]] [;INFO = "text"]

The command TRANXL invokes the Transact/iX compiler and causes it to process the
speci�ed source �le and generate object code to a binary �le. All of the parameters of the
TRANXL command are optional; their default values are given below. If you do not include
an optional parameter, its default value is used automatically. TRANXL does not prompt for
missing parameters.

Statement Parts

text�le The name of the input �le read by the Transact/iX compiler. This can be
any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN, the
current input device, is the default �le. In a session, this is the terminal and
you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

rl�le The name of the relocatable SOM (RSOM) �le on which the compiler writes
the object code. If this parameter is omitted, the �le $NEWPASS is the
default �le.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.
If text�le is p-code, list�le contains only error messages.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the RSOM �le is 4,000 records. For very large Transact programs, you
should increase the default with an MPE/iX BUILD command before compiling the program.
For example, the following command increases the size of the RSOM �le to 15,000 records.

:BUILD MYSOM;DISC=15000;CODE=NMOBJ

If the RSOM �le size is not large enough, the following error is displayed:

*ERROR: error in writing to output file. (7204)

Running Transact 9-25

TRANXLLK

Compiles and links a source �le into an executable program �le.

TRANXLLK [text�le][,[prog�le] [,[list�le]]] [;INFO = "text"]

The command �le TRANXLLK compiles a Transact or p-code program into an RSOM
�le and then links that �le into a program �le. All of the parameters of the TRANXLLK
command are optional; the default values are given below.

Statement Parts

text�le The name of the input �le that the Transact/iX compiler reads. This can
be any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN,
the current input device, is the default �le. In a session, this is the terminal
and you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

prog�le The name of the program �le on which the linker writes the linked program.
If this parameter is omitted, the �le $NEWPASS is the default �le.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the intermediate RSOM �le, which is created by the Transact/iX compiler,
is 4,000 records. This �le size can not be altered when using the TRANXLLK command. You
must use TRANXL or run TRAN.PUB.SYS in these cases.

9-26 Running Transact

TRANXLGO

Compiles, links, and executes a source �le.

TRANXLGO [text�le] [,[list�le]] [;INFO = "text"]

The command �le TRANXLGO compiles, links, and executes a Transact or p-code program.
All of the parameters of the TRANXLGO command are optional; the default values are given
below. After successful completion of TRANXLGO, the program �le is in the temporary �le
$OLDPASS that you can save using the MPE/iX SAVE command.

Statement Parts

text�le The name of the input �le that the Transact/iX compiler reads. This can
be any p-code or ASCII �le. If this parameter is omitted, the �le $STDIN,
the current input device, is the default �le. In a session, this is the terminal
and you can enter source code interactively. To signal the end of source code,
enter a colon (:) as the �rst character on a new line.

list�le The name of the �le on which the compiler writes the program listing. This
can be any ASCII �le. If this parameter is omitted, the system assigns the �le
$STDLIST as the default �le. Typically, this is the terminal in a session or
the printer in a batch job. If the list�le is $STDLIST, the listing is echoed
back to the terminal. If the list �le is $NULL or a �le other than $STDLIST,
the compiler displays lines with errors on $STDLIST as well as in the list �le.

text The text string consists of compiler options for the Transact/iX compiler.
Valid compiler options are described earlier in this chapter. The options can
be arranged in any order.

The default size of the intermediate RSOM �le, which is created by the Transact/iX compiler,
is 4,000 records. This �le size can not be altered when using the TRANXLLK command. You
must use TRANXL or run TRAN.PUB.SYS in these cases.

Running Transact 9-27

LINK

Creates an executable program �le.

LINK [FROM=�le [,�le]...] [;TO=dest�le]

[;RL=rl�le]

[;XL=xl�le]

[;CAP=caplist]

[;STACK=maxstacksize]

[;HEAP=maxheapsize]

[;UNSAT=unsatname]

[;PARMCHECK=integer]

[;PRIVLEV=integer]

[;XLEAST=integer]

[;ENTRY=entryname]

[;NODEBUG]

[;NOSYM]

[;MAP]

[;SHOW]

For input, the LINK command uses the RSOM �le(s) produced by the Transact/iX compiler.
It prepares this binary code for execution by binding procedures together and de�ning the
requirements for the data area.

If the program is going to be accessing a subprogram in an RL, use the RL option to name
the library that contains the subprogram.

For complete documentation of the LINK command and all its parameters, see the MPE/iX
Commands Reference Manual .

9-28 Running Transact

LINKEDIT

Accesses the Link Editor subsystem, where you can create program libraries and add routines
to them.

LINKEDIT

When you compile and execute Transact/iX programs, the Link Editor is used to build
subprograms and to add them to either an XL or RL. The Link Editor commands that are
most likely to be used are

BUILDRL

BUILDXL

ADDRL

ADDXL

For a complete description of all Link Editor commands, see the Link Editor XL Reference
Manual .

Running Transact 9-29

RUN progname

Executes the program �le produced by the MPE/iX linker.

RUN progname; [XL = "xlname[, xlname, ...]"]

The MPE/iX RUN command executes the linked program �le produced by the linker. Any
external procedures referenced and stored in an executable library are bound to the program
at this time.

If subprograms are stored in an XL, use the XL= option to reference the library that contains
the subprograms.

For complete syntax and details, see the MPE/iX Commands Reference Manual .

9-30 Running Transact

Transact Compiler Listings

The following example shows the listing of a source program produced by the compiler using
all four default control options. The three columns of numbers on the left side of the listing
are described below.

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

Line Number

Internal Location

Nesting Level

#

1.000 # # SYSTEM COMPIL;

2.000 0000 # IF (A) = (B)

3.000 0000 1 THEN DO

4.000 0000 1 DISPLAY "DUPLICATE ENTRY";

5.000 0005 1 IF (A) = (C)

6.000 0005 2 THEN IF (D) < 50

7.000 0008 2 THEN MOVE (A) = (D);

8.000 0013 1 DOEND;

9.000 0013 END;

CODE FILE STATUS: NEW

0 COMPILATION ERRORS

PROCESSOR TIME=00:00:01

ELAPSED TIME=00:00:03

Line Number Line number from the source listing.

Internal Location Internal location reference number of the statement on the associated
text line. These numbers are useful when TEST mode is used during
execution. (See Chapter 10.)

Nesting Level Nesting level indicator that is incremented by one when the compiler
encounters the start of a compound statement or a new level. It is
decremented by one when the compiler reaches the end of such a
compound statement or level.

Running Transact 9-31

The nesting level number changes at the line after the IF statement that introduces a new
level. If you have trouble tracking level numbers, it helps to include DO/DOEND pairs at
every level change, even though they are only required if you have compound statements. The
following example shows how DO/DOEND pairs clarify the structure of a program:

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000

2.000 SYSTEM TST04;

3.000 0000 DEFINE(ITEM) TEMP01 I(2):

4.000 0000 TEMP02 I(2):

5.000 0000 TEMP03 I(2);

6.000 0000 PROMPT TEMP01:TEMP02:TEMP03;

7.000 0003 IF (TEMP01) = 1 THEN

8.000 0003 1 DO

9.000 0003 1 IF (TEMP02) = 1 THEN

10.000 0006 2 DO

11.000 0006 2 IF (TEMP03) = 1 THEN

12.000 0009 3 GO TO OUT

13.000 0009 3 ELSE

14.000 0012 3 DO

15.000 0012 3 DISPLAY "AT LEVEL 3";

16.000 0014 3 LET (TEMP01) = 3;

17.000 0016 3 DOEND;

18.000 0016 2 DOEND;

19.000 0016 1 DOEND;

20.000 0016 IF (TEMP01) = 3 THEN

21.000 0016 1 DO

22.000 0016 1 DISPLAY "AT SECOND LEVEL 1"

23.000 0019 1 DOEND;

24.000 0021

25.000 0021 OUT:
26.000 0021 DISPLAY "AT THE END";

27.000 0023 EXIT;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=00:00:02

ELAPSED TIME=00:00:03

Transact Compiler Listings

The compiler listing generated by the Transact/iX and Transact/V compilers are the same
with two exceptions:

Transact/iX does not create a permanent p-code �le and hence the compiler listing does not
report the \CODE FILE STATUS".

The summation of compiler warnings is provided with Transact/iX and the
warning/error/compilation time message is formatted di�erently.

9-32 Running Transact

10

Transact/V Test Facility

The Transact test facility, which is available in the MPE V and MPE/iX compatibility mode
environments, lets you trace a program through execution for program debugging. To use the
test facility, issue the TEST command with the following format:

TEST [numeric-parameter [,[segment1.]starting-instruction-address]

[,[segment2.]ending-instruction-address]]

Statement Parts

numeric-
parameter

Integer number that speci�es the particular test mode. The speci�c test
modes are described in Table 10-1.

segment1 Segment number where the test should begin. If none is given, the root
segment (segment 0) is assumed.

starting-
instruction-
address

Instruction address where the trace should begin. This address is the same as
the internal-location shown in the compiler listing produced when a Transact
program is compiled with the LIST option.

segment2 Segment number where the test should stop. If none is given, segment 0 is
assumed.

ending-
instruction-
address

Instruction address where the trace should end. As with the starting-
instruction-address , this is the internal-location shown on a compiler
listing.

To use the test facility, issue the TEST command with a numeric parameter at anytime
when you are in command mode. The test facility stays in e�ect until you reissue the TEST
command without a numeric parameter.

For example, if you are in command mode and want to execute all subsequent code in test
mode 25, issue the following command:

>TEST 25

If you want to use test mode only between instructions 0 and 8 of the root segment, issue the
following command:

>TEST 25,0,8

You terminate test mode as follows:

>TEST

Transact/V Test Facility 10-1

If you want to use the test facility during the execution of a program, when you are NOT in
command mode, you must do the following:

1. Press �Ctrl� Y to enter command mode.

2. Issue the appropriate TEST command.

3. Issue the RESUME command.

Execution of the program with the speci�ed test facility continues from the point where
it stopped. In response to the SYSTEM NAME> prompt, you enter the test parameters
(without the key word TEST) following the program name and mode parameter.

For example, to execute in test mode 25 between instructions 0 and 8 of the root segment of
program MYPROG, enter the following response to SYSTEM NAME>:

mode parameter omitted

#

SYSTEM NAME> MYPROG,,25,0,8

TEST Output

Normally, the output from TEST is sent to the �le TRANOUT (your terminal in a session or
the line printer in a batch job). If you want to change the test destination, you can precede
the test number parameter with a minus sign. Then the output goes to TRANDUMP (the
formal �le-designator for the destination of the test mode output). By default, TRANDUMP
is assigned to the line printer. You can change the assignment of TRANDUMP to a di�erent
device by using a �le equation.

For example, if you are executing in a command sequence, you can direct the test mode to the
line printer by preceding the mode numeral designation with a minus sign:

>TEST -25 <---to request test mode 25 with output to TRANDUMP

If you are not in a command sequence, you can accomplish the same results with the following
procedure:

�Ctrl� Y <---to stop execution

*CONTROL (Y) BREAK

>TEST -25 <---to request test mode 25 with output to TRANDUMP

>RESUME <---enter command to resume execution

10-2 Transact/V Test Facility

You could also direct the test mode output to a disk �le you create speci�cally for that
purpose. For example, to send the test output to the �le TEST:

:BUILD TEST; REC=-80,,F,ASCII <---create a �le for test output

:FILE TRANDUMP=TEST <---equate �le TRANDUMP with �le TEST

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> MYPROG,,-25 <---send test output to TRANDUMP(=TEST)

Another method to accomplish this is to defer test mode by setting the output priority for
TRANDUMP to 1. For example:

:FILE TRANDUMP; DEV=,1 <---defer test mode output

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> MYPROG,,-25

After executing VTEST, you can run SPOOK5.PUB.SYS to examine the test mode
information saved in a spool �le.

If you use test mode for statements that access a VPLUS forms �le, you should either direct
the test output to a terminal other than the one where the VPLUS forms are displayed,
or direct the forms to a di�erent terminal. Otherwise, the test output will appear on the
terminal screen with the forms. You could also defer test output as shown above.

For example, you can direct the test output to another terminal whose logical device number
is 19, as shown:

:FILE TRANDUMP; DEV=19 <---direct test output to ldev 19

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34 <---run VTEST in mode 34; output to TRANDUMP

An alternative procedure is to direct the VPLUS forms to another terminal, while the test
results are sent to your terminal. To redirect the VPLUS forms, use the TRANVPLS formal
�le designator:

:FILE TRANVPLS; DEV=19 <---direct VPLUS forms to ldev 19

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,34 <---run your program with test mode 34

Now, the test mode output and character mode output appear at your terminal, but the
VPLUS forms output appears on another terminal identi�ed by its logical device number.

Transact/V Test Facility 10-3

Table 10-1 lists the allowed test parameters and their functions.

Table 10-1. Numeric Parameters for the Test Facility

Parameter Function

(none) Switches o� existing test mode.

1 Displays data block with information about the �le or database
operations only if an error occurs.

2 Displays each instruction address, the level for that instruction, and the
compiler code at that address.

3 Displays each instruction address, the level for that instruction, the
compiler code at that address, the space used by the list and data
registers, and the amount of remaining processor work space.

4 Displays each instruction address, the level for that instruction, the
compiler code at that address, the instruction timings, and the HP3000
data stack pointers Z, S, Q, and DL.

22 Displays each instruction address, the level for that instruction, the
compiler code at that address, and the data block for any instructions
that perform database and �le operations. This parameter does not
operate for the FILE verb. The data block includes the values and
o�sets of items in the key and argument registers used by the database
or �le operation.

23 Displays the instruction address, the level for that instruction, the
compiler code at that address, and the data block for any instructions
that perform database or �le operations. The display follows a multiple
record operation. This parameter does not operate for the FILE verb.

The data block includes the values and o�sets of items in the list, data,
key, argument, match, and update registers speci�cally used by the
database or �le operation.

10-4 Transact/V Test Facility

Table 10-1. Numeric Parameters for Test Facility (continued)

Parameter Function

24 Displays the instruction address, the level for that instruction,
the compiler code at that address, and the data block for any
instructions that perform database and �le operations. Does not
operate for the FILE verb.

The data block includes the values and o�sets of items in the
list, data, key, argument, match, and update registers
speci�cally used by the database or �le operation.

This display is issued only when an accessed record meets the
selection criteria in the match register. If there are no selection
criteria for this operation or if the NOMATCH option is in
e�ect, the display is issued for every record retrieved by the
database or �le operation.

25 Displays the instruction address, the level for that instruction,
the compiler code at that address, and the data block for any
instructions that perform database and �le operations. This
parameter does not operate for the FILE verb.

Displays the values and o�sets of items in the list, data, key,
argument, match, and update registers for items speci�cally
used by the database or �le operation.

This display is issued for every record accessed by the database
or �le operation .

34 Displays the instruction address, the level for that instruction,
the compiler code for that address, and the contents of the
VPLUS bu�er following an instruction generated by a statement
that references a VPLUS form.

42 Displays instruction address and compiler code for that address
only if the instruction is not listed in the compiler listing.

Displays contents of the list and data registers whenever the
content of the list register (not the data register) changes.

43 Displays the instruction address, the level for that instruction,
the compiler code, and the contents of the list and data register
for every instruction. This parameter does not operate for the
OUTPUT verb.

Transact/V Test Facility 10-5

Table 10-1. Numeric Parameters for Test Facility (continued)

Parameter Function

44 Displays the instruction address, the level for that instruction,
the compiler code, and the contents of the list, data, key,
argument, match, and update registers for every instruction.

101 Lists the data and work space recovery statistics for every
command sequence.

102 Lists the data and work space recovery statistics for the entire
program.

121 Issues an overlay trace whenever a program switches segments.

122 Issues a trace whenever a �le is locked or unlocked.

123 Issues a work space recovery message whenever recovery is
needed.

10-6 Transact/V Test Facility

Examples

The following annotated examples show various test modes. The compiler listing shown below
is for the ADD PROGRAMMER command sequence used in the examples of test modes 1, 3,
and 4:

starting-location

#

176.000 0077 $$ADD: <<Begin the ADD commands>>

177.000 0077 $$A:

178.000 0077 $: <<Help for the ADD command>>

179.000 0078

180.000 0078 DISPLAY "The sub commands for ADD are: ",line=2;

181.000 0080 SET(COMMAND) COMMAND(ADD);

183.000 0082

184.000 0084 END; <<End of help for ADD>>

185.000 0085

186.000 0085

187.000 0085 $PROGRAMMER:

188.000 0086 $PR:

190.000 0086

191.000 0086 LIST PROGRAMMER:

192.000 0087 PHONE;

193.000 0088 DATA LNAME:

194.000 0089 FNAME:

195.000 0090 PHONE;

196.000 0091 PUT PROGRAMMERS, list=(PROGRAMMER:PHONE);

197.000 0095

198.000 0095 END; <<End of ADD PROGRAMMER>>

"

ending-location

In these examples, the tests are requested by the TEST command just before executing the
ADD PROGRAMMER command sequence.

Transact/V Test Facility 10-7

Test Mode 1

This test mode displays the error message only when an error occurs. In this example, a
duplicate key item error occurs.

> TEST 1,77,95 <---Execute instructions 77 thru 95 in test mode 1

> ADD PROGRAMMER

Enter programmer's last name: MARTIN <---duplicate name

Enter programmer's first name: JOAN

Enter phone extension number: 3803

*ERROR: DUPLICATE KEY VALUE IN MASTER (IMAGE 43,95,PROGRAMMERS)

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for unsuccessful PUT

!

! PUT COND: 43 STATUS: 43 RECNO: -1

! BASE: PROGB SET: PROGRAMMERS

!

! POSN: LIST: DATA:

! 0 PROGRAMMER MARTIN JOAN

! 30 PHONE 3803

+--------------------------------------+

Enter programmer's last name: JONES <---unique name; no test output

Enter programmer's first name: JAMES

Enter phone extension number: 3067

10-8 Transact/V Test Facility

Test Mode 3

This test mode shows the same information as test mode 2 (the instruction address and
the compiler code for every instruction). It also shows the space used by the list and data
registers and the remaining processor work space.

> TEST 3,77,95 # of entries in list register

of words in data register

> ADD PROGRAMMER # #

00000 000:000 LIST DATA CELL WORK

00087 032:007 1 15 64 256

00088 032:005 2 17 64 256

Enter programmer's last name: FRANCIS

00089 024:008 2 17 64 256

Enter programmer's first name: JAMES

00090 024:009 2 17 64 256

Enter phone extension number: 4835

00091 024:005 2 17 64 256

00092 048:129 2 17 64 256

" " " " "

" compiler code " words left in work space

instruction location entries left in work space

Transact/V Test Facility 10-9

Test Mode 4

In addition to the instruction location and compiler code issued by test mode 2, this mode
displays instruction timings and the location of the stack pointers, Z, S, Q, and DL. (See
Appendix C for more information about stack pointers.)

> TEST 4,77,95

-----stack pointers------

> |ADD PROGRAMMER| # #

00000 000:000 000000 000000 : Z S Q D

00087 032:007 000001 000001 : 07362 05612 05335 00092

00088 032:005 000001 000002 : 07362 05612 05335 00092

" "

instruction times

Enter programmer's last name: MAYOTTE

00089 024:008 000016 000018 : 07362 05612 05335 00092

Enter programmer's first name: MARK

00090 024:009 000015 000033 : 07362 05612 05335 00092

Enter phone extension number: 3303

00091 024:005 000014 000047 : 07362 05612 05335 00092

00092 048:129 000016 000063 : 09922 07735 05335 00092

> EXIT

END OF PROGRAM

10-10 Transact/V Test Facility

Direct Test Output to File

The following example directs the test mode output to a �le TEST. Test mode 1 is selected
when the program is executed.

:BUILD TEST; REC=-80,,F,ASCII <---build �le for test output

:FILE TRANDUMP=TEST <---equate TRANDUMP to that �le

:RUN TRANSACT.PUB.SYS

TRANSACT HP32247A.00.01 - (C) Hewlett-Packard Co. 1982

SYSTEM NAME> MYPROG,,-1,77,95 <---send test mode 1 output to TRANDUMP

MYPROG A00.00

PASSWORD FOR PROGB>

*INFO: OPENED PROGB,3 (USER 23,-1)

> ADD PROGRAMMER <---command sequence at locations 77-95

Enter programmer's last name: MARTIN

Enter programmer's first name: JOAN

Enter phone extension number: 3803

*ERROR: DUPLICATE KEY VALUE IN MASTER (IMAGE 43,95,PROGRAMMERS)

Enter programmer's last name: * CONTROL(Y) BREAK

> EXIT

END OF PROGRAM

To see the test mode output, run EDIT/3000 (or another text editor) and display or list the
contents of TEST.

Transact/V Test Facility 10-11

Test Modes 22 through 25

Test modes 22 through 25 are very similar. For that reason, only test mode 25 is shown. The
compiler code used for the example of test mode 25 is shown below. It uses PUT, REPLACE,
and DELETE to access a database. In the case of the REPLACE(CHAIN), two entries in the
chain are replaced.

starting location

#

453.000 0302 $PROGRAMMER:

454.000 0303 $PR:

455.000 0303 <<Replace one programmer with another>>

456.000 0303

457.000 0303 <<Set up and add entry for new name to PROGRAMMERS>>

458.000 0303

459.000 0303 LIST PROGRAMMER:

460.000 0304 PHONE;

461.000 0305 DATA LNAME ("Enter new programmer's last name"):

462.000 0307 FNAME ("Enter new programmer's first name"):

463.000 0309 PHONE;

464.000 0310 PUT PROGRAMMERS, LIST=(PROGRAMMER:PHONE);<<add new>>

465.000 0314 SET(UPDATE) LIST(PROGRAMMER);

466.000 0316 DATA LNAME ("Enter old programmer's last name"):

467.000 0318 FNAME ("Enter old programmer's first name");

468.000 0320 SET(KEY) LIST(PROGRAMMER);

469.000 0321 RESET(STACK) LIST; <<Release space>>

470.000 0322

471.000 0322 <<Update entries in PROG-AUTHOR>>

472.000 0322

473.000 0322 DISPLAY "Updating entries in PROG-AUTHOR", line=2;

474.000 0324 LIST PROG-NAME: <<Temp. storage for update>>

475.000 0325 PROGRAMMER;

476.000 0326 REPLACE(CHAIN) PROG-AUTHOR,

477.000 0326 LIST=(PROG-NAME:PROGRAMMER);

478.000 0330 RESET(STACK) LIST; <<Release temp. storage>>

479.000 0331

480.000 0331 <<Delete old entry in PROGRAMMERS>>

481.000 0331

482.000 0331 DELETE PROGRAMMERS, LIST=();

483.000 0334

484.000 0334 END; <<End of REPLACE PROGRAMMER>>

"

ending location

10-12 Transact/V Test Facility

Test Mode 25

This test mode, like test modes 22 through 24, displays the data block (DATA FILE DUMP)
for instructions that access �les or data sets. As part of the data block display, test mode 25
shows the contents of all the registers used by each database or �le operation. Note in the
example below that the data block for REPLACE(CHAIN) is issued every time an entry is
selected in the chain of the detail set PROG-AUTHOR.

> TEST 25,302,334

> REPLACE PROGRAMMER

00303 032:007

00304 032:005

00305 040:008

Enter new programmer's last name: KING

00307 040:009

Enter new programmer's first name: WENDY

00309 024:005

Enter phone extension number: 3818

00310 048:129

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for PUT

!

! PUT COND: 0 STATUS: 0 RECNO: 21

! BASE: PROGB SET: PROGRAMMERS

! <---contents of list and

! POSN: LIST: DATA: data registers

! 0 PROGRAMMER KING WENDY

! 30 PHONE 3818

+--------------------------------------+

00314 031:000

00316 040:008

Enter old programmer's last name: CINTZ

00318 040:009

Enter old programmer's first name: SIMON

00320 198:007

00321 208:254

00322 081:028

00323 080:000

Updating entries in PROG-AUTHOR

00324 032:006

00325 032:007

00326 067:132

Transact/V Test Facility 10-13

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for 1st REPLACE

!

!

! REPLACE(CHAIN) COND: 0 STATUS: 0 RECNO: 1

! BASE: PROGB SET: PROG-AUTHOR

! KEY: PROGRAMMER ARGUMENT: CINTZ SIMON <--key/argument regs

!

! UPDATE: VALUE:

! PROGRAMMER KING WENDY <--update value

!

! POSN: LIST: DATA: <--list/argument regs

! 0 PROG-NAME PROG1A

! 8 PROGRAMMER CINTZ SIMON

+--------------------------------------+

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for 2nd REPLACE

!

! REPLACE(CHAIN) COND: 0 STATUS: 0 RECNO: 2

! BASE: PROGB SET: PROG-AUTHOR

! KEY: PROGRAMMER ARGUMENT: CINTZ SIMON

!

! UPDATE: VALUE:

! PROGRAMMER KING WENDY

!

! POSN: LIST: DATA:

! 0 PROG-NAME PROG2B

! 8 PROGRAMMER CINTZ SIMON

+--------------------------------------+

2 RECORDS REPLACED

00330 208:254

00331 068:129

+-D-A-T-A---F-I-L-E---D-U-M-P----------+ <---data block for DELETE

!

! DELETE COND: 0 STATUS: 0 RECNO: 14

! BASE: PROGB SET: PROGRAMMERS

! KEY: PROGRAMMER ARGUMENT: CINTZ SIMON

!

! POSN: LIST: DATA:

+--------------------------------------+

00334 000:000

> EXIT

Note that this test mode displays only that part of the list and data registers included in a
LIST= option of the data management statement.

10-14 Transact/V Test Facility

Test Mode 34

This test mode is used to trace instructions that access VPLUS forms. The output from test
mode 34 should always be sent to an alternate device rather than your terminal. Otherwise,
the output interferes with the forms displayed on the screen.

The compiler code used for this example is shown below.

starting location

#

98.000 0035 ADD-CUSTOMER:

99.000 0035

100.000 0035 GET(FORM) ADDFORM,

101.000 0035 INIT,

102.000 0035 LIST=(ACCOUNT:DATE),

103.000 0035 WINDOW=("Please enter a new customer"),

104.000 0035 F7=START-OF-PROGRAM,

105.000 0035 F8=END-OF-PROGRAM,

106.000 0035 AITPREAD;

107.000 0051

108.000 0051 PUT-CUSTOMER:

109.000 0051

110.000 0051 SET(KEY) LIST(ACCOUNT); <<Set up key register>>

111.000 0052 FIND CUSTOMER, LIST=(); <<Check if customer exists>>

112.000 0055

113.000 0055 IF STATUS <> 0 THEN <<Customer already in base>>

114.000 0055 1 GO TO ADD-CUST-ERROR;

115.000 0058

116.000 0058 PUT CUSTOMER,

117.000 0058 LIST=(ACCOUNT:DATE),

118.000 0058 ERROR=PUT-ERROR(*); <<Process PUT verb error>>

119.000 0064

"

ending location

Before running the program VTEST in test mode -34, build a �le named TEST to receive the
test data and then equate TRANDUMP to that �le:

:BUILD TEST; REC=-80,,F,ASCII

:FILE TRANDUMP=TEST

:RUN TRANSACT.PUB.SYS

SYSTEM NAME> VTEST,,-34,35,64 <---run VTEST in test mode 34 with

test output sent to �le TEST

Transact/V Test Facility 10-15

The test output from �le TEST looks like this:

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+ \

! \

! PUT(FORM) CODE: 0 FKEY: 0 \

! FORM: MENU FILE: CUSTF TF \

! \

+--------------------------------------+ <--from previous form access

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+ / statements

! /

! UPDATE(FORM) CODE: 0 FKEY: 1 /

! FORM: MENU FILE: CUSTF /

! /

+--------------------------------------+

00035 160:131

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+ <--output from location 35

!

! GET(FORM) CODE: 0 FKEY: 0 <--last key pressed is ENTER

! FORM: ADDFORM FILE: CUSTFORM

!

! OFFSET: LIST: DATA:

! 0 ACCOUNT 1113434343 \

! 10 FIRST-NAME MARGARET \

! 28 INITIAL S \

! 29 LAST-NAME TRUEMAN \

! 49 STREET-ADDR 524 East 79th Street <--entered data

! 71 CITY New York /

! 85 STATE NY /

! 87 ZIP 10024 /

! 96 DATE 07/21/82 /

!

+--------------------------------------+

00051 198:000

00052 065:137

00055 011:001

00058 048:137

00064 004:000

00035 160:131

10-16 Transact/V Test Facility

+-V-P-L-U-S---B-U-F-F-E-R---D-U-M-P----+ <--back to location 35

!

! GET(FORM) CODE: 0 FKEY: 8 <--f8 pressed to exit

! FORM: ADDFORM FILE: CUSTFORM

!

! OFFSET: LIST: DATA:

! 0 ACCOUNT ...w...;b. \

! 10 FIRST-NAME .W...$...,...B,H.. \

! 28 INITIAL S \

! 29 LAST-NAME TRU..AN...... ...Z. \

! 49 STREET-ADDR Y..>..5"......,.X.?... <--garbage

! 71 CITY3...... /

! 85 STATE >. /

! 87 ZIP /

! 96 DATE ..2.... /

!

+--------------------------------------+

Transact/V Test Facility 10-17

Test Mode 42

This test mode lists the contents of the list and data registers only when the list register is
changed.

The compiler listing shown below is for two subcommands that are part of a LIST command
sequence; this code is executed by entering LIST PROGRAMMER and LIST PROGRAM
respectively.

starting location

#

97.000 0019 $PROGRAMMER:

98.000 0020 $PR:

99.000 0020 <<list programmers>>

100.000 0020

101.000 0020 LIST PROGRAMMER:

102.000 0021 PHONE;

103.000 0022 OUTPUT(SERIAL) PROGRAMMERS,

104.000 0022 LIST=(PROGRAMMER:PHONE),

105.000 0022 SORT=(PROGRAMMER),

106.000 0022 NO COUNT;

107.000 0028

108.000 0028 END; <<end of LIST PROGRAMMER>>

109.000 0029

110.000 0029

111.000 0029 $PROGRAM:

112.000 0030 $P:

113.000 0030 <<list programs>>

114.000 0030

115.000 0030 LIST PROG-NAME:

116.000 0031 DESCRIPTION;

117.000 0032 OUTPUT(SERIAL) PROGRAMS,

118.000 0032 LIST=(PROG-NAME:DESCRIPTION),

119.000 0032 SORT=(PROG-NAME),

120.000 0032 NO COUNT;

121.000 0038

122.000 0038 END; <<end of LIST PROGRAM>>

"

ending location

Note that in the following test output, the current contents of the data register are never
shown. Only the previous contents are shown. Thus, the data register display in the test
output from LIST PROGRAMMER contains garbage. Similarly, the data register display in
the test output from LIST PROGRAM contains data from the previous command sequence.

10-18 Transact/V Test Facility

> TEST 42,19,38

> LIST PROGRAMMER

00020 032:007

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PROGRAMMER

! POSN: LIST: DATA:

! 0 PROGRAMMER .a.B.a..b..............B.H....

+--------------------------------------+

00021 032:005

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PHONE

! POSN: LIST: DATA:

! 0 PROGRAMMER .a.B.a..b..............B.H....

! 30 PHONE

+--------------------------------------+

00022 066:129

Programmer Phone Number

CRESSMAN PETE 3805

ERCOLANI JOE 4343

KING WENDY 3818

LEDERMAN ABE 3753

VANN KEITH 4046

00028 000:000

> LIST PROGRAM

00030 032:006

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST PROG-NAME

! POSN: LIST: DATA:

! 0 PROG-NAME VANN

+--------------------------------------+

00031 032:002

+-L-I-S-T---D-U-M-P--------------------+ <--issued for LIST DESCRIPTION

! POSN: LIST: DATA:

! 0 PROG-NAME VANN

! 8 DESCRIPTION KEITH 4046.........6.B..

!"........X.?

+--------------------------------------+

00032 066:130

Transact/V Test Facility 10-19

Program Name Program Description

CRUNCH Compacts ASCII files.

DISCOPY Copies disc files.

GTDATA Generates random test data.

PROJMAN Project management using the critical path method.

SGEN Generates STREAM job files.

TLIST Lists the contents of a "STORE" tape.

UNCRUNCH Expands a file compacted by CRUNCH.

00038 000:000

> EXIT

Test Modes 101 and 102

These test modes allow you to keep track of the list and data register size, and whether
work-space recovery was needed. Test mode 101 displays test data at the end of every
command sequence; test mode 102 displays test data only at the end of the program.

> TEST 101 <---request test mode 101

> ADD PROGRAMMER <---start of command sequence

Enter programmer's last name: MARTIN

Enter programmer's first name: JOAN

Enter phone extension number: 3803

+-S-E-Q-U-E-N-C-E---D-U-M-P--+ <---current status of list/data regs

! at end of this command sequence

! MAXIMUM LIST= 2 ITEMS

! MAXIMUM DATA= 17 WORDS

! WORKSPACE RECOVERY= 0

!

+----------------------------+

> ADD PROGRAM <---new command sequence

Enter program name: MYPROG

Program description: Test program for Manual

10-20 Transact/V Test Facility

+-S-E-Q-U-E-N-C-E---D-U-M-P--+ <---status at end of second

! command sequence

! MAXIMUM LIST= 2 ITEMS

! MAXIMUM DATA= 34 WORDS

! WORKSPACE RECOVERY= 0

!

+----------------------------+

> TEST 102 <---request test mode 102

> LIST PROGRAMMER

Programmer Phone Number

CRESSMAN PETE 3805

ERCOLANI JOE 4343

KING WENDY 3818

LEDERMAN ABE 3753

MARTIN JOAN 3803

VANN KEITH 4046

> LIST PROGRAM

Program Name Program Description

CRUNCH Compacts ASCII files.

DISCOPY Copies disc files.

GTDATA Generates random test data.

MYPROG Test program for Manual

PROJMAN Project management using the critical path method.

SGEN Generates STREAM job files.

TLIST Lists the contents of a "STORE" tape.

UNCRUNCH Expands a file compacted by CRUNCH.

> EXIT

+-R-U-N---D-U-M-P------------+ <---test output only issued

! at end of program

! MAXIMUM LIST= 2 ITEMS

! MAXIMUM DATA= 34 WORDS

! WORKSPACE RECOVERY= 0

!

+----------------------------+

Transact/V Test Facility 10-21

11

Transact/iX Symbolic Debugger: TRANDEBUG

Overview

TRANDEBUG is an interactive tool that helps you debug native mode Transact/iX
applications. You use TRANDEBUG to isolate run-time errors after your program has
compiled and linked successfully.

TRANDEBUG allows you to:

Stop the execution of a program at speci�c locations
Display the contents of:
Transact data items
Transact registers
Run-time options
Call stack
Perform stack
VPLUS communication area

Set breakpoints at speci�c locations, data items, and data item values
Modify the contents of Transact data items, registers and run-time options
Trace the execution path of a program
View the source code for the program being debugged
Record and playback TRANDEBUG commands using an MPE/iX �le
Issue MPE/iX commands
Invoke the MPE/iX Native Mode Debug Facility, NMDEBUG
Trace KSAM, MPE/iX �le, and TurboIMAGE intrinsic calls.

Features and Benefits

TRANDEBUG o�ers the following major features and bene�ts.

Symbolic Debugger

TRANDEBUG is a symbolic debugging interface for Transact/iX. You can interactively
monitor your program execution and location, and examine the contents of Transact data
items and registers without knowing the memory addresses.

Breakpoints

TRANDEBUG lets you stop your program at speci�c points of interest called breakpoints.
Set breakpoints by using the following four commands:

BREAK SET command sets a breakpoint at a speci�ed segment number and p-code o�set.

DATA BREAK SET command sets a breakpoint at a speci�ed data item or data-item
value.

DATA BREAK REGISTER command sets a breakpoint at a speci�ed register.

TRANDEBUG 11-1

LABEL BREAK SET command sets a breakpoint at a speci�ed label.

Once breakpoints are set, use the following commands to list and delete breakpoints:

BREAK LIST

BREAK DELETE

DATA BREAK LIST

DATA BREAK DELETE

You'll �nd syntax, descriptions, and examples of these commands in the \TRANDEBUG
Commands" section of this chapter.

Transact Display Functions

TRANDEBUG lets you display information about your Transact/iX program with the
numerous options of the DISPLAY command. You can display the contents of Transact data
items, registers, run-time options, database or �le information, call and perform stacks, and
VPLUS communication areas. The data and list registers are displayed by the DISPLAY
ITEM command. Other registers that can be displayed are the match, key, update, status,
statusin, argument, and input run-time registers.

Transact Modify Functions

TRANDEBUG lets you modify values of Transact data items, registers and run-time options.
The MODIFY ITEM command allows you to update the contents of a data register. You can
modify the input, data, key, argument, match, status, and update registers.

Program Execution Control

You can control your program execution when you use TRANDEBUG. The CONTINUE
command resumes program execution. When breakpoints are encountered, TRANDEBUG
suspends program execution so that you can examine or manipulate data. You can also use
the STEP command to execute a program on a statement-by-statement basis.

MPE/iX Subsystem Support

TRANDEBUG lets you take advantage of the MPE/iX native mode environment.
Statements that begin with a colon (:) are passed automatically to the MPE/iX Command
Interpreter for execution. TRANDEBUG allows you to invoke the native mode debugger
(NMDEBUG.PUB.SYS) when you want to monitor your program's execution at the
machine-instruction level.

Source Code Window

TRANDEBUG includes a window through which you can view source code for the program
being debugged. This window can be turned on and o� at any time during a TRANDEBUG
session. Use the WINDOW ON command to display the source �le. You can change the
window size, page forward or backward through the source �le, or jump to a speci�ed
statement or label.

11-2 TRANDEBUG

TRANDEBUG Log and Command Files

With TRANDEBUG, you can log your interactive debug commands to MPE/iX �les. You
can use this feature to create a procedure for establishing frequently used breakpoints in a
program under development. The LOG ON command starts a recording session where your
subsequent keystrokes are recorded to a log �le. The LOG OFF command ends the recording
session, and LOG CLOSE saves the recording to a permanent �le. You then invoke the
commands in the log �le with the USE command. You can also use a text editor to create
command �les that can be invoked with the USE command.

Arithmetic Trapping

TRANDEBUG provides a mechanism to gain control of your program when arithmetic traps
occur. For example, an integer overow or division by zero sets an arithmetic trap. When
this happens, an error message is displayed and control returns to TRANDEBUG so you can
determine what caused the error.

Control Y Trapping

When �Ctrl� Y is pressed during a debugging session, program control returns to
TRANDEBUG, and at this point, you can enter any valid TRANDEBUG command. This
allows you to regain control of TRANDEBUG before the next breakpoint is reached.

Online Help

The HELP subsystem provides a way to obtain information on command syntax, parameter
descriptions, and examples. Any time you need help in executing a command, type HELP
and (optionally) the command name. Commands are also described in the \TRANDEBUG
Commands" section later in this chapter.

Compatibility

TRANDEBUG provides debugging support exclusively for Transact/iX applications.
Transact/iX programs compiled from TRANCOMP/V generated p-code �les are not
supported. You must compile your program from a source �le in order to use TRANDEBUG.

TRANDEBUG does not support other programming languages, such as COBOL, FORTRAN,
or Pascal. The native mode debugger can be invoked from within TRANDEBUG for this
purpose.

TRANDEBUG 11-3

Using TRANDEBUG

This section provides a tutorial to introduce you to the frequently-used TRANDEBUG
commands. It will help you become familiar with using TRANDEBUG. A complete list of
TRANDEBUG commands and examples is found in the \TRANDEBUG Commands" section
later in this chapter.

After reading this section, you will know how to perform the following tasks:

Compile a program with the TRANDEBUG option
Start and end a TRANDEBUG session
View source code in TRANDEBUG
Set breakpoints
Continue program execution from within TRANDEBUG
Display data items
Modify data items
Step through a program.

Compiling with the TRANDEBUG Option

To use TRANDEBUG, you �rst compile your Transact/iX program(s) with the
TRANDEBUG option. Specify this option in addition to any other compiler options that your
application requires.

The following example shows how to compile and link a main program using the
TRANDEBUG option:

:TRANXLLK MYSOURCE,MYPROG,MYLIST;INFO="TRANDEBUG,NOLIST"

The compiled output appears as follows:

PAGE 1 Transact/iX HP30138A.04.02 c Copyright HEWLETT-PACKARD CO. 1987

MON, OCT 26, 1992, 9:42 AM

COMPILING WITH OPTIONS: CODE,DICT,ERRS,TRANDEBUG

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

PROCESSOR TIME 0:00:02.1 ELAPSED TIME 0:00:03

END OF COMPILE

HP Link Editor/XL (HP30315A.00.25) Copyright Hewlett-Packard Co. 1986

LinkEd> link from=$oldpass;to=myprog

END OF LINK

:

If your Transact application includes Transact subprograms, each subprogram that requires
debugging must be compiled with the TRANDEBUG option.

11-4 TRANDEBUG

Starting and Ending TRANDEBUG Sessions

After you have successfully compiled and linked your program using the TRANDEBUG
option, run your program to start a TRANDEBUG session. The following �gure shows how
TRANDEBUG identi�es itself on your screen:

:RUN MYPROG

d a

c b

Figure 11-1. The TRANDEBUG Screen

To terminate a TRANDEBUG session, type the following at the TRANDEBUG> prompt:

TRANDEBUG> ABORT

This command forces your program to abort TRANDEBUG, then exit. After you complete
your debugging session, you must recompile your program without the TRANDEBUG
compiler option. Be careful not to move program �les compiled with TRANDEBUG to
production.

Displaying Source Code in TRANDEBUG

TRANDEBUG provides a source code window that lets you view statements in the source
code as they execute. This window can be controlled with the WINDOW and PAGE
commands. Your program can run with the windows turned on or o�. You can change
the size of the window and scroll forward and backward through the source code listing
independent of the program's execution.

TRANDEBUG 11-5

To display the source code for the program being debugged, type WINDOW ON at the
TRANDEBUG> prompt as follows:

TRANDEBUG> WINDOW ON

TRANDEBUG immediately displays the source code for the program being debugged in a
source code window like this:

d a

c b

Figure 11-2. TRANDEBUG Source Code Window

In the example shown, the right arrow (\>") marks the current location. It points to the next
statement that will be executed. In this example, the current location marker points to the
�rst executable program statement. The current system, segment , and o�set are displayed
within the source code window.

Setting a Breakpoint

When you want to stop at a speci�c location in your program, you can set a breakpoint. With
TRANDEBUG, you set a breakpoint by specifying the segment number and p-code o�set
within a Transact/iX program. If a breakpoint is to be set in the current segment, just specify
the p-code o�set.

Figure 11-3 shows a compiled listing for a program that adds programmers to a TurboIMAGE
database. This program is used in the remaining examples in this section.

11-6 TRANDEBUG

line number

p-code o�set

1.000 # SYSTEM PTRAC,

2.000 0000 BASE = PROGB (,3),

3.000 0000 SOGMPM = "PTRAC A00.00";

4.000 0000

5.000 0000 <<PTRAC is a program that adds programmers to >>

6.000 0000 <<a TurboIMAGE database called PROGB. >>

7.000 0000 <<PROGB is opened with exclusive modify access. >>

8.000 0000

9.000 0000 DEFINE(ITEM)

10.000 0000

11.000 0000 PHONE U(4), <<programmer's phone extension #>>

12.000 0000 HEAD = "Phone Number",

13.000 0000 ENTRY = "Enter phone extension number":

14.000 0000

15.000 0000 PROGRAMMER U(30), <<programmer's name>>

16.000 0000 HEAD = "Programmer":

17.000 0000 LNAME U(16) = PROGRAMMER(1), <<last name>>

18.000 0000 ENTRY = "Enter programmer's last name":

19.000 0000 FNAME U(14) = PROGRAMMER(17), <<first name>>

20.000 0000 ENTRY = "Enter programmer's first name";

21.000 0000 <<end of data item definitions>>

22.000 0000 <<initialize>>

23.000 0000 SET(DELIMITER) "";

24.000 0001

25.000 0001 $$ADD: <<begin the ADD command>>

26.000 0001 $PROGRAMMER:

27.000 0002 <<add programmer to PROGRAMMERS master data set>>

28.000 0002

29.000 0002 LIST PROGRAMMER:

30.000 0003 PHONE;

31.000 0004 DATA LNAME:

32.000 0005 FNAME:

33.000 0006 PHONE;

34.000 0007 PUT PROGRAMMERS, LIST=(PROGRAMMER:PHONE);

35.000 0011 END; <<end of ADD PROGRAMMER>>

36.000 0012

37.000 0012 END PTRAC;

Figure 11-3. Sample Transact Program

TRANDEBUG 11-7

In Figure 11-3, only the p-code o�set is required to set a breakpoint. A segment number is
not required since only the current segment is being debugged.

To specify a breakpoint at p-code o�set 7, type BREAK SET at the TRANDEBUG> prompt:

TRANDEBUG> BREAK SET 7

After the breakpoint is set, TRANDEBUG displays the following:

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

0. PTRAC 0 7 1

When the breakpoint is reached, TRANDEBUG suspends program execution and displays the
TRANDEBUG> prompt.

Continuing Program Execution

The CONTINUE command resumes the execution of the program being debugged. Once you
have set up initial breakpoints during a debugging session, you can resume program execution
by typing CONTINUE at the TRANDEBUG> prompt. TRANDEBUG continues execution
of your program until a breakpoint is encountered or the program terminates.

The following example uses the CONTINUE command for the sample program shown in
Figure 11-3:

TRANDEBUG> CONTINUE

>ADD PROGRAMMER

Enter programmer's last name> LORENZ

Enter programmer's first name> JAMES

Enter phone extension number> 5000

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PTRAC 0 7

TRANDEBUG>

Normal program execution resumes after you issue the CONTINUE command. The program
continues until a breakpoint is reached when TRANDEBUG will suspend program execution
and display the TRANDEBUG> prompt.

When �Ctrl� Y is invoked during a debugging session, program control returns to
TRANDEBUG and the TRANDEBUG> prompt. You can then set additional breakpoints
and type CONTINUE to resume execution of your program, or issue any other valid
TRANDEBUG commands.

The following is an example of how �Ctrl� Y is used:

TRANDEBUG> CONTINUE

>ADD PROGRAMMER

Enter programmer's last name: �Ctrl� Y

TRANDEBUG> BREAK SET 7

TRANDEBUG> CONTINUE

11-8 TRANDEBUG

Displaying the Values of Data Items

To display the value of a data item, you issue the DISPLAY ITEM command at the
TRANDEBUG> prompt. When you use this command, you can display the contents of all
items in the list and data registers, or speci�c items.

The following example displays all items in the list and data registers:

TRANDEBUG> DISPLAY ITEM

LIST REGISTER:

PROGRAMMER : LORENZ JAMES

PHONE : 5000

The following example displays a speci�c data item:

TRANDEBUG> DISPLAY ITEM PROGRAMMER

PROGRAMMER : LORENZ JAMES

Modifying the Values of Data Items

To modify the value of a data item, type MODIFY ITEM followed by the data item name
at the TRANDEBUG> prompt. You can modify the contents of the data register, but not
the list register. After you issue the MODIFY ITEM command, TRANDEBUG displays
the speci�ed data item value and prompts you for the new value. Pressing �Return� without
entering a new value leaves the data item unchanged.

The following example modi�es the FNAME child data item:

TRANDEBUG> MODIFY ITEM FNAME

FNAME : < JAMES > := < JIM >

TRANDEBUG> DISPLAY ITEM PROGRAMMER

PROGRAMMER: : LORENZ JIM

TRANDEBUG>

Stepping Through a Program

The STEP command causes one or more groups of instructions to be executed. It can be
used when you want to examine the contents of variables both before and after the groups of
instructions are executed.

The Transact/iX compiler determines the level of granularity at which you can single-step
through a program. TRANDEBUG allows you to single-step through programs at a level that
is meaningful to the Transact/iX language.

When single-stepping through the LIST and DATA statements, TRANDEBUG returns
control to you after each data item is loaded into the list and data registers.

When single-stepping through other Transact/iX verbs, TRANDEBUG returns control to you
after each statement is executed.

TRANDEBUG 11-9

The following example uses the STEP command to control program execution. The current
location marker points to the LIST PROGRAMMER statement (p-code o�set = 2). The user
types DISPLAY ITEM at the TRANDEBUG> prompt as shown below:

d a

c b

Program execution is resumed briey with the STEP 3 command. The name \LORENZ"
is entered in response to a program prompt. Control returns to TRANDEBUG after the 3
program instructions are executed. The user then types the DISPLAY ITEM command at the
TRANDEBUG> prompt:

d a

c b

11-10 TRANDEBUG

TRANDEBUG Startup Initialization File

When TRANDEBUG begins to execute a program, it searches for a startup �le before
returning control to you. This startup �le must be named \TDBGINIT" and reside in the
same group as the program �le. The �le must be in ASCII format with each line representing
a command line for TRANDEBUG.

When all the commands in the startup TDBGINIT �le have executed, control returns to you.
This startup �le can be used if a series of commands must be executed each time the debugger
is started. The �le can be created using the LOG command, which is discussed in \Command
Descriptions."

Redirecting VPLUS Input and Output

Before you use TRANDEBUG to debug a VPLUS application, you should redirect your
VPLUS input and output to an alternative terminal. To do this, follow these steps:

1. Find an alternative terminal that is available and is hard-wired to your computer.

2. Log onto the alternative terminal.

3. Type SHOWME to determine the logical device of the alternative terminal.

4. Write down the logical device number of the alternative terminal.

5. Log o� the alternative terminal and go back to your terminal.

6. Type the following �le statement to redirect your application forms to the alternative
terminal and then run your program:

:FILE TRANVPLS; DEV=## (Use the Ldev # from step 4.)

:RUN MYPROG

If the redirection fails, do the following steps:

1. Execute the following command to determine if the alternative terminal is available
(AVAIL):

:SHOWDEV ## (## is the LDEV of the alternative terminal)

2. Determine the system baud rate by asking your system manager. Then, check the
alternative terminal baud rate to ensure that it is the same as the system baud rate.

TRANDEBUG 11-11

Disabling the Debugger

Under some circumstances, it might be desirable to turn o� TRANDEBUG and not have to
recompile the program without the TRANDEBUG compiler option. The TRANDEBUG
debugger examines the TRANDEBUG MPE/iX system variable and disables debugging if this
variable is set.

To disable TRANDEBUG for your session, type the following command before running your
program:

:SETVAR TRANDEBUG,"OFF"

You can then turn on the debugger by typing the following command:

:SETVAR TRANDEBUG,"ON"

Note If the TRANDEBUG system variable is not set, then a program compiled with
the TRANDEBUG option will run in debug mode by default.

Alternative Debug Entry Points

Sometimes, you may have a large complex application composed of many Transact systems
that are under development. When performing integration testing, all systems compiled with
TRANDEBUG might be enabled at the same time, but you only want to run one of these
systems in debug mode. You can do this by using the TRANDEBUG system variable.

To begin your debugging session at a Transact/iX system other than the main program, use
the TRANDEBUG system variable as follows:

:SETVAR TRANDEBUG,"startsystem"

This allows your program to execute without invoking TRANDEBUG until startsystem begin
to execute.

TRANDEBUG Run-Time Environment

By default, TRANDEBUG is invoked automatically after you compile your program with
the TRANDEBUG compiler option. Unless you use the SETVAR TRANDEBUG system
command to specify which system you want to debug (see \Alternative Debug Entry Points"),
TRANDEBUG is invoked for the main program.

For TRANDEBUG to be invoked for a particular system, the following two conditions must
be met:

The system must be compiled with the TRANDEBUG compiler option.

The list �le IUxxxxxx (where xxxxxx is the system name) generated by the Transact/iX
compiler, must be accessible.

11-12 TRANDEBUG

Note For versions prior to Transact/iX A.04.02, the list �le format is ITxxxxxx
(where xxxxxx is the system name).

The Transact/iX compiler automatically creates the IUxxxxxx list �le for each system in your
current group that is compiled with TRANDEBUG. This �le contains the symbol table and
source code information needed during debugging. These �les are purged when you recompile
your program with the debug option turned o�.

Arithmetic Traps

TRANDEBUG provides a mechanism to gain control of your program when arithmetic traps
occur. When an arithmetic trap occurs, the error message is displayed and control returns to
TRANDEBUG so that you can display data-item values and determine what caused the error.

Once you resume execution from TRANDEBUG, the same program ow takes place as before.
If you are running a command-driven program, control is transferred to the TRANDEBUG>
prompt; if you are not running a command driven program, the EXIT/RESTART? prompt
appears.

TRANDEBUG Commands

This section describes, in detail, each TRANDEBUG command and gives the syntax for the
command and an example. The commands are presented in alphabetic order.

TRANDEBUG 11-13

:

Allows access to the MPE/iX Command Interpreter.

Syntax

:
�
COMMAND

�

Parameters

command The MPE/iX Command Interpreter command that will be executed.

Discussion

This command allows access to the MPE/iX Command Interpreter. Any commands that can
be used with the HPCICOMMAND intrinsic can be used with the : command. You can use
this command to run other programs from within TRANDEBUG.

Example

The following example uses the : command:

TRANDEBUG> :listf prog@

FILENAME

PROG01P PROG02P PROG03P

11-14 TRANDEBUG

ABORT

ABORT

Terminates execution of the Transact/iX program and exits TRANDEBUG.

Syntax

ABORT

Parameters

None.

Discussion

This command exits TRANDEBUG and terminates the execution of the Transact/iX
program.

Example

The following example uses the ABORT command to terminate TRANDEBUG:

TRANDEBUG> CONTINUE

Customer Dollars Spent

John Smith $100.25

Jane Doe $201.75

Joe Customer $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 10

TRANDEBUG> ABORT

END OF PROGRAM
:

TRANDEBUG 11-15

AUTORPT

Allows you to repeat the last command typed by pressing the �Return� key.

Syntax

�
AUTORPT

AR

��
ON

OFF

�

Parameters

ON Turns on the auto-repeat ag to allow you to repeat a previously-typed
command by pressing �Return�.

OFF Turns o� the auto-repeat ag.

Discussion

This command allows you to repeat automatically the last command typed. First you must
type the AUTORPT command followed by another TRANDEBUG command. When you
press �Return�, the last command typed will repeat itself.

This is useful if single-stepping is desired through a lengthy program, or if a breakpoint is set
and then subsequently reached many times. In such cases, you would �rst type the STEP
or CONTINUE command, then use the �Return� key for repeated executions. If neither ON
nor OFF is speci�ed, the current value of the AUTORPT ag is displayed. It can then be
changed. The default for the AUTORPT ag is OFF.

Example

The following example uses the AUTORPT command to step automatically through a
program.

TRANDEBUG> AUTORPT ON

TRANDEBUG> STEP

EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 0 28

TRANDEBUG> �Return�
REPEATING: STEP

EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 0 34

TRANDEBUG> �Return�

11-16 TRANDEBUG

AUTORPT

REPEATING: STEP

EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 0 36

TRANDEBUG> AUTORPT OFF

TRANDEBUG> �Return�

TRANDEBUG 11-17

BREAK DELETE

Deletes a speci�ed breakpoint.

Syntax

�
BREAK DELETE

BD

�2
4#breakpoint number

p-code o�set
�
,segment

�
,system

� �
ALL

3
5

Parameters

#break-
point number

The number assigned to the breakpoint to be deleted. You can identify
this number by listing the breakpoints that are set. You must specify \#"
to indicate that you want to delete the breakpoint by number rather than
by p-code o�set and segment. For example, to delete the third breakpoint,
you would use #3.

p-code o�set The p-code o�set corresponding to the breakpoint to be deleted.

segment The segment number that corresponds to the breakpoint to be deleted.
The default for this parameter is 0.

system A string representing the name of the system in which you want to delete
the breakpoint. The currently-executing system is the default.

ALL A keyword that deletes all set breakpoints.

Discussion

This command allows you to delete breakpoints set at Transact/iX statements. If you set
breakpoints from within NMDEBUG, you must also delete these breakpoints from within
NMDEBUG. The BREAK DELETE command only knows about breakpoints that were set
with a corresponding BREAK SET command.

To execute this command you must do one of the following:

Specify the number of the desired breakpoint.

Specify the segment and p-code o�set of the breakpoint you want to delete.

You can also use the BREAK DELETE command without any parameters by specifying
BREAK DELETE or BD and pressing �Return�. TRANDEBUG displays each breakpoint and
prompts you to either keep it or delete it.

Examples

The following examples show two methods of deleting breakpoints. In the �rst example,
a BREAK LIST command is used to determine the number corresponding to the desired
breakpoint. In the second example, the breakpoint is deleted based on the p-code o�set and
segment number.

11-18 TRANDEBUG

BREAK DELETE

TRANDEBUG> bl

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT

0. TEST 0 24 1

CMD LIST>>>>> DISPLAY MATCH;STEP

1. TEST 1 28 1

2. TEST1 1 10 1

CMD LIST>>>>> DISPLAY KEY;

TRANDEBUG> break delete #1

BREAKPOINT DELETED:

SYSTEM SEGMENT OFFSET COUNT

1. TEST1 1 28 1

TRANDEBUG> bd 24

BREAKPOINT DELETED:

SYSTEM SEGMENT OFFSET COUNT

0. TEST 0 24 1

CMD LIST>>>>> DISPLAY MATCH;STEP

TRANDEBUG 11-19

BREAK LIST

Lists the breakpoints that are set in the Transact/iX program.

Syntax

�
BREAK LIST

BL

�

Parameters

None.

Discussion

This command allows you to display currently-set breakpoints. The command only lists
breakpoints set by the BREAK SET statement and not breakpoints set from within
NMDEBUG. An asterisk listed in front of a breakpoint indicates the point where your
program stopped.

Example

The following example shows the listing of a typical set of breakpoints.

TRANDEBUG> break list

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT

* 0. TEST 0 24 1

CMD LIST>>>>> DISPLAY MATCH;STEP

1. TEST 1 28 1

2. TEST1 1 10 1

CMD LIST>>>>> DISPLAY KEY;

11-20 TRANDEBUG

BREAK SET

BREAK SET

Sets a breakpoint at the speci�ed location.

Syntax

�
BREAK SET

BS

��
p-code o�set

�
,segment

��
,system

�
system

��
,count

��
,{cmdlist}

�

Parameters

p-code o�set The p-code o�set corresponding to the Transact instruction at which you
want to stop program execution. The range of valid p-code o�sets is 0
to 16383. If the speci�ed p-code o�set does not match an actual p-code
value, then the next smaller actual p-code will be used.

segment The segment number corresponding to the instruction location. The range
of valid segments is 0 to 125. The default is the current segment.

system A string representing the name of the system in which you want to set the
breakpoint. If you only specify this parameter, a breakpoint is set at the
beginning of the system. Do this if you want to stop at the beginning of a
child system. The default is the current system.

count A number indicating to the program to stop at the breakpoint every n
times it is reached. For example, to stop at a breakpoint every third time
the p-code o�set is executed, you would specify 3 for count. The range of
count is 1 to 1,000,000. The default is 1.

cmdlst A set of commands executed every time the breakpoint is reached. This
parameter must consist of valid TRANDEBUG commands separated
by semicolons and cannot be NMDEBUG commands. For example,
{AUTORPT;STEP;;;;MODIFY STATUS -15;CONTINUE}. (Each of the
semicolons following STEP acts like a carriage return if AUTORPT is
turned on.) The cmdlst parameter can be up to 80 characters long.

Discussion

This command lets you set a breakpoint at a speci�ed segment number and p-code o�set
within a Transact/iX program. By default, the segment number is the current segment, so
you do not need to specify the location if it resides in the current segment. The system name
parameter does not have to be speci�ed if the location resides in the system that is currently
executing. If you want to set a breakpoint at the beginning of a system to be called from the
current system, just specify the system name. If the breakpoint is set successfully, a message
is displayed showing information about the breakpoint.

The range of valid breakpoints is 0 to 63. A maximum of 64 breakpoints can be set with the
BREAK SET command. A combined total of up to 64 additional breakpoints can be set with
the DATA BREAK REGISTER and DATA BREAK SET commands.

TRANDEBUG 11-21

BREAK SET

Examples

The following examples illustrate setting breakpoints in TRANDEBUG.

TRANDEBUG> break set 24

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

1. CHILD 0 24 1

TRANDEBUG> break set 28,1

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

2. CHILD 1 28 1

TRANDEBUG> break set 10,,PARENT

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

3. PARENT 0 10 1

TRANDEBUG> break set 20,,,3,{DISPLAY MATCH}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

1. PARENT 0 20 3

CMD LIST>>>>> DISPLAY MATCH

TRANDEBUG> continue

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 0 20

EXECUTING BREAKPOINT CMDLIST: DISPLAY MATCH;

11-22 TRANDEBUG

BREAK SET

MATCH REGISTER:

ITEM1 EQ : 123 AND
ITEM2 EQ : ABC OR

ITEM2 EQ : DEF

TRANDEBUG> break set 10,,myprog

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

0. MYPROG 0 10 1

TRANDEBUG> bs 3,1, myprog,,{DISPLAY MATCH}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

1. MYPROG 1 3 1

CMD LIST>>>>> DISPLAY MATCH

TRANDEBUG> bs 183,5,,6

SYSTEM SEGMENT OFFSET COUNT

2. MYPROG 5 183 6

TRANDEBUG 11-23

CONTINUE

Continues execution of the Transact/iX program until a breakpoint is encountered or the
program completes execution.

Syntax

�
CONTINUE

C

�

Discussion

This command resumes execution of the Transact/iX program from within TRANDEBUG.
Execution continues until a breakpoint is encountered or the program completes execution. If
the trace facility is turned on with the TRACE CODE command, the segment and o�sets are
displayed before they are executed.

Example

This example shows a typical use of the CONTINUE command.

TRANDEBUG> continue

Customer Dollars Spent

John Smith $100.25

Jane Doe $201.75

Joe Customer $ 21.45

END OF PROGRAM

:

11-24 TRANDEBUG

DATA BREAK DELETE

DATA BREAK DELETE

Deletes a speci�ed data breakpoint.

Syntax

�
DATA BREAK DELETE

DBD

�
2
664
#breakpoint number�
item name

register name

��
,system

�
ALL

3
775

Parameters

#break-
point number

The number assigned to the data breakpoint you want to delete. You can
identify this number by listing the data breakpoints that are set. You
must specify \#" when you want to delete by number. For example, to
delete the third data breakpoint, type #3.

item name The item name at which the data breakpoint is set.

register name The register name of the data breakpoint that you want to delete.

system A string representing the system name in which you want to delete the
data breakpoint. The currently executing system is the default.

ALL A keyword that deletes the data breakpoints currently set.

Discussion

This command allows you to delete breakpoints set at Transact/iX data items. To execute
this command, do one of the following:

Specify the number corresponding to the desired breakpoint.

Specify the segment and p-code o�set of the breakpoint you want to delete.

You can also use the DATA BREAK DELETE command without any parameters by
specifying DATA BREAK DELETE or DBD and pressing �Return�. TRANDEBUG displays
each breakpoint and prompts you to either keep it or delete it.

Examples

In the �rst example, a DATA BREAK LIST command shows the current data breakpoints. In
the second example, DATA BREAK DELETE is used to delete the breakpoint number 0. In
the third example, DATA BREAK DELETE deletes the breakpoint using the data item name
ITEM2.

TRANDEBUG 11-25

DATA BREAK DELETE

TRANDEBUG> data break list

CURRENT DATA BREAKPOINTS:

SYSTEM ITEM NAME LENGTH COUNT TYPE

0. TEST ITEM1 4 1 CHANGE

CMD LIST>>>>> DISPLAY MATCH;STEP

1. TEST ITEM2 8 1 VALUE

EQ VALUE>>>>> abcdefgh

TRANDEBUG> data break delete #0

BREAKPOINT DELETED:

SYSTEM ITEM NAME LENGTH COUNT TYPE

0. TEST ITEM1 4 1 CHANGE

CMD LIST>>>>> DISPLAY MATCH;STEP

TRANDEBUG> data break delete ITEM2

BREAKPOINT DELETED:

SYSTEM ITEM NAME LENGTH COUNT TYPE

1. TEST ITEM2(1) 8 1 VALUE

EQ VALUE>>>>> abcdefgh

11-26 TRANDEBUG

DATA BREAK LIST

DATA BREAK LIST

Lists the data breakpoints currently set in the Transact/iX program.

Syntax

�
DATA BREAK LIST

DBL

�

Parameters

None.

Discussion

This command allows you to display the data breakpoints that are currently set.

Example

This example shows the listing of a typical set of data breakpoints.

TRANDEBUG> data break list

CURRENT DATA BREAKPOINTS:

SYSTEM ITEM NAME LENGTH COUNT TYPE

0. TEST ITEM1 4 1 CHANGE

CMD LIST>>>>> DISPLAY MATCH;STEP

1. TEST ITEM2 8 1 VALUE

LT VALUE>>>>> abcdefgh

2. TEST1 ITEM1 4 1 CHANGE

CMD LIST>>>>> DISPLAY KEY;

3. TEST ITEM3 8 1 VALUE

NE VALUE>>>>> 12345678

4. TEST MATCH REGISTER 1 CHANGE

The column TYPE shows the data breakpoint type VALUE or CHANGE. VALUE means that a
breakpoint is related to a speci�ed value. The value that causes the breakpoint is displayed
after the string VALUE>>>>> and can take multiple lines. The relationship between the item
name and the value that causes the breakpoint is displayed in front of the string VALUE>>>>>.
CHANGE indicates a data breakpoint when the item name's value changes. The command list
associated with the breakpoint is listed after the string CMD LIST>>>>> and can also take
multiple lines.

TRANDEBUG 11-27

DATA BREAK REGISTER

Sets a breakpoint at the speci�ed register.

Syntax

�
DATA BREAK REGISTER

DBR

�
register

�
,count

�
,{cmdlist}

� �

Parameters

register The name of the Transact/iX register at which you want the data
breakpoint set. Breakpoints can be set at the input, key, match, status,
statusin, or update registers. When a register value changes, a data
breakpoint occurs and control returns to TRANDEBUG.

count A number indicating how often you want to stop at the data breakpoint,
that is, every n times it is reached. The default for this parameter is 1.
To stop at a data breakpoint every third time the register changes in
value, specify 3 for count.

cmdlst A set of commands executed every time the breakpoint is reached. The
cmdlist parameter must consist of valid TRANDEBUG commands
separated by semicolons. It cannot consist of NMDEBUG commands. For
example, {AUTORPT;STEP;;;;MODIFY STATUS -15;CONTINUE}. (Each of
the semicolons following STEP acts like a carriage return if AUTORPT is
turned on.) The entire DATA BREAK REGISTER command, including
the cmdlst parameter, can be up to 80 characters long.

Discussion

This command allows you to set a data breakpoint at a speci�ed register. Any time the
register value changes, a data breakpoint occurs, and the control returns to TRANDEBUG.
This command determines which instruction is modifying a speci�ed register. The data
breakpoint always occurs at the instruction after the one that modi�ed the register.

To determine the speci�c instruction that modi�ed the value, just look at the instruction
previous to the current one. If the data breakpoint is successfully set, a message is displayed
showing information about the breakpoint. You can only set register breakpoints in the
current system.

Example

The following example shows how to set data breakpoints at registers.

TRANDEBUG> data break register match,,{DISPLAY MATCH}

DATA BREAKPOINT SET:

11-28 TRANDEBUG

DATA BREAK REGISTER

SYSTEM ITEM NAME LENGTH COUNT TYPE

--

0. CHILD MATCH REGISTER 1 CHANGE

CMD LIST >>>>> DISPLAY MATCH

TRANDEBUG> continue

DATA BREAKPOINT ENCOUNTERED, EXECUTION STOPPED

---> MATCH REGISTER CHANGED

Match Register:

item1 EQ : 123 AND

item2 EQ : ABC OR

item2 EQ : DEF

TRANDEBUG 11-29

DATA BREAK SET

Sets a breakpoint at the speci�ed data item or data-item value.

Syntax

�
DATA BREAK SET

DBS

�
item name

� �
,length

�
,count

�
,
�
cmdlist

	 � � �
,rel-op ,value

�
,
�
cmdlist

	 �
�

Parameters

item name The name of a Transact/iX data item at which the data breakpoint is set.
Marker items are not valid item names.

length The number of bytes of the item that will be checked if a data breakpoint
occurs. If any portion of the item (up to the speci�ed length) has
changed, a data breakpoint occurs. The default value for length is the
storage length multiplied by occurrence count. (See DEFINE(ITEM) in
Chapter 8, \Transact Verbs.")

count A number indicating how often you want to stop at the data breakpoint,
that is, every n times it is reached. The default for this parameter is 1.

rel-op An operator that indicates the relationship between the value that is
supplied and the data item value that will cause a breakpoint. Valid
operators are LT, LE, EQ, GE, GT, and NE.

value The value to compare against. If the data item is of type X or U, the
comparison between the data item and the supplied value parameter is
based on the shorter of the two.

cmdlst A set of commands executed every n times the breakpoint is
reached. The cmdlist parameter must consist of valid TRANDEBUG
commands separated by semicolons. It cannot consist of NMDEBUG
commands or commands that contain command lists. For example,
{AUTORPT;STEP;;;;MODIFY STATUS-15;CONTINUE}. (Each of the
semicolons following STEP acts like a carriage return if AUTORPT is
set.) The entire DATA BREAK SET command, including the cmdlst
parameter, can be up to 80 characters long.

Discussion

This command allows you to set a data-change breakpoint or a data-value breakpoint at
a speci�ed item within the Transact/iX program. If a data-change breakpoint is set, the
breakpoint count value is decremented each time the item value changes. When the count
reaches zero, control returns to TRANDEBUG, and the breakpoint information is displayed.

If a data-value breakpoint is set, anytime the item value changes and the desired relation
between the data item and the supplied value becomes true, a data breakpoint occurs and
control returns to TRANDEBUG.

For either breakpoint type, if the item is listed again or if the item is removed from the list
register, a data breakpoint occurs and control returns to TRANDEBUG.

11-30 TRANDEBUG

DATA BREAK SET

This command can be used to determine which instruction is modifying a speci�c data item.
The data breakpoint will always occur at the instruction after the one that modi�ed the data
item. TRANDEBUG displays a message if the data breakpoint is set successfully. You can
only set data breakpoints in the current system.

The range of valid breakpoints is 0 to 63. A combined total of up to 64 breakpoints can be set
using the DATA BREAK SET and DATA BREAK REGISTER commands. Another set of up
to 64 breakpoints can be set using the BREAK SET command.

Examples

The following examples show the setting of data breakpoints in TRANDEBUG.

TRANDEBUG> data break set item1

DATA BREAKPOINT SET:

SYSTEM ITEM NAME LENGTH COUNT TYPE

0. MYPROG ITEM1 4 1 CHANGE

TRANDEBUG> data break set item2,,,{DISPLAY MATCH}

DATA BREAKPOINT SET:

SYSTEM ITEM NAME LENGTH COUNT TYPE

1. MYPROG ITEM2 4 1 CHANGE

CMD LIST>>>>> DISPLAY MATCH

TRANDEBUG> continue

DATA BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

'ITEM2' VALUE HAS CHANGED:

OLD VALUE>>>>> 5

NEW VALUE>>>>> -1

MATCH REGISTER:

ITEM1 EQ : 123

TRANDEBUG 11-31

DATA BREAK SET

TRANDEBUG> data break set item3, EQ,abcd

DATA BREAKPOINT SET:

SYSTEM ITEM NAME LENGTH COUNT TYPE

2. MYPROG ITEM3 4 1 VALUE

EQ VALUE>>>>>> abcd

TRANDEBUG> dbs item4,LE,3,{DISPLAY MATCH}

DATA BREAKPOINT SET:

SYSTEM ITEM NAME LENGTH COUNT TYPE

1. MYPROG ITEM4 4 1 VALUE

LE VALUE>>>>> 3

CMD LIST>>>>> DISPLAY MATCH

TRANDEBUG> continue

DATA BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

'ITEM4' DATA VALUE BREAKPOINT

LE VALUE>>>>> 3

MATCH REGISTER:

ITEM1 EQ : 123

The column TYPE shows the data breakpoint type VALUE or CHANGE. VALUE means that a
breakpoint is related to a speci�ed value. The value that causes the breakpoint is displayed
after the string VALUE>>>>> and can take multiple lines. The relation between the item name
and the value that causes the breakpoint is displayed in front of the string VALUE>>>>>.
CHANGE indicates a data breakpoint when the item name value changes. The command list
associated with the breakpoint is listed after the string CMD LIST>>>>> and can also take
multiple lines.

11-32 TRANDEBUG

DATA LOG

DATA LOG

Allows logging of TRANDEBUG commands and output to a �le.

Syntax

�
DATA LOG

DL

�
2
664
filename

ON

OFF

CLOSE

3
775

Parameters

�lename The �lename to which the TRANDEBUG commands and output are
logged. After the �le is opened, an implicit 'DATA LOG ON' command
executes to begin logging to this �le.

ON Activates logging for the currently open data log �le.

OFF Deactivates logging for the currently open data log �le.

CLOSE Saves the current data log �le as a permanent MPE �le. This parameter is
also the last command written to the data log �le.

Discussion

This command allows you to log TRANDEBUG commands and output to a �le, then review
the output at another time. If you issue this command without specifying parameters, the
current data log �le name and its status (ON/OFF) are displayed. If the log �le already
exists, it is purged prior to logging.

Example

The following example uses the DATA LOG command.

TRANDEBUG> DATA LOG logfile1

TRANDEBUG> BREAK SET 24,,,,{DISPLAY MATCH;STEP}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG> BREAK LIST

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST
--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG 11-33

DATA LOG

TRANDEBUG> DATA LOG CLOSE

TRANDEBUG> :print logfile1

TRANDEBUG> BREAK SET 24,,,,{DISPLAY MATCH;STEP}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG> BREAK LIST

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG> DATA LOG OFF

TRANDEBUG> DATA LOG CLOSE

11-34 TRANDEBUG

DEFN

DEFN

Displays information about the de�nition of a particular item.

Syntax

DEFN item name

Parameters

item name The name of the item to de�ne.

Discussion

This command provides information about items within a Transact/iX program. For example,
this command is useful if you want to see the size (in bytes) of an item in the data register.

Example

The following example uses the DEFN command:

TRANDEBUG> DEFN item1

ITEM1 5 Z+ (4, 2, 8) = PARENT(1)

ALIAS ITEMS: ALIAS1

ALIAS2

ALIAS3

DEFINED IN SEGMENT: 0

TRANDEBUG 11-35

DISPLAY BASE

Displays information for speci�c databases.

Syntax

�
DISPLAY BASE

DB

��
base name

�

Parameters

base name The database name from which to display information. This can be a
database de�ned in either the current or global system. If you omit this
parameter, TRANDEBUG displays information for all databases de�ned
in the current system.

Discussion

This command provides information about a particular database in the system. Information
can only be obtained for databases de�ned in the current or global system. This coincides
with the Transact/iX philosophy pertaining to database scoping. A database can be accessed
in a system only if it is de�ned in the current or global system.

Example

The following example displays information about a single database.

TRANDEBUG> DISPLAY BASE base1

BASE1("PASS1",1,0,HP3000_16)

OPEN STATUS: OPEN

LOCK STATUS: LOCKED LOCK TYPE: BASE LEVEL

The following example displays information about three databases. The database password
is only displayed when the user enters the database name. The database password is not
displayed if it is hard coded in the application.

TRANDEBUG> DISPLAY BASE

BASE1("PASS1",1,0,HP3000_16)

OPEN STATUS: OPEN

LOCK STATUS: LOCKED LOCK TYPE: BASE LEVEL

BASE2("********",1,0,HP3000_32)

OPEN STATUS: CLOSED

LOCK STATUS: UNLOCKED

BASE3("PASS1",1,0,HP3000_16)

OPEN STATUS: OPEN

LOCK STATUS: LOCKED LOCK TYPE: BASE LEVEL

11-36 TRANDEBUG

DISPLAY CALLS

DISPLAY CALLS

Displays the CALL stack from the currently executing system back to the main program.

Syntax

�
DISPLAY CALLS

DCA

�

Parameters

None.

Discussion

This command displays the CALL stack. It is useful when you would like to see which system
has called the current system.

Example

This is an example of displaying the CALL stack.

TRANDEBUG> DISPLAY CALLS

CURRENT SYSTEM==> CHILD3

CHILD2

CHILD1

PARENT

END OF CALL STACK.

TRANDEBUG 11-37

DISPLAY COMAREA

Displays the contents of the currently active VPLUS communication area (comarea).

Syntax

�
DISPLAY COMAREA

DCO

�

Parameters

None.

Discussion

This command allows you to display the contents of the currently-active VPLUS comarea.
This is useful for obtaining information such as the current form name and next form name.

Example

This is an example of using the DISPLAY COMAREA command.

TRANDEBUG> DISPLAY COMAREA

CURRENTLY ACTIVE COMAREA:

--

CURRENT FORM NAME: FORM1

NEXT FORM NAME: FORM2

--

CSTATUS: 0 ERRFILENUM: 14

LANGUAGE: 2 FORMSTORESIZE: 2

COMAREALEN: 60 NUMRECS: 0

USERBUFLEN: 0 RECNUM: 0

CMODE: 0 TERM_FILEN: 12

LASTKEY: 0 RETRIES: 3

NUMERRS: 0 TERM_OPTIONS: 0

WINDOWENH: 1 ENVIRON: 37

MULTIUSAGE: 0 USERTIME: 4

LABELOPTIONS: 1 IDENTIFIER: 10
REPEATAPP: 1 LABELINFO: 8

FREEZAPP: 1 DELETEFLAG: 0

CFNUMLINES: 20 SHOWCONTROL: 0

DBBUFLEN: 120 PRINTFILNUM: 12

LOOKAHEAD: 0 FILEERRNUM: 15

--

11-38 TRANDEBUG

DISPLAY FILE

DISPLAY FILE

Displays information from speci�c MPE/KSAM �les.

Syntax

�
DISPLAY FILE

DF

��
filename

�

Parameters

�le name The name of the MPE/KSAM �le from which you want to display
information. This can be a �le de�ned in the current or global system. If
this parameter is omitted, information is displayed for all �les de�ned in
the current system.

Discussion

This command o�ers a way to obtain information about a particular �le in the system.
Information can be displayed for �les de�ned in the current or global system. This coincides
with the Transact/iX philosophy pertaining to �le scoping. A �le in a system can be accessed
only if it is de�ned in the current or global system.

Example

This is an example of displaying �le information.

TRANDEBUG> DISPLAY FILE file1

FILE1(UPDATE(OLD,LOCK,HP3000_16)

-80,1,3000,10,1)

OPEN STATUS: OPEN

LOCK STATUS: LOCKED

TRANDEBUG> DISPLAY FILE ksam1

KSAM1(READ(OLD,LOCK,HP3000_16)

OPEN STATUS: OPEN

LOCK STATUS: UNLOCKED

TRANDEBUG> DISPLAY FILE

FILE1(UPDATE(OLD,LOCK,HP3000_16)
-80,1,3000,10,1)

OPEN STATUS: OPEN

LOCK STATUS: LOCKED

KSAM1(READ(OLD,LOCK,HP3000_16)

OPEN STATUS: OPEN

LOCK STATUS: UNLOCKED

TRANDEBUG 11-39

DISPLAY INPUT

Displays the contents of the input register.

Syntax

�
DISPLAY INPUT

DIN

�

Parameters

None.

Discussion

This command allows you to display the contents of the input register.

Example

This is an example of displaying the contents of the input register.

TRANDEBUG> DISPLAY INPUT

INPUT REGISTER: GALAXY

11-40 TRANDEBUG

DISPLAY ITEM

DISPLAY ITEM

Displays the value of a single item, several items, or all items in the data register.

Syntax

�
DISPLAY ITEM

DIT

��
item name list

�

item name list =

8>><
>>:

item1
�
(subscript)

�
:item2

�
(subscript)

�
item1

�
(subscript)

��
, . . . itemN

�
(subscript)

� �
item1

�
(subscript)

�
:

:item1
�
(subscript)

�

9>>=
>>;

Parameters

item1, The names of the valid items in the data register that are to be displayed.

item2, These items can be child items.

itemN
subscript A list of numerical values of the form val1 , val2 , . . . valn used to select a

particular element in an array. If this parameter is omitted and the item
being displayed is an array, the entire array is displayed. If this parameter
is speci�ed and the item is not an array, an error message is displayed.

Discussion

This command allows you to display either selected items in the data register or all the items
in the data register. The item values are converted to their ASCII equivalents prior to display.
If an item cannot be successfully converted to ASCII or an overow occurs, the item value
appears as #s.

If an item cannot be displayed entirely on one line, it is formatted for multiple lines. If the
items being displayed cannot �t on a single screen, a CONTINUE(Y/N)? prompt is displayed
at the page breaks. If an item name is not speci�ed, all the items in the data register are
displayed.

Note Child items cannot be used when specifying a range of items to display.

Examples

The following examples display a single item, selected items, and all items in the data register.

TRANDEBUG> DISPLAY ITEM item1

ITEM1: ABCD

TRANDEBUG 11-41

DISPLAY ITEM

TRANDEBUG> DISPLAY ITEM item1:item3

ITEM1: ABCD

ITEM3: 56.78

TRANDEBUG> DISPLAY ITEM

ITEM1: ABCD

ITEM2: 1234

ITEM3: 56.78

ITEM4: XYZ

11-42 TRANDEBUG

DISPLAY KEY

DISPLAY KEY

Displays the item in the key register and the corresponding value in the argument register.

Syntax

�
DISPLAY KEY

DK

�

Parameters

None.

Discussion

This command displays the name of the current item in the key register and the value in the
argument register.

Example

The following example displays contents of the key register.

TRANDEBUG> DISPLAY KEY

KEY REGISTER: ITEM1

ARGUMENT REGISTER: 12345

TRANDEBUG 11-43

DISPLAY MATCH

Displays the contents of the match register.

Syntax

�
DISPLAY MATCH

DM

�

Parameters

None.

Discussion

This command allows you to view the contents of the match register. The output consists of
each entry in the match register. The item name is shown along with the relational operator
and a connector to the next entry, if applicable. Any special options such as leader, trailer, or
scan are included.

Example

The following example displays the match register.

TRANDEBUG> DISPLAY MATCH

MATCH REGISTER:

ITEM1 EQ : 123

ITEM2 EQ : ABC, TR OR

ITEM2 EQ : DEF, SC

11-44 TRANDEBUG

DISPLAY PERFORMS

DISPLAY PERFORMS

Displays the current PERFORM stack.

Syntax

�
DISPLAY PERFORMS

DP

��
ALL

�

Parameters

ALL This parameter displays the PERFORM stack from the beginning of the
main program to the current system. This allows you to observe the
execution ow from one system to the next.

Discussion

This command traces the perform stack from the current position in the program to the
beginning of the perform stack. The command is useful when determining the ow of control
within a Transact/iX program. By specifying the ALL option, PERFORM stack information
can also be obtained for a system from which the current system was called.

Example

The following example shows a PERFORM stack trace.

TRANDEBUG> DISPLAY PERFORMS

SYSTEM NAME: MYPROG SEGMENT OFFSET

CURRENT POSITION==> 0 54

0 30

0 10

1 78

END OF PERFORM STACK

TRANDEBUG> DISPLAY PERFORMS ALL

SYSTEM NAME: CHILD1 SEGMENT OFFSET

CURRENT POSITION==> 0 54
0 30

0 10

1 78

CALLED FROM: PARENT 1 35

1 17

1 123

1 80

--

END OF PERFORM STACK

TRANDEBUG 11-45

DISPLAY STATUS

Displays the value in the status register.

Syntax

�
DISPLAY STATUS

DS

�

Parameters

None.

Discussion

This command displays the contents of the status register.

Example

The following example displays the status register.

TRANDEBUG> DISPLAY STATUS

STATUS REGISTER: -21

11-46 TRANDEBUG

DISPLAY STATUSDB

DISPLAY STATUSDB

Displays the contents of the database status array returned by the last TurboIMAGE/iX call.

Syntax

�
DISPLAY STATUSDB

DSDB

�

Parameters

None.

Discussion

This command allows read access to the TurboIMAGE/iX status array set by the last
database intrinsic call. The array is displayed in 16-bit format, with the integer value for each
16 bits displayed. The entire array of ten 16-bit words is displayed.

Example

The following example shows how the database status array is displayed.

TRANDEBUG> DISPLAY STATUSDB

DATABASE STATUS ARRAY: -21 0 0 54 58

0 0 0 0 0

TRANDEBUG 11-47

DISPLAY STATUSIN

Displays the value in the statusin register.

Syntax

�
DISPLAY STATUSIN

DSIN

�

Parameters

None.

Discussion

This command displays the contents of the statusin register.

Example

The following example shows how the statusin register is displayed.

TRANDEBUG> DISPLAY STATUSIN

STATUSIN REGISTER: -1

11-48 TRANDEBUG

DISPLAY UPDATE

DISPLAY UPDATE

Displays the speci�ed item in the update register.

Syntax

�
DISPLAY UPDATE

DU

�

Parameters

None.

Discussion

This command displays the contents of the update register. The output consists of each entry
in the update register. The item name is shown along with the relational operator and a
connector to the next entry, if applicable.

Example

The following example shows how the update register is displayed.

TRANDEBUG> DISPLAY UPDATE

UPDATE REGISTER:

ITEM1 : 123

ITEM2 : ABC

TRANDEBUG 11-49

EDIT

Invokes HP EDIT from within TRANDEBUG. This enables you to edit or browse source �les.

Syntax

EDIT
�
�lename

�

Parameters

�lename The name of the �le that you want to edit or browse. This �le can be
quali�ed by its MPE/iX group and account.

Discussion

This command lets you to edit or browse �les while debugging programs. If you do not specify
the �lename parameter, HP EDIT prompts you for the name of the �le that you want to edit.

There are two ways to return to TRANDEBUG from HP EDIT. You can use HP EDIT's
EXIT command, which terminates the editing session and returns control to TRANDEBUG.
Or, you can press �Ctrl� P to activate the previous process (such as TRANDEBUG). Then, by
typing EDIT and the TRANDEBUG prompt, you return to HP EDIT with your �le already
entered. See \Activate Previous Process" in Chapter 4 of the HP EDIT Reference Manual for
more information.

To use HP EDIT, your program �le and the MPE/iX group in which it resides must have PH
(process handling) capability.

Note HP EDIT is a product sold separately from Transact.

Example

The following example shows the process of invoking and exiting HP EDIT.

TRANDEBUG> EDIT

HP EDIT HP32656A.00.00 (c) COPYRIGHT Hewlett-Packard Co. 1988

FRI, SEP 9, 1989, 9:34 AM

File: Enter file to edit here

HP EDIT is invoked.....

�Ctrl� P from within HP EDIT

TRANDEBUG (c) COPYRIGHT Hewlett-Packard Co. 1988

TRANDEBUG> << Enter TRANDEBUG commands here >>

11-50 TRANDEBUG

HELP

HELP

Provides online assistance for TRANDEBUG.

Syntax

�
HELP

?

�
2
664 command

2
4ALLPARMS

EXAMPLES

3
5

HELPINSTRUCTIONS

3
775

Parameters

command The TRANDEBUG command for which you need information.

ALL Provides information about all of the TRANDEBUG commands.

PARMS Provides information about the parameters for the desired command.

EXAMPLES Provides examples of the execution of this command.

HELPINSTRUC-

TIONS

Displays a general description of the HELP facility.

Discussion

The HELP command describes the TRANDEBUG commands and their syntax with
examples. Type HELP to invoke the HELP command shell, then type the desired command
to obtain information. After receiving the command description, press �Return� for parameter
information and press �Return� again for examples. To obtain information on the parameters or
if you want to see a speci�c example, you should specify the corresponding keyword with the
command. EXIT returns you to TRANDEBUG.

Example

The following example shows how to obtain information on viewing the contents of the match
register.

TRANDEBUG> HELP

> DM

Displays the contents of the match register.

�Return�

None

:

�Return�

TRANDEBUG 11-51

HELP

MATCH REGISTER:
ITEM1 EQ : 123

ITEM2 EQ : ABC, TR OR

ITEM2 EQ : DEF, SC

>exit

11-52 TRANDEBUG

LABEL BREAK SET

LABEL BREAK SET

Sets a breakpoint at the speci�ed label.

Syntax

�
LABEL BREAK SET

LBS

�
label

�
,segment

�
,count

�
,
�
cmdlist

	 � � �

Parameters

label A label within the active Transact system. This does not include
command labels.

segment The segment number corresponding to the label. If this parameter is
omitted, the entire system will be searched for the label. However, if the
same label is used in multiple segments of the system, an error message
will be returned if the segment is not speci�ed.

count The number of times that the breakpoint label is encountered before
stopping. The default count value is 1.

cmdlist A set of commands executed every time the breakpoint count condition
is met. The cmdlist parameter must consist of valid TRANDEBUG
commands separated by semicolons. NMDEBUG commands cannot be
used.

Discussion

This command allows you to set a breakpoint in the active Transact system by specifying a
label. The segment value is needed if the same label is used in multiple segments. The label
is resolved to a p-code o�set and a segment which is then processed as if a BREAK SET
command was issued.

Note The output of the LABEL BREAK SET, BREAK LIST, and BREAK
DELETE commands do not show the label that was used to set the
breakpoint. Only the resulting segment and p-code o�set are shown.
Additionally, labels cannot be used to delete breakpoints.

TRANDEBUG 11-53

LABEL BREAK SET

Examples

TRANDEBUG> label break set mylabel

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

0. MYPROG 0 10 1

TRANDEBUG> label break set seg1label,,,{DISPLAY MATCH}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

1. MYPROG 1 3 1

CMD LIST>>>>> DISPLAY MATCH

TRANDEBUG>lbs duplabel,5,6

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT

2. MYPROG 5 183 6

11-54 TRANDEBUG

LABEL JUMP

LABEL JUMP

Moves the source code window to a speci�c label in the code.

Syntax

�
LABEL JUMP

LJ

�
label

�
,segment

�

Parameters

label A label within the active Transact system. This does not include command
labels.

segment The segment number corresponding to the label. If this parameter is omitted,
the entire system is searched for the label. However, if the same label is used
in multiple segments of the system, an error will be returned if the segment is
not speci�ed.

Discussion

This command lets you change the code displayed in the source code window by specifying a
label. If a valid label is speci�ed, the source code window changes to display the source code
around the label. The label is resolved to a p-code o�set and segment that is then processed
as if a page jump command were issued.

Note The label speci�ed may not appear in the code window because the last
occurrence of the p-code o�set associated with that label is centered in the
code window.

Examples

TRANDEBUG> label jump mylabel

TRANDEBUG> lj duplabel,6

TRANDEBUG 11-55

LOC

Indicates the p-code o�set, segment, and system of the Transact/iX statement that executes
next.

Syntax

LOC

Parameters

None.

Discussion

This command allows you to determine your location in a program when control returns to
TRANDEBUG. This command could be used if breakpoints were set in NMDEBUG.

For example, you could set a breakpoint at a call to a TurboIMAGE intrinsic, such as
DBGET. By returning to TRANDEBUG and issuing the LOC command, you can determine
which Transact/iX statement follows the one that called the DBGET intrinsic. Because the
TRANDEBUG and NMDEBUG command sets are two disjointed sets of commands, when the
EXIT command is issued from NMDEBUG execution continues until the next Transact/iX
statement. At this point, TRANDEBUG regains control and issues a prompt. For this reason,
the LOC command can be used only to determine the location of the Transact/iX statement
after the NMDEBUG breakpoint.

Example

The following example uses the LOC command.

TRANDEBUG> NMDEBUG

nmdebug> b dbget

added: NM [1] USER ac.001c81b0 dbget

nmdebug> c

Break at: NM [1] USER ac.001c81b0 dbget

nmdebug> exit

TRANDEBUG> LOC

CURRENT LOCATION:

SYSTEM SEGMENT OFFSET

PARENT 0 10

11-56 TRANDEBUG

LOG

LOG

Allows you to log the TRANDEBUG commands to an MPE/iX �le.

Syntax

LOG

2
664
�lename

ON

OFF

CLOSE

3
775

Parameters

�lename The �le to which the TRANDEBUG commands are logged. If this �le
already exists, it is purged automatically when this command executes.
After the �le is opened, an implicit 'LOG ON' command is executed to
initiate logging to this �le.

ON Activates logging for the currently-open log �le.

OFF Deactivates logging for the currently-open log �le.

CLOSE Saves the current log �le as a permanent MPE/iX �le. This command is
written to the log �le as the last command in the log �le.

Discussion

This command allows you to log TRANDEBUG commands to an MPE/iX �le. The
corresponding USE command can be executed to read commands from a log �le. If
parameters are omitted, the current log �le name is displayed along with its status
(ON/OFF).

Example

The following example shows a typical command sequence using the LOG commands.

TRANDEBUG> LOG logfile1

TRANDEBUG> break set 24,,,,{DISPLAY MATCH;STEP}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG> break set 28,1

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

2. TEST 1 28 1

TRANDEBUG 11-57

LOG

TRANDEBUG> break list

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

2. TEST 1 28 1

TRANDEBUG> LOG CLOSE

TRANDEBUG> :print logfile1

break set 24,,,,{DISPLAY MATCH;STEP}

break set 28,1

break list

LOG CLOSE

11-58 TRANDEBUG

MODIFY INPUT

MODIFY INPUT

Modi�es the contents of the input register.

Syntax

�
MODIFY INPUT

MIN

��
new value

�

Parameters

new value A literal value to place in the input register at the speci�ed location. The
new value parameter can be enclosed in quotes if embedded, preceding
or trailing blanks are desired. If this parameter is omitted, the current
value of the of the input register is displayed. Either a new value can be
entered or �Return� can be pressed to leave the contents of the input register
unchanged.

Discussion

This command allows you to change the contents of the input register. If you do not specify a
new value for the input register, the current value is displayed. You can then enter the new
value or press �Return� to leave the input register unchanged.

Example

The following example shows how to change the contents of the input register.

TRANDEBUG> MODIFY INPUT YES

TRANDEBUG> DISPLAY INPUT

INPUT REGISTER: YES

TRANDEBUG> MODIFY INPUT

INPUT REGISTER: <YES> := < >

�Return�

TRANDEBUG> DISPLAY INPUT

INPUT REGISTER: YES

TRANDEBUG 11-59

MODIFY ITEM

Modi�es the value of a data item in the data register.

Syntax

�
MODIFY ITEM

MIT

�
item name

�
(subscripts)

��
new value

�

Parameters

item name The name of the data item in the data register to modify.

subscripts A list of numerical values of the form val1 , val2 , . . . valn used to select
a particular element in an array. If this parameter is omitted and the
item being modi�ed is an array, only the �rst element in the array will be
modi�ed. If this parameter is speci�ed and the item is not an array, an
error message is displayed and the item is left unchanged.

new value A literal value to place in the data register at the speci�ed item location.
The new value parameter can be enclosed in quotes if embedded,
preceding or trailing blanks are desired. If this parameter is omitted, the
current value of the item is displayed; you can either enter a new value or
press �Return� to leave the item unchanged.

Discussion

This command allows you to change the value of an item in the data register. If the new value
cannot �t into the storage length of the item an error message is displayed. This truncation
can lead to incorrect values in the data register, so be careful when you modify items. The
main data types to be concerned with are X, U, 9, Z, and P.

Examples

The �rst example shows how to change item1. The second example shows how to use
embedded blanks within the new value parameter.

TRANDEBUG> MODIFY ITEM item1 ABCD

TRANDEBUG> DISPLAY ITEM item1

ITEM1 : ABCD

TRANDEBUG> MODIFY ITEM item1 "ABCD EFGH"

TRANDEBUG> DISPLAY ITEM item1

ITEM1 : ABCD EFGH

11-60 TRANDEBUG

MODIFY KEY

MODIFY KEY

Modi�es the item in the key register.

Syntax

�
MODIFY KEY

MK

��
new item

�

Parameters

new item The name of the item to place in the key register. If you do not specify
a new value for the key register, the current value is displayed. You can
then either type the new value or press �Return� to leave the key register
unchanged.

Discussion

This command allows you to change the item in the key register. After the new item is placed
in the key register, its value in the data register is placed in the argument register. You are
then shown its new value and are given the option of changing it. If you do not want to
change the argument register, press �Return�.

Examples

The following examples show how to change the item in the key register.

TRANDEBUG> MODIFY KEY item1

ARGUMENT REGISTER: <abcde> := <fghij>

TRANDEBUG> DISPLAY KEY

KEY REGISTER: ITEM1

ARGUMENT REGISTER: fghij

TRANDEBUG> MODIFY KEY

KEY REGISTER <ITEM1 > := <ITEM2 >

ARGUMENT REGISTER <xyz > := <zyx >

TRANDEBUG 11-61

MODIFY MATCH

Modi�es the speci�ed item in the match register.

Syntax

�
MODIFY MATCH

MM

�
item name

�
new value

�

Parameters

item name The name of the data item in the match register to modify.

new value The value to be assigned to the speci�ed item in the match register. The
new value parameter can be enclosed in quotes if embedded, preceding
or trailing blanks are desired. If you do not specify a new value for the
match register item, the current value is displayed. Then, you can either
enter the new value or press �Return� to leave the match register item
unchanged.

Discussion

This command allows you to selectively modify items in the match register. If the item occurs
more than once in the match register, you are prompted for which occurrence to change. The
new value is converted to the data type of the item before it is placed in the match register.
If the value cannot �t into the storage length of the item an error message is displayed. This
truncation can cause erroneous results during program execution, so before modifying an item,
be aware of the storage length of the item you are modifying. You cannot use this command
to add or delete items from the match register.

Example

The following example shows the modi�cation of the match register. When item2 is modi�ed,
TRANDEBUG prompts to determine which of the occurrences of item2 should be modi�ed.

TRANDEBUG> MODIFY MATCH item1 123

TRANDEBUG> DISPLAY MATCH

MATCH REGISTER:
ITEM1 EQ : 123

ITEM2 EQ : ABC OR

ITEM2 EQ : DEF

TRANDEBUG> MODIFY MATCH item2 XYZ

1. ITEM2 EQ : ABC

2. ITEM2 EQ : DEF

ENTER NUMBER OF ONE TO MODIFY: 1

11-62 TRANDEBUG

MODIFY MATCH

TRANDEBUG> DISPLAY MATCH

MATCH REGISTER:

ITEM1 EQ : 123

ITEM2 EQ : XYZ OR

ITEM2 EQ : DEF

TRANDEBUG 11-63

MODIFY STATUS

Modi�es the value in the status register.

Syntax

�
MODIFY STATUS

MS

��
new value

�

Parameters

new value The new value to place into the status register. This value must be a valid
32-bit integer value; a warning message appears if it is an invalid value. If
you do not specify a new value for the STATUS register, the current value
is displayed. Then, you can either enter the new value or press �Return� to
leave the status register unchanged.

Discussion

This command allows modi�cation of the status register. If you type a non-integer value, a
warning message appears.

Examples

The following examples illustrate modi�cation of the status register.

TRANDEBUG> MODIFY STATUS -21

TRANDEBUG> DISPLAY STATUS

STATUS REGISTER: -21

TRANDEBUG> MODIFY STATUS

STATUS REGISTER: <-21> := 4

TRANDEBUG> DISPLAY STATUS

STATUS REGISTER: 4

11-64 TRANDEBUG

MODIFY UPDATE

MODIFY UPDATE

Modi�es the speci�ed item in the update register.

Syntax

�
MODIFY UPDATE

MU

�
item name

�
(subscript)

��
new value

�

Parameters

item name The name of the item to modify in the UPDATE register.

subscript A numeric value used to select a particular element in a single dimensional
array. If this parameter is omitted and the item being modi�ed is an
array, only the �rst element in the array is modi�ed. If this parameter is
speci�ed and the item is not an array, a warning message is displayed and
the item is not modi�ed.

new value The value to be assigned to the speci�ed item in the update register. If
you do not specify a new value for the update register item, the current
value is displayed. Then, you can either enter the new value or press
�Return� to leave the update register item unchanged.

Discussion

This command allows you to modify items in the update register selectively. The new value
is converted to the data type of the item before it is placed in the update register. If the
value does not �t into the storage length of the item, it is truncated and a warning message
is displayed. This truncation can cause erroneous results during the program execution, so
before modifying an item, be aware of the storage length of the item you are modifying. You
cannot use this command to add or delete items from the update register.

Example

The following example shows the modi�cation of the update register.

TRANDEBUG> MODIFY UPDATE item1 123

TRANDEBUG> DISPLAY UPDATE

UPDATE REGISTER:

ITEM1 EQ : 123

ITEM2 GT : ABC

TRANDEBUG> MODIFY UPDATE item2

ITEM2 : <ABC> := <DEF>

TRANDEBUG 11-65

MODIFY UPDATE

TRANDEBUG> DISPLAY UPDATE

UPDATE REGISTER:
ITEM1 EQ : 123

ITEM2 GT : DEF

11-66 TRANDEBUG

NMDEBUG

NMDEBUG

Transfers control from TRANDEBUG to NMDEBUG.

Syntax

�
NMDEBUG

NM

�

Parameters

None.

Discussion

This command allows you to enter NMDEBUG. Breakpoints issued within NMDEBUG are
not recognized by TRANDEBUG. We recommend that you do not manipulate, from within
this command shell, breakpoints set at Transact/iX statements.

Example

The following example shows how you can execute NMDEBUG commands from within
TRANDEBUG.

TRANDEBUG> NMDEBUG

$1 ($34) nmdebug> b FWRITE

$2 ($34) nmdebug> b DBOPEN

$3 ($34) nmdebug> won

$4 ($34) nmdebug> exit

TRANDEBUG 11-67

PAGE BACK

Pages the source code window backwards through the source �le.

Syntax

�
PAGE BACK

PB

�

Parameters

None.

Discussion

This command pages the source code window backward and allows you to browse the source
code while a program is being debugged.

11-68 TRANDEBUG

PAGE FORWARD

PAGE FORWARD

Pages the source code window forward through the source �le.

Syntax

�
PAGE FORWARD

PF

�

Parameters

None.

Discussion

This command pages the source code window forward and allows you to browse the source
code while it is being executed.

TRANDEBUG 11-69

PAGE JUMP

Moves the source code window to a speci�ed segment and o�set in the program.

Syntax

�
PAGE JUMP

PJ

�
o�set

�
,segment

�

Parameters

o�set The speci�ed p-code o�set to which the window jumps.

segment The speci�ed segment to which the window jumps. The current segment
is the default.

Discussion

This command allows you to jump to a speci�ed location in the listing �le. If the o�set does
not exist, you are placed at the closest o�set that TRANDEBUG can �nd. If you specify an
o�set larger than the last segment and o�set in the program, an error message is displayed.

11-70 TRANDEBUG

PRINT

PRINT

Alters or displays the Transact/iX PRINT option.

Syntax

PRINT

�
ON

OFF

�

Parameters

ON Turns on the PRINT ag to direct the output generated from any
DISPLAY or OUTPUT verbs to the line printer. This action is the same
as issuing a SET(OPTION) PRINT statement within the Transact/iX
source program.

OFF Turns o� the PRINT ag.

Discussion

This command allows you to change, programmatically, the current value for the Transact/iX
PRINT option. By toggling this option, you can direct output to the line printer. If neither
ON or OFF is speci�ed, the current value of the PRINT option is displayed and you are
prompted to either keep it or modify it.

Example

The following example alters the PRINT option.

TRANDEBUG> PRINT

PRINT FLAG CURRENTLY OFF

CHANGE OPTION? (Y/N): N

TRANDEBUG> CONTINUE

Customer Dollars Spent

John Smith $100.25

Jane Doe $201.75

Joe Customer $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> PRINT ON

TRANDEBUG 11-71

PRINT

TRANDEBUG> CONTINUE { output is being redirected }

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> PRINT OFF

11-72 TRANDEBUG

REPEAT

REPEAT

Alters or displays the Transact/iX REPEAT option.

Syntax

REPEAT

�
ON

OFF

�

Parameters

ON Turns on the REPEAT ag to repeat the current Transact/iX command
sequence. This is the same as issuing a SET(OPTION) REPEAT statement
within the Transact/iX source �le.

OFF Turns o� the REPEAT ag.

Discussion

This command provides a programmatic method of changing the Transact/iX repeat option.
If neither ON nor OFF is speci�ed, the current value of the REPEAT option is displayed and
you can modify its value.

Example

The following example shows how to turn on and turn o� the repeat ag using the REPEAT
command.

TRANDEBUG> REPEAT

REPEAT FLAG CURRENTLY OFF

CHANGE OPTION?(Y/N) N

TRANDEBUG> CONTINUE

Customer Dollars Spent

John Smith $100.25

Jane Monroe $201.75

James Lorenz $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> REPEAT ON

TRANDEBUG 11-73

REPEAT

TRANDEBUG> CONTINUE

Customer Dollars Spent

Joe Customer $ 50.45

Jane Monroe $201.75

James Lorenz $100.25

Customer Dollars Spent

Joe Customer $ 21.45

Jane Doe $201.75

John Smith $100.25

Customer Dollars Spent

Joe Customer $ 30.00

Jane Doe $201.75

John Smith $100.25

<Ctrl-Y>

TRANDEBUG> REPEAT OFF

11-74 TRANDEBUG

SORT

SORT

Alters or displays the Transact/iX SORT option.

Syntax

SORT

�
ON

OFF

�

Parameters

ON Turns on the SORT ag to force the OUTPUT verb to sort any records
that are selected. This is the same as issuing a SET(OPTION) SORT
statement within the Transact/iX source �le.

OFF Turns o� the SORT ag.

Discussion

This command allows you to change, programmatically, the SORT option to force sorting of
the data for the OUTPUT verb. If neither ON or OFF is speci�ed the current value of the
SORT option is displayed, and you can change it. The items in the LIST register are used for
sort keys; the precedence is set by the order they are listed. The primary key is the item that
was listed �rst, the secondary key is the item listed second, and so on.

Example

The following example shows how to use the SORT command.

TRANDEBUG> SORT

SORT FLAG CURRENTLY OFF

CHANGE OPTION?(Y/N)? N

TRANDEBUG> CONTINUE

Customer Dollars Spent

Jane Doe $201.75

John Smith $100.25

Joe Customer $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> SORT ON

TRANDEBUG 11-75

SORT

TRANDEBUG> CONTINUE

Customer Dollars Spent

Joe Customer $ 21.45

Jane Doe $201.75

John Smith $100.25

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> SORT OFF

11-76 TRANDEBUG

STEP

STEP

Continues execution of the Transact/iX program for a speci�ed number of statements.

Syntax

�
STEP

S

��
number of steps

�

Parameters

number of steps The desired number of Transact statements to execute until control
returns to TRANDEBUG. The default value of 1 is used if you omit this
parameter.

Discussion

This command allows you to single-step through the execution of a program on a
statement-by-statement basis. This allows you to check item values and register values after
each statement has executed. As you stop at each statement, the p-code o�set and segment
number for that statement is displayed.

Example

The following example shows how to use the STEP command and the TRACE CODE
command in conjunction with STEP.

TRANDEBUG> STEP

EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 0 28

TRANDEBUG> STEP 5

EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

PARENT 1 56

TRANDEBUG> TRACE CODE ON

TRANDEBUG 11-77

STEP

TRANDEBUG> STEP 5

EXECUTION TRACE:

SYSTEM SEGMENT OFFSET

PARENT 0 28

PARENT 0 34

PARENT 0 36

PARENT 1 10

PARENT 1 56

11-78 TRANDEBUG

TPRINT

TPRINT

Alters or displays the Transact/iX TPRINT option.

Syntax

TPRINT

�
ON

OFF

�

Parameters

ON Turns on the TPRINT ag to format the output generated from the
DISPLAY or OUTPUT verb for printing. This action is the same as the
Transact/iX SET(OPTION) TPRINT statement.

OFF Turns o� the TPRINT ag.

Discussion

This command allows you to modify, programmatically, the Transact/iX TPRINT option.
This allows you to selectively turn on or o� the line-printer formatting for DISPLAY or
OUTPUT verb. If neither ON or OFF is speci�ed, the current value of the TPRINT option is
displayed, and you can change it.

Example

The following example shows how to use the TPRINT command.

TRANDEBUG> TPRINT

TPRINT FLAG CURRENTLY OFF

CHANGE OPTION?(Y/N) N

TRANDEBUG> CONTINUE

Customer Dollars Spent

John Smith $100.25

Jane Doe $201.75

Joe Customer $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> TPRINT ON

TRANDEBUG 11-79

TPRINT

TRANDEBUG> CONTINUE { output is in line printer format }

Customer Dollars Spent

John Smith $100.25

Jane Doe $201.75

Joe Customer $ 21.45

BREAKPOINT ENCOUNTERED, EXECUTION STOPPED:

SYSTEM SEGMENT OFFSET

1. PARENT 0 28

TRANDEBUG> TPRINT OFF

11-80 TRANDEBUG

TRACE

TRACE

Turns the trace ag on or o� for the speci�ed type of trace.

Syntax

�
TRACE

TR

�8<
:

CODE

IMAGE

MPE

9=
;
�
ON

OFF

�

Parameters

CODE Allows tracing of p-code o�sets and segment numbers prior to their
execution.

IMAGE Displays the parameters and return status for TurboIMAGE intrinsic calls
made by Transact/iX.

MPE Displays parameters for MPE/KSAM �le reads and writes done by
Transact/iX.

ON Turns on the speci�ed trace ag.

OFF Turns o� the speci�ed trace ag.

Discussion

This command provides a tracing mechanism for the execution of the Transact/iX program.
You can trace any combination of IMAGE, MPE/KSAM, and source execution. If neither
ON or OFF is speci�ed, the current value of the speci�ed TRACE ag is displayed and you
can change it. Only intrinsic calls made explicitly by Transact/iX appear in the trace. Those
made by the PROC verb do not appear.

Examples

The �rst example shows how to use the TRACE command with the CODE option.

TRANDEBUG> TRACE CODE ON

TRANDEBUG> CONTINUE

EXECUTION TRACE:

SYSTEM SEGMENT OFFSET

PARENT 0 28

PARENT 0 34

PARENT 1 10

PARENT 1 56

END OF PROGRAM

:

The second example shows how to use the TRACE command with the IMAGE option.

TRANDEBUG 11-81

TRACE

TRANDEBUG> TRACE IMAGE ON

TRANDEBUG> CONTINUE

FIND(SERIAL) DB COND: 0 STATUS: 0 RECNO: 35

BASE: BASE1 SET: SET1

POSN: LIST: DATA:

0 ITEM1 value1

8 ITEM2 value2

FIND(SERIAL) DB COND: 11 STATUS: -11 RECNO: 35

BASE: BASE1 SET: SET1

POSN: LIST: DATA:

0 ITEM1 value1

8 ITEM2 value2

END OF PROGRAM

:

The third example shows how to use the TRACE command with the MPE option.

TRANDEBUG> TRACE MPE ON

TRANDEBUG> CONTINUE

FIND(SERIAL) CCODE: CCE STATUS: 0 RECNO: 35

FILE: FILE1

POSN: LIST: DATA:

0 ITEM1 value1

8 ITEM2 value2

FIND(SERIAL) CCODE: CCG STATUS: -1 RECNO: 35

BASE: BASE1 SET: SET1

POSN: LIST: DATA:

0 ITEM1 value1

8 ITEM2 value2

END OF PROGRAM

:

11-82 TRANDEBUG

USE

USE

Reads TRANDEBUG commands from the speci�ed MPE/iX �le.

Syntax

USE �lename

Parameters

�lename The MPE/iX �lename to use as input to TRANDEBUG.

Discussion

This command allows you to use an MPE/iX �le as input to TRANDEBUG. You can either
create this �le using an editor or you can use the LOG command. Each line in the �le is
treated as one TRANDEBUG command and execution of this �le continues until the EOF is
reached or an error occurs.

Example

The following example shows how the USE command works.

TRANDEBUG> :print logfile1

break set 24,,,,{DISPLAY MATCH;STEP}

break set 28,1

break list

LOG CLOSE
TRANDEBUG> USE logfile1

TRANDEBUG> break set 24,,,,{DISPLAY MATCH;STEP}

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

TRANDEBUG> break set 28,1

BREAKPOINT SET:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

2. TEST 1 28 1

TRANDEBUG 11-83

USE

TRANDEBUG> break list

CURRENT BREAKPOINTS:

SYSTEM SEGMENT OFFSET COUNT COMMAND LIST

--

1. TEST 0 24 1 DISPLAY MATCH;STEP

2. TEST 1 28 1

TRANDEBUG> LOG CLOSE

TRANDEBUG> :print logfile1

break set 24,,,,{DISPLAY MATCH;STEP}

break set 28,1

break list

LOG CLOSE

11-84 TRANDEBUG

VERSION

VERSION

Outputs the current version of the Transact/iX run-time library.

Syntax

VERSION

Parameters

None.

Discussion

This command allows you to determine the version of the Transact/iX run-time library being
used. This version should match the version on the banner when the compiler is invoked.

Example

TRANDEBUG> VERSION

TRANSACT/iX Library Version: A.05.00

TRANDEBUG 11-85

WINDOW LENGTH

Adjusts the size of the source code window.

Syntax

�
WINDOW LENGTH

WL

�
new size

Parameters

new size The size to which the window is to be adjusted. The new size must be in
the range of 1-18 or an error message is displayed.

Discussion

This command allows you to adjust the size of the source code window.

11-86 TRANDEBUG

WINDOW OFF

WINDOW OFF

Turns o� the source code window.

Syntax

�
WINDOW OFF

WOFF

�

Parameters

None.

Discussion

This command turns o� the source code window. If you want to display a series of values, you
should �rst use this command to turn o� the window.

TRANDEBUG 11-87

WINDOW ON

Turns on the source code window.

Syntax

�
WINDOW ON

WON

�

Parameters

None.

Discussion

This command turns on the source code window. After issuing this command, you can then
view the next Transact/iX source to be executed.

11-88 TRANDEBUG

A

Flowcharts of File and Database Operations

The owcharts in this appendix provide an overview of the major database, �le system, and
VPLUS intrinsic calls issued by Transact to perform data management operations. The charts
provide a basic understanding of the steps that occur when a verb executes. However, they
should not be viewed as de�nitive explanations of all events caused by a given verb.

Calls that are shown in brackets occur only when circumstances dictate.

Rules that govern use of calls for locking, unlocking, and opening �les are as follows;

DBLOCK If a database or data set is not already locked, DBLOCK is applied
according to the rules given in Table 6-2 (if optimized locking is used) or
Table 6-4.

DBUNLOCK This call is applied in either of the following circumstances:

If the current verb invoked the original lock; if the database or data set is
locked; and if the lock option is not used

OR

The last record has been accessed for a multiple record operation (for
example, CHAIN, SERIAL, RCHAIN, or RSERIAL) when the lock option
is used.

FOPEN This call is used if the �le is not already open.

FLOCK This call is used if the �le is not already locked, according to the rules
given in Table 6-4.

FUNLOCK This call is applied if the program is at the same instruction which invoked
the FLOCK.

Separate owcharts are included for each verb to describe database and �le access.

Flowcharts are given for the following verbs:

DELETE - for a data set or a KSAM �le operation
FIND - for a data set or a KSAM or MPE �le operation
GET - for a data set or a KSAM, MPE, or VPLUS �le operation
OUTPUT - for a data set or a KSAM or MPE �le operation
PATH - for a data set or a KSAM �le operation
PUT - for a data set or a KSAM, MPE, or VPLUS �le operation
REPLACE - for a data set or a KSAM or MPE �le operation
SET - for a VPLUS �le operation
UPDATE - for a data set, or a KSAM, MPE, or VPLUS �le operation

Flowcharts of File and Database Operations A-1

DELETE Charts

Execution of a DELETE verb for a TurboIMAGE data set access results in the following:

A-2 Flowcharts of File and Database Operations

Execution of a DELETE verb for a KSAM �le results in the following:

Flowcharts of File and Database Operations A-3

FIND Charts

Execution of the FIND verb for a TurboIMAGE data set access results in the following:

A-4 Flowcharts of File and Database Operations

Execution of the FIND verb for a TurboIMAGE data set access (continued):

Flowcharts of File and Database Operations A-5

Execution of a FIND verb for a KSAM �le is shown below:

A-6 Flowcharts of File and Database Operations

Execution of a FIND verb for an MPE �le results in the following:

Flowcharts of File and Database Operations A-7

Execution of a FIND verb for an MPE �le results in the following (continued):

A-8 Flowcharts of File and Database Operations

GET Charts

Execution of the GET verb for a TurboIMAGE data set access results in the following:

Flowcharts of File and Database Operations A-9

Execution of the GET verb for KSAM access results in the following:

A-10 Flowcharts of File and Database Operations

Execution of a GET verb for an MPE �le results in the following:

Flowcharts of File and Database Operations A-11

Execution of a GET(FORM) verb for a VPLUS form results in the following:

A-12 Flowcharts of File and Database Operations

Execution of a GET(FORM) for a VPLUS form results in the following: (continued)

Flowcharts of File and Database Operations A-13

OUTPUT Charts

Execution of the OUTPUT verb for a TurboIMAGE data set access results in the following:

A-14 Flowcharts of File and Database Operations

Execution of the OUTPUT verb for a KSAM �le results in the following:

Flowcharts of File and Database Operations A-15

Execution of an OUTPUT verb for an MPE �le results in the following:

A-16 Flowcharts of File and Database Operations

PATH Charts

Execution of a PATH verb for a TurboIMAGE data set access results in the following:

Execution of a PATH verb for a KSAM �le results in the following:

Flowcharts of File and Database Operations A-17

PUT Charts

Execution of a PUT verb for a TurboIMAGE data set results in the following:

Execution of a PUT verb for a KSAM or MPE �le results in the following:

A-18 Flowcharts of File and Database Operations

Execution of a PUT(FORM) verb on a VPLUS form results in the following:

Flowcharts of File and Database Operations A-19

Execution of a PUT(FORM) verb on a VPLUS form results in the following: (continued)

A-20 Flowcharts of File and Database Operations

REPLACE Charts

Execution of the REPLACE verb for a TurboIMAGE data set access results in the following:

Flowcharts of File and Database Operations A-21

Execution of a REPLACE verb for a KSAM �le results in the following:

A-22 Flowcharts of File and Database Operations

Execution of a REPLACE verb for an MPE �le results in the following:

Flowcharts of File and Database Operations A-23

SET Charts

Execution of a SET(FORM) verb for a VPLUS form results in the owchart on the next page:

A-24 Flowcharts of File and Database Operations

Flowcharts of File and Database Operations A-25

UPDATE Charts

Execution of an UPDATE verb for a TurboIMAGE data set access results in the following:

Execution of an UPDATE verb for a KSAM �le results in the following:

A-26 Flowcharts of File and Database Operations

Execution of an UPDATE verb for an MPE �le results in the following:

Flowcharts of File and Database Operations A-27

Execution of an UPDATE(FORM) verb for a VPLUS form results in the following:

A-28 Flowcharts of File and Database Operations

Execution of an UPDATE(FORM) verb for a VPLUS form results in the following
(continued):

Flowcharts of File and Database Operations A-29

B
Native Mode Transact/iX
Migration Guide

This appendix discusses guidelines for experienced Transact programmers who want to
migrate Transact/V programs to native mode Transact/iX programs on an MPE/iX system.
Because minimal changes are required for migration, there is no migration utility available,
and the changes must be made manually.

This appendix contains the following sections:

Exclusive Transact/iX
Features

Describes the new features available in native mode
Transact/iX that are not available in Transact/V.

Exclusive Transact/V
Features

Describes the features available in Transact/V that are not
available in Transact/iX.

Features that Di�er Between
Transact/V and Transact/iX

Describes the features that are available in both Transact/V
and native mode Transact/iX that may have di�erent
interpretations or actions on the two systems.

Source Program Migration Explains how to migrate source programs from Transact/V to
native mode Transact/iX.

Data File Migration Explains how to convert data �les for migration.

Migration Examples Provides examples of program conversion and data �le
conversion.

Migration Checklist Provides a checklist to help you migrate programs from
Transact/V to native mode Transact/iX.

The following manuals provide additional information that can help you migrate Transact/V
programs to native mode Transact/iX.

Title Part Number

Introduction to MPE XL for MPE V Programmer's Migration Guide 30367-90005

Switch Programming User's Guide 32650-90014

MPE V to MPE XL: Getting Started Self-Paced Training 30367-90002

Data Types Conversion Programmer's Guide 32650-90015

MPE Intrinsics Reference Manual 32033-90007

MPE/iX Intrinsics Reference Manual 32650-90028

Migration Process Guide 30367-90007

Native Mode Transact/iX

Migration Guide

B-1

Exclusive Transact/iX Features

The features available in native mode Transact/iX that are not available in Transact/V are:

Additional compiler options

Options on the PROC verb

IEEE and HP oating point format support

Dynamic roll-back

Critical item update

TRANDEBUG symbolic debugger

Additional Compiler Options

New compiler options ease the migration of Transact/V programs to native mode
Transact/iX. (See \Transact/iX Compiler Options," in Chapter 9.)

Options on the PROC Verb: Parameters Passed by Byte Address

Options available on the PROC verb can be used to specify the alignment of individual
references passed by the address. These options are discussed under the PROC verb in
Chapter 8.

Floating Point Formats

The code generated by the Transact/iX compiler supports both IEEE and HP oating point
formats. Under native mode MPE/iX, real numbers are always stored internally in IEEE
format.

Translation between IEEE and HP formats from and to �les and databases occurs after
the read and before the write on I/O. If Transact/iX calls a procedure written in another
language, Transact/iX will pass real numbers in IEEE format. The HPFPConvert intrinsic
may be used to convert the storage format in the data register if the called language expects
HP3000 oating point real numbers.

If no format is speci�ed for a �le or database, IEEE real numbers are assumed. The compiler
option HP3000 16 is available for de�ning a oating point format for all of the �les and
databases. (See \Transact/iX Compiler Options" in Chapter 9.) If oating point format for
an individual �le or database is di�erent from that speci�ed by the compiler option, you can
express the requirements in the FILE or BASE speci�cation of the SYSTEM statement. See
the SYSTEM statement in Chapter 8 for more information.

Caution When passing parameters or data that access real numbers via PROC or
CALL, the subprogram must be compiled with the same real number format
as the main program.

B-2 Native Mode Transact/iX

Migration Guide

Dynamic Roll-Back

Transact/iX supports the TurboIMAGE dynamic roll-back feature beginning in Transact/iX
version A.04.00. (See the \Dynamic Roll-Back" section in Chapter 6 and the description of
the LOGTRAN verb in Chapter 8.)

Critical Item Update

Transact/iX allows TurboIMAGE database search and sort items to be updated. (See
descriptions of the REPLACE and UPDATE verbs in Chapter 8.)

Symbolic Debugger

TRANDEBUG is a symbolic debugger that is included in Transact/iX to replace the test
modes used in Transact/V. (See Chapter 11 for a complete description of TRANDEBUG.)

Native Mode Transact/iX

Migration Guide

B-3

Exclusive Transact/V Features

The features of Transact/V that are not available in native mode Transact/iX consist of the
following:

MPE V-related compiler options

Run-time data item attribute resolution

INITIALIZE

Calls to Transact/V subprogram

UNLOAD and NOLOAD options on the PROC verb

TRANIN

MPE V-Related Compiler Options

The following Transact/V compiler options are ignored by Transact/iX: DICT, CODE, OBJT,
STAT, XERR, OBJO, OBJH. (See \TRANCOMP Options Available to the Transact/iX
Compiler" in Chapter 9.)

Run-Time Item Attribute Resolution (Binding)

Syntax option 6 of the DEFINE statement is not allowed, because the Transact/iX compiler
does not provide run-time support for Dictionary/V or for System Dictionary. Therefore, the
following form of the DEFINE(ITEM) verb is not allowed:

DEFINE(ITEM) itemname *;

Any items de�ned in this way cause the Transact/iX compiler to display an informational
message:

*INFO: UNDEFINED ITEM: nnn

where nnn is the name of the data item. If the compiled program runs, a run-time error
occurs:

*ERROR: UNDEFINED DATA ITEM: nnn

Resolution of data item de�nitions from a dictionary is limited to compile time when the
Transact/iX compiler uses TRANCOMP. Therefore, whenever changes are made to data
de�nitions in the dictionary, the Transact/iX program must be recompiled for the changes to
be carried forward to the Transact/iX object code �les.

Test Modes

The Transact/iX compiler does not provide run-time support for the existing Transact/V test
modes. Transact/iX provides the TRANDEBUG symbolic debugger instead. See Chapter 11
for a complete description of TRANDEBUG.

If you want to use the Transact/V test modes for program development and debugging, it is
necessary to do these activities in compatibility mode, then move the application to native
mode for production runs.

B-4 Native Mode Transact/iX

Migration Guide

INITIALIZE

The Transact/iX compiler does not support the INITIALIZE built-in command nor the
INITIALIZE option of the SET(COMMAND) statement. To quit one program and begin
another, you must EXIT from the �rst program, then invoke the next program at the
MPE/iX command level.

If the INITIALIZE option is encountered during compilation, the following informational
message is issued:

*INFO: UNSUPPORTED COMMAND: SET(COMMAND) INITIALIZE

If the INITIALIZE option is encountered at run time, the following error message is issued:

* ERROR: UNSUPPORTED COMMAND: SET(COMMAND) INITIALIZE

The INITIALIZE option should be replaced with a program exit. You must then specify the
new program to be run at the MPE/iX command level.

Calls to Transact/V Subprograms

Calls to compatibility mode Transact/V subprograms are not supported by native mode
Transact/iX.

UNLOAD and NOLOAD Options in the PROC Verb

The UNLOAD and NOLOAD options on the PROC verb are inappropriate in Transact/iX
since procedures cannot be unloaded. If the UNLOAD option is encountered during
compilation, an informational message is generated. If the options are encountered at run
time, they are ignored. See the PROC verb in Chapter 8 for more information.

TRANIN

TRANIN is the formal �le designator used by TRANCOMP for responses to prompts by
the Transact/V compiler for the source �le, options, and list. This �le is not used for the
Transact/iX native mode compiler.

TRANIN is the format �le descriptor used at run time by both Transact/V and Transact/iX
to respond to input prompts and database passwords. TRANIN is used di�erently during run
time in Transact/iX. In Transact/V, the system name, database open mode, and test mode
can also be included in the TRANIN �le. Transact/iX does not have these additional features.

Native Mode Transact/iX

Migration Guide

B-5

Features that Differ Between Transact/V and Transact/iX

The following features di�er in usage or in e�ect between Transact/V and native mode
Transact/iX:

Multiple systems in one �le

Parameters passed by value or by reference in the PROC verb

Parent and child values in SET(UPDATE)

ALIGN option of LIST and PROMPT verbs

Fill characters used for data type 9 with the MOVE verb

Multiple Systems in One File

The Transact/V compiler creates a separate p-code �le for each SYSTEM statement in a
source �le. The native mode Transact/iX compiler creates a single RSOM �le regardless of
how many SYSTEM statements are in a source �le. The �rst system is compiled as a main
program and the remaining systems are compiled with the SUBPROGRAM option.

If the SUBPROGRAM option is provided in the INFO string when running the native mode
Transact/iX compiler, all systems in the source �le are compiled with the SUBPROGRAM
option. (See \Transact/iX Compiler Options" in Chapter 9.)

Parameters Passed by Value or by Reference in the PROC Verb

Transact/V does not do type checking on passed parameters. Transact/iX checks the calls
to system intrinsics to verify that reference parameters and value parameters are passed as
expected. For more information see the PROC verb in Chapter 8.

Parent and Child Values in SET(UPDATE)

In Transact/V, if a parent-item value is placed in the update register before a child-item
value, the parent value overrides the child value. In Transact/iX, however, the child value
overrides the parent value.

ALIGN Option of LIST and PROMPT Verbs.

In Transact/V, alignment is on 16-bit word boundaries. In MPE/iX, alignment is on 32-bit
word boundaries.

Fill Characters Used for Data Type 9 with the MOVE Verb

Null is the �ll character used for the 9 data type in a Transact/V MOVE. In a Transact/iX
MOVE, the �ll character is blank.

B-6 Native Mode Transact/iX

Migration Guide

Source Program Migration

This section describes how to convert source programs written in Transact/V to native mode
Transact/iX source.

Since there are few, if any, changes to be made when converting from a Transact/V source
program to a native mode Transact/iX source program, no automatic conversion utility is
provided. Any changes required must be made to the Transact/V source program to convert
it to a native mode Transact/iX program.

If the program accesses data from �les or databases created on a MPE V based system and
the data includes real numbers, the native mode Transact/iX program should be compiled
using the HP3000 16 option until data conversion programs are written to convert the data to
the MPE/iX standard format for real numbers.

Conversion

If your programs do not use the PROC verb, there should be few if any changes to make. See
the Migration Checklist later in this appendix for more related information.

When migrating a Transact/V program on an MPE V based system to a native mode
Transact/iX program on an MPE/iX based system, you should check to see if any of the
missing and changed features listed in the previous sections a�ect the program. If there are
any missing or changed features in the program you are migrating, refer to the appropriate
section in this manual for information on altering your program so that it can run successfully
with native mode Transact/iX.

If the program uses any of the missing compiler options|the SWAP option on the CALL
verb, or the UNLOAD and NOLOAD options on the PROC verb|you can ignore the
compiler informational messages because program execution is not a�ected.

For the commands used to compile and run Transact programs under MPE/iX, see Chapter 9.

Native Mode Transact/iX

Migration Guide

B-7

Data File Migration

Data �le migration is necessary only if real numbers exist in a data �le. This section explains
how to convert data �les that contain real numbers previously used as input to Transact/V
programs on MPE V systems for use with native mode Transact/iX programs running on
MPE/iX systems.

File Format Conversion

The standard format for real numbers on MPE/iX-based systems is the IEEE format. This is
di�erent from the format for real numbers on MPE V-based systems. By default, for improved
performance, native mode Transact/iX assumes that real numbers are in IEEE format.

If you want to continue to use the MPE V format for real numbers, specify the HP3000 16
option in the INFO string when the native mode Transact/iX program is compiled. This
option instructs the native mode Transact/iX compiler to read and write all real numbers
in the MPE V format. If this option is used, no data �le conversion is necessary. The MPE
V-based data �le can be restored onto the MPE/iX system and used without conversion.

To migrate the data �le to the MPE/iX standard format, you must write a native mode
Transact/iX program that reads the �le with the HP3000 16 option and writes the data to a
new �le with the HP3000 32 option. Native mode Transact/iX automatically converts the real
numbers after reading them from the input �le and before writing them to the output �le.

An example program is included in the next section.

Caution The internal representation of real numbers on MPE V is di�erent from the
IEEE format used on MPE/iX. This may cause individual values to change
slightly during conversion.

Compatibility mode Transact/iX programs cannot read IEEE format data.
Do not migrate data �les until all programs accessing those �les have been
converted to native mode Transact/iX.

B-8 Native Mode Transact/iX

Migration Guide

Migration Examples

This section contains several examples of the typical kinds of migration changes.

Data File Real Number Conversion

The following program shows the conversion of real numbers from the MPE V format to the
MPE/iX standard format. Note that the HP3000 16 option is applied to the input �le and
the HP3000 32 option is applied to the output �le. This causes item-name R4, which is a
real number, to be read as an MPE V format real number and to be written as an MPE/iX
standard format real number.

SYSTEM CONVRT,FILE=IN(READ(HP3000_16))

,FILE=OUT(WRITE(HP3000_32));

DEFINE(ITEM) X2 X(2):

I4 I(4):

I8 I(8):

R4 R(4);

LIST X2:I4:I8:R4;

FIND(SERIAL) IN,PERFORM=100-CONVERT;

EXIT;

100-CONVERT:

PUT OUT;

RETURN;

Procedures with Null 32 Bit Parameters

The following fragment of Transact/V code illustrates the Transact/V convention of two
commas to indicate a null 32-bit parameter.

SYSTEM EXAM1;

DEFINE(ITEM) FILE-NAME X(20):

FOPTION I(4):

AOPTION I(4):

FILENUM I(4):

BITMAP I(4);

DEFINE(INTRINSIC) FOPEN;

LIST FILE-NAME:

FOPTION:

AOPTION:

FILENUM:

BITMAP;

Native Mode Transact/iX

Migration Guide

B-9

MOVE (FILE-NAME) = "OLDFILE";

LET (FOPTION) = 5; <<old ascii file>>

LET (AOPTION) = 0; <<read access>>
LET (BITMAP) = 7168; <<1110000000000 passing the first>>

<<three parameters >>

PROC FOPEN(%(FILE-NAME),

#(FOPTION),

#(AOPTION),

,,,,,,,,,,, <<note extra commas to denote null>>

&(FILENUM), <<values >>

#(BITMAP));

To modify this source program so that it is still compatible with Transact/V, you must pass
the �lesize parameter and replace the two commas currently used to denote a null �lesize with
the �lesize parameter and a single comma. The code fragment for this is shown below.

SYSTEM EXAM1;

DEFINE(ITEM) FILE-NAME X(20):

FOPTION I(4):

AOPTION I(4):
FILENUM I(4):

FILESIZE I(9): <<32 bit integer>>

BITMAP I(4);

DEFINE(INTRINSIC) FOPEN;

LIST FILE-NAME:

FOPTION:

AOPTION:

FILENUM:

FILESIZE,INIT:

BITMAP;

MOVE (FILE-NAME) = "OLDFILE";

LET (FOPTION) = 5; <<old ascii file>>

LET (AOPTION) = 0; <<read access>>

LET (BITMAP) = 7176; <<1110000001000 passing the first >>

<<three parameters and filesize >>

LET (FILESIZE) = 1023;

PROC FOPEN(%(FILE-NAME),

#(FOPTION),

#(AOPTION),

,,,,,,

#(FILESIZE)

,,,, <<each comma denotes a parameter; >>

&(FILENUM), <<note that there is 1 fewer comma >>

#(BITMAP)); <<then there is in the above example.>>

B-10 Native Mode Transact/iX

Migration Guide

Migration Checklist

The checklist in this section will help you migrate Transact/V programs on MPE V to native
mode Transact/iX on MPE/iX. There should be few, if any, changes to make in migrating a
program to an MPE/iX-based system if the PROC verb is not used to access system intrinsics
and the CALL verb is not used to call other Transact/V programs.

1. Use the MPE STORE and RESTORE commands to transfer your Transact/V source �les
on MPE V by tape to the MPE/iX-based system.

2. Check each Transact/V program by answering the following questions. Does the program:

a. Use the PROC verb to call system intrinsics (such as PROC ASCII)?

b. Use the PROC verb to call option-variable system intrinsics (such as PROC FOPEN)?

c. Use the PROC verb to call system intrinsics that have di�erent types of parameters
than are expected by the intrinsic?

d. Use the PROC verb to call subroutines written in other languages?

e. Use the CALL verb to call a Transact/V program?

f. Access �les that contain real numbers?

g. Delay variable de�nitions until run time?

h. Rely upon the INITIALIZE command to switch programs?

i. Use the FASTRAN compiler?

3. For those questions you answered \yes", take one of the following corrective actions (these
actions are keyed by letter to the questions in item 2, above):

a. If you have PROC calls to intrinsics, compile with the new option PROCINTRINSIC.
The statement DEFINE(INTRINSIC) is not recommended.

b. If you use PROC to call option-variable intrinsics, make sure all value parameters of 32
bits or more are passed. Alternatively, make sure that only one comma is used to denote
each parameter.

c. If an intrinsic that is called expects a di�erent type of parameter, write a routine
in another language such as COBOL or Pascal to duplicate the functionality of the
intrinsic or to merely call the intrinsic itself. Place the routine in an RL or XL to be
resolved during linking. Replace calls to the intrinsic with calls to the new routine.
Continue to pass parameters in the same way.

d. If your program uses PROC to call a routine in another language, determine how the
compiler of the subroutine generates entry names. There may be di�erences between
MPE V based compilers and MPE/iX based compilers. If the entry name has been
changed by the compiler, change the reference to it in the native mode Transact/iX
source program. For example, the MPE/iX based COBOL compiler converts hyphens to
underscores. The MPE V based COBOL compiler leaves hyphens unchanged.

Also, the libraries to be searched must be named during linking or running whereas
Transact/V automatically searches SLs.

Native Mode Transact/iX

Migration Guide

B-11

e. If your program uses the CALL verb to call a Transact/V program, compile the
called Transact/V program with the native mode Transact/iX compiler using the
SUBPROGRAM option. Place the program in an RL or XL to be resolved during
linking.

f. If your program accesses �les that use real numbers, use the HP3000 16 option to
continue processing the �le using the Transact/V storage format, or write a data
conversion program that reads the MPE V format �le with the HP3000 16 option and
writes to a new �le with the HP3000 32 option. This conversion must not be done until
all programs accessing the data �le have been migrated to Transact/iX.

g. If your program delays variable de�nition until run time, de�ne all variables at compile
time.

h. If your program contains the INITIALIZE option or command, change user procedures
to exit the program and run a second program (for instance, at the MPE XL command
level).

i. If your program was compiled using FASTRAN, recompile it with Transact/V. Resolve
any errors generated by Transact/V before compiling it with Transact/iX.

4. If you answered \no" to all the questions in #2, or if you made all the changes suggested in
#3, compile your program and try to run it.

Note FASTRAN is owned and developed by Performance Software Group.

B-12 Native Mode Transact/iX

Migration Guide

C

Optimizing Transact Applications

This appendix suggests ways you can optimize the run-time e�ciency of Transact/V
applications that run under MPE/V. This will be of special interest to experienced
Transact/V programmers who are responsible for large applications. How to �ne-tune
individual programs is a very application-dependent problem, but the guidelines presented
here should help you make some of the trade-o�s. The material focuses on minimizing stack
space and maximizing processing speed.

The following topics are discussed to help you optimize your Transact/V applications:

Run-time stack, including a discussion of the components that make up the stack

Compiler statistics

Single-segment programs

Multiple-segment programs

Using CALL without the SWAP option

Using CALL with the SWAP option

Stack usage comparison

Processing time optimization

Optimizing Transact Applications C-1

Run-Time Stack

The size and composition of the run-time stack vary with:

VPLUS utilization

Number and size of program segments

Design of subprograms and whether swapping is used during processing

Transact processor register utilization

Figure C-1 provides a pro�le of the data stack, including a breakdown of the table register
components. The stack pro�le describes a single-segment program, but it illustrates
components that can occur on the data stack regardless of program structure.

Use test mode 4 initially to determine the stack requirements of your program or portions
of it. Use the information provided below for individual components to change their size
selectively, if desired.

The data stack components are de�ned as follows:

PCBX: Process Control Block Extension is a control area for MPE. The size of this area
is operating-system dependent, but can be reduced slightly by running Transact with the
NOCB option. Use this option to avoid stack overow only on a short-term basis. In the
long run, applications should be structured and optimized so that it is not necessary to use
the NOCB option.

VPLUS INFO: This area appears on the data stack if your Transact program uses VPLUS
forms �les. This area is used by the VPLUS subsystem. You can use fast forms �les to
minimize the size of this area.

Transact OUTER BLOCK and Transact PROCESSOR CONTROL BLOCK: These areas
contain data and pointers for Transact processor control. The size of these areas depends on
the version and the installation.

DATA REGISTER: The Transact data register. (See Chapter 4 for an explanation of how
this register works.) The default size of this area is 1024 words. The data-length parameter
of the DATA= option in the SYSTEM statement can be used to control the size of this
area. Use test mode 3 or 102 to determine which values to specify for the DATA= option.
The data register for multiple-segment programs or programs using CALLs must be large
enough to accommodate all segments or subprograms. If one part of the application requires
much more data register space than any other part, invoke it using MPE's process handling
feature.

C-2 Optimizing Transact Applications

+--------------------------+

| |

| PCBX |
| |

|--------------------------| <-- DL

| |

| VPLUS INFO |

| |

|--------------------------| <-- DB /--> +-------------------------+

| Transact OUTER BLOCK | / | |

|--------------------------| <-- Q / | BASES |

| Transact PROCESSOR | | |-------------------------|

| CONTROL BLOCK | | | VPLUS COMAREA; VPLUS, |

|--------------------------| | | KSAM, MPE, AND DATA |

| | | | SET FILE INFO |

| DATA REGISTER | | |-------------------------|

|--------------------------| | | PROCEDURES |

| | | |-------------------------|

| TABLE REGISTER |-------->| | COMMANDS |

| | | |-------------------------|

|--------------------------| | | SUBCOMMANDS |

*| TABLE INDEX | | |-------------------------|

|--------------------------| | | |

*| TABLE LENGTH | | | ITEMS |

|--------------------------| | | |

| | | |-------------------------|

| CODE REGISTER | | | |

| | | | TEXT STRINGS |

|--------------------------| | | |

**| ITEM REGISTER | | |-------------------------|

|--------------------------| | | |
**| DATA INDEX | | | CONTROL STRINGS |

|--------------------------| | | |

**| DATA LENGTH | | |-------------------------|

|--------------------------| | | |

| | \ | WORK SPACE |

~ ~ \ | |

| | <-- S \--> +-------------------------+

~ ~

+--------------------------+ <-- Z

COMPONENTS IN THE DATA STACK ENTITIES IN TABLE COMPONENTS

* Used to manage the TABLE REGISTER

** Used to manage the DATA REGISTER

Figure C-1. Data Stack Layout for a Single-Segment Transact Program

Optimizing Transact Applications C-3

TABLE REGISTER: This is an area used to manage �les, PROC calls, built-in and
programmer-de�ned commands, sub-commands, and data items and strings. This register's
entities are identi�ed in the right-hand diagram of Figure C-1. These entities are de�ned
and ways to optimize them are suggested later in this section.

VPLUS forms �les signi�cantly a�ect the size of the TABLE REGISTER. If an application
requires many VPLUS forms, you can conserve stack space by doing any of the following:

using a CALL structure rather than a multiple-segment program structure.

specifying only forms used by the main program and each subprogram in the SYSTEM
statement of the main program and each subprogram. If only a forms �le name is
speci�ed in a SYSTEM statement, Transact allocates TABLE REGISTER space for each
form in the �le and for all items associated with each form.

TABLE INDEX and TABLE LENGTH: These areas are used to manage the TABLE
REGISTER component. These areas consist of indexes and lengths, respectively, that
correspond to entities of the TABLE REGISTER.

CODE REGISTER: An area that contains p-code data.

ITEM REGISTER, DATA INDEX, and DATA LENGTH: Areas used to manage the DATA
REGISTER component. Each of these areas has a default size of 128 words. You can use
the DATA= option of the SYSTEM statement to control the size of these areas. Use test
mode 3 or 102 to determine which value to specify in the data-count parameter of the
DATA= option.

DL, DB, Q, S, and Z: These are stack pointers. Transact requires 4K of the space between
DATA LENGTH and S. The stack requirements of SORT, HP2680, and other subsystems
lie between S and Z. Use test mode 4 to locate stack pointers DL, Q, S, and Z for various
portions of your program.

The TABLE REGISTER, TABLE INDEX, and TABLE LENGTH components manage the
following entities. In general, as the number of these entities used by your Transact program
increases, so does the table register space required:

BASES: databases.

VPLUS COMAREA; VPLUS, KSAM, MPE, AND DATA SET FILE INFO: forms �les,
forms, MPE and KSAM �les, and data sets.

PROCEDURES: calls to user procedures or system intrinsics.

COMMANDS: built-in commands and command quali�ers. The 11 built-in commands
(for example, PRINT, SORT, REPEAT, and EXIT) require 65 words of stack space.
Programmer-de�ned commands increase these needs.

SUBCOMMANDS: programmer-de�ned subcommands.

ITEMS: data items de�ned with the DEFINE statement or de�ned in the data dictionary.
You can optimize this area by using the DEFINE(ITEM) statement with the OPT option
as well as by compiling with OPT@, OPTE, OPTH, OPTI or OPTP compiler options.
Space is allocated for all data item textual names and any edit masks, headings, and
entry/prompt texts found in the data dictionary, unless these options are invoked. See
syntax option 3 under DEFINE in Chapter 8 and OPTI in Chapter 9.

TEXT STRINGS: literal ASCII strings. The stack requirements increase with the number
of MOVE and DISPLAY statements with literals, WINDOW= options for VPLUS, and

C-4 Optimizing Transact Applications

so on. You can optimize the TEXT STRINGS component by keeping all application
messages in a message �le instead of embedding them in the p-code. This practice both
saves stack space and allows for easy message customization. Also consider keeping
messages in forms �les instead of using the WINDOW= option of the VPLUS verbs.

CONTROL STRINGS: internal representations of DISPLAY and FORMAT statements and
complex arithmetic expressions.

WORK SPACE: work area used for sort items and match, update, input, key, and argument
registers. By default, 256 words are allocated for the work space portion of the TABLE
REGISTER and 64 words for the work space portions of the TABLE INDEX and TABLE
LENGTH components.

The WORK= option of the SYSTEM statement can be used to control the size of the work
space areas. Run test mode 3 or 102 to determine the requirements for your program. To
override the defaults, specify a work-length value for the work space portion of the TABLE
REGISTER and a work-count value for the work space portions of the INDEX and TABLE
LENGTH registers.

Do not underestimate WORK SPACE requirements, because the recovery procedure invoked
to re-use work spaces increases processing time. Maximize the usefulness of test mode 3 or
102 results by ensuring that all program options and branches are exercised several times.

Multiple-segment programs and programs using the CALL statement have additional data
stack components:

Multiple-segment programs use the data stack for keeping track of where the segments are
located on disk and for storing segment o�sets. Code registers for a root segment and the
current segment are also required.

Programs containing CALLs without the SWAP option use the data stack to control both
the main program and the current subprogram.

Programs containing CALLs that use the SWAP option require data stack components
very similar to those that do not use this option, but they do not all need to be present
simultaneously on the stack.

Although these three structures require additional data stack components, they require less
total stack space than a single-segment program if they contain more than two segments. The
data stack requirements of each structure are described in detail later in this section.

Note Under some circumstances, the error messages \FSERR 74" or \Items not
found in dictionary" may be issued when there is no stack overow and
the items do in fact exist in the dictionary. In this context, both of these
errors may be due to segmentation problems. To overcome this problem in
Transact/V, try compiling with the Transact/V NOCB and STACK = 2000
or use the OPT@ option. If none of these solutions work, you will have to
segment your program further and try again.

Optimizing Transact Applications C-5

Compiler Statistics

Figure C-2 shows the compiler listing that is produced when the statistics option is in e�ect
during compilation. The format shown is for single-segment programs, but is virtually the
same for the other three structures being examined in this appendix. The �elds are de�ned as
follows:

COMPILE TIME STATISTICS

STACK= x The number of words the Transact compiler put on its data stack during
compilation.

TABLE= x The portion of the data stack used for table space during compilation, in
words.

RUN TIME STATISTICS

PCODE= x The number of words of p-code data in the current segment, plus each
segment compiled before it.

SCODE= x The number of words of p-code for a particular segment, main program, or
subprogram.

PARTIAL TABLE REGISTER

BASE= x, y The number of words that the TABLE REGISTER, the TABLE

FILE= x, y INDEX, and the TABLE LENGTH components require. Refer

SET= x, y to Figure C-3 to map these compiler notations to the

PROC= x, y entities in these components. Note that the x values

$$CMD= x, y pertain to TABLE INDEX and TABLE LENGTH and that

$CMD= x, y the y values pertain to TABLE REGISTER.

ITEM= x, y

STRNG= x, y

CNTRL= x, y

x, y The total number of words in the PARTIAL TABLE REG.

SUMMARY.

C-6 Optimizing Transact Applications

FINAL TABLE REG. SUMMARY

WORK AREA= x, y The number of words in the WORK SPACE portions of the TABLE
REGISTER, TABLE INDEX, and TABLE LENGTH components. The
x value reects the work space in the TABLE INDEX and TABLE

LENGTH components, and the y value reects the work space in the
TABLE REGISTER.

TABLE REG.= y The total number of words that the TABLE REGISTER occupies.
This value is the sum of the y values in the PARTIAL TABLE REG.

SUMMARY and the y value in WORK AREA.

TABLE INDX= x The total number of words that the TABLE INDEX requires. This
value is the sum of the x values in the PARTIAL TABLE REG.

SUMMARY and the x value in WORK AREA.

TABLE LEN.= x The total number of words that the TABLE LENGTH needs. This
value is the same as that for TABLE INDX=.

RUN TIME STACK SUMMARY

DATA REG.= x The number of words in the DATA REGISTER component.

TABLE REG.= x The number of words in the TABLE REGISTER component.

TABLE INDX= x The number of words in the TABLE INDEX component.

TABLE LEN.= x The number of words in the TABLE LENGTH component.

ROOT SEG.= x The number of words in the CODE REGISTER component.

ITEM REG.= x The number of words in the ITEM REGISTER component.

DATA INDEX= x The number of words in the DATA INDEX component.

DATA LEN.= x The number of words in the DATA LENGTH component.

x The total number of words in the RUN TIME STACK SUMMARY.

The following di�erences in format occur if the program is a multiple-segment program or if it
uses CALLs:

For multiple-segment programs, the listing includes a PARTIAL TABLE REG. SUMMARY for
each segment. The FINAL TABLE REG. SUMMARY and the RUN TIME STACK SUMMARY contain
information that applies to the largest segment.

For programs using the CALL statement with or without the SWAP option, the information
shown in Figure C-2 is provided for the main program compilation and for each subprogram
compilation.

Optimizing Transact Applications C-7

*****COMPILE TIME STATISTICS****

STACK= x

TABLE= x

*******RUN TIME STATISTICS******

PCODE= x

SCODE= x

PARTIAL TABLE REG. SUMMARY

BASE= x, y

FILE= x, y

SET= x, y

PROC= x, y

$$CMD= x, y

$CMD= x, y

ITEM= x, y

STRNG= x, y

CNTRL= x, y

x, y

****FINAL TABLE REG. SUMMARY****

WORK AREA= x, y

TABLE REG.= y

TABLE INDX= x

TABLE LEN.= x

*****RUN TIME STACK SUMMARY*****

DATA REG.= x

TABLE REG.= x
TABLE INDX= x

TABLE LEN.= x

ROOT SEG.= x

ITEM REG.= x

DATA INDEX= x

DATA LEN.= x

x

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=xx:xx:xx

ELAPSED TIME=xx:xx:xx

Figure C-2. Transact Compiler Statistics

C-8 Optimizing Transact Applications

+----------------------+ +----TABLE INDEX and TABLE

| | | LENGTH entities

| PCBX | |

| | | +--TABLE REGISTER entities

|----------------------| | |

| | | |

| VPLUS INFO | v v

| |

|----------------------| +-------------------------+

| Transact OUTER BLOCK | | |

|----------------------| BASE=x,y| BASES |

| Transact PROCESSOR | |-------------------------|

| CONTROL BLOCK | | VPLUS COMAREA; VPLUS, |

|----------------------| FILE=x,y| KSAM, MPE, AND DATA |

| | SET=x,y| SET FILE INFO |

* | DATA REGISTER |DATA REG.=x |-------------------------|

|----------------------| PROC=x,y| PROCEDURES |

| | |-------------------------|

| TABLE REGISTER | $$CMD=x,y| COMMANDS |

| |TABLE REG.=x |-------------------------|

|----------------------| $CMD=x,y| SUBCOMMANDS |

**| TABLE INDEX |TABLE INDX=x |-------------------------|

|----------------------| | |

**| TABLE LENGTH |TABLE LEN.=x | ITEMS |

|----------------------| ITEM=x,y| |

| | |-------------------------|

| CODE REGISTER |ROOT SEG.=x | |

| | STRNG=x,y| TEXT STRINGS |

|----------------------| | |

*| ITEM REGISTER |ITEM REG.=x |-------------------------|

|----------------------| | |

*| DATA INDEX |DATA INDEX=x | CONTROL STRINGS |

|----------------------| CNTRL=x,y| |

*| DATA LENGTH |DATA LEN.=x |-------------------------|

|----------------------| | |

| | WORK AREA=x,y| WORK SPACE |**

~ ~ | |

| | +-------------------------+

~ ~

+----------------------+

COMPONENTS IN THE DATA STACK ENTITIES IN TABLE COMPONENTS

* Can be changed by using the DATA= option of the SYSTEM statement

** Can be changed by using the WORK= option of the SYSTEM statement

Figure C-3. Compiler Statistics Fields and Data Stack Components

Optimizing Transact Applications C-9

Single-Segment Programs

Single-segment programs generally execute faster than multiple-segment programs because
the processor does not have to overlay information on the data stack when switching from
segment to segment.

Figure C-4 shows the compiler listing produced when a single-segment program was compiled
with the STAT option. Figure C-5 and Figure C-6 map the compiler statistics to individual
components and entities in the run-time data stack.

C-10 Optimizing Transact Applications

*****COMPILE TIME STATISTICS****

STACK= 23368

TABLE= 14482

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 3765

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 12, 176

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 82, 1047

STRNG= 195, 2192

CNTRL= 116, 916

455, 4950

****FINAL TABLE REG. SUMMARY****

WORK AREA= 30, 100

TABLE REG.= 5050

TABLE INDX= 485

TABLE LEN.= 485

*****RUN TIME STACK SUMMARY*****

DATA REG.= 200

TABLE REG.= 5050
TABLE INDX= 485

TABLE LEN.= 485

ROOT SEG.= 3765

ITEM REG.= 30

DATA INDEX= 30

DATA LEN.= 30

10075

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=00:01:43

ELAPSED TIME=00:02:15

Figure C-4. Compiler Statistics for a Single-Segment Program

Optimizing Transact Applications C-11

+--------------------------+

| |

| PCBX |
| |

|--------------------------|

| |

| VPLUS INFO |

| |

|--------------------------|

| Transact OUTER BLOCK | 66 words

|--------------------------|

| Transact PROCESSOR |

| CONTROL BLOCK | 816 words

|--------------------------|

| |

| DATA REGISTER |DATA REG.= 200 words

|--------------------------|

| |

| TABLE REGISTER |TABLE REG.= 5050 words --

| | \

|--------------------------| \

| TABLE INDEX |TABLE INDX= 485 words ---- \---see figure C-6

|--------------------------| /

| TABLE LENGTH |TABLE LEN.= 485 words ---/

|--------------------------|

| |

| CODE REGISTER |ROOT SEG.= 3765 words

| |

|--------------------------|

| ITEM REGISTER |ITEM REG.= 30 words

|--------------------------|
| DATA INDEX |DATA INDEX= 30 words

|--------------------------|

| DATA LENGTH |DATA LEN.= 30 words

+--------------------------+

| |

~ ~

| |

~ ~

+--------------------------+

Approx. total data stack = 10957 words

Figure C-5. Data Stack of a Single-Segment Program

C-12 Optimizing Transact Applications

+-------------------------+

| |

| BASES | BASE= 1, 10 words
| |

|-------------------------|

| VPLUS COMAREA; VPLUS, | FILE= 38, 544 words

| KSAM, MPE, AND DATA |

| SET FILE INFO | SET= 12, 176 words

|-------------------------|

| PROCEDURES | PROC= 0, 0 words

|-------------------------|

| COMMANDS | $$CMD= 11, 65 words

|-------------------------|

| SUBCOMMANDS | $CMD= 0, 0 words

|-------------------------|

| |

| ITEMS | ITEM= 82, 1047 words

| |

|-------------------------|

| |

| TEXT STRINGS | STRNG= 195, 2192 words

| |

|-------------------------|

| |

| CONTROL STRINGS | CNTRL= 116, 916 words

| |

|-------------------------|

| |

| WORK SPACE | WORK AREA= 30, 100 words

| |

| | ^ ^
+-------------------------+ | |

| |

TABLE INDEX and TABLE LENGTH entities--------------------+ |

|

TABLE REGISTER entities-------------------------+

Figure C-6. Table Register Entities of a Single-Segment Program

Optimizing Transact Applications C-13

Multiple-Segment Programs

You can optimize your data stack requirements by segmenting your Transact program. The
root segment and a current segment are always represented on the data stack. The savings
in data stack space is approximately equal to the size of the segments not loaded. Although
some processor time is required to overlay segments onto the data stack as they are required,
the e�ciency gained by decreasing the size of the data stack can be signi�cant. Keeping
applications functionally divided into segments minimizes segment switching.

The compiler listing for a multiple-segment version of the single-segment program discussed
earlier is shown in Figure C-7. The program consists of four segments, each of which has
compiler statistics in the following categories:

COMPILE TIME STATISTICS
RUN TIME STATISTICS

PARTIAL TABLE REG. SUMMARY

The FINAL TABLE REG. SUMMARY and the RUN TIME STACK SUMMARY reect information for the
largest segment, in this case segment 4. The following �elds in the RUN TIME STACK SUMMARY

are of special note:

SEG. TABLE= Areas of the data stack used to keep track of where

XFER TABLE= segments are located. The number of words required for

SEG. TABLE= is version-dependent. XFER TABLE= contains

2 words for each label defined with a DEFINE(ENTRY)

statement.

ROOT SEG.= The number of words that the code register requires

for the root segment. Keep this segment as small

as possible, since it is always memory-resident.

SCODE REG.= The number of words that the code register requires

for the largest segment.

Because the largest segment inuences the number of words allocated for the data stack, try
to make your segments as uniform in size as possible.

Figure C-8 and Figure C-9 show how the compiler statistics map to the run-time data stack.

C-14 Optimizing Transact Applications

SEGMENT 0 STATISTICS:

STACK= 11210

TABLE= 3138

*******RUN TIME STATISTICS******

PCODE= 46

SCODE= 46

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 0, 0

PROC= 0, 0

$$CMD= 0, 0

$CMD= 0, 0

ITEM= 54, 675

STRNG= 28, 154

CNTRL= 67, 303

188, 1686

COMPILED SEGMENT 0

SEGMENT 1 STATISTICS:

STACK= 12683

TABLE= 4624

*******RUN TIME STATISTICS******

PCODE= 632

SCODE= 586

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 6, 87

PROC= 0, 0

$$CMD= 0, 0

$CMD= 0, 0

ITEM= 54, 675

STRNG= 42, 477

CNTRL= 67, 303

208, 2096

COMPILED SEGMENT 1

Figure C-7. Compiler Statistics for a Multiple-Segment Program (1 of 3)

Optimizing Transact Applications C-15

SEGMENT 2 STATISTICS:

STACK= 15623

TABLE= 6419

*******RUN TIME STATISTICS******

PCODE= 1676

SCODE= 1044

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 7, 103

PROC= 0, 0

$$CMD= 0, 0

$CMD= 0, 0

ITEM= 61, 769

STRNG= 76, 612

CNTRL= 67, 303

250, 2341

COMPILED SEGMENT 2

SEGMENT 3 STATISTICS:

STACK= 15644

TABLE= 7392

*******RUN TIME STATISTICS******

PCODE= 3123

SCODE= 1447

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 12, 176

PROC= 0, 0

$$CMD= 0, 0

$CMD= 0, 0

ITEM= 55, 685

STRNG= 77, 869

CNTRL= 68, 308

251, 2592

COMPILED SEGMENT 3

Figure C-7. Compiler Statistics for a Multiple-Segment Program (2 of 3)

C-16 Optimizing Transact Applications

SEGMENT 4 STATISTICS:

STACK= 15738

TABLE= 7134

*******RUN TIME STATISTICS******

PCODE= 3773

SCODE= 650

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 38, 544

SET= 12, 176

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 74, 943

STRNG= 110, 865

CNTRL= 115, 911

361, 3514

COMPILED SEGMENT 4

****FINAL TABLE REG. SUMMARY****

WORK AREA= 30, 100

TABLE REG.= 3614

TABLE INDX= 391

TABLE LEN.= 391

*****RUN TIME STACK SUMMARY*****

DATA REG.= 200
SEG. TABLE= 128

TABLE REG.= 3614

TABLE INDX= 391

TABLE LEN.= 391

ROOT SEG.= 46

XFER TABLE= 8

SCODE REG.= 1447

ITEM REG.= 30

DATA INDEX= 30

DATA LEN.= 30

6315

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=00:01:41

Figure C-7. Compiler Statistics for a Multiple-Segment Program (3 of 3)

Optimizing Transact Applications C-17

|--------------------------|

| PCBX |

| |

| VPLUS INFO |

|--------------------------|

| Transact OUTER BLOCK | 66 words

|--------------------------|

| Transact PROCESSOR |

| CONTROL BLOCK | 816 words

|--------------------------|

| |

| DATA REGISTER |DATA REG.= 200 words

|--------------------------|

| DISC ADDRESS SEG. TABLE |SEG. TABLE= 128 words

|--------------------------|

| |

| TABLE REGISTER |TABLE REG.= 3614 words --\

| | \

|--------------------------| \

| TABLE INDEX |TABLE INDX= 391 words -----\--see Figure C-9

|--------------------------| /

| TABLE LENGTH |TABLE LEN.= 391 words ----/

|--------------------------|

| CODE REGISTER |

| (Root Segment) |ROOT SEG.= 46 words

|--------------------------|

| TRANSFER TABLE |XFER TABLE= 8 words

|--------------------------|

| CODE REGISTER |
| (SCODE - Overlay Area) |SCODE REG.= 1447 words

|--------------------------|

| ITEM REGISTER |ITEM REG.= 30 words

|--------------------------|

| DATA INDEX |DATA INDEX= 30 words

|--------------------------|

| DATA LENGTH |DATA LEN.= 30 words

|--------------------------|

~ ~

| |

~ ~

+--------------------------+

Approx. total data stack = 7197 words

Figure C-8. Data Stack of a Multiple-Segment Program

C-18 Optimizing Transact Applications

|-------------------------|

| |

| BASES | BASE= 1, 10 words
| |

|-------------------------|

| VPLUS COMAREA; VPLUS, | FILE= 38, 544 words

| KSAM, MPE, AND DATA |

| SET FILE INFO | SET= 12, 176 words

|-------------------------|

| PROCEDURES | PROC= 0, 0 words

|-------------------------|

| COMMANDS | $$CMD= 11, 65 words

|-------------------------|

| SUBCOMMANDS | $CMD= 0, 0 words

|-------------------------|

| |

| ITEMS | ITEM= 74, 943 words

| |

|-------------------------|

| |

| TEXT STRINGS | STRNG= 110, 865 words

| |

|-------------------------|

| |

| CONTROL STRINGS | CNTRL= 115, 911 words

| |

|-------------------------|

| |

| WORK SPACE | WORK AREA= 30, 100 words

| |

| | ^ ^
|-------------------------| | |

| |

TABLE INDEX and TABLE LENGTH entities--------------------+ |

|

TABLE REGISTER entities-------------------------+

Figure C-9. Table Register Entities of a Multiple-Segment Program

Optimizing Transact Applications C-19

Programs Using CALLs Without the SWAP Option

Splitting Transact programs into subprograms also decreases stack requirements.

Figure C-10 shows the compiler statistics for the program used for the earlier examples,
restructured into a main program and four subprograms. The main program statistics appear
on the �rst page and statistics for the subprograms appear on the subsequent four pages of
the listing.

Figure C-11 shows the layout of the run-time data stack. Note that the top half of the
stack, used by the main program, has the same components as the single-segment program
data stack. The PROCESSOR PROC. VAR. area holds processor variables for calling
subprograms; the size of this area is version-dependent. The next area is a second Transact
PROCESSOR CONTROL BLOCK. The remaining areas are used by entities of the CALLed
subprograms.

Figure C-12 portrays the entities in the TABLE REGISTER, TABLE INDEX, and TABLE
LENGTH components for the main program.

C-20 Optimizing Transact Applications

main program

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****

STACK= 11208

TABLE= 962

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 54

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 2, 83

SET= 0, 0

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 1, 9

STRNG= 10, 67

CNTRL= 2, 5

27, 239

****FINAL TABLE REG. SUMMARY****

WORK AREA= 5, 50

TABLE REG.= 289

TABLE INDX= 32

TABLE LEN.= 32

*****RUN TIME STACK SUMMARY*****

DATA REG.= 200

TABLE REG.= 289

TABLE INDX= 32

TABLE LEN.= 32

ROOT SEG.= 54

ITEM REG.= 25

DATA INDEX= 25

DATA LEN.= 25

682

CODE FILE STATUS: REPLACED

Figure C-10. Compiler Statistics for Program Using CALLs Without the SWAP Option (1 of 5)

Optimizing Transact Applications C-21

subprogram 1

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****

STACK= 11208

TABLE= 3262

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 590

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 8, 163

SET= 6, 87

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 28, 348

STRNG= 33, 413

CNTRL= 25, 159

112, 1245

****FINAL TABLE REG. SUMMARY****

WORK AREA= 5, 50

TABLE REG.= 1295

TABLE INDX= 117

TABLE LEN.= 117

*****RUN TIME STACK SUMMARY*****

DATA REG.= 100

TABLE REG.= 1295

TABLE INDX= 117

TABLE LEN.= 117

ROOT SEG.= 590

ITEM REG.= 20

DATA INDEX= 20

DATA LEN.= 20

2279

CODE FILE STATUS: REPLACED

Figure C-10. Compiler Statistics for Program

Using CALLs Without the SWAP Option (2 of 5)

C-22 Optimizing Transact Applications

subprogram 2

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****

STACK= 11208

TABLE= 4125

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 1101

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 11, 190

SET= 6, 87

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 19, 240

STRNG= 54, 468

CNTRL= 13, 45

115, 1105

****FINAL TABLE REG. SUMMARY****

WORK AREA= 8, 60

TABLE REG.= 1165

TABLE INDX= 123

TABLE LEN.= 123

*****RUN TIME STACK SUMMARY*****

DATA REG.= 100

TABLE REG.= 1165

TABLE INDX= 123

TABLE LEN.= 123

ROOT SEG.= 1101

ITEM REG.= 20

DATA INDEX= 20

DATA LEN.= 20

2672

CODE FILE STATUS: REPLACED

Figure C-10. Compiler Statistics for Program

Using CALLs Without the SWAP Option (3 of 5)

Optimizing Transact Applications C-23

subprogram 3

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****

STACK= 13640

TABLE= 5622

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 1456

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 19, 310

SET= 10, 146

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 20, 249

STRNG= 66, 793

CNTRL= 32, 120

159, 1693

****FINAL TABLE REG. SUMMARY****

WORK AREA= 8, 60

TABLE REG.= 1753

TABLE INDX= 167

TABLE LEN.= 167

*****RUN TIME STACK SUMMARY*****

DATA REG.= 100

TABLE REG.= 1753

TABLE INDX= 167

TABLE LEN.= 167

ROOT SEG.= 1456

ITEM REG.= 20

DATA INDEX= 20

DATA LEN.= 20

3703

CODE FILE STATUS: REPLACED

Figure C-10. Compiler Statistics for Program

Using CALLs Without the SWAP Option (4 of 5)

C-24 Optimizing Transact Applications

subprogram 4

COMPILING WITH OPTIONS: CODE,DICT,STAT,ERRS

*****COMPILE TIME STATISTICS****

STACK= 13640

TABLE= 5178

*******RUN TIME STATISTICS******

PCODE= 0

SCODE= 652

PARTIAL TABLE REG. SUMMARY

BASE= 1, 10

FILE= 2, 82

SET= 10, 144

PROC= 0, 0

$$CMD= 11, 65

$CMD= 0, 0

ITEM= 57, 735

STRNG= 103, 796

CNTRL= 68, 703

252, 2535

****FINAL TABLE REG. SUMMARY****

WORK AREA= 40, 200

TABLE REG.= 2735

TABLE INDX= 292

TABLE LEN.= 292

*****RUN TIME STACK SUMMARY*****

DATA REG.= 200

TABLE REG.= 2735

TABLE INDX= 292

TABLE LEN.= 292

ROOT SEG.= 652

ITEM REG.= 25

DATA INDEX= 25

DATA LEN.= 25

4246

CODE FILE STATUS: REPLACED

Figure C-10. Compiler Statistics for Program

Using CALLs Without the SWAP Option (5 of 5)

Optimizing Transact Applications C-25

|--------------------------|

| PCBX |

|--------------------------|
| VPLUS INFO |

|--------------------------|

| Transact OUTER BLOCK | 66 words

|--------------------------|

| Transact PROC. CNTL. BLK.| 816 words

|--------------------------|

| DATA REGISTER |DATA REG.= 200 words

|--------------------------|

| TABLE REGISTER |TABLE REG.= 289 words--\

|--------------------------| \

| TABLE INDEX |TABLE INDX= 32 words ---\---see Figure C-12

|--------------------------| /

| TABLE LENGTH |TABLE LEN.= 32 words --/

|--------------------------|

| CODE REGISTER |ROOT SEG.= 54 words

|--------------------------|

| ITEM REGISTER |ITEM REG.= 25 words

|--------------------------|

| DATA INDEX |DATA INDEX= 25 words

|--------------------------|

| DATA LENGTH |DATA LEN.= 25 words

|--------------------------|

| PROCESSOR PROC. VAR. | 194 words

|--------------------------|

| Transact PROC. CNTL. BLK.| 816 words

|--------------------------|

| TABLE REGISTER |TABLE REG.= 2735 words

|--------------------------|
| TABLE INDEX |TABLE INDX= 292 words

|--------------------------|

| TABLE LENGTH |TABLE LEN.= 292 words

|--------------------------|

| CODE REGISTER |ROOT SEG.= 652 words

|--------------------------|

| ITEM REGISTER |ITEM REG.= 25 words

|--------------------------|

| DATA INDEX |DATA INDEX= 25 words

|--------------------------|

| DATA LENGTH |DATA LEN.= 25 words

|--------------------------|

| | ----------

Approx. Total Data Stack = 6620 words

Figure C-11. Data Stack of Program Using CALLs Without the SWAP Option

C-26 Optimizing Transact Applications

|-------------------------|

| |

| BASES | BASE= 1, 10 words
| |

|-------------------------|

| VPLUS COMAREA; VPLUS, | FILE= 2 83 words

| KSAM, MPE, AND DATA |

| SET FILE INFO | SET= 0, 0 words

|-------------------------|

| PROCEDURES | PROC= 0, 0 words

|-------------------------|

| COMMANDS | $$CMD= 11, 65 words

|-------------------------|

| SUBCOMMANDS | $CMD= 0, 0 words

|-------------------------|

| |

| ITEMS | ITEM= 1, 9 words

| |

|-------------------------|

| |

| TEXT STRINGS | STRNG= 10, 67 words

| |

|-------------------------|

| |

| CONTROL STRINGS | CNTRL= 2, 5 words

| |

|-------------------------|

| |

| WORK SPACE | WORK AREA= 5, 50 words

| |

| | ^ ^
|-------------------------| | |

| |

TABLE INDEX and TABLE LENGTH entities--------------------+ |

|

TABLE REGISTER entities-------------------------+

Figure C-12. Table Register Entities of Main Program Using CALLs Without the SWAP Option

Optimizing Transact Applications C-27

Programs Using CALLs with the SWAP Option

If your main program is large, the SWAP option can reduce the amount of data stack space
required. This option causes some of the main program's stack entities to be written out to
a temporary �le when a subprogram is called. The trade-o� in this instance is the overhead
required to create this �le and restore its contents when control returns to the main program.

The compiler statistics provided for this program structure are the same as those provided
when a program uses CALLs without the SWAP option. Refer back to Figure C-10 for
compiler statistics produced when the earlier example was recoded to use the SWAP option
with its CALLs.

When the main program is in control, the data stack looks like the top portion of the layout
illustrated in Figure C-11. Components PCBX through PROCESSOR PROC. VAR. are
present.

Figure C-13 illustrates how the data stack looks after subprogram 4 is called:

Only a subset of the main program's TABLE REGISTER, TABLE INDEX, and TABLE
LENGTH components are on the stack. The remainder of the entities have been placed in a
temporary MPE �le.

The following components of the main program have also been placed in the temporary �le:
CODE REGISTER, ITEM INDEX, and DATA LENGTH.

Two areas of the data stack are used for processor variables: PROCESSOR PROC. VAR.
and SWAP PROC. VARIABLES. As in the case of CALLs without the SWAP option, the
number of words in these areas is version dependent.

The entities in the main program's table register subsets are identi�ed in Figure C-14. Note
that the values for BASE=, FILE=, and SET= entities are represented in the compiler
statistics for the main program in the PARTIAL TABLE REG. SUMMARY (refer to the �rst
page of Figure C-10).

Figure C-15 illustrates the table components for the largest subprogram|subprogram 4.

C-28 Optimizing Transact Applications

|--------------------------|

| PCBX |

|--------------------------|
| VPLUS INFO |

|--------------------------|

| Transact OUTER BLOCK | 66 words

|--------------------------|

| Transact PROCESSOR |

| CONTROL BLOCK | 816 words

|--------------------------|

| DATA REGISTER |DATA REG.= 200 words

|--------------------------|

| SUBSET OF TABLE REGISTER | 93 words--\

|--------------------------| \

| SUBSET OF TABLE INDEX | 3 words ---\--see Figure C-14

|--------------------------| /

| SUBSET OF TABLE LENGTH | 3 words --/

|--------------------------|

| PROCESSOR PROC. VAR. | 194 words

|--------------------------|

| SWAP PROC. VARIABLES | 67 words

|--------------------------|

| Transact PROCESSOR | 816 words

| CONTROL BLOCK |

|--------------------------|

| TABLE REGISTER |TABLE REG.= 2735 words--\

|--------------------------| \

| TABLE INDEX |TABLE INDX= 292 words ---\--see Figure C-15

|--------------------------| /

| TABLE LENGTH |TABLE LEN.= 292 words --/

|--------------------------|
| CODE REGISTER |ROOT SEG.= 652 words

|--------------------------|

| ITEM REGISTER |ITEM REG.= 25 words

|--------------------------|

| DATA INDEX |DATA INDEX= 25 words

|--------------------------|

| DATA LENGTH |DATA LEN.= 25 words

|--------------------------|

| | ----------

Approx. Total Data Stack = 6304 words

Figure C-13.

Data Stack of Program Using CALLs With the SWAP Option

(CALLed Program is on the Stack)

Optimizing Transact Applications C-29

|-------------------------|

| |

| BASES |BASE= 1, 10 words
| |

|-------------------------|

| VPLUS COMAREA; VPLUS, |FILE= 2, 83 words

| KSAM, MPE, & DATA |

| SET FILE INFO |SET = 0, 0 words

|-------------------------|

^ ^

| |

| |

TABLE INDEX and TABLE LENGTH entities---------------+ |

|

|

TABLE REGISTER entities---------------------+

Figure C-14. Table Register Subsets for Main Program After CALLing Subprogram

C-30 Optimizing Transact Applications

|-------------------------|

| |

| BASES | BASE= 1, 10 words
| |

|-------------------------|

| VPLUS COMAREA; VPLUS, | FILE= 2 82 words

| KSAM, MPE, AND DATA |

| SET FILE INFO | SET= 10, 144 words

|-------------------------|

| PROCEDURES | PROC= 0, 0 words

|-------------------------|

| COMMANDS | $$CMD= 11, 65 words

|-------------------------|

| SUBCOMMANDS | $CMD= 0, 0 words

|-------------------------|

| |

| ITEMS | ITEM= 57, 735 words

| |

|-------------------------|

| |

| TEXT STRINGS | STRNG= 103, 796 words

| |

|-------------------------|

| |

| CONTROL STRINGS | CNTRL= 68, 703 words

| |

|-------------------------|

| |

| WORK SPACE | WORK AREA= 40, 200 words

| |

| | ^ ^
|-------------------------| | |

| |

TABLE INDEX and TABLE LENGTH entities--------------------+ |

|

TABLE REGISTER entities-------------------------+

Figure C-15. Table Register Entities of Subprogram 4

Optimizing Transact Applications C-31

Stack Usage Comparison

The following table summarizes the data stack requirements of the four program examples
just examined. The values shown do not include the stack space required for the following
components: PCBX, VPLUS, and subsystems such as SORT.

Table C-1. Example of Data Stack Requirements

Application Structure Approximate Data Stack

Single-Segment Program 10957 words

Multiple-Segment Program 7197 words

Main Program CALLing Sub-Programs Without SWAP Option 6620 words

Main Program CALLing Sub-Programs With SWAP Option 6304 words

The main program in the �nal case is very small, so the savings in stack space are not as
signi�cant as they could be.

C-32 Optimizing Transact Applications

Processing Time Optimization

The following guidelines can help you improve the e�ciency of your Transact p-code at
run-time:

Adjust the WORK= option of the SYSTEM statement to minimize the work space
recoveries during execution. The number of work space recoveries can be determined
by running test mode 101 or 102. Adjusting work space size may increase data stack
requirements.

Use DEFINE(INTRINSIC) to call system intrinsics whenever possible. This construct
prevents the Transact processor from using LOADPROC dynamically to return the P-label
of the intrinsic being called. Using DEFINE(INTRINSIC) reduces the overhead of loading
the Transact program.

Avoid calling many separate user-de�ned procedures from a Transact application. One
LOADPROC is executed per procedure, contributing to processing overhead. If possible,
combine all user-de�ned procedures into one procedure and identify the procedure to be
executed with a control or index parameter.

Avoid using the UNLOAD option of the PROC verb with frequently called procedures, since
both LOADPROC and UNLOADPROC are called each time a procedure is called.

Use the NOLOAD option of the PROC verb for infrequently called procedures such as error
routines.

Use UNLOAD to release table entries as appropriate, since the 255-entry/process limit
of the Loader Segment Table (LST) is likely to be exceeded. A preferred approach is to
combine user-de�ned procedures whenever possible.

Avoid mixing character modes and block modes during a single application. This mixture
requires considerable overhead in VPLUS whenever the switch from block mode to character
mode occurs.

Minimize the processing overhead required for opening and closing forms �les by using only
one forms �le in any program or subprogram. Only one VPLUS forms �le can be opened at
a time.

Avoid switching between segments to minimize the input/output overhead incurred in
loading segment information into the data stack.

Segments should conform as much as possible to the functional characteristics of the
application. Commonly used routines should be grouped in the root segment (segment 0),
since this segment is always memory-resident. However, this segment should be as small as
possible.

Minimize the number of calculations performed. If you need extensive numeric calculations,
consider using subroutines in other languages and invoking them with the PROC statement.

Use the MOVE verb whenever possible to transfer values between data items. The MOVE
statement does no data type checks or conversions. The LET verb, however, performs
time-consuming data type compatibility checks.

Place frequently referenced data items on the top of the list register to minimize searches.
For example, place them towards the end of the LIST verb statement. The list register is
implemented as a linked list with list searches starting from the top of the list.

Optimizing Transact Applications C-33

Avoid using fragmented lists when accessing databases. Transact has to unscramble the list
before database input/output operations are performed.

Minimize internal sorting of large �les.

Follow these guidelines when using the LET verb:

It is most e�cient to use single word integer types (I or J) for single +, -, =, or negation
operations.

Use long reals (E or R) for single operations that include *, /, //, LN, LOG, SQRT, or
exponentiation, as well as +, -, =, or negation operations.

Use packed decimal types (P) for all other operations.

Avoid mixing types within an operation.

List the data sets in ascending data set order when using the LOCK option on the
LOGTRAN verb.

C-34 Optimizing Transact Applications

D

Architected Call Interface (ACI)

Introduction

The Architected Call Interface (ACI) allows you to call existing Transact/iX subprograms
from COBOL or Pascal.

ACI is provided as a single intrinsic call. It provides a means of invoking the desired
Transact/iX system and then returning a status value that indicates the success or failure of
the call. It also allows data to be passed by reference to the Transact/iX subprogram. These
subprograms must reside in an executable library (XL) that has been provided with the RUN
command.

Transact/iX subprograms must be compiled with the subprogram compiler option.

Syntax

TL_CALL_TRANSACT(program name, data bu�er, data length, return status)

Parameters

program name Character array by reference

Contains the name of the Transact/iX program to call (as speci�ed in a
SYSTEM statement). The program name can be uppercase or lowercase,
but must be terminated with a blank. (A program name entered in
lowercase will be automatically changed to uppercase prior to executing the
call.) Because program names cannot be longer than six characters, the
return status parameter will return a non-zero value if the name is too
long. It will also return a non-zero value if the program name cannot be
found in the program's execution path.

data bu�er User de�ned structure by reference

Provides a data passing method to and from the Transact/iX subprogram
and the calling program. This parameter is similar to the DATA=
option in the CALL verb. The called program will start listing items
at the beginning of this structure. Data can be passed down to the
Transact/iX program by placing data in this structure prior to the intrinsic
call. All items listed in the Transact/iX subprogram must be declared
in this structure whether or not any data is to be shared. A series of
appropriate LIST statements in the Transact/iX code will then allow you
to interpret the data in this structure. Any modi�cation of this data in the
Transact/iX subprogram causes this structure to be directly modi�ed in
the calling program's data area.

Architected Call Interface (ACI) D-1

Note If the data bu�er of the calling program is NOT de�ned exactly as the
Transact/iX subprogram's data register, an error message, such as DATA
MEMORY PROTECTION TRAP, is issued and the program terminates.

data length 32-bit signed integer by value

The number of bytes in the data bu�er parameter, which is also the
maximum data register size (in bytes) for the Transact/iX subprogram.
This parameter takes precedence over any DATA= data length
speci�cations in the Transact/iX subprogram.

Note When another language or third party package calls a Transact/iX
subprogram, the data register space allocated to the subprogram is determined
by the data length parameter, not the DATA= data length option of the
SYSTEM statement in the called program. However, the data count on the
DATA= option is still observed.

The DATA= data length option of the SYSTEM statement and the
data length parameter di�er in how they are declared. The DATA=
data length is declared in 16-bit words; the data length parameter is declared
in bytes.

return-status 32-bit signed integer by reference

Is used to test the success or failure of the intrinsic call. This parameter is
set to the following:

-2 One or more errors occurred in the called program other
than the following errors:

Data entry errors for interactive programs.

Errors processed by the subprogram using the STATUS
option or the ERROR= option.

-1 Abnormal end. A nonrecoverable error occurred while
calling the Transact/iX subprogram.

0 Successful execution of the call to a Transact/iX
subprogram.

1 The call failed because the program name parameter
contained a program name that was too long or not
terminated with a blank.

2 The call failed because the program name parameter
contained a program name that could not be found in
the execution path of the program �le. The Transact/iX
subprogram was either not put in the user XL or the XL
was not included in the RUN statement.

3 Internal error. A problem arose from hpgetprocplabel or
hpmyprogram intrinsic.

D-2 Architected Call Interface (ACI)

Data Area Allocation

There are a few requirements for the data bu�er parameter that the calling program
must address. It must allocate the entire Transact/iX data register in the calling program
before the call. The data bu�er must be at least as large as the data register used in the
subprogram. If the bu�er is smaller than the amount of bytes that are placed in the LIST and
DATA register in the called Transact/iX subprogram, an error message will be issued in the
subprogram.

The values placed in the data bu�er by the calling program must ensure that the formats are
correct for Transact/iX as listed in Table 3-3 in Chapter 3. Values placed in the data bu�er
by the calling program should be double byte-aligned (16-bit) or the values will not be
interpreted correctly by the called Transact/iX code.

The data length parameter should be the same (or larger) as the size of the data bu�er .

Database and File Handling

When you call a Transact/iX subprogram, all the databases and �les speci�ed in the
SYSTEM statement will be opened, regardless of whether or not they are accessed by the
calling program.

When you call a Transact/iX subprogram, a new process is created for that subprogram.
Because the Transact/iX subprogram and the calling program are two distinct processes,
only the data bu�er is shared between the two processes. This intrinsic cannot preserve any
database or �le information during the call to the Transact/iX subprogram, such as current
record numbers. The calling program has sole responsibility for managing these issues.

VPLUS Forms

When the called Transact/iX subprogram uses VPLUS forms, the calling program must
ensure that the terminal is in character mode. The VPLUS comarea is not available to the
Transact/iX subprogram when it is called from a program written in a di�erent language. The
Transact/iX subprogram always assumes that the terminal is in character mode and returns
the terminal to character mode after �nishing execution.

Trap Handling

During the invocation of the ACI call, arithmetic trapping is enabled for the Transact/iX
subprogram with calls to HPENBLTRAP, XARITRAP, and XLIBTRAP. On returning from
the called system, the arithmetic trapping is reset to the state it was in prior to calling the
Transact/iX subprogram.

You should keep in mind that the trap handling in the Transact/iX subprogram may not be
the same as the trap handling in the main program.

Architected Call Interface (ACI) D-3

Examples

The following examples illustrate how ACI can be used to call a Transact/iX subprogram from
a Pascal program and from a COBOL program.

Pascal Code

program pastest(output);

$standard_level 'OS_FEATURES'$

type

system_name_type = packed array[1..7] of char; {system name plus blank}

nibble = 0..15; {for P types }

data_record = packed record {Data register}

x_item : packed array[1..8] of char; {X(8) }

i4_item : integer; {I(9) }

i2_item : shortint; {I(4) }

nine_item : packed array[1..6] of char; {9(6) }

j4_item : integer; {J(9) }

r4_item : real; {R(6) }

packed_item: packed array[1..6] of nibble; {P(5) }

filler : packed array[1..2014] of char; {Rest of Data reg. used}

end; {by called subprogram. }

var

data_buffer : data_record;

return_status : integer;
system_name : system_name_type;

procedure tl_call_transact

(

var system_name : system_name_type;

data_buffer : localanyptr;

data_length : integer;

var return_status: integer

); external;

D-4 Architected Call Interface (ACI)

begin
system_name := 'SYS1 ';

with data_buffer do

begin

x_item := 'ABCDEFGH';

i4_item := 12345;

i2_item := 321;

nine_item := '111111';

j4_item := 2222;

r4_item := 99.12;

packed_item[1] := 5;

packed_item[2] := 5;

packed_item[3] := 5;

packed_item[4] := 5;

packed_item[5] := 5;

packed_item[6] := 12; {C - sign bit}

end;

tl_call_transact(system_name,

addr(data_buffer),

sizeof(data_buffer),

return_status);

if (return_status <> 0) then

writeln ('Error calling TRANSACT/iX, Error Number:',return_status);

end.

Pascal Commands

This code can be compiled into a main program and executed with the following commands:

:pasxllk pastest

:run $oldpass;xl='userxl'

This runs the above Pascal application PASTEST, which calls the subprogram SYS1 that
resides in USERXL.

Architected Call Interface (ACI) D-5

COBOL Code

IDENTIFICATION DIVISION.

PROGRAM-ID. COBTEST.
AUTHOR. HEWLETT-PACKARD.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SYSTEM-NAME PIC X(7).

01 RETURN-STATUS PIC S9(5) COMP SYNC.

01 DATA-BUFFER.

03 X-ITEM PIC X(8).

03 I4-ITEM PIC S9(5) COMP.

03 I2-ITEM PIC S9(4) COMP.

03 NINE-ITEM PIC X(6).

03 J4-ITEM PIC S9(5) COMP.

03 R4-ITEM PIC S9(5) COMP.

03 PACKED-ITEM PIC S9(5) COMP-3.

03 FILLER PIC X(2018).

01 DATA-LENGTH PIC S9(5) COMP SYNC.

PROCEDURE DIVISION.

MAIN-PROGRAM.

MOVE "SYS1 " TO SYSTEM-NAME.

MOVE 2048 TO DATA-LENGTH.

MOVE "ABCDEFGH" TO X-ITEM.

MOVE 12345 TO I4-ITEM.

MOVE 321 TO I2-ITEM.

MOVE "111111" TO NINE-ITEM.

MOVE 2222 TO J4-ITEM.

MOVE 55555 TO PACKED-ITEM.

CALL "TL-CALL-TRANSACT" USING

SYSTEM-NAME,

@DATA-BUFFER,

\DATA-LENGTH\,

RETURN-STATUS.

IF RETURN-STATUS IS NOT ZERO THEN

DISPLAY "Error calling TRANSACT/iX, Error Number: "

RETURN-STATUS.

STOP RUN.

D-6 Architected Call Interface (ACI)

COBOL Commands

This code can be compiled into a main program and executed with the following commands:

:cob85xlk cobtest

:run $oldpass;xl='userxl'

This runs the above COBOL application COBTEST, which calls the Transact/iX subprogram
SYS1 that resides in USERXL.

Pascal Code With Status

The following example shows how to include the status for the execution of the Transact/iX
subprogram. This example uses a di�erent data structure from the previous examples, but it
can be compiled and executed in a similar way.

program pastest2(output);

$standard_level 'OS_FEATURES'$

type

system_name_type = packed array[1..7] of char; {system name plus blank}

data_record = packed record {Data register}

tstatus : integer; {I(9) }
x_item : packed array[1..8] of char; {X(8) }

i4_item : integer; {I(9) }

end;

var

data_buffer : data_record;

return_status : integer;

program_name : program_name_type;

procedure tl_call_transact

(

var system_name : system_name_type;

data_buffer : localanyptr;

data_length : integer;

var return_status: integer

); external;

begin

system_name := 'SYS2 ';

Architected Call Interface (ACI) D-7

with data_buffer do
begin

tstatus := 0;

x_item := 'ABCDEFGH';

i4_item := 12345;

tl_call_transact(system_name,

addr(data_buffer),

sizeof(data_buffer),

return_status);

if (return_status <> 0) then

writeln ('Error calling TRANSACT/iX, Error Number:',return_status);

if (tstatus <> 0) then

writeln ('Error during execution of TRANSACT/iX program:',tstatus);

end;

end.

D-8 Architected Call Interface (ACI)

E

Native Language Support

Transact provides access to MPE native language support (NLS) at compile time and at
run time. NLS is used to adapt programs to other languages by providing message catalogs,
collating sequences, data formats, and numerical formats speci�c to a particular language.
The default language is NATIVE-3000, which consists of the language attributes of the HP
3000 prior to NLS.

The SET(LANGUAGE) Statement

The SET(LANGUAGE) statement speci�es the native language to be used by Transact:

SET(LANGUAGE) [language[,STATUS]];

The SET(LANGUAGE) statement allows the programmer to specify or change the native
language at run time. The programmer can either specify a literal language name or number
in quotes (which is checked at compile time) or the name of a data item which will contain the
language number at run time. The data item must begin on a word boundary. Refer to the
Native Language Support Reference Manual for a list of the names and numbers assigned to
the available languages.

If STATUS is not speci�ed and the operation is successful, Transact sets the status register
to the number of the language in e�ect before the language is changed. If an error results,
Transact returns the error message to the user, sets the status register to -1, and leaves the
native language unchanged. If STATUS is speci�ed, Transact suppresses the error message,
and the contents of the status register is the same as described above.

If you omit language, Transact sets the status register either to the number of the current
language and then resets the language number to 0 (NATIVE-3000), or to the language
number of the calling program if SET(LANGUAGE) is issued in a called program. A compiler
error results if the STATUS option is speci�ed without language.

When you change languages using SET(LANGUAGE), any previously entered data is
unchanged and remains in the format in which it was entered. Any new data is stored in the
format appropriate to the speci�ed language.

The RESET(LANGUAGE) Statement

The RESET(LANGUAGE) statement sets the STATUS register to the current language and
then resets the language to zero (NATIVE-3000) or the calling program's language if issued in
a called program. The STATUS option is not permitted with this statement.

Native Language Support E-1

Specifying the Language for the Compiler and Processor

Transact uses the native language message catalog for prompts and messages. You can set
the language to be used by issuing the SETJCW command to set the NLS job control word
NLUSERLANG to the desired language number, resulting in the messages and prompts being
drawn from the catalog for that language. Refer to the MPE Commands Reference Manual
and the Native Language Support Reference Manual for more information.

Alternatively, the job control word can be overridden by Transact, which switches to the
language speci�c catalog when a SET(LANGUAGE) statement is encountered at run time.

If an additional Transact program is executed, or the same program is restarted by responding
to the EXIT/RESTART prompt, the language ID is set to NATIVE-3000.

Called Programs

For called programs, the native language remains the same as that of the caller, and the
calling program can override the language speci�cation set globally with the NLUSERLANG
job control word. For example, if the language on a system is set to NATIVE-3000 with
the NLS job control word NLUSERLANG, but an Inform/V report is called by a Transact
program that speci�es French with the SET(LANGUAGE) statement, the report will appear
in French.

A called program is free to change the native language, but when it returns, the language in
e�ect at the time of the call is restored. When a called program is restarted, the language ID
is set to the language passed to it by the calling program.

Numeric Input

For each language, when processing numeric data items for input, the characters used for the
thousand's indicator and the decimal indicator are ignored|provided they are not one of the
two �eld delimiter characters (, and =) de�ned for Transact for use with command sequences.
If the character used for an indicator is one of the �eld delimiters, such as for NATIVE-3000,
where the thousand's indicator of comma (,) is also a default �eld delimiter, then you must
specify another delimiter with a SET(DELIMITER) statement. See Chapter 8 for more
information on the SET(DELIMITER) statement.

Numeric Output

In unedited numeric output, the language de�ned decimal character is used instead of a
period.

For edited numeric output, the descriptions of edit masks for the DISPLAY and FORMAT
verbs in Chapter 8 describe completely any variations that are dependent on native language.

E-2 Native Language Support

Date and Time

The date and time displayed by $TODAY, $DATELINE, and $TIME use the time formats
speci�ed by the current language. However, the LIST options related to date and time use
only NATIVE-3000.

IF and MATCH Changes

IF and MATCH comparisons of alphabetic strings are performed using the collating sequence
of the language in e�ect when the comparison is actually done. In other words, the collating
sequence used is not necessarily determined by the language in e�ect when the match register
was set.

The connectors (AND, OR), the logical relators (GT, LT, EQ, and so on), and the range
indicator (\TO" in NATIVE-3000) used in responding to PROMPT(MATCH) at run time can
change from language to language, depending on the native language message catalog.

Upshifting and Character Types

The upshift and character type tables used at any given time always reect the current
language. These tables are retrieved whenever the language is changed. Since any previously
entered data is unchanged and remains in the format in which it was entered, type U data
items are not "re-upshifted" to reect di�erent language-particular upshift requirements if the
language changes. However, any new data is upshifted as required and stored in the format
appropriate to the speci�ed language.

Intrinsics That Support Native Languages

Transact passes the current native language to any subsystem (intrinsic) it calls that accepts a
language ID. If a user calls a subsystem through the PROC verb, it is the user's responsibility
to provide the language ID if desired and accepted by the subsystem.

Examples:

Here is an example of using NLUSERLANG JCW to invoke the French catalog for Trancomp
and Transact

:SETJCW NLUSERLANG,7

:RUN TRANCOMP.PUB.SYS

or
:RUN TRANSACT.PUB.SYS

Here is an example of using SET(LANGUAGE) to invoke the German catalog from within a
Transact program:

SET(LANGUAGE) "GERMAN";

or

SET(LANGUAGE) "8",STATUS;

or...
DEFINE(ITEM) LANGUAGE X (20);

LIST LANGUAGE;

MOVE(LANGUAGE)="GERMAN";

Native Language Support E-3

SET(LANGUAGE) LANGUAGE;...

To change language back to NATIVE-3000 or parent program language:
...

SET(LANGUAGE);

or

RESET(LANGUAGE);

E-4 Native Language Support

Index

Special characters

!, 5-14, 8-37, 8-66, 8-83, 8-186, 8-237
$, 8-36, 8-66
(, 8-37, 8-67
*, 8-37, 8-66
,, 8-37, 8-66
., 8-37, 8-66
:$, 5-4
=, 5-15
], 5-14, 8-113, 8-218
]], 5-14, 8-113, 8-218
^, 5-15, 8-36, 8-66

2

24 edit characters, 8-38, 8-67

3

32-bit integer arithmetic, 8-108

A

AA and aa edit characters, 8-38, 8-68
A and a edit characters, 8-38, 8-68
ABORT command, 11-15
absolute binary, 3-4
access, key, 4-4
access mode, 6-2
ACCOUNT option, LIST verb, 8-116
ACI (Architected Call Interface), D-1
alias items, 3-17
ALIAS option, DEFINE verb, 8-22
alignment, in Transact/iX, 9-17
ALIGN option, LIST verb, 8-116, 8-118
ALPHABETIC test value, 8-85, 8-188, 8-239
-LOWER, 8-86, 8-188, 8-239
-UPPER, 8-86, 8-188, 8-239

APPEND option
GET verb, 8-77
PUT verb, 8-181
SET verb, 8-209
UPDATE verb, 8-234

applications optimization, C-1
Architected Call Interface (ACI), D-1
ARGLNG parameter, PROC verb, 8-160
ARG parameter, PROC verb, 8-160
argument register, 4-4

arithmetic operations, 8-103
arithmetic traps in TRANDEBUG, 11-13
arrays
items de�ned, 3-11
manipulating, 8-104
subscripting, 3-11

ASCII function, LET verb, 8-96
asterisk edit character, 8-37, 8-66
AUTOLOAD option
description, 5-12
RESET verb, 8-200
SET verb, 8-215

AUTO modi�er, LIST verb, 8-117
AUTOREAD option, GET verb, 8-77
AUTORPT command, 11-16

B

BANNER option, SYSTEM verb, 8-223
BASELNG parameter, PROC verb, 8-160
BASE option, SYSTEM verb, 8-223
BASE parameter, PROC verb, 8-160
batch processing, 9-11
binding data item attributes in Transact/iX,

B-4
BLANKS option
DATA verb, 8-14
INPUT verb, 8-90
PROMPT verb, 8-172

BREAK DELETE command, 11-18
BREAK LIST command, 11-20
BREAK SET command, 11-21
bu�er record, de�ning, 6-15
built-in commands, 5-6
BYTE parameter, PROC verb, 8-160

C

calling intrinsics or SL routines, 8-158
calling Transact/iX subprograms from COBOL

or Pascal, D-1
CALL verb, 8-2, C-20, C-28
caret symbol (^)
as edit character, 8-36, 8-66
as selection criterion, 5-15

CCTL option
DISPLAY verb, 8-35
FORMAT verb, 8-65

Index-1

CENTER option
DISPLAY verb, 8-35
FORMAT verb, 8-66

chained access path, 8-152
CHAIN modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72
OUTPUT verb, 8-145
REPLACE verb, 8-191

character mode, 5-11
CHAR function, MOVE verb, 8-132
CHCK compiler option, 9-8
CHECKNOT option
DATA verb, 8-14
PROMPT verb, 8-172

CHECK option
DATA verb, 8-14
PROMPT verb, 8-172

child items, 3-10
CLEAR option
GET verb, 8-77
PUT verb, 8-181
SET verb, 8-210
UPDATE verb, 8-234

CLOSE modi�er, FILE verb, 8-47
CLOSE verb, 8-10
closing a database, 6-2
COBOL
calling Transact/iX subprograms, D-1
code, D-6
commands, D-7
data types, 3-4
subroutines with Transact/iX, 8-164

CODE compiler option, 9-8
COL function, MOVE verb, 8-133
COL option
DISPLAY verb, 8-35
FORMAT verb, 8-66

comma, 5-15
comma edit character, 8-37, 8-66
$$command, 5-4
: command, 11-14
command
built-in, 5-6
labels, 5-4
quali�ers, 5-6
sequences, 5-2

COMMAND argument, SET verb, 8-207
COMMAND modi�er
RESET verb, 8-199
SET verb, 8-207

COMMAND processor command, 5-6
comments, 2-7
compilation, 9-7

compiled output control, 9-2
compiler
bypassing prompts, 9-10
di�erences, 9-32
error messages, 7-8
execution, 9-7, 9-8
listings, 9-31
options, 9-8
options in Transact/iX, 9-17
output destination, 9-12
TRANCODE, 9-12
TRANIN, 9-11
TRANLIST, 9-10, 9-12
TRANOUT, 9-12
Transact/iX, 9-16
TRANTEXT, 9-10, 9-11

compiler commands
!COPYRIGHT, 9-2
!ELSE, 9-2
!ENDIF, 9-3
!IF, 9-2
!INCLUDE, 9-2
!LIST, 9-2
!NOLIST, 9-2
!PAGE, 9-2
!SEGMENT, 9-2
!SET, 9-2

compiling Transact/iX programs, 9-16, 9-22
compound data items, 3-11
compound statements, 2-5
COMPUTE option, DEFINE verb, 8-22
conditional test
IF verb, 8-83
REPEAT verb, 8-186
WHILE verb, 8-237

connector, 5-8
CONTINUE command, 11-24
CONTROL modi�er, FILE verb, 8-48
conversion, B-7
converting �le formats , B-8
converting programs, B-1
!COPYRIGHT compiler command, 9-2
COUNT parameter, PROC verb, 8-160
$CPU edit characters, 8-36
CPU seconds used, 3-2
$CPU variable, 3-2, 8-35
critical item update, 8-196
Ctrl Y, 5-14
operation break, 5-14
user responses, 5-14

currency symbol ($) edit character, 8-36, 8-66
CURRENT modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72

Index-2

REPLACE verb, 8-192
CURRENT option
GET verb, 8-77
OUTPUT verb, 8-145
PUT verb, 8-181

CURSOR option
PUT verb, 8-181

CURSOR option, GET verb, 8-77, 8-210, 8-234

D

database
closing, 6-2
data dictionary, 3-9
locking, 6-3
opening, 6-1
opening mode, 9-13

DATA BREAK DELETE command, 11-25
DATA BREAK LIST command, 11-27
DATA BREAK REGISTER command, 11-28
DATA BREAK SET command, 11-30
data dictionaries, 3-9
data entry control characters, 5-14
data �le migration, B-8
data items, 3-2
adding to data register, 4-3
adding to list register, 4-3
alias items, 3-17
array items, 3-11
child items, 3-10
compound, 3-11
listed multiple times, 4-3
parent items, 3-10
removing from list register, 4-3
sizes, 3-3
types, 3-3

DATA LOG command, 11-33
DATA option
CALL verb, 8-4
SYSTEM verb, 8-225

data register, 4-2
managing, 4-3

data speci�cation, 3-9
data stack optimization, C-1
data storage
registers, 4-1
requirements, 4-3

data types, 3-3, 3-8
compatibility with databases, 3-9
compatibility with dictionaries, 3-9
compatibility with VPLUS, 3-8

data validation, 3-9
DATA verb, 4-7, 8-12
date and time variable, 3-2
$DATELINE edit characters, 8-36
$DATELINE variable, 3-2, 8-35

DATE option, LIST verb, 8-116
DBLOCK call, A-1
DBUNLOCK call, A-1
D, DD, and DDD edit characters, 8-39, 8-68
DECIMAL parameter, PROC verb, 8-160
DEFINE(ITEM) statement, 2-3
DEFINE verb, 8-19
DEFN command, 11-35
DEFN compiler option, 9-8
DELETE verb, 8-27, A-2
executing for a KSAM �le, A-3
executing for TurboIMAGE data set, A-2

deleting a breakpoint, 11-18
DELIMITER modi�er
RESET verb, 8-200
SET verb, 8-208

delimiters, 2-7, 5-15
blank, 2-7
comma, 2-7
equal sign, 2-7
parentheses, 2-7
semicolon, 2-7
with DOEND, 2-5

DEPTH option, SET verb, 8-215
DICT compiler option, 9-8
DIRECT modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-72
OUTPUT verb, 8-145
REPLACE verb, 8-192

DISPLAY BASE command, 11-36
DISPLAY CALLS command, 11-37
DISPLAY COMAREA command, 11-38
DISPLAY FILE command, 11-39
displaying contents of comarea, 11-38
DISPLAY INPUT command, 11-40
DISPLAY ITEM command, 11-41
DISPLAY KEY command, 11-43
DISPLAY MATCH command, 11-44
DISPLAY PERFORM command, 11-45
DISPLAY STATUS command, 11-46
DISPLAY STATUSDB command, 11-47
DISPLAY STATUSIN command, 11-48
DISPLAY UPDATE command, 11-49
DISPLAY verb, 8-34
DO and DOEND statements, 2-5
!DOMAIN System Dictionary command, 9-3
double bu�ering parameters, Transact/iX, 8-165
dynamic calls, 8-2
compiling programs for, 9-21

DYNAMIC CALLS compiler option, 9-17
dynamic roll-back, 6-9

Index-3

E

! edit character, 8-66
$ edit character, 8-66
(edit character, 8-67
* edit character, 8-66
, edit character, 8-66
. edit character, 8-66
^ edit character, 8-66
edit characters
!, 8-37, 8-66
$, 8-36, 8-66
(, 8-37, 8-67
*, 8-37, 8-66
,, 8-37, 8-66
., 8-37, 8-66
^, 8-36, 8-66, 8-68
24, 8-38, 8-67
AA and aa, 8-38, 8-68
A and a, 8-38, 8-68
D, DD, and DDD, 8-39, 8-68
for $CPU, 8-36
for $DATELINE, 8-36
for $PAGE, 8-36
for $TIME, 8-38
H and HH, 8-38, 8-67
M and MM, 8-38, 8-67, 8-68, 8-69
M, MM, and nM, 8-39
nM and nm, 8-39, 8-69
nW and nw, 8-39, 8-69
S and SS, 8-38, 8-68
T, 8-38, 8-68
YY and YYYY, 8-39, 8-69
Z, 8-36, 8-66
ZD, 8-39, 8-68
ZH, 8-38, 8-67
ZM, 8-38, 8-39, 8-67, 8-68
ZS, 8-38, 8-68

EDIT command, 11-50
EDIT option
DEFINE verb, 8-22
DISPLAY verb, 8-37
FORMAT verb, 8-66

!ELSE compiler command, 9-2
!ENDIF compiler command, 9-3
END option
RESET verb, 8-200
SET verb, 8-215

END verb, 8-44, 8-157
ENTRY modi�er, DEFINE verb, 8-19
ENTRY option, DEFINE verb, 8-22
entry point labels, 9-5
environment variables, 9-21
equals sign, 5-15
error branching, 8-112

error handling, 7-1
automatic, 7-2
status register, 4-7

error messages
compiler, 7-8
looking up, 7-10
searching catalogs, 7-10
system errors, 7-10
Transact processor, 7-9
warnings, 7-10

ERROR option
CLOSE verb, 8-10
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-76
LET verb, 8-94
OUTPUT verb, 8-146
PATH verb, 8-152
PUT verb, 8-180
REPLACE verb, 8-192
UPDATE verb, 8-233
when taken, 7-4

errors
database operation, 7-2, 7-6
data entry, 7-2, 7-5
�le operation, 7-2, 7-6
MPE/iX, 7-10
MPE V, 7-10
Transact, 7-10

ERRS compiler option, 9-8
exclamation point edit character, 8-37, 8-66
EXCLAMATION variable
IF verb, 8-83
REPEAT verb, 8-186
WHILE verb, 8-237

executing Transact/iX programs, 9-16, 9-22
EXIT argument, SET verb, 8-207
exiting from LEVEL sequences, 8-113
EXIT OR RESTART message, 8-44
EXIT processor command, 5-6
EXIT verb, 8-46
EXPLAIN subsystem, 7-10
external procedure, PROC verb, 8-158

F

FEDIT option
GET verb, 8-78
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-234

FIELD command quali�er, 5-6
�eld delimiters, 5-15
FIELD option
RESET verb, 8-200
SET verb, 8-215

Index-4

FIELD variable
IF verb, 8-84
REPEAT verb, 8-186
WHILE verb, 8-238

�le format conversion, B-8
FILEID parameter, PROC verb, 8-160
�le locking, 6-3
�le names, reserved, 9-6
FILE option, SYSTEM verb, 8-225
FILE verb, 8-47
FIND verb, 8-51, A-4
executing for a KSAM �le, A-6
executing for an MPE �le, A-7
executing for a TurboIMAGE data set, A-4

FKEY option
GET verb, 8-78
PUT verb, 8-182
UPDATE verb, 8-234

oating point formats, B-2
FLOCK call, A-1
owcharts, A-1
Fn option
GET verb, 8-78
PUT verb, 8-182
UPDATE verb, 8-234

FOPEN call, A-1
formatting parameters
DISPLAY verb, 8-35
FORMAT verb, 8-65

FORMAT verb, 8-64
FORM modi�er
GET verb, 5-16, 8-72
PUT verb, 5-16, 8-177
SET verb, 8-208
UPDATE verb, 8-231

FORMSTORE option
RESET verb, 8-200
SET verb, 8-216

FREEZE option
GET verb, 8-78
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-235

FSTORESIZE option
description, 5-12
SYSTEM verb, 8-227

function keys, 5-16
FUNLOCK call, A-1

G

GET(FORM) verb, executing for a VPLUS
form, A-12

getting information online, 7-10
GET verb, 8-72, A-9
executing for a KSAM �le, A-10

executing for an MPE �le, A-11
executing for a TurboIMAGE data set, A-9

GO TO verb, 8-82
GROUP option, LIST verb, 8-116

H

H and HH edit characters, 8-38, 8-67
HEAD option
DEFINE verb, 8-22
DISPLAY verb, 8-40
FORMAT verb, 8-69
SET verb, 8-217

HELP command, 11-51
home base, 3-2, 8-223
HOMEGROUP option, LIST verb, 8-116
$HOME variable, 3-2
HP3000 16 compiler option, 9-17

I

!IF compiler command, 9-2
IF verb, 8-83
!INCLUDE compiler command, 9-2
INFO= option in Transact/iX, 9-17
INFO= option, RUN command
compiler, 9-10
processor, 9-14

information messages,Transact processor, 7-9
Inform/V option, CALL verb, 8-5
INITIALIZE argument, SET verb, 8-207
INITIALIZE command, under MPE/iX, B-5
INITIALIZE processor command, 5-6
INIT option
DEFINE verb, 8-24
GET verb, 8-78
LIST verb, 8-116
PUT verb, 8-182
SET verb, 8-210
UPDATE verb, 8-235

INPUTLNG parameter, PROC verb, 8-161
INPUT parameter, PROC verb, 8-160
input register, 4-6
INPUT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

INPUT verb, 4-7, 8-90
integer number, 3-4
interpreting Transact programs, 9-13
INTRINSIC modi�er, DEFINE verb, 8-19
intrinsics, calling, 8-158
invoking intrinsics or SL routines, 8-158
invoking other programs, 8-2
IPC (message) �les, 6-21
item attribute resolution, B-4

Index-5

ITEMLNG parameter, PROC verb, 8-161
ITEM modi�er
DATA verb, 8-14
DEFINE verb, 8-19, 8-24, 8-25

ITEM parameter, PROC verb, 8-161
ITEM verb, 8-92

J

JOIN option
DISPLAY verb, 8-40
FORMAT verb, 8-69

K

KEYLNG parameter, PROC verb, 8-161
KEY modi�er
DATA verb, 8-15
GET verb, 8-72
LIST verb, 8-117
PROMPT verb, 8-173
SET verb, 8-213

KEY parameter, PROC verb, 8-161
key register, 4-4
key value, 4-4
KSAM �les, 6-15
CLOSE verb, 8-10
DELETE verb, 8-27
FIND verb, 8-51
LIST verb, 8-115
OUTPUT verb, 8-144
SYSTEM verb, 8-227
UPDATE verb, 8-230

KSAM option, SYSTEM verb, 8-227

L

LABEL BREAK SET command, 11-53
LABEL JUMP command, 11-55
labels, 8-157
command, 5-4
statement, 2-4
subcommand, 5-4

LANGUAGE modi�er, SET verb, 8-213
language option, PROC verb, 8-163
LEADER option
DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

LEFT option
DISPLAY verb, 8-40
FORMAT verb, 8-69
SET verb, 8-217

LENGTH function, LET verb, 8-97
LET verb, exponentiation, 8-94
LEVEL modi�er, END verb, 8-44, 8-113
LEVEL verb, 8-113

limitations, 6-13
LINE destination variable, LET verb, 8-93
LINE option
DISPLAY verb, 8-40
FORMAT verb, 8-69

LINE variable, 3-2
LINK command, 9-28
LINKEDIT command, 9-29
!LIST compiler command, 9-2
LIST compiler option, 9-8
list �le, 9-8
listing breakpoints, 11-20
listing data breakpoints, 11-27
LIST option
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-146
PATH verb, 8-152
PUT verb, 8-178
REPLACE verb, 8-192
SET verb, 8-210
UPDATE verb, 8-231

list register, 2-3, 4-2
managing, 4-3

list statement, 2-3
LIST verb, 4-7, 8-115
LN function, LET verb, 8-98
LNG option
DISPLAY verb, 8-40
FORMAT verb, 8-70

local form storage, 5-11, 5-13
LOC command, 11-56
locking, 6-9
across a transaction, 6-8
LOCK option, 6-7
optimized, 6-5
options available, 6-3

locking strategy with LOGTRAN, 6-10
LOCK option
DELETE verb, 8-30
FIND verb, 8-55
GET verb, 8-76
LOGTRAN verb, 8-124
OUTPUT verb, 8-148
PUT verb, 8-181
REPLACE verb, 8-194
UPDATE verb, 8-233
with database access verbs, 6-7
with �le access verbs, 6-7
with LOGTRAN statement, 6-8

LOG command, 11-57
LOG function, LET verb, 8-99
logical connector, 5-8
logical value, 3-4

Index-6

LOGTRAN verb, 8-122
locking strategy, 6-10

look-ahead loading of forms, 5-12
LOWER function, MOVE verb, 8-134

M

M and MM edit characters, 8-38, 8-67, 8-68,
8-69

MATCH modi�er
DATA verb, 5-8, 8-15
LIST verb, 8-118
PROMPT verb, 5-8, 8-173
SET verb, 8-213

MATCH option, RESET verb, 8-201
MATCH prompt, 5-8, 5-15
match register, 4-5
match speci�cation characters, 5-15
message �les, 6-21
migration
checklist, B-11
examples, B-9
Transact/V data �les to native mode

Transact/iX, B-8
Transact/V programs to native mode

Transact/iX, B-1
Transact/V source programs to native mode

Transact/iX, B-7
M, MM, and nM edit characters, 8-39
mode
database access, 6-2
execution, 9-13

modi�ers, 2-4
MODIFY INPUT command, 11-59
MODIFY ITEM command, 11-60
MODIFY KEY command, 11-61
MODIFY MATCH command, 11-62
MODIFY STATUS command, 11-64
MODIFY UPDATE command, 11-65
MOVE verb, 8-128
string functions, 8-131

MPE �les, 6-15
automatic purging, 8-226
CLOSE verb, 8-10
LIST verb, 8-115

MPE/iX operating system, 9-16
MR (multiple RIN), 6-4
multiple-segment programs, C-14
data stack components, C-5

multiple systems in one �le, B-6

N

naming conventions
data items, 3-2
subcommand labels, 5-4
user-entered passwords, 5-5

native language support, E-1
called programs, E-2
date and time, E-3
IF and MATCH changes, E-3
intrinsic calls, E-3
numeric input, E-2
numeric output, E-2
RESET(LANGUAGE)statement, E-1
SET(LANGUAGE) statement, 8-213
upshifting and character types, E-3

NEED option
DISPLAY verb, 8-40
FORMAT verb, 8-70

negative values in edit string, 8-37, 8-67
nesting level, 9-31
examples, 9-32

nM and nm edit characters, 8-39, 8-69
NMDEBUG command, 11-67
NOBANNER option, SET verb, 8-217
NOCOUNT option
DELETE verb, 8-30
OUTPUT verb, 8-148
REPLACE verb, 8-195

NOCRLF option
DISPLAY verb, 8-41
FORMAT verb, 8-70

NOECHO option
DATA verb, 8-14
INPUT verb, 8-90
PROMPT verb, 8-172

NOFIND option, GET verb, 8-76
NOHEAD option
DISPLAY verb, 8-41
FORMAT verb, 8-70
OUTPUT verb, 8-148
RESET verb, 8-201
SET verb, 8-217

!NOLIST compiler command, 9-2
NOLOAD option, PROC verb, 8-162
NOLOCK option
RESET verb, 8-201
SET verb, 8-217

NOLOOKAHEAD option
description, 5-12
RESET verb, 8-201
SET verb, 8-218

NOMATCH option
DELETE verb, 8-30
FIND verb, 8-55
GET verb, 8-76
OUTPUT verb, 8-148
REPLACE verb, 8-195

NOMSG option
CLOSE verb, 8-11
DELETE verb, 8-30

Index-7

FIND verb, 8-55
GET verb, 8-76
LOGTRAN verb, 8-124
OUTPUT verb, 8-148
PATH verb, 8-152
PUT verb, 8-181
REPLACE verb, 8-195
UPDATE verb, 8-233

NOSIGN option
DISPLAY verb, 8-41
FORMAT verb, 8-70

!NOSYSDIC System Dictionary command, 9-3
NOTEST option, SYSTEM verb, 8-228
NOTRAP option, PROC verb, 8-162
NULL option, DATA verb, 8-14
null parameters in Transact/iX, 8-164
null subcommand, 5-4
numeric ASCII string, 3-4
numeric parameters, 10-4
NUMERIC test value, 8-85, 8-188, 8-239
nW and nw edit characters, 8-39, 8-69

O

OBJT compiler option, 9-9
OFFSET variable, LET verb, 8-93
opening a database, 6-1
OPEN modi�er, FILE verb, 8-48
operation break, Ctrl Y, 5-14
operations, arithmetic, 8-103
OPT@ compiler option, 9-9, C-4
OPTE compiler option, 9-9, C-4
OPTH compiler option, 9-9, C-4
OPTI compiler option, 9-9, C-4
OPTIMIZE compiler option, 9-18
optimized locking, 6-5
optimizing applications, C-1
optimizing data stacks, C-1
optimizing processor time, C-33
optimizing programs, C-33
option-list, 2-5
OPTION modi�er
RESET verb, 8-200
SET verb, 8-215

OPTION option
SYSTEM verb, 8-228

option variable intrinsics, 8-158
option variable procedures, Transact/iX, 8-164
optlock parameter
description, 6-3
SYSTEM verb, 8-224

OPT option, DEFINE verb, 8-24
OPTP compiler option, 9-10
OPTS compiler option, 9-10, C-4
order of evaluation
in conditionals, 8-86, 8-188, 8-240

OUTPUT verb, 8-144, A-14
executing for a KSAM �le, A-15
executing for an MPE �le, A-16
executing for a TurboIMAGE data set, A-14

overlays, 9-5

P

packed decimal, 3-4
packed decimal arithmetic, 8-110
PAGE BACK command, 11-68
!PAGE compiler command, 9-2
$PAGE edit characters, 8-36
PAGE FORWARD command, 11-69
PAGE JUMP command, 11-70
page number variable, 3-2
PAGE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

$PAGE variable, 3-2, 8-35
PAGE variable, 3-2
LET verb, 8-93

PALIGN option, SET verb, 8-218
parent data items, 3-10
parenthesis edit character, 8-37, 8-67
PARM= RUN command option, 9-10
Pascal
calling Transact/iX subprograms, D-1
code, D-4
commands, D-5

passing control
to intrinsics or SL routines, 8-158
to other programs, 8-2

PASSWORD option, LIST verb, 8-117
passwords
commands and subcommands, 5-5

PATH modi�er
DATA verb, 8-16
PROMPT verb, 8-174

PATH option, LIST verb, 8-118
PATH verb, 8-152, A-17
executing for a KSAM �le, A-17
executing for a TurboIMAGE data set, A-17

p-code, 9-7
as input for Transact/iX, 9-16

PDEPTH option, SET verb, 8-218
PERFORM option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-148
REPLACE verb, 8-195

PERFORM verb, 8-157
period edit character, 8-37, 8-66
PLINE variable, 3-2
LET verb, 8-93

POSITION function, LET verb, 8-100

Index-8

POSITION parameter, PROC verb, 8-161
precedence, rules of, 8-94
PRIMARY modi�er
DELETE verb, 8-27
FIND verb, 8-51
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

PRINT command, 11-71
PRINT command quali�er, 5-6
PRINT option
REPEAT verb, 8-187
RESET verb, 8-201
SET verb, 8-218

PRINT variable
IF verb, 8-84
WHILE verb, 8-238

PROCALIGNED 16/32/64 compiler options,
9-17

processing command sequences, 5-4
processor
bypassing prompt, 9-14
input and output destinations, 9-14
redirecting VPLUS form output, 9-15
test mode output, 9-15
TRANDUMP, 9-15
TRANIN, 9-14
TRANLIST, 9-15
TRANOUT, 9-15
TRANSORT, 9-14, 9-21
TRANVPLS, 9-15

processor command quali�ers
FIELD, 5-6
PRINT, 5-6
REPEAT, 5-6
SORT, 5-7
TPRINT, 5-7

processor commands, 5-6
COMMAND, 5-6
EXIT, 5-6
INITIALIZE, 5-6
RESUME, 5-6
TEST, 5-6

processor time optimization, C-33
PROCINTRINSIC compiler option, 9-18
PROCTIME option, LIST verb, 8-117
PROC verb, 8-158
program
compilation, 9-7
optimization, C-33
overlays, 9-5
segmentation, 9-5

prompting for data, 8-12
PROMPT option, SET verb, 8-218
PROMPT verb, 4-7, 8-171

PROPER function, MOVE verb, 8-135
PUT(FORM) verb, executing on a VPLUS form,

A-19
PUT verb, 8-177, A-18
executing for a KSAM or MPE �le, A-18
executing for a TurboIMAGE data set, A-18

PWIDTH option, SET verb, 8-218

R

RCHAIN modi�er
DELETE verb, 8-28
FIND verb, 8-51
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

READ modi�er, FILE verb, 8-48
real arithmetic, 64-bit, 8-109
real numbers, 3-4
RECNO option
DELETE verb, 8-31
FIND verb, 8-55
GET verb, 8-76
OUTPUT verb, 8-148
PUT verb, 8-181
REPLACE verb, 8-195

registers, 4-1
argument register, 4-3
data register, 4-2
example, 4-9
input register, 4-6
in segmented programs, 9-6
key register, 4-3
list register, 4-2
match register, 4-5
setting values to, 8-12
status register, 4-7
update register, 4-6
verb modi�er summary, 4-7
write-only, 4-3

relational operators, 5-8
REPEAT command, 11-73
REPEAT command quali�er, 5-6
REPEAT option, SET verb, 8-218
REPEAT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

REPEAT verb, 8-186
REPLACE verb, 8-190, A-21
executing for a KSAM �le, A-22
executing for an MPE �le, A-23
executing for a TurboIMAGE data set, A-21

Report/V option, CALL verb, 8-6
reserved �le names, 9-6
reserved system variables, 3-2

Index-9

reserved words, 2-8
RESET(LANGUAGE) statement, E-1
RESET verb, 8-199
responses, user
!, 8-83, 8-186, 8-237
], 8-218
]], 8-218

RESTART, 8-44
RESUME processor command, 5-6
RETURN verb, 8-157, 8-205
RIGHT option
DATA verb, 8-14
DISPLAY verb, 8-41
FORMAT verb, 8-70
PROMPT verb, 8-172
SET verb, 8-219

rounding, 8-107
ROW option
DISPLAY verb, 8-41
FORMAT verb, 8-70

RSERIAL modi�er
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

RSOM �le, 9-16
rules of precedence, 8-94
RUN command, 9-7, 9-10, 9-13
running Transact, 9-1, 9-13
RUN progname command, 9-30
run-time binding of data items, B-4
run-time environment, TRANDEBUG, 11-12
run-time features
not supported by Transact/iX, B-4
supported by Transact/iX, B-4

run-time stack, C-2
RUN TRAN.PUB.SYS command, 9-23

S

S and SS edit characters, 8-38, 8-68
SCAN option
DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

!SCOPE System Dictionary command, 9-3
!SEGMENT compiler command, 9-2
segmented programs, 9-5
compiler command, 9-2

selection criteria
MATCH prompt, 5-15
match register, 4-5
run time, 5-7

semicolon, with DOEND, 2-5
SEQUENCE modi�er, END verb, 8-44

SERIAL modi�er
DELETE verb, 8-28
FIND verb, 8-52
GET verb, 8-73
OUTPUT verb, 8-145
REPLACE verb, 8-192

SESSION option, LIST verb, 8-117
!SET compiler command, 9-2
SET(FORM) verb, executing for a VPLUS form,

A-24
SET(LANGUAGE) statement, E-1
SETLNG parameter, PROC verb, 8-161
SET modi�er
DATA verb, 8-16
PROMPT verb, 8-174

SET parameter, PROC verb, 8-161
setting a breakpoint, 11-21
at a data item, 11-30
at a data item value, 11-30
at a label, 11-53
at a register, 11-28

setting values to registers, 8-12
SET(UPDATE), parent and child values, B-6
SET verb, 8-207, A-24
SHOW option, DATA verb, 8-16
SIGNON option, SYSTEM verb, 8-228
SINGLE option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-149
REPLACE verb, 8-195

SIZE option, CALL verb, 8-4
SIZE parameter, PROC verb, 8-161
SL routines, calling, 8-158
SOPT option
DELETE verb, 8-31
FIND verb, 8-55
OUTPUT verb, 8-149
REPLACE verb, 8-195

SORT command, 11-74
SORT command quali�er, 5-7
SORT modi�er, FILE verb, 8-48
SORT option
FIND verb, 8-56
OUTPUT verb, 8-149
RESET verb, 8-201
SET verb, 8-219
SYSTEM verb, 8-228

SORT variable
IF verb, 8-84
REPEAT verb, 8-187
WHILE verb, 8-238

source code formatting, 2-6
source program migration, B-7
SPACE function, MOVE verb, 8-137

Index-10

SPACE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

special characters, 5-14
special characters as selection criteria, 5-15
specifying language for the compiler and

processor, E-2
SQRT function, LET verb, 8-101
STACK modi�er
RESET verb, 8-202
SET verb, 8-221

STAT compiler option, 9-10, C-6
statement labels, 2-4
statements, 2-4
compound, 2-5
formatting, 2-6

static calls, 8-2
compiling programs for, 9-19

STATUS option
CALL verb, 8-5
CLOSE verb, 8-11
database and �le operation verbs, 7-6
data entry verbs, 7-5
DATA verb, 8-14
DELETE verb, 8-32
FIND verb, 8-56
GET verb, 8-76, 8-78
INPUT verb, 8-90
LOGTRAN verb, 8-125
OUTPUT verb, 8-149
PATH verb, 8-155
PROMPT verb, 8-172
PUT verb, 8-180
REPLACE verb, 8-195
UPDATE verb, 8-233

STATUS parameter, PROC verb, 8-161
status register, 4-7
testing with IF, 7-3

STATUS variable, 3-2
IF verb, 8-84
LET verb, 8-94
REPEAT verb, 8-187
WHILE verb, 8-238

$STDINX, 9-11
$STDLIST, 9-12
STEP command, 11-77
storage registers, 4-1
streamed batch job, 9-11
STRING function, MOVE verb, 8-138
string functions, MOVE verb, 8-131
$subcommand, 5-4
subcommand labels, 5-4
SUBPROGRAM compiler option, 9-18
SUPPRESS option
RESET verb, 8-201

SET verb, 8-219
SWAP option, CALL verb, 8-5, C-28
synonym, 8-24, 8-27, 8-51, 8-73, 8-145, 8-192
syntax options, de�ned, 8-1
!SYSDIC System Dictionary command, 9-3
System Dictionary, 3-9
System Dictionary commands, 9-3
!DOMAIN, 9-3
!NOSYSDIC, 9-3
!SCOPE, 9-3
!SYSDIC, 9-3
!VERSION, 9-3
!VERSIONSTATUS, 9-3

system error messages, 7-10
system errors, causes of, 7-10
SYSTEM NAME prompt, 9-13
SYSTEM statement, 2-3
access mode, 6-2

system variables, 3-2
SYSTEM verb, 2-3, 8-223
WORKFILE option, 8-229

T

TABLE modi�er, DISPLAY verb, 8-34
TABLE option, SET verb, 8-219
target, 2-5
TDBIGINIT �le, TRANDEBUG, 11-11
T edit character, 8-38, 8-68
TERMID option, LIST verb, 8-117
terminating TRANDEBUG, 11-15
TEST command processor, 5-6
TEST command test facility, 10-1
test modes, 10-4
output, 9-15
under MPE/iX, B-4

$TIME edit characters, 8-38
TIME option, LIST verb, 8-117
time out for terminal input, 8-48
TIMER option, LIST verb, 8-117
$TIME variable, 3-2, 8-35
time variable, 3-2
TITLE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

TLINE variable, 3-2
LET verb, 8-94

$TODAY edit characters, 8-39
$TODAY variable, 3-2, 8-35
TPRINT command, 11-79
TPRINT command quali�er, 5-7
TPRINT option
RESET verb, 8-201
SET verb, 8-219

TRACE command, 11-81
TRAILER option

Index-11

DATA verb, 8-15
LIST verb, 8-118
PROMPT verb, 8-174

TRANCODE, 9-12
TRANDBMODE, 9-21
TRANDEBUG, 9-21, 11-1
accessing MPE/iX command interpreter,

11-14
alternative debug entry points, 11-12
arithmetic traps, 11-13
compatibility, 11-3
compiling with TRANDEBUG, 11-4
continuing program execution, 11-8
Ctrl-Y, 11-8
debugging VPLUS applications, 11-11
deleting a breakpoint, 11-18
disabling, 11-12
displaying contents of input register, 11-40
displaying data items, 11-9
displaying information about a database,

11-36
displaying information about an item, 11-35
displaying information about speci�c

MPE/KSAM �les, 11-39
displaying source code, 11-5
displaying the CALL stack, 11-37
displaying values of items in data register,

11-41
ending a session, 11-5
features and bene�ts, 11-1
listing breakpoints, 11-20
listing data breakpoints, 11-27
logging commands, 11-33
modifying data items, 11-9
redirecting VPLUS input and output, 11-11
repeating last command, 11-16
run-time environment, 11-12
setting a breakpoint, 11-21, 11-30
setting a breakpoint at a label, 11-53
setting a breakpoint at a register, 11-28
source code window, 11-5
starting a session, 11-5
startup �le, 11-11
stepping through program, 11-9
terminating execution, 11-15
tutorial, 11-4

TRANDEBUG commands
: , 11-14
ABORT, 11-15
AUTORPT, 11-16
BREAK DELETE, 11-18
BREAK LIST, 11-20
BREAK SET, 11-21
CONTINUE, 11-24
DATA BREAK DELETE, 11-25

DATA BREAK LIST, 11-27
DATA BREAK REGISTER, 11-28
DATA BREAK SET, 11-30
DATA LOG, 11-33
DEFN, 11-35
DISPLAY BASE, 11-36
DISPLAY CALLS, 11-37
DISPLAY COMAREA, 11-38
DISPLAY FILE, 11-39
DISPLAY INPUT, 11-40
DISPLAY ITEM, 11-41
DISPLAY KEY, 11-43
DISPLAY MATCH, 11-44
DISPLAY PERFORM, 11-45
DISPLAY STATUS, 11-46
DISPLAY STATUSDB, 11-47
DISPLAY STATUSIN, 11-48
DISPLAY UPDATE, 11-49
EDIT, 11-50
HELP, 11-51
LABEL BREAK SET, 11-53
LABEL JUMP, 11-55
LOC, 11-56
LOG, 11-57
MODIFY INPUT, 11-59
MODIFY ITEM, 11-60
MODIFY KEY, 11-61
MODIFY MATCH, 11-62
MODIFY STATUS, 11-64
MODIFY UPDATE, 11-65
NMDEBUG, 11-67
PAGE BACK, 11-68
PAGE FORWARD, 11-69
PAGE JUMP, 11-70
PRINT, 11-71
REPEAT, 11-73
SORT, 11-74
STEP, 11-77
TPRINT, 11-79
TRACE, 11-81
USE, 11-83
VERSION, 11-85
WINDOW LENGTH, 11-86
WINDOW OFF, 11-87
WINDOW ON, 11-88

TRANDEBUG compiler option, 9-18
TRANDUMP, 9-15
TRANIN �le designator, 9-11, 9-14
TRANLIST �le designator, 9-12, 9-15
TRANOUT �le designator, 9-2, 9-12, 9-15
Transact
error handling, 7-1
interpreting programs, 9-13
test facility, 10-1

transaction logging, 8-122

Index-12

Transaction Manager (XM), 6-9
Transact/iX
alignment, 9-17
binding data item attributes, B-4
calling subprograms from COBOL, D-1
calling subprograms from Pascal, D-1
compiler options, 9-17
compiling programs, 9-16, 9-22
double bu�ering parameters, 8-165
executing programs, 9-16, 9-22
features, B-2
INITIALIZE command, B-5
migrating to, B-1
null parameters, 8-164
option variable procedures, 8-164
test modes not supported, B-4
TRANCOMP options used, 9-19
unsupported run-time features, B-4

Transact processor
error messages, 7-9
information messages, 7-9

Transact/V
features, B-4
migrating from, B-1

TRANSORT, 9-14, 9-21
TRANTEXT, 9-11
TRANVPLS, 9-15
TRANXL command, 9-25
TRANXLGO command, 9-27
TRANXLLK command, 9-26
TRUNCATE option
DISPLAY verb, 8-41
FORMAT verb, 8-70

truncation, 8-107
TurboIMAGE
dynamic roll-back, 6-9
Transaction Manager, 6-9

TYPE parameter, PROC verb, 8-162

U

UNLOAD option, PROC verb, 8-162
UPDATE(FORM) verb, executing for a VPLUS

form, A-28
UPDATE modi�er
DATA verb, 8-17
FILE verb, 8-48
LIST verb, 8-118
PROMPT verb, 8-175
SET verb, 8-222

UPDATE option
REPLACE verb, 8-196
RESET verb, 8-202

update register, 4-6
parent and child values, B-6

UPDATE verb, 8-230, A-26

executing for a KSAM �le, A-26
executing for an MPE �le, A-27
executing for a TurboIMAGE data set, A-26

uppercase alphanumeric string, 3-4
UPPER function, MOVE verb, 8-140
upshift, 4-6
USE command, 11-83
USER option, LIST verb, 8-117
user responses
!, 5-14, 8-83, 8-186, 8-237
], 5-14, 8-218
]], 5-14, 8-218

V

VALUE function, LET verb, 8-102
VCOM parameter, PROC verb, 8-162
verbs, 2-4
CALL, 8-2
CLOSE, 8-10
DATA, 4-7, 8-12
DEFINE, 8-19
DELETE, 8-27
DISPLAY, 8-34
END, 8-44
EXIT, 8-46
FILE, 8-47
FIND, 8-51
FORMAT, 8-64
GET, 8-72
GO TO, 8-82
IF, 8-83
INPUT, 4-7, 8-90
ITEM, 8-92
LET, 8-93
LEVEL, 8-113
LIST, 4-7, 8-115
LOGTRAN, 8-122
MOVE, 8-128
OUTPUT, 8-144
PATH, 8-152
PERFORM, 8-157
PROC, 8-158
PROMPT, 4-7, 8-171
PUT, 8-177
REPEAT, 8-186
REPLACE, 8-190
RESET, 8-199
RETURN, 8-205
SET, 8-207
SYSTEM, 2-3, 8-223
UPDATE, 8-230
WHILE, 8-237

VERSION command, 11-85
!VERSIONSTATUS System Dictionary

command, 9-3

Index-13

!VERSION System Dictionary command, 9-3
VPLS option
RESET verb, 8-202
SET verb, 8-219
SYSTEM verb, 8-228

VPLUS
closing forms �le, 8-10
forms, 5-16
GET(FORM), 5-16, 8-72
local form storage, 5-11
PUT(FORM), 5-16, 8-177
SET(FORM), 8-208
special keys, 5-16
SYSTEM verb, 8-228
TRANVPLS �le, 9-15
UPDATE(FORM), 8-231
VCLOSETERM, 8-220
VOPENTERM, 8-220

VPLUS interface, 5-11

W

WAIT option
PUT verb, 8-182
UPDATE verb, 8-235

warning messages, 7-8
WHILE verb, 8-237
WIDTH option, SET verb, 8-220
WINDOW LENGTH command, 11-86
WINDOW OFF command, 11-87
WINDOW ON command, 11-88

WINDOW option
GET verb, 8-78
PUT verb, 8-183
SET verb, 8-211
UPDATE verb, 8-235

WORKFILE option
FIND verb, 8-57
SYSTEM verb, 8-229

WORK option, SYSTEM verb, 8-229
WRITE modi�er, FILE verb, 8-49
write-only registers, 4-3

X

XERR compiler option, 9-10
XREF compiler option, 9-10

Y

YY and YYYY edit characters, 8-39, 8-69

Z

ZD edit characters, 8-39, 8-68
Z edit character, 8-36, 8-66
ZERO[E]S option
DISPLAY verb, 8-41
FORMAT verb, 8-70
SET verb, 8-220

ZH edit characters, 8-38, 8-67
ZM edit characters, 8-38, 8-39, 8-67, 8-68
zoned decimal, 3-4

ZS edit characters, 8-38, 8-68

Index-14

	Top of Document
	Introducing MPE/iX
	Transact Enhancements
	Where to Find More Information

	Contents
	Introduction to Transact
	Transact Features and Benefits

	Program Structure
	SYSTEM Statement
	DEFINE(ITEM) Statement
	LIST Statement
	END and EXIT Statements
	Statements
	Comments
	Delimiters
	Reserved Words

	Data Items
	Data Item Definitions
	Data Item Names
	Data Item Types
	Data Item Sizes
	Data Type Compatibility
	Parent Items and Child Items
	Compound Items
	Array Subscripting
	Defining and Handling Arrays
	Alias Items
	Using Dictionary Definitions with Data Item Relations

	Transact Registers
	List and Data Registers
	Key and Argument Registers
	Match Register
	Update Register
	Status Register
	How Registers Work

	User Interface
	Command Sequences
	DATA, INPUT, and PROMPT
	VPLUS Interface
	Special Characters and Keys That Control Execution

	Accessing Databases and Files
	Using Databases
	Database Close
	Database and File Locking
	Dynamic Roll-Back
	Using KSAM and MPE Files
	General Format for Key-Driven Access
	Traversing a KSAM File by Primary Key
	Traversal by Alternate Key
	General Format for Generic Keys
	Search with Generic Key
	Simulating an Approximate Key Search
	Chronological Traversal of a KSAM File
	IPC Files

	Error Handling
	Automatic Error Handling
	Using the STATUS Option
	Compiler Error Messages
	Run-time Error Messages
	Using EXPLAIN

	Transact Verbs
	CALL
	CLOSE
	DATA
	DEFINE
	DELETE
	DISPLAY
	END
	EXIT
	FILE
	FIND
	FORMAT
	GET
	GO TO
	IF
	INPUT
	ITEM
	LET
	LEVEL
	LIST
	LOGTRAN
	MOVE
	OUTPUT
	PATH
	PERFORM
	PROC
	PROMPT
	PUT
	REPEAT
	REPLACE
	RESET
	RETURN
	SET
	SYSTEM
	UPDATE
	WHILE

	Running Transact
	Compiler Commands
	Program Segmentation
	The Transact/V Compiler
	Executing Transact/V Programs
	The Transact/iX Compiler
	Controlling Transact/iX Program Execution
	Compiling and Executing Transact/iX Programs
	RUN TRAN.PUB.SYS
	TRANXL
	TRANXLLK
	TRANXLGO
	LINK
	LINKEDIT
	RUN progname

	Transact Compiler Listings

	Transact/V Test Facility
	Statement Parts
	Examples

	Transact/iX Symbolic Debugger: TRANDEBUG
	Using TRANDEBUG
	TRANDEBUG Startup Initialization File
	Redirecting VPLUS Input and Output
	Disabling the Debugger
	Alternative Debug Entry Points
	TRANDEBUG Run-Time Environment
	Arithmetic Traps

	TRANDEBUG Commands
	:
	ABORT
	AUTORPT
	BREAK DELETE
	BREAK LIST
	BREAK SET
	CONTINUE
	DATA BREAK DELETE
	DATA BREAK LIST
	DATA BREAK REGISTER
	DATA BREAK SET
	DATA LOG
	DEFN
	DISPLAY BASE
	DISPLAY CALLS
	DISPLAY COMAREA
	DISPLAY FILE
	DISPLAY INPUT
	DISPLAY ITEM
	DISPLAY KEY
	DISPLAY MATCH
	DISPLAY PERFORMS
	DISPLAY STATUS
	DISPLAY STATUSDB
	DISPLAY STATUSIN
	DISPLAY UPDATE
	EDIT
	HELP
	LABEL BREAK SET
	LABEL JUMP
	LOC
	LOG
	MODIFY INPUT
	MODIFY ITEM
	MODIFY KEY
	MODIFY MATCH
	MODIFY STATUS
	MODIFY UPDATE
	NMDEBUG
	PAGE BACK
	PAGE FORWARD
	PAGE JUMP
	PRINT
	REPEAT
	SORT
	STEP
	TPRINT
	TRACE
	USE
	VERSION
	WINDOW LENGTH
	WINDOW OFF
	WINDOW ON

	Flowcharts of File and Database Operations
	DELETE Charts
	FIND Charts
	GET Charts
	OUTPUT Charts
	PATH Charts
	PUT Charts
	REPLACE Charts
	SET Charts
	UPDATE Charts

	Native Mode Transact/iX Migration Guide
	Exclusive Transact/iX Features
	Exclusive Transact/V Features
	Features that Differ Between Transact/V and Transact/iX
	Source Program Migration
	Data File Migration
	Migration Examples
	Migration Checklist

	Optimizing Transact Applications
	Run-Time Stack
	Processing Time Optimization
	Architected Call Interface (ACI)
	Native Language Support

	Index

