
Technical Addendum

for HP Link Editor/iX

ABCDE

HP Part No. 32650-90845

Printed in U.S.A. October 1995

1

E1095

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright
laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

Copyright c
 1987 - 1995 by Hewlett-Packard Company

Contents

1. Technical Addendum for HP Link Editor/iX
A Technical Addendum Is: 1
Overview . 1
Dependent Libraries . 2
Example . 2

New Commands for Maintaining Executable Libraries 3
ALTXL Command 3
Syntax: . 3
Parameters . 3
Examples . 4

BUILDXL Command 5
Syntax . 5
Example: . 5

Shared Global Data . 6
LKSHAREDATA Variable 7

Compiling for Shared Global Data 8
Global Data Limit 8

Linking for Shared Global Data 10
SHARE Option . 10
New LIBC/iX Library 11
Linking a C Application with C Libraries 11
Guidelines for the Linkage Method 12

POSIX Links . 12
Hiding Data Symbols 12
Linking With Hidden Data Symbols 13
Revealing Data Symbols 14

Building a Shared Global Data XL 15
Adding an Object File to an XL 15
Manipulating XLs . 17
Listing Program Files and XLs 18

1

Loading a Shared Global Data Program File or XL 20
Loader Binding Rules 20
Compatibility . 21
Linking with Compatibility Mode Files 21

Advanced Topics . 22
External Data References 22
Duplicate Data . 23

Sample Listings . 26
Symbol Transformation Example 26
LISTPROG Example 28
LISTXL Example . 30

Diagnostic Messages . 32
User Errors (1000-1499) 32
Warning Messages (1500-1999) 32
Language Subsystem Errors (3000-3999) 33

Glossary

2

Tables

1-1. Shared Global Commands or Syntax 6
1-2. Library Symbol Table 7
1-3. Compiler Options for Additional External Data References . . 9

3

Technical Addendum for HP Link Editor/iX

A Technical Addendum Is:

A Hewlett-Packard technical addendum is an informal document that delivers
the latest information to customers and support personnel before formal
revisions to the HP manual sets. The characteristics of these addendums are
listed below:

Technical addendums are published when signi�cant improvements are made
to an HP product.

Technical addendums supplement the information contained in the existing
manual set. They are not sets of replacement pages.

Information from the technical addendum will be incorporated into
the revision of the manual set that is printed after the issue date of the
addendum.

Keep these pages with your existing HP documentation until the next formal
revision of the manual set.

Overview

This document describes changes made to the HP Link Editor for the HP 3000
Series 900 MPE/iX 5.5 release for dependent libraries and sharing global data
in executable libraries (XLs) and programs (NMPRGs). It complements the
information contained in the HP Link Editor/iX Reference Manual .

Technical Addendum for HP Link Editor/iX 1

Dependent Libraries

Dependent libraries are a new feature available on MPE/iX. They are libraries
that must be loaded in addition to the executable library (XL) currently
loaded.

When a program runs and the loader loads each XL, it checks the dependent
library list for that XL and loads any dependent libraries that have not been
loaded already. This allows the dependencies to be isolated within the libraries.
You only need to specify the �rst-level libraries when linking or running the
program.

Dependent libraries can be speci�ed when you build the XL or by using the
new ALTXL command (see below) to alter an existing XL's dependent library.

Example

If an XL named lib1 was built with dependent libraries lib2 and lib3, and
lib2 had its own dependent libraries lib4 and lib5, the load graph would
look like the following:

lib1 -> lib2 -> lib4 -> lib5 -> lib3 -> XL.PUB.SYS

2 Technical Addendum for HP Link Editor/iX

New Commands for Maintaining Executable Libraries

ALTXL Command

This ALTXL command changes the dependent library string for an executable
library (XL). It accepts two options, both are required: the target XL name
and the dependent library string. Dependent libraries can be speci�ed in an
indirect �le or directly in the argument to the LIB= parameter.

When the Link Editor builds an XL, it inserts an MPE Program Auxiliary
Header after the LST header. Any dependent library string for the XL is
inserted in this header.

The dependent library string algorithm for ALTXL is similar to the ALTPROG

string algorithm. If a new dependent library string is the same size or smaller
than the current dependent library string in the XL, the Link Editor overwrites
the old string. If the new string is larger than the old string, the Link Editor
attempts to write the new string at the end of the LST string table. If there
is not enough room in the string table, an error message is displayed. If this
happens, you can only add or change dependent library strings in the XL by
rebuilding the XL.

Syntax:

ALTXL XL=xl name; LIB=dependent library

Parameters

xl name Names the executable library whose dependent library
list is to be altered.

dependent library Names a list of dependent libraries that must be loaded
when this XL is loaded. Each dependent library must
have a �lecode of NMXL.

When you want to include several libraries, you can
name each library directly, or you can name a single �le
that contains a list of the libraries you want to include.
If you use this last, indirect method, you must precede
the indirect �le name with a caret symbol (^).

Technical Addendum for HP Link Editor/iX 3

Note You must supply at least one dependent library since the LIB=
parameter is required.

Examples

:PRINT MYINDF1

NEWLIB.LIB.MYACCT

LIB2.LIB.SYS

:LINKEDIT

LinkEd> ALTXL MYLIB1; LIB=^MYINDF1
LinkEd> ALTXL NEWLIB.LIB.MYACCT; LIB=NEW2.TMP.SYS

LinkEd> EXIT

:RUN MYOUT;XL="MYLIB1"

The loader loads the program �le, MYOUT, then the executable library,
MYLIB1. Since MYLIB1 has dependent libraries, NEWLIB.LIB.MYACCT and
LIB2.LIB.SYS, the loader loads them. NEWLIB.LIB.MYACCT has a dependent
library NEW2.TMP.SYS so it is loaded after NEWLIB.LIB.MYACCT and before
LIB2.LIB.SYS. The load graph is as follows:

MYOUT->MYLIB1->NEWLIB.LIB.MYACCT->NEW2.TMP.SYS->LIB2.LIB.SYS

:LINKEDIT

LinkEd> ALTXL MYLIB2;LIB=MYXL.PUB.LINKER, MYXL2.TMP.SYS

LinkEd> EXIT

:RUN MYOUT;XL="MYLIB2"

When MYLIB2 is loaded, the loader loads MYXL and MYXL2. If either of these
libraries has its own dependent libraries, each new dependent library is loaded,
in order, after the library that contains the dependency.

4 Technical Addendum for HP Link Editor/iX

BUILDXL Command

This command now accepts a third parameter, LIB=, used to specify dependent
libraries. This parameter accepts an indirect �le or a list of fully quali�ed
library names. The Link Editor concatenates the dependent library names into
a string and inserts the string into the LST Program Auxiliary header for the
loader to search at run time.

Syntax

BUILDXL XL=xl �le
�
;LIMIT=max modules

�

�
;LIB=dependent library

�

Where:

dependent library Names a dependent library or a list of dependent
libraries that must be loaded when this XL is loaded.
Each dependent library must have a �lecode of NMXL.

When you want to include several libraries, you can
name each library directly, or you can name a single �le
name that contains a list of the libraries you want to
include. If you use this last, indirect method, you must
precede the indirect �le name with a caret symbol (^).

If the LIB= option is not speci�ed, the XL will be built without any dependent
libraries.

Example:

BUILDXL MYXL2;LIB=^MYINDF

This command creates an executable library named MYXL2, that will have
dependent libraries as speci�ed in MYINDF. When MYXL2 is loaded, its
dependent libraries are also loaded.

Technical Addendum for HP Link Editor/iX 5

Shared Global Data

Shared global data are data de�nitions, initialized or uninitialized, that are
exported to or imported from other compilation units. The data de�nitions are
visible to other modules if the de�nitions are exportable. This means that they
are not marked as hidden and, therefore, not ignored by the loader. Table 1-1
shows the languages and the appropriate shared global command and syntax.

Table 1-1. Shared Global Commands or Syntax

Language Command

HP Pascal/iX $GLOBAL$

$EXTERNAL$

Module variables

HP C/iX globals

HP FORTRAN/iX common

HP COBOL II/iX EXTERNAL clause

HP RPG/iX RLABL

Note Shared global data as de�ned in this addendum means each
process will have its own copy of the data. This is not to be
confused with all processes sharing one copy of the data.

Each program �le and executable library (XL) contains a Library Symbol Table
(LST) at the beginning of the �le. Normally, during linking, the Link Editor
places unresolved references to code in an import list. With shared global data,
the Link Editor also places unresolved references to data and data exports in
the import list. At run time, the loader resolves the symbols in the import
list by searching the LST in the program �le and in one or more XLs. The
loader builds an External Reference Table (XRT) that tracks externally-called
procedures and allows them to be shared.

6 Technical Addendum for HP Link Editor/iX

Additionally, the loader initializes a Data Cross Reference Table (DXRT) with
data de�nition addresses. The DXRT holds entries for all data references that
need a corresponding de�nition. This allows externally referenced data to be
tracked and shared.

Table 1-2 shows the data types and scopes that are inserted into the Library
Symbol Table.

Table 1-2. Library Symbol Table

Data Types Scope

Data Universal An initialized data symbol de�ned in an object module that is
visible (exportable) to other object modules.

Data Unsat A data symbol that is referenced by an object module but not
de�ned in it. For shared global data, these symbols are now
allowed in XLs and program �les.

Storage Universal An uninitialized data symbol created when an uninitialized data
declaration is made. Note that if no corresponding Data
Universal is found for it during linking, the scope is changed
from Unsat to Universal and the symbol is exportable and can
now be used to satisfy references (imports).

LKSHAREDATA Variable

You can now set a job or session variable called LKSHAREDATA. If LKSHAREDATA
is set to TRUE, all subsequent linking is for shared code and data. This is
equivalent to linking with the ;SHARE option.

If LKSHAREDATA is not set or is set to FALSE, all subsequent linking is for shared
code only . If you want to share data, the ;SHARE option must be speci�ed on
the link line.

Caution Setting this variable a�ects all linking done in the job or
session. There is no option to turn o� sharing data during a
link if this variable is set to TRUE. If logon UDCs are used, this
variable can be set for each user, all users in an account, or all
users on the system.

Technical Addendum for HP Link Editor/iX 7

Compiling for Shared Global Data

To share global data across object modules, you do not need to recompile an
application. You only need to relink the application. Refer to \Linking for
Shared Global Data".

Global Data Limit

There is a limit to the number of data references (approximately 2000) allowed
per program �le and per module in an XL. If this limit is exceeded, the Link
Editor emits an error message instructing you to recompile the appropriate
modules to allow more external data references.

Refer to \Diagnostic Messages" for the error message.

Use the LISTPROG command with the ;DATA and ;VALUE options to list the
data symbols in a program �le. Count the number of Data Unsats listed to
determine how close the program �le is to the limit.

Use the LISTXL command with the ;DATA and ;VALUE options to list the data
symbols in an XL. Count the number of Data Unsats listed per module to
determine how close a module is to the limit. If an XL is close to or over the
limit, you can restructure the module so that it does not go over the limit for
data references. You can also hide symbols with HIDERL; refer to \Hiding Data
Symbols" for more information. If you do not restructure your modules, you
must recompile them using one of the new compiler options.

8 Technical Addendum for HP Link Editor/iX

Table 1-3 lists the new compiler options available to allow more external data
references.

Table 1-3.

Compiler Options for Additional External Data References

Option Languages

$MORE_GLOBALS ON$ MPE/iX compiler option available on HP Pascal/iX.

$CONTROL MOREGLOBALS MPE/iX compiler option available on HP COBOL II/iX.

+k Command-line option, available on HP C/iX.

Note If an application needs to be recompiled and the compiler does
not support one of the new compiler options, the application
can either be restructured to have fewer global data references
or relinked without specifying the SHARE option. Refer to
\SHARE Option" for more information.

Technical Addendum for HP Link Editor/iX 9

Linking for Shared Global Data

To link a program �le for shared global data, it is not necessary to specify RL
�les at link time if you want any unresolved data references to be satis�ed
at load time by an XL. The default behavior remains linking for non-shared
data. To link for shared data, you must use the new SHARE option. The loader
automatically searches XL.PUB.SYS at run-time if you did not specify it at
link time. You can override an XL speci�ed at link time by specifying the XL
at run time using the XL= option in the RUN command.

SHARE Option

The SHARE option instructs the Link Editor to link for shared data. Linking for
shared data means all non-hidden Data Universals and Storage Universals are
exported, and all Data Unsats and Storage Universals are imported. If you
want to selectively export Data Universals and Storage Universals, you can
take the de�nitions out of the source code of the program �le or library and
add the objects to an RL. Use the HIDERL command to hide the de�nitions and
add the resulting RL to an XL. At link time, specify the XL on the link line so
the loader will know it needs to search that XL �rst. The data symbols you
want hidden are not exportable from the XL or program �le.

Example

LINK FROM=^indirect_file;SHARE;XL=MYXL;TO=MYOUT;RL=LIBCSHR.LIB.SYS

The object �les in indirect_file and the RL LIBCSHR are linked to form
an executable program �le called MYOUT. At run time, the loader loads the
XL MYXL followed by XL.PUB.SYS and attempts to satisfy unresolved data
references in MYOUT with data exports in MYXL and XL.PUB.SYS. The loader
issues an error message if it cannot resolve a data reference.

Note If you are using C and want to link for shared global data,
you must link with LIBCSHR (see \New LIBC/iX Library,"
following). If you do not want to link for shared global data
you can continue to link with LIBCINIT.

10 Technical Addendum for HP Link Editor/iX

New LIBC/iX Library

A new C library, libcshr.lib.sys, takes advantage of the Shared Global
feature. This library allows you to link your program with other executable
libraries (XLs) in addition to xl.pub.sys. You can use it in the same way
you use other libc libraries, but you must have the new share keyword. For
example:

link from=myobj;to=myprog;rl=libcansi.lib.sys,libcshr.lib.sys;share

This links an ANSI-conforming application myobj into a program �le myprog
with all libc functions and global variables resolved in xl.pub.sys.

Note The keyword share must be speci�ed since the default linking
mode is not shared.

Linking shared programs results in a much smaller application and allows
you to take advantage of any new system releases without having to relink.
Existing programs and scripts that use libc.lib.sys and libcinit.lib.sys

continue to work unchanged. However, libcshr.lib.sys is the recommended
library to use. The scripts ccxllk.pub.sys and ccxlgo.pub.sys link with
libcshr.

Linking a C Application with C Libraries

There are three suggested methods for linking a C application and libraries:

1. Archive Linking - Link with LIBC which is nonsharable. All libc functions
are completely integrated into the application.

link from=cobj;to=cprog;rl=libcansi.lib.sys,libcinit.lib.sys

2. Semi-Shared Linking - Link with LIBCINIT which is designed to reinitialize
the XL.PUB.SYS global pointers and redirect them to the program's globals
at process startup. Most of the libc functions are in XL.PUB.SYS and are
shared partly by the application.

link from=cobj;to=cprog;rl=libcansi.lib.sys,libc.lib.sys

Technical Addendum for HP Link Editor/iX 11

3. Shared Linking - Link with LIBCSHR, which is completely sharable. All the
libc functions are in XL.PUB.SYS . They are shared by the application's
linked executable libraries. It is the recommended method for sharing global
data.

link from= cobj;to=cprog;rl=libcansi.lib.sys,libcshr.lib.sys;share

Guidelines for the Linkage Method

Use non-shared linkage for self-contained and highly portable applications.
This is the traditional linkage method.

Use semi-shared linkage for applications that want partial sharing but
maintain a high degree of compatibility. This is the current shared linkage
method.

Use shared linkage for applications that want maximum sharing without any
of the semi-shared linkage restrictions or workarounds. This is the new, true
shared linkage method.

POSIX Links

All POSIX links using c89 or /lib/libc.a/ are linked for shared code and
data.

Hiding Data Symbols

You are now able to hide data symbols as well as code symbols in RLs. The
HIDERL command sets a bit called the hidden bit for each symbol marked as
hidden in an RL. When the RL is added to an XL or program �le, the Link
Editor does not build LST export records for these symbols. The symbols are
not visible or accessible to modules in the same XL, other XLs, or program
�les.

There are two options to the HIDERL command to support hiding data symbols:

ALL_DATA Speci�es that all Data Universals and Storage Requests are
marked as hidden in the RL. The hidden bit is set in the
symbol dictionary for these symbols.

12 Technical Addendum for HP Link Editor/iX

DATA=data item Speci�es that data item is marked as hidden in the RL.
Note that data item is case-sensitive and must be a Data
Universal or Storage Request.

As with code symbols, the hiding takes place when the RL is added to the XL
or program. Therefore, if you link with an RL that has hidden symbols, those
hidden symbols are still exportable to the program �le and can satisfy imports
in the program �le. When the RL is added to an XL or program �le, no LST
import or export record is generated in the XL's LST area for the hidden
symbols. The hidden symbols are therefore not sharable with other modules.
Like Code Unsats, Data Unsats cannot be hidden even though the hidden bit is
set.

Duplicate data symbols are allowed in RLs. When hiding data or storage
symbols, the Link Editor hides each occurrence of the symbol. For example, if
there are �ve data or storage symbols called foo, all �ve are marked as hidden.

Using HIDERL to hide data symbols is the recommended way to keep data
symbols internal (that is, not externally visible) to the load module.

Example

HIDERL RL=MYRL;DATA=foo

HIDERL RL=MYRL2;ALL_DATA

ADDXL FROM=MYRL;TO=MYXL

ADDXL FROM=MYRL2;TO=MYXLA2

MYXL does not export foo because it is marked as hidden. foo is not visible to
any other module in MYXL, other XLs, or program �les. MYXLA2 does not export
any data symbols because all data symbols are marked as hidden.

Linking With Hidden Data Symbols

Because data in RLs can be hidden, when linking or doing an ADDXL;MERGE

with modules that have hidden data symbols, if a hidden data symbol is
processed, all occurrences of that symbol must also be marked as hidden.
If one of the occurrences is not marked as hidden, the Link Editor emits a
warning message and marks the symbol as hidden.

Refer to \Diagnostic Messages" for the warning message.

Technical Addendum for HP Link Editor/iX 13

Revealing Data Symbols

You are now able to reveal, or unhide, data symbols as well as code symbols in
RLs. The REVEALRL command unsets the hidden bit for each symbol speci�ed.
When the RL is added to an XL, the Link Editor exports all unhidden
symbols. The symbols become visible and accessible to the same XL, other
XLs, and program �les.

There are two new options to the REVEALRL command to support unhiding
data symbols:

ALL_DATA Speci�es that all Data Universals and Storage Requests are
marked as unhidden in the RL. The hidden bit, if set, is
unset for these symbols.

DATA=data item Speci�es that data item is marked as unhidden in the RL.
Note that data item is case-sensitive and must be a Data
Universal or Storage Request.

As with code symbols, the revealing takes place when the RL is added to the
XL or program �le . When this happens, the symbols become sharable with
other modules.

Duplicate data symbols are allowed in RLs. When revealing data or storage
symbols, the Link Editor reveals each occurrence of the symbol. For example, if
there are �ve data or storage symbols called foo, all �ve are revealed.

Example

REVEALRL RL=MYRL;DATA=foo

REVEALRL RL=MYRL2;ALL_DATA

ADDXL FROM=MYRL;TO=MYXL
ADDXL FROM=MYRL2;TO=MYXL2

MYXL exports foo because it is revealed, or unhidden. Modules in MYXL, as
well as in other XLs or program �les, can access foo. MYXL2 exports all data
symbols. Modules in MYXL2, as well as other XLs or program �les, can access
those data symbols.

14 Technical Addendum for HP Link Editor/iX

Building a Shared Global Data XL

An XL can have shared global data modules and non-shared global data
modules. You can determine if a module in an XL contains shared global data
by using the LISTXL command. If the SHARED DATA header �eld is set to YES,
the module is a shared global data module. If the SHARED DATA header �eld is
set to NO, the module does not contain shared global data.

As before, the BUILDXL command builds an empty XL. The ADDXL command is
used to add shared global data modules to an XL. RLs or object �les can still
be speci�ed as input to the ADDXL command.

Note XLs can have duplicate data exports.

Duplicate Storage Universals in an XL is acceptable. However,
duplicate Storage Universals are ignored by all XL commands
except the LISTXL command.

It is not recommended that XLs contain duplicate Data
Universal exports. Most XL commands process Data Universal
exports and, like entry points, it assumes Data Universal
exports in the XL are unique.

XLs with duplicate module names containing duplicate Data
Universal exports are not acceptable because there is no unique
way for the XL commands to correctly identify which module
to process.

Adding an Object File to an XL

To add object �les to an XL and have it share global data, the SHARE option
must be speci�ed or the LKSHAREDATA variable must be set to TRUE. The
default behavior remains linking for non-shared data. When adding modules to
an XL and sharing is turned on, all non-hidden Data Universals and Storage
Universals are exported and all Data Unsats, Data Universals, and Storage
Universals are imported. The Universals are exported and imported to give the
loader the chance to decide which export will be used as the single overriding
de�nition that will resolve all outstanding references to the export for the life
of the load. This is slightly di�erent than when linking an object �le to form
a program �le and sharing data. In that type of link, Data Universals are not

Technical Addendum for HP Link Editor/iX 15

importable because Data Universals in program �les always take precedence
over Data Universal exports in an XL. For more information on the loader
binding rules, refer to \Loader Binding Rules".

The Link Editor now allows modules in an XL to contain unresolved data
symbols when linking for shared code and data. At load time, the loader
attempts to resolve these symbols. If the symbols are not resolved, the loader
emits an error message and aborts the load.

To reduce the number of data exports, you are encouraged to use the HIDERL
command to hide data symbols. Refer to \Hiding Data Symbols".

Note XLs can now contain duplicate data symbols, as long as the
duplicates occur in di�erent modules. When adding modules to
an XL, if another module has a data item with the same name,
the second module is also added to the XL. For Data Universal
exports, when replacing modules, only the �rst module found
exporting that symbol is replaced.

When adding modules from a RL, a new parameter can be used to instruct the
Link Editor to add only the module that exports the speci�ed data symbol:

DATA=data name

An indirect �le can be speci�ed for this parameter. Note that data name is
case-sensitive and must be a Data Universal. If data name is a Data Unsat or
Storage Universal, the ADDXL command ignores it. If DATA= is used without the
SHARE option, the ADDXL command ignores the DATA= parameter.

16 Technical Addendum for HP Link Editor/iX

Example

ADDXL FROM=TESTRL2;TO=MYXL3

ADDXL FROM=DKRL;DATA=MYTIME,index,link_time;TO=MYXL4;SHARE

In the �rst line, modules from TESTRL2 are added to MYXL3. Data is not
shared, so the linking behavior is the same as for non-shared global data
environments. Data will not be exported nor imported in MYXL3.

In the second line, modules from the RL DKRL are added to MYXL4. Only
modules that export MYTIME, index, and link_time (Data Universal exports)
are added to the XL. MYXL4 contains data exports (and imports if there are
any) that other XLs and program �les can access.

Manipulating XLs

The COPYXL Link Editor command now allows modules to be copied based on
data exports (Data Universals only). This implies that the XL was built for
shared data and, therefore, has data exports. The COPYXL command accepts a
new parameter:

DATA=data name, data name...

Note that data name is case-sensitive. The �rst module found that exports
the speci�ed data symbol is copied from the XL. If the module is not a shared
global or module, the DATA= option is ignored.

Example

COPYXL FROM=MYXL4;DATA=myindex;TO=NEWXL

The �rst module found in MYXL4 that exports myindex (Data Universal) is
copied to NEWXL.

If there are duplicate Data Universal exports, it is recommended that you use
the MODULE= or ENTRY= parameters to specify a speci�c module or a module
that exports the entry point to be copied.

Technical Addendum for HP Link Editor/iX 17

The PURGEXL Link Editor command allows modules to be purged, based on
exports (Data Universals only). This implies that the XL was built for shared
data and, therefore, has data exports. The PURGEXL command accepts a new
parameter:

DATA=data name

Note that data name is case-sensitive. The �rst module found that exports the
speci�ed data symbol is purged from the XL. If the module is not a shared
global data module, the DATA= option is ignored.

Example

PURGEXL XL=MYXL;DATA=bar

In this example, the �rst module found that exports bar is purged.

If there are duplicate Data Universal exports, it is recommended that you use
the MODULE= or ENTRY= parameter to specify a speci�c module or a module that
exports the entry point to be purged.

Listing Program Files and XLs

The LISTPROG and LISTXL Link Editor commands now list Data Unsats,
Storage Universals, and Data Universals.

The LISTPROG command uses the ;DATA option to print data symbols. The
LISTXL command accepts a new parameter to allow the printing of modules
that export a particular data symbol:

DATA_ITEM=data name

Note that data name is case-sensitive and can be either a Data Universal or
Storage Universal.

Example

LISTXL MYXL;DATA_ITEM=foo

In this example, only the modules that export foo are listed.

18 Technical Addendum for HP Link Editor/iX

There are new �eld values for shared global data modules in the LISTPROG and
LISTXL output. The �eld values are:

Under Sym Type, there is a new symbol type, s_req, which denotes a storage
request.

Under Sym Scope, there is an unsatis�ed scope, unsat, which is now valid
with symbol type data.

Under Sym Value, the DP-relative DXRT o�set is printed for Data Unsats:
dp = data pointer .

For Data Universals in program �les, the address of the literal or the o�set
from DP is printed. For Data Universals in XLs, the best-guess o�set from DP
is printed. This is a best-guess because the loader can override the de�nition
at run time unless the symbol is hidden or the module is linked for non-shared
data.

For Storage Universals, the best-guess o�set from DP is printed (best-guess
because the loader can override it at run time) unless the symbol is hidden or
the module is linked for non-shared data.

A new �eld, SHARED DATA, is printed in the output listing to indicate if a
module is a shared global data module. If SHARED DATA is set to YES, the
module contains shared global data; if SHARED DATA is set to NO, the module
does not contain shared global data.

All Data Universals and Storage Universals are listed before the Data Unsats.
If the ;VALUE option is speci�ed, the symbols are sorted in each class by value.
If the ;VALUE option is not speci�ed, the symbols are sorted in each class by
name.

See \Sample Listings" for examples.

Technical Addendum for HP Link Editor/iX 19

Loading a Shared Global Data Program File or XL

The loader is responsible for binding code and data imports and exports at
load time. The loader will:

Set up DP according to the initialization pointers.

Set up LP and XRT entries according to LST import records.

Initialize the DXRT entries with addresses at load time according to the
loader �xups and LST import records.

Implement a new binding scheme for data that allows program �le global
data exports to bind XL data imports and vice versa.

Copy the data exports from the �le's export list. Select and store a unique
instance of the data export into the loader's Process Data Dictionary (PDD).

Note Code binding has not changed. XLs can bind code imports in
a program �le but program �le code exports will not bind XL
code imports.

Loader Binding Rules

The loader binds data symbols according to these binding rules:

Data Universals in program �les have precedence over de�nitions in XLs for
that symbol because the precedence rule is observed from left to right and
the program �le is always �rst.

For Storage Requests, the largest one encountered has precedence over all
others, either in a program �le or XL.

Initialized data (Data Universals) take precedence over uninitialized data
(Storage Requests).

The most privileged data takes precedence.

Memory resident data takes precedence over non-memory resident data.

XL Data Universals are selected on a �rst-seen basis. If the loader loads a
module that has a de�nition for foo and there is no other de�nition for foo
in an already loaded module or if there is a Storage Universal de�nition in an

20 Technical Addendum for HP Link Editor/iX

already loaded module, those de�nitions take precedence over all others. All
imports for foo will bind to the one just loaded.

Violation of any of the above rules for any data symbol results in a failed
load. The precedence is established for each distinct data symbol only
once per process. Therefore, libraries loaded dynamically, through the
HPGETPROCPLABEL intrinsic, are subject to the same rules as static XLs
(XLs speci�ed at link time).

Compatibility

Shared global data XLs and program �les are not backward compatible and do
not run on older operating systems. Even if you use RLs during the link and
your make script has not changed, the loader will not load the program �le or
XL if there are any data exports or imports. To determine if a program �le or
XL contains shared data, use the LISTPROG or LISTXL command appropriately
and check the SHARED DATA header.

Program �les, object �les, RLs, and XLs compiled with the 3-instruction
compiler option are not backward compatible and do not run on older
operating systems, even if they do not import or export any data.

Note that program �les and XLs created on older systems can be run on the
shared global data operating system. Relinking is not required for the program
to run.

Note POSIX programs must be recompiled if they contain the header
�les <stdio.h> and <direct.h>. If a program contains a
direct or indirect reference to __file, it must be recompiled.

The macros _file, _bufend, and fileno contain references to
__file

Linking with Compatibility Mode Files

The Link Editor does not allow users to share data when linking with
compatibility mode �les. For example, if octcomp.pub.sys is invoked and
LKSHAREDATA is set to true, the Link Editor issues an error message and aborts
the link.

Refer to \Diagnostic Messages" for the error message.

Technical Addendum for HP Link Editor/iX 21

Advanced Topics

This section describes additional information on shared global data in XLs.

External Data References

An external data reference, also known as an import, is a reference to a data
symbol that is not de�ned in the module. External data references are now
allowed in program �les and XLs if they are linked for shared data. These
references are not resolved at link time because the Link Editor builds one load
module at a time, using LINK or ADDXL. Therefore, the Link Editor does not
know where the corresponding data de�nition, or export, is located. The data
item could be located in a module in the same XL or in another XL.

Because the Link Editor cannot resolve external data references, it turns
the reference into an LST data import request. It also allocates an entry in
the Data Cross Reference Table (DXRT) for the unresolved data reference.
The instruction used to reference the external data is changed from a direct
reference to an indirect reference through the DXRT. This indirection enables
the loader to locate data de�nitions for each data reference and initialize the
DXRT with the appropriate values at run time.

External data references can be created by the Link Editor for Storage and
Data symbols. When linking to form a program �le, the Link Editor creates
a corresponding Data Unsat record for each Storage Universal. The Link
Editor creates the Data Unsat to allow other de�nitions or Storage symbols to
override the original de�nition or symbol at run time. The Link Editor also
creates an LST data import record and allocates an entry in the DXRT for the
import. At run time, the loader locates data de�nitions for each data reference,
including those that the Link Editor created. For Storage Universals, if a
larger Storage Universal or a corresponding Data Universal is found, the loader
ignores the original Storage Universal and binds all references to the symbol
found.

When adding modules to an XL, the Link Editor creates a corresponding Data
Unsat record for each Data Universal and goes through the same process used
for creating imports for Storage Universals, outlined above. This allows other
de�nitions to override the original at run time. Data Universals in program
�les do not have Link Editor-created Data Unsats because Data Universals in

22 Technical Addendum for HP Link Editor/iX

program �les always take precedence over symbols in an XL. Therefore, Data
Universals in the program can never be overridden at run time.

Duplicate Data

Duplicate data exports are allowed in an XL, as long as the duplicates occur
in separate modules. Duplicate Data Universal exports are not allowed in
program �les and are not recommended in XLs. Duplicate Data Universals are
not recommended in XLs because duplicate data exports are not allowed in
HP-UX Shared Libraries. Also, the loader uses the �rst Data Universal it �nds
as the de�ning de�nition. The loader picks one of the duplicate symbols and
uses it as the single overriding de�nition for all references to it.

There is a distinction between Data Universal and Storage Universal data
exports because there is apt to be more duplicate Storage Universals than Data
Universals. For example, Data Universal exports do not exist in Pascal object
�les. All declarations are considered Storage Unsats.

The XL commands that support the DATA= parameter (ADDXL, COPYXL,
PURGEXL) work on Data Universals and ignore Storage Universals. The LISTXL
command is an exception. LISTXL DATA_ITEM= lists all modules that export the
speci�ed Data Universal or Storage Universal, it does not change the XL in any
way. Therefore, it is less of a risk to list every module that exports a data item
than to only list one.

The DATA= parameter works on the �rst module it �nds that exports the Data
Universal symbol. Because duplicate data is legal, the Link Editor cannot
predict if you want to process only one module that exports the data item or
all modules that export the data item. To ensure that you are processing a
speci�c module and not just the �rst one the Link Editor �nds that exports a
speci�c data symbol, use the ENTRY= or MODULE= options of the ADDXL, COPYXL,
or PURGEXL commands. The exception is the LISTXL command as noted above.

The XL commands that support the ENTRY= parameter (ADDXL, COPYXL,
PURGEXL) work on only one module that exports the symbol, because entry
points must be unique in an XL and in program �les.

Technical Addendum for HP Link Editor/iX 23

Example

The following example demonstrates how the PURGEXL and LISTXL commands
process an XL that contains duplicate data exports. Assume that after each
PURGEXL command is executed, the process starts over with the same MYXL XL.

MYXL

Module DKTEST

i data univ /* i, foo, fee are exports */

foo data univ

fee s_req univ

fum data unsat /* fum, foo, fee, i are imports */

foo data unsat

fee data unsat

i data unsat

Module DKOPEN

fee s_req univ /* fee is an export */

fum data unsat /* fum, fee are imports */

fee data unsat

Module DKCLOSE

foo data univ /* foo, bar are exports */

bar entry univ

foo data unsat /* foo is an import */

Module DKGET

bar data univ /* bar is an export */

bar data unsat /* bar is an import */

24 Technical Addendum for HP Link Editor/iX

PURGEXL XL=MYXL;DATA=foo Deletes module DKTEST from MYXL

because DKTEST is the �rst module found
that exports foo.

PURGEXL XL=MYXL;DATA=fee Does not delete any module from MYXL

because no module was found that
exports a data universal symbol named
fee.

PURGEXL XL=MYXL;DATA=fum Does not delete any module from MYXL

because no module was found that
exports a data universal symbol named
fum.

PURGEXL XL=MYXL;DATA=bar Deletes module DKGET from MYXL

because DKGET exports a data universal
symbol named bar.

PURGEXL XL=MYXL;ENTRY=bar Deletes module DKCLOSE from MYXL

because DKCLOSE exports an entry
symbol named bar.

LISTXL XL=MYXL;DATA_ITEM=fee Lists modules DKTEST and DKOPEN from
MYXL because both modules export a
data symbol named fee.

Technical Addendum for HP Link Editor/iX 25

Sample Listings

Symbol Transformation Example

C source file

int i;

int foo=0;

extern int bar;

...

main () {

i++;

foo++;

bar++;

...

}

Object File

|Symbol| Type | Scope |

|-------------------------

|i |Storage|Unsat |

|foo |Data |Universal|
|bar |Data |Unsat |

Shared Data Program File

--

|Symbol| Type | Scope |LST Import |LST Export |

|--|

|i |Storage|Universal| Yes | Yes |

|foo |Data |Universal| No | Yes |

|bar |Data |Unsat | Yes | No |

--

26 Technical Addendum for HP Link Editor/iX

Shared Data XL

--

|Symbol| Type | Scope |LST Import |LST Export |

|--|

|i |Storage|Universal| Yes | Yes |

|foo |Data |Universal| Yes | Yes |

|bar |Data |Unsat | Yes | No |

--

Non-Shared Data Program File or Non-Shared Data XL

--

|Symbol| Type | Scope |LST Import |LST Export |

|--|

|i |Data |Universal| No | No |

|foo |Data |Universal| No | No |

|bar |Data |Unsat-->ERROR! Not allowed |

--

Key:

LST Export = Yes The symbol is externally visible to other XLs and
program �les and can be used to satisfy LST import
requests.

LST Export = No The symbol is not externally visible. This is the same
behavior as for non-shared global data environments.

LST Import = Yes Look for LST exports in other XLs or program �les
that can satisfy the import request.

LST Import = No The symbol is satis�ed and does not look for another
de�nition that can override it. This is the same
behavior as for non-shared global data environments.

Technical Addendum for HP Link Editor/iX 27

LISTPROG Example

LinkEd> listprog myprog

PROGRAM : MYPROG

CAPABILITIES : BA, IA

NMHEAP SIZE :

NMSTACK SIZE :

ENTRY NAME :

UNSAT NAME :

PRIORITY :

MAX PRIORITY :

POSIX : NO

SHARED DATA : YES

TEXT SIZE : 000002F8

DATA SIZE : 0000001C

VERSION : 85082112

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

$START$ 0 3 3 pri_p univ 00005004

main 0 3 3 entry univ 00005040

$RECOVER_END 0 code univ 000052F8

$RECOVER_START 0 code univ 000052F8

$START$ 0 code univ 00005020

$UNWIND_END 0 code univ 000052D8

$UNWIND_START 0 code univ 000052A8

28 Technical Addendum for HP Link Editor/iX

_start 0 H code univ 00005218

main 0 code univ 0000509C

M$6 0 data local dp+00000008

foption 0 s_req univ dp+00000018

myopt 0 data univ dp+00000000

ARITRAP 0 stub ext lp+000000A0

U_INIT_TRAPS 0 stub ext lp+000000C0

_exit 0 stub ext lp+00000160

_close 0 stub ext lp+00000060

_dup 0 stub ext lp+00000100

_init_c_globals 0 stub ext lp+00000040

_init_x11_globals 0 stub ext lp+00000140

_open_std_file 0 stub ext lp+000000E0

_parse_info_string 0 stub ext lp+00000020

foo 0 stub ext lp+00000120

printf 0 stub ext lp+00000080

foption 0 data unsat dp-00000014

mystring 0 data unsat dp-00000010

myvalue 0 data unsat dp-0000000C

Technical Addendum for HP Link Editor/iX 29

LISTXL Example

listxl dkxl4

LIBRARY NAME : DKXL4

VERSION : 85082112

MODULE COUNT : 2

MODULE LIMIT : 500

MODULE NAME START LENGTH

----------- ----- ------

HIMOMC 00129000 0000355C

MYBAR 00139000 0000336C

MODULE NAME : HIMOMC

TEXT SIZE : 00000080

DATA SIZE : 00000008

VERSION : 87102412

LENGTH : 0000355C

SHARED DATA : NO

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

main 0 3 3 entry univ 0012B000

$RECOVER_END 0 code univ 0012B080

$RECOVER_START 0 code univ 0012B080

$UNWIND_END 0 code univ 0012B070

$UNWIND_START 0 code univ 0012B060

main 0 code univ 0012B03C
printf 0 stub ext lp+00000020

30 Technical Addendum for HP Link Editor/iX

MODULE NAME : MYBAR

TEXT SIZE : 00000004

DATA SIZE : 00000010

VERSION : 87102412

LENGTH : 0000336C

SHARED DATA : YES

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

$RECOVER_END 0 code univ 0013B000

$RECOVER_START 0 code univ 0013B000

$UNWIND_END 0 code univ 0013B000

$UNWIND_START 0 code univ 0013B000

d 0 s_req univ dp+00000008

f 0 data univ dp+00000004

fee 0 data univ dp+00000000

k 0 s_req univ dp+0000000C

foo 0 data unsat dp-0000000C

Technical Addendum for HP Link Editor/iX 31

Diagnostic Messages

New warning and error messages returned by the Link Editor.

User Errors (1000-1499)

1167 MESSAGE Expected NMXL file. File "!" is a CM file

(LINKERR 1167)

CAUSE The Link Editor encountered a compatibility mode
�le when linking and shared data was enabled.

ACTION Make sure LKSHAREDATA is unset or set
to FALSE before attempting to link with
compatibility mode �les.

Warning Messages (1500-1999)

1562 MESSAGE SYMBOL "!1" IS HIDDEN/NOT HIDDEN IN DIFFERENT

MODULES. HIDING IT (LINKWARN 1562)

CAUSE The Link Editor encountered a hidden and
non-hidden version of the same symbol during the
link.

ACTION Make sure all de�nitions in the object modules you
are linking with are hidden or make sure that all
de�nitions are not hidden. A mismatch of hidden
and unhidden symbols causes the Link Editor to
hide all occurrences it sees.

32 Technical Addendum for HP Link Editor/iX

Language Subsystem Errors (3000-3999)

3060 MESSAGE REFERENCE TO "!" IN FILE "!" NEEDS

3-INSTRUCTION SEQUENCE -- USE +k OR

$MORE_GLOBALS$ TO RECOMPILE (LINKERR 3060)

CAUSE DXRT limit of approximately 2k was hit. There
are too many data imports and/or too many
imports requiring multiple DXRT slots.

ACTION Recompile with the +k option or $MORE_GLOBALS$
pragma to compile for 3-instruction load and store
sequences. The DXRT can be bigger than 2k
because far away slots can be reached by using the
extra instruction generated.

Technical Addendum for HP Link Editor/iX 33

Glossary

Data Universal
An initialized data symbol de�ned in an object module that is visible
(exportable) to other object modules.

Data Unsat
A data symbol that is referenced by an object module but not de�ned in it.
These symbols are allowed in XLs and program �les for shared global data.

DXRT
A Data Cross Reference Table. The table is initialized by the loader at
run time with data de�nition addresses. All data references that need a
corresponding de�nition has an entry in this table. This table is created by
the Link Editor for shared global data support.

Export
A variable or procedure that is de�ned in a module and sharable with
other modules outside of the one it is de�ned in. It can be used to satisfy
references (imports).

Global Data
Data de�nitions, either initialized or uninitialized, that are exported to or
imported from other compilation units.

Import
A reference in a module to a variable or procedure that is de�ned in
another module. The request (import) can be satis�ed by a corresponding
export.

Object File, Object Module
A �le, NMOBJ, produced by compilers and used as input to the Link
Editor.

1

Process Data Dictionary
The Process Data Dictionary (PDD) is the repository of all data symbol
resolution that has taken place on a process. Its main functions are to:

Maintain information on all resolutions.

Enforce resolution semantics by controlling the addition of new symbols.
All arbitration between duplicate de�nitions is done by the dictionary.

Maintain information to undo the e�ects of a failed load.

Shared Global Data
Data de�nitions, either initialized or uninitialized, that are exported to
or imported from other compilation units. They are sharable with other
modules if they are exportable. That means they are not marked as hidden
and, therefore, ignored by the loader.

Storage Universal
An uninitialized data symbol created when an uninitialized data declaration
is made. If no corresponding Data Universal is found for it during linking,
the scope is changed from Unsat to Universal and the symbol is exportable
and can be used to satisfy references (imports).

2

	Top
	Contents
	Technical Addendum for HP Link Editor/iX
	Dependent Libraries
	New Commands for Maintaining Executable Libraries
	ALTXL Command
	BUILDXL Command

	Shared Global Data
	LKSHAREDATA Variable

	Compiling for Shared Global Data
	Linking for Shared Global Data
	Building a Shared Global Data XL
	Loading a Shared Global Data Program File or XL
	Advanced Topics
	Sample Listings
	Diagnostic Messages

	Glossary

