
HP RPG/iX Reference Manual

900 Series HP 3000 Computers

ABCDE

HP Part No. 30318-90003

Printed in U.S.A. 1993

E1193

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett-Packard Company.

Copyright c
 1993 by HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. Update packages, which are issued
between editions, contain additional and replacement pages to be merged into the manual by
the customer. The dates on the title page change only when a new edition or a new update
is published. No information is incorporated into a reprinting unless it appears as a prior
update; the edition does not change when an update is incorporated.

The software code printed alongside the date indicates the version level of the software
product at the time the manual or update was issued. Many product updates and �xes
do not require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual updates.

First Edition December 1988 30318A.00.00
Second Edition October 1989 30318A.00.04
Third Edition November 1993 30318A.00.10

iii

Preface

The HP RPG/iX Reference Manual explains all of the language features of RPG. It is written
in a reference style, assuming the reader is familiar with RPG.

This manual is directed to experienced RPG programmers, who may or may not be familiar
with Hewlett-Packard computers. The manual discusses the language features available with
the MPE iX operating system.

This manual is organized as follows:

Chapter 1 Explains the general steps involved in writing and testing an RPG
program.

Chapter 2 Describes the �elds that are used in all RPG Speci�cations.

Chapter 3 Describes the �elds in the Header Speci�cation.

Chapter 4 Describes the �elds in the File Description Speci�cation.

Chapter 5 Describes the �elds in the File Extension Speci�cation.

Chapter 6 Describes the �elds in the Line Counter Speci�cation.

Chapter 7 Describes the �elds in the Input Speci�cation.

Chapter 8 Describes the �elds in the Calculation Speci�cation.

Chapter 9 Describes the �elds in the Output Speci�cation.

Chapter 10 Explains how to use VPLUS with RPG. VPLUS is a forms
management product that lets you create screens and process them in
an RPG program.

Chapter 11 Explains how to use the RPG Screen Interface (RSI) in an RPG
program. RSI is a forms management facility unique to RPG. You can
use it to create and process screen forms in an RPG program.

Chapter 12 Discusses the RPG compiler and compiler subsystem commands.

Appendix A Lists the RPG compiler messages.

Appendix B Lists the run-time error messages.

Appendix C Lists the ASCII and EBCDIC character sets.

iv

Related Documentation

Refer to the following documents for further information on features available in the RPG
programming language:

HP RPG/iX Programmer's Guide (30318-90001) - This manual describes how to use
the RPG language elements to contruct an RPG program. This manual contains many
examples and programs.

HP RPG/iX Utilities Reference Manual (30318-90006) - This manual explains how to use
these RPG utilities: XSORT, RISE, SIGEDITOR, and RPGINIT.

HP RPG Pocket Guide (30318-90002) - This guide is a template showing the meaning and
placement of each column and line for all RPG/iX speci�cations.

Data Entry and Forms Management System VPLUS/3000 (32209-90001) - This manual
includes a complete discussion about the screen management software product, VPLUS.
You can use this product within RPG programs when using a terminal.

EDIT/3000 Reference Manual (03000-90012) - This manual explains how to use the text
processor software product, EDITOR.

KSAM/3000 Reference Manual (30000-90079) - This manual explains how to use KSAM
disc �les and how to access them.

TurboIMAGE/iX Database Management System (30391-90001) - This manual discusses the
TurboIMAGE database software product.

MPE iX Intrinsics Reference Manual (32650-90028) - This manual discusses the operating
system routines that can be used by external subroutines in an RPG program.

Native Language Programmer's Guide (32650-90022) - This manual discusses how to create
and use Native Language Support message �les.

Message Catalogs Programmer's Guide (32650-90021) - This manual discusses how to create
and use non-Native Language Support message �les.

FCOPY Reference Manual (03000-90064) - This manual explains how to use the FCOPY
�le utility.

SORT-MERGE/iX Programmer's Guide (32650-90080) - This manual explains how to use
the SORT/MERGE �le utility.

Accessing Files Programmer's Guide (32650-90017) - This manual discusses the ways
MPE/iX �les can be processed.

MPE/iX General User's Reference Manual (32650-90002) - This manual discusses �le,
group, and account structures.

MPE/iX Commands Reference Manual (32650-90003) - This manual describes the MPE/iX
commands, such as FILE.

v

Example ConventionsExample Conventions

Throughout this manual, examples of RPG program code are shown using �gures similar to
the one below. The �rst two lines are a ruler to help you quickly see the column positions for
the code. The shaded numbers on the left are not sequence numbers. Rather, they are used
as reference numbers for comments in the text. Lines are referenced only to highlight speci�c
concepts. Additionally, some examples show lines containing dots only. Dots indicate that, to
clarify examples, code has been omitted.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C MESSAGE DSPLY

C .

C .

�2� C DSPLY FIELD1

C .

C .

�3� C FIELD2 DSPLY FIELD3

Figure 8-42. Using the DSPLY Operation

vi

Example Conventions

Syntax Conventions

NOTATION DESCRIPTION

UPPERCASE Within syntax statements, characters in uppercase must be entered
in exactly the order shown, though you can enter them in either
uppercase or lowercase. For example:

SHOWJOB

Valid entries are: showjob ShowJob SHOWJOB

Invalid entries are: shojwob Shojob SHOW_JOB

italics Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual value. In
the following example, you must replace �lename with the name of the
�le you want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be entered
exactly as shown.

{ } Within syntax statements, when several elements within braces are
stacked, you must select one. In the following equivalent examples,
you select ON or OFF:

{ON }

SETMSG {OFF}

[] Within syntax statements, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter
and its delimiter are not required:

PURGE �lename[,TEMP]

When several elements within brackets are stacked, you can select any
one of the elements or none. In the following equivalent examples, can
select devicename or deviceclass or neither:

[devicename]

SHOWDEV [deviceclass]

vii

Example Conventions

NOTATION DESCRIPTION

[. . .] Within syntax statements, a horizontal ellipsis enclosed in brackets
indicates that you can repeatedly select elements that appear within
the immediately preceding pair of brackets or braces. In the following
example, you can select itemname and its delimiter zero or more
times, each instance of itemname preceded by a comma:

[,itemname][...]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, the comma does not precede the �rst instance of itemname:

[itemname][,...]

| . . . | Within syntax statements, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element that
appears within the immediately preceding pair of brackets or braces.
However, each element can be selected only one time. In the following
equivalent examples, you must select ,A or ,B or ,A,Bor ,B,A :

{,A}

{,B}|...|

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if you
select only one element, the delimiter is not required. In the following
example, you must select A or B or A,B or B,A (the �rst element is not
preceded by a comma):

{A}

{B}|,...|

...
... Within examples, horizontal or vertical ellipses indicate where portions

of the example are omitted.

t Within syntax statements, the space symbol t shows a required blank.
In the following example, you must separate modi�er and variable
with a blank:

SET [(modi�er)]t(variable);

� � The symbol � � indicates a key on the terminal's keyboard. For
example, �RETURN� indicates the carriage return key.

�CONTROL�char �CONTROL�char indicates a control character. For example, �CONTROL�Y
means you must simultaneously press the control key and Y key on the
terminal's keyboard.

viii

Example Conventions

NOTATION DESCRIPTION

base pre�xes The pre�xes %, #, and $ specify the numerical base of the value that
follows:

%num speci�es an octal number
#num speci�es a decimal number
$num speci�es a hexadecimal number

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within its
bit �eld, the di�erent data �elds are described in the format Bit
(bit:length), where bit is the �rst bit in the �eld and length is the
number of consecutive bits in the �eld. For example, Bits (13:3)
indicates bits 13, 14, and 15:

most significant least significant

+---+

|0 | | | | | | | | | | | | |13|14|15|

+---+

Bit(0:1) Bits(13:3)

ix

Contents

1. Introduction to RPG
The Components of RPG . 1-2
Using RPG . 1-2
Step 1: Analyze the Task . 1-4
Step 2: Plan the Program . 1-6
Step 3: Create the Source Program 1-6
Step 4: Compile the Source Program 1-9
Step 5: Prepare the Object Program for Execution 1-9
Step 6: Execute the Object Program 1-9

2. General Speci�cations
Sequence Number (Columns 1-5) . 2-2
Speci�cation Type (Column 6) . 2-3
Program Name (Columns 75-80) . 2-4

3. Header Speci�cations
The Header Speci�cation Fields . 3-2
Sequence Number (Columns 1-5) 3-2
Speci�cation Type (Column 6) . 3-2
Error Dump File Name (Columns 7-14) 3-2
Debug (Column 15) . 3-2
USWITCH Source (Column 16) 3-3
UDATE Source (Column 17) . 3-8
Line Number Option (Column 20) 3-9
Inverted Print (Column 21) . 3-9
Record Number Adjust (Column 22) 3-10
Program Name Logging (Column 25) 3-11
Alternate Collating Sequence (Column 26) 3-12
BUFCHK Defaults (Column 28) 3-16
Table/Array Look-Up (Column 34) 3-16
EBCDIC Zone/Digit Tests (Column 39) 3-16
Sign Processing (Column 40) . 3-17
Form Positioning (Column 41) . 3-18
Indicator Setting (Column 42) . 3-18
File Translation (Column 43) . 3-19
Non-Numeric Digits (Column 44) 3-22
Dollar Sign Substitute (Column 46) 3-23
Skip-Suppress (Column 47) . 3-23
DSPLY Options (Column 48) . 3-24
Record Length Check (Column 49) 3-24
Page Over
ow Test (Column 50) 3-24
*PLACE Method (Column 51) . 3-25

Contents-1

Cross-Reference Listing (Column 52) 3-25
Carriage Control Type (Column 53) 3-26
Text�le Sequence Check (Column 54) 3-27
Error Log (Column 55) . 3-27
Error Response (Columns 56-71) 3-28
Program Name (Columns 75-80) 3-29

The Header Speci�cation Default Summary 3-30

4. File Description Speci�cations
The File Description Speci�cation Fields 4-2
Sequence Number (Columns 1-5) 4-2
Speci�cation Type (Column 6) . 4-2
File Name (Columns 7-14) . 4-2
File Type (Column 15) . 4-3
File Designation (Column 16) . 4-4
End-of-File (Column 17) . 4-6
Input Sequence (Column 18) . 4-7
Record Format (Column 19) . 4-7
Block Length (Columns 20-23) . 4-8
Logical Record Length (Columns 24-27) 4-8
Processing Mode (Column 28) . 4-9
Record Address or Key Field Length (Columns 29-30) 4-10

Record Address Type (Column 31) 4-11
File Organization/Additional I/O Area (Column 32) 4-12
Over
ow Indicator (Columns 33-34) 4-13
Key Field Starting Location (Columns 35-38) 4-14
Extension Code (Column 39) . 4-15
Device Class Name (Columns 40-46) 4-16
Interface Type (Column 47) . 4-17
Interface Control (Columns 48-52) 4-17
Disk Labels (Column 53) . 4-17
Name of Label Exit (Columns 54-59) 4-18
File Addition (Column 66) . 4-19
Extents (Columns 68-69) . 4-20
File Conditioner (Columns 71-72) 4-20
Program Name (Columns 75-80) 4-21

The File Description Continuation Line 4-22
Sequence Number (Columns 1-5) 4-22
Speci�cation Type (Column 6) . 4-22
Long Name Option Target (Columns 20-51) 4-22
Continuation Code (Column 53) 4-23
General Fields (Columns 54-74) . 4-23
Option Type (Columns 54-59) . 4-26
File-Sharing Fields (Columns 54-74) 4-30
Database Fields (Columns 54-74) 4-32
Database Name (IMAGE) Line 4-33
Item Name (ITEM) Line . 4-37
Password (LEVEL) Line . 4-38
Data Set Name (DSNAME) Line 4-38
Input/Output Status Array (STATUS) Line 4-39
Key File Name (KEYFL) Line 4-40

Contents-2

WORKSTN Interface Fields (Columns 54-74) 4-41
Program Name (Columns 75-80) 4-43

The File Description Speci�cation Default Summary 4-44

5. File Extension Speci�cations
The File Extension Speci�cation Fields 5-2
Sequence Number (Columns 1-5) 5-2
Speci�cation Type (Column 6) . 5-2
Chaining File Record Sequence (Columns 7-8) 5-2
Chaining Code Identi�er (Columns 9-10) 5-3
From File Name (Columns 11-18) 5-4
To File Name (Columns 19-26) . 5-5
Table/Array Name (Columns 27-32) 5-6
Entries Per Record (Columns 33-35) 5-6
Entries Per Table/Array (Columns 36-39) 5-7
Entry Length (Columns 40-42) . 5-8
Data Format (Column 43) . 5-8
Decimal Positions (Column 44) . 5-9
Table/Array Sequence (Column 45) 5-10
Alternating Table/Array Name (Columns 46-51) 5-10
Entry Length (Columns 52-54) . 5-11
Data Format (Column 55) . 5-11
Decimal Positions (Column 56) . 5-12
Table/Array Sequence (Column 57) 5-12
Comments (Columns 58-74) . 5-13
Program Name (Columns 75-80) 5-13

Tables and Arrays . 5-14
Creating Tables and Arrays . 5-14
Creating Compile-Time and Preexecution-Time Tables and Arrays . . . 5-14

De�ning Tables and Arrays . 5-15
De�ning Compile-Time and Preexecution-Time Tables and Arrays . . . 5-15
De�ning Execution-Time Arrays 5-16

Loading Tables and Arrays . 5-17
Loading Compile-Time Tables and Arrays 5-17
Loading Preexecution-Time Tables and Arrays 5-21
Loading Execution-Time Arrays 5-21

Searching Tables . 5-23
Searching Arrays . 5-23
Changing Table and Array Entries During Execution 5-25
Writing Tables and Arrays . 5-25

The File Extension Speci�cation Required Entries 5-26
The File Extension Speci�cation Default Summary 5-28

Contents-3

6. Line Counter Speci�cations
The Line Counter Speci�cation Fields 6-2
Sequence Number (Columns 1-5) 6-2
Speci�cation Type (Column 6) . 6-2
File Name (Columns 7-14) . 6-2
Channel Number Fields (Columns 15-74) 6-2
Line Number (Columns 15-17) 6-2
Channel Number/OL (Columns 18-19) 6-3
Line Number and Channel Number/OL (Columns 20-74) 6-3

Line Number Fields (Columns 15-24) 6-4
Line Number (Columns 15-17) 6-4
OL/FL (Columns 18-19) . 6-4
Line Number and OL/FL (Columns 20-24) 6-4

Program Name (Columns 75-80) 6-5
The Line Counter Speci�cation Default Summary 6-6

7. Input Speci�cations
The Input Speci�cation Fields . 7-2
Sequence Number (columns 1-5) 7-2
Speci�cation Type (Column 6) . 7-2
File and Record Description Fields (columns 7-41) 7-2
File Name (columns 7-14) . 7-3
AND/OR (columns 14-16) . 7-3
Group Sequence (Columns 15-16) 7-5
Number of Records (Column 17) 7-6
Option/LDA (Column 18) . 7-6
Record Indicator/Look-Ahead/Trailer/Data Structure (Columns 19-20) . 7-9
Record Identi�cation Codes (Columns 21-41) 7-19

Field Description Fields (Columns 43-70) 7-21
Data Format (Column 43) . 7-21
From Field Position (Columns 44-47) 7-24
To Field Position (Columns 48-51) 7-24
Decimal Positions (Column 52) 7-24

Field Name (Columns 53-58) . 7-25
Control Level (Columns 59-60) 7-28
Matching/Chaining Fields (Columns 61-62) 7-30
Field Record Relation (Columns 63-64) 7-38
Field Indicators (Columns 65-70) 7-40

Program Name (Columns 75-80) 7-41
The Input Speci�cation Default Summary 7-42

8. Calculation Speci�cations
Introduction . 8-1
The Calculation Speci�cation Fields 8-2
Sequence Number (Columns 1-5) . 8-2
Speci�cation Type (Column 6) . 8-2
Control Level (Columns 7-8) . 8-3
Indicators (Columns 9-17) . 8-6
Factor 1 (Columns 18-27) . 8-9
Operation (Columns 28-32) . 8-12
Arithmetic Operations . 8-12

Contents-4

Move Operations . 8-12
Move Zone Operations . 8-13
Compare and Test Operations . 8-13
Branching Operations . 8-13
Internal Subroutine Operations . 8-14
External Subroutine Operations 8-15
Structured Programming Operations 8-16
Indicator and Bit Setting Operations 8-16
Table and Array Operations . 8-17
File Operations . 8-17
Display Operations . 8-17
Debugging Operation . 8-17
System Operations . 8-17

Operation De�nitions . 8-18
ADD . 8-18
BEGSR . 8-18
BITOF . 8-18
BITON . 8-19
CABxx . 8-20
CASxx . 8-22
CHAIN . 8-24
CLOSE . 8-28
COMP . 8-28
DEBUG . 8-30
DIV . 8-33
DO . 8-34
DOUxx . 8-35
DOWxx . 8-37
DSPLM . 8-39
DSPLY . 8-42
ELSE . 8-44
END . 8-45
ENDSR . 8-46
EXCPT . 8-46
EXIT . 8-49
EXSR . 8-50
FNDJW . 8-51
FNUM . 8-51
FORCE . 8-52
GOTO . 8-52
IFxx . 8-53
INTR . 8-55
IPARM . 8-55
LOCK, UNLCK . 8-59
LOKUP . 8-63
MHHZO . 8-67
MHLZO . 8-67
MLHZO . 8-68
MLLZO . 8-68
MOVE . 8-70
MOVEA . 8-72

Contents-5

MOVEL . 8-72
MSG . 8-73
MULT . 8-74
MVR . 8-74
PARM . 8-74
PUTJW . 8-77
READ . 8-78
READE . 8-79
READP . 8-79
RESET . 8-80
RLABL . 8-81
SET . 8-84
SETLL . 8-85
SETOF . 8-87
SETON . 8-87
SORTA . 8-88
SQRT . 8-90
SUB . 8-90
SUSP . 8-90
TAG . 8-92
TESTB . 8-93
TESTN . 8-94
TESTZ . 8-94
TIME . 8-95
TIME2 . 8-97
UNLCK . 8-98
XFOOT . 8-98
Z-ADD . 8-98
Z-SUB . 8-98

Factor 2 (Columns 33-42) . 8-99
Field, Table, Array, Subroutine, and Label Names 8-99
Alphanumeric Literals . 8-99
Numeric Literals . 8-99
Figurative Constants . 8-100

Result (Columns 43-48) . 8-101
Field Length (Columns 49-51) . 8-102
Decimal Positions (Column 52) . 8-103
Half Adjust (Column 53) . 8-104
Resulting Indicators (Columns 54-59) 8-105
High Sub�eld (Columns 54-55) . 8-106
Low Sub�eld (Columns 56-57) . 8-106
Equal Sub�eld (Columns 58-59) . 8-107

Comments (Columns 60-74) . 8-108
Program Name (Columns 75-80) . 8-108
The Calculation Speci�cation Default Summary 8-108

Contents-6

9. Output Speci�cations
The Output Speci�cation Fields . 9-2
Sequence Number (Columns 1-5) 9-2
Speci�cation Type (Column 6) . 9-2
Record Description Fields (Columns 7-31) 9-2
File Name (Columns 7-14) . 9-3
AND/OR (Columns 14-16) . 9-5
Type (Column 15) . 9-7
Record Addition/Deletion (Columns 16-18) 9-9
Fetch Over
ow/Release (Column 16) 9-9
Space (Columns 17-18) . 9-11
Skip (Columns 19-22) . 9-13
Output Indicators (Columns 23-31) 9-14

Field Description Fields (Columns 32-70) 9-18
Field Name (Columns 32-37) . 9-18
Edit Code (Column 38) . 9-23
Blank After (Column 39) . 9-26
End Position (Columns 40-43) 9-27
Packed/Binary (Column 44) . 9-31
Constant/Edit Word (Columns 45-70) 9-32

Comments (Columns 71-74) . 9-38
Program Name (Columns 75-80) 9-38

The Output Speci�cation Default Summary 9-39

10. RPG Interface to VPLUS
Using the RPG Interface to VPLUS 10-3
Using FORMSPEC . 10-4
Entering the Header Speci�cation 10-4
Handling Run-Time Errors . 10-4
Requesting an Error Dump . 10-4

Entering File Description Speci�cations 10-5
De�ning VPLUS Files . 10-5
Specifying the Error Message Display Interval 10-5
Enabling the BREAK Key . 10-6
Enabling the Function Key Labels 10-6
Downloading VPLUS Forms . 10-6
Using the STATUS Array . 10-7

Entering Input Speci�cations . 10-7
VPLUS Event Codes . 10-8
VPLUS Input Record Formats 10-9

Entering Calculation Speci�cations 10-12
Initiating VPLUS Actions . 10-12
Returning VPLUS Events . 10-13

Entering Output Speci�cations . 10-14
VPLUS Action Codes . 10-14
VPLUS Output Record Formats 10-18

Sample VPLUS Program . 10-24

Contents-7

11. RPG Screen Interface (RSI)
Using the RPG Screen Interface (RSI) 11-2
Using SIGEDITOR . 11-2
Rede�ning Function Key Labels 11-2
Using the RSI Application Help Facility 11-3
Entering File Description Speci�cations 11-3
Using the STATUS Array . 11-5
Entering Input and Output Speci�cations 11-6
Entering Calculation Speci�cations 11-8
Executing an RSI Program . 11-8
Using Messages with RSI . 11-10
Displaying an End-of-Program Form 11-10

Sample RSI Programs . 11-11
Using RSI CONSOLE Files . 11-20
Entering File Description and Input Speci�cations 11-20
Entering Calculation Speci�cations 11-24
Compiling an RSI CONSOLE Program 11-24
Executing an RSI CONSOLE Program 11-25
Sample RSI CONSOLE Program 11-26

Using Di�erent Terminals . 11-29
Improving Performance Under PROCMON 11-29

12. RPG Compiler
The Compiler Commands . 12-3
Entering Command Parameters . 12-3
Listing Command Error Messages 12-3
Listing the Compiler Version Number 12-4
Listing Compiler Error Messages 12-4
Files Used by the Compiler . 12-4
The Source Program File . 12-4
The Relocatable Object File . 12-6
The List File . 12-8

The Compiler Commands Reference 12-9
:RPGXL . 12-10
:RPGXLGO . 12-11
:RPGXLLK . 12-12

The Compiler Subsystem Commands 12-13
Entering Subsystem Command Parameters 12-14
Entering Subsystem Command Comments 12-14
Entering Subsystem Command Continuation Lines 12-15
The Compiler Subsystem Commands Reference 12-15
$CONTROL . 12-16
$COPY . 12-19
$IF . 12-20
$INCLUDE . 12-22
$INCLUDENOW . 12-24
$PAGE . 12-25
$SET . 12-26
$TITLE . 12-28

Contents-8

A. RPG Compiler Messages
Message Numbers . A-1
Message Types . A-2

B. Run-Time Messages
RPG Errors . B-2
USWITCH Errors . B-9
BUFCHK Errors . B-10

C. ASCII and EBCDIC Character Sets

Index

Contents-9

Figures

1-1. Steps in Preparing and Running an RPG Program 1-3
1-2. A Report De�ned on the Printer Spacing Chart 1-5
1-3. An RPG Source Program . 1-7
1-4. Output From an RPG Program . 1-10
3-1. The Header Speci�cation . 3-1
3-2. Specifying an Alternate Collating Sequence in Octal Code 3-13
3-3. Specifying an Alternate Collating Sequence in Hexadecimal Code 3-15
3-4. Specifying File Translation in Hexadecimal 3-20
3-5. Specifying File Translation in Octal 3-22
3-6. Entering an RPG Run-time Pre-Response 3-29
4-1. The File Description Speci�cation 4-1
4-2. File Description Speci�cations for KSAM Files 4-15
4-3. RPG Program Using the KFATAL Option 4-28
4-4. KSAM File Sharing . 4-32
5-1. The File Extension Speci�cation 5-1
5-2. Entering a Chaining File Record Sequence Number 5-2
5-3. Specifying the Number of Entries in Alternating Tables 5-7
5-4. De�ning Compile-Time and Preexecution-Time Arrays 5-16
5-5. De�ning Execution-Time Arrays 5-16
5-6. Loading Execution-Time Arrays 5-23
6-1. The Line Counter Speci�cation . 6-1
6-2. Using the Channel Number Fields 6-3
6-3. Using the Line Number Fields . 6-5
7-1. The Input Speci�cation . 7-1
7-2. Entering Input Speci�cations for a File 7-2
7-3. Using AND and OR Lines to Identify Record Types 7-4
7-4. De�ning Group Sequences . 7-6
7-5. The Input Speci�cations for a Local Data Area 7-8
7-6. Using a General Indicator . 7-11
7-7. De�ning a Look-Ahead Field . 7-13
7-8. De�ning a Spread Record . 7-15
7-9. Using a Data Structure to Subdivide an Input Field 7-18
7-10. Using a Data Structure to Consolidate Two Separate Fields 7-18
7-11. Record Identi�cation Codes . 7-20
7-12. Entering Field Names . 7-26
7-13. Entering the PAGE Field Name 7-27
7-14. Using Control-Level Indicators in a Voter Count Program 7-29
7-15. Chaining to a Direct-Access File 7-31
7-16. Specifying Chaining Fields Using the Input Speci�cation 7-33
7-17. Using Matching Field Codes to Sequence-Check a File 7-34
7-18. Matching-Record Processing . 7-36
7-19. Assigning Matching Field Codes 7-38

Contents-10

7-20. Using Indicators to Associate Fields with Record Types 7-39
7-21. Using Field Indicators to Test Input Data 7-41
8-1. The Calculation Speci�cation . 8-2
8-2. Using Control-Level Indicators to Condition Calculation Speci�cation

Operations . 8-4
8-3. Using Calculation Speci�cation AN(D) and OR Lines 8-5
8-4. Using Four Indicators to Condition a Calculation Speci�cation Operation . 8-8
8-5. Using One Indicator to Condition a Calculation Speci�cation Operation . . 8-9
8-6. Using the Factor 1 Field . 8-11
8-7. Using an Internal Subroutine . 8-14
8-8. Using the BITON and BITOF Operations 8-19
8-9. Using the CABGE Operation . 8-21
8-10. Using the CASxx Operation . 8-23
8-11. Chaining to an Input File . 8-26
8-12. Creating a Chained File . 8-27
8-13. Using the COMP Operation . 8-29
8-14. Using the DEBUG Operation . 8-32
8-15. Using the DIV and MVR Operations 8-33
8-16. Using the DO Operation . 8-34
8-17. Using the DOULT Operation . 8-36
8-18. Using the DOWNE Operation . 8-38
8-19. Sample Message Set in a User Message Catalog File 8-40
8-20. Using the DSPLM Operation . 8-41
8-21. Using the DSPLY Operation . 8-43
8-22. Using the ELSE Operation . 8-44
8-23. Using the END Operation . 8-45
8-24. Using the EXCPT Operation . 8-47
8-25. Using the EXCPT Operation with File and EXCPT Names 8-48
8-26. Using One Internal Subroutine to Call Another 8-50
8-27. Using the FORCE Operation . 8-52
8-28. Using the IFEQ Operation . 8-54
8-29. Searching a Table . 8-64
8-30. Searching Alternate Tables . 8-65
8-31. Searching an Array . 8-66
8-32. Using the MOVE Operation . 8-71
8-33. Using EXIT, PARM and External Subroutines 8-75
8-34. The External Subroutine EXSUB Written in COBOL 8-76
8-35. The External Subroutine EXSUB2 Written in C 8-76
8-36. Reading a Demand File . 8-78
8-37. Using EXIT, RLABL, and External Subroutines 8-82
8-38. The External Subroutine EXSUB Written in COBOL 8-83
8-39. The External Subroutine EXSUB2 Written in C 8-83
8-40. Using the SET Opertion . 8-84
8-41. Using the SETLL Operation . 8-86
8-42. Using the SETON Operation . 8-87
8-43. Using the SORTA Operation . 8-89
8-44. Using the GOTO and TAG Operations 8-92
8-45. Using the TESTB Operation . 8-93
8-46. Using the TIME Operation . 8-96
8-47. Using the Factor 2 Field (columns 33-42) 8-100
8-48. Using the Field Length and Half Adjust Fields 8-104

Contents-11

8-49. Using Resulting Indicators . 8-107
9-1. The Output Speci�cation . 9-1
9-2. Entering Output Speci�cation for Two Files 9-2
9-3. Using AND or OR Lines to Condition Record Output 9-6
9-4. Output Record Types As They Appear on a Report 9-8
9-5. Using Output Indicators . 9-17
9-6. Using *PLACE . 9-21
9-7. Entering End Positions . 9-28
9-8. Using Relative End Positions with $CONTROL 9-29
9-9. How Relative End Positions Appear in a Compiler Listing 9-30
9-10. Entering an RSI Form Name . 9-30
9-11. Entering Constants . 9-33
10-1. How VPLUS Works With RPG . 10-2
10-2. Entering VPLUS File Description Speci�cations 10-7
10-3. Entering VPLUS Input Speci�cations 10-11
10-4. Initiating a VPLUS Action Using Calculation Speci�cations 10-12
10-5. Returning a VPLUS Event Using Calculation Speci�cations 10-13
10-6. Entering VPLUS Output Speci�cations 10-23
10-7. A Program that Uses VPLUS . 10-24
11-1. Entering RSI File Description Speci�cations 11-5
11-2. Entering an RSI Calculation Speci�cation 11-8
11-3. RSI Command Keys . 11-8
11-4. Form21 (Contained in RSI Forms File SAMPLIB) 11-11
11-5. Form22 (Contained in RSI Forms File SAMPLIB) 11-12
11-6. The Message File . 11-12
11-7. Processing an RSI Primary File . 11-13
11-8. Processing an RSI Demand File . 11-16
11-9. Entering RSI CONSOLE File Description and Input Speci�cations 11-23
11-10. Entering an RSI CONSOLE Calculation Speci�cation 11-24
11-11. RSI CONSOLE Command Keys 11-25
11-12. An RSI CONSOLE Form . 11-26
11-13. Processing an RSI CONSOLE File 11-27
12-1. The Format of an RPG Source Program File 12-2

Contents-12

Tables

3-1. Results of the Inverted Print Options 3-10
3-2. ALTSEQ Record Description for Octal Format 3-13
3-3. ALTSEQ Record Description for Hexadecimal Format 3-14
3-4. Sign Processing Options . 3-18
3-5. File Translation Records in Hexadecimal 3-20
3-6. File Translation Records in Octal 3-21
3-7. Carriage Control Values . 3-26
3-8. Header Speci�cation Defaults . 3-30
4-1. Valid Entries for Columns 28, 31, and 32 4-13
4-2. How Access Type for KSAM Files A�ects the Record Pointer 4-31
4-3. File Description Speci�cation Defaults 4-44
5-1. Array/Table File Name Speci�cation Format 5-19
5-2. Indexing with Calculation Speci�cation Operations 5-24
5-3. File Extension Speci�cation - Required/Optional/Prohibited Entries . . . 5-27
5-4. File Extension Speci�cation Defaults 5-28
6-1. Line Counter Speci�cation Defaults 6-6
7-1. Input Speci�cation Defaults . 7-42
8-1. Control Level (Columns 7-8) . 8-3
8-2. Indicators (Columns 9-17) . 8-6
8-3. Factor 1 (Columns 18-27) . 8-9
8-4. CABxx Operations . 8-20
8-5. CASxx Operations . 8-22
8-6. How CHAIN Sets the High and Low Resulting Indicators 8-25
8-7. COMP Operations . 8-28
8-8. Output from the DEBUG Operation 8-31
8-9. DOUxx Operations . 8-35
8-10. DOWxx Operations . 8-37
8-11. IFxx Operations . 8-53
8-12. Calculation Speci�cation Fields Used with LOCK and UNLCK 8-59
8-13. How Resulting Indicators Are Set For LOCK/UNLCK (TurboIMAGE Files) 8-61
8-14. How Resulting Indicators Are Set For LOCK/UNLCK (KSAM and MPE

Files) . 8-62
8-15. Move Zone Operations . 8-69
8-16. MOVE Operation Examples . 8-70
8-17. Valid Message Identi�cations . 8-73
8-18. Elements when using SORTA . 8-88
8-19. The Result Field . 8-101
8-20. The Field Length Field . 8-102
8-21. The Decimal Positions Field . 8-103
8-22. The Half Adjust Field . 8-104
8-23. Calculation Speci�cation Defaults 8-108
9-1. Output File Characteristics . 9-3
9-2. Actions Performed - Release File 9-10

Contents-13

9-3. Editing Date Fields . 9-22
9-4. E�ects of the Edit Codes . 9-25
9-5. Edit Word Characters . 9-34
9-6. Examples of Edit Words . 9-36
9-7. Output Speci�cation Defaults . 9-39
10-1. Entering Error Responses Using the Function Keys 10-4
10-2. VPLUS Event Codes . 10-8
10-3. VPLUS Input Record Formats . 10-10
10-4. VPLUS Action Codes . 10-14
10-5. VPLUS Output Record Formats 10-18
11-1. RSI File Description Speci�cations 11-4
11-2. RSI Input and Output Speci�cations 11-6
11-3. How RSI Command Key Indicators Are Turned ON 11-9
11-4. RSI CONSOLE File Description and Input Speci�cations 11-21
11-5. How to Use RSI CONSOLE Command Keys 11-25
12-1. Source Program File Characteristics 12-5
12-2. Relocatable Object File Characteristics 12-6
12-3. List File Characteristics . 12-8
C-1. ASCII and EBCDIC Character Sets C-2

Contents-14

1

Introduction to RPG

The HP Report Program Generator (RPG) language is a machine-independent, task-oriented
language that enables you to easily create programs that print reports, update �les, and
perform many other general �le functions. RPG is available on non-HP computers and
programs running on these computers require little or no conversion to run on HP 3000
Series 900 computers. For information on converting RPG programs that run on non-HP
computers or that run under the MPE V operating system, see Appendix A of the HP RPG
Programmer's Guide.

RPG is used frequently in business and commercial applications. You can use RPG to print
mailing labels. It can also be used to compute complex payrolls including the printing of
paychecks, payroll registers, and other payroll reports. RPG is also ideal for producing
inventory lists, invoices, insurance bene�t notices, customer transactions, and summaries of
sales and losses. In addition to printing reports, you can use RPG to update the �les from
which the reports are produced.

In summary, you can use RPG programs to:

Process large tables and arrays of data.

Process data stored on several types of devices.

Perform extensive calculations and save the results on disk or tape, or display them on a
terminal.

Update large disk �les and databases.

Generate several reports of varying complexity in a single program.

Process records randomly or sequentially using the the Keyed Sequential Access Method
(KSAM) or TurboIMAGE subsystems.

RPG programs di�er from programs written in other languages. You do not decide the main
logic of the program. Your source statements, speci�cations, are executed in a pre-determined
order. This is called the RPG logic cycle. Take, for example, a payroll program that reads
employee hours-worked, then computes pay for the period. The logic cycle reads the �rst
employee's hours, and executes the speci�cations that compute earnings, deductions, and
withholdings. It then prints the employee's paycheck and reads the next employee's hours.
This sequence is repeated until the last employee's hours are processed. To e�ectively use
RPG, you should understand what actions are performed during each phase of the logic cycle.

This manual devotes a separate chapter to each of the seven types of speci�cations. See the
HP RPG Programmer's Guide for a complete discussion of the RPG logic cycle.

Introduction to RPG 1-1

Example Conventions

The Components of RPG

The RPG language subsystem consists of the following components:

The RPG symbolic programming language.

The rules of language syntax that you use when entering RPG programs.

The RPG compiler.

The RPG compiler translates source statements into a format that can be executed. In
addition, it helps to detect errors at the source level with extensive diagnostic messages.
Programs written originally to run on other computer systems can be compiled successfully
with few, if any, changes.

The RPG library.

The RPG library contains run-time procedures for certain functions, such as input and
output operations, output �eld editing, and specialized calculations. Run-time procedures
are used by compiler-generated code. RPG's use of the library procedures is transparent to
the user.

Using RPG

The next seven sections give an overview of how to use RPG. Figure 1-1 gives a pictorial
representation of this process.

1-2 Introduction to RPG

Example Conventions

Figure 1-1. Steps in Preparing and Running an RPG Program

Introduction to RPG 1-3

Example Conventions

Step 1: Analyze the Task

Analyze the data to be processed by the program. Determine the calculations and other
operations that must be performed on the data. Decide what data should be output and in
what format. Also decide what devices to use for input and output �les.

For example, Figure 1-2 shows the layout of a new report that needs to be produced. The
report is detailed on a printer spacing chart. The chart shows all of the �elds on the report
along with headings.

1-4 Introduction to RPG

Example Conventions

Figure 1-2. A Report Defined on the Printer Spacing Chart

Introduction to RPG 1-5

Example Conventions

Step 2: Plan the Program

Plan the general program steps required to produce the desired output. In doing this, you
may want to prepare a
owchart of the program.

Step 3: Create the Source Program

Create RPG speci�cations for the program. You can enter them using any line editor or word
processor that produces a standard ASCII �le. For example, you may want to use EDITOR
or TDP. Alternatively, you can use the RPG Interactive System Environment (RISE) to
enter the speci�cations. The HP RPG Programmer's Guide gives more details on entering a
program. Also, RISE is discussed in detail in the RPG Utilities Reference Manual .

The eight types of RPG speci�cations are listed below. Each speci�cation is identi�ed by a
unique letter code in the sixth position (column). The speci�cations are listed below in the
order that you enter them. For general rules about entering speci�cations, see Chapter 2. For
details about entering a particular speci�cation, turn to the chapter in this manual where it is
discussed.

Header Speci�cation (H)

Contains run-time options such as how to handle certain editing codes and run-time errors,
and whether to print a compiler Cross-Reference listing. This speci�cation is optional. Use
just one Header Speci�cation in each program.

File Description Speci�cation (F)

De�nes a �le used in the program, assigns a name to it, describes its type and record size
and how it is accessed. This speci�cation is optional.

File Extension Speci�cation (E)

Describes a table or array used in the program. This speci�cation is also used to supply
additional File Description �le information. This speci�cation is optional.

Line Counter Speci�cation (L)

Provides information about a line printer �le, such as the form length and printer carriage
control information. This speci�cation is optional.

Input Speci�cation (I)

Describes the types of input records in a �le and the �elds they contain. This speci�cation
is optional.

Calculation Speci�cation (C)

De�nes an operation to perform on data once it is read into memory. Operations include
moving data in memory, performing arithmetic and branching operations, and calls to
subroutines. This speci�cation lets you directly control input and output. It is optional.

Output Speci�cation (O)

De�nes the output records in a �le, including the �elds that it contains. This speci�cation is
optional.

Array/Table File Name Speci�cation (A)

Names a �le containing a table or array to be processed.

1-6 Introduction to RPG

Example Conventions

Figure 1-3 shows how speci�cations are used in an RPG program. This program was written
using the printer layout chart shown in Figure 1-2

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� H XLS

�2� FINPUT IP F 80 DISK

FTABFILE IT F 80 EDISK

FREPORT O F 132 OF LLP

�3� E TABFILE TABA 8 160 5 ATABB 5 0 ALTERNATING TAB

�4� LREPORT 66FL 55OL

�5� IINPUT AA 15

I 1 5 STOKNO

I 6 15 GSAREAL2
I 16 25 SUBJ L1

I 26 35 AUTH

I 36 55 TITLE

I 56 58 EDITN

I 59 622PPCOPY

I 64 680NUMSHP

�6� C PPCOPY MULT NUMSHP BKSL 72 SALES/BOOK

C BKSL ADD SUBSL SUBSL 92 SALES/SUBJECT

C BKSL ADD GARSL GARSL 102 SALES/GEN AREA

C BKSL ADD TOTSL TOTSL 122 TOTAL SALES

C STOKNO LOKUPTABA TABB 10

C 10 TABB SUB NUMSHP TABB UPDATE INV TAB

Figure 1-3. An RPG Source Program

Introduction to RPG 1-7

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�7� OREPORT H 1P

O 24 "TEXTBOOK SALES"

O UDATE Y 50

O 100 "PAGE"

O PAGE 106

O H 6 0F

O 100 "PAGE"

O PAGE 106

O H 33 1P

O OR 0F

O 18 "STOCK NO."

O 26 "AUTHOR"

O 40 "TITLE"

O 68 "EDN"
O 77 "NO. SOLD"

O 95 "PRICE/COPY"

O 112 "SALES/BOOK"

O D 1 15

O .

O .

O .

Figure 1-3. An RPG Source Program (Continued)

Comments

�1� This line is the Header Speci�cation for the program.

�2� This line begins the File Description Speci�cations.

�3� This line is the File Extension Speci�cation.

�4� This line is the Line Counter Speci�cation.

�5� This line begins the Input Speci�cations.

�6� This line begins the Calculation Speci�cations.

�7� This line begins the Output Speci�cations.

1-8 Introduction to RPG

Example Conventions

Step 4: Compile the Source Program

Once you enter the speci�cations for a program and desk-check it, you can compile it. The
following command compiles the program, SALES:

:RPGXL SALES.SOURCE, SALEO.SOURCE

The RPG compiler translates the source program into an object program assigning storage
areas and creating routines to handle input and output. The object program is saved as the
relocatable object �le, SALEO.SOURCE. Optionally, the compiler prints a Cross-Reference
listing. When there are source errors, appropriate error messages are generated.

Appendix A in this manual lists compile-time error messages. See the HP RPG Programmer's
Guide for additional examples on how to compile an RPG program.

Note You can compile and link in one step (bypassing Step 5) by using the RPGXLLK
command. Or, you can compile, link, and execute in one step (bypassing Steps
5 and 6) by using the RPGXLGO command.

Step 5: Prepare the Object Program for Execution

When you compile a program using the RPGXL command (see the previous section), the
program cannot be executed directly. You must prepare the compiled program for execution
by linking it to external subroutines and procedures that it uses. The result is an executable
program �le. The following MPE/iX command links the program, SALEO, which was
compiled in the previous section:

:LINK SALEO.SOURCE, SALEP.PROGRAM

See the HP RPG Programmer's Guide for additional examples on how to link an RPG
program.

Step 6: Execute the Object Program

Once a compiled program is linked or prepared for execution, you can execute it. The
following command executes the program, SALEP, which was prepared for execution in the
previous section:

:RUN SALEP.PROGRAM

If errors occur during execution, appropriate messages are displayed (see Appendix A for a
complete description of run-time error messages). See the HP RPG Programmer's Guide for
hints on debugging RPG programs.

A valuable feature of the MPE operating system is the ability to assign �les to speci�c
hardware devices at run time. This enables you to run a program using di�erent devices
without recompiling the program.

Figure 1-4 shows the output sales report generated by the program in Figure 1-3. The report
can be assigned to the printer or to a disk �le at run time.

Introduction to RPG 1-9

Example Conventions

Figure 1-4. Output From an RPG Program

1-10 Introduction to RPG

2

General Specifications

This chapter discusses the �elds that are used in all of the RPG Speci�cations. They are:

Sequence Number Field (columns 1-5).

This �eld is optional.

Speci�cation Type Field (column 6).

This �eld is required.

Program Name Field (columns 75-80).

This �eld is optional.

If you're using RISE to enter source programs, �eld names appear on the terminal screen to
help you enter information in the correct positions. If you're using a general-purpose editor, it
is up to you to ensure that speci�cation data is entered in the correct columns.

Note Since the Sequence Number and Program Name Fields are optional, they are
not shown in examples throughout this manual.

General Specifications 2-1

Example Conventions

Sequence Number (Columns 1-5)

This �eld lets you assign a unique sequence number to each line in your source program. You
can use sequence numbers to help you locate lines in the source program listing or lines that
have been added or changed.

Enter values into this �eld as follows:

Columns 1-5 Description

00000 - 99999 The sequence number of the speci�cation. You can omit leading zeros
(leading, trailing, or embedded blanks are treated as zeros). Enter
sequence numbers in ascending order.

Sequence numbers are used for documention purposes only - RPG does
not sequence-check programs.

blank No sequence numbers are used.

A convention that you might use when entering sequence numbers is to reserve columns 1 and
2 for page numbers and columns 3 and 4 for line numbers within each page. Use column 5 for
line insertions. For example, sequence number 01013 indicates page 01, line 01. Since the line
insertion number is 3, the line was added after the original sequence numbers were assigned.

2-2 General Specifications

Example Conventions

Specification Type (Column 6)

This �eld identi�es the type of speci�cation or statement this line contains. You must enter
one of the following characters in this �eld:

Column 6 Description

H Header Speci�cation

F File Description Speci�cation

E File Extension Speci�cation

L Line Counter Speci�cation

I Input Speci�cation

C Calculation Speci�cation

O Output Speci�cation

A Array/Table File Name Speci�cation

$ Compiler Subsystem Command

* Comment line

All characters in columns 8-74 of comment lines are ignored by the compiler,
but they are printed in the source program listing. Use comment lines
liberally to document operations, �elds, and methods used in the program.
(You can also specify that a line is a comment line by entering an asterisk in
column 7.)

General Specifications 2-3

Example Conventions

Program Name (Columns 75-80)

This �eld gives identifying information about the program. You can enter a name to
be printed on each page of the source program listing. You can also enter documentary
information on individual speci�cation lines that will be printed along with the speci�cation in
the source program listing.

Follow these rules when using this �eld:

Columns 75-80 Description

Header Speci�cation:

Valid program name. (Program names can
contain up to six characters, beginning with a
letter A-Z. The remaining characters can be upper
case or lower case letters, the digits 0-9, or an
apostrophe. Do not embed blanks in the name.)

The name of the source program. This name
appears on each page of the source program
listing. (This name is not used to name the source
or relocatable object �les on disk.) An alternative
to entering a program name in this �eld is to use
the NAME= option of the $CONTROL compiler
subsystem command. This option names the
source program but lets you reduce the length of
each speci�cation from 80 characters to 74, thus
saving disk space.

blank If you do not use the NAME= option of the
$CONTROL compiler subsystem command, the
name RPGOBJ is printed on each page of the
source program listing.

All Other Speci�cations:

Any characters The program or subroutine name, or comments of
any kind. For example, you can enter a name that
identi�es a block of code. The name is printed on
the speci�cation line of the source program listing.

blank No identifying information is used for the
speci�cation.

2-4 General Specifications

3

Header Specifications

The Header Speci�cation is the �rst speci�cation in a program. (If you do not enter a Header
Speci�cation, the compiler warns you in the compiler listing and uses the default values shown
in the section \The Header Speci�cation Default Summary"). The only statements which
can precede the Header Speci�cation are comment lines and the $COPY and $CONTROL
compiler subsystem commands.

The Header Speci�cation lets you:

Enable the RPG DEBUG feature.

Specify where to get the initial values for USWITCH and UDATE.

Use a collating sequence other than the ASCII Collating Sequence during certain compare
operations.

Translate input �les from one code to another (for instance, EBCDIC to ASCII) before and
after processing.

Allow non-numeric data in numeric �elds.

Allow compatibility with other implementations of RPG.

Print a Cross-Reference listing.

The Header Speci�cation is identi�ed by an H in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

H

Figure 3-1. The Header Specification

Header Specifications 3-1

Example Conventions

The Header Specification Fields

The �elds you can use in the Header Speci�cation are described in the sections which follow
in this chapter. Each �eld has a unique name and occupies speci�c positions (columns) in the
speci�cation.

Sequence Number (Columns 1-5)

The Sequence Number Field contains the source record sequence number, described in
Chapter 2.

Specification Type (Column 6)

This �eld contains an H to identify this line as a Header Speci�cation.

Error Dump File Name (Columns 7-14)

This �eld identi�es the �le to which Error Dumps are written.

Columns 7-14 Description

File name Valid �le name. (File names contain from one to eight characters, beginning
with a letter. The remaining characters can be letters or digits. Embedded
blanks are not allowed.) If the �le does not exist at run time, the Error
Dump is written to the standard list device ($STDLIST).

blank Write the Error Dump to the standard list device ($STDLIST).

Debug (Column 15)

This �eld determines whether or not Calculation Speci�cation DEBUG operations will be
executed.

Column 15 Description

1 Execute all DEBUG operations.

blank Suppress all DEBUG operations; the compiler treats DEBUG operations as
comments.

The DEBUG Calculation Speci�cation operation lets you monitor the status of various
indicators while the program is executing. This is very helpful when debugging the program.
You can use as many DEBUG operations as you wish, and this �eld acts as a switch to allow
or disallow their execution.

3-2 Header Specifications

Example Conventions

USWITCH Source (Column 16)

This �eld lets you specify where to get the initial values for the user indicators (U1-U8). You
only need to specify the source for those indicators actually used in the program. When the
program ends, it updates the JCW to re
ect the condition of the indicators that were actually
used; the others are left unchanged.

Column 16 Description

F Initialize user indicators from USWITCH records contained in the �le whose
formal designator is USWITCH.

blank
(job stream)

If running a job stream, initialize user indicators from USWITCH records
contained in the job �le.

J Initialize user indicators from the job or session Job Control Word (JCW).

blank
(interactive)

If running an interactive session, initialize user indicators by prompting for
their initial settings.

F (USWITCH File)

USWITCH records are read from the �le whose formal designator is USWITCH. USWITCH
records can have either a long or short format (see \Long Format USWITCH Records" and
\The Short Format USWITCH Record" which follow).

When the program is executed from a job stream, initial settings of the user indicators are
written to the job stream listing.

Run-time USWITCH errors are listed separately in appendix B.

Blank (Job Stream)

USWITCH records are read from the batch job stream immediately following the command
that executes the program. USWITCH records can have either a long or short format (see
\Long Format USWITCH Records" and \The Short Format USWITCH Record" which
follow).

When the program begins, the initial settings of the user indicators are written to the job
stream listing.

Run-time USWITCH errors are listed separately in appendix B.

Header Specifications 3-3

Example Conventions

Long Format USWITCH Records

Long Format records are used with USWITCH Source codes F and blank (job stream). You
can use as many Long Format records as necessary. Enter them in the following format:

USWITCH: [Ui=

8<
:
ON

OFF

JCW

9=
;],[Ui=

8<
:
ON

OFF

JCW

9=
;] . . . [Ui=

8<
:
ON

OFF

JCW

9=
;]

Start USWITCH: in column 1 and end it in column 8. The Ui parameters can appear in
any order (for instance, U3=ON,U4=ON,U1=ON . . .). If you omit a user indicator, that
indicator is turned OFF. If you enter U1 only, or if you use an entry other than ON, OFF,
or JCW, the corresponding user indicator is turned OFF. If the same indicator is entered
twice, the second parameter overrides the �rst. For instance, U1=ON,U3=OFF,U1=OFF is
equivalent to U1=OFF,U3=OFF.

You can enter Long Format records in free format; that is, blanks can appear between
USWITCH: and the parameter list, or between individual parameters or subparameters.
You can continue the parameter list onto one or more USWITCH records without using a
continuation character, but do not split a parameter between records.

If Long Format USWITCH records reside in a job �le, end them with a line containing two
asterisks (columns 1-2).

The Short Format USWITCH Record

The Short Format USWITCH record is compatible with other implementations of RPG and it
is easy to use. Enter settings for all eight user indicators in this format:

USWITCH:

8<
:

1

0

X

9=
;
8<
:

1

0

X

9=
;
8<
:

1

0

X

9=
; . . .

8<
:

1

0

X

9=
;

Enter USWITCH: in positions 1-8. Each parameter after USWITCH: stands for the settings
of user indicators U1-U8. Do not include blanks between user indicator parameters. One (1)
turns the corresponding user indicator ON, zero (0) turns the corresponding user indicator
OFF, and X initializes the corresponding indicator to the value previously established for it in
the JCW.

If you use the short format record in a USWITCH �le, you may follow it with a line
containing asterisks in positions 1-2 (this is optional). If you use the short format record in a
job stream, do not follow the record with asterisks in positions 1-2.

3-4 Header Specifications

Example Conventions

Examples

The following example shows how to enter a job �le containing a program that reads user
indicators from a USWITCH �le (the contents of the USWITCH �le are listed after the job
�le):

!JOB USER.ACCT (Begin job)

.

.

.

!FILE USWITCH=SWITCH2 (USWITCH recs read from file SWITCH2)

!RUN PROG3 (Execute PROG3: Header column 16 = F)

(No USWITCH recs read from job stream)

!EOJ (Terminate job)

The contents of the �le, SWITCH2, are:

USWITCH: U1=ON

USWITCH: U2=JCW

USWITCH: U8=ON

**

The next example is the same as the previous one except that it is run in a session, not in a
job stream:

:HELLO USER.ACCT (Begin session)

.

.

.

:FILE USWITCH=SWITCH2 (USWITCH recs read from file SWITCH2)

:RUN PROG3 (Execute PROG3: Header column 16 = F)
. (No prompting for USWITCH values)

.

.

:BYE (End session)

The following example shows how to enter Long Format USWITCH records in a job �le:

!JOB USER.ACCT (Begin job)

.

.

.

!RUN PROG1 (Execute PROG1: Header column 16 = blank)

USWITCH: U1=ON,U2=JCW (Set U1 ON and U2 to previous setting)

USWITCH: U8=ON (Set U8 ON; U3-U7 default to OFF)

** (Terminate reading of USWITCH records)

!EOJ (Terminate job)

Header Specifications 3-5

Example Conventions

The last example shows how to enter the Short Format USWITCH record in a job �le:

!JOB USER.ACCT (Begin job)

.

.

.

!RUN PROG2 (Execute PROG2: Header column 16 = blank)

USWITCH: 1X000001 (Set U1, U8 ON; U2 to previous setting)

(No ** record after Short Format record)

!EOJ (Terminate job)

J (JCW)

Entering a J in column 16 initializes the user indicators with the values in the system JCW.
The JCW may have been set by another program running in the same job or session, or by
the system command SETJCW. You can pass indicator settings from one RPG program to
another through the JCW. RPG always updates the JCW with the �nal settings of any user
indicators actually used in the program, regardless of the entry in column 16. Just specify a J
in column 16 of the Header Speci�cation in the second program, and the user indicators are
set the same as when the �rst program ended.

The user indicators occupy bits 8-15 of the JCW. For example, if bit 8 is ON, user indicator 1
is ON. If bit 9 is ON, user indicator 2 is ON and so on.

If the RPG program is executed from a job stream, the initial settings of all user indicators
are printed in the job listing after the command that executes the program.

Example

The following session dialogue shows how to turn ON user indicators U1, U2, and U8 in the
JCW. This is accomplished by the SETJCW command. The JCW is set to the octal value,
301. Since the binary equivalent of octal 301 is 00000000 11000001, bits 8, 9, and 15 are
turned ON. The session then executes PROG6 and PROG7 which are RPG programs that
contain a J in column 16 of the Header Speci�cation. User indicators are passed automatically
from PROG6 to PROG7.

:HELLO USER.ACCT (Begin session)

.

.

.

:SETJCW JCW=%301 (JCW = %301 = Binary [11000001])

:RUN PROG6 (Execute PROG6: Header col 16 = J)

(no prompting for USWITCH values)

:RUN PROG7 (Execute PROG7: Header col 16 = J)

.

.

:BYE (End session)

3-6 Header Specifications

Example Conventions

Blank (Interactive)

If column 16 contains a blank and the program is run from a session, RPG prompts you as
follows to enter the initial user indicator settings:

PLEASE INPUT USER SWITCH Ui=?

Enter ON, OFF, or JCW (typing �RETURN� is the same as OFF). JCW directs RPG to get
the user indicator settings from the JCW (see the discussion of the value J for this �eld).
Entering some other value turns the user indicator OFF. The above prompt is repeated
for each user indicator in the program. When all of the indicators are entered, the program
begins.

Example

The following session dialogue shows how to turn ON user indicators U1 and U2:

:HELLO USER.ACCT (Begin session)

.

.

.

:RUN PROG5 (Execute PROG5)

PLEASE INPUT USER SWITCH U1=?ON (Turn ON user indicator U1)

PLEASE INPUT USER SWITCH U2=?ON (Turn ON user indicator U2)

.

.

.

:BYE (End session)

Header Specifications 3-7

Example Conventions

UDATE Source (Column 17)

This �eld lets you determine where to get the initial values for the prede�ned �elds: UDATE,
UDAY, UMONTH, and UYEAR.

Column 17 Description

F Initialize UDATE, UDAY, UMONTH, and UYEAR using the date record in
the �le whose formal designator is RPGUDATE.

blank Initialize UDATE, UDAY, UMONTH, and UYEAR using the system date.

F (Date Record)

Before running the program, enter an operating system :FILE command to equate the
formal �le designator RPGUDATE to the actual �le that holds the date record. Equating
RPGUDATE to $STDIN lets you enter the date record interactively or include it in a job �le.
Using a date record in the job �le simulates the IBM //DATE OCL command.

You can enter the date (in the date record) in a
exible manner. The �rst number begins the
date (the number does not have to start in column 1). Enter the date as six consecutive digits
(mmddyy) or in three sets of two digits (mm, dd, and yy). Enter the month number (mm), the
year (yy) then the day (dd).

If mm, dd, and yy are all equal to zero, or the �le RPGUDATE is equated to $NULL, RPG
uses the system date (this is a technique for defaulting to the system date without removing
the F from column 17 and recompiling the program).

The following lines show valid ways to enter date records. Assuming the system date is
04/10/88, all of the examples produce this date. Since the �rst and last dates are zeros, they
default to the system date:

000000
041088

//DATE 041088

DATE is 041088

FORMAT OF DATE IS MMDDYY = 041088

4/10/88

MONTH IS 4; DAY IS 10; YEAR IS 88

0 0 0

The following are examples of invalid date records:

4/10 (the year is missing)

4/10/1988 (the year must be 00 to 99)

040088 (the day must be 01 to 31)

If the date �le does not exist, is empty, or contains invalid records, the program ends
immediately and an error message is displayed.

3-8 Header Specifications

Example Conventions

Example

The following job �le executes the program, MYPROG, which reads the current date from the
job �le. The date is 041088:

!FILE RPGUDATE = $STDIN

!RUN MYPROG

USWITCH: U1 = ON

**

//DATE 041088

Line Number Option (Column 20)

This �eld determines whether the source program line number is displayed when run-time
errors occur. When this option is enabled, RPG keeps track of each source line number that is
executed. Disabling this option results in a smaller executable program and faster execution.

Column 20 Description

N Do not keep track of source program line numbers.

blank Keep track of source program line numbers.

Inverted Print (Column 21)

This �eld determines how numeric literals, edit code data, and UDATE dates are formatted.
(UDATE and numeric literals are used in Calculation and Output Speci�cations. Edit codes
are used in Output Speci�cations.)

Column 21 Description

D United Kingdom format.

I European format.

J European format with leading zero.

blank Domestic format.

D (United Kingdom Format)

Periods are used as decimal points; the thousands positions are separated by commas.
Leading zeros are suppressed. Dates are printed in the format dd/mm/yy.

Header Specifications 3-9

Example Conventions

I (European Format)

Commas are used as decimal points; the thousands positions are separated by periods.
Leading zeros are suppressed. Dates are printed as dd.mm.yy.

J (European Format with Leading Zero)

Commas are used as decimal points; the thousands positions are separated by periods.
Leading zeros are suppressed up to one position before a decimal point. Dates are printed in
the format dd.mm.yy.

Blank (Domestic Format)

This format is used in the United States. Periods are used as decimal points in numeric
literals and edited data; thousand-units are separated by commas. Leading zeros are
suppressed. When used with Edit Code Y, dates are printed in the format mm/dd/yy.

Table 3-1 shows the various Inverted Print options and the di�erent results they produce.

Table 3-1. Results of the Inverted Print Options

Column
21

Format Numeric Literal,
Period or
Comma as

Decimal Point

Edit Code Field,
Period or
Comma as

Decimal Point
or Separator

Zeros
Suppressed
Left of
Decimal
Point

UDATE
Slash or
Period

D United
Kingdom

1986.19 9,762.55 .14 24/06/86

I European 1986,19 9.762,55 ,14 24.06.86

J European
(w/lead
zero)

1986,19 9.762,55 0,14 24.06.86

blank Domestic 1986.19 9,762.55 .14 06/24/86

Record Number Adjust (Column 22)

This �eld gives the adjustment to relative record numbers before they are used to retrieve
records in direct-access MPE and Keyed Sequential Access Method (KSAM) �les (the
KSAM/3000 Reference Manual discusses the use of relative record numbers with KSAM).

This �eld has no e�ect for TurboIMAGE �les.

3-10 Header Specifications

Example Conventions

Column 22 Description

1 RPG subtracts one from all relative record numbers obtained from an
ADDROUT �le, chaining �le, or chaining operation before using the
numbers for direct �le access. This option is ignored for KSAM �les built
with the FIRSTREC=1 option.

+ RPG adds one to all relative record numbers obtained from an ADDROUT
�le, chaining �le, or chaining operation before using the numbers for direct
�le access. This option does not apply to KSAM �les built with the
FIRSTREC=1 option.

0 or blank RPG does not adjust relative record numbers before using them for direct
�le access.

Program Name Logging (Column 25)

This �eld determines whether a program identi�cation line is written to the standard list
device ($STDLIST) when the program begins and when it ends normally.

Column 25 Description

L Write a program identi�cation line on $STDLIST when the program begins
and when it ends.

blank Do not write program identi�cation lines.

The beginning identi�cation line lists the source program name entered in columns 75-80 of
the Header Speci�cation (or entered in the NAME= parameter of the $CONTROL compiler
subsystem command) and the date and time.

Example

The program, AP320P, in the group PROGRAM and account AP is executed. Its source
program name is AP320S. The beginning identi�cation line looks like this:

Program: AP320S = AP320P.PROGRAM.AP Wed, Nov 02, 1988, 07:40 AM

The ending identi�cation line looks like this:

Pgm-End: AP320S = AP320P.PROGRAM.AP Wed, Nov 02, 1988, 08:10 AM

Header Specifications 3-11

Example Conventions

Alternate Collating Sequence (Column 26)

This �eld lets you use a collating sequence other than the ASCII Collating Sequence (or
JIS-Japanese Industrial Standard-Katakana) for certain comparison operations. Alternate
collating sequences do not a�ect control levels, numeric comparisons, table look-up operations,
or the SORTA operation.

Column 26 Description

E EBCDIC (Extended Binary Coded Decimal Interchange Code) collating
sequence applies.

K EBCDIK collating sequence applies.

O Alternate collating sequence, speci�ed in octal format, applies.

S Alternate collating sequence, speci�ed in hexadecimal format, applies.

blank Normal ASCII (JIS) collating sequence applies.

E (EBCDIC)

An E in the Alternate Collating Sequence �eld selects the Extended Binary Coded
Decimal Interchange Code (EBCDIC). Use this when you need to read data prepared on
EBCDIC-based computer systems or when the data must be interpreted in that sequence.

In EBCDIC, alphabetic characters are lower than numeric characters. In ASCII sequence,
numbers are lower than alphabetic characters. Codes for special characters are also di�erent
for the two collating sequences.

O (Alternate Collating Sequence - Octal)

You must enter one or more ALTSEQ records that specify (in octal) the alternate sequences
for speci�c characters. (Refer to Appendix D for ASCII and octal equivalences.) You can
enter ALTSEQ records in a job stream or in a separate disk �le. Placing them in a separate
�le means that other programs can use them also.

Table 3-2 shows the format for ALTSEQ records in octal.

3-12 Header Specifications

Example Conventions

Table 3-2. ALTSEQ Record Description for Octal Format

Column Value Description

1-6 ALTSEQ This is an ALTSEQ record.

7-8 blank None.

9-14 Two ASCII (JIS) characters,
speci�ed by sequence number
in octal.

The �rst character (columns 9-11) replaces the
second character (columns 12-14) in the ASCII
(JIS) Collating Sequence.

15-80 Two ASCII (JIS) characters,
speci�ed by sequence number
in octal.

Same meaning as columns 9-14, repeated as
needed.

Example

Assume that the letter A (octal 101) must be changed to the letter Z (octal 132) and the
letter B (octal 102 must be changed to the letter Y (octal 131). Y and Z retain their normal
values. The upper case alphabetical character set would look like this using the alternate
collating sequence:

Z Y C D E . . . W X Y Z

The following ALTSEQ record speci�es this alternate sequence for A and B:

ALTSEQ 132101131102

Figure 3-2 shows how to enter speci�cations that use an alternate collating sequence expressed
in octal. Line 1 contains an O in column 26 to select the alternate collating sequence in
octal. Line 2 contains an Array/Table File Name Speci�cation (A) to name the �le (FILEB)
containing the ALTSEQ record shown above.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� H O

.

.

.

�2� AFILEB

Figure 3-2. Specifying an Alternate Collating Sequence in Octal Code

Header Specifications 3-13

Example Conventions

S (Alternate Collating Sequence - Hexadecimal)

You must enter one or more ALTSEQ records that specify (in hexadecimal) the alternate
sequences for speci�c characters. (Refer to Appendix D for ASCII and hexadecimal
equivalences.) You can enter ALTSEQ records in a job stream or in a separate disk �le.
Placing them in a separate �le means that other programs can use them also.

Table 3-3 shows the format for ALTSEQ records in hexadecimal.

Table 3-3. ALTSEQ Record Description for Hexadecimal Format

Column Value Description

1-6 ALTSEQ This is an ALTSEQ record.

7-8 blank None.

9-12 Two ASCII (JIS) characters,
speci�ed by sequence number
in hexadecimal.

The �rst character (columns 9-10) replaces the
second character (columns 11-12) in the ASCII
(JIS) Collating Sequence.

13-80 Two ASCII (JIS) characters,
speci�ed by sequence number
in hexadecimal.

Same meaning as columns 9-12, repeated as
needed.

Example

(This is the same example as shown for Alternate Collating Sequence code O except that
hexadecimal notation is used to specify the alternate sequence.)

Assume that the letter A (hexadecimal 41) must be changed to the letter Z (hexadecimal 5A)
and the letter B (hexadecimal 42) must be changed to the letter Y (hexadecimal 59). Y and
Z retain their normal values. The upper case alphabetical character set would look like this
using the alternate collating sequence:

Z Y C D E . . . W X Y Z

The following ALTSEQ record speci�es this alternate sequence for A and B:

ALTSEQ 5A415942

Figure 3-3 shows how to enter the speci�cations that process an alternate collating sequence
in hexadecimal. Line 1 contains an S in column 26 to select the alternate collating sequence
in hexadecimal. Line 2 contains an Array/Table File Name Speci�cation (A) to name the �le
(FILEA) containing the ALTSEQ record shown above.

3-14 Header Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� H S

.

.

.

�2� AFILEA

Figure 3-3. Specifying an Alternate Collating Sequence in Hexadecimal Code

Header Specifications 3-15

Example Conventions

BUFCHK Defaults (Column 28)

This �eld lets you specify the BUFCHK options to apply to all �les. The options are: Current
Data Checking (CDC), No-Read Checking (NRC), and Update-Protect Checking (UPC).
You can override these values for individual �les by using the Option Type Field of the
File Description Continuation line (see the BUFCHK entry for the Option Type Field in
Chapter 4).

Column 28 Description

B Enable both CDC and NRC.

C Enable CDC for all Sequential MPE and KSAM �les that specify a LOCK
File Description Continuation line and that are linked to another �le at run
time by MPE FILE equations.

N Enable NRC for all update �les.

U Enable UPC and NRC for all update �les.

X Enable CDC, NRC, and UPC.

Table/Array Look-Up (Column 34)

This �eld speci�es how tables and arrays are searched.

Column 34 Description

B Perform binary look-ups. Binary look-ups are ideal for large tables and
arrays.

blank Perform sequential look-ups. Sequential look-ups are e�ective for small
tables and arrays (less than 16 entries) and for tables and arrays whose
initial entries are the most frequently searched.

B (Binary)

When you enter B, the tables and arrays must be in ascending sequence.

A sequential look-up is performed (regardless of this B entry) for execution-time tables/arrays
and for compile-time and preexecution-time tables/arrays that are loaded \short" (that is, not
all entries are initialized).

EBCDIC Zone/Digit Tests (Column 39)

This �eld speci�es whether record identi�cation codes that use the zone (leftmost 4 bits) or
digit (rightmost 4 bits) portions are converted to EBCDIC before being compared. See the
Record Identi�cation Codes Field (columns 21-41) in Chapter 7 for a complete description of
the Z (zone) and D (digit) entries.

This �eld provides compatibility with EBCDIC-based computer systems.

3-16 Header Specifications

Example Conventions

Column 39 Description

E Convert the record identi�cation codes (de�ned as types Z and D in the
Record Identi�cation Codes Field (columns 21/41) of the Input
Speci�cation) to EBCDIC before comparing them. Do not enter E if the
record identi�cation codes contain packed numeric data.

blank Use the original ASCII character representation for record identi�cation
code testing.

Sign Processing (Column 40)

This �eld determines whether the signs in numeric �elds are changed when the �elds are
moved. You can use this �eld, for example, to change a +1 to the ASCII character 1; the
number is written as 1 rather than the character A.

The results produced by this �eld depend on the data format of the �elds that are moved (see
the Data Format �eld (column 43) in Chapter 7). This �eld a�ects only positive and unsigned
�elds. It does not apply to �elds having L (left-sign) and R (right-sign) data formats.

Column 40 Description

B or blank Sign processing takes place only when writing unpacked numeric �elds.
Original signs are retained on all other �eld moves.

I Sign processing does not take place for unpacked numeric input �elds. Sign
processing does take place for the Calculation Speci�cation operations
MOVE, MOVEL, MLLZO, and MHLZO, when alphanumeric �elds are
moved to numeric �elds. It also takes place when unpacked numeric �elds
are written.

N No sign processing takes place. Thus, original signs are retained whenever
�elds are moved.

O Sign processing does not take place for unpacked numeric output �elds. Sign
processing does take place for the Calculation Speci�cation operations
MOVE, MOVEL, MLLZO, and MHLZO, when alphanumeric �elds are
moved to numeric �elds. It also takes place when unpacked numeric �elds
are read.

S Standard sign processing takes place during Calculation Speci�cation move
operations (MOVE, MOVEL, MLLZO, and MHLZO) when alphanumeric
�elds are moved to numeric �elds. It also takes place when unpacked
numeric �elds are read or written.

Table 3-4 shows how this �eld a�ects signs in numeric �elds. Positive �elds have sign bits =
1100. Unsigned �elds have sign bits = 1111. The asterisk (*) refers to the MOVE, MOVEL,
MLLZO, and MHLZO Calculation Speci�cation operations. No sign processing occurs for
MOVEL when the Result Field length equals or exceeds the length of the Factor 2 Field.

Header Specifications 3-17

Example Conventions

Table 3-4. Sign Processing Options

Column 40 Input
unpacked
numeric
d

Move*
alphanumeric to
numeric
d

Output
unpacked
numeric
d

B or blank Signs unchanged Signs unchanged Positive sign-> Unsigned

I Signs unchanged Unsigned-> Positive sign Positive sign-> Unsigned

N Signs unchanged Signs unchanged Signs unchanged

O Positive sign-> Unsigned Unsigned-> Positive sign Signs unchanged

S Positive sign-> Unsigned Unsigned-> Positive sign Positive sign-> Unsigned

Form Positioning (Column 41)

This �eld lets the operator align printer forms before processing begins for printer �les.

Column 41 Description

1 Perform printer forms alignment at the start of printer �le processing. Allow
forms alignment until the operator signals that the forms are positioned
properly.

blank Do not perform forms alignment.

1 (Forms Alignment)

Use this option when using preprinted forms such as paychecks. Before printer �le processing
begins, a forms-alignment record is printed and a message is displayed to the operator. A
pause gives the operator time to adjust the forms, if necessary. When the forms are positioned
correctly, the operator resumes the program (the report page count is incremented only when
the program resumes). The �rst line is printed according to the carriage control method
entered in the Carriage Control Type Field (column 53).

Forms-positioning takes place for both spooled and nonspooled output �les.

Indicator Setting (Column 42)

This �eld lets you specify how certain �eld and resulting indicators are initialized at the
beginning of the program and following Blank-After operations (see the Blank After Field,
column 39, of the Output Speci�cation).

The indicators a�ected by this �eld are:

Those entered in the Zero or Blank Sub�eld (columns 69-70) of Input Speci�cations.

Those entered in the Equal Sub�eld (columns 58-59) of any of these Calculation
Speci�cation operations: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, MVR, or XFOOT.

3-18 Header Specifications

Example Conventions

Column 42 Description

B Do not alter the indicator settings at program initialization or following
Blank-After operations.

S Turn ON the indicators at program initialization and following Blank-After
operations.

T Turn ON the indicators at program initialization, but not following
Blank-After operations.

blank Do not alter the indicators at program initialization; turn them ON
following Blank-After operations.

If you leave this �eld blank or enter a B into it, the indicators are OFF at program
initialization, even though RPG sets their associated �elds to zeros or blanks. If you want an
indicator used in Input and Calculation Speci�cations to re
ect its associated �eld's actual
initialized state, enter S or T into this �eld.

If the indicator is associated with a Blank-After �eld (see the Blank After Field (column 39)
of the Output Speci�cation), it is turned ON after the �eld is cleared to zeros or blanks. If
you don't want the indicator to turn ON (to simulate the Blank-After feature of other RPG
implementations such as IBM System/36), enter either B or T in this �eld.

File Translation (Column 43)

This �eld lets you translate one or more characters in an input �le before they are processed
by the program. You can also translate characters before they are written to an output �le.

The translation feature is useful for processing �les containing non-ASCII data. It is also
useful for encoding sensitive data on reports. Translation is performed twice (once on input
and once on output) for combined input-output and update �les.

To translate characters, enter one or more �le translation records which specify (in
hexadecimal or octal) the characters to translate and their translated equivalents.

Column 43 Description

F Translate characters according to a �le translation record speci�ed in
hexadecimal format.

O Translate characters according to a �le translation record speci�ed in octal
format.

blank Do not translate characters.

F (Hexadecimal)

Enter one or more �le translation records that speci�es (in hexadecimal) the characters to
be translated and the translated equivalents. (See Appendix D for ASCII and hexadecimal
equivalents.) You can enter �le translation records in a job stream or in a separate disk �le.
Placing them in a separate �le allows others to use them also.

Table 3-5 shows the format for �le translation records in hexadecimal format.

Header Specifications 3-19

Example Conventions

Table 3-5. File Translation Records in Hexadecimal

Columns Value Description

1-8 *FILES Translate all �les used in the program.

or

A valid �le name used in a File
Description Speci�cation. File names
can contain up to eight characters and
must begin with a letter A-Z. The
remaining characters can be letters or
digits. Do not embed blanks in the
name.

Translate the named �le.

9-12 Two ASCII characters speci�ed in
hexadecimal.

The �rst character is an external ASCII
character; the second character is the
corresponding internal ASCII character.

13-80 Sets of two ASCII characters, speci�ed
in hexadecimal.

Same as columns 9-12, repeated as
needed.

Example

A personnel report shows the salary curves of a company's employees. Since most of the
employees recognize salary curves C and D, these curves are \camou
aged" by being
translated into characters that only the personnel department understands. The character C
(hexadecimal 43) is translated to X (hexadecimal 58) and the character D (hexadecimal 44) is
translated to W (hexadecimal 57).

The �le translation record looks like this:

FILEC 58435744

Figure 3-4 shows how to enter the speci�cations that use the �le translation record shown
above. Line 1 contains F in column 43 to specify �le translation in hexadecimal. Line 2
contains an Array/Table File Name Speci�cation (A) that names the �le (FILEC) containing
the �le translation record.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� H F

.

.

.

�2� AFILEC

Figure 3-4. Specifying File Translation in Hexadecimal

3-20 Header Specifications

Example Conventions

O (Octal)

Enter one or more �le translation records that speci�es (in octal) the characters to be
translated and the translated equivalents. (Refer to Appendix D for ASCII and octal
equivalents.) You can enter �le translation records in a job stream or in a separate disk �le.
Placing them in a separate �le allows others to use them also.

Table 3-6 shows the format for �le translation records in octal format.

Table 3-6. File Translation Records in Octal

Column Value Description

1-8 *FILES Translate all �les used in the program.

or

A �le name used in a File Description
Speci�cation. (File names can contain
up to eight characters, beginning with a
letter A-Z. The remaining characters can
consist of letters and digits. Do not
embed blanks in the �le name.)

Translate the named �le.

9-14 Two ASCII characters, speci�ed in octal. The �rst character is an external ASCII
character; the second is the
corresponding internal ASCII character.

15-80 Sets of two ASCII characters, speci�ed
in octal.

Same as columns 9-14, repeated as
needed.

Example

A personnel report shows the salary curves of a company's employees. Since most of the
employees recognize salary curves C and D, those curves are \camou
aged" on the report
by being translated into characters that only the personnel department understands. The
character C (octal 103) is translated to X (octal 130) and the character D (octal 104) is
translated to W (octal 127).

The �le translation record looks like this:

FILED 130103127104

Figure 3-5 shows how to enter the speci�cations that use the �le translation record shown
above. Line 1 contains O in column 43 to specify �le translation in octal. Line 2 contains an
Array/Table File Name Speci�cation (A) that names the �le (FILED) containing the �le
translation record.

Header Specifications 3-21

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� H O

.

.

.

�2� AFILED

Figure 3-5. Specifying File Translation in Octal

Non-Numeric Digits (Column 44)

This �eld lets you move special characters, such as ! and %, to unpacked numeric �elds.
When you do this, the special characters are converted to digits using their numeric bit values
(this usually results in the value zero). You can also convert invalid packed decimal digits to
zero.

This �eld provides compatibility with other implementations of RPG.

Column 44 Description

P Allow invalid digits in packed decimal �elds to be converted to 0. Also
enable capability provided by N below. Note that data may be modi�ed,
and invalid decimal digits are not trapped.

N Allow non-numeric data (special characters) to be moved to numeric �elds
during input, data structure moves and during MOVE and MOVEL
operations.

blank Do not allow non-numeric data (special characters) to be moved to numeric
�elds and do not allow numeric �elds to compare equal to *BLANK or
*BLANKS. If either of these conditions occur, generate run-time error 13
(INVALID NUMERICAL DATA . . .).

3-22 Header Specifications

Example Conventions

Dollar Sign Substitute (Column 46)

This �eld lets you substitute another character for the dollar sign ($) during output editing
(see the Edit Code Field, column 38, and the Constant/Edit Word Field, columns 45-70, in
the Output Speci�cation).

Column 46 Description

A special character (not a letter or
digit)

Use this character as a dollar sign during output editing. (Be sure
to this character in edit words instead of $.)

blank Use $ for the dollar sign.

This �eld makes edit words and codes more
exible. Edit words are �elds that format output
�elds character by character. Edit codes are single-character codes which provide a general
method of editing output data. In edit words and codes, the dollar sign is an insertion
character. You may want to substitute another character for the dollar sign, for example,
when you're producing a report that shows �gures in another currency.

Skip-Suppress (Column 47)

For a printer �le, this �eld lets you specify whether to skip to head-of-form during program
initialization.

Column 47 Description

S Suppress skipping. Printing begins at the current forms position. Use this
�eld if you entered 1 in the Form Positioning Field (column 41). This
minimizes the amount of paper required for forms alignment.

blank Skip to a new page when the program begins. (Often, the forms are already
positioned to top-of-form. In this case, no action is taken.)

Header Specifications 3-23

Example Conventions

DSPLY Options (Column 48)

This �eld speci�es how the Calculation Speci�cation operations, DSPLY and DSPLM, are
performed.

Column 48 Description

B Display the Factor 1 Field and the Result Field value; prompt for a new
Result Field value on the next line, below the displayed value.

D Display \DSPLY" and the Factor 1 Field on the same line; display the Res
Field and prompt for a new Result Field value on the same line.

N Display the Factor 1 Field; display the Result Field and prompt for a new
Result Field value on the same line.

blank Display \DSPLY", the Factor 1 Field and the Result Field on the same line;
prompt for a new Result Field value on the next line, below the displayed
value.

Record Length Check (Column 49)

This �eld speci�es how record length errors are handled at run time.

Column 49 Description

E When a record length error occurs, display this warning message:

ACTUAL<LOGICAL RECORD LENGTH FOR FILE xxxx

The programs halts with run-time error #2 (Unidentified Record). See
the Error Response Field (columns 56-71) for information on how to
pre-respond to this run-time error. If you pre-respond with a 0 and the
actual length is less than the length you specify, excess numeric characters
in the bu�er are treated as zeros and excess alphanumeric characters are
treated as spaces.

N When a record length error occurs, suppress the warning message and
run-time error.

blank When a record length error occurs, display the warning message below,
suppress the run-time error, and continue processing:

ACTUAL<LOGICAL RECORD LENGTH FOR FILE xxxx.

Page Overflow Test (Column 50)

For printer �les, this �eld determines when page over
ow is detected. Page over
ow is
detected before printing the next print line (the line contained in the line counter after
skip-after and space-after operations for the current line).

3-24 Header Specifications

Example Conventions

Column 50 Description

P Page over
ow occurs when the next print line is beyond the de�ned over
ow
line. This option provides compatibility with other implementations of RPG.

blank Page over
ow occurs when the next print line is on or beyond the de�ned
over
ow line.

*PLACE Method (Column 51)

This �eld determines how *PLACE (see the Field Name Field (columns 32-37) in the Output
Speci�cation) is processed in the program.

Column 51 Description

1 When you use more than one *PLACE, each one repeats only the �elds that
have not been repeated by previous *PLACE entries.

This option provides compatibility with other implementations of RPG.

blank When you use more than one *PLACE, each one repeats all �elds preceding
it regardless of whetherthe �elds were repeated by other *PLACE entries.

Cross-Reference Listing (Column 52)

This �eld lets you request a Cross-Reference listing during compilation. (You can also request
a Cross-Reference listing using the MAP option of the $CONTROL compiler subsystem
command.)

The HP RPG Programmer's Guide shows an example of a Cross-Reference listing. The
Cross-Reference listing shows:

The line numbers of the source lines that de�ne each �le name, �eld name, and indicator.

The line numbers of source lines that reference each �le name, �eld name, and indicator.

The memory location and length of each �eld name.

The kind of data (alphanumeric or numeric) that each �eld contains.

The type and designation of each �le.

Column 52 Description

X Print a Cross-Reference listing.

blank Do not print a Cross-Reference listing.

Header Specifications 3-25

Example Conventions

Carriage Control Type (Column 53)

This �eld selects the method by which printer forms are advanced in response to a skip
request (see the Skip Field (columns 19-22) of the Output Speci�cation). RPG determines
whether a �le is a printer �le by the use of vertical spacing controls, such as space and skip, in
the Output Speci�cations.

Column 53 Description

1 **LINE OPTION** (Simulates other implementations of RPG)

Skip requests use actual line numbers. The initial forms position is line 1.
Top-of-form is reached using a series of line-feeds. You can enter Line
Counter Speci�cations to override the default form length and over
ow line.

L **LINE OPTION** (HP implementation - line 6 is the �rst line)

Skip requests use actual line numbers. The initial forms position is line 6.
Top-of-form is reached by a series of line-feeds (including top-of-form for the
�rst page when the �rst page line number is less than 6). You can enter Line
Counter Speci�cations to override the default form length and over
ow line.

blank **CHANNEL OPTION** (Logical channels)

Skip requests use logical carriage control channel numbers, whose associated
line numbers are de�ned in Line Counter Speci�cations. The initial forms
position is Channel 1 (line 6). Top-of-form is reached by a formfeed to
Channel 1.

Table 3-7 shows how this �eld and the Line Counter Speci�cations work together to
accomplish forms control.

Table 3-7. Carriage Control Values

Column
53

Top-of-form
(Line Counter),

Channels 2-12 Over
ow Line Forms Length

1 Line 1 Not used OL as de�ned in
Line Counter
Speci�cation
(default is 60)

FL as de�ned in
Line Counter
Speci�cation
(default is 66)

L Line 6 Not used OL as de�ned in
Line Counter
Speci�cation
(default is 60)

FL as de�ned in
Line Counter
Speci�cation
(default is 66)

blank CHAN1 value as
de�ned in the Line
Counter
Speci�cation
(default is 6)

Channel values as
de�ned in the Line
Counter
Speci�cation
(default is channel
number times 5)

CHAN12 or OL as
de�ned in the Line
Counter
Speci�cation
(default is 60

Not used

3-26 Header Specifications

Example Conventions

Textfile Sequence Check (Column 54)

This �eld is used for compatibility with RPG V. It lets you compile a program, without
errors, that contains an S or N in this �eld (S and N are sequence-checking options).

Ensure that this �eld contains one of these RPG V values:

Column 54 Description

S Sequence-check records in the text �le using the sequence numbers in columns
1-5. Print a message if a sequence error occurs.

N or blank Do not sequence-check the text �le.

Error Log (Column 55)

This �eld lets you specify how RPG run-time errors are handled. (RPG run-time errors are
listed in Appendix B.)

Column 55 Description

N When an RPG run-time error occurs and a preselected response is entered for it
in the Error Response Field (columns 56-71), suppress (do not write) the error
message.

S When an RPG run-time error occurs, write an error message to the operator's
console (job mode) or to the user's terminal (session mode) and print an Error
Dump (the HP RPG Programmer's Guide explains how to interpret Error
Dumps). Ignore the Error Response Field and terminate the program.

blank When an RPG run-time error occurs and a response is not entered for it in the
Error Response Field, display the error message on the operator's console or on
the user's terminal and let the operator or user select a response.

When an RPG run-time error occurs and a response is entered for it in the Error
Response Field, redirect the error message to the standard list device (the list
device is normally a printer for job streams and the user's terminal for sessions)
and perform the chosen response.

Blank

If an RPG run-time error occurs and you leave its corresponding position blank in the Error
Response Field (columns 56-71) the error message is written to the operator's console or user's
terminal. The operator or user must select one of the following actions:

Continue processing.

Skip the record or program statement causing the error and continue processing.

Terminate the program.

To eliminate operator intervention when RPG run-time errors occur, enter either N or S into
this �eld, or if you leave it blank, enter a pre-response for the error in the Error Response
Field (columns 56-71).

Header Specifications 3-27

Example Conventions

Error Response (Columns 56-71)

This �eld lets you enter responses to one or more RPG run-time errors. The responses are
executed automatically when the errors occur. The responses provide an alternative to
operator intervention for the errors. When you use this �eld, you must leave the Error Log
Field (column 55) blank or enter an N into it.

There are 17 possible RPG run-time errors. They are listed in Appendix B. To enter a
pre-response to a speci�c RPG run-time error, choose a response character listed below and
place it in the column that corresponds to the number of the RPG error.

Columns 56-71 Description

0 Redirect or suppress the error message (see the Error Log Field, column 55)
and continue program execution.

1 Redirect or suppress the error message, skip (bypass) the error and continue
execution.

2 Redirect or suppress the error message and terminate the program normall
All control-level indicators (L1-L9 and LR) are turned on, totals are
calculated, tables are written, and all �les are closed.

3 Redirect or suppress the error message, close all �les and terminate the
program immediately. Do not turn on control-level indicators or calculate
and write totals and table output.

4 Redirect or suppress the error message, print an Error Dump and terminate
the program. Turn on all control-level indicators, calculate and write totals
and tables and close all �les.

5 Redirect or suppress the error message, print an Error Dump and terminate
the program immediately. Do not turn on control-level indicators or
calculate and write totals and tables.

blank Display the error message to the operator and let the operator choose the
error response. (The Error Log Field, column 55, must also be blank.)

3-28 Header Specifications

Example Conventions

Example

The following Header Speci�cation directs RPG to log the \divide by zero" run-time error
message to the standard list device, print an Error Dump and terminate the program
immediately.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

H 5

Figure 3-6. Entering an RPG Run-time Pre-Response

Program Name (Columns 75-80)

This �eld contains the program name. The format of this �eld is discussed in Chapter 2.

Header Specifications 3-29

Example Conventions

The Header Specification Default Summary

If you leave the optional �elds of the Header Speci�cation blank, the default speci�cations
shown in Table 3-8 apply.

Table 3-8. Header Specification Defaults

Columns Field Default Values

1-5 Sequence Number No sequence number applies.

7-14 Error Dump File Name Error Dump directed to the standard list device
($STDLIST).

15 Debug Suppress all DEBUG operations.

16 USWITCH Source Initialize using the job stream USWITCH records
or interactive prompting

17 UDATE Source Initialize using the system date.

20 Line Number Option Line number option applies.

21 Inverted Print Domestic print format applies.

22 Record Number Adjust No adjustment to relative record numbers.

25 Program Name Logging Do not print program identi�cation lines.

26 Alternate Collating Sequence Normal ASCII Collating Sequence applies.

28 BUFCHK Defaults No defaults.

34 Table/Array Look-Up Sequential look-up applies.

39 EBCDIC Zone/Digit Tests Use ASCII representation for record identi�cation
testing.

40 Sign Processing Do not process signs.

41 Form Positioning Do not align forms and do not pause for the
operator to do this.

3-30 Header Specifications

Example Conventions

Table 3-8. Header Specification Defaults (continued)

Columns Field Default Values

42 Indicator Setting Turn on the 1P and L0 indicators.

43 File Translation Do not translate �les.

44 Non-Numeric Digits Do not allow non-numeric data to be moved to
numeric �elds.

46 Dollar Sign Substitute Do not substitute a character for $ during output
editing.

47 Skip-Suppress Skip to Channel 1 (new page) of the printer's
carriage control tape.

48 DSPLY Options Print DSPLY and DSPLM literals and prompt for
a new Result Field value underneath the old
displayed value.

49 Record Length Check For each record length error, display a warning
message and continue program execution.

50 Page Over
ow Test Signal over
ow when the current line is on or
beyond the over
ow line.

51 *PLACE Method Repeat all preceding �elds, including those
produced by other *PLACE entries.

52 Cross-Reference Listing Do not print a Cross-Reference listing.

53 Carriage Control Type Use logical channel numbers for printer skip
requests.

54 Text�le Sequence Check Do not sequence-check text�les.

55 Error Log When an RPG run-time error occurs and a
response is entered in the Error Response Field,
write the error to the standard list device. If no
response is entered in the Error Response F write
the message to the operator's console or to the
user's terminal.

56-71 Error Response Send RPG error messages to the operator's
console and let the operator choose a response.

75-80 Program Name Assign the program name, RPGOBJ (unless you
use the NAME option of the $CONTROL
command).

Header Specifications 3-31

4

File Description Specifications

The File Description Speci�cation describes the general characteristics of �les used in a
program. These characteristics include:

The �le name.

The type of �le (such as input, output, or combined).

The size of the logical records in the �le.

The format of the records in the �le (�xed-length or variable-length).

The class name of the device where the �le resides (disk, tape, or other media).

You must enter a File Description Speci�cation for each �le except LDAFILE, RPGUDATE,
and USWITCH �les and those containing compile-time tables and arrays, ALTSEQ records
and �le translation records.

If you're processing KSAM or TurboIMAGE �les, you must also include one or more File
Description Continuation lines. The Continuation lines give additional information about
the �le. File Description Continuation lines are also discussed in this chapter. The HP RPG
Programmer's Guide contains a complete discussion of processing KSAM and TurboIMAGE
�les.

The File Description Speci�cation is identi�ed by an F in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

F

Figure 4-1. The File Description Specification

File Description Specifications 4-1

Example Conventions

The File Description Specification Fields

The �elds you can use in the File Description Speci�cation are described in the sections which
follow in this chapter. Each �eld has a unique name and occupies speci�c positions (columns)
in the speci�cation.

Sequence Number (Columns 1-5)

The Sequence Number Field contains the source record sequence number, described in
Chapter 2.

Specification Type (Column 6)

This �eld contains an F to identify this line as a File Description Speci�cation.

File Name (Columns 7-14)

This �eld assigns a name to a �le. Use this name throughout the program to reference the �le.

You can process MPE (sequential and direct), KSAM, and TurboIMAGE �les in the program.

For compile-time tables and arrays, use the File Extension Speci�cation to name them. If the
tables and arrays are contained in a �le, use Array/Table File Name Speci�cations to name
the �les.

Columns 7-14 Description

File name Valid �le name. (File names contain from one to eight characters, beginning
with a letter. The remaining characters can be letters or digits. Embedded
blanks are not allowed.) For TurboIMAGE �les, this entry is the data set
name.

You can process MPE �les sequentially or randomly by relative record number.

You can process KSAM �les both randomly and sequentially using a primary record key or
one of �fteen alternate record keys. You can also process KSAM �les in record number or
chronological order. Each KSAM �le has a key �le and a data �le. The key �le contains a
record directory (index) to the data �le. KSAM �les are analogous to Indexed Sequential
Access Method (ISAM) �les on other computer systems. For information about the structure
and details of KSAM �les, see the KSAM/3000 Reference Manual .

TurboIMAGE �les are databases and their associated data sets and schemas. The
TurboIMAGE subsystem (that interfaces RPG to TurboIMAGE) consists of a set of
library procedures for accessing, modifying, and reporting database data. For details about
TurboIMAGE, see the TurboIMAGE/iX Database Management System manual. When using
TurboIMAGE �les, these restrictions apply:

Because data is retrieved on a record basis, you must have an access level equal to or
higher than the highest access level �eld of the records that you're reading. (See the
TurboIMAGE/iX Database Management System manual for a discussion of access levels.)

Because TurboIMAGE �les are accessible only at execution time, you cannot save
compile-time or preexecution arrays and tables in them.

4-2 File Description Specifications

Example Conventions

RPG supports all TurboIMAGE input modes (except Re-read) of the DBGET operation.
Since some operations use DBFIND, RPG provides an additional input mode. It lets you read
down a chain until the search key changes.

You can enter a TurboIMAGE data set name in either this �eld or in a DSNAME line (see the
Data Set Name (DSNAME) Line in the File Description Continuation line). You must also
enter the database name in a Database Name (IMAGE) File Description Continuation line.

Example

The following names are examples of valid �le names.

PRINTER

A

TAPE2

D1234567

LIMBO

File Type (Column 15)

This �eld indicates how the �le is used in the program. This �eld is required for all �les.

Column 15 Description

C Combined �le

D Display �le

I Input �le

O Output �le

U Update �le

C (Combined File)

A combined �le is used for both input and output. Existing records are read and records
that are written are appended to the end of the �le. Since input records remain unchanged,
combined �les are ideal for applications that accumulate data records.

When you use a combined �le, enter Input and Output Speci�cations for it. The input and
output records de�nitions can be di�erent. The input de�nition determines the data that is
read and the output record de�nition determines the data that is written.

Do not de�ne KSAM or TurboIMAGE �les as combined �les.

D (Display File)

When using display �les, you must enter DSPLY and DSPLM Calculation Speci�cations to
read data from and to write data to them.

Display �les use $STDLIST. If the program is running in session mode, $STDLIST is the user
terminal; in job mode, it is the system console. You cannot change these assignments; MPE
FILE equations are ignored for display �les.

Do not enter Input or Output Speci�cations for display �les and do not de�ne KSAM and
TurboIMAGE �les as display �les.

File Description Specifications 4-3

Example Conventions

I (Input File)

Input �les contain data that is read by the program. An input �le can reside on tape or disk.
Input �les include preexecution time (but not compile-time) table and array �les and Record
Address Files (RAFs).

You must include one or more Input Speci�cations for each input �le. If the input �le
contains a preexecution-time table or array or is a Record Address File, enter a File Extension
Speci�cation for it.

O (Output File)

Output �les are used to write data to tape, disk, a printer or a terminal. They cannot be used
to read data. Output �les can contain preexecution-time tables and arrays.

Enter one or more Output Speci�cations for each output �le. If you're using preexecution-
time table and array output �les, you must include File Extension Speci�cations for them. If
you're creating a KSAM �le, include a KEYFL File Description Continuation line to de�ne its
key �le name and build parameters.

U (Update File)

Records in an update �le can be read and updated. When a record is updated, it is read,
modi�ed, and written back to the same location in the �le overwriting the old record. Update
�les can reside on disk or on any device with the device class name SPECIAL (see the Device
Class Name Field, columns 40-46).

If you use update �les, include Input and Output Speci�cations for them. The record
de�nitions in the Input and Output Speci�cations should be the same.

File Designation (Column 16)

This �eld indicates the function of a �le. You can use it for input, update, and combined �les
(see the File Type Field, column 15) and for output �les used for chaining.

Column 16 Description

C Chained �le

D Demand �le

F Full procedural �le

P Primary �le

R Record Address File (input only)

S Secondary �le

T Preexecution-time table/array �le (input only)

blank Sequential output or display �le

4-4 File Description Specifications

Example Conventions

C (Chained File)

Chained �les are input, output, and update disk �les that are accessed randomly via Input
Speci�cation chaining �elds or that are read directly by the Calculation Speci�cation CHAIN
operation. When you use CHAIN, input and update �les are read and output �les are written.
You can write update �les using Output Speci�cations or the Calculation Speci�cation
EXCPT operation.

Chained �les cannot reside on devices with the device class name SPECIAL.

D (Demand File)

This is an input or update �le that is processed sequentially by a Calculation Speci�cation
READ operation. For input demand �les, use only the READ operation. For update demand
�les, use the READ operation for input and normal indicator processing for output.

F (Full Procedural File)

A full procedural �le is an input or update �le that can be processed both sequentially and
randomly by the same key �eld. You can read records from a full procedural �le using both
the Calculation Speci�cation CHAIN and READ operations. For example, you can use
CHAIN to randomly read a record, then use READ to sequentially retrieve records from that
point forward in the �le. Specifying a �le as full procedural is easier than specifying both a
chained and a sequential �le, and then equating them with two DSNAME File Continuation
lines.

P (Primary File)

Primary �les are the main �les used for input. Use only one primary �le in a program. A
primary �le can have an input, update, or combined �le type. When there is only one input
�le, it is usually the primary �le. However, it can also be a chained or demand �le. If there
are other input �les in the program, the primary �le is processed �rst and it controls the order
in which the others are processed. See the Matching/Chaining Fields Field (columns 61-62) of
the Input Speci�cation for details about how primary �les are processed during �le matching.

R (Record Address File)

This is a sequential input �le containing record numbers or keys. The record numbers or keys
select records in another �le. You can use Record Address Files (RAFs) to access records in
KSAM and TurboIMAGE �les.

Use only one RAF in a program and include a File Extension Speci�cation for it. Do not
enter Input Speci�cations for it or de�ne it with the device class name SPECIAL (see the
Device Class Name Field, columns 40-46).

You can create a RAF using any standard word processor or editor. The way that you enter
record numbers or keys into lines in the RAF depends on how you're using them to access
records.

If you want to use the RAF to access records sequentially within record number or key limits,
enter a lower limit record number or key into the �rst position of a RAF line. Immediately
follow it with the record number or key for the upper limit, with no intervening spaces. Enter
as many lines as necessary. If you're entering record keys and the ones that you're accessing
are in packed decimal format, enter the RAF keys in packed decimal format also. When a
RAF is used to process a KSAM �le within limits, processing begins with the lower limit
record (or if it does not exist, the next higher record in sequence) and proceeds sequentially

File Description Specifications 4-5

Example Conventions

until a record that matches or exceeds the upper limit is read or until end-of-�le is
encountered in the KSAM �le. Since you can enter any number of upper and lower limit lines
in a RAF, you can process the same records more than once, if necessary.

If you want to use the RAF to access records randomly, enter a record key in the �rst position
of a RAF line. You can enter more than one key per line but do not separate them with
spaces (spaces causes RPG to read the next RAF line). The number of keys per RAF line can
vary, but the length of the keys must be the same. Keys in a RAF must have the same format
and length as the keys in the �le you're accessing. When you use a RAF to process a KSAM
�le randomly, RPG retrieves each key in the RAF and accesses the corresponding record in
the KSAM �le. Processing continues until end-of-�le is encountered in the RAF.

See the HP RPG Programmer's Guide for examples of how to process a KSAM �le
sequentially and randomly using a RAF.

S (Secondary File)

You use a secondary �le in programs that have more than one input �le, to indicate that it is
not the most important �le in the input processing sequence. Secondary �les can have input,
update, or combined �le types. You can enter as many secondary �les in a program as you
need. If you're not using matching �les, secondary �les are processed in the order in which
you enter their File Description Speci�cations.

T (Preexecution Array/Table File)

This �le contains one or more array or table. They are read into memory before the program
begins execution. If you use preexecution tables/arrays, include File Extension Speci�cations
for them.

End-of-File (Column 17)

For an input, update, or combined �le, this �eld determines whether the program can end
before all records in the �le are processed. Do not use this �eld for demand, chained, or
preexecution-time array/table �les.

Column 17 Description

E The program cannot end until it reads all records from this �le.

blank If other �les contain an E in this �eld, the program can end whether or not
it reads all records from this �le.

If this �eld is blank for input, update, and combined �les, the program ends
only when it reads all records from all of these �les.

Use this �eld for �les that you want to process in their entirety. For example, when producing
a student attendance report for a certain time period, you need to read all student records in
a master student enrollment �le, those that have attendance transactions for the period and
those that do not. You would enter an E in this �eld for the master student enrollment �le
and leave this �eld blank for the attendance transaction �le.

4-6 File Description Specifications

Example Conventions

Input Sequence (Column 18)

This �eld determines whether matching �les are sequence-checked. Use this �eld only for
update, combined, primary, and secondary input �les.

This �eld is ignored if you do not use matching �elds in the Input Speci�cation.

Column 18 Description

A or blank If this is a matching �le, check the records for ascending sequence.

D If this is a matching �le, check the records for descending sequence.

The Matching/Chaining Fields (columns 61-62) of the Input Speci�cation let you compare two
or more input, update, or combined �les to determine whether their records match. Records
in all matching �les must be in the same sequence (ascending or descending). When a record
is out of sequence, an error message is printed. Depending on the entry in the Error Response
Field (columns 56-71) of the Header Speci�cation, the program either bypasses the record and
continues, or it terminates.

The ASCII collating sequence is used for sequence-checking unless you de�ne an alternate
collating sequence or request the EBCDIC collating sequence (see Alternate Collating
Sequence, column 26, and EBCDIC Zone/Digit Tests, column 39, in the Header Speci�cation).

Record Format (Column 19)

This �eld speci�es whether records in the �le are �xed-length or variable-length. This �eld is
required.

Column 19 Description

F Fixed-length record format. Use this format for all printer and
TurboIMAGE �les.

V Variable-length record format. Use this format for all WORKSTN,
WORKSTN and WORKSTNC �les.

File Description Specifications 4-7

Example Conventions

Block Length (Columns 20-23)

This �eld determines the length of the blocks (physical groups of records) read from or written
to tape �les or written to disk �les.

This �eld is ignored for disk input �les; records are blocked according to the blocking
information in the �le label. It is also ignored for line printer and terminal �les. In these
cases, the block length is determined by the device type. The block length for a line printer
�le is one line (either 80 or 132 characters).

Columns 20-23 Description

1 - 9999
(right-justi�ed,
leading zeros are
not required)

For tape and disk �les, the length of the block in characters.

blank No blocking; the block and logical record lengths are identical.

Data is read from �les, and written to them, in units known as blocks. A block is transferred
as a unit between the �le's device and main memory. For tape or disk �les, a block can consist
of one or more logical records. For instance, a block can consist of 2 records or 256 records.
Blocking for tape �les reduces execution time and the amount of space required for the �le on
tape.

Be sure to enter the logical length of records in the Logical Record Length Field (columns
24-27). RPG uses the block and logical record lengths to determine the number of records in
each block. This number is called the blocking factor and is always an integer.

By using the :FILE command with the REC parameter you can enter a di�erent block
length at run time to override the block length that you enter in this �eld (see the MPE/iX
Commands Reference Manual). RPG does all the input/output for you when using a �le
equation to override compile-time options. For example, do not specify NOBUF in your �le
equation because you cannot do your own bu�ering.

Logical Record Length (Columns 24-27)

This �eld speci�es the length of logical records in the �le. This �eld is required.

Columns 24-27 Description

1 - 9999
(right-justi�ed,
leading zeros are
not required)

For �xed-length records, enter the length of the record. For variable-length
records, enter the length of the longest record in the �le.

See the Record Length Check Field (column 49) of the Header Speci�cation for information on
how record length errors are handled at run time.

4-8 File Description Specifications

Example Conventions

Processing Mode (Column 28)

This �eld determines whether records are processed sequentially from beginning to end,
sequentially between speci�ed limits or randomly.

Column 28 Description

L Sequential processing between limits.

R Random processing (by relative record number or record key).

blank Sequential processing for the entire �le.

L (Sequential Processing Between Limits)

You can process portions of KSAM �les by processing them sequentially within limits. You
supply the limits (boundaries) by entering the record key values for them. You can specify the
lower limit using the Calculation Speci�cation SETLL operation or you can enter sets of lower
and upper limits in a RAF. Record keys do not have to match existing keys in the �le. If a
record for the lower limit key does not exist, the record with the next higher key is selected.

R (Random Processing)

You can access records directly in this mode; you do have to pass over records in order to
Locate the records you want to process. Depending on the �le organization (see the File
Organization/Additional I/O Area Field, column 32), you can access a record randomly by
supplying either a relative record number or a record key.

You can access KSAM, TurboIMAGE, and MPE direct �les by relative record number.
The File Organization/Additional I/O Area Field (column 32) must be blank for these
�les or contain a digit 1-7 or the letter D. You can use an ADDROUT �le, the Calculation
Speci�cation CHAIN operation or a chaining �le to supply the relative record numbers.

A relative record number is a series of digits that identi�es the position of a record relative to
the �rst record in the �le. For TurboIMAGE �les, the �rst record is Record 1. For KSAM
�les, the �rst record is either Record 0 or 1, depending on which one you choose when you
create the �le. For all other �les, the �rst record is Record 0 (for example, record 0 is the �rst
record in the �le). You can change the beginning relative record number to 1 by entering a 1
in the Record Number Adjust Field (column 22) of the Header Speci�cation.

You can use an ADDROUT �le for storing relative record numbers. An ADDROUT �le is
a special type of RAF that contains four-character relative record numbers in �xed-length,
binary records. ADDROUT �les are created by XSORT (see the RPG Utilities Reference
Manual). When using an ADDROUT or chaining �le, RPG reads relative record numbers
until the end-of-�le in ADDROUT is reached.

You can access KSAM and TurboIMAGE �les by record key. (A key is a string of characters
that is used for �nding individual records in a �le; the string is matched with a �eld in the
record.) To access a �le by record key, the File Organization/Additional I/O Area Field
(column 32) must contain I, M, or X. You can use a RAF or a chaining �le to supply key
values.

File Description Specifications 4-9

Example Conventions

KSAM �les have key �les containing indexes that let you access records directly. KSAM
indexes are updated automatically when you process the �le. Record keys can be
alphanumeric, packed, or unpacked numeric �elds. De�ne the key �eld type using the Record
Address Type Field (column 31). Specify the length of the key �eld and its starting position
using the Record Address or Key Field Length Field (columns 29-30) and the Key Field
Starting Location Field (columns 35-38).

Blank (Sequential Processing)

Sequential �les are processed from beginning to end. If this is an MPE �le, an ADDROUT
�le or in input KSAM �le (the File Organization/Additional I/O Area Field, column 32, is
blank, a digit 1-7, T, or C), records are processed in their physical order. If this is a KSAM or
TurboIMAGE �le (the File Organization/Additional I/O Area Field is I, M, or X), records are
processed in key sequence.

Record Address or Key Field Length (Columns 29-30)

If this �le is an input RAF, specify the length of the relative record numbers. If this is an
input KSAM or TurboIMAGE �le, enter the number of positions occupied by the record key.

Columns 29-30 Description

1 - 99
(right-justi�ed,
leading zeros are
not required)

For a RAF, enter the length (in characters) of the relative record
number or key �eld in the RAF; for an ADDROUT �le, enter 4.

For a KSAM or TurboIMAGE �le, enter the length of the key �eld (the
maximum key length is 99). If this is an input �le controlled by a
RAF, use the same key length as the RAF.

blank This is not a RAF, KSAM, or TurboIMAGE �le. Or, this is a KSAM
or MPE �le controlled by an ADDROUT RAF.

4-10 File Description Specifications

Example Conventions

Record Address Type (Column 31)

This �eld describes the key �eld used for accessing a �le by key. This �eld is required for
MPE direct �les and KSAM and TurboIMAGE �les that are chained �les or are accessed by a
RAF.

Column 31 Description

A This �le is a KSAM or TurboIMAGE �le processed by alphanumeric or
numeric keys. Numeric �elds are unpacked before chaining.

I This �le is a MPE direct, KSAM, or TurboIMAGE �le that is
processed by relative record number via chaining or a RAF; or this is a
RAF.

K or P This �le is a KSAM or TurboIMAGE �le processed by packed decimal
numeric keys (do not use split chaining �elds with the �le); or this is
an MPE direct �le processed by relative record number.

For TurboIMAGE �les, the sign of numeric input �elds is changed to C
or D. Numeric Result Fields produced by Calculation Speci�cations
have a C or D sign. Thus, if the sign of the key �eld in the
TurboIMAGE �le is not C or D, a record-not-found error occurs when
chaining to the �le.

blank This is an MPE sequential �le or a RAF; or it is an MPE direct,
KSAM or TurboIMAGE �le that is processed randomly by relative
record number (the Processing Mode Field, column 28, is R).

File Description Specifications 4-11

Example Conventions

File Organization/Additional I/O Area (Column 32)

This �eld speci�es how the �le is organized (for example, KSAM or TurboIMAGE) and it lets
you select the number of bu�ers to use.

Column 32 Description

C This is an input (only) KSAM �le. The records are read
chronologically.

D This is an MPE direct �le; assign two bu�ers to the �le. (This entry is
not required; it is provided for compatibility with other RPG systems.)

I or X This is a KSAM �le. An error occurs at run time if the �le is not a
KSAM �le. (X provides compatibility with other RPG systems.)

M This is a TurboIMAGE �le; I, X, or any other entry defaults to M if
IMAGE File Description Continuation lines are present.

T This is an ADDROUT �le, with two input/output bu�ers.

1 - 7 This is an MPE sequential or direct �le; the speci�ed number of bu�ers
(1-7) are assigned to the �le. Accepted (but not used) for
TurboIMAGE �les. The default number of bu�ers is 2.

8 or 9,
blank

This is an MPE sequential or direct �le; assign two bu�ers to the �le.
(Entries 8 and 9 are available for compatibility with other RPG
systems.)

C (Chronological)

Records that have been marked as deleted (the �rst two characters are hexadecimal F's)
are not bypassed when a KSAM �le is read chronologically. You must include code in the
program to bypass them, if necessary. You must reorganize the �le to drop deleted records.

Table 4-1 summarizes the valid combination of entries for this �eld, the Processing Mode Field
(column 28) and the Record Address Type Field (column 32).

4-12 File Description Specifications

Example Conventions

Table 4-1. Valid Entries for Columns 28, 31, and 32

Processing Mode
(Column 28)

Record Address Type
(Column 31)

File Organization
(Column 32)

blank (entire �le) blank (key not used) blank (sequential)

blank (entire �le)
L (within limits)
R (randomly)

A (alphanumeric key)
P (packed key)
I (record number)
K (record key)

M (TurboIMAGE)

R (randomly) I (record number) D (direct)

blank (ADDROUT �le) blank (ADDROUT �le) T (ADDROUT �le)

blank (entire �le)
L (within limits)
R (randomly)

A (alphanumeric key)
P (packed key)
I (record number)
K (record key)

C or I (KSAM)

Overflow Indicator (Columns 33-34)

When you use an over
ow indicator to enable or suppress the output of over
ow lines to a
printer, you must name that over
ow indicator using this �eld.

Enter an indicator only for line printer �les or for disk �les controlled by Line Counter
Speci�cations and ultimately destined to be printed. Enter just one indicator per �le and do
assign that indicator to another �le.

Columns 33-34 Description

OA
OB
OC
OD
OE
OF
OG
OV

g
g
g
g
g-Assign the named indicator
g
g
g

blank Do not assign an over
ow indicator

You determine the lines where output begins and ends on a printed page by entering a Line
Counter Speci�cation. The last line on a page is the over
ow line. When the over
ow line is
reached and no over
ow indicator is assigned to the �le, the paper is advanced to top-of-form
and normal output continues. If the over
ow line is reached and an over
ow indicator is
assigned to the �le, one of the following actions takes place (the over
ow indicator is turned
ON and OFF by Input and Calculation Speci�cations and it is turned ON each time the
over
ow line is reached):

File Description Specifications 4-13

Example Conventions

1. If the over
ow indicator is ON, records associated with the indicator in the Output
Speci�cations are printed at the bottom of the current page or at the top of the next page,
or both. Associating the over
ow indicator with output records in this manner is often
used to condition the printing of totals and subtotals at the bottom of a page, or to print
headings at the top of the following page.

2. If the over
ow indicator is OFF, normal output continues on the line following the over
ow
line. No output records are printed and the paper is not advanced to top-of-form.

Key Field Starting Location (Columns 35-38)

This �eld de�nes the starting location of the key �eld in a KSAM �le. You can enter the
starting location of any one of the possible 16 keys for the �le. This �eld is required when the
�le is processed by record key. If this is a TurboIMAGE �le, do not use this �eld.

Columns 35-38 Description

1 - 9999 Starting position of the key �eld.

blank A key �eld is not used.

Examples

Line 1 in Figure 4-2 shows how to specify sequential processing for an entire KSAM �le. The
record with the lowest key is processed �rst followed by records with successively higher keys,
until end-of-�le is encountered. Columns 15-16 are IS to de�ne the �le as an input, secondary
�le. Column 28 is blank to request sequential processing and columns 29-31 are 10P to specify
that the key is a ten-digit packed �eld. Column 32 is I to indicate that this is a KSAM �le.
Column 38 is 4 to indicate that the key begins in position 4 of each input record.

Line 2 in Figure 4-2 shows how to specify sequential processing between limits for a KSAM
�le. Processing begins with a lower limit key in a RAF and continues sequentially until the
record for the upper limit key is processed. Columns 15-16 are IP to specify that this is
an input primary �le. Column 28 is L to request sequential processing between limits and
columns 30-31 are 6A to de�ne the key as a six-position alphanumeric �eld. Column 32 is X
(you can also use I) to de�ne this as a KSAM �le. And �nally, column 38 is 1 to indicate that
the key �eld starts in the �rst position of the KSAM �le.

Line 3 in Figure 4-2 shows how to specify random processing for a KSAM �le. (The keys of
records to be processed are stored in a RAF.) Columns 15-16 contain UP to specify that this
is an update, primary �le. Column 28 is R to indicate that the �le is processed randomly.
Columns 30-31 are 2A to specify that the key is a two-position alphanumeric �eld. And
�nally, columns 37-38 contain the key �eld starting location for each record, 10.

4-14 File Description Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FFILE1 IS F 80 10PI 4

�2� FFILE2 IP F 120 40L 6AX 1

�3� FFILE3 UP F 104R 2AI 10

Figure 4-2. File Description Specifications for KSAM Files

Extension Code (Column 39)

This �eld indicates whether File Extension and Line Counter Speci�cations are used for this
�le.

Column 39 Description

E File Extension Speci�cations are included for the �le. You must enter
File Extension Speci�cations for RAFs, chaining �les and
execution-time tables and arrays.

L Line Counter Speci�cations are included for the �le. You must enter a
Line Counter Speci�cation if the program uses over
ow sensing.

blank File Extension and Line Counter Speci�cations are not used for the
�le. If included, they are ignored and a warning message is displayed.

File Description Specifications 4-15

Example Conventions

Device Class Name (Columns 40-46)

This �eld associates a device class name or device identi�er to the �le. (Device class names
and device identi�ers are assigned during system con�guration by systems personnel. Contact
these individuals for speci�c assignments.)

This �eld is optional for display �les, since the terminal is always used in session mode and
the job �le in job mode.

Columns 40-46 Description

Device identi�er.
(This can contain up to
seven letters, digits and
special characters.)

Device class name or logical device number of the device on which the
�le resides.

SPECIAL The �le is located on a device that requires a user-de�ned external
subroutine to handle input/output. Enter the name of this routine in
the Name of Label Exit Field (columns 54-59) and also furnish the
routine itself.

$STDIN A special device class that should only be used with input �les.

$STDLST A special device class that should only be used with display and
output.

WORKSTN A special device class used only with RPG for RPG Screen Interface
(RSI) and VPLUS �les (it is not de�ned by the operating system as a
device class name). The �le assigned to this device can have any legal
�le name, but must be de�ned as an update or combined �le
(WORKSTNC can have any �le type). The �le is usually designated as
a demand �le, but may be a primary �le. For example, an update
primary �le might be used when an application is limited to a single
cycle such as displaying a form, reading data entered on the form or
writing data to a �le. For most applications, you de�ne WORKSTN as
an update demand �le. Update demand �les are processed by the
Calculation Speci�cation operations READ and EXCPT.

Assign only one �le in a program to WORKSTN. Specify that the �le
has variable-length records.

blank The device class name, DISK.

Device Identi�er

The device identi�er can be a device class name or a logical device number. A device class
name names the general type of device used for the �le (the compiler does not verify that it is
a valid name). A logical device number refers to a speci�c device, such as a particular printer
or tape unit.

While the operating system permits up to eight characters for the device identi�er, RPG
permits only seven. If you're using a �le that contains eight characters, enter a :FILE
command at run time to equate the �le to the device identi�er.

You can override the name in this �eld by entering a :FILE command with the DEV=
parameter.

4-16 File Description Specifications

Example Conventions

Interface Type (Column 47)

This �eld de�nes the WORKSTN Interface to be used in the program.

Column 47 Description

C This is an RPG Screen Interface (RSI) WORKSTN CONSOLE �le.

R This is an RPG Screen Interface (RSI) WORKSTN �le.

blank This is an RPG VPLUS Interface WORKSTN �le.

Interface Control (Columns 48-52)

This �eld is used for options relating to WORKSTN �le interfaces. See Chapters 10 and
11 for information on how it is used with VPLUS and RPG Screen Interface (RSI) �les,
respectively.

Disk Labels (Column 53)

This �eld indicates if a disk �le has user labels and, if they do, how to process them. You can
read and write up to nine user labels.

Column 53 Description

E Process standard labels. Call a user-written routine to process a single
user label, or bypass the label if the Name of Label Exit Field
(columns 54-59) is blank.

S or blank Process standard labels.

2 - 9 Process standard labels. Call a user-written routine to process the
number of user labels speci�ed by this entry or bypass them if the
Name of Label Exit Field (columns 54 is blank).

File Description Specifications 4-17

Example Conventions

Name of Label Exit (Columns 54-59)

This �eld names the user-written routine that processes user labels or �les for SPECIAL
devices.

Columns 54-59 Description

Routine name. (This name
contains up to six characters,
beginning with a letter; the
remaining characters can be
letters or digits.)

The name of the user-written routine that processes user labels or
SPECIAL �les.

blank The program does not process user labels or SPECIAL �les.

Although standard labels are not supported for magnetic tape, you can process them with
your own routine. Enter the name of the routine in this �eld and leave the Disk Labels Field
(column 53) blank. You may want to use the system intrinsics, FREAD and FWRITE, in the
routine to perform reading and writing. See the MPE/iX Intrinsics Reference Manual for
details about these system intrinsics.

The following lines show how to enter statements in a routine written in the C language. You
can use the system intrinsics, FREADLABEL and FWRITELABEL, in the procedure body to
read and write the labels.

struct file_table {

.

.

};

void exitname (ptr)

struct file_table *ptr;

{

.

.

(procedure body)

.

.

}

exitname is the name of the procedure and ptr is the name of the pointer that gives the entry
in the File Table for the �le. (The File Table is an integer array and is described in the HP
RPG Programmer's Guide.)

4-18 File Description Specifications

Example Conventions

The following code shows how to enter a C language procedure to process a SPECIAL �le:

struct file_table {

.

.

};

void exitname (ptr,type,returncode);

struct file_table *ptr;

int *type, *returncode;

{

.

.

(procedure body)

.

.

}

Note When coding in C, the procedure name must be in lowercase. If coding
in Pascal, FORTRAN, or COBOL, the compilation process will do any
downshifting necessary.

exitname is the name of the procedure and *ptr is the name of the pointer that gives the
entry in the File Table for this �le (see the File Table in the HP RPG Programmer's Guide).
TYPE is a pointer to an integer parameter that contains one of the following: 0 (read a record),
1 (write a record), 2 (close the �le), or 3 (open the �le). returncode is a pointer to an integer
that passes the outcome of the routine back to the RPG program. Ensure that it contains one
of the following: 0 (normal �le-processing occurred), -1 (the procedure encountered an error),
or +1 (the procedure encountered end-of-�le while reading the �le).

After reading a record in the routine, place it in the bu�er reserved for it by RPG. The
bu�er's length is determined by the Block Length Field (columns 20-23). The word-pointer to
this bu�er is found in the 26th word of the File Table.

For SPECIAL �les with carriage controls speci�ed in the Output Speci�cation, the FPARAM
entry (word 54) in the File Table points to a four-word integer array containing the
skip-before, skip-after, space-before and space-after options for the current record.

File Addition (Column 66)

This �eld determines whether records added to an existing sequential �le are written at
the beginning (over-writing existing records) or are appended to the end (following existing
records). You may use this �eld for KSAM and TurboIMAGE input and update �les, though
it is not required.

When you add records to KSAM and TurboIMAGE input and update �les, the records do not
have to be in key order nor do they have to be greater than the highest key in the �le.

File Description Specifications 4-19

Example Conventions

Column 66 Description

A Append new records to the end of MPE sequential �les; add new
records to KSAM and TurboIMAGE �les.

blank Write new records to the beginning of MPE sequential and KSAM
�les; add new records to TurboIMAGE update �les. Do not add
records to other update �les or to TurboIMAGE output �les.

A (Append)

When you enter an A in this �eld, also enter ADD in Record Addition/Deletion Field
(columns 16-18) of the �eld with the same name in the Output Speci�cation. Alternatively,
instead of entering an A in this �eld and ADD in individual record descriptions, you can enter
a :FILE command at run time that includes the ACC=APPEND parameter.

Blank

If you're creating a KSAM �le, enter a KEYFL File Description Continuation line for it.

Extents (Columns 68-69)

This �eld speci�es the number of extents to be used for disk output �les. (For disk input �les,
the number of extents comes from the disk �le label).

Columns 68-69 Description

1 - 15
(right-justi�ed,
leading zeros are
not required)

Create the disk �le with this number of extents.

blank Create the disk �le with eight disk extents.

The operating system manages each disk �le as a set of extents. Each extent is an integral
number of contiguous disk sectors. All extents (except possibly the last) are the same size.
You can override the extents entered in this �eld with a :FILE command containing the
NUMEXTENTS parameter.

File Conditioner (Columns 71-72)

This �eld identi�es the user indicators that condition this �le.

Columns 71-72 Description

U1 - U8 Use the �le only when this user indicator is turned ON.

blank Use the �le unconditionally.

4-20 File Description Specifications

Example Conventions

U1-U8

When you enter a user indicator in this �eld, it must be ON at run time to read or write this
�le. You can enter a user indicator for any �le except display, WORKSTN, and SPECIAL
�les.

This �eld is commonly used to assign a user indicator to an optional �le. By turning the user
indicator OFF before the program begins, you can bypass (not process) the �le.

You turn user indicators ON and OFF by setting them interactively or by using USWITCH
records or the system Job Control Word (JCW). Although you can change a user indicator's
setting with Input, Calculation, and Output Speci�cations, its initial setting determines
whether or not the �le is used. If you initialize the user indicator with the system JCW, the
�nal setting of the indicator is written back to the JCW when the program ends.

Program Name (Columns 75-80)

This �eld contains the program name. The format of this �eld is discussed in Chapter 2.

File Description Specifications 4-21

Example Conventions

The File Description Continuation Line

When you use KSAM, TurboIMAGE, or WORKSTN �les in a program, you must enter one
or more File Description Continuation lines for them. The Continuation lines give additional
information about the �les, such as �le locking requirements and database and data set
names.

The remaining sections of this chapter give details about the Continuation lines that you
can use. There are four di�erent types of Continuation lines, each distinguished by the �elds
located in columns 54-74. These lines are summarized below:

General lines.

This line contains �elds that specify error-handling procedures, exit routines, �le locking,
ASCII/EBCDIC conversion and partial �eld translation for a �le. Enter as many of these
lines as required for the �le.

File-sharing line.

This line contains �elds that associate more than one name to a single KSAM or
TurboIMAGE �le. Enter one of these lines per �le.

Database lines.

This line contains �elds that de�ne KSAM �les, TurboIMAGE databases, and
TurboIMAGE data sets. Enter as many of these lines as required for the �le.

WORKSTN interface lines.

This line contains �elds that name the �les and �elds associated with the RPG Screen and
VPLUS Interfaces. Enter as many of these lines as necessary for the �le.

Sequence Number (Columns 1-5)

The Sequence Number Field contains the source record sequence number, described in
Chapter 2.

Specification Type (Column 6)

This �eld contains an F to identify this line as a File Description Speci�cation.

Leave columns 7-19 and 52 of each Continuation line blank.

Long Name Option Target (Columns 20-51)

This �eld is a longer alternative to the Option Target Field (columns 60-74). Use it only in
DSNAME and ITEM Continuation lines when you need to enter more than 15 characters for a
�le or key name. Enter up to 16 characters in columns 20-35. Also enter an asterisk in column
60 to signal that you're using this �eld instead of the Option Target Field for the �le or key
name.

4-22 File Description Specifications

Example Conventions

Continuation Code (Column 53)

This �eld identi�es this as a File Description Continuation line. It is required.

Column 53 Description

K This is a File Description Continuation line.

General Fields (Columns 54-74)

There are two general �elds: the Option Type Field (columns 54-59) and the Option Target
Field (columns 60-65). The entries in the Option Type Field determines the values that you
can enter in the Option Target Field. For example, if you enter ERROR in the Option Type
Field, you must enter an error routine name in the Option Target Field. The Option Type
Field is described in detail in the pages which follow.

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-65)

Description

ASCII The �le is in ASCII
format. (This entry is
not required; it is
provided for
compatibility with other
RPG compilers.)

(Not applicable) (Not applicable)

BUFCHK Enable/Disable the
bu�er integrity checking
options CDC, NRC, and
UPC.

N (in column 60) Disables Current Data
Checking (CDC). A
blank enables CDC.

N (in column 61) Disables No-Read
Checking (NRC). A
blank enables NRC.

N (in column 62) Disables Update-Protect
Checking (UPC). A
blank enables UPC.

BYPASS If an input/output error
occurs, bypass the
current logical record
and increment the error
counter named in the
Option Target Field by
one.

Field name.(This can
contain up to six
characters, beginning
with a letter or @, $, or
#; the remaining
characters can be letters
or digits.)

The name of the error
counter �eld. It must be
a �ve-digit numeric �eld
with zero decimal
positions.

File Description Specifications 4-23

Example Conventions

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-65)

Description

EBCDIC The �le is in EBCDIC
format. If it is an input
�le, it is translated into
ASCII before
processing. If it is an
output �le, it is
translated into EBCDIC
before being written.

P (in column 60) A partial �eld
translation is
performed; input and
output packed decimal
and binary �elds are not
translated.

EBCDIK The �le is in EBCDIK
format. If it is an input
�le, it is translated to
JIS before processing. If
it is an output �le, it is
translated into EBCDIK
before being written.

P (in column 60) A partial �eld
translation is
performed; input and
output packed decimal
and binary �elds are not
translated.

ERROR If an input/output error
occurs, transfer control
to the user-written
routine (named in the
Option Target Field) to
handle the error.

Routine name. (This
can contain up to six
characters, beginning
with a letter; the
remaining characters
can be letters or digits.)

The name of the routine
that handles error
processing.

FATAL Provide user control
over run-time fatal �le
errors.

Enter 0-5 in column 60. See H specs columns
56-71 for a description
of the response.

LOCK Lock this �le during
input and output
operations. (LOCK
applies only to KSAM
and MPE �les.)

(Not applicable) (Not applicable)

4-24 File Description Specifications

Example Conventions

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-65)

Description

NOLOCK Open this �le so that
concurrent users of the
�le can use LOCK. This
option does not
dynamically lock and
unlock the �le.
(NOLOCK applies only
to KSAM and MPE
�les.)

(Not applicable) (Not applicable)

PARTTR When you use �le
translation records to
translate a record
containing packed
decimal or binary �elds,
those �elds are not
translated. (A partial
�le translation occurs.)
If this is an EBCDIC
input �le, use the
EBCDIC entry.

(Not applicable) (Not applicable)

RDEXIT Each time a record is
read, transfer control to
a user-written routine
(named in the Option
Target Field) that
retains or bypasses the
record.

Routine name. (This
can contain up to six
characters, beginning
with a letter; the
remaining characters
can be letters or digits.)

The name of the routine
that retains or bypasses
the record.

RDSEQ After adding records to
a sequential chained �le,
reposition the record
pointer to the next
sequential record; do
not leave the record
pointer positioned to
the record that was
added.

(Not applicable) (Not applicable)

blank Options not used. (Not applicable) (Not applicable)

File Description Specifications 4-25

Example Conventions

Option Type (Columns 54-59)

The following paragraphs describe certain options that you can enter in this �eld:

BUFCHK

If the Option Target Field contains a value other than blank or N, a compiler warning
(2086W, 2087W, or 2089W) is displayed and the corresponding option is enabled. If you do
not enter a BUFCHK Continuation line, the bu�er option is determined by the BUFCHK
Defaults Field (column 28) of the Header Speci�cation. The bu�er integrity checking options
are described in the following paragraphs.

You may want to use Current Data Checking (CDC) when two or more �les are equated to
the same physical �le via the MPE FILE command. CDC performs special input/output
processing to ensure that all data bu�ers have current data. Current Data Checking is
available only for KSAM and MPE �les that have the locking facility enabled (the LOCK or
NOLOCK Continuation lines are used).

You should use Current Data Checking when the same physical �le is an update, output, or
update/output �le in the same program. When the physical �le is equated to two or more �les
in the program using an MPE FILE equation, multiple access paths to the physical �le are
created. Since the operating system maintains separate data bu�ers for each of these access
paths, output, and update operations may not be synchronized. Writing data from one bu�er
to the physical �le can inadvertently overlay data (including records and record pointers)
previously written from another bu�er. This can result in corruption of the KSAM or MPE
�le.

No-Read Checking (NRC) ensures that output operations for the �rst record in an update �le
are executed only after the record is read.

Update-Protect Checking (UPC) ensures that the appropriate input record is placed in the �le
bu�er before update operations (in Output Speci�cations) are performed on it. UPC prevents
the following situations:

Two or more consecutive update operations with no new input.

For an update �le having records added to it (the File Addition Field (column 66) of the
File Description Speci�cation is A), the interference of add and update operations for the
same �le. For example, since add and update operations share the same bu�er, an add
operation may \dirty" the bu�er as follows: an update operation reads the record to be
updated; the add operation adds a record to the �le; the update operation formats the
added record, rather than the original record, and writes it. If Update-Protect Checking is
not speci�ed for this �le, this compiler message (2081I) results:

FOR UPDATE-ADD FILES WITHOUT 'UPDATE-PROTECT CHECK', ENSURE THAT NO UPDATE IS

INTERRUPTED BY AN ADD.

When you specify UPC, and a bu�er con
ict occurs, the program aborts with a NO RECORD

FOUND run-time error and this message is displayed:

Attempted update on same record, or on intervening Add record.

4-26 File Description Specifications

Example Conventions

ERROR, RDEXIT

The ERROR and RDEXIT routines must have a procedure head and body format similar to
that shown below. The procedure shown below is written in the C language:

struct file_table {

.

.

};

void exitname (ptr,returncode);

struct file_table *ptr;

int *returncode;

{

.

.

(procedure body)

.

.

}

The procedure name is exitname. The pointer to the pertinent File Table (File Table formats
are discussed in the HP RPG/iX Programmer's Guide) for this �le is ptr. returncode is
a pointer to an integer that passes the outcome of the routine back to the RPG program.
Ensure that it contains one of the following: 0 (continue the program without rewriting the
record), 1 (bypass or rewrite the record), or 2 (abort the program).

Note When coding in C, the procedure name must be in lowercase. If coding
in Pascal, FORTRAN, or COBOL, the compilation process will do any
downshifting necessary.

FATAL

You may use the FATAL continuation record option to pre-program an error response to
RPG run-time error number one, FATAL FILE ERROR. The error responses allowed are
0-5, exactly the same options that are available for other run-time errors. If you specify
FATAL, but put an invalid error response in column 60 or leave column 60 blank, RPG
will default your error response to 0 (=CONTINUE). Note that this is di�erent from not
specifying FATAL at all, in which case RPG would default fatal �le errors to error response 5
(=IMMEDIATE TERMINATION WITH DUMP).

The FATAL option is intended go give control to the RPG user at run-time in the event of
a FATAL FILE ERROR. You must, therefore, specify a STATUS array to go with it. You
would do this on a following continuation record, using the same syntax as the STATUS array
for IMAGE �les. Once a fatal �le error occurs, RPG will post the error number from KSAM,
MPE, or IMAGE to the �rst word of your status array. You then have the capability to check
this word in your calculation specs, and perhaps take a variety of actions depending on the
particular �le error.

File Description Specifications 4-27

Example Conventions

RPG will also post an \F" to the *ERROR �eld when a fatal �le error occurs. You may wish
to use this feature in conjunction with the STATUS array in your calculation speci�cations.

Note that the FATAL option is e�ective once your program enters the RPG cycle and not
during RPG initialization time. FATAL allows you to catch and take action on �le errors that
occur once a program has begun execution (for example, I/O errors, IMAGE errors, etc.). If
RPG cannot �nd or build a �le at initialization time, it is assumed that the safest course to
take is to abort the program, as there may be data integrity issues related to running with
some of the expected �les open.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

H

FINPUTA IP F 80 DISK

FOUT2 O F 80 DISK

F KFATAL 0

F KSTATUSSA

INPUTA NS
I 2 6 FLD1

C EXCPT

C *ERROR DSPLY

C SA,1 DSPLY

OOUT2 E 20 "REC OUT"

Figure 4-3. RPG Program Using the KFATAL Option

LOCK

LOCK obtains exclusive access to a �le during input/output operations. Use LOCK for
programs that run concurrently and that update the same �le. LOCK prevents simultaneous
update of the same records in the �le.

When LOCK is used, RPG opens the �le with the dynamic locking facility enabled (to allow
the �le to be shared with other programs that enable locking) and performs automatic locking
and unlocking each time a record is accessed as follows:

It locks an input �le before reading a record from it and unlocks it after reading the record.

It locks an output �le before writing a record and unlocks it after writing the record.

It locks an update �le before reading a record and unlocks it after the record is updated or
before it locks and reads the �le again.

If an update �le has been locked and read but not updated (and thus not unlocked), RPG
unlocks the �le when the program next attempts to lock and read from it. This allows other
programs, which may be waiting for the �le, to lock and access it.

4-28 File Description Specifications

Example Conventions

When you use a DSNAME Continuation line (see the File-Sharing Fields (columns 54-74)) to
link �les to one physical �le, enter one LOCK Continuation line following the �rst �le that
uses a DSNAME Continuation line (the �rst DSNAME line determines how the �le is opened
at run time and whether or not the dynamic locking facility is enabled). If you enter a LOCK
Continuation line for some other �le in the same DSNAME group, the following run-time error
occurs:

FATAL FILE ERROR, FILENAME= (Name of file)

KLOCK/KNOLOCK NOT SPECIFIED FOR THIS FILE TO

ENABLE LOCKING FOR OTHER DSNAME'D FILE ACCESS

NOLOCK

NOLOCK opens the �le with the dynamic locking facility enabled (to allow other programs
that enable locking to share the �le), but does not lock and unlock the �le (as described for
the LOCK option above). If you want to lock and unlock the �le, you must do so manually by
using the LOCK and UNLCK Calculation Speci�cation operations.

When you use a DSNAME Continuation line (see the File-Sharing Fields, columns 54-74) to
link �les to another physical �le, enter one NOLOCK Continuation line following the �rst �le
that uses a DSNAME Continuation line (the �rst DSNAME line determines how the �le is
opened at run time and whether or not the dynamic locking facility is enabled). If you enter
a NOLOCK Continuation line for some other �le in the same DSNAME group, the following
run-time error occurs:

FATAL FILE ERROR, FILENAME= (Name of file)

KLOCK/KNOLOCK NOT SPECIFIED FOR THIS FILE TO

ENABLE LOCKING FOR OTHER DSNAME'D FILE ACCESS

File Description Specifications 4-29

Example Conventions

File-Sharing Fields (Columns 54-74)

The File-Sharing Fields in the Continuation line let you assign the same �le name to two or
more �les. You can then process the same physical �le more than one way in the program.
For instance, you can process it randomly by relative record number and sequentially by
key. To do this, enter two File Description Speci�cations in the program and specify the
appropriate type of access for each. Then, equate the �le names in one of the following ways:

Equate the �le names by using an MPE FILE command. When you do this, RPG treats the
�les as separate entities, each having its own unique �le number (assigned by the operating
system) and current record pointer.

Use a DSNAME Continuation line to equate the �le names (see the DSNAME Field below).
Enter a DSNAME line for each �le to be equated. RPG opens one logical �le (identi�ed by
one �le number), to which both names apply. The �le is opened once and all references to it
use the same �le number. The program can access the �le using di�erent access methods.

DSNAME
(Columns 54-59)

Description File Name
(Columns 60-74)

Description

DSNAME This is a DSNAME line
for �le sharing.

Quali�ed �le name.
(This can contain from
one to 15 characters,
beginning with a letter.
The remaining
characters can be letters
or digits. Embedded
blanks are not allowed.)

Override the �le name
speci�ed in columns
7-14 of the File
Description
Speci�cation when
opening the �le; share
the �le number with
other �les having the
same DSNAME �le
name. (These �les
access the same same
logical �le.)

DSNAME This is a DSNAME line
for �le sharing.

* (in column 60) Use the �le name (up to
16 characters) speci�ed
in columns 20-35 of the
Long Name Option
Target Field.

When equating �les using DSNAME, be sure you understand the a�ects of di�erent access
methods on the current record pointer (that keeps track of �le accesses). For instance, a
program cannot read a KSAM �le sequentially by key and then chain to it by key without
altering the sequential current record pointer. A program can read a KSAM �le sequentially
and chain to it by relative record number without a�ecting the sequential current record
pointer. Table 4-2 shows how the type of access a�ects the setting of the current record
pointer. (TurboIMAGE �les are the same except that direct access by relative record number
does a�ect the current record pointer.)

4-30 File Description Specifications

Example Conventions

Table 4-2. How Access Type for KSAM Files Affects the Record Pointer

Input/Output Type Current Record Pointer Setting Next Update Applies To

Sequential read Record read Record read

Random access by relative
record number

Not a�ected Record read

Random access by record key Record read Record read

Write Record written Record written

Update Record updated Record previously updated;
each successive update updates
the same record.

Delete Next key sequential record Next record

Add Not a�ected Record added

Because of the nature of the RPG logic cycle, special care must be used when processing
DSNAMEd �les, particularly when one or more of them are used as primary or secondary
�les. During the initialization phase, the �rst record of the primary �le and each secondary
�le is read into its local bu�er. Processing then proceeds with the primary �le, followed by
the secondary �les in the order given in the F-speci�cations. For example, assume we have a
program with four �les; A, B, C, and D. A is the input primary, B and C are input secondary
(in that order in the F speci�cations), and D is input chained, DSNAMEd to C. The �les
are then processed by the logic cycle in order A, B, C. If either A or B use a �eld to chain
to D, the record pointer is altered to C, since C and D share the same MPE �le number.
When it is time to process C as the second secondary, we will obtain its �rst record (from
the initialization phase), followed by those records starting with the last setting of the record
pointer. This may be avoided for non-IMAGE �les by using MPE �le equations to equate the
�les rather than DSNAMEing them, or by naming all �les to be processed sequentially earlier
in F speci�cations, before their use as a chained �le.

Another approach when using DSNAME with an IMAGE data set is to enter an IMAGE
and a DSNAME Continuation line for each �le accessing the same data set. Enter the
IMAGE lines with di�erent dummy DB names, and the DSNAME lines with the name of
the appropriate data set. Then use �le equations to equate all the dummy DB names to the
actual database name. A separate DBOPEN is executed for each access path to the database
and data set and separate current record pointers are established.

Example

Figure 4-4 shows how to access a KSAM �le two di�erent ways. FILEA is a KSAM �le that
is processed sequentially by key (see line 1). FILEB is the same physical KSAM �le but
is de�ned as a separate �le (see line 3). FILEB is processed randomly by relative record
number. After each File Description Speci�cation, include a DSNAME Continuation line that
associates the same DSNAME �le name to each �le. In this example, the DSNAME �le name
is FILEK (lines 2 and 4). All �le descriptions followed by a DSNAME record for FILEK share
the same �le number.

File Description Specifications 4-31

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FFILEA IP F 80 AI 10 DISK

�2� F KDSNAMEFILEK

�3� FFILEB IC F 80R II DISK

�4� F KDSNAMEFILEK

Figure 4-4. KSAM File Sharing

Database Fields (Columns 54-74)

The Database Fields require several Continuation lines. They give information about how
KSAM �les are locked and accessed. For TurboIMAGE databases, they give the database
name, locking and access information.

Each of the Continuation lines are described in the sections which follow and are listed below
along with a brief description:

Database Name (IMAGE) Line

Used to name TurboIMAGE databases.

Item Name (ITEM) Line

Identi�es TurboIMAGE databases key �elds.

Password (LEVEL) Line

Designates passwords for TurboIMAGE databases.

Data Set (DSNAME) Line

Identi�es the TurboIMAGE data sets to be processed.

Input/Output Status Array (STATUS) Line

Allows user-error handling with TurboIMAGE databases.

Key File Name (KEYFL) Line

Identi�es KSAM key �les and speci�es KSAM duplicate key processing.

4-32 File Description Specifications

Example Conventions

Database Name (IMAGE) Line

This line names TurboIMAGE databases and speci�es how they are accessed. It also speci�es
whether the database or data set is used concurrently by other programs and whether locking
is used.

Column Value Description

Record Type:

(columns 54-50)

IMAGE This is a TurboIMAGE database name
line.

Database Name:
(columns 60-65)

Database name Name of the database being accessed.
The name can be six characters long.

Open Mode:
(column 66)

B Read/Write Shared Mode. The
database is locked for the duration of
the program.

S Read/Write Shared Mode. The data set
is locked for the duration of the
program.

1 Read/Write Shared Mode. The
database is locked and unlocked
whenever a record is accessed in it.

9 Read/Write Shared Mode. The data set
is locked and unlocked whenever a
record is accessed in it.

R Read/Write Shared Mode. The data
record is locked and unlocked whenever
it is accessed.

L Read/Write Shared Mode. Enable
dynamic locking for the database.

2 Update Shared Mode.

3 or blank Exclusive Mode.

4 Semi-exclusive Modify Access Mode.

5 Shared Read Access Mode (concurrent
with Open Modes B, S, 1, 9, R, and L).

6 Shared Read Access Mode (concurrent
with Open Mode 4).

7 Exclusive Read Access Mode.

8 Shared Read Access Mode (concurrent
with Open Mode 6).

File Description Specifications 4-33

Example Conventions

Column Value Description

Input/Output Mode:

(column 67)

2 Serial read. Records are read in their
physical sequence (not key sequence).

3 Backward serial read (the reverse of
mode 2).

4 Directed read. Records are read by
relative record numbers.

5 Chained read.

6 Backward chained read.

7 Calculated read.

8 Primary calculated read.

C Chained sequential read.

R Backward chained sequential read.

blank Write, Output File. Data is written to
the output �le.

Open Mode Field (Column 66)

Open Modes 2-8 are equivalent to the MPE open modes 2-8. Open Modes B, S, 1, 9, R, and
L are equivalent to MPE open mode 1 with the added capability of allowing automatic and
user-controlled locking and unlocking at the database, data set, and data record level. (Open
Mode 2 also allows locking and unlocking.)

Additional details about some of the values you can enter in this �eld follow:

1 (Read/Write Shared Mode)

Other programs that access the database concurrently must use Open Modes B, S, 1, 9, R,
L, or 5. An input �le (or record) is locked before the record is read, and unlocked after it is
read. An output �le (or record) is locked before the record is written, and unlocked after it
is written. An update �le (or record) is locked before the record is read, and unlocked after
it is updated or before the next lock and read. If the �le has been locked and read, but not
updated (and thus not unlocked), RPG unlocks it before the next lock and read.

9 (Read/Write Shared Mode)

An input �le (or record) is locked before the record is read, and unlocked after it is read. An
output �le (or record) is locked before the record is written, and unlocked after it is written.
An update �le (or record) is locked before the record is read, and unlocked after it is updated
or before the next lock and read. If the �le has been locked and read, but not updated (and
thus not unlocked), RPG unlocks it before the next lock and read.

4-34 File Description Specifications

Example Conventions

R (Read/Write Shared Mode)

When you use R, enter 5, 6, C, or R in the Input/Output Mode Field (column 67). If you do
not, the database is opened with Open Mode 1 (database locking per record). You must also
enter an ITEM Continuation line for the �le.

An input �le (or record) is locked before the record is read, and unlocked after it is read. An
output �le (or record) is locked before the record is written, and unlocked after it is written.
An update �le (or record) is locked before the record is read, and unlocked after it is updated
or before the next lock and read. If the �le has been locked and read, but not updated (and
thus not unlocked), RPG unlocks it before the next lock and read.

L (Read/Write Shared Mode)

This mode lets you control all locking and unlocking (RPG does not perform automatic
locking or unlocking). This mode is equivalent to using the KNOLOCK Continuation line for
KSAM and other non-TurboIMAGE �les.

2 (Update-Shared Mode)

The program cannot add or delete records or perform locking. Other programs that run
concurrently and update the database must use Open Mode 2 or 6.

3 (Exclusive Mode)

This program, only, can read, write, and update the database.

4 (Semi-exclusive Modify Access Mode)

This is the same as Open Mode 3 except that other programs using Open Mode 6 can read
the database.

5 (Shared Read Access Mode)

The program has read-only access to the database. Other programs running concurrently with
Open Mode 1 have read/write shared access to it.

6 (Shared Read Access Mode)

The program has read-only access to the database. Other programs running concurrently
must use Open Modes 2, 4, 6, or 8.

7 (Exclusive Read Access Mode)

This program, only, can read the database. It cannot write to the database.

8 (Shared Read Access Mode)

This program has read-only access to the database. Other programs using Open Mode 6 or
TurboIMAGE DBSTORE routines also have read-only access to it.

File Description Specifications 4-35

Example Conventions

Locking Precedence

If you de�ne a database or data set more than once in a program, you must use the same
locking precedence level (Open Modes B, S, 1, 9, R, and L) for each de�nition. For example,
if a database is �rst de�ned with database locking for duration (Open Mode B) and later
de�ned with record-level locking (Open Mode R), a con
ict occurs. There is no reason to
perform record-level locking on the database when the entire database is already locked for
the duration of the program. When the Open Modes do not have the same locking precedence
level, the compiler issues a warning and defaults the record-level locking to the locking
precedence level of the �rst Open Mode speci�ed (in this case, B).

The locking precedence levels follow. To avoid locking precedence level con
icts, consistently
use the same locking precedence levels for the database or data set for each de�nition in the
program. For example, if the highest locking level needed in the program is B, then all �le
de�nitions for the database or dataset should also be B.

B - Highest level

S - Middle level

1, 9, R, L - Lowest level

When a locking precedence level error occurs, the compiler makes the following adjustments:

If the �rst Open Mode is of higher precedence than all of the succeeding Open Modes, the
compiler issues a warning and defaults all lower precedence locking levels to the �rst one
speci�ed.

If the �rst Open Mode is of lower precedence than the other locking precedence levels, a
compiler error results.

If you need more than one outstanding lock, you must have Multiple RIN special
capability. Be very careful to prevent deadlocks when executing with Multiple RIN. (See
the TurboIMAGE/iX Database Management System manual for information on the MR
capability.)

The TurboIMAGE/iX Database Management System manual has more information on locking
levels and strategies.

Input/Output Mode Field (Column 67)

Additional details on some of the values you can enter in this �eld are listed below:

4 (Directed Read)

The chaining or record address �elds must contain numeric relative record numbers. If
no record exists for the record number, the H0 indicator is turned ON. (For the CHAIN
operation in the Calculation Speci�cation, the error indicator is turned ON.) The �rst record
in the �le is Record 1 (unlike MPE �les, where the �rst record in the �le is Record 0).

5 (Chained Read)

You must provide the key for each record read. Using the same key more than once
causes the same record to be read. A DBFIND operation is done before each record is
read. You must enter an ITEM Continuation line. If you want to read down a chain, use
Input/Output Mode C.

4-36 File Description Specifications

Example Conventions

6 (Backward Chained Read)

This is the same as Input/Output Mode 5 except that if duplicate keys exist, the last record
having this key is read. You must enter an ITEM Continuation line. If you want to read up a
chain, use Input/Output Mode R.

7 (Calculated Read)

This was formerly Associative Read. Use it with master data sets only. The record with a
matching key is read.

8 (Primary Calculated Read)

This was formerly Primary Associative Read. It applies to master data sets only. The record
key is used to locate the place where a record should be, then reads whatever record it �nds at
that location. Because of the way TurboIMAGE keys are hashed, the record that is read may
not have the same key as that expected.

C (Chained Sequential Read)

This mode lets you use chaining or Record Address Files. With chaining, consecutive
duplicate keys cause RPG to read sequentially down the chain. When there are no
more records in the chain, the low resulting indicator (columns 56-57 of the Calculation
Speci�cation CHAIN operation) is turned ON. For input chaining, H0 is turned ON. With
Record Address Files, RPG reads down the entire chain before processing the next key. Enter
an ITEM Continuation line for this mode.

R (Backward Chained Sequential Read)

This is the same as Input/Output Mode C except that the chains are read in reverse sequence.

Item Name (ITEM) Line

This Continuation line de�nes TurboIMAGE item (key) names.

This line is required when the database has a Database Name (IMAGE) Continuation line
containing 5, 6, 7, 8, C, or R in the Input/Output Modes Field (column 67).

Record Type
(Columns 54-59)

Description Item Name
(Columns 60-74)

Description

ITEM This is an IMAGE
item (key) name line.

Item (key) name The name of the key
used for accessing this
�le. Use the same name
de�ned in the database
schema.

ITEM This is an IMAGE
item (key) name line.

*(in column 60) The item name (up to
16 characters) is
speci�ed in columns
20-35 of the Long
Name Option Target
Field.

File Description Specifications 4-37

Example Conventions

Password (LEVEL) Line

This Continuation line speci�es the passwords that permit access to the database.

Since RPG processes TurboIMAGE records, not individual �elds, the password must include
permission to read and write entire records.

Record Type
(Columns 54-59)

Description Password
(Columns 60-67)

Description

LEVEL This is a password
line

Password. (Maximum
length of eight
characters.)

A password that
establishes a user-class
identi�cation that lets
the program access the
database.

If you do not enter this Continuation line, User Class 0 is used. (See the TurboIMAGE/iX
Database Management System Manual for information on passwords.)

Data Set Name (DSNAME) Line

This Continuation line has two purposes:

1. It lets you process the same data set more than one way. For instance, you can process
a data set randomly by relative record number and sequentially by key. To do this, you
must de�ne two �les and use DSNAME Continuation lines to equate these �les to the same
physical data set.

2. It lets you use a longer data set name than the eight-character �le name allowed in the File
Name Field (columns 7-14) of the File Description Speci�cation. The name that you enter
overrides columns 7-14.

DSNAME
(Columns 54-59)

Description File Name
(Columns 60-74)

Description

DSNAME This is a DSNAME
line for �le sharing.

Quali�ed �le name.
(This can contain from
one to 15 characters,
beginning with a
letter. The remaining
characters can be
letters or digits.
Embedded blanks are
not allowed.)

Override the �le name
speci�ed in columns
7-14 of the File
Description
Speci�cation when
opening the �le; share
the �le number with
other �les having the
same DSNAME �le
name. (These �les
access the same
logical �le.)

DSNAME This is a DSNAME
line for �le sharing.

*(in column 60) Use the �le name (up to
16 characters) speci�ed
in columns 20-35 of the
Long Name Option
Target Field.

4-38 File Description Specifications

Example Conventions

Input/Output Status Array (STATUS) Line

This Continuation line lets you use TurboIMAGE status arrays. Status arrays let you control
processing for certain input TurboIMAGE errors. When you use this Continuation line, RPG
does not automatically terminate the program when the positive errors 10, 11, and 14-17
are encountered. These errors are treated as exceptions; they turn ON the H0 indicator.
You must process these errors yourself or leave the H0 indicator ON. If you leave it ON, the
program ends on the next cycle unless you specify otherwise in the Error Response Field
(columns 56-71) of the Header Speci�cation. Negative errors and output errors always cause
the program to terminate.

Record Type
(Column 54-59)

Description Array Name
(Columns 60-65)

Description

STATUS This is an
input/output status
array line.

Array name. The name of the array.
The array must be a
six-element numeric
array; each element
containing ten digits
with zero decimals
positions.

De�ne the status array with the six elements (words) shown below. You do not need to de�ne
it further with a File Extension Speci�cation.

1. Condition word. This is zero if no exception conditions occur. (Exception conditions are
de�ned in the TurboIMAGE/iX Database Management System manual.) Otherwise, this
word contains the TurboIMAGE error number (see Appendix B).

2. Length (in words) or the record read or written.

3. Record number of the record read or written.

4. Zero (for read operations on non-primary entries).

Synonym chain count (for read operations on primary entries).

Synonym chain length (for write operations).

5. Record number of predecessor entry in this chain of the current path.

6. Record number of the successor entry in this chain of the current path.

File Description Specifications 4-39

Example Conventions

Key File Name (KEYFL) Line

This Continuation line de�nes the name of the KSAM key �le and, if the KSAM �le is being
created, the duplicate key options for the �le.

Column Value Description

Record Type:

(columns 54-59)

KEYFL This is a KSAM key �le name line.

Key File Name:
(columns 60-67)

Key �le name Name to be given to the KSAM key �le.
Enter an 8-character name that
conforms to MPE �le naming
conventions.

First Record Option:
(column 68)

1 The �rst record is 1.

0 or blank The �rst record is 0.

Duplicate Key Option:

(column 69)

D Allow duplicate keys.

blank Do not allow duplicate keys.

Chronological Option:

(column 70)

C Maintain the chronological order of
duplicate keys. Use this option only
when the Duplicate Key Option Field is
D.

R Add duplicate keys randomly to the key
�le (this improves performance; see the
KSAM/3000 Reference Manual.)

blank The �le does not have duplicate keys,
or records are being added to it
randomly (see R above).

4-40 File Description Specifications

Example Conventions

WORKSTN Interface Fields (Columns 54-74)

This Continuation line speci�es control parameters, �les, and �eld names associated with
WORKSTN (terminal) �les. See Chapters 10 and 11 and the HP RPG Programmer's Guide
for examples of how to use WORKSTN (VPLUS and RSI) �les.

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-74)

Description

BATCH The �le name
speci�ed in the Option
Target Field is the �le
to which data entered
on the form is written
during standard
VPLUS data entry
operations.

File name. File name of the VPLUS
batch �le.

FIRST The RSI form named
in the Option Target
Field is displayed
during program
initialization. (This
option speeds the
display of the �rst
form in a program.

RSI form name. The name of an RSI
form contained in an
RSI forms �le. The
forms �le must be
declared by a FORMS
File Description
Continuation line.

FORMDL The number of forms
speci�ed in the Option
Target Field
determines the size of
the VPLUS \form
storage directory" used
in forms downloading.

A three-digit number
in columns 60-62.
The number must be
in the range 1-255.

Maximum number of
forms to be held
simultaneously in
terminal memory.

FORMS The �le name
speci�ed in the Option
Target Field is the
VPLUS forms �le
created with
FORMSPEC, or is the
RPG Screen Interface
Forms Library created
with SIGEDITOR.

File name. (This can
be up to 8 characters
beginning with a
letter. The remaining
characters can be
letters or digits.
Embedded blanks are
not allowed.

File name of the forms
library.

File Description Specifications 4-41

Example Conventions

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-74)

Description

LOADFM The array name in the
Option Target Field
contains the names of
forms to download
using the LOADFM
VPLUS action (Do not
use it for RPG Screen
Interface �les). The
array is prede�ned as
an alphanumeric
compile-time array.
Each entry is 16
characters long and
the number of entries
is determined by the
number of forms that
you enter in the
FORMDS File
Description
Continuation line.

Array name. (This
may be a name up to
six characters
beginning with a
letter or @, $, or #; the
remaining characters
can be letters or
digits.)

Compile-time array
containing the forms to
download. You can
modify the contents of
the array at run time.
Form names must not
exceed 15 characters
and must be followed by
a blank.

START The �eld name
speci�ed in the Option
Target Field
determines the
starting line number
for RPG Screen
Interface (not RPG
VPLUS Interface)
forms which have a
variable starting line
number. The �eld is
prede�ned as a
two-digit numeric
�eld.

Field name. (This
may be a name up to
six characters
beginning with a
letter or @, $, or #; the
remaining characters
can be letters or
digits.)

Starting line number
�eld.

4-42 File Description Specifications

Example Conventions

Option Type
(Columns 54-59)

Description Option Target
(Columns 60-74)

Description

STATUS The array name
speci�ed in the Option
Target Field is used by
the RPG Screen and
VPLUS Interfaces to
return status
information. The
�eld is prede�ned as a
six-element, ten-digit
array with zero
decimal places.

Array name. (This
may be a name up to
six characters
beginning with a
letter or @, $, or #; the
remaining characters
can be letters or
digits.)

Array that contains
RPG Screen and VPLUS
Interface status
information.

TRACE The �le name
speci�ed in the Option
Target Field is the
VPLUS trace �le
which contains a
record for every
action, event or
run-time error
occurring during
execution of the RPG
VPLUS Interface.

File name. File name of VPLUS
trace �le.

TRMID The �eld name
speci�ed in the Option
Target Field is the
�eld which the RPG
Screen Interface (not
RPG VPLUS
Interface) initializes
with the terminal
identi�cation of the
WORKSTN �le. This
is prede�ned as a
two-character
alphanumeric �eld.

Field name. (This
may be a name up to
six characters
beginning with a
letter or @, $, or #; the
remaining characters
can be letters or
digits.)

Field in which the
terminal ID is returned.

Program Name (Columns 75-80)

This �eld contains the program name. The format of this �eld is discussed in Chapter 2.

File Description Specifications 4-43

Example Conventions

The File Description Specification Default Summary

If you leave the optional �elds in the File Description Speci�cation blank, the default
speci�cations shown in Table 4-3 apply.

Table 4-3. File Description Specification Defaults

Columns Field Default Values

1-5 Sequence Number No sequence number applies.

16 File Designation None; the �le is a sequential output or display �le.

17 End-of-File The program can end whether or not it reads all
records from this �le (unless this �eld is blank for
all input, update, and combined records).

18 Input Sequence If this is a matching �le, check the records for
ascending sequence.

20-23 Block Length No blocking. The block and logical record lengths
are identical unless this default is overridden by
the �le label or a :FILE command.

28 Processing Mode Sequential processing.

29-30 Record Address or Key Field
Length

This is not a RAF.

31 Record Address Type The �le is a direct-access �le not processed by a
RAF, or it is a sequential �le.

32 File Organization/Additional I/O
Area

This is a nonnADDROUT, direct-access �le.
Assign two bu�ers to the �le.

33-34 Over
ow Indicator Do not assign an over
ow indicator.

39 Extension Code File Extension and Line Counter Speci�cations do
not apply to this �le.

53 Disk Labels Process standard labels.

54-59 Name of Label Exit No user labels or SPECIAL �les are processed.

66 File Addition Write new records to the beginning of the �le.

68-69 Extents Allow eight disk extents.

71-72 File conditioner Use the �le unconditionally.

75-80 Program Name None.

4-44 File Description Specifications

5

File Extension Specifications

You must enter a File Extension Speci�cation for every compile-time table and array,
execution-time array, Record Address File (RAF), and chaining �le used in a program. You
enter the following information in a File Extension Speci�cation:

Table or array names, descriptions of entries in the table or array, and the names of �les in
which they reside or to which they are written.

Chaining �elds (used to process chained �les) and the chaining and chained �le names.

The name of a RAF and the name of the �le it accesses.

The File Extension Speci�cation is identi�ed by an E in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E

Figure 5-1. The File Extension Specification

File Extension Specifications 5-1

Example Conventions

The File Extension Specification Fields

The �elds you can use in the File Extension Speci�cation are described in the sections which
follow in this chapter. Each �eld has a unique name and occupies speci�c positions (columns)
in the speci�cation.

Sequence Number (Columns 1-5)

The Sequence Number Field contains the source record sequence number, described in
Chapter 2.

Specification Type (Column 6)

This �eld contains an E to identify this line as a File Extension Speci�cation.

Chaining File Record Sequence (Columns 7-8)

This �eld gives the record sequence of the �le and is used only with chaining �les. (See
the next �eld, Chaining Code Identi�er (columns 9-10), and the Matching/Chaining Fields
(columns 61-62) in the Input Speci�cation for information on chaining �les.) This �eld is not
checked by HP RPG; it is available for compatibility with other implementations of RPG.

Enter the same value in the Group Sequence Field (columns 15-16) of the Input Speci�cation.

Columns 7-8 Description

Two digits (00-99)
or two letters (A-Z)

The same record sequence speci�ed for the chaining �le in the Input
Speci�cations.

blank None.

Example

Figure 5-2 shows how to assign the sequence number 01 to all records in the �le ACCTS. A
01 is entered in this �eld and also in the Group Sequence Field (columns 15-16) of the Input
Speci�cation.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E01C1ACCTS DISKA CHAINED FILE

.

.

.

IACCTS 01 I 50CODE C1

Figure 5-2. Entering a Chaining File Record Sequence Number

5-2 File Extension Specifications

Example Conventions

Chaining Code Identifier (Columns 9-10)

This �eld identi�es the chaining �eld used for chaining. Use this �eld only for chaining �les.

Columns 9-10 Description

C1-C9 The chaining �eld code that identi�es the chaining �eld in the
Matching/Chaining Field of the Input Speci�cation.

blank The �le is not a chaining �le.

A chaining �eld is a �eld containing a record number or key that points to a related record in
another �le. For instance, a customer transaction �le can contain a chaining �eld that points
to customer addresses in an address �le. Once customer addresses are accessed, mailing labels
can be printed.

You can enter up to nine chaining �elds or �eld combinations in a chaining �le. Associate
each chaining code to a �eld on an Input Speci�cation using the Matching/Chaining Fields
(columns 61-62) of the Input Speci�cation. You can assign the same chaining code to more
than one �eld.

This �eld is required if you use a chaining �eld code in an Input Speci�cation. You can use
the same chaining �eld code in more than one File Extension Speci�cation if the associated
�les access the same chained �le. The From File Names associated with the chaining �eld
code must be di�erent in each instance, but the To File Names must be the same. (The From
File Name and the To File Name Fields are described in the next two sections.)

Example

Figure 5-2 shows how to assign the Chaining Code Identi�er C1 to the �eld named CODE in
the �le ACCTS. This is done by:

1. Entering C1 in the Chaining Code Identi�er Field of the File Extension Speci�cation.

2. Entering C1 in the Matching/Chaining Fields (columns 61-62) of the Input Speci�cation,
next to the �eld CODE.

File Extension Specifications 5-3

Example Conventions

From File Name (Columns 11-18)

This �eld contains the name of a chaining �le, preexecution-time table or array, or a Record
Address File.

Columns 11-18 Description

Valid �le name. (File names can
contain from one to eight characters,

beginning with a letter. The
remaining characters can be letters
or digits. Embedded blanks are not
allowed. The �le name must be

de�ned in the File Name Field of a
File Description Speci�cation.)

The name of a chaining �le de�ned in an Input
Speci�cation with a chaining code in the
Matching/Chaining Field,

or

The name of a Record Address File (RAF) containing
relative record numbers or record keys.

or

The name of the �le from which a preexecution-time
table or array is read.

blank This is a compile-time table or array if an entry
appears in the Entries Per Record Field (columns 33-35);
it is an execution-time array if no entry appears in
the Entries Per Record Field.

Table and array �les contain groups of related data arranged for e�cient, systematic reference.
Tables and arrays can be searched sequentially and randomly (see the Table/Array Look-Up
Field (column 34) in the Header Speci�cation). When you search a table or array sequentially,
each entry (starting with the �rst) is read until the entry is found. When you perform a
binary search on a table or array, entries are accessed directly. You do not pass through other
elements looking for the one you need. For arrays, you can process the entire array by using
only its name.

The types of tables and arrays are:

Compile-time tables and arrays

These tables and arrays are loaded during compilation and compiled with the source
program. They become a permanent part of the object program. Compile-time tables
and arrays are loaded in the order in which you enter the File Extension Speci�cations.
Compile-time tables and arrays may be appended to the end of the source program or
contained in separate disk �les. If they reside in separate disk �les, you must name those
�les using Array/Table File Name Speci�cations.

Preexecution-time tables and arrays

These tables and arrays are loaded from disk by the object program before the RPG logic
cycle begins. When you use more than one preexecution-time table or array in the same �le,
they are read in the order in which you enter their File Extension Speci�cations.

5-4 File Extension Specifications

Example Conventions

Execution-time arrays

These arrays can reside in separate disk �les or you can create them in the program. If they
reside on disk, they are loaded at execution time the same way input data is loaded. You
de�ne them using Input Speci�cations. To create them in the program, use Calculation
Speci�cation operations. There are no execution-time tables in RPG.

For information about creating and loading tables and arrays, see the last section in this
chapter titled \Tables and Arrays".

To File Name (Columns 19-26)

This �eld contains the target �le for the chaining �le or RAF entered in the From File Name
Field. This �eld can also contain an output disk or tape �le to which compile-time and
preexecution time tables and arrays are written when the program ends. (Execution-time
arrays cannot be written when the program ends.)

Columns 19-26 Description

Valid �le name. (File names can
contain from one to eight characters,
beginning with a letter. The remaining
characters can be letters or digits.
Embedded blanks are not allowed.)

The name of the chained �le processed by the chaining �le
named in the From File Name Field,

or

The name of the input or update �le processed by the RAF
named in the From File Name Field,

or

The name of a sequential output �le to which the
compile-time or preexecution-time table or array
named in the Table/Array Name Field (columns 27-32)
is written when the program ends.

blank No �le is used. Tables and arrays, if any, are not copied.

When you enter an output �le for tables and arrays, the tables and arrays (except those
destined for a printer or controlled by Line Counter Speci�cations) have the same format as
used for input. If you're writing more one table or array to the �le, RPG writes a separator
record after each one. The record has asterisks in positions 1-2 and a blank in position 3.
When you use alternating tables, they are written as alternating �elds. If you write data to
the �le also, the tables and arrays immediately follow the data with no separator records.

Tables and arrays destined for the line printer or that are controlled by Line Counter
Speci�cations, have a unique format and an identifying header.

You can rearrange table and array output by using an Output Speci�cation.

The record size for the �le you enter in this �eld must be large enough to accommodate the
number you enter in the Entries Per Record Field (columns 33-35). If the record size is larger,
entries are written until the record is full.

File Extension Specifications 5-5

Example Conventions

Table/Array Name (Columns 27-32)

This �eld names a table or array used in the program.

Columns 27-32 Description

Table or array name. (Table names can contain from three
to six characters, beginning with TAB; array names can

contain from one to six characters, beginning with a letter or
one of the special characters @, $, or #. For both table and
array names, the remaining characters can be letters, digits,

or @, $, or #. Embedded blanks are not allowed.

The name of an array or table that is
searched in the program.

blank Tables and arrays are not used.

The table or array name that you enter in this �eld is the one that you use to reference the
table or array elsewhere in the program. You can reference tables in Calculation and Output
Speci�cations and you can reference arrays in Input, Calculation and Output Speci�cations.)
You can name any kind of table or array in this �eld: compile-time, preexecution-time, or
execution-time. Table and array names, however, must be unique.

The table or array that you enter in this �eld can have an alternating table or array
associated with it. De�ne the alternating table or array in columns 46-57 of this speci�cation.

Entries Per Record (Columns 33-35)

This �eld contains the number of table or array entries in each input record of a compile-time
or preexecution-time table or array.

Columns 33-35 Description

1-999
(right-justi�ed,

leading zeroes are
not required)

The number of table/array entries in each table or array input record.

blank This is an execution-time array.

Each record (except the last) in the table or array �le, must contain exactly the number of
entries you specify. The last record may contain fewer entries, but not more.

When you use an alternating table or array, every entry in the table or array is associated
with the same entry in the alternating table or array. You must format the input records for
the tables or arrays in alternating form. For example, if TABLEB is the alternating table for
TABLEA, entry A1 corresponds to B1, A2 corresponds to B2, and so forth.

5-6 File Extension Specifications

Example Conventions

TABLEA TABLEB

A1 B1
A2 B2

A3 B3

A4 B4

Each pair of corresponding entries (for example, A1 and B1) must appear in the same input
record in alternating form; you cannot split them between records. Entries in the alternating
pair are treated as one table entry. Entries in TABLEA and TABLEB are entered on an input
record as shown below:

A1B1A2B2A3B3A4B4

For TABLEA and TABLEB, the number of entries per record is 4.

Entries Per Table/Array (Columns 36-39)

This �eld contains the maximum number of entries in a table or array.

Columns 36-39 Description

1-9999
(right-justi�ed,
leading zeros are
not required)

The number of entries reserved by the compiler for the table or array.

blank This is not a table or array.

Tables and arrays can contain fewer entries during execution than you specify, but not more.
For alphanumeric tables and arrays, unused entries contain blanks. For numeric tables and
arrays, unused entries contain zeros. You can add or replace entries in tables and arrays
during execution (see the section at the end of this chapter titled \Tables and Arrays").

For alternating tables, each pair of related entries is considered one table entry.

Example

The alternating tables (TABLEA and TABLEB) shown in Figure 5-3 have 50 entries each.
To indicate this, 0050 is entered in columns 36-39 to indicate the number of entries in the
alternating tables.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E TABLEA0030050010L2ATABLEB 12R4ATABLE FILE

Figure 5-3. Specifying the Number of Entries in Alternating Tables

File Extension Specifications 5-7

Example Conventions

Entry Length (Columns 40-42)

This �eld speci�es the length of entries in a table or array.

Columns 40-42 Description

1-256
(right-justi�ed,

leading zeroes are
not required)

The entry length (space allocated for each item). The maximum length for
alphabetic entries is 256 characters; for numeric entries, 15 digits

blank This is not a table or array.

Entries in each table or array must be the same length. If alphanumeric entries are di�erent
lengths, add leading or trailing blanks to make them the same length. If numeric entries are
di�erent lengths, add leading or trailing zeros or blanks to make them the same length. If
you enter an L or R in the Data Format Field (column 43), include the sign position in the
length. For numeric tables and arrays in packed decimal format, enter the unpacked decimal
length. For numeric tables or arrays in binary format, enter 5 for 16-bit numbers or 6 for
32-bit numbers (this allocates 2 or 4 bytes, respectively, for the numbers).

If you're using the Calculation Speci�cation LOKUP operation, make sure the entry length is
the same as the �eld being used as the search argument.

If this table or array has an alternating table or array, enter the alternating table or array
length in the Entry Length Field (columns 52-54).

Data Format (Column 43)

This �eld identi�es the data format for numeric compile-time or preexecution-time tables and
arrays.

Column 43 Description

B Binary format (1 or 2 word integer).

L Unpacked decimal format with leading plus or minus sign.

P Packed decimal format.

R Unpacked decimal format with trailing plus or minus sign.

blank Alphanumeric or unpacked decimal (with no leading or trailing signs)
format. For unpacked decimal format, enter a digit (0-9) in the Decimal
Positions Field (column 44). For alphanumeric format, leave column 44
blank.

If this table or array has an alternating table or array, enter the format for the alternating
table or array in the Data Format Field (column 55).

For details about each of the formats, see the Data Format Field (column 43) of the Input
Speci�cation.

5-8 File Extension Specifications

Example Conventions

Decimal Positions (Column 44)

This �eld contains the number of decimal positions (positions to the right of the decimal) in
each entry of a table or array.

Column 44 Description

0-9 This is a numeric table or array with the speci�ed number of decimal
positions in each �eld. (The number of decimal positions cannot exceed the
number of digits in the �eld.)

blank This is an alphanumeric table or array.

Since numeric entries in tables and arrays do not contain an actual decimal point, this �eld
determines where the decimal point is assumed to be during calculations and output editing
operations.

If this table or array has an alternating table or array, enter the decimal positions for the
alternating table or array in the Decimal Positions Field (column 56).

Example

To specify that the entries in the following array have two decimal positions, enter 2 in
column 44 of the File Extension Speci�cation.

ARRAY

0000

0100

0150

0200

0250

.

.

.

If the entries in this array were printed using edit code 1 (suppress leading zeros), you would
see:

.00 1.00 1.50 2.00 2.50...

File Extension Specifications 5-9

Example Conventions

Table/Array Sequence (Column 45)

This �eld lets you sequence-check compile-time and preexecution-time tables and arrays.

Sequence-checking is not a�ected by the Alternate Collating Sequence Field (column 26) of
the Header Speci�cation.

Column 45 Description

A Sequence-check the table or array for ascending order.

D Sequence-check the table or array for descending order.

blank Do not sequence-check the table or array; high and low LOKUP operations
prohibited for unsequenced tables or arrays; binary searching prohibited.

Table and array entries can be arranged in ascending, descending, or random order. In
ascending order, the lowest data entry appears �rst, followed by entries that consecutively
increase in value according to the ASCII Collating Sequence. In descending order, the highest
data entry appears �rst, followed by entries that consecutively decrease in value. When you
sequence-check an ascending or descending table or array, RPG checks the order while loading
it. If the compiler detects a sequence error, processing halts immediately. The computer
operator may then continue processing in spite of the error, or terminate the program.

If this table or array has an alternating table or array, specify sequence-checking for the
alternating table or array in the Table/Array Sequence Field (column 57).

Although RPG does not sequence-check execution-time arrays, you must enter an A or D
in this �eld to use LOKUP operations with high or low indicators, or to perform binary
searching.

Alternating Table/Array Name (Columns 46-51)

This �eld contains the name of the alternating table or array associated with the table or
array named in the Table/Array Name Field (columns 27-32). Do not enter the name of an
execution-time array.

When you enter an alternating table or array into this �eld, you must also enter the next four
�elds (through column 57).

Columns 46-51 Description

Alternating table or array name The name of the second alternating table or array.

blank The table named in columns 27-32 does not have an
alternating table or array.

5-10 File Extension Specifications

Example Conventions

Entry Length (Columns 52-54)

This �eld speci�es the length of entries in an alternating table or array. The length you enter
in this �eld applies to the table or array named in the Alternating Table/Array Name Field
(columns 46-51).

Columns 52-54 Description

1-256
(right-justi�ed,

leading zeroes are
not required)

The entry length (space allocated for each item). The maximum length for
alphabetic entries is 256 characters; for numeric entries, 15 digits

blank This is not a table or array.

Entries in each table or array must be the same length. If alphanumeric entries are di�erent
lengths, add leading or trailing blanks to make them the same length. If numeric entries are
di�erent lengths, add leading or trailing zeros or blanks to make them the same length. If
you enter an L or R in the Data Format Field (column 55), include the sign position in the
length. For numeric tables and arrays in packed decimal format, enter the unpacked decimal
length. For numeric tables or arrays in binary format, enter 5 for 16-bit numbers or 6 for
32-bit numbers (this allocates 2 or 4 bytes, respectively, for the numbers).

If you're using the Calculation Speci�cation LOKUP operation, make sure the entry length is
the same as the �eld being used as the search argument.

Data Format (Column 55)

This �eld identi�es the data format for the alternating compile-time or preexecution-time
table or array. Use this �eld only for numeric tables and arrays. This �eld applies to the table
named in the Alternating Table/Array Name Field (columns 46-51).

Column 55 Description

B Binary format (1 or 2 word integer).

L Unpacked decimal format with leading plus or minus sign.

P Packed decimal format.

R Unpacked decimal format with trailing plus or minus sign.

blank Alphanumeric or unpacked decimal (with no leading or trailing signs)
format. For unpacked decimal format, enter a digit (0-9) in the Decimal
Positions Field (column 44). For alphanumeric format, leave column 44
blank.

For details about each of the formats, see the Data Format Field (column 43) of the Input
Speci�cation.

File Extension Specifications 5-11

Example Conventions

Decimal Positions (Column 56)

This �eld contains the number of decimal positions (positions to the right of the decimal) in
each entry of an alternating table or array. This �eld applies to the table or array named in
the Alternate Table/Array Name Field (columns 46-51).

Column 56 Description

0-9 This is a numeric table or array with the speci�ed number of decimal
positions in each �eld. (The number of decimal positions cannot exceed the
number of digits in the �eld.)

blank This is an alphanumeric table or array.

See the Decimal Positions Field (column 44) for an example of how to enter this �eld.

Table/Array Sequence (Column 57)

This �eld lets you sequence-check an alternating compile-time or preexecution-time table or
array. Sequence-checking applies to the table or array named in the Alternate Table/Array
Name Field (columns 46-51).

Sequence-checking is not a�ected by the Alternate Collating Sequence Field (column 26) of
the Header Speci�cation.

Column 57 Description

A Sequence check the table or array for ascending order.

D Sequence check the table or array for descending order.

blank Do not sequence check the table or array; high or low LOKUP operations
prohibited for unsequenced tables or arrays; binary searching prohibited.

Table and array entries can be arranged in ascending, descending, or random order. In
ascending order, the lowest data entry appears �rst, followed by entries that consecutively
increase in value according to the ASCII Collating Sequence. In descending order, the highest
data entry appears �rst, followed by entries that consecutively decrease in value. When you
sequence-check an ascending or descending table or array, RPG checks the order while loading
it. If the compiler detects a sequence error, processing halts immediately. The computer
operator may then continue processing in spite of the error, or terminate the program.

Although RPG does not sequence-check execution-time arrays, you must enter an A or D
in this �eld to use LOKUP operations with high or low indicators, or to perform binary
searching.

5-12 File Extension Specifications

Example Conventions

Comments (Columns 58-74)

You can enter comments of any kind in this �eld.

Program Name (Columns 75-80)

This �eld contains the program name. The format of this �eld is discussed in Chapter 2.

File Extension Specifications 5-13

Example Conventions

Tables and Arrays

The table and array sections which follow in this chapter explain how to create and use tables
and arrays in an RPG program.

Creating Tables and Arrays

Compile-time and preexecution-time tables and arrays reside in disk �les and are loaded
before a program begins execution. Execution-time arrays can reside in �les on disk or you
can create them with Calculation Speci�cation operations at run time.

When creating a table or array, ensure that:

Each entry in the table or array has the same �eld length, data type, and the same number
of decimal positions.

Each alphanumeric entry contains 256 characters or less.

Each numeric entry contains 15 digits or less.

Entries are not split between records.

There are no blanks between entries. All entries must be continuous on each record. (You
can, however, embed blanks as part of an entry.)

The entries are in the appropriate sequence - ascending, descending or random.

Creating Compile-Time and Preexecution-Time Tables and Arrays

In addition to the guidelines in the previous section, when you create compile-time and
preexecution-time tables and arrays, ensure that:

The �rst entry in each record starts in position 1.

All records (except the last) contain the same number of entries. The last record can
contain fewer entries, but it cannot contain more. For example, if the �rst record contains
seven entries, all but the last record must contain seven entries. The last record can contain
from one to seven entries.

There are the same or fewer entries in the table or array than the number you enter in the
Entries Per Table/Array Field (columns 36-39) of the File Extension Speci�cation. A full
table or array contains the same number of entries as you specify in the File Extension
Speci�cation. Tables and arrays containing fewer entries than speci�ed, are called short
tables and arrays and the unused entries are automatically set to zeros. The unused entries
in short alphanumeric tables and arrays contain blanks. Short tables and arrays let you
start with only a few entries, then add to them at a later time. You must include at least
one entry.

The number of entries in each input record matches the number in the Entries Per Record
Field (columns 33-35) of the File Extension Speci�cation and the previous rule. You can
�ll an entire record if necessary. Leave the remaining positions blank, or use them for
comments.

5-14 File Extension Specifications

Example Conventions

When entering input records for tables and arrays and their alternating tables and arrays,
start with the �rst entry of the table or array (named in columns 27-32 of the File
Extension Speci�cation) and follow it by the �rst entry in the alternating table or array
(named in columns 46-51 of the File Extension Speci�cation). End all records, including the
last, with an entry from the alternating table or array.

The table or array �le has �xed-length records and is a sequential �le.

Defining Tables and Arrays

The next two sections explain how to use the File Extension Speci�cation to de�ne tables
and arrays. If you're using compile-time tables or arrays on disk, you must also enter an
Array/Table File Name Speci�cation that names the disk �le containing the table or array.

Defining Compile-Time and Preexecution-Time Tables and Arrays

Use this checklist when you de�ne compile-time and preexecution-time tables and arrays:

To sequence check the table or array when it is loaded, enter A or D in the Table/Array
Sequence Field (column 45) of the File Extension Speci�cation.

If you're going to use the LOKUP operation with high and low indicators in a Calculation
Speci�cation, you must specify sequence-checking.

If the table or array entry contains a leading or trailing sign, enter the appropriate character
in the Data Format Field (column 43), and allow for the sign when specifying the Entry
Length Field (columns 40-42).

For table and array �les having a T in the File Designation Field (column 16) of the File
Description Speci�cation, enter a �xed-length record format in the Record Format Field
(column 19) of that speci�cation.

For numeric tables and arrays, specify the data format in the Data Format Field (column
43) of the File Extension Speci�cation and the the number of decimal positions in the
Decimal Positions Field (column 44) of that speci�cation.

File Extension Specifications 5-15

Example Conventions

Example

Figure 5-4 shows how to de�ne two arrays using File Extension Speci�cations. ARRA is a
compile-time array containing 10 entries (2 per record). Each entry is 12 digits long, has
two decimal places, and is in unpacked decimal format. ARRB is a preexecution-time array,
residing in the disk �le DISKER. It contains 300 entries (10 per record). Each entry is 6
positions long, has no decimal places, and is in unpacked decimal format.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E ARRA 2 10 12 2 COMPILE-TIME

.

.

.

E DISKER ARRB 10 300 6 0 PREEXEC-TIME

Figure 5-4. Defining Compile-Time and Preexecution-Time Arrays

Defining Execution-Time Arrays

To de�ne an execution-time array, leave columns 7-26 and the Entries Per Record Field
(columns 33-35) blank in the File Extension Speci�cation.

If it is a numeric array, enter the data format in the Data Format Field (column 43) and the
number of decimal positions in the Decimal Positions Field (column 44).

Example

Figure 5-5 shows how the execution-time array ARRC is de�ned. It has 10 alphanumeric
entries, each 2 positions long.

1 2 3 4 5 6 7
678901234567890123456789012345678901234567890123456789012345678901234

E ARRC 10 2 0A EXEC-TIME

Figure 5-5. Defining Execution-Time Arrays

5-16 File Extension Specifications

Example Conventions

Loading Tables and Arrays

The next three sections describe how RPG loads table and arrays. (Tables and arrays must be
loaded before you can access them in the program.)

Loading Compile-Time Tables and Arrays

The RPG compiler makes compile-time tables and arrays an integral part of the object
program and they are loaded along with it at run time.

You can place compile-time tables and arrays at the end of the source program, keep them in
�les on disk, or any combination of the two. Additionally, the same disk �le can contain more
than one table or array. If this is the case, you must enter the File Extension Speci�cations in
the same order as the tables and arrays appear in the job stream or disk �le.

ALTSEQ records and �le translation records are also processed at compile-time. ALTSEQ
records, �le translation records and compile-time tables and arrays are loaded in the following
order:

1. ALTSEQ (alternate collating sequence) records.

2. Compile-time tables and arrays, in the same order as the File Extension Speci�cations.

3. File translation records.

Loading Compile-Time Tables and Arrays Appended to the Source Program

When tables, arrays, ALTSEQ, and �le translation records are appended to the source
program or when they are contained in a job �le, enter them as follows:

1. After the last record in the source program, enter a separator record containing **t (where
t represents a blank) in columns 1-3.

2. ALTSEQ records, if any.

End the ALTSEQ records by a separator line containing **t in columns 1-3. (Only use the
separator line when there are ALTSEQ records.)

3. Enter compile-time tables and arrays according to the format discussed in the \Creating
Tables and Arrays" section of this chapter. Be sure the format conforms to the entries in
the File Extension Speci�cations. End each table or array with a separator record (**t in
columns 1-3).

4. If you're using �le translation records, enter a separator line (**t in columns 1-3). Enter
the �le translation records, separating each new �le name record with a separator record
(**t in columns 1-3).

File Extension Specifications 5-17

Example Conventions

Example

The following source program �le contains two alternate collating sequence records, four array
records and a �le translation record.

.

. Source program

.

**t
ALTSEQ 51415942

ALTSEQ 5843 Alternate collating sequence records

**t
ALPHA

BETA

GAMMA Compile-time array
DELTA

**t
OUTPUT 58445745 File translation record

5-18 File Extension Specifications

Example Conventions

Loading Compile-Time Tables and Arrays from Disk Files

When you want to place ALTSEQ records, compile-time tables and arrays, and �le translation
records into a disk �le, enter them as follows:

1. Enter the ALTSEQ records, tables, arrays, and �le translation records into a disk �le
according to the instructions in the preceding section \Loading Compile-Time Tables and
Arrays Appended to the Source Program". Use separator records as needed but do not
start the �le with a separator record.

2. Enter Array/Table File Name Speci�cations (as described in Table 5-1) after the last
speci�cation in the program. For instance, if you have Output Speci�cations, the
Array/Table File Name Speci�cations follow the last one. Do not place a separator record
between the last speci�cation and the �rst Array/Table File Name Speci�cation.

Table 5-1. Array/Table File Name Specification Format

Columns Values Description

1-5 00000-99999 Sequence number, as de�ned in Chapter 2.

6 A This is an Array/Table File Name Speci�cation.

7-14 Valid �le name The name of a �le containing at least one
alternate collating sequence, table, array, or �le
translation record.

15-80 blank None.

The following lines show how to enter three Array/Table File Name Speci�cations:

.

. Source program

.

ADISKFILE

ATABFILE1 Array/Table File Name Speci�cations
ATABFILE2

When you compile the program, the ALTSEQ records, �le translation records and the tables
and arrays are made part of the program.

File Extension Specifications 5-19

Example Conventions

Example

The following lines show how to place two ALTSEQ records, four compile-time array records
and one �le translation record in a disk �le.

ALTSEQ 51415942

ALTSEQ 5843 Alternate collating sequence records

**t
ALPHA

BETA

GAMMA Compile-time array
DELTA

**t
OUTPUT 58445745 File translation record

Loading Compile-Time Tables and Arrays from the Source Program and Disk

You can load ALTSEQ records, tables, arrays, and �le translation records from the source
program and from disk in the same program.

Make sure that the order of the data records, whether loaded from the source program or from
disk is: ALTSEQ records, table and array records, then �le translation records.

The compiler loads data records in the order in which you enter the Array/Table File Name
Speci�cations. When entering these speci�cations, be careful not to enter a separator record
before them. If you do, they will be treated as data.

Example

The following lines show how to load ALTSEQ records from a disk �le TABFILE, and how to
load four compile-time array records and two �le translation records from records appended to
the source program.

.

. Source program

.

File containing ALTSEQ records
ATABFILE (can also contain compile-time

tables or arrays).
**t
ABLE

BAKER Another compile-time array
CHARLIE

DOG

**t
OUTPUT 58445745 File translation record
**t
INPUT 59426043 File translation record

5-20 File Extension Specifications

Example Conventions

Loading Preexecution-Time Tables and Arrays

Preexecution-time tables and arrays can reside on the same device or on di�erent devices.
They are loaded before the program is executed and in the order in which they are listed in
the File Extension Speci�cations. When you create table and array �les, observe these rules:

If you're sequence-checking a table or array, ensure that the last record in the table or array
is not blank. The last entry for a table or array in ascending sequence has the highest value.
For descending sequence, the last entry has the lowest value.

Ensure that the tables and arrays are in the same order on disk as shown in the File
Extension Speci�cations.

Follow each table or array in an input �le with a separator record (containing asterisks in
columns 1-2 and a blank in column 3). This record delimits the tables or arrays; it is not
treated as data.

When input data follows a table or array in a �le, place a separator record (two asterisks
and a blank) between the table or array and the data.

Loading Execution-Time Arrays

There are two ways to load execution-time arrays.

You can create the array entries and place them in a �le on disk, then de�ne the array entries
using an Input Speci�cation. Or you can create the array entries yourself at run time using
Calculation Speci�cation operations.

If you load the array using Input Speci�cations, entries may occupy consecutive positions in
the input records or they can be scattered throughout the records with intervening spaces.
When an array is contained on one input record and has consecutive entries, enter just one
Input Speci�cation. When the entries are scattered, enter an Input Speci�cation for each
entry.

When entering Input Speci�cations for execution-time arrays, follow these rules (see Chapter 7
for details about the Input Speci�cation �elds):

Enter I in the File Type Field (Column 6).

Leave columns 7-42 blank.

Enter the appropriate value in the Data Format Field (column 43).

For arrays containing consecutive entries, enter the �eld location of the entire array in
columns 44-51. For arrays containing scattered entries, enter the �eld location of each entry
in columns 44-51. Enter the beginning location in the From Field (columns 44-47) and the
ending location in the To Field (columns 48-51).

File Extension Specifications 5-21

Example Conventions

If you indicated in the Decimal Position Field of the File Extension Speci�cation that the
entries have one or more decimal positions, enter the same value in the Decimal Position
Field of the Input Speci�cation (column 52). Otherwise, leave the Decimal Position Field
blank.

Enter the name of the array in the Field Name Field (columns 53-58). This must be the
same name entered in the Table/Array Name Field (columns 27-32) of the File Extension
Speci�cation. To de�ne an individual entry in the array, enter an index (see the section
which follows titled \Searching Arrays" for information on indexing.)

Leave columns 59-62 blank.

Enter the �eld record relation indicator, if you're using one, in the Field Record Relation
Field (columns 63-64).

When an array requires two or more input records, you can de�ne the array entries
collectively or individually in the Input Speci�cation. Use variable indexes and (or)
record-identifying indicators to avoid overlaying the entries in one record with those in
another.

Since the HP RPG logic cycle processes only one record at a time, several cycles are required
to load a multirecord array. Because of this, you may need to suppress calculations and
output until the entire array has been read. To do this, enter indicators in the Indicators
Field of Calculation Speci�cations and the Output Indicators Field (columns 23-31) of Output
Speci�cations.

Example

Figure 5-6 shows the File Extension and Input Speci�cations for three di�erent kinds of
arrays. ARR1 contains eight entries (each 10 positions long) that are loaded from a single
record in the disk �le FILEA. ARR2 contains �ve entries, all in a single input record. The
entries are �ve positions long and have intervening blanks. (Note that the entries are listed
individually on the Input Speci�cation.) ARR3 contains 30 entries each 10 positions long.
The �rst four input records contain seven entries each (in columns 3-72). The �fth input
record contains two entries (in columns 3-22).

5-22 File Extension Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E ARR1 8 10

E ARR2 5 5

E ARR3 30 10

.

.

.

IFILEA AA 01

I 1 80 ARR1

IFILEA AA 01

I 1 5 ARR2,1

I 7 11 ARR2,2

I 13 17 ARR2,3

I 19 23 ARR2,4
I 25 29 ARR2,5

IFILEA AA 01

I 1 20X

I 3 72 ARR3,X

Figure 5-6. Loading Execution-Time Arrays

Searching Tables

The Calculation Speci�cation LOKUP operation lets you search tables for speci�c values.

When you use LOKUP, enter the same name for the table that you used in a File Extension
Speci�cation. The table is searched sequentially (unless you request a binary search and the
entries are in sequence) until an entry is found that matches the search argument. The entry
can then be used in calculations. Subsequently, when you reference the table name as an
operand in a Calculation Speci�cation operation, the entry found by the most recent LOKUP
operation is selected.

You can use the SORTA Calculation Speci�cation operation to ensure that a table or array is
sequenced properly.

Searching Arrays

You can search arrays using the LOKUP Calculation Speci�cation operation (see the previous
section, \Searching Tables"). In addition, you can access individual entries in an array by
using an index.

When referencing an entire array, use the array name entered in the File Extension
Speci�cation.

File Extension Specifications 5-23

Example Conventions

When you want to access a speci�c entry in an array using a Calculation Speci�cation, enter
the array name followed by a comma and an index. The index can be a number or the name
of a numeric �eld containing the number of the entry you want to access. The index value for
the �rst entry is 1 (not zero). An index �eld must not have decimal positions and can be no
longer than 9 digits.

For example, to reference the fourth entry in the array XARY, enter:

XARY,4

Alternatively, if N is an index �eld containing the number 4, you can reference the fourth
entry by entering:

XARY,N

Table 5-2 shows which Calculation Speci�cation operations allow indexing and which do not.

Table 5-2. Indexing with Calculation Specification Operations

You must use indexing with
these operations:

You may use indexing with
these operations:

You cannot use indexing with
these operations:

BITOF
BITON
COMP
DSPLY
TESTB
TESTZ

ADD
DEBUG
DIV

LOKUP
MHHZO
MHLZO
MLHZO
MLLZO
MOVE
MOVEA
MOVEL
MULT
SQRT
SUB

Z-ADD
Z-SUB

XFOOT

When you enter an array name without an index, the following rules apply:

When you enter arrays in one of the Factor Fields and the Result Field, they are searched
sequentially. If the arrays do not contain the same number of entries, the search ends when
the last entry in the shortest array is processed.

When one Factor Field is a �eld or constant and the other Factor Field and the Result
Field are both arrays, the search continues until every entry in the shorter array has been
processed. The same �eld or constant is used in all of the operations.

Since multiple operations are performed, resulting indicators can only be used with the
XFOOT and LOKUP operations.

5-24 File Extension Specifications

Example Conventions

Changing Table and Array Entries During Execution

You can temporarily change table or array values by entering the table or array name in the
Result Field of an arithmetic or move Calculation Speci�cation operation. Additionally, you
can add or modify table or array values using Input or Calculation Speci�cations. Changes
that you make remain in e�ect for the duration of the program; when the program ends, they
are lost.

To permanently change table or array values, you can save the updated table or array into a
�le on disk (see the section which follows, \Writing Tables and Arrays") or you can manually
modify the original table or array �le.

You can add entries to short tables and arrays using Calculation Speci�cation operations or
you can read them from new input records at run time.

Note If a run-time array indexing error is detected (index < one or > array size)
and a \continue" response is selected, HP RPG/iX will reset the index to one
before continuing.

Writing Tables and Arrays

You can write a table or array to a disk �le, terminal, or to the line printer.

To write an entire table or array (except an execution-time array), including temporary
modi�cations, enter the name of the table or array output �le in the To File Name Field
(columns 19-26) of the File Extension Speci�cation. To write an execution-time array, enter
Output Speci�cations for it.

To write individual entries in a table or array, enter Output Speci�cations only for those
entries. Describe them just as you would normal output �elds. Using the table name in the
Output Speci�cation causes the last entry found (not the entire table) to be written.

When you specify editing for an output array, the editing applies to all entries in the array. If
entries have di�erent editing requirements, reference them individually. When you enter an
edit code for the entire array in an Output Speci�cation, RPG separates edited array entries
by two blanks to help you distinguish one from another. However, if the table or array is
directed to a line printer, array entries are separated by two blanks regardless of the edit code.

File Extension Specifications 5-25

Example Conventions

The File Extension Specification Required Entries

Certain entries in the File Extension Speci�cation are required, optional, or cannot be used,
depending upon the type of �le you are describing. The rules governing entries for each type
of �le are summarized in Table 5-3.

5-26 File Extension Specifications

Example Conventions

Table 5-3. File Extension Specification - Required/Optional/Prohibited Entries

Field
(columns)

Chaining
File

Record
Address
File

Compile
Time Table/
Array File

Preexecution
Time Table/
Array File

Execution
Time

Array File

Chaining File
Record Sequence
(7-8)

Optional Prohibited Prohibited Prohibited Prohibited

Chaining Code
Identi�er (9-10)

Required Prohibited Prohibited Prohibited Prohibited

From File Name
(11-18)

Required Required Prohibited Required Prohibited

To File Name
(19-26)

Required Required Optional Optional Prohibited

Table/Array
Name (27-32)

Optional Optional Required Required Required

Entries Per
Record (33-35)

Prohibited Prohibited Required Required Prohibited

Entries Per
Table/Array
(36-39)

Prohibited Prohibited Required Required Required

Entry Length
(40-42)

Prohibited Prohibited Required Required Required

Data Format
(43)

Prohibited Prohibited Optional Optional Optional

Decimal
Positions (44)

Prohibited Prohibited Required for
numeric
entries;
prohibited
for others

Required for
numeric
entries;
prohibited
for others

Required for
numeric
entries;
prohibited
for others

Table/Array
Sequence (45)

Prohibited Prohibited Optional Optional Optional

Alternating
Table/Array
Name (46-51)

Prohibited Prohibited Required for
alternating
table, array

Required for
alternating
table, array

Required for
alternating
table, array

Entry Length
(52-54)

Prohibited Prohibited Required for
alternating
table, array

Required for
alternating
table, array

Required for
alternating
table, array

Data Format
(55)

Prohibited Prohibited Optional Optional Optional

Decimal
Positions (56)

Prohibited Prohibited Optional Optional Optional

Table/Array
Sequence (57)

Prohibited Prohibited Optional Optional Optional

File Extension Specifications 5-27

Example Conventions

The File Extension Specification Default Summary

If you leave the optional �elds of the File Extension Speci�cation blank, the defaults shown in
Table 5-4 apply:

Table 5-4. File Extension Specification Defaults

Columns Field Default Values

1-5 Sequence Number No sequence number applies.

7-8 Chaining File Record
Sequence

None.

9-10 Chaining Code Identi�er This �le is not a chaining �le.

11-18 From File Name This is a compile-time table or array if an entry
appears in columns 33-35; it is an execution-time
array if no entry appears in columns 33-35.

19-26 To File Name Table and arrays, if any, are not written.

27-32 Table/Array Name None.

33-35 Entries Per Record This is an execution-time array.

36-39 Entries Per Table/Array This is not a table or array.

40-42 Entry Length This is not a table or array.

43 Data Format The table or array entries have alphanumeric or
unsigned external decimal format.

44 Decimal Positions This is an alphanumeric table or array.

45 Table/Array Sequence Do not sequence check the table or array; high or
low LOKUP is prohibited for unsequenced tables
and arrays, and LOKUP is sequential. SORTA
operation assumes ascending sequence.

46-51 Alternating Table/Array
Name

The table or array named in columns 27-52 does
not have an alternating table or array.

52-54 Entry Length No entry is speci�ed.

55 Data Format The table or array entries have alphanumeric or
unsigned external decimal format.

56 Decimal Positions This is an alphanumeric table or array.

57 Table/Array Sequence Do not sequence check the table or array.

57 Table/Array Sequence Do not sequence check the table or array.

58-74 Comments None.

75-80 Program Name None.

5-28 File Extension Specifications

6

Line Counter Specifications

This speci�cation lets you change the defaults used during skipping operations (see the
Skip Field (columns 19-22) in the Output Speci�cation). If you do not use a Line Counter
Speci�cation, the defaults are those shown in Table 6-1. Use the Line Counter Speci�cation
for print �les and for disk �les that you want to keep in printable format. When you enter a
Line Counter Speci�cation, use either the Channel Number Fields, or the Line Number Fields:

Channel Number Fields

These �elds let you assign line numbers to logical printer carriage control channels (only
Channel 1 on an actual printer carriage control tape is used in RPG). Then, in the Output
Speci�cations for the �le, enter the channels in the Skip Field (columns 19-22) to advance
the printer paper to the associated line number. When you use the Channel Number Fields,
leave the Carriage Control Type Field (column 53) blank in the Header Speci�cation.

Line Number Fields

These �elds let you change the line where page over
ow occurs and also lets you change
the number of lines per page. Any entries that you make in the Skip Field (columns 19-22)
of Output Speci�cations are interpreted as line numbers and RPG advances the paper to
those line positions. When you use the Line Number Fields, enter an L or 1 in the Carriage
Control Type Field of the Header Speci�cation.

The Line Counter Speci�cation is identi�ed by an L in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

L

Figure 6-1. The Line Counter Specification

Line Counter Specifications 6-1

Example Conventions

The Line Counter Specification Fields

The �elds you use in the Line Counter Speci�cation are described in the sections which follow
in this chapter. Each �eld has a unique name and occupies speci�c positions (columns) in the
speci�cation.

Use the Channel Number Fields (columns 15-74) when you want to simulate the use of
channels in the printer carriage control tape. Use the Line Number Fields (columns 15-24)
when the lines to which you need to skip vary.

Sequence Number (Columns 1-5)

This �eld contains the source record sequence number, described in Chapter 2.

Specification Type (Column 6)

This �eld contains an L to identify this line as a Line Counter Speci�cation.

File Name (Columns 7-14)

This �eld names the output �le to which this speci�cation applies. This �eld is required.

Columns 7-14 Description

Valid �le name. (File names can contain from one
to eight characters, beginning with a letter. The
remaining characters can be letters or digits.
Embedded blanks are not allowed.)

Name of the printable �le to which this Line
Counter Speci�cation applies.

Channel Number Fields (Columns 15-74)

The next three �elds let you assign up to twelve logical printer carriage control channels to
speci�c line numbers.

Line Number (Columns 15-17)

This �eld contains the line number that corresponds to the channel or over
ow line entered in
the next �eld.

Columns 15-17 Description

1-112
(right justi�ed,
leading zeros are
not required)

The line number to which the channel number in the next �eld, or the
over
ow line, refers.

blank If the channel in the next �eld has already been de�ned, this line number is
ignored (the previous line number is used). If the channel in the next �eld
has not been de�ned previously, the line number equal the channel number
multiplied by 5. (For instance, Channel 3 is line 15.)

6-2 Line Counter Specifications

Example Conventions

Channel Number/OL (Columns 18-19)

This �eld identi�es the channel number to which the line number in the preceding �eld
applies. Or, it identi�es the line number (in the previous �eld) as the over
ow line.

Columns 18-19 Description

1-12
(right-justi�ed,
leading zeros are
not required)

The channel number to which the line number in the preceding �eld is
assigned.

OL The line number in the preceding �eld is the over
ow line. If the previous
�eld is blank, line 60 (Channel 12) is the over
ow line.

When you space, skip, or print beyond the over
ow line (but not beyond the
current page) the over
ow indicator, if used, is turned on and detail and
total lines (including those conditioned by the over
ow indicator) are
printed.

blank If the previous �eld contains a line number, it is ignored.

Line Number and Channel Number/OL (Columns 20-74)

Columns 20-74 let you assign additional channels to line numbers. The two previous �elds,
Line Number (columns 15-17) and Channel Number/OL (columns 18-19) are repeated to
allow you to enter a total of twelve channel number assignments. Enter data into columns
20-74 according to the rules presented for those �elds.

The �rst pair of blank Line Number and Channel Number/OL Fields ends the assignments.
You can enter over
ow and channel number assignments in any order and you can assign two
or more channels to the same line number.

Example

Figure 6-2 assigns Channel 1 to line 12, Channel 3 to line 15, and Channel 4 to line 20 for the
�le PRINTX. It also designates line 63 as the over
ow line for the �le.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

LPRINTX 0120101503020040630L

Figure 6-2. Using the Channel Number Fields

Line Counter Specifications 6-3

Example Conventions

Line Number Fields (Columns 15-24)

The next three �elds let you specify the number of lines per printed page and the line that
signals page over
ow.

Line Number (Columns 15-17)

This �eld identi�es the last line number on the page or the line at which page over
ow occurs.
This �eld is used in conjunction with the next �eld, OL/FL (columns 18-19).

Columns 15-17 Description

1-112
(right-justi�ed,
leading zeros are
not required)

The line number of the over
ow line or the page length, as determined by
the next �eld.

blank None.

OL/FL (Columns 18-19)

This �eld identi�es whether the line number in the previous �eld is the over
ow line or the
last line on a page.

Columns 18-19 Description

OL The line number in the preceding �eld is the over
ow line. If the previous
�eld is blank, line 60 is used.

When you space, skip, or print beyond the over
ow line (but not beyond the
current page), the over
ow indicator, if used, is turned on and the detail
and total lines (including those conditioned by the over
ow indicator) are
printed.

FL The line number in the previous �eld is the form (page) length. If the
previous �eld is blank, line 66 is used.

blank Line 60 is the over
ow line; there are 66 lines per page.

When you enter the over
ow line and the page length but do not use Fetch Over
ow, allow
enough space between the over
ow and page length lines for detail and total lines and skip
accordingly.

Line Number and OL/FL (Columns 20-24)

Columns 20-24 let you specify either the over
ow line or the page length (the one you have
not already assigned in columns 15-19). Columns 20-24 consist of two �elds that correspond
to Line Number (columns 15-17) and OL/FL (columns 18-19), respectively. Enter data into
these columns according to the directions for those �elds. You can assign the page length and
over
ow lines in any order in columns 15-24.

6-4 Line Counter Specifications

Example Conventions

Example

Figure 6-3 de�nes line 68 as the over
ow line for the �le PRINTY. It also speci�es that line 74
is the last line on a page.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

LPRINTY 068OL074FL

Figure 6-3. Using the Line Number Fields

Program Name (Columns 75-80)

This �eld contains the program name. The format of this �eld is discussed in Chapter 2.

Line Counter Specifications 6-5

Example Conventions

The Line Counter Specification Default Summary

If you leave the optional �elds of the Line Counter Speci�cation blank, the defaults shown in
Table 6-1 apply.

Table 6-1. Line Counter Specification Defaults

Columns Fields Default Values

1-5 Sequence Number No sequence number applies.

15-24 Line Number,
Channel Number/OL

Channel Number �elds: line 6 is assigned to
Channel 1; other line numbers equal the channel
numbers multiplied by 5; line 60 (Channel 12) is
the over
ow line.

Line Number,
OL/FL

Line Number �elds: line 60 is the over
ow line;
line 66 is the form length.

25-74 Line Number,
Channel Number/OL

Channel Number �elds: line numbers equal the
channel numbers multiplied by 5; line 60 is the
over
ow line.

75-80 Program Name None.

6-6 Line Counter Specifications

7

Input Specifications

This speci�cation gives additional information about input, update, and combined �les. If
you're using any of those �les, you must enter one or more Input Speci�cations for them.

The Input Speci�cation:

Identi�es the types of records in the �le and shows how they relate to one another. (Use the
File and Record Description Fields in columns 7-42 to enter this information.)

Describes the format and location of the �elds in the input records and provides directions
for testing and using their contents. (Use the Field Description Fields in columns 43-70 to
enter this information.)

The Input Speci�cation is identi�ed by an I in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

I

Figure 7-1. The Input Specification

Input Specifications 7-1

Example Conventions

The Input Specification Fields

The �elds you can use in the Input Speci�cation are described in the sections which follow in
this chapter. Each �eld has a unique name and occupies speci�c positions (columns) in the
speci�cation.

Sequence Number (columns 1-5)

This �eld contains the source record sequence number, described in Chapter 2.

Specification Type (Column 6)

This �eld contains an I to identify this line as an Input Speci�cation.

File and Record Description Fields (columns 7-41)

These �elds describe the record types contained in input, combined and update �les.

Group all Input Speci�cations for a �le together. De�ne the �rst record type by entering the
File and Record Description Fields, leaving columns 43-70 on that speci�cation line blank.
Follow this line by one or more speci�cations that describe the �elds for the record type (see
the Field Description Fields (columns 43-70)). Repeat this speci�cation sequence until all
record types are de�ned.

Example

Figure 7-2 shows two record types for the �le ORDER. Lines 1 and 5 contain the File and
Record Description Fields for each record type. Lines 2 through 4 and 6 through 7 contain the
Field Description Fields for the record types.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� IORDER NS 01 44 CA
�2� I 1 10 CUSNUM

�3� I 11 40 CUSNAM

�4� I 41 42 DSCNT

�5� I NS 02 44 CB

�6� I 1 8 PROD

�7� I 9 120QTY

Figure 7-2. Entering Input Specifications for a File

7-2 Input Specifications

Example Conventions

File Name (columns 7-14)

This �eld names the �le to which this and subsequent Input Speci�cations apply. Enter the
name of an input, combined, or update �le de�ned by a File Description Speci�cation. Do not
enter the name of an output or display �le.

Columns 7-14 Description

Valid �le name. (File names contain from one to eight characters,
beginning with a letter. The remaining characters can be letters
or digits. Embedded blanks are not allowed.)

Name of an input, update, or
combined �le being described by
this Input Speci�cation.

Data structure name (columns 7-12). Name of the data structure being
described by the Input
Speci�cation.

If you enter more than one Input Speci�cation for this �le, you do not have to repeat the �le
name on each line. The name remains in e�ect until a new one is encountered.

AND/OR (columns 14-16)

This �eld lets you assign a record identi�cation code longer than three characters to a record
type (AND). It also lets you assign more than one record identi�cation code to the same
record type (OR). This �eld is used in conjunction with the Record Identi�cation Codes Field
(columns 21-41).

Columns 14-16 Description

AND Identi�es this Input Speci�cation as an AND line.

OR Identi�es this Input Speci�cation as an OR line.

You can intermix AND and OR lines.

To enter AND lines, follow these steps:

1. Make sure that the �rst three characters of the record identi�cation code are described by
the previous speci�cation.

2. Enter AND in columns 14-16 with up to three additional record identi�cation code
character descriptions in columns 21-41. Leave columns 17-20 blank. AND lines indicate
that all record-identifying characters must exist before the associated record-identifying
indicator is turned ON.

3. Continue entering AND lines until all of the record identi�cation codes are de�ned.
A record must contain all characters de�ned for the code before its associated
record-identifying indicator is turned ON.

Input Specifications 7-3

Example Conventions

To enter OR lines, follow these steps:

1. Make sure that from one to three characters of the record identi�cation code are described
by the previous speci�cation.

2. Enter OR in columns 14-15 with up to three additional record identi�cation code character
descriptions in columns 21-41. Leave columns 16-18 blank. Record identi�cation codes in
an OR line and any AND lines which follow it have an AND relationship (all of them must
exist before the associated record-identifying indicator is turned ON).

3. Continue entering OR lines until you de�ne all of the record identi�cation codes.

4. You can enter a record-identifying indicator in columns 19-20 of each OR line. If you do
not use one, the last indicator that you entered applies.

Example

Figure 7-3 shows how three record types are identi�ed by record identi�cation codes. Lines 1
and 2 specify that records for the �rst record type have the letter A in positions 1-3 and the
letter B in position 4. Records for the second record type (lines 3 and 4) have the letter A in
positions 1-3 or a Z in position 80. Records for the third record type (lines 5-8) have the letter
A in positions 1-5 or the letter Z in positions 76-80.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� IMYFILE AA 01 1 CA 2 CA 3 CA

�2� I AND 4 CB

I .

I .

�3� I BB 02 1 CA 2 CA 3 CA

�4� I OR 80 CZ

I .

I .

�5� I CC 03 1 CA 2 CA 3 CA

�6� I AND 4 CA 5 CA

�7� I OR 76 CZ 77 CZ 78 CZ

�8� I AND 79 CZ 80 CZ

Figure 7-3. Using AND and OR Lines to Identify Record Types

7-4 Input Specifications

Example Conventions

Group Sequence (Columns 15-16)

This �eld lets you specify the order of record types, if any, in a �le. Records types (see the
Record Identi�cation Codes Field (columns 21-41)) identify di�erent data record formats in a
�le. This �eld is required.

Columns 15-16 Description

01-99
(right-justi�ed, leading
zeros are not required)

Assign this sequence number to the record type speci�ed in the
Record Identi�cation Codes Field (columns 21-41), and verify this
sequence on input.

Two alphabetic characters No group sequence applies. Do not sequence-check input record
types.

Use this �eld when a �le contains more than one record type, the record types are in a
speci�c order, and you want that order veri�ed when the �le is processed. For example,
when a �le contains a customer identi�cation record followed by one or more invoice records
for each customer, you may want this order veri�ed. If the record types are not in the order
you specify, an error message is printed and the program terminates. Group sequences
only ensure that within a group, all data records are in order by the record type entered in
the Record Identi�cation Codes Field (columns 21-41). Other �elds on the record are not
sequence-checked. To sequence-check other data �elds, use the Sequence Field (column 18) of
the File Description Speci�cation.

You must use 01 for the �rst record type. For the remaining record types, enter any set of
numbers that are in ascending sequence. For example, 01, 02, 05, and 52 is a valid sequence.

Within a �le, you can use group sequences for some records and not for others. Enter the
Input Speci�cations for the records that do not use group sequences �rst. (The actual data
records for these speci�cations can appear anywhere in the �le and can be interspersed with
group sequence records.) You cannot enter group sequence numbers on AND and OR lines.
For more information see the AND/OR Field (columns 14-16). For OR lines, the group
sequence from the previous line is used.

Example

The �le INP contains three di�erent types of records that relate to a company's sales sta�.
Each type is identi�ed by a letter in position 10 of the record: A gives the sales person's
name, B gives the sales person's territory and C contains the sales person's sales quota.

NAME A

TERRITORY B Group 1
QUOTA C

NAME A

TERRITORY B Group 2
QUOTA C

NAME A

TERRITORY B Group 3
QUOTA C

Input Specifications 7-5

Example Conventions

To specify that record type A is �rst for each sales person followed by record types B and
C, enter the numbers 01, 02, and 03 in the Group Sequence Field on consecutive Input
Speci�cations. On the group 01 sequence line, enter an A in column 27. On the group 02
sequence line, enter B in column 27 and on the group 03 sequence line, enter C in column 27.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IINP 011 10 CA

I 1 20 NAME

I 021 10 CB

I 1 5 TERRIT

I 031 10 CC

I 1 92QUOTA

Figure 7-4. Defining Group Sequences

Number of Records (Column 17)

This �eld speci�es the number of records allowed for the record type in the group sequence.
Use this �eld only if you entered a number in the previous �eld, Group Sequence (columns
15-16).

Column 17 Description

N One or more records of this type are allowed in the group.

1 Only one record of this type is allowed in the group.

blank There are no restrictions on the number of records per record type in the
group, or you entered alphabetic characters in the Group Sequence Field.

Do not enter this �eld on speci�cations containing AND or OR in columns 14-16. (If this
is an OR line, the number of records for the record type is taken from the previous Input
Speci�cation).

Option/LDA (Column 18)

This �eld speci�es whether the record type is required or optional in a group sequence (see the
Group Sequence Field (column 15-16)). This �eld also identi�es a data structure as a Local
Data Area.

7-6 Input Specifications

Example Conventions

Column 18 Description

O Records of this type are optional and may or may not be present in each
group. (Prevents sequence errors when a record is absent.)

U The data structure de�ned in this speci�cation is the Local Data Area.

blank At least one record with this record type must be present in each group,
or alphabetic characters are entered in the Group Sequence Field.

Do not enter this �eld on speci�cations containing AND or OR in columns 14-16. (If this is an
OR line, the value for this �eld comes from the previous Input Speci�cation).

U (Local Data Area)

The Local Data Area is a �le named LDAFILE which contains 1 record. The record can
contain up to 32 segments of 256 bytes each (the number of segments depends on how it is
created). The Local Data Area provides a way to pass data between RPG programs.

The Local Data Area is created and initialized (to blanks) by the RPGINIT utility. RPGINIT
is often run by a logon UDC. See the RPG Utilities Reference Manual for information about
RPGINIT.

The Local Data Area is loaded into the User Data Structure at run time. To create
a User Data Structure, de�ne it in the File and Record Description line of the Input
Speci�cation with a U in the Option Field (column 18). Also enter a DS in the Record
Indicator/Look-Ahead/Trailer/Data Structure Field (columns 19-20) of that speci�cation.
You can follow the File and Record Description line with Field Description lines describing the
LDAFILE record, though this is optional. De�ne the record using an array that is the same
length as the LDAFILE record, with an element length of one byte. You can use and modify
the array using Calculation Speci�cations. When the program ends, the User Data Structure
contents overwrite the Local Data Area.

Input Specifications 7-7

Example Conventions

The following steps show how Program A uses a Local Data Area to pass information to
Program B. (Assume that the Local Data Area has already been created using the RPGINIT
utility.)

1. Program A loads the Local Data Area File into its User Data Structure.

2. Program A modi�es the User Data Structure during calculations.

3. At end-of-job, Program A updates the contents of the Local Data Area.

4. Program B loads the Local Data Area File into its User Data Structure.

5. Program B uses the data passed in in the Local Data Area from Program A.

Example

To use the Local Data Area in a program, enter a U in column 18, and a DS in columns
19-20. Figure 7-5 shows how to de�ne a Local Data Area in the Input Speci�cations.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

I UDS

I 1 20 USER

I 21 21 OPT1

I 22 22 OPT2

I 23 23 OPT3

I 24 290BGNDAT

I 30 350ENDDAT

Figure 7-5. The Input Specifications for a Local Data Area

7-8 Input Specifications

Example Conventions

Record Indicator/Look-Ahead/Trailer/Data Structure (Columns 19-20)

This �eld assigns a record-identifying indicator to the record type. It also lets you specify
whether the record type contains look-ahead �elds, whether the next lines de�ne the trailer
portion of a spread record, or whether they de�ne a data structure.

Columns 19-20 Description

Record-Identifying Indicators:

01-99 Assign this general indicator.

F0-F9 Assign this function key indicator.

H0-H9 Assign this halt indicator.

KA-KN,
KP-KY

Assign this command key indicator.

L1-L9 Assign this control-level indicator.

LR Assign the last-record indicator.

MR Assign the matching-record indicator.

OA-OG, OV Assign this over
ow indicator.

U1-U8 Assign this user indicator.

1P Assign the �rst-page indicator.

Look-Ahead:

** This record contains one or more look-ahead �elds.

Trailer:

TR The next speci�cation lines de�ne the trailer portion of a spread
record.

Data Structure:

DS The next speci�cation lines de�ne a data structure.

blank Do not assign an indicator to the record type, or this record does
not have look-ahead �elds, or the next lines do not de�ne the
trailer portion o spread record or do not de�ne a data structure.

Input Specifications 7-9

Example Conventions

Record-Identifying Indicators

When a �le contains several types of records and you want to perform di�erent operations
on each type, use this �eld to assign a di�erent record-identifying indicator to each type. At
the beginning of each logic cycle, all assigned record-identifying indicators are turned OFF.
Each time a record is read and selected for processing, the indicator assigned to it is turned
ON and remains on for the entire logic cycle. You can use a record-identifying indicator to
condition a Calculation Speci�cation operation by entering it in one of the indicator �elds
(columns 9-17) of the speci�cation. You can use a record-identifying indicator to condition an
output operation by entering it into one of the output indicator �elds (columns 23-31) of the
Output Speci�cation. You can also use a Calculation Speci�cation to change the setting of a
record-identifying indicator.

Use record-identifying indicators only when:

You are processing more than one record type in a �le.

You are updating a �le (to ensure that updates are made only after the appropriate records
are read).

When using record-identifying indicators, be sure you understand how they are processed in
the RPG logic cycle, especially how they are used in processing heading, detail, and total
records. See the HP RPG Programmer's Guide for information on the RPG logic cycle.

When you're using chained �les, several record-identifying indicators can be on simultaneously,
since several records can be processed at the same time.

When you're doing multiple reads from one or more demand �les during the same logic cycle,
the record-identifying indicators assigned to the �le(s) remain on throughout the cycle if the
previous READ operations were executed successfully. To make sure that these indicators are
o�, you must explicitly turn them o� using a Calculation Speci�cation.

You can assign record-identifying indicators in any order on the Input Speci�cations. You can
use OR lines (see the AND/OR Field (columns 14-16)) to assign the same indicator to several
record types. Normally, when using AND lines (see the AND/OR Field), you enter only one
record-identifying indicator (since the AND lines specify all of the conditions to be met by the
record type).

01-99 (General Indicators)

General indicators identify record types in a �le. They are the most frequently-used
indicators. When a record associated with a general indicator is read and selected for
processing, the indicator is turned ON and all operations conditioned by that indicator are
performed.

7-10 Input Specifications

Example Conventions

Example

Line 1 in Figure 7-6 shows how to assign general indicator 03 to the �rst record type in
�le READX. Every time a record is processed for this record type, the ADD Calculation
Speci�cation operation (line 2) is executed.

1 2 3 4 5 6 7
678901234567890123456789012345678901234567890123456789012345678901234

�1� IREADX 011O03 05 CX

I .

I .

I 021O 05 CY

I .

I .

I 031O 05 CZ

I .

I .

�2� C 03 STOREA ADD STOREB RESF

Figure 7-6. Using a General Indicator

F0-F9 (Function Key Indicators)

You can use function key indicators the same way you use general indicators.

Function key indicators have special meanings when used with the RPG VPLUS Interface.
They are used by VPLUS to signal \events" that take place at the user terminal. When the
user presses �ENTER�, F0 is turned ON. When the user presses �f1� to �f8�, the corresponding
function key indicator is turned ON. When an event 9 or greater takes place, function key
indicator F9 is turned ON. See Chapter 10 for a complete discussion of the RPG VPLUS
Interface.

Function key indicators F1-F8 also have special meanings when used in conjunction with
the SET, DSPLY, and DSPLM Calculation Speci�cation operations (see these operations in
Chapter 8 for details).

H0-H9 (Halt Indicators)

Assign these indicators to record types that you want to cause a halt. When a halt indicator
is turned ON, a message is displayed on the terminal, and the program stops at the end of the
current cycle's detail-time processing. You can continue the program, if you wish. When the
program is continued, the halt indicator is turned OFF.

Input Specifications 7-11

Example Conventions

KA-KN, KP-KY (Command Key Indicators)

You can use command key indicators the same way you use general indicators.

When you use an RPG Screen Interface (RSI) �le, the command keys may have a special
meaning. A user at a terminal keyboard presses �f1� followed by a key from the top row of
the keyboard to turn on one of the twenty-four command key indicators. The RPG Screen
Interface then performs the appropriate action. You enable the command key indicators when
you build the screen forms �le. You can use command keys that have not been enabled the
same way you use general indicators. See Chapter 11 for information on the RPG Screen
Interface and the RPG Utilities Reference Manual (SIGEDITOR) for information on creating
an RSI forms �le.

Note In an RSI application program, all command key indicators are set o� prior to
the READ of the workstation �le.

L1-L9 (Control-Level Indicators)

You can use control-level indicators the same way you use general indicators. They are turned
OFF before the next record is read, regardless of how you use them.

You can assign control-level indicators to record types in any order. For example, you can
assign the indicators L5, L1, and L7 in that order. You can also associate control-level
indicators with individual �elds on a record (see the Control Level Field (columns 59-60)).
Doing this identi�es where the �elds �t in the control-break hierarchy.

LR (Last-Record Indicator)

This indicator identi�es the record that signals end-of-�le. When this record is encountered,
calculations and output conditioned by this indicator are performed, and the program ends.

MR (Matching-Record Indicator)

This indicator is turned ON before detail-time calculations when a match occurs on matching
�elds (see Matching/Chaining Fields, columns 61-62). The indicator is turned OFF if a match
does not occur. The indicator remains set through total and output calculations in the next
cycle.

OA-OG, OV (Over
ow Indicators)

These indicators are normally used in Output Speci�cations to signal page over
ow. However,
if you use them on an Input Speci�cation, they function the same as general indicators. When
a record associated with an over
ow indicator is read, the indicator is turned ON and all
operations conditioned by it are performed.

U1-U8 (User Indicators)

You can use these indicators, much the same way you use general indicators, to condition
operations.

7-12 Input Specifications

Example Conventions

1P (First-Page Indicator)

Normally, you use this indicator in Output Speci�cations to print headings on the �rst page
of a report. After the headings are printed, however, you can use it the same way you use a
general indicator (the 1P indicator is turned OFF after each detail-time output).

** (Look-Ahead)

Place ** in columns 19-20 when the record contains one or more look-ahead �elds.
Look-ahead �elds let you examine the contents of a record before the record is available for
processing. For input �les, look-ahead �elds are located on the next record. For a update and
combined �les, look-ahead �elds are located on the current record. Do not use look-ahead
�elds with chained or demand �les or with �les containing spread records. Do not use this
�eld on AND or OR lines. For more information, see the AND/OR Field (columns 14-16).

You can enter as many look-ahead �elds for a record as necessary. They apply to all records
in a �le, regardless of the record type. De�ne look-ahead �elds after a record type that has
alphabetic characters in the Group Sequence Field (columns 15-16). Look-ahead �eld names
must be unique. Do not de�ne them elsewhere in the program.

You cannot alter the contents of look-ahead �elds. Do not use them in result �elds or clear
them. If you want to use the contents of a look-ahead �eld before and after the record is
selected for processing, de�ne it as a look-ahead �eld and also as a regular �eld (with a
di�erent name).

When end-of-�le is reached in a �le containing look-ahead �elds, the look-ahead �elds are
automatically �lled with ASCII 9's (for alphanumeric �elds) and packed +9's (for numeric
�elds).

Example

Figure 7-7 shows how to de�ne the look-ahead �eld LOOKHD for the �le OVERLD. Line 1
contains ** in columns 19-20. Line 2 de�nes the �eld name and its location in the record.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IOVERLD AA 01

I 1 10 MINE

I 11 20 YOURS

�1� I AB **

�2� I 1 10 LOOKHD

Figure 7-7. Defining a Look-Ahead Field

Input Specifications 7-13

Example Conventions

TR (Trailer Records)

When a �le consists of a header record followed by one or more records that contain
information related to that header, you can condense the �le by formatting the records in a
spread format. When you use a spread record, place the header and related information on
the same record. You can use spread records with primary and secondary �les. You cannot
use spread records with update or combined �les or �les that have look-ahead �elds.

When a �le contains several record types, any or all of them can have spread records. On
the Input Speci�cations, de�ne a spread record as one logical record. It consists of a header
portion followed by a trailer portion. Follow these steps when de�ning the spread record:

1. De�ne the header portion by entering all �elds that you're going to use in the program.
De�ne each �eld as you normally do, using the File and Record Description Fields and
Field Description Fields. If you're using record identi�cation codes, control levels or
matching �elds, de�ne them as part of the header. If you entered a number in the Group
Sequence Field (columns 15-16), you must also enter N in the Number of Records Field
(column 17).

2. Start the trailer portion by entering TR in the Record Indicator Field (columns 19-20) in
the line following the last header �eld. Leave the rest of the speci�cation blank. (Enter
only one TR line per spread record. You can specify as many spread records as necessary
for a �le.)

3. De�ne the trailer �elds used in the program. If the trailer �elds repeat on the data record,
de�ne them only once. De�ne each �eld as you normally do using columns 44-51 and 53-58
in each speci�cation line (leave columns 7-42, 59-62 and 71-74 blank). Do not overlap the
header portion with the trailer portion and do not specify control levels or matching �elds
for the trailer portion.

When formatting the data records, you can enter as many sets of trailer �elds as the record
length allows. If the logical record does not have enough room for all of the trailer �elds,
continue the data on another line and begin that line with the header. Make sure that the
header and trailer �elds have the same format as speci�ed in the Input Speci�cations.

7-14 Input Specifications

Example Conventions

Example

A hardware and carpentry supply house uses a �le that contains a header record for each
general class of item stocked (such as saws, hammers, and screwdrivers). Each header record
is followed by records that show the quantity of each speci�c type of item on hand, one
record for each type. For instance, one item record might show 63 cross-cut saws, another
might indicate 15 rip saws. The three records below show how to format the header and item
information into spread records. Notice that the �elds, TYPE, PART, and QTY are repeated
three times in each record.

TOOL TYPE PART QTY TYPE PART QTY TYPE PART QTY

| | | | | | | | | |

v v v v v v v v v v

Record 1: SAW CIRCULAR 00031 65COPING 00032 14CROSSCUT 00033 107

Record 2: SAW HACK 00036 27KEYHOLE 00035 29RIP 00036 75

Record 3: SCREW DRIVPHILLIPS 00051 35REGULAR 00052 209RIGHT-ANG 00053 82

In the above records, the header and trailer �elds are as follows:

Header Field: TOOL

Trailer Fields: TYPE PART QTY TYPE PART QTY TYPE PART QTY

Notice that the trailer �elds for SAW span two logical records, while those for SCREW DRIV
are contained in one logical record. Figure 7-8 shows how to de�ne the Input Speci�cations for
the spread records shown above. Lines 1 and 2 de�ne the header �eld, TOOL. Lines 3-6 de�ne
the trailer �elds, TYPE, PART, and QTY.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� IINVEN 01N AA

�2� I 1 10 TOOL

�3� I TR

�4� I 11 20 TYPE

�5� I 21 25 PART

�6� I 26 30 QTY

Figure 7-8. Defining a Spread Record

Input Specifications 7-15

Example Conventions

DS (Data Structure)

Data structures let you break a �eld or an array into sub�elds that can be referenced in
Calculations and Output Speci�cations. Data structures can also be used to group individual
�elds together so that they can be used as a unit.

Whenever a data structure is modi�ed its sub�elds are automatically modi�ed. Conversely, if
a sub�eld is changed, its data structure is also changed.

Data structure speci�cations follow all other Input Speci�cations. When de�ning a data
structure, enter the File and Record Description Fields (columns 7-41) as follows:

1. Enter an I in column 6.

2. If you wish, enter a data structure name in columns 7-12 (if you do not, an internal name
is assigned by the compiler). The name must conform to the naming conventions used for
�elds and arrays and cannot exceed 6 characters. The name cannot be an array element or
a table. Enter one of the following for the data structure name:

A name not used elsewhere in the program. The data structure is created as an array
with a one-byte element length. The number of elements is equal to the data structure
length (the highest end positions of its sub�elds).

The name of an alphanumeric array de�ned in a File Extension Speci�cation.

The name of a �eld in an Input Speci�cation.

The name of a previous alphanumeric data structure sub�eld (alphanumeric data
structure sub�eld de�nitions can be nested, but numeric �elds cannot).

If this is the User Data Structure for the Local Data Area, enter the name LDA (other
names are ignored).

3. If this is the data structure for the Local Data Area, enter a U in column 18. The sub�elds
of the data structure are initialized from the Local Data Area at the beginning of the
program and used to update the LDA at end-of-job.

4. Enter DS in columns 19-20 to indicate that this is a data structure.

5. Leave all of the other columns blank.

7-16 Input Specifications

Example Conventions

De�ne data structure sub�elds, using the Field Description Fields (columns 43-70), as follows:

1. Enter an I in column 6.

2. Leave columns 7-43 blank.

3. Enter the starting position of the �eld in columns 44-47. The starting position is relative to
the �rst position of the data structure. The starting position can overlap other sub�elds in
the data structure.

4. Enter the ending position of the �eld in columns 48-51. The ending position is relative to
the �rst position of the data structure. The ending position can overlap other sub�elds in
the data structure.

If the sub�eld is part of a data structure whose length is already de�ned, the sub�eld must
be entirely contained within the data structure (the ending position cannot extend beyond
the length of the data structure).

5. Enter the decimal positions (0-9) for a numeric �eld in column 52, or leave column 52
blank to indicate that the sub�eld is alphanumeric.

6. Enter the sub�eld name in columns 53-58. A sub�eld name:

Can be a new name (not already used in the program).

Can be a name which has been previously de�ned as an input �eld of a data record. If
so, the �eld length and number of decimals must be the same as the original de�nition.
Use columns 44-51 (From and To Fields) to de�ne the location of the �eld within the
data structure (not within the original data record).

Can be an alphanumeric array name de�ned in a File Extension Speci�cation. Columns
44-51 must specify the entire length of the array. An array element cannot be speci�ed as
a data structure sub�eld.

Can be rede�ned as a data structure, with its own sub�elds (the data structure and
sub�eld de�nitions can be nested).

Cannot be an array element or a table.

Cannot have the same name as a sub�eld in another data structure.

Note The HP RPG implementation of data structures does not rede�ne the same
internal area multiple times as other implementations of data structures do.
This allows nesting and greater latitude in referencing data structures within
calculations.

Input Specifications 7-17

Example Conventions

Example

Figure 7-9 shows how to use a data structure to de�ne sub�elds of the input �eld PRODID.
The sub�elds are CATALOG, VENDOR, and PRD#. Changes to any of the sub�elds will
automatically be re
ected in the data structure. If, for example, a calculation changes the
sub�eld VENDOR, PRODID also changes.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IDATA NS 01

I 1 10 PRODID

I 11 40 DESC

I 41 482PRICE

IPRODID DS

I 1 2 CATLOG

I 3 5 VENDOR

I 6 10 PRD#

Figure 7-9. Using a Data Structure to Subdivide an Input Field

Figure 7-10 shows how to use a data structure to consolidate two separate �elds, PROD and
DSCNT. These �elds contain a product number (from an order �le) and a discount code (from
a customer master �le). These �elds are placed together by the data structure PKEY so that
they can be used as the key �eld for reading another �le.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

ICUSTMR NS 01

I 1 10 CUSNUM

I 11 40 CUSNAM

I 41 42 DSCNT

IORDER NS 02

I 1 8 PROD

I 9 120QTY

IPRICE NS 03

I 1 10 KEY

I 11 172COST

IPKEY DS

I 1 8 PROD

I 9 10 DSCNT

Figure 7-10. Using a Data Structure to Consolidate Two Separate Fields

7-18 Input Specifications

Example Conventions

Record Identification Codes (Columns 21-41)

When a �le contains more than one record type and the program processes each type
di�erently, you must assign a unique code to each type using this �eld. The code that you
assign must exist in one or more data records in the �le. (When a �le contains just one type
of record or when each type is processed the same way, leave this �eld blank.)

Column Value Description

Position:
(columns 21-24, 28-31,
35-38)

1-9999
(right-justi�ed,
leading zeros are
not required)

The position (relative to the �rst position of the
record) where this identi�cation code character appears
in the input record.

blank A record identi�cation code does not apply.

Not:
(columns 25, 32, 39)

N The character, zone, or digit must not be present in the
location speci�ed by the Position sub�eld.

blank A character, zone, or digit must be present.

Portion:
(columns 26, 33, 40)

C Use the entire character (zone and digit portions) for
the record identi�cation code.

D Use only the digit portion of the character for the
record identi�cation code.

Z Use only the zone portion of the character for the
record identi�cation code.

blank No character applies.

Character:
(columns 27, 34, 41)

Any letter,
digit, or special

character

Test for this character (on input) in the location
speci�ed by the Position sub�eld.

blank No character applies in this position.

You can use one or more Input Speci�cations to assign record identi�cation codes. To assign
from one to three characters, use one Input Speci�cation. Enter the �rst character in column
27 and describe it in columns 21-26. Enter the second character in column 34 and describe it
in columns 28-33. Enter the third character in column 41 and describe it in columns 35-40.
Enter AND (columns 14-16) lines when the record identi�cation codes are longer than three
characters. Use OR (columns 14-16) lines to assign more than one record identi�cation code
to the same record type.

When a record identi�cation code is recognized at run time, the record-identifying indicators
associated with the record type (see the Record Indicator/Look-Ahead/Trailer/Data Structure
Field, columns 19-20) are turned ON. If a record meets the requirements of more than one
record type, it is processed according to the �rst record type listed in the program.

Input Specifications 7-19

Example Conventions

Portion (Columns 26, 33, 40)

This �eld lets you specify which portion of the record identi�cation code character to use in
identifying the record type. You can use the entire character, the zone portion, or the digit
portion.

Normally, RPG compares record identi�cation codes in ASCII. If you want to compare using
the EBCDIC character set, enter an E in the EBCDIC Zone/Digit Tests Field (column 39) of
the Header Speci�cation. (Appendix D lists the ASCII and EBCDIC collating sequences.)

C (Character)

The character in the data record is compared to the entire character (each of the eight bit
positions) that you enter in column 27, 34, or 41. The corresponding record-identifying
indicator is turned ON only when all bit positions match.

D (Digit)

The low-order four bits (digit portion) of the character in the data record are compared to
the low-order four bits of the character that you enter in column 27, 34, or 41. If these bits
match, regardless of whether the zone portion matches, the corresponding record-identifying
indicator is turned ON. For example, if you enter A in column 27, the data characters Q and 1
will result in a match and cause the associated record-identifying indicator to turn ON.

Z (Zone)

The high-order four bits (zone portion) of the character in the data record is compared to the
high-order four bits of the character that you enter in column 27, 34, or 41. If each zone bit
matches, the corresponding record-identifying indicator is turned ON. For example, if you
enter A in column 27, the letters B through O will result in a match and cause the associated
record-identifying indicator to turn ON.

Example

Three examples of record identi�cation codes appear in the Input Speci�cation in Figure 7-11.
The �rst record type (line 1) has the letter A in position 1. The second record type (line 2)
includes all records with an F in position 3 and any character except D in position 2. The
third record type (line 3) contains a character in position 4 whose zone portion matches the
letter T.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� IANYFILE AA 01 1 CA

I .

�2� I BB 02 2NCD 3 CF

I .

�2� I CC 03 4 ZT

Figure 7-11. Record Identification Codes

7-20 Input Specifications

Example Conventions

Field Description Fields (Columns 43-70)

These �elds describe the data �elds within the records de�ned by the File and Record
Description Fields (columns 7-41). Data �elds include arrays and array elements.

Enter �elds on separate lines, starting with the line immediately following the line that
contains the File and Record Description Fields for the record. Leave columns 7-42 blank.
You only need to de�ne those �elds actually used in the program. See Figure 7-2 for an
example of how to enter Field Description Fields.

Data Format (Column 43)

This �eld describes the format of numeric �elds as they exist in the input �le. Do not enter a
value into this �eld for alphanumeric or unpacked (external) decimal �elds.

Column 43 Description

B Binary format (1 or 2 word integer).

L Unpacked decimal format with leading plus or minus sign.

P Packed decimal format.

R Unpacked decimal format with trailing plus or minus sign.

1-9 The number of digits required by a binary �eld for internal computation.

blank Alphanumeric or unpacked decimal (with no leading or trailing signs)
format. For unpacked decimal format, enter a digit (0-9) in the Decimal
Positions Field (column 52). For alphanumeric format, leave column 52
blank.

If a numeric �eld is not de�ned as a packed decimal (P) �eld, it is converted to that format
once it is read from the input �le. Internal operations use packed decimal format because it
is more e�cient. Additionally, when an alphanumeric �eld is moved to a numeric �eld or
used in computations, it is converted to packed decimal format with the low-order position
determining the sign:

If the low-order position is: The sign is:

0-9 Unsigned - hexadecimal F (1111)

{ or A-I Positive - hexadecimal C (1100)

} or J-R Negative - hexadecimal D (1101)

Input Specifications 7-21

Example Conventions

For example, the number -256 looks like this when represented in alphanumeric (ASCII)
format:

bits: 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1

--------|-------- --------|-------- --------|--------

<---- byte ----> <---- byte ----> <---- byte ---->

2 5 0

Since the ASCII representation of the low-order character is O, the �eld is assumed to be
negative and looks like this when converted to packed decimal:

bits: 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1

--------|-------- --------|--------

<---- byte ----> <---- byte ---->

2 5 6 D

Similarly, if the number 256 has a positive sign in low-order digit (25F), it is assumed to be
positive when converted to packed decimal and looks like this:

bits: 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0

--------|-------- --------|--------

<---- byte ----> <---- byte ---->

2 5 6 C

B (Binary Format)

Numbers are represented in two's complement form. A �eld is either two or four bytes long.

The two-byte format, also known as �xed-point format, lets you store positive and negative
integers in the range -32,768 to +32,767. Bit 0 of the high-order byte is the sign bit. It is 0
for positive numbers and 1 for negative numbers. The remaining bits (1-15) are used for the
integer. The following example shows how the number 256 is stored.

bits: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

--------|-------- --------|--------

<---- byte ----> <---- byte ---->

256

The four-byte format, also a �xed-point format, is the same as the two-byte format except
that the four bytes allow 32 bits for the integer. Bit 0 of the high-order byte is the sign bit.
You can store positive and negative integers in the range -2 billion to +2 billion.

L (Unpacked Decimal Format With Leading Sign)

This format requires one byte (8 bits) to store each digit of the integer. It is the same as
unpacked decimal format (see the description for the \blank" entry) except that the �rst byte
is reserved for the sign. For negative numbers, it is the ASCII negative sign (see the beginning
of this section). For positive numbers, it can be any character. For example, a �eld which
is located in positions 11-15 of a record has the sign in position 11 and the integer value in
positions 12-15.

7-22 Input Specifications

Example Conventions

P (Packed Decimal Format)

Each byte of the �eld is divided into two parts - each holding one digit. This format saves
memory because only four bits are required for each digit. The low-order four bits of the
low-order byte contains the sign. If the number is negative, the sign bits are 1101 (the
character D in hexadecimal). If the number is positive, the sign bits are 1100 (the character C
in hexadecimal), though any bit con�guration except 1101 is considered positive. For example,
the number 256 is stored as follows:

bits: 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1

--------|-------- --------|--------

<---- byte ----> <---- byte ---->

2 5 6 D

R (Unpacked Decimal Format With Trailing Sign)

This format requires one byte (8 bits) to store each digit of the integer. It is the same as
unpacked decimal format (see the description for the \blank" entry) except that the last byte
is reserved for the sign. For negative numbers, it is the ASCII negative sign (see the beginning
of this section). For positive numbers, it can be any character. For example, a �eld which
is located in positions 11-15 of a record has the sign in position 15 and the integer value in
positions 11-14.

1-9 (Internal Binary Digits)

When a binary �eld is converted to packed decimal format for internal use, RPG assumes that
it contains either 5 or 10 digits. If you want to reduce or expand the number of digits during
internal calculations, enter the appropriate number in this column. For example, if the �eld
is used in calculations that can result in a larger number, enter the number of digits for that
number in this �eld.

Blank (Unpacked Decimal and Alphanumeric Formats)

The �eld contains unpacked decimal or alphanumeric data. Unpacked decimal �elds can
contain any number and alphanumeric �elds can contain any alphabetic, numeric or special
character. Both types of data have ASCII representation and each character in the �elds
occupy an eight-bit byte.

In unpacked decimal format, the unsigned number 256 appears as follows:

bits: 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0

--------|-------- --------|-------- --------|--------

<---- byte ----> <---- byte ----> <---- byte ---->

2 5 6

Input Specifications 7-23

Example Conventions

From Field Position (Columns 44-47)

This �eld de�nes where the data �eld starts in the input record. This �eld is required.

Columns 44-47 Description

1-9999
(right-justi�ed,
leading zeros are
not required)

The beginning position of the �eld in the input record.

To Field Position (Columns 48-51)

This �eld de�nes the last position of the data �eld. This �eld is required.

Columns 48-51 Description

1-9999
(right-justi�ed,
leading zeros are
not required)

The ending position of the �eld in the input record. The
maximum length for alphanumeric �elds is 256 characters;
for numeric �elds, 15 digits.

Enter a position relative to the �rst position of the record. It must be greater than or equal
to the number in the From Field (columns 44-47) and it must fall within the record length
de�ned in the File Description Speci�cation. (A one position �eld contains the same number
in both this �eld and the From Field.)

If you want to process part of an input array only, enter only those positions in the From
Field and this �eld that you want to use.

Decimal Positions (Column 52)

This �eld speci�es the number of decimal positions that a numeric �eld contains. Do not enter
a value into this �eld for alphanumeric �elds. This �eld is required for numeric �elds.

Column 52 Description

0-9 The number of decimal positions in the �eld (not to exceed
the number of digits in the �eld).

blank The �eld contains alphanumeric data.

This �eld indicates where the decimal point belongs in the �eld, although no actual decimal
point appears there. If this is an array, you can leave this �eld blank but you must enter the
number of decimals for it in the Decimal Positions Field (column 44) of the File Extension
Speci�cation.

7-24 Input Specifications

Example Conventions

Field Name (Columns 53-58)

This �eld names the �eld, array or array element de�ned by the speci�cation. Every �eld
must have a name; you use this name in the program to reference the �eld.

Columns 53-58 Description

Field name. (This can be a name of up to six characters,
beginning with a letter or @, $, or #; the remaining characters
can be letters, digits, or @, $, or #. Embedded blanks are not
allowed.)

The name of the input �eld.

Array name. (This can be a name of up to six characters,
beginning with a letter or @, $, or #; the remaining characters
can be letters, digits, or @, $, or #. Embedded blanks are not
allowed.)

The name of the input array. (The
name must have previously been
de�ned as an array on the File
Extension Speci�cation.)

Array name, comma, and index. The array name is the same as
described above. The index is either a number or the name of a
�eld (see the �eld name entry above) that contains a number.
The array name/comma/index combination is limited to six
characters.

The name of the input array item.
The name must be de�ned as an
array in the File Extension
Speci�cation.

PAGE, or PAGE1 through PAGE7 The name of a �eld that provides
the page number for output �les.

*ERROR The name of one-character �eld
used for run-time error codes.

Field Name

Enter a name for the �eld.

Normally, you assign unique names to �elds that have the same record type. If you use
duplicate names, only the last �eld can be accessed using the name.

If you use the same �eld name in more than one record type, be sure the �elds have the same
�eld length, data format and number of decimal positions. The �elds can have di�erent
beginning locations. If the �elds are in the same locations in the records, you can save time by
using OR lines to de�ne them (see the following example).

Input Specifications 7-25

Example Conventions

Example

Figure 7-12 shows how to assign the names FIELD1, FIELD2 and FIELD3 to three �elds in
the �le FILEX (the names start in line 1).

The example also shows how to use the same �eld names for �elds in two di�erent record
types in the �le FILEX. The �eld names are FIELDA, FIELDB, and FIELDC and their
de�nitions begin with line 3. The OR line is used to avoid de�ning the �elds twice. The �elds
have the same length on both record types and are located in the same positions.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IFILEX AA 01 1 CA

�1� I 11 20 FIELD1

I 21 30 FIELD2

I 31 40 FIELD3

I BB 02 1 CB

�2� I OR 03 1 CC

�3� I 11 20 FIELDA
I 21 30 FIELDB

I 31 40 FIELDC

I .

I .

Figure 7-12. Entering Field Names

Array Name

When you want to read an entire array, enter the array name in this �eld. To read a portion
of the array, enter the array name with an index (see the next paragraph).

Array Name, Comma, Index

To read one element in an array, enter the array name and an index. The index speci�es the
element to read. To read more than one element, but not the entire array, enter an index
that speci�es the starting location of the �rst element, then in the From Field Position Field
(columns 44-47) and the To Field Position Field (columns 48-51) enter the total number of
characters to read.

The index can be a number or a �eld that contains a number. If you enter a �eld for the
index, it must be a numeric �eld containing no more than 9 digits. The �eld must not have
decimal positions. If the index is an input �eld, you must have de�ned it on a previous Input
Speci�cation (its value should be read before you use it as an index; otherwise, the value from
the previous record is used). If you're calculating the value for the index �eld in a Calculation
Speci�cation operation, make sure you perform the operation before using the �eld as an
index.

7-26 Input Specifications

Example Conventions

PAGE, PAGE1-PAGE7

Using the �eld PAGE in an Input Speci�cation lets you change the length and initial value
of the �eld PAGE. PAGE is a prede�ned four-digit �eld which is set to zeros. It is used for
printing page numbers in report �les.

Normally, you use the �eld PAGE only in Output Speci�cations for printing the page number
(see the Field Name Field (columns 32-37). Page numbering starts with one and continues
to 9999. De�ning PAGE in an Input Speci�cation lets you override these defaults. You can
specify any length for the �eld, but it must be a numeric �eld without decimal positions.
Pagination starts with the number you enter in PAGE, plus one. For example, if you set
PAGE to 9, the �rst page number is 10.

You can de�ne PAGE as a �eld in a regular data �le, as part of a data structure, or in a �le
by itself. If it is part of a data record, its value changes each time a record is read from the
�le and pagination restarts with the new value. Place the value for PAGE in the input record
right-justi�ed. Leading zeros are not required.

If you have more than one report �le, and you want to override the pagination defaults for
them (as described for PAGE), use any of the names PAGE1 through PAGE7.

Example

Figure 7-13 shows how to de�ne PAGE so that its value is read from the input �le PAGENO.
PAGE is �ve characters long in the record.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IPAGENO CC 04 1 CP

�1� I 2 60PAGE

Figure 7-13. Entering the PAGE Field Name

*ERROR

*ERROR is a prede�ned, one-character alphanumeric �eld. When a run-time error occurs
that does not cause the program to terminate, RPG places a unique character in *ERROR
that identi�es the error. If you enter this �eld in an Input Speci�cation, you can interrogate
it to determine the cause of the error. (See Appendix B for the values that are placed in
*ERROR for various run-time errors.)

If, for some reason, you want to overwrite *ERROR, de�ne it with a length of one using the
From Field Position Field (columns 44-47) and the To Field Position Field (columns 48-51).

Input Specifications 7-27

Example Conventions

Control Level (Columns 59-60)

This �eld assigns a control-level indicator to the �eld. You can assign control-level indicators
to �elds in primary and secondary �les. Do not assign them to look-ahead or trailer �elds or
to �elds in chained or demand �les.

Column 59-60 Description

L1-L9 Assign this control-level indicator to the �eld.

blank The �eld is not a control �eld.

A control-level indicator identi�es a control �eld in the �le. When the value in the control
�eld changes on input, a new control group begins and a control break occurs. When a control
break occurs, the control-level indicator is turned ON along with all indicators of lower
rank (see the next paragraph) and all calculation and output operations associated with the
indicator(s) are performed. Use control-level indicators to condition:

Operations for the �rst record of a new control group.

Operations to be performed after all records in a control group are read.

Total and subtotal output operations.

You can assign control-level indicators in any sequence. For example, you can assign L5, L1
and L7 in that order and omit the others. However, within an indicator range such as L1-L9,
the indicator's number indicates its rank. For example, L9 is ranked higher than L8, L8 higher
than L7, and so forth. When a control break associated with L9 occurs, all lower-ranked
indicators (L8 to L1) are also turned ON. When you assign control-level indicators, associate
them with the �eld that corresponds to their rank in the control �eld group. For example,
in a city/county/state control �eld group, where state is the highest control �eld, L3 can be
assigned to the state �eld, L2 to the county �eld and L1 to city �eld.

The control-level indicator L0 is always turned ON. You cannot assign it to a control �eld, but
you can use it to condition Calculation Speci�cation operations. The LR indicator is turned
ON when the last record is read. When it is turned ON, L1-L9 are also turned ON.

A control break often occurs for the �rst record in a �le because the control �eld is compared
to a �eld of blanks or zeros. When this happens, total-time calculations and output operations
are suppressed.

Arithmetic signs and decimal positions are ignored when numeric control �elds are compared.
For example, if one control �eld contains +5 and another contains -5, the �elds are considered
equal. Similarly, 2.11 is equal to 211.

You can combine several �elds to form one control �eld. You do this by de�ning them in the
Input Speci�cations and assigning the same control-level indicator to them. (The �elds are
called split control �elds .) If you're using split control �elds (that have the same control-level
indicator) in more than one �le, the total length of the split control �elds in each �le must
be the same. If the split control �elds are in the same record type, they may be separated
by other �elds, but they cannot be intermixed with other control-level �elds. The maximum
length for a split control �eld is 256 characters.

7-28 Input Specifications

Example Conventions

You can assign the same control-level indicator to �elds in di�erent �les. Control breaks occur
the same as if the �elds were in the same �le. For example, if L3 is assigned to a �eld in one
�le and L3 is assigned to a �eld in another �le, a change in either of these �elds turns ON L3
and causes a control break.

Example

Figure 7-14 shows how to enter the Input Speci�cations for a program that prints a voter
count by county, city and precinct. The �le VOTERS contains voter registration data for a
particular state. The �elds on each input record specify the voter's name, street address, city,
county, and precinct. After each record in VOTERS is read, the program increments the voter
count in the precinct by 1. When the last record in a precinct is read, a control break occurs
because the contents of the PRECNT �eld (line 3), associated with the L1 indicator, changes.
The operations conditioned by the L1 indicator are then performed. The program prints the
total number of voters in the precinct, adds this value to a value counter for total voters in
the city, and clears the precinct counter.

When the contents of the control �eld CITY (line 1) changes, a higher level control break
occurs because L2 and L1 are turned ON. The program now performs the operations
conditioned by both indicators. It prints the number of voters in the precinct, adds this value
to the city counter, prints the number of voters in the city, adds the contents of the city
counter to the county counter, and then clears both the precinct and city counters.

When the contents of the COUNTY �eld (line 2) change, L3, L2 and L1 are turned ON.
Totals for the county, in addition to those for the city and precinct, are calculated and
printed.

Finally, when end-of-�le is encountered for VOTERS, the program turns ON the last-record
(LR) indicator. It then performs all operations conditioned by this indicator (and indicators
L1-L9), such as calculating and printing the total number of voters in the state as well as
those for precinct, city, and county. The program then ends.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IVOTERS AA 01 1 CA

I 5 25 NAME

I 26 30 ADDR

�1� I 31 35 CITY L2

�2� I 36 40 COUNTYL3

�3� I 41 45 PRECNTL1

Figure 7-14. Using Control-Level Indicators in a Voter Count Program

Input Specifications 7-29

Example Conventions

Matching/Chaining Fields (Columns 61-62)

This �eld contains either a matching or a chaining code for the �eld. If you're not using
matching or chaining �elds, leave this �eld blank.

Columns 61-62 Description

C1-C9 This is a chaining �eld identi�ed by this code.

M1-M9 This is a matching �eld identi�ed by this code.

blank The �eld is neither a matching nor a chaining �eld.

C1-C9 (Chaining �elds)

Chaining �eld codes let you identify the �elds to be used in retrieving records from a
direct-access chained MPE �le. (A chained �le can also be a TurboIMAGE or KSAM �le.)
A chaining �eld code marks a �eld as a chaining �eld. A chaining �eld contains addresses
of records that you want to access in a chained �le. Chaining takes place before detail-time
processing.

There are two ways to access a chained �le:

You can use the CHAIN Calculation Speci�cation operation. This method may be more

exible than the next method because you can use indicators to condition the operation.

You can assign one or more chaining �eld codes as described in this section (this is called
\input chaining"). This method reads the chained �le automatically each time a record
is selected for processing that has a chaining �eld. You must enter a File Extension
Speci�cation to associate the chaining �le to the chained �le.

Figure 7-15 shows how chaining takes place. A program reads a record from a transaction
(chaining) �le on disk that contains a customer number and the customer charge amount.
This �le does not contain the mailing address of the customer. The program obtains this
address by using the chaining �eld (customer name) to access the customer's record in the
chained �le. At detail time in the HP RPG logic cycle, the mailing address is retrieved and
the program can print the customer bill with mailing label. Figure 7-16 shows how to enter
the speci�cations for this example using chaining �eld codes.

7-30 Input Specifications

Example Conventions

Figure 7-15. Chaining to a Direct-Access File

Input Specifications 7-31

Example Conventions

You can have up to nine chaining �elds per record type. (This lets you access more than one
chained �le for each record.) The chaining �eld codes do not have a rank based on their
number. You determine the order of the chaining �elds by the sequence in which you enter the
Input Speci�cations. For example, if you assign C3 to the �rst �eld in a record and C2 to the
next �eld and C5 to the third, the chained �les are read in this order: C3, C2, C5.

Chaining �elds can contain:

Numeric relative record addresses of records to be accessed in the chained �le.

Alphanumeric or numeric keys for records to be accessed in the chained �le. (The chained
�le must be a KSAM or TurboIMAGE �le processed by key.)

You can assign the same chaining �eld code to more than one �eld, creating a split chaining
�eld. Split chaining �elds are combined to form one chaining �eld. They can be adjoining or
non-adjoining �elds. The �rst chaining �eld for the speci�cation de�nes the leftmost position
of the combined chaining �eld. The last �eld de�nes the rightmost position of the combined
chaining �eld.

When assigning chaining �eld codes, follow these rules:

1. Do not use look-ahead �elds or arrays as chaining �elds.

2. Do not enter L or R (for leading or trailing arithmetic signs) in the Data Format Field
(column 43). If you do, chaining �eld codes speci�ed for the record type are ignored.

3. Do not intermix lines containing split chaining �elds with those containing regular chaining
�elds.

4. If the chaining �eld contains relative disk addresses, the �eld must be de�ned as numeric.

5. If you want to use the same chaining �eld to read more than one chained �le, de�ne a
separate chaining �eld for each �le but use the same starting and ending positions for each
of them. Also use di�erent names and chaining codes.

7-32 Input Specifications

Example Conventions

Example

Figure 7-16 shows the speci�cations that perform the chaining illustrated in Figure 7-15. The
customer names and charge amounts are stored in the chaining �le TRANSAC. The customer
mailing addresses and other information are contained in the KSAM �le MASTER. The �rst
�eld in TRANSAC, CUST, contains the customer name and it is identi�ed as the chaining
�eld by the code C3. When MASTER is read, the record whose CUST �eld matches the name
in CUST (TRANSAC) is selected.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FTRANSAC IP F 80 CARD

�2� FMASTER IC F 256RI5AI 1 DISK

�3� EAAC3TRANSAC MASTER

ITRANSAC AA 01 80 CT

�4� I 01 15 CUST C3

I 16 200RECNO

I 21 25 AMOUNT

IMASTER BB 02 80 CM

I 01 15 CUST

I 16 25 STREET

I 25 35 CITY

I 35 40 STATE

I 41 45 ZIP

Figure 7-16. Specifying Chaining Fields Using the Input Specification

Input Specifications 7-33

Example Conventions

M1-M9 (Matching �elds)

You can use matching �elds with sequential primary and secondary �les having any �le
organization (when you do, these �les are called matching �les). Matching �eld codes perform
two functions in a program, depending on the number of �les to which you assign them.
These functions are summarized below and are explained in detail in the paragraphs which
follow:

When used with one �le, they identify the �elds to be sequence-checked if the Input
Sequence Field (column 18) of the File Description Speci�cation requests sequence-checking.

When used with two or more �les, they identify the �elds to be matched on input.

If you use matching �eld codes for only one �le in a program, they identify the �elds to be
sequence-checked. (You can sequence-check input, combined and update �les only.) You can
use one or all of the matching �eld codes. If you use more than one, the �elds are treated as
a single control �eld. The �elds associated with the higher matching �eld codes come �rst,
followed by the lower-ranking ones. For example, the �eld associated with M9 comes �rst
followed by the �eld associated with M8 and so on. Be sure that the Input Sequence Field
(column 18) of the File Description Speci�cation speci�es the sequence you want to use. If
a sequence error occurs, an error message is printed and the error response speci�ed by the
Error Response Field (columns 56-71) of the Header Speci�cation, if any, is performed.

Example

Figure 7-17 shows how to assign matching �eld codes to three �elds (DEPT, DIV and
BRANCH) in the �le INFILE. M3 is assigned to the major control �eld, BRANCH.

If INFILE contained the following three records and if ascending sequence is speci�ed for the
�le in column 18 of the File Description Speci�cation, the DIV code in the third record will
cause a sequence error.

DEPT: DIV: BRANCH:

003 005 01

002 006 01

001 004 01

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IINFILE

I 1 10 IDNO

I 21 30 DEPT M1

I 31 40 DIV M2

I 41 45 BRANCH M3

Figure 7-17. Using Matching Field Codes to Sequence-Check a File

7-34 Input Specifications

Example Conventions

When you assign matching �eld codes to �elds in more than one �le, the �elds are used
as control �elds for matching-record processing. Normally (when you do not specify
matching-record processing), records are not matched; all records in the primary �le are
processed �rst, then records from each secondary �le are processed in the order in which
you enter them in the File Description Speci�cations (this is called the \primary/secondary
processing order"). When using matching-record processing (when you enter matching code
�elds for two or more �les), records are selected for processing in the order of the matching
�elds (this is called the \matching-record processing order"). When the matching �elds are
equal, the matching-record indicator (MR) is turned ON and operations conditioned by
the MR indicator are performed. All matching records in the primary �le are processed
�rst followed by matching records in the secondary �le, in the order in which the File
Speci�cations are entered. Figure 7-18 illustrates how matching-record processing works and
the narrative below describes it in detail.

1. The �rst record in each input, update or combined primary and secondary �le is read. A
record is selected and processed through the logic cycle.

2. At the start of the next cycle, the next record from the �le just processed is read.

3. If one of the �les is forced (see the FORCE Calculation Speci�cation operation), its record
is selected.

4. If a �le does not use matching �elds and it is a primary �le, its record is selected. If not,
the record from the �rst secondary �le is selected.

5. If all of the �les use matching �elds, the �elds are compared. If you speci�ed an alternating
collating sequence, �elds are compared using that sequence. If a sequence error occurs,
the response that you entered in the Error Response Field (column 56-71) of the Header
Speci�cation, if any, is performed.

If the �elds do not match and the records are in ascending order, the record with the lowest
matching �eld is selected. If the records are in descending order, the record with the
highest matching �eld is selected.

If the �elds are equal, the record from the primary �le is selected, followed by any other
records from the primary �le having the same matching �eld value. Secondary records are
processed next in the order in which their File Description Speci�cations are entered.

The matching-record (MR) indicator is turned ON before detail-time Calculation
Speci�cation processing. It remains ON (unless you turn it OFF with a Calculation
Speci�cation operation) until this point in the next cycle.

Input Specifications 7-35

Example Conventions

Figure 7-18. Matching-Record Processing

7-36 Input Specifications

Example Conventions

When you use matching �eld codes, follow these rules:

1. For each matching �le, enter the same sequence in the Input Sequence Field (column 18) of
the File Description Speci�cation.

2. Assign matching �eld codes to at least one record type in two or more �les. If you do not,
matching-record processing does not take place. When you use more than one matching
�eld code, all �elds in the control group must match before the MR indicator is turned
ON. If you assign M5, M4, M3 and M2, all four �elds from the primary �le must match all
four �elds from the secondary �le. You do not have to assign matching �eld codes to each
record type in a �le.

When any matching �eld (that has the same matching �eld code) is numeric, all of them
are treated as numeric. For example, if one matching �eld contains 03 and another contains
t3, they are considered equal. Also, arithmetic signs and decimal points are ignored in
matching �elds. For example, a �eld containing 7 is considered equal to a �eld containing
-0.07.

3. Use the same matching �eld codes for each matching �le. The �eld names to which you
assign them, however, do not have to be the same (�eld names are not used in matching).

4. Be sure that all �elds with the same code are the same length and contain the same format
(alphanumeric or numeric). Matching �elds in binary format are not allowed.

5. Make sure that the combined length of all matching �elds does not exceed 256.

6. When you use more than one code, assign them to �elds in the order you want these �elds
combined to form the control �eld. The �elds are combined in the order M9 to M1. For
example, if M3 is assigned to �eld XXX, M7 is assigned to ZZZ and M1 is assigned to
YYY, the �elds are combined as follows:

ZZZXXXYYY

7. Do not assign the same matching �eld code to more than one �eld within a record type.
Matching �elds cannot be split in this manner.

Example

Figure 7-19 shows how to assign matching �eld codes to �elds in the �les ALPHA and BETA.
M1 is assigned to �eld DATA1 in �le ALPHA and to �eld DATA4 in �le BETA. M2 is
assigned to �eld DATA2 in �le ALPHA and to �eld DATA3 in �le BETA. When the contents
of these matching �elds are equal, the MR indicator is turned ON.

Input Specifications 7-37

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IALPHA AA 01 80 CA

I 1 5 DATA1 M1

I 6 10 DATA2 M2

IBETA BB 021 80 CB

I 21 25 DATA3 M2

I 31 35 DATA4 M1

Figure 7-19. Assigning Matching Field Codes

Field Record Relation (Columns 63-64)

When you use OR lines to de�ne record types, and some of the �elds are not contained in
all types, you can enter an indicator in this �eld to associate those input �elds with the
appropriate record type.

Columns 63-64 Description

01-99 General indicator that relates this �eld to a speci�c record type.

F0-F9 Function key indicator that relates this �eld to a speci�c record type.

H1-H9 Halt indicator that relates the �eld to a speci�c record type.

KA-KN,
KP-KY

Command key indicator that regulates the acceptance of data from the �le.

L1-L9 Control-level indicator that regulates acceptance and use of data from t if a
control break occurs. Data is accepted only when the indicator is turned
ON.

LR Last-record indicator that relates the �eld to a speci�c record type.

MR Matching-record indicator that regulates use and acceptance of data from
matching �eld. Data is accepted only when the indicator is turned ON.

OA-OG, OV Over
ow indicator that relates the �eld to a speci�c record type.

U1-U8 User indicator that conditions the use of the �eld.

1P First-page indicator, used as a general indicator, that relates the �le to a
speci�c record type.

blank The �eld appears in all record types for this OR relationship.

When using OR lines, you de�ne a �eld once even though it appears in di�erent record
types. This eliminates duplicate coding for those �elds that are identical. To distinguish a
�eld that is unique, associate an indicator with it using this �eld. Use the same indicator
that you associated with the record type in the Record Indicator/Look-Ahead/Trailer/Data
Structure Field (columns 19-20). When the indicator is ON, it conditionally identi�es the �eld
as belonging to the associated record type. (See the RPG logic cycle section in the HP RPG

7-38 Input Specifications

Example Conventions

Programmer's Guide for details on how the indicators are used.) For example, you can use
the general indicator 10 in this �eld. This associates the �eld with the record type having
indicator 10 in columns 19-20.

When two control �elds (or matching �elds) have the same control-level indicator (or
matching �eld code), you can enter an indicator in one of these �elds or both of them. Only
the �eld associated with the indicator that is ON is used. The �eld that does not have an
indicator associated with it is used (if de�ned �rst) when the indicator is turned OFF.

When you enter an indicator with control-level, matching or chaining �elds, follow these rules:

1. Enter speci�cations that do not use this �eld before those that do.

2. Enter an indicator for matching and control-level �elds that matches the record-identifying
indicators for the record type.

3. Group all �elds together that relate to one record type. Within the groups, you can enter
the �elds in any order.

4. Assign the same indicator to all �elds that belong to a split control �eld. De�ne them
together as a group.

Example

Figure 7-20 de�nes the �le INPUT that contains two di�erent types of records. The general
indicator 01 speci�es that the �eld ALPHA belongs to record type A. GAMMA and DELTA
also belong to record type A because they do not have an indicator associated with them. The
general indicator 02 speci�es that the �eld BETA belongs to record type B. Since GAMMA
and DELTA do not have an indicator associated with them, they also belong to record type B.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IINPUT AA 01 1 CA

I OR 02 1 CB

�1� I 2 5 ALPHA 01

�2� I 6 10 BETA 02

I 11 15 GAMMA

I 16 20 DELTA

Figure 7-20. Using Indicators to Associate Fields with Record Types

Input Specifications 7-39

Example Conventions

Field Indicators (Columns 65-70)

This �eld lets you test for positive values, negative values, zeros or blanks in the �eld.

Column Value Description

Plus (65-66): 01-99, F0-F9, H1-H9,
KA-KN, KP-KY,
L1-L9, LR, MR,
OA-OG, OV,
U1-U8, 1P

The indicator used for testing
numeric �elds for positive data.

blank Do not test data in this �eld.

Minus (67-68): 01-99, F0-F9, H1-H9,
KA-KN, KP-KY,
L1-L9, LR, MR,
OA-OG, OV,
U1-U8, 1P

The indicator used for testing
numeric �elds for negative data.

blank Do not test data in this �eld.

Zero or Blank (69-70): 01-99, F0-F9, H1-H9,
KA-KN, KP-KY,
L1-L9, LR, MR,
OA-OG, OV,
U1-U8, 1P

The indicator used for testing
numeric �elds for zeros or blanks
or alphanumeric �elds for blanks.

blank Do not test data in this �eld.

When you enter an indicator in this �eld, it is turned ON when the condition that you're
testing for is true. It is OFF when the condition is not true. For instance, you can use a halt
indicator to check a �eld for a negative quantity. When a negative quantity is encountered,
the indicator turns ON and causes a halt at the end of the current cycle (unless you entered a
pre-response in the Error Response Field (columns 56-71) of the Header Speci�cation.

When using indicators in this �eld, remember that:

1. An indicator used for positive or negative testing is OFF when the program begins. It is
turned ON when a record is read containing a positive or negative value in the �eld.

2. An indicator used for zero or blank testing is OFF when the program begins, unless you
turn it ON by using the Indicator Setting Field (column 42) of the Header Speci�cation. It
is turned ON when a record is read that contains zeros or blanks in the �eld.

3. When you assign two or three �eld indicators to one input �eld, only the indicator which
tests for the true condition is turned ON; the others are turned OFF.

4. When you assign the same indicator to �elds in di�erent record types, its ON/OFF status
re
ects the current record being processed. The indicator remains ON until the �eld no
longer meets the testing criteria of the indicator.

5. You can turn indicators ON and OFF with the SETON and SETOFF Calculation
Speci�cation operations.

7-40 Input Specifications

Example Conventions

Example

Figure 7-21 shows how to use �eld indicators to test input data. The �eld POSDAT is tested
for positive values. NEGDAT is tested for negative numbers and the �eld NODAT is tested
for zeros or blanks. When any of the conditions are true, calculations and output conditioned
by the indicators are performed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IINPUT AA 01 1 CY

I OR 02 1 CZ

�1� I 1 102POSDAT 0110

�2� I 11 152NEGDAT 02 11

�3� I 16 202NODAT 12

Figure 7-21. Using Field Indicators to Test Input Data

Program Name (Columns 75-80)

This �eld contains the program name. The format for this �eld is discussed in Chapter 2.

Input Specifications 7-41

Example Conventions

The Input Specification Default Summary

If you leave the optional �elds of the Input Speci�cation blank, the default speci�cations
shown in Table 7-1 apply:

Table 7-1. Input Specification Defaults

Columns Field Default Values

1-5 Sequence Number No sequence number applies.

17 Number of Records No restrictions on types per group;
sequencing is not requested.

18 Option/LDA At least one record of the type speci�ed must
be present in each group, or an alphabetic
sequence entry is speci�ed in the Group
Sequence Field.

19-20 Record Indicator/
Look-Ahead/Trailer/
Data Structure

No record-identifying indicator, look-ahead,
trailer �eld, or data structure applies.

21-41 Record Identi�cation Codes A record identi�cation code does not apply.

43 Data Format Unpacked decimal format with no leading or
trailing signs, or alphanumeric data.

44-47 From Field Position No �eld is de�ned.

48-51 To Field Position No �eld is de�ned.

52 Decimal Positions The �eld contains alphanumeric data.

53-58 Field Name No �eld is being described.

59-60 Control Level This �eld is not a control �eld.

61-62 Matching/Chaining Fields This �eld is neither a matching nor a
chaining �eld.

63-64 Field Record Relation This �eld appears in all record types covered
by this OR relationship.

65-70 Field Indicators Do not test data in this �eld

75-80 Program Name None.

7-42 Input Specifications

8

Calculation Specifications

Introduction

The Calculation Speci�cation lets you perform arithmetic operations and other types
of operations such as searching tables and arrays, moving data internally, performing
subroutines, and using system intrinsics. (See \Operation Field" in this chapter for a list of
the Calculation Speci�cation operations.)

The Calculation Speci�cation speci�es:

Whether to perform the operation at detail time or total time; whether to perform the
operation as a subroutine; or, whether to perform the operation at all.

Detail-time operations are performed for each input record. For instance, a program
that calculates employee payroll performs detail calculations for each employee record.
Total-time operations use data accumulated from a group of related records (a control
group). Total-time operations are performed when a control break occurs (the current
record's control �eld di�ers from that of the previous record). For instance, a payroll that
accumulates employee pay by department contains Calculation Speci�cations for processing
department totals.

To execute a Calculation Speci�cation operation at detail time, leave the Control Level
Field (columns 7-8) blank. (Additionally, to execute detail-time calculations only in certain
circumstances, \condition" those speci�cations by entering general indicators in their
Indicator Fields (columns 9-17).) To execute a Calculation Speci�cation operation at total
time, enter a control-level indicator (L0-L9, LR) in the Control Level Field.

Subroutines are executed by the EXSR operation.

The operation to perform, the data to use in the operation, and where to store the result.
Specify the operation in columns 28-32, the data in columns 18-27 (or columns 33-42), and
the result �eld in columns 43-51.

The tests to perform on the results of the operation. You do this by entering indicators in
the Resulting Indicators Field (columns 54-59) of the operations that produce the results.
Then you condition subsequent operations with those indicators.

Calculation Specifications 8-1

Example Conventions

When you enter Calculation Speci�cation operations, enter them in this order:

1. Detail-time operations.
2. Total-time operations.
3. Subroutine operations.

The Calculation Speci�cation is identi�ed by a C in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C

Figure 8-1. The Calculation Specification

The Calculation Specification Fields

The Calculation Speci�cation �elds are described in the sections that follow in this chapter.
Each �eld has a unique name and occupies speci�c positions (columns) in the speci�cation.

Sequence Number (Columns 1-5)

The Sequence Number �eld contains the source record sequence number, described in Chapter
2.

Specification Type (Column 6)

The Speci�cation Type �eld contains a C to identify this line as a Calculation Speci�cation.

8-2 Calculation Specifications

Example Conventions

Control Level
(Columns 7-8)

The Control Level �eld determines when the operation entered in columns 28-32 of this
speci�cation is performed. Calculation speci�cations can be executed at detail time, total
time, at the end of the program, or as a subroutine (see the HP RPG Programmer's Guide for
information on when these events occur in the RPG logic cycle).

Table 8-1. Control Level (Columns 7-8)

Columns 7-8 Description

L0 The operation is always performed at total time
because the L0 indicator is always ON. You can use
L0 to condition operations on input records that do
not have control �elds.

L1-L9 The operation is performed at total time before the
�rst record in the new control group (for this
indicator) is processed, or after the indicator is turned
ON by a SETON operation.

LR The operation is performed after the last record is
processed, or after the LR indicator is turned ON by a
SETON operation.

SR The operation is part of an internal subroutine and is
performed by an EXSR operation at detail time or
total time (SR in columns 7-8 is optional).

AN Establishes an AND relationship between indicators
on this and previous lines.

OR Establishes an OR relation between indicators on this
and previous lines or in a previous AND relationship.

blank The operation is performed at detail time. Or, if the
calculation speci�cation is within a sub-routine, it is
performed when the sub-routine is invoked.

L1-L9 (Control-Level Indicators)

When you use L1-L9 indicators in a Calculation Speci�cation, the operation is performed
when there is a control break in the �eld associated with it (see the Control Level Field
(columns 59-60) of the Input Speci�cation) or in a �eld associated with an indicator of higher
rank. For example, if you assign the control-level indicators L1, L2, and L3, a control break
that turns ON L3 also turns ON L1 and L2. When the LR indicator is turned ON, L1-L9 are
turned ON.

Control-level indicators can also be turned on by the SETON operation, by the record type
identi�cation, and by testing non-control �elds. Under these conditions, however, control-level
indicators of lower rank are not turned ON.

Calculation Specifications 8-3

Example Conventions

Example

Figure 8-2 shows two operations conditioned by control-level indicators. Line 1 is conditioned
by L2 and line 2 is conditioned by L1. When a control break occurs for the control �eld
associated with L2, L1 and L2 are both turned ON and both operations are performed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� CL2 ALPHA ADD BETA RES1 100

�2� CL1 MOVE RES OUTPT 10

Figure 8-2. Using Control-Level Indicators to Condition Calculation Specification Operations

LR (Last-Record Indicator)

The LR indicator is turned ON after the last input record is processed. When LR is turned
ON, the control-level indicators L1-L9 are also turned ON. Use the LR indicator to condition
operations that you want to perform at the end of the program.

You can turn the LR indicator ON by entering it in the Resulting Indicators �eld (columns
54-59) of another speci�cation.

SR (Subroutine Identi�er)

You can use the SR identi�er with operations that are part of an internal subroutine, though
it is optional. Internal subroutines begin with the BEGSR operation and are executed by
speci�cation of EXSR operations at detail time. Enter internal subroutine operations after all
other Calculation Speci�cations in the program.

AN(D), OR Lines

AN(D) and OR lines let you condition an operation using more than three indicators. See the
Indicators Field (columns 9-17) for more information.

Columns 7-8 on the line preceding the AN(D) and OR lines determines whether the operation
takes place at detail time, total time, or end of program. When you use AN(D) lines, the
operation is performed only when all indicator conditions are satis�ed. For OR lines, the
operation is performed when any of the indicator conditions in the OR lines are satis�ed.

8-4 Calculation Specifications

Example Conventions

When entering AN(D) and OR lines, follow these steps:

1. Precede the AN(D) or OR line with a speci�cation that contains L0-L9, LR, SR, or blanks
in the Control Level Field (columns 7-8), or from one to three indicators in the Indicators
Field (columns 9-17). Leave columns 18-59 blank.

2. Enter the AN(D) or OR line by placing AN or OR in the Control Level Field and the
indicators in the Indicators Field. If this is not the last AN(D) or OR line, leave columns
18-59 blank. (You may enter up to seven of these AN(D) and OR lines.)

3. On the last AN(D) or OR line, enter the operation to perform and the data �elds to use for
the operation.

Example

Figure 8-3 shows how to use AN(D) and OR lines. The AN(D) line (line 1) causes the
operation on that line to be executed when indicators 03, 04, 05, and 06 are all turned ON.
The AN(D) and OR lines in lines 2 and 3 cause the operation in line 3 to be performed when
indicators 01, 02, 03, and 04 are turned ON, or when indicator 05 is turned ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 03 04 05

�1� CAN 06 ETA ADD ZETA RES3 100

C .

C .

C 01 02 03

�2� CAN 04

�3� COR 05 OMEGA SUB OMICRON RES4 100

Figure 8-3. Using Calculation Specification AN(D) and OR Lines

Calculation Specifications 8-5

Example Conventions

Indicators (Columns 9-17)

The Indicator �eld is composed of sub�elds that let you enter up to three indicators for
conditioning the operation. These indicators are used in addition to the indicators entered in
the Control Level Field (columns 7-8).

Table 8-2. Indicators (Columns 9-17)

Column Value Description

Not: (columns
9, 12, 15)

N The indicator in the indicators sub�eld
(below) must be OFF to condition the
operation.

blank The indicator in the indicators sub�eld
(below) must be ON to condition the
operation.

Indicators:

(columns
10-11, 13-14,
16-17)

01-99 General indicators used elsewhere in the
program.

F0-F9 Function key indicators.

KA-KN,
KP-KY

Command key indicators.

H0-H9 Halt indicators.

L0-L9 Control-level indicators.

LR Last record indicator.

MR Matching-record indicator.

OA-OG,OV Over
ow indicators.

U1-U8 User indicators.

1P First page indicator.

blank The operation is performed for every input
record if the Control Level Field does not
contain L0-L9 or SR.

(column 11
only)

* The operation is conditioned by the same
indicators as the previous Calculation
Speci�cation.

All indicator settings (in addition to what is speci�ed in the Control Level Field) must be
satis�ed to perform the operation. You can enter AN(D) and OR lines to use more than three
indicators to condition an operation (see \Control Level Field" in this chapter).

8-6 Calculation Specifications

Example Conventions

When conditioning operations with indicators, be sure you understand how they are used in
the RPG logic cycle (see the HP RPG Programmer's Guide).

When using the Indicator Field, you can:

Use any indicator entered in the Record Indicator/Look-Ahead/Trailer/Data Structure
Field (columns 19-20) of the Input Speci�cations to condition operations for certain record
types.

Use any indicator entered in the Field Indicators Field (columns 65-70) of the Input
Speci�cation to condition operations that use �elds that meet certain requirements.

Use any indicator entered in the Resulting Indicators Field (columns 54-59) to condition
operations based on the results of previous operations.

H0-H9 (Halt Indicators)

The halt indicators cause the operation to be stopped or skipped when there are input data
errors. You can also use them to perform an operation only under certain error conditions.
To use a halt indicator in this �eld, you must have entered it in the Field Indicators Field
(columns 65-70) of an Input Speci�cation or in the Resulting Indicators Field (columns 54-59)
of a previously executed Calculation Speci�cation.

L0-L9 (Control-Level Indicators)

The control-level indicators cause the operation to be performed at detail time only for the
�rst record of a new control group (either the �eld associated with this indicator changes or
a �eld associated with an indicator of higher rank changes). The indicator must have been
entered in either the Control Level Field (columns 59-60) of an Input Speci�cation or in the
Resulting Indicators Field (columns 54-59) of a previously executed Calculation Speci�cation.

When you enter a control-level indicator in this �eld, do not enter it in the Control Level
Field (columns 7-8).

LR (Last-record indicator)

The last-record indicator causes the operation to be performed at end-of-program. RPG
turns it ON automatically when the last input record is read. You can turn it ON yourself by
entering it in the Resulting Indicators Field (columns 54-59) of another speci�cation.

MR (Matching-Record Indicator)

The matching-record indicator causes the operation to be performed when matching
�elds are the same for the current input records. You must de�ne matching �elds in the
Matching/Chaining Fields (columns 61-62) in the Input Speci�cation.

If you entered a control-level indicator (L1-L9) in the Control Level Field (columns 7-8), MR
is turned ON when a matching condition occurs for the previous record, not the record that
caused the control break.

OA-OG, OV (Over
ow Indicators)

The over
ow indicators cause the operation to be performed when page over
ow occurs. To
associate the indicator with page over
ow, you must enter it in the Over
ow Indicators Field
(columns 33-34) of the File Description Speci�cation.

Calculation Specifications 8-7

Example Conventions

U1-U8 (User Indicators)

The user indicators indicators cause the operation to be executed when they are turned ON.
You can turn the user indicators on yourself with the SETON operation. You get the initial
settings (ON or OFF) of these indicators in three di�erent ways.

By prompting the operator.

By taking values from the system job control word (JCW).

By taking values from a �le.

* (Column 11 Only)

If you use the same indicators for several consecutive operations, you do not have to repeat
them on each line. Enter them on the �rst line, then enter an asterisk (*) in column 11 on
successive lines.

Examples

Figures 8-4 and 8-5 give two examples for using indicators to condition Calculation
Speci�cation operations. In �gure 8-4, the operation is performed at total time when
indicators L6, 01, and 03 are ON and 02 is OFF.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

CL6 01N02 03FAC1 ADD FAC2 FACX 50

Figure 8-4. Using Four Indicators to Condition a Calculation Specification Operation

8-8 Calculation Specifications

Example Conventions

Figure 8-5 shows how an indicator is turned ON, then used to condition a Calculation
Speci�cation operation. When the �eld CLASS is blank, the general indicator 01 turns ON
(line 1). Line 2 performs the ADD operation only when CLASS is not blank (indicator 01 is
turned OFF).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

IINFILE AA

I .

I .

�1� I 21 25 CLASS 01

C .

C .

�2� C N01 SUMA ADD SUMB SUMC 50

Figure 8-5. Using One Indicator to Condition a Calculation Specification Operation

Factor 1 (Columns 18-27)

The Factor 1 �eld names the operand to use in the operation. What you enter in this �eld
depends on the operation you're using (see the description for the operation in this chapter).

Table 8-3 contains brief descriptions of the Factor 1 �eld.

Table 8-3. Factor 1 (Columns 18-27)

Columns 18-27 Description

The name of a �eld, table, array,
array element, or �le.

The �eld containing the data or (if
this is a �le) the name of the �le.

Subroutine name. The internal subroutine to execute.

A label. The label for a TAG, ENDSR, or
GOTO operation.

An alphanumeric, numeric literal, or
a �gurative constant.

The actual data to be used.

Blank. The operation does not use an
operand in this �eld.

Field, Table, Array, Subroutine, and Label Names

Calculation Specifications 8-9

Example Conventions

You must de�ne �eld names that you enter in this �eld somewhere in the program. Some �eld
names, however, are prede�ned; you can use them without de�ning them. These �elds are
UDATE, UMONTH, UDAY, UYEAR, PAGE, PAGE1-PAGE7, and *ERROR.

Alphanumeric Literals

Alphanumeric literals are constants that consist of ASCII characters. They can also specify a
message identi�cation number in a User Message Catalog (see the MSG operation). Do not
use alphanumeric literals in arithmetic operations.

Alphanumeric literals can contain up to eight characters including blanks. When entering
them, enclose the characters in quotation marks. For instance, to use the literal ALPHALIT,
enter "ALPHALIT". (If you want to use apostrophes instead of quotation marks to enclose
alphanumeric literals, enter the apostrophe in the QUOTE= parameter of the $CONTROL
compiler subsystem command.) To include a quotation mark in the literal itself, enter two
quotation marks. For example, to enter the literal \NAME", enter """NAME""".

Numeric Literals

A numeric literal is the actual number that is used in the operation. Use numeric literals the
same way you use �eld names. Numeric literals can contain up to ten characters, including
a decimal point and a leading plus or minus sign (unsigned literals are treated as positive
numbers). For example, 123.68 is a valid numeric literal.

Do not embed blanks in numeric literals and do not enclose them in quotation marks.

8-10 Calculation Specifications

Example Conventions

Figurative Constants

Figurative constants are prede�ned names that, when used, produce one or more identical
characters. The �gurative constants *BLANK and *BLANKS produce one or more blanks
and are normally used with alphanumeric �elds. *ZERO and *ZEROS produce one or more
zeros and are used with either numeric or alphanumeric �elds. The number of blanks or zeros
produced depends on the size of the Factor 2 Field (or, if the Factor 2 Field is not used, the
Result Field).

You can use �gurative constants with operations such as CHAIN, COMP, LOKUP, MOVE,
MOVEL, and MOVEA.

Example

Figure 8-6 gives four examples of how to use the Factor 1 �eld. The operation in line 1 uses a
�eld name DATAX. Lines 2 and 3 use the numeric literals 10 and -1, respectively. Line 4 uses
the �gurative constant *ZERO.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C DATAX ADD 100.50 RESULT 82

C .

C .

�2� C 10 MULT ALPHA PROD 102

�3� C -1 DIV ALPHA QUOTA 102

C .

C .

�4� C *ZERO COMP QUOTA

Figure 8-6. Using the Factor 1 Field

Calculation Specifications 8-11

Example Conventions

Operation (Columns 28-32)

This �eld contains a word that directs RPG to perform a certain action.

Each type of operation is discussed in this section of this chapter. The operations are further
broken down in the next section with a detailed alphabetical description of every RPG
calculation speci�cation operation.

Arithmetic Operations

You perform arithmetic operations by entering numeric �elds, literals, tables, arrays, or
array elements in the Factor 1 (columns 18-27) and Factor 2 Fields (columns 33-42). Enter
a numeric �eld, table, array, or array element in the Result Field (columns 43-48). The
length of �elds used in arithmetic operations cannot exceed 15 digits. Do not enter a literal
or alphanumeric �eld in the Result Field. The Factor 1, Factor 2, and Result Fields can all
contain the same �eld or di�erent �elds. Fields used in Factor 1 and Factor 2 are una�ected
by arithmetic operations unless these �elds are also named in the Result Field.

If Factor 1 or Factor 2 contains an array name, the Result Field must also contain an array
name (unless this is an XFOOT operation). If you use more than one array name in an
operation, and the arrays contain di�erent numbers of elements, the operation is performed for
the number of elements in the smallest array. When you use a single �eld and an array name,
the �eld is applied to each element in the array.

With arithmetic operations, the Result Field will over
ow and data will be lost if the Result
Field is not large enough to hold the result of the operation. With full numeric over
ow
checking enabled (through the $CONTROL OVFLOCHK compiler command) an arithmetic
over
ow initiates the over
ow error trap. You can control how your program handles the
over
ow trap with entries in the Header Speci�cation, columns 55 and 65. If you disable full
over
ow checking for some calculations with the $CONTROL NOOVFLOCHK compiler
command (or if you haven't enabled full checking), RPG may left-truncate the calculated
value instead of initiating the over
ow error trap. This happens when either Factor 1 or
Factor 2 is the same size or larger than the calculated value of the operation. If the size of the
calculated value is larger than the size of each of Factor 1, Factor 2, and the Result Field,
then RPG initiates the over
ow error trap, regardless of the setting of OVFLOCHK.

The arithmetic operations are listed below and are described in the pages which follow:

ADD, DIV, MULT, MVR, SQRT, SUB, XFOOT, Z-ADD, Z-SUB

Move Operations

Move operations move all or part of Factor 2 to the Result Field. Factor 2 remains
unchanged. Do not use the Factor 1 �eld, resulting indicators �eld, or half adjusting �eld.
When data are moved to numeric �elds, no decimal alignment takes place. For example, if the
number 2.35 has two decimal positions and is moved to a �eld with one decimal position, the
result is 23.5.

You can convert a numeric �eld to an alphanumeric �eld by entering the numeric �eld name
in the Factor 2 Field and the alphanumeric �eld name in the Result Field. Packed decimal
data are converted to unpacked format.

You can convert an alphanumeric �eld to a numeric �eld by entering the alphanumeric �eld
name in the Factor 2 Field and the numeric �eld name in the Result Field. Unpacked data

8-12 Calculation Specifications

Example Conventions

are converted to packed decimal format. The Factor 2 Field must contain numeric data only,
except for the sign position which can contain a digit 0-9 or a letter A-R.

The move operations are listed below and are described in the pages which follow:

MOVE, MOVEA, MOVEL

Move Zone Operations

These operations move the sign bits from the high-order (leftmost) or low-order (rightmost)
position of the Factor 2 Field to the high-order or low-order position of the Result Field. The
digit portion of the high-order or low-order position can be moved in a similar manner. Thus,
these operations are useful for converting from one character representation to another.

Factor 2 can be a literal or a �eld. (Do not use the literal \-0" to make a �eld negative. RPG
does not recognize it as a valid negative quantity. Instead, use the literal \-".) The Result
Field must contain a �eld name. When Factor 2 is a numeric �eld, the sign moved to the
Result Field is either positive (1100), negative (1101), or unsigned (1111).

The move zone operations are listed below and are discussed in detail in the pages which
follow:

MHHZO, MHLZO, MLHZO, MLLZO

Compare and Test Operations

The compare and test operations test �elds for certain conditions. The results of the test are
re
ected by the status of the resulting indicators you enter in the Resulting Indicators Field
(columns 54-59). The operations do not alter the contents of the �elds being tested.

The compare and test operations are listed below and are discussed in the pages which follow:

COMP, TESTB, TESTN, TESTZ

Branching Operations

Calculation Speci�cations are executed in the order you enter them. Occasionally, you may
want to change the order of execution. For instance, under certain conditions you may want
to bypass one or more calculations or you may want to repeat a group of operations several
times in the same program cycle.

The branching operations are listed below and are discussed in detail in the pages which
follow:

GOTO, TAG

Calculation Specifications 8-13

Example Conventions

Internal Subroutine Operations

When a program performs the same operations under di�erent conditions, you can code the
operations once as an internal subroutine and then branch to the subroutine to perform the
operations. You code internal subroutines as part of the RPG program. (External subroutines
are not part of the program. They are generally routines that are used by many programs.)

Figure 8-7 shows how to enter an internal subroutine. Internal subroutines follow all other
Calculation Speci�cations in the program. You can identify them by entering an SR into the
Control Level Field (columns 7-8), although this is optional. The BEGSR operation (line 2)
marks the beginning of the internal subroutine. Enter a unique name for the subroutine in the
Factor 1 Field. The name can be the same as a �eld name but must not be the same name
used with a TAG operation or another BEGSR operation. The operations that are part of the
internal subroutine follow the BEGSR operation (line 3). The ENDSR operation ends the
internal subroutine (line 4). The internal subroutine is executed from the main program by
the EXSR operation (line 1).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C .

C .

C (main program code)

C .

C .

�1� C EXSR SUBNAM

C .

C .

�2� CSR SUBNAM BEGSR

CSR .

CSR .

�3� CSR (subroutine body)

CSR .

CSR .

�4� CSR ENDSR

Figure 8-7. Using an Internal Subroutine

8-14 Calculation Specifications

Example Conventions

Within a subroutine, you can condition an operation by entering indicators in the Indicators
Field (columns 9-17). You cannot use control-level indicators in the Control Level Field
(columns 7-8) to condition them; however, you can use them to condition the EXSR operation
that performs the subroutine. You can de�ne �elds inside or outside of an internal subroutine.
Fields that you de�ne within the subroutine can be referenced outside of it also.

There is no limit to the number of internal subroutines you can use in a program, and you
do not have to enter them in the order in which they are executed. Subroutines can contain
EXSR operations that call other internal subroutines. However, a subroutine cannot call itself
nor can it call a subroutine that calls it. Do not nest subroutines.

You can share internal subroutines with other programs by putting them onto disk and
incorporating them into the programs by placing $INCLUDE statements at the points where
the subroutine would normally be coded. When you do this, be careful to use the correct
names for �elds or labels used in the subroutine.

The internal subroutine operations are listed below and are described in the pages which
follow:

BEGSR, ENDSR, EXSR

External Subroutine Operations

External subroutines are subroutines written in C, Pascal, COBOL, SPL (CM only), or
FORTRAN that are executed from the RPG program. Use external subroutines for routines
that are common to many programs.

You must compile external subroutines separately from the RPG program and place them
in executable libraries (see the HP Link Editor/iX Reference Manual for details on placing
compiled subroutines in executable libraries).

You execute (call) external subroutines using the EXIT operation. You pass information
(parameters) to and from the subroutine using either, or both, the RLABL or PARM
operations. Parameters can be �elds, tables, and arrays. Additionally, if you use RLABL, you
can pass indicator settings.

RPG passes data to an external subroutine by giving it the byte address of the data. If the
data is numeric (all numeric data is stored internally in packed decimal format) and the
external subroutine is written in COBOL, de�ne the data as COMP-3. If you're not using
COBOL, you must convert the numeric data yourself. When de�ning (declaring) data in an
external subroutine, be sure to use the correct �eld type and length.

Calculation Specifications 8-15

Example Conventions

When compiling COBOL external subroutines to be run in MPE/iX compatibility mode,
include the ANSIPARM parameter in the $CONTROL compiler directive. This parameter
aligns parameters on byte boundaries, which RPG expects. (When compiling COBOL
external subroutines in MPE/iX native mode, byte alignment is automatic.)

Note When coding in C, the procedure name must be in lowercase. If coding
in Pascal, FORTRAN, or COBOL, the compilation process will do any
downshifting necessary.

The external subroutine operations are listed below and are discussed in the pages which
follow:

EXIT, PARM, RLABL

Structured Programming Operations

Structured programming operations let you use structured programming techniques.
Structured programming is a coding discipline that seeks to keep routines in manageable,
functional units that can be tested and debugged separately. Routines in structured programs
are modular and insulated from other routines; no direct branching into and out of them is
allowed.

The RPG structured programming operations make a program easier to read, they reduce
the number of Calculation Speci�cations, and they eliminate complex use of indicators. The
structured programming operations are listed below and are described in detail in the pages
which follow:

CABxx, CASxx, DO, DOUxx, DOWxx, ELSE, END, IFxx

Indicator and Bit Setting Operations

These operations let you turn indicators On and OFF at will. They also let you turn
individual bits in a one-character alphanumeric �eld ON and OFF.

When you're turning record-identifying indicators ON and OFF using the indicator
operations, remember that they are reset automatically whenever a record is read from the
associated �le. Similarly, the record-identifying and the control-level indicators (L1-L9) are
turned OFF at the end of detail-time processing.

The indicator and bit setting operations are listed below and are discussed in the pages which
follow:

BITOF, BITON, SETOF, SETON

8-16 Calculation Specifications

Example Conventions

Table and Array Operations

The table and array operations let you search an array, a single table, or alternating tables.
To ensure that arrays are in ascending or descending sequence before you search them, you
can use the SORTA operation.

The table and array operations are listed below and are described in the pages which follow:

LOKUP, SORTA

File Operations

The �le operations let you perform all �le handling functions. Some operations read records
from chained, demand, indexed and full procedural �les. There are operations that let you
obtain exclusive access to a TurboIMAGE or KSAM �le. You can perform input and output
during Calculation Speci�cation processing and you can specify the �le from which the next
record will be read.

The �le operations are listed below and are described in the pages which follow:

CHAIN, CLOSE, EXCPT, FORCE, LOCK, READ, READE, READP, RESET, SETLL,
UNLCK

Display Operations

The display operations let you display data and messages on the terminal. You can also use
them to enable the function keys on the keyboard and to sense when the user presses them.

The display operations are listed below and are described in the pages which follow:

DSPLM, DSPLY, MSG, SET

Debugging Operation

This operation facilitates the debugging process by displaying (at any point in the Calculation
Speci�cations) the indicators that are ON and, optionally, a �eld in the program.

The debugging operation is listed below and is described in the next section:

DEBUG

System Operations

The system operations listed below let you use or access various operating system functions
without directly using system intrinsics or system commands:

FNDJW, FNUM, PUTJW, SUSP, TIME, TIME2

Two additional system operations let you call system intrinsics directly from your RPG
program:

INTR, IPARM

For information on the system intrinsics discussed in the following sections, see the MPE/iX
Intrinsics Reference Manual .

Calculation Specifications 8-17

Example Conventions

Operation Definitions

The de�nitions in this section are listed in alphabetical order, not by type of operation.

ADD

This arithmetic operation adds Factor 1 to Factor 2 and places the sum in the Result Field. If
Factor 1 is blank, it adds Factor 2 to the Result Field and places the sum in the Result Field.

BEGSR

This internal subroutine operation marks the entry point to an internal subroutine (see �gures
8-7 and 8-26). Enter the name (label) of the subroutine in the Factor 1 Field. The label can
be up to six characters long, and must begin with a letter or the special character @, $, or #.
The remaining characters can be letters, digits, or the special characters @, $, or # in any
combination. Use this label only in an EXSR operation to perform the subroutine (do not use
it in a GOTO operation, in or out of the subroutine.) Enter only one BEGSR operation per
subroutine.

BITOF

This indicator and bit setting operation turns OFF bits in the Result Field. The bits that are
turned OFF are determined by the bit settings of the Factor 2 Field.

The Result Field must be a one-character alphanumeric �eld. You can enter an alphanumeric
literal, a �eld, a table, or an array element in the Factor 2 Field. In all these cases, Factor 2
must be a single character. If you enter a �eld, table, or array element in Factor 2, the bits
that are turned OFF in the Result Field are the ones that are OFF in the Factor 2 �eld. If
you enter an alphanumeric literal, each digit in it identi�es a bit to be turned OFF. Enter up
to eight digits for the literal enclosed in quotation marks. Enter a digit for each bit position
you want to turn OFF. Zero (0) stands for the high-order bit and seven for the low-order bit.
You can enter the bit numbers in any order; if you do not enter a number for a bit, it remains
unchanged. For example, \02" turns bits 0 and 2 OFF.

Do not use the Factor 1, Decimal Positions (column 52), Half Adjust (column 53), or
Resulting Indicators (columns 54-59) Fields.

See �gure 8-8 for an example of how to use BITOF.

8-18 Calculation Specifications

Example Conventions

BITON

This indicator and bit setting operation turns ON bits in the Result Field. The bits that are
turned ON are determined by the Factor 2 Field.

The Result Field must be a one-character alphanumeric �eld. You can enter an alphanumeric
literal, a �eld, a table, or an array element in the Factor 2 Field. In all these cases, Factor 2
must be a single character. If you enter a �eld, table, or array element in Factor 2, the bits
that are turned ON in the Result Field are the ones that are ON in the Factor 2 �eld. If you
enter an alphanumeric literal, each digit in it identi�es a bit to be turned ON. Enter up to
eight digits for the literal enclosed in quotation marks. Enter a digit for each bit position you
want to turn ON. Zero (0) stands for the high-order bit and seven for the low-order bit. You
can enter the bit numbers in any order; if you do not enter a number for a bit, it remains
unchanged. For example, \02" turns bits 0 and 2 ON.

Do not use the Factor 1, Decimal Positions (column 52), Half Adjust (column 53), or
Resulting Indicators (columns 54-59) Fields.

Example

Figure 8-8 shows how to use the BITON and BITOF operations. The BITON operation in
line 1 turns ON bits 3 and 4 (the fourth and �fth bits) in the �eld BITFLD. The BITOF
operation in line 2 turns OFF the bits in BITFLD that are also OFF in the �eld MYFLD.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C BITON"34" BITFLD

C .

C .

�2� C BITOFMYFLD BITFLD

Figure 8-8. Using the BITON and BITOF Operations

Calculation Specifications 8-19

Example Conventions

CABxx

This structured programming operation (Compare And Branch) compares Factor 1 to Factor
2. If the results of the comparison match the condition speci�ed by xx, control branches to
the TAG label entered in the Result Field.

Table 8-4. CABxx Operations

Enter this operation: To test if Factor 1 is:

CAB No test takes place; the branch is unconditional.

CABEQ Equal to Factor 2.

CABGE Greater than or equal to Factor 2.

CABGT Greater than Factor 2.

CABLE Less than or equal to Factor 2.

CABLT Less than Factor 2.

CABNE Not equal to Factor 2.

If you want to condition the operation, enter one or more indicators in the Indicators Field
(columns 9-17).

You can enter a �eld name or a literal in the Factor 1 and Factor 2 Fields. Numeric �elds are
aligned by decimal point before they are compared. Shorter �elds are padded with zeros (to
the left and right) to make them the same size. Blanks in numeric �elds are treated as zeros.
The maximum numeric �eld length is 15 digits. Alphanumeric �elds are aligned starting with
their high-order (leftmost) characters. Shorter �elds are padded with blanks (on the right) to
make them the same size. If you speci�ed an alternate collating sequence, it is used.

You can compare a numeric �eld to an alphanumeric �eld. The numeric �eld is temporarily
converted to alphanumeric format and the two �elds are compared as if they both were
alphanumeric. The numeric �eld is not aligned by decimal point before the compare. Negative
signs are ignored. For example, the number -123.45 becomes \12345". To avoid problems
when comparing the numeric �eld, make sure it does not have decimal places, is the same
length and is not negative. When you compare a numeric �eld to an alphanumeric �eld, you
see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

You may enter one or more resulting indicators in the Resulting Indicators Field (columns
54-59). The resulting indicators are turned ON or OFF depending on the results of the
compare and are una�ected by whether a branch is performed. If you use the CAB operation,
you must enter at least one resulting indicator.

8-20 Calculation Specifications

Example Conventions

Example

Figure 8-9 shows how to enter the CABGE operation. The �eld CODE is compared to
the literal 21. If CODE is greater than or equal to 21, control skips to the label SELECT.
Indicator 20 is turned ON when CODE is less than 21.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C CODE CABGE21 SELECT 20

C .

C .

�2� C SELECT TAG

C .

C .

Figure 8-9. Using the CABGE Operation

Calculation Specifications 8-21

Example Conventions

CASxx

This structured programming operation (CASe) compares Factor 1 to Factor 2. If the results
of the comparison match the condition speci�ed by xx, control branches to the internal
subroutine named in the Result Field.

Table 8-5. CASxx Operations

Enter this operation: To test if Factor 1 is:

CAS No test takes place; the subroutine is performed
unconditionally.

CASEQ Equal to Factor 2.

CASGE Greater than or equal to Factor 2.

CASGT Greater than Factor 2.

CASLE Less than or equal to Factor 2.

CASLT Less than Factor 2.

CASNE Not equal to Factor 2.

Enter all CASxx operations together as a group without other operations interspersed.
Terminate the group with an END operation. When the CASxx operations are executed, each
Factor 1 Field is compared to each Factor 2 Field in the operations until a condition being
tested is satis�ed or until a CAS operation is encountered. The subroutine in the Result Field
of that line is executed and control returns to the line following the END operation for the
CASxx group.

If you want to condition the CASxx operation, enter one or more indicators in the Indicators
Field (columns 9-17).

You can enter a �eld name or a literal in the Factor 1 and Factor 2 Fields. Numeric �elds are
aligned by decimal point before they are compared. Shorter �elds are padded with zeros (to
the left and right) to make them the same size. Blanks in numeric �elds are treated as zeros.
The maximum numeric �eld length is 15 digits. Alphanumeric �elds are aligned starting with
their high-order (leftmost) characters. Shorter �elds are padded with blanks (on the right) to
make them the same size. If you speci�ed an alternate collating sequence, it is used.

You can compare a numeric �eld to an alphanumeric �eld. The numeric �eld is temporarily
converted to alphanumeric format and the two �elds are compared as if they both were
alphanumeric. The numeric �eld is not aligned by decimal point before the compare. Negative
signs are ignored. For example, the number -123.45

8-22 Calculation Specifications

Example Conventions

becomes \12345". To avoid problems when comparing the numeric �eld, make sure it does not
have decimal places, is the same length and is not negative. When you compare a numeric
�eld to an alphanumeric �eld, you see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

You may enter one or more resulting indicators in the Resulting Indicators Field (columns
54-59). If you use a CASxx operation with one or more resulting indicators, you must use the
Factor 1 and Factor 2 Fields.

Example

Figure 8-10 shows how to enter the CASxx operation. The CASxx group of operations
are entered in lines 3-5 and are executed by the GOTO operation in line 1. The CASEQ
operation in line 3 performs the subroutine SUB21 when indicator 20 is OFF and the �eld
CODE equals 21. The CASGE operation in line 4 performs the subroutine SUB5X when
indicator 20 is ON and the �eld CODE2 is greater than or equal to 5. If neither of the CASxx
conditions in lines 3-4 are satis�ed, the CAS operation in line 5 executes the subroutine
SUBXXX.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C SETON 20

C .
C .

�1� C GOTO SELECT

C .

C .

�2� C SELECT TAG

�3� C N20 CODE CASEQ21 SUB21

�4� C 20 CODE2 CASGE5 SUB5X

�5� C CAS SUBXXX

C END

Figure 8-10. Using the CASxx Operation

Calculation Specifications 8-23

Example Conventions

CHAIN

This operation reads a record from a KSAM, TurboIMAGE, or MPE direct-access �le.
CHAIN lets you retrieve records randomly; you enter identifying information for the record
you want to read. Similarly, you can use CHAIN to write records randomly to these �les.

There are two ways to access records with CHAIN. You can access a �le by relative record
number or record key. A relative record number is a record number that is \relative" to the
�rst record in the �le. For example, record 5 is the �fth physical record in a �le. For KSAM
and TurboIMAGE �les, you can access records by entering a record's key value. For example,
to access the record having a key value of 06355, enter the number 06355. You can calculate
the record number or key value in the program or you can get it from records in other input
�les.

You must de�ne the �le that you're chaining to with a D (direct-access), I or X (KSAM),
or M (TurboIMAGE) in the File Organization Field (column 32) of the File Description
Speci�cation. Enter C (chained) in the File Designation/Additional I/O Area (column 32)
of that speci�cation and if this is an output �le, enter O in the File Type Field (column
15). When you chain successfully to a �le, the record-identifying indicators (entered in the
Record Indicator/Look-Ahead/Trailer/Data Structure Field (columns 19-20) of the Input
Speci�cation) for the �le remain ON throughout the cycle. If you chain to the same output
�le more than once in the same cycle, only the last record is updated unless you use exception
lines with each CHAIN operation.

To condition this operation, enter indicators in the Control Level (columns 7-8) or the
Indicators Field (columns 9-17), or both.

Enter a relative record number or record key in the Factor 1 Field. If reading by record
number or packed record key, use a numeric literal or �eld. If reading by record key, use an
alphanumeric literal, �eld, array, or table. You can enter a partial key when reading by record
key. (A partial key contains characters that are compared to the corresponding characters in
the high-order, leftmost, position of the record key. As long as the characters in the partial
key match, a record is selected for processing regardless of whether the remaining characters
in the key match.) Additionally, you can enter a relational operator in the Result Field that
speci�es the relationship that the record key value must have with Factor 1 to be selected for
processing. For example, to select a record whose key value is equal to or less than Factor 1,
enter the relational operator *LT in the Result Field.

Enter the name of the chained or full procedural �le in the Factor 2 Field.

8-24 Calculation Specifications

Example Conventions

Enter the indicator in the High Sub�eld (columns 54-55) that you want to turn ON when a
record is not found. For TurboIMAGE �les, enter the indicator in the Low Sub�eld that you
want to turn ON when the end-of-chain is reached. (A chain is a group of records having the
same key value.) When you leave either or both the High and Low Sub�elds blank, H0 is
turned ON.

Use the Low Sub�eld for chained sequential (the input/output mode �eld for the �le in the
File Description Speci�cation is C) and backward chained sequential (the input/output mode
�eld is R) operations. When performing these operations, RPG sequentially retrieves all of the
records in a chain. You initiate a chained sequential read by placing a new key value in Factor
1. RPG �nds and reads the �rst record in the chain (or the last record if reading backward).
For TurboIMAGE �les, RPG uses the master data set to �nd the head of chain in the detail
data set. (Do not, however, de�ne the master data set in a File Description Speci�cation.) If
you leave the contents of Factor 1 unaltered, a subsequent CHAIN operation reads the next
record in the chain. When the end-of-chain is reached, the Low Sub�eld indicator is turned
ON. Table 8-6 summarizes when the High and Low Sub�eld indicators are turned ON and
OFF.

Table 8-6. How CHAIN Sets the High and Low Resulting Indicators

High Resulting
Indicator

(Columns 54-55)

Low Resulting
Indicator

(Columns 56-57)

Description

OFF OFF Successful retrieval of the next record
in the chain.

OFF ON End-of-chain for the current group of
records with the same key value (the
second or subsequent CHAIN
operation for the same key value has
failed).

ON ON No records for this key value exist in
this detail data set, but an entry for
this key was found in the master
data set (the �rst CHAIN operation
with a new key value has failed).

ON OFF No records for this key value exist in
the master and detail data sets (the
�rst CHAIN operation with a new
key value has failed).

Calculation Specifications 8-25

Example Conventions

Example

Figure 8-11 shows how to use the CHAIN operation to read records from the direct-access �le
CHAINFL (line 2). Records are read by record number. The CHAIN operation in line 4 reads
records in CHAINFL using the �eld ID (line 3) to identify the record numbers. The record
numbers in ID are obtained from the input �le INFILE (line 1).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FINFILE IPE F 80 DISK

�2� FCHAINFL UC F 256 D DISK

IINFILE AA 01 80 CX

I 1 10 NAME

�3� I 11 150ID

I 16 20 PROD

I 21 25 AMT

I

ICHAINFL BB 02 01 CY

I 05 100ID

I 11 20 STREET

I 21 30 CITY

I 31 35 STATE

I 36 40 ZIP

�4� C ID CHAINCHAINFL 50

Figure 8-11. Chaining to an Input File

8-26 Calculation Specifications

Example Conventions

Figure 8-12 shows how to create a direct-access chained �le CHFILE from a sequential input
�le INFILE. During each logic cycle, a record is read from INFILE (line 1). When the CHAIN
operation (line 3) is executed the �eld DATA is written to CHFILE (line 4) using the record
number in the �eld RECNO (see line 2). The �rst time CHAIN is executed, it sets the �ve
extents allocated for the chained �le to blanks.

The HP RPG/iX Programmer's Guide gives additional examples on chaining to a KSAM �le.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FINFILE IPE F 80 DISK

FCHFILE OC F 240 80R D DISK

IINFILE AA 01

�2� I 1 50RECNO

I 1 80 DATA

�3� I RECNO CHAINCHFILE

OCHFILE 01

O DATA 80

Figure 8-12. Creating a Chained File

Calculation Specifications 8-27

Example Conventions

CLOSE

This �le operation closes an open �le. It performs normal end-of-�le actions before the
program actually ends. Use CLOSE to release a �le so that others can gain access to it or
to release system resources used by a �le that you've �nished processing. You can also use
CLOSE to release printer �les for printing. Once you use CLOSE for a �le, you cannot use
the �le in subsequent input/output operations.

To use CLOSE, enter the name of the �le to close in the Factor 2 Field and enter an indicator
in the Low Sub�eld (columns 56-57). The Low Sub�eld indicator is turned ON if the �le
cannot be closed.

CLOSE is similar to the Release Option (see the Fetch Over
ow/Release Field (column 16) of
the Output Speci�cation).

COMP

This compare and test operation compares Factor 1 to Factor 2. You can enter a �eld
name, literal, or �gurative constant into either �eld. When COMP is executed, the resulting
indicators that you enter in columns 54-59 are turned ON according to the results of the
compare.

Table 8-7 brie
y describes the COMP operations.

Table 8-7. COMP Operations

When: This Resulting Field
Indicator is Turned ON:

Factor 1 is greater than Factor 2 High (columns 54-55).

Factor 1 is less than Factor 2 Low (columns 56-57).

Factor 1 equals Factor 2 Equal (columns 58-59).

Numeric �elds are aligned by decimal point before they are compared. Shorter �elds are
padded with zeros (to the left and right) to make them the same size. Blanks in numeric �elds
are treated as zeros. The maximum numeric �eld length is 15 digits.

Alphanumeric �elds are aligned starting with their high-order (leftmost) characters. Shorter
�elds are padded with blanks (on the right) to make them the same size. If you speci�ed an
alternate collating sequence, it is used.

You can compare a numeric �eld to *ZERO(S) and an alphanumeric �eld to *BLANK(S)
or *ZERO(S). You can also compare a numeric �eld to an alphanumeric �eld. The numeric
�eld is temporarily converted to alphanumeric format, and the two �elds are compared as if
they both were alphanumeric. The numeric �eld is not aligned by decimal point before the
compare. Negative signs are ignored. For example, the number -123.45 becomes \12345".
To avoid problems when comparing the numeric �eld, make sure it does not have decimal
places, is the same length, and is not negative. When you compare a numeric �eld to an
alphanumeric �eld, you see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

8-28 Calculation Specifications

Example Conventions

Example

Figure 8-13 shows two COMP operations. The COMP operation in line 1 compares FIELD1
to FIELD2. If they are equal, indicator 03 turns ON. If FIELD1 is greater than FIELD2,
indicator 01 turns ON. If FIELD1 is less than FIELD2, indicator 03 turns ON. The COMP
operation in line 2 compares the �eld STATUS to the word EXEMPT. If they are equal,
indicator 05 turns ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C FIELD1 COMP FIELD2 010203

C .

C .

�2� C "EXEMPT" COMP STATUS 05

Figure 8-13. Using the COMP Operation

Calculation Specifications 8-29

Example Conventions

DEBUG

This debugging operation assists you in debugging a program by showing the indicators that
are turned ON and optionally, a �eld in the program. Place the DEBUG operation at one or
more points in the Calculation Speci�cations where you want to capture DEBUG information.
The captured information is saved in a �le that you name.

To enable DEBUG, enter 1 in the Debug Field (column 15) of the Header Speci�cation. If you
leave this �eld blank, DEBUG operations in the program are ignored and compiler warning
messages are printed.

To condition this operation, enter indicators in the Control Level Field (columns 7-8) or the
Indicators Field (columns 9-17), or both. Leave columns 48-59 blank.

When you use DEBUG, you can enter a literal, �eld, or array element in the Factor 1 Field
that contains up to eight characters. This value identi�es the DEBUG information and is
helpful when you use more than one DEBUG operation or when DEBUG is included in a
loop. Enter the name of the �le to which you want to write the debugging information in the
Factor 2 Field (make sure that you de�ne this �le with File Description Speci�cations, just as
you would any other �le). You may use di�erent �les for each DEBUG operation if you wish.

You may enter a �eld, table, array name, or array element in the Result Field (the maximum
number of characters that it can contain is 256); its value is displayed after the indicator
settings.

Table 8-8 describes how RPG displays the indicators and �eld information. The \Indicator
lines" show the indicators that are ON and the contents of the �eld or literal you entered in
the Factor 1 Field. If there are more indicators than will �t on one line, additional lines are
written (positions 1-40 are blank on these lines, and the indicators values start in position 41).
The \Result Field lines" show the contents of the �eld, table element, array, or array element
entered in the Result Field.

8-30 Calculation Specifications

Example Conventions

Table 8-8. Output from the DEBUG Operation

Position Contents

Indicator lines:

1 - 8 DEBUG=

9 - 12 The source program sequence number assigned to this DEBUG
Calculation Speci�cation. Along with the Factor 1 Field, this number
helps to identify this particular DEBUG operation.

13 - 14 Blank.

15 - 22 The contents of the �eld literal entered in the Factor 1 Field.

23 A minus sign if the Factor 1 Field is negative; a blank if it is zero or
positive.

24 Blank.

25 - 39 INDICATORSON=

40 Blank.

41 - 80 The indicators that are ON. The indicator values are separated by
blanks.

Result Field Lines:

1 - 13 FIELDVALUE=

14 Blank.

15 - 80 Th contents of the �eld, table, array, or array element speci�ed in the
Result Field. The �rst 66 characters of this �eld appear in positions 15
- 80 of the �rst line following the indicator listing. If this data exceeds
667 characters, it is continued in positions 15 - 80 of as many
additional lines as required, up to a maximum of 256 characters. If this
is numeric data, it is written in unpacked format and zero surpressed,
with an sign appearing to the right of the �eld (a minus sign for
negative values and a blank for positive values). Fields containing
zeros show only the rightmost zero and the sign. No other editing is
performed. If the Result Field contains an array name, the elements
are written in order, each on an individual line.

Calculation Specifications 8-31

Example Conventions

Example

Figure 8-14 shows how to use DEBUG to display the indicators that are ON and to display
the contents of an array element. This information is written to a �le rather than being
displayed on the terminal. The DEBUG operation writes the debug information to the �le
BADFILE and tags this output with the word FIRST. The contents of the third array element
of ARR1 is also written. Sample DEBUG output for this example is shown below:

DEBUG= 0019 FIRST INDICATORS ON= 01 02 03 05 07 11 L0 L1 MR OF

FIELD VALUE= 370

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 'FIRST' DEBUGBADFILE ARR1,3

Figure 8-14. Using the DEBUG Operation

8-32 Calculation Specifications

Example Conventions

DIV

This arithmetic operation divides Factor 1 (dividend) by Factor 2 (divisor), and places the
quotient in the Result Field. If Factor 1 is blank, the Result Field is divided by Factor 2 and
the quotient is placed in the Result Field. If Factor 1 is zero, the result is zero. If Factor 2 is
zero, an error occurs (you can determine the action to take by entering the appropriate code
in column 66 of the Header Speci�cation). If DIV produces a remainder, it is lost unless you
immediately follow DIV with an MVR operation that moves it to the Result Field. (When
you use MVR, you cannot half adjust the quotient.)

The result of DIV must not exceed 15 digits. If it does, excess digits are truncated.

Example

Figure 8-15 shows how to perform a divide operation and save the remainder. The DIV
operation divides DIVIDN by DIVSOR saves the result in QUOTNT. The remainder is saved
in the �eld REMAIN by the MVR operation.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 26 DIVIDN DIV DIVSOR QUOTNT 102

C 26 MVR REMAIN 52

Figure 8-15. Using the DIV and MVR Operations

Calculation Specifications 8-33

Example Conventions

DO

This structured programming operation executes the Do Block following it until a speci�ed
condition is met. With the DO operator you specify the initial value for the loop variable in
Factor 1 and the limit value in Factor 2. These values must be numeric if speci�ed. You may
leave Factor 1 or Factor 2 blank. RPG will assume a value of 1 for either or both Factors
which are left blank.

In the Result Field you specify the name of a numeric �eld to control the loop. Make sure
this �eld is large enough to hold a number that is one larger than the limit value for the loop
(or the loop will never end). For example, a two-digit �eld is not large enough for the control
variable when the loop limit is 99 (99 plus 1 does not �t in two digits). If you leave the Result
Field blank, RPG will generate an internal �eld as the loop counter.

The DO loop must be terminated with an END statement. To determine the loop increment
for the DO loop, specify a numeric value in Factor 2 of the END statement. If no numeric
value is speci�ed, the loop increment will default to 1.

RPG will compare the loop control variable (Result Field) with the limit (Factor 2). If the
index exceeds the limit, control will pass to the statement following END. Otherwise, the loop
contents will be executed, the loop control variable will be incremented at the bottom of the
loop, and the DO loop will repeat.

Note that a conditioning indicator on the DO statement will condition the entire loop. If such
a conditioning indicator, or indicators, evaluate to false, control will skip to the statement
following END, not to the statement following DO.

Leave resulting indicators blank for the DO operator.

Example

In Figure 8-16 the DO loop will execute four times, for INDX values 18, 20, 22, and 24. When
INDX is incremented to 26, the test 26 <= 25 will fail and control will pass to the instruction
following END.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 18 DO 25 INDX 30

C .

C .

C END 2

Figure 8-16. Using the DO Operation

8-34 Calculation Specifications

Example Conventions

DOUxx

This structured programming operation (DO Until) performs the block of operations (Do
Block) immediately following it until Factor 1 and Factor 2 meet the criteria speci�ed by xx.
The Do Block is performed at least once.

Table 8-9. DOUxx Operations

Enter this operation: To perform the Do Block until Factor 1 is:

DOUEQ Equal to Factor 2.

DOUGE Greater than or equal to Factor 2.

DOUGT Greater than Factor 2.

DOULE Less than or equal to Factor 2.

DOULT Less than Factor 2.

DOUNE Not equal to Factor 2.

End the operations in a Do Block with an END operation. Do not split a Do Block between
detail, total, or subroutine operations. You may branch into or out of a Do Block, but be sure
that you understand what the results will be. Do Blocks can be nested; that is, a Do Block
can be contained within another Do Block as shown below (the maximum number of levels of
nesting is 100).

Begin Level 1 DO Block IFEQ (If equal then do)
.

.

ELSE (Else do)
.

.

Begin Level 2 DO Block DOULT (Do until less than)
.

.

Begin Level 3 DO Block DOWNE (Do while not equal)
.

.

End Level 3 DO Block END

End Level 2 DO Block END

End Level 1 DO Block END

Calculation Specifications 8-35

Example Conventions

To conditionally execute the DOUxx operation, enter one or more indicators in the Indicators
Field (columns 9-17). You can prematurely end execution of a Do Block by entering one or
more indicators in the Indicators Field of the END operation. When the indicator conditions
are no longer satis�ed, control skips to the operation following END.

You can enter a �eld name or a literal in the Factor 1 and Factor 2 Fields. Numeric �elds are
aligned by decimal point before they are compared. Shorter �elds are padded with zeros (to
the left and right) to make them the same size. Blanks in numeric �elds are treated as zeros.
The maximum numeric �eld length is 15 digits. Alphanumeric �elds are aligned starting with
their high-order (leftmost) characters. Shorter �elds are padded with blanks (on the right) to
make them the same size. If you speci�ed an alternate collating sequence, it is used.

You can compare a numeric �eld to an alphanumeric �eld. The numeric �eld is temporarily
converted to alphanumeric format and the two �elds are compared as if they both were
alphanumeric. The numeric �eld is not aligned by decimal point before the compare.

Negative signs are ignored. For example, the number -123.45 becomes \12345". To avoid
problems when comparing the numeric �eld, make sure it does not have decimal places, is the
same length and is not negative. When you compare a numeric �eld to an alphanumeric �eld,
you see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

Do not use the Result Field or the Resulting Indicators Field (columns 54-59).

Example

Figure 8-17 shows how to use the DOUxx operation. The DOULT operation in line 1 is
executed if indicator 21 is OFF. The operations between lines 1 and 2 are executed until the
X element of TBL is less than zero or until indicator 44 is turned OFF (see line 2). In these
cases, execution resumes with the operation following line 2.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C N21 TBL,X DOULTO

C MOVEANAME,X CHAR

C Z-ADD1 Y

C .

C .

�2� C 44 END

Figure 8-17. Using the DOULT Operation

8-36 Calculation Specifications

Example Conventions

DOWxx

This structured programming operation (DO While) performs the block of operations (Do
Block) immediately following it as long as Factor 1 and Factor 2 meet the criteria speci�ed by
xx.

Table 8-10. DOWxx Operations

Enter this operation: To perform the Do Block while Factor 1 is:

DOWEQ Equal to Factor 2.

DOWGE Greater than or equal to Factor 2.

DOWGT Greater than Factor 2.

DOWLE Less than or equal to Factor 2.

DOWLT Less than Factor 2.

DOWNE Not equal to Factor 2.

End the Do Block of operations with an END operation or an ELSE if the IF operation is also
used. (See the DOUxx operation for a description of Do Blocks.) Do not split a Do Block
between detail, total, or subroutine operations. You may branch into or out of a Do Block,
but be sure that you understand what the results will be. Do Blocks can be nested; that is, a
Do Block can be contained within another Do Block as shown below (the maximum number of
levels of nesting is 100).

To conditionally execute the DOWxx operation, enter one or more indicators in the Indicators
Field (columns 9-17). You can prematurely end execution of a Do Block by entering one or
more indicators in the Indicators Field of the END operation. When the indicator conditions
are no longer satis�ed, control skips to the operation following END.

You can enter a �eld name or a literal in the Factor 1 and Factor 2 Fields. Numeric �elds are
aligned by decimal point before they are compared. Shorter �elds are padded with zeros (to
the left and right) to make them the same size. Blanks in numeric �elds are treated as zeros.
The maximum numeric �eld length is 15 digits. Alphanumeric �elds are aligned starting with
their high-order (leftmost) characters. Shorter �elds are padded with blanks (on the right) to
make them the same size. If you speci�ed an alternate collating sequence, it is used.

You can compare a numeric �eld to an alphanumeric �eld. The numeric �eld is temporarily
converted to alphanumeric format and the two �elds are compared as if they both were
alphanumeric. The numeric �eld is not aligned by decimal point before the compare. Negative
signs are ignored. For example, the number -123.45

Calculation Specifications 8-37

Example Conventions

becomes \12345". To avoid problems when comparing the numeric �eld, make sure it does not
have decimal places, is the same length and is not negative. When you compare a numeric
�eld to an alphanumeric �eld, you see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

Do not use the Result Field or the Resulting Indicators Field (columns 54-59).

Example

Figure 8-18 shows how to use the DOWxx operation. The DOWNE operation in line 1
executes the operations between it and the END operation (line 2) as long as the Y element of
the array CHAR is not equal to blanks.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C CHAR,Y DOWNE" "

C .

C .

�2� C END

Figure 8-18. Using the DOWNE Operation

8-38 Calculation Specifications

Example Conventions

DSPLM

This display operation displays messages on the terminal from a User Message Catalog. You
can also use it to display a �eld on the terminal and accept changes to it from the user. If you
enable the function keys (�f1� through �f8�) using the SET operation, DSPLM automatically
turns the function key indicators ON or OFF when the user presses the function keys on the
keyboard.

When you run a program containing DSPLM from a job �le, data is read and displayed using
the system console. When running in session mode, DSPLM uses the user terminal.

Use the Factor 1 and Result Fields in one of the two ways shown below. These �elds
determine how DSPLM works.

To display a message from the User Message Catalog (only), enter the identi�cation number
of the message in the Factor 1 Field.

To display a message from the User Message Catalog and to display a �eld in the program,
enter the identi�cation number of the message in the Factor 1 Field and the �eld name in
the Result Field. The user at the terminal can update the Result Field data and also use
the function keys.

When DSPLM is executed for method 2 above, the Factor 1 Field is displayed on one line
and the Result Field on the next. RPG pauses to let the user update the data displayed
for the Result Field. To change the �eld, the user enters new data directly underneath the
displayed data, then presses � RETURN �. If there are no changes to the �eld, the user types an
asterisk (*) followed by � RETURN � or presses � RETURN � by itself. If the �eld is displayed on
the operator's console, the operator must respond using the REPLY console command (see the
MPE/iX Commands Reference Manual). The operator does not have to enter leading zeros
for numeric �elds or trailing blanks for alphanumeric �elds. RPG automatically aligns the
�elds and pads them with these characters. For the user or operator to use the function keys,
you must have enabled them previously using the SET operation.

When entering the Factor 1 Field, specify the identi�cation number of the message in the User
Message Catalog. Ensure that the actual message text does not exceed 249 characters. (See
the MSG operation for more information about message identi�cation numbers.)

You may enter the name of the �le in the Factor 2 Field, although it is not used. It is
provided for compatibility with other implementations of RPG.

Calculation Specifications 8-39

Example Conventions

When you use the Result Field, enter a �eld name into it. If the �eld is alphanumeric, the
maximum number of characters it can contain is 256. If it is numeric, the maximum number
of digits is 15. If you're using the system console, the �eld must not exceed 31 characters for
input and 56 characters for output. If you're using a user terminal, the �eld must not exceed
the terminal record length de�ned at system con�guration. You can enter indicators in the
Resulting Indicators Field (columns 54-59). They are turned ON or OFF according to the
�nal contents of the Result Field.

You can use the Header Speci�cation to alter the way data is displayed on the terminal
and read from it. The DSPLY Options Field (column 48) lets you suppress the display of
\DSPLY". It also lets you determine whether the user updates the Result Field on the same
line where it is displayed, or on the next line.

Example

The code in �gure 8-20 displays instructions to a user on how to use the function keys to
print reports. The instructions come from a User Message Catalog and are displayed by the
DSPLM operations starting in line 1. (Figure 8-19 lists the messages in the User Message
Catalog that are used for this example.) The example also shows SETON operations (starting
at line 3) which use the function key indicators turned ON by the DSPLM operations.

$SET 1
0001Product Sales Analysis - F1 for Current Month Detail

0002 - F2 for Current Month Summary

0003 - F3 for Year-to-date Detail

0004 - F4 for Year-to-date Summary

0005 - F5 for Comparative Detail

0006 - F6 for Comparative Summary

0007 - F7 for Month-end Processing

0008 - F8 for Year-end Processing

0009Use the function keys to select the report to print

Figure 8-19. Sample Message Set in a User Message Catalog File

8-40 Calculation Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E KEYLBL 1 8 16 FUNC KEY LABELS

C SETOF U1U2U3

C SETOF U4U5U6

C SETOF U7U8

�1� C "01:1" DSPLM

C "02:1" DSPLM

C "03:1" DSPLM

C "04:1" DSPLM

C "05:1" DSPLM

C "06:1" DSPLM

C "07:1" DSPLM

C "08:1" DSPLM

C KEYLBL SET f@
�2� C "09:1" DSPLM KEYIN 2

C .

C .

C .

�3� C F1 SETON U1

C F2 SETON U2

C F3 SETON U3

C F4 SETON U4

C F5 SETON U5

C F6 SETON U6

C F7 SETON U7

C F8 SETON U8

C SETON LR

Figure 8-20. Using the DSPLM Operation

Calculation Specifications 8-41

Example Conventions

DSPLY

This display operation displays data on the terminal and reads data from it. You can also use
DSPLY to turn the function key indicators ON or OFF when the user presses the function
keys on the keyboard.

When running in batch mode, DSPLY uses the system console. When running in session
mode, it uses the user terminal.

Use the Factor 1 and Result Fields in one of three ways shown below. These �elds determine
how DSPLY works.

To display a single data �eld on the terminal, enter the name of the �eld, literal, array
element, or table to display in the Factor 1 Field.

To display a data �eld on the terminal and allow the user to update it, enter the �eld name
in the Result Field and leave the Factor 1 Field blank. If you have already enabled one or
more function keys using the SET operation, the function key indicators are automatically
turned ON or OFF according to the function keys that the user presses.

To display two data �elds and allow one of them to be updated by the user, enter both the
Factor 1 and Result Fields. If you have already enabled the functions keys using the SET
operation, the function key indicators are automatically turned ON or OFF depending on
the function keys that the user presses.

When DSPLY is executed for methods 2 and 3 above, the Factor 1 Field (if used) is displayed
on one line and the Result Field on the next line. RPG pauses to let the user update the
data displayed for the Result Field. To change the �eld, the user enters new data directly
underneath the displayed data, then presses � RETURN �. If there are no changes to the �eld,
the user types an asterisk (*) followed by � RETURN � or presses � RETURN � by itself. If the �eld
is displayed on the operator's console, the operator must respond using the REPLY console
command (see the MPE/iX Commands Reference Manual). The user does not have to enter
leading zeros for numeric �elds or trailing blanks for alphanumeric �elds. RPG automatically
aligns the �elds and pads them with these characters. You can also use the function keys if
you have previously enabled them with the SET operation. Specify a result �eld at least two
characters long if you use function keys.

When entering the Factor 1 Field, specify the name of a �eld, literal, array element, or table
to display. If you enter a table name, the element found by the last LOKUP operation is
displayed. If an array is named in the DS line of an Input Speci�cation, and the array is
named in factor 1 without an index, the entire array is displayed, within limits. The data in
Factor 1 cannot exceed 249 characters. (Seven characters of this are used for the word DSPLY
plus two blanks.) If the data exceeds the terminal line length, it is displayed on successive
lines. (Data displayed on the system console is limited to 56 characters per line.)

You may enter the name of the �le in the Factor 2 Field although it is not used. It is provided
for compatibility with other implementations of RPG.

When you use the Result Field, enter a �eld name in it. If the �eld is alphanumeric, the
maximum number of characters it can contain is 256. If it is numeric, the maximum number
of digits is 15. If you're using the system console, the �eld must not exceed 56 characters. If
you're using a user terminal, the �eld must not exceed the terminal record length de�ned at
system con�guration. You can enter indicators in the Resulting Indicators Field (columns
54-59). They are turned ON or OFF according to the �nal contents of the Result Field.

8-42 Calculation Specifications

Example Conventions

You can use the Header Speci�cation to alter the way data is displayed on the terminal
and read from it. The DSPLY Options Field (column 48) lets you suppress the display of
\DSPLY". It also lets you determine whether the user updates the Result Field on the same
line where it is displayed, or on the next line.

Example

Figure 8-21 illustrates the three ways to use DSPLY. The �rst line (line 1) displays the
contents of the �eld MESSAGE. If MESSAGE contains the characters RE-RUN PROGRAM
WITH FILE 2, the following line appears on the terminal:

DSPLY RE-RUN PROGRAM WITH FILE 2

Line 2 shows how to display the contents of the �eld FIELD1 and allow the user to change it.
If FIELD1 contains 0023, it is displayed as follows (RPG displays the �eld, then pauses for
user input):

0023

If the operator enters 43 and presses � RETURN �, 43 is placed in FIELD1, and RPG continues
with the next operation.

Line 3 shows how to display two �elds and accept changes for the second one. The �elds
FIELD2 and FIELD3 are displayed on separate lines. If FIELD2 contains ENTER NEW ID
NO; PRESENT NO IS and FIELD3 contains 32, these lines are displayed on the terminal
(RPG displays the �elds, then pauses for user input):

DSPLY ENTER NEW ID NO; PRESENT NO IS

32

If the operator enters 5, and presses � RETURN �, 5 is placed in FIELD3 and RPG continues
with the next operation.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C MESSAGE DSPLY

C .

C .

�2� C DSPLY FIELD1

C .

C .

�3� C FIELD2 DSPLY FIELD3

Figure 8-21. Using the DSPLY Operation

Calculation Specifications 8-43

Example Conventions

ELSE

This structured programming operation is used with the IF operation. It marks the beginning
of the operations that are performed when the comparison criteria of the IF test are not met.

Enter ELSE in the Operation Field and leave all other �elds on the speci�cation blank.

Example

Figure 8-22 shows how to use the ELSE operation. The operation in line 2 is executed when
the �eld CODE is equal to zero (line 1). If CODE is not equal to zero the lines between ELSE
(line 3) and END (line 4) are executed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C CODE IFEQ O
�2� C MOVE CODE CODE2

�3� C ELSE

C SUB SHIFT CODE2 2121

C N21 Z-ADDO X

C .

C .

�4� C END

Figure 8-22. Using the ELSE Operation

8-44 Calculation Specifications

Example Conventions

END

This structured programming operation marks the end of a Do Block of operations. (See
the IFxx or DOUxx operations for examples of Do Blocks.) When used with IFxx, ELSE
and CASxx, it terminates execution of the Do Block. When used with the DO, DOUxx, or
DOWxx operations, it transfers control to the beginning of the Do Block.

You can prematurely end execution of a Do Block by entering one or more indicators in the
Indicators Field (columns 9-17) of the END operation. When the indicator conditions are no
longer satis�ed, control skips to the operation following END.

When using the END operation with the DO operation, enter a numeric value in Factor 2 to
specify the loop increment. If no value is speci�ed, the default increment is 1. You cannot
specify an increment for the IF, CASxx, DOUxx, and DOWxx operations.

Example

Figure 8-23 shows how to use the END operation with CASxx operations. The END
operation (line 2) follows the last line in the CASxx group, which starts with line 1.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C SELECT TAG

�1� C N20 CODE CASEQ21 SUB21

C 20 CODE2 CASGE5 SUB5X

C CAS

�2� C END

Figure 8-23. Using the END Operation

Calculation Specifications 8-45

Example Conventions

ENDSR

This internal subroutine operation ends an internal subroutine (see �gures 8-7 and 8-26).
Execution continues in the main program immediately after the EXSR operation that called
the subroutine. If you want to branch to ENDSR within the subroutine (do not branch to it
from outside the subroutine), enter a label in the Factor 1 Field. The label can be the same as
a �eld name.

Do not use the Factor 2 and Result Fields and do not enter indicators in the Indicators Field
(columns 9-17). Enter just one ENDSR operation per subroutine.

EXCPT

This �le operation lets you produce output during detail and total calculations. This output is
in addition to the records that are normally written at detail time and total time. (Normally,
the number of records de�ned in the Output Speci�cations are written during each program
cycle.) For example, you may want several copies of a form that contains the same heading
information.

To condition this operation, enter indicators in the Control Level (columns 7-8) and the
Indicators Field (columns 9-17). You can further condition or limit the lines that are
written by entering a �le name in the Factor 2 Field (see the section which follows titled
\Conditioning by File Name") or by entering an EXCPT Name in the Result Field (see the
section which follows titled \Conditioning by EXCPT Name"). Leave the other �elds on the
speci�cation blank.

When you use EXCPT, you must also enter an E into the Type Field (column 15) of the
Output Speci�cation that de�nes the record you want to write. Because the record lines
that are written are exceptions to the normal program cycle, they are called exception lines.
EXCPT writes all exception lines whose conditioning indicators, �le name and EXCPT Name
conditions are satis�ed. When the exception lines are written, execution resumes with the
operation following EXCPT.

Example

Figure 8-24 shows how to use the EXCPT operation to print several copies of a mailing
address label. The CUST record beginning in line 1 contains the mailing address of a
company's customers. When a name matches the name in the NAMEA �eld (line 2), indicator
50 is turned ON. If indicator 05 is ON, the EXCPT operation in line 3 is executed. It causes
the mailing address label (exception lines) de�ned by MAILER (line 4) to be printed. Since
EXCPT is included in a loop that prints �ve mailing labels for the customer, exception output
is performed �ve times.

8-46 Calculation Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� ICUST AA

I 1 20 NAME

I 21 30 STREET

I 31 40 CITY

I 41 45 STATE

I 46 50 ZIP

C .

C .

�2� C NAMEA COMP NAME 50

C REPEAT TAG

�3� C 50 EXCPT

C 50 1 ADD COUNT COUNT 10

C 50 COUNT COMP 5 60
C 60 GOTO REPEAT

C RES1 ADD RES2 RES3 52

C .

C .

�4� OMAILER E

O NAME 20

O STREET 30

O CITY 40

O STATE 45

O ZIP 50

Figure 8-24. Using the EXCPT Operation

Conditioning by File Name

You can write exception lines for a particular �le (only) by entering the name of the �le in
the Factor 2 Field. The exception lines that are written for the �le must also satisfy the
conditioning indicators and the EXCPT Name conditions.

See �gure 8-25 for an example of how to condition by �le name.

Conditioning by EXCPT Name

You can write exception lines for a certain record in a �le by entering the EXCPT Name for
the record in the Result Field. (Note that some implementations of RPG use the Factor 2
Field instead of the Result Field.) De�ne the record you want to write and enter the EXCPT
Name in the Field Name Field (columns 32-37) of that Output Speci�cation.

When you enter an EXCPT Name, follow the naming conventions for �eld names. Do not use
an existing array, data structure, �eld, �le label, subroutine, or table name. You can enter the

Calculation Specifications 8-47

Example Conventions

same EXCPT Name for more than one record. The maximum number of EXCPT Names that
you can use in a program is 245.

When EXCPT is executed, the exception lines are written only if the conditioning indicators
are satis�ed and if the record belongs to the �le named in the Factor 2 Field (if Factor 2 is
used).

Example

Figure 8-25 shows how to use �le and EXCPT Names to write additional records to the
output �les LIST and OUTFILE. The EXCPT operation in line 1 writes the output record
containing GROUP1 in columns 32-37 (line 4). The EXCPT operation in line 2 writes the
output record containing GROUP2 in columns 32-37 (line 5). The EXCPT operation in line 3
writes the output record containing GROUP5 in columns 32-37 (line 6) of the �le OUTFILE.
In addition, only those exception lines in GROUP5 are written when indicator 81 is ON (and
they are conditioned by 81).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C EXCPT GROUP1

C .

C .

�2� C EXCPT GROUP2

C .

C .

�3� C EXCPTOUTFILE GROUP5

�4� OLIST E 3 GROUP1

O .

O .

�5� O E 1 GROUP2

O .

O .

�6� OOUTFILE E 2 81 GROUP5

Figure 8-25. Using the EXCPT Operation with File and EXCPT Names

8-48 Calculation Specifications

Example Conventions

EXIT

This external subroutine operation executes an external subroutine. When the subroutine
�nishes, control returns to the next executable operation in sequence.

Enter the external subroutine name in the Factor 2 Field. It can contain up to six characters.
Do not use the Factor 1 and Result Fields.

The RPG program can share data with the external subroutine in two ways. If the subroutine
is in an XL and will be linked at run time, use the PARM operation to pass data to and from
the subroutine. Enter statements using the PARM operation, one for each data element you
are passing, immediately after the EXIT operation. If the subroutine is not in an XL, but
is linked directly to your program, subroutines can share data in an additional way. Data
elements can be made global with the RLABL operation. After a data item is named with
the RLABL operation, the data item is accessible to any subroutine executed by an EXIT
operation. Subroutines in an XL cannot access the global data items named in the RLABL
operation.

Examples

See �gure 8-33 for an example of how to use EXIT with PARM. See �gure 8-37 for an
example of how to use EXIT with RLABL.

The following example shows linking an HP C subroutine SUBSRC directly to an RPG
program named RPGSRC:

:RPGXL RPGSRC, RPGOBJCT

:CCXL SUBSRC, SUBOBJCT

:LINKEDIT

>LINK FROM=RPGOBJCT, SUBOBJCT;TO=RPGPROG

>EXIT

:RUN RPGPROG

The next example shows linking a subroutine that is in an XL. The subroutine must have data
items passed by the PARM operation, not the RLABL operation.

:CCXL SUBSRC, SUBOBJCT

:LINKEDIT

>BUILDXL SUBXL

>ADDXL FROM=SUBOBJCT;TO=SUBXL

>EXIT

:RPGXLLK RPGSRC, RPGPROG

:RUN RPGPROG; XL="SUBXL"

If the XL is not in your current group and account, fully qualify the \XL=" option of the run
command.

Calculation Specifications 8-49

Example Conventions

EXSR

This internal subroutine operation starts the execution of an internal subroutine (see �gures
8-7 and 8-26) You can enter this operation anywhere in the program. When the subroutine is
�nished, control returns to the operation following EXSR.

Enter the name of the subroutine to execute in the Factor 2 Field. This name must be de�ned
in the Factor 1 Field of the BEGSR operation in the subroutine. Do not use the the Factor 1
and Result Fields. You can conditionally execute EXSR by entering indicators in the Control
Level Field (columns 7-8) and the Indicators Field (columns 9-17).

Example

Figure 8-26 shows two subroutines; one calls another. The subroutine SUBA starts at line 3
and the subroutine SUBB starts at line 5. In the main program, SUBA is called at lines 1 and
2. When SUBA is executing, it calls SUBB. SUBB contains a GOTO operation that branches
to the end of that subroutine (line 6) when indicator 01 is ON. When SUBB �nishes, control
returns to the line following the EXSR operation at line 4.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C .

C .

�1� C EXSR SUBA

C .

C .

�2� C EXSR SUBA

C .

C .

�3� CSR SUBA BEGSR

CSR .

�4� CSR EXSR SUBB

CSR .

CSR ENDSR

�5� CSR SUBB BEGSR

CSR .

CSR 01 GOTO TAIL

CSR .

�6� CSR TAIL ENDSR

Figure 8-26. Using One Internal Subroutine to Call Another

8-50 Calculation Specifications

Example Conventions

FNDJW

This system operation locates a JCW in the system JCW table and returns its value. This
operation uses the system intrinsic FINDJCW.

To use FNDJW, leave the Factor 1 Field blank and enter the name of the JCW you want
to locate in the Factor 2 Field. The name can be contained in an alphanumeric variable or
literal. It must begin with a letter. In the Result Field, enter the �eld where you want to
store the returned JCW value. The �eld must be numeric with no decimal positions.

You must enter at least one indicator in the Resulting Indicators Field (columns 54-59).
When FNDJW is executed, the indicators are set to indicate the outcome of the operation. If
the indicator in the High Sub�eld is ON, the JCW was not found. If the indicator in the Low
Sub�eld is ON, the JCW name that you entered does not begin with a letter. If the JCW was
found and its value returned, the indicator in the Equal Sub�eld is turned ON.

FNUM

This system operation obtains the MPE �le number for a �le and returns it to the program.
FNUM does not use a system intrinsic.

To use FNUM, leave the Factor 1 Field blank and enter the name of the �le in the Factor 2
Field. You can use an alphanumeric literal or a �eld name. The �le name must be de�ned in
a File Description Speci�cation. In the Result Field, enter the numeric �eld where you want
to save the returned �le number. The �eld must be numeric with no decimal positions. The
�le number returned is in packed decimal format. If you pass it to an external subroutine, it
is passed in packed decimal format, not integer format. (Many intrinsics require that the �le
number be in binary format. This means that you must convert the number in the external
subroutine before you can use it.)

Calculation Specifications 8-51

Example Conventions

FORCE

This �le operation lets you name the �le from which the next record is selected for processing.
The record is selected at the beginning of the next logic cycle (the FORCE operation is in
e�ect only for that cycle).

You can use FORCE to alter the normal multi�le processing sequence. Do not use FORCE for
the �rst record read by the program.

To use the FORCE operation, enter the name of the �le you want to process next in the
Factor 2 Field. Leave the Factor 1 and Result Fields blank. You can use FORCE at detail
time in the main program or in a subroutine. Do not use FORCE at total time. When you
force a �le that is accessed with a RAF, the RAF record is also accessible. When a forced
record is processed, the MR indicator is turned OFF (the forced record is processed as if it
has no matching �elds). If end-of-�le is encountered in a forced �le, the next record is chosen
according to the normal record selection process.

Example

Figure 8-27 shows how to force the �le CFILE. Suppose that a program processes records
from three �les, AFILE, BFILE, and CFILE. Also assume that they are processed in the
same order as they are listed. To read a record from CFILE �rst, ahead of AFILE, a FORCE
operation is used. The operation is only performed when indicator 09 is ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 09 FORCECFILE

Figure 8-27. Using the FORCE Operation

GOTO

This branching operation lets you alter the sequential execution of Calculation Speci�cation
operations. You can skip to any TAG operation or, if you're within an internal subroutine,
you can skip to the ENDSR operation for that subroutine.

To use GOTO, enter the name (label) of the TAG or ENDSR operation to which you want to
skip in the Factor 2 Field. You can enter indicators in the Indicators Field (columns 9-17) to
condition this operation. Do not use the Factor 1 and Result Fields.

You can branch within detail-time or total-time operations. You can also branch from
detail-time to total-time operations and vice versa. When branching from detail to total
operations, be very careful that it is allowed in the RPG logic cycle. Do not branch into or
out of an internal subroutine.

See �gure 8-44 for examples on how to use the GOTO operation with the TAG operation.

8-52 Calculation Specifications

Example Conventions

IFxx

This structured programming operation performs the associated block of operations (Do
Block) immediately following it if Factor 1 and Factor 2 meet the criteria speci�ed by xx.

Table 8-11. IFxx Operations

Enter this operation: To perform the Do Block if Factor 1 is:

IFEQ Equal to Factor 2.

IFGE Greater than or equal to Factor 2.

IFGT Greater than Factor 2.

IFLE Less than or equal to Factor 2.

IFLT Less than Factor 2.

IFNE Not equal to Factor 2.

End the operations in the Do Block with an END operation. If you're using ELSE with the
IF operation, place the END operation after the last operation in the ELSE Do Block. If
the IFxx condition is not satis�ed, the operations following the ELSE or END operation are
executed.

Do not split a Do Block between detail, total, or subroutine operations. You may branch into
or out of a Do Block, but be sure that you understand what the results will be. Do Blocks can
be nested; that is, a Do Block can be contained within another Do Block as shown below (the
maximum number of levels of nesting is 100).

Begin Level 1 DO Block IFEQ (If equal then do)
.

.

ELSE (Else do)
.

.

Begin Level 2 DO Block DOULT (Do until less than)
.

.

Begin Level 3 DO Block DOWNE (Do while not equal)
.

.

End Level 3 DO Block END

End Level 2 DO Block END

End Level 1 DO Block END

To conditionally execute the IFxx operation, enter one or more indicators in the
Indicators Field (columns 9-17). The indicators condition the execution of the entire set of
IF/ELSE/END Do Blocks.

Calculation Specifications 8-53

Example Conventions

You can enter a �eld name or a literal in the Factor 1 and Factor 2 Fields. Numeric �elds are
aligned by decimal point before they are compared. Shorter �elds are padded with zeros (to
the left and right) to make them the same size. Blanks in numeric �elds are treated as zeros.
The maximum numeric �eld length is 15 digits. Alphanumeric �elds are aligned starting with
their high-order (leftmost) characters. Shorter �elds are padded with blanks (on the right) to
make them the same size. If you speci�ed an alternate collating sequence, it is used.

You can compare a numeric �eld to an alphanumeric �eld. The numeric �eld is temporarily
converted to alphanumeric format and the two �elds are compared as if they both were
alphanumeric. The numeric �eld is not aligned by decimal point before the compare. Negative
signs are ignored. For example, the number -123.45 becomes \12345". To avoid problems
when comparing the numeric �eld, make sure it does not have decimal places, is the same
length, and is not negative. When you compare a numeric �eld to an alphanumeric �eld, you
see this compiler message:

9016I NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR ALPHANUMERIC COMPARE

Do not use the Result Field or the Resulting Indicators Field (columns 54-59).

Example

Figure 8-28 shows how to use the IFxx and the ELSE operations. The IFEQ operation in line
1 executes the MOVE operation in line 2 when the �eld CODE is equal to zero. If CODE is
not equal to zero, the operations in lines 4 through 5 are executed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C CODE IFEQ 0

�2� C MOVE CODE CODE2

�3� C ELSE

�4� C SUB SHIFT CODE2 2121

C N21 Z-ADD0 X

C .

�5� C .

C END

Figure 8-28. Using the IFEQ Operation

8-54 Calculation Specifications

Example Conventions

INTR

This system operation lets you call MPE intrinsics directly from an RPG program. Specify
the name of the intrinsic beginning in the Factor 2 �eld, continuing through the Result Field
(columns 33-48) if necessary. You can call only intrinsics whose names are 16 characters long
or less.

To pass parameters to the intrinsic, follow the INTR operation statement with an IPARM
operation statement for each parameter.

The statements de�ning the intrinsic call (the INTR statement and its associated IPARM
statements) can be placed anywhere in the calculations, but they cannot begin in Detail
Calculations and continue in Total Calculations.

If the intrinsic is a function, you can specify a �eld in Factor 1 to hold the value returned
by the intrinsic. De�ne the �eld in columns 49-52 if it has not already been de�ned. If the
intrinsic function returns a numeric value, you can specify an alphanumeric �eld in Factor
1. This �eld will contain alpha-binary data, which is discussed under the IPARM operation
following.

The intrinsic's condition code, indicating the success of the call, is returned in the Resulting
Indicators Field (columns 54-59). In general, if the intrinsic call is successful, the indicator
in columns 58-59 is turned on; indicators in columns 54-55 (less than) and columns 56-57
(greater than) may indicate the intrinsic call was unsuccessful. Refer to the MPE/iX
Intrinsics Reference Manual for condition codes returned by each intrinsic.

IPARM

IPARM is a system operation that allows the RPG program to pass parameters to an MPE
intrinsic speci�ed by the preceding INTR operation. Specify the parameter to be passed in the
Result Field of the IPARM operation.

RPG uses the intrinsic mechanism to determine the correct parameter type and calling
method. Since RPG stores all numeric �elds internally in packed decimal format, RPG
converts IPARM parameters to the proper type (for instance binary) before calling the
intrinsic. If the parameter is passed by reference, the parameter is converted back to packed
decimal format after the intrinsic call. Refer to the MPE/iX Intrinsics Reference Manual for
more information about intrinsics.

If the parameter is a numeric type, you can specify an alphanumeric �eld in the Result Field.
The data returned will be alpha-binary data (see the discussion on alpha-binary data next).
This is for single �elds only, not for numeric arrays.

If the intrinsic allows it, and you want to use the default value for a particular parameter,
leave the Result Field blank for that IPARM operation. If the intrinsic does not require you
to specify all the parameters, you can leave o� the parameters after the last required one is
de�ned.

The statements de�ning the intrinsic call (the INTR statement and its associated IPARM
statements) can be placed anywhere in the calculations, but they cannot begin in Detail
Calculations and continue in Total Calculations.

Calculation Specifications 8-55

Example Conventions

Alpha-Binary Data

Even though a parameter for an intrinsic may be de�ned in the MPE/iX Intrinsics Reference
Manual as a numeric data type (i.e. integer, double, or real), you do not have to assign
a numeric �eld to hold the data in your RPG program unless you want to use it in an
arithmetic calculation. When you assign a numeric �eld, RPG automatically converts the
values from binary format (which the intrinsics use) to packed decimal (which RPG uses).

You can avoid unnecessary data conversions and save processing time by assigning a numeric
parameter to an alphanumeric �eld in your RPG program if you do not need to use the �eld
as a number. The numeric value is stored in the alphanumeric �eld in its binary bit pattern.
This data representation is called alpha-binary because the alphanumeric �eld stores the
binary-coded data. Note that output �eld editing is not possible with alpha-binary data.
Numeric arrays cannot be stored as alpha-binary data.

Alpha-binary storage is useful when numeric data that is returned from one intrinsic is passed
directly to another intrinsic without being processed by the RPG program. For example, if
you call the CREATE intrinsic, an integer PIN number is returned. This number is used
in subsequent calls to the ACTIVATE and KILL intrinsics. It is not used in a numerical
calculation, so it does not need to be stored as an RPG numeric �eld. Specifying the PIN �eld
as alphanumeric allows the integer data to pass directly between intrinsics without conversion.

Alpha-binary data is also useful when intrinsic parameters contain bit �elds you need to set
or test. With alpha-binary data, you can use the TESTB, BITON, and BITOF operations to
manipulate bit �elds.

Limitations and Guidelines for Intrinsic Parameters

For intrinsic parameters speci�ed as 16-bit integers (I16 or U16), specify an RPG numeric �eld
of 1 to 5 digits with 0 decimal places. For 32-bit integers, specify a numeric �eld of 6 to 10
digits with 0 decimal places. RPG/iX does not support 64-bit numeric items because it takes
20 digits to hold an item of this size, and the maximum �eld size for RPG/iX is 15. This
means, for example, that you cannot access item 64 of the FFILEINFO intrinsic to retrieve
the 64-bit virtual address of the �le.

RPG/iX supports only integral values for
oating-point numbers used in intrinsics. For
example, the PAUSE intrinsic can be used to pause for 8 seconds, but not for 8.5. De�ne
RPG �elds of 6 to 10 digits with 0 decimal places for parameters de�ned as 32R.

Make sure the value of the numeric �eld does not exceed the maximum value for the
parameter. For example, a 5-digit �eld can contain a value up to 99,999, but an I16 parameter
must stay between -32768 and 32767 to keep from over
owing.

If an intrinsic uses a bit mask for a parameter, you can either pass an RPG numeric
�eld loaded with a number whose binary bit pattern forms the bit mask you want (RPG
automatically converts the number into binary), or you can de�ne an alphanumeric �eld and
set the bit pattern with the BITON and BITOF operations. This applies to single �elds only,
not to arrays.

De�ne numeric and alphanumeric arrays with an Extension Speci�cation. For numeric arrays,
specify zero decimal places.

For intrinsics that accept literals for parameters, �rst copy the literal into a �eld or array of
the proper type, then use the �eld or array in the Result Field of the IPARM statement.

8-56 Calculation Specifications

Example Conventions

RPG/iX does not support the following:

intrinsics that require passing pointers to a procedure

user-supplied addresses of items (RPG/iX determines all reference addresses)

parameters de�ned as sets

Examples

Following are examples of RPG source segments that use the INTR and IPARM operations to
call intrinsics.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C* NUMCHR := ASCII(NUM, BASE, STR);

C* /* FUNCTION RETURN NUMCHR DEFINED NUMERIC, 4 DIGITS, 0 DEC PLACES */
C*

C NUMCHR INTR ASCII 40

C IPARM NUM

C IPARM BASE

C IPARM STR

C* WHO(,CAP); /* SKIP THE FIRST PARAMETER */

C* /* ALSO, OPTION EXTENSIBLE */

C INTR WHO

C IPARM

C IPARM CAP

C* BIN := BINARY(ASCI, LEN); /* SETS CONDITION CODE */

C*

C BIN INTR BINARY 010203

C IPARM ASCI

C IPARM LEN

$ALIAS INTNAM = BINARY

.

.

.

C BIN INTR INTNAM 010203

C IPARM ASCI

C IPARM LEN

Using the INTR and IPARM operations

Calculation Specifications 8-57

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

H

FOUTPUT O F 80 $STDLST

E DATERR 2 5 0

E CMND 6 1

E DATBUF 28 1

C MOVE *ZERO DATE 50

C SETON 22

C DATE INTR CALENDAR

C DATE DSPLY

C Z-ADD0 YEAR 50

C Z-ADD0 MONTH 50

C Z-ADD0 DAY 50

C Z-ADD0 WKDAY 50

C INTR ALMANAC
C IPARM DATE

C IPARM DATERR

C IPARM YEAR

C IPARM MONTH

C IPARM DAY

C IPARM WKDAY

C DATE DSPLY

C DATERR,1 DSPLY

C YEAR DSPLY

C MONTH DSPLY

C DAY DSPLY

C WKDAY DSPLY

C MOVEA"LISTF " CMND

C BITOF"01234567"CMND,6

C BITON"457" CMND,6

C Z-ADD0 CMERR 50

C Z-ADD0 PARM 50

C 22 INTR COMMAND

C IPARM CMND

C IPARM CMERR

C IPARM PARM

C CMERR DSPLY

C INTR DATELINE

C IPARM DATBUF

C SETON LR

OOUTPUT D

O DATBUF 28

Using the INTR and IPARM operations (continued)

8-58 Calculation Specifications

Example Conventions

LOCK, UNLCK

These �le operations let you conditionally or unconditionally lock and unlock TurboIMAGE,
KSAM, and MPE �les. You can lock TurboIMAGE �les at the database, data set, or record
level. You can lock KSAM and MPE �les at the �le level. (For all of these �le types, MPE/iX
performs page level locking automatically.)

Unconditionally locking a �le means that the process is suspended, if necessary, until the
database, data set, record, or �le is unlocked by another process which has it locked. The
interval during which the process is suspended can seriously degrade performance in an
interactive processing environment. To avoid this, use conditional locking.

Conditionally locking a database, data set, record, or �le means that if the entity is already
locked by another process, the lock fails and a resulting indicator is turned ON. The process
that performed the lock continues with the next operation.

For the LOCK and UNLCK operations to be allowed for shared �les, the appropriate locking
facility must be enabled. For TurboIMAGE �les, enter a B, S, 1, 9, or L (L is recommended)
in the Open Mode Field (column 66) in the Database Name (IMAGE) line of the File
Description Continuation line. For KSAM and MPE �les, you enable locking by specifying
either LOCK or NOLOCK in the Option Type Field (column 54-59) of a File Description
Continuation line for the �le.

Note You can use LOCK and UNLCK even though you use a locking mode that
causes RPG to automatically lock and unlock the �le for you. However, you
should exercise extreme caution when doing this. You must ensure that your
manual locking does not interfere with RPG automatic locking.

Table 8-12 summarizes the type of locks that you can perform and the �elds that you must
enter in the Calculation Speci�cation to accomplish them.

Table 8-12. Calculation Specification Fields Used with LOCK and UNLCK

File and
Level of Lock

Factor 1 Operation Factor 2 Result
Field

Field
Length

TurboIMAGE Database blank LOCK/UNLCK �lename database 1-256

TurboIMAGE Data set blank LOCK/UNLCK �lename blank blank

TurboIMAGE Record key value LOCK/UNLCK �lename blank blank

KSAM �le blank LOCK/UNLCK �lename blank blank

MPE �le blank LOCK/UNLCK �lename blank blank

TurboIMAGE Files

The following items discuss how to lock TurboIMAGE �les at the database, data set, and data
set record level.

Locking and Unlocking a TurboIMAGE database.

Use LOCK to lock the database and UNLCK to unlock it. Leave the Factor 1 Field blank.
Enter the database �le name in the Factor 2 Field. This is the name de�ned in File Name
Field (columns 7-13) of the File Description Speci�cation. Enter the actual database name

Calculation Specifications 8-59

Example Conventions

(not enclosed in quotes) in the Result Field. This is the name entered in columns 60-65 of
the Database Name (IMAGE) line of the File Description Speci�cation Continuation line.
Enter a number from 1 to 256 in the Field Length Field (columns 49-51). This number is
required for compatibility with other RPG implementations but is not used.

Enter an indicator in the High Resulting Indicators Field (columns 54-55) to perform
conditional locking. Leave this �eld blank to specify unconditional locking. Enter either
or both a Low Resulting indicator and an Equal Resulting indicator. When LOCK is
executed, the Equal Resulting indicator is turned ON if the operation is successful. Table
8-13 lists the resulting indicators and the conditions that cause them to be turned ON.
Since the TurboIMAGE subsystem actually performs the locks, the TurboIMAGE status
code is shown also. (For further information about the TurboIMAGE status codes, see the
TurboIMAGE/iX Database Management System manual.)

Locking and Unlocking a TurboIMAGE data set.

Use LOCK to lock the data set and UNLCK to unlock it. (UNLCK actually unlocks the
entire database, releasing all previous locks for it.) Leave the Factor 1 Field blank. Enter
the database �le name in the Factor 2 Field. This is the name de�ned in File Name Field
(columns 7-13) of the File Description Speci�cation. Leave the Result Field blank.

Enter an indicator in the High Resulting Indicators Field (columns 54-55) to perform
conditional locking. Leave this �eld blank to specify unconditional locking. Enter either
or both a Low Resulting indicator and an Equal Resulting indicator. When LOCK and
UNLCK are executed, the Equal Resulting indicator is turned ON if the operation was
successful. Table 8-13 lists the resulting indicators and the conditions that cause them
to be turned ON. Since the TurboIMAGE subsystem actually performs the locks, the
TurboIMAGE status code is shown also. (For further information about the TurboIMAGE
status codes, see the TurboIMAGE/iX Database Management System manual.)

Locking and Unlocking a TurboIMAGE data set record.

Use LOCK to lock the data set record and UNLCK to unlock it. (If all previous locks for
the database are released, UNLCK unlocks the entire database.) Enter the key for the
record you want to lock in the Factor 1 Field. This is the �eld de�ned as the key in the
Item Name (ITEM) line (columns 60-74) of the File Description Speci�cation Continuation
line. Enter the database �le name in the Factor 2 Field. This is the name de�ned in File
Name Field (columns 7-13) of the File Description Speci�cation. Leave the Result Field
blank.

Enter an indicator in the High Resulting Indicators Field (columns 54-55) to perform
conditional locking. Leave this �eld blank to specify unconditional locking. Enter either
or both a Low Resulting indicator and an Equal Resulting indicator. When LOCK and
UNLCK are executed, the Equal Resulting indicator is turned ON if the operation was
successful. Table 8-13 lists the resulting indicators and the conditions that cause them
to be turned ON. Since the TurboIMAGE subsystem actually performs the locks, the
TurboIMAGE status code is shown also. (For further information about the TurboIMAGE
status codes, see the TurboIMAGE/iX Database Management System manual.)

8-60 Calculation Specifications

Example Conventions

Table 8-13.

How Resulting Indicators Are Set For LOCK/UNLCK (TurboIMAGE Files)

Resulting
Indicator
Turned ON

LOCK
Database

LOCK
Data Set

LOCK
Record

UNLCK

High (conditional
locking only).

Database locked
or contains locks
(TurboIMAGE
status 20).

Database locked or
contains locks
(TurboIMAGE status
20).

Data set locked by
another process
(TurboIMAGE status
22).

Entries locked within
data set (TurboIMAGE
status 23).

Database locked or
contains locks
(TurboIMAGE status
20).

Data set locked by
another process
(TurboIMAGE status
22).

Entries locked within
data set
(TurboIMAGE status
23).

Item con
icts with
current locks
(TurboIMAGE status
24).

Entries already
locked (TurboIMAGE
status 25).

Exceptional error
(TurboIMAGE
status > 0).

Low File system or
memory manager
failure
(TurboIMAGE
status < 0).

See error messages in
the TurboIMAGE
Reference Manual.

See error messages in
the TurboIMAGE
Reference Manual.

File system or
memory manager
failure
(TurboIMAGE
status - < 0).

Equal Request granted
(TurboIMAGE
status 0).

Request granted
(TurboIMAGE status
0).

Request granted
(TurboIMAGE status
0).

Request granted
(TurboIMAGE
status 0).

None of the above
indicators are
turned ON.

A condition not
listed above was
encountered
(TurboIMAGE
status not listed
above).

A condition not listed
above was encountered
(TurboIMAGE status
not listed above).

A condition not listed
above was
encountered
(TurboIMAGE status
not listed above).

Does not apply; at
least one resulting
indicator is ON.

Calculation Specifications 8-61

Example Conventions

KSAM Files

You can lock KSAM �les at the �le level. To monitor the locking and unlocking of KSAM
�les from a terminal, use the KSAM utility, KSAMUTIL. For complete information about
KSAMUTIL, see the KSAM/3000 Reference Manual .

You can lock a KSAM �le at the �le level only if you have speci�ed LOCK or NOLOCK in
the Option Type Field (columns 54-59) of a File Description Speci�cation Continuation line
for the �le. Use LOCK to lock the �le and UNLCK to unlock it. Leave the Factor 1 Field
blank. Enter the �le name for the KSAM �le in the Factor 2 Field. This is the name de�ned
in File Name Field (columns 7-13) of the File Description Speci�cation. Leave the Result
Field blank.

Enter an indicator in the High Resulting Indicators Field (columns 54-55) to perform
conditional locking. Leave this �eld blank to specify unconditional locking. Enter either or
both a Low Resulting indicator and an Equal Resulting indicator. When LOCK is executed,
the indicators that you enter are turned ON to indicate if the operation was successful. Table
8-14 lists the resulting indicators and the conditions that cause them to be turned ON. Since
the KSAM subsystem actually performs the locks, the KSAM condition code is shown also.
(For further information about the KSAM condition codes, see the KSAM/3000 Reference
Manual .)

MPE Files

Use LOCK to lock an MPE �le and UNLCK to unlock it. Leave the Factor 1 Field blank.
Enter the �le name for the MPE �le in the Factor 2 Field. This is the name de�ned in File
Name Field (columns 7-13) of the File Description Speci�cation. Leave the Result Field blank.

Enter an indicator in the High Resulting Indicators Field (columns 54-55) to perform
conditional locking. Leave this �eld blank to specify unconditional locking. Enter either or
both a Low Resulting indicator and an Equal Resulting indicator. When LOCK is executed,
the indicators that you enter are turned ON to indicate if the operation was successful. Table
8-14 lists the resulting indicators and the conditions that cause them to be turned ON.

Table 8-14.

How Resulting Indicators Are Set For LOCK/UNLCK

(KSAM and MPE Files)

Resulting
Indicator
Turned ON

LOCK UNLCK

High
(conditional
locking only)

Locked by another process
(KSAM condition code >).

Not already locked
(KSAM condition code >).

Low Not opened with dynamic
locking facility enabled or
need MR capability
(KSAM condition code <).

Not opened with dynamic
locking facility enabled or
need MR capability
(KSAM condition code <).

Equal Request granted
(KSAM condition code =).

Request granted
(KSAM condition code =).

8-62 Calculation Specifications

Example Conventions

LOKUP

This table and array operation retrieves an element from a table or array and makes it
available for use in subsequent operations. The element is retrieved when it satis�es the search
criteria that you enter.

Enter the search argument (the element you're looking for) in the Factor 1 Field. It can be an
alphanumeric or numeric constant, a �eld name, an array element, or a table name. Enter the
table or array to search in the Factor 2 Field. Be sure that Factor 1 and Factor 2 have the
same length. They do not have to contain the same number of decimal places.

Enter at least one but not more than two indicators in the Resulting Indicators Field
(columns 54-59). The indicators de�ne the search criteria and reveal the results of the search.
Enter an indicator in the Equal Sub�eld (columns 58-59) to search for an element in the table
or array that is equal to Factor 1 (if there is more than one equal element, the �rst one is
chosen). Enter an indicator in the Low Sub�eld (columns 56-57) to search for the element
that is nearest to, but less than Factor 1. Enter an indicator in the High Sub�eld (columns
54-55) to search for the element that is nearest to, but higher than Factor 1. You cannot
specify both the High and the Low Sub�eld in the same LOKUP operation. When the search
is successful, the indicator that you enter is turned ON. For example, if the indicator 05 is
entered in the High Sub�eld, a search for the nearest element that is higher than Factor 1
takes place and if an element is found, indicator 5 is turned ON.

You can search for a table or array element that is greater than or equal to Factor 1, or less
than or equal to Factor 1. Enter indicators in both the Equal and Low Sub�elds or the Equal
and High Sub�elds. Either condition satis�es the search (equal has precedence) and the
indicator associated with that condition is turned ON. When you enter an indicator in the
Low Sub�eld, High Sub�eld, the Equal and Low Sub�elds, or the Equal and High Sub�elds,
make sure the table or array is in ascending or descending sequence, or you may not retrieve
the element you expect. (You can use the SORTA operation to sequence arrays.)

Calculation Specifications 8-63

Example Conventions

Searching A Table

To search a table that has no alternating table, use the Factor 1, Factor 2, and Resulting
Indicator Fields. To condition the LOKUP operation, enter indicators in the Control Level
(columns 7-8) or Indicators Fields (columns 9-17), or both.

When an element is found, use the table name in subsequent operations to reference it.
The table name references the element that was found until another LOKUP operation is
performed or until you use the table name in the Result Field of another operation. If an
element is not found, the table name references the element found by the previous LOKUP
operation.

Example

Figure 8-29 shows how to search a table. Suppose that the �eld ENTRY1 (line 1) contains
the value 300. The LOKUP operation searches the table TABLEA for 300. If it is found,
indicator 10 is turned ON. The ADD operation in line 2 is executed (since indicator 10 is
turned ON). It adds 300 (the element found by the LOKUP in line 1) to 100, and replaces the
element containing 300 in TABLEA with the result (400).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C ENTRY1 LOKUPTABLEA 10

�2� C 10 TABLEA ADD 100 TABLEA

Figure 8-29. Searching a Table

8-64 Calculation Specifications

Example Conventions

Searching Alternating Tables

This section explains how to search a table along with its alternating table. The alternating
table is not actually searched, although you name it in the LOKUP operation. However, when
an element is found in a table, its corresponding alternating table values become available.

To search a table and its alternating table, enter the table in the Factor 2 Field and the
alternating table in the Result Field. Use the Factor 1 and Resulting Indicator Fields as
you normally do, but do not enter an array element in the Factor 1 Field. The table and its
alternating table should be the same length. If not, the search stops at the end of the shorter
table. Once an element is found in the table, use the table name to reference it or use the
alternating table name to reference elements in the alternating table.

Example

Figure 8-30 shows how to search the table TABLEB and its alternating table TABLEC.
The LOKUP operation in line 1 searches TABLEB for the element that matches the �eld
ENTRY2. If an element is found, indicator 20 is turned ON. The MULT operation in line 2
is executed when indicator 20 is turned ON. The element in TABLEC (found by the LOKUP
operation) is multiplied by 20 and the result is placed in the �eld STORA.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C ENTRY2 LOKUPTABLEB TABLEC 20

�2� C 20 TABLEC MULT 20 STORA

Figure 8-30. Searching Alternate Tables

Calculation Specifications 8-65

Example Conventions

Searching An Array

To search an array, enter the search argument in Factor 1 and use the Resulting Indicators
Fields as you would in searching a table. Do not use the Result Field. Unlike with tables, the
last element in an array cannot be referenced by using the array name alone; it can, however,
be referenced as noted below.

Enter the name of the array to be searched in Factor 2. If you use the array name alone, the
search begins at the �rst element of the array. If you use an array name with an index (the
index can be a �eld or a literal), the search begins with the element speci�ed by the index.
When the index is a �eld and the search is successful, the number of the matching array
element is placed in the �eld; otherwise the �eld is set to 1.

Example

Figure 8-31 shows how to search an array. The LOKUP operation in line 1 searches the array
ARR1 (beginning with the element speci�ed by INDX) for an element that matches the �eld
ENTRY3. Assuming that a match is found on the seventy-third element of ARR1, 73 is
placed in INDX and indicator 30 is turned ON. The MOVE operation in line 2 is executed
since indicator 30 is turned ON. It moves the ARR1 element (found in line 1) to the �eld
STORB.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C ENTRY3 LOKUPARR1,INDX 30

�2� C 30 MOVE ARR1,INDX STORB

Figure 8-31. Searching an Array

8-66 Calculation Specifications

Example Conventions

MHHZO

This move zone operation (Move High to High ZOne) moves the zone bits of the high-order
position of Factor 2 to the high-order position of the Result Field. Both �elds must be
alphanumeric.

The following illustration shows how this operation works. Z stands for the zone bits of each
character and D stands for the digit portion. The shaded area shows the a�ected characters in
the Factor 2 and Result Fields.

Factor 2 Field: Result Field:

Z D Z D Z D Z D (alphanumeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

MHLZO

This move zone operation (Move High to Low ZOne) moves the zone bits from the leftmost
position of Factor 2 to the rightmost position of the Result Field. Factor 2 must be
alphanumeric. The Result Field can be either alphanumeric or numeric.

The illustrations below show how MHLZO works. The letter Z stands for the zone portion of
the character, D stands for the digit portion, and S stands for the sign portion. The shaded
areas show the a�ected characters in the Factor 2 and Result Fields.

Factor 2 Field: Result Field:

Z D Z D Z D Z D (alphanumeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

Z D Z D Z D Z D (alphanumeric) ------> D D D D D D D S (numeric)

|---|---|---|---| |---|---|---|---|

Calculation Specifications 8-67

Example Conventions

MLHZO

This move zone operation (Move Low to High ZOne) moves the zone portion of the
low-order position of Factor 2 to the high-order position of the Result Field. Factor 2 can be
alphanumeric or numeric. The Result Field must be alphanumeric.

The illustrations below show how MLHZO works. The letter Z stands for the zone portion of
the character, D stands for the digit portion, and S stands for the sign portion. The shaded
areas show the a�ected characters in the Factor 2 and Result Fields.

Factor 2 Field: Result Field:

Z D Z D Z D Z D (alphanumeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

D D D D D D D S (numeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

MLLZO

This move zone operation (Move Low to Low ZOne) moves the zone bits from the low-order
position of Factor 2 to the high-order position of the Result Field. The �elds can be either
alphanumeric or numeric.

The illustrations below show how MLLZO works. The letter Z stands for the zone portion of
the character, D stands for the digit portion, and S stands for the sign portion. The shaded
areas show the a�ected characters in the Factor 2 and Result Fields.

Factor 2 Field: Result Field:

Z D Z D Z D Z D (alphanumeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

Z D Z D Z D Z D (alphanumeric) ------> D D D D D D D S (numeric)

|---|---|---|---| |---|---|---|---|

D D D D D D D S (numeric) ------> Z D Z D Z D Z D (alphanumeric)

|---|---|---|---| |---|---|---|---|

D D D D D D D S (numeric) ------> D D D D D D D S (numeric)

|---|---|---|---| |---|---|---|---|

8-68 Calculation Specifications

Example Conventions

Example

Table 8-15 gives examples of how MHHZO, MHLZO, MLHZO, and MLLZO work. In these
examples, \|" indicates that the type of move does not apply and t stands for a blank.

Table 8-15. Move Zone Operations

Type of Move Factor 2
Contents

Result Field
before Move

Result Field after Move:
MHHZO MHLZO MLHZO MLLZO

Alphanumeric
to
alphanumeric

AH5SR S51T B51T S51C K51T
S51L

Alphanumeric
to
numeric

AH5SR 12.3 | 12.3+ |
12.3-

Numeric to
numeric

852.4+ 06.282- | | |
06.282+

Numeric to
alphanumeric

4.7524- tKD | | tKD
tKM

Calculation Specifications 8-69

Example Conventions

MOVE

This move operation moves characters from Factor 2 to the Result Field. Characters are
moved beginning at the rightmost (low-order) position, continuing to the leftmost (high-order)
position.

If Factor 2 is longer than the Result Field, excess characters are not moved. If Factor 2 is
shorter that the Result �eld, excess characters in the Result Field remain unchanged.

You can use this operation to convert an alphanumeric �eld or constant to packed decimal
format. Each alphanumeric character is assumed to be a digit. The zone portion of the
low-order alphanumeric character is the sign and it is stored in the low-order position of the
Result Field. Zone bits for other characters are stripped and the digits are compressed into
packed decimal format. Blanks are converted to zeros.

You can also use this operation to convert a packed decimal �eld to an alphanumeric �eld.
The low-order position of Factor 2 contains the low-order digit and sign.

To move data to an array element, enter the array name with index in the Result Field. To
duplicate data in every element of an array, enter the array name without an index in the
Result Field.

You can move one or more zeros or blanks to the Result Field using the �gurative constants
*BLANK, *BLANKS, *ZERO, or *ZEROS.

Table 8-16 gives examples of the combinations of numeric and alphanumeric MOVEs that you
can perform.

Table 8-16. MOVE Operation Examples

Type of MOVE Factor 2
Contents

Result Field Contents
before MOVE

(numeric �elds shown in
hexadecimal format)

Result Field Contents
after MOVE

(numeric �elds shown in
hexadecimal format)

Alphanumeric to
alphanumeric

ABC23 1234567 12ABC23

Alphanumeric to
numeric

1232E 1234567C 1212325C

Alphanumeric to
alphanumeric

ABC23DEFG 1234567 C23DEFG

Alphanumeric to
numeric

12323456P 7654321C 3234567D

Alphanumeric to
alphanumeric

ABC23DE 1234567 ABC23DE

Alphanumeric to
numeric

3212345 1234567D 3212345F

Numeric to
alphanumeric

1234567F
1234567C

ABC23DE
AB12CDF

1234567
123456G

Numeric to
numeric

1234567C 8910123D 1234567C

8-70 Calculation Specifications

Example Conventions

Example

Figure 8-32 shows three ways to use the MOVE operation.

Line 1 moves the value 12492 to each element of the array ARY. If the elements of the ARY
array were de�ned as �ve characters long or more (the size of the value 12492), then the entire
value 12492 is moved into the rightmost positions of each element. If the element size is only
1 character, then only the number 2 is moved to each element. (If you want to move 1 to the
�rst element, 2 to the second element, 4 to the third and so on, use the MOVEA operation.)

Line 2 shows how to �ll an array with zeros, regardless of the number or the size of elements.

After the move in line 3, the �fth element of the array contains only blanks. The other
elements are una�ected.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C MOVE 12492 ARY

C .

C .

�2� C MOVE *ZEROS ARY

C .

C .

�3� C MOVE *BLANKS ARY,5

Figure 8-32. Using the MOVE Operation

Calculation Specifications 8-71

Example Conventions

MOVEA

This move operation moves the Factor 2 Field to the Result Field. Data is moved beginning
at the leftmost (high-order) position, continuing to the rightmost (low-order) position. Both
�elds must be alphanumeric and at least one of them must be an array. Do not use the same
array for both the Factor 2 and Result Fields.

MOVEA lets you:

Move contiguous elements from one array to contiguous elements of another.

Move contiguous array elements to a single �eld.

Move a single �eld to several contiguous array elements.

When you enter an array element in Factor 2, it is the �rst �eld that is moved. Subsequent
elements are moved until the last array element is moved or �lled, or until all of the characters
in the shorter �eld are moved. Depending on the length of the Factor 2 and Result Fields,
MOVE may end in the middle of a �eld or array element.

If Factor 2 is longer than the Result Field, excess characters in Factor 2 are not moved.
If Factor 2 is shorter than the Result Field, excess characters in the Result Field remain
unchanged.

When you use a �gurative constant (*BLANK, *BLANKS, *ZERO, or *ZEROS) in Factor 2
and an array name in the Result Field, the array is �lled with blanks or zeros. If the array
is indexed, the operation begins with the element corresponding to the index number and
continues to the end of the array.

MOVEL

This move operation moves Factor 2 to the Result Field. Data is moved beginning at the
leftmost (high-order) position, continuing to the rightmost (low-order) position.

You can use the �gurative constants *BLANK(S) and *ZERO(S) in the Factor 2 Field. If
Factor 2 is longer than the Result Field, the excess low-order characters are not moved.
If Factor 2 is shorter than the Result Field, excess characters in the Result Field remain
unchanged.

You can use this operation to convert an alphanumeric �eld or constant to a number by
moving it to a numeric �eld. The alphanumeric �eld must contain ASCII digits (except in
the low-order position). The digit portion of each character is converted to the corresponding
number before it is moved. When the number of characters in the alphanumeric �eld equals or
exceeds the number of digits in the Result Field, the sign of the alphanumeric �eld is moved
to the low-order position of the Result Field. Zones are stripped from the other characters,
and the numeric equivalents are saved in packed decimal format.

You can also use MOVEL to convert a numeric �eld or a constant to an alphanumeric value
by moving it to a alphanumeric �eld. Each digit is converted to its corresponding ASCII
character. If the entire �eld is moved and the sign is negative, the rightmost zone and digit
bits are converted to one character.

8-72 Calculation Specifications

Example Conventions

MSG

This display operation retrieves a message from a User Message Catalog �le (created by the
Native Language Support, NLS or by MAKECAT) and places it in the �eld that you specify.
You may want to use MSG to tailor corporate report headings contained in a User Message
Catalog, for example, to �t a particular division's requirements.

The name of the User Message Catalog �le is CATALOG and it is assumed to be in your
logon group and account. If you want to use another �le or if CATALOG is in another group
or account, enter an operating system :FILE command to change these values. For example,
the command :FILE CATALOG=MYMSG.PUB.PAYROL speci�es that the �le MYMSG is the User
Message Catalog and it is located in the PUB.PAYROL group and account. You can use only
one User Message Catalog �le in a program. As a result, if you're using MSG and the message
features of the RPG Screen Interface, (RSI) combine all messages into one �le.

To use MSG, enter the identi�cation number of the message in the Factor 1 Field. You can
enter a literal or alphanumeric �eld. The message identi�cation consists of a message number
and, optionally, a set number. The message identi�cation has the format,

nnnn[:ss]

where nnnn is the message number and ss is the set number. The colon (:) is used to separate
the two numbers. If you omit the set number, the �rst set is used.

In the Result Field, enter the name of the �eld where you want to store the message. You can
use an alphanumeric �eld or array. If the message exceeds the length of the Result Field, the
low-order characters are truncated. The maximum length of a message is 256 bytes.

Enter the indicator in the High Sub�eld (columns 54-55) that you want turned ON when the
message cannot be retrieved. If you do not enter an indicator in this �eld and the message
cannot be retrieved, the H0 indicator is turned ON.

Do not use the Factor 2, Decimal Positions, Half Adjust, and the Low and Equal Sub�eld
Fields.

Example

Four examples of valid message identi�cations are shown in Table 8-17. See the DSPLM
operation for examples of how to code message identi�cations.

Table 8-17. Valid Message Identifications

Message Identi�cation: Message Number: Set Number:

"12" 12 1 (default)

"3." 3 1 (default)

"32:6" 32 6

"0004:02" 4 2

Calculation Specifications 8-73

Example Conventions

MULT

This arithmetic operation multiplies Factor 1 by Factor 2 and places the product in the Result
Field. Be sure that the Result Field is large enough to hold the largest possible result. Excess
digits are truncated. If Factor 1 is blank, the Result Field is multiplied by Factor 2 and the
product is placed in the Result Field.

MVR

This arithmetic operation moves the remainder from the previous DIV operation to the Result
Field. Use MVR immediately following the DIV operation and condition it with the same
indicators (see �gure 8-15). Do not use the Factor 1 or Factor 2 Fields.

The remainder is stored as a decimal number. When you de�ne the �eld entered in the Result
Field, make sure that it contains the same number of whole number positions as the Factor 2
Field of the DIV operation. If must also contain the number of decimal positions which is the
greater of:

The number of decimal positions in Factor 1 of the DIV operation.

The sum of the decimal positions in the Factor 2 and Result Fields of the DIV operation.

PARM

This external subroutine operation passes data to an external subroutine. PARM is used in
conjunction with EXIT. Enter a PARM operation for each data element that you want to pass
to the subroutine. Begin the PARM operations immediately after the EXIT operation that
calls the subroutine.

Enter the data element to be passed in the Result Field. You can enter a �eld, table, or array
name. Do not enter an indicator. Data elements are passed as byte arrays in the same order
you enter them in the PARM operations. Leave the Factor 1 and Factor 2 Fields blank.

Example

Figure 8-33 shows how to use the EXIT operation to call an external subroutine and how to
use the PARM operation to exchange information with it.

The RPG program reads two numbers (FLD1 and FLD2) and a six-character string (FLD3)
from the terminal. It then calls the external subroutine EXSUB in line 1. EXSUB is written
in COBOL and is shown in �gure 8-34. It adds the �elds passed to it as parameters (FLD1
and FLD2 starting in line 2) and displays the result. The result (RESLT1) along with FLD1
and FLD2 are returned to the RPG program when EXSUB �nishes.

The second external subroutine EXSUB2 is then called in line 3. EXSUB2 is written in C
and is shown in �gure 8-35. The �eld FLD3 is passed to it as a parameter at line 4. EXSUB2
moves FLD3 to the �eld RESLT2 and returns to the RPG program. The RPG program writes
the input �elds (FLD1, FLD2) and the �elds created by the external subroutines (RESLT1
and RESLT2) to the output �le OUTFLE.

8-74 Calculation Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

FTERMIN IDE V 14

FOUTFLE O F 50 DISK

ITERMIN AA 01 1 CO

I 3 80FLD1

I 9 140FLD2

I 15 20 FLD3

C READ TERMIN LR

�1� C NLR EXIT EXSUB

�2� C PARM FLD1

C PARM FLD2

C PARM RESLT1 70

�3� C NLR EXIT EXSUB2
�4� C PARM FLD3

C PARM RESLT2 6

OOUTFLE D 01

O 5 "FLD1="

O FLD1 11

O 17 "FLD2="

O FLD2 23

O 31 "RESULT="

O RESLT1 38

O 44 "FLD3="

O RESLT2 50

Figure 8-33. Using EXIT, PARM and External Subroutines

Calculation Specifications 8-75

Example Conventions

$CONTROL SUBPROGRAM

IDENTIFICATION DIVISION.

PROGRAM-ID. EXSUB.

ENVIRONMENT DIVISION.

DATA DIVISION/

LINKAGE SECTION.

*

*NUMERIC PARAMETER DATA TYPED AS COMP-3

*

01 FLD-1 PIC S9(6) COMP-3.

01 FLD-2 PIC S9(6) COMP-3.

01 RESULT PIC S9(7) COMP-3.

PROCEDURE DIVISION USING FLD-1 FLD-2 RESULT.

START-LINK.

ADD FLD-1 FLD-2 GIVING RESULT.

DISPLAY "FLD-1= " FLD-1 " FLD-2 " FLD-2 " RESULT= " RESULT.

GOBACK.

Figure 8-34. The External Subroutine EXSUB Written in COBOL

exsub2 (A,B)

char *A;

char *B;

{

strncpy (b, a, 6);

}

Figure 8-35. The External Subroutine EXSUB2 Written in C

8-76 Calculation Specifications

Example Conventions

PUTJW

This system operation locates a JCW in the system JCW table and changes its value. If the
JCW does not exist, a new one is created. PUTJW uses the system intrinsic PUTJCW.

To use PUTJW, enter the value to place in the JCW in the Factor 1 Field. You can use a
numeric literal or �eld. It must be no more than 8 digits long with no decimal places. It must
contain a number in the range, 0-65,535. If the value is outside of this range, the run-time
error \Invalid Numerical Data" is printed. Enter the name of the JCW you want to locate in
the Factor 2 Field. If the JCW does not exist, a new one is created with this name. The name
can be contained in an alphanumeric variable or literal. It must begin with a letter. Leave the
Result Field blank.

You must enter at least one indicator in the Resulting Indicators Field (columns 54-59).
When PUTJW is executed, the indicators are set to indicate the outcome of the operation.
If the indicator in the High Sub�eld is ON, there is no more room in the JCW table for the
new entry. If the indicator in the Low Sub�eld is ON, the JCW name that you entered does
not begin with a letter. If the JCW was found and altered successfully, or if a new JCW was
created, the indicator in the Equal Sub�eld is turned ON.

Calculation Specifications 8-77

Example Conventions

READ

This �le operation reads a record from a sequential demand �le (that may or may not reside
on a SPECIAL device) or a full procedural �le. The record is made available during the
present cycle instead of the next one (FORCE makes a record available during the next cycle).
READ is similar to CHAIN except that CHAIN processes �les randomly.

To use READ, leave the Factor 1 Field blank and enter the name of the demand or full
procedural �le in the Factor 2 Field. Leave the Result Field blank.

You can enter an indicator in the Equal Sub�eld (columns 58-59). It is turned ON when
end-of-�le is encountered. If you do not enter an indicator, the H0 indicator is turned ON.
Do not use the High and Low Sub�elds (columns 54-57). Do not use control level indicators,
matching �elds, or look-ahead �elds for the �le. Also, do not specify sequence-checking for the
�le in the Input Speci�cation.

When READ is executed, the appropriate record-identifying indicators are turned ON and the
input �elds are made available. Unidenti�ed record types cause run-time errors.

Example

Figure 8-36 shows how to read the demand �le SURTAX (see line 1). The �le is read only
when indicator 07 is ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C MOVE TAX2 NETAXP

C NETAXP COMP 15000 07

�1� C 07 READ SURTAX

Figure 8-36. Reading a Demand File

8-78 Calculation Specifications

Example Conventions

READE

This �le operation reads the next record from an indexed demand �le or a full procedural �le.
If the record key matches the Factor 1 Field, the record is made available for processing.

To use READE, enter the name of the �eld that contains the key value in the Factor 1 Field.
Enter the name of the demand or full procedural �le in the Factor 2 Field. Leave the Result
Field blank.

You can enter an indicator in the Equal Sub�eld (columns 58-59). It is turned ON when the
record key matches the Factor 1 Field and when end-of-�le is encountered. If you do not enter
an indicator, the H0 indicator is turned ON when the record key does not match the Factor
1 Field or when end-of-�le is encountered. Do not use the High and Low Sub�elds (columns
54-57). Do not use control level indicators, matching �elds, or look-ahead �elds for the �le.
Also, do not specify sequence-checking for the �le in the Input Speci�cation.

When READE is executed, the appropriate record-identifying indicators are turned ON and
the input �elds are made available. Unidenti�ed record types cause run-time errors.

READP

This �le operation reads the previous record from a sequential or indexed demand or full
procedural �le. If the �le is indexed, the previous record is read by key (not chronologically).

To use READP, leave the Factor 1 Field blank and enter the name of the demand or full
procedural �le in the Factor 2 Field. Leave the Result Field blank.

You can enter an indicator in the Equal Sub�eld (columns 58-59). It is turned ON when
the beginning of the �le is encountered. (If you do not enter an indicator, the H0 indicator
is turned ON) Do not use the High and Low Sub�elds (columns 54-57). Do not use control
level indicators, matching �elds, or look-ahead �elds for the �le. Also, do not specify
sequence-checking for the �le in the Input Speci�cation.

When READP is executed, the appropriate record-identifying indicators are turned ON and
the input �elds are made available. Unidenti�ed record types cause run-time errors.

Calculation Specifications 8-79

Example Conventions

RESET

This �le operation sets a �le to its initial open condition. This operation allows you to process
a �le more than once without restarting the program.

The �le must be speci�ed in the File Speci�cation as an INPUT or UPDATE type with
a designation of DEMAND or FULL PROCEDURAL. The �le can be an MPE (
at) �le,
a KSAM �le, or a TurboIMAGE �le. You can read a �le sequentially until its end-of-�le
indicator is set (or end-of-chain for TurboIMAGE chained sequential �les), and then use this
indicator to condition the RESET operation to set the �le to its initial state.

For MPE and KSAM �les, RESET calls the MPE intrinsic FCONTROL with a parameter of
5 (refer to the MPE/iX Intrinsics Reference Manual), and for TurboIMAGE �les, RESET
does a DBCLOSE mode 3 (refer to the TurboIMAGE/iX Database Management System
manual). For KSAM �les, FCONTROL parm 5 resets to the lowest primary key, so this
operation is not allowed if you are reading the �le chronologically (�le speci�cation column 32
is C).

To use RESET, leave the Factor 1 Field blank and enter the name of the �le you want to
reset in the Factor 2 Field. Leave the Result Field blank. Enter an indicator in the High
Sub�eld (columns 54-55); this is turned ON if the RESET operation fails. Do not use the Low
or Equal Sub�elds (columns 56-59), the decimal positions �eld (column 52), or the half-adjust
�eld (column 53).

8-80 Calculation Specifications

Example Conventions

RLABL

This external subroutine operation names a �eld, table, array, or indicator to be passed to an
external subroutine. RLABL is used in conjunction with the EXIT operation. Note that you
cannot use or set indicators in external procedures such as user-trap routines that are not
executed with the EXIT operation.

Enter the �eld, table, array, or general indicator (01-99) in the Result Field. To pass an
indicator, enter it in this format: INxx. For instance, indicator 01 is entered as IN01. If the
program has other external routines that use the �eld, array, or indicator, de�ne it only once
using RLABL. Do not enter the same name used in RLABL operations with a GOTO, TAG,
BEGSR, or ENDSR operation elsewhere in the program.

In the external subroutine, declare all �elds, tables and arrays (passed from the RPG main
program) as external character arrays and all indicators as external integers. The indicators
contain zero when they are OFF and one when they are ON. Be sure the names for �elds,
tables, arrays, and indicators passed to the external subroutine are the same as those in the
RPG program.

Example

Figure 8-37 shows how to use the EXIT operation to call an external subroutine and how to
use the RLABL operation to exchange information with it.

The program reads two numbers (FLD1 and FLD2) and a six-character string (FLD3) from a
disk �le. It then calls the external subroutine EXSUB in line 3. EXSUB is written in COBOL
and is shown in �gure 8-38. It adds the �elds passed to it as parameters (FLD1 and FLD2
starting in line 1) and displays the result. It also displays FLD3. If the result of the ADD is
zero, indicator 22 is turned on. The result (RESLT1) along with FLD1, FLD2, and indicator
22 are returned to the RPG program when EXSUB �nishes. The second external subroutine
EXSUB2 is then called in line 4. EXSUB2 is written in C and is shown in �gure 8-39.
Indicator 22 and the �eld FLD3 are passed to it as parameters (starting at line 2). Depending
on whether indicator 22 is ON or OFF, EXSUB2 moves FLD3 to the �eld RESLT2 or clears
RESLT2 to blanks. It then returns to the RPG program. The RPG program writes the
input �elds FLD1 and FLD2 and the �elds (RESLT1 and RESLT2) created by the external
subroutines to the output �le OUTFLE.

Calculation Specifications 8-81

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

FINFILE IP F 80 DISK

FOUTFLE O F 50 DISK

IINFILE AA 01 1 CO

I 3 80FLD1

I 9 140FLD2

I 15 20 FLD3

I NS

�1� C RLABL FLD1

C RLABL FLD2

C RLABL RESLT1 70

�2� C RLABL IN22

C RLABL FLD3

C RLABL RESLT2 6
C SETOF 22

�3� C EXIT EXSUB

�4� C EXIT EXSUB2

C 22 "MOVED" DSPLY

OOUTFLE D 01

O 5 "FLD1="

O FLD1 11

O 17 "FLD2="

O FLD2 23

O 31 "RESULT="

O RESLT1 38

O 44 "FLD3="

O RESLT2 50

Figure 8-37. Using EXIT, RLABL, and External Subroutines

8-82 Calculation Specifications

Example Conventions

001000$CONTROL SUBPROGRAM

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. EXSUB.

001300 ENVIRONMENT DIVISION.

001400 DATA DIVISION.

001500 WORKING-STORAGE SECTION.

001520 01 FLD1 EXTERNAL PIC S9(6) COMP-3.

001530 01 FLD2 EXTERNAL PIC S9(6) COMP-3.

001532 01 RESLT1 EXTERNAL PIC S9(7) COMP-3.

001534 01 FLD3 EXTERNAL PIC X(6).

001540 01 IN22 EXTERNAL PIC S9(9) COMP.

001550 88 IND-22-ON VALUE 1.

001600 PROCEDURE DIVISION.

001700 START-IT.

001800 ADD FLD1 FLD2 GIVING RESLT1.

001810 DISPLAY "FLD-1 = " FLD1, "FLD-2 = " FLD2, "RESULT = " RESLT1.

001820 DISPLAY "FLD-3 = " FLD3.

001830 IF RESLT1 IS EQUAL TO 0
001840 SET IND-22-ON TO TRUE.

001850 GOBACK.

Figure 8-38. The External Subroutine EXSUB Written in COBOL

extern char fld3[];

extern char reslt2[];

extern int in22;

exsub2 ()

{

if (in22)
strncpy (reslt2, fld3, 6)

else

strncpy (reslt2, " ", 6);

}

Figure 8-39. The External Subroutine EXSUB2 Written in C

Calculation Specifications 8-83

Example Conventions

SET

This display operation enables the function keys (�f1� through �f8�) on the keyboard. Once
enabled, they can be used with the DSPLY and DSPLM operations to set the function key
indicators. If you have a terminal that supports the function key labeling feature, you can also
use this operation to label the function keys. See Chapter 11, \The RPG Screen Interface
(RSI)", for information about setting function key labels for RSI applications.

To label the function keys, enter an array name in the Factor 1 Field. You must de�ne the
array in a File Extension Speci�cation. Each element of the array de�nes the text to be
displayed on the screen for a function key. The array must contain eight elements, each
sixteen characters long. The �rst eight characters are displayed in the top half of the label
and the last eight characters are displayed in the bottom half of the label.

To use function keys with DSPLY or DSPLM, enter up to three function key indicators in the
Resulting Indicators Field (columns 54-59). To enable all of the function keys, enter F@ in
columns 54-55. Function keys that you do not enable are disabled and, when pressed, cause
this message to be displayed:

Function Key not enabled!

Example

Figure 8-40 shows how to use SET to enable all of the function keys and to de�ne the text for
their labels. The SET operation in line 2 identi�es the array KEYLBL (line 1) that contains
the labels for the function keys and it also enables the function keys (F@). In this particular
example, the function keys are used to prompt a user to select a report to print. The function
key labels are shown below as they appear in the KEYLBL array.

Current Detail

Current Summary

Y-T-D Detail

Y-T-D Summary

Compare Detail

Compare Summary

MonthEndProcess

Year-EndProcess

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� E KEYLBL 1 8 16 FUNC KEY LABELS

�2� C KEYLBL SET F@

Figure 8-40. Using the SET Opertion

8-84 Calculation Specifications

Example Conventions

SETLL

This �le operation sets the lower record limit for sequential read operations in KSAM and
TurboIMAGE demand �les.

To condition the operation, enter indicators in either or both the Control Level Field (columns
7-8) and the Indicators Field (columns 9-17).

Enter a literal or �eld name in the Factor 1 Field that gives the value of the lower limit. The
length of Factor 1 must be the same as the key �eld length for the �le except when you're
using partial keys. You can use partial (shorter) keys with KSAM �les. If you do, they must
be unpacked �elds and you must enter a relational operator in the Result Field (columns
43-45). When you use a partial key, RPG gets the �rst record whose key (leftmost characters)
matches the characters in the Factor 1 Field.

Enter the �le name in the Factor 2 Field. The �le must be a KSAM or TurboIMAGE demand
�le.

You may enter one of the following relational operators in columns 43-45 of the Result Field in
KSAM �les only:

Enter this relational
operator:

To set the lower limit to
record keys that are:

*EQ Equal to Factor 1.

*GT Greater than Factor 1.

*GE or blank Greater than or equal to Factor 1.

You can enter an indicator in the High Sub�eld (columns 54-55) of the Resulting Indicators
Field. It is turned ON if SETLL fails to locate a record speci�ed by the relational operator
(the Equal Sub�eld indicator (columns 58-59) is turned ON by a subsequent READ to the
�le).

If a status array has been speci�ed for a �le, the SETLL operation will return the status of a
DBFIND operation on an image demand �le. This is useful for �nding the length of a chain.
If the information from the DBFIND is needed later in the program, it should be saved in
some other variables prior to any following READ since the status from its DBGET will
replace that from the DBFIND.

Calculation Specifications 8-85

Example Conventions

Example

Figure 8-41 shows how to use the SETLL operation to set the lower record limit for the �le
named IFILE. The lower limit is any key value greater than the value in the �eld LOWLIM.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C LOWLIM SETLLIFILE *GT

Figure 8-41. Using the SETLL Operation

8-86 Calculation Specifications

Example Conventions

SETOF

This indicator and bit setting operation turns OFF the indicators that you enter in the
Resulting Indicators Field (columns 54-59). You can enter from one to three indicators in the
�eld. Do not use the Factor 1 and Factor 2 Fields.

SETON

This indicator and bit setting operation turns ON the indicators that you enter in the
Resulting Indicators Field (columns 54-59). You can enter from one to three indicators in the
�eld. Do not use the Factor 1 or Factor 2 Fields.

Example

Figure 8-42 shows how to use the SETON operation. Indicators 03 and L2 are turned ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C SETON 03L2

Figure 8-42. Using the SETON Operation

Calculation Specifications 8-87

Example Conventions

SORTA

This array operation arranges array elements into ascending or descending sequence in both
alphanumeric and numeric arrays.

Enter the array to be sorted in the Factor 2 Field. To condition the operation, enter
indicators in the Control Level Field (columns 7-8) or the Indicators Field (columns 9-17), or
both. Leave all other columns blank.

If the Table/Array Sequence Field (column 45) of the File Extension Speci�cation for the
array is A or blank, the array is sorted in the ascending order. If the Table/Array Sequence
Field is D, the array is sorted in descending order.

Alphanumeric arrays are sorted using the ASCII collating sequence. You cannot specify an
alternate collating sequence.

Example

Figure 8-43 shows how to use SORTA to sort an array in ascending sequence and in
descending sequence. The array ARSEQ is read from the �le ANYFILE and moved to the
array ARSEQA. ARSEQA is then sorted in ascending sequence in line 1. ARSEQ is then
moved to the array ARSEQD and sorted into descending sequence in line 2.

Table 8-18 gives an example of the elements in each of the arrays after line 2 is executed.

Table 8-18. Elements when using SORTA

Element #: ARSEQ: ARSEQA: ARSEQD:

1 791006 470711 840315

2 470711 530820 830512

3 530820 640218 791006

4 640218 791006 640218

5 830512 830512 530820

6 840315 840315 470711

8-88 Calculation Specifications

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

E ARSEQ 6 6

E ARSEQA 6 6 A

E ARSEQD 6 6 D

IANYFILE NS 01

I 1 36 ARSEQ

C 01 MOVE ARSEQ ARSEQA

�1� C 01 SORTAARSEQA

C 01 MOVE ARSEQ ARSEQD

�2� C 01 SORTAARSEQD

Figure 8-43. Using the SORTA Operation

Calculation Specifications 8-89

Example Conventions

SQRT

This arithmetic operation computes the square root of Factor 2 and places it in the Result
Field. You can enter an array name in the Factor 2 and Result Fields. When you do this, the
square root of each element in the Factor 2 array is placed in the corresponding element of the
Result Field array.

You can use half-adjust with this operation. But do not use Factor 1, and do not enter a
negative value in Factor 2. Make sure the number of decimal positions in the Result Field is
not larger than the size of the Result Field, and do not use resulting indicators.

SUB

This arithmetic operation subtracts Factor 2 from Factor 1 and places the di�erence in the
Result Field. If you subtract two �elds of the same value, you e�ectively set the Result Field
to zero. If Factor 1 is blank, Factor 2 is subtracted from the Result Field and the di�erence is
placed in the Result Field.

SUSP

This system operation immediately suspends execution of the program and returns control
to the parent process (the RPG program must be activated as a child process by the parent
process). Before the program is suspended, these actions are performed:

The user indicators (U1-U8) are posted to the system Job Control Word (JCW).

The Local Data Area (LDA) is posted to the LDAFILE.

If the program uses a WORKSTN �le, the terminal is cleared and removed from block
mode. The � BREAK � key is enabled.

When the RPG program is reactivated by the parent process, the actions listed below take
place and the RPG program resumes execution with the operation following SUSP:

The user indicators (U1-U8) are restored.

The Local Data Area (LDA) is restored.

If the program uses a WORKSTN �le, the terminal is set to block mode and the previous
screen is redisplayed.

To condition the SUSP operation, enter one or more indicators in the Control Level Field
(columns 7-8) and (or) the Indicators Field (columns 9-17). Enter SUSP in the Operation
Field and leave the remaining speci�cation �elds blank.

When a suspended RPG program is resumed, record pointers are not reset. This means
that, if you're processing a �le sequentially, the next record (not the �rst one in the �le) is
presented. For this reason, you may want to use SUSP only in those programs that process
�les randomly. Also, when using �le or record locking, be sure to unlock all �les and records
before executing SUSP. You can unlock them by either forcing a write to the �le or by using
UNLCK.

Suspending an RPG Program

There are two ways to suspend an RPG program. You can suspend the program when it ends
normally or you can suspend the program at any point in the Calculation Speci�cations by
using the SUSP operation.

8-90 Calculation Specifications

Example Conventions

The suspend feature is designed for programs that are called from menu programs and the
PROCMON menu processing system. Suspending saves time when switching back and forth
between a menu program (or PROCMON) and an RPG program because �les remain open
and the RPG program does not have to be reloaded when execution starts again. When an
RPG program ends or is suspended, control returns to the menu or parent process (the menu
program or PROCMON). The program remains suspended until you speci�cally start it again.

To suspend the program when it terminates normally, enter a command to set \suspend
mode", then follow this by a RUN command to start the program. The example below shows
how to do this:

:SETJW RPGSUSP=1 Sets "suspend" mode

:RUN GL45P Starts execution of GL45P

. This line is executed as soon as GL45P ends

.

.

:RUN GL45P Starts execution of GL45P at the beginning

If you want to control when the program is suspended, enter a command to create a process
for the RPG program, then activate the process. The following lines create a process for
the program PAY0680, then activate (execute) the program. The program contains a SUSP
Calculation Speci�cation to suspend the program. Once suspended, the program \sleeps"
until the next ACTIVATE command. When the program resumes, execution begins with the
operation following SUSP.

:CREATE PAYO680 Creates process only; does not execute it

:ACTIVATE PAY0680 Starts RPG program PAY0680

. This line is executed after SUSP encountered

.

.

:ACTIVATE PAY0680 Starts PAY0680 with the operation following SUSP

Calculation Specifications 8-91

Example Conventions

TAG

This branching operation labels the operation immediately following it. This allows you to
skip to the operation from other places in the program.

To use TAG, enter it immediately before the operation to which you want to branch. Enter
a label in the Factor 1 Field. Do not enter a label that is used in another TAG operation. A
TAG label can be the same as a �eld name. Do not use the Factor 2 and Result Fields.

If the TAG label is associated with a total-time operation, enter a control-level indicator
in the Control Level Field (columns 7-8). Do not enter indicators in the Indicators Field
(columns 9-17).

Example

Figure 8-44 shows how to use GOTO and TAG. The TAG operation in line 1 assigns the label
START to the ADD operation that follows it. When the ADD operation turns ON indicator
01, the GOTO operation in line 2 branches to the operation whose label is CALCS (line 4).
This branch is a conditional branch because it occurs only when indicator 01 is turned ON.

The GOTO operations in lines 3 and 5 are unconditional branches, since no indicator is used
with them.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C .

C .

C .

�1� C START TAG

C SUM1 ADD SUM2 TOTAL 102 01

�2� C 01 GOTO CALCS

C MXRA MULT MXRB PRODCT 102

�3� C GOTO START

C .

C .
C .

�4� C CALCS TAG

C .

C (calculations)

C .

�5� C GOTO START

Figure 8-44. Using the GOTO and TAG Operations

8-92 Calculation Specifications

Example Conventions

TESTB

This compare and test operation (TEST Bit) tests the bits in a one-character, alphanumeric
�eld to determine if they are ON or OFF. Enter the one-character �eld to test in the Result
Field. Enter the bit pattern to use for testing in the Factor 2 Field. When TESTB is
executed, the indicators in the Resulting Indicators Field (columns 54-59) are turned ON and
OFF according to the results of the test.

You can enter an alphanumeric literal, a �eld, a table, or an array element in the Factor 2
Field. In all these cases, Factor 2 must be a single character. If you enter a �eld, table, or
array, its ON bits are compared with the Result �eld. If you enter an alphanumeric literal,
you specify the bits to be tested. Enter up to eight digits enclosed in quotation marks. Enter
a digit for each bit position you want to test. Zero (0) stands for the high-order bit and
seven for the low-order bit. You can enter the bit numbers in any order; if you do not enter a
number for a bit, it is not tested. For example, \02" tests bits 0 and 2 to determine whether
they are turned ON. If the bit pattern for the character in the Result Field is 10100000, the
equal resulting indicator is turned ON.

You must enter at least one indicator in the Resulting Indicators Field and you may enter up
to three. You can enter the same indicator in two of the �elds, but not in all three. If all of
the bits in Factor 2 are turned OFF, no resulting indicators are turned on. If the bits speci�ed
for Factor 2 are OFF in the Result Field, the resulting indicator in the High Sub�eld (columns
54-55) is turned ON. If two or more bits do not match in these �elds, the resulting indicator
in the Low Sub�eld (columns 56-57) is turned ON. If all bits that are turned ON in the Factor
2 Field are also turned ON in the Result Field, the indicator in the Equal Sub�eld (columns
58-59) is turned ON.

Example

Figure 8-45 shows how to use the TESTB operation. The operation compares the
alphanumeric literal \0356" to the one-character �eld RESLT. The literal \0356" stands for
the bit pattern 10010110 and indicates that bits 0, 3, 5, and 6 in the Result Field are to be
tested. If the Result Field contains the bit pattern 01101001, indicator 01 is turned ON. If
the Result Field contains 11110000, indicator 02 is turned ON. If the Result Field contains
10010110, indicator 03 is turned ON.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C TESTB"0356" TESLT 1 010203

Figure 8-45. Using the TESTB Operation

Calculation Specifications 8-93

Example Conventions

TESTN

This compare and test operation (TEST Numeric) tests an alphanumeric �eld for numeric
characters. You can use this operation before arithmetic or editing operations to avoid
unpredictable results or program termination. When TESTN is executed, the indicators in the
Resulting Indicators Field (columns 54-59) are turned ON and OFF according to the results of
the test.

If all characters in the Result Field are numeric or blank, the indicator in the High Sub�eld
(columns 54-55) is turned ON. In this case, each character except the low-order character
must contain a digit to be numeric. The low-order character is numeric if it contains A-R, or
+0 (octal 173), or -0 (octal 175.) If the Result Field contains numeric characters and leading
blanks, the indicator in the Low Sub�eld (columns 56-57) is turned ON. (Do not enter an
indicator in this sub�eld when you are testing a �eld one character long, because the �eld
must contain a character and a leading blank for the test to be valid.) If the �eld contains
blanks only, the indicator in the Equal Sub�eld (columns 58-59) is turned ON.

You can use the same indicator to test for more that one condition. The indicator is turned
ON when any of the conditions are met.

TESTZ

This compare and test operation (TEST Zone) tests the zone bits of the high-order character
of an alphanumeric �eld, and sets the indicators in the Resulting Indicators Field (columns
54-59) accordingly.

Enter the �eld to test in the Result Field. Enter an indicator in the High Sub�eld (columns
54-55) to turn ON that indicator when the character has a 12-zone (the characters &, +0, or
A-I). Enter an indicator in the Low Sub�eld (columns 56-57) to turn ON that indicator when
the character has an 11-zone (the characters -, -0, and J-R). Enter an indicator in the Equal
Sub�eld (columns 58-59) to turn ON that indicator when the character has some other bit
pattern. Do not use the Factors 1 and 2 Fields.

8-94 Calculation Specifications

Example Conventions

TIME

This system operation returns the time of day (system) and, optionally the current date.
TIME uses the system intrinsics CLOCK and optionally, CALENDAR.

To use TIME, leave the Factor 1 and Factor 2 Fields blank. Enter the name of the numeric
�eld where you want to save the time (and optionally, the date) in the Result Field. The
length of the �eld that you enter determines whether the date is also returned. The �eld must
be either 6 or 12 digits long; 6 for returning the time and 12 for returning the time and date.
Specify that the Result Field has zero decimal positions. The following lines show the time
and date values that are placed in the Result Field.

This value is placed
in the Result Field:

When:

hhmmss The Result Field length is 6.

The time is based on a 24-hour clock where
hh represents hours, mm represents minutes,
and ss represents seconds.

hhmmssmmddyy The Result Field length is 12 and the
Inverted Print Field (column 21) of the
Header Speci�cation is blank.

The date is represented in Domestic Format
where mm is the month, dd is the day, and yy

is the year.

hhmmssddmmyy The Result Field length is 12 and the
Inverted Print Field (column 21) of the
Header Speci�cation is I, J, or D.

The date is represented in Foreign Format
where mm is the month, dd is the day, and yy

is the year.

Leave the Half Adjust and Resulting Indicators Fields blank.

When TIME is executed, the date is retrieved dynamically from the system. It is not taken
from the static UDATE �eld (which can be di�erent from system date). For example, if a
program begins shortly before midnight on 12/31/88, UDATE is initialized to 123188 and
remains unchanged for the duration of the program. If the program runs past midnight, the
TIME operation must be used to obtain 010189.

Calculation Specifications 8-95

Example Conventions

Example

Figure 8-46 shows the two ways to use TIME. Line 1 returns the time in the �eld TIMEA.
Line 2 returns the time and date in the �eld TIMEB.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C TIME TIMEA 60 TIME OF DAY

C

�2� C TIME TIMEB 120 TIME AND DATE

Figure 8-46. Using the TIME Operation

8-96 Calculation Specifications

Example Conventions

TIME2

This system operation extracts all or part of a formatted system date and time string and
stores it in a �eld in the program. TIME2 uses the DATELINE and CALENDAR intrinsics.

To use TIME2, leave the Factor 1 Field blank and, in the Factor 2 Field, enter the position
where extraction begins. You can use a numeric literal or �eld for Factor 2. If Factor 2 is a
numeric literal, it must be an unsigned number from 1 to 40 (entered in columns 33-34). If
Factor 2 is a numeric �eld, it must be less than 5 digits and contain no decimal positions.
Enter the name of the alphanumeric �eld where you want to save the returned date and
time in the Result Field. The length of the Result Field determines how many characters
are extracted. It can contain a maximum of 40 characters (the sum of the Result and Field
Length Fields must not exceed 40). Leave the Decimal Positions, Half Adjust, and Resulting
Indicators Fields blank.

The 40-character system date and time string has the following format (the starting positions
of sections of the string are also shown):

day, mon dd, year, hh:mm xM JULIAN:nnn

^ ^ ^ ^ ^ ^ ^

| | | | | | |

1 6 10 14 20 26 38 (starting positions)

The day is the day of the week; mon is the month; dd is the day number; year is the 4-digit
year; hh is hours; mm is minutes; xM is AM or PM; and nnn is the day of the year in Julian
format.

Example

Figure 8-46 shows several TIME2 operations. Given the date 11/7/88 and the time 9:25 AM,
the extracted results are:

NNNNNNNNNNN
1 MON, NOV 7,1988, 9:25 AM JULIAN:042

NNNNNNNNNNN
2 MON, NOV 7,1988, 9:25 AM

NNNNNNNNNNN
3 NOV 17, 1988

NNNNNNNNNNN
4 1988

NNNNNNNNNNN
5 9:25 AM

NNNNNNNNNNN
6 042

Figure 8-46. Using the TIME2 Operation

Calculation Specifications 8-97

Example Conventions

UNLCK

See the LOCK operation.

XFOOT

This arithmetic operation sums all elements of a numeric array and places the sum in the
Result Field. Factor 2 names the array to sum and it must be numeric. The Result Field
can be a �eld or an array element. If it is an element of the array entered in Factor 2, the
element's value (before the XFOOT operation) is used during summing. Do not use the
Factor 1 �eld. You can half adjust the total in the Result Field. When you do this, rounding
is done after all elements are added.

Z-ADD

This arithmetic operation (Zero and ADD) replaces the Result Field by Factor 2. Factor 1 is
not used. High-order truncation occurs if the Result Field length is less than the Factor 2
length.

Z-SUB

This arithmetic operation (Zero and SUBtract) replaces the Result Field by the negative
representation (complement) of Factor 2. High-order truncation occurs if the Result Field
length is less than the Factor 2 length.

8-98 Calculation Specifications

Example Conventions

Factor 2 (Columns 33-42)

The Factor 2 �eld names an operand to use in the operation. What you enter in this �eld
depends on the operation you're using (see the description for the operation in this chapter).

Columns 33-42 Description

The name of a �eld, table, array,
array element, or �le.

The �eld containing the data or (if this
is a �le) the name of the �le.

Subroutine name. The internal subroutine to execute.

A label. The label for a TAG, ENDSR, or GOTO
operation.

An alphanumeric, numeric
literal, or a �gurative constant.

The actual data to be used.

Blank. The operation does not use an operand
in this �eld.

Field, Table, Array, Subroutine, and Label Names

You must de�ne �eld names that you enter in this �eld somewhere in the program. Some �eld
names, however, are prede�ned; you can use them without de�ning them. These �elds are
UDATE, UMONTH, UDAY, UYEAR, PAGE, PAGE1-PAGE7, and *ERROR.

Alphanumeric Literals

Alphanumeric literals are constants that consist of ASCII characters. Alphanumeric literals
can contain up to eight characters including blanks. Do not use alphanumeric literals in
arithmetic operations.

When entering alphanumeric literals, enclose them in quotation marks. For instance, to use
the literal ALPHALIT, enter "ALPHALIT". To include a quotation mark in the literal itself,
enter two quotation marks. For example, to enter the literal NAME, enter """NAME""".

If you want to use apostrophes instead of quotation marks to enclose alphanumeric literals,
enter the apostrophe in the QUOTE= parameter of the $CONTROL compiler subsystem
command.

Numeric Literals

A numeric literal is the actual number that is used in the operation. Use numeric literals the
same way you use �eld names. Numeric literals can contain up to ten characters, including
a decimal point and a leading plus or minus sign (unsigned literals are treated as positive
numbers). For example, 123.68 is a valid numeric literal.

Do not embed blanks in numeric literals and do not enclose them in quotation marks.

Calculation Specifications 8-99

Example Conventions

Figurative Constants

Figurative constants are prede�ned names that, when used, produce one or more identical
characters. The �gurative constants *BLANK and *BLANKS produce one or more blanks
and are used with alphanumeric �elds only. *ZERO and *ZEROS produce one or more zeros
and are used with either numeric or alphanumeric �elds. The number of blanks or zeros
produced depends on the size of the Result Field.

You can use �gurative constants only with the operations CHAIN, COMP, LOKUP, MOVE,
MOVEL, and MOVEA.

Example

Figure 8-47 gives four examples of how to use the Factor 2 Field. The operations starting in
line 1 use alphanumeric literals. The ADD operation in line 2 uses a numeric literal and the
operation in line 3 uses a �eld name. Finally, the operations starting in line 4 use �gurative
constants.

1 2 3 4 5 6 7
678901234567890123456789012345678901234567890123456789012345678901234

�1� C MOVE "AFRES" SERV 10

C MOVE "2001" TITLE 15

C .

C .

�2� C DATAX ADD 100.50 RESULT 82

C .

C .

�3� C 10 MULT ALPHA PROD 102

C .

C .

�4� C MOVE *ZEROS RESULT

C MOVE *BLANK TITLE

C MOVE *ZEROS QUOTA 64

C MOVE *BLANKS SERV

Figure 8-47. Using the Factor 2 Field (columns 33-42)

8-100 Calculation Specifications

Example Conventions

Result
(Columns 43-48)

The Result Field identi�es the �eld that contains the result of the operation. You may use a
�eld name that is not de�ned elsewhere in the program (if you do this, enter the length of the
�eld in the Field Length Field (columns 49-51).

Table 8-19. The Result Field

Columns Value Description

43-48: Name of a �eld, table,
array, or indexed array

element

The area where the result is stored.

blank The Result Field is not used by this operation.

43-45: *EQ The record that sets the lower limit (SETLL) for sequential read
operations must be equal to the value in the Factor 1 Field.

*GT The record that sets the lower limit (SETLL) for sequential read
operations must be greater than the value in the Factor 1 Field.

*GE The record that sets the lower limit (SETLL) for sequential read
operations must be greater than or equal to the value in the
Factor 1 Field.

The programmer is responsible for making sure the Result Field is large enough to hold the
result of the operation. If an alphanumeric Result Field is too small, the �eld is truncated on
the left. If the Result Field is used in arithmetic or numeric compare operations, or if it is an
Output Speci�cation �eld that is edited or zero suppressed, it must be numeric.

For arithmetic operations, the Result Field will over
ow and data will be lost if the Result
Field is not large enough to hold the result of the operation. With full numeric over
ow
checking enabled (through the $CONTROL OVFLOCHK compiler command) an arithmetic
over
ow initiates the over
ow error trap. You can control how your program handles the
over
ow trap with entries in the Header Speci�cation, columns 55 and 65. If you disable full
over
ow checking for some calculations with the $CONTROL NOOVFLOCHK compiler
command (or if you haven't enabled full checking), RPG may left-truncate the calculated
value instead of initiating the over
ow error trap. This happens when either Factor 1 or
Factor 2 is the same size or larger than the calculated value of the operation, but the Result
Field is too small to hold the value. If the size of the calculated value is larger than the size of
each of Factor 1, Factor 2, and the Result Field, then RPG initiates the over
ow error trap,
regardless of the setting of OVFLOCHK.

Calculation Specifications 8-101

Example Conventions

Field Length
(Columns 49-51)

The �eld length �eld speci�es the number of characters in the Result Field. This �eld is
optional when the Result Field is de�ned elsewhere in the program. (If it is already de�ned,
the number that you enter must be the same as the original de�nition.)

Table 8-20. The Field Length Field

Columns 49-51 Description

1-256
(right-justi�ed,
leading zeros are not
required)

The length of the alphanumeric Result Field.

1-15
(right-justi�ed,
leading zeros are not
required)

The length of the numeric Result Field.

blank This is an alphanumeric or numeric �eld,
described elsewhere in the program.

Make sure that the Result Field is long enough for the largest possible result. If it is too
small, excess signi�cant digits are truncated (or for numeric �elds, the over
ow trap may be
initiated). If you specify rounding in the Half Adjust Field (column 53), the number that you
enter is the length of the result after rounding.

8-102 Calculation Specifications

Example Conventions

Decimal Positions
(Column 52)

The decimal positions �eld speci�es the number of decimal positions in the Result Field. This
�eld is optional when the Result Field is de�ned elsewhere in the program. (If it is already
de�ned, the number that you enter must be the same as the original de�nition.)

Table 8-21. The Decimal Positions Field

Column 52 Description

0-9 The number of decimal positions in the Result Field.

blank This is an alphanumeric or a numeric �eld de�ned
elsewhere in the program.

If the �eld has no decimal positions, enter 0. The number of decimal positions can be larger
or smaller than the number of decimals produced by the operation, but must not be greater
than the length of the Result Field. Data is aligned by decimal point when placed in the
Result Field. When the number of decimals is less than the result of the operation, low-order
digits are truncated. When the number of decimals is greater than the result of the operation,
zeros �ll the excess decimal positions.

Calculation Specifications 8-103

Example Conventions

Half Adjust
(Column 53)

The half adjust �eld rounds numeric data when it is placed in the Result Field. Do not half
adjust alphanumeric �elds or use half adjusting with the MVR operation or with a DIV
operation followed by an MVR operation.

Table 8-22. The Half Adjust Field

Column 53 Description

H Half adjust data.

blank Do not half adjust data.

Half adjusting is only performed when the Result Field has fewer decimal positions that the
result of the operation. Half adjusting is performed by adding 5 (or -5 for negative numbers)
to the most signi�cant digit that will be truncated. The sum is then truncated to �t in the
Result Field.

Example

Figure 8-48 shows how to half adjust the result of an ADD operation. The sum of 50 and
the number in DATAN is rounded to �t into the �eld RESULT which contains 2 decimal
positions. Assuming that the sum is 325.5769, 5 is added to the digit 6 (most signi�cant
digit to be truncated). The sum becomes 325.5819. This rounded sum is stored in the �eld
RESULT as 325.58.

1 2 3 4 5 6 7
678901234567890123456789012345678901234567890123456789012345678901234

C 50 ADD DATAN RESULT 52H

Figure 8-48. Using the Field Length and Half Adjust Fields

8-104 Calculation Specifications

Example Conventions

Resulting Indicators
(Columns 54-59)

The resulting indicators �eld lets you set one to three indicators to reveal the outcome of the
operation. At a later point in the program, you can then use the indicators to direct program
execution.

Column Value Description

High Sub�eld (54-55): 01-99, F0-F9, H0-H9,
KA-KN, KP-KY, L0-L9,
LR, MR, OA-OG, OV,

U1-U8 1P

The indicator that is turned ON when
a high condition exists (see the
operation for speci�c information).

blank Do not test data in this �eld.

Low Sub�eld (56-57): 01-99, F0-F9, H0-H9,
KA-KN, KP-KY, L0-L9,
LR, MR, OA-OG, OV,

U1-U8 1P

The indicator that is turned ON when
a low condition exists (see the
operation for speci�c information).

blank Do not test data in this �eld.

Equal Sub�eld (58-59): 01-99, F0-F9, H0-H9,
KA-KN, KP-KY, L0-L9,
LR, MR, OA-OG, OV,

U1-U8 1P

The indicator that is turned ON when
a equal condition exists (see the
operation for speci�c information).

blank Do not test data in this �eld.

When you use an indicator in this �eld, be sure you understand how it is used in the RPG
logic cycle (see the HP RPG Programmer's Guide).

Indicators that you enter in this �eld are turned OFF before the operation, and are turned
ON only when the condition (indicated by the sub�eld in which you enter it) is satis�ed. If
you use the same indicator with consecutive operations, the last operation determines the
indicator setting. If you enter a general indicator, you can use it later to condition calculation
or output operations. If you enter a halt indicator, you can use it to suppress output
operations or to halt the program.

Calculation Specifications 8-105

Example Conventions

High Subfield
(Columns 54-55)

An indicator entered in the high sub�eld is turned ON:

When an arithmetic operation produced a positive (greater than zero) Result Field.

In a COMP operation, when Factor 1 is greater than Factor 2.

In a LOKUP operation, when the Factor 2 table or array element is greater than Factor 1.

During a CHAIN operation, when a record was not found.

When a TESTB operation reveals that the bits in a �eld are zero.

When a TESTZ operation reveals that the zone bits of a �eld are positive, representing the
ASCII characters &, A-I.

When a TESTN operation reveals that an alphanumeric �eld contains ASCII digits. (The
low-order bits can still represent A-R.)

When a SETON or SETOF operation uses the indicator.

Low Subfield
(Columns 56-57)

An indicator entered in the low sub�eld is turned ON:

In arithmetic operations, when the Result Field is negative.

During the COMP operation, when Factor 1 is less than Factor 2.

During the LOKUP operation, when the Factor 2 table or array element is less than Factor
1.

When a TESTB operation reveals that the bits in a �eld are mixed; some ON and some
OFF. (The operation is not meaningful if you test a single bit.)

When a TESTZ operation reveals that the zone bits in a �eld are all negative, representing
the ASCII characters minus (-) and J-R.

When a TESTN operation reveals that an alphanumeric �eld (that must be at least two
characters long) contains ASCII digits and leading blanks.

For a TurboIMAGE chaining �le (Input/Output Mode Field (column 67) in the File
Description Speci�cation Continuation line is C or R), when end-of-chain is encountered.

When a SETON or SETOF operation uses the indicator.

8-106 Calculation Specifications

Example Conventions

Equal Subfield
(Columns 58-59)

An indicator entered in the equal sub�eld is turned ON:

In arithmetic operations, when the Result Field is zero.

During the COMP operation, when Factor 1 equals Factor 2.

During the LOKUP operation, when the Factor 2 table or array element equals Factor 1.

When a TESTB operation reveals that the bits in a �eld are all ON.

When a TESTZ operation reveals that the zone bits in a �eld are not all positive or all
negative; they represent characters other than &, A-I, -, or J-R.

When a TESTN operation reveals that an alphanumeric �eld contains all blanks.

When a READ operation for a demand �le encountered end-of-�le.

When a SETON or SETOF operation uses the indicator.

Example

Figure 8-49 shows how to set a resulting indicator and how to use it in subsequent Calculation
Speci�cations. The MULT operation in line 1 turns indicator 20 ON when COST is negative.
The ZSUB operation in line 2 is executed only when COST is negative (indicator 20 is ON). If
the result (TCOST) of the SUB operation in line 3 is negative, indicator 20 is turned ON and
it is turned OFF if the result is positive or zero. (At the beginning of the next program cycle,
indicator 20 is turned OFF automatically.)

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C MILES MULT .48 COST 102 20

C
�2� C 20 Z-SUBCOST COST

C

�3� C COST SUB .05 TCOST 102 20

Figure 8-49. Using Resulting Indicators

Calculation Specifications 8-107

Example Conventions

Comments
(Columns 60-74)

Enter comments of any kind in the comments �eld.

Program Name (Columns 75-80)

The program name �eld contains the program name. The format for this �eld is discussed in
Chapter 2.

The Calculation Specification Default Summary

If you leave the optional �elds of the Calculation Speci�cations blank, the defaults shown in
Table 8-18 apply:

Table 8-23. Calculation Specification Defaults

Columns Field Default Values

1-5 Sequence Number No sequence number applies.

7-8 Control Level The operation is performed at detail time.

9-17 Indicators Operation done for every record if the Control Level Field
does not contain L0-L9 or SR.

43-48 Result No result applies.

49-51 Field Length This is an alphanumeric �eld, or a numeric �eld described
elsewhere in the program.

52 Decimal Positions This is an alphanumeric �eld, or a numeric �eld described
elsewhere in the program.

53 Half Adjust Do not half adjust data.

54-59 Resulting Indicators No indicator assigned.

60-74 Comments No comments made.

75-80 Program Name None.

8-108 Calculation Specifications

9

Output Specifications

For each output, update, and combined �le in a program, you must enter an Output
Speci�cation.

The Output Speci�cation describes:

The records to be written to the output �le. (Use the Record Description Fields, columns
7-31, to enter record information.)

The formats and locations of �elds in the output records. (Use the Field Description Fields,
columns 23-70, to enter �eld information.)

The Output Speci�cation is identi�ed by an O in column 6:

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

O

Figure 9-1. The Output Specification

Output Specifications 9-1

Example Conventions

The Output Specification Fields

The �elds you can use in the Output Speci�cation are described in the sections which
follow in this chapter. Each �eld has a unique name and occupies speci�c columns in the
speci�cation.

Sequence Number (Columns 1-5)

The sequence number �eld contains the source record sequence number, described in
Chapter 2.

Specification Type (Column 6)

The speci�cation type �eld contains an O to identify this as an Output Speci�cation.

Record Description Fields (Columns 7-31)

The record description �elds describe the record types contained in the output, update, or
combined �le.

A good programming practice is to group all Output Speci�cations for a �le together. De�ne
the �rst record type by entering the appropriate Record Description Fields and leaving
columns 32-70 blank. You may follow this line by one or more AND or OR lines (see the
AND/OR Field, columns 14-16). Next, enter one or more speci�cations that describe the
�elds for the record type (see the Field Description Fields, columns 32-70). Repeat this
speci�cation sequence until all record types are de�ned.

Example

Figure 9-2 shows three output records together with their �eld descriptions. Line 1 contains
the Record Description Fields for the �le OUT. Lines 3 and 6 show the Record Description
Fields for two records in the �le OUTDIR. Lines 2, 4-5, and 7 contain the Field Description
Fields for these records.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� OOUT H

�2� O 60 "REPORT - 1988"
O .

O .

�3� OOUTDIR DADD 07

�4� O FIELDA 5

�5� O FIELDB 10

�6� O TADD L1

�7� O FIELDC 15

Figure 9-2. Entering Output Specification for Two Files

9-2 Output Specifications

Example Conventions

File Name (Columns 7-14)

The �le name �eld names the �le to which this and subsequent Output Speci�cations
apply. Enter the name of an output, combined, or update �le de�ned by a File Description
Speci�cation.

Columns 7-14 Description

Valid �le name. (File names contain from one to
eight characters, beginning with a letter. The
remaining characters can be letters or digits.
Embedded blanks are not allowed.)

The name of the output, update, or combined �le
being described by this Output Speci�cation.

If you enter several Record Description lines for the same �le, you only need to enter the �le
name on the �rst one. The �le name remains in e�ect until a new name is encountered.

If the �le is an output �le, RPG creates it with the characteristics shown in Table 9-1. You
can override some of these characteristics using the MPE/iX FILE command.

Table 9-1. Output File Characteristics

FOPEN

Formal File Designator: File name or DSNAME.

Foptions:

Domain: The �le is opened as an OLD (11) �le. If this fails, it is opened as a NEW
�le.

ASCII/Binary: ASCII (1).

Default File Designator: Same as formal designator (000).

Record Format: Fixed length (00) or variable length (01).

Carriage Control: NOCCTL (0) if no carriage-control used, CCTL (1) if carriage-control
used.

Label Option: Standard label processing (0).

Disallow File Equation: Allow (0).

Aoptions:

Access Type: Input �les: 0 Output �les: Regular: 1 Chain: 2

Append Only: 3 Combined: 4 Update: 5

Output Specifications 9-3

Example Conventions

Table 9-1. Output File Characteristics (Continued)

Multirecord Access: No (0).

Dynamic Locking: No (0) if no LOCK File Description Continuation line; otherwise, yes (1).

Exclusive: Default (00) if no LOCK File Description Continuation line; otherwise,
share (11).

Inhibit Bu�ering: No (0).

Record Size: As speci�ed in columns 24-27 of the File Description Speci�cation.
Default: 80 bytes.

Device Name: As speci�ed in columns 40-46 of the File Description Speci�cation.
Default: DISK.

Forms Message: If speci�ed, RPG points to a bu�er containing blanks, causing the
standard alignment line to print.

User labels: As speci�ed in column 53 of the File Description Speci�cation. Default:
none.

Blocking Factor: As speci�ed in columns 20-23 and 24-27 of the File Description Speci�c
Default: 1.

Number of Bu�ers: Default (2).

File Size: Default (1023).

Number of Extents: As speci�ed in columns 68-69 of the File Description Speci�cation.
Default: 8.

Initial Allocation of Extents: 1.

File Code: 0.

FCLOSE

Disposition: No change.

Security Code: Normal (0)

9-4 Output Specifications

Example Conventions

AND/OR (Columns 14-16)

The AND/OR �eld lets you specify additional indicators that determine whether the output
record is written. (Without using AND and OR lines, the maximum number of indicators that
you can use is 3.) You cannot use this �eld to condition individual �elds in the output record.

Columns 14-16 Description

AND Identi�es this Input Speci�cation as an AND line.

OR Identi�es this Input Speci�cation as an OR line.

You can intermix AND and OR lines. (The total number of AND and OR lines that you can
use for each output record is 20.) Each OR line begins a new decision path (see the example
which follows).

When you use AND lines, all indicators that you enter in the Output Indicators Field
(columns 23-31) must be satis�ed before the record is written. When entering AND lines,
follow these steps:

1. Make sure that the previous Output Speci�cation contains three indicators in the Output
Indicators Field (columns 23-31).

2. Enter AND in columns 14-16 and up to three indicators in the Output Indicators Field.
Leave columns 17-22 blank.

If this AND line is followed by other AND lines and you want to use Fetch Over
ow or
Release (the Fetch Over
ow/Release Field, column 16) with any of them, you must enter F
or R on this line only (the �rst AND line).

3. Continue entering AND lines (or OR lines) until you've entered all of the conditions
(indicators) for writing the record.

When OR lines are executed, the record is written when all of the indicators in the Output
Indicators Field (columns 23-31) are satis�ed. When the OR line is followed by one or more
AND lines, the record is also written when all of the indicators in the AND lines are satis�ed.
When you enter OR lines, follow these steps:

1. Make sure that if the previous speci�cation is the �rst Record Description line, there is at
least one indicator in the Output Indicators Field (columns 23-31).

2. Enter OR in columns 14-15 and up to three indicators in the Output Indicators Field.

If you want to use di�erent spacing or skipping for records that satisfy the OR line
indicators, enter the appropriate values in the Space Field (columns 17-18) or the Skip
Field (columns 19-22), or both. If you leave these �elds blank, the spacing and skipping
speci�ed for the previous speci�cation is used.

If you want to use Fetch Over
ow or Release (the Fetch Over
ow/Release Field, column
16), enter F or R on this line but not on subsequent AND lines, if there are any.

3. Continue entering OR lines (or AND lines) until you're entered all of the conditions
(indicators) for writing the record.

Output Specifications 9-5

Example Conventions

Example

Figure 9-3 shows how to use AND and OR lines to condition an output record. The record
beginning in line 5 is written when:

Indicators 01, 02, and 03 are ON (line 1).

or

Indicators 06, 07, 08, and 09 are ON (lines 2, 3).

or

Indicators 10 and 11 are ON (line 4).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� O T 2 01 02 03

�2� O OR 06 07 08

�3� O AND 09

�4� O OR 10 11

�5� O PAYTOT 10

Figure 9-3. Using AND or OR Lines to Condition Record Output

9-6 Output Specifications

Example Conventions

Type (Column 15)

The type �eld speci�es when the record is written in the logic cycle. You can enter one of the
following four values:

Column 15 Description

D Detail record.

E Exception record.

H Heading record.

T Total record.

Within each of the above record types, records are written in the same order as their
speci�cations are entered. You can enter all records together that have the same type (for
example, you can place all heading records for all �les together), or you can enter records for
each type consecutively within each �le (for example, you can enter heading records, then
detail records, then total records, and �nally exception records for a particular �le.)

D

Detail records are written at detail time in the logic cycle. They contain the most basic level
of information of all the record types. Usually, this information is closely related to input
data. It is either read directly from the input records or is calculated using the input records.

E

Exception records are written at detail or total time at the point at which an EXCPT
Calculation Speci�cation operation is encountered. (The records are written at total time
when conditioned by a control-level indicator.) Use exception records for output that occurs
infrequently, under unusual circumstances, or when the number of output records varies
during each logic cycle.

Do not condition exception records for primary and secondary update �les with control-level
indicators or with the last-record indicator. If you do, the results are unpredictable.

H

Heading records are written during pre-cycle processing in the logic cycle. (To print heading
records at other times in the logic cycle, condition the output record with an over
ow
indicator.) Heading records contain data that generally remains constant, such as report titles
and column headings. Heading records can contain a page number which is incremented
automatically.

T

Total records are written at total time in the logic cycle. They typically contain totals
accumulated from one or more detail records.

Output Specifications 9-7

Example Conventions

Example

Figure 9-4 shows heading, detail, and total records as they appear on a report. The �rst two
lines are heading records containing the date, a report title, a page number, and column
headings. The detail records are the unshaded lines containing the division, department,
name, and days absent for each employee. Total records are shaded and start with
DEPARTMENT and DIVISION. They list the total number of days employees were absent
within each department and division.

DATE 09/15/88 ABSENTEE REPORT PAGE NO. 1

DIVISION DEPARTMENT EMPLOYEE DAYS OUT

01 11 BABCOCK, J. D. 2

01 11 JONES, F. D. 1

01 11 MASON, M. M. 1

DEPARTMENT 11 TOTALS 4

01 12 MOONEY, J. P. 3

01 12 POMEROY, G. 2

01 12 RASKIN, K. T. 1

DEPARTMENT 12 TOTALS 6

. . . .

. . . .

. . . .

DEPARTMENT 20 TOTALS 10

DIVISION 1 TOTALS 53

Figure 9-4. Output Record Types As They Appear on a Report

9-8 Output Specifications

Example Conventions

Record Addition/Deletion (Columns 16-18)

The record addition/deletion �eld speci�es whether the record is to be added to the output
�le (ADD) or deleted from it (DEL). Use this �eld only with output and update disk �les.

Columns 16-18 Description

ADD Add this record to an update or output �le.

DEL Delete this record from an update �le. Use DEL with KSAM and
TurboIMAGE �les only.

blank For sequential or KSAM �les, write this record to the beginning of the �le;
for TurboIMAGE �les, insert this record in the �le; for update �les, update
the current record.

ADD

When you use ADD with MPE sequential and KSAM �les, you must enter ADD on each
record in the �le. You must also enter A in the File Addition Field (column 66) of the File
Description Speci�cation for the �le. (If you omit A for KSAM �les, records are added to the
�le in primary key sequence.)

New records are appended to MPE sequential �les. They are added to KSAM and
TurboIMAGE �les in primary key sequence.

Fetch Overflow/Release (Column 16)

The fetch over
ow/release �eld lets you print over
ow lines ahead of pending detail and total
lines when the over
ow line is reached (Fetch Over
ow). It also lets you end the processing of
a �le before the program terminates normally (Release File).

Column 16 Description

blank Do not write over
ow records at this point, and do not release the �le.

Fetch Over
ow:

F Write over
ow records at this point (by fetching the RPG Over
ow
Routine).

Release File:

R Release the �le (close, or close and reopen the �le, as shown in Table 9-1).

Output Specifications 9-9

Example Conventions

F (Fetch Over
ow)

When the over
ow line is reached, this option immediately suspends the printing of pending
detail and total records for the �le until all over
ow records (those conditioned by over
ow
indicators) are printed. Use this �eld only for print �les and �les whose output is controlled
by Line Counter Speci�cations and that contain an indicator in the Over
ow Indicator Field
(columns 33-34) of the File Description Speci�cation.

Normally, when the over
ow line is reached, pending detail and total records for the �le
are printed and over
ow processing begins. Over
ow records are printed and the paper
is advanced to top-of-form. When you use this option, the over
ow routine is \fetched"
immediately; pending detail and total lines are printed after the over
ow records. RPG does
not automatically advance the paper to top-of-form after printing the over
ow lines. You
must specify this in the Skip Field (columns 21-22) of a speci�cation that is conditioned by an
over
ow indicator.

If you're using OR lines and want to use Fetch Over
ow in each of them, enter F in each OR
line.

See the description of the RPG logic cycle in the HP RPG Programmer's Guide for details
about Fetch Over
ow processing.

R (Release File)

The release �le option lets you release the �le associated with this record after the record is
written. If the record has no �elds, the �le is released without writing a blank line (or record).
This option is similar to the CLOSE Calculation Speci�cation operation.

The Release File option works di�erently for certain �le types. Table 9-2 describes the actions
that are performed for them.

Table 9-2. Actions Performed - Release File

Type of File Actions

Print �le: Any update, combined, or
output �le whose File Organization
(column 32 of the File Description
Speci�cation) is not I, S, or M; and that
uses space and/or skip entries (columns
17-22) or that is opened at run time with
the CCTL (Carriage Control) option of
the MPE FILE command; and whose
Record Addition/Deletion Field (columns
16-18) is blank.

The �le is closed and then reopened (the output spool�le
is released for printing and a new one is created).

If a Print �le is redirected to disk with an MPE �le
equation (or with DISK in the Device Class Name Field,
columns 40-46, of the File Description Speci�cation), the
disk �le is closed and then reopened in append mode. All
output is concatenated into one disk �le. Create the disk
�le using the CCTL (Carriage Control) option of the
operating system FILE command. This enables you to
print the �le at a later time (using FCOPY, for example)
with forms control.

WORKSTN �le. The WORKSTN �le is closed and not reopened. This
releases the terminal from block mode operation, allowing
the program to continue terminal I/O in non-block mode.
(This operation is equivalent to using the Calculation
Speci�cation CLOSE operation.)

Any other �le. The �le is closed and not reopened. This operation is the
same as the Calculation Speci�cation CLOSE operation.

9-10 Output Specifications

Example Conventions

Space (Columns 17-18)

The space �eld lets you space up to three lines before and after printing the record. Use this
�eld only for printer or terminal records or records controlled by Line Counter Speci�cations.

Column Description

Before (17):

blank Do not space a line before printing. If this is a terminal �le, or if the
Skip Field (columns 19-22) is blank, single space before printing.

0 Do not space a line before printing. If this is terminal �le, single space
before printing.

1 Space one line.

2 Space two lines.

3 Space three lines.

After (18):

blank Do not space a line after printing. If the Space and Skip Fields (columns
17-22) are blank, single space after printing each record.

0 Do not space a line after printing.

1 Space one line.

2 Space two lines.

3 Space three lines.

When you space beyond the over
ow line, normal over
ow processing takes place (see the
previous �eld, Fetch Over
ow/Release (column 16) for a description of over
ow processing).

The Skip Field (columns 19-22) lets you space to a certain line number or printer carriage
control channel. When you use this �eld and the Skip Field in the same speci�cation, spacing
is performed in this order:

1. Skip before printing.

2. Space before printing.

3. Skip after printing.

4. Space after printing.

Output Specifications 9-11

Example Conventions

If you use this �eld and the Skip Field (columns 19-22) for a �le, the �le is assumed to
be a print �le and is written with forms control information (such as auto page eject).
Additionally, to be considered a print �le, the �le must be an output, update, or combined �le
whose File Organization Field (column 32 of the File Description Speci�cation) is not Indexed
(I, S, or M) and that is blank in the AND/OR Field (columns 14-16).

The following actions may take place for print �les:

The �le is opened using the CCTL (Carriage Control) option. (See the CCTL option of the
MPE FILE command.)

Forms positioning is performed if requested by column 41 of the Header Speci�cation.

Post spacing and auto page eject directives are set in the output spool�le.

Initial page eject is performed unless suppressed by columns 41-47 of the Header
Speci�cation.

Carriage Control (CCTL) directives are added to the output records.

Line counting and channel operations are performed according to the Carriage Control Field
(column 53) of the Header Speci�cation.

Spacing and skipping operations are performed according this �eld and the Skip Field
(columns 19-22).

Release �le operations are performed if you enter R in the Fetch/Over
ow Release Field
(column 16): close the output spool�le and then open a new one to receive additional
output. (Even if a �le does not meet the criteria for print �les, you can perform these
release �le operations by entering an MPE FILE command with the CCTL option.)

9-12 Output Specifications

Example Conventions

Skip (Columns 19-22)

The skip �eld lets you skip to a particular line or logical printer channel before and after
printing the record.

Column Description

Before (19-20):

01-12 Skip to this line number before printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

Skip to this Channel Number before printing when the Carriage Control
Type Field (column 53) of the Header Speci�cation is blank.

13-99 Skip to this line number before printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

A0-A9 Skip to this line (100-109) before printing when the Carriage Control
Type Field (column 53) of the Header Speci�cation contains L or 1.

B0-B2 Skip to this line (110-112) before printing when the Carriage Control
Type Field (column 53) of the Header Speci�cation contains L or 1.

blank Do not skip lines.

After (21-22):

01-12 Skip to this line number after printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

Skip to this Channel Number after printing when the Carriage Control
Type Field (column 53) of the Header Speci�cation is blank.

13-99 Skip to this line number after printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

A0-A9 Skip to this line (100-109) after printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

B0-B2 Skip to this line (110-112) after printing when the Carriage Control Type
Field (column 53) of the Header Speci�cation contains L or 1.

blank Do not skip lines.

When skipping to printer channels, you should use a Line Counter Speci�cation to de�ne
those channels. If you do not, the line number positions for the channels are computed as
follows: line number = channel number times 5 (Channel 1 is always line 6). For instance, if
you enter 10 in this �eld, the printer paper is advanced to line 50 (10 x 5).

If you skip beyond the over
ow line (but not to a new page), the over
ow indicator (if
used) is turned ON and normal page over
ow processing is performed. (See the Fetch
Over
ow/Release Field (column 16) for details about over
ow processing.) Do not skip
beyond the printer forms length de�ned in the Line Counter Speci�cation.

When you use this �eld, the �le is normally assumed to be a print �le. See the Space Field
(columns 17-18) for more information on the processing that occurs for print �les.

Output Specifications 9-13

Example Conventions

Output Indicators (Columns 23-31)

The output indicators �eld speci�es the indicators that must be ON or OFF for the record
to be written. You can condition an entire record or a �eld in the record using this �eld.
To condition a record, enter the indicators in the record description line (see the Record
Description Fields). To condition a �eld, enter the indicators in the �eld description line (see
the Field Description Fields).

Column Description

23, 26, 29:

N Write this record only if its corresponding indicator (in columns 24-25, 27-28,
or 30-31) is OFF.

blank Write this record only if its corresponding indicator (in columns 24-24, 27-28,
or 30-31) is ON.

24-25, 27-28, 30-31:

01-99 A general indicator set by a previous Calculation Speci�cation operation or
that identi�es a record type or �eld.

F0-F9 A function key indicator previously set as a general indicator by the RPG
VPLUS Interface or by a DSPLY or DSPLM operation.

H0-H9 A halt indicator.

KA-KN,nKP-KY A command key indicator set previously as a general indicator or that was set
previously by the RPG Screen Interface.

L0-L9 A control-level indicator (L0 is always ON).

LR The last-record indicator.

MR The matching-record indicator.

OA-OG, OV An over
ow indicator assigned to this �le.

U1-U8 A user indicator (normally set before the program is executed).

1P The �rst-page indicator.

blank Do not use an output indicator.

You can use one or more AND and OR lines when you need to condition the record with more
than three indicators (see the AND/OR Field, columns 14-16).

You cannot use AND or OR lines to condition a �eld. If you need to condition a �eld with
more than three indicators, consolidate them to three by using the SETON Calculation
Speci�cation operation. For example, suppose you want to suppress the printing of a �eld
when any one of �ve possible error indicators (02, 04, 06, 08, and 10) are ON. Use the SETON
operation to turn indicator 12 ON when indicators 02, 04, and 06 are ON. Then condition the
�eld with indicators 12, 08, and 10.

9-14 Output Specifications

Example Conventions

N (Not)

The not value speci�es that, for the record or �eld to be written, the indicator in the
associated �eld (columns 24-25, 27-28, or 30-31) must be OFF.

If this is a Header or Detail record (the �le type is H or D), make sure that at least one
indicator does not have an N associated with it; otherwise, the record is written at the
beginning of the logic cycle after records conditioned by the 1P indicator. (This happens
because all indicators are OFF at the beginning of the logic cycle.)

01-99 (General Indicators)

General indicators identify input record types in a �le and show the results of Calculation
Speci�cation operations. They are the most frequently-used indicators.

F0-F9 (Function Key Indicators)

You can use function key indicators the same way you use general indicators.

Function key indicators have special meanings when used with the RPG VPLUS Interface.
They are used by VPLUS to signal \events" that take place at the user terminal. When the
user presses �Enter�, F0 is turned ON. When the user presses �f1� to �f8�, the corresponding
function key indicator is turned ON. When an event 9 or greater takes place, function key
indicator F9 is turned ON. See Chapter 10 for a complete discussion of the RPG VPLUS
Interface.

Function key indicators F1-F8 also have special meanings when used in conjunction with
the SET, DSPLY, and DSPLM Calculation Speci�cation operations (see these operations in
Chapter 8 for details).

H0-H9 (Halt Indicators)

Halt indicators are normally used to print error messages and to halt the program at the end
of the current cycle (before standard RPG error processing begins). You can also use them to
write records before the standard error processing begins.

KA-KN, KP-KY (Command Key Indicators)

You can use command key indicators the same way you use general indicators.

When you use an RPG Screen Interface (RSI) �le, the command keys may have a special
meaning. A user at a terminal keyboard presses �f1� followed by a key from the top row of
the keyboard to turn on one of the twenty-four command key indicators. The RPG Screen
Interface then performs the appropriate action. You enable the command key indicators when
you build the screen forms �le. You can use command keys that have not been enabled the
same way you use general indicators. See Chapter 11 for information on the RPG Screen
Interface and the RPG Utilities Reference Manual (SIGEDITOR) for information on creating
an RSI forms �le.

Output Specifications 9-15

Example Conventions

L1-L9, L0 (Control-Level Indicators)

Control-level indicators are turned ON when they are assigned to input �elds and control
breaks occur in those �elds. Use them with �elds and records that you want to write when
control breaks occur. The L0 indicator is always ON. Use it for records or �elds that you want
to write at total time regardless of whether a control break occurs.

If you enter both a control-level and an over
ow indicator, the record is written when the
over
ow line is reached. If this is a total record (the Type Field, column 15, contains a T) and
it is not conditioned by a over
ow indicator, the record is written after the last record in the
control group is processed. If this is a detail record (the Type Field contains a D) and it is not
conditioned by an over
ow indicator, the record is written only after the �rst record of the
new control group is processed.

LR (Last-Record Indicator)

This indicator is turned ON when there are no more input records to process. During the next
logic cycle, all output records conditioned by LR are written provided the other indicators
that condition the output are also satis�ed.

OA-OG, OV (Over
ow Indicators)

Over
ow indicators are turned ON when the over
ow line (as speci�ed by the Line Counter
Speci�cation) is encountered. When it is ON, records conditioned by it are written (provided
the records satisfy the other indicators entered in this �eld).

Use only one over
ow indicator per �le. You should also enter this indicator in the Over
ow
Indicator Field (columns 33-34) of the File Description Speci�cation. If you do not use an
over
ow indicator, the paper is advanced automatically to a new page when the end-of-page
is reached. If some records or �elds in a �le do not use the assigned over
ow indicator but
specify skipping to a new page (see the Skip Field (columns 21-22), the over
ow indicator is
turned OFF before the paper advances.

When you use an over
ow indicator, you normally enter a Line Counter Speci�cation to de�ne
the over
ow line and other printer line positions.

You can enter an over
ow indicator in an AND or OR line. However, be sure that there is
only one over
ow indicator that satis�es the AND or OR relationship. The indicator must be
de�ned in the Over
ow Indicator �eld of the File Description Speci�cation.

Be careful when using an over
ow indicator and a record-identifying indicator in an AND
relationship. If over
ow occurs but the current record type is not the one speci�ed by the
record-identifying indicator, no output is produced. Therefore, if possible, use over
ow and
record-identifying indicators in OR relationships when conditioning record output.

Do not use an over
ow indicator to condition output of exception records (those that have an
E in the Type Field, column 15); however, you can use this indicator to condition exception
record �elds.

9-16 Output Specifications

Example Conventions

U1-U8 (User Indicators)

These indicators, when turned ON and OFF automatically by the Job Control Word (JCW),
let you condition the output of an entire �le. Otherwise, you can use them like general
indicators to condition the output of records and �elds (you must turn them ON yourself via
the SETON Calculation Speci�cation operation).

1P (First-Page Indicator)

The �rst-page indicator is normally used to print headings on the �rst page of a report. The
headings are printed during pre-cycle processing. You can also use this indicator, together
with an over
ow indicator, to print the headings on each page of the report. (Use the 1P
indicator for this purpose only when no other indicators are available.)

Use the 1P indicator only with heading and detail records (see the Type Field, column 15).
Do not use it with total or exception records. Do not use 1P with other indicators (except the
user indicators, U1-U8) when conditioning output (if you precede it with N, you can enter
other indicators preceded by N).

Since 1P lines are written during pre-cycle processing, be careful that they do not contain
data derived from input or that are calculated by the program. You can use 1P to condition
lines containing the prede�ned �elds: PAGE, PAGE1 - PAGE7, UDATE, UDAY, UMONTH,
UYEAR. You can also use 1P with compile-time and preexecution time array elements and
User Data Structure �elds.

Example

Figure 9-5 shows an output record that is conditioned by two general indicators. When
indicator 20 (only) is turned ON, the �elds JOB, EXP, and PAY are written. When indicators
20 and 30 are turned ON, �elds NAME, JOB, EXP, and PAY are written. When indicator 20
is turned OFF, no �elds are written.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

OPRINTX D 1 20

O 30 NAME 10

O JOB 20

O EXP 30

O PAY 40

Figure 9-5. Using Output Indicators

Output Specifications 9-17

Example Conventions

Field Description Fields (Columns 32-70)

The �eld description �elds describe the data �elds within the records de�ned by the Record
Description Fields (columns 7-31).

Enter �elds on separate lines, starting with the line following the Record Description line.
Leave columns 7-22 blank. You only need to de�ne those �elds that you want to write in the
program. See Figure 9-2 for an example of how to enter Field Description Fields.

You can enter indicators in the Output Indicators Field (columns 23-31) to condition
individual �elds in the output record.

Field Name (Columns 32-37)

This �eld contains the name of the �eld, table, array, or array element to be written.

Columns 32-37 Description

Field name previously de�ned in the program. (A name of up
to six characters, beginning with a letter or @, $, or #. The
remaining characters can be letters, digits, or @, $, or #.
Embedded blanks are not allowed.)

The name of the output �eld.

Table name. (A name of up to six characters, beginning with
TAB. The remaining characters can be letters, digits, or @, $,
or #. Embedded blanks are not allowed.)

The name of the output table.

Array name. (A name of up to six characters, beginning with
a letter or @, $, or #. The remaining characters can be letters,
digits, or @, $, or #. Embedded blanks are not allowed.)

The name of the output array.

Array name, comma, and index. The array name follows the
rules for array names de�ned above. The index is either a
number or the name of a �eld (see Field name above) that
contains a number. The array name/comma/ind combination
is limited to six characters.

The name and index of the output array
element.

EXCPT (Exception) Name. The name used in the Result
Field of an EXCPT Calculation Speci�cation operation.
EXCPT Names follow the rules for Field names (see above).
They cannot be the same as: an array, data structure, �eld,
�le label, subroutine, or table name.

The name that identi�es this exception
record line.

9-18 Output Specifications

Example Conventions

Columns 32-37 Description

PAGE, PAGE1-PAGE7 A prede�ned �eld that contains the
current page number for print �les.

*PLACE A prede�ned �eld that repeats the
output �elds de�ned previously within
the record description.

UDATE A prede�ned �eld that contains the
current date.

UDAY A prede�ned �eld that contains the
current day of the month.

UMONTH A prede�ned �eld that contains the
current month.

UYEAR A prede�ned �eld that contains the
current year.

*ERROR A prede�ned �eld used for run-time
error codes.

blank A value is entered in the Constant/Edit
Word Field (columns 45-70).

Field Name, Table Name, Array Name, EXCPT Name

Except for update �les, you must name each �eld that you want to write. For update �les,
you do not have to name �elds that are unchanged from their input records. Do not use this
�eld if you enter a constant in the Constant/Edit Word Field (columns 45-70).

Be sure that the names you enter are de�ned in a File Description, File Extension, or Input or
Calculation Speci�cation.

You can enter names in any order, since their positions in the output record are determined
by the End Position Field (columns 40-43). Fields are written in the order of their
speci�cations, so that if one �eld overlaps another, the �rst �eld is partially or totally
overwritten.

For signed numeric �elds, the sign is written as part of the low-order character. Unless you
edit the �eld using the Edit Code Field (column 38), this character is a letter. For instance, -3
is printed as L and +3 is printed as C. An unsigned �eld that is not a result �eld, is printed
without a sign.

Output Specifications 9-19

Example Conventions

PAGE

This prede�ned �eld contains a number that is written whenever PAGE is used. You may
use PAGE, for example, to print page numbers in a report heading. You can also use it to
stamp records with a number. Normally, PAGE is set to zero during pre-cycle processing and
incremented by one before it is used in an Output Speci�cation.

PAGE is a four-digit �eld with no decimal positions. You can rede�ne it so that is contains
from 1-15 digits, if you wish. Do this by entering PAGE in an Input Speci�cation and de�ning
it with a di�erent �eld length in the From Field Position and To Field Position Fields. In
Calculation Speci�cations, use an End Position value that re
ects this new size. When you
rede�ne PAGE, do not specify decimal positions. Whether or not you rede�ne PAGE, leading
zeros are suppressed and no arithmetic sign appears unless you use an edit word or edit code
when printing.

You can reset the page number to 1 by using the Blank After Field (column 39) with PAGE.
You can restart the page-numbering sequence by conditioning the PAGE speci�cation with an
indicator (when the indicator is turned ON, PAGE is set to zero, then incremented by one
before printing). To start paging with a value other than 1, de�ne PAGE in an input record
and ensure that the �eld contains the starting page number minus 1.

PAGE1-PAGE7

These prede�ned �elds provide up to seven additional PAGE �elds (PAGE1 through PAGE7).
Normally, you use only one PAGE �eld per �le. If you use the same PAGE �eld for more than
one �le, be sure that it will produce the correct numbers for all of them.

*PLACE

*PLACE repeats one or more �elds in a record. This lets you output the �elds one or more
times but code them only once in the program. Put *PLACE after the �elds you want to
repeat on output. Enter the last position to be occupied by the repeated �elds in the End
Position Field (columns 40-43). The last position must be at least twice the value of the
end position of the last repeated �eld. If you do not allow enough space, some or all of the
previous �elds are overlaid.

When *PLACE is encountered, all of the preceding �elds in the record are written until the
character position speci�ed by the End Position Field (columns 40-43) is reached. The �elds
are written starting with their beginning positions. All characters are written in the same
relative positions.

Each time you want a �eld or group of �elds repeated, you must enter *PLACE in a separate
speci�cation. Two consecutive *PLACE entries repeat the initial �elds four times.

You can condition *PLACE speci�cations with one or more output indicators (see the Output
Indicators Field, columns 23-31).

9-20 Output Specifications

Example Conventions

Example

The contents of four output �elds (DATA1, DATA2, DATA3, and DATA4) are shown below
(the character t is a blank):

Field Name: Contents:

DATA1 ttAAA

DATA2 ttBBB

DATA3 ttCCC

DATA4 ttDDD

Figure 9-6 shows how to use *PLACE to produce the output shown below. The �elds,
DATA1, DATA2, and DATA3 are repeated in the output record. Since DATA4 follows
*PLACE, it is not repeated.

ttAAAttBBBttCCCttAAAttBBBttCCCttDDD

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

OPRINTR H 4 01

O 60 "SPECIAL REPORT"

O

O D 1 02

O DATA1 5

O DATA2 10
O DATA3 15

�1� O *PLACE 30

O DATA4 B 35

Figure 9-6. Using *PLACE

Output Specifications 9-21

Example Conventions

UDATE, UDAY, UMONTH, and UYEAR

These �elds let you include the current date, in various formats, in the utput record.
Table 9-3 shows what each of the formats look like.

Table 9-3. Editing Date Fields

Field
Name

Contents Unedited
Example

Edited
Example

Description

UDATE Current date. 101188 10/11/88 October 11, 1988
(Domestic Format)

111088 11/10/88 October 11, 1988
(United Kingdom Format)

111088 11.10.88 October 11, 1988
(European Format)

UDAY Current day of
month.

11 11 11th day

UMONTH Current month. 10 10 October

UYEAR Current year. 88 88 1988

The date that UDATE produces depends on the entry in the Inverted Print Field (column
21) of the Header Speci�cation. You can produce the date in European, United Kingdom,
and Domestic formats. Additionally, you can further edit the date by entering Y in the Edit
Code Field. This edit code inserts slashes or periods (see the fourth column in Table 9-3).
Unedited, the UDATE �eld is 6 characters long; edited, it is 8.

You cannot change the contents of any of these date �elds. Their values are set during
pre-cycle processing and are not altered during program execution. The date comes from the
operating system unless the UDATE Source Field (column 17) of the Header Speci�cation
contains an F. In this case, the date comes from the RPGUDATE �le.

*ERROR

When the H0 indicator is turned ON, RPG places a unique character that corresponds to the
error in the �eld *ERROR. (See Appendix B for the values that are placed in *ERROR for
various run-time errors.) *ERROR is prede�ned as a 1-character alphanumeric �eld.

When an error does not terminate the program, you can interrogate *ERROR to determine
the cause for the error. If you want to use *ERROR as a normal data �eld, enter it in the
Field Name Field of an Input Speci�cation de�ning it as a 1-character �eld. You can use
*ERROR in the Factor 1, Factor 2, and Result Fields of a Calculation Speci�cation. When
you use *ERROR with the RLABL Calculation Speci�cation operation, the name passed to
the subroutine is ERROR, not *ERROR (you must use ERROR when referencing it).

9-22 Output Specifications

Example Conventions

Edit Code (Column 38)

The edit code �eld lets you edit numeric output �elds. You can suppress leading zeros and
arithmetic signs and you can insert characters.

Column 38 Description

1 Insert commas and do not zero suppress.

2 Insert commas and zero suppress.

3 Do not insert commas or zero suppress.

4 Zero suppress and do not insert commas.

A Insert commas and do not zero suppress. For negative �elds, append the CR
(credit) sign.

B Insert commas and zero suppress. For negative �elds, append the CR (credit)
sign.

C Do not insert commas or zero suppress. For negative �elds, append the CR
(credit) sign.

D Zero suppress and do not insert commas. For negative �elds, append the CR
(credit) sign.

J Insert commas and do not zero suppress. For negative �elds, append the -
(negative) sign.

K Insert commas and zero suppress. For negative �elds, append the - (negative)
sign.

L Do not insert commas or zero suppress. For negative �elds, append the -
(negative) sign.

M Zero suppress and do not insert commas. For negative �elds, append a -
(negative) sign.

X Remove the plus sign from the units position of the �eld; do not remove a minus
sign or suppress leading zeros; do not print decimal points. If the Sign Processing
Field (column 40) of the Header Speci�cation is blank or contains an S, the plus
sign is suppressed.

Output Specifications 9-23

Example Conventions

Column 38 Description

Y Insert slashes or periods into numeric �elds (normally used for date �elds).

Slash marks can be used with �elds having three to six digits as follows:

Field length: Edited output:

3 nn/n

4 nn/nn

5 nn/nn/n

6 nn/nn/nn

If the �rst digit is zero, it is suppressed. If the Inverted Print Field (column 21) of
the Header Speci�cation contains an I or J, a period is inserted instead of a slash.

Z Suppress leading zeros and do not print a decimal point (if speci�ed). Remove
the arithmetic sign in the units position.

blank No edit code applies.

1-4, A-M

These edit codes insert characters, such as a comma and the CR (credit) sign, into numeric
�elds. For example, if you enter the edit code A and the �eld is negative, a CR (for credit) is
appended to it. If you enter the edit code J, a minus sign is appended.

All of the edit codes suppress leading zeros (zeros to the left of the decimal point, preceding
non-zero digits) unless you enter a J in the Inverted Print Field (column 21) of the Header
Speci�cation. J speci�es that the edited result is in European Format; zero suppression stops
with the units position of the number. For example, the number .04 is shown as 0,04 and a
zero is shown as 0,00 (the comma is the decimal position).

If the edit code speci�es zero suppression and the �eld contains decimals and is not zero, the
decimal point is printed. If the �eld is zero, it is suppressed to blanks.

If the edit code does not specify zero suppression and the �eld contains decimals and is
equal to zero, the decimal point is printed followed by the same number of zeros as there are
decimal places. If there are no decimal places, a zero is printed in the units position of the
�eld.

Make sure that you include character positions for the inserted characters when entering
a value in the End Position Field (columns 43-43). If the �eld is not large enough, it will
overlap another �eld.

You can use a
oating dollar sign ($) or asterisk (*) in conjunction with these edit codes.
Include the $ in an edit word (see the Constant/Edit Word Field, columns 45-70) to print the
$ immediately to the left of the most signi�cant digit. If you're suppressing zeros and the �eld
is zero, the $ does not print. Include the * (check protection character) in an edit word to
print the * in all zero suppressed positions to the left of the decimal point. If the number is
zero, asterisks �ll the entire �eld.

When you use an edit code to print an entire array, elements in the array are separated by
two blanks.

9-24 Output Specifications

Example Conventions

Examples

Table 9-4 gives examples of various numbers and the e�ects that the edit codes have on them.
The character t represents a blank. The right brace (g) is a zero with a negative sign.

Table 9-4. Effects of the Edit Codes

Edit
Code

Positive
Number,
Two

Decimal
Positions

Positve
Number,

No
Decimal
Positions

Negative
Number,
Three
Decimal
Positions

Negative
Number,

No
Decimal
Positions

Zero
Balance,
Two

Deciaml
Positions

Zero
Balance
No

Decimal
Positions

1234567 1234567 00012g 00012g 000000 000000

1 12,345.67 1,234,567 .120 120 .00 0

2 12,345.67 1,234,567 .120 120

3 12345.67 1234567 .120 120 .00 0

4 12345.67 1234567 .120 120

A 12,345.67tt 1,234,567tt .120CR 120CR .00tt 0tt

B 12,345.67tt 1,234,567tt .120CR 120CR

C 12345.67tt 1234567tt .120CR 120CR .00tt 0tt

D 12345.67tt 1,234,567tt .120CR 120CR

J 12,345.67t 1,234,567t .120- 120- .00t 0t

K 12,345.67t 1,234,567t .120- 120-

L 12345.67t 1234567t .120- 120- .00t 0t

M 12345.67t 1234567t .120- 120-

X 1234567 1234567 00012g 00012g 000000 000000

Z 1234567 1234567 120 120

The lines below illustrate how the Y edit code works. Assuming that the number to be edited
is 120188, the results for 3, 4, 5, and 6-character Result Fields are:

12/0, 12/01, 12/01/8, 12/01/88

Output Specifications 9-25

Example Conventions

Blank After (Column 39)

The blank after �eld resets the contents of a �eld to blanks or zeros after it is written.

Column 39 Description

B Reset the contents of the �eld after output. Reset numeric �elds to zero
and alphanumeric �elds to blanks.

blank Do not reset the contents of the �eld after output.

This �eld is often used to clear control totals when control breaks occur. Subtotals can be
cleared after being rolled forward to the next control level total �eld. For example, if B is
assigned to a �eld that is conditioned by control-level indicator L2, it is cleared after being
printed for a level 2 control break.

Do not use B with constants, look-ahead �elds or the date �elds UDATE, UDAY, UMONTH,
or UYEAR.

If there is an input �eld with the same name as you enter in this speci�cation, it is cleared
also. If you use the same �eld name more than once in the Output Speci�cations, enter B
only on the last one. Otherwise, the �eld is reset before all the output is written.

If you enter B for a table, only the entry found in the last LOKUP operation is reset. If no
LOKUP has been performed, the �rst entry is reset.

If you enter a B into this �eld and the Indicator Setting Field (column 42) of the Header
Speci�cation is blank or S and you enter an indicator in the Output Indicators Field (columns
23-31), the indicator is turned ON after the �eld is cleared to zeros or blanks.

9-26 Output Specifications

Example Conventions

End Position (Columns 40-43)

The end position �eld speci�es the last position of the output �eld. If this speci�cation follows
the record description speci�cation for an RSI WORKSTN �le, this �eld may specify the
length of the RSI form name.

Columns 40-43 Description

1-9999
(right-justi�ed, leading
zeros are not required)

The rightmost character position of the output �eld.

blank The compiler calculates the end position of the output �eld.
(This is called the relative end position.)

� 1-999 Add or subtract this number from the computed end position
(relative end position) of the output �eld.

K and RSI form name
length

The speci�cation contains the name of an RSI WORKSTN
form. Enter K in columns 40, 41, or 42. Enter the length (1-8)
of the RSI form name in column 43.

1-9999

To explicitly enter the end position yourself, enter a number. The number is the low-order
(rightmost) character position of the �eld. For print �elds, do not enter an end position that
exceeds the printer line length. For disk �les, do not enter an end position that exceeds the
number of characters in the record. A �eld's length is calculated by subtracting the previous
�eld's end position from the value entered in this �eld. (The �rst �eld in a record begins in
position one). If the �eld is edited, be careful to include enough space for insertion characters
as well as digits.

When entering the end position for *PLACE, use a number that is at least double the end
position of the last �eld that is repeated. If you do not, data is lost due to �eld overlap.

The Packed/Binary Field (column 44) determines how numeric �elds are written. To provide
enough space for an output �eld, follow these guidelines:

If the format of the
�eld that you're writing is:

The output �eld size should be:

Alphanumeric. The same as the number of characters in the �eld.

Unpacked (ASCII) decimal without a
leading or trailing sign.

The same as the number of digits in the �eld.

Unpacked (ASCII) decimal with a
leading or trailing sign.

One byte longer than the number of digits in the �eld. For
example, for an 8-digit number, use a �eld length of 9.

Packed decimal. One-half the number of digits in the �eld plus 1.

Binary. The number of digits in the �eld divided by 2.5. For
example, a 5-digit number requires 2 positions and a 10 digit
number requires 4 positions.

Example

Output Specifications 9-27

Example Conventions

Figure 9-7 shows how to enter end positions for �elds in two output records. The �elds in
both records are the same. The spacing between them is di�erent. The �elds in the disk
record (DISCREC) are adjacent to each other while the �elds in the print record (REPORT)
are separated by intervening spaces.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

ODISCREC D 01

O QTY 5

O PROD 13

O DESC 38

O COST 41P

OREPORT D 01

O QTY 1 6

O PROD 18

O DESC 47

O COST J 58

O 63 "***"

Figure 9-7. Entering End Positions

9-28 Output Specifications

Example Conventions

Blank

The end position of the �eld is calculated by the compiler. It is calculated by adding this
�eld's edited length to the previous �eld's end position. If the end position is blank, the
compiler calculates it. (The �rst character of each output record is assumed to be 1.)

You can use the RSPACE option of the $CONTROL compiler subsystem command to provide
�xed spacing between �elds.

� 1-999

When you enter a plus or minus sign followed by a number, you're specifying the number of
spaces between this �eld and the previous one. A plus sign adds spaces between �elds and
a minus sign causes the �elds to overlap. For example, -tt3 causes the �eld to overlap the
previous �eld by three characters; +002 leaves two spaces between the �elds.

This option overrides the RSPACE option of the $CONTROL compiler subsystem command
for this �eld.

Example

Figure 9-8 shows how to use relative end positions with $CONTROL. This example produces
the same result as the Output Speci�cations shown in Figure 9-7.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

ODISCREC D 01

O QTY

O PROD

O DESC

O COST P

$CONTROL RSPACE=4

OREPORT D 01

O QTY 1

O PROD

O DESC

O COST J

O + 2 "***"

Figure 9-8. Using Relative End Positions with $CONTROL

Figure 9-9 shows what the compiled Output Speci�cations for Figure 9-8 look like. The
compiler prints the end positions as if you entered them. An R at the end of each line
indicates that the End Position Field is a relative end position; that is, it is calculated by the
compiler. The +002 at the end of the last line indicates that there are two spaces between the
�eld COST and the last Output Speci�cation �eld.

Output Specifications 9-29

Example Conventions

ODISCREC D 01

O QTY 5 R

O PROD 13 R

O DESC 38 R

O COST 41P R

$CONTROL RSPACE=4

OREPORT D 01

O QTY 1 6 R

O PROD 18 R

O DESC 47 R

O COST J 58 R

O 63 "***" +002

Figure 9-9. How Relative End Positions Appear in a Compiler Listing

K and RSI Form Name Length

Enter a K in columns 40, 41, or 42 to indicate that this speci�cation names an RSI
WORKSTN �le. Enter the number of characters (1-8) in the RSI form �le name in column
43.

Enter the actual form name as a constant in the Constant/Edit Word Field (columns 45-70)
or enter a �eld in the Field Name Field (columns 32-37) that holds it.

Example

In Figure 9-10, the form, FM01, is displayed when indicator 61 is ON. When indicator 62 is
ON, the form contained in the �eld FORM is displayed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

OSCREEN E 61

O K4 "FM01"

O DATE Y 8

O FLD1 14

O FLD2 20

O E 62

O FORM K8

O DATE Y 8

O FLD3 16

O FLD4 24

Figure 9-10. Entering an RSI Form Name

9-30 Output Specifications

Example Conventions

Packed/Binary (Column 44)

The packed/binary �eld speci�es the format in which numeric �elds are written. Do not use
this �eld for �elds that you're going to edit.

Column 44 Description

2 Write the �eld in binary format, two bytes long.

4 Write the �eld in binary format, four bytes long.

8 Write the �eld in binary format, eight bytes long.

B Write the �eld in binary format. A �eld of one to �ve digits is written as
two bytes, a �eld of six to ten digits is written as four bytes, and a �eld
of eleven to �fteen digits is written as eight bytes.

L Write the �eld in unpacked format with an arithmetic sign (plus or
minus) preceding the �eld.

P Write the �eld in packed decimal format.

R Write the �eld in unpacked format with an arithmetic sign following the
�eld.

blank This is an unpacked numeric or alphanumeric �eld, a numeric �eld
containing data to be edited or a constant.

2, 4, 8

A 2-byte binary �eld can hold a number up to 215, a 4-byte binary �eld can hold a number
up to 231, and an 8-byte binary �eld can hold a number up to 249.8. The compiler warning
7057W is issued when a 5-digit number is written to a 2-byte binary �eld, or when a 10-digit
number is written to a 4-byte binary �eld.

L, R

Enter an L or R for a �eld when you want the sign to precede or follow the number.
(Normally, the sign appears in the low-order position.) Be sure to allow room for the sign
when you enter the End Position Field (columns 40-43).

Output Specifications 9-31

Example Conventions

Constant/Edit Word (Columns 45-70)

The constant/edit word �eld lets you use either a constant or an edit word when formatting a
numeric �eld for output.

Columns 45-70 Description

From 1 to 24 characters (any
letters, digits, or special
characters) surrounded by
quotation marks.

A constant (if a �eld name does not appear on this line) or an
edit word (if a �eld name does appear on this line). If there is
an edit code in the Edit Code Field (column 38), the
Constant/Edit Word Field may contain a $ (
oating dollar
sign) or a * (check protection character).

blank. No constant is used or no edit word applies.

Constants

A constant is a group of characters that are written exactly as you enter them. You frequently
use constants for report titles, page and column headings, and record-identifying information.
You often use them in heading records.

To enter a constant:

Leave the Field Name Field (columns 32-37) blank.

Begin the constant by entering a quotation mark in column 45.

Enter the characters in the constant. You can use up to 24 ASCII characters (the last
character can be in any column from 46 to 69). If the constant is longer than 24 characters,
enter another constant line containing the remaining constant characters. You can continue
a constant in this manner using as many of these lines as necessary.

End the constant with a quotation mark. The quotation mark can appear in any column up
to 70.

To include a quotation mark in the constant itself, enter two quotation marks. For example,
to enter the constant, A PROGRAM NAMED \ALPHA":

"A PROGRAM NAMED ""ALPHA"""

Enter the last position occupied by the constant in the End Position Field (columns 40-43).

9-32 Output Specifications

Example Conventions

Example

Figure 9-11 shows several constants. The constant de�ned in line 1 contains quotation marks.
The constant starting in line 2 is continued to line 3.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

OPRINTT H 3 01

�1� O 50 "REPORT ON ""PROSPECTS"""

O H 3 02

O 9 "LAST NAME"

O 20 "FIRST NAME"

O 25 "AGE"

O 35 "OCCUPATION"

�2� O 50 "PERSONNEL EVALUATION BAS"

�3� O 72 "ED ON BACKGROUND CHECK"

Figure 9-11. Entering Constants

Output Specifications 9-33

Example Conventions

Edit Words

Edit words let you insert and replace characters in numeric output �elds. They provide
greater
exibility than edit codes see the Edit Code Field, column 38). You can specify the
format of the output �eld, character by character. You can insert commas, decimal points,
dollar signs, and other punctuation into the �eld. For negative �elds, you can insert a minus
sign or CR and you can use a
oating dollar sign and an asterisk for check protection.

When you enter an edit word, you enter characters that become the editing template for
the �eld. Edit words contain replaceable and non-replaceable characters. Non-replaceable
characters are inserted into the �eld. If they are to the left of the high-order digit position,
they are replaced by blanks or asterisks (if check protection is used). If they follow the
last replaceable digit position, they are appended to it. You can use any character as a
non-replaceable character except blank (to use blank, enter an ampersand). Replaceable
characters are place-holders for digits in the �eld and they are replaced by them. Replaceable
characters include a blank, 0, * and $. Do not include more than 15 replaceable characters in
an edit word.

To enter an edit word:

Enter the name of the numeric �eld to be edited in the Field Name Field (columns 32-37).

Leave the Edit Code Field (column 38) blank.

Enter the last position of the edited �eld in the End Position Field (columns 40-43).

Begin the edit word by entering a quotation mark in column 45.

Enter the characters in the edit word. See Table 9-5 for a description of the characters that
you can include. Enter up to 24 ASCII characters with the last character placed on or
before column 69.

End the edit word with a quotation mark.

Table 9-5. Edit Word Characters

Edit Word
Characters

Description

blank Replace a blank with a digit from the corresponding position of the
source data �eld.

0 Replace leading zeros with blanks, up to and including this position.

* Replace leading zeros with asterisks up to and including this position
(check protection).

$ If $ is used to the left of a zero, replace leading zeros with spaces and

oat the dollar sign to the left of the most signi�cant digit in the �eld.

& Insert a blank into the edited �eld.

. or , Insert a decimal point or comma into the edited �eld.

"" Insert a quotation mark in the edited text.

+, - or CR Insert an arithmetic sign into the edited �eld or insert a CR into the
edited �eld when the number is negative.

other character Insert the character into the edited �eld at this character location.

9-34 Output Specifications

Example Conventions

0

Normally, leading zeros in a data �eld are replaced by blanks on output. You can stop
suppression at any point by entering a zero as a replaceable character in the edit word. The
zero is replaced by a character from the corresponding position of the source data �eld, unless
that character is also zero (in which case a blank is substituted). Any zeros in the source data
�eld that appear to the right of the zero suppression character are printed unaltered. If a
non-zero digit appears to the left of the zero, suppression stops with that non-zero digit.

If you want leading zeros in an edited �eld, ensure that the edit word contains at least one
more character than the data �eld, and enter a zero in the leftmost position of the edit word.

If there are more digit positions in an edit word than there are digits in the data �eld, leading
zeros are actually added to the data �eld before editing takes place, and are then stripped out
if required by the edit word.

*

Use an asterisk to halt zero suppression and to replace the suppressed zeros with asterisks
(check protection). Place the asterisk in the position where you want zero suppression to stop.
If an asterisk precedes a zero in an edit word, suppression stops with the asterisk and the zero
is printed as a constant.

$

Enter a
oating dollar sign to the left of the character position where you want to stop zero
suppression. Zeros to the left of the dollar sign are suppressed and the dollar sign is placed
immediately to the left of the �rst non-zero digit. Do not use a
oating dollar sign together
with check protection. Allow an additional character position in the edit word for the
oating
dollar sign (the number of replaceable characters must equal or exceed the number of digits in
the number).

To print a dollar sign in the leftmost position of the �eld, enter it in the leftmost position of
the edit word.

&

Use an ampersand to produce a blank in the edited �eld (the ampersand is replaced by a
blank).

. or ,

Enter a decimal point or comma in an edit word to insert those characters in the
corresponding positions of the edited result. If they precede the most signi�cant digit in the
�eld, they are replaced by blanks (or asterisks if you're using check protection).

""

To include a quotation mark in the edited result, enter two adjacent quotation marks.

+, - or CR

To insert the numeric sign of the �eld, enter a plus or minus sign to the right of the low-order
digit position in the edit word. If you enter a negative sign, the sign is printed only when the
�eld is negative. Likewise, if you enter a positive sign, the sign is printed only when the �eld
is positive. Enter a credit sign to print CR when the �eld is negative. If the �eld contains all
zeros (either positive or negative) the sign or CR is suppressed to blanks.

Output Specifications 9-35

Example Conventions

Other character

Enter any ASCII character (not listed above) to insert into the �eld.

Example

Several edit word examples appear in Table 9-6. The �rst column shows the numbers to be
edited (the numbers are positive and negative). The second column shows the edit words and
the third column shows the edited results. t represents a blank.

Table 9-6. Examples of Edit Words

Input Edit Word Edited Result

0042 "0tHRS.ttMINS.&0""CLOCK" t0HRS.42MIN.t0"CLOCK

000000 "t,tt0.tt" ttttt.00

000000 "t,ttt.0t" ttttttt0

000000 "t,t0tDOLLARSttCENTS&CR" tttt0DOLLARS00CENTSttt

+000000 "t,tttDOLLARSttCENTS" ttttttttttttttCENTS

+000002 "tt0LBS.&ttOZ.TARE&-" ttt0LBS.t02OZ.TARE

-000002 "ttt0LBS.ttOZ.TARE&-" ttttLBS.02OZ.TAREt-

001234 "0,ttt,0tt" t,012,034

013579 "&t,*t0,ttt" ***130,579

093066 "tt-tt-tt&LATER" t9-30-66tLATER

093066 "tt&tt&tt&LATER" t9t30t66tLATER

100166 "tt/tt/tt" 10/01/66

00000000 "tt,ttt,t0t-&ON&HAND" ttttttttt0ttONtHAND

-00000000 "ttt,tt0.tt&CR*" ttttttt.00ttt*

00123456 "t,tt$,0tt.tt" ttt1$,234.56

000000005 "t,ttt,t0t.tt-" tttttttt0.05t

-000000015 "t,ttt,ttt.tt-" tttttttttt15-

095140036 "0tt-tt-tttt" t95-14-0036

0000000000 "tt,ttt,t0t*tt" ttttttttt0*00

0000000000 "$tt,ttt,tt0.tt" $tttttttttt.00

0000000000 "tt,ttt,ttt.ttCR" ttttttttttttttt

0000000000 "tttttttttt" tttttttttt

+0000000000 "t,ttt,ttt,t0t-OLD&BALANCE" tttttttttttt0tOLDtBALANCE

9-36 Output Specifications

Example Conventions

Table 9-6. Examples of Edit Words (continued)

Input Edit Word Edited Result

-0000000000 "tt,ttt,tt*.tt-" **********.00t

-0000000000 "ttttttt*tt&CR" ********00ttt

-0000000000 "ttttttttt*&CR" **********ttt

-0000000000 "ttttttttt$0" tttttttttt$

-0000000000 "ttttttt$0tt&CR&GROSS" tttttttt$00ttttGROSS

-0000000000 "$ttttttt0tt&CR&GROSS" $tttttttt00ttttGROSS

-0000000000 "ttttttttt0&-&TOTAL" tttttttttttttTOTAL

-0000000000 "tttttttttt$-&TOTAL" tttttttttttttTOTAL

0000000005 "ttt,ttt,t$9.tt" tttttttttt$.05

0000000005 "ttt,ttt,&0t.tt&NET" ttttttttt$0.05t.NET

+0000000005 "ttt,ttt,$0t.tt-*" ttttttttt$0.05t*

-0000000005 "tt,ttt,tt0.tt&CR" tttttttttt.05tCR

-0000000123 "ttt,ttt,ttt.tt-" tttttttttt1.23-

0000001234 "tt,tt*,ttt*tt" ******,012*34

0000001234 "ttt,t$0,ttt.tt-SALES" tttttt&,012.34tSALES

0000135678 "tt,ttt,ttt.tt&CR&-NET" ttttt1,356.78tCRttNET

0000135678 "tttttttttt&&PROFIT" tttt135678ttPROFIT

0000135678 "$0ttttttttt-$NET" $t000135678ttNET

0000135678 "tt,ttt,tttDOLLARSttCENTS" ttttt1,356DOLLARS78CENTS

+0000135678 "$tttttttttt&-&NET" $tttt135678tttNET

+0000135678 "tttttttttt&CR&NET" tttt135678ttttNET

+0000135678 "0ttttttttt" t000135678

+0000135678 "tttttttttt" tttt135678

+0000135678 "$&0t,ttt,ttt.tt&NET" $tt0,001,356.78tNET

+0000135678 "tt,ttt,tt*.tt*CR**" *****1,356.78*tt**

-0000135678 "*ttttttttt" *000135678

-0000135678 "ttttttttt*" ****135678

-0000135678 "tttttttttt" tttt135678

Output Specifications 9-37

Example Conventions

Table 9-6. Examples of Edit Words (continued)

Input Edit Word Edited Result

-0000135678 "ttttttttt0" tttt135678

-0000135678 "tttttttttt&CR&NET" tttt135678tCRtNET

-0000135678 "tttttttttt&-&&NET" tttt135678t-ttNET

0000135678 "tttttttttt&NET&CR" tttt135678tNETttt

-0000135678 "tttttttttt&NET&CR" tttt135678tNETtCR

-0000135678 "$tttttttttt&-&NET" $tttt135678t-tNET

-0000135678 "ttttttt&0tt&CR" tttt$135678tCR

-0000135792 "tt,ttt,t*t.tt&-" *****1,357.92t-

-0000135678 "tt,ttt,ttt.tt&CR&&NET" ttttt1,356.78tCRttNET

-0001356789 "ttt,tttt&0.ttCR" tttt$13,567.89CR

-0034567890 "ttt,ttt,t&0.ttCR**" ttt$345,678.90CR**

-1234567809 "ttttttt&0tt&CR!" $1234567809tCR

+1234567890 "*ttttttttt" 1234567890

-1234567890 "ttt,ttt,t&0.tt-" $12,345,678.90-

-1234567890 $&tt,ttt,t0t.tt&-&GROSS" $t12,345,678.90t-tGROSS

-1234567890 $&tt,ttt,tt0.ttCR" $t12,345,678.90CR

-1234567890 "t,ttt,ttt,ttt-OLD&BALANCE" 1,234,567,890-OLDtBALANCE

Comments (Columns 71-74)

Enter comments of any kind in the comments �eld.

Program Name (Columns 75-80)

The program name �eld contains the program name. The format of this �eld is discussed in
Chapter 2.

9-38 Output Specifications

Example Conventions

The Output Specification Default Summary

If you leave the optional �elds of the Output Speci�cations blank, the default speci�cations
shown in Table 9-7 apply.

Table 9-7. Output Specification Defaults

Columns Field Default Values

1 - 5 Sequence Number No sequence number applies.

16 - 18 Record
Addition/Deletion

For sequential or KSAM output �les, write new records
to beginning of the �le. For TurboIMAGE output �les,
insert new records in the �le. For update �les, update
the current record.

16 Fetch Over
ow/
Release

Do not fetch over
ow or release the �le.

17 - 22 Space and Skip Space one line after printing each record.

23, 26, and 29 Not Write the data de�ned on this line only if the indicator
speci�ed in the next �eld is ON.

24 - 25,
27 - 28,
and

30 - 31

Output Indicators Do not assign an indicator.

38 Edit Code Do not use an edit code.

39 Blank After Do not reset the contents of the �eld to blanks.

44 Packed/Binary This is an unpacked numeric or alphanumeric �eld, a
numeric �eld containing data to be edited or a
constant.

45 - 70 Constant/Edit
Word

No constant is used or no edit word applies.

71-74 Comments No comments are used.

75-80 Program Name None.

Output Specifications 9-39

10

RPG Interface to VPLUS

The RPG interface to VPLUS provides functions similar to those provided by the VPLUS
procedures for other languages. You can use the VPLUS interface to:

Retrieve a form from a VPLUS forms �le and display it at the terminal.

Display a message in the window area of the terminal screen.

Display initial �eld values speci�ed when the form was created.

Accept input from the terminal.

Determine if the input �elds contain errors and, if so,
ag them and display an error
message.

Write data entered from the terminal to the user program or to a batch �le. (A batch �le
lets you record screen data in a �le for later use.)

Transfer data from the program or batch �le to the terminal screen.

Transfer data between the program and batch �le.

The RPG interface to VPLUS provides all of the facilities to read and write screen forms,
edit data entered on the form and record that data in a screen transaction �le (batch �le).
Figure 10-1 illustrates how VPLUS works with RPG.

RPG Interface to VPLUS 10-1

Example Conventions

Figure 10-1. How VPLUS Works With RPG

For complete information about VPLUS, see the Data Entry and Forms Management System
VPLUS/3000 manual. This manual lists an RPG general purpose data entry program that
uses VPLUS. Use that program along with the one at the end of this chapter to understand
how to tailor a VPLUS program to meet your speci�c requirements.

10-2 RPG Interface to VPLUS

Example Conventions

Using the RPG Interface to VPLUS

To use VPLUS in an RPG program, perform the following steps (each of the steps is
explained in detail in the following sections in this chapter):

1. Create the VPLUS forms �le using the VPLUS utility, FORMSPEC.

2. Specify screen-related options using the Header Speci�cation.

3. Specify screen-related options and de�ne the VPLUS forms �le using File Description
Speci�cations. Optionally, you can use this speci�cation to de�ne VPLUS batch and trace
�les.

4. Enter Input Speci�cations to describe the records that VPLUS uses to report the results of
screen operations to the program.

5. Enter Calculation Speci�cations to initiate VPLUS actions and to return the results of
these actions. (Use Calculation Speci�cations with demand �les only.)

6. Enter Output Speci�cations that describe the records that you use to initiate VPLUS
screen operations.

When you use VPLUS, de�ne one or more input records for VPLUS to use in communicating
the results of its actions. You normally enter a separate input record for each result (event)
that you expect for the screen functions that VPLUS performs. Actions direct VPLUS to
perform some screen function such as displaying a form. To initiate an action, place an action
code and, depending on the action, other information in the WORKSTN output record. If the
WORKSTN �le is a demand �le, you must perform exception output to execute the action.
To illustrate how action and events work, the following steps show how you commonly use a
VPLUS form to read terminal data:

General screen procedure: Action/event that performs the procedure:

Display an empty form. Action: Get next form to display.

Action: Display a form with initial data values.

Read input entered by the terminal operator. Action: Read input from the terminal.

Event: What was entered?

Perform VPLUS data edits. Action: Perform VPLUS edits.

Event: Did VPLUS edit errors occur?

Transfer data to the program bu�er. Action: Transfer data from the VPLUS bu�er to
the program bu�er.

Event: What is the data that was read?

You can perform input editing in the program or you can have VPLUS edit according to the
edits entered when the VPLUS forms �le was created by FORMSPEC (see the next section).
When VPLUS edits data, it uses the VPLUS bu�er. If you're doing the editing yourself,
substitute your own edits for the VPLUS edits in Step 3 above.

RPG Interface to VPLUS 10-3

Example Conventions

Using FORMSPEC

Before you can use VPLUS to process data from the terminal, you must create the VPLUS
forms �le. The forms �le de�nes the data �elds on the screen and constants such as �eld
names. Create the forms �le using the VPLUS utility, FORMSPEC. FORMSPEC is described
in the Data Entry and Forms Management System VPLUS/3000 manual.

Entering the Header Specification

The next two sections describe the Header Speci�cation facilities (run-time errors and the
Error Dump) that function di�erently when used with the RPG interface to VPLUS.

Handling Run-Time Errors

Normally, you determine how run-time errors are handled by your entries in the Error Log
Field (column 55) and the Error Response Field (columns 56-71) of the Header Speci�cation.
When you're using the RPG interface to VPLUS, however, error messages are displayed in
the message window and the terminal operator selects a response by pressing the appropriate
function key. The function keys and their corresponding responses are shown in Table 10-1.

Table 10-1. Entering Error Responses Using the Function Keys

Function Key Response

�f1� Continue execution.

�f2� Skip the input record containing the error and continue execution.

�f3� Terminate the program by executing the normal termination code.

�f4� Terminate the program immediately.

�f5� Terminate normally and print an error dump.

�f6� Terminate immediately and print an error dump.

Requesting an Error Dump

The Error Dump is normally written to the standard list device, $STDLIST. When using
VPLUS, the terminal is in session mode and $STDLIST is the terminal.

Since the Error Dump is of limited use when displayed on the terminal, you may want to
direct it to a �le. Enter the name of the �le in Error Dump File Name Field (columns 7-14) of
the Header Speci�cation.

10-4 RPG Interface to VPLUS

Example Conventions

Entering File Description Specifications

The next six sections explain how to de�ne VPLUS �les and how RPG screen-related options
work with the RPG interface to VPLUS.

Defining VPLUS Files

To use VPLUS in an RPG program, you must de�ne a terminal WORKSTN �le. (You can
use only one WORKSTN �le in a program.) Use this �le for all communication with VPLUS.

To de�ne a WORKSTN �le, enter a �le type of update in the File Type Field (column 15)
of the File Description Speci�cation. Describe the records as variable in the Logical Record
Length Field (columns 24-27). Enter WORKSTN in the Device Class Name Field (columns
40-46) for the �le.

Usually, a VPLUS WORKSTN �le is a demand �le, but you may de�ne it as a primary �le in
the File Designation Field (column 16) of the File Description Speci�cation. Primary �les
are processed by the RPG logic cycle. An update primary �le may be used to advantage,
for example, when processing is limited to a single cycle that includes displaying a form,
reading data from it and writing data to it. You may �nd it more convenient and
exible to
de�ne the WORKSTN �le as an update demand �le. In this case, processing is performed by
Calculation Speci�cations which use demand READs and exception output.

There are two other �les that you may use with a WORKSTN �le: a batch �le and a
trace �le. (These �les are optional.) You can use batch �les for saving screen data; data is
automatically written to the batch �le from the VPLUS bu�er, one record per form. You
can use the reformatter facility (REFSPEC) of VPLUS to rearrange the form �elds so that
the batch �le can be used by other applications. To use a batch �le, enter a BATCH File
Description Continuation line (BATCH in the Option Type Field, columns 54-59). Trace �les
are handy for �nding program errors. Each action and event (see the \VPLUS Action Codes"
and \VPLUS Event Codes" sections) causes at least one record to be written to the �le. You
can examine the trace �le to �nd errors. Run-time error messages are written to the trace
�le and are displayed at the terminal. If the trace �le becomes full, the program continues
although tracing stops. To use a trace �le, enter a TRACE File Description Continuation line
for it.

Specifying the Error Message Display Interval

Run-time error messages are displayed on the terminal for 3 seconds. You can change this
interval by entering a number from 0-9 (0 suppresses the message) in the Interface Control
Field (column 51) of the File Description Speci�cation. The display interval applies only
to WORKSTN errors. It does not apply to RPG errors, VPLUS edit checking errors or to
messages placed directly in the window by the PUTMSG and SHOMSG actions (see the
\VPLUS Action Codes" section).

RPG Interface to VPLUS 10-5

Example Conventions

Enabling the BREAK Key

On some terminals, the �BREAK� key is physically positioned near the �ENTER� key. As a result,
it is easy to press �BREAK� by accident. Since it is di�cult to recover from a break, the �BREAK�
key is disabled when a WORKSTN �le is being used.

If you need to use the �BREAK� key, enable it by entering a B in the Interface Control Field
(column 52) of the File Description Speci�cation for the WORKSTN �le.

Enabling the Function Key Labels

You can de�ne eight function key labels for a VPLUS form. To display the labels at run
time, enable them by entering an L in the Interface Control Field (column 50) of the File
Description Speci�cation.

Downloading VPLUS Forms

When using terminals that allow forms storage, you can download VPLUS forms. This
greatly improves the speed with which screens are displayed. Normally, only one form can
be downloaded. You can increase this number by entering a FORMDL File Description
Continuation line that speci�es this number.

You can download forms in one or more of the following ways:

Preload The form is displayed using the SHOW action (with the preload option
speci�ed). If the form is not already in terminal memory, it is placed there.
If you use SHOW without the preload option, the form is displayed directly
to the terminal.

You cannot download forms with the SHODTA action; instead, enter a
PUTDTA action followed by a SHOW action with the preload option
speci�ed.

Look-ahead The next form, named in the forms �le or in a GETNXT action, is
loaded before or after the current form is read depending on the data
communications in use. If point-to-point is used, the next form is loaded
before the current form is read. If multipoint is used, the next form is
loaded after the current form is read. Nothing happens when the form is
already in memory.

This downloading method is always in e�ect unless you enter N for the
look-ahead option of the RDTERM action.

Load-forms The LOADFM action loads the forms contained in the array named in
the LOADFM File Description Continuation line. Use LOADFM before
entering a SHOW or SHODTA action. Forms are loaded in the order
speci�ed by the array, until no more terminal memory is available. When
this happens, remaining forms are ignored.

10-6 RPG Interface to VPLUS

Example Conventions

Using the STATUS Array

The STATUS array (declared in a STATUS File Description Continuation line) is prede�ned
as a 6-element, 10-digit array with zero decimal places. VPLUS returns the error status in the
�rst element of the array. This status comes from the �rst word of the VPLUS COMAREA.
When you use the LOADFM action, the number of downloaded forms is returned in the
second element of the array.

Example

Figure 10-2 shows how to enter a File Description Speci�cation and its Continuation lines to
de�ne a VPLUS forms �le and the options relating to it. The File Description Speci�cation
indicates that the WORKSTN �le (TRANSFIL) is an update demand �le and that the
function keys are used as well as the �BREAK� key. The FORMS File Description Continuation
line (line 2) names the VPLUS forms �le to be processed. The BATCH Continuation line (line
3) names the �le (BATCHB) that contains data entered from the terminal. The TRACE
Continuation line (line 4) names the �le (TRACEFL) that logs VPLUS actions, events, and
run-time errors. The STATUS Continuation line (line 5) names the array that contains the
VPLUS status information. The FORMDL Continuation line (line 6) speci�es that there are 3
forms to download into terminal memory. The LOADFM Continuation line (line 7) names the
array that contains the form names.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FTRANSFILUD V 80 WORKSTN L5B

�2� F KFORMS FORMA

�3� F KBATCH BATCHA

�4� F KTRACE TRACEFL

�5� F KSTATUSSARRAY

�6� F KFORMDL3

�7� F KLOADFMFMARRAY

Figure 10-2. Entering VPLUS File Description Specifications

Entering Input Specifications

When VPLUS performs an action, it places the outcome of the action in an input record.
Each outcome has a unique event code. You can examine this code and direct processing
accordingly. The next two sections describe the VPLUS event codes and the input record
formats for each of them.

RPG Interface to VPLUS 10-7

Example Conventions

VPLUS Event Codes

When the VPLUS Interface reports an event, it places the event code in the �rst �eld of the
WORKSTN input record.

Event codes 00-08 indicate that the terminal operator pressed a function key. Event code 00
indicates that the operator entered data and pressed �ENTER�. In response to events 01-08, you
must enter an action. Event codes 09-12 are responses to previous actions in the program.
(These actions use the VPLUS data bu�er and normally take full advantage of the VPLUS
data handling features.)

Table 10-2 lists all of the event codes that are returned by the RPG VPLUS Interface.

Table 10-2. VPLUS Event Codes

Event
Code

Description Returned in Response
to

this Action Code

00 The terminal operator pressed �ENTER�. Data is returned in the
record.

54 (RDTERM)

01 The terminal operator pressed �f1�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

02 The terminal operator pressed �f2�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

03 The terminal operator pressed �f3�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

04 The terminal operator pressed �f4�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

05 The terminal operator pressed �f5�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

06 The terminal operator pressed �f6�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

07 The terminal operator pressed �f7�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

08 The terminal operator pressed �f8�. No data is returned unless F
is used with the RDTERM action.

54 (RDTERM)

09 Read the number of �elds that failed VPLUS or user edits. 59 (EDITS) or
61 (NUMERR)

10 Read data from the VPLUS data bu�er (data is included in the
record).

64 (GETDTA)

11 Return the record number of the current batch record, the mode
of operation (0= collect, 1= browse), the repeat/append status,
the freeze/append status the next form name.

Any action (or no action)
except 54, 59, 61, 64,

and 74.

12 Return the length and contents of a particular �eld in the VPLUS
data bu�er.

74 (GETFLD)

10-8 RPG Interface to VPLUS

Example Conventions

VPLUS Input Record Formats

Depending on the event, input records have one of four possible formats (as shown in
Table 10-3). Each of them contains a unique code for the event and the current form name in
the �rst two �elds. (The current form name lets you associate the data with the form in which
it is entered.)

RPG Interface to VPLUS 10-9

Example Conventions

Table 10-3. VPLUS Input Record Formats

Event Code Input Field Input Field Description

00-08, 10 Event code

(1-2)

00-08 and 10.

Current form name
(3-17)

Data length

(18-21)

The total number of characters required by all �elds in
the current form.

Data
(22-end of record)

This �eld is separated into sections according to the
de�nition of the current form. Only events 0 and 10
use this �eld.

09 Event code
(1-2)

09.

Current form name

(3-17)

Number of errors
(18-22)

The total number of �elds containing errors. The errors
are detected either by VPLUS (using FORMSPEC edit
checks) or by edits in the program.

11 Event code
(1-2)

11.

Current form name

(3-17)

Batch record number
(18-22)

When returned at the beginning of a program, this
number is the end-of-batch +1. It is useful in
determining what the upper bounds is for an existing
batch �le.

Mode
(23)

0 Collect mode.

1 Browse mode (the mode of operation that
allows data in the batch �le to be examined and
modi�ed; new batch records cannot be added).

Repeat/Append

(24)

This �eld is 0, 1, or 2.

Freeze/Append

(25)

This �eld is 0, 1, or 2.

Next form name
(26-40)

Number of non-deleted
batch records
(41-45)

10-10 RPG Interface to VPLUS

Example Conventions

Table 10-3. VPLUS Input Record Formats (continued)

Event Code Input Field Input Field Description

12 Event code

(1-2)

12.

Current form name
(3-17)

Field number

(18-22)

This �eld contains a unique identi�er for the �eld being
retrieved. It does not change if the �eld position in the
form changes.

Field length

(23-26)

Data
(27-end of record)

This �eld contains the data in the returned record.

Example

Figure 10-3 shows how to de�ne an input record for event 09 which reads the number of �elds
that failed the VPLUS edits.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

I*** NUMBER OF EDIT ERRORS (09)

I CC 19 1 C0 2 C9

I 3 17 FORMB

I 18 220NUMERR 01

Figure 10-3. Entering VPLUS Input Specifications

RPG Interface to VPLUS 10-11

Example Conventions

Entering Calculation Specifications

For demand WORKSTN �les, you display a VPLUS form and read the data entered into it
at the terminal by entering Calculation Speci�cation operations. Initiate a VPLUS action by
placing its action code or mnemonic in a WORKSTN output record, then perform exception
output to execute the action. When an action results in more than one VPLUS response, you
must retrieve the event code for them in an input record. The next two sections explain how
to return an event and how to start an action.

Initiating VPLUS Actions

To perform a VPLUS action (see the action codes in Table 10-4) place the action code or
mnemonic in the �rst positions of the WORKSTN output record then perform exception
output.

Example

Figure 10-4 shows how to perform the VPLUS edits (EDITS (59) action) speci�ed in
FORMSPEC. (Alternatively, \59 " could be moved to ACTION in line 1 instead of
\EDITS ".)

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� C 10 MOVEL"EDITS " ACTION

C 10 SETON 35 EDITS - 59

C 10 EXCPT

Figure 10-4. Initiating a VPLUS Action Using Calculation Specifications

10-12 RPG Interface to VPLUS

Example Conventions

Returning VPLUS Events

You learn of an event by performing a READ Calculation Speci�cation operation for the
WORKSTN �le. The data returned for the event is either from the terminal or is returned in
response to a previous action code. Data that is returned is placed in an input record de�ned
for the WORKSTN �le.

Example

Figure 10-5 shows how to return the number of edit errors encountered by VPLUS during an
EDITS (59) action (see Figure 10-4).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C 10 READ TRANSFIL H0

Figure 10-5. Returning a VPLUS Event Using Calculation Specifications

RPG Interface to VPLUS 10-13

Example Conventions

Entering Output Specifications

The next two sections describe the VPLUS action codes and how to de�ne the output records
used with them.

VPLUS Action Codes

The �rst �eld in the WORKSTN output record is the VPLUS action code (or action
mnemonic). Table 10-4 lists all of the action codes that you can use with the RPG VPLUS
Interface.

If you're doing your own input editing (not using VPLUS FORMSPEC edits), you only
need to use actions 50-57. If you want VPLUS to perform input editing, or if your screen
application is more complex, you can exercise the full capabilities of VPLUS by using any of
the actions codes listed in Table 10-4.

Table 10-4. VPLUS Action Codes

Action
Code

Mnemonic Description Corresponding
VPLUS
Intrinsic

50 CHGNXT Specify the next form name and whether the form
is repeat/append, freeze or normal.

None

51 GETNXT Get the next form from the forms �le, and set
repeat/append and freeze/append status. If
repeat mode is set, the form is not retrieved.
Follow this action by SHOW (action 53) to
display the form at the terminal.

VGETNEXTFORM

52 PUTMSG Specify a message (and any enhancements) to
display in the error/status line of the terminal.
The message is displayed only when SHOW
(action 53) is executed.

VPUTWINDOW

53 SHOW Display the current form, any initial data and any
message on the terminal screen.

VSHOWFORM

54 RDTERM Read terminal input into the VPLUS data bu�er.
Follow this action by a READ Calculation
Speci�cation operation to transfer the data to
your program. (The returned record will be one of
the event types 00-08.) If VPLUS performs input
editing, follow RDTERM with EDITS (action 59).
Note that a form must be displayed before
RDTERM will wait for a user response.

VREADFIELDS
VGETBUFFER

10-14 RPG Interface to VPLUS

Example Conventions

Table 10-4. VPLUS Action Codes (Continued)

Action
Code

Mnemonic Description Corresponding
VPLUS
Intrinsic

55 SHOMSG Display a message in the program (with any
enhancements) in the error/status line of terminal.
If data in the VPLUS bu�er has changed, the new
data is displayed. This action is a combination of
PUTMSG (action 52) and SHOW (action 53).

VPUTWINDOW
VSHOWFORM

56 CORERR Identify the �eld that failed user edits. The
output record contains the �eld number and a
message to display. The terminal user's response
is read. Follow this action with RDTERM (action
54) to read the user response (event types 00-08).
This action is a combination of BADFLD (action
62), SHOW (action 53), and RDTERM (action
54).

VSETERROR
VSHOWFORM
VREADFIELDS
VGETBUFFER

57 SHODTA Display data from the program bu�er to �elds on
the screen. This action is a combination of
PUTDTA (action 63) and SHOW (action 53).

VPUTBUFFER
VSHOWFORM

58 INIT Initialize �elds in the current form according to
defaults speci�ed in FORMSPEC. If there are
errors, move a message to the window.

VINITFORM
VERRMSG

VPUTWINDOW

59 EDITS Perform the edits for the �elds in the current
form. If there are any errors, display a message in
the terminal window for the �rst error. Follow
this action with a READ Calculation Speci�cation
operation. The record that is returned (event 09)
contains the number of �elds the failed the edit.

VFIELDEDITS
VERRMSG

VPUTWINDOW

60 PRINT Print the current form (with its data) on the line
printer. Before you this action, read the form
with GETNXT (action 51).

VPRINTFORM

61 NUMERR Return the error status. Follow this action by a
READ Calculation Speci�cation operation to
access the status. The record returned (event 09)
contains the number of �elds that failed the edits.

None

62 BADFLD Indicate that a �eld failed a user edit. The output
record contains the number of the �eld and a
message for the window.

VSETERROR

RPG Interface to VPLUS 10-15

Example Conventions

Table 10-4. VPLUS Action Codes (Continued)

Action
Code

Mnemonic Description Corresponding
VPLUS
Intrinsic

63 PUTDTA Replace the data in the VPLUS data bu�er with
the data that you specify. The output record
contains the new data for the VPLUS bu�er and
the length of that data.

VPUTBUFFER

64 GETDTA Move the data in the VPLUS data bu�er to the
program bu�er. Follow this action by a READ
Calculation Speci�cation operation to access the
data (event 10).

VGETBUFFER

65 FINISH Perform the �nal processing speci�ed for the
�nish phase of the form. If there are errors, move
a message to the window.

VFINISHFORM
VERRMSG

VPUTWINDOW

66 WRTBAT Move the contents of the VPLUS data bu�er to
the batch record corresponding to the current
record number. If collect mode is in e�ect the
current record number is incremented by one. If
in browse mode, the current record number is
una�ected.

VWRITEBATCH

67 PREV Read data from the previous batch record to the
VPLUS data bu�er. Place the program in browse
mode, if it is not already in that mode. Save the
current location in the batch �le and the current
form name.

VREADBATCH

68 REREAD Move the data from the current batch record into
the VPLUS data bu�er. The program must be in
browse mode (this mode is set by PREV, action
67).

VREADBATCH

69 NEXT Read data from the next batch record into the
VPLUS data bu�er. The program must be in
browse mode (this mode is set by PREV, action
67).

VREADBATCH

70 RESUME Return from browse mode to collect mode
(PREV, action 67, must have been used
previously). The next form name and the location
in batch �le are restored.

none

71 DELETE Delete the current batch record. The program
must be in browse mode (see PREV, action 67).

None

10-16 RPG Interface to VPLUS

Example Conventions

Table 10-4. VPLUS Action Codes (Continued)

Action
Code

Mnemonic Description Corresponding
VPLUS
Intrinsic

72 RDBTNU Read the batch record identi�ed by its record
number.

None

73 CLRMSG Clear the message window and, optionally, the
message bu�er.

VPUTWINDOW
VSHOWFORM

74 GETFLD Locate the speci�ed �eld in the VPLUS data
bu�er. Follow this action by a READ Calculation
Speci�cation operation. The returned record
(event 12). contains the �eld and its length.

VGETFIELD

75 PUTFLD Transfer data from the program bu�er to the
speci�ed �eld in VPLUS data bu�er.

VPUTFIELD

76 LOADFM Download forms to terminal memory. VLOADFORM

77 UNLDFM Unload (remove) the named form from the \form
storage directory", thus releasing space in
terminal memory.

VUNLOADFORM

78 CHMODE Set terminal to character mode without a�ecting
the screen display. Useful for writing escape
sequences to slaved printers on MPE/iX systems.

VTURNOFF

79 BLMODE Set terminal to block mode (restore original
environment after CHMODE).

VTURNON

RPG Interface to VPLUS 10-17

Example Conventions

VPLUS Output Record Formats

The output records for actions must contain the action code (or action mnemonic).
Depending on the action that you use, you may need to enter other �elds as well. The output
record formats and the �elds used with them are described in Table 10-5.

Table 10-5. VPLUS Output Record Formats

Action Code Output Field Output Field Description

50(CHGNXT) Action code/Mnemonic (1-6) 50 in columns 1-2 or CHGNXT in columns 1-6.

Next form name (7-21)

Repeat/Append(22) \0" - Normal sequence.
\1" - Repeat current form.
\2" - Append current form to self.

Freeze/Append(23) \0" - Clear screen.
\1" - Append next form to current form.
\2" - Freeze current form and append next form
to it.

52(PUTMSG)
55(SHOMSG)

Action code/Mnemonic(1-6) 52 or 55 in columns 1-2; or PUTMSG or
SHOMSG in columns 1-6.

Message length (7-8) This �eld speci�es the number of characters
in the message.

Enhancement code (9) This �eld speci�es the display enhancement for
the �eld:

@, A-0

See WINDOWENH in the Data Entry and Forms
Management System V PLUS/3000 manual.

zero

No enhancement.

blank

Do not change existing enhancement.

Message (10-end of record)

10-18 RPG Interface to VPLUS

Example Conventions

Table 10-5. VPLUS Output Record Formats (Continued)

Action Code Output Field Output Field Description

53(SHOW) Action code/Mnemonic

(1-6)

53 in columns 1-2 or SHOW in columns 1-6.

Preload option
(7)

P If the form is not already loaded into
terminal memory, it is loaded before being
displayed.

blank The form is not loaded into terminal
memory before being displayed.

54(RDTERM) Action code/Mnemonic

(1-6)

54 in columns 1-2 or RDTERM in columns 1-6.

Function key options
(7)

F Return screen data with events 01-08
when a function key is pressed. Data is
always returned with event 00 (when
�ENTER� is pressed).

blank Return screen data with event 00, but not
with events 01-08.

Look-ahead options
(8)

N Disable the forms downloading look-ahead
option.

blank Enable the forms downloading look-ahead
option.

RPG Interface to VPLUS 10-19

Example Conventions

Table 10-5. VPLUS Output Record Formats (Continued)

Action Code Output Field Output Field Description

56(CORERR)
62(BADFLD)

Action code/Mnemonic

(1-6)

56 or 62 in columns 1-2; or CORERR or
BADFLD in columns 1-6.

Field number
(7-11)

This �eld identi�es the �eld in error so that you
can enhance it.

Message length
(12-13)

This �eld speci�es the number of characters in the
message which is to be displayed in the message
window. The length should not exceed 79
displayable characters.

Enhancement code

(14)

This �eld speci�es the display enhancement for
the �eld in error:

@,A-0 See SINDOWENH in the Data Entry and
Forms Management System V PLUS/3000
manual.

zero No enhancement.

blank Do not change existing enhancement.

Message

(15-end of record)

57(SHODATA)
63(PUTDTA)

Action code/Mnemonic

(1-6)

57 or 63 in columns 1-2; or SHODTA or PUTDTA
in columns 1-6.

Data length
(7-10)

The total number of characters required by all
�elds in the current form.

Data

(11-end of record)

This �eld is separated into sections according to
the de�nition of the current form. The program
bu�er may contain data from a previous action or
event. To clear the bu�er before using this action,
enter ADD in columns 16-18 of the �rst Output
Speci�cation for this action. Also enter A in
column 66 of the File Description Speci�cation for
the WORKSTN �le.

10-20 RPG Interface to VPLUS

Example Conventions

Table 10-5. VPLUS Output Record Formats (Continued)

Action Code Output Field Output Field Description

60(PRINT) Action code/Mnemonic

(1-6)

60 in columns 1-2; or PRINT in columns 1-6.

Print control
(7)

Y Underline the data �eld.

blank Do not underline the data �eld.

Page control
(8)

+ Do not space a line.

- Triple space.

0 Double space.

1 Skip to the next page.

% Use the control code in columns 9-11.

R No CCTL; release FORMLIST for
printing immediately after this PRINT
action.

blank Single space.

Carriage Control Codes
(9-11)

Enter an octal code (from %0-%377). These codes
are described under FWRITE in the MPE/iX
Intrinsics Reference Manual .

72(RDBTNU) Action code/Mnemonic

(1-6)

72 in columns 1-2 or RDBTNU in columns 1-6.

Batch record number
(7-11)

73(CLRMSG) Action code/Mnemonic

(1-6)

73 in columns 1-2 or CLRMSG in columns 1-6.

Clear bu�er option

(7)

I Clear the message from the screen and
also from the message bu�er.

blank Clear the message from the message
bu�er.

RPG Interface to VPLUS 10-21

Example Conventions

Table 10-5. VPLUS Output Record Formats (Continued)

Action Code Output Field Output Field Description

74(GETFLD)
75(PUTFLD)

Action code/Mnemonic

(1-6)

74 or 75 in columns 1-2; or GETFLD or PUTFLD
in columns 1-6.

Field number
(7-11)

This �eld identi�es the �eld to read or write. The
number is assigned by FORMSPEC and does not
change even when the �eld is moved to another
position on the screen.

Field length
(12-15)

This �eld speci�es the number of characters in the
�eld.

Data

(16-end of record)

For PUTDTA, this �eld contains the data record
to be written to the VPLUS bu�er.

76(LOADFM) Action code/Mnemonic

(1-6)

76 in columns 1-2 or LOADFM in columns 1-6.

Number of forms
(7-9)

This �eld contains the number of forms to load
into terminal memory from the LOADFM File
Description Continuation line array. The number
should not exceed the number declared in the
FORMDL File Description Continuation line.
Forms are loaded in the order speci�ed in the
LOADFM array until terminal memory is
exhausted; then excess forms are ignored.

or RPG creates the LOADFM array as an
unsequenced alphanumeric compile-time array
with an element length of 16 (15 characters for the
form name and a blank). The number of elements
is determined by the FORMDL line. If you want
to enter the form names at run time, rather than
at compile time, enter an ** line for the array at
the end of the source program. Instead use Input
or Calculation Speci�cations to load the names.

If you're using the STATUS array with VPLUS,
the second element in it contains the actual
number of forms loaded.

Form name

(7-21)

This �eld names the form to be loaded into
terminal memory. If you're using the STATUS
array with VPLUS, the second element in it
contains the actual number of forms loaded.

10-22 RPG Interface to VPLUS

Example Conventions

Table 10-5. VPLUS Output Record Formats (Continued)

Action Code Output Field Output Field Description

77(UNLDFM) Action code/Mnemonic

(1-6)

77 in columns 1-2 or UNLDFM in columns 1-6.

Form name
(7-21)

This �eld names the form to be removed from
the forms storage directory. This releases space
in terminal memory. (Forms that have not
recently been used are automatically removed to
make room for new ones.)

Other actions Action code/Mnemonic

(1-6)

51 in columns 1-2 or GETNXT in columns 1-6.
58 in columns 1-2 or INIT in columns 1-6.
59 in columns 1-2 or EDITS in columns 1-6.
60 in columns 1-2 or PRINT in columns 1-6.
61 in columns 1-2 or NUMBERR in columns 1-6.
64 in columns 1-2 or GETDTA in columns 1-6.
65 in columns 1-2 or FINISH in columns 1-6.
66 in columns 1-2 or WRTBAT in columns in 1-6.
67 in columns 1-2 or PREV in columns in 1-6.
68 in columns 1-2 or REREAD in columns 1-6.
69 in columns 1-2 or NEXT in columns 1-6.
70 in columns 1-2 or RESUME in columns 1-6.
71 in columns 1-2 or DELETE in columns 1-6.
78 in columns 1-2 or CHMODE in columns 1-6.
79 in columns 1-2 or BLMODE in columns 1-6.

For NEXT and PREV, if you try to read past
either end of a batch �le, the read is not actually
executed. The current record number is set to
out-of-bounds (end of batch + 1 for NEXT and
- 1 for PREV). Aside from the current record
number, the program has no other indication of
an out-of-bounds condition.

Example

Figure 10-6 shows how to enter an output record to start the PUTDTA action (63).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

O E 37
O 6 "PUTDTA"

O DATALN 10

O DATA 67

Figure 10-6. Entering VPLUS Output Specifications

RPG Interface to VPLUS 10-23

Example Conventions

Sample VPLUS Program

This section shows a program that uses the RPG VPLUS Interface. The program is a typical
data entry program. Data collected from it is written to a batch �le that can be used by other
programs and applications. The program, shown in Figure 10-7, does the following:

Displays a VPLUS form with its initial values.
Reads data entered into the form by the terminal operator.
Performs VPLUS and program edits on the input data.
Writes the edited data to a VPLUS batch �le.

The File Description Speci�cations de�ne the WORKSTN �le, the VPLUS �le in which the
forms are stored, the batch �le where the edited data is written and the trace �le where a log
of the actions and events is written.

The Input Speci�cations de�ne the input records for events 00 (the �ENTER� key), 01-08
(function keys �f1� through �f8�), and 09 (the number of �elds with edit errors). This program
treats events 01-07 as if they were event 08. Data is not returned by events 01-08; they signal
that a function key is pressed and cause the program to go to the label EXIT.

The Calculation Speci�cations perform VPLUS actions using exception output. Events are
returned using demand READs. The program ends when �f8� is pressed.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

� 1 � HDUMPFILE

� 2 � FTRANSFILUD V 80 WORKSTN L5B

� 3 � F KFORMS FORMA

� 4 � F KBATCH BATCHA

� 5 � F KTRACE TRACEFL

� 6 � I*** ENTER KEY (00)

I*

ITRANSFILAA 10 1 C0 2 C0

I OR 1 C1 2 C0

I 3 17 FORMB

I 18 21 DATALN

I 22 78 DATA

I 22 41 NAME

Figure 10-7. A Program that Uses VPLUS

10-24 RPG Interface to VPLUS

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

I 42 61 ADDR

I 62 71 CITY

I 72 73 ST

I 74 78 ZIP

� 7 � I*** EXIT KEYS (01 - 08)

I BB 18 1 C0 2 C1

I OR 1 C0 2 C2

I OR 1 C0 2 C3

I OR 1 C0 2 C4

I OR 1 C0 2 C5

I OR 1 C0 2 C6

I OR 1 C0 2 C7

I OR 1 C0 2 C8

� 8 � I*** NUMBER OF EDIT ERRORS (09)
I CC 19 1 C0 2 C9

I 3 17 FORMB

I 18 220NUMERR 01

� 9 � C* GET NEXT FORM

C START TAG

C MOVEL"GETNXT" ACTION 6

C SETON 35 GETNXT - 51

C EXCPT

�10� C* SET INITIAL VALUES

C MOVEL"INIT " ACTION INIT - 58

C EXCPT

C SETOF 35

�11� C* DISPLAY FORM

C REPEAT TAG

C SETOF 01

C MOVEL"SHOW " ACTION

C SETON 35 SHOW - 53

C EXCPT

�12� C* READ FROM TERMINAL

C MOVEL"RDTERM" ACTION RDTERM - 54

C EXCPT

C SETOF 35

�13� C* READ RECORD

C READ TRANSFIL H0

C*** IF F1 - F8 EXIT ELSE CONTINUE

C 18 SETON LR

C LR GOTO EXIT EXIT IF F1 - F8

Figure 10-7. A Program that Uses VPLUS (Continued)

RPG Interface to VPLUS 10-25

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�14� C* IF ENTER - EDIT DATA

C 10 MOVEL"EDITS " ACTION

C 10 SETON 35 EDITS - 59

C 10 EXCPT

C 10 SETOF 35

�15� C* DETERMINE NO. OF ERRORS

C 10 READ TRANSFIL H0

C*** IF ERRORS - RETURN TO STEP 3

C 01 GOTO REPEAT

C*** IF NO ERRORS CONTINUE

C*

�16� C* TRANSFER DATA TO PROGRAM

C MOVEL"GETDTA" ACTION

C SETON 35 GETDTA - 64
C EXCPT

C SETOF 35

�17� C* READ DATA FROM TRANSFIL

C READ TRANSFIL H0

C*

�18� C* PERFORM USER EDITS

C MORERR TAG

C*

C*** SUPPLY USER EDITS HERE

�19� C* FIND ERRORS, ENHANCE FIELDS, DISPLAY MESSAGE

C N20 GOTO NOERRS

C MOVE " " FLDNO 5

C MOVE "00" MSLEN 2

C MOVE " " ENHCD 1

C MOVE " " MSG 47

C SETON 36 CORERR - 56

C EXCPT

C READ TRANSFIL

C GOTO MORERR

C NOERRS TAG

C SETOF 36

C*

�20� C* MOVE DATA FROM PROGRAM TO BUFFER

C SETON 37 PUTDTA - 63

C EXCPT

C SETOF 37

C*

Figure 10-7. A Program that Uses VPLUS (Continued)

10-26 RPG Interface to VPLUS

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�21� C* WRITE DATA FROM BUFFER TO BATCH FILE

C MOVEL"WRTBAT" ACTION

C SETON 35 WRTBAT - 66

C EXCPT

C SETOF 35

C*

�22� C* CHECK NEXT FORM FOR STATUS CHANGE

C MOVE " "NXTFRM 15

C MOVEL" "NXTFRM

C MOVELFORMB NXTFRM

C MOVE "0" RPTAPP 1

C MOVE "0" FRZAPP 1

C SETON 38 CHGNXT - 50

C EXCPT
C SETOF 38

C*

�23� C* RETURN TO STEP 1

C SETOF 011018

C SETOF 19

C GOTO START

C*

�24� C* END OF PROCESSING

C EXIT TAG

O*** INDICATOR 35 FOR ACTIONS 51,53,54,58-61,64-70

O*** INDICATOR 36 FOR ACTIONS 56 AND 62

O*** INDICATOR 37 FOR ACTIONS 57 AND 63

O*** INDICATOR 38 FOR ACTION 50

O*

�25� OTRANSFILE 35

O ACTION 6

O E 36

O 6 "CORERR"

O FLDNO 11

O MSLEN 13

O ENHCD 14

O MSG 60

O E 37

O 6 "PUTDTA"

O DATALN 10

O DATA 67

Figure 10-7. A Program that Uses VPLUS (Continued)

RPG Interface to VPLUS 10-27

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

O E 38

O 6 "CHGNXT"

O NXTFRM 21

O RPTAPP 22

O FRZAPP 23

Figure 10-7. A Program that Uses VPLUS (Continued)

Comments

� 1� This Header Speci�cation directs RPG to save dump information in the �le
DUMPFILE if run-time errors occur.

� 2� This line de�nes the WORKSTN (terminal) �le TRANSFIL.

Column 15 is U to specify an update �le type. You must use this �le type with
VPLUS.

Column 16 is D to specify that TRANSFIL is a demand �le. For this particular
example, TRANSFIL must be a demand �le. For applications that use the RPG
logic cycle, the �le may be a primary �le.

Column 19 is V to specify variable length records. All WORKSTN �les must have
variable length records.

Columns 24-27 contain the record length. The record length is dependent on the
data bu�er length for the longest form, plus 20 characters of control information.
(Assume that the longest form in this example contains 60 data characters.)

Columns 40-46 contain WORKSTN to de�ne the device class name for the VPLUS
�le.

Column 50 is L to enable the function key labels on the terminal.

Column 51 is 5 to specify that 5 seconds is the length of time that a message is
displayed at the terminal.

Column 52 is B to enable the �BREAK� key.

� 3� This line de�nes the VPLUS forms �le used in the program. (This line is required.)

Column 53 is K to identify this File Description Speci�cation as a Continuation line.

Columns 54-59 specify that this is a FORMS File Description Continuation line.

Columns 60-74 name the forms �le FORMA. If the name is longer than 15
characters, enter an MPE FILE command for it.

10-28 RPG Interface to VPLUS

Example Conventions

� 4� This line de�nes the VPLUS batch �le used in the program. (This line is optional.)

Columns 54-59 specify that this is a BATCH File Description Continuation line.

Columns 60-74 name the batch �le BATCHA.

� 5� This line de�nes the VPLUS trace �le used in the program. (This line is optional.)

Columns 54-59 specify that this is a TRACE File Description Continuation line.

Columns 60-74 name the trace �le TRACEFL.

� 6� This line begins the Input Speci�cations for event 00 (the �ENTER� key).

� 7� This line begins the Input Speci�cations for events 01-08. These events do not read
data; they direct program execution to the label EXIT.

� 8� This line begins the Input Speci�cations for event 09 (�elds with errors).

� 9� The next few lines read the next form from the forms �le (GETNXT, action 51). If
the form is currently being used, it is not read.

�10� The next few lines initialize the form with the FORMSPEC default values (INIT,
action 58).

�11� The next few lines display the initialized form and a message in the message window
(SHOW, action 53).

�12� The next few lines indicate that data is to be read from the terminal with
RDTERM (action 54).

�13� The next few lines read (demand read) the data from the terminal. The data is
returned as events 00-08 (for simplicity in this example, events 01-07 are treated as
event 08).

If the event is 01-08 (EXIT), terminate the program. If the event is 00 (ENTER),
continue.

�14� Perform all VPLUS �eld edits speci�ed for the form using EDITS (action 59).

�15� Read the WORKSTN �le. The record returned (event 09) speci�es the number of
errors found in the data.

If errors are found, a message describing the �rst error is moved to the window
bu�er, and all �elds with errors are enhanced. Return to Step 11 to display the
form with the error message and enhancements. Repeat Steps 11-15 until no errors
remain. If there are no errors, continue with Step 16.

�16� Transfer data from the VPLUS data bu�er to the program using GETDTA (action
64).

�17� Read the WORKSTN �le. The record returned (event 10) contains the data from
the VPLUS bu�er.

�18� Perform editing speci�ed in the program. If errors are found, continue with Step 19;
otherwise, go to Step 20.

RPG Interface to VPLUS 10-29

Example Conventions

�19� Using CORERR (action 56) indicate which �elds failed the user edits and display
the form with these �elds. If the program bu�er contains a message for the window,
display it with the form. Action 56 is followed by a demand READ. If the event
returned is 00, terminal operator entered corrections and pressed �ENTER�. Repeat
Steps 18 and 19 until all data passes the user edits.

�20� Transfer the edited data to the VPLUS bu�er using PUTDTA (action 63).

�21� Write the data in the VPLUS bu�er to the batch �le using WRTBAT (action 66).

�22� If the next form name or the repeat/append or freeze/append status should be
changed, CHGNXT (action 50) makes these changes.

�23� Go to Step 9.

�24� End of processing.

�25� This line begins the Output Speci�cations for actions 56, 63 and 50.

10-30 RPG Interface to VPLUS

11

RPG Screen Interface (RSI)

The RPG Screen Interface (RSI) lets you read and display data on a terminal using the entire
screen. RSI is an alternative to the RPG interface to VPLUS. To use the RPG interface to
VPLUS, you must enter action and event operations in the Calculation Speci�cations which
may seem di�erent and cumbersome. RSI lets you use the screen in a way that is similar to
performing other RPG input and output functions and it requires just a small amount of
additional code to use.

RSI lets you:

Perform screen input and output using conventional RPG speci�cations.

You can retrieve a screen form from an RSI forms �le, display it using default �eld values,
read data entered on the form, and detect and
ag input errors.

Use RPG indicators to control form and �eld attributes.

Control program logic by using the command key indicators (KA-KN, KP-KY) and function
key return codes.

Use forms that overlay portions of other forms.

Use forms that do not begin on the �rst line of the screen.

Use forms that have been downloaded to the terminal. (You can download RSI forms only
with 2394A and 700/94 terminals.)

Use CONSOLE input �les. A CONSOLE �le is a special kind of RSI �le that is processed
automatically by RPG and whose forms �le is generated at compile-time using the �le's
Input Speci�cations. (See \Using RSI CONSOLE Files" in this chapter.)

This chapter explains how to use RSI. The chapter is divided into three main sections. The
�rst describes how to take full advantage of the RSI features. The second section discusses
those RSI features that relate speci�cally to RSI CONSOLE �les. The last section, starting
with \Using Messages with RSI", gives additional topics to consider when using RSI �les.

RPG Screen Interface (RSI) 11-1

Example Conventions

Using the RPG Screen Interface (RSI)

To use RSI in an RPG program, perform the following steps (each of the steps is explained in
detail in the following sections in this chapter):

1. Create the RSI forms �le using the RPG utility, SIGEDITOR.

2. Specify screen-related options and de�ne the RSI forms �le using File Description, Input
and Output Speci�cations.

3. If necessary, you can enter Calculation Speci�cations to perform auxiliary processing for
the RSI �le. You condition operations using one or more of the RPG indicators including
the command key indicators (KA-KN, KP-KY).

You can perform exception output and demand input of an RSI form by using the EXCPT
and READ operations, respectively.

Using SIGEDITOR

To create or modify an RSI forms �le, you must use the RPG utility, SIGEDITOR. (See the
RPG Utilities Reference Manual .) SIGEDITOR gives you complete
exibility in de�ning an
RSI form. You de�ne where the �elds are located, their lengths and data types and the values
they can contain.

In addition to de�ning �elds, you can enable any or all of the command key indicators
(KA-KN, KP-KY). The command key indicators let RSI communicate events to the RPG
program at run time. For example, a data entry operator (user) can press a certain key to
end the program. This turns ON the associated command key indicator. See the section
\Executing an RSI Program" for information on the command keys and the command key
indicators associated with them.

Redefining Function Key Labels

An RSI form by default displays the following key labels for enabled function keys:

NNNNNNNNNNNNNNNNNNNNNNNNNN
COMMAND

NNNNNNNNNNNNNNNNNNNNNNNNNN
*PRINT

NNNNNNNNNNNNNNNNNNNNNNNNNN
f3

NNNNNNNNNNNNNNNNNNNNNNNNNN
f4

NNNNNNNNNNNNNNNNNNNNNNNNNN
f5

NNNNNNNNNNNNNNNNNNNNNNNNNN
*HELP

NNNNNNNNNNNNNNNNNNNNNNNNNN
f7

NNNNNNNNNNNNNNNNNNNNNNNNNN
DUPLNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

SCREEN
NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN

�f1� �f2� �f3� �f4� �f5� �f6� �f7� �f8�

The key labels for �f1� and �f8� cannot be changed, but you can specify labels for the keys �f2�
through �f7� by taking these steps:

1. Add a $CONTROL compiler command with the FKEYLBL parameter to your program.

2. Add a File Extension Speci�cation de�ning an array of 8 elements with 16 alphanumeric
characters in each element. The �rst 8 characters of each element are the �rst line of the
label, and the second 8 characters are the second line of the label.

3. Add a Calculation Speci�cation using the SET operator to load your array into the key
labels. Place this statement before the one displaying the RSI form.

Remember that you can rede�ne labels for only function keys �f2� through �f7�, and of those,
for only the ones that were enabled when the RSI form was created with SIGEDITOR. Your
label array must include labels for all eight function keys, though labels for the �rst, last, and
disabled keys may be blank because they will be ignored.

11-2 RPG Screen Interface (RSI)

Example Conventions

Using the RSI Application Help Facility

The RSI application help facility consists of \help areas" and \help forms." Both are created
using the SIGEDITOR. (See the RPG Utilities Reference Manual .) The SIGEDITOR can also
create help areas from IBM \H" speci�cations.

Help areas are imaginary boundaries that are overlayed on the application form. Up to 256
help areas are allowed on an individual application form. When the user presses �F6� (HELP),
RSI notes the cursor position and scans a list of help area de�nitions for the �rst one that
covers the cursor position. The help area de�nition contains the name of the �rst help form to
display. Additional help forms, if available, can be displayed using �F3� (ROLL UP) and �F4�
(ROLL DOWN) keys. The user can return to the application form by pressing �ENTER�.

Help forms are ordinary RSI forms, except that they are made of text only. The text can
start on any line from 01-24 and can clear up to 24 lines. Help forms can overlay other help
forms, but cannot overlay the application form. Help forms must not contain any �elds, video
enhancements, or message constants. They cannot use the variable starting line number
feature. If a help form contains any unsupported speci�cations, they are ignored when the
form is displayed.

An RSI application using the help facility must be prepared with DS capability before use
in an RPG program. The application form must have the �F6� (HELP) key disabled. No
additional RPG programming is required to use the basic RSI application help facility. If you
want to use the suppressed selection or boundary features, you must enter RPG calculation
speci�cations to control these indicators.

Entering File Description Specifications

To use an RSI forms �le in a program, you must de�ne it as a WORKSTN �le in the Device
Class Name Field (columns 40-46) of the File Description Speci�cation for the �le. You must
also enter R in the Interface Type Field (column 47) of the File Description Speci�cation.

Table 11-1 describes other �elds in the File Description Speci�cation that you may use with
RSI �les. The �elds that are optional are followed by an asterisk (*). For more information on
the RSI STATUS array (columns 54-59), see the next section.

RPG Screen Interface (RSI) 11-3

Example Conventions

Table 11-1. RSI File Description Specifications

Speci�cation Type Field Value

File
Descriptionn(F)

File Name(columns 7-14) The name of the RSI �le.

File Type

(column 15)

U (update).

File Designationn(column 16) P (primary) or D (demand).

Record Format
(column 19)

V (variable-length records).

Logical Record Length
(columns 24-27)

The length of the longest record de�ned in the
Input and Output Speci�cations.

Device Class Name
(columns 40-46)

WORKSTN.

Interface Type

(column 47)

R (standard RSI �le).

Interface Control*
(column 52)

B (enable) or blank (disable) the BREAK key.

(Continuation line) Option Type*

(columns 54-59)

STATUS The RSI STATUS array (containing 6
elements, each 10 digits long with no
decimals) is de�ned automatically by
RPG.

FORMS The forms �le name containing forms
used by the program. If you omit this
line, RPG uses the entry in the Program
Name Field (columns 75-80) of the
Header Speci�cation (with \FM"
appended) as the forms �le name. If
there is no program name in the Header
Speci�cation, the forms �le name is
RPGOBJFM.

TRMID The �eld name containing the terminal
identi�cation number.

START The �eld name containing the starting
line number for forms with variable
starting line numbers.

FIRST The name of the form displayed during
program initialization.

11-4 RPG Screen Interface (RSI)

Example Conventions

Example

Figure 11-1 shows how to de�ne an RSI forms �le in the File Description Speci�cation. Line 1
de�nes the �le WORKSTN as an RSI WORKSTN �le. Line 2 de�nes the RSI STATUS array
#WSTN#. Line 3 names the RSI forms �le, NEWLIB.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FWORKSTN UP V 91 WORKSTNR B

�2� F KSTATUS#WSTN#

�3� F KFORMS NEWLIB

Figure 11-1. Entering RSI File Description Specifications

Using the STATUS Array

The STATUS array (declared by a STATUS File Description Continuation line) is prede�ned
as a 6-element, 10-digit array with zero decimal places. You can use the STATUS array to
determine which function key the user pressed and where the cursor is positioned on the
screen.

In order for RSI to detect the function keys, you must enable them (in the form's attributes)
when running SIGEDITOR. Also, your terminal must return the default escape sequences
ESCp through ESCw when the keys �f1� through �f8� are pressed. See your terminal reference
manual to check this.

The �rst three elements in the STATUS array are used by RSI. They are:

This STATUS element: is set to: when:

1 0
2
1121
1122
1123
1124
1125
1126
1127

�ENTER� is pressed.
Command key (�f1�) is pressed.
Print Screen (�f2�) is pressed.
Roll Up (�f3�) is pressed.
Roll Down (�f4�) is pressed.
Clear (�f5�) is pressed.
Help (�f6�) is pressed.
Record Backspace (�f7�) is pressed.
Duplicate (�f8�) is pressed.

2 Screen row number. One of the function keys is pressed.

3 Screen column number. One of the function keys is pressed.

RPG Screen Interface (RSI) 11-5

Example Conventions

Entering Input and Output Specifications

There are two ways to enter Input and Output Speci�cations for an RSI �le:

You can enter the speci�cations yourself.

You can have SIGEDITOR generate the speci�cations when you de�ne the form. Once the
speci�cations are generated, you may need to tailor them for additional requirements.

Table 11-2 describes the �elds in the Input and Output speci�cations that relate to an RSI
forms �le. The �elds that are optional are followed by an asterisk (*).

Table 11-2. RSI Input and Output Specifications

Speci�cation Type Field Value

Input (I)

(File and Record
Description line)

File Name
(columns 7-14)

The name associated with the WORKSTNR device.

AND/OR*

(columns 14-16)

AND or OR to complete the identi�cation of the
form.

Group Sequence*
(columns 15-16)

A numeric entry for sequence checking or an
alphabetic entry for no sequence checking.

Number of Records*

(column 17)

1 or N if the Group Sequence Field is numeric.

Option*
(column 18)

Blank or 0 if the Group Sequence Field is numeric.

Record Indicator*

(columns 19-20)

The record-identifying indicator used to identify the
form.

Record Identi�cation
Codes*

(columns 21-41)

The record identi�cation codes that identify the
form.

(Field Description
lines)

From Field Position
(columns 44-47)

The �rst location of the �eld in the record.

To Field Position

(columns 48-51)

The last location of the �eld in the record (for
signed numeric �elds, do not include the sign
position).

Decimal Positions

(column 52)

A digit that speci�es the number of decimal
positions in a numeric �eld.

Field Name
(columns 53-58)

The name of a �eld or array element.

Field Record Relation*

(columns 63-64)

The �eld record relation indicator.

Field Indicators*
(columns 65-70)

The �eld indicators.

11-6 RPG Screen Interface (RSI)

Example Conventions

Table 11-2. RSI Input and Output Specifications (continued)

Speci�cation Type Field Value

Output (O)

(Record
Description line)

File Name

(columns 7-14)

The name associated with the WORKSTNR device.

AND/OR*

(columns 14-16)

AND or OR to relate output indicators on
consecutive lines.

Type
(columns 15)

H (heading), D (detail), T (total), or E (exception).

Fetch Over
ow/Release

(column 16)

R to close the WORKSTN �le after the
speci�cation is executed.

Output Indicators*

(columns 23-31)

Output indicators.

Field Name*
(columns 32-37)

The EXCPT Name if the Type Field is E.

(First Field
Description line)

Field Name

(columns 32-37)

The name of an alphanumeric �eld containing the
form name (this is not required if the
Constant/Edit Word Field contains the name).

End Position

(columns 40-43)

K and the number of characters in the form name in
column 43.

Constant/Edit Word

(columns 45-54)

The form name enclosed in quotation marks (not
required if you enter the form name in the Field
Name Field).

(Remaining Field
Description lines)

Output Indicators*
(columns 23-31)

Output indicators.

Field Name

(columns 32-37)

A �eld name.

Edit Code*
(column 38)

An edit code.

Blank After*
(column 39)

Blank or B.

End Position
(columns 40-43)

An ending position (for signed numeric �elds, do
not include the sign position).

Constant/Edit Word*

(columns 45-70)

An edit word or constant.

RPG Screen Interface (RSI) 11-7

Example Conventions

Entering Calculation Specifications

You may include Calculation Speci�cations to condition operations related to RSI form
processing. You can condition operations using any of the RPG indicators including
the command key indicators enabled in SIGEDITOR (see the previous section \Using
SIGEDITOR"). The command key indicators are turned ON when the user presses the
corresponding command key. (See the next section for a description of the command keys.)

If you need to read or write the RSI screen on a demand basis, use the READ and EXCPT
operations (you must de�ne the �le as an update demand �le in the File Description
Speci�cation). Unless you speci�ed in SIGEDITOR that the form is for exception output,
EXCPT output is held until a READ is encountered, then one physical write and one physical
read are performed.

Example

Figure 11-2 shows how to use command key indicator KG to end a program. (You can use a
command key indicator like a general indicator, but you should only do this when you are not
using an RSI WORKSTN �le in the program.)

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C KG GOTO EOF

Figure 11-2. Entering an RSI Calculation Specification

Executing an RSI Program

You execute a program that uses RSI the same way you do other RPG programs. Depending
on the features you use in the program and the environment in which it is run, you may need
to perform additional tasks before running the program. See the next two sections and the
sections at the end of this chapter starting with \Using Di�erent Terminals" to see if any of
these tasks apply to your particular program.

When you run a program that processes an RSI �le, the data entry user issues \commands" to
RSI by pressing up to 24 command keys (COMMAND �f1� followed by a key on the top row
of the keyboard). When a command key is pressed, the associated command key indicator is
turned ON. (You must have already enabled the command key indicator in SIGEDITOR.).
The keys that you can use on the top row of the keyboard are the shifted and unshifted keys
1-9, -, and =. They are shown in Figure 11-3.

Figure 11-3. RSI Command Keys

11-8 RPG Screen Interface (RSI)

Example Conventions

Table 11-3 lists the command keys and the command key indicators that correspond to them.
When the user presses a command key, the corresponding command key indicator is turned
ON and all other command keys indicators are turned OFF.

Table 11-3. How RSI Command Key Indicators Are Turned ON

COMMAND (�f1�) followed by: Turns ON this Command Key Indicator:

1 KA

2 KB

3 KC

4 KD

5 KE

6 KF

7 KG

8 KH

9 KI

0 KJ

- KK

= KL

�SHIFT� 1 KM

�SHIFT� 2 KN

�SHIFT� 3 KP

�SHIFT� 4 KQ

�SHIFT� 5 KR

�SHIFT� 6 KS

�SHIFT� 7 KT

�SHIFT� 8 KU

�SHIFT� 9 KV

�SHIFT� 0 KW

�SHIFT� - KX

�SHIFT� = KY

Note The command keys shown in Table 11-3 are supported on 239x and 262x
terminals (264x terminals are also supported but the keys on the keyboard
may not be the same). If you have a di�erent terminal or a non-standard
keyboard, you can can still use RSI with it but you must de�ne the command
keys in the �le CMDKEYS. CMDKEYS enables you to use RSI with
any terminal or keyboard con�guration. See the section \Using Di�erent
Terminals" for instructions on how to set up the CMDKEYS �le.

RPG Screen Interface (RSI) 11-9

Example Conventions

Using Messages with RSI

If you're using messages with an RSI form and you're accessing them by message identi�cation
numbers or you did not merge them with the forms �le in SIGEDITOR, RSI will access the
message �le CATALOG at run time. If CATALOG is not the �le you want to use, enter an
MPE FILE command to equate CATALOG to that �le. For example, if your message �le is
INVMSGS, enter this �le equation:

:FILE CATALOG=INVMSGS

Displaying an End-of-Program Form

When you write a display-only form to the screen after the user ends program input, that
form remains on the screen until the user presses �ENTER�, an enabled command key, or an
enabled function key. To automatically remove the form from the screen after a few moments,
set the JCW RSIPAUSE before executing the program or use a PUTJW Calculation
Speci�cation operation to set the JCW. When you set the JCW RSIPAUSE, enter the number
of seconds that you want the form to remain on the screen. If the number is not in the range
1 to 60, it is ignored. In the following example, the �nal screen for program INV3470P is
displayed for 15 seconds before the program ends:

:SETJCW RSIPAUSE=15

:RUN INV3470P

11-10 RPG Screen Interface (RSI)

Example Conventions

Sample RSI Programs

This section shows two versions of a program that uses RSI. One version, shown in
Figure 11-7, de�nes the RSI forms �le as a primary �le and lets RPG process it normally
in the logic cycle. The second version, shown in Figure 11-8, de�nes the RSI forms �le as a
demand �le and contains Calculation Speci�cations to read and write screen data using the
forms �le.

The sample program updates a customer information �le that uses social security numbers
as its key. The user can add or delete persons by entering their social security number then
pressing command keys 1 or 2, respectively. Or the user can change an individual's address or
phone information by pressing command key 3.

Two RSI forms are used in each version of the program. The �rst one that is displayed is
shown in Figure 11-4. If the user wants to add a record or update one that already exists,
a second screen (Figure 11-5) is displayed. The shaded parts in these �gures show where
the user enters data and where output data is displayed. (The screen title and messages
are shown in Figure 11-6. They are contained in a message �le that was created before the
program is executed. You create message �les using GENCAT or MAKECAT. GENCAT is
described in the Native Language Programmer's Guide and MAKECAT is discussed in the
Message Catalogs Programmer's Guide.)

CUSTOMER INFORMATION FORM

Please enter Social Security Number

306-46-7778

RECORD ALREADY EXISTS

Press CMD 1 TO ADD NEW RECORD

CMD 2 TO DELETE EXISTING RECORD

CMD 3 TO UPDATE EXISTING RECORD

CMD & TO END JOB

COMMAND *PRINT f3 f4 f5 *HELP f7 f8

SCREEN

Figure 11-4. Form21 (Contained in RSI Forms File SAMPLIB)

RPG Screen Interface (RSI) 11-11

Example Conventions

SOC. SEC. NO. 306-46-7778

NAME MARY Q. QUAIL

ADDRESS MORSE GROVE, FLA

ZIP CODE 339080000 PHONE NO. 813-672-1212

PRESS :ENTER:

COMMAND *PRINT f3 f4 f5 *HELP f7 f8

SCREEN

Figure 11-5. Form22 (Contained in RSI Forms File SAMPLIB)

$SET 1

1 RECORD ALREADY EXISTS

2 RECORD DOES NOT EXIST

3 CUSTOMER INFORMATION FORM

Figure 11-6. The Message File

11-12 RPG Screen Interface (RSI)

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

HDUMPFILE JF X B B N P1 1

�1� FWORKSTN UP V 90 WORKSTNR B

F KFORMS SAMPLIB

FCUSTMASTUC F 128R 9AI 1 DISK A

F KKEYFL KCUSTMST

F*

F* SAMPLE RSI PROGRAM USING THE WORK STATION AS A PRIMARY FILE

F*

�2� IWORKSTN NS 01 1 C1

I* FORM21

I 1 1 FLD1

I 2 100SSN
I NS 02 1 C2

I* FORM22

I 1 1 FLD1

I 2 27 NAME

I 28 63 ADDR

I 64 720ZIP

I 73 82 PHONE#

I NS

�3� ICUSTMASTNS

I 1 90SSN

I 10 35 NAME

I 36 71 ADDR

I 72 800ZIP

I 81 90 PHONE#

C N99 SETON

C* CLEAN UP 02 99

�4� C 01 SETOF 808182

C 01 SETOF 656070

C* DETERMINE ACTION REQUESTED

�5� C KA SETON 80 ADD RECORD

C KB SETON 81 DEL RECORD

C KC SETON 82 UPD RECORD

C KG SETON LR END JOB

C KG GOTO EOF

�6� C N01 GOTO EOF

C* READ RECORD FROM CUSTOMER MASTER FILE USING SSN AS A KEY

C SETOF 42
C SSN CHAINCUSTMAST 42 NO HIT

Figure 11-7. Processing an RSI Primary File

RPG Screen Interface (RSI) 11-13

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C* SET INDICATORS FOR ERRORS

�7� C 80N42 SETON 6070

C N80 42 SETON 6065

C EOF TAG

�8� OWORKSTN D 1P

O OR 02

O OR 01 60

O OR 01 81

O K6 "FORM21"

O 70 6 "0001 1"

O 65 6 "0002 1"

O**

�9� O D 01 80 42

O OR 01 82N42
O K6 "FORM22"

O SSN 9

O NAME 35

O ADDR 71

O ZIP 80

O PHONE# 90

O* UPDATE DISK RECORD

�10� OCUSTMASTD 02 82

O SSN B 9

O NAME B 35

O ADDR B 71

O ZIP B 80

O PHONE# B 90

O* ADD DISK RECORD

O DADD 02 80

O SSN B 9

O NAME B 35

O ADDR B 71

O ZIP B 80

O PHONE# B 90

O* DELETE DISK RECORD

O DDEL 01 81N42

O SSN B 9

O NAME B 35

O ADDR B 71

O ZIP B 80

O PHONE# B 90

O* END OF SOURCE STATEMENTS

Figure 11-7. Processing an RSI Primary File (Continued)

11-14 RPG Screen Interface (RSI)

Example Conventions

Comments

�1� This line and the next one de�ne the RSI �le called WORKSTN. It is a primary �le
having the forms �le name SAMPLIB.

�2� This line begins the description of the record identi�cation codes and input �elds for
the two RSI forms shown in Figures 11-4 and 11-5.

�3� This line begins the description of the input record for the �le CUSTMAST.

�4� This line turns o� the indicators that are used during each cycle.

�5� This line and the ones which follow, determine the action requested by the user. The
command key indicators are turned OFF automatically before the form is read from
the screen. Only the �rst form (FORM21) enabled the command keys. This means
that record-identifying indicators are not necessary for additional conditioning here.
However, user requests are saved using the general indicators (80, 81 and 82). If the
user directs the program to end, LR is turned ON and control skips to EOF.

�6� This and succeeding lines read a record from the �le CUSTMAST only if form
FORM21 was just read (the record-identifying indicator for FORM21 is ON).

�7� This line and the next determine if there are any errors. If an ADD is requested
and a record already exists, indicators 60 and 70 are turned ON. If a CHANGE or
DELETE action is requested and the record does not exist, indicators 60 and 65 are
turned ON. Indicators 65 and 70 show the speci�c error encountered and 60 is used
as the override indicator. (See the RPG Utilities Reference Manual for information
about override.)

�8� This and succeeding lines de�ne the output for form FORM21. This form is displayed
during the �rst program cycle (1P): after form FORM22 is read (indicator 02 is ON)
or after an error (indicators 01 and 60 are ON) is detected or after a DELETE action
(indicators 01 and 81 are ON) is requested. Indicators 65 and 70 determine whether
error messages are displayed (RSI locates the messages in the message �le before the
form is displayed).

�9� This and succeeding lines de�ne the output for form FORM22. This form is
displayed if the �rst form is processed without errors and the user requested an ADD
(indicators 01, 42 and 80 are ON) or CHANGE (indicators 01 and 82 are ON and 42
is OFF) action.

�10� This and succeeding lines de�ne the �elds that are displayed for the ADD, CHANGE
and DELETE actions. The Blank After Field (column 39) is used to clear each �eld
before the next cycle begins.

RPG Screen Interface (RSI) 11-15

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

HDUMPFILE JF X B B N P1 1

�1� FWORKSTN UD V 90 WORKSTNR B

F KFORMS SAMPLIB

FCUSTMASTUC F 128R 9AI 1 DISK A

F KKEYFL KCUSTMST

F*

F* SAMPLE RSI PROGRAM USING THE WORK STATION AS A DEMAND FILE

F*

�2� IWORKSTN NS 01 1 C1

I* FORM21

I 1 1 FLD1

I 2 100SSN
I NS 02 1 C2

I* FORM22

I 1 1 FLD1

I 2 27 NAME

I 28 63 ADDR

I 64 720ZIP

I 73 82 PHONE#

I NS

�3� ICUSTMASTNS

I 1 90SSN

I 10 35 NAME

I 36 71 ADDR

I 72 800ZIP

I 81 90 PHONE#

C START TAG

�4� C SETOF 010242 CLEAN UP

C* DISPLAY & READ FIRST FORM

�5� C EXCPT FORM21

C READ WORKSTN

C* DETERMINE ACTION REQUESTED

�6� C KG SETON LR END JOB

C KG GOTO EOF

C SETOF 808182

C KA SETON 80 ADD RECORD

C KB SETON 81 DEL RECORD

C KC SETON 82 UPD RECORD

C SETOF 606570
�7� C N80N81N82 SETON 60

C 60 GOTO START NO CMD KEY;LOOP

Figure 11-8. Processing an RSI Demand File

11-16 RPG Screen Interface (RSI)

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C* READ RECORD FROM CUSTOMER MASTER FILE USING SSN AS A KEY

� 8 � C SSN CHAINCUSTMAST 42

C* SET INDICATORS FOR ERRORS; LOOP

� 9 � C 80 N42 SETON 60 70

C N80 42 SETON 60 65

C 60 GOTO START

C* DELETE ONLY REQUIRES FIRST FORM, DO IT NOW & LOOP

�10� C 81 EXCPT DELREC

C 81 GOTO START

C* DISPLAY AND READ SECOND FORM

�11� C EXCPT FORM22

C READ WORKSTN

C* EXECUTE REQUESTED ACTION & LOOP

�12� C 82 EXCPT UPDREC
C 80 EXCPT ADDREC

C GOTO START

C EOF TAG

�13� OWORKSTN E FORM21

O K6 "FORM21"

O 70 6 "0001 1"

O 65 6 "0002 1"

O**

�14� O E FORM22

O K6 "FORM22"

O SSN 9

O NAME 35

O ADDR 71

O ZIP 80

O PHONE# 90

O* UPDATE DISK RECORD

�15� OCUSTMASTE UPDREC

O SSN B 9

O NAME B 35

O ADDR B 71

O ZIP B 80

O PHONE# B 90

O* ADD DISK RECORD

O EADD ADDREC

O SSN B 9

O NAME B 35

O ADDR B 71
O ZIP B 80

O PHONE# B 90

Figure 11-8. Processing an RSI Demand File (Continued)

RPG Screen Interface (RSI) 11-17

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

O* DELETE DISK RECORD

O EDEL DELREC

O SSN B 9

O NAME B 35

O ADDR B 71

O ZIP B 80

O PHONE# B 90

O* END OF SOURCE STATEMENTS

Figure 11-8. Processing an RSI Demand File (Continued)

Comments

�1� This line and the next one de�ne the RSI �le called WORKSTN. It is a demand �le
having the forms �le name SAMPLIB.

�2� This line begins the description of the record identi�cation codes and input �elds for
the two RSI forms shown in Figures 11-4 and 11-5.

�3� This line begins the description of the input record for the �le CUSTMAST.

�4� This line turns OFF the record-identifying indicators used for the demand �le
because they are not automatically turned OFF by RPG.

�5� This line and the next one display and read the �rst form (FORM21) using the
EXCPT and READ Calculation Speci�cation operations. An EXCPT Name is used
instead of indicators to control exception output.

�6� This and succeeding lines check the command key indicators to determine what
action was requested. If the user ends input, the LR indicator is turned ON and
control skips to EOF.

�7� This line and the next one turn on the RSI override indicator (60) when no
command keys indicators are ON. Control branches to the beginning (START) of the
Calculation Speci�cations so that the �rst form can be redisplayed with override in
e�ect. Override prevents data already entered on the form from being erased.

�8� This line reads the �le CUSTMAST looking for the record whose key matches the
social security number (SSN) entered at the terminal. If the record is not found,
indicator 42 is turned ON.

�9� If the action requested was an ADD and the record already exists, or if the action
was CHANGE or DELETE and the record does not exist, indicator 60 is turned ON.
It serves as a general error indicator and as an RSI override indicator. Indicators 65
and 70 are turned ON for the speci�c error condition.

If there is an error, control returns to the beginning of the Calculation Speci�cations
so that FORM21 can be redisplayed with the appropriate error message and with
override in e�ect.

11-18 RPG Screen Interface (RSI)

Example Conventions

�10� This line and the next one perform the DELETE action using exception output and
an EXCPT name. Once processing is complete for this action, control skips to the
beginning of the Calculation Speci�cations (START).

�11� This and the next line display and read FORM22 using the EXCPT and READ
operations. The EXCPT Name is used instead of indicators to control exception
output.

�12� This line and the next one perform the ADD and CHANGE actions using exception
output and an EXCPT Name. Control then skips to the beginning of the Calculation
Speci�cations to start the next cycle.

�13� This line and the ones which follow de�ne the output for FORM21. This form is
displayed using exception output with an EXCPT Name; no additional conditioning
is necessary. Indicators 65 and 70 control the error messages. RSI locates the
messages in the message �le before the form is displayed.

�14� This line and the ones which follow it de�ne the output for form FORM22. This
form is displayed using exception output with an EXCPT Name; no additional
conditioning is necessary.

�15� This and succeeding lines de�ne the output for CUSTMAST for each action. The
Blank After Field (column 39) is used to clear each �eld before the next cycle begins.

RPG Screen Interface (RSI) 11-19

Example Conventions

Using RSI CONSOLE Files

A CONSOLE �le is a special RSI �le that you can use for simple data collection applications,
such as entering timecard data.

When you use a CONSOLE �le, the compiler uses SIGEDITOR to generate a forms �le from
the CONSOLE �le's Input Speci�cations.

Since CONSOLE �les are used for input only, do not enter Output Speci�cations for them. At
run time, RPG performs all of the input and output for CONSOLE �les.

To use an RSI CONSOLE �le in an RPG program, perform the following steps (each step is
described in the following sections of this chapter):

1. De�ne the RSI CONSOLE �le using File Description and Input Speci�cations.

2. If necessary, enter Calculation Speci�cations to perform auxiliary processing for the RSI
CONSOLE �le. For example, you may want to print the data on the screen.

Entering File Description and Input Specifications

To use an RSI CONSOLE �le in a program, you must de�ne it in a File Description
Speci�cation as a WORKSTNC �le (the Device Class Name Field (columns 40-46) is
WORKSTN and the Interface Type Field (column 47) is C).

Table 11-4 describes the �elds in the File Description and Input Speci�cations that relate to
an RSI CONSOLE forms �le. The �elds that are optional are followed by an asterisk (*).

11-20 RPG Screen Interface (RSI)

Example Conventions

Table 11-4. RSI CONSOLE File Description and Input Specifications

Speci�cation Type Field Value

File Description
(F)

File Name

(columns 7-14)

The name of the RSI CONSOLE �le.

File Type
(column 15)

I (input).

File Designation

(column 16)

P (primary) or D (demand).

Record Format
(column 19)

V (variable-length records).

Logical Record Length
(columns 24-27)

The length of the longest record de�ned in the
Input Speci�cations.

Device Class Name
(columns 40-46)

WORKSTN.

Interface Type
(column 47)

C (RSI CONSOLE �le).

Interface Control*

(column 52)

B (enable) or blank (disable) the BREAK key.

Input (I)

(File and Record
Description line)

File Name
(columns 7-14)

The name associated with the WORKSTNC
device.

OR*
(columns 14-15)

OR if more than one record type uses all of the
same �elds. This line must contain the same
number of record identi�cation codes (in the
Record Identi�cation Code Fields, columns 23-34)
as the line it follows.

Group Sequence*
(columns 15-16)

A numeric entry for sequence checking or an
alphabetic entry for no sequence checking.

Number of Records*
(column 17)

Blank if the Group Sequence Field (columns
15-16) is alphabetic; 1 if this is the only record for
this record type and N if there is more than one
record for this record type.

RPG Screen Interface (RSI) 11-21

Example Conventions

Table 11-4.

RSI CONSOLE File Description and Input Specifications (continued)

Speci�cation Type Field Value

Input (I)

(File and Record
Description line)

Option*
(column 18)

Blank if the Group Sequence Field is alphabetic; 0
if the record type is optional.

Record Indicator
(columns 19-20)

The record-identifying indicator that identi�es the
form. It must be in the range 01-10 and cannot be
used with more than one record type in the
program. (You can have up to 10 record types in
the program.)

Record Identi�cation
Codes

The record identi�cation codes that identify the
form.

(columns 21-24) 1 (The record identi�cation code must begin in
the �rst position of the record.)

(column 26) C (Use the entire character for the record
identi�cation code.)

(column 27) A character that identi�es this record type.

(columns 28-34)* Contains a second record identi�cation code for
the record type. Enter information into these
columns the same way you did in columns 21-27,
except enter 2 in column 31.

(Field Description
lines)

From Field Position
(columns 44-47)

The �rst location of the �eld in the record.

To Field Position
(columns 48-51)

The last location of the �eld in the record (for
signed numeric �elds, do not include the sign
position) The maximum �eld length is 66 for
alphanumeric �elds and 15 digits for numeric
�elds.

Decimal Positions
(column 52)

A digit that speci�es the number of decimal
positions in a numeric �eld.

Field Name
(columns 53-58)

The name of the �eld. Use a descriptive name
since it is used as the input prompt.

Field Record Relation*
(columns 63-64)

The �eld record relation indicator.

Field Indicators*

(columns 65-70)

The �eld indicators.

11-22 RPG Screen Interface (RSI)

Example Conventions

Example

Figure 11-9 shows how to de�ne an RSI CONSOLE �le. Line 1 de�nes the �le SCRNFL as an
RSI WORKSTNC �le. The lines beginning with line 2 de�ne the �elds in SCRNFL.

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� FSCRNFL IP V 48 WORKSTNC B

�2� ISCRNFL NS 01 1 CT 2 CC

I 1 2 RECID

I 3 8 WEDATE

I 9 140EMPNUM

I 15 182PYRATE

I 19 22 ACCTCD

I 23 261TOTHRS

I 27 291MONHRS

I 30 321TUEHRS
I 33 351WEDHRS

I 36 381THUHRS

I 39 411FRIHRS

I 42 441SATHRS

I 45 471SUNHRS

Figure 11-9. Entering RSI CONSOLE File Description and Input Specifications

RPG Screen Interface (RSI) 11-23

Example Conventions

Entering Calculation Specifications

You may include Calculation Speci�cations to condition operations related to a CONSOLE
�le. For example, Figure 11-10 shows an ADD operation that counts the number of
transactions (screens of data) entered by the data entry operator (user).

Do not condition Calculation Speci�cations with command key indicators (you cannot use
command key indicators with RSI CONSOLE �les).

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

C ADD 1 COUNT

Figure 11-10. Entering an RSI CONSOLE Calculation Specification

Compiling an RSI CONSOLE Program

When you compile a program containing an RSI CONSOLE �le for the �rst time, use the
GEN option of the $CONTROL compiler subsystem command (or omit the NOGEN option).
GEN directs the compiler to generate a forms �le for the CONSOLE �le. You can tailor this
forms �le using SIGEDITOR, if necessary (for information on this see the next paragraph).
Once the program is debugged, use the NOGEN option of $CONTROL for subsequent
compilations. NOGEN directs the compiler not to generate a new forms �le.

If you use SIGEDITOR to tailor the form, be careful not to change the top (status) line of the
form. In addition, do not change any constants or alter the size or order of the �elds. See
the RPG Utilities Reference Manual for instructions on how to use SIGEDITOR to modify
the forms �le. Once your form is customized and is formatted properly, be sure to compile
the program using the NOGEN parameter of the $CONTROL compiler subsystem command;
otherwise the customized forms �le will be overwritten.

Whenever you change the Input Speci�cations for a CONSOLE �le, you must recompile the
program with the GEN parameter (or omit NOGEN) to generate a new forms �le.

11-24 RPG Screen Interface (RSI)

Example Conventions

Executing an RSI CONSOLE Program

When a program that uses CONSOLE �les is executed, the data entry operator (user) selects
the form to display by pressing one of 10 command keys. They are the unshifted keys 1-0 and
= on the top row of the keyboard as shown in Figure 11-11.

Figure 11-11. RSI CONSOLE Command Keys

When the user presses a command key, the form whose record indicator matches the
command key is displayed. For example, if you use record indicator 3 with a form, the user
displays it by pressing �f1� followed by 3. Table 11-5 lists the command keys along with their
descriptions.

Table 11-5. How to Use RSI CONSOLE Command Keys

COMMAND (�f1�)
followed by:

Performs this action:

1
2
3
4
5
6
7
8
9
0
=

Displays the record type whose record indicator is 1.
Displays the record type whose record indicator is 2.
Displays the record type whose record indicator is 3.
Displays the record type whose record indicator is 4.
Displays the record type whose record indicator is 5.
Displays the record type whose record indicator is 6.
Displays the record type whose record indicator is 7.
Displays the record type whose record indicator is 8.
Displays the record type whose record indicator is 9.
Displays the record type whose record indicator is 10.
Ends the program.

Note The command keys shown in Table 11-5 are supported on 239x and 262x
terminals. If you have a di�erent terminal or a non-standard keyboard, you
can can still use RSI with it but you must de�ne the command keys in the
�le CMDKEYS. CMDKEYS enables you to use RSI with any terminal or
keyboard con�guration. See the section \Using Di�erent Terminals" for
instructions on how to set up the CMDKEYS �le.

RPG Screen Interface (RSI) 11-25

Example Conventions

Sample RSI CONSOLE Program

The sample program in this section shows how to use an RSI CONSOLE �le to collect weekly
payroll information. For each �eld in the �le, the user is prompted to enter the corresponding
piece of data. The program writes the payroll data to a disk �le for later processing.
Figure 11-12 shows what the CONSOLE �le �elds look like when displayed on the screen. The
program itself is shown in Figure 11-13.

TC 01 1 1

WEDATE A 6 ______

EMPNUM N 6.0 _______

PYRATE N 4.2 _____

ACCTCD A 4 ____

TOTHRS N 4.1 _____

MONHRS N 3.1 ____

TUEHRS N 3.1 ____

WEDHRS N 3.1 ____

THUHRS N 3.1 ____

FRIHRS N 3.1 ____

SATHRS N 3.1 ____

SUNHRS N 3.1 ____

COMMAND *PRINT f3 f4 f5 f6 f7 f8

SCREEN

Figure 11-12. An RSI CONSOLE Form

The top line of the display in Figure 11-12 is the status line. TC is the record identi�cation
code entered in columns 24-34 of the Input Speci�cation that de�nes the record type. The
second �eld in the status line is the record-identifying indicator (01) for the record type. The
third and fourth �elds in the status line indicate the other record types that can be selected
before and after the user enters data in the form. (In this example, only one record type is
de�ned, so 1 appears in both places.)

The rest of the screen shows the �elds de�ned in the Input Speci�cations for the record
type. The following information is displayed for each �eld: �eld name, data format
(A=Alpha, N=Numeric), �eld length, the implied decimal position (for numeric �elds) and an
underscored area that shows where to enter data. As data entry is completed for each screen,
the user presses �ENTER�. The user presses command key 12 (= key) to end the program.

11-26 RPG Screen Interface (RSI)

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

�1� $CONTROL NAME=TIMECD,GEN

HDUMPFILE JF X B B N P1 1

F*

F* SAMPLE CONSOLE FILE PROGRAM - TIMECARD DATA ENTRY

F*

�2� FSCRNFL IP V 48 WORKSTNC B

FOUTPUT O F 48 DISK

�3� ISCRNFL NS 01 1 CT 2 CC

�4� I 1 2 RECID

I 3 8 WEDATE

I 9 140EMPNUM

I 15 182PYRATE
I 19 22 ACCTCD

I 23 261TOTHRS

I 27 291MONHRS

I 30 321TUEHRS

I 33 351WEDHRS

I 36 381THUHRS

I 39 411FRIHRS

I 42 441SATHRS

I 45 471SUNHRS

C*

�5� C* NO CALCULATION SPECIFICATIONS REQUIRED

C*

�6� OOUTPUT D 01

O RECID 2

O WEDATE 8

O EMPNUM 14

O PYRATE 18

O ACCTCD 22

O TOTHRS 26

O MONHRS 29

O TUEHRS 32

O WEDHRS 35

O THUHRS 38

O FRIHRS 41

O SATHRS 44

O SUNHRS 47

Figure 11-13. Processing an RSI CONSOLE File

RPG Screen Interface (RSI) 11-27

Example Conventions

Comments

� 1� This subsystem command gives the program name and directs RPG to generate an
RSI forms �le from the Input Speci�cations.

The forms �le name is TIMECDFM which is the program name with an FM
appended. (You can also enter the program name in the Program Name Field
(columns 75-80) of the Header Speci�cation.)

� 2� This line de�nes the CONSOLE �le SCRNFL. It is an input primary �le with a
record length of 48.

� 3� This line de�nes the record type TC for the CONSOLE �le. The form name for this
record type is FORM01 (RPG assigns the name FORM and the record-identifying
indicator is 01).

� 4� This and succeeding lines de�ne the �elds for record type 01.

� 5� This program has no Calculation Speci�cations.

� 6� These lines describe the output �le to which the payroll data is written. Enter
Output Speci�cations just as you would in any other RPG program.

11-28 RPG Screen Interface (RSI)

Example Conventions

Using Different Terminals

If the terminal that you're using is not a 239x, 262x or 264x terminal or if you're using a
non-English keyboard, you must de�ne the characters that represent the command keys.
Enter one character for each command key into the �rst 24 characters of the �rst record in
the �le CMDKEYS. Enter the ASCII representation of the key(s) on the keyboard. You can
create or modify CMDKEYS using any text editor, such as EDITOR.

Improving Performance Under PROCMON

If you're running a program that uses RSI under PROCMON, there are several things that
you can do to improve the program's performance:

If you have a 2394A or 700/94 terminal, you can download RSI forms to terminal memory.
This saves time because the forms do not have to be transmitted to the terminal each time
they are displayed. To download forms, enter a PROCMON DOWNLOAD command before
executing the program.

If your program is run frequently, you can suspend it at end-of-program rather than
terminate it. This saves time because the program does not have to be reloaded into
memory and the �les remain open. To direct PROCMON to suspend a program, rather
than terminate it, set the JCW RPGSUSP before executing the program. To rerun a
suspended program, enter a RUN command for it. For example, the following lines set
\suspend mode" for program INV505P, run it for the �rst time, then rerun the program
after it is suspended:

:SETJCW RPGSUSP=1

:RUN INV505P

.

.

.

:RUN INV505P

If a program is run in suspend mode as described above, you can save additional time by
downloading RSI forms. When you do this, the forms are downloaded once no matter how
may times the program is executed. It is up to you to ensure that the forms in terminal
memory remain unaltered while the program is suspended. To set suspend mode and to direct
PROCMON to leave the forms in terminal memory unaltered when the program resumes,
enter this command before executing the program:

:SETJCW RPGSUSP=3

Additionally, if a program is run in suspend mode, you can direct PROCMON to leave the
function key labels unaltered when the program resumes. To activate the suspend feature and
leave the function key labels unaltered, enter this command before executing the program:

:SETJCW RPGSUSP=5

RPG Screen Interface (RSI) 11-29

Example Conventions

To set suspend mode and leave both the forms and function keys unaltered when the program
resumes (to perform all of the functions discussed above), enter this command:

:SETJCW RPGSUSP=7

For additional information on the JCW RPGSUSP, see \Suspending an RPG Program" under
the SUSP Calculation Speci�cation operation.

Note If your program behaves abnormally when running with RPGSUSP = 3, 5 or
7, the forms or function keys may have been altered while the program was
suspended. If this happens, end the PROCMON session, then run it again.

11-30 RPG Screen Interface (RSI)

12

RPG Compiler

When you compile an RPG program, the compiler reads the source program �le and produces
either a relocatable object �le (intermediate form of an object program that must be converted
to executable form by HP Link Editor/iX) or an executable program �le (the form of an object
program that is directly executable). When a program is compiled, a list �le is produced
which contains the source program listing and informational, error and warning messages. If
you request it, the compiler also produces a Cross-Reference listing.

This chapter discusses the MPE/iX commands that compile a program and the compiler
subsystem commands that determine the compiler options that are used. It also discusses the
�les used during compilation.

To compile a program successfully, the statements in the source program must be in the
correct order. Figure 12-1 shows this order (compiler subsystem commands start with $). In
summary, a source program �le must contain:

Not more than one Header Speci�cation (optional).

At least one Input or Output Speci�cation, unless all �les are display type (the File Type
Field (column 15) of the File Description Speci�cation is D).

RPG Compiler 12-1

Example Conventions

1 2 3 4 5 6 7

678901234567890123456789012345678901234567890123456789012345678901234

$CONTROL (Compiler subsystem command optional)

H (Header Specification optional)

F

F (File Description Specifications optional)

F

E (File Extension Specification optional)

L (Line Counter Specification optional)

I

I (Input Specifications optional)
I

C

C (Calculation Specifications optional)

C

O

O (Output Specifications optional)

O

Figure 12-1. The Format of an RPG Source Program File

12-2 RPG Compiler

Example Conventions

The Compiler Commands

The compiler commands are MPE/iX commands that compile and execute RPG programs.

You can use the compile commands in a job �le (job mode) or interactively (session mode).
They are used at the MPE/iX system prompt (:). The compiler commands are listed below
and are described later in this chapter:

Compiler Command Description

:RPGXL Compiles an RPG source program.

:RPGXLGO Compiles an RPG source program, links it creating an executable
program �le and executes it immediately.

:RPGXLLK Compiles an RPG source program and links it, creating an
executable program �le.

The next four sections explain how to enter compiler command parameters. It also explains
how to list command error messages, compiler error messages, and the compiler version
number.

See the HP RPG Programmer's Guide for additional examples on how to compile an RPG
source program.

Entering Command Parameters

The parameters used with the RPG compiler commands are positional parameters; they are
interpreted based on their position in the parameter list. For example, the :RPGXL command
has three parameters which are entered as follows:

:RPGXL SOURCE,RELOC,LIST

To enter the command, but omit the �rst two parameters, enter commas for the parameters as
follows:

:RPGXL ,,LIST

When you omit one or more parameters at the end of the parameter list, do not enter commas
for them (the end of list signi�es that the parameters are absent).

Listing Command Error Messages

If you enter a compiler command incorrectly in session mode, an error number and message
are displayed and the command is ignored.

If you enter a compiler command incorrectly in a job �le and the command is not preceded by
a :CONTINUE command, the error number and message are listed in $STDLIST. The invalid
command is ignored, the rest of the job
ushed and the job aborted.

RPG Compiler 12-3

Example Conventions

Listing the Compiler Version Number

You can list the compiler version number (number of the currently installed RPG compiler
and run-time library) by entering a RUN command with the following format:

:RUN RPGXLC
�
.PUB

�
.SYS

� �
; INFO="VERSION" [;LIB=

�
G

P

�
]

If you omit the LIB parameter, the RPG run-time library in the system XL (Segmented
Library in PUB.SYS) is used. Enter LIB=G to use the RPG run-time library in a group
XL; enter LIB=P to use the run-time library in your account (XL in the PUB group of that
account).

Listing Compiler Error Messages

You can list all of the error messages for the currently installed compiler by executing the
GENCAT utility of the Native Language Support (NLS) System (see the Native Language
Programmer's Guide). Before printing, you must use GENCAT to convert the messages from
their compressed format in RPGCAT.PUB.SYS to a printable format.

Files Used by the Compiler

The next three sections give additional details about the �les that are used during
compilation.

In the pages which follow, the term \formal �le designator" is often used. This is the name
that the compiler uses when referring to an input or output �le (the compiler uses an MPE/iX
�le equation to equate the designator to the �le).

The Source Program File

A source program �le is any ASCII �le. You can create it using RISE or any text editor
(for example, EDITOR). The source program �le contains compiler subsystem commands,
speci�cations and compile-time arrays and tables. Source programs are kept as separate
entities from job �les. For example, you cannot embed a source program in a job �le that
compiles it.

You can use $NULL in place of a source program name in a compile command. When you
do this, no compile takes place because the source �le is speci�ed as being empty. For this
reason, $NULL is handy for performing conditional compilation.

Table 12-1 lists speci�c �le characteristics that RPG expects for the source program �le.
The characteristics are separated into those expected when the compiler opens the �le
(FOPEN intrinsic) and when it closes the �le (FCLOSE intrinsic). For a de�nition of these
characteristics, see FOPEN and FCLOSE in the MPE/iX Intrinsics Reference Manual .

12-4 RPG Compiler

Example Conventions

Table 12-1. Source Program File Characteristics

FOPEN

Formal File Designator: RPGTEXT.

Foptions: (%7)

Domain: New �le (00) or old user �le (11).

ASCII/BINARY: ASCII (1).

Default File Designator: Formal �le designator (000).

Record Format: Fixed length (00).

Carriage Control: No (0).

Label Option: Standard label processing (0).

Disallow File Equation: Disallow (1) if not speci�ed; allow (0) if speci�ed.

Aoptions:

Access Type: Input only (0000).

Multirecord Access: No (0).

Dynamic Locking: No (0).

Exclusive: Default (00).

Inhibit Bu�ering: No (0).

Record Size: 80 bytes.

Device Name: MPE default.

Forms Message: None.

User labels: None.

Block Factor: MPE default calculation.

Number of Bu�ers: 2.

File Size: 1023.

Number of Extents: 8.

Initial Allocation of Extents: 1.

File Code: 0.

FCLOSE

Disposition: No change.

Security Code: Normal (0).

RPG Compiler 12-5

Example Conventions

The Relocatable Object File

When you compile a program using the :RPGXL command, RPG produces a relocatable
object �le. Relocatable object �les are not directly executable. You must use the MPE/iX
LINK command (see the HP Link Editor/iX Reference Manual) to create an executable
program �le for it.

You must produce a relocatable object �le when you want to save the program as a
permanent �le. If the program uses external subroutines, you must create relocatable object
�les for each of the subroutines (and the RPG program), then link all of them together
producing one executable program �le.

Table 12-2 lists speci�c �le characteristics that RPG uses when creating a relocatable object
�le or writing to a relocatable library �le. The characteristics are separated into those used
when the compiler opens the �le (FOPEN intrinsic) and when it closes the �le (FCLOSE
intrinsic). For a de�nition of these characteristics, see the MPE/iX Intrinsics Reference
Manual .

Table 12-2. Relocatable Object File Characteristics

FOPEN

Formal File Designator: RPGOBJ.

Foptions:

Domain: If an existing �le is in passed state, RPGOBJ is an old
temporary �le in job �le domain (10); if no existing �le is in
passed state, RPGOBJ is an old �le in system �le domain
(11).

ASCII/Binary: Binary (0).

Default File Designator: If an existing �le is in passed state, $OLDPASS. If no
existing �le is in passed state, $NEWPASS.

Record Format: Fixed-length (00).

Carriage Control: No (0).

Label Option: Standard label processing (0).

Disallow :FILE Equation: If no �le is speci�ed, disallow (1). If a �le is speci�ed, allow
(0).

Aoptions:

Access Type: Input/Output (0100).

Multirecord Access: No (0).

12-6 RPG Compiler

Example Conventions

Table 12-2. Relocatable Object File Characteristics (Continued)

Dynamic Locking: No (0).

Exclusive: Exclusive (0).

Inhibit Bu�ering: No (0).

Record Size: 128 words.

Device Name: MPE default.

Forms Message: None.

User labels: None written.

Block Factor: MPE default calculations.

Number of Bu�ers: 2.

File Size: 400 (if $NEWPASS) or 4000.

Number of Extents: 2 (if $NEWPASS) or 8.

Initial Allocation of Extents: 1 extent.

File Code: 1461 (NMOBJ).

FCLOSE

Disposition: Permanent �le (1) if $NEWPASS, temporary job �le (2) if
$OLDPASS, otherwise no change (0.)

Security Code: Normal (0).

RPG Compiler 12-7

Example Conventions

The List File

The compiler uses the list �le for all listing output. This includes source, symbol table and
Cross-Reference listings, input prompts (in session mode) and error and warning messages.
If the list �le is not assigned to $STDLIST (the standard listing device), the following
information is written to it:

The HP product number, version letter, update and �x levels of the compiler (beginning of
compilation).

Ending messages, the number of error and warning messages, the central processor time
used and time that elapsed during compilation (end of compilation).

For examples of listing output, see the HP RPG Programmer's Guide.

When the compiler creates the list �le, it does so using the �le characteristics shown in
Table 12-3. The characteristics are separated into those de�ned when the compiler opens the
�le (FOPEN intrinsic) and when it closes the �le (FCLOSE intrinsic). For a description of
these characteristics, see FOPEN and FCLOSE in the MPE/iX Intrinsics Reference Manual .

Table 12-3. List File Characteristics

FOPEN

Formal File Designator: RPGLIST.

Foptions: (%2514 if not speci�ed; %504
if speci�ed)

Domain: If speci�ed, old job/user �le (11). If not speci�ed,
new �le (00).

ASCII/Binary: ASCII (1).

Default File Designator: $STDLIST (001) if not speci�ed; formal designator
(000) if speci�ed.

Record Format: Variable-length (01).

Carriage Control: Yes (1).

Label Option: Standard label processing (0).

Disallow :FILE Equation: Yes (1) if not speci�ed. No (0) if speci�ed.

Aoptions (%001)

Access Type: Output only (0001).

Multirecord Access: No (0).

12-8 RPG Compiler

Example Conventions

Table 12-3. List File Characteristics (Continued)

Dynamic Locking: No (0).

Exclusive: Default (00).

Inhibit Bu�ering: No (0).

Record Size: Device record size.

Device Name: MPE default.

Forms Message: None.

User labels: None written.

Block Factor: MPE default calculation.

Number of Bu�ers: 2.

File Size: 5000 (if device is disk).

Number of Extents: 8.

Initial Allocation of Extents: 1 extent.

File Code: 0.

FCLOSE

Disposition: Permanent File (1).

Security Code: Normal (0).

The Compiler Commands Reference

The sections which follow describe the compiler commands in detail. The commands are
presented in alphabetical order.

You can use the compiler commands interactively (session mode) or you can place them in
a job �le (job mode). They can be executed after the �BREAK� key is pressed or after the
CAUSEBREAK intrinsic is executed. Both compiler commands can be executed by the
COMMAND intrinsic. See the MPE/iX Intrinsics Reference Manual for more information on
CAUSEBREAK and COMMAND.

RPG Compiler 12-9

Example Conventions

:RPGXL

This command compiles an RPG source program, producing a compiler listing and a
relocatable object �le. Use this command when you want to compile but not produce an
executable program �le.

To create an executable program �le from a relocatable object �le, use the LINK command of
HP Link Editor/iX.

Syntax

:RPGXL source �le [,relocatable object �le] [,list �le]

Parameters

source �le The name of the source program �le (this can be any ASCII
�le).

The formal �le designator for this �le is RPGTEXT.

relocatable object �le The name of the �le to which the relocatable object code is
written. If you omit this parameter, $OLDPASS is used.

The formal �le designator for this �le is RPGOBJ.

list �le The name of the �le to which the program listing is written
(this can be any ASCII �le). If you omit this parameter, the
program listing is written to $STDLIST.

The formal �le designator for this �le is RPGLIST.

Examples

1. This example compiles the source program APS540. The relocatable object �le APO540 is
created. The compiler listing is written to the �le APL540.

:RPGXL APS540, APO540, APL540

12-10 RPG Compiler

Example Conventions

:RPGXLGO

This command compiles an RPG source program, producing a relocatable object �le; links
the relocatable object �le creating an executable program �le; then executes the executable
program �le. The executable program �le is temporary and is purged when you log o�.

Syntax

:RPGXLGO source �le [,list �le]

Parameters

source �le The name of the source program �le (this can be any ASCII
�le).

The formal �le designator for this �le is RPGTEXT.

list �le The name of the �le to which the program listing is written
(this can be any ASCII �le). If you omit this parameter,
$STDLIST is used.

The formal �le designator for this �le is RPGLIST.

Example

1. This example compiles the source program APS540. The compiler listing is written to
$STDLIST and the executable program �le is $OLDPASS.

:RPGXLGO APS540

RPG Compiler 12-11

Example Conventions

:RPGXLLK

This command compiles an RPG source program, producing a relocatable object �le. It then
links the relocatable object �le, producing an executable program �le.

Syntax

:RPGXLLK source �le [,executable program �le] [,list �le]

Parameters

source �le The name of the source program �le (this can be any ASCII
�le).

The formal �le designator for this �le is RPGTEXT.

executable program �le The name of the �le to which the executable program code is
written. If you omit this parameter, $OLDPASS is used.

The formal �le designator for this �le is RPGPROG.

list �le The name of the �le to which the program listing is written
(this can be any ASCII �le). If you omit this parameter, the
program listing is written to $STDLIST.

The formal �le designator for this �le is RPGLIST.

Example

1. This example compiles and the source program APS540. A relocatable object �le
$OLDPASS is created. $OLDPASS is linked, creating the executable program �le APP540.
The compiler listing is written to the �le APL540.

:RPGXLLK APS540, APP540, APL540

12-12 RPG Compiler

Example Conventions

The Compiler Subsystem Commands

Compiler subsystem commands are compiler directives that let you alter the normal defaults
used during compilation. For example, you can suppress the listing of warning messages.

Compiler subsystem commands are part of the source program �le and they are identi�ed by a
$ in column 6. The compiler subsystem commands are listed below and are described in detail
later in this chapter:

Compiler
Subsystem
Command

Description

$CONTROL Restricts access to the list �le; suppresses source and Cross-Reference listings of
indicators, �elds, tables, arrays and �les; suppresses warning messages; sets the
maximum number of lines listed per page; suppresses informational messages; sets
the maximum number of severe errors allowed; de�nes the delimiter character for
alphanumeric literals; supresses creation of a forms �le for WORKSTNC �les.

$COPY Enables the source library facility of RPG.

$IF Determines whether portions of a program are compiled, based on software
switches.

$INCLUDE Inserts source library lines into the program.

$INCLUDENOW Inserts source library lines into the program at the place this command is
speci�ed.

$PAGE Establishes or changes the title on the compiler listing and advances the paper to
top-of-form.

$SET Sets the software switches that determine whether compilation is performed.

$TITLE Establishes or changes the title on the compiler listing.

The Sequence Number Field (columns 1-5) in compiler subsystem command lines are not used
(you may enter a number in this �eld if you wish). You can enter the subsystem commands in
either upper-case or lower-case; they are interpreted as upper-case by the compiler.

The next three sections explain how to enter compiler system command parameters and
comments and how to continue the subsystem commands from one line to the next. See the
HP RPG Programmer's Guide for additional examples on using the compiler subsystem
commands.

RPG Compiler 12-13

Example Conventions

Entering Subsystem Command Parameters

Most of the compiler subsystem commands have one or more parameters. They specify
various command options. You can enter parameters in any order. Separate them by commas
(spaces are ignored). You can enter parameters in columns up to and including column 72.
If you need more space, continue the parameters on another line (see the section \Entering
Subsystem Command Continuation Lines").

When a subsystem command is executed, all of the parameters are read and interpreted before
the command is executed. Parameters are processed in the order that you enter them. If you
enter the same parameter twice or you enter con
icting parameters, the outcome depends on
where they occur in the parameter list. For example, in the following $CONTROL subsystem
command, LIST and NOLIST appear twice:

$CONTROL LIST,NOLIST,NOLIST,LIST

When $CONTROL is executed, the e�ective parameter list is:

$CONTROL LIST

Entering Subsystem Command Comments

To clarify the purpose and meaning of a compiler subsystem command, you may want to
include comments with it. Comments are documentary and have no e�ect on the command
itself.

You can enter comments after the subsystem command name. You can also enter comments
before or after any parameter. Begin a comment with two less-than signs (<<) and end it
with two greater-than signs (>>). You can enter comments through column 72 and you can
include any ASCII character in them except >.

Do not embed comments within a parameter and do not use the & character to continue
comments onto a second line. (See the next section, \Entering Subsystem Command
Continuation Lines", for information on continuing comments onto a blank line.)

The following examples illustrate various ways to enter comments:

$PAGE<<PAGE EJECT,NO TITLE CHANGE.>>

$SET X1=ON,X2=ON,X3=ON<<SWITCHES 1-3 ON.>>

$SET X1=ON,X2=ON,<<LAST SW OFF>> X3=OFF

12-14 RPG Compiler

Example Conventions

Entering Subsystem Command Continuation Lines

When a subsystem command and its parameters won't �t on one line, continue it onto the
next line. Follow the last parameter on the line with an ampersand (&). Start the next line
with a $ in column 6 and continue the parameters starting in column 7.

When you use continuation lines, the compiler concatenates them beginning with the
character following the $. The $ and & are replaced by spaces.

When you use continuation lines, do not split a subsystem command, a parameter or a
parameter string.

For example, to split this subsystem command after the parameter MAP,

$CONTROL LIST,SOURCE,WARN,MAP,LINES=36

enter two lines as follows:

$CONTROL LIST,SOURCE,WARN,MAP,&

$LINES=36

To continue comments onto a blank line (that contains no command parameters), enter the
& after the ending >>. Continue the comments on the next line just as you would normally,
except enter a $ in column 6. The following example shows how to continue comments onto
blank lines:

$CONTROL NOWARN <<WARNING MESSAGES ON TRIVIAL ERRORS>>&

$ <<WILL NOT BE LISTED> BUT MESSAGES ON>>&

$ <<FATAL ERRORS WILL APPEAR.>>

The Compiler Subsystem Commands Reference

The sections which follow discuss the compiler subsystem commands in detail. They are listed
in alphabetical order.

RPG Compiler 12-15

Example Conventions

$CONTROL

This subsystem command lets you override one or more of the listing and compiler defaults.
You can place the $CONTROL subsystem command at the beginning of the source program
�le and also interspersed within it.

You can use $CONTROL to:

Restrict compiler access to the list �le.
Request or suppress the source program and a Symbol Table listing.
De�ne the number of lines per page for listing output.
Print a Cross-Reference listing.

Syntax

$CONTROL [ERRORS=nnn] [,EXCQUIT] [,FKEYLBL] [,GEN] [,INFO]

[,LINES=nnnn] [,LIST] [,MAP] [,NAME=source] [,NEWSAVE] [,NOGEN]

[,NOINFO] [,NOLIST] [,NOMAP] [,NOOVFLOCHK] [,NOSOURCE] [,NOWARN]

[,NOVALD] [,OVFLOCHK] [,QUOTE= {" or '}] [,RSPACE=n]

[,SOURCE] [,WARN]

Parameters

ERRORS=nnn Sets the maximum number of severe errors allowed during
compilation to nnn . If there are more errors, compilation
terminates. If nnn is already exceeded when this parameter is
encountered, compilation terminates immediately. If you omit this
parameter, the maximum number of severe errors is 100.

EXCQUIT If a �le open fails due to an EXCLUSIVE VIOLATION error
(FSERR 90 or 91), RPG closes �les and aborts the program
immediately (instead of aborting the program with a fatal �le
error and printing a formatted dump). The system JCW is set to
FATAL90 or FATAL91. It can be tested by MPE commands in a
UDC or job stream as follows:

:RUN MYPROG (program includes $CONTROL EXCQUIT)

:IF JCW=FATAL90 OR JCW=FATAL91 THEN

: RUN WAITPROG
:ELSE

: RUN MYPROG2

:ENDIF

FKEYLBL Allows applications using the RPG Screen Interface (RSI) to
specify labels for enabled function keys �f2� through �f7�. See the
description of the SET operation in Chapter 8, and \Rede�ning
Function Key Labels" in Chapter 11.

GEN Allows the compiler to create an RSI CONSOLE forms �le from
Input Speci�cations in the program. The forms �le is created if
you omit this parameter.

INFO Lists informational messages. Informational messages
ag
source statements that, although permissible, may not produce
an intended result. For example, omitting File Description
Speci�cations is legal but is not often done. This parameter

12-16 RPG Compiler

Example Conventions

remains in e�ect until a NOINFO parameter is encountered. If this
parameter is omitted, informational messages are listed.

LINES=nnnn Limits the number of lines printed on each list �le page to nnnn.
When page over
ow occurs, the paper is advanced to top-of-form,
the standard page heading is printed (followed by two blank lines)
then the line that caused page over
ow is printed. When you enter
nnnn, include the heading and blank lines in it. This parameter
remains in e�ect until another LINES parameter is encountered. If
you omit this parameter, nnnn is 60 lines (for devices other than
terminals) and 32767 lines for terminals.

LIST Gives the compiler unrestricted access to the list �le. (This
enables you to use the SOURCE, MAP and LINES parameters).
This parameter remains in e�ect until a NOLIST parameter
is encountered. If you omit this parameter, the compiler has
unrestricted access to the list �le.

MAP Prints a Cross-Reference listing after the source code listing (if
LIST is in e�ect). This parameter remains in e�ect until NOMAP
is encountered. If you omit this parameter at the beginning of
compilation, no Cross-Reference listing is produced.

NAME=source Assigns a name to the source program. The name must be a valid
program name (see the Program Name Field in Chapter 2). This
parameter overrides the name entered in the Program Name Field
(columns 75-80) of the Header Speci�cation.

NEWSAVE Keeps all new �les as permanent �les (normally, new �les are kept
as temporary �les). This parameter is equivalent to using an MPE
�le equation with the SAVE option.

NOGEN Prohibits the compiler from creating an RSI CONSOLE forms �le
from Input Speci�cations in the program.

NOINFO Stops the listing of informational messages. This parameter
cancels a previous INFO parameter and remains in e�ect until
another INFO parameter is encountered.

NOLIST Lists (in the list �le) only those source statements that contain
errors. It also lists error messages and subsystem initiation and
completion messages. This parameter remains in e�ect until LIST
is encountered.

NOMAP Stops the Cross-Reference listing. This parameter cancels a
previous MAP parameter and remains in e�ect until another MAP
is encountered.

NOOVFLOCHK Resets numeric over
ow checking (after using $CONTROL
OVFLOCHK for full over
ow checking) to partial over
ow
checking (the default). This allows RPG to left-truncate the
computed value of a numeric operation if the Result Field is too
small, and if the size of either the Factor 1 Field or the Factor
2 Field is as large as the size needed for the computed value.
Otherwise the over
ow trap is enabled.

RPG Compiler 12-17

Example Conventions

NOSOURCE Stops the listing of source text. This parameter cancels a previous
SOURCE parameter.

NOWARN Stops the listing of warning messages. This parameter cancels a
previous WARN parameter and remains in e�ect until another
WARN parameter is encountered.

NOVALD Disables numeric validation. This allows nonnumeric characters
to be mixed in with digits in numeric items. Beware, since
this can cause strange things to happen to your program. This
provides compatibility with RPG/V, where embedded blanks in
a numeric �eld are retained as blanks if the �eld is output as an
alphanumeric �eld. RPG/iX converts the blanks to zeroes if you
do not specify this option.

OVFLOCHK Enables full over
ow checking on the arithmetic operations ADD,
SUB, MULT, DIV, SQRT, XFOOT, Z-ADD, and Z-SUB. This
causes a trap to the error routine if the computed value is too
large for the result �eld. The Result Field is not automatically
truncated as it can be with partial over
ow checking (the default)
or if the $CONTROL NOOVFLOCHK command is in e�ect.

QUOTE=

�
"

'

�

De�nes the delimiter character for alphanumeric literals. Enter
either a quotation mark (") or an apostrophe ('). You can use this
parameter anywhere in the program, but you typically enter it at
the beginning. If you omit this parameter, a quotation mark is
used.

This parameter does not apply to strings entered with compiler
subsystem commands.

RSPACE=n Adds additional spaces between output �elds that use relative end
positions. Enter a number (1-9) for n. If you omit this parameter,
zero is used.

SOURCE Lists the source program statements (if LIST is in e�ect). If you
omit this parameter and the source program �le and list �le are
assigned to a terminal, the source program statements and Symbol
Table listing are not listed; otherwise, they are listed.

WARN Lists warnings with the source program. Warnings are also written
to the list �le. This parameter remains in e�ect until NOWARN is
encountered. If you omit this parameter, warnings are listed.

Example

The following $CONTROL subsystem command directs the compiler to list the source
program, warnings, and a Cross-Reference listing. Only 36 lines are printed on each page of
the listings.

$CONTROL LIST,SOURCE,WARN,MAP,LINES=36

12-18 RPG Compiler

Example Conventions

$COPY

This subsystem command enables you to copy source statements into the program from
other source �les or libraries. Place this command at the beginning of the program when
the program contains one or more $INCLUDE or $INCLUDENOW compiler subsystem
commands.

See the $INCLUDE and $INCLUDENOW compiler subsystem commands for rules on using
source libraries. The HP RPG/iX Programmer's Guide gives an example of how to use
$COPY and $INCLUDE.

Syntax

$COPY

Parameters None.

RPG Compiler 12-19

Example Conventions

$IF

This subsystem command lets you compile parts of a program rather than all of it. Place this
command before and after sections of source code to turn compilation ON and OFF.

$IF and $SET are used together. $SET turns up to ten software switches ON or OFF. The
$IF command tests these switches and compiles subsequent code when they match. When
they do not match, subsequent source code is not compiled.

Even when compilation is turned OFF, source code is listed if the LIST and SOURCE
parameters of the $CONTROL subsystem command are in e�ect.

Syntax

$IF [Xn=

�
OFF

ON

�
]

Parameters

Xn

�
OFF

ON

�

This parameter names the software switch to test and the value to
test for. If you omit this parameter, subsequent source code is
compiled.

Enter a number from 0 to 9 (for n) that names the software
switch.

To suspend compilation of subsequent source code, enter a status
(either OFF or ON) that does not match the current status of
the speci�ed software switch. (The actions of the subsystem
commands $PAGE and $TITLE are una�ected.) To resume
compilation of subsequent source code, enter a status (either OFF
or ON) that matches the current status of the speci�ed software
switch.

12-20 RPG Compiler

Example Conventions

Example

The $SET subsystem command in the code below turns ON switches X4 and X5. Subsequent
$IF statements turn compilation ON and OFF depending on the status of X4 and X5. Source
code block 1 is compiled because the $IF test is true (X4 is turned ON). Source code block
2 is not compiled because the result of the second $IF test is false. Source code block 3 is
compiled because the third $IF has no parameters.

.

.

$SET X4=ON,X5=ON <<TURN SWITCHES X4 AND X5 ON.>>

.

.

$IF X4=ON <<COMPILE SOURCE BLOCK 1.>>

.

.

(source block 1)

.

.

$IF X5=OFF <<DO NOT COMPILE SOURCE BLOCK 2;>>&

$ <<CANCEL PREVIOUS $IF COMMAND.>>

.

.

(source block 2)

.

.

$IF <<CANCEL PREVIOUS $IF COMMANDS;>>&

$ <<COMPILE SOURCE BLOCK 3.>>

.

.

(source block 3)

.

.

RPG Compiler 12-21

Example Conventions

$INCLUDE

This subsystem command copies source code from a source library into the source program
before compilation. Place this command at the point in the source program where you
want the source library facility to begin processing statements from another �le. To use
$INCLUDE, you must enable the source library facility by entering a $COPY subsystem
command at the beginning of the main program.

To understand how $INCLUDE works, it helps to understand the source library facility
(the preprocessor). Invoked when $COPY is the �rst record in your source program, the
preprocessor opens ten temporary �les to hold the following types of speci�cations:

1. Header and File Speci�cations
2. File Extension Speci�cations
3. Line Counter Speci�cations
4. Input Speci�cations (excluding DS records)
5. Input Speci�cations (DS records only)
6. Calculation Speci�cations (detail-time)
7. Calculation Speci�cations (total-time)
8. Calculation Speci�cations (subroutine)
9. Output Speci�cations
10. Table/Array Speci�cations

The preprocessor reads statements from the source program, placing them sequentially in the
appropriate temporary �le based on the speci�cation type. Upon encountering a $INCLUDE
command, the preprocessor stops reading the main program source �le and reads instead the
entire �le named in the $INCLUDE command. The preprocessor adds the records from this
�le, possibly a mixture of speci�cation types, to the end of the appropriate temporary �le or
�les. When all library �le records have been processed, the preprocessor resumes reading the
original source �le at the record following the $INCLUDE command. Any other $INCLUDE
commands in the main �le are processed the same way. When all records in the main �le have
been read, the preprocessor then copies the ten temporary �les in order by speci�cation into a
single �le that is passed to the compiler.

If your library �le contains a Header Speci�cation, the $INCLUDE command referencing it
must be placed before any File Speci�cations in the source program. When the preprocessor
encounters an Array/Table Speci�cation (type A), a Compiler Subsystem Command (type $),
a comment (type *), or a blank line, the statement is considered to be the same type as the
previous statement. Do not use $INCLUDE within a compile-time table or array appended to
the end of the program (after the �rst **" separator line).

The $INCLUDE command line is listed on $STDLIST so you can verify its location. The
inserted lines from the library �le are identi�ed with a C in column 5 of the source listing.

You can modify lines inserted from a source library. You do this by following the $INCLUDE
subsystem command with a speci�cation that identi�es the line you want to modify and that
contains the new information. For a File Description Speci�cation, identify the speci�cation
by entering the same values in columns 7-14 as the speci�cation you want to modify and enter
new information in columns 15-74. For an Input Speci�cation, identify the speci�cation by
entering the same values in columns 1-42 and 53-58 and enter new information in columns
43-52 and 59-70. When you leave a �eld blank, it remains unchanged. Enter an ampersand
(&) in a �eld to blank it out.

See the HP RPG Programmer's Guide for an example of how to use $COPY and $INCLUDE.
See also the related command $INCLUDENOW.

12-22 RPG Compiler

Example Conventions

Syntax

$INCLUDE �le name
�
.group

�
.account

� �

Parameters

�le name Names the source library �le containing the source statements to
be inserted.

group Identi�es the MPE/iX group where the source library resides.

account Identi�es the MPE/iX account where the source library resides.

Example

Imagine a program with the following statement in the middle of its detail Calculation
Speci�cations:

$INCLUDE PAF105.SOURCE

Also, a library �le named PAF105 in the SOURCE group contains File Speci�cations,
detail-time Calculation Speci�cations, total-time Calculation Speci�cations, and Output
Speci�cations.

Because the �rst statement of the main program �le is a $COPY statement, RPG invokes
the preprocessor when the program is compiled. The preprocessor begins copying records
from the main program into the temporary �le created for that particular speci�cation type.
By the time the $INCLUDE command is encountered in the middle of the detail Calculation
Speci�cations, the preprocessor has copied a Header Speci�cation and some File Speci�cations
to one temporary �le, some Input Speci�cations to another, and some detail Calculation
Speci�cations to another.

The $INCLUDE command directs the preprocessor to stop copying records from the main
program �le and to begin copying records from the �le named in the statement, in this
case PAF105. Since the �rst records in �le PAF105 are File Speci�cations and detail-time
Calculation Speci�cations, they are appended to the two appropriate temporary �les,
one containing the File Speci�cations and the other containing detail-time Calculation
Speci�cations from the main program. Note that when the preprocessor next reads the
total-time Calculation Speci�cations from the library �le PAF105, the temporary �le built
to contain the total-time Calculation Speci�cations is empty (no total-time Calculation
Speci�cations were read before the $INCLUDE command was encountered in the main
source program). The total-time calculations from the library �le will therefore precede any
total-time calculations that may subsequently be read from the main program. Similarly, the
Output Speci�cations from the library �le will precede any Output Speci�cations in the main
program.

If you are not aware of how the preprocessor works, you may inadvertently merge statements
into your program in the wrong order, particularly if the library �le contains more than one
speci�cation type.

RPG Compiler 12-23

Example Conventions

$INCLUDENOW

This subsystem command copies source code from a source library into the source program
before compilation. Place this command at the point in the source program where you want
the library source code inserted.

Unlike the $INCLUDE command, the records in the source library �le named in the
$INCLUDENOW command must all be of the same speci�cation type. The entire �le
is added at the point the command appears. Also, $INCLUDENOW positions Input
Speci�cation DS records and Calculation Speci�cation subroutine records correctly.

To use $INCLUDENOW, you must enable the source library facility by entering a $COPY
subsystem command as the �rst line of your program.

Do not use $INCLUDENOW within a compile-time table or array (after the �rst **"
separator line).

The $INCLUDENOW command line is listed on $STDLIST so you can verify its location.
The inserted lines from the library �le are identi�ed with a C in column 5 of the source
listing.

The $INCLUDENOW command does not provide a way to modify source lines brought in
from source libraries.

See also the related command $INCLUDE.

Syntax

$INCLUDENOW �le name
�
.group

�
.account

� �

Parameters

�le name Names the source library �le containing the source statements to
insert.

group Identi�es the MPE/iX group where the source library resides.

account Identi�es the MPE/iX account where the source library resides.

Example

The following $INCLUDENOW command inserts all the records in the source library �le
PAF106 into the source program at the point where the command occurs. PAF106 resides in
the SOURCE group.

$INCLUDENOW PAF106.SOURCE

12-24 RPG Compiler

Example Conventions

$PAGE

This subsystem command advances the compiler listing to top-of-form, then prints a heading
followed by two blank lines. If you wish, you can enter a title for the heading line of the new
page (and for subsequent pages). This command makes a program easier to read because it
isolates blocks of code and assigns descriptive titles to them.

If you do not enter a $PAGE or $TITLE command, the title is blank. $PAGE does not apply
to the �rst page of a compiler listing, to the Cross-Reference pages or to listings directed to
the terminal.

If the NOLIST parameter of the $CONTROL subsystem command is in e�ect, no paper
advance or printing takes place. However, if you enter a parameter for this command, your
entry becomes the current title for subsequent printing.

Syntax

$PAGE [string[,string]...]

Parameters

string Enter one or more strings that, when concatenated, form the
title. Enclose the strings in quotation marks (the quotation marks
are not included in the �nal string). You can enter any ASCII
character in the string including lower-case characters. The �nal
string can contain up to 104 characters excluding the quotation
marks and spaces between strings. To include a quotation mark in
the string itself, enter two quotation marks.

The �nal string is printed in positions 29-132 of the heading line.

If you omit this parameter, the current title (set by a previous
$PAGE or $TITLE subsystem command) is printed on the new
page.

Example

The following $PAGE subsystem command skips to a new page and prints the title \GROSS
PAY SUBROUTINE" in the heading line of the new page.

$PAGE "GROSS PAY SUBROUTINE"

RPG Compiler 12-25

Example Conventions

$SET

This subsystem command enables you to compile parts of a program rather than all of it. Use
this command to turn (up to 10) software switches ON or OFF.

$IF and $SET are used together. $SET turns up to ten software switches ON or OFF. The
$IF command tests these switches and compiles subsequent code when they match. When
they do not match, subsequent source code is not compiled.

Syntax

$SET [Xn=

�
OFF

ON

�
[,Xn=

�
OFF

ON

�
] . . .]

Parameters

Xn=

�
OFF

ON

�

This parameter names the software switch and speci�es whether
to turn it ON or OFF. If you omit this parameter, all 10 software
switches are turned OFF.

Enter a number from 0 to 9 (for n) that names the software
switch.

Enter ON to turn the switch ON or OFF to turn it OFF.

12-26 RPG Compiler

Example Conventions

Example

The $SET subsystem command in the code below turns ON switches X4 and X5. Subsequent
$IF statements turn compilation ON and OFF depending on the status of X4 and X5. Source
code block 1 is compiled because the $IF test is true (X4 is turned ON). Source code block
2 is not compiled because the result of the second $IF test is false. Source code block 3 is
compiled because the third $IF has no parameters.

.

.

$SET X4=ON,X5=ON <<TURN SWITCHES X4 AND X5 ON.>>

.

.

$IF X4=ON <<COMPILE SOURCE BLOCK 1.>>

.

.

(source block 1)

.

.

$IF X5=OFF <<DO NOT COMPILE SOURCE BLOCK 2;>>&

$ <<CANCEL PREVIOUS $IF COMMAND.>>

.

.

(source block 2)

.

.

$IF <<CANCEL PREVIOUS $IF COMMANDS;>>&

$ <<COMPILE SOURCE BLOCK 3.>>

.

.

(source block 3)

.

.

RPG Compiler 12-27

Example Conventions

$TITLE

This subsystem command lets you specify the title to print in the heading line of the compiler
listing. The title is printed on each heading line until another $TITLE command (or $PAGE
command containing a new title) is encountered. This command lets you tailor the compiler
listings by printing appropriate titles for them.

If you do not enter a $PAGE or $TITLE command, the title is blank. $TITLE does not apply
to the �rst page of a compiler listing, to Cross-Reference pages or to listings directed to the
terminal.

If the NOLIST parameter of the $CONTROL subsystem command is in e�ect, the heading is
not printed but you can still use this command to specify a title to be used when printing
resumes.

Syntax

$TITLE [string[,string]...]

Parameters

string Enter one or more strings to concatenate to form the title. Enclose
the strings in quotation marks (the quotation marks are not
included in the �nal string). You can enter any ASCII character in
the string, including lower-case characters. To include a quotation
mark in the string itself, enter two quotation marks. The �nal
string can contain up to 104 characters excluding quotation marks
and spaces between strings.

The �nal string is printed in positions 29-132 of the heading line.

If you omit this parameter, a blank title is printed.

Example

The following $TITLE subsystem command speci�es the title, \PAW300 - Calculate
Withholding". This title is printed in the heading line of each compiler listing page as long as
LIST is in e�ect and until another $TITLE or $PAGE command is encountered.

$TITLE "PAW300 - Calculate Withholding"

12-28 RPG Compiler

A

RPG Compiler Messages

This appendix lists the messages that you may encounter when compiling a program. The
next two sections explain how to �nd messages in this appendix and how to determine their
severity.

Message Numbers

Messages are listed in this appendix in order by their assigned numbers. Numbers are grouped
in blocks, where most blocks correspond to a di�erent speci�cation type. The remaining
blocks indicate general, miscellaneous, compiler, and compiler subsystem errors. The message
number blocks are:

Message Number Description

0001-0099 General (any speci�cation)

1000-1099 Header (H)

2000-2099 File Description (F)

3000-3099 File Extension (E)

4000-4099 Line Counter (L)

5000-5099 Input (I)

6000-6099 Calculation (C)

7000-7099 Output (O)

8000-8099 Compiler Subsystem Command ($)

9000-9099 Other errors

15000-17999 Compiler errors. These errors are listed after the source program
but before the Symbol Table and Cross-Reference listings and
most of them cause the compiler to abort. Report these errors
(just the last 4 digits) to your HP Support Engineer.

RPG prints message numbers at the end of the source lines in which they occur. The
complete text of all messages is printed at the end of the compiler listing after the Symbol
Table and Cross-Reference listings. See the HP RPG/iX Programmer's Guide for an example
of how messages are shown in the compiler listing.

RPG Compiler Messages A-1

Example Conventions

Message Types

There are three types of compiler messages: informational, warning, and terminal error
messages. They are identi�ed by a letter code appended to the error number. For example,
the message number 1026W is a warning message because it has the letter code W (warning)
appended to the message number.

Message Type Description

I (Informational) Reminds you that, although coding may be valid, it may not
produce intended results. For example, informational messages
notify you when you omit File Description Speci�cations.

W (Warning) Indicates a possible problem; a reasonable alternative (default)
exists and is chosen.

T (Terminal error) Prevents successful compilation - no object program is produced.
In most cases, the compiler assumes a default and continues
processing. This allows the entire program to be scanned for
errors.

A-2 RPG Compiler Messages

Example Conventions

0001W MESSAGE EXPECTS $ CONTINUATION, RECORD IGNORED

CAUSE You did not enter a complete compiler subsystem command on this record.

ACTION The compiler ignores this record. If necessary, correct the record.

0002T MESSAGE SEQUENCE NUMBER ERROR

CAUSE You did not enter the records making up the source program in the proper
sequence (as indicated by the Sequence Number Field, columns 1-5).

ACTION Arrange the source program properly and recompile.

0003T MESSAGE NON-EXISTENT SPEC TYPE

CAUSE You speci�ed an entry in the Form Type Field (column 6) that indicates a type
of speci�cation that no longer exists.

ACTION Enter the correct type and recompile the program.

0004T MESSAGE SPEC TYPE OUT OF ORDER

CAUSE You submitted a source program with at least one speci�cation record out of
proper sequence (according to type). For example, a program File Description
Speci�cation before the Header Speci�cation would result in this error.

ACTION Rearrange and recompile the source program.

0011T MESSAGE MORE THAN 500 ERRORS AND WARNINGS FOUND, END COMPILE

CAUSE There are too many errors in the program.

ACTION Correct the program and recompile.

0012T MESSAGE NO SOURCE FILE NAMED. COMPILATION TERMINATED.

CAUSE No source �le was named in the :RPGXL, :RPGXLLK, or RPGXLGO
command, or no �le equation was used to equate RPGTEXT to a source �le in
the :RUN RPGXL command.

ACTION Include a source �le name in the command.

0013T MESSAGE $NULL NOT ALLOWED FOR SOURCE FILE.

CAUSE RPGXL does not accept source code input from this system �le.

ACTION Place all source code into a named �le or read it from $STDIN.

0014T MESSAGE EMPTY SOURCE FILE.

CAUSE No records were found in the named source �le.

ACTION Be sure the source �le contains at least one record to process.

RPG Compiler Messages A-3

Example Conventions

0030W MESSAGE UNABLE TO CREATE RPGCOPY PROCESS. NO PREPROCESSING DONE

CAUSE RPGCOPY.PUB.SYS could not be run by the compiler.

ACTION Ensure that a current version of RPGCOPY exists in the PUB group of the SYS
account and recompile.

0040T MESSAGE CANNOT CLOSE SOURCE FILE FOR $COPY PROCESSING

CAUSE Compiler error.

ACTION Contact HP Support Engineering.

0041T MESSAGE CANNOT RE-OPEN SOURCE FILE AFTER $COPY PROCESSING.

CAUSE Possible compiler error.

ACTION Contact HP Support Engineering.

0042T MESSAGE CANNOT FIND JCW 'RPGINCLUDE' FOR $COPY PROCESSING

CAUSE Compiler error.

ACTION Contact HP Support Engineering.

0049T MESSAGE COPYLIB FILE CANNOT HAVE BLOCKING FACTOR > 50

CAUSE A �le speci�ed in a $INCLUDE line has a �le blocking factor greater than 50.

ACTION Rebuild the $INCLUDE �le with a blocking factor no greater than 50.

0050T MESSAGE ERROR OPENING COMPILER COPYLIB FILE

CAUSE A �le speci�ed in a $INCLUDE line could not be opened.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0051T MESSAGE ERROR OPENING COMPILER 'RPGLIST' FILE

CAUSE File system error occurred when opening the RPGLIST �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0052T MESSAGE ERROR OPENING COMPILER 'RPGTEXT' FILE

CAUSE File system error occurred when opening the RPGTEXT �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0053T MESSAGE ERROR OPENING COMPILER 'RPGSOM' FILE

CAUSE File system error occurred when opening RPGSOM.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

A-4 RPG Compiler Messages

Example Conventions

0058T MESSAGE ERROR OPENING COMPILER 'RPGTAB' FILE

CAUSE File system error occurred when opening the RPGTAB �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0060T MESSAGE END OF FILE FOR COMPILER COPYLIB FILE

CAUSE Compiler error.

ACTION Contact HP Support Engineering.

0061T MESSAGE END OF FILE FOR COMPILER 'RPGLIST' FILE

CAUSE RPGLIST is too small to hold all output records.

ACTION Build an RPGLIST �le with more than 5000 records and recompile.

0063T MESSAGE END OF FILE FOR COMPILER 'RPGSOM' FILE

CAUSE RPGSOM is too small to hold all output records.

ACTION Build an RPGSOM �le with more than 400 records and recompile.

0070T MESSAGE ERROR ACCESSING COMPILER COPYLIB FILE

CAUSE File system error occurred during the use of a �le speci�cation on a $INCLUDE
line.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0071T MESSAGE ERROR ACCESSING COMPILER 'RPGLIST' FILE

CAUSE File system error occurred during the use of the RPGLIST �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0072T MESSAGE ERROR ACCESSING COMPILER 'RPGTEXT' FILE

CAUSE File system error occurred during the use of the RPGTEXT �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0073T MESSAGE ERROR ACCESSING COMPILER 'RPGSOM' FILE

CAUSE File system error occurred during the use of the RPGSOM �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

RPG Compiler Messages A-5

Example Conventions

0078T MESSAGE ERROR ACCESSING COMPILER 'RPGTAB' FILE

CAUSE File system error occurred during the use of the RPGTAB �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0080T MESSAGE ERROR CLOSING COMPILER COPYLIB FILE

CAUSE File system error occurred when closing a �le speci�ed on the $INCLUDE line.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0081T MESSAGE ERROR CLOSING COMPILER 'RPGLIST' FILE

CAUSE File system error occurred when closing the RPGLIST �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0082T MESSAGE ERROR CLOSING COMPILER 'RPGTEXT' FILE

CAUSE File system error occurred when closing the RPGTEXT �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0083T MESSAGE ERROR CLOSING 'RPGSOM' FILE

CAUSE File system error occurred when closing the RPGSOM �le.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

0088T MESSAGE ERROR CLOSING COMPILER 'RPGTAB'

CAUSE File system error occurred when closing RPGTAB.

ACTION Refer to the File Information Display for the actual �le system error that
occurred and take appropriate action.

1001W MESSAGE MORE THAN ONE HEADER SPEC, SPECIFICATION DROPPED

CAUSE You included more than one Header Speci�cation in your source program.

ACTION The compiler ignores any Header Speci�cation after the �rst one. Remove the
extra speci�cations.

1002W MESSAGE INVALID ERROR DUMP FILENAME IN COLUMNS 7-14, ASSUME BLANK

CAUSE You entered an invalid �le name in the Error Dump Filename Field (columns
7-14).

ACTION The compiler ignores your entry and assumes you left these columns blank.

A-6 RPG Compiler Messages

Example Conventions

1003W MESSAGE COLUMN 15 (DEBUG OPTION) NOT BLANK OR 1, ASSUME 1.

CAUSE You speci�ed a character other than 1 in the Debug Field (column 15).

ACTION The compiler ignores your entry and assumes you entered a 1, specifying
execution of DEBUG operations. If you do not want DEBUG operations, correct
this record.

1004W MESSAGE COLUMNS 18-19 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in columns 18-19 (not used in RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

1005W MESSAGE COLUMN 21 (INVERTED PRINT) NOT BLANK, I, J, OR D, ASSUME BLANK.

CAUSE You entered a character other than an I, J, or D in the Inverted Print Field
(column 21).

ACTION The compiler ignores your entry and assumes you left it blank, specifying
Domestic Format. If you do not want Domestic Format, change this entry to I,
J, or blank.

1006W MESSAGE COLUMNS 23-24 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in columns 23-24 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

1007W MESSAGE COLUMN 26 (ALTERNATE COLLATING SEQUENCE) NOT BLANK, S, OR O, ASSUME

BLANK.

CAUSE You speci�ed a character other than an S or O in the Alternate Collating
Sequence Field (column 26).

ACTION The compiler ignores your entry and assumes you left the �eld blank, specifying
no alternate sequence. If you wish an alternate collating sequence, change the
entry to S or O.

1008W MESSAGE COLUMNS 29-33 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in columns 29-33 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

1009W MESSAGE COLUMN 34 (BINARY SEARCH OPTION) NOT BLANK OR B, ASSUME B.

CAUSE You speci�ed a character other than B in the Table/Array Look-Up Field
(column 34).

ACTION The compiler ignores your entry and assumes you entered a B for a binary
look-up. If you do not wish a binary look-up, change this entry to blank.

1010W MESSAGE COLUMNS 35-38 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in columns 35-38 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

RPG Compiler Messages A-7

Example Conventions

1011W MESSAGE COLUMN 40 (SIGN CHECK) NOT BLANK, B, S, I, O, OR N, ASSUME BLANK.

CAUSE You entered a character other than a blank or B, S, I, O, or N in the Sign
Process Field (column 40).

ACTION The compiler ignores your entry and assumes you left the �eld blank, specifying
sign-forcing on output. If you want other sign-forcing or no sign-forcing, specify
S, I, O, or N.

1012W MESSAGE COLUMN 41 (1P FORMS POSITIONING) NOT BLANK OR 1, ASSUME 1.

CAUSE You entered a character other than a 1 in the Form Positioning Field (column
41).

ACTION The compiler ignores your entry and assumes you entered a 1, specifying form
position veri�cation. If you do not wish form positioning, correct the entry.

1013W MESSAGE COLUMN 42 INDICATOR (INITIALIZATION) NOT BLANK OR S, ASSUME S.

CAUSE You entered a character other than S in the Indicator Setting Field (column 42).

ACTION The compiler ignores your entry and assumes you entered an S, turning ON 1P,
L0, and all �eld indicators. Correct the entry, if necessary.

1014W MESSAGE COLUMN 43 (FILE TRANSLATION) NOT BLANK, F, OR O, ASSUME BLANK.

CAUSE You entered a character other than an F or O in the File Translation Field
(column 43).

ACTION The compiler ignores your entry and assumes you left the �eld blank, specifying
no translation. If you wish �le translation, correct the entry to F or O.

1015W MESSAGE COLUMN 45 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in column 45 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left this column blank.

1016W MESSAGE COLUMN 47 (SKIP TO CHANNEL 1 SUPPRESS) NOT BLANK OR S, ASSUME S.

CAUSE You entered a character other than an S, in the Skip-Suppress Field (column 47).

ACTION The compiler ignores your entry and assumes you entered an S, specifying skip
suppress. If you do not wish skip suppress, change the entry to blank.

1017W MESSAGE COLUMN 48 (DSPLY OPTIONS) NOT BLANK B, D, N, OR S, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 48.

ACTION The compiler assumes that the entry was blank.

A-8 RPG Compiler Messages

Example Conventions

1018W MESSAGE COLUMN 52 (CROSS REFERENCE) NOT BLANK OR X, ASSUME X.

CAUSE You entered a character other than X in the Cross-Reference Listing Field
(column 52).

ACTION The compiler ignores your entry and assumes you entered an X, for printing a
Cross-Reference listing. If you do not want a Cross-Reference listing, enter a
blank in column 52.

1019W MESSAGE COLUMN 53 (CARRIAGE CONTROL TYPE) NOT BLANK OR L, ASSUME L.

CAUSE You entered a character other than L in the Carriage Control Type Field
(column 53).

ACTION The compiler ignores your entry and assumes you entered an L, so that skip
requests refer to line numbers. If your skip requests refer to channel numbers,
leave this column blank.

1020W MESSAGE COLUMN 54 (TEXT SEQUENCE CHECK) NOT BLANK OR N, ASSUME BLANK. (SEQ

CHECK NOT SUPPORTED)

CAUSE You entered a character other than a blank or an N in the Text�le Sequence
Check Field (column 54).

ACTION The compiler ignores your entry and assumes you left the �eld blank for no
sequence checking.

1021W MESSAGE COLUMN 55 (RUN TIME ERROR CONTROL) NOT BLANK, N, OR S, ASSUME S.

CAUSE You entered a character, other than an N or S in the Error Log Field (column
55).

ACTION The compiler ignores your entry and assumes you entered an S, for transmitting
error messages to the operator and providing a dump.

1022W MESSAGE COLUMN 56 (RUN TIME ERROR OPTION) NOT BLANK OR 1-5, ASSUME 5.

CAUSE You entered a character other than 1-5, in the Error Response Field (column 56).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1023W MESSAGE COLUMN 57 (RUN TIME ERROR OPTION) NOT BLANK OR 1-5, ASSUME 5.

CAUSE You entered a character other than 1-5, in the Error Response Field (column 57).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

RPG Compiler Messages A-9

Example Conventions

1024W MESSAGE COLUMN 58 (RUN TIME ERROR OPTION) NOT BLANK OR 1-5. ASSUME 5.

CAUSE You entered a character other than 1-5, in the Error Response Field (column 58).

ACTION The compiler ignores the entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1025W MESSAGE COLUMN 59 (RUN TIME ERROR OPTION) NOT BLANK, 0 OR 2-5. ASSUME 5.

CAUSE You entered a character other than 0 or 2-5 in the Error Response Field (column
59).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1026W MESSAGE COLUMN 60 (RUN TIME ERROR OPTION) NOT BLANK, 0 OR 2-5. ASSUME 5.

CAUSE You entered a character other than 0 or 2-5, in the Error Response Field
(column 60).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1027W MESSAGE COLUMN 61 (RUN TIME ERROR OPTION) NOT BLANK, 0 OR 2-5. ASSUME 5.

CAUSE You entered a character other than 0 or 2-5, in the Error Response Field
(column 61).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1028W MESSAGE COLUMN 62 (RUN TIME ERROR OPTION) NOT BLANK OR 0-5, ASSUME 5.

CAUSE You entered a character other than 0-5, in the Error Response Field (column 62).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1029W MESSAGE COLUMN 63 (RUN TIME ERROR OPTION) NOT BLANK OR 0-5, ASSUME 5.

CAUSE You entered a character other than 0-5, in the Error Response Field (column 63).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

A-10 RPG Compiler Messages

Example Conventions

1030W MESSAGE COLUMN 64 (RUN TIME ERROR OPTION) NOT BLANK OR 0-5. ASSUME 5.

CAUSE You entered a character other than 0-5, in the Error Response Field (column 64).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1031W MESSAGE COLUMN 65 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5. ASSUME 5.

CAUSE You entered a character other than 0 or 2-5, in the Error Response Field
(column 65).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1032W MESSAGE COLUMN 66 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5. ASSUME 5.

CAUSE You entered a character other than 0 or 2-5, in the Error Response Field
(column 66).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump, and ending the program.

1033W MESSAGE COLUMN 67 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5, ASSUME 5.

CAUSE You entered a character other than 0 or 2-5, in the Error Response Field
(column 67).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1034W MESSAGE COLUMN 68 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5, ASSUME 5.

CAUSE You entered a character, other than 0 or 2-5, in the Error Response Field
(column 68).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1035W MESSAGE COLUMN 69 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5, ASSUME 5.

CAUSE You entered a character, other than 0 or 2-5, in the Error Response Field
(column 69).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

RPG Compiler Messages A-11

Example Conventions

1036W MESSAGE COLUMN 70 (RUN TIME ERROR OPTION) NOT BLANK, 0, OR 2-5, ASSUME 5.

CAUSE You entered a character, other than 0 or 2-5, in the Error Response Field
(column 70).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and ending the program.

1037W MESSAGE COLUMN 71 (RUN TIME ERROR OPTION) NOT BLANK OR 0-5, ASSUME 5.

CAUSE You entered a character other than 0 or 2-5 in the Error Response Field (column
71).

ACTION The compiler ignores your entry and assumes you entered a 5, for redirecting or
suppressing error messages, printing a dump and the ending program.

1038W MESSAGE COLUMNS 75-80 (PROGRAM NAME) INVALID, ASSUME RPGOBJ.

CAUSE The program name does not begin with an alphabetic character (A-Z), the
remaining characters are not alphanumeric, (A-Z, 0-9), or they contain
embedded blanks.

ACTION The compiler ignores your entry and assumes you assigned the name RPGOBJ.
Correct the entry if necessary.

1039W MESSAGE NO HEADER SPEC FOR RPG PROGRAM, ASSUME BLANK HEADER SPEC.

CAUSE You left the Header Speci�cation out of your RPG program.

ACTION The compiler assumes a blank Header Speci�cation. Correct the speci�cation if
necessary.

1040W MESSAGE COLUMNS 56-70 NOT BLANK WHEN COLUMN 55 CONTAINS S, ASSUME BLANK.

CAUSE You entered data in the Error Response Field (columns 56-70) when the Error
Log Field (column 55) contains an S.

ACTION The compiler ignores your entry and assumes you left columns 56-70 blank.

1041W MESSAGE COLUMNS 72-74 NOT BLANK, ASSUME BLANK.

CAUSE You entered data in columns 72-74 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

1042W MESSAGE COLUMN 16 (U-SWITCH SOURCE) NOT BLANK, J, OR F, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 16.

ACTION The compiler assumes that the entry is blank.

1043W MESSAGE COLUMN 17 (UPDATE SOURCE) NOT BLANK OR F, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 17.

ACTION The compiler assumes that the entry is blank.

A-12 RPG Compiler Messages

Example Conventions

1044W MESSAGE COLUMN 27 NOT BLANK, ASSUME BLANK.

CAUSE You entered a character other than a blank in column 27 (not used by RPG).

ACTION The compiler assumes that the entry is blank.

1045W MESSAGE COLUMN 28 (BUFCHK DEFAULTS) NOT BLANK, C, N, B, U, OR X, ASSUME

BLANK.

CAUSE You speci�ed an incorrect entry for column 28.

ACTION The compiler assumes that the entry is blank.

1046W MESSAGE COLUMN 25 (NAME LOGGING) NOT BLANK OR L, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 25.

ACTION The compiler assumes that the entry is blank.

1047W MESSAGE COLUMN 39 (EBCDIC ZONE/DIGIT TESTS) NOT BLANK OR E, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 39.

ACTION The compiler assumes that the entry is blank.

1048W MESSAGE COLUMN 44 (NON-NUMERIC DIGITS) NOT BLANK OR N, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 44.

ACTION The compiler assumes that the entry is blank.

1049W MESSAGE COLUMN 22 (RECORD NUMBER ADJUST) NOT BLANK, 1, +, OR 0, ASSUME

BLANK.

CAUSE You speci�ed an incorrect entry for column 22.

ACTION The compiler assumes that the entry is blank.

1050W MESSAGE COLUMN 49 (RECORD LENGTH CHECK) NOT BLANK, N, OR E. ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 49.

ACTION The compiler assumes that the entry is blank.

1051W MESSAGE COLUMN 50 (PAGE OVERFLOW) NOT BLANK OR P. ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 50.

ACTION The compiler assumes that the entry is blank.

1052W MESSAGE COLUMN 51 (*PLACE METHOD) NOT BLANK OR 1. ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 51.

ACTION The compiler assumes that the entry is blank.

RPG Compiler Messages A-13

Example Conventions

1053W MESSAGE COLUMN 20 (SAVE SOURCE LINE NO'S) NOT BLANK OR N. ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 20.

ACTION The compiler assumes that the entry is blank.

2001T MESSAGE FILE NAME PREVIOUSLY DEFINED IN COLUMNS 7-14, SPEC IS DROPPED.

CAUSE You assigned the �le name used in the File Name Field (columns 7-14) in a
previous File Description Speci�cation.

ACTION The compiler ignores the speci�cation. Correct the �le name and recompile.

2002T MESSAGE INVALID FILETYPE ENTRY IN COLUMN 15, ASSUME I.

CAUSE You entered an invalid �le type entry in the File Type Field (column 15).

ACTION The compiler ignores your �le type entry and assumes you entered an I for Input
File. If this is not an input �le, change the entry to O, U, D, or C.

2003W MESSAGE FILE DESIGNATION IN COLUMN 16 IS INVALID FOR FILE TYPE, ASSUME

SECONDARY.

CAUSE You entered a value in the File Designation Field (column 16) that is invalid for
the �le type.

ACTION The compiler ignores your �le designation entry and assumes you designated a
secondary �le. If you do not intend a secondary �le, change the entry to P, R, C,
T, D, or blank.

2004W MESSAGE INVALID END OF FILE ENTRY IN COLUMN 17, ASSUME BLANK.

CAUSE You entered an invalid end-of-�le entry in the End-of-File Field (column 17).

ACTION The compiler ignores your end-of-�le entry and assumes you left it blank.

2005W MESSAGE INVALID SEQUENCE ENTRY IN COLUMN 18, ASSUME BLANK.

CAUSE You entered an invalid sequence entry in the Input Sequence Check Field
(column 18).

ACTION The compiler ignores your sequence entry and assumes you left it blank (to
sequence check the matching �le in ascending order). If you want to sequence
check in descending order, change this entry to D.

A-14 RPG Compiler Messages

Example Conventions

2006W MESSAGE FILE FORMAT IN COLUMN 19 IS INVALID, ASSUME F.

CAUSE You entered an invalid �le format in the Record Format Field (column 19).

ACTION The compiler ignores your entry and assumes the records in the �le are
�xed-length.

2007W MESSAGE INVALID BLOCK LENGTH IN COLUMNS 20-23, ASSUME EQUAL TO RECORD

LENGTH.

CAUSE You entered a block length in the Block Length Field (columns 20-23) other than
1-9999 or blank.

ACTION The compiler ignores your entry and assumes the block length and record length
are equal. Correct the block length if necessary.

2008W MESSAGE INVALID RECORD LENGTH IN COLUMNS 24-27, ASSUME RECORD LENGTH OF 80.

CAUSE You entered a record length in the Logical Record Length Field (columns 24-27)
other than 1 through 9999.

ACTION The compiler ignores your entry and assumes the record length is 80 characters.
Correct the record length.

2009T MESSAGE INVALID MODE OF PROCESSING ENTRY IN COLUMN 28.

CAUSE You entered a character other than L or R in the Processing Mode Field (column
28).

ACTION The compiler ignores your entry and assumes sequential processing. Enter a
correct value (L or R) for the processing mode.

2010T MESSAGE INVALID LENGTH OF KEY FIELD OR RECORD ADDRESS FIELD IN COLUMNS

29-30.

CAUSE You entered a key length other than 1-99 or blank in the Record Address or Key
Field Length Fields (columns 29-30).

ACTION The compiler ignores your entry and assumes that the key length is equal to 3.

2011W MESSAGE INVALID RECORD ADDRESS TYPE ENTRY IN COLUMN 31, ASSUME BLANK.

CAUSE You entered a character other than A, P, K, or I in the Record Address Type
Field (column 31).

ACTION The compiler ignores your entry and assumes you left it blank, for a direct-access
�le not processed by a chaining �le or RAF. For example, to specify processing
with a chaining �le or RAF by record number, change the entry to I.

RPG Compiler Messages A-15

Example Conventions

2012W MESSAGE INVALID ENTRY IN COLUMN 32, ASSUME BLANK.

CAUSE You entered a character other than I, X, S, T, M, 1-9, D, or C in the File
Organization/Additional I/O Area Field (column 32).

ACTION The compiler ignores your entry and assumes you left it blank, requesting two
bu�ers.

2013W MESSAGE INVALID OVERFLOW INDICATOR IN COLUMNS 33-34, ASSUME BLANK.

CAUSE You entered an invalid over
ow indicator in the Over
ow Indicator Field
(columns 33-34).

ACTION The compiler ignores your entry and assumes you left this �eld blank (no
indicator assigned). To specify an indicator, enter OA-OG or OV.

2014W MESSAGE INVALID KEY FIELD LOCATION IN COLUMNS 35-38.

CAUSE You entered an invalid value in the Key Field Starting Location Field (columns
35-38).

ACTION The compiler ignores your entry and assumes a key �eld starting location of 0.

2015T MESSAGE IF YOU WISH TO PROCESS YOUR OWN LABELS, COLUMN 53 MUST BE E OR 2-9.

CAUSE You entered a character other than E or the digits 2-9 to process your own labels.

ACTION The compiler assumes no user label processing. To process labels, enter E or 2-9.

2016W MESSAGE COLUMNS 48-49 ARE NOT BLANK.

CAUSE You entered invalid data in columns 48-49 (not used by RPG).

ACTION The compiler ignores your entry and assumes you left these columns blank.

2017W MESSAGE INVALID ENTRY IN COLUMN 53.

CAUSE You entered a character, other than an S, E, or 2 through 9, in the Disk Labels
Field (column 53).

ACTION The compiler assumes that you left the entry blank.

2018W MESSAGE COLUMNS 60-65 ARE NOT BLANK.

CAUSE You entered characters in these �elds but did not enter K (for Continuation line)
in column 53.

ACTION The compiler ignores your entry and assumes you left these columns blank.

2019W MESSAGE COLUMN 66 IS NOT 'A' OR BLANK, ASSUME BLANK.

CAUSE You entered a character, other than an A in the File Addition Field (column 66).

ACTION The compiler ignores your entry and assumes you left this �eld blank. To specify
appending new records, change this entry to A.

A-16 RPG Compiler Messages

Example Conventions

2020W MESSAGE COLUMN 67 IS NOT BLANK.

CAUSE This column is not used, but you entered a character in it.

ACTION The compiler assumes that this column is blank.

2021W MESSAGE COLUMN 70 IS NOT BLANK.

CAUSE This column is not used, but you entered a character in it.

ACTION The compiler assumes that this column is blank.

2022W MESSAGE COLUMN 73-74 ARE NOT BLANK.

CAUSE This column is not used, but you entered a character in it.

ACTION The compiler assumes that this column is blank.

2023W MESSAGE INVALID FILE CONDITIONING INDICATOR IN COLUMN 71-72, ASSUME BLANK.

CAUSE You entered an invalid �le conditioning indicator in the File Conditioner Field
(columns 71-72). You may only enter U1-U8.

ACTION The compiler ignores your entry and assumes you left this �eld blank.

2024W MESSAGE MULTIPLE PRIMARY FILE DEFINED IN COLUMN 16, ASSUME SECONDARY.

CAUSE You de�ned more than one primary input �le in the File Designation Field
(column 16).

ACTION The compiler assumes that any primary �le de�ned after the �rst primary �le is
a secondary �le.

2025T MESSAGE IF 'SPECIAL' IN COLUMN 40-46, A ROUTINE NAME MUST BE IN COLUMN

54-59.

CAUSE You didn't enter a subroutine name in the Name of Label Exit Field (column
54-59) to process user labels or �les on SPECIAL devices.

ACTION Enter a routine name in column 54-59 or remove SPECIAL from column 40-46
and recompile.

2026W MESSAGE INVALID NUMBER OF EXTENTS IN COLUMN 68-69, SYSTEM DEFAULT VALUE IS

USED.

CAUSE You entered a number of extents less than 1 or greater than 15 in the Extents
Field (columns 68-69).

ACTION The compiler ignores your entry and by system default assigns eight extents.

2027T MESSAGE FILE DESIGNATION ENTRY IN COLUMN 16 INVALID FOR OUTPUT OR DISPLAY

FILE, ASSUME BLANK.

CAUSE You entered a value in the File Designation Field (column 16) that is invalid for
the output or display �le.

ACTION The compiler ignores your �le designation entry and assumes you left it blank.
Set the File Designation Field to blank or change the �le type to I, U, or C.

RPG Compiler Messages A-17

Example Conventions

2028W MESSAGE END OF FILE ENTRY IN COLUMN 17 INVALID FOR FILE TYPE.

CAUSE You entered a character in the End-of-File Field (column 17) for �le type O or
D, or for �le designation C, T, or D.

ACTION The compiler assumes you entered a blank.

2029W MESSAGE ENTRY IN COLUMN 18 INVALID FOR TYPE OF FILE OR MODE OF PROCESSING,

ASSUME BLANK.

CAUSE You entered a letter or digit, other than an A or D, in the Input Sequence Field
(column 18) that is invalid for the �le type or mode of processing.

ACTION The compiler assumes you entered a blank.

2030W MESSAGE OVERFLOW INDICATOR IN COLUMN 33-34 PREVIOUSLY ASSIGNED, ASSUME

BLANK.

CAUSE You previously assigned an over
ow indicator in the Over
ow Indicator Field
(column 33-34).

ACTION The compiler ignores your entry and assumes you left this �eld blank. If you
wish over
ow processing, enter an unused over
ow indicator.

2031W MESSAGE INVALID OR BLANK EXTENSION CODE ENTRY IN COLUMN 39 FOR TABLE OR

RECORD ADDRESS FILE, ASSUME E.

CAUSE You entered a character other than an E or L in the Extension Code Field
(column 39) for a table �le or Record Address File.

ACTION The compiler ignores your entry and assumes you entered an E to de�ne a table
�le or RAF in a File Extension Speci�cation.

2032W MESSAGE EXTENSION CODE IN COLUMN 39 IS INVALID, ASSUME BLANK.

CAUSE You entered a letter or digit, other than an E or L, in the Extension Code Field
(column 39).

ACTION The compiler ignores your entry and assumes you left it blank.

2033W MESSAGE RECORD LENGTH IS LARGER THAN BLOCK LENGTH, ASSUME BLOCK LENGTH

EQUAL TO RECORD LENGTH.

CAUSE You speci�ed a record length larger than the block length.

ACTION The compiler ignores your entry and assumes the block length is equal to the
record length.

2034W MESSAGE BLOCK LENGTH IS NOT A MULTIPLE OF RECORD LENGTH, ASSUME UNBLOCK.

CAUSE You speci�ed a block length that is not a multiple of the record length.

ACTION The compiler ignores your entry and assumes there is no blocking (the physical
and logical record lengths are identical).

A-18 RPG Compiler Messages

Example Conventions

2035I MESSAGE NO FILE DESCRIPTION SPECIFICATION FOUND.

CAUSE You did not enter a File Description Speci�cation in the source program.

ACTION The compiler assumes that no �le I/O will be used by the program.

2036W MESSAGE NO PRIMARY FILE SPECIFIED IN COLUMN 16, ASSUME FIRST SECONDARY FILE

AS PRIMARY.

CAUSE You didn't specify a primary �le in the File Designation Field (column 16).

ACTION The compiler assumes that the �rst secondary �le is the primary �le.

2037W MESSAGE COLUMNS WHICH SHOULD BE BLANK FOR CONTINUATION LINE ARE NOT BLANK,

ASSUME BLANK.

CAUSE You made an entry in these columns on a File Description Continuation line.

ACTION The compiler assumes these columns are blank.

2038W MESSAGE CONTINUATION LINE IS NOT ALLOWED AT THIS POINT.

CAUSE The �rst line in the File Description Speci�cations is a continuation line.

ACTION The compiler ignores this continuation line.

2039W MESSAGE CONTINUATION ENTRY IN COLUMN 54-59 IS REPEATED FOR A FILE, SECOND

ENTRY IGNORED.

CAUSE You repeated a continuation line entry; for example, you speci�ed RDEXIT in
two continuation lines for the same �le.

ACTION The compiler ignores the second entry.

2040W MESSAGE ENTRY IN COLUMN 54-59 OF A CONTINUATION RECORD IS INVALID OR

MISSING.

CAUSE You entered invalid information in the Option Type Field (columns 54-59) or left
this �eld blank.

ACTION The compiler ignores this continuation line.

2041W MESSAGE INVALID FILENAME IN COLUMN 7-14, SPEC IS DROPPED.

CAUSE You entered an invalid �le name in the File Name Field (column 7-14).

ACTION The compiler drops the speci�cation; rede�ne the �le name and recompile.

2042T MESSAGE ONLY ONE RECORD ADDRESS FILE PER PROGRAM IS ALLOWED, ASSUME

SECONDARY.

CAUSE You already speci�ed one Record Address File in the program.

ACTION The compiler assumes the second �le designated is a secondary �le.

RPG Compiler Messages A-19

Example Conventions

2043W MESSAGE A RECORD ADDRESS FILE CANNOT BE A 'SPECIAL' FILE.

CAUSE You speci�ed a Record Address File as a SPECIAL �le.

ACTION The compiler assumes this �le is not a special �le.

2044I MESSAGE NO PRIMARY OR SECONDARY FILE SPECIFICATION IN COLUMN 16.

CAUSE In a program that uses multi�le input, you de�ned no primary or secondary
input �les.

ACTION Make the appropriate �le de�nitions and recompile the program.

2045W MESSAGE THIS CONTINUATION RECORD IS NOT ALLOWED FOR A NON-IMAGE FILE, SPEC

IS DROPPED.

CAUSE You entered a File Description Continuation line that is only permitted for an
TurboIMAGE �le.

ACTION The compiler ignores this record.

2046W MESSAGE ILLEGAL DATA BASE NAME IN COLUMNS 60-65.

CAUSE You entered an invalid TurboIMAGE database name.

ACTION Enter a correct TurboIMAGE database name.

2047W MESSAGE ILLEGAL OPEN MODE IN COLUMN 66, ASSUME 2.

CAUSE You entered a character other than 1, 2, 3, or blank in the Open Mode Field
(column 66).

ACTION The compiler assumes Mode 2, Update Shared. Enter the correct mode.

2048W MESSAGE ILLEGAL INPUT/OUTPUT MODE IN COLUMN 67.

CAUSE You entered a character other than 2 through 8, S, B, C, or R, in the
Input/Output Mode Field (column 67).

ACTION The compiler assumes Mode 2. Enter the correct mode.

2049W MESSAGE RECORD ADDRESS TYPE IN COLUMN 31 MUST BE 'A', 'P', 'K', OR 'I' FOR

IMAGE FILE, ASSUME 'A'.

CAUSE You entered an improper character in the Record Address Type Field (column
31).

ACTION The compiler assumes you entered A (alphanumeric keys).

2050W MESSAGE RECORD ADDRESS TYPE IN COLUMN 31 MUST BE 'I' FOR DIRECT FILE.

CAUSE The TurboIMAGE �le is a direct-access �le, but you speci�ed a record address
type other than I (retrieve by record number).

ACTION The compiler assumes Mode I. Enter the correct mode, if necessary.

A-20 RPG Compiler Messages

Example Conventions

2051T MESSAGE MODE OF PROCESSING IN COLUMN 28 MUST BE 'R' FOR DIRECT FILE, ASSUME

R.

CAUSE The TurboIMAGE �le is a direct-access �le, but you speci�ed a processing mode
other than R (random).

ACTION The compiler assumes you entered R. Enter the correct mode if necessary.

2052T MESSAGE RECORD ADDRESS TYPE IN COLUMN 31 MUST BE BLANK FOR SEQUENTIAL OR

TAG FILE, ASSUME BLANK.

CAUSE The TurboIMAGE �le is a sequential or TAG �le, but you speci�ed a record
address type other than blank (sequential).

ACTION The compiler assumes you left this �eld blank. Enter the correct record address
type.

2054T MESSAGE L IN COLUMN 28 CAN ONLY BE USED WITH C OR R IN COLUMN 67 FOR

PREVIOUS FILE.

CAUSE You speci�ed L (for sequential processing between limits for this �le) but a
con
icting Input/Output Mode for the previous �le.

ACTION The compiler assumes column 28 is blank. Enter the correct input/output mode
in column 28.

2055T MESSAGE ITEM NAME MISSING FOR 'L' IN COLUMN 28 FOR PREVIOUS FILE.

CAUSE You did not supply the required ITEM Continuation line.

ACTION The compiler terminates your job at the end of compilation; enter the ITEM line.

2056T MESSAGE ITEM NAME MISSING FOR INPUT/OUTPUT MODE 5, 6, C, OR R FOR PREVIOUS

FILE.

CAUSE You did not provide the corresponding ITEM Continuation line for this chained
�le.

ACTION The compiler terminates your job at the end of compilation. Enter the ITEM
Continuation line and recompile.

2058T MESSAGE DATA BASE NAME MISSING FOR PREVIOUS FILE.

CAUSE You did not provide a Database Name Record for this �le.

ACTION The compiler terminates your job at the end of compilation. Enter the Database
Name line and recompile.

2059T MESSAGE FORMS, BATCH, AND TRACE FILES MAY ONLY BE SPECIFIED FOR WORKSTN

FILE.

CAUSE You included a FORMS BATCH or TRACE Continuation line for a
non-WORKSTN �le.

ACTION Correct the program and recompile.

RPG Compiler Messages A-21

Example Conventions

2060T MESSAGE TRACE FILE NAME MUST BE NON-BLANK AND BEGIN IN COLUMN 60.

CAUSE The TRACE �le name is missing or does not begin in column 60.

ACTION Enter the name beginning in column 60.

2061W MESSAGE WORKSTN FILE MUST BE UPDATE OR COMBINED. ASSUME UPDATE.

CAUSE A �le on device WORKSTN is not declared as update or combined.

ACTION The compiler assumes the WORKSTN �le is an update �le.

2062W MESSAGE WORKSTN FILE MUST BE DEMAND OR PRIMARY, ASSUME PRIMARY.

CAUSE A �le on device WORKSTN is not declared as demand or primary.

ACTION The compiler assumes WORKSTN �le is primary.

2063W MESSAGE WORKSTN FILE MUST HAVE VARIABLE LENGTH RECORDS, ASSUME VARIABLE.

CAUSE A �le on device WORKSTN has �xed length records.

ACTION The compiler assumes the WORKSTN �le has variable length records.

2064W MESSAGE COLUMN 52 MUST BE BLANK FOR FILES NOT ON DEVICE WORKSTN.

CAUSE Column 52 is not blank for the non-WORKSTN �le.

ACTION The compiler assumes column 52 is blank.

2065W MESSAGE INVALID ENTRY IN COLUMN 52, ASSUME BLANK.

CAUSE Column 52 contains an invalid entry for the WORKSTN �le.

ACTION The compiler assumes column 52 is blank.

2066W MESSAGE COLUMN 51 MUST BE BLANK FOR FILES NOT ON DEVICE WORKSTN.

CAUSE Column 51 is not blank for the non-WORKSTN �le.

ACTION The compiler assumes column 51 is blank.

2067W MESSAGE INVALID ENTRY IN COLUMN 51, ASSUME BLANK.

CAUSE Column 51 contains an invalid entry for the WORKSTN �le.

ACTION The compiler assumes column 51 is blank.

2068W MESSAGE FILE ON DEVICE $STDIN MUST BE INPUT, ASSUME INPUT.

CAUSE A �le declared on device $STDIN is not an input �le.

ACTION The compiler assumes $STDIN is the input �le.

2069W MESSAGE FILE ON DEVICE $STDLIST MUST BE OUTPUT OR DISPLAY, ASSUME OUTPUT.

CAUSE A �le that uses device $STDLST is not an output or display �le.

ACTION The compiler assumes the $STDLST �le is an output �le.

A-22 RPG Compiler Messages

Example Conventions

2070W MESSAGE KEY FIELD/RECORD ADDRESS FIELD LENGTH MUST BE ENTERED FOR THIS

FILE.

CAUSE No key �eld length is entered for a chaining type �le.

ACTION Correct the program and recompile.

2071W MESSAGE KEY FIELD STARTING LOCATION MUST BE ENTERED FOR THIS FILE.

CAUSE No key �eld starting location is entered for a chaining �le.

ACTION Correct the program and recompile.

2072I MESSAGE DEVICE NAME NOT LEFT-JUSTIFIED IN FIELD, ASSUME JUSTIFIED.

CAUSE You speci�ed a device name that is not left-justi�ed in the Device Class Name
Field (columns 40-46).

ACTION The compiler left justi�es the entry.

2073W MESSAGE FILE SPECIFIED AS CHAINED ACCESS MUST BE RANDOM PROCESSED, ASSUMED

R IN COLUMN 28.

CAUSE You speci�ed a �le as chained access, but did not specify random processing.

ACTION The compiler assumes you entered R in column 28.

2074W MESSAGE INPUT/OUTPUT MODE MUST BE 5, 6, 7, 8, C, OR R FOR RECORD LEVEL

LOCKING, ASSUME 1 IN COLUMN 66.

CAUSE You speci�ed R (Record Locking) in column 66, but used an incorrect
Input/Output Mode in column 67. This sequence is invalid.

ACTION The compiler assumes you entered 1 (database locking per record) in column 66.

2075W MESSAGE LOCKING MODE INCONSISTENT FOR DATA BASE, FIRST MODE IS B, MODES

AFTER ARE DIFFERENT, ASSUME B.

CAUSE You speci�ed di�erent locking modes following an initial locking mode of B. This
sequence is invalid.

ACTION The compiler assumes the mode B for all accesses.

2076W MESSAGE LOCKING MODE INCONSISTENT FOR DATA SET, FIRST MODE IS S, MODES

AFTER ARE DIFFERENT, ASSUME S.

CAUSE You speci�ed di�erent locking modes following an initial locking mode of S. This
sequence is invalid.

ACTION The compiler assumes the mode S for all accesses.

RPG Compiler Messages A-23

Example Conventions

2077W MESSAGE LOCKING MODE INCONSISTENT, MODE FOLLOWING FIRST LOCK MODE ARE

DIFFERENT; ASSUME FIRST MODE.

CAUSE You speci�ed di�erent locking modes following an initial locking mode. This
sequence is invalid.

ACTION Correct the program for locking mode consistency and recompile.

2078T MESSAGE LOCKING MODE IS INCONSISTENT, FIRST MODE IS S, THE FOLLOWING MODE

IS B.

CAUSE You speci�ed di�erent locking modes following an initial locking mode.

ACTION Correct the program for locking mode consistency and recompile.

2079T MESSAGE LOCKING MODE INCONSISTENT, MODES FOLLOWING FIRST LOCK MODE ARE OF

HIGHER PRECEDENCE.

CAUSE You speci�ed di�erent locking modes following an initial locking mode.

ACTION Correct the program for locking mode consistency and recompile.

2080T MESSAGE FILE DESCRIBED AS AN OUTPUT CHAIN FILE MUST BE A DIRECT FILE, NOT A

KSAM, IMAGE, OR INDEXED FILE.

CAUSE You speci�ed a �le as OC in columns 15-16; therefore, column 32 must be
speci�ed as a direct �le.

ACTION Correct the program to specify blank, D, or 1-7 in column 32, and recompile.

2081I MESSAGE FOR UPDATE-ADD FILE WITHOUT 'UPDATE-PROTECT CHECK', ENSURE THAT NO

UPDATE IS INTERRUPTED BY AN ADD.

CAUSE You speci�ed a �le as update without specifying the update-protect check option
in column 28 of the Header Speci�cation.

ACTION Add the update protect check option (U or X in column 28) or ensure that the
program does not attempt to add a record while an update operation is in
progress.

2082W MESSAGE COLUMN 50 MUST BE BLANK FOR FILES NOT ON DEVICE WORKSTN.

CAUSE You speci�ed an incorrect entry for column 50.

ACTION The compiler assumes blank.

2083W MESSAGE INVALID ENTRY IN COLUMN 50, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 50.

ACTION The compiler assumes blank.

2084W MESSAGE COLUMN 32 FOR WORKSTN FILE MUST BE BLANK, ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 32.

ACTION The compiler assumes blank.

A-24 RPG Compiler Messages

Example Conventions

2085W MESSAGE BUFCHK SPEC ONLY ALLOWED FOR SEQUENTIAL, DIRECT, AND INDEXED FILES,

SPEC IS DROPPED.

CAUSE You speci�ed a BUFCHK Continuation line for a �le that is not a sequential,
direct, or indexed �le.

ACTION The compiler ignores the BUFCHK Continuation line.

2086W MESSAGE BUFCHK SPEC COLUMN 60 (CURRENT DATA CHECK) MUST BE BLANK OR N,

ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 60.

ACTION The compiler assumes blank.

2087W MESSAGE BUFCHK SPEC COLUMN 61 (NO-READ CHECK) MUST BE BLANK OR N, ASSUME

BLANK.

CAUSE You speci�ed an incorrect entry for column 61.

ACTION The compiler assumes blank.

2088I MESSAGE BUFCHK 'NO-READ CHECK' DISABLED FOR NON-UPDATE FILE.

CAUSE You speci�ed the NO-READ CHECK option in column 28 of the Header
Speci�cation and a BUFCHK Continuation line with a blank in column 61 for a
non-update �le. This sequence is invalid.

ACTION The compiler disables the NO-READ CHECK option for this �le.

2089W MESSAGE BUFCHK SPEC COLUMN 62 (UPDATE-PROTECT CHECK) MUST BE BLANK OR N,

ASSUME BLANK.

CAUSE You speci�ed an incorrect entry for column 62.

ACTION The compiler assumes blank.

2090I MESSAGE BUFCHK 'UPDATE-PROTECT CHECK' DISABLED FOR NON-UPDATE FILE.

CAUSE You speci�ed the UPDATE-PROTECT CHECK option in column 28 of the
Header Speci�cation and a BUFCHK Continuation line with a blank in column
62 for a non-update �le. This sequence is invalid.

ACTION The compiler disables the UPDATE-PROTECT CHECK option for this �le.

2091I MESSAGE BUFCHK 'CURRENT DATA CHECK' DISABLED FOR ALL NON-LOCKING FILES

HAVING A 'BUFCHK' CONTINUATION REC.

CAUSE You speci�ed the CURRENT DATA CHECK option in column 28 of the Header
Speci�cation, and a BUFCHK Continuation line for �les for which locking is not
speci�ed.

ACTION The compiler disables the CURRENT DATA CHECK option for the �le(s).

RPG Compiler Messages A-25

Example Conventions

2093W MESSAGE FORMS DOWN-LOAD VALUE IN COLUMNS 60-62 MUST BE 1-255, ASSUME 1.

CAUSE You speci�ed an incorrect entry for columns 60-62 (the entry may not be
right-justi�ed).

ACTION The compiler assumes 1.

2094I MESSAGE BUFCHK 'CURRENT DATA CHECK' DISABLED FOR IMAGE FILE.

CAUSE You speci�ed a BUFCHK Continuation line for a TurboIMAGE �le. This
sequence is invalid.

ACTION The compiler disables the CURRENT DATA CHECK option for this �le
speci�cation.

2095W MESSAGE KEYFL SPEC CONTAINS INVALID PARAMETER(S), OR IS SPECIFIED FOR A

NON-KSAM FILE.

CAUSE Columns 68-70 contained invalid parameter information or you speci�ed the
KEYFL Continuation line for a non-KSAM �le.

ACTION The compiler disregards your entry. Correct the program and recompile.

2096W MESSAGE WORKSTN INTERFACE TYPE NOT BLANK, R, OR C, ASSUME BLANK.

CAUSE You entered an incorrect value in column 47 of the File Description Speci�cation.

ACTION The compiler assumes blank.

2098W MESSAGE FORMDL MESSAGE NOT SPECIFIED PRIOR TO LOADFM OPTION - ASSUME NO.

DOWNLOADED IS 1.

CAUSE A FORMDL Speci�cation must precede a LOADFM Speci�cation.

ACTION The compiler assumes that one form is to be loaded.

2100W MESSAGE INVALID ERROR OPTION ON KFATAL RECORD, DEFAULTING TO 0.

CAUSE You entered an option number that was not 0-5.

ACTION The compiler assumes option 0.

2101T MESSAGE KSTATUS MUST ALSO BE SPECIFIED FOR FILES USING THE KFATAL OPTION.

CAUSE A KSTATUS record for this �le was not found, although a KFATAL record was
used.

ACTION Add a KSTATUS record for the �le and recompile.

3001T MESSAGE TO FILENAME (COLUMNS 19-26) INVALID OR UNDEFINED - RECORD IGNORED.

CAUSE You entered an invalid or unde�ned �le name in the To File Name Field
(columns 19-26). (An unde�ned �le name is one that does not appear in the File
Description Speci�cations.)

ACTION De�ne the To File Name and recompile.

A-26 RPG Compiler Messages

Example Conventions

3002T MESSAGE FROM FILENAME (COLUMNS 11-18) INVALID OR UNDEFINED - RECORD

IGNORED.

CAUSE You entered an invalid or unde�ned �le name in the From File Name Field
(columns 11-18). (An unde�ned �le name is one that does not appear in the File
Description Speci�cations.)

ACTION De�ne the correct From File Name and recompile.

3003W MESSAGE E NOT SPECIFIED ON FILE DESCRIPTIONS FOR FROM FILE.

CAUSE You did not enter an E on the File Description Speci�cation (column 39) for the
From File Name Field (columns 11-18).

ACTION Enter an E in column 39 of the File Description Speci�cation for the From File.

3004T MESSAGE FROM FILE IS NOT AN INPUT FILE - RECORD IGNORED.

CAUSE You speci�ed a non-input �le in the From File Name Field (column 11-18).

ACTION Enter the correct �le in the From File Name Field and recompile.

3005W MESSAGE CHAINING OR RECORD ADDRESS FILE AND COLUMNS 33-57 NON BLANK. BLANK

ASSUMED.

CAUSE You entered data in columns 33-57, which should remain blank for chaining or
Record Address Files.

ACTION Remove the data from columns 33-57.

3006T MESSAGE CHAINING FIELD NUMBER (COLUMN 10) NOT 1-9 - RECORD IGNORED.

CAUSE You entered a character other than one of the digits 0 through 9 in column 10.

ACTION Specify the correct digit and recompile.

3007W MESSAGE CHAINING FIELD CODE (COLUMN 9) NOT C-ASSUME C.

CAUSE You did not enter a C in column 9 of the Chaining Field Code Field (columns
9-10).

ACTION The compiler assumes you entered a C in column 9, and combines this with the
digit in column 10 to form the chaining code. Correct column 9.

3008T MESSAGE CHAINING CODE AND FROM FILE PREVIOUSLY SPECIFIED - RECORD IGNORED.

CAUSE You previously speci�ed the chaining code in the Chaining Field Code Fields
(columns 9-10) and the from �le in the From File Name Field (columns 11-18).

ACTION The compiler ignores the speci�cation. Remove the duplicate chaining
description.

RPG Compiler Messages A-27

Example Conventions

3009T MESSAGE TO FILE NOT A CHAINED OR RANDOM FILE - RECORD IGNORED.

CAUSE You did not specify a chained or direct-access �le in the To File Name Field.

ACTION Specify the correct type of �le and recompile.

3013T MESSAGE RECORD ADDRESS FILE PREVIOUSLY SPECIFIED ON EXTENSION SPECIFICATION

- RECORD IGNORED.

CAUSE You speci�ed a record address �le in a previous File Extension Speci�cation.

ACTION Set up program so that there is only one record address �le.

3014T MESSAGE TO FILENAME (COLUMNS 19-26) MISSING FOR CHAINING OR RAF -

SPECIFICATION IGNORED.

CAUSE You did not enter a �le name in the To File Name Field (columns 19-26) for the
chaining �le or the Record Address File you speci�ed.

ACTION Specify the �le name and recompile.

3015T MESSAGE TABLE/ARRAY NAME (COLUMNS 27-32) PREVIOUSLY DEFINED - RECORD

IGNORED.

CAUSE You previously de�ned the table/array name in the Table/Array Name Field
(column 27-32).

ACTION Change the name and recompile.

3016T MESSAGE ENTRIES PER RECORD (COLUMNS 33-35) INVALID - ASSUME 1.

CAUSE You speci�ed an invalid number of entries in one record in the Entries Per
Record Field (columns 33-35). (The number of entries must be from 1 to 999.)

ACTION The compiler ignores your entry and assumes you entered a 1. Enter valid
numeric characters, right-justi�ed with no embedded blanks, and recompile.

3017T MESSAGE ENTRIES PER TABLE/ARRAY (COLUMNS 36-39) INVALID - ASSUME 1.

CAUSE You entered an invalid number of entries in the Entries Per Table/Array Field
(columns 36-39). The number of entries must be 1-9999.

ACTION The compiler ignores your entry and assumes you entered a 1. Enter valid
numeric characters, right-adjusted with no embedded blanks, and recompile.

3018W MESSAGE P/B/L/R FIELD (COLUMN 43) INVALID - BLANK ASSUMED.

CAUSE You entered a character other than P, B, L or R, in the Data Format Field
(column 43).

ACTION The compiler ignores your entry and assumes you left it blank. Enter a valid
character in this �eld.

A-28 RPG Compiler Messages

Example Conventions

3019W MESSAGE FIELD SIZE OF 1 NOT ALLOWED WITH L OR R SPECIFIED IN COLUMN 43 - 2

ASSUMED.

CAUSE You speci�ed a �eld size of 1 in the Entry Length Field (column 40-42) with an
L or R format in the Data Format Field (column 43).

ACTION The compiler ignores your entry and assumes you speci�ed a �eld size of 2
characters. Specify a �eld size of at least 2 characters.

3020T MESSAGE FIELD SIZE (COLUMNS 40-42) BLANK OR INVALID - 1 ASSUMED.

CAUSE You entered an invalid �eld size or left the Entry Length Field (columns 40-42)
blank.

ACTION The compiler ignores your entry and assumes you speci�ed a �eld size of 1
character. Enter valid numbers, right-adjusted with no embedded blanks.

3021W MESSAGE DECIMAL POSITIONS (COLUMN 44) INVALID - ASSUME NUMERIC WITH ZERO

DECIMAL POSITIONS.

CAUSE You entered an invalid number of digit positions to the right of the decimal point
in the Decimal Positions Field (column 44).

ACTION The compiler ignores your entry and assumes a numeric table with zero decimal
position. Enter a digit (0 to 9) in this �eld.

3022W MESSAGE P, B, L, OR R SPECIFIED (COLUMN 43) AND BLANK DECIMAL POSITIONS -

ASSUME NUMERIC WITH ZERO DECIMALS.

CAUSE You entered a P, B, L, or R in the Data Format Field (column 43) and left the
Decimal Positions Field (column 44) blank.

ACTION The compiler ignores your entry and assumes a numeric table/array with zero
decimal positions. Either enter a blank in column 43 or a digit (0-9) in column
44.

3023T MESSAGE DECIMAL POSITIONS (COLUMN 44) GREATER THAN NUMBER OF DIGITS -

ASSUME EQUAL.

CAUSE You speci�ed more digits to the right of the decimal in the Decimal Positions
Field (column 44) than there are positions.

ACTION The compiler ignores your entry and assumes that the number of decimal
positions equals the number of digit positions. Change either the decimal
positions or the number of digits and recompile.

3024W MESSAGE SEQUENCE (COLUMN 45) NOT BLANK, A OR D - A ASSUMED.

CAUSE You entered a letter or digit, other than an A or D, in the Table/Array Sequence
Field (column 45).

ACTION The compiler ignores your entry and assumes you entered an A (for ascending
sequence).

RPG Compiler Messages A-29

Example Conventions

3025T MESSAGE FIELD NAME (COLUMNS 27-32) BLANK OR INVALID - ENTRY IGNORED.

CAUSE You entered an invalid table or array name or left the Table/Array Field
(column 27-32) blank.

ACTION The compiler ignores your entry. Enter a valid �eld name and recompile.

3026T MESSAGE BINARY FIELD NOT LENGTH 5 OR 10.

CAUSE You speci�ed a binary �eld which is neither 5 or 10 digits long.

ACTION Rede�ne the �eld so that it is either 5 or 10 digits long.

3027T MESSAGE TO FILE (COLUMNS 19-26) NOT AN OUTPUT FILE - TO FILE IGNORED.

CAUSE You speci�ed the To File as something other than an Output File in its File
Description Speci�cation.

ACTION The compiler ignores To File Name entry. Enter a valid output �le name or
blanks and recompile.

3028W MESSAGE P/B/L/R FIELD (COLUMN 55) INVALID - BLANK ASSUMED.

CAUSE You entered a character other than P, B, L, or R in the Data Format Field
(column 55).

ACTION The compiler ignores your entry and assumes you left the �eld blank. Correct
this �eld to the proper �eld format (P, B, L, or R).

3029W MESSAGE FIELD SIZE OF 1 NOT ALLOWED WITH L OR R SPECIFIED IN COLUMN 55 - 2

ASSUMED.

CAUSE You speci�ed a �eld size of 1 in the Entry Length Field (columns 52-54) with an
L or R format in the Data Format Field (column 55).

ACTION The compiler ignores your entry and assumes you speci�ed a �eld size of 2
characters. Enter a �eld size of at least two characters.

3030T MESSAGE FIELD SIZE (COLUMNS 52-54) BLANK OR INVALID - 1 ASSUMED.

CAUSE You entered an invalid �eld size or left the Entry Length Field (columns 52-54)
blank.

ACTION The compiler ignores your entry and assumes you speci�ed a �eld size of 1
character. Enter valid numeric characters, right-adjusted with no embedded
blanks.

3031T MESSAGE ALPHA FIELD SIZE GREATER THAN 256 - ASSUME 256.

CAUSE You entered an alphanumeric �eld size in the Entry Length Field (columns 40-42
or columns 52-54) that is greater than 256 characters.

ACTION The compiler ignores your entry and assumes you entered 256 characters. Enter
a �eld size of 256 or less.

A-30 RPG Compiler Messages

Example Conventions

3032T MESSAGE NUMERIC FIELD SIZE GREATER THAN 15 - ASSUME 15.

CAUSE You entered a numeric �eld size in the Entry Length Field (columns 40-42 or
columns 52-54) greater than 15 digits.

ACTION The compiler ignores your entry and assumes you entered 15 digits. Either de�ne
this �eld as an alphanumeric �eld or change the number of digits to 15 or less.

3033W MESSAGE DECIMAL POSITIONS (COLUMN 56) INVALID - ASSUME NUMERIC WITH ZERO

DECIMAL POSITIONS.

CAUSE You speci�ed an invalid number of digits to the right of the decimal point in the
Decimal Positions Field (column 56).

ACTION The compiler ignores your entry and assumes numeric data with zero decimal
positions. Enter 0-9 in this �eld.

3034W MESSAGE P, B, L, OR R SPECIFIED (COLUMN 55) AND BLANK DECIMAL POSITIONS -

ASSUME NUMERIC WITH ZERO DECIMALS.

CAUSE You speci�ed a P, B, L or R in the Data Format Field (column 55) and left the
Decimal Positions Field (column 56) blank.

ACTION The compiler ignores your entry and assumes a numeric table/array with zero
decimal positions. Either enter a blank in column 55 or 0-9 in column 56.

3035T MESSAGE DECIMAL POSITIONS (COLUMN 56) GREATER THAN NUMBER OF DIGITS -

ASSUME EQUAL.

CAUSE You speci�ed more positions to the right of the decimal in the Decimal Positions
Field (column 56) than there are digits.

ACTION The compiler ignores your entry and assumes the number of decimal positions
equals the number of digits. Change either the number of decimal positions or
the �eld length.

3036W MESSAGE SEQUENCE (COLUMN 57) NOT BLANK, A, OR D - A ASSUMED.

CAUSE You entered a letter or digit, other than an A or D, in the Table/Array Sequence
Field (column 57).

ACTION The compiler ignores your entry and assumes you entered an A (for ascending
sequence).

3037T MESSAGE FIELD NAME (COLUMNS 46-51) BLANK OR INVALID - ENTRY IGNORED.

CAUSE You entered an invalid table or array name or left the Alternating Table/Array
Name Field (column 46-51) blank.

ACTION Enter the correct name and recompile.

RPG Compiler Messages A-31

Example Conventions

3038T MESSAGE TABLE/ARRAY NAME (COLUMNS 46-51) PREVIOUSLY DEFINED - RECORD

IGNORED.

CAUSE You previously used this table or array name in the Alternating Table/Array
Name Field (columns 46-51).

ACTION The compiler ignores the record entry; change the name and recompile.

3039W MESSAGE NO EXTENSION SPECIFICATION FOR FILE WITH E IN COLUMN 39 OF FILE

SPECIFICATION.

CAUSE The program uses a table, array, chaining �le or RAF but there is no File
Extension Speci�cation that describes it.

ACTION Insert the File Extension Speci�cation and recompile the program.

3040W MESSAGE ENTRIES PER RECORD BLANK AND FILENAME SPECIFIED - ASSUME 1.

CAUSE You did not specify the number of entries per record, yet you speci�ed the �le
name in the Table/Array Name Field (column 27-32).

ACTION The compiler ignores the entry and assumes you speci�ed 1 entry per record.
Enter valid numeric characters, right-adjusted with no embedded blanks.

3041I MESSAGE EXTENSION SPECIFICATION BLANK - IGNORE RECORD.

CAUSE You did not enter any information in this speci�cation.

ACTION The compiler ignores the record; enter valid �le names in the From File Name
Field and the To File Name Field.

3042W MESSAGE ENTRIES PER RECORD GREATER THAN TABLE SIZE - ASSUME ENTRIES

REVERSED.

CAUSE You speci�ed a greater number of entries in one record of the table (Entries Per
Record Field, columns 33-35) than the number of entries in the entire table
(Entries Per Table/Array Field, columns 36-39).

ACTION The compiler ignores your entry and assumes the entries are reversed (the table
size is greater than the entries per record). Enter the correct number of entries
per record and table size, and recompile.

3043T MESSAGE FROM FILE RECORD LENGTH NOT LARGE ENOUGH TO HOLD ENTRIES PER

RECORD.

CAUSE You speci�ed a number of entries per record (columns 33-35) that exceeds the
space allotted by the length of the records in the From File.

ACTION Enter the number of entries per record and recompile.

3044T MESSAGE TO FILE RECORD LENGTH NOT LARGE ENOUGH TO HOLD ENTRIES PER RECORD.

CAUSE You speci�ed a number of entries per record (columns 33-35) that exceeds the
space allotted by the length of the records in the To File.

ACTION Enter the number of entries per record and recompile.

A-32 RPG Compiler Messages

Example Conventions

4001W MESSAGE INVALID, MISSING, OR UNDEFINED FILENAME IN COLUMNS 7-14, SPEC IS

DROPPED.

CAUSE You speci�ed a �le name in the File Name Field (columns 7-14) that was invalid
or unde�ned or you omitted this �le name completely.

ACTION Include the correct �le name and recompile.

4002W MESSAGE FILENAME IN COLUMNS 7-14 DOES NOT REFER TO 'L' EXTENSION CODE.

CAUSE You speci�ed a �le name in the File Name Field (columns 7-14) that is not
de�ned in the File Description Speci�cations or you speci�ed it in the File
Description but failed to specify L in column 39.

ACTION De�ne the correct �le name and recompile.

4003W MESSAGE LINE NO. ENTRY IN COL 15-17 INVALID, LESS THAN 1. OR GREATER THAN

112.

CAUSE You speci�ed an invalid line number or a number greater than 112 in the Line
Number Field (columns 15-17).

ACTION The compiler ignores your entry and assumes line number 66.

4004W MESSAGE INVALID OR MISSING ENTRY IN COLUMNS 18-19, ASSUME FL.

CAUSE You entered characters other than OL or FL or a number between 1 and 12 in
the Channel Number/OL Field (columns 18-19), or left this �eld blank.

ACTION The compiler ignores your entry and assumes you entered FL (for Form Length).

4005W MESSAGE LINE NO. ENTRY IN COL 20-22 INVALID, LESS THAN 1, OR GREATER THAN

112.

CAUSE You entered an invalid over
ow line or speci�ed a line number greater than 112
in the Channel Number/OL Field (columns 20-24).

ACTION The compiler assumes line number 66. Correct the entry and recompile.

4006W MESSAGE INVALID OR MISSING OL ENTRY IN COLUMN 23-24, ASSUME OL.

CAUSE You entered characters other than OL or FL or a number between 01 and 12 in
the Line Number and OL/FL Field (columns 23-24) or left this �eld blank.

ACTION The compiler assumes OL. Correct the entry and recompile.

RPG Compiler Messages A-33

Example Conventions

4007W MESSAGE OVERFLOW LINE EXCEEDS FORM LENGTH; ASSUME FORM LENGTH.

CAUSE You speci�ed an over
ow line in the Line Number Field (column 20-22) that
exceeds the form length in the previous Line Number Field (columns 15-17).

ACTION The compiler assumes that the form length line and over
ow line are equal.

4008W MESSAGE LINE NUMBER ENTRY IS INVALID, PREVIOUS SPEC. OR DEFAULT IS USED.

CAUSE You speci�ed an invalid line number.

ACTION The compiler ignores your entry.

4009W MESSAGE CHANNEL NUMBER ENTRY IS INVALID, LINE NO. ENTRY IGNORED.

CAUSE You speci�ed an invalid channel number.

ACTION The compiler ignores your entry.

4011W MESSAGE MULTIPLE LINE COUNTER SPECIFICATION FOR SAME FILE IS DROPPED.

CAUSE You included more than one Line Counter Speci�cation for the same channel,
form length or over
ow line.

ACTION The compiler ignores the second Line Counter Speci�cation.

4012W MESSAGE COLUMNS 25-74 SHOULD BE BLANK.

CAUSE You entered data in columns 25-74 when using the Line Number Option of the
Line Counter Speci�cations.

ACTION The compiler ignores the entries in columns 25-74 and assumes you left these
columns blank.

4013W MESSAGE NO LINE SPECIFICATION FOR FILE WITH L IN COLUMN 39 OF FILE

SPECIFICATION.

CAUSE You entered L in column 39 of a File Description Speci�cation that has no
associated Line Counter Speci�cation.

ACTION Correct the entry and recompile the program.

4015W MESSAGE NO ENTRIES IN L-SPEC RECORD.

CAUSE You entered a �le name with no other entries in this speci�cation.

ACTION The compiler ignores this speci�cation.

4016W MESSAGE ENTRIES AFTER 1ST BLANKS ON L-SPEC IGNORED.

CAUSE When processing channel speci�cations, processing stops when the �rst blank
line no./channel no. pair is found. The compiler then checks to see if the
remainder of the speci�cation is blank.

ACTION The compiler ignores non-blank trailing entries.

A-34 RPG Compiler Messages

Example Conventions

4017W MESSAGE MULTIPLE FL USAGE; ASSUME COLS 23-24 ARE OL.

CAUSE Columns 18-19 and 23-24 both contain FL.

ACTION The line number in columns 20-22 is used as the OL line.

4018W MESSAGE MULTIPLE OL USAGE; ASSUME COLS 18-19 ARE FL.

CAUSE Columns 18-19 and 23-24 both contain OL.

ACTION The line number in columns 15-17 is used as the FL line.

5001T MESSAGE INVALID OR UNDEFINED FILENAME - DISK FILE ASSUMED.

CAUSE You entered, in the File Name Field (columns 7-14), an invalid �le name or a
name that is not de�ned in the File Description Speci�cations.

ACTION Specify the correct �le name or include a File Description Speci�cation for it.

5002T MESSAGE FILE IS NOT AN INPUT, UPDATE, OR COMBINED FILE - INPUT ASSUMED.

CAUSE You entered a �le name that does not identify an input, update, or combined �le.

ACTION Correct the File Description Speci�cation to identify an input, update, or
combined �le.

5003T MESSAGE AND/OR LINE CANNOT FOLLOW TRAILER OR LOOK-AHEAD.

CAUSE You entered an AND or OR line after specifying a trailer or look-ahead record in
the Record Indicator/Look-Ahead/Trailer/Data Structure Field (columns 19-20).

ACTION Remove the AND or OR line.

5004T MESSAGE AND/OR LINE DOES NOT FOLLOW RECORD IDENTIFICATION LINE.

CAUSE You did not specify a record to which this AND/OR line applies.

ACTION Enter the �rst line of the record identi�cation for this record.

5005W MESSAGE AND/OR LINE FOLLOWS LINE WITHOUT RECORD IDENTIFICATION CODES.

CAUSE You did not include record identi�cation codes in columns 21-41 on the previous
line.

ACTION Enter the record identi�cation codes (C,Z,D) on the previous line.

RPG Compiler Messages A-35

Example Conventions

5006W MESSAGE AND/OR LINE AND NUMBER/OPTION (COLUMNS 17-18) NOT BLANK.

CAUSE You entered AND or OR in columns 14-16 and on the same speci�cation line you
entered a value in the Number of Records Field (column 17) or Option Field
(column 18).

ACTION Enter the Number of Records or Option Fields on a di�erent speci�cation line
from the AND/OR line, then recompile.

5007W MESSAGE AND LINE AND RECORD INDICATOR (COLUMNS 19-20) NOT BLANK.

CAUSE You entered an AND line and a record indicator in the Record
Indicator/Look-Ahead/Trailer/Data Structure Field (columns 19-20).

ACTION Enter a record indicator on a separate speci�cation line from the AND line, then
recompile.

5009T MESSAGE TRAILER HEADER DOES NOT CONTAIN ALPHA SEQUENCE OR NUMERIC WITH N.

CAUSE You speci�ed a trailer record and the previous record identi�cation speci�cation
contained a numeric sequence entry, but did not contain N in column 17.

ACTION On the previous record identi�cation speci�cation, enter N in column 17 or
specify an alphabetic sequence entry.

5010W MESSAGE COLS. 7-14, 17, 18, 21-70 FOR LOOK-AHEAD OR 7-18, 21-70 FOR TR MUST

BE BLANK.

CAUSE You entered data in the wrong �elds in the description of a spread or look-ahead
record or entered the �le name or group sequence in a spread record description.

ACTION Remove the data from all columns that should be blank.

5011T MESSAGE PREVIOUS LOOK-AHEAD FOR FILE.

CAUSE You de�ned more than one look-ahead record for a �le, but only one is allowed.

ACTION Remove one of the look-ahead records (consolidate them).

5012W MESSAGE LOOK AHEAD RECORD HAS NON-ALPHA SEQUENCE NUMBER (COLUMNS 15-16).

CAUSE You speci�ed a numeric sequence for a look-ahead record.

ACTION Change the sequence characters (in columns 15-16) to alphabetic characters.

5013W MESSAGE ALPHA SEQUENCE (COLUMNS 15-16) FOLLOWS NUMERIC - ASSUME NUMERIC.

CAUSE You listed the numeric sequence entries before the alphabetic entries in the
Group Sequence Field (columns 15-16)

ACTION The compiler ignores your sequence entry and assumes a numeric sequence.
Move the alphabetic sequence speci�cations so that they come before the
numeric sequence speci�cations.

A-36 RPG Compiler Messages

Example Conventions

5014W MESSAGE NUMBER/OPTION FIELDS (COLUMNS 17-18) NOT BLANK FOR ALPHA SEQUENCE -

ASSUME BLANK.

CAUSE You entered an option in the Option Field (column 17) or indicated the number
of records in the Number of Records Field (column 18) and also speci�ed an
alphabetic sequence in the Group Sequence Field (column 15-16).

ACTION The compiler ignores your entry and assumes you left the Number of Records
Field blank. Either change the alphabetic sequence characters (columns 25-26)
to numeric characters or set columns 17-18 blank.

5015W MESSAGE INVALID SEQUENCE NUMBER (COLUMNS 15-16) - ASSUME ALPHA SEQUENCE.

CAUSE You entered an invalid sequence number in the Group Sequence Field (column
15-16), and the previous sequence characters were alphabetic.

ACTION The compiler ignores your sequence number and assumes you entered an
alphabetic sequence. Correct the sequence number.

5016W MESSAGE INVALID SEQUENCE NUMBER (COLUMNS 15-16) - ASSUME NUMERIC SEQUENCE.

CAUSE You entered an invalid sequence number in the Group Sequence Field (columns
15-16) and the previous sequence characters were numeric.

ACTION The compiler ignores your sequence number and assumes you speci�ed a numeric
sequence. Correct the sequence number.

5017T MESSAGE SEQUENCE (COLUMNS 15-16) NOT ASCENDING - ASSUME ASCENDING SEQUENCE.

CAUSE Your numeric sequence character group was not higher than the previous
sequence number.

ACTION The compiler ignores your sequence and assumes ascending sequence. Correct
the numeric sequence character group to fall in proper ascending sequence.

5018W MESSAGE FIRST NUMERIC SEQUENCE NOT 1 - ASSUME 1.

CAUSE You didn't assign the �rst sequence as 01 in the Group Sequence Field (columns
15-16).

ACTION The compiler ignores your sequence number and assumes you entered 01.
Correct the �rst numeric sequence character group.

5019T MESSAGE NUMBER FIELD (COLUMN 17) NOT 1 OR N WITH NUMERIC SEQUENCE -ASSUME

N.

CAUSE You entered a character other than an N or 1, in the Number of Records Field
(column 17) and speci�ed numeric sequencing.

ACTION The compiler ignores your entry and assumes you entered an N. Correct the
Number of Records entry.

RPG Compiler Messages A-37

Example Conventions

5021T MESSAGE INVALID RECORD IDENTIFICATION INDICATOR.

CAUSE You used an invalid indicator in the Record Indicator Field (columns 19-20).

ACTION In columns 19-20, enter one of the indicators: 01-99, F0-F9, H0-H9, KA-KN,
KP-KY, L1-L9, LR, MR, OA-OG, OV, 1P, U1-U8.

5023T MESSAGE INVALID RECORD IDENTIFICATION CODE POSITION FIELD (COLUMNS 21-24,

28-31, OR 35-38) - ASSUME 1.

CAUSE You speci�ed invalid numbers or embedded blanks in the Record Identi�cation
Codes Field (columns 21-24, 28-31, or 35-38).

ACTION Correct the �eld to include valid numeric characters, right-adjusted.

5024T MESSAGE RECORD ID CODE POSITION (COLUMNS 21-24, 28-31, OR 35-38) NOT WITHIN

RECORD LENGTH - ASSUME 1.

CAUSE You speci�ed a record identi�cation code in the Record Identi�cation Codes
Field (columns 21-24, 28-31, or 35-38) that doesn't fall within the record length
de�ned.

ACTION The compiler ignores the entry and assumes you entered a 1 in the �eld. Correct
the �eld so that it falls within the record length.

5025W MESSAGE NOT FIELD (COLUMNS 25, 32, OR 39) NOT BLANK OR N - ASSUME N.

CAUSE You speci�ed a character other than N in columns 25, 32, or 39.

ACTION Enter an N or a blank in the �eld.

5026W MESSAGE C/Z/D FIELD (COLUMNS 23, 33, OR 40) NOT C, Z, OR D - ASSUME C.

CAUSE You entered a letter or digit other than a C, Z, or D, in column 26, 33, or 40.

ACTION The compiler ignores the entry and assumes you entered a C. Change the entry
to C, Z, or D.

5027I MESSAGE NO FIELD DESCRIPTIONS FOR PREVIOUS RECORD.

CAUSE You followed one record description speci�cation with another, without an
intervening �eld description speci�cation.

ACTION This entry is probably valid. However, the compiler issues the message just in
case this is an AND/OR line or in case you forgot to include �eld descriptions
for the previous record.

5028W MESSAGE COLUMNS 43-70 NON-BLANK FOR RECORD DESCRIPTION.

CAUSE You entered data in columns 43-70 in a record description speci�cation.

ACTION The compiler ignores the data in columns 43-70. Remove the data from these
columns.

A-38 RPG Compiler Messages

Example Conventions

5029T MESSAGE COLUMN 43 NOT P, B, L, R, 1-9, OR BLANK - ASSUME BLANK.

CAUSE You entered a character other than a P, B, L, R, or 1-9 in the Data Format Field
(column 43).

ACTION The compiler ignores your entry and assumes you left the �eld blank. Enter P,
B, L, R, 1-9, or blank in column 43.

5030T MESSAGE FROM FIELD LOCATION INVALID - ASSUME 1.

CAUSE You speci�ed invalid numeric characters or embedded blanks in the From Field
Position (column 44-47).

ACTION The compiler ignores your entry and assumes you entered a 1. Correct the From
Field Position to contain valid numbers, right-adjusted.

5032T MESSAGE 'FROM' GREATER THAN 'TO' FIELD LOCATION - ASSUME FIELD LENGTH OF 1.

CAUSE You speci�ed that the From Field in the From Field Position Field (columns
44-47) is greater than the To Field in the To Field Position Field (columns
48-51).

ACTION The compiler ignores your entry and assumes the From Field length is 1. Correct
the From or To Field Positions so that the To Field Position is greater than or
equal to the From Field Position.

5033T MESSAGE FIELD LOCATION NOT WITHIN RECORD LENGTH.

CAUSE You speci�ed a To Field Position that does not fall within the record length
de�ned for the �le.

ACTION Either correct the record length for the �le or change the �eld location so that it
falls within the record length.

5034T MESSAGE DECIMAL POSITIONS (COLUMN 52) NOT BLANK OR 0-9 - ASSUME BLANK.

CAUSE You entered a character, other than 0-9, in the Decimal Positions Field (column
52).

ACTION The compiler ignores your entry and assumes you left the �eld blank. Correct
the �eld to re
ect the number of decimal positions desired.

5035T MESSAGE FIELD NAME (COLUMNS 53-58) BLANK OR INVALID - SPECIFICATION

DROPPED.

CAUSE You entered an invalid �eld name or left the Field Name Field (columns 53-58)
blank.

ACTION The compiler ignores this speci�cation. Correct the �eld name.

5036T MESSAGE INVALID INDEX FOR FIELD NAME (COLUMNS 53-58) ASSUME INDEX OF 1.

CAUSE You entered invalid numeric characters or embedded blanks for the array index
in the Field Name Field (columns 53-58).

ACTION The compiler ignores the index and assumes you entered a 1. Enter a numeric
character or �eld for the index.

RPG Compiler Messages A-39

Example Conventions

5037T MESSAGE VARIABLE ARRAY INDEX (COLUMNS 53-58) IS NOT NUMERIC VARIABLE.

CAUSE You speci�ed a value other than a numeric variable for the variable array index
in the Field Name Field (columns 53-58).

ACTION Specify a numeric variable with zero decimal positions for the array index.

5038W MESSAGE VARIABLE ARRAY INDEX (COLUMNS 53-58) DOES NOT HAVE ZERO DECIMAL

POSITIONS - ASSUME 0.

CAUSE You speci�ed a variable array index without specifying zero decimal positions for
it.

ACTION The compiler accepts your entry as if you speci�ed zero decimal positions for the
index. Rede�ne the index to have zero decimal positions.

5039T MESSAGE INDEX CANNOT BE AN ARRAY NAME.

CAUSE You used an array name as an array index.

ACTION Use either a numeric constant or a numeric variable with zero decimal positions
as the array index.

5040T MESSAGE FIELD NAME (COLUMNS 53-58) IS A NON-ALTERABLE FIELD - RECORD

IGNORED.

CAUSE The �eld named is de�ned previously as a look-ahead �eld or UDAY, UMONTH,
UYEAR, or UDATE. These cannot be used in Input Speci�cations.

ACTION Specify a di�erent �eld name.

5041T MESSAGE PAGE INVALIDLY REDEFINED - MUST BE NUMERIC WITH ZERO DECIMAL

POSITIONS.

CAUSE You rede�ned PAGE (Field Name Field, columns 53-58) without entering zero in
the Decimal Positions Field (column 52).

ACTION Enter a zero in the Decimal Positions Field (column 52) for the �eld PAGE and
recompile.

5042T MESSAGE DECIMAL POSITIONS (COLUMN 52) DIFFERS FROM PREVIOUS SPECIFICATION -

ASSUME PREVIOUS DEFINITION.

CAUSE You entered the same �eld name that was previously de�ned with di�erent
decimal positions in the �eld (column 52).

ACTION The compiler ignores your entry and assumes the decimal position is the same as
the previous de�nition of this �eld name. Correct one or the other entry so that
both are the same.

A-40 RPG Compiler Messages

Example Conventions

5043 MESSAGE FIELD SIZE IS NOT A MULTIPLE OF THE NUMBER OF ELEMENTS - NEXT

LOWEST MULTIPLE ASSUMED.

CAUSE You speci�ed an array name, and the �eld size allows for several array elements
plus a fraction of an array element.

ACTION Correct the �eld size to contain an integral number of array elements.

5044T MESSAGE ARRAY SIZE EXCEEDED - ASSUME TO END OF ARRAY.

CAUSE You speci�ed an array name and the �eld size allows for more array elements
than the array can hold.

ACTION Correct either the array de�nition or the number of array elements de�ned by
the �eld length.

5045T MESSAGE FIELD SIZE NOT SAME AS PREVIOUSLY DEFINED - ASSUME PREVIOUS

DEFINITION.

CAUSE You speci�ed a �eld size that isn't the same as previously de�ned for this �eld.

ACTION The compiler ignores your entry and assumes the �eld size is the same as the one
previously de�ned for this �eld. Correct the size of either �eld so that they are
the same size.

5046T MESSAGE FIELD PREVIOUSLY DEFINED AS ALPHA - ASSUME ALPHA.

CAUSE You de�ned this �eld as numeric, but it is previously de�ned as alphanumeric.

ACTION The compiler assumes that this is an alphanumeric �eld. Correct the type of one
or the other so that both �elds are the same type.

5047T MESSAGE FIELD PREVIOUSLY DEFINED AS NUMERIC - ASSUME NUMERIC.

CAUSE You de�ned the �eld as alphanumeric, but it is previously de�ned as numeric.

ACTION The compiler assumes that this is a numeric �eld. Correct the type of either �eld
so that both �elds are the same type.

5048T MESSAGE ALPHA FIELD SIZE GREATER THAN 256 - ASSUME 256.

CAUSE You entered an alphanumeric �eld size greater than 256 characters; that is, the
To Field Position minus the From Field Position plus 1 is greater than 256.

ACTION The compiler ignores your entry and assumes you speci�ed 256 characters.
Correct the From Field Position or To Field Position Fields to re
ect a �eld
length of 256 or less.

RPG Compiler Messages A-41

Example Conventions

5049T MESSAGE DECIMAL FIELD LENGTH EXCEEDS 15 DIGITS - ASSUME 15.

CAUSE You entered a decimal �eld length that exceeds 15 digits.

ACTION The compiler ignores your entry and assumes you speci�ed 15 digits. Correct the
From Field Position or the To Field Position Fields to re
ect a digit length of 15
or less.

5050T MESSAGE DECIMAL POSITIONS EXCEED NUMBER OF DIGITS - ASSUME EQUAL TO DIGITS.

CAUSE You speci�ed, in the Decimal Positions Field (column 52), a value greater than
the total number of digits in the �eld.

ACTION The compiler ignores your entry and assumes the decimal positions are equal to
the number of digits. Correct the number of decimal positions or the digit size of
the �eld.

5051T MESSAGE INVALID FIELD RECORD RELATION (COLUMNS 63-64) INDICATOR - BLANK

ASSUMED

CAUSE You speci�ed an invalid record-identifying indicator in the Field Record Relation
Field (columns 63-64).

ACTION The compiler ignores the entry and assumes you left this �eld blank. Enter a
valid indicator (01-99, H0-H9, L0-L9, LR, MR, OA-OG, OV, 1P, F0-F9, KA-KN,
KP-KY, U1-U8) or leave this �eld blank.

5052T MESSAGE CONTROL LEVEL (COLUMNS 59-60) NOT BLANK OR L1-L9 - ASSUME BLANK.

CAUSE You speci�ed invalid characters, other than the control-level indicators L1-L9, in
the Control Level Field (columns 59-60).

ACTION The compiler ignores your entry and assumes you left this �eld blank. Enter
L1-L9 in the Control Level Field or leave it blank.

5053T MESSAGE CONTROL LEVEL LENGTH DIFFERS FROM PREVIOUS DEFINITION - ASSUMES

PREVIOUS DEFINITION.

CAUSE You speci�ed a di�erent control-level �eld length than the length previously
de�ned for this �eld.

ACTION The compiler ignores your entry and assumes you speci�ed the same control-level
�eld length as you previously de�ned. Correct either length so that they are the
same.

5054T MESSAGE CONTROL LEVEL (COLUMNS.59-60) OR MATCHING FIELD (COLUMNS.61-62)

USED WITH CHAINED OR DEMAND FILE - ASSUME BLANK.

CAUSE You speci�ed a control-level indicator in the Control Level Field (columns
59-60), or a matching-record indicator in the Matching/Chaining Fields
(columns 61-62) for a chained or demand �le.

ACTION The compiler ignores your entry and assumes you omitted the control-level
indicator or matching-record indicator. Change the File Designation Field
(column 16) of the File Description Speci�cation or leave columns 59-62 blank in
the Input Speci�cation.

A-42 RPG Compiler Messages

Example Conventions

5055T MESSAGE CONTROL OR MATCHING FIELD (COLUMNS 59-62) USED FOR TRAILER OR

LOOK-AHEAD RECORD - ASSUME BLANK.

CAUSE You assigned a control-level or matching-record indicator to a spread record
trailer or a look-ahead record.

ACTION The compiler ignores your entry and assumes that you left this �eld blank.
Change these columns to blank.

5056T MESSAGE INVALID MATCHING OR CHAINING ENTRY (COLS 61-62) - ASSUME BLANK.

CAUSE You assigned a code other than M1 through M9, C1 through C9, or blank to the
Matching/Chaining Field (columns 61-62).

ACTION The compiler ignores your entry and assumes that you left this �eld blank.
Change the entry to M1-M9, C1-C9, or blank.

5057T MESSAGE ARRAY USED FOR MATCHING FIELD - ASSUME NO MATCHING FIELD.

CAUSE You used an array rather than a data �eld to test for matching �elds.

ACTION The compiler assumes that no matching �eld entry is used. Remove the
matching �eld entry for this record. If you need to use this �eld as a matching
�eld, rede�ne it with another name and assign M1-M9 to this new name.

5058T MESSAGE FIELD RECORD RELATION PREVIOUSLY USED WITH THIS MATCHING OR CONTROL

LEVEL - ASSUME PREVIOUS.

CAUSE You used the same �eld record relation previously in this record with matching
or control level �elds.

ACTION Either remove the matching-record or control-level indicator, change the �eld
record relation or move the speci�cation records to a new place.

5059T MESSAGE MATCHING LEVEL ALREADY SPECIFIED FOR THIS FIELD RECORD RELATION.

CAUSE The same matching level (M1-M9) has already been used in this record
speci�cation with the same �eld record relation (may be a blank).

ACTION Change the matching level or the �eld record relation.

5060T MESSAGE MATCHING LEVEL LENGTH DIFFERS FROM PREVIOUS DEFINITION - ASSUME

PREVIOUS.

CAUSE The matching �eld length speci�ed di�ers from the length previously de�ned for
this �eld.

ACTION The compiler assumes the previous length for this �eld. Change one �eld length
or the other so that both are the same.

RPG Compiler Messages A-43

Example Conventions

5061T MESSAGE COMPLETE SET OF MATCHING FIELDS NOT DEFINED FOR LAST GROUP.

CAUSE When you previously speci�ed matching �elds in this program, you speci�ed
more levels of matching �elds than the current de�nition.

ACTION Either delete the extra matching levels speci�ed earlier or add levels to the
current de�nition.

5063T MESSAGE CHAINING (COLUMNS 61-62) SPECIFIED WITH LOOK-AHEAD FIELD - CHAINING

IGNORED.

CAUSE You requested chaining with a look-ahead record.

ACTION The compiler ignores your entry and assumes a request for look-ahead. Delete
the chaining request from the look-ahead �eld. Include it in a regular �eld
de�nition if it is needed.

5064T MESSAGE L OR R (COLUMN 43) SPECIFIED WITH CHAINING (COLUMNS 61-62) -

CHAINING IGNORED.

CAUSE You speci�ed a �eld containing unpacked decimal data with leading or trailing
sign for a chaining �eld, but such a �eld cannot be used for this purpose.

ACTION The compiler ignores your request for chaining. Remove the chaining
speci�cation or the L or R. The �eld may be rede�ned as a regular �eld (with
From Position one larger for L or To Position one smaller for R) with no L or R
for the �eld.

5065T MESSAGE ARRAY SPECIFIED AS CHAINING FIELD - IGNORE CHAINING.

CAUSE You speci�ed an array rather than a data �eld as a chaining �eld.

ACTION The compiler ignores your request for chaining. Remove the chaining entry from
this record. The �eld may be rede�ned as a regular �eld (same location but
di�erent name) with chaining.

5066T MESSAGE INCORRECT KEY TYPE FOR CHAINING FILE. SHOULD BE ALPHANUMERIC.

CAUSE A non-alphanumeric key was speci�ed for a KSAM or TurboIMAGE �le.

ACTION Use only alphanumeric keys for chaining with these �le types (column 31 of the
File Description Speci�cation is A). Correct the program and recompile.

5067T MESSAGE CHAINING LEVEL (COLUMNS 61-62) ALREADY SPECIFIED FOR THIS FIELD

RECORD RELATION.

CAUSE The same chaining level is already in this speci�cation with the same �eld record
relation.

ACTION Delete the chaining level (C1-C9) from this record.

A-44 RPG Compiler Messages

Example Conventions

5068T MESSAGE FIELD RECORD RELATION PREVIOUSLY USED IN THIS RECORD FOR CHAINING.

CAUSE All chaining �elds for one �eld record relation were not together.

ACTION Move the record so that it is among the others of the same �eld record relation
or delete the chaining entry (C1-C9) from this record.

5069T MESSAGE INVALID PLUS RESULT INDICATOR (COLUMNS 65-66) - ASSUME BLANK.

CAUSE You entered an invalid indicator or illegal characters in the Plus Sub�eld
(columns 65-66).

ACTION The compiler assumes that you left this sub�eld blank. Enter blanks or a valid
indicator (01-99, H0-H9, L0-L9, LR, MR, OA-OG, OV, 1P, F0-F9, KA-KN,
KP-KY, U1-U8) in these columns.

5070T MESSAGE INVALID MINUS RESULT INDICATOR (COLUMNS 67-68) - ASSUME BLANK.

CAUSE You entered an improper indicator or illegal characters in the Minus Sub�eld
(columns 67-68).

ACTION The compiler assumes that you left this sub�eld blank. Enter blanks or a valid
indicator (01-99, H0-H9, L0-L9, LR, MR, OA-OG, OV, 1P, F0-F9, KA-KN,
KP-KY, U1-U8) in these columns.

5071T MESSAGE INVALID BLANK/ZERO RESULT INDICATOR (COLUMNS 69-70) ASSUME BLANK.

CAUSE You entered an invalid indicator or illegal characters in the Zero or Blank
Sub�eld (columns 69-70).

ACTION The compiler assumes that you left this sub�eld blank. Enter blanks or a valid
indicator (01-91, H0-H9, L0-L9, LR, MR, OA-OG, OV, 1P, F0-F9, KA-KN,
KP-KY, U1-U8) in these columns.

5072T MESSAGE FIELD USED PREVIOUSLY AS INDEX NOT DEFINED AS NUMERIC WITH ZERO

DECIMAL POSITIONS.

CAUSE You used an alphanumeric �eld or a numeric �eld containing one or more
decimal positions as an array element index.

ACTION Rede�ne the index �eld to be numeric with zero decimal positions.

5073T MESSAGE TABLE USED AS INPUT FIELD.

CAUSE You speci�ed a table name in the Field Name Field (columns 53-58).

ACTION Delete the reference to the table from the Input Speci�cation.

5074T MESSAGE MATCHING OR CONTROL LEVEL WITH BLANK FIELD RELATION MUST BE

SPECIFIED FIRST.

CAUSE You speci�ed matching or control-level �elds with a �eld record relation
indicator before the current one (which has a blank �eld record relation).

ACTION Move the blank �eld record relation speci�cation so that it comes before those
that specify an indicator.

RPG Compiler Messages A-45

Example Conventions

5075T MESSAGE FIRST INPUT SPECIFICATION DOES NOT HAVE FILE NAME.

CAUSE You omitted the �le name from the File Name Field (columns 7-14) of the �rst
Input Speci�cation or entered a �eld description with no preceding record
description.

ACTION Include the �le name on a record description speci�cation.

5076T MESSAGE FILENAME ALREADY USED FOR INPUT SPECIFICATIONS.

CAUSE You speci�ed a �le name that was previously used in a record description in the
Input Speci�cations and included an intervening speci�cation for a di�erent �le.

ACTION Keep all Input Speci�cations for a �le together, without intervening
speci�cations for another �le.

5077W MESSAGE NUMERIC SEQUENCE (COLUMNS 15-16) SPECIFIED FOR CHAINED FILE -

ASSUME BLANK.

CAUSE You speci�ed a numeric group sequence for this chained �le, in the Group
Sequence Field, where an alphanumeric sequence is required.

ACTION The compiler assumes that you speci�ed an alphanumeric sequence. Change the
sequence number to alphanumeric characters.

5078I MESSAGE BLANK RECORD - RECORD IGNORED.

CAUSE There is a blank line in the Input Speci�cations.

ACTION The compiler ignores this line.

5079T MESSAGE LOOK-AHEAD OR TRAILER RECORD NOT IN A PRIMARY OR SECONDARY FILE.

CAUSE You included a look-ahead record or spread record trailer in a �le other than a
primary or secondary �le.

ACTION Either change the �le designation or remove the look-ahead or trailer records.

5080T MESSAGE P, B, L, OR R (COLUMN 43) SPECIFIED FOR ALPHA FIELD - ASSUME BLANK.

CAUSE You speci�ed in the Data Format Field, a numeric format for a �eld previously
de�ned as alphanumeric.

ACTION The compiler assumes that you left the Data Format Field blank in this
speci�cation. Either change column 43 to blank or de�ne this as a numeric �eld
(by entering a digit in the Decimal Positions Field).

5081T MESSAGE BINARY FIELD LENGTH IS NOT 2 OR 4 - ASSUME UNPACKED NUMERIC FIELD.

CAUSE You de�ned an input �eld length other than 2 or 4 for a binary �eld; (2 is two
bytes and 4 is four bytes).

ACTION Either correct the �eld length or change the type of numeric �eld.

A-46 RPG Compiler Messages

Example Conventions

5082T MESSAGE INDEX SPECIFIED FOR NON-ARRAY - IGNORE INDEX.

CAUSE You speci�ed an index for a data �eld that is not an array.

ACTION The compiler ignores the index. Either include an array de�nition (File
Extension Speci�cation) for this �eld name or delete the index.

5083T MESSAGE MATCHING RECORD FILE NOT IN SAME SEQUENCE AS LAST.

CAUSE A �le containing matching records has a di�erent sequence than the last
matching record �le previously speci�ed.

ACTION Change the Input Sequence Field of the File Description Speci�cations (column
18) for �les with matching �elds to all A

or all D.

5084T MESSAGE INPUT, UPDATE, OR COMBINED FILE HAS NO INPUT SPECIFICATIONS.

CAUSE You named an input, update, or combined �le but failed to specify the required
record characteristics.

ACTION Include the Input Speci�cations for the input, update, or combined �le or change
the �le type.

5085T MESSAGE DIGIT LENGTH OF FIELD IS ZERO - ASSUME 1.

CAUSE You have speci�ed a numeric �eld containing no digits, but such �elds must
contain at least one digit.

ACTION The compiler assumes that you speci�ed a 1-digit �eld. Rede�ne the �eld to be
at least one digit long (�elds with L or R in column 43 must be at least 2 bytes
long to contain 1 digit).

5086T MESSAGE CHAINING CODE AND FILE NOT SPECIFIED ON EXTENSION SPECS - IGNORE

CHAINING.

CAUSE You failed to specify a chaining �eld code in columns 11-18 of the File Extension
Speci�cations, even though you have de�ned such a �le in the Input
Speci�cations.

ACTION Either correct the File Extension Speci�cations or delete the chaining entries
from the Input Speci�cations.

5087W MESSAGE ARRAY USED FOR LEVEL FIELD - ASSUME NOT A LEVEL FIELD.

CAUSE You speci�ed an array name in the Control Level Field (columns 59-60), but a
�eld name is required.

ACTION The compiler assumes that you left the Control Level Field blank. Change the
Control Level Field to blanks. If this �eld must be a control �eld, rede�ne it
with a new �eld name and include the chaining level.

5088T MESSAGE LOOK-AHEAD FIELD PREVIOUSLY DEFINED - RECORD IGNORED.

CAUSE You de�ned a look-ahead �eld that has already been de�ned.

ACTION The compiler ignores the line. Rename this �eld or delete the speci�cation.

RPG Compiler Messages A-47

Example Conventions

5089W MESSAGE CHAINING FIELD NUMERIC BUT ALPHA KEYS SPECIFIED ON FILE SPEC.

CAUSE You speci�ed a numeric chaining �eld in con
ict with alphanumeric searching
keys for the TurboIMAGE �le.

ACTION Either change the �eld type or the Record Address Type Field (column 31) of
the File Description Speci�cation.

5090W MESSAGE CHAINING FIELD LENGTH NOT SAME AS KEY FIELD LENGTH FROM FILE SPEC.

CAUSE You speci�ed di�erent lengths for the chaining and key �elds; they must be the
same.

ACTION Either rede�ne the chaining �eld length, the key length, or include a conversion
routine.

5091W MESSAGE THE PRECEDING CONTROL LEVEL LENGTH DIFFERS FROM ITS PREVIOUS

DEFINITION.

CAUSE You speci�ed a control �eld for which the total length di�ers from the total
length of the same control level de�ned for a previous record.

ACTION Change the program to specify the same total length for all de�nitions of the
same control level, and recompile.

5092W MESSAGE PRECEDING CHAINING FIELD LENGTH NOT SAME AS KEY FIELD LENGTH FROM

FILE SPEC.

CAUSE You speci�ed a chaining �eld for which the total length di�ers from the Key
Field Length Field (columns 29-30) in the File Description Speci�cation.

ACTION Correct the length and recompile.

5093T MESSAGE DATA STRUCTURE (DS) SPECIFICATIONS CANNOT BE FOLLOWED BY NON-DATA

STRUCTURE SPECS.

CAUSE You followed a data structure with non-data structure Input Speci�cations.

ACTION Rearrange the Input Speci�cations so that all data structures are at the end and
recompile.

5094W MESSAGE RESERVED NAME FOR UDS IS 'LDA' - NAME SPECIFIED IN COLUMNS. 7-12 IS

REPLACED BY 'LDA'.

CAUSE You speci�ed a UDS (User Data Structure) in columns 18-20 and either; (1)
speci�ed a name other than LDA or blank in columns 7-12 or (2) speci�ed LDA
in columns 7-12, but had already de�ned LDA as a �eld on a prior Input
Speci�cation.

ACTION Correct the program and recompile.

A-48 RPG Compiler Messages

Example Conventions

5095T MESSAGE NESTED NUMERICS IN DS NOT SUPPORTED.

CAUSE A numeric �eld named as a data structure contains numeric sub�elds.

ACTION Do not use numeric sub�elds in this case. Correct the program and recompile.

5096W MESSAGE FIELD ALREADY DEFINED AS PART OF A DS-RECORD IGNORED.

CAUSE This �eld name has already been used in this or a previous data structure.

ACTION The compiler ignores this �eld.

5097T MESSAGE CANNOT OPEN FILE 'SIGWORK' FOR RSI PROCESSING.

CAUSE Possible system problem. This is an internal �le used by the compiler to pass
information to SIGEDITOR.

ACTION Contact your HP Support Engineer.

5098T MESSAGE CANNOT WRITE TO FILE 'SIGWORK'.

CAUSE Possible system problem.

ACTION Contact your HP Support Engineer.

5099T MESSAGE WORKSTNC FILE MUST USE RII 01-10 ONLY.

CAUSE Invalid record-identifying indicator.

ACTION Use indicators 01 through 10 only.

5100T MESSAGE CANNOT CLOSE FILE 'SIGWORK'.

CAUSE Possible system problem.

ACTION Contact your HP Support Engineer.

5101T MESSAGE CANNOT CREATE 'SIGEDIT' PROCESS.

CAUSE MPE cannot �nd the program SIGEDIT in PUB.SYS.

ACTION Be sure the program SIGEDIT is installed in PUB.SYS. If this error persists,
contact your HP Support Engineer.

5102T MESSAGE CANNOT ACTIVATE 'SIGEDIT' PROCESS.

CAUSE Process may already be activated, or PH capability may be missing.

ACTION Be sure the group containing the RPG compiler has process-handling (PH)
capability.

5103T MESSAGE COL. 43 NOT BLANK FOR DS FIELD. ASSUME BLANK.

CAUSE Input Speci�cation column 43 was not blank for a DS �eld.

ACTION To eliminate this warning, change column 43 to a blank. The compiler assumes a
blank by default.

6001T MESSAGE INVALID CONTROL LEVEL IN COL. 7-8, ASSUME LATEST LEVEL.

CAUSE You entered an indicator other than L0-L9 or LR in the Control Level Field
(columns 7-8).

ACTION The compiler assumes that you intended the latest level indicator. Correct the
control level and recompile.

RPG Compiler Messages A-49

Example Conventions

6002W MESSAGE AN/OR LINE OUT OF ORDER OR INVALID, IGNORE AN/OR LINE.

CAUSE You entered an AN or OR line, and the preceding line has an entry in the
Operation Field or the preceding line did not have an entry in the Indicators
Field.

ACTION The compiler ignores this line. Put AN/OR line in proper sequence.

6003T MESSAGE EXCEEDED 24 INDICATORS OR 7 '0R' LINES.

CAUSE You entered more than seven OR lines or more than 24 indicator lines in one
grouping, which is not permitted.

ACTION The compiler ignores the entire grouping. Change the program so that there are
no more than seven OR lines or 24 indicators.

6004W MESSAGE 'AN' OR 'OR' NOT SPECIFIED IN COLUMNS. 7-8, IGNORE GROUP.

CAUSE The statement before this AN/OR record had conditioning indicators, but no
operation was speci�ed.

ACTION The compiler ignores the entire group. Put the operation in the previous
statement or include AN/OR in this speci�cation.

6005T MESSAGE OPERATION NOT RECOGNIZED.

CAUSE You entered an invalid operation in the Operation Field (columns 28-32).

ACTION The compiler ignores this operation. Correct it and recompile.

6006W MESSAGE 'NOT' ENTRY IN COL. 9, 12, OR 15 NOT N OR BLANK, ASSUME N.

CAUSE You entered a character other than N or blank in the Not Sub�eld (column 9, 12,
or 15).

ACTION The compiler assumes that you entered N.

6007W MESSAGE INVALID OPERATION INDICATOR, IGNORE INDICATOR GROUP.

CAUSE You entered an invalid operation indicator in the Indicators Field (columns 9-17).

ACTION The compiler ignores the indicators and performs the operation in any event.
Correct the indicator in the Indicators Field (columns 9-17).

6008W MESSAGE INDICATOR MISSING FOR 'NOT' IN COL. 9, 12, OR 15, IGNORE NOT.

CAUSE You entered an N (for Not) in columns 9, 12, or 15, but did not enter an
indicator in columns 10-11, 13-14, or 16-17.

ACTION The compiler ignores the N entry.

A-50 RPG Compiler Messages

Example Conventions

6009W MESSAGE INVALID RESULTING INDICATOR, IGNORE INDICATOR GROUP.

CAUSE You entered an invalid indicator in the Resulting Indicators Field (columns
54-59).

ACTION The compiler ignores this indicator and all others in the group to which it
belongs. Correct the indicator and recompile.

6010W MESSAGE INVALID FACTOR 1 ENTRY IN COL. 18-27.

CAUSE You entered an invalid name, label, or literal in the Factor 1 Field (columns
18-27).

ACTION The compiler ignores this operation. Correct Factor 1 to contain a valid �eld
name or a literal.

6011T MESSAGE INVALID FACTOR 2 ENTRY IN COL. 33-42.

CAUSE You entered an invalid name, label, or literal in the Factor 2 Field (columns
33-42).

ACTION The compiler ignores this operation. Correct Factor 2 to contain a valid �eld
name or a literal.

6012W MESSAGE INVALID RESULT FIELD ENTRY IN COLUMNS. 43-48.

CAUSE You entered an invalid name in the Result Field (columns 43-48).

ACTION The compiler ignores the operation associated with this entry. Correct the
Result Field so that is contains a valid �eld name.

6013W MESSAGE INVALID INDEX IN FACTOR 1 (COL. 18-27).

CAUSE You speci�ed an indexed array in the Factor 1 Field, but did not use a valid
index.

ACTION The compiler assumes an index value of 1. Correct the index so that it is a valid
�eld (that is a numeric �eld with zero decimal positions) or a numeric unsigned
literal with no decimal positions.

6014W MESSAGE INVALID INDEX IN FACTOR 2 (COL. 33-42).

CAUSE You speci�ed an indexed array in the Factor 2 Field, but did not use a valid
index.

ACTION The compiler assumes an index value of 1. Correct the index so that it is a valid
�eld (that is a numeric �eld with zero decimal positions) or a numeric unsigned
literal with no decimal positions.

6015W MESSAGE INVALID INDEX IN RESULT FIELD (COL. 43-48).

CAUSE You speci�ed an indexed array in the Result Field, but did not use a valid index.

ACTION The compiler assumes an index value of 1. Correct the index so that it is a valid
�eld name (that is a numeric �eld with zero decimal positions) or a numeric
unsigned literal with no decimal positions.

RPG Compiler Messages A-51

Example Conventions

6016T MESSAGE INVALID FILE NAME ENTRY FOR FACTOR 2 (COL. 33-42).

CAUSE You entered an improper �le name in the Factor 2 Field.

ACTION The compiler ignores the operation. Correct the �le name so that it appears as
de�ned in the File Description Speci�cations.

6017W MESSAGE INVALID DIGIT IN RESULT FIELD LENGTH ENTRY (COL. 49-51).

CAUSE You entered one or more characters other than 0-9 in the Field Length Field.
Embedded blanks are illegal.

ACTION The compiler ignores the �eld length. Enter a valid �eld length, right-justi�ed,
without embedded blanks.

6018W MESSAGE INVALID DIGIT IN DECIMAL POSITIONS ENTRY (COL. 52).

CAUSE You entered a value other than 0 through 9 in the Decimal Positions Field.

ACTION The compiler assumes zero decimal positions. Enter a digit 0-9 in column 52.

6019W MESSAGE RESULT FIELD LENGTH MISSING BUT DEC POS SPECIFIED. IGNORE DEC POS.

CAUSE You speci�ed a number of decimal positions for the Result Field, but did not
specify the �eld length.

ACTION The compiler assumes there are no decimal positions. Enter a valid �eld length
or leave the Decimal Positions Field blank.

6020W MESSAGE HALF ADJUST ENTRY IN COL. 53 NOT H OR BLANK, ASSUME H.

CAUSE You entered a character other than H or a blank in the Half Adjust Field, which
is illegal.

ACTION The compiler assumes that you entered H, specifying Half Adjust.

6021W MESSAGE FIELD ATTRIBUTE NOT SAME AS PREV DEFN, USE PREV DEFN.

CAUSE You entered a di�erent �eld length or number of decimal positions than was
previously assigned to the �eld.

ACTION The compiler uses the previous de�nition for the �eld. Correct the �eld
attributes of the incorrect statement.

6022W MESSAGE RESULT FIELD HAS INDEX BUT NOT ARRAY NAME, IGNORE INDEX.

CAUSE You entered an array index in the Result Field but did not specify an array
name.

ACTION The compiler ignores the array index. Remove the index, de�ne the �eld name as
an array on a File Extension Speci�cation or use a proper array name.

A-52 RPG Compiler Messages

Example Conventions

6023T MESSAGE FILE NAME IN FACTOR 2 NOT DEFINED BY FILE DESC SPECS.

CAUSE You entered a �le name in the Factor 2 Field (columns 33-42) that is not
described in the File Description Speci�cations.

ACTION The compiler ignores the operation. Either de�ne this �le name in a File
Description Speci�cation or use another �le name.

6024W MESSAGE SET OPERATOR USAGE NOT CONSISTENT WITH WORKSTATION OPERATION.

OPERATOR IGNORED.

CAUSE Set operator found in a program using a workstation �le.

ACTION Compiler ignores the operation.

6025W MESSAGE FACTOR 1 IS MISSING (COL. 18-27).

CAUSE You omitted Factor 1 from an operation that requires it.

ACTION The compiler ignores the operation. Enter Factor 1 and recompile.

6026W MESSAGE FACTOR 2 IS MISSING (COL. 33-42).

CAUSE You omitted Factor 2 from an operation that requires it.

ACTION The compiler ignores the operation. Enter Factor 2 and recompile.

6027W MESSAGE RESULT FIELD IS MISSING (COL. 43-48).

CAUSE You omitted the Result Field from an operation that requires this �eld.

ACTION The compiler ignores the operation. Enter information in the Result Field and
recompile.

6028W MESSAGE A RESULTING INDICATOR MUST BE SPECIFIED FOR THIS OPERATION.

CAUSE You failed to specify a resulting indicator in columns 54-59 for an operation that
requires this indicator.

ACTION The compiler ignores the operation. Specify a resulting indicator and recompile.

6030W MESSAGE MISSING ENDSR STATEMENT, ASSUME ENDSR.

CAUSE You omitted the ENDSR operation from an internal subroutine.

ACTION The compiler assumes that an ENDSR statement follows the last statement with
SR in the Control Level Field.

6031W MESSAGE OPERATION INDICATORS MISSING ON AN/OR LINE.

CAUSE You entered AN or OR in columns 7-8, but did not enter indicators in the
Indicators Field (columns 9-17).

ACTION The compiler uses the indicators speci�ed in the preceding lines.

RPG Compiler Messages A-53

Example Conventions

6032W MESSAGE INDICATORS IN COL. 9-17 NOT ALLOWED FOR THIS OPERATION. ASSUME

BLANK.

CAUSE You entered one or more indicators in columns 9-17, but this operation cannot
be conditioned with indicators.

ACTION The compiler assumes that you left columns 9-17 blank and performs the
operation under all conditions.

6033W MESSAGE INDICATORS IN COL. 54-59 NOT ALLOWED FOR THIS OPERATION. ASSUME

BLANK.

CAUSE You entered one or more indicators in the Resulting Indicators Field, but they
are not permitted for this operation.

ACTION The compiler assumes that you left the Resulting Indicators Field blank.

6034W MESSAGE FACTOR 1 SHOULD BE BLANK FOR THIS OPERATION ASSUME BLANK.

CAUSE You entered the Factor 1 Field but it is prohibited for this operation.

ACTION The compiler assumes that you left the Factor 1 Field blank.

6035W MESSAGE FACTOR 2 SHOULD BE BLANK FOR THIS OPERATION ASSUME BLANK.

CAUSE You entered the Factor 2 Field but it is prohibited for this operation.

ACTION The compiler assumes that you left the Factor 2 Field blank.

6036W MESSAGE RESULT FIELD SHOULD BE BLANK FOR THIS OPERATION ASSUME BLANK.

CAUSE You entered a �eld name in the Result Field, but it should remain blank for this
operation.

ACTION The compiler assumes that you left the Result Field blank.

6037W MESSAGE FIELD USED AS RESULT IS NON ALTERABLE. IGNORE SPEC.

CAUSE You speci�ed a look-ahead �eld, UDAY, UMONTH, UYEAR, or UDATE in the
Result Field.

ACTION The compiler ignores this operation. Specify a di�erent �eld name and recompile.

6038W MESSAGE PAGE FIELD USED AS RESULT FIELD IS ALREADY REDEFINED. USE PREV

DEFN.

CAUSE You entered PAGE in the Result Field and rede�ned it again by giving it a new
length.

ACTION The compiler uses the previous de�nition for PAGE.

6039W MESSAGE NAME ALREADY HAS ANOTHER USE.

CAUSE The same name is used for both a subroutine name and a tag.

ACTION Correct program and recompile.

A-54 RPG Compiler Messages

Example Conventions

6040T MESSAGE GOTO OPERATION MAY NOT BRANCH INTO OR OUT OF SUBROUTINE.

CAUSE You speci�ed a GOTO operation in a subroutine that transfers to an operation
outside of it or vice versa.

ACTION The compiler ignores the operation. Correct and recompile.

6041W MESSAGE DEC POS ENTRY GREATER THAN FIELD LENGTH. ASSUME ZERO POS.

CAUSE The number of decimal positions in the �eld exceeds the length of the �eld.

ACTION The compiler assumes that the �eld contains no decimal positions. Correct
either the number of decimal positions or the entry length and recompile.

6042T MESSAGE NAME REFERENCED SHOULD BE TAG NAME.

CAUSE You entered a GOTO operation that does not reference a TAG label. (Tags and
subroutines cannot have the same name.)

ACTION The compiler ignores the operation. Either rename the tag or rename the
subroutine.

6043T MESSAGE A SUBROUTINE MAY NOT CALL ITSELF.

CAUSE You included, within an internal subroutine, an operation that attempts to
invoke that subroutine; this type of recursion is illegal.

ACTION The compiler ignores the operation. Correct and recompile.

6044T MESSAGE BEGSR STATEMENT MISSING. ASSUME BEGSR.

CAUSE You did not begin an internal subroutine with the BEGSR operation.

ACTION The compiler assumes that the �rst operation in the subroutine is BEGSR.
Include a BEGSR operation and a recompile.

6045T MESSAGE BEGSR OUT OF SEQUENCE. IGNORE BEGSR LINE.

CAUSE You included a BEGSR operation within the body of an internal subroutine,
after the �rst operation.

ACTION The compiler ignores this BEGSR request. Place BEGSR in correct order and
recompile.

6046I MESSAGE DEBUG OPTION NOT SPECIFIED IN COL.15 OF HEADER SPEC.

CAUSE You included one or more DEBUG operations but did not specify the Debug
option in the Debug Field (column 15) of the Header Speci�cation.

ACTION The compiler does not execute the DEBUG request.

6047W MESSAGE FIELD LENGTH AND DEC POS SHOULD BE BLANK. ASSUME BLANK.

CAUSE For a previously de�ned table or array in the Result Field, you entered values in
the Field Length or Decimal Positions Field.

ACTION The compiler assumes that the Field Length and Decimal Positions Fields are
blank.

RPG Compiler Messages A-55

Example Conventions

6048W MESSAGE DEC POS ENTRY (COL 52) SHOULD BE BLANK. ASSUME BLANK.

CAUSE You speci�ed a decimal position that should not be speci�ed.

ACTION The compiler ignores this speci�cation.

6049W MESSAGE HALF ADJUST ENTRY (COL 53) SHOULD BE BLANK. ASSUME BLANK.

CAUSE You speci�ed a half adjust that should not be speci�ed.

ACTION The compiler ignores this speci�cation.

6050W MESSAGE BEGSR STATEMENT SHOULD HAVE SR OR BLANK IN COL. 7-8; ASSUME SR.

CAUSE You speci�ed a BEGSR operation that did not include SR or a blank in columns
7-8.

ACTION The compiler assumes that you entered SR in these columns.

6051W MESSAGE FIELD LENGTH OVER 256 FOR ALPHANUMERIC OR OVER 15 FOR NUMERIC.

CAUSE You speci�ed a �eld length that exceeds the maximum length allowed for the
Result Field (columns 49-51).

ACTION The speci�cation is ignored. Rede�ne the �eld length and recompile.

6052W MESSAGE OPERATOR NOT IMPLEMENTED ON THIS VERSION OF RPG.

CAUSE You entered an operator (in columns 28-32) that cannot be executed with this
version of the compiler.

ACTION The compiler ignores this speci�cation.

6053W MESSAGE PRECEDING OPERATOR WAS NOT A DIV.

CAUSE You speci�ed an MVR (move remainder) operation that is not immediately
preceded by a DIV (divide) operation.

ACTION The compiler ignores this MVR operation. Enter MVR immediately following
the DIV operation and recompile.

6054T MESSAGE DUPLICATE TAG NAME.

CAUSE You assigned the same label to two or more TAG operations.

ACTION The compiler ignores the second TAG operation. Change one of the TAG labels
and recompile.

6055T MESSAGE DUPLICATE SUBROUTINE NAME.

CAUSE You assigned the same name to two or more subroutines.

ACTION Change one of the subroutine names and recompile.

A-56 RPG Compiler Messages

Example Conventions

6056T MESSAGE SYMBOL NOT DEFINED.

CAUSE You referenced the name of a data area or label of an operation that is not
de�ned in the program.

ACTION De�ne the symbol by naming it in the Result Field with a de�ned length, by
specifying it as a �eld name on Input Speci�cations, or by de�ning it as an array.
Recompile the program.

6057W MESSAGE FIELD 1 SHOULD BE ALPHANUMERIC FOR THIS OPERATION.

CAUSE You entered a numeric �eld for Factor 1 (columns 18-27), but it should be
alphanumeric.

ACTION The compiler uses the �eld as speci�ed. Change the Factor 1 type and recompile.

6058W MESSAGE FIELD 2 SHOULD BE ALPHANUMERIC FOR THIS OPERATION.

CAUSE You entered a numeric �eld for Factor 2 (columns 33-42), but it should be
alphanumeric.

ACTION The compiler uses the �eld as speci�ed. Change the Factor 2 type and recompile.

6059W MESSAGE RESULT FIELD SHOULD BE ALPHANUMERIC FOR THIS OPERATION.

CAUSE You entered a numeric �eld in the Result Field (columns 43-48), but it should be
alphanumeric.

ACTION The compiler uses the �eld as speci�ed. Change the Result Field type and
recompile.

6060W MESSAGE FIELD 2 MUST BE THE SAME TYPE AS FIELD 1.

CAUSE You speci�ed a di�erent data format for Factor 1 than for Factor 2, which is
illegal for this operation.

ACTION The compiler uses the �eld as speci�ed. Change either the Factor 1 or Factor 2
type and recompile.

6061W MESSAGE FIELD 1 SHOULD BE NUMERIC FOR THIS OPERATION.

CAUSE You entered an alphanumeric �eld for Factor 1 (columns 18-27), but a numeric
�eld is required.

ACTION The compiler uses the �eld as speci�ed. Change the Factor 1 type and recompile.

6062W MESSAGE FIELD 2 SHOULD BE NUMERIC FOR THIS OPERATION.

CAUSE You entered an alphanumeric �eld for Factor 2 (columns 33-42), but a numeric
�eld is required.

ACTION The compiler uses the �eld as speci�ed. Change the Factor 2 type and recompile.

RPG Compiler Messages A-57

Example Conventions

6063W MESSAGE RESULT FIELD SHOULD BE NUMERIC FOR THIS OPERATION.

CAUSE You entered an alphanumeric �eld for the Result Field (columns 43-48), but a
numeric �eld is required.

ACTION The compiler uses the �eld as speci�ed. Change the Result Field type and
recompile.

6064W MESSAGE RESULTING INDICATOR REQUIRED IN COL 54-55; ASSUME H0.

CAUSE You did not enter the required indicator in the Resulting Indicators Field
(columns 54-55).

ACTION The compiler assumes that you entered the H0 indicator.

6065W MESSAGE RESULTING INDICATOR REQUIRED IN COL 58-59; ASSUME H0.

CAUSE You did not enter the required indicator in the Resulting Indicators Field
(columns 58-59).

ACTION The compiler assumes that you entered the H0 indicator.

6066W MESSAGE RESULTING INDICATOR REQUIRED IN COL 56-57; ASSUME H0.

CAUSE You did not enter the required indicator in the Resulting Indicators Field
(columns 56-57).

ACTION The compiler assumes that you entered the H0 indicator.

6067W MESSAGE ILLEGAL I/O MODE IN IMAGE FILE.

CAUSE You speci�ed an operation that is incompatible with the input/output mode.

ACTION The compiler ignores the operation. Correct and recompile.

6068W MESSAGE INCOMPATIBLE FIELD 1 LENGTH.

CAUSE You speci�ed a �eld length that is di�erent from the Key Length speci�ed in the
File Description Speci�cation. (If packed decimal keys are used, the key �eld
length is the number of digits divided by 2 plus 1.)

ACTION The length speci�ed in the File Description Speci�cation is used. Change either
the key length in the File Description Speci�cation or the Factor 1 Field length.

6069T MESSAGE FILE SPECIFIED IN FACTOR 2 NOT AN INDEXED DEMAND FILE.

CAUSE You requested a SETLL operation for a �le that is not a demand �le.

ACTION Change the �le type to a demand �le.

6070W MESSAGE FILE BEING READ IS NOT A DEMAND FILE.

CAUSE You used the READ command for a �le that is not a demand �le.

ACTION If you wish to ignore this warning, demand reads are intermixed with all other
accesses of the �le. Otherwise, change the speci�cation to re
ect a demand �le.

A-58 RPG Compiler Messages

Example Conventions

6071T MESSAGE CURRENT FIELD USE INCONSISTENT WITH PREVIOUS USE.

CAUSE You either used an alphanumeric �eld as a numeric �eld or vice-versa.

ACTION Change speci�cations to make all references consistent.

6072W MESSAGE FILE SPECIFIED IN FACTOR 2 NOT A CHAINING FILE.

CAUSE A CHAIN operation was attempted to a �le that is not a chaining �le.

ACTION Correct the program and recompile.

6073T MESSAGE CAN'T FORCE READ A FILE DESIGNATED BY BLANK IN COL 16 OF FILE SPEC.

CAUSE You speci�ed a FORCE operation for a �le which contained a blank in column
16 of the File Description Speci�cation.

ACTION Correct the program and recompile.

6074T MESSAGE PARM OPERATIONS MUST IMMEDIATELY FOLLOW AN EXIT OPERATION.

CAUSE You speci�ed a PARM operation which does not follow an EXIT or another
PARM operation.

ACTION Correct the program and recompile.

6081T MESSAGE LOW OR EQUAL RESULT INDICATOR MUST BE SPECIFIED FOR THIS OPERATION.

CAUSE You must specify a resulting indicator in the Low Sub�eld (columns 56-57) or
the Equal Sub�eld (columns 58-59).

ACTION Correct the program and recompile.

6082T MESSAGE IMAGE FILE LOCKING MODE IS NOT L, B, S, 1, 9, OR R TO ENABLE

LOCKING.

CAUSE You speci�ed an incorrect locking mode for using the LOCK/UNLCK
operations. The locking mode is speci�ed in the Open Mode Field (column 66)
of the Database Name (IMAGE) Line of the File Description Speci�cation.

ACTION Correct the program and recompile.

6083T MESSAGE FILE NOT DESCRIBED WITH NOLOCK OR LOCK CONTINUATION RECORD TO

ENABLE LOCKING.

CAUSE You are using LOCK/UNLCK operations, but did not enable locking using
NOLOCK/LOCK in the File Description Speci�cation.

ACTION Correct the program and recompile.

6084T MESSAGE DBNAME IN RESULT FIELD MUST BE SAME NAME SPECIFIED IN IMAGE SPEC

FOR FILE IN FACTOR 2.

CAUSE The database name speci�ed in the Result Field does not match the name
speci�ed in the Database Name (IMAGE) Line for the Factor 2 �le.

ACTION Correct the program and recompile.

RPG Compiler Messages A-59

Example Conventions

6085T MESSAGE LENGTH OF A VARIABLE USED TO INDEX AN ARRAY MUST BE 1 TO 9 DIGITS.

CAUSE You speci�ed an incorrect entry for the length of a variable.

ACTION Correct the program and recompile.

6087I MESSAGE NO INDICATOR IN COL 58-59. H0 WILL BE SET ON FOR ERRORS NOT FLAGGED

BY INDICATORS IN COL. 54-57.

CAUSE You did not specify an equal indicator, so there is no way to inform you that an
error other than those covered by the high and low indicators has occurred.

ACTION Specify and use the equal indicator for this operation.

6088T MESSAGE SORTA OPERATOR ONLY ALLOWED ON NON-ALTERNATING ARRAY.

CAUSE The SORTA operation is not allowed for the array.

ACTION Correct the program and recompile.

6089T MESSAGE GENERIC KEY ACCESS ONLY ALLOWED WITH KSAM FILES.

CAUSE You speci�ed *EQ, *GT, or *GE in the Result Field for a CHAIN or SETLL
operation on a non-KSAM �le.

ACTION Correct the program and recompile.

6090T MESSAGE GENERIC KEY ACCESS ONLY ALLOWED WITH ALPHANUMERIC OR PACKED KEYS.

CAUSE You speci�ed *EQ, *GT, or *GE in the Result Field for a CHAIN or SETLL
operation on a �le whose Record Address Type (column 31) does not contain A
or P.

ACTION Correct the program and recompile.

6091T MESSAGE PACKED GENERIC KEY MUST BE EXACT SIZE DEFINED IN FILE DESC. SPEC.

CAUSE You speci�ed *EQ, *GT, or *GE in the Result Field and the generic key size
di�ers from the size de�ned in the Key Field Length Field (columns 29-30) of the
File Description Speci�cation.

ACTION Correct the program and recompile.

6096T MESSAGE INVALID STRUCTURED OPERATION - MISSING OR EXTRANEOUS 'END', OR TOO

MANY NESTED LEVELS

CAUSE You speci�ed a structured programming operation IF, ELSE, DOU, or DOW,
and either did not specify a matching END operation or speci�ed too many END
operations, or nested structured operators to more than 100 levels in depth.

ACTION Ensure that you have matched up structured operators and END statements.
Correct the program and recompile.

6097W MESSAGE INVALID BIT NUMBER IN FACTOR 2 OF 'BITON', 'BITOF', OR 'TESTB'.

CAUSE A character other than 0-7 was used in the Factor 2 Field of these operations.

ACTION Enter only 0-7 to specify bit positions in the �eld.

A-60 RPG Compiler Messages

Example Conventions

6098W MESSAGE INVALID RESULT INDICATORS FOR 'CLOSE', 'READ', OR 'MSG' OPERATOR.

CAUSE One or more indicators were used in invalid locations in the Resulting Indicators
Field (columns 54-59).

ACTION Delete the incorrect indicator(s).

6099T MESSAGE EXTRANEOUS OR MISPLACED ELSE STATEMENT.

CAUSE There are too many ELSE statements for the number of IF statements in your
program. Or the ELSE statement might be after the END statement. This can
also occur if the IF statement is in the detail calculations, and the ELSE
statement is in total time calculations.

ACTION Make sure the ELSE statements are located correctly in the program; delete
unnecessary ELSE statements.

6100W MESSAGE OPERATOR NOT SUPPORTED ON RPG/iX.

CAUSE The RPG/iX compiler detected the RPGCV, ERPGC, or EXTCV operation in
the Calculation Speci�cations of your program. These operations are not
supported by the RPG/iX compiler.

ACTION Your program must be rewritten to avoid the use of these operations.

6101T MESSAGE RESULT FIELD IS REQUIRED (COL 43-48).

CAUSE A Calculation Speci�cation using the PARM operation was encountered (used to
pass data to external subroutines), but the data to be passed was not speci�ed in
the Result Field.

ACTION Check statements using the PARM operation for missing Result Field entries.

6102W MESSAGE XFOOT OPERATION USES WHOLE ARRAY. INDEX IS IGNORED.

CAUSE An array name with an index was speci�ed for Factor 2 in an XFOOT operation.
The compiler expects an array name without an index.

ACTION To avoid this warning, remove the index from the array in this operation.

6103T MESSAGE IPARM OPERATIONS MUST IMMEDIATELY FOLLOW AN INTR OPERATION.

CAUSE An operation other than IPARM was found between an INTR operation and its
associated IPARM operations.

ACTION Remove the improperly located operation.

6104T MESSAGE INVALID INTRINSIC NAME IN COL. 33 THROUGH 48.

CAUSE The compiler detected an invalid intrinsic name referenced in a Calculation
Speci�cation using the INTR operation.

ACTION Enter a valid intrinsic name in columns 33-48. Refer to the MPE/iX Intrinsics
Reference Manual if necessary.

6105T MESSAGE COULD NOT OPEN THE INTRINSIC MECHANISM.

CAUSE The compiler could not open the SYSINTR.PUB.SYS �le.

ACTION Make sure this �le is on your system, and that its READ access is ANY.

RPG Compiler Messages A-61

Example Conventions

6106T MESSAGE COULD NOT FIND THIS INTRINSIC IN SYSINTR.PUB.SYS.

CAUSE The intrinsic named in an INTR operation of a Calculation Speci�cation was not
found the intrinsic mechanism �le SYSINTR.PUB.SYS.

ACTION Check the spelling of the intrinsic name used in the INTR operation. If this is a
user-created intrinsic, verify that it was added to the SYSINTR.PUB.SYS �le.

6107T MESSAGE TYPE MISMATCH IN IPARM OR FACTOR 1 OF INTR.

CAUSE The intrinsic expects a speci�c data type (alphanumeric or numeric) for this
parameter, but a �eld of the wrong type was speci�ed.

ACTION Check the types of the �elds you are using to make sure they are correct for the
intrinsic.

6108T MESSAGE COULD NOT EXTRACT PARM INFO FOR THIS PARAMETER.

CAUSE Information for the parameter named in an IPARM operation or in Factor 1 of
an INTR operation was not found in the intrinsic mechanism �le
SYSINTR.PUB.SYS.

ACTION Check your program to make sure your parameters match those speci�ed by the
intrinsic.

6109T MESSAGE MISSING REQUIRED PARAMETER.

CAUSE A parameter that is required by the intrinsic named in an INTR operation was
not provided.

ACTION Check to see which parameters are required for this intrinsic, and add them to
your program.

6111W MESSAGE COULD NOT CLOSE THE INTRINSIC MECHANISM.

CAUSE The compiler uas unable to close the SYSINTR.PUB.SYS intrinsic mechanism
�le.

ACTION Refer to the �le information display for the actual �le system error that
occurred. Take the appropriate action for the �le system error.

6112I MESSAGE ALPHANUMERIC FIELD SPECIFIED WHERE NUMERIC WAS EXPECTED.

CAUSE The compiler is informing you that an alphanumeric �eld is being passed to an
intrinsic that expects a numeric �eld. This is allowed. You can, for instance,
pass a long real item to the HPINEXT intrinsic as an 8-byte ASCII string.

ACTION If this is what you intended, you may ignore this information.

6113T MESSAGE NUMERIC FIELD MUST HAVE 0 DEC PLACES.

CAUSE The number being passed to an intrinsic must be an integer.

ACTION Correct the �eld de�nition for this parameter in your program.

6114W MESSAGE THIS INTRINSIC IS NOT A FUNCTION. FACTOR 1 IGNORED.

CAUSE The intrinsic speci�ed in an INTR operation does not return a value, but an
entry was found in Factor 1 as if a value was expected.

ACTION The Factor 1 entry is ignored. To avoid this warning, remove the Factor 1 entry
from the INTR operation for this intrinsic.

A-62 RPG Compiler Messages

Example Conventions

6115T MESSAGE RESET OP FILE TYPE MUST BE I OR U, DESIG MUST BE D OR F.

CAUSE The �le named in a RESET operation does not have the proper type or
designation or both.

ACTION Make sure the File Speci�cation type is I or U, and the designation is D or F.

6116T MESSAGE RESET OPERATOR MUST HAVE INDICATOR IN COLS 54-55.

CAUSE The compiler found no indicator speci�ed in columns 54-55 of a Calculation
Speci�cation using the RESET operation.

ACTION Add an indicator in columns 54-55 of the operation. Test this indicator following
the RESET operation to make sure it worked.

6117T MESSAGE CANNOT RESET KSAM FILE IF READ CHRONOLOGICALLY.

CAUSE A KSAM �le named in a RESET operation has C in column 32 of its File
Speci�cation.

ACTION A KSAM �le that is being read in chronological order cannot be reset.

7001T MESSAGE INVALID FILENAME IN COL 7-14, SPEC IS DROPPED.

CAUSE You used an unde�ned �le in the File Name Field (columns 7-14).

ACTION De�ne the �le name in the File Description Speci�cations or use a valid �le name
in the Output Speci�cations and recompile.

7002T MESSAGE 'AND' OR 'OR' LINE NOT PRECEDED BY RECORD DESCRIPTION.

CAUSE You entered an AND or OR line that is not preceded by a speci�cation that
describes the record to which it applies.

ACTION Enter a record description speci�cation before this AND/OR line and recompile.

7003T MESSAGE NO RECORD DESCRIPTION ENTRIES DEFINED YET.

CAUSE You did not specify a record description as the �rst item in your Output
Speci�cation.

ACTION De�ne a valid record description and recompile.

7004W MESSAGE INVALID ENTRIES IN COL 32-74 FOR A RECORD DESCRIPTION

SPECIFICATION, ASSUME BLANK.

CAUSE You entered �eld description information in a record description speci�cation.

ACTION The compiler assumes that columns 32-74 are blank. Correct the record
description speci�cation and recompile.

7005W MESSAGE INVALID ENTRIES IN COL 7-22 FOR A FIELD DESCRIPTION SPECIFICATION,

ASSUME BLANK.

CAUSE You entered record description information in a �eld description speci�cation.

ACTION Correct the �eld description speci�cation and recompile.

RPG Compiler Messages A-63

Example Conventions

7006T MESSAGE FILE AND RECORD ENTRIES IN COL 7-31 AND FIELD ENTRIES IN COLS 32-74

ON SAME LINE.

CAUSE You entered both a record description and a �eld description on the same line.

ACTION Correct this error and recompile.

7007I MESSAGE NO FIELD DESCRIPTION ENTRIES FOR PREVIOUS RECORD.

CAUSE You entered a record description speci�cation that is not followed by �eld
description speci�cations.

ACTION Supply a �eld description speci�cation and recompile.

7008T MESSAGE NO RECORD DESCRIPTION ENTRIES FOR THIS FIELD DESCRIPTION ENTRY,

SPEC IS DROPPED.

CAUSE You entered a �eld description speci�cation that is not preceded by a record
description speci�cation.

ACTION Insert the record description entry and recompile.

7009T MESSAGE MORE THAN 20 AND/OR LINES, SPEC IS DROPPED.

CAUSE You exceeded the limit of 20 AND or OR lines in an AND/OR grouping.

ACTION Delete the appropriate number of AND/OR lines and recompile.

7010W MESSAGE EDIT WORD IN COL 45-70 IS NOT ENCLOSED IN QUOTES, ASSUME BLANK.

CAUSE You did not enclose the edit word in quotation marks.

ACTION Add quotation marks to the edit word and recompile.

7011W MESSAGE THE NUMBER OF REPLACEABLE CHARACTERS IN THE EDIT WORD IS NOT EQUAL

TO THE FIELD TO BE EDITED.

CAUSE You did not specify an equal number of replaceable characters in the edit word.

ACTION The compiler makes the number of characters in the source data equal to the
number of replaceable characters in the edit word, either by truncating or
padding with zeros. If you want this result, ignore this warning message.

7012W MESSAGE INVALID EDIT CODE IN COL. 38.

CAUSE You entered a character other than X, Y, Z, 1, 2, 3, 4, A, B, C, D, J, K, L, M, or
blank in the Edit Code Field (column 38).

ACTION Enter a correct character and recompile.

A-64 RPG Compiler Messages

Example Conventions

7013W MESSAGE EDIT CODE INVALID WITH CONSTANT OTHER THAN '*' OR '$'.

CAUSE You paired the wrong edit code with the constant that appears in columns 45-70.

ACTION Correct this error and recompile.

7014W MESSAGE INVALID FIELD NAME IN COL 32-37.

CAUSE You used an invalid or unde�ned �eld name in the Field Name Field (columns
32-37).

ACTION Correct the �eld name and recompile.

7015W MESSAGE INVALID LINE TYPE IN COL 15, ASSUME D.

CAUSE You used a character other than H, D, T, or E in the Type Field (column 15).

ACTION Enter the proper character and recompile.

7016W MESSAGE INVALID FETCH-OVERFLOW OR RELEASE-FILE IN COL 16, ASSUME BLANK.

CAUSE You made an invalid entry in the Fetch Over
ow/Release Field (column 16).

ACTION Correct this error and recompile.

7017W MESSAGE INVALID SPACE ENTRIES IN COL 17-18, ASSUME BLANK.

CAUSE You made an entry other than 0, 1, 2, 3, or blank in the Space Field (columns
17-18).

ACTION Correct this entry and recompile.

7018W MESSAGE INVALID SKIP ENTRIES IN COL 19-22 OR GREATER THAN FORM LENGTH

SPECIFIED, ASSUME BLANK.

CAUSE You made entries other than 01-99, A0-A9, B0-B2 or blank in the Skip Field
(columns 19-22) or the entry in this �eld exceeds the form length speci�ed.

ACTION Correct this error and recompile.

7019W MESSAGE INVALID SKIP ENTRIES IN COL 19-22 OR CHANNEL NUMBER GREATER THAN

12, ASSUME BLANK.

CAUSE You made invalid skip entries or referred to a channel number greater than 12 in
the Skip Field (columns 19-22).

ACTION Enter the correct skip request or channel number and recompile.

7020W MESSAGE INVALID NOT ENTRY IN COL. 23, 26, OR 29: ASSUME N.

CAUSE You entered a character other than N or blank in the Not Sub�eld (columns 23,
26, or 29).

ACTION Leave the �eld blank or enter N and recompile.

RPG Compiler Messages A-65

Example Conventions

7022W MESSAGE INVALID OUTPUT INDICATOR IN COL. 24-25, 27-28, 30-31; ASSUME BLANK.

CAUSE You entered an invalid indicator in the Output Indicators Field (columns 24-25,
27-28, or 30-31).

ACTION Enter a valid indicator and recompile.

7023W MESSAGE INVALID FIELD LENGTH FOR Y EDIT CODE.

CAUSE You speci�ed a �eld less than 3 or greater than 6 digits long for the Y edit code.

ACTION Rede�ne the �eld length to 3-6 digits.

7024W MESSAGE END POSITION NOT LARGE ENOUGH TO CONTAIN *PLACE FIELDS, OR ENTRY IS

INVALID.

CAUSE You entered a value in the End Position Field (columns 40-43), that is too small
to allow output of the *PLACE data without overlapping the previous �eld.

ACTION Correct this error and recompile.

7027W MESSAGE MISSING OR INCORRECTLY SPECIFIED END POSITION IN COL. 40-43; ASSUME

END POSITION 1.

CAUSE You omitted the End Position Field (columns 40-43), or entered a value in it
other than 1 through 9999.

ACTION Enter the appropriate value in columns 40-43 and recompile.

7028W MESSAGE OUTPUT FILE DESCRIBED AS 'ADD' TYPE, EACH RECORD LINE MUST HAVE

'ADD' IN COL. 16-18, ASSUME 'ADD'.

CAUSE You did not include ADD in columns 16-18 of each record line for an output �le
to which new records are to be appended.

ACTION Correct this error and recompile.

7029W MESSAGE INVALID BLANK AFTER IN COL 39, ASSUME BLANK.

CAUSE You entered the Blank After Field with a constant, look-ahead �eld, or special
DATE �eld.

ACTION Remove this entry from the constant or �eld description and recompile.

7030W MESSAGE INVALID CONSTANT IN COLUMNS 45-70.

CAUSE You entered an invalid constant in the Constant/Edit Word Field (columns
45-70).

ACTION De�ne the constant properly and recompile.

A-66 RPG Compiler Messages

Example Conventions

7031W MESSAGE INVALID PACKED/BINARY OUTPUT ENTRY IN COL 44, ASSUME BLANK.

CAUSE You made an entry to this �eld that applies to alphanumeric data but the entry
should apply to numeric data; or you entered a character other than P, B, L, R,
2, or 4.

ACTION Correct this entry and recompile.

7032W MESSAGE OVERFLOW INDICATOR INVALID FOR AN EXCPT RECORD.

CAUSE You entered an over
ow indicator in the Output Indicators Field (columns
23-31) on an exception record.

ACTION Delete the over
ow indicator and recompile.

7033W MESSAGE FETCH OVERFLOW INVALID WITH OVERFLOW INDICATOR ENTERED IN COL.

23-31; ASSUME NO FETCH.

CAUSE You requested Fetch Over
ow (column 16) in a line conditioned by an over
ow
indicator.

ACTION Correct this error and recompile.

7034W MESSAGE OVERFLOW INDICATOR USED IS NOT ASSIGNED TO THIS FILE.

CAUSE You used an over
ow indicator in the Output Indicators Field (columns 23-31),
but the indicator is not assigned to this �le.

ACTION The compiler assumes that you assigned the indicator to this �le. If this is what
you intend, ignore this message; otherwise, correct the record and recompile.

7035W MESSAGE 1P INDICATOR INVALID WITH TOTAL OR EXCPT RECORDS.

CAUSE You used the �rst-page indicator to condition a total or exception record.

ACTION Correct the record description and recompile.

7036W MESSAGE FETCH OVERFLOW INVALID WITH 1P INDICATOR, ASSUME NO FETCH OVERFLOW.

CAUSE You requested Fetch Over
ow (column 16) for a record conditioned with the
�rst-page indicator.

ACTION Correct the error and recompile.

7037W MESSAGE 1P INDICATOR INVALID FOR A COMBINED FILE.

CAUSE You entered the �rst-page (1P) indicator for a combined �le.

ACTION Correct the error and recompile.

7038W MESSAGE INVALID INDICATORS USED IN AN 'AND' RELATIONSHIP WITH 1P.

CAUSE You used an indicator with 1P in an AND relationship.

ACTION Correct this error and recompile.

RPG Compiler Messages A-67

Example Conventions

7039T MESSAGE END POSITION ENTRY IN COL. 40-43 FOR CONSTANT, EDIT WORD, FIELD, OR

ARRAY EXCEEDS RECORD LENGTH.

CAUSE You speci�ed an end position for an output record that exceeds the maximum
length possible for that record. (For instance, position 150 for a printer record
that has 132 characters per line.

ACTION Correct the end position to conform with the maximum length possible and
recompile.

7040W MESSAGE CONSTANTS IN COL. 45-70 INVALID FOR X, Y, OR Z EDIT CODES.

CAUSE You did not leave columns 45-70 blank for an X, Y, or Z edit code.

ACTION Remove the characters in columns 45-70 and recompile.

7041W MESSAGE DECIMAL POSITIONS INVALID FOR FIELD EDITED BY Y CODE.

CAUSE You applied the Y edit code to a non-integer numeric �eld.

ACTION Correct this error and recompile.

7042W MESSAGE NAME OF FIELD TO BE EDITED, BY CODE SPECIFIED IN COL 38, MISSING.

CAUSE You speci�ed an edit code in column 38 but did not enter a �eld name in
columns 32-37.

ACTION Enter a �eld name in columns 32-37 and recompile.

7043T MESSAGE INVALID FILE TYPE FOR OUTPUT RECORD.

CAUSE You directed output to an input or display �le.

ACTION Correct this error and recompile.

7044W MESSAGE T OR E ENTRY IN COL. 15 INVALID FOR COMBINED FILE.

CAUSE You directed total or exception records to a combined �le.

ACTION Correct this error and recompile.

7045W MESSAGE BLANK AFTER ENTRY IN COL 39 INVALID WITH RESERVED WORD OTHER THAN

PAGE; ASSUME BLANK.

CAUSE You entered the Blank After Field with *PLACE, *PRINT, UDATE, UMONTH,
UYEAR, UDAY, or *ERROR.

ACTION Delete the blank after request from column 39.

7046W MESSAGE BLANK AFTER SPECIFIED FOR A CONSTANT.

CAUSE You tried to blank out a constant instead of a data �eld.

ACTION Correct this error and recompile.

A-68 RPG Compiler Messages

Example Conventions

7047I MESSAGE FORMS POSITIONING SPECIFIED ON CONTROL RECORD, BUT MISSING A RECORD

CONDITIONED BY 1P.

CAUSE You entered a 1 in the Form Positioning Field (column 41) of the Header
Speci�cation, but did not specify an output record conditioned by the �rst-page
indicator (1P).

ACTION This is an informational message only, no action is necessary.

7048W MESSAGE 'ADD' IN COL 16-18 NOT ALLOWED ON AND/OR LINES, ASSUME BLANK.

CAUSE You used ADD on an AND or OR line.

ACTION Remove the ADD and recompile.

7049W MESSAGE INVALID ENTRY IN COL. 17-22 FOR 'AND' LINE, ASSUME BLANK.

CAUSE You entered one or more characters in columns 17-22 on an AND line.

ACTION Remove the characters from these columns and recompile.

7050W MESSAGE INVALID INDEX IN COLS. 32-37.

CAUSE You used an improper array index in the Field Name Field.

ACTION Correct the invalid index and recompile.

7053W MESSAGE ALPHANUMERIC DATA CANNOT BE EDITED.

CAUSE You attempted to apply an edit code or edit word to alphanumeric data, but
they can only be used with numeric data.

ACTION Correct this record and recompile.

7054W MESSAGE PACKED/BINARY IN COLUMN 44 CANNOT APPEAR TOGETHER WITH EDIT CODE OR

EDIT WORD.

CAUSE You attempted to apply a packed binary �eld to an edit code or edit word.

ACTION Correct this error and recompile.

7055W MESSAGE END POSITION SPECIFIED IN COLUMNS 40-43 CANNOT CONTAIN THE WHOLE

DATA ITEM.

CAUSE You did not specify an edit �eld long enough to hold the entire edited item.

ACTION Specify the proper �eld length and recompile.

7056W MESSAGE PACKED/BINARY IN COLUMN 44 IS NOT BLANK FOR ALPHANUMERIC DATA,

ASSUME BLANK.

CAUSE You speci�ed numeric data (column 44) but de�ned the �eld previously as
alphanumeric.

ACTION Correct this error and recompile.

RPG Compiler Messages A-69

Example Conventions

7057W MESSAGE TARGET LENGTH SPECIFIED BY PACKED/BINARY IN COLUMN 44 MAY BE TOO

SMALL TO CONTAIN THE DATA.

CAUSE You may have speci�ed an output �eld too short to hold the output data.

ACTION Specify the proper output �eld length and recompile.

7058W MESSAGE THE SKIP IN COLUMNS 19-22 MUST NOT BE BEYOND THE FORM LENGTH

DEFINED ON THE LINE COUNTER SHEET.

CAUSE You requested a skip to a line beyond the form length but still on the current
page.

ACTION Correct the skip request and recompile.

7059W MESSAGE INVALID ENTRY IN COL 7-13 FOR 'AND/OR' LINE, ASSUME BLANK.

CAUSE You entered characters in these columns, but none are allowed for an AND or
OR line.

ACTION Remove the characters from columns 7-13 and recompile.

7060T MESSAGE 'DEL' IN COLS. 16-18 ONLY ALLOWED FOR AN IMAGE/KSAM/INDEX UPDATE

FILE.

CAUSE You speci�ed DEL for the wrong type of �le.

ACTION Correct this error and recompile.

7061W MESSAGE 'ADD' IN COLS. 16-18, BUT FILE IS NOT 'ADD' TYPE, BLANK IS ASSUMED.

CAUSE You speci�ed ADD in columns 16-18 of the Output Speci�cations but did not
also specify A in the File Addition Field (column 66) of the File Description
Speci�cations.

ACTION Remove ADD from columns 16-18 of the Output Speci�cations, or specify A in
column 66 of the File Description Speci�cations.

7063T MESSAGE IMAGE OPEN MODE 2 NOT ALLOWED FOR DATABASE SPECIFIED AS OUTPUT,

UPDATE-ADD, OR UPDATE-DEL.

CAUSE You cannot specify Open Mode 2 for this database.

ACTION Correct the program and recompile.

7064I MESSAGE OUTPUT, UPDATE, OR COMBINED FILE HAS NO OUTPUT SPECIFICATIONS.

CAUSE You have not entered Output Speci�cations for an output, update, or combined
�le.

ACTION This is an informational message only, no action is necessary.

7065W MESSAGE FETCH OVERFLOW INVALID IF NO OVERFLOW INDICATOR ASSIGNED TO FILE.

ASSUME NO FETCH OVERFLOW.

CAUSE You entered F in column 16 of the Output Speci�cations but did not enter an
over
ow indicator in columns 33-34 of the File Description Speci�cation.

ACTION Change the program and recompile.

7066W MESSAGE SPACE BEFORE/AFTER INVALID FOR INDEXED FILE, ASSUME BLANK.

CAUSE You speci�ed spacing in columns 17-18 of an indexed �le.

ACTION The compiler assumes the entry is blank.

A-70 RPG Compiler Messages

Example Conventions

7067W MESSAGE COL 16-18 NOT BLANK, 'ADD' OR 'DEL' FOR UPDATE FILE, ASSUME UPDATE

OPERATIONS - NOT ADD.

CAUSE You did not enter a blank, ADD or DEL in columns 16-18 for an update �le.

ACTION The compiler performs update operations on the �le, not add operations.
Correct the program and recompile.

7068I MESSAGE PREVIOUS RECORD CONTAINS NO INDICATORS FOR 'AND' RECORD.

CAUSE The previous record does not have indicators in this AND sequence.

ACTION Verify that this is what you want. Modify the program if necessary.

7069W MESSAGE EXCPT GROUP NAME NOT USED - SEE WARNING AFTER O-SPECS

CAUSE In a calculation speci�cation using the EXCPT operation, you provided a name
in the result �eld for an EXCPT operation, but you did not use this name to
condition any exception output records.

ACTION If you misspelled or forgot to enter the EXCPT name in colums 32-37 of the
appropriate exception output speci�cations (E in column 15), enter the name
exactly as it appears in the calculation speci�cation.

7070W MESSAGE UPDATE FILE WITH ADD OPTION, WITH NO ADD IN COLS 16-18. CHECK

USAGE.

CAUSE A �le speci�cation indicated that a �le would be updated by appending records
to it (F-spec, columns 15=U and 66=A), but an output record was not marked
as an ADD record (O-spec, columns 16-18=\ADD").

ACTION Enter \ADD" in columns 16-18 of the output record speci�cation if you want to
add the record to the end of the �le. Ignore the warning if you entered \DEL" to
delete the last record read, or blanks to update the last record read.

8001W MESSAGE ERROR IN COMMENT

CAUSE The set of broken brackets is not correct.

ACTION The compiler ignores the command image from the comment on. Correct and
recompile.

8002W MESSAGE MISSING SYMBOL

CAUSE The compiler expects a symbol after the $ in column 6.

ACTION The compiler ignores the rest of the command image, including any incomplete
option present. Correct and recompile.

8003W MESSAGE ILLEGAL SYMBOL

CAUSE The compiler encountered an unexpected symbol.

ACTION The compiler ignores the symbol. Correct and recompile.

8004W MESSAGE MISSING OPTION OR INVALID COMMAND

CAUSE The compiler either did not encounter an option for the $CONTROL subsystem
command or it encountered an invalid option for it.

ACTION The compiler ignores the command image. Correct and recompile.

RPG Compiler Messages A-71

Example Conventions

8005W MESSAGE MISSING COMMA

CAUSE You did not include a comma, which is expected as a separator.

ACTION The compiler assumes that a comma is present. Correct and recompile.

8006W MESSAGE MISSING EQUAL SIGN

CAUSE You did not include an equal sign expected after a keyword.

ACTION The compiler assumes that an equal sign is present. Correct and recompile.

8007W MESSAGE ILLEGAL NUMBER

CAUSE You speci�ed a alphanumeric entry where a numeric entry is required.

ACTION The compiler ignores the option currently being scanned. Correct and recompile.

8008W MESSAGE NUMBER OUT OF RANGE

CAUSE A numeric entry is out of range.

ACTION The compiler ignores the option currently being scanned. Correct and recompile.

8009W MESSAGE STRING TOO LARGE

CAUSE The concatenation of character substrings exceeds a total of 103 characters.

ACTION The string is truncated at 103 characters. Correct and recompile.

8010W MESSAGE ILLEGAL STRING

CAUSE You failed to terminate a character string with a quotation mark.

ACTION The compiler ignores the string. Correct and recompile.

8012W MESSAGE MAXIMUM ERRORS EXCEEDED.

CAUSE The maximum number of errors allowed by the ERRORS= parameter of the
$CONTROL subsystem command (or the default value of 100) has been
exceeded.

ACTION Reduce errors and recompile.

8013W MESSAGE DUPLICATE ENTRY - IGNORED.

CAUSE You speci�ed a $ command or option more than once.

ACTION Remove duplicate entry.

8014W MESSAGE ILLEGAL NAME

CAUSE You speci�ed an incorrect value in $CONTROL NAME= option.

ACTION Correct the option and recompile.

8015W MESSAGE $COPY NOT FIRST LINE OF PROGRAM OR COPYLIB PREPROCESSING NOT DONE -

SPECIFICATION DROPPED.

CAUSE You either did not specify a $COPY command as the �rst line, or you did specify
the $COPY command but the Copylib Preprocessor did not execute properly.

ACTION Specify the $COPY command properly. Make sure RPGCOPY.PUB.SYS is
available and can be executed; then recompile.

A-72 RPG Compiler Messages

Example Conventions

8016I MESSAGE $SECOND '$' IGNORED.

CAUSE There is a $ in column 7 of a command line. This column is not used.

ACTION None, the entry is ignored.

8019W MESSAGE CONTINUATION RECORD MUST HAVE '$' IN COLUMN 6.

CAUSE A Continuation line for a compiler subsystem command was found that does not
have $ in column 6.

ACTION The Continuation line is ignored. Correct the program and recompile.

8020W MESSAGE INVALID 'IF' PARAMETER.

CAUSE An incorrectly formatted $IF compiler subsystem command was found.

ACTION The Continuation line is ignored. Correct the program and recompile.

8021W MESSAGE INVALID 'SET' PARAMETER.

CAUSE An incorrectly formatted $SET compiler subsystem command was found.

ACTION The Continuation line is ignored. Correct the program and recompile.

8022W MESSAGE INVALID 'CONTROL' PARAMETER.

CAUSE An incorrectly formatted $CONTROL compiler subsystem command was found.

ACTION The Continuation line is ignored. Correct the program and recompile.

8023W MESSAGE OPTION NOT SUPPORTED ON RPG/iX.

CAUSE An unsupported entry (for example, $EDIT) was found.

ACTION The entry is ignored. Correct the program and recompile.

9001I MESSAGE INDICATOR DEFINED BUT NOT REFERENCED.

CAUSE You de�ned an indicator that is not referenced in a speci�cation.

ACTION If you intended to reference this indicator, enter a correct reference and
recompile.

9002W MESSAGE INDICATOR REFERENCED BUT NOT DEFINED.

CAUSE Your program referenced an indicator that is not de�ned by a speci�cation.

ACTION Correct the error and recompile.

9003T MESSAGE INVALID FILENAME IN COLUMNS 7-14, SPEC DROPPED.

CAUSE You used an improper �le name in the File Name Field for a Array/Table File
Name (A) Speci�cation.

ACTION The compiler ignores this speci�cation.

RPG Compiler Messages A-73

Example Conventions

9004T MESSAGE CANNOT OPEN FILE SPECIFIED BY 'A' SPEC.

CAUSE The system could not open the �le named on the Array/Table File Name (A)
Speci�cation.

ACTION Check to see if the �le exists and determine the reason for this �le error. Correct
the error and recompile.

9005T MESSAGE CANNOT OPEN TEMPORARY FILE TO PROCESS COMPILE-TIME TABLE.

CAUSE The compiler cannot open the temporary �le for processing a compile-time table.

ACTION Check to see if disk space is full and determine the reason for this �le error.
Correct the error and recompile.

9006W MESSAGE THE FILE DEFINED BY 'A' SPEC IS EMPTY.

CAUSE The �le named on the Array/Table File Name Speci�cation does not contain
table or array records.

ACTION Supply the compiler with the correct �le and recompile your program.

9007T MESSAGE I/O ERROR OCCURRED DURING READING COMPILE-TIME TABLE.

CAUSE The system could not read the compile-time table.

ACTION Check to determine the reason for this �le error. Correct it then recompile.

9008T MESSAGE I/O ERROR OCCURRED DURING WRITING COMPILE-TIME TABLE.

CAUSE An input/output error occurred while the compiler was copying your table/array
�les to a temporary �le; the most probable cause was insu�cient disk space.

ACTION Check to determine the reason for this �le error. Correct it then recompile.

9009W MESSAGE ALTERNATE COLLATING SEQUENCE, COMPILE-TIME TABLE/ARRAY OR

TRANSLATION TABLE NOT FOUND.

CAUSE You did not de�ne an alternate collating sequence, table or array, or �le
translation table in the �le named on the required Array/Table File Name (A)
Speci�cation.

ACTION Supply an Array/Table File Name Speci�cation (after the last Output
Speci�cation) and recompile.

9010W MESSAGE THE FILES SPECIFIED BY 'A' SPEC ARE NOT ENOUGH TO INITIALIZE

COMPILE-TIME TABLES.

CAUSE The �les named on the Array/Table File Name (A) Speci�cation do not contain
enough entries to �ll the tables or arrays.

ACTION Supply the compiler with a proper �le (or �les) and recompile.

A-74 RPG Compiler Messages

Example Conventions

9011W MESSAGE ILLEGAL HEXADECIMAL DIGIT IN COMPILE-TIME TABLE.

CAUSE You entered an invalid hexadecimal value (other than 0-9 or A-F) in the
compile-time table. This value does not represent an ASCII character.

ACTION The compiler assumes that this character is zero. Correct and recompile.

9012W MESSAGE ILLEGAL OCTAL DIGIT IN COMPILE-TIME TABLE.

CAUSE You entered an invalid octal value (other than 0-7) in a compile-time table. This
value does not represent an ASCII character.

ACTION The compiler assumes that this character is zero. Correct and recompile.

9013W MESSAGE THE NAMES IN COLUMNS 1-8 OF A FILE TRANSLATION TABLE ARE NOT THE

SAME.

CAUSE You speci�ed more than one �le name in columns 1-8 of a group of �le
translation records supposedly belonging to the same �le.

ACTION The compiler assumes that the �le names are the same.

9014I MESSAGE FIELD NAME(S) DEFINED BUT NOT REFERENCED.

CAUSE You did not reference the �eld names you de�ned.

ACTION Correct the program and recompile.

9015I MESSAGE FILE NAME(S) DEFINED BUT NOT REFERENCED.

CAUSE You did not reference �le names you de�ned.

ACTION Correct the program and recompile.

9016I MESSAGE NUMERIC FIELD TEMPORARILY CONVERTED TO ALPHANUMERIC FOR

ALPHANUMERIC COMPARE.

CAUSE You are attempting to compare an alphanumeric �eld to a numeric �eld.

ACTION RPG temporarily converts the numeric �eld to alphanumeric to do the
comparison. This is an information message only.

9017T MESSAGE AUTOMATIC RECORD-LEVEL LOCKING FOR IMAGE OUTPUT REQUIRES ENTRY IN

FILE DESC. SPEC COLUMNS 35-38.

CAUSE You entered R in the Open Mode Field (column 66) of the Database Name
(IMAGE) Line without entering a Key Field Starting Location (columns 35-38)
in the File Description Speci�cation.

ACTION Correct the program and recompile.

9018W MESSAGE COMPILE-TIME TABLE ERROR - SEQUENCE ERROR.

CAUSE You speci�ed an incorrect order for the compile-time table.

ACTION Correct the program and recompile.

RPG Compiler Messages A-75

Example Conventions

9019W MESSAGE COMPILE-TIME TABLE ERROR - BAD DATA (INVALID DIGIT).

CAUSE You speci�ed invalid digits in a numeric table or array.

ACTION Correct the program and recompile.

9020W MESSAGE COMPILE-TIME TABLE ERROR - TOO MANY ITEMS FOR TABLE/ARRAY.

CAUSE You speci�ed too many items in the compile-time table.

ACTION Correct the program and recompile.

9021T MESSAGE FOR LOKUP OPERATION, STORAGE LENGTHS OF FACTOR 1 AND FACTOR 2 ARE

NOT THE SAME.

CAUSE You speci�ed di�erent lengths for FACTOR 1 (search argument of LOKUP) and
FACTOR 2 (the table or array being searched).

ACTION Correct the program and recompile.

9022I MESSAGE ALTSEQ WILL NOT BE APPLIED TO THIS OPERATION.

CAUSE You declared an alternate collating sequence; however, the compiler does not use
the alternate sequence for this operation.

ACTION Correct the program and recompile, if necessary.

9023T MESSAGE FACTOR 2 OR RESULT FIELD MUST BE A NUMERIC VALUE FROM 1 TO 40 FOR

TIME2.

CAUSE You entered incorrect values in either the Factor 2 Field or the Field Length
Field for this operation.

ACTION Correct the program and recompile.

9024T MESSAGE START POSITION SPECIFIED IN FACTOR 2 PLUS RESULT FIELD LENGTH IS

BEYOND 40 FOR TIME2.

CAUSE You speci�ed an incorrect combination of entries for the Factor 2 Field and the
Field Length Field.

ACTION Correct the program and recompile.

9025W MESSAGE MOVE OF FIELD TO WHOLE ARRAY RESULTS IN DATA TRUNCATION AND

REPETITION THROUGH THE ARRAY.

CAUSE You speci�ed a simple �eld for Factor 2 in a MOVE operation and an
non-subscripted name in the Result Field. This results in the �eld being moved
independently into each array element rather than overlaying the array.

ACTION Correct the program and recompile. If you want to overlay the array, change the
MOVE operation to MOVEA.

9026W MESSAGE NO. OF COMPILE-TIME TABLES/ARRAYS FOUND EXCEED NUMBER DEFINED ON

E-SPECS.

CAUSE There are more compile-time tables or arrays found at the end of the program
than there are de�ned in E-specs.

ACTION Correct the program and recompile.

A-76 RPG Compiler Messages

Example Conventions

9030T MESSAGE RESULT FIELD LENGTH IN COLUMN 49-51 OF C SPEC MUST BE 6 OR 12 FOR

TIME OPERATION.

CAUSE You speci�ed an incorrect entry in columns 49-51 for this operation.

ACTION Correct the program and recompile.

9031T MESSAGE DECIMAL POSITIONS FOR FNDJW, PUTJW, TIME, TIME2, OR FNUM MUST BE 0.

CAUSE An incorrect decimal position was speci�ed for a �eld in one or more of the
above operations.

ACTION Correct the program and recompile.

9032T MESSAGE DIGIT LENGTH FOR VARIABLE IN FACTOR 2 MUST BE 1 TO 4 DIGITS FOR

TIME2 OPERATION.

CAUSE You speci�ed an incorrect digit length for this �eld.

ACTION Correct the program and recompile.

9033T MESSAGE FIELD SIZE MUST BE 1 TO 8 DIGITS FOR PUTJW OPERATION.

CAUSE The variable speci�ed in Factor 1 for this operation has an incorrect number of
digits speci�ed for its �eld length.

ACTION Correct the program and recompile.

9034T MESSAGE TRIED TO BUILD MORE THAN 1 TRANSLATION TABLE FOR FILE.

CAUSE A �le using a translation table was named more than once in an Array/Table
File Name Speci�cation.

ACTION Correct the error and recompile.

9035T MESSAGE INVALID FILE NAME IN FILE TRANSLATION RECORD.

CAUSE An invalid �le name was found in a �le translation record.

ACTION Check the File Extension Speci�cation(s); you may have too many compile-time
tables. Correct the error and recompile.

9036W MESSAGE FACTOR 1 IN SET OPERATION, IF USED, MUST BE AN ARRAY NAME.

CAUSE Something besides a valid array name was speci�ed for Factor 1 in a SET
operation.

ACTION Make sure Factor 1 is either blank or is a valid array name.

9040W MESSAGE TAG NOT FOUND IN CURRENT SUBROUTINE.

CAUSE The label referenced by a CAB or GOTO operation does not exist in the current
subroutine.

ACTION Check the spelling or location of the label referenced in the CAB or GOTO
operation, and its associated TAG operator. You may not branch out of a
subroutine.

RPG Compiler Messages A-77

B

Run-Time Messages

This chapter lists the errors that you may encounter when running an RPG program. There
are four types of errors. They are summarized below and are listed (except for TurboIMAGE
errors) in the same order in this appendix:

RPG errors

These errors are detected and reported by compiler-generated code. They are displayed on
the operator's console (for batch jobs) or on the terminal (for interactive sessions). The
program then pauses while the operator decides what action to take. The operator can:

1. Continue processing.
2. Skip the error record and continue processing.
3. Terminate the program.

TurboIMAGE-detected errors

These errors are detected by the TurboIMAGE Subsystem. See the TurboIMAGE/iX
Database Management System manual for an explanation of these errors.

USWITCH command errors

These errors may occur when you enter an F in the USWITCH Source Field (column 16) of
the Header Speci�cation. Errors in USWITCH records may terminate the program.

BUFCHK errors

These errors may occur when you enter BUFCHK in the Option Type Field (columns
54-59) of a File Description Continuation line.

Run-Time Messages B-1

Example Conventions

RPG Errors

RPG errors are detected and reported by compiler-generated code. You can specify in the
program what action to take when an error occurs. You can redirect or suppress the error
action. To do this, enter the appropriate values in both of these Header Speci�cation �elds:

1. The Error Log Field (column 55).

2. The Error Response Field (columns 56-71).

The messages listed in this appendix explain the cause of the RPG error and the action you
must take to correct it. In addition to the \Message", \Cause" and \Action" �elds, the three
additional �elds shown below are listed for each error:

ERROR RESPONSE COLUMN

This is the column number (56-71) in the Error Response Field that corresponds to the
error.

*ERROR

This is the prede�ned, one-character �eld where RPG saves a unique letter code for the
error. When you enter 0 or 1 in the Error Response Field, you can check the contents of
*ERROR using Calculation Speci�cations.

ERROR RESPONSE ENTRIES

This �eld lists the values that you can enter in the Error Response Field.

B-2 Run-Time Messages

Example Conventions

1 MESSAGE FATAL FILE ERROR, FILENAME = xxxx

CAUSE An operating system error (see ERROR NUMBER in the File
Information Display) or an TurboIMAGE error.

ACTION Determine the cause of the error from the text displayed with it
and correct the program. If you need additional information,
look up the error in the operating system manual or the
TurboIMAGE/iX Database Management System manual.

ERROR

RESPONSE

COLUMN

NONE (this error is processed with error number 5).

*ERRORF

ERROR

RESPONSE

ENTRIES

NONE.

2 MESSAGE UNIDENTIFIED RECORD, FILENAME = xxxx, RECORD NUMBER =

nnn

CAUSE Record number nnn on the input �le named xxxx is not
identi�able.

ACTION Choose one of the error response options. Either include this
record type on Input Speci�cations or delete the record from
the �le.

ERROR

RESPONSE

COLUMN

56.

*ERROR A.

ERROR

RESPONSE

ENTRIES

0, 1, 2, 3, 4, 5.

3 MESSAGE MATCHING RECORD SEQUENCE ERROR, FILENAME = xxxx,

RECORD NUMBER = nnn

CAUSE The matching record with record number = nnn and �lename =
xxxx is not in sequence.

ACTION Choose one of the error response options and correct the record
sequence.

ERROR

RESPONSE

COLUMN

57.

*ERROR B.

ERROR

RESPONSE

ENTRIES

1, 2, 3, 4, 5.

Run-Time Messages B-3

Example Conventions

4 MESSAGE INPUT SEQUENCE ERROR, FILENAME = xxxx, RECORD NUMBER

= nnn

CAUSE Record number nnn on the input �le named xxxx is not in the
proper sequence.

ACTION Put the record in the proper sequence and execute the program.

ERROR

RESPONSE

COLUMN

58.

*ERROR C.

ERROR

RESPONSE

ENTRIES

1, 2, 3, 4, 5.

5 MESSAGE INDEX INVALID, LINE NUMBER =nnn, INDEX = nnn NOT

EVALUATED

CAUSE The array index is less than 1 or greater than the number of
array elements.

ACTION Choose one of the error response options and correct the
program.

ERROR

RESPONSE

COLUMN

59.

*ERROR D.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

6 MESSAGE NEGATIVE SQUARE ROOT, LINE NUMBER = nnn

CAUSE Your program calculated a square root that was negative.

ACTION Choose one of the error response options and correct the data.

ERROR

RESPONSE

COLUMN

60.

*ERROR E.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

B-4 Run-Time Messages

Example Conventions

7 MESSAGE TABLE/ARRAY {SEQUENCE, BAD DATA, OVERFILL} FILE =

xxxx, LINE NUMBER = nnn, VALUE = xxx

CAUSE The table or array on �le xxxx with a line number = nnn and
value = xxx had a sequence, bad data or over�ll error.

ACTION Choose one of the error response options and correct the table
or array.

ERROR

RESPONSE

COLUMN

61.

*ERROR H.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

8 MESSAGE RECORD NOT FOUND, FILENAME = xxx, STATUS = xxx

CAUSE The record sought was not found. (The STATUS portion
appears only for a TurboIMAGE �le.)

ACTION Choose one of the error response options and make the
appropriate changes.

ERROR

RESPONSE

COLUMN

62.

*ERROR U.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

9 MESSAGE SPECIAL FILE ERROR, FILENAME = xxxx

CAUSE The special �le processing routine returned an error.

ACTION Check the processing routine and make the appropriate changes.

ERROR

RESPONSE

COLUMN

63.

*ERROR J.

ERROR

RESPONSE

ENTRIES

0, 1, 2, 3, 4, 5.

Run-Time Messages B-5

Example Conventions

10 MESSAGE RDEXIT ERROR, FILENAME =xxxx

CAUSE The Read Exit �le processing routine returned an error.

ACTION Check the processing routine and make the appropriate changes.

ERROR

RESPONSE

COLUMN

64.

*ERROR J.

ERROR

RESPONSE

ENTRIES

0, 1, 2, 3, 4, 5.

11 MESSAGE ARITHMETIC OVERFLOW, LINE NUMBER = nnn, VALUE = nnn

CAUSE The arithmetic result exceeded the number of digits the �eld
can hold.

ACTION Correct the program (make the �eld size larger).

ERROR

RESPONSE

COLUMN

65.

*ERROR N.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

12 MESSAGE DIVIDE BY ZERO, LINE NUMBER = nnn

CAUSE The number was divided by zero.

ACTION Choose one of the error response options and correct the
program.

ERROR

RESPONSE

COLUMN

66.

*ERROR O.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

B-6 Run-Time Messages

Example Conventions

13 MESSAGE INVALID NUMERICAL DATA, LINENUM = nnn, FILENAME =

xxxx, RECORD NUMBER = nnn, COLUMN = nnn, VALUE = nnn

CAUSE Either an input �eld or an alphanumeric �eld, being moved to a
numeric �eld, contained characters other than numeric
characters or embedded blanks. (FILENAME, RECORD
NUMBER, COLUMN and VALUE are printed only when
applicable.)

ACTION Choose one of the error response options and correct the
program.

ERROR

RESPONSE

COLUMN

67.

*ERROR P.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

14 MESSAGE BINARY CONVERSION OVERFLOW, LINENUM = nnn, VALUE =

nnn

CAUSE The binary output �eld was not large enough to hold the value.

ACTION De�ne a larger binary �eld.

ERROR

RESPONSE

COLUMN

68.

*ERROR Q.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

15 MESSAGE INDICATOR HX IS ON (H0-H9)

CAUSE These halt indicators were either turned on programmatically
or turned on due to a �le error.

ACTION Choose one of the error response options and correct the
program.

ERROR

RESPONSE

COLUMN

69.

*ERROR NONE.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

Run-Time Messages B-7

Example Conventions

16 MESSAGE REL REC# INVALID, FILENAME = xxxx

CAUSE An attempt was made to read or write a relative record number
past the end of the �le or before the beginning of the �le.

ACTION Choose one of the error response options and correct the
program.

ERROR

RESPONSE

COLUMN

70.

*ERROR M.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

17 MESSAGE DUPLICATE KEY, FILENAME = xxxx, KEY = kkkk

CAUSE The program attempted to write a record having the same key
as a record already in the �le and duplicate keys are not
allowed.

ACTION Rede�ne the �le to permit duplicate keys or delete one of the
records.

ERROR

RESPONSE

COLUMN

71.

*ERROR Y.

ERROR

RESPONSE

ENTRIES

0, 2, 3, 4, 5.

B-8 Run-Time Messages

Example Conventions

USWITCH Errors

If you're running a program that uses the USWITCH feature (F in the USWITCH Source
Field (column 16) of the Header Speci�cation), you may encounter one of the following errors.
Each USWITCH error is preceded by the message: ERROR IN USER SWITCH INITIALIZATION.

MESSAGE I/O ERROR ON $STDLIST

CAUSE An attempt to write output to a standard list device failed (this
occurs when the display of a user prompt fails).

ACTION The job or session terminates. Determine the reason; correct
and rerun.

MESSAGE I/O ERROR ON $STDIN

CAUSE An attempt to read input from the standard input device failed
(this occurs when getting USWITCH settings from either the
user or from a job �le.)

ACTION The job or session terminates. Determine the reason; correct
and rerun.

MESSAGE ILLEGAL USWITCH SETTING IN 8 BYTE FORMAT

CAUSE A character other than 0, 1 or X is in 8-byte (short) format.

ACTION Correct the input data (in the job �le or in the USWITCH �le)
and rerun the program.

MESSAGE INVALID INPUT DATA

CAUSE You included invalid information in a USWITCH command.

ACTION If the switch setting comes from a USWITCH �le, the program
terminates. If it comes from $STDIN, the setting defaults to
OFF. Correct and rerun.

MESSAGE UNABLE TO OPEN FILE 'USWITCH'

CAUSE An error occurred while opening the USWITCH �le.

ACTION Determine the cause of the error and rerun.

MESSAGE UNABLE TO READ RECORD IN FILE 'USWITCH'

CAUSE An error occurred while reading the USWITCH �le.

ACTION Determine the cause of the error and rerun.

MESSAGE UNEXPECTED END OF FILE

CAUSE An end-of-�le indicator was unexpectedly encountered in the
USWITCH �le.

ACTION The program terminates. Correct and rerun.

Run-Time Messages B-9

Example Conventions

BUFCHK Errors

The following errors may occur when you use the BUFCHK option (see the Option Type
Field (columns 54-59) of the File Description Continuation line). In addition to showing the
cause of the error and remedy for it, an *ERROR entry is listed for each message. *ERROR
is a one-character prede�ned �eld that contains the error code. You can test it in Calculation
Speci�cations.

0-10 MESSAGE INTERNAL OR INTRINSIC ERROR

CAUSE Internal RPG error.

ACTION Contact HP Support Engineering.

*ERROR F.

11 MESSAGE ATTEMPTED UPDATE BEFORE INPUT OF FIRST RECORD.

CAUSE Attempted to perform record update before reading a record
from a �le.

ACTION Correct the program and recompile.

*ERROR U.

12 MESSAGE ATTEMPTED UPDATE ON SAME RECORD OR AN INTERVENING

"ADD" RECORD.

CAUSE You tried to update a record that has already been updated
(you did not read a new record). Or, the current record was not
written before you attempted to add a new one (the current
record updates the added record).

ACTION Correct the program and recompile.

*ERROR U.

B-10 Run-Time Messages

C

ASCII and EBCDIC Character Sets

Table C-1, which follows, lists the ASCII and EBCDIC character sets along with the decimal,
octal, and hexadecimal values that correspond to them. The ASCII and EBCDIC characters
are listed in ascending sequence according to their binary value.

ASCII and EBCDIC Character Sets C-1

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

000

001

002

003

004

005

006

007

010

011

012

013

014

015

016

017

020

021

022

023

024

025

026

027

030

031

032

033

034

035

036

037

040

041

042

043

044

045

046

047

050

051

052

053

054

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

0000 0110

0000 0111

0000 1000

0000 1001

0000 1010

0000 1011

0000 1100

0000 1101

0000 1110

0000 1111

0001 0000

0001 0001

0001 0010

0001 0011

0001 0100

0001 0101

0001 0110

0001 0111

0001 1000

0001 1001

0001 1010

0001 1011

0001 1100

0001 1101

0001 1110

0001 1111

0010 0000

0010 0001

0010 0010

0010 0011

0010 0100

0010 0101

0010 0110

0010 0111

0010 1000

0010 1001

0010 1010

0010 1011

0010 1100

NUL NUL

SOH SOH

STX STX

ETX ETX

EOT PF

ENQ HT

ACK LC

BEL DEL

BS

HT

LF SMM

VT VT

FF FF

CR CR

SO SO

SI SI

DLE DLE

DC1 DC1

DC2 DC2

DC3 TM

DC4 RES

NAK NL

SYN BS

ETB IL

CAN CAN

EM EM

SUB CC

ESC CU1

FS IFS

GS IGS

RS IRS

US IUS

SP DS

! SOS

" FS

#

$ BYP

% LF

& ETB

' ESC

(

)

* SM

+ CU2

,

C-2 ASCII and EBCDIC Character Sets

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets (continued)

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

68

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

055

056

057

060

061

062

063

064

065

066

067

070

071

072

073

074

075

076

077

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

0010 1101

0010 1110

0010 1111

0011 0000

0011 0001

0011 0010

0011 0011

0011 0100

0011 0101

0011 0110

0011 0111

0011 1000

0011 1001

0011 1010

0011 1011

0011 1100

0011 1101

0011 1110

0011 1111

0100 0000

0100 0001

0100 0010

0100 0011

0100 0100

0100 0101

0100 0110

0100 0111

0100 1000

0100 1001

0100 1010

0100 1011

0100 1100

0100 1101

0100 1110

0100 1111

0101 0000

0101 0001

0101 0010

0101 0011

0101 0100

0101 0101

0101 0110

0101 0111

0101 1000

0101 1001

- ENQ

. ACK

/ BEL

0

1

2 SYN

3

4 PN

5 RS

6 UC

7 EOT

8

9

:

; CU3

< DC4

= NAK

>

? SUB

@ SP

A

B

C

D

E

F

G

H

I

J

K .

L <

M (

N +

O |

P &

Q

R

S

T

U

V

W

X

Y

0

1

2

3

4

5

6

7

8

9

+1

+2

+3

+4

+5

+6

+7

+8

+9

-1

-2

-3

-4

-5

-6

-7

-8

-9

ASCII and EBCDIC Character Sets C-3

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets (continued)

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

132

133

134

135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

200

201

202

203

204

205

206

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

0101 1010

0101 1011

0101 1100

0101 1101

0101 1110

0101 1111

0110 0000

0110 0001

0110 0010

0110 0011

0110 0100

0110 0101

0110 0110

0110 0111

0110 1000

0110 1001

0110 1010

0110 1011

0110 1100

0110 1101

0110 1110

0110 1111

0111 0000

0111 0001

0111 0010

0111 0011

0111 0100

0111 0101

0111 0110

0111 0111

0111 1000

0111 1001

0111 1010

0111 1011

0111 1100

0111 1101

0111 1110

0111 1111

1000 0000

1000 0001

1000 0010

1000 0011

1000 0100

1000 0101

1000 0110

Z !

[$

\ *

])

^ ;

_

` -

a /

b

c

d

e

f

g

h

i

j |

k ,

l %

m _

n >

o ?

p

q

r

s

t

u

v

w

x

y

z :

{ #

| @

} '

=

DEL "

a

b

c

d

e

f

+0

-0

C-4 ASCII and EBCDIC Character Sets

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets (continued)

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

207

210

211

212

213

214

215

216

217

220

221

222

223

224

225

226

227

230

231

232

233

234

235

236

237

240

241

242

243

244

245

246

247

250

251

252

253

254

255

256

257

260

261

262

263

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

B0

B1

B2

B3

1000 0111

1000 1000

1000 1001

1000 1010

1000 1011

1000 1100

1000 1101

1000 1110

1000 1111

1001 0000

1001 0001

1001 0010

1001 0011

1001 0100

1001 0101

1001 0110

1001 0111

1001 1000

1001 1001

1001 1010

1001 1011

1001 1100

1001 1101

1001 1110

1001 1111

1010 0000

1010 0001

1010 0010

1010 0011

1010 0100

1010 0101

1010 0110

1010 0111

1010 1000

1010 1001

1010 1010

1010 1011

1010 1100

1010 1101

1010 1110

1010 1111

1011 0000

1011 0001

1011 0010

1011 0011

g

h

i

j

k

l

m

n

o

p

q

r

~

s

t

u

v

w

x

y

z

ASCII and EBCDIC Character Sets C-5

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets (continued)

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

264

265

266

267

270

271

272

273

274

275

276

277

300

301

302

303

304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

324

325

326

327

330

331

332

333

334

335

336

337

340

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

1011 0100

1011 0101

1011 0110

1011 1111

1011 1000

1011 1001

1011 1010

1011 1011

1011 1100

1011 1101

1011 1110

1011 1111

1100 0000

1100 0001

1100 0010

1100 0011

1100 0100

1100 0101

1100 0110

1100 0111

1100 1000

1100 1001

1100 1010

1100 1011

1100 1100

1100 1101

1100 1110

1100 1111

1101 0000

1101 0001

1101 0010

1101 0011

1101 0100

1101 0101

1101 0110

1101 0111

1101 1000

1101 1001

1101 1010

1101 1011

1101 1100

1101 1101

1101 1110

1101 1111

1110 0000

{

A

B

C

D

E

F

G

H

I

}

J

K

L

M

N

O

P

Q

R

\

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

C-6 ASCII and EBCDIC Character Sets

Example Conventions

Table C-1. ASCII and EBCDIC Character Sets (continued)

Dec Oct Hex Binary ASCII EBCDIC
(alpha/cntrl)

ASCII EBCDIC
(numeric)

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

341

342

343

344

345

346

347

350

351

352

353

354

355

356

357

360

361

362

363

364

365

366

367

370

371

372

373

374

375

376

377

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

1110 0001

1110 0010

1110 0011

1110 0100

1110 0101

1110 0110

1110 0111

1110 1000

1110 1001

1110 1010

1110 1011

1110 1100

1110 1101

1110 1110

1110 1111

1111 0000

1111 0001

1111 0010

1111 0011

1111 0100

1111 0101

1111 0110

1111 0111

1111 1000

1111 1001

1111 1010

1111 1011

1111 1100

1111 1101

1111 1110

1111 1111

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

|

1
2
3
4
5
6
7
8
9

ASCII and EBCDIC Character Sets C-7

Index

A

action (VPLUS), 10-3, 10-12, 10-14
code, 10-12, 10-14
output record format, 10-12, 10-18

ADD, 3-18, 8-12, 8-18
adding records to output �les, 4-19, 9-9
ADDROUT �le, 4-9, 4-12
alpha-binary data, 8-56
alphanumeric �elds
input data format, 7-21
in tables, arrays, 5-8, 5-11
testing input for blanks, 7-40

alphanumeric literal, 8-9, 8-99
Alternate Collating Sequence (ALTSEQ) records,

3-12, 4-1, 5-17, 5-19, 5-20
alternating tables
de�ning, 5-6, 5-10
searching, 8-65

AN(D) lines
Calculation Speci�cation, 8-3
Input Speci�cation, 7-3
Output Speci�cation, 9-5

arithmetic operations, 8-12
arithmetic sign (converting), 3-17
arrays, 5-1, 5-4, 5-14
changing entries during execution, 5-25
creating compile-time, 5-14
creating preexecution, 5-14
de�ning compile-time, 4-1, 5-15
de�ning execution-time, 5-16
de�ning preexecution-time, 4-4, 5-15
entries, 5-7
entries per record, 5-6
entry length, 5-8
index, 7-25, 9-18
loading compile-time, 5-17
loading execution-time, 5-21
loading preexecution-time, 5-21
naming, 5-6, 7-25, 9-18
searching, 3-16, 5-23, 8-66
sorting, 8-88
writing to output �les, 5-5, 5-25

Array/Table File Name Speci�cation (A), 1-6,
5-19, 5-20

ASCII, C-1
File Description Continuation line, 4-23

B

BATCH File Description Continuation line,
4-41

batch �le (VPLUS), 10-1, 10-2, 10-5
BEGSR, 8-14, 8-18
binary �elds
input data format, 7-21
in tables, arrays, 5-8, 5-11
output data format, 9-31

BITOF, 8-16, 8-18
BITON, 8-16, 8-19
*BLANK(S), 3-22, 8-9, 8-99
block length, 4-8
branching operations, 8-13
BREAK key (enabling for VPLUS), 10-6
browse mode (VPLUS), 10-7
BUFCHK, 3-16
File Description Continuation line, 4-23
run-time errors, B-1, B-10

bu�ers, 4-12
BYPASS File Description Continuation line,

4-23

C

CAB, 8-16, 8-20
CABEQ, 8-16, 8-20
CABGE, 8-16, 8-20
CABGT, 8-16, 8-20
CABLE, 8-16, 8-20
CABLT, 8-16, 8-20
CABNE, 8-16, 8-20
Calculation Speci�cation (C), 1-6, 8-1
used with VPLUS WORKSTN �les, 10-12

carriage control (printer), 3-26, 6-1
CAS, 8-16, 8-22
case, 4-27
CASEQ, 8-16, 8-22
CASGE, 8-16, 8-22
CASGT, 8-16, 8-22
CASLE, 8-16, 8-22
CASLT, 8-16, 8-22
CASNE, 8-16, 8-22
CATALOG �le, 8-73, 11-10
CCTL option (MPE FILE command), 9-11

Index-1

chain, 8-25
CHAIN, 4-4, 7-30, 8-17, 8-24
chained �le, 4-4, 5-5, 7-30, 8-24
chaining �eld, 7-30
chaining �eld code (C1-C9), 5-3, 7-30
chaining �le, 5-1, 5-3, 7-30
chaining (input), 7-30
channels (printer), 3-26, 6-2
character set, C-1
ASCII, C-1
EBCDIC, C-1

CLOSE, 8-17, 8-28
CMDKEYS �le, 11-9, 11-25, 11-29
coding, 4-19
collating sequence, 3-12, C-1
ASCII, C-1
EBCDIC, 3-12, C-1
EBCDIK, 3-12
JIS, 3-12

combined �le type, 4-3, 4-6, 4-7, 7-2
command key indicator (KA-KN, KP-KY), 7-9,

7-38, 7-40, 9-14, 11-1, 11-2, 11-8, 11-24
command key indicator (KA-KN,KP-KY), 8-6,

8-105
command keys (RSI), 11-8, 11-25
comments
in a program, 2-3
in compiler subsystem commands, 12-14

COMP, 3-22, 8-13, 8-28
compare and test operations, 8-13
compiler, 1-3, 12-1
commands, 1-9, 12-3
error messages, A-1
listing error messages, 12-4
listing the version number, 12-4
subsystem commands, 12-13

conditional locking, 8-59
conditioning
Calculation Speci�cation operations, 8-3, 8-6,

8-47
output, 9-5, 9-14

CONSOLE �le (WORKSTN), 4-17, 11-1, 11-20
device class name, 4-16

constants
�gurative, 8-9, 8-99
output, 9-32

$CONTROL, 11-24, 12-13, 12-16
control break, 7-28
clearing control totals, 9-26

control �eld, 7-28
control group, 7-28
control-level indicator (L0-L9), 7-9, 7-28, 7-38,

7-40, 8-3, 8-6, 8-16, 8-105, 9-14
$COPY, 12-13, 12-19
Cross-Reference listing, 3-25, 12-16

Current Data Checking (CDC), 3-16, 4-23

D

database (TurboIMAGE), 4-2
data structures, 7-9, 7-16
User Data Structure, 7-6

date (system), 8-95, 8-97
DEBUG, 3-2, 8-17, 8-30
debugging operation, 8-17
deleting records from output �les, 9-9
demand �le, 4-4
reading, 8-78, 8-79
resetting, 8-80

detail records (output), 9-7
detail time (Calculation Speci�cation operations

performed during), 8-1, 8-3
device class name, 4-16
device identi�er, 4-16
direct �le (MPE), 4-9, 4-12
DISK (device class name), 4-16
disk extents, 4-20
disk labels (user), 4-17, 4-18
display �le type, 4-3, 4-16
display operations, 8-17
DIV, 3-18, 8-12, 8-33
Do Block, 8-35, 8-37, 8-45, 8-53
dollar sign, 3-23
Domestic format (editing), 3-9
DOUEQ, 8-16, 8-35
DOUGE, 8-16, 8-35
DOUGT, 8-16, 8-35
DOULE, 8-16, 8-35
DOULT, 8-16, 8-35
DOUNE, 8-16, 8-35
DOWEQ, 8-16, 8-37
DOWGE, 8-16, 8-37
DOWGT, 8-16, 8-37
DOWLE, 8-16, 8-37
DOWLT, 8-16, 8-37
DOWNE, 8-16, 8-37
downloading VPLUS forms, 10-6
DSNAME File Description Continuation line,

4-4, 4-30, 4-38
DSPLM, 3-24, 8-17, 8-39
DSPLY, 3-24, 4-3, 8-17, 8-42

E

EBCDIC, 3-12, C-1
converting record identi�cation codes to, 3-16
File Description Continuation line, 4-23

EBCDIK, 3-12
File Description Continuation line, 4-23

edit code, 3-9, 3-23, 9-23
editing (output), 9-23, 9-32
edit words, 3-23, 9-34

Index-2

ELSE, 8-16, 8-44
enabling the BREAK key (for VPLUS), 10-6
enabling the function keys (for VPLUS), 10-6
END, 8-16, 8-45
ENDSR, 8-9, 8-14, 8-46
*EQ, 8-85, 8-101
equating �les, 4-30
*ERROR, 7-25, 8-9, 8-99, 9-18, 9-22
Error Dump
the �le used for, 3-2
when using VPLUS, 10-4

ERROR File Description Continuation line,
4-23

error message display interval (VPLUS), 10-5
errors
input/output run-time, 4-23, 10-4, B-1

European format (editing), 3-9
event (VPLUS), 10-3, 10-7, 10-12, 10-13
code, 10-7, 10-12, 10-13
input record format, 10-7, 10-12, 10-13

exception records (output), 9-7
EXCPT, 4-4, 8-17, 8-46, 9-7, 11-8
EXCPT Name, 8-46, 8-47, 9-18
executable libraries, 8-15
executable program �le, 1-3, 1-9, 12-1, 12-11,

12-12
EXIT, 8-15, 8-49
EXSR, 8-14, 8-50
external subroutines, 8-15

F

Fetch Over
ow, 9-9
�eld indicator, 3-18, 7-40, 9-14
�eld name, 8-9, 9-18
�gurative constant, 8-9, 8-99
File Description Continuation line, 4-22
File Description Speci�cation (F), 1-6, 4-1
used with VPLUS WORKSTN �les, 10-5

�le designation, 4-4
File Extension Speci�cation (E), 1-6, 4-15, 5-1
�le number (MPE), 8-51
�le operations, 8-17
�le organization, 4-12
�le translation records, 3-19, 4-1, 5-17
�le type, 4-3
FIRST File Description Continuation line, 4-41,

11-3
�rst-page indicator (1P), 7-9, 7-38, 7-40, 8-6,

8-105, 9-14
FNDJW, 8-17, 8-51
FNUM, 8-17, 8-51
FORCE, 8-17, 8-52
formal �le designator, 12-4
FORMDL File Description Continuation line,

4-41

forms �le
RSI, 11-2, 11-6, 11-20
VPLUS, 10-1, 10-2, 10-3

FORMS File Description Continuation line,
4-41, 11-3

FORMSPEC, 10-2, 10-3
forms (printer)
alignment, 3-18, 3-23
length, 6-1

full procedural �le, 4-4
reading, 8-24, 8-78, 8-79
resetting, 8-80

function key indicator (F0-F9), 7-9, 7-38, 7-40,
8-6, 8-39, 8-42, 8-84, 8-105, 9-14

function keys
labeling, 8-84
used with DSPLM,DSPLY, 8-84
used with RSI, 11-5, 11-8, 11-25
used with VPLUS, 7-11, 9-15, 10-6

G

*GE, 8-85, 8-101
GENCAT, 11-11, 12-4
general indicator (01-99), 7-9, 7-38, 7-40, 8-6,

8-105, 9-14
GOTO, 8-9, 8-13, 8-52
group sequence, 7-5, 7-6
*GT, 8-85, 8-101

H

half adjusting (Calculation Speci�cation results),
8-104

halt indicator (H0-H9), 7-9, 7-38, 7-40, 8-6,
8-73, 8-78, 8-79, 8-105, 9-14

Header Speci�cation (H), 1-6, 3-1
used with VPLUS WORKSTN �les, 10-4

heading records (output), 9-7
hexadecimal, C-1

I

$IF, 12-13
IFEQ, 8-16, 8-53
IFGE, 8-16, 8-53
IFGT, 8-16, 8-53
IFLE, 8-16, 8-53
IFLT, 8-16, 8-53
IFNE, 8-16, 8-53
IMAGE File Description Continuation line, 4-33
IMAGE �les. See TurboIMAGE �les
$INCLUDE, 12-13, 12-22
$INCLUDENOW, 12-24
Indexed-Sequential Access Method (ISAM), 4-2,

4-12
indicator

Index-3

command key (KA-KN, KP-KY), 7-9, 7-38,
7-40, 9-14, 11-1, 11-2, 11-8, 11-24

command key (KA-KN,KP-KY), 8-6, 8-105
control-level (L0-L9), 7-9, 7-28, 7-38, 7-40,

8-3, 8-6, 8-16, 8-105, 9-14
�eld, 3-18, 7-40, 9-14
�rst-page (1P), 7-9, 7-38, 7-40, 8-6, 8-105,

9-14
function key (F0-F9), 7-9, 7-38, 7-40, 8-6,

8-105, 9-14
general (01-99), 7-9, 7-38, 7-40, 8-6, 8-105,

9-14
halt (H0-H9), 7-9, 7-38, 7-40, 8-6, 8-73, 8-78,

8-79, 8-105, 9-14
last-record (LR), 7-9, 7-38, 7-40, 8-3, 8-6,

8-105, 9-14
matching-record (MR), 7-9, 8-6, 8-105, 9-14
over
ow (OA-OG, OV), 4-13, 6-3, 6-4, 7-9,

7-38, 7-40, 9-9, 9-14
over
ow (OA-OG,OV), 8-6, 8-105
record-identifying, 7-3, 7-9, 7-19, 8-16
resulting, 3-18, 8-13, 8-24, 8-51, 8-61, 8-62,

8-77, 8-105
user (U1-U8), 3-3, 4-20, 7-9, 7-38, 7-40, 8-6,

8-90, 8-105, 9-14
indicator and bit setting operations, 8-16
informational messages (compiler), A-2
input chaining, 7-30
input �eld name, 7-25
input �le type, 4-3, 4-6, 4-19, 7-2
input/output run-time errors, 4-23, B-1
Input Speci�cation (I), 1-6, 7-1
used with VPLUS WORKSTN �les, 10-7

internal subroutines, 8-3, 8-9, 8-14, 8-99
INTR, 8-17, 8-55
intrinsic
ACTIVATE, 8-91
CALENDAR, 8-95, 8-97
CAUSEBREAK, 12-9
CLOCK, 8-95
COMMAND, 12-9
CREATE, 8-91
DATELINE, 8-97
FINDJCW, 8-51
FOPEN, 12-16
FREAD, 4-18
FREADLABEL, 4-18
FWRITE, 4-18
FWRITELABEL, 4-18
PUTJCW, 8-77

intrinsics
calling, 8-55
passing paramaters, 8-55

IPARM, 8-17, 8-55
ITEM File Description Continuation line, 4-37

J

Job Control Word (JCW), 3-3, 3-6, 8-51, 8-77,
8-91, 12-16

RPGSUSP, 8-91, 11-29
RSIPAUSE, 11-10

K

KEYFL File Description Continuation line, 4-40
KSAM �les, 4-2, 4-32
adding records to, 4-19
key �le, 4-2, 4-40
locking and unlocking, 8-62
naming, 4-2
partial key, 8-24
processing mode, 4-9
reading, 8-24
reading chronologically, 4-12
record key, 4-9, 4-10, 4-11, 4-14, 4-40, 8-24
relative record number, 3-10, 4-9, 4-11
resetting, 8-80

KSAMUTIL, 8-62

L

last-record indicator (LR), 7-9, 7-38, 7-40, 8-3,
8-6, 8-105, 9-14

LDAFILE, 4-1, 7-6, 8-90
LEVEL File Description Continuation line, 4-38
library (RPG), 1-2
library (source program), 12-19, 12-22, 12-24
Line Counter Speci�cation (L), 1-6, 4-15, 6-1
linking an RPG program, 1-3, 1-9, 12-3, 12-12
literal, 8-9
alphanumeric, 8-9, 8-99
numeric, 3-9, 8-9, 8-99

LOADFM File Description Continuation line,
4-41

Local Data Area (LDA), 7-6, 8-90
LOCK, 8-17, 8-59
File Description Continuation line, 4-23

locking
conditional, 8-59
page level, 8-59
precedence, 4-36
TurboIMAGE,KSAM and MPE Files, 8-59
unconditional, 8-59

logic cycle (RPG), 1-1
LOKUP, 8-17, 8-63
look-ahead �eld, 7-9

M

MAKECAT, 8-73, 11-11
matching
�eld, 7-30

Index-4

�eld code (M1-M9), 7-30
�les, 4-7, 7-34

matching-record indicator (MR), 7-9, 8-6, 8-105,
9-14

matching-record processing order, 7-35
message �le (User Message Catalog), 8-73, 11-10,

11-11
message identi�cation (User Message Catalog),

8-73, 11-10
MHHZO, 8-13, 8-67
MHLZO, 8-13, 8-67
MLHZO, 8-13, 8-68
MLLZO, 8-13, 8-68
MOVE, 8-12, 8-70
MOVEA, 8-12, 8-72
MOVEL, 8-12, 8-72
move operations, 8-12
move zone operations, 8-13
MPE �le number, 8-51
MPE �les, 8-62
adding records to, 4-19
direct, 4-9, 4-11, 4-12
locking and unlocking, 8-62
partial key, 8-24
reading, 8-24
relative record number, 3-10, 4-9
sequential, 4-9, 4-11, 4-12

MPE intrinsics, calling, 8-55
MSG, 8-17, 8-73
MULT, 3-18, 8-12, 8-74
multi�le processing, 8-52
MVR, 3-18, 8-12, 8-74

N

name (source program), 2-4
Native Language Support (NLS), 8-73, 12-4
NOLOCK File Description Continuation line,

4-24
No-Read Checking (NRC), 3-16, 4-23
numeric �eld over
ow, 8-12, 8-101, 12-17, 12-18
numeric input �elds
data format, 7-21
decimal positions, 7-24
testing, 7-40

numeric literal, 3-9, 8-9, 8-99

O

octal, C-1
operating system functions, 8-55
operations (Calculation Speci�cation), 8-12
arithmetic, 8-12
branching, 8-13
compare and test, 8-13
debugging, 8-17
display, 8-17

external subroutine, 8-15
�le, 8-17
indicator and bit setting, 8-16
internal subroutine, 8-14
move, 8-12
move zone, 8-13
structured programming, 8-16
system operations, 8-17
table and array, 8-17

OR lines
Calculation Speci�cation, 8-3
Input Speci�cation, 7-3, 7-38
Output Speci�cation, 9-5

output �elds (initializing), 9-26
output �le, 9-1, 9-3
output �le type, 4-3
Output Speci�cation (O), 1-6, 9-1
used with VPLUS WORKSTN �les, 10-14

over
ow indicator (OA-OG, OV), 4-13, 6-3, 6-4,
7-9, 7-38, 7-40, 9-9, 9-14

over
ow indicator (OA-OG,OV), 8-6, 8-105
over
owing numeric �elds, 8-12, 8-101, 12-17,

12-18
over
ow line (printer), 3-24, 4-13, 6-1
over
ow processing, 9-9
over
ow records, 9-10

P

packed decimal �elds
input data format, 7-21
in tables, arrays, 5-8, 5-11
output data format, 9-31

$PAGE, 12-13, 12-25
PAGE, 7-25, 8-9, 8-99, 9-18, 9-19
PAGE1-PAGE7, 7-25, 8-9, 8-99, 9-18, 9-19
page level locking, 8-59
parameters, intrinsic, 8-55
PARM, 8-15, 8-74
partial key, 8-24
PARTTR File Description Continuation line,

4-24
*PLACE, 3-25, 9-18, 9-19
primary �le, 4-4, 4-7
primary/secondary processing order, 7-35
printer
carriage control, 3-26, 6-1
channels, 6-2
over
ow line, 3-24, 4-13, 6-1
page alignment, 3-18, 3-23
page length, 6-1
skipping, 3-26, 9-13
spacing, 9-11

print �le, 9-11
processing mode, 4-9

Index-5

process (system), 8-90
PROCMON menu processing system, 8-90,

11-29
Program Name Field (columns 75-80), 2-1, 2-4
PUTJW, 8-17, 8-77

R

random processing, 4-9
RDEXIT File Description Continuation line,

4-24
RDSEQ File Description Continuation line, 4-24
READ, 4-4, 8-17, 8-78, 11-8
READE, 8-17, 8-79
READP, 8-17, 8-79
record
identi�cation code, 3-16, 7-3, 7-19
key, 4-9, 4-10, 4-11, 4-14
length, 4-7, 4-8
length error, 3-24, 4-8
pointer, 4-30

Record Address File (RAF), 4-4, 4-9, 4-10, 4-11,
5-1

record-identifying indicators, 7-3, 7-9, 7-19, 8-16
record types
assigning indicators to, 7-9, 7-38
input, 7-2, 7-3, 7-6, 7-19, 7-38
output, 9-2

REFSPEC, 10-2
relational operators (*EQ,*GT,*GE), 8-85,

8-101
relative end position (Output Speci�cation),

9-27
relative record number, 3-10, 4-9, 4-11, 8-24
Release File, 9-9
relocatable object �le, 1-3, 1-9, 12-1, 12-6, 12-10,

12-11, 12-12
Report Program Generator (RPG), 1-1
RESET, 8-17, 8-80
resulting indicators, 3-18, 8-13, 8-25, 8-51, 8-61,

8-62, 8-77, 8-105
RISE, 1-6
RLABL, 8-15, 8-81
rounding (Calculation Speci�cation results),

8-104
RPGCAT, 12-4
RPG compiler, 1-2, 12-1
RPGINIT, 7-6
RPG Interactive System Environment (RISE),

1-6
RPG library, 1-2
RPGLIST, 12-8, 12-10, 12-11, 12-12
RPG logic cycle, 1-1
RPGOBJ, 12-6, 12-10
RPGOBJFM, 11-6
RPGPROG, 12-12

RPG run-time errors, 3-24, 3-27, 3-28, 10-4, B-1
RPG Screen Interface (RSI), 4-17, 11-1
command keys used with, 7-12, 9-15
device class name, 4-16
identifying a form, 9-27

RPGTEXT, 12-10, 12-11, 12-12
RPGUDATE �le, 3-8, 4-1, 9-22
RPGXL compiler command, 12-10
RPGXLGO compiler command, 12-11
RPGXLLK compiler command, 12-12
RSI, 11-1
run-time errors
displaying the source line number, 3-9
handling, 3-27, 3-28
handling (VPLUS), 10-4
input/output, 4-23
messages, B-1
the VPLUS message display interval, 10-5
TurboIMAGE, 4-39

S

screen interface (RSI), 11-1
secondary �le, 4-4, 4-7
Sequence Number Field (columns 1-5), 2-1, 2-2,

3-27
sequential �le (MPE), 4-12
sequential processing, 4-9
between limits, 4-9

$SET, 12-13, 12-26
SET, 8-17, 8-84
SETLL, 8-17, 8-85
SETOF, 8-16, 8-87
SETON, 8-3, 8-16, 8-87
SIGEDITOR, 11-2, 11-6, 11-20
sign (arithmetic)
converting, 3-17

SORTA, 8-17, 8-88
sorting arrays, 8-88
source library, 12-19, 12-22, 12-24
source program
�le, 12-1, 12-4, 12-10, 12-11, 12-12

SPECIAL �les, 4-16, 4-18
speci�cation, 1-1
Array/Table File Name (A), 1-6, 5-19, 5-20
Calculation (C), 1-6, 8-1, 10-12
File Description (F), 1-6, 4-1, 10-5
File Extension (E), 1-6, 4-15, 5-1
Header (H), 1-6, 3-1, 10-4
Input (I), 1-6, 7-1, 10-7
Line Counter (L), 1-6, 4-15, 6-1
Output (O), 1-6, 9-1, 10-14

Speci�cation Type Field (column 6), 2-1, 2-3
split chaining �eld, 7-32
split control �eld, 7-28
spread record, 7-9

Index-6

SQRT, 8-12, 8-90
START File Description Continuation line, 4-41,

11-3
STATUS array
RSI, 11-3, 11-5
VPLUS, 10-7

STATUS File Description Continuation line,
4-39, 4-41, 10-7, 11-3, 11-5

$STDIN (device class name), 4-16
$STDLIST, 12-8
$STDLST (device class name), 4-16
structured programming operations, 8-16
SUB, 3-18, 8-12, 8-90
subroutines, 8-1
external, 8-15
internal, 8-3, 8-9, 8-14, 8-99

SUSP, 8-17, 8-90
suspending an RPG program, 8-90
suspend mode, 8-91, 11-29
Symbol Table listing, 12-16
system date and time, 8-95, 8-97
system intrinsics, 8-55
system operations, 8-17

T

table and array operations, 8-17
tables, 5-1, 5-4, 5-14
alternating, 8-65
changing entries during execution, 5-25
creating compile-time, 5-14
creating preexecution, 5-14
de�ning compile-time, 4-1, 5-15
de�ning preexecution-time, 4-4, 5-15
entries, 5-7
entries per record, 5-6
entry length, 5-8
loading compile-time, 5-17
loading preexecution-time, 5-21
naming, 5-6
searching, 3-16, 5-23, 8-64
writing to output �les, 5-5, 5-25

TAG, 8-9, 8-13, 8-92
tape labels, 4-18
terminal (reading and displaying information

on the), 8-39, 8-42, 10-1, 11-1
TESTB, 8-13, 8-93
TESTN, 8-13, 8-94
TESTZ, 8-13, 8-94
TIME, 8-17, 8-95
TIME2, 8-17, 8-97
time (system), 8-95, 8-97
$TITLE, 12-13, 12-28
total records (output), 9-7
total time (Calculation Speci�cation operations

performed during), 8-1, 8-3

TRACE File Description Continuation line,
4-41

trace �le (VPLUS), 10-5
trailer (spread record), 7-9
translating �le characters, 3-19
trapping numeric over
ow, 8-12, 8-101, 12-17,

12-18
TRMID File Description Continuation line,

4-41, 11-3
truncating Result Field, 8-12, 8-101, 12-17
TurboIMAGE �les, 4-2, 4-12, 4-32
access (open) mode, 4-33
adding records to, 4-19
locking and unlocking, 4-33, 8-59
naming a data set, 4-38
naming the database, 4-33
naming the �le, 4-2
partial key, 8-24
passwords, 4-38
processing mode, 4-9
reading, 4-33, 8-24
record key, 4-9, 4-10, 4-11, 4-37, 8-24
relative record number, 4-9, 4-11
resetting, 8-80
run-time errors, 4-39, B-1

U

UDATE, 3-8, 3-9, 8-9, 8-99, 9-18, 9-21
UDAY, 3-8, 8-9, 8-99, 9-18, 9-21
UMONTH, 3-8, 8-9, 8-99, 9-18, 9-21
unconditional locking, 8-59
United Kingdom format (editing), 3-9
UNLCK, 8-17, 8-59
unpacked decimal �elds
input data format, 7-21
in tables, arrays, 5-8, 5-11
output data format, 9-31

update �le type, 4-3, 4-6, 4-7, 4-19, 7-2
Update-Protect Checking (UPC), 3-16, 4-23
upper/lowercase, 4-19, 4-27
User Data Structure, 7-6
user indicator (U1-U8), 3-3, 4-20, 7-9, 7-38,

7-40, 8-6, 8-90, 8-105, 9-14
User Message Catalog, 8-39, 8-73
USWITCH, 3-3, 4-1, 4-21
run-time errors, B-1, B-9

UYEAR, 3-8, 8-9, 8-99, 9-18, 9-21

V

VPLUS, 4-17, 10-1
action, 10-3
action code, 10-14
device class name, 4-16
event, 10-3

Index-7

event code, 10-8
function keys used with, 7-11, 9-15
input record format, 10-7
output record format, 10-18

W

warning messages (compiler), A-2
WORKSTN �le, 4-16, 4-17, 4-41, 8-90
CONSOLE, 4-16, 4-17, 4-41, 11-1, 11-20
RSI, 4-16, 4-17, 4-41, 9-27, 11-3, 11-6

VPLUS, 4-16, 4-17, 4-41, 10-3, 10-5

X

XFOOT, 3-18, 8-12, 8-98

Z

Z-ADD, 3-18, 8-12, 8-98
*ZERO(S), 8-9, 8-99

Z-SUB, 3-18, 8-12, 8-98

Index-8

	Top of Document
	Preface
	Contents
	Introduction to RPG
	The Components of RPG
	Using RPG

	General Specifications
	Sequence Number (Columns 1-5)
	Specification Type (Column 6)
	Program Name (Columns 75-80)

	Header Specifications
	Header Specification Fields
	Header Specification Default Summary

	File Description Specifications
	File Description Specification Fields
	Record Address Type (Column 31)
	File Description Continuation Line
	File Description Specification Default Summary

	File Extension Specifications
	File Extension Specification Fields
	Tables and Arrays
	File Extension Specification Required Entries
	File Extension Specification Default Summary

	Line Counter Specifications
	Line Counter Specification Fields
	Line Counter Specification Default Summary

	Input Specifications
	Input Specification Fields
	Input Specification Default Summary

	Calculation Specifications
	Calculation Specification Fields
	Sequence Number (Columns 1-5)
	Specification Type (Column 6)
	Control Level (Columns 7-8)
	Indicators (Columns 9-17)
	Factor 1 (Columns 18-27)
	Operation (Columns 28-32)
	Operation Definitions
	ADD
	BEGSR
	BITOF
	BITON
	CABxx
	CASxx
	CHAIN
	CLOSE
	COMP
	DEBUG
	DIV
	DO
	DOUxx
	DOWxx
	DSPLM
	DSPLY
	ELSE
	END
	ENDSR
	EXCPT
	EXIT
	EXSR
	FNDJW
	FNUM
	FORCE
	GOTO
	IFxx
	INTR
	IPARM
	LOCK, UNLCK
	LOKUP
	MHHZO
	MHLZO
	MLHZO
	MLLZO
	MOVE
	MOVEA
	MOVEL
	MSG
	MULT
	MVR
	PARM
	PUTJW
	READ
	READE
	READP
	RESET
	RLABL
	SET
	SETLL
	SETOF
	SETON
	SORTA
	SQRT
	SUB
	SUSP
	TESTB
	TESTN
	TESTZ
	TIME
	TIME2
	UNLCK
	XFOOT
	Z-ADD
	Z-SUB

	Factor 2 (Columns 33-42)
	Result (Columns 43-48)
	Field Length (Columns 49-51)
	Decimal Positions (Column 52)
	Half Adjust (Column 53)
	Resulting Indicators (Columns 54-59)
	Comments (Columns 60-74)
	Program Name (Columns 75-80)
	Calculation Specification Default Summary

	Output Specifications
	Output Specification Fields
	Output Specification Default Summary

	RPG Interface to VPLUS
	Using the RPG Interface to VPLUS
	Sample VPLUS Program

	RPG Screen Interface (RSI)
	Using the RPG Screen Interface (RSI)
	Using RSI CONSOLE Files
	Using Different Terminals
	Improving Performance Under PROCMON

	RPG Compiler
	Compiler Commands
	:RPGXL
	:RPGXLGO
	:RPGXLLK

	Compiler Subsystem Commands
	$CONTROL
	$COPY
	$IF
	$INCLUDE
	$INCLUDENOW
	$PAGE
	$SET
	$TITLE

	RPG Compiler Messages
	Message Numbers
	Message Types

	Run-Time Messages
	RPG Errors
	USWITCH Errors
	BUFCHK Errors

	ASCII and EBCDIC Character Sets
	Index

