
HP RPG/XL Programmer’s Guide

HP 3000 MPE/iX Computer Systems

Edition 1
Manufacturing Part Number: 30318-90001
E1288

U.S.A. December 1988

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1988 by Hewlett-Packard Company
2

P-: 1

HP RPG/XL Programmer's Guide

Product 900 Series HP 3000 Computers

HP RPG/XL Programmer's Guide

Printed in U.S.A.
HP Part No. 30318-90001
Edition E1288
Printed Dec 1988

Notice

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated into another language without the
prior written consent of Hewlett-Packard Company.

Æ Copyright 1988, Hewlett-Packard Company.

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed alongside the data indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one to one correspondence between
product updates and manual updates.

First Edition December 1988 30318A.00.00

P- 2

Preface

The HP RPG/XL Programmer's Guide explains how to perform many of the
common programming functions in RPG. It does not include an exhaustive
discussion of these tasks, but covers the commonly-used ones and the ones
that use features unique to Hewlett-Packard computers.

This manual is directed to experienced RPG programmers, who may or may
not be familiar with Hewlett-Packard computers. The manual discusses the
language features available with the MPE XL operating system.

This manual is organized as follows:

Chapter 1 Discusses the HP RPG logic cycle.

Chapter 2 Tells you how to enter an RPG program at the terminal.

Chapter 3 Explains how to use disc files in RPG programs.

Chapter 4 Explains how to use the terminal in RPG programs.

Chapter 5 Discusses tables, arrays, data structures and
 subroutines.

Chapter 6 Explains how to compile an RPG program and how to enter
 compiler options. It also explains the compiler
 listings.

Chapter 7 Explains how to execute and debug an RPG program.

Chapter 8 Tells how RPG programs can exchange information and use
 operating system facilities such as intrinsics.

Chapter 9 Gives tips on writing efficient RPG programs.

Appendix A Gives instructions on converting IBM RPG programs to the
 HP 3000. It also explains how to migrate RPG programs
 from the (HP) MPE V operating system to MPE XL.

Related Documentation

Refer to the following documents for further information on features
available in the RPG programming language:

HP RPG/XL Reference Manual (30318-90003) - This manual includes a
complete discussion of the language elements of RPG.

RPG Utilities Reference Manual (32104-90006) - This manual explains how
to use these RPG utilities: XSORT, RISE, SIGEDITOR and RPGINIT.

Data Entry and Forms Management System VPLUS/3000 (32209-90001) - This
manual includes a complete discussion about the screen management
software product, VPLUS. You can use this product within RPG programs
when using a terminal.

EDIT/3000 Reference Manual (03000-90012) - This manual explains how to
use the text processor software product, EDITOR. KSAM/3000 Reference
Manual (30000-90079) - This manual explains how to use KSAM disc files
and how to access them.

KSAM/3000 Reference Manual (30000-90079) - This manual explains how to
use KSAM disc files and how to access them.

TurboIMAGE/XL Database Management System (30391-90001) - This manual
discusses the TurboIMAGE database software product.

MPE XL Intrinsics Reference Manual (32650-90028) - This manual discusses
the operating system routines that can be used by external subroutines in

P-: 3

an RPG program.

Native Language Programmer's Guide (32650-90022) - This manual discusses
how to create and use Native Language Support message files.

Message Catalogs Programmer's Guide (32650-90021) - This manual discusses
how to create and use non-Native Language Support message files.

FCOPY Reference Manual (03000-90064) - This manual explains how to use
the FCOPY file utility.

SORT-MERGE/XL Programmer's Guide (32650-90080) - This manual explains how
to use the SORT/MERGE file utility.

Accessing Files Programmer's Guide (32650-90017) - This manual discusses
the ways MPE XL files can be processed.

MPE XL General User's Reference Manual (32650-90002) - This manual
discusses file, group and account structures.

MPE XL Commands Reference Manual (32650-90003) - This manual describes
all of the MPE XL commands including FILE.

Example Conventions

Throughout this manual, examples of RPG program code are shown using
figures similar to the one below. The first two lines are a ruler to
help you quickly see the column positions for the code. The shaded
numbers on the left are not sequence numbers. Rather, they are used as
reference numbers for the comments which follow the figure. Lines are
referenced only to highlight specific concepts. Additionally, some
examples show lines containing dots only. Dots indicate that, to clarify
examples, code has been omitted.

Figure 5-16. Using RLABL to Pass Information to an External Subroutine

P- 4

Comments

 1 This line makes indicator 20 available to an external
 subroutine.

 Columns 43-48 specifies that indicator 20 is passed to the
 external subroutine. (Prefix indicator names by IN.)

 2 This line makes the field, PNAME, available to an external
 subroutine.

 3 This line executes the external subroutine, SUB01.

1-1

Chapter 1 How RPG Works

RPG programs can be thought of as having two different authors. You are
the primary author. You enter the RPG program specifications that
describe the input and output data and the calculations to perform on
that data. For example, if you want to print a total line on a report,
you must describe the format of the total line and define the
calculations that will produce it. The RPG compiler is the second author
of RPG programs. When you compile an RPG program, the compiler
determines when, and the order in which your specifications are executed.
Thus, it supplies the logic framework of the RPG program. This
framework, the RPG logic cycle , reads and writes files and prints detail
and total lines on reports. The RPG logic cycle notifies you of events
that it controls by means of indicators . For example, when RPG reads the
last record in an input file, it turns on the last-record (LR) indicator.
You can then use this indicator in your specifications to direct
processing. Conversely, you can use indicators to control certain RPG
logic cycle events. For example, you can cause a program to end
immediately by turning on the last-record indicator.

The next sections in this chapter go into more detail about
specifications, the RPG logic cycle and indicators. Specifications are
presented first to give you a clear idea of the types of events that they
control. Next, an overview of the RPG-supplied logic is presented in the
section, "The Basic RPG Logic Cycle." Indicators are discussed in the
section, "RPG Indicators." You can see how indicators provide the
communications link between the RPG logic cycle and your specifications.
The last section, "More About the RPG Logic Cycle," completely describes
each step of the logic cycle. The section discusses all of the
specifications and indicators that are used during the cycle.

RPG Specifications

Specifications are the source code for RPG programs. There are different
kinds of specifications, each used for a particular function. For
example, you use Output Specifications to define and describe data to be
printed on a report. The specifications are listed below in the order
that you enter them into a program:

Specification Description

Header (H) Sets RPG compiler options, certain
 indicators and the collating sequence.

File Description (F) Describes the files used in the program.

File Extension (E) Defines arrays and tables, and gives
 additional information about certain
 types of files.

Line Counter (L) Defines printer page lengths, overflow
 lines and channel numbers.

Input (I) Defines input records and data fields
 used in the program.

Calculation (C) Defines computations and other operations
 to be performed.

Output (O) Defines output records and data fields
 used in the program.

Array/Table File Name (A) Names a file which contains a
 compile-time array or table.

1: 2

The Basic RPG Logic Cycle

Specifications that you enter in an RPG program are executed in the
order determined by the RPG compiler. The RPG compiler fits your
specifications into the standard logic framework, producing a complete
program.

It is important to understand the RPG-supplied logic to effectively use
many features of RPG. The RPG logic cycle has three phases which are
repeated for each record that is processed. Figure 1-1 illustrates the
three basic phases: record input (input time), total calculations/output
(total time), and detail calculations/output (detail time). The word
detail refers to operations performed on individual input records while
total refers to the operations performed on the results of previous
records.

See the section in this chapter titled "More About the RPG Logic Cycle"
for a detailed breakdown of the three phases of the basic RPG logic
cycle.

.

Figure 1-1. The Basic RPG Logic Cycle

Read a
record

Perform
detail Output
SpecificationsPerform detail

Calculation
Specifications

Perform total
Output
Specifications

Perform total
Calculation
 Specifications

Total Time

Detail Time

Input Time

1-3

RPG Indicators

RPG turns indicators on and off during the RPG logic cycle to indicate
that certain processing events have occurred. You can use the settings
of the indicators to select the specifications to perform in your
program. For instance, control fields trigger total operations such as
printing total lines on a report. To define a control field, you assign
a control-level indicator (L1-L9) to it on the Input Specification. When
this input field changes, RPG turns on the control-level indicator.
Then, at the proper time in the logic cycle, RPG performs those
specifications conditioned by the indicator you selected. Figure 1-2
shows how control-level indicators fit into the RPG logic cycle.

Figure 1-2. Control-Level Indicators and Total/Detail Processing

The control-level indicators, as well as the other RPG indicators, are
described below. The last section in this chapter titled "More About the
RPG Logic Cycle" explains when these indicators are turned on and off and
how they are used in the logic cycle. The RPG indicators are:

Indicator Description

Command Key (KA-KN, Lets you control read and write operations on
KP-KY) the terminal when using RSI terminal files.

1: 4

Control-Level (L1-L9) Lets you sense and perform total operations,
 such as printing part number totals on a
 report.

First-Page (1P) Lets you sense when the first record is
 processed and lets you perform first record
 processing.

Function Key (F1-F9) Lets you use function keys with VPLUS and with
 the Calculation Specification operations, SET,
 DSPLY and DSPLM.

General (01-99) Lets you control operations on Input,
 Calculation and Output Specifications.

 Field indicators are a special kind of general
 indicator used with Input Specifications. They
 test input fields for plus, minus, zero or
 blanks. Field indicators are turned on after
 total-time processing and remain on until after
 the next total-time cycle.

Halt (H1-H9) Stops an RPG program at the end of the current
 logic cycle. You can stop an RPG program based
 on record codes, field and result values. Once
 the program is stopped, the operator can resume
 it by entering an appropriate error response.
 To avoid halts, you can enter pre-responses to
 individual errors using the Header
 Specification.

Last-Record (LR) Lets you sense when the last record is
 processed and lets you perform last record
 processing.

Overflow (OA-OG, OV) Signals the logical end of the printed page.
 Overflow indicators are turned on when the
 overflow line is printed. Sensing overflow
 lets you perform output operations at the
 bottom of the current page or at the top of the
 next page.

Matching Record (MR) Lets you select the processing order of input
 records when using more than one input file.
 This indicator is turned on after total-time
 processing in the logic cycle is performed.

User (U1-U8) Allows communication between RPG programs.
 User indicators are read into the program when
 it starts and are passed to the next RPG
 program upon termination. For more information
 on user indicators see the "Communicating
 Switches" section of Chapter 8.

More About the RPG Logic Cycle

The following sections in this chapter give details about how the RPG
logic cycle works and how indicators are used. Use this section when you
have specific questions about how a particular RPG feature is
implemented.

The Primary Steps in the RPG Logic Cycle

When an RPG program is first executed, certain initialization and
housekeeping operations (described under Step 1 below) are performed.
Then the main RPG cycle begins (Steps 2-8). Steps 2 through 8 are
repeated for each set of input records. Figure 1-3 diagrams these steps:

Step Description

1 Pre-Cycle Initialization and Housekeeping

 RPG performs certain preliminary functions once before the main
 logic cycle begins. During these operations, all data areas are

1-5

 initialized and the 1P and L0 indicators are turned on. All
 files are prepared for processing and all preexecution-time
 tables and arrays are read into memory. First-page alignment is
 performed for printer files and all output controlled by the 1P
 indicator is written. A record is read from each primary and
 secondary input file. The program is now ready to begin the
 main logic cycle.

2 Heading and Detail-Time Output

 This begins the main logic cycle. The RPG program writes all
 heading and detail records whose conditions are satisfied.
 (Heading records are identified by an H in the Type Field of the
 Output Specification; detail records are indicated by a D in the
 Type Field.) The program tests the status of all halt
 indicators (and halts if any are turned on), and turns off all
 record-identifying and control-level indicators that are on.
 All overflow indicators that were turned on before the last
 detail calculations (done in Step 8) are turned off. RPG also
 tests the LR indicator for end-of-program status and transfers
 to Step 6 if this indicator is on.

NOTE The term "detail-time" used throughout this manual
 collectively refers to detail-time calculations (occurring
 in Step 8) followed by detail output (occurring in this
 step).

3 Record Input

 If there are no primary or secondary files, control goes to Step
 6; otherwise, a record is read from the current file. If it is
 end-of-file, control skips to Step 4. If the record has an
 invalid record type or is in the wrong sequence and columns
 56-71 of the Header Specification contains a pre-response to the
 error, the pre-response is performed. If there is an error and
 no pre-response is entered, the response comes from the operator
 (session mode) or the job file (job mode).

4 Record Selection

 If the program has just one input file, the next record from
 that file is selected for processing. If the program has more
 than one input file, the record is selected as follows:

a. If a file is FORCEd (uses the FORCE Calculation
 Specification operation), the next record from that file is
 selected.

b. If any input records without matching fields have been
 read, the highest-priority record among them is chosen.
 Primary file records have greatest priority, followed by
 secondary file records in the order that they are entered in
 the File Description Specifications.

c. If all input records have matching fields and the input
 sequence is ascending, the lowest-sequenced record is chosen.
 If all input records have matching fields and the input
 sequence is descending, the highest-sequenced record is
 chosen. If the matching fields are the same, the record with
 the highest priority (see Step 4b.) is selected.

5 Control Break Check

 If a control break occurs, the appropriate control-level
 indicator and all lower-level indicators are turned on.

6 Total-Time Operations

 If this is the first record with control level fields, the
 program skips total-time operations. But, if this is not the

1: 6

 first record with control level fields, the program performs
 total-time calculations and output (including total-time
 overflow output). Total-time operations are all those
 calculations with L0-L9 or LR indicator entries in the Control
 Level Field (columns 7-8) and output operations of record type
 T. These operations are done after each control break occurs or
 after the last input record is read, but before the information
 on the input record selected in Step 4 is actually made
 available for processing. The program also sets all resulting
 indicators as specified. If there are no more records to
 process in any of the files, the LR indicator is turned on,
 output tables and arrays are written, all files are closed and
 the program ends.

7 Data Movement

 The program moves the data from the record selected into the
 input fields for processing. If this is a matching record, it
 sets the matching-record (MR) indicator. If this is a
 look-ahead record, the program reads the look-ahead fields and
 moves them into the input fields. If input chaining is used,
 the chained file(s) are read, their records identified and their
 fields moved to the data area.

8 Detail-Time Calculations

 The program performs detail-time calculations for the record
 specified, and returns to Step 2. Detail-time calculations are
 those calculations not conditioned by control-level indicators
 in the Control Level Field (columns 7-8.) Notice that these
 calculations and the detail-time output, described in Step 2,
 are both done after the information (from the record selected in
 Step 4) becomes available. They are usually based on
 information from this record. At this point, the program also
 turns on resulting indicators used with these calculations.

1-7

Figure 1-3. The Primary Steps in the RPG Logic Cycle

Substeps in the RPG Logic Cycle

This section describes in detail each step of the RPG logic cycle
including when indicators are turned on and off. The substeps listed
below expand upon the primary logic steps discussed in the previous
section and they correspond to the steps shown on the HP RPG Logic Cycle
diagram (Figure 1-4) at the end of this chapter.

Substep Description

1 Pre-Cycle Processing

 The operations in this step are performed once. They are not
 part of the main cycle.

Record
Input

Heading and
detail-time
output

Detail-time
Calculations

Total-time
Operations

Total Time

Detail Time

Input Time

Pre-cycle
Installation and
Housekeeping

Control
break test Record

Selection

Data
movement

1

2

3

45

8

6

7

1: 8

1A All data areas are initialized. This includes compile-time
 tables and arrays and the user date (UDATE) fields obtained from
 the system. User indicators (U1-U8) are fetched from the
 specified source. The Local Data Area (LDA) is initialized with
 the contents of LDAFILE, if specified. The 1P and L0 indicators
 are turned on. All files, including TurboIMAGE databases and
 data sets, are opened unless the program has been suspended by
 the JCW RPGSUSP (see "End-of-Job Processing", Step E-2B).
 Preexecution-time tables and arrays are loaded into the data
 area.

1B If forms alignment is requested, the first output line for each
 print file conditioned by 1P is printed. The first-page heading
 records are then written to the specified files.

1C A record is read from each input (primary and secondary) file.
 The matching and control fields and the record indicator for
 each file are identified.

2 Heading and Detail-Time Output

 This is the beginning of the main logic cycle.

2A RPG writes all heading (except those conditioned by the 1P
 indicator) and detail lines whose conditions are satisfied. It
 turns on the appropriate overflow indicator (if used), if the
 overflow line is reached, and it turns off any overflow
 indicators that were already processed. It performs overflow
 processing if Fetch Overflow is specified and the overflow
 indicator is assigned and turned on.

2B If overflow processing was performed by the previous pass
 through the cycle or by Fetch Overflow, turn off the overflow
 indicator. If the overflow indicator was turned on because
 Fetch Overflow was specified and the overflow line was reached
 during detail calculations in the previous cycle (or during
 detail output time in the current cycle), leave the overflow
 indicator on (you can use the overflow indicator to condition
 Calculation Specifications during the current cycle).

2C If a halt indicator (H0-H9) is on, control goes to "Run-Time
 Error Processing", Step E-1.

2D The first-page indicator (1P) and the control-level indicators
 (L1-L9) are turned off. The L0 indicator is turned on.

2E If this is the first time through the logic cycle, control skips
 to Step 4A.

2F All record-identifying indicators are turned off.

2G If the last-record (LR) indicator is on, control skips to Step
 6B.

3 Record Input

3A If there are no primary or secondary files defined in the
 program, control skips to Step 6A. (If there are no primary or
 secondary files, the program loops indefinitely unless the
 program contains Calculation Specifications that turn LR on.)

3B If the file is not an update or combined file and it contains
 look-ahead fields, control skips to Step 3G. (A record from the
 file was read before detail Calculation Specifications were
 performed in the previous cycle.)

3C If there are spread records defined for an input file and there
 are more fields to be processed before reading the next record,
 control skips to Step 4A.

3D A record is read from the last file processed. If this file is
 retrieved using a Record Address File, the data in the RAF
 defines the record to be selected.

3E If the file just read is at end-of-file, control skips to Step

1-9

 4A.

3F If the record just read contains an unidentified record type, or
 an incorrect record sequence (as specified in the Group Sequence
 Field of the Input Specification), control skips to "Run-Time
 Error Processing", Step E-1.

3G If the record just read is a blank spread record, control goes
 back to Step 3D.

4 Record Selection

4A The next record is selected for processing. If a FORCE
 Calculation Specification operation was executed during the
 detail-time calculations in the previous pass through the cycle,
 the record is selected from the FORCEd file. If no
 matching-record processing is used, the next record is selected
 according to the primary/secondary processing order. If
 matching-record processing is used, the next record is selected
 according to the matching-record processing order.

4B The program determines if all end-of-file conditions are met
 (all records in files having an E in the End-of-File Field of
 the File Description Specification are processed and all
 matching secondary records are processed). If so, control skips
 to Step 6B.

4C The record-identifying indicator (associated with the record
 selected for processing) is turned on.

5 Control Break Check

 If a control break occurred for the selected input record, turn
 on the appropriate control-level indicator and all lower-level
 indicators. (A control break occurs when the value in the
 control-level fields of the record differs from the control
 fields of the previous record.)

6 Total-Time Operations

6A If this is the first time through the logic cycle or this is the
 first record with control fields, control skips to Step 6E;
 otherwise, control proceeds to Step 6C.

6B If there are no more records to process in any of the files, all
 control-level indicators (L1-L9 and LR) are turned on.

6C Total-time calculations are performed. If CHAIN or READ
 operations are used, the appropriate records are retrieved. The
 appropriate indicators resulting from total calculations are
 turned on; overflow conditions resulting from EXCPT output
 operations are set and Fetch Overflow processing is performed if
 required by EXCPT output operations.

6D Total-time lines are written. Overflow processing is performed
 if it was not done in Step 6C.

6E If the LR indicator is on, control skips to "End-of-Job
 Processing", Step E-2A.

7 Data Movement

7A Overflow lines are written for total-time then detail-time
 records that are conditioned by overflow indicators but that
 have not yet been processed by Fetch Overflow.

7B If matching fields are specified and the records match, the MR
 indicator is turned on; otherwise, it is turned off. When it is
 turned on, it remains on until the matching record is processed.

7C The data fields from the record selected in Step 4A are
 extracted and moved into the input data area. Field indicators,
 if specified, are turned on or off according to the data in the
 field.

7D If chaining field codes (C1-C9) are entered in the Chaining

1: 10

 Field of one or more Input Specifications, a record is retrieved
 from each specified file; the appropriate record-identifying
 indicators are turned on; the data fields are moved to the input
 data area and field indicators are set.

7E If look-ahead fields are specified, the look-ahead fields are
 extracted and moved to the look-ahead data area. For combined
 and update files, the look-ahead fields are extracted from the
 current record; for all other files, the look-ahead fields are
 extracted from the next record in the file currently being
 processed.

8 Detail-Time Calculations

 Detail-time calculations are performed. If CHAIN or READ
 operations are used, the appropriate records are retrieved. The
 appropriate indicators resulting from detail calculations are
 turned on; overflow conditions resulting from EXCPT output
 operations are set and Fetch Overflow processing is performed if
 required by EXCPT output operations.

E-1 Run-Time Error Processing

E-1A If there is a pre-selected response for this error in the Header
 Specification, control skips to Step E-1C.

E-1B The response is obtained from the computer operator or from the
 job file.

E-1C If the response is 0 (CONTINUE), control proceeds to Step E-1D.
 If the response is 1 (BYPASS), control skips to Step 2B.
 If the response is 2 (REGULAR TERMINATION), control skips to
 Step 6B.
 If the response is 3 (IMMEDIATE TERMINATION), control skips to
 Step E-2F.
 If the response is 4 (REGULAR TERMINATE WITH DUMP), control
 skips to Step E-1G.
 If the response is 5 (IMMEDIATE TERMINATE WITH DUMP), control
 skips to Step E-1F.

E-1D Each halt indicator (H0-H9) is tested. If an indicator is on,
 it is reset and control skips back to Step E-1A.

E-1E Processing is resumed at the point in the logic cycle where the
 error occurred.

E-1F An Error Dump is printed and the program skips to step E-2F.

E-1G An Error Dump is printed and control skips to Step 6B.

E-2 End-of-Job Processing

E-2A Output tables and arrays are written. All files are closed
 (except when the program is in suspend mode). The settings of
 the user indicators (U1-U8) update the Job Control Word and the
 Local Data Area is written back to the LDAFILE, if specified.

E-2B If the JCW RPGSUSP does not equal 1 (the program is not
 suspended), the program ends.

E-2C Processing is suspended. Files are left open for later access.

E-2D Control is transferred back to the father process.

E-2E If the father process reactivates the suspended program, control
 begins at Step 1.

E-2F Close files.

2- 1

Chapter 2 Creating an RPG Program

You can create an RPG program using any editor or word processor that
produces a standard ASCII file.

For example, you can use EDITOR. EDITOR comes with your HP system,
produces a standard text file and is widely used for other applications.
Another popular editor is TDP. Instead of EDITOR or TDP, you may want to
use the RPG Interactive System Environment (RISE). RISE is specifically
designed for entering RPG programs and lets you use the entire screen.
It also provides interactive compiling and debugging features.

EDITOR and RISE are discussed briefly in the next two sections.

Using EDITOR to Create an RPG Program

EDITOR is a general-purpose line editor. You enter and modify lines in
your RPG programs one at a time. EDITOR may be useful for entering
simple and short RPG programs and for making modifications to those
programs. For longer programs, use RISE (discussed in the next section).

For details on using EDITOR, see the EDIT/3000 Reference Manual .

Using RISE to Create an RPG Program

RISE is an RPG utility that is ideal for entering moderate to large RPG
programs. Besides using it to enter programs, you can use it to
interactively compile and debug them as well. Though RISE may take some
extra time to learn, it is easier and faster to use than EDITOR.

RISE lets you enter and modify RPG programs in two different modes. In
line mode (similar to EDITOR), you work with individual lines. In screen
mode, you enter program specifications onto screen forms that resemble
the specification sheets themselves. RISE is user-friendly. You can
browse specifications, display errors together with their meanings and
undo delete operations.

For more information on RISE, see the RPG Utilities Reference Manual . To
become acquainted with the features of RISE, use the self-paced RISE
tour. To start the tour, enter these two commands:

 :RUN RISE.PUB.SYS
 >GET RISETOUR.PUB.SYS

2 2

3- 1

Chapter 3 Using Disc Files in an RPG Program

RPG contains language elements that let you process several kinds of disc
files. You can use MPE files, Keyed Sequential Access Method (KSAM)
files and TurboIMAGE databases. The following list summarizes these
files and how you can use them in RPG programs:

File type: Ways you can access the file:

MPE Sequentially, randomly.

KSAM Sequentially, sequentially within key limits,
 randomly and chronologically.

TurboIMAGE Sequentially, sequentially within key limits,
 randomly.

A KSAM file consists of a data file and a key file. Data files contain
the actual data records and are maintained in chronological sequence
(records are placed in the file in the order that they are added). The
key file lets you access the data file records in key sequence. When you
create a KSAM file, you specify the fields that are the keys.

A TurboIMAGE database is a collection of files (data sets) whose data
field relationships are maintained automatically. You can easily query
data in TurboIMAGE databases and there are extensive file security
provisions that you can use.

This chapter discusses KSAM files and TurboIMAGE databases and how you
access and use them in RPG programs.

Indexed Disc Files (KSAM)

The following list summarizes the advantages and disadvantages of using
KSAM files. For in-depth information on KSAM files, see the KSAM/3000
Reference Manual .

Advantages:

 * Can access records sequentially, chronologically, and by partial or
 generic key value

 * Efficient disc usage; the data portion of the file grows as records
 are added

 * No special utilities are required for loading and unloading data

 * Multiple keys

 * Key fields can be updated

 * Deleted records are retrievable

 * Duplicate keys

 * KSAM files can be processed by FCOPY, SORT, EDITOR; you can also use
 the operating system FILE command with them

 * Fast updating when processing data sequentially

 * RPG Specifications are easy to code

 * Fixed or variable length data records

Disadvantages:

 * No query facilities

3-: 2

 * No automatic maintenance of data relationships

 * Extra memory usage when several users access the same file
 simultaneously

Creating a KSAM Disc File

There are three ways to create a KSAM disc file:

Use this method: When:

KSAMUTIL You want to build an empty KSAM file or when
 you cannot use an RPG program to build it (RPG
 programs won't let you specify more than one
 key field, for instance).

 (KSAMUTIL is a KSAM utility that creates an
 empty KSAM file.)

FCOPY You want to create an empty KSAM file or when
 you want to copy all or part of a KSAM or MPE
 file to an existing KSAM file.

 (FCOPY is a general-purpose system command that
 creates and copies files.)

RPG program You want to create a new KSAM file and load it
 with data at the same time.

When you create a KSAM file, you specify the record keys (key fields)
that it contains. The first key that you enter is called the primary
key. The second and successive keys that you enter are called secondary
keys. Secondary keys are independent of primary keys; they are not
subordinate to them. Secondary keys can be thought of as alternate keys.
Both primary and secondary keys are maintained in the same KSAM key file.

Creating KSAM files using KSAMUTIL, FCOPY and RPG programs are discussed
in the next three sections.

Creating a KSAM File Using KSAMUTIL. The most flexible method of
creating a KSAM file is to use KSAMUTIL. You define the file size and key
fields using this utility. KSAMUTIL creates an empty file. It does not
load the file with actual data. (Use FCOPY or an RPG program to load
data into a file created by KSAMUTIL.)

The following steps tell you how to create a KSAM file using KSAMUTIL.
For detailed information about KSAMUTIL commands, see the KSAM/3000
Reference Manual .

Follow these steps to create a KSAM file using KSAMUTIL:

 1. Enter the following command at the operating system colon prompt
 (:),

 RUN KSAMUTIL.PUB.SYS

 You see the prompt, >. KSAMUTIL is prompting you to enter
 information about the KSAM file.

 2. Enter a KSAMUTIL BUILD command to create the KSAM file.

 For example, the following command creates a file MASTFL having
 256 characters per record. Its key file is MASTFLK. Its primary
 key is a 5-byte field (KEY=B) starting in position 1 of the
 record:

 >BUILD MASTFL;REC=-256,1,F,ASCII;KEYFILE=MASTFLK;KEY=B,1,5

 3. End KSAMUTIL by typing,

 EXIT

Creating a KSAM File Using FCOPY. Use FCOPY when you want to create an
empty KSAM file or when you want to copy all or part of a KSAM or MPE
file to an existing KSAM file.

To use FCOPY, enter an FCOPY command at the operating system prompt.
(For detailed information on the FCOPY command, see the FCOPY Reference

3- 3

Manual .)

For example, the following command copies 50 records (records 0 through
49) from the KSAM file, TRANSFL, to the KSAM file, MASTFL. MASTFL is a
new file and is created along with its key file, MASTFLK.

FCOPY FROM=TRANSFL;TO=(MASTFL,MASTFLK);SUBSET=0,49

If MASTFL and its key file already exist, the following command can be
used to copy the first 50 records in TRANSFL to it.

FCOPY FROM=TRANSFL;TO=MASTFL;SUBSET=0,49

NOTE You can create an empty KSAM file by specifying SUBSET=0,0 in the
 FCOPY command. To copy all records to the new file (to duplicate
 it), omit the SUBSET=option.

Creating a KSAM File Within an RPG Program. You can use an RPG program
to create and load data into a single-key KSAM file. You define the KSAM
file as an output file and include KSAM entries in the File Description
and File Description Continuation Specifications. If the KSAM file does
not already exist, RPG creates it using these specifications.

Figure 3-1 shows part of the transaction file used by the program in
Figure 3-2 to create a KSAM file. The transaction file, TRANSFL,
contains customer charge information that is used to create a master KSAM
transaction file, MASTFL. The first field of each record in the
transaction file is the customer's identification number and it is the
key field for MASTFL. For example, the first customer identification
number is 00216. (Records do not have to be sorted by customer
identification number before running the RPG program; KSAM automatically
orders the records.) Following the customer number in each transaction
record is the charge amount field. For example, 00342 ($3.42) is the
charge amount for customer 00216.

| |
| 0021600342 |
| 0365416514 |
| 0720001517 |
| 0021601802 |
| 0321004532 |
| 0045318455 |
| 8206603324 |
| 5122101088 |
| 0321006702 |
| . |
| . |
| . |
| |
| |

Figure 3-1. Creating a KSAM File Within an RPG Progra m - A Sample Input File
TRANSFL

The KSAM file in Figure 3-2 can contain up to 1023 records (this is the
default). If your KSAM file is larger, enter a FILE command before
running the program (for information on the FILE command, see the MPE XL
Commands Reference Manual). For example, this FILE command specifies a
MASTFL size of 10,000 records:

:FILE MASTFL;DISC=10000

3-: 4

Figure 3-2. Creating a KSAM File Within an RPG Program Comments

Comments

 1 This line defines the input customer transaction file, TRANSFL.

 2 This line defines the master transaction file, MASTFL.

 Column 15 is O to indicate that the file is an output file.

 Columns 20-23 are blank to specify that there is one record per
 block.

 Columns 24-27 contain 256 to specify the number of characters
 per record.

 Columns 29-30 contain 5 to specify the number of characters in
 the key field.

 Columns 35-38 contain 1 to specify the starting position of the
 key field.

 Column 66 is blank (not A) to start writing data at the
 beginning of the output file.

 3 This line gives more details about the KSAM file, MASTFL.

 Column 53 is K to indicate that this line is a Continuation
 line.

 Columns 54-59 contain the option name, KEYFL.

 Columns 60-65 contain the name of the KSAM key file, MASTFLK.

 Column 69 contains D to allow duplicate keys (optional).

 Column 70 contains C to maintain the chronological order of
 duplicate keys (optional).

 4 This line starts the description of the input record format for
 TRANSFL.

 5 This line starts the description of the output record format for
 MASTFL.

3- 5

Reading a KSAM Disc File

There are several ways to read records in a KSAM file. Three methods,
sequential, random and chronological, are discussed in this chapter.

Reading a file sequentially means that RPG retrieves records
automatically in key sequence. You can process the entire file
automatically or you can process a portion of the file. To process part
of the file, you give RPG the key value of the first record to access.
Records are retrieved starting with that record and proceeding
sequentially until the last record (having a certain key value or
end-of-file) is processed.

Reading a file randomly means that you supply RPG with the key values for
each record to be processed. RPG goes to those records directly, without
passing through others first.

Reading a KSAM file chronologically means retrieving records in the
sequence in which they were added to the file.

Reading a KSAM File Sequentially. This section explains how to read
records in a KSAM file sequentially, starting with the first record in
the file and ending with the last. You can access records in sequence by
any key field. You can also read records in sequence by a non-key field.
To do this, the KSAM file must first be sorted on that field.

The following lines list the KSAMUTIL commands that create the KSAM file
used in Figure 3-3 and Figure 3-4. The KSAM file, MASTFL, has two keys.
The primary key field (KEY=B,1,4) does not have duplicates. The
secondary key field (KEY=B,25,15,,RDUP) can have duplicates but they are
not maintained in chronological order.

 :RUN KSAMUTIL.PUB.SYS
 >BUILD MASTFL;REC=-256,4,F,ASCII;DISC=20000,20,4;KEYFILE=MASTFLK;&
 >KEY=B,1,4;KEY=B,25,15,,RDUP

Reading a KSAM File Sequentially by Key

This section explains how to read an entire KSAM file sequentially by
key. You can read a KSAM file in order by any field that was specified
as a key when the file was created.

Figure 3-3 shows the File Description Specification that reads the KSAM
file MASTFL by its primary key. (The previous section shows how MASTFL
is created.) MASTFL is defined as a primary file. If the KSAM file is
defined as a demand file, include a Calculation Specification containing
the READE operation.

Figure 3-3. Reading a KSAM File Sequentially by Key

Comments

 1 This line defines the KSAM file, MASTFL.

 Columns 29-30 contain 4 to specify the length of the key, DEPT.

3-: 6

 Column 31 contains A to specify that the key field is
 alphanumeric.

 Column 32 contains I to specify that this is a KSAM file.

 Columns 35-38 contain 1 to specify the starting location of the
 key field.

Reading a KSAM File Sequentially by a Non-Key Field

This section explains how to read an entire KSAM file sequentially by a
non-key field. You can use any field that was not defined as a key when
the file was created. (This method of reading KSAM files also applies to
MPE files.)

To read a KSAM file sequentially by a non-key field, you must first
create a Record Address File (RAF). The RAF contains addresses of the
data records in the KSAM file in sorted order. You can use either
SORT/3000 or XSORT to create a RAF. XSORT is an RPG utility that is
documented in the RPG Utilities Reference Manual . SORT/3000 is a
general-purpose sort described in the SORT-MERGE/XL Programmer's Guide .
Once you create a RAF, you can use it in an RPG program to retrieve the
KSAM records in sorted order.

The following lines show how to enter XSORT parameters to order an
employee file, MASTFL, by employee zip code. (When MASTFL was created,
zip code was not specified as a key field.) The zip code field occupies
positions 60 through 64 in the KSAM records. The H Specification of
XSORT directs XSORT to create an Address Output (ADDROUT) file. ADDROUT
files are a special type of RAF containing sorted record addresses.

 :FILE XSORTIN=MASTFL
 :FILE XSORTOUT=RAFFILE;SAVE
 :RUN XSORT.PUB.SYS
 HSORTA 5A
 FNC 60 64
 :EOD

To process the ADDROUT file created by XSORT above, enter File
Description and File Extension Specifications as shown in Figure 3-4.

.
Figure 3-4. Reading a KSAM File Sequentially by a Non-Key Field

Comments

 1 This line defines the RAF, RAFFILE.

 Column 16 contains an R to indicate that RAFFILE contains record
 addresses.

 Column 17 is E to specify that reading continue to the end of
 the file.

3- 7

 Columns 24-27 specify the record length, 4. (XSORT always
 creates ADDROUT records that are four bytes long.)

 Columns 29-30 contain the key field length, 4.

 Column 32 is T to specify that this is an ADDROUT file.

 Column 39 is E to indicate that there is a File Extension
 Specification for this file.

 2 This line defines the KSAM file, MASTFL.

 Column 28 is R to indicate that MASTFL is accessed randomly.

 Column 31 is I to specify that records in MASTFL are accessed by
 their record addresses.

 3 This line specifies that RAFFILE contains the record addresses
 for accessing records in MASTFL.

Reading a KSAM File Sequentially Within Key Limits. When you need to
process a set of records in a KSAM file that have continuous key values,
you can process that file sequentially within key limits. Reading within
key limits may be used to process a range of part numbers (15000-15999)
in an inventory file, for example.

To read sequentially within key limits, specify the key value for the
first record then read the KSAM file sequentially until all records with
that key have been processed.

The following lines list the KSAMUTIL commands that create the KSAM file
used in Figure 3-5, through Figure 3-8. The KSAM file, MASTFL, has two
keys. The primary key field (KEY=B,1,4) cannot have duplicates. The
secondary key field (KEY=B,25,15,,RDUP) can have duplicates.

 :RUN KSAMUTIL.PUB.SYS
 >BUILD MASTFL;REC=-256,4,F,ASCII;DISC=20000,20,4;KEYFILE=MASTFLK;&
 >KEY=B,1,4;KEY=B,25,15,,RDUP

Supplying Full Key Values (Method 1)

Figure 3-5 shows how to read all records in a KSAM file having a specific
key value. The KSAM file, MASTFL, is read by its secondary key field,
LNAME (positions 25-39). In this example, a user enters a specific last
name from the terminal. The program reads all records in the file with
this last name. When there are no more records for the name, the program
prompts the user to enter another name.

3-: 8

Figure 3-5. Reading a KSAM File Sequentially Within Key Limits - Supplying
Full Key Values

Comments

 1 This line defines the KSAM file, MASTFL.

 Column 16 is D to indicate that MASTFL is a demand file.

 Column 28 is L to specify that MASTFL will be processed within
 key limits.

 Columns 29-30 contain 15 to specify the length of the secondary
 key, LNAME.

 Column 31 contains A to specify that the secondary key is an
 alphanumeric key.

 Column 32 contains I to specify that this is a KSAM file.

 Columns 35-38 contain 25 to specify the starting location of the
 key field.

 2 This line specifies the starting secondary key value for reading
 MASTFL.

 Columns 28-32 are SETLL to position the file pointer to the
 first record having a key equal to the value placed in the LNAME
 field.

 3 This line reads the next record in last name sequence in MASTFL
 (it is included in a loop that processes only those records
 whose last name is equal to LNAME.)

 Columns 28-32 are READE to specify the Read Equal key operation.

Supplying Full Key Values (Method 2)

If you know the key values of records to be accessed in a KSAM file, you
can place them into a RAF and let RPG use the RAF to access records in
the KSAM file. Figure 3-6 shows ranges of department numbers (the
primary key) to be accessed in a KSAM file. The ranges are: 0005-0100,
1200-1280, 2000-2475 and 5000-5999. (The department numbers are shown
exactly as they are entered into the RAF.) You can create a RAF using any

3- 9

standard text editor, for example EDITOR. Enter key ranges starting with
position one. Enter the lower key value first followed immediately by
the upper key value. (See the HP RPG Reference Manual for details on
creating a RAF.)

| |
| 00050100 |
| 12001280 |
| 20002475 |
| 50005999 |
| |
| |

Figure 3-6. Reading a KSAM File Sequentially Within Key Limits - RAF Entries

To process a KSAM file sequentially using a RAF, enter both a File
Description and a File Extension Specification in your program similar to
those shown in Figure 3-7. Once the program in Figure 3-7 finds a
record, it displays the first 20 characters in it.

Figure 3-7. Reading a KSAM File Sequentially Within Key Limits - Using a RAF

 1 This line defines the RAF, RAFFILE.

 Column 16 contains R to indicate that RAFFILE is a RAF.

 Column 17 contains E to specify that the program will not end
 until all records in the RAF are processed.

 Column 30 is 4 to specify the length of key values in RAFFILE.

 2 This line defines the KSAM file, MASTFL.

 Column 28 is L to indicate that MASTFL is processed within
 limits.

 Column 32 contains I to indicate that MASTFL is a KSAM file.

 3 This line specifies that RAFFILE contains the key values for
 records to be processed in MASTFL.

3-: 10

Supplying Partial Key Values

Figure 3-8 shows how to read all records in a KSAM file having a range of
key values. All records in the KSAM file, MASTFL, are read that have
last names starting with a specific character (for example "A"). A user
at a terminal enters the letter and the program reads the first record in
alphabetical sequence that starts with the letter. When there are no
more records in the file, the user is prompted to enter another letter.
The KSAM file, MASTFL, is created using the KSAMUTIL commands shown at
the beginning of this section.

Figure 3-8. Reading a KSAM File Sequentially Within Key Limits - Supplying
Partial Key Values

Comments

 1 This line defines the KSAM file, MASTFL.

3- 11

 Column 16 is D to indicate that MASTFL is a demand file.

 Column 28 is L to specify that MASTFL will be processed within
 key limits.

 Columns 29-30 contain 15 to specify the length of the secondary
 key (last name).

 Column 31 contains A to specify that the secondary key is an
 alphanumeric key.

 Column 32 contains I to specify that this is a KSAM file.

 2 This line specifies the starting secondary key value for reading
 MASTFL.

 Columns 28-32 are SETLL to position the file pointer to the
 first record having a key equal to the value placed in the NCHAR
 field.

 3 This line reads the next record in MASTFL. READ is included in a
 loop that processes only those records whose last name starts
 with a specific character.

 Columns 28-32 are READ to specify the Read key operation.

Reading a KSAM File Randomly. This section explains how to randomly
access records in a KSAM file by one of its key fields. There are two
ways to do this. The first method lets you supply the key value
dynamically in your RPG program. Use it when the key values are computed
by the program or when the program is run interactively. The second
method lets you enter the key values ahead of time into a RAF. RPG
accesses records in the KSAM file that match key values in the RAF. Use
the RAF method when you know what the key values are or when they can be
generated automatically by other programs. Examples of both of these
methods are included in the next two sections.

The following lines show how to use KSAMUTIL to create a KSAM file with
one (primary) key. The KSAM file is called MASTFL and duplicate keys are
not allowed:

 :RUN KSAMUTIL.PUB.SYS
 >BUILD MASTFL;REC=-256,4,F,ASCII;DISC=20000,20,4;KEYFILE=MASTFLK;&
 >KEY=B,1,4

Specifying the Key Dynamically

If the records that you need to access in the KSAM file vary from one
program run to the next, you probably need to supply the record keys
dynamically. That is, you must retrieve or calculate them in the RPG
program before reading the KSAM file.

To process a KSAM file randomly by key, enter both a File Description and
a Calculation Specification similar to those shown in Figure 3-9. See
the KSAMUTIL commands in the previous section, "Reading a KSAM File
Randomly" for information on how this KSAM file is created.

3-: 12

Figure 3-9. Reading a KSAM File Randomly by Key

Comments

 1 This line defines the KSAM file, MASTFL.

 Column 16 contains C to indicate that the KSAM file is accessed
 in chained fashion.

 Column 28 is R to specify random processing.

 Columns 29-30 contain 4 to specify the key length.

 Column 31 contains A to specify that the key is alphanumeric.

 Column 32 contains I to specify that this is a KSAM file.

 2 This line reads MASTFL by primary key.

 Columns 18-21 contain the name of the key field, DEPT.

 Columns 28-32 contain the word CHAIN to read the file in a
 chained fashion during the calculation portion of the logic
 cycle.

 Columns 54-55 contain the resulting indicator (60) that is
 turned on when no record can be found for the value in DEPT.

Specifying the Keys Using a RAF

If you need to process KSAM records randomly by key and you know (before
running a program) what the key values are, use a RAF to hold them. RPG
will then use the key values in the RAF to access records in the KSAM
file. RAFs let you change key values without modifying and recompiling
the RPG program.

You can create a RAF using any standard text editor, for example EDITOR.
Enter key values starting with position one. You can enter more than one
key on each line, if you wish, but there must be no intervening spaces.
(See the HP RPG Reference Manual for details on creating a RAF.)

Figure 3-10 and Figure 3-11 show how to read a KSAM file randomly using a
RAF. Figure 3-10 lists the key values in the RAF and Figure 3-11 gives
the RPG program that processes the RAF. The keys in the RAF are four
digits long. They are: 0006, 0010, 0028, 0012, 0013, 0016, 0020, 0036,
0040, 0026, 0011, 0029, 0030 and 0080.

3- 13

| |
| 00060010002800120013 |
| 00160020 |
| 00360040 |
| 0026001100290030 |
| 0080 |
| |

Figure 3-10. Reading a KSAM File Randomly by Primary Key - RAF Entries

The KSAMUTIL entries to create a file that can be accessed randomly is
shown in the previous section "Reading a KSAM File Randomly". To process
a KSAM file randomly using a RAF, enter both a File Description and a
File Extension Specification in your program similar to those shown in
Figure 3-11. Once the program in Figure 3-11 finds a record, it displays
the first 20 characters in it.

.
Figure 3-11. Reading a KSAM File Randomly by Primary Key - Using a RAF

Comments

 1 This line defines the RAF, RAFFILE.

 Column 16 contains R to indicate that RAFFILE is a RAF.

 Column 17 contains E to specify that the program will not end
 until all records in the RAF are processed.

 Column 30 is 4 to specify the length of key values in RAFFILE.

 2 This line defines the KSAM file, MASTFL.

 Column 28 is R to indicate that MASTFL is processed randomly.

 Column 32 contains I to indicate that MASTFL is a KSAM file.

 3 This line specifies that RAFFILE contains the key values for
 records to be processed in MASTFL.

Reading a KSAM File Randomly and Sequentially Using the Same Key. This
section explains how to read a KSAM file both randomly and sequentially
using the same key field. Use this method when you want to process the

3-: 14

file as a CHAINed file and as a demand file in the same program.

To read randomly and sequentially by the same key define the file as a
full procedural file in the File Description Specification. Figure 3-12
show how to read a KSAM file randomly and sequentially using the key
field, DEPT. A department number is entered by a user from the terminal.
The program randomly reads the KSAM file, MASTFL, to access that
department. Once the department record is read, the program reads
subsequent records sequentially until no more records for that department
are found.

.
Figure 3-12. Reading a KSAM File Randomly and Sequentially - Using Full

Procedural Files

Comments

 1 This line defines the KSAM file, MASTFL.

 Column 16 is F to indicate that the file is a full procedural
 file.

 Column 32 is I to specify that this is a KSAM file.

 2 This line reads MASTFL randomly by the department number field,
 DEPT.

 Columns 28-32 are CHAIN to specify that chained random
 processing be performed for MASTFL. This key is DEPT.

 3 This line starts the code that processes MASTFL sequentially by
 key.

 Columns 28-32 are SETLL to set the beginning key value for
 MASTFL. SETLL sets the file pointer to the key value placed in
 DEPT.

 4 This line starts the loop that reads the KSAM file sequentially
 by key.

 5 This line reads MASTFL until there are no more records having a
 department equal to DEPT.

3- 15

Reading a KSAM File Randomly and Sequentially Using Different Keys. This
section explains how to access a file both randomly and sequentially
using different key fields. There are two ways to do this. For both
methods you describe the files in the program as if they were two
separate entities. In the first method, enter two FILE commands (file
equations) before executing the program. This method is easier to use
and less likely to result in access conflicts than the second method. In
the second method, enter File Description Continuation lines for each
file, equating them to the same physical file. The second method treats
the two files as one in the program and is more memory-efficient. The
next two sections give examples of these two methods.

Using File Equations

To use this method of processing a file randomly and sequentially, enter
File Description and Calculation Specifications similar to those shown in
Figure 3-13. The file MASTERC is a KSAM file that is processed randomly
and MASTERC is a KSAM file that is processed sequentially within key
limits.

Before executing the program shown in Figure 3-13 two FILE commands see
the MPE XL Reference Manual for information on the FILE command) must be
entered.

 :FILE MASTERC=MASTFL
 :FILE MASTERD=MASTFL

The FILE commands equate both MASTERC and MASTERD to the KSAM file,
MASTFL. MASTERC and MASTERD each have their own operating system file
number and current record pointer and each is opened and processed
independently of the other.

Figure 3-13. Reading a KSAM File Randomly and Sequentially - Using File Equations

Comments

 1 This line defines the KSAM file, MASTERC.

 Column 16 is C to indicate that the file is processed in a
 CHAINed fashion.

 Column 28 is R to indicate that MASTERC is processed randomly.

3-: 16

 Column 32 is I to specify that this is a KSAM file.

 2 This line defines the KSAM file, MASTERD.

 Column 16 is D to indicate that MASTERD is a demand file.

 Column 28 is L to specify that MASTERD will be processed within
 key limits.

 Column 32 contains I to specify that this is a KSAM file.

 3 This line reads MASTERC randomly by department number, DEPT.

 Columns 28-32 are CHAIN to specify that chained (sequential)
 processing be performed for the file MASTERC. The key is DEPT.

 4 This line starts the code that processes MASTERD sequentially by
 secondary key.

 Columns 28-32 are SETLL to set the beginning secondary key value
 for MASTERD. SETLL sets the file pointer to the key value placed
 in LNAME.

 5 This line starts the loop that reads the KSAM file sequentially
 by secondary key.

 6 This line reads MASTERD until there are no more records having a
 last name equal to LNAME.

Using File Description Continuation Lines.

The second way to read a KSAM more than one way in a program is to enter
two separate files in the program but include File Description
Continuation lines for each of them. These lines equate the two files to
the same physical KSAM file (you don't need FILE equations to do this).
Figure 3-14 shows how this is done. The file, MASTERC, is processed
randomly and the files, MASTERD is processed sequentially within key
limits. The File Description Continuation lines contain DSNAME entries
that equate the files to the KSAM file, MASTFL. When you use File
Description Continuation lines in this way, both files are treated as
one. They have the same file number and pointer and they share the same
buffer. Therefore, when you use this method, make sure that the read
operations restore the file pointer values properly.

3- 17

Figure 3-14. Reading a KSAM File Randomly and Sequentially - Using File
Description Continuation Lines

Comments

 1 This line defines the KSAM file, MASTERC.

 Column 16 is C to indicate that the file is processed in a
 CHAINed fashion.

 Column 28 is R to indicate that MASTERC is processed randomly.

 Column 32 is I to specify that This is a KSAM file.

 2 This line equates the KSAM file, MASTERD to MASTFL.

 Column 53 is K to indicate that this line is a Continuation line
 for MASTERC.

 Columns 54-58 are DSNAMEMASTFL to specify that the file MASTFL
 is to be used for MASTERC.

 3 This line defines the KSAM file, MASTERD.

 Column 16 is D to indicate that MASTERD is a demand file.

 Column 28 is L to specify that MASTERD will be processed within
 key limits.

 Column 32 contains I to specify that this is a KSAM file.

 4 This line equates the KSAM file, MASTERD, to MASTFL.

 Column 53 is K to indicate that this line is a Continuation line
 for MASTERD.

 Columns 54-58 are DSNAMEMASTFL to specify that the file MASTFL

3-: 18

 is to be used for MASTERD.

 5 This line reads MASTERC randomly by department number, DEPT.

 Columns 28-32 are CHAIN to specify that chained (random)
 processing be performed for the file MASTERC. The key is DEPT.

 6 This line starts the code that processes MASTERD sequentially by
 secondary key.

 Columns 28-32 are SETLL to set the beginning secondary key value
 for MASTERD. SETLL set the file pointer to the key value placed
 in LNAME.

 7 This line starts the loop that reads the KSAM file sequentially
 by secondary key.

 8 This line reads MASTERD until there are no more records having a
 last name equal to LNAME.

Reading a KSAM File Chronologically. When you read a KSAM file in
chronological order, you're reading the KSAM data file from beginning to
end. Records are read from the data file in the order that they were
originally added to the file. The KSAM file key file is not used.

Figure 3-15 gives an example of how records are stored in a KSAM data
file. In this example, only the key values are shown and the key field
occupies the first two bytes of the record. Notice that the records are
not physically ordered by key value. Records that are inactive (deleted)
have a value of FFFF (hexadecimal) in the first two bytes (regardless of
where the key is located). When you read chronologically, inactive
records are bypassed automatically.

Figure 3-15. The Chronological Order of Records in a KSAM Data File

The following File Description Specification processes a KSAM file in
chronological order.

.

Figure 3-16. Reading a KSAM File in Chronological Order

3- 19

Comments

 1 This line defines the KSAM file, MASTFL.

 Column 17 is E to specify that processing proceed to the end of
 the file.

 Column 32 contains C to indicate the file that the file be
 processed in chronological order.

Updating a KSAM Disc File

This section shows how to randomly update a KSAM file using its primary
key.

Figure 3-17 lists a program that updates a customer master file (MASTFL)
for a large department store. The master file is updated by a daily
sales transaction file (TRANSFL). Each sales transaction contains an
identification code that is used to access the customer's record in the
customer master file. Each transaction also contains the amount charged
by the customer. This amount is used to update the customer's account
balance.

.
Figure 3-17. Updating a KSAM File Randomly by Primary Key

3-: 20

Comments

 1 This line defines the sales transaction file, TRANSFL. This file
 is an MPE file.

 2 This line defines the KSAM customer master file, MASTFL.

 Columns 7-14 contain the name of the customer master file,
 MASTFL.

 Column 15 is U to indicate that MASTFL will be updated.

 Column 16 is C to indicate that MASTFL will be processed in a
 chained fashion.

 Column 28 is R to specify that MASTFL will be processed
 randomly.

 3 MSGFL is a message file that is used to report program and other
 errors. MSGFL is directed to the line printer.

 4 This line defines the record type for all records in TRANSFL and
 is followed by the field definitions for that record.

 5 This line defines the record type for active records in MASTFL
 and is followed by the field definitions for that record.

 6 This line defines the record type for inactive records in
 MASTFL.

 Column 27 specifies that inactive records have an I in position
 5. Inactive records may exist, but they cannot be updated.
 (Inactive records reflect customers whose information either has
 been deleted or is obsolete. They remain in the file to
 facilitate error handling.)

 7 This line reads MASTFL randomly by primary key.

 Columns 18-21 define IDNO as the key to be used for reading
 MASTFL.

 Columns 28-32 are CHAIN to specify a chained read operation for
 MASTFL.

 Columns 54-55 turn on indicator 60 when a record matching IDNO
 is not found in MASTFL.

 8 This line adds the contents of field CHARGE to the filed CURBAL
 (customer balance field in MASTFL) when an active record for
 IDNO is found.

 9 This line defines the output record for MASTFL.

 Columns 24-25 specify that indicator 01 must have been turned on
 (a transaction record must have been read) before records in
 MASTFL are updated.

 Columns 27-28 specify that indicator 02 must be turned on (an
 active record is found in MASTFL) before records in MASTFL are
 updated.

 10 This line defines the customer balance field, CURBAL. This field
 is the only field that is updated in MASTFL.

 11 This line defines the first output record format for the message
 file, MSGFL.

 Columns 27-28 contain 03 to print an error message when a

3- 21

 deleted record is encountered in MASTFL.

 12 The message, DELETED/OBSOLETE RECORD, is printed when indicator
 03 is on.

 13 This line defines the second record format for the message file,
 MSGFL.

 Columns 27-28 contain 60 to print an error message when a record
 is not found in MASTFL.

 14 The message MISSING RECORD, is printed when indicator 60 is on.

NOTE The CHAIN operation in line 7 turns on indicator 60 when a record
 is not found for the key. The program handles the error by
 displaying "MISSING RECORD". If no indicator is used with the
 CHAIN operation, the halt indicator H0 is turned on and, if an
 error response was not entered with the Header Specification, the
 program halts and performs run-time error processing.

Adding Records to a KSAM Disc File

This section explains how to add Records to a KSAM file that already
contains data. You can add records in any order. They do not have to be
in sequence by a key field.

Figure 3-18 shows how to add records to a KSAM file. You define the file
as a CHAINed file by entering C in Column 16 of the File Description
Specification. The program in this example adds records using EXCPT
output (you can add records at detail-time also). The CHAIN operation
reads the file to see if a record already exists for the value in the key
field, DEPT. If a record does not exist, it is added.

Figure 3-18. Adding Records to a KSAM File Randomly by Primary Key

Comments

3-: 22

 1 This line defines the KSAM file, MASTFL.

 Column 16 is U to indicate that the KSAM file will be updated.

 Column 17 is C for CHAINed (random) access.

 Column 66 is A to indicate that records will be added to the
 file.

 2 This line reads MASTFL randomly.

 Columns 18-27 contain DEPT to specify the primary key field for
 MASTFL.

 Columns 28-32 contain CHAIN to read a record randomly.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found in MASTFL.

 3 This line directs RPG to perform exception output when a
 department record is not found (indicator 80 is turned on).

 Columns 10-11 contain 80 to specify that this line be executed
 when indicator 80 (line 2) is turned on.

 Columns 28-32 contain EXCPT to direct RPG to write records while
 calculations are in progress.

 Columns 43-48 are ADDREC, the EXCPT Name for the record to be
 added.

 4 This line defines the MASTFL file output record for new (added)
 records.

 Column 15 is E to identify this record as an exception output
 record.

 Columns 16-18 are ADD to specify that records be added to the
 KSAM file.

 Columns 32-37 are ADDREC to specify the EXCPT Name for the
 record to be added.

Deleting Records from a KSAM Disc File

This section tells you how to delete records from a KSAM file.

When you delete a record, you mark it as inactive. KSAM automatically
enters a -1 (hexadecimal FFFF) in the first two bytes of the record.
Deleted records remain in the file but are ignored when you read it.

When using KSAM files, it is a good idea to start the data fields of each
record in position three. This enables you to recover inactive records
in their entirety, if this becomes necessary. There are two ways to
access records that have been marked as deleted. You can use an RPG
program to read the file chronologically or you can use FCOPY. When using
FCOPY, copy the KSAM file with the NOKSAM file option.

To physically remove inactive records from a KSAM file, use FCOPY (with
the KSAM default option). FCOPY copies the file,except for inactive
records to either an MPE file or another KSAM file. You can also use an
RPG program to remove inactive records by copying the KSAM file to
another file.

3- 23

Figure 3-19. Deleting Records From a KSAM File

Comments

 1 This line defines the KSAM file, MASTFL.

 Column 15 is U to indicate that the file will be updated.

 2 This line reads the KSAM file, MASTFL, in a chained fashion.

 Columns 18-27 contain EMPNO, which is key field name.

 Columns 28-32 contain CHAIN to specify a CHAINed read operation.

 Columns 33-42 contain MASTFL to name the KSAM file.

 3 This line performs exception output when the appropriate record
 in MASTFL is found.

 4 This line defines the delete operation to be performed for
 exception output.

 Columns 16-18 are DEL to delete the current output record from
 MASTFL.

 Columns 32-37 contain DELREC to specify the EXCPT Name for the
 record to be deleted.

Providing Security for KSAM Disc Files

When a KSAM file is going to be accessed by several programs, you must
decide on the type of security the file should have. If you want to
allow the programs to access the file simultaneously or do you want only
one program at a time to access the file? You specify the type of file
security with the operating system FILE command (see the MPE XL Commands
Reference Manual for details on the FILE command).

The following list summarizes the level of file security that you can use
for KSAM files.

 * Exclusive

 Exclusive access prevents others from accessing a file that is used

3-: 24

 in your program. When you close the file, or when your program
 finishes, the file is available to others. For example, entering
 this FILE command before running a program gives the program
 exclusive access to the file, MASTER:

 :FILE MASTER;EXC

 * Semi-exclusive

 Semi-Exclusive access lets others read a file but prevents them
 from updating it. When you close the file, or when your program
 finishes, the file is available to others. For example, entering
 this FILE command before running a program gives the program
 semi-exclusive access to the file, MASTER:

 :FILE MASTER;SEMI

 * Shared

 Shared access lets others read and write records in the same file
 simultaneously. Different records can be accessed independently.
 Each user has separate buffers, record pointers and file control
 information. For example, entering this FILE command before
 running a program gives the program shared access to the file,
 MASTER:

 :FILE MASTER;SHR

 There are two ways to process shared files in an RPG program. You
 can have RPG keep track of the records that are being accessed and
 lock and unlock the file automatically. Alternatively, you can
 control the locking process, yourself. If you do this, you must be
 careful to lock the file before updating it and unlock it when
 you're finished. The next two sections discuss automatic and
 manual locking in detail.

__

NOTE All RPG programs processing the same file concurrently must
 either use manual or automatic locking or must not use
 locking at all.

__

 Both automatic and manual locking enable the MPE Dynamic Locking
 Facility. RPG programs that use automatic or manual locking for a
 file cannot run concurrently with programs that do not have it
 enabled. For non-RPG programs, enable the MPE Dynamic Locking
 Facility by entering a FILE command similar to FILE MASTER;LOCK.

Automatically Locking and Unlocking Shared KSAM Files. Using LOCK in the
File Description Continuation Specification enables RPG automatic
looking. When you read or write a record, RPG locks and unlocks the file
for you. Figure 3-20 shows how to use LOCK in a program that adds
records to the KSAM disc file, MASTFL.

Each user, before running a program that accesses a KSAM file
concurrently with another user, must enter a file equation similar to the
following:

 :FILE MASTFL;SHR

3- 25

Figure 3-20. Automatically Locking and Unlocking KSAM Files

Comments

 1 This line defines KSAM file, MASTFL, as an Update CHAINed file.

 2 This line enables the automatic lock facility for MASTFL.

 Column 53 is K to indicate that this is a Continuation line.

 Columns 54-59 are LOCK to enable RPG automatic locking.

 3 The line reads MASTFL randomly by department number, DEPT.

 4 This line directs RPG to perform exception output when a
 department record is not found (indicator 80 is turned on).

 5 This line defines the MASTFL file output record for new (added)
 records.

Manually Locking and Unlocking Shared KSAM Files. Using NOLOCK in the
File Description Continuation Specification lets you manually lock and
unlock a KSAM file yourself.

Figure 3-21 shows how to enter the File Description and Calculation
Specifications that lock and unlock a KSAM file. The purpose of the
program is to add records to the file. Before they are added, the
program checks to see if they already exist. The KSAM file is locked
before the check is made and unlocked after the new record is added.

When manually locking and unlocking a KSAM file, you must enter a file
equation similar to the following before running the program:

 :FILE MASTFL;SHR

3-: 26

Figure 3-21. Manually Locking and Unlocking KSAM Files

Comments

 1 This line defines the KSAM file,MASTFL, as an Update CHAINed
 file.

 2 This line enables the manual locking facility for the file,
 MASTFL.

 Column 53 is K to indicate that this is a Continuation line.

 Columns 54-59 are NOLOCK to enable RPG manual locking.

 3 This line locks the file, MASTFL, before a record is read from
 it.

 Columns 28-32 contain LOCK. This locks MASTFL before the chain
 operation (next line).

 Columns 33-42 contain the name of the KSAM file, MASTFL.

 Columns 58-59 contain 12 to turn on indicator 12 when the lock
 operation is successful.

 4 This line reads MASTFL in a chained fashion.

 Columns 10-11 contain 12 to execute the CHAIN operation when
 resulting indicator 12 is turned on (the previous LOCK operation
 was successful).

 5 This line performs exception output when a department record is
 not found (indicator 80 is turned on).

 6 This line unlocks the file, MASTFL.

 7 This line defines the MASTFL file output record for new (added)
 records.

3- 27

Database Disc Files (TurboIMAGE)

The following list summarizes the advantages and disadvantages of using
TurboIMAGE databases. For detailed information on TurboIMAGE, see the
TurboIMAGE/XL Database Management System manual.

Advantages:

 * Query (QUERY) facilities

 * Security to the data field level

 * Data integrity in a multiuser environment

 * Automatic maintenance of data interrelationships

 * Data-dictionary approach to files

 * Efficient memory usage in a multiuser environment

 * Flexible locking strategies

 * Rapid access by key

Disadvantages:

 * No chronological access

 * No partial, generic or sequential-within-limits key access

 * Inefficient disc usage when actual file size varies considerably (the
 maximum file size must be allocated regardless of the space that is
 actually used)

 * Inability to update a key field

 * No undo for data deletes

 * No duplicate keys in master data sets

 * Databases are not processed by most system software (for example,
 EDITOR, FCOPY and SORT)

 * No one-step method for using standalone sorts

The remainder of this chapter tells you how to create and use TurboIMAGE
databases within RPG programs. To simplify the examples, a single
database (MARKET) is used throughout. MARKET keeps customer account
information and is used online by a marketing department. MARKET has
four data sets. D-ACCOUNTS is a detail data set having NAME-LAST and
ACCOUNT-NO as keys. The automatic masters, A-LAST-NAME and A-ACCOUNT-NO
keep track of these keys. M-SOURCE is a manual master data set that is
used to validate source codes and to keep track of customer responses by
source code. It has only a few fields, and is updated infrequently.
Figure 3-22 shows the structure of the MARKET database.

3-: 28

[ERROR:] Click here to view figure.

Figure 3-22. The MARKET Database

Creating a TurboIMAGE Database

There are four steps to creating and loading data into a TurboIMAGE
database. First, you create a schema file that defines the database, its
data sets and data items. Next, you build the database by creating a
root file and then running DBUTIL. Finally, you write a program to load
data into the database. The next sections explain each of these steps in
detail.

Defining a TurboIMAGE Database Schema. The first step in creating a
TurboIMAGE database is to create the schema for it.

It is assumed that you are familiar with TurboIMAGE, and that you know
how to code the various entries to define the schema. You can use EDITOR
or any standard text processor to create the schema file. For
information on TurboIMAGE, see the TurboIMAGE/XL Database Management
System manual.

Figure 3-23 shows the schema that defines the MARKET database shown in
Figure 3-20. The data sets in MARKET are shaded for easy reference.

3- 29

Figure 3-23. The Schema For the Market Database

3-: 30

Figure 3-23. The Schema For the Market Database (Continued)

3- 31

.

Figure 3-23. The Schema For the Market Database (Continued)

3-: 32

Figure 3-23. The Schema For the Market Database (Continued)

3- 33

Creating a TurboIMAGE Root File. Once you define a TurboIMAGE schema,
you then create a TurboIMAGE root file.

For example, to create the root file for our sample MARKET database,
enter these commands at the operating system colon prompt:

 :FILE DBTEXT=MARKET.PUB
 :FILE DBSLIST=$STDLIST
 :RUN DBSCHEMA.PUB.SYS;PARM=3

If there are any schema or execution errors, they are displayed next.
When the root file is successfully created, you see the message END OF
PROGRAM.

NOTE Instead of equating DBSLIST to $STDLIST in the file equation, you
 can assign it to other devices. For example, $NULL or DEV=LP.

Running DBUTIL. After creating a TurboIMAGE root file, you create an
empty database.

For example, to create an empty database for our sample MARKET database,
enter these commands:

 :RUN DBUTIL.PUB.SYS
 >>CREATE MARKET
 >>EXIT

When an empty database is created successfully, you see the message data
base MARKET has been created.

CAUTION Enter the CREATE command carefully. DBUTIL commands perform
 many functions, one of which purges databases.

Loading Data into a TurboIMAGE Database. You can use an RPG program to
load data into a TurboIMAGE database. You do this by entering
TurboIMAGE-specific fields in the File Description and File Description
Continuation Specifications.

The program in Figure 3-24 shows how to load the D-ACCOUNTS data set (see
our sample MARKET database in Figure 3-23) with data from an MPE file,
ACCTSIN. Records in ACCTSIN are sorted by account number (ACTNO).

3-: 34

Figure 3-24. Loading a TurboIMAGE Database

3- 35

.

Figure 3-24. Loading a TurboIMAGE Database (Continued)

Comments

 1 This line defines the accounts file, ACCTSIN.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 31 is A to indicate that DACCOUNT has an alphanumeric
 key.

 Column 32 contains M to indicate that DACCOUNT is a TurboIMAGE
 file.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Column 53 is K to indicate that this line is a Continuation
 line.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 3 to specify Open Mode - Exclusive Access.

 Column 67 is blank to specify Input/Output Mode - Write, Output
 File.

 4 This line establishes write access to the database.

 Column 53 is K to indicate that this is a Continuation line.

 Columns 54-65 contain LEVEL WRITER to specify the write-access
 password for the database.

 5 This line identifies the key field for the data set.

 Column 53 is K to indicate that this is a Continuation line.

 Columns 54-65 contain DSNAMED-ACCOUNTS to identify the data set,
 D-ACCOUNTS to be accessed (this line is not needed when line 2
 contains the actual data set name).

 6 This line begins the description of the ACCTSIN input record.

 7 This line begins the description of the DACCOUNT output record.

Reading a TurboIMAGE Data Set

You can access data in a TurboIMAGE data set three different ways and
each of these is discussed in the sections which follow:

3-: 36

 * Sequentially (not in key order)

 * Sequentially by full key values

 * Randomly by key value

Reading a TurboIMAGE Data Set Sequentially. Since TurboIMAGE does not
maintain the sequential order of keys in its data sets, you cannot read
the entire data set from beginning to end by a specific key. However,
you can retrieve all of the records in their stored unsorted sequence.
This may be useful, for example, for extracting data set records for a
sort.

Figure 3-25 shows how to retrieve all of the records in the TurboIMAGE
data set, D-ACCOUNTS (see the schema for this data set in Figure 3-23),
and how to display the first four fields in them.

.
Figure 3-25. Reading a TurboIMAGE Data Set Sequentially

Comments

 1 This line defines the TurboIMAGE data set file, DACCOUNT.

 2 This line defines the database containing D-ACCOUNTS and the
 security provisions for accessing the database.

 Column 53 is K to indicate that this is a Continuation line.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 6 to indicate Open Mode 6 - Shared Read Access.

 Column 67 is 2 to specify Input/Output Mode 2 - Serial Read.

 3 This line establishes the password for the database.

 Columns 54-65 contain LEVEL READER to specify the password,
 READER. This password establishes a user class identification

3- 37

 that permits read access to the database.

 4 This line defines the data set to be used.

 Columns 54-65 contain DSNAMED-ACCOUNTS to identify the data set,
 D-ACCOUNTS.

 5 This line begins the input record description of the DACCOUNT
 file.

 6 This line begins the output record description of the DISPLAY
 file.

Reading a TurboIMAGE Data Set Sequentially By Key. This section explains
how to read all records in a detail data set having a specific key value.
This method is useful when a data set contains records with duplicate
keys. Unlike KSAM files, you cannot read a TurboIMAGE data set
sequentially by a range of key values (reading sequentially within key
limits).

The program in Figure 3-26 finds and displays all records in the data
set, D-ACCOUNTS, having the same last name. The last name field
(NAME-LAST) is defined as a key in the data set (see the schema for the
data set in Figure 3-23). A user enters a last name from a terminal.
When the last name does not exist, one of two warning messages (NO SUCH
NAME or END OF CHAIN) is displayed.

3-: 38

Figure 3-26. Reading a TurboIMAGE Data Set Sequentially by Key

3- 39

Figure 3-26. Reading a TurboIMAGE Data Set Sequentially by Key (Continued)

Comments

 1 This line defines the TurboIMAGE data set file, DACCOUNT.

 Columns 28-38 indicate that DACCOUNT is a TurboIMAGE file to be
 processed randomly by the NAME-LAST key field (positions 19-34).

 2 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 6 to indicate Open Mode 6 - Shared Read Access.

 Column 67 is C to indicate Input/Output Mode C - Chained
 Sequential Read. In this mode, records are read sequentially
 along the data set chain.

 3 This line defines the password for the database.

 Columns 54-65 contain LEVEL READER to specify the password,
 READER. This password establishes a user class identification
 that permits read access to the database.

 4 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM NAME-LAST to identify the key field,
 NAME-LAST.

 5 This line identifies the data set to be used.

 Columns 54-65 contain DSNAMED-ACCOUNTS to identify the data set,
 D-ACCOUNTS.

 6 This line begins the input record description for the DACCOUNT
 file.

 7 This line establishes the head of the chain in the D-ACCOUNTS
 data set.

 Columns 18-27 contain BLK16 to reset the file pointer to the
 head of the chain.

3-: 40

 Columns 28-32 contain CHAIN to specify a "dummy" chained read
 operation. This operation simply establishes a new head of
 chain.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 8 This line is the beginning of the loop that reads records in the
 D-ACCOUNTS data set.

 9 This line reads records randomly from the D-ACCOUNTS data set.

 Columns 18-27 contain INAME to specify the key field.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 60 to turn on indicator 60 when a record
 is not found for the key value in INAME.

 Columns 56-57 contain 61 to turn on indicator 61 when there are
 no more records in the data set chain.

 10 This line starts the description of the output record to be
 displayed on the terminal.

Reading a TurboIMAGE Data Set Randomly. This section explains how to
retrieve master data set records using random key values.

The following example takes an account number (ACTNO) entered by a user
and verifies it against a list of valid account numbers in the
A-ACCOUNT-NO data set. (The schema for this data set is shown in the
section "Defining a TurboIMAGE Database Schema.") When an account does
not exist, a message (NO HIT ON CHAIN) is displayed.

.

Figure 3-27. Reading a TurboIMAGE Data Set Randomly

3- 41

Comments

 1 This line defines, AACCOUNT, which is a TurboIMAGE automatic
 master data set.

 Columns 28-38 indicate that AACCOUNT is a TurboIMAGE file to be
 processed randomly by the ACCOUNT-NO key field (positions 1-6).

 2 This line specifies that AACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 6 to indicate Open Mode 6 - Shared Read Access.

 Column 67 is 7 to specify Input/Output Mode 7 - Calculated Read.
 This mode applies to master data sets only.

 3 This line defines the password for the database.

 Columns 54-65 contain LEVEL READER to specify the password
 READER. This password establishes a user class identification
 that permits read access to the database.

 4 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 5 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMEA-ACCOUNT-NO to specify that the
 data set is A-ACCOUNT-NO.

 6 This line begins the input record description of the
 A-ACCOUNT-NO data set.

 7 This line reads the data set, A-ACCOUNT-NO randomly.

 Columns 18-27 contain the name of the key field, ACTNO.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 AACCOUNT.

 Columns 54-55 contain 60 to turn on indicator 60 when no record
 is found having the key value contained in ACTNO.

 Columns 56-57 contains the default H0 indicator to avoid a
 compiler warning for the CHAIN operation. The end-of-chain
 indicator has no meaning for master data sets, since they cannot
 have duplicate keys.

 8 This line starts the description of the output record for
 OUTPUT. The record contains messages that indicate whether or
 not the account exists in the master data set.

Updating a TurboIMAGE Data Set

This section explains how to modify records that already exist in a
TurboIMAGE data set.

For information on adding and deleting records, see the next two
sections. To learn about database security provisions that can be
incorporated into your RPG programs, see the section titled "Providing
Security for TurboIMAGE Databases and Data Sets."

3-: 42

Figure 3-28 shows how to access records in the TurboIMAGE data set
D-ACCOUNTS (see the schema for this data set in Figure 3-23) by its key,
and change the TYPEC field in those records.

Figure 3-28. Randomly Updating Records in a TurboIMAGE Data Set

Comments

 1 This line defines the file, INPUT.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for chained (random) access.

 Column 32 is M to specify that DACCOUNT is a TurboIMAGE file.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 2 to indicate Open Mode 2 - Update-Shared Access.

 Column 67 is 5 to specify Input/Output Mode 5 - Chained Read.

 4 This line defines the password for the database.

 Columns 54-65 contain LEVEL WRITER to specify the password,
 WRITER. This password establishes a user class identification
 that permits write access to the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

3- 43

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMED-ACCOUNTS to specify that the data
 set is D-ACCOUNTS.

 7 This line begins the input record description of the INPUT file.

 8 This line begins the input record description of the DACCOUNT
 file.

 9 This line reads the data set, D-ACCOUNTS, randomly.

 Columns 18-27 contain ACTNO to specify the key field for reading
 the data set.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 60 to turn on indicator 60 when a record
 is not found for the account number in D-ACCOUNTS. Even though
 60 is not used in the program, an indicator must be entered in
 this field to prevent the halt indicator (H0) from being turned
 on.

 10 This line begins the output record description for the DACCOUNT
 file.

Adding Records to a TurboIMAGE Data Set

This section explains how to add records to a TurboIMAGE data set.
Records are added randomly and do not have to be ordered by key value.

To learn about database security provisions that can be incorporated into
your RPG programs, see the section titled "Providing Security for
TurboIMAGE Databases and Data Sets."

Figure 3-29 shows how to add records to our sample data set, D-ACCOUNTS.
(See the schema for the MARKET database in the section titled "Defining a
TurboIMAGE Database Schema.") Records that are added come from the file,
IDACCT, which has the same format as the D-ACCOUNTS data set. The ACTNO
field in IDACCT is used as the key when reading D-ACCOUNTS, but the input
records are not in sequence by this key. Before a record is added to
D-ACCOUNTS, a check is made to ensure that the ACTNO record does not
already exist.

3-: 44

Figure 3-29. Randomly Adding Records to a TurboIMAGE Data Set

Comments

 1 This line defines the IDACCT file.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for chained (random) access.

 Column 66 is A to indicate that records are added to DACCOUNT.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is 9 to indicate Open Mode 9 - Data Set Locking per
 Record.

 Column 67 is 5 to specify Input/Output Mode 5 - Chained Read.

 4 This line defines the password for the database.

 Columns 54-65 contain LEVEL WRITER to specify the password,
 WRITER. This password establishes a user class identification
 that permits write access to the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMED-ACCOUNTS to specify that the data

3- 45

 set is D-ACCOUNTS.

 7 This line begins the input record description of the IDACCT
 file.

 8 This line begins the input record description of the DACCOUNT
 file. (Since records are being added only, you do not need to
 define input fields.)

 9 This line reads the data set, D-ACCOUNTS, randomly.

 Columns 18-27 contain ACTNO to specify the key field for reading
 the data set.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found for the account number in D-ACCOUNTS.

 10 This line specifies that exception output is performed when
 indicator 80 is turned on (indicator 80 is turned on when a
 record is not found for an account number).

 11 This line specifies the output operation for adding records to
 the D-ACCOUNTS data set.

 Column 15 is E to identify this record as an exception record.

 Columns 16-18 are ADD to add records to the TurboIMAGE data set.

 Columns 32-37 are ADDREC to name the EXCPT Name for the record
 to be added.

Deleting Records from a TurboIMAGE Data Set

This section explains how to delete records from a TurboIMAGE detail data
set. The data set must not contain duplicate keys. Records are deleted
by matching their key field values to those specified in the program.

To learn about database security provisions that can be incorporated into
your RPG programs, see the section titled "Providing Security for
TurboIMAGE Databases and Data Sets."

Figure 3-30 shows how to delete records from our sample data set
D-ACCOUNTS. (See the schema for the MARKET database in the section titled
"Defining a TurboIMAGE Database Schema.") The input file, INPUT, contains
the keys for the records to delete, though records in INPUT are not
sequenced by this key. Each record to be deleted in D-ACCOUNTS is read
first to verify that it exists. (If you need to delete records in a data
set containing duplicate keys, enter C (Chained Sequential Read) in the
Input/Output Mode for the file. Then CHAIN and delete the records until
the indicator in columns 56-57 of the CHAIN operation line turns on.)

3-: 46

Figure 3-30. Deleting Records from a TurboIMAGE Data Set

Comments

 1 This line defines the file, INPUT.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for CHAINed (random) access.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is S to indicate Open Mode S - Data Set Locking for
 Duration.

 Column 67 is 5 to specify Input/Output Mode 5 - Chained Read.

 4 This line defines the password to the database.

 Columns 54-65 contain LEVEL WRITER to specify the password,
 WRITER. This password establishes a user class identification
 that permits write access to the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMED-ACCOUNTS to specify that the data
 set is D-ACCOUNTS.

 7 This line begins the input record description of the INPUT file.

3- 47

 8 This line begins the input record description of the DACCOUNT
 file.

 9 This line reads the D-ACCOUNTS data set randomly.

 Columns 18-27 contain ACTNO to specify the key field.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found for the account number in D-ACCOUNTS.

 Columns 56-57 contain the H0 indicator to avoid a compiler
 warning for the CHAIN operation. The end-of-chain indicator has
 no meaning since records are accessed randomly.

 10 This line performs exception output when the appropriate record
 is found in D-ACCOUNTS (indicator 80 in not on).

 11 This line defines the exception output operation for deleting
 records.

 Column 15 is E to identify this record as an exception record.

 Columns 16-18 are DEL to specify that records are deleted from
 D-ACCOUNTS.

 Columns 32-37 are DELREC to name the EXCPT Name for the record
 to be deleted.

Providing Security for TurboIMAGE Databases and Data Sets

TurboIMAGE lets several users access a database simultaneously.

To ensure that there will be no access conflicts, you should specify the
security provisions in each RPG program. You can specify security at the
database, data set or data record (item) level. There are two ways for
doing this. You can specify that database and data set security be
handled automatically by RPG. If you need more flexibility, you can
provide this security by locking and unlocking databases or data sets
yourself. The next two sections discuss automatic and manual locking and
unlocking in detail.

Automatically Locking and Unlocking TurboIMAGE Databases and Data Sets.
To have RPG automatically lock and unlock a TurboIMAGE database, data set
or data record, enter a locking mode in column 66 of the IMAGE File
Description Continuation Specification. The locking modes that you can
select are:

Table 3-1.

Column 66	Description

B	Lock the entire database when the program starts and unlock it when
	the program ends.

S	Lock the data set when the program starts and unlock it when the
	program ends.

1	Lock the entire database before a record is read, written or updated.
	Unlock it after the record is read, written or updated.

3-: 48

9	Lock the data set before a record is read, written or updated.
	Unlock it after the record is read, written or updated.

R	Lock the data record before it is read, written or updated. Unlock
	it after the record is read, written or updated.

Figure 3-31 shows how to specify automatic locking and unlocking at the
data record level for TurboIMAGE data sets (see line 2).

Figure 3-31. Automatically Locking and Unlocking a TurboIMAGE Data Set Record

Comments

 1 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is I to indicate that the TurboIMAGE file is input.

 Column 16 is C for CHAINed (random) access.

 2 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is R to specify open mode with automatic locking and
 unlocking at the data record level.

 Column 67 is 5 to specify Input/Output Mode 5 - Chained Read.

 3 This line defines the password for the database.

 Columns 54-65 contain LEVEL READER to specify the password
 READER. This password establishes a user class identification
 that permits read access to the database.

 4 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM NAME-LAST to specify that the key for
 the data set is NAME-LAST.

 5 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMED-ACCOUNTS to specify that the data

3- 49

 set is D-ACCOUNTS.

Manually Locking and Unlocking TurboIMAGE Databases and Data Sets. This
section explains how you can control the locking and unlocking of
TurboIMAGE databases and data sets. You use the LOCK and UNLCK
operations in Calculation Specifications.

Figure 3-30 through Figure 3-32 show how to lock and unlock databases,
data sets and individual records in the data sets. The examples use the
MARKET database whose schema is shown in the section titled "Defining a
TurboIMAGE Database Schema."

Figure 3-32 gives an example of adding records to the data set,
D-ACCOUNTS. The entire database (MARKET) to which D-ACCOUNTS belongs is
locked before a record is added. After the record is added, the database
is unlocked.

Figure 3-32. Manually Locking and Unlocking a TurboIMAGE Database

Comments

 1 This line defines the file, IDACCT.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for CHAINed (random) access.

 Column 66 is A to indicate that records are added to DACCOUNT.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is L to indicate user-controlled manual locking.

3-: 50

 Column 67 is C to specify chained sequential read mode.

 4 This line defines the password for the database.

 Columns 54-65 contain LEVEL WRITER to specify password, WRITER.
 This password establishes a user class identification that
 permits write access to the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMEA-ACCOUNT-NO to specify that the
 data set is D-ACCOUNTS.

 7 This line begins the input record description of the IDACCT
 file.

 8 This line begins the input record description of the DACCOUNT
 file.

 9 This line reads the data set, D-ACCOUNTS, randomly.

 Columns 18-27 contain ACTNO to specify the key field for reading
 the data set.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found for the account number in D-ACCOUNTS.

 Columns 56-57 contain the H0 indicator to avoid a compiler
 warning for the CHAIN operation. The end-of-chain indicator has
 no meaning since records are accessed randomly.

 10 This line locks the database, MARKET, when indicator 80 is
 turned on.

 Columns 10-11 contain 80 to condition the LOCK operation.

 Columns 28-32 contain LOCK to specify the lock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to lock.

 Columns 43-48 contain MARKET to identify the database to lock.
 You must enter both a data set (in columns 33-42) and a database
 in this field to enable locking for the entire database.

 Column 51 is 1 to specify the field length (always use 1). This
 prevents a compiler error.

 Columns 54-55 are blank to specify unconditional locking. If
 the database is already locked by another process, the program
 suspends until the database is unlocked.

 Columns 56-57 contain 11 for the low resulting indicator. An
 indicator is required in this field. When turned on, this
 indicator signals a memory manager error.

 Columns 58-59 contain 12 for the equal resulting indicator. An
 indicator is required in this field. When turned on, this
 indicator signals that the lock request was granted.

3- 51

 11 This line specifies that exception output is performed when
 indicator 0 is turned on.

 12 This line unlocks the database, MARKET, when indicator 80 is
 turned on.

 Columns 10-11 contain 80 to condition the UNLCK operation.

 Columns 28-32 contain UNLCK to specify the unlock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to
 unlock.

 Columns 43-48 contain MARKET to identify the database to unlock.

 Column 51 is 1 for the field length (always use 1).

 Columns 56-59 contain the same indicators used in line 10 and
 they function the same way.

 13 This line specifies the output operation for adding records to
 the D-ACCOUNTS data set.

 Column 15 is E to identify this record as an exception record.

 Columns 16-18 are ADD to add records to the TurboIMAGE data set.

 Columns 32-37 are ADDREC to name the EXCPT Name for the record
 to be added.

The following figure shows how to lock and unlock the data set,
D-ACCOUNTS.

3-: 52

Figure 3-33. Manually Locking and Unlocking a TurboIMAGE Data Set

Comments

 1 This line defines the file, IDACCT.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for CHAINed (random) access.

 Column 66 is A to indicate that records are added to DACCOUNT.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is L to indicate user-controlled manual locking.

 Column 67 is C to specify chained sequential read mode.

 4 This line defines the password for the database.

 Columns 54-65 contain LEVEL WRITER to specify the password,

3- 53

 WRITER. This password establishes a user class identification
 that permits write access to the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMEA-ACCOUNT-NO to specify that the
 data set is D-ACCOUNTS.

 7 This line begins the input record description of the IDACCT
 file.

 8 This line begins the input record description of the DACCOUNT
 file.

 9 This line reads the data set, D-ACCOUNTS, randomly.

 Columns 18-27 contain ACTNO to specify the key field for reading
 the data set.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found for the account number in D-ACCOUNTS.

 Columns 56-57 contain the H0 indicator to avoid a compiler
 warning for the CHAIN operation. The end-of-chain indicator has
 no meaning since records are accessed randomly.

 10 This line locks the data set, D-ACCOUNTS (DACCOUNT), when
 indicator 80 is turned on.

 Columns 10-11 contain 80 to condition the LOCK operation.

 Columns 28-32 contain LOCK to specify the lock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to lock.

 Columns 54-55 contain 10 to specify that indicator 10 be turned
 on if the database, data set or a record in the data set is
 already locked by another process. You can enter a TurboIMAGE
 STATUS array in the File Description Continuation line to get
 additional information about the lock when indicator 10 is
 turned on.

 Columns 56-57 contain 11 for the low resulting indicator. An
 indicator is required in this field. When turned on, this
 indicator signals a memory manager error.

 Columns 58-59 contain 12 for the equal resulting indicator. An
 indicator is required in this field. When turned on, this
 indicator signals that the lock request was granted.

 11 This line specifies that exception output is performed when
 indicator 80 is turned on (indicator 80 is turned on when a
 record is not found for an account number).

 12 This line unlocks the data set, D-ACCOUNTS, when indicator 80 is
 turned on.

 Columns 10-11 contain 80 to condition the UNLCK operation.

3-: 54

 Columns 28-32 contain UNLCK to specify the unlock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to
 unlock.

 Columns 56-59 contain the same indicators used in line 10 and
 they function the same way.

 13 This line specifies the output operation for adding records to
 the D-ACCOUNTS data set.

 Column 15 is E to identify this record as an exception record.

 Columns 16-18 are ADD to add records to the TurboIMAGE data set.

 Columns 32-37 are ADDREC to name the GROUP Name for the record
 to be added.

The following figure shows how to lock and unlock individual records in
the D-ACCOUNTS data set.

Figure 3-34. Manually Locking and Unlocking TurboIMAGE Data Set Records

Comments

 1 This line defines the file, IDACCT.

 2 This line defines the TurboIMAGE data set file, DACCOUNT.

 Column 15 is U to indicate that DACCOUNT is updated.

 Column 16 is C for CHAINed (random) access.

 Column 66 is A to indicate that records are added to DACCOUNT.

 3 This line specifies that DACCOUNT is part of the MARKET
 database.

3- 55

 Columns 54-65 identify MARKET as the TurboIMAGE database that is
 used.

 Column 66 is L to indicate user-controlled manual locking.

 Column 67 is C to specify chained sequential read mode.

 4 This line establishes write access to the database.

 Columns 54-65 contain LEVEL WRITER to specify write access to
 the database.

 5 This line identifies the key field for the data set.

 Columns 54-65 contain ITEM ACCOUNT-NO to specify that the key
 for the data set is ACCOUNT-NO.

 6 This line names the data set to be accessed.

 Columns 54-65 contain DSNAMEA-ACCOUNT-NO to specify that the
 data set is D-ACCOUNTS.

 7 This line begins the input record description of the IDACCT
 file.

 8 This line begins the input record description of the DACCOUNT
 file.

 9 This line reads the data set, D-ACCOUNTS, randomly.

 Columns 18-27 contain ACTNO to specify the key field for reading
 the data set.

 Columns 28-32 contain CHAIN to specify a chained read operation.

 Columns 33-42 specify the name of the TurboIMAGE data set file,
 DACCOUNT.

 Columns 54-55 contain 80 to turn on indicator 80 when a record
 is not found for the account number in D-ACCOUNTS.

 Columns 56-57 contain the H0 indicator to avoid a compiler
 warning for the CHAIN operation. The end-of-chain indicator has
 no meaning since records are accessed randomly.

 10 This line locks individual records in the data set, D-ACCOUNTS
 (DACCOUNT).

 Columns 18-27 contain ACTNO, which contains the key of the
 record to lock in DACCOUNT.

 Columns 28-32 contain LOCK to specify the lock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to lock.

 Columns 54-55 contain 10 for the high resulting indicator. An
 indicator is required in this field.

 Columns 56-57 contain 11 for the low resulting indicator. An
 indicator is required in this field.

 Columns 58-59 contain 12 for the equal resulting indicator. An
 indicator is required in this field.

 11 This line specifies that exception output is performed when
 indicator 80 is turned on (indicator 80 is turned on when a
 record is not found for an account number).

3-: 56

 12 This line unlocks individual records in the data set,
 D-ACCOUNTS.

 Columns 18-27 contain ACTNO, which contains the key for the
 record to unlock in DACCOUNT.

 Columns 28-32 contain UNLCK to specify the unlock operation.

 Columns 33-42 contain DACCOUNT to identify the data set to
 unlock.

 Columns 54-55 contain 10 to specify the high resulting
 indicator. An indicator is required in this field.

 Columns 56-57 contain 11 to specify the low resulting indicator.
 An indicator is required in this field.

 Columns 58-59 contain 12 to specify the equal resulting
 indicator. An indicator is required in this field.

 13 This line specifies the output operation for adding records to
 the D-ACCOUNTS data set.

 Column 15 is E to identify this record as an exception record.

 Columns 16-18 are ADD to add records to the TurboIMAGE data set.

 Columns 32-37 are ADDREC to name the GROUP Name for the record
 to be added.

4-: 1

Chapter 4 Using a Terminal in an RPG Program

This chapter discusses the two ways that you can use a terminal in an RPG
program. The first method, line mode, lets you read and display terminal
data field by field. It is useful when you are reading or displaying
small amounts of data. The second method, full screen mode, is useful
when you have several data fields to process, or when you want the screen
to resemble a paper form of some kind.

This figure compares line mode and full screen mode from a user's point
of view.

Figure 4-1. A Comparison of Line (Character) and Full Screen Modes

Using a Terminal in Line Mode

Line mode is the easiest way to read or display a small number of fields.
For example, line mode can be the simplest way to read a date from the
terminal. The "line mode" sections which follow in this chapter explain
how to read and display data and how to use function keys and message
files in line mode.

When using line mode, you normally use the system-defined files $STDIN
for terminal input and $STDLST for terminal output. $STDIN and $STDLST
are assigned to the devices shown below:

When running in this mode: $STDIN, $STDLST have these device assignments:

Session User terminal

Job Job stream file, job stream list file

When necessary, you can redirect $STDIN and $STDLST to other devices by
using the operating system FILE command.

Reading and Displaying Data

There are two ways to read and display data on a terminal. You can use
the Calculation Specification operations READ and EXCPT or you can use

4- 2

the Calculation Specification operations DSPLY or DSPLM.

The READ/EXCPT method is more flexible but requires more coding. DSPLY
and DSPLM are simpler to use and they justify numeric input data. DSPLM
also displays data from message files.

Using READ and EXCPT. One method of using a terminal to read and display
data is to use the Calculation Specification operations, READ and EXCPT.
You can use one READ operation to read several fields at once. EXCPT
performs exception output to $STDLST.

If you want to reassign $STDIN and $STDLST to other devices, enter the
appropriate operating system FILE equation(s) before running the program.
For example, the following FILE equation creates the DATES file on disc
and redirects $STDLST to it (see Figure 4-2 for an example of how $STDLST
is used in the program),

:FILE STDLIST=DATES;SAVE;DEV=DISC;REC=-10,25,F,ASCII;DISC=25

Figure 4-2 shows how to use READ and EXCPT to read data from and write
data to a terminal. The File Description Specifications assign the files
INPUT and OUTPUT to the system-defined files, $STDIN and $STDLST,
respectively. The READ operation reads a date in the format, MMDDYY,
from the terminal. The date is converted to a YYMMDD format and this
converted date is displayed using EXCPT (exception output).

Figure 4-2. Using READ and EXCPT to Read and Display Terminal Data

Comments

 1 This line defines the input file, INPUT, and assigns it to the
 system-defined file, $STDIN.

 2 This line defines the output file, OUTPUT, and assigns it to the
 system-defined file, $STDLST.

 3 This line begins the input record description for the file,
 INPUT.

 4 This line reads 6 characters from the terminal and saves them in
 the field, MMDDYY.

4-: 3

 Columns 58-59 direct RPG to turn on the LR indicator when the
 user enters an end-of-data signal (:EOD or :).

 5 This line turns on the resulting indicator 80.

 6 This line performs exception output (lines 7 and 8) when the
 user enters a valid date.

 7 This line begins the output record description for the file,
 OUTPUT.

A Sample Program Using READ and EXCPT

Figure 4-3 lists a program that updates an TurboIMAGE data set using READ
and EXCPT. The data set that is updated is M-SOURCE (see the schema for
this data set in Figure 3-21). The program prompts a terminal user to
enter a source code (SRCCDO). It then reads the source code record in
M-SOURCE. If the record exists, the source description field is updated.
If the record does not exist, a new record is added for that source code.
The next section, "Running the Sample Program," shows what a typical
display looks like when the program is executed.

The program in Figure 4-6 is identical to that shown in Figure 4-3,
except that Figure 4-6 uses DSPLY instead of READ/EXCPT. Comparing these
programs should help you to understand the differences between READ/EXCPT
and DSPLY/DSPLM.

4- 4

Figure 4-3. Using READ and EXCPT to Update the M-SOURCE Data Set

4-: 5

Figure 4-3. Using READ and EXCPT to Update the M-SOURCE Data Set (Continued)

4- 6

Figure 4-3. Using READ and EXCPT to Update the M-SOURCE Data Set (Continued)

4-: 7

Figure 4-3. Using READ and EXCPT to Update the M-SOURCE Data Set (Continued)

Comments

 1 This Header Specification enables buffer-checking for all files.

 Column 28 contains X to enable full buffer-checking for the
 files.

 2 This line defines the terminal file, STDIN.

 Columns 20-23 contain 30 to provide for the longest input field.

 3 This line defines the terminal file, STDLIST.

 Columns 20-23 contain 70 to provide enough space for the longest
 display line. RPG automatically pads with blanks to the end of
 the line.

 4 This line defines the STDIN field, ANSWER.

 5 This line reads data from the terminal. The user enters either
 a source code or an E to end the program.

 This READ operation does not turn off indicators set by the
 previous READ. Indicator 01 must be turned off by a Calculation
 Specification to prevent last record output when E in column 1
 turns on indicator 09.

 6 This line performs exception output when a record is found in
 M-SOURCE.

 7 This line reads data from the terminal and saves it in the
 field, ANSWR.

 8 This line performs exception output to the terminal. The
 message contained in the CRT array, ----- RECORD UPDATED -----,
 is displayed.

 9 This line begins the output record description for records that
 are added to M-SOURCE. New records are written when indicators
 01 and 60 are turned on.

 10 This line begins the output record description for records that

4- 8

 are updated in M-SOURCE. Records are updated when indicator 01
 is turned on and indicator 60 is not turned on.

 11 This line begins the output record description for displaying
 the source description. This record is displayed when an EXCPT
 CRTMSG calculation is executed and indicator 81 is turned on.

 12 This line begins the output record description for prompting the
 user to enter data. This record is displayed when an EXCPT
 CRTMSG calculation is executed.

Running the Sample Program

Figure 4-4 shows what a terminal dialogue might look like when the sample
program in Figure 4-3 is executed. A user at a terminal is updating
source codes 111A and 112A. Two updates are required for source code 112A
because the user made a mistake on the first try. The lines that the
user enters are shaded.

Figure 4-4. Running the M-SOURCE Update Program

Using DSPLY and DSPLM. The Calculation Specification operations, DSPLY
and DSPLM, are alternative ways to read and display data using the
terminal. They have two advantages over READ/EXCPT (see the section
titled "Using READ and EXCPT"). First, numeric input data is stored
right justified and zero-filled; users do not have to enter leading zeros
for these fields. Second, one operation (either DSPLY or DSPLM) is used
for both reading and displaying data.

DSPLY and DSPLM are used the same way except for the Factor 1 Field. For
DSPLY,

4-: 9

Factor 1 contains either a variable or constant. For DSPLM, Factor 1
contains a message identification. DSPLM displays messages from a User
Message Catalog (see the section titled "Using Message Files" for more
information on how to display messages from a User Message Catalog file).

Figure 4-5 shows how to use DSPLY. A date in the format, YYMMDD, is read
from the terminal. This date is converted to MMDDYY format and
displayed.

Figure 4-5. Using DSPLY to Read and Display Terminal Data

Comments

 1 This line defines the output file, OUTPUT.

 Columns 40-46 contain the device class name, $STDLST.

 2 This line displays the prompt, YYMMDD. It then reads 6
 characters from the terminal and saves them in the field,
 YYMMDD.

 3 The line converts the date into a MMDDYY format. For example,
 when 890318

 is multiplied by 100.0001, the result is 89031889.0318. When
 saved in the result field, this number becomes 031889.

 4 This line displays the converted date field, MMDDYY, on the
 terminal.

A Sample Program Using DSPLY

Figure 4-6 lists a program that updates an TurboIMAGE data set using
DSPLY. The data set that is updated is M-SOURCE (see the schema for this
data set in Figure 3-21). The program gets a source code (SRCCDO) from
the terminal user, then reads the corresponding record in M-SOURCE. If
the record exists, the source description field is updated. If the

4- 10

record does not exist, a new record is added for that source code.

The update program in Figure 4-6 is the same as that shown for READ/EXCPT
in Figure 4-3. Comparing these programs should help to clarify the
differences between READ/EXCPT and DSPLY.

Figure 4-6. Using DSPLY to Update the M-SOURCE Data Set

4-: 11

Figure 4-6. Using DSPLY to Update the M-SOURCE Data Set (Continued)

4- 12

Figure 4-6. Using DSPLY to Update the M-SOURCE Data Set (Continued)

Comments

 1 This line prompts the user to enter a source code. It then
 reads that source code into the field, SRCCDO.

 2 This line displays the third element of the array, CRT. This
 element is a heading line for the source description.

 3 This line displays the source description (SRCDS) retrieved from
 the M-SOURCE data set.

 4 This line displays the second element in the array, CRT. This
 element prompts the user to enter a new description. Then the
 new description is saved in the field, SRCDSO.

 5 This line displays the fourth element in the array, CRT. This
 element acknowledges that the M-SOURCE record is updated.

Using Function Keys

This section explains how to use function keys (F1 through F8) in an
RPG program. It discusses how to sense them when they are pressed on the
keyboard. If you want to display labels for the function keys, see the
next section titled "Displaying Function Key Labels."

The Calculation Specifications shown in Figure 4-7 use F8 to end a
program. This function key is activated at the beginning of the
Calculation Specifications section. When the user presses it, the LR
indicator is turned on and the program ends. (See Figure 4-12 for the
listing of an entire program that uses function keys.)

4-: 13

Figure 4-7. Using the Function Keys

Comments

 1 This line enables function key F8 (SET F@ enables all of the
 function keys).

 2 This line turns on the LR indicator when function key F8 is
 pressed.

 3 This line directs program execution to the END tag when the LR
 indicator is turned on.

Displaying Function Key Labels

This section explains how to display function key labels. If you're
using function keys in a program (function keys are discussed in the
previous section) you may want to display labels for them also. Function
key labels are displayed at the bottom of the screen and are highlighted.

Figure 4-8 shows how to activate function keys 4, 7 and 8 (F4 , F7 and
 F8) and how to display their labels. When these function key labels
are displayed, they look like this:

4- 14

Figure 4-8. Displaying Function Key Labels

Comments

 1 This line defines the array, KEYLBL, that contains the function
 key label text. There are 8 labels in the array, each label
 containing 16 characters.

 2 This line enables the function keys F4 , F7 and F8 . It
 also displays the function key labels saved in the KEYLBL array.

 3 This line is the last line of Output Specifications. Following
 this line are the contents of the function key labels array
 (KEYLBL).

Using Escape Sequences

Escape sequences let you perform many terminal-handling functions for
which there is no corresponding RPG language facility. For example, you
can use escape sequences to set graphics mode, move the cursor and reset
the terminal.

The Calculation Specification operation, DSPLY, can be used to "display"
escape sequences. You enter an escape sequence literal in the Factor 1
Field of a Calculation Specification. Figure 4-9 shows how to use escape
sequences to home the cursor, clear the screen and release a memory lock.
Instead of entering the escape sequences as literals in your program, you
can enter them into a message file (see the next section for information
on message files).

 1 2 3 4 5 6 7
 678901234567890123456789012345678901234567890123456789012345678901234

 E* FUNCTION KEY LABEL ARRAY
 E* KEYLBL 1 8 16

C .
C .

 C .
 C KEYLBL SET

O .
O .

 O
 KEYLBL ARRAY

ADD SRC CODE

DEL SRC CODE
CHG DESCR .

 1

 2

 3

 **

ADD
SRC CODE

DEL
SRC CODE

CHG
DESCR

4-: 15

.

Figure 4-9. Using Escape Sequences

Comments

 1 This line displays the escape sequences for homing the cursor
 and clearing the screen. The escape character is indicated here
 by a ^.

 2 This line displays the escape sequence for performing a memory
 lock. The escape character is indicated here by a ^.

Using Message Files

A message file is a convenient place to keep the text of messages
displayed in an RPG program. You can alter the text of these messages
when required without recompiling your program. Message files in RPG are
called User Message Catalog files.

To use a message file, you must first create a source file containing the
message text. Then, you use either MAKECAT or GENCAT to convert the
source file to a User Message Catalog file. The message files created by
MAKECAT and GENCAT are different. GENCAT message files have a compressed
format, requiring less disc space, and they can be used with the Native
Language Support (NLS) System. Although MAKECAT and GENCAT generate
message files having different physical formats, you access messages in
them the same way within an RPG program.

Creating a Message File. This section explains how to create a message
source file and how to convert it into a User Message Catalog file using
GENCAT. For details on using GENCAT, see the Native Language Programmer's
Guide . For information on using MAKECAT to convert the file, see the
Message Catalogs Programmer's Guide .

Figure 4-10 gives the terminal dialogue for creating a message source
file using EDITOR and for executing GENCAT. (The lines that are shaded
are the ones that a user enters.) Although this example uses EDITOR, you
can use any editor that produces a standard text file. You organize
messages into sets (see the $SET lines). Normally, sets contain similar
kinds of messages. Within sets, you enter message text and associated
message numbers. When a message is long, enter it according to how you
want to display it. To display the message as a continuous string of
characters, end message text lines with &. If you want to format the
lines that are displayed, enter each line of text as you want it
displayed, and end each line with a %.

As shown in Figure 4-10, GENCAT converts the message source file, CAT4,
into a User Message Catalog file. It is saved with the name, CATALOG.
(All User Message Catalog files have the name, CATALOG.)

4- 16

.
Figure 4-10. Creating a User Message Catalog File

4-: 17

Reading a Message File. This section explains how to use the Calculation
Specification operation, DSPLM, to read and display messages contained in
a User Message Catalog file (see the previous section for information on
how to create a User Message Catalog file).

Although this section does not show how to use the Calculation
Specification operation, MSG, you can use it also to access messages in a
User Message Catalog file. Instead of displaying a message, MSG saves it
in a field specified by the program. MSG is useful when you need to
tailor a message before displaying it.

Figure 4-11 shows how the messages shown in Figure 4-10 are accessed and
displayed using DSPLM. You enter a message identification number with
DSPLM that identifies a message in the User Message Catalog file. RPG
retrieves that message and displays it. RPG assumes that the User
Message Catalog name is CATALOG. If the file has another name, enter a
system FILE command before running the program that equates the name to
CATALOG. For instance, to equate the name, CAT4, enter this file
equation,

FILE CATALOG=CAT4

Figure 4-11. Using a User Message Catalog File

Comments

 1 This line displays message 1:1 from the User Message Catalog.

 Columns 18-27 identify the message (1:1) in the User Message
 Catalog file (see line 2 in Figure 4-10). The identification
 number consists of two parts. The first part is the message
 number (1) within the set and the second part is the set number
 (1).

 Columns 28-32 contain DSPLM to specify that the data to be
 displayed on the terminal comes from a User Message Catalog
 file.

 2 This line displays message 2:1 from the User Message Catalog and
 accepts a date entered by the user.

 Columns 18-27 identify the message (2:1) in the User Message
 Catalog file. (See line 1 for an explanation of the message
 identification.)

 Columns 28-32 contain DSPLM to specify that the data to be
 displayed on the terminal comes from the User Message Catalog
 file.

4- 18

 Columns 43-48 contain the name of the field, MMDDYY, where the
 user-entered date is stored.

 3 This line displays message 10:1 from the User Message Catalog.

 Columns 18-27 identify the message (10:1) in the User Message
 Catalog file. (See line 1 for an explanation of the message
 identification.)

 Columns 28-32 contain DSPLM to specify that the data to be
 displayed on the terminal comes from the User Message Catalog
 file.

A Sample Program Using Message Files. Figure 4-12 lists a program that
uses the User Message Catalog file created in Figure 4-10. This message
file contains user prompts and informational messages.

The program updates the TurboIMAGE data set, M-SOURCE. (see the schema
for this data set in Figure 3-21). The program gets a source code
(SRCCDO) from the terminal user, then reads the corresponding record in
M-SOURCE. If the record exists, the source description field is updated.
If the record does not exist, a new record is added for that source code.
Users delete records by pressing F2 and end the program by pressing F8
. (After entering data or pressing a function key, users must press
RETURN .)

4-: 19

.
Figure 4-12. Updating the M-SOURCE Data Set Using a User Message Catalog File

and the Function Keys

4- 20

.
Figure 4-12. Updating the M-SOURCE Data Set Using a User Message Catalog File

and the Function Keys (Continued)

4-: 21

Figure 4-12. Updating the M-SOURCE Data Set Using a User Message Catalog File
and the Function Keys (Continued)

Comments

 1 This line suppresses the display of DSPLY literals and causes
 all terminal input to be entered on a separate line on the
 screen.

 2 This line enables function keys F2 (delete a record) and F8
 (end).

 3 This line turns F2 off. (You must specifically turn off
 function keys.)

 4 This line displays message 01:3 from the User Message Catalog
 file (see line 9 in Figure 4-10).

 5 This line ends the program when the user presses F8 .

 6 This line displays message 03:3 from the User Message Catalog
 file (see line 11 in Figure 4-10).

 7 This line displays message 02:3 from the User Message Catalog
 file (see line 10 in Figure 4-10).

 8 This line compares SRCDSO (source description) to blanks when
 F2 is not turned on.

 Columns 9-11 contain NF2 to perform the compare when F2 is not
 pressed. (SRCDSO is blank even when F2 is pressed.)

 9 This line displays message 04:3 from the User Message Catalog
 file when F2 is not pressed (see line 12 in Figure 4-10).

 10 This line displays message 05:3 from the User Message Catalog

4- 22

 file when F2 is pressed (see line 13 in Figure 4-10).

 11 This line describes the output record format for a delete
 operation. A record is deleted in M-SOURCE when the user
 presses F2 .

Using a Terminal in Full Screen Mode

When you have several fields of data to process using a terminal, you may
find it easier to work in full screen mode rather than line mode. Full
screen (or block) mode lets you read and display entire screens of data
at one time.

There are three software tools that let you use the terminal in full
screen mode; VPLUS, RPG Screen Interface (RSI) and the RSI CONSOLE
facility. VPLUS is a general-purpose forms management system that
interfaces with many programming languages. RSI is an RPG utility that
creates forms similar to those used on IBM S/34 and S/36. RSI CONSOLE
facility lets you use certain RSI functions for processing input files
only (CONSOLE files are ideal for simple data entry applications).

The following list compares the features of VPLUS and RSI:

VPLUS RSI

Uses actions and events to manage Uses standard RPG specifications to manage
input/output input and output

Can be used with other languages and Most easily used with RPG programs
applications

Does not let you use User Message Catalog Lets you use User Message Catalog files for
files for messages messages

Cannot dynamically change screen attributes Can dynamically change screen attributes
(for example, blinking and inverse video)

No automatic conversion to VPLUS Converts IBM S and D Specifications to
 RSI-compatible format

No automatic conversion to VPLUS Automatically generates RPG program
 specifications from RSI form files

This chapter explains how to use VPLUS, RSI and RSI CONSOLE files in RPG
programs. To help you compare VPLUS and RSI, the same program example is
used for each (the example differs only in how terminal input and output
is handled). The last three section in this chapter, starting with
"Enabling the BREAK Key," describe RPG features that you can use with
both VPLUS and RSI.

NOTE Although you can use most VPLUS features in an RPG program, some
 are not available. This chapter and the HP Reference Manual
 describe the features that are available when you use the RPG
 Interface to VPLUS.

Using VPLUS

When you use VPLUS in an RPG program, follow these procedures:

 * Create a VPLUS form

 Before using VPLUS to process data full screen mode, use the FORMSPEC
 facility of VPLUS to create a screen form. When you create a form,
 you determine the layout of fields on the screen and specify the type
 of data each field holds. You can also enter titles and field
 display characteristics.

 * Define a VPLUS form

4-: 23

 When you're finished designing the VPLUS form, enter the following
 specifications in the RPG program to define the form.

File Description Specifications -

 Enter the specifications for a terminal file. This is the forms file
 you created with FORMSPEC. Specify that it is a WORKSTN file.

Input Specifications -

 Enter input records describing the fields in the VPLUS form. Also
 enter one or more records for processing VPLUS event codes. (You use
 event codes to identify the type of input the user entered.)

Output Specifications -

 Define an output record describing the VPLUS form and one describing
 the message window (the message window is used for displaying
 one-line messages at the bottom of the screen). You may also need to
 define a separate output record for processing VPLUS action codes.
 (You use action codes to specify the VPLUS operation to perform.)

 * Perform a VPLUS action or return a VPLUS event

Calculation Specifications -

 For each VPLUS operation you want to perform, enter Calculation
 Specifications to identify and execute it as follows:

 1. Enter a MOVE operation to move the VPLUS action code (for the
 operation you want to perform) to the first field of the
 terminal file's output record.

 VPLUS has several action codes that you can use. Here are the
 ones that are discussed in this chapter:

Action code: Description:

 CHGNXT Changes VPLUS forms.

 EDITS Performs the data edits specified in
 FORMSPEC. VPLUS returns an edit error
 count to the program.

 GETDTA Moves data from the VPLUS buffer to the
 program's input record.

 GETNXT Gets the next form from the VPLUS forms
 file.

 INIT Initializes form fields according to the
 edits specified in FORMSPEC.

 PUTDTA Moves data from the terminal output record
 to the VPLUS buffer.

 RDTERM Reads screen data into the VPLUS buffer.

 SHOMSG Displays a message in the message window.

 For example, the operation MOVEL "GETDTA" ACTION moves the
 GETDTA action code to the output field, ACTION.

 2. Once you move the VPLUS action code to the output record,
 perform exception output (EXCPT operation) for that record.
 VPLUS performs the action and returns control to your program.

 3. To complete input actions (for example, GETDTA), enter a READ

4- 24

 operation for the terminal file. VPLUS returns an event code
 in the first field of the terminal input record. You use this
 event code to identify the type of input received. Here are
 some of the codes that may be returned:

Event code: Description: \00\The user entered data and
 pressed ENTER .

 01-08 The user pressed F1 through F8 .

 09 An EDITS action was performed and VPLUS
 returned the number of fields that failed
 the VPLUS edits.

 For example, if you performed a GETDTA action, you follow it
 with READ TERMINAL operation.

The VPLUS sections in this chapter explain how to perform the VPLUS
procedures introduced above. They do not cover all of the VPLUS actions
or the ways to use VPLUS, but they should give you a good start. See the
HP RPG Reference Manual for rules on using the RPG interface to VPLUS.

Many of the following VPLUS sections in this manual use examples taken
from the program listed in the section "A Sample Program Using VPLUS."
You may find it helpful to refer to this program to get a clear idea of
how the examples can be used together to form a complete program.

Creating a VPLUS Form. Before you can use VPLUS in a program, you must
create a screen form using the VPLUS facility, FORMSPEC. Although this
section shows a typical screen created by FORMSPEC, it does not explain
how to create it. For instructions on how to use FORMSPEC, see the Data
Entry and Forms Management System VPLUS/3000 manual.

Figure 4-13 shows what a FORMSPEC screen form looks like. Titles,
captions and headings are capitalized. Fields, used for entering data,
are enclosed in brackets.

Figure 4-13. Creating a VPLUS Form Using FORMSPEC

4-: 25

Figure 4-14 shows what the screen form (in Figure 4-13) looks like when
displayed from an RPG program. Input fields are highlighted.

The line at the bottom of the screen is the message window. It is used
to display one-line messages.

Figure 4-14. Using a VPLUS Form Within an RPG Program

The form shown in Figure 4-14 is used in examples throughout the VPLUS
sections in this chapter. The form is used to update the D-ACCOUNTS data
set (see the schema for the MARKET database in Figure 3-23.

Defining a VPLUS Form. To use a VPLUS form in an RPG program, enter a
File Description Specification for it, defining it as a WORKSTN file.
Also enter Input and Output Specifications that describe the form as well
as the action and event records that let you communicate with VPLUS. Only
define those fields on the form that you're actually using in the
program. You can get the field starting and ending locations from the
event and action record formats described in the HP RPG Reference Manual
and the forms file listing produced by FORMSPEC.

Figure 4-15 shows how to define a VPLUS form. The form used is the one
in Figure 4-14. Notice that there are two input records for the file,
TERMINAL. The first is used for processing event code 09. (To review
events, see the section titled "Using VPLUS.") The second input record
defines the VPLUS form fields used in the program. There are three
output records. The first is used to initiate VPLUS actions other than
reading data from the screen. (To review VPLUS actions, see the section
titled "Using VPLUS.") The second output record is used for displaying
screen data and the third defines the fields in the message window (see
the section "Displaying VPLUS Messages" for information about the message
window).

4- 26

Figure 4-15. Defining a VPLUS Form

4-: 27

Figure 4-15. Defining a VPLUS Form (Continued)

Comments

 1 This line defines a WORKSTN (terminal) file.

 Column 15 is U to specify update processing.

 Column 16 is D to specify that this is a demand file.

 Column 19 is V to specify variable length records (you must use
 V for terminal files).

 Columns 24-27 specify that the record length is 256 characters
 (the record length must be at least 20 characters longer than
 the longest record in the file).

 Columns 40-46 specify that the file is a WORKSTN file.

 2 This line identifies the VPLUS forms file used in the program.

4- 28

 Column 53 is K to specify that this is a File Description
 Continuation line.

 Columns 54-59 specify that this line is a FORMS File Description
 Continuation line.

 Columns 60-65 contain the name of the forms file, FACCOUNT.
 Figure 4-14 shows what this form looks like.

 3 This line defines input record type 09. It is used to process
 event code 09.

 Columns 21-24 specify that the record core in columns 1-2 of
 each record is 09.

 4 This line defines the field, NUMBER. NUMBER contains the number
 of edit errors returned by VPLUS.

 Columns 69-70 contain 13 to turn on indicator 13 when there are
 no edit errors.

 5 This line defines input record type 01. This record describes
 the VPLUS screen form and is used to read data from the
 terminal.

 6 This line defines the field, DATALN, that contains the number of
 bytes read from the screen.

 7 This line starts the descriptions of the fields in the VPLUS.
 form.

 8 This line defines the output record that is written when an
 EXCPT V$ACTN calculation is executed. This may occur, for
 example, when you request VPLUS to edit screen data.

 9 This line defines the field, ACTION, which contains the VPLUS
 action code.

 10 This line defines the output record to be written when an EXCPT
 V$DATA calculation is executed. This may occur, for example,
 when you want to display a form containing data.

 11 This line defines the field, ACTION, which contains the VPLUS
 action code.

 12 This line defines the field, DATALN, which contains the number
 of bytes of data that VPLUS displays on the screen.

 13 This line starts the field description for the VPLUS form.

 14 This line starts the description of the fields in the message
 window. See the section "Displaying VPLUS Messages" for
 information about message window fields.

Displaying an Initialized VPLUS Form. This section explains how to load
a form from a VPLUS forms file, initialize it with FORMSPEC values and
display it. You must display an initialized form before a user can enter
data from the terminal.

The discussion in this section assumes that you are familiar with VPLUS
action and event codes. To review these topics, see the third section
titled, "Using VPLUS."

Figure 4-16 shows the steps for displaying an initialized VPLUS form.
(Refer to Figure 4-15 for descriptions of the terminal input and output
records used here.) The first step in displaying an initialized VPLUS
form is to set appropriate values in the message window fields, DATALN
and ENHANC. The second step is to enter the VPLUS action, GETNXT, to

4-: 29

retrieve the form from the VPLUS forms file. The third step is to enter
the VPLUS action, INIT, to place FORMSPEC values in the form fields. The
fourth step is to enter the VPLUS action, SHOMSG, to clear the VPLUS
message window. And the last step is to use the VPLUS action, SHOW, to
display the form with its initial values.

Figure 4-16. Displaying a VPLUS Form

Comments

 1 This line initializes the DATALN field in the message window
 record with the screen length. This operation is done once,
 when the form is first displayed.

 2 This line initializes the message window field, ENHANC, with the
 character J. J is inverse video, half bright. ENHANC is
 initialized once, when the form is first displayed.

 3 This line enters the VPLUS action, GETNXT, into the ACTION
 output field. GETNXT retrieves the form from the forms file and
 places it into the VPLUS buffer.

 4 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 5 This line enters the VPLUS action, INIT, into the ACTION output
 field. INIT initializes the VPLUS buffer fields with FORMSPEC
 values.

 6 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 7 This line resets the message array pointer, M, to 3. Assuming
 that the third element of the message array is a blank line, the
 window is cleared.

4- 30

 8 This line enters the VPLUS action, SHOMSG, into the ACTION
 output field. SHOMSG displays a message in the VPLUS message
 window.

 9 This line performs exception output for the record associated
 with EXCPT Group V$MESG.

 10 This line enters the VPLUS action, SHOW, into the ACTION output
 field. SHOW displays the form in the VPLUS buffer.

 11 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

Reading a VPLUS Form. Once you display an initialized VPLUS form (see
the previous section), a user can start entering data into it from the
terminal. This section explains how to read that data into an RPG
program.

Reading screen data involves three steps. The first step is to read
screen data into the VPLUS buffer. The second step is to direct VPLUS to
edit the data according to the edit values entered with FORMSPEC. The
last step is to move the screen data from the VPLUS buffer to fields in
the program.

Figure 4-17 shows how to perform these steps. (Refer to Figure 4-15 for
a description of the terminal input record associated with EXCPT Group
V$DATA.) You read screen data into the VPLUS buffer by using the VPLUS
action, RDTERM, followed by a READ operation (READ returns the event code
for the action). To perform the second step, editing the data, enter the
VPLUS action, EDITS, and a READ operation (READ returns the event code
for the action). VPLUS does the editing specified in FORMSPEC. If you do
not want VPLUS to perform the edits or you want to edit the data
yourself, you may omit this step. When VPLUS finishes the edits and
returns to the program, it gives you a count of the number of errors. If
there are errors, you redisplay the VPLUS form so that the user can
correct mistakes (in this figure, the SHOW action in line 3 is executed).
To perform the last step, moving data from the VPLUS buffer to the
program's input record, enter the VPLUS action, GETDTA, followed by a
READ operation (READ returns the event code for the action).

4-: 31

Figure 4-17. Reading a VPLUS Form

.

Figure 4-17. Reading a VPLUS Form (Continued)

4- 32

Comments

 1 This line defines the input record for processing event code 09
 (VPLUS edit errors).

 2 This line defines the field, NUMBER, which contains a count of
 the VPLUS edit errors.

 3 This line displays the VPLUS form on the terminal. The SHOW
 action is executed after the EDITS action (see line 8). It
 redisplays the form so that a user can correct edit errors.

 4 This line enters the VPLUS action, RDTERM, into the output
 field, ACTION. RDTERM retrieves data from the terminal and saves
 it in the VPLUS buffer.

 5 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 6 This line returns the event code for the RDTERM action.

 Columns 28-32 contain READ to perform a read to the TERMINAL
 file.

 7 This line directs program execution to RDSCR7 when a user
 presses a function key instead of entering data. (when F0 is
 turned on, the user entered data and pressed ENTER .)

 8 This line enters the VPLUS action, EDITS, into the output field,
 ACTION. EDITS performs the field edits specified by FORMSPEC.

 Columns 33-42 contain EDITS to specify the VPLUS action.

 9 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 10 This line returns the event code for the EDITS action.

 11 When event 09 occurs (an edit error), this line directs program
 execution to RDSCR1. RDSCR1 redisplays the form so that a user
 can enter corrections.

 12 This line enters the VPLUS action, GETDTA, into the output
 field, ACTION. GETDTA moves data fields from the VPLUS buffer to
 the program.

 13 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 14 This READ operation moves fields in the VPLUS buffer to the
 corresponding fields in the terminal input record.

 15 This line defines the output record associated with EXCPT Group
 V$ACTN.

 16 This line defines the field, ACTION, which contains the VPLUS
 action code.

Processing VPLUS Form Data. Once you retrieve screen data from the VPLUS
buffer with a GETDTA action followed by a READ operation, the data is
moved to the appropriate input record in the program. You process the
data fields in the input record as you would normally.

Moving Data to a VPLUS Form and Displaying It. This section explains how
to display data that is calculated in the program or that comes from
sources such as a disc file. For example, you may want to display master
file information in response to a query.

4-: 33

Figure 4-18 shows how to move disc file information to a terminal file
output record then display it using a VPLUS PUTDTA action.

Figure 4-18. Moving Data to a VPLUS Form and Displaying It

Comments

 1 This line reads the TurboIMAGE data set file, DACCOUNT.
 (Information from this data set will be displayed on the
 terminal.)

 2 This line begins the MOVE operations that move the data set
 fields to the terminal output record. (See Figure 4-15 for a
 description of the terminal output record associated with
 indicator 85.)

 3 The line enters the VPLUS action, PUTDTA, into the output field,
 ACTION. PUTDTA moves the terminal output record fields to the
 VPLUS buffer.

 4 This line performs exception output for the record associated
 with EXCPT Group V$DATA.

 5 This line enters the VPLUS action, SHOW, into the output field,
 ACTION. SHOW displays the form in the VPLUS buffer.

 6 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

Displaying Messages with VPLUS. When you use VPLUS, you can display
one-line messages in the message window located at the bottom of the
display. VPLUS automatically displays FORMSPEC data field prompts and
edit errors in the window, but occasionally you may need to use the
window for other purposes.

Figure 4-19 shows how to display a message in the message window. The

4- 34

example assumes that the message, SELECT MODE WITH FUNCTION KEY, is
placed in the first element of the array, MSG. It also assumes that the
message window fields, MSGLEN and ENHANC, are already initialized.

Figure 4-19. Displaying Messages in the VPLUS Message Window

Comments

 1 This line sets the index of the MSG array tp 1.

 Columns 43-58 contain the name of the index field, M.

 2 This line places the VPLUS action, SHOMSG, into the first field
 of the message window record. SHOWMSG displays messages in the
 VPLUS message window.

 3 This line performs exception output for the record associated
 with EXCPT Group V$MESG. This is the message window record.

 4 This line begins the message window record description.

 5 This line specifies that the window message is in the array,
 MSG. Since the value of M is one, the first element of the array
 is displayed in the message window.

Specifying the VPLUS Error Message Display Interval. RPG run-time error
messages related to VPLUS files (except edit errors or messages you
display in the message window) are displayed for 3 seconds in the message
window.

You can change the time interval, if necessary, by using column 51 of the
File Description Specification.

4-: 35

Figure 4-20. Specifying the Error Message Display Interval

Comments

 1 This line defines the terminal file, TERMINAL.

 Column 51 contains the number of seconds (8) to pause when
 displaying errors. You can enter a number from 0 to 9. If you
 enter 0, all messages are suppressed.

Changing VPLUS Forms. This section tells you how to display a second
VPLUS form in a program.

The number of forms that you can use is limited only by the number of
forms that can be placed in a forms file. The second and successive
forms are retrieved differently from the first. The first form displayed
in a program is retrieved using the GETNXT action. To retrieve
additional forms, use the CHGNXT action instead of GETNXT. Also enter
Input and Output record descriptions for the new form(s).

Figure 4-21 shows how to retrieve a form from the forms file, FORM2.
(The form is only retrieved, not displayed.) For instructions on how to
display the form, see the section "Displaying an Initialized VPLUS Form."
You display a form the same way shown in that section except that you
omit the GETNXT action. You also perform exception output for the new
form rather than the original.

See the HP RPG Reference Manual for details about the fields used in the
TERMINAL action output record.

4- 36

Figure 4-21. Changing a VPLUS Form

Comments

 1 This line sets the repeat/append code (RPTAPP) code to 0. Code
 0 does not repeat the current form.

 2 This line sets the freeze/append code (FRZAPP) code to 0. Code
 0 clears the current form before displaying the next one.

 3 This line enters the name of the next form (FORM2) in to the
 output field, NXTFRM.

 4 This line enters the VPLUS action, CHGNXT, into the action
 field. CHGNXT directs VPLUS to retrieve another forms file and
 place it into the VPLUS buffer.

 5 This line performs exception output for the record associated
 with EXCPT Group V$ACTN.

 6 This line begins the description of the TERMINAL output record
 associated with EXCPT Group V$ACTN.

Using Function Keys with VPLUS. This section explains how to use
function keys and function key labels with VPLUS.

You can use function keys to turn on record identification indicators
instead of using event codes to do this. (For each event code returned
by VPLUS, a corresponding function key is turned on also.) For example,
when the user enters data and presses ENTER , VPLUS returns event code
00 and turns on F0. An advantage of using function keys is that they are
automatically reset for each event. Indicators set by event codes are
not reset by READ operations and can cause erroneous results if you do
not use them properly in the program.

Figure 4-22 shows how to enable the function keys and how to use them to
identify the type of data the user enters on the terminal.

4-: 37

Figure 4-22. Using Function Keys with VPLUS

Comments

 1 This line defines the terminal file, TERMINAL.

 Column 50 contains L to enable the function key labels.

 2 This line defines the function key label array, LBL. There are 8
 labels in array, each label containing 16 characters.

 3 This line enables all function keys.

 4 This line uses the setting of F1 to direct program execution.
 The subroutine, ADD, is executed when F1 is turned on.

 5 This line uses the setting of function key F0 to direct program
 execution. Program execution goes to RDSCR1 when F0 is turned
 on. F0 is turned on when a user enters data into the VPLUS form
 and then presses ENTER .

A Sample Program Using VPLUS. This section lists a complete program that
processes screen data using VPLUS forms.

The program in Figure 4-23 updates the D-ACCOUNTS data set. This data
set keeps customer information such as account number, name and address.
The data set is part of the TurboIMAGE MARKET database whose schema is
shown in Figure 3-23. Users access customer records by the customer's
account number and select the type of update operation by pressing one of
the function keys, F1 , F2 , F3 or F5 (add, change, query, delete).
The program uses VPLUS to handle all screen input and output.

4- 38

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS

4-: 39

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4- 40

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4-: 41

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4- 42

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4-: 43

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4- 44

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4-: 45

.
Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4- 46

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4-: 47

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4- 48

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

4-: 49

Figure 4-23. Program to Update D-ACCOUNTS Using VPLUS (Continued)

Comments

 1 This line defines the terminal as a WORKSTN file and enables the
 function keys.

 2 This line identifies the VPLUS forms file, FACCOUNT, that is
 used.

 3 This line associates event code 09 with the input record
 indicator 09. Event code 09 reports edit errors to the program.

 4 This line describes the field, NUMBER, which contains the edit
 error count.

 5 This line begins the description of the record that handles all
 terminal input except edit error counts (line 4).

 6 This line executes the ADD subroutine when the user presses F1
 .

 7 This subroutine checks to see if the user pressed a valid
 function key (F1 , F2 , F3 , F5 or F8).

4- 50

 8 This line begins the subroutine that retrieves the form from the
 forms file.

 9 This subroutine displays the VPLUS form retrieved in the
 subroutine, GETSCR.

 10 This line begins the operations that check for VPLUS edit
 errors.

 11 This subroutine displays messages in the VPLUS message window.

 12 This is the output record for displaying VPLUS form data.

 13 This is the output record for displaying messages in the VPLUS
 message window.

 14 This is the last line of Output Specifications. Following it
 are the values for the MSG and LBL arrays.

Using a Terminal in Full Screen Mode (Continued)

Using the RPG Screen Interface (RSI)

RSI is a unique forms handling facility designed to work exclusively with
RPG. In many cases, you can have RSI perform screen handling
automatically during normal logic cycle processing. If you're using the
RSI file for a simple input application, you may prefer to use RSI
CONSOLE files instead of the regular RSI files that use the full
capabilities of RSI (for information on RSI CONSOLE files, see "Using RSI
CONSOLE Files").

To use RSI in an RPG program, perform the following steps (the steps are
discussed in detail in the following sections in this chapter):

 * Create the RSI form

 Before using RSI to process data in full screen mode, use SIGEDITOR
 (see the RPG Utilities Reference Manual) to create a screen form.
 When creating the form, you specify headings and titles, where the
 data fields are located on the screen, the type of data each field
 holds and which function and command keys are used.

 * Define an RSI form

 When you use SIGEDITOR to define an RSI form, you can have SIGEDITOR
 generate the RPG specifications for the form. You then include those
 specifications in the RPG program, modifying them when necessary.
 Whether or not you or SIGEDITOR creates the specifications, they must
 be entered as described below:

File Description Specifications -

 These specifications define the file as an RSI WORKSTNR file and,
 optionally, the name of the forms file.

Input Specifications -

 These specifications define the fields that are used for input.

Output Specifications -

 These specifications name the RSI form (in the forms file) to be used
 and the data for the fields to be displayed. You can also include a
 field for errors and other messages.

 * Display and Read the RSI form

Calculation Specifications -

4-: 51

 You can display and read the form in one of two ways. If you define
 the file as a primary file, RSI performs input and output
 automatically during the normal logic cycle. If you define the file
 as a demand file, you control input and output by entering the
 Calculation Specification operations EXCPT and READ.

 In addition, to determine which command keys the user presses at run
 time, enter Calculation Specifications to test the command key
 indicators. If you need to know which function keys the user
 presses, enter one or more Calculation Specifications to test the
 values in the RSI STATUS array.

Creating an RSI Form. Figure 4-24 shows how a form is defined using
SIGEDITOR. This form is used in the following sections to illustrate how
RSI is used. The form is used to update the D-ACCOUNTS data set (see the
schema for the MARKET database in Figure 3-23).

Figure 4-24. Creating an RSI Form Using SIGEDITOR

In addition to defining the layout of the form, you must also assign a
name to the forms file and define certain processing requirements. For
example, you may want to process the form using exception output rather
than letting the processing be handled automatically by the RPG logic
cycle.

Figure 4-25 shows the SIGEDITOR Forms Specification screen that lets you
define these requirements.

4- 52

Figure 4-25. Using the SIGEDITOR Forms Specification Screen

The lower part of the SIGEDITOR Forms Specification screen lets you
enable one or more of the function keys (F2 - F7). To enable a
function key, enter an asterisk for it on this screen.

The function keys F3 - F8 let you simulate the function keys of the
same name on IBM 3x systems. To use them in an RPG program, you must
enable them in on this screen. The function keys are:

Function Key Description

PRNT (PRINT SCREEN) (F2) When enabled, the function key label PRINT SCREEN
 appears and lets you simulate the print screen key on
 IBM3X systems. When not enabled, the label *PRINT
 SCREEN appears at run time and the screen contents are
 written to RSIPRINT (DEV=LP).

ROLL UP (F3) Lets you simulate the ROLL UP key on IBM 3x systems.

ROLL DOWN (F4) Lets you simulate the ROLL DOWN key on IBM 3x systems.

CLEAR (F5) Lets you simulate the CLEAR key on IBM 3x systems.

HELP (F6) When enabled, the function key label HELP appears and
 lets you simulate the HELP key on IBM 3x systems. When
 not enabled, the label *HELP appears and the application
 hep facility is activated when the key is pressed.

REC BKSPC (RECORD BACKSPACE) (Lets you simulate the REC BKSPC key on IBM 3x systems.
F7)

The last part of the SIGEDITOR Forms Specification screen lets you enable
one or more command keys. You must enable the command keys before using
the corresponding command key indicators in an RPG program. Figure 4-25
shows that all of the command keys are disabled except for command keys
1, 2, 3, 5 and 8 (which correspond to command key indicators KA, KB, KC,

4-: 53

KE and KH).

At run time, the form defined in Figure 4-24 and Figure 4-25 appears as
shown in Figure 4-26. Data is entered in the form to show how the fields
are used.

.
Figure 4-26. Using an RSI Form Within an RPG Program

Defining an RSI Form. Figure 4-27 shows the specifications generated by
SIGEDITOR for the screen in Figure 4-24. You can create the
specifications yourself, if you prefer or you can modify the ones
generated by SIGEDITOR.

4- 54

Figure 4-27. RPG Specifications Generated by SIGEDITOR

4-: 55

Figure 4-27. RPG Specifications Generated by SIGEDITOR (Continued)

Comments

 1 This line defines the file WRKSTN as a WORKSTNR (RSI) file.

 Column 15 is U to specify update file processing.

 Column 16 is D to specify that this is a demand file.

 Column 19 is V to specify variable length records (you must use
 V for terminal files).

 Columns 24-27 specify that the record length is 246 characters.

 2 This line names the RSI forms file, FACCTFM, to be used in the
 program.

 3 This line begins the definition of the fields that are used for
 input.

 4 This line begins the definition of the fields that are used for
 output.

4- 56

Displaying and Reading an RSI Form. You can enter the Calculation
Specifications operations EXCPT and READ to display, then read and RSI
form. You do not need to enter Calculation Specifications to display and
read an RSI form if you entered "N" for Exception Output in SIGEDITOR
because the form is processed automatically during normal logic cycle
processing.

Figure 4-28 shows how to display and read an RSI form using Calculation
Specifications.

Figure 4-28. Displaying and Reading an RSI Form Using Calculation Specifications

Comments

 1 This line begins the definition of the input fields in the RSI
 form.

 2 This line displays the form SCN01 whose definition starts in
 line 4.

 3 This line reads the data entered into the form by the user and
 stores it in the Input Specification fields. When this line is
 executed, all of the data entered by the user is available for
 processing by the program.

 4 This line defines the fields that are displayed in form SCN01.
 Field values can be specified as defaults in SIGEDITOR or you
 can move the values into the output fields using Calculation
 Specifications operations.

Displaying Messages with RSI. There are no special areas of the screen
or special fields for messages. If you want to display a message (for
example, an error message), you must define a field for it. Once
defined, there are several ways you can use the field to display
messages. You can place a message in the field yourself or, if the
message is contained in a User Message Catalog, you can specify the
message number in SIGEDITOR. In that case, the message is read and placed
into the field automatically. Also, you can associate an indicator with
the field in SIGEDITOR, then display the field by turning the indicator

4-: 57

ON at run time.

You cannot use the Calculation Specification DSPLM operation with RSI to
display messages.

Figure 4-29 shows how to display a message contained in the compile-time
array MSG.

Figure 4-29. Displaying Messages in an RSI Form

Comments

 1 This line sets the index (M#) to the array MSG to the value 2.

 2 This line turns ON indicator 82 which is defined in the "Output
 Field" attribute for this field in SIGEDITOR.

 3 This line displays the RSI form SCN01.

 4 This line defines the message field as part of the form SCN01.
 It consists of a single element of the array MSG.

4- 58

 5 This is the second element of the array MSG and is displayed in
 line 3.

Using Function Keys with RSI. When you enable any or all of the function
keys F3 - F8 in SIGEDITOR, their labels (as shown below) appear. If
you do not enable them, the labels F3-F8 appear. Even though the
function keys are enabled, RSI does not perform any action when the user
presses them. You must perform the processing yourself by entering
Calculation Specifications.

The function keys are:

Function Key Description

 F1 (COMMAND) Used in conjunction with one of the keys on the
 top row of the keyboard to turn on the
 corresponding command key indicator.

 F2 (PRINT SCREEN) If enabled, the function key label PRINT SCREEN
 appears though no printing takes place. You
 must enter Calculation Specifications to
 perform this function. If not enabled, the
 label *PRINT SCREEN appears and the contents of
 the screen are written to RSIPRINT (DEV=LP).

 F3 (ROLL UP) If enabled, you must enter the Calculation
 Specifications to perform this function.

 F4 (ROLL DOWN) If enabled, you must enter the Calculation
 Specifications to perform this function.

 F5 (CLEAR) If enabled, you must enter the Calculation
 Specifications to perform this function.

 F6 (HELP) If enabled, the function lable HELP appears.
 You must enter the Calculation Specifications
 to perform this function. If not enabled, the
 label *HELP appears and the application help
 facility is activated when the key is pressed.

 F7 (RECORD BACKSPACE) If enabled, you must enter the Calculation
 Specifications to perform this function.

 F8 (DUPLICATION) If enabled in the Attribute Specification
 screen of SIGEDITOR, this key fills the field
 (from the cursor position to the end of the
 field) with the hexadecimal character 1C (^)
 and moves the cursor to the next field. You
 can check for these characters and take
 appropriate action. For example, you may want
 to reuse the field's previous value.

If the user presses a function key that is not enabled, the message
"FUNCTION KEY NOT ENABLED AT THIS TIME" is displayed momentarily.

To determine which function key was pressed, check the value in the first
element of the RSI STATUS array. (Refer to the HP RPG Reference Manual
for these values.) Figure 4-30 shows how to test the array STAT to
determine if the user pressed F4 (ROLL DOWN).

4-: 59

Figure 4-30. Using Function Keys with RSI

Comments

 1 This line reads the RSI form and the settings of the function
 keys.

 2 This line tests the first element of STAT for the value 1123
 (which indicates that F4 was pressed).

Using Command Key Indicators with RSI. If you enabled a command key when
you defined the form using SIGEDITOR, you can use the associated command
key indicator in the program to set indicators and to condition
operations. See "Creating an RSI Form" at the beginning of this chapter
for information on enabling the command keys.

If the user presses a command key that you did not enable, the message
"COMMAND KEY NOT ENABLED AT THIS TIME", is displayed momentarily.

Figure 4-31 shows how to use command key 3 (command key indicator KC) to
condition an EXSR operation.

Figure 4-31. Using the RSI Command Keys

4- 60

Changing Field Attributes with RSI. From time to time, you may need to
define a field's attributes one way in SIGEDITOR, but change them
dynamically at run time. You can change video and protection attributes.
To do this, you must associate an indicator with the attribute in
SIGEDITOR, then turn the indicator ON before the form is displayed.

Figure 4-32 shows how to associate an indicator (41) with the "High
Intense" attribute of a field in SIGEDITOR.

Figure 4-32. Assigning an Indicator to a Field's Attribute

Assuming that the field shown in Figure 4-32 is a field in the output
record R$DATA, Figure 4-33 shows how to display it in high intensity.

Figure 4-33. Changing a Field's High Intense Attribute

4-: 61

Comments

 1 This line turns ON indicator 41.

 2 This line displays the RSI form. All fields having indicator 41
 associated with them in SIGEDITOR are highlighted when the form
 is displayed.

A Sample Program Using RSI. This section lists a complete program that
processes data using RSI forms.

The program updates the D-ACCOUNTS data set. This data set keeps
customer information such as account numbers, names and addresses. The
data set is part of the TurboIMAGE MARKET database whose schema is shown
in Figure 3-23. The RSI form is the one shown in Figure 4-24.

Customer records are accessed by the customer's account number. To add a
record, the user presses command key 1 then enters an account number.
"CMD-1 Add" is highlighted and the user can then proceed to add data for
the new customer. When input is complete, the user presses ENTER .
Similarly, to modify an existing record, the user presses command key 2
then enters an account number. "CMD-2 Change" is highlighted and the
customer information in the D-ACCOUNTS data set is displayed. The user
can then change that information, pressing ENTER when input is
complete. To display existing account information for a customer, the
user presses command key 3 then enters the customer's account number. To
delete a customer record, the user presses command key 5 then enters an
account number. The user is asked to confirm the delete, then the record
is purged from the data set.

4- 62

Figure 4-34. Program to Update D-ACCOUNTS Using RSI

4-: 63

.

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4- 64

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4-: 65

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4- 66

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4-: 67

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4- 68

.

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

4-: 69

Figure 4-34. Program to Update D-ACCOUNTS Using RSI (Continued)

Comments

 1 This line begins the definition of the RSI WORKSTN file WORKSTN.
 The forms file for WORKSTN is FACCTFM and the STATUS array is
 STAT. (STAT is used to determine if the user pressed ENTER .)

4- 70

 2 This line begins the description of the record used for all
 terminal input. (The lines were generated by SIGEDITOR, then
 modified.)

 3 This line begins the mainline portion of the program. The
 subroutine ONETIM is executed only at the beginning of the first
 logic cycle. The other subroutines are executed when the user
 presses the associated command key (for example, CMD-2 Change).

 4 This line begins the subroutine that adds records to the
 D-ACCOUNTS data set. The subroutine first resets (in the RESET
 subroutine) all indicators used in the previous cycle. Next,
 indicators 41 and 80 are turned ON. Indicator 41 is used to
 change the video attribute for the constant "CMD-1 Add" so that
 the user knows what the current mode is. Indicator 80 is the
 "erase input fields" indicator. It causes all input fields to
 be cleared before the form is displayed. (This saves having to
 initialize each field yourself before displaying the form.)

 The form is displayed by the EXCPT R$DATA operation. Then, the
 RDSCRN subroutine reads the form and checks to see if the user
 pressed the ENTER key or some other enabled command key.
 Control remains in the subroutine until the user presses another
 command key. When this happens, control proceeds to the end of
 the subroutine. (The mainline portion of the program processes
 the command key request during the next logic cycle.)

 The RECINP subroutine checks to see if the data record already
 exists in D-ACCOUNTS. If it does, the account number field is
 cleared, and the form is redisplayed with the error message
 "EXISTING ACCOUNT NUMBER" (override is in effect so that the
 user can enter the correct account number). If there are no
 errors (indicator 40 is OFF), a record is added to the data set
 by the EXCPT $ADD operation and control goes back to the
 beginning of this step.

 5 This line begins the subroutine that updates D-ACCOUNTS data set
 records. The RESET subroutine turns OFF indicators that were
 turned ON during the previous logic cycle, then indicators 42
 and 80 are turned ON. The RSI form is displayed, then read. If
 the user pressed another command key (indicator 49 is OFF)
 control skips to the end of the subroutine.

 The RECINP subroutine reads the record from the D-ACCOUNTS data
 set. If the record exists, indicator 40 is turned ON and the
 form containing account information is displayed. Control skips
 to CNGMSG where changes are read. If the record does not exist,
 indicator 80 is turned OFF so that the "Erase input fields"
 attribute will not be in effect. The error message "INVALID
 ACCOUNT NUMBER" is displayed and control skips back to CNGMSG to
 accept

 the new account information.

 After the new information is read, the record in D-ACCOUNTS is
 updated by the EXCPT $UPD operation. Control remains in the
 subroutine until the user changes modes (presses a different
 command key).

 6 This line begins the subroutine that locates records in the
 D-ACCOUNTS data set and prepares error messages for display.
 The CHAIN operation reads D-ACCOUNTS using ACTNO as its key
 field. If the record is not found, indicator 60 is turned ON.

 If add mode is in effect and the record is found, or if other
 modes are in effect and the record is not found, an error
 results. The index of the appropriate error message in MSG is
 placed in the variable M# and indicator 82 is turned ON.

4-: 71

 Indicator 81 is turned ON to allow override and to sound the
 alarm (beep). When override is in effect, data on the screen
 remains unaltered except for attributes conditioned by
 indicators and output fields conditioned by indicators that are
 ON.

 7 This line begins the subroutine that reads the form and checks
 to see if the user pressed a function key. Indicator H0 is
 turned ON by the READ WORKSTN operation when a terminal read
 error occurs.

 When READ is executed, a code that identifies which function key
 (if any) was pressed, is placed in the first element of the STAT
 array. If the ENTER key was pressed this element equals 0 and
 indicator 49 is turned ON. Since none of the function keys were
 enabled on the form, the only other possible value is 2 (which
 indicates that a command key was pressed).

 8 This line begins the output record description for the RSI form.
 The specifications were generated by SIGEDITOR, then modified.
 The form name is entered as a constant in the first line. It
 has a length of 8 and the prefix "K". The field used for
 messages, MSG, is indexed by M# (M# contains the number of the
 message). MSG is conditioned by indicator 82 and the SIGEDITOR
 "Output Data" attribute for MSG also contains 82.

Using RSI CONSOLE Files

RSI CONSOLE files are RSI files that are used for input only and whose
forms file is generated automatically during compilation. RSI handles
all file input and output during run time.

To use an RSI CONSOLE file in an RPG program, perform the following steps
(the steps are discussed in detail in the following sections in this
chapter):

 * Define the RSI CONSOLE form

 Enter the File Description and Input Specifications that describe the
 form, then compile the program. The forms file is generated
 automatically. If you wish, you can use SIGEDITOR to modify the
 form.

File Description Specifications -

 These specifications define the file as an RSI WORKSTNC file.

Input Specifications -

 These specifications define the fields that are used for input.

 * Process data entered in the form

Calculation Specifications -

 Since RSI handles all of the input and output for the CONSOLE form,
 you do not enter Calculation Specification operations to do this.
 However, you must enter the usual operations to process the data once
 it is read.

Defining an RSI CONSOLE File. Figure 4-35 shows the File Description and
Input Specifications that define the RSI CONSOLE file SCRNFILE. SCRNFILE
is defined as a WORKSTNC file (line 1) which consists of three different
forms. The first form is FORM01 and is defined starting with line 2.
(The form name is "FORM" suffixed by the record-identifying indicator for
the record type.) Lines 3 and 4 start the definitions for the second and
third forms, respectively.

4- 72

Figure 4-35. Defining an RSI CONSOLE Form

When the forms FORM01, FORM02 and FORM03 are displayed at run time, they
appear as shown in Figure 4-36, Figure 4-37 and Figure 4-38.

Figure 4-36. FORM01 Displayed at Run Time

4-: 73

Figure 4-37. FORM02 Displayed at Run Time

Figure 4-38. FORM03 Displayed at Run Time

You can modify the forms generated by RSI yourself or by using SIGEDITOR.
However, do not change the top (status) line, the data type and length of
the fields or the order of the fields.

Figure 4-39 shows how you can modify FORM01 in Figure 4-35 to make it

4- 74

easier to understand and use.

.
Figure 4-39. Modifying an RSI CONSOLE Forms File

Displaying and Reading an RSI CONSOLE File. You do not need to enter
Calculation Specifications to display and read an RSI form, the input and
output are handles automatically by RSI during normal logic cycle
processing. Once the data is read, you may enter Calculation
Specifications to process the data the same way you do other file data.

Displaying Messages with an RSI CONSOLE File. You cannot display
messages when using RSI CONSOLE files, since CONSOLE forms are used for
input only. Simple input editing is handled by RSI based on each field's
data type. If the user enters invalid data, RSI displays an error
message and allows the user to correct the data.

Using Function Keys with an RSI CONSOLE File. There are just two
function keys that are used with RSI CONSOLE files and they are described
below. You cannot change the actions that they perform.

Function Key Description

 F1 (COMMAND) Used in conjunction with one of the keys on the
 top row of the keyboard to select a command key
 (see the next section).

 F2 (PRINT SCREEN) Copies the contents of the screen to the print
 file RSIPRINT (DEV=LP).

If the user presses another function key, the message "FUNCTION KEY NOT
ENABLED AT THIS TIME" is displayed momentarily.

Using Command Keys with an RSI CONSOLE File. If you defined more than
one record type in the CONSOLE file, the user must press a command key at
run time to select the type. For example, to select record type 3
(SUMMARY RECORD) in Figure 4-35, the user presses command key 3. The
command keys do not turn on the command key indicators, as they do with

4-: 75

regular RSI files. Therefore, you cannot use the indicators in the
normal way to condition Calculation Specification operations.

If the user presses a command key not associated with any record type,
the message "FORM CHANGE OR EXIT NOT ACCEPTABLE" is displayed
momentarily.

A Sample Program Using an RSI CONSOLE File. This section lists a
complete program that uses RSI CONSOLE files to read and balance
invoices. Each invoice can have three or more records, where each record
belongs to a different record type (the record types are sequenced).
Each invoice must have a header record that gives the customer name and
address, one or more detail records that list individual items on the
invoice and a summary record that gives the total invoice amount. The
user enters data for the header, detail an summary records in that order.
Each group of invoice records are written to disc along with any errors.

When the program is executed, the first form (FORM01) is displayed. When
the user finishes entering data on the form and presses ENTER , the
second form (FORM02) is displayed. When ENTER is pressed again, the
second form is redisplayed because it can occur more than once in a
group. The user can continue entering detail records or can select the
third form by pressing command key 3 (the record-identifying indicator
for the last record type). When input is complete for FORM03, the user
presses ENTER and the first form is displayed again, starting the
sequence over. The user presses command key 12 to end the program.

Figure 4-40. Invoice-Balancing Program that Uses an RSI CONSOLE File

4- 76

.
Figure 4-40. Invoice-Balancing Program that Uses an RSI CONSOLE File (Continued)

Comments

 1 This line begins the definition of the RSI WORKSTNC file
 SCRNFILE. The forms file for SCRNFILE is INV36SFM which is the
 program name in the $CONTROL subsystem command suffixed by "FM".

 2 This line begins the description of the invoice header records.

 Columns 15-16 contain the record sequence (01) in the group.

 Column 17 is 1 to indicate that there is only one header record
 per invoice.

 Column 18 is blank to indicate that this header record is

4-: 77

 required.

 Columns 19-20 contain the record-identifying indicator (01) for
 the form. The indicator is appended to "FORM" to create the
 form name FORM01.

 Columns 21-41 contain the record identification code (HD) for
 the record. (The code can be one or two characters but must
 begin in the first position of the record.)

 3 This line begins the description of the record used for
 detail invoice records. The form name is FORM02, the
 record-identifying indicator is 02 and the record identification
 code is DE.

 Column 17 is N to specify that there can be more than one detail
 record per invoice.

 4 This line begins the description of the record that summarizes
 each invoice. The form name is FORM03, the record-identifying
 indicator is 03 and the record identification code is SU.

 5 This line begins the Calculation Specification operations that
 do invoice-balancing. It also flags invoices that are
 out-of-balance.

Enabling the BREAK Key

On 264X terminals, the BREAK key is physically positioned near ENTER .
As a result, it is easy to press BREAK accidentally. Since it is
difficult to recover from a break, this key is disabled automatically
whenever you use a WORKSTN file.

If you want to use the BREAK key, indicate this in column 52 of the
terminal's File Description Specification as shown below.

.
Figure 4-41. Enabling the BREAK Key

Comments

 1 This line defines the terminal file, TERMINAL.

 Column 52 contains B to enable the BREAK key.

4- 78

Handling Run-Time Errors

When you run a program that uses VPLUS or RSI, run-time errors are
handled differently from programs that do not use them. When using
VPLUS, an error message is displayed in the message window and for RSI,
it is displayed on a separate screen. VPLUS and RSI then reset the
function keys so that the user can select an error response. The
function keys and their responses are:

Function Key: Response

 F1 Continue execution

 F2 Skip the input record containing the error and
 continue execution

 F3 Terminate the program by executing the normal
 termination code

 F4 Terminate the program immediately

 F5 Terminate normally and print an error dump

 F6 Terminate immediately and print an error dump

You can specify the function key responses within your program instead of
letting the user select them. Use the Header Specification to do this.
For each error you anticipate, enter the response in columns 56-71.
Figure 4-42 shows how to suppress the error message for arithmetic
overflow and to continue program execution when arithmetic overflow
occurs.

Figure 4-42. Specifying a Run-Time Error Response

Comments

 1 This line specifies special error handling for arithmetic
 overflow errors.

 Column 55 contains N to suppress the display of arithmetic
 overflow error messages.

 Column 65 contains 0 to suppress arithmetic overflow messages
 and to continue program execution.

5- 1

Chapter 5 Processing Data in an RPG Program

This chapter discusses ways to manipulate data once it is read into a
program. The RPG language features that make it easier to handle data in
a program are tables, arrays, and data structures. You can also use
subroutines to manipulate data in a program. Internal and external
subroutines are discussed in this chapter.

This chapter does not address all of the ways to work with data
internally in a program. For information on indicators, numeric editing,
changing the hexadecimal value of characters and other features, see the
HP RPG Reference Manual .

Using Tables and Arrays

Tables and arrays are the most convenient and efficient way to organize
elements of related data so that you can reference them individually or
as a group. Each element in a table or array has the same length, the
same data type (numeric or alphanumeric) and, if numeric, the same number
of decimal positions. Tables and arrays are defined using the File
Extension Specification.

You commonly use tables to keep rates, constants or data of any kind that
remains the same during program execution. For instance, you can enter a
table for state tax rates.

Normally, you use arrays to save data accumulated during program
execution. However, arrays and tables can often be used interchangeably.

Differences Between Tables and Arrays

Tables are loaded either during program compilation or before a program
is executed. Tables can only be processed one element at a time; you
cannot perform operations on an entire table in one operation. Table
names start with TAB. When you use a table name, RPG selects the table
element found during the last lookup (LOKUP) operation.

Arrays are loaded either during compilation, or before or during program
execution. You can process arrays one element at a time. You can also
process all elements of an array in one operation by using the array
name.

Kinds of Tables and Arrays

There are three kinds of tables and arrays: compile-time,
preexecution-time and execution-time. They are grouped into these
categories according to when they are loaded or created by a program.

The kind of table or array that you use depends how you're using it in
your program:

This kind of Is used when:
table or array:

Compile-Time The table or array elements change infrequently, if at
 all.

Preexecution-Time The table or array elements change frequently.

Execution-Time The array elements change frequently or they are created
 by the program.

Compile-time, preexecution-time and execution-time tables and arrays are
discussed in the next three sections.

5- 2

Compile-Time Tables and Arrays. Compile-time table and array values are
loaded during program compilation. These values can be kept as part of
the source program or they can be saved in separate files on disc. Once
compiled, compile-time tables and arrays become a part of the object
program. To permanently change elements in them, you must recompile the
program.

Figure 5-1 shows what compile-time array values look like when saved in a
disc file. The name of this particular disc file is FLBL1. It contains
the function key labels for the program shown in Figure 5-2.

| |
| ADD MODE |
| CHANGE MODE |
| INQUIRY MODE |
| |
| DELETE MODE |
| |
| |
| EXIT |
| |

Figure 5-1. Compile-Time Array Entries on Disc

Figure 5-2 shows segments of a program that uses two compile-time arrays,
LBL and MSG (the program from which the segments are taken is listed in
Figure 4-23). LBL is an array that contains function key labels. The
labels come from the file, FLBL1, shown in Figure 5-1. The MSG array
contains messages that are displayed on the terminal during program
execution. The actual messages for the MSG array follow the Output
Specifications in Figure 5-2.

5- 3

Figure 5-2. Using Compile-Time Arrays

Comments

 1 This line defines the LBL array.

 Columns 33-35 contain 1 to specify that there is one function
 key label per record in the array file on disc.

 Columns 36-39 contain 8 to specify the number of elements in the
 array.

 Columns 40-42 contain 16 to specify the length of each element
 in the array.

5- 4

 2 This line defines the MSG array.

 Columns 33-35 contain 1 to specify that there is one message per
 record in the array.

 Columns 36-39 contain 20 to specify the maximum number of
 elements in the array.

 Columns 40-42 contain 79 to specify the length of each element
 in the array.

 3 This line enables the function keys and displays their labels
 from the LBL array.

 4 This operation sets the value of the index (M) in the MSG array
 to 5.

 5 This line enters the VPLUS action, SHOMSG, into the output
 field, ACTION.

 6 This performs exception output for the record associated with
 EXCPT Group V$MESG.

 7 This line begins the description of the output record used for
 displaying VPLUS messages.

 8 This line specifies that the fourth field in the output record
 is an element (selected by M) from the MSG array.

 9 This line is a File Name record. It identifies the disc file
 (FLBL1) which contains values for the LBL array. The contents
 of FLBL1 are loaded and compiled as part of the program. Figure
 5-1 shows the contents of this file.

The MSG array entries follow this line.

Preexecution-Time Tables and Arrays. Preexecution-time tables and arrays
are loaded before a program begins the RPG program cycle. Elements in
these tables and arrays are available before files are read and before
calculations are performed.

Preexecution-time tables and arrays can reside on the same disc device or
on different disc devices. They are loaded in the same order as their
File Extension Specifications are listed.

Table 5-1 is a table of postal rates that is used to calculate item
shipping charges. (Only the first 8 and the last 3 entries are shown.
Since the last entry is 30 pounds, the items are assumed to weigh no more
than 30 pounds.) The postal charges are based on an item's weight, with
fractions of pounds putting the item in the next higher weight category.

Table 5-1. Weights/Postal Charges

Weight (lbs.)	Postal Charges

1	$0.45

2	.50

3	.50

4	.55

| | |

5- 5

| 5 | .55 |
| | |

6	.55

7	.60

8	.65

.	.

.	.

.	.

28	1.00

29	1.05

30	1.05

Figure 5-3 shows the contents of the postal rates table as it is saved on
disc. The name of this particular disc table file is WGHRATE. It is used
in the program shown in Figure 5-4.

| |
| 010045 |
| 020050 |
| 030050 |
| 040055 |
| 050055 |
| 060055 |
| 070060 |
| 080060 |
| . |
| . |
| . |
| 280100 |
| 290105 |
| 300105 |
| |

Figure 5-3. Preexecution-Time Table Entries on Disc

Figure 5-4 shows program segments that look up postal rates contained in
the file, WGHRATE (see Figure 5-3). The program uses the rates to
calculate invoice shipping charges. The program first reads an item from
the ORDER file. It then searches the WGHRATE table (line 7) to find a
weight less than or equal to the item's WEIGHT. When a weight is found,
the corresponding rate is moved to the invoice record field, TABRAT.

5- 6

Figure 5-4. Using a Preexecution-Time Table

Comments

 1 This line defines the ORDER file containing the items to be
 printed on the invoices.

 2 This line defines the WGHRATE table file on disc. The File
 Extension Specification on line 4 describes the table in detail.

 3 This line defines the INVOICE file. It is a report file
 assigned to the printer.

 4 This line defines the WGHRATE table.

 Columns 11-18 contain WGHRATE to identify the table file.
 WGHRATE is loaded into the program before it is executed.

 Columns 27-32 contain TABWGT to define the weight table.

 Columns 33-35 contain 1 to specify that there is one weight
 table entry and one rate table entry per record.

 Columns 36-39 contain 30 to specify that there are 30 elements
 in each table.

 Columns 40-42 contain 3 to specify that the length of each
 weight table element is 3 positions.

 Column 44 contains 1 to specify that each weight table element
 has one decimal place (fractions of a pound are possible).

 Columns 46-51 contain TABRAT to define the rate table as an
 alternating table.

 Columns 52-54 contain 3 to specify the length of the rate table
 element.

 Column 56 contains 2 to specify that each rate table element has
 2 decimal places.

 5 This line begins the description of record 01 in the ORDER file.

5- 7

 6 This line defines the WEIGHT field in the ORDER file. This
 field will be used as the search field to find the correct
 postal rate in the WGHRATE table.

 7 This line specifies a LOKUP operation which searches the WGHRATE
 table to find the postal rate corresponding to each item's
 weight.

 Columns 10-11 contain 02 to specify that this operation is
 performed when indicator 02 is turned on (assume that indicator
 02 is turned on when an item requires postal delivery).

 Columns 18-27 contain WEIGHT to specify the search field.

 Columns 28-32 contain LOKUP to specify the table look-up
 operation.

 Columns 33-42 contain TABWGT to specify the table field to be
 searched.

 Columns 43-48 contain TABRAT to specify the table field to be
 selected when WEIGHT is equal to or less than TABWGT.

 Columns 56-59 contain 2323 to specify that indicator 23 is
 turned on when a weight is found in TABWGT equal to or less than
 WEIGHT.

 8 This line defines the INVOICE record that prints the postal rate
 found by a successful search of the WGHRATE table. The rate
 table name, TABRAT, selects the element in the table (not the
 entire table) found by the last LOKUP operation.

Execution-Time Arrays. Execution-time arrays are loaded from files named
in File Description and File Extension Specifications. They can also be
created by Calculation Specifications. There are no execution-time
tables.

Figure 5-5 lists a program that uses an execution-time array, AR. This
program is an online program that lets users query an employee master
file by department number. When the department number is found, the last
name of each employee in the department is saved in the AR array. When
the array is filled with ten names, they are displayed on the terminal.

5- 8

Figure 5-5. Using an Execution-Time Array

Comments

 1 This line defines the MASTFL file containing employee records.

 2 This line defines the TERMINAL file that is processed in line
 (character) mode.

 3 This line defines the array AR. It is used to store the last

5- 9

 names of employees matching a selected department number.

 Columns 27-32 contain AR which is the name of the last names
 array.

 Columns 36-39 contain 10 to specify that there are 10 elements
 in the array.

 Columns 40-42 contain 29 to specify that each element in the
 array is 29 characters long.

 4 This line begins the input record description for the employee
 master file, MASTFL.

 5 This line begins the input record description for the terminal
 file, TERMINAL.

 6 This line reads a department number entered from the terminal.

 7 This line reads a record (for the department) in the employee
 master file, MASTFL.

 8 This line increments the index, I, to the AR array. (An
 employee record matched the department entered by the user.)

 9 This line compares the AR index I to its maximum value. If the
 array is full, indicator 21 is turned on.

 10 This line begins the output record description for the teminal
 file, TERMINAL. This record is displayed when indicator 21 is
 turned on.

 11 This line specifies that the second field to be displayed in the
 TERMINAL output record is contained in the AR array.

Using Data Structures

A data structure is an area of storage that contains subfields. You can
use data structures to describe input areas in more than one way. You
may want to do this because:

 * You need to process records in the same file and they have different
 formats.

 * You need to reference subfields of fields as well as the fields
 themselves.

 * You can process input fields more conveniently if they are
 rearranged.

Data structures can also be used to exchange information between other
RPG programs.

You use Input Specifications to define a data structure. Place data
structures at the end of all of the other Input Specifications in the
program.

The "data structure" sections which follow in this chapter discuss the
ways you can use data structures to accomplish the objectives listed
above.

NOTE HP implements data structures differently from some RPG vendors.
 Data structures occupy separate memory areas from the areas they
 redefine. Thus, you should not use data structures simply to
 reduce memory requirements in your program.

Using Data Structures to Define Data More Than One Way

This section explains how to use data structures to describe the same
data areas in more than one way. This enables you to use the same data
several different ways. For example, you can use data structures to

5- 10

describe different record formats within a file. Or you can use data
structures to redefine numeric fields in order to process them
differently.

Figure 5-6 and Figure 5-7 show how to describe three different input
records in the same file. The example in Figure 5-6 does not use data
structures and the example in Figure 5-7 does. In Figure 5-6, the second
and third records redescribe the first, using different field names and
definitions. This method of defining data more than one way keeps field
definitions near the fields being redefined which improves readability
and maintainability.

Figure 5-6. Defining Different Record Formats Without Using Data Structures

Comments

 1 This line defines the first record, SREC, in the file. SREC is

5- 11

 described in detail in the lines that follow.

 2 This line defines the second record, PREC. PREC is described in
 detail in the lines that follow.

 3 This line defines the third record, TREC. TREC is described in
 detail in the lines that follow.

Figure 5-7 is the same example as Figure 5-6 except that it uses data
structures to describe the three input records.

Figure 5-7. Defining Different Record Formats Using Data Structures

5- 12

Comments

 1 This line defines the sales record, SREC. SREC is described in
 detail starting with line 4. There are 32 characters in SREC.

 2 This line defines the purchase record, PREC. PREC is described
 in detail starting with line 5. There are 35 characters in
 PREC.

 3 This line defines the transaction record, TREC. TREC is
 described in detail starting with line 6. There are 40
 characters in TREC.

 4 This line names SREC as the first record to be redefined as a
 data structure.

 5 This line names PREC as the second record to be redefined as a
 data structure.

 6 This line names TREC as the third record to be redefined as a
 data structure.

Using Data Structures to Define Subfields Within a Field

This section tells you how to use data structures to divide a field or
array into subfields. You can then refer to the subfields in Calculation
and Output Specifications. In addition, you can use data structure names
to refer to the subfields as one unit.

Figure 5-8 and Figure 5-9 show how to define subfields two different
ways. Figure 5-8 shows an input area that uses two data structures. The
first data structure, PRODID, defines the subfields in positions 31-40 of
the input TRANS record. The second data structure, CATLOG, is a nested
data structure. That is, it is a data structure defining subfields
within another data structure (in this case, PRODID).

Figure 5-8. Using Data Structures to Define Subfields within a Field

5- 13

Comments

 1 This line defines the field PRODID. It occupies positions 31 to
 40 in the input record.

 2 This line marks the beginning of the data structure PRODID. The
 next three lines define the subfields of the PRODID field.

 3 This line defines the first subfield of PRODID. Notice that
 CATLOG is defined further by the next data structure (line 4).

 4 This line is the beginning of the data structure CATLOG. The
 next two lines define the subfields of the CATLOG field.

 5 The first subfield of CATLOG is CLASS. It is a one-character
 field starting with the first position of CATLOG.

 6 The second subfield of CATLOG is REFNO. It is also a
 one-character field starting with the second position of CATLOG.

NOTE You can nest data structures to the number of levels necessary.
 This feature is unavailable in most implementations of RPG.

Figure 5-9 shows subfields defined in a different way from those shown in
the previous figure. However, the end results of the two examples are
identical.

Figure 5-9. Alternate Way to Define Subfields within a Field

Comments

 1 This line defines the input field, PRODID, whose subfields are

5- 14

 defined in the data structure starting on line 2. PRODID
 occupies positions 31-40 of the input record.

 2 This line starts the data structure, PRODID. It describes the
 subfields of PRODID in the input record.

 3 This line defines the field, CATLOG, that occupies positions 1
 and 2 of the field PRODID. Notice that the next two fields are
 subfields of CATLOG.

 4 This lines defines the field, CLASS, that occupies position 1 of
 the field PRODID.

 5 This line defines the field, REFNO, that occupies position 2 of
 the field PRODID.

Using Data Structures to Reorganize Fields in an Input Record

This section explains how data structures can be used to rearrange input
record fields so that you can use them more readily in a program.

Two examples are presented. The first shows how to reorder one field and
the second shows how to reorganize several fields at once.

Figure 5-10 shows how to reorder the field, KEY05, so that it is the
second part of a key field. The key field will be used for reading a
KSAM file. This example initializes the data structure field, ALPHA, to
A at line 5. When the TRANS file is READ, KEY05 is automatically moved
to the input field and to the data structure. Line 6 shows the KSAM disc
read operation that uses the new key, KEY06.

Figure 5-10. Using a Data Structure to Build a Key Field

Comments

5- 15

 1 This line defines the input field, KEY05. It occupies positions
 71 to 75 in the input record, TRANS.

 2 This line begins the data structure, KEY06.

 3 This line defines the first subfield, ALPHA, in the data
 structure. ALPHA occupies the first position of KEY06.

 4 This line defines the position in the data structure that KEY05
 occupies. It is the second field and occupies positions 2
 through 6.

 5 This line is part of the initialization operations. It sets the
 field, ALPHA, to A (it remains A for the duration of the
 program).

 6 This line reads the file, FILE1, by key value. The specific key
 value used has already been placed into the data structure,
 KEY06, by previous operations.

Figure 5-11 shows how to reorganize an input record so that its fields
closely match those of an output record. When TRANS is read, RPG
automatically moves its input fields to the appropriate areas in the
KEYDS data structure. Notice that the input fields, QTY and CODE, are
not included in the data structure. The PRTKEY field is optional. It
can be used to refer to all 16 positions of the KEYDS data structure
(KEYDS also refers to these positions).

Figure 5-11. Using a Data Structure to Reorganize Input Fields

Comments

 1 This line begins the description of the data structure, KEYDS.

 2 This line defines LOCATN as the first field in KEYDS. Since
 LOCATN is also defined in the input record, its value is moved

5- 16

 here when the file is read.

 3 This line specifies that the second field in the data structure
 is PARTNO and its value comes from the field by the same name in
 the input record, TRANS.

 4 This line defines the third field, TYPE, in the data structure.
 Its value comes from the field by the same name in the input
 record, TRANS.

 5 This line defines the field, PRTKEY. PRTKEY refers to all of the
 fields in the data structure (positions 1-16).

Using Data Structures for Interprogram Communication

This section discusses how to receive information from other programs and
how to pass information to them using a standard RPG file, the Local Data
Area file (LDAFILE). To use a Local Data Area file, you must define it
using a data structure.

When you use a Local Data Area in your program, RPG begins by reading the
file into your data structure. You can use that data during the first
cycle (1P) output. When your program ends, RPG automatically writes the
data structure back to the Local Data Area file.

Before you can use a Local Data Area file in a program, you must create
it using the RPGINIT utility (see the RPG Utilities Reference Manual for
more detailed information).

Figure 5-12 lists a logon User Defined Command (UDC) that creates a Local
Data Area file automatically. The UDC creates a file consisting of two
records, each containing 256 characters. The records are initialized to
blanks. The FCOPY command copies the file, SYSCTL, to the newly-created
Local Data Area file. SYSCTL contains one record with the company name
in positions 1 to 40. The company name is used in the next example as a
report heading.

| |
| START |
| OPTION LOGON |
| COMMENT INITIALIZE LOCAL DATA AREA AND WRITE|
| COMMENT COMPANY NAME TO POSITION ONE |
| COMMENT OF LDA FOR USE BY REPORT PROGRAMS |
| RUN RPGINIT.PUB.SYS |
| FCOPY FROM=SYSCTL;TO=LDAFILE |
| |
| |

Figure 5-12. Creating a Local Data Area File (LDAFILE) with a UDC

Once you create a Local Data Area file, you can use it in any RPG
program. Figure 5-13 shows how to process the Local Data Area file
created in Figure 5-12. The company name (CNAME), contained in the Local
Data Area file, is used in a report heading. Also, a transaction record
count is accumulated in the field, COUNT. This field is also saved in the
Local Data Area file.

5- 17

Figure 5-13. Using a Local Data Area File (LDAFILE)

Comments

 1 This line defines the file used for printing the report.

 2 This line defines the Local Data Area file and begins the data
 structure description for it. Notice that you do not use a File
 Description Specification for a Local Data Area file.

 Columns 7-14 contain LDA to identify this structure as a Local
 Data Area structure. You must use LDA; other names are ignored.

 Column 18 contains U to specify that this is a User Data
 Structure (the data structure for the Local Data Area file).

 Columns 19-20 contain DS to identify this as a data structure.

 3 This line defines the first field, CNAME, of the data structure.
 It is 40 characters long and starts in the first position of the
 record. CNAME contains the company name.

 4 This line defines the second field, COUNT, of the data
 structure. It is 5 positions long and starts in position 101.
 It contains the count of transactions.

 5 This line increments the COUNT field.

 6 This line begins the Output Specification that writes the
 company name, CNAME, to the report file.

Using Subroutines

When there are a set of operations that you perform repeatedly from
different parts of your program, you should code them once as a
subroutine. Then, when you want to execute the subroutine, you enter a

5- 18

Calculation Specification to perform it.

RPG has two kinds of subroutines. Internal subroutines are part of an
RPG program. External subroutines are independent load modules that are
written in Business BASIC, C, Pascal, SPL or COBOL.

Internal Subroutines

To perform an internal subroutine, enter an EXSR Calculation
Specification operation. Place the subroutine, itself, after the last
Calculation Specification in the program. The BEGSR operation marks the
beginning of an internal subroutine and always has a tag associated with
it. You use this tag to execute the subroutine. To end an internal
subroutine, follow the last line in the subroutine with an ENDSR
operation.

Figure 5-14 shows how internal subroutines are coded. In this example,
the subroutine is named, INQRY.

Figure 5-14. Using an Internal Subroutine

Comments

 1 This line performs the internal subroutine INQRY when a user
 presses function key F3. (Conditioning the EXSR operation is
 optional.)

 Columns 28-32 contain EXSR to execute an internal subroutine.

 Columns 33-38 contain the name of the internal subroutine,
 INQRY.

 2 This line begins the INQRY internal subroutine.

 Columns 7-8 contain SR to indicate that this is a subroutine
 line (SR is optional on this and subsequent subroutine lines).

5- 19

 Columns 18-23 contain the name of the internal subroutine INQRY.

 Columns 28-32 contain BEGSR to mark the beginning of the
 internal subroutine.

 3 This line transfers control to the end of the internal
 subroutine. You cannot use GOTO operations to transfer control
 out of the subroutine.

 4 This line ends the internal subroutine.

 Columns 18-23 contain the tag, INQRY9. (A tag is used in this
 particular example, though it is optional.)

 Columns 28-32 contain ENDSR to end the internal subroutine.

External Subroutines

External subroutines are separate procedures; you do not code them as
part of an RPG program. For example, you can code an external subroutine
in Business BASIC. You then compile it, and place it in an executable
library using HP Link Editor/XL. To execute the external subroutine from
an RPG program, enter an EXIT Calculation Specification operation. The
HP RPG Reference Manual contains information on how to create external
subroutines in COBOL and other languages.

There are two ways to pass information to external subroutines. The
first method uses the Calculation Specification operation, RLABL, to name
the fields, arrays, tables or indicators that you want to pass. The
second method uses the Calculation Specification operation, PARM, to name
the fields, arrays and tables to pass. PARM is more limited than RLABL
because you cannot pass indicators. Also, PARM values are available only
to the subroutine executed with the PARM operation(s). The next two
sections explain how to use external subroutines and how to pass
parameters to them using RLABL and PARM.

Using RLABL. RLABL passes field names, tables, arrays and indicators to
external subroutines. Values passed by RLABL are available to all
external subroutines in the program.

Figure 5-15 shows a portion of a C procedure that is used as an external
subroutine. Just the statements defining the data that is passed to the
procedure (the field, PNAME, and the indicator, IN20) are shown. Figure
5-16 shows how to execute this C procedure from an RPG program.

| |
| VOID SUB01() |
| { |
| EXTERN CHAR PNAME[]; |
| EXTERN INT IN20; |
| . |
| . |
| . |
| } |
| |

Figure 5-15. An External Subroutine written in C

Figure 5-16 lists the Specifications that execute the external
subroutine, SUB01, shown in the previous figure. The RPG program passes
indicator 20 (IN20) and the field (PNAME) to the subroutine.

5- 20

Figure 5-16. Using RLABL to Pass Information to an External Subroutine

Comments

 1 This line makes indicator 20 available to an external
 subroutine.

 Columns 43-48 specifies that indicator 20 is passed to the
 external subroutine. (Prefix indicator names by IN.)

 2 This line makes the field, PNAME, available to an external
 subroutine.

 3 This line executes the external subroutine, SUB01.

Using PARM. PARM passes field names, tables and arrays to external
subroutines. PARM does not pass indicators. Also, you must code PARM
operations for each external subroutine called. PARM values are not
globally available to other external subroutines in a program. (See
Figure 8-4 for a complete program that uses external subroutines and
PARM.)

RPG variables used with PARM are passed to external subroutines as byte
values by reference. The corresponding external subroutine variables
must be declared accordingly. (All RPG numeric fields have packed
decimal formats.)

Figure 5-17 shows part of a C procedure that is executed as an external
subroutine. Only the statements defining the data that is passed to the
procedure are shown. Figure 5-18 shows how this C procedure is executed
from an RPG program.

| |
| VOID SUB01 (PNAME, STATUS) |
| CHAR *PNAME; |
| CHAR *STATUS; |
| { |
| . |
| . |
| . |
| } |
| |

Figure 5-17. An External Subroutine Written in C

5- 21

Figure 5-18 shows how to execute the C procedure shown in Figure 5-16.
The RPG program passes two fields to the C procedure, PNAME and STATUS.
The C procedure may alter the value in STATUS, indicating that an error
occurred in the external subroutine.

Figure 5-18. Using PARM to Pass Information to an External Subroutine

Comments

 1 This line moves a program name, RPT10, to the first parameter
 field, PNAME. This field is passed to the external subroutine.

 2 This line sets the field, STATUS, to zeros. This field is
 passed to the external subroutine. The subroutine returns an
 error code in this field.

 3 This line executes the external subroutine, SUB01. SUB01 is the
 C procedure shown in Figure 5-17.

 4 This line passes the field, PNAME, to the external subroutine.
 (You enter PARM operations immediately after the EXIT
 operation.)

 5 This line passes the field, STATUS, to the external subroutine.

 6 This line tests the value in STATUS. The external subroutine can
 modify this field.

5- 22

6-: 1

 Chapter 6 Compiling an RPG Program
This chapter gives you the information you need to know in order to
successfully compile an RPG program. It explains how to use source
libraries and compiler options. It gives you specific instructions on
how to compile under the MPE XL operating system. The compiler listings
are discussed in detail as well as how to recover from compilation
errors.

Using Source Libraries

Source libraries help to standardize parts of RPG programs and reduce the
manual effort in coding programs. You enter commonly-used source code
into a source library, then copy that code into programs rather than
recoding it in each of them.

An RPG source library is a standard text file containing RPG
specifications. You can create a source library using any text
processor, such as EDITOR. Enter the RPG specifications exactly as they
should appear in a source program. When you want to use the source
libraries in a program, enter a $COPY statement at the beginning of the
program. $COPY enables the source library facility of RPG. At the point
in the program where you want to insert the source library text, enter an
$INCLUDE statement.

Figure 6-1 lists a program that extracts records from the D-ACCOUNTS data
set (see the MARKET schema in Figure 3-23). It prints the extracted
records and writes them to the file EXTRACT. There are two $INCLUDE
statements in the program. The first (line 3) copies the input field
definitions for D-ACCOUNTS. The second (line 5) copies the output field
definitions for the detail report record. Figure 6-2 and Figure 6-3 list
the contents of the source library files and Figure 6-4 shows what the
compiled source program listing looks like.

6- 2

Figure 6-1. A Source Program Before Compilation

6-: 3

Figure 6-1. A Source Program Before Compilation (Continued)

Comments

 1 This $COPY subsystem command specifies that the preprocessor
 utility (RPGCOPY.PUB.SYS) is used during compilation. RPGCOPY
 processes $INCLUDE statements. $COPY must be the first
 statement in the program.

 2 This $CONTROL subsystem command contains the RSPACE option.
 RSPACE directs the compiler to add 2 spaces between each output
 field having relative end positions.

 3 This $INCLUDE subsystem command directs the compiler to insert
 source library text at this point in the program. The text
 comes from the file, DACT1, in group SOURCE.

 4 This line begins the specifications for the report headings.

 5 This $INCLUDE command directs the compiler to insert source
 library text at this point in the program. The text comes from
 the file, DACT2, in group SOURCE.

Figure 6-2 lists the entries in the source library file, DACT1.
__
| |
| IDACCOUNTNS 01 3 8 ACTNO|
| I 9 18 FNAME|
| I 19 34 LNAME|
| I 35 62 ADDR1|
| I 63 90 ADDR2|
| I 91 118 ADDR3|
| I 119 128 ZIPCD|
| I 129 134OPHONE|
| I 135 136OPHEXT|
| I 137 144 MAILC|
| I 145 148OBDATE|
| I 149 152 SRCCD|
| I 153 154 TYPEC|
| I 155 162 ADATE|
| |
__

6- 4

Figure 6-2. Contents of the Source Library DACT1.SOURCE

Figure 6-3 lists the entries in the source library file, DACT2.

| |
| O ACTNO |
| O FNAME |
| O LNAME |
| O ADDR1 |
| O ADDR2 |
| O ZIPCD |
| |

Figure 6-3. Contents of the Source Library DACT2.SOURCE

Figure 6-4 shows, in effect, what the program looks like after the source
text is inserted. Source library text is inserted during the compilation
process; it is not incorporated as a permanent part of the source
program. In the listing, a "C" precedes the text that has been copied
and $COPY and $INCLUDE are changed to *COPY and *INCLUDE.

 *COPY
 $CONTROL RSPACE=2
 H* EXTRACT RECORDS FROM D-ACCOUNTS
 HDUMPRPG

 FDACCOUNTIP F 200 200 AM DISC
 F KIMAGE MARKET62
 F KLEVEL READER
 F KDSNAMED-ACCOUNTS
 FDEXTRACTO F 200 DISC
 FREPORT O F 132 132 LP
 *INCLUDE DACT1
 1 CIDACCOUNTNS 01
 CI 3 8 ACTNO
 CI 9 18 FNAME
 CI 19 34 LNAME
 CI 35 62 ADDR1
 CI 63 90 ADDR2
 CI 91 118 ADDR3
 CI 119 128 ZIPCD
 CI 129 134OPHONE
 CI 135 136OPHEXT
 CI 137 144 MAILC
 CI 145 148OBDATE
 CI 149 152 SRCCD
 2 MI 153 154 TYPEC
 CI 155 162 ADATE
 3 I 1 200 RECORD

 C* PERFORM FIELD COMPARES FOR RECORD SELECTION
 C* .
 C* .
 C* .

Figure 6-4. A Source Program After Compilation

 --

 ODEXTRACTD 01 20
 O RECRD 200
 OREPORT H 1P
 O 6 "ACCT #" R
 O 18 "FIRST NAME" R
 O 36 "LAST NAME " R
 O 66 "ADDRESS 1 " +019
 O 96 "ADDRESS 2 " +019

6-: 5

 O D 01 108 "ZIP CODE " R
 O
 *INCLUDE DACT2
 4 CO ACTNO 6 R
 CO FNAME 18 R
 CO LNAME 36 R
 CO ADDR1 66 R
 CO ADDR2 96 R
 CO ZIPCO 108 R

Figure 6-4. A Source Program After Compilation (Continued)

Comments

 1 This is the first line copied from source library, DACT1. Each
 of the lines in DACT1, except for lines 2 and 3, are copied.

 2 This line remains the same as that in the original program.
 Fields with the same names remain unaltered.

 3 This field does not exist in the source library; therefore, it
 remains unaltered.

 4 This is the first line copied from source library, DACT2.

Compiling Only

This section explains how to compile a program without linking or
executing it. You may want to do this, for instance, when you're in the
initial stages of developing a program and you want to know where the
compiler errors are. You must compile-only when the program contains
external subroutines because they must be linked to the program in a
separate step using the LINK command (see the LINK command in the HP Link
Editor/XL Reference Manual).

There are two ways to compile a program. You can use the MPE XL command
RPGXL or, if you're using RISE to develop a program, you can use the RISE
VERIFY command to compile it. (For information on RISE, see the RPG
Utilities Reference Manual .)

Figure 6-5 shows how to compile a program from a job file. The job file
is named GL50.JOB and contains an RPGXL command that compiles the
program, GL50S.SOURCE. RPGXL directs the compiler to create the
relocatable object file GL50O.OBJECT for the program. (The relocatable
object file is not executable; it must be converted to an executable
program file using the HP Link Editor/XL LINK command. See the HP Link
Editor/XL Reference Manual for details about creating an executable
program file.)

To start the compile job shown in Figure 6-5, enter the command,

:STREAM GL50.JOB

| |
| !JOB GL50,MGR.ACCTG |
| !RPGXL GL50S.SOURCE,GL500.OBJECT |
| !TELL MGR.ACCTG;PROGRAM GL50 COMPILED SUCCESSFULLY|
| !EOJ |
| |

Figure 6-5. Compiling an RPG Program From a Job File

To compile GL50S.SOURCE in session mode, enter this command,

:RPGXL GL50S.SOURCE,GL50O.OBJECT

In both the job and session examples above, the program listing is
written to $STDLIST.

Compiling and Linking

You can compile an RPG program and prepare it for execution in one step.
You may want to do this when you need to compile the program but execute
it at a later time.

6- 6

Figure 6-5 shows how to compile and link a program using the RPGXLLK
command. RPGXLLK is contained in the job file GL50.JOB. The compiler
reads the source file GL50S.SOURCE and produces the executable program
file GL50P.PROGRAM. (Using RPGXLLK is equivalent to entering RPGXL
followed by LINK.)

To start the compile and link job shown in Figure 6-6, enter the command,

:STREAM GL50.JOB
__
| |
| !JOB GL50,MGR.ACCTG |
| !RPGXLLK GL50S.SOURCE,GL50P.PROGRAM,$NULL |
| !TELL MGR.ACCTG;PROGRAM GL50 COMPILED SUCCESSFULLY|
| !EOJ |
| |
__

Figure 6-6. Compiling and Linking an RPG Program From a Job File

To compile and link GL50S.SOURCE in session mode, enter this command,

:RPGXLLK GL50S.SOURCE,GL50P.PROGRAM,$NULL

In both the job and session examples above, $NULL suppresses the program
listing.

Compiling, Linking and Executing

You can compile, link and execute an RPG program in one operation. This
comes in handy when you're testing a program.

To compile, link and execute an RPG program, enter the MPE XL RPGXLGO
command. Figure 6-7 shows how to use RPGXLGO in a job file (GL50.JOB)
that compiles and executes the RPG program, GL50S.SOURCE. The RPGXLGO
command creates a temporary executable program file $OLDPASS. $OLDPASS is
overwritten by the next RPGXLGO command and is purged when you log off.

To execute the job file in the following figure, enter the command,

:STREAM GL50.JOB

| |
| !JOB GL50,MGR.ACCTG |
| !RPGXLGO GL50S.SOURCE |
| !TELL MGR.ACCTG;PROGRAM GL50 COMPILED SUCCESSFULLY|
| !EOJ |
| |

Figure 6-7. Compiling, Linking and Executing an RPG Program From a Job File

To compile, link and execute GL50S.SOURCE in session mode, enter the
command,

:RPGXLGO GL50S.SOURCE

In both the job and session mode examples above, the program listing is
written to $STDLIST.

Changing the RPG Compiler Defaults

When you compile a program, RPG makes certain assumptions about the
compile and run-time options that you're using. For instance, when a
run-time error occurs, RPG displays a message and the operator chooses an
appropriate response or action.

You can change the defaults for some of the compiler options, by using
one or all of the following: the Header Specification, the $CONTROL
statement or the $TITLE statement. The next three sections discuss the
options that these statements control and how to use them. For a
discussion of all of the compiler subsystem commands, see the HP RPG
Reference Manual .

The Header Specification

6-: 7

The Header Specification is used to specify these common compile-time and
run-time options:

 * Where to write the run-time Error Dump

 * Whether the RPG DEBUG facility is used

 * What search method to use for tables and arrays

 * How DSPLY and DSPLM work

 * Whether or not to print a Cross-Reference listing

 * How to handle run-time error messages

For a complete list of the Header Specification options, see the HP RPG
Reference Manual .

Figure 6-8 shows how to change the defaults for the options listed above.

Figure 6-8. Using the Header Specification to Change Compiler Defaults

Comments

 1 Columns 7-14 contain the name of the disc file, DUMPRPG, that
 contains the run-time Error Dump.

 Column 15 contains 1 to enable the RPG DEBUG facility. (For
 information on DEBUG, see "Using RPG DEBUG" in Chapter 7.)

 Column 34 is B to specify that tables and arrays are searched in
 a binary fashion.

 Column 48 is D to display literals for DSPLY and DSPLM and to
 prompt for user input on the same line as the literals.

 Column 52 contains X to print a Cross-Reference listing.

 Column 55 contains N to suppress run-time error messages for the
 errors having responses entered in columns 56-71.

 Column 58 contains 5 to terminate the program when a run-time
 input file sequence error occurs. An Error Dump is also
 printed.

6- 8

$CONTROL

The $CONTROL statement is a compiler subsystem command that lets you
specify many compile-time options including:

 * The name of the source program file (this overrides the name in
 columns 75-80 of the Header Specification)

 * The delimiter character for non-numeric literals

 * The number of lines per page to print on the compiler listings

 * Which lines to include in the source program and Cross-Reference
 listings

Normally, if you use $CONTROL, it is the first statement in the program.
However, you can use $CONTROL statements throughout a program. For
instance, you may want to turn compiler options on and off at different
points in the program.

Figure 6-9 shows how to enter a $CONTROL statement to change the compiler
options listed above.

Figure 6-9. Using $CONTROL to Change Compiler Defaults

Comments

 1 This $CONTROL statement specifies that: the program name is
 PAYRL5; the delimiter character for non-numeric literals is a
 single quote ('); the maximum number of lines per page in the
 compiler listings is 55; and the source program and
 Cross-Reference listings will not be printed.

 2 This $CONTROL statement turns on the source program and
 Cross-Reference listing options.

 3 This $CONTROL statement turns off the source program and
 Cross-Reference listing options.

$TITLE

$TITLE is used to change the title that appears on the top of each

6-: 9

compiler listing page. You can use it to print the program name on each
page, for example, or you can alter it from page to page to print
subroutine names.

To alter the title for the entire compiler listing, place a $TITLE
statement at the beginning of the program after the $CONTROL statement,
if there is one. When you use $TITLE, the top line of each page (except
the first) looks like this:

PAGE nnnn ($TITLE text)

Figure 6-10 shows how to use $TITLE to print a description of a program,
along with its name, at the top of each page of a compiler listing.

Figure 6-10. Using $TITLE to Change the Compiler Listing Title

Comments

 1 This line specifies that the title, Calculate State Tax -
 PAYRL5, appear at the top of each compiler listing page.

Using the RPG Compiler Listings

When you compile a program, one or more of the following listings is
produced:

 * A listing of the source program. (Optionally, you can print just
 those statements containing errors.)

 * A Symbol Table listing.

 * A Cross-Reference listing.

Each of these listings is discussed in detail in the following sections.

The Source Program Listing

When you compile a program, a full source listing is printed
automatically. It is printed using the device assigned to $STDLIST (or
RPGLIST). Source lines that contain errors are stamped with error
numbers. If the source lines contain potential errors, they are stamped
with a warning numbers. These warning and error numbers are printed
after the Symbol Table (or Cross-Reference listing, if there is one)
along with short explanations (see "Understanding RPG Compiler
Messages"). At the end of the source listing, indicators that are
defined but not referenced in the program, are listed.

You can turn off the source program listing anywhere in the program by
entering a $CONTROL statement with the NOLIST option. (see "$CONTROL").

6- 10

Doing this causes only those source statements containing errors to be
printed. Suppressing the source program listing in this manner is useful
when you're compiling new or large programs.

Figure 6-11 shows what a source program listing looks like. It shows the
first part of the program listed in Figure 4-23. Sequence numbers have
been added to the source program to illustrate how they appear on the
listing.

Figure 6-11. A Source Program Listing

Comments

 PAGE 0001... This is the standard RPG heading. It contains the
 page number, RPG compiler version number and the
 current date.

6-: 11

 0001 This number (like others in this column) is a source
 sequence number generated by the RPG compiler.
 References to source code lines in the compiler
 listings use this number.

 0010 This is the sequence number contained in the actual
 source line (columns 1-5).

Figure 6-12 shows the unreferenced indicators for the VPLUS program shown
in Figure 4-23. Unreferenced indicators, if they exist, are printed at
the end of the source listing.

 --

 UNREFERENCED INDICATOR = 01
 UNREFERENCED INDICATOR = 09
 UNREFERENCED INDICATOR = 12
 UNREFERENCED INDICATOR = 61
 --

Figure 6-12. A Source Program Listing (Unreferenced Indicators)

The Symbol Table Listing

The Symbol Table listing gives the storage allocations for data fields,
tables, arrays, subroutines and calculations having tag references. The
names are listed in alphabetical order. You may find a Symbol Table
listing useful when debugging a program.

The Symbol Table listing is produced automatically when you compile a
program (it is suppressed when you use the NOLIST option of the $CONTROL
compiler subsystem command). Figure 6-13 shows what the Symbol Table
listing looks like for the VPLUS program shown in Figure 4-23.

Figure 6-13. A Symbol Table Listing

6- 12

Comments

 ACTION This SYMBOL name is the name of a field. Other names
 appearing in the SYMBOL column are names of table
 items, array elements, subroutines and TAG operation
 labels.

 6 This is the length of the SYMBOL field, ACTION.

 If the SYMBOL name is a numeric field, the number of
 digits and decimals in the field are printed. For
 example, 10.0 indicates that there are 10 digits and
 no decimals.

 If the SYMBOL name is a label for a TAG operation,
 TAG appears in this column.

 If the SYMBOL name is a subroutine name, SUBR
 (subroutine) is printed.

 000002a4 This is the starting memory location (in hexadecimal)
 for the field, ACTION. It is relative to the
 beginning of the run-time memory area for the
 program.

 Storage locations are printed for fields, table and
 array elements. Storage locations are not printed
 for SYMBOL names that are labels for TAG operations
 or subroutines.

 The last character in the ADDR column indicates
 whether the SYMBOL name is a table or array. If the
 SYMBOL name is a table, T is printed. If the SYMBOL
 name is an array, A is printed. If the SYMBOL name
 is not a table or array, this position is blank (see
 LBL, for example).

The Cross-Reference Listing

The Cross-Reference listing shows each field, tag, indicator, subroutine,
table and array name along with each reference to it in the program. You
should request this listing when you're debugging a program.

You request the Cross-Reference listing using the Header Specification
(see "The Header Specification" in this chapter). You can select which
portions to cross-reference, if you like, by using the MAP and NOMAP
options of the $CONTROL statement (see "$CONTROL" in this chapter).

Figure 6-14 through Figure 6-16 show the three parts of a Cross-Reference
listing (the program used is the one shown in Figure 4-23). Figure 6-14
shows indicator references. Figure 6-15 shows field references and
Figure 6-16 shows file references.

6-: 13

Figure 6-14. A Cross-Reference Listing (Indicators Used)

PAGE 0011 INDICATORS USED

 *01 INDICATOR DEFINED 0034
 NOT REFERENCED
 *09 INDICATOR DEFINED 0031
 NOT REFERENCED
 *12 INDICATOR DEFINED 0051
 NOT REFERENCED
 13 INDICATOR DEFINED 0032
 REFERENCED 0025
 50 INDICATOR DEFINED 0359
 REFERENCED 0073
 51 INDICATOR DEFINED 0270 0299
 REFERENCED 0099 0128 0145 0181 0199 0219 0271 0358
 52 INDICATOR DEFINED 0121 0151 0153
 REFERENCED 0125 0126 0153 0154 0155 0156
 60 INDICATOR DEFINED 0105 0239 0261
 REFERENCED 0106 0107 0108 0135 0136 0137 0172 0184 0185
 0186 0196 0206 0207 0208 0240
 *61 INDICATOR DEFINED 0105 0239
 NOT REFERENCED
 H0 INDICATOR DEFINED 0316 0324 0328
 RPG-REFERENCED
 LR INDICATOR DEFINED 0262
 REFERENCED 0074 0100 0129 0146 0182 0200 0220
 F0 INDICATOR DEFINED 0329
 REFERENCED 0098 0101 0127 0130 0144 0147 0180 0183
 0198 0201 0217 0218 0221 0317 0357
 F1 INDICATOR RPG-DEFINED
 REFERENCED 0085 0283
 F2 INDICATOR RPG-DEFINED
 REFERENCED 0086 0284
 F3 INDICATOR RPG-DEFINED
 REFERENCED 0087 0285
 F4 INDICATOR RPG-DEFINED
 REFERENCED 0268
 .
 .
 .

 * 4 INDICATOR(S) DEFINED, BUT NOT REFERENCED.

6- 14

Comments

 01 This is the indicator name.

 INDICATOR DEFINED This message precedes the line numbers where the
 indicator is defined.

 0034 This is the line number where indicator 01 is defined
 (0034 is the compiler-generated line number).

 NOT REFERENCED This message appears for indicators that are not
 referenced in the program.

 REFERENCED appears for indicators that are used in
 the program.

 RPG-REFERENCED appears for indicators used by the RPG
 logic cycle.

Figure 6-15. A Cross-Reference Listing (Field Names Used)

6-: 15

Comments

 ACTION This is a field name. Other names appearing in this
 column are table or array element names, labels for
 TAG operations and subroutine names.

 (FIELD) This describes ACTION's data element type.

 TAG appears for TAG operation labels.

 SUBR appears for subroutine names.

 6 This is the length of the field, ACTION.

 If the field is a numeric field, the number appearing
 in this column shows the number of digits and
 decimals in the field. For example, 5.2 indicates
 that the field has 5 digits and 2 decimals.

 If this is not a data field, no number appears.

 0300 This number is the compiler-generated line number
 where the field is defined.

 REFERENCED This message precedes the line numbers that specify
 where ACTION is used.

 NOT REFERENCED appears when the field is not used in
 the program.

 0253... This begins the line numbers that specify where the
 field ACTION is used.

Figure 6-16. A Cross-Reference Listing (File Names Used)

Comments

 DACCOUNT This is the name of a file used in the program.

 (UPDATE - CHAIN) This message describes DACCOUNT as File Type UPDATE
 with File Designation CHAIN. (File Type and
 Designation are defined in columns 15 and 16 of the

6- 16

 File Description Specification.)

 0018 This is the line number where DACCOUNT is defined.

 REFERENCED This message precedes the line numbers that specify
 where DACCOUNT is used in the program.

 NOT REFERENCED is printed when the file is not
 referenced in the program.

 0051... This begins the compiler-generated line numbers
 that specify where DACCOUNT is referenced in the
 program.

Understanding RPG Compiler Messages

There are three kinds of compiler messages: informational messages,
warnings and errors. An informational message reminds you of potential
error situations that you may have overlooked. A warning indicates that
there may be an error, but it does not prevent a successful compilation.
An error means that the problem prevents a successful compilation. You
must correct errors. See Appendix A in the HP RPG Reference Manual for
explanations of compiler messages and how to correct errors.

Informational messages, warnings and errors are shown at the end of the
compiler listing. Figure 6-17 shows what informational messages look
like.

Figure 6-17. Compiler Informational Messages

Comments

 9001 This is the number which identifies the message. Use
 this number to look up the message in Appendix A of
 the HP RPG Reference Manual .

 I This is the letter code for Informational (I)
 messages. Warnings have a W letter code and terminal
 errors have a T letter code. You must correct
 Terminal errors before you can successfully compile

6-: 17

 the program.

 INDICATOR... This is a brief description of the message. For a
 complete description and corrective action, see
 Appendix A in the HP RPG Reference Manual .

 0443 This is the compiler-generated line number to which
 the message corresponds.

6- 18

7-: 1

Chapter 7 Executing an RPG Program

This chapter describes how to execute an RPG program and how to use the
RPG DEBUG feature during execution. It also explains how to interpret
various run-time messages that you may encounter and what to do about
them. And finally, it gives general tips on how to avoid run-time
errors.

There are three ways to execute an RPG program:

Use this (these) When you want to:
MPE XL Command(s):

RPGXLGO Compile, link and execute the program in one step.
 This method is handy during initial program testing.
 For an explanation of this method, see "Compiling,
 Linking and Executing" in Chapter 6.

RPGXLLK RUN Compile and link the program in one step and execute
 it in another. If you do not enter a file name for
 the executable program file, $OLDPASS is used. To
 run the executable program file, follow RPGXLLK with
 the RUN command (see "RUN" below).

RUN Run an executable program file that was created
 previously by a RPGXLLK command or by a HP Link
 Editor/XL LINK command. You normally execute
 production programs or programs with minor changes
 using the RUN command.

 You can also run an executable program file by
 omitting the word "RUN" and simply typing the
 executable program file name at the operating system
 prompt.

Figure 7-1 shows how to use RPGXLLK and RUN. This example compiles, links
and executes a program. The program source file is GL50S.SOURCE and the
job file name is GL50.JOB. To execute this job file, enter the operating
system command,

 :STREAM GL50.JOB

| |
| !JOB GL50,MGR.ACCTG |
| !RPGXLLK GL50S.SOURCE, GL50P.PROGRAM|
| !RUN GL50P.PROGRAM |
| !EOJ |
| |

Figure 7-1. Compiling, Linking and Executing an RPG Program

Using RPG DEBUG

RPG has a facility, DEBUG, that you can use in your program as a
debugging tool. DEBUG is an operation used with Calculation
Specifications. It lets you monitor the status of indicators and the
contents of fields, tables and arrays while a program is executing. You
place DEBUG statements before and after the operations that you want to
monitor.

DEBUG information is usually displayed on your terminal (session mode) or
printed along with your job listing (job mode). If you wish, you can

7-: 2

have this information written to a disc file instead.

Figure 7-2 shows how to use DEBUG. To enable DEBUG, you must enter a 1 in
column 15 of the Header Specification. If you leave this column blank,
DEBUG statements in your program are ignored (treated as comments).

Figure 7-2. Using DEBUG

Comments

 1 This Header Specification enables the DEBUG feature of RPG.

 Column 15 is 1 to enable DEBUG.

 2 This line defines the disc file that holds the DEBUG
 information.

 3 This line logs DEBUG information to a disc file.

 Columns 18-27 contain a tag, M-1EXMPT, that identifies this
 DEBUG operation data in the disc file.

 Columns 28-32 specifies the DEBUG operation.

 Columns 33-42 name the disc file, DEBUGFL, in which the DEBUG
 data is saved.

7-: 3

 Columns 43-48 specify that the contents of the field, PTR1, are
 also written to the disc file.

 4 This line logs DEBUG information to a disc file.

 Columns 18-27 contain a tag, M-1END, that identifies this DEBUG
 operation data in the disc file.

Handling Execution Errors

If an error occurs while you're executing an RPG program, an error
message (and often an error number) is displayed. If the error is a file
error, the File Information Display is produced automatically along with
an Error Dump (you can request error dumps independently, if you wish).
The sections which follow in this chapter discuss error messages, Error
Dumps and the File Information Display in detail.

If you're executing a program in session mode, the error message and File
Information Display are shown on your terminal. In job mode, error
messages are displayed on the operator's console and the File Information
Display is saved with the job listing. It is a good idea, when running
in job mode, to capture the messages and file information in a disc file.
This gives you more flexibility in scheduling your jobs and lets you
examine results at a later time. The following RUN command executes the
program GL50 and redirects error information to the existing disc file,
MESSFL:

 :RUN GL50;STDLIST=MESSFL

Error Messages

There are four types of error messages: RPG, IMAGE, USWITCH and BUFCHK.
RPG errors are general errors such as arithmetic overflow and matching
record sequence errors. TurboIMAGE errors originate in the TurboIMAGE
subsystem and you may see these errors if you're using an IMAGE database
in your program. You may see USWITCH and BUFCHK errors if you're using
the USWITCH Source or the BUFCHK features of RPG, respectively.

Each type of error message has a different format and is documented
separately. RPG, USWITCH and BUFCHK errors are documented in Appendix B
of the HP RPG Reference Manual . TurboIMAGE errors are explained in the
TurboIMAGE/XL Database Management System manual . It is important,
therefore, to learn to recognize these three types of message formats so
that you will know where to find explanations and remedial procedures for
them.

RPG Errors. Most of the error messages you see when running an RPG
program are RPG error messages. RPG errors are detected by the software
that performs the basic RPG processing. They also include errors
occurring in software that RPG interfaces with, such as VPLUS, RSI, and
KSAM.

Appendix B of the HP RPG Reference Manual contains a complete description
of the RPG errors and actions that you can take to correct the errors.

Identifying RPG Errors

Figure 7-3 shows a typical RPG error message. Lines relating to RPG
errors are shaded. You identify an RPG error by the line,

 *** RPG ERROR ***

You identify the specific error by the error number line,

 1. FATAL FILE ERROR, FILENAME=DACCOUNT

7-: 4

Figure 7-3. An RPG Execution Error

Changing the Way RPG Errors Are Handled

Normally, when an RPG error occurs, a message is displayed and the user
(or console operator) selects a particular action to take. The operator
can ignore the error and continue, skip the line in error and continue or
terminate the program. If you do not want the operator or user to make
these choices for specific error situations, you can enter the actions to
take within your program. You can do this using either (or both) the
Header Specification or the *ERROR field.

Use the Header Specification to enter the responses you want RPG to make
when an error occurs. For instance, you might want the operator to
handle errors except when an input file sequence error occurs. When
input sequence errors occur, you want to continue processing and use your
own error handling instead. (Use the *ERROR field to find out the error
number, then code your own RPG operations to handle the error.) Figure
7-4 shows a Header Specification that suppresses normal RPG processing
for input file sequence errors (the program includes code to handle these
errors).

Figure 7-4. Providing a Response to RPG Errors Using the Header Specification

7-: 5

Comments

 1 This Header Specification changes the default error handling for
 input file sequence errors.

 Column 55 contains N to specify that the error message for
 sequence errors be suppressed. Instead of the normal response
 to sequence errors, take the action entered in column 58.

 Column 58 contains 0 to ignore input file sequence errors and to
 continue program execution.

TurboIMAGE Errors. If you're using an TurboIMAGE database, you may see
TurboIMAGE errors. To find the explanation and remedies for TurboIMAGE
errors, see the TurboIMAGE/XL Database Management System manual .

Figure 7-5 shows what an TurboIMAGE read error message looks like.

Figure 7-5. An TurboIMAGE Error

USWITCH Errors. USWITCH errors may occur when you use the USWITCH Source
feature (column 16 in the Header Specification). Appendix B of the HP
RPG Reference Manual contains a complete description of the USWITCH
errors and recovery procedures for them.

These are the USWITCH error messages you may encounter:

 I/O ERROR ON $STDLIST

 I/O ERROR ON $STDIN

 INVALID INPUT DATA

 UNEXPECTED END OF FILE

Figure 7-6 shows what a typical USWITCH error display looks like.

7-: 6

Figure 7-6. A USWITCH Error

BUFCHK Errors. BUFCHK errors are data buffer handling errors that may
occur when you use the BUFCHK Defaults feature (column 28 in the Header
Specification). Appendix B of the HP RPG Reference Manual contains a
complete description of the BUFCHK errors and recovery procedures for
them.

These are the BUFCHK error messages you may encounter:

 INTERNAL OR INTRINSIC ERROR

 ATTEMPTED UPDATE BEFORE INPUT OF FIRST RECORD.

 ATTEMPTED UPDATE ON SAME RECORD OR ON AN INTERVENING "ADD" RECORD.
 ATTEMPTED LOCKING FILE AT BOTH RECORD-LEVEL AND FILE-LEVEL

Figure 7-7 shows what a typical BUFCHK error display looks like.

Figure 7-7. A BUFCHK -4 Error

7-: 7

The File Information Display

You see the File Information Display (often referred to as "tombstone")
when an error occurs that involves a file. File Information Displays
give additional information about the error. File Information Displays
are discussed in the operating system intrinsics and error messages
manuals.

The File Information Display is shown in short form when the file cannot
be opened for processing. This happens, for example, when the file does
not exist in the group or account specified. The shaded portion of
Figure 7-8 shows what the short form looks like.

Figure 7-8. Short Form of the File Information Display

Once a file is opened for processing and an error occurs, additional file
information is given in the File Information Display. This information
should help in clarifying the exact cause of the error. In Figure 7-9,
for example, RPG error number 1 occurred for the file, DACCOUNT. The File
Information Display gives detailed information about DACCOUNT.

7-: 8

Figure 7-9. Long Form of the File Information Display

The Error Dump

The Error Dump shows the contents of certain areas in memory when a
program terminates due to execution errors. For example, the Error Dump
shows fields and their contents and the settings of indicators.
Executable program code is not listed in the Error Dump.

You get the Error Dump automatically when file errors occur. Otherwise,
you must specifically request it. You should always request dumps for
production programs. The next four sections explain how to request an
Error Dump and the information it contains.

Creating an Error Dump File. It is usually more convenient to write the
Error Dump to a disc file rather than display it. Before executing the
program, create an empty disc file for the Error Dump.

The following operating system command creates the disc file, DUMPRPG,
that is in a format that can be used to save Error Dumps,

7-: 9

 :BUILD DUMPRPG;REC=-80,16,F,ASCII;DISC=512,8

Requesting an Error Dump. You can get an Error Dump automatically by
entering an S in the Error Log Field (column 55) of the Header
Specification. The dump is produced whenever an RPG error occurs. If
you only want certain errors to trigger a dump, put an N in column 55 or
leave it blank. Then enter an error response for those errors (which
include a dump) into the Error Response Field (columns 56-71).
(Alternatively, if you leave the Error Log Field blank and an error
occurs, the operator can select response 5. Response 5 terminates the
program and produces a dump.)

This figure shows a Header Specification that requests an Error Dump
whenever an RPG error occurs.

Figure 7-10. Requesting an Error Dump

Comments

 1 This Header Specification requests an Error Dump and directs it
 to a disc file.

 Columns 7-14 name the disc file, DUMPRPG, that contains the
 Error Dump.

 Column 55 is S to request an Error Dump if an error occurs. The
 program terminates immediately. When you use S, you cannot use
 the Response Field (columns 56-71) to enter error responses.

Parts of the Error Dump. Program information is shown in the Error Dump
in logical groupings with appropriate titles. The dump is easy to read.
Figure 7-11 (spread over several pages) shows an Error Dump of the
program in Figure 4-23 (see the compiler listing for this program in
Figure 6-11 through Figure 6-16).

The first part of the dump, LIBRARY POINTERS, shows the addresses of the
pointers to various tables and storage areas used by the program. Each
pointer contains the address of the first word of the table or storage
area.

7-: 10

 *** LIBRARY POINTERS ***
 lib_pointer pointer = 40200010
 run-time globals pointer = 40200078
 indicators pointer = 40200170
 work area pointer = 40200230
 alpha field pointer = 4020025C
 numeric field pointer = 40200AC4
 LDA buffer pointer = 00000000
 UDATE field pointer = 40200ACA
 UDAY field pointer = 40200ADD
 UMONTH field pointer = 40200AEA
 UYEAR field pointer = 40200AE4
 ERROR field pointer = 40200AA5
 alt collating seq tbl pointer = 00000000
 file translation tables pointer = 00000000
 file extension tables pointer = 40200DF4
 workstation table pointer = 40200AF8
 first file table pointer = 40200ED0
 first record buffer pointer = 402010F0
 level info pointer = 00000000
 matching record info pointer = 00000000
 first chain table pointer = 00000000
 table/array tables pointer = 402012D0
 first RLABL pointer = 00000000
 terminal control table pointer = 00000000
 current input proc. pointer = 40100081
 get_rec() proc. pointer = 401000A1

Figure 7-11. The Error Dump - LIBRARY POINTERS

After the LIBRARY POINTERS section, the RUN-TIME GLOBALS DATA AREA is
displayed. This area contains run-time control and status information.
For example, one piece of information is the file number for a message
file used in the program. The first part of the globals area for the
program in Figure 4-11 is shown below.

 *** RUN-TIME GLOBALS DATA AREA ***
 H Col 16: user switch source = 0
 H Col 17: UDATE source = 0
 H Col 49: message control on record length error = 0
 Date and number format: 0
 Packed Decimal -1: OOOOOO1D
 Packed Decimal +0: OOOOOOOC
 Packed Decimal +1: OOOOOO1C
 Run-time File Table count: 2
 Run-time File Table size (bytes): 260
 Table/Array Table count: 2
 Table/Array Table size (bytes): 68
 local data area size (bytes): 0
 $STDLIST output record length (bytes): 81
 User Message File number: 0
 Current Line number: 504
 Loop Counter: 0
 Min size: 0
 H Col 41: Request Page Alignment = 0
 H Col 47: Don't skip to new page = 0
 H Col 44: OK to move spec. chars = 0
 in RPG logic cycle: 1
 Match Descending in record matching: 2
 Match Primary in record selection: 0
 Match Records in record selection: 0
 OK to end program: 0
 In block mode: 1
 Running Interactively: 1
 NLS Catalog opened: 0
 DS move done: 0
 perform numeric validation: 1
 uswitches used flag: 0
 error parameter: 0

7-: 11

 temporary storage: 0
 $CONTROL EXCQUIT flag: 0
 LDA file number: 0
 $CONTROL NEWSAVE flag: 0
 .
 .
 .

Figure 7-11. The Error Dump - RUN-TIME GLOBALS DATA AREA

The next two figures show the contents of the File Table Areas for each
file processed in the program. The first file shown is TERMINAL and the
second is DACCOUNT (these names are shaded in the figures).

The first section of each figure shows general information about the
file. For example, TERMINAL is a WORKSTN file whose designation is
DEMAND. Following the general information is the contents of the file
buffer (RECORD BUFFER (ASCII)). Then, the contents of the FILE TABLE are
listed in hexadecimal notation. The FILE TABLE contains all of the
control information used to process the file and may prove helpful in
determining the cause of file errors. The WORKSTATION EXTENSION TABLE
follows the FILE TABLE if the file is a WORKSTN file; the IMAGE EXTENSION
TABLE follows if the file is a TurboIMAGE file. They give information
relevant to those file types.

Refer to Table 7-1 through Table 7-3 for descriptions of positions in the
FILE, IMAGE EXTENSION and WORKSTATION EXTENSION TABLES. (A "word" in
Table 7-1 through Table 7-3 is 32 bits long.)

 *** FILE TABLE AREA ***
 FILE NAME = TERMINAL

 MPEXL FILE NUMBER = -1 DEVTYPE = WORKSTN (ACTUAL = DISC)

 FILE TYPE UPDATE FILE DESIGNATION DEMAND
 RECORD FORMAT 256B, IR/B, VARIABLE SEQUENTIAL

 RECORD BUFFER (ASCII)

 FILE TABLE
 40200ED0: FFFFFFFF 5445524D 494E414C 574F524B 53544E20
 40200EE4: 00000000 00000000 00000000 00000002 00000006
 40200EF8: 00000000 00000000 00000000 00000000 00000000
 40200F0C: 00000000 00000000 00000000 00000001 00000000
 40200F20: 00000000 00000000 00000100 00000001 00000000
 40200F34: 402010F0 00000000 00000000 00000000 00000000
 40200F48: 00000000 00000000 00000000 00000000 00000000
 40200F5C: 40200AF8 00000000 00000000 00000000 00000000
 40200F70: 00000000 00000000 00000000 00000000 00000000
 40200F84: 00000000 00000000 00000000 00000001 01000000
 40200F98: 00000000 00000000 00000000 00000000 00000000
 4O2OOFAC: 00000000 00000000 00000000 00000000 00000000
 40200FC0: 00000000 00000000 00000000 00000000 00000000

 WORKSTATION EXTENSION TABLE
 40200AF8: 00000000 00000000 00000000 00000000 00000000
 40200B0C: 00000001 00000000 00000000 00000001 00000001
 40200B20: 00000001 00000000 00000000 00000000 00000000
 40200B34: 00000000 00000000 0000000B 00000000 FFFFFFF7
 40200B48: 00000000 40A00000 40200ED0 00000000 00000000
 .
 .
 .

Figure 7-11. The Error Dump - TERMINAL File and Workstation Tables

 FILE NAME = DACCOUNT

 MPEXL FILE NUMBER = 1 DEVTYPE = DISC (ACTUAL = DISC)

 FILE TYPE UPDATE FILE DESIGNATION CHAINING
 RECORD FORMAT 200B, IR/B, FIXED RANDOM

 RECORD BUFFER (ASCII)

 FILE TABLE

7-: 12

 40200FD4: 00000001 44414343 4F554E54 44495343 20202000
 40200FE8: 00000000 00000000 00000000 00000002 00000004
 4O2OOFFC: 0000000F 00000001 00000000 00000000 00000006
 40201010: 00000000 00000002 00000000 00000000 00000000
 40201024: 00000000 00000000 000000C8 00000001 00000000
 40201038: 40201208 00010100 00000001 00000001 00000000
 4020104C: 00000000 00000000 00000000 00000000 00000000
 40201060: 00000000 40200DF4 00000000 00000000 00000000
 40201074: 00000000 00000000 00000000 00000000 00000000
 40201088: 00000000 00000000 00000000 00000101 01000000
 4020109C: 00000000 00000000 00000000 00000000 00000000
 402010B0: 00000000 00000000 00000000 00000000 00000000
 402010C4: 00000000 00000000 00000000 00000000 00000000

 IMAGE EXTENSION TABLE
 40200DF4: 00014D41 524B4554 20202020 57524954 45522020
 40200E08: 4143434F 554E542D 4E4F2020 20202020 20202020
 40200E1C: 20202020 442D4143 434F554E 54532020 20202020
 40200E30: 00000011 3CAElOOO 00004192 40200DF4 00CA0000
 40200E44: 00000000 00000000 00000000 00000000 00000000
 40200E58: 00000004 00000005 00000040 00000001 00000000
 40200E6C: 00000000 00000000 00000000 00000000 00000000
 40200E80: 00000000 00000001 00000003 00000000 00000000
 40200E94: 00000000 00000000 00000000 00000000 00000000
 40200EA8: 40200EC4 40200ECA 00000000 00000000 00000000
 4O2OOEBC: 00000000 00000000 00000000 00000000 00000000
 40200ED0: FFFFFFFF 5445524D 494E414C 574F524B 53544E20
 40200EE4: 00000000 00000000 00000000 00000002 00000006
 40200EF8: 00000000 00000000 00000000 00000000 00000000
 .
 .
 .

Figure 7-11. The Error Dump - DACCOUNT File and Extension Tables

After the File Table area, all indicator settings are listed as shown in
this figure.

 *** LEVEL INDICATORS ***

 LO = ON Ll = OFF L2 = OFF L3 = OFF L4 = OFF
 LS = OFF L6 = OFF L7 = OFF L8 = OFF L9 = OFF

 *** FUNCTION KEY INDICATORS ***

 FO = OFF Fl = OFF F2 = OFF F3 = OFF F4 = OFF
 FS = OFF F6 = OFF F7 = OFF F8 = OFF F9 = OFF

 *** COMMAND KEY INDICATORS ***

 KA = OFF KB = OFF KC = OFF KD = OFF KE = OFF
 KF = OFF KG = OFF KH = OFF KI = OFF KJ = OFF
 KK = OFF KL = OFF KM = OFF KN = OFF KP = OFF
 KQ = OFF KR = OFF KS = OFF KT = OFF KU = OFF
 KV = OFF KW = OFF KX = OFF KY = OFF

 *** HALT INDICATORS ***

 HO = OFF Hl = OFF H2 = OFF H3 = OFF H4 = OFF
 H5 = OFF H6 = OFF H7 = OFF H8 = OFF H9 = OFF

 *** OVERFLOW INDICATORS ***

 OA = OFF OB = OFF OC = OFF OD = OFF
 OE = OFF OF = OFF OG = OFF OV = OFF
 LR = OFF MR = OFF IP = OFF

 *** USER INDICATORS ***

 Ul = OFF U2 = OFF U3 = OFF U4 = OFF U5 = OFF
 U6 = OFF U7 = OFF U8 = OFF

 *** OTHER INDICATORS ***

 01 = OFF 02 = OFF 03 = OFF 04 = OFF

7-: 13

 OS = OFF 06 = OFF 07 = OFF 08 = OFF 09 = OFF
Figure 7-11. The Error Dump - INDICATORS

The contents of alphanumeric and numeric fields are listed next, as shown
in the following figure. To see the contents of a particular field, find
the field's address in the compiler Symbol Table listing, then locate
that address using the address column at the left margin. For example,
the ADDR column in the Symbol Table listing for the field ACTION contains
000002a4 (in hexadecimal). Adding the offset address (40200010) of
lib_pointer in the LIBRARY POINTERS section of the Error Dump, the actual
address for ACTION is 402002B4. Since ACTION is an alphanumeric field,
it takes up six bytes. The shaded area in the Alphanumeric Fields
section shows the contents of ACTION (it is blank).

 *** ALPHANUMERIC FIELDS ***

 4020025C:
 4020029D:
 402002DE:
 4020031F: ADD MODE CH
 40200360: ANGE MODE INQUIRY MODE DELETE MODE
 402003A1: EXIT
 402003E2: SELECT
 40200423: MODE WITH FUNCTION KEY
 40200464: MAKE CHANGES AND HIT ENTER (F7 TO CANCEL CHANGE)
 402004A5:
 402004E6: YOU MAY NOT CHANGE ACCOUNT NUM
 40200527: BER OR LAST NAME (F7 TO CLEAR) INVALID KEY (F7
 40200568: TO CLEAR) EX
 402005A9: ISTING ACCOUNT NUMBER
 402005EA: INVALID ACCOUNT NUMBER
 4020062B: PRESS F5 AGAIN TO CONFIRM DELETE (F7 TO
 4020066C: CANCEL DELETE)
 402006AD:
 402006EE:
 4020072F:
 .
 .
 .

 *** NUMERIC FIELDS ***

 40200AC4: 0000000000000030988F00000000000000000000000000000000009F0000000000
 40200AE4: 088F00000000003F00000000000000000000000

Figure 7-11. The Error Dump - ALPHANUMERIC and NUMERIC FIELDS

The last part of the formatted dump lists table and array information.
Each table and array is listed in the order in which it appears in the
program. For each table and array, control information is printed first
followed by an ASCII dump of the table or array's contents. In the
following figure, the arrays MSG and LBL are printed (they are defined in
lines 25 and 26 of the source program).

 ** TABLES AND ARRAYS ***

 ARRAY DEFINED ON LINE NUMBER = 25
 COMPILE TIME ARRAY, NO SEQUENCE, ALPHAMERIC, NOT ALTERNATING
 ENTRY LENGTH 79 POINTER TO ARRAY = 4020041C NO. OF ENTRIES = 20

 HEX DUMP OF T/A CONTROL INFORMATION
 402012D0: 403BBC08 00000002 00000000 00000000 00000000
 402012E4: 00000000 00000000 00000001 00000001 0000004F
 402012F8: 00000014 0000004F 00000019 4020041C 00000000
 4020130C: 00000000 00000000

 ASCII DUMP OF ARRAY
 4020041C :
 SELECT MODE WITH FUNCTION KEY
 4020045D :
 MAKE CHANGES AND HIT ENTER (F7 TO CANCEL CHANGE)
 4020049E :
 .

7-: 14

 .
 .

 ARRAY DEFINED ON LINE NUMBER = 26
 COMPILE TIME ARRAY, NO SEQUENCE, ALPHAMERIC, NOT ALTERNATING
 ENTRY LENGTH 16 POINTER TO ARRAY = 4020034E NO. OF ENTRIES = 8

 HEX DUMP OF T/A CONTROL INFORMATION
 40201314: 00000000 00000002 00000000 00000000 00000000
 40201328: 00000000 00000000 00000000 00000001 00000010
 4020133C: 00000008 00000010 0000001A 4020034E 00000000
 40201350: 00000000 00000000

 ASCII DUMP OF ARRAY
 4020034E :
 ADD MODE CHANGE MODE INQUIRY MODE D
 4020038F :
 ELETE MODE EXIT

Figure 7-11. The Error Dump - TABLES AND ARRAYS

7-: 15

Table 7-1. The File Table

Word	Byte	Meaning

0		Number returned by FOPEN intrinsic
1-2		File name
3-4		Device type name
5-7		Line number for line printer channel control
8		File type:
		0 = Input file
		1 = Output file
		2 = Update file
		3 = Display file
		4 = Combined file
9		File designation:
		0 = Secondary input file
		1 = Blank
		2 = Primary input file
		3 = Record address file
		4 = Chaining file
		5 = Table or array file
		6 = Demand file
10		File organization:
		1-7 = Sequential or direct access file (allocate 1-7 buffers)
		8-9 = Sequential or direct access file (allocate 2 buffers)
		00 = Neither an ADDROUT nor a direct-access file
		10 = An ADDROUT file
		11 = A direct-access file
		13 = A KSAM file
		14 = An ISAM file
		15 = A TurboIMAGE file
11		Processing mode:
		0 = A sequential file
		1 = A random-access file
		2 = An indexed file processed sequentially between limits
12		Overflow indicator (if this is a printer file):
		122-128 = OA-OG
		129 = OV
13		File conditioner:
		0 = File can be used unconditionally
		179-186 = U1-U8
14		The key length (in bytes) of a RAF or TurboIMAGE file
15		Line printer carriage control
16		Record address type:
		0 = A sequential file or a direct access file not processed by ch
		or a RAF
		1 = A file processed by chaining or a RAF
		2 = A KSAM, ISAM or TurboIMAGE file processed by alphanumeric key
		3 = A KSAM, ISAM or TurboIMAGE file processed by packed numeric k
17		Number of user labels:
		0 = Standard label only
		1-9 = Standard label with 1-9 user labels
18		File format:
		0 = Fixed length records
		1 = Variable length records

7-: 16

Table 7-1. The File Table (Continued)

| | | |
| Word | Byte | Meaning |
|

19		Number of extents
20		Type of file translation table:
		0 = None
		1 = User-defined
		2 = EBCDIC
		3 = EBCDIK
21		New page starting line number for line printer files; or record number
		adjust for direct file
22		Record length in bytes
23		Block length in bytes
24		Pointer to translation table
25		Pointer to file record buffer
26	0	Enable current data check flag
26	1	Enable new record check flag
26	2	Enable update record check
26	3	Look-ahead file flag:
		0 = Not used as a look-ahead file
		1 = Used as a look-ahead file
27	0	Terminate method flag:
		0 = End-of-file field in File Description Specification is blank
		1 = End-of-file field in File Description Specification contains
		(all records must be processed before program termination)
27	1	Run-time SPECIAL file flag:
		0 = Not a SPECIAL file
		1 = A SPECIAL file
27	2	Overflow line passed flag
27	3	Append to end-of-file flag
28	0	NOLOCK Continuation line flag
28	1	Lock/unlock option flag
28	2	Printing mode flag
29		Pointer to label exit name or SPECIAL file processing routine
30		Pointer to error exit subroutine
31		Pointer to BYPASS field name
32		Pointer to RDEXIT routine name
33		Pointer to *CONTD field for RAF
34		Pointer to RAF chain table
35		Pointer to WORKSTN Extension Table (Table 7-3)
36		Pointer to TurboIMAGE Extension Table (Table 7-2)
37		Pointer to control level table or overflow line number
		(if this is a pinter file)

7-: 17

Table 7-1. The File Table (Continued)

Word	Byte	Meaning

38		Matching Field table pointer or form length (number of lines) if
		this is a printer file
39		Matching or control level field in current record:
thru		For control level fields:
41		Word 39, byte 1 = 1 (Level 1 is present)
		Word 39, byte 2 = 1 (Level 2 is present)
		Word 39, byte 3 = 1 (Level 3 is present)
		Word 40, byte 0 = 1 (Level 4 is present)
		Word 40, byte 1 = 1 (Level 5 is present)
		Word 40, byte 2 = 1 (Level 6 is present)
		Word 40, byte 3 = 1 (Level 7 is present)
		Word 41, byte 0 = 1 (Level 8 is present)
		Word 41, byte 1 = 1 (Level 9 is present)
		For matching fields:
		Word 39, byte 0 = 1 (match fields are present)
		Word 39, bytes 1-3 = Unused
42	0	ISAM flag:
		0 = File opened is not a ISAM file
		1 = File opened is an ISAM file
42	1	KSAM flag:
		0 = File opened is not a KSAM file
		1 = File opened is a KSAM file
42	2	Print file flag
42	3	Other file open flag (equals 1 if this file references another opened
43	0	Run-time end-of-file flag (equals 1 when end-of-file detected)
43	1	KSAM file open flag (equals 1 if file currently opened is a KSAM file)
43	2	Record number flag (equals 1 when the first record number is 1)
43	3	OK-to-use flag (equals 1 when the file is not inhibited by U1-U8)
44	0,1	Multiname file usage flag
44	2	Locking flag (equals 1 when locking specified)
45		Binary key for KSAM or TurboIMAGE file
46		Record-identifying indicator
47		Sequence number from Input Specification (columns 15-16)
48		Start of first trailer field
49		Offset from header to current trailer field
50		Trailer field length
51		File parameters
52		File access options
53		Pointer to move-fields routine

7-: 18

Table 7-2. The TurboIMAGE Extension Table

Word	Byte	Meaning

0-2		TurboIMAGE database name
3-4		Password (LEVEL) identification (8 bytes)
5-8		First (ITEM) key name (16 bytes)
9-10		New key file (KEYFL) name
11-14		Data set name (16 bytes)
15-24		TurboIMAGE communication area (10 STATUS words)
25		Open mode:
		1 = Read/Write Shared mode
		2 = Update Shared mode
		3 = Exclusive mode
26		I/O mode:
		2 = Serial read
		3 = Backward serial read
		4 = Directed read
		5 = Chained read
		6 = Backward chained read
		7 = Associative read
		8 = Primary associative read
		9 = Sequential read
		10 = Backward sequential read
		11 = Chained sequential read
		12 = Backward chained sequential read
27	0	First record flag (blank, zero or 1)
27	1	Duplicate flag (blank or zero)
27	2	Random flag (blank, C or R)
28		Database check (equals 1 if database is open)
		The next seven items (words 29-35) are used with the BUFCHK option:
29		BUFCHK specification
30		CDC response
31		NRC response
32		UPC response
33		Must repoint
34		Dirty here
35		Needs reset
36		TurboIMAGE type:
		0 = Non-TurboIMAGE
		1 = TurboIMAGE
		2 = HP
37		Starting location of key field
38		Dslock duration
39		Generic key length (in bytes)

7-: 19

Table 7-2. The TurboIMAGE Extension Table (Continued)

Word	Byte	Meaning

40		Generic relation:
		0 = Equal
		1 = Greater than
		2 = Greater than or equal to
41		Indicator index for generic relation
42		BUFCHK record number
43		BUFCHK address
44		Unused
45		Unused
46		Pointer to user status array
47		Pointer to current key value
48		Pointer to previous key value
49		Pointer to File Table

7-: 20

Table 7-3. The WORKSTN Extension Table

Word	Byte	Meaning

0		Forms file used
1		Batch file used
2		Trace file used
3		Block mode flag (equals 1 when block mode is in effect)
4		Function key labels flag (equals 1 when function keys are enabled)
5		BREAK key flag (equals 1 when BREAK key enabled)
6		Batch search direction:
		0 = Reverse
		2 = Forward
7		Auto-read done flag (equals 1 when auto-read is finished)
8		Release WORKSTN flag
9		WORKSTN type:
		0 = VPLUS
		1 = RSI
		2 = CONSOLE
10		Number of forms to download
11		Trace file open number
12		Input event number (less than or equal to 12)
13		Form field number
14		Form field length
15		Activity or event number
16		Previous batch record number
17		Error message display interval
18		Pointer to user status array
19		Pointer to RSI start field
20		Pointer to terminal identification field
21		Pointer to main File Table for WORKSTN
22-25		Saved file name
26-29		Forms file name
30-33		Batch file name
34-37		Trac file name
38-57		Error message array
58		VPLUS communications area
thru		
157		

7-: 21

Troubleshooting

This section suggests ways to determine the cause of an execution error
and also how to expedite the debugging process.

When you have trouble understanding why a particular error occurs, try
one or more of the following:

 * Request an Error Dump (using column 55 of the Header Specification).

 * Organize your test files into a separate group. If your test files
 are on tape under another group (a production group, for example),
 you can use RESTORE to load them into your test group.

 * If you're testing, try running your program with various files empty.
 This may be helpful in isolating bugs. To specify that a file
 exists, but has no data, equate the file to $NULL. For example, to
 equate the file GLMAST to $NULL, enter the command,

 :FILE GLMAST=$NULL

 * Use good programming practices and structured code in your programs.

7-: 22

8-: 1

Chapter 8 Communicating with MPE and Other RPG Programs

RPG has certain unique language features that make it easy to communicate
with other RPG programs. It also contains features that give RPG
programs access to certain operating system areas and routines. Overall,
these features extend the functionality of RPG and allow you to gain more
control over the execution of application programs.

Some of the most common ways to use the operating system and to
communicate with other RPG programs are described in this chapter. Where
appropriate, you are directed to operating system and RPG manuals for
additional information.

Using the System Date and Time

There are two ways to retrieve the current date in an RPG program.

You can use the UDATE special field in Calculation and Output
Specifications. UDATE is automatically initialized to the current date
when a program begins execution (the date is not reinitialized when
programs continue execution past midnight).

If you want to retrieve the date as well as the current time, use the
TIME (or TIME2) Calculation Specification operation. Since TIME is
executed dynamically, the date and time are always current. You may want
to use TIME, for example, to stamp transaction records before they are
written to tape. TIME gets the time and, optionally, the date and stores
them in the Result Field in the format: hhmmssmmddyy (or hhmmssddmmyy in
Foreign format). For example, the date 10/29/86 and time 3:13:25 is
returned as 031325102986. TIME2 returns the date and time in a
40-character formatted string. The format for this string is shown below
along with an example of a date and time that might be returned:

day, mon dd, year, hh:mm xM JULIAN:nnn

WED, OCT 29, 1986, 3:13 AM JULIAN:304

You can specify which parts of the date and time to retrieve, if you
wish, by entering their positions in the Factor2 and Result Fields.

Figure 8-1 shows how to use the TIME2 operation to stamp output records
with the most current date and time. Only the current time and the day
of the month are used in this example.

8- 2

Figure 8-1. Getting the System Date and Time

Comments

 1 This line begins the data structure that holds the system date
 and time.

 2 This line specifies that the first field in the data structure
 contains the time. The time is located in positions 20-27 of
 the date and time string returned by TIME2 (see line 5).

 3 This line specifies that the second field in data structure
 contains the day of the week. The day of the week is located in
 positions 1-3 of the date and time string returned by TIME2 (see
 line 5).

 4 The line defines the third field in the data structure. STAMP
 includes all 27 positions of the data structure.

 5 This line returns a string containing the system date and time.

 Columns 28-32 contain TIME2 to return a formatted date and time
 string.

 Columns 33-42 contain 1 to specify the starting location in the
 system date and time string where extraction is to begin.

 Columns 43-48 name the field, STAMP, where the system date and
 time string is stored.

Using System UDCs

A User-Defined Command (UDC) is an operating system command saved in a
file. UDCs are similar to job files except that they can be executed
interactively in session mode.

You can use UDCs to do many things. For instance, you can set up a test
UDC that loads an RPG program, then executes it. This test UDC can
contain file equations, program parameters, etc. Logon UDCs are also
handy. You set them up so that when a user logs onto the system, the UDC
is executed automatically. Logon UDCs are used primarily for displaying

8-: 3

application menus to users. They ensure that users execute only the
programs that they are authorized to use. UDCs are discussed in length
in the operating system commands reference manual.

You can create a UDC file with any standard text processor. Once you
create it, you must add it to the system command Directory with the
system SETCATALOG command (see your operating system commands reference
manual for more information on SETCATALOG). To execute a UDC, type its
name at the operating system colon prompt. For example, Figure 8-2 shows
a UDC file containing three UDCs: DAILY, MONTHLY and YEARLY. These UDCs
produce daily, monthly and year-end reports. To print only the year-end
report, type:

:YEARLY

| |
| DAILY |
| COMMENT - DAILY REPORT |
| RUN RPT10.PROGRAM |
| ** |
| MONTHLY |
| COMMENT - MONTH-END REPORT |
| FILE DETAIL=ALLMONTH |
| RUN RPT10.PROGRAM |
| RESET DETAIL |
| ** |
| YEARLY |
| COMMENT - YEAR-END REPORT |
| STREAM RPT20.JOB |
| ** |
| |

Figure 8-2. A Simple UDC

Figure 8-3 expands the UDC shown in Figure 8-2 and makes it more
flexible. One UDC, REPORT, replaces the three UDCs in Figure 8-2.
REPORT displays a menu of available reports. When the user selects a
report (DAILY, MONTH-END or YEAR-END), the UDC validates the choice. If
the selection is valid, the UDC starts the appropriate report program.

REPORT uses the logic command, IF, to validate the report choice and
start the appropriate report program. It also uses a User-Defined JCW
(OPTJCW) for storing the user's report choices. For information on the
User-Defined JCWs, see "Communicating File Information" or refer to the
MPE XL Intrinsics Reference Manual .

8- 4

Figure 8-3. A More Complex UDC

Using System Intrinsics

System intrinsics are operating system routines that perform specific
tasks. For instance, the PAUSE system intrinsic temporarily stops a
program. This intrinsic may be used, for example, to give an operator
time to mount a tape. It is often useful and convenient to use
intrinsics when you need to perform similar functions in your program.
Intrinsics provide a way to gain more control over processing and they
simplify a program. Although you cannot use system intrinsics directly
from an RPG program, you can use external subroutines to access them.
Intrinsics are described thoroughly in the MPE XL Intrinsics Reference

8-: 5

Manual .

Figure 8-4 lists a report menu program. It executes the appropriate
report program selected by the user. The menu program contains two
external subroutines, RUNPGM and COMAND. They are Pascal procedures that
call certain system intrinsics directly.

Figure 8-4. An RPG Menu Program

8- 6
Figure 8-4. An RPG Menu Program (Continued)

8-: 7
 Figure 8-4. An RPG Menu Program (Continued)

8- 8

Figure 8-4. An RPG Menu Program (Continued)

Comments

 1 This line calls an external subroutine, RUNPGM. RUNPGM is a
 Pascal procedure that directly calls the operating system
 intrinsic RUN. RUN creates a process for the report program
 selected.

 2 This line calls an external subroutine, COMAND. COMAND is a
 Pascal procedure that directly executes the selected operating
 system command (for example, FILE).

Communicating with Other RPG Programs

The remaining sections in this chapter explain how to use certain
operating system and RPG facilities to communicate information to other
RPG programs. The sections discuss ways to communicate:

 * Switches (user indicators U1-U8)

8-: 9

 * System file information (retrieved from the operating system LISTF
 command)

 * Data (Local Data Area)

Communicating Switches

When the information you want to pass to other programs or receive from
them can be put in the form of yes/no or on/off states, you may want to
use user indicators (U1-U8) in your RPG program. User indicators can be
saved and passed to other RPG programs by either:

 * Saving the switches in a USWITCH file, or

 * Saving the switches in the System-Defined JCW

Both of these methods are discussed in the following sections.

Using USWITCH Files. A USWITCH file is a standard text file that
contains the settings of the user indicators (U1-U8). This file can be
created, read and updated by RPG programs. If you're running in job
mode, you do not need to enter the indicator settings in a USWITCH file.
You can include them as part of the job file. For more details about
using USWITCH files, see the USWITCH sections in the HP RPG Reference
Manual .

You can read a USWITCH file only, or you can read and update it in a
program. The next two sections show how to do this.

Reading a USWITCH File

Figure 8-5 shows how to read the USWITCH file. In this particular
example, user indicator U1 signals that the program should terminate
immediately. User indicator U2 means that the program can access the
master file, GLMAST. These indicators are set by the update program shown
in Figure 8-6. They are read by each application program to ensure that
they do not execute concurrently with the update program or process the
GLMAST file concurrently.

To read a USWITCH file, enter a Header Specification indicating that the
USWITCH file is being used. Then use the user indicator(s) in File
Description, Input, Calculation and Output Specifications.

 Figure 8-5. Reading User Indicators

8- 10

Comments

 1 This line enables the USWITCH facility.

 Column 16 contains F to specify that a USWITCH file is used.

 2 This line defines the GLMAST file. It is opened only when user
 indicator U2 is turned on.

 3 This line displays a message indicating that the update program
 in Figure 8-6 is executing and the program must be run later.

 Columns 10-11 contain U1 to display the message only when user
 indicator U1 is turned on.

Updating a USWITCH File

Figure 8-6 shows how an update program uses the USWITCH file to prevent
other programs from running at the same time. When the program starts,
it turns on user indicator U1. At the end of the update program, when
the last record (LR) indicator is turned on, U1 is turned off and user
indicator U2 is turned on.

Other programs (as shown in Figure 8-5) test U1 to determine whether to
continue and test U2 to determine whether to process the master file,
GLMAST.

Figure 8-6. Setting User Indicators to Prevent Simultaneous Program Execution

8-: 11

Comments

 1 This line defines the USWITCH file.

 Column 16 specifies that this file is a chained file.

 Column 30 indicates that the key field length is 1.

 2 This line defines the input USWITCH record.

 3 This line (at the beginning of the program) turns on indicator
 20. Indicator 20 triggers an update of the USWITCH file (U1 is
 turned on).

 4 This line reads a USWITCH record whenever indicator 20 or the
 last record indicator (LR) are turned on.

 5 This line describes the USWITCH output record that is written
 when indicator 20 is turned on.

 6 This line defines the user indicator settings that are written
 to the USWITCH file when indicator 20 is turned on.

 Columns 45-63 contain "USWITCH: 10XXXXXX" to specify the
 settings for the user indicators. User indicator U1 is turned
 on, U2 is turned off and the others remain unchanged.

 7 This line defines the USWITCH output record that is written when
 the LR indicator is turned on.

 8 This line defines the user indicator settings that are written
 to the USWITCH file at the end of the program.

 Columns 45-63 contain "USWITCH: 01XXXXXX" to specify the
 settings for the user indicators. User indicator U1 is turned
 off, U2 is turned on and the others remain unchanged.

Using the System-Defined Job Control Word (JCW). The System-Defined Job
Control Word (JCW) is a two-byte data area that is part of the operating
system. It provides a way to pass indicators among operating system
routines. Application programs can use the rightmost byte of the JCW for
indicators. The rightmost byte provides up to eight User Switches, one
switch per bit. When these switches are used in RPG, they are called
user indicators (U1-U8).

The System-Defined JCW is easier to use than a USWITCH file. You do not
enter File Description and Input Specifications for the JCW and it is
updated automatically by RPG. The System-Defined JCW has one
disadvantage. Since the system software also uses it, you cannot always
count on switch values remaining unaltered. For more details on JCWs,
see the MPE XL Intrinsics Reference Manual .

Figure 8-7 shows the structure of the System-Defined JCW.

8- 12

.
Figure 8-7. The System-Defined Job Control Word (JCW)

User Switches are assigned values depending on their relative bit
positions in the Job Control Word (see Figure 8-8). You can test and
change User Switch settings using decimal or octal notation. For
example, to see if user indicator U1 is turned on, you can test JCW=128
(decimal) or JCW=%200 (octal).

8-: 13

Figure 8-8. Setting User Switches in the System-Defined Job Control Word (JCW)

Figure 8-9 shows a UDC that uses a System-Defined JCW. The UDC
initializes the JCW (SETJCW JCW=0), then calls a menu program, RMENU.
RMENU prompts the user to select the reports to print. These selections
are saved in the JCW. When RMENU ends, the UDC executes the report
programs indicated by the User Switches in the JCW.

Figure 8-9. Using the System-Defined JCW in a UDC

8- 14

Portions of the program, RMENU (see Figure 8-9), that set User Switches
are shown in Figure 8-10. RMENU prompts the user for report selections
and saves the selections in the System-Defined JCW.

Figure 8-10. Using the System-Defined JCW

Comments

 1 This line specifies where the values for the user indicators
 originate.

 Column 16 contains J to specify that user indicator values come
 from the System-Defined JCW.

 2 This line turns on user indicator U1 when indicator 01 is turned
 on. (Indicator 01 is turned on when the user requests the DAILY
 report.)

 3 This line turns on user indicator U2 when indicator 02 is turned
 on. (Indicator 02 is turned on when the user requests the MONTH
 report.)

 4 This line turns on user indicator U3 when indicator 03 is turned
 on. (Indicator 03 is turned on when the user requests the YEAR
 report.)

Communicating File Information

This section explains how to use a User-Defined Job Control Word (JCW) to
pass file information between RPG programs. For example, you may need to
exchange the maximum record count for a file with other programs, so that
they will not write beyond the file's limits. You can use a User-Defined
JCW to exchange any information, not just file information.

A User-Defined JCW is a 16-bit logical word located within the operating
system. You can create and use as many User-Defined JCWs as necessary.
When you create them, you assign identifying names to them (the first
character in each name must be a letter). User-Defined JCWs are used
exclusively by application programs. The operating system software does
not use them. Because of this, you may prefer to use them instead of
System-Defined JCWs (see the section "Using a System-Defined Job Control
Word (JCW)" in this chapter). User-Defined JCWs are discussed in detail
in your MPE XL Intrinsics Reference Manual .

8-: 15

The next three figures illustrate how to use a User-Defined JCW. The
first figure shows a UDC that runs program, SIZER. It then creates a
BATCHOUT file based on the record count of an input BATCHIN file computed
by SIZER. Then the UDC executes the program, UPDATE. UPDATE uses the
maximum record count for BATCHOUT to ensure that it does not write beyond
the file's limits.

Two JCWs are used; JCWEOF and JCWLIM. JCWEOF contains the record count of
the BATCHIN file. JCWLIM contains the maximum number of records that can
be written to the output batch file, BATCHOUT.

Figure 8-11. Setting a User-Defined JCW - UDC

Figure 8-12 lists segments of the program, SIZER. SIZER updates the
User-Defined JCWs, JCWEOF and JCWLIM with the values placed in the LIMITS
file (LIMITS is created by the UDC in Figure 8-11.)

8- 16

Figure 8-12. Setting a User-Defined JCW - Program SIZER Comments

Comments

 1 This line defines the file, LIMITS, created by the UDC.

 2 This line describes the input record in the LIMITS file.

 Column 27 contains B to specify the record code.

 3 This line defines the first field, IEOF.

 4 This line defines the second field, ILIMIT.

 5 This line creates a User-Defined JCW, JCWEOF, containing the
 IEOF field information.

 Columns 18-27 names the field, IEOF, that is written to JCWEOF.

 Columns 28-32 contain PUTJW to update the User-Defined JCW (this
 operation uses the intrinsic, PUTJCW).

 Columns 33-42 name the User-Defined JCW, JCWEOF.

 Columns 58-59 contain 20 to turn indicator 20 on when the PUTJW
 operation is successful.

 6 This line creates a User-Defined JCW, JCWLIM, containing the
 ILIMIT field information.

 Columns 18-27 names the field, ILIMIT, that is written to
 JCWLIM.

 Columns 28-32 contain PUTJW to update the User-Defined JCW (this
 operation uses the intrinsic, PUTJCW).

 Columns 33-42 name the User-Defined JCW, JCWLIM.

 Columns 58-59 contain 20 to turn indicator 20 on when the PUTJW
 operation is successful.

Segments of the program, UPDATE, are shown below. UPDATE reads the
User-Defined JCWs (JCWEOF and JCWLIM) created in Figure 8-12. UPDATE
increments the record count (from JCWEOF) each time a record is written

8-: 17

to BATCHOUT. This number is tested against the file limit in JCWLIM. If
there is no more room to write records, the program ends.

Figure 8-13. Reading a User-Defined JCW - Program UPDATE

Comments

 1 This line reads the User-Defined JCW, JCWEOF.

 Columns 9-11 contain N99 to perform this Calculation operation
 when indicator 99 is turned off (at the start of the program).

 Columns 28-32 contain FNDJW to read a User-Defined JCW (this
 operation uses the FINDJCW intrinsic).

 Columns 33-42 contain the name of the User-Defined JCW, JCWEOF.

 Columns 43-48 contain the name of the field, EOF, where the
 JCWEOF information is stored.

 2 This line reads the User-Defined JCW, JCWLIM.

 Columns 9-11 contain N99 to perform this Calculation operation
 when indicator 99 is turned off (at the beginning of the
 program).

 Columns 28-32 contain FNDJW to read a User-Defined JCW (this
 operation uses the FINDJCW intrinsic).

 Columns 33-42 contain the name of the User-Defined JCW, JCWLIM.

 Columns 43-48 contain the name of the field, LIMIT, where the
 JCWLIM information is stored.

 3 Before writing a record, this line increments the output record
 count in EOF.

 4 This line compares the number of records in the BATCHOUT file
 with the maximum number of records it holds. The maximum is
 stored in LIMIT. Indicator 20 is turned on when EOF reaches
 LIMIT.

 5 This line executes a subroutine that displays a warning message.

 6 This line turns on the last record (LR) indicator when the
 maximum record limit is reached (indicator 20 is turned on).

8- 18

Communicating Data

A Local Data Area File (LDAFILE) is a special RPG file that you can use
to pass data to other programs and to receive data from them. You can
use an LDA file in a program without entering a File Description
Specification for it. An LDA is defined in an Input Specification as a
User Data Structure.

RPG loads the LDA data into your program when it starts executing and
that data is available at the first cycle (1P) output. When your program
ends, the LDA data is written back to the LDA file automatically.

You create an LDA using the RPGINIT utility (see the RPG Utilities
Reference Manual).

Chapter 5 discusses LDAs in the context of data structures. Refer to
Figure 5-12 and Figure 5-13 for an example of how to use LDAs.

9- 1

Chapter 9 Writing More Efficient RPG Programs

This chapter discusses some of the ways you can increase the efficiency
of your RPG programs. More efficient programs execute faster and require
fewer system resources and memory.

Establishing and Using Standards

Standards provide the framework for building efficient RPG programs.
Programming standards decrease development and maintenance time and
improve the legibility of programs. System standards, such as file
naming conventions and account and group standards make it easier to
build and maintain multi-program applications.

The next six sections in this chapter suggest general RPG programming
standards you may want to adopt.

Using Comments

This section contains tips on how to use comments in an RPG program. A
general rule of thumb is that a well-documented program is one-third
comments.

 * Enter comments for all Input and Output record types.

 * Enter comments for all Calculation Specification GOTO operations.

 * Enter notes in columns 60-74 on important Calculation Specifications.

 * Maintain a "Date-Modified" comment line at the beginning of each
 program. Also develop a scheme to keep track of program
 modifications. For example, you can use the Sequence Number Field
 (columns 1-5) to document changes. For lines added on 02/28, enter
 A0228. For lines that are modified, enter C0228. "Comment out"
 deleted lines and enter D0228 on them.

 * Develop consistent standards and style.

Using Structured Programming Techniques

Structured programs are easier to develop, test and maintain. They are
also easier to understand.

 * Replace repetitive code segments with subroutines (EXSR).

 * Stick to sequential logic in the Calculation Specifications. Try to
 avoid GOTO operations. Instead, use the combinations: IF-THEN-ELSE,
 IF-THEN, DO-WHILE, DO-UNTIL.

Standardizing Field Names

Use field names that are:

 * Five characters long

 A 5-character name can be prefixed or suffixed. For example, if a
 last name field is called LNAME, it can be prefixed by T when used in
 an Output Specification for a Terminal file.

 * Meaningful

 Names that relate to the contents or purpose of a field are easier to
 understand and make programs more readable. Also use similar names
 for arrays and their associated counters. For example, the counter
 for array AMT can be A.

 * Used consistently in other programs

9- 2

 You can use the $COPY/$INCLUDE statements to get field definitions
 from a source library (see "Using Source Libraries" in Chapter 6).
 For RPG programs running under MPE V, fields that are not used in a
 program increase the size of the data space at both compile-time and
 run-time.

Standardizing the Use of Indicators

Use this indicator: For:

01-09 Input Specification records

10 Input Specification flush indicator

11-19 Input Specification fields

20-59 General-purpose Calculation Specification
 operations

60-69 CHAIN or READ resulting indicators

70-79 External subroutines.

80-89 Exception output

90-98 Work (reusable) indicators

99 First-time indicator

Standardizing File Names

Use this prefix For this type of file:
(or suffix):

B Batch

C Catalog

D Data

I Input

J Job

K KSAM key

N Notes

P Executable program

R RAF

S Source programs or sorted output

T Temporary

W Work

Standardizing MPE Group Names

Use this Group name: For:

DATA MPE, KSAM, TurboIMAGE files; operator logon group

DOC User documentation

FORMS VPLUS and SIGEDITOR forms

JOB Job streams

PROGRAM Executable programs

PUB UDCs, user notes, temporary and scratch files

SOURCE Source programs, schemas and program documentation

Entering Efficient Specifications

The next five sections suggest ways to code RPG Specifications that will
reduce the size of your program and make it execute faster.

Header Specification

9- 3

 * Use the Error Dump File Name (columns 7-14) to avoid lengthy program
 dumps to the terminal.

 * Use N for the Line # Option (column 20) to decrease code segment
 size. (Leave this field blank during testing.)

File Description and File Extension Specifications

 * When you don't need to process a KSAM file in key order, put a C in
 column 32 of the File Description Specification. This accesses a
 file chronologically and does not use the key file. For information
 on accessing a KSAM file chronologically, see "Reading a KSAM File
 Chronologically" in Chapter 3.

 * Use the DSNAME facility to access a file more than one way, rather
 than using file equations. DSNAME files share a common file buffer.
 For information on the DSNAME feature, see "Reading a KSAM File
 Randomly and Sequentially Using Different Keys" in Chapter 3.

 * Use the file blocking guidelines for MPE and KSAM files and
 TurboIMAGE data bases in this chapter.

Input Specifications

 * When files have more than one record type, start with the one that
 occurs most often.

 * Define only those record types in a file that are used in the
 program.

 * Define only those fields in a record that are used in the program.

 * Define record identification codes as characters (C in column 26, 33
 or 40) rather than zones or digits. This speeds up the processing of
 those records.

 * Only describe a field as numeric when it is used in arithmetic
 operations or is edited for numeric contents.

 * Avoid describing a numeric field as unpacked numeric or binary. RPG
 does all arithmetic in packed decimal format, so it must first pack
 non-packed fields.

 * Use data structures to reformat fields instead of Calculation
 Specification MOVE operations.

 * Do not define fields that are not used.

Calculation Specifications

 * Minimize the number of work fields by reusing them.

 * Minimize the number of indicators by reusing them.

 * Define a work field with the minimum size possible.

 * Use *BLANK and *ZERO to initialize fields instead of work fields
 containing blanks or zeros.

 * Only define a work field as numeric when it is used in an arithmetic
 operation.

 * CLOSE files as soon as you're finished with them. This frees system
 resources and makes the files available to other programs.

 * Use GOTO operations to branch around calculation lines rather than
 conditioning the calculation lines with indicators.

 * In MULT operations, enter the smallest field in the Factor 2 field.

 * To zero a field, subtract the field from itself. This is more
 efficient than using Z-ADD or moving zeros to the field.

 * When doing table searches, decide whether the table should be
 searched sequentially or in a binary fashion. If most of the
 searches in the table are for a few items, put those items first in
 the table and search it sequentially (column 34 in the Header
 Specification is blank). If the table consists of a large number of

9- 4

 items that are searched with about the same frequency, place the
 items in the table in either ascending or descending sequence and
 perform a binary search (column 34 in the Header Specification is B).
 Correctly placing items in a table and selecting the right search
 method reduces the average time to find an item.

 * Minimize the number and length of table entries. This reduces the
 size of the run-time data segments.

 * Get rid of indicators that are not used. They cause warnings to be
 printed during compilation.

 * If a file has only one input record type defined, do not condition
 Calculation Specification operations with its associated indicator.

 * Wherever possible, use subroutines (EXSR) to avoid duplicate code.
 The execution of subroutines can be conditioned by indicators. Use
 external subroutines for operations that can be handled more
 efficiently in other languages (for example, string manipulation).

Output Specifications

 * Put the most frequently used Output Specifications first.

 * When conditioning output, place the most frequently used indicator
 first in the OR lines.

 * Use record lengths that match the number of characters actually
 written. For example, if a report requires only 60 characters, enter
 60 as the record length rather than 132 (maximum length).

 * If terminal output ($STDLST) includes long and short messages, define
 a file for each type. Terminal output records are padded with blanks
 before being displayed. Longer record lengths require more memory
 and transmission time.

Improving Input/Output Performance

You can decrease the time it takes to process disc files by observing a
few simple guidelines. These relate to the physical placement of files
on disc and their blocking factors. The next four sections discuss the
efficiencies to employ whenever you're working with disc files. (Refer
to operating system manuals, such as Accessing Files Programmer's Guide ,
for more information on the disc files used with RPG.)

MPE Files

MPE files are sequential and random files. They are not KSAM files or
TurboIMAGE databases. When you use MPE files, follow these guidelines:

 * Use block lengths that are multiples of 256 bytes.

 This ensures efficient use of input/output buffers.

 * If the file is processed sequentially, make the block length as large
 as possible.

 This reduces the number of physical reads to the disc. Since disc
 I/O is the primary factor in throughput, choose the block length
 carefully. For example, you might enter a record length of 80 bytes
 and a block length of 32 records as follows:

 :BUILD DFILE;REC=-80,32,F,ASCII;DISC=24000

 A block length of 32 records requires 750 disc accesses to process
 the entire file of 24,000 records. A block length of 3 requires
 8,000 disc accesses.

 * Use address-out sorts when available disc space is limited.

 Address-out sorts produce output files containing 4-byte record
 addresses. You use these record addresses to retrieve data records
 in sorted order.

 The RPG utility, XSORT, can be used to create address-out (ADDROUT)
 files (for detailed information on XSORT, see the RPG Utilities

9- 5

Reference Manual). Figure 9-1 and Figure 9-2 show how to use XSORT
 and how to process the address-out file in an RPG program. Figure
 9-1 lists the job file that performs the sort and runs the RPG
 program. The input file, SEQ1, is sorted by zip code, last name and
 first name. Only records whose zip codes equal 95501 and whose Type
 Codes equal AA are sorted. The XSORT parameters are placed after the
 !RUN XSORT.PUB.SYS command in the job file and the output
 (address-out) file is SEQ2.

Figure 9-1. Creating an address-out File With XSORT

When XSORT finishes, the job file executes program, PROG1. PROG1 reads
the ADDROUT file, SEQ2, created by XSORT and uses its record addresses to
access the data records in SEQ1. Figure 9-2 lists the File Description
and File Extension Specifications that process these files.

Figure 9-2. Using an address-out File - Program PROG1

9- 6

Comments

 1 This line defines the input file, SEQ1. This is the data file
 that was input to XSORT.

 Column 31 contains I to specify that this file is processed by
 relative record number.

 2 This line defines the ADDROUT file, SEQ2, produced by XSORT.

 Column 16 contains R to specify that this file is a Record
 Address (address-out) file.

 Column 32 contains T to specify that this is an address-out
 file.

 3 This line identifies SEQ2 as the address-out file containing
 addresses for records in SEQ1.

KSAM Files

When you use KSAM files, follow these guidelines:

 * Try to use no more than two keys.

 When you use more than two, system performance degrades as the file
 is updated. See the KSAM/3000 Reference Manual for details on using
 KSAM files efficiently.

 * When you do not need to access records in order by key, read the file
 chronologically. See "Reading a KSAM File Chronologically" in
 Chapter 3.

 * When accessing a file sequentially, use large block lengths.

 * When accessing a file randomly, use small block lengths.

 * When appropriate, temporarily override a file's block length via the
 BUF parameter of the operating system FILE command.

 If a file was created with a large block length and you are
 processing it randomly, enter 1 for the BUF parameter. Conversely,
 if a file was created with a small block length and you need to
 process it sequentially, enter a large number for the BUF parameter.
 The following FILE command overrides 2, which is the default number
 of buffers, and requests that 4 buffers be used for the file, DFILE.
 The program, GL050, is executed next. When is processes DFILE, 4
 buffers are used. Finally, the number of buffers is reset to 2 by
 the RESET command:

 :FILE DFILE;BUF=4
 :RUN GL050
 :RESET DFILE

 * For systems with two or more discs, allocate the KSAM key file to one
 disc and the data file to the other.

 The following example assigns the KSAM data file DFILE to device
 DATADISC (a symbolic name for disc drive 1). The KSAM key file is
 assigned to device KEYDISC (a symbolic name for disc drive 2).

 :RUN KSAMUTIL.PUB.SYS
 >BUILD DFILE;DEV=DATADISC;BUILD KEYFILE;KEYDEV=KEYDISC;....

 * Use multiple file extents to optimize disc space.

 When you divide a file into extents, you specify how many equal parts
 it can be divided into when stored on disc. Extents enable the
 system software to allocate disc space as it is needed. Extents also
 help prevent file overflow errors. For large files, use a large
 number of extents. The following BUILD command divides the file
 GLDETAIL into 24 extents. It also specifies that the file contains a
 maximum of 24,000 records.

 :BUILD GLDETAIL;DISC=24000,24;....

 * Use address-out sorts when available disc space is limited.

9- 7

 XSORT is an RPG utility sort that can be used to produce address-out
 files. See "Reading a KSAM File Sequentially by a Non-Key Field"
 under "Reading a KSAM File Sequentially" in Chapter 3 for an example
 of how to use XSORT with a KSAM file.

TurboIMAGE Databases

When you use TurboIMAGE databases, follow these guidelines:

 * When desirable, change the block length of a data set via the
 $CONTROL schema statement (for details about $CONTROL, see the

TurboIMAGE/XL Database Management System manual).

 When you create a database using TurboIMAGE, it automatically
 optimizes file blocking. In some instances, you may want to change
 those block lengths. For example, if you're using a small data set
 to validate account numbers, you may want to read all of the account
 numbers into memory at one time (one block).

 There are two steps to changing the block length of an TurboIMAGE
 data set. First, you create the database letting TurboIMAGE compute
 the block lengths. Second, using the information computed by
 TurboIMAGE, you calculate a new block length. And finally, you
 recreate the database using your new block length figure. For
 example, assume that the M-SOURCE data set (see the schema for this
 data set in Figure 3-23) contains 29 records and all 29 records must
 be read into memory to validate source codes. The database (MARKET)
 containing this data set must first be created using the following
 $CONTROL statement. This statement directs TurboIMAGE to compute the
 optimum blocks lengths automatically:

 $CONTROL TABLE,LIST

 Once the database is created, TurboIMAGE produces a schema listing
 that gives the computed block lengths. Figure 9-3 shows that the
 computed block length for the M-SOURCE data set is 506.

Figure 9-3. The Block Length in an TurboIMAGE Schema Listing

 The computed block length of 506 accommodates only 16 (BLK FAC)
 records from the M-SOURCE data set. Since the program must read 29
 records, the computed block length must be changed. To do this,
 calculate the new block length as follows:

 M-SOURCE MED REC * M-SOURCE CAPACITY + 2
 (27) * (29) + 2 = 785

9- 8

 Now, recreate the MARKET database using this $CONTROL statement:

 $CONTROL TABLE,BLOCKMAX=785,LIST

NOTE Using BLOCKMAX changes the block length for all data sets in the database.

 * For small master data sets that you want to access sequentially by
 key, read them into an array, then use SORTA to sequence the array.

 Master data sets cannot be accessed sequentially by key. You must
 sort the data set to do this. Figure 9-4 shows how to put the
 M-SOURCE data set in sequence by SRCCD (SOURCE-CODE). The program
 reads each M-SOURCE record saving the SOURCE-CODE in the SRC array.
 When all records have been stored, the SORTA operation sorts the
 array. Finally, the program uses the sorted array to output the
 ordered SOURCE-CODES.

Figure 9-4. Using SORTA to Sort an TurboIMAGE Master Data Set

9- 9

Comments

 1 This line defines the array, SRC, that contains the SOURCE-CODEs
 from the M-SOURCE data set.

 Column 45 is blank to indicate that the array elements are in
 ascending sequence (D indicates descending).

 2 This line defines the SOURCE-CODE field, SRCCD, in the M-SOURCE
 data set.

 3 This line fills the SRC array with SOURCE-CODEs from the
 M-SOURCE data set.

 4 This line sorts the entries in the SRC array when all of the
 SOURCE-CODEs have been retrieved from the M-SOURCE data set.

 5 This is the first line in the loop that accesses each (sorted)
 SOURCE-CODE in the SRC array.

 6 This line defines the exception output record written by the
 loop starting on line 5. SOURCE-CODEs are written in ascending
 sequence, one per output record.

Releasing Printer Files

When you want to print data from a printer file before a program
finishes, release the data using column 16 of the Output Specification
(enter R into column 16 of the last Output Specification line you want to
print).

Normally, when you use a printer file, information accumulates during
program execution and is actually printed when the program ends. There
are occasions, however, when you may want to print data immediately, but
continue with the program. For example, when customers deposit money at
a bank, they get deposit receipts immediately. The online program that
processes deposits must "release" the printer file in order to print
these receipts.

Figure 9-5 shows how to release a printer file. The last line to be
printed (line 3) contains an R in column 16.

Figure 9-5. Releasing a Printer File

9- 10

Comments

 1 This line defines the printer file, ONEPAGE.

 Columns 40-46 contain SLOWLP which is a symbolic name for the
 printer device.

 2 This line starts the output definition of the ONEPAGE record.

 3 This line starts the detail print record.

 Column 16 is R to specify that once this detail record is
 processed, the printer file will be released, reopened and the
 program will continue.

 4 This line defines the last detail field in the printer record.

A: 1

Appendix A Migrating to HP RPG

This chapter gives information about converting existing RPG programs to
run under the MPE XL operating system.

If your RPG programs are currently running on an IBM system, read the
section that follows titled "Migrating from IBM RPG". If your RPG
programs are currently running under the HP MPE V operating system, read
the section that follows titled "Migrating from MPE V RPG".

Migrating from IBM RPG

Converting IBM S/34 and S/36 RPG programs to run under MPE XL consists of
four steps. First, you convert the programs on a system that runs MPE V
by using the HP product, TRANSFORM. Next, you manually convert certain
features that are not converted by TRANSFORM. Then, you recompile the
programs under MPE V. Finally, you must STORE the programs onto tape,
then RESTORE them onto the system that runs MPE XL. These steps are
discussed in more detail below:

Step: Description:

1. TRANSFORM performs the following primary tasks when converting
 IBM RPG S/34 and S/36 programs to run on an MPE V system:

 * It translates IBM RPG source programs to HP RPG.

 * It generates HP RPG source files for IBM DFU files.

 * It translates IBM procedure files into PROCMON procedure
 files.

 * It translates IBM message files into a format compatible
 with the HP message file produced by MAKECAT.

 * It transfers data files to the HP 3000, converting
 sequential and ISAM files to MPE and KSAM file formats.

 For complete information about TRANSFORM, see the
TRANSFORM/3000 Reference Manual .

2. Since HP RPG is approximately 95% compatible with IBM RPG,
 TRANSFORM can convert most features automatically. However,
 for those DFU features that are not converted, you must
 manually modify the generated source programs to include those
 features. The TRANSFORM/3000 Reference Manual lists the
 features that you must convert manually.

3. Compile the HP RPG programs generated by TRANSFORM (compile
 them on the system running MPE V).

4. STORE the compiled programs onto tape, and then RESTORE the
 files onto the system running MPE XL. (See the instructions in
 the MPE XL migration guides for information on how to do
 this.) HP RPG programs run under MPE XL in compatibility mode
 only.

RPG Features That Are New

HP RPG extends the features found in IBM System/3 and System/360 DOS RPG
II to include:

A- 2

External Subroutine Call Parameters

You can pass parameters with an EXIT Calculation Specification operation
(the parameters are identified by PARM operation(s) immediately following
EXIT). EXIT makes it easier to use subroutines written in Business BASIC,
C, Pascal, COBOL and FORTRAN.

Run-Time Error Options

RPG provides three methods for handling run-time errors:

 1. Using the Header Specification to specify whether to ignore the
 error or whether to abort the program.

 2. Letting the operator determine, at run-time, how to handle the
 error.

 3. Using Calculation Specification to handle the error. (this method
 provides an individualized way of handling the error.)

Cross-Reference Listing

The Cross-Reference listing shows all line references to file names,
indicators, and field names. You must specifically request this listing
using the Header Specification or the MAP option of the $CONTROL compiler
subsystem command.

EBCDIC/ASCII Translation

You can have HP RPG automatically generate file translation tables for
EBCDIC-to-ASCII, EBCDIK to JIS, or ASCII-to-EBCDIC, JIS to EBCDIK
conversions. Or, you can use the EBCDIC or EBCDIK alternate collating
sequence.

Partial Field Translation

You can have HP RPG translate just alphanumeric and unpacked numeric
fields, leaving packed numeric and binary fields unchanged.

Combined Input/Output (Terminal) File

HP RPG lets you use a terminal as a single file. This allows both read
and write operations for the file.

Calculation Indicator Repetition

HP RPG lets you enter conditioning indicators once in Calculation
Specifications and repeat them on successive lines.

Compile-Time Tables/Arrays on Separate Disc Files

If you're using a compile-time table or array in more than one program,
select one program in which to define it, then include an Array/Table
File Name Specification (A) in each of the remaining programs. The table
or array is saved on disc and each Array/Table File Name Specification
references that disc file.

Structured Programming Constructs

The following Calculation Specification operations let you use standard
structured programming techniques: DO-WHILE, DO-UNTIL and IF-THEN-ELSE.

EXCPT Group Names

You can name a group of Output Specifications with the EXCPT Calculation
Specification operation.

Full Procedural Files

The READE Calculation Specification operation reads the next sequential
record in a demand or full procedural file whose key matches a specified
key field. The READP operations reads the previous record for that key
field.

RPG Screen Interface (RSI)

RSI lets you use screen (terminal) files in an RPG program. RSI forms
processing provides:

A: 3

 * Full screen capability using standard RPG specifications.

 * Lets you use message files and dynamically change screen attributes.

 * Generates an RSI forms file from the file's Input Specifications (RSI
 CONSOLE files).

RPG Features That Are Different

The following HP RPG features are different from IBM RPG:

Printer Files

For programs that use carriage control tape channels other than Channel 1
for printer files, add Line Counter Specifications to equate each channel
to a particular line number. Otherwise, the compiler equates Channel 1
to line 6 and the overflow line to line 60. Also, Channels 2-12 are
equated to the line numbers obtained by multiplying the channel numbers
by 5.

Edit Words

HP RPG handles edit words as follows:

 * All blanks in edit words are replaceable characters. (To print the
 blank character, included an ampersand (&) in the edit word.)

 * Constants are allowed to the right of an edit word.

 * The floating dollar sign is not a replaceable character.

 * Fields containing all zeros are positive.

 * The edit field can be smaller or larger than the number of
 replaceable characters in the edit word. Extra characters are
 truncated or leading zeros are added.

 * All constants that follow a significant digit are printed (except for
 a minus or credit sign following a positive number).

Differences in Character Codes

HP RPG uses the American Standard Code for Information Interchange
(ASCII) Character Set/Collating Sequence. If your system has Katakana
characters installed, you use the Japanese Industrial Standard (JIS). IBM
System/3 and System 360 use Extended Binary Coded Decimal Interchange
Code (EBCDIC). In Japan, this is EBCDIK. The items below summarize the
differences in these character sets:

 * Alphabetic characters are higher in the ASCII collating sequence than
 numeric characters. This affects compare and matching field
 operations. You can use the Header Specification (column 26) to
 generate an EBCDIC or EBCDIK alternate collating sequence table.
 Also, you can use columns 54-59 in the File Description Continuation
 line to generate file translation tables for EBCDIC-TO-ASCII (EBCDIK
 to JIS) or ASCII-to-EBCDIC (JIS to EBCDIK) conversion.

 * You must convert all existing translation tables (including alternate
 collating sequence and file translation tables) to ASCII (JIS)
 equivalents.

 * Move Zone operations using ASCII (JIS) may yield results that are
 different from the same operations using EBCDIC or EBCDIK (these
 differences involve special characters).

Device Class Names

HP device class names have no established values except for a few
reserved names such as WORKSTN, STDIN and STDLIST. They are defined then
the operating system is installed. Therefore, HP RPG accepts all values
for device class names. When entering a device class name in the File
Description Specification, be sure to use the same name assigned during
system generation.

A- 4

Rewind Operations

HP RPG does not support all tape-rewinding operations, since the
operating system performs these tape operations.

Quotation Marks

Because other HP languages use the double quotation mark as the delimiter
for constants and edit words, HP RPG also uses them for the same purpose.
To continue to use the single quotation mark as the delimiter character
for constants and edit words, use the $CONTROL compiler subsystem command
with the QUOTE= parameter. Compiler subsystem commands are discussed in
the HP RPG Reference Manual .

File and Program Names

File and program names must begin with a letter (A-Z), followed by
letters (A-Z) or digits (0-9). File names may contain up to eight
characters. If the file is in a different group or account, you must
enter a :FILE command to identify its location. Append the group and
account to the file name. For instance, to qualify the file named
FILENAME, enter FILENAME.GROUPNAME.ACCOUNTNAME. See the MPE XL General
User's Reference Manual for more information on qualifying file names.
Program names may contain up to six characters.

RPG Features That Are Not Supported

HP RPG does not support the following IBM RPG features:

Sterling Notation

The Sterling currency (pounds, shillings, pence) specifications (Header,
Input, and Output) must be changed.

Telecommunications

HP RPG does not currently support telecommunications specifications.

ULABL Operation

RPG does not support ULABL calculation operations that make external
subroutine fields accessible to an RPG program. HP RPG does, however,
support the RLABL and PARM operations. RLABL makes fields, tables,
arrays, and indicators in RPG programs available to external subroutines.
PARM passes parameters to and from external subroutines.

Card Reader/Punch/Interpreter

HP RPG does not support punched card devices. You must manually convert
code related to these devices.

Header Specification Features

The following Header Specification features are not supported:

 * Variable memory sizes during compilation and execution.

 * Destination device of a compiled object program.

 * Inquiry request option (to allow/disallow interruption and roll-out
 of a running program, followed by roll-in of a new program).

 * Normal halt bypass when the object program transmits an
 unrecognizable character to an output device.

 * Sharing of a single output area by all disc files.

Migrating from MPE V RPG

This section lists the features that are not supported when you compile
and run a program under MPE XL. To run RPG programs in compatibility mode
under MPE XL, STORE them onto tape then RESTORE them onto the MPE XL
system. (See the MPE XL migration guides for complete information about
how to do this.)

To convert RPG V programs to RPG XL, first STORE them onto tape. Then
make any changes to the program to reflect the features that are no
longer supported (see the next section). Finally, recompile the programs

A: 5

using the RPG XL compiler.

RPG MPE V Features That Are Not Supported by RPG XL

Certain RPG features that are supported under MPE V are not supported
under MPE XL. They are:

 * KSAM record-level locking

 If a program contains KSAM record-level locking, RPG XL emits a
 warning and defaults to file locking.

 * ISAM simulation using TurboIMAGE

 This facility provided indexed sequential file access capability
 before KSAM was available. You must manually convert ISAM simulation
 code to other file access methods before compiling under MPE XL.

 * Card Reader/Punch Options

 Punched card devices are no longer supported. You must manually
 convert code related to these devices before compiling under MPE XL.

 * Automatic Program Segmentation

 HP RPG does not segment object programs.

 * Record Number Conversions

 The RPGCV, ERPGC and EXTCV Calculation Specification operations are
 not available.

 * $EDIT Compiler Subsystem Command

 The $EDIT compiler subsystem command is not available in RPG XL. RPG
 XL will emit a warning and ignore the record.

 * $CONTROL Compiler System Command Options

 Certain $CONTROL compiler system command options are not supported by
 RPG XL. RPG XL will emit a warning message when an unsupported
 command option is encountered and will ignore the option. The
 unsupported command options are KSAM, OPT1, OPT2, SEG= and USLINIT.

 For programs that contain these options, run the RPGCONV conversion
 utility. RPGCONV removes the options and produces an updated source
 program. To run RPGCONV, enter the following command using the
 appropriated filenames,

 :RPGCONV old_source_prog new_source_prog

 * External Subroutines

 External subroutines called from RPG XL must be written in a language
 that can be compiled in native mode (HP C or HP Pascal, for example).
 Refer to the HP RPG/XL Reference Manual for information on linking
 these procedures into your program.

 * User-ISAM

 This feature allowed users to write their own ISAM routine and place
 place it in the RPG library. User-ISAM is not available in MPE XL.

A- 6

	Top of Document
	Preface
	Chapter 1 How RPG Works
	Chapter 2 Creating an RPG Program
	Chapter 3 Using Disc Files in an RPG Program
	Chapter 4 Using a Terminal in an RPG Program
	Chapter 5 Processing Data in an RPG Program
	Chapter 6 Compiling an RPG Program
	Chapter 7 Executing an RPG Program
	Chapter 8 Communicating with MPE and Other RPG Programs
	Chapter 9 Writing More Efficient RPG Programs
	Appendix A Migrating to HP RPG

