
900 Series HP 3000 Computers

HP FORTRAN 77/iX Migration

Guide

ABCDE

HP Part No. 31501-90004

Printed in U.S.A. June 1992

Second Edition

E0692

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages
in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated
to another language without the prior written consent of
Hewlett-Packard Company.

copyright c
1987, 1992 by Hewlett-Packard Company

Print History The following table lists the printings of this document, together with
the respective release dates for each edition. Many product releases
do not require changes to the document. Therefore, do not expect a
one-to-one correspondence between product releases and document
editions.

Edition Date Software
Version

First Edition November 1987 31501A.01.04

Second Edition June 1992 31501A.04.31

iii

.

iv

Preface This manual explains how to run FORTRAN 66/V and HP
FORTRAN 77/V programs on the MPE/iX operating system and
how to covert them to HP FORTRAN 77/iX programs. It is written
for experienced FORTRAN programmers.

This manual contains the following chapters:

Chapter 1 Explains terminology used in this manual. Explains
migration to compatibility mode versus migration to
native mode.

Chapter 2 Discusses the scope of Part I and describes the
FORTRAN 66/V to HP FORTRAN 77/V Migration
Aid.

Chapter 3 Describes the conversions performed by the migration
aid.

Chapter 4 Describes changes that the migration aid cannot
make.

Chapter 5 Explains how to run the migration aid and includes a
sample migration.

Chapter 6 Describes how to modify the migration aid according
to your needs.

Chapter 7 Describes the scope of Part II

Chapter 8 Compares HP FORTRAN 77/iX to HP FORTRAN
77/V, outlining the changed, missing, and new
features.

Chapter 9 Explains changes to an HP FORTRAN 77/V
program that may be required before it can run
properly on the MPE/iX system.

Chapter 10 Describes data �le conversions that allow you
to take full advantage of MPE/iX performance
improvements.

Chapter 11 Summarizes factors a�ecting migration and o�ers
tips for avoiding migration problems.

v

Additional
Documentation

This manual does not discuss the MPE/iX operating system in
detail. See the appropriate operating system or language manual for
complete information about those subjects. The following is a partial
list of the operating system and language manuals:

Manual Title Number to Use to
Order Manual

HP FORTRAN 77/iX Reference 31501-90010

HP FORTRAN 77/iX Programmer's Guide 31501-90011

HP Link Editor/iX Reference Manual 32650-90030

HP FORTRAN 77 Programmer's Guide 5967-4686

HP FORTRAN 77 Quick Reference Guide 5957-4687

HP FORTRAN 77 Reference Manual 5957-4685

HP FORTRAN 77/V Programmer's Guide
Supplement

31501-90005

HP FORTRAN 77/V Reference Manual
Supplement

30000-90294

FORTRAN/3000 Referecne Manual 30000-90040

HP FORTRAN 77 Self Study Guide 22999-90548

Supplement to the HP FORTRAN 77 Self Study
Guide

22999-90549

MPE/iX Commands Reference Manual 32650-60002

MPE/iX Intrinsics Reference Manual 32650-90028

MPE/iX Utilities Reference Manual 32033-90008

vi

Conventions CASE In a syntax statement, commands and
keywords are shown in uppercase and
lowercase characters. The characters must be
entered in the order shown; however, you can
enter the characters in either uppercase or
lowercase. For example:

SHOWJOB

can be entered as any of the following:

showjob Showjob SHOWJOB

It cannot, however, be entered as:

shojwob Shojob SHOW_JOB

italics In a syntax statement or an example, a word
in italics represents a parameter or argument
that you must replace with an actual value.
In the following example, you must replace
�lename with the name of the �le:

RELEASE �lename

Italics font is also used to emphasize a word
or words .

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In
the following example, \yes" is the user's
response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

SETMSG

�
ON

OFF

�

Commands listed in braces are called
command lists throughout this manual.

vii

Conventions
(continued)

[] In a syntax statement, brackets enclose
optional elements. In the following example,
,TEMP can be omitted:

PURGE �lename[,TEMP]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select devicename or deviceclass or neither.
The elements cannot be repeated.

SHOWDEV

�
devicename

deviceclass

�

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select itemname zero or more times.
Each instance of itemname must be preceded
by a comma:

[,itemname] [...]

In the example below, you only use the
comma as a delimiter if itemname is
repeated; no comma is used before the �rst
occurrence of itemname:

[itemname] [,...]

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA or B. The
elements cannot be repeated.

�
A

B

�
| . . . |

. . .
... In an example, horizontal or vertical ellipses

indicate where portions of the example have
been omitted.

� In a syntax statement, the space symbol �
shows a required blank. In the following
example, modi�er and variable must be
separated with a blank:

viii

SET [(modi�er)]�(variable);

� � The symbol � �indicates a key on the
keyboard. For example, �RETURN� represents
the carriage return key.

�CNTL�char �CNTL�char indicates a control character. For
example, �CNTL�Y means you press the control
key and the Y key simultaneously.

ix

Conventions
(continued)

Comment Explains an operator entry or debug message.

> The HP Symbolic Debugger prompt.

j Represents \or".

; Separates commands in a command list.

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number
#num speci�es a decimal number
$num speci�es a hexadecimal number

If no base is speci�ed, decimal is assumed.

Bits (bit:length) When a parameter contains more than one
piece of data within its bit �eld, the di�erent
data �elds are described in the format Bits
(bit:length) bit is the �rst bit in the �eld and
length is the number of consecutive bits in
the �eld. For example, Bits (13:3) indicates
bits 13, 14, and 15:

x

Contents

1. Introduction

Terminology 1-1
Direct Migration of Object Code (Compatibility Mode) 1-1
Source Code Migration (Native Mode) 1-2
Migration Paths 1-2
Finding Information on the Migration Paths 1-3

2. Introduction to Part I

The Migration Aid 2-1

3. What the Migration Aid Does

How the Migration Aid Works 3-1
The Commands of the Command File 3-3
Free Format 3-3
Directives That Are Changed 3-3
Directives That Have No Equivalent 3-4
IF and SET Directives 3-5
Octal Constants 3-5
Character Constants 3-5

Logical Constants 3-5
Condition Code, Parameters Passed by Value, and

Alternate Returns 3-6
ACCEPT and DISPLAY Statements 3-6
INTEGER and LOGICAL Type Declarators . . . 3-6
PARAMETER and CHARACTER Type Declarators 3-6
Parameterless System Intrinsics 3-7
New Function Names 3-8
Conversion of Constructs of the Form VAR[i:j] . . 3-9
Substring Designators 3-9
Partial Word Designators 3-9
Eliminating Awkward Algebraic Expressions . . . 3-9
Replacing the STR Function 3-10
Deleting the 'END=' Speci�er in WRITE Statements 3-10

Contents-1

4. What the Migration Aid Does Not Do

Data Type Word Length 4-1
Word Length of Passed Integer and Logical Parameters 4-2
Logical Variables 4-2

Functions Not Found in HP FORTRAN 77/V . . . 4-2
Replacing the BOOL Function 4-2
Supplying the CSINH Function 4-3
Supplying the CCOSH Function 4-3
Supplying the CTANH Function 4-3

Evaluation of Mixed Mode Expressions 4-4
The S Edit Descriptor 4-4
Named Constants in PARAMETER Statements . . 4-5
Passing Character Variables 4-5
Parameter Limit 4-5
DO Loops 4-6
Composite Numbers 4-6
Alternate Returns 4-6
Free-Format Internal Reads 4-6
Format Statements 4-7
Recognition of End of Data 4-7
List-Directed READ Statements 4-8

5. Using the Migration Aid

Checking Your Catalog 5-1
Running the Migration Aid 5-1
Example Conversion 5-2
Running the Migration Aid on the Example Program 5-3
The Converted Program 5-9
Compilation of the Converted Program 5-11
Recompilation of the Converted Program 5-12

6. Customizing the Command File

Command Syntax 6-1
Example 6-2
Example 6-2

Search String Commands 6-2
Position Expressions 6-2
Tag Fields 6-3
Example 6-3

Character Classes 6-3
Examples 6-3

Closures 6-3
Examples 6-4

Replacement String Commands 6-5
Tag Fields 6-5
Fill Commands 6-5
Examples 6-5

Example Command File 6-6

Contents-2

7. Introduction to Part II

Compatibility Mode Versus Native Mode 7-1
Factors A�ecting Migration 7-1

8. Di�erences

Changed Features 8-1
Word Size 8-1
Floating-Point Data 8-1
Uninitialized Variables 8-1
Alignment 8-2
Common Blocks 8-5
SYSTEM INTRINSIC Statement 8-7
SEGMENT and LOCALITY Directives 8-7
SYSINTR Directive 8-7
Overlapping Character Substring Moves 8-7

Removed Limitations 8-8
USLINIT Directive 8-8
MORECOM Directive 8-8

New Features 8-9
HP3000 16 Directive 8-9
OPTIMIZE Directive 8-9
SYMDEBUG Directive 8-12
LOCALITY Directive 8-12
EXTERNAL ALIAS and LITERAL ALIAS

Directives 8-12
UPPERCASE and LOWERCASE Directives . . . 8-12
ON Statement and INTEGER*2 Conditions . . . 8-12

9. Source Program Conversion
Using MPE V Binary Data Files or TurboIMAGE

Databases 9-1
Programs Packing Data Items with EQUIVALENCE 9-2
Implied Equivalence 9-2
Integers and Logicals 9-2
Using the Same Source Code 9-2
Example 9-2

10. Data File Conversion

Converting Binary Files to IEEE Format 10-1

11. Conversion Checklist

EQUIVALENCE Statement or Rede�ned Common
Blocks 11-1

SYSTEM INTRINSIC Statement 11-2
Binary Files with HP 3000 Floating-Point Data . . 11-2

Index

Contents-3

Figures

1-1. Migration Paths from FORTRAN 66/V to HP
FORTRAN 77/iX 1-2

1-2. Migration Paths from HP FORTRAN 77/V to HP
FORTRAN 77/iX 1-3

8-1. Data Alignment Comparison 8-3

Tables

3-1. Conversions of Directives 3-4
3-2. Conversions of IF and SET Directives 3-5
3-3. Conversions of Function Names or Types. 3-8
4-1. Format Conversions 4-7
8-1. Data Alignment on HP FORTRAN 77/V and HP

FORTRAN 77/iX 8-5

Contents-4

1

Introduction

This guide explains how to run FORTRAN 66/V and HP FORTRAN
77/V programs on the MPE/iX oprerating system and how to
convert them to HP FORTRAN 77/iX programs.

Terminology This guide discusses three versions of FORTRAN:

The version of FORTRAN 66 that runs under MPE V and under
MPE/iX in compatibility mode is called FORTRAN 66/V.

The version of FORTRAN 77 that runs under MPE V and under
MPE/iX in compatibility mode is called HP FORTRAN 77/V.

The version of FORTRAN 77 that runs under MPE/iX in native
mode is called HP FORTRAN 77/iX.

Direct Migration of
Object Code
(Compatibility Mode)

The fastest way to move your programs from an MPE V system to
MPE/iX is to simply transfer the object code from one system to the
other. Your programs can then be run on MPE/iX in compatibility
mode. This works for programs produced by either the FORTRAN
66/V or HP FORTRAN 77/V compiler. If there are data �les
associated with your program, you can move them also (without
needing to change the representation of the data).

Use the MPE V STORE command to transfer the �les onto magnetic
tape. Next, on the MPE/iX system, use the RESTORE command to
move the �les from the tape. You can now use the RUN command
to run your program just as you would on the MPE V system.
Note, however, that programs run in compatibility mode do not
take advantage of the optimizing compiler nor of the improved
performance capabilities of HP's Precision Architecture. To take
advantage of these improvements, you must run your programs in
native mode, which is explained in the next section.

Introduction 1-1

Source Code
Migration (Native
Mode)

Another way to move your programs from an MPE V system onto
the MPE/iX operating system is to make necessary modi�cations to
your source code and then recompile and create new native mode
program �les. Your programs can then be run in native mode.
Programs run more quickly and e�ciently on the MPE/iX operating
system in native mode than in compatibility mode.

If your program is written in FORTRAN 66/V, we recommend
that you �rst convert from FORTRAN 66 to HP FORTRAN 77,
using the migration aid and making the manual changes described
in Part I of this guide. Then make the manual changes described
in Part II to convert the HP FORTRAN 77/V source code to HP
FORTRAN 77/iX source code. If your program is already written in
HP FORTRAN 77/V, you can convert it to HP FORTRAN 77/iX
source code by making manual changes only.

Migration Paths Figure 1-1 and Figure 1-2 show each type of program and its path to
compatibility mode and native mode.

Figure 1-1. Migration Paths from FORTRAN 66/V to HP FORTRAN 77/iX

1-2 Introduction

Figure 1-2.

Migration Paths from HP FORTRAN 77/V to HP FORTRAN 77/iX

Finding Information
on the Migration
Paths

This manual contains two parts:

Part 1 (Chapters 2 through 6) describes migration of FORTRAN
66/V programs to HP FORTRAN 77/V (that is, FORTRAN 66
to FORTRAN 77), both running under MPE V. If your programs
are written in FORTRAN 66/V, it's best to �rst convert them
to HP FORTRAN 77/V and then to HP FORTRAN 77/iX. The
FORTRAN 66/V to HP FORTRAN 77/V Migration Aid, described
in Part I, performs many conversions automatically.

Part II (Chapters 7 through 11) describes migration of HP
FORTRAN 77/V programs to HP FORTRAN 77/iX. Skip to Part
II if you are migrating directly from HP FORTRAN 77/V to HP
FORTRAN 77/iX.

Introduction 1-3

2

Introduction to Part I

Part I compares FORTRAN 66/V to HP FORTRAN 77/V and
explains how to use the FORTRAN 66/V to HP FORTRAN 77/V
Migration Aid. It also describes manual changes your programs may
require.

The Migration Aid Several changes must be made to a FORTRAN 66/V program before
it can be compiled by the HP FORTRAN 77/V compiler. The
FORTRAN 66/V to FORTRAN 77/V Migration Aid allows you to
make many of these changes automatically. The migration aid reads
a FORTRAN 66/V source �le, performs a number of conversions, and
puts the results in a new �le. The new �le can then be processed
by the HP FORTRAN 77/V compiler. At compilation, constructs
that di�er in HP FORTRAN 77/V and FORTRAN 66/V but are
not detected by the migration aid cause the compiler to generate
a warning or an error message. You can then manually change the
source �le in those places.

You can also customize the migration aid so that it automatically
performs speci�c changes your programs require.

Introduction to Part I 2-1

3

What the Migration Aid Does

The migration aid is a powerful editor that accepts commands from
a �le, applies those commands to a source �le, and generates an
output �le containing the appropriate changes. The migration aid
can make many changes, which are described below. In addition,
you can easily modify the command �le to make speci�c changes
your programs require (see the chapter \Customizing the Command
File"). However, since the migration aid is an editor and not a
compiler, it does not recognize symbols, variables, and expressions as
a compiler does. Therefore, certain changes must be made manually;
these are described in the next chapter (\What the Migration Aid
Does Not Do").

How the Migration
Aid Works

The migration aid consists of a program �le (FTNCVT.PUB.SYS)
and a second �le (FTNCMDS.PUB.SYS) containing all the commands
that could potentially be applied to a source �le. Each group of
related commands in the command �le contains optional text and the
commands themselves. The following is an example of a group of
commands that a�ect character constants wherever they are found,
except in FORMAT statements.

$ The next changes will affect character constants of the form %nnC.

$ They will be converted to CHAR(nn) except if they are found on the

$ same line as a FORMAT statement.

$ Note that numbers of the form %nn,%nnJ,%nnL,%nnR,%nnD won't be

$ changed.

n/@format@% *[0-7]+ *c//&/

g/% *{[0-7]+} *c//CHAR(&1B)/

The lines starting with dollar signs explain the changes performed if
the command group is selected. See Chapter 6 (\Customizing the
Command File") for an explanation of the command syntax. The
lines without dollar signs contain the commands themselves.

What the Migration Aid Does 3-1

When the migration aid is run, the following prompt occurs after
each explanation:

apply these commands? (expected Y,N,A)

These are the valid responses:

Y Performs the described conversion wherever the
construct occurs in the source �le.

N Performs no conversions of the kind described. (A
carriage return assumes this response.)

A Asks the user before performing each conversion.

E Exits the program without performing any
conversions of the kind described.

(Note that both uppercase and lowercase are accepted.)

No conversions are done until you have responded to all command
prompts. Then, for each group of commands to which you responded
Y, the migration aid applies the commands to all appropriate lines
and displays each converted line, followed by the line with its
changes.

If you selected A (ask) for a group of commands, the migration aid
displays the original line, then the line with the changes made so far,
and prompts you with:

apply it? (expected Y,N)

The line is then changed (or not) according to your answer.

The output �le contains the source �le with the changes performed
by the migration aid. The lines that were changed are left as
comments (a C is inserted at column 1), and the label MIGF66 is
placed in columns 73 through 77. The label MIGF77 is placed in
columns 73 through 77 of new lines. This label identi�es each line
that has been modi�ed or added by the migration aid. Note that the
converted �le will be 10 to 20 percent larger than the original, since
the old versions of the converted lines are retained as comments;
the actual percentage of increase depends on the number of lines
converted.

See the chapter \Using the Migration Aid" for a complete example of
the migration process.

3-2 What the Migration Aid Does

The Commands of
the Command File

The following are the commands contained in the command �le
FTNCMDS.PUB.SYS. They are listed in the order they appear when the
migration aid executes.

Free Format If free formatting has been used in a FORTRAN 66/V program, you
must change the source �le to �xed format before the migration aid
can perform any other conversions. However, since most FORTRAN
66/V programs are written in �xed format, this command does not
usually need to be applied.

Applying this command to a program that is already in �xed format
can produce incorrect changes. Therefore, if you plan to convert
many �les that are already in �xed format, you may want to make a
copy of the �le FTNCMDS and delete the format conversion commands
from the copy. Then use the modi�ed command �le on the program
�les that are in �xed format. This will prevent you from applying the
format conversion command incorrectly.

Directives That Are
Changed

This command �rst encloses include �les in single quotes. It then
makes the substitutions listed in Table 3-1.

Some FORTRAN 66/V compiler directives have an equivalent
directive available in the HP FORTRAN 77/V compiler. Other
directives do not have exact equivalents but may have close
approximations.

The following FORTRAN 66/V directives are changed to the HP
FORTRAN 77/V directives shown:

What the Migration Aid Does 3-3

Table 3-1. Conversions of Directives

FORTRAN 66/V HP FORTRAN 77/V

$CHECK=n $CHECK_FORMAL_PARM n

$SEGMENT=sname $SEGMENT 'sname'

$LIST $LIST ON

$NOLIST $LIST OFF

$CODE $LIST_CODE ON

$NOCODE $LIST_CODE OFF

$MAP $TABLES ON

$NOMAP $TABLES OFF

$BOUNDS $RANGE ON

$WARN $WARNINGS ON

$NOWARN $WARNINGS OFF

$LOCATION $CODE_OFFSETS ON

$NOLOCATION $CODE_OFFSETS OFF

$INIT $INIT ON

Directives That Have No
Equivalent

The following FORTRAN 66/V directives have no equivalent in HP
FORTRAN 77/V. They are deleted by the migration aid.

$EDIT

$TRACE

$CONTROL STAT

$CONTROL NOSTAT

$CONTROL SOURCE

$CONTROL NOSOURCE

$CONTROL LABEL

$CONTROL NOLABEL

$CONTROL FIXED

$CONTROL FREE

$CONTROL FILE=n-m
$CONTROL FILE=n
$CONTROL ERRORS=n
$CONTROL CROSSREF

$CONTROL CROSSREF ALL

$CONTROL is changed to $OPTION. ($CONTROL and $OPTION are
interchangeable, but the change prevents the migration aid from
reconverting the line.) If all options on a line are deleted and only
$CONTROL remains, the line is deleted.

3-4 What the Migration Aid Does

IF and SET Directives The IF and SET directives are changed as follows:

Table 3-2. Conversions of IF and SET Directives

FORTRAN 66/V HP FORTRAN 77/V

$SET Xn ON $SET (Xn= .TRUE.)

$SET Xn OFF $SET (Xn= .FALSE.)

$IF Xn=ON $IF (Xn)

$IF Xn=OFF $IF (.NOT.Xn)

$IF $ENDIF

Octal Constants Octal constants have a di�erent notation in HP FORTRAN 77/V.
Selecting Y (yes) for this set of commands changes constants of the
form %nn� (where � represents a blank), %nnJ, or %nnL to nnB.
Other types, such as %nnR, are not a�ected.

Character Constants Character constants also have a di�erent notation in HP FORTRAN
77/V. Selecting Y (yes) for this set of commands changes constants
of the form %nnC to CHAR(nnB) unless they are found in a FORMAT

statement line, in which case it is assumed that they represent
carriage control constants.

Logical Constants Logical constants of the form %"chars"L are not allowed in HP
FORTRAN 77/V. The migration aid converts logical constants of
this form to Hollerith constants. For example, the following octal
constant:

%"ABD"L

is converted to

3HABC

The migration aid converts only logical constants of the form
%"chars"L in which chars is a character string of up to four
characters. If you need to convert longer logical constants, you
should modify this section of the migration aid.

What the Migration Aid Does 3-5

Condition Code,
Parameters Passed by
Value, and Alternate

Returns

When this command is applied, the following changes occur:

Condition code constructs of the form .CC. are changed to
CCODE().

The backslashes (\) that precede parameters passed by value are
deleted.

Note In HP FORTRAN 77/V, passing parameters by value requires that
an ALIAS directive be inserted in the source code. This insertion
must be done manually.

The dollar signs ($) in alternate returns are changed to asterisks
(*). For example,

CALL SUBRTN(A,$1,$2)

is changed to

SUBRUTN(A,*1,*2).

ACCEPT and DISPLAY
Statements

The migration aid converts the ACCEPT statement to READ and the
DISPLAY statement to PRINT. The syntax of these statements is
changed as well as their names. For information on READ and PRINT,
see the HP FORTRAN 77/iX Reference manual.

INTEGER and LOGICAL
Type Declarators

INTEGER*2 is the default size of integers in FORTRAN 66/V, while
INTEGER*4 is the default in HP FORTRAN 77/V. The migration aid
converts INTEGER to INTEGER*2 and LOGICAL to LOGICAL*2 if no
other length is speci�ed. Declarators already having length speci�ers
are not converted.

PARAMETER and
CHARACTER Type

Declarators

When this command is applied, the migration aid converts the syntax
of PARAMETER statements by enclosing the parameter constants in
parentheses.

Note HP FORTRAN 77/V requires that parameter constants be explicitly
typed (as INTEGER, CHARACTER, etc.). This typing must be
done manually.

The migration aid also converts the syntax of CHARACTER type
declarators. For example,

CHARACTER BUF*10(20)

is changed to

CHARACTER BUF(20)*10.

3-6 What the Migration Aid Does

Parameterless System
Intrinsics

The system intrinsics listed below are changed to parameterless
system intrinsics.

CALENDAR

CAUSEBREAK

CLOCK

DEBUG

FATHER

FREELOCRIN

GETJCW

GETORIGIN

GETPRIVMODE

GETUSERMODE

PROCTIME

RESETDUMP

TERMINATE

TIMER

For example,

date=CALENDAR

is changed to

date=CALENDAR()

If your program contains variables with names identical to these
system intrinsics, answer A so that you are prompted before each
change is made.

What the Migration Aid Does 3-7

New Function Names The following are the FORTRAN 66/V intrinsic functions whose
names or parameter types are changed by the migration aid. For
example, in FORTRAN 66/V the function IABS has an INTEGER*2

parameter, whereas in HP FORTRAN 77/V its parameter type
is INTEGER*4. Therefore, IABS is changed to HABS, which has an
INTEGER*2 parameter.

Table 3-3. Conversions of Function Names or Types.

FORTRAN 66/V HP FORTRAN 77/V

IABS HABS

JABS IABS

JINT INT

JDINT IDINT

FLOATJ FLOAT

INUM ICHAR

JNUM ICHAR

JMOD MOD

MOD HMOD

AJMAX0 AMAX0

JMAX0 MAX0

JMAX1 MAX1

AJMIN0 AMIN0

JMIN0 MIN0

JMIN1 MIN1

JFIX IFIX

ISIGN HSIGN

JSIGN ISIGN

IDIM HDIM

JDIM IDIM

3-8 What the Migration Aid Does

Conversion of
Constructs of the Form

VAR[i:j]

In FORTRAN 66/V, substring designators and partial word
designators have the same form: VAR[i:j]. Only a compiler can
determine whether a construct is a substring designator or a partial
word designator. Therefore, the migration aid splits the conversion
of this construct into two parts. The �rst part asks whether to treat
such constructs as substring designators; the second asks whether to
treat them as partial word designators.

Note Be sure to coordinate your responses to the substring designator and
partial word designator commands. If you respond Y to one, you
should not respond Y to the other. If you are not sure whether a
response would be appropriate for all occurrences, answer A (ask) so
that you are prompted as each occurrence is found.

Substring Designators This command converts constructs of the form VAR[i:j] to
substrings. Note that whereas in FORTRAN 66/V j represents the
number of characters in the substring, in HP FORTRAN 77/V j

represents the position of the last character.

Applying this command can sometimes result in awkward algebraic
expressions. The section \Eliminating Awkward Algebraic
Expressions" discusses a partial solution to this problem.

Partial Word
Designators

This command converts VAR[i:j] to a call to MVBITS or IBITS
depending on the left side of the assignment statement.

Note The partial word designators in FORTRAN 66/V start counting
the bits from the left, whereas the bit manipulation routines in
HP FORTRAN 77/V start counting the bits from the right. For
example, I=IVAR[1:2] indicates the second and third bits from the
left in FORTRAN 66/V, but in the functions MVBITS and IBITS it
indicates the second and third bits from the right. This di�erence
may result in awkward algebraic expressions that, although correct,
may be di�cult to read. The next section discusses a partial solution
to this problem.

Eliminating Awkward
Algebraic Expressions

Applying the partial word designator or substring designator
command can result in awkward algebraic expressions such as

...,16-0,...

or

...,-1+1,...

These expressions are ine�cient and visually awkward. This
command improves the form of these expressions.

What the Migration Aid Does 3-9

Replacing the STR
Function

If you select the STR conversion command, the migration aid converts
expressions of the form

variable1=STR(variable2,format)

to internal WRITE statements of the form

WRITE(variable1,format) variable2

Deleting the 'END='
Specifier in WRITE

Statements

'END=' speci�ers are not allowed in HP FORTRAN 77 WRITE
statements. The migration aid removes 'END=' speci�ers from WRITE

statements if you select this command.

3-10 What the Migration Aid Does

4

What the Migration Aid Does Not Do

The migration aid cannot perform all transformations necessary
to properly compile a FORTRAN 66/V program with the HP
FORTRAN 77/V compiler; some changes must be performed
manually. This chapter discusses the manual changes.

Some features of HP FORTRAN 77/V are incompatible with similar
features in FORTRAN 66/V. This chapter also discusses these
incompatibilities.

After processing a source �le with the migration aid and then
checking it for the constructs listed here, you can compile the
program with the HP FORTRAN 77/V compiler. Any remaining
problems should then be
agged by the compiler as errors or
warnings.

Data Type Word
Length

FORTRAN 66/V defaults to two bytes for the INTEGER and LOGICAL

data types, whereas HP FORTRAN 77/V defaults to four bytes
for these types. To account for these di�erences, the migration aid
converts types de�ned as INTEGER to INTEGER*2 and types de�ned as
LOGICAL to LOGICAL*2. However, you may want to explicitly de�ne
some data type lengths. In deciding which length is required, take
the following into account:

Parameter-passing problems that might occur when calling external
procedures (including system intrinsics) that expect data of one
length or the other.

The e�ects of equivalencing.

The range of values being used.

The amount of stack space being used.

The FORTRAN intrinsic functions being used.

What the Migration Aid Does Not Do 4-1

Word Length of
Passed Integer
and Logical
Parameters

When calling subprograms that pass integer and logical parameters
by reference, make sure that the actual and formal parameters have
the same word length. (They should both be single integer or double
integer.) This is especially important when calling subprograms in
other languages. If parameters passed by reference are not the same,
the Segmenter issues an error message. When parameters passed by
value do not have the same word length, the HP FORTRAN 77/V
compiler internally converts single integers to double.

Logical Variables The implementation of logicals is very di�erent in FORTRAN
66/V and HP FORTRAN 77/V. In FORTRAN 66/V, the binary
representation of a LOGICAL*2 variable that evaluates to true is

0000000000000001 (the least signi�cant bit)

In HP FORTRAN 77/V the variable is represented as

0000000100000000 (the least signi�cant bit in the high-order byte)

These are some other di�erences:

When testing for the value true, HP FORTRAN 77/V checks only
the low-order bit of the high-order byte.

When making assignments to logical variables, HP FORTRAN
77/V manipulates only the high-order byte.

HP FORTRAN 77/V allows bit manipulation only on integer
variables, not on logicals.

HP FORTRAN 77/V does not support assignments of octal
constants to logical variables.

Functions Not Found
in HP FORTRAN
77/V

The following FORTRAN 66/V functions don't exist in HP
FORTRAN 77/V. If your program uses one of these functions,
replace or supply it as described below, or �nd another way to
perform the task.

BOOL CSINH CCOSH CTANH

Replacing the BOOL
Function

Replace the BOOL function in one of two ways, depending on how it is
used. If FORTRAN 66/V program uses BOOL as a masking function,
make the changes illustrated in the following example:

FORTRAN 66/V i = (BOOL(i) .AND. 7L)

HP FORTRAN 77/V i = i .AND. 7

4-2 What the Migration Aid Does Not Do

If the FORTRAN 66/V program uses BOOL to convert to a logical
(expecting logicals to be in the FORTRAN 66/V format), make the
changes illustrated in the following example:

FORTRAN 66/V IF (BOOL(i)) GOTO 10

HP FORTRAN 77/V IF (BTEST(i,0)) GOTO 10

Note that BTEST(i,0) tests the low-order bit of i, according to the
FORTRAN 66/V format for logicals. If the value of i has been
adjusted to the HP FORTRAN 77/V format for logicals, the bit
de�ned by HP FORTRAN 77/V must be tested.

Supplying the CSINH
Function

Supply the CSINH function of FORTRAN 66/V by adding the
following lines to your source code:

COMPLEX FUNCTION CSINH(c)

COMPLEX c

x = real(c)

y = aimag(c)

CSINH = cmplx(sinh(x) * cos(y), sin(y) * cosh(x))

RETURN

END

Supplying the CCOSH
Function

Supply the CCOSH function of FORTRAN 66/V by adding the
following lines to your source code:

COMPLEX FUNCTION CCOSH(c)
COMPLEX c

x = real(c)

y = aimag(c)

CCOSH = cmplx(cosh(x) * cos(y), sin(y) * sinh(x))

RETURN

END

Supplying the CTANH
Function

Supply the CTANH function of FORTRAN 66/V by adding the
following lines to your source code:

COMPLEX FUNCTION CTANH(c)

COMPLEX c

x = real(c)

y = aimag(c)
denom = cosh(2.0 * x) + cos(2.0 * y)

CTANH = cmplx(sinh(2.0 * x) / denom, sin(2.0 * y) / denom)

RETURN

END

What the Migration Aid Does Not Do 4-3

Evaluation of Mixed
Mode Expressions

Mixed mode expressions are evaluated di�erently in the two
compilers. In operations of the same precedence, FORTRAN 66/V
evaluates the same types within an expression �rst, while HP
FORTRAN 77/V evaluates strictly from left to right.

The following example program produces di�erent results in the two
compilers:

INTEGER*4 j

j = 2000000000

WRITE(6,*) 1.0+j-j

END

The result returned in FORTRAN 66/V is 1.0. The result returned
in HP FORTRAN 77/V is 0.0.

In FORTRAN 66/V, the expression j-j is evaluated �rst. In HP
FORTRAN 77/V, the expression 1.0+j is evaluated �rst. Since the
constant 1.0 is a single precision real, only six digits are available to
hold the partial result, and the last four digits of 2000000000 are not
stored.

You can use parentheses to force the order of evaluation you want.
For instance, if you want the HP FORTRAN 77/V program to yield
the answer 1.0, make this change:

WRITE(6,*) 1.0+(j-j)

Alternately, you could explicitly type the constant as double
precision, as shown:

WRITE(6,*) 1.0D0+j-j

The S Edit
Descriptor

FORTRAN 66/V's S edit descriptor for character data can be
changed to HP FORTRAN 77/V's A or R descriptor. In no case
should S be left as a character descriptor, because S controls the plus
sign in ANSI standard FORTRAN 77.

4-4 What the Migration Aid Does Not Do

Named Constants in
PARAMETER
Statements

In the PARAMETER statement of FORTRAN 66/V, the type of a
named constant is determined solely by the constant itself and not
by the initial letter of its name. In HP FORTRAN 77/V, the type
is determined by the initial letter of the name. For this reason,
a named constant should be explicitly typed before using the
PARAMETER statement.

Passing Character
Variables

When HP FORTRAN 77/V passes character variables to subroutines,
two parameters (or two words) are actually passed. The �rst
parameter is a pointer to the beginning of the character data; the
second parameter is the length of the character data. This second
parameter must be taken into account when passing character data
from an HP FORTRAN 77/V subroutine to a FORTRAN 66/V
subroutine. To accommodate the parameter, do one of the following:

Include the $FTN3000_66 CHARS directive in the HP FORTRAN
77/V subroutine.

Include the $ALIAS directive in the HP FORTRAN 77/V
subroutine.

To pass a character variable from a FORTRAN 66/V subroutine to
an HP FORTRAN 77/V subroutine, do one of the following:

Include the $FTN3000_66 CHARS directive in the HP FORTRAN
77/V subroutine and then recompile.

Change the parameter list in the FORTRAN 66/V subroutine to
include a dummy length parameter (which is passed by value).

Parameter Limit On MPE V the number of parameters that may be passed from
one program unit to another is limited to 63. (This is true for all
languages on MPE V.) However, HP FORTRAN 77/V passes two
parameters for every argument that is a character variable: one
parameter is the length and the other is a pointer to the beginning of
the variable. Therefore, when converting FORTRAN 66/V programs
having long parameter lists in which some parameters are character
variables, the converted program may exceed the 63 parameter
limit. To reduce the parameter number, move some parameters into
common.

What the Migration Aid Does Not Do 4-5

DO Loops HP FORTRAN 77/V does not allow jumping into the middle of a DO

loop. DO loops with this feature in FORTRAN 66/V require a logic
change in HP FORTRAN 77/V.

The migration aid automatically inserts the CONTROL ONETRIP

compiler directive in converted programs. However, new programs
must specify this directive if they require all loops to be executed at
least once.

Composite Numbers HP FORTRAN 77/V does not allow composite numbers. They
should be changed to the most convenient alternative format
(decimal, octal, hexadecimal, etc.). For example,

DATA KEYDEF/ %[4/1,12/16], %[8/%200] /

could be changed to

DATA KEYDEF/ 10200B, 128 /

In this example, the composite number [4/1,12/16] has been
changed to the octal 10200B, and [8/%200] has been changed to the
decimal 128.

Alternate Returns Alternate returns are implemented di�erently in the two compilers.
Because of this di�erence, a FORTRAN 66/V program cannot call
an HP FORTRAN 77/V subroutine using the alternate return
mechanism. Conversely, an HP FORTRAN 77 program cannot call a
FORTRAN 66/V subroutine using an alternate return.

Free-Format Internal
Reads

HP FORTRAN 77/V does not currently support free-format internal
reads. An example of a free-format internal read is

READ (char,*) I,A

where char is a character variable and not a unit number.

4-6 What the Migration Aid Does Not Do

Format Statements Format statements should be changed as follows:

Table 4-1. Format Conversions

Change These To These

2/ //

3/ ///

2"-" 2("-")

Recognition of End
of Data

When reading from a terminal, FORTRAN 66/V recognizes end of
data when it encounters either a colon (:) or (:EOD) in input data.
HP FORTRAN 77/V recognizes end of data only when it encounters
:EOD, it does not recognize a colon as end of data. This feature of
HP FORTRAN 77/V prevents logging o� if an input line of :EOF
is entered, and allows input of lines containing a colon in the �rst
position. A colon can be read as an ordinary character in the input
data.

HP FORTRAN 77/V can allow input of a colon because it opens unit
FTN05 (unit 5) di�erently from FORTRAN 66/V. Both FORTRAN
66/V and HP FORTRAN 77/V open unit 5 with the FOPEN system
intrinsic. However, in FORTRAN 66/V the foptions parameter
designates $STDIN, whereas in HP FORTRAN 77/V the foptions
parameter designates $STDINX. $STDIN and $STDINX both represent
the standard input device, but STDINX does not recognize a colon as
end of data.

If your program requires that a colon indicate end of data when
reading from a terminal (as FORTRAN 66/V does), use the following
�le equation before running your program:

:FILE FTN05=$STDIN

This equation designates $STDIN as the standard input device,
instead of $STDINX.

What the Migration Aid Does Not Do 4-7

List-Directed READ
Statements

HP FORTRAN 77 handles list-directed input di�erently from
FORTRAN 66/V. FORTRAN 66/V allows you to input fewer values
than the number of variables in a READ statement. HP FORTRAN
77/V requires that you either supply a value for each variable in the
READ statement or append a slash (/) after the last value.

For example, for the source lines

REAL A,B

READ (5,*) A,B

in FORTRAN 66/V you can input a value for A, followed by a
carriage return. In HP FORTRAN 77/V, you must enter values for A
and B or else input a value for A and follow it with a slash (/).

If your program uses list-directed READs from a data �le and any lines
in the data �le contain fewer input values than the READ expects,
append a slash to the end of each line (this can be done with a global
command through your editor).

4-8 What the Migration Aid Does Not Do

5

Using the Migration Aid

This chapter explains how to use the migration aid and shows an
example of a migration. Please read the entire chapter before using
the migration aid.

Checking Your
Catalog

The CONVERT UDC must exist in your catalog before you can use
the migration aid. To list the contents of your catalog, enter the
command SHOWCATALOG. If CONVERT is not listed, execute this
command:

:SETCATALOG FTNUDC.PUB.SYS
�
,otherudc

�
where

otherudc is the list of any other UDC �les that you are using.

Running the
Migration Aid

To run the program FTNCVT.PUB.SYS on a FORTRAN 66/V source
�le, use the following command:

:CONVERT oldsource
�
,
�
newsource

��
,command�le

� �
where

oldsource is the name of the FORTRAN 66/V source �le to be
converted to an HP FORTRAN 77/V source �le.

newsource is the name of the HP FORTRAN 77/V �le to be
created. If newsource is not speci�ed, the �le defaults
to $STDLIST; the converted �le is displayed to the
terminal and no source �le is saved.

command�le is the name of the command �le to be used. This is
either the command �le supplied with the utility or a
command �le of your own making. If command�le is
not speci�ed, the conversion operations supplied in
the �le FTNCMDS.PUB.SYS are used.

The supplied command �le can be modi�ed, or new
command �les created to your speci�cations. Refer to
Chapter 5 for more information.

Using the Migration Aid 5-1

Example Conversion Here is an example that shows the steps in converting a FORTRAN
66/V source program to an HP FORTRAN 77/V source program.

This is the program as originally written in FORTRAN 66/V:

$control uslinit

program test

system intrinsic dateline, calendar

parameter prompt = "today is"

character cctrl,datebuf*27

character*12 string

integer today,age,daym(12)

integer dbirth, mbirth, ybirth

integer dtoday, mtoday, ytoday

C calendar jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec

data daym/ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

call dateline(datebuf)

display prompt,datebuf[1:17]

cctrl=%320C

write(6,1100) cctrl

read(5,1200) string

write(6,1300)

read(5,1400) ybirth,mbirth,dbirth

today=int(calender)

ytoday=today[0:7]

dtoday=today[7:9]

mtoday=0

do 50 i=1,12

mtoday=mtoday + 1

if (dtoday .le. daym(mtoday)) goto 60

dtoday=dtoday - daym(mtoday)

50 continue

60 age=ytoday - ybirth

if (mtoday - mbirth) 100,80,200

80 if (dtoday - ybirth) 100,200,200

100 age=ytoday - ybirth - 1

200 write(6,1500) string,age

stop

1100 format(1a1,'. May I have your name? ')

1200 format(a12)

1300 format(%320C,"and your birthday (yymmdd):")

1400 format(3I2)

1500 format(" ",a12,", I believe your age is ",I2)

end

5-2 Using the Migration Aid

Running the Migration
Aid on the Example

Program

The following command runs the migration aid on the FORTRAN
66/V source �le INPUT66 and produces the HP FORTRAN 77/V
source �le OUTPUT77:

:CONVERT INPUT66,OUTPUT77,FTNCMDS.PUB.SYS

While the migration aid runs, it sends the following information to
the terminal (user responses are highlighted):

FORTRAN MIGRATION AID (C) 1987/A.00.02

+++

+

+ FORTRAN/V TO FORTRAN 77/V MIGRATION AID

+ ======================================

+ This migration aid reads commands from the COMMAND file and asks

+ you whether to apply them or not in the conversion process. For

+ each command, the migration aid asks:

+

+ Apply the corresponding commands? (expected Y,N,A)

+

+ Answer Y to apply them automatically.

+ N to not apply them. (Carriage return assumes this option).

+ A to be asked before the changes are done.

+ E to exit the program (no conversion will be done).

+

+

+++

Free format allows you to start your source code anywhere on the

line; this is no longer allowed in FORTRAN 77. The next changes

convert free format to fixed format;

WARNING! if the text is already in FIXED format, answer "N" to the

question otherwise wrong modifications will result.

If you plan to convert many files that already are in FIXED format,

you might find it convenient to delete this set of commands from the
file FTNCMDS (or better, you create your own copy of the file

FTNCMDS without them) in order to avoid being asked to apply these

commands and answering "YES" accidentally.

apply these commands? expected (Y,N,A) N

The next changes will affect the $INCLUDE and $CONTROL compiler

directives. Changes are

enclose include file with quotes.

- from CHECK=n to CHECK_FORMAL_PARM n

Using the Migration Aid 5-3

- from SEGMENT=sname to SEGMENT "sname"

- from LIST/NOLIST to LIST on/off

- from CODE/NOCODE to LIST_CODE on/off
- from MAP/NOMAP to TABLES on/off

- from BOUNDS to RANGE on

- from WARN/NOWARN to WARNINGS on/off

- from LOCATION/NOLOCATION to CODE_OFFSETS on/off

- from INIT to INIT ON

apply these commands? expected (Y,N,A) Y

The next changes will delete any compiler directive in FORTRAN/V that

has no equivalent in FORTRAN 77.

They are $EDIT

$TRACE

$CONTROL STAT/NOSTAT

$CONTROL SOURCE/NOSOURCE

$CONTROL LABEL/NOLABEL

$CONTROL FIXED

$CONTROL FREE

$CONTROL FILE=n-m

$CONTROL FILE=n

$CONTROL ERRORS=n

$CONTROL CROSSREF

$CONTROL CROSSREF ALL

If after deletion of these options the control line is left empty

the line will be removed.

apply these commands? expected (Y,N,A) Y

The next changes will affect the directive $SET. They will change
strings of the form $SET Xn ON / OFF to $SET (Xn=.TRUE. / .FALSE.)

They will also change conditional compile expressions of the form

$IF Xn=ON/OFF to $IF (Xn/.not.Xn)

apply these commands? expected (Y,N,A) Y

The next changes will affect octal constants of the form %nn

followed by a J or L or alone. They will be converted to nnB. Note

that numbers of the form %nnC, %nnR, %nnD won't be changed.

apply these commands? expected (Y,N,A) Y

The next changes will convert numerical ascii expressions to its

Hollerith equivalent, for example,

%"c"L ----> 1Hc

%"cc"L ---> 2Hcc

%"ccc"L---> 3Hccc

%"cccc"L--> 4Hcccc

5-4 Using the Migration Aid

apply these commands? expected (Y,N,A) Y

The next changes will affect character constants of the form %nnC.
They will be converted to CHAR(nn) except if they are found in the

same line as a FORMAT statement. Note that numbers of the form

%nn,%nnJ,%nnL,%nnR,%nnD won't be changed.

apply these commands? expected (Y,N,A) Y

The next changes will affect the condition code intrinsic,

alternative return locations, and parameters passed by value in the

following way,

-Occurrences of .CC. will be converted to CCODE().

-Alternative return locations '$nn' will be converted to '*nn'

locations.

-The backslash (\) of parameters passed by value will be deleted.

CAUTION: in FORTRAN 77/V, the actual mode of passing variables

should be specified through the ALIAS statement.

apply these commands? expected (Y,N,A) Y

The next changes will convert ACCEPT and DISPLAY statements

to READ * and PRINT * respectively.

apply these commands? expected (Y,N,A) Y

The next commands will affect default INTEGER and LOGICAL variables.

INTEGER and LOGICAL variables will be converted to INTEGER*2 and

LOGICAL*2, respectively.

Note that this command is intended to preserve the 16-bit length

variables since in MPE/iX the default is 32-bit (or INTEGER*4). If
you use the directive $SHORT, you might not want to apply this

command. Note as well that in MPE/iX, the 32-bit variables are

handled more efficiently than the 16-bit ones.

apply these commands? expected (Y,N,A) Y

The next commands will change CHARACTER declarations to the new

syntax. They will also enclose the object of PARAMETER statements

between parentheses Note that the changed lines may still need

manual changes.

apply these commands? expected (Y,N,A) Y

The next commands will put parentheses after the parameterless

intrinsics. For example,

100 C=CLOCK will be changed to

100 C=CLOCL()

Using the Migration Aid 5-5

The intrinsics affected are

-CALENDAR CAUSEBREAK CLOCK

-DEBUG FATHER FREELOCRIN
-GETJCW GETORIGIN GETPRIVMODE

-GETUSERMODE PROCTIME RESETDUMP

-TERMINATE TIMER

apply these commands? expected (Y,N,A) Y

The next commands will change all the following intrinsic functions

to their corresponding name in FORTRAN 77.

IABS....HABS JABS....IABS JINT....INT JDINT...IDINT

JMOD....MOD MOD.....HMOD AJMAXO..AMAXO JMAXO...MAXO

JMAX1...MAX1 AJMINO..AMINO JMINO...MINO JMIN1...MIN1

JFIX....IFIX ISIGN...HSIGN JSIGN...ISIGN IDIM....HDIM

JDIM....IDIM FLOATJ..FLOAT

apply these commands? expected (Y,N,A) Y

The next two sets of commands affect substrings and partial-word

designators which have the same syntax in FORTRAN/V but differ in

FORTRAN 77. Don't answer "Y" to both of them but alternatively, if

you answer "Y" to one of them, answer "N" to the other or use Ask

mode ("A").

Please refer to the Migration Guide for further explanations.

EXPRESSIONS OF THE FORM VAR[e1:e2]. Part 1.

===

The next commands will treat strings of the form VAR[m:n] as

substrings, and will change them to VAR(m:m+n-1) (note that n does
not represent the number of characters anymore but rather the last).

If the expression does not contain n (i.e. VAR[m]), it will be

changed to the corresponding VAR(m:) in FORTRAN 77.

apply these commands? expected (Y,N,A) A

EXPRESSIONS OF THE FORM VAR[e1:e2]. Part 2.

===

The next changes will convert constructs of the form

VARi[e1:e2]=VARj[e3:e4] to a call to the bit intrinsic MVBITS (move

bits), and expressions of the form VARi=VARj[e3:e4] to a call to

IBITS (extract bits).

apply these commands? expected (Y,N,A) A

The next commands will change some cumbersome math generated by the

preceding commands, such as 15-15, 16-0, and 1-1.

apply these commands? expected (Y,N,A) Y

5-6 Using the Migration Aid

The next change will replace the STR function with an internal WRITE

VAR1 = STR(VAR2, num) --> WRITE (VAR1, Inum) VAR2

apply these commands? expected (Y,N,A) Y

Deletion of END=label in WRITE statements

apply these commands? expected (Y,N,A) Y

NOW THE CONVERSION WILL START.

old line:

$control uslinit

new line:

$OPTION uslinit MIGF77

C$control uslinit MIGF66

$OPTION uslinit MIGF77

program test

system intrinsic dateline,calendar

old line:

parameter prompt = "today is...."

new line:

PARAMETER (prompt = "today is....") MIGF77

C parameter prompt = "today is...." MIGF66

PARAMETER (prompt = "today is....") MIGF77

character cctrl,datebuf*27

character*12 string

old line:

integer today,age,daym(12)

new line:
INTEGER*2 today,age,daym(12) MIGF77

C integer today,age,daym(12) MIGF66

INTEGER*2 today,age,daym(12) MIGF77

old line:

integer dbirth, mbirth, ybirth

new line:

INTEGER*2 dbirth, mbirth, ybirth MIGF77

C integer dbirth, mbirth, ybirth MIGF66

INTEGER*2 dbirth, mbirth, ybirth MIGF77

old line:

integer dtoday, mtoday, ytoday

new line:

INTEGER*2 dtoday, mtoday, ytoday MIGF77

C integer dtoday, mtoday, ytoday MIGF66

INTEGER*2 dtoday, mtoday, ytoday MIGF77

C calendar jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec

data daym/ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

call dateline(datebuf)

Using the Migration Aid 5-7

old line:

PRINT *, prompt,datebuf[1:17]

ASK option was requested
PRINT *, prompt,datebuf(1:1+17-1)

apply it? expected (Y,N) Y

old line:

display prompt,datebuf[1:17]

new line:

PRINT *, prompt,datebuf(1:17) MIGF77

C display prompt,datebuf[1:17] MIGF66

PRINT *, prompt,datebuf(1:17) MIGF77

old line:

cctrl=%320C

new line:

cctrl=CHAR(320B) MIGF77

C cctrl=%320C MIGF66

cctrl=CHAR(320B) MIGF77

write(6,1100) cctrl

read(5,1200) string

write(6,1300)

read(5,1400) ybirth,mbirth,dbirth

old line:

today=int(calendar)

new line:

today=int(CALENDAR()) MIGF77

C today=int(calendar) MIGF66

today=int(CALENDAR()) MIGF77

old line:

ytoday=today[0:7]

ASK option was requested

ytoday=today(0:0+7-1)
apply it? expected (Y,N) N

old line:

ytoday=today[0:7]

ASK option was requested

ytoday=IBITS(today,-0+15-7+1,7)

apply it? expected (Y,N) Y

old line:

ytoday=today[0:7]

new line:

ytoday=IBITS(today,+15-7+1,7) MIGF77

C ytoday=today[0:7] MIGF66

ytoday=IBITS(today,+15-7+1,7) MIGF77

old line:

dtoday=today[7:9]

ASK option was requested

dtoday=today(7:7+9-1)

apply it? expected (Y,N) N

old line:

dtoday=today[7:9]

5-8 Using the Migration Aid

ASK option was requested

dtoday=IBITS(today,-7+15-9+1,9)

apply it? expected (Y,N) Y

old line:

dtoday=today[7:9]

new line:

dtoday=IBITS(today,+8-9+1,9) MIGF77

C dtoday=today[7:9] MIGF66

dtoday=IBITS(today,+8-9+1,9) MIGF77

mtoday=0

do 50 i=1,12

mtoday=mtoday+1

if (dtoday .le. daym(mtoday)) go to 60

dtoday=dtoday-daym(mtoday)

50 continue

60 age=ytoday-ybirth

if (mtoday-mbirth) 100,80,200

80 if (dtoday-dbirth) 100,200,200

100 age=ytoday-ybirth-1

200 write(6,1500) string,age

stop

1100 format(1a1,'. May I have your name? ')

1200 format(a12)

1300 format(%320C,"and your birthday (yymmdd):")

1400 format(3I2)

1500 format(" ",a12,", I believe your age is ",I2)

end

10 lines have been changed.(21)

38 lines of code found

1 comment lines found

The Converted Program Here is the converted program, OUTPUT77:

C$control uslinit

$OPTION uslinit

program test

system intrinsic dateline,calendar

C parameter prompt = "today is...."

PARAMETER (prompt = "today is....")

character cctrl,datebuf*27

character*12 string

C integer today,age,daym(12)

INTEGER*2 today,age,daym(12)

C integer dbirth, mbirth, ybirth

INTEGER*2 dbirth, mbirth, ybirth

C integer dtoday, mtoday, ytoday

INTEGER*2 dtoday, mtoday, ytoday

C calendar jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec

data daym/ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

call dateline(datebuf)

Using the Migration Aid 5-9

C display prompt,datebuf[1:17]

PRINT *, prompt,datebuf(1:17)

C cctrl=%320C

cctrl=CHAR(320B)

write(6,1100) cctrl

read(5,1200) string

write(6,1300)

read(5,1400) ybirth,mbirth,dbirth

C today=int(calendar)

today=int(CALENDAR())

C ytoday=today[0:7]

ytoday=IBITS(today,+15-7+1,7)

C dtoday=today[7:9]

dtoday=IBITS(today,+8-9+1,9)

mtoday=0

do 50 i=1,12

mtoday=mtoday+1

if (dtoday .le. daym(mtoday)) go to 60

dtoday=dtoday-daym(mtoday)

50 continue

60 age=ytoday-ybirth

if (mtoday-mbirth) 100,80,200

80 if (dtoday-dbirth) 100,200,200

100 age=ytoday-ybirth-1

200 write(6,1500) string,age

stop

1100 format(1a1,'. May I have your name? ')

1200 format(a12)

1300 format(%320C,"and your birthday (yymmdd):")

1400 format(3I2)

1500 format(" ",a12,", I believe your age is ",I2)

end

5-10 Using the Migration Aid

Compilation of the
Converted Program

When OUTPUT77 is compiled by the HP FORTRAN 77/V compiler, it
produces the following listing:

PAGE 1 HEWLETT-PACKARD HP32116A.00.08

HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1987 MON, MAY 18, 1987, 12:55 PM

0 1 C$control uslinit

0 2 $OPTION uslinit

1 3 program test

2 4 system intrinsic dateline,calendar

2 5 C parameter prompt = "today is...."

^

**** WARNING # 1 WARNING: THIS SYSTEM-SPECIFIC FEATURE IS NOT PART

OF HP STANDARD FORTRAN 77 (830)

3 6 PARAMETER (prompt = "today is....")

^

**** ERROR # 1 INCONSISTENT PARAMETER TYPE (153)

4 7 character cctrl,datebuf*27

5 8 character*10 string(10)

5 9 C integer today,age,daym(12)

6 10 INTEGER*2 today,age,daym(12)

6 11 C integer dbirth, mbirth, ybirth

7 12 INTEGER*2 dbirth, mbirth, ybirth

7 13 C integer dtoday, mtoday, ytoday

8 14 INTEGER*2 dtoday, mtoday, ytoday

8 15 C calendar jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec

9 16 data daym/31,28,31,30,31,30,31,31,30,31,30,31/

10 17 call dateline(datebuf)

10 18 C display prompt,datebuf[1:17]

^

**** WARNING # 2 WARNING: THIS SYSTEM-SPECIFIC FEATURE IS NOT

PART OF HP STANDARD FORTRAN 77 (830)

11 19 PRINT *, prompt,datebuf(1:17)

11 20 C cctrl=%320C

12 21 cctrl=CHAR(320B)

13 22 write(6,1100) cctrl

14 23 read(5,1200) string

15 24 write(6,1300)

16 25 read(5,1400) ybirth,mbirth,dbirth

16 26 C today=int(calendar)

17 27 today=int(CALENDAR())

17 28 C ytoday=today[0:7]

^

**** WARNING # 3 WARNING: THIS SYSTEM-SPECIFIC FEATURE IS NOT PART OF

HP STANDARD FORTRAN 77 (830)

18 29 ytoday=IBITS(today,+15-7+1,7)

18 30 C dtoday=today[7:9]

19 31 dtoday=IBITS(today,+8-9+1,9)

20 32 mtoday=0

21 33 do 50 i=1,12

22 34 1 mtoday=mtoday+1

23 35 1 if (dtoday .le. daym(mtoday)) go to 60

24 36 1 dtoday=dtoday-daym(mtoday

Using the Migration Aid 5-11

25 37 1 50 continue

26 38 60 age=ytoday-ybirth

27 39 if (mtoday-mbirth) 100,80,200

28 40 80 if (dtoday-dbirth) 100,200,200

29 41 100 age=ytoday-ybirth-1

30 42 200 write(6,1500) string,age

31 43 stop

32 44 1100 format(1a1,'. May I have your name? ')

33 45 1200 format(a12)

PAGE 2

34 46 1300 format(%320C,"and your birthday (yymmdd)

35 47 1400 format(3I2)

36 48 1500 format(" ",a12,", I believe your age is ",I2)

37 49 end

NUMBER OF ERRORS = 1 NUMBER OF WARNINGS = 3

PROCESSOR TIME 0: 0: 2 ELAPSED TIME 0: 0:11

NUMBER OF LINES = 49

Recompilation of the
Converted Program

An error occurred because the migration aid could not explicitly
type the constant in the PARAMETER statement. We can correct
the problem by editing the converted program to do the explicit
typing. Next we delete the lines containing MIGF66 and add the
$STANDARD_LEVEL SYSTEM compiler directive to eliminate the
warnings. Here is the result of recompiling with these corrections. A
sample run of the program follows.

PAGE 1 HEWLETT-PACKARD HP32116A.00.08

HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1987 MON, MAY 18, 1987, 12:58 PM

0 1 $standard_level system

0 2 $OPTION uslinit

1 3 program test

2 4 system intrinsic dateline,calendar

3 5 Character*12 prompt

4 6 PARAMETER (prompt = "today is)

5 7 character cctrl,datebuf*27

6 8 character*12 string

7 9 INTEGER*2 today,age,daym(12)

8 10 INTEGER*2 dbirth, mbirth, ybirth

9 11 INTEGER*2 dtoday, mtoday, ytoday

9 12 C calendar jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec

10 13 data daym/ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/

11 14 call dateline(datebuf)

12 15 PRINT *, prompt,datebuf(1:17)

13 16 cctrl=CHAR(320B)

14 17 write(6,1100) cctrl

5-12 Using the Migration Aid

15 18 read(5,1200) string

16 19 write(6,1300)

17 20 read(5,1400) ybirth,mbirth,dbirth

18 21 today=int(CALENDAR())

19 22 ytoday=IBITS(today,+15-7+1,7)

20 23 dtoday=IBITS(today,+8-9+1,9)

21 24 mtoday=0

22 25 do 50 i=1,12

23 26 1 mtoday=mtoday+1

24 27 1 if (dtoday .le. daym(mtoday)) go to 60

25 28 1 dtoday=dtoday-daym(mtoday)

26 29 1 50 continue

27 30 60 age=ytoday-ybirth

28 31 if (mtoday-mbirth) 100,80,200

29 32 80 if (dtoday-dbirth) 100,200,200

30 33 100 age=ytoday-ybirth-1

31 34 200 write(6,1500) string,age

32 35 stop

33 36 1100 format(1a1,'. May I have your name? ')

34 37 1200 format(a12)

35 38 1300 format(%320C,"and your birthday (yymmdd) ")

36 39 1400 format(3I2)

37 40 1500 format(" ",a12,", I believe your age is ",I2)

38 41 end

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

PROCESSOR TIME 0: 0: 3 ELAPSED TIME 0: 0:14

NUMBER OF LINES = 41

END OF PROGRAM

END OF PREPARE

today is....MON, MAY 18, 1987. May I have your name? Wendy Carlos

and your birthday (yymmdd):540806

Wendy Carlos, I believe your age is 32

END OF PROGRAM

Using the Migration Aid 5-13

6

Customizing the Command File

This section describes how the commands of the command �le work.
You do not need to read this section unless you plan to create new
command �les or add more commands to the existing �le.

Since the conversion instructions reside in ASCII �les, the
instructions can be customized to your speci�cations. You can add
new commands to the existing �le or create new command �les
that suit your particular needs. The supplied command �le is
FTNCMDS.PUB.SYS. If you modify the command �le, we recommend
copying the �le and making the modi�cations in the copy. You can
then specify the new �le as the third parameter to the UDC CONVERT.

If you use a text editor to create a new commands �le, be sure that
no sequence numbers are stored in the �le. The migration aid treats
all the usable length of the line as a command.

Command Syntax The command �le uses these commands:

R Perform the replacement, at most once per line.

N Perform the replacement, but don't do any more
replacements on this line.

G Perform the replacement everywhere it occurs on the line.

D If the expression is found, delete the line.

J If the search expression is not found, skip the next
commands until another group of commands is found.

Y If the search expression is not found, don't do any more
replacement on this line.

S If the line is found, perform the replacement and set an
internal
ag.

T If the expression is found and the
ag is already set,
perform the replacement and clear the
ag.

| Continuation line; up to �ve continuation lines are allowed.

* This character at the start of a line indicates a comment.

Customizing the Command File 6-1

The syntax of the R, N, G, S, and T commands is

command/search expression//replace expression/

Example R/boy//girl/

This replaces the �rst occurrence of boy (upper- or lowercase) in each
line with girl.

The slashes in the example are the search string delimiters. Two
slashes are used between the search and replacement strings. If one is
omitted, the search is performed but no replacement done.

The syntax for the D, J, and Y commands is

command/delete expression/

Example D/boy/

If the string boy (upper- or lowercase) is found, the line is deleted.

The set of commands used in search expressions di�er from those
used in replacement expressions. In particular, some of the same
command characters have di�erent meanings depending on whether
they are part of the search expression �eld or the replace expression
�eld. The following sections explain these di�erences.

Search String
Commands

Search string commands are those that appear on the left side of the
command.

The following characters are interpreted as commands if they precede
a search string, unless they are themselves preceded by a backslash
character (\).

Position Expressions ^ search string starts at beginning of line

$ search string ends at end of line

^nnn search string starts at column nnn

$nnn search string ends at (last column - nnn)

<nnn search string starts in any column before nnn

>nnn search string starts in any column after nnn

\ don't interpret the next character as a command

6-2 Customizing the Command File

Tag Fields {expn} \Remember" the text matched by the expression
expn for use in the replacement string.

a&b Match a string delimited by evenly nested
occurrences of a and b (which can be any two
characters), and also \remember" the contents for use
in the replacement string.

Example

R/(&)//[wow]/

This command replaces any set of characters delimited by
parentheses with the string [wow]. For example, if a source line
contained the string (hi(people)), the migration aid would replace
it with [wow].

Character Classes [set] Match any character in set , which is de�ned as

speci�c list of characters (as, for example, [abde]
or [ab012&"@]), or

range of characters, the �rst separated from the
last by a hyphen (as, for example, [a-z] or [0-9]),
or

mixture of the two.

[^set] Match any characters except those in set , which is as
de�ned above.

Examples

[a-gxyz] is the set abcdefgxyz

[a-zA-Z] is the complete set of alphabetic characters

[^0-9] is anything but a digit

Closures * Match zero or more occurrences of the preceding
character or character class (but do not match
anything else).

*nnn Match exactly nnn occurrences of preceding
character or class.

+nnn Match at least nnn occurrences of preceding
character or class.

?nnn Match up to nnn occurrences of preceding character
or class.

. Match any single character.

@ Match any string until the next character is found.

Customizing the Command File 6-3

Examples

The following command converts all occurrences of the string ACCEPT

to the string READ *,.

G/{@}ACCEPT//&1READ *,/

The following command converts only the �rst occurrence of the
string ACCEPT to the string READ *,.

R/{@}ACCEPT//&1READ *,/

6-4 Customizing the Command File

Replacement String
Commands

Replacement string commands are those that appear on the right
side of the R, N, G, and S commands.

Tag Fields &n Put tag �eld n into the replacement string at the
current position. If n is not speci�ed, use the
entire search string.

>n Substitute the nth tag �eld matched and shift it
to uppercase.

<n Substitute the nth tag �eld matched and shift it
to lowercase.

Fill Commands *x Change the �ll character to x (the default is the
space character).

^n Fill with �ll character up to column n.

$n Move the rest of the replacement string so that it
terminates at column n.

Examples

R/^2[a-zA-Z]//^7&/ Moves everything found starting
at column 2 of the current line to
column 7 if an alphabetic character
is found in column 2. Then �lls
columns 2 through 6 with spaces.

R/^boy//girl/ Replaces boy only if it occurs at the
beginning of a line.

R/b.y//girl/ Replaces boy, bay, buy, bny, etc.

R/^6BEGIN//^9BEGIN/ Moves BEGIN, if found starting in
column 6, to column 9, but does
not a�ect BEGIN found anywhere
else in the line.

Customizing the Command File 6-5

Example Command
File

Here is an example of a command �le, with comments explaining
what it does.

* This file converts free format to fixed format FORTRAN.

*

* If the string "$CONTROL FREE" is found, delete that line:

D/$CONTROL FREE/

* If a line begins with a series of alphanumeric characters,

* followed by a space, delete them (or, if the line begins with just

* a space, delete the space). This removes blank spaces in column 1

* of the FORTRAN 66/V line numbers and deletes the

* "sequence fields," which have no counterpart

* in HP FORTRAN 77/V.

R/^[a-zA-Z0-9]* ///

* If a line begins with a #, replace it with a C.

N/^\#//C/

* If a line begins with one or more digits followed by a space,

* move everything that follows the space to the right of

* column 7. This moves all statements preceded by statement

* numbers from whatever column they are in to column 7.
R/^[0-9]+ //&^7/

* If a line begins with anything other than a digit or a dollar

* sign, move that to the right of column 7. This moves all

* statements, except compiler options and statements with

* statement numbers, to column 7.

R/^[^0-9$]//^7&/

* The T and S commands are used in this order to "remember" that

* an & was found on the previous line and to put it on the next line.

* This produces the FORTRAN 66/V construct of an ampersand at the end

* of a line indicating a continuation line to conform to the HP FORTRAN 77/V

* construct of a character in column 6 indicating a continuation line.

T/^6 //\&/

S/\&$///

6-6 Customizing the Command File

7

Introduction to Part II

This part of the migration guide describes migration of HP
FORTRAN 77/V programs to the MPE/iX operating system.

Compatibility Mode
Versus Native Mode

HP FORTRAN 77/V programs can be run on MPE/iX in
compatibility mode or native mode. As discussed in Chapter 1,
FORTRAN 77/V object code can be directly transferred to an
MPE/iX based system with no changes to the source code; these
programs can then be run on an MPE/iX system under compatibility
mode. Although it is a fast way to move programs from one system
to the other, migrating to compatibility mode does not take full
advantage of the higher performance of the 900 Series HP 3000
computer and the MPE/iX operating system.

An alternate method is to convert the FORTRAN 77/V source
code to HP FORTRAN 77/iX source code, compile it with the
HP FORTRAN 77/iX compiler, and run the compiled code on
the MPE/iX system in native mode. Programs run in native
mode are usually much faster and more e�cient than those run in
compatibility mode.

Migrating to compatibility mode was explained in Chapter 1
(\Introduction"). Migrating to native mode is explained in the rest
of this manual.

Factors Affecting
Migration

Many HP FORTRAN 77/V programs require no more than
recompilation by the HP FORTRAN 77/iX compiler to run correctly,
since the version of FORTRAN 77 accepted by the HP FORTRAN
77/iX compiler is a superset of that accepted by the HP FORTRAN
77/V compiler.

HP FORTRAN 77/V programs containing certain features may need
some modi�cation to be compiled by the HP FORTRAN 77/iX
compiler and to run correctly after compilation. These features are
described in Chapter 8 (\Di�erences").

If a program has any of the features described in Chapter 8, you may
need to make some changes to the program before compiling it with
the HP FORTRAN 77/iX compiler. These changes are described in
Chapter 9 (\Source Program Conversion").

Introduction to Part II 7-1

Changes may also be required to HP FORTRAN 77/V data �les
before they can be used by an HP FORTRAN 77/iX program. These
changes are described in Chapter 10 (\Data File Conversion").

7-2 Introduction to Part II

8

Differences

An HP FORTRAN 77/iX program di�ers in a few respects from
an HP FORTRAN 77/V program, mainly because of di�erences in
machine architecture.

Changed Features Some features are implemented di�erently in HP FORTRAN 77/V
and HP FORTRAN 77/iX. These are explained below.

Word Size The main di�erence a�ecting conversion from HP FORTRAN 77/V
to HP FORTRAN 77/iX is word size. The machine word size on
computers running the MPE V operating system is 16 bits, while
that on computers running MPE/iX is 32 bits. Because of the 32-bit
word size, programs declaring data items to be INTEGER*2 run
slower on HP FORTRAN 77/iX than programs declaring them to be
INTEGER*4. (A feature that improves performance in HP FORTRAN
77/V may decrease it in HP FORTRAN 77/iX.)

Note Data items declared as INTEGER default to 32 bits in both
FORTRAN 77/V and HP FORTRAN 77/iX (unless the SHORT
compiler directive is used, which makes INTEGER data items 16 bits).

Floating-Point Data HP FORTRAN 77/iX represents data items of types REAL,
DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX with the IEEE

oating-point standard. HP FORTRAN 77/V uses a proprietary HP
3000
oating-point format for these items.

Uninitialized Variables The MPE/iX Link Editor does not initialize stack space for all
variables as the Segmenter does on MPE V. Therefore, uninitialized
variables that do not cause problems on MPE V may cause programs
to abort on MPE/iX based systems. To avoid this, ensure that all
variables are properly initialized.

Differences 8-1

Alignment The default alignment of data items larger than 16 bits is di�erent
in HP FORTRAN 77/iX and HP FORTRAN 77/V. The term
alignment here refers to a data item's position in memory relative
to the adjacent word boundaries. For example, in both versions of
HP FORTRAN 77 an INTEGER*4 variable is aligned by default on a
word boundary in both versions of HP FORTRAN 77. Therefore, the
alignment is on a 16-bit boundary in HP FORTRAN 77/V and on
a 32-bit boundary in HP FORTRAN 77/iX (see Figure 8-1). The
compiler accomplishes the alignment by leaving \holes" (unallocated
memory locations) where necessary in the allocated memory space of
a program. Consider the following declarations:

INTEGER*4 i4

CHARACTER*5 ch5

INTEGER*2 i2

REAL*8 d8

Figure 8-1 compares how these data items might be allocated in
memory in HP FORTRAN 77/V and in HP FORTRAN 77/iX:

8-2 Differences

Figure 8-1. Data Alignment Comparison

Differences 8-3

In Figure 8-1, both versions of HP FORTRAN 77 assign the �rst
hole in the same position after the character variable, because the
following data item, which is declared as an INTEGER*2, is 16-bit
aligned in both.

HP FORTRAN 77/iX assigns a second hole to align the double
precision variable D8 on a double-word (64-bit) boundary. In HP
FORTRAN 77/V, on the other hand, double precision items need
only be word (16-bit) aligned. In the absence of an EQUIVALENCE

statement, the compiler leaves these holes and allocates memory to
align each variable optimally.

An EQUIVALENCE statement can attempt to force illegal alignments.
For example:

CHARACTER ch(12)

INTEGER*4 i, j

EQUIVALENCE (ch(1), i), (ch(6), j)

is illegal in both FORTRAN 77/V and HP FORTRAN 77/iX,
because it attempts to align j on an 8-bit boundary (by forcing an
equivalence between j and the sixth element of ch).

However, the following:

CHARACTER ch(12)

INTEGER*4 i, j

EQUIVALENCE (ch(1), i), (ch(7), j)

is legal in HP FORTRAN 77/V, but not in HP FORTRAN 77/iX,
because it forces j to be aligned on a 16-bit boundary (by forcing an
equivalence between j and the seventh element of ch), instead of on
the 32-bit boundary dictated by HP FORTRAN 77/iX. The compiler
responds to illegal alignment requests with the error message

ILLEGAL OR INCONSISTENT EQUIVALENCE STATEMENT

However, HP FORTRAN 77/iX allows the above use of EQUIVALENCE
if the HP3000_16 ON or HP3000_16 ALIGNMENT compiler directive is
used.

The change in alignment requirements a�ects items that are
equivalenced di�erently from MPE/iX defaults. The following table
shows all nine data types and their alignment requirements in HP
FORTRAN 77/V and HP FORTRAN 77/iX:

8-4 Differences

Table 8-1.

Data Alignment on HP FORTRAN 77/V and HP FORTRAN 77/iX

Data Type HP FORTRAN 77/V HP FORTRAN 77/iX

REAL*8 16 bits 64 bits

COMPLEX*16 16 bits 64 bits

COMPLEX*8 16 bits 32 bits

REAL*4 16 bits 32 bits

INTEGER*4 16 bits 32 bits

LOGICAL*4 16 bits 32 bits

INTEGER*2 16 bits 16 bits

LOGICAL*2 16 bits 16 bits

Character 8 bits 8 bits

Common 16 bits 64 bits

Loading or storing data items that are not aligned on MPE/iX
default boundaries as shown in this table requires the compiler
to generate special code sequences to adjust for the di�erences in
alignment. The HP3000_16 ALIGNMENT directive turns on generation
of these sequences and allows equivalences that would otherwise be
illegal in MPE/iX.

Common Blocks Alignment also becomes an issue when common blocks are de�ned
di�erently between program units. The compiler is required to
allocate the items in a common block in the order of their occurrence
in the COMMON statement. Holes are inserted in the allocated common
area to align each variable according to its declared data type. If
the type declarations for the variables in a given common block vary
between program units, the holes may vary in size, according to the
data types of the surrounding variables. Therefore, what was a size
match for two de�nitions on MPE V may match a variable with a
hole on MPE/iX. If the type de�nitions vary between the program
units of a common block, the program may not be portable between
machines with di�erent alignment rules. Fortunately, this is not a
common practice.

Differences 8-5

Here is an example showing alignment di�erences for common block
variables in two program units. The declarations

SUBROUTINE sub1
COMMON /blk1/ch,int4

CHARACTER ch

INTEGER*4 int4

produce the allocations shown below on MPE V and MPE/iX:

The declarations

SUBROUTINE sub2

COMMON /blk1/ch,int2

CHARACTER ch

INTEGER*2 int2

produce the allocations shown below on MPE V and MPE/iX:

In the allocations above, note that for the common block blk1,
int2 overlays int4 on MPE V but on MPE/iX int2 overlays two
unallocated bytes. Using the HP3000_16 ALIGNMENT option would
resolve this alignment problem.

8-6 Differences

SYSTEM INTRINSIC
Statement

Programs using the SYSTEM INTRINSIC statement to call MPE/iX
intrinsic functions that are incompatible with their MPE V
counterparts (MYCOMMAND, CREATEPROCESS, etc.) must modify the
calls to those intrinsics. The changed intrinsics generally store
procedure labels or addresses in 16-bit variables; these items are 32
bits in MPE/iX. Refer to the MPE/iX Intrinsics Reference Manual
and the Application Migration Guide when using these intrinsics.

SEGMENT and
LOCALITY Directives

The LOCALITY directive of FORTRAN 77/iX serves as a synonym for
the SEGMENT directive of FORTRAN 77/V. The SEGMENT directive is
also retained in FORTRAN 77/iX for compatibility with FORTRAN
77/V.

See \LOCALITY Directive" later in this chapter for more
information.

SYSINTR Directive The MPE V directive SPLINTR has been replaced in MPE/iX by
SYSINTR.

Overlapping Character
Substring Moves

FORTRAN 77/V allows overlapping character substring moves to
have a ripple e�ect; FORTRAN 77/iX does not allow this ripple
e�ect. For example, the following code has a di�erent result on
FORTRAN 77/V and FORTRAN 77/iX:

character ch*10

ch(1:1) = '*'

ch(2:10) = ch(1:9)

On FORTRAN 77/V, the character string ch is �lled with asterisks
(*). On FORTRAN 77/iX, the �rst and second positions contain
asterisks and the remainder of the string is unde�ned.

If your FORTRAN 77/V program takes advantage of the ripple e�ect
of overlapping character substring moves, use the STRING_MOVE
option with the HP3000_16 directive. (See the section \HP3000 16
Directive" later in this chapter for more information.) If the
STRING_MOVE option is used and there are overlapping character
substrings, the string is moved one character at a time. If
STRING_MOVE is not used, a fast move is done. Therefore, to increase
performance, do not use the STRING_MOVE option if your program
does not take advantage of the ripple e�ect of character substring
moves.

Differences 8-7

Removed
Limitations

The MPE V operating system limits stack space to 65,535 bytes.
The virtual memory mechanism of the MPE/iX operating system
increases stack space to more than 230 bytes.

USLINIT Directive The USLINIT compiler directive is used in HP FORTRAN 77/V
to empty the user subprogram library (USL) before placing any
object code in it. The USL is a specially formatted �le that
contains a relocatable binary module for the main procedure, a
relocatable binary module for each subprogram, a directory to record
information about each of the relocatable binary modules in that
library, and information about the program's data stack. The MPE
V-based system compilers actively manage user subprogram libraries
and write directly to these �les.

The HP FORTRAN 77/iX compiler creates a new �le containing a
single object module for each compilation. It never appends to an
existing USL �le as a compiler on an MPE V-based system does.
Furthermore, the need for a USL vanishes since an object module can
function as an independent �le. Therefore, the USLINIT directive
does not exist in HP FORTRAN 77/iX.

You can �nd more information about user subprogram libraries in
the Link Editor/iX Reference Manual .

MORECOM Directive The MORECOM directive is used in HP FORTRAN 77/V to allow you
to allocate more room in a data segment for common variables.
The MPE/iX system automatically allocates a much larger area for
common variables, so the MORECOM directive is not needed in HP
FORTRAN 77/iX. See the Link Editor/iX Reference Manual for
more information on data space.

8-8 Differences

New Features Many features not available in HP FORTRAN 77/V are added in
HP FORTRAN 77/iX. These are outlined below. For complete
information about any of these features, see the HP FORTRAN
77/iX Reference manual.

HP3000 16 Directive The HP3000_16 compiler directive speci�es various options for
compatibility with HP FORTRAN 77/V. These are the options:

$HP3000_16 REALS Speci�es MPE V format for

oating-point data.

$HP3000_16 ALIGNMENT Speci�es alignment of
noncharacter data on 16-bit
boundaries.

$HP3000_16 STRING_MOVE Speci�es that overlapping
character strings are moved.

$HP3000_16 ON Speci�es all the above options.

$HP3000_16 Same as $HP3000_16 ON.

$HP3000_16 OFF Speci�es none of the above
options.

These options apply to an entire program unit and may not be
changed within a program unit. For best results, compile entire
programs with a consistent list of HP3000_16 options either by
placing the directive before any other statements at the beginning of
each source �le, or by passing the option to the compiler through the
INFO string.

OPTIMIZE Directive The OPTIMIZE directive speci�es optimization of object code. The
directive provides these levels of code optimization:

$OPTIMIZE OFF Level 0 optimization
(does no optimizing).
This is the default.

$OPTIMIZE ON Same as $OPTIMIZE
LEVEL2.

$OPTIMIZE LEVEL1 Optimizes only
within each basic
block.

$OPTIMIZE LEVEL2 Level 2 optimization
with the following
ASSUME settings:

ASSUME_NO_PARAMETER_O

ASSUME_PARM_TYPES_MAT

ASSUME_NO_EXTERNAL_PA

ASSUME_NO_SIDE_EFFECT

Differences 8-9

See below for ASSUME
descriptions.

$OPTIMIZE LEVEL2_MIN Level 2 optimization
with all the ASSUME
settings at OFF.

$OPTIMIZE LEVEL2_MAX Level 2 optimization
with all the ASSUME
settings at ON.

8-10 Differences

$OPTIMIZE ASSUME_NO_PARAMETER_OVERLAPS No actual
parameters
passed to a
subprogram
overlap each
other.

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS The current
subprogram
changes only
local variables.
It does not
change any
variables in
COMMON, nor
does it change
parameters.

$OPTIMIZE ASSUME_PARM_TYPES_MATCHED All of the
actual
parameters
passed were
the type
expected
by this
subprogram.

$OPTIMIZE ASSUME_NO_EXTERNAL_PARMS None of the
parameters
passed to
the current
subprogram
are from
an external
space, that is,
di�erent from
the user's own
data space.
Parameters can
come from
another space
if they come
from operating
system space
or if they are
in a space
shared by
other users.

For further details about the OPTIMIZE directive and its options, see
the HP FORTRAN 77/iX Programmer's Guide.

Differences 8-11

SYMDEBUG Directive The MPE/iX operating system provides symbolic debugging for HP
FORTRAN 77/iX programs. If the SYMDEBUG directive is used, the
compiler inserts debugging information in the object �le. Symbolic
debugging is not compatible with code optimization; therefore, do not
use both $SYMDEBUG and $OPTIMIZE.

LOCALITY Directive The LOCALITY directive allows you to group procedures together
in virtual memory to maximize throughput and minimize system
overhead. LOCALITY is similar to the SEGMENT directive of HP
FORTRAN 77/V. However, unlike SEGMENT, which is required in
HP FORTRAN 77/V when large programs must be broken into
segments, the LOCALITY directive is not required in HP FORTRAN
77/iX. HP FORTRAN 77/iX handles memory management
transparently.

EXTERNAL ALIAS and
LITERAL ALIAS

Directives

The EXTERNAL_ALIAS and LITERAL_ALIAS directives allow you to
rede�ne the names of functions and subroutines within a program
unit.

UPPERCASE and
LOWERCASE Directives

The UPPERCASE and LOWERCASE directives allow you to turn on or o�
shifting to uppercase or lowercase in FORTRAN 77 external names.

ON Statement and
INTEGER*2 Conditions

In MPE/iX, ON statements specifying trap handling for INTEGER*2
conditions are enabled only when the $CHECK_OVERFLOW INTEGER_2

option (which is the default) is on. This restriction also applies to
trap handling for INTEGER conditions if the $SHORT option is on.

8-12 Differences

9

Source Program Conversion

Certain changes may be required in an HP FORTRAN 77/V
program before it can be compiled by the HP FORTRAN 77/iX
compiler and executed properly on the MPE/iX system. These
changes mainly involve data format.

The quickest way to run your program in native mode is to use
the HP3000_16 directive as explained below. However, to take full
advantage of the performance increases of MPE/iX, you should
eventually convert your data �les to IEEE format and use HP
Precision Architecture alignment (which is the default).

Using MPE V Binary
Data Files or
TurboIMAGE
Databases

If your program accesses binary data �les or databases, use one of the
following directives:

$HP3000_16 REALS Allows access to
oating-point or
double precision data in MPE V
format but assumes MPE/iX data
alignment. Use this directive when
accessing binary data �les that were
created on an MPE V system and that
contain
oating-point values.

$HP3000_16 ALIGNMENT Aligns noncharacter data on 16-bit
boundaries. Use this directive if
your program uses a TurboIMAGE
database but none of the data items
are
oating-point or double precision.

Source Program Conversion 9-1

Programs Packing
Data Items with
EQUIVALENCE

Programs that use EQUIVALENCE statements to pack data items
relative to each other must either remove the packing dependency or
use the $HP3000_16 directive with the ALIGNMENT option.

Implied Equivalence If a program implies equivalence by de�ning common blocks
di�erently among program units, either use the HP3000_16 directive
with the ALIGNMENT option or revise the program. Note that the
compiler cannot identify and
ag this type of equivalence the way it
does the explicit use of illegal equivalences.

Integers and
Logicals

Integers and logicals can remain as originally de�ned or be converted
to 32-bit items for improved performance. If you convert 16-bit
integers and logicals to 32-bit items, check that equivalences,
common variables, and parameter lists match correctly.

Using the Same
Source Code

If you wish to compile the same source code using both the HP
FORTRAN 77/V and HP FORTRAN 77/iX compilers, you can use
the IF directive to specify conditional compilation. This will switch
the declarations of items that signi�cantly a�ect performance.

Example $SET (MPE_IX = .TRUE., MPE_V = .FALSE.)

$IF (MPE_IX)

INTEGER*4 i,j,k

LOGICAL*4 tested

$ENDIF

$IF (MPE_V)

$SHORT

INTEGER*2 i,j,k

LOGICAL*2 tested

$ENDIF

SEGMENT directives can be left in the source code as synonyms for
the LOCALITY directive of HP FORTRAN 77/iX. See \LOCALITY
Directive" in Chapter 8 for further information.

9-2 Source Program Conversion

10

Data File Conversion

ASCII �les need no conversion. Binary (unformatted) �les are also
compatible except for
oating-point items (of type REAL, DOUBLE
PRECISION, COMPLEX, or DOUBLE COMPLEX). Binary �les containing
reals in the MPE V format can be used without any conversion if the
program is compiled specifying HP3000_16 REALS or HP3000_16 ON.
If you want full native mode
oating-point performance, you should
convert the binary �les to IEEE
oating-point format, as explained
below.

Converting Binary
Files to IEEE Format

Since only you know the format of your program's data �les, you
should write a short program (or two) to convert �les. The easiest
way is to write two short programs, one to read in the unformatted
�le and write it out as an ASCII (formatted) �le, the other to reverse
the process on the MPE/iX operating system in native mode.

The FORMAT statement used should specify more than the actual
precision of the variables used. For example, use format descriptor
E14.8 for single precision and E24.18 for double precision. The
�rst program can be run either on the MPE V operating system
or on MPE/iX. If on MPE/iX, run it either in compatibility mode
or in native mode with HP3000_16 REALS turned on. Running the
conversion program in native mode with HP3000_16 REALS can
introduce a small amount of conversion error and some loss of
precision because of the di�erences between IEEE and HP 3000

oating-point formats. However, the total error introduced should
not exceed half of one decimal digit.

Here is an HP FORTRAN 77/V program that converts a data �le to
HP FORTRAN 77/iX format:

C HP FORTRAN 77/V program to convert a direct access binary data

C file containing floating-point data items.

PROGRAM convert

REAL x, y, z

INTEGER*2 i, j

INTEGER*4 i4, recnum

DOUBLE PRECISION dp

OPEN (12, FILE='mydata', ACCESS='DIRECT', FORM='UNFORMATTED',

> RECL=28, STATUS='OLD')

Data File Conversion 10-1

OPEN (15, FILE='newdata', ACCESS='SEQUENTIAL', FORM='FORMATTED',

> STATUS='NEW')

recnum = 1

C Main loop reading and writing records until past the end of file,

C which is an error on a direct access file.

10 CONTINUE ! Do until end of file.

READ (12, REC=recnum, ERR=99) i, x, i4, dp, j, y, z

recnum = recnum + 1

WRITE (15, 100) i, x, i4, dp, j, y, z ! Same I/O list as READ.

100 FORMAT (I7, E14.8, I11, E24.18, I7, 2E14.8)

GOTO 10

C Exit from loop, file finished.

99 CONTINUE

STOP 'Now, :STORE off file "newdata" for transfer to MPE XL'

END

Here is an HP FORTRAN 77/iX program that converts an HP
FORTRAN 77/V data �le:

C HP FORTRAN 77/iX program to convert direct access binary data

C file containing floating-point data items.

PROGRAM convert

REAL x, y, z

INTEGER*2 i, j

INTEGER*4 i4, recnum

DOUBLE PRECISION dp

OPEN (12, FILE='mydata', ACCESS='DIRECT', FORM='UNFORMATTED',

> RECL=28, STATUS='OLD') ! Native mode copy of original file.

OPEN (15, FILE='newdata', ACCESS='SEQUENTIAL', FORM='FORMATTED',

> STATUS='NEW') ! Input file restored from MPE V system.

recnum = 1

C Main loop reading and writing records until past the end of file.

10 CONTINUE ! Do until end of file.

READ (15, FMT=100, ERR=99) i, x, i4, dp, j, y, z

WRITE (12, REC=recnum) i, x, i4, dp, j, y, z ! Same I/O list as READ.

recnum = recnum + 1

100 FORMAT (I7, E13.8, I11, E23.18, I7, 2E13.8)

GOTO 10

C Exit from loop, file finished.

10-2 Data File Conversion

99 CONTINUE

WRITE (6, *) 'FILE "mydata" CREATED WITH', RECNUM - 1, ' RECORDS.'

CLOSE (15, STATUS='DELETE') ! Purge file used for transfer.
END

Another way is to use the HPFPCONVERT system intrinsic. A program
can read in the FORTRAN 77/V
oating-point data, pass the data
to HPFPCONVERT for translation to IEEE format, and then write out
the data in native mode. This process can be performed completely
in native mode as long as no operations are performed on the
FORTRAN 77/V format
oating-point data other than passing it to
HPFPCONVERT. HPFPCONVERT is described in detail in the MPE/iX
Intrinsics Reference Manual .

HPFPCONVERT loses only the actual di�erence in precision of the two

oating-point formats (two bits for double precision, none in single).

Note Some single precision values that are legal on MPE V may not be
translated to IEEE single precision
oating-point. The untranslatable
values are those of a magnitude greater than 138 or less than 10-43.

Data File Conversion 10-3

11

Conversion Checklist

Here is a quick check. If your program does not use any of the
features listed in this chapter, you need only recompile to run it in
full native mode. If your program has any of these characteristics, it
may need modi�cation. Here are some points to check:

EQUIVALENCE
Statement or
Redefined Common
Blocks

HP FORTRAN 77/iX has di�erent alignment requirements from HP
FORTRAN 77/V. In most programs, the compiler automatically
allocates the alignment. However, your HP FORTRAN 77/V
program might force a speci�c alignment by the use of EQUIVALENCE
or implicitly expect a particular alignment by using di�erent
de�nitions of the same common block among program units.
Typically, such explicit or implicit equivalences are used for three
reasons: to change the data type of a variable, to pack variables into
a logical record to be passed to system routines or routines coded in
another language, or to save space.

An equivalence that changes the data type of a variable is safe and
presents no problem in migration from HP FORTRAN 77/V to
HP FORTRAN 77/iX, provided that the equivalenced variables or
arrays are the same size in memory (for example, when equivalencing
a REAL*4 and an INTEGER*4). Multiple equivalences to an array,
however, are likely to produce a dependency on the alignment
convention of the compiler and generate error messages.

The type of equivalence that creates a packed record is commonly
used to call database intrinsics and other system intrinsics. The
compiler
ags this as an error if an alignment is speci�ed that
con
icts with the requirements of HP FORTRAN 77/iX.

These are some solutions to alignment problems:

If your program has alignment problems, specify HP3000_16

ALIGNMENT; this causes the compiler to use HP FORTRAN 77/V's
alignment rules and to generate code to handle the resulting
variables correctly. Specify the ALIGNMENT option before the �rst
statement in your compilation �le. This will cause the options to
take e�ect in every program unit (mixing alignments generally
produces undesirable results).

If you call FORTRAN subprograms from other languages (for
example, to receive elements of Pascal packed records and any

Conversion Checklist 11-1

COBOL compatible type) that may align variables other than on
their regular boundaries, specify HP3000_16 ALIGNMENT.

Note Specifying HP3000_16 ALIGNMENT causes a slight reduction in
performance, so do not use it unnecessarily.

If your program uses equivalence to overlay one logical set of data
items with another (planning for them to be used separately, for
data space savings), consider modifying it not to do this. The
practice is unnecessary in MPE/iX (with its large data space) and
could introduce defects during software maintenance on such a
fragile construct.

SYSTEM INTRINSIC
Statement

Calling MPE/iX intrinsics in HP FORTRAN 77/iX is usually
identical to calling MPE V intrinsics in HP FORTRAN 77/V.

If your program uses system intrinsics that have been rede�ned
in MPE/iX (such as MYCOMMAND or CREATEPROCESS), make the
appropriate changes in calling methods. The usual reason an
intrinsic is rede�ned is that the MPE V version uses an address
stored in a 16-bit variable or array element. Addresses are at
least 32 bits in MPE/iX. Because the FORTRAN 77/iX compiler
does not know which intrinsics have been rede�ned, it does not
produce a warning when one is used. See the MPE/iX Intrinsics
Reference Manual , the Programmer's Skills Migration Guide, and
the Application Migration Guide for the system intrinsics that are
changed on MPE/iX. Migration tools such as the Object Code
Scanner and the Runtime Event Logging Tool will also assist in
identifying changed intrinsics.

Binary Files with HP
3000 Floating-Point
Data

If your program reads or writes HP 3000
oating-point data in
binary form, you must specify HP3000_16 REALS in every program
unit.

The performance of IEEE
oating-point is usually at least 100
times faster than HP 3000
oating-point. If your application uses

oating-point extensively, do the following:

Convert such data �les to native mode, as described in Chapter 10.

Convert compatibility mode databases to native mode databases.

Modify each program to take advantage of MPE/iX alignment
conventions, as described in the �rst section of this chapter.

Remove the HP3000_16 ON option if used.

11-2 Conversion Checklist

Index

A ACCEPT statement, 3-6
AJMAX0 function, 3-8
AJMIN0 function, 3-8
algebraic expressions, 3-9
ALIAS directive, 3-6
ALIAS directive, 4-5
alignment, 8-4, 8-5, 9-2, 11-1
comparison, 8-2, 8-4
default, 8-2
HP Precision Architecture, 9-1

alternate returns, 3-6, 4-6
AMAX0 function, 3-8
AMIN0 function, 3-8

B binary databases, 9-1
binary �les, 9-1
converting to IEEE format, 10-1
with HP 3000
oating-point data, 11-2

BOOL function, 4-2
BOUNDS directive, 3-3

C CALENDAR system intrinsic, 3-7
carriage control constants, 3-5
CAUSEBREAK system intrinsic, 3-7
CCOSH function, 4-3
character classes, 6-3
character constants, 3-5
character data, 4-4
character substrings
overlapping, 8-7

CHARACTER type declarator, 3-6
character variables
passing to subroutines, 4-5

CHECK directive, 3-3
CLOCK system intrinsic, 3-7
closures, 6-3
CODE directive, 3-3
CODE_OFFSETS directive, 3-3
command �le, 6-1
command syntax, 6-1
common
blocks, 8-5, 9-2, 11-1
variables, 8-8

COMMON statement, 8-5
compatibility mode, 1-1, 7-1

Index-1

compilation, 5-11
composite numbers, 4-6
condition code, 3-6
constants
carriage control, 3-5
character, 3-5
logical, 3-5
octal, 3-5

CONTROL, 3-4
CONTROL directive, 3-4
CONTROL ONETRIP directive, 4-6
conversion checklist, 11-1
CONVERT command, 5-1
CSINH function, 4-3
CTANH function, 4-3
customizing the command �le, 6-1

D data �les
binary, 9-1

data type declaration, 8-5
data type word length, 4-1
DEBUG system intrinsic, 3-7
directive
ALIAS, 3-6
ALIAS, 4-5
BOUNDS, 3-3
CHECK, 3-3
CODE, 3-3
CODE_OFFSETS, 3-3
CONTROL, 3-4
EDIT, 3-4
EXTERNAL_ALIAS, 8-12
HP3000_16, 8-4, 8-5, 8-9, 9-2, 11-2
HP3000 16, 11-1
HP3000_66 CHARS, 4-5
INIT, 3-3
LIST, 3-3
LIST_CODE, 3-3
LITERAL_ALIAS, 8-12
LOCALITY, 8-7, 8-12
LOCATION, 3-3
LOWERCASE, 8-12
MAP, 3-3
MORECOM, 8-8
NOCODE, 3-3
NOLIST, 3-3
NOLOCATION, 3-3
NOMAP, 3-3
NOWARN, 3-3
OPTIMIZE, 8-9
OPTION, 3-4
RANGE, 3-3
SEGMENT, 3-3, 8-7, 8-12
SYMDEBUG, 8-12

Index-2

TABLES, 3-3
TRACE, 3-4
UPPERCASE, 8-12
WARN, 3-3
WARNINGS, 3-3

directives, 3-3
DISPLAY statement, 3-6
DO loop
execution, 4-6
jumping into, 4-6

E EDIT directive, 3-4
'END=' speci�er, 3-10
equivalence, 11-2
implied, 9-2

EQUIVALENCE statement, 8-4, 9-2, 11-1
evaluation
of mixed mode expressions, 4-4

example conversion, 5-2
expressions
algebraic, 3-9
mixed mode, 4-4

EXTERNAL_ALIAS directive, 8-12

F FATHER system intrinsic, 3-7
�xed format, 3-3
FLOAT function, 3-8

oating-point, 8-1, 11-2
HP 3000, 8-1
IEEE, 8-1

FLOATJ function, 3-8
format
�xed, 3-3
free, 3-3
statements, 4-7

free format, 3-3
FREELOCRIN system intrinsic, 3-7
FTNUDC.PUB.SYS, 5-1
function
STR, 3-10

function names, 3-8
functions, 3-8

G GETJCW system intrinsic, 3-7
GETORIGIN system intrinsic, 3-7
GETPRIVMODE system intrinsic, 3-7
GETUSERMODE system intrinsic, 3-7

Index-3

H HABS function, 3-8
HDIM function, 3-8
HMOD function, 3-8
HP3000_16 ALIGNMENT, 9-2
HP3000_16 directive, 8-4, 8-5, 8-9, 9-2, 11-2
STRING_MOVE option, 8-7

HP3000 16 directive, 11-1
HP3000_66 CHARS directive, 4-5
HP 3000
oating-point, 8-1
HPFPCONVERT system intrinsic, 10-3
HSIGN function, 3-8

I IABS function, 3-8
ICHAR function, 3-8
IDIM function, 3-8
IDINT function, 3-8
IEEE
oating-point, 8-1
IEEE format, 9-1, 10-1
IF Directive, 3-5
IFIX function, 3-8
implied equivalence, 9-2
INCLUDE, 3-4
INIT directive, 3-3
INTEGER*2 data items, 8-1
INTEGER*4 data items, 8-1
integer parameters, 4-2
integers, 9-2
INTEGER type declarator, 3-6
internal reads
free-format, 4-6

INT function, 3-8
intrinsics, 3-7
calling system, 11-2

INUM function, 3-8
ISIGN function, 3-8

J JABS function, 3-8
JDIM function, 3-8
JDINT function, 3-8
JFIX function, 3-8
JINT function, 3-8
JMAX0 function, 3-8
JMAX1 function, 3-8
JMIN0 function, 3-8
JMIN1 function, 3-8
JMOD function, 3-8
JNUM function, 3-8
JSIGN function, 3-8

Index-4

L LIST_CODE directive, 3-3
LIST directive, 3-3
LITERAL_ALIAS directive, 8-12
LOCALITY directive, 8-7, 9-2
LOCATION directive, 3-3
logical constants, 3-5
logical parameters, 4-2
logicals, 9-2
LOGICAL type declarator, 3-6
logical variables, 4-2
LOWERCASE directive, 8-12

M MAP directive, 3-3
MAX0 function, 3-8
MAX1 function, 3-8
migration aid, 2-1
migration of object code, direct, 1-1
migration path information, �nding, 1-2
MIN0 function, 3-8
MIN1 function, 3-8
MOD function, 3-8
MORECOM directive, 8-8

N named constants
in PARAMETER statement, 4-5

native mode, 1-2, 7-1, 9-1
NOCODE directive, 3-3
NOLIST directive, 3-3
NOLOCATION directive, 3-3
NOMAP directive, 3-3
NOWARN directive, 3-3

O octal constants, 3-5
octal numbers, 4-6
ON statement, 8-12
OPTIMIZE directive, 8-9
OPTION directive, 3-4
overlapping character substring moves, 8-7

P packed record, 11-1
parameterless system intrinsics, 3-7
parameters
number, 4-5
passed by value, 3-6

PARAMETER statement
named constants in, 4-5

PARAMETER type declarator, 3-6
partial word designator, 3-9
passed parameters
word length, 4-2

position expressions, 6-2
PRINT statement, 3-6
PROCTIME system intrinsic, 3-7

Index-5

R RANGE directive, 3-3
READ statement, 3-6
REALS option, 9-1
replacement string commands, 6-5
RESETDUMP system intrinsic, 3-7
running the migration aid, 5-3

S search string commands, 6-2
S edit descriptor, 4-4
SEGMENT directive, 3-3, 8-7, 8-12, 9-2
Segmenter, 4-2
SETCATALOG, 5-1
SET Directive, 3-5
SHOWCATALOG, 5-1
source code migration, 1-2
source program conversion, 9-1
SPLINTR directive, 8-7
stack space, 8-8
statement
ACCEPT, 3-6
COMMON, 8-5
DISPLAY, 3-6
EQUIVALENCE, 8-4, 9-2, 11-1
ON, 8-12
PRINT, 3-6
SYSTEM INTRINSIC, 8-7, 11-2

statement READ, 3-6
STR function, 3-10
substring designator, 3-9
SYMDEBUG directive, 8-12
syntax
of commands, 6-1

SYSINTR directive, 8-7
system intrinsic
CALENDAR, 3-7
CAUSEBREAK, 3-7
CLOCK, 3-7
DEBUG, 3-7
FATHER, 3-7
FREELOCRIN, 3-7
GETJCW, 3-7
GETORIGIN, 3-7
GETPRIVMODE, 3-7
GETUSERMODE, 3-7
HPFPCONVERT, 10-3
PROCTIME, 3-7
RESETDUMP, 3-7
TERMINATE, 3-7
TIMER, 3-7

system intrinsics, 3-7
calling, 11-2

SYSTEM INTRINSIC statement, 8-7, 11-2

Index-6

T TABLES directive, 3-3
tag �elds, 6-3, 6-5
TERMINATE system intrinsic, 3-7
TIMER system intrinsic, 3-7
TRACE directive, 3-4
TurboIMAGE, 9-1
type declarator
CHARACTER, 3-6
INTEGER, 3-6
LOGICAL, 3-6
PARAMETER, 3-6

U UDC, 5-1
uninitialized variables, 8-1
UPPERCASE directive, 8-12
user subprogram library (USL), 8-8
USLINIT, 8-8

V variables, uninitialized, 8-1
VAR[i:j], 3-9

W WARN directive, 3-3
WARNINGS directive, 3-3
word designators
partial, 3-9

word length
data type, 4-1
of passed parameters, 4-2

word size, 8-1

Index-7

	Top of Document
	Preface
	Contents
	Introduction
	Terminology
	Direct Migration of Object Code (Compatibility Mode)
	Source Code Migration (Native Mode)
	Migration Paths
	Finding Information on the Migration Paths

	Introduction to Part I
	The Migration Aid
	What the Migration Aid Does
	How the Migration Aid Works
	The Commands of the Command File
	Logical Constants

	What the Migration Aid Does Not Do
	Data Type Word Length
	Word Length of Passed Integer and Logical Parameters
	Functions Not Found in HP FORTRAN 77/V
	Evaluation of Mixed Mode Expressions
	The S Edit Descriptor
	Named Constants in PARAMETER Statements
	Passing Character Variables
	Parameter Limit
	DO Loops
	Composite Numbers
	Alternate Returns
	Free-Format Internal Reads l
	Format Statements
	Recognition of End of Data
	List-Directed READ Statements

	Using the Migration Aid
	Checking Your Catalog
	Running the Migration Aid
	Example Conversion

	Customizing the Command File
	Command Syntax
	Search String Commands
	Replacement String Commands
	Example Command File

	Introduction to Part II
	Compatibility Mode Versus Native Mode
	Factors Affecting Migration

	Differences
	Changed Features
	Removed Limitations
	New Features

	Source Program Conversion
	Using MPE V Binary Data Files or TurboIMAGE Databases
	Programs Packing Data Items with EQUIVALENCE
	Implied Equivalence
	Integers and Logicals
	Using the Same Source Code

	Data File Conversion
	Converting Binary Files to IEEE Format

	Conversion Checklist
	EQUIVALENCE Statement of Redefined Common Blocks
	SYSTEM INTRINSIC Statement
	Binary Files with HP 3000 Floating-Point Data

	Index

