
HP Pascal/iX Programmer’s Manual

HP 3000 MPE/iX Computer Systems

Edition 6
Manufacturing Part Number: 31502-90023
E0692

U.S.A. June 1992

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1986-1992 by Hewlett-Packard Company
2

p-1

Printing History
New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed alongside the date indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one to one correspondence between
product updates and manual updates.

First Edition March 1987 MPE XL: 31502A.01.01
 HP-UX: 31502A.00.03

Second Edition November 1987 MPE XL: 31502A.01.06
 HP-UX: 92431A.01.09

Third Edition January 1988 MPE XL: 31502A.01.06
 HP-UX: 92431A.01.12

Fourth Edition October 1988 MPE XL: 31502A.01.19
 HP-UX: 92431A.03.04

Fifth Edition January 1991 MPE XL: 31502A.03.10
 HP-UX: 92431A.08.00

Sixth Edition June 1992 MPE/iX: 31502A.04.05
 HP-UX: 92431A.09.00

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest
in a series of forward-compatible operating systems for the HP 3000 line
of computers.

In HP documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a
superset of MPE XL. All programs written for MPE XL will run without
change under MPE/iX. You can continue to use MPE XL system documentation,
although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s, not based on the PA-RISC architecture. MPE V
software can be run on the PA-RISC (Series 900) HP 3000s in what is known
as compatibility mode .

This HP Pascal/iX Programmer's Guide for the Hewlett-Packard HP Pascal/iX
and HP Pascal/HP-UX programming languages is intended for programmers
with at least six months of Pascal programming experience, but no HP
Pascal/iX or HP Pascal/HP-UX programming experience. It discusses
selected HP Pascal/iX and HP Pascal/HP-UX topics in detail, and explains
statement interaction where necessary. It does not explain every feature
of HP Pascal/iX or HP Pascal/HP-UX, as the HP Pascal/iX Reference Manual
does.

p- 2

Throughout this manual, the term HP Pascal refers to both HP Pascal/iX
and HP Pascal/HP-UX. The following is a short description of each chapter
and appendix.

Chapter 1 Describes HP Pascal/iX and HP Pascal/HP-UX and
 explains their relationship to HP Standard Pascal and
 its subsets.

Chapter 2 Describes HP Pascal program structure in terms of
 syntax and compilation units, and explains how your
 program can interface with its external environment.

Chapter 3 Explains how program input/output works.

Chapter 4 Gives the ranges of the predefined data types of HP
 Pascal and explains the types which HP Pascal does
 not share with older Pascal implementations.

Chapter 5 Explains how HP Pascal allocates space for and aligns
 static data structures.

Chapter 6 Explains dynamically allocated HP Pascal data
 structures.

Chapter 7 Discusses HP Pascal parameters.

Chapter 8 Explains procedure options, which allow routines to
 have optional parameters and default parameter
 values.

Chapter 9 Explains how your program can use external routines.

Chapter 10 Explains how your program can use intrinsics.

Chapter 11 Explains how to write error recovery code that allows
 your program to handle its own run-time errors.
 Explains how to debug your program.

Chapter 12 Explains how to use the optimizer to improve your
 program.

Appendix A Explains how HP Pascal/iX works on the MPE/iX
 operating system.

Appendix B Explains how HP Pascal/HP-UX works on the HP-UX
 operating system.

Refer to the following manuals for further information on HP Pascal:

 * HP Pascal/iX Reference Manual (31502-90001)

 * HP Pascal/XL Migration Guide (31502-90004)

This manual also refers to the following non-HP Pascal manuals:

 * ALLBASE/SQL Pascal Application Programming Guide (36216-90007)

 * HP C Programmer's Guide (92434-90002)

 * HP Link Editor/XL Reference Manual (32650-90030)

 * HP System Dictionary/XL General Reference Manual (32256-90004)

 * HP TOOLSET/XL Reference Manual (36044-90001)[REV BEG]

 * HP-UX Floating-Point Guide (B2355-90024)[REV END]

 * Introduction to MPE XL for MPE V Programmers (30367-90005)

p-3

 * MPE/iX Commands Reference Manual, Volumes 1 and 2 (32650-90003
 and 32650-90364)

 * MPE/iX Intrinsics Reference Manual (32650-90028)

 * MPE/iX Symbolic Debugger User's Guide (31508-90003)

 * MPE/iX System Debug Reference Manual (32650-90013)

 * Programming on HP-UX (B2355-90010)

 * Switch Programming Guide (32650-90014)

 * Trap Handling Programmer's Guide (32650-90026)

 * TurboIMAGE/XL Reference Manual (30391-90001)

 * Using VPLUS/V: Introduction to Forms Designs (32209-90004)

If you have suggestions for improving this manual, please send us the
Reader Comment Card, located at the front of this manual.

Conventions

UPPERCASE In a syntax statement, commands and keywords are
 shown in uppercase characters. The characters must
 be entered in the order shown; however, you can enter
 the characters in either upper or lowercase. For
 example:

 COMMAND

 can be entered as any of the following:

 command Command COMMAND

 It cannot, however, be entered as:

 comm com_mand comamnd

italics In a syntax statement or an example, a word in
 italics represents a parameter or argument that you
 must replace with the actual value. In the following
 example, you must replace FileName with the name of
 the file:

 COMMAND FileName

punctuation In a syntax statement, punctuation characters (other
 than brackets, braces, vertical bars, and ellipses)
 must be entered exactly as shown. In the following
 example, the parentheses and colon must be entered:

 (FileName):(FileName)

{ } In a syntax statement, braces enclose required
 elements. When several elements are stacked within
 braces, you must select one. In the following
 example, you must select either ON or OFF:

 COMMAND {ON }
 {OFF}
[] In a syntax statement, brackets enclose optional
 elements. In the following example, OPTION can be
 omitted:

 COMMAND FileName [OPTION]

p- 4

 When several elements are stacked within brackets,
 you can select one or none of the elements. In the
 following example, you can select OPTION or Parameter
 or neither. The elements cannot be repeated.

 COMMAND FileName [OPTION]
 [Parameter]
Conventions (continued)

[...] In a syntax statement, horizontal ellipses enclosed
 in brackets indicate that you can repeatedly select
 the element(s) that appear within the immediately
 preceding pair of brackets or braces. In the example
 below, you can select Parameter zero or more times.
 Each instance of Parameter must be preceded by a
 comma:

 [, Parameter][...]

 In the example below, you only use the comma as a
 delimiter if Parameter is repeated; no comma is used
 before the first occurrence of Parameter :

 [Parameter][,...]

|...| In a syntax statement, horizontal ellipses enclosed
 in vertical bars indicate that you can select more
 than one element within the immediately preceding
 pair of brackets or braces. However, each particular
 element can only be selected once. In the following
 example, you must select A, AB, BA, or B. The
 elements cannot be repeated.

 {A} |...|
 {B}
... In an example, horizontal or vertical ellipses
 indicate where portions of an example have been
 omitted.

triangle In a syntax statement, the space symbol triangle
 shows a required blank. In the following example,

Parameter and Parameter must be separated with a
 blank:

 (Parameter) triangle (Parameter)

 The symbol indicates a key on the keyboard. For
 example, RETURN represents the carriage return key.

base prefixes The prefixes %, #, and $ specify the numerical base
 of the value that follows:

%num specifies an octal number.
 # num specifies a decimal number.
 $ num specifies a hexadecimal number.

 If no base is specified, decimal is assumed.

Pascal Specific Conventions

The conventions followed in this manual are summarized below:

For Text:

 * The term PAC is used for the type PACKED ARRAY OF CHAR with the
 lower bound equal to 1.

 * Reserved words and directives are in all uppercase letters.

p-5

 Examples: BEGIN, REPEAT, FORWARD

 * Standard identifiers are in all lowercase letters.

 Examples: readln, maxint, text

 * General information concerning an area of programming (topic)
 appears as a heading with initial capitalization. All headings
 that are not reserved words or standard identifiers appear with
 initial capitalization.

For Syntax Diagrams:

 * Syntactic entities that are to be replaced by user-supplied
 entities are represented by sequences of lowercase letters and
 embedded underscore characters (_).

 Example: identifier

 * Keywords, predefined symbolic names and special symbols that must
 be supplied exactly as given are shown in apostrophes. Usually,
 letters may be entered in uppercase or lowercase.

 Example: 'IMPORT', ','

 * The diagrams are in the form of lines with directional arrows,
 known as "railroad tracks." Alternative paths are indicated by
 switches in the tracks.

 Example:

NOTE Some diagrams and tables have a number in the lower left or right
 corner, such as the number LG200009_036 in the diagram above. This
 number is not part of the diagram or table. It just identifies the
 artwork.

p- 6

1-: 1

Chapter 1 Introduction

HP Pascal/iX and HP Pascal/HP-UX are supersets of HP Standard Pascal, the
Pascal language that runs on all HP computers. HP Pascal/iX runs on the
MPE/iX operating system and HP Pascal/HP-UX runs on the HP-UX operating
system. Both operating systems run on HP PA-RISC computers, and both
achieve ISO and ANSI validation. HP Pascal takes advantage of the
architecture of these computers and has system programming extensions to
HP Standard Pascal.

As a superset of HP Standard Pascal, HP Pascal accepts the syntax of the
HP Standard Pascal subsets ISO Pascal and ANSI Standard Pascal. You can
instruct the HP Pascal compiler to accept only the syntax of an HP Pascal
subset. Refer to the HP Pascal Reference Manual for information on the
STANDARD_LEVEL compiler option.

Figure 1-1 shows the relationship between HP Pascal, HP Standard
Pascal, ISO Pascal, and ANSI Standard Pascal.

 Figure 1-1. Relationship Between HP Pascal and Other Pascals

HP Pascal can interface with any subsystem that can be accessed through
intrinsics. Some of the HP subsystems HP Pascal can interface with are
listed below:

Subsystem Description of Subsystem Reference

TurboIMAGE/XL Network database management TurboIMAGE/XL Reference Manual
 system. Your HP Pascal program
 accesses TurboIMAGE/XL routines
 with intrinsic calls.

SQL Relational database management ALLBASE/SQL Pascal Application
 system whose Pascal Programming Guide

1- 2

 preprocessor has macros that
 generate calls to SQL.

HP System Dictionary of MPE/iX data HP System Dictionary/XL General
Dictionary/XL elements. Reference Manual

VPLUS Forms generator. Your HP Using VPLUS/V: Introduction to
 Pascal program accesses VPLUS Form Designs
 routines with intrinsic calls.

HP Pascal can interface with several system debuggers. Some of the
debuggers are listed below:

Subsystem Description of Subsystem Reference

HP Symbolic Debugger A symbolic debugger available MPE/iX Symbolic Debugger User's
 on both the MPE/iX and HP-UX Guide
 operating systems. It supports
 HP Pascal features.

DEBUG MPE/iX System Debugger. MPE/iX System Debug Reference
Manual

HP TOOLSET/XL A programming environment for HP TOOLSET/XL Reference Manual
 developing programs. It
 provides source management, a
 symbolic debugger, and an
 editor. The symbolic debugger
 in HP TOOLSET/XL does not
 support all the features of HP
 Pascal.

2-: 1

Chapter 2 Program Structure
This chapter summarizes program structure--in terms of syntax and in
terms of compilation units. For complete syntactic definitions of
programs and their components, refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

Syntactic Structure

Syntactically, every HP Pascal program is composed of two major parts:
the program heading and the program block. The program block contains an
optional declaration part and a statement (executable) part.

Figure 2-1 illustrates the syntactic structure of an HP Pascal
program. For the exact syntax of a program and its components, refer to
the HP Pascal/iX Reference Manual or the
HP Pascal/HP-UX Reference Manual , depending on your implementation.

Figure 2-1. Syntactic Structure of a Program

Program Heading

The program heading contains the keyword PROGRAM, the program name, and
any program parameters. The program name can be any identifier. If your
program uses the standard textfiles input and output (the default
sequential I/O files), these textfiles must be program parameters.

Program parameters--except the standard textfiles input , output , and
stderr --must also be declared in the declaration part of the program
block.

Example

See the example in the section "Program Block" .

For more information about program parameters, see Appendix A and
Appendix B .

2-: 2

Program Block

The program block consists of an optional declaration part and a
statement (executable) part.

The declaration part defines whatever labels, constants, data types,
variables (including program parameters), procedures, functions, or
modules you want. It can also redefine standard constants, data types,
variables, and routines in the declaration part; however, if you do
redefine them, you cannot use their original definitions. You cannot
redefine reserved words. For a list of HP Pascal reserved words, refer
to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation.

The statement part is a compound statement (for the definition of
compound statement, see the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual , depending on your implementation).

Example

2-: 3

Compilation Unit Structure

A compilation unit is a unit of source code that can be compiled
independently of other code (for example, a program is a compilation
unit; a block is not).

You can design your program in two ways:

 * As a single compilation unit. In this case you must compile the
 entire program at once.

 * As two or more compilation units. In this case you can compile
 one unit at a time, or you can compile in groups. This is also
 known as separate compilation .

If your program is small, design it as a single compilation unit; it will
compile quickly because it is small. (The example program in the section
"Program Block" is a single compilation unit.) If your program is large,
design it as two or more compilation units. This saves compilation time
over the course of program development because you can correct and
recompile one unit without recompiling the whole program.

The recommended design for a program with separate compilation units is
modular ; in other words, it is composed of separate compilation units
called modules . For compatibility with Pascal/V, HP Pascal also supports
global and external compilation units. You can design your program using
these separate compilation units, if you prefer. You can mix modules and
global and external compilation units.

Modules

A module is a compilation unit that defines whatever constants, data
types, variables, functions, and procedures you want. A program or
another module can import the module, thereby gaining access to the
definitions that the module exports . The definitions that the module
does not export are accessible only to the module itself.

Figure 2-2 illustrates the syntactic structure of a module. For the
exact syntax of a module and its components, refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

Figure 2-2. Syntactic Structure of a Module

A module's import declaration specifies the other modules that it
imports. It can access items in the imported modules' export
declarations. The import declaration can also be used to specify export

2-: 4

of entire modules a second time.

A module's export declaration specifies the constants, data types,
variables, functions, and procedures that it exports to the modules or
programs that import it. A module defines its exportable routines in its
implement part.

A module's implement part defines constants, data types, variables, and
routines. The routines are accessible only to the module itself, unless
they are exported in the export declaration.

Example

2-: 5

Figure 2-3 . shows what a module can access.

Figure 2-3. What a Module Can Access

A module must be compiled before a program or another module imports it
(therefore, two modules cannot import each other).

For the compiler to compile a module with a program, the program must
define the module in its declaration part. After defining this module,
the program can import it.

When compiling a module independently of a program, the compiler stores
the compiled module in the object file or in an alternate file named in
the MLIBRARY option (if the MLIBRARY option is specified).

When compiling modules separately or with a program, the placement of the
compiler output depends on whether the MLIBRARY option is used. If
MLIBRARY is used, the module-text (in the IMPORT and EXPORT declaration)
is placed in the file specified with the MLIBRARY option.

If MLIBRARY is not used, the module-text is placed into the object file
along with the object code. The module-text present in object files also
occurs in RLs (archive libraries), shared libraries, XLs, and program
files that were created from these object files unless stripped or the
Linkeditor's NODEBUG option is used. Even though the module-text is an
unloadable space, it does take up room in the file.

The compiler can extract the module-text from Mlibraries or from any of
the binary files discussed above.

NOTE The compiler may not be able to extract this information if the
 file is loaded.

The importing program uses the compiler option SEARCH to tell the
compiler where to find the module. The compiler options MLIBRARY and
SEARCH cannot specify the same library. For more information on MLIBRARY

2-: 6

and SEARCH, refer to the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual , depending on your implementation.

A program can define a module with the same name as a module in the
library that SEARCH specifies. In that case, the program imports the
module that it defines, rather than the library module with the same
name. If a library contains two modules with the same name, the second
one overrides the first. The compiler does not warn you when you are
about to override an existing module.

When a program imports a module, the module and its exported items
(including the module's exported modules) belong to the global scope of
the program. The items that the module does not export (those in its
implement part) also exist for the same lifetime as the exported items
that were compiled at the simultaneously, even though the program cannot
access them.

These non-exported items will not be put in the global symbol table if
each module is separately compiled.

NOTE An exception to this rule occurs if any INLINE routines are
 exported. In this case all items in the implement part are placed
 in the module-text and the symbol table when imported. This
 includes any references to intrinsics, even those not used by the
 INLINE routines. This also means that any $SYSINTR$ option used by
 the imported module must also be present in the importing module or
 program, along with the intrinsic file itself. Because of this,
 you may want to create multiple smaller modules, one of which will
 contain the inline routines, but without any intrinsics declared.

Example

Independently compiled modules (to be compiled together in a single
compilation unit):

 MODULE Mod1; {Mod1 is in Mod1.o}
 EXPORT
 .
 :
 IMPLEMENT
 .
 :
 END; {Mod1}
 MODULE Mod2; {Mod2 is in Mod1.o}
 IMPORT
 Mod1; {Mod2 imports Mod1}
 EXPORT
 .
 :
 IMPLEMENT
 .
 :
 END; {Mod2}
 MODULE Mod3; {This Mod3 is in Mod1.o}
 EXPORT
 .
 :
 END. {Mod3}

Program (to be compiled as a compilation unit that does not contain the
above modules -- the program imports the modules from the above
compilation unit):

 PROGRAM prog;

2-: 7

 .
 :
 MODULE Mod3; {The program defines this Mod3}
 .
 :
 END; {Mod3}
 $SEARCH 'Mod1.o'$
 IMPORT
 Mod2, {Mod2 comes from the library Mod1.o}
 Mod3; {Mod3 is the one that the program defined}
 BEGIN
 .
 :
 END.

Global, Subprogram, and External Compilation Units

A global compilation unit defines global constants, data types, and
variables within a Pascal program. It also contains the body of the main
program. Syntactically, it is a program that begins with the GLOBAL
compiler option. For more information on the GLOBAL compiler option,
refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual , depending on your implementation.

A subprogram compilation unit defines subprogram constants, data types,
and variables within a Pascal program. Syntactically, it is a program
that begins with the SUBPROGRAM compiler option. For more information on
the SUBPROGRAM compiler option, refer to the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation.

An external compilation unit declares the global variables that it needs
and defines routines that the global compilation unit and other
external compilation units can access using the EXTERNAL directive.
Syntactically, it is a program that begins with the EXTERNAL compiler
option and has an empty outer block.

NOTE The EXTERNAL directive and the EXTERNAL compiler option are not the
 same. For more information, see Chapter 9 in this manual and
 the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference

Manual , depending on your implementation.

You must compile global and external compilation units separately. For
more information on program preparation see Appendix A and Appendix B
.

For more information on the EXTERNAL compiler option, refer to the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

Separate Compilation

Separate compilation is the process of separating the source for a large
program into pieces that can be compiled independently of other pieces.

There are several reasons why compiling pieces of a program separately is
practical:

 * When the program is too long to compile.

 * When the program is too complex to manage.

 * When the program is being worked on by more than one programmer or
 by a team of programmers.

2-: 8

There are four methods used for separate compilation. They are performed
by using modules and by using the compiler options SUBPROGRAM, GLOBAL,
and EXTERNAL.

Using modules is the preferred method for separate compilation from a
structured programming point of view. However, using modules does have
certain limitations, as does using SUBPROGRAM, GLOBAL, and EXTERNAL. You
must decide which method works in the way you prefer for your specific
situation.

The remainder of this section addresses separate compilation using
modules and each compiler option. The uses, advantages, and
disadvantages of each method are discussed to help you determine which
one to use.

For detailed information on SUBPROGRAM, GLOBAL, and EXTERNAL, refer to
the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation. For more information on
modules, see "Using Modules" in this chapter.

Using Modules

Once a module is created, the import statement makes that module
available to any other program or module. The importing compilation unit
receives the constant, type, variable, procedure, and function
declarations that are exported by the imported module.

When to Use Modules.

Use modules for separate compilation when you have an extremely large
program and when you would like easy accessibility to libraries.

Advantages of Using Modules.

Some advantages to separate compilation with modules are:

 * Many modules can exist within an executable program, but with only
 one main program.

 * When a module changes, you only need to recompile units that refer
 to the module.

 * You can import types and variables from a module without
 distributing the source. For example, you can extract information
 from an object file, archive library, or MLIBRARY.

 * The types and the object code are in sync. There's no possibility
 of a mismatch.

 * The constant, type, variable, procedure, and function declarations
 that are not exported are hidden.

Using SUBPROGRAM

The SUBPROGRAM compiler option turns a Pascal program into a subprogram
compilation unit.

For separate compilation, SUBPROGRAM must be included in all compilation
units, except the compilation unit containing the outer block. No code
is generated for the outer block if used.

When to Use SUBPROGRAM.

SUBPROGRAM is recommended for use in compilation units where the global
variables won't change much.

2-: 9

SUBPROGRAM Advantages.

Using SUBPROGRAM results in smaller object files and less link time. You
also get faster access to the first 8K bytes of globals. The SUBPROGRAM
option can also be specified with a list of routines to compile as few as
one procedure, if RLFILE is used.

SUBPROGRAM Limitations.

The variables must be in the exact same order and must be declared with
the same types. Otherwise, at run time the global variables used in one
compilation unit may not match the actual memory that matches the global
variables in a different compilation unit.

To avoid this problem, place all global variable, type, and constant
declarations in a file and include ($INCLUDE$) those files in all
compilation units. If you don't ensure that the variable, type, and
constant declarations match in all compilation units, your execution
results will be incorrect, but no error will occur at compile time or at
link time.

Using GLOBAL/EXTERNAL

The GLOBAL and EXTERNAL compiler options turn Pascal programs into global
and external compilation units. The compiler options must precede the
reserved word program .

The GLOBAL compiler option:

 * Generates symbolic definitions for the global variables in the
 compilation units.

 * Generates code for the outer block and any procedures.

The EXTERNAL compiler option:

 * Generates symbolic references for the global variables in the
 compilation unit.

 * Prevents the compiler from generating storage for global
 variables.

 * Does not generate code for the outer block and prevents the
 compiler from generating an outer block. If there are statements
 in an outer block, they are ignored.

When to Use GLOBAL/EXTERNAL.

Use GLOBAL/EXTERNAL when sharing global information with another
language, or when the number of global variables are too large to
recompile each time.

GLOBAL/EXTERNAL is also useful when global variables will change often.

GLOBAL/EXTERNAL Advantages.

The following are some advantages of using GLOBAL/EXTERNAL:

 * When you use GLOBAL/EXTERNAL for separate compilation, the global
 variables do not need to be listed in the same order.

 * Since the variables are matched by name, only as many globals as
 used need to be declared when using EXTERNAL.

 * The storage for globals does not take up space in the program
 file.

2-: 10

GLOBAL/EXTERNAL Limitations.

The following are some limitations of using GLOBAL/EXTERNAL:

 * All global variables must be declared in the GLOBAL compilation
 unit.

 * Using GLOBAL/EXTERNAL results in slower link time.

 * Code that references global variables is not as efficient as code
 that does not use GLOBAL/EXTERNAL.

Using SUBPROGRAM with GLOBAL

The SUBPROGRAM with GLOBAL compiler options result in Pascal programs
that are a mixture of subprogram and global compilation units. These
compiler options must precede the reserved word PROGRAM.

Global variables declared here can be referenced in external compilation
units.

When to Use SUBPROGRAM with GLOBAL.

Use SUBPROGRAM with GLOBAL to allow multiple declarations of additional
global variables instead of using just the outer block.

SUBPROGRAM with GLOBAL Advantages.

When you use SUBPROGRAM with GLOBAL, you do not have to recompile the
outer block if you are not using GLOBAL. This method of separate
compilation is similar to using modules.

You don't have to share all variables with other languages, you can share
only a few variables, if you wish.

If any of the global variables change, you only need to recompile the
units that refer to them.

You can use this to put globals into an XL.

External Interfaces

Your program can interface with its external environment (other routines
and files supported by the operating system) by using physical files,
external routines, and intrinsics.

A physical file is a program-independent entity that the operating system
maintains. It can be a permanent file on a disk or other medium, or it
can be an interactive file created at a terminal. Your program can
manipulate a physical file by associating it with a logical file (a file
that the program declares). Chapter 3, "Input/Output," explains physical
and logical files, which HP Pascal programs use for input/output.

An external routine is a routine that is not in the compilation unit that
calls it. Its source language can be HP Pascal, HP C, HP COBOL II/XL, HP
FORTRAN 66/V, HP FORTRAN 77, or SPL. Your program can access an external
routine by declaring it with the EXTERNAL directive. Chapter 9 explains
external routines.

An intrinsic is an external routine that can be called by a program
written in any language that the operating system supports. An intrinsic
can be written in any supported language, but its formal parameters must
be of types that have counterparts in all the other supported languages.
Your program can access an intrinsic by declaring it with the INTRINSIC
directive. You need not declare the intrinsic's entire parameter list,
and your program can use an intrinsic function as either a function or a
procedure. Refer to Chapter 10 for more information on intrinsics.

3-: 1

Chapter 3 Input/Output
Input/output depends on files: your program reads input from files and
writes output to files. The terms that describe the three varieties of
input/output-- sequential, textfile, and direct --also describe the
associated files.

This chapter:

 * Gives general information about files.

 * Explains the predefined file-opening procedures and how they
 determine whether files are sequential or direct, for input or for
 output.

 * Defines sequential as it applies to input/output and files, and
 explains the predefined routines that support sequential I/O.

 * Explains textfile input/output and files, which are subsets of
 sequential I/O and files (respectively), and explains the routines
 peculiar to them.

 * Defines direct as it applies to input/output and files, and
 explains the predefined routines that support direct I/O.

 * Gives the conditions under which files are closed, and tells what
 happens when a file closes.

Figure 3-1 illustrates the relationships between sequential,
textfile, and direct input/output and sequential files, textfiles, and
direct files.

Figure 3-1. Relationships Between I/O Varieties and File Types

Input/output also depends upon the procedures that manipulate files and
the functions that return information about them.

Table 3-1 categorizes the predefined input/output routines two ways:
by purpose (for example, input or output) and by I/O type (sequential,
textfile, or direct).

3- 2

Table 3-1. Categories of Input/Output Routines

--
	Sequential I/O	Textfile I/O	Direct I/O
--
Opening Procedures			
	reset	reset	open
	rewrite	rewrite	
	append	append	
--
Input Procedures			
	get	get	get
	read	read	read
		readln	readdir
--
| | | | |
| Output Procedures | | | |
| | put | put | put
	write	write	write
		writeln	writedir
		page	
		prompt	
		overprint	
--
Positioning Procedure	None	None	seek
--
Association			
Procedures	associate	associate	associate
	disassociate	disassociate	disassociate
--
Status Functions			
	eof	eof	eof
		eoln	lastpos
		linepos	maxpos
	position		position
--
Closing Procedure	close	close	close
--

General File Information

You need the general file information in this section to understand the
rest of this chapter. Examine Figure 3-2 , and then read the
explanations of the entities in italics, whose relationships it shows.

Figure 3-2 illustrates the relationship between physical files (in
the operating system environment) and logical files (in the program
environment). It also shows how logical files, textfiles, and the
standard textfiles input and output are related.

3-: 3

Figure 3-2. File Relationships

Physical Files

A physical file is a program-independent entity that the operating system
controls. It can be a file on a disk or other medium, or an interactive
file created at a terminal (refer to your operating system manual for
information on creating and controlling physical files).

Your program can manipulate a physical file if the physical file is
associated with one of the program's logical files. In this case, the
physical file assumes the characteristics of the logical file.

Logical Files

A logical file is a data structure that a program declares and controls.
It is a sequence of components of the same type.

The declaration of a logical file determines the type of its components
but not their number. A logical file that is declared FILE OF x has
components of type x. File operations can change the number of file
components.

A logical file does not exist outside the main program or routine that
declares it. If it is associated with a physical file, however, anything
that happens to the logical file within the program also happens to the
physical file. This is how a program can manipulate its external
environment.

NOTE In subsequent sections of this chapter, the term file refers to a
 logical file unless otherwise noted.

3- 4

Textfiles

A textfile is a logical file that is subdivided into lines, each of which
ends with an end-of-line marker. The components of a textfile are of
type char , but a textfile declaration specifies the type text , not FILE
OF char .

The standard files input and output are textfiles. If you declare them
in the program header, they are the default file parameters for all of
the sequential input and output procedures, respectively.

Example

 PROGRAM prog (input,output);

 VAR
 tfile : text;
 c : char;

 BEGIN
 .
 .
 .
 read(tfile, c); {Reads from tfile}
 read(c); {Reads from input}
 write(c); {Writes to output}
 END.

The preceding program has three textfiles: the standard textfiles input
and output, and the file tfile.

End-of-line markers are not file components, and are not of type char.
The predefined procedure writeln writes them to the file (see "Textfile
Input/Output"). An end-of-line marker always precedes the
end-of-file mark in a textfile, whether writeln wrote the last component
to the file or not.

Current Position Indexes

Every logical file has a current position index that indicates either its
current component, an end-of-file marker, or (in a textfile) an
end-of-line marker. This index is an integer--the ordinal number of the
current component or marker. A file's current component is the component
that the next I/O operation on that file will input or output.

Figure 3-3 illustrates the relationship between current position
index and current component.

Figure 3-3. Relationship Between Current
Position Index and Current Component

3-: 5

File Buffer Variables and Selectors

Every logical file has a file buffer variable , or buffer , which is a
variable of the same type as the file components. Some file operations
assign the value of the current component to the buffer; other operations
leave the buffer undefined.

When the buffer is defined, you can access its value with its file buffer
selector . The file buffer selector for the file f is f^ or f@.

Accessing an undefined buffer causes an error.

Opening Files

Except when using input and output files, your program must open files
before it can use them. A call to a predefined file-opening procedure
has the following syntax and parameters.

Syntax

{reset }
{rewrite} (logical_file [, physical_file [, open_options]])
{append }
{open }
Parameters

reset, rewrite, The names of the predefined file-opening procedures.
append, open See Table 3-2 for more information on them.

logical_file The name of the logical file to be opened.

physical_file A string or PAC expression whose value is the name of
 the physical file to be opened. The syntax of the
 file name is system-dependent (see Appendix A for
 the MPE/iX operating system or Appendix B for the
 HP-UX operating system).

open_options A string or PAC expression whose value is a list of
 file attributes. The syntax of the list is
 system-dependent (see Appendix A for the MPE/iX
 operating system or Appendix B for the HP-UX
 operating system).

Example 1

 reset(logfile);
 rewrite(logfile2,physfile2);
 append(lfile1,pfile1,'SHARED'); {HP-UX operating system ignores 'SHARED'}
 open(lfile1);

If you specify physical_file , the system associates it with logical_file .
If logical_file was previously associated with another physical file, the
system closes the other physical file with its data intact and opens a
new physical file.

Example 2

 PROGRAM prog;

 VAR
 datafile : FILE OF integer;

 BEGIN
 open (datafile, 'file1'); {Logical file datafile is associated with
 physical file file1.}

 open (datafile, 'file2'); {Physical file file1 is closed.
 Logical file datafile is associated with

3- 6

 physical file file2.}
 END.

If logical_file is not a program parameter, and physical_file is not
specified, logical_file remains associated with its previously associated
physical file. If logical_file was not previously associated with a
physical file, the system associates logical_file with a temporary,
nameless physical file.

Example 3

 PROGRAM prog; {Logical files logfile1 and logfile2 are not
 program parameters}
 VAR
 logfile1,
 logfile2 : text;

 BEGIN
 reset(logfile1,'file1'); {Logical file logfile1 is associated with
 physical file file1.}

 rewrite(logfile1); {No physical file is specified, so logical file
 logfile1 remains associated with physical file file1.}

 rewrite(logfile2); {No physical file is specified, and logical file
 logfile2 is not associated with a physical file,
 so logfile2 is associated with a temporary,
 nameless physical file.}
 END.

If logical_file is a program parameter, and physical_file is not
specified, the system opens the physical file that has the same name as
logical_file (with the lowercase letters upshifted--see Appendix B
for HP-UX implications). If no such physical file exists, the result
depends on whether either append or rewrite opened the logical file. If
so, the system creates the physical file. If not, it is an error.

Example 4

For this example, assume that the physical file file1 exists, but the
physical file file2 does not.

 PROGRAM prog (file1,file2); {Logical files file1 and file2
 are program parameters.}
 VAR
 file1,
 file2 : text;

 BEGIN
 rewrite(file1); {Logical file file1 is associated with the
 physical file file1.}

 rewrite(file2); {Logical file file2 is associated with a
 physical file file2. }
 END.

A temporary, nameless physical file cannot be saved. It becomes
inaccessible when the main program or routine that declared logical_file
terminates, or when you associate logical_file with a new physical file.

Your program does not need to open the standard textfiles input and
output . When they are program parameters, the operating system opens
them with reset and rewrite, respectively.

The standard textfiles input and output are bound to specific system
files. For the MPE/iX operating system, see Appendix A ; for the
HP-UX operating system, see Appendix B .

3-: 7

Table 3-2 summarizes the characteristics of the four predefined
file-opening procedures.

Table 3-2. Characteristics of File-Opening Procedures

--
Procedure	Reset	Rewrite	Append	Open
--
Type of file	Any	Any except
That it Can		textfile
Open		
--
State in	Read-only	Write-only	Read-Write
Which it			
Opens File			
--
Manner in	Sequentially	Directly
Which file		
Can Be		
Accessed		
--
Purpose for	Input	Output	Output at	Input
Which it		over old	end of old	and
Opens File		contents	contents	output
--
Where it Puts	First	Before	After	Before
Current	component	first	last	first
Position		component	component	component
Index *				
--
Value of eof	False	True	False
for File *			
--
Erases Old	No	Yes	No
File Contents			
--
File Buffer	Contains	Undefined
Variables *	value of	
	first	
	component	
--
* For a nonempty file. For an empty file, every file-opening
 procedure puts the current position index before the [nonexistent]
 first component, eof returns true , and the file buffer variable is
 undefined.

Associate Procedure

The predefined procedure associate associates a logical file with an open
physical file, and puts the current position index at the first
component.

Syntax

 associate (logical_file, file_number, open_options)

3- 8

Parameters

logical_file The name of the logical file.

file_number The file number of the open physical file. The physical
 file must have been opened with a direct call to an
 operating system routine or a non-Pascal routine. You
 cannot call the associate procedure with the file number of
 a closed file or a file that was opened with the Pascal
 procedure append, associate, open, reset, or rewrite.

open_options One of the following options. It must be a string literal:

 'READ' Associate with sequential access file
 with read-only access.

 'WRITE' Associate with sequential access file
 with write-only access.

 'READ,DIRECT' Associate with direct access file with
 read-only access.

 'WRITE,DIRECT' Associate with direct access file with
 write-only access.

 'READ,WRITE,DIRECT' Associate with direct access file with
 read-write access.

 'DIRECT' Associate with direct access file with
 read-write access (same as 'READ,
 WRITE, DIRECT').

 'NOREWIND' Associates with a file without changing
 the current file position.

 You must specify one of the above strings for open_options .
 The system-dependent open options listed in Appendix A
 (for MPE/iX) and Appendix B (for HP-UX) apply to the
 file-opening procedures append, open, reset, and rewrite.
 Pascal ignores them when they are used with associate.

You cannot specify read access if the physical file is not open for read
access, or to specify write access if it is not open for write access.
If you associate a logical file with an empty physical file, for read
access, the next read causes an error.

Table 3-3 summarizes the characteristics of the predefined procedure
associate .

Table 3-3. Characteristics of Associate Procedure

Type of File That it Can Open	Any.

State in Which it Opens File	Specified in open_options .

Manner in Which File Can Be Accessed	Either--Defined by characteristics of
	physical file.

Purpose for Which it Opens File	Input, output or both.

| | |

3-: 9

| Where it Puts Current Position Index | Before first component. |
| | |

Value of eof for File *	False unless opened for write, in which
	case eof returns true despite possible old
	data after the current component.

Erases Old file Contents	No.

File Buffer Variables *	First component for a textfile that is open
	for reading; undefined otherwise.

* For a nonempty file. For an empty file, every file-opening
 procedure puts the current position index before the [nonexistent]
 first component, eof returns true , and the file buffer variable is
 undefined.

If the physical file is not empty, the first reference to its file buffer
variable loads its file buffer with its first component. If the physical
file is empty, the first reference to its file buffer variable causes an
error.

Figure 3-4 illustrates the effect of the associate procedure on the
open file whose file number is file_num :

Condition of file:

After associate(examp_file,file_num,'READ') , the file is open in the
read-only state and looks like this:

Now examp_file is open in the read-only state.

Figure 3-4. Effect of Associate Procedure on Open File

3- 10

Example 1

This example applies to HP Pascal on the MPE/iX operating system only.
For a description of the MPE/iX intrinsic FOPEN, refer to the MPE/iX
Intrinsics Reference Manual .

 PROGRAM test;

 TYPE
 pac100 = PACKED ARRAY [1..100] OF char;

 VAR
 f : FILE OF integer; {f is not a textfile}
 buffer : pac100;
 name : pac100;
 fnum : integer;
 j : integer;
 e,g,h : text;

 FUNCTION FOPEN : shortint; INTRINSIC; {MPE/&XL; file-opening intrinsic}

 BEGIN
 fnum := FOPEN(,0,octal('44'),-4); {open direct access read-write temp. file}
 associate(f,fnum,'READ,WRITE,DIRECT'); {associate with file for
 read-write direct access}
 writedir(f,3,5);
 readdir(f,3,j);

 rewrite(e,'UDC'); {create file 'UDC'}
 writeln('This is a test');
 close(e,'SAVE'); {close file 'UDC'}
 name := 'UDC';
 fnum := FOPEN(name,octal('40')); {open 'UDC' for sequential read access}
 associate(g,fnum,'READ'); {associate with 'UDC' for seq. read access}
 read(g,buffer);

 fnum := FOPEN(,4,octal('101')); {open write access sequential temp. file}
 associate(h,fnum,'WRITE'); {associate for sequential write access}
 writeln(h,'This is a test');
 END.

Example 2

This example applies to HP Pascal on the HP-UX operating system only.
For descriptions of the HP-UX routines tmpnam and open, refer to the
HP-UX Reference manual.

 PROGRAM test;

 TYPE
 pac100 = PACKED ARRAY [1..100] OF char;
 VAR
 f : FILE OF integer; {f is not a textfile}
 buffer : pac100;
 name : pac100;
 mode : integer;
 fnum : integer;
 j : integer;
 e,g,h : text;
 option : integer;

 {External HP-UX routine that returns a unique file name}
 PROCEDURE tmpnam (VAR fpathname : pac100); EXTERNAL;

 {External HP-UX routine that opens a file}
 FUNCTION file_open $ALIAS 'open'$ {use alias to avoid conflict w/Pascal open}

3-: 11

 (VAR fpathname : pac100;
 foption : integer;
 mode : integer) : integer; EXTERNAL;
 BEGIN
 tmpnam(name); {get unique name for temporary file}
 mode := octal('666'); {read-write access for file}
 option := octal('402'); {specify read-write access}
 fnum := file_open(name,option,mode); {open the file}
 associate(f,fnum,'READ,WRITE,DIRECT');{associate with file for
 read-write direct access}
 writedir(f,3,5);
 readdir(f,3,j);

 rewrite(e,'UDC'); {create text file 'UDC'}
 writeln('This is a test'); {write to file}
 close(e,'SAVE'); {close text file 'UDC'}
 name := 'UDC'#0; {open the same file through HP-UX}
 mode := octal('666');
 fnum := file_open(name,0,mode);

associate(g,fnum,'READ'); {associate with 'UDC' for seq. read access}
 read(g,buffer);
 tmpnam(name); {open text file through HP-UX}
 mode := octal('666');
 option := octal('401'); {specify write access}
 fnum := file_open(name,option,mode);
 associate(h,fnum,'WRITE'); {associate for sequential write access}
 writeln(h,'This is a test');
 END.

Disassociate Procedure

The predefined procedure disassociate removes the logical-physical file
association that was previously created with the standard procedure
associate. As a result, you can no longer use the file f with Pascal
input and output routines.

Syntax

 disassociate (f)

Parameters

f A variable of type file.

Normally, a file is closed on exit from the block in which it is
declared. A disassociated file, however, remains open until it is closed
with a direct call to an operating system routine.

Disassociate is useful on a file that is opened by a non-Pascal routine
that is passed to a Pascal routine and must remain open on exit from the
Pascal routine.

Sequential Input/Output

Sequential input/output is input/output that is performed with sequential
files; that is, files whose current position indexes advance one
component at a time. Sequential input comes from read-only files that
the procedure reset opened. Sequential output goes to write-only files
that the procedure rewrite or append opened.

Table 3-4 summarizes the characteristics of the predefined sequential
input/output procedures.

3- 12

Table 3-4. Characteristics of Sequential I/O Procedures

--
Procedure	get	read	put	write
--
State that file must	Read-only or read-write	Write-only or read-write
be in *		
--
Assigns value of	Current component	Buffer	Specified
			variable
--
To	Buffer	Specified	Current component
		variable	
--
Advances current	To next component **
position index	
--
After call, buffer	No	Yes
is undefined		
--

* For sequential I/O, the state must be read-only or write-only. The
 state read-write is included here because these sequential I/O
 procedures work the same way on direct (read-write) files (see
 "Direct Input/Output").

** For all the procedures except get , the current position index is
 advanced to the component after the assignment. See the explanation
 of deferred get that follows this table.

The procedures get and read assign values to the buffer with deferred
get . Deferred get allows HP Pascal to maintain the original Pascal
definition of get while avoiding unexpected behavior with input from
interactive I/O devices (such as terminals).

The procedure get advances the current position index to the next
component and moves the next component into the buffer variable.

The procedure reset opens a file for sequential input, positions the file
at the first component, and performs a get.

If the get (Pascal definition) is performed after a reset to a terminal,
a physical read is required to fill the buffer variable. Consequently, a
program is paused for input from the terminal before the program requests
an input operation.

The deferred get avoids this problem. With deferred get, the procedure
get advances the current position index to the next component and, on the
next reference to the buffer variable, moves the current component into
the buffer variable. The reference to the buffer variable can be
explicit (f^) or implicit. For example, read(f,v) or eof(f).

Example 1

 PROGRAM prog;

 TYPE
 seqfile = FILE OF char;

3-: 13

 VAR
 f1,f2,f3 : seqfile;
 c1,c2 : char;

 BEGIN
 reset(f1); {Opens f1 for sequential input.
 First component of f1 becomes its current component.}
 c1 := f1^; {Assigns f1's first component to f1's buffer.
 Assigns f1's buffer (first component) to c1.}

 get(f1); {Advances f1's current position index.
 Second component of f1 becomes its current component.}

 read(f1,c2); {Implicit reference to f1's buffer --
 deferred get from get(f1) assigns
 f1's current (second) component to f1's buffer.
 Read(f1,c2) assigns f1's current (second) component to c2
 and advances f1's current position index.
 Third component of f1 becomes its current component.}

 rewrite(f2); {Opens f2 for sequential output (write-only).
 Erases old contents.
 Leaves f2's buffer undefined.}
 get(f2); {Illegal -- rewrite(f2) made f2 write-only.}

 f2^ := c1; {Assigns c1 to f2's buffer.}

 put(f2); {Assigns f2's buffer (c1) to f2's current (first) component.
 Advances f2's current position index to position two,
 where its second component will be after write(f2,c2).}

 write(f2,c2); {Assigns c2 to f2's current (second) component.
 Advances f2's current position index to position three,
 where its third component will be.}

 append(f3); {Opens f3 for sequential output (write only).
 Does not erase old contents, which end with component n.
 Leaves f3's buffer undefined.}

 (Example is continued on next page .)

 get(f3); {Illegal -- append(f3) made f3 write-only.}

 f3^ := c1; {Assigns c1 to f3's buffer.}

 put(f3); {Assigns f3's buffer (c1) to f3's current (n+1st) component.
 Advances f3's current position index to position n+2,
 where its n+2nd component will be after write(f3,c2).}

 write(f3,c2); {Assigns c2 to f3's current (n+2nd) component.
 Advances f3's current position index to position n+3,
 where its n+3rd component will be.}
 END.

The preceding program reads values from the first and second components
of the file f1 into the variables c1 and c2 (respectively). Then it
writes c1 and c2 to the first and second components of the file f2
(respectively), and appends them to the file f3.

The get associated with read is implicit; your program need not call get
explicitly. If it does, a component is skipped.

Example 2

 PROGRAM prog;

 TYPE
 intfile = FILE OF integer;

3- 14

 VAR
 f : intfile;
 x,y,z : integer;
 BEGIN
 reset(f); {Opens f for sequential input.
 First component becomes current component.}

 read(f,x); {Implicit reference to f's buffer -- deferred get
 from reset(f), above -- assigns current (first)
 component to buffer. Then read(f,x) assigns
 current (first) component to x.
 Second component becomes current component.}

 read(f,y); {Implicit reference to buffer --
 deferred get from read(f,x) assigns
 current (second) component to buffer.
 Read(f,y) assigns current (second) component to y
 and advances current position pointer.
 Third component becomes current component.}

 get(f); {Explicit reference to buffer --
 because get(f) follows read(f,y),
 it advances the current position pointer.
 Fourth component becomes the current component.}

 read(f,z); {Implicit reference to buffer --
 deferred get from get(f) assigns current (fourth)
 component to buffer.
 Read(f,z) assigns current (fourth) to z.
 Fifth component becomes the current component.}
 END.

The preceding program assigns the first, second, and fourth components of
the file f to the variables x, y, and z, respectively. The program skips
the third component.

Table 3-5 gives the characteristics of the predefined sequential file
functions.

Table 3-5. Characteristics of Sequential File Functions

Function	Eof	Position

Returns:	True if the current position index is at	Current position index
	the end-of-file marker; false otherwise	(an integer).
	(always true for a write-only file).	

Effect on buffer:	If eof returns false, and the buffer does	None.
	not have a value, then eof assigns the	
	value of the current component to the	
	buffer; otherwise, no effect.	

Trying to read from file f when eof(f) is true causes a run-time error.
You can prevent it by calling eof(f) before attempting to read from f,
and taking appropriate action if eof(f) is true .

Example 3

 PROGRAM prog;

 TYPE
 seqfile = FILE OF real;

3-: 15

 VAR
 f : seqfile;
 i : integer;
 a : ARRAY [1..100] OF real;

 BEGIN
 reset(f); {Open f}
 i := 1;
 WHILE not eof(f) AND (i<=100) DO {Read array values from f}
 BEGIN
 read(f,a[i]);
 i := i+1;
 END;
 END;
 END.

If f is a terminal, the appropriate action for eof is a device read. The
next read or readln of f accesses the component in the buffer, without
performing another device read.

Example 4

 PROGRAM prog (input); {for this example, assume input is from terminal}

 TYPE
 readbuf = PACKED ARRAY [1..80] OF char; {for device read}

 VAR
 x : char;
 i : 1..100;
 a : readbuf;

 BEGIN
 i := 1;
 WHILE (NOT eof) AND (i <= 100) DO
 BEGIN
 readln(a); {perform device read}
 i := i + 1;
 END;
 END.

By default, eof and readln apply to the standard textfile input. The
user running the program terminates input by pressing RETURN. An input
line can have up to 80 characters.

Textfile Input/Output

Textfile input/output is sequential input/output that is performed with
textfiles (a subset of sequential files). The program reads textfile
input from read-only textfiles opened by the procedure reset, or from the
standard textfile input . The program writes textfile output to
write-only textfiles opened by the procedure rewrite or append, or to the
standard textfile output.

Table 3-6 summarizes the characteristics of the predefined textfile
input/output procedures.

3- 16

Table 3-6. Characteristics of Textfile I/O Procedures
--
Procedure	readln1	writeln2	page	overprint	prompt
--
State that	Read-only	Write-only
file must be		
in		
--
Writes or	Value of	Specified	End-of-line	Page-eject	Line-feed	Buffer
Reads	current	expression	marker	character 3	suppression	
	component				character4	
--
To/after	To specified	To current	After	After current component	To output
	variable	component	current		device
			component		
--
Advances	To beginning	To beginning of next	To next	To beginning	No
current	of next line	line	component	of same line	
position					
index					
--
After call,	No	Yes
buffer is		
undefined		
--
1. readln and read perform implicit data conversion if the specified
 variable is of any simple type other than char (see the HP

Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual
 for details).

 2. writeln and write format the specified variable (see the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual

 for details).

 3. The page-eject character causes devices to skip to the top of the
 next page when it prints the textfile.

 4. The line-feed suppression character prevents the device from
 moving to the next line after it prints the parameter of

overprint ; thus the sequence

 overprint('ABC');
 writeln('XYZ');''

 prints ABC and then prints XYZ on top of it.

The file-opening procedures rewrite and append and the textfile output
procedures writeln, page, overprint, and prompt leave the buffer
undefined.

Example 1

 PROGRAM prog (in,out);

 VAR
 in,out : text;
 w,x,y,z : char;

 BEGIN
 reset(in); {Open in for textfile input}

3-: 17

 rewrite(out); {Open out for textfile output}
 readln(in,x,y,z); {Read x, y, and z from in}
 write(out,x); {Write x to out}
 overprint(out); {Write buffer and line-feed suppression to out}
 writeln(out,y); {Write y to out and advance to next line}
 page(out); {Write page-eject character to out}
 writeln(out,z); {Write z to out and advance to next line}
 prompt(out,'?'); {Write '?' to out, without carriage control}
 readln(in,w); {Read user's answer to '?' from in}
 writeln(out,w); {Write user's answer to out}
 END.

When a device prints the file out, it prints the value of y over the
value of x, and it prints the values of z and w on the next page.

Table 3-7 summarizes the characteristics of the predefined textfile
functions.

Table 3-7. Characteristics of Textfile Functions

--
Function	Eoln	Linepos
--
State that file must	Read-only	Read-only	Write-only
be in			
--
Returns	True if the current	Number of characters	Number of characters
	position index is at	read from file since	written to file since
	an end-of-line	last end-of-line	last end-of-line
	marker; false	marker (excluding	marker (excluding
	otherwise.	character in buffer).	character in buffer).
		After readln , or when	After writeln , or
		current position	when current position
		index is at	index is at
		end-of-line marker,	end-of-line marker,
		this number is zero.	this number is zero.
--
Effect on buffer	If eoln returns true ,	None
	it assigns a blank	
	character to the	
	buffer	
--

Example 2

 PROGRAM prog (infile,outfile,output);

 VAR
 infile,
 outfile : text;
 i : integer;
 c : char;

 BEGIN
 reset(infile); {Open infile for input}
 rewrite(outfile); {Open outfile for output}

 WHILE not(eof(infile)) DO BEGIN {If infile is not at end-of-file}
 IF eoln(infile) THEN BEGIN {but the current line of in has ended,}
 writeln(linepos(infile)); {print the number of characters read
 from the current line of infile,}

3- 18

 readln(infile); {and advance to the next line.}
 writeln(linepos(outfile)); {Also, print the number of characters
 written to outfile,}
 writeln(outfile); {and start a new line of outfile.}
 END {IF} {If the current line of infile has not ended,}
 ELSE BEGIN
 read(in,c); {read the next character of infile,}
 write(out,c); {and write it to outfile.}
 END;
 END; {WHILE}
 END.

 The preceding program copies the textfile infile to the
 textfile outfile, writing the values of linepos(infile) and
 linepos(outfile) to the standard textfile output whenever
 eoln(infile) is true .

Except for the position function, every sequential I/O procedure and
sequential file function applies to textfiles (see "Sequential
Input/Output"). Sequential files work the same way, except that for
textfiles, read (like readln) sometimes performs implicit data
conversion, and write (like writeln) can format the output value. See
the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation, for information on implicit
data conversion and formatting output values.

Direct Input/Output

Direct input/output is input/output that is performed with direct files;
that is, files whose current position indices can be manipulated directly
by the program. Direct input and output come from read-write files
opened by the procedure open (they cannot be textfiles). Your program
can use the same direct file for input and output.

Table 3-8 summarizes the characteristics of the predefined direct I/O
procedures. (The I/O procedures in Table 3-3 also work on direct
access files.)

Table 3-8. Characteristics of Direct I/O Procedures

--
Procedure	Readdir	Writedir	Seek
--
State that	Read-write
file must be in	
--
Assigns	Specified	Specified	Not applicable
value of	component	variable	
--
To	Specified	Specified	Not applicable
	variable	component	
--
Advances current	To component following specified component	To specified
position index		component
--
After call,	No	Yes
buffer is		
undefined		
--

3-: 19

The procedures readdir, writedir, seek, read, and write have this
relationship:

This Is equivalent to this

readdir(f,i,x); seek(f,i);
 read(f,x);

writedir(f,i,x); seek(f,i);
 write(f,x);

Example 1

 PROGRAM prog;
 TYPE
 dirfile = FILE OF integer;
 VAR
 f : dirfile;
 i1,i2,i3,i4 : integer;
 BEGIN
 open(f); {Opens f for direct input/output}

 {READ TWO SPECIFIC COMPONENTS USING readdir AND read}
 readdir(f,50,i1); {Puts the current position index at component 50.
 Assigns component 50 to i1.
 Advances the current position index.
 Component 51 becomes the current component.}
 read(f,i2); {Assigns component 51 to i2.}

 {READ TWO SPECIFIC COMPONENTS USING seek AND read}
 seek(f,70); {Puts the current position index at component 70.}
 read(f,i3); {Assigns component 70 to i3.
 Advances the current position index.
 Component 71 becomes the current component.}
 read(f,i4); {Assigns component 71 to i4.}

 {WRITE TWO SPECIFIC COMPONENTS USING writedir AND write}
 writedir(f,10,i1); {Puts the current position index at component 10.
 Assigns i1 to component 10.
 Advances the current position index.
 Component 11 becomes the current component.}
 write(f,i2); {Assigns i2 to component 11.}

 {WRITE TWO SPECIFIC COMPONENTS USING seek AND write}
 seek(f,30); {Puts the current position index at component 30.}
 write(f,i3); {Assigns i3 to component 30.
 Advances the current position index.
 Component 31 becomes the current component.}
 write(f,i4); {Assigns i4 to component 31.}
 END.

All of the sequential I/O procedures work the same way on direct files;
that is, they treat them like sequential files. If you use both
sequential and direct I/O procedures on a file, the following guidelines
apply:

 * After the sequential input procedure read , any reference to the
 buffer--even an explicit assignment to the buffer such as f^ :=
 30--assigns the value of the next component to the buffer.

 * Because the components of a direct file can be written in any
 order, your program can skip components when it writes to a file
 directly. If your program reads the file sequentially later, the
 values of the skipped components are unpredictable.

 * The file-opening procedure open and the direct I/O procedures seek
 and writedir leave the buffer undefined. After calling one of
 these procedures, your program must call get, read, or readdir

3- 20

 before referencing the buffer implicitly (with a sequential I/O
 procedure) or explicitly.

Table 3-9 summarizes the characteristics of the predefined direct
file functions.

Table 3-9. Characteristics of Direct File Functions

--
Function	Lastpos	Maxpos	Eof
--
State that	Read-write
file must be	
in	
--
Returns	Position number of	Position number of	Returns true if
	highest-numbered	highest-numbered	current position
	component that you	component that you	index is after
	can read (the last	can write	lastpos; false
	component ever		otherwise
	written)		
--

All of the sequential file functions work the same way on direct files,
except for a subtle difference in the eof function (compare Table 3-5
and Table 3-9).

Example 2

 PROGRAM prog;

 TYPE
 cfile = FILE OF char;

 VAR
 f : cfile;
 c : char;

 BEGIN
 reset(f); {Opens file for sequential input.}
 WHILE not(eof(f)) DO read(f,c); {Reads until eof is true.}
 read(f,c); {ERROR -- cannot read when eof is true.
 This statement would abort the program.}

 open(f); {Opens file for direct input/output.}

 IF lastpos(f) < maxpos(f) THEN BEGIN
 seek(f,lastpos(f)+1); {Puts current position index beyond
 last component, making eof true.}

 read(f,c); {ERROR -- cannot read beyond lastpos(f).}

 write(f,c); {Writes beyond last component.
 The component written becomes the last.}
 END;
 END.

Closing Files

When your program closes a file, it breaks the association between the
logical file and the physical file; therefore, it cannot access the file
or file buffer variable. It must reopen the file before attempting to
operate on it in any other way, or it is a run-time error. One way to
close a file is with the predefined procedure close. A call to close has

3-: 21

the following syntax and parameters.

Syntax

 close (logical_file [, close_option])

Parameters

logical_file The name of the logical file to be closed.

close_option A string or PAC expression whose value is one of the
 following:

 SAVE or LOCK The file is saved permanently.

 TEMP or NORMAL The file is saved temporarily. What
 happens to the temporary file when the
 current session or job ends is
 system-dependent. For the MPE/iX operating
 system, see Appendix A ; for HP-UX, see
 Appendix B .

 CRUNCH The effect of this option on the space
 after the end-of-file marker is
 system-dependent. See Appendix A
 (MPE/iX) or Appendix B (HP-UX).

 PURGE The file is removed.

A program also closes a logical file and its associated physical file
when the program:

 * Terminates.

 * Exits the routine that declares the file, either because the
 routine ends, because it executes a goto statement that transfers
 control to a routine outside its scope, or it calls the predefined
 procedure escape because of a run-time error Chapter 11
 explains escape).

 * Reopens the file (in which case the file is closed before it is
 reopened).

Also, a program closes a file that is stored on the heap when it
deallocates the file's heap space by calling the predefined procedure
dispose or release with the appropriate parameter (see Chapter 6).

A program closes a pre-existing physical file (one that it did not
create) in the same state that it was in before the program opened it.
If a program creates a file, however, it can specify the state in which
the close procedure closes it.

Example

 PROGRAM prog;

 LABEL
 9999;

 TYPE
 ftype = FILE OF integer;

 VAR
 f1 : ftype;

 PROCEDURE p;
 VAR
 f2 : ftype;

3- 22

 BEGIN
 reset(f2); {Opens f2}
 goto 9999; {Closes f2 and f3}
 END;

 PROCEDURE q;
 VAR
 f3 : ftype;
 BEGIN
 open(f3); {Opens f3}
 p;
 {p never returns here}
 END;

 BEGIN
 rewrite(f1); {Opens f1}
 q;
 9999 : reset(f1); {Closes and reopens f1}
 close(f1); {Closes f1}
 END.

4-: 1

Chapter 4 Predefined Pascal Constants, Data
Types, and Modules
This chapter:

 * Gives the value of each predefined constant.

 * Gives the range of each predefined data type.

 * Explains in detail the predefined data types bit16 , bit32 , bit52 ,
longint , and shortint , which are unique to HP Pascal.

 * Explains each predefined module.

Values of Predefined Constants

HP Pascal's two predefined constants and their values are:

Constant Value

minint -2147483648

maxint 2147483647

When you wish to use the minimum integer, you must use the predefined
constant minint and not the actual value.

Ranges of Predefined Data Types

Table 4-1 gives the range and size of each predefined data type
available to HP Pascal. The data types are in alphabetical order and the
sizes are in bits. To get a size in bytes, divide the number of bits by
eight.

Table 4-1. Ranges and Sizes of Predefined HP Pascal Types

--
Type	Range	Unpacked
		Size in Bits
--
Bit16	0..65535	16
--
Bit32	0..232-1	32
--
Bit52	0..252-1	64
--
Boolean	FALSE or TRUE, where FALSE=0 and TRUE=1	8
--
Char	ASCII character set	8
--
Integer	-231..231-1	32
--
| | | |
| Longreal * | -1.797693134862315*10308..-4.940656458412466*10-324, | 64 |

4: 2

	0,	
	4.940656458412466*10-324..1.797693134862315*10308	
--
Real *	-3.402823*1038..-1.401298*10-45,	32
	0,	
	1.401298*10-45..3.402823*1038	
--
Shortint	-32768..32767	16
--
Longint	-263..263-1	64
--

* The range of values for longreal and real include denormalized
numbers.

NOTE HP and IEEE floating point numbers are identical. HP3000_16
 floating point numbers are different from HP and IEEE floating
 point numbers. For details, refer to the Introduction to MPE XL

for MPE V Programmers .

Bit16

The predefined data type bit16 is a subrange, 0..65535, that is stored in
16 bits. bit16 is a unique HP Pascal type because arithmetic operations
on bit16 data are truncated to modulo 65535 when stored.

To determine if a type T is assignment compatible with bit16 , treat bit16
as a subrange of integer:

 * If variable v is of type T and variable b16 is of type bit16 , then
 the assignment b16 := v is legal if the value of v is within the
 range 0..65535.

 * If the ranges of T and bit16 do not overlap, the assignment b16 :=
 v causes a compile-time error.

 * If the ranges of T and bit16 do overlap, but the value of v is
 outside the range of bit16 , then the assignment b16 := v causes a
 run-time error.

Example

 PROGRAM prog;

 TYPE
 T1 = integer; {overlaps bit16 range }
 T2 = -32768..-1; {does not overlap bit16 range}
 T3 = 0..65535; {overlaps bit16 range }

 VAR
 v1 : T1; {b16:=v1 may be legal, depending on value of v1}
 v2 : T2; {b16:=v2 is never legal}
 v3 : T3; {b16:=v3 is always legal}
 b16 : bit16;

 BEGIN {prog}
 v1 := 65535;

4-: 3

 b16 := v1; {legal}
 b16 := b16 + 5; {legal; now b16 = (65540 MOD 65535) = 4}
 b16 := b16 - 5; {legal; now b16 = 65535}

 v3 := 65535;
 v3 := v3 + 4; {causes run-time error}
 v3 := 4;
 v3 := v3 - 5; {causes run-time error}

 v1 := -20;
 b16 := v1; {causes run-time error}

 v2 := -30;
 b16 := v2; {causes compile-time error}
 END. {prog}

Bit32

The predefined data type bit32 is a subrange, 0..232-1, that is stored in
32 bits. bit32 is a unique HP Pascal type because arithmetic operations
on bit32 data are performed as unsigned 32-bit integers. Unsigned
addition and subtraction do not overflow. Unsigned multiply can overflow
unless the compiler option OVFLCHECK is used.

Note that there are no bit32 constants in the compiler. Therefore,
numbers in the range maxint + 1..232 -1 can not be expressed directly.
The function hex can be used with the compiler options TYPE_COERCION and
RANGE to provide bit32 constants. The compiler option TYPE_COERCION is
also needed when initializing a bit32 constant field. In this case,
bit32() is not used. When bit32 is used in an executable statement,
RANGE OFF must be used.

To determine if a type T is assignment compatible with bit32 :

 * If variable v is of type T and variable b32 is of type bit32, then
 the assignment b32 := v is legal if the value of v is within the
 range 0..232-1.

 * If the ranges of T and bit32 do not overlap, the assignment b32 :=
 v causes a compile-time error.

 * If the ranges of T and bit32 do overlap, but the value of v is
 outside the range of bit32, then the assignment b32 := v causes a
 run-time error.

Example

 $standard_level 'hp_modcal'$
 program prog_bit32(output);

 var i : integer;
 b : bit32;

 type rec = record
 f1 : bit32;
 end;
 $push; type_coercion 'conversion'$
 const v_rec = rec[f1: hex('ffffffff')]; { bit32 constant field }
 pop
 begin
 b := hex('ffffffff'); { compile-time error }
 i := -1;

 try
 b := i; { run-time error }
 recover ;

 $push; type_coercion 'conversion'; range off$

4: 4

 b := bit32(i) + 1; { zero is stored }

 b := bit32(hex('ffffffff'));
 pop

 try
 i := b; { run-time error }
 recover ;

 try
 i := b + i; { b and i are converted to longint and are }
 { too big to fit back into i }
 recover ;

 i := hex('ffffffff'); { both b and i now have all bits on }

 { the following never prints since i is sign extended to longint and
 b is zero extended to longint }
 if i = b then writeln('equal');
 end.

Bit52

The predefined data type bit52 is a subrange, 0..252-1, that is stored in
64 bits. bit52 is a unique HP Pascal type because arithmetic operations
on bit52 data are performed as unsigned 64-bit integers. Unsigned
addition and subtraction do not overflow.[REV BEG] Unsigned multiply may
overflow. The compiler option OVFLCHECK has no effect.

Note that there are no bit52 constants in the compiler. Therefore,
numbers in the range maxint + 1..252 -1 can not be expressed directly.
The function hex can be used with the compiler options TYPE_COERCION and
RANGE to fill part of this range.[REV END] The compiler option
TYPE_COERCION is also needed when initializing a bit52 constant field.
In this case, bit52() is not used. When bit52 is used in an executable
statement, RANGE OFF must be used.

For number in the range of 232..252-1, a run-time computation must be
done. If the numbers are all constants, they must be type coerced to
bit52 so they do not integer overflow.

Variant records can also be used to build up these large constants.

To determine if a type T is assignment compatible with bit52 .

 * If variable v is of type T and variable b52 is of type bit52 , then
 the assignment b52 := v is legal if the value of v is within the
 range 0..252-1.

 * If the ranges of T and bit52 do not overlap, the assignment b52 :=
 v causes a compile-time error.

 * If the ranges of T and bit52 do overlap, but the value of v is
 outside the range of bit52 , then the assignment b52 := v causes a
 run-time error.

Example

 $standard_level 'hp_modcal'$
 program prog_bit52(output);

 var i : integer;
 b : bit52;

 type rec = record
 f1 : bit52;
 end;
 $push; type_coercion 'conversion'$

4-: 5

 const v_rec = rec[f1: hex('ffffffff')]; { bit52 constant field }
 pop
 begin
 b := hex('ffffffff'); { compile-time error }
 i := -1;

 try
 b := i; { run-time error }
 recover ;

(Example is continued on next page.)

 $push; type_coercion 'conversion'; range off$
 b := bit52(i) + 1; { zero is stored }

 b := bit52(hex('ffffffff'));
 pop

 try
 i := b; { run-time error }
 recover ;

 try
 i := b + i; { b and i are converted to longint and are }
 { too big to fit back into i }
 recover ;

 i := hex('ffffffff'); { both b and i now have all bits on }

 { the following never prints since i is sign extended to longint and
 b is zero extended to longint }
 $push; type_coercion 'conversion'$
 if longint(i) = b then writeln('equal');
 pop
 end.

Shortint

The predefined data type shortint is an integer in the range
-32768..32767 that is stored in 16 bits. (In contrast, if you declare a
variable to be in that range, it is stored in 32 bits.) The type
shortint has the following uses:

 * If you want to access an external non-Pascal routine that has a
 formal parameter of a type whose range is -32768..32767, and uses
 16-bits of storage, you can declare a corresponding formal Pascal
 parameter of type shortint , and it will be compatible.

 * For Pascal/V compatibility.

To determine whether a type T is assignment compatible with the type
shortint , you can treat shortint as a subrange of integer . This means
that you can assign a variable v of type T to a variable sv of type
shortint if:

 * The type T is integer or a subrange of integer .

 * The value of v is within the range of shortint (-32768..32767).

 If the ranges of T and shortint do not overlap, the assignment
 sv:=v causes a compile-time error. If the ranges of T and

shortint do overlap, but the value of v is outside the range of
shortint the assignment sv:=v causes a run-time error.

4: 6

Example

 PROGRAM prog;

 TYPE
 T1 = integer; {overlaps shortint range}
 T2 = -10..40000; {overlaps shortint range}
 T3 = 40000..50000; {does not overlap shortint range}

 VAR
 v1 : T1; {sv:=v1 may be legal, depending on value of v1}
 v2 : T2; {sv:=v2 may be legal, depending on value of v2}
 v3 : T3; {sv:=v3 is never legal}
 sv : shortint;

 BEGIN
 v1 := 10;
 sv := v1; {legal assignment}

 v1 := 45000;
 sv := v1; {causes run-time error}

 v2 := 400;
 sv := v2; {legal assignment}

 v2 := 35000;
 sv := v2; {causes run-time error}

 v3 := 40000;
 sv := v3; {causes compile-time error}
 END.

Longint

The predefined data type longint is an integer in the range -263..263-1
that is stored in 64 bits. The compiler option OVFLCHECK has no effect
on 64 bit multiply.

Note that there are no longint constants in the compiler. Therefore,
numbers outside of the range minint .. maxint can not be expressed
directly. The compiler option TYPE_COERCION must be used with a run-time
computation. If the numbers are constants, they must be typed coerced to
longint so they do not integer overflow.

Example

 $standard_level 'hp_modcal'$
 program prog_longint(output);

 var i : integer;
 b : longint;

 type rec = record
 case integer of
 0:(l : longint);
 1:(f1,f2: integer);
 end;
 const v_rec = rec[f1: hex('1'),
 f2: hex('ffffffff')]; { longint constant field }
 begin
 b := v_rec.l;
 writeln(b);

 try
 i := b; { run-time error }
 recover ;

 $push; type_coercion 'conversion'$

4-: 7

 b := longint(1000000) * 1000000;
 pop

 writeln(b);
 end.

Output:

 8589934591
 1000000000000

Predefined Modules

On both the MPE/iX and HP-UX operating systems, HP Pascal has these
predefined modules:

 * stdinput

 * stdoutput

On the HP-UX operating system only, HP Pascal has these additional
predefined modules:

 * stderr

 * arg

 * pas_hp1000

In its import declaration section, your program can import any or all of
the predefined modules supported by the operating system on which it
runs.

This section shows the actual declarations in the predefined modules for
your information only. Do not include these declarations in your
program. Instead, import the predefined modules as shown on the
following page.

stdinput

The stdinput module contains the declaration for the predefined global
variable (standard textfile) input . It allows an independent module
(which has no program header) to use input . Importing the stdinput
module into an independent module is the same as declaring input in the
program header of a program.

The content of the predefined module stdinput is:

 VAR
 input : text;

stdoutput

The stdoutput module contains the declaration for the predefined global
variable (standard textfile) output . It allows an independent module
(which has no program header) to use output . Importing the stdoutput
module into an independent module is the same as declaring output in the
program header of a program.

The content of the predefined module stdoutput is:

 VAR
 output : text;

stderr

The stdrrr module contains the declaration for the predefined global
variable (standard textfile) stderr . It allows an independent module

4: 8

(which has no program header) to use stderr . Importing the stderr module
into an independent module is the same as declaring stderr in the program
header of a program.

The content of the predefined module stderr is:

 VAR
 stderr : text;

The predefined module stderr is only available on the HP-UX operating
system.

The main use of stdinput, stdoutput, and stderr is to allow a module to
perform a read or write operation to either standard input files,
standard output files, or, on HP-UX, standard error files. The module
must import the corresponding stdinput, stdoutput, or stderror modules,
and the program must have input, output, or stderr in the program header.
A main program does not need to import these standard modules, but the
corresponding program parameter must be present in the program header.

The following example shows a program importing a module that imports
stdinput, stdoutput, and, on HP-UX, stderr.

 MODULE A;
 EXPORT
 Procedure getnum (var n:integer);
 IMPLEMENT
 IMPORT
 stdinput, stdoutput, stderr;
 Procedure getnum (var n: integer);
 BEGIN
 Writeln ('Enter a positive number') {Writes to output.}
 Readln (n); {Reads from input.}
 IF n < 0 THEN
 Writeln (stderr, 'Incorrect input') {Writes to stderr.}
 END;
 END.

The program below shows how module A is imported. It is compiled into
file A.o. The program parameters input, output, and stderr must be
present since module A imports them. arg and pas_hp1000 do not need to
be present if they are imported.

 Program Test (input, output, stderr);
 $search 'A.o'$ { search A.o for module A }
 IMPORT A:
 VAR
 m : integer;
 BEGIN
 getnum(m);
 .
 .
 .
 END.

arg

The arg module contains routines that access HP-UX command line
arguments. (It also contains the types that these routines use, but only
the routines are presented here.)

The routines in the predefined module arg are:

Routine Effect and Declaration

argc Returns the total number of arguments to the program (the
 name of the program is considered to be the first
 argument).

4-: 9

Declaration:

 FUNCTION argc : integer;

argv Returns a pointer to an array of pointers to the actual
 arguments.

Declaration:

 FUNCTION argv : argarrayptr;

argn A specific argument, in the form of a Pascal string.

Declaration:

 FUNCTION argn (argnum : integer) : String1024;

The predefined module arg is only available on the HP-UX operating
system.

pas_hp1000

The pas_hp1000 module contains routines that help you migrate Pascal/1000
programs to HP Pascal/HP-UX on the HP 9000 Series 700 or 800 machine.
They emulate user-callable routines in the Pascal/1000 run-time library.

The routines in the predefined module pas_hp1000 are:

Routine Effect and Declaration

pas_init_hp1000_args Only for programs running under the RTE shell on the
 HP 9000 Series 700 or 800. Using command line
 arguments, it sets up an HP-UX-like argument array
 for use in argument-accessing routines.

Declaration:

 PROCEDURE pas_init_hp1000_args;

pas_parameters Returns a specific argument to the program as a
 Pascal PACKED ARRAY OF CHAR.

Declaration:

 FUNCTION pas_parameters
 (position : shortint;
 ANYVAR Parameter : Pas_PAC80; {any PAC}
 maxlen : shortint
) : shortint;

pas_sparameters Returns a specific argument to the program as a
 Pascal string.

Declaration:

 FUNCTION pas_sparameters
 (position : shortint;
 VAR Parameter : String; {Any string}
) : shortint;

pas_numericparms Interprets the arguments to the program as an array
 of numeric strings and returns an array of numbers
 corresponding to these strings.

Declaration:

 PROCEDURE pas_numericparms
 (ANYVAR ParmArray : Pas_ParmArray);

4: 10

pas_getnewparms Only for programs running under the RTE shell on the
 HP 9000 Series 700 or 800. Reinitializes the
 argument data structures when the program has been
 rescheduled after being suspended.

Declaration:

 PROCEDURE pas_getnewparms;

pas_filenamr Returns the name of the physical file associated
 with the specified logical file.

Declaration:

 FUNCTION pas_filenamr
 (ANYVAR f : text) : pas_nametype;

pas_timestring Returns the time of day as a 26-character PACKED
 ARRAY OF CHAR.

Declaration:

 PROCEDURE pas_timestring
 (ANYVAR f : pas_timestringtype);

pas_traceback Produces a stack trace of the program and writes it
 to stderr.

Declaration:

 PROCEDURE pas_traceback
 (dummy : shortint); {parameter is ignored}

pas_stringdata1 Return pointers to the data portion of a string.
pas_stringdata2 Functionally identical; provided as different entry
 points for consistency with Pascal/1000 names.

Declarations:

 FUNCTION pas_stringdata1
 (VAR s : String) : localanyptr;

 FUNCTION pas_stringdata2
 (VAR s : String) : localanyptr;

The predefined module pas_hp1000 is only available on the HP-UX operating
system.

5-: 1

Chapter 5 Allocation and Alignment
This chapter:

 * Defines allocation, alignment, and packing algorithm .

 * Shows how unpacked and packed variables are allocated and aligned.

 * Tells how entire arrays and records are allocated and aligned
 (whether they are unpacked, packed, or crunched).

 * Shows how array elements and record fields are allocated and
 aligned when they are unpacked, packed, and crunched.

 * Explains how enumeration and subrange types are related and shows
 how they are allocated and aligned.

 * Explains how files, sets, and strings are allocated and aligned.

NOTE This chapter applies to the HP Pascal packing algorithm, which is
 the default. On the MPE/iX operating system, the compiler option
 HP3000_16 specifies the Pascal/V packing algorithm instead. For
 information on the HP3000_16 compiler option, refer to the HP

Pascal/iX Reference Manual . For information on the Pascal/V
 packing algorithm, see Appendix A in this manual.

In diagrams in this section, bold lines are byte boundaries and fine
lines are bit boundaries. Unused bits and bytes are shaded.

Example

Note that:

 * Zero represents the Boolean value FALSE, and one represents TRUE.

 * The leftmost bit represents the sign of a signed integer value.

Byte boundaries are broken where a variable crosses them. Bit boundaries
are omitted where a variable crosses them. A space that is allocated to

5-: 2

a variable contains the variable's name. If the name does not fit the
space, it is printed outside, with an arrow pointing to the space.

Example

The variables a and b occupy one bit each, c occupies six bits, d and e
occupy two bytes each, f occupies three bytes, and g occupies eight
bytes.

Allocation, Alignment, and Packing Algorithm

Allocation is the assignment of memory to variables. When the compiler
assigns one byte of memory to the variable x, you can say that both the
byte and x are allocated (the byte is allocated to x, and x is allocated
one byte of memory).

Alignment refers to the position at which a variable's share of memory
begins. There are several types of alignment.

 * Bit-aligned: If the byte that the compiler allocates to x can
 begin on a bit boundary.

 * 1-byte-aligned: If the byte that the compiler allocates must
 begin on a byte boundary.

 * 2-byte-aligned: If the byte that the compiler allocates must
 begin on a 2-byte boundary.

 * 4-byte-aligned: If the byte that the compiler allocates must
 begin on a 4-byte boundary.

 * 8-byte-aligned: If the byte that the compiler allocates must
 begin on a 8-byte boundary.

For the list of possible alignments, refer to "ALIGNMENT" in the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

Example

The variables c and d are allocated one byte each, but c is bit-aligned
and d is byte aligned.

5-: 3

A packing algorithm determines a variable's allocation and alignment, and
the allocation and alignment of its elements or fields, if it has them.
The HP Pascal packing algorithm uses the following factors to allocate
and align a particular variable:

 * Variable type.

 * Whether the variable (if it is an array, record, or set) is
 unpacked, packed, or crunched.

When the compiler options TABLES or MAPINFO are ON, the program listing
contains packing information. Refer to the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation, for more information on compiler options.

Unpacked Variables

An unpacked variable is either not part of an array or record, or it is
part of an unpacked array or record.

Table 5-1 shows how the HP Pascal packing algorithm allocates and
aligns unpacked variables of each HP Pascal type. The variable types are
in alphabetical order. Sections that Table 5-1 references are in
this chapter.

Table 5-1. Allocation and Alignment of Unpacked Variables
(HP Pascal Packing Algorithm)

Variable Type	Allocation	Alignment

Anyptr	8 bytes	4-byte

Array	See "Arrays"

Bit16	2 bytes	2-byte

Bit32	4 bytes	4-byte

Bit52	8 bytes	4-byte

Boolean	1 byte	Byte

Char	1 byte	Byte

Enumeration	See "Enumerations and Subranges"

File	See "Files"	8-byte

5-: 4

Function	8 bytes	4-byte

Globalanyptr	8 bytes	4-byte

Integer	4 bytes	4-byte

Localanyptr	4 bytes	4-byte

Longint	8 bytes	4-byte

Longreal	8 bytes	8-byte

Pointer	4 bytes	4-byte

Procedure	8 bytes	4-byte

Real	4 bytes	4-byte

Record	See "Records"

Set	See "Sets"

Shortint	2 bytes	2-byte

String	See "Strings"	4-byte

Subrange	See "Enumerations and Subranges"

Packed Variables

A packed variable is the element of a packed array or the field of a
packed record.

Table 5-2 shows how the HP Pascal packing algorithm allocates and
aligns packed variables of each HP Pascal type. The variable types are
in alphabetical order. The sections that Table 5-2 references are in
this chapter.

5-: 5

Table 5-2. Allocation and Alignment of Packed Variables
(HP Pascal Packing Algorithm)

Variable Type	Allocation	Alignment

Anyptr	8 bytes	4-byte

Array	See "Arrays" for information on entire array
	and "Packed Arrays" for information on
	elements.

Bit16	2 bytes	2-byte

Bit32	4 bytes	4-byte

Bit52	8 bytes	4-byte

Boolean	1 bit	Bit

Char	1 byte	Byte in array, bit in
		record

Enumeration	See "Enumerations and Subranges"

File	See "Files"	8-byte

Function	8 bytes	4-byte

Globalanyptr	8 bytes	4-byte

Integer	4 bytes	4-byte

Localanyptr	4 bytes	4-byte

Longint	8 bytes	4-byte

| | | |
| Longreal | 8 bytes | 8-byte |

5-: 6

| | | |

Pointer	4 bytes	4-byte

Procedure	8 bytes	4-byte

Real	4 bytes	4-byte

Table 5-2. Allocation and Alignment of Packed Variables
(HP Pascal Packing Algorithm) (cont.)

Variable Type	Allocation	Alignment

Record	See "Records" for information on entire record
	and "Packed Records" for information on fields.

Set	See "Sets"

Shortint	2 bytes	2-byte

String	See "Strings"	4-byte

Subrange	See "Enumerations and Subranges" .

Arrays

Arrays are stored in row-major order . This means that an array is stored
a row at a time, rather than a column at a time (column-major order).

Example

 VAR
 a : ARRAY [1..2,1..3] OF char;

Row-major order:

5-: 7

Column-major order:

The HP Pascal packing algorithm uses this formula to allocate an array:

number_of_elements * space_for_one_element

The space_for_one_element depends upon the array element type and whether
the array is unpacked, packed, or crunched. The same factors determine
element alignment. See the tables indicated below:

If the array is: See: In the section:

Unpacked Table 5-1 "Unpacked Variables"

Packed Table 5-3 "Packed Arrays"

Crunched Table 5-5 "Crunched Arrays and
 Records"

Records

A record allocation is the sum of the allocations of the fields in the
fixed part and (if the record has them) the allocations of the tag field
and the largest field in the variant part, plus trailing bits.

Field allocation depends on field type and whether the record is
unpacked, packed, or crunched. The same factors determine field
alignment. See the tables indicated below:

If the array is: See: In the section:

Unpacked Table 5-1 "Unpacked Variables"

Packed Table 5-4 "Packed Records"

Crunched Table 5-5 "Crunched Arrays and
 Records"

The HP Pascal packing algorithm uses these two rules to align a record:

 * The entire record is aligned on the same boundary as its most
 restricted field.

 * The variant part of a record is aligned on the same boundary as
 the most restricted first field of all variants.

Example

 TYPE
 Rec = RECORD
 CASE b : Boolean OF
 TRUE : (c : char; {1 byte, 1-byte-aligned}
 l : longreal; {8 bytes, 8-byte-aligned}
);
 FALSE : (i : integer; {4 bytes, 4-byte-aligned}
);
 END;

5-: 8

A record of the type Rec is 8-byte-aligned because its most restricted
field, l, must be 8-byte-aligned.

The variant part of a record of type Rec is 4-byte-aligned, because
the most restricted first field of the two variants, i, must be
4-byte-aligned.

A variable of type Rec is allocated 16 bytes. The TRUE and FALSE
variants are aligned like this:

TRUE Variant

FALSE Variant

Sometimes you can reduce the space that a record takes by declaring its
fields in different order.

Example

 VAR
 upr1 : RECORD
 bf : Boolean;
 pf : 0..32767;
 cf : char;
 END;

 upr2 : RECORD
 bf : Boolean;
 cf : char;
 pf : 0..32767;
 END;

The only difference between the variables upr1 and upr2 is the order of
their fields.

5-: 9

The variable upr1 takes six bytes:

Because pf must be 2-byte-aligned, it cannot start in the second byte.
The extra byte after cf is allocated because the most restricted element,
pf, is 2-byte-aligned.

The variable upr2 takes four bytes:

Sometimes you cannot reduce the space that a record takes by declaring
its fields in different order.

Example

 VAR
 pr1 : PACKED RECORD
 srf : 0..32;
 b : Boolean;
 pf : 0..32767;
 cf : char;
 END;

 pr2 : PACKED RECORD
 srf : 0..32;
 b : Boolean;
 cf : char;
 pf : 0..32767;
 END;

The only difference between the variables pr1 and pr2 is the order of
their fields.

The variable pr1 takes four bytes:

The variable pr2 also takes four bytes:

5-: 10

Packed Arrays

Table 5-3 shows how the HP Pascal packing algorithm allocates and
aligns the elements of a packed array. The element types are in
alphabetical order.

Table 5-3. Allocation and Alignment of Packed Array Elements
(HP Pascal Packing Algorithm)

Element Type	Allocation	Alignment

Anyptr	8 bytes	4-bytes

Array, crunched	Same as crunched array that is not part of an array	Byte
	or record (see Table 5-9); then padded to the	
	nearest byte.	

Array, packed	Same as packed array that is not part of an array	Same as element,
	or record (find element type in this table and use	or byte,
	formula in section "Arrays"); then padded to	whichever is
	alignment boundary.	larger.

Array, unpacked	Same as unpacked array that is not part of an array	Same as element.
	or record (find element type in this table and use	
	formula in section "Arrays").	

Bit16	2 bytes	2-byte

Bit32	4 bytes	4-byte

Bit52	8 bytes	4-byte

Boolean	1 bit	1 bit

Char	1 byte	1-byte

Enumeration	See "Enumerations and Subranges" .	

File	See "Files".	8-byte

Function	8 bytes	4-byte

Integer	4 bytes	4-byte

Globalanyptr	8 bytes	4-byte

5-: 11

Localanyptr	4 bytes	4-byte

Longint	8 bytes	4-byte

Longreal	8 bytes	8-byte

Pointer	4 bytes	4-byte

Procedure	8 bytes	4-byte

Real	4 bytes	4-byte

Record, crunched	Fields are allocated by type, and record is padded	Byte
	to byte boundary.	

Table 5-3. Allocation and Alignment of Packed Array Elements
(HP Pascal Packing Algorithm) (cont.)

Element Type	Allocation	Alignment

Record, packed	Fields are allocated by type, and record is padded	Largest alignment
	to the alignment boundary.	boundary of any
		field, or byte,
		whichever is
		larger.

Record, unpacked	Fields are allocated by type, and record is padded	Largest alignment
	to the alignment boundary.	boundary of any
		field.

Set	See "Sets" .

Shortint	2 bytes	2-byte

Strings	See "Strings" .	4-byte

Subrange	See "Enumerations and Subranges" .

Example

 VAR
 uba : ARRAY [1..3] OF Boolean;
 pba : PACKED ARRAY [1..3] OF Boolean;

5-: 12

The array uba takes three bytes:

The array pba takes three bits:

If an array is not within a crunched structure, the compiler aligns the
entire array on the same boundary as its first element, or on a byte
boundary.

Declaring an array PACKED has no effect on its elements if the elements
are unpacked structures.

Packed Records

Table 5-4 shows how the HP Pascal packing algorithm allocates and
aligns the fields of a packed record. The field types are in
alphabetical order.

Table 5-4. Allocation and Alignment of Packed Record Fields
(HP Pascal Packing Algorithm)

Field Type	Allocation	Field Alignment

Anyptr	8 bytes	4-byte

Array, crunched	Minimum number of bits required to represent any	Bit
	value of the element type.	

Array, packed	Use formula in "Arrays" section and then pad to	Same as element
	alignment boundary.	or byte,
		whichever is
		larger.

Array, unpacked	Use formula in "Arrays" section and then pad to	Same as element.
	alignment boundary.	

5-: 13

Bit16	2 bytes	Bit

Bit32	4 bytes	4-byte

Bit52	8 bytes	4-byte

Boolean	1 bit	Bit

Char	1 byte	Bit

Enumeration	See "Enumerations and Subranges" .

File	See "Files" .	8-byte

Function	8 bytes	4-byte

Integer	4 bytes	4-byte

Globalanyptr	8 bytes	4-byte

Localanyptr	4 bytes	4-byte

Longint	8 bytes	4-byte

Longreal	8 bytes	8-byte

Pointer	4 bytes	4-byte

Procedure	8 bytes	4-byte

Real	4 bytes	4-byte

5-: 14

Table 5-4. Allocation and Alignment of Packed Record Fields
(HP Pascal Packing Algorithm) (cont.)

Field Type	Allocation	Field Alignment

Record, packed	Fields are allocated by type, and record is padded	Largest alignment
	to the alignment boundary.	of any field or
		byte, whichever
		is larger.

Record, unpacked	Fields are allocated by type, and record is padded	Largest alignment
	to the alignment boundary.	of any field.

Set	See "Sets" .

Shortint	2 bytes	2-byte

Strings	See "Strings" .	4-byte

Subrange	See "Enumerations and Subranges" .

The field that is aligned on the largest boundary determines the
alignment of the entire record. For example, if a record has three
fields--one byte-aligned field, one 2-byte-aligned field, and one
4-byte-aligned field--the entire record is 4-byte-aligned.

Packing a record has no effect on fields that are unpacked structures.

Example

 TYPE
 ua = ARRAY [1..4] OF Boolean;
 ur1 = RECORD
 i : integer;
 c : char;
 END;
 VAR
 ur2 : RECORD
 c : char;
 a : ua;
 r : ur1;
 END;
 pr : PACKED RECORD
 c : char;
 a : ua;
 r : ur1;
 END;

The fields in ur2 and pr are allocated and aligned identically.

Crunched Arrays and Records

Crunched packing, a systems programming extension, packs a record or
array as tightly as possible: it bit-aligns every field or element.

Table 5-5 shows how the HP Pascal packing algorithm allocates

5-: 15

elements of crunched arrays or fields of crunched records. If a type is
not in Table 5-5 , a crunched array or record cannot have elements or
fields of that type.

Table 5-5. Allocation of Crunched Array Elements
and Record Fields
(HP Pascal Packing Algorithm)

Element or Field Type	Allocation

Bit16	2 bytes

Bit32	4 bytes

Bit52	52 bits

Boolean	1 bit

Char	1 byte

Integer1	4 bytes

Longint	8 bytes

Shortint	2 bytes

Crunched array2	* Minimum #

Crunched record2	* Minimum #

Crunched set1	* Minimum #

Subrange1,3	* Minimum #

 (* Minimum number of bits required to represent value.)

 1. The value representation has the most significant bit first and
 the least significant bit last (no byte swapping).

 2. If a record or array contains a crunched structure, it must be
 crunched itself.

5-: 16

 3. The value zero is always included in the subrange when calculating
 the minimum number of bits; for example, this record takes seven
 bits:

 CRUNCHED RECORD
 f : 100..101;
 END;

 If any element can be negative, an extra bit is allocated for the
 sign; for example, this record takes three bits:
 [REV BEG]

 CRUNCHED RECORD
 f : -4..3;
 END;
 [REV END]

Example

A record that is defined:

 TYPE
 u_rec = RECORD {4-byte aligned}
 a,b : Boolean;
 c : char;
 d : minint..maxint;
 e : Boolean;
 END;

is allocated and aligned this way:

A record that is defined:

 TYPE
 p_rec1 = PACKED RECORD {Byte-aligned}
 a,b : Boolean;
 c : char;
 d : minint..maxint;
 e : Boolean;
 END;

 is allocated and aligned this way:

.

5-: 17

A record that is defined:

 p_rec2 = PACKED RECORD {4-byte-aligned}
 a,b : Boolean;
 c : char;
 d : integer;
 e : Boolean;
 END;

is allocated and aligned this way:

A record that is defined:

 TYPE
 c_rec1 = CRUNCHED RECORD
 a,b : Boolean;
 c : char;
 d : minint..maxint;
 e : Boolean
 END;

Or:

 TYPE
 c_rec2 = CRUNCHED RECORD
 a,b : Boolean;
 c : char;
 d : integer;
 e : Boolean
 END;

is allocated and aligned this way:

The bits containing question marks are not allocated if the type is used
inside another crunched structure.

Crunched Sets

Table 5-6 shows how the HP Pascal packing algorithm allocates and
aligns a crunched set when it is the element of an array or the field of
a record.

5-: 18

Table 5-6. Allocation and Alignment of Crunched Sets in Arrays and Records
(HP Pascal Packing Algorithm)

Structure Containing Set	Allocation	Alignment

Unpacked array	* Minimum #	Byte

Unpacked record	* Minimum #	Byte

Packed array	* Minimum #	Byte

Packed record	* Minimum #	Bit

* Minimum number of bits required to represent every member of the set.

Enumerations and Subranges

HP Pascal allocates and aligns variables of enumeration and subrange
types the same way. An enumeration of n elements and the subrange 0.. n -1
are equivalent. The allocation and alignment are based on the values of
the subrange or the ordinal value of the enumeration.

Example

 TYPE
 enum_type = (red,blue,yellow); {enumeration of 3 elements}
 subr_type = 0..2; {subrange 0..(3-1)}

 VAR
 enum_var : enum_type;
 subr_var : subr_type;

The compiler allocates and aligns the variables enum_var and subr_var the
same way.

The allocation and alignment of an enumeration or subrange variable
depends on whether it is:

 * Unpacked.
 * An element of a packed array.
 * A field of a packed record.
 * In a crunched structure.

Unpacked Enumeration or Unsigned Subranges

Table 5-7 shows how the HP Pascal packing algorithm allocates and
aligns unpacked enumeration or unsigned subrange variables.

5-: 19

Table 5-7. Allocation and Alignment of Unpacked Enumeration or Unsigned Subrange
Variables (HP Pascal Packing Algorithm)

Values in Enumeration or Subrange		
	Allocation	Alignment

0..255	1 byte	byte

256..65535	2 bytes	2-byte

65536..maxint	4 bytes	4-byte

An unpacked, signed subrange is always allocated four bytes.

Example

The value zero is always included in the subrange when the minimum number
of bits is calculated.

 TYPE
 enum_type = (red,blue,yellow); {3 elements}
 subr_type1 = 1..300; {Including zero, 2 bytes}
 subr_type2 = 1..66000; {Including zero, 4 bytes}
 subr_type3 = 100000..100010; {Including zero, 4 bytes}
 subr_type4 = -1..200; {4 bytes}

 VAR
 enum_var : enum_type; {Allocated 1 byte, byte-aligned}
 subr_var1 : subr_type1; {Allocated 2 bytes, 2-byte-aligned}
 subr_var2 : subr_type2; {Allocated 4 bytes, 4-byte-aligned}
 subr_var4 : subr_type4; {Allocated 4 bytes, 4-byte-aligned}

 unpacked_array : ARRAY [1..3] OF enum_type; {Each element is
 allocated one byte
 and is byte-aligned}

 unpacked_record : RECORD
 f1 : subr_type1; {Allocated 2 bytes,
 2-byte-aligned}
 f2 : subr_type2; {Allocated 4 bytes,
 4-byte-aligned}
 END;

Packed Array Elements of Enumeration or Subrange Types

A packed enumeration or subrange variable requires the minimum number of
bits needed to represent its values in a record. It is bit-aligned.

If the enumeration or subrange variable belongs to a packed array, the HP
Pascal packing algorithm allocates it the smallest power of two bits that
is greater than or equal to the number of bits it requires, and aligns it
on that boundary.

Table 5-8 shows the relationship between the number of bits that a
packed array element of an enumeration- or subrange-type array requires,
the number of bits that the HP Pascal packing algorithm allocates to it,
and its alignment.

5-: 20

Table 5-8. Allocation and Alignment of Packed Array Elements of Enumeration or Subrange
Type (HP Pascal Packing Algorithm)

Required Number of	Number of Bits	Alignment
Bits Per Element	Allocated Per Element	

1	1	Bit

2	2	2-bit

3 or 4	4	4-bit

5 to 8	8 (1 byte)	Byte

9 to 16	16 (2 bytes)	2-byte

17 to 32	32 (4 bytes)	4-byte

Example

 TYPE
 direction = (north,south,east,west);
 day = (sun,mon,tues,wed,thurs,fri,sat);

 VAR
 pa1 = PACKED ARRAY [1..5] OF direction;
 pa2 = PACKED ARRAY [1..5] OF day;

Each element of the array pa1 requires two bits. Two is a power of two,
so each element is allocated two bits. The entire array occupies 10
bits. It is allocated two bytes:

Each element of the array pa2 requires three bits. The smallest power of
two that is greater than or equal to three is four, so each element is
allocated four bits. The entire array occupies 20 bits. It is allocated
three bytes:

5-: 21

Packed Record Elements of Enumeration or Subrange Types

If the variable belongs to a packed record, the HP Pascal packing
algorithm allocates it as many bits as it requires, and bit-aligns it.

Example

 TYPE
 day = (sun,mon,tues,wed,thurs,fri,sat);

 VAR
 r : PACKED RECORD
 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11 : day;
 END;

Each field of the record r requires three bits. The entire record
occupies 33 bits. It is allocated five bytes:

NOTE Subranges can cross 4-byte boundaries, but code is less efficient
 when they do.

 Packed records (such as those above) are byte-aligned. Code is
 more efficient when their alignment is specified with the ALIGNMENT
 compiler option.

Files

When your program declares a file, the compiler allocates space for the
file control block and the file buffer variable. The amount of space
allocated to each is fixed by the packing algorithm. The file is
8-byte-aligned.

Table 5-9 shows how the HP Pascal packing algorithm allocates file
components for textfiles and nontextfiles.

5-: 22

Table 5-9. Allocation of File Components
(HP Pascal Packing Algorithm)

File Component	Textfile	Nontextfile

Control block	324 bytes	320 bytes

Buffer variable	254 bytes	Size of component type

Sometimes you can reduce file buffer size or increase file operation
speed by the way you declare a file. Compare the following file
definitions, their buffer sizes, and how you can write 100 integers to
them.

Declaration	Buffer Size	How to Write 100 Integers to the
		File

VAR	4 bytes	FOR i:=1 TO 100 DO write(f,i);
f : FILE OF integer;		
		(100 calls to put)

VAR	400 bytes	FOR i:=1 TO 100 DO f^[i]:=i;
f : FILE OF		put (f);
ARRAY [1..100]		
OF integer;		(One call to put)

Sets

The HP Pascal packing algorithm allocates sets in units called set
chunks . Set chunk size depends on the number of bits required to
represent the set and whether the set is unpacked, packed, or crunched.

The number of bits required to represent the set is determined by the
formula:

bits_required_for_set = ord(largest_value_in_set) -
 ord(smallest_value_in_set) + 1

Table 5-10 shows how the HP Pascal packing algorithm determines set
chunk size.

5-: 23

Table 5-10. How Set Chunk Size Is Determined (HP Pascal Packing Algorithm)

Number of Bits	Set Chunk Size
Required	
To Represent Set	

	Set is not PACKED	Set is PACKED	Set is CRUNCHED

1 to 8	32 bits	8 bits	1 bit

9 to 16	32 bits	16 bits	1 bit

17 or more	32 bits	32 bits	1 bit

The number of set chunks allocated to a set depends on its type. For the
types Boolean, char, enumeration, and integer, the formula for the number
of set chunks is:

number_of_set_chunks = ceil(bits_required_for_set/set_chunk_size)

(where ceil(x) means the integer closest to x that is greater than or
equal to x).

Table 5-11 gives the values for bits_required_for_set and
number_of_set_chunks for Boolean, char, and integer base types. For
enumerated sets, bits_required_for_set is the number of elements in the
set, and you must use the formula to determine number_of_set_chunks .

Table 5-11. Bit and Set Chunk Requirements for Boolean,
Char, and Integer Types
(HP Pascal Packing Algorithm)

Base Type	bits_required_for_set	number_of_set_chunks

Boolean	2	1

Char	256	8

Integer *	256 (by default) *	8

* Same for bit16, bit32, bit52, shortint, and longint.

* Integers outside the range 0..255 cannot belong to the set.

Example 1

 VAR
 days = SET OF (sun,mon,tues,wed,thurs,fri,sat);
 months = PACKED SET OF (ja,f,mr,ap,ma,jn,jl,au,s,o,n,d);

5-: 24

 set_33 = SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,
 e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,
 e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

 p_set_33 = PACKED SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,
 e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,
 e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

The set days has seven elements and requires seven bits. Its set chunk
size is four bytes (32 bits), so days is allocated one set chunk.

Each element is represented by one bit, like this:

The set months has 12 elements and requires 12 bits. Its set chunk size
is two bytes, so months is allocated one set chunk (ceil(12/(2*8))=1).
Each element is represented by one bit.

Each of the sets set_33 and p_set_33 has 33 elements and requires 33
bits. The set chunk size is four bytes, so set_33 is allocated two set
chunks (ceil(33/(4*8))=2). Each element is represented by one bit.

If the type is a subrange, the formula for the number of set chunks is:

number_of_set_chunks = (upper_bound_set_chunk_number -
lower_bound_set_chunk_number) + 1

The upper bound of the subrange determines upper_bound_set_chunk_number ,
and the lower bound determines lower_bound_set_chunk_number . The formula
is:

set_chunk_number = floor(bound / set_chunk_size)

(where floor(x) means the integer closest to x that is less than or equal
to x).

Example 2

 VAR
 s : SET OF -7..18;

The set s is unpacked, so it has a 32-bit set chunk (see Table 5-10).
The upper bound of the subrange is 18, so upper_bound_set_chunk_number is
zero (floor(18/32=0)). The lower bound of the subrange is -7, so
lower_bound_set_chunk_number is -1 (floor(-7/32)=-1). The set s is
allocated two set chunks ((0-(-1))+1=2).

Each set element is represented by one bit, like this:

5-: 25

To minimize storage space, avoid base types that are small subranges that
overlap set chunk boundaries.

Example 3

 VAR
 s1 : SET OF 31..32;
 s2 : PACKED SET OF 15..16;

The set s1 takes two 32-bit set chunks, using 64 bits to represent a set
that requires only two bits. The arithmetic is: (floor(32/32) -
floor(31/32)) + 1 = (1-0) + 1 = 2.

The PACKED set s2 takes two 8-bit set chunks, using 16 bits to represent
a set that requires only two bits. The arithmetic is: (floor(16/8) -
floor(15/8)) + 1 = (2-1)+1 = 2.

Strings

A string is allocated four bytes for its current length (an integer), one
byte per character, and one "housekeeping" byte. The number of
characters is the string's declared maximum length. The "housekeeping"
byte is only accessible to some of the standard string functions.

The HP Pascal packing algorithm aligns strings on 4-byte boundaries in
all structures. Because the current length (an integer) is allocated
four bytes, eight bytes is the smallest possible string allocation.

5-: 26

The formula for the number of bytes allocated to a string is:

Example

 VAR
 s1 : string[10];
 s2 : string[7];

The string s1 takes 16 bytes:

 (((4 + 10 + 1) + 3) DIV 4) * 4 =
 (18 DIV 4) * 4 =
 4 * 4 = 16

The allocation is:

The string s2 takes 12 bytes:

 (((4 + 7 + 1) + 3) DIV 4) * 4 =
 (15 DIV 4) * 4 =
 3 * 4 = 12

The allocation is:

6- 1

Chapter 6 Dynamic Variables
A dynamic variable is allocated during program execution. In contrast, a
global, module, or local variable is allocated when the block containing
its declaration is activated.

Table 6-1 shows the differences between dynamic and static variables.

Table 6-1. Dynamic versus Static Variables

--
	Dynamic Variable	Global or Module	Local Variable
		Variable	
--
Declared?	No	Yes	Yes
--
Referenced by	Pointer (which is	Name	Name
	declared).		
--
Allocated	During execution,	Before compilation	Upon entering
	with the function	unit executes.	procedure or function
	new.		that declares it.
--
Stored on the	Heap	Static area	Stack
--
Deallocated	During execution,	After program has	After exiting the
	with the procedure	executed.	procedure or function
	dispose or release .		that declares it.
--

This chapter explains:

 * Pointer types peculiar to HP Pascal (globalanyptr, anyptr , and
localanyptr).

 * HP Pascal procedures new and dispose, which allocate and
 deallocate dynamic variables.

 * HP Pascal procedures mark and release, which allow an HP Pascal
 program to deallocate a region of the heap that it no longer
 needs.

 * Intrinsic procedures p_getheap and p_rtnheap , which allow a
 program written in any language that runs on the operating system
 to allocate and deallocate a region of the HP Pascal heap.

GLOBALANYPTR Variables

The pointer type globalanyptr is assignment compatible with every pointer
type and the value nil . Anyptr is another name for the same type,
provided for compatibility with older Pascals. This manual uses the term
globalanyptr exclusively, but anyptr can be substituted wherever it

6- 2

appears.

A variable of type globalanyptr is not bound to a specific pointer type.
You can assign it any pointer-type value, or compare it to any
pointer-type value with the operator = or <>, but you cannot dereference
it.

Because a globalanyptr variable can be assigned any pointer-type value,
the compiler allocates it 64 bits. If your program does not use extended
address pointers, you can save space by substituting localanyptr for
globalanyptr .

Your program uses extended address pointers if it declares a type or
variable with the EXTNADDR compiler option. Refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation, for detailed information on compiler options.

Example

This program works the same way and takes the same amount of space if you
substitute anyptr for any or every occurrence of globalanyptr. This
would be true even if the program had extended address pointers.

Since the program does not have extended address pointers, it works the
same way if you substitute localanyptr for any or every occurrence of
globalanyptr --but it takes less space. (Compare this program with the
one in the section "LOCALANYPTR Variables" .)

 PROGRAM prog (input);
 TYPE
 iptr = ^integer;
 rec = RECORD
 f1, f2 : real;
 END;
 rptr = ^rec;
 VAR
 v1, d1 : iptr;
 v2, d2 : rptr;
 anyv : globalanyptr;
 b : Boolean;
 BEGIN
 {Initialize v1 and v2}
 new(v1);
 new(v2);
 v1^ := 0;
 WITH v2^ DO BEGIN
 f1 := 0;
 f2 := 0;
 END;

 {Set anyv to v1 or v2, depending on b}
 read(b);
 IF b THEN anyv := v1 ELSE anyv := v2;

 {You cannot dereference anyv, because it is a globalanyptr.
 This is how you can access its data:}
 IF anyv = v1 THEN BEGIN
 d1 := anyv;
 d1^ := d1^ + 1;
 END
 ELSE BEGIN
 d2 := anyv;
 WITH d2^ DO BEGIN
 f1 := 34.6;
 f2 := 91.2;
 END;
 END;
 END.

6- 3

LOCALANYPTR Variables

The pointer type localanyptr is similar to the type globalanyptr (or
anyptr) in that it is assignment compatible with every pointer type and
the value nil .

A localanyptr variable differs from a globalanyptr variable in that the
compiler allocates it 32 bits instead of 64 bits. If your program does
not use extended address pointers, you can save space by using
localanyptr instead of globalanyptr .

Like a globalanyptr variable, a localanyptr variable is not bound to a
specific pointer type. You can assign it any pointer-type value, but you
can not assign it an extended address pointer that cannot be converted to
a 32-bit value.

You can compare a localanyptr variable to any pointer-type value (even
one that you cannot assign to it) with the operator = or <>.

You cannot dereference a localanyptr.

Example

This program is the same as the one in the section "GLOBALANYPTR
Variables" , except that localanyptr replaces every occurrence of
globalanyptr . The two programs work the same way, but this one takes
less space.

 PROGRAM prog (input);

 TYPE
 iptr = ^integer;
 rec = RECORD
 f1, f2 : real;
 END;
 rptr = ^rec;
 VAR
 v1,
 d1 : iptr;
 v2,
 d2 : rptr;
 anyv : localanyptr;
 b : Boolean;

 BEGIN
 {Initialize v1 and v2}
 new(v1);
 new(v2);
 v1^ := 0;
 WITH v2^ DO BEGIN
 f1 := 0;
 f2 := 0;
 END;

 {Set anyv to v1 or v2, depending on b}
 read(b);
 IF b THEN anyv := v1 ELSE anyv := v2;

 {You cannot dereference anyv, because it is a localanyptr.
 This is how you can access its data:}
 IF anyv = v1 THEN BEGIN
 d1 := anyv;
 d1^ := d1^ + 1;
 END
 ELSE BEGIN
 d2 := anyv;
 WITH d2^ DO BEGIN
 f1 := 34.6;
 f2 := 91.2;
 END;
 END;
 END.

6- 4

New Procedure

The predefined procedure new takes a pointer variable as a parameter,
allocates a variable of the type that the pointer references, and
"points" the pointer at the new variable (that is, new assigns the
address of the new variable to the pointer). The program can then access
the new variable by dereferencing the pointer.

Example 1

 PROGRAM prog;

 TYPE
 iptr = ^integer;
 cptr = ^char;
 rptr = ^real;

 VAR
 ivar : iptr; {pointer to a dynamic integer variable}
 cvar : cptr; {pointer to a dynamic character variable}
 rvar : rptr; {pointer to a dynamic real variable}

 BEGIN
 new(ivar); {allocate new integer variable on heap}
 new(cvar); {allocate new character variable on heap}
 new(rvar); {allocate new real variable on heap}

 ivar^ := 375; {assign value to new integer variable}
 cvar^ := 'c'; {assign value to new character variable}
 rvar^ := 3.7; {assign value to new real variable}
 END.

The new variable is allocated space on the heap. A run-time error occurs
if the heap cannot accommodate the variable.

If the new variable is a record with variant fields, you can specify the
variant that you want with a tag. The tag only tells the new procedure
how much space to allocate; it does not cause the new procedure to assign
the value of the tag to the new variable's tag field.

Example 2

 PROGRAM prog;

 TYPE
 marital_status = (single, married);

 rec = RECORD
 lname,
 fname : string[30];
 kids : 1..20;

 (Example is continued on next page .)

 CASE mstat : marital_status OF
 single : (divorced,
 widowed,
 engaged : Boolean);
 married : (how_many_times: 1..10;
 how_long_this_time : 1..100);
 END;

 recptr = ^rec;

 VAR
 person1,
 person2,
 person3 : recptr;

 BEGIN
 new(person1,single);

 WITH person1^ DO BEGIN
 lname := 'Doe';
 fname := 'John';
 kids := 0;

6- 5

 mstat := single; {New does not make this assignment}
 divorced := FALSE;
 widowed := FALSE;
 engaged := FALSE;
 END;

 new(person2,married);

 WITH person2^ DO BEGIN
 lname := 'Smith';
 fname := 'Jane';
 kids := 3;
 mstat := married; {New does not make this assignment}
 how_many_times := 1;
 how_long_this_time := 9;
 END;
 new(person3);
 END.

The new record variable person1^ has space for the fixed fields lname,
fname, kids, and mstat, and for the single variant fields divorced,
widowed, and engaged.

The new record variable person2^ has space for the same fixed fields, and
for the married variant fields how_many_times and how_long_this_time.

If the new variable is a record with nested variant fields, you can
specify a tag for each variant. If you do, you must specify them in the
order that they are declared, and you cannot leave gaps in the sequence.

Example 3

In this program, the declaration order of the tag fields is obviously t1,
t2 or t1, t3.

 PROGRAM prog;

 TYPE

 r = RECORD
 f1 : integer;
 CASE t1 : (a,b) OF
 a : (arec : RECORD
 i : integer;
 CASE t2 : (c,d) OF
 c : (j : integer);
 d : (k : real);
 END {arec}
);
 b : (brec : RECORD
 CASE t3 : (e,f) OF
 e : (l : real);
 f : (m : char);
 END {brec}
);
 END; {r}

 rptr = ^r;

 VAR
 v : rptr;

 BEGIN
 new(v);
 new(v,a);
 new(v,a,c);
 new(v,a,d);
 new(v,,d); {illegal -- must specify a}
 new(v,d); {illegal -- must specify a}
 new(v,b);
 new(v,b,e);
 new(v,e,b); {illegal -- tags are not in order of declaration}
 new(v,b,f);

6- 6

 new(v,a,f); {illegal -- with variant a, variant f is impossible}
 END.

Example 4

This program is semantically equivalent to the program in the immediately
preceding example (Example 3), and the declaration order of the tag
fields is the same.

 PROGRAM prog;

 TYPE

 arectype = RECORD
 i : integer;
 CASE t2 : (c,d) OF
 c : (j : integer);
 d : (k : real);
 END;

 brectype = RECORD
 CASE t3 : (e,f) OF
 e : (l : real);
 f : (m : char);
 END;

 r = RECORD
 f1 : integer;
 CASE t1 : (a,b) OF
 a : (arec : arectype);
 b : (brec : brectype);
 END;

 rptr = ^r;

 VAR
 v : rptr;

 BEGIN
 new(v);
 new(v,a);
 new(v,a,c);
 new(v,a,d);
 new(v,,d); {illegal -- must specify a}
 new(v,d); {illegal -- must specify a}
 new(v,b);
 new(v,b,e);
 new(v,e,b); {illegal -- tags are not in order of declaration}
 new(v,b,f);
 new(v,a,f); {illegal -- with variant a, variant f is impossible}
 END.

You do not have to specify tag fields. If you omit them, new allocates
enough space for the largest possible variant, wherever there are
variants. This allocation is the default allocation for variables of the
particular record type.

If you use tags to specify smaller variants, new allocates less than the
default allocation to the new variable. The advantage to using tags is
that you save space. The disadvantage is that the new variable cannot
appear in an assignment statement, or as an actual parameter.
(Assignment statements and formal parameters use the default allocation.)
It is legal for the fields of the new variable to appear as actual
parameters, and to be used in a field by field assignment.

Example 5

 PROGRAM prog;
 TYPE
 rec = RECORD
 CASE t : (a,b) OF
 a : (a1,a2 : integer);
 b : (b1,b2,b3,b4,b5,b6 : integer);
 END;

6- 7

 recptr = ^rec;
 VAR
 small,
 small2,
 large,
 default : recptr;

 PROCEDURE p (r : rec); EXTERNAL;
 BEGIN
 new(small,a); {allocates only enough space for smaller variant, a}
 new(small2,a); {allocates only enough space for smaller variant, a}
 new(large,b); {allocates enough space for larger variant, b}
 new(default); {allocates enough space for larger variant by default}

 WITH small^ DO BEGIN
 t := a;
 a1 := 350;
 a2 := 609;
 END;

 WITH large^ DO BEGIN
 t := b;
 b1 := 350;
 b2 := 609;
 END;

 (Example is continued on next page .)

 default^.t := a;
 default^ := small^; {illegal}
 default^.t := b;
 default^ := large^; {illegal}
 small2^ := small^ {still illegal even though the spaces are allocated }
 {using the same tag }
 small2^.a1 := small^.a1 {legal}
 small2^.a2 := small^.a2 {legal}

 p(small^); {illegal}
 p(large^); {illegal}
 p(default^); {legal}
 END.

The pointer parameter of new can belong to a PACKED structure.

Example 6

 PROGRAM prog;

 TYPE
 ptr = ^integer;
 pa = PACKED ARRAY [1..10] OF ptr;
 pr = PACKED RECORD
 f1,f2 : ptr;
 END;

 VAR
 v1 : pa;
 v2 : pr;

 BEGIN
 new(v1[5]);
 new(v2.f1);
 END.

A pointer created by new can be compared to another pointer for equality
or inequality only. This is also true of a pointer created by mark . For
more information on relational operators, refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

6- 8

Dispose Procedure

The predefined procedure dispose takes a pointer variable as a parameter
and deallocates the dynamic variable that it references. When the
variable is deallocated, it is inaccessible, and the pointer is
undefined. Files in the deallocated space are closed.

The procedure new can only reallocate the space that dispose has
deallocated if the program contains the compiler option HEAP_DISPOSE. For
more information, refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

It is an error to call dispose with a pointer that is:

 * Undefined.

 * Nil.

 * The dynamic variable referenced by a pointer that is the actual
 parameter, passed by reference, of a currently executing routine.

 * The dynamic variable referenced by a pointer that is in the record
 variable list of a currently executing WITH statement.

Example 1

 PROGRAM prog;
 TYPE
 rec = RECORD
 f1,f2,f3 : integer;
 END;

 recptr = ^rec;
 VAR
 v1,v2,v3,v4,v5 : recptr;

 PROCEDURE p (VAR x : rec);
 BEGIN
 dispose(v4); {illegal -- disposes x's actual parameter}

 END;

 PROCEDURE q;
 BEGIN
 dispose(v4); {illegal -- v4^ is in the record variable
 list of an active WITH statement}
 END;

 (Example is continued on next page .)

 PROCEDURE r (VAR z : recptr);
 PROCEDURE s;
 BEGIN
 dispose(v4); {illegal -- v4^ is the actual parameter for z}
 END;
 BEGIN
 s;
 END;
 BEGIN
 new(v1);
 WITH v1^ DO BEGIN
 f1 := 0;
 f2 := 0;
 f3 := 0;
 END;
 dispose(v1);
 dispose(v1); {illegal -- v1 is undefined}

 new(v2);
 dispose(v2);

 new(v3);
 v3 := nil;
 dispose(v3); {illegal -- v3 is nil}

6- 9

 new(v4);
 p(v4^);

 new(v4);
 r(v4); {s (within r) disposes r's actual parameter v4,
 which is illegal}
 new(v4);
 new(v5);
 WITH v4^,v5^ DO BEGIN
 f1 := 1;
 f2 := 2;
 f3 := 3;
 q; {illegal -- q disposes v4 while the WITH statement
 whose record variable list it is in
 is active}

 dispose(v5); {illegal -- v5 is in the record variable list
 of an active WITH statement}
 END;
 END.

If you specify tags when you allocate a variable with new, you must
specify the same tags in the same order when you deallocate the variable
with dispose .

Example 2

 PROGRAM prog;

 TYPE
 rec = RECORD
 CASE t1 : (a,b) OF
 a : (a1,a2 : integer);
 b : (b1 : RECORD
 CASE t2 : (c,d) OF
 c : (c1 : char);
 d : (d1,d2 : real);
 END
);
 END;

 recptr = ^rec;

 VAR
 v1,v2,v3,v4,v5 : recptr;

 BEGIN
 new(v1);
 new(v2,a);
 new(v3,b);
 new(v4,b,c);
 new(v5,b,d);

 dispose(v1);
 dispose(v2,a);
 dispose(v3,b);
 dispose(v4,b,c);
 dispose(v5,b,d);

 new(v1);
 new(v2,a);
 new(v3,b);
 new(v4,b,c);
 new(v5,b,d);

 dispose(v1,a); {illegal -- a not specified on new}
 dispose(v2,b); {illegal -- b not specified on new}
 dispose(v3); {illegal -- b specified on new, but not here}
 dispose(v4,b); {illegal -- c specified on new, but not here}
 dispose(v5,d,b); {illegal -- b and d are in the wrong order}
 END.

6- 10

Mark and Release Procedures

The predefined procedure mark takes a pointer variable p as a parameter,
marks the state of the heap, and sets the value of p to specify that
state.

The pointer variable p is called a mark (once a pointer variable becomes
a mark, you cannot dereference it). You can allocate heap space beyond
the mark, and then deallocate that space with the predefined procedure
release .

The predefined procedure release takes a mark pointer variable as a
parameter and deallocates the heap space that was dynamically allocated
after the mark was set. Variables in that space become inaccessible.
Files in that space are closed. After release executes, the mark pointer
variable is undefined. The procedure new can reallocate the released
space (even if the program does not contain the compiler option
HEAP_DISPOSE).

Example 1

 PROGRAM prog;

 TYPE
 ftype = FILE OF integer;
 ptype1 = ^ftype;
 ptype2 = ^integer;

 VAR
 fptr : ptype1;
 iptr1,
 iptr2,
 m,
 iptr3,
 iptr4: ptype2;

 BEGIN
 new(iptr1); {Allocate heap space to iptr1^}
 new(iptr2); {Allocate heap space to iptr2^}

 iptr1^ := 0;
 iptr2^ := 0;

 mark(m); {Mark the heap with m}

 new(iptr3); {Allocate heap space to iptr3^}
 new(iptr4); {Allocate heap space to iptr4^}
 new(fptr); {Allocate heap space to fptr^, a file}

 iptr3^ := 0;
 iptr4^ := 0;
 reset(fptr^); {Open fptr^}

 release(m); {Close fptr^, deallocating heap after m}

 iptr1^ := 1;
 iptr2^ := 2;
 iptr3^ := 3; {illegal -- iptr3^ was deallocated}
 iptr4^ := 4; {illegal -- iptr4^ was deallocated}
 write(fptr^,5); {illegal -- iptr5^ was deallocated}
 m^ := 0; {illegal -- cannot assign value to mark pointer}
 END.

The parameter of mark (the mark) can be any pointer variable.

The parameter of release must be a mark--a pointer variable whose current
value was assigned by the mark procedure. It is an error to call release
with a pointer whose current value was not assigned by the mark
procedure.

Example 2

 PROGRAM prog;

 TYPE
 ptr1 = ^integer;

6- 11

 ptr2 = ^real;
 ptr3 = ^char;
 ptr4 = ^ptr3;

 VAR
 m1 : ptr1;
 m2 : ptr2;
 m3 : ptr3;
 m4 : ptr4;
 m6 : ptr1;

 r : RECORD
 i : integer;
 m5 : ptr1;
 END;

 BEGIN
 mark(m1);
 mark(m2);
 mark(m3);

 new(m4); {m4^ is of type ptr3}
 mark(m4^);

 mark(r.m5);

 new(m6);
 release(m6); {illegal -- current value of m6 was assigned by new}
 END.

If you set several marks, and release one of them, those set after it are
also released.

Example 3

 PROGRAM prog;

 TYPE
 ptr = ^integer;

 VAR
 m1, m2,
 i1, i2, i3,
 j1, j2, j3,
 k1, k2, k3 : ptr;

 BEGIN
 new(i1);
 new(i2);
 new(i3);

 mark(m1);

 new(j1);
 new(j2);
 new(j3);

 mark(m2);

 new(k1);
 new(k2);
 new(k3);

 release(m1); {deallocates j1,j2,j3,k1,k2,k3; releases m1 and m2}
 release(m2); {illegal -- m2 is undefined because it was released
 with m1}
 END.

P_getheap and P_rtnheap Procedures

The procedures p_getheap and p_rtnheap are intrinsics in the Pascal
run-time library. Any program that runs on the operating system can call
them, regardless of the language in which it is written. (For more
information on intrinsics, Chapter 10).

The procedure p_getheap tries to allocate a region of heap space of a

6- 12

specified size and alignment. If it succeeds, it "points" its VAR
pointer parameter at the first element of the region and assigns its VAR
Boolean parameter the value true . If it fails, it assigns its VAR
Boolean parameter the value false .

Syntax

 p_getheap (VAR regptr : localanyptr;
regsize : integer;
alignment : integer;

 VAR ok : Boolean);

Parameters

regptr If p_getheap can allocate the region of heap space, it
 "points" regptr at the first element of the region (that
 is, p_getheap assigns the address of the first element of
 the region to regptr).

regsize The size of the region of heap space, in bytes.

alignment Integer: Specifies the region of heap space to be:

 1 Byte-aligned

 2 Halfword-aligned

 4 Word-aligned

 8 Double-word-aligned

 16 16-byte aligned

 32 32-byte aligned

 64 64-byte aligned

 2048 Page-aligned

ok If p_getheap can allocate the region of heap space, it
 assigns ok the value true ; if not, it assigns ok the value

false .

The procedure p_rtnheap tries to deallocate a region of heap space that
the p_getheap procedure allocated. If it succeeds, it assigns its VAR
Boolean parameter the value true . If it fails, it assigns its VAR
Boolean parameter the value false . P_rtnheap does not close files
residing in the region allocated by p_getheap .

Syntax

 p_rtnheap (VAR regptr : localanyptr;
regsize : integer;
alignment : integer;

 VAR ok : Boolean);

Parameters

regptr A pointer whose current value was assigned to it by
 the procedure p_getheap .

regsize The size in bytes of the region of heap space that
p_getheap assigned to regptr .

alignment The number that specified the alignment of the
 region of heap space that p_getheap assigned to

regptr .

ok If p_rtnheap can deallocate the region of heap
 space, it assigns ok the value true ; if not, it
 assigns ok the value false .

Example 1

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;

 TYPE

6- 13

 intpointer = ^integer;

 VAR
 b : Boolean;
 i : integer;
 ptr1,
 ptr2 : intpointer;

 PROCEDURE p_getheap (VAR regptr : intpointer;
 regsize : integer;
 alignment : integer;
 VAR ok : Boolean); EXTERNAL;

 PROCEDURE p_rtnheap (VAR regptr : intpointer;
 regsize : integer;
 alignment : integer;
 VAR ok : Boolean); EXTERNAL;

 BEGIN
 p_getheap(ptr1,40,4,b); {allocate a 40-byte region}

 ptr2 := ptr1; {save ptr1 for later call to p_rtnheap}

 FOR i := 1 TO 10 DO BEGIN
 ptr2^ := i;
 ptr2 := addtopointer(ptr2,4);
 END;

 p_rtnheap(ptr1,40,4,b); {deallocate the 40-byte region}

 p_getheap(ptr1,50,2,b);
 p_rtnheap(ptr1,20,2,b); {illegal -- 20 must be 50}

 p_getheap(ptr1,16,8,b);
 p_rtnheap(ptr1,16,1,b); {illegal -- 1 must be 8}
 END.

The procedures p_getheap and p_rtnheap are independent from the
procedures mark, release, new, and dispose .

Example 2

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;
 VAR
 i : integer;
 b : Boolean;
 p1,p2,p3,
 ptr1, ptr2, ptr3 : ^integer;

 PROCEDURE p_getheap; INTRINSIC;
 PROCEDURE p_rtnheap; INTRINSIC;

 BEGIN
 p_getheap(ptr1,28,4,b); {allocate a 28-byte region}

 ptr3 := ptr1; {assign values in the 28-byte region}
 FOR i := 1 TO 7 DO BEGIN
 ptr3^ := i;
 ptr3 := addtopointer(ptr3,4);
 END;
 ptr3 := ptr1;

 mark(ptr2); {mark the heap}

 new(p1); {allocate p1, p2, and p3}
 new(p2);
 new(p3);

 p_rtnheap(ptr1,28,4,b); {deallocate the 28-byte region}

 ptr3^ := 0; {illegal -- p_rtnheap deallocated ptr3^}

 p1^ := 1; {p_rtnheap did not deallocate p1, p2, or p3;}
 p2^ := 2; {they are still accessible}
 p3^ := 3;

6- 14

 p_getheap(ptr1,4,4,b); {allocate a 4-byte region}

 (Example continued on next page .)

 release(ptr2);

 ptr1^ := 0; {The 4-byte region was not
 deallocated, and the values
 in it are still accessible}

 p1^ := p2^ + p3^; {illegal -- p1, p2, and p3 were deallocated}
 END.

Getheap and Rtnheap Procedures

The procedures getheap and rtnheap are intrinsics in the Pascal run-time
library. They are provided only for compatibility with existing source
code that was written for the MPE V operating system and only exists on
MPE/iX. If you are writing a new program, use the predefined procedures
p_getheap and p_rtnheap instead.

The procedure getheap allocates a region of heap space, and the procedure
rtnheap deallocates the region.

Syntax

 getheap (VAR regptr : localanyptr;
 VAR regsize : shortint;
 VAR ok : shortint);

 rtnheap (VAR regptr : localanyptr;
regsize : shortint;

 VAR ok : shortint);

7- 1

Chapter 7 Parameters
This chapter explains:

 * The differences between value and reference parameters.

 * ANYVAR and READONLY reference parameters (which are HP Pascal
 system programming extensions).

 * Conformant array parameters.

 * Routines (procedures and functions) as parameters.

 * Congruent parameter lists.

 * Hidden parameters (which affect debugging and interfacing with
 external non-Pascal routines).

NOTE This chapter is intended for system software developers who already
 understand the systems for which they are programming. Its purpose
 is to explain the HP Pascal features of which they must be aware.
 It does not attempt to teach systems programming.

Value versus Reference Parameters

The terms value and reference must be explained in terms of formal and
actual parameters. A formal parameter is defined in a routine header.
An actual parameter is passed in a call to a routine.

Example 1

 PROGRAM prog;
 VAR
 a : integer;

 PROCEDURE p (f : integer); {f is a formal parameter}
 BEGIN
 END;

 BEGIN
 p(a); {a is an actual parameter}
 END;

A value parameter is passed by value; that is, the value of the actual
parameter is passed to the routine and assigned to the formal parameter.
If the routine changes the value of the formal parameter, it does not
change the value of the actual parameter. An actual value parameter can
be a constant, an expression, a variable, or a function result.

A reference parameter is passed by reference; that is, the address of the
actual parameter is passed to the routine and associated with the formal
parameter. If the routine changes the value of the formal parameter, it
changes the value of the actual parameter. An actual reference parameter
must be a variable access (a variable name or the name of a component of
an unpacked structure).

HP Pascal without system programming extensions has one kind of reference
parameter: VAR. For more information on VAR parameters, refer to the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,

7- 2

depending on your implementation.

HP Pascal with system programming extensions has two additional kinds of
reference parameters: ANYVAR and READONLY. An actual READONLY parameter
can be a constant, an expression, or a function result.

Example 2

 PROGRAM prog;
 VAR
 a,b : integer;

 PROCEDURE p (x : integer; {x is a value parameter}
 VAR y : integer); {y is a reference parameter}
 BEGIN
 x := x+1; {this does not change x's actual parameter}
 y := y+1; {this does change y's actual parameter}

 writeln(x); {this writes 41}
 writeln(y); {this writes 61}
 END;

 BEGIN
 a := 40;
 b := 60;

 p(a,b);

 writeln(a); {this writes 40}
 writeln(b); {this writes 61}
 END.

Table 7-1 compares the four kinds of formal parameters.

Table 7-1. Comparison of Kinds of Formal Parameters

--
Kind of		Actual	Actual	Routine Can Modify
Formal	STANDARD_LEVEL	Parameter Can	Parameter Is	
Parameters		Be	Passed By	
--
				Parameter	Actual
					Parameter
Value	ANSI	Constant,	Value	Yes	No
		expression			
		variable, or			
		function			
		result			
--
Var	ANSI	Variable only	Reference	Yes	Yes
--
ANYVAR	HP_MODCAL	Variable only	Reference	Yes	Yes
--
READONLY	HP_MODCAL	Constant,	Reference	No	No
		expression,			
		variable, or			
		function			
		result			
--

7- 3

ANYVAR Parameters

An ANYVAR parameter is similar to a VAR parameter in that its actual
parameter is passed by reference and must be a variable access. If the
routine changes the value of a formal ANYVAR parameter, it changes the
value of the actual parameter.

An ANYVAR parameter differs from a VAR parameter in that its actual
parameter can be of any type. HP Pascal treats the actual parameter as
if it were of the data type of the formal ANYVAR parameter. This is
implicit type coercion.

Example 1

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;

 TYPE
 type1 = ARRAY [1..10] OF integer;
 type2 = ARRAY [1..20] OF integer;
 type3 = ARRAY [1..11] OF real;

 VAR
 var1 : type1;
 var2 : type2;
 var3 : type3;

 PROCEDURE p (VAR parm1 : type1;
 ANYVAR parm2 : type2); EXTERNAL;
 BEGIN
 p(var1, {legal}
 var1); {legal}
 p(var2, {illegal -- must be of type1}
 var2); {legal}
 p(var3, {illegal -- must be of type1}
 var3); {legal}
 END.

The formal VAR parameter parm1 must have an actual parameter of type
type1. The formal ANYVAR parameter parm2 can have an actual parameter of
any type.

The first call to procedure p passes the variable var1 (a 10-element
integer array) to parm2 (a 20-element integer array). This is legal
because parm2 is an ANYVAR parameter; however, parm2[11] through
parm2[20] are undefined. Accessing them causes unpredictable results.

The second call to p passes the variable var2 to parm2. Both are
20-element integer arrays. The procedure p can access all 20 elements of
parm2.

The third call to p passes the variable var3 (an 11-element real array)
to parm2 (a 20-element integer array). Although this is legal, p must
not try to access any of the nonexistent elements parm2[12] through
parm2[20]. The procedure p treats the elements of parm2 as if they were
integers (although the elements of var3 are real).

The implicit type coercion requires that the actual parameter be aligned
on a boundary that is the same or larger than the boundary on which the
formal parameter is aligned (for example, if the formal parameter is
2-byte-aligned, the actual parameter can be 2-byte-aligned or
4-byte-aligned, but it cannot be byte-aligned).

Example 2

 PROGRAM prog;
 VAR
 c : PACKED ARRAY [1..2] OF char;

7- 4

 j : shortint;
 i : integer;

 PROCEDURE show_anyvar_alignment
 (ANYVAR anyvar_parm : shortint);
 EXTERNAL;
 BEGIN
 show_anyvar_alignment(c); {illegal -- must be 2-byte-aligned}
 show_anyvar_alignment(j); {legal}
 show_anyvar_alignment(i); {legal -- references high-order 2 bytes}
 END.

When HP Pascal passes an actual parameter to a formal ANYVAR parameter,
it also passes a hidden parameter. The hidden parameter can be used to
determine the size of the actual parameter. See "Hidden Parameters"
for more information.

READONLY Parameters

A READONLY parameter is similar to a value parameter in that the routine
cannot directly modify its actual parameter, which can be a constant, an
expression, or a variable. READONLY differs from a value parameter in
that the routine cannot modify the formal parameter: you cannot assign a
value to the formal READONLY parameter, pass it to a VAR or ANYVAR
parameter, or pass it to either of the predefined functions addr ,
baddress , or waddress .

A READONLY parameter is similar to a VAR or ANYVAR parameter in that its
actual parameter is passed by reference. If the actual parameter is an
expression or constant, a copy of its value is passed by reference.

Example

 PROGRAM prog;
 $STANDARD_LEVEL 'HP_MODCAL'$

 TYPE
 arraytype = ARRAY [1..10] OF integer;

 CONST
 arrayconst = arraytype [10 OF 0];

 VAR
 arrayvar : arraytype;

 FUNCTION arrayfunc : arraytype; EXTERNAL;

 PROCEDURE p (valuep : arraytype;
 VAR varp : arraytype;
 READONLY readonlyp : arraytype); EXTERNAL;

 BEGIN
 p(arrayconst, {value is passed}
 arrayconst, {illegal -- must be a variable}
 arrayconst); {address of copy of value is passed}

 p(arrayvar, {value is passed}
 arrayvar, {address is passed}
 arrayvar); {address is passed}

 p(arrayfunc, {value is passed}
 arrayfunc, {illegal -- must be a variable}
 arrayfunc); {address of copy of value is passed}
 END.

The comments in the preceding program explain the differences in passing
a constant (arrayconst), a variable (arrayvar), and an expression (a call
to the function arrayfunc) to a value parameter (valuep), a VAR parameter

7- 5

(varp), and a READONLY parameter (readonlyp).

Conformant Array Parameters

A conformant array parameter is a formal array parameter defined by a
conformant array schema (the syntax appears in the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual). Its actual parameter
must be an array variable that conforms to the schema.

An array variable conforms to a conformant array schema if all of the
following are true:

 * The variable and the schema are both PACKED, or neither is PACKED.

 * The index types of the variable and the schema are compatible (as
 defined in the

HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual).

 * The bounds of the index type of the variable are within the bounds
 of the index type of the schema.

 * The element types of the variable and the schema are the same,
 unless the element type of the schema is another schema. If the
 element type of the schema is another schema, the element type of
 the variable conforms to the other schema.

Example 1

 TYPE
 itype = 0..20;
 jtype = 'a'..'z';
 ktype = 0..5;

 VAR
 var1 : ARRAY [0..10] OF integer;

 PROCEDURE p (yes : ARRAY [lb1..ub1 : itype] OF integer;
 no1 : PACKED ARRAY [lb3..ub3 : itype] OF integer;
 no2 : ARRAY [lb4..ub4 : jtype] OF integer;
 no3 : ARRAY [lb5..ub5 : ktype] OF integer;
 no4 : ARRAY [lb6..ub6 : itype] OF real;
 no5 : ARRAY [lb7..ub7 : itype;
 lb8..ub8 : itype] OF integer);

The array variable var1 conforms to the schemas of the conformant array
parameter yes. Var1 and the schema of yes have the same element type,
and 0..10 is within the bounds of itype.

The variable var1 does not conform to the schemas of conformant array
parameters no1, no2, no3, no4, and no5. The following table gives the
reasons for nonconformance.

Parameter Why var1 Does Not Conform to Schema

no1 Schema is PACKED and var1 is not PACKED.

no2 Index types of var1 and schema are not compatible.

no3 Bounds of index type of var1 are not within bounds of index
 type of schema.

no4 Element types of var1 and schema are different.

no5 Schema specifies two dimensions, and var has only one
 dimension.

Like array declarations, schemas can specify dimensions in syntactically

7- 6

different but structurally equivalent ways.

Example 2

 VAR
 var1 : ARRAY [3..5,1..10] OF integer;
 var2 : ARRAY [3..5] OF ARRAY [1..10] OF integer;

 PROCEDURE p (yes1 : ARRAY [lb1..ub1 : itype] OF
 ARRAY [lb2..ub2 : itype] OF integer;
 yes2 : ARRAY [lb3..lb3 : itype;
 lb4..ub4 : itype] OF integer;
 no1 : ARRAY [lb5..ub5 : itype] OF integer;
 no2 : ARRAY [lb6..ub6 : itype;
 lb7..ub7 : itype;
 lb8..ub8 : itype] OF integer);

The declarations of the array variables var1 and var2 are structurally
equivalent, as are the schemas of conformant array parameters yes1 and
yes2. Both var1 and var2 conform to the schemas of yes1 and yes2.
Neither var1 nor var2 conforms to the schema of no1 or no2.

When a conformant array schema is a formal parameter, its bounds are also
formal parameters. They are read-only parameters. The actual parameter
for the formal conformant array schema is an array, and its bounds are
the actual parameters of the formal bounds parameters.

Example 3

 TYPE
 itype = 0..20;

 VAR
 v : ARRAY [0..10] OF integer;

 PROCEDURE p (x : ARRAY [lb..ub : itype] OF integer);

 BEGIN
 p(v);
 END;

 The conformant array schema x is a formal parameter, so its
 bounds, lb and ub are read-only formal parameters. The array v is
 the actual parameter for x. The lower bound of v, zero, is the
 actual parameter for lb. The upper bound of v (10) is the actual
 parameter for ub.

When HP Pascal passes an actual parameter to a formal conformant array
parameter of more than one dimension, it also passes one hidden parameter
for each inner dimension that is itself a conformant array. See "Hidden
Parameters" for more information.

Routines as Parameters

A routine can be a parameter in two ways: it can be a routine parameter
(a procedure or function parameter, as defined by ANSI Pascal), or it can
be a routine that is passed as a parameter (as defined by the systems
programming extensions of HP Pascal).

Table 7-2 differentiates between routine parameters and parameters of
routine types.

7- 7

Table 7-2. Routine Parameters versus Parameters of Routine Type

--
	Routine Parameter	Parameter of Routine Type
--
Availability	ANSI Pascal	System programming extensions.
--
Where Defined	Formal parameter list of	Parameter is defined in formal
	routine.	parameter list of routine, but its
		type is defined first in a type
		declaration section.
--
Corresponding Actual	User-defined routine.	addr applied to user-defined routine,
Parameter		or variable of a routine type.
--
Referenced By	Name	Fcall or call routine.
--

Routine Parameters

Routine parameters (procedure or functions parameters) are parameters
that are routines (procedures or functions, respectively). They are
completely defined in the formal parameter lists of other routines, which
reference them by name.

A formal function parameter is a function definition. Its actual
parameter is the name of a user-defined function with a congruent
parameter list and the same result type.

A formal procedure parameter is a procedure definition. Its actual
parameter is the name of a user-defined procedure with a congruent
parameter list.

Predefined routines cannot be passed to routine parameters.

Example

 PROGRAM prog;
 VAR
 s : char;
 PROCEDURE p (PROCEDURE procparm1 (a,b : integer);
 {formal procedure parameter}
 FUNCTION funcparm1 (c : integer) : char);
 VAR
 ch : char;
 BEGIN
 procparm1(1,2);
 ch := funcparm1(3);
 END;
 FUNCTION f (PROCEDURE procparm2; {formal procedure parameter}
 FUNCTION funcparm2 : integer); {formal function parameter}
 VAR
 i : integer;
 BEGIN
 procparm2;
 i := funcparm2;
 END;
 PROCEDURE actual_procparm1 (x,y : integer); {user-defined procedure}
 BEGIN
 .
 .

7- 8

 END;
 FUNCTION actual_funcparm1 (z : integer) : char; {user-defined function}
 BEGIN
 .
 .
 END;
 PROCEDURE actual_procparm2; {another user-defined procedure}
 BEGIN
 .
 .
 END;
 FUNCTION actual_funcparm2 : integer; {another user-defined function}
 BEGIN
 .
 .
 END;
 BEGIN {prog}
 p(actual_procparm1, {actual parameter for procparm1}
 actual_funcparm1); {actual parameter for funcparm1}
 s := f(actual_procparm2, {actual parameter for procparm2}
 actual_funcparm2); {actual parameter for funcparm2}
 END. {prog}

Parameters of Routine Types

Parameters of routine types (procedure or function types) are like
parameters of other user-defined types. They are defined in the formal
parameter lists of other routines, but their types--routine types--are
defined in type declaration sections. The types must be declared first
(see the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation, for more information on
declaring routine types).

The actual parameter for a formal parameter of function type is either:

 * The result of the function addr when applied to the name of a
 user-defined function.

 * The name of a variable of function type (in which case the value
 of the variable must be a user-defined function).

In either case, the user-defined function and the formal parameter must
have congruent parameter lists and the same result type.

The actual parameter for a formal parameter of procedure type is either:

 * The result of the function addr when applied to the name of a
 user-defined procedure.

 * The name of a variable of procedure type (in which case the value
 of the variable must be a user-defined procedure).

In either case, the user-defined procedure and the formal parameter must
have congruent parameter lists.

Predefined routines cannot be actual parameters for formal parameters of
routine types. For information on variables of routine types, see
"Variables of Routine Types."

Example

The procedure p has a parameter of procedure type, procparm1, and a
parameter of function type, funcparm1. The function f has a parameter of
procedure type, procparm2, and a parameter of function type, funcparm2.
Compare this example to the example in "Routine Parameters" . See
"Congruent Parameter Lists" for examples of congruent parameter
lists. See "Fcall Function" and "Call Procedure" for information
on the fcall function and call procedure.

7- 9

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;

 TYPE
 proctype1 = PROCEDURE (a,b : integer);
 functype1 = FUNCTION (c : integer) : char;
 proctype2 = PROCEDURE;
 functype2 = FUNCTION : integer;

 VAR
 s : char;

 PROCEDURE p (procparm1 : proctype1;
 funcparm1 : functype1);
 VAR
 ch : char;
 BEGIN
 call(procparm1,1,2);
 ch := fcall(funcparm1,3);
 END;

 FUNCTION f (procparm2 : proctype2;
 funcparm2 : functype2);
 VAR
 i : integer;
 BEGIN
 call(procparm2);
 i := fcall(funcparm2);
 END;

 PROCEDURE actual_procparm1 (x,y : integer);
 BEGIN
 .
 .
 .
 END;
 FUNCTION actual_funcparm1 (z : integer) : char;
 BEGIN
 .
 .
 .
 END;

 (Example is continued on next page .)

 PROCEDURE actual_procparm2;
 BEGIN
 .
 .
 .
 END;

 FUNCTION actual_funcparm2 : integer;
 BEGIN
 .
 .
 .
 END;

 BEGIN {prog}
 p(addr(actual_procparm1), addr(actual_funcparm1));
 s := f(addr(actual_procparm2), addr(actual_funcparm2));
 END. {prog}

7- 10

Variables of Routine Types

Variables of routine types (procedure and function types) can be actual
parameters for formal parameters of routine types (function and procedure
types, respectively). See "Parameters of Routine Types" .

The values that you can assign to a function variable are:

 * The value nil .

 * The value returned by the predefined function addr when you call
 it with the name of an appropriate function (appropriate is
 defined below).

 * The value returned by any function whose return type is the same
 function type as that of the variable.

 * Another function variable of the same type.

The values that you can assign to a procedure variable are:

 * The value nil .

 * The value returned by the predefined function addr when you call
 it with the name of an appropriate procedure (appropriate is
 defined below).

 * The value returned by any function whose return type is the same
 procedure type as that of the variable.

 * Another procedure variable.

A routine is an appropriate parameter for addr under these conditions:

 * The routine and the variable have congruent parameter lists.

 * In the case of a function and a function variable, if they have
 the same result type.

 * The routine is declared at the same or a higher level than the
 variable.

 * The routine is not predefined.

Routine variables are system programming extensions. To use them,
specify $STANDARD_LEVEL 'HP_MODCAL'$. Refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation, for more information on compiler options.

Example 1

This program uses the predefined function addr to assign appropriate
functions to a variable of function type and appropriate procedures to a
variable of procedure type.

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM proc (input);

 TYPE
 proctype = PROCEDURE (x,y : integer);
 functype = FUNCTION (x,y : integer) : integer;

 VAR
 procvar : proctype;
 funcvar : functype;
 b : Boolean;
 i : integer;

7- 11

 PROCEDURE p1 (a,b : integer); EXTERNAL;
 PROCEDURE p2 (a,b : integer); EXTERNAL;

 FUNCTION f1 (a,b : integer) : integer; EXTERNAL;
 FUNCTION f2 (a,b : integer) : integer; EXTERNAL;

 BEGIN
 read(b);

 IF b THEN BEGIN
 procvar := addr(p1);
 funcvar := addr(f1);
 END
 ELSE BEGIN
 procvar := addr(p2);
 funcvar := addr(f2);
 END;

 call(procvar,10,20);
 i := fcall(funcvar,10,20);
 END.

Example 2

This program declares procedures and procedure variables at different
levels and assigns each procedure visible to each variable. The comments
tell you which assignments are illegal and why.

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;

 TYPE
 proctype = PROCEDURE (x,y : integer);

 VAR
 procvar : proctype;

 PROCEDURE p1 (a,b : integer);
 VAR
 pvar1 : proctype;

 PROCEDURE p2 (c,d : integer);
 VAR
 pvar2 : proctype;

 PROCEDURE p3 (e,f : integer);
 VAR
 pvar3 : proctype;
 BEGIN {p3}
 pvar3 := addr(p1);
 pvar3 := addr(p2);
 pvar3 := addr(p3);
 END; {p3}

 BEGIN {p2}
 pvar2 := addr(p1);
 pvar2 := addr(p2);
 pvar2 := addr(p3); {illegal -- p3 is at a lower level than pvar2}
 END; {p2}

 BEGIN {p1}
 pvar1 := addr(p1);
 pvar1 := addr(p2); {illegal -- p2 is at a lower level than pvar1}
 END; {p1}

 BEGIN {prog}
 procvar := addr(p1);
 END. {prog}

7- 12

Example 3

This program uses functions whose return types are function and procedure
types to assign values to routine variables. The comments tell you which
assignments are illegal and why.

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM proc;

 TYPE
 proctype1 = PROCEDURE (x : integer);
 proctype2 = PROCEDURE (x,y : integer);
 functype1 = FUNCTION (y : real) : integer;
 functype2 = FUNCTION (y : real) : real;

 VAR
 procvar : proctype1;
 funcvar : functype1;

 FUNCTION returnproc1 (z : integer) : proctype1; EXTERNAL;
 FUNCTION returnproc2 (z : integer) : proctype2; EXTERNAL;

 FUNCTION returnfunc1 : functype1; EXTERNAL;
 FUNCTION returnfunc2 : functype2; EXTERNAL;

 BEGIN
 procvar := returnproc1(1);
 procvar := returnproc2(2); {illegal -- function returns wrong type}
 funcvar := returnfunc1;
 funcvar := returnfunc2; {illegal -- function returns wrong type}
 END.

Example 4

Undefined routine variables are undetectable, and cause unpredictable
results. The following program avoids problems caused by such undefined
variables by assigning the value nil to those variables.

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog (input,output);

 VAR
 i,j : integer;
 procvar1 : PROCEDURE (a,b : integer);
 procvar2 : PROCEDURE (VAR c,d : integer);

 PROCEDURE alpha (x,y: integer); EXTERNAL;
 PROCEDURE beta (x,y: integer); EXTERNAL;

 PROCEDURE gamma (VAR x,y: integer); EXTERNAL;
 PROCEDURE delta (VAR x,y: integer); EXTERNAL;

 BEGIN
 read(i,j);

 {initialize variables of procedure type}

 procvar1 := nil;
 procvar2 := nil;

 {If -100 <= i <= -1, procvar1 is alpha;
 if 0 <= i <= 100, procvar1 is beta}

 IF (i IN [-100..-1] THEN procvar1 := addr(alpha)
 ELSE IF i IN [0..100] THEN procvar1 := addr(beta);

 {If -10 <= j <= -1, procvar2 is gamma;
 if 0 <= j <= 10, procvar2 is delta}

7- 13

 IF j IN [-10..-1] THEN procvar2 := addr(gamma)
 ELSE IF j IN [0..10] THEN procvar2 := addr(delta);

 {Call procvar1 and procvar2, unless they are nil}

 IF procvar1 = nil THEN writeln('i is out of range')
 ELSE call(procvar1,i,j);

 IF procvar2 = nil THEN writeln('j is out of range')
 ELSE call(procvar2,i,j);
 END.

Call Procedure

The predefined procedure call executes a call to the procedure specified
by a procedure variable. Its parameters are a procedure variable and the
actual parameters with which the procedure is to be called. Just as a
pointer is dereferenced with ^, a procedure variable is dereferenced with
call .

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog;

 TYPE
 proctype = PROCEDURE (x,y : integer);

 VAR
 procvar : proctype;

 PROCEDURE p (a,b : integer);
 BEGIN
 .
 .
 .
 END;

 BEGIN
 procvar := addr(p);
 call(procvar,1000,3500);

 p(1000,3500);
 END.

The calls to the procedures call and p are semantically equivalent.

The first parameter to call (procedure variable) cannot have the value
nil or be undefined.

Fcall Function

The predefined function fcall executes a call to the function specified
by a function variable. Its parameters are a function variable (which
specifies the function to be called) and the actual parameters with which
the function is to be called. Just as a pointer is dereferenced with ^,
a function variable is dereferenced with fcall .

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog;

 TYPE
 functype = FUNCTION (x,y : integer) : integer;

 VAR
 funcvar : functype;

7- 14

 v1 : ^integer;

 FUNCTION f (a,b : integer) : integer;
 BEGIN
 f := (a+b)*(a-b);
 END;

 BEGIN
 new(v1);

 funcvar := addr(f);
 v1^ := fcall(funcvar,27,94);

 v1^ := f(27,94);
 END.

 The calls to the functions fcall and f are semantically
 equivalent.

The first parameter to fcall (the function variable) cannot have the
value nil or be undefined.

Congruent Parameter Lists

Two parameter lists are congruent if they have the same number of
parameters, and if parameters in the same positions are equivalent.

Two parameters are equivalent if any one of the following is true:

 * They are value parameters of identical type.

 * They are VAR parameters of identical type.

 * They are parameters of procedure type with congruent parameter
 lists.

 * They are parameters of function type with congruent parameter
 lists and identical result types.

 * They are value conformant array parameters with equivalent
 schemas.

 * They are VAR conformant array parameters with equivalent schemas.

Two conformant array schemas are equivalent if all of the following are
true:

 * Both are PACKED, or neither is PACKED.

 * Corresponding index type specifications specify the same type.

 * They have the same element type. If they have schemas for element
 types, then those schemas are equivalent.

Example 1

This program uses procedure parameters whose own parameter lists do not
include conformant array parameters, function parameters, or other
procedure parameters.

 PROGRAM prog;

 VAR
 r : real;

 PROCEDURE proc (PROCEDURE procvar (x : integer; VAR y : char));
 BEGIN
 .

7- 15

 .
 END;

 FUNCTION func (PROCEDURE pvar (x : integer)) : real;
 BEGIN
 .
 .
 END;

 PROCEDURE p1 (a : integer; VAR b : char); EXTERNAL;
 PROCEDURE p2 (a : integer; VAR b : real); EXTERNAL;
 PROCEDURE p3 (VAR a : integer; b : char); EXTERNAL;
 PROCEDURE p4 (a,b : integer); EXTERNAL;
 PROCEDURE p5 (a : integer); EXTERNAL;

 BEGIN
 proc(p1);
 proc(p2); {illegal}
 proc(p3); {illegal}
 proc(p4); {illegal}
 proc(p5); {illegal}

 r := func(p5);
 r := func(p4); {illegal}
 r := func(p3); {illegal}
 r := func(p2); {illegal}
 r := func(p1); {illegal}
 END.

The procedure proc has a procedure parameter, procvar. The parameter
list of procvar is congruent with the parameter list of the procedure p1,
but not with those of p2, p3, p4, or p5. Therefore, p1 can be an actual
parameter for procvar, but p2, p3, p4, and p5 cannot.

The function func has a procedure parameter, pvar. The parameter list of
pvar is congruent with the parameter list of the procedure p5, but not
with those of p1, p2, p3, or p4. Therefore, p5 can be an actual
parameter for pvar, but p1, p2, p3, and p4 cannot.

Example 2

This program uses function parameters whose own parameter lists do not
include conformant array parameters, procedure parameters, or other
function parameters.

 PROGRAM prog;

 VAR
 r : real;

 PROCEDURE proc (FUNCTION funcvar : (a,b,c : char) : Boolean);
 BEGIN
 .
 .
 .
 END;

 FUNCTION func (FUNCTION fvar : (a,b,c : char) : real) : real;
 BEGIN
 .
 .
 .
 END;

 FUNCTION f1 (x,y,z : char) : Boolean; EXTERNAL;
 FUNCTION f2 (x,y,z : char) : real; EXTERNAL;

 BEGIN

7- 16

 proc(f1);
 proc(f2); {illegal}

 r := func(f2);
 r := func(f1); {illegal}
 END.

The procedure proc has a function parameter, funcvar. The parameter list
of funcvar is congruent with the parameter list of the function f1, but
not with that of f2. Therefore, f1 can be an actual parameter for
funcvar, but f2 cannot.

The function func has a function parameter, fvar. The parameter list of
fvar is congruent with the parameter list of the function f2, but not
with that of f1. Therefore, f2 can be an actual parameter for fvar but
f1 cannot.

Example 3

This program uses a procedure parameter, procvar. The parameter list of
procvar includes conformant array parameters, w and x, another procedure
parameter, p1, and another function parameter, f1.

 PROGRAM prog;

 TYPE
 itype = 1..10;

 VAR
 a : ARRAY [1..6] OF integer;
 b : PACKED ARRAY [3..7] OF integer;

 PROCEDURE alpha (m : integer); EXTERNAL;

 FUNCTION beta (n : real) : integer; EXTERNAL;

 PROCEDURE p (VAR cvar1 : ARRAY [a..b : itype] OF integer;
 cvar2 : PACKED ARRAY [c..d : itype] OF integer;
 PROCEDURE pvar (e : integer);
 FUNCTION fvar (f : real) : integer;
); EXTERNAL;

 PROCEDURE proc (PROCEDURE procvar
 (VAR w : ARRAY [g..h : itype] OF integer;
 x : PACKED ARRAY [i..j : itype] OF integer;
 PROCEDURE p1 (x1 : integer);
 FUNCTION f1 (x2 : real) : integer
)
);
 BEGIN
 procvar(a,b,alpha,beta);
 END;

 BEGIN
 proc(p);
 END.

The parameter lists of the formal procedure parameter procvar and the
procedure p are congruent: cvar1 and w are reference conformant array
parameters, cvar2 and x are value conformant array parameters, pvar and
function p1 are procedure parameters with congruent parameter lists, and
fvar and function f1 are function parameters with congruent parameter
lists.

Passing a routine as an actual parameter does not change its scope. If
it has access to a nonlocal entity before being passed as an actual
parameter, then it has access to that entity after being passed--even if
the entity is outside the scope of the routine to which the routine is

7- 17

passed.

Example 4

 PROGRAM prog (output);

 PROCEDURE outer2 (PROCEDURE procvar (v : integer));
 BEGIN {outer2}
 procvar(7);
 END; {outer2}

 PROCEDURE outer1 (p : integer);
 VAR
 x : integer;
 PROCEDURE inner (i : integer);
 BEGIN {inner}
 writeln(x,i,x+i,p);
 END; {inner}
 BEGIN {outer1}
 x := 5;
 outer2(inner);
 END; {outer1}

 BEGIN {prog}
 outer1(2);
 END. {prog}

The preceding program prints:

 5 7 12 2

Because the procedure inner has access to the nonlocal variables x and p
before being passed to outer2, it has access to x and p after being
passed to outer2 (even though x and p are outside the scope of outer2).

Hidden Parameters

Hidden parameters do not appear in formal or actual parameter lists, but
are nevertheless passed to routines. They are always integers.

You must know about hidden parameters in order to debug your program at
the assembly language level, and you must include them in the parameter
lists of external routines that are not written in Pascal. (For
information, see Chapter 9 .)

Table 7-3 shows which routines receive hidden parameters, how many
hidden parameters they receive, where the hidden parameters are in the
physical parameter order, and the values of the hidden parameters.

Table 7-3. Hidden Parameters

--
Routine With	Receives	Location of Hidden	Value of [Each]
		Parameters in	Hidden Parameter
		Physical Order	
--
ANYVAR parameters	One hidden parameter	Each one follows its	Size in bytes of the
	for each ANYVAR	corresponding ANYVAR	actual parameter.
	parameter.	parameter.	
--
Generic string	One hidden parameter	Each one follows its	Maximum length of
parameters (not	for each generic	corresponding generic	string.
(PACs)	string parameter.	string parameter.	
--

7- 18

Extensible parameter	One hidden parameter.	First parameter.	Number of actual
list			parameters passed
			(excluding hidden
			parameters).
--
Multi-dimensional	One hidden parameter	Each one follows	Element size, in
conformant array	for each nested	bounds values of	units meaningful to
parameters	conformant array.	corresponding nested	the code that indexes
		conformant array.	the array.
--
Routine parameters	One hidden parameter	Last parameters.	Static link for
	for each routine		containing routine.
	parameter.		
--
External SPL variable	One hidden parameter	First parameter	Same as SPL
--

ANYVAR Parameters

If a routine has ANYVAR parameters, its physical parameter order contains
one hidden parameter for each. In the physical parameter order, each
hidden parameter follows its corresponding ANYVAR parameter. The value
of each hidden parameter is the size of the corresponding ANYVAR
parameter (in bytes).

If the routine specifies the UNCHECKABLE_ANYVAR option, no hidden
parameters are passed for ANYVAR parameters.

The UNCHECKABLE_ANYVAR option is used when calling routines that were not
written in Pascal.

Example 1

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM prog;

 VAR
 x,y,z : integer;

 PROCEDURE p (a : integer;
 ANYVAR b, c : integer;
 d : integer;
 ANYVAR e : integer);
 BEGIN {p}
 .
 .
 .
 END; {p}

 BEGIN {prog}
 x := 2;
 y := 3;
 z := 5;
 p(1,x,y,4,z);
 END. {prog}

7- 19

Including hidden parameters (highlighted), the parameter list that
appears as p(1,x,y,4,z) in the preceding program is:

| |
| Value 1 |
Address of x

| |
| Size of x |
Address of y

| |
| Size of y |
Value 4

| |
| Address of z |
Size of z

You can access these hidden parameters with the predefined functions
bitsizeof and sizeof . If the UNCHECKABLE_ANYVAR procedure option is
specified, bitsizeof and sizeof return the size of the formal parameter
(for more information on UNCHECKABLE_ANYVAR, see Chapter 8).

Example 2

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog (output);

 TYPE
 t1 = ARRAY [1..20] OF integer;
 t2 = ARRAY [1..11] OF integer;

 VAR
 v : t1;

 PROCEDURE p1 (ANYVAR parm : t2);
 BEGIN {p1}
 writeln('Size of actual parameter = ', sizeof(parm):1);
 writeln('Bit size of actual parameter = ', bitsizeof(parm):1);
 END; {p2}

 PROCEDURE p2 (ANYVAR parm : t2);
 OPTION UNCHECKABLE_ANYVAR;
 BEGIN {p2}
 writeln('Size of formal parameter = ', sizeof(parm):1);
 writeln('Bit size of formal parameter = ', bitsizeof(parm):1);
 END; {p2}

 BEGIN {prog}

7- 20

 p1(v);
 p2(v);
 END. {prog}

The preceding program prints:

 Size of actual parameter = 80
 Bit size of actual parameter = 640
 Size of formal parameter = 44
 Bit size of formal parameter = 352

The procedure p1 does not specify the option UNCHECKABLE_ANYVAR, so it
can access the hidden parameter associated with the actual parameter v.
The functions sizeof(parm) and bitsizeof(parm) return the size of the
actual parameter v.

The procedure p2 specifies the option UNCHECKABLE_ANYVAR, so it cannot
access the hidden parameter associated with the actual parameter v,
because it is omitted from the physical parameter order. The functions
sizeof(parm) and bitsizeof(parm) return the size of the formal parameter
parm (that is, the sizes of the type t2).

Generic String Parameters

If a routine has generic string parameters, its physical parameter order
contains one hidden parameter for each. In the physical parameter order,
each hidden parameter follows its corresponding actual string parameter.
The value of each hidden parameter is the maximum length of the
corresponding actual string parameter.

Extensible Parameter List

If a routine has an extensible parameter list, its physical parameter
order begins with a hidden parameter. The value of the hidden parameter
is the number of actual parameters passed, excluding hidden parameters.
This value is always greater than or equal to the number of nonextension
parameters, because the routine must have a value for each of them.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog;

 PROCEDURE p (x : integer;
 y : real);
 OPTION EXTENSIBLE 1
 DEFAULT_PARMS (x := 0,
 y := 1.0);
 BEGIN
 .
 .
 END;
 BEGIN
 p; {value of hidden parameter is one}
 p(9); {value of hidden parameter is one}
 p(9, 2.7); {value of hidden parameter is two}
 p(, 2.7); {value of hidden parameter is two}
 END.

The procedure p has one nonextension parameter, so the value of the
hidden parameter for any call to p is at least one.

In the first call above, p receives one value from DEFAULT_PARMS; the
value of the hidden parameter is one.

In the second call, p receives one value from the actual parameter list;
the value of the hidden parameter is one.

7- 21

In the third call, p receives two values from the actual parameter list;
the value of the hidden parameter is two.

In the fourth call, p receives one value from DEFAULT_PARMS and one from
the actual parameter list; the value of the hidden parameter is two. For
more information on OPTION EXTENSIBLE and OPTION DEFAULT_PARMS, see
Chapter 8 .

Multidimensional Conformant Array Parameters

If a routine has multidimensional conformant array parameters, its
physical parameter order contains one hidden parameter for each nested
conformant array element. In the physical parameter order, each hidden
parameter follows the actual parameters for the bounds of its
corresponding dimension. The value of each hidden parameter is the size
of its corresponding dimension. These hidden parameters are not
accessible to the programmer. The program uses them to calculate values
of the sizeof function.

Example

 PROGRAM prog;

 TYPE
 t = 1..10;

 VAR
 a : ARRAY [1..3,1..8,1..4] OF integer;

 PROCEDURE p (b : ARRAY [lb1..ub1 : t;
 lb2..ub2 : t;
 lb3..ub3 : t] OF integer; EXTERNAL;

 BEGIN
 p(a);
 END.

7- 22

The call p(a) passes two hidden parameters to p, one for each nested
conformant array dimension. Including hidden parameters (highlighted),
the parameter list that appears in the preceding program as p(a) is:

| |
| Address of a |
Value 1 (lb1)

| |
| Value 3 (ub1) |
Value 1 (lb2)

| |
| Value 8 (ub2) |
(UB2-LB2+1) *(UB3)

| |
| Value 1 (lb3) |
Value 4 (ub3)

| |
| (UB3) |

Routine Parameters

If a routine has routine parameters, its physical parameter order
contains one hidden parameter for each routine parameter. (This is not
true of parameters that are routine variables.) These hidden parameters
are at the end of the physical parameter order, in the same order as
their corresponding routine parameters. The value of a hidden parameter
for a specific routine parameter is the static link. This static link
allows access to the variables and parameters of the enclosing routines.

NOTE Level one routines do not require static links. Therefore, they
 are the only type of routine parameters that can be passed to
 extensible parameters.

Example

 PROGRAM prog (input,output);

 PROCEDURE p (PROCEDURE param1 (x : integer);
 PROCEDURE param2 (y : integer);
 FUNCTION param3 (z : integer) : integer;
 v : integer);

7- 23

 VAR
 i : integer;
 BEGIN {p}
 param1(v);
 param2(v);
 i := param3(v);
 END; {p}

 PROCEDURE actual1 (a : integer);
 PROCEDURE actual2 (b : integer);
 FUNCTION actual3 (c : integer) : integer;
 BEGIN {actual3}
 p(actual1,actual2,actual3,100);
 END; {actual3}
 BEGIN {actual2}
 .
 .
 END; {actual2}
 BEGIN {actual1}
 .
 .
 END; {actual1}
 BEGIN
 .
 .
 .
 END.

Including hidden parameters (highlighted), the physical parameter order
that appears in the preceding program as p(actual1,actual2,actual3,100)
is:

| |
| Procedure label for procedure actual1 |
Procedure label for procedure actual2

| |
| Function label for function actual3 |
Value 100

| |
| Static link for procedure actual1 (nil) |
Static link for procedure actual2 (actual1's locals)

| |
| Static link for function actual3 (actual2's locals) |

7- 24

EXTERNAL SPL VARIABLE

The EXTERNAL SPL VARIABLE directive causes the compiler to pass a hidden
parameter that specifies the presence of parameters. The hidden
parameter is a 32 bit integer with the mask right justified as required
by SPL/V.

Example

 program prog1;
 var count : integer;

 procedure ext_spl(p1, p2, p3 : integer);
 external spl variable;

 begin
 ext_spl(1,,count);
 ext_spl(1);
 end.

Including hidden parameters (highlighted), the physical parameter order
that appears in the preceding program as ext_spl(1,,i) is:

| |
| Value 5 |
Value 1

| |
| Value 0 (space |
| holder) |
Value of count

8- 1

Chapter 8 Procedure Options
Procedure options, which immediately follow a routine head, can specify:

 * That the routine has an extensible parameter list--that is, one or
 more optional parameters (EXTENSIBLE option).

 * Default values for formal parameters, allowing their actual
 parameters to be left out of actual parameter lists (DEFAULT_PARMS
 option).

 * That formal ANYVAR parameters do not have the usual hidden
 parameters that specify their sizes (UNCHECKABLE_ANYVAR option).

 * That the loader does not resolve the routine until run time
 (UNRESOLVED option).

 * That the routine is duplicated in-line wherever the program calls
 it (INLINE option).

A routine heading can specify any combination of procedure options.

Example

 PROCEDURE alpha (a,b,c : integer)
 OPTION EXTENSIBLE 2;

 FUNCTION beta (x : integer; y : real) : boolean
 OPTION DEFAULT_PARMS (x:=0, y:=0);

 FUNCTION delta (i,j,k : integer) : integer
 OPTION EXTENSIBLE 1
 DEFAULT_PARMS (i:=0, j:=1, k:=1)
 UNRESOLVED;

 PROCEDURE gamma (ANYVAR r,s : char)
 OPTION UNCHECKABLE_ANYVAR;

 PROCEDURE epsilon (ANYVAR t : real)
 OPTION UNRESOLVED
 UNCHECKABLE_ANYVAR;

 FUNCTION zeta (ANYVAR u : real) : integer
 OPTION UNCHECKABLE_ANYVAR
 DEFAULT_PARMS (u:=nil)
 UNRESOLVED;

EXTENSIBLE

The EXTENSIBLE routine option identifies a procedure that has an
extensible parameter list.

An extensible parameter list has a fixed number of nonextension
parameters and a variable number of extension parameters. The integer n
after the keyword EXTENSIBLE specifies that the first n parameters in the
formal parameter list are nonextension parameters (n can be zero). Any
other parameters are extension parameters.

A nonextension parameter is required. Every call to the routine must
provide an actual parameter for it.

An extension parameter is optional. A call to the routine can omit its
actual parameter from the actual parameter list. However, if the actual
parameter list contains an actual parameter for the x th extension
parameter, it must contain actual parameters for those before it.

8- 2

NOTE You can pass only level 1 procedures to EXTENSIBLE.

 You cannot pass large (greater than 8 bytes) value parameters to an
 extension parameter.

Example

 PROGRAM prog;
 $STANDARD_LEVEL 'EXT_MODCAL'$
 VAR
 b : boolean;

 FUNCTION f (i,j : integer) : boolean
 OPTION EXTENSIBLE 2; {both parameters are required}
 BEGIN
 .
 .
 END;

 PROCEDURE p (x,y : integer)
 OPTION EXTENSIBLE 0; {no parameters are required}
 BEGIN
 .
 .
 END;

 PROCEDURE q (a : integer;
 b : real;
 c : char;
 d : integer)
 OPTION EXTENSIBLE 2; {first two parameters are required}
 BEGIN
 .
 .
 END;

 (Example is continued on the next page .)

 BEGIN
 b := f(36,45); {legal}
 b := f(20); {illegal}
 b := f(,66); {illegal}
 b := f; {illegal}

 p; {legal}
 p(); {legal}
 p(100); {legal}
 p(250,13); {legal}
 p(,60); {illegal}

 q(5,9.4); {legal}
 q(4,3.0,'z'); {legal}
 q(7,8.8,'w',55); {legal}
 q(2,1.1,,93); {illegal}
 q(,); {illegal}
 q(,,45); {illegal}
 q(400,,22); {illegal}
 END.

Both parameters of the function f are nonextension parameters. Every
call to f must specify actual parameters for them.

Both parameters of the procedure p are extension parameters. A call to p

8- 3

can specify or omit actual parameters for them. If the second actual
parameter is specified, the first must also be specified.

The first two parameters of the procedure q are nonextension parameters;
the last two are extension parameters. A call to q must specify actual
parameters for the first two parameters, but it can specify or omit
actual parameters for the last two parameters. If the fourth actual
parameter is specified, the third must also be specified.

The number of extension parameters in an extensible parameter list is
flexible: you can add new ones later, and you need not recompile
programs that call the routine. The updated version of the routine can
use the predefined function haveextension to determine whether it was
passed values for specific extension parameters.

Without the DEFAULT_PARMS procedure option, the predefined function
haveextension returns true and false under these conditions:

Function	Returns true	Returns false

haveextension(x) where x	If the routine was passed	If the routine was not
is a formal parameter of	an actual parameter for	passed an actual
the routine that called	x.	parameter for x.
haveextension .		

NOTE A parameter cannot be referenced when haveextension would return
 false.

Example

The procedure p has two nonextension parameters:

 PROCEDURE p (n1,n2 : integer)
 OPTION EXTENSIBLE 2;
 BEGIN {p}
 .
 .
 END; {p}

The program oldprog calls the procedure p:

 PROGRAM oldprog;

 PROCEDURE p (n1,n2 : integer)
 OPTION EXTENSIBLE 2;
 EXTERNAL;
 BEGIN
 p(1,2);
 END.

The procedure p is updated and two new parameters are added. It uses the
predefined function haveextension to determine whether its two new
extension parameters were passed to it.

 PROCEDURE p (n1,n2,e1,e2 : integer)
 OPTION EXTENSIBLE 2;
 BEGIN {p}
 IF haveextension(e1) AND haveextension(e2) THEN BEGIN

8- 4

 .
 .
 END;
 END; {p}

The procedure p must be recompiled, but the program oldprog need not be.
Its call to p is still legal, as is the call to p from the program
newprog:

 PROGRAM newprog;
 PROCEDURE p (n1,n2,e1,e2 : integer)
 OPTION EXTENSIBLE 2;
 EXTERNAL;
 BEGIN
 p(1,2,3,4);
 END.

A call to a routine with an extensible parameter list contains a hidden
parameter. See Chapter 7 for details.

NOTE A routine with n extensible parameters is not the same as a
 procedure with n parameters that does not have EXTENSIBLE, even if
 the two procedures are otherwise identical. For example, these
 procedures are not the same:

 PROCEDURE proc (a,b : char) PROCEDURE proc (a,b : char);
 OPTION EXTENSIBLE 2;
 BEGIN BEGIN
 END; END;

DEFAULT_PARMS

The DEFAULT_PARMS procedure option specifies default values to be
assigned to formal parameters when actual parameters are not passed to
them. If a nonextension parameter has a default value, its actual
parameter can be left out of the actual parameter list, and its default
value will be assigned to the formal parameter.

A default value must be a constant expression that is assignment
compatible with its parameter. The value nil is the only legal default
for a VAR, ANYVAR, function or procedure parameter.

Example

 PROGRAM prog;

 PROCEDURE p (a,b,c : integer)
 OPTION DEFAULT_PARMS (b:=2,c:=3); {two have default values}
 BEGIN
 .
 .
 .
 END;

 BEGIN
 p(10); {a:=10, b:=2 (default), c:=3 (default)}
 p(10,20); {a:=10, b:=20, c:=3 (default)}
 p(10,,30); {a:=10, b:=2 (default), c:=30}
 p(); {illegal}
 p(,20); {illegal}
 END.

If an extension parameter has a default value, its actual parameter can
be left out of the middle or off the end of the actual parameter list.

8- 5

If it is left out of the middle, its default value is assigned to the
formal parameter. If it is left off the end, no value is assigned to the
formal parameter.

Example

 PROGRAM prog;

 PROCEDURE p (a,b,c : integer)
 OPTION EXTENSIBLE 0 {all parameters are extensible}
 DEFAULT_PARMS (a:=1,b:=2,c:=3); {all have default values}
 BEGIN
 .
 .
 .
 END;

 BEGIN
 p(9,,5); {a:=9, b:=2 (default), c:=5}
 p(6,7); {a:=6, b:=7, no value assigned to c}
 p(8); {a:=8, no value assigned to b or c}
 p(,4,5); {a;=1 (default), b:=4, c:=5}
 END.

Table 8-1 tells the value that is passed to a formal parameter, x,
when x is:

 * Nonextension or extension.

 * Its actual parameter is specified or not specified.

 * It is before, the same as, or after the parameter n, where n is
 the last parameter for which an actual parameter is specified.

Table 8-1. Values Passed to Formal Parameter x

--
Type of Parameter	Actual	Position of x informal parameter list p(..,n,..)
	Parameter	where n is the last actual parameter specified in
	for x is	the actual parameter list p(..,n)
	Specified	
--
		x is before n:	x is n:	x is after n:
		p(.x.,n,..)	p(..,x,..)	p(..,n,.x.)
--
Nonextension	Yes	Actual value	Actual value	Impossible
Parameter				becaus e x > n
--
Nonextension	No	Default value if	Impossible	Illegal unless
Parameter		specified; error	because x=n	defaulted, then
		otherwise		defaulted value
--
Extension Parameter	Yes	Actual value	Actual value	Impossible
				because x > n
--
Extension Parameter	No	Default value if	Impossible	No value
		specified; error	because x=n	
		otherwise		
--

8- 6

Haveoptvarparm Function

A routine can use the predefined function haveoptvarparm to determine
whether the value that it received for a formal reference parameter was
passed as an actual parameter or defaulted.

The predefined function haveoptvarparm returns true and false under these
conditions:

Function	Returns true	Returns false

haveoptvarparm(x) where x	If the routine was passed	If the routine was not
is a formal reference	an actual parameter for x	passed an actual
parameter of the routine		parameter for x (in which
that called		case, x assumes its
haveoptvarparm		default value, nil)

Example

 PROGRAM prog;
 $STANDARD_LEVEL 'EXT_MODCAL'$

 VAR
 i : integer;

 PROCEDURE p (VAR x,y : integer)
 OPTION DEFAULT_PARMS (x := nil, y := nil);
 VAR
 b : boolean;

 BEGIN
 b := haveoptvarparm(x); {b := true for p(i)}
 b := haveoptvarparm(y); {b := false for p(i)}
 END;

 BEGIN
 p(i); {x=i, y=nil (default)}
 END.

Table 8-2 tells the value of haveoptvarparm(x) when the formal
parameter x meets the following conditions:

 * Nonextension or extension.

 * Its actual parameter is specified or not specified.

 * It is before, the same as, or after the parameter n, where n is
 the last parameter for which an actual parameter is specified.

8- 7

Table 8-2. Values Returned by Haveoptvarparm(x)
--
Type of Parameter	Actual	Position of x in formal parameter list p(..,n,..)
	Parameter	where n is the last actual parameter specified in
	for x is	the actual parameter list p(..,n)
	Specified	
--
| | | x is before n: | x is n: | x is after n: |
| | | p(.x.,n,..) | p(..,x,..) | p(..,n,.x.) |
--
| Nonextension | Yes | true | true | Impossibl e x > n |
| Parameter | | | | |
--
| Nonextension | No | false | Impossible, | false |
| Parameter | | | because x=n | |
--
- Extension Parameter - Yes - true - true - Impossible, x > n -
--
| Extension Parameter | No | false | Impossible, | false |
| | | | because x=n | |
--

Haveextension Function

With the DEFAULT_PARMS procedure option, the predefined function
haveextension returns true and false under these conditions:

- Function - Returns true - Returns false -

haveextension(x) where x	If the routine was passed	If the routine was not
is a formal parameter of	an actual parameter for	passed an actual
the routine that called	x, or if DEFAULT_PARMS	parameter for x, and no
haveextension .	specified a default for	default was specified for
	x .	x with DEFAULT_PARMS.

Example

 PROGRAM prog;
 $STANDARD_LEVEL 'EXT_MODCAL'$

 PROCEDURE p (a,b,c : integer)
 OPTION EXTENSIBLE 2
 DEFAULT_PARMS (b:=2);

 BEGIN
 END;

 BEGIN {haveextension(b)} {haveextension(c)}
 p(10,20); {true} {false}
 p(10,20,30); {true} {true}
 p(10); {true} {false}
 END.

Table 8-3 tells the value of haveextension(x) when the formal
parameter x is:

 * Nonextension or extension.

 * Its actual parameter is specified or not specified.

 * It is before, the same as, or after the parameter n, where n is
 the last parameter for which an actual parameter is specified.

8- 8

Table 8-3. Values Returned by Haveextension(x)

--
	Actual	Position of x informal parameter list p(..,n,..)
	Parameter	where n is the last actual parameter specified in the
Type of Parameter	for x is	actual parameter list p(..,n)
	Specified	
--
		x is before n:	x is n:	x is after n:
		p(.x.,n,..)	p(..,x,..)	p(..,n,.x.)
Nonextension	Yes	Calling haveextension(x) causes a compile-time error.		
Parameter	No			
--

Extension Parameter	Yes	true	true	Impossible
--
	No	true	Impossible,	false
			because x=n	
--

UNCHECKABLE ANYVAR

The UNCHECKABLE_ANYVAR procedure option specifies that ANYVAR hidden
parameters will not be created for a routine. This allows its parameter
list to be compatible with the parameter list of a routine written in a
language other than HP Pascal. (See Chapter 7 for an explanation of
ANYVAR parameters.)

Example

 PROCEDURE cproc (ANYVAR ip1,ip2 : integer)
 OPTION UNCHECKABLE_ANYVAR;
 EXTERNAL C;

The disadvantage of UNCHECKABLE_ANYVAR is that it causes the predefined
functions sizeof and bitsizeof to return the sizes of the types of the
formal ANYVAR parameters, instead of the sizes of the actual parameters.

Example

 PROGRAM prog;
 TYPE
 t1 : PACKED ARRAY [1..50] OF char;
 t2 : PACKED ARRAY [1..100] OF char;
 VAR
 y : t1;

 PROCEDURE p1 (ANYVAR a : t2)
 OPTION UNCHECKABLE_ANYVAR;
 VAR
 b : t1;
 i : 1..100;
 BEGIN {p1}
 x := sizeof(a); {x is always 100}
 END; {p1}

 BEGIN {prog}
 END. {prog}

The UNCHECKABLE_ANYVAR option is illegal with a routine that has no
ANYVAR parameters.

8- 9

UNRESOLVED

The UNRESOLVED procedure option prevents the compiler/linker/loader from
resolving a routine until the program calls it. The routine must be at
level one.

To resolve a routine is to associate it with its system name. Calling an
OPTION UNRESOLVED routine implicitly resolves it at run-time, before it
is called. The routine must be resolvable.

Alternatively, an OPTION UNRESOLVED routine can be explicitly resolved by
calling the predefined function addr with the routine name as its
parameter. Then addr returns a routine reference that can be assigned to
a routine variable and called with the predefined procedure call or
fcall . If the routine cannot be resolved, addr returns nil .

Example

 PROGRAM p (output);

 VAR
 pv : PROCEDURE;

 PROCEDURE p
 OPTION UNRESOLVED;
 EXTERNAL;

 BEGIN {p}
 p; {This ...}

 call(addr(p)); {is equivalent to this ...}

 pv := addr(p); {and this}
 call(pv);
 END. {p}

NOTE On the HP-UX operating system, the UNRESOLVED option causes the
addr function to return nil whether or not the specified routine is

 resolved.

INLINE

The INLINE procedure option duplicates a routine wherever the program
calls it. It makes your program bigger, but faster. It is worthwhile
for short routines and when speed is more important than size.

Example

The program:

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM prog;
 VAR
 i,j,k : integer;

 PROCEDURE max (l1,l2: integer;
 VAR l3 : integer)
 OPTION INLINE;
 BEGIN
 IF l1 > l2 THEN
 l3 := l1
 ELSE
 l3 := l2 ;
 END;

8- 10

 BEGIN
 max(10,20,i);
 max(i,j,k);
 END.

is equivalent to the program:

 PROGRAM prog;
 VAR
 i,j,k : integer;

 BEGIN

 {max(10,20,i)}

 IF 10 > 20 THEN
 i := 10
 ELSE
 i := 20;

 {max(i,j,k)}

 IF i > j THEN
 k := i
 ELSE
 k := j;
 END.

The INLINE procedure option requires STANDARD_LEVEL 'EXT_MODCAL'. The
equivalent INLINE compiler option does not. Refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation, for more information on the INLINE compiler option.

You cannot debug inline routines with a symbolic debugger. You can debug
routines that call inline routines, but the inlined code is treated as a
single statement and skipped. Breakpoints can only be set before or
after the inlined code.

9- 1

Chapter 9 External Routines

An external routine is a routine that is not in the compilation unit that
calls it. Its source language can be the same as that of the calling
compilation unit or it can be different. This chapter explains:

 * The EXTERNAL directive, which allows an HP Pascal compilation unit
 to access an external routine.

 * How an HP Pascal program accesses external routines written in C,
 COBOL II, FORTRAN 77, FORTRAN 66/V, and SPL.

 * How a switch stub allows a Native Mode HP Pascal program to access
 an external routine in a Compatibility Mode SL.

 * How a program written in C, COBOL II, FORTRAN 66/V, FORTRAN 77, or
 SPL accesses an external HP Pascal routine.

EXTERNAL Directive

The EXTERNAL directive allows an HP Pascal compilation unit to access an
external routine (a routine in another compilation unit). The source
code of the external routine can be any one of the following languages:

 * HP Pascal
 * HP Pascal/V
 * HP C
 * HP COBOL II
 * FORTRAN 66/V
 * HP FORTRAN 77
 * SPL

Syntax

 [C]
 [COBOL]
EXTERNAL[FORTRAN]
 [FTN77]
 [SPL]
 [SPL VARIABLE]
Parameters

None The source code of the external routine is HP Pascal or
 Pascal/V.

C The source code of the external routine is C. See Table
 9-1 for corresponding HP Pascal and C types.

COBOL The source code of the external routine is COBOL II. See
 Table 9-2 for corresponding HP Pascal and COBOL II
 types.

FORTRAN The source code of the external routine is FORTRAN 66/V.
 The compilation unit that makes the call must also
 contain the compiler option HP3000_16 (see compiler
 options in the HP Pascal/iX Reference Manual or the HP

Pascal/HP-UX Reference Manual). See Table 9-3 for
 corresponding HP Pascal and FORTRAN 66/V types.

FTN77 The source code of the external routine is FORTRAN 77.
 See Table 9-3 for corresponding HP Pascal and
 FORTRAN 77 types.

9- 2

SPL The source code of the external routine is SPL, without
 option variable parameters. The compilation unit that
 makes the call must also contain the compiler option
 HP3000_16 (see compiler options in the HP Pascal/iX
 Reference Manual or the HP Pascal/HP-UX Reference

Manual). See Table 9-4 for corresponding HP Pascal
 and SPL types.

SPL VARIABLE The source code of the external routine is SPL, with
 optional variable parameters. You must specify SPL
 VARIABLE (rather than SPL) if the external routine has
 option parameters, even if you do not omit parameters
 when you call the routine. The compilation unit that
 makes the call must also contain the compiler option
 HP3000_16 (see compiler options in the HP Pascal/iX

Reference Manual or the HP Pascal/HP-UX Reference
Manual). See Table 9-4 for corresponding HP Pascal

 and SPL types.

The programmer is responsible for matching the formal parameters and
result type of the routine containing the EXTERNAL directive with the
formal parameters and result type of the external routine. The matching
rules are:

 * Corresponding formal parameter lists must have the same number of
 parameters in the same order.

 * Corresponding formal parameters must be of corresponding types.
 (Correspondence depends upon the source language of the external
 routine. See the parameter descriptions, below.)

 * Corresponding formal parameters can have different names.

The INTRINSIC directive is more flexible about matching. See Chapter 10
 for details.

The EXTERNAL directive replaces the block in a routine declaration (see
the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual
for details). The declaration containing the EXTERNAL directive can be
at any level, but the external routine itself must be at level one in its
own compilation unit.

Example 1

The Pascal program Pascal_Pascal calls the external Pascal procedure
psubproc. This is the program:

 $GLOBAL$
 PROGRAM Pascal_Pascal(output);
 CONST
 looplimit = 10;
 TYPE
 loopbound = 1..looplimit;
 VAR
 loop : loopbound;
 global,
 dynamic,
 static : integer;
 PROCEDURE psubproc (parm1 : integer;
 VAR parm2 : integer); EXTERNAL;
 BEGIN {pascal_pascal}
 dynamic := 0;
 FOR loop := 1 to looplimit DO BEGIN
 IF loop <= 5 THEN
 static := 10
 ELSE
 static := 20;
 global := loop;
 psubproc(static,dynamic);
 write('Cycle = ', loop, 'Total = ', dynamic);
 END;
 write('Finish processing');

9- 3

 END. {pascal_pascal}

This is the external Pascal procedure:

 $EXTERNAL$
 PROGRAM PASCALSUB;
 VAR
 global : integer;
 PROCEDURE psubproc (adder : integer;
 VAR total : integer);
 VAR
 localconstant : integer;
 BEGIN {psubproc}
 IF (global MOD 2) = 0 THEN
 localconstant := adder * 2
 ELSE
 localconstant := adder;
 total := total + localconstant;
 END; {psubproc}
 BEGIN
 END.

You can use the EXTERNAL directive with procedure declarations in the
implement part of a module. In such a procedure declaration, repeating
the formal parameters is optional. If you do repeat them, they must be
identical to those in the export section.

Example 2

 MODULE m;

 EXPORT
 PROCEDURE proc1 (VAR parm1 : integer;
 VAR parm2 : char);

 PROCEDURE proc2 (VAR parm1 : integer);

 IMPLEMENT
 PROCEDURE proc1; {formal parameters omitted}
 EXTERNAL;

 PROCEDURE proc2 (VAR parm1 : integer); {formal parameter repeated}
 EXTERNAL;
 END;

Use the EXTERNAL directive in exported procedures to link routines
written in other languages into your program. You are responsible for
ensuring that the formal parameters of the exported procedure correspond
to those of the actual external procedure.

NOTE Do not confuse the EXTERNAL directive with the EXTERNAL compiler
 option. Refer to the HP Pascal/iX Reference Manual or the HP

Pascal/HP-UX Reference Manual , depending on your implementation,
 for information on the EXTERNAL compiler option.

Calling HP C from HP Pascal

The table and example in this section assume that the HP Pascal program
and the C routine that it calls are both compiled in Native Mode. If the
C routine is in a Compatibility Mode SL instead, you must write a switch
stub to access it from your HP Pascal program (see "Switch Stubs").

For more information on C types, please refer to the HP C Programmer's
Guide .

Table 9-1 matches corresponding HP Pascal and C types. It contains
only the types that are acceptable for formal intrinsic parameters. The
variable n is an integer.

9- 4

Table 9-1. Corresponding HP Pascal and HP C Types

--
HP Pascal Type	Corresponding HP C Types
--
Array: Not PACKED	Array of corresponding type1
--
Array: PACKED	Array of corresponding type1
--
Bit16	unsigned short
--
Bit32	unsigned int
--
Bit52	struct with two unsigned ints
--
Boolean (false = 0, true = 1)	Character or integer (false = 0, true
	<> 0)2
--
Char	unsigned char
--
Enumerated 256 or fewer elements	unsigned char3
--
Enumerated 257 or more elements	unsigned short or int3
--
File	Not available8
--
Function	Function
--
Function parameter or variable	Pass a pointer that references a C
	function6
--
Integer	int or long
--
Longint	struct with two unsigned ints
--
Longreal	double or long float
--
PAC of n characters	Array of char, index = 1.. n -1
--
| | |
| Pointer: Not EXTNADDR | Pointer to corresponding type |

9- 5

| | |
--
Pointer: EXTNADDR	Long ptr to corresponding type7
--
Procedure	void function
--
Procedure parameter or variable	Pass a pointer that references a C
	function6
--
Real	float9
--
Record	struct or union4
--- -----
Set	Not available
--
Shortint	short
--
String	char *5
--
String[n]	char *5
--
VAR parameter: Not EXTNADDR	Pointer to parameter
--
VAR parameter: EXTNADDR	Long pointer to parameter7
--
0..65535	unsigned short
--

Table 9-1 Notes

 1. The lower bound of an HP Pascal array can be any integer, but the
 lower bound of a C array must be zero.

 2. HP Pascal allocates one byte for a Boolean variable. It stores
 the value in the rightmost bit.

 3. A C enumerated variable corresponds to an HP Pascal integer , but
 an HP Pascal enumerated variable corresponds to a C unsigned char
 if it is one byte, a C unsigned short if it is two bytes, and a C

unsigned int if it is four bytes.

 4. A C union type corresponds to the variant part of an HP Pascal
 record type. For example:

 The C type union

 typedef union
 {
 int In ;

9- 6

 real Re ;
 unsigned char Ch ;
 } UnionType ;

 corresponds to the untagged HP Pascal record variant

 UnionType = RECORD CASE integer OF
 1 : (In : integer) ;
 2 : (Re : real) ;
 3 : (Ch : char) ;
 END ;

 while the tagged HP Pascal record variant

 Tagged_UnionType = RECORD CASE Tag : integer OF
 1 : (In : integer) ;
 2 : (Re : real) ;
 END ;

 corresponds to the C struct type

 typedef struct
 {
 Tag : int ;
 union
 {
 int : In ;
 float : Re ;
 }
 } Tagged_UnionType ;

 5. The value of an HP C variable of type (char *) ends with a NULL.
 The HP Pascal type string[n] , where n is the maximum length,
 corresponds to the HP C type (char *) , but has a different layout.

 HP Pascal treats string parameters to external C routines
 differently. Just before the call to the C routine, HP Pascal
 puts a NULL character after the current length of the HP Pascal
 string parameter. The address sent to the C routine is that of
 the data part of the HP Pascal string parameter. When the C
 routine returns to the HP Pascal program, HP Pascal strips the
 NULL character from the HP Pascal string and updates its current
 length.

 6. To pass an actual parameter of this type to a C routine, declare
 the formal parameter in the EXTERNAL declaration to be of type

integer (in the Pascal compilation unit that makes the call).
 Before calling the C routine, call the predefined function

waddress to get the integer address of the Pascal routine. Pass
 the integer address to the C routine. For example:

 A C function:

 int Signal (Sig , Func)
 int Sig ;
 int (*Func) () ; /* functional parameter */
 {
 ...
 }

 A portion of the HP Pascal program that calls the C function:

 { EXTERNAL declaration for C function Signal }
 FUNCTION Signal (Sig : integer ; Func : integer) ;
 EXTERNAL C ;

 { Procedure whose address is passed to C function Signal }
 PROCEDURE Signal_Handler (Sig : integer) ;

9- 7

 BEGIN
 ...
 END ;

 BEGIN { main program }
 { Actual call to C function Signal }
 Dummy := Signal(3 , waddress(Signal_Handler)) ;
 END .

 7. Declaring a long pointer in C is analogous to declaring an
 ordinary pointer in Pascal, except that the "*" is replaced by
 "^". For example,

 int Func (Rec)
 struct Stat ^Rec ;

 declares Rec to be a VAR $EXTNADDR$ of type Stat.

 8. Limited compatibility exists if the callee is written in C to do
 raw I/O (using read(2) or write(2)) on a Pascal file. Such
 functions can be called from Pascal by passing the result of a
 call to fnum(pascal_file) to the C function.

 9. If you are passing a real parameter to a C routine that expects a
 float you must compile the routine in ANSI mode or with the +r
 option to the C compiler. This insures that floats are not
 promoted to doubles. Otherwise, you should pass a longreal value.
 (For more information refer to the HP C Programmer's Guide .

Example 1

The Pascal program Pascal_C calls the external C routine add, passing a
VAR parameter.

Pascal program:

 PROGRAM Pascal_C (input,output);

 VAR
 int1,
 int2,
 int3 : integer;

 PROCEDURE add (parm1 : integer;
 parm2 : integer;
 VAR parm3 : integer); EXTERNAL C;

 BEGIN
 int1 := 25000;
 int2 := 30000;
 add(int1,int2,int3);
 writeln(int3);
 END.

C routine:

 void add (a,b,c)
 int a,b;
 int *c;
 {
 *c = a + b;
 }

Example 2

The Pascal program Pascal_C2 calls the external C routine cread. The
Pascal program passes a string parameter to the C routine.

9- 8

Pascal program:

 PROGRAM Pascal_C2 (output);

 VAR
 str : string[40];

 FUNCTION c_read (VAR s : string) : Boolean; EXTERNAL C;

 BEGIN
 setstrlen(str,0);
 IF c_read(str) THEN
 writeln('str = ', str)
 ELSE
 writeln('couldn''t read str');
 END.

C routine:

 #include <stdio.h>
 int c_read(s) /* no Boolean type in C */
 char *s;
 {
 return (fgets(stdin,s) >= 0);
 }

Calling COBOL II from HP Pascal

The table and example in this section assume that the HP Pascal program
and the COBOL II routine that it calls are both compiled in Native Mode.
If the COBOL II routine is in a Compatibility Mode SL instead, you must
write a switch stub to access it from your HP Pascal program (see "Switch
Stubs").

Table 9-2 matches corresponding HP Pascal and COBOL II types. (It
contains only the types that are acceptable for formal intrinsic
parameters.) The variable n is an integer.

Table 9-2. Corresponding HP Pascal and Cobol II Types

- HP Pascal Type - Corresponding Cobol II Types -

| Array: Not PACKED | Array of corresponding type. |
| | Specify SYNC. |

| Array: PACKED | Array of corresponding type. |
| | Do not specify SYNC. |

- Boolean (false = 0, true = 1) - Not available. -

- Char - PIC X (8 bits). -

- Enumeration - Not available. -

- File - Not available. -

- Function - Not available. -

- Function parameter or variable - Not available. -

Integer	(1) PIC S9(5) to S9(9)
	(2) Level 01, 77, or SYNC without
	$CONTROL SYNC 16
	(3) COMP or BINARY

- Longreal - Not available. -

9- 9

- PAC of n characters - PIC X(n) (8 bits). -

- Pointer - Not available. -

- Procedure - Not available. -

- Procedure parameter or variable - Not available. -

- Real - Not available. -

- Record - Build equivalent record. -

- Set - Not available. -

Shortint	Any one of the following:
	(1) PIC S9 to S9(4)
	(2) LEVEL 01, 77, or SYNC
	without $CONTROL SYNC 16
	(3) COMP or BINARY

- String - Not available. -

- String[n] - Build equivalent record. -

- VAR parameter - Default. -

Example

The Pascal program Pascal_COBOL calls the external COBOL II routine
subprog1.

Pascal program:

 PROGRAM Pascal_COBOL (input,output);

 VAR
 int1,
 int2,
 int3 : integer;

 PROCEDURE subprog1 (VAR parm1 : integer;
 VAR parm2 : integer;
 VAR parm3 : integer); EXTERNAL COBOL;

 BEGIN
 int1 := 25000;
 int2 := 30000;
 subprog1(int1,int2,int3);
 writeln(int3);
 END.

COBOL routine:

 $CONTROL SUBPROGRAM
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SUBPROG1.
 AUTHOR. BP.
 DATA DIVISION.
 LINKAGE SECTION.
 77 IN1 PIC S9(07) COMP.
 77 IN2 PIC S9(07) COMP.
 77 OUT PIC S9(07) COMP.
 PROCEDURE DIVISION USING IN1, IN2, OUT.
 PARA-1.
 ADD IN1, IN2, GIVING OUT.
 EXIT PROGRAM.

9- 10

Calling FORTRAN 77 from HP Pascal

The table and example in this section assume that the HP Pascal program
and the FORTRAN 77 routine that it calls are both compiled in Native
Mode. If the FORTRAN 77 routine is in a Compatibility Mode SL instead,
you must write a switch stub to access it from your HP Pascal program
(see "Switch Stubs").

Table 9-3 matches corresponding HP Pascal and FORTRAN 77 or FORTRAN
66/V types. (It contains only the types that are acceptable for formal
intrinsic parameters.) The variable n is an integer.

Table 9-3. Corresponding HP Pascal and FORTRAN 77 or FORTRAN 66/V Types

HP Pascal Type	Corresponding FORTRAN 77 or
	FORTRAN 66/V Type

Array: Not PACKED	An array of a corresponding type.
	(Pascal arrays are stored in row-major
	order; FORTRAN arrays are stored in
	column-major order.)

Array: PACKED	Not available

Boolean (false = 0, true = 1)	LOGICAL*1 (false = 0, true = 1)

Char	CHARACTER

Enumeration	Not available

File	Not available

Function	Function3

Function parameter or variable	Not available

Integer	INTEGER*4

Longreal	REAL*8 or DOUBLE PRECISION

PAC of n characters	CHARACTER* x, x in 1.. n 1,2

| | |

9- 11

| Pointer | Not available |
| | |

Procedure	Subroutine3

Procedure parameter or variable	Not available

Real	REAL or REAL*4

Record	Build equivalent record

Set	Not available

Shortint	INTEGER*2

String	CHARACTER*(*)2

String[n]	CHARACTER*(*)2

VAR parameter	Default parameter mechanism

RECORD	COMPLEX
real_part : real ;	
imaginary_part : real ;	
END ;	

Table 9-3 Notes

 1. When you call a Pascal routine from a FORTRAN routine, use the
 FORTRAN directive $ALIAS in the FORTRAN compilation unit to
 specify a nonstandard calling sequence for the Pascal routine.
 Specify %REF for each character string parameter (the FORTRAN
 default for character strings is %DESCR). See the example in "How
 Non-Pascal Programs Call Pascal Routines" .

 2. For calling FORTRAN 77 from Pascal only. In the FORTRAN 77
 compilation unit, declare the parameter as CHARACTER* n or
 CHARACTER*(*). For a PAC type HP Pascal parameter, HP Pascal
 passes the address followed by the length. For either string type
 HP Pascal parameter, HP Pascal passes the address of the data part
 of the string followed by its current length. The current length
 is loaded from the length field. For example:

 A FORTRAN 77 routine:

 CHARACTER*40 FUNCTION F77_Func (Str1,Str2)
 CHARACTER*80 Str1

9- 12

 CHARACTER*(*) Str2
 ...
 RETURN
 END

 An HP Pascal program that calls the FORTRAN 77 routine:

 TYPE
 Str40 = string[40] ;
 Pac80 = PACKED ARRAY [1..80] OF char ;

 FUNCTION F77_Func (VAR Str1 : Pac80 ;
 VAR Str2 : Str40) : Str40 ;
 EXTERNAL FTN77 ;

 VAR
 Vbl1, Vbl2 : Str40 ;
 Pac1 : Pac80 ;

 BEGIN { main program }
 ...
 Vbl2 := strrtrim(F77_Func(Vbl1,Pac1)) ;
 ...
 END ;

 3. This is not correctly implemented in FORTRAN 77.

Example

The Pascal program Pascal_Fort calls the external FORTRAN 77 routine
FORTPRC.

Pascal program:

 PROGRAM Pascal_Fort (input,output);

 TYPE
 char_str = PACKED ARRAY [1..20] OF char;

 VAR
 a_str : char_str;
 int1,
 int2,
 sum : integer;

 PROCEDURE fortprc (VAR cstr : char_str;
 VAR inta : integer;
 VAR intb : integer;
 VAR total : integer); EXTERNAL FTN77;

 BEGIN
 a_str := 'Add these 2 numbers:';
 int1 := 25;
 int2 := 15;
 writeln(a_str,int1,int2);
 fortprc(a_str,int1,int2,sum);
 writeln(a_str,sum);
 END.

FORTRAN 77 routine:

 SUBROUTINE FORTPRC(CSTR,INT1,INT2,SUM)
 INTEGER INT1, INT2, SUM
 CHARACTER CSTR*20

 SUM = INT1 + INT2
 CSTR = "SUM OF TWO NUMBERS: "

9- 13

 RETURN
 END

Calling FORTRAN 66/V from HP Pascal

FORTRAN 66/V is a Compatibility Mode language only. The FORTRAN 66/V
routine that your HP Pascal program calls must reside in a Compatibility
Mode SL, and you must write a switch stub to access it from your HP
Pascal program (see "Switch Stubs").

The directive EXTERNAL FORTRAN passes parameters the same way in HP
Pascal as it does in FORTRAN 66/V.

For corresponding HP Pascal and FORTRAN 66/V types, see Table 9-3 in
"Calling FORTRAN 77 from HP Pascal" .

Example

The Pascal program Pass_heap_var calls the external FORTRAN 66/V routine
FORT.

Pascal program:

 $HP3000_16$
 PROGRAM Pass_heap_var (input,output);

 TYPE
 ptr = ^arr;
 arr = PACKED ARRAY [1..80] OF char;

 VAR
 aptr : ptr;

 PROCEDURE fort (VAR arrptr : arr); EXTERNAL FORTRAN;

 BEGIN
 new(aptr);
 aptr^ := 'I am a dynamic variable';
 fort (aptr^);
 END.

FORTRAN 66/V routine:

 SUBROUTINE FORT(PTRARR)
 CHARACTER PTRARR(80)
 DISPLAY PTRARR
 RETURN
 END

Calling SPL from HP Pascal

SPL is a Compatibility Mode language only. The SPL routine that your HP
Pascal program calls must reside in a Compatibility Mode SL, and you must
write a switch stub to access it from your HP Pascal program. The switch
stub cannot be written in SPL. (See "Switch Stubs" .)

The directive EXTERNAL SPL passes parameters the same way in HP Pascal as
it does in Pascal/V.

Table 9-4 matches corresponding HP Pascal and SPL types. (It
contains only the types that are acceptable for formal intrinsic
parameters.) The variable n is an integer.

9- 14

Table 9-4. Corresponding HP Pascal and SPL Types

HP Pascal Type	Corresponding SPL Type

Array: Not PACKED	Array of corresponding type.

Array: PACKED	Array of corresponding type.

Bit16	Logical.

Bit32	Array of logical

Bit52	Array of logical

Boolean (false = 0, true = 1)	Byte (odd is false, even is true).

Char	Byte.

Enumeration 256 or fewer elements	Byte.

Enumeration 257 or more elements	Logical.

File	Not available.

Function	Typed procedure.

Function parameter or variable	Not available.

Integer	Double.

Longint	Array of logical

Longreal (HP3000_16)	Longreal.

PAC of n characters	Byte array.

Pointer Not EXTNADDR	Not available.

9- 15

Pointer EXTNADDR	Not available.

Procedure	Procedure.

Procedure parameter or variable	Not available.

Real (HP3000_16)	Real.

Record	Not available, but you can lay out the
	equivalent.

Set	Not available.

Shortint	Integer.

String	Not available, but you can lay out the
	equivalent.

String[n] (by value only)	Not available, but you can lay out the
	equivalent.

VAR parameter Not EXTNADDR	Address of parameter.

VAR parameter EXTNADDR	Not available.

-32768..32767	Integer.

0..65535	Logical.

Example 1

The Pascal program Pascal_SPL calls the external SPL routine splprc.

Pascal program:

 $HP3000_16$
 PROGRAM Pascal_SPL (input,output);

 TYPE
 char_str = PACKED ARRAY [1..20] OF char;
 small_int = -32768..32767;

 VAR
 a_str : char_str;
 int1,
 int2,

9- 16

 sum : small_int;

 PROCEDURE splprc (VAR cstr : char_str;
 inta : small_int;
 intb : small_int;
 VAR total : small_int); EXTERNAL SPL;

 BEGIN
 a_str := 'Add these 2 numbers:';
 int1 := 25;
 int2 := 15;
 writeln(a_str,int1,int2);
 splprc(a_str,int1,int2,sum);
 writeln(a_str,sum);
 END.

SPL routine:

 $CONTROL SUBPROGRAM
 BEGIN
 PROCEDURE splprc(cstr,int1,int2,sum);
 VALUE int1,int2;
 INTEGER int1,int2,sum;
 BYTE ARRAY cstr;
 BEGIN
 sum := int1 + int2;
 MOVE cstr := "Sum of two numbers: ";
 END;
 END.

Example 2

The Pascal program Pascal_SPL_V calls splprv, an external SPL routine
with variable parameters.

Pascal program:

 $HP3000_16$
 PROGRAM Pascal_SPL_V (input,output);

 TYPE
 char_str = PACKED ARRAY [1..20] OF char;
 small_int = -32768..32767;

 VAR
 a_str : char_str;
 int1,
 int2,
 sum : small_int;

 PROCEDURE splprv (VAR cstr : char_str;
 inta : small_int;
 intb : small_int;
 VAR total : small_int);
 EXTERNAL SPL VARIABLE;

 BEGIN
 a_str := 'Add these 2 numbers:';
 int1 := 25;
 int2 := 15;
 writeln(a_str,int1,int2);
 splprv(a_str,int1,int2,sum);
 writeln(a_str,sum);
 END.

SPL routine with variable parameters:

 $CONTROL SUBPROGRAM

9- 17

 BEGIN
 PROCEDURE splprv(cstr,int1,int2,sum); OPTION VARIABLE;
 VALUE int1,int2;
 INTEGER int1,int2,sum;
 BYTE ARRAY cstr;
 BEGIN
 sum := int1 + int2;
 MOVE cstr := "Sum of two numbers: ";
 END;
 END.

Switch Stubs

A switch stub is a program that allows your HP Pascal program, which is
compiled in Native Mode (the default on PA-RISC machines) to call a
routine compiled in Compatibility Mode (the default on earlier HP 3000
machines). The routine must reside in a Compatibility Mode SL.

Figure 9-1 shows how a switch stub works. When the program calls the
routine, what actually happens is that the program calls the switch stub
(in Pascal) and the switch stub calls the routine in the Compatibility
Mode SL. This is transparent to the program and routine (except for
performance, which is slower). It is the responsibility of the switch
stub to make whatever transformations are necessary to call the
Compatibility Mode routine.

Figure 9-1. How a Switch Stub Works

9- 18

You must write a switch stub for each Compatibility Mode routine that
your program calls. The Switch Assist Tool (SWAT), an interactive
utility, can help you write your switch stubs (see step 2 of the example
in "Calling SPL from HP Pascal"). For more information, refer to the
Switch Programming Guide .

How Non-Pascal Programs Call Pascal Routines

A program written in C, COBOL II, FORTRAN 66/V, FORTRAN 77, or SPL can
call an external routine written in HP Pascal. You must match the formal
parameters and result type of the HP Pascal routine with those that the
calling program specifies.

The matching rules are:

 * Corresponding formal parameter lists must have the same number of
 parameters in the same order. If the Pascal routine requires
 hidden parameters, the non-Pascal routine must have actual
 parameters that correspond to them (see Chapter 7 for
 details).

 * Corresponding formal parameters must be of corresponding types.
 Correspondence depends upon the source language of the external
 routine. See the parameter descriptions in "EXTERNAL Directive"
 .

 * Corresponding formal parameters can have different names.

Example 1

This C program calls the external Pascal procedure pas:

 main()
 { extern void pas(); /*This is non ANSI C */

 char carr[21];
 short sint1, sint2;
 short sum;

 strcpy(carr, "Add these 2 numbers ");
 sint1 = 25;
 sint2 = 15;
 pas(carr, sint1, sint2, &sum);
 }

This Pascal program contains the procedure pas:

 $SUBPROGRAM$
 PROGRAM Pas_Proc;
 TYPE
 arr = PACKED ARRAY [1..21] OF char;

 PROCEDURE pas (VAR carr : arr;
 sint1 : shortint;
 sint2 : shortint;
 VAR sum : shortint);
 BEGIN
 carr := 'Sum of two numbers: '#0;
 sum := sint1 + sint2;
 END;

 BEGIN
 END.

Example 2

The COBOL II program COBOL-TO-PASCAL calls the external Pascal procedure
pasprog.

9- 19

COBOL II program:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOL-TO-PASCAL.
 AUTHOR. BP.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 ASTRING PIC X(16) VALUE "A COBOL STRING!".
 77 ANUM PIC 9(04) USAGE COMP.
 77 ANUM2 PIC 9(04) USAGE COMP.
 77 RESULT PIC -ZZZZ.
 PROCEDURE DIVISION.
 FIRST-PARA.
 MOVE 9999 TO ANUM.
 DISPLAY ASTRING.
 CALL "PASPROG" USING ASTRING, \ANUM\, ANUM2.
 MOVE ANUM2 TO RESULT.
 DISPLAY ASTRING, RESULT.
 STOP RUN.

Pascal procedure:

 $SUBPROGRAM$
 PROGRAM pas_proc;
 TYPE
 charstr = PACKED ARRAY [1..16] OF char;

 PROCEDURE pasprog(VAR astr : charstr;
 num : short_int;
 VAR num2 : short_int);
 BEGIN
 astr := 'A PASCAL STRING!';
 num2 := num;
 END;
 BEGIN
 END.

Example 3

The following FORTRAN 66/V program calls the external Pascal procedure
pas:

 INTEGER INT1, INT2, ISUM
 CHARACTER CSTR*20

 CSTR = "Add these 2 numbers"
 INT1 = 25
 INT2 = 15

 DISPLAY CSTR, INT1, INT2
 CALL PAS(CSTR,\INT1\,\INT2\,ISUM)
 DISPLAY CSTR, ISUM

 STOP
 END

Pascal procedure:

 $SUBPROGRAM$
 PROGRAM example(input,output);
 TYPE
 arr = PACKED ARRAY [1..20] OF char;
 small_int = -32768..32767;

 PROCEDURE pas $CHECK_ACTUAL_PARM 0; CHECK_FORMAL_PARM 0$
 (VAR carr : arr;
 sint : small_int;
 sint2 : small_int;

9- 20

 VAR sum : small_int);

 BEGIN
 carr := 'Sum of two numbers: ';
 sum := sint1 + sint2;
 END;

 BEGIN
 END.

Example 4

The following FORTRAN77 program calls the external Pascal procedure pas:

 $ALIAS PAS(%REF,%VAL,%VAL,%REF)
 INTEGER INT1, INT2, ISUM
 CHARACTER CSTR*20

 CSTR = "Add these 2 numbers"
 INT1 = 25
 INT2 = 15

 PRINT *, CSTR, INT1, INT2
 CALL PAS(CSTR, INT1, INT2, ISUM)
 PRINT *, CSTR, ISUM

 STOP
 END

Pascal procedure:

 $SUBPROGRAM$
 PROGRAM example;
 TYPE
 arr = PACKED ARRAY [1..20] OF char;
 small_int = -32768..32767;

 PROCEDURE pas(VAR carr : arr;
 sint : small_int;
 sint2 : small_int;
 VAR sum : small_int);

 BEGIN
 carr := 'Sum of two numbers: ';
 sum := sint1 + sint2;
 END;

 BEGIN
 END.

Example 5

The following SPL program calls the external Pascal procedure pas:

 BEGIN
 LOGICAL ARRAY chr(0:9) := "Add these 2 numbers:";
 BYTE ARRAY bchr(*) = chr;
 INTEGER sint:=15,sint2:=25,len;
 INTEGER int, int2, sum;
 BYTE ARRAY csum(0:1), cint(0:1), cint2(0:1);

 INTRINSIC PRINT,ASCII
 PROCEDURE pas(chr,sint,sint2,sum);
 VALUE sint,sint2;
 INTEGER sint,sint2,sum;
 BYTE ARRAY chr;
 OPTION EXTERNAL;

9- 21

 PRINT(chr,10,0);
 len := ASCII(sint,-10,cint);
 len := ASCII(sint2,-10,cint2);
 PRINT(cint,-2,0);
 PRINT(cint2,-2,0);

 pas(chr,sint,sint2,sum);

 PRINT(chr,10,0);
 len := ASCII(sum,-10,csum);
 PRINT(csum,-2,0);
 END.

Pascal procedure:

 $HP3000_16$
 $SUBPROGRAM$
 PROGRAM example;
 TYPE
 arr = PACKED ARRAY [1..20] OF char;
 small_int = -32768..32767;

 PROCEDURE pas(VAR carr : arr;
 sint : small_int;
 sint2 : small_int;
 VAR sum : small_int);
 BEGIN
 carr := 'Sum of two numbers: ';
 sum := sint1 + sint2;
 END;
 BEGIN
 END.

How To Do Pascal I/O with a Non-Pascal Outer Block

Normally, the outer block of a Pascal program allocates space for the
default text files stdin, stdout, and stderr. The outer block allocates
space even if these files are referenced through Pascal modules (see
Appendix A and Appendix B). The outer block also opens these
standard files.

In addition, the outer block performs initialization for trap handling
for TRY_RECOVER and for the standard Pascal module arg.

If the outer block is non-Pascal, the following routine can be used to
allocate space, open the default files, and initialize trap handling and
the module arg.

Example

To compile on MPE/iX, on the command line type:

 pasxl initstuf,,$null;info="set 'hpux=false'"

To compile on HP-UX, on the command line type:

 pc -c -Dhpux=true init_stuff.p

The file (initstuf on MPE/iX or init_stuff.p on HP-UX) is as follows:

 { how to have a non-pascal outer block and still do pascal i/o }
 $if 'hpux'$
 { pascal doesn't buffer these files, uses hp-ux system calls }
 { also initialize the data for the module arg, and so that
 the names on the command line are used for file opens. }
 $endif$

 $global; subprogram$ { allocates text files }

9- 22

 $literal_alias on$
 program dick(input,output
 $if 'hpux'$,stderr $endif$);
 $if 'hpux'$
 type argtype = packed array[1..32000] of char;
 argarray= array[0..32000] of ^argtype;
 argarrayptr = ^argarray;
 var argc $alias '__argc_value'$: integer;
 argv $alias '__argv_value'$: argarrayptr;
 env $alias '_environ'$: argarrayptr;

 procedure p_init_args $alias 'P_INIT_ARGS'$(c:integer;
 v,e:argarrayptr); external;
 $endif$
 procedure u_init_traps $alias 'U_INIT_TRAPS'$; external;

 (Example continued on next page .)

 procedure initialize_pascal_standard_files;
 begin
 $if 'hpux'$
 p_init_args(argc,argv,env); { initialize for module arg }
 $endif$
 u_init_traps; { initialize for trap handling }

 { now open standard files }
 reset(input,'$stdin','shared');
 rewrite(output,'$stdlist');
 $if 'hpux'$
 rewrite(stderr,'$stderr');
 $endif$
 end;
 begin end.

10-: 1

Chapter 10 Intrinsics

An intrinsic is an external routine that can be called by a program
written in any language that the operating system supports. An intrinsic
can be written in any supported language, but its formal parameters must
be of types that have counterparts in the other supported languages.

An intrinsic definition resides in an intrinsic file (though its code
resides in a library). You can use existing intrinsics as they are,
modify them, or define new intrinsics. You can put new intrinsics in new
or existing intrinsic files and libraries. Your program can access any
intrinsic by declaring it and specifying the intrinsic file that defines
it.

This chapter:

 * Explains how your program can use intrinsics.
 * Tells you how to define an intrinsic.
 * Tells you how to build or change an intrinsic file.

Using Intrinsics

To use an intrinsic, your program must specify the intrinsic file in
which its definition resides and declare the intrinsic with the
INTRINSIC directive. How your program can declare the intrinsic as a
routine--specifying all, part, or none of its formal parameters--depends
upon its definition in the intrinsic file.

This section explains:

 * How to specify intrinsic files.

 * How to declare an intrinsic with the INTRINSIC directive.

 * Actual and intrinsic parameter compatibility.

 * How to declare formal function types for an intrinsic.

 * How to declare formal parameters for an intrinsic to ensure
 stricter type checking for actual parameters.

 * How to use an intrinsic function as a procedure.

Specifying Intrinsic Files

When compiling a program that references an intrinsic, the compiler reads
the intrinsic definition from an intrinsic file. The intrinsic file can
be the default intrinsic file for the system, or it can be one that you
or another programmer built (see "How to Build or Change an Intrinsic
File"). The program can specify different intrinsic files for
different intrinsics.

The SYSINTR compiler option determines the intrinsic file. If the
program does not contain a SYSINTR option, or if the SYSINTR option does
not specify a file name, the compiler reads intrinsic definitions
from the default intrinsic file. (The default intrinsic file is
system-dependent. See Appendix A for the MPE/iX operating system;
Appendix B for the HP-UX operating system.) Otherwise, the compiler
reads intrinsic definitions from the file that the SYSINTR option
specifies, until another SYSINTR option specifies another file. (See the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation, for more information on the SYSINTR

10: 2

compiler option.)

To list an intrinsic file, use the LISTINTR compiler option (refer to the
HP Pascal/iX Reference Manual the HP Pascal/HP-UX Reference Manual ,
depending on your implementation, for more information on the LISTINTR
compiler option).

NOTE The compiler options LITERAL_ALIAS and UPPERCASE apply to all
 external routine names, including intrinsic names. When either of
 these options is set, the compiler performs a case-sensitive search
 of the intrinsic file for the intrinsic names.

INTRINSIC Directive

The INTRINSIC directive allows a program to access an intrinsic routine.
It follows the routine declaration.

Example

 PROGRAM p;

 VAR
 f,m : shortint;

 PROCEDURE FSETMODE; INTRINSIC;

 BEGIN
 FSETMODE(f,m);
 END.

The program p can call the intrinsic procedure FSETMODE because it
declares it with the INTRINSIC directive.

The system name of an intrinsic is the name by which the operating system
recognizes it, the name that it has in the intrinsic file.

The system names of some intrinsics are illegal in HP Pascal. If you
want to use such an intrinsic in your program, give it a legal name in
your program and specify its system name with the ALIAS compiler option
(refer to the HP PascaliX Reference Manual the HP Pascal/HP-UX Reference
Manual , depending on your implementation, for more information on ALIAS).

Example

 $SYSINTR 'myintr'$ {myintr contains the intrinsic P'F'INFO}
 PROGRAM q (output);

 PROCEDURE pfileinfo $ALIAS 'P''F''INFO'$; INTRINSIC;
 BEGIN
 pfileinfo;
 END.

The name P'F'INFO is illegal in HP Pascal because it contains single
quotes. The program q can call the intrinsic procedure P'F'INFO by the
name pfileinfo because it declares it with the INTRINSIC directive and
specifies its system name with the ALIAS compiler option.

Actual and Intrinsic Parameter Compatibility

An intrinsic's actual parameters are those with which your program calls
it. Its intrinsic parameters are those in its definition, in the
intrinsic file. Its formal parameters are those that your program
declares for it.

10-: 3

Formal parameters are optional. If you do not declare them, you can pass
the intrinsic actual parameters of types that would otherwise be
incompatible. Usually, programmers want this flexibility; therefore,
they rarely declare formal parameters.

If you do not declare a formal parameter, its actual parameters are
type-checked against their corresponding intrinsic parameters. Type
checking depends upon whether the intrinsic parameter is a reference,
value, or function or procedure parameter. The following subsections
explain these three cases, using these terms:

alignment- An actual and intrinsic parameter are
compatible alignment-compatible if the actual parameter is
 aligned on the same or a larger boundary than
 the intrinsic parameter. For example, a
 2- or 4-byte-aligned actual parameter is
 alignment-compatible with a 2-byte-aligned intrinsic
 parameter. A byte-aligned actual parameter is not
 alignment-compatible with a 2-byte-aligned intrinsic
 parameter.

size-compatible An actual and intrinsic parameter are size-compatible
 if the actual parameter is allocated more or the same
 amount of space as the intrinsic parameter. For
 example, a 2- or 4-byte actual parameter is
 size-compatible with a 2-byte intrinsic parameter. A
 1-byte actual parameter is not size-compatible with a
 2-byte intrinsic parameter.

intrinsic- See Table 10-1 for reference parameters; Table
compatible 10-2 for value parameters.

Reference Parameter Compatibility.

A reference parameter is a parameter that is passed by reference. VAR,
ANYVAR, and READONLY parameters are reference parameters.

All actual reference parameters must be alignment-compatible with their
corresponding intrinsic parameters. Actual VAR and READONLY parameters
must also be size-compatible and intrinsic-compatible with their
corresponding intrinsic parameters.

An intrinsic and an actual reference parameter are intrinsic-compatible
if their types are in the same row of Table 10-1 . The intrinsic
parameter type is the type of the intrinsic parameter, as the intrinsic
file declares it. The actual parameter type is the type of the actual
parameter.

Table 10-1. Intrinsic-Compatible Intrinsic and Actual Reference Parameter Types

Intrinsic Parameter Type	Actual Parameter Type

Array	Any type

Boolean	Boolean

Char	Char

Integer	Integer

10: 4

Integer	Integer subrange m..n with either
	m < 0 or m >= 0 and n >65535

Integer subrange	m < 0, or m >= 0,	Integer, or integer subrange m..n with
m..n	n > 65535	either
		m < 0 or m >= 0 and n >65535

Integer	Bit32

Integer subrange	m >= 0 and n <= 65535	Integer subrange m..n with m >= 0 and
m..n		n <= 65535

Integer subrange	m >= 0 and n <= 65535	Bit16
m..n		

Longreal	Longreal

Real	Real

Record	Any type

Set	Any type

Shortint	Bit16

Shortint	Shortint

Shortint	Integer

Shortint	Integer subrange m..n (except where m >=0
	and n <=255)

Value Parameter Compatibility.

A value parameter is a parameter that is passed by value. All parameters
except VAR, ANYVAR, READONLY, function, and procedure parameters are
value parameters.

An actual value parameter of a structured type (array, record,
or set) must be the same size as its corresponding intrinsic
parameter. An actual value parameter of an unstructured type must be
assignment-compatible with its corresponding intrinsic parameter.

Table 10-2 shows which intrinsic and actual value parameter types are
intrinsic-compatible. It also shows, for each intrinsic parameter type,
which of the compatible actual parameter types are converted to that

10-: 5

intrinsic parameter type, and which are not. The intrinsic parameter
type is the type of the parameter as the intrinsic file declares it. The
actual parameter type is the type of the actual parameter.

Table 10-2. Intrinsic-Compatible Intrinsic and Actual Value Parameter Types

Intrinsic	Actual Parameter Type
Parameter Type	

	Not Converted to Intrinsic	Converted to Intrinsic Type
	Type	

Array	Any type	

Boolean	Boolean	

Char	Char	

Integer or	Array	
Integer Subrange	Bit16	
	Bit32	
	Bit52	
	Integer	
	Integer Subrange	
	Longint	
	Record	
	Set	
	Shortint	

Longreal	Longreal	Bit16
		Bit32
		Bit52
		Integer
		Integer Subrange
		Longint
		Real
		Shortint

Real	Real	Bit16
		Bit32
		Bit52
		Integer
		Integer Subrange
		Longint
		Longreal
		Shortint

Record	Any Type	

Set	Any Type	

Shortint	Array	
	Bit16	

10: 6

	Bit32	
	Bit52	
	Integer	
	Integer Subrange	
	Longint	
	Record	
	Set	
	Shortint	

Function and Procedure Parameter Compatibility.

A function or procedure parameter is a parameter that is a routine. The
compiler only checks that the actual parameter for a function or
procedure parameter is a routine. You are responsible for making sure
that the actual parameter is what the intrinsic expects.

Using Strings as Actual Parameters.

If you use a string variable as an actual value parameter to an intrinsic
routine, HP Pascal passes a copy of the data portion only of the string.
The length portion is ignored.

If you use a string variable as an actual reference parameter to an
intrinsic routine, HP Pascal passes the address of the data portion of
the string, and not the string length. If the intrinsic returns data in
the string variable, you must determine and update the length of the
string when the intrinsic returns control to your program.

There are a number of ways to obtain and update the string length:

 * If the intrinsic returns the correct length as a parameter or
 function return, use the setstrlen procedure with the returned
 value.

 * If the length is defined in documentation of the intrinsic, use
 the setstrlen procedure with that value.

 * If the intrinsic appends some end-of-string character (such as
 NUL), scan for the character and set the string length with the
 setstrlen procedure to one less than the character's position.

 * If the intrinsic does not provide any length indication, you can
 use the strrpt function to fill the string with blanks to its full
 physical length, call the intrinsic, and then use the strrtrim
 function to get rid of the trailing blanks and update the string
 length.

Example

This example demonstrates the sequence of filling a string with blanks,
calling an intrinsic that returns a value in the string, and updating the
string length.

 PROGRAM TestIntrin ;
 VAR
 Str : string [80] ;
 PROCEDURE Dateline ; INTRINSIC ;

 BEGIN { main program }
 ...
 Str := strrpt (' ' , 80) ; { fill string with blanks }
 Dateline (Str) ; { call intrinsic }
 Str := strrtrim (Str) ; { remove trailing blanks }
 ...
 END .

Formal and Intrinsic Function Type Compatibility

10-: 7

A function type must be specified when using the intrinsic directive with
functions. A formal function type is compatible with an intrinsic
function type as long as the size of the formal type matches the size of
the intrinsic type.

NOTE In general, the formal type and the intrinsic type should match the
 function return type. If the types do not match, they are the same
 as a free union type coercion. This can cause problems for signed
 versus unsigned types.

Example

 program m(output);
 var a,b:shortint;
 buf:packed array[1..16] of char;
 i:integer;
 function calendar:shortint; intrinsic;
 function cal_16 $alias 'calendar'$:bit16; intrinsic;
 function neg:shortint;
 begin
 neg:=-1;
 end;
 begin
 a := calendar;
 b := calendar;
 writeln(a = calendar,' ',a = b);
 end.

Assuming the date did not change, the output is unexpected:

 FALSE TRUE

Function cal_16 shows the correct definition; a and b should be declared
as bit16.

User-Defined Formal Parameters

If you want stricter type checking for an intrinsic's actual parameters,
you can declare formal parameters for some or all of its intrinsic
parameters. Then, actual parameter types are compared to their
corresponding formal parameter types, not to their corresponding
intrinsic parameter types. This type checking is as strict as that for
the parameter of a nonintrinsic routine: if the actual parameter is a
reference parameter, it must be of the same type as the formal
parameter; if the actual parameter is a value parameter, it must be
assignment-compatible with the formal parameter.

If an intrinsic is defined without an extensible parameter list, you
cannot declare it with one.

If an intrinsic is defined with an extensible parameter list, you can
declare it with or without one. If you declare the intrinsic with an
extensible parameter list, you must declare at least as many
nonextensible (required) parameters as the definition does. If you
declare the intrinsic without an extensible parameter list, you must
declare all of its nonextensible (required) parameters.

Example 1

The intrinsic file defines the intrinsic Pascal procedure intr this way:

 PROCEDURE intr (a, b, c, d, e : integer)
 OPTION EXTENSIBLE 2;

10: 8

The program can declare intr in any of these ways:

 PROCEDURE intr (a, b, c, d, e : integer); {All parameters}
 INTRINSIC;

 PROCEDURE intr (a, b : integer); {Required parameters only}
 INTRINSIC;

 PROCEDURE intr (a, b, c : integer); {First extensible parameter}
 INTRINSIC;

 PROCEDURE intr (a, b, c, d : integer); {Extensible parameters}
 INTRINSIC;

The program cannot declare intr in any of these ways:

 PROCEDURE intr (a : integer); {Without second nonextensible parameter}
 INTRINSIC;

 PROCEDURE intr (a, b, c, d : integer) {Fewer required parameters than}
 OPTION EXTENSIBLE 1; {in the intrinsic definition}
 INTRINSIC;

If you supply default values for the formal parameters that you declare,
your default values override those supplied by the intrinsic definition.

Example 2

The intrinsic file defines the intrinsic Pascal procedure intr this way:

 PROCEDURE intr (a, b : integer)
 OPTION EXTENSIBLE 2
 DEFAULT_PARMS (a := 10, b := 20);

If the program declares intr this way

 PROCEDURE intr (a, b: integer)
 OPTION EXTENSIBLE 2
 DEFAULT_PARMS (a := 35, b := 60);
 INTRINSIC;

Then the default value of a is 35 (not 10) and the default value of b is
60 (not 20).

If you declare a formal parameter, you must give it a type that is
compatible with the type of its corresponding intrinsic parameter.
Compatibility rules are different for reference and value parameters.

Reference Parameter Compatibility.

A formal reference parameter is compatible with its corresponding
intrinsic parameter if any of the following is true:

 * Their types (Boolean, integer, etc.) are intrinsic-compatible
 (see Table 10-3).

 * They are alignment-compatible.

 * Their types (VAR, ANYVAR, UNCHECKABLE_ANYVAR, READONLY) are
 compatible.

 * If the intrinsic parameter is a VAR or READONLY array, record, or
 set, then:

sizeof (formal_parameter) <= sizeof (intrinsic_parameter)

An intrinsic and a formal reference parameter are intrinsic-compatible if
their types are in the same row of Table 10-3 . The intrinsic

10-: 9

parameter type is the type of the intrinsic parameter, as the intrinsic
file declares it. The formal parameter type is the type of the formal
parameter in your program.

Table 10-3. Intrinsic-Compatible Intrinsic and Formal Reference Parameter Types

Intrinsic Parameter Type	Formal Parameter Type

Array	Any type

Boolean	Boolean

Char	Char

Integer	Integer

Integer	Bit32

Integer	Integer subrange m..n with either
	m < 0 or m >= 0 and n >65535

Integer subrange	m < 0, or m >= 0,	Integer, or integer subrange m..n with
m..n	n > 65535	either
		m < 0 or m >= 0 and n >65535

Integer subrange	m >= 0 and n <= 65535	Integer subrange m..n with m >= 0 and
m..n		n <= 65535

Integer subrange	m >= 0 and n <= 65535	Bit16
m..n		

Longreal	Longreal

Real	Real

Record	Any type

Set	Any type

Shortint	Bit16

Shortint	Shortint

10: 10

Shortint	Integer

Shortint	Integer subrange m..n
	(except where m >=0 and n <=255)

Table 10-4 shows which intrinsic and formal reference parameter types
are compatible. The intrinsic parameter type is the type that the
intrinsic parameter has in the intrinsic file; the formal parameter types
are the types that you can give the formal parameter when you declare it
in your program.

Table 10-4. Compatible Intrinsic and Formal Reference Parameter Types

Intrinsic Parameter Type	Formal Parameter Type

VAR	VAR

ANYVAR	ANYVAR
	VAR

UNCHECKABLE_ANYVAR	UNCHECKABLE_ANYVAR
	VAR

READONLY	READONLY
	VAR

Value Parameter Compatibility.

A formal value parameter is compatible with its corresponding intrinsic
parameter if any of the following is true:

 * They are intrinsic-compatible (see Table 10-5).

 * If the intrinsic parameter is an array, record, or set, then:

sizeof (formal_parameter) = sizeof (intrinsic_parameter)

An intrinsic and formal value parameter are intrinsic-compatible if their
types are in the same row of Table 10-5 . The intrinsic parameter
type is the type of the intrinsic parameter, as the intrinsic file
declares it. The formal parameter type is the type of the formal
parameter.

Table 10-5. Intrinsic-Compatible Intrinsic and Formal Value Parameter Types

Intrinsic Parameter Type	Formal Parameter Type

| | |

10-: 11

Array	Array
	Record

Boolean	Boolean

Char	Char

Integer	Bit16
	Bit32
	Bit52
	Integer
	Integer subrange
	Longint
	Shortint

Integer subrange	Bit16
	Bit32
	Bit52
	Integer
	Integer subrange
	Longint
	Shortint

Longreal	Longreal

Real	Real

Record	Record
	Array

Set	Set

Shortint	Bit16
	Bit32
	Bit52
	Integer
	Integer subrange
	Longint
	Shortint

Using Intrinsic Functions as Procedures

Your program must use an intrinsic procedure as a procedure, but it can
use an intrinsic function as a function, a procedure, or both.

To use an intrinsic function as a function, declare it as a function in
your program, including its result type in the declaration. To use an
intrinsic function as a procedure, declare it as a procedure in your

10: 12

program, omitting the result type. To use an intrinsic function as both
a function and a procedure, declare it both ways, giving the routine
different names in your program. Use the ALIAS compiler option to
associate the intrinsic's system name with the names you have given it.

If you declare an intrinsic function as a procedure only, you cannot call
it as a function.

Example

The intrinsic file defines the intrinsic Pascal functions f1 and f2 this
way:

 FUNCTION f1 (i1 : integer) : integer;

 FUNCTION f2 (i1,i2 : integer) : Boolean;

The Pascal program prog declares the function f1 as a procedure. It
cannot call it as a function. It declares the function f2 as a function
(which it calls ffunc) and as a procedure (which it calls fproc), using
the compiler option ALIAS to associate them with the system name f2. The
program cannot call fproc as a function.

 PROGRAM prog;

 VAR
 x : Boolean;
 y,z : integer;

 PROCEDURE f1 (a : integer) INTRINSIC;

 FUNCTION $ALIAS 'f2'$ ffunc : Boolean; INTRINSIC;

 PROCEDURE $ALIAS 'f2'$ fproc; INTRINSIC;

 BEGIN
 f1(y);
 x := ffunc(y,z);
 fproc(y,z);
 z := f1(y); {illegal -- declared as a procedure}
 END.

Defining Intrinsics

Syntactically, an intrinsic is defined in the same way as any other
routine. (Refer to the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual for details.) Because an intrinsic can be
called by a program written in any language that the operating system
supports, its intrinsic parameters must be of types that have
counterparts in the other supported languages.

These HP Pascal types are acceptable for intrinsic parameters and
function returns:

 Array
 Boolean
 Char
 Function
 Integer
 Longreal
 Procedure
 Real
 Record
 Set
 Shortint
 Subrange m..n except where m>=0 and n<=255

These HP Pascal types are not acceptable for intrinsic parameters or

10-: 13

function returns:

 Anyptr
 Bit16
 Bit32
 Bit52
 Longint
 Conformant array
 Enumeration
 File
 Function type
 Globalanyptr
 Localanyptr
 PAC, with the directive EXTERNAL FTN77 *
 Pointer
 Procedure type
 String
 Subrange m..n where m>=0 and n<=255

* An intrinsic parameter of type PAC is not an acceptable intrinsic
 parameter when used in an external procedure declaration with the
 directive EXTERNAL FTN77.

If you define your own intrinsics, restrict system programming extensions
to:

 * Compiler options ALIGNMENT and EXTNADDR (refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual).

 * ANYVAR and READONLY intrinsic parameters (explained in Chapter 7
).

 * Procedure options EXTENSIBLE, UNCHECKABLE_ANYVAR, and
 DEFAULT_PARMS (explained in Chapter 8).

An intrinsic definition can specify default values for some or all of its
parameters with the procedure option DEFAULT_PARMS. If programs that use
the intrinsic do not provide actual parameters for these intrinsic
parameters, the intrinsic parameters receive their default values.

An intrinsic definition can specify that a given number of its parameters
are nonextensible (required) with the procedure option EXTENSIBLE.
Programs that use the intrinsic need not provide actual parameters for
extensible intrinsic parameters; they must provide actual parameters for
nonextensible parameters--although the actual parameters can be empty if
the DEFAULT_PARMS procedure option specifies default values for them.
(See Chapter 8 for more information on the procedure options
DEFAULT_PARMS and EXTENSIBLE.)

Compile your intrinsics and create an object file. This object file can
be linked with other object files or used to build a library.

How to Build or Change an Intrinsic File

You can build an intrinsic file, or change an existing intrinsic file,
with the BUILDINT compiler option and the EXTERNAL directive.

To build a new intrinsic file:

 1. Put the BUILDINT option at the front of the compilation unit.
 Specify a new name for your intrinsic file--do not give it the
 name of an existing file. (Refer to the HP Pascal/iX Reference

Manual or the HP Pascal/HP-UX Reference Manual , depending on your
 implementation, for more information on BUILDINT.)

 2. Declare the constants, types, and variables that will appear in
 your intrinsic routines headings.

10: 14

 3. Declare your intrinsics as you would declare external routines
 (explained in Chapter 9), except:

 * Use only the acceptable intrinsic parameter types listed in
 "Defining Intrinsics" .

 * Use only these forms of the EXTERNAL directive:

 EXTERNAL
 EXTERNAL C
 EXTERNAL COBOL
 EXTERNAL FTN77

 4. Leave the outer block of the compilation unit empty.

Example 1

This program builds an intrinsic file.

 $BUILDINT 'myintr'$
 $STANDARD_LEVEL 'EXT_MODCAL'$

 PROGRAM build_intrinsic_file;

 TYPE
 t_integer_1 = $ALIGNMENT 1$ integer; {allows byte-aligned integer}

 t_barray = PACKED ARRAY [1..1024] OF CHAR;

 t_status = RECORD
 f1 : shortint;
 f2 : shortint;
 END;

 PROCEDURE proc1 (i : integer;
 VAR b : integer
);
 EXTERNAL;

 PROCEDURE proc2 (ANYVAR $EXTNADDR$ parm1 : t_barray;
 parm2 : shortint
)
 OPTION DEFAULT_PARMS (parm1 := NIL,
 parm2 := 0
)
 UNCHECKABLE_ANYVAR;
 EXTERNAL;

 PROCEDURE proc3 (parm1 : integer;
 VAR parm2 : t_status
)
 OPTION EXTENSIBLE 1;
 EXTERNAL;

 PROCEDURE cob_proc (VAR i : t_integer_1); EXTERNAL COBOL;

 BEGIN
 {empty body}
 END.

To change an existing intrinsic file:

 1. Put the BUILDINT option at the front of the compilation unit.
 Specify the name of the intrinsic file that you want to change.

 2. Declare any new constants, types, or variables that will appear in
 new or changed intrinsic routines headings.

10-: 15

 3. Declare any new intrinsic routines (see the third instruction for
 building an intrinsic file). If a new routine has the same name
 as one that is already in the file, the new one replaces the old
 one; otherwise, the new one is added to the file.

 4. Leave the outer block of the compilation unit empty.

Example 2

This program changes the intrinsic file that the preceding example built,
replacing the procedure proc1 and adding the function func1.

 $BUILDINT 'myintr'$
 $STANDARD_LEVEL 'EXT_MODCAL'$

 PROGRAM change_intrinsic_file;
 PROCEDURE proc1 (i : shortint;
 VAR b : shortint;
 VAR c : integer;
);
 EXTERNAL;

 FUNCTION func1 (p : integer) : shortint; EXTERNAL;

 BEGIN
 {empty body}
 END.

To list an intrinsic file that you have built, use the compiler option
LISTINTR (for information on compiler options, refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

10: 16

11- 1

Chapter 11 Error Recovery and Debugging
There are three types of Pascal errors. They are:

 * An error , which violates the definition of the HP Pascal language.

 * A compile-time error , which occurs when you compile your program
 (as in the case of a syntax error).

 * A run-time error, which occurs when you run your program (as in
 the case of a value out of range).

Errors are not to be confused with notes and warnings, both of which
occur at compile time. A note gives you information that may help you
make your program more efficient. A warning alerts you to a situation
that could cause a run-time error (the compiler cannot tell if it will).

This chapter explains:

 * How to write error recovery code for your program, so that it can
 handle run-time errors that would otherwise cause it to abort
 (error recovery code does not catch compile-time errors, warnings,
 or notes).

 * How to use the MPE/iX traps that you can use with HP Pascal.

 * How to compile your program for use with the HP TOOLSET/XL
 debugger, the HP Symbolic Debugger, or the system debuggers.

Error Recovery

The system programming extensions that support error recovery are the
predefined procedure escape, the predefined function escapecode, and the
TRY-RECOVER construct. They are interdependent. A typical TRY-RECOVER
construct has the form:

 TRY
 statement;
 {statement;}
 .
 .
 .
 RECOVER
 BEGIN {error-handling code}
 temp := escapecode; {save escapecode value, which can change}

 CASE temp OF {handle error}
 {handle expected values of temp here}
 OTHERWISE
 escape(temp); {cannot handle this error here;
 pass to any enclosing TRY-RECOVER construct}
 END; {CASE}
 END; {error-handling code}

Escape Procedure

The predefined procedure escape is called by your program, a library
routine, or the operating system when a run-time error occurs. If a
TRY-RECOVER construct is active when the system calls escape , the program
executes the statement associated with the RECOVER part (see "TRY-RECOVER
Construct"). If no TRY-RECOVER construct is active, the program
aborts. A TRY-RECOVER construct is active if the TRY statement has been
executed, but the RECOVER statement has not.

11- 2

The procedure escape has one parameter, error_code , which is an integer
expression. Escape sets error_code , whose value you can then access with
the predefined function escapecode .

Example

 PROGRAM p;
 VAR
 x : integer;
 ecode : integer;
 .
 .
 PROCEDURE PUTJCW; INTRINSIC;

 PROCEDURE proc (n : integer);
 BEGIN {proc}
 {Test for erroneous parameter}
 IF NOT (n IN [0..100]) THEN
 escape(-755);
 .
 .
 putjcw(jcwname,jcwvalue,error); {system call}

 IF error > 0 THEN
 escape(error); {system call failed}
 .
 .
 END; {proc}

 BEGIN {main program}
 TRY
 proc(x);
 RECOVER
 ecode := escapecode; {See note in "Escapecode Function"}

 IF ecode = -775 THEN
 {Report bad value of m}
 ELSE IF ecode = -3550 THEN
 {Report failure of system call}
 ELSE
 halt(ecode);
 END. {main program}

Escapecode Function

The predefined function escapecode returns the integer value of
error_code , the parameter of the predefined procedure escape (see "Escape
Procedure").

The result of escapecode is undefined if escape was never called, and
after exit from the TRY-RECOVER construct by normal, sequential means
(rather than exit by explicit escape, exit, or goto). If you call
escapecode when its result is undefined, the result is indeterminate and
meaningless. Access escapecode only in the RECOVER part of a TRY-RECOVER
construct.

To see the symbolic names for the escape codes that the Pascal
subsystem returns, list the file PASESC.PUB.SYS (on MPE/iX) or
/usr/include/pasesc.ph (on HP-UX).

TRY-RECOVER Construct

The TRY-RECOVER construct defines a group of statements as error recovery
code.

Syntax

 TRY statement [; statement]... RECOVER statement

Parameter

statement Labeled or unlabeled statement.

If an error occurs when the program executes a statement (or any routines
called by the statement in the TRY part):

11- 3

 1. The subsystem in which the error occurred (the program, a library,
 or the operating system) calls the predefined procedure escape
 with error_code as its parameter. The parameter error_code is an
 integer expression whose value represents the error.

 2. The procedure escape sets error_code and saves it.

 3. The program's run-time environment reverts to that of the program
 unit (main program, procedure, or function) that contains the
 TRY-RECOVER construct.

 4. The program executes the statement of the RECOVER part (skipping
 any statement s between the statement where the error occurred and
 the RECOVER's statement).

If no statement causes an error, the program skips the RECOVER's
statement and executes the statement that follows the TRY-RECOVER
construct.

Example 1

 PROGRAM prog (input,output);
 $STANDARD_LEVEL 'HP_MODCAL'$
 VAR
 i,j,k,l : integer;

 PROCEDURE proc;
 BEGIN
 i := 0;
 j := 0;
 k := 0;
 END;

 BEGIN
 TRY
 read(i); {Error here transfers control to proc.}

 read(j); {Executed only if no error occurs for read(i).
 Error here transfers control to proc.}

 read(k); {Executed only if no error occurs for read(i) or read(j).
 Error here transfers control to proc.}

 RECOVER
 proc; {Executed only if an error occurs
 for read(i), read(j), or read(k).}

 l := i+j+k; {Always executed.}
 END.

If the RECOVER's statement is empty, the person who is running the
program will not know when the TRY-RECOVER construct has handled an
error.

If an error occurs when the program executes the RECOVER's statement , the
program aborts--unless the TRY-RECOVER construct is within another
TRY-RECOVER construct. In that case, the program executes the RECOVER
statement of the outer TRY-RECOVER construct.

Example 2

 PROGRAM prog (input,output);
 $STANDARD_LEVEL 'HP_MODCAL'$

 VAR
 i,j : integer;
 iok : Boolean;

 PROCEDURE newj;
 BEGIN
 writeln('That value is illegal.');
 prompt('Please enter an integer for j:');
 read(j);
 END;

 PROCEDURE newij;

11- 4

 BEGIN
 IF NOT iok THEN i := 0 ELSE newj;
 END;

 BEGIN {prog}
 iok := FALSE;

 TRY
 prompt('Enter an integer for i:');
 read(i); {An error here transfers control to newij}
 iok := TRUE; {Not executed if read(i) causes an error}

 TRY
 read(j); {An error here transfers control to newj}
 RECOVER
 newj; {An error here transfers control to newij}

 RECOVER
 newij; {An error here aborts the program}
 END. {prog}

The following example illustrates how nested TRY-RECOVER statements
divide the responsibility of error recovery.

Example 3

11- 5

The diagram below shows when, in time, the TRY-RECOVER statements labeled
A, B1, B2, and C in the preceding program are active. When more than one
TRY-RECOVER statement is active, the innermost one takes precedence.

The RECOVER's statement can use the predefined function escapecode to
determine the error that occurred and act accordingly.

Example 4

 PROGRAM system;

 IMPORT
 system_escapecodes; {see note following example}

 PROCEDURE support;
 BEGIN
 IF error THEN escape(88);
 END;

 PROCEDURE userprogram;
 BEGIN
 support;
 END;

 BEGIN {system}
 TRY userprogram
 RECOVER
 CASE escapecode OF
 minuser..maxuser : writeln('Software detected errors');
 range : writeln('Value range error');
 stackoverflow : writeln('Stack overflow');
 ioverflow : writeln('Integer overflow');
 idivbyzero : writeln('Integer divide by zero');
 roverflow : writeln('Real overflow');
 runderflow : writeln('Real underflow');
 rdivbyzero : writeln('Real divide by zero');
 nilpointer : writeln('Nil pointer reference');
 casebounds : writeln('Case expression bounds error');
 stroverflow : writeln('String overflow');
 filerror : writeln('File I/O error');
 OTHERWISE
 writeln('Unrecognized error');
 END; {CASE}
 END. {system}

NOTE This is only an example. The operating system on which HP Pascal
 runs does not use the constants that represent error codes in the
 example above (ioverflow, roverflow, and so on).

A program can access error_code only by calling the predefined function
escapecode.

11- 6

TRY-RECOVER and Optimization

If the OPTIMIZE compiler option is used with the TRY-RECOVER construct,
the following information explains what will or will not work at
different levels.

 * If an ESCAPE is done in the TRY block, or in any procedure called
 from within the TRY block, all values on the left side of an
 assignment statement, appearing before an ESCAPE or a procedure
 call, are stored.

 * If a trap occurs instead of an ESCAPE, the above statement is not
 true.

Example

The following example uses the local variable flag to indicate how far
the program gets before an error. It is used to undo or unlock a
resource.

 $standard_level 'ext_modcal'$
 $ovflcheck off$
 program dick;
 type iptr=^integer;
 procedure lock; external;
 procedure plock $alias 'lock'$; begin end;

 procedure proc(j:integer;p:iptr);
 var flag: {$VOLATILE$} boolean;
 i:integer;
 begin
 flag:=false;
 try
 lock;
 flag:=true;
 i:=maxint;
 i:=i + j + p^;
 if j < 0 then escape(i);
 recover
 begin
 if not flag then halt(1); { should not halt }
 end;
 end;
 begin
 proc(1,nil);
 end.

This program does not work correctly with optimization because the store
to the variable flag is done after the trap. To run the program
correctly, use $VOLATILE$ so that flag is stored before the trap occurs.
See Chapter 12 for more information on the optimizer.

Assert Procedure

The predefined procedure assert allows your program to test assumptions,
specify invariant conditions, and check data structure integrity.

Syntax

 assert (b, i [, p])

Parameters

b A Boolean expression that assert evaluates. If its value is
true, the program executes the statement following the call to
assert . If its value is false, the program's action depends upon

 whether p is specified and whether the ASSERT_HALT compiler
 option is OFF or ON (see Figure 11-1).

11- 7

 If the compiler can determine that b is a constant expression
 whose value is true , then it does not generate code for the call
 to assert .

i An integer expression. If the value of b is false and p is
 specified, procedure p is called with i as the actual value
 parameter. If b is false and p is not specified, the system
 issues a run-time error message that includes the value of i .

 A call to the predefined function statement_number is a useful
 integer expression for i . It returns the statement number (as
 shown on the compiler listing) for the statement from which it is
 called (in this case, the call to assert).

p The name of a procedure whose heading has the syntax

 PROCEDURE p (parameter_name : integer);

 If the value of b is false and p is specified, the system
 executes the call p(i) .

Figure 11-1 illustrates how the predefined procedure assert works.

Figure 11-1. How the Predefined Procedure Assert Works

11- 8

The default for the ASSERT_HALT compiler option is OFF (see the HP
Pascal/iX Reference Manual or HP Pascal/HP-UX Reference Manual for more
information).

Example

 PROCEDURE my_assert (value : integer);
 BEGIN
 writeln('my_assert #', value);
 END;

 PROCEDURE x (p : ptrtype; n : integer);
 BEGIN
 assert(p <> nil, 80101, my_assert);
 assert(n >= 0, 80102);
 END;

Traps

Your HP Pascal program can use these MPE/iX traps:

 * MPE/iX intrinsic XLIBTRAP, which traps library errors.

 * MPE/iX intrinsic XARITRAP (the MPE/iX version of the MPE intrinsic
 XARITRAP), which traps arithmetic errors.

 * MPE/iX intrinsics ARITRAP and HPENBLTRAP, which allow you to
 enable and disable trap conditions.

 * MPE intrinsic XCONTRAP, which specifies a user-defined routine to
 handle the subsystem break (CONTROL Y).

The subsections of this section explain how to use these traps.

NOTE The user trap-handling routines whose addresses are passed to the
 traps in this section must be level-one routines.

ARITRAP and HPENBLTRAP Intrinsics

The MPE/iX intrinsics ARITRAP and HPENBLTRAP are supported by the Trap
Subsystem. ARITRAP allows a user program to enable or disable traps
collectively. HPENBLTRAP is a new MPE/iX intrinsic that allows a user
program to enable selected trap conditions.

These terms apply to trap conditions:

Term Meaning

enable To allow a trap to be raised if the trap condition occurs.

arm To specify that a particular trap handler is to be called if a
 certain trap is raised (the trap must be enabled to be
 raised).

disable To prevent a trap from being raised, even if the trap
 condition occurs.

By default, all traps except IEEE floating-point traps are enabled.
(This complies with the IEEE floating-point standard, which stipulates
that IEEE traps are to remain disabled by default.)

Syntax

 ARITRAP (flag);

11- 9

 HPENBLTRAP (mask, oldmask);

Parameters

flag 32-bit integer, passed by value. If flag is zero, all traps
 are disabled; otherwise, all traps are enabled.

mask 32-bit integer, passed by value, whose bits specify which trap
 conditions are enabled. The assignment of each position in
 the bit mask is described in "XARITRAP Intrinsic."

oldmask 32-bit integer, passed by reference, in which the old value of
mask is returned.

On MPE/iX, declare ARITRAP and HPENBLTRAP as external procedures this
way:

 PROCEDURE ARITRAP; INTRINSIC;

 PROCEDURE HPENBLTRAP; INTRINSIC;

On HP-UX, declare ARITRAP and HPENBLTRAP as external procedures this way:

 $PUSH; UPPERCASE ON$
 PROCEDURE ARITRAP (Flag : integer); EXTERNAL;

 PROCEDURE HPENBLTRAP (Mask : integer;
 VAR OldMask : integer
); EXTERNAL;
 POP

Example

 ARITRAP (1); {enables all traps}

 HPENBLTRAP (Hex('007C0000'), OldMask); {enables IEEE floating-point traps}

XLIBTRAP Intrinsic

The MPE/iX intrinsic XLIBTRAP is supported by the HP Pascal run-time
library. It enables a user program to arm a library trap handling
procedure (Library Trap Handler). Subsequently, any Pascal library error
causes this Library Trap Handler to be called, allowing the user to
decide whether to abort or continue the program, or correct the error.

Syntax

 XLIBTRAP (plabel, oldplabel);

Parameters

plabel 32-bit integer, passed by value, which is the
 address of the Library Trap Handler.

oldplabel 32-bit integer, passed by reference, in which the
 old value of plabel is returned.

On MPE/iX, declare XLIBTRAP as an external procedure this way:

 PROCEDURE XLIBTRAP; INTRINSIC;

On HP-UX, declare XLIBTRAP as an external procedure this way:

 $PUSH; UPPERCASE ON$
 PROCEDURE XLIBTRAP (PLabel : INTEGER;
 VAR OldPLabel : INTEGER
); EXTERNAL;
 POP

11- 10

XLIBTRAP stores the address of the Library Trap Handler (plabel) so that
the library routines can find the routine to call if an error occurs.
The old value of PLabel is returned in the parameter OldPLabel.

The only ways to leave a trap handler is by a normal return or by an
escape . Your library trap handler cannot execute a nonlocal goto (a goto
whose destination is outside the procedure).

NOTE This routine is available on the MPE/iX and HP-UX operating
 systems. On MPE/iX, it expects an MPE-style plabel ; on HP-UX, it
 expects plabel to be the actual address of the Library
 Trap Handler. To make your program portable, use baddress
 (Library_Trap_Handler_name) as plabel .

NOTE The result record will be different if the trap has been raised
 outside of the Pascal run time library.

The user's trap handler must be declared this way:

 TYPE
 PStkMrk = RECORD {Stack Marker}
 users_PCS : integer; {space id of users code space}
 users_PCO : integer; {program counter offset within the
 code space}
 users_SP : integer; {stack pointer of the user's
 routine that called the library
 routine where the error occurred}
 users_DP : integer; {data pointer for the above routine}

 {future implementations may have further fields to return
 more information to the user's trap handler. If so, they
 will not affect existing code that uses the above fields.}
 END;

 PROCEDURE My_Library_Trap_Handler (VAR StkRec : PStkMrk;
 VAR ErrorCode : Integer;
 VAR AbortFlag : Integer
);

 BEGIN {My_Library_Trap_Handler}
 .
 .
 .
 END; {My_Library_Trap_Handler}

Where

StkRec A structure, as described above, passed by reference. Any
 changes to the fields of this structure are not reflected in
 the actual contents of the machine registers, when and if the
 program resumes normal execution.

ErrorCode 32-bit integer, passed by reference, which contains the error
 code. For a complete list of error codes generated by the
 Pascal run-time library, see the file PASESC.PUB.SYS (on
 MPE/iX) or /usr/include/pasesc.ph (on HP-UX). Either of these
 files can be directly included in a user program.

AbortFlag 32-bit integer, passed by reference. If AbortFlag is zero
 when the Library Trap Handler is exited, the program continues

11- 11

 to execute. If AbortFlag is not zero, the Pascal run-time
 library prints an error message and aborts the program.

To trap all run-time library errors and have them invoke your Library
Trap Handler, call XLIBTRAP this way:

 XLIBTRAP (baddress (My_Library_Trap_Handler), OldPLabel);

To disable your Library Trap Handler, pass zero to XLIBTRAP as the first
parameter.

Example

 {the user declares the following Pascal record for the PStkMrk record}

 TYPE
 PStkMrk = RECORD {"Stack Marker"}
 users_PCS,
 users_PCO,
 users_SP,
 users_DP : integer;
 END;

 $INCLUDE '/usr/include/pasesc.ph'$ {this file lists all the Pascal
 run-time library error codes
 for the HP-UX operating system}

 PROCEDURE My_Library_Trap_Handler (VAR StkRec : PStkMrk;
 VAR ErrorCode : Integer;
 VAR AbortFlag : Integer
);

 BEGIN {My_Library_Trap_Handler}

 {ignore file close errors, abort on all others}

 IF (ErrorCode = PasErr_CloseError) THEN BEGIN
 writeln ('Oops! File close error, continue execution');
 AbortFlag := 0; {no abort}
 END
 ELSE
 AbortFlag := 1; {print message and abort}
 END; {My_Library_Trap_Handler}

XARITRAP Intrinsic

The MPE/iX intrinsic XARITRAP is supported by the Trap Subsystem.
XARITRAP enables your program to arm an arithmetic trap handling
procedure (Arithmetic Trap Handler). Subsequently, any arithmetic error
causes this Arithmetic Trap Handler to be called, allowing the user to
decide whether to abort or continue the program, or correct the error.

For more information on trap handling, see the Trap Handling Programmer's
Guide .

Syntax

To arm your Arithmetic Trap Handler, call XARITRAP this way:

 XARITRAP (mask, plabel, oldmask, oldplabel);

Parameters

mask 32-bit integer by value, whose bits specify which trap
 condition gets armed. The assignment of each position in
 the bit mask is as follows:

Bit Error Trap

11- 12

 31 Compatibility Mode floating-point divide by zero
 30 Integer divide by zero
 29 Compatibility Mode floating-point underflow
 28 Compatibility Mode floating-point overflow
 27 Integer Overflow
 26 Compatibility Mode double precision overflow
 25 Compatibility Mode double precision underflow
 24 Compatibility Mode double precision divide by zero
 23 Decimal Overflow (COBOL)
 22 Invalid ASCII digit (COBOL)
 21 Invalid decimal digit (COBOL)
 20-19 Reserved
 18 Decimal divide by zero
 17 IEEE floating-point inexact result
 16 IEEE floating-point underflow
 15 IEEE floating-point overflow
 14 IEEE floating-point divide by zero
 13 IEEE floating-point invalid operation
 12 Range error (subrange violations, etc)
 11 NIL pointer dereference
 10 Result of pointer arithmetic is misaligned or error
 in conversion from long to short pointer
 9 Unimplemented condition traps
 8 Paragraph stack overflow (COBOL)
 7-1 Reserved
 0 Assertion Trap

plabel 32-bit integer, passed by value, which is the address of
 the Arithmetic Trap Handler.

oldmask 32-bit integer, passed by reference, in which the old value
 of mask is returned.

old plabel 32-bit integer, passed by reference, in which the old value
 of plabel is returned.

On MPE/iX, declare XARITRAP as an external procedure this way:

 PROCEDURE XARITRAP; INTRINSIC;

On HP-UX, declare XARITRAP as an external procedure this way:

 $PUSH; UPPERCASE ON$
 PROCEDURE XARITRAP (Mask,
 plabel : integer;
 VAR OldMask,
 OldPlabel : integer
); EXTERNAL;
 POP

XARITRAP stores the address of the Arithmetic Trap Handler (plabel) so
that the system trap handler can find the routine to call if an error
occurs. The old value of plabel is returned in the parameter OldPLabel.

The only ways to leave a trap handler is by a normal return or by an
escape . Your library trap handler cannot execute a nonlocal goto (a goto
whose destination is outside the procedure).

NOTE This routine is available on both the MPE/iX and HP-UX operating
 systems. On MPE/iX, it expects an MPE-style plabel ; on
 HP-UX, it expects plabel to be the actual address of your
 Library Trap Handler. To make your program portable, use

baddress (Arithmetic_Trap_Handler_name) as plabel .

 IEEE floating-point numbers are the default (native) real numbers
 in HP Precision Architecture. Compatibility Mode floating-point

11- 13

 numbers have the format of reals on the MPE V system. The compiler
 options HP3000_32 and HP3000_16 specify native and compatibility
 Mode real numbers, respectively. For more information on HP3000_32
 and HP3000_16, see the HP Pascal/iX Reference Manual or the HP

Pascal/HP-UX Reference Manual , depending on your implementation.

The user's trap handler must be declared this way:

 TYPE
 TrapInfo= RECORD
 Instruction : integer; {the actual instruction word that
 caused the arithmetic trap}
 PC_Offset : integer; {offset of the above instruction
 within the user's code space}
 PC_Space : integer; {space id of user's code space}
 Error_Code : integer; {Trap type. This word is formed
 by setting the bit corresponding
 to the trap condition in a 32-bit
 integer, with all other bits zero.
 More than 1 bit will be turned on
 if multiple traps occur together}

 {more fields are returned for certain of the trap conditions.
 See below for details}
 END;

 PROCEDURE My_Arith_Trap_Handler (VAR Info : TrapInfo);
 BEGIN {My_Arith_Trap_Handler}
 .
 .
 .
 END; {My_Arith_Trap_Handler}

To enable (for example) all integer and IEEE floating-point traps, as
well as all pointer traps, call XARITRAP this way:

 XARITRAP (
 {bit 0 1 2 3 }
 { 01234567890123456789012345678901}
 Binary ('00000000001111111000000000010010'),
 BAddress (My_Arith_Trap_Handler),
 OldMask,
 OldPLabel
);

NOTE In the preceding example, the IEEE inexact result trap is not
 enabled.

 HP Precision Architecture has only three distinct hardware
 arithmetic trap conditions: condition, [integer] overflow, and

assist exception (IEEE floating-point traps are in the last
 category). The system is able to categorize most integer and
 decimal traps (except integer overflow) because each category has
 its own unique trapping instructions. If a condition trap occurs,
 and the system cannot categorize it, unimplemented condition trap
 (bit 9) is raised.

 The IEEE inexact result trap (bit 17), a trap required by the IEEE
 floating-point standard, indicates that a floating-point operation
 may have caused an inexact result (for example, the result of
 10.0/3.0 is 3.333... regardless of the number of bits of precision
 you use). This trap is useful only for specialty number-crunching
 programs. Indiscriminate arming of this trap can severely degrade
 program performance, because almost any floating-point operation

11- 14

 you perform will cause this trap to be raised.

To disable your Arithmetic Trap Handler, pass zero to XARITRAP as the
second parameter.

For the following traps, the system trap handler passes your Arithmetic
Trap Handler more fields than the four defined above in the TrapInfo
record, and you must adjust TrapInfo accordingly.

 Integer overflow trap
 Decimal overflow trap
 Invalid ASCII digit trap
 Invalid decimal digit trap
 IEEE floating-point traps
 Compatibility Mode floating-point traps

The following sections describe the extra parameters.

Integer Overflow Trap.

The TrapInfo record must have one extra field, SubCode. SubCode (word
#5) contains one of the following codes, which tells what kind of integer
overflow occurred.

SubCode Type of Overflow
Value

 1 32/64-bit overflow

 2 16-bit overflow

 3 8-bit overflow

 4 overflow on conversion from a compatibility-mode
 floating-point number

 5 overflow on conversion from an IEEE floating-point number

Decimal Overflow Trap.

The TrapInfo record must have one extra field, SubCode.

SubCode (word #5) contains one of the following codes, which tells what
kind of decimal overflow occurred.

Subcode Type of Overflow
Value

 1 overflow in decimal arithmetic operation

 2 overflow in conversion from ASCII to decimal

Invalid ASCII Digit and Invalid Decimal Digit.

The TrapInfo record has three extra fields:

 1. Subcode (word #5) contains a code 0..3. Refer to the Trap
Handling Programmer's Guide for more information.

 2. Address (word #6) contains the address of the first digit of the
 number
 3. Count (word #7) contains the digit count

IEEE Floating Point Traps.

The TrapInfo record has six extra fields:

11- 15

 1. Status (word #5) contains the value in the status register of the
 IEEE floating-point coprocessor. Any change in this field is
 reflected in the value of the status register when the program
 resumes execution.

 2. Operation (word #6) contains one of the following codes, which
 tells the type of floating-point operation that caused the trap.

Value Type of Operation

 3 ABS

 4 SQRT

 5 RND

 8 CNVFF

 9 CNVXF

 10 CNVFX

 16 CMP

 24 ADD

 25 SUB

 26 MPY

 27 DIV

 28 REM

 3. Format (word #7) contains the type of the operands (single,
 double, or quadruple). If the operation was CONVERT (CNV xx), then
 the following values are returned:

Value Types of Operands

 1 Source is single, result is double

 3 Source is single, result is quadruple

 4 Source is double, result is quadruple

 If the operation was NOT a CONVERT (CNV xx), then the following
 values are returned:

Value Type of Operand

 0 Single

 1 Double

 3 Quadruple

 4. source_op1_ptr (word #8) contains the address of the first
 operand, which can be a single-, double- or quadruple-word
 floating-point number, depending on the operation and the format.

 5. source_op2_ptr (word #9) contains the address of the second
 operand, which can be a single-, double-, or quadruple-word
 floating-point number, depending on the operation and the format.

 6. result_ptr (word #10) contains the address of the result of the
 operation, which can be a single-, double-, or quadruple-word
 floating-point number depending on the operation and the format.

11- 16

 You can examine and replace the contents of the area referenced by
result_ptr , and the Trap Subsystem will ensure that the change is

 reflected in the appropriate place.

Compatibility Mode Floating-Point Traps.

The TrapInfo record has one extra field, Result_ptr .

Result_ptr (word #5) contains the address of the result of the operation,
which can be a single- or double-word floating-point number, depending on
the type of trap. You can examine and replace the contents of the area
referenced by result_ptr , and the Trap Subsystem will ensure that the
change is reflected in the appropriate place.

Example

 {user declares the following Pascal record for the TrapInfo record}

 TYPE
 real_ptr = real;
 long_ptr = longreal;
 TrapInfo = RECORD
 { 1} instruction,
 { 2} pc_offset,
 { 3} pc_space,
 { 4} error_code,
 { 5} status,
 { 6} operation,
 { 7} format : integer;
 { 8} source1_ptr,
 { 9} source2_ptr,
 {10} result_ptr : localanyptr;
 END;
 CONST
 IEEE_mask = hex('0007C000');
 fdiv_zero = hex('00002000'); {the error code for fl. pt. div. by 0}

 {trap handler routine}

 PROCEDURE IEEE_trap_handler (VAR Info : TrapInfo);
 VAR
 long_res_ptr : long_ptr;
 real_res_ptr : real_ptr;

 (Example continued on next page .)

 CONST
 max_real = 3.402823E+38;
 max_longreal = 1.797693L+308;

 BEGIN {IEEE_trap_handler}
 {handle only divide-by-zero, ignore others}

 WITH Info DO
 IF (Error_Code = fdiv_zero) THEN
 BEGIN {divide by zero}

 {change the value of the result}
 IF (format = 0) THEN
 BEGIN {real operation}
 real_res_ptr := result_ptr;
 real_res_ptr^ := maxreal;
 END {real operation}
 ELSE IF (format = 1) THEN
 BEGIN {longreal operation}
 long_res_ptr := result_ptr;
 long_res_ptr^ := maxlongreal;
 END; {longreal operation}

11- 17

 END; {divide by zero}
 END; {IEEE_trap_handler}

 {user main program}
 VAR
 l1, l2, l3 : longreal;
 oldmask,
 oldplabel : integer;

 BEGIN {main program}
 ARITRAP (1); {see "ARITRAP and HPENBLTRAP Intrinsics" for details}
 XARITRAP (IEEE_mask, BAddress (IEEE_trap_handler), oldmask, oldplabel);

 l1 := 233.0;
 l2 := 0.0;
 l3 := l1/l2; {oops! divide by zero!}

 writeln (l3); {the trap handler should have fixed the result of the
 previous operation to maxlongreal (1.79769e+308)}
 END. {main program}

XCONTRAP Intrinsic

The MPE intrinsic XCONTRAP specifies a user-defined routine (Subsystem
Break Handler) that will be called when the user enters a subsystem break
(CONTROL Y) on the keyboard. When XCONTRAP is enabled and the user
enters CONTROL Y:

 * Program control is transferred to the specified user-defined
 routine.

 * The subsystem break function is temporarily disabled to reduce the
 chance of race conditions.

If normal program execution is to resume after the interrupt, the
user-defined routine must re-enable the subsystem break by calling the
intrinsic RESETCONTROL just before it ends. On MPE/iX, a normal exit
from the user-defined routine is sufficient to return control to the
point in the program where the subsystem break was trapped.

Syntax

To arm your Subsystem Break Handler, call XCONTRAP this way:

 XCONTRAP (plabel, oldplabel);

 Call RESETCONTROL this way:

 RESETCONTROL;

Declare XCONTRAP and RESETCONTROL this way:

 PROCEDURE XCONTRAP; INTRINSIC;

 PROCEDURE RESETCONTROL; INTRINSIC;

Parameters

oldplabel A 32-bit integer, passed by reference, in which the old
 value of plabel is returned. If the subsystem break
 handler is not armed, this value is zero.

plabel A 32-bit integer, passed by value, which is the address of
 your Subsystem Break Handler.

Example

The main program is a loop. Whenever the user enters CONTROL Y on the

11- 18

keyboard, control transfers to the procedure control_y_handler, which
writes the current loop counter value, then re-enables the subsystem
break, and returns to the point in the loop where the interrupt occurred.

 PROGRAM control_y_test (output);

 VAR
 count : integer;
 i : integer;
 oldplabel : integer;

 {Intrinsic Declarations}
 PROCEDURE XCONTRAP; INTRINSIC;
 PROCEDURE RESETCONTROL; INTRINSIC;

 {User-defined Subsystem Break Handler}

 PROCEDURE control_y_handler;
 BEGIN
 writeln('<Control-Y>: Count = ', count:1); {write counter value}
 RESETCONTROL; {re-enable subsystem break}
 END;

 BEGIN
 {Arm the Subsystem Break Handler,
 specifying control_y_handler as the user-defined routine}

 XCONTRAP (BAddress (control_y_handler), oldplabel);

 {Loop}

 FOR i := 1 TO 30000000 DO
 count := i;
 END.

If you compile, link, and run the preceding program on an MPE/iX system
and press CONTROL Y several times while it is running, the program prints
the value of count each time you press CONTROL Y. For example:

 CONTROL Y: Count = 121765

 CONTROL Y: Count = 2731435

 CONTROL Y: Count = 5789345

 CONTROL Y: Count = 10135467

 CONTROL Y: Count = 23618560

HP TOOLSET/XL and HP Symbolic Debuggers

The HP TOOLSET/XL debugger is available on the MPE/iX operating system.
The HP Symbolic Debugger is available on both the HP-UX and MPE/iX
operating systems. The HP TOOLSET/XL debugger supports a subset of HP
Pascal features. The HP Symbolic Debugger supports the HP Pascal
language.

To debug your program with HP TOOLSET/XL or HP Symbolic Debugger, you
must compile it with the compiler option SYMDEBUG. SYMDEBUG causes the
compiler to generate the symbolic debug information that either debugger
needs.

HP TOOLSET/XL and HP Symbolic Debugger need different information; if you
compile part of your program for HP TOOLSET/XL and part of it for HP
Symbolic Debugger, neither HP TOOLSET/XL nor HP Symbolic Debugger will
work with it.

For more information on the SYMDEBUG compiler option, refer to the HP

11- 19

Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation. For information on HP TOOLSET/XL,
refer to the HP TOOLSET/XL Reference Manual . For more information on HP
Symbolic Debugger, refer to the
MPE/iX Symbolic Debugger User's Guide .

System Debuggers

The compiler listing of your program is an indispensable debugging aid.
The following compiler options provide the listing with additional
information, as noted.

The system debuggers are adb on HP-UX and NM Debug on MPE/iX.

Compiler Option Effect

CODE_OFFSETS For the main program and each routine, the CODE_OFFSETS
 option produces a table for every executable statement
 in which the value of the program counter for the first
 machine instruction that corresponds to the statement
 appears beside the statement number. The tables appear
 at the end of the compiler listing.

 Each program counter value is offset from the entry
 point of the procedure that contains the statement to
 which it corresponds.

 Program counter values are useful when debugging your
 program.

LIST_CODE This option produces a mnemonic listing of the object
 code for each routine in the program. The mnemonic
 listing appears after the listing of the compilation
 unit.

TABLES This option produces an identifier map for each routine
 and main program that the compiler parsed while the
 option was ON. An identifier map shows each identifier
 that the block declares and its class, type, address or
 constant value, size, alignment, and (if appropriate)
 field offset.

NOTE Program counter values are not exact when you use optimization.

See the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation, for more information on the
compiler options CODE_OFFSETS, LIST_CODE, and TABLES.

You must debug your code before you compile it with optimization.
CODE_OFFSETS and SYMDEBUG cannot be used in an optimized program, because
the optimizer transforms the machine code so that the mapping of source
code to machine code is not one-to-one.

11- 20

A-: 1

Appendix A MPE/iX Dependencies
This appendix explains how the HP Pascal compiler and HP Pascal programs
work on the MPE/iX operating system. It explains:

 * How MPE/iX affects system dependent HP Pascal features.

 * MPE/iX extensions to HP Pascal.

 * How to compile, link, and run your HP Pascal program on MPE/iX.

System-Dependent Features
System dependent features are available to all HP Pascal programs
(regardless of the system on which the compiler is running), but the
system affects their definitions and behavior. System dependent HP
Pascal features fall into these categories:

 * Compiler options.

 * File names.

 * Associating logical and physical files.

 * Using file equations.

 * Default file attributes.

 * Standard modules.

 * Miscellaneous.

Compiler Options

The following compiler options are available only to programs that are
compiled by the HP Pascal compiler running on the MPE/iX operating system
and contain the compiler option OS 'MPE/XL'.

 FONT
 HP3000_16
 HP3000_32

The compiler option INCLUDE is available to programs compiled by the HP
Pascal compiler running on either the MPE/iX or HP-UX operating system,
but it works differently on the two systems.

Refer to the HP Pascal/iX Reference Manual for more information on the
compiler options FONT, HP3000_16, HP3000_32, and INCLUDE.

File Names

An MPE/iX file name has the syntax

filename [/ lockword][. group [. account]][: nodename]

where each of filename , lockword , group , account and node is a string of
one to eight alphanumeric characters. The first character in the string
is a letter, and each of domain and organization is a string of one to 16
alphanumeric characters, the first of which is a letter. The entire file
name cannot have more than 86 characters. MPE/iX does not distinguish
between uppercase and lowercase letters.

A-: 2

Example

For more information on MPE/iX file names, refer to the MPE/iX Commands
Reference Manual .

Associating Logical and Physical Files

Your program does not affect its external environment unless its logical
files are associated with physical files at run-time. If they are, file
operations work concurrently on logical and physical files (see Chapter 3
).

In HP Pascal on the MPE/iX operating system, a logical file is associated
with a physical file under any one of the following conditions:

 1. The name of the logical file is both a program parameter and the
 first parameter of a predefined file-opening procedure. The
 predefined file-opening procedure has no second parameter.

 The operating system associates the logical file name with a
 default physical file, whose name consists of the first eight
 characters of the logical file name. This name must be an
 acceptable MPE/iX file name (for example, it cannot contain an
 underscore character (_)). If the default physical file does not
 exist, HP Pascal creates a temporary physical file with that name.

Example

 PROGRAM case_one (input,output,file1);

 VAR
 file1 : FILE OF integer;

 BEGIN
 reset(file1);
 .
 .
 .
 END.

 The operating system associates the logical file file1 with the
 physical file FILE1. If FILE1 does not exist, HP Pascal creates a
 temporary file named FILE1.

 The standard files input and output are exceptions to this scheme.
 When they are program parameters, the operating system associates
 them with the physical files $STDIN and $STDLIST, respectively.

A-: 3

 If a logical file name is not a program parameter, but is the
 first parameter of a file-opening procedure that has no second
 parameter, the operating system associates the logical file with a
 temporary, nameless physical file (assuming that the logical file
 is not already associated with a physical file). You cannot save
 the temporary file. When the program ends or the logical file is
 associated with another physical file, the temporary file is
 inaccessible.

 2. The names of the logical and physical files are the first and
 second parameters, respectively, of a predefined file-opening
 procedure. It does not matter whether the logical file name is a
 program parameter or not.

Example

 PROGRAM case_two (input,output); {logical file name is not a
 program parameter}
 VAR
 file1 : FILE OF integer;

 BEGIN
 rewrite(file1,'numfile');
 .
 .
 .
 END.

 The operating system associates the logical file file1 with the
 physical file numfile.

 This association holds, even if the logical file name is a program
 parameter.

Example

 PROGRAM case_three (input,output,file1); {logical file name is a
 program parameter}
 VAR
 file1 : FILE OF integer;
 fname : PACKED ARRAY [1..8] OF char;

 BEGIN
 fname := 'numfile';
 rewrite(file1,fname);
 .
 .
 .
 END.

 The operating system still associates file1 with numfile, not
 FILE1.

 The second parameter of a file-opening procedure need not be a
 string literal. It can also be a PAC variable or string
 expression.

Using File Equations

The MPE/iX FILE command redirects the association of one physical file to
another physical file and specifies additional file attributes, which are
MPE/iX dependent.

A-: 4

Example

 PROGRAM prog (outfile);

 VAR
 i : integer;
 outfile : text;

 BEGIN
 rewrite(outfile);
 FOR i := 1 TO 20000 DO
 writeln(outfile,i);
 END.

If PRG is the program file for prog and you execute the MPE/iX command
sequence

 :FILE OUTFILE = FILE2
 :RUN PRG

then output goes to FILE2 instead of OUTFILE.

If you execute the MPE/iX command sequence

 FILE OUTFILE; DISC=21000; REC=-20,,F,ASCII
 RUN PROG

then a nondefault attribute file is created.

Default File Attributes

When HP Pascal creates a file, the physical file attributes depend on the
file component type.

Table A-1 gives the default file attributes of files built by HP
Pascal programs. After the program has executed, the MPE/iX command
LISTF shows these values for the files that the program built (LISTF
attribute names are in parentheses).

Table A-1. Default File Attributes

--
How Program	Default File Attribute
Declares File	
--
	Record Size	File Type (TYP)	Current File Size	Maximum File Size
	(SIZE)		(EOF)	(LIMIT)
--
FILE OF type	Component size	Fixed length	Number of	1023
		binary (FB)	components	
			written	
--
Text	256 bytes	Variable length	Number of lines	1023
		ASCII with	written	
		carriage control		
		(VAC)		
--

Standard Modules

Two standard modules are available on MPE/iX: stdinput and stdoutput .

If a module imports the stdinput module, it can use the predefined file
input in I/O statements such as read and readln .

If a module imports the stdoutput module, it can use the predefined file
output in I/O statements such as write and writeln .

A-: 5

Example

 MODULE mymod;
 IMPORT
 stdinput, stdoutput;

 EXPORT
 FUNCTION myproc : integer;

 IMPLEMENT
 FUNCTION myproc : integer;
 VAR
 i : integer;
 BEGIN
 prompt('enter number:'); {need not specify output file}
 readln(i); {need not specify input file}
 myproc := i;
 END;
 END.

Additional Features

The HP Pascal features in the left-hand column depend on the MPE/iX
operating system in the ways explained in the right hand column.

Feature MPE/iX Dependency

Close options The optional third parameter of the
 predefined procedure close can be SAVE,
 LOCK, TEMP, NORMAL, CRUNCH, or PURGE, whose
 meanings are:

 SAVE LOCK The file is saved as a
 permanent file after it is
 closed.

 TEMP NORMAL The file is saved as a
 temporary file after it is
 closed.

 CRUNCH Space after end-of-file marker
 is removed when the file is
 closed.

 PURGE The file is purged after it is
 closed.

Halt MPE/iX calls the intrinsic QUIT with an
 integer parameter.

Internal table size

 The Job Control Word (JCW) PASXDATA is the
 number of pages to allocate to each internal
 table (there is one internal table for
 identifiers and another for structured
 constants). The default internal table size
 is 100 pages. To set the internal table
 size to n pages, use the command:

 :SETJCW PASXDATA n

Write If the file being written is $STDLIST (the
 default output file), the output is
 unbuffered; therefore, a write to $STDLIST
 has the same behavior as prompt .

Input The standard program parameter and textfile
input is $STDIN.

Maxpos The call maxpos(f) returns the position
 number of the last component of the file f
 that the program can access. It is an error
 if the file f is not open for direct access.

Open options The third parameter of the predefined

A-: 6

 file-opening procedures append , associate ,
open , read , reset , rewrite , and write . They

 and their meanings are:

Option Meaning

 CCTL The file has carriage control.
 (Ignored for associate .)

 DIRECT The file is open for read and
 write access (associate only).

 NOCCTL The file does not have carriage
 control. (Ignored for

associate .)

 READ The file is open for read
 access only (associate and open
 only).

 WRITE The file is open for write
 access only (associate and open
 only).

 SHARED The file can be open to more
 than one program at a time.
 (Ignored for associate .)

 EXCLUS The file cannot be open to more
 than one program at a time.
 (Ignored for associate .)

 LOCK The file is locked. If the
 file is already locked, the
 program waits until it is
 unlocked. (Ignored for

associate .)

 At least one open option is required for
associate ; for all other file-opening

 procedures, open options are optional. You
 can specify more than one open option
 (separate them with commas).

 If the physical file specified in the
associate procedure has one or more of the

 characteristics specified by the open
 options, then the logical file assumes the
 same characteristics. If not, the associate
 procedure does not associate the new
 physical file with the logical file.

Output The standard program parameter and textfile
output is $STDLIST.

System intrinsic file SYSINTR.PUB.SYS

System default module PASLIB.PUB.SYS
library

Restrictions on Using Executable Libraries (XLs)

Global variables cannot be referenced across load modules. This applies
to globals declared through normal, global, external, and module
subprogram compilation units. In particular, you cannot use the standard
files input or output .

If a subprogram compilation unit is put in an XL, memory is overwritten.
You cannot put an external compilation unit in an XL. Using MODULE or
SUBPROGRAM with global compilation units will cause separate storage
locations to be allocated.

A non-local GOTO from an XL cannot branch to a label in the outer block.

A-: 7

MPE/iX Extensions
MPE/iX extensions are available only to programs that are run on the
MPE/iX operating system or contain the compiler option OS 'MPE/XL'. They
are:

 * Predefined function ccode

 * Predefined function fnum

 * Predefined function get_alignment

 * Predefined function statement_number

 * Predefined procedure setconvert

 * Predefined procedure strconvert

 * Pascal/V packing algorithm

ccode Function

The predefined function ccode returns an integer in the range 0..2, which
represents the condition code set by the most recently executed intrinsic
or external SPL routine.

The correspondence between possible return values and condition codes is:

Value Condition Code

 0 CCG

 1 CCL

 2 CCE

For the meanings of the condition codes, refer to the MPE/iX Intrinsics
Reference Manual .

The value that ccode returns is valid between the time that the intrinsic
or external SPL routine returns and any subsequent calls that can change
the value of ccode , which are:

 * Another intrinsic or external SPL routine.

 * Any predefined routine.

 * An HP Pascal error condition.

NOTE The scope rules for ccode are different in MPE/iX and MPE V.

Example

 PROGRAM prog (output);
 PROCEDURE intrin; INTRINSIC;
 PROCEDURE extspl; EXTERNAL SPL;
 PROCEDURE p;
 BEGIN
 writeln(ccode); {Garbage -- no intrinsic or external SPL
 intrin;
 writeln(ccode); {Returns condition code that intrin set}
 extspl;
 writeln(ccode); {Returns condition code that extspl set}
 END;
 BEGIN
 p;
 END.

Fnum Function

The predefined function fnum returns the MPE/iX file number of the

A-: 8

physical file currently associated with a given logical file. You can
use this file number in calls to MPE/iX file system intrinsics.

Syntax

 fnum (filename)

Parameter

filename The name of the logical file. This parameter is required,
 even if the logical file is the standard file input or

output . The logical file must be associated with a
 physical file.

Example

 PROGRAM aaa (output,f);

 VAR
 f : text;
 file_number : integer;
 file_name : PACKED ARRAY [1..86] OF char;

 PROCEDURE fgetinfo; INTRINSIC;

 BEGIN
 reset(f);
 file_number := fnum(f);
 file_name := ' ';
 fgetinfo(file_number,file_name);
 writeln('File name of f is', file_name);
 END.

Get_alignment Function

The predefined function get_alignment returns the alignment requirement
of a given type or variable. For a type, get_alignment returns the
minimum possible alignment. For a variable, it returns the actual
alignment.

Syntax

get_alignment ({variable})
 {type }
Parameters

variable Any variable. The function get_alignment returns its
 alignment requirement.

type Any type identifier (the name of any type). The function
get_alignment returns its alignment requirement.

Example

 $OS 'MPE XL'$
 PROGRAM prog;

 TYPE
 Rec = $ALIGNMENT 8$
 RECORD
 f1 : integer;
 f2 : shortint;
 f3 : real;
 END;

 integer_ = $ALIGNMENT 2$ integer;

 VAR

A-: 9

 ptr : ^integer_;

 BEGIN
 i := get_alignment(rec);
 IF get_alignment(ptr^) <> 2 THEN ...
 END.

Statement_number Function

The predefined function statement_number returns the statement number of
the statement that calls it, as shown on the compiled listing. It is a
useful debugging aid, especially when used with the predefined procedure
assert .

Syntax

statement_number

Example

 PROGRAM prog (output);

 VAR
 i : integer;

 BEGIN
 i := statement_number;
 writeln('Current Statement Number is ', i);
 assert(a > b, statement_number);
 END.

Setconvert Procedure

The predefined procedure setconvert converts a set from HP Pascal packing
algorithm (HP3000_32) format to Pascal/V packing algorithm (HP3000_16)
format, or vice versa. It is enabled by the HP3000_16 compiler option.

Syntax

 setconvert(set1,set2)

Parameters

set1 The name of the set variable to be converted.

set2 The name of the set variable into which the converted set
 is to be stored.

The sets set1 and set2 can vary only in packing algorithm format. Their
packing (unpacked, packed, or crunched) and base types must be the same.
Their packing algorithm formats cannot be the same.

Example

 PROGRAM prog;
 $HP3000_16$ {Enables setconvert procedure}

 TYPE
 hp3000_16_set1 = SET OF char;

 hp3000_32_set1 = $HP3000_32$ SET OF char;
 hp3000_32_set2 = $HP3000_32$ PACKED SET OF char;
 hp3000_32_set3 = $HP3000_32$ SET OF integer;

 VAR
 set16_1,
 set16_2 : hp3000_16_set1;

A-: 10

 set32_1 : hp3000_32_set1;
 set32_2 : hp3000_32_set2;
 set32_3 : hp3000_32_set3;

 BEGIN
 setconvert(set16_1,set32_1); {convert from Pascal/V to HP Pascal}
 setconvert(set32_1,set16_1); {convert from HP Pascal to Pascal/V}

 setconvert(set16_1,set32_2); {Illegal -- different packings}
 setconvert(set16_1,set32_3); {Illegal -- different base types}
 setconvert(set16_1,set16_2); {Illegal -- same packing algorithm format}
 END.

Strconvert Procedure

The predefined procedure strconvert converts a string from Pascal/V
packing algorithm (HP3000_16) format to HP Pascal packing algorithm
(HP3000_32) format. It is enabled by the HP3000_16 compiler option.

Syntax

 strconvert(string1,string2)

Parameters

string1 The name of the string variable to be converted. The
 string variable must be in Pascal/V packing algorithm
 (HP3000_16) format.

string2 The name of the string variable into which the converted
 string is to be stored. The string variable must be in HP
 Pascal packing algorithm (HP3000_32) format.

Example

 PROGRAM prog;
 $HP3000_16$ {Enables strconvert procedure}

 TYPE
 str16_20=string[20]; {Pascal/V packing algorithm (HP3000_16)}
 str32_40=$HP3000_32$ string[40]; {HP Pascal packing algorithm (HP3000_32)}

 VAR
 sv32_1,
 sv32_2 : str32_40;

 sv16_1,
 sv16_2 : str16_20;

 BEGIN
 strconvert(sv16_1,sv32_1);
 strconvert(sv32_2,sv32_1); {Illegal}
 strconvert(sv16_1,sv16_2); {Illegal}
 END.

Pascal/V Packing Algorithm

The Pascal/V packing algorithm is an alternative to the default HP Pascal
packing algorithm that Chapter 5 explains. If you want the compiler to
use the Pascal/V packing algorithm, include the compiler option HP3000_16
in your program (see the HP Pascal/iX Reference Manual for more
information on the compiler option HP3000_16). HP3000_16 causes the
compiler to use the Pascal/V packing algorithm, with these exceptions:

 * Pointers are allocated four bytes each and are 4-byte-aligned.

 * Files are aligned according to the HP Pascal packing algorithm.
 File control blocks are determined by the HP Pascal packing

A-: 11

 algorithm. Buffer size is determined by the Pascal/V packing
 algorithm.

 * Variables of types that specify the HP3000_32 compiler option are
 allocated and aligned according to the HP Pascal packing
 algorithm.

Unpacked Variables.

An unpacked variable is either not part of an array or record, or it is
part of an unpacked array or record. In either case, it is allocated and
aligned the same way.

Table A-2 shows how the Pascal/V packing algorithm allocates and
aligns the elements of an unpacked array or the fields of an unpacked
record. The element or field types are in alphabetical order.
Subsections that Table A-2 references are in this section, "Pascal/V
Packing Algorithm" .

Table A-2. Allocation and Alignment of Unpacked Variables
(Pascal/V Packing Algorithm)

Variable Type	Allocation	Alignment

Array	Use formula in "Arrays"	Byte or 2-byte

Bit16	2 bytes	2-byte

Bit32	4 bytes	2-byte

Bit52	8 bytes	2-byte

Boolean	1 byte	Byte

Char	1 byte	

Enumeration	1-256 elements

Enumeration	1 byte	Byte

Enumeration	257 or more elements

Enumeration	2 bytes	2-byte

File	See "Files"	8-byte

Integer	4 bytes	2-byte

A-: 12

Longint	8 bytes	2-byte

Longreal	8 bytes	2-byte

Pointer	HP3000_16 does not affect pointers. See Table 5-1 .

Real	4 bytes	2-byte

Record	Each field is allocated by	2-byte
	type and record is padded to	
	nearest 2-byte boundary	

Set	See "Sets"

String	See "Strings"	2-byte

Subrange of enumeration	Same as base type	Byte or 2-byte

Subrange of integer	Inside range -32768..32767

Subrange of integer	2 bytes	2-byte

Subrange of integer	Outside range -32768..32767

Subrange of integer	4 bytes	2-byte

Packed Variables.

A packed variable is the element of a packed array or the field of a
packed record. Packed elements and packed fields are allocated and
aligned differently.

Table A-3 shows how the Pascal/V packing algorithm allocates and
aligns the elements of a packed array. The element types are in
alphabetical order. Subsections that Table A-3 references are in
this section, "Pascal/V Packing Algorithm" .

Table A-3. Allocation and Alignment of Packed Array Elements
(Pascal/V Packing Algorithm)

Element Type	Allocation	Alignment

Array	Use formula in "Arrays"	Byte if element is allocated
		8 bits; 2-byte otherwise

A-: 13

Bit16	2 bytes	2-byte

Bit32	4 bytes	2-byte

Bit52	8 bytes	2-byte

Boolean	1 bit	Bit

Char	1 byte	Byte

Enumeration	See "Packed Enumerations"

File	See "Files"	8-byte

Integer	4 bytes	2-byte

Longint	8 bytes	2-byte

Longreal	8 bytes	2-byte

Pointer	HP3000_16 does not affect pointers.

Real	4 bytes	2-byte

Record	Each field is allocated by	2-byte
	type and record is padded to	
	nearest 2-byte boundary	

Set	See "Sets"

String	See "Strings"

Subrange of enumeration	See "Packed Subranges of Enumerations"

Subrange of integer	See "Packed Subranges of Integers"

Table A-4 shows how the Pascal/V packing algorithm allocates and
aligns the fields of a packed record. The field types are in
alphabetical order. Subsections that Table A-4 references are in this

A-: 14

section, "Pascal/V Packing Algorithm" .

Table A-4. Allocation and Alignment of Packed Record Fields
(Pascal/V Packing Algorithm)

Variable Type	Allocation	Alignment

Array	Use formula in "Arrays"	Byte if element is allocated
		8 bits; 2-byte otherwise

Bit16	2 bytes	2-byte

Bit32	4 bytes	2-byte

Bit52	8 bytes	2-byte

Boolean	1 bit	Bit

Char	8 bits	Bit, but does not cross
		2-byte boundary

Enumeration	See "Packed Enumerations"

File	See "Files"	8-byte

Integer	4 bytes	2-byte

Longint	8 bytes	2-byte

Longreal	8 bytes	2-byte

Pointer	HP3000_16 does not affect pointers. See Table 5-1

Real	4 bytes	2-byte

Record	Each field is allocated by	2-byte
	type and record is padded to	
	nearest 2-byte boundary	

Set	See "Sets"

| | |
| String | See "Strings" |

A-: 15

| | |

Subrange of enumeration	See "Packed Subranges of Enumerations"

Subrange of integer	See "Packed Subranges of Integers"

Arrays.

This section applies to the allocation of unpacked and packed arrays.
For alignment, see Table A-2 and Table A-3 .

The Pascal/V packing algorithm stores arrays in row-major order (for a
definition of row-major order, see Chapter 5).

The Pascal/V packing algorithm uses this formula to allocate an array:

 (number_of_elements * space_for_one_element)
 +

number_of_internal_unused_bits
 +

number_of_trailing_pad bits

The space_for_one_element depends on the element type and whether the
array is unpacked or packed. If the array is unpacked, find its type in
Table A-2 . If the array is packed, find its type in Table A-3 .

If space_for_one_element is less than 16 bits, the
number_of_internal_unused_bits is

16-((16 DIV space_for_one_element) * space_for_one_element)

otherwise, it is zero.

The number_of_trailing_pad_bits is the number of leftover bits in the
last byte or word (whichever each element is allocated).

Example

 TYPE
 day = (sun,mon,tues,wed,thurs,fri,sat);

 VAR
 ua : ARRAY [1..8] OF day;
 pa : PACKED ARRAY [1..8] OF day;

Each element of ua takes one byte. The entire array takes eight bytes,
with no internal unused bits and no trailing pad bits. The array ua is
allocated and aligned like this:

Each element of pa takes three bits. No element can cross a 2-byte
boundary, so the bit following pa[5] is unused. The entire array takes
four bytes, with one internal unused bit and seven trailing pad bits. It

A-: 16

is allocated and aligned like this:

Files.

The HP Pascal compiler allocates space for an HP3000_16 file this way:

 * The file control block is allocated according to the HP Pascal
 packing algorithm.

 * The file buffer variable size is allocated according to the
 Pascal/V packing algorithm.

 * The file is 8-byte-aligned.

Records.

This section applies to unpacked and packed records unless otherwise
noted.

The Pascal/V packing algorithm does not always align variant parts of
fields on the same boundary. Each variant part's boundary depends on its
type.

Example

 TYPE
 Rec = PACKED RECORD
 i : integer;
 CASE b : boolean OF
 TRUE : (f1 : char);
 FALSE : (f2 : ARRAY[1..2] OF -32768..32767;
 END;

A variable of type Rec is allocated 10 bytes. The TRUE and FALSE
variants are aligned like this:

TRUE Variant

A-: 17

FALSE Variant

The variants f1 and f2 do not start on the same boundary; therefore, f1
cannot be overlaid with f2.

Sometimes you can reduce the space that a record takes by declaring its
fields in different order.

Example

 VAR
 upr1 : RECORD
 b : boolean;
 p : 0..32767;
 c : char;
 END;

 upr2 : RECORD
 b : boolean;
 c : char;
 p : 0..32767;
 END;

The only difference between the variables upr1 and upr2 above is the
order of their fields.

The variable upr1 takes six bytes:

Because p must be 2-byte-aligned, it cannot start in the second byte.
The sixth byte is allocated to upr1 also, because records are
2-byte-aligned.

The variable upr2 takes four bytes:

A-: 18

Sets.

The Pascal/V packing algorithm allocates sets in byte pairs. The number
of byte pairs allocated to a set depends on its type. For the types
Boolean, char, enumeration, and integer, the formula for the number of
byte pairs is:

number_of_byte_pairs = ceil(bits_required_for_set /16)

(where ceil(x) means the integer closest to x that is greater than or
equal to x).
Table A-5 gives the values for bits_required_for_set and
number_of_byte_pairs for Boolean, char, and integer types.

Table A-5. Bit and Byte Pair Requirements for Boolean, Char, and Integer Base Types
(Pascal/V Packing Algorithm)

Base Type	bits_required_for_set	number_of_byte_pairs

Boolean	2	1

Char	256	16

Integer *	256 (by default) *	16

* Same as bit16, bit32, bit52, shortint, and longint.

* Integers outside the range 0..255 cannot belong to the set.

For enumerated sets, bits_required_for_set is the number of elements in
the set, and you must use the formula to determine number_of_byte_pairs .

Example

 VAR
 days = SET OF (sun,mon,tues,wed,thurs,fri,sat);
 months = SET OF (ja,f,mr,ap,ma,jn,jl,au,s,o,n,d);
 set_33 = SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,
 e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,
 e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

The set days has seven elements and requires seven bits. It is allocated
one byte pair (ceil(7/16) = 1).

Each element is represented by one bit, like this:

A-: 19

The set months has 12 elements and requires 12 bits. It is allocated one
byte pair (ceil(12/16) = 1). Each element is represented by one bit.

The set set_33 has 33 elements and requires 33 bits. It is allocated
three byte pairs (ceil(33/16) = 3). Each element is represented by one
bit.

For integer subrange sets, the formula for the number of byte pairs is:

number_of_byte_pairs = (upper_bound_byte_pair_number -
lower_bound_byte_pair_number) + 1

The upper bound of the integer subrange determines
upper_bound_byte_pair_number , and the lower bound determines
lower_bound_byte_pair_number . The formula is:

byte_pair_number = floor(bound / 16)

(where floor(x) means the integer closest to x that is less than or equal
to x).

Example

 VAR
 s : SET OF -7..18;

The upper bound of the subrange is 18, so upper_bound_byte_pair_number is
1 (floor(18/16)=1). The lower bound of the subrange is -7, so
lower_bound_byte_pair_number is -1 (floor(-7/16)=-1). The set s is
allocated three byte pairs ((1-(-1))+1=3).

Each set element is represented by one bit, like this:

A-: 20

To minimize storage space, avoid base types that are small subranges that
overlap byte pair boundaries.

Example

 VAR
 s : SET OF 31..32;

The set s takes two byte pairs, using 32 bits to represent a set that
requires only two bits. The arithmetic is:

 floor(32/16) - floor31/16) + 1 = (2-1)+1 = 2.

Strings.

The Pascal/V packing algorithm aligns strings on 2-byte boundaries.
Because the current length (0..32767) is allocated two bytes, four bytes
is the smallest possible string allocation.

The formula for the number of bytes allocated to a string is:

A-: 21

Example

 VAR
 s1 : string[10];
 s2 : string[7];

The string s1 takes 14 bytes:

 2+10+{2-ORD[ODD(10)]} =
 12+[2-ORD(FALSE)] =
 12+(2-0) = 14

The allocation is:

The string s2 takes 10 bytes:

 2+7+{2-ORD[ODD(7)]} =
 9+[2-ORD(TRUE)] =
 9+(2-1) = 10

The allocation is:

A-: 22

Packed Enumerations.

This subsection explains how the Pascal/V packing algorithm allocates and
aligns packed enumeration variables. A packed enumeration variable is
either the element of a packed array or the field of a packed record.
The algorithm treats the two cases differently.

Table A-6 shows the relationship between the number of bits that an
enumeration element of a packed array requires, the number of bits that
the Pascal/V packing algorithm allocates it, and its alignment. A
bit-aligned element never crosses a 2-byte boundary.

Table A-6. Allocation and Alignment of Enumeration Elements of Packed Arrays
(Pascal/V Packing Algorithm)

Required Number of Bits	Number of Bits Allocated	Element Alignment
Per Element	Per Element	

1	1	Bit

2	2	Bit

3	3	Bit

4	4	Bit

5	5	Bit

6 to 8	8 (1 byte)	Byte

9 to 16	16 (2 bytes)	2-byte

Table A-7 shows the relationship between the number of bits that an
enumeration field of a packed record requires, the number of bits that
the Pascal/V mapping algorithm allocates it, and its alignment. A
bit-aligned field never crosses a 2-byte boundary.

A-: 23

Table A-7. Allocation and Alignment of Enumeration Fields of Packed Records
(Pascal/V Packing Algorithm)

Required Number of Bits	Number of Bits Allocated	Field Alignment

1	1	Bit

2	2	Bit

3	3	Bit

4	4	Bit

5	5	Bit

6	6	Bit

7	7	Bit

8	8	Bit

9	9	Bit

10	10	Bit

11	11	Bit

12	12	Bit

13	13	Bit

14	14	Bit

15	15	Bit

16 (2 bytes)	2 bytes	2-byte

A-: 24

Example

 TYPE
 day = (sun,mon,tues,wed,thurs,fri,sat);
 enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,
 e9,e10,e11,e12,e13,e14,e15,e16,
 e17,e18,e19,e20,e21,e22,e23,e24,
 e25,e26,e27,e28,e29,e30,e31,e32);
 VAR
 a : PACKED ARRAY [1..11] OF day;
 r : PACKED RECORD
 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11 : day;
 END;
 aa : PACKED ARRAY [1..4] OF enum_32;
 rr : PACKED RECORD
 f1,f2,f3,f4 : enum_32;
 END;

Each element of the array a requires three bits, and no element can cross
a 2-byte boundary. The entire array occupies 35 bits, and is allocated
six bytes.

Each element of the record r requires three bits, and no element can
cross a 2-byte boundary. The entire record occupies 35 bits, and is
allocated six bytes.

Each element of the array aa requires six bits, but is allocated eight
bits (one byte) and is byte-aligned. The entire array takes four bytes:

Each field of the record rr requires and is allocated six bits, and no
field can cross a 2-byte boundary. The entire record occupies 26 bits,
and is allocated four bytes:

A-: 25

Packed Subranges of Enumerations.

This subsection explains how the Pascal/V packing algorithm allocates and
aligns packed variables whose types are subranges of enumerations. These
packed variables are either the elements of packed arrays or the fields
of packed records. The algorithm treats the two cases differently.

The number of bits that an enumeration of a subrange type requires is
determined by ord(upper_bound_of_enumerated_subrange).

Table A-8 shows the relationship between the number of bits that an
enumeration-of-subrange element of a packed array requires, the number of
bits that the Pascal/V packing algorithm allocates it, and its alignment.
No element crosses a 2-byte boundary.

Table A-8. Allocation and Alignment of Enumeration-of-Subrange Elements of Packed Arrays
(Pascal/V Packing Algorithm)

Required Number of Bits	Number of Bits Allocated	Alignment
Per Element	Per Element	

1	1	Bit

2	2	Bit

3	3	Bit

4	4	Bit

5	5	Bit

6 to 8	8 (1 byte)	Byte

9 to 16	16 (2 bytes)	2-byte

Example

 TYPE
 enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,
 e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,
 e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,
 e31,e32);

 VAR
 a : PACKED ARRAY [1..4] OF e7..e15;
 b : PACKED ARRAY [1..4] OF e24..e31;

Each element of array a requires and is allocated four bits (see Table
A-6). The elements are bit-aligned, and the entire array occupies 16
bits. It is allocated two bytes:

A-: 26

Each element of array b requires and is allocated five bits (see Table
A-6). The elements are bit-aligned, and the entire array occupies 21
bits. It is allocated four bytes.

To the enumeration-of-subrange field of a packed record, the Pascal/V
packing algorithm allocates the required number of bits. Any allocation
from one bit to two bytes is possible. The field is bit-aligned, but
never crosses a 2-byte boundary.

Example

 TYPE
 enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,
 e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,
 e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,
 e31,e32);

 VAR
 a : PACKED RECORD
 f1,f2,f3,f4 : e7..e15;
 END;

 b : PACKED RECORD
 f1,f2,f3,f4 : e24..e31;
 END;

Each field of record a requires and is allocated four bits. The fields
are bit-aligned, but cannot cross 2-byte boundaries. The entire record
is allocated two bytes:

Each field of record b requires and is allocated five bits. The fields
are bit-aligned, but cannot cross 2-byte boundaries. The entire record
occupies 21 bits. It is allocated four bytes:

Packed Subranges of Integers.

This subsection explains how the Pascal/V packing algorithm allocates and
aligns packed variables whose types are subranges of integers. These
packed variables are either the elements of packed arrays or the fields
of packed records.

To the integer subrange variable of a packed array or packed record, the
Pascal/V packing algorithm allocates the required number of bits (if the
subrange is, or is included in, -32768..32767) or four bytes (if the
subrange is outside that range).

A-: 27

Table A-9 shows the relationship between the number of bits that an
element of a PACKED array of subrange type requires, the number of bits
that the Pascal/V mapping algorithm allocates it, and its alignment.

Table A-9. Allocation and Alignment of Elements of Packed Arrays of Subrange Type
(Pascal/V Packing Algorithm)

Required Number of Bits	Number of Bits Allocated	Alignment
Per Element *	Per Element	

1	1	Bit

2	2	Bit

3	3	Bit

4	4	Bit

5	5	Bit

6 to 8	8 (1 byte)	Byte

9 to 16	16 (2 bytes)	2-byte

32	32 (4 bytes)	2-byte

* Only if the subrange is, or is included in, -32768..32767; four bytes
otherwise.

Example

 VAR
 a : PACKED ARRAY [1..4] OF 0..16;
 b : PACKED ARRAY [1..4] OF 0..32;

Each element of the array a requires and is allocated five bits, and is
bit-aligned (see Table A-8). The entire array occupies 20 bits. It
is allocated four bytes:

Each element of the array b requires six bits, is allocated one byte, and
is byte-aligned (see Table A-8). The entire array occupies four
bytes.

A-: 28

For the integer subrange type of a packed record, any bit allocation from
one bit to 15 bits is possible, as are allocations of two and four bytes.
Bit allocations are bit-aligned, but never cross 2-byte boundaries. Two-
and 4-byte allocations are 2-byte aligned. See "Records" for more
information.

Example

 VAR
 r : PACKED RECORD
 a : 0..1; {Requires 1 bit}
 b : 0..255; {Requires 8 bits}
 c : 0..16; {Requires 5 bits}
 d : 0..4; {Requires 3 bits}
 e : 10..40000; {Requires 4 bytes}
 f : 0..MAXINT; {Requires 4 bytes}
 END;

The fields of the record r are allocated the bits that they require.
Fields a, b, c, and d are bit-aligned, but cannot cross 2-byte boundaries
(notice where d and e start). Fields e and f are 2-byte-aligned.

Compiling, Linking, and Running Your Program

To make your HP Pascal program a valid MPE/iX process, you must compile,
link, and run it.

The HP Pascal compiler compiles your source program, which is in a
textfile. It translates your source code to binary form and stores it in
an object file or in an RL.

The MPE/iX linker prepares the object file for execution by binding the
procedures in the object modules together and defining the initial
requirements of the user data stack.

The MPE/iX operating system allocates space for the program, binds its
external routines to it, and runs it. (The external routines are in
executable libraries).

Additionally, the compiler looks for a system-wide file called
PASCNTL.PUB.SYS. If the file exists and is not empty, the compiler opens
and reads the file. The file should contain only compiler
options and comments. If there is anything else in the file,
the compiler emits an error message. If the file is empty, which is the
default, the compiler does not attempt to open it. For more information
on the system-wide file, refer to the section on compiler options in the

A-: 29

HP Pascal/iX Reference Manual .

Figure A-1 shows how a source program (in a textfile) becomes a
running program on MPE/iX.

Figure A-1. How Source Code Becomes a Running Program on MPE/iX

This section explains:

 * The MPE/iX command files that perform the steps shown in Figure
 A-1 .

 * How to run the HP Pascal compiler with the MPE/iX command :RUN
 PASCALXL.PUB.SYS.

 * How to pass run-time parameters to your program.

Command Files

Table A-10 shows the MPE/iX command files that you can use to perform
the steps shown in Figure A-1 . Each command or command file in the

A-: 30

right-hand column of Table A-1 performs the step or steps in the
left-hand column (for example, the command :PASXL performs the
compilation step, the command :PASXLLK performs the compilation and
linking steps, and the command :PASXLGO performs the compilation,
linking, and running steps).

Table A-10. MPE/iX Command Files That Compile,
Link, and Run a Program

Steps	MPE/iX Commands
	or Command Files

To Compile	:PASXL

To Link	:LINK

To Run	:RUN

To Compile and Link	:PASXLLK

To Compile, Link, and Run	:PASXLGO

If you plan on linking as a separate step and would like more information
on linking, refer to the HP Link Editor/XL Reference Manual .

Table A-11 gives the MPE/iX command files that are equivalent to the
MPE V commands PASCAL, PASCALPREP, and PASCALGO. (Each command file name
has group "pub" and account "sys"--see "File Names" .)

Table A-11. Equivalent MPE V Commands and MPE/iX Command Files

MPE V Command	MPE/iX Command File

:PASCAL	:PASXL

:PASCALPREP	:PASXLLK

:PASCALGO	:PASXLGO

Syntax

 PASXL [textfile][,[objectfile][,[listfile][, libfile]]][; INFO=" options "]

 PASXLLK [textfile][,[progfile][,[listfile][, libfile]]][; INFO=" options "]

A-: 31

 PASXLGO [textfile][,[listfile][, libfile]][; INFO=" options "]

Parameters

textfile The name of the textfile that contains the source code to be
 compiled.

 If you are running HP Pascal from your terminal, textfile is
 usually a file, but the default is $STDIN. $STDIN is the
 current input device, usually your terminal.

 When textfile is the terminal, you can enter source code
 interactively in response to the prompt ">." When you have
 entered every line of your source code, type a colon (:) in
 response to the prompt.

 The source code to be compiled can be either a program or a
 list of modules. A list of modules has the syntax:

module1 [; module2 [; ... [; module n]]...]

 where module1 through module n are module bodies.

objectfile The name of the object file or RL on which the compiler
 writes the binary form of the source code that is in

textfile . The default is $OLDPASS or $NEWPASS.

listfile The name of the file on which the compiler writes the
 program listing. It can be any ASCII file. The default is
 $STDLIST. $STDLIST is usually the terminal if you are
 running HP Pascal from a terminal; it is usually the job
 spool file if you are running a batch job.

 If your terminal is both textfile and listfile , the compiler
 does not write the program listing on the terminal. If this
 is a permanent disk file, excess space is released with the
 CRUNCHED close option. See "Additional Features"
 earlier in this appendix.

 If listfile is $NULL or a file other than $STDLIST, the
 compiler displays lines that contain errors on $STDLIST.

options A string of 132 or fewer characters, whose value is a list
 of compiler options. The compiler encloses the list in
 dollar signs and inserts it before the first line of code in

textfile . The default is the empty string.

progfile The name of the program file on which the MPE/iX linker
 writes the linked program. The default is $NEWPASS.

libfile The name of the Pascal library file that the compiler
 searches if a search path is not specified with the compiler
 option SEARCH. The default is PASLIB in your group and
 account.

:RUN PASCALXL.PUB.SYS

The HP Pascal/XL compiler is a program file named PASCALXL.PUB.SYS. You
can use the MPE/iX command :RUN to execute PASCALXL.PUB.SYS (that is, to
invoke the HP Pascal/iX compiler).

The compiler files and their defaults are:

File Default

Source file $STDIN

Object file $OLDPASS or $NEWPASS

A-: 32

Listing file $STDLIST

Library file PASLIB

To override the defaults:

 1. Use the MPE/iX command :FILE to equate the nondefault file with
 its formal file designator (the :FILE parameter formaldesignator).
 Use one :FILE command for each nondefault file.

 2. Tell the MPE/iX command :RUN which files are not to be defaulted
 by passing the appropriate value to its PARM parameter.

The compiler files and their formal file designators are:

Compiler File Formal File Designator

Source file PASTEXT

Object file PASOBJ

Listing file PASLIST

Library file PASLIB

Table A-12 lists the possible values for the PARM parameter and gives
their meanings.

Table A-12. PARM Values and Their Meanings

PARM Value	Means "File equations exist for the following
	files:"

	Object	Listing	Source

0 *			

1			*

2		*	

3		*	*

4	*		

5	*		*

6	*	*	

A-: 33

7	*	*	*

* PARM=0 is equivalent to the command :PASXL (without parameters).

Example

 :RUN PASCALXL.PUB.SYS

 :FILE PASTEXT=Program1
 :FILE PASOBJ=Object1
 :FILE PASLIST=List1
 :FILE PASLIB=Library1
 :RUN PASCALXL.PUB.SYS;PARM=7;INFO="TABLES ON"

 :FILE PASTEXT=Program2
 :FILE PASLIST=List2
 :RUN PASCALXL.PUB.SYS;PARM=3

 :FILE PASLIST=List3
 :FILE PASOBJ=Object3
 :RUN PASCALXL.PUB.SYS;PARM=6;INFO="TABLES ON,TITLE 'Program 3'"

It is an error if you specify in the :RUN command that the compiler not
use the default for one of the compiler files, and you do not provide a
file equation for that file.

Example

 :FILE PASTEXT=Program2
 :FILE PASLIST=List2
 :RUN PASCALXL.PUB.SYS;PARM=7

The above command sequence causes the compilation to abort with an error
because PARM=7 specifies that the :RUN statement not default the source,
listing, or object file and no file equation is provided for the object
file.

Run-Time Parameters

You can pass the run-time parameters PARM and INFO to your program with
the RUN command. For each parameter that you want your program to
access, you must:

 * Specify a program parameter in the program heading (the position
 of the variable is not important).

 * Declare the program parameter as a global variable.

The program parameter that corresponds to PARM must be of type shortint .

The program parameter that corresponds to INFO must be of type string or
PAC.

MPE/iX checks the ranges of the actual program parameters for PARM and
INFO if the RANGE compiler option is ON when the compiler encounters the
first line of the statement part of the main program. (For more
information on the RANGE compiler option, see the
HP Pascal/iX Reference Manual .)

Example

If the progfile named ex1 contains code for the program:

 PROGRAM example_1 (parm,info);
 VAR

A-: 34

 parm : integer;
 info : PACKED ARRAY [1..255] OF char;
 BEGIN
 END.

then the command:

 :RUN ex1; PARM=3; INFO="abc"

assigns the value 3 to parm and the value abc to info before executing
the program example_1.

B- 1

Appendix B HP-UX Dependencies
This appendix explains how the HP Pascal compiler works on the HP-UX
operating system. It explains:

 * How HP-UX affects system dependent HP Pascal features.

 * HP-UX extensions to HP Pascal.

 * How to compile, prepare, and run your HP Pascal program on HP-UX.

System Dependent Features

System dependent features are available to all HP Pascal programs
(regardless of the system on which the compiler is running), but the
system affects their definitions and behavior. System dependent HP
Pascal features fall into these categories:

 * Compiler options.

 * File names.

 * Input/output.

 * Miscellaneous.

Compiler Options

The following compiler options are available to programs compiled by the
HP Pascal compiler running on either the HP-UX or MPE/iX operating
system, but they work differently on the two systems.

 INCLUDE
 SYMDEBUG

See the HP Pascal/HP-UX Reference Manual for more information on these
compiler options.

File Names

Syntax

 [/][pathname]... { identifier }

Parameter

pathname Refer to the HP-UX Reference for syntax of
pathname .

identifier The name of the main source file must end with
 ".p". Included files need not end with ".p".

Example

 x.p
 Pascal/tsource/tabort.p
 /mnt/shankar/junk/t.p

For more information on HP-UX file names, refer to the HP-UX Reference
manual.

NOTE The HP-UX operating system is case-sensitive. HP Pascal is not
 case-sensitive, except within string literals (such as "HP Pascal")
 and when you open a file without explicitly associating it with a
 physical file (that is, when you do not specify the second
 parameter to open or reset). In the latter case, the file name
 (identifier) is upshifted. The HP-UX operating system may not
 recognize the file by this new name. To avoid this problem, use
 all-capital names in the operating system environment for files
 that HP Pascal programs will use (for example, name an external
 file FILE1, not File1).

B- 2

Standard Modules

Three standard modules are available on HP-UX: stdinput , stdoutput , and
stderr .

If a module imports the stdinput module, it can use the predefined file
input in I/O statements such as read and readln .

If a module imports the stdoutput module, it can use the predefined file
output in I/O statements such as write and writeln .

If a module imports the stderr module, it can use the predefined file
stderr in I/O statements such as write and writeln .

Example

 MODULE mymod;
 IMPORT
 StdInput, StdOutput;

 EXPORT
 FUNCTION myproc : integer;

 IMPLEMENT
 FUNCTION myproc : integer;
 VAR
 i : integer;
 BEGIN
 prompt('enter number:'); {need not specify output file}
 readln(i); {need not specify input file}
 myproc := i;
 END;
 END.

Additional Features

The HP Pascal features in the left-hand column depend on the HP-UX
operating system in the ways explained in the right hand column.

Feature HP-UX Dependency

Close options The optional third parameter of the predefined
 procedure close can be SAVE, LOCK, TEMP, NORMAL,
 CRUNCH, or PURGE, whose meanings are:

 SAVE The file is saved as a permanent file
 LOCK after it is closed.
 TEMP
 NORMAL

 CRUNCH This option is ignored.

 PURGE The file is purged after it is closed.

Halt HP-UX calls the system routine exit(2) with an
 integer parameter.

Input The standard program parameter and textfile input
 is stdin .

Internal table size

 The environment variable PASXDATA is the number of
 pages to allocate to each internal table (there is
 one internal table for identifiers and another for
 structured constants). The default internal table
 size is 100 pages. To set the internal table size
 to n pages, use the command:

B- 3

 setenv PASXDATA n

 or the command:

 PASXDATA= n
 export PASXDATA

Maxpos The call maxpos(f) returns maxint , regardless of
f .

Open options The third parameter of the predefined file-opening
 procedures append, associate, open, read, reset,

rewrite, and write . It is optional for all but
associate , for which it must have one of the

 values listed in "Associate Procedure" .

Ord At the STANDARD_LEVEL 'EXT_MODCAL' ord allows
 short pointers as arguments.

Output The standard program parameter and textfile output
 is stdout .

Stderr

 The standard program parameter and textfile stderr
 is the HP-UX file stderr .

System intrinsic file ../../sys/pub/sysintr

System default module /usr/lib/paslib
library

Temporary files

 If the environment variable TMPDIR is defined (as
 a path to a directory to hold temporary files),
 temporary files are placed in that directory;
 otherwise, temporary files are created in the
 directory /usr/tmp . (See the standard HP-UX entry
 point tempdir(2) .)

Write If the file being written is a terminal, the
 output is unbuffered. This means that write to a
 terminal has the same behavior as prompt .

HP-UX Extensions

HP-UX extensions are available only to programs that are compiled by the
HP Pascal compiler running on the HP-UX operating system. The programs
themselves must also run on the HP-UX operating system. The HP-UX
extensions are:

 * Access to special global variables through the EXTERNAL directive.

 * The predefined function get_alignment , which returns the alignment
 requirement of a given type or variable.

 * The predefined function statement_number , which returns the
 statement number of the statement that calls it.

Accessing Special Global Variables

The global variable errno is special in that a program can access it
through the EXTERNAL directive.

Example

 $EXTERNAL$

B- 4

 PROGRAM ErrorNo_Example;

 VAR
 ErrorNumber $ALIAS 'errno'$: INTEGER;

 FUNCTION Pas_Errno : integer;
 BEGIN
 Pas_Errno := ErrorNumber;
 END;

 BEGIN
 END.

When another compilation unit is linked with the preceding program, it
can access the function Pas_Errno, which returns the value of the global
variable errno .

Fnum Function

The predefined function fnum returns the HP-UX file number of the
physical file currently associated with a given logical file. You[REV
BEG] can use this file number in system calls.[REV END]

Syntax

 fnum (filename)

Parameter

filename The name of the logical file. This parameter is required,
 even if the logical file is the standard file input or

output . The logical file must be associated with a
 physical file.

Example

 program xref(output);
 const SEEK_SET=0; { Set file pointer to "offset" }
 SEEK_CUR=1; { Set file pointer to current plus "offset" }
 SEEK_END=2; { Set file pointer to EOF plus "offset" }

 var s_file : text;
 max : integer;
 f : integer;

 function lseek(fildes:integer; offset:integer; whence:integer): integer;
 external;

 begin
 reset(s_file,'foo');
 f:=fnum(s_file);
 max:=lseek(f,0,seek_end);
 writeln('file#:',f:1,', max bytes=',max:1);
 end.

Output:

 file#:3, max bytes=487

Get_alignment Function

The predefined function get_alignment returns the alignment requirement
of a given type or variable.

Syntax

get_alignment ({ variable })
 { type }

B- 5

Parameters

variable Any variable. The function get_alignment returns its
 alignment requirement.

type Any type identifier (the name of any type). The function
 get_alignment returns its alignment requirement.

Example

 PROGRAM prog;

 TYPE
 Rec = $ALIGNMENT 8$
 RECORD
 f1 : integer;
 f2 : shortint;
 f3 : real;
 END;

 integer_ = $ALIGNMENT 2$ integer;

 VAR
 ptr : ^integer_;

 BEGIN
 i := get_alignment(rec);

 IF get_alignment(ptr^) <> 2 THEN
 .
 .
 .
 END.

Statement_number Function

The predefined function statement_number returns the statement number of
the statement that calls it, as shown on the compiled listing. It is a
useful debugging aid, especially when used with the predefined procedure
assert .

Syntax

 statement_number

Example

 PROGRAM prog (output);

 VAR
 i : integer;

 BEGIN
 i := statement_number;
 writeln('Current Statement Number is ', i);
 assert(a > b, statement_number);
 END.

Compiling, Linking, and Running Your Program

To make your HP Pascal program a valid HP-UX process, you must compile,
link (and load), and run it.

The HP-UX command pc coordinates the HP Pascal compiler
(/usr/lib/pascomp) and the HP-UX linker loader (/bin/ld).

The name of the file containing your source program must end with .p (for
example, prog.p). The extension .p causes the pc command to call the HP

B- 6

Pascal compiler, which compiles your program and stores the resultant
code in an object file. The name of the object file ends in .o (if the
source file name is prog.p, the object file name is prog.o). If prog.p
is the only file parameter of a particular pc command, and it compiles
and links successfully, then the object file is not saved.

If the compiler does not find errors in the program, the pc command calls
the linker, ld , which links the object file with required library files
into a program file. The name of the program file is a.out (unless you
specify another name in the pc command) and it resides in the directory
from which pc was invoked. The program file is ready to run.

Figure B-1 shows how a file named prog.p becomes a running program on
HP-UX.

Figure B-1. How a File Becomes a Running Program on HP-UX

B- 7

This section explains:

 * The HP-UX pc command.

 * How to pass run-time parameters to your program.

 * How HP-UX handles interrupts.

 * How HP-UX handles run-time errors.

pc Command

The HP-UX command pc coordinates the HP Pascal compiler
(/usr/lib/pascomp) and the HP-UX linker loader (/bin/ld).

Additionally, the compiler looks for a system-wide file called
/usr/lib/pasopts. If the file exists and is not empty, the compiler
opens and reads the file. The file should contain only directives and
comments. If there is anything else in the file, the compiler emits an
error message. If the file is empty, which is the default, the compiler
does not attempt to open it. For more information on the system-wide
file, refer to the section on compiler options in the HP Pascal/HP-UX
Reference Manual .

Syntax
[REV BEG]

pc [file] [...]
 [option]
[REV END]

Parameters

file At least one file is required.

option Any of the following instructions to the compiler:

 -A Produce warnings when non-ANSI Pascal features
 are found (same as ANSI ON).

 +a Cause the compiler to generate archived object
 (.a) files instead of simple object (.o) files.
 This option exists for compatibility with the
 Series 300 pc command.

 -C Suppress code generation. No object (.o) files
 will be created and linking will be
 suppressed. This is effectively a request for
 syntax/semantics checking only (same as CODE
 OFF).

 +C Convert MPE/iX format file names in the compiler
 options BUILDINT, INCLUDE, LISTINTR, SPLINTR,
 and SYSINTR to HP-UX-format file names. Fully
 qualified HP-UX-format file names (those that
 begin with slash, like /mnt/srf/file) are not
 converted. This option is the same as the
 compiler option CONVERT_MPE_NAMES

 This option assumes an HP-UX directory structure
 that is modeled after the MPE/iX accounting
 structure, in which all files reside in
 group-level directories and groups are
 subdirectories of accounts. This option
 converts MPE/iX format file names to lower case
 letters.

 For example, assume the HP-UX directory

B- 8

 structure account/group, where group is a
 directory containing the file f. If a Pascal
 source program contains the statement

 $INCLUDE 'F.Group.Account'$

 then the compiler appends the appropriate path
 information to f and searches for the resulting
 name (for example, root/account/group/f, where
 root is the parent of the account-level
 directories).

 -c Suppress linking and only produce object (.o)
 files from source files.

 -D name=bool , Defines name is as if it has been set (with
 -D name $SET) to the n th line on the source file. bool
 can be either TRUE or FALSE; if bool in not
 specified, name is set to TRUE. name and bool
 can be uppercase or lowercase. The order in
 which the compiler encounters $SETs (regardless
 of relative order on the command line) is:

 1. -D name = bool

 2. +Q dfile

 3. source file

 The compiler overrides -D name = bool with any
 subsequent duplicate use of $SET, always taking
 the last one and issuing a warning.

 +DA model Generates object code for a specific version of
 the PA-RISC architecture. model can be a model
 number such as 750 or 870, or one of the
 following architecture specifications:

 1.0 Generates object code suitable for all
 implementations of PA-RISC 1.0 or
 higher. This is the default for all
 Series 800 models.

 1.1 Generates object code suitable for all
 implementations of PA-RISC 1.1. This is
 the default for all Series 700 models.

 Note that object code generated for
 PA-RISC 1.1 will not execute on PA-RISC
 1.0 implementations.

 +DA model also specifies the appropriate library
 search path for HP-UX math libraries. If your
 program calls any of the standard Pascal
 Arithmetic functions, using +DA1.0 links the
 PA-RISC 1.0 version of the math library and
 using +DA1.1 links the PA-RISC 1.1 version of
 the library. The PA-RISC 1.1 libraries have
 performance enhancements and new routines that
 the PA-RISC 1.0 libraries lack. See the HP-UX

Floating-Point Guide for more information about
 using math libraries.

 +DS model Perform instruction scheduling appropriate for a
 specific implementation of the PA-RISC
 architecture. model can be a model number such
 as 750 or 870, or one of the following
 architecture specifications:

B- 9

 1.0 Perform scheduling tuned to a model
 representative of PA-RISC 1.0
 implementations.

 1.1 Perform scheduling tuned to a model
 representative of PA-RISC 1.1
 implementations.

 The default scheduling is based on the model
 number returned by uname(2) .

 This option affects only performance of the
 object code by scheduling the code based on the
 specific latencies of the target implementation.
 The resulting code executes correctly on other
 PA-RISC implementation, subject to the +DA
 option.

 +FP flag Specify how the run time environment for
 floating-point operations should be initialized
 at program start up. flag is a series of
 upper or lower case letters from the set
 [VvZzOoUuIiDd] with no embedded white-space. If
 the upper-case letter is selected, that behavior
 is enabled. If the lower-case letter is
 selected or if the letter is not present in

flag , the behavior is disabled. The default is
 that all behaviors are disabled. The list below
 describes the behaviors:

 V Trap on invalid floating-point
 operations.

 Z Trap on divide by zero.

 O Trap on floating-point overflow.

 U Trap on floating-point underflow.

 I Trap on floating-point operations that
 produce inexact results.

 D Enable sudden underflow (flush to zero)
 of denormalized values.

 Enabling underflow is possible only on
 implementations of PA-RISC 1.1 or
 higher; it is not possible on PA-RISC
 1.0.

 To dynamically change these settings at run
 time, refer to fpgetround(3M) .

 -G Prepare object files for profiling with the
gprof utility (see "GPROF" in the HP
Pascal/HP-UX Reference Manual).

 -g Generate additional information for the symbolic
 debugger, and ensure that the program is linked
 as required for the symbolic debugger.

 -I dir Add dir to the list of directories that search
 for $INCLUDE files whose names do not begin with
 /. The search is performed in the following
 order:

 1. The directory containing the source file.

B- 10

 2. Directories specified with the -I option.

 3. The current working directory.

 4. The standard directory /usr/include.

 -L Write a program listing to stdout.

 -l x Cause the linker to search the lib x.sl or lib x.a
 libraries in an attempt to resolve currently
 unresolved external references. Because a
 library is searched when its name is
 encountered, placement of a -l is significant.
 If a file contains an unresolved external
 reference, the library containing the definition
 must be placed after the file on the command
 line. See ld(1) for more information.

 -N Cause the output file from the linker to be
 marked as unshareable (see -n).

 -n Cause the output file from the linker to be
 marked as shareable (see -N).

 -O Turn on optimization. The compiler performs
 level 2 optimization. See +O opt .

 +O arg Perform optimizations selected by arg . There
 are two kinds of arguments to the +O
 optimization option. Those in the first group
 can have arg defined as:

 1 Perform level 1 optimizations. These
 include branch optimizations, dead code
 elimination, instruction scheduling, and
 peephole optimization.

 2 Perform level 2 optimizations. These
 include common subexpression
 elimination, constant folding, loop
 invariant code motion, coloring register
 allocation, and store-copy optimization.
 Level 2 optimizations are a superset of
 level 1 optimizations. The -O option is
 equivalent to the +O2 option.

 3 Perform level 3 optimizations. These
 include, but are not limited to,
 interprocedural global optimizations.
 Level 3 optimizations are a superset of
 level 2 optimizations.

 Those in the second group can have arg defines
 as:

 s Suppress optimizations which tend to
 increase the generated code size.
 Currently, these optimizations include
 software pipelining and loop unrolling.

 bb num Specify the maximum number of basic
 blocks allowed in a procedure that is to
 be optimized at level 2. If a procedure
 contains more than num basic blocks,
 level 1 optimization is performed for
 that procedure. The default value for

num is 500 (same as $OPTIMIZE
 'BASIC_BLOCKS num '$).

B- 11

 The arguments in the second group implicitly
 request level 2 optimizations, but an argument
 from the first group overrides the implicit
 level 2 regardless of their relative positions
 on the command line.

 -o outfile Name the output file from the linker outfile
 instead of a.out .

 -P lines Allow lines lines per page of compiler listing,
 including header or trailer (same as the LINES
 compiler option).

 -p Prepare object files for profiling with the prof
 utility.

 -Q Cause the output file from the linker to be
 marked as not demand loadable (see -q).

 -q Cause the output file from the linker to be
 marked as demand loadable (see -Q).

 +Q dfile Cause dfile to be read before compilation of
 each source file. The file dfile can only
 contain compiler options.

 +R Turns off range checking (same as the compiler
 option RANGE OFF).

 -S Output an assembly file. This file is named
filename .s, where filename is the base name of

 the source file.

 -s Cause the output of the linker to be stripped of
 symbol table information. See strip(1) in
 linker documentation. This option is
 incompatible with symbolic debugging.

 -t x,name Substitute or insert subprocess x with
name where x is one or more of an

 implementation-defined set of identifiers
 indicating the subprocesses. This option works
 in the following modes:

 * If x is a single identifier, name
 represents the full path name of the new
 subprocess.

 * If x is a set of identifiers, name
 represents a prefix to which the standard
 suffixes are concatenated to construct
 the full pathname of the new
 subprocesses.

 The values x can assume are:

 c Compiler body (standard suffix is pascomp).

 0 Same as c.

 l Linker (standard suffix is ld).

 -v Enable verbose mode, producing a step-by-step
 description of the compilation process on

stderr .

 -w Turn off warning messages (same as the compiler
 option WARN OFF).

B- 12

 -W c,arg1 Cause arg1 through arg n to be handed off to
[,arg2,... subprocess c. The arg parameters are of the
argn] form:

 - argoption [, argvalue]

 where argoption is the name of an option
 recognized by subprocess c and argvalue is a
 parameter for argoption (if it has one). The
 parameter c can have these values:

Value Meaning

 c Compiler body (standard suffix is
pascomp).

 0 Same as c.
 d Driver program.
 l Linker (standard suffix is ld).

 For example, the specification to pass the -r
 option (preserve rotation information) to the
 linker is -Wl,-r .

 -Y Enable 16-bit Native Language Support when
 parsing string literals and comments (same as
 the compiler option NLS_SOURCE). Note that 8-bit
 parsing is always supported.

 Other options--instructions to the linker--are
 also allowed. See pc(1) in the HP-UX Reference
 for details.

 -y Generate additional information needed by static
 analysis tools and ensure that the program is
 linked as required for static analysis. This
 option is incompatible with optimization.

 +z, +Z Both of these options cause the compiler to
 generate position independent code (PIC) for use
 in building shared libraries. However, you must
 use +z to generate PIC, unless certain limits
 are exceeded. Use +Z when limits are exceeded.
 If both +z and +Z are specified, only the last
 one encountered will apply. Note that +z is the
 same as $SHLIB_CODE ON$ and +Z is the same as
 $SHLIB_CODE 2$.

 The options -G and -p are ignored if you use
 either +Z or +z.

 For more information about PIC , refer to
Programming on HP-UX .

file The name of a textfile that contains source code for an HP Pascal
 program, or the name of an object file. The textfile name ends
 with .p ; the object file name ends with .o .

 For each textfile , the pc command calls the HP Pascal compiler,
 which tries to compile it. If the compiler compiles the textfile
 named prog1.p without errors, it produces an object file named
 prog1.o (which resides in the current directory).

 If each textfile compiles successfully, the pc command calls the
 HP-UX Linker Loader, ld , which links all of the object files (pc
 command parameters and those resulting from compiles) into the
 final program file.

 If prog.p is the only file parameter of a particular pc command,

B- 13

 and it compiles and links successfully, then its object file,
 prog.o, is not saved.

Example

The command:

 pc main.p ext1.p ext2.p

compiles the object files main.o, ext1.o, and ext2.o, into the final
program file a.out. It is equivalent to the command sequence:

 pc -c main.p
 pc -c ext1.p
 pc -c ext2.p
 pc main.o ext1.o ext2.o

NOTE The HP Pascal compiler ignores the following Series 300 pc command
 options without warning:

 +X
 +x
 +M
 +b
 +bfpa
 +f
 +ffpa

Run-Time Parameters

You can pass run-time parameters to your program as HP-UX command-line
arguments when starting your program.

No arguments are automatically bound to program parameters. Even the
three pre-opened (standard) files, stdin , stdout, and stderr are only
bound to the HP Pascal textfiles input, output, and stderr if the program
heading declares the textfiles.

Other run-time parameters must be obtained from the command line
arguments by importing the predefined module arg and using the routines
that it exports, which are:

Function Return Value

argc The total number of program arguments. (This
 integer is greater than or equal to one, because
 every HP-UX program has at least one program
 parameter, the program name.)

argn An HP Pascal string that contains the n th program
 argument, where n is an argument to argn and must
 be in the range 0.. argc - 1. If n is outside this
 range, the run-time library generates a range
 error. The call argn(0) returns the program name.

argv A pointer to a null-terminated array of pointers,
 each of which points to a null-terminated PAC that
 contains an argument (see the export section of the

arg module, on the next page).

The module arg belongs to the default module library /usr/lib/paslib;
therefore, your program can import it without specifying a library with
the SEARCH compiler option.

B- 14

The export section for the module arg is:

 MODULE arg;

 EXPORT

 TYPE
 arg_string1024 = string[1024];
 arg_type = PACKED ARRAY[1..32000] OF char;
 argarray = ARRAY[0..32000] OF ^argtype;
 argarrayptr = ^argarray;

 FUNCTION argv : argarrayptr;
 FUNCTION argc : integer;
 FUNCTION argn (n : integer) : arg_string1024;

 IMPLEMENT
 .
 .
 .
 .
 END.

Example

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROGRAM arg_demo (input, output);

 VAR
 f : text;
 line : string[255];
 fname : string[80];

 IMPORT arg;

 BEGIN
 IF argc > 1 THEN BEGIN {If a program argument was passed ...}
 fname := argn(1); {assign it to fname ...}
 reset(f,fname); {reset the file fname ...}
 WHILE NOT eof(f) DO BEGIN {and list its contents.}
 readln(f,line);
 writeln(line);
 END;
 END; {IF}
 END. {arg_demo}

Associating Program Header Files with Run-Time Parameters

On HP-UX, files defined in the program header are implicitly associated
with run-time parameters. For example, if the program header is:

 PROGRAM myprog (input, output, file1, file2);

then when the program myprog is run with command-line arguments, file1 is
bound to the first argument, and file2 is bound to the second. The
predefined files input , output , and stderr are not subject to this
implicit association.

Other command-line arguments that are not subject to this implicit
association are those that begin with plus (+) and minus (-). For
example, if the compiled program produced from the above example is run
with the command:

 a.out -opt1 arg1 +opt2 arg2 arg3

then file1 is bound to arg1 and file2 is bound to arg2. Therefore, if
the program executes the statement:

B- 15

 reset (file1);

it is equivalent to the statement:

 reset (file1, 'arg1');

If there is no run-time argument for a program header file, then the
upshifted formal name of the file is implicitly associated with it. For
example, if the program above is run with the command:

 a.out arg1

then there is no run-time argument for file2, so it is associated with
the file named FILE2. Of course, if you provide an explicit association,
it overrides this implicit association. Also, if the file is already
open before the statement executes, the usual rules apply (that is, the
previous association is maintained).

Interrupt Handling

Your program can trap HP-UX interrupts (SIGINT and SIGQUIT, for example).
The recommended way to trap these signals is to make explicit calls to
the HP-UX system routine signal .

NOTE The HP9000 series 200 run-time routine catch_signals is supported,
 but a call to this routine will severely affect the error-handling
 mechanisms described in Chapter 11 , because those depend on
 trapping certain HP-UX signals themselves (namely, SIGILL, SIGFPE,
 SIGBUS, SIGSEGV, and SIGSYS). Use of this routine is strongly

discouraged .

Example

 PROGRAM prog;

 CONST
 BADSIG = -1;
 SIG_DFL = 0;
 SIG_IGN = 1;

 SIG_INT = 2;
 SIG_QUIT = 3;

 VAR
 Old_Action : integer;

 FUNCTION signal (SignalNum : integer;
 ProcAddress : integer) : integer; EXTERNAL;

The function signal accepts a signal number, SignalNum, and a procedure
address, ProcAddress. Whenever the signal with the number SignalNum is
raised, the function transfers control to the procedure with the address
ProcAddress. The function signal returns the old stored value of
ProcAddress.

 PROCEDURE InterruptHandler (SignalNum : integer); EXTERNAL;

 BEGIN
 Old_Action := signal (SIGINT, Baddress (InterruptHandler));

 IF Old_Action = SIG_IGN THEN
 Old_Action := signal (SIGINT, SIG_IGN)
 ELSE IF Old_Action = BADSIG THEN
 {An invalid SignalNum or ProcAddress was passed};

B- 16

 Old_Action := signal (SIGQUIT, Baddress (InterruptHandler));

 IF Old_Action = SIG_IGN THEN
 Old_Action := signal (SIGQUIT, SIG_IGN)
 ELSE IF Old_Action = BADSIG THEN
 {An invalid SignalNum or ProcAddress was passed};
 END.

When either of the signals SIGINT or SIGQUIT is raised (by entering
CONTROL C on the keyboard, for example), the procedure InterruptHandler
is called.

NOTE In the preceding example, if InterruptHandler is to return to the
 main program, its first action must be to rearm the signal
 mechanism (in the manner described above) for the signal that was
 trapped. This is necessary because every time a signal is trapped,
 the HP-UX operating system resets its action information (the
 stored value of ProcAddress) to SIG_DFL (the default action). The
 program cannot resume normal execution and trap interrupts again
 unless it rearms the signal handler.

Run-Time Error Handling

If HP-UX detects a run-time error, it aborts the program unless the
program defines error recovery code. Error recovery code can catch
run-time errors that originate from:

 * In-line compiled code (for example: range violation errors, nil
 pointer errors, math overflow errors).
 * Run-time support routines (for example: string, set, math).
 * Pascal file system (I/O errors).
 * HP-UX file system support (system errors).
 * Hardware (signals), except the kill signal.

When compiling a program, the compiler generates code that will call the
predefined procedure escape if HP-UX detects a run-time error in the
compiled program. The procedure escape transfers control to the
program's error recovery code (if the program has no error recovery code,
the program aborts). For a complete explanation of error recovery code,
see Chapter 11 .

Run-time errors in in-line compiled code are unique in that they can be
suppressed--that is, you can tell the compiler not to generate code to
catch them (see the compiler option RANGE in the HP Pascal/HP-UX
Reference Manual). Run-time errors from other sources cannot be
suppressed.

Most run-time errors that arise from interaction between in-line compiled
code and run-time support routines are I/O errors. A few are system
errors.

G- 1

GLOSSARY

actual parameter
An argument that is passed to a procedure, function, or subprogram.
Contrast with formal parameter .

address
An exact location in memory. A program can store or retrieve data from
this address.

algorithm
A procedure used to solve a task. It describes the sequence of steps or
operations, done in a finite number of steps.

allocate
To set up a memory location to hold variable values.

alpha character
A character in the range of A through Z and a through z.

alphanumeric character
A character in the range of A through Z, a through z, and 0 through 9.

argument
A variable or constant whose value is passed to a procedure or function.
See actual parameter , formal parameter , or parameter .

arithmetic expression
An expression that performs arithmetic operations and consists of
constants, variables, and arithmetic operators.

array
A data structure in which consecutive memory locations contain data items
of the same type.

ASCII
American Standard Code for Information Interchange; a seven-bit code
representing a prescribed set of characters.

assembly language
A programming language in which each operation performed by the Central
Processing Unit (CPU) is written as a symbolic instruction. Assembly
language is a convenient means of representing machine language. A
program known as an assembler translates inst ructions written in
assembly language into machine language.

assignment statement
Assigns a value to a variable or function by using the special Pascal
symbol ":=".

binary
The method used to represent numbers, alphabetic characters, and symbols
in digital computers. It is a base two numbering system that uses only
two digits, 0's and 1's, to express numeric quantities.

bit
A unit of information with a value of 1 or 0. Usually eight bits equal
one byte. A bit is the smallest unit of information in a digital
computer.

block
Blocks contain groups of statements for programs, procedures, and
functions, and are enclosed with the reserved words begin and end .

G- 2

boolean expression
An expression that evaluates to a value of true or false.

buffer
The part of a computer or device memory where data is held temporarily
until it can be processed or transmitted elsewhere. A buffer usually
refers to a memory area that is reserved for I/O operations.

byte
A combination of eight consecutive bits treated as a unit. A byte
represents one letter or number within the computer.

C
A high-level computer programming language that can do low-level
manipulations.

COBOL
COmmon Business Oriented Language. A high-level computer language
primarily used for business applications.

collating sequence
The "alphabetical order" of all characters used by a computer. They
include digits, punctuation marks, and special characters. The collating
sequence uses the same order of precedence as the numeric codes for
characters, either in ASCII or EBCDIC.

comment
Information in a computer program that is ignored by the compiler, but is
included for documenting the program for human readers.

compile time
The time during which a source program is translated by a compiler to an
object program. Compile time is usually used to indicate things that
happen when a program is compiled.

compile-time error
An error that occurs or that is detected at compile time.

compiler
A program that translates source code into machine instructions. The
compiler also diagnoses and reports syntax errors found in the
application program.

compound statement
A group of statements enclosed with the reserved words begin and end , and
which are treated as a single statement.

concatenation
The operation of joining two or more character strings together.

constant
A fixed value, as opposed to a variable which is a symbol for a changing
value.

construct
A structured constant; a construct specifies the value of a declared
constant.

data
One or more items of information.

debug
To find and correct mistakes in a computer program.

decimal
The base 10 numbering system in which the numbers 0 through 9 are used.

default
A value or condition that is assumed by the operating system or compiler
if no other value or condition is specified.

delimiter
A symbol that marks the beginning and end of a syntactic unit in source
code.

G- 3

disk
A circular plate used to store computer data; the disk can be fixed,
removable, hard, or flexible.

dynamic variable
A variable which is not declared and cannot be referred to by name. A
dynamic variable is created during execution of a program.

error recovery
The process of writing code that prevents a program from aborting due to
run-time errors. Error recovery code does not catch compile-time errors,
warnings, or notes.

executable object
A program or procedure that is ready to be executed.

execute
The act of a computer carrying out a set of instructions given by a
program.

expression
A construct composed of operators and operands that represent the
computation of a result of a particular type.
[REV BEG]

external routine
A routine defined in another compilation unit.[REV END]

file-equate
To redirect the association of one physical file to another physical
file, or to specify additional file attributes using the MPE XL FILE
command.

formal parameter
A parameter which is defined in a procedure, function, or subprogram
header.

function
A block that is invoked with a function call and returns a value.

function call
A call that invokes the block of a function and returns a value to the
calling point of the program

function heading
Consists of the reserved word FUNCTION, an identifier that specifies a
function name, an optional formal parameter list, and a result type.

hexadecimal
The base 16 numbering system in which the numbers 0 through 15 are used.
10 through 15 are represented by the letters A through F.

identifier
Used to denote declared constants, types, variables, procedures,
functions, modules, and programs, and consists of a letter preceding an
optional character sequence of letters, digits, or the underscore
character (_).

initialize
To give an initial value to a variable in a program.

intrinsic
An external routine that can be called by a program written in any
language that your operating system supports.

literal
A value in a program that is represented by it's actual value rather than
a variable or a constant.

loop
When a program performs a statement over and over a specified number of
times or while certain conditions are met.

maxint
The maximum value that an integer variable can contain.

G- 4

minint
The minimum value that an integer can contain.

NLS
An acronym for Native Language Support.

operand
The variables, constants, or literals that are used in an operation.

operator
Defines the action to be performed on one or more operands.

optimization
The process which the compiler uses to modify your program so that it
uses machine resources more efficiently.

parameter
The argument used for sending and receiving information to and from
functions and procedures.

parameter list
The location in a program where the parameters and their values are
declared.

PIC
An acronym for Position Independent Code.

precedence
Rules that determine the required order of operations.

procedure
A block of statements that are invoked with a procedure call .

procedure call
The call in a program that invokes the procedure block.

real number
Numbers that are whole or fractional. A real number can also have an
exponent.

recursion
A programming technique in which a procedure calls itself.

relational operator
An operator that compares two operands and returns a Boolean result.

reserved word
Predefined terms that have special meaning to the Pascal language, and
which can only be used for their specified purpose.

run-time error
An error the computer system finds in a program during run time.

semantic error
An error which is caused by using the wrong wording in a program.

separate compilation
The process of separating the source for a large program into pieces that
can be compiled independently of other pieces.

source code
The input program that is to be translated by the compiler.

Standard Pascal
All of the rules and definitions of Pascal as defined by the ANSI
standard.

statement
Pascal's single unit of activity. Each statement is separated by a
semicolon.

static variable
A variable which is declared in the declaration part of a program block.

subprogram
See procedure .

G- 5

top-down design
The process of breaking a problem into pieces that can be easily solved.

variable
A memory location that holds data values, and which is referenced by a
variable name. Information in this location can be changed.

warning
The compiler produces warnings to indicate a possible source of run-time
errors.

word
[REV BEG]

Four consecutive bytes.[REV END] Some numeric items are defined in terms
of words, and many items must start at a word boundary in memory.

G- 6

	Top of Document
	Preface
	Chapter 1 Introduction
	Chapter 2 Program Structure
	Chapter 3 Input/Output
	Chapter 4 Predefined Pascal Constants, Data Types, and Modules
	Chapter 5 Allocation and Alignment
	Chapter 6 Dynamic Variables
	Chapter 7 Parameters
	Chapter 8 Procedure Options
	Chapter 9 External Routines
	Chapter 10 Intrinsics
	Chapter 11 Error Recovery and Debugging
	Appendix A MPE/iX Dependencies
	Appendix B HP-UX Dependencies
	GLOSSARY

