
HP Pascal/iX Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 5
Manufacturing Part Number: 31502-90022
E0692

U.S.A. June 1992

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1986-1992 by Hewlett-Packard Company
2

P-: 1

Preface

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed alongside the date indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one to one correspondence between
product updates and manual updates.

First Edition March 1987 MPE XL: 31502A.01.01
 HP-UX: 92431A.00.03

Update 1 August 1987 MPE XL: 31502A.01.03
 HP-UX: 92431A.01.07

Second Edition November 1987 MPE XL: 31502A.01.06
 HP-UX: 92431A.01.09

Update 1 January 1988 MPE XL: 31205A.01.06
 HP-UX: 92431A.01.12

Third Edition October 1988 MPE XL: 31502A.01.21
 HP-UX: 92431A.03.04

Fourth Edition January 1991 MPE XL: 31502A.03.10
 HP-UX:92431A.08.00

Fifth Edition June 1992 MPE/iX: 31502A.04.05
 HP-UX:92431A.09.00

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest
in a series of forward-compatible operating systems for the HP 3000 line
of computers.

In HP documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a
superset of MPE XL. All programs written for MPE XL will run without
change under MPE/iX. You can continue to use MPE XL system documentation,
although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s, not based on the PA-RISC architecture. MPE V
software can be run on the PA-RISC (Series 900) HP 3000s in what is known
as compatibility mode .

The HP Pascal/iX Reference Manual provides material about HP Pascal and
its system programming extensions. It is intended for experienced Pascal
programmers.

P- 2

This manual is organized as follows:

Chapter 1 Introduces HP Pascal. A summary of extensions to
 ANSI/IEEE 770 X3.97-1983 and ISO 7185-1983 standard
 Pascal is included.

Chapter 2 Describes the language elements in HP Pascal.

Chapter 3 Describes HP Pascal's data types.

Chapter 4 Defines the expressions used in HP Pascal.

Chapter 5 Describes the parts of the declaration section in HP
 Pascal.

Chapter 6 Discusses the statements used in HP Pascal.

Chapter 7 Describes the program structure used in HP Pascal.

Chapter 8 Defines HP Pascal's procedures and functions.

Chapter 9 Defines the predefined routines used in HP Pascal.

Chapter 10 Explains input and output as used in HP Pascal.

Chapter 11 Defines the system programming extensions to HP Pascal.

Chapter 12 Explains every compiler option used in HP Pascal.

Appendix A Describes the error messages, notes, and warnings in HP
 Pascal.

Appendix B Defines the ASCII character set.

Appendix C Defines the compiler's limits and default values.

If you have suggestions for improving the HP Pascal/iX Reference Manual ,
please send us the Reader Comment Card, which is located at the front of
this manual.

Additional Documentation

Additional information for the HP Pascal programmer can be found in the
following documents:

 * IEEE Standard Pascal Computer Programming Language , ANSI/IEEE 770
 X3.97-1983, Library of Congress Catalog Number 82-84259. This
 book defines the ANSI standard Pascal that is the basis for HP
 Pascal.

 * HP Pascal/iX Programmer's Guide , part number 31502-90002. This
 book explains HP Pascal topics in detail. It describes how
 statements interact with each other, if necessary. It does not
 explain every statement and feature of HP Pascal.

This manual also refers to the following manuals:

 * HP C Programmer's Guide (92434-90002)

 * HP Link Editor/XL Reference Manual (32650-90030)

 * ALLBASE/SQL Pascal Application Programming Guide (36216-90007)

 * HP System Dictionary/XL General Reference Manual (32256-90004)

 * HP TOOLSET/XL Reference Manual (36044-90001)

 * Introduction to MPE XL for MPE V Programmers (30367-90005)

P-: 3

 * MPE/iX Commands Reference Manual, Volumes 1 and 2 (32650-90003
 and 32650-90364)

 * MPE/iX Intrinsics Reference Manual (32650-90028)

 * MPE/iX Symbolic Debugger User's Guide (31508-90003)

 * MPE/iX System Debug Reference Manual (32650-90013)

 * PA-RISC 1.1 Architecture and Instruction Set Reference Manual
 (09740-90039)

 * Procedure Calling Conventions Reference Manual (09740-90015)

 * TurboIMAGE/XL Reference Manual (30391-90001)

 * Using VPLUS/V: Introduction to Forms Designs (32209-90004)

Conventions

UPPERCASE In a syntax statement, commands and keywords are
 shown in uppercase characters. The characters must
 be entered in the order shown; however, you can enter
 the characters in either upper or lowercase. For
 example:

 COMMAND

 can be entered as any of the following:

 command Command COMMAND

 It cannot, however, be entered as:

 comm com_mand comamnd

italics In a syntax statement or an example, a word in
 italics represents a parameter or argument that you
 must replace with the actual value. In the following
 example, you must replace FileName with the name of
 the file:

 COMMAND FileName

punctuation In a syntax statement, punctuation characters (other
 than brackets, braces, vertical bars, and ellipses)
 must be entered exactly as shown. In the following
 example, the parentheses and colon must be entered:

 (FileName):(FileName)

{ } In a syntax statement, braces enclose required
 elements. When several elements are stacked within
 braces, you must select one. In the following
 example, you must select either ON or OFF:

 COMMAND {ON }
 {OFF}
[] In a syntax statement, brackets enclose optional
 elements. In the following example, OPTION can be
 omitted:

 COMMAND FileName [OPTION]

 When several elements are stacked within brackets,
 you can select one or none of the elements. In the
 following example, you can select OPTION or Parameter
 or neither. The elements cannot be repeated.

P- 4

 COMMAND FileName [OPTION]
 [Parameter]
Conventions (continued)

[...] In a syntax statement, horizontal ellipses enclosed
 in brackets indicate that you can repeatedly select
 the element(s) that appear within the immediately
 preceding pair of brackets or braces. In the example
 below, you can select Parameter zero or more times.
 Each instance of Parameter must be preceded by a
 comma:

 [, Parameter][...]

 In the example below, you only use the comma as a
 delimiter if Parameter is repeated; no comma is used
 before the first occurrence of Parameter :

 [Parameter][,...]

|...| In a syntax statement, horizontal ellipses enclosed
 in vertical bars indicate that you can select more
 than one element within the immediately preceding
 pair of brackets or braces. However, each particular
 element can only be selected once. In the following
 example, you must select A, AB, BA, or B. The
 elements cannot be repeated.

 {A} |...|
 {B}
... In an example, horizontal or vertical ellipses
 indicate where portions of an example have been
 omitted.

triangle In a syntax statement, the space symbol triangle
 shows a required blank. In the following example,

Parameter and Parameter must be separated with a
 blank:

 (Parameter) triangle (Parameter)

 The symbol indicates a key on the keyboard. For
 example, RETURN represents the carriage return key.

base prefixes The prefixes %, #, and $ specify the numerical base
 of the value that follows:

%num specifies an octal number.
 # num specifies a decimal number.
 $ num specifies a hexadecimal number.

 If no base is specified, decimal is assumed.

P-: 5

Pascal Specific Conventions

The conventions followed in this manual are summarized below:

For Text:

 * The term PAC is used for the type PACKED ARRAY OF CHAR with the
 lower bound equal to 1.

 * Reserved words and directives are in all uppercase letters.

 Examples: BEGIN, REPEAT, FORWARD

 * Standard identifiers are in all lowercase letters.

 Examples: readln, maxint, text

 * General information concerning an area of programming (topic)
 appears as a heading with initial capitalization. All headings
 that are not reserved words or standard identifiers appear with
 initial capitalization.

For Syntax Diagrams:

 * Syntactic entities that are to be replaced by user-supplied
 entities are represented by sequences of lowercase letters and
 embedded underscore characters (_).

 Example: identifier

 * Keywords, predefined symbolic names and special symbols that must
 be supplied exactly as given are shown in apostrophes. Usually,
 letters may be entered in uppercase or lowercase.

 Example: 'IMPORT', ','

 * The diagrams are in the form of lines with directional arrows,
 known as "railroad tracks". Alternative paths are indicated by
 switches in the tracks.

 Example:

NOTE Some diagrams and tables have a number in the lower left or right
 corner, such as the number LG200009_036 in the diagram above. This
 number is not part of the diagram or table. It just identifies the
 artwork.

P- 6

1- 1

Chapter 1 Introduction

HP Pascal originates from the Pascal language developed by Nicklaus Wirth
in 1968. Wirth's Pascal is based on the ALGOL 60 programming language.
His objective was to introduce Computer Science students to "good
programming practices." Since then, Pascal has undergone extensions,
particularly in its input-output capabilities. This has helped it become
a dominant language not only in the academic world, but also in major
commercial software projects. Commercial attraction for Pascal stems
from its structured nature that makes Pascal programs readable and self
documenting. Because maintenance typically forms a large portion of
software costs, the structuring is an attractive feature, particularly
for large systems and subsystems.

Although Pascal differs from vendor to vendor, it is easy to program for
portability by conforming to a reasonably large and effective subset of
Pascal that is standard across several vendors. The standardization is
achieved as a result of the ANSI/IEEE 770 X3.97-1983 and ISO 7185-1983
standards that exist for Pascal today. HP Pascal is a superset of these
standards. It is based on HP's standard for the Pascal language.

The Pascal on the HP Precision Architecture Series of Computer Systems
includes system programming extensions to the HP Pascal standard. These
extensions have lead to widespread use of Pascal within HP for systems
level applications. This trend is also expected to be observed by our
customers. In addition to its past usages, Pascal may be used for
applications traditionally written in Assembly or SPL. These applications
will have a higher degree of portability across HP systems in the future.

This chapter is divided into several sections. The first section covers
the conventions used in this manual. This is followed by a discussion
about the HP Pascal Extensions to the ANSI/IEEE 770 X3.97-1983 and ISO
7185-1983 standards for Pascal.

Extensions to ANSI/IEEE and ISO Pascal

This section describes HP Pascal features that are extensions of
ANSI/IEEE 770 X3.97-1983 and ISO 7185-1983 Pascal. For the full
description of a feature, refer to the appropriate keyword or topic in
this manual.

Type Compatibility

NOTE In the ISO 7185-1983 or ANSI/IEEE 770 X3.97-1983 standards for
 Pascal, the term "string" refers to any PACKED ARRAY of CHAR with a
 starting index of 1. HP Pascal, however, supports the standard
 type string. To avoid confusion, the term PAC is used for the type
 PACKED ARRAY [1..n] of CHAR with a starting index of 1.

Pascal defines a set of compatibility requirements for the operands of
each operator, based both on the operator itself and the types of its
operands, and a set of assignment compatibility rules. HP Pascal extends

1- 2

the operator and assignment compatibility rules as follows:

 * If T1 and T2 are PAC variables or string literals they are
 compatible. The shorter is padded with blanks for comparison.

 * If T1 is a PAC variable and T2 is a string literal or PAC
 variable, then T2 is assignment compatible with T1 provided that
 T2 is shorter than or equal to T1. If T2 is shorter than T1, T2
 is padded with blanks.

CASE Statement.

In a CASE statement, the reserved word OTHERWISE may precede a list of
statements and the reserved word END. If the case selector evaluates to a
value not specified in the case constant list, the system executes the
statements between OTHERWISE and END. OTHERWISE must follow the last case
constant. Also, subranges may appear as case constants.

Compiler Options.

Compiler options appear between dollar signs ($). HP Pascal has two
categories of compiler options: system-independent and system-dependent
compiler options. The system-independent category of compiler options
are further distinguished by the following categories: HP Standard
Options, HP Pascal Options, and System Programming Options. The
system-dependent either work on only one operating system, or work
differently on HP-UX and MPE/iX.

HP Pascal options are not required by the HP Standard, but are available
in HP Pascal. An HP Pascal program containing HP Pascal options must be
compiled by the HP Pascal compiler.

System-Independent Compiler Options:

HP Pascal Options MLIBRARY
ALIAS NOTES
ALIGNMENT OPTIMIZE
ARG_RELOCATION OS
ASSERT_HALT OVFLCHECK
ASSUME PAGEWIDTH
BUILDINT POP
CHECK_ACTUAL_PARM PUSH
CHECK_FORMAL_PARM S300_EXTNAMES
CODE SEARCH
CODE_OFFSETS SET
COPYRIGHT SKIP_TEXT
COPYRIGHT_DATE SPLINTR
ELSE STATEMENT_NUMBER
ENDIF STDPASCAL_WARN
EXTERNAL STRINGTEMPLIMIT
EXTNADDR SUBPROGRAM
GLOBAL SYSINTR
HEAP_COMPACT SYSPROG
HEAP_DISPOSE TABLES
IF TITLE
INLINE TYPE_COERCION
INTR_NAME UPPERCASE
KEEPASMB VERSION
LIST_CODE VOLATILE
LISTINTR WARN
LITERAL_ALIAS WIDTH
LOCALITY XREF
LONG_CALLS
MAPINFO

]

1- 3

Table 1-0. (cont.)

HP Standard Options System Programming Options
ANSI EXTNADDR
LINES TYPE_COERCION
LIST
PAGE
PARTIAL_EVAL
RANGE
STANDARD_LEVEL

System-Dependent Compiler Options:

MPE/iX Only MPE/iX and HP-UX HP-UX Only

CALL_PRIVILEGE INCLUDE CONVERT_MPE_NAMES[REV BEG
EXEC_PRIVILEGE INCLUDE_SEARCH GPROF
FONT NLS_SOURCE HP_DESTINATION
HP3000_16 SYMDEBUG SHLIB_CODE[REV END]
HP3000_32 SHLIB_VERSION
RLFILE
RLINIT

Refer to Chapter 12 for details about these options.

Conformant Array Parameters.

The ISO Level 1 Conformant Array Parameter feature is implemented in HP
Standard Pascal. This is the only feature in ISO Pascal that is not in
ANSI/IEEE Pascal.

This feature allows the user to pass an array as a parameter, whose
bounds are determined at run time and which conforms to the conformant
array parameter specification. The specification includes the names of
the array bounds. The values of the bounds of the actual array are given
when it is passed.

Constant Expressions.

The value of a declared constant may be specified with a constant
expression. A constant expression returns an ordinal or real value and
can contain only declared constants, literals, calls to the functions
ord, chr, pred, succ, hex, octal, binary, strlen, odd, and the operators
+, -, *, DIV, and MOD. Note that a constant expression can appear
anywhere that a constant can appear.

Constructors (Structured Constants).

The value of a declared constant can be specified with a constructor. A
constructor establishes values for the components of a previously
declared structured type. Constructors can only appear in a CONST
section of a declaration part of a block. Set constructors can appear
either in a CONST section or in expressions in executable statements.

Declaration Part.

In the declaration part of a block, CONST, TYPE, VAR, MODULE, and IMPORT
sections can be repeated and intermixed.

1- 4

Halt Procedure.

The halt procedure causes an abnormal termination of a program.

Heap Procedures.

The procedure mark saves the allocation state of the heap. The procedure
release restores the allocation state of the heap to a state previously
marked. This has the effect of deallocating all storage allocated by the
procedure new since the time mark was called.

Identifiers.

The underscore character (_) can appear in identifiers, but not as the
first character.

File Input/Output.

A file can be opened for direct access with the procedure open . Direct
access files have a maximum number of components indicated by the
function maxpos and have a current number of written components,
indicated by the function lastpos . The procedure seek places the current
position of a direct access file at a specified component. Data can be
read from a direct access file or written to it with the procedures
readdir or writedir that are combinations of seek and the standard
procedures read or write . A textfile cannot be used as a direct access
file.

A file can be opened in the "write-only" state without altering its
contents by using the procedure append . The current position is set to
the end of the file.

Any file can be explicitly closed with the procedure close .

To permit interactive input, the system defines the primitive file
operation get as "deferred get." Refer to get in Chapter 10 for more
information.

The procedure read accepts any ordinal type as input from text files.
Therefore, it is possible to read a Boolean or enumerated value from a
text file. It is also possible to read a value that is of type PAC or
string.

The procedure write writes expressions to a text file. Any ordinal type
can be a parameter. An enumerated constant can be written directly to a
text file. Write also writes expressions of type string or PAC.

The function position returns the index of the current position for any
file that is not a textfile.

The routines page , overprint , prompt , and linepos operate on textfiles.
The following lists what each routine does:

 * Linepos returns the integer number of characters that the program
 has read from or written to a textfile since the last end-of-line
 marker.

 * Page causes a page eject when a text file is printed.

 * Overprint causes the printer to perform a carriage return without
 a line feed, effectively overprinting a line.

1- 5

 * Prompt displays the output buffer without writing a line marker.
 This allows the cursor to remain on the same screen line when
 output is directed to a terminal.

The routine associate allows Pascal input/output operations on files that
have been opened by the operating system. The routine disassociate
disallows these operations.

Function Return.

A function can return any structured type, except those containing files.
That is, a function may return an array, record, set, or string .

Longreal Numbers.

The type longreal is identical to the type real except that it provides
greater precision. The letter "L" precedes the scale factor in a
longreal literal .

Minint.

The standard constant minint is defined in HP Pascal. The value is
implementation dependent. The type integer is defined as a subrange
minint...maxint . Minint is less than or equal to maxint.

Formal Parameter Congruency.

Two formal parameter lists are congruent if they contain an equal number
of parameters and each parameter in one list is equivalent to the
parameter in the same position in the other list. The formal parameter
lists do not need to be syntactically the same.

Record Variant Declaration.

The variant part of a record field list may have a subrange as a case
constant and need not specify all the case constants for the tag type.

String or Character Literals.

HP Pascal permits the encoding of control characters or any other single
ASCII character after the sharp symbol (#). For example, the string
literal #G represents CTRL-G (or the bell). A character can also be
encoded by specifying its ASCII ordinal value (0..255) after the sharp
symbol. For example, #7 represents CTRL-G. These characters can be
included in string literals by directly appending them in front of or
behind a string literal.

String Type.

HP Pascal supports the predefined type string. A string type is a PACKED
ARRAY of CHAR with a declared maximum length and an actual length that
may vary at run time. All HP Pascal implementations have maximum lengths
of at least 255 characters.

1- 6

A variable of type string can be compared with a similar variable or a
string literal or can be assigned to a variable of type string. A string
literal can be assigned to a variable of type string.

The following standard procedures and functions manipulate strings:

 * Setstrlen sets the current length of a string without changing its
 contents.

 * Str returns a specified portion of a string, such as a substring.

 * Strappend appends one string to another.

 * Strdelete deletes a specified number of characters from a string.

 * Strinsert inserts one string into another.

 * Strlen returns the current length of a string.

 * Strltrim and strrtrim trim leading and trailing blanks,
 respectively, from a string.

 * Strmax returns the maximum length of a string.

 * Strmove copies a substring from a source string to a destination
 string.

 * Strpos returns the position of the first occurrence of a specified
 string within another string.

 * Strread reads one or more values from a string.

 * Strrpt returns a string composed of a designated string repeated a
 specified number of times.

 * Strwrite writes one or more values to a string.

WITH Statement.

The record designator in a WITH statement can be a call to a function
that returns a record as its result, or a structured constant.

Numeric Conversion Functions.

The functions binary, octal, and hex convert a parameter of type string
or PAC, or a string literal, to an integer. These functions interpret
the parameter the following ways:

 * Binary interprets the parameter as a binary value.

 * Octal interprets the parameter as an octal value.

 * Hex interprets the parameter as a hexadecimal value.

Modules.

HP Pascal supports separately compiled program fragments called modules .
Modules can be used to satisfy the unresolved references of another
program or module. Typically, a module "exports" types, constants,
variables, procedures, and functions. A program can then "import" a
module to satisfy its own references.

This mechanism allows commonly used procedures and functions to be
compiled separately and used by more than one program without having to
include them in each program.

2- 1

Chapter 2 Language Elements
A Pascal program is a sequence of statements that, when executed in a
specified order, processes data to produce desired results. The elements
of Pascal include basic symbols, reserved words, identifiers, numbers,
comments, separators, and literals . The statements are made up of
different elements depending on the needs of the program.

This chapter describes in detail the elements of statements in the HP
Pascal language.

Basic Symbols

The basic symbols consist of letters, digits, and special symbols. The
letters include A..Z and a..z. The digits are 0 through 9. Table 2-1
(*) lists the special symbols that are valid in HP Pascal.

Table 2-1. Special Symbols

--
Symbol	Description
--
+	Add, set union, concatenate strings, unary plus +.
--
-	Subtract, set difference, unary minus -.
--
*	Multiply, set intersection.
--
/	Divide (real results).
--
=	Equal to, type identifier.
--
<	Less than.
--
>	Greater than.
--
()	Delimit a parameter list or a expression.
--
[]	Delimit an array or string index, set, or a constructor. May be
	replaced by the (. .) pair.
--
.	Select record field, decimal point.
--
,	Separate listed identifiers, values, or variables.
--
;	Separates statements and formal parameters.
--

2-: 2

Table 2-1. Special Symbols (cont.)

--
Symbol	Description
--
:	Denotes a statement label, list of case constants, or variable
	identifiers.
--
^	Define or dereference pointers, access file buffer. May be
	replaced by @.
--
<>	Not equal.
--
<=	Less than or equal, subset.
--
>=	Greater than or equal, superset.
--
:=	Assign value to a variable.
--
..	Delimit a subrange.
--
{ }	Delimit a comment. May be replaced by the (* *) pair.
--
#	Encode a control character.
--
$	Delimit a compiler option.
--
'	Delimit a string literal.
--
_	May appear within an identifier.
--

Reserved Words

Reserved words are symbols that have special meaning to the Pascal
language. They are the names of statements, data types, or operators. A
reserved word can be used in a program only in the context for which it
is defined. A reserved word cannot be redefined for use as an
identifier. It may, however, be used within comments or string literals.

A list of reserved words recognized by HP Pascal with a brief description
of each is given in Table 2-2 . A more detailed description of some
of the reserved words follows in this chapter. In some cases, a detailed
description is presented elsewhere in this manual. Table 2-2
provides the location of these instances by word and chapter.

2- 3

NOTE At the ANSI and ISO standard level, OTHERWISE, IMPORT, EXPORT,
 IMPLEMENT, and MODULE are not considered reserved words. The
 compiler option STANDARD_LEVEL controls whether these identifiers
 are recognized as reserved words. Refer to Chapter 12 for more
 information about STANDARD_LEVEL. If the system programming
 extensions are enabled, additional identifiers may be treated as
 reserved words.

Table 2-2. Reserved Words

--
Reserved Word(s)	Description	Chapter
		Reference
--
AND	Boolean conjunction operator.	4
--
ARRAY, OF	A structured type.	3
--
BEGIN...END	Delimit a compound statement or BLOCK.	6
--
CASE...OF...OTHERWISE...END	A conditional statement.	6
--
CONST	Begins constant definition section.	5
--
DIV	Integer division operator.	4
--
EXPORT	Begins module export section.	7
--
FILE...OF	Structured type.	3
--
FOR...TO...DOWNTO...DO	Repetitive statement.	6
--
FUNCTION	Begins a function declaration.	7
--
GOTO	Control transfer statement.	6
--
IF...THEN...ELSE	Conditional statement.	6
--
IMPLEMENT	Begins module implement section.	7
--
| | | |

2-: 4

| IMPORT | Begins module import section. | 7 |
| | | |
--
IN	Set inclusion operator.	4
--
LABEL	Begins label definition section.	5
--
MOD	Integer modulus operator.	4
--

Table 2-2. Reserved Words (cont.)

--
Reserved Word(s)	Description	Chapter
		Reference
--
MODULE	Begins a module declaration.	7
--
NIL	Special pointer value.	5
--
NOT	Boolean negation operator.	4
--
OR	Boolean disjunction operator.	4
--
PACKED	Controls allocation for structured	3
	type.	
--
PROCEDURE	Begins a procedure declaration.	7
--
PROGRAM	Program heading.	7
--
RECORD...CASE...OF...END	Structured type.	3
--
REPEAT...UNTIL	Repetitive statement.	6
--
SET...OF	Structured type.	3
--
TYPE	Begins a type definition section.	5
--
VAR	Begins a variable declaration section.	5
--
| | | |
| WHILE...DO | Repetitive statement. | 6 |

2- 5

| | | |
--
WITH...DO	Opens record scopes.	6
--

Identifiers

An HP Pascal identifier consists of a letter preceding an optional
character sequence of letters, digits, or the underscore character (_) up
to a source line in length with all characters significant without
respect to case.

Identifiers are used to denote declared constants, types, variables,
procedures, functions, modules, and programs.

A letter may be any of the letters in the subranges A through Z or a
through z. The compiler makes no distinction between upper and lower
case in identifiers. A digit may be any of the digits 0 through 9. The
underscore (_) is an HP Standard Pascal extension of ANSI/IEEE770X3.97 -
1983 Standard Pascal.

In general, an identifier must be defined before using it. Four
exceptions are:

 * Identifiers that define pointer types and are themselves defined
 later in the same declaration part.

 * Identifiers that appear as program parameters and are declared
 subsequently as variables.

 * Predefined identifiers such as integer and char.

 * Forward procedures or functions.

An identifier does not need to be defined when it is a program, module,
procedure, or function name, or one of the identifiers defining an
enumerated type. Its initial appearance in a function, procedure,
module, or program header is the "defining occurrence."

Finally, HP Pascal has a number of standard identifiers that may be
redeclared. These standard identifiers include names of standard
procedures and functions, standard file variables, standard types,
standard constants, and procedure or function directives.

Reserved words are language defined symbols whose meaning can never
change. Therefore, an identifier cannot be declared that has the same
spelling as a reserved word.

For a list of reserved words recognized by HP Pascal, see Table 2-2 .

Syntax

 Identifier:

2-: 6

Example

 GOOD_TIME_9 { These identifiers }
 good_time_9 { are }
 gOOd_TIme_9 { equivalent. }

 x2_GO
 a_long_identifier
 Boolean { Standard identifier.}

Scope

The scope of an identifier is its domain of accessibility or the region
of a program in which it may be used. In general, a user-defined
identifier can appear anywhere in a block after its definition.
Furthermore, the identifier can appear in a block nested within the block
in which it is defined.

If an identifier is redefined in a nested block, however, this new
definition takes precedence in the entire block. The object defined at
the outer level is no longer accessible from the inner level. Once
defined at a particular level, an identifier may not be redefined at the
same level, except for field names.

Labels are not identifiers, and their scope is restricted. They cannot
mark statements in blocks nested within the block where they are
declared.

Identifiers defined at the main program level are global . Identifiers
defined in a function or procedure block are local to the function or
procedure. The definition of an identifier must precede its use, with
the exception of pointer type identifiers, program parameters, predefined
identifiers, and forward declared procedures or functions.

For a module, identifiers declared in the EXPORT section are valid for
the entire module. Identifiers declared after the IMPLEMENT keyword are
valid only within the IMPLEMENT part of the module.

When a module is imported, the identifiers in the EXPORT section of the
imported module are placed in the global scope of the program. Because
of this, the identifiers in the EXPORT section must be unique not only
within the module, but also within the global scope of a program.

Example

 PROGRAM show_scope (output);

 CONST
 asterisk = '*';

 VAR
 x: char; {global variable}

2- 7

 PROCEDURE writeit;

 CONST
 x = 'LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT';

 BEGIN
 write (x)
 END; {writeit}

 BEGIN { show_scope }
 x:= asterisk;
 write (x);
 writeit;
 write (x);
 writeln;
 END. { show_scope }

 RESULTS:

 LOCAL AND GLOBAL IDENTIFIERS DO NOT CONFLICT

Numbers

HP Pascal recognizes three kinds of numeric literals: integer, real, and
longreal .

Integer Literals

An integer literal consists of a sequence of digits from the subrange 0
through 9. No spaces may separate the literal, and leading zeroes are
not significant. The compiler interprets unsigned integer literals as
positive values.

The maximum unsigned integer literal is equal in value to the standard
constant maxint . The minimum signed integer literal is equal in value to
the standard constant minint . The actual values of minint and maxint are
implementation dependent; however, at least 9 decimal digits are allowed.
Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide , depending on your implementation, for more
information.

Syntax

 Unsigned Integer:

 Signed Integer:

2-: 8

Example

 100 { unsigned integer }
 -100 { signed integer }

Real and Longreal Literals

A real or longreal literal consists of a coefficient and a scale factor.
An E preceding the scale factor is read as times ten to the power of and
specifies a real literal . An L preceding scale factor also means times
ten to the power of, but specifies a longreal literal .

Lowercase e and l are legal. At least one digit must precede and follow
a decimal point. A number containing a decimal point and no scale factor
is considered a real literal .

Syntax

 Unsigned Real:

2- 9

 Signed Real:

Example

 0.1 { Real with no scale factor. }
 5E-3 { Real with no decimal point. }
 3.14159265358979L0 { Longreal. }
 87.35e+8 { Real. }

Comments

Comments consist of a sequence of characters that starts with either of
the equivalent symbols { or (*, and end with either of the equivalent
symbols } or *).

Comments are used to document a program. Since a comment is a separator ,
it may appear anywhere in a program where a separator may appear.
However, nested comments are not legal. Note that comments do not have
to be on lines by themselves and may cross line boundaries.

Syntax

 Comment:

Example

 { comment }
 (*comment*)
 { comment*)
 { { { { comment }
 { This comment
 occupies more than one line. }

2-: 10

Separators

A separator is a space, a tab, an end-of-line marker, a compiler option,
or a comment. Separators are used to separate reserved words,
identifiers, numbers, strings, and special symbols. At least one
separator must appear between any pair of consecutive identifiers,
numbers, or reserved words. When one or both elements are special
symbols, however, the separator is optional.

Separators may not appear within special symbols having more than one
component (:=, for example). Certain special symbols have synonyms. In
particular, (. and .) may replace the left and right brackets, [and].
The symbol @ may substitute for the up-arrow ^, also (* and *) may take
the place of the left and right braces, { and }.

Example

 IF EOF THEN GOTO 99 { Required separators. }
 x := x + 1 { Optional separators. }
 x:=x+1 { No separators. }

String Literals

String literals are sequences of characters, enclosed by single quote
marks, that may not be longer than a single line of source code. String
literals may consist of any combination of the following:

 * A sequence of ASCII characters enclosed in single quote marks.

 * A sharp symbol (#) followed by a single character.

 * A sharp symbol (#) followed by up to three digits that represent
 the ASCII value of a character.

A letter or symbol after a sharp symbol is equivalent to a control
character. For example, #G or #g encodes CTRL-G, the bell character.
The compiler interprets the letter or symbol according to the expression
chr(ord(letter) MOD 32). Therefore, the ordinal value of G is 71;
modulus 32 of 71 is 7; and the ASCII value of 7 is the bell.

In a string literal, if a number is used after a sharp symbol, it may
contain up to three digits, but must be in the range 0 through 255. It
directly encodes any printing or nonprinting ASCII character. For
example, the string literal #80#65#83#67#65# 76 is equivalent to the
string literal PASCAL.

Any ASCII character can appear between quote marks. The sharp symbol #
is provided to enable better documentation of nonprinting characters.

A string literal may be type char, PAC, or string. This is dependent on
the context in which it is used. If a single quote is a character in a
string literal, it must appear twice, consecutively.

Two consecutive quote marks ('') are used to specify the null or empty
string literal. Assigning this value to a string variable sets the
length of the variable to zero. Assigning this value to a PAC variable
blank-fills the variable.

Syntax

 String_literal:

2- 11

Example

 'Please don''t!' { Single quote character. }
 'A'
 '' { Null string. }
 #F
 #243#H
 #27'that was an ESC char, and so is this'#[
 'this string has five bells'#G#g#g#7#7' in it'

2-: 12

3- 1

Chapter 3 Data Types

One of the most important contributions and fundamental ideas of Pascal
is the formalization of the concept of a data type . A data type is a
collection of elements that belong together because they are all formed
in the same way and are treated uniformly.

There are three categories of data types in HP Pascal. They are:

 * Simple

 * Structured

 * Pointer

These data types are used to determine a set of attributes that include:

 * The set of permissible values that an object of a specified type
 may assume.

 * The set of permissible operations that may be performed on an
 object of a specified type.

 * The amount of storage that variables of a specified type require.

Figure 3-1 summarizes the various data types in HP Pascal. A
detailed discussion of the data types in each category follows in this
chapter. When appropriate, permissible operators, standard procedures,
standard functions, and examples are given.

NOTE The system programming extensions, if enabled, define additional
 data types. See Chapter 11 for more information.

Syntax

 Type:

3- 2

Figure 3-1. HP Pascal Data Types

Simple Types

The simple data types are made up of ordinal, real, and longreal types.
Ordinal types include the standard types integer , char , and Boolean as
well as enumerated , subrange , shortint , longint , bit16 , bit32 , and bit52
types.

Syntax

 Simple_type:

3- 3

Ordinal

Ordinal types are types that have a one-to-one correspondence with a
subset of natural numbers. These values are ordered so that each has a
unique ordinal value that indicates its position in a list of all the
values of the type.

Ordinal types include bit16 , bit32 , bit52 , Boolean , char , enumerated ,
integer , shortint , longint , and subrange . Enumerated types are declared
by enumerating all the possible values of the type. Subrange types are
declared by specifying the minimum and maximum values of the subrange.

Integral-types include bit16 , bit32 , bit52 , integer , shortint , longint ,
and subrange of integer .

Sub-integer includes bit16 , shortint , and subrange of integer ;
super-integer includes bit52 and longint . bit32 is a sub-integer when
used with a real operand or used in a real function such as sin;
otherwise, bit32 is a super-integer.

Syntax

 Ordinal_type:

3- 4

NOTE For relational tests, the two operands must be compatible types.
 When membership tests are performed, the left-operand type must be
 a single ordinal value, while the right-operand is of a SET type.

Bit16.

The predefined data type bit16 is a subrange, 0..65535, that is stored in
16 bits. bit16 is a unique HP Pascal type because arithmetic operations
on bit16 data are truncated to modulo 65536 when stored.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

 arithmetic +, -, *, /, DIV, MOD

Standard Functions

 bit16 argument - abs ln sin

 arctan odd sqr

 chr ord sqrt

 cos pred succ

 exp

 bit16 return - pred
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 program bits1 (output);
 var q:bit16;
 begin
 q:=hex('ffff');
 q:=q + 1; { q is now 0 }
 writeln('wrapped around value = ',q:1);
 end.

Output:

 wrapped around value = 0

Bit32.

The predefined data type bit32 is a subrange, 0..232-1, that is stored in
32 bits. bit32 is a unique HP Pascal type because arithmetic operations
on bit32 data are performed with unsigned 32 bit integers.

Permissible Operators

 assignment :=

3- 5

 relational <, <=, =, <>, >=, >, IN

 arithmetic +, -, *, /, DIV, MOD

Standard Functions

 bit32 argument - abs ln sin

 arctan odd sqr

 chr ord sqrt

 cos pred succ

 exp

 bit32 return - pred
 sqr
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

NOTE The multiply operator (*) may cause overflow traps. See
 "OVFLCHECK" .

Example

 $standard_level 'hp_modcal'$
 program bits2(output);
 var q,r:bit32;
 begin
 { one way to get bit32 constants >= 2 ** 31 }
 $push; type_coercion 'conversion'; range off$
 q:=bit32(hex('ffffffff')) + 1; { q is now 0 }
 r:=bit32(hex('7fffffff')) + 1; { r is now > maxint }
 pop
 writeln('wrapped around value = ',q:1);
 writeln('past maxint value = ',r:1);
 end.

Output:

 wrapped around value = 0
 past maxint value = 2147483648

Bit52.

The predefined data type bit52 is a subrange, 0..252-1, that is stored in
64 bits. bit52 is a unique HP Pascal type because arithmetic operations
on bit52 data are performed with unsigned 64 bit integers.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

 arithmetic +, -, *, /, DIV, MOD

3- 6

Standard Functions

 bit52 argument - abs exp pred succ

 arctan ln sin

 chr odd sqr

 cos ord sqrt

 bit52 return - pred
 sqr
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 $standard_level 'hp_modcal'$
 program bits3(output);
 var q:bit52;
 begin
 { one way to get bit52 constants >= 2 ** 31 }
 $push; type_coercion 'conversion'$
 q:=bit52(123456) * 1000000000 + 789012345;
 pop
 writeln(q);
 end.

Output:

 123456789012345

Boolean.

The Boolean type is a predefined enumerated type that indicates logical
values. The elements of this data type are two constant identifiers,
true and false , where false is less than true . HP Pascal defines the
type Boolean in the following way:

 TYPE
 Boolean = (false, true);

Permissible Operators

 assignment :=

 Boolean AND, OR, NOT

 relational <, <=, =, <>, >=, >, IN

Standard Functions

 Boolean argument - ord
 pred
 succ

 Boolean return - eof
 eoln
 odd
 pred
 succ

3- 7

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 VAR
 left_handed: Boolean;

 BEGIN
 left_handed := false;

 END;

Char.

The char type is a predefined ordinal type that is used to represent
individual characters in the 8-bit ASCII character set. A char literal
is either a single character surrounded by single quote marks, or a sharp
(#) followed by a number or letter.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

Standard Functions

 char argument - ord
 pred
 succ

 char return - chr
 pred
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 VAR
 do_you: char;

 BEGIN
 do_you := 'Y';
 do_you := #G; { BELL character }
 END;

Enumerated.

An enumerated type is a user-defined, ordinal type that defines an
ordered set of values by the enumeration of identifiers in parentheses.
The sequence in which the identifiers appear determines the ordering.
The enumerated identifiers are defined as constants. The ORD of the
first has the value zero, and the ORD of the others have successive
integer values in order of their specification. The limit on the maximum
number of identifiers in an enumerated type is implementation dependent.
Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide , depending on your implementation, for more

3- 8

information.

Syntax

Enumerated_id_list:

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

Standard Functions

 enumerated argument - ord
 pred
 succ

 enumerated return - pred
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 TYPE
 days = (monday, tuesday, wednesday, thursday, friday, saturday, sunday);
 color = (red, green, blue, yellow, cyan, magenta, white, black);

Integer.

The integer type is a predefined, ordinal type whose possible values are
determined by a subrange of the negative and positive integers. The
lower bound of the subrange is the predefined constant minint , and the
upper bound is the predefined constant maxint . The integer type
represents a signed number of at least nine digits.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >, >=, IN

 arithmetic +, -, *, /, DIV, MOD

Standard Functions

 integer argument abs exp pred
 -

 arctan ln sin

3- 9

 chr odd sqr

 cos ord succ

 integer return - abs maxpos round strmax

 binary octal sqr strpos

 hex ord sqrt succ

 lastpos position strlen trunc

 linepos pred

Standard Procedures

 halt strread
 prompt strwrite
 read writedir
 readdir writeln
 readln

Example

 VAR
 wholenum: integer;
 i,j,k,l : integer;

Longint.

The predefined data type longint is an integer in the range -263..263-1
that is stored in 64 bits.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

 arithmetic +, -, *, /, DIV, MOD

Standard Functions

 longint argument abs ln sin
 -

 arctan odd sqr

 chr ord sqrt

 cos pred succ

 exp

 longint return - abs
 pred
 sqr
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

3- 10

 $standard_level 'hp_modcal'$
 program prog(output);
 var q:longint;
 begin
 { one way to get longint constants >= 2 ** 31 or < - 2 ** 31 }
 $push; type_coercion 'conversion'$
 q:=longint(123456) * 1000000000 + 789012345;
 pop
 writeln(q);
 end.

Output:

 123456789012345

Shortint.

The predefined data type shortint is an integer in the range
-32768..32767 that is stored in 16 bits. (In contrast, if you declare a
variable to be in that range, it is stored in 32 bits.)

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >, IN

 arithmetic +, -, *, /, DIV, MOD

Standard Functions

 shortint argument - abs ln sin

 arctan odd sqr

 chr ord sqrt

 cos pred succ

 exp

 shortint return - pred
 succ

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 program short(output);
 var q:shortint;
 begin
 q:=-1;
 writeln('size of shortint = ',sizeof(q):1);
 end.

Output:

 size of shortint = 2

Subrange.

3- 11

A subrange type is a user-defined, ordinal type that is a sequential
subset of a predefined or user-defined, ordinal base type. It consists
of a lower bound and an upper bound separated by the special symbol "..".
The upper and lower bounds must be constant values or constant
expressions of the same ordinal type. The lower bound cannot be greater
than the upper bound.

Syntax

 Subrange_type:

NOTE A variable of a subrange type possesses all the attributes of the
 base type of the subrange, but its values are restricted to the
 specified closed range. It has the same set of permissible
 operators and standard functions as its base type.

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 CONST
 maxsize = 10;

 TYPE
 day_of_year = 1..366;
 lowercase = 'a'..'z'; { Base type is char. }
 days = (Monday, Tuesday, Wednesday,
 Thursday,Friday,Saturday,Sunday);
 weekdays = Monday..Friday;
 weekend = Saturday..Sunday;
 e_type = 1..maxsize - 1; { Upper bound is con- }
 { stant expression. }
 { Maxsize is declared }
 { constant. }

Real

The real type is a predefined, simple type that represents a subset of
the real numbers. For the range covered by the subset, see the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide ,
depending on your implementation.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >

 arithmetic -, +, *, /

Standard Functions

3- 12

 real argument - abs ln sqr

 arctan round sqrt

 cos sin trunc

 exp

 real return - abs exp sqr

 arctan ln sqrt

 cos sin

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 PROGRAM show_realnum(output);

 VAR
 realnum: real;
 BEGIN
 realnum := 6.023E+23;
 writeln(realnum);
 END.

Output:

 6.02300E+23

Longreal

The longreal type is a predefined, simple type that represents a subset
of the real numbers. This type may have more precision and a larger
range than the type real . The range the subset covers is implementation
dependent in HP Pascal. For more details see the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation.

Permissible Operators

 assignment :=

 relational <, <=, =, <>, >=, >

 arithmetic -, +, *, /

Standard Functions

 longreal argument - abs round

 arctan sin

 cos sqr

 exp sqrt

 ln trunc

 longreal return - abs ln

 arctan sin

3- 13

 cos sqr

 exp sqrt

Standard Procedures

 prompt strread
 read strwrite
 readdir writedir
 readln writeln

Example

 VAR
 precisenum: longreal;
 BEGIN
 precisenum:= 1.1234567891L+04;
 .

Structured Types

Structured data types are the array, file, record, set, and string types.
These data types can be preceded by a packing modifier. The effect of
the packing modifier is implementation-defined. Refer to the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide ,
depending on your implementation, for more information.

Syntax

 Structured_type:

 Unp_Struc_type:

ARRAY

3- 14

An array is a structured type consisting of a fixed number of components
that are all of the same type. The maximum number of components is
implementation dependent. Depending on your implementation, refer to the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide
for more information.

Syntax

 Array_type:

Array Declarations

An array type definition consists of the reserved word ARRAY, an index
type in square brackets, the reserved word OF, and the component type.
The reserved word PACKED may precede ARRAY. It instructs the compiler to
optimize storage space for the array components, possibly at the expense
of execution time.

An index that must be an ordinal type specifies the number of component
of an array. The component type may be any simple, structured, or
pointer type, including a file type. The symbols (. and .) may replace
the left and right square brackets, respectively. The component of an
array may be accessed using the index of the component in a selector.

In the ANSI/IEEE770X3.97 - 1983 Standard Pascal, the term string
designates a packed array of char with a starting index of 1 and an
ending index >1. HP Pascal uses the term PAC to designate a packed array
of char with a starting index of 1. HP Pascal also defines a standard
type string that is similar to a packed array with a declared maximum
length, whose actual length may vary at run time.

Permissible Operators

 assignment :=

 relational (PAC <, <=, =, <>, >=, >
 only)

Standard Functions

 strlen**
 hex**
 octal**
 binary**

Standard Procedures

 array parameters - pack strread**
 prompt** strwrite**
 read* unpack
 readdir* write*
 readln** writedir*
 strmove** writeln**

3- 15

NOTE One asterisk (*) after a routine name indicates that this routine
 can be used on all arrays, whereas two asterisks (**) indicates
 that this routine should be used with PAC arrays only.

Example

 TYPE
 name = PACKED ARRAY [1..30] OF char; { PAC type }
 list = ARRAY [1..100] OF integer;
 strange = ARRAY [Boolean] OF char;
 flag = ARRAY [(red, white, blue)] OF 1..50;
 files = ARRAY [1..10] OF text;

Multi-Dimensioned Arrays

If an array definition specifies more than one index type or if the
components of an array are themselves arrays, then the array is said to
be multi-dimensioned . The maximum number of array dimensions is
implementation dependent.

Example

 TYPE
 { equivalent definitions of truth }
 truth = ARRAY [1..20] OF
 ARRAY [1..5] OF
 ARRAY [1..10] OF Boolean;
 truth = ARRAY [1..20] OF
 ARRAY [1..5, 1..10] OF Boolean;
 truth = ARRAY [1..20, 1..5] OF
 ARRAY [1..10] OF Boolean;
 truth = ARRAY [1..20, 1..5, 1..10] OF Boolean;

FILE

This reserved word designates a declared data structure that consists of
a sequence of components all of the same type. Files are usually
associated with peripheral storage devices, and their length is not
specified in the program. A file_type consists of the reserved words
FILE OF and a component type that may be predefined or user-defined. The
type text is a special type of FILE OF CHAR that has additional
attributes. For further information about textfiles, refer to the
section "Standard Textfiles" in this chapter.

A logical file is a file variable declared in an HP Pascal program. A
physical file is a file that exists in the environment outside the
program and is controlled by the operating system. During program
execution, logical files are associated with physical files, allowing any
operation performed on the logical file to be performed on the physical
file. Thus, a program is allowed to manipulate data in the external
environment.

A logical file may be any type except a file type or a structured type
with a file type component. The number of components is not fixed by the
file type definition. File components may be accessed sequentially or
directly using a variety of HP Pascal standard procedures and functions.

It is legal to declare a packed file. The effect on the storage of the
file is implementation dependent.

Syntax

3- 16

 File_type:

Example

 TYPE
 person = RECORD
 name: PACKED ARRAY [1..30] OF char;
 age: 1..100;
 END;
 person_file = FILE OF person;

 bit_vector = PACKED ARRAY [1..100] OF Boolean;
 vector_file = FILE OF bit_vector;

 data_file = FILE OF integer;
 doc_file = text;

Standard Textfiles

text

Text type variables are called textfiles . The standard file type text
permits ordinary input and output that is oriented to characters and
lines. Text type files have two important features:

 * The components are type char .

 * The file is subdivided into lines by special end-of-line markers .

Textfiles cannot be opened for direct access with the procedure open .
Textfiles can be sequentially accessed, however, with the procedures
reset, rewrite, or append . All standard procedures that are legal for
sequentially-accessed files are also legal for textfiles.

Certain standard procedures and functions, on the other hand, are only
legal for textfiles. These procedures are:

 * eoln
 * linepos
 * overprint
 * page
 * prompt
 * readln
 * writeln

Textfiles permit conversion from the internal form of certain types to an
ASCII character representation and vice versa.

Example

 VAR
 myfile: text;
 i: integer;
 r: real;

3- 17

 BEGIN
 rewrite(myfile);
 writeln(myfile,'integer',i);
 writeln(myfile,'real',r);
 END.

input

When the standard textfile input appears as a program parameter, there
are several important consequences:

 * Input may not be declared in the global declaration of the source
 code.

 * The system automatically associates input with an
 implementation-dependent physical file.

 * The system automatically resets input .

 * If certain file operations omit the logical file name parameter,
input is the default file. For example, the call read(x) where x

 is some variable, reads a value from input into x. Consider:

 PROGRAM mute (input);
 VAR answer : string[255];
 BEGIN
 readln(answer);
 END.

The program waits for input. Output need not appear.

If an imported module uses input , it must appear as a program parameter
for the importing program, and the module must import the predefined
module stdinput .

output

When the standard textfile output appears as a program parameter, there
are several important consequences:

 * Output may not be declared in the global declaration part of the
 source code.

 * The system automatically associates output with an implementation
 dependent, physical file. Depending on your implementation, refer
 to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX

Programmer's Guide for more information.

 * The system automatically rewrites output .

 * If certain file operations omit the logical file name parameter,
output is the default file. For example, the call write(x), where

 x is some variable, writes the value of x onto output . Consider:

 PROGRAM sample (output);
 BEGIN
 writeln('I like Pascal!');
 END.

The program displays the string literal on the default output device.
output must appear as a program parameter; input need not appear if the
program does not use it.

If an imported module uses output , it must appear as a program parameter
for the importing program, and the module must import the predefined
module stdoutput .

Record

3- 18

A record is a structured type consisting of a collection of components
that are not necessarily of the same type. Each component is termed a
field of the record and has its own identifier. A field of a record is
accessed by using the appropriate field selector .

A record type consists of the reserved word RECORD, a field list, and the
reserved word END. The reserved word PACKED may precede the reserved word
RECORD. If PACKED is used, it instructs the compiler to optimize storage
of the record fields.

Syntax

 Record_type:

Field List

The field list has an optional fixed part and an optional variant part.
The field list may have any number of fields, and each field is given a
unique name called a field identifier .

Syntax

 Field_list:

Fixed Part

In the fixed part of the field list, a field definition consists of an
identifier , a colon (:), and a type . Any simple, structured, or pointer
type is legal. Several fields of the same type may be defined by listing
the identifiers separated by commas.

Syntax

 Fixed_part:

3- 19

Variant Part

In the variant part , the reserved word CASE introduces an optional tag
field identifier and a required ordinal type identifier . The reserved
word OF precedes a list of case constants and alternative field lists.

Case constants must be compatible with the tag . See "Type Compatibility"
 in this chapter for more information. Several case constants may be
associated with a single field list. The various constants appear
separated by commas. Subranges are also legal case constants in HP
Pascal. The empty field list may be used to indicate that a variant
doesn't exist. This is illustrated in the example in this section. HP
Pascal does not require that all possible tag values be specified.

The OTHERWISE construction may not be used in the variant part of the
field list. OTHERWISE is only legal in CASE statements.

Variant parts allow variables of the same record type to exhibit
structures that differ in the number and type of their component parts.
If a record has multiple variants , when a value is assigned to the tag
field, any fields associated with a previous variant cease to exist, and
the new variant's fields become active with undefined values. If there
is no tag field when a value is assigned to a field of any particular
variant, any fields associated with another variant cease to exist, and
the new variant fields become active with undefined values. An error
results when a reference is made to a field of a variant other than the
current variant. A field of a record is accessed using the appropriate
field selector.

Syntax

 Variant_part:

3- 20

Permissible Operators

 assignment (entire :=
 record)

 field selection .

Standard Procedures

 read
 readdir
 write
 writedir

Example

 TYPE
 word_type = (int, ch);
 word = RECORD { variant part only with tag }
 CASE word_tag: word_type OF
 int: (number: integer);
 ch : (chars : PACKED ARRAY [1..2] of char);
 END;

 polys = (circle, square, rectangle, triangle);
 polygon = RECORD { fixed part and tagless variant part }
 poly_color: (red, yellow, blue);
 CASE polys OF
 circle: (radius: integer);
 square: (side: integer);
 rectangle: (length, width: integer);
 triangle: (base, height: integer);
 END;

3- 21

 date_info = PACKED RECORD { fixed part only }
 mo: (jan, feb, mar, apr, may, jun,
 jul, aug, sep, oct, nov, dec);
 da: 1..31;
 yr: 1900..2001;
 END;
 marital_status = (married, separated, divorced, single);
 name_string = PACKED ARRAY [1..30] of CHAR;
 person_info = RECORD { nested variant parts }
 name: name_string;
 born: date_info;
 CASE status: marital_status of
 married..divorced:
 (when: date_info;
 CASE has_kids: Boolean OF
 true: (how_many: 1..50);
 false: (); { Empty variant }
)
 single: ();
 END;

Set

A set is a user-defined, structured type that is the power set consisting
of the set of all subsets of a base type . A set type consists of the
reserved words SET OF and a base type . The base type may be any ordinal
type. The maximum number of elements is implementation defined, but must
be at least 256 elements. It is legal to declare a packed set. However,
whether this affects the storage is implementation dependent. HP Pascal
defines "SET OF integer" (or any other integral-type) as "SET OF 0..255".

Syntax

 Set_type:

Permissible Operators

 assignment :=

 union +

 intersection *

 difference -

 subset <=

 superset >=

 equality =, <>

 inclusion IN

Example

 TYPE
 charset = SET OF char;
 fruit = (apple, banana, cherry, peach, pear, pineapple);

3- 22

 somefruit = SET OF apple..cherry;
 poets = SET OF (Blake, Frost, Brecht);
 some_set = SET OF 1..200;

PACKED

This reserved word indicates that the compiler should minimize data
storage even if the access time may be increased. The reserved word
PACKED may appear with an ARRAY, RECORD, SET, or FILE. By declaring a
PACKED structured data type, the amount of memory needed to store an item
is generally reduced. The decision to pack a particular data type
depends on many factors including available memory size, processor speed,
required response time, and volume of data. Therefore, a choice that is
valid for one environment may be quite inappropriate for another. It is
illegal to pass a component of a packed structure by reference.

Syntax

 Packing:

Example

 CONST
 wordsize = 20;

 VAR
 buffer: ARRAY [1..wordsize] OF char;
 word: PACKED ARRAY [1..wordsize] OF char;

String

In HP Pascal a string type consists of the standard identifier string and
an integer constant expression in square brackets that specifies the
maximum length. Integer constant expressions are constant expressions
that return an integer value, an unsigned integer being the simple case.
The limit for the maximum length is implementation defined, but must be
at least 255. The symbols (. and .) may replace the left and right
brackets, respectively.

Characters enclosed in single quotes are string literals . The compiler
interprets a string literal as type PAC, string, or char, depending on
the context.

When a formal reference parameter is type string , the maximum length need
not be specified. This allows actual string parameters to have various
maximum lengths.

A single component of a string can be accessed by using an integer
expression in square brackets as a selector. The numbering of the
characters in the string begins at one. Strings are initialized by
performing an operation that sets the current length, making an
assignment to the entire string or by calling setstrlen .

Syntax

 String_type:

3- 23

A string expression may consist of any of the following:

 * A string literal.

 * A string variable.

 * A string constant.

 * A function result that is a string.

 * An expression formed with the concatenation operator.

NOTE Variables of type string, as well as other Pascal variables, are
 not initialized. The current string length contains meaningless
 information until the string is initialized.

Permissible Operators

 assignment :=

 concatenation +

 relational =, <>, <=, >=, >, <

Standard Functions

 string argument - str strpos

 strlen strrpt

 strltrim strrtrim

 strmax

 string return - str

 strltrim

 strrpt

 strrtrim

Standard Procedures

 string parameter prompt strinsert
 -

 read strmove

 readdir strread

 readln strwrite

 setstrlen write

3- 24

 strappend writedir

 strdelete writeln

Example

 CONST
 maxlength = 100;

 TYPE
 name = string[30];
 remark = string[maxlength * 2];

 PROCEDURE proc1 (VAR s: string); EXTERNAL; { Maximum length }
 { not required. }

Pointer Types

Pointers

A pointer is a data type that may reference any type, including type
FILE. A pointer references a dynamically allocated variable on the heap.
The pointer type consists of the caret (^) and a type identifier. The @
symbol may replace the caret.

The type appearing after the caret need not be previously defined. This
is an exception to the general rule that HP Pascal identifiers are first
defined and then used. However, the identifier after the caret must be
defined within the same declaration part.

A type identifier used in a pointer type declaration in an EXPORT section
need not be defined until the IMPLEMENT section. A pointer declared in
this manner cannot be dereferenced in modules that IMPORT the pointer
type.

The pointer value NIL belongs to every pointer type. NIL points to no
variable on the heap. For more information, refer to the section on NIL
in this chapter.

Syntax

 Pointer_type:

Permissible Operators

 assignment :=

 equality =, <>

Standard Procedures

 pointer parameters - new
 dispose
 mark
 release

Example

 TYPE

3- 25

 ptr1 = ^rec1;
 ptr2 = ^rec2;
 rec1 = RECORD
 f1, f2: integer;
 link: ptr2;
 END;
 rec2 = RECORD
 f1, f2: real;
 link: ptr1;
 END;

Type Compatibility

Relative to each other, two HP Pascal types can be identical , type
compatible , or incompatible . The guidelines that determine type
compatibility are listed below.

Identical Types

Two types are identical if either of the following is true:

 * Their types have the same type identifier.

 * If A and B are two type identifiers, and they were made equivalent
 by a definition of the form:

 TYPE A = B

Compatible Types

Two types, T1 and T2, are type compatible if any of the following is
true:.

 * T1 and T2 are identical types.

 * T1 and T2 are subranges of identical base types, T1 is a subrange
 of T2, or T2 is a subrange of T1.

 * T1 and T2 are set types with compatible base types and both T1 and
 T2 or neither are packed or crunched.

 * T1 and T2 are PAC types.

 * T1 and T2 are both string types.

 * T1 and T2 are both real types.

Incompatible Types

Two types are incompatible if they are not identical or type compatible,
or assignment compatible . In the following example all of the variables
are type compatible, but v4, v5, and v6 have identical types. The
variables v2 and v3 also have identical types.

Example

 TYPE
 interval = 0..10;
 range = interval;

 VAR
 v1 : 0..10;
 v2, v3: 0..10;
 v4 : interval;
 v5 : interval;
 v6 : range;

Note that two types that are structurally the same are not necessarily

3- 26

compatible. In the following example, types T1 and T2 are not
compatible. Variables v3 and v4 are also not compatible.

 PROGRAM t(input,output);

 TYPE
 T1 = record
 a: integer;
 b: char;
 end;

 T2 = record
 c: integer;
 d: char;
 end;
 VAR
 v1: T1;
 v2: T2;
 v3: ^T1;
 v4: ^T2;

 BEGIN
 v1:= v2; { This generates a compile-time error }
 v3:= v4; { This generates a compile-time error }
 END.

Assignment Compatibility

A value of type T2 may only be assigned to a variable or function result
of type T1 if T2 is assignment compatible with T1. For T2 to be
assignment compatible with T1, any of the following conditions must be
true:

 * T1 and T2 are type compatible types that are neither files nor
 structures that contain files.

 * T1 is real or longreal, and T2 is integer or an integer subrange.
 The compiler converts T2 to real or longreal prior to assignment.

 * T1 is longreal and T2 is real. The compiler converts T2 to
 longreal prior to assignment.

 * T1 is real and T2 is longreal. The compiler rounds T2 to the
 precision of T1 prior to assignment.

Furthermore, a run-time or compile-time error occurs if the following
restrictions are not observed:

 * If T1 and T2 are type compatible ordinal types, the value of type
 T2 must be in the closed interval specified by T1.

 * If T1 and T2 are type compatible set types, all the members of the
 value of type T2 must be in the closed interval specified by the
 base type of T1.

 * A special set of restrictions applies to assignment of string
 literals or variables of type string, PAC, or char.

NOTE The pointer constant NIL is both type compatible and assignment
 compatible with any pointer type. Likewise, the empty set ([])
 is both type compatible and assignment compatible with any set
 type.

3- 27

String Assignment Compatibility

Certain restrictions apply to the assignment of string literals or
variables of the type string, PAC, or char. These restrictions are
listed below.

 * If T1 is a string variable, T2 must be a string variable or a
 string literal whose length is equal to or less than the maximum
 length of T1. T2 cannot be a PAC or char variable. Assignment
 sets the current length of T1.

 * If T1 is a PAC variable, T2 must be a PAC or a string literal
 whose current length is less than or equal to the length of T1.
 T1 is blank filled if T2 is a string literal or PAC that is
 shorter than T1. T2 cannot be a string or a char variable.

 * If T1 is a char variable, T2 may be a char variable or a string
 literal with a single character. T2 cannot be a string or PAC
 variable.

Table 3-1 summarizes these rules. The standard function strmax(s)
returns the maximum length of the string s . The standard function
strlen(s) returns the current length of the string s or the number of
characters in the PACs.

String constants are considered string literals when they appear on the
right side of an assignment statement. Any string operation on two
string literals, such as the concatenation of two string literals,
results in a string of type string.

Table 3-1. String, PAC, and String Literal Assignment

--
T1:=T2	string	PAC	char	String Literal
--
string	Only if	Not allowed	Not allowed	Only if
	strmax(T1)>=			strmax(T1)>=
	strlen(T2)			strlen(T2)
--
PAC	Not allowed	Only if	Not allowed	Only if
		strlen (T1) >=		strlen (T1) >=
		strlen (T2)		strlen(T2)
		T1 is padded		T1 is padded
		with blanks		with blanks
		if necessary		if necessary
--
char	Not allowed	Not allowed	Yes	Only if
				strlen(T2)=1
--

3- 28

4-: 1

Chapter 4 Expressions

An expression is a construct composed of operators and operands that
represent the computation of a result of a particular type. In the
simplest case, an expression consists of a single operand with no
operator.

The type of an expression is known when the expression is written, and
never changes. The actual value, however, may not be known until the
system evaluates the expression at run time. It may differ for each
evaluation.

Constant expressions are a restricted class of HP Pascal expressions.
They must return a value that is computable at compile time.
Consequently, operands in constant expressions must be integers, reals,
longreals, or declared constants. The operators used with constant
expressions must be +, -, *, DIV, or MOD. All other operators are
excluded. Furthermore, only calls to the following standard functions
are legal:

 * abs

 * binary

 * chr

 * hex

 * octal

 * odd

 * ord

 * pred

 * strlen

 * succ

4-: 2

Syntax

Expression:

4-: 3

Selector:

Example

 x:= 19; { Simplest case. "19" is the expression }
 { in the statement: "x := 19". }

 100 + x; { Arithmetic operator with literal and }
 { variable operands. }

 (A OR B) AND (C OR D) { Boolean operator with Boolean operands. }

 x > y { Relational operator with variable }
 { operands. }

 setA * setB; { Set operator with variable operands. }

 'ice'+'cream' { Concatenation operator with string }
 { literal operands. }

 x:= func1(B); { Function call }

Operands

An operand denotes the object that operators use in obtaining a value.
An operand may be a literal , a declared constant , a variable access
(variable) , a set constructor , a dereferenced pointer , or the value of
another expression. Function calls are also operands in the sense that
they return a result that an operator can use to compute another value.

An operand may be acted upon by an operator. Performing an operation on
operands of different types is called mixing data types. In all cases
except one, you cannot mix data types. You can, however, mix reals and
integers with an operator that allows two real operators. Table 4-1
provides a list of operands and tells where they are described in the
manual.

4-: 4

Table 4-1. HP Pascal Operands

Operand	Chapter

literal	4

constant	4

variable	5

set constructor	4

function call	4,8

dereferenced pointer	4

array selector	4

record selector	4

file buffer selector	4

Operators

An operator defines an action to be performed on one or more operands and
produces a value. An operator may be classified as arithmetic, Boolean,
relational, set, or concatenation . A particular symbol may occur in more
than one class of operators. For example, the symbol + is an arithmetic,
set, and concatenation operator representing numeric addition, set union,
and string concatenation, respectively. The class of the operator is
determined by the type of the operands.

Precedence ranking determines the order in which the compiler evaluates a
sequence of operators. For more information about precedence, refer to
the section on Operator Precedence in this chapter.

The value resulting from the action of an operator may in turn serve as
an operand for another operator. Table 4-2 lists each HP Pascal
operator together with its actions, permissible operands, and type of
results. In the table, the term real indicates both real and longreal
types and integer indicates any integral-type.

4-: 5

Table 4-2. HP Pascal Operators

Operator	Actions	Type of Operands	Type of Results

+	addition	real, integer	real, integer
	set union	any set type	set
	concatenation	string, string literal	string

-	subtraction	real, integer	real, integer
	set difference	any set type	set

*	multiplication	real, integer	real, integer
	set intersection	any set type	set

/	division	real, integer	real

DIV	division with truncationinteger	integer	

MOD	modulus	integer	integer

AND	logical 'and'	Boolean	Boolean

OR	logical 'or'	Boolean	Boolean

NOT	logical negation	Boolean	Boolean

<	less than	any simple type	Boolean
		string or PAC	Boolean

>	greater than	any simple type	Boolean
		string or PAC	Boolean

4-: 6

Table 4-2. HP Pascal Operators (cont.)

Operator	Actions	Type of Operands	Type of Results

<=	less than or	any simple type	Boolean
	equal,	string or PAC	Boolean
	set subset	any set type	Boolean

>=	greater than or	any simple type	Boolean
	equal,	string or PAC	Boolean
	set superset	any set type	Boolean

=	equal to	any simple type	Boolean
		string or PAC	Boolean
		any set type	Boolean
		pointer	Boolean

<>	not equal to	any simple type	Boolean
		string or PAC	Boolean
		any set type	Boolean
		pointer	Boolean

IN	set membership	left operand:	Boolean
		any ordinal type T	
		right operand:	
		set of T	

Operator Precedence

The precedence ranking of an HP Pascal operator determines the order of
its evaluation in an unparenthesized sequence of operators. The four
levels of ranking are:

PRECEDENCE OPERATORS

 highest NOT
 . *, /, DIV, MOD, AND
 . +, -, OR
 lowest <, <=, <>, =, >=, >, IN

The compiler evaluates higher precedence operators first. For example,
since * ranks above +, it evaluates these expressions identically:

 (x + y * z) and (x + (y * z))

When a sequence of operators has equal precedence, the order of
evaluation is implementation dependent. If an operator is commutative,
for example, *, the compiler may evaluate the operands in any order.
Note that within a parenthesized expression the compiler evaluates the
operators and operands without regard for any operators outside the
parentheses.

Arithmetic Operators

Arithmetic operators perform integer and real arithmetic by taking
numeric operands and producing a numeric result . These operators are +,
-, *, /, DIV, and MOD.

Most arithmetic operators permit real , longreal , or integral-type
operands. However, DIV and MOD only accept integral-type operands. The
type of the result of a unary operator is the same as the type of its
operand. However, if the operand is bit16, the result is an integer

4-: 7

type, and if the operand is bit32 or bit52, the result is a longint. The
type of the result of a binary operator is the same as the data types of
its operands, provided that both operands are of the same type. Special
rules apply for division and in cases where operands have different data
types.

Implicit Type Conversion of Operands

The operators +, -, *, and / permit operands with different numeric
types. For example, it is possible to add an integer and a real number.
The compiler converts the integer to a real number, and the result of the
addition is real.

This implicit conversion of operands relies on a ranking of numeric
types. This is defined as follows:

RANK TYPE

 highest longreal
 . real, longint, bit52
 . integer, bit32
 lowest sub-integer

The rank of the value the result of an operation is the same as the
highest rank of all the operands. Operands having types whose ranks are
less than the rank of the type of the result are converted prior to the
operation, so that they have a type with a rank equal to that of the
result type.

For example, if i is an integer and x is a real in the expression (x +
i), then i is converted to real before the addition. In short, the two
operands to an arithmetic operator must be compatible. For more details,
refer to the section "Type Compatibility" .

Table 4-3. Type Comparisons and Results

| |
| Operand A Type Operand B Type Results |
sub-integer sub-integer sub-integer
sub-integer integer integer
sub-integer real real
integral-type longreal longreal
integer real real
integer super-integer longint
integral-type longint longint
longint real longreal
real super-integer longreal
real longreal longreal
bit16 bit32 bit32
bit16 bit52 bit52
bit32 bit52 bit52

4-: 8

Real division (/) is an exception to this restriction. If both operands
are integer or sub-integer, the compiler changes both to real numbers
prior to the division and the result is real. If both operands are
super-integers, the result is longreal because both[REV BEG] operands are
converted to longreal.[REV END]

Example

EXPRESSION RESULT

 -(+10) -10 { Unary -. }
 5 + 2 7 { Addition with integer operands. }
 5 - 2.0 3.0 { Subtraction with implicit conversion. }
 5 * 2 10 { Multiplication with integer operands. }
 5.0 / 2.0 2.5 { Division with real operands. }
 5 / 2 2.5 { Division with integer operands, real }
 { result. }
 5.0 / 2 2.5 { Division with implicit conversion. }

 5 DIV 2 2 { Division with truncation. }
 5 DIV (-2) -2
 -5 DIV 2 -2
 -5 DIV (-2) 2

 5 MOD 3 2 { Modulus. }
 5 MOD (-2) error { Right operand must be positive. }
 (-5) MOD 3 1 { Result is positive regardless of }
 { sign of left operand, which is }
 { parenthesized since MOD has higher }
 { precedence than -. }
 { See Operator Precedence. }

DIV

This operator returns the integer portion of the quotient of the dividend
and the divisor . The dividend must be an integral-type with no range
restriction. The divisor must also be an integral-type; the divisor
cannot be 0.

Example

INPUT RESULT

 413 DIV 6 68
 -413 DIV 6 -68

MOD

This operator returns the modulus of two integers. The dividend must be
an integral-type. The divisor must also be an integral-type. If the
divisor is less than or equal to 0, an error will occur. The result is
always positive, regardless of the sign of the left operand. The left
operand must be parenthesized if it is a negative literal. MOD is
defined as:

 (i - k * j) for some integer k

such that

 0 <= i MOD j < j, j > 0

Example

INPUT RESULT

 4 MOD 3 1
 7 MOD 5 2
 (-7) MOD 5 3

Boolean Operators

Boolean operators perform logical functions on Boolean type operands and
produce Boolean results. The Boolean operators are NOT, AND, and OR.
When both operands are Boolean, = denotes equivalence , <= implication ,
and <> exclusive or .

4-: 9

The compiler can be directed to perform or not perform partial evaluation
of Boolean operators used in statements. For example:

 IF right_time AND right_place THEN ...

By specifying the $PARTIAL_EVAL ON$ compiler directive, if right_time is
false , the remaining operators are not evaluated since execution of the
statement depends on the logical AND of both operators. Both operators
have to be true for the logical AND of the operators to be true .

Similarly, the logical OR of two operators are true even if only one of
the operators is true . Partial evaluation allows expressions like (Ptr
<> NIL) AND (Ptr^.F1) to execute without an error when Ptr is NIL.

Example

 IF NOT possible THEN forget_it;

 WHILE time AND money DO your_thing;

 REPEAT...UNTIL tired OR bored;

 IF has_rope THEN skip;

 IF pain <= heartache THEN try_it;

 FUNCTION NAND (A, B : BOOLEAN) : BOOLEAN;
 BEGIN
 NAND := NOT(A AND B); { NOT AND }
 END;

 FUNCTION XOR (A, B : BOOLEAN) : BOOLEAN;
 BEGIN
 XOR := NOT(A AND B) AND (A OR B); { EXCLUSIVE OR }
 END;

 FUNCTION XOR (A, B : BOOLEAN) : BOOLEAN;
 BEGIN
 XOR := A <> B;
 END;

AND

This Boolean operator is used to perform the logical operation on two
Boolean operands. The result is of type Boolean. The following truth
table illustrates the operator AND along with its results.

OPERATOR RESULT

 AND The evaluation of two Boolean operands produces a
 Boolean result, such that:

 (logical and)

--
a	b	a AND b
--
false	false	false
false	true	false
true	false	false
true	true	true
--

4-: 10

Example

 VAR
 bit6, bit7 : Boolean;
 counter : integer;

 BEGIN
 ...
 IF bit6 AND bit7 THEN counter := 0;
 ...
 IF bit6 AND (counter = 0) THEN bit7 := true;
 bit7 := bit6 AND (counter = 0);
 END

NOT

This Boolean operator complements the value of the Boolean expression
following the NOT operator. The result is of type Boolean. The truth
table for NOT is given below.

OPERATOR RESULT

 NOT The logical negation of a single Boolean operand,
 such that:

 (logical negation)

a	NOT a

false	true
true	false

Example

 PROGRAM show_not(input,output);

 VAR
 time, money : Boolean;
 line : string[255];
 test_file : text;

 BEGIN
 .
 .
 IF NOT (time AND money) THEN wait;
 .
 .
 WHILE NOT eof(test_file) DO
 BEGIN
 readln(test_file,line);
 writeln(line);
 END;
 .
 .
 END.

OR

This Boolean operator is used to perform the logical inclusive OR
operation on two Boolean operands. The result is the logical OR of its
two factors. The OR operator is shown below in terms of its truth table.

OPERATOR RESULT

 OR The evaluation of two Boolean operands produces a
 Boolean result, such that:

 (inclusive or)

4-: 11

--
a	b	a OR b
--
false	false	false
false	true	true
true	false	true
true	true	true
--

Example

 PROGRAM show_or(input,output);

 VAR
 ch : char;
 time : Boolean;
 energy : Boolean;

 BEGIN
 .
 .
 IF time OR energy THEN do_it;
 .
 .
 IF (ch = 'Y') OR (ch = 'y') THEN ch := 'Y';
 .
 .
 END.

Relational Operators

Relational operators compare two operands and return a Boolean result.
The relational operators are <, <=, =, <>, >=, >, and IN. The following
lists the relational operators with their associated meanings:

OPERATOR MEANING

 < less than

 <= less than or equal to

 = equal

 <> not equal

 >= greater than or equal

 > greater than

 IN set membership

Depending on the type of its operands, a relational operator may be
classified as simple, set, pointer, or string . For a description of
simple, set, pointer, or string relational operators, refer to the
appropriate section in this chapter.

Simple Relational Operators

A simple relational operator has operands of any simple type such as
integer, Boolean, char, real, longreal, enumerated, or subrange. All the
operators listed above, except IN, may be simple relational operators.
The operands must be type compatible, but the compiler may implicitly
convert numeric types before evaluation. For more information about
converting numeric types, refer to the section "Arithmetic Operators"
in this chapter.

For numeric operands, simple relational operators impose the ordinary
definition of ordering. For char operands, the ASCII collating sequence

4-: 12

defines the ordering. For enumerated operands, the sequence in which the
constant identifiers appear in the type definition defines the ordering.
If both operands are Boolean , the operator = denotes equivalence , <=
denotes implication , and <> denotes exclusive OR . Therefore, the
predefinition of Boolean as:

 TYPE Boolean = (false, true);

means that false < true.

Example

 PROGRAM show_simple_relational;

 VAR
 b: Boolean;
 BEGIN
 .
 .
 b := 5 > 2;
 b := 5 < (25.OL+1);
 END.

Set Relational Operators

A set relational operator has set operands. The set relational operators
are =, <>, >=, <=, and IN. The operators = and <> compare two sets for
equality or inequality, respectively. The <= operator denotes the subset
operation, while >= indicates the superset operation such that Set A is a
subset of Set B, if every element of A is also a member of B. When this
is true, B is said to be the superset of A.

The IN operator determines if the left operand is a member of the set
specified by the right operand. When the right operand has the type SET
OF T, the left operand must be type compatible with T. To test the
negative of the IN operator, the following form must be used:

 NOT (element IN set)

Example

 PROGRAM show_set_relational; (output)

 TYPE
 color= (red,yellow,blue);
 VAR
 b: boolean;
 s,t: SET OF color;
 col: color;
 BEGIN
 col:= red;
 s:= [red];
 t:= [blue];
 b:= s <> t;
 writeln (b);
 b:= s <= t;
 writeln (b);
 b:= col IN [yellow,blue];
 writeln (b);
 END.

Output:

 TRUE
 FALSE
 FALSE

IN.

This operator returns true if the specified element is a member of the
specified set. The result is false if the expression is not a member of
the set. Both the element being tested and the elements in the set must
be of compatible types.

4-: 13

Example

 PROGRAM show_in(output);

 VAR
 ch : char;
 good : SET OF char;
 member : Boolean;

 BEGIN
 ch := 'y';
 good := ['y','Y','n','N'];
 IF ch IN good THEN
 member := true
 ELSE
 member := false;
 writeln(member);
 END.

Output:

 TRUE

Pointer Relational Operators

The pointer relational operators = and <> can be used to compare two
pointers for equality or inequality, respectively. Two pointers are
equal only if they point to exactly the same object or both contain the
value NIL. Only two pointers of identical type or the constant NIL can be
compared.

Example

 PROGRAM show_pointer_relational;

 VAR
 a, b: boolean;
 p, q: ^boolean;
 x: ^char;
 BEGIN
 .
 .
 IF (p = q) AND (p <> NIL) THEN p^:= a = b; { pointer }
 b := x <> q; { is an error - x and q are not compatible }
 END.

NOTE No assumptions should be made about the integer values of pointers
 and their integer value relations. Such values and relations are
 undefined.

String Relational Operators

The string relational operators =, <>, <, <=, >, or >= may be used to
compare operands of type string , PAC, char, or string literals . The
system performs the comparison character by character using the order
defined by the ASCII collating sequence. Note that it is not possible to
compare a string variable with a PAC or char variable. In general, these
guidelines are as follows:

 * If one operand is a string expression, the other operand may be a
 string expression or string literal. If the operands are not the
 same length and the two are equal up to the length of the shorter,
 the shorter operand is less. For example, if the current value of
 S1 is abc and the current value of S2 is ab, then S1 > S2 is true .

 * If one operand is a PAC expression, the other may be a PAC or
 string literal of any length. The shorter is blank-filled prior
 to comparison.

4-: 14

 * If one operand is a char expression, the other may be a char
 expression or a single-character string literal.

Table 4-4 summarizes these rules. The standard function strmax(s)
returns the maximum length of the string variable s . The standard
function strlen(s) returns the current length of the string expression s .
A string constant is considered a string literal when it appears on
either side of a relational operator.

Table 4-4. String, PAC, Char, String Literal Comparison

--
A <relop> B	string	PAC	char	string literal
--
string	Length of	Not allowed	Not allowed	Length of
	comparison			comparison
	based on			based on
	smaller strlen			smaller strlen
--
PAC	Not allowed	The shorter	Not allowed	The shorter
		of the two		of the two
		is padded		is padded
		with blanks		with blanks
--
char	Not allowed	Not allowed	Yes	Only if
				strlen(B)=1
--
string literal	Length of	The shorter	Only if	The shorter
	comparison	of the two	strlen(A)=1	of the two
	based on	is padded		is padded
	smaller strlen	with blanks		with blanks
--

Example

 PROGRAM show_string_relational (output) ;

 VAR
 s,t: string[80];
 pac: packed array [1..5] of char;
 chr: char;
 b: boolean;

 BEGIN
 s:='abc';
 t:='ab';
 if s > t then b:=true {string to string comparison. this is}
 else b:=false; { the same as b:= s > t }
 writeln (b);
 b:= s > 'ab'; {string to string literal comparison }
 writeln (b);
 pac:='abc';
 b:= pac > 'abc'; {PAC to string literal comparison }
 writeln (b);
 chr:= 'A';
 b:= 'c' > chr; {char to string literal comparison }
 writeln (b);
 END.

Output:

4-: 15

 TRUE
 TRUE
 FALSE
 TRUE

Concatenation Operator

The concatenation operator + concatenates two operands that may be string
variables, string literals, function results of a string type, or some
combination of these types. The result of the concatenation is always
type string.

NOTE It is not legal to use the concatenation operator in a constant
 definition.

Example

 VAR
 s1,s2: string[80];

 BEGIN
 s1:='abc';
 s2:='def';
 s1:= s1 + s2; { s1 is now 'abcdef' }
 writeln('s1 has: ',s1);
 s2:= 'The first six letters are ' + s1;
 writeln('s2 has: ',s2);
 END.

Output:

 s1 has: abcdef
 s2 has: the first six letters are abcdef

SET Operators

The set operators perform set operations on two set operands . The result
is of type set. The set operators are +, -, and *. Operands used with
set operators may be variables, constant identifiers, or set
constructors . The base types of the set operands must be type compatible
with each other.

OPERATOR RESULT

+ (union) A set whose members are all the elements present in
 the left set operand and those in the right,
 including members present in both sets.

- (difference) A set whose members are the elements which are
 members of the left set but are not members of the
 right set.

* (intersection) A set whose members are only those elements present
 in both of the set operands.

Example

 PROGRAM show_setops;

 VAR
 a, b, c: SET OF 1..10;
 x : 1..10;

 BEGIN

4-: 16

 .
 .
 a:= [1, 3, 5];
 b:= [2, 4];
 c:= [1..10];
 x:= 9;
 a:= a + b; { Union; a is now [1, 2, 3, 4, 5]. }
 b:= c - a; { Difference; b is now [6, 7, 8, 9, 10]. }
 c:= a * b; { Intersection; c is now []. }
 c:= [2, 5] + [x] { Set constructor operands; c is now }
 END. { [2, 5, 9]. }

Array Selector

An array selector accesses a component of an array. The selector follows
an array designator and consists of an ordinal expression in square
brackets. For a string or PAC type, an array selector accesses a single
component; for example, a character.

The ordinal expressions must be assignment compatible with the index
types of the array. An array designator can be any variable with an
array type that includes an array selector, a function call that returns
an array, or an array constant. The symbols (. and .) may replace the
left and right brackets, respectively. The list can be used to select a
component of a multiple-dimensioned array.

Syntax

 Array_selector:

Example

 PROGRAM show_arrayselector;

 TYPE
 a_type = ARRAY [1..10] OF integer;

 VAR
 m,n : integer;
 s_array : ARRAY [1..3] OF 1..100;
 multi_array : ARRAY [1..5,1..10] OF integer;
 p : ^a_type;

 BEGIN
 s_array[2]:= 32;
 m:= s_array[2]; { Assigns current value of 2nd }
 { component of s_array to m }
 multi_array[2,9]:= m; { These two methods of }
 multi_array[2][9]:= m; { assignment are equivalent. }

 new(p);
 p^[1]:= 1200;
 n:= p^[m MOD 10 + 1] * m; { Array in the heap with computed }
 END. { selector. }

4-: 17

Record Selector

A record selector accesses a field of a record. The record selector
follows a record designator and consists of a period and the name of a
field. A record designator is the variable name of a record, the
selected component of a structure that is a record, or a function call
that returns a record.

The WITH statement "opens the scope" of a record. This makes it
unnecessary to specify a record selector.

Syntax

 Record_selector:

Example

 PROGRAM show_recordselector;

 TYPE
 r_type = RECORD
 f1: integer;
 f2: char;
 END;
 VAR
 a,b : integer;
 ch : char;
 r : r_type;
 rec_array : ARRAY [1..10] OF r_type;

 BEGIN
 .
 a:= r.f1 + b; { Adds the current value of integer field }
 . { of r to b and assigns the result to a. }
 .
 rec_array[a].f2:= ch; { Assigns current value of ch to char }
 . { field of the a'th component of rec_array. }
 END.

Set Constructor

A set constructor designates one or more values as members of a set whose
type may or may not have been previously declared. A set constructor
consists of an optional set type identifier and one or more ordinal
expressions in square brackets. Two expressions may serve as the lower
and upper bound of a subrange.

If the set type identifier is specified, the values in the brackets must
be assignment compatible with the base type of the set. If no set type
identifier appears, the values must be type compatible with each other.
The symbols (. and .) may replace the left and right brackets,
respectively.

Set constructors may appear as operands in expressions in executable
statements. Set constructors with constant values are legal in the
constant declaration sections.

A set constructor of the form [i..j] where i and j are integral-type
variables, is defaulted to a set of integer (set of 0..255). If it
appears in an expression and the size of the other operand is larger than
zero to 255, [i..j] is assumed to be the size of the other operand.

4-: 18

Syntax

 Set_constructor:

Example 1

 PROGRAM show_setconstructor;
 TYPE
 int_set = SET OF 1..100;
 cap_set = SET OF 'A'..'Z';

 VAR
 a,b: 0..255;
 s1: SET OF integer;
 s2: SET OF char;

 BEGIN
 .
 .
 s1:=[b, 7, 10]; { no type identifier }
 s1:= int_set[(a MOD 100) + (b MOD 100)];
 s2:= cap_set['B'..'T', 'X', 'Z'];
 END.

Example 2

 VAR
 s1 : set of 0..366;
 i,j : integer;

 BEGIN
 s1 := [i..j] * s1; {in this context, [i..j] becomes a set of 0..366.}

 .
 .
 .
 END.

4-: 19

File Buffer Selector

A file buffer selector accesses the contents, if any, of the file buffer
variable associated with the current position of a file. The selector
follows a file designator and consists of the caret symbol (^).

A file designator is the name of a file or the selected component of a
structure which is a file. The @ symbol may replace the caret. If the
file buffer variable is not defined at the time of selection, a run-time
error occurs.

Syntax

 File_selector:

Example

 PROGRAM show_file_selector(output);

 VAR
 f1: FILE OF integer;

 BEGIN
 rewrite(f1);
 f1^:= 5;
 put(f1);
 reset(f1);
 IF f1^ <> 5 THEN
 writeln('error')
 ELSE
 writeln('success');
 END.

Output:

 success

Pointer dereferencing

A pointer variable points to a dynamically allocated variable on the
heap. The current value of this variable may be accessed by
dereferencing its pointer value. Pointer dereferencing occurs when the
caret symbol (^) appears after a pointer designator in source code. A
dereferenced pointer can be an operand in an expression.

The pointer designator may be the name of a pointer or selected component
of a structured variable that is a pointer. The @ symbol may replace the
caret. It is an error to dereference NIL or an undefined pointer value.

Syntax

 Pointer_deref:

4-: 20

Example

 PROGRAM show_pointerderef (output);

 TYPE
 p = ^integer;
 VAR
 a,b : integer;
 p_array : ARRAY [1..10] OF p;
 ptr : p;

 BEGIN
 .
 p_array[a]^:= a + b;
 .
 writeln(ptr^ * 2); { Dereferenced pointer is operand. }
 .
 END.

Function Calls

A function call invokes the block of a standard or user defined function
and returns a value to the calling point of the program. An operator can
perform some action on this value, and, for this reason, a function
result is an expression. See Chapter 8 for a complete description of
function calls.

Example

 PROGRAM show_function_call;

 VAR x: integer;

 FUNCTION sum (A,B: integer): integer;
 BEGIN
 sum := A + B;
 END;

 BEGIN
 x:= sum (1,2) + 3;
 x:= sum(x,sum(x,sum(0,1)));
 END.

5:- 1

Chapter 5 The Declaration Section

The first two parts of an HP Pascal block are the heading and the
declaration section. The heading specifies the name of the program,
module, procedure, or function. The declaration section contains
sections that define constants and user-defined types, and sections that
declare labels, variables, procedures, functions, and modules. Each of
these sections is introduced by an appropriate reserved word such as
LABEL, CONST, IMPORT, MODULE, TYPE, VAR, PROCEDURE, or FUNCTION. A block
need not include all of these sections. In HP Pascal, CONST, TYPE, VAR,
MODULE, and IMPORT declaration sections can be intermixed and must follow
label declarations and precede function or procedure declarations.

This chapter describes constant definitions, label declarations, type
definitions, and variable declarations . For information on procedure,
function, module, and import declarations, see Chapter 7 .

Constant Definition

A constant definition establishes an identifier as a synonym for a
constant value . The identifier may then be used in place of the value.
The value of a symbolic constant may not be changed by a subsequent
constant definition in the same scope or by an assignment.

The reserved word CONST precedes one or more constant definitions. A
constant definition consists of an identifier, the equal sign, (=) and a
constant value. For more information about CONST, refer to the section
"CONST" in this chapter.

The reserved word NIL is a pointer value representing a NIL value for all
pointer types. Predeclared constants include the standard constants
maxint and minint , as well as the standard Boolean constants true and
false . These constants are discussed in detail in the following pages of
this chapter.

Constant expressions are a restricted class of HP Pascal expressions.
Consequently, operands in constant expressions must be integers , reals ,
or ordinal declared constants . Operators must be +, -, *, /, DIV, or
MOD. Note that all other operators are excluded. Furthermore, only calls
to the standard functions abs , binary , chr , hex , octal , odd , ord , pred ,
strlen , and succ are legal.

One exception to the restrictions on constant expressions is permitted;
the sign of a real or longreal declared constant may be changed using the
negative real unary operator (-). The positive operator (+) is legal,
but has no effect.

In HP Pascal, constant definitions must follow label declarations and
precede function or procedure declarations. CONST, TYPE, VAR, MODULE,
and IMPORT sections may be intermixed.

Example

 CONST
 fingers = 10; { Unsigned integer. }
 pi = 3.1415; { Unsigned real. }
 message = 'Use a fork!'; { String literal. }
 nothing = NIL;
 delicious = true; { Standard constant. }
 neg_pi = -pi; { Real unary operator. }
 hands = fingers DIV 5; { Constant expression. }
 numforks = pred(hands); { Constant expression with }
 { call to standard function. }

5- 2

CONST

This reserved word indicates the beginning of one or more constant
definitions that introduces an identifier as a synonym for a constant
value. The identifier may then be used in place of that value.

Constant definitions appear after the program header or any LABEL
declarations, and before any procedure or function definitions. In HP
Pascal, CONST, TYPE, VAR, MODULE, and IMPORT definitions may be
intermixed.

Syntax

 Const_decl:

Example

 PROGRAM show_CONST;

 LABEL 1;

 TYPE
 type1 = integer;
 type2 = Boolean;
 str1 = string[5];

 CONST
 const1 = 3.1415; { constant }
 const2 = true;
 strconst = str1['abcde']; { string_constructor }

 VAR
 var1 : type1;

 BEGIN
 END.

For examples of structured constants, see the appropriate sections.

false

This predefined Boolean constant is equal to the Boolean value false .
The ordinal value of false is 0.

Example

 PROGRAM show_false(output);

 VAR
 what, lie : Boolean;

 BEGIN
 IF false THEN writeln('Always false, never printed.');

5:- 3

 what := false;
 lie := NOT true;
 IF what = lie THEN writeln('Would I lie?');
 END.

Output:

 Would I lie?

true

This predefined Boolean constant is equal to the Boolean value true . The
ordinal value of true is 1.

Example

 PROGRAM show_true(output);

 VAR
 what, truth : boolean;

 BEGIN
 IF true THEN writeln('Always true, always printed.');
 what := true;
 truth := NOT false;
 IF what = truth THEN writeln('Everything I say is a lie.');
 END.

Output:

 Always true, always printed.
 Everything I say is a lie.

maxint

This standard constant returns the upper bound of the integer type. The
value is implementation defined, however, it must allow for at least nine
decimal digits. For more information, see the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide , depending on your
implementation.

Example

 PROGRAM show_maxint(input,output);

 VAR
 i,j : integer;
 r : real;

 BEGIN
 readln(i,j);
 r := i + j;
 IF r > maxint THEN writeln('Sum too large for integers.');
 END.

minint

This standard constant returns the lower bound of the integer type. The
value is implementation defined, however, it must allow at least nine
decimal digits. In general, the range of signed integers allows the
absolute value of minint to be greater than maxint . For more
information, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation.

Example

 PROGRAM show_minint(input,output);

 VAR
 i,j : integer;
 r : real;

 BEGIN
 readln(i,j);
 r := i - j;
 IF r < minint THEN writeln('Difference too large for integers.');
 END.

5- 4

NIL

This predefined constant is the value of a pointer that designates that
the pointer does not point at anything. NIL is compatible with any
pointer type. A NIL pointer or pointer that has been assigned to NIL
does not point to any variable at all. It is an error to dereference a
NIL valued pointer.

NIL pointers are useful in linked list applications where the link
pointer points to the next element of the list. The last element's
pointer can be assigned to NIL to indicate that there are no further
elements in the list.

Array Constants and Array Constructors

An array constant is a declared constant defined with an array
constructor that specifies values for the components of an array type.
The values for all elements of the structured type must be specified and
must have a type identical to the type of the corresponding elements.

An array constructor consists of a previously defined array type
identifier and a list of values in square brackets. Array constructors
are only legal in a CONST section of a declaration part. They cannot
appear in other sections or in executable statements. Each component of
the array type must receive a value that is assignment compatible with
the component type. There is a shorthand allowed for PAC and string
constants where a string literal may be used to assign values to multiple
components. An array constant may not contain files.

An array constant may be used to initialize a variable in the executable
part of a block. Individual components of an array constant may also be
accessed in the body of a block, but not in the definition of other
constants.

Within the square brackets, the reserved word OF indicates that a value
occurs repeatedly. For example, 3 OF 5 assigns the integer value 5 to
three successive array components. The symbols (. and .) may replace
the left and right square brackets, respectively.

Syntax

 Array_constructor

Example

 TYPE
 Boolean_table = ARRAY [1..5] OF Boolean;
 table = ARRAY [1..100] OF integer;
 row = ARRAY [1..5] OF integer;
 matrix = ARRAY [1..5] OF row;
 color = (red, yellow, blue);
 color_string = PACKED ARRAY [1..6] OF char;
 color_array = ARRAY [color] OF color_string;

5:- 5

 CONST
 true_values = Boolean_table [5 OF true];
 init_values1 = table [100 OF 0];
 init_values2 = table [60 OF 0, 40 OF 1];
 identity = matrix [row [1, 0, 0, 0, 0],
 row [0, 1, 0, 0, 0],
 row [0, 0, 1, 0, 0],
 row [0, 0, 0, 1, 0],
 row [0, 0, 0, 0, 1]];
 colors = color_array [color_string ['RED', 3 OF ' '],
 color_string ['YELLOW'],
 color_string ['BLUE', 2 OF ' ']];

The name of the previously declared constant may be specified within a
structured constant. The previous example can also be written as
indicated below. Note that for the special case of PAC that if all of
the components are not specified, as in the example below, the remaining
components are filled with blanks as assignment compatibility indicates.

 CONST
 red = 'RED';
 yellow = 'YELLOW';
 blue = 'BLUE';

 colors = color_array [color_string[red];
 color_string[yellow];
 color_string[blue]];

Record Constructor

A record constant is a declared constant defined with a record
constructor that specifies values for the fields of a record type. A
record constant may be used to initialize a variable in the body of a
block. Individual fields of a record constant in the body of a block may
be selected, but not when defining other constants.

A record constructor consists of a previously declared record type
identifier and a list in square brackets of fields and values. All
fields of the record type must appear, but not necessarily in the order
of their declaration. Values in the construct or must be assignment
compatible with the fields. Note that a record constructor is only legal
in the CONST section of a declaration part. It cannot appear in other
sections or in an executable statement.

For records with variants, the constructor must specify the tag field
before any variant fields. Then only the variant fields associated with
the value of the tag may appear. For records with tagless variants, the
initial variant field selects the variant.

The values may be constant values or constructors. To use a constructor
as a value, the field in the record type must be defined with a type
identifier. A record constant may not contain a file.

Syntax

 Record_constructor:

5- 6

Example

 TYPE
 securtype = (light, medium, heavy);
 counter = RECORD
 pages: integer;
 lines: integer;
 characters: integer;
 END;
 report = RECORD
 revision: char;
 price: real;
 info: counter;
 CASE securtag: securtype OF
 light: ();
 medium: (mcode: integer);
 heavy: (hcode: integer;
 password: string[10]);
 END;

 CONST
 no_count = counter [pages: 0, characters: 0, lines: 0];
 big_report = report [revision: 'B',
 price: 19.00,
 info: counter [pages: 19,
 lines: 25,
 characters: 900],
 securtag: heavy,
 hcode: 999,
 password: 'unity'];

 no_report = report [revision : ' ';
 price : 0.00;
 info : no_count;
 securtag : light];

Restricted Set Constructor

A set constant is a declared constant defined with a restricted set
constructor that specifies set values. A restricted set constructor
consists of an optional previously declared set type identifier and a
list of constant values in square brackets. Subranges may appear in this
list. Restricted set constructors may appear in a CONST section of a
declaration part, or in executable statements and can be used to
initialize a set variable in the body block.

The constant must be an ordinal constant value or an ordinal subrange. A
constant expression is legal as a value. The symbols (. and .) may
replace the left and right square brackets, respectively.

Syntax

 Restricted_set_constructor:

5:- 7

Example

 TYPE
 digits = SET OF 0..9;
 charset = SET OF char;

 CONST
 all_digits = digits [0..9]; { Subrange. }
 odd_digits = digits [1, 1+2, 5, 7, 9];
 letters = charset ['a'..'z', 'A'..'Z'];
 no_chars = charset [];
 no_iden = [2, 4, 6, 8] { No set identifier. }

String Constructor

A string constant is a declared constant defined with a string
constructor that specifies values for a string type. The length of the
string constant may not exceed the maximum length of the string type used
in its definition. The number of characters in the definition determines
the current length of the string constant.

A string constructor consists of a previously defined string type
identifier and a list of values in square brackets. Note that string
constructors are only legal in a CONST section of a declaration part.
They cannot appear in other sections or in executable statements.

Within the square brackets, the reserved word OF indicates that a value
occurs repeatedly. For example, 3 OF 'a' assigns the character a to
three successive string components. The symbols (. and .) may replace
the left and right square brackets, respectively. String literals of
more than one character may appear as values.

A string constant may be used to initialize a variable in the statement
part of a block. Individual components of a string constant in the body
of the block may be accessed, but not in the definition of other declared
constants.

Syntax

 String_constructor:

5- 8

Example

 TYPE
 s = string[80];

 CONST
 blank = ' ';
 greeting = s['Hello!'];
 farewell = s['G',2 OF 'o','d','bye'];
 blank_string = s[10 OF blank];

Label Declaration

A label declaration specifies integer labels that mark executable
statements in the body of the block. The reserved word LABEL precedes
one or more integers separated by commas. Control is transferred to a
labeled statement by a GOTO statement. For more information about GOTO
statements, see Chapter 6 .

Integers must be in the range 0 to 9999. Leading zeros are not
significant. For example, the labels 9 and 00009 are identical.

In HP Pascal, label declarations must come first in the declaration part
of a block.

A label must occur in the block of the procedure, function, or program
where the label is declared. For every label there must be one and only
one statement with that label.

Syntax

 Label_decl:

Example

 LABEL 9, 19, 40;
 .
 .
 .
 40 : x:=10;
 .
 .
 GOTO 40;

Type Definition

A TYPE section introduces the name and set of values for a user-defined
type. HP Pascal requires that a type identifier be defined before its

5:- 9

subsequent use in the definitions of other types. In the only exception
to this rule, a base type identifier in a pointer type definition is
allowed before the base type is defined. However, the base type must be
defined before the end of the TYPE section in which it is first
mentioned.

TYPE

This reserved word delimits the start of the type declarations in a
program, module, procedure, or function. A type definition establishes
an identifier known as type identifier as a synonym for a data type . The
identifier may then appear in subsequent type or constant definitions or
in variable declarations.

The reserved word TYPE precedes one or more type definitions. A type
definition consists of an identifier, the equals sign (=), and a type.

A data type determines a set of attributes that includes the following:

 * The set of permissible values.

 * The set of permissible operations.

 * The amount of storage required.

The three most general categories of data type are simple , structured ,
and pointer .

Simple data types are the types ordinal , real , or longreal . Ordinal
types include the standard types integer , char , bit16 , bit32 , bit52 ,
shortint , longint , and boolean as well as user-defined enumerated and
subrange types.

Structured data types are the types array, record, set, and file . The
standard type string is also a structured data type. The standard type
text is a variant of the file type.

Pointer data types define pointer variables that point to dynamically
allocated variables on the heap. For a detailed description of HP Pascal
data types, refer to Chapter 3 .

CONST, TYPE, VAR, MODULE, and IMPORT sections may be intermixed.

Syntax

 Type_decl:

.

Example

 TYPE
 units = (inches,feet,miles); { Simple type }
 files = ARRAY [1..10] OF text; { Structured type }
 PTR1 = ^units; { Pointer type }

Variable Declaration

A variable declaration introduces an identifier as a variable of a
specified type. Each variable is a statically-declared object that
occupies storage and is accessible for the activation and duration of the
program, procedure, or function in which it is declared.

Components of a structured variable may be accessed using an appropriate
selector. Pointer variable dereferencing accesses dynamic variables on
the heap. Module variables are accessible for the duration of the

5- 10

program that imports the module.

Several identifiers may be combined in the same variable declaration if
the variables are of the same type.

HP Pascal predefines two standard variables, input and output , that are
textfiles. Formally,

 VAR
 input, output: text;

These standard textfiles commonly appear as program parameters and serve
as default files for various file operations. For more information on
textfiles, refer to Chapter 3 .

Every declaration of a file variable F with components of type T implies
the additional declaration of a buffer variable of type T. The buffer
variable, denoted as F^, may be used to access the current component of
the file F.

Global Variables

Global variables are declared at the beginning of the outermost block of
a program and are available to all the procedures and functions within
that program.

Local Variables

Local variables are variables declared within a particular procedure or
function or in the headings as parameters, and their scope is limited to
that procedure or function during the execution of the procedure or
function. When optimization is requested, the compiler will
issue warnings about local variables that are used prior to their
initialization.

Module Variables

Module variables are declared in either the EXPORT or IMPLEMENT section
of a module. Variables declared in the EXPORT part are available to all
the procedures and functions within the program which imports the
modules. Those declared in the IMPLEMENT section are only available
inside the module.

VAR

This reserved word delimits the beginning of variable declarations in an
HP Pascal program or module. A variable declaration associates an
identifier with a type. The identifier may then appear as a variable in
executable statements.

The reserved word VAR precedes one or more variable declarations. A
variable declaration consists of an identifier , a colon (:), and a type .
Any number of identifiers may be listed, separated by commas. These
identifiers are then variables of the same type.

The type may be any simple, structured, or pointer type. The form of the
type may be a standard identifier, a declared type identifier, or a data
type.

VAR sections may be repeated and intermixed with CONST, TYPE, MODULE, and
IMPORT sections.

Syntax

 Variable_decl:

5:- 11

Example

 TYPE
 answer = (yes, no, maybe);

 VAR
 pagecount,
 linecount,
 charcount: integer; { Standard identifier. }
 whats_the: answer; { User-declared identifier. }

 album : RECORD { Data type. }
 speed: (lp, for5, sev8);
 price: real;
 name : string[20];
 END;

Side-Effects

A side-effect is the modification by a procedure or function of a
variable that is global or nonlocal in scope to the procedure or
function. If a local variable is declared using the same identifier as a
global variable, the local variable may be modified without affecting the
global variable.

Example

 PROGRAM show_effects(output);

 VAR
 i,j: integer; { Global variables }

 PROCEDURE oops(i : integer); { i is local to the procedure }

 BEGIN
 IF i > 0 THEN j := j - 1; { j is a global variable }
 END;

 BEGIN
 i := 2;
 j := 3;
 oops(i);
 IF i = j THEN writeln('There was a side effect.');
 END.

Output:

 There was a side effect.

NOTE Side effect modifications may cause an optimizer to be more
 conservative in its choices for code improvement, thereby
 decreasing execution performance.

5- 12

6: 1

Chapter 6 Statements

A statement is a sequence of special symbols , reserved words , and
expressions that either performs a specific set of actions on a program's
data or controls program flow. Table 6-1 lists and describes
statements.

Table 6-1. HP Pascal Statements and Purposes

Statement Type	Purpose

compound	Group statements

empty	Do nothing

assignment	Assign a value to a variable

procedure	Invoke a procedure

GOTO	Transfer control unconditionally

IF, CASE	Conditional selection

WHILE, REPEAT, FOR	Iterate a group of statements

WITH	Manipulate record fields

The empty, assignment, procedure, and GOTO statements are commonly called
simple statements. The compound , IF, CASE, WHILE, REPEAT, FOR, and WITH
statements are referred to as structured statements because they
themselves may contain other statements.

Syntax

 Statements:

6-: 2

Compound Statements

A compound statement is a sequence of statements bracketed by the
reserved words BEGIN and END. A semicolon (;) delimits one statement from
the next. Certain statements may alter the flow of execution in order to
achieve effects such as selection, iteration, or invocation of another
procedure or function. For instance, after the last statement in the
body of a routine has executed, control is returned to the point in the
program from which the routine is called. Note the use of non-local
GOTOs voids this statement. The program terminates after the last
statement is executed.

A compound statement has two primary uses. First, it defines the
statement part of a block and second, it groups a series of statements
into a single statement. A compound statement may also serve to
logically group a series of statements.

Note that compound statements are allowed, but are unnecessary in the
following cases:

 * The statements between REPEAT and UNTIL.

 * The statements between OTHERWISE and the end of the CASE
 statement.

6: 3

Example

 PROCEDURE check_min;

 BEGIN { This }
 IF min > max THEN { compound }
 BEGIN { Compound } { statement }
 writeln('Min is wrong.'); { statement is } { is }
 min := 0; { part of IF } { the }
 END; { statement. } { procedure's }
 END; { body. }
 . . .

 BEGIN { Nested compound statements }
 IF part_to_start=part_1 THEN
 BEGIN { for logically grouping statements. }
 start_part_1;
 finish_part_1;
 { empty statement here }
 END
 ELSE
 BEGIN
 start_part_2;
 finish_part_2;
 END;
 END;
 ...

BEGIN .. END

BEGIN and END are reserved words that signify the beginning and ending of
a compound statement or block. BEGIN indicates to the compiler that a
compound statement or block has started, whereas END indicates that a
compound statement or block has terminated.

Syntax

Example

 PROGRAM show_begin_end(input, output);

 VAR
 running : Boolean;
 i, j : integer;

 BEGIN {begin of program block}
 i := 0;
 j := 1;
 running := true;
 writeln('See Dick run.');
 writeln('Run Dick run.');
 IF running then
 BEGIN {begin of compound statement}
 i := i + 1;
 j := j - 1;
 END; {end of compound statement}
 END. {end of program block}

Output:

 See Dick run.
 Run Dick run.

6-: 4

Empty Statements

The empty statement causes only the advancement of program flow to the
next statement. It is often used to indicate that nothing occurs. In
the example, no action occurs when i equals 2, 3, 4, 6, 7, 8, 9, or 10.

Example

 CASE i OF
 0 : start;
 1 : proceed;
 2..4 : ;
 5 : report_error;
 6..10: ;
 11 : stop;
 OTHERWISE fatal_error;
 END;

 IF i IN [2..4,6..10] THEN
 { do nothing }
 ELSE
 { cases }

NOTE In the following example, the last semicolon is not required. Its
 presence means that there is an empty statement before END. If the
 semicolon were removed, there would not be an empty statement.
 Empty statements do not affect the run-time speed of your program.

 BEGIN
 I:= J + 1;
 K:= I + J;
 END

Assignment

An assignment statement assigns a value to a variable access or a
function result. The assignment statement consists of a variable or
function identifier, an optional selector, a special symbol (:=), and an
expression that computes a value. The type of the expression must be
assignment compatible with the type of the receiving element.

The receiving element may be of any type except file, or a structured
type containing a file type component. An appropriate selector permits
assignment to a component of a structured variable or structured function
result.

NOTE An implementation may evaluate the variable access and the
 expression in any order.

Syntax

 Assignment_statement

6: 5

Example

 PROGRAM show_assign(input,output);

 VAR
 aaa: integer;

 FUNCTION show_assign: integer;

 TYPE
 rec = RECORD
 f: integer;
 g: real;
 END;

 index = 1..3;
 table = ARRAY [index] of integer;

 CONST
 ct = table [10, 20, 30];
 cr = rec [f:2, g:3.0];

 VAR
 s: integer;
 a: table;
 i: index;
 r: rec;
 p1,
 p: ^integer;
 strg: string[10];

 BEGIN { show_assign }
 s:= 5; i:= 3;
 a:= ct;
 a [i] := s + 5;
 r:= cr;
 r.f:= 5;
 new (p1);
 p:= p1;
 p^:= r.f - a [i];
 strg:= 'Hi!';
 show_assign := p^;
 END; {show_assign}

 BEGIN
 aaa:= show_assign;
 END.

CASE

The CASE statement selects a certain action based upon the value of an
ordinal expression. It consists of the reserved word CASE, a selector,
the reserved word OF, a list of case constants and statements, and the
reserved word END. Optionally, the reserved word OTHERWISE and a list of
statements may appear after the last constant and its statement.

The selector must be an ordinal expression in that it must return an
ordinal value. A case constant may be a literal, a constant identifier,
or a constant expression that is type compatible with the selector.
Subranges may also appear as case constants.

A case constant cannot appear more than once in a list of case constants.
Subranges used as case constants may not overlap other constants or
subranges. However, several constants may be associated with a
particular statement by listing them separated by commas.

6-: 6

Note that statements between OTHERWISE and END need not be bracketed with
BEGIN..END.

When the system executes a CASE statement, the following occurs:

 1. It evaluates the selector.

 2. If the value corresponds to a specified case constant, it executes
 the statement associated with that constant. Control then passes
 to the statement following the CASE statement.

 3. If the value does not correspond to a specified case constant, it
 executes the statements between OTHERWISE and END. Control then
 passes to the statement after the CASE statement. The OTHERWISE
 clause must be present or the selector must match any CASE label.

Syntax

Example

 PROCEDURE scanner;

 BEGIN
 get_next_char;
 CASE current_char OF
 'a'..'z', { Subrange CASE label }
 'A'..'Z':
 scan_word;

 '0'..'9':
 scan_number;

 OTHERWISE scan_special;

6: 7

 END;
 END;

 FUNCTION octal_digit (d:digit): Boolean; { TYPE digit = 0..9 }

 BEGIN
 CASE d OF
 0..7: octal_digit := true;
 8..9: octal_digit := false;
 END;
 END;

 FUNCTION op { TYPE operators=(plus,minus,times,divide) }
 (operator: operators;
 operand1,
 operand2: real)
 : real;

 BEGIN
 CASE operator OF
 plus: op := operand1 + operand2;
 minus: op := operand1 - operand2;
 times: op := operand1 * operand2;
 divide: op := operand1 / operand2;
 END;
 END;

IF .. THEN

IF .. THEN .. ELSE

An IF statement specifies a statement the system executes, if a
particular condition is true . If the condition is false, then the system
doesn't execute that statement, and optionally, it executes another
statement starting after the ELSE.

The IF statement consists of the reserved word IF, a Boolean expression,
the reserved word THEN, a statement, and, optionally, the reserved word
ELSE and another statement. The statements after THEN or ELSE may be any
HP Pascal statements, including other IF statements or compound
statements. No semicolon separates the first statement and the reserved
word ELSE.

When an IF statement is executed, the Boolean expression is evaluated to
either true or false , and one of the following three actions is
performed:

 * If the value is true, the statement following THEN is executed.

 * If the value is false and ELSE is specified, the statement
 following the ELSE is executed.

 * If the value is false and no ELSE is specified, execution
 continues with the statement following the IF statement.

The following IF statements are equivalent:

 IF a = b THEN IF a = b THEN
 IF c = d THEN BEGIN
 a := c IF c = d THEN
 ELSE a := c
 a := e; ELSE
 a := e;
 END;

6-: 8

NOTE ELSE parts are always associated with the nearest preceding
 unmatched IF statement.

A common use of the IF statement is to select an action from several
choices. This often appears in the following form:

 IF e1 THEN
 ...
 ELSE IF e2 THEN
 ...
 ELSE IF e3 THEN
 ...
 ELSE
 ...

This form is particularly useful to test for conditions involving real
numbers or string literals of more than one character, since these types
are not legal in CASE labels.

Syntax

 If_statement

Example

 PROGRAM show_if (output);

 VAR
 i,j : integer;
 s : PACKED ARRAY [1..5] OF char;
 found: Boolean;

 BEGIN
 .
 .
 IF i = 0 THEN writeln ('i = 0'); { IF with no ELSE. }
 IF found THEN { IF with an ELSE part. }
 writeln ('Found it')
 ELSE
 writeln ('Still looking');
 .
 .
 IF i = j THEN { Select among different }
 writeln ('i = j') { Boolean expressions. }
 ELSE IF i < j THEN
 writeln ('i < j')
 ELSE { i > j }
 writeln ('i > j');
 .

6: 9

 .
 IF s = 'RED' THEN { This IF statement }
 i := 1 { cannot be rewritten as }
 ELSE IF s = 'GREEN' THEN { a CASE statement. }
 i := 2
 ELSE IF s = 'BLUE' THEN
 i := 3;
 END.

FOR .. DO

The FOR statement executes a statement a predetermined number of times.
The FOR statement consists of the reserved word FOR, a control variable
initialized by an ordinal expression known as the initial value , either
the reserved word TO indicating an increment or the reserved word DOWNTO
indicating a decrement, another ordinal expression known as the final
value , the reserved word DO, and a statement.

The control variable is assigned each value of the range during the
corresponding iteration of the statement. It must be an ordinal variable
and may not be a component of a structured variable or a locally declared
procedure or function parameter. The control variable may be a local or
global variable. Non-local variables are not allowed. The initial and
final values are ordinal expressions that must be assignment compatible
with the control variable. After completion of the FOR statement, the
control variable is undefined.

Syntax

 For_statement:

When the system executes a FOR statement, the following occurs:

 1. It evaluates the initial and final values and assigns the initial
 value to the control variable.

 2. It executes the statement after DO.

 3. It repeatedly tests the current value of the control variable and
 final value for inequality, increments or decrements the control
 variable, and executes the statement after DO.

In a FOR..TO construction, the system never executes the statement after
DO if the initial value is greater than the final value. In a
FOR..DOWNTO construction, the statement is never executed if the initial
value is less than the final value.

6-: 10

The FOR statement:

 FOR control_var := initial TO final DO
 statement

is equivalent to the statement:

 BEGIN
 temp1 := initial; {No evaluation order is required }
 temp2 := final; {for temp1 and temp2. }
 IF temp1 <= temp2 THEN
 BEGIN
 control_var := temp1;
 WHILE control_var <= temp2 DO
 BEGIN
 statement;
 control_var := succ(control_var); { increment }
 END;
 END
 ELSE; { Don't execute the statement at all;}
 END; { control_var is now undefined. }

The FOR statement:

 FOR control_var := initial DOWNTO final DO
 statement

is equivalent to the statement:

 BEGIN
 temp1 := initial; {No evaluation order is required }
 temp2 := final; {for temp1 and temp2. }
 IF temp1 >= temp2 THEN
 BEGIN
 control_var := temp1;
 WHILE control_var >= temp2 DO
 BEGIN
 statement;
 control_var := pred(control_var); { decrement }
 END;
 END
 ELSE; { Don't execute the statement at all;}
 END; { control_var is now undefined. }

In the statement after DO, it is an error if assignment is made to the
control variable. It cannot be used on the left-hand side of an
assignment statement, passed as a reference parameter or used as the
control variable of a second FOR statement nested within the first.
Furthermore, it may not appear as a parameter for the standard procedures
read or readln .

The system determines the range of values for the control variable by
evaluating the two ordinal expressions once, and only once, before making
any assignment to the control variable. So the statement sequence:

 i := 5;
 FOR i := pred(i) TO succ(i) DO writeln('i=',i:1);

writes:

 i=4
 i=5
 i=6

instead of:

 i=4
 i=5

6: 11

Example

 { VAR color: (red, green, blue, yellow); }

 FOR color := red TO blue DO
 writeln ('Color is ', color);
 .
 .
 FOR i := 10 DOWNTO 0 DO
 writeln (i);
 writeln ('Blast Off');
 .
 .
 FOR i := (a[j] * 15) TO (f(x) DIV 40) DO
 IF odd(i) THEN
 x[i] := cos(i)
 ELSE
 x[i] := sin(i);

REPEAT .. UNTIL

A REPEAT statement executes a statement or group of statements repeatedly
until a Boolean expression is true . It consists of the reserved word
REPEAT, one or more statements, the reserved word UNTIL, and a Boolean
expression (the condition). The statements between REPEAT and UNTIL need
not be bracketed with BEGIN..END.

When the system executes a REPEAT statement, the following occurs:

 1. It executes the statement sequence, and then evaluates the Boolean
 expression.

 2. If it is false, it executes the statement sequence and evaluates
 the Boolean expression again.

 3. If it is true, control passes to the statement after the
 REPEAT...UNTIL statement.

The statement:

 REPEAT
 statement;
 UNTIL condition

is equivalent to the following:

 1: statement;
 IF NOT condition THEN GOTO 1;

Usually the statement sequence modifies data at some point so that the
condition becomes true . Otherwise, the REPEAT statement loops forever.

Syntax

 Repeat_statement:

6-: 12

Example

 sum := 0;
 count := 0;

 REPEAT
 writeln('Enter trial value, or "-1" to quit');
 read (value);
 sum := sum + value;
 count := count + 1;
 average := sum / count;
 writeln ('value = ', value, ' average = ',average)
 UNTIL (count >= 10) OR (value = -1);
 .
 .
 REPEAT
 writeln (real_array[index]);
 index := index + 1;
 UNTIL index > limit;

WHILE .. DO

The WHILE statement executes a statement repeatedly as long as a given
condition is true . The WHILE statement consists of the reserved word
WHILE, a Boolean expression (the condition), the reserved word DO, and a
statement.

When the system executes a WHILE statement, the following occurs:

 1. It evaluates the condition.

 2. If the condition is true, it executes the statement after DO, and
 then re-evaluates the condition. When the condition becomes
 false, execution resumes at the statement after the WHILE
 statement.

 3. If the condition is false at the beginning, the system never
 executes the statement after DO.

The statement:

 WHILE condition DO statement

is equivalent to:

 1: IF condition THEN
 BEGIN
 statement;
 GOTO 1;
 END;

Usually a program modifies data at some point so that the condition
becomes false . Otherwise, the statement repeats indefinitely.

Syntax

 While_statement

6: 13

Example

 WHILE index <= limit DO
 BEGIN
 writeln (real_array[index]);
 index := index + 1;
 END;
 .
 .
 WHILE NOT eof (f) DO
 BEGIN
 read (f, ch);
 writeln (ch);
 END;

WITH .. DO

A WITH statement allows reference to record fields by field name alone.
A WITH statement consists of the reserved word WITH, one or more record
designators, the reserved word DO, and a statement. A record designator
may be a record identifier, a function call that returns a record, or a
selected record component.

The statement after DO may be a compound statement. In this statement,
reference to a record field contained in one of the designated records
can be made without mention of the record to which it belongs. The
appearance of a function reference as a record designator is an
invocation of the function. Note that a new value may not be assigned to
a field of a record constant or a field of a record returned by a
function.

When the program executes a WITH statement, the following occurs:

 1. References to the record designators are evaluated.

 2. The statement after the DO statement is executed.

The following statements are equivalent:

 WITH rec DO BEGIN
 BEGIN rec.field1 := e1;
 field1 := e1; writeln(rec.field1
 writeln(field1 * field2); * rec.field2);
 END; END;

Because the program evaluates a reference to a record designator once and
only once before it executes the statement, the following statement
sequences are equivalent:

f designates a field in the example above.

 i := 1;
 WITH a[i] DO
 BEGIN
 writeln(f);
 i:=2;
 writeln(f)
 END;

 writeln(a[1].f);
 writeln(a[1].f); { NOT writeln(a[2].f) }

That is, within the WITH statement, the implied value of a[i] is not
affected by the change to i.

Records with identical field names may appear in the same WITH statement.
The following interpretation resolves any ambiguity.

6-: 14

The statement:

 WITH record1, record2, ..., recordn DO
 BEGIN
 statement;
 END;

is equivalent to:

 WITH record1 DO
 BEGIN
 WITH record2 DO
 BEGIN
 ...
 WITH recordn DO
 BEGIN
 statement;
 END;
 ...
 END;
 END;

Therefore, if field f is a component of both record1 and record2, the
compiler interprets an unselected reference to f as a reference to
record2.f. The synonymous field in record1 can be accessed using normal
field selection; for example, record1.f.

This interpretation also means that if r and f are records, and f is a
field of r, the statement:

 WITH r DO
 BEGIN
 WITH r.f DO
 BEGIN
 statement;
 END;
 END;

is equivalent to

 WITH r,f DO
 BEGIN
 statement;
 END;

If a local or global identifier has the same name as a field of a
designated record in a WITH statement, then the appearance of the
identifier in the statement after DO is always a reference to the record
field. The local or global identifier is inaccessible if it happens to
have the same name as the field name in the record.

Syntax

 With_statement

6: 15

Example

 PROGRAM show_with;

 TYPE
 status = (married, widowed, divorced, single);
 date = RECORD
 month : (jan, feb, mar, apr, may, jun,
 july, aug, sept, oct, nov, dec);
 day : 1..31;
 year : integer;
 END;
 person = RECORD
 name : RECORD
 first, last: string[10]
 END;
 ss : integer;
 sex : (male, female);
 birth : date;
 ms : status;
 salary : real
 END;

 VAR
 employee : person;

 BEGIN {show_with}
 .
 WITH employee, name, birth DO
 BEGIN
 last := 'Hacker';
 first := 'Harry';
 ss := 214748364;
 sex := male;
 month := feb;
 day := 29;
 year := 1952;
 ms := single;
 salary := 32767.00
 END;
 .
 END. {show_with}

GOTO

A GOTO statement transfers control unconditionally to a statement marked
by a label. It consists of the reserved word GOTO and the specified
label.

The scope of labels is restricted. They may only mark statements
appearing in the executable portion of the block where they are declared.
They cannot mark statements in inner blocks. GOTO statements, however,
may appear in inner blocks and reference labels in an outer block.
Therefore, it is possible to jump out of a procedure or function, but not
into one.

A GOTO statement may not lead into a structured statement from outside
that statement or from another component statement of that statement.
For example, it is illegal to branch to the ELSE part of an IF statement
from either the THEN part, or from outside the IF statement. Note that a
GOTO statement that refers to a non-local label declared in an outer
routine, causes any local files to be closed.

Labels are numeric values in the range 0 through 9999.

6-: 16

NOTE The use of the non-local label form of GOTO may increase execution
 time of the program.

Syntax

 Goto_statement

Example

 PROGRAM show_goto (output);

 LABEL 500, 501;

 TYPE
 index = 1..10;

 VAR
 i: index;
 target: integer;
 a: ARRAY[index] OF integer;

 PROCEDURE check;

 VAR
 answer: string [10];

 BEGIN
 .
 { ask user if OK to search }
 IF answer= 'no' THEN GOTO 501; { jumping out of procedure }
 .
 END;

 BEGIN { show_goto }
 .
 check;
 .
 FOR i := 1 TO 10 DO
 IF target = a[i] THEN GOTO 500;
 writeln (' Not found');
 GOTO 501;
 500:
 writeln (' Found');
 501:
 END. { show_goto }

Procedures

A procedure statement transfers program control to the block of a
declared or standard procedure. After the procedure has executed,
control is returned to the statement following the procedure call. A
procedure statement consists of a procedure identifier and, if required,
a list of actual parameters in parentheses.

The procedure identifier must be the name of a standard procedure or a

6: 17

procedure declared in a previous procedure declaration. If a procedure
declaration includes a formal parameter list, the procedure statement
must supply the actual parameters. The actual parameters must match the
formal parameters in number, type and order. There are four kinds of
parameters: value, reference, procedural, and functional .

Actual value parameters are expressions that must be assignment
compatible with the formal value parameters or, in the case of value
conformant array parameters, conformable with the conformant array
schema. Actual reference parameters are variables that must be type
identical with the formal reference parameters or, in the case of
reference conformant array parameters, conformable with the conformant
array schema. Components of a packed structure cannot appear as actual
procedural or functional para meters. Actual procedural or functional
parameters are the names of procedures or functions declared in the
program. Standard procedures or functions cannot be actual parameters to
procedures or functions.

If a procedure or function that was passed as an actual parameter
accesses any entity non-locally upon activation, then the entity accessed
is one that is accessible to the procedure or function when it is passed
as a parameter. For example, suppose Procedure A uses the non-local
variable x. If A is then passed as an actual parameter to Procedure B,
it is still able to use x, even if x is not otherwise accessible from B.

The formal parameters, if any, of an actual procedural or functional
parameter must be congruent with the formal parameters of the formal
procedural or functional parameter.

Syntax

 Procedure_statement:

Example

 PROGRAM show_pstate(output);

 PROCEDURE wow;
 BEGIN
 writeln('wow');
 END;

 PROCEDURE bow;
 BEGIN
 write('bow-');
 wow;
 END;

 PROCEDURE outer (a: integer;
 procedure proc_parm);

 PROCEDURE inner;

6-: 18

 BEGIN
 bow;
 END;

 BEGIN {outer}
 writeln('Hi');
 inner;
 proc_parm;
 END; {outer}

 BEGIN { show_pstate }
 outer(30, bow);
 END. { show_pstate }

Output:

 Hi
 bow-wow
 bow-wow

7- 1

Chapter 7 Program Structure

An HP Pascal program consists of two major parts: the program heading
and the program block . The program block includes the declaration part
which consists of definitions of constants and types, and declarations of
labels, variables, procedures, functions, and modules. This chapter
describes in detail the program heading and program block . This includes
the declaration part and module as well as the function and procedure.
Below is an example of an HP Pascal program.

Syntax

 Compilation_unit:

Example

 PROGRAM minimum; { The minimum program that the HP Pascal }

 BEGIN { compiler will process successfully: }
 END. { no program parameters. }

 PROGRAM show_form1 (output); { Uses the standard textfile output }

 BEGIN
 writeln ('Greetings!') { and the standard procedure writeln. }
 END.

 PROGRAM show_form2 (input,output);

 VAR
 a,b,total: integer;

 FUNCTION sum (i,j: integer): integer; { Function declaration }

 BEGIN
 sum:= i + j
 END;

 BEGIN
 prompt ('Enter two integers: ');
 readln (a,b);
 total:= sum (a,b);
 writeln ('The total is: ', total)
 END.

Program Heading

The program heading consists of the reserved word PROGRAM, an identifier
that specifies the program name and an optional parameter list. The

7- 2

program block consists of the declaration part and the statement or
statements.

The identifiers in the parameter list are variables that must be declared
in the outer block, except for the standard textfiles input and output .

Input and output are standard file variables that the system associates
by default with system dependent files. These files are opened
automatically at the beginning of program execution. Input or output
need only appear as program parameters if some file operation (for
example, read or write) refers to them explicitly or by default.

Program parameters are usually the names of file variables. The
association between logical and physical files is system-dependent. The
association between formal and actual program parameters is also
system-dependent.

The program block consists of an optional declaration part and a required
statement part.

Syntax

 Program_heading:

Block

A block is a syntactically complete section of code. There are two parts
to a block; the declaration part and the executable part. Blocks may be
nested . It is important that all objects appearing in the executable
part be defined in the declaration part or in the declaration part of an
outer block.

Syntax

 block:

7- 3

NOTE MODULE declarations and IMPORT lists cannot appear in inner blocks
 such as in procedures or functions.

Declaration Part

The declaration part consists of definitions of constants and types , and
declarations of labels , variables , procedures, functions , and modules .
The statement part is made up of a compound statement that may be empty
or may contain several simple or structured statements. The statement
part is also termed the body or executable portion of the block. For
more information about statements, refer to Chapter 6 .

The reserved word LABEL precedes the declaration of labels. CONST or
TYPE precedes the definition of declared constants or types. VAR
precedes the declaration of variables. IMPORT precedes a list of
imported module names. MODULE precedes the declaration of a module.
PROCEDURE or FUNCTION precedes the declaration of a procedure or a
function.

Within a declaration part, label declarations must come first, whereas
procedure or function declarations come last. In HP Pascal, CONST, TYPE,
IMPORT, VAR, and MODULE declarations may be intermixed and repeated. For
more information on declarations, refer to Chapter 5 .

7- 4

NOTE ANSI/IEEE770X3.97 - 1983 Standard Pascal allows the following
 reserved words, LABEL, CONST, TYPE, or VAR to be used only once in
 that order.

A predefined constant, type, variable, procedure , or function may be
redeclared in a declaration part. However, access to the previous
definition associated with that item is lost within the scope in which it
is redefined.

Example

 PROGRAM show_declarepart;

 LABEL 25;

 VAR
 birthday: integer;

 TYPE
 friends = (Joe, Simon, Leslie, Jill);

 CONST
 maxnuminvitee = 3;

 VAR
 invitee: friends;
 PROCEDURE hello;

 BEGIN
 writeln('Hi');
 END; { End of declaration part. }

 BEGIN { Beginning of body. }
 .
 .
 END.

PROCEDURE

A procedure is a block that is invoked with a PROCEDURE statement. A
procedure declaration consists of a procedure heading, a semicolon (;),
and a block or a directive followed by a semicolon.

The procedure heading consists of the reserved word PROCEDURE, an
identifier that specifies the procedure name, and optionally, a formal
parameter list.

A directive can replace the procedure block to inform the compiler of the
location of the block. FORWARD is one of the directives. Other
directives are implementation dependent. See the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation, for information on other directives. A procedure
block consists of an optional declaration part and a compound statement.

Procedure declarations must occur at the end of a declaration part after
label, constant, type, and variable declarations and after the module
declarations in the outer block. Note that procedure and function
declarations may be intermixed.

7- 5

Syntax

Procedure_declaration:

FUNCTION

A function is a block that is invoked with a function call and that
returns a value . A function declaration consists of a function heading,
a semicolon (;), and a block or a directive followed by a semicolon (;).

A function heading consists of the reserved word FUNCTION, an identifier
that specifies a function name, an optional formal parameter list, and a
result type. The result type may be any type, except a file type or a
structured type containing a file.

A directive can replace the function block to inform the compiler of the
location of the block; for example, FORWARD. Other directives are
implementation dependent. See the HP Pascal/iX Programmer's Guide or the
HP Pascal/HP-UX Programmer's Guide , depending on your implementation, for
information on other directives. In the body of a function block there
must be at least one statement assigning a value to the function
identifier. This assignment statement determines the function result.
If the function result is a structured type, a value must be assigned to
each of its components using an appropriate selector.

Function declarations may occur at the end of a declaration section after
label, constant, type, variable declarations, and MODULE declarations at
the outer level. Function declarations may be intermixed with procedure
declarations.

Syntax

 Function_declaration:

7- 6

MODULE

A module provides a mechanism for separate compilation of program
segments. It is a program fragment with a completely defined interface
that can be compiled independently and later used to construct programs.
A module usually defines some data types , constants , variables , and some
procedures and functions that operate on this data. Such definitions are
made accessible to users of the module by its export declarations.
Modules can only access data or procedures in other modules and then only
by importing them.

Any module used by a program, whether appearing in the program's globals
or compiled separately, must be named in an import declaration. The
objects that modules export always belong to the global scope of the
importer.

The source text input to a compiler that is the complete unit of
compilation may be a program or a list of modules separated by semicolons
(;). An implementation may allow only a single module to be compiled at
a time, thus requiring multiple invocations of the compiler to process
several modules. The input text is terminated by a period.

A module cannot be imported before it has been compiled, either as part
of the importing program or by a previous invocation of the compiler.
This prevents construction of mutually-referring modules. Access to
separately compiled modules is discussed below.

Although a module declaration defines data and procedures that become
globals of any program importing the module, not everything declared in
the module becomes known to the importer. A module specifies exactly
what is exported to the "outside world" and lists any other modules on
which it is itself dependent.

The export declaration defines constants and types, declares variables,
and gives the headings of procedures and functions whose complete
specifications appear in the implement part of the module. It is only
the items in the export declaration that become accessible to any other
code that subsequently imports the module.

There need not be any procedures or functions in a module if its purpose
is solely to declare types and variables for other modules.

Any constants, types, and variables declared in the implement part are
not made known to importers of the module; they are only known inside the
module, and outside it they are hidden. Variables of the implement part
of a module have the same life time as global program variables, even
though they are hidden.

Any procedures or functions whose headings are exported by the module
must subsequently be completely specified in its implement part. In this
respect, the headings in the export declaration are like FORWARD
directives, and in fact the parameter list of such procedures need not
be, but may be, repeated in the implement part. Procedures and functions
that are not exported may be declared in the implement part; they are
known only within the module and are hidden from the rest of the program.

Separately compiled modules are called library modules . To use library
modules, a program imports them just as if they had appeared in the
program block. Refer to the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, for
further information.

When an import declaration is seen, a module must be found matching each
name in the import declaration. If a module of the required name appears
in the compilation unit before the import declaration, the reference is
to that module. Otherwise, external module libraries must be searched.
See "SEARCH" , and the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, for

7- 7

more information.

In order for a procedure in a module to read from input or write to
output (for example, readln from input or writeln to output), that module
must import the standard modules stdinput or stdoutput , respectively.

On HP-UX the standard modules stdinput , stdoutput , and stderr are
contained in the predefined library /usr/lib/paslib. On MPE/iX the
standard modules stdinput and stdoutput are contained in the predefined
library PASLIB.PUB.SYS.

When a program, either directly or indirectly, imports a module that
imports stdinput or stdoutput , the program must specify input or output ,
respectively, in the program parameter. If a program does not specify
input or output and a module imports the standard modules, the program
will not link.

On HP-UX only, if a program, either directly or indirectly, imports a
module that imports stderr , the program must specify stderr in the
program parameter. If a program does not specify stderr and a module
imports the standard module stderr , the program will not link. In
addition, if a procedure in a module writes to stderr , that module must
import the standard module, stderr .

Syntax

 Module_declaration:

Example

This example shows a source file that contains definitions for the
modules bit_types and char_info. MODULE bit_types and MODULE char_info
are compiled into an object file called mod1.o. Note that mod1.o is
referenced in the examples in section "IMPORT" .

 MODULE bit_types; { Module declaration }

7- 8

 EXPORT { Exported types }

 TYPE
 bits8 = 0..255; { Exported type }

 IMPLEMENT { No implement, part, module }
 END; { only provides data types }

 MODULE char_info; { Module declaration }

 IMPORT
 bit_types; { Import other modules needed }
 { to compile this module }
 EXPORT { Start of export text }

 TYPE
 byte = bits8; { Exported type }

 VAR

 last_byte: byte; { Exported variable }

 FUNCTION control (i:byte; flag:BOOLEAN): BOOLEAN; { Exported function }

 IMPLEMENT { Start of implementation }

 IMPORT stdoutput; { Required for using output }

 CONST
 error = 'non-ASCII character'; { Non-exported constant }

 FUNCTION check (i: byte; flag: BOOLEAN): BOOLEAN; {Non-exported function}
 BEGIN
 IF i > 127 THEN
 BEGIN
 check := false;
 IF flag THEN writeln (error);
 END
 ELSE
 check := true;
 END;

 FUNCTION control (i: byte; flag: BOOLEAN): BOOLEAN;{ Exported function }
 BEGIN
 last_byte := i;
 control := check (i,flag) AND (i < 32);
 END;
 END.

EXPORT

This reserved word precedes the constants , types , variables , procedures ,
and functions of a MODULE that can be used or imported by other programs
and modules. The EXPORT section is used to define the constants, types,
variables, procedures, and functions that the module supplies to any
program or module that imports it. Procedures and functions are
presented as headings without blocks or directives. The EXPORT section
may make use of things that were exported from modules listed in the
IMPORT section. Every module must have an EXPORT section.

Syntax

 Export_declaration:

7- 9

Example

 EXPORT { Start of export text }

 TYPE
 control_num: 0..255; { Exported type }

 VAR
 last_num: control_num; { Exported variable }

 FUNCTION control (i: control_num; flag : Boolean) : Boolean;{Exported function}

IMPORT

This reserved word indicates which modules are needed to compile a
program or module. The IMPORT section is used to name all other modules
upon which the present one depends. One module, m1, depends on another,
m2, if m1 makes use of the objects exported from m2. For instance, m1
calls procedures in m2, or assigns to m2's variables, or declares
variables of a type exported from m2. There is no IMPORT section if the
module is independent of all other modules.

You must use $SEARCH to import a non-standard module that is not defined
within the same compilation unit that contains the import statement. See
"SEARCH" for more information.

7- 10

When you want to export modules, as well as procedures and types, insert
the reserved word EXPORT following the module name.

When EXPORT is used to specify an export of a module, that module is only
available to the program or module importing the current module.

Syntax

 Import_declaration:

Example 1

In this example, module bit_types is defined in another compilation unit
(see example in section "MODULE"). bit_types is compiled into an
object file called mod1.o. $SEARCH is used because bit_types is not in
the same compilation unit as the main program.

 PROGRAM show_import (output);

 $SEARCH 'mod1.o'$ { Object file that contains bit_types.}

 IMPORT { Import the module bit_types, under }
 bit_types; { "Modules", that is needed to }
 { compile this program. }
 VAR
 A,B: bits8;

 BEGIN
 A:= 100;
 writeln(A);
 END.

Example 2

Module show_import_export both imports and exports module bit_types at
the same time. The main program uses type bits8. bits8 is defined in
bit_types, but is available to the main program because[REV BEG] it
imports show_import_export which exports bit_types.

Module show_export is compiled into an object file called mod2.o and
bit_types is compiled into an object file called mod1.o (see section
"MODULE"). The main program imports module show_import_export only.
However, the $SEARCH statement must include both object files mod1.o and
mod2.p, even thought the main program does not directly import module
bit_types.[REV END]

 MODULE show_import_export;

 $SEARCH 'mod1.o'$ {Object file that contains bit_types.}

 IMPORT
 bit_types EXPORT;

 EXPORT

 TYPE
 byte_rec = record;
 a, b : bits8
 end;

7- 11

 IMPLEMENT

 END.

 PROGRAM show_import_export_prog (output);

 $SEARCH 'mod1.o, mod2.o'$ {Object files that contain bit_types}
 {and show_import_export. }
 IMPORT
 show_import_export;

 VAR

 little_bit : bits8; { bits8 is defined in module bit_types }
 little_byte : byte_rec; {byte_rec is defined in module show_import_export}

 BEGIN
 little_bit := 9;
 little_byte := little_bit;
 END.

IMPLEMENT

This reserved word indicates the beginning of the internal part of a
MODULE. The IMPLEMENT section may be empty or it may contain declarations
of the constants, types, variables, procedures , and functions that are
only used within the module. In addition, it contains the bodies of the
procedures and functions whose headings appeared in the EXPORT section.
A module does not have to export procedures or functions. It may be used
simply to create data or data types. In such a case, there will be
nothing between the words IMPLEMENT and END. That is, every module must
have an IMPLEMENT section, but it may be empty.

Example

 MODULE A_module;

 EXPORT { Exported Type }
 TYPE
 byte = 0..255;

 FUNCTION check (i:byte):Boolean; { Exported Function }

 IMPLEMENT { Start of implement section }

 IMPORT stdoutput;

 FUNCTION check (i: byte;): Boolean;

 BEGIN

 IF i > 127 THEN
 BEGIN
 check := false;
 IF flag THEN
 writeln (error);
 END
 ELSE
 check := true;
 END;

 FUNCTION control (i: byte; flag: Boolean):Boolean; {Exported function}

 BEGIN
 control := check (i,flage) AND (i < 32);
 END;

 END.

7- 12

8- 1

Chapter 8 Procedures and Functions
When a procedure or function is declared, the heading may optionally
include a list of parameters . This list is called the formal parameter
list . A procedure statement or function call in the body of a block
provides the matching actual parameters that correspond by their order in
the list. The four kinds of formal parameters are value, reference,
functional , and procedural parameters. Value parameters are identifiers
followed by a colon (:) and a type identifier or a conformant array
schema. Reference parameters are declared like value parameters, but are
preceded by the reserved word VAR. Functional or procedural parameters
are function or procedure headings.

The four types of formal parameters may be repeated and intermixed.
Several identifiers may appear separated by commas. These identifiers
then represent formal reference or value parameters of the same type,
even if the type is a conformant array schema .

A formal value parameter appears as a local variable during execution of
the procedure or function. It receives its initial value from the
matching actual parameter. Modification of the formal parameter cannot
affect the actual parameter which may be an expression . The actual
parameter must be assignment compatible with the formal parameter or, in
the case of a conformant array parameter, must conform with the formal
parameter.

A formal reference parameter represents the actual parameter during
execution of the procedure. Any changes in the value of the formal
reference parameter alters the value of the actual parameter, which must
be a variable access. The actual parameter must have a type identical
with the formal parameter or conform with the formal parameter, in the
case of a conformant array schema .

When a conformant array schema is specified, the value of the upper bound
and the value of the lower bound identifiers in the schema vary according
to the actual bounds of the array passed as the actual parameter. They
can be accessed as value parameters in the procedure, except their values
cannot be changed. Their names have the same scope as a parameter. The
type of the actual parameters must be conformable with the conformant
array schema. The formal parameters have a type that is distinct from
any other type. This means that the actual parameters are not assignable
to any other variable or parameter except those of the same type. The
type cannot be a PAC type since the lower bound cannot be fixed as one.
This makes passing string literals as actual conformant array parameters
an error in ISO Pascal. HP Pascal is extended to allow the passing of
string literals as parameters. However, a conformant array cannot be
manipulated as a string.

An actual conformant array parameter can be passed as a reference
conformant array parameter, but not as a value parameter of any kind.

A formal procedural or functional parameter is a synonym for the actual
procedure or function parameter. The parameter lists, if any, of the
actual and formal procedural or functional parameters must be congruent.

Two formal parameter lists are congruent if they contain an equal number
of parameters, and the parameters in corresponding positions are
equivalent. Two parameters are equivalent if any of the following
conditions are true :

 * They are both value parameters of the identical type.

 * They are both reference parameters of the identical type.

8-: 2

 * They are both procedural parameters with congruent parameter
 lists.

 * They are both functional parameters with congruent parameter lists
 and identical result types.

 * They are both either value conformant array specifications or both
 reference conformant array specifications, and in both cases, the
 conformant array specifications contain the same number of
 parameters and equivalent conformant array schemas. Two
 conformant array schemas are equivalent if all of the following
 statements are true:

 * The ordinal type identifier in each corresponding index
 type specification denotes the same type.

 * Either the component conformant array schemas of the
 conformant array schemas are equivalent, or the type
 identifiers of the conformant array schemas denote the same
 type.

 * Either both conformant array schemas are packed or both are
 unpacked.

Syntax

 Formal_parameter_list:

Example

 PROGRAM show_formparm (input);

 VAR
 test: boolean;

 FUNCTION chek1 (x, y, z: real): Boolean;

 BEGIN
 { Perform some type of validity check on x, y, z }
 { and return appropriate value. }
 END;

 FUNCTION chek2 (x, y, z: real): Boolean;

 BEGIN

8- 3

 { Perform an alternate validity check on x, y, z }
 { and return appropriate value. }
 END;

 PROCEDURE read_data (FUNCTION check (a, b, c: real): Boolean);

 VAR p, q, r: real;

 BEGIN
 { read and validate data }
 readln (p, q, r);
 IF check (p, q, r) THEN ...
 END;

 BEGIN {show_formparm}
 .
 IF test THEN read_data (chek1)
 ELSE read_data (chek2);
 .
 END.

 PROGRAM show_varparm(output);

 VAR
 i,j : integer;

 PROCEDURE fix(VAR a : integer; b : integer);

 BEGIN
 a := b; { i is passed by reference; it will return equal to 42.}
 b := 0; { j is passed by value; this assignment will }
 { not change the value of j in the main program. }
 END;

 BEGIN { show_varparm }
 i:= 0;
 j:= 42;
 fix(i,j);
 IF i = j THEN writeln('They both = 42');
 END.

 PROGRAM show_conformantparm;

 CONST
 First=1;
 Last=10;

 TYPE
 inxtype=1..100;
 arr1=ARRAY[First..Last] of Integer;
 arr2=ARRAY[First..2*Last] of Integer;

 VAR
 a1,a2,a3:arr1;
 b1,b2,b3:arr2;

 PROCEDURE ADD_Array(
 VAR Result:ARRAY[L..U:inxtype] OF INTEGER;
 P1,P2:ARRAY[L1..U1:inxtype] OF INTEGER
);

 VAR
 inx:inxtype;

 BEGIN { ADD_Array }
 IF (L=L1) AND (U=U1) THEN
 FOR inx:=L TO U DO
 Result[inx]:=P1[inx]+P2[inx]
 ELSE
 { handle the error }
 END; { Add_Array }

 BEGIN { Show_ConformantParm }

 { Initialize values for a1,a2,b1,b2 }

8-: 4

 { ADD_Array can be used for arrays of type arr1 and arr2
 because they conform to each other.}

 ADD_Array(a3,a1,a2);
 ADD_Array(b3,b1,b2);

 END. { Show_ConformantParm }

Conformance

A conformable test must be passed to pass an array as an actual
conformant array parameter . Actual conformant array parameters must have
a type conformable with the conformant array form corresponding to the
parameter in the procedure declaration.

If T1 is an array type with a single index type, and T2 is the type of
the index type specification of a conformant array form, then T1 is
conformable with the conformant array form if all the following are true:

 * The index type of T1 is type compatible with T2.

 * You cannot index a value of T1 that does not lie within the bounds
 of that specified by T2.

 * The component type of T1 is identical to the type identifier of
 the conformant array form, or, if the element type of the
 conformant array form is a conformant array form, is conformable
 with the element type conformant array form in the conformant
 array schema.

 * Both T1 and the conformant array form are packed or both are
unpacked .

Syntax

 Conf_Array_Schema:

 Conf_Array:

8- 5

Example

 TYPE
 inxtype = 0..20;

 ...

 PROCEDURE Proc1 (
 P1: ARRAY[L1..H1:inxtype] OF ARRAY[L2..H2:inxtype] OF integer;
 P2: PACKED ARRAY[L3..H3:inxtype] OF integer;
 P3: ARRAY[L4..H4:inxtype] OF integer;
 P4: ARRAY[L5..H5:inxtype;L6..U6:inxtype] OF integer);

 ...

 VAR
 V1: PACKED ARRAY[0..10] of integer;
 V2: ARRAY [3..5,1..10] OF integer;
 V3: ARRAY[1..50] OF integer;

V1 is conformable with P2, but not with P1, P3, and P4. V2 is
conformable with P1 and P4, but not with P2 or P3. V3 is comformable
with P3, but not with P1, P2, or P4.

Directives

A directive may replace a block in a procedure or function declaration.
In HP Standard Pascal, the only directive is FORWARD. This directive
makes it possible to postpone full declaration of a procedure or
function. Additional directives may be provided by particular
implementations. See the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, for
information about those directives. Note that the term FORWARD may
appear as an identifier in source code and, at the same time, as a
directive.

FORWARD Directive

The FORWARD directive permits the full declaration of a procedure or
function to appear after a call to the procedure or function. For
example, if procedures A and B are declared on the same level, you must
use the FORWARD directive if A and B will call each other.

Example

 PROCEDURE A; FORWARD;

 PROCEDURE B;
 BEGIN
 .
 A; { calls A }
 .
 END;

 PROCEDURE A; { full declaration of A }

 BEGIN
 .
 B; { calls B }
 .
 END;

The body of the function or procedure must be fully declared elsewhere in
the same block. Formal parameters, if any, and the function result type
must appear with the FORWARD declaration. These formal parameters and
the result type may be omitted when making the subsequent full
declaration. However, if repeated, they all must be present and
identical with the original formal parameters or result type.

The FORWARD directive may appear with a procedure or function at any
level.

Example

 FUNCTION exclusive_or (x,y: Boolean): Boolean;

8-: 6

 FORWARD;
 .
 .
 FUNCTION exclusive_or; { Parameters not repeated. }

 BEGIN
 exclusive_or:= (x AND NOT y) OR (NOT x AND y);
 END;

Recursion

A recursive procedure or function is a procedure or function that calls
itself. It is also legal for procedure A to call procedure B that in
turn calls procedure A. This is indirect recursion and is often an
instance when the FORWARD directive is useful. Note that when a routine
is called recursively, new local variables are created for each
invocation of the routine.

Example

 FUNCTION factorial (n: integer): integer;
 { Calculates factorial recursively }

 BEGIN
 IF n = 0 THEN
 factorial := 1
 ELSE
 factorial := n * factorial(n-1);
 END;

Function Calls

A function call invokes the block of a standard or declared function and
returns a value to the calling point of the program. Because an operator
can perform some action on this value, a function result is an
expression.

A function call consists of a function identifier and an optional list of
actual parameters in parentheses. The actual parameters must match the
formal parameters in number, type, and order . The function result has
the type specified in the function heading. Actual value parameters are
expressions that must be assignment compatible with the formal value
parameters or, in the case of value conformant array parameters, conform
with the conformant array schema.

Actual reference parameters are variables that must be type identical
with the formal variable parameters or, in the case of variable
conformant array parameters, conform with the conformant array schema.
Components of a packed structure may not appear as actual variable
parameters.

Actual procedural or functional parameters are the names of declared
procedures or functions. Standard functions or procedures are not legal
actual parameters.

The parameter list , if any, of an actual procedural or functional
parameter, must be congruent with the parameter list of the formal
procedural or functional parameter. For more information, see the
section on Procedures in this chapter.

Functions may call themselves recursively. Refer to "Recursion"
earlier in this chapter for more details.

If an actual functional or procedural parameter, upon invocation,
accesses any entity non-locally, then the entity accessed is one that is
accessible to the function or procedure when its identifier is passed.
For example, suppose Procedure A uses the non-local variable x. If A is
passed as a parameter to Function B, then it still has access to x, even
if x is otherwise inaccessible in B.

If the function result is a structured type, then the function call may
select a particular component as the result. This requires the use of an
appropriate selector.

8- 7

Example

 PROGRAM show_function (input,output);

 VAR
 n,
 coef,
 answer: integer;

 FUNCTION fact (p: integer) : integer;

 BEGIN
 IF p > 1 THEN
 fact := p * fact (p-1)
 ELSE fact := 1
 END;

 FUNCTION binomial_coef (n, r: integer) : integer;

 BEGIN
 binomial_coef := fact (n) DIV (fact (r) * fact (n-r))
 END;

 BEGIN { show_function }
 read(n);
 FOR coef := 0 TO n DO
 writeln (binomial_coef (n, coef));
 END. { show_function }

8-: 8

9- 1

Chapter 9 Standard Routines

HP Pascal supplies predefined procedures and functions that perform
various commonly used operations. These are listed below, followed by a
description of most in the subsequent pages of this chapter. Any
procedure or function that is followed by an asterisk (*) is discussed in
Chapter 10 .

Procedures:

 append * overprint * setstrlen
 assert pack strappend
 associate * page * strdelete
 close * prompt * strinsert
 disassociate * put * strmove
 dispose read * strread
 get * readdir * strwrite
 halt readln * unpack
 mark release write *
 movebyteswhile reset * writedir *
 new rewrite * writeln *
 open * seek *

Functions:

 abs lastpos * sqr
 arctan linepos * sqrt
 baddress ln statement_number
 binary maxpos * str
 chr octal strlen
 cmpbytes odd strmax
 cos ord strltrim
 eof * position * strpos
 eoln * pred strrpt
 exp round strrtrim
 fnum * scanuntil succ
 get_alignment scanwhile trunc
 hex sin waddress

Procedures for Allocation and Deallocation
HP Pascal distinguishes two classes of variables . These are static and
dynamic .

A static variable is explicitly declared in the declaration part of a
block, and may then be referred to by name in the body. The compiler
allocates storage for this variable when the block is activated. The
system does not deallocate this space until the process closes the scope
of the variable.

A dynamic variable is not declared and cannot be referred to by name.
Instead, a declared pointer references this variable. The system
allocates and deallocates storage for a dynamic variable during program
execution as a result of calls to the standard procedures new and
dispose. HP Pascal also supports the standard procedures mark and
release. The area of memory reserved for dynamic variables is called the
heap.

Dynamic variables permit the creation of temporary buffer areas in
memory. Furthermore, since a pointer may be a component of a structured
dynamic variable, it is possible to write programs with dynamic data
structures such as linked lists or trees.

9- 2

new

Usage

 new(p)
 new(p, t1,...,tn)

Parameters

p Any pointer variable.

t A case constant value representing tag values for the pointer
 variable p.

Description

The procedure new(p) allocates storage for a dynamic variable on the heap
and assigns its identifying value to the pointer variable p.

If the dynamic variable is a record with variants, then the tag may be
used to specify a case constant. This constant determines the amount of
storage allocated. For nested variants, the values must be listed
contiguously and in order of their declaration. The procedure call does
not assign the specified tag values to the tag fields of the dynamic
variable.

If new is called for a record with variants and no case constants are
specified, the compiler determines storage by the size of the fixed part
plus the size of the largest variant.

NOTE You cannot use an entire dynamic record variable allocated with one
 or more case constants as an actual parameter, or in an assignment
 statement.

Note that the pointer variable may be a component of a packed structure.
Pointer dereferencing accesses the actual values stored in a dynamic
variable on the heap.

Example

 PROGRAM show_new (output);

 TYPE
 marital_status = (single, engaged, married, widowed, divorced);
 year = 1900..2100;
 ptr = ^person_info;
 person_info = RECORD
 name: string[25];
 birdate: year;
 next_person: ptr;
 CASE status: marital_status OF
 married..divorced: (when: year;
 CASE has_kids: Boolean OF
 true: (how_many: 1..50);
 false: ();
);
 engaged: (date: year);
 single : ();
 END;

 VAR
 p : ptr;

 BEGIN { Various legal calls of new. }
 .
 .
 new(p); { Allocates record of the largest size. }

9- 3

 .
 .
 new(p,engaged); { Allocates record with variant engaged.}
 .
 .
 new(p,married); { Allocates record with variant married.}
 .
 .
 new(p,widowed,false); { Allocates record with variants widowed
 . and false.}
 .
 END.

dispose

Usage

 dispose (p)
 dispose (p, t1,...,tn)

Parameters

p A pointer expression that cannot be NIL or undefined.

t A case constant value whose value matches the case constant
 value specified in new.

Description

This procedure indicates that the storage allocated for the given dynamic
variable is no longer needed. It is an error if the argument to dispose
is NIL or undefined. After dispose, the system has closed any files in
the disposed storage and p is undefined.

If the case constant values are specified when calling new, it is an
error if the identical constants do not appear as the parameters in the
call to dispose. It is also an error if the pointer argument p
references a dynamic variable to which another reference exists. This
would be the case if it is a reference parameter, part of a reference
parameter, or another pointer to it exists elsewhere.

Using dispose may be equivalent to executing an empty statement. For
more details, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, or the
compiler options "HEAP_COMPACT" and "HEAP_DISPOSE" .

Example

 PROGRAM show_dispose (output);

 TYPE
 marital_status = (single, engaged, married, widowed, divorced);
 year = 1900..2100;
 ptr = ^person_info;
 person_info = RECORD
 name: string[25];
 birdate: year;
 next_person: ptr;
 CASE status: marital_status OF
 married..divorced: (when: year;
 CASE has_kids: boolean OF
 true: (how_many:1..50);
 false: ();
);
 engaged: (date: year);
 single : ();
 END;

9- 4

 VAR
 p : ptr;

 BEGIN
 .
 .
 new(p); { Allocates largest variant. }
 .
 .
 dispose(p); { Deallocates record with largest variant. }
 .
 .
 new(p,engaged); { Allocates record with variant engaged. }
 .
 .
 dispose(p,engaged); { Deallocates record with variant engaged. }
 .
 .
 new(p,married,false); { Allocates record with variants married and false.}
 .
 dispose(p,married,true); { Error, case constants don't match new. }
 .
 .
 END.

mark

Usage

 mark (p)

Parameter

p A pointer variable.

Description

The procedure mark (p) marks the allocation state of the heap and sets the
value of p to specify that state. In other words, mark saves the
allocation state of the heap in p, which must not subsequently be altered
by assignment. If altered, the corresponding release cannot be
performed. mark is used with release.

Example

 PROGRAM show_markrelease;

 VAR
 w,x,y: ^integer;

 BEGIN
 .
 mark(w);
 .
 release(w); { Returns heap to state marked by w. }
 .
 mark(x);
 .
 mark(y);
 .
 release(x); { Returns heap to state marked by x. The }
 . { pointer y no longer marks a heap state. }
 END. { Release(y) is now an error. }

9- 5

release

Usage

 release (p)

Parameter

p A pointer variable that previously appeared as a parameter in
 a call to mark, and should not have been previously passed to
 release or altered by assignment.

Description

The procedure release (p) returns the heap to its allocation state when
mark was called with a parameter that has the value of p. This has the
effect of deallocating any heap variables allocated since the program
called mark. The system can then reallocate the released space. The
system automatically closes any files in the released area.

It is an error if p was not passed as a parameter to mark, or if it was
previously passed to release explicitly or implicitly. After release, p
is undefined.

Example

 PROGRAM show_markrelease;

 VAR
 w,x,y: ^integer;

 BEGIN
 .
 mark(w);
 .
 release(w); { Returns heap to state marked by w. }
 .
 mark(x);
 .
 mark(y);
 .
 release(x); { Returns heap to state marked by x. The }
 . { pointer y no longer marks a heap state. }
 END. { Release(y) is now an error. }

String Procedures

HP Pascal supports a number of string procedures that manipulate string
expressions, variables, or literals. A string expression may consist of
a string literal, a string variable, a string constant, a function result
that is a string, or an expression formed with the concatenation
operator.

Note that strings must be initialized just like any other variable. The
string procedures are setstrlen, strappend, strdelete, strinsert,
strmove, strread, and strwrite. These procedures are described in the
following pages.

setstrlen

Usage

 setstrlen (s, e)

Parameters

s A string variable.

9- 6

e An integer expression. The value of e must not be greater
 than the maximum length of s.

Description

The procedure setstrlen (s, e) sets the current length of s to e without
modifying the contents of s.

If the new length of s is greater than the previous length of s, the
extra components become defined, but no value is given to them. No blank
filling occurs. If the new length of s is less than the previous length
of s, previously defined components beyond the new length become
undefined.

Example

 VAR
 alpha: string[80];

 BEGIN
 .
 alpha:= 'abcdef'; { strlen(alpha) = 6 }
 .
 setstrlen(alpha,2*strlen(alpha)); { Doubles current length }
 . { of alpha. Alpha[7] }
 . { through alpha[12] have }
 . { unpredictable values. }
 .
 setstrlen(alpha,2) { Alpha[3] through }
 . { alpha[80] not undefined.}
 END.

strappend

Usage

 strappend (s1, s2)

Parameters

s1 A string variable.

s2 A string expression whose length must be less than the
 difference between the maximum and actual length of the string
 variable s1 .

Description

The procedure strappend (s1, s2) appends string s2 to s1 . It is an error
if the strlen of s2 is greater than strmax (s1) -strlen (s1) . That is, it
cannot exceed the number of characters left to fill in s1 . The current
length of s1 is updated to strlen (s1) +strlen (s2) .

Example

 VAR
 message: string[132];

 BEGIN
 .
 message:= 'Now hear ';
 strappend(message,'this!'); { message is 'Now hear this!' }
 .
 END.

9- 7

strdelete

Usage

 strdelete (s, p, n)

Parameters

s A string variable.

p An integer expression representing the starting index of the
 deletion.

n An integer expression representing the number of characters to
 be deleted.

Description

The procedure strdelete (s, p, n) deletes n characters from s starting at
component s [p] , and the current length of s is updated to the length
of s-n . It is an error if n+p-1 is greater than the current length of s.

Example

 VAR
 uncensored, censored: string[80];

 BEGIN
 .
 uncensored:= 'Attack at 6 a.m.!';
 strdelete(uncensored,7,strlen(uncensored)-7);

 censored:= uncensored; { censored is 'Attack!'. }
 .
 .
 END.

strinsert

Usage

 strinsert (s1, s2, p)

Parameters

s1 A string expression.

s2 A string variable.

p An integer or an integer expression representing the offset in
s2 where insertion begins.

Description

The procedure strinsert (s1, s2, p) inserts string s1 into s2 starting at
s2 [p] . Initially, s2 must be at least p -1 characters in length, or it
is an error. The resulting string may not exceed strmax (s2) . The
current length of s2 is updated to strlen (s1) + strlen (s2) .

Example

 VAR
 remark: string[80];

 BEGIN
 .
 remark:= 'There is missing!';
 strinsert(' something',remark,9);{ remark is 'There is something missing! }

9- 8

 .
 END.

strmove

Usage

 strmove (n, s1, p1, s2, p2)

Parameters

n An integer expression indicating the number of characters to
 be copied.

s1 A string expression or PAC variable.

p1 An integer expression indicating the index in s1 from which
 copying starts.

s2 A string or PAC variable.

p2 An integer expression indicating the index in s2 where copying
 starts.

Description

The procedure strmove (n, s1, p1, s2, p2) copies n characters from s1 ,
starting at s1[p1] , to s2 , starting at s2[p2] . The string length of s2
is increased, if needed, to (p2+n -1) if (p2+n -1) > strlen (s2) . If p2
equals strlen (s2) +1, strmove is equivalent to appending a subset of s1 to
s2 . It is an error if p2 > strlen (s2) +1. The value (p1+n -1) must not
exceed strlen(s1).

The strmove procedure may be used to convert PAC's to strings and vice
versa. It is also a way of manipulating subsets of PAC's.

NOTE The strmove procedure should not be used to move data into an
 uninitialized variable, regardless of type.

NOTE The strmove procedure is not appropriate for propagating characters
 within a string. Use the strrpt function or the fast_fill
 procedure instead.

Example

 VAR
 pac: PACKED ARRAY[1..15] OF char;
 s: string[80];

 BEGIN
 s:= '';
 pac:= 'Hewlett-Packard';
 strmove(15,pac,1,s,1); { Converts a PAC to a string. }
 END.

9- 9

strread

Usage

 strread (s, p, t, v)
 strread (s, p, t, v1,...,vn)

Parameters

s A string expression.

p An integer expression.

t An integer or integer subrange variable.

v A simple, string, or PAC variable. Any number of v parameters
 may appear separated by commas.

Description

The procedure strread (s, p, t, v) reads a value from s, starting at s [p
] , into the variable v. After the operation, the value of the variable
appearing as the t parameter will be the index of s immediately after the
index of the last component read into v.

S is treated as a single-line textfile. Strread (s, p, t, v) is analogous
to read (f, v) when f is a textfile of one line. Like read, strread
implicitly converts a sequence of characters from s into the types
integer, real, longreal, Boolean, enumerated, PAC, or string.

It is an error if strread attempts to read beyond the current length of
s.

The call:

 strread (s,p,t,v1,...,vn);

is equivalent to:

 strread (s,p,t,v1);
 strread (s,t,t,v2);
 .
 .
 strread (s,t,t,vn);

Example

 VAR
 s: string[80];
 p,t: 1..80;
 m,n: integer;
 BEGIN
 .
 s:= ' 12 564 ';
 .
 p:= 1;
 strread(s,p,t,m); { The value of m will be 12; }
 . { t will be 6. }
 .
 strread(s,t,t,n); { The value of n will be 564; }
 . { t will be 11. }
 END.

9- 10

strwrite

Usage

 strwrite (s, p, t, e)
 strwrite (s, p, t, e1,...,en)

Parameters

s A string variable.

p An integer expression.

t An integer or integer subrange variable.

e A simple or string expression, or a PAC variable. Any number
 of e parameters may appear separated by commas.

Description

The procedure strwrite (s, p, t, e) writes the value of e on s starting at
s [p] . After the operation, the value of the variable appearing as
the t parameter is the index of the component of s, immediately after the
last component of s that strwrite has accessed.

S is treated as a single-line textfile. Strwrite (s, p, t, e) is
analogous to write (f, e) when f is a one-line textfile. As with write,
strwrite also permits you to format the value of e as it is written to s
using the formatting conventions. The same default formatting values
hold for strwrite.

Strwrite may write into the middle of a string without affecting the
original length. It is an error if strwrite attempts to write beyond the
maximum length of s, or if p is greater than strlen (s) + 1. The current
length of s is updated if the current length is increased.

Example

 VAR
 s: string[80];
 p,t: 1..80;
 f,g: integer;

 BEGIN
 f:= 100;
 g:= 99;
 p:=1;
 s:=''; { empty string }
 .
 strwrite(s,p,t,f:3); { S is now '100'; t is 4 }
 strwrite(s,t,t,' ',g:2); { S is now '100 99'; t is 7. }
 .
 END.

String Functions

String functions may be used to manipulate string expressions, variables,
or literals. A string expression may consist of a string literal, a
string variable, a string constant, a function result that is a string,
or an expression formed with the concatenation operator.

Note that strings must be initialized just like any other variable. The
string functions and procedures assume that the string parameters contain
valid information. The string functions str, strlen, strltrim, strmax,
strpos, strrpt, or strrtrim, are defined by HP Pascal and are described
on subsequent pages.

9- 11

str

Usage

 str (s, p, e)

Arguments

s A string expression.

p An integer expression indicating the index of the starting
 character.

e An integer expression indicating the length of the substring.

Description

The function str (s, p, e) returns the portion of s which starts at s [p
] and is of length e. The result is type string, and may be used as a
string expression. It is an error if strlen (s) is less than p + (e -1).

Example

 VAR
 i: integer;
 wish_list: string[132];
 granted: string[5];

 BEGIN
 .
 i:= 13;
 wish_list:= 'wish1 wish2 wish3 wish4 wish5';
 granted:= str(wish_list,i,5); { Selects the 3rd wish. }
 { Granted is 'wish3'. }
 END.

strlen

Usage

 strlen (s)

Argument

s A string expression.

Description

The function strlen (s) returns the current length of the string or PAC
expression s. If s is not initialized, strlen (s) is undefined.

Example

 VAR
 ars, vita: string[132];
 b: boolean;

 BEGIN
 .
 ars:= 'HELLO';
 vita:= 'TO YOU';
 IF strlen(ars) > strlen(vita) THEN
 b:= true
 ELSE
 b:=false;
 .

9- 12

 writeln (strlen(ars):2,strlen(vita):2);
 END.

Output:

 5 6

strltrim

Usage

 strltrim (s)

Argument

s A string expression.

Description

The function strltrim (s) returns a string consisting of s trimmed of all
leading blanks. The function strrtrim trims trailing blanks.

Example

 VAR
 s: string[80];
 BEGIN
 .
 s:= ' abc';
 s:=strltrim(s); {s is now 'abc'}
 . {strlen(s) = 3 }
 END.

strmax

Usage

 strmax (s)

Argument

s A string variable.

Description

The function strmax (s) returns the maximum length of s. Strmax is useful
for finding the maximum length of VAR string parameters whose maximum is
not determined until run time.

Example

 VAR
 s: string[15];

 BEGIN
 s:= ' ABCDE ';
 IF strlen(s) = strmax(s) THEN
 BEGIN
 s:= strltrim(s);
 s:= strrtrim(s);
 END;

 writeln (s,strmax(s):3);
 .
 END.

Output:

9- 13

 ABCDE 15

strpos

Usage

 strpos (s1, s2)

Arguments

s1 A string expression.

s2 A string expression.

Description

The function strpos (s1, s2) returns the integer index of the position of
the first occurrence of s2 in s1 . If s2 is not found, zero is returned.
If the length of s2 is zero, the result is 1.

NOTE Some HP Pascal implementations have the order of the two parameters
 reversed. Also, your implementation may have a compiler option
 that reverses the order of parameters.

Example

 CONST
 separator = ' ';

 VAR
 i: integer;
 names: string[80];

 BEGIN
 .
 names:= 'Jon Jill Ruth Marnie Bob Joan Wendy';
 i:= strpos (names,separator); { i = 4 }
 IF i <> 0 THEN
 strdelete(names,1,i); { deletes first name }
 .
 i:= (strpos(names,'Ron')); { i = 0 }
 END

strrpt

Usage

 strrpt (s, n)

Arguments

s A string expression.

n An integer expression indicating the number of repetitions
 where n must be greater than or equal to zero.

Description

The function strrpt (s, n) returns a string composed of s repeated n
times. If n is 0, a zero-length string is returned.

9- 14

Example

 CONST
 one = '1';

 VAR
 b_num: string[12];

 BEGIN
 .
 b_num:= strrpt(one,strmax(b_num)); { b_num is '111111111111' }
 b_num:= strrpt ('a',10); { b_num is 'aaaaaaaaaa' }
 .
 END.

strrtrim

Usage

 strrtrim (s)

Argument

s A string expression.

Description

The function strrtrim (s) returns a string consisting of s trimmed of
trailing blanks. Leading blanks are stripped by the function strltrim.

Example

 VAR
 s: string[80];

 BEGIN
 .
 s:= 'abc ';
 .
 s:= strrtrim(s); { s is now 'abc' }
 . { strlen(s) = 3 }
 END.

Transfer Procedures

The transfer procedures supported by HP Pascal are pack and unpack . A
description of these procedures follows.

pack

Usage

 pack (a, i, z)

Parameters

a Any ARRAY [m..n] of t.

i An expression that is type compatible with the index of the
 non-packed array.

z Any PACKED ARRAY [u..v] of t.

Description

The standard procedure pack transfers data from unpacked arrays to packed
arrays. For example, assuming that a is an ARRAY[m..n] OF t and z is a

9- 15

PACKED ARRAY[u..v] of t; the procedure pack (a, i, z) assigns components
of the unpacked array a, starting at component i , to each component of
the packed array z.

Because all the components of z are assigned a value, the normalized
value of i must be less than or equal to the difference between the
lengths of a and z + 1; for example, i -m+1 <= (n-m) - (v-u) + 1.
Otherwise, it is an error when pack attempts to access a nonexistent
component of a.

The component types of arrays a and z must be type identical. The index
types of a and z, however, may be incompatible.

The call pack (a, i, z) is equivalent to:

 BEGIN
 k:= i;
 FOR j:= u TO v DO
 BEGIN
 z[j]:= a[k];
 IF j <> v THEN k:= succ(k);
 END;
 END;

where k and j are variables that are type compatible with the index type
of a and the index type of z, respectively.

Example

 PROGRAM show_pack (input,output);
 TYPE
 clothes = (hat, glove, shirt, tie, sock);

 VAR
 dis : ARRAY [1..10] OF clothes;
 box : PACKED ARRAY [1..5] of clothes;
 index: integer;
 .
 .

 BEGIN
 .
 .
 index:= 1;
 pack(dis,index,box); { After pack executes, box contains }
 . { the first 5 components of dis. }
 .
 index:= 8;
 pack(dis,index,box); { An error results when pack attempts }
 . { to access nonexistent 11th component }
 . { of dis. }
 END.

unpack

Usage

 unpack (z, a, i)

Parameters

z Any PACKED ARRAY [u..v] of t.

a Any ARRAY [m..n] of t.

i An expression that is type compatible with the index of the
 non-packed array.

9- 16

Description

This procedure transfers data from a packed array to an unpacked array.
For example, assuming that a is an ARRAY[m..n] OF t and z is a PACKED
ARRAY [u..v] OF t; the procedure unpack (z,a,i) successively assigns the
components of the packed array z , starting at component u, to the
components of the unpacked array a, starting at a [i] .

All the components of z are assigned. Also, the normalized value of i
must be less than or equal to the difference between the lengths of a and
z + 1; for example, i -m+1 <= (n-m) - (v-u) + 1. Otherwise, it is an
error when unpack attempts to index a beyond its upper bound.

The index types of a and z need not be compatible. The components of the
two arrays, however, must be type identical.

The call unpack (z,a,i) is equivalent to:

 BEGIN
 k:= i;
 FOR j:= u TO v DO
 BEGIN
 a[k]:= z[j];
 IF j <> v THEN k:= succ(k);
 END;
 END;

where k and j are variables that are type compatible with the indices of
a and z respectively.

Example

 PROGRAM show_unpack (input,output);

 TYPE
 suit_types = (casual, business, leisure, birthday);

 VAR
 suit : PACKED ARRAY [1..5] OF suit_types;
 kase : ARRAY [1..10] OF suit_types;
 i : integer;
 .
 .
 BEGIN
 .
 .
 i := 1;
 unpack(suit,kase,i); { After execution, the first 5 }
 . { components of kase contain the }
 . { value of suit. }
 .
 i := 7
 unpack(suit,kase,i); { An error results because unpack }
 . { attempts to assign a component of }
 . { suit to a component of kase which }
 . { is out of range. }
 END.

Program Control Procedures

The only program control procedures supported by HP Pascal are halt and
assert. The details of these procedures are given below.

halt

Usage

9- 17

 halt (n)
 halt

Parameter

n An integer expression that may be omitted.

Description

This procedure terminates the execution of the program. What this means
and what is done with the optional integer expression is implementation
defined. For more information, see the HP Pascal/iX Programmer's Guide
or the HP Pascal/HP-UX Programmer's Guide , depending on your
implementation.

Example

 halt
 halt(int_exp)

assert

The predefined procedure assert allows your program to test assumptions,
specify invariant conditions, and check data structure integrity.

Usage

 assert (b, i [, p])

Parameters

b A Boolean expression that assert evaluates. If its value is
true, the program executes the statement following the call to
assert . If its value is false, the program's action depends

 upon whether p is specified and whether the ASSERT_HALT
 compiler option is OFF or ON (see Figure 11-1).

 If the compiler can determine that b is a constant expression
 whose value is true , then it does not generate code for the
 call to assert .

i An integer expression. If the value of b is false and p is
 specified, procedure p is called with i as the actual value
 parameter. If b is false and p is not specified, the system
 issues a run-time error message that includes the value of i .

 A call to the predefined function statement_number is a useful
 integer expression for i . It returns the statement number (as
 shown on the compiler listing) for the statement from which it
 is called (in this case, the call to assert).

p The name of a procedure whose heading has the syntax

 PROCEDURE p (parameter_name : integer);

 If the value of b is false and p is specified, the system
 executes the call p(i) .

The default for the ASSERT_HALT compiler option is OFF (see Chapter 12
 for more information).

Example

 PROCEDURE my_assert (value : integer);
 BEGIN
 writeln('my_assert #', value);
 END;

9- 18

 PROCEDURE x (p : ptrtype; n : integer);
 BEGIN
 assert(p <> nil, 80101, my_assert);
 assert(n >= 0, 80102);
 END;

MPE V Migration Routines

baddress

Usage

 baddress (v)

Parameters

v A variable, procedure, or function.

Description

The function baddress(v) returns the byte address of v when v is a
variable name, and the entry point when v is a procedure or function
name. This variable may not be type file or a file type component of a
structured variable. Also, v cannot be a component of a packed
structure, except if it is a component of a PAC.

baddress is useful for calling certain intrinsics which require byte
addresses for parameters.

baddress returns an integer in the range minint..maxint .

NOTE [REV BEG]

baddress does not work correctly with the $OPTIMIZE compiler option
 for addresses of variables. Use type coercion and addr[REV END]
 instead. Refer to the HP Pascal/iX Programmer's Guide or to the HP

Pascal/HP-UX Programmer's Guide , depending on your implementation,
 for more information on optimizer assumptions.

Example

 TYPE
 rec_type = RECORD
 f1: integer;
 f2: boolean;
 f3: char;
 END;

 VAR
 n: integer;
 r: rec_type;
 p: ^rec_type;
 a: ARRAY [1..10] of 0..255;
 pac: PACKED ARRAY [1..10] OF char;
 pab: PACKED ARRAY [1..10] OF boolean;

Calls

 baddress(n)
 baddress(r)
 baddress(r.f3)
 baddress(p)

9- 19

 baddress(p^)
 baddress(p^.f3)
 baddress(a)
 baddress(a[4])
 baddress(pac)
 baddress(pac[2]) { Legal since component type is char. }
 baddress(pab)
 baddress(pab[2]) { Error. }

cmpbytes

Usage

 cmpbytes (s1 , s2 , l)

Parameters

s1 A PAC or string variable that contains a byte string to
 compare.

s2 A PAC or string variable that contains a byte string to
 compare.

l A shortint or bit16 expression that indicates the number of
 bytes to be compared.

Result

A shortint indicating the result of the comparison:

 0 : s1 is less than s2 .
 1 : s1 is greater than s2 .
 2 : s1 is equal to s2 .

Description

The function cmpbytes compares the s1 and s2 byte strings for l bytes.
The result is a shortint value indicating that the s1 byte string is less
than, greater than, or equal to the s2 byte string.

NOTE This feature requires the compiler option STANDARD_LEVEL
 'EXT_MODCAL'.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 program asmb005 (output)
 type
 pac20 = packed array[1..20] of char;
 var
 pac,pac1 : pac20;
 i : integer;
 s : shortint;
 c,m : char;
 b : boolean;
 result : shortint;

 begin

 s := 4;
 pac := 'abcd';
 pac1 := 'abcd';
 result := cmpbytes(pac,pac1,s);
 writeln(result); {2}

9- 20

 pac := 'aacd';
 pac1 := 'abcd';
 result := cmpbytes(pac,pac1,s);
 writeln(result); {0}

 pac := 'abcd';
 pac1 ;= 'aacd';
 result := cmpbytes(pac,pac1,s);
 writeln(result); {1}

 end.

movebyteswhile

Usage

 movebyteswhile (s, t, a, n, u, p)

Parameter

s A PAC or string variable that contains the source string to be
 copied.

t A PAC or string variable to which the source is to be copied.

a An ordinal constant expression whose ordinal value is 0 or 1,
 indicating whether the copy is to continue while the
 characters are alphabetic (1).

n An ordinal constant expression whose ordinal value is 0 or 1,
 indicating whether the copy is to continue while the
 characters are numeric (1).

u An ordinal constant expression whose ordinal value is 0 or 1,
 indicating whether the copied characters remain the same (0),
 or whether all lowercase characters are upshifted (1).

p A shortint variable which will indicate the index in the
 source array where the test condition, alpha or numeric,
 failed.

Description

The procedure movebyteswhile moves a byte from the source array to the
target array if the byte meets the test conditions set by a or n. Once
the condition fails, the p of the byte is returned. If u is set, each
alphabetic character moved to the target array is upshifted. Either or
both of a and n must evaluate to 1. If neither evaluates to 1, then the
results are unpredictable.

The length field of a target string variable is not updated.

NOTE This feature requires the compiler option STANDARD_LEVEL
 'EXT_MODCAL'.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 program asmb005(output);
 type
 pac20 = packed array[1..20] of char;
 const
 apac = pac20[20 of ' '];
 var

9- 21

 pac,pac1 : pac20
 s : shortint;
 result : shortint;

 begin

 pac1 := apac;
 pac := 'thisoisoaotest56789 ';
 movebyteswhile(pac, pac1, true, true, true, s);
 writeln (s); {20}
 writeln('"',pac1,'"'); {"THISOISOAOTEST56789 ")

 pac1 := apac;
 movebyteswhile(pac, pac1, #1, true, false, s);
 writeln (s); {20}
 writeln('"',pac1,'"'); {"thisoisoaotest56789 "}

 pac1 := apac;
 movebyteswhile(pac, pac1, true, #0, false, s);
 writeln (s); {15}
 writeln('"',pac1,'"'); {"thisoisoaotest "}

 end.

scanuntil

Usage

 scanuntil (s, t1, t2, p)

Parameters

s A PAC or string variable that contains the source string to be
 scanned.

t1 An expression whose value is of any char type.

t2 An expression whose value is of any char type.

p A shortint variable which will indicate the position in the
 source byte string where t1 or t2 was found.

Result A boolean value.

 true : indicates t2 was found.
 false : indicates t1 was found.

Description

The function scanuntil scans the source byte string until either the t1
or t2 is found. The position at which the t1 or t2 was found is
returned. The result is a Boolean value indicating whether t2 or t1 was
found.

NOTE This feature requires the compiler option STANDARD_LEVEL
 'EXT_MODCAL'.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 program asmb005(output);
 type
 pac20 = packed array[1..20] of char;
 var

9- 22

 pac : pac20;
 s : shortint;
 c,m : char;
 b : boolean;

 begin

 pac := 'thisoisoaotest56789 ';
 c := '6';
 m := ' ';
 b := scanuntil(pac, c, m, s);
 writeln (s); {16}
 writeln (b); {false}

 b := scanuntil(pac, 'x', m, s);
 writeln (s); {20}
 writeln (b); {true}

 b := scanuntil(pac, #101, ' ', s);
 writeln (s); {12}
 writeln (b); {false}

 end.

scanwhile

Usage

 scanwhile (s, t1, t2, p)

Parameters

s A PAC or string variable that contains the source string to be
 scanned.

t1 An expression whose value is of any char type.

t2 An expression whose value is of any char type.

p A shortint variable into which an index is returned which
 indicates at which position in the source array the t2 was
 found or the t1 was not found.

Result

A boolean value:

 true : indicates t2 was found.
 false : indicates t1 was not found.

Description

The function scanwhile scans the source byte string until a byte is found
that does not match the t1 . The position where the match failed is
returned. The result is a boolean value indicating whether t2 was found
or t1 was not found.

NOTE This feature requires the compiler option STANDARD_LEVEL
 'EXT_MODCAL'.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 program asmb005(output);

9- 23

 type
 pac20 = packed array[1..20] of char;
 var
 pac : pac20;
 s : shortint;
 c,m : char;
 b : boolean

 begin

 pac := 'aaaaaaaaabaaaaaaaaaa';
 c := 'a';
 m := 'c';
 b := scanwhile(pac, c, m, s);
 writeln (s); {10}
 writeln(b); {false}

 b := scanwhile(pac, 'a', m, s);
 writeln (s); {10}
 writeln(b); {false}

 b := scanwhile(pac,#98 ,'a', s);
 writeln (s); {1}
 writeln(b); {true}

 end.

waddress

Usage

 waddress (i)

Parameters

i The name of a variable, procedure, or function.

Description

The function waddress(i) returns the byte address of i when i is a
variable name, and the entry point when it is a procedure or function
name. This variable cannot be type file or a file type component of a
structured variable. Also, i cannot be a component of a packed structure
as an argument, except when this component is an element of a PAC.

The waddress function is useful for calling copy text from baddress .

waddress returns an integer in the range minint..maxint .

NOTE [REV BEG]

waddress does not work correctly with the $OPTIMIZE compiler option
 for addresses of variables. Use type coercion[REV END] and addr
 instead. Refer to the HP Pascal/iX Programmer's Guide or the HP

Pascal/HP-UX Programmer's Guide , depending on your implementation,
 for more information on optimizer assumption.

 TYPE
 rec_type = RECORD
 f1: integer;
 f2: boolean;
 END;

 VAR
 n: integer;

9- 24

 r: rec_type;
 p: ^rec_type;
 a: ARRAY [1..10] OF integer;
 pac: PACKED ARRAY [1..10] OF char;
 pab: PACKED ARRAY [1..10] OF boolean;
 PROCEDURE pro;
 BEGIN
 END;
 FUNCTION f: integer;
 BEGIN
 END;

Calls

 waddress(n)
 waddress(r)
 waddress(r.f2)
 waddress(p)
 waddress(p^)
 waddress(p^.f2)
 waddress(a)
 waddress(a[4])
 waddress(pac)
 waddress(pac[3]) { Legal since component type is char. }
 waddress(pab)
 waddress(pab[3]) { Error. }
 waddress(pro)
 waddress(f)

Arithmetic Functions

The eight standard arithmetic functions in HP Pascal are abs, arctan,
cos, exp, ln, sin, sqr, and sqrt. Details about each of these functions
are given in the following pages.

abs

Usage

 abs (x)

Argument

x A numeric expression.

Description

The abs function computes the absolute value of its argument, which must
be an expression with a numeric type. The type of the result is the same
as the type of the numeric expression. Note that it may be an error to
take the absolute value of minint.

Example

Input Result

 abs(-13) 13 { integer result }
 abs(-7.11) 7.110000E+00
 abs (true) error { not a numeric type }

arctan

Usage

 arctan (x)

Argument

9- 25

x A numeric expression.

Description

The arctan function returns the principal value of the angle that has the
tangent equal to the argument. The result is in radians within the range
-pi/2..pi/2. This function returns a real for sub-integer, integer, or
real arguments, and longreal for longreal or super-integer arguments.
The value used for pi is implementation dependent.

Example

Input Result

 arctan(num_exp)
 arctan(2) 1.107149E+00
 arctan(-4.002) -1.32594E+00

cos

Usage

 cos (x)

Argument

x A numeric expression.

Description

The cos function returns the cosine of the angle represented by its
argument that is interpreted in radians. This function returns a real
for sub-integer, integer, or real arguments, and longreal for longreal or
super-integer arguments. The range of the returned value is -1.0 through
+1.0.

Example

Input Result

 cos(x_rad)
 cos(1.62) -4.91838E-02

exp

Usage

 exp (x)

Argument

x A numeric expression.

Description

The exp real function raises e to the power of the argument. This
function returns a real for sub-integer, integer, or real arguments, and
longreal for longreal or super-integer arguments. The value used for
Naperian e is implementation dependent.

Example

Input Result

 exp(3) 2.008554E+01
 exp(8.8E-3) 1.008839E+00
 exp(8.8L-3) 1.00883883382898L+00

9- 26

ln

Usage

 ln (x)

Argument

x Any positive numeric expression.

Description

The ln function returns the natural logarithm (base e) of the argument.
This function returns a real for sub-integer, integer, or real arguments,
and longreal for longreal or super-integer arguments. It is an error if
x is 0 or less than 0. The value used for Naperian e is implementation
dependent.

Example

Input Result

 ln(43) 3.761200E+00
 ln(2.121) 7.518877E-01
 ln(0) { error }

sin

Usage

 sin (x)

Argument

x A numeric expression.

Description

The sin function returns the sine of the angle interpreted in radians
represented by its argument. This function returns a real for
sub-integer, integer, or real arguments, and longreal for longreal or
super-integer arguments. Note that the argument can be any numeric
value.

Example

Input Result

 sin(rad)
 sin(0.024) 2.399769E-02
 sin(90) 8.93997E-01

sqr

Usage

 sqr (x)

Argument

x Any numeric expression.

Description

The sqr function computes the square of its argument that must be an
expression with a numeric type. The type of the result is the same as
the base type of the numeric expression.

9- 27

Example

Input Result

 sqr(3) 9
 sqr(1.198E3) 1.435204E+06.
 sqr(-5) 25
 sqr(maxint) { error }

sqrt

Usage

 sqrt (x)

Argument

x Any positive numeric expression.

Description

The sqrt function computes the square root of its argument, which must be
an expression with a numeric type. It is an error if the argument is
less than 0. This function returns a real for sub-integer, integer, or
real arguments, and longreal for longreal or super-integer arguments.

Example

Input Result

 sqrt(64) 8.000000E+00
 sqrt(13.5E12) 3.674235E+06
 sqrt(0) 0.000000E+00
 sqrt(-5) { error }

Predicate Functions

There are three predicate functions in HP Pascal. They are odd, eof, and
eoln. The functions eof and eoln are described in Chapter 10 of this
manual.

odd

Usage

 odd (x)

Argument

x Any integer expression.

Description

This function returns true if the integer expression is odd, and false
otherwise.

Example

Input Result

 odd(int_var) depends on value of int_var
 odd(ord(color)) depends on value of color
 odd(2 + 4) false
 odd(-32767) true
 odd(32768) false
 odd(0) false

9- 28

Numeric Conversion Functions

binary, hex, and octal are the three numeric conversion functions
supported in HP Pascal.

binary, hex, and octal return an integer value. Therefore, all bits must
be specified if a negative result is desired. Alternatively, the
positive representation may be negated.

A description of each of these functions follows.

binary

Usage

 binary (s)

Argument

s Any string or PAC expression whose range is implementation
 dependent.

Description

The binary function converts a string or PAC expression that is
interpreted as a binary value to an integer. Leading and trailing blanks
are ignored in the argument. It is an error if any character is not a
legal binary digit; for example, 0..1.

Example

Input Result

 binary(strng) depends on the value of strng
 binary('10011') 19
 -binary('10011') -19

NOTE If your particular implementation uses 32-bit 2's complement
 notation, the following example also works:

 binary('11111111111111111111111111101101') = -19

hex

Usage

 hex (s)

Argument

s Any string or PAC expression whose range is implementation
 dependent.

Description

The hex function converts a string or PAC expression, that is interpreted
as a hexadecimal value to an integer. Leading and trailing blanks are
ignored. It is an error if any character is not a legal hex digit; for
example, 0..9, 'A'..'F', or 'a'..'f'.

9- 29

Example

Input Result

 hex(strng) depends on the value of strng
 hex('FF') 255
 -hex('FF') -255

NOTE If a particular implementation uses 32-bit 2's complement notation,
 the following example also works:

 hex('FFFFFF01') = -255

octal

Usage

 octal (s)

Argument

s Any string or PAC expression whose range is implementation
 dependent.

Description

The octal function converts a string or PAC expression that is
interpreted as an octal value to an integer. Leading and trailing blanks
in the argument are ignored. It is an error if any other character is
not a legal octal digit; for example, 0..7.

Example

Input Result

 octal(strng) depends on the value of strng
 octal('77') 63
 -octal('77') -63

NOTE If your particular implementation uses 32-bit 2's complement
 notation, the following example also works:

 octal('37777777701') -63

Transfer Functions

Round and trunc are the transfer functions found in HP Pascal. These
functions are described on the next two pages.

round

Usage

 round (x)

Argument

x Any real or longreal expression.

9- 30

Description

The round function returns the argument rounded to the nearest integer.
If x is positive or zero, then round (x) is equivalent to trunc(x + 0.5);
otherwise, round (x) is equivalent to trunc(x - 0.5). It is an error if
the result is greater than maxint or less than minint .

Example

Input Result

 round(3.1+2.4) 6
 round(3.1) 3
 round(-6.4) -6
 round(-4.6) -5
 round(1.5) 2

trunc

Usage

 trunc (x)

Argument

x Any real or longreal expression.

Description

The trunc function returns the integer part of a real or longreal
expression that is the integral part of its argument. The absolute value
of the result is not greater than the absolute value of x. It is an
error if the result is greater than maxint or less than minint .

Example

Input Result

 trunc(real_exp) depends on the value of real_exp
 trunc(5.61) 5
 trunc(-3.38) -3
 trunc(18.999) 18

Ordinal Functions

The ordinal functions found in HP Pascal are chr, ord, pred, and succ.
Each of these functions are discussed on the next few pages.

chr

Usage

 chr (x)

Argument

x An integer expression in the range 0..255.

Description

The chr function converts an integer numeric value into an ASCII
character by returning the character value, if any, whose ordinal number
is equal to the value of its argument. Note that it is an error if the
argument is not within the range 0..255.

9- 31

Example

Input Result

 chr(x) depends on the value of x
 chr(63) '?'
 chr(82) 'R'
 chr(13) (carriage return)

ord

Usage

 ord (x)

Argument

x An ordinal expression.

Description

The function ord (x) returns the integer representing the ordinal
associated with the value of x. If x is an integer, x itself is
returned. If x is type char, the result is an integer value between 0
and 255 determined by the ASCII order sequence. If x is any other
ordinal type (such as a predefined or user-defined enumerated type), then
the result is the ordinal number determined by mapping the values of the
type onto consecutive non-negative integers star ting at zero. For
example, since the standard type Boolean is predefined as:

 TYPE Boolean = (false,true)

The call ord (false) returns 0, and the call ord (true) returns 1.

For any character ch, the following is true:

 chr (ord (ch)) = ch

It is an error if the result is greater than maxint or less than minint .

Example

Input Result

 ord(ord_exp) depends on the value of ord_exp
 ord('a') 97
 ord('A') 65
 ord(-1) -1
 ord(yellow) 2 {TYPE color=(red,blue,yellow)}
 ord(red) 0

NOTE Taking the ORD of short pointer type expressions is permitted at
 the Standard_Level EXT_MODCAL.

pred

Usage

 pred (n)

Argument

x Any ordinal expression.

9- 32

Description

The pred function returns the value whose ordinal number is one less than
the ordinal number of the argument. The type of the result is identical
to the type of the argument. pred(x) must exist.

Example

Input Result

 pred(ord_var) depends on the value of ord_var
 pred(1) 0
 pred(-5) -6
 pred('B') 'A'
 pred(true) false
 pred(false) {error}

succ

 succ (x)

Argument

x Any ordinal expression.

Description

The succ function returns the value whose ordinal number is one greater
than the ordinal number of the argument. The type of the result is
identical with the type of the argument. It is an error if succ (x) does
not exist.

Example

Input Result

 succ(ord('b')) 99
 succ(1) 2
 succ(-5) -4
 succ('a') 'b'
 succ(false) true
 succ(true) { error }

10- 1

Chapter 10 Input and Output

Files are the means by which a program receives input and produces
output. A file is a sequence of components of the same type. This may
be any type except a file type or a structured type with a file type
component.

Logical files are files declared in a Pascal program. Physical files are
files that exist independently of a program and are controlled by the
operating system. Logical and physical files are associated so that a
program manipulates data objects external to itself.

The components of a file are indexed starting at component 1. Each file
has a current component and a buffer variable whose contents, if defined,
are accessible using a file buffer (^) selector. The standard procedure
read(f,x) copies the contents of the current component into x and
advances the current position to the next component. The procedure
write(f,x) copies x into the current component and, like read, advances
the current position.

The standard procedures reset, rewrite, append, or open are used to open
a file for input or output. Reset opens a file in the input state so
that writing is prohibited; rewrite and append open a file in the output
state so that reading is prohibited; and open opens a file in the direct
state so that both reading and writing are legal.

All files are automatically closed on exit from the block in which they
are declared whether by a normal exit or a nonlocal GOTO or escape.
Files allocated on the heap are automatically closed when the file or
structure containing the file is disposed, or the area in which the file
resides is released. All files are closed at the end of the program.

Files opened with reset, rewrite, or append are sequential files . In
sequential files, the current position advances only one component at a
time. Files opened with open are direct access files. The current
position may be relocated anywhere in the file using the procedure seek.
Direct access files have a maximum number of components determinable by
the standard function maxpos. The maximum number of components of a
sequential file, on the other hand, is not determinable with an HP Pascal
function.

Textfiles are special predefined sequential files with char type
components. End-of-line markers are used to substructure textfiles into
lines. The standard procedure writeln creates these markers. The
standard files input and output are textfiles. Textfiles cannot be
opened for direct access.

Table 10-1 lists each HP Pascal file procedure or function together
with a brief description of its action. The third column of the table
indicates the permissible categories of files that a procedure or
function may reference.

10- 2

Table 10-1. File Procedures and Functions

Procedure or	Action	Permissible Files
Function		

append	Opens file in output state. Current position is	any
	after last component and eof is true.	

associate	Associates a logical file with an open physical	any
	file.	

close	Closes a file.	any

disassociate	Disassociates a logical file from it's associated	any
	open physical file.	

eof	Returns true if file opened in output state, if no	any
	component exists for sequential input, or if	
	current position in direct access file is greater	
	than lastpos.	

eoln	Returns true if the current position of a text file	input textfiles
	is at a line marker.	

get	Allows assignment of current component to buffer	input or direct
	and, in some cases, advances current position.	files

lastpos	Returns index of highest written component of	direct access
	direct access file.	files

linepos	Returns number of characters read from or written	textfiles
	to a textfile since the last line marker.	

maxpos	Returns maxint or the maximum component possible to	direct access
	read or write. Check implementation.	files

open	Opens file in direct access state. Current	any file except a
	position is 1 and eof is false. Eof is true if	textfile
	file is empty.	

overprint	A form of write which causes the next line of a	output textfiles
	textfile to print over the current line.	

page	Causes skip to top of new page when a textfile is	output textfiles
	printed.	

10- 3

Table 10-1. File Procedures and Functions (cont.) ------------------------------

position	Returns integer indicating the current component of	any file except a
	a non-text file.	textfile

Procedure or	Action	Permissible Files
Function		

prompt	A form of write which assures textfile buffers have	output textfiles
	been written to the device. No line marker is	
	written.	

put	Assigns the value of the buffer variable to the	output or direct
	current component and advances the current	access files
	position.	

read	Copies current component into specified variable	input or direct
	parameter and advances current position.	access files

readdir	Moves current position of a direct access file to	direct access
	designated component and then performs read.	files

readln	Performs read on textfile and then skips to next	input textfiles
	line.	

reset	Opens file in input state. Current position is 1.	any

rewrite	Opens file in output state. Current position is 1	any
	and eof is true. Old components discarded.	

seek	Places current position of direct access file at	direct access
	specified component number.	files

write	Assigns parameter value to current file component	output or direct
	and advances current position.	access files

writedir	Advances current position in direct access file to	direct access
	designated component and performs a write.	files

writeln	Assigns parameter value to current textfile	output textfiles
	component, appends a line marker and advances	
	current position.	

10- 4

I/O Standard Procedures and Functions

append

Usage

 append (f)
 append (f, s)
 append (f, s, t)

Parameters

f A variable of type file. The parameter f may not be omitted.

s The name of a physical file associated with f. This can be a string
 or PAC expression whose range is implementation defined.

t A string or PAC expression whose value is implementation dependent.
 Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX

Programmer's Guide , depending on your implementation, for more
 information. This parameter specifies carriage control and file
 access.

Description

The procedure append (f) opens file f in the output state, and places the
current position immediately after the last component. All previous
contents of f remain unchanged. The eof (f) function returns true, and
the file buffer f^ is undefined. Data may now be written on f .

If f is already open, append closes and then reopens it. If a file name
is specified, the system closes any physical file previously associated
with f .

When f does not appear as a program parameter and s is not specified, the
system maintains any previous association of a physical file with f . If
there is no such association, it opens a temporary nameless file. This
file cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical file association changes. For more
information, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation.

Example

 append(file_var)
 append(file_var,phy_file_spec)
 append(file_var,phy_file_spec,opt_str)
 append(fvar,'SHORTFIL')

Illustration

Suppose examp_file is a closed logical file of char containing three
components. In order to open it and write additional material without
disturbing its contents, append is called.

10- 5

associate

Usage

 associate (f, num, option_str)

Parameters

f A variable of type file.

num The system-provided file number of a previously opened
 file.

option_str Must be one of the following:

 READ associate to sequential access file
 with read access.

 WRITE associate to sequential access file
 with write access.

 READ, DIRECT associate to direct access file with
 read access.

 WRITE, DIRECT associate to direct access file with
 write access.

 READ, WRITE, DIRECT associate to direct access file with
 read/write access.

 DIRECT same as READ, WRITE, DIRECT.

 NOREWIND associate to a file without changing
 the current file position.

Description

The procedure associate (f,num,option_str) allows the opened file num to
be used with Pascal input/output routines through f . The file must
already be open as the result of a direct call to an operating system
routine or as the result of a call to a non-Pascal procedure. The file
cannot be opened as a result of a Pascal append, associate, open, reset,
or rewrite. Therefore, the Pascal function fnum cannot be used to
determine the file number of a file opened by Pascal. The file must also
be open.

One of the above-mentioned combinations must appear in option_str . It is
also an error to specify read or write access if the physical file is not
opened for read or write access, respectively.

Other options legal for opening a file, such as those in the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , are
ignored.

Associate places the current file position at the first component of the
file unless NOREWIND is specified. The contents of f , if any, are
undisturbed, and f is undefined. If the option_str parameter specifies
WRITE, then eof(f) returns true, even though the actual end of file
remains at the end of any previously existing data in the file. If the
option_str parameter specifies read access for a sequential file or read
or write access for a direct access file, eof(f) returns false after the
call to associate. If the file is empty and is associated to read
access, a subsequent read causes an error.

Example

 associate(file_var,file_number,option_str)

Illustration

Suppose examp_file is an opened logical file of char with three
components. To read sequentially from examp_file, we call associate:

10- 6

close

Usage

 close (f)
 close (f, t)

Parameters

f A variable of type file. f may not be omitted.

t Options string that may be a string or PAC expression whose value is
 implementation dependent. Refer to the HP Pascal/iX Programmer's

Guide or the HP Pascal/HP-UX Programmer's Guide , depending on your
 implementation, for more information.

Description

The procedure close(f) closes the file f so that it is no longer
accessible. After being closed, any references to the file f , except
through one of the file-open routines, results in an error, and f is not
associated with any physical file.

When closing a direct access file, the last component of the file is the
highest-indexed component ever written to the file (lastpos(f)). The
value of maxpos for the file, however, remains unchanged. Once a file is
closed, it may be reopened.

The options string specifies the disposition of any physical file
associated with the file. The value is implementation defined. The
compiler ignores leading and trailing blanks and considers upper and
lower case equivalent. If no options string is supplied, the file
retains its previous (original) status.

Example

 close(fil_var)
 close(fil_var,opt_str)

disassociate

Usage

 disassociate (f)

Parameter

f A variable of type file.

Description

This procedure removes the logical-physical file association that was
previously created with the associate procedure. Consequently, the file
f is no longer available to Pascal input and output routines.

10- 7

Normally a file is closed upon exit from the block in which it is
declared. A file that has been disassociated will not be closed upon
exit, and must be explicitly closed with a direct call to the operating
system routines.

The disassociate procedure is useful when a file is passed to a Pascal
routine and must remain open when control returns to the routine that
passed the procedure to Pascal.

Example

 disassociate (file_var)

eof

Usage

 eof (f)
 eof

Parameter

f A variable of type file that must be open. If f is omitted, the
 system uses the standard file input .

Description

This Boolean function returns true if the end of a file is reached. If
the file f is open, the Boolean function eof(f) returns true when f is in
the output state, when f is in the direct access state, and its current
position is greater than the highest-indexed component ever written to f ,
or when no component remains for sequential input. Otherwise, eof(f)
returns false. If false, the next component is placed in the buffer
variable. If f is omitted, the system uses the standard file input .

When reading non-character values, such as integers or reals, from a
textfile, eof may remain false even if no other value of that type exists
in the file. This can occur if the remaining components are blanks; for
example, eoln is still false.

Example

 eof
 eof(file_var)

eoln

Usage

 eoln (f)
 eoln

Parameter

f A variable of type TEXT opened in the input state. If f is omitted,
 the system uses the standard file input .

Description

This Boolean function returns true when the end of a line is reached in a
textfile. This happens when the current position of textfile f is at an
end-of-line marker. The function references the buffer variable f ^,
possibly causing an input operation to occur. For example, after readln,
a call to eoln places the first character of the new line in the buffer
variable. If f is omitted, the system uses the standard file input .

Example

 eoln
 eoln(text_file)

get

Usage

 get (f)
 get

10- 8

Parameter

f A variable of type file opened in input or direct access state. If
f is omitted, the system uses the standard file input .

Description

The procedure get(f) advances the current file position and causes a
subsequent reference to the buffer variable f^ to actually load the
buffer with the current component. This definition of get is known as
the deferred get.

It is an error if f is in the output state or if eof(f) is true prior to
the call to get.

If a file is opened with open, a get must be performed to load the buffer
variable with valid data. However, if a file is opened with reset, the
buffer variable contains valid data and a get should not be performed
until the second component is accessed. If get is called after read, one
file component is skipped because read concludes with a get operation.

Example

 get(file_var)

Illustration

Suppose examp_file is a logical file of char with three components which
has just been opened in the direct state. The current position is the
first component and examp_file^ is undefined. To inspect the first
component, get is called.

The current position is unchanged. Now, however, a reference to
examp_file^ loads the first component into the buffer. We assign the
buffer to a variable.

10- 9

.

lastpos

Usage

 lastpos (f)

Parameter

f A variable of type file opened in the direct access state. f must
 be specified.

Description

The function lastpos(f) returns the integer index of the last component
of f that has been accessed while the program has been running, or in the
life of the file. It is an error if f is not opened as a direct access
file.

Example

 i:=lastpos(file_var) { File_var is the name of a file type variable }

linepos

Usage

 linepos (f)

Parameter

f A textfile variable that must be opened. f may not be omitted. The
 program must specify the standard files input and output by name.

Description

The function linepos(f) returns the integer number of characters read
from or written to the textfile f since the last end-of-line marker.
This does not include the character in the buffer variable f ^. The
result is zero after reading a line marker, or immediately after a call
to readln, writeln, prompt, or overprint.

Example

 i:=linepos(text_file)

maxpos

Usage

 maxpos (f)

10- 10

Parameter

f A file variable that must be opened in the direct access state where
f may not be omitted.

Description

The function maxpos(f) returns the integer index of the last component of
f that the program could possibly access. An error occurs if f is not
opened as a direct access file. Note that the value returned is
implementation defined.

On implementations that allow direct access files to be extended, maxpos
returns the value of maxint or the maximum possible number.

Example

 i:=maxpos(file_var) { File_var is the name of a file type variable }

open

Usage

 open (f)
 open (f, s)
 open(f, s, t)

Parameters

f A file variable that is not a textfile.

s The name of a physical file that the system associates with f .

t A string or PAC expression whose value is implementation dependent.
 See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX

Programmer's Guide, depending on your implementation, for more
 details.

Description

The procedure open(f) opens f in the direct state and places the current
position at the beginning of the file. The function eof returns false,
unless the file is empty. The buffer variable f^ is undefined.

After a call to open, f is said to be a direct access file. Data may be
read or written using the procedures read, write, readdir, writedir, get
or put. The procedure seek and the functions lastpos and maxpos are also
legal. eof (f) becomes true when the current position is greater than the
highest-indexed component ever written to f .

Direct access files have a maximum number of components. The function
maxpos returns this number. The lastpos function returns the index of
the highest-written component of a direct access file.

A textfile cannot be opened for direct access since its format is
incompatible with direct access operations.

When the physical file specifier parameter is specified, the system
closes any physical file previously associated with f .

When f does not appear as a program parameter and s is not specified, the
system maintains any previous association of a physical file with f . If
there is no such association, it opens a temporary, nameless file. This
file cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical file association changes. For more
information, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation.

Example

 open(file_var)
 open(file_var,phys_file_string)
 open(file_var,phys_file_string,opt_str)
 open(file_var,'TESTFILE')

Illustration

Suppose examp_file is a file of integer with three components. To

10- 11

perform both input and output, we call open:

overprint

Usage

 overprint (f)
 overprint (f, e)
 overprint (f, e1, ..., en)
 overprint
 overprint (e)
 overprint (e1, ..., en)

Parameters

f A textfile variable that must be opened. If f is omitted, the
 system uses the standard file output .

e An expression of simple, string, or PAC type, or a string literal.
 The system writes the value of e on f according to the formatting
 conventions described for the procedure write .

Description

The procedure overprint has the same function as writeln, except that it
does not terminate the line with a line feed. This causes the next write
or overprint to overlay the line written by the original overprint.
Several successive overprints all write to the same line, and printing
advances to the next line after the first writeln.

NOTE Some printers do not support the overprint procedure. Refer to the
 manual for your particular printer.

After the execution of overprint (f) , the buffer variable f ^ is undefined
and eoln (f) is false. The expression parameter, e, behaves exactly like
the equivalent parameter for the procedure write.

If the output device is not a printer, overprint will be ignored.

Examples

 overprint(file_var)
 overprint(file_var,exp)
 overprint(file_var,exp1,...,expn)
 overprint(exp)
 overprint(exp1,...,expn)
 overprint

or

 writeln('def');
 overprint('___');

def

10- 12

page

Usage

 page (f)
 page

Parameter

f A textfile variable that must be open. If f is omitted, the system
 uses the standard file output .

Description

The procedure page (f) writes a special character to the text file f ,
which causes the printer to skip to the top of the form when f is
printed. The current position in f advances, and the buffer variable f^
is undefined.

Example

 page(text_file)
 page

position

Usage

 position (f)

Parameter

f A file variable that must not be a textfile.

Description

The function position (f) returns the integer index of the current
component of f , starting from 1. Input or output operations references
this component. The parameter f must not be a textfile.

Example

 i:=position(file_var)

prompt

Usage

 prompt (f)
 prompt (f, e)
 prompt (f, e1, ..., en)
 prompt
 prompt (e)
 prompt (e1, ..., en)

Parameters

f A textfile variable. The system uses the standard file output if f
 is omitted.

e The expression of any simple, string, or PAC type or string literal.

Description

The procedure prompt (f) causes the system to write any buffers associated
with textfile f to the device. prompt does not write a line marker on f .
The current position is not advanced, and the buffer variable f^ becomes
undefined.

10- 13

prompt is normally used when directing output to a terminal. prompt
causes the cursor to remain on the same line after output to the screen
is complete. The user may then respond with input on the same line.

The expression parameter, e, behaves exactly like the equivalent
parameters in the procedure write.

Example

 prompt(file_var)
 prompt(file_var,exp)
 prompt(file_var,exp1,...,expn)
 prompt(exp)
 prompt(exp1,...,expn)
 prompt

put

Usage

 put (f)
 put

Parameter

f A file variable opened in the output or direct access state. The
 system uses the standard file output if f is omitted.

Description

The procedure put (f) assigns the value of the buffer variable f^ to the
current component and advances the current position. Following the call,
f ^ is undefined.

It is an error if f is open in the input state.

Example

 put(file_var)

Illustration

Suppose examp_file is a file of integer with a single component opened in
the output state by append. Furthermore, 9 has been assigned to the
buffer variable examp_file^. To place this value in the second
component, put is called.

10- 14

read

Usage

 read (f,v)
 read (f, v1, ..., vn)
 read (v)
 read (v1, ..., vn)

Parameters

f A file variable opened in the input or direct access state. If f is
 omitted, the system uses the standard file input .

v The name of a variable or component of a structure whose type is not
 FILE and does not contain a component of type FILE.

Description

The procedure read (f, v) assigns the value of the current component of f
to the variable v, according to the rules below, advances the current
position, and causes any subsequent reference to the buffer variable f ^
to actually load the buffer with the current component.

If the file is a textfile, the read variables can be simple, string, or
PAC variable. If the file is not a textfile, its components must be
assignment compatible with the variable.

The following statement:

 read(f,v)

is equivalent to accessing the file variable and establishing a reference
to that file variable for the remaining execution of the statement
(denoted by ff) and then calling get on ff.

 v := ff^
 get(ff);

10- 15

For example, the call

 read(f,v1,...,vn);

establishes a reference, ff, to the file variable, f . It is equivalent
to:

 read(ff,v1);
 read(ff,v2);
 .
 .
 .
 read(ff,vn);

Example

 read(file_var,variable)
 read(file,variable1,...,variablen)
 read(variable)
 read(variable1,...,variablen)

Illustration

Suppose examp_file is a file of char opened in the input state. The
current position is at the second component. To read the value of this
component into char_var, we call read:

Implicit Data Conversion.

If f is a textfile, its components are type char. The parameter, v,
however, need not be of type char. It may be any simple, string, or PAC
type, which is an HP extension. The read procedure performs an implicit
conversion from the ASCII form that appears in the textfile f to actual
form stored in the variable v.

If v is type real, longreal, integer, or an integer subrange, the
read(f,v) operation searches f for a sequence of characters which
satisfies the syntax below for these types. The search skips preceding
blanks or end-of-line markers. If v is longreal, the result is
independent of the letter preceding the scale factor.

It is an error if the read operation finds no non-blank characters or a

10- 16

faulty sequence of characters, or if the value is outside the range of v.
After read , a subsequent reference to the buffer variable f ^ actually
loads the buffer with the character immediately following the number
previously read. Also note that eof is false if a file has more blanks
or line markers, even though it contains no more numeric values.

If v is a variable of type string or PAC, then read(f, v) fills v with
characters from f up to the number of elements of v. When v is type PAC
and eoln(f) becomes true before v is filled, the operation puts blanks in
the rest of v. If v is type string and eoln(f) becomes true before v is
filled to its maximum length, no blank padding occurs. Strlen(v) then
returns the actual number of characters in v. If eoln(f) is true when
the call is made, no additional characters are read from f . The length
of a string variable is set to zero, and PAC variables are filled with
blanks. Readln must be used to proceed to the next line.

If v is a variable of an enumerated type, read(f, v) searches f for a
sequence of characters satisfying the syntax of an HP Pascal identifier.
The search skips preceding blanks and line markers. Then the operation
compares the identifier from f with the identifiers which are values of
the type of v, ignoring upper and lower case distinctions. Finally, it
assigns an appropriate value to v. It is an error if the search finds no
non-blank characters, if the string from f is not a valid HP Pascal
identifier, or if the identifier does not match one of the identifiers of
the type of v.

Table 10-2 shows the results of calls to read with various sequences
of characters for different types of v.

Table 10-2. Implicit Data Conversion

--
Sequence of Characters in f	Type of v	Result Stored in v
Following Current Position		
--
(space)(space)1.850	real	1.850
--
(space)(linemarker)(space)1.850	longreal	1.850
--
10000(space)10	integer	10000
--
8135(end-of-line)	integer	8135
--
54(end-of-line)36	integer	54
--
1.583E7	real	1.583x10(7)
--
1.583E+7	longreal	1.583x10(7)
--
(space)Pascal	string[5]	'_Pasc'
--
(space)Pas(end-of-line)cal	string[9]	'_Pas'

10- 17

--
(space)Pas(end-of-line)cal	PAC {length 9}	'_Pas_____'
--
(end-of-line)Pascal	PAC {length 5}	'_____'
--
(space)Monday(space)	enumerated	MONDAY
--

readdir

Usage

 readdir (f, k, v)
 readdir (f, k, v1, ..., vn)

Parameters

f A file variable open to read that is not a textfile.

k The index of a component in f .

v The name of a variable or component of a structure whose type is not
 FILE and does not contain a component of type FILE.

Description

The procedure readdir(f, k, v) places the current position at component
k, and then reads the value of that component into v. The index, k, is
relative to the beginning of the file. Formally, this is equivalent to:

 seek(f,k);
 read(f,v);

The call get(f) is not required between seek and read because of the
definition of read. The procedure readdir can be used only with files
opened for direct access. Therefore, a textfile cannot appear as a
parameter for readdir.

Example

 readdir(file_var,indx,variable)
 readdir(file_var,indx,variable1,...,variablen)

Illustration

Suppose examp_file is a file of integer with four components just opened
in the direct access state. The current position is the first component.
To read the third component into int_var, readdir is called. After
readdir executes, the current position is the fourth component.

10- 18

readln

Usage

 readln (f)
 readln (f, v)
 readln (f, v1, ..., vn)
 readln
 readln (v)
 readln (v1, ..., vn)

Parameters

f A textfile variable. The system uses the standard file input if f
 is omitted.

v The name of a variable or component of a structure whose type is not
 FILE and does not contain a component of type FILE.

Description

The procedure readln (f) reads zero or more values from a textfile and
then advances the current position to the beginning of the next line.
The operation performs implicit data conversion if v is not type char,
string, or PAC. The call readln(f,v1,...,vn) is equivalent to:

 read(f,v1,...,vn);
 readln(f);

If the parameter, v, is omitted, readln simply advances the current
position to the beginning of the next line.

Example

 readln(file)
 readln(file,variable)
 readln(file,variable1,...,variablen)
 readln(variable)
 readln(variable1,...,variablen)
 readln

10- 19

reset

Usage

 reset (f)
 reset (f, s)
 reset (f, s, t)

Parameters

f A file variable that may not be omitted.

s The name of a physical file that the system associates with f . s
 may be a string or PAC expression.

t An options string that may be a string or PAC expression whose value
 is implementation dependent.

Description

The procedure reset (f) opens the file f in the input state and places the
current position at the first component. The contents of f , if any, are
undisturbed. The file f may then be read sequentially.

If f is not empty, eof (f) is false, and a subsequent reference to the
buffer variable f^ actually loads the buffer with the first component.
The components of f may now be read in sequence. If f is empty, however,
eof (f) is true and f^ is undefined, then subsequent calls to read are
errors.

If f is already open at the time reset is called, the system
automatically closes and then reopens it, retaining the contents of the
file. If the parameter s is specified, the system closes any physical
file previously associated with f .

When f does not appear as a program parameter and s is not specified, the
system maintains any previous association of a physical file with f . For
more information on opening files, see the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide , depending on your
implementation.

Example

 reset(file_var)
 reset(file_var,file_name)
 reset(file_var,file_name,opt_str)

Illustration

Suppose examp_file is a closed file of char with three components. To
read sequentially from examp_file, we call reset:

10- 20

rewrite

Usage

 rewrite (f)
 rewrite (f, s)
 rewrite (f, s, t)

Parameters

f A file variable that may not be omitted.

s The name of a physical file the system associates with f .

t May be a string or PAC expression whose value is implementation
 dependent.

Description

The procedure rewrite (f) opens the file f in the output state and places
the current position at the first component. The system discards any
previously existing components of f . The function eof (f) returns true
and the buffer variable f ^ is undefined. The file f may now be written
sequentially.

If f is already open at the time rewrite is called, the system closes it
automatically, flushes the buffers, and then reopens it, losing the
contents of the file. If s is specified, the system closes any physical
file previously associated with f and associates s with f .

When f does not appear as a program parameter and s is not specified, the
system maintains any previous association of a physical file with f . If
there is no such association, it opens a temporary, nameless file. This
file cannot be saved. It becomes inaccessible after the process
terminates or the physical-to-logical file association changes. For more
information, see the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation.

Example

 rewrite(file)
 rewrite(file,file_name)
 rewrite(file,file_name,opt_str)

Illustration

Suppose examp_file is a closed file of char with three components. To
discard these components and write sequentially to examp_file, rewrite is
called.

10- 21

seek

Usage

 seek (f, k)

Parameters

f A file variable that must be opened in the direct access state. It
 may not be a textfile.

k The integer index of a component of f . This must be an integer
 expression >0.

Description

The procedure seek (f, k) places the current position of f at component k.
If k is greater than the index of the highest-indexed component ever
written to f , the function eof (f) returns true, otherwise false. The
buffer variable f ^ is undefined following the call to seek. It is an
error if f is not open in the direct access state, or k is greater than
maxpos(f). The index, k, is relative to the beginning of the file.

Example

 seek(file_var,indx)

Illustration

Suppose examp_file is a file of char with four components opened for
direct access. The current position is the second component. To change
it to the fourth component, seek is called.

write

Usage

 write (f, e)
 write (f, e1, ..., en)
 write (e)
 write (e1, ..., en)

10- 22

Parameters

f A file variable that must be open in the output or direct access
 state.

e A variable or expression whose type is not FILE and which does not
 contain a component of type FILE.

Description

The procedure write (f, e) assigns the value of e to the current component
of f and then advances the current position. After the call to write,
the buffer variable f ^ is undefined. It is an error if f is not open in
the output or direct access state. It is also an error if the current
position of a direct access file is greater than maxpos (f).

If f is not a textfile, e must be an expression whose result type is
assignment compatible with the components of f . If f is a textfile, e
may be an expression whose result type is any simple, string, or PAC
type. Also, the value of e may be formatted as it is written to a
textfile as described later in this chapter.

The call write (f, e) is equivalent to accessing the file variable, f , and
establishing a reference to that file variable for the remaining
execution of the statement denoted by ff .

The call write (f,e1,...en) is equivalent to:

 write(ff,e1);
 write(ff,e2);
 .
 .
 write(ff,en);

Example

 write(file_var,exp:5)
 write(file_var,exp1,...,expn)
 write(exp)
 write(exp1,...,expn)

Illustration

Suppose examp_file is a file of integer opened in the output state, and
that one number has been written to it. To write another number, write
is called again:

10- 23

Formatting of Output to Textfiles

When f is a textfile, the result type of e need not be char. It may be
any simple, string, or PAC type, or a string literal. The value of e may
be formatted as it is written to f using the integer field-width
parameters m and, for real or longreal values, n. If m and n are
omitted, the system uses default formatting values. Therefore, three
forms of e are possible:

 e {default formatting}
 e:m {when e is any type}
 e:m:n {when e is real or longreal}

Table 10-3 shows the system default values for m.

Table 10-3. Default Field Widths

Type of e	Default Field Width (m)

char	1

integer	12

real	12

longreal	20

bit16	12

bit32	12

bit52	12

longint	12

shortint	12

boolean	5 *

enumerated	length of identifier

string	current length of string

PAC	length of PAC

10- 24

string literal	length of string literal

* If $STANDARD_LEVEL$ is not ANSI or ISO, then the default width of TRUE
is 4.

NOTE If e is Boolean or an enumerated type, the case of the letters
 written is implementation defined.

When m is specified and the value of e requires less than m characters
for its representation, the operation writes e on f preceded by an
appropriate number of blanks. If the value of e is longer than m, it is
written on f without loss of significance; such that m is defeated,
provided that e is a numeric type. Otherwise, the operation writes only
the leftmost m characters. m may be 0 if e is not a numeric type.

When e is type real or longreal, you may specify n as well as m. In this
case, the operation writes e in fixed-point format with n digits after
the decimal point. If n is 0, the decimal point and subsequent digits
are omitted. If n is not specified, the operation writes e in
floating-point format consisting of a coefficient and a scale factor. In
no case is it possible to write more significant digits than the internal
representation contains. This means write may change a fixed-point
format to a floating-point format in certain circumstances.

Example

 PROGRAM show_formats (output);
 VAR
 x: real;
 lr: longreal;
 george: boolean;
 list: (yes, no, maybe);
 BEGIN
 writeln(999); {default formatting}
 writeln(999:1); {format defeated}
 writeln('abc');
 writeln('abc':2); {string literal truncated}
 x:= 10.999;
 writeln(x); {default formatting}
 writeln(x:25);
 writeln(x:25:5);
 writeln(x:25:1);
 writeln(x:25:0);
 lr:= 19.1111;
 writeln(lr);
 george:= true;
 writeln(george); {default format}
 writeln(george:2);
 list:= maybe;
 writeln(list); {default formatting}
 END.

Output:

 999
 999
 abc
 ab
 1.099900E+01
 1.099900E+01
 10.99900

10- 25

 11.0
 11
 1.9111099243164L+01
 TRUE
 TR
 MAYBE

writedir

Usage

 writedir (f, k, e)
 writedir (f, k, e1, ..., en)

Parameter

f A file variable opened in direct access state.

k The integer index of a component of f .

e An expression whose result type must be assignment compatible with
 the components of f .

Description

The procedure writedir (f, k, e) places the current position at the
component of f specified by k, and then writes the value of e to that
component. It is equivalent to:

 seek(f,k);
 write(f,e)

An error occurs if f has not been opened in the direct-access state or if
k is greater than maxpos (f) . After writedir executes, the buffer
variable f ^ is undefined, and the current position is k + n, where n is
from en.

Example

 writedir(fil_var,indx,exp)
 writedir(fil_var,indx,exp1,....,expn)

Illustration

Suppose file examp_file is a file of integer opened for direct access.
The current position is the third component. To write a number to the
first component, we call writedir:

10- 26

writeln

Usage

 writeln (f)
 writeln (f, e)
 writeln (f, e1, ..., en)
 writeln
 writeln (e)
 writeln (e1, ..., en)

Parameters

f A file variable for a text file opened in the output state. The
 system uses the standard file output if f is omitted.

e A variable or expression whose type is not FILE and does not contain
 a component of type FILE.

Description

The procedure writeln (f, e) writes the value of the expression e to the
textfile f , appends an end-of-line marker, and places the current
position immediately after this marker. After execution, the file buffer
f^ is undefined, and eof (f) is true. You may write the value of e with
the formatting conventions described for the procedure write.

The call writeln (f, e1,..., en) is equivalent to

 write(f,e1);
 write(f,e2);
 .
 .
 .
 write(f,en);
 writeln(f)

The call writeln without the file or expression parameters effectively
inserts an end-of-line marker in the standard file output.

Example

 writeln(fil_var)
 writeln(fil_var,exp:4)

10- 27

 writeln(fil_var,exp1,...,expn)
 writeln(exp)
 writeln(exp1,...,expn)
 writeln

10- 28

11- 1

Chapter 11 System Programming Extensions

This chapter describes extensions to HP Pascal for systems programming.
The following subjects are covered:

 * pointers
 * type coercion
 * error handling
 * parameter mechanisms
 * crunched packing
 * routine mechanisms
 * predefined routine

Some HP implementations of Pascal do not support all of these features.
Any implementation that has system programming extensions support the
following:

 * anyptr type
 * the form of sizeof that accepts variables
 * type coercion
 * ANYVAR parameters
 * TRY-RECOVER statement
 * PROCEDURE and FUNCTION variables
 * the predefined function addr

The motivations for providing the system programming extensions are:

 * Pascal is very strict with regard to type checking. Although this
 eases the burden on the user by permitting the compiler to check
 the validity of an operation, it is sometimes necessary to bypass
 this strict type checking.

 * Pascal was originally designed as a language for teaching
 programming. Because of this, serious attention is not paid to
 such issues as recovery from run-time errors and the creation and
 maintenance of large software systems.

 * Pascal was not originally defined to be an efficient systems
 programming language.

This chapter covers the HP_MODCAL and EXT_MODCAL standard levels.

Figure 11-1 illustrates the relationship between the STANDARD_LEVEL
parameters.

11- 2

Figure 11-1. Relationship of STANDARD_LEVEL Compiler Option Parameters

The STANDARD_LEVEL compiler option allows the user to choose one of five
options which specifies what features or extensions are to be allowed in
a given program. The five options correspond to sets which have the
relationship depicted in Figure 11-1 above.

If a STANDARD_LEVEL option is not specified, the default feature set is
HP_PASCAL. At this level, the compiler does not recognize system
programming extension reserved words, and will issue warnings about
standard level violations whenever a predefined identifier is
encountered.

The list on the following pages delineates the language features that are
available for a given STANDARD_LEVEL. ANSI is taken as the base set.

ISO

 Conformant Arrays

HP_PASCAL

 * Blank padding of PACs and string literals.

 * Compiler Directives:

 EXTERNAL INTRINSIC

 * Command line parameter handling.

 * Compiler Options:

ALIAS HP_DESTINATION ** RLFILE *
ALIGNMENT IF RLINIT *
ANSI * INCLUDE * ** S300_EXTNAMES
ARG_RELOCATION INCLUDE_SEARCH * ** SEARCH *
ASSERT_HALT INLINE SET
ASSUME INTR_NAME SHLIB_CODE * **
BUILDINT KEEPASMB SHLIB_VERSION * **
CALL_PRIVILEGE * ** LINES * SKIP_TEXT
CHECK_ACTUAL_PARM LIST * SPLINTR

11- 3

CHECK_FORMAL_PARM LIST_CODE STANDARD_LEVEL *
CODE LISTINTR STATEMENT_NUMBER * **
CODE_OFFSETS LITERAL_ALIAS STDPASCAL_WARN
CONVERT_MPE_NAMES ** LOCALITY STRINGTEMPLIMIT
COPYRIGHT MAPINFO SUBPROGRAM
COPYRIGHT_DATE LONG_CALLS SYMDEBUG * **
ELSE MLIBRARY * ** SYSINTR * **
ENDIF NLS_SOURCE * ** SYSPROG
EXEC_PRIVILEGE * ** NOTES TABLES
EXTERNAL OPTIMIZE TITLE
EXTNADDR OS TYPE_COERCION
FONT * OVFLCHECK UPPERCASE
GLOBAL PAGE * VERSION
GPROF ** PAGEWIDTH VOLATILE
HEAP_COMPACT PARTIAL_EVAL * WARN
HEAP_DISPOSE POP WIDTH
HP3000_16 * PUSH XREF
HP3000_32 * RANGE *

* Feature is part of standard HP Pascal.

* Feature is MPE/iX system dependent.

** Feature is HP-UX system dependent.

HP_PASCAL (continued)

 * Constant expressions.

 * Enumerated type, string, PAC I/O. *

 * File attribute options to:

 append close open reset rewrite

 * Functions and procedures returning structured types. *

 * Libraries.

 * Literal control characters delimited by #. *

 * Modules. *

 * OTHERWISE in CASE statement. *

 * Predefined I/O functions and procedures: *

 append lastpos linepos maxpos overprint
 position prompt readdir seek writedir

 * Predefined string functions and procedures: *

 setstrlen str strappend strdelete strinsert
 strlen strltrim strmax strmove strpos
 strread strrpt strrtrim strwrite

 * Ranges in case constants in CASE and variant records. *

 * Relaxation in order of declaration section. *

 * Special functions and procedures:

 assert associate baddress binary*
 disassociate getheap halt* hex* mark*
 octal* release* rtnheap sizeof waddress

 HP-UX:

 argc argn argv

 MPE/iX, HP-UX:

 ccode fnum get_alignment p_getheap p_rtnheap

 MPE/iX:

 setconvert strconvert

 * Structured Constants. *

11- 4

 * Types:

 anyptr bit16 bit32 bit52
 globalanyptr localanyptr longint
 longreal* shortint string*

HP_MODCAL

 * ANYVAR parameters.

 * Compiler Options:

 TYPE_COERCION (MPE/iX,HP-UX)

 * Error handling with:

 escape escapecode TRY-RECOVER

 * Procedure and Function Types and Variables.

 * Special Predefined Routines:

 addr call fcall statement_number

EXT_MODCAL

 * CRUNCHED packing.

 * Predefined functions and procedures:

 addtopointer bitsizeof buildpointer cmpbytes
 fast_fill haveextension haveoptvarparm movebyteswhile
 move_fast move_l_to_r move_r_to_l scanuntil scanwhile

 * Routine Options:

 DEFAULT_PARMS EXTENSIBLE INLINE UNCHECKABLE_ANYVAR UNRESOLVED

 * READONLY parameters.

Language Elements

Reserved Words

The following words are added to the HP Pascal list of reserved words
when the system programming extensions are enabled:

Table 11-1. System Programming Extension Reserved Words

--
Reserved Word	Description
--
ANYVAR	Routine formal parameter.
--
CRUNCHED	Structure packing type parameter.
--
READONLY	Routine formal parameter.
--
RECOVER	Error recovery statement keyword.
--
TRY	Error recovery statement keyword.
--
OPTION	Routine option attribute header.
--

Note that with the STANDARD_LEVEL set below HP_MODCAL, these identifiers

11- 5

are not reserved and can be defined by the user.

Predefined Identifiers

The system programming extensions add the following identifiers to the HP
Pascal list of predefined identifiers. The compiler issues warning
messages if it encounters these identifiers and the standard level is too
low.

Like any predefined identifiers, these identifiers may be redefined by
the user.

Table 11-2. System Programming Extension Predefined Identifiers

Predefined	Description
Identifiers	

addtopointer	Address arithmetic

anyptr	Predefined pointer type

bitsizeof	Predefined size function

buildpointer	Address arithmetic

call	Procedure variables

escape	Error recovery

escapecode	Error handling

fcall	Function variables

fast_fill	Predefined move procedure

globalanyptr	Predefined pointer type

haveextension	Parameter mechanism

haveoptvarparm	Parameter mechanism

localanyptr	Predefined pointer type

move_fast	Predefined move procedure

11- 6

move_l_to_r	Predefined move procedure

move_r_to_l	Predefined move procedure

sizeof	Predefined size function

Data Types

Figure 11-2 summarizes the types that are supplied by the system
programming extensions. A detailed discussion of the data types follows
in this chapter. This figure augments the HP Pascal data types
summarized in Figure 11-1 . Note that the HP Pascal predefined data
types are highlighted.

Figure 11-2. Extended Data Types

Structured Types

CRUNCHED.

In Pascal, a structure (array, record, or set) can be unpacked or packed.
Packed structures are declared by specifying the reserved word PACKED at

11- 7

the start of a structured type declaration.

The system programming extensions define a third type of packing in
addition to unpacked and packed, namely CRUNCHED.

The reserved word CRUNCHED indicates that the components of a structured
type (array, record, or set) are allocated contiguously, first to last,
in a bit-aligned fashion with no intervening unused bits. Syntactically,
the word CRUNCHED may be substituted for the word PACKED.

The primary purpose of crunched packing is to provide a map from
data item type to data representation that is independent of the
implementation and the packing algorithm. For that reason, machine
dependent types such as real, longreal, and file are not allowed in
crunched structures.

Example

 TYPE
 rec = RECORD
 a : type_a;
 b : type_b;
 c : type_c;
 END;

 crec = CRUNCHED RECORD
 a : type_a;
 b : type_b;
 c : type_c;
 END;

In a crunched structure, each component is allocated the minimum number
of bits required to represent that type, and each component is aligned in
such a way that there are no unused bits between it and the previous
component.

The first declaration for rec in the previous example may lead to the
following storage allocation for an arbitrary processor:

Figure 11-3. Layout of a Record

Note that there are unused bits between the fields a and b, and between
the fields b and c.

The crunched record declaration for crec, that is identical to the
uncrunched record rec with the addition of the reserved word CRUNCHED,
would lead to the following storage allocation:

11- 8

Figure 11-4. Layout of a Crunched Record

Note that there are no wasted bits between fields in the crunched record.

The number of bits used to represent each component of a crunched
structured type is the minimum needed to represent the values associated
with that component. The calculation of the minimum number of bits for
various types is:

 * Record, Array Types.

 The sum of the minimum number of bits required to represent
 each component. If the record has variants, consider the
 size of the largest variant.

 * Set Types (of the form set of low .. high).

 The ordinal value of high minus the ordinal value of low
 plus one:

 ord(high) - ord(low) + 1

 * Char and Enumeration Based Types (of the form low .. high).

 The next larger integer (the ceiling) of the logarithm base
 2 of the successor of the ordinal value of the upper bound,
 or one, whichever is greater:

 max(ceil [log2(ord(high) + 1)], 1)

 Integer Based Types (of the form low .. high)

 The next larger integer (the ceiling) of the logarithm base
 2 of the maximum of the absolute value of the ordinal value
 of the lower bound, and the successor of the absolute value
 of the ordinal value of the upper bound, or one, whichever
 is greater:

 max(ceil [log2(max(|low|, |high| + 1))], 1)

 If the type is signed (the lower bound is less than zero),
 then add one to the size.

Table 11-3 shows the lower and upper bound ranges and number of bits
allocated for unsigned subranges. Table 11-4 gives the same
information for signed subranges.

11- 9

Table 11-3. Number of Bits Allocated for Unsigned Subranges

Lower Bound Range	Upper Bound Range	# Bits Allocated

>= 0	0..1	1
>= 0	2..3	2
>= 0	4..7	3
>= 0	8..15	4
>= 0	16..31	5
>= 0	32..63	6
>= 0	64..127	7
>= 0	128..255	8
>= 0	256..511	9
>= 0	512..1023	10
>= 0	1024..2047	11
>= 0	2048..4095	12
>= 0	4096..8191	13
>= 0	8192..16383	14
>= 0	16384..32767	15
>= 0	32768..65535	16
>= 0	65536..131071	17
>= 0	131072..262143	18
>= 0	262144..524287	19
>= 0	524288..1048575	20
>= 0	1048576..2097151	21
>= 0	2097152..4194303	22
>= 0	4194304..8388607	23
>= 0	8388608..16777215	24
>= 0	16777216..33554431	25
>= 0	33554432..67108863	26
>= 0	67108864..134217727	27
>= 0	134217728..268435455	28
>= 0	268435456..536870911	29
>= 0	536870912..1073741823	30
>= 0	1073741824..2147483647	31

Table 11-4. Number of Bits Allocated for Signed Subranges

--
Lower Bound Range	Upper Bound Range	#Bits Allocated
--
-1	0	1
-2	1	2
-4..-3	2..3	3
-8..-5	4..7	4
-16..-9	8..15	5
-32..-17	16..31	6
-64..-33	32..63	7
-128..-65	64..127	8
-256..-129	128..255	9
-512..-257	256..511	10
-1024..-513	512..1023	11
-2048..-1025	1024..2047	12
-4096..-2049	2048..4095	13
-8192..-4097	4096..8191	14
-16384..-8193	8192..16383	15
-32768..-16385	16384..32767	16
-65536..-32769	32768..65535	17
-131072..-65537	65536..131071	18
-262144..-131073	131072..262143	19
-524288..-262145	262144..524287	20
-1048576..-524289	524288..1048575	21
-2097152..-1048577	1048576..2097151	22
-4194304..-2097153	2097152..4194303	23
-8388608..-4194305	4194304..8388607	24
-16777216..-8388609	8388608..16777215	25
-33554432..-16777217	16777216..33554431	26
-67108864..-33554433	33554432..67108863	27

11- 10

-134217728..-67108865	67108864..134217727	28
-268435456..-134217729	134217728..268435455	29
-536870912..-268435457	268435456..536870911	30
-1073741824..-536870913	536870912..1073741823	31
-2147483648..-1073741825	1073741824..2147483647	32
--

Example

 TYPE
 cr1_t = CRUNCHED RECORD
 f1 : 0..15; { takes 4 bits }
 f2 : -1..15; { takes 5 bits }
 f3 : -16..15; { takes 5 bits }
 f4 : 13..15; { takes 4 bits }
 END; { total: 18 bits }

 cr2_t = CRUNCHED RECORD
 f1 : CRUNCHED set of 0..15; { takes 16 bits }
 f2 : CRUNCHED set of 13..15; { takes 3 bits }
 f3 : CRUNCHED set of -5..5; { takes 11 bits }
 END; { total: 30 bits }

 cr3_t = CRUNCHED RECORD
 f1 : integer; { takes 32 bits }
 CASE tag : Boolean OF { takes 1 bit }
 true: (v1 : cr1_t); { takes 18 bits }
 false:(v2 : cr2_t); { takes 30 bits }
 END; { total: 63 bits }

The restrictions that apply to packed types also apply to crunched types.
In particular, it is illegal:

 * To pass a component of a crunched structure as a reference
 parameter.

 * To take the address of a component of a crunched structure.

In addition:

 * File types cannot be crunched.

 * Structured types that contain file, real, longreal, string, or
 pointer types cannot be crunched.

 * All structured types contained in a crunched structured type must
 also be crunched.

 * All integer based types and enumeration based types are
 represented with the most significant bit first through least
 significant bit last. Byte swapping is not permitted.

Pointer Types

In HP Pascal, pointers are designators that point only to a specific
class of objects , namely objects on the heap .

When using the system programming extensions, pointers can point to any
data; that is, objects on the heap, as well as global and local
variables. In this sense pointers truly are addresses.

In HP Pascal, the only way to create a pointer is by calling the
predefined procedure NEW or the intrinsic getheap to dynamically allocate
a heap object. In order to create pointers, the system programming
extensions define the addr function that returns the address of its
argument, and the functions buildpointer and addtopointer that perform
address arithmetic.

There are three predefined pointer types defined in the system
programming extensions that allow relaxed type checking of pointers.
These are anyptr, localanyptr, and globalanyptr.

Short and Long Pointers.

The system programming extensions define two classes of pointers: short

11- 11

and long pointers.

Long pointers can point to any addressable object on the system (in this
sense addressable in terms of the representability of an address, as
opposed to allowed access rights).

Short pointers can point to a subset of the objects addressable by long
pointers. A subset of the object addressable by short pointers are
objects in the heap. By default, all user declared pointers are short
pointers.

The following diagram explains the relationship between these classes of
pointers.

Figure 11-5. Pointer Class Relationship

Note that in some implementations, long and short pointers may be
identical; in other words, the collection of objects that long and short
pointers can point to may be the same.

The compiler option EXTNADDR can be used to specify that a given user
defined pointer type is to be a long pointer.

Localanyptr.

The predefined type localanyptr is a pointer type that is assignment
compatible with any other pointer type. It can be used to defeat type
checking on pointers.

A pointer of any type can be assigned to a pointer of type localanyptr,
and a pointer of type localanyptr can be assigned to any pointer type.
However, since pointers of type localanyptr are not bound to a base type,
they cannot be dereferenced. (In order to dereference a pointer of type
localanyptr, it must first be type coerced or assigned to a proper
pointer type).

localanyptr takes the form of a short pointer. It may only be able to
represent a subset of the addresses on a machine. On implementations
where short and long pointers are not the same, localanyptr is more
efficient than globalanyptr.

Permissible Operators

 assignment :=

 relational =, <>

Example

 VAR
 ptr1 : pointer_type_1;
 ptr2 : pointer_type_2;
 anyp : localanyptr;

 BEGIN
 ...
 anyp := ptr1;

11- 12

 anyp := ptr2;
 ...
 ptr1 := anyp;
 ...
 END;

Globalanyptr.

The predefined type globalanyptr is a pointer type that is assignment
compatible with any other pointer type. It can be used to defeat type
checking on pointers.

A pointer of any type can be assigned to a pointer of type globalanyptr,
and a pointer of type globalanyptr can be assigned to any pointer type.
However, since pointers of type globalanyptr are not bound to a base
type, they cannot be dereferenced. (In order to dereference a pointer of
type globalanyptr, it must first be type coerced or assigned to a proper
pointer type.)

Globalanyptr takes the form of a long pointer . It can represent any
address on the machine. A more efficient type of pointer called
localanyptr can be used in a program that has no need for long pointers.

Permissible Operators

 assignment :=

 relational =, <>

Example

 VAR
 ptr1 : pointer_type_1;
 ptr2 : pointer_type_2;
 anyp : globalanyptr;

 BEGIN
 ...
 anyp := ptr1;
 anyp := ptr2;
 ...
 ptr1 := anyp;
 ...
 END;

Anyptr.

The predefined type anyptr is a pointer type that is assignment
compatible with any other pointer type. It can be used to defeat type
checking on pointers.

A pointer of any type can be assigned to a pointer of type anyptr, and a
pointer of type anyptr can be assigned to any pointer type. However,
since pointers of type anyptr are not bound to a base type, they cannot
be dereferenced. In order to dereference a pointer of type anyptr, it
must first be type coerced or assigned to a proper pointer type.

Anyptr takes the form of a long pointer . It can represent any address on
the machine. A more efficient type of pointer called localanyptr can be
used in a program that has no need for long pointers.

Anyptr is equivalent to globalanyptr; however, globalanyptr and
localanyptr are the recommended types to use.

Permissible Operators

 assignment :=

 relational =, <>

Example

 VAR
 ptr1 : pointer_type_1;
 ptr2 : pointer_type_2;
 anyp : anyptr;

11- 13

 BEGIN
 ...
 anyp := ptr1;
 anyp := ptr2;
 ...
 ptr1 := anyp;
 ...
 END;

The above example illustrates that a variable of type anyptr is
assignment compatible with any other pointer type.

Example

 VAR
 ptr1 : pointer_type_1;
 ptr2 : pointer_type_2;

 PROCEDURE proc(ptr : anyptr);

 BEGIN
 ...
 END;

 BEGIN
 proc(ptr1);
 proc(ptr2);
 END;

In the above example, the routine proc can accept any pointer as an
actual parameter because the type of the formal parameter is anyptr.
anyptr is assignment compatible with any pointer type.

Example

 TYPE
 pointer_type = ^record_type;
 record_type = RECORD
 int : integer;
 END;

 VAR
 i : integer;
 anyp : anyptr;

 BEGIN
 i := pointer_type(anyptr)^.int;
 END;

In the above example, the pointer anyp is dereferenced to access a field
in a record. Since an anyptr is not bound to a base type, the pointer
must first be type-coerced to a pointer type corresponding to the
structure to which anyp is pointing.

PROCEDURE and FUNCTION Types

In Pascal, PROCEDURE and FUNCTION parameters allow dynamic reference to
procedures and functions where the exact instance of the procedure or
function is not known until run-time. The system programming extensions
extend this concept to allow variables as well as parameters that refer
to procedures and functions.

Syntax

11- 14

A parallel can be drawn between pointers and PROCEDURE/FUNCTION
variables. While pointers are variables that reference data,
PROCEDURE/FUNCTION variables reference code.

Variables of PROCEDURE/FUNCTION types may be assigned procedures and
functions that have congruent parameter lists, as defined in HP Pascal.
See chapter 8 for more information on parameters. To assign a procedure
or function to a PROCEDURE/FUNCTION variable, the routine name is used as
a parameter to the addr function. See the section on predefined routines
in this chapter for more information on addr.

Any procedure or function assigned must have the same or wider scope than
the variable or value parameter to which it is assigned. Any
PROCEDURE/FUNCTION variable passed as a reference parameter must have the
same or wider scope than the formal parameter to which it is bound.

A PROCEDURE/FUNCTION variable can be assigned NIL.

The procedure or function referenced by a PROCEDURE/FUNCTION variable,
may be invoked by calling the predefined procedure call for a PROCEDURE
variable or the predefined function fcall for a FUNCTION variable. See
the section on predefined routines in this chapter for more information
on call and fcall.

Permissible Operators

 assignment :=

 relational =, <>

Standard Procedures

 argument CALL

Standard Functions

 argument FCALL

 return ADDR

Example

 TYPE
 proc_0_type = PROCEDURE;
 func_0_type = FUNCTION: integer;
 proc_1_type = PROCEDURE(ANYVAR i : integer);
 func_2_type = FUNCTION(VAR s : string;
 i : integer): boolean;
 VAR
 proc_0 : proc_0_type;
 func_0 : func_0_type;
 proc_1 : proc_1_type;
 func_2 : func_2_type;

 PROCEDURE p1; external;
 PROCEDURE p2(n : shortint); external;
 PROCEDURE p3(VAR i : integer); external;

 BEGIN
 func_0 := nil; { initialized to nil }

11- 15

 func_2 := nil; { initialized to nil }

 proc_0 := addr(p1); { proc_0 now 'points to' p1 }
 proc_1 := addr(p2); { illegal: parameters don't match }
 proc_1 := addr(p3); { illegal: parameters don't match }
 func_0 := addr(p1); { illegal: must be a function }
 END.

Example

 TYPE
 proc_type = PROCEDURE;

 VAR
 proc_var_0 : proc_type;

 PROCEDURE proc_1;
 VAR
 proc_var_1 : proc_type;

 PROCEDURE proc_2;
 BEGIN {PROCEDURE proc_2}
 ...
 END; {PROCEDURE proc_2}

 BEGIN {PROCEDURE proc_1}
 proc_var_0 := addr(proc_1);
 proc_var_1 := addr(proc_1);
 proc_var_0 := addr(proc_2); { illegal: scoping violation }
 proc_var_1 := addr(proc_2);
 END; {PROCEDURE proc_1}

Expressions

Type Coercion

Pascal is very strict with respect to type checking. In any operation
such as assignment, binary operations, passing parameter, or indexing,
relevant types must be compatible according to the HP Pascal rules of
compatible types. Refer to "Type Compatibility" for more
information.

Type coercion allows the user to selectively circumvent the normally
strong type checking. The system programming extensions support several
forms of type coercion including ANYVAR, reference, and value. ANYVAR
type coercion (using the formal parameter mechanism ANYVAR) is described
in this chapter under "Procedures and Functions" .

Reference type coercion consists of type coercion of an actual parameter
that is being passed to a reference formal parameter, or type coercing a
pointer to a different pointer type before a dereference.

Value type coercion consists of type coercion of a constant, variable,
function result, or expression to a different type.

The syntax for type coercion looks like the application of a function to
an expression, where the name of the function is the name of the target
type of the coercion.

Syntax

 Expression:

The expression being coerced may be a constant, variable, function
result, or expression involving unary and binary operators.

11- 16

Syntactically, value type coercion is allowed:

 * In an expression.

 * On the right-hand side of an assignment statement.

 * On an actual parameter.

By default, the compiler does not allow value type coercion. The
compiler option TYPE_COERCION allows the user to enable a certain level
of type coercion. There are three classes of type coercion based on the
source and target types: ordinal, pointer, and free union type coercion.
Ordinal and pointer type coercions are enabled by specifying the
conversion level of type coercion. Instances of free union type coercion
are enabled by specifying one of structural , representation , storage , or
noncompatible type coercion.

Ordinal Type Coercion.

The ordinal types are viewed as different sets of names for the points on
the integer number line. Given this view of ordinals, value type
coercion of one ordinal type to another is simply a renaming operation.

A type coercion expression is considered an ordinal coercion , if both the
source expression (expression being coerced) and the target type (type to
which the expression is being coerced) are any of the following types:

 * The predefined types integer, shortint, char, Boolean, and Bit16.

 * A user-declared enumerated type.

 * A user-declared subrange type.

If the value of the source expression is out of range with respect to the
allowed values of the target type, a subrange violation occurs. If range
checking is on, this causes a run-time error.

Example

 TYPE
 color_t = (red,orange,yellow,green,chartreuse,blue,indigo,violet);

 VAR
 i : integer;
 color : color_t;

 BEGIN
 ...
 color := chartreuse;
 i := integer(color); { i has the value 4 }
 i := 3;
 color := color_t(i); { color has the value green }
 i := 12;
 color := color_t(i); { will cause a run-time error }
 ...
 END;

Pointer Type Coercion.

The pointer types are viewed as virtual addresses. Given this view,
value type coercion from one pointer type to another is a mapping from
one virtual address to another.

On implementations that have alignment restrictions, it is an error if
the alignment of the type that the source expression points to is smaller
than the alignment of the type that the target type points to. If range
checking is on, this causes a run-time error. See the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation, for more information on alignment.

Coercion from long-to-long and short-to-short pointers is a one-to-one
mapping and involves no actual run-time conversion operations.

Coercion from a short to a long pointer, in implementations where long
pointers point to a wider class of objects than short pointers, may
involve amending the value of the short pointer with additional address

11- 17

information that a long pointer requires.

Coercion from a long to a short pointer, in implementations where long
pointers point to a wider class of objects than short pointers, may
involve truncating the value of the long pointer. If this occurs, the
short pointer may not be able to address the original object pointed to
by the long pointer because of the short pointer's limited addressing.
This is an error. If range checking is on, this causes a run-time error.

Example

 TYPE
 integer_pointer = ^ integer;
 real_pointer = ^ real;

 VAR
 ip : integer_pointer;
 rp : real_pointer;

 BEGIN
 ...
 ip := integer_pointer(rp);
 ...
 END;

Other Type Coercion.

All type coercions that do not fall under the categories of ordinal and
pointer type coercion can be viewed as the use of a free union, or
tagless variant record, where the implementation overlays the record
variants onto the same storage area.

The model for value type coercion:

 type_1(expression)

is equivalent to the function call:

 f_type_1(expression)

where f_type_1 is defined as:

 FUNCTION f_type_1 (e: type_of_expression):type_1 ;

 VAR
 coerce_record : RECORD CASE Boolean OF
 true: (source_variant : type_of_expression);
 false: (target_variant : type_1);
 END;

 BEGIN
 coerce_record.source_variant := e;
 f_type_1 := coerce_record.target_variant;
 END;

The model for reference type coercion:

 target_type (source);

is equivalent to:

 pointer_to_target_type (addr (source))

Whereas both ordinal and pointer type coercions may cause run-time errors
if the source values are not representable in the target type, the free
union form of type coercion never causes run-time errors.

Depending upon the source and target types, free union type coercion
consists of the following levels, listed in increasing order of freedom:

 * Structural

 * Representation

 * Storage

 * Noncompatible

11- 18

Structural. A type coercion expression is considered to be structural if
the following are true:

 * The bitsizes of the source and target types are the same.

 * The alignment of the source and target types are the same.

 * The source and target types are compatible.

 * If the source and target are structured, then the corresponding
 component in the two structures obey the above three rules of
 bitsizes, alignment and compatibility.

Structural type coercions are enabled by specifying 'STRUCTURAL' in the
compiler option TYPE_COERCION.

Structural type coercion is essentially a renaming of the components of a
structure. Because the component types are guaranteed to be the same,
the storage allocated for the source and target types is also the same,
and reinterpreting the storage of the source as if it was of the target
type will produce correct results.

Example

 $TYPE_COERCION 'STRUCTURAL'$
 ...

 TYPE
 source_t = RECORD
 i : integer;
 b : false..true;
 end;
 target_t = RECORD
 j : minint..maxint;
 c : Boolean;
 END;

 VAR
 source : source_t;
 target : target_t;
 ...

 BEGIN
 ...
 target := target_t(source);
 ...
 END;

In the above example, the two record types are the same: their bitsizes
are identical and their corresponding components are the same.

Representation. A type coercion expression is considered to be
representation type coercion if the bitsizes of the source and target
types are the same. The internal structure of structured types for
either the source or target does not matter.

Representation type coercions are enabled by specifying 'REPRESENTATION'
in the compiler option TYPE_COERCION.

Example

 $STANDARD_LEVEL 'HP_MODCAL'$
 PROCEDURE write_hex(n : integer);

 TYPE
 nibble_array = PACKED ARRAY[0..7] OF 0..15;
 hex_digit_t = array [0..15] OF char;

 CONST
 hex_digit = hex_digit_t['0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'];
 VAR
 i : 0..7;

 BEGIN
 FOR i := 0 to 7 DO

11- 19

 $PUSH, TYPE_COERCION 'REPRESENTATION'$
 WRITE(hex_digit[nibble_array(n)[i]]);
 POP
 END;

In the above example, the integer n is treated as an array of nibbles in
order to extract each nibble sequentially and write out its value in
hexadecimal. Since representation type coercion guarantees that the
source and target types are identical in size, the compiler can guarantee
that the entire integer is covered by the nibble array: there are no
bits missed.

Storage. A type coercion expression is considered to be storage type
coercion, if the size of the storage allocated for the source is greater
than the size of the storage allocated for the target type.

Storage type coercion guarantees that no nonexistent memory is accessed
and that no undefined bits are accessed.

The following illustrates storage type coercion. The compiler guarantees
that PROC never accesses a part of its formal parameter that is not
actually part of the actual parameter. This is because the actual
parameter is guaranteed to be larger than or the same size as the formal
parameter.

Example

 TYPE
 string_1 = STRING [255];
 string_2 = STRING [80]

 VAR
 s1 : string_1;
 s2 : string_2;
 ...

 PROCEDURE PROC (VAR S : STRING_2);

 BEGIN
 ...
 END;
 ...

 $PUSH, TYPE_COERCION 'STORAGE'$
 PROC (string_2 (s1));
 POP

Noncompatible. Noncompatible type coercion permits anything to be
coerced to anything. There is no guarantee that the accessed storage
exists, nor that there is any accessible storage.

Example

 FUNCTION non_protected_space: integer;

 TYPE
 big_index = 0..max_array_size-1;
 big_array = array[big_index] of integer;

 VAR
 idx : big_index;
 int : integer;

 BEGIN
 idx := 0;
 TRY
 WHILE (idx <= max_array_size-1) DO BEGIN
 $PUSH, TYPE_COERCION 'NONCOMPATIBLE'$
 int := big_array(int)[idx];
 POP
 idx := idx + 1;
 end;
 non_protected_space := max_array_size-1;
 RECOVER

11- 20

 non_protected_space := idx - 1;
 END;

The previous example coerces an integer to an array of integers and keeps
accessing farther out into the array until it cannot access any further.
Note that this code assumes that:

 * TRY-RECOVER traps the error condition that occurs when the array
 access grows beyond the limits of the available space.

 * The value of the variable idx is updated correctly when execution
 is transferred to the RECOVER statement.

Declaration Section

Constant Definition

NIL.

The definition of the predefined constant NIL is expanded for the system
programming extensions.

The predefined constant NIL is compatible with any long or short pointer
type. When NIL is used in a comparison or assignment, it assumes the
pointer class (short or long) of the pointer with which it is being
compared, or to which it is being assigned.

The predefined constant NIL is compatible with any PROCEDURE/FUNCTION
type. A PROCEDURE/FUNCTION variable that has been assigned the value NIL
refers to no procedure or function.

Statements

TRY-RECOVER

A Pascal program that encounters a run-time error is aborted. Because
this is not always acceptable, the system programming extensions define
the TRY-RECOVER structured statement that allows the user to trap all
run-time errors.

The predefined procedure escape allows the user to cause a run-time error
to occur, and the predefined function escapecode allows the user to
determine the last type of error that occurred. See the section "Error
Handling Routines" for more information on escape and escapecode.

Syntax

.

The statement following the reserved word RECOVER may have a statement
label. One can jump to such a label only from within the RECOVER
statement itself.

The types of errors that are trapped by TRY-RECOVER are:

 * All Pascal run-time errors (defined in Appendix A).

 * An implementation defined set of hardware errors.

 * An implementation defined set of operating system detected errors.

 * All user-generated error conditions (generated by calling escape).

Upon detecting an error in the execution of the body of a TRY-RECOVER
statement (the statements between the reserved words TRY and RECOVER, as
well as any procedures and functions called from such statements), the
following sequence of events occurs:

 * The escape code, indicating the type of error that occurred, is
 saved for later retrieval by the predefined function escapecode.

11- 21

 * The run-time environment is restored to the environment of the
 most recent TRY-RECOVER statement. This may involve prematurely
 exiting any nested procedure and function calls and closing any
 open files local to those routines.

 * Execution is transferred to the statement following the reserved
 word RECOVER.

If no errors are detected within the body of the TRY-RECOVER statement,
the recover statement is skipped, and execution continues at the first
statement following the TRY-RECOVER statement.

The TRY-RECOVER statement does not trap errors in its recover part (the
statement following the reserved word RECOVER). If an error occurs in the
execution of the recover part, execution is transferred to the recover
part of an enclosing TRY-RECOVER statement. If there is no enclosing
TRY-RECOVER statement the program aborts.

The semantics of the TRY-RECOVER statement do not guarantee that the
effects of any statements executed in the body of the TRY are valid when
executing the RECOVER statement. Certain implementations, however, may
guarantee that the effects of any executed statements are valid. Certain
other implementations may provide the user with a method of indicating
that certain variables preserve their value. See the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation, for more details. Also see the compiler option
"VOLATILE" .

Note that when execution is transferred to the RECOVER statement, the
environment in which the error occurred no longer exists. If that
environment is required to perform error handling, then trap handlers are
required. See the chapter on Error Recovery in the HP Pascal/iX
Programmer's Guide or in the HP Pascal/HP-UX Programmer's Guide ,
depending on your implementation, for more information.

Example

 TRY
 open(f, 'filename');

 RECOVER BEGIN
 writeln('open failed');
 ...
 END;

The above code fragment prevents a program from aborting if a file cannot
be opened.

Example

 PROCEDURE proc1;

 BEGIN
 ... { errors will be trapped in try 0 }
 TRY {try 1}
 ... { errors will be trapped here in try 1 }
 RECOVER BEGIN
 ... { errors will be trapped in try 0 }
 END;
 ... { errors will be trapped in try 0 }
 END;

 ...

 BEGIN
 ... { errors will abort the program }
 TRY {try 0}
 ... { errors will be trapped here in try 0 }
 proc1;
 ... { errors will be trapped here in try 0 }
 RECOVER BEGIN
 ... { errors will abort the program }
 END;
 ... { errors will abort the program }

11- 22

 END.

In the previous example, any errors occurring in the TRY-RECOVER in proc1
cause execution to be transferred to the recover part of the try
statement in proc1. Any errors occurring in the TRY-RECOVER in the outer
block, in the recover statement in proc1, and outside of the TRY-RECOVER
in proc1 cause execution to be transferred to the recover part of the try
statement in the outer block. Any error occurring in the recover
statement in the outer block and outside of the TRY-RECOVER statement in
outer block, aborts the program because there is no TRY-RECOVER to catch
the error.

Example

 VAR
 int : integer;
 ...
 int := 0;

 TRY
 ...
 int := 1;
 ...
 int := 2;
 ...
 int := 3;
 ...

 RECOVER BEGIN
 ...
 END;

If execution is transferred to the recover statement, there is no
guarantee that the variable int has a value other than zero for the
following reasons:

 * The error could have occurred anywhere within the try body. The
 first assignment to int may not have been executed yet.

 * Even if an assignment statement was executed, the semantics do not
 guarantee that the actual location of int was updated. If the new
 value of int was stored in a location other than its memory
 location, then the transfer of execution to the RECOVER statement
 does not update the memory location of int.

Procedures and Functions

The system programming extensions define two new formal parameter
mechanisms in addition to Pascal value and VAR formal parameters. These
mechanisms are ANYVAR and READONLY.

The system programming extensions also define an extension to the
procedure and function header syntax for specifying additional attributes
of a procedure or function. This extension is routine options .

Formal Parameters

The reserved words ANYVAR and READONLY can syntactically replace the
reserved word VAR in a formal parameter list specification.

ANYVAR.

This formal parameter mechanism implicitly type coerces the actual
parameter to the type of the formal parameter.

A formal ANYVAR parameter represents the actual parameter during
execution of the procedure. Any changes in the value of the formal
ANYVAR parameter alters the value of the actual parameter. Therefore, it
must be a variable-access parameter. The actual parameter may have any
type. The formal-ANYVAR parameter, however, is treated within the body
of the procedure as a variable of the type specified in its definition.

An additional hidden parameter is passed along with each actual parameter
passed to a formal ANYVAR parameter. This hidden parameter is the length
in bytes of the actual parameter. This size value can be accessed

11- 23

through the use of the predefined functions sizeof and bitsizeof. This
additional size parameter is not passed when the routine option
UNCHECKABLE_ANYVAR is used.

This implicit reference type coercion is independent of the level of type
coercion selected when the actual parameter is used.

Example

 TYPE
 byte = 0..255;
 byte_array = PACKED ARRAY [1..max_bound] OF byte;

 VAR
 int : integer;
 rec : record_type;

 PROCEDURE zero_bytes(ANYVAR arr : byte_array);
 VAR
 i : 0..max_bound;
 limit : 1..max_bound;

 BEGIN
 IF (sizeof(arr) > max_bound) THEN
 limit := max_bound
 ELSE
 limit := sizeof(arr);
 FOR i := 1 TO limit DO
 arr[i] := 0;
 END;
 BEGIN
 zero_bytes(int);
 zero_bytes(rec);
 END;

READONLY.

This formal parameter mechanism protects the actual parameter from
modification within the procedure or function.

A formal READONLY parameter may not be:

 * The target of an assignment statement.

 * Passed as an argument to a VAR or ANYVAR parameter.

 * Passed as an argument to the addr predefined function.

 * Passed as an argument to any predefined routine that modifies that
 argument.

In this way, modification of a variable passed as a READONLY parameter is
an error between the call to and return from the procedure or function by
modifying the formal parameter itself.

The actual parameter is passed by reference. If the actual parameter is
an expression or a constant, then a reference to a copy of the value is
passed.

Example

 PROCEDURE proc(READONLY parm : integer);
 VAR
 pint : ^ integer;

 PROCEDURE procx(VAR i : integer);
 external;

 BEGIN
 ...
 parm := 0; { illegal : cannot assign to a READONLY }
 procx(parm); { illegal : cannot pass to a VAR parameter }
 pint := addr(parm); { illegal : cannot take its address }
 ...
 END;

11- 24

The above example creates detected errors.

NOTE The mechanism does not detect a modification of a READONLY
 parameter by another reference parameter or an uplevel reference.
 The results of such a modification are unpredictable.

Example

 PROCEDURE proc1;

 VAR
 j : integer;
 PROCEDURE proc2 (READONLY j : integer
 VAR m : integer);

 BEGIN

 j := 0; { modification by an uplevel reference }
 m := 0; { modification by another reference parameter }
 END;

 BEGIN
 proc2 (j,j);
 END;

The above example creates undetected errors.

Routine Options

The routine options specify additional attributes of a procedure or
function. The routine options follow the parameter list in the
declaration of a procedure or function header. $STANDARD_LEVEL
'EXT_MODCAL'$ must be specified when using routine options.

Syntax

The option-specification for each option is described in the following
pages.

11- 25

For forward and external declarations of routines, the options specified
on the forward or external routine declaration must match the options on
the formal declaration.

DEFAULT_PARMS.

Normally, all parameters appearing in a formal parameter list must be
present in every corresponding actual parameter list.

The routine option DEFAULT_PARMS allows parameters to be omitted from the
actual parameter list. The option specifies which parameters may be
omitted, and the default values that the omitted parameters will assume.

Syntax

The expression supplied in the DEFAULT_PARMS option must be assignment
compatible with the corresponding formal parameter type. The expression
must also be a constant expression. The only default value permitted for
VAR, ANYVAR, and PROCEDURE/FUNCTION parameters is NIL.

Because defaulted reference parameters (VAR, ANYVAR, PROCEDURE/ FUNCTION
parameters) cannot be examined (their value is NIL, which cannot be
'dereferenced'), the predefined function haveoptvarparm can be used to
determine if a reference parameter was supplied by the caller. See the
section "Predefined Routines" for more information.

Example

 PROCEDURE proc(i : integer)
 OPTION DEFAULT_PARMS(i := -1);
 BEGIN
 ...
 END;

 ...
 proc(1); { value of parameter is 1 }
 proc(); { value of parameter defaulted to -1 }
 proc; { value of parameter defaulted to -1 }

See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide , depending on your implementation, for more details on
OPTION DEFAULT_PARMS.

EXTENSIBLE.

Normally, all parameters appearing in a formal parameter list must be
present in a corresponding actual parameter list.

The routine option EXTENSIBLE allows parameters to be omitted from the
end of an actual parameter list. The option specifies the number of
non-extension parameters (those that must be supplied) in the actual
parameter list. The remaining trailing parameters may be omitted.

11- 26

Syntax

Note that if a particular extension parameter is supplied in an actual
parameter list, then all EXTENSIBLE (and non-defaulted) parameters to the
left of the supplied parameter must also be supplied.

It is an error to access a formal parameter whose corresponding actual
parameter was not passed. An EXTENSIBLE parameter list, therefore, is
always passed with a hidden parameter describing the number of parameters
actually passed. The predefined function haveextension can be used to
determine if an EXTENSIBLE parameter is present. See the section
"Predefined Routines" for more details.

Example

 PROCEDURE proc(i,j : integer)
 OPTION EXTENSIBLE 0;
 BEGIN
 ...
 END;

 ...
 proc; { both parameters not supplied }
 proc(1); { second parameter not supplied }
 proc(1,2); { both parameters passed }

 proc(); { illegal: implies a defaulted parameter }
 proc(,2); { illegal: only trailing parameters can be omitted }
 proc(1,); { illegal: implies a defaulted second parameter }

Refer to the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide , depending on your implementation, for more
information on OPTION EXTENSIBLE.

INLINE.

The option INLINE specifies that the code for a procedure or function be
expanded in line wherever it is invoked. This expansion removes most
procedure call overhead and increases the amount of object code
generated. Value parameters work the same with INLINE, that is, an
assignment to a value parameter inside an inlined routine does not result
in the modification of the actual parameter.

INLINE procedures and functions cannot invoke themselves or any other
mutually recursive inline procedures or functions. The body of a
procedure or function must be supplied when INLINE is used.

Syntax

11- 27

Example

 PROCEDURE proc(x,y : integer) OPTION INLINE;
 ...

 BEGIN
 ...
 END;

For more information about INLINE, refer to the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide , depending on your
implementation.

UNCHECKABLE_ANYVAR.

By default, every ANYVAR parameter is accompanied by a hidden size
parameter that indicates the size of the actual parameter. The purpose
of this parameter is to allow the routine with the formal ANYVAR
parameter to verify that a reference to the formal parameter is within
the bounds of the actual parameter by predefined size functions such as
sizeof.

Syntax

The option UNCHECKABLE_ANYVAR specifies that the hidden size parameter is
not passed by the caller and is not expected by the callee. Its primary
use is to interface with non-Pascal procedures and functions that do not
support the hidden size parameter.

A routine with the option UNCHECKABLE_ANYVAR must have at least one
ANYVAR parameter in its formal parameter list.

Calling the predefined size functions sizeof or bitsizeof for a formal
ANYVAR parameter with option UNCHECKABLE_ANYVAR, returns the size of the
formal parameter as opposed to the size of the actual parameter.

Example

 PROCEDURE proc(ANYVAR arr : array_type)
 OPTION UNCHECKABLE_ANYVAR;

 BEGIN

 END;

The routine above can be called from languages that do not support the
hidden size parameter because it has been declared with the option
UNCHECKABLE_ANYVAR.

UNRESOLVED.

Procedure option UNRESOLVED denotes a procedure or function that is left
unresolved by both the linker and the loader. The resolution of the
symbolic name to its reference part is delayed until the procedure or
function is used.

The suggested way to use this kind of procedure or function is to use the
predefined function addr to determine if it can be resolved. NIL is

11- 28

returned if it cannot. This procedure option can be specified only on
level one procedures or functions.

NOTE On implementations that do not support dynamic loading, taking the
 address of an unresolved routine always produces NIL, while calling
 an unresolved routine is an error.

A procedure or function declared with option UNRESOLVED must not have a
body, and must be declared with the directive EXTERNAL.

Syntax

Example

 PROCEDURE product_x
 OPTION UNRESOLVED; external;

 BEGIN
 ...
 IF (addr(product_x) <> nil) THEN { }
 ...
 END;

The code above performs a check at run time for the existence of a
hypothetical product that provides the entry point product_x. If the
product does not exist at run time, and, therefore, does not have any of
its entry points installed, then the predefined function addr returns
NIL.

Predefined Routines

The system programming extensions define the following additional
predefined procedures and functions.

Addressing and Pointers

Addr.

The predefined function addr allows the user to create references to
routines or data.

Usage

 addr (variable)
 addr (variable,offset)
 addr (routine-name)

Parameters

variable A variable or reference parameter, or a component
 of an unpacked structured variable or reference
 parameter. You can take the address of a component
 of a packed or crunched structure, if the component
 begins on a byte-aligned boundary.

11- 29

offset A signed integer expression.

routine-name The name of a procedure or function.

Description

The predefined function addr returns a pointer value that is the address
of the argument. The type of the pointer returned by addr is assignment
compatible with any pointer type. Addr returns a short or long pointer
depending on the context in which it is called, the context being the
type of the target variable of an assignment, the type of a formal
parameter, or the target type of a type coercion.

If the type coercion target type is not a pointer type, addr returns a
globalanypointer.

If an integer argument is supplied, the pointer returned is offset by the
integer number of bytes from the original variable whose address was
taken.

It is illegal to take the address of a formal value or READONLY
parameter.

It is illegal to take the address of a component of a PACKED or CRUNCHED
structure, if the component does not begin on a byte-aligned boundary.

If addr is called with the name of a procedure or function, the value
returned is a reference to that procedure or function. The function
result type is assignment compatible with a PROCEDURE or FUNCTION type
whose parameter list is congruent with the parameter list of the routine
passed to addr.

If the name passed to addr cannot be resolved, the value NIL is returned.

Example

 $STANDARD_LEVEL 'HP_MODCAL', TYPE_COERCION 'CONVERSION'$
 TYPE
 p_to_p_type = ^ p_to_p_type;

 VAR
 p_to_p : p_to_p_type;

 BEGIN
 p_to_p := addr(p_to_p);
 p_to_p := p_to_p_type(addr(p_to_p^, sizeof(p_to_p^)))^;
 END

The first assignment points the pointer p_to_p to itself. The second
assignment takes the address of the data referenced by p_to_p (which is
itself), offset by the size of the data that p_to_p points to, treats the
value at that location as a pointer, and assigns the value pointed to by
that pointer back to p_to_p.

Addtopointer.

The predefined function addtopointer allows the user to perform address
arithmetic with pointers.

Usage

 addtopointer (pointer, delta)

Parameters

pointer A pointer expression.

delta A signed integer expression whose range restriction

11- 30

 is implementation dependent.

Description

Addtopointer returns a pointer value that points delta bytes away from
where the argument pointer pointed. The type of the pointer returned by
addtopointer is the same as the type of the parameter pointer .

The results of an overflow are implementation dependent.

Example

 TYPE
 intptr = ^integer;

 VAR
 ptr1: intptr;
 ptr2: intptr;
 i: integer;

 BEGIN
 ptr2 := addtopointer (ptr1, i);
 ptr1 := addtopointer (ptr1, sizeof(integer));
 END

Buildpointer.

The predefined function buildpointer allows the user to construct pointer
values.

Usage

 buildpointer (space,offset)

Parameters

space A space identifier whose range restriction and
 semantics are implementation dependent.

offset A bit32 expression whose range restriction is
 implementation dependent.

Description

buildpointer returns a pointer of type globalanyptr whose value is the
address offset bytes into space .

Example

 CONST
 Global_Known_Space = 4916;

 VAR
 Ptr1 : GlobalAnyPtr;
 Ptr2 : GlobalAnyPtr;
 SID : Integer;
 Off : Integer;

 BEGIN
 Ptr1 := BuildPointer (Global_Known_Space, 0);
 off := 4;
 Ptr2 := BuildPointer (SID, Off);
 END.

In the above example, the constant Global_Known_Space represents the
value of a known space.

The first use of buildpointer creates a pointer to the location with an

11- 31

offset of zero in the space whose space id is Global_Known_Space.

The second use of buildpointer creates a pointer to the location four
bytes from the beginning of the space whose space has been assigned to
the variable SID.

Move Routines

The system programming extensions provide the predefined procedures
move_l_to_r, move_r_to_l, fast_fill, and move_fast for generalized and
efficient data copying.

Move_L_to_R.

The predefined procedure move_l_to_r provides a generalized array copying
mechanism.

Usage

 move_l_to_r (count,source,source_index,target,target_index)

Parameters

count A positive integer expression whose value is the
 number of elements to move.

source The source array from where elements will be moved.

source_index An integer expression whose value is the index into
 the source array of the leftmost element to be
 moved. The value must be greater than or equal to
 the index of the first element in the source array,
 and less than or equal to the index of the last
 element in the source array minus the move count.

target The target array to where elements are moved.

target_index An integer expression whose value is the index into
 the target array to where the move begins. The
 value must be greater than or equal to the index of
 the first element in the target array, and less
 than or equal to the index of the last element in
 the target array minus the move count.

Description

The syntax of the procedure is identical to the syntax of the predefined
procedure strmove.

move_l_to_r moves elements from left to right. In a left to right move,
the first element to be moved is the left-most (lowest indexed) element,
and the last element to be moved is the right-most (highest indexed)
element.

Even if the elements of the array to be moved are arrays themselves, the
array will be moved as a single item.

The following diagram shows the order of copying elements for
move_l_to_r.

11- 32

Figure 11-6. Copying Order for move_l_to_r

Example

 TYPE
 Index_Type_1 = 0..20;
 Index_Type_2 = -3..17;

 Array_Type_1 = PACKED ARRAY [Index_Type_1] of SHORTINT;
 Array_Type_2 = ARRAY [Index_Type_2] of SHORTINT;

 VAR
 Array_1 = Array_Type_1;
 Array_2 = Array_Type_2;
 Index = Integer;

 BEGIN

 Move_L_to_R (5, Array_1, 3, Array_2, -3)

 { is equivalent to: }

 FOR Index := 0 TO 4 DO

 Array_2[Index-3] := Array_1[3+Index]

 { is equivalent to: }

 Array_2[-3] := Array_1[3]
 Array_2[-2] := Array_1[4]
 Array_2[-1] := Array_1[5]
 Array_2[0] := Array_1[6]
 Array_2[1] := Array_1[7]

Move_R_to_L.

The predefined procedure move_r_to_l provides a generalized array copying

11- 33

mechanism.

Usage

 move_r_to_l (count,source,source_index,target,target_index)

Parameters

count A positive integer expression whose value is the
 number of elements to move.

source The source array from where elements will be moved.

source_index An integer expression whose value is the index into
 the source array from where the move will begin.
 The value must be greater than or equal to the
 index of the first element in the source array, and
 less than or equal to the index of the last element
 in the source array minus the move count.

target The target array to where elements will be moved.

target_index An integer expression whose value is the index into
 the target array to where the move will begin. The
 value must be greater than or equal to the index of
 the first element in the target array, and less
 than or equal to the index of the last element in
 the target array minus the move count.

Description

The syntax of the procedure is identical to the syntax of the predefined
procedure strmove.

move_r_to_l moves the elements from right to left. In a right to left
move, the first element to be moved is the right-most (highest indexed)
element, and the last element to be moved is the left-most (lowest
indexed) element.

Even if the elements of the array to be moved are arrays themselves, the
array will be moved as a single item.

The following diagram shows the order of copying for move_r_to_l.

11- 34

Figure 11-7. Copying Order for move_r_to_l

Fast_Fill.

The predefined procedure fast_fill provides a generalized method of
initializing an array to a single 8 bit constant.

Usage

 fast_fill (ptr,fill_char,count) ;

Parameters

ptr A pointer expression.

fill_char A constant expression.

count A positive integer expression that contains the
 number of bytes to fill with fill_char .

Description

fast_fill provides a fast alternative to for loops or assignment
statements for initializing each element of a structure or an array to
the same 8 bit value.

fill_char and ptr should of compatible types. fill_char must also
satisfy the following requirement:

 0 <= ord(fill_char) <=255

Example

 $standard_level 'ext_modcal'$
 program fill;
 var p100 : packed array [1..100] of char;
 var i1000 : packed array [1..1000] of integer;
 type heap_p = array [0..9] of integer;
 var p : ^heap_p;
 begin
 fast_fill(addr(p100),' ',sizeof(p100)); {fill a string array}

11- 35

 {with spaces.}
 fast_fill(addr(i1000),0,sizeof(i1000)); {fill an integer array}
 {with 0s. }
 new(p);
 fast_fill(p,hex('ff'),sizeof(p^)); {fill an array in the }
 {heap to -1 (all bits on).}
 end.

Move_Fast.

The predefined procedure move_fast provides another generalized array
copying mechanism.

Usage

 move_fast (count,source,source_index,target,target_index)

Parameters

count A positive integer expression whose value is the
 number of elements to move.

source The source array from where elements will be moved.

source_index An integer expression whose value is the index into
 the source array of the leftmost element to be
 moved. The value must be greater than or equal to
 the index of the first element in the source array,
 and less than or equal to the index of the last
 element in the source array minus the move count.

target The target array to where elements will be moved.

target_index An integer expression whose value is the index into
 the target array to where the move begins. The
 value must be greater than or equal to the index of
 the first element in the target array, and less
 than or equal to the index of the last element in
 the target array minus the move count.

Description

The syntax of the procedure is also identical to the syntax of the
predefined procedure, strmove.

Move_fast provides an alternative to move_l_to_r or move_r_to_l for
generating simpler and faster code when certain restrictions are met by
the parameters.

These restrictions are:

 * The source and target arrays must not overlap.

 * The source and the target must have elements with the same sizes.
 The size of each element must be greater than or equal to one
 byte.

 * If the source or the target array is packed, then the packing
 should be such that the wasted space per word; for example, space
 left between elements, should be the same for both arrays.

 * Both the source and the target arrays must be aligned on byte
 boundaries. Therefore, one of the following must be true:

 * All elements of the source and the target arrays must each
 be aligned on byte boundaries.

 * The leftmost source and target element must be aligned on

11- 36

 byte boundaries, and the total size of the elements to be
 moved must be an integral multiple of one byte.

Example

{ This example assumes certain packing which may not apply to your
implementation. }

 TYPE
 IxType1 = 0..20;
 IxType2 = -3..17;

 Array1 = PACKED ARRAY [IxType1] of SHORTINT;
 Array2 = ARRAY [IxType2] of SHORTINT;
 Array3 = PACKED ARRAY [1..20] of -256..255;
 Array4 = CRUNCHED ARRAY [1..20] of -256..255;

 VAR
 Avar1 : Array1;
 Avar2 : Array2;
 Avar3 : Array3;
 Avar4 : Array4;
 Ix : Integer;

 BEGIN

 Move_Fast (5, AVar2, -3, AVar1, 3); { legal }
 FOR Ix := 0 TO 4 DO { equivalent FOR loop }
 AVar1[Ix+3] := AVar2[Ix-3];

 Move_Fast (5, AVar3, 2, AVar4, 9);

 { illegal , because }
 { - AVar4 does not have byte-aligned elements }
 { - AVar4[9] starts on the 27th bit of a word }
 { (also not byte-aligned) }
 { besides, the number of bits to be moved is not a }
 { multiple of eight, anyway }

 Move_Fast (8, AVar4, 1, AVar4, 9)

 { legal , because }
 { - even though the individual elements of AVar4 are }
 { not byte-aligned, }
 { - AVar4[1] and AVar4[9] are each byte-aligned, and }
 { - The total size of the elements to be moved is an }
 { integral multiple of eight. }
 END;

Error Handling Routines

Escape.

Usage

 escape (escape_value)

Parameters

escape_value An integer expression whose value will be available
 through the predefined function escapecode.

Description

Calling this predefined procedure indicates that a software error has
been detected. Execution passes to the statement following the reserved
word RECOVER of the first enclosing TRY-RECOVER statement.

11- 37

The parameter is evaluated before control is passed and, its value is
available to the escapecode function.

If escape is called with no surrounding TRY-RECOVER the program aborts.

Example

 PROCEDURE proc;
 ...
 BEGIN
 ...
 IF ({something has gone wrong}) THEN
 ESCAPE(0);
 ...
 END;
 ...
 BEGIN
 TRY
 ...
 proc;
 ...
 RECOVER
 WRITELN('fatal error. program terminates');
 END.

Escapecode.

The predefined function escapecode returns the last execution error
number.

Usage

 escapecode

The function returns the value passed to the last implicit or explicit
call to the predefined procedure escape.

An explicit call to escape is a call that was made by the user. In this
case escapecode returns the value of the escape code passed by the user.

An implicit call to escape is a call that was made by a subsystem on the
user's behalf or by the run-time library. In this case, escapecode
returns a predefined value based on the type of error detected. See the
HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's
Guide , depending on your implementation, for more details about the
escape code values.

If escape has never been called (implicitly or explicitly), the value
returned by escapecode is undefined. If escapecode is called outside of
the recover part of a TRY-RECOVER statement, the value returned is
undefined.

Example

 TRY
 ...
 { perform normal processing }

 RECOVER
 CASE escapecode OF
 ...
 { fix-up after an error that can be handled }
 OTHERWISE

 { send errors that cannot be handled }
 escape(escapecode);
 END;

11- 38

The example above shows a possible control structure for trapping
software errors. Within the recover section of the TRY-RECOVER
statement, escapecode is used to recover information about the nature of
the error that caused the trap to the recover section. Note the use of
escapecode to pass certain errors on to a next enclosing TRY statement
with an explicit call to escape.

Parameter Mechanisms

Haveextension.

The predefined Boolean function haveextension determines if an extension
parameter is accessible.

Usage

 haveextension (parameter_name)

Parameters

parameter_name The name of a formal parameter in the current scope
 or a containing scope that is EXTENSIBLE.

In a routine with extension parameters it may be necessary to check a
formal parameter to ensure that an actual parameter was supplied, as a
result of a parameter being passed by the user or being defaulted. The
predefined function haveextension indicates, for a formal extension
parameter name, whether that parameter exists and can be accessed.

Example

 PROCEDURE proc_with_opt_parms(parm1 : type1;
 VAR parm2 : type2;
 parm3 : type3;
 VAR parm4 : type4)
 OPTION EXTENSIBLE 2;

 BEGIN
 ...
 IF (haveextension(parm4)) THEN

 { implies that parm4 and parm3 have values }
 ...

 IF (haveextension(parm3)) THEN

 { implies that parm3 has values }
 ...

 ...
 END;

 proc_with_opt_parms(var1, var2);
 ...
 proc_with_opt_parms(var1, var2, var3);

In the previous example, haveextension is used to determine whether
either or both of the EXTENSIBLE parameters are passed in the call to the
procedure. Note that if parm4 is present, then by definition parm3 must
also be present. See the description of routine OPTION EXTENSIBLE for
more information.

In the first call to proc_with_opt_parms, both calls to haveextension
return false because none of the extension parameters are passed. In the
second call, haveextension returns true for the third parameter only.

 PROCEDURE proc_with_opt_parms(parm1 : type1;
 VAR parm2 : type2;

11- 39

 parm3 : type3;
 VAR parm4 : type4)
 OPTION EXTENSIBLE 2
 DEFAULT_PARMS (parm3 := 0,
 parm4 := nil);

 BEGIN
 ...
 IF (haveextension(parm3)) THEN
 ...
 IF (haveextension(parm4)) THEN
 ...
 ...
 END;

In the above example, haveextension(parm4) returns true only if the
fourth parameter was actually supplied by the user. If it was not
supplied, then the default value is ignored, and the parameter is not
passed.

Haveextension(parm3) is true if either of the following conditions are
true:

 * The third or fourth parameters are supplied by the user.

 * The fourth parameter is supplied and the third is defaulted.
 Because the fourth parameter is EXTENSIBLE, and, therefore, by
 definition all parameters to its left must be passed, the default
 value for the third parameter is passed even though it was not
 supplied by the user.

Haveoptvarparm.

The predefined Boolean function haveoptvarparm determines if a default
reference parameter is accessible.

Usage

 haveoptvarparm (parameter_name)

Parameters

parameter_name The name of a default formal parameter of this or a
 containing scope.

In a routine with default reference parameters, it may be necessary to
check a formal parameter to ensure that its actual parameter was supplied
by the user. The predefined function haveoptvarparm indicates for a
formal reference parameter name whether the corresponding actual
parameter was supplied by the user.

The argument to haveoptvarparm must be the name of a formal parameter
that:

 * Is a VAR, ANYVAR, or PROCEDURE/FUNCTION parameter.

 * Specifies a default value of NIL. See the routine OPTION
 DEFAULT_PARMS.

Example

 PROCEDURE proc_with_opt_parms(VAR parm1 : type1;
 VAR parm2 : type2;
 VAR parm3 : type3)
 OPTION DEFAULT_PARMS(parm2 := nil,
 parm3 := nil);

 BEGIN

11- 40

 ...
 IF (haveoptvarparm(parm2)) THEN { ok to use parm2 }
 ...

 IF (haveoptvarparm(parm3)) THEN { ok to use parm3 }
 ...
 END;

The procedure proc_with_opt_parms in the previous example has three VAR
parameters, two of which are optional. Before using one of the two
parameters within proc_with_opt_parms, a check is made to ensure that the
parameters were supplied by the user. This check is accomplished by
calling haveoptvarparm with the name of the parameter in question as its
argument.

Routine Mechanisms

Call.

The predefined procedure call invokes a procedure.

Usage

 call (procedure_expression)
 call (procedure_expression,parameter ...)

Parameters

procedure_expression An expression whose value is a reference to a
 procedure whose formal parameter list is congruent
 with the parameters specified in the call.

parameter An actual parameter that is compatible with the
 corresponding formal parameter of the PROCEDURE
 type of procedure_expression, that is passed to
 the invoked procedure.

Description

The predefined procedure call causes the indicated procedure to be called
with the indicated parameters.

If, during the execution of the procedure, call accesses any non-local
variables, the variables accessed are the variables that were accessible
at the time the reference to the procedure was made, when it was passed
as an argument to the predefined function, addr. It is an error if the
procedure expression has the value NIL or is undefined. It may not be
possible to detect an undefined procedure reference.

Example

 TYPE
 procedure_type = PROCEDURE(i : integer);

 VAR
 int : integer;
 proc_var : procedure_type;

 PROCEDURE proc(int : integer);
 BEGIN
 ...
 END;

 BEGIN
 proc(int);

 proc_var := addr(proc);
 call(proc_var, int);

11- 41

 END;

In the above example, the two calls to the routine proc are effectively
identical.

Fcall.

The predefined function fcall invokes a function.

Usage

 fcall (function_expression)
 fcall (function_expression, parameter ...)

Parameters

function_expression An expression whose value is a reference to a
 function whose formal parameter list is congruent
 with the parameters specified in the call.

parameter An actual parameter that is compatible with the
 corresponding formal parameter of the FUNCTION
 type of function_expression , that is passed to the
 invoked function.

The predefined function fcall causes the function referenced by the first
FUNCTION variable parameter to be invoked with the supplied parameters.

The type returned by fcall is the same as the type returned by the
FUNCTION expression.

See the description of call for more information.

Size Functions

Bitsizeof.

The predefined function bitsizeof returns an integer representing the
size of its argument in bits.

Usage

 bitsizeof (variable)
 bitsizeof (record_variable,tag_value ...)
 bitsizeof (type_name)
 bitsizeof (record_type_name,tag_value ...)
 bitsizeof (struc_constant)
 bitsizeof (string_literal)

Parameters

variable The name of a variable.

record_variable The name of a record variable with variants.

tag_value The name of a case constant in the variant part of a
 record declaration. Case constants for nested
 variants may appear separated by commas.

type_name The name of a type.

record_type_name The name of a record type with variants.

struc_constant The name of an array, record, set, or string
 constructor.

string_literal A string literal.

11- 42

The bitsizeof function returns the number of bits needed to represent the
data value part of a data item of the given type, or the actual allocated
size of a variable. If the first parameter is a record type or variable
with variants, a variant may be selected by specifying a case constant
with the subsequent parameters. Otherwise, the size with the largest
variant is used.

bitsizeof (type) returns the minimum number of bits of storage for the
type, and bitsizeof (variable) returns the number of bits of storage for
the variable.

For an ANYVAR parameter, two cases exist: If an additional hidden size
parameter is passed along with the ANYVAR parameter, bitsizeof gives the
number of bits in the number of bytes allocated to represent the actual
parameter. If the hidden length parameter is not passed, bitsizeof gives
the number of bits required to represent the formal parameter as a given
type.

Example

 TYPE
 int_type = integer;
 rec_type = RECORD
 int : integer;
 CASE flag: Boolean OF
 true: (r : real);
 false:(lr : longreal);
 end;
 VAR
 int : int_type;
 rec : rec_type;
 size : integer;

 BEGIN
 ...
 size := bitsizeof(int);
 size := bitsizeof(int_type);

 size := bitsizeof(rec, true);
 ...
 END;

NOTE bitsizeof is allowed in CONST declarations except for ANYVAR, VAR
 string, and conformant array parameters.

Sizeof.

The predefined function sizeof returns an integer representing the size
of its argument in bytes.

Usage

 sizeof (variable)
 sizeof (record_variable,tag_value ...)
 sizeof (type_name)
 sizeof (record_type_name,tag_value ...)
 sizeof (struct_constant)
 sizeof (string_literal)

Parameters

variable The name of a variable.

record_variable The name of a record variable with variants.

11- 43

tag_value The name of a case constant in the variant part of a
 record declaration. Case constants for nested
 variants may appear separated by commas.

type_name The name of a type.

record_type_name The name of a record type with variants.

struct_constant The name of an array, record, set, or string
 constructor.

string_literal A string literal.

The predefined function sizeof returns the number of bytes of storage
required to represent the data value part of a data item of the given
type, or the actual allocated size of a variable. If the first parameter
is a record type or variable with variants, a variant may be selected by
specifying a case constant with the subsequent parameters. sizeof (type)
returns the minimum number of bytes for the type. sizeof (variable)
returns the number of bytes of storage for the variable. Otherwise, the
size of the largest variant is returned.

For a variable of a simple data type, the number returned by sizeof is
equivalent to the storage required for the variable in the unpacked
context. For example, if the variable is type char or Boolean, sizeof
returns 1.

For an ANYVAR parameter, two cases exist: If an additional hidden size
parameter is passed along with the ANYVAR parameter, sizeof gives the
actual number of bytes allocated to represent the actual parameter. If
the hidden length parameter is not passed, sizeof gives the number of
bytes required to represent the formal parameter.

For conformant array parameters, the function sizeof is the actual size
of the parameter.

Example

 TYPE
 byte = 0..255;
 big_record = RECORD CASE Boolean OF
 true: (arr : array [1..200] of byte):
 false: (f1 : integer;
 ...
 f99 : char);

 BEGIN
 ...
 IF (sizeof(big_record,true) <> sizeof(big_record,false)) THEN
 BEGIN
 writeln ('variant size mismatch by',
 abs(sizeof(big_record,true)-sizeof(big_record,false)):1,
 'bytes');
 HALT (1);
 END;
 ...
 END.

NOTE sizeof is allowed in CONST sections except for ANYVAR, VAR s, and
 conformant array parameters.

11- 44

12- 1

Chapter 12 Compiler Options

Introduction

This chapter explains every HP Pascal compiler option. Compiler options
fall into two categories: system-independent and system-dependent.
System-independent options work the same way whether HP Pascal is running
on the MPE/iX operating system or the HP-UX operating system.
System-dependent options either work on only one operating system, or
they work differently on HP-UX and MPE/iX. The following table
categorizes the compiler options.

System-Independent Options System-Dependent Options

ALIAS MLIBRARY CONVERT_MPE_NAMES
ALIGNMENT NOTES CALL_PRIVILEGE
ANSI OPTIMIZE EXEC_PRIVILEGE
ARG_RELOCATION OS FONT
ASSERT_HALT OVFLCHECK GPROF
ASSUME PAGE HP3000_16[REV BEG]
BUILDINT PAGEWIDTH HP3000_32
CHECK_ACTUAL_PARM PARTIAL_EVAL HP_DESTINATION
CHECK_FORMAL_PARM POP INCLUDE[REV END]
CODE PUSH INCLUDE_SEARCH
CODE_OFFSETS RANGE NLS_SOURCE
COPYRIGHT S300_EXTNAMES RLFILE
COPYRIGHT_DATE SEARCH RLINIT
ELSE SET SHLIB_CODE
ENDIF SKIP_TEXT SHLIB_VERSION
EXTERNAL SPLINTR SYMDEBUG
EXTNADDR STANDARD_LEVEL
GLOBAL STATEMENT_NUMBER
HEAP_COMPACT STDPASCAL_WARN
HEAP_DISPOSE STRINGTEMPLIMIT
IF SUBPROGRAM
INLINE SYSINTR
INTR_NAME SYSPROG
KEEPASMB TABLES
LINES TITLE
LIST TYPE_COERCION
LIST_CODE UPPERCASE
LISTINTR VERSION
LITERAL_ALIAS VOLATILE
LOCALITY WARN
LONG_CALLS WIDTH
MAPINFO XREF

Each compiler option entry in this chapter gives the option's default
value (if any) and location. Table 12-1 defines the terms that
describe option location (in terms of both option location and scope).

12- 2

Table 12-1. Compiler Option Locations and Scopes

Location Term	Option Location	Option Scope

Anywhere.	Anywhere in the program.	Depends upon the option.

At front.	Before PROGRAM or MODULE in	Applies to the entire source
	the source file.	file.

Not in body.	Not between BEGIN and END.	Applies to the routine that
	(preferably immediately before	contains it.
	BEGIN or the procedure	
	heading).	

Statement.	Anywhere in the program.	Applies to the statements
		following it.

Heading.	In a routine heading, after	Applies to the routine that
	PROCEDURE or FUNCTION, but	contains it.
	before the body or directive.	

A compiler option list begins with a dollar sign ($), contains one or
more compiler options, and ends with a dollar sign. It must fit on a
single line.

Syntax

$ option [{,} option]...$
 [{;}]
Parameter

option Any compiler option described in this chapter;
 however, options with incompatible locations cannot
 appear in the same list.

Example

 $LIST OFF$
 $ANSI OFF, LIST ON$
 $PARTIAL_EVAL ON, ASSUME 'PASCAL_FEATURES', LINES 50$

NOTE Unrecognized compiler options do not cause compilation errors.

System-Independent Options

System-independent options work the same way whether HP Pascal is running
on the MPE/iX operating system or the HP-UX operating system. These
options fall into the following three categories:

Category Associated With

HP Standard options HP Standard Pascal
HP Pascal options HP Pascal
System programming options System programming extensions

Figure 12-1 shows the relationship between ANSI Standard Pascal and

12- 3

HP Pascal (with and without system programming extensions).

Figure 12-1. Relationship Between HP Pascal and ANSI Standard Pascal

The following table categorizes the system-independent compiler options.

HP Pascal Options MLIBRARY
ALIAS NOTES
ALIGNMENT OPTIMIZE
ARG_RELOCATION OS
ASSERT_HALT OVFLCHECK
ASSUME PAGEWIDTH
BUILDINT POP
CHECK_ACTUAL_PARM PUSH
CHECK_FORMAL_PARM S300_EXTNAMES
CODE SEARCH
CODE_OFFSETS SET
COPYRIGHT SKIP_TEXT
COPYRIGHT_DATE SPLINTR
ELSE STATEMENT_NUMBER
ENDIF STDPASCAL_WARN
EXTERNAL STRINGTEMPLIMIT
EXTNADDR SUBPROGRAM
GLOBAL SYSINTR
HEAP_COMPACT SYSPROG
HEAP_DISPOSE TABLES
IF TITLE
INLINE TYPE_COERCION
INTR_NAME UPPERCASE
KEEPASMB VERSION
LIST_CODE VOLATILE
LISTINTR WARN
LITERAL_ALIAS WIDTH
LOCALITY XREF
LONG_CALLS
MAPINFO

HP Standard Options System Programming Options
ANSI EXTNADDR
LINES TYPE_COERCION
LIST
PAGE
PARTIAL_EVAL
RANGE
STANDARD_LEVEL

E

12- 4

NOTE File name parameters have different syntax on the HP-UX and MPE/iX
 operating systems. See the HP Pascal/iX Programmer's Guide or the

HP Pascal/HP-UX Programmer's Guide .

HP Standard Options

HP Standard compiler options are available on all versions of Pascal that
run on HP computers. They are part of the HP Standard. An HP Pascal
program containing only HP Standard options can be compiled by any Pascal
compiler that runs on an HP computer.

HP Pascal Options

HP Pascal compiler options are not required by the HP Standard, but are
available in HP Pascal. An HP Pascal program containing HP Pascal
options must be compiled by the HP Pascal compiler.

System Programming Options

System programming compiler options are only available if the compiler
specifies $STANDARD_LEVEL 'EXT_MODCAL'$ or $STANDARD_LEVEL 'HP_MODCAL'$
(see "STANDARD_LEVEL" compiler option for more information).

System-Dependent Options

System-dependent options either work on only one operating system, or
they work differently on HP-UX and MPE/iX. Figure 12-2 diagrams the
three categories of system-dependent options.

Figure 12-2. Categories of System-Dependent Compiler Options

The system-dependent options are:

MPE/iX Only MPE/iX and HP-UX HP-UX Only

CALL_PRIVILEGE INCLUDE CONVERT_MPE_NAMES
EXEC_PRIVILEGE INCLUDE_SEARCH GPROF
FONT NLS_SOURCE HP_DESTINATION 'ARCHITECTUR
HP3000_16 SYMDEBUG HP_DESTINATION 'SCHEDULER
HP3000_32 SHLIB_CODE
RLFILE SHLIB_VERSION
RLINIT

12- 5

MPE/iX Options

MPE/iX compiler options are available only in HP Pascal running on the
MPE/iX operating system.[REV BEG] See the $OS compiler option later in
this chapter.[REV END]

HP-UX Options

HP-UX compiler options are available only in HP Pascal running on the
HP-UX operating system.[REV BEG] See the $OS compiler option later in
this chapter.[REV END]

Options That Work Differently on HP-UX and MPE/iX

The compiler options that this section explains are available in HP
Pascal running on either the MPE/iX or HP-UX operating system; however,
the options work differently on the two systems. A program that contains
these options can be compiled by a program that specifies either $OS
'MPEXL'$ or $OS 'HPUX'$.

System-wide File

The compiler looks for a system-wide file called PASCNTL.PUB.SYS on
MPE/iX or /usr/lib/pasopts on HP-UX. If the file exists and is not empty,
the compiler opens and reads the file. The file should[REV BEG] contain
only compiler options[REV END] and comments. If there is anything else
in the file, the compiler emits an error message.

On MPE/iX the message is:
[REV BEG]

 ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN ‘PASCNTL.PUB.SYS' (045)
[REV END]

On HP-UX the message is:
[REV BEG]

 ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN /usr/lib/pasopts (045)
[REV END]

The file is shipped empty and does not need to contain anything. If the
file is empty, the compiler does not attempt to open it.

However, if compiler[REV BEG] options have been added to the file, the
compiler processes these options[REV END] before anything else, even the
info string. Therefore, you can override the[REV BEG] options in the
file because later options take[REV END] precedence over earlier options.

Compiler Option Description

This section contains the descriptions of each of the HP PASCAL compiler
options. Each description contains the syntax, location, and default
value of the option. They are arranged alphabetically.

ALIAS

ALIAS is an HP Pascal Option.

The ALIAS compiler option specifies an external name for a procedure,
function, or global variable.

Syntax

 $ALIAS string $

Parameter

string The external name. The compiler does not distinguish

12- 6

 between uppercase and lowercase letters. By default, the
 external name is downshifted. The LITERAL_ALIAS compiler
 option allows the external name to remain as it is. The
 UPPERCASE compiler option upshifts the external name.

Default The internal name, downshifted (or upshifted if UPPERCASE
 is ON).

Location Routine: Heading.

 Global Immediately after the variable name in the
 variable: variable declaration.

When a routine has both internal and external names, the program
recognizes its internal name and the operating system recognizes its
external name.

NOTE For global variables, the HP Pascal options EXTERNAL or GLOBAL must
 be included or the ALIAS option is ignored.

 Also, routines must be level 1 or the ALIAS option is ignored.

The reasons to use the ALIAS option are:

 * To define multiple internal names for a single external procedure.

 * To access a library or system routine that has an illegal
 (external) name, by giving it a legal internal name.

Example 1

 $GLOBAL$
 PROGRAM p (input,output);

 VAR
 global_var $ALIAS 'gvar'$: integer; {global variable}

 PROCEDURE $ALIAS 'write'$ Writefile; EXTERNAL; {procedure}

 FUNCTION $ALIAS 'read'$ Readfile : char; EXTERNAL; {function}

 BEGIN
 .
 .
 .
 END.

Example 2

 PROGRAM show_alias;
 .
 .
 PROCEDURE $ALIAS 'intrinname'$ A; INTRINSIC; {One intrinsic }
 PROCEDURE $ALIAS 'intrinname'$ B; INTRINSIC; {has two internal}
 {names, A and B }
 .
 .
 PROCEDURE $ALIAS 'x''x'$ xx; INTRINSIC; {The intrinsic name}
 {x'x is illegal in Pascal}
 .
 .
 PROCEDURE proc1;
 FUNCTION $ALIAS 'D1'$ do_it (n : INTEGER): BOOLEAN;
 BEGIN {do_it}

12- 7

 .
 .
 END; {do_it}
 BEGIN {proc1}
 .
 .
 END; {proc1}

 PROCEDURE proc2;
 FUNCTION $ALIAS 'D2'$ do_it (a,b : INTEGER): INTEGER;
 BEGIN {do_it}
 .
 .
 END; {do_it}
 BEGIN {proc2}
 .
 .
 END; {proc2}

 BEGIN {show_alias}
 .
 .
 END. {show_alias}

Example 3

 PROGRAM show_alias;

 FUNCTION $ALIAS 'f'$ f1 (p1 : integer); EXTERNAL;

 FUNCTION $ALIAS 'f'$ f2 (p1,p2 : integer); EXTERNAL;

 BEGIN
 .
 .
 .
 END.

Notice that the function f1 declares one parameter of the function f,
while the function f2 declares two.

ALIGNMENT

ALIGNMENT is an HP Pascal Option.

The ALIGNMENT compiler option specifies the alignment requirements for a
type (for the definition of alignment see Chapter 5). It cannot be
used with string or file types. The alignment of a record or array must
be at least as large as its largest field or element.

ALIGNMENT does not support alignments greater than 8 bytes for variables.
Only fields are aligned greater than 8 bytes. However, you can align a
record or array with more than 8 bytes through a call to P_GETHEAP with
the appropriate alignment parameter.

Syntax

 $ALIGNMENT integer $

Parameter

integer In the range 1..2048. The following values for integer
 specify the alignments indicated. Other values are
 illegal.

12- 8

Default Depends upon packing algorithm.

Location After the symbol = in a type definition.

Example

 TYPE
 Rec = $ALIGNMENT 16$
 RECORD
 F1 : Integer;
 F2 : ShortInt;
 F3 : Real;
 END;

 Integer_ = $ALIGNMENT 2$ Integer;
 Ptr = ^Integer_;

ANSI

ANSI is an HP Standard Option.

When the ANSI compiler option is ON, the compiler issues an error
whenever it encounters a feature in the source code that is illegal in
ANSI Standard Pascal. The compiler compiles the illegal feature if
possible; otherwise it is a syntax error. The error appears in the
listing.

The command line option -A also specifies this option.

Syntax

$ANSI {ON }$
 {OFF}

Default OFF

Location Anywhere.

The options $ANSI ON$ and $STANDARD_LEVEL 'ANSI'$ are equivalent.

Example

 PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...
 0 1.000 0 $ANSI ON, OS 'MPEXL'$
 0 2.000 0 PROGRAM t;
 0 3.000 0

12- 9

 0 4.000 0 BEGIN
 0 5.000 0 assert(false,0);
 0 6.000 0 ^

 **** ERROR # 1 THIS FEATURE REQUIRES $STANDARD_LEVEL "HP_PASCAL" (539)
 1 7.000 0 END.

ARG_RELOCATION

ARG_RELOCATION is an HP Pascal Option.

The ARG_RELOCATION option can be used to suppress parameter relocation
information for all procedure or function definitions and calls. This
option is only useful for REAL and LONGREAL data types.

Syntax

$ARG_RELOCATION {ON }$
 {OFF}
Parameters

ON Relocation information is generated for parameters and
 function returns. For dynamic calls (FCALL, CALL and calls
 to procedural and functional parameters), REAL and LONGREAL
 parameters and function results are put into or assumed to
 be in general registers.

OFF Relocation information is suppressed. Additionally, for
 dynamic calls, REAL and LONGREAL parameters and function
 returns are put into or assumed to be in floating point
 registers.

Default ON

Location At front.

Parameter relocation information is used by the linker to make sure the
arguments and the function return are in the correct register type.
(General versus floating point.)

ARG_RELOCATION OFF might be useful for performance if the called
procedure is in a shared library (HP-UX) or executable library (MPE/iX),
or if dynamic calls are used with REAL or LONGREAL parameters or function
returns.

When ARG_RELOCATION ON is used, linker-supplied stubs copy floating point
registers to general registers and then back again in the library. The
same thing is done for the function return.

When ARG_RELOCATION OFF is used, the linker assumes that everything is in
the correct register and generates no extra stubs. For a dynamic call,
the compiler puts floating point parameters in floating point registers.

See Procedure Calling Conventions Reference Manual for more details on
parameter relocation stubs.

Example

 $ARG_RELOCATION OFF$
 program args;
 procedure p_r(x : real); external;
 begin
 p_r(1.5);
 end.

CAUTION If the ARG_RELOCATION is used improperly, unexpected results may

12- 10

 occur. Refer to the Procedure Calling Conventions Reference
Manual for detailed information on how to use this option.

ASSERT_HALT

ASSERT_HALT is an HP Pascal Option.

The ASSERT_HALT compiler option works with the predefined function
assert . IF an assert fails (that is, if its Boolean expression is
false), and ASSERT_HALT is ON, the program terminates. If ASSERT_HALT is
OFF, the program continues to execute. See the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide .

Syntax

$ASSERT_HALT {ON }$
 {OFF}

Default OFF

Location Anywhere.

Example

This program stops if i is greater than 10.

 $ASSERT_HALT ON$
 $OS 'MPE/iX'$
 PROGRAM show_asserthalt (input,output);
 VAR
 i: integer;
 BEGIN
 write('Please enter an integer: ');
 prompt;
 read(i);
 assert(i<10,99);
 writeln('Good show! You didn''t abort the program.');
 END.

ASSUME

ASSUME is an HP Pascal Option.

The ASSUME compiler option specifies optimizer assumptions beyond those
implied by the STANDARD_LEVEL compiler option. It determines what the
optimizer does, but it does not determine what the compiler accepts. If
your program violates its optimizer assumptions, you can compile it with
or without optimization; however, the optimized version may fail.

Syntax

 {NOTHING }
 {PASCAL_FEATURES }
 {PASCAL_POINTERS }
 {NO_PARM_ADDRESSED }
 {PARM_TYPES_MATCH }
 {NO_PARMS_OVERLAP }
$ASSUME '{LOCAL_GOTOS_ONLY }'$
 {LOCAL_ACCESSES_ONLY}
 {NO_SIDE_EFFECTS }
 {NO_HEAP_CHANGES }
 {NORMAL_RETURN }
 {LOCAL_ESCAPES_ONLY }
 {FLOAT_TRAPS_ON }
Parameters

12- 11

NOTHING The optimizer assumes nothing, overriding any
 previous assumptions.

PASCAL_FEATURES The optimizer assumes that routines are defined
 and called with Pascal features only.
 PASCAL_FEATURES implies PASCAL_POINTERS,
 PARM_TYPES_MATCH, NO_PARM_ADDRESSED, and
 LOCAL_ESCAPES_ONLY.

PASCAL_POINTERS The optimizer assumes that no operation except
 the function new creates a pointer, and no
 operation except an assignment statement
 modifies its value. This precludes the
 functions addr , addtopointer , and buildpointer ,
 type coercing to a pointer type, and reference
 parameters and function return values that
 violate the assumption. PASCAL_POINTERS
 implies NO_PARM_ADDRESSED.

NO_PARM_ADDRESSED The optimizer assumes that no reference
 parameter is passed to the function addr .

PARM_TYPES_MATCH The optimizer assumes that every formal
 reference parameter and its corresponding
 actual parameter are of the same type; that is,
 no actual parameter is type-coerced (except in
 the case of ANYVAR parameters).

NO_PARMS_OVERLAP The optimizer assumes that the actual
 parameters passed to the formal reference
 parameters do not overlap; that is, two formal
 parameters do not get the same actual parameter
 or the same field of a record. (This is always
 true if the scope defines only one reference
 parameter.) NO_PARMS_OVERLAP has no effect
 without LOCAL_ACCESSES_ONLY.

LOCAL_GOTOS_ONLY The optimizer assumes that no routine jumps to
 a label in a surrounding scope.

LOCAL_ACCESSES_ONLY The optimizer assumes that only parameters and
 local variables are accessed or modified
 (directly or indirectly). Input, output, and
 global and nonlocal variables are not accessed
 or modified. LOCAL_ACCESSES_ONLY implies
 NO_SIDE_EFFECTS.

NO_SIDE_EFFECTS The optimizer assumes that only parameters and
 local variables are modified (directly or
 indirectly). Input, output, and global and
 nonlocal variables are not modified (but they
 can be accessed). NO_SIDE_EFFECTS implies
 NO_HEAP_CHANGES.

NO_HEAP_CHANGES The optimizer assumes that no item currently on
 the heap is modified (but it can be accessed).

NORMAL_RETURN The optimizer assumes that routines are exited
 only in the normal way. NORMAL_RETURN implies
 LOCAL_GOTOS_ONLY and LOCAL_ESCAPES_ONLY.

LOCAL_ESCAPES_ONLY The optimizer assumes that no routine escapes
 to a calling routine; that is, all calls to the
 predefined procedure escape are within
 TRY-RECOVER constructs.

FLOAT_TRAPS_ON The optimizer assumes that the IEEE floating
 point traps are on and does not move loop

12- 12

 invariant expressions (that are conditioned by
 an IF) out of loops. This parameter can be
 used in conjunction with any of the other
 parameters. Refer to the +FP compiler option
 in the HP Pascal/iX Programmer's Guide or the

HP Pascal/HP-UX Programmer's Guide , depending
 on your implementation, as well as the PA-RISC

1.1 Architecture and Instruction Set Reference
Manual .

Default NOTHING (assuming that FLOAT_TRAPS_ON is not specified).

Location Anywhere, but in order to be effective, it must appear
 before the place in the code where label declarations or
 directives can appear. If FLOAT_TRAPS_ON is specified, the
 location must be at the front.

Scope All following source code, until overridden by another
 ASSUME option.

Figure 12-3 shows how the parameters of the ASSUME compiler option
are related.

Figure 12-3. Relationships Between ASSUME Compiler Option Parameters

 * NO_PARMS_OVERLAP is ineffective without LOCAL_ACCESSES.

12- 13

After compiling a routine, the compiler knows what it accesses and
modifies, so the optimizer can derive the appropriate assumptions.
Only exported, forward, and external routines require that you
specify LOCAL_GOTOS_ONLY, LOCAL_ACCESSES_ONLY, NO_SIDE_EFFECTS, or
NO_HEAP_CHANGES. These assumptions are valid for intrinsic functions and
procedures, but you must specify them in the routine.

Example 1

The following program skeleton demonstrates how to nest ASSUME options,
using the PUSH and POP compiler options.

 $ASSUME 'PASCAL_FEATURES'$
 PROGRAM prog ;
 LABEL
 999 ; { Possible target for nonlocal GOTO }

 $PUSH$
 $ASSUME 'NO_SIDE_EFFECTS'$
 PROCEDURE extnl ; EXTERNAL ;
 { Optimizer assumes:
 { PASCAL_FEATURES (inherited)
 { NO_SIDE_EFFECTS (specified)
 }
 POP

 $PUSH$
 $ASSUME 'LOCAL_ACCESSES'$
 $ASSUME 'LOCAL_GOTOS_ONLY'$
 PROCEDURE intnl ;

 $PUSH$
 $ASSUME 'NOTHING'$
 { Optimizer assumes nothing.
 { This overrides inherited assumptions.
 }
 $ASSUME 'PARM_TYPES_MATCH'$
 PROCEDURE nested ;
 VAR
 i : integer ;

 $PUSH$
 $ASSUME 'NO_SIDE_EFFECTS'$
 $ASSUME 'NO_PARMS_OVERLAP'$
 PROCEDURE furthernested ;

(Example is continued on next page)

 BEGIN {furthernested}

 { Modifying i violates NO_SIDE_EFFECTS }

 { Optimizer assumes:
 { PARM_TYPES_MATCH (inherited),
 { NO_SIDE_EFFECTS (specified)
 { NO_PARMS_OVERLAP (specified)
 { LOCAL_GOTOS_ONLY (known after compilation)
 }
 END ; {furthernested}
 POP

 BEGIN {nested}
 { Optimizer assumes:
 { PARM_TYPES_MATCH (specified)
 { LOCAL_GOTOS_ONLY (known after compilation)
 }

 furthernested ;

12- 14

 END ; {nested}
 POP

 BEGIN {intnl}
 { Optimizer assumes:
 { PASCAL_POINTERS (inherited)
 { PARM_TYPES_MATCH (inherited)
 { LOCAL_GOTOS_ONLY (specified)
 { NO_SIDE_EFFECTS (known after compilation)
 }

 nested ;

 END ; {intnl}
 POP

 BEGIN { main program }
 { Optimizer assumes:
 { PASCAL_POINTERS (implied)
 { PARM_TYPES_MATCH (implied)
 }

 intnl ;

 999:
 END .

Example 2

The following example turns on the IEEE floating-point traps. (On HP-UX,
the +FPZ option can be used instead of the call to HPENBLTRAP). This
program would have aborted on the divide by 0 if the loop invariant
expression was moved out of the loop.

 $ASSUME 'FLOAT_TRAPS_ON'$ $OPTIMIZE ON$
 program trap;
 var
 r,s : real;
 i : integer;
 oldmask : integer;

 procedure hpenbltrap; intrinsic;

 begin
 hpenbltrap(hex('ffffffff'),oldmask);
 s := 0.0;
 r := 0.0;
 for i := 0 to 10 do
 begin
 if r <> 0.0 then
 s := 1.0 / r; { divide by zero? }
 s := s + 1.0;
 end;
 end.

See the Pascal/iX Programmer's Guide or the Pascal/HP-UX Programmer's
Guide , depending on your implementation, for more information on +FP. See
the Trap Handling Programmer's Guide for more information on HPENBLTRAP.
See the PA-RISC 1.1 Architecture and Instruction Set Reference Manual for
more information on IEEE floating point instructions and traps.

BUILDINT

BUILDINT is an HP Pascal Option.

The BUILDINT compiler option causes the compiler to build an intrinsic
file.

12- 15

Syntax

 $BUILDINT [string]$

Parameter

string Specifies the name of the intrinsic file that the compiler
 builds. If the specified file exists and is an intrinsic
 file, entries are added to it. If it exists, but is not an
 intrinsic file, it is an error. If the file does not
 exist, it is created (see the HP Pascal/iX Programmer's

Guide or the HP Pascal/HP-UX Programmer's Guide).

Default System intrinsic file.

Location At front.

The compiler adds an entry to the intrinsic file for each routine
declaration in the compilation unit. If the compilation unit declares a
routine with the same name as a routine that is already in the intrinsic
file, the new routine declaration replaces the old one.

The compilation unit can contain constant, type, and variable
declarations and procedure and function headings, but not routine bodies
or a nonempty outer block. Each routine must be designated external
(with the EXTERNAL directive). The compiler does not generate code for
the compilation unit.

NOTE The pc option +C on HP-UX affects the BUILDINT compiler option (see
 the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX

Programmer's Guide).

Example

 $BUILDINT 'MYINTR'$
 PROGRAM Show_Buildint;

 TYPE
 Smallint = -32768..32767;
 ByteArray = PACKED ARRAY [1..80] OF CHAR;
 RecType = RECORD
 F1 : Integer;
 F2 : ByteArray;
 END;

 PROCEDURE Proc1 (P1 : Smallint;
 P2 : Integer;
 VAR P3 : ByteArray;
 VAR P4 : RecType;
 P5 : Real
);
 EXTERNAL;

 FUNCTION Func1 (P1 : Real) : Integer;
 EXTERNAL;

 BEGIN
 {Empty outer block}
 END.

The BUILDINT compiler option is used with the LISTINTR and SYSINTR
compiler options. See the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, for
details.

12- 16

CALL_PRIVILEGE and EXEC_PRIVILEGE

CALL_PRIVILEGE and EXEC_PRIVILEGE are System-Dependent MPE/iX Options.

The CALL_PRIVILEGE and EXEC_PRIVILEGE compiler options allow routines to
call and execute privileged mode routines. To use these compiler
options, the option STANDARD_LEVEL 'EXT_MODCAL' is required.

The CALL_PRIVILEGE option specifies, for a given routine, the minimum
privilege level that other routines must have to call the specified
routine. The EXEC_PRIVILEGE option specifies the privilege level at
which a routine will execute.

CAUTION Routines not specified by the CALL_PRIVILEGE or EXEC_PRIVILEGE
 compiler options are given the lowest privilege level by
 default. If you specify a routine to have a higher calling or
 executing privilege level, the routine is allowed to override
 safety features in the MPE/iX operating system. Therefore,
 exercise caution when using CALL_PRIVILEGE and EXEC_PRIVILEGE
 because misuse can destroy your operating system.

Syntax

$CALL_PRIVILEGE integer $

$EXEC_PRIVILEGE integer $

Parameter

integer An integer in the range 0 . . 3, with 0 being the most
 privileged level and 3 the least.

Default Privilege level 3.

Location Before the body of the routine, but after the reserved
 words PROCEDURE or FUNCTION.

Example

 $STANDARD_LEVEL 'EXT_MODCAL'$
 PROGRAM p;

 PROCEDURE proc1 $CALL_PRIVILEGE 1$ (
 VAR i : integer);
 BEGIN
 END;

 PROCEDURE proc2 $EXEC_PRIVILEGE 2$ (
 VAR i : integer);
 BEGIN
 END;

 PROCEDURE proc3 $CALL_PRIVILEGE 1$
 $EXEC_PRIVILEGE 0$ (
 VAR i: integer);
 BEGIN
 END;

 BEGIN
 END.

Any routine calling procedure proc1 must execute at privilege level 1 or
level 0. By default, proc1 executes at privilege level 3. Procedure
proc2 executes at level 2; a routine calling proc2 may be executing at

12- 17

any level. Procedure proc3 executes at privilege level 0; any routine
calling proc3 must be executing at level 1 or higher.

CHECK_ACTUAL_PARM

CHECK_ACTUAL_PARM is an HP Pascal Option.

The CHECK_ACTUAL_PARM compiler option determines how closely the actual
parameters of routines must match their formal parameters in separately
compiled sources. If the actual and formal parameters are incompatible,
the linker does not link the program.

Syntax

 $CHECK_ACTUAL_PARM integer $

Parameter

integer In the range 0..3. Determines how the linker checks actual
 parameters against formal parameters, as follows:

Value The linker checks:

 0 Nothing.

 1 Function result type.

 2 Function result type,
 number of routine parameters.

 3 Function result type,
 number of routine parameters,
 type of each parameter.

Default 3

Location Anywhere.

CHECK_ACTUAL_PARM affects every routine call that follows it (until
superceded by another CHECK_ACTUAL_PARM). However, its practical use is
to lower the type checking for a particular routine call. (Compare
CHECK_FORMAL_PARM, which is intended to lower the type checking for
every call to a specific routine.) If both CHECK_ACTUAL_PARM and
CHECK_FORMAL_PARM apply to a routine, the linker uses the lower
type-checking value.

The type-checking for an external routine is compatible with that of the
language in which it is written. (An external routine is identified as
such with the EXTERNAL directive.)

Example

 PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

 0 1.000 0
 0 2.000 0
 0 3.000 0 PROGRAM t;
 0 4.000 0
 0 5.000 0 TYPE
 0 6.000 0 int_ptr_type = ^integer;
 1 7.000 0 char_ptr_type = ^char;
 2 8.000 0
 2 9.000 0 VAR
 2 10.000 0 int_ptr : int_ptr_type;
 3 11.000 0 char_ptr : char_ptr_type;
 4 12.000 0
 0 13.000 0 PROCEDURE proc (ip : int_ptr_type);
 0 14.000 0 EXTERNAL;

12- 18

 0 15.000 0
 0 16.000 0 PROCEDURE $ALIAS 'proc'$ proc_c (cp : char_ptr_type);
 2 17.000 0 EXTERNAL;
 0 18.000 0
 0 19.000 0
 0 20.000 0 {Renaming the procedure gets around HP Pascal's}
 0 21.000 0 {parameter type checking}
 0 22.000 0
 4 23.000 1 BEGIN
 4 24.000 1
 4 24.000 1 proc(int_ptr);
 5 25.000 1
 5 26.000 1 $CHECK_ACTUAL_PARM 2$
 5 27.000 1 proc_c(char_ptr);
 6 28.000 1
 6 29.000 1 {Using CHECK_ACTUAL_PARM gets around the linker's}
 6 30.000 1 {parameter type checking}
 6 31.000 1
 6 32.000 1 END.

CHECK_FORMAL_PARM

CHECK_FORMAL_PARM is an HP Pascal Option.

The CHECK_FORMAL_PARM compiler option determines how closely the formal
parameters of a routine must match its actual parameters. If the formal
and actual parameters are incompatible, the linker does not link the
program.

Syntax

 $CHECK_FORMAL_PARM integer $

Parameter

integer In the range 0..3. Determines how the linker checks actual
 parameters against formal parameters, as follows:

Value The linker checks:

 0 Nothing.
 1 Function result type.
 2 Function result type,
 number of routine parameters.
 3 Function result type,
 number of routine parameters,
 type of each parameter.

Default 3

Location Anywhere.

CHECK_FORMAL_PARM affects every routine call that follows it (until
superceded by another CHECK_FORMAL_PARM). It lowers the type checking for
every call to these routines. (Compare CHECK_ACTUAL_PARM, which is
intended to lower the type checking for a particular routine call.) If
both CHECK_FORMAL_PARM and CHECK_ACTUAL_PARM apply to a routine, the
linker uses the lower type-checking value.

The type-checking for an external routine is compatible with that of the
language in which it is written. (An external routine is identified as
such with the EXTERNAL directive.)

When you call an HP Pascal routine from a non-Pascal program, you must
compile the HP Pascal routine with $CHECK_FORMAL_PARM 0$ to turn
parameter checking off. Otherwise, HP Pascal generates type-checking
information that the non-Pascal program cannot match.

12- 19

The compiler does not generate type-checking code for intrinsic routines.
(An intrinsic routine is identified as such with the INTRINSIC directive.
See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX
Programmer's Guide .)

Example

 PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

 0 1.000 0
 0 2.000 0
 0 3.000 0 $SUBPROGRAM$
 0 4.000 0 PROGRAM t;
 0 5.000 0
 0 6.000 0 $CHECK_FORMAL_PARM 0$
 0 7.000 0
 0 8.000 0 {CHECK_FORMAL_PARM prevents the linker from
 0 9.000 0 complaining if this procedure is called with
 0 10.000 0 fewer than seven actual parameters}
 0 11.000 0
 0 12.000 0 PROCEDURE proc (parm_count : integer;
 2 13.000 0 parm1,
 3 14.000 0 parm2,
 4 15.000 0 parm3,
 5 16.000 0 parm4,
 6 17.000 0 parm5,
 7 18.000 0 parm6 : integer);
 8 19.000 1 BEGIN
 8 20.000 1 END;
 8 21.000 0
 0 22.000 1 BEGIN
 0 23.000 1 END.

CODE

CODE is an HP Pascal Option.

When the CODE compiler option is ON, the compiler generates object code
after parsing a compilation block.

The command line option -C also specifies this option.

Syntax

$CODE {ON }$
 {OFF}

Default ON

Location Anywhere, but it affects only the procedure, function, or
 outer block that contains it.

The CODE option affects an entire procedure, function, or outer block.
To suppress the object code for smaller portions of source code, use the
SKIP_TEXT option, or enclose that portion of source code in comment
symbols.

Example

The compiler generates no object code for proc2. Although $CODE OFF$ is
in the middle of proc2, it affects the entire procedure.

 PROGRAM show_code;
 PROCEDURE proc1;
 BEGIN
 :
 END;
 PROCEDURE proc2;

12- 20

 BEGIN
 :
 $CODE OFF$
 :
 END;
 $CODE ON$
 BEGIN
 :
 END.

CODE_OFFSETS

CODE_OFFSETS is an HP Pascal Option.

When the CODE_OFFSETS compiler option is ON (and the LIST compiler option
is ON), the compiler prints a table that contains the statement number
and offset of each executable statement that it lists.

Syntax

$CODE_OFFSETS {ON }$
 {OFF}

Default OFF

Location Anywhere.

The offset is the address of the first machine instruction generated for
the statement, relative to the start of the routine or outer block. It
is in hexadecimal.

The table appears at the end of the compiler listing.

Example

 0 1.000 0 $LIST ON, CODE_OFFSETS ON$
 0 2.000 0 $STANDARD_LEVEL 'HP_MODCAL'$
 0 3.000 0 PROGRAM x (output);
 2 4.000 0 import arg;
 0 5.000 0 VAR
 0 6.000 0 x : integer;
 1 7.000 0 y : argarrayptr;
 2 8.000 0 s : string[40];
 5 9.000 1 BEGIN
 5 10.000 1 x := argc;
 6 11.000 1 writeln('There were ',x:1,' argv elements');
 7 12.000 1 writeln('Argv test');
 8 13.000 1 y := argv;
 9 14.000 1 FOR x := 1 TO argc-1 DO
 10 15.000 2 BEGIN
 10 16.000 2 setstrlen(s,0);
 11 17.000 2 strmove(strmax(s), y^[x]^, 1, s, 1);
 12 18.000 2 setstrlen(s, strpos(s,#0)-1);
 13 19.000 2 writeln('Arg ',x:1,' = >',s,'<');
 14 20.000 2 END;
 14 21.000 1 writeln('Argn test');
 15 22.000 1 FOR x := 0 TO argc-1 DO
 16 23.000 1 writeln('Arg ',x:1,' = >',argn(x), '<');
 17 24.000 1 END.

 C O D E O F F S E T S

 PROGRAM

 STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET
 5 70 6 80 7 128 8 174 9 184
 10 1B0 11 1B8 12 21C 13 274 14 390
 15 3DC 16 404

12- 21

Example

 PROCEDURE outer;

 PROCEDURE inner;
 BEGIN
 .
 .
 .
 END;

 BEGIN
 .
 .
 .
 END;

 C O D E O F F S E T S

 outer4inner

 STMT OFFSET STMT OFFSET
 1 20 2 30

 outer

 STMT OFFSET STMT OFFSET
 1 10 2 2C

Outer4inner is the procedure label for the level two procedure, inner,
contained in the level one procedure outer. Statement one of inner is
offset 20 (hexadecimal) bytes from the address of inner.

NOTE This feature is intended for use with an assembly-level debugger.
 See the HP Pascal/iX Programmer's Guide or the HP Pascal/HP-UX

Programmer's Guide for information on the debuggers.

 If you use optimization with this option, the offsets will not be
 correct.

CONVERT_MPE_NAMES

CONVERT_MPE_NAMES is a System-Dependent HP-UX Option.

The CONVERT_MPE_NAMES compiler option converts file names in the
BUILDINT, INCLUDE, LISTINTR, and SYSINTR compiler options from MPE format
to HP-UX format.

The command line option +C also specifies this option.

Syntax

 $CONVERT_MPE_NAMES$

Default None.

Location Anywhere.

Fully qualified HP-UX-format file names (those that begin with slash,
like '/mnt/srf/file') are not converted.

This option assumes an HP-UX directory structure that is modeled after
the MPE/iX accounting structure, in which all files reside in group-level
directories and groups are subdirectories of accounts. This option

12- 22

converts MPE/iX-format file names to lowercase letters.

For example, assume the HP-UX directory structure account/group, where
group is a directory containing the file f. If a Pascal source program
contains the statement

 $INCLUDE 'F.Group.Account'$
[REV BEG]

then the compiler prefixes[REV END] the appropriate path information to
f, and searches for the resulting name (for example, if the compilation
is performed in the group-level directory, then the compiler includes the
file ../../account/group/f).

COPYRIGHT

COPYRIGHT is an HP Pascal Option.

The COPYRIGHT compiler option puts a copyright notice in the relocatable
object file and the program file.

Syntax

 $COPYRIGHT string_literal $

Parameter

string_literal The name of the copyright owner, to appear in the copyright
 notice. The compiler distinguishes between uppercase and
 lowercase letters.

Default None.

Location At front.

The copyright notice is:

 (C) Copyright date_string by string_literal .
 All rights reserved. No part of this program may be
 photocopied, reproduced, or transmitted without prior
 written consent of string_literal .

The default date_string is the current year (see the COPYRIGHT_DATE
compiler option).

Example

 $COPYRIGHT 'Blaise Pascal'$
 PROGRAM show_copyright;
 BEGIN
 :
 END.

The preceding program produces the following copyright notice:

 (C) Copyright 1986 by Blaise Pascal. All rights reserved.
 No part of this program may be photocopied, reproduced, or
 transmitted without prior written consent of Blaise Pascal.

COPYRIGHT_DATE

COPYRIGHT_DATE is an HP Pascal Option.

The COPYRIGHT_DATE compiler option specifies the date that appears in the
copyright notice.

Syntax

12- 23

 $COPYRIGHT_DATE date_string $

Parameter

date_string Specifies the date string to appear in the copyright
 notice, as follows:

 (C) Copyright date_string by string_literal .
 All rights reserved. No part of this program may be
 photocopied, reproduced, or transmitted without prior
 written consent of string_literal .

 (The COPYRIGHT option sets string_literal .)

Default Current year.

Location At front.

The COPYRIGHT_DATE compiler option has no effect if the program does not
contain the COPYRIGHT compiler option, which puts the copyright notice
into the relocatable object and program files.

Example

 $COPYRIGHT 'Blaise Pascal'$
 $COPYRIGHT_DATE '1682,1683,1684,1685,1686'$
 PROGRAM show_copyright;
 BEGIN
 END.

The copyright notice for the preceding program is:

 (C) Copyright 1682,1683,1684,1685,1686 by Blaise Pascal.
 All rights reserved. No part of this program may be
 photocopied, reproduced, or transmitted without prior
 written consent of Blaise Pascal.

ELSE

ELSE is an HP Pascal Option.

The ELSE compiler option specifies the code to be compiled when the
Boolean expression in the IF compiler option has the value FALSE. See the
IF option for more information.

Syntax

 $ELSE$

Default Not applicable.

Location Anywhere.

Example 1

 $SET 'group1=FALSE'$
 .
 .
 .
 $IF 'group1'$

 [source_line]
 [.]
 [.]
 [.]
 $ELSE$

 [source_line]

12- 24

 [.]
 [.]
 [.]

 $ENDIF$

In this example, the code following $ELSE is compiled because group1 is
set to FALSE.

Example 2

 $SET 'group3=true,group2=false;group1=false'$
 .
 .
 .
 $IF 'group1'$

 [source_line]
 [.]{group1}
 [.]
 [.]
 $ELSE$
 $IF 'group2'$

 [source_line]
 [.]{group2}
 [.]
 [.]

 $ELSE$
 $IF 'group3'$

 [source_line]
 [.] {group3}
 [.]
 [.]
 $ENDIF$
 $ENDIF$
 $ENDIF$

In this example, only group3 is compiled because it is set to true and
group1 and group2 are set to false.

ENDIF

ENDIF is an HP Pascal Option.

The ENDIF compiler option ends the code to be conditionally compiled.
See the IF compiler option for more information.

Syntax

 $ENDIF$

Default Not applicable.

Location Anywhere.

Example

 $SET 'group1=true, group2=false'$
 .
 .
 .
 $IF 'group1 AND (NOT group2)'$

[source_line]
[.]

12- 25

[.]
[.]
 $ENDIF$

EXTERNAL

EXTERNAL is an HP Pascal Option.

The EXTERNAL compiler option causes the compiler to generate code for
routines, but not for statements in the outer block. It also generates
symbolic information about global variables, allowing them to be matched
(by external name) to their counterparts in the compilation unit compiled
with the GLOBAL compiler option. (The EXTERNAL compiler option is used
in compilation units compiled with the SUBPROGRAM compiler option.)

Syntax

$EXTERNAL ['{PASCAL}']$
 [{NONE }]
Parameters

PASCAL Causes the compiler to include type-checking information in
 the object file so that the global variables can be
 compared to those in a compilation unit that was compiled
 with $GLOBAL 'PASCAL'$.

NONE Prevents the compiler from including type-checking
 information for global variables in the object file.

No parameter Same as PASCAL.

Default PASCAL.

Location At front.

The EXTERNAL option, in conjunction with the GLOBAL option, enables you
to compile one program as two or more compilation units. Specify the
GLOBAL option in the compilation unit that declares the global variables
and contains the main program. Specify the EXTERNAL option in each of
the other compilation units that declare routines, and in each of the
global variables that those routines use. A compilation unit cannot
contain both the EXTERNAL option and the GLOBAL option.

A compilation unit with the EXTERNAL option does not need to declare all
of the global variables. It only needs to declare the ones that it uses,
and they can be in any order. See the example for the GLOBAL compiler
option.

NOTE Do not confuse the EXTERNAL compiler option with the EXTERNAL
 directive. Refer to the HP Pascal/iX Programmer's Guide or the HP

Pascal/HP-UX Programmer's Guide , depending on your implementation,
 for information on the EXTERNAL directive.

EXTNADDR

EXTNADDR is a System Programming Option.

The EXTNADDR compiler option specifies that a pointer type or pointer
variable is a long pointer, and a reference parameter is a long address.

Syntax

 $EXTNADDR$

12- 26

Default Not applicable.

Location In a pointer type or variable declaration, between ^ or @
 and the type name, or in a parameter list, between VAR,
 ANYVAR, or READONLY and the following parameter name.

Example

 TYPE
 RecType = RECORD
 F1 : INTEGER;
 F2 : CHAR;
 END;
 ExtRecType = ^$EXTNADDR$ RecType;
 IntPtrType = ^INTEGER;
 ExtPtrType = ^$EXTNADDR$ integer;
 VAR
 ExtVar : ^$EXTNADDR$ integer; {cannot be a parameter to new}
 ExtP1,
 ExtP2 : ExtPtrType;
 IntP : IntPtrType;
 RecP : ExtRecType;

 PROCEDURE ExtProc (VAR $EXTNADDR$ Parm1,Parm2 : IntPtrType);

 PROCEDURE ExtProc2 (VAR $EXTNADDR$ Parm3 : INTEGER;
 VAR Parm4 : INTEGER;
 Parm5 : INTEGER);

FONT

FONT is a System-Dependent MPE/iX Option.

The FONT compiler option specifies primary and secondary character sets
to be used in the title and comments in the listing (provided that the
printer supports multiple fonts, as the HP268x laser printers do.)

Syntax

 $FONT string $

Parameter

string Is of the form:

 ' primary_font , secondary_font '

 Where:

primary_font Is an unsigned integer that sets the number
 for the primary font.

secondary_font Is an unsigned integer that sets the number
 for the secondary font.

Default Not applicable.

Location Anywhere.

To change fonts within the string_literal parameter of the TITLE option,
or within a comment, shift to the secondary character set with CONTROL N.
Shift back to the primary character set with CONTROL O.

Example

Assume that font 5 is this font in the environment file.

 $

12- 27

 FONT '0,5'$
 $TITLE 'Dptcore. CONTROLNPort Data DefinitionsCONTROLO'$
 .
 .
 .
 PROCEDURE Proc1; {This is the CONTROLNfirstCONTROLO procedure}
 .
 .
 .

The listing prints the title and comment shown above this way:

 Dptcore. Port Data Definitions
 {This is the first procedure}

GLOBAL

GLOBAL is an HP Pascal Option.

The GLOBAL compiler option causes the compiler to generate code for the
entire compilation unit (including the outer block) and symbolic
information about global variables that allows them to be matched with
their counterparts in compilation units compiled with the EXTERNAL
compiler option. See the HP Pascal/iX Programmer's Guide or the HP
Pascal/HP-UX Programmer's Guide , depending on your implementation, for
more information.

Syntax

$GLOBAL ['{PASCAL}']$
 [{NONE }]
Parameters

PASCAL Causes the compiler to include type-checking information in
 the object file so that its global variables can be
 compared to those in a compilation unit that was compiled
 with $EXTERNAL 'PASCAL'$ (or its equivalent, $EXTERNAL$).

NONE Prevents the compiler from emitting type-checking
 information for global variables.

Default PASCAL.

Location At front.

The GLOBAL option, in conjunction with the EXTERNAL option, enables you
to compile one program as two or more compilation units. Specify the
GLOBAL option in the compilation unit that declares all of the global
variables and contains the main program. Specify the EXTERNAL option in
each of the other compilation units (which declare routines and the
global variables that those routines use). A compilation unit cannot
contain both the GLOBAL option and the EXTERNAL option.

Example

One compilation unit:

 $GLOBAL$
 PROGRAM show_global (input,output);

 VAR
 a,b,c,d : integer;
 state : Boolean;

 PROCEDURE proc1; EXTERNAL;

 BEGIN {Main program}
 .

12- 28

 .
 .
 END.

Another compilation unit:

 $EXTERNAL$
 PROGRAM show_external (input,output);

 VAR
 state : Boolean; {Matches variable in show_global's outer block}
 {a,b,c,d need not be declared here because this
 compilation unit does not use them.}
 PROCEDURE proc1;
 BEGIN
 .
 .
 .
 END;

 BEGIN
 {Empty outer block}
 END.

GPROF

GPROF is a System-Dependent HP-UX Option.

The compiler option GPROF causes the compiler to produce code that
profiles itself as it runs. You can analyze the profiles with the HP-UX
utility gprof.

Syntax

$GPROF {ON }$
 {OFF}

Default OFF.

Location Anywhere before the keyword PROGRAM (illegal in
 modules).

Example

 $GPROF ON$
 PROGRAM a;

 PROCEDURE b;
 BEGIN
 END;

 BEGIN
 b;
 END;

NOTE A program containing the GPROF compiler option must be linked with
 the pc option -G.

HEAP_COMPACT

HEAP_COMPACT is an HP Pascal Option.

When the HEAP_COMPACT compiler option is ON (and the HEAP_DISPOSE option
is also ON), free space in the heap is concatenated when the predefined

12- 29

procedure dispose is called.

Syntax

$HEAP_COMPACT {ON }$
 {OFF}

Default OFF.

Location At front.

The HEAP_COMPACT option is recommended for programs that manipulate many
dynamic record variables of different sizes via calls to the predefined
procedures new and dispose . It allows free space to be merged and
reused.

Example

 $HEAP_COMPACT ON; HEAP_DISPOSE ON$
 PROGRAM show_compact;
 TYPE
 big_rec = RECORD
 f1 : ARRAY [1..4] OF integer;
 END;
 small_rec = PACKED RECORD

 f1 : integer;
 f2 : integer;
 END;
 VAR
 p1,p2 : ^mall_rec;
 p3 : ^big_rec;

 BEGIN
 new(p1);
 new(p2);
 dispose(p1);
 dispose(p2);
 new(p3); {p3 is allocated in the space previously
 occupied by p1 and p2}
 END.

HEAP_DISPOSE

HEAP_DISPOSE is an HP Pascal Option.

When the HEAP_DISPOSE compiler option is ON, the predefined procedure
dispose frees space in the heap so that the predefined procedure new can
reallocate it. By default, such disposed space cannot be reused.

Syntax

$HEAP_DISPOSE {ON }$
 {OFF}

Default OFF

Location At front.

Example

 $HEAP DISPOSE ON$
 PROGRAM show_heap;
 TYPE
 big_array = ARRAY [1..1000] OF longreal;
 VAR
 ptr : ^big_array;
 i : integer;

12- 30

 BEGIN
 FOR i := 1 TO maxint DO {If HEAP_DISPOSE were OFF, the heap}
 BEGIN {would overflow and an error would occur}
 new(ptr);
 .
 .
 .
 dispose(ptr);
 END;
 END.

HP_DESTINATION
[REV BEG]

HP_DESTINATION is a System-Dependent HP-UX Option.

Syntax

$HP_DESTINATION '{ARCHITECTURE PA model }'$
 {SCHEDULER PA model }
Where:

ARCHITECTURE Specifies the desired destination architecture.

 PA model Can be a model number, such as 750 or 870, or
 one of the following architecture
 specifications:

 1.0 Generates object code suitable for all
 implementations of PA-RISC 1.0 or
 higher. This is the default for the
 Series 800 models.

 1.1 Generates object code suitable for all
 implementations of PA-RISC 1.1. This is
 the default for all Series 700 models.

SCHEDULER Specifies the desired instruction scheduling algorithm.

 PA model Can be a model number, such as 750 or 870, or
 one of the following architecture
 specifications:

 1.0 Performs generic scheduling tuned to a
 model representative of PA-RISC 1.0
 implementations.

 1.1 Performs generic scheduling tuned to a
 model representative of PA-RISC 1.1
 implementations.

Default The native architecture of the machine the program is
 being compiled on.

Location The beginning of the source file.

HP_DESTINATION 'ARCHITECTURE' Option

The HP_DESTINATION 'ARCHITECTURE' option specifies your intended
destination architecture so you can cross-compile a program to run on a
different PA-RISC architecture without having to purchase that machine.
Specifying a destination architecture ensures that the compiler generates
appropriate object code for that destination architecture.

The first occurrence of the HP_DESTINATION 'ARCHITECTURE' option takes
precedence over later occurrences of the same option. For more
information on HP_DESTINATION 'ARCHITECTURE', refer to the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending

12- 31

on your implementation.[REV END]
[REV BEG]

NOTE If you specify an architecture other than the native architecture
 of your machine, your compiled program may not run on your machine.
 Specifically, code compiled with HP_DESTINATION 'ARCHITECTURE
 PA1.1' may not run on a PA-RISC 1.0 machine.

NOTE A program containing the HP_DESTINATION 'ARCHITECTURE' compiler
 option must be linked with the pc command line option +DA model .
 This is because +DA model does more than specify the destination
 architecture. It also specifies which math libraries the program
 is to be linked with: PA-RISC 1.0 or PA-RISC 1.1. See the HP-UX

Floating Point Guide for more information about using math
 libraries.

HP_DESTINATION 'SCHEDULER' Option

The HP_DESTINATION 'SCHEDULER' option specifies an instruction scheduling
algorithm that is not native to your architecture; it optimizes your
program for a PA-RISC architecture other than the one you are compiling
on.

The first occurrence of the HP_DESTINATION 'SCHEDULER' option takes
precedence over later occurrences of the same option. For more
information on HP_DESTINATION 'SCHEDULER', refer to the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation.

Note that the command line option +DS model also specifies this option.

This option can be used with the HP_DESTINATION 'ARCHITECTURE' option.
For example, if you want your program to run on both a PA-RISC 1.0
architecture machine and a PA-RISC 1.1 architecture machine, you can use
HP_DESTINATION 'ARCHITECTURE PA1.0' to specify PA-RISC 1.0 architecture.
Because the PA-RISC 1.1 instruction set is a superset of the PA-RISC 1.0
instruction set, the code will run on both machines. If you use
HP_DESTINATION 'SCHEDULER PA1.1', your program will run on both
architectures, but will run as fast as possible on PA-RISC 1.1
architecture machines.[REV END]

HP3000_16

HP3000_16 is a System-Dependent MPE/iX Option.

The HP3000_16 compiler option specifies the Pascal/V packing algorithm
for the allocation and alignment of all data structures.

Syntax

 $HP3000_16$

Default HP Pascal optimized data structures (see the HP3000_32
 compiler option).

Location At front.

The HP3000_16 compiler option causes all data types (except files and
pointers) to be allocated and aligned according to the Pascal/V packing
algorithm. A structure compiled by the HP Pascal compiler with HP3000_16

12- 32

looks exactly like the same structure compiled by the Pascal/V compiler.
This is useful for reading data files generated by Pascal/V.

HP3000_16 does not affect file and pointer types. The allocation and
alignment of file variables is system-dependent, and HP Pascal does not
allow the creation of files that contain files.

The allocation and alignment of pointers is also system dependent, so
pointers are not portable. A pointer declared in an HP Pascal program
can be used only with HP Pascal (not Pascal/V).

Real numbers declared in an HP3000_16 program are represented in MPE V
floating-point representation. Operations performed with these numbers
emulate MPE V floating-point operations.

All constants declared in an HP3000_16 program are Pascal/V constants.

Example

See the example for the HP3000_32 compiler option.

NOTE A program that contains the HP3000_16 compiler option cannot call
 the PAUSE intrinsic directly. The work-around is to declare PAUSE
 this way, instead of declaring it as an intrinsic:

 PROCEDURE pause $ALIAS 'em_pause'$ (VAR r : real);
 EXTERNAL;

HP3000_32

HP3000_32 is a System-Dependent MPE/iX Option.

The HP3000_32 compiler option specifies that a given type in an HP3000_16
program is to be allocated and aligned according to the HP Pascal packing
algorithm.

Syntax

 $HP3000_32$

Default HP3000_32 is the default when HP3000_16 is not used.

Location After the symbol = in a type definition.

If a program does not specify HP3000_16, then HP3000_32 has no effect,
and the compiler issues a warning.

A user-defined type that is within a structure declared with HP3000_32
must also be declared with HP3000_32.

A user-defined type that is within a structure declared without HP3000_32
must also be declared without HP3000_32.

HP3000_32 is illegal with these types:

 * Boolean

 * Char

 * Integer

 * Text

String, set, and real operations are illegal on HP3000_32 strings, sets,

12- 33

and real numbers. HP3000_32 strings, sets, and real numbers are not
assignment compatible with HP3000_16 strings, sets, and real numbers.
Use the predefined procedures strconvert and setconvert and the intrinsic
HPFPconvert to convert HP3000_32 strings, sets, and real numbers to
HP3000_16 strings, sets, and real numbers.

Example

 $HP3000_16$
 PROGRAM show_packing_algorithms;

 TYPE
 t_pac = PACKED ARRAY [1..10] OF char;
 s_pac = $HP3000_32$
 PACKED ARRAY [1..10] OF char;

 t_starray = ARRAY [1..5] OF string[10];
 s_starray = $HP3000_32$
 ARRAY [1..5] OF string[10];

 t_rec = RECORD
 f1 : -32768..32767; {16 bits allocated}
 f2 : real; {HP 3000 real number}
 f3 : string[10]; {16 bits allocated}
 f4 : t_pac;
 f5 : s_pac; {error}
 f6 : t_starray;
 f7 : s_starray; {error}
 f8 : s_starray; {error}
 END;

 s_rec = $HP3000_32$ RECORD
 f1 : -32768..32767; {32 bits allocated}
 f2 : real; {IEEE real number}
 f3 : string[10]; {32 bits allocated}
 f4 : t_pac; {error}
 f5 : s_pac;
 f6 : t_starray; {error}
 f7 : s_starray; {error}
 END;

 t_array = ARRAY [1..5] OF t_rec;
 t_array1 = ARRAY [1..5] OF s_rec; {error}

 s_array = $HP3000_32$
 ARRAY [1..5] OF s_rec;

 s_array1 = $HP3000_32$
 ARRAY [1..5] OF t_rec; {error}

 t_file = FILE OF t_rec;
 t_file1 = FILE OF s_rec; {error}

 s_file = $HP3000_32$
 FILE OF s_rec;
 s_file1 = $HP3000_32$
 FILE OF t_rec; {error}

 t_array2 = ARRAY [1..5] OF RECORD
 f1 : -32768..32767; {16 bits allocated}
 f2 : real; {HP 3000 real number}
 f3 : string[10]; {16 bits allocated}
 END;
 s_array = $HP3000_32$
 ARRAY [1..5] OF RECORD
 f1 : -32768..32767; {32 bits allocated}
 f2 : real; {IEEE real number}
 f3 : string[10]; {32 bits allocated}

12- 34

 END;

 VAR
 v_file1 : t_file;
 v_file2 : s_file;
 v_file3 : FILE OF t_rec;
 v_file4 : FILE OF s_rec; {error}

 BEGIN
 END.

IF

IF is an HP Pascal Option.

The IF compiler option specifies code to be compiled conditionally,
depending on the value of a Boolean expression.

Syntax

 $IF ' Boolean_expression '$

Parameter

Boolean_expression Any constant Boolean expression containing the
 operators AND, OR, and NOT and parentheses. The SET
 compiler option must assign the value TRUE or
 FALSE to each identifier before it appears in

Boolean_expression . The identifier operands cannot
 have the spellings of Boolean operators (NOT, AND,
 OR). The operators are evaluated in the order
 dictated by HP Pascal operator precedence.

Default Not applicable.

Location Anywhere.

The IF option must be used with the SET and ENDIF options, and can be
used with the ELSE option, as follows:

$SET ' identifier = Boolean [{,} identifier = Boolean]'$
 [{;}]
 $IF Boolean_expression$

[source code]
[to be compiled]
[if Boolean_expression]
[is TRUE]
 $ELSE$

[source code]
[to be compiled]
[if Boolean_expression]
[is FALSE]

 $ENDIF$

IF options can be nested; that is, the source code to be compiled
conditionally can contain IF options. The maximum nesting level is 16.

Because the IF, ENDIF, ELSE, and SET options (together) allow conditional
compilation, several programmers with different needs can use them to
customize a single compilation unit.

Example 1

The following two program fragments are equivalent:

12- 35

 {Fragment 1}
 $SET 'group1=true, group2=false'$
 .
 .
 .
 $IF 'group1 AND (NOT group2)'$

[source_line]
[.]
[.]
[.]
 $ENDIF$

 {Fragment 2}
 $SET 'group1 = true'$
 $SET 'group2 = false'$
 .
 .
 .
 $IF 'group1'$
 $IF 'NOT group2'$

 [source_line]
 [.]
 [.]
 [.]
 $ENDIF$
 $ENDIF$

Example 2

 $SET 'group1=FALSE'$
 .
 .
 .
 $IF 'group1'$

 [source_line]
 [.]
 [.]
 [.]

 $ELSE$

 [source_line]
 [.]
 [.]
 [.]
 $ENDIF$

Example 3

 $SET 'group3=true,group2=false;group1=false'$
 .
 .
 .
 $IF 'group1'$

 [source_line]
 [.]{group1}
 [.]
 [.]

 $ELSE$
 $IF 'group2'$

 [source_line]
 [.]{group2}

12- 36

 [.]
 [.]
 $ELSE$
 $IF 'group3'$

 [source_line]
 [.] {group3}
 [.]
 [.]

 $ENDIF$
 $ENDIF$
 $ENDIF$

INCLUDE

INCLUDE is a System-Dependent MPE/iX and HP-UX Option.

The INCLUDE compiler option includes text from a specified file in the
source code being compiled.

Syntax

 $INCLUDE string_literal $

Parameter

string_literal Specifies the name of the file to be included at the
 current position in the program. The file specification
 depends upon the operating system.

Default None.

Location Anywhere.

The file that contains the INCLUDE option is the including file, and the
file specified by string_literal is the included file.

When the compiler encounters the INCLUDE option, it processes text from
the included file, as if the text were part of the including file. When
the included file ends, the compiler continues processing the including
file, resuming with the line that follows the INCLUDE option; therefore,
ignoring options and source code that follow INCLUDE on the same line).

An included file can contain an INCLUDE option; that is, included files
can be nested. The maximum nesting level is the maximum number of files
that the operating system allows to be open simultaneously.

On the HP-UX operating system, if the file to be included cannot be found
or opened, and its name is not an absolute path name (that is, it does
not start with the character "/"), then the compiler looks for the file
in the following places (this is called the search path).

 * The directory that contains the .p file being compiled (the main
 source file).

 * The current working directory.

 * The directory /usr/include.

If the file still cannot be found or opened, the compiler issues an error
message and the compile aborts.

NOTE The pc option +C on HP-UX affects the INCLUDE compiler option (see
 the HP Pascal/HP-UX Programmer's Guide).

12- 37

Example 1

This example applies only to HP-UX.

 PROGRAM show_include;
 VAR
 $INCLUDE '/users/pascal/prog1/global'$
 BEGIN
 i := 3;
 j := 1.55;
 END.

If the file /users/pascal/prog1/global is:

 i : INTEGER;
 j : REAL;

Then the preceding program is equivalent to:

 PROGRAM show_include;
 VAR
 i : INTEGER;
 j : REAL;
 BEGIN
 i := 3;
 j := 1.55;
 END.

Example 2

This example applies only to MPE/iX.

 PROGRAM show_include;
 VAR
 $INCLUDE 'global.prog1.pascal'$
 BEGIN
 i := 3;
 j := 1.55;
 END.

If the file global.prog1.pascal is:

 i : INTEGER;
 j : REAL;

Then the preceding program is equivalent to:

 PROGRAM show_include;
 VAR
 i : INTEGER;
 j : REAL;
 BEGIN
 i := 3;
 j := 1.55;
 END.

INCLUDE_SEARCH

INCLUDE_SEARCH is a System-Dependent MPE/iX and HP-UX Option.

You can use the INCLUDE_SEARCH compiler option to set or modify the
search path used by the compiler. This search path specifies the order
of directories a compiler searches to find files specified in the INCLUDE
directive. The search stops on t he first successful attempt to open a
file. Files specified in the INCLUDE directive are called included

12- 38

files.

The command line option -I include-search path also specifies this
option. You can specify multiple paths by repeating the command line
option -I for each path.

syntax

$INCLUDE_SEARCH '[+] [&] string [, string]...'$

Parameter

Default None.

Location Anywhere.

The string parameter specifies a path for the compiler to search for an
included file. This path is called the include-search path. The +
parameter, if specified, appends this new include-search path to the end
of the existing include-search path. If the + parameter is omitted, the
new include-search path replaces the existing one.

Although there is no default search path for INCLUDE on the MPE/iX
operating system, you can define one with the INCLUDE_SEARCH option. You
can modify the name of the included file by appending each component of
the include path to the search path. Using the & symbol, you can
indicate that the compiler should search for the unmodified file name.
Note that the unmodified file name is not searched first by default. In
fact, it will not be searched at all if the & is omitted from the
INCLUDE_SEARCH list. If an INCLUDE_SEARCH list is specified, the
compiler will search only the locations specified in the include-search
path.

The search order is:

 1. The directory of the immediate including file.

 2. The include-search path.

 3. The user's current working directory.

 4. The system standard location /usr/include.

MPE/iX Example

 PROGRAM show_include;
 $INCLUDE_SEARCH '&, .exp, .official, .official:indy'$
 $INCLUDE 'globals.foo'$
 BEGIN
 END.

The compiler will attempt to find the included file globals.foo by
looking successively for it under each filename modification specified by
the include path. In this example, the compiler will search successively
for the following files:

 * globals.foo

 * globals.foo.exp

 * globals.foo.official

 * globals.foo.official:indy

Note that the compiler attempts to open the unmodified filename
globals.foo only because the first element of the include path is "&".
The search will stop on the first successful attempt to open one of these
files.

12- 39

HP-UX Example

The following program is in a file called /tmp/test.p, and the current
working directory is /users/myself/work.

 PROGRAM show_include;
 $INCLUDE_SEARCH '../experimental, ../official, /c/official'$
 $INCLUDE 'globals'$
 BEGIN
 END.

The compiler will attempt to find the included file globals by searching
successively in each location specified by the search path. In this
example, the compiler will look for the files listed below in the
following order.

 1. In the directory of the including file: /tmp/globals

 2. In each element of the include-search path:

 /users/myself/experimental/globals

 /users/myself/official/globals

 /c/official/globals

 3. In the current working directory: /users/myself/work/globals

 4. In the system standard directory: /usr/include/globals

The search will stop at the first successful attempt to open one of these
files.

If set with INCLUDE_SEARCH, the include-search path becomes part of the
search path used by INCLUDE. Each path specified in the INCLUDE_SEARCH
option denotes a directory in which the compiler will look, in turn, for
an included file. The search stops after the first successful attempt to
open the file.

INLINE

INLINE is an HP Pascal Option.

The INLINE compiler option causes the code for a certain routine to be
duplicated in-line wherever it is called.

Syntax

 $INLINE$

Default None.

Location Heading.

The advantage of duplicating routine code in-line is that it eliminates
the overhead of routine calls. Unlike macro expansion, it preserves
call-by-reference parameters as such and allows local parameters. The
disadvantages are that it increases the amount of object code and
prevents recursion: a routine whose code is duplicated in-line cannot
call itself or any other routine that calls it.

Example

 PROCEDURE Proc1 (X,Y: Integer) $INLINE$;
 .
 .
 .
 PROCEDURE Proc2 $INLINE$

12- 40

 (X,Y: Integer);
 .
 .
 .

In each compilation unit where you want to duplicate the code of a
specific routine in-line, you must specify the entire routine definition.
If you use the same routine in-line in more than one compilation unit,
put them in a separate file and use the INCLUDE compiler option to
include that file in each compilation unit.

Example

The file procfile contains this procedure, which other compilation units
use in-line:

 PROCEDURE x (a,b : integer; VAR c : char) $INLINE$;
 BEGIN
 c := chr(a+b);
 END;

The following compilation unit uses the procedure x in-line:

 PROGRAM prog;
 BEGIN
 .
 .
 .
 $INCLUDE 'procfile'$
 .
 .
 .
 END.

The INLINE compiler option is equivalent to the INLINE procedure option.
The procedure option requires STANDARD_LEVEL 'EXT_MODCAL'; the compiler
option does not.

You cannot debug inline routines with a symbolic debugger. You can debug
routines that call inline routines, but the inlined code is treated as a
single statement and skipped. Breakpoints can only be set before and
after the inlined code.

INTR_NAME

INTR_NAME is an HP Pascal Option.

The INTR_NAME compiler option specifies the name to be returned for an
intrinsic. It is only valid when used in conjunction with the BUILDINT
compiler option.

Syntax

 $INTR_NAME string_literal $

Parameter

string_literal Specifies the return name of the intrinsic to be entered in
 the intrinsic file. Lowercase and uppercase are
 significant.

Default None.

Location Heading.

If an entry in the intrinsic file specifies INTR_NAME when it is added to
the intrinsic file, the name string_literal is returned by the intrinsic
file search mechanism, and is used in calls to the intrinsic routine.

12- 41

Actually, the intrinsic search mechanism searches for the intrinsic name
(other than specified by INTR_NAME) or the alias (if specified by the
ALIAS compiler option), but it returns the name specified by INTR_NAME.

Example

 $BUILDINT 'MYINTR'$
 PROGRAM Show_Buildint;

 PROCEDURE Proc2 (p1 : Boolean;
 p2 : integer;
 p3 : real
);

 $ALIAS 'proc2alias'$
 $INTR_NAME 'proc2returnname'$
 EXTERNAL;

 BEGIN
 END.

The intrinsic file search mechanism searches for proc2alias, but returns
proc2returnname.

KEEPASMB

KEEPASMB is an HP Pascal Option.

The KEEPASMB compiler option causes the compiler to leave behind an
assembler source file containing the code for the entire compilation
unit. This file can usually be run through the assembler to produce the
same object file that the compiler produces directly.

On MPE/iX, the KEEPASMB option produces a file with the formal designator
PASASSM, which is a temporary file by default. You are recommended to
file-equate this name. You must file-equate it if the current group
contains more than one compilation unit, or if the resultant assembler
source is too big. For information on file equations, refer to the
MPE/iX Commands Reference Manual .

On HP-UX, the KEEPASMB option produces a file with the same name as the
source file, except that its suffix is .s instead of .p.

The command line option -S also specifies this option.

Syntax

$KEEPASMB {ON }$
 {OFF}

Default OFF

Location At front.

When you use the LIST_CODE option with KEEPASMB, LIST_CODE turns KEEPASMB
on.

Example

 $KEEPASMB ON$
 PROGRAM x;
 BEGIN
 END.

The program above produces the following assembly file:

 .SPACE $TEXT$
 .SUBSPA LIT,QUAD=0,ALIGN=8,ACCESS=44

12- 42

 .SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY
 PROGRAM
 _start
 .PROC
 .CALLINFO CALLER,FRAME=0,SAVE_SP,SAVE_RP
 .ENTRY
 STW 2,-20(0,30) ;offset 0x0
 LDO 48(30),30 ;offset 0x4
 STW 0,-4(0,30) ;offset 0x8
 .CALL ;

 BL P_INIT_ARGS,2 ;offset 0xc
 NOP ;offset 0x10
 .CALL ;
 BL U_INIT_TRAPS,2 ;offset 0x14
 NOP ;offset 0x18
 $00002711
 .CALL
 BL P_TERMINATE,2 ;offset 0x1c
 NOP ;offset 0x20
 NOP ;offset 0x24
 .CALL
 BL U_EXIT,2 ;offset 0x28
 NOP ;offset 0x2c
 LDW -68(0,30),2 ;offset 0x30
 BV 0(2) ;offset 0x34
 .EXIT
 LDO -48(30),30 ;offset 0x38
 .PROCEND ;ln=24,25,26;
 .SUBSPA $UNWIND$,QUAD=0,ALIGN=8,ACCESS=44
 .WORD PROGRAM
 .WORD PROGRAM+56 ; = 0x38
 .WORD 24 ; = 0x18
 .WORD 6 ; = 0x6
 .SUBSPA $RECOVER$,QUAD=0,ALIGN=4,ACCESS=44
 .SPACE $PRIVATE$
 .SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31
 .SUBSPA $GLOBAL$,QUAD=1,ALIGN=8,ACCESS=31
 M$1
 .ALIGN 8
 .BLOCKZ 8
 .SPACE $TEXT$
 .SUBSPA $CODE$
 .EXPORT PROGRAM,PRIV_LEV=3
 .EXPORT _start,PRIV_LEV=3
 .IMPORT P_INIT_ARGS,CODE
 .IMPORT U_INIT_TRAPS,CODE
 .IMPORT P_TERMINATE,CODE
 .IMPORT U_EXIT,CODE
 .END

LINES

LINES is an HP Standard Option.

The LINES compiler option specifies the number of lines per page of the
listing.

The command line option -P also specifies this option.

Syntax

 $LINES integer $

Parameters

integer Positive integer not less than 20.

12- 43

Default 59

Location Anywhere.

Example

 PROGRAM show_lines (output);
 VAR
 i : shortint;
 BEGIN
 writeln('line 5');
 writeln('line 6');
 .
 .
 .
 writeln('line 58');
 $LINES 20$
 writeln('line 60');
 writeln('line 61');
 .
 .
 .
 writeln('line 79');

 writeln('line 80');
 END.

The listing (simplified) looks like this:

12- 44

12- 45

LIST

LIST is an HP Standard Option.

When the LIST compiler option is ON, the compiler produces a listing of
the source code.

The command line option -L also specifies this option.

Syntax

$LIST {ON }$
 {OFF}

Default ON.

Location Anywhere.

The first column of the listing shows the source statement number. This
number appears in the code offset table, is used by the symbolic
debugger, and is returned by the predefined function statement_number .

The second column of the listing shows a line number. The line number is
provided by the editor if the source file is numbered; by the compiler if
the source file is unnumbered. If the compiler numbers the lines, the
lines are numbered consecutively, starting with 1. Included files are
numbered separately (see the second example below, and the paragraph
above it).

The third column of the listing shows the source statement nesting level
(if the line is part of a structured statement). If the line was not
compiled (because it is a comment or is affected by the SKIP_TEXT
option), then ** replaces the number.

The end of the listing shows the processor time, elapsed time, the number
of lines compiled, the number of lines compiled per minute, and the
number of notes, warnings, and errors issued during the compilation.
Sample listings in this manual omit this information (except where the
example requires it). Times and rates vary, depending on the operating
system, the memory configuration, system load, and the number of source
lines.

If the compiler issues a message for a source line, it appears beneath
that line in the listing in this form:

 **** {NOTE}
 {WARNING}
 {ERROR} # ord_num [message] (message_num)

If the compiler can pinpoint the item in the source line that caused the
note, warning, or error, the listing indicates that item with a caret
(^).

The ord_num is the ordinal number of the note, warning, or error (it is
the ord_num th note, warning, or error in the compilation). The
message_num is the number that identifies the message, and message is the
text that explains it.

Error and warning messages on multipage listings are chained; that is,
the first such message on a page gives the page number of the previous
such message. If the listing has no error or warning messages, its last
page states this.

If LIST is OFF, and the compiler issues a message, it prints both the
name of the include file that contains the line, and a copy of the line
before issuing the message.

The LIST option must be ON for other options that affect the listing to

12- 46

have any effect.

Example

 PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

 0 1.000 0
 0 2.000 0
 0 3.000 0 PROGRAM sort (infile,outfile,output);
 0 4.000 0
 0 5.000 0 VAR
 0 6.000 0 infile : text;
 1 7.000 0 outfile : text;
 2 8.000 0
 ** 8.100 0 (* This line and the next three are not compiled:
 ** 8.200 0 CONST
 ** 8.300 0 max_array_size = 20000;
 ** 8.400 0 *)
 2 9.000 0 CONST
 2 10.000 0 max_array_size := 4000;
 ^
 **** ERROR # 1 FOUND UNEXPECTED ":=" (025)
 3 11.000 0 TYPE
 3 12.000 0 data_type = integer;
 4 13.000 0
 4 14.000 0 VAR
 4 15.000 0 data_array = array [1..max_array_size] OF data_type;
 ^
 **** ERROR #2 FOUND UNEXPECTED "=" (025)
 5 16.000 0
 5 17.000 0 array_size : 0..max_array_size;
 6 18.000 0
 6 19.000 0 $PAGE$

 PAGE 2 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...
 0 20.000 0 PROCEDURE read_data;
 1 21.000 1 BEGIN
 1 22.000 1 reset(infile);
 2 23.000 1 array_size := 0;
 3 24.000 1
 3 25.000 1 WHILE ((NOT eof(infile))
 4 26.000 1 AND
 4 27.000 2 (array_size < max_array_size)) DO BEGIN
 4 28.000 2
 4 29.000 2 array_size := array_size + 1;
 5 30.000 2 readln(infile,data_array[array_size]);
 6 31.000 2 END;
 6 32.000 1
 6 33.000 2 IF (NOT eof(infile)) THEN BEGIN
 7 34.000 2 writeln('Too many data points for sort program.');
 8 35.000 2 writeln('Sorting partial list only.');
 9 36.000 2 END;
 9 37.000 1
 9 38.000 1 close(infile);
 10 39.000 1 END;
 10 40.000 0
 0 41.000 0 $PAGE$

 PAGE 3 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

 0 42.000 0 PROCEDURE write_data;
 1 43.000 0 VAR
 1 44.000 0 index : 0..max_array_size;
 2 45.000 1 BEGIN
 2 46.000 1 rewrite(outfile);
 3 47.000 1
 3 48.000 1 FOR index := 1 TO array_size DO
 4 49.000 1 writeln(outfile,'data_array[index]);

12- 47

 5 50.000 1
 5 51.000 1 close(outfile);
 6 52.000 1 END;
 6 53.000 0
 0 54.000 0 $PAGE$

 PAGE 4 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. 1986 ...

 6 55.000 1 BEGIN
 6 56.000 1 writeln('starting sort');
 7 57.000 1
 7 58.000 1 read_data;
 8 59.000 1 sort_data;
 ^
 PREVIOUS ERROR ON PAGE 1
 **** ERROR # 3 IDENTIFIER NOT DEFINED (014)
 9 60.000 1 write_data;
 10 61.000 1
 10 62.000 1 writeln('sort done');
 11 63.000 1 END.

 NUMBER OF ERRORS = 3 NUMBER OF WARNINGS = 0
 PROCESSOR TIME 0: 0: 0 ELAPSED TIME 0: 0: 0
 NUMBER OF LINES = 63 LINES/MINUTE = 0.0
 NUMBER OF NOTES = 0

Line numbers for statements in included files are independent of line
numbers for the files that include them.

Example

12- 48

LIST_CODE

LIST_CODE is an HP Pascal Option.

When the LIST_CODE compiler option is ON (and the LIST option is also
ON), the compiler produces a mnemonic listing of the object code of each
procedure in the program. The mnemonic listing appears at the end of the
source listing of the compilation unit.

Syntax

$LIST_CODE {ON }$
 {OFF}

Default OFF.

Location Anywhere.

Scope Applies to the entire compilation unit that contains it.
 The effective value is the last value before the
 compilation unit's END statement.

Example

 PAGE 1 HEWLETT-PACKARD ...

 0 1.000 0 $LIST_CODE ON$
 0 2.000 0 $STANDARD_LEVEL 'HP_MODCAL'$
 0 3.000 0 $OS 'HPUX'$
 0 4.000 0 PROGRAM x;
 0 5.000 0 VAR
 0 6.000 0 lp : globalanyptr;
 1 7.000 0 bigarr : PACKED ARRAY [1.10] OF char;
 2 8.000 0 i,j : integer;
 4 9.000 1 BEGIN
 4 10.000 1 i := 5; j := 10;
 6 11.000 1 lp := addr(bigarr, i+j);
 7 12.000 1 END.

 PROGRAM

 0 STW 2,-20(0,30) 38 LDW 28(0,27),22
 4 LDO 48(30),30 3C ADD0 21,22,1
 8 STW 0,-4(0,30) 40 ADD 19,1,31
 C BL P_INIT_ARGS,2 44 STW 20,8(0,27)
 10 NOP 48 STW 31,12(0,27)
 14 BL U_INIT_TRAPS,2 00002711
 18 NOP 4C BL P_TERMINATE,2
 1C LDI 5,1 50 NOP
 20 STW 1,32(0,27) 54 NOP
 24 LDI 10,31 58 BL U_EXIT,2
 28 STW 31,28(0,27) 5C NOP
 2C LDO 16(27),19 60 LDW -68(0,30),2
 30 LDSID (0,19),20 64 BV 0(2)
 34 LDW 32(0,27),21 68 LDO -48(30),30

LISTINTR

LISTINTR is an HP Pascal Option.

The LISTINTR compiler option lists to a specified file the contents of an
intrinsic file. The intrinsic file is that specified by the BUILDINT or
SYSINTR compiler option. If neither BUILDINT nor SYSINTR is specified,
the system intrinsic file is accessed.

Syntax

 $LISTINTR [string]$

12- 49

Parameter

string Specifies the name of the file into which the compiler
 lists the contents of the intrinsic file that BUILDINT
 specifies.

Default 'PASLIST'.

Location Anywhere.

On MPE the default size is 1023 records. If this record limit is too
small, the LISTINTR operation will not complete. You can use the :BUILD
command or a :FILE equation to specify a larger file. For more
information on :BUILD and :FILE, see the MPE/iX Commands Reference
Manual .

NOTE The pc option +C on HP-UX affects the LISTINTR compiler option (see
 the HP Pascal/HP-UX Programmer's Guide).

Example

 Intrinsic File Listing

 Display of SYSINTR.PUB.SYS
 (TUE, OCT 7, 1986, 4:33 PM)

 fopen (FOPEN) :
 LANGUAGE is HP PASCAL
 FUNCTION [SHORTINT(16) at OFFSET 0] with 13 PARAMETERS
 PARM # 1: STRUCTURE(65536) at OFFSET 0 by UNCHECKABLE ANYVAR;
 SHORT ADDR, 8-BIT ALIGNED
 DefaultValue = NIL
 PARM # 2: SHORTNNINT(16) at OFFSET 32 by VALUE
 DefaultValue = NIL
 PARM # 3: SHORTNNINT(16) at OFFSET 48 by VALUE
 DefaultValue = NIL
 PARM # 4: SHORTINT(16) at OFFSET 64 by VALUE
 DefaultValue = 0
 PARM # 5: STRUCTURE(65536) at OFFSET 80 by UNCHECKABLE ANYVAR;
 SHORT ADDR, 8-BIT ALIGNED
 DefaultValue = NIL
 PARM # 6: STRUCTURE(65536) at OFFSET 112 by UNCHECKABLE ANYVAR;
 SHORT ADDR, 8-BIT ALIGNED
 DefaultValue = NIL
 PARM # 7: SHORTINT(16) at OFFSET 144 by VALUE
 DefaultValue = 0
 PARM # 8: SHORTINT(16) at OFFSET 160 by VALUE
 DefaultValue = 0
 PARM # 9: SHORTINT(16) at OFFSET 176 by VALUE
 DefaultValue = 0
 PARM # 10: INTEGER(32) at OFFSET 192 by VALUE
 DefaultValue = 0
 PARM # 11: INTEGER(16) at OFFSET 224 by VALUE
 DefaultValue = 0
 PARM # 12: INTEGER(16) at OFFSET 240 by VALUE
 DefaultValue = 0
 PARM # 13: INTEGER(16) at OFFSET 256 by VALUE
 DefaultValue = 0

 fread (FREAD) :
 LANGUAGE is HP PASCAL
 FUNCTION [SHORTINT(16) at OFFSET 0] with 3 PARAMETERS
 PARM # 1: INTEGER(16) at OFFSET 0 by VALUE
 PARM # 2: INTEGER(65536) at OFFSET 16 by UNCHECKABLE ANYVAR;

12- 50

 LONG ADDR, 8-BIT ALIGNED
 PARM # 3: SHORTINT(16) at OFFSET 80 by VALUE

LITERAL_ALIAS

LITERAL_ALIAS is an HP Pascal Option.

When the LITERAL_ALIAS compiler option is ON, the compiler takes aliases
literally (exactly as they are spelled, differentiating between uppercase
and lowercase letters). When LITERAL_ALIAS is OFF, the compiler
downshifts aliases (or upshifts them if the compiler option UPPERCASE is
ON).

Syntax

$LITERAL_ALIAS {ON }$
 {OFF}

Default OFF

Location Anywhere.

The LITERAL_ALIAS compiler option overrides the UPPERCASE compiler
option.

Example

 $LITERAL_ALIAS ON$
 PROCEDURE $ALIAS 'PRoc1Name'$ PROC1; {External name is PRoc1Name}

 $LITERAL_ALIAS OFF$
 PROCEDURE $ALIAS 'PRoc2Name'$ PROC2; {External name is proc2name}

LOCALITY

LOCALITY is an HP Pascal Option.

The LOCALITY compiler option specifies a locality name to be associated
with the code for all subsequent routines until the next LOCALITY option.
The compiler puts the locality name in the object file.

Syntax

 $LOCALITY string $

Parameter

string Specifies a locality name for the object code. The
 compiler does not distinguish between uppercase and
 lowercase letters in string .

Default The nameless locality.

Location Anywhere.

Using locality names can improve the performance of a program in cases
where calling a routine in the same locality can require fewer
instructions and fewer page faults than calling a routine in a different
locality. If you use $LOCALITY and want to go back to using default
locality, use $LOCALITY ‘CODE'$. Refer to LINKEDITOR manuals for
details.

Example

 $LOCALITY 'Sample'$
 PROGRAM show_locality;

12- 51

 PROCEDURE proc1;
 BEGIN
 .
 .
 END;
 BEGIN
 .
 .
 proc1;
 .
 .
 END.

LONG_CALLS

LONG_CALLS is an HP Pascal option.

The LONG_CALLS option can be used to change the type of branches that are
generated for calls or millicode calls.

Syntax

 { integer }
$LONG_CALLS {ON }$
 {OFF }
Parameters

0 or OFF Regular short calls are generated.

1 or ON Long calls are generated for regular calls and millicode
 calls.

2 Millicode calls are long and regular calls are short.

3 Millicode calls are short and regular calls are long.

Default MPE/iX 0

 On HP-UX 0 if any one of the following options are
 used:

 -O +O +z +Z

 3 if none of the above options are used.

Location Anywhere, but in order to be effective, it must appear
 before a place in the code where label declarations or
 directives can appear.

Normally, for small programs, the branches generated reach their targets.
If the branch does not reach, the linker generates Long Branch stubs.
These stubs take longer to execute and may change the program's locality.
These stubs are shared within a subspace, with one or more procedures.

By using the LONG_CALLS options, the compiler can generate a different
and longer code sequence that always reach the branch. The disadvantage
of using the longer call sequence is that the longer call sequence is
done on calls that do reach the branch. This causes a code expansion for
every call.

For HP-UX, millicode calls usually reach in program files, so options 1
and 2 are not needed. Also, they are not needed when compiling with +z
or +Z (or SHLIB_CODE).

See the Procedure Calling Conventions Reference Manual and the Precision
Architecture Instruction Set Reference Manual for more information on
stubs and branches.

12- 52

Example

 $LONG_CALLS 1$
 program call;
 procedure p_r(x:real); external;
 begin
 p_r(1.5);
 end.

MAPINFO

MAPINFO is an HP Pascal Option.

The compiler option MAPINFO prints information for array and record
types.

Syntax

$MAPINFO {ON }$
 {OFF}

Default OFF

Location Anywhere.

The information printed with the MAPINFO option is the same as that
printed with the TABLES option set to ON (see "TABLES" in this
chapter.) However, MAPINFO prints this information at the same time the
type is declared instead of at the end of the scope in which the type is
declared. In addition, MAPINFO prints the minimum alignment of the
structured type.

Example

The example below shows a listing of PROGRAM p created with the MAPINFO
option.

 $MAPINFO ON$
 PROGRAM p;
 TYPE
 rec = RECORD
 f1 : integer;
 f2 : integer;
 END;

 REC MAX RECORD SIZE = x8 bytes
 F1 x0.0 @ 4.0
 F2 x4.0 @ 4.0
 MIN ALIGNMENT = x4 byte

 BEGIN
 END;

In the example above, the x indicates hexadecimal notation is being used.
The table below further explains how to interpret the information
generated by MAPINFO.

--
| |
| Relative Starting Position Storage Size |
x bytes.bits @ bytes.bits
--

MLIBRARY

12- 53

MLIBRARY is an HP Pascal Option.

The MLIBRARY compiler option specifies the file into which the compiler
puts a compiled module definition, instead of putting it in the object
file. The file specified here can then be used in a SEARCH option (see
"SEARCH"). Program comments must not be written on the same line as
$MLIBRARY.

Syntax

 $MLIBRARY string $

Parameter

string Specifies the name of the file into which the compiler
 writes the module definition.

 If the file exists, it must be an external library
 (otherwise, it is an error). If the file is an external
 library, the compiler updates the module definition in the
 file.

 If the file does not exist, the compiler creates a new file
 with the specified name.

Default Compiled module definition goes into the object file.

Location Anywhere.

Example

 $MLIBRARY 'xmodule'$
 MODULE x;
 EXPORT
 .
 .
 .
 IMPLEMENT
 .
 .
 .
 END.

NLS_SOURCE

NLS_SOURCE is a System-Dependent MPE/iX and HP-UX Option.

When the NLS_SOURCE compiler option is ON, the compiler supports the
parsing of two-byte characters within string literals and comments.

The command line option -Y also specifies this option.

Syntax

$NLS_SOURCE {ON }$
 {OFF}

Default OFF.

Location Anywhere.

NLS_SOURCE ON enables the compiler to parse 16-bit characters within
literal strings and comments. (Note that eight-bit characters are always
parsed correctly.)

NLS_SOURCE OFF specifies that 16-bit characters are not supported.

Example

12- 54

 $NLS_SOURCE ON$
 {Native Mode language source code can appear here.}
 .
 .
 .
 CONST
 s = "some string literal";
 $NLS_SOURCE OFF$
 {Native Mode language source code cannot appear here.}

NOTE On MPE/iX, a warning occurs if the NLUSERLANG JCW is not set before
 compiling a program that turns the NLS_SOURCE compiler option ON.

 On HP-UX, a warning occurs if the LANG environment variable is not
 set before compiling a program that turns the NLS_SOURCE compiler
 option ON.

NOTES

NOTES is an HP Pascal Option.

When the NOTES compiler option is ON, the compiler prints notes, which
give you information that can help you correct possible run-time errors
or make your program more efficient.

Syntax

$NOTES {ON }$
 {OFF}

Default ON.

Location Anywhere.

Example

 PAGE 1 HEWLETT-PACKARD ...

 0 1.000 0 PROGRAM Note_Example;
 0 2.000 0
 0 3.000 0 VAR
 0 4.000 0 Ptr1 : LocalAnyPtr;
 1 5.000 0 Ptr2 : ^Integer;
 2 6.000 0
 2 7.000 1 BEGIN
 2 8.000 1 Ptr1 := NIL;
 3 9.000 1 Ptr2 := Ptr1;

 **** NOTE # 1 CODE GENERATED TO VERIFY CORRECT POINTER ALIGNMENT (377)

 4 10.000 1 $NOTES OFF$
 4 11.000 1 Ptr2 := Ptr1;
 5 12.000 1 END.

OPTIMIZE

OPTIMIZE is an HP Pascal Option.

The OPTIMIZE compiler option specifies level one, level two, or no
optimization for the program being compiled Refer to the HP Pascal/iX
Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide , depending
on your implementation, for more information on the optimizer.

The command line options +O1, +O2, and -O also specify this option.

12- 55

Syntax

 {'LEVEL1' }
 {'LEVEL2' }
$OPTIMIZE {'BASIC_BLOCKS num ' }$
 {'BASIC_BLOCKS_FENCE num '}
 {ON }
 {OFF }
Parameters

LEVEL1 The compiler compiles the program with level
 one optimization.

LEVEL2 The compiler compiles the program with level
 two optimization.
 [REV BEG]

BASIC_BLOCKS num The compiler compiles the program with level
 two optimization, but drops down to level
 one for those procedures with more than num
 basic blocks.

BASIC_BLOCKS_FENCEnum No optimization is requested but when it is,
 the number of basic blocks at which the
 compiler drops to level one is num.
 [REV END]

ON The compiler compiles the program with level
 two optimization.

OFF The compiler compiles the program without
 optimization.

Default OFF.

Location Anywhere, but in order to be effective, it must be before
 the place in the code where label declarations or
 directives can appear.

Scope All following source code, until overridden by another
 OPTIMIZE option.

Basic Blocks
[REV BEG]

A basic block is a sequence of code with a single entry point and a
single exit point. A basic block has no internal branches. Optimizing
procedures with a large number of basic blocks can take a long time and
use a large amount of virtual memory. Therefore, the compiler behaves
differently on large procedures, when optimizing at Level 2. Any
procedure containing more than 500 basic blocks causes the optimizer to
drop down to Level 1 optimization for that procedure. A warning is
emitted that states the name of the procedure and the number of basic
blocks it contains:[REV END]

 Optdriver: <num> basic blocks; dropping to level 1 optimization for <proc>. (6059)

OPTIMIZE 'BASIC_BLOCKS num' Compiler Option

This option allows you to request Level 2 optimization and change the
number of basic blocks at which the optimizer drops down to Level 1
optimization.

Syntax

 $OPTIMIZE 'BASIC_BLOCKS num '$

12- 56

where num is the number of basic blocks a procedure can have before the
optimizer drops down to Level 1 optimization.

NOTE To get the "old" behavior of -O, (for example, to disable
 completely the basic blocks feature), you can use the following
 form of the directive:

 $OPTIMIZE 'BASIC_BLOCKS 0'$

 Notice that 0 has a special meaning here; it does not mean zero
 basic blocks.

On HP-UX, the +Obb num command-line option can be specified instead of the
$OPTIMIZE 'BASIC_BLOCKS num '$ compiler option.

OPTIMIZE 'BASIC_BLOCK_FENCE num' Compiler Option

This option allows you to change the default level of basic blocks (500)
at which the optimizer drops down to Level 1 optimization.

Syntax

 $OPTIMIZE 'BASIC_BLOCK_FENCE num '$

where num is the number of basic blocks at which the optimizer drops down
to Level 1 optimization.

This option does not request optimization; it only says that when Level 2
optimization is requested, to change the default level at which the
optimizer drops down to Level 1.

NOTE To disable completely the basic blocks feature (for example, to
 disable the dropping from Level 2 to Level 1), you can use the
 following form of the directive:

 $OPTIMIZE 'BASIC_BLOCK_FENCE 0'$

 When this form of the option is specified Level 2 is requested, the
 "old" level 2 will be available; that is, no dropping from Level 2
 to Level 1.

 Notice that 0 has a special meaning here; it does not mean zero
 basic blocks.

Example

 $OPTIMIZE 'LEVEL1'$
 PROGRAM x;
 PROCEDURE y $OPTIMIZE 'LEVEL2'$; {Compiled with level two optimization}
 BEGIN {y}
 .
 .
 .
 END; {y}

 PROCEDURE z; {Compiled with level two optimization}
 BEGIN {z}
 .
 .
 .

12- 57

 END; {z}

 PROCEDURE a $OPTIMIZE OFF$; {Compiled with no optimization}
 PROCEDURE b; {Compiled with no optimization}
 BEGIN {b};
 .
 .
 .
 END; {b};
 BEGIN {a}
 .
 .
 .
 END; {a}

 BEGIN {x} {Compiled with no optimization}
 .
 .
 .
 END. {x}

OS

OS is an HP Pascal Option.

The OS compiler option specifies the operating system on which the
program is intended to run (not to be confused with the operating system
on which it is compiled). Then, the compiler identifies language
features that are not available on that operating system.

Syntax

 {NONE }
 {HPUX }
$OS ' {MPE/XL}'$
 {MPEXL }
 {MPE }
Parameters

NONE The compiler identifies language features that are
 unavailable on the HP-UX operating system or the MPE/iX and
 MPE V operating systems.

 Available features are:
 All ANSI Pascal features.
 All HP Standard Pascal features.
 All HP Pascal predefined routines.

HPUX The compiler recognizes language features that are
 available on the HP-UX operating system.

 Available features are:
 All ANSI Pascal features.
 All HP Standard Pascal features.
 All HP Pascal predefined routines.
 Predefined procedure assert .
 Predefined function baddress .
 Predefined function bitsizeof .
 Predefined function fnum .
 Predefined function sizeof .
 Predefined function waddress .
 Standard program parameter stderr .

MPE/XL or The compiler recognizes language features that are
MPEXL available on the MPE/iX operating system.

 Available features are:
 All ANSI Pascal features.

12- 58

 All HP Standard Pascal features.
 All HP Pascal predefined routines.
 Predefined procedure assert .
 Predefined function baddress .
 Predefined function bitsizeof .
 Predefined function fnum .
 Predefined function sizeof .
 Predefined function waddress .
 Predefined function ccode .
 RUN command parameter INFO.
 RUN command parameter PARM.

MPE The compiler recognizes language features that are
 available on the MPE V operating system.

 Available features are the same as for MPE/iX.

Default Operating system on which the compiler is running.

Location Anywhere.

If the compiler encounters a language feature that is unavailable on the
intended operating system, it issues an error.

If you are writing a program on one operating system and intend to run it
on another operating system, use the OS option to recognize language
features that are available on the intended system.

Example

 PROGRAM prog;

 VAR
 condcode : 0..2;
 .
 .
 .
 BEGIN
 $OS 'MPE'$
 condcode := ccode; {this is legal}
 .
 .
 .
 $OS 'NONE'$
 condcode := ccode; {this is a compile-time error}
 END.

OVFLCHECK

OVFLCHECK is an HP Pascal Option.

When the OVFLCHECK compiler option is ON, the compiler generates overflow
checking code for all integer arithmetic operations. Overflow-checking
code stops the program and issues an error message if an arithmetic
operation results in an integer overflow.

Syntax

$OVFLCHECK {ON }$
 {OFF}

Default ON.

Location Anywhere, but it affects an entire statement at a time. If
 OVFLCHECK is ON when the compiler processes a statement
 terminator, then all arithmetic operations in the statement
 are checked for overflow at run time. The OVFLCHECK option
 stays ON or OFF until another OVFLCHECK option overrides

12- 59

 it.

When OVFLCHECK is OFF, integer overflows are not detected. One use for
this is in a random number generator, when overflows are expected and are
to be ignored.

NOTE This option can be used to turn off overflow for bit32
 multiplication; this option has no effect on bit52 or longint
 multiplication.

Example

 PROGRAM t (output);

 MODULE rand;
 EXPORT
 FUNCTION random : integer;
 PROCEDURE init_random (seed,
 range : integer);
 IMPLEMENT
 CONST
 multiplier = 31415821;
 VAR
 rand_seed,
 rand_range : integer;

 PROCEDURE init_random (seed,
 range : integer);
 BEGIN
 rand_seed := seed;
 rand_range := range;
 END;

 FUNCTION random : integer;
 BEGIN
 $PUSH, OVFLCHECK OFF$
 rand_seed := (rand_seed * multiplier +1) MOD rand_range;
 POP
 random := rand_seed;
 END;
 END;

 IMPORT rand;

 BEGIN
 init_random(1234567,1000);
 writeln(random);
 writeln(random);
 writeln(random);
 END.

PAGE

PAGE is an HP Standard Option.

The PAGE compiler option starts a new page of the listing if the LIST
option is ON.

Syntax

 $PAGE$

Default Not applicable.

12- 60

Location Anywhere.

Example

 PROGRAM show_page (output);
 BEGIN
 writeln('First page');
 $PAGE$
 writeln('Second page');
 END.

The listing (simplified) looks like this:

PAGEWIDTH

PAGEWIDTH is an HP Pascal Option.

The PAGEWIDTH compiler option specifies the width of the compiler
listing.

Syntax

 $PAGEWIDTH integer $

Parameter

integer An integer in the range 80..132, the number of characters
 per line in the compiler listing.

Default 120.

Location Anywhere.

12- 61

Example

 $PAGEWIDTH 80$

PARTIAL_EVAL

PARTIAL_EVAL is an HP Standard Option.

When the PARTIAL_EVAL compiler option is ON, the compiler produces code
that determines the value of each Boolean expression by evaluating the
minimum number of operands, from left to right. When the PARTIAL_EVAL
option is OFF, the compiler produces code that evaluates every operand of
each Boolean expression in an implementation dependent order.

Syntax

$PARTIAL_EVAL {ON }$
 {OFF}

Default ON.

Location Statement.

The advantages of partial evaluation are more readable source code and
more efficient object code.

Examples

 $PARTIAL_EVAL OFF$
 IF (index IN [lower..upper]) AND
 (ptr_array[index] <> NIL) AND
 (ptr_array[index]^ = 5) THEN ...

In this first example, if index is out of range, then ptr_array[index]
causes a run-time error. If index is valid but ptr_array[index] is nil,
then ptr_array[index]^ causes a run-time error.

 $PARTIAL_EVAL ON$
 IF (index IN [lower..upper]) AND
 (ptr_array[index] <> NIL) AND
 (ptr_array^ = 5) THEN ...

In this second example, if index is out of range, then (ptr_array[index]
<> nil) is not evaluated. If ptr_array[index] is nil then (ptr_array^ =
5) is not evaluated.

 $PARTIAL_EVAL OFF$
 IF (index IN [lower..upper] THEN
 IF (ptr_array[index] <> NIL) THEN
 IF (ptr_array[index]^ = s) THEN ...

This third example is equivalent to the second example.

POP

POP is an HP Pascal Option.

The POP compiler option restores the compiler option settings that the
last PUSH option saved (with the exceptions listed below.)

Syntax

 POP

Default Not applicable.

Location Anywhere.

12- 62

Compiler options with the location "At front" are not affected by POP.
The following compiler options are not affected by POP either:

ALIAS GLOBAL PUSH
COPYRIGHT IF SKIP_TEXT
ELSE INCLUDE SUBPROGRAM
ENDIF LOCALITY SYSINTR
EXTERNAL PAGE TITLE
FONT POP

Example

 {Include file for supporting types.}

 $PUSH, LIST OFF$

 {Do not list the supporting types.
 To preserve the LIST state (ON or OFF) that this program set,
 save it first}

 TYPE
 bit1 = 0..1;
 bit2 = 0..2;
 bit3 = 0..7;
 .
 .
 .
 bit16 = 0..32767;

 POP

 TYPE
 posshortint = bit16;
 .
 .
 .

PUSH

PUSH is an HP Pascal Option.

The PUSH compiler option saves the current compiler option settings.

Syntax

 $PUSH$

Default Not applicable.

Location Anywhere.

The PUSH option can execute 15 times before the POP option must execute.

Example

 {Include file for supporting types.}

 $PUSH, LIST OFF$

 {Do not list the supporting types.
 To preserve the LIST state (ON or OFF) that this program set,
 save it first}

 TYPE
 bit1 = 0..1;
 bit2 = 0..2;
 bit3 = 0..7;
 .

12- 63

 .
 .
 bit16 = 0..32767;

 POP

 TYPE
 posshortint = bit16;
 .
 .
 .

RANGE

RANGE is an HP Standard Option.

When the RANGE compiler option is ON, the compiler generates
range-checking code for assignments, array indices, parameter passing,
extensible parameters, pointers, CASE statements, and set operations. If
a range check fails, an error message is issued and the program aborts
(or causes an escape to be executed if a TRY-RECOVER construct is
active).

The command line option +R also specifies this option.

Syntax

$RANGE {ON }$
 {OFF}

Default ON.

Location Statement.

NOTE Even when RANGE is ON, the compiler generates as little
 range-checking code as possible. If it can determine that a value
 can never be out of range at run time, it does not generate
 range-checking code for that variable.

RLFILE

RLFILE is a System-Dependent MPE/iX Option.

When the RLFILE compiler option is ON, every level-one routine goes into
its own object module in the RL file. (Routines nested within level-one
routines go into the same object module as the level-one routine in which
they are nested.)

Syntax

$RLFILE {ON }$
 {OFF}

Default OFF.

Location At front.

When RLFILE is OFF (the default), the entire compilation unit goes into
one object file. If the object file is an existing RL file, the entire
compilation is placed into it. If the object file is an existing NMOBJ
file, the object file is rewritten. If the object file is neither an RL
nor an NMOBJ file, an error occurs. If the object file does not exist,
the system creates an NMOBJ file with the specified name.

12- 64

When RLFILE is ON, the compilation unit goes into an RL file procedure by
procedure. This allows procedural-level manipulation similar to that on
MPE V. An error occurs if the object file exists, but is not an RL file
(that is, if it is an NMOBJ file). If the object file is an existing RL
file, object modules replace existing modules in the RL file. If the
object file does not exist, an RL file is created with the specified
name.

When RLFILE is ON, the RL file can be significantly larger than if the
program were compiled into an NMOBJ file, due to the duplicate
information in each level-one object module. If SYMDEBUG is also ON, the
RL file is even larger, because debug information is duplicated in each
level-one object module if a local variable is declared using a global
type.

Example

 $RLFILE ON$
 PROGRAM prog;
 .
 .
 .

NOTE If you use Pascal modules, all procedures and data in a particular
 module are put into one object module.

RLINIT

RLINIT is a System-Dependent MPE/iX Option.

The RLINIT compiler option initializes an RL file to empty.

Syntax

 $RLINIT$

Default None.

Location At front.

The RLINIT compiler option initializes an RL file to empty before placing
any object code in it. If RLINIT is not used, the compiler appends the
new object code to any code that is already in the RL file. If $OLDPASS
is used, or no file with the specified name exists, the system creates an
RL file. If the specified object file is not an RL file (that is, if it
is an NMOBJ file), an error occurs.

S300_EXTNAMES

S300_EXTNAMES is an HP Pascal Option.

The S300_EXTNAMES compiler option specifies that the external names of
procedures in modules are of the form modulename_procedurename .

Syntax

$S300_EXTNAMES {ON }$
 {OFF}

Default OFF.

Location Before the EXPORT part of a module.

The S300_EXTNAMES option tells the linker to use the external name

12- 65

modulename_procedurename instead of procedurename when linking a program.
The name modulename_procedurename is in lowercase letters (as far as the
linker is concerned) unless the procedure was compiled with the compiler
option UPPERCASE ON.

The S300_EXTNAMES option applies to the entire module, but not to other
modules in the same compilation unit. If a compilation unit contains
several such modules, each one must contain the S300_EXTNAMES option.

The purpose of this option is to allow non-Pascal source code that calls
external procedures that are in a Pascal module to be ported from, or be
common with, HP9000 Series 300 source code, without changing the source
code. The HP9000 Series 300 prefixes modulename_ to procedurename in
forming the link name; HP Pascal does not.

Example

 MODULE M1;
 $S300_EXTNAMES ON$
 EXPORT
 VAR
 V1 : INTEGER;
 PROCEDURE P1 (P : CHAR);
 IMPLEMENT
 .
 .
 .
 END;

 MODULE M2;
 EXPORT
 VAR
 V2 : INTEGER;
 PROCEDURE P2 (P : INTEGER);
 IMPLEMENT
 .
 .
 .
 END;

The external names for V1, P1, V2, and P2 are M1_V1, M1_P1, V2, and P2,
respectively.

SEARCH

SEARCH is an HP Pascal Option.

The SEARCH compiler option specifies one or more files for the compiler
to search for module definitions. The files can be:

 * Created with the MLIBRARY compiler option.

 * Object files into which the modules were compiled (without the
 MLIBRARY compiler option).

 * Archives (.a files) of such object files. On MPE/iX, these are RL
 files created by the Link Editor using such object files.

You must use the SEARCH option when a module being imported is not
defined within the same compilation unit as the IMPORT statement.

Syntax

 $SEARCH string [, string]...$

Parameter

string Has value of the form:

12- 66

 '[+] file_name [, file_name]...'

 The compiler searches the file_name s (in the order
 specified) for module definitions. If + is specified, the
 compiler concatenates this list of file names to the
 existing list (which was created by previous SEARCH
 options). If + is not specified, this list of file names
 replaces the existing list. (Note that + can only appear
 before the first string.)

 An empty string resets the search list to the default.

Default On MPE/iX: PASLIB.PUB.SYS
 On HP-UX: /usr/lib/paslib
 Module definitions for predefined modules are kept in the
 system default module library (paslib), so you do not need
 to specify the search options for these modules.

Location Anywhere before the import statement.

Pascal requires that lower level modules be included in the $SEARCH path,
even if the higher level modules do not use them. For example:

 module a $search 'a.o'$ $search 'a.o, b.o'$
 export module b module c
 . import a import b
 . export export
 . . .
 end. . .
 . .
 end. end.

Example

 $SEARCH 'file1,file2','file3'$ {The search list contains file1, file2, file3.}
 $SEARCH '+file4'$ {Adds file4 to the search list.}
 IMPORT {The search list now contains file4.}
 MOD1,MOD2,MOD3;
 .
 .
 .
 $SEARCH 'file5,file6', {Replaces old search list.}
 'file7,file8'$ {Can span more than one line.}
 <rev begin>
 IMPORT MOD4; {The search list now contains only file5,}
 . {file6, file7, file8.}
 <rev end>
 .
 .

The SEARCH compiler option tells the compiler which files to search for
module definitions. It does not indicate to the linker which files
should be linked with the main program. All object files, or archives
and object files that appear in any search options in the main program
must be explicitly specified to the linker at link time.

Example

 Program main(input,output);
 $SEARCH ‘a.o,b.o,c.o'$ {All object files for lower level}
 {modules must be included. }
 import c;
 .
 .
 .
 end.

12- 67

The object files a.o, b.o, and c.o must be specified to the linker for
the example program to be successfully linked.

SET

SET is an HP Pascal Option.

The SET compiler option assigns a Boolean value (TRUE or FALSE) to each
of one or more identifiers that appear in subsequent IF options.

Syntax

$SET identifier = Boolean [{,} identifier = Boolean]'$
 [{;}]
Parameters

identifier Appears in an IF option later in the program. The
identifier cannot be AND, OR, or NOT.

Boolean The value TRUE or FALSE (the compiler is not
 case-sensitive).

Default Not applicable.

Location Anywhere.

Example

The following two program fragments are equivalent:

 {Fragment 1}
 $SET 'group1=true, group2=false'$
 .
 .
 .
 $IF 'group1 AND (NOT group2)'$

[source_line]
[.]
[.]
[.]
 $ENDIF$

 {Fragment 2}
 $SET 'group1 = true'$
 $SET 'group2 = false'$
 .
 .
 .
 $IF 'group1'$
 $IF 'NOT group2'$

 [source_line]
 [.]
 [.]
 [.]

 $ENDIF$
 $ENDIF$

SHLIB_CODE

SHLIB_CODE is a System_Dependent HP-UX Option.

The compiler option SHLIB_CODE causes the compiler to generate position
independent code (PIC) for use in shared libraries.

The command line options +Z and +z also specify this option.

12- 68

Syntax

 { integer }
$SHLIB_CODE {ON }$
 {OFF }
Parameters

integer Must be in the range 0..2.

Value Compiler generates:

 0 Position dependent code.

 1 Short load sequence PIC.

 2 Long load sequence PIC.

ON Compiler generates short load sequence PIC.

OFF Compiler generates position dependent code.

Default OFF (Position dependent code).

Location At front.

Command Line Option +z or +Z

Programs that have been linked to shared libraries (.sl) use less disk
space than those linked to archive libraries (.a). Also, programs linked
to shared libraries get automatic updates when a new version of the
shared library is installed.

When compiling for a shared library use $SHLIB_CODE ON$ or $SHLIB_CODE
1$. However, if the number of external references in the resulting
shared library exceeds a system-dependent limit, use $SHLIB_CODE 2$. The
linker will indicate when the limit has been exceeded.

SHLIB_CODE is valid only when the target operating system is HP-UX (see
"OS"). The resulting object file will link only HP-UX.

For more information about shared libraries and PIC, refer to Programming
on HP-UX .

SHLIB_VERSION

SHLIB_Version is a System-Dependent HP-UX Option.

The compiler option SHLIB_VERSION causes the compiler to place a shared
library version string into the resulting object file.

$SHLIB_VERSION 'string'$

Parameters

String Specifies the date stamp to be used by the linker for
 shared library version control. Must be in the form:
 mm/yy or mm/yyyy.

Default '01/1990'.

Location At front.

Example

 $OS ‘HPUX'$
 $SHLIB_CODE ON$
 $SHLIB_VERSION ‘04/1990'$

12- 69

SHLIB_VERSION is designed to be used with the SHLIB_CODE compiler option.
For more information about shared library version control, refer to
Programming on HP-UX .

SKIP_TEXT

SKIP_TEXT is an HP Pascal Option.

The compiler ignores everything between $SKIP_TEXT ON$ and $SKIP_TEXT
OFF$.

Syntax

$SKIP_TEXT {ON }$
 {OFF}

Default OFF

Location Anywhere.

Example

 PROGRAM show_skiptext (output);
 BEGIN
 writeln('This will print.');
 $SKIP_TEXT ON$
 writeln('This won''t print.');
 $SKIP_TEXT OFF$
 writeln('This will print.');
 END.

The preceding program prints:

 This will print.
 This will print.

There is one exception to how SKIP-TEXT works. Symbols that begin a
comment ({ or (*) are recognized and cause text to be commented out until
a closing comment symbol (} or *)) is encountered.

Example

 0 1.000 0 PROGRAM show_skiptext_exception (output);
 0 2.000 1 BEGIN
 0 3.000 1 writeln('This will print.');
 1 4.000 1 $SKIP_TEXT ON$
 ** 5.000 1 (* This unclosed comment causes the following option
 ** 6.000 1 to be considered part of the comment:
 ** 7.000 1 $SKIP_TEXT OFF$
 ** 8.000 1 writeln('This will not print because the ');
 ** 9.000 1 writeln('"skip_text off" option was commented out.');
 ** 10.000 1 Comment is closed on the next line.
 ** 11.000 1 *)
 1 12.000 1 $SKIP_TEXT OFF$
 1 13.000 1 writeln('This also will print.');
 2 14.000 1 END.

Output:

 This will print.
 This also will print.

SPLINTR

SPLINTR is an HP Pascal Option.

The SPLINTR compiler option specifies the intrinsic file that the
compiler searches for information on intrinsic routines. It is the same

12- 70

as the SYSINTR compiler option and is provided only for backward
compatibility with Pascal/V.

Syntax

 $SPLINTR [string]$

Parameter

string Specifies the name of the intrinsic file that the compiler
 must search for information about intrinsic routines. This
 intrinsic file must be in SYSINTR format, not SPLINTR
 format (see Table 12-2 in "SYSINTR").

Default System intrinsic file (see the HP Pascal/iX Programmer's
Guide or the the HP Pascal/HP-UX Programmer's Guide ,

 depending on your implementation).

Location Anywhere.

Example

See the example for the SYSINTR compiler option.

NOTE The pc option +C on HP-UX affects the SPLINTR compiler option (see
 the HP Pascal/HP-UX Programmer's Guide).

STANDARD_LEVEL

STANDARD_LEVEL is an HP Standard Option.

The STANDARD_LEVEL compiler option specifies the level of syntax that the
compiler routinely processes. The compiler issues a warning if it
encounters a language feature that is illegal at that level. The
compiler compiles the illegal feature if possible; otherwise, it is a
syntax error.

Syntax

 {ANSI }
 {ISO }
$STANDARD_LEVEL '{HP_PASCAL }'$
 {HP_MODCAL }
 {EXT_MODCAL}
Parameters

ANSI Allows only ANSI Pascal.

ISO Allows only ISO Pascal (and ANSI Pascal).

HP_PASCAL Allows only HP Pascal (and ISO Pascal).

HP_MODCAL Allows HP Pascal and some system programming extensions.

EXT_MODCAL Allows HP Pascal and all system programming extensions.

Default HP_PASCAL.

Location Anywhere.

The HP Standard specifies the STANDARD_LEVEL compiler option only with
the standard levels ANSI, ISO, and HP_PASCAL. HP Pascal accepts the
additional standard levels HP_MODCAL and EXT_MODCAL.

12- 71

A standard level violation (use of a language feature that is not
available at the current standard level) causes the compiler to issue a
warning, except if the violation involves a reserved word, in which case
it is an error.

NOTE The STANDARD_LEVEL compiler option also accepts the Pascal/V
 standard levels 'HP' and 'HP3000', which it treats like
 'HP_PASCAL'.

Example

 $STANDARD_LEVEL 'ANSI'$ {equivalent to $ANSI ON$}
 $OS 'MPE'$
 PROGRAM show_level (output);
 PROCEDURE proc1;
 VAR
 i : integer;
 b : Boolean;
 BEGIN
 assert(b,i);
 ^
 **** WARNING #1 THIS FEATURE REQUIRES $STANDARD_LEVEL 'HP_PASCAL'$ (539)
 i := 0;
 b := true;
 END;

 BEGIN
 END.

Figure 12-4 illustrates the relationship between the STANDARD_LEVEL
parameters.

Figure 12-4. Relationships Between STANDARD_LEVEL Compiler Option Parameters

12- 72

STATEMENT_NUMBER

STATEMENT_NUMBER is an HP Pascal Option.

When the STATEMENT_NUMBER compiler option is ON, the compiler generates a
special instruction to identify a code sequence with its corresponding
Pascal statement.

Syntax

$STATEMENT_NUMBER {ON }$
 {OFF}

Default OFF

Location Anywhere.

The special instruction that the compiler generates is a LoaD Immediate
Left (LDIL) instruction with destination register R0. It is equivalent
to a No OPeration (NOP) instruction. The immediate field contains the
statement number. When the debugger displays the mnemonic for the
instruction, it shows the statement number instead of the LDIL
instruction.

NOTE The STATEMENT_NUMBER compiler option is ignored when optimization
 is in effect.

Example

 $STATEMENT_NUMBER ON$
 $LIST_CODE ON$
 PROGRAM a (output);
 BEGIN
 writeln('Hi, mom!');
 END.

The listing for the preceding program is:

 0 1.000 0 $statement_number on$
 0 2.000 0 $list_code on$
 0 3.000 0 program x;
 0 4.000 0 var
 0 5.000 0 i,j,k : integer;
 3 6.000 1 begin
 3 7.000 1 i := 0;
 4 8.000 1 j := i;
 5 9.000 1 k := j + i;
 6 10.000 1 end.

 PROGRAM

 0 STW 2,_20(0,30) 34 LDW 12(0,27),31
 4 LDO 48(30),30 38 LDW 16(0,27),19
 8 STW 0,-4(0,30) 3C ADDO 31,19,20
 C BL P_INIT_ARGS,2 40 STW 20,8(0,27)
 10 NOP 00002711
 14 BL U_INIT_TRAPS,2 44 BL P_TERMINATE,2
 18 NOP 48 NOP
 1C *** Stmt 3 4C NOP
 20 STW 0,16(0,27) 50 BL U_EXIT,2
 24 *** Stmt 4 54 NOP
 28 LDW 16(0,27),1 58 LDW -68(O,30),2
 2C STW 1,12 (0,27) 5C BV 0(2)
 30 *** Stmt 5 60 LDO -48(30),30

12- 73

STDPASCAL_WARN

STDPASCAL_WARN is an HP Pascal Option.

The STDPASCAL_WARN compiler option allows you to compile and execute
syntax, which otherwise would have been issued an error message due to
non-conformity with the ANSI/ISO standard.

A new error message can now be issued for syntax in HP Pascal that does
not conform to the ANSI/ISO standard. This message may be issued only
when one of the following compiler options is specified: ANSI ON,
STANDARD_LEVEL 'ANSI', or STANDARD_LEVEL 'ISO'. In order to have a
warning issued rather than this error message, specify the compiler
option STDPASCAL_WARN.

Syntax

$STDPASCAL_WARN {ON }$
 {OFF}

Location Anywhere.

Default OFF.

Examples

 $STANDARD_LEVEL 'ANSI'$
 PROGRAM p;
 VAR
 lr : longreal;
 ^
 **** ERROR #1 THIS FEATURE DOES NOT CONFORM WITH THE ANSI/ISO STANDARD (044)
 BEGIN
 END.

In this example, an error message is issued because PROGRAM p does not
conform to ANSI/ISO standard Pascal.

 $STDPASCAL_WARN ON$
 $STANDARD_LEVEL 'ANSI'$
 PROGRAM p;
 VAR
 lr : longreal;
 ^
 **** WARNING # 1 THIS FEATURE REQUIRES $STANDARD_LEVEL 'HP_PASCAL' (539)
 BEGIN
 END.

In this example, STDPASCAL_WARN is specified so a warning is issued
instead of an error message.

STRINGTEMPLIMIT

STRINGTEMPLIMIT is an HP Pascal Option.

The STRINGTEMPLIMIT option causes all temporary strings of unknown size
to be allocated a fixed maximum size. Instead of being allocated in the
heap, the temporary string is allocated in the stack.

Syntax

 $STRINGTEMPLIMIT integer $

Parameters

integer Maximum size in bytes of any string temporary that the
 compiler can not calculate at compile time.

12- 74

__

NOTE This value must include the length word of the string
 and any padding.

__

Default 0 (each request is allocated from the heap with the exact
 size required).

Location Heading.

Example

The following example shows two cases where the compiler can not
determine the size of a string at compile time. For performance reasons,
the temporary string is allocated in the stack at a fixed maximum of 400
bytes.

 $STRINGTEMPLIMIT 400$
 program strings;
 type
 str80 = string[80];
 var
 s1 : str80;
 n : integer;

 function f(var x : string) : str80;
 begin
 f := x + ':'; { size of x is unknown }
 end;

 begin
 n := 40;
 s1 := strrpt('*',n); { value of n is unknown }
 s1 := f(s1);
 end.

SUBPROGRAM

SUBPROGRAM is an HP Pascal Option.

The SUBPROGRAM compiler option causes the compiler to emit code for
specified level-one routines only. This includes routines nested within
those routines, but not the outer block.

Syntax

 $SUBPROGRAM [' pfname [*] [, pfname [*]]...']$

Parameters

pfname Name of a level-one routine. The compiler emits code for
pfname and the routines nested within it, but not for the

 outer block. If no pfname s are specified, or they are
 entirely blank, the compiler compiles every routine, but
 not the outer block.

* Causes the compiler to compile the immediately preceding
pfname with the LIST, CODE, and TABLES options ON.

 (Subsequent LIST, CODE, and TABLES options override *.)

Default All level-one routines.

Location At front.

A compilation unit can contain more than one SUBPROGRAM option. The
following are equivalent:

12- 75

 $SUBPROGRAM 'Proc1,Proc2'$

and

 $SUBPROGRAM 'Proc1'$
 $SUBPROGRAM 'Proc2'$

The SUBPROGRAM option enables you to compile selected routines of a
program. The compiler checks the syntax and semantics of the entire
program, but generates object code for the selected routines only.

Example

 0 1.000 0
 0 2.000 0
 0 3.000 0 $SUBPROGRAM 'proc2#, proc3#'$
 0 4.000 0 PROGRAM show_subprogram (output);
 0 5.000 0
 0 6.000 0 PROCEDURE proc1 (p : integer);
 2 7.000 1 BEGIN
 2 8.000 1 writeln(p);
 3 9.000 1 END;
 3 10.000 0
 0 11.000 0 PROCEDURE proc2 (p : integer);
 2 12.000 1 BEGIN
 2 13.000 1 writeln(p);
 3 14.000 1 END;
 3 15.000 0

 I D E N T I F I E R M A P

 IDENTIFIER CLASS TYPE ADDRESS/VALUE

 P PARAMETER INTEGER PSP-24.0 (4.0)

 LOCAL STORAGE USED = 0.0 TEMPORARY STORAGE USED = 0.0
 PARAMETER STORAGE USED = 4.0 CONSTANT STORAGE USED = 0.0

 0 17.000 0 PROCEDURE proc3 (p : integer);
 2 18.000 1 BEGIN
 2 19.000 1 writeln(p);
 3 20.000 1 END;
 3 21.000 0

 I D E N T I F I E R M A P

 IDENTIFIER CLASS TYPE ADDRESS/VALUE

 P PARAMETER INTEGER PSP-24.0 (4.0)

 LOCAL STORAGE USED = 0.0 TEMPORARY STORAGE USED = 0.0
 PARAMETER STORAGE USED = 4.0 CONSTANT STORAGE USED = 0.0

 0 22.000 1 BEGIN
 0 23.000 1 END.

SYMDEBUG

SYMDEBUG is a System-Dependent MPE/iX and HP-UX Option.

The SYMDEBUG compiler option emits symbolic debugging information for use
with the HP TOOLSET/XL debugger or the HP Symbolic Debugger (see the HP
Pascal/iX Programmer's Guide or the HP Pascal/HP-UX Programmer's Guide ,
depending on your implementation, for more information). You cannot use
the optimizer if you use the SYMDEBUG option.

The command line option g also specifies this option.

12- 76

Syntax

$SYMDEBUG ['XDB]$
 ['TOOLSET']
Parameters

None The HP Symbolic Debugger for the HP-UX operating system; HP
 TOOLSET/XL for the MPE/iX operating system.

XDB Emits information for the HP Symbolic Debugger, for either
 the HP-UX or MPE/iX operating system.

TOOLSET Emits information for the HP TOOLSET/XL debugger. (Only
 the MPE/iX operating system allows HP TOOLSET/XL.)

Default None.

Location At front.

Example

 $SYMDEBUG 'XDB'$
 PROGRAM any_program;
 BEGIN
 .
 .
 .
 END.

NOTE A program containing the SYMDEBUG compiler option must be linked
 with the pc option -g.

SYSINTR

SYSINTR is an HP Pascal Option.

The SYSINTR compiler option specifies the intrinsic file that the
compiler searches for information on intrinsic routines.

Syntax

 $SYSINTR [string]$

Parameter

string Specifies the name of the intrinsic file that the compiler
 must search for information about intrinsic routines.

Default System intrinsic file (see the HP Pascal/iX Programmer's
Guide or the HP Pascal/HP-UX Programmer's Guide .)

Location Anywhere.

NOTE The pc option +C on HP-UX affects the SYSINTR compiler option (see
 the HP Pascal/HP-UX Programmer's Guide .)

Example

 PROGRAM Show_Intrinsic (Input,Output);

12- 77

 TYPE
 LogArray = ARRAY [1..80] OF shortint;

 PROCEDURE FCheck;
 INTRINSIC; {FCheck comes from the system intrinsic file}

 $SYSINTR 'MYINTR'$

 PROCEDURE FWrite;
 INTRINSIC; {FWrite comes from MYINTR}

 $SYSINTR$
 FUNCTION FRead (FileNum : shortint;
 VAR Target : LogArray;
 TCount : shortint) : shortint;

 INTRINSIC; {This FRead description is compared to the one
 in the system intrinsic file.}

Table 12-2 compares SPLINTR (SPL) and SYSINTR (HP Pascal) formats.
Neither format can be converted to the other automatically. For
instructions on conversion by hand, see the HP Pascal/iX Migration Guide
or the HP Pascal/HPUX Migration Guide .

Table 12-2. SPLINTR Format vs SYSINTR Format

--
	Pascal/V	HP Pascal in Native Mode
--
Creation	BUILDINT utility (independent	BUILDINT compiler option
	of Pascal/V)	(in HP Pascal)
--
Result	SPLINTR (SPL) format file	SYSINTR (HP Pascal) format file
--
Access	$SPLINTR ' file '$, where file is	$SYSINTR ' file '$, where file is
	in SPLINTR (SPL) format	in SYSINTR (HP Pascal) format
--

SYSPROG

SYSPROG is an HP Pascal Option.

The SYSPROG compiler option is equivalent to $STANDARD_LEVEL
'EXT_MODCAL'$ (see "STANDARD_LEVEL" in this chapter). It provides
compatibility with Pascal on the HP 9000 Series 300 and 400 machines.

Syntax

$SYSPROG {ON }$
 {OFF}

Default OFF.

Location Heading.

Example

 $SYSPROG ON$
 PROGRAM machine_dependent;
 .
 .
 .

12- 78

TABLES

TABLES is an HP Pascal Option.

When the TABLES compiler option is ON (and the LIST option is also ON),
the listing includes an identifier map for each compilation block.

Syntax

$TABLES {ON }$
 {OFF}

Default OFF.

Location Anywhere.

In order for the listing to contain a table of a specific compilation
block, the TABLES and LIST options must be ON when the compiler finishes
parsing that block.

The table for a compilation block shows each identifier that the block
declares and its class, type, and address or constant value. This
information helps you debug your program.

The information in a table is arranged in four columns, as follows:

Col. Content

1 Alphabetical list of the identifiers accessible to the
 current compilation block. If an identifier is the name of
 a record type, its field names appear beneath it, indented.

2 The class of the identifier in column one. The classes of
 identifiers are: USER DEFINED, CONSTANT, VARIABLE, FIELD,
 FUNCTION, TAG FIELD, PARAMETER, and PROCEDURE. For nonlocal
 references, the classes NON LOC VAR, NON LOC PARM, and NON
 LOC FUNC are used for nonlocal variables, nonlocal
 parameters, and nonlocal function returns, respectively.

3 The type of the identifier in column one. The types of
 identifiers are: INTEGER, SHORT INTEGER, REAL, BOOLEAN,
 SUBRANGE, ENUMERATED, BIT16, LONGREAL, CHAR (character)
 VALUE, CHAR ARRAY, STRING LITERAL, ARRAY, RECORD, SET,
 FILE, and POINTER.

4 The address or constant value of the identifier in column
 one.

 Addresses of variables and parameters are of the
 form REG+ offset , where offset has the format

byte_offset.bit_offset (both byte_offset and bit_offset are
 hexadecimal). REG is one of these four values:

Value Meaning

DP+ for global variables

SP- for local variables

PSP- for parameters

name for global variables whose locations cannot be determined
 at compile time (for example, module globals and globals in
 GLOBAL/EXTERNAL compilation units). No offset is printed
 in this case.

 The meanings of the four REG values are as follows.

12- 79

Value Meaning

DP+

 The offset is relative to the contents of the DP register
 (the "Data Pointer," register 27). This register points to
 the base of the global variables. Its value can be
 displayed in an assembly-level debugger.

SP-

 The offset is a negative offset from the contents of the SP
 register (the "Stack Pointer," register 30). This register
 points to the top of the activation record of the currently
 executing routine. Its value can be displayed in an
 assembly-level debugger.

PSP-

 The offset is a negative offset from the contents of the
 Stack Pointer (SP register) for the caller's frame (the
 "Previous Stack Pointer"). Its value can be displayed by
 stopping the program at the first instruction of the
 current routine and examining the contents of the SP
 register before it is incremented to accommodate the frame
 of the current routine.

name The compiler cannot determine the location of the variable
 at compile time. Instead, it generates a symbol in the
 object file for the variable, and the link editor resolves
 the references at link time.

 On HP-UX, you can display the actual location of such a
 variable with the assembly-level debugger adb , which allows
 you to specify the variable by name (rather than by
 address.)

 On MPE/iX, request that the link editor produce a symbol
 map of the program file with the command

 listprog programfile; data

 Function return values are indicated by the class FUNCTION
 and the "address" RETURN.

 Nonlocal (neither local nor global) variables, parameters
 (of enclosing routines), and function returns (of enclosing
 functions) are indicated by the address LEVEL n, where n is
 the level of the routine that contains the declaration of
 the variable or parameter in question.

 The address of a FIELD or TAG FIELD is in the format
offset @ length , where offset is in the format
byte_offset.bit_offset , and length is in the format
byte_length.bit_length . The values byte_offset,
bit_offset, byte_length, and bit_length are hexadecimal.

The ADDRESS/VALUE column that TABLES ON produces provides packing
information.

Example

 0 1.000 0 $TABLES ON$
 0 2.000 0 PROGRAM show_map (input,output);
 0 3.000 0 CONST
 0 4.000 0 realnum = 19.9;
 1 5.000 0 maxsize = 100;
 2 6.000 0 title = 'Customer list';

12- 80

 3 7.000 0 TYPE
 3 8.000 0 answer = (yes,no);
 4 9.000 0 rec = RECORD
 5 10.000 0 ch : char;
 6 11.000 0 CASE tag : answer OF
 7 12.000 0 yes : (message : PACKED ARRAY [1..20] OF char);
 8 13.000 0 no : (i : integer);
 9 14.000 0 END;
 9 15.000 0 VAR
 9 16.000 0 customer : rec;
 10 17.000 0
 0 18.000 0 PROCEDURE proc1 (VAR num : real);
 2 19.000 0 VAR
 2 20.000 0 debt : Boolean;
 3 21.000 0
 3 22.000 0 PROCEDURE subproc1;
 4 23.000 1 BEGIN
 4 24.000 1 IF debt THEN writeln;
 6 25.000 1 END;
 I D E N T I F I E R M A P

 IDENTIFIER CLASS TYPE ADDRESS/VALUE

 DEBT NON LOC VAR BOOLEAN LEVEL 1

 LOCAL STORAGE USED = 0 TEMPORARY STORAGE USED = 0
 PARAMETER STORAGE USED = 0 CONSTANT STORAGE USED = 0

 6 26.000 1 BEGIN
 6 27.000 1 END;

 **** WARNING # 1 "DEBT" ACCESSED, BUT NOT INITIALIZED (535)

 I D E N T I F I E R M A P

 IDENTIFIER CLASS TYPE ADDRESS/VALUE
 DEBT VARIABLE BOOLEAN SP- 28.0 (1.0)
 NUM PARAMETER REAL PSP- 24.0 (4.0)
 SUBPROC1 PROCEDURE

 LOCAL STORAGE USED = 1 TEMPORARY STORAGE USED = 0
 PARAMETER STORAGE USED = 4 CONSTANT STORAGE USED = 0

 0 28.000 0 FUNCTION func1 : integer; EXTERNAL;
 0 29.000 0
 10 30.000 1 BEGIN
 10 31.000 1 END.

 I D E N T I F I E R M A P

 IDENTIFIER CLASS TYPE ADDRESS/VALUE

 ANSWER USER DEFINED ENUMERATED
 CUSTOMER VARIABLE RECORD DP+ 8.0 (18.0)
 FUNC1 FUNCTION
 INPUT PARAMETER FILE input (248.0)
 MAXSIZE CONSTANT INTEGER 100
 NO CONSTANT ENUMERATED 1
 OUTPUT PARAMETER FILE output (248.0)
 PROC1 PROCEDURE
 REALNUM CONSTANT REAL 1.99000E+01
 REC USER DEFINED RECORD MAX RECORD SIZE = C0 BITS
 CH FIELD CHAR VALUE 0.0 @ 1.0
 TAG TAG FIELD ENUMERATED 1.0 @ 1.0
 MESSAGE FIELD ARRAY 4.0 @ 14.0
 I FIELD INTEGER 4.0 @ 4.0
 TITLE CONSTANT STRING LITERAL 'Customer list'
 YES CONSTANT ENUMERATED 0

12- 81

 GLOBAL STORAGE USED = 18 TEMPORARY STORAGE USED = 0
 PARAMETER STORAGE USED = 0 CONSTANT STORAGE USED = 0

TITLE

TITLE is an HP Pascal Option.

The TITLE compiler option specifies the title to appear on subsequent
pages of the listing. (The title appears next to the page number in the
top left-hand corner of the page.)

Syntax

 $TITLE string_literal $

Parameter

string_literal Exact title (the compiler distinguishes between uppercase
 and lowercase letters.) The empty string ('') restores
 the default title. The string literal ' ' specifies a
 blank title.

Default

 {iX}
 HP PASCAL/{UX} HP product_number.v.uu.ff COPYRIGHT HEWLETT-PACKARD
 CO. year date time

 where product_number is 31502 for MPE/iX and 92431 for
 HP-UX.

Location Anywhere.

Example

 PAGE 1 HEWLETT-PACKARD ... (C) HEWLETT-PACKARD CO. ...

 0 1.000 0 $TITLE 'Payroll Program'$
 0 2.000 0 $PAGE$

 PAGE 2 Payroll Program

 0 3.000 0 PROGRAM show_title (output);
 0 4.000 0
 0 5.000 1 BEGIN
 0 6.000 1 END.

TYPE_COERCION

TYPE_COERCION is a System Programming Option.

The TYPE_COERCION compiler option determines the level of value type
coercion that the compiler allows.

Syntax

 {NONE }
 {CONVERSION }
$TYPE_COERCION ' {STRUCTURAL }'$
 {REPRESENTATION}
 {STORAGE }
 {NONCOMPATIBLE }
Parameters

NONE Prevents type coercion.

12- 82

CONVERSION Permits value type coercion of ordinal and pointer
 types. This is the most useful and transportable form
 of type coercion.

STRUCTURAL Permits coercion of any data type to any structurally
 compatible data type. (This is equivalent to renaming
 components. It is fully transportable.)

REPRESENTATION Permits coercion of any data type to any
 representation-size compatible data type.
 Representation-size compatible types have identical

BitSizeof values.

STORAGE Permits any type coercion that does not extend the
 amount of storage accessed. The data type being coerced
 must have a Sizeof value less than or equal to the

Sizeof value of the data type to which it is being
 coerced.

NONCOMPATIBLE Permits coercion of any data item to any data type.
This coercion can be dangerous, and errors cannot be
detected.

Default NONE.

Location Anywhere.

See Chapter 11 for more information on type coercion.

Example

 0 1.000 0 $STANDARD_LEVEL 'HP_MODCAL'$
 0 2.000 0 PROGRAM show_type_coercion;
 0 3.000 0
 0 4.000 0 TYPE
 0 5.000 0 Rec1 = RECORD
 1 6.000 0 F1 : integer;
 2 7.000 0 F2 : integer;
 3 8.000 0 END;
 3 9.000 0 Arr1 = PACKED ARRAY [1..8] OF char;
 4 10.000 0
 4 11.000 0 VAR
 4 12.000 0 R : Rec1;
 5 13.000 0 A : Arr1;
 6 14.000 0
 6 15.000 1 BEGIN
 6 16.000 1
 6 17.000 1 R.F1 := 101; R.F2 := 280;
 8 18.000 1
 8 19.000 1 $TYPE_COERCION 'Structural'$
 8 20.000 1
 8 21.000 1 A := Arr1(R); {illegal, not structurally compatible}
 ^
 **** ERROR # 1 COERCION REQUIRES $TYPE_COERCION 'REPRESENTATION'$ (809)
 9 22.000 1
 9 23.000 1 $TYPE_COERCION 'Representation'$
 9 24.000 1
 9 25.000 1 A := Arr1(R);
 10 26.000 1
 10 27.000 1 END.

UPPERCASE

UPPERCASE is an HP Pascal Option.

When the UPPERCASE compiler option is ON, the compiler upshifts all
external names (names of routines and global variables), including
aliases. When UPPERCASE is OFF, the compiler downshifts these names.

12- 83

The LITERAL_ALIAS compiler option overrides the UPPERCASE compiler option
in aliases.

Syntax

$UPPERCASE {ON }$
 {OFF}

Default OFF.

Location Anywhere, but if you want the compiler to upshift the
 program parameter names, then UPPERCASE must precede the
 program header.

Scope All subsequent external names. If program parameter names
 are to be upshifted, then UPPERCASE must precede the
 program header.

Example

 $UPPERCASE ON$
 PROCEDURE proc1; {External name is "PROC1".}

 PROCEDURE $ALIAS 'Proc2Name'$ proc2; {External name is "PROC2NAME".}

 $UPPERCASE OFF$
 PROCEDURE proc3; {External name is "proc3".}

 PROCEDURE $ALIAS 'Proc4Name'$ proc4; {External name is "proc4name".}

VERSION

VERSION is an HP Pascal Option.

The VERSION compiler option specifies a string for the compiler to put in
the version identification area of the current object module. The
purpose of VERSION is to allow you to include the version number of your
code in this area.

Syntax

 $VERSION string_literal $

Parameter

string_literal Any string of characters (including unprintable
 characters).

Default Not applicable.

Location Anywhere.

Example

 PROGRAM prog;
 $VERSION 'A.00.00'$
 BEGIN
 .
 .
 .
 END.

The compiler puts the string A.00.00 in the version identification area
of the object module that contains the program prog.

A compilation unit can have multiple VERSION compiler options.

12- 84

VOLATILE

VOLATILE is an HP Pascal Option.

You can apply the VOLATILE compiler option to a variable to specify that
the memory location associated with the variable may be modified by other
processes. Using VOLATILE signals the optimizer that a specified
variable must not reside in a register, but must always be updated.

Syntax

$VOLATILE$

Location The VOLATILE compiler option is allowed after the ":" in a
 VAR declaration. It is also allowed after a "^" in a
 pointer type or variable declaration.

Example

 TYPE
 ptrtype = ^$VOLATILE$ rectype;

 VAR
 intptrr : ^$VOLATILE$ integer;
 recvar : $VOLATILE$ rectype;

WARN

WARN is an HP Pascal Option.

The WARN compiler option suppresses warning messages and notes.

The command line option -w also specifies this option.

Syntax

$WARN [ON]$
 [OFF]

Default ON.

Location Anywhere.

If neither ON nor OFF is specified, ON is assumed, and warning messages
and notes are issued.

Warning messages may indicate program bugs or faulty processing. Turning
them off may cause these potential problems to go unreported.

Example

 $WARN OFF$

WIDTH

WIDTH is an HP Pascal Option.

The WIDTH compiler option sets the number of columns of each source line
that the compiler will read.

Syntax

 $WIDTH integer $

Parameter

integer In the range 10..132.

12- 85

Default 132.

Location Anywhere.

The WIDTH option allows the compiler to ignore text beyond a specified
column.

The WIDTH option applies only to the file that contains it, and not to
files that it includes (see the INCLUDE option). If File1 with width n
includes File2, the width while File2 is being included is specified by
File2 (if File2 does not contain a WIDTH option, the width defaults to
132.) At the end of File2, the width returns to n.

Example

 1 2 3 4
 1234567890123456789012345678901234567890 <--- Column number guide

 $WIDTH 30$
 PROGRAM show_width (output); The compiler ignores this text
 BEGIN since it is beyond column 30.
 writeln('The width is 30');
 $INCLUDE 'File2'$
 writeln('The width is 30');
 END.

 File2:

 $WIDTH 40$
 writeln('The width is 40'); This text (31-40) is not ignored.
 $WIDTH 20$
 writeln('Hi'); This text (beyond 20) is ignored.

XREF

XREF is an HP Pascal Option.

When the XREF compiler option is ON (and the LIST option is also ON), the
listing includes a cross reference for each function, procedure, and
outer block.

Syntax

$XREF {ON }$
 {OFF}

Default OFF.

Location Anywhere.

A cross reference lists each identifier that is accessible to the block.
For each file that references the identifier, the cross reference shows
the file name and gives the numbers of the lines on which the identifier
is referenced. The symbol @ after a line number means that the
identifier is declared on that line. The symbol * after a line number
means that the value of the identifier is (or could be) changed on that
line.

The line numbers are assigned by the editor (if the source file is
numbered) or by the compiler (if the source file is unnumbered.) Lines
from included files (see the INCLUDE option) are numbered independently
(see the second example for the LIST option).

Although the XREF option is legal anywhere in the source code, it affects
only the code that follows it. Therefore, its most practical location is
the beginning of the source code.

12- 86

Example

 0 1.000 0 $XREF ON$
 0 2.000 0 $TITLE 'Show_xref'$
 0 3.000 0 PROGRAM show_xref (input,output);
 0 4.000 0 $INCLUDE 'const'$
 0 1.000 0 CONST
 0 2.000 0 k = 100;
 1 5.000 0 VAR
 1 6.000 0 n : integer;
 2 7.000 0 t : Boolean;
 0 8.000 0 PROCEDURE check (VAR b : Boolean);
 2 9.000 1 BEGIN
 2 10.000 1 IF n > k THEN b := true
 4 11.000 1 ELSE b := false;
 5 12.000 1 END;

 C R O S S R E F E R E N C E
 --------- -----------------

 Page Line # Page Line # Page Line # Page Line #
 B
 PXA32.EXAMPLES.ATFTEST

 1 00008.000@ 1 00010.000* 1 00011.000*
 BOOLEAN global scope
 PXA32.EXAMPLES.ATFTEST

 1 00008.000
 CHECK global scope
 PXA32.EXAMPLES.ATFTEST

 1 00008.000
 FALSE global scope
 PXA32.EXAMPLES.ATFTEST

 1 00011.000
 K global scope
 PXA32.EXAMPLE.ATFTEST

 1 00010.000
 N global scope
 PXA32.EXAMPLES.ATFTEST

 1 00010.000
 TRUE global scope
 PXA32.EXAMPLES.ATFTEST

 1 00010.000

 3 13.000 1 BEGIN
 3 14.000 1 readln(n);
 4 15.000 1 check(t);
 5 16.000 1 IF t THEN writeln ('Too big!')
 7 17.000 1 ELSE writeln ('No Problem');
 8 18.000 1 END.

 PAGE 2 Show_xref

 C R O S S R E F E R E N C E
 --------- -----------------

 Page Line # Page Line # Page Line # Page Line #
 BOOLEAN
 PXA32.EXAMPLES.ATFTEST

 1 00007.000 1 0008.000
 CHECK

12- 87

 PXA32.EXAMPLES.ATFTEST

 1 00008.000 1 0015.000
 FALSE
 PXA32.EXAMPLES.ATFTEST

 1 00011.000
 INPUT
 PXA32.EXAMPLES.ATFTEST

 1 00003.000
 INTEGER
 PXA32.EXAMPLES.ATFTEST

 1 00006.000
 K
 PXA32.EXAMPLES.ATFTEST

 1 00010.000
 const

 1 00002.000
 N
 PXA32.EXAMPLES.ATFTEST

 1 00006.000@ 1 00010.000 1 00014.000*

 OUTPUT
 PXA32.EXAMPLES.ATFTEST

 1 00003.000
 READLN
 PXA32.EXAMPLES.ATFTEST

 1 00014.000
 SHOW_XREF
 PXA32.EXAMPLES.ATFTEST

 1 00003.000
 T
 PXA32.EXAMPLES.ATFTEST

 1 00007.000 1 00015.000* 1 00016.000

 PAGE 3 Show_xref

 C R O S S R E F E R E N C E
 --------- -----------------

 Page Line # Page Line # Page Line # Page Line #
 TRUE
 PXA32.EXAMPLES.ATFTEST

 1 00010.000
 WRITELN
 PXA32.EXAMPLES.ATFTEST

 1 00016.000 1 0017.000

12- 88

A-: 1

Appendix A Error Messages

On HP-UX, error messages and their explanatory text are in the file named
/usr/lib/paserrs . To list this file, use the command:

 cat usr/lib/paserrs

On MPE/iX, error messages and their explanatory text are in the file
named PASXLCAT.PUB.SYS. To list this file, use the command:

 :PRINT PASXLCAT.PUB.SYS

In reading the error messages, note that:

 * A dollar sign ($) in the left margin indicates a comment line
 containing explanatory text.

 * An exclamation mark (!) indicates that an item is variable. The
 compiler substitutes a specific item for the exclamation mark when
 it issues the message.

Example

 043 THIS FEATURE REQUIRES $OS ! (043)
 $ 1. This feature is not available under the current OS level
 060 OPERAND NOT OF TYPE BOOLEAN (060)
 $ 1. A non-Boolean operand appears with the operator NOT, OR,
 $ or AND.

When the compiler issues error message 43, it will substitute an OS level
for the exclamation mark; for example:

 THIS FEATURE REQUIRES $OS 'HPUX'$

Finding Undetected Errors

The following errors are currently undetected by the compiler at compile
time or by the system at run time. In any future release, an undetected
error may become a detected error.

Errors that are only detected when the ANSI option is ON, or when
STANDARD_LEVEL is set to ANSI, do not appear on this list.

There is no significance to the order in which errors are listed here.

 1. Each component of a structured function result must be assigned a
 value in the body of the function.

 2. If assignment to a function result is conditional, it must occur
 at run time.

 3. A control variable in a FOR statement cannot be changed in the
 statement after DO by calling a procedure or function with a
 nonlocal reference to the variable.

 4. A parameter of dispose cannot be an actual variable parameter, an
 element of a record variable list of a WITH statement, or both.
 Similarly, a dynamic variable in a region of the heap deallocated
 by release cannot fall in one of these categories.

 5. When the tag field of a record with variants is changed, all
 previous variants become undefined.

 6. For records with tagless variants, reference to a field for a
 particular variant means that other previous variants become
 undefined.

 7. All possible record variants must be specified in a record
 declaration.

A-: 2

 8. When a value is established for the tag field of a record with
 variants, it is illegal to use a field in another variant.

 9. The compiler does not always detect uninitialized variables,
 especially in these cases:

 a. The path to use a variable cannot include the initializing
 statement. Suppose:

 PROCEDURE proc_a;
 VAR
 x,y : integer;
 BEGIN
 IF condition THEN x := 10 ELSE y := x;
 .
 .
 .
 END;

 The assignment after ELSE does not cause a compile-time
 error, even if x has not been initialized outside the IF
 statement. (The compiler counts the assignment after THEN
 as initialization.)

 b. Not all the components of a record or array have been
 assigned values. (The compiler counts the assignment to a
 single component as initialization of the entire variable.)

 c. An uninitialized global variable appears in a program
 compiled with GLOBAL or EXTERNAL options, or in a program
 that contains procedures or functions declared with the
 EXTERNAL directive. (The compiler cannot check outside the
 current source code.)

 d. An uninitialized dynamic variable on the heap. (The
 compiler cannot detect this at run time.)

 e. Strwrite into an uninitialized string variable.

 However, some of the above errors are detected when the compiler
 option OPTIMIZE is ON.

 10. An actual reference parameter cannot be an expression consisting
 of a single variable in parentheses.

 11. Case constant labels cannot be constant expressions.

 12. Range checking code is suppressed when the type of logical file is
 identical to the type of a variable to which a file component is
 assigned. However, a physical file associated with the logical
 file can have values out of range and the consequent errors are
 undetected.

 13. Applying put to an undefined file buffer variable.

 14. The control variable of a FOR statement is undefined after the
 execution of the FOR statement.

 15. Dereferencing an undefined pointer is not always detected,
 especially for pointers that have never been explicitly disposed.

 16. Using a variable created with the long form of new as an actual
 parameter.

 17. Using a variable created with the long form of new in a assignment
 statement.

 18. Using a variable created with the long form of new in a factor
 (for example, as an operand in an expression).

 19. Altering the value of the record variable of a WITH statement
 within the scope of the WITH statement.

 20. Using put, dispose, or release to make an actual variable
 parameter to a procedure undefined within the body of the
 procedure.

A-: 3

Using This Appendix

This appendix describes the errors, notes, and warnings that can be
detected during the compilation or execution of an HP Pascal program.
These errors are listed in numeric order.

The text of each message is followed by a brief explanation of the
situation, the CAUSE. When it is necessary for the user to do something,
there is an ACTION following the particular CAUSE. In some cases there
may only be one action for several causes. Messages in the warnings and
notes categories usually do not require actions.

Each message contains a code under its message number in the left column.
This code indicates whether the message is a note (N), a warning (W), a
compile-time error (CT), run-time error (RT), or an internal error (I).
An exclamation point , "!", in the messages reproduced here is replaced
in the actual message with appropriate text.

The error messages are grouped by number as follows:

- Number Range - Category -

- Pascal Messages -

- 000 - 299 - CT - Compile-time errors -
- 300 - 399 - N - Notes -
- 400 - 499 - CT - Compile-time errors -
- 500 - 599 - W - Warnings -
- 600 - 799 - RT - Run-time errors -
- 800 - 899 - CT - Compile-time errors -
- 900 - 999 - RT - Run-time errors -

- Code Generation Messages -

- 5000 - 5099 - W - Warnings -
- 5100 - 5199 - I - Internal errors -
- 5200 - 5399 - CT - Compile-time errors -
- 5400 - 5999 - I - Internal errors -

- Optimizer Messages -

- 6000 - 6099 - W - Warnings -
- 6100 - 6199 - I - Internal errors -
- 6200 - 6399 - CT - Compile-time errors -
- 6400 - 6999 - I - Internal errors -

- Code Generation Messages -

- 7000 - 7099 - W - Warnings -
- 7100 - 7199 - I - Internal errors -
- 7200 - 7399 - CT - Compile-time errors -
- 7400 - 7999 - I - Internal errors -

If there are previous syntax errors, the compiler will sometimes produce
internal errors. Should this occur, correct the syntax errors and
recompile. If you still receive internal errors, submit a service
request.

NOTE When an error message says "contact Hewlett-Packard," please submit
 a service request (SR) and the appropriate source and object files.
 This allows Hewlett-Packard to duplicate the problem you are
 reporting.

A-: 4

Messages 001-200

001 MESSAGE FLOATING POINT OVERFLOW (001)

CT CAUSE The absolute value of a real number is too large.

 ACTION Check the permitted range of real/longreal values.

002 MESSAGE FLOATING POINT UNDERFLOW (002)

CT CAUSE The absolute value of a real number is non-zero and too small.

 ACTION Check the permitted range of real/longreal values.

003 MESSAGE ERROR IN FLOATING POINT NUMBER REPRESENTATION (003)

CT CAUSE The real or longreal number must have a digit after the decimal
 point.

 ACTION Correct the constant to specify a fractional part.

004 MESSAGE AN EXPONENT IS REQUIRED HERE (004)

CT CAUSE The exponent for a real or longreal number is missing. A
 number is required after the 'E' or 'L'.

 ACTION Correct the constant to specify an exponent.

005 MESSAGE ILLEGAL CONTROL CHARACTER CONSTANT (005)

CT CAUSE The value of the constant following the sharp (#) is greater
 than 255.

 ACTION Check nonprinting character formation rules.

 CAUSE The only nonnumeric characters that can follow a sharp (#) are
 a letter, @, [,], ||, ^, or _.

 ACTION Check the permitted range of character values.

006 MESSAGE A QUOTE IS EXPECTED HERE (006)

CT CAUSE The end of line was found before the terminating quote. String
 literals cannot span source lines.

 ACTION Check string constant for missing closing quote or shorten
 constant.

007 MESSAGE INTEGER OVERFLOW (007)

CT CAUSE The absolute value of the integer is greater than maxint.

 ACTION Check the permitted range of integer values.

A-: 5

008 MESSAGE END OF FILE FOUND BEFORE EXPECTED (008)

CT CAUSE The compiler expects more source code. There may be an
 unmatched BEGIN-END or an unclosed comment.

 ACTION Check for missing END, semicolon, period, or incomplete
 statement. Also check for an unclosed comment or $SKIP_TEXT
 ON$.

009 MESSAGE UNRECOGNIZED CHARACTER (009)

CT CAUSE An illegal character was found in the source.

 ACTION Check for unprintable characters and character validity in
 context.

010 MESSAGE 100 ERRORS--PROGRAM TERMINATED (010)

CT CAUSE Only 100 errors are allowed before the compiler stops.

 ACTION Correct earlier errors so that compilation can continue.

011 MESSAGE A COMMA IS REQUIRED HERE (011)

CT CAUSE A comma is needed to separate procedure/function names in the
 SUBPROGRAM compiler option.

 ACTION Check syntax and insert a comma where necessary.

012 MESSAGE VARIABLE SPECIFICATION NOT ALLOWED HERE (012)

CT CAUSE Only SPL procedures are allowed to have a variable number of
 parameters.

 ACTION Remove the keyword VARIABLE or declare the routine SPL
 VARIABLE.

013 MESSAGE IDENTIFIER DOUBLY DEFINED (013)

CT CAUSE An identifier in a parameter list is a duplicate of another
 identifier.

 The procedure/function name is defined earlier and is not a
 FORWARD procedure/function.

 The field name of a record is already declared.

 The identifier is already declared in the current scope.

 ACTION Delete duplicate declaration.

014 MESSAGE IDENTIFIER NOT DEFINED (014)

CT CAUSE The identifier is an undeclared variable, constant, procedure,

A-: 6

 or function.

 The type identifier is undeclared.

 ACTION Add identifier to the declaration section.

015 MESSAGE INVALID VARIABLE USE (015)

CT CAUSE The control variable of a FOR loop is being modified in the
 statement component of the FOR loop. For example:

 * It is the control variable of a nested FOR loop.

 * It appears on the left side of an assignment statement.

 * It is being passed by reference to a user-defined or
 standard procedure.

 ACTION Remove assignment to loop control or conformant bound variable.
 Do not pass this variable as a VAR, ANYVAR, or READONLY
 parameter.

 CAUSE The variable appears in the variable list of a WITH statement
 but is not a record type.

 ACTION Remove the variable from the WITH list.

 CAUSE The identifier appears with subscripts, but it is not an array
 or string.

 ACTION Correct the array expression or remove the subscript.

016 MESSAGE TYPE IDENTIFIER REQUIRED HERE (016)

CT CAUSE A constant or variable identifier has been used where a type
 identifier is required.

 ACTION Replace the constant or variable identifier with a type
 identifier.

017 MESSAGE INVALID TYPE IDENTIFIER USE (017)

CT CAUSE A type identifier has been used where a constant or variable
 identifier is required.

 The construct in which the identifier occurs is not legal in
 this context. This is often an array or record in executable
 code.

 ACTION Replace the type identifier with a constant or variable
 identifier.

018 MESSAGE A CONSTANT EXPRESSION IS REQUIRED HERE (018)

CT CAUSE A variable occurs where a constant is required.

 An expression with variables occurs where a constant expression
 is required.

 The expression contains an operator or a standard procedure or

A-: 7

 function that is not legal in a constant expression.

 The expression contains constant operands that are not legal;
 for example, set or Boolean values.

 ACTION Check the constant expression for a variable, or illegal type
 of operand.

019 MESSAGE INVALID FORWARD TYPE IDENTIFIER DEFINITION (019)

CT CAUSE The identifier appeared in a forward pointer type definition
 and is now being declared as something other than a type.

 ACTION Check the FORWARD definition.

020 MESSAGE BOOLEAN EXPRESSION IS REQUIRED HERE (020)

CT CAUSE An expression with a Boolean result is required here.

 ACTION Check the source and correct the expression.

021 MESSAGE AN ORDINAL EXPRESSION IS REQUIRED HERE (021)

CT CAUSE An expression with an ordinal result is required here.

 ACTION Check the source and correct the expression.

022 MESSAGE INCOMPATIBLE SUBRANGE BOUNDS (022)

CT CAUSE The type of the lower bound is not compatible with the type of
 the upper bound in a subrange.

 ACTION Check the type of the lower and upper bounds and make them the
 same.

023 MESSAGE AN INTEGER EXPRESSION IS REQUIRED HERE (023)

CT CAUSE An expression with an integer result is required for the repeat
 factor in the 'OF' construct in an array constructor.

 ACTION Check the source code and correct the expression.

024 MESSAGE LOWER BOUND OF SUBRANGE IS GREATER THAN UPPER BOUND (024)

CT CAUSE The lower bound is greater than the upper bound in a subrange
 type declaration.

 ACTION Increase the upper bound, or decrease the lower bound.

025 MESSAGE FOUND UNEXPECTED "! " (025)

CT CAUSE The compiler was not expecting this token and it has been
 discarded. The token is illegal here or a previous
 undetectable error has caused the compiler to issue this
 message; for example, a semicolon (;) before ELSE.

A-: 8

 ACTION Remove "! " or correct earlier error.

026 MESSAGE MISSING "! " (026)

CT CAUSE The compiler expected this token, but it was omitted or
 misspelled. The correct token was inserted.

 ACTION Insert "! "

027 MESSAGE "! " FOUND BEFORE EXPECTED. SOURCE MISSING. (027)

CT CAUSE The compiler found this token before it was expected. The
 compiler was able to accept it by inserting dummy tokens.

 ACTION Correct the syntax error and recompile.

028 MESSAGE MISUNDERSTOOD SOURCE BEFORE "! " (028)

CT CAUSE The compiler has discarded some previously accepted source code
 preceding this token. Either the token is inappropriate, but
 the compiler has been able to accept it by ignoring previous
 code, or the token is correct and code must now be discarded.

 ACTION Check the source code and fix the syntax.

029 MESSAGE " NOT ALLOWED AS A STRING LITERAL DELIMITER (029)

CT CAUSE A double quote cannot delimit a string literal.

 ACTION Replace " with expected '.

030 MESSAGE OPEN FAILED ON FILE "! " (030)

CT CAUSE The compiler could not open the source file.

 The compiler could not open the INCLUDE file.

 The compiler could not open the SYSINTR or SPLINTR file.

 ACTION Check for the correct file name spelling, file existence, and
 any file equations.

031 MESSAGE READ FAILED ON SOURCE FILE (031)

CT CAUSE The compiler could not read the source file.

 The compiler could not read the INCLUDE file.

 ACTION Correct the condition causing the read to fail, such as a
 corrupted file or any internal compiler errors.

032 MESSAGE EMPTY SOURCE FILE (032)

CT CAUSE The source file is empty.

A-: 9

 ACTION Check the file name.

033 MESSAGE MISSPELLED RESERVED WORD: "! " (033)

CT CAUSE The reserved word is misspelled.

 ACTION Correct the spelling of the reserved word.

034 MESSAGE FORWARD TYPE "! " NOT FOUND (034)

CT CAUSE The identifier occurs in a pointer type definition but is not
 subsequently defined.

 ACTION Define the identifier.

035 MESSAGE FORWARD PROCEDURE "! " NOT DECLARED (035)

CT CAUSE A procedure declared with the FORWARD directive is not
 subsequently defined. The definition may be missing, or the
 name appearing in the definition may be misspelled.

 ACTION Declare the procedure.

036 MESSAGE VIOLATION OF PASCAL SCOPING RULES (036)

CT CAUSE The scope of an HP Pascal identifier is the entire block in
 which it is declared. It is not possible to use an identifier
 from an enclosing level and then to redefine it at the new
 level.

 ACTION Use a separate identifier in this text.

037 MESSAGE INVALID USE OF "! " IN POINTER DEFINITION (037)

CT CAUSE A non-type identifier defined on a previous level was used in a
 pointer type definition.

 ACTION Replace the non-type identifier with a type identifier.

038 MESSAGE ILLEGAL PASCAL CONSTRUCT (038)

CT CAUSE The use of the FOR construct within strings is illegal.

 ACTION Use another looping construct with strings.

039 MESSAGE "! " ACCESSED, BUT NOT INITIALIZED (039)

CT CAUSE A simple variable appears in an expression, as a value
 parameter, or in some other accessing reference and it has
 never appeared in an assigning reference, such as a reference
 parameter, or on the left side of an assignment statement.

 Some component of a structured variable appears in an accessing
 reference but no component of that variable has yet appeared in

A-: 10

 an assigning reference.

 ACTION Initialize the variable before it is used.

040 MESSAGE INVALID STRING TYPE USE (040)

CT CAUSE The standard type identifier string is not used to define a
 string type.

 ACTION Use the standard identifier string to define this type.

041 MESSAGE MISSING SEPARATOR BETWEEN NUMBER AND IDENTIFIER (041)

CT CAUSE A character was detected immediately following a number. HP
 Pascal requires a separator, such as a space, comment, or
 end-of-line between a number and an identifier or reserved
 word.

 ACTION Insert a separator between the number and the identifier.

042 MESSAGE ^STRING IS NOT ALLOWED IN TYPE DECLARATIONS (042)

CT CAUSE ^STRING was used in a pointer type declaration. A user
 definition for STRING did not follow so an error was produced
 when the compiler checked for unresolved forward pointer
 declarations. The generic type STRING is only allowed for VAR
 parameters.

 ACTION Remove use of string in type declaration.

043 MESSAGE THIS FEATURE REQUIRES $OS ! (043)

CT CAUSE This feature is not available under the current OS level.

044 MESSAGE THIS FEATURE DOES NOT CONFORM WITH THE ANSI/ISO STANDARD (044)

CT CAUSE This feature is not available under the current STANDARD_LEVEL.

 ACTION Remove this feature if ANSI/ISO conformance is desired.

 Remove STANDARD_LEVEL compiler option if this feature is
 desired.

 Use the compiler option STDPASCAL_WARN if a warning message
 rather than an error message is desired with the current
 STANDARD_LEVEL that is set.

045 MESSAGE ONLY COMMENTS AND COMPILER OPTIONS ARE ALLOWED IN '!' (045)

CT CAUSE Text which is neither a comment nor a compiler option was
 detected in the system-wide option file.

 ACTION Remove any text which is neither a comment nor a compiler
 option from the system-wide option file. Because this file is
 write-protected, your system administrator should be notified.

A-: 11

060 MESSAGE OPERAND NOT OF TYPE BOOLEAN (060)

CT CAUSE A non-Boolean operand appears with the operator NOT, OR, or
 AND.

 ACTION Change the operator to a Boolean type.

061 MESSAGE WRONG TYPE OF OPERAND FOR ARITHMETIC OPERATOR (061)

CT CAUSE A nonnumeric operand appears with an arithmetic operator.

 ACTION Check and correct the operand or operator.

062 MESSAGE TYPE OF OPERAND NOT ALLOWED WITH OPERATOR (062)

CT CAUSE An operand of this type cannot be used with this operator.

 ACTION Check and correct the operand or operator.

063 MESSAGE BASE TYPE OF OPERAND AND SET DO NOT AGREE (063)

CT CAUSE The operand on the left of an IN operator is not type
 compatible with the set on the right.

 ACTION Check the operands to ensure compatible types.

064 MESSAGE TYPES OF OPERANDS DO NOT AGREE (064)

CT CAUSE The operands can be used separately but not with the operator.
 For example, <Boolean> = <integer>.

 ACTION Check and correct one of the two operands.

065 MESSAGE ASSIGNMENTS CANNOT BE MADE TO FILES (065)

CT CAUSE An assignment cannot be made to a file or a structured variable
 with a file type component.

 Structured constants cannot contain files. Building a
 structured constant with a type that contains a file is
 illegal.

 Variables which contain files cannot be passed as value
 parameters.

 ACTION Remove the file assignment.

066 MESSAGE ASSIGNMENT TYPE CONFLICT (066)

CT CAUSE The expression on the right side of an assignment statement is
 not assignment compatible with the receiving entity on the
 left.

 A constant in a constructor is not assignment compatible with

A-: 12

 the component to which it is being assigned. The subrange type
 of the expression being assigned does not intersect the type of
 the receiving entity.

 ACTION Check the assignment compatibility rules.

067 MESSAGE TYPE OF EXPRESSION NOT ALLOWED IN SUBRANGE (067)

CT CAUSE The expression defining a subrange bound is not an ordinal
 expression.

 ACTION Replace the expression with an ordinal expression.

068 MESSAGE ILLEGAL ASSIGNMENT TARGET (068)

CT CAUSE An assignment was made to an identifier that is not a non-file
 variable or a function result; for example, a declared
 constant, a set, or string type identifier.

 ACTION Correct the left-hand side of the assignment.

069 MESSAGE INVALID CONSTANT EXPRESSION (069)

CT CAUSE This expression is not legal in a CONST declaration. It is not
 a constant expression, or it is a constant expression and the
 results of the arithmetic would be out of range of
 minint..maxint.

 ACTION Correct the expression.

070 MESSAGE ILLEGAL TO ASSIGN TO (070)

CT CAUSE The identifier denotes an entity that cannot appear on the
 right side of an assignment statement; for example, a set or
 string type identifier.

 ACTION Correct the right-hand side of the assignment.

072 MESSAGE REAL CONSTANT FOLDING NOT AVAILABLE IN $HP3000_16$ (072)

CT CAUSE Temporary restriction on real constant folding in $HP3000_16$.
 This is transparent, except when an integer value is specified
 for a real field in a structured constant declaration. This
 also occurs if a real constant is specified for a longreal
 constant .

 ACTION Change the integer constant to a real one by appending ".0", or
 add "L0" to the real number.

080 MESSAGE ARRAY INDEX TYPES NOT COMPATIBLE (080)

CT CAUSE The subscript in an array reference is not compatible with the
 type of the index in the array declaration.

 ACTION Change the array subscript to be compatible with the type of
 the index.

A-: 13

081 MESSAGE ARRAY ELEMENT TYPES NOT EQUIVALENT (081)

CT CAUSE PACK and UNPACK array parameters must have identical component
 types.

 ACTION Use identical component types.

082 MESSAGE INVALID ARRAY SIZE (082)

CT CAUSE The size of the array is too big for the compiler.

 In PACK or UNPACK the destination array is not large enough.

 ACTION Use a smaller array size.

083 MESSAGE WRONG NUMBER OF ELEMENTS FOR ARRAY OR STRING CONSTANT (083)

CT CAUSE While building an array or string constant, more components
 were specified than declared.

 Not all the components were specified while building an array
 constant.

 ACTION Use the correct number of components that need to be specified.

084 MESSAGE INVALID INDEX TYPE (084)

CT CAUSE Index type is not an ordinal type.

 ACTION Use an ordinal type.

085 MESSAGE REFERENCE TYPE MUST BE STRING OR ARRAY (085)

CT CAUSE Tried to index a structure that is not an array or string.

 ACTION Use an array or string in this context.

086 MESSAGE MAXIMUM STRING LENGTH MUST BE BETWEEN 1 AND ! (086)

CT CAUSE Tried to declare string with a maximum length < 1 or > the
 limit mentioned in the message.

 ACTION Correct the string maximum length specification so it is in the
 permitted range.

087 MESSAGE EXPRESSION FOR MAXIMUM LENGTH MUST BE TYPE INTEGER (087)

CT CAUSE Tried to declare a string with a noninteger constant expression
 for the maximum length.

 ACTION Use an integer constant in this context.

A-: 14

088 MESSAGE INCORRECT NUMBER OF INDICES FOR STRING DECLARATION (088)

CT CAUSE A string can only have one index in a declaration.

 No index was supplied in a string declaration.

 ACTION Use only one index in a string declaration.

089 MESSAGE TOO MANY SUBSCRIPTS IN STRING OR ARRAY REFERENCE (089)

CT CAUSE The number of subscripts in the reference exceeds the number of
 subscripts in the declaration of the array or string.

 ACTION Correct the number of subscripts.

090 MESSAGE ILLEGAL CONSTRUCT FOR AN ARRAY OR STRING INDEX (090)

CT CAUSE A subrange construct was used as an array or string index.

 ACTION Correct the subrange construct.

100 MESSAGE INVALID RECORD REFERENCE (100)

CT CAUSE Record field referenced without specifying a record variable,
 constant, or function call that returns a record.

 ACTION Qualify the name completely (i.e., specify which record
 variable this is a field of).

101 MESSAGE INVALID FIELD IDENTIFIER (101)

CT CAUSE The identifier is not one of the fields of the record used in
 the reference.

 ACTION Check the field name and the record type definition.

102 MESSAGE INVALID TAG TYPE (102)

CT CAUSE The tag in a NEW or DISPOSE procedure call is not a tag value
 of the specified record.

 ACTION Correct or remove the non-tag value.

103 MESSAGE POINTER OR FILE REQUIRED FOR DEREFERENCE (103)

CT CAUSE A pointer or file is required in a dereference.

 ACTION Remove up-arrow or change preceding expression to be of type
 pointer or file.

104 MESSAGE POINTER VARIABLE IS REQUIRED HERE (104)

CT CAUSE NEW, DISPOSE, MARK, and RELEASE all require a pointer variable
 as the first parameter.

A-: 15

 ACTION Declare and supply a pointer variable.

106 MESSAGE MISSING TAG VALUES FOR TAG TYPE (106)

CT CAUSE Not all tag values for a tag type in the record are specified.

 ACTION Add empty variant declarations for the missing tag values.

120 MESSAGE INVALID BASE TYPE FOR SET (120)

CT CAUSE The base type of a set is not an ordinal type.

 ACTION Check usage in the source program.

121 MESSAGE ITEM NOT A LEGAL SET ELEMENT (121)

CT CAUSE Element of a set is not an ordinal type.

 ACTION Replace item with a valid element for this set.

122 MESSAGE OPERAND NOT A SET (122)

CT CAUSE Right operand for an IN operator is not a set.

 ACTION Change expression to set type.

123 MESSAGE SET ELEMENTS NOT TYPE COMPATIBLE WITH EACH OTHER (123)

CT CAUSE In an untyped set constructor, this element is not compatible
 with the first element in the set.

 ACTION Change types so they are compatible.

124 MESSAGE SET ELEMENT NOT COMPATIBLE WITH SET TYPE (124)

CT CAUSE In a typed set constructor, the set element is not assignment
 compatible with the base type of the set.

 ACTION Replace element with a valid element for this set.

125 MESSAGE SET OF THIS SIZE CANNOT BE CONSTRUCTED (125)

CT CAUSE To construct this set would require more bytes than can be
 specified for this implementation.

 ACTION Define/declare set to have fewer elements.

140 MESSAGE BUILDING OF STRUCTURED CONSTANTS NOT ALLOWED HERE (140)

CT CAUSE A constructor that is not a set constructor occurs outside of a
 CONST declaration section.

 ACTION Create a named constant in the CONST section and use its name

A-: 16

 here.

 CAUSE A constructor occurs as an element of a set or string
 constructor.

 ACTION Remove the constructor from the set or string.

141 MESSAGE RECORD CONSTANT HAS MISSING FIELD(S) (141)

CT CAUSE One or more fields missing in a record constructor.

 The name of a field is misspelled.

 ACTION Correct erroneous field name. Add the missing fields.

142 MESSAGE DUPLICATE FIELD NAME (142)

CT CAUSE This field has already been defined in the constructor.

 ACTION Delete the duplicate declaration.

143 MESSAGE FIELD NAME DESIGNATOR NOT ALLOWED HERE (143)

CT CAUSE The constructor is not a record constructor.

 This construction <field name>:<expression> appears outside of
 a record constructor.

 ACTION Remove the field name designator from the code.

144 MESSAGE MISSING FIELD NAME DESIGNATOR (144)

CT CAUSE The construction <field name>:<expression> is required in a
 record constructor.

 ACTION Add a field name designator to the code.

145 MESSAGE TYPE IDENTIFIER REQUIRED HERE (145)

CT CAUSE The identifier preceding the left square bracket of a
 constructor is not a type identifier.

 ACTION Check the syntax of structured constants.

 CAUSE The identifier in the bounds construct of a conformant array
 parameter is not a type identifier.

 ACTION Change either the declaration or the usage of the identifier to
 make sure they are consistent.

146 MESSAGE CONSTRUCT ONLY ALLOWED FOR ARRAYS AND STRINGS (146)

CT CAUSE <Count> OF <expression> occurs when the constructor is not an
 array or string constructor.

 ACTION List each element individually and specify its value.

A-: 17

147 MESSAGE CONSTRUCT ONLY ALLOWED IN CONSTRUCTORS (147)

CT CAUSE <Count> OF <expression> is used outside of a constructor.

 ACTION Remove the <count> OF <expression> from the code.

148 MESSAGE SUBRANGE CONSTRUCT ILLEGAL EXCEPT IN SET CONSTRUCTORS (148)

CT CAUSE A subrange construct was used in a string declaration or a non
 set structured constant.

 ACTION Remove the subrange construct from the code.

149 MESSAGE TOO BIG STRUCTURED CONSTANT (149)

CT CAUSE The compiler's structured constant table has overflowed.

 ACTION If there are one or more structured constants larger than the
 table size, break them up into smaller constants, if possible.

 If the total size of all the structured constants exceeds the
 limit, break your compilation unit into smaller pieces and
 spread the constants over them.

 Note: The first action may cause the second condition to
 arise!

150 MESSAGE EXPANDED STRING LITERAL IS TOO BIG (150)

CT CAUSE The compiler's identifier table has overflowed.

 ACTION Break your compilation unit into smaller pieces and spread your
 string literals over them.

 Read in the string literals from a message catalog.

 If the same quoted string is used over and over in the code,
 declare it as a constant in one place and use the named
 constant instead.

151 MESSAGE TYPE OF CONFORMANT ARRAY BOUNDS MUST BE SCALAR (151)

CT CAUSE The type identifier in the index specification for a conformant
 array parameter does not designate a scalar type.

 ACTION Change index to scalar or subrange.

152 MESSAGE PARAMETER DOUBLY DEFINED (152)

CT CAUSE In the index specification of a conformant array parameter the
 upper bound identifier has the same spelling as the lower bound
 identifier.

 In an index specification of a conformant array parameter a
 bounds identifier has the same spelling as another parameter or
 as another bounds identifier in the parameter list of the

A-: 18

 current procedure header.

 ACTION Rename one of the duplicate identifiers.

153 MESSAGE NOT ALLOWED AS AN ANYVAR PARAMETER (153)

CT CAUSE A parameter can not be an AnyVar parameter and a conformant
 array parameter.

 ACTION Change the formal parameter specifier to VAR or omit it.

154 MESSAGE NON CONFORMANT BASE TYPE (154)

CT CAUSE The base type of an array being passed as an actual conformant
 array parameter must be identical to the base type of the
 formal conformant array parameter.

 ACTION Change either the actual array's index type or the formal
 conformant array's index type so the two are compatible.

155 MESSAGE NON CONFORMANT ACTUAL PARAMETER (155)

CT CAUSE The parameter being passed as an actual conformant array
 parameter does not have an array type.

 ACTION Check the parameter and make sure it has an array type.

 CAUSE The parameter being passed as an actual conformant array
 parameter does not have the same packing as the formal
 parameter.

 ACTION Check that the packing of both parameters are the same and
 correct if necessary.

156 MESSAGE NON CONFORMANT ARRAY INDEX (156)

CT CAUSE The index type of the actual conformant array parameter is out
 of range of the type of the index type of the formal parameter.

 ACTION Change either the actual array's bounds or the formal
 conformant array's bounds so the actual bounds lie within the
 formal bounds.

157 MESSAGE NON IDENTICAL TYPE FOR PARAMETER IN CONFORMANT PARAMETER LIST
 (157)

CT CAUSE In a parameter declaration of the form:

 p1, p2...pn: <conformant array declaration>, the actual
 parameters passed must have identical types.

 ACTION Check the type declarations of the actual parameters, and
 ensure that they have the same type.

 Break up the formal parameter specifications i.e., make
 separate and complete declarations of each of p1, p2...pn.

A-: 19

158 MESSAGE CRUNCHED CONFORMANT ARRAYS ARE NOT ALLOWED (158)

CT CAUSE Conformant array parameters cannot be CRUNCHED.

 ACTION Remove CRUNCHED, or change to PACKED.

159 MESSAGE NO PACKED CONFORMANT ARRAYS OF CONFORMANT ARRAYS (159)

CT CAUSE Packed conformant arrays cannot have, as their elements,
 conformant arrays.

 ACTION Add PACKED to the inner type. Remove PACKED from the outer
 type.

160 MESSAGE INVALID BASE TYPE FOR FILE (160)

CT CAUSE The component type of a file may not be a file or a structure
 with a file type component.

 ACTION Remove/change the file being referenced or the declaration of
 the file.

161 MESSAGE TEXTFILE VARIABLE IS REQUIRED HERE (161)

CT CAUSE The predefined procedure or function in question may only be
 used with a file of type text.

 ACTION Remove/change the file being referenced or the routine being
 used.

162 MESSAGE TEXTFILE NOT ALLOWED HERE (162)

CT CAUSE The standard procedure or function in question may not be used
 with a file of type text.

 ACTION Remove/change the file being referenced or the routine being
 used.

163 MESSAGE INVALID TYPE FOR A PROGRAM PARAMETER (163)

CT CAUSE An identifier in the program parameter list has not been
 declared as a file variable, or a variable of type PAC, string,
 or integer.

 ACTION Correct the actual declaration to be a file declaration or
 remove the identifier from the program statement.

164 MESSAGE VARIABLE IS REQUIRED HERE (164)

CT CAUSE A variable is required as the target for reading from a file or
 a string.

 ACTION Supply a variable in the code.

A-: 20

165 MESSAGE DEFAULT FILE INPUT MUST BE IN PROGRAM PARAMETER LIST (165)

CT CAUSE The file variable in a standard procedure or function call was
 defaulted to INPUT, but INPUT was not declared in the program
 parameter list.

 ACTION Either add 'INPUT' to the program heading or remove the
 redefinition of 'INPUT', if one was made.

166 MESSAGE DEFAULT FILE OUTPUT MUST BE IN PROGRAM PARAMETER LIST (166)

CT CAUSE The file variable in a standard procedure or function call was
 defaulted to OUTPUT, but OUTPUT did not appear in the program
 parameter list.

 ACTION Add 'OUTPUT' to the program heading or remove the redefinition
 of 'OUTPUT', if one was made.

167 MESSAGE FORMAT EXPRESSION ALLOWED ONLY FOR TEXTFILES (167)

CT CAUSE A formatted output expression may only occur when writing to a
 textfile or a string.

 ACTION Remove the formatted expression from the code.

168 MESSAGE INTEGER VALUE IS REQUIRED HERE (168)

CT CAUSE The expressions specifying the field width and the number of
 decimal digits for an output expression are not type integer or
 a subrange of integer.

 ACTION Replace with an integer expression.

169 MESSAGE SECOND FORMAT VALUE ALLOWED ONLY FOR REAL OR LONGREAL (169)

CT CAUSE The format value that specifies the number of decimal digits in
 an output expression is only legal for output values of type
 real or longreal.

 ACTION Check type of parameter or remove decimal position specifier.

190 MESSAGE THIS PROGRAM PARAMETER WAS UNDECLARED: "! " (190)

CT CAUSE The identifier appeared in the program parameter list but was
 never declared.

 ACTION Add the identifier declaration.

191 MESSAGE DUPLICATE PROGRAM PARAMETER (191)

CT CAUSE There is more than one PARM parameter or more than one INFO
 parameter in a program parameter list.

 ACTION Remove duplicate declarations.

A-: 21

192 MESSAGE PARAMETER "! " DOES NOT MATCH POSSIBLE SPL TYPES (192)

CT CAUSE The HP Pascal type of the parameter does not correspond to an
 acceptable SPL type.

 ACTION Change the parameter definition to a type that will correspond
 to the SPL type.

193 MESSAGE PARAMETER "! " DOES NOT MATCH INTRINSIC PARM TYPE (193)

CT CAUSE The HP Pascal type of the parameter does not match the
 parameter type required by the INTRINSIC.

 ACTION Change the parameter definition to a type that will correspond
 to the intrinsic type.

194 MESSAGE MISSING FUNCTION RETURN SPECIFICATION (194)

CT CAUSE The return type is not specified in the function heading.

 ACTION Insert the result type declaration.

195 MESSAGE INVALID PARAMETER TO HALT (195)

CT CAUSE The optional parameter to HALT is not type integer or an
 integer subrange.

 ACTION Change the parameter to type integer or supply no parameter.

196 MESSAGE THIS INTRINSIC MAY NOT BE USED AS A FUNCTION (196)

CT CAUSE The specified intrinsic does not return a result and cannot be
 declared as a function.

 ACTION Redeclare the intrinsic as a procedure.

197 MESSAGE ELEMENTS OF PACKED OR CRUNCHED STRUCTURES CANNOT BE PASSED BY
 VAR (197)

CT CAUSE Elements of packed arrays or records may not be passed to a
 routine expecting a reference parameter.

 ACTION Redeclare the intrinsic as a procedure.

198 MESSAGE EMPTY PARAMETER MAY NOT BE USED HERE (198)

CT CAUSE Actual parameters may only be omitted for EXTERNAL SPL VARIABLE
 procedures or for intrinsics that are extensible and/or have
 default parameters.

 ACTION Supply a value for the parameter in question.

199 MESSAGE PROCEDURE NOT DECLARED (199)

A-: 22

CT CAUSE The identifier used in the procedure call either has not been
 declared, or it is not a procedure name.

 ACTION Check the spelling of the procedure and make sure it is
 declared.

200 MESSAGE PARAMETER "! " MUST BE VAR PARAMETER. (200)

CT CAUSE The parameter in the intrinsic declaration was specified as a
 value parameter, but the intrinsic requires a reference
 parameter.

 ACTION Change the intrinsic declaration so that it specifies the
 parameter in question as a VAR parameter.

Messages 201-527

201 MESSAGE PARAMETER "! " MUST BE VALUE PARAMETER (201)

CT CAUSE The parameter in the intrinsic declaration was specified as a
 reference parameter, but the intrinsic requires a value
 parameter.

 ACTION Change the intrinsic declaration to specify the parameter in
 question as a value parameter.

202 MESSAGE INVALID USE OF PROCEDURE OR FUNCTION IDENTIFIER (202)

CT CAUSE A procedure identifier appears as a function call.

 A function identifier appears as a procedure call.

 A valid identifier mistakenly appears as a function or
 procedure identifier.

 ACTION Change either the declaration or the usage of the identifier to
 make sure they are consistent.

203 MESSAGE INCONSISTENT DEFINITION OF FORWARD PROCEDURE OR FUNCTION (203)

CT CAUSE The definition of a procedure declared FORWARD is a function.
 The definition of a function declared FORWARD is a procedure.

 ACTION Change either the declaration or the usage of the identifier to
 make sure they are consistent.

 CAUSE The ALIAS in the definition differs from the ALIAS in the
 FORWARD declaration of a procedure or function.

 ACTION Make ALIAS names identical or only use ALIAS in the FORWARD
 declaration.

 CAUSE A FORWARD declaration is already provided for a function or
 procedure now declared FORWARD, EXTERNAL, or INTRINSIC.

 ACTION Remove all but one of the declarations.

 CAUSE The definition is missing a routine option or compiler option
 which was specified in the FORWARD declaration.

A-: 23

 ACTION Make sure all routine options or compiler options are repeated
 in the definition of the procedure or function.

204 MESSAGE INVALID DIRECTIVE (204)

CT CAUSE EXTERNAL, EXTERNAL SPL, EXTERNAL SPL VARIABLE, EXTERNAL
 FORTRAN, EXTERNAL FTN77, EXTERNAL C, EXTERNAL COBOL, FORWARD,
 and INTRINSIC are the only legal directives.

 ACTION Remove the directive from the code or correct the spelling.

205 MESSAGE INVALID LANGUAGE SPECIFICATION (205)

CT CAUSE The language specified was not FORTRAN, SPL, COBOL, FTN77, or
 C.

 A language cannot be specified with the FORWARD or INTRINSIC
 directives.

 ACTION Remove or correct the language specification.

206 MESSAGE INCORRECT NUMBER OF PARAMETERS (206)

CT CAUSE The number of actual parameters given is either too few or too
 many for the procedure or function.

 ACTION Check consistency between the procedure call and procedure
 declaration.

207 MESSAGE UNMATCHED PARAMETERS IN FORWARD (207)

CT CAUSE Parameters in the definition of a procedure or function
 declared FORWARD do not match the parameters of the original
 heading.

 ACTION Check whether the FORWARD routine declaration and the routine
 declaration are consistent.

208 MESSAGE ACTUAL PARAMETER NOT COMPATIBLE WITH FORMAL PARAMETER (208)

CT CAUSE This actual reference parameter is not type identical with the
 formal reference parameter in a user-defined function or
 procedure.

 This actual value parameter is not assignment compatible with
 the formal value parameter in a user-defined function or
 procedure.

 ACTION Check the types of the actual and formal parameters.

 CAUSE This actual reference parameter to a standard function or
 procedure is not type identical with the formal reference
 parameter.

 This actual value parameter to a standard function or procedure
 is not assignment compatible with the required type.

 ACTION Check the types of the actual parameter and the parameter

A-: 24

 accepted by the predefined routine.

 CAUSE This actual parameter is not intrinsic compatible with the
 intrinsic parameter.

 ACTION Check the types of the actual parameter and the intrinsic
 parameter.

 CAUSE The parameter of the standard SQR function is an integer
 subrange type with a lower bound greater than the square root
 of maxint, or an upper bound less than the negation of the
 square root of maxint. In either case, an integer overflow is
 possible at run time.

 ACTION Do not call SQR.

209 MESSAGE NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO NEW (209)

CT CAUSE The pointer parameter to NEW points to a record that has no
 additional nested variant parts.

 The pointer parameter to NEW points to a record that does not
 have a variant part.

 The pointer parameter to NEW points to a structure that is not
 a record.

 ACTION Check the record type definition for the correct variant record
 or remove the extra variant labels from the call.

210 MESSAGE NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO DISPOSE (210)

CT CAUSE The pointer parameter to DISPOSE points to a record that has no
 additional nested variant parts.

 The pointer parameter to DISPOSE points to a record that does
 not have a variant part.

 The pointer parameter to DISPOSE points to a structure that is
 not a record.

 ACTION Check the record type definition for the correct variant or
 remove the extra variant labels from the call.

211 MESSAGE NO FURTHER PARAMETERS ALLOWED TO MARK (211)

CT CAUSE More than one pointer parameter in a call to MARK.

 ACTION Remove the extra parameter.

212 MESSAGE NO FURTHER PARAMETERS ALLOWED TO RELEASE (212)

CT CAUSE More than one pointer parameter in a call to RELEASE.

 ACTION Remove the extra parameter.

213 MESSAGE VALUE PARAMETER MAY NOT CONTAIN FILE COMPONENT (213)

A-: 25

CT CAUSE This value formal parameter is a file or a structured type with
 a file type component. This is equivalent to assigning to a
 file.

 ACTION Remove the file component from the source code.

214 MESSAGE FUNCTION TYPE MAY NOT CONTAIN FILE COMPONENT (214)

CT CAUSE This function return type is a file or a structured type that
 contains a file type component. This is equivalent to
 assigning to a file.

 ACTION Remove the file component from the source code.

215 MESSAGE COMPILER LEVEL WRONG--PROBABLY UNMATCHED "END" (215)

CT CAUSE This occurrence of END cannot match a BEGIN because all
 compound statements have been terminated. The compiler
 disregards the extraneous END.

 ACTION Ensure all BEGINs and ENDs match along with ENDs for CASEs.
 Make sure a BEGIN has not been commented out or fix any syntax
 errors.

216 MESSAGE BAD CONSTANT PARAMETER (216)

CT CAUSE This string constant parameter to BINARY, OCTAL, or HEX either
 contains an invalid character or represents a value outside the
 range minint..maxint.

 ACTION Fix the character construct.

 CAUSE This parameter to SUCC is a constant value equal to the maximum
 value of an ordinal type.

 This parameter to PRED is a constant value equal to the minimum
 value of an ordinal type.

 ACTION Fix the constant value.

217 MESSAGE PROCEDURE OR FUNCTION NOT IN INTRINSIC FILE (217)

CT CAUSE An incorrect intrinsic file was specified prior to the
 declaration of the procedure or function.

 ACTION Check the name of the SYSINTR file.

 CAUSE The INTRINSIC name differs slightly from the procedure or
 function name declared INTRINSIC.

 ACTION Either use the ALIAS option or correct the spelling of the
 ALIAS parameter.

 CAUSE The procedure has never been put into the intrinsic file.

 ACTION Either check the spelling or list the intrinsic file (or
 rebuild the intrinsic file if it is not the standard intrinsic
 file.)

A-: 26

218 MESSAGE INTRINSIC FILE NOT CHECKED (218)

CT CAUSE Due to a prior error, the intrinsic file was never opened.
 Thus, no attempt was made to look up this procedure or
 function.

 ACTION Fix the previous error and try again.

219 MESSAGE "STRING" IS NOT ALLOWED AS A VALUE PARAMETER (219)

CT CAUSE A string formal value parameter must have a specified maximum
 length.

 ACTION Make the declaration a VAR parameter or make the type a
 specific string type.

220 MESSAGE FUNCTION "! " NOT ASSIGNED TO (220)

CT CAUSE A function of a simple type has no assignment to the result in
 the function body.

 A function of a structured type has no assignment to any
 component of the result in the function body.

 ACTION Make an assignment to the function result.

221 MESSAGE DECLARED FUNCTION TYPE DOES NOT MATCH INTRINSIC TYPE (221)

CT CAUSE The HP Pascal type of the return of a function declared
 INTRINSIC does not match the type of the value returned by the
 intrinsic.

 ACTION Change the type so it matches the value of the intrinsic type.

222 MESSAGE VARIABLE PARAMETER REQUIRED HERE (222)

CT CAUSE An expression appears as an actual reference parameter instead
 of a variable.

 A constant appears as an actual reference parameter instead of
 a variable.

 A component of a structured constant appears as an actual
 reference parameter instead of a variable.

 ACTION Check the parameter; it must be a variable and not an
 expression or constant.

223 MESSAGE ILLEGAL PARAMETER FORM (223)

CT CAUSE The integer parameter to a string procedure/function is not
 compatible with a 32 bit integer.

 The actual parameter is a procedure or function identifier, but
 the corresponding formal parameter is not a procedure or
 function heading.

 The parameters of the actual procedural or functional parameter
 are not congruent with the parameters of the formal procedural

A-: 27

 or functional parameter.

 The parameter of a call to WADDRESS or SIZEOF is a component of
 a packed structure.

 The parameter of a call to BADDRESS is a component of a packed
 structure other than a PAC.

 Either the third parameter of a call to ASSERT is not a
 procedure identifier or the parameter of such a procedure is
 not an integer value parameter.

 ACTION Check the types of the actual and formal parameters.

224 MESSAGE SYSTEM ADDRESSING LIMIT EXCEEDED (224)

CT CAUSE The storage limit for variables at run time is exceeded.

 ACTION Reduce the number of variables or make the structured
 variables, such as arrays or strings, smaller.

225 MESSAGE INCONSISTENT ALIAS IN FORWARD PROCEDURE OR FUNCTION (225)

CT CAUSE The ALIAS in the definition differs from the ALIAS in the
 FORWARD declaration of a procedure or function.

 ACTION Use the same ALIAS in both the declarations.

226 MESSAGE INCONSISTENT OPTIONS IN FORWARD PROCEDURE OR FUNCTION (226)

CT CAUSE The routine options specified in the definition differs from
 the one in the FORWARD declaration of the procedure or
 function.

 ACTION Use the same routine options in both declarations.

227 MESSAGE INCONSISTENT COMPILER OPTIONS IN FORWARD PROCEDURE OR FUNCTION
 (227)

CT CAUSE The compiler options specified in the definition differ from
 the one in the FORWARD declaration of the procedure or
 function.

 ACTION Use the same compiler options in both declarations.

228 MESSAGE VARIABLE OR EXPRESSION NOT WITHIN STRING LIMITS (228)

CT CAUSE The bounds of a subrange variable used as a string index do not
 overlap the bounds of the string type.

 ACTION Use a variable of the proper type.

 CAUSE The constant expression used as a string index lies outside the
 bounds of the string type.

 ACTION Use a constant expression within the string bounds.

A-: 28

229 MESSAGE INCONGRUENT FORMAL PARAMETER SECTIONS (229)

 CAUSE The formal parameter sections of the actual routine being
 passed as a parameter are not congruent with the formal
 parameter sections of the procedural or functional parameter of
 the called routine.

 ACTION Alter one of the formal parameter sections so that it is
 congruent with the other.

 Raise the STANDARD_LEVEL to HP_PASCAL.

230 MESSAGE INVALID CONTROL VARIABLE IN FOR STATEMENT (230)

CT CAUSE The control variable of the FOR loop is a record field.

 The control variable of the FOR loop is defined in a scope
 containing the current scope.

 The control variable of the FOR loop is a formal parameter of a
 procedure or function containing the FOR statement.

 The identifier used as the control variable of the FOR is not a
 variable.

 ACTION Use a local ordinal variable for the loop control variable.

231 MESSAGE CONTROL VARIABLE NOT AN ORDINAL TYPE (231)

CT CAUSE The control variable of the FOR loop is not an ordinal type.

 ACTION Use a local ordinal variable for the loop control variable.

232 MESSAGE EXPRESSION NOT COMPATIBLE WITH CONTROL VARIABLE (232)

CT CAUSE The expressions for the initial and final values are not type
 compatible with the control variable of a FOR loop.

 ACTION Check expressions and make sure the types are compatible.

233 MESSAGE INITIAL AND FINAL EXPRESSIONS NOT COMPATIBLE (233)

CT CAUSE The types of the expressions for the initial and final values
 of the FOR loop are not type compatible.

 ACTION Change the types of the initial and final value expressions or
 of the loop control variable as appropriate.

240 MESSAGE MULTIPLE MODULE IMPLEMENTATIONS NOT PERMITTED (240)

CT CAUSE Only one MODULE is permitted for each module.

 ACTION Remove duplicate MODULE.

241 MESSAGE MISSING EXPORT SECTION FOR THIS MODULE (241)

A-: 29

CT CAUSE Every module must have at least one EXPORT.

 ACTION Declare or define at least one 'object' in the EXPORT section.

242 MESSAGE INVALID IMPORT MODULE IDENTIFIER (242)

CT CAUSE The given identifier is not defined.

 The given identifier is not the name of a module in the current
 $SEARCH$ list.

 ACTION Check the name of the IMPORT module identifier. If the PASLIB
 file in which the module is defined is not in the current
 search list, add the file to it.

243 MESSAGE NOT AN IMPORTED MODULE (243)

CT CAUSE The identifier is not the name of an import module or the
 module currently being defined

 ACTION If the name is misspelled, correct the spelling. Otherwise,
 import the module in question.

250 MESSAGE DUPLICATE CASE LABEL (250)

CT CAUSE The CASE label is the same as a CASE label that appeared
 previously in the same construct.

 The CASE label is contained in a previous CASE label subrange
 in the same construct.

 The CASE label subrange contains at least one CASE label that
 appeared previously in the same construct.

 ACTION Remove the duplicate label from the code.

251 MESSAGE CASE LABEL OF INCORRECT TYPE (251)

CT CAUSE The type of the CASE label is not the same as the type of the
 tag or the select expression.

 ACTION Change the label or selecting expression as appropriate.

252 MESSAGE CASE LABEL TYPE NOT SAME AS PREVIOUS CASE LABEL (252)

CT CAUSE There was a detected error in the tag type or select
 expression, so the CASE labels are checked against each other.
 The type of the current CASE label does not match the type of
 previous CASE labels.

 ACTION Make sure that all case labels in a CASE statement are of the
 same type.

270 MESSAGE INVALID LABEL - MUST BE AN INTEGER BETWEEN 0 AND 9999 (270)

CT CAUSE This label is not an integer.

A-: 30

 A colon (:) appears or was inserted by the compiler where
 no label was desired.

 ACTION Check to ensure that the label is an integer between 0 and
 9999.

271 MESSAGE LABEL HAS NOT BEEN DECLARED (271)

CT CAUSE This label marks a statement, but never appeared in a LABEL
 declaration for this block.

 ACTION Declare the label.

272 MESSAGE LABEL DECLARED MORE THAN ONCE (272)

CT CAUSE This label already appeared in this LABEL section or in a LABEL
 section in an enclosing scope.

 ACTION Delete the duplicate label declaration.

273 MESSAGE SAME LABEL NOT ALLOWED ON MORE THAN ONE STATEMENT (273)

CT CAUSE This label has already marked a statement.

 ACTION Remove/correct the duplicate definition.

274 MESSAGE LABEL ‘!‘ NOT USED (274)

 CAUSE The label is referenced in a GOTO statement, but is not used to
 mark a statement.

 ACTION Mark a target statement with the label.

275 MESSAGE LABEL REFERENCED BY GOTO OUTSIDE STRUCTURED STATEMENT (275)

CT CAUSE This label appears in a component statement of a structured
 statement and was previously referenced by a GOTO statement:

 (a) preceding the structured statement.

 (b) in a preceding component statement of the same structured
 statement.

 (c) contained in an inner procedure or function.

 ACTION Remove either the label or the GOTO from the code.

276 MESSAGE GOTO REFERENCES LABEL INSIDE STRUCTURED STATEMENT (276)

CT CAUSE The label referenced in a GOTO statement appears in a component
 statement of a structured statement and the GOTO statement
 appears:

 (a) after the structured statement.

 (b) in a later component statement of the same structured

A-: 31

 statement.

 ACTION Remove either the label or the GOTO from the code.

293 MESSAGE TSAM INTRINSIC ERROR "! " (293)

CT CAUSE An error was encountered when reading a TSAM (toolset format)
 file.

 ACTION The error number replacing "! " refers to Toolset error
 messages if 900 or above. Look them up in a Toolset manual.
 Please report other numbers to your local HP representative.

294 MESSAGE $ INCLUDE NOT ALLOWED HERE WHEN SYMBOLIC DEBUG IS ENABLED (294)

CT CAUSE $INCLUDE of a file in executable code must be on a Pascal
 statement boundary if symbolic debug is enabled.

370 MESSAGE IMPORTED MODULE ‘!‘ WAS NOT REFERENCED (370)

N CAUSE The specified module was imported and no references to it were
 found.

 ACTION Either remove the module from the IMPORT statement or cause the
 module to be referenced.

371 MESSAGE USE OF AN INLINED ROUTINE (371)

N CAUSE An inlined routine has been expanded in the current statement.

 ACTION No action required. This message is for your information only.

373 MESSAGE ASSUME "! " IS VALID, USE $ASSUME$ (373)

N CAUSE The given optimizer assumption is valid, and should be used in
 the routine's declaration to get the most out of optimization.

 ACTION Use the $ASSUME$ compiler option.

374 MESSAGE BIT32 Type CONVERTED TO LONG INTEGER (374)

N CAUSE Using bit32 requires that it be converted to a long integer.

 ACTION Use type coercion to obtain a signed or unsigned 32 bit
 operation.

377 MESSAGE CODE GENERATED TO VERIFY CORRECT POINTER ALIGNMENT (377)

N CAUSE Checking code will be generated to ensure that the pointer
 being coerced has an alignment that allows it to be used as the
 coerced pointer type.

 ACTION Use $RANGE OFF$ to eliminate the extra code.

A-: 32

378 MESSAGE WHICH IS A COMPONENT OF ' ! '(378)

N CAUSE This message accompanies message #379.

 ACTION See message 379.

379 MESSAGE THE FIELD / AN ELEMENT OF ' ! ', CROSSES A WORD BOUNDARY (379)

N CAUSE Accesses of ordinal data items split across word boundaries are
 relatively inefficient.

 ACTION Use $ALIGNMENT$ to start ordinal data items on word boundaries.

380 MESSAGE TYPE COERCION MAY ACCESS INVALID DATA (380)

N CAUSE Informational message - the referenced type-coercion may cause
 uninitialized/invalid data to become accessible.

 ACTION Ensure that the data referenced is valid.

381 MESSAGE MACHINE DEPENDENT REPRESENTATION USED IS NOT CONSISTENT WITH
 PACKING(381)

N CAUSE A real type, such as a real or longreal, is used with
 $HP3000_16$.

 ACTION Don't mix $HP3000_16$ and $HP3000_32$ modes in data
 declarations.

382 MESSAGE SIZE OF MACHINE DEPENDENT TYPE IS NOT CONSISTENT WITH PACKING
 (382)

N CAUSE A machine dependent type such as a pointer, string, or file, is
 used with $HP3000_16$.

 ACTION Don't mix $HP3000_16$ and $HP3000_32$ modes in data
 declarations.

383 MESSAGE FEATURE MAY NOT BE SUPPORTED FOR OTHER TARGET MACHINES (383)

N CAUSE Informational message - the referenced feature may not be
 supported on other machines.

 ACTION No action is required.

384 MESSAGE MOVE PROCEDURE IN STATEMENT "! " USES A SIMULATED FOR LOOP
 (384)

N CAUSE The MOVE predefined procedure is implemented with a FOR loop to
 move the elements.

 ACTION No action is required.

A-: 33

385 MESSAGE POSSIBLE NON-ALIGNED OVERLAPPING SOURCE/TARGET IN STATEMENT !
 (385)

N CAUSE The source and target of the MOVE predefined procedure may
 overlap and generate scrambled results.

 ACTION You may need to use MOVE_R_TO_L or MOVE_L_TO_R.

400 MESSAGE INVALID FILENAME (400)

CT CAUSE The filename given in the INCLUDE, SYSINTR, or SPLINTR option
 is not a legal filename.

 ACTION Correct the filename to conform to the format required by the
 operating system.

401 MESSAGE ILLEGAL NAME IN ALIAS OR SUBPROGRAM OPTION (401)

CT CAUSE The procedure or function name in an ALIAS option is not a
 valid identifier.

 The procedure or function name in a SUBPROGRAM option is not a
 valid HP Pascal identifier.

 ACTION Make sure the name is a valid HP Pascal identifier.

402 MESSAGE NOT A LEGAL LOCALITY NAME (402)

CT CAUSE The name for a locality is illegal.

 ACTION Check the name and make sure it is legal.

403 MESSAGE IF EXPRESSION CAN NOT BE EVALUATED (403)

CT CAUSE The expression in an IF has a syntax error in it.

 ACTION Check the source code and fix the syntax error.-

404 MESSAGE UNMATCHED $ENDIF$ FOUND (404)

CT CAUSE An $ENDIF$ compiler option was found without a preceding IF
 option. This may happen if either the compiler rejects an IF
 because it was out of place, or the IF is not in the code.

 ACTION Check for a missing or commented IF.

405 MESSAGE A BOOLEAN EXPRESSION IS REQUIRED INSIDE STRING (405)

CT CAUSE A blank string was found as part of an IF.

 ACTION Remove the IF or add a string.

406 MESSAGE EXPECTED TRUE/FALSE AFTER "= " (406)

A-: 34

CT CAUSE Misspelled true/false after "= " in SET

 ACTION Correct spelling.

 CAUSE Missing true/false after "= " in SET

 ACTION Add TRUE or FALSE.

408 MESSAGE UNMATCHED $ENDIF$ OR $ELSE$ FOUND (408)

CT CAUSE $ENDIF$/$ELSE$ compiler option was found without a preceding
 IF option. This may happen either if the compiler rejects an
 IF because it was out of place, or if the IF is not in the
 code.

 ACTION Check for a missing or misplaced IF.

409 MESSAGE EXCEEDED MAXIMUM NESTING LEVEL FOR IF (409)

CT CAUSE The nesting of IF exceeded the maximum allowable nesting
 level.

 ACTION Remove the offending IF from the code.

410 MESSAGE ILLEGAL IDENTIFIER IN SET or IF (410)

CT CAUSE An identifier is misspelled.

 Expected an identifier and one was not found.

 ACTION Provide a legal identifier or correct the spelling of the
 identifier.

411 MESSAGE $PUSH$ NESTING TOO DEEP, OPTIONS NOT SAVED (411)

CT CAUSE Too many $PUSH$ compiler options encountered.

 ACTION Remove the offending $PUSH$ option.

412 MESSAGE NOTHING TO POP, OPTIONS NOT CHANGED (412)

CT CAUSE Too many POP compiler options for the number of preceding
 $PUSH$ options.

 ACTION Remove POP options so that those remaining have matching
 $PUSH$ options.

413 MESSAGE INVALID INTRINSIC FILE (413)

CT CAUSE The file specified in the intrinsic option is not a valid
 SYSINTR file.

 ACTION Check the name and make sure the file is an intrinsic file and
 has not been corrupted.

A-: 35

414 MESSAGE NLS NOT INSTALLED OR SYSTEM VARIABLE NOT SET (414)

CT CAUSE NLS (Native Language Support) is not installed or the JCW
 'GETUSERLANG" is not set (MPE/iX) or the environment variable
 'LANG' is not set (HP-UX).

 ACTION Determine which of the above applies and correct the situation.

415 MESSAGE $INCLUDE FILENAME IS NULL (415)

CT CAUSE The file specified in the include option is empty.

 ACTION Place a valid file name in the quotes.

425 MESSAGE COMPILER ERROR "! " COMPILE TERMINATED (425)

CT CAUSE (1..999) A run-time error was detected by the run-time support
 library during compiler execution.

 (1000..1031) A run-time error was detected in an arithmetic
 operation during compiler execution.

 (2000..2999) A run-time error was detected by a system
 intrinsic during compiler execution.

 ACTION Check that there is no previous syntax error. If there is one,
 fix the error and recompile. Otherwise, report this as a bug.

 (3000..3999) A run-time code trap (an addressing exception or
 an illegal instruction, for example) occurred during compiler
 execution.

 (5000..5999) A user of internal code generation error.

 (6000..6999) An optimizer error.

 (7000..7999) A user or internal code generation error.

426 MESSAGE SYSTEM RESOURCE EXHAUSTED "! " COMPILE TERMINATED (426)

CT CAUSE The compiler ran out of space in the heap.

 ACTION Break the code into smaller compilation units.

 CAUSE The compiler ran out of space in one of its data areas or the
 compiler could not acquire one of its data areas (especially if
 the parameter is 2).

 ACTION Reduce the size or the number of structured constants or number
 of identifiers or increase the size of data areas. In the
 following examples, the parameter is the number of pages:

 On MPE/iX:

 SETJCW PASXDATA 200

 On HP-UX:

 export PASXDATA=200 for ksh

A-: 36

 PASXDATA=200; export PASXDATA for sh or ksh

 setenv PASXDATA 200 for csh

461 MESSAGE PARSER STACK OVERFLOW - TOO MANY NESTED CONSTRUCTS (461)

CT CAUSE An internal compiler limit on nested structures has been
 reached. A common cause is a long list of ELSE-IFs.

 ACTION Break up a nested structure. Use a balanced IF-THEN-ELSE
 structure.

500 MESSAGE OPTION NOT YET IMPLEMENTED (500)

W CAUSE This compiler option is not yet implemented.

 ACTION Remove any references to this compiler option from the source
 code.

501 MESSAGE UNRECOGNIZED COMPILER OPTION (501)

W CAUSE A compiler option with this name is not recognized.

 ACTION Check the spelling of this option.

502 MESSAGE THIS OPTION IS NOT ALLOWED HERE (502)

W CAUSE The option appears in an illegal location in the source code.
 For example, the GLOBAL option appears anywhere except before
 the PROGRAM heading.

 ACTION Remove the option from an illegal location in the source code
 and place it in a legal location.

503 MESSAGE TEXT AFTER INCLUDE OR SKIP TEXT IGNORED (503)

W CAUSE Anything on the source line after INCLUDE was ignored.

 Anything on the source line after a $SKIP_TEXT ON$ is treated
 as a comment. Anything on the source line after an IF that
 evaluates to FALSE is ignored.

 ACTION Remove the extra text.

504 MESSAGE INTEGER OUT OF RANGE, VALUE NOT CHANGED (504)

W CAUSE LINES requires an integer greater than 20

 WIDTH requires an integer in the range 10..132.

 $CHECK_ACTUAL_PARM$ and $CHECK_FORMAL_PARM$ require an integer
 in the range 0..3.

 ACTION Correct the option argument; check the compiler option syntax.

A-: 37

505 MESSAGE STRING PARAMETER IS REQUIRED, OPTION IGNORED (505)

W CAUSE This option requires information in a string literal parameter.

 ACTION Check the option argument; check the compiler option syntax.

506 MESSAGE I/O FAILED ON FILE !, ! (506)

 CAUSE I/O on a file failed. The compiler feature that uses that file
 has been disabled for the remainder of the compilation.

 ACTION Check the named file for invalid file equations, links, size
 restrictions, and locking by other processes. Also check for
 disk space.

507 MESSAGE BOTH $GLOBAL$ AND $EXTERNAL$ NOT ALLOWED (507)

W CAUSE The option $GLOBAL$ occurred after the option $EXTERNAL$ was
 specified. Since only one is allowed, $GLOBAL$ was ignored.

 The option $EXTERNAL$ occurred after the option $GLOBAL$ was
 specified. Since only one is allowed, $EXTERNAL$ was ignored.

 ACTION Remove $GLOBAL$ or $EXTERNAL$, whichever is appropriate.

508 MESSAGE A "$ " IS REQUIRED HERE - ONE INSERTED (508)

W CAUSE Compiler option doesn't end with a $ on the same line.

 ACTION Add a "$ " to the code.

509 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME OVERFLOW (509)

W CAUSE The result of an expression will exceed maxint at run time.
 This is detected for:

 (a) +, -, * when the types of the operands are such that the
 expression overflows. For example:

 VAR
 A: maxint-10..maxint;

 Then the expression A + A would never be less than 2 * maxint -
 10, which is greater than maxint.

 (b) -minint

 (c) the addition, subtraction, or multiplication of two
 constants resulting in an overflow.

 ACTION Correct the expression.

510 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME UNDERFLOW (510)

W CAUSE The result of an expression will be less than minint at run
 time. This is detected for:

 (a) +, -, * when the types of the operands are such that the

A-: 38

 expression underflows. For example:

 VAR
 A: maxint - 10..maxint;
 B: minint..minint + 10

 Then the expression B - A would be less than minint + 10 -
 maxint, which is less than minint.

 (b) the addition, subtraction, or multiplication of two
 constants resulting in an underflow.

 ACTION Correct the expression.

511 MESSAGE MOD DIVISOR WILL CAUSE A RUN-TIME ERROR (511)

W CAUSE In an expression A MOD B, B will be <= 0 at run time.

 In a constant expression A MOD B, B is <= 0.

 ACTION Correct the expression.

512 MESSAGE RUN TIME DIVISION BY ZERO (512)

W CAUSE In an expression A DIV B, B = 0.

 In a constant expression A DIV B, B = 0.

 ACTION Correct the expression.

513 MESSAGE EMPTY INCLUDE FILE (513)

W CAUSE The INCLUDE file had no text in it.

 ACTION Verify that the filename is correct.

514 MESSAGE $ NOT ALLOWED IN INFO PARAMETER (514)

W CAUSE The INFO parameter of a :PASXL, :PASXLLK, or :PASXLGO command
 is interpreted as a compiler option with the $ assumed as the
 leading and trailing character. The $ cannot appear in the
 INFO string itself.

 ACTION Do not supply '$' in the INFO string.

515 MESSAGE NO DISC SPACE FOR XREF (515)

W CAUSE A file error occurred trying to open the file needed to do the
 cross reference. This could be any file error, but OUT OF DISK
 SPACE is the most likely. A temporary file with the name
 PASXRFdd, where d is a digit, is another possible cause.

 ACTION Check for a duplicate file name and for enough file disk space.

516 MESSAGE NO VARIANT FOR TAG VALUE (516)

A-: 39

W CAUSE A NEW was called specifying a tag constant that did not appear
 in the case list in the variant part. The maximum space for
 the record is allocated.

 ACTION Remove the variant identifier from the source code or correct
 its spelling.

519 MESSAGE BOOLEAN EXPRESSION FOLDED TO '!' (519)

W CAUSE The compiler has folded an expression with IN, AND, or OR and
 constant operands or, in the case of IN, with a left operand
 that is a constant appearing in the set list.

 The compiler has folded an expression with =, <>, <=, >=, or >
 and operands that are non-set constants.

 With $PARTIAL_EVAL ON$, the compiler has folded an expression
 with OR when TRUE is an operand, or an expression with AND when
 FALSE is an operand.

 ACTION Check the operands to ensure that they are correct.

520 MESSAGE NON-OVERLAPPING TYPES - EXPRESSION FOLDED (520)

W CAUSE Two sets with ranges that do not overlap were intersected. The
 compiler folded the expression to the empty set.

 An arithmetic comparison was done with operands of types with
 ranges that do not overlap. The compiler folded the
 expression. For example, if A: 0..3 and B: 5..7, then A = B is
 folded to false.

 ACTION Check the operands to ensure that they are correct.

521 MESSAGE BODY OF FOR LOOP WILL NEVER EXECUTE (521)

W CAUSE Values of the initial and final expressions will prevent the
 body of the FOR loop from ever executing.

 Non-overlapping subranges for the types of the initial and
 final expressions prevent the body of the FOR loop from ever
 executing.

 ACTION Check the values and types for the initial and final
 expressions.

522 MESSAGE CASE LABEL NOT WITHIN TAG OR SELECT EXPRESSION RANGE (522)

W CAUSE The CASE label value or subrange is not within the range of the
 tag type and can never be specified in a call to NEW or
 assigned to the tag field.

 The CASE label value or subrange is not within the range of the
 select expression and can never be selected.

 ACTION Check the possible values of the CASE selection expression and
 the values of the CASE labels.

A-: 40

523 MESSAGE INTEGER CONSTANT IS REQUIRED - OPTION IGNORED (523)

W CAUSE This compiler option requires an integer parameter; such as
 WIDTH. The compiler has ignored this option.

 ACTION Check the syntax and insert an integer where necessary.

524 MESSAGE SUBPROGRAM "! " SPECIFIED, BUT NOT FOUND (524)

W CAUSE A procedure or function name specified in the SUBPROGRAM option
 was not found in the source.

 ACTION Check the spelling of the procedure or function.

525 MESSAGE ANY EXTERNAL GOTO TO THIS LABEL IS AN ERROR (525)

W CAUSE This label marks a component statement of a structured
 statement. This label cannot be referenced by a GOTO statement
 contained in an external procedure or function, but that error
 will not be detected until the program is prepared or executed.

 ACTION Make sure no nonlocal GOTOs branch to this label.

526 MESSAGE EXPRESSION FOLDED TO THE EMPTY SET (526)

W CAUSE The compiler has determined that a set expression results in an
 empty set and folded that expression to empty. This warning
 appears in case the user expected side effects or made some
 kind of error that caused the folding. Folding occurs when an
 intersection is performed with the empty set, the empty set
 occurs on the left side of the set difference operator, or two
 empty sets appear in a set operation.

 ACTION Check to see if expression should fold to the empty set.

527 MESSAGE 'ON' OR 'OFF' IS REQUIRED HERE (527)

W CAUSE The word ON or OFF is required after this compiler option name;
 for example, $LIST$.

 ACTION Correct the option argument and the compiler option syntax.

Messages 528-814

528 MESSAGE PREVIOUS VERSION OF '!' INACTIVATED (528)

W CAUSE A procedure or function by the same name already exists in the
 USL file and has been inactivated.

 CAUSE If PRIVATE_PROC was ON, then two level 1 procedure or function
 names are not unique within the first 15 characters, or a copy
 from a previous compilation is being replaced.

 CAUSE If PRIVATE_PROC was OFF, then either duplicate non-level 1
 procedure or function names exist (they are not unique within
 15 characters) or duplicate procedure or function names have
 been introduced due to separate compilation of procedures or

A-: 41

 functions wi th names which are identical within the first 15
 characters.

530 MESSAGE EXPRESSION WILL CAUSE A RUN-TIME SET RANGE ERROR (530)

W CAUSE Evaluation of a set construction in which an element of the set
 list will necessarily fall outside the bounds of the set
 construction will cause this error.

 ACTION Check the source code and fix the expression.

532 MESSAGE THE SPECIFIED WORKSPACE FOR TOOLSET IS INVALID (532)

W CAUSE The file is not a valid TSAM root file or the file cannot be
 opened.

 ACTION Determine why the file is invalid.

533 MESSAGE BAD FONT OPTION GIVEN (533)

W CAUSE The call to FDeviceControl returned an error condition.

 ACTION Ensure that the font number specified exists in the font file
 specified in the file equation for PASLIST.

534 MESSAGE CONTROL VARIABLE HAS BEEN ASSIGNED TO NON-LOCALLY (534)

W CAUSE The control variable may be modified by a non-local reference
 from a routine invoked in the body of the FOR loop.

 ACTION Make sure that there are no non-local references to the control
 variable.

535 MESSAGE "! " ACCESSED, BUT NOT INITIALIZED (535)

W CAUSE A simple variable appears in an expression, as a value
 parameter, or in some other accessing reference and it has
 never appeared in an assigning reference, such as a reference
 parameter, on the left side of an assignment statement.

 Some component of a structured variable appears in an accessing
 reference, but no component of that variable has yet appeared
 in an assigning reference.

 ACTION Make sure the variable is initialized.

536 MESSAGE LABEL "! " DECLARED, BUT NOT USED TO MARK ANY STATEMENT (536)

W CAUSE The label appears in a LABEL declaration, but is not used to
 mark any statement.

 ACTION Remove label from LABEL declaration.

537 MESSAGE THIS PREVIOUSLY UNIMPLEMENTED FEATURE IS NOW IMPLEMENTED (537)

A-: 42

W CAUSE New functionality has been added of which the user should be
 aware.

 ACTION None.

538 MESSAGE THIS FEATURE REQUIRES $OS "! " (538)

W CAUSE The current $OS is not one that allows the feature.

 ACTION Use the $OS specified in the message or remove the feature.

539 MESSAGE THIS FEATURE REQUIRES $ STANDARD_LEVEL "! " (539)

W CAUSE The current standard_level is lower than that required for this
 feature.

 ACTION Use the standard_level in the message or remove the feature.

540 MESSAGE THIS FEATURE REQUIRES $STANDARD_LEVEL$ "! " AND
 $OS "! " (540)

W CAUSE The current standard_level is lower than that required for this
 feature and the $OS specified is wrong.

 ACTION Use the standard_level and $OS specified in the message or
 remove the feature.

541 MESSAGE FURTHER MESSAGES SUPPRESSED FOR THIS LINE (541)

W CAUSE Only 5 messages will be printed for any single input source
 line. If more than 5 messages are issued, then this will be
 the sixth and last message.

 ACTION Remove the causes of the first 5 messages on this line, so that
 the next message can be printed.

549 MESSAGE MISSING SEPARATOR, TEXT IGNORED UNTIL NEXT SEPARATOR (549)

W CAUSE When two or more compiler options are on the same line, the
 options must be separated by a semicolon or comma.

 ACTION Add a separator if there are two or more compiler options.

550 MESSAGE LOWER BOUND GREATER THAN UPPER, FOLDED TO EMPTY SUBRANGE (550)

W CAUSE Assigning or comparing a constant subrange with the lower bound
 greater than the upper bound results in an assignment or
 comparison of an empty set.

 ACTION Correct the bounds.

551 MESSAGE OBSOLETE !, USE '!' (551)

W CAUSE A feature supported by a previous release is now obsolete.

A-: 43

 ACTION Change the source to use the recommended features and
 recompile.

552 MESSAGE SYSTEMS LANGUAGE VARIABLE NOT SET (552)

W CAUSE JCW 'NLUSERLANG' or environment variable 'LANG' not set.

 ACTION Set the system variable to the desired language (-LANG on
 HP-UX, NLUSERLANG on MPE/iX.)

553 MESSAGE '!' and '!' ARE INCOMPATIBLE COMPILER OPTIONS (553)

W CAUSE These options are not compatible. The second was ignored.

 ACTION Delete one of the options.

554 MESSAGE DUPLICATE $SET FOR '!'; ITS VALUE IS NOW '!' (554)

W CAUSE This identifier was previously set by a $SET (or, on HP-UX, a
 -D on the command line). The value last seen takes effect.

 ACTION Decide which value you want this identifier to have and remove
 all other $SETs (or, on HP-UX, remove the -D option on the
 command line if it is in error).

555 MESSAGE VOLATILE VARIABLE PASSED BY REFERENCE (555)

W CAUSE A variable declared as volatile was used as an actual parameter
 in a routine call for which the formal parameter was a
 reference parameter.

 ACTION The compiler cannot guarantee that the parameter will be
 properly updated, so you must ensure that it is.

556 MESSAGE DEFAULT_PARM VALUES DO NOT MATCH THOSE IN FORWARD DECLARATION
 (556)

W CAUSE The values of constants for OPTION DEFAULT_PARMS do not match
 the corresponding values declared in a previous FORWARD
 declaration. The values used are those that were specified in
 the FORWARD declaration.

 ACTION Ensure that the values are the same or leave off the formal
 parameter list from the routine heading when the routine is
 defined.

557 MESSAGE PARAMETER TO PROCEDURE "NEW"MAY CAUSE A RUN-TIME ERROR (557)

W CAUSE The pointer argument to NEW is not aligned on a four-byte
 boundary. If the type of a pointer was defined with the
 ALIGNMENT compiler option and a component of a structured type
 contains this pointer type, a variable declared with this
 structured type may cause the pointer to be aligned improperly.

 ACTION Create the variable so that the component used as an argument
 to NEW is four-byte aligned. This can be done by removing the

A-: 44

 ALIGNMENT option from the type declaration for the pointer or
 by rearranging the fields of the record containing the pointer.

558 MESSAGE FILES APPEAR IN THE VARIANT PART OF A RECORD (558)

W CAUSE Fields of a file type or a structure containing a file type
 appear in the variant part of a record. When this variant
 becomes inactive, all fields in that variant are undefined.
 Furthermore, files corresponding to such fields are not
 guaranteed to be closed when the variant becomes inactive.

 ACTION Make sure that such files are closed before deactivating the
 variant.

559 MESSAGE INVALID $SHLIB_VERSION DATE STRING (559)

W CAUSE The date string passed to the $SHLIB_VERSION compiler option is
 invalid.

 ACTION The date string should be in the form: month/year. The year
 may be a 2 or 4 digit value. A month/year value representing a
 date earlier than January 1990 is invalid.

560 MESSAGE $HP_DESTINATION'ARCHITECTURE'$ IGNORED; FIRST SEEN TAKES EFFECT
 (560)

W CAUSE The compiler encountered more than one
 $HP_DESTINATION'ARCHITECTURE' option; only the first one seen
 will take effect.

 ACTION Remove extra $HP_DESTINATION'ARCHITECTURE'$ options from the
 source file.

 ACTION If you are specifying the +DA option to the pc command, remove
 the compiler option $HP_DESTINATION'ARCHITECTURE'$ from your
 source file.

561 MESSAGE $HP_DESTINATION'SCHEDULER'$ IGNORED; FIRST SEEN TAKES EFFECT
 (561)

W CAUSE The compiler encountered more than one
 $HP_DESTINATION'SCHEDULER' option; only the first one seen will
 take effect.

 ACTION Remove extra $HP_DESTINATION'SCHEDULER'$ options from the
 source file.

 ACTION If you are specifying the +DS option to the pc command, remove
 the compiler option $HP_DESTINATION'SCHEDULER'$ from your
 source file.

562 MESSAGE $OPTIMIZE 'BASIC_BLOCKS num '$: num was omitted; using zero.
 (562)

W CAUSE You inadvertently omitted the number which specifies the
 threshold of basic blocks in a procedure which you want
 optimized at level 2. Zero was inserted by the compiler, which
 effectively disables the basic blocks feature; every procedure
 is optimized at level 2.

A-: 45

ACTION Specify the num in the $OPTIMIZE 'BASIC_BLOCKS num '$ directive.

 ACTION On HP-UX, specify the num on the command-line with +Obb num.

 ACTION On HP-UX, specify 0 as num to guarantee the "old" -0 behavior
 (that is, not ever dropping down to level 1 optimization).

568 MESSAGE '+' IS NOT ALLOWED HERE (568)

W CAUSE A '+' was specified as part of a $SEARCH compiler option, but
 it did not precede all the file names in the search list.

 ACTION Correct the compiler option.

569 MESSAGE NO ASSEMBLY FILE FOUND. LIST_CODE NOT PERFORMED (569)

W CAUSE The compiler could not find the file with the assembly listing
 (usually "???.s" on HP-UX or "PASASSM" on MPE/iX). On MPE/XL;,
 this usually happens because the PASASSM file is too small to
 hold the assembly output (the default size is 40,000 records).
 Another possible reason is that you have hit some file system
 limit like total file space or number of files.

 ACTION If you have run against a system limit, get around it and
 recompile.
 On MPE/iX, if you can determine that you have not run afoul
 of a system limit, try the following file equation:
 FILE PASASSM;DISC=100000
 Modify the parameter of the "DISC=" option according to how
 big you think your compilation unit is.

570 MESSAGE PARAMETER TYPE NOT SUPPORTED BY EXTERNAL LANGUAGE (570)

W CAUSE An ANYVAR or READONLY parameter is used with an EXTERNAL C or
 EXTERNAL FTN77 directive. These types of parameters are not
 supported by these languages.

 ACTION Remove parameter or change TYPE to VAR.

571 MESSAGE INCOMPATIBLE COMPILER OPTIONS PFA AND OPTIMIZE (571)

W CAUSE Both OPTIMIZE and PFA options are present. The options are
 mutually exclusive.

 ACTION (1) If PFA is desired, remove OPTIMIZE.
 (2) If OPTIMIZE is desired, remove PFA.

572 MESSAGE INCOMPATIBLE COMPILER OPTIONS OPTIMIZE AND SYMDEBUG (572)

W CAUSE Both OPTIMIZE and SYMDEBUG 'XDB' options are present. The
 options are mutually exclusive.

 ACTION (1) If SYMDEBUG 'XDB' is desired, remove OPTIMIZE.
 (2) If OPTIMIZE is desired, remove SYMDEBUG 'XDB'.

573 MESSAGE INCOMPATIBLE COMPILER OPTIONS SYMDEBUG AND OPTIMIZE (572)

A-: 46

W CAUSE Both OPTIMIZE and SYMDEBUG 'TOOLSET' options are present. The
 options are mutually exclusive.

 ACTION (1) If SYMDEBUG 'TOOLSET' is desired, remove OPTIMIZE.
 (2) If OPTIMIZE is desired, remove SYMDEBUG 'TOOLSET'.

575 MESSAGE VALUE OF ESCAPECODE IS QUESTIONABLE HERE (575)

W CAUSE The value returned by ESCAPECODE outside a RECOVER construct is
 undefined.

 ACTION Store off escape code into a local variable from inside the
 RECOVER construct, and use the local variable outside it.

576 MESSAGE POINTER FIELD IN OTHER VARIANT NOW UNDEFINED (576)

W CAUSE An integer field overlaying a pointer field has been assigned
 to making the pointer undefined.

 ACTION None - informational message only.

577 MESSAGE ASSUME "! " IS NOT VALID, REMOVE $ASSUME$ (577)

W CAUSE A construct is used that invalidates the given assumption which
 the compiler ignores.

 ACTION Remove the $ASSUME$ option that is invalid.

582 MESSAGE $HP3000_32$ NOT RECOGNIZED, OPTION IGNORED (582)

W CAUSE $HP3000_32$ is not recognized because $HP30000_16$ has not been
 set.

 ACTION Remove $HP3000_32$

584 MESSAGE INVALID MODULE LIBRARY NAME SPECIFIED (584)

W CAUSE Specified a module library which cannot be opened by the
 system.

 ACTION Check the name of the module library.

586 MESSAGE INVALID ALIGNMENT VALUE, OPTION IGNORED (586)

W CAUSE The alignment specified was not one of 1, 2, 4, 8, 16, 32, 64,
 or 2048 bytes.

 ACTION Correct the alignment value.

587 MESSAGE UNSUPPORTED VARIABLE ALIGNMENT REQUESTED (587)

W CAUSE The type declaration specified an alignment value that is not
 supported for static variables.

A-: 47

 ACTION Correct the alignment value.

588 MESSAGE POSSIBLE USE OF UNINITIALIZED FIELD '!' OF '!' (588)

W CAUSE The field of the local variable mentioned in the message may be
 uninitialized when used in this procedure or function.

 ACTION Ensure that the field is initialized before use.

590 MESSAGE IDENTIFIER ‘!' OVERLOADED BY IMPORTED MODULE(S) (590)

W CAUSE An identifier with the same spelling is exported by an earlier
 imported module.

 ACTION Rename one of the identifiers. If you do not rename an
 identifier, the identifier in the last imported module will be
 used.

591 MESSAGE COUNT IS NEGATIVE; NO DATA WILL BE MOVED (591)

W CAUSE The move count parameter to a MOVE procedure will always be
 negative, thus no data will be moved.

 ACTION Make sure that the count is supposed to be negative.

592 MESSAGE LONG TO SHORT POINTER CONVERSION EMITTED IN STATEMENT "! "
 (592)

W CAUSE A 64 bit address was converted to a 32 bit address. Only
 addresses that are in space registers 4 through 7 can be
 converted without an error.

 ACTION A run-time trap will occur if the address is not valid.

 ACTION On MPE/iX, make sure short addresses in SR4 are not passed to
 an executable library (XL). They may not trap until
 dereferenced.

593 MESSAGE TYPE COERCION ALTERS NUMBER OF STORAGE UNITS (593)

W CAUSE Source and target types require a different number of storage
 units; thus, code generated as a result of this type coercion
 may not behave as expected.

 ACTION Remove the type coercion expression or define the TYPE_COERCION
 level to be 'NONCOMPATIBLE'.

594 MESSAGE IMPLEMENT MISSING FOR MODULE "! " (594)

W CAUSE No IMPLEMENT appeared in the given MODULE.

 ACTION Supply an IMPLEMENT section.

595 MESSAGE EXPORT QUALIFICATIONS NOT IMPLEMENTED (595)

A-: 48

W CAUSE EXPORT qualifiers currently have no effect.

 ACTION No action is required.

596 MESSAGE DUPLICATE IMPORTED MODULE (596)

W CAUSE <IDENT1> ! <IDENT2> is the same as <IDENT2>.

 ACTION Rename one of the modules.

597 MESSAGE POSSIBLE USE OF UNINITIALIZED VARIABLE '!' (597)

W CAUSE The local variable mentioned in the message may be
 uninitialized when used in this procedure or function.

 ACTION Ensure that the variable is initialized before use.

598 MESSAGE RESULTS OF $GLOBAL/$RLFILE/$SUBPROGRAM IS DIFFERENT ON MPE V
 (598)

W CAUSE If a compilation has $GLOBAL, $RLFILE, and $SUBPROGRAM set, the
 result of the compile will be different than if it was done on
 MPE V (no outer block information is output).

 ACTION Remove either $GLOBAL or $SUBPROGRAM.

599 MESSAGE POSSIBLE PARAMETER ADDRESS ALIGNMENT MISMATCH (599)

W CAUSE A VAR parameter of unknown alignment is being passed as a
 reference parameter to an INTRINSIC which has a strict
 alignment requirement for that parameter. If the actual
 parameter has a less restrictive alignment than that required
 by the intrinsic, an AD DRESS ALIGNMENT error will occur.

 ACTION Ensure that the actual parameter has the alignment required by
 the INTRINSIC.

600 MESSAGE INSUFFICIENT HEAP AREA TO ALLOCATE VARIABLE (PASCERR 600)

RT CAUSE The heap is full.

 ACTION Increase the amount of heap space for the program or decrease
 the storage used by the program.

601 MESSAGE INVALID DISPOSE PARAMETER (PASCERR 601)

RT CAUSE The pointer parameter to DISPOSE is NIL.

 The pointer parameter to DISPOSE does not identify any area
 allocated by NEW.

 ACTION Initialize the pointer with NEW before disposing.

 CAUSE The pointer parameter to DISPOSE identifies an area previously
 deallocated by release.

 ACTION Do not DISPOSE a pointer that has been released.

A-: 49

602 MESSAGE REPEATED USE OF DISPOSE ON GIVEN PARAMETER (PASCERR 602)

RT CAUSE The pointer parameter to dispose identifies an area previously
 deallocated by dispose.

 ACTION Do not DISPOSE a pointer that has been released.

603 MESSAGE DISPOSE PARAMETER ALLOCATED AS DIFFERENT VARIANT (PASCERR 603)

RT CAUSE The pointer parameter to dispose identifies an area allocated
 by new with a different sequence of case constants.

 CAUSE The pointer parameter to dispose includes case constants, but
 it identifies an area allocated by new without any case
 constants.

 CAUSE The pointer parameter to dispose does not include case
 constants, but it identifies an area allocated by new with case
 constants.

 ACTION Make sure that any tags associated with DISPOSE match the tags
 on NEW. Also check for heap corruption.

604 MESSAGE DISPOSE PARAMETER CONTAINS AN OPEN SCOPE (PASCERR 604)

RT CAUSE The pointer parameter to dispose identifies an area containing
 an actual variable parameter, an element of the record variable
 list of a WITH statement, or both.

 ACTION Make sure that the identifier does not reference such an area.

605 MESSAGE INVALID RELEASE PARAMETER (PASCERR 605)

RT CAUSE The parameter to RELEASE was not set by a previous call to
 MARK.

 ACTION Initialize the parameter with MARK.

 CAUSE The parameter to RELEASE was set by a call to MARK, but a
 previous call to RELEASE has been made with this parameter.

 ACTION Get rid of one of the uses of MARK.

 CAUSE The parameter to RELEASE was set by a call to MARK, but that
 call to MARK was preceded by a call to MARK with a different
 parameter that has already been used as a parameter to RELEASE.

 ACTION Don't use RELEASE on already released space.

606 MESSAGE RELEASE PARAMETER ENCLOSES AN OPEN SCOPE (PASCERR 606)

RT CAUSE The parameter to release identifies an area containing an
 actual variable parameter, an element of the record variable
 list of a WITH statement, or both.

 ACTION Make sure that the identifier does not reference such an area.

A-: 50

607 MESSAGE RELEASE PARAMETER ENCLOSES GETHEAP AREA(S) (PASCERR 607)

RT CAUSE The parameter to release identifies an area containing areas
 the user allocated with GETHEAP procedure, but which have not
 yet been deallocated with the RTNHEAP procedure.

 ACTION RTNHEAP must be used to release areas allocated by GETHEAP.

608 MESSAGE HEAP INTEGRITY LOST / HEAP DATA LOST (PASCERR 608)

RT CAUSE The internal data structures of the heap have become
 inconsistent. The most likely causes are:

 1. A field has been assigned to in a variant different than
 the one specified in a call to new.

 2. A pointer to a disposed area (for example, a dangling
 pointer) has been dereferenced in an assignment.

 3. An SPL routine has directly accessed the DL-DB area
 outside of a region allocated by the GETHEAP procedure.

 4. The DLSIZE intrinsic has been called.

 5. The RTNHEAP procedure was unable to return an area.

 ACTION Verify that none of the likely causes have occurred.

609 MESSAGE BAD ALIGNMENT (PASCERR 609)

RT CAUSE A call to new or dispose passed a bad value for the alignment
 parameter; for example, the type to which the pointer points
 has an alignment which is not recognized by NEW or DISPOSE. The
 only legal values for the alignment are 1, 2, 4, 8, 16, and
 2048.

 ACTION Ensure that the type to which the pointer points has an
 alignment which is one of the above.

 CAUSE A call to P_GetHeap or P_RtnHeap passed a bad value for the
 alignment parameter.

 ACTION Give a correct alignment value.

610 MESSAGE BAD SIZE (PASCERR 610)

RT CAUSE A call to new or dispose passed a bad value for the size of the
 area.

 ACTION None. Usually an internal error.

 CAUSE A call to GetHeap or RtnHeap passed a bad value for the size of
 the area.

 ACTION Change the size parameter.

611 MESSAGE HEAP INTEGRITY LOST / HEAP DATA LOST (PASCERR 608)

RT CAUSE The internal data structures of the heap have become
 inconsistent. The most likely causes are:

A-: 51

 1. A field has been assigned to in a variant different than
 the one specified in a call to new.

 2. A pointer to a disposed area, such as a dangling
 pointer, has been dereferenced in an assignment.

 3. There is a mismatch of data types. Check to see that
 the routine calling NEW or GETHEAP uses the same
 declaration for the pointer as the routine which makes
 an assignment through it (for separate compilations).

 ACTION According to above causes.

620 MESSAGE VALUE NOT WITHIN SUBRANGE (PASCERR 620)

RT CAUSES The value of an ordinal expression is outside of the subrange
 of the target of an assignment statement.

 The value of an ordinal expression appearing as an actual
 parameter is outside the subrange of the formal value
 parameter.

 The value of an ordinal expression appearing in an array
 selector is outside of the subrange of the index type.

 ACTION Ensure that the value is within the subrange.

621 MESSAGE NO CASE LABEL FOR SELECTOR VALUE (PASCERR 621)

RT CAUSE The value of the CASE select expression does not match any of
 the specified CASE constants and no OTHERWISE clause appears.

 ACTION Add a CASE to handle the value that caused the error, or add an
 OTHERWISE clause to handle the value, or change the program
 logic so the value of the selector corresponds with one of the
 CASE labels.

622 MESSAGE INVALID POINTER (PASCERR 622)

RT CAUSE A pointer with the value of NIL was dereferenced.

 A pointer with an undefined value was dereferenced.

 A pointer set by MARK was dereferenced.

 A pointer identifying an area previously deallocated was
 dereferenced.

 ACTION Correct the program logic.

623 MESSAGE VALUE OF PRED UNDEFINED (PASCERR 623)

RT CAUSE The minimum value of an ordinal type or subrange was the
 parameter to PRED. The result is undefined.

 ACTION Do not call PRED with the lowest value of an ordinal type.

624 MESSAGE VALUE OF SUCC UNDEFINED (PASCERR 624)

A-: 52

RT CAUSE The maximum value of an ordinal type or subrange was the
 parameter to SUCC. The result is undefined.

 ACTION Do not call SUCC with the highest value of an ordinal type.

625 MESSAGE SET RANGE ERROR (PASCERR 625)

RT CAUSE An attempt was made to assign a set to a set variable when the
 set contains an element not within the set range of the
 variable.

 An attempt was made to pass a set to a formal parameter when
 the set contains an element not within the set range of the
 parameter.

 ACTION Correct the program logic.

626 MESSAGE ATTEMPT TO DO MOD BY A VALUE LESS THAN OR EQUAL TO ZERO
 (PASCERR 626)

RT CAUSE An attempt was made to perform the MOD operation when the right
 operand is zero or negative.

 ACTION Correct the program logic error that has caused the invalid
 value to be used. Note that MOD is not the remainder operator.

627 MESSAGE SQRT CALLED WITH NEGATIVE ACTUAL PARAMETER (PASCERR 627)

RT CAUSE The value passed to the SQRT function is less than zero.

 ACTION Only call SQRT with non-negative values.

628 MESSAGE LN CALLED WITH NON-POSITIVE ACTUAL PARAMETER (PASCERR 628)

RT CAUSE The value passed to the LN function is less than or equal to
 zero.

 ACTION Only call LN with positive values.

640 MESSAGE BAD PROCEDURAL PARAMETER (PASCERR 640)

RT CAUSE A nonlevel 1 procedure or function was passed as a procedural
 or functional parameter to an external, non-HP Pascal routine.

 ACTION Only level 1 procedures/functions can be passed.

650 MESSAGE STRING OVERFLOW (PASCERR 650)

RT CAUSE An attempt was made to index beyond the maximum length of the
 string.

 ACTION Correct the string operation, standard procedure or function
 call arguments, or the program logic.

651 MESSAGE STRING INDEX EXCEEDS CURRENT LENGTH (PASCERR 651)

A-: 53

RT CAUSE An attempt was made to index beyond the current length of the
 string.

 ACTION Correct the argument or the program logic.

652 MESSAGE DESIGNATED CHARACTER POSITION(S) OUTSIDE STRING (PASCERR 652)

RT CAUSE The specified offset is greater than the current length of the
 string, or less than 1.

 ACTION Correct either the argument or the program logic.

653 MESSAGE DESIGNATED CHARACTER POSITION(S) OUTSIDE PAC (PASCERR 653)

RT CAUSE The specified offset is greater than the upper bound of the
 PAC.

 ACTION Correct the program logic that has caused the invalid value to
 be used; change the value that has caused the error to a
 legitimate value. Also check the type definition.

654 MESSAGE ATTEMPT TO READ PAST END OF STRING (PASCERR 654)

RT CAUSE Attempt was made to read beyond the maximum length of the
 string.

 ACTION Correct the problem that is causing the read past the end of
 the string.

655 MESSAGE INVALID NUMBER OF CHARACTERS SPECIFIED (PASCERR 655)

RT CAUSE The number of characters to be copied, moved, or deleted in the
 predefined string procedure STRMOVE is less than zero.

 ACTION Correct the problem that is generating the negative count.

670 MESSAGE INVALID CHARACTER FOR HEX DIGIT (PASCERR 670)

RT CAUSE The character was not in the set 0..9, A..F, or a..f.

 ACTION Correct the argument to the numeric conversion function to
 contain only valid characters in the particular base.

671 MESSAGE INVALID CHARACTER FOR OCTAL DIGIT (PASCERR 671)

RT CAUSE The character was not in the set 0..7.

 ACTION Correct the argument to the numeric conversion function to
 contain only valid characters in the particular base.

672 MESSAGE INVALID CHARACTER FOR BINARY DIGIT (PASCERR 672)

RT CAUSE The character was not in the set 0..1.

 ACTION Correct the argument to the numeric conversion function to

A-: 54

 contain only valid characters in the particular base.

673 MESSAGE NUMBER OF SIGNIFICANT DIGITS CAUSED OVERFLOW (PASCERR 673)

RT CAUSE The number of significant digits was more than 32 for the
 standard function BINARY, 11 for the function OCTAL, or 8 for
 the function HEX.

 ACTION Correct the argument to the numeric conversion function to be a
 representable value.

690 MESSAGE OPEN ERROR: PHYSICAL FILE COULD NOT BE CLOSED (PASCERR 690)

RT CAUSE An attempt was made to open a file, but the logical file was
 already associated with a physical file and this physical file
 could not be closed prior to opening another physical file.

 ACTION Find out why the file could not be closed.

691 MESSAGE OPEN ERROR: MISMATCH OF LOGICAL/PHYSICAL FILES (PASCERR 691)

RT CAUSE The characteristics of the logical file are not compatible with
 those of the associated physical file. For example, a physical
 file with variable length records may not be opened for direct
 access.

 ACTION Check to make sure that the file characteristics are
 compatible.

692 MESSAGE FILE OPEN ERROR (PASCERR 692)

RT CAUSE An unsuccessful attempt was made to open a file. The file was
 absent or exclusively accessed, or you did not have permission
 to access the file.

 ACTION Check for file's presence and its access protections, and also
 the state of the file when the open is attempted.

693 MESSAGE ERROR OCCURRED WHILE READING FROM FILE (PASCERR 693)

RT CAUSE File system failure or corrupted Pascal FILE variable.

 ACTION Correct the file system problem, or correct program error that
 corrupted Pascal FILE variable, such as array reference out of
 bounds with RANGE OFF or dereferencing an invalid pointer.

694 MESSAGE ATTEMPT TO READ PAST EOF (PASCERR 694)

RT CAUSE The current position is past the last component of the file.

 ACTION Correct the program logic to check EOF before reading file data
 or checking EOLN status. For a direct access file, check that
 disk record to be read is not greater than MAXPOS.

A-: 55

695 MESSAGE ERROR OCCURRED WHILE WRITING TO FILE (PASCERR 695)

RT CAUSE A Pascal FILE variable has been corrupted.

 ACTION Correct the file system problem or program error that is
 corrupting the HP Pascal file such as an array out of bounds
 with RANGE OFF or dereferencing an invalid pointer.

 CAUSE An attempt is made to write past the physical unit of the file.

 ACTION Increase the file's physical limit.

696 MESSAGE WRITE ON READ-ONLY FILE (PASCERR 696)

RT CAUSE An attempt was made to perform an output operation on a file
 opened for input access only.

 ACTION Correct the program logic so it doesn't write to the file or
 open the file in a way that permits writing (such as REWRITE,
 APPEND, or OPEN.) Scratch files can only be created by opening
 them in a way that permits writing.

697 MESSAGE OPEN ERROR: UNABLE TO INITIALIZE POSITION (PASCERR 697)

RT CAUSE A request was made to open a logical file already associated
 with the physical file. However, the file pointer was unable
 to be repositioned at the beginning of the physical file.

 ACTION See if program logic is corrupting the Pascal FILE variable.

698 MESSAGE OPEN ERROR: UNABLE TO EMPTY FILE (PASCERR 698)

RT CAUSE REWRITE was unable to empty the file of its previous contents.

 ACTION Check if program logic is corrupting the Pascal FILE variable.
 Otherwise, it is a file system problem.

699 MESSAGE UNABLE TO CLOSE FILE (PASCERR 699)

RT CAUSE The file could not be closed as requested.

 ACTION Check if you have save permission on your system or make sure
 you have used the CLOSE command to close the file.

700 MESSAGE ERROR OCCURRED DURING DIRECT ACCESS I/O (PASCERR 700)

RT CAUSE An error occurred during a file operation on a direct access
 file.

 ACTION Check if you are specifying a record beyond the file's physical
 limit.

701 MESSAGE ILLEGAL CHARACTER IN NUMBER (PASCERR 701)

RT CAUSE An attempt was made to read a number from a text file, but an
 illegal character was found before a valid number.

A-: 56

 ACTION Correct the input.

702 MESSAGE INPUT VALUE OVERFLOW (PASCERR 702)

RT CAUSE The numeric value read is too large for the type of the
 variable.

 ACTION Correct the input.

703 MESSAGE ATTEMPT TO WRITE PAST PHYSICAL BOUNDS OF FILE (PASCERR 703)

RT CAUSE The current record position is past the physical limit of the
 file.

 ACTION Create a larger size file and re-run the program.

704 MESSAGE READ ATTEMPTED FROM OUTPUT FILE (PASCERR 704)

RT CAUSE An attempt was made to perform an input operation on a file
 opened only for output.

 ACTION Correct the program logic so it doesn't read from the file or
 open the file in a way that permits reading (such as RESET or
 OPEN.)

705 MESSAGE FILE NOT OPENED FOR DIRECT ACCESS (PASCERR 705)

RT CAUSE An attempt was made to perform a direct access file operation
 on a file not opened for direct access with the OPEN procedure.

 ACTION A nontext file must be opened for direct access with OPEN to
 use SEEK, READDIR, WRITEDIR, or POSITION.

706 MESSAGE FILE NOT OPENED (PASCERR 706)

RT CAUSE An attempt was made to access an unopened file.

 ACTION Correct the program logic so it doesn't read from the file or
 open the file in a way that permits reading (such as RESET or
 OPEN.)

707 MESSAGE INVALID OPEN OPTION (PASCERR 707)

RT CAUSE An invalid option was found in the third parameter to one of
 the file opening procedures.

 ACTION Correct the option.

708 MESSAGE COULD NOT OPEN FILE FOR APPEND ACCESS (PASCERR 708)

RT CAUSE A file system failure or corrupted Pascal FILE variable
 prevented opening a variable length record file for append
 access.

 ACTION Either correct the file system problem or correct the program

A-: 57

 error that corrupted the Pascal FILE variable (such as array
 reference out of bounds with RANGE OFF or dereferencing an
 invalid pointer.)

709 MESSAGE FIELD WIDTH LESS THAN ZERO (PASCERR 709)

RT CAUSE The field width in a formatted write of a nonnumeric expression
 was less than zero.

 ACTION Correct the program logic so it doesn't use negative values for
 the field width or decimal position.

710 MESSAGE FIELD WIDTH LESS THAN 1 (PASCERR 710)

RT CAUSE The field width in the formatted write of a numeric expression
 was less than 1.

 ACTION Correct the width specified.

711 MESSAGE NO DIGITS AFTER DECIMAL POINT (PASCERR 711)

RT CAUSE No digits occur after the decimal point in a formatted write of
 a real or longreal expression.

 ACTION Correct the input.

712 MESSAGE INPUT VALUE UNDERFLOW (PASCERR 712)

RT CAUSE The value read is too small to be represented in the variable.

 ACTION Correct the input.

713 MESSAGE FIELD TOO SMALL TO PRINT NUMBER (PASCERR 713)

RT CAUSE This is an internal HP PASCAL error.

 ACTION Contact Hewlett-Packard.

714 MESSAGE INVALID CLOSE OPTION (PASCERR 714)

RT CAUSE An invalid disposition option was found in the second parameter
 to CLOSE.

 ACTION Correct the option.

715 MESSAGE INVALID ENUMERATED IDENTIFIER FOR INPUT (PASCERR 715)

RT CAUSE An attempt was made to read an enumerated identifier from a
 textfile, but either a valid HP Pascal identifier was not found
 or the identifier found was not an identifier of that
 enumerated type.

 ACTION Correct the input.

A-: 58

716 MESSAGE CANNOT WRITE ENUMERATED VALUE (PASCERR 716)

RT CAUSE An attempt was made to write an enumerated variable to a
 textfile, but the current ordinal value of the variable is not
 within the range of the enumerated type.

 ACTION Check the program's logic.

717 MESSAGE INVALID BOOLEAN READ (PASCERR 717)

RT CAUSE An attempt was made to read a Boolean value from a textfile,
 but a non-boolean value was found.

 ACTION Correct the input.

718 MESSAGE INVALID FLOATING POINT NUMBER REPRESENTATION (PASCERR 718)

RT CAUSE An attempt was made to read a real or longreal number from a
 textfile, but an invalid floating point number was found.

 ACTION Correct the program's logic to read the real or longreal from
 the correct place in the file or string, verify that the
 correct file or string is being accessed, or correct the
 corrupted file or string.

719 MESSAGE INVALID CALL TO EOLN (PASCERR 719)

RT CAUSE The EOLN function was called for a file positioned at
 end-of-file. An end-of-line marker precedes the end-of-file in
 every text file, but this final end-of-line marker had already
 been read past.

 ACTION Check for end-of-file before calling EOLN.

720 MESSAGE UNABLE TO LOCK FILE (PASCERR 720)

RT CAUSE An attempt was made to lock a file without specifying the lock
 option in the call to open. This error should never occur
 since in HP Pascal the only way to lock a file is by specifying
 this lock option.

 ACTION None

721 MESSAGE WRITE FIELD WIDTH TOO LARGE (PASCERR 721)

RT CAUSE Either an attempt was made to write a number with a field width
 greater than 254 characters, or an attempt was made to write a
 longreal in fixed point format which would result in an
 excessive number of digits being printed.

 ACTION Reduce the field width if it is greater than 254 characters.
 Write large longreals in floating point format.

722 MESSAGE CANNOT "ASSOCIATE" FILE OPENED BY A PASCAL ROUTINE (PASCERR

A-: 59

 722)

RT CAUSE An attempt was made to associate a file that was not opened
 with a system provided open routine. Instead, the file was
 opened with a PASCAL open routine.

 ACTION Open the file with a system provided open routine such as
 MPE/iX "FOPEN" or HP-UX "OPEN" before using "associate."

723 MESSAGE MISSING OPTIONS TO "ASSOCIATE" (PASCERR 723)

RT CAUSE The option string passed to the associate routine was empty.

 ACTION Pass the appropriate options to the associate routine.

724 MESSAGE INVALID OPTIONS TO "ASSOCIATE" (PASCERR 724)

RT CAUSE An illegal combination of options were passed to "associate."

 ACTION Pass a legal set of options to "associate."

725 MESSAGE LOGICAL FILE PREVIOUSLY ASSOCIATED OR OPENED (PASCERR 725)

RT CAUSE An attempt was made to associate a logical file name to a
 physical file number. However, the file name is already on the
 Pascal open file list. It was placed on the list during a
 previous "associate" or "open." If the file is not
 disassociated or close d, any subsequent attempt to associate
 it will fail.

 ACTION Close the file using the Pascal "close" routine or disassociate
 the file using the Pascal "disassociate" routine.

799 MESSAGE INVALID OPERATING SYSTEM I/O (PASCERR 799)

RT CAUSE An attempt was made to perform some kind of I/O which is
 illegal on this Operating System. This error will never occur
 for normal users.

 ACTION Contact Hewlett-Packard.

808 MESSAGE COERCION REQUIRES $TYPE_COERCION 'STRUCTURAL'$ (808)

CT CAUSE The current $TYPE_COERCION 'string'$ is insufficient to permit
 this type coercion.

 ACTION Set the type_coercion level to that given in the message.

809 MESSAGE COERCION REQUIRES $TYPE_COERCION 'REPRESENTATION'$ (809)

CT CAUSE The current $TYPE_COERCION 'string'$ is insufficient to permit
 this type coercion.

 ACTION Set the type_coercion level to that given in the message.

A-: 60

810 MESSAGE COERCION REQUIRES $TYPE_COERCION 'STORAGE'$ (810)

CT CAUSE The current $TYPE_COERCION 'string'$ is insufficient to permit
 this type coercion.

 ACTION Set the type_coercion level to that given in the message.

811 MESSAGE COERCION REQUIRES $TYPE_COERCION 'NONCOMPATIBLE'$ (811)

CT CAUSE The current $TYPE_COERCION 'string'$ is insufficient to permit
 this type coercion.

 ACTION Set the type_coercion level to that given in the message. This
 is very dangerous coding practice.

813 MESSAGE MULTIPLE DEFINITIONS FOR THIS MODULE (813)

CT CAUSE A definition for this module identifier has already been
 compiled within this compilation unit.

 ACTION Delete extra module definition from the compilation unit.

814 MESSAGE MISSING EXPORT SECTION (814)

CT CAUSE A module must have an EXPORT section.

 ACTION Define an EXPORT section for this module.

Messages 816-7999

816 MESSAGE INVALID IMPORT MODULE SPECIFIED (816)

CT CAUSE The IMPORT module specified could not be found.

 ACTION Check $SEARCH path for missing files or check the module name.

 CAUSE The module name is a duplicate of an identifier previously
 defined.

 ACTION Rename either the module name or the identifier.

817 MESSAGE INVALID MODULE IDENTIFIER (817)

CT CAUSE The identifier is not a module identifier.

 ACTION Check identifier for misspellings.

818 MESSAGE NOT EXPORTED BY THE QUALIFYING IMPORTED MODULE (818)

CT CAUSE The identifier was not exported by the qualifying imported
 module or defined in the module currently being defined.

 ACTION Check the identifier for misspellings.

819 MESSAGE TYPE COERCION PERMITTED FOR DATA ITEMS ONLY (819)

A-: 61

CT CAUSE There was an attempt to type coerce NIL.

 There was an attempt to type coerce a procedure name.

 ACTION Remove the type coercion.

820 MESSAGE BIAS IS LESS THAN MINIMUM ARRAY INDEX (820)

CT CAUSE The bias parameter to a MOVE procedure will always cause an
 index range error before the move is completed.

 ACTION Fix the bias parameter or count parameter.

821 MESSAGE BIAS + COUNT IS GREATER THAN MAXIMUM ARRAY INDEX (821)

CT CAUSE The bias and move count parameters to a MOVE procedure will
 always cause an index range error before the move is completed.

 ACTION Fix the bias parameter or count parameter.

822 MESSAGE BIAS IS NOT ASSIGNMENT COMPATIBLE WITH ARRAY INDEX TYPE (822)

CT CAUSE A bias parameter of a type that is not assignment compatible to
 the index type of an array parameter to a MOVE procedure was
 specified.

 ACTION Fix the bias parameter to be of the same type as the index of
 the array.

823 MESSAGE TARGET ELEMENT TYPE DOES NOT MATCH SOURCE ELEMENT TYPE (823)

CT CAUSE Element type of the source and target parameters to a MOVE
 procedure must be identical.

 ACTION Use a different mechanism to move data.

824 MESSAGE ACTUAL PARAMETER MUST BE AN ARRAY (824)

CT CAUSE The source or target parameter to a MOVE procedure is not an
 array type, which it must be.

 ACTION Declare the type as an array or coerce the parameter to an
 array type.

825 MESSAGE A CRUNCHED STRUCTURE IS REQUIRED HERE (825)

CT CAUSE Any structures nested within a crunched structure must also be
 crunched.

 ACTION Declare the inner structure "crunched".

826 MESSAGE INVALID TYPE FOR COMPONENT OF A CRUNCHED STRUCTURE (826)

CT CAUSE Crunched structures may only have components of certain types.

A-: 62

 ACTION Consult the HP Pascal Reference Manual for details.

828 MESSAGE MISSING DEFAULT VALUE FOR "! " (828)

CT CAUSE This parameter requires a default value to be specified.

 ACTION Supply a default value in the "default_parms" option.

831 MESSAGE ROUTINE OPTION NOT COMPATIBLE WITH PREVIOUS ONE(S) (831)

CT CAUSE A routine was declared with two routine options that are
 incompatible.

 ACTION Re-evaluate the requirements for the routine options.

832 MESSAGE PROCEDURE NESTING TOO GREAT FOR THIS ROUTINE OPTION (832)

CT CAUSE A level 2 or greater routine was declared with a routine option
 that is illegal at a level greater than 1.

 ACTION Either make the routine level 1 or remove the routine option.

833 MESSAGE INVALID ROUTINE OPTION (833)

CT CAUSE A routine option was declared that is not a known routine
 option.

 ACTION Check the spelling.

834 MESSAGE INVALID EXTENSIBLE PARAMETER COUNT (834)

CT CAUSE The count value in an Extensible routine is either less than
 "0" or greater than the number of parameters in the routine.

 ACTION Provide a legitimate count.

835 MESSAGE THIS FORM PERMITTED ONLY IN ROUTINE OPTION (835)

CT CAUSE A keyword value assignment to a formal parameter was used
 outside of a definition option.

 ACTION Remove the keyword assignment and assign by position.

836 MESSAGE THIS FORM NOT PERMITTED IN ROUTINE OPTION (836)

CT CAUSE An empty parameter was specified in a routine option or the
 parameter was an expression.

 ACTION Either supply a value or replace the expression with a
 constant.

837 MESSAGE INVALID FORMAL PARAMETER FOR THIS ROUTINE OPTION (837)

A-: 63

CT CAUSE A routine option specified a formal parameter that was not
 declared in the formal parameter list.

 ACTION Check the formal parameter list.

838 MESSAGE DUPLICATE FORMAL PARAMETER FOR THIS ROUTINE OPTION (838)

CT CAUSE A routine option specified a formal parameter twice.

 ACTION Remove the duplicate specification.

839 MESSAGE ROUTINE OPTION AND FORMAL PARAMETER ORDERING MISMATCH (839)

CT CAUSE The order of parameters in a routine option does not match the
 ordering of the formal parameters in the formal parameter list.

 ACTION Fix the routine option or match the ordering.

841 MESSAGE DEFAULT VALUE FOR VARIABLE FORMAL PARAMETER IS NOT NIL (841)

CT CAUSE A VAR formal parameter was assigned a default value that is not
 NIL.

 ACTION Assign the value NIL to the VAR parameter.

842 MESSAGE DEFAULT VALUE NOT COMPATIBLE WITH FORMAL PARAMETER (842)

CT CAUSE A parameter was assigned a default value whose type does not
 match the type of the formal parameter.

 ACTION Fix the default value.

844 MESSAGE ILLEGAL USE OF READONLY VARIABLE OR PARAMETER (844)

CT CAUSE A READONLY variable or parameter was used as the target of an
 assignment statement or was passed as a VAR parameter.

 ACTION Remove the offending use of the READONLY variable or parameter.

845 MESSAGE INVALID USE OF ROUTINE OPTION (845)

CT CAUSE The routine option is not allowed in this context.

 ACTION Remove the routine option.

846 MESSAGE NOT A FORMAL PARAMETER (846)

CT CAUSE A formal parameter specified in a routine option is not
 declared in the formal parameter list.

 ACTION Check the spelling. Remove the parameter in the routine
 option. Add the parameter to the formal parameter list.

A-: 64

847 MESSAGE NOT A VARIABLE DEFAULT FORMAL PARAMETER (847)

CT CAUSE A formal parameter to the Haveoptvarparm function is not a VAR
 or ANYVAR parameter.

 ACTION Check the formal parameter list. Remove this call to
 Haveoptvarparm.

848 MESSAGE NOT AN EXTENSION FORMAL PARAMETER (848)

CT CAUSE A formal parameter to the Haveextparm function is not an
 extensible parameter.

 ACTION Remove this call or check the count on the Extensible routine
 option.

849 MESSAGE THIS ROUTINE OPTION NOT VALID FOR FUNCTIONS (849)

CT CAUSE The specified routine option is not allowed for a function.

 ACTION Remove this routine option.

850 MESSAGE RECURSIVE USE OF INLINE PROCEDURE/FUNCTION NOT ALLOWED (850)

CT CAUSE A routine declared OPTION INLINE directly or indirectly calls
 itself recursively.

 ACTION Remove the recursion or remove the OPTION INLINE.

851 MESSAGE THIS DIRECTIVE NOT ALLOWED WITH ROUTINE OPTIONS (851)

CT CAUSE A routine directive was declared for a routine that has
 definition options.

 ACTION Remove the directive or the option.

852 MESSAGE NOT A DEFAULT FORMAL PARAMETER (852)

CT CAUSE A formal parameter supplied to the Haveoptvarparm function is
 not a default parameter.

 ACTION Remove this call or check the list of default parameters.

856 MESSAGE AN ADDRESS CAN NOT BE GENERATED FOR THIS VARIABLE (856)

CT CAUSE The parameter to ADDRESS, BADDRESS, or WADDRESS does not reside
 on a storage unit boundary, so a legal address can not be
 generated for it.

 ACTION Do not take the address of this variable.

858 MESSAGE THIS FEATURE IS NO LONGER VALID (858)

CT CAUSE The designated feature has been removed from the language

A-: 65

 definition.

 ACTION Remove the feature from the source code.

859 MESSAGE ANYPTR MAY NOT BE DEREFERENCED (859)

CT CAUSE Pointers of type ANYPTR may not be dereferenced.

 ACTION Assign or type coerce the pointer before dereferencing it.

860 MESSAGE ADDRESS ALIGNMENT INCOMPATIBLE WITH DESIRED USE (860)

CT CAUSE The alignment of the value of the pointer being coerced is
 incompatible with the alignment implied by the type coercion.

 ACTION Ensure that the target type's alignment is smaller than or
 equal to that of the source type.

 CAUSE The alignment of an actual parameter prohibits its use due to
 the required alignment of the VAR or ANYVAR formal parameter.

 ACTION Ensure that the actual parameter has an alignment larger than
 or equal to that of the formal parameter.

861 MESSAGE INCOMPATIBLE SOURCE AND TARGET TYPES FOR COERCION (861)

CT CAUSE The subrange of values for the type of the parameter to the
 type coercion does not overlap with the subrange of values for
 the target type of the type coercion. (ordinal coercion only)

 ACTION None: A subrange variable cannot be coerced to another
 subrange type that does not have some overlap with its original
 type.

862 MESSAGE THIS TYPE COERCION NOT PERMITTED AS REFERENCE PARAMETER (862)

CT CAUSE Ordinal type coercions that require type conversion are not
 permitted as reference parameters.

 Pointer type coercions that require type conversion such as
 short-to-long or long-to-short pointer conversion are not
 permitted as reference parameters.

 ACTION Copy into a variable, and pass that as the reference parameter.

863 MESSAGE THIS FEATURE IS NOT IMPLEMENTED (863)

CT CAUSE The feature in use has not been implemented in the current
 compiler.

 ACTION Remove this feature from the source code.

864 MESSAGE BYTE OFFSET NOT PERMITTED WITH PROCEDURE OR FUNCTION VAR (864)

CT CAUSE ADDR takes a second parameter only if the first parameter is
 not a procedure or function variable.

A-: 66

 ACTION Remove the second parameter.

866 MESSAGE NO ANYVAR FOUND IN FORMAL PARAMETER LIST (866)

CT CAUSE A procedure or function declared with OPTION UNCHECKABLE ANYVAR
 must have an ANYVAR parameter in its formal parameter list.

 ACTION Remove the option or supply an ANYVAR.

868 MESSAGE INTRINSIC MECHANISM ERROR "! ". (868)

CT CAUSE An error has occurred in accessing the intrinsic file.

 ACTION [REV BEG]Check the status indicator returned from the Intrinsic
 Mechanism Access Routines. If the status indicator is one of
 the following values, correct the error.

Value Description

 1 OpenFail The given IM could not be opened.

 2 CloseFail The IM could not be closed.

 3 RetrieveFail An access error occurred in attempting to
 read from the IM.

 4 ReplaceFail An access error occurred in attempting to
 write from the IM.

 5 SpaceExhausted Inadequate space remains in the IM to
 perform requested action.

 14 BadIntrinsicFileThe file being accessed is not an intrinsic
 file.

 If the status indicator is not one of the above values, report
 the error to your HP Service Representative.[REV END]

869 MESSAGE ARRAY ELEMENT SIZE MUST BE >= ONE BYTE. (869)

CT CAUSE Array parameter to Move_Fast must have elements with sizes
 greater than or equal to one byte.

 ACTION Use another mechanism to perform the move.

870 MESSAGE ARRAY MUST BE ALIGNED ON A BYTE BOUNDARY. (870)

CT CAUSE Array parameter to Move_Fast must be aligned on a byte
 boundary.

 ACTION Use another mechanism to move the array.

871 MESSAGE INVALID ARRAY PARAMETERS TO MOVE_FAST. (871)

CT CAUSE Both array parameters to Move_Fast must have elements with the
 same sizes.

 ACTION Use some other mechanism to move the array.

A-: 67

 CAUSE If only one of the parameters is crunched, then the elements
 must be packed in with no wasted space between elements.

 ACTION Check the packing.

872 MESSAGE ARRAY ELEMENTS CANNOT BE CONFORMANT ARRAYS. (872)

CT CAUSE If an array parameter to one of the MOVE routines is a
 conformant array, then its elements must not themselves be
 conformant arrays. The size of the elements must be known at
 compile time.

 ACTION Use a different mechanism like a FOR or WHILE loop to move the
 elements.

873 MESSAGE INVALID MODULE LIBRARY SPECIFIED (873)

CT CAUSE Either the file that is to be used for the search of a module
 or the file that is the Module Library is not of the Module
 Library format.

 ACTION Ensure that the file that was previously created is in Module
 Library format.

874 MESSAGE INVALID IMPORT MODULE ENVIRONMENT (874)

CT CAUSE Trying to import a module which was compiled under a different
 compilation environment.

 ACTION Recompile imported module on current machine.

875 MESSAGE INTRINSIC DECLARATION NOT ENTERED INTO INTRINSIC FILE (875)

CT CAUSE Due to a previous error the intrinsic declaration was not
 entered into the intrinsic file.

 ACTION Correct previous errors.

876 MESSAGE INTRINSIC FILE OVERFLOW (876)

CT CAUSE The physical limit of the intrinsic file has been exceeded.

 ACTION Build a larger intrinsic file using BUILD or a file equation.

877 MESSAGE INVALID DEREFERENCING OF AN IMPORTED POINTER (877)

CT CAUSE Trying to dereference an imported pointer whose type is not
 defined.

 ACTION Import the type that the pointer points to.

 Do not dereference the pointer in this module.

878 MESSAGE INVALID USE OF AN INLINED ROUTINE (878)

A-: 68

CT CAUSE The address of an inlined routine is being requested. This
 happens in the following cases:

 * The procedure is passed as a parameter to WAddress,
 BAddress, Addr or Assert (as the "assert procedure").

 * The procedure is passed as the actual parm when the
 formal parm is a procedural/functional type.

 ACTION Don't use option inline if the procedure is being used in the
 above contexts.

879 MESSAGE UNIMPLEMENTED USE OF AN INLINED ROUTINE "! " (879)

CT CAUSE An inline function appearing as an actual parameter to itself
 is an unimplemented feature.

 ACTION Assign the function result to a local variable and pass the
 local variable as the parameter.

880 MESSAGE $ALIGNMENT$ CONFLICT (880)

CT CAUSE The $ALIGNMENT$ value on a record or array declaration is less
 than the minimum alignment for the record or array (because of
 the alignments of its fields/elements).

 ACTION Specify an alignment for the record or array that is at least
 as large as the maximum alignment of any of its
 fields/elements.

 CAUSE The type on the right hand side of a type declaration is a type
 identifier which has already been defined with $ALIGNMENT$.

 ACTION Remove the conflicting $ALIGNMENT$.

 CAUSE $ALIGNMENT$ is not allowed on string and file types.

 ACTION Don't use $ALIGNMENT$ on string and file types.

881 MESSAGE MIXED MODE OPERATIONS NOT ALLOWED (881)

CT CAUSE An expression which mixes $HP3000_16$ and $HP3000_32$ operands
 is not allowed.

 ACTION Don't mix modes in the expression.

 CAUSE String parameters to predefined string procedures and functions
 and strings used in string expressions require $HP3000_16$.

 ACTION Don't use $HP3000_32$ strings as parameters to string
 predefines or in string expressions.

 CAUSE Real parameters to arithmetic functions require $HP3000_16$
 reals.

 ACTION Don't use $HP3000_32$ reals as parameters to arithmetic
 predefines.

882 MESSAGE MIXED MODE PACKING NOT ALLOWED (882)

CT CAUSE Mixing $HP3000_16$ and $HP3000_32$ in data type definitions is

A-: 69

 not allowed.

 ACTION Don't mix modes in data declarations.

883 MESSAGE COERCION REQUIRES $TYPE_COERCION 'CONVERSION'$ (883)

CT CAUSE The current $TYPE_COERCION$ level is insufficient to permit
 this coercion.

 ACTION Set the $TYPE_COERCION$ level to that given in the message.

884 MESSAGE INVALID TYPE FOR INTRINSIC FORMAL PARAMETER NUMBER ! (884)

CT CAUSE The data type for the formal parameter specified is not an
 acceptable type for an intrinsic declaration (when building an
 intrinsic file using $BUILDINT$).

 ACTION Use an appropriate language-independent type for the intrinsic
 parameter.

885 MESSAGE INVALID TYPE FOR INTRINSIC FUNCTION RETURN (885)

CT CAUSE The data type for the function return specified is not an
 acceptable type for an intrinsic declaration.

 ACTION Specify the correct type.

886 MESSAGE RECURSIVE INCLUDE OF FILE (886)

CT CAUSE The file just specified in an $INCLUDE$ directive is currently
 being included (thus, this is an infinite recursion of
 includes; a fatal error).

 ACTION Remove the recursive include.

887 MESSAGE INVALID FORMAL PARAMETER TYPE (887)

CT CAUSE A data type which is a $HP3000_32$ type is not allowed as a
 formal parameter when $HP3000_16$ is ON.

 ACTION Declare the parameter to be of a $HP3000_16$ type.

888 MESSAGE STATEMENT ! INCOMPATIBLE WITH $ASSUME '!' (888)

CT CAUSE The code generated for the given statement conflicts with the
 given assume option. The compiler has detected incorrect code
 generation.

 ACTION Use a correct ASSUME option or remove the $ASSUME option.

889 MESSAGE CONFORMANT ARRAYS NOT ALLOWED WITH $HP3000_16$ (889)

CT CAUSE Conformant arrays are not implemented when using $HP3000_16$.

 ACTION Do not use this feature with $HP3000_16$.

A-: 70

890 MESSAGE CANNOT EXPORT AN IMPORTED MODULE IN THE OUTER BLOCK (890)

CT CAUSE The word EXPORT was seen after the module name on an import
 statement in the outer block.

 ACTION Remove the word EXPORT.

891 MESSAGE LISTINTR FAILED TO COMPLETE SUCCESSFULLY (891)

CT CAUSE The listing of the intrinsic file terminated unexpectedly.
 Possible reasons are that the listing file could not be opened,
 or the file limit on the listing file was exceeded.

 ACTION Make sure the intrinsic file is present and spelled correctly.
 If the file limit on the listing file was exceeded, build a
 larger file or use a file equation to specify a larger file.

892 MESSAGE UNABLE TO CLOSE FILE '!' (892)

CT CAUSE The compiler was unable to close the specified file. Possible
 reasons are that system file space is exhausted, or that an
 attempt is made to create a file across account boundaries
 (which is not allowed on MPE/iX).

 ACTION Create enough system file space or specify a file within the
 account boundary.

893 MESSAGE I/O MODULE(S) NOT IMPORTED (893)

CT CAUSE A call to a standard procedure such as writeln, readln, write,
 or read was made in the implement section of a module that did
 not import the appropriate module STDINPUT or STDOUTPUT. As a
 result, the default file symbols input and/or output are
 unknown to the compilation unit.

 ACTION Explicitly IMPORT the appropriate system-defined module
 STDINPUT, STDOUTPUT, or both.

894 MESSAGE INVALID USE OF MODULE IDENTIFIER (894)

CT CAUSE Module identifier can only be used with IMPORT.

 ACTION Rename the identifier or remove the module identifier.

900 MESSAGE INCORRECT POINTER ALIGNMENT (900)

RT CAUSE Internal parameter to CHKA.

 ACTION No action is required. Internal use only.

905 MESSAGE INVALID PROCEDURAL/FUNCTIONAL VALUE REFERENCED (905)

RT CAUSE The value does not denote any actual procedure or function.

A-: 71

 The static nesting level of the value does not correspond to
 the current state of the activation stack.

 The value is NIL.

 The procedure or function is uninitialized or contains a bad
 value.

 ACTION Make sure the procedure or function has been initialized
 correctly.

908 MESSAGE MOVE PROCEDURE PARAMETERS OUT OF RANGE (908)

RT CAUSE The range of the move for either the source or target exceeds
 the declared range of the source or target arrays.

 ACTION Check that the expressions defining the start, offset, and
 count are producing correct values.

909 MESSAGE ESCAPE PROCEDURE WITH NO ENCLOSING TRY-RECOVER (909)

RT CAUSE Escape was called by the user and no enclosing TRY-RECOVER was
 declared.

 ACTION Use TRY-RECOVER to catch the escape.

910 MESSAGE ESCAPE EXECUTED WITHOUT AN UNWIND DESCRIPTION FOR THE FRAME
 (910)

RT CAUSE An escape was executed, but one or more of the procedures in
 the program stack does not have an unwind descriptor.

 ACTION Contact Hewlett-Packard.

911 MESSAGE ESCAPE EXECUTED BUT CANNOT UNWIND DESCRIPTOR FOR THE FRAME
 (911)

RT CAUSE An Escape was executed, but one or more of the procedures in
 the program stack has a frame that is not unwindable.

 ACTION Contact Hewlett-Packard.

912 MESSAGE GOTO EXECUTED AND BOTTOM OF FRAME HIT; INTERNAL ERROR (912)

RT CAUSE Internal error occurred while executing a non-local GOTO
 statement.

 ACTION Contact Hewlett-Packard.

913 MESSAGE GOTO EXECUTED WITHOUT AN UNWIND DESCRIPTOR FOR THE FRAME (913)

RT CAUSE A non-local GOTO was executed, but one or more of the
 procedures in the program stack does not have an unwind
 descriptor.

 ACTION Contact Hewlett-Packard.

A-: 72

914 MESSAGE GOTO EXECUTED BUT CANNOT UNWIND DESCRIPTOR FOR THE FRAME (914)

RT CAUSE A non-local GOTO was executed, but one or more of the
 procedures in the program stack has a frame that is not
 unwindable.

 ACTION Contact Hewlett-Packard.

5001 MESSAGE GOTO OUT OF BLOCK TO MULTIPLE ENTRY PT. (5001)

W CAUSE Goto out of block to procedure with multiple entry points.

 ACTION Warning only. No action required.

5002 MESSAGE ! (5002)

W CAUSE FSerr for other messages (see following messages).

 ACTION Warning only.

5004 MESSAGE UNINITIALIZED VARIABLE (SYMID = !) !. (5004)

W CAUSE Optimizer detected uninitialized variable, should have been
 initialized before its use.

 ACTION Warning only.

5080 MESSAGE PREVIOUS VERSION OF ENTRY ! WAS REPLACED (5080)

W CAUSE Code for the entry listed was replaced in the RL (iX only).

 ACTION Warning only. No action required.

5104 to MESSAGE INTERNAL COMPILER ERROR.
5199

W CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

5200 MESSAGE INTERNAL REGISTER TABLE OVERFLOW; PROCEDURE TOO BIG (5200)

CT CAUSE Your procedure is too large for the compiler to handle at once.

 ACTION Break your procedure into two or more pieces.

5202 MESSAGE MAXIMUM AMOUNT OF LOCAL DATA ALLOWED EXCEEDED (5202)

CT CAUSE The maximum amount of local storage allowed has been exceeded.

 ACTION Break your procedure into two or more pieces.

A-: 73

5207 MESSAGE MULTIPLE PROGRAM ENTRY POINTS (5207)

CT CAUSE Possible multiple main programs.

 ACTION Make sure only one main program exists in the compilation unit.

5208 MESSAGE TOO MANY NESTED TRYS IN PROCEDURE (5208)

CT CAUSE The maximum number of nested TRYs allowed in a procedure is
 about thirty.

 ACTION Break up your procedure by putting some of the inner TRY blocks
 into a nested procedure.

5209 MESSAGE CANNOT OPEN OBJECT FILE (5209)

CT CAUSE The compiler cannot open the object file. This may be because:

 (a) You do not have write permission in the group (on
 MPE/iX) or directory (on HP-UX) that you are working in.

 (b) You have exceeded some physical disk space limit.

 ACTION
 (a) Work in a group or directory in which you have write
 permission or get write permission in the current group
 or directory.

 (b) Remove some unnecessary files to make room for your
 object file.

5210 MESSAGE CANNOT CLOSE OBJECT FILE (5210)

CT CAUSE The compiler could not close the object file. This may be
 because:

 (a) You do not have write permission in the group (on
 MPE/iX) or directory (on HP-UX) that you are working in.

 (b) You have exceeded some physical disk space limit.

 ACTION
 (a) Work in a group or directory in which you have write
 permission or get write permission in the current group
 or directory.

 (b) Remove some unnecessary files to make room for your
 object file.

5211 MESSAGE INVALID FILE CODE FOR OBJECT FILE ! (5211)

CT CAUSE File code for object file is not NMOBJ or NMRL.

 ACTION Change file code or use different object file.

5212 MESSAGE DUPLICATE LABELS ARE NOT ALLOWED (5212)

CT CAUSE A duplicate user or internal label exists.

A-: 74

 ACTION Check for duplicate labels. If none are found, report this
 error to your
 HP Service Representative.

5213 MESSAGE CANNOT OPEN ASSEMBLY FILE (5213)

CT CAUSE The compiler could not open the assembly file. This may be
 because:

 (a) You do not have write permission in the group (on
 MPE/iX) or directory (on HP-UX) that you are working in.

 (b) You have exceeded some physical disk space limit.

 ACTION
 (a) Work in a group or directory in which you have write
 permission, or obtain write permission in the current
 group or directory.

 (b) Remove some unnecessary files to make room for your
 assembly file.

5214 MESSAGE CANNOT CLOSE ASSEMBLY FILE (5214)

CT CAUSE The compiler could not close the assembly file. This may be
 because:

 (a) You do not have write permission in the group (on
 MPE/iX) or directory (on HP-UX) that you are working in.

 (b) You have exceeded some physical disk space limit.

 ACTION
 (a) Work in a group or directory in which you have write
 permission or obtain write permission in the current
 group or directory.

 (b) Remove some unnecessary files to make room for your
 assembly file.

5380 MESSAGE ATTEMPT TO OPEN FILE ! FAILED (5380)

CT CAUSE File could not be opened by compiler.

 ACTION Check capabilities, access rights, and permissions of file in
 the group
 (on MPE/iX) or directory (on HP-UX).

5381 MESSAGE FILE ! HAS INVALID FILE CODE; EXPECTED NMRL (5381)

CT CAUSE File code of object file should be NMRL.

 ACTION Use different file for object, build file as NMRL, or do not
 use RL compile option.

5382 MESSAGE ATTEMPT TO ADD MODULE(S) BEYOND MODULE LIMIT OF ! IN FILE !
 (5382)

CT CAUSE Module cannot be added to named RL.

A-: 75

 ACTION Clean up your RL or use a different file for the object.

5383 MESSAGE FILE ! HAS AN INVALID RECORD SIZE. EXPECTED 128W RECORDS.
 (5383)

CT CAUSE The RL has an invalid record size.

 ACTION Build a new RL file with a correct record size.

5400 to MESSAGE INTERNAL COMPILER ERROR.
5999

I CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

6055 MESSAGE OPTDRIVER: BAD OPTIMIZER OPTION; IGNORED. (6055)

W CAUSE Internal compiler error.

 ACTION Report error to your HP Service Representative.

6056 MESSAGE OPTDRIVER: CAN'T OPEN DEBUG FILE FOR OUTPUT; STDOUT USED.
 (6056)

W CAUSE Internal compiler error.

 ACTION Report error to your HP Service Representative.

6057 MESSAGE OPTDRIVER: BAD OPTIMIZATION LEVEL SPECIFIED; DEFAULT OF 0 USED.
 (6057)

W CAUSE Internal compiler error.

 ACTION Report error to your HP Service Representative.

6058 MESSAGE OPTDRIVER: BAD SCHEDULER ALGORITHM SPECIFIED, USED DEFAULT.
 (6058)

W CAUSE Internal compiler error.

 ACTION Check argument to +DS, then report error to your HP Service
 Representative.

6059 MESSAGE OPTDRIVER: !1 BASIC BLOCKS; DROPPING TO LEVEL 1 OPTIMIZATION
 FOR !2. (6059)

W CAUSE Procedure !2 contains more that 500 basic blocks and requires
 an inordinate amount of compile-time resources. Therefore, the
 optimizer will be run at level 1 for !2.

 ACTION No action is necessary. However, on HP-UX, if level 2
 optimization is desired in spite of a possibly lengthy compile
 time, this limit can be overridden by the use of the +Obb num
 option, where num is at least as large as the number given in

A-: 76

 this message.

 ACTION Use the $OPTIMIZE 'BASIC_BLOCKS num $ compiler option.

6110 to MESSAGE INTERNAL OPTIMIZER ERROR.
6199

CT CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

6200 to MESSAGE ALIASER: OUT OF MEMORY.
6299

CT CAUSE The optimizer ran out of virtual memory.

 ACTION The easiest workaround is to break your compilation unit into
 two or more pieces.

 On HP-UX, this error may also be produced if the system runs
 out of swap space, so another possible work-around is to
 increase the amount of swap space available to the system (see
 your HP-UX system administrator about this). However, this
 action should be taken only as a last-resort.

 On MPE/iX, the compiler heap space can be increased by running
 PASCALXL.PUB.SYS with a larger NMHEAP:

 :RUN PASCALXL.PUB.SYS;NMHEAP=120000000 ...

6305 MESSAGE RALLOC: OUT OF GENERAL REGISTERS. (6305)

CT CAUSE Possible overly complex expression.

 ACTION Simplify large or complex expression.

6306 MESSAGE RALLOC: OUT OF CALLEE SPACE REGISTERS. (6306)

CT CAUSE Long pointer expression too complex.

 ACTION Simplify long pointer expressions.

6307 MESSAGE RALLOC: OUT OF CALLER SPACE REGISTERS. (6307)

CT CAUSE Long pointer expression too complex.

 ACTION Simplify long pointer expressions.

6308 MESSAGE RALLOC: OUT OF CALLEE FLOATING POINT REGISTERS. (6308)

CT CAUSE Floating point expression too complex.

 ACTION Simplify floating point expressions.

A-: 77

6309 MESSAGE RALLOC: OUT OF CALLER FLOATING POINT REGISTERS. (6309)

CT CAUSE Floating point expression too complex.

 ACTION Simplify floating point expressions.

6310 to MESSAGE OUT OF MEMORY
6365

CT CAUSE The optimizer ran out of virtual memory.

 ACTION The easiest workaround is to break your compilation unit into
 two or more pieces.

 On HP-UX, this error may also be produced if the system runs
 out of swap space, so another possible work-around is to
 increase the amount of swap space available to the system (see
 your HP-UX system administrator about this). However, this
 action should be taken only as a last-resort.

 On MPE/iX, the compiler heap space can be increased by running
 PASCALXL.PUB.SYS with a larger NMHEAP:

 :RUN PASCALXL.PUB.SYS;NMHEAP=120000000 ...

6400 to MESSAGE INTERNAL COMPILER ERROR.
6999

I CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

ON HP-UX, the following warnings are generated if you pass a model number
that is not found in the /usr/lib/sched.models file.

7000 MESSAGE MODEL NUMBER IS UNKNOWN; WILL DEFAULT TO arch-rev CODE
 GENERATION. (7000)

W CAUSE The model number given on a +DA option is not known to the
 compiler.

 ACTION The default code generation is as specified in the warning. If
 this is not the desired target architecture revision, the
 version may be specified using an architecture revision (such
 as 1.1) instead of a model number on the +DA option.

7001 MESSAGE MODEL NUMBER IS UNKNOWN; DEFAULT INSTRUCTION SCHEDULING IS
 USED. (7001)

W CAUSE The model number given on a +DS option is not known to the
 compiler.

 ACTION The default instruction scheduling is based on the most recent
 processor implementation known to the compiler. If this is not
 what is desired, an alternate model number may be specified.

A-: 78

On HP-UX, the following warning will be generated if the file
/usr/lib/sched.models cannot be found.

7002 MESSAGE CANNOT OPEN /usr/lib/sched.models. (7002)

W CAUSE The file /usr/lib/sched.models does not exist or cannot be
 opened for reading.

 ACTION Check protections on /usr/lib/sched.models. If it does not
 exist, contact your HP Service Representative.

On HP-UX, the following warning is generated if you pass arguments that
do not conform to the expected format.

7003 MESSAGE IMPROPER ARGUMENT TO +DA OR +DS OPTION. (7003)

W CAUSE An improper argument was given to the +DA or +DS option.

 ACTION Check the reference manual for information on the correct form
 of the option.

7100 to MESSAGE INTERNAL COMPILER ERROR.
7109

I CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

7110 MESSAGE DEBUG INFORMATION MAY BE CORRUPT; "! " UNRESOLVABLE
 REFERENCE(S). (7110)[REV BEG]

I CAUSE User errors.

 ACTION Correct all user errors or remove -g or $SYMDEBUG options and
 recompile.

 If there are no user errors, report error to your HP Service
 Representative.[REV END]

7200 MESSAGE INTERNAL TABLE OVERFLOW (7200)

CT CAUSE Source file too large.

 ACTION Split program up into smaller files.

7201 MESSAGE NEW_SLC_BLOCK: OUT OF MEMORY. (7201)

CT CAUSE Compiler ran out of virtual memory.

 ACTION See message 6200.

7202 MESSAGE INIT_LINK: OUT OF MEMORY. (7202)

A-: 79

CT CAUSE Compiler ran out of virtual memory.

 ACTION See message 6200.

7203 MESSAGE ALLOCATE_BYTES: OUT OF MEMORY. (7203)

CT CAUSE Compiler ran out of virtual memory.

 ACTION See message 6200.

7204 MESSAGE ERROR IN WRITING TO OUTPUT FILE. (7204)

CT CAUSE I/O error writing to object file.

 ACTION Check for full file system (HP-UX, MPE/iX) or an object file
 that too small (MPE/iX).

7205 MESSAGE UNABLE TO ALLOCATE SPACE FOR OBJECT IN RL. (7205)

CT CAUSE I/O error writing to RL.

 ACTION Check for an RL file that is too small (MPE/iX).

7206 MESSAGE UNABLE TO ADD OBJECT TO RL. (7206)

CT CAUSE I/O error writing to RL.

 ACTION Check for an RL file that is too small, write permission
 (HP-UX), or capability (MPE/iX).

7207 MESSAGE OBJECT IS TOO BIG TO FIT INTO RL. (7207)

CT CAUSE Object size is too large for the RL requested.

 ACTION Check for an RL file that is too small or split up object
 (MPE/iX).

7400 to MESSAGE INTERNAL COMPILER ERROR.
7999

I CAUSE The compiler is in error.

 ACTION Report error to your HP Service Representative.

A-: 80

B-: 1

Appendix B ASCII Character Codes
Table B-1 maps each ASCII character to its decimal and hexadecimal
code, its ASCII symbol, and its name. Each code is stored in eight bits;
thus the decimal codes are between 0 and 255, and the hexadecimal codes
are between 0 and FF.

Table B-1. ASCII Character Codes

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
0	00	NUL	Null
--
1	01	SOH	Start of heading
--
2	02	STX	Start of text
--
3	03	EXT	End of text
--
4	04	EOT	End of transmission
--
5	05	ENQ	Enquiry
--
6	06	ACK	Acknowledge
--
7	07	BEL	Bell
--
8	08	BS	Backspace
--
9	09	HT	Horizontal tab
--
10	0A	LF	Line feed
--
11	0B	VT	Vertical tab
--
12	0C	FF	Form feed
--
13	0D	CR	Carriage return
--
14	0E	SO	Shift out
--

B: 2

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
15	0F	SI	Shift in
--
16	10	DLE	Data link escape
--
17	11	DC1	Device control 1
--
18	12	DC2	Device control 2
--
19	13	DC3	Device control 3
--
20	14	DC4	Device control 4
--
21	15	NAK	Negative acknowledgement
--
22	16	SYN	Synchronous idle
--
23	17	ETB	End of transmission block
--
24	18	CAN	Cancel
--
25	19	EM	End of medium
--
26	1A	SUB	Substitute
--
27	1B	ESC	Escape
--
28	1C	FS	File separator
--
29	1D	GS	Group separator
--
30	1E	RS	Record separator
--
31	1F	US	Unit separator
--

B-: 3

32	20	SP	Space
--
33	21	!	Exclamation mark
--
34	22	"	Quotation mark
--
35	23	#	Number sign
--

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
36	24	$	Dollar sign
--
37	25	%	Percent sign
--
38	26	&	Ampersand
--
39	27	'	Apostrophe
--
40	28	(Left parenthesis
--
41	29)	Right parenthesis
--
42	2A	*	Asterisk
--
43	2B	+	Plus sign
--
44	2C	,	Comma
--
45	2D	-	Minus sign
--
46	2E	.	Full stop
--
47	2F	/	Solidus
--

B: 4

48	30	0	Zero
--
49	31	1	One
--
50	32	2	Two
--
51	33	3	Three
--
52	34	4	Four
--
53	35	5	Five
--
54	36	6	Six
--
55	37	7	Seven
--
56	38	8	Eight
--

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
57	39	9	Nine
--
58	3A	:	Colon
--
59	3B	;	Semicolon
--
60	3C	<	Less-than sign
--
61	3D	=	Equal sign
--
62	3E	>	Greater-than sign
--
63	3F	?	Question mark
--

B-: 5

64	40	@	Commercial "at" sign
--
65	41	A	Uppercase A
--
66	42	B	Uppercase B
--
67	43	C	Uppercase C
--
68	44	D	Uppercase D
--
69	45	E	Uppercase E
--
70	46	F	Uppercase F
--
71	47	G	Uppercase G
--
72	48	H	Uppercase H
--
73	49	I	Uppercase I
--
74	4A	J	Uppercase J
--
75	4B	K	Uppercase K
--
76	4C	L	Uppercase L
--
77	4D	M	Uppercase M
--

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
78	4E	N	Uppercase N
--
79	4F	O	Uppercase O
--

B: 6

80	50	P	Uppercase P
--
81	51	Q	Uppercase Q
--
82	52	R	Uppercase R
--
83	53	S	Uppercase S
--
84	54	T	Uppercase T
--
85	55	U	Uppercase U
--
86	56	V	Uppercase V
--
87	57	W	Uppercase W
--
88	58	X	Uppercase X
--
89	59	Y	Uppercase Y
--
90	5A	Z	Uppercase Z
--
91	5B	[Left bracket
--
92	5C	\	Reverse solidus
--
93	5D]	Right bracket
--
94	5E	^	Circumflex accent
--
95	5F	_	Underline
--
96	60	‘	Grave accent
--
97	61	a	Lowercase a
--
98	62	b	Lowercase b
--

B-: 7

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
99	63	c	Lowercase c
--
100	64	d	Lowercase d
--
101	65	e	Lowercase e
--
102	66	f	Lowercase f
--
103	67	g	Lowercase g
--
104	68	h	Lowercase h
--
105	69	i	Lowercase i
--
106	6A	j	Lowercase j
--
107	68	k	Lowercase k
--
108	6C	l	Lowercase l
--
109	6D	m	Lowercase m
--
110	6E	n	Lowercase n
--
111	6F	o	Lowercase o
--
112	70	p	Lowercase p
--
113	71	q	Lowercase q
--
114	72	r	Lowercase r
--
115	73	s	Lowercase s

B: 8

--
116	74	t	Lowercase t
--
117	75	u	Lowercase u
--
118	76	v	Lowercase v
--
119	77	w	Lowercase w
--

Table B-1. ASCII Character Codes (continued)

--
Decimal	Hexadecimal	ASCII	Name
Code	Code	Symbol	
--
120	78	x	Lowercase x
--
121	79	y	Lowercase y
--
122	7A	z	Lowercase z
--
123	7B	{	Left brace
--
124	7C			Vertical line
--
125	7D	}	Right brace
--
126	7E	~	Tilde
--
127	7F	DEL	Delete
--

C- 1

Appendix C Compiler Limits and Values

These compiler limits are maximum values that you cannot change:

Number of: Maximum Value

Bits per structure 2147483600

Characters per identifier 132

Characters per source line 132

Characters per string 268435447

Elements per array 268435455

Elements per enumerated type 17367

Elements per set 2147483616

Nested IF options * 12

Nested INCLUDE options * Operating system dependent

Nested PUSH options * 15

Nested TRY-RECOVER constructs 30

* If a program contains one INCLUDE option, the number of nested
 INCLUDE options is one. If the included file contains an INCLUDE

option, the number of nested INCLUDE options is two, and so on. The
 definitions of the number of nested IF options and the number of
 nested PUSH options are analogous.

The following values are implementation defined:

minint
maxint
e
pi

C-: 2

	Top of Document
	Preface
	Chapter 1 Introduction
	Chapter 2 Language Elements
	Chapter 3 Data Types
	Chapter 4 Expressions
	Chapter 5 The Declaration Section
	Chapter 6 Statements
	Chapter 7 Program Structure
	Chapter 8 Procedures and Functions
	Chapter 9 Standard Routines
	Chapter 10 Input and Output
	Chapter 11 System Programming Extensions
	Chapter 12 Compiler Options

