
HP 3000 Computer Systems

HP FORTRAN 77/iX

Programmer's Guide

ABCDE

HP Part No. 31501-90011

Printed in U.S.A. June 1992

E0692

Fourth Edition

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or use of this material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced, or translated
to another language without the prior written consent of
Hewlett-Packard Company.

Copyright c 1988, 1989, 1990, 1992 by Hewlett-Packard Company

Printing History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software
Version

First Edition December 1988 31501A.02.00

Second Edition October 1989 31501A.03.05

Third Edition December 1990 31501A.04.11

Fourth Edition June 1992 31501A.04.31

iii

Preface This is the reference manual for the HP FORTRAN 77 programming
language as it is implemented on the MPE/iX operating system.
This manual assumes that the reader has been trained in the
FORTRAN language and knows FORTRAN programming
techniques.

Chapter Summary This manual is organized into the following chapters:

chapter 1 Describes the factors that inuence storage
allocation for a FORTRAN variable.

chapter 2 Describes how to use formatted and
list-directed input/output statements.

chapter 3 Describes input/output operations with disk
and internal �les.

chapter 4 Describes some FORTRAN 77 �le operations
under the operating system.

chapter 5 Describes subroutines, functions, and block
data subprograms.

chapter 6 Describes methods that make programs more
e�cient. Discusses the optimizer.

chapter 7 Describes how to port FORTRAN 77
programs from other systems onto HP
systems and how to make new programs
easily transportable between HP systems.
Discusses portability topics related to the
operating system.

chapter 8 Discusses the interface between FORTRAN
and other languages.

chapter 9 Discusses facilities in FORTRAN 77 that are
useful in debugging programs.

iv

Additional
Documentation

More information on HP FORTRAN 77 and related topics can be
found in the following manuals:

HP FORTRAN 77/iX Reference (31501-90010)

This manual is a complete reference of all HP FORTRAN 77/iX
features.

HP FORTRAN 77/iX Migration Guide (31501-90004)

This manual contains information on how to run FORTRAN 66/V
and HP FORTRAN 77/V programs on the MPE/iX operating
system and how to convert them to HP FORTRAN 77/iX
programs.

In addition, the following manuals are referenced in this manual:

MPE/iX Intrinsics Reference Manual (32650-90028)

HP Symbolic Debugger/iX User's Guide (31508-90003)

HP Toolset/iX Reference Manual (36044-90001)

v

Conventions UPPERCASE In a syntax statement, commands and
keywords are shown in uppercase characters.
The characters must be entered in the
order shown; however, you can enter the
characters in either uppercase or lowercase.
For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word
in italics represents an optional parameter or
argument that you must replace with the
actual value. In the following example, you
must replace �lename with the name of the
�le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In the
following example, yes is the user's response
to the prompt:

Do you want to continue? >> yes

vi

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose
optional elements. In the following example,
OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select OPTION or parameter or neither. The
elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select parameter zero or more times.
Each instance of parameter must be preceded
by a comma:

[,parameter][...]

In the example below, you only use the
comma as a delimiter if parameter is
repeated; no comma is used before the �rst
occurrence of parameter :

[parameter][,...]

vii

Conventions
(continued)

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA, or B.
The elements cannot be repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses
indicate where portions of an example have
been omitted.

� In a syntax statement, the space symbol �
shows a required blank. In the following
example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the
keyboard. For example, �Return� represents the
carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character.
For example, �CTRL� Y means that you press
the control key and the Y key simultaneously.

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

If no base is speci�ed, decimal is assumed.

viii

Contents

1. Data Storage
Variable Type 1-2
Addressing Mode 1-3
The EQUIVALENCE Statement 1-4
Equivalence of Array Elements 1-4
Equivalence and Multi-Dimensioned Arrays . . . 1-6
Equivalence Between Arrays of Di�erent Dimensions 1-7
Equivalence of Character Variables 1-8
Equivalence in Common Blocks 1-9
Equivalence and Data Alignment 1-10

HP FORTRAN 77/iX Storage Assignment 1-11
Memory Areas 1-11
Code Area 1-11
Stack Area 1-11
Data Area 1-11

Memory Area Assignment 1-12
Local Variables 1-12
Saved Variables 1-12
Common Blocks 1-12
Summary of the Memory Area Assignment . . 1-13

2. Formatted Input/Output
List-Directed Statements 2-1
List-Directed Input 2-1
List-Directed Output 2-3

Formatted Statements 2-5
Formatted Input 2-6
Formatted Output 2-7
Variable Format Descriptors 2-8

Summary of the Descriptors 2-10
Format Speci�cations 2-12
Integer Format Descriptors: I, O, K, @, Z 2-12
The Input Field 2-13
The Output Field 2-15

Real Format Descriptors: F, D, E, G 2-17
The Input Field 2-17
The Output Field 2-19

Character Format Descriptors: A, R 2-21
The Input Field 2-25
The Output Field 2-26

Logical Format Descriptor: L 2-30
The Input Field 2-30

Contents-1

The Output Field 2-30
Repeating Speci�cations 2-31
Correspondence Between the I/O List and Format

Descriptors 2-32
Monetary Format Descriptor: M 2-34
The Input Field 2-34
The Output Field 2-35

Numeration Format Descriptor: N 2-36
The Input Field 2-36
The Output Field 2-37

Processing New Lines 2-38
The / Descriptor 2-38
The NL, NN, or $ Descriptor 2-38

Handling Character Positions 2-39
The X Descriptor 2-39
The T Descriptor 2-40
The TL Descriptor 2-41
The TR Descriptor 2-42

Handling Literal Data 2-43
The ' and " Descriptors 2-43
The H Descriptor 2-44

Using Scale Factors: The P Descriptor 2-44
Printing Plus Signs: The S, SP, and SS Descriptors 2-49
Returning the Number of Bytes: The Q Descriptor 2-49
Terminating Format Control: The Colon Descriptor 2-50
Handling Blanks in the Input Field 2-52
The BN Descriptor 2-52
The BZ Descriptor 2-54

Alternative Methods of Specifying Input/Output . . 2-55
Using the Implied DO Loop 2-56

3. File Handling
Disk Files 3-1
Default File Properties 3-2
ACCESS='SEQUENTIAL' 3-2
FORM='FORMATTED' 3-2
STATUS='UNKNOWN' 3-2

Reporting File Handling Errors 3-2
The STATUS Speci�er 3-3
The ERR Speci�er 3-3
The IOSTAT Speci�er 3-5

Creating a New File Using STATUS='NEW' . . . 3-6
Reading From an Existing File Using

STATUS='OLD' 3-9
Appending to a File 3-11
File Access 3-12
Sequential Access Files 3-12
Direct Access Files 3-14
Indexed Sequential Access Files 3-18

Unformatted I/O 3-23
Unformatted Input 3-23

Contents-2

Unformatted Output 3-23
Using Formatted and Unformatted Files 3-24
Using the INQUIRE Statement 3-26
Positioning the File Pointer 3-29
The BACKSPACE Statement 3-29
The REWIND Statement 3-29
The ENDFILE Statement 3-29
Example of Using the File Positioning Statements 3-30

File Handling Examples 3-31
Computing the Mean of Data in a Sequential File 3-31
Inserting Data Into a Sorted Sequential File . . 3-32

Internal Files 3-34
Reading From an Internal File 3-34
Writing to an Internal File 3-36

4. HP FORTRAN 77/iX File Operations
The OPEN Statement Processor 4-1
Prede�ned Units and Files 4-2
FTN05 4-2
FTN06 4-2
FTN01 Through FTN99 (Excluding FTN05 and

FTN06) 4-3
Creating Files with the OPEN Statement 4-4
STATUS='NEW' 4-4
STATUS='OLD' 4-4
STATUS='SCRATCH' 4-4
STATUS='UNKNOWN' 4-4
FORM='UNFORMATTED' and

FORM='FORMATTED' 4-5
ACCESS='SEQUENTIAL' 4-5
ACCESS='DIRECT' 4-6

Closing Files 4-7
Executing the CLOSE Statement 4-7
Terminating a Program 4-7

Carriage Control Files 4-8
Terminals and Line Printers 4-8
Disk Files 4-8
FILE Equation 4-8

Using Magnetic Tapes 4-9
Using the File Handling Procedures 4-10
FSET Procedure 4-10
FNUM Procedure 4-12
UNITCONTROL Procedure 4-13

Contents-3

5. Subprograms
Subroutines 5-2
Structure of a Subroutine 5-2
Invoking Subroutines 5-4
Alternate Returns From Subroutines 5-5

Functions 5-9
Function Subprograms 5-9
Statement Functions 5-15

Arguments to Subprograms 5-18
Passing Constants 5-21
Passing Expressions 5-22
Passing Character Data 5-25
Passing Arrays 5-27
Adjustable Dimensions 5-28
Assumed-Size Arrays 5-30

Multiple Entries into Subprograms 5-32
Common Blocks 5-36
Blank Common Blocks 5-36
Labeled Common Blocks 5-39

Block Data Subprograms 5-41
Using the SAVE Statement 5-43

6. Writing E�cient Programs
Compile-Time E�ciency 6-2
Run-Time E�ciency 6-3
Declare Integer and Logical Variables E�ciently . 6-3
Avoid Using Arrays 6-3
Use E�cient Data Types 6-3
Avoid Mixed-Mode Expressions 6-3
Eliminate Slow Arithmetic Operators 6-4
Use Statement Functions 6-4
Reduce External References 6-4
Combine DO Loops 6-5
Eliminate Short DO Loops 6-5
Eliminate Common Operations in Loops 6-6
Use E�cient IF Statements 6-6
Avoid Formatted I/O 6-7
Specify the Array Name for I/O 6-7
Avoid Using Range Checking 6-7
Use Your System Language 6-7
Minimize Segment Faults 6-7
MPE/iX Run-Time E�ciency Topics 6-8

Code Space E�ciency 6-9
Use Function Subroutines 6-9
Avoid Formatted I/O 6-9
Use Character Substrings 6-9

Data Space E�ciency 6-10
Eliminate Redundant or Unused Variables 6-10
Avoid Common Variables 6-10
Use INTEGER*2 and LOGICAL*2 Data 6-10

Performance Tuning 6-11

Contents-4

Grouping Related Routines 6-12
Shifting Data from the Data Area to the Stack Area 6-14
Integer Overow Checking 6-14
Using the Optimizer 6-15
Introduction to the Optimizer 6-15
When to Use the Optimizer 6-15
Invoking the Optimizer on MPE/iX 6-15
Level One Optimization Modules 6-16
Branch Optimization Module 6-17
Dead Code Elimination Module 6-18
Faster Register Allocation Module 6-18
Instruction Scheduler Module 6-18

Peephole Optimization Module 6-19
Level Two Optimization Modules 6-19
Advanced Register Allocation Module 6-20
Strength Reduction 6-20
Common Subexpression Elimination 6-21
Constant Folding Module 6-21
Loop Invariant Code Motion Module 6-21
Store/Copy Optimization Module 6-22
Unused De�nition Elimination Module 6-22

Optimizer Guidelines 6-23
HP FORTRAN 77 Optimizer Assumptions . . 6-23
OPTIMIZE Compiler Directive 6-25

Flagging Uninitialized Variables 6-30
Example 6-32
Loop Unrolling 6-35
Limits on Use 6-35
Example 6-37

What to Do If the Optimized Program Fails . . . 6-38

7. Programming for Portability
Restricting Programs to the HP FORTRAN 77

Standard 7-2
Using Consistent Data Storage 7-3
Use the LONG and SHORT Compiler Directives . 7-3
Use Length Speci�cations in All Type Statements 7-4
Declare All Variables 7-5
Avoid Using the EQUIVALENCE Statement . . . 7-5
Declare Common Blocks the Same in Every Program

Unit 7-5
Initialize Data Before the Algorithm Begins . . . 7-7
Avoid Accessing the Representation of Logical Values 7-7
Maintain Parameter Type and Length Consistency 7-7

Writing Programs That Can Be Easily Modi�ed . . 7-9
Avoiding Unstructured FORTRAN 77 Features . . 7-15
Identifying Nonstandard Features 7-15
Avoiding Data Storage Inconsistencies 7-16
Using Comments 7-16
Using Conditional Compilation Directives 7-17

Contents-5

Resolving Incompatibilities between MPE V and
MPE/iX: the HP3000 16 7-19
The ON Option 7-20
The OFF Option 7-20
The ALIGNMENT Option 7-21
The REALS Option 7-24
The STRING MOVE Option 7-25

8. Interfacing with Other Languages
HP Pascal/iX 8-2
Calling HP Pascal/iX from HP FORTRAN 77/iX 8-3
Calling HP FORTRAN 77/iX from HP Pascal/iX 8-5

HP COBOL II/iX 8-8
Calling HP COBOL II/iX from HP FORTRAN

77/iX 8-10
Calling HP FORTRAN 77/iX from HP COBOL

II/iX 8-11
HP C/iX 8-15
Notes on HP FORTRAN 77/iX and HP C/iX Types 8-17
Files and I/O 8-17
Parameter Passing between HP FORTRAN 77 and

HP C 8-18
Using System Intrinsics 8-20
De�ning System Intrinsics 8-20
Matching Actual and Formal Parameters 8-21

9. Debugging FORTRAN 77 Programs
Using xdb 9-1
The Strategy 9-3
Program Requirement 9-3
Linker and Debugger Interaction 9-4
Invoking the Debugger 9-4
Exiting the Debugger 9-5
Executing Your Program 9-5
Viewing the Execution Stack 9-5
Viewing the Source File 9-6
The View Command 9-6
The Window Command 9-7
The Move Command 9-7
The Search Commands 9-7

Viewing Program Data 9-7
Listing the Variables 9-7
Finding a Variable's Value 9-9

Execution Control 9-9
Breakpoints 9-9
Setting Breakpoints 9-10
Recovering from Breakpoints 9-10
Deleting Breakpoints 9-11
Using Breakpoints for Execution Tracing . . . 9-11

Single Step Commands 9-12
Additional Debugger Capabilities 9-12

Contents-6

Removing Debugging Information 9-12
Using HP Toolset/iX 9-13
Compiling Programs for HP Toolset/iX 9-13
Invoking HP Toolset/iX 9-13
Setting Up for Symbolic Debug 9-13
When to Use HP Toolset/iX 9-14
Running a Program 9-14
Setting Breakpoints 9-14
Tracing Names 9-15
Clearing Breakpoints 9-16
Displaying Variables 9-16
Modifying Variables 9-18
Redoing a Command 9-19
Restarting Your Program 9-19
Displaying Breakpoints 9-19
Using the Trace Facilities 9-20
Accessing MPE/iX Debug 9-20
Ending Execution of a Program Prematurely . . . 9-20
Exiting HP Toolset/iX 9-20

Index

Contents-7

Figures

2-1. The Aw Format Descriptor 2-23
2-2. The Rw Format Descriptor 2-23
2-3. The Aw and Rw Format Descriptors 2-24
3-1. Sequential Access Files 3-13
3-2. Direct Access Files 3-14
3-3. Indexed Sequential Access Files 3-18
7-1. MPE V Structure 7-22
7-2. MPE/iX Structure 7-22
7-3. Shifted MPE/iX Structure 7-23

Tables

1-1. Data Type Keywords 1-2
1-2. Addressing Mode 1-3
1-3. Data Class and Addressing Mode 1-3
1-4. Summary of Memory Area Assignment 1-13
2-1. Summary of the Format Descriptors 2-10
2-2. Summary of the Edit Descriptors 2-11
3-1. Status Types 3-3
3-2. The STATUS Speci�er 3-3
3-3. The IOSTAT Speci�er 3-5
4-1. UNITCONTROL Options 4-13
5-1. Components of Program Units 5-1
5-2. Categories of FORTRAN Functions 5-9
6-1. Data Type E�ciency 6-3
6-2. Descriptions of Assembly Language Routines . . . 6-16
7-1. Conditional Compilation Directives 7-17
7-2. HP3000 16 Directive Options 7-20
7-3. Data Alignment on MPE V and MPE/iX 7-21
8-1. HP FORTRAN 77/iX and HP Pascal/iX Types . 8-2
8-2. HP COBOL II/iX Numeric Types and Formats . 8-8
8-3. HP COBOL II/iX and HP FORTRAN 77/iX Data

Types 8-9
8-4. HP FORTRAN 77/iX and HP C/iX Types . . . 8-15
8-5. HP FORTRAN 77/iX and HP Pascal/iX Data Types 8-21
9-1. Sample xdb Commands 9-2

Contents-8

1

Data Storage

The data allocation for a FORTRAN variable is inuenced by three
factors:

Variable type

Addressing mode

The EQUIVALENCE statement

This chapter describes these factors in detail.

Data Storage 1-1

Variable Type The variable data types of FORTRAN 77 and their corresponding
assignment statements are shown in Table 1-1.

Table 1-1. Data Type Keywords

General Name Data Type
Keyword

Equivalent Keyword

Integer INTEGER*2 2

INTEGER*4 2
INTEGER 1,3 (option)
INTEGER 1,3 (default)

Real REAL*4 2

REAL*8 2

REAL*16 2

REAL 1

DOUBLE PRECISION 1

(none)

Complex COMPLEX*8 2

COMPLEX*16 2

COMPLEX 1

DOUBLE COMPLEX 1

Logical LOGICAL*1 2

LOGICAL*2 2

LOGICAL*4 2

BYTE 2

LOGICAL 1,3 (option)
LOGICAL 1,3 (default)

Character CHARACTER 1 (none)

Notes

1. ANSI 77 standard.

2. Extension to the ANSI standard.

3. The equivalence depends on the setting of the compiler directives
LONG and SHORT.

The size of each data type determines how much storage is allocated
to the variable. In addition to the size, the alignment requirement
of each type determines where the variable begins in storage. For
example, a variable of CHARACTER*7 is allocated seven bytes
of storage, starting on a byte boundary. Similarly, INTEGER*2
allocates two bytes of storage, starting on a four byte boundary.
The size of each data type is the same on di�erent systems, but the
alignment requirement is usually system dependent. Refer to the
HP FORTRAN 77/iX Reference for more details on the format and
alignment for each data type.

1-2 Data Storage

Addressing Mode The FORTRAN compiler generates machine instructions that access
program data. Depending on the type of the data, the instructions
use any of the modes of addressing shown in Table 1-2.

Table 1-2. Addressing Mode

Addressing Mode Description

Direct Accesses data directly by using the address given to the
variable.

Indirect Accesses data by using a pointer to the address of the
data.

Descriptor Accesses data by using a record containing the address
of the data and the maximum length.

Direct addressing saves both storage and time. Indirect addressing
requires an extra pointer in addition to the regular variable storage.
Descriptor addressing requires multiple words, including a pointer
and the maximum length of the data item; the number of words is
machine dependent. The access mode is determined by the data
class, as summarized in Table 1-3.

Table 1-3. Data Class and Addressing Mode

Data Class Addressing Mode

Common variables. Indirect

Static variables (variables in a SAVE or DATA statement).Indirect

Variables in an EQUIVALENCE statement. Direct and indirect

Local variables not in a SAVE or DATA statement.Direct

Parameters:
Character string parameters
Other parameters

By descriptor
Indirect

Other variables Direct

Note Make sure all variables are properly initialized. HP Link Editor/iX
does not initialize all the stack space as the Segmenter on MPE V
does. Uninitialized variables that do not cause problems on MPE
V/E-based systems might cause programs to abort on MPE/iX-based
systems.

HP FORTRAN 77/V stores variables larger than eight bytes
indirectly; HP FORTRAN 77/iX stores the variables directly.

Data Storage 1-3

The EQUIVALENCE
Statement

Storage space is allocated in memory consecutively; every variable is
independent. Except for common variables, the declaration order of
variables in the source code does not determine the order in which
the variables are allocated in memory. However, this pattern of
allocation can be changed with the EQUIVALENCE statement,
which allows overlapping of the same storage space with more than
one variable. Care must be taken when data types of di�erent sizes
share the same storage space. This section describes how to use
the EQUIVALENCE statement in situations that require special
attention.

Equivalence of Array
Elements

Array elements can share the same storage space with elements of a
di�erent array or with simple variables. For example, the statements:

REAL*4 a(3), c(5)

EQUIVALENCE (a(2), c(4))

specify that array element a(2) shares the same storage space as
array element c(4). This implies that:

a(1) shares storage space with c(3)

a(3) shares storage space with c(5)

No equivalence occurs outside the bounds of the arrays

The storage space for the two arrays is shown in the following table:

Array a Storage Space
Byte Number

Array c

1-4 c(1)

5-8 c(2)

a(1) 9-12 c(3)

a(2) � 13-16 �! c(4)

a(3) 17-20 c(5)

1-4 Data Storage

By using the EQUIVALENCE statement, array elements can share
the same storage space. If the arrays are not of the same type, they
might not line up element-by-element. For example, the statements:

REAL*4 a(2)

INTEGER*2 ibar(4)

EQUIVALENCE (a(1), ibar(1))

produce the following storage space allocation:

Array a Storage Space
Word Number

Array ibar

a(1) 1 - 4 ibar(1)

ibar(2)

a(2) 5 - 8 ibar(3)

ibar(4)

Placing an array name only in an EQUIVALENCE statement has the
same e�ect as using an array element name that speci�es the �rst
element of the array. That is, the statement:

EQUIVALENCE (a,ibar)

produces the same results as:

EQUIVALENCE(a(1), ibar(1))

When array elements share the same storage space with other array
elements or variables, the same storage space cannot be occupied
by more than one element of the same array. For example, the
statements:

DIMENSION a(2)

EQUIVALENCE (a(1),b), (a(2), b)

are illegal because they specify the same storage space for a(1) and
a(2).

An EQUIVALENCE statement must not specify that consecutive
array elements are noncontiguous. For example, the statements:

REAL a(2), r(3)
EQUIVALENCE (a(1), r(1)), (a(2), r(3))

are illegal because the EQUIVALENCE statement speci�es that a(1)
and a(2) are noncontiguous.

Data Storage 1-5

Equivalence and
Multi-Dimensioned

Arrays

As an extension to the ANSI standard, you can indicate on an
EQUIVALENCE statement the element of a multi-dimensioned array
by specifying its position in the array. For example, the statements:

INTEGER*4 total (3,2)

INTEGER*4 sum (6)

EQUIVALENCE (sum, total(1))

produces the following storage space allocation:

Array Element Equivalent
Array Element

total(1,1) sum(1)

total(2,1) sum(2)

total(3,1) sum(3)

total(1,2) sum(4)

total(2,2) sum(5)

total(3,2) sum(6)

According to the ANSI standard, an element of a multi-dimensioned
array must be referenced by one subscript for each dimension.
However, using the equivalence and multi-dimensioned array feature,
you can specify one subscript (in EQUIVALENCE statements only)
to indicate a position in memory independent of an array's declared
number of dimensions.

1-6 Data Storage

Equivalence Between
Arrays of Different

Dimensions

To determine equivalence between arrays with di�erent dimensions,
FORTRAN contains an internal array successor function that views
all elements of an array in linear sequence. Each array is stored as
if it were a one-dimensional array. Array elements are stored in
ascending sequential column-major order. The �rst index varies the
fastest, then the second, and so on. For example, the array:

i(-2:4)

stores the elements of array i in this order:

i(-2) i(-1) i(0) i(1) i(2) i(3) i(4)

The array:

t(2,3)

stores the elements in the following order:

t(1,1) t(2,1) t(1,2) t(2,2) t(1,3) t(2,3)

Similarly, the array:

k(2,2,3)

stores the elements in the following order (reading left to right and
top to bottom by row):

k(1,1,1) k(2,1,1) k(1,2,1) k(2,2,1)

k(1,1,2) k(2,1,2) k(1,2,2) k(2,2,2)

k(1,1,3) k(2,1,3) k(1,2,3) k(2,2,3)

The number of bytes each element occupies depends on the type of
the array. For example, the statements:

REAL*4 a

INTEGER*2 i

DIMENSION a(2,2), i(4)

EQUIVALENCE (a(2,1), i(2))

produce the following storage space allocation:

Array a Storage Space
Byte Number

Array i

a(1,1) 1 - 2

3 - 4 i(1)

a(2,1) 5 - 6

7 - 8

i(2)

i(3)

a(1,2) 9 - 10

11 - 12

i(4)

a(2,2) 13 - 16

Data Storage 1-7

Equivalence of
Character Variables

As an extension to the ANSI 77 Standard, character and
noncharacter data items can share the same storage space. For
example, the statements:

INTEGER*4 i(5)

CHARACTER*16 c

EQUIVALENCE(i,c)

produce the following storage space allocation:

Array i Storage Space
Byte Number

Variable c

i(1) 1 - 4 c(1:4)

i(2) 5 - 8 c(5:8)

i(3) 9 - 12 c(9:12)

i(4) 13 - 16 c(13:16)

i(5) 17 - 20

The lengths of the data items that share the same storage space do
not have to match. An EQUIVALENCE statement speci�es that
the storage sequence of the character data items whose names are
speci�ed in the list have the same �rst character storage unit. This
causes the association of the data items in the list and can cause
association of other data items. Any adjacent characters in the
associated data items can also have the same character storage unit
and therefore can also be associated. For example, the statements:

CHARACTER*4 a, b

CHARACTER*3 c(2)

EQUIVALENCE (a,c(1)), (b,c(2))

cause association between a, b, and c in this way:

bytes | 01 | 02 | 03 | 04 | 05 | 06 | 07 |

|<------- a ------->|

|<------- b ------->|

|<--- c(1) --->|<--- c(2) --->|

1-8 Data Storage

Equivalence in Common
Blocks

Data elements can be put into a common block by specifying the
elements as equivalent to data elements mentioned in a COMMON
statement. If one element of an array shares the same storage
space with a data element in a common block by using the
EQUIVALENCE statement, the whole array is placed in the common
block. Equivalence is maintained for the storage unit preceding and
following the data element in common.

When necessary, the common block is extended to �t an equivalenced
array into the common block. However, no array can be put into
a common block with the EQUIVALENCE statement if storage
elements have to be pre�xed to the common block to contain the
entire array.

Equivalences cannot insert storage into the middle of the common
block or rearrange storage within the block. Because the elements in
a common block are stored contiguously in the order they are listed
in the COMMON statement, two elements in common cannot be
made to share the same storage space with the EQUIVALENCE
statement. For example, in the statements:

INTEGER*4 i(6), j(6)

COMMON i

EQUIVALENCE (i(3), j(2))

the array i is in a common block and array element j is equivalent to
i(3).

The common block is extended to accommodate array j as follows:

Array i Storage Space
Byte Number

Variable j

i(1) 1 - 4

i(2) 5 - 8 j(1)

i(3) 9 - 12 j(2)

i(4) 13 - 16 j(3)

i(5) 17 - 20 j(4)

i(6) 21 - 24 j(5)

25 - 28 j(6)

The equivalence set up by the statements:

INTEGER*4 i(6), j(6)

COMMON i

EQUIVALENCE (i(1), j(2))

is not allowed. To set array j into the common block, four extra
bytes must be inserted in front of the common block and element
j(1) would be stored in front of the common block.

Data Storage 1-9

Equivalence and Data
Alignment

Each data type has its own data alignment requirement that is
system dependent; see the HP FORTRAN 77/iX Reference for
details. If you force any variable to start on a boundary other than
the alignment required, a compilation error occurs. For example, if
the data alignment of character variables is on any byte boundary
and the data alignment of INTEGER*2 variables is on even byte
(16-bit) boundaries, the following is illegal:

INTEGER*2 i, j(2)
CHARACTER*6 c

EQUIVALENCE (c, i)

EQUIVALENCE (c(2:2), j)

In these statements, either i or j would have to start on an odd byte
boundary, which violates the alignment requirement. However, if the
equivalence of c and i is removed, the statements:

INTEGER*2 i, j(2)

CHARACTER*6 c

EQUIVALENCE (c(2:2), j)

produce the following storage space allocation:

Array j Storage Space
Byte Number

Variable c

0 - 1 1 unused byte, c(1:1)

j(1) 2 - 3 c(2:3)

j(2) 4 - 5 c(4:5)

6 - 7 c(6:6), 1 unused byte

Note that c starts on an odd byte boundary and j starts on an even
byte (16-bit word) boundary.

1-10 Data Storage

HP FORTRAN 77/iX
Storage Assignment

This section describes the 900 Series HP 3000 computer hardware
architecture as it relates to the placement of FORTRAN 77 data
objects. This section also describes the actions of the compiler to
assign data areas to FORTRAN 77 variables and common blocks.
Refer to the HP FORTRAN 77/iX Reference for information on data
formats of the FORTRAN 77 data types.

Memory Areas A compiled program uses the following memory areas:

Code

Stack

Data

Each area has di�erent characteristics, as described below.

Code Area

The code area is used for the machine instructions and constants
generated by the compiler. One code area is generated for each
program. The maximum size of a code area is 230 bytes.

Stack Area

The stack area is used for any variables local to a particular routine
and for any variables that are passed from one routine to another.
Note the following about stack areas:

The size of the stack area is system dependent. For MPE/iX, the
maximum size of the stack and data area combined is 1 073 741
824 bytes.

The stack area must be in memory for the program to execute.

Access to the local variables in the stack area is faster than the
access to passed parameters.

Data Area

The data area is normally used for variables that are in common,
saved variables, and initialized variables. In general, accessing
data from this area requires two instructions, as opposed to one
instruction for accessing data from the stack area.

The stack area is dynamically allocated; thus variables that must be
accessed from multiple subprograms (such as those in common) and
variables that must retain their values across multiple invocations of
a subprogram (such as those that are saved) must be placed in the
data area.

The size of the data area is system dependent. For MPE/iX, the
maximum size of the stack and data area combined is 1 073 741 824
bytes.

Data Storage 1-11

Memory Area
Assignment

This section describes how variables and common blocks are assigned
to the memory areas.

Note The location �eld from the TABLES ON compiler directive lists each
data object's assigned memory area. Use this directive if there is any
doubt about the location of a data object.

Local Variables

Uninitialized local variables are normally assigned to the stack area.

Variables that are initialized with a DATA statement, such as

DATA var /3.2/

are assigned to the data area. This allows the compiler to preassign
values to these variables statically at link time. If the variables were
placed in the stack area, they would have to be reinitialized each
time the subprogram in which they were declared was entered.

Saved Variables

When a local variable is speci�ed in a SAVE statement, such as

SAVE var

the variable is assigned to the data area, not to the stack area. This
allows the variable to retain its value over multiple invocations of the
subprogram in which it is declared. When you specify

$SAVE_LOCALS [ON]

all local variables are saved and thus are moved from the stack area
to the data area.

Common Blocks

The compiler places both named and unnamed common blocks in the
data area. The Link Editor matches the names of the common blocks
declared in di�erent subroutines or functions and determines where
to place the blocks in the data area.

1-12 Data Storage

Summary of the Memory Area Assignment

Table 1-4 summarizes the assignment rules of the memory areas.

Table 1-4. Summary of Memory Area Assignment

Description Code
Area

Stack
Area

Data
Area

Local variables X

Variables with $SAVE LOCALS
speci�ed

X

Variables speci�ed with a SAVE
statement

X

Variables speci�ed with a DATA
statement

X

Common blocks X

Formats X

Constants X

Machine instructions X

Compiler temporaries X

Passed addresses X

Data Storage 1-13

2

Formatted Input/Output

HP FORTRAN 77 provides you with control over I/O operations
through the use of format speci�cations. Formatted I/O can be
used for I/O access to devices (such as terminals), line printers,
or disk �les. This chapter describes how to use formatted I/O and
list-directed (free-format) I/O. Chapter 3 describes how to use
unformatted I/O and nonstandard �les.

An I/O statement is connected to its source or destination through
a unit number speci�ed as a parameter in the READ or WRITE
statement. All HP FORTRAN 77 programs have at least two
\preconnected" unit numbers: 5 and 6. These unit numbers are
automatically connected to the standard input and output �les,
respectively. Typically, your terminal is the default standard input
and output �le.

List-Directed
Statements

List-directed I/O, sometimes called \free format" I/O, is the simplest
kind of formatted I/O. List-directed I/O lets the compiler select a
format for the I/O data, depending upon the type and magnitude
of the data in the variable list on the I/O statement (therefore the
name list-directed). List-directed I/O is selected by an asterisk where
the format speci�cation normally appears.

List-Directed Input A list-directed READ statement can be written in one of two ways.
First, the READ statement can specify the input unit number for the
source of the input data. For example,

READ(5,*) i, j, k

Second, the READ statement does not have to specify the unit
number; instead, the input data is taken from the standard input
device. For example,

READ *, i, j, k

Data items read by a list-directed READ statement can be separated
by a comma, blanks, or can be on separate lines. This exibility
makes list-directed input convenient for you to enter data.

Formatted Input/Output 2-1

The input �eld can be terminated abruptly by entering a slash (/)
in the input �eld, causing any remaining items in the I/O list to be
skipped. For example, if the input line:

5 /

is read by one of these statements:

READ(5,*) i, j, k

READ *, i, j, k

the variable i is assigned the value 5, and the read terminates. The
variables j and k are unchanged. Entering a slash is useful when you
want to enter only the �rst few values of a long input list.

List-directed input data can contain a multiplier to enter many copies
of an input value. For example, the input line:

3*1024

assigns the value of 1024 to three input variables.

Character data read with a list-directed READ statement must
be enclosed in quotation marks if the data contains any of the
following separators: blank (), comma (,) or slash (/). This is
because list-directed input uses blanks, commas, and slashes as data
separators. (If the input �eld is speci�ed by format descriptors,
apostrophes are not required.) For example, the statements:

INTEGER*4 id, section

CHARACTER*10 name

READ *, id, name, section

accept the following input string:

2612 'J. Smith' 7

As an HP extension to the FORTRAN 77 standard, data can be read
from an internal �le with a list-directed READ.

2-2 Formatted Input/Output

List-Directed Output A list-directed output statement can be written in one of two ways.
First, the WRITE statement must have a unit number for the
destination of the output data. For example,

WRITE(6,*) 'Output values=', i, j, k

Second, the PRINT statement always writes to the standard output
device. For example,

PRINT *, 'Output values=', i, j, k

There is no WRITE statement equivalent to the PRINT statement
form. That is, this statement is illegal:

WRITE *, i, j, k

You can include a comma before the list of data items in the WRITE
statement, as shown below:

WRITE(6,*),a,b,c

List-directed output prints numeric data with a leading blank.
Character data is printed without any leading blanks.

Numeric data can be printed in scienti�c notation, depending upon
the magnitude. However, you should not use list-directed output for
applications where the exact format of the output data is critical.

The program below illustrates the two ways of writing list-directed
input and output statements.

PROGRAM list_directed_io

C List-directed input statements:

READ(5,*) i1 ! Input from the preconnected input unit.

READ *, i2 ! Input from the standard input device.

C List-directed output statements:

WRITE(6,*) 'i1=', i1 ! Output to the preconnected output unit.

PRINT *, 'i2=', i2 ! Output to the standard output device.

END

Formatted Input/Output 2-3

Following is another program with list-directed output statements:

PROGRAM output_ex

COMPLEX vector

CHARACTER string*8

vector = (1.0, 1.0)

string = 'alphabet'

int = 123

var = 123.456E29

PRINT *, vector, string, int, var

END

The output of this program is the following line:

(1.0,1.0)alphabet 123 1.23455E+31

Note that blanks are inserted before numeric values and not before
character strings. List-directed I/O can also be done on nonstandard
�les, as described in Chapter 3. In particular, list-directed WRITE
statements can use internal �les.

2-4 Formatted Input/Output

Formatted
Statements

Formatted I/O statements use format descriptors that supplement
the READ, WRITE, or PRINT statements to exactly de�ne the
format of the data. The descriptors can be speci�ed on the READ,
WRITE, or PRINT statements, or can appear in a FORMAT
statement.

The FORMAT statement is a nonexecutable statement that describes
how the data listed in a READ, WRITE, or PRINT statement is
to be arranged. The FORMAT statement can appear anywhere in
a program after a PROGRAM, FUNCTION, or SUBROUTINE
statement.

The type of conversion indicated by the format descriptors should
correspond to the data type of the variable in the I/O list. The
format descriptors are described later in this chapter.

Formatted Input/Output 2-5

Formatted Input The formatted READ statement transfers data from an external
device to internal storage, and converts the ASCII data to internal
representation according to the format descriptor.

One way of specifying a formatted READ statement is to place
the descriptors on the READ statement itself. For example, the
statement:

READ (5, '(I5, F5.1)') int, value

reads data from unit 5 into int and value according to the format
descriptors I5 and F5.1, respectively.

If there are many format descriptors or if the same descriptors are
used repeatedly, place the descriptors in a FORMAT statement. To
specify a FORMAT statement, use one of the following forms of a
formatted READ statement. The statements:

READ (5,100) a, b, c

100 FORMAT (F7.1, F8.1, F9.1)

read data from unit 5 into the variables a, b, and c according to the
format descriptors F7.1, F8.1, and F9.1, respectively.

The statements:

READ 100, a, b, c

100 FORMAT (F7.1, F8.1, F9.1)

get data from the standard input �le according to the format
descriptors in the FORMAT statement labeled 100.

The following program shows several ways of writing formatted input
statements.

PROGRAM formatted_input

C Formatted input statements from the preconnected input unit:

READ(5, '(I9)') i

READ(5, 100) i
100 FORMAT(I9)

C Formatted input statements from the standard input device:

READ(*, '(I9)') i

READ(*, 100) i ! Note: These statements reuse the

READ 100, i ! FORMAT statement labeled 100 above.

READ '(I9)', i

END

2-6 Formatted Input/Output

Formatted Output The formatted WRITE and PRINT statements transfer data from
the storage location of the variables or expressions named in the
output list to the �le associated with the speci�ed unit. The data is
converted to a string of ASCII characters according to the format
descriptors.

One way of specifying a formatted WRITE statement is to include
the format descriptors on the WRITE statement itself. For example,
the statement:

WRITE (6, '(1X, I5, F3.1)') int, value

writes the values of int and value to unit 6 (the preconnected
output unit) according to the format descriptors I5 and F3.1,
respectively. The statement:

PRINT '(1X, I5, F3.1)', int, value

also writes data from int and value to the standard output device
according to the format descriptors I5 and F3.1.

To use a FORMAT statement, specify its label in the corresponding
WRITE or PRINT statements. For example, the statements:

WRITE (6,100) int, value

100 FORMAT (1X, I5, F3.1)

write data from variables int and value to the preconnected output
unit according to the descriptors in the FORMAT statement labeled
100.

The following program shows various ways of writing formatted
output statements.

PROGRAM formatted_output

i = 15

C Formatted output statements to preconnected output unit:

WRITE(6, '(1X, "i=", I9)') i ! The output of these

WRITE(6,200) i ! statements looks the

200 FORMAT (1X, 'i=', I9) ! same.

C Formatted output statements to standard output device:

WRITE(*, '(1X, "i=", I9)') i

WRITE(*, 200) i

C Note: This statement reuses the FORMAT statement labeled 200 above

PRINT '(1X, "i=", I9)', i

PRINT 200, i

C Note: This statement reuses the FORMAT statement labeled 200 above

END

Formatted Input/Output 2-7

Variable Format
Descriptors

Variable format descriptors allow the values of integer variables,
integer constants, and character constants to be imported into format
strings. Integer variable format descriptors may be used wherever an
integer may appear, except to specify the number of characters in
a Hollerith �eld. To use a variable format descriptor, enclose the
variable or constant in angle brackets. The following is an example of
a variable format descriptor:

FORMAT (I<isize>)

In this example, the FORMAT statement performs an I (integer)
data transfer with a �eld width equal to the value of isize when the
format is scanned.

Variables may be INTEGER*2 or INTEGER*4. The value of a
variable format descriptor must be of a valid magnitude for its use in
the format; otherwise an error occurs.

Variable format descriptors are not allowed in run-time formats (that
is, those that are assembled in arrays or character expressions at
run-time).

If a variable is used, its value is reevaluated each time it is
encountered in the normal format scan. If the value of a variable
used in a descriptor changes during execution of the I/O statement,
the new value is used the next time the format item containing the
descriptor is processed.

The following example program illustrates the use of variable format
descriptors.

C Program illustrating variable format descriptors.

PROGRAM varfmt1

INTEGER n

PARAMETER (n = 3)

REAL x(n,n)

DATA x / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 /

C Print out the constants 1 through 3 in variable width fields.

DO 10 j = 1,3

PRINT 100,j

100 FORMAT (1x, I<j>)

10 CONTINUE

C Print out the lower diagonal elements of matrix x.

DO 20 i = 1,n

PRINT 101, (x(i,k), k = 1,I)

101 FORMAT (1x, <I>F5.1)

20 CONTINUE

END

2-8 Formatted Input/Output

The output of of the program is as follows:

1

2
3

1.0

2.0 5.0

3.0 6.0 9.0

Formatted Input/Output 2-9

Summary of the
Descriptors

The format descriptors, which describe the data, are summarized in
Table 2-1.

Table 2-1. Summary of the Format Descriptors

Data
Conversion

Type

Format
Descriptor

Forms Data Declarations
Allowed

Character A
R

A[w]
R[w]

All data types
All data types

Logical L L[w] LOGICAL

Real D
E
F
G

D[w.d]
E[w.d [Ee]]
F[w.d]
G[w.d [Ee]]

All numeric data types
All numeric data types
All numeric data types
All numeric data types

Integer I I[w [.m]] All numeric data types

Monetary M M[w.d] All numeric data types

Numeration N N[w.d] All numeric data types

Octal O
K
@

O[w [.m]]
K[w [.m]]
@[w [.m]]

Input: INTEGER
Output: All data types

Hexadecimal Z Z[w [.m]] Input: INTEGER
Output: All data types

In the table above,

w is the �eld width y
d is the digits to the right of the decimal point y
m is the minimum digits to be output (if omitted, m =

1)
e is the number of digits of the exponent (if omitted, e

= 2)

y The default values are described in the HP FORTRAN 77/iX
Reference.

Note In Table 2-1:

\All numeric data types" implies LOGICAL*1, LOGICAL*2,
LOGICAL*4, INTEGER*2, INTEGER*4, REAL*4, REAL*8,
REAL*16, COMPLEX*8, and COMPLEX*16.

\INTEGER" implies INTEGER*2 and INTEGER*4.

\LOGICAL" implies LOGICAL*1, LOGICAL*2, and LOGICAL*4.

2-10 Formatted Input/Output

The edit descriptors control the positioning and formatting of
numeric, Hollerith, and logical �elds on input and output lines.
The edit descriptors do not cause data conversions and, with the
exception of the Q descriptor, are not associated with the variables
on the READ, WRITE, or PRINT statements. The edit descriptors
are summarized in Table 2-2, where n represents a positive, nonzero
number.

Table 2-2. Summary of the Edit Descriptors

When Used Edit
Descriptor

Descriptor Type Description

Input BN Numeric Ignore blanks in input �eld

BZ Numeric Treat blanks as zeros

Q Integer Returns the number of remaining bytes
on the input record

Output NL Prompt Cursor moves to a new liney

NN or $ Prompt Cursor remains on the same liney

S Numeric Plus sign (+) suppressed

SP Numeric Plus sign (+) printed

SS Numeric Plus sign (+) suppressed

" Character Writes character constant

' Character Writes character constant

nH Character Outputs character strings

Input/Output nP Scale factor Modi�es input/output of the Ew.d , Dw.d ,
and Gw.d descriptors and output of the
Fw.d descriptor

nX Position edit Skips n positions

Tn Tab edit Positions to column n

TLn Tab edit Positions backward n columns

TRn Tab edit Positions forward n columns

: Format control Terminates format if no more items
are in the I/O list

/ Line terminator Begins processing a new line

y See the HP FORTRAN 77/iX Reference for details.

The input descriptors are ignored on output. The output descriptors
are ignored on input, except that nH, ", and ' are treated as nX,
where n is the length of the string.

Formatted Input/Output 2-11

Format
Specifications

This section describes the format and edit descriptors in detail.

Note In the examples for this chapter, � represents a blank space and t
represents eight binary zeros.

Integer Format
Descriptors: I, O, K, @,

Z

The I, O, K, @, and Z format descriptors provide formatting for
integer data types. The general speci�cations are:

I[w [.m]]

O[w [.m]]

K[w [.m]]

@[w [.m]]

Z[w [.m]]

where w is the width of the �eld, and m is the minimum number of
digits to be output; if m is not used, a value of 1 is assumed. The
Iw.m form is only used for output; on input, the m is ignored.

2-12 Formatted Input/Output

The Input Field

The Iw format descriptor interprets the next w positions of the input
record. You can omit the plus sign for positive integers; you must not
have a decimal point in the input record.

The input statement:

READ(5, '(I3)') int

can read any of the following input values:

Input Field Equivalent Assignment

12 int = 12

+12 int = 12

-12 int = -12

�123 int = 12

+123 int = 12

-123 int = -12

123456 int = 123

"

First column
of input �eld

The O, K, and @ input �eld can have up to 11 octal digits; the O, K,
and @ descriptors are interchangeable. The octal digits are: 0, 1, 2,
3, 4, 5, 6, and 7; plus or minus signs are not allowed. If any nondigit
appears, (other than a blank), an error occurs. The variable receiving
the octal value must be an INTEGER*2 or INTEGER*4 data type.

The input statement:

READ(5, '(O3)') ioctal

can read any of the following input values:

Input Field Equivalent Assignment

123456 ioctal = 83 (decimal equivalent of 123 octal)

1234 ioctal = 83

123 ioctal = 83

12 ioctal = 10 (decimal equivalent of 12 octal)

"

First column
of input �eld

Formatted Input/Output 2-13

The Z input �eld contains these hexadecimal digits: 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A or a, B or b, C or c, D or d, E or e, and F or f. If the
number of digits is too long for the integer variable, unde�ned results
occur. If a nonhexadecimal digit is used, an error occurs; no leading
plus or minus sign on input is allowed. The variable receiving the
hexadecimal input must be an INTEGER*2 or INTEGER*4 data
type.

The input statement:

READ(5, '(Z3)') ihex

can read any of the following input values:

Input Field Equivalent Assignment

12abcd ihex = 298 (decimal equivalent of 123 hex)

12ab ihex = 298

12a ihex = 298

12 ihex = 18 (decimal equivalent of 12 hex)

1 ihex = 1 (decimal equivalent of 1 hex)

"

First column
of input �eld

2-14 Formatted Input/Output

The Output Field

The I, O, K, @, and Z descriptors each produce a distinctive output
format.

The I and Z Output Format

The I and Z format descriptors handle the output �eld in the same
way. The I descriptor writes numbers in an integer format; the Z
descriptor writes hexadecimal data. For the I or Z descriptor, if the
�eld width w is smaller than the number of digits needed to represent
the value, the �eld is �lled with asterisks.

If the �eld length w is greater than the length of the integer value,
the integer is output right-justi�ed in the �eld, with blanks on the
left.

For integer values, the output of a negative number requires a print
position for the negative sign. If the Iw.m form is used and the
output value is less than m positions, the value is preceded by zeros.
If m equals zero, a 0 value is output as all blanks.

For the Z descriptor, the optional m value speci�es a minimum
number of digits to be output, forcing leading zeros as necessary up
to the �rst non-zero digit.

The O, K, and @ Output Format

The O, K, and @ format descriptors write octal data. The output
�eld can have up to 6 octal digits for INTEGER*2 data and can have
up to 11 digits for INTEGER*4 data. The octal digits are: 0, 1, 2, 3,
4, 5, 6, and 7; plus or minus signs are not displayed.

If the �eld width w is smaller than the length of the integer value,
the �eld is �lled with asterisks.

If the �eld length w is greater than the digits in the integer value, the
integer is output right-justi�ed in the �eld, with zeros on the left.

The optional m value speci�es a minimum number of digits to be
output, forcing leading zeros as necessary up to the �rst non-zero
digit.

Formatted Input/Output 2-15

The following program compares the output generated by the I, O,
and Z formats.

PROGRAM int_outputs

INTEGER*4 int

int = 12

WRITE(6, '(11X, "I9", 15X, "O11", 15X, "Z9")')

DO i = 1, 9

WRITE(6,100) int, int, int

IF (i .NE. 9) int = int * 10

END DO

100 FORMAT (6X, "{", I9, "}", 6X, "{", O11, "}", 6X, "{", Z9, "}")

STOP

END

The output from the program is as follows:

I9 O11 Z9

{ 12} { 14} { C}

{ 120} { 170} { 78}

{ 1200} { 2260} { 4B0}

{ 12000} { 27340} { 2EE0}

{ 120000} { 352300} { 1D4C0}

{ 1200000} { 4447600} { 124F80}

{ 12000000} { 55615400} { B71B00}

{120000000} { 711607000} { 7270E00}

{*********} {10741506000} { 47868C00}

2-16 Formatted Input/Output

Real Format
Descriptors: F, D, E, G

The F, D, E, and G format descriptors provide formatting for
REAL*4, REAL*8, REAL*16, COMPLEX*8 and COMPLEX*16
data types. Complex values are treated as pairs of real values. The
general speci�cations are:

F[w.d]

E[w.d [Ee]]

D[w.d]

G[w.d [Ee]]

where w is the total �eld width, d is the number of digits after the
decimal point, and e is the number of digits for the exponent.

The Input Field

The F, D, E, and G format descriptors handle the input �eld in the
same way. The input �eld can consist of a REAL*4, REAL*8, or
REAL*16 number in either oating-point or exponential form. If a
decimal point is not supplied, it will be inserted d digits from the
rightmost digit.

The F descriptor is used most often, although any one of the format
descriptors can be used for input of real data types.

Formatted Input/Output 2-17

The input statement

READ(5, '(F6.2)') a

can read any of the following input values:

Input Field Equivalent Assignment

�123 a = 1.23

123456 a = 1234.56

12345678 a = 1234.56

+12345678 a = 123.45

12.345 a = 12.345

-123.45 a = -123.4

1234E3* a = 12340.0

123E3 a = 1230.0

123E-3 a = 0.00123

12.E-3 a = 0.120

1234D3 a = 0.1234D+05

123.D3 a = 0.123D+06

blanks a = 0.0

"

First column
of input �eld

* 1234E3|> 1234000|> 12340.00

If Ee falls within w �eld (Fw.d) then the number is expanded and the
decimal is placed before the second digit from the right.

1) 1234E24 --> 1234E2 --> 123400 --> 1234.00

2) 1234E8 --> 1234E8 --> 1234 x 108 --> 1234 x 106 --> 1234E+9

3) 12345E8 --> 12345E --> 12345 --> 123.45

2-18 Formatted Input/Output

The Output Field

The F, E, D, and G descriptors each produce a distinctive output
format.

The F Output Format

The F format descriptor writes numbers in a �xed-point format.
That is, the decimal point can be �xed d places from the right of the
number. The �eld width w should always be at least two greater
than the total number of digits you want printed; this leaves room for
a sign and a decimal point.

The E Output Format

The E format descriptor writes any oating-point type numbers
in exponential format. The number is printed in normalized
oating-point format; that is, the decimal point is moved to the left
of the number. The letter E is printed before the exponent, which
consists of a sign and two digits. The optional e speci�cation in the
Ew.dEe format changes the �eld width allocated for the exponent.
The �eld width is two places if Ee is omitted.

The D Output Format

The D format descriptor writes any oating-point type numbers in
exponential format. The D descriptor is the same as the E format
descriptor. On D output format, the exponent character will always
be the letter E.

The G Output Format

The G format descriptor writes numbers in either oating-point or
exponential format, depending on the size of the number. The Gw.d
format treats the d speci�cation as the total number of signi�cant
digits to print. If possible, the number is printed as a oating-point
number and the place where the exponent goes is padded with
blanks. Otherwise, the number is printed in exponential form.

The best way to see how the G format works is to print a column
of numbers of various sizes. The numbers are placed in the �eld so
that the numbers without an exponent line up under the numbers
that do have an exponent. The following example compares the
output produced by the F13.7, E13.7, and G13.7 formats. A �eld
width of 13 was selected to represent the seven signi�cant digits
of the REAL*4 data, plus six overhead characters (sign, decimal
point, E, sign, and two digits for the exponent). Because numbers
are normalized for exponential format, seven digits after the decimal
point must be speci�ed to have all signi�cant digits printed.

Formatted Input/Output 2-19

PROGRAM real_formats

* This program shows a comparison of the F, E, and G
* format descriptors:

REAL*4 realvalue

realvalue = 0.1234567E-3

WRITE(6, '(12X, "F13.7", 16X, "E13.7", 16X, "G13.7")')

DO i = 1, 14

WRITE(6,100) realvalue, realvalue, realvalue

realvalue = realvalue * 10.0

END DO

100 FORMAT (6X,"{",F13.7,"}",6X,"{",E13.7,"}",6X,"{",G13.7,"}")

END

The output of the above program follows:

F13.7 E13.7 G13.7

{ .0001234} { .1234567E-03} { .1234567E-03}

{ .0012345} { .1234567E-02} { .1234567E-02}

{ .0123456} { .1234567E-01} { .1234567E-01}

{ .1234567} { .1234567E+00} { .1234567 }

{ 1.2345669} { .1234567E+01} { 1.234567 }

{ 12.3456688} { .1234567E+02} { 12.34567 }

{ 123.4566956} { .1234567E+03} { 123.4567 }
{ 1234.5668945} { .1234567E+04} { 1234.567 }

{12345.6699219} { .1234567E+05} { 12345.67 }

{*************} { .1234567E+06} { 123456.7 }

{*************} { .1234567E+07} { 1234567. }

{*************} { .1234567E+08} { .1234567E+08}

{*************} { .1234567E+09} { .1234567E+09}

{*************} { .1234567E+10} { .1234567E+10}

2-20 Formatted Input/Output

Numbers are always right-justi�ed into the output �eld, with the
exception of non-exponential data formatted by the G descriptor, as
shown above.

Note that in the list printed by the F descriptor, only the leftmost
seven digits of the number are signi�cant. Also, positive numbers
over 99999.99 cannot be printed in F13.7 format because eight places
are taken up by the seven fractional digits and the decimal point,
leaving only �ve places for digits to the left of the decimal point. If
the numbers are negative, the sign takes up another one of these
places and the minimum negative number becomes -9999.999. When
a number is out of range for the speci�ed �eld, the �eld is �lled with
asterisks indicating a range of more than six orders of magnitude.

Character Format
Descriptors: A, R

The A and R format descriptors de�ne �elds for character data. The
forms of the descriptors are:

A[w]
R[w]

where w is the width of the �eld. If the �eld width w is omitted, the
width of the �eld is equal to the length of the variable on input, or
equal to the length of the character expression on output.

The purpose of format descriptors is to convert characters between
their internal representation and a string of ASCII characters.
Character data, however, is represented internally in ASCII format;
therefore, the A format descriptor merely speci�es a �eld for input or
output characters.

If the A format descriptor is used without the w �eld width
speci�cation, the �eld width is automatically selected to be the
same size as the character variable in the I/O list. For example, the
program

PROGRAM char_data

CHARACTER*10 first, last

first = 'Jane'

last = 'Smith'

WRITE(6, '(1X, "My name is ", 2A)') first, last

WRITE(6, '(1X, "My name is ", 2A)') first(1:5), last(1:6)

END

writes the following:

My name is Jane������Smith�����

My name is Jane�Smith�

The �rst WRITE statement e�ectively uses a 2A10 format descriptor
because the variables first and last were declared to be 10 bytes in
length. The second WRITE statement e�ectively uses A5, A6 format

Formatted Input/Output 2-21

descriptors because the substrings speci�ed in the output variable list
are 5 and 6 bytes in length, respectively.

2-22 Formatted Input/Output

The Rw format descriptor is an HP extension to the ANSI 77
Standard, which provides compatibility with other versions of
FORTRAN. The di�erence between Aw and Rw occurs only when
the speci�ed �eld width w is less than the number of characters
speci�ed by the I/O variable. The di�erences are as follows:

Using the Aw format descriptor, input data is left-justi�ed into
the input variable. The remaining positions are blank-�lled. On
output, the leftmost characters of the output variable are written.
This is shown in Figure 2-1.

Figure 2-1. The Aw Format Descriptor

Using the Rw format descriptor, input data is right-justi�ed into
the input variable. The initial positions are blank-�lled. (ASCII
null characters are represented by a byte of all blanks.) On output,
the rightmost characters of the output variable are written. This is
shown in Figure 2-2.

Figure 2-2. The Rw Format Descriptor

Formatted Input/Output 2-23

If the speci�ed �eld width w is greater than the number of characters
speci�ed by the I/O variable, the Aw and Rw format descriptors
behave in the same way. Input data is taken from the rightmost
characters of the input �eld. Output data is right-justi�ed into the
output �eld. This is shown in Figure 2-3.

Figure 2-3. The Aw and Rw Format Descriptors

2-24 Formatted Input/Output

The Input Field

With the A descriptor, if the �eld width w is less than the length
of the character variable, the characters are stored left-justi�ed in
the variable with the remainder of the variable �lled with blank
characters.

With the R descriptor, if the �eld width w is less than the length of
the character variable, the characters are stored right-justi�ed in the
variable, preceded by null characters.

For example, the program:

PROGRAM widthsmaller_input

CHARACTER char1*10 ! Declare char1 to be 10 characters

CHARACTER char2*10 ! Declare char2 to be 10 characters

READ (5, '(A3)') char1 ! Read only 3 characters

READ (5, '(R3)') char2 ! Read only 3 characters

WRITE (6, '(1X, A)') char1

WRITE (6, '(1X, R)') char2

END

with the input:

ABC

ABC

writes the following:

ABC

ABC

Note that the null characters are not printable. The actual value
stored in char1 is:

ABC�������

where � represents a blank space. The value stored in char2 is:

tttttttABC

where t represents eight binary zeros, or the ASCII null character
(the null character is equivalent to CHAR (0)).

Formatted Input/Output 2-25

With the A or R descriptor, if the �eld width w is larger than the
length of the character variable, the rightmost characters are stored
and the remaining characters are ignored.

For example, the program below shows how character data is input.

PROGRAM widthlarger_input

CHARACTER char1*5 ! Declare char1 to be 5 characters

CHARACTER char2*5 ! Declare char2 to be 5 characters

READ (5, '(A10)') char1 ! Read 10 characters

READ (5, '(R10)') char2 ! Read 10 characters

WRITE (6, '(1X, A)') char1 ! Print what was stored in char1

WRITE (6, '(1X, R)') char2 ! Print what was stored in char2

END

If the input to this program is:

ABCDEFGHIJ

ABCDEFGHIJ

the value stored in char1 and char2 is:

FGHIJ

The Output Field

With the A descriptor, if the �eld width w is less than the length of
the character variable, the leftmost characters in the variable are
output.

With the R descriptor, if the �eld width w is less than the length of
the character variable, the rightmost characters in the variable are
output.

2-26 Formatted Input/Output

For example, the program:

PROGRAM widthsmaller_output

CHARACTER char*10 ! Declare char to be 10 characters

char = 'ABCDEFGHIJ'

WRITE (6, '(1X, A3)') char ! Write only 3 characters

WRITE (6, '(1X, R3)') char ! Write only 3 characters

END

produces the following output:

ABC

HIJ

With the A or R descriptor, if the �eld width w is greater than the
length of the character variable, the characters are right-justi�ed in
the �eld, with blanks on the left.

For example, the program:

PROGRAM widthgreater_output

CHARACTER char*5 ! Assign char to be 5 characters

char = 'ABCDE'

WRITE (6, '(1X, A10)') char ! Write 10 characters

WRITE (6, '(1X, R10)') char ! Write 10 characters

END

produces the following output:

�����ABCDE

�����ABCDE

Formatted Input/Output 2-27

The program below also shows how the A and R format descriptors
di�er. The program uses the input value abcdef.

PROGRAM char_ex

CHARACTER*3 alpha3, alpha3a

CHARACTER*9 alpha9, alpha9a

C INPUT using Aw and Rw format descriptors:

C Each READ statement gets this 6-character input field: abcdef

C Input Statement: Equivalent assignment:

READ(5, '(A6)') alpha3 ! alpha3 = 'def'

READ(5, '(R6)') alpha3 ! alpha3 = 'def'

READ(5, '(A6)') alpha9 ! alpha9 = 'abcdef���'

READ(5, '(R6)') alpha9 ! alpha9 = '###abcdef'

C (^ represents a blank character)

C (# represents a null character)

C OUTPUT using Aw and Rw format descriptors:

alpha3a = 'abc' ! Assign data for

alpha9a = 'abcdefghi' ! output examples

C Output Statement: Characters written:

WRITE(6, '(1X, A6)') alpha3a ! ���abc

WRITE(6, '(1X, R6)') alpha3a ! ���abc
C (� represents a blank character)

WRITE(6, '(1X, A6)') alpha9a ! abcdef

WRITE(6, '(1X, R6)') alpha9a ! defghi

END

2-28 Formatted Input/Output

The A[w] and R[w] character format descriptors can be used with
integer and real data types by specifying the NOSTANDARD
compiler directive. The data is output in reverse order, starting at
the right and progressing to the left.

For example, the following program:

program demo

c Output numeric data with character format using an external write.

INTEGER*4 i4

i4 = 4Habcd

WRITE(6,100) i4

100 FORMAT(a)

STOP

END

produces the following output if $NOSTANDARD or $NOSTANDARD IO is
speci�ed:

dcba

or produces the following output if $NOSTANDARD or $NOSTANDARD IO

is not speci�ed:

abcd

For more information refer to the HP FORTRAN 77/iX Reference.

Formatted Input/Output 2-29

Logical Format
Descriptor: L

The L format descriptor de�nes �elds for logical data. The form of
the descriptor is:

L[w]

where w is the width of the �eld.

The Input Field

If the �rst nonblank characters in the input �eld are T or .T, the
value .TRUE. is stored in the logical variable. If the �rst nonblank
characters in the input �eld are F or .F, the value .FALSE. is stored
in the logical variable. If the �rst nonblank characters are not T, .T,
F, or .F, an error occurs. Note that the lowercase letters t and f are
also allowed.

For example, the program below reads logical values:

PROGRAM l_format_input

LOGICAL logical1, logical2

READ (5, '(L5)') logical1

READ (5, '(L2)') logical2

PRINT *, logical1, logical2

END

If the input to this program is:

���T�

F1

the value stored in logical1 is .TRUE. and the value in logical2 is
.FALSE..

The Output Field

The letter T or F is right-justi�ed in the output �eld depending on
whether the value of the list item is .TRUE. or .FALSE..

2-30 Formatted Input/Output

For example, the program:

PROGRAM l_format_output

LOGICAL logical1, logical2

logical1 = .FALSE.

logical2 = .TRUE.

WRITE (6, '(1X, L5)') logical1

WRITE (6, '(1X, L2)') logical2

END

produces the following output:

����F

�T

Repeating
Specifications

The format descriptors can be repeated by pre�xing the descriptor
with a positive, unsigned integer specifying the number of repetitions.

For example, the statement:

100 FORMAT (3F10.5, 2I5)

is equivalent to:

100 FORMAT (F10.5, F10.5, F10.5, I5, I5)

A group of descriptors can be repeated by enclosing the group with
parentheses and pre�xing the group with a positive, unsigned integer.

For example, the statement:

100 FORMAT (I5, 3(F10.5,2X))

is equivalent to:

100 FORMAT (I5, F10.5, 2X, F10.5, 2X, F10.5, 2X)

Formatted Input/Output 2-31

Correspondence
Between the I/O List

and Format Descriptors

Usually there is a one-to-one correspondence between the items in
the I/O list and the accompanying format descriptors. If, however,
there are fewer items in the I/O list than corresponding format
descriptors, the remaining format descriptors are ignored. For
example, the statements:

a = 5.0

b = 7.0

WRITE(6, '(1X, F6.1, F6.2, " id = ", I5, I2)') a, b

do not use the I5 and the I2 descriptors. However, the \id="
character constant is printed as follows:

5.0 7.00 id=

The extra characters can be suppressed by using the colon edit
descriptor. For example, the statement:

WRITE(6, '(1X, F6.1, F6.2, :, " id= ", I5, I2)') a, b

omits the trailing characters from the output line as follows:

5.0 7.00

See the colon edit descriptor description later in this chapter for
further examples.

When there are more items in the output list than corresponding
format descriptors, the FORMAT statement is reused from
the beginning. If the FORMAT statement contains nested
(parenthesized) format descriptors, reuse begins with the rightmost
nested group at the �rst level. For example, the statements below
show what portion of the FORMAT statement is reused.

WRITE(6,100) i, a, j, i1, a1, j1, i2, a2, j2

100 FORMAT(I3, 2X, F9.2, 2X, I5)

"------reused------"

WRITE(6, 200) i, a, j, a1, j1, a2, j2, a3, j3

200 FORMAT(I3, 2X, (F9.2, (2X, I5)))

"---reused--"

WRITE(6,300) i, a, j, j1, j2, j3, j4, j5, j6

300 FORMAT(I3, 2X, (F9.2, 2X), (I5))

""
reused

2-32 Formatted Input/Output

The format statements above treat the �rst three data items i, a,
and j in each I/O list the same. However, the reused portion of the
format speci�cation is altered by nested format speci�cations. The
�rst FORMAT statement shows that, in the absence of nested format
descriptors, the entire list of format descriptors is reused. The second
FORMAT statement shows how the reused portion of the FORMAT
statement can contain additional nested speci�cations. The third
FORMAT statement shows that not all nested format speci�cations
are reused.

A program that does not have a one-to-one match between list
elements and format descriptors is shown below:

PROGRAM unmatched

READ(5, 100) a, i, a1, i1, a2, i2, a3

100 FORMAT(F4.1, (I5, F5.1))

WRITE(6, 100) a, i, a1, i1, a2, i2, a3

END

The program reads the variables as follows: a is input with format
F4.1, i is input with format I5, and a1 is input with format F5.1.
Then, the number of format descriptors is exhausted. Flow control
returns to the speci�cation (I5, F5.1) and i1 is input with format
I5 and a2 is input with format F5.1. Then, the number of format
descriptors is again exhausted. As before, ow control returns to the
speci�cation (I5, F5.1) and i2 is input with format I5 and a3 is input
with format F5.1.

Formatted Input/Output 2-33

Monetary Format
Descriptor: M

The Mw.d format descriptor de�nes a �eld for a real number without
an exponent (�xed-point) written in monetary form. The general
speci�cation is:

M[w.d]

where w is the width of the �eld and d is the number of digits after
the decimal point.

The Input Field

On input, the Mw.d format descriptor causes interpretation of the
next w positions of the input record as a real number without an
exponent. The �eld width is expected (but not required) to have
a dollar sign and comma(s) embedded in the data as described for
Mw.d output (the dollar sign and commas are ignored). If commas
are used, the usage must be consistent; that is, commas must occur
every three digits of the nonfractional part of the input value. The
�eld width can include \$", \&", and \,". The number is converted
to an internal representation value for the variable (list element)
currently using the format descriptor.

The input statement:

READ (5, '(M10.2)')a

can read any of the following input values:

Input Assignment

123.45 a = 123.45

$1234.56 a = 1234.56

$1,234,567 a = 12345.67

$12,345.4 a = 12345.40

1,234,567.99 a = 1234567.00

-1234.56 a = -1234.56

-$123.75 a = -123.75

-$1,357.91 a = -1357.91

1,234 a = 12.34

blanks a = .00

2-34 Formatted Input/Output

The Output Field

On output, the Mw.d format descriptor causes output of a numeric
value in ASCII character �xed-point form, right-justi�ed with
commas and a dollar sign. The least signi�cant digit (position d) is
rounded. If needed, a leading minus sign is printed before the dollar
sign.

In addition to the number of numeric digits, the �eld width w must
allow for the number of commas expected plus four characters to
hold the sign, the dollar sign, the decimal point, and a rollover digit
(if necessary). If w is greater than the number of positions required
for the output value, the output is right-justi�ed in the �eld with
blank spaces to the left. If w is less than the number of positions
required, the output value of the entire �eld is �lled with asterisks.

PROGRAM m_format

C This program demonstrates output with the monetary format

REAL*4 money

money = 12345.67

WRITE (6, '(25X, "M17.2")')

DO i = 1,14

WRITE (6,100) money

money = money * 3

END DO

100 FORMAT (18X, "{", M17.2, "}")

STOP
END

The above program produces the following output:

M17 2

{ $12,345.67}

{ $37,037.01}

{ $111,111.02}

{ $333,333.06}

{ $999,999.19}

{ $2,999,997.50}

{ $8,999,992.00}

{ $26,999,976.00}

{ $80,999,928.00}

{ $242,999,776.00}

{ $728,999,296.00}

{$2,186,997,760.00}

{$6,560,993,280.00}

{*****************}

Formatted Input/Output 2-35

Numeration Format
Descriptor: N

The Nw.d �eld descriptor de�nes a �eld for a real number without
an exponent (�xed-point) written in numeration form (that is, with
commas, which are then ignored, in the input �eld).

The general speci�cation is:

N[w.d]

where w is the width of the �eld and d is the number of digits after
the decimal point.

The Input Field

On input, the Nw.d �eld descriptor causes interpretation of the
next w positions of the input record as a real number without an
exponent. The �eld width is expected (but not required) to have
commas embedded in the data as described for Nw.d output (the
commas are ignored). If commas are used, the usage must be
consistent; that is, commas must occur every three digits of the
nonfractional part of the input value. The number is converted to an
internal representation value for the variable (list element) currently
using the �eld descriptor.

The input statement:

READ (5, '(N10.2)')

can read any of the following input values:

Input Assignment

123.56 a = 123.56

12,345.66 a = 12345.66

1,224,666 a = 12246.66

-13,555.87 a = -13555.87

+5,987.54 a = 5987.54

1,234,567.88 a = 1234567.00

3,456.78 a = 3456.78

4,567.89 a = 4567.89

blanks a = .00

2-36 Formatted Input/Output

The Output Field

On output, the Nw.d �eld descriptor causes output of a numeric
value in ASCII character �xed-point form, right-justi�ed with
commas. The least signi�cant digit is rounded. If needed, a leading
minus sign is printed before the most signi�cant digit.

In addition to the number of numeric digits, the �eld width w must
allow for the number of commas expected, plus three characters to
hold the sign, the decimal point, and a rollover digit (if necessary).
If w is greater than the number of positions required for the output
value, the output is right-justi�ed in the �eld with blank spaces to
the left. If w is less than the number of positions required for the
output value, the entire �eld is �lled with asterisks.

PROGRAM n_format

C This program demonstrates output with the numeric format

REAL*4 num

num = 12345.67

WRITE (6, '(25X, "N17.2")')

DO i = 1,14

WRITE (6,100) num

num = num * 3

END DO

100 FORMAT (18X, "{", N17.2, "}")

STOP

END

The above program produces the following output:

N17.2

{ 12,345.67}

{ 37,037.01}

{ 111,111.02}

{ 333,333.06}

{ 999,999.19}

{ 2,999,997.50}

{ 8,999,992.00}

{ 26,999,976.00}

{ 80,999,928.00}

{ 242,999,776.00}

{ 728,999,296.00}

{ 2,186,997,760.00}

{ 6,560,993,280.00}

{19,682,979,840.00}

Formatted Input/Output 2-37

Processing New Lines The /, NN, NL, and $ descriptors handle the control of new lines.

The / Descriptor

The / edit descriptor terminates the current line and begins
processing a new input or output line. On input, a slash indicates
that data will come from the next line; on output, a slash indicates
that data will be written to the next line.

Commas separating edit descriptors and separating consecutive
slashes are not needed.

For example, the following program uses the / descriptor for input
and output:

PROGRAM slash_edit

READ (5, 100) inta, intb, reala

100 FORMAT (I5, I3/F5.3)

WRITE (6, 200) inta, intb, reala

200 FORMAT

*(1X, 'Integer values = ',I5,' and ',I3 // ' Real value = ',F5.3)

END

If the input to this program is:

12345123

1.234

the output looks like this:

Integer values = 12345 and 123

Real value = 1.234

The NL, NN, or $ Descriptor

The NL, NN, or $ edit descriptor controls the carriage return at
the end of an output line or record. For compatibility with other
versions of FORTRAN, the $ edit descriptor is equivalent to the NN
descriptor. For a detailed description, refer to the HP FORTRAN
77/iX Reference.

2-38 Formatted Input/Output

Handling Character
Positions

The X, T, TL, and TR edit descriptors handle character position
control.

The X Descriptor

The X edit descriptor skips character positions in an input or output
line. The form of the descriptor is:

nX

where n is the number of positions to be skipped from the current
position; n must be a positive nonzero integer.

On input, the X edit descriptor causes the next n positions of the
input line to be skipped. On output, the X descriptor causes n
positions of the output line to be �lled with blanks, if not previously
de�ned; these positions are not otherwise written. The X descriptor
is identical to the TR descriptor.

For example, the following program uses the X descriptor for input
and output.

PROGRAM x_edit

INTEGER a, b

READ (5, 100) a, b, c

100 FORMAT (2X, I3, 5X, I3, F9.4)

WRITE (6,200) a, b, c

200 FORMAT (5X, I3, 5X, I3, 5X, F9.4)

END

If the input to this program is:

��123�����1231234.5678

the program produces this output:

�����123�����123�����1234.5678

Formatted Input/Output 2-39

The T Descriptor

The T edit descriptor provides tab control. The form of the
descriptor is:

Tn

where n is a positive, nonzero integer indicating number of columns.

When the T edit descriptor is on a format line, input or output
control skips right or left to the character position n; the next
descriptor is then processed. Be careful not to skip beyond the length
of the record.

For example, consider this program:

PROGRAM t_edit

READ (5, 100) a, b

100 FORMAT (T6, F4.1, TI5, F6.2)

PRINT 200, a, b

200 FORMAT (F4.1, 5X, F6.2)

END

If the input to this program is:

�����12.3�����123.45

" "
Column Column

6 15

the value stored in a is 12.3 and the value stored in b is 123.45.

Using the T edit descriptor, you can write over �elds; that is, you can
destroy a previously formed �eld. For example, the program:

PROGRAM t_edit_2

OPEN (3, FILE='writeit')

WRITE (3, 100)

100 FORMAT (1X, '1234567890', T4, 'abcde')

CLOSE (3)

END

writes the following string to �le writeit:

12abcde890

Similarly, you can also reread �elds with the T descriptor.

2-40 Formatted Input/Output

The TL Descriptor

The TL edit descriptor provides tab control. The form of the
descriptor is:

TLn

where n is a positive, nonzero integer indicating number of columns.

When the TL edit descriptor is on a format line, input or output
control skips left n column positions from the current cursor position.
If n is greater or equal to the current cursor position, the control
goes to the �rst column position.

For example, consider this program:

PROGRAM tl_edit

OPEN (3, FILE='datafile')

READ (3, 100) a, b

100 FORMAT (F6.2, TL6, F6.2)

PRINT 200, a, b

200 FORMAT (1X, F6.2, 5X, F6.2)

CLOSE (3)

END

If the �le datafile contains the data:

123.45

the output looks like this:

123.45 123.45

Using the TL edit descriptor, you can write over �elds. For example,
the program

PROGRAM tl_edit

OPEN (3, FILE='writeit')

WRITE(3, 100)

100 FORMAT(1X, 'It is winter ', TL7, 'summer.')

CLOSE(3)

END

writes the line:

It is summer.

to the �le writeit.

Formatted Input/Output 2-41

The TR Descriptor

The TR edit descriptor provides tab control. The form of the
descriptor is:

TRn

where n is a positive, nonzero integer indicating number of columns.

When the TR edit descriptor is on a format line, input or output
control skips right n column positions from the current cursor
position. Be careful not to skip beyond the length of the record.

For example, the program:

PROGRAM tr_edit

a = 123.4

b = 1234.11

WRITE (6, 100) a, b

100 FORMAT (1X, F5.1, TR5, F7.2)

END

produces the following output:

123.4�����1234.11

2-42 Formatted Input/Output

Handling Literal Data The ', ", and H edit descriptors handle literal data.

The ' and " Descriptors

Paired apostrophe (') and quotation mark (") edit descriptors write
character strings; the paired symbols delimit a string of characters,
which can include blanks. The ' and " descriptors are preferred over
the H edit descriptor.

If the character string contains an apostrophe or a quotation mark,
you can do one of the following:

Delimit the symbol with two marks of the same type

Use the other symbol as the delimiter

For example, the program:

PROGRAM literal_edit

WRITE (6,100) ! String uses apostrophes

100 FORMAT (1X, 'Enter your name:')

WRITE (6,200) ! String uses quotation marks

200 FORMAT (1X, "Enter your address:")

WRITE (6,300) ! Statement is continued on two lines

300 FORMAT (1X, 'Enter your employee number',

* ' and employee location code:')

WRITE (6,400) ! Quotation mark with two marks of the same type

400 FORMAT (1X, 'What''s your home telephone number?')

WRITE (6,500) ! Quotation mark with other symbol as delimiter

500 FORMAT (1X, "What's your work telephone number?")

END

produces the following output:

Enter your name:

Enter your address:

Enter your employee number and employee location code:

What's your home telephone number?

What's your work telephone number?

Formatted Input/Output 2-43

The H Descriptor

The H (Hollerith) edit descriptor writes character strings. The H
descriptor has the form:

nHstring

where n is the number of characters in the string and string is the
string of characters. The string of characters is not delimited with
quotation marks.

For example, the program:

PROGRAM h_edit

pi = 3.14159

WRITE (6, 100) pi

100 FORMAT (1X, 21HThe value of "pi" is , F7.5)

END

produces the following output:

The value of "pi" is 3.14159

The H descriptor is provided for compatability with older versions of
FORTRAN; its use is discouraged.

Using Scale Factors:
The P Descriptor

The P edit descriptor scales real numbers on input or output. The
descriptor has the form:

nP

where n is the integer scale factor. The P descriptor can precede
the D, E, and G format descriptors for input and output without an
intervening comma or other separator.

Once a P descriptor is speci�ed, the scale factor holds for all
subsequent descriptors on the FORMAT statement until another
scale factor is de�ned. A scale factor of zero (0P) ends the e�ect of
the scale factor.

On input, the scale factor a�ects �xed-�eld values; the value is
multiplied by 10 raised to the -nth power. However, if the input
number includes an exponent, the scale factor has no e�ect.

For example, this program shows how the P descriptor a�ects
numeric values:

PROGRAM p_edit_input

READ (5, '(G8.4)') value1 ! Multiply by 10**0

READ (5, '(-2PG8.4)') value2 ! Multiply by 10**(2)

READ (5, '(2PG8.4)') value3 ! Multiply by 10**(-2)

READ (5, '(2PG8.4)') value4 ! If input includes an exponent,

* the scale factor has no effect.

2-44 Formatted Input/Output

END

Formatted Input/Output 2-45

If the input to this program is:

123.4567

123.4567
123.4567

123.45E0

the values stored are as follows:

value 1 = 123.4567

value 2 = 12345.67

value 3 = 1.234567

value 4 = 123.4500

On output, the scale factor a�ects the D, E, and F format
descriptors. The scale factor a�ects the G format descriptor only if
Gw.d is interpreted as Ew.d .

When using the P edit descriptor with the D, E, or G format
descriptor, the forms are as follows:

nPD or nPDw.d

nPE or nPEw.d or nPEw.dEe

nPG or nPGw.d or nPGw.dEe

n is a required value. If you do not specify n, the default value will
be 1. w.d and Ee are both optional, but if you specify Ee, you must
specify w.d

When using the P edit descriptor with the G format descriptor, the
input or output is dependent on the value to be read or written. The
scale factor nP shifts the decimal point to the right n places and
reduces the exponent by n.

When using the P edit descriptor with the F format descriptor, the
form is as follows:

nPFw.d

The internal value is multiplied by 10n .

2-46 Formatted Input/Output

For example, the program:

PROGRAM p_edit_output

pi = 3.14159

C Write without a scale factor

WRITE (6, '(2X, "FORMAT", 10X, "VALUE"/)')

WRITE (6, '(1X, " D10.4", 5X, D10.4/)') pi

C Write with a scale factor on the D and E format descriptors

WRITE (6, '(1X, "-3PD10.4", 5X, -3PD10.4)') pi

WRITE (6, '(1X, "-1PE10.4", 5X, -1PE10.4)') pi

WRITE (6, '(1X, " 1PE10.4", 5X, 1PE10.4)') pi

WRITE (6, '(1X, " 3PD10.4", 5X, 3PD10.4)') pi

WRITE (6, '(1X, " 3PE10.4", 5X, 3PE10.4/)') pi

C Write with a scale factor on the F format descriptor

WRITE (6, '(1X, "-1PF10.4", 5X, -1PF10.4)') pi

WRITE (6, '(1X, " PF10.4", 5X, PF10.4)') pi

WRITE (6, '(1X, " 5PF10.4", 5X, 5PF10.4)') pi

END

produces the following output:

FORMAT VALUE

D10.4 .3142D+01

-3PD10.4 .0003D+04

-1PE10.4 .0314E+02
1PE10.4 3.1416E+00

3PD10.4 314.16E-02

3PE10.4 314.16E-02

-1PF10.4 .3142

PF10.4 31.4159

5PF10.4 **********

Note The last �eld is �lled with asterisks because the �eld width w is
smaller than the number of digits needed to represent the value.

Formatted Input/Output 2-47

If the P descriptor does not precede a D, E, F, or G descriptor, it
should be separated from other descriptors by commas or slashes.
For example, the statement:

100 FORMAT(1X, 2P, 3(I5, F7.2))

scales the F format descriptor value.

If the P descriptor does precede a D, E, F, or G descriptor, the
comma or slash is optional.

For example, the program:

PROGRAM p_edit_output_2

int = 5

real = 2.2

pi = 3.14159

* Output values without a scale factor:

WRITE (6,50) int, real, pi

50 FORMAT (1X, I2, 3X, F14.4, 3X, E15.4/)

* Output values with a scale factor:

WRITE (6,100) int, real, pi

100 FORMAT (1X, I2, 3X, 3P, F14.4, 3X, E15.4)

* Show that FORMAT statements 100, 200, and 300 are equivalent:

WRITE (6,200) int, real, pi

200 FORMAT (1X, 3P, I2, 3X, F14.4, 3X, E15.4)

WRITE (6,300) int, real, pi

300 FORMAT (1X, I2, 3X, 3PF14.4, 3X, E15.4)

END

produces the following output:

5 2.2000 .3142E+01

5 2200.0000 314.16E-02

5 2200.0000 314.16E-02

5 2200.0000 314.16E-02

Note that the P descriptor has no e�ect on the I2 format descriptor.

2-48 Formatted Input/Output

Printing Plus Signs: The
S, SP, and SS
Descriptors

The S, SP and SS edit descriptors can be used with the D, E, F,
G, and I format descriptors to control the printing of optional plus
signs (+) in numeric output. A formatted output statement does not
usually print the plus signs. However, if an SP edit descriptor is in a
format speci�cation, all succeeding positive numeric �elds will have
a plus sign. The �eld width w must be large enough to contain the
sign. When an S or SS edit descriptor is encountered, the optional
plus signs are not printed.

For example, the program:

PROGRAM s_edit

int = 12345

WRITE(6,100) int ! By default, + is not printed

100 FORMAT(1X, I5)

WRITE(6,200) int, int ! With SP, the + is printed

200 FORMAT(1X, SP, I6, /, 1X, S, I6) ! With S, the + is not printed

END

produces the following output:

12345

+12345

12345

Returning the Number
of Bytes: The Q

Descriptor

The Q edit descriptor returns the number of bytes remaining on the
current input record. The value is returned to the next item on the
input list, which must be an integer variable. This descriptor applies
to input only and is ignored by the WRITE or PRINT statements.

For example, in the program:

PROGRAM q_format_input

CHARACTER string(80)

READ(5,100) len, (string(i), i = 1, min(len, 80))

100 FORMAT(Q, 80A1)

END

the variable len gets assigned the current length of the string. The
Q edit descriptor is used to avoid an error from reading more bytes
from the input record than are available, or from having blanks
provided that were not in the input �le.

Formatted Input/Output 2-49

Terminating Format
Control: The Colon

Descriptor

The colon (:) edit descriptor conditionally terminates format control,
just as if the �nal right parenthesis in the FORMAT statement has
been reached. If there are more items in the I/O list, the colon edit
descriptor has no e�ect.

For example, the program:

PROGRAM colon_edit

value1 = 12.12
value2 = 34.34

value3 = 56.56

WRITE(6,100) value1, value2, value3

100 FORMAT(1X, 'Values = ', 3(F5.2, :, ', '))

END

produces the following output:

Values = 12.12, 34.34, 56.56

The format control terminated after the value of value3 was printed,
not after the �nal comma was printed.

The colon has no e�ect on input except if a / descriptor is included.
For example, if the contents of �le datafile are:

12

24

36

48

the program:

PROGRAM example1

OPEN(9, FILE='datafile')

READ (9,10) i

READ (9,10) j

10 FORMAT (5(I2, /))
PRINT *, i

PRINT *, j

CLOSE(9)

END

produces the following output:

12

36

2-50 Formatted Input/Output

However, the program:

PROGRAM example2

OPEN(9, FILE='datafile')

READ (9,10) i

READ (9,10) j

10 FORMAT (5(I2, :, /))

PRINT *, i

PRINT *, j

CLOSE(9)

END

produces this output:

12

24

In the �rst example, the / descriptor causes the record containing the
value 24 to be skipped. In the second example, the colon terminates
format control before the / descriptor because no more list items
remain in the I/O list.

Formatted Input/Output 2-51

Handling Blanks in the
Input Field

The BN and BZ edit descriptors are used to handle blanks in the
input �eld.

The BN Descriptor

The BN edit descriptor is used with the D, E, F, G, I, O, K, @, and
Z format descriptors to interpret blanks in numeric input �elds. If
BN is speci�ed, all embedded blanks are ignored, the input number
is right-justi�ed within the �eld width, and, if needed, the �eld is
padded with leading blanks. An input �eld of all blanks has a value
of zero. If the BN or BZ descriptors are not speci�ed, the treatment
of blanks is as if you speci�ed the BN edit descriptor. An exception
to this default is when the unit is connected with BLANK='ZERO'
speci�ed in the OPEN statement, as described in Chapter 3.

For example, consider this program:

PROGRAM bn_edit

READ (5, 100) int1, val1, int2

100 FORMAT (I3, BN, F6.2, I3)

END

If the input to this program is:

1���4�.�2�1�

the variables int, val1, and int2 have the following values:

int1 = 1

val1 = 4.2

int2 = 1

The BN edit descriptor remains in e�ect until a BZ edit descriptor
(described below) is encountered or until the end of the format
speci�cation.

For example, the following program uses the BZ descriptor to cancel
the BN descriptor's treatment of blanks.

PROGRAM bn_bz_edit

READ (5, 100) int1, int2, int3

100 FORMAT (I5, BN, I3, BZ, I5)

PRINT *, int1, int2, int3

END

If the input line is:

1����2��3����

the variables int1, int2, and int3 have the following values:

int1 = 1

2-52 Formatted Input/Output

int2 = 2

int3 = 30000

Formatted Input/Output 2-53

The BZ Descriptor

The BZ edit descriptor is used with the D, E, F, G, I, O, K, @, and
Z format descriptors to interpret blanks in numeric input �elds. If
BZ is speci�ed, trailing and embedded blanks are interpreted as
zeros. An input �eld of all blanks has a value of zero.

For example, consider this program:

PROGRAM bz_edit

READ (5,100) int1, val1, int2

100 FORMAT (I3, BZ, F6.2, I3)

END

If the input to this program is:

1���4�.�2�1�

the variables int, val1, and int2 have the following values:

int1 = 1

val1 = 40.02

int2 = 10

The BZ edit descriptor remains in e�ect until a BN edit descriptor is
encountered or until the end of the format speci�cation.

For example, the program below uses the BN descriptor to end the
interpretation of blanks as zeros.

PROGRAM bn_bz_edit

READ (5,100) int1, int2, int3

100 FORMAT (I5, BZ, I3, BN, I5)

PRINT *, int1, int2, int3

END

If the input line is:

1����2��3����

the variables int1, int2, and int3 have the following values:

int1 = 1

int2 = 200

int3 = 3

2-54 Formatted Input/Output

Alternative Methods
of Specifying
Input/Output

There are alternative methods of specifying an I/O statement. They
are:

Using the PARAMETER statement to assign input and output
unit numbers

Using character variables to represent formats

Using the ASSIGN statement to assign a FORMAT label to an
INTEGER*4 variable

These methods are shown in the following program:

PROGRAM formatting

CHARACTER*16 format_string
INTEGER*4 format_label

C Using the PARAMETER statement:

INTEGER*4 in, out

PARAMETER (in=5, out=6)

READ(in,*) a, b, c

WRITE(out,*) a, b, c

C Using CHARACTER variables to represent formats:

format_string = '(1X, I9)'

READ(5, format_string) i

format_string = '(1X, "i=", I9)'

WRITE(6, format_string) i

C Using the ASSIGN statement:

ASSIGN 100 TO format_label ! Note: format_label must be a

READ(5, format_label) i ! 4-byte integer

ASSIGN 200 TO format_label

WRITE(6, format_label) i

100 FORMAT(I9)

200 FORMAT('1X, i=', I9)

END

Formatted Input/Output 2-55

Using the Implied
DO Loop

The implied DO loop is used with the READ, WRITE, and PRINT
statements. An implied DO loop contains a list of data elements to
be read or written, and a set of indexing parameters. Following is an
implied DO loop:

PRINT *, (apple, i = 1,3)

where apple is the index parameter and i is the data element.

The statement above prints the value of apple three times. If apple
is initialized to 35.6, the output would look like this:

35.6 35.6 35.6

If the list of an implied DO loop contains several variables, each of
the variables in the list is input or output for each pass through the
loop. For example, the statement:

READ *, (a,b,c, j = 1,2)

is equivalent to the list-directed statement:

READ *, a, b, c, a, b, c

An implied DO loop is often used to input or output arrays and
array elements. For example, the statements:

READ b(10)

PRINT *, (b(i), i=1,10)

result in the array b written in the following order:

b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(10)

If an unsubscripted array name is used in this list, the entire array is
transmitted. For example, the statements:

READ x(3)

PRINT *, (x, i= 1,2)

write the elements of array x two times as follows:

x(1) x(2) x(3) x(1) x(2) x(3)

On output, the list can contain expressions that use the index value.
For example, the statements:

READ a(10)

PRINT *, (i*2, a(i*2), i= 1,5)

write the numbers 2, 4, 6, 8, 10, alternating with array elements
a(2), a(4), a(6), a(8), a(10).

2-56 Formatted Input/Output

Implied DO loops are useful for controlling the order in which arrays
are output. You can output an array in column-major or row-major
order. Suppose you have the following program:

PROGRAM implieddo

INTEGER a1(2,3)

DATA a1 /1, 2, 3, 4, 5, 6/

WRITE (6, '(1X, 3I2)') a1

WRITE (6, '(1X, 3I2)') ((a1(i,j), j = 1,3), i=1,2)

END

The statement:

WRITE (6, '(1X, 3I2)') a1

writes the array elements in column-major order, like this:

1 2 3

4 5 6

The statement:

WRITE (6, '(1X, 3I2)') ((a1(i,j), j = 1,3), i=1,2)

writes the array in row-major order, like this:

1 3 5

2 4 6

Because FORTRAN stores arrays in column-major order, these two
statements produce the same result:

WRITE (6, '(1X, 3I2)') ((array(i,j),i = 1,2), j = 1,3)

WRITE (6, '(1X, 3I2)') array

The following program initializes a 10 by 10-element array as an
identity matrix. An identity matrix has a diagonal of ones and the
rest of the array is �lled with zeros. The program uses a WRITE
statment with an implied DO loop to output the array in row-major
order.

PROGRAM array

INTEGER id_array(10,10)

DATA ((id_array(i,j), j = i+1,10), i=1,9) /45*0/ ! upper

DATA (id_array(i,i), i=1,10) /10*1/ ! diagonal

DATA (id_array(i,j), i = j+1,10), j=1,9) /45*0/ ! lower

WRITE(6,'(1X, 10I2)') ((id_array(i,j), j = 1,10), i=1,10)

END

Formatted Input/Output 2-57

The program produces this output:

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

Implied DO loops for input or output are not just used with arrays.
The following program prints a table of degrees and the sine of each,
in steps of 10 degrees.

PROGRAM sine

WRITE (6,100) (d, SIN(d*3.14159/180.), d=0,360,10)

100 FORMAT (1X, F4.0, F9.5)

END

2-58 Formatted Input/Output

The program produces the following output:

0. .00000

10. .17365
20. .34202

30. .50000

40. .64279

50. .76604

60. .86602

70. .93969

80. .98481

90. 1.00000

100. .98481

110. .93969

120. .86603

130. .76605

140. .64279

150. .50000

160. .34202

170. .17365

180. .00000

190. -.17365

200. -.34202

210. -.50000

220. -.64279

230. -.76604

240. -.86602

250. -.93969

260. -.98481

270. -1.00000

280. -.98481

290. -.93969
300. -.86603

310. -.76605

320. -.64279

330. -.50000

340. -.34202

350. -.17365

360. -.00001

Formatted Input/Output 2-59

3

File Handling

HP FORTRAN 77 performs input/output operations with a wide
range of devices, including disk drives, terminals, and line printers,
as well as the computer's own memory. Internal �le I/O provides a
way to perform data conversions with character data in computer
memory. This chapter describes I/O operations with disk �les and
internal �les.

Disk Files The source or destination of an HP FORTRAN 77 I/O operation is
speci�ed by a unit number. The preconnected units 5 and 6 were
used in Chapter 2 for I/O with the standard input and output
devices. To access data on a disk �le, you must �rst connect the
�le to a unit number with the OPEN statement. For example, the
statement:

OPEN(9, FILE='payroll')

connects unit number 9 with the disk �le payroll. The OPEN
statement sets the �le pointer to point to the �rst record in the �le.
The �le payroll can now be read or written with I/O statements
specifying unit 9, as follows:

WRITE(9, '(3I5)') i, j, k

or:

READ(9, '(3I5)') i, j, k

READ or WRITE statements access the current record in the �le;
the current record is pointed to by the �le pointer. After the I/O
operation, the �le pointer automatically moves to the next record in
the �le, making that record the new current record.

Normally an I/O statement reads or writes one record of a �le. In
fact, a record can be thought of as the data read or written by a
single I/O statement. Later, however, we will see that it is possible
to access more than one record in a �le with a single READ or
WRITE statement.

When a program has �nished the �le I/O activity, the unit number
should be \disconnected" from the �le with the CLOSE statement.
The statement:

CLOSE(9)

File Handling 3-1

breaks the connection between unit 9 and the connected �le. The
CLOSE statement has the e�ect of ushing bu�ers used for �le
I/O and releasing the unit number for connection to another �le
if necessary. When a program terminates, an automatic CLOSE
is performed on each connected unit in the program. However, it
is good practice to include a CLOSE statement when �le I/O is
complete.

Default File Properties The statements shown so far illustrate the simplest �le handling
commands possible. The �le payroll created is the default �le
type for HP FORTRAN 77; that is, the �le is a sequential access,
formatted �le with unknown status. These three major properties of
HP FORTRAN 77 �les are described below.

ACCESS='SEQUENTIAL'

If ACCESS is not speci�ed in the OPEN statement, the �le will be
a sequential access �le. An important characteristic of sequential
access �les is that each record in the �le can be a di�erent number
of bytes in length. Consequently, records in a sequential �le must be
read or written in sequential order. This is easy to do because the �le
pointer is set to the �rst record when the �le is opened and advances
automatically with each I/O statement. Later in this chapter, you
will see how to open a direct access �le.

FORM='FORMATTED'

If FORM is not speci�ed in the OPEN statement of a sequential
access �le, the �le will be a formatted �le. A formatted �le has
data in the form of ASCII characters. I/O statements that access
formatted �les must use format speci�cations or list-directed I/O.
The formatter converts the data between its internal form (in
computer memory) to its ASCII representation (in the �le). Later in
this chapter, you will see how to open an unformatted �le.

STATUS='UNKNOWN'

If STATUS is not speci�ed in the OPEN statement, the �le will have
an unknown status. The status of a �le refers to whether the �le
exists when the OPEN statement executes. A �le with unknown
status will be created if it does not already exist before being
connected to the unit number in the OPEN statement. Later in this
chapter, you will see how to open a �le with new, old, or scratch
status.

Reporting File Handling
Errors

In addition to connecting a unit number to a �le, the OPEN
statement also ags certain �le errors by using the STATUS speci�er,
transfers control when an error occurs by using the ERR speci�er,
and returns the error message number by using the IOSTAT speci�er.

3-2 File Handling

The STATUS Specifier

The STATUS speci�er in the OPEN statement assigns a status to the
�le. The four types of status are described in Table 3-1.

Table 3-1. Status Types

Status Type Description

'NEW' The �le will be created by the OPEN statement. If the �le exists, an error
occurs. This status is useful to protect against writing over an existing �le.

'OLD' The �le is expected to already exist. If the �le does not exist, an error occurs.
This status is useful for programs that use existing data �les.

'UNKNOWN' If the �le does not exist, the �le is created; otherwise, the existing �le is used.
This is the default �le status.

'SCRATCH' A �le is created, named by FORTRAN, and deleted when the �le is closed or
when the program ends. Scratch �les do not use the FILE='�lename' speci�er.
This status is useful for programs that need a temporary �le.

For example, the statement:

OPEN(2, FILE='myfile', STATUS='NEW')

opens the �le myfile with new status.

The STATUS speci�er in the CLOSE statement assigns a closing
status to the �le. The two types of status are described in Table 3-2.

Table 3-2. The STATUS Specifier

Status Type Description

'KEEP' The �le will be saved on the disk. This is the default �le status.

'DELETE' The �le will be purged from the disk.

For example, the statement:

CLOSE(2, FILE='myfile', STATUS='KEEP')

closes the �le myfile with keep status, so the �le will be saved on the
disk.

A scratch �le is always deleted by the system at the end of the
session. If you specify the CLOSE statement with STATUS='KEEP',
an error occurs.

The ERR Specifier

The ERR speci�er in the OPEN statement assigns a statement label
for the program to jump to when an error occurs. For example, the
statement:

OPEN(9, FILE='datafile', STATUS='NEW', ERR=180)

File Handling 3-3

connects the logical unit 9 to the �le datafile. If an error occurs in
the opening of the �le, control transfers to the statement labeled 180.

3-4 File Handling

The IOSTAT Specifier

The IOSTAT speci�er in the OPEN statement names the integer
variable where the system returns the error message number. The
values returned in this integer variable are summarized in Table 3-3.

Table 3-3. The IOSTAT Specifier

Value of IOSTAT
Integer Variable

Meaning

Zero No error occurred.

Greater than zero An error occurred; an error message number is returned.

The error message number refers to runtime errors. Refer to the HP
FORTRAN 77/iX Reference for a description of the error message.
The statement:

OPEN(4, FILE='xyzfile', ERR=99, IOSTAT=ios)

connects the logical unit number 4 to the �le xyzfile. If an error
occurs in the opening of the �le, the error number is placed in the
variable ios and control transfers to the statement labeled 99.

The CLOSE statement also reports �le handling errors. For example,
the statement:

CLOSE(16, IOSTAT=ios, ERR=99, STATUS='DELETE')

disconnects the �le that was connected to unit number 16 and
speci�es that the �le should be deleted. If an error occurs, control
transfers to the statement labeled 99 and the error number is stored
in the variable ios.

File Handling 3-5

Creating a New File
Using STATUS='NEW'

The OPEN statement with STATUS='NEW' creates a new �le. A �le
can be created by one program and used by another.

The program below creates a �le and uses the OPEN statement
speci�ers STATUS, ERR, and IOSTAT to leave the existing �le
unchanged with repeated runs of the program.

PROGRAM open_specifiers1

INTEGER*4 account_num, number, quantity

REAL*4 price

C Create file "pfile".

C If an error occurs, ios will contain the runtime error number.

C Because STATUS='NEW' is specified, an error will occur if

C "pfile" already exists.

OPEN(9, FILE='pfile', STATUS='NEW', ERR=999, IOSTAT=ios)

C Prompt for data and read data from the standard I/O device:

WRITE(6, '(1X, "Enter number of products: ",NN)')

READ(5, *)number

C Write to the file "pfile":

WRITE(9, '(1X, I10)') number

DO i = 1, number

WRITE(6, '(1X, "Enter quantity and price: ",NN)')

READ(5,*) quantity, price

WRITE(9, '(1X, I10, F9.2)') quantity, price

END DO

C Close the file "pfile"; terminate connection to unit 9:

CLOSE(9)

STOP 'Normal termination'

999 CALL report_error(ios, 'OPEN', 'pfile')

STOP "Error termination"

END

SUBROUTINE report_error(ios, stmt_name, file_name)

INTEGER*4 ios, eof, found, not_found

CHARACTER stmt_name*(*), file_name*(*)

PARAMETER (eof = -1, found = 918, not_found = 908)

IF (ios .EQ. found) THEN

WRITE(6,*) stmt_name, ' error: the file ',

* file_name, ' already exists.'

ELSE IF (ios .EQ. not_found) THEN

3-6 File Handling

WRITE(6,*) stmt_name, ' error: the file ',

* file_name, ' was not found.'

ELSE IF (ios .LE. eof) THEN
WRITE(6,*) stmt_name, ' End of file ', file_name

ELSE

WRITE(6,*) stmt_name, ' error', ios, ' on file ', file_name

END IF

END

In this program, unit 9 is connected to the �le pfile. You are
prompted to enter data for the variables number, quantity, and
price. The variable number represents the number of transactions
in the pfile and controls the number of iterations through the DO
loop. The WRITE statement to unit 9 writes the data to the �le
pfile with the format (I10) for number and the format (I10,
F9.2) for quantity and price.

The error handling subroutine report_error prints a message
depending on the error number assigned to ios.

In the program, the error handling subroutine uses these three
variables:

Variable Purpose

ios Contains the I/O error number.

stmt_name Contains the statement that caused the error.

file_name Contains the �le name that caused the error.

File Handling 3-7

The error subroutine in this program includes checks for
some speci�c errors. The error \File not found" (reported for
STATUS='OLD' �les) and \File already exists" (reported for
STATUS='NEW' �les) generate positive return values for ios. After the
error routine, the STOP statement halts the program and prints the
message \Error termination".

A sample session of the program follows:

Enter number of products: 5

Enter quantity and price: 3, 5.16

Enter quantity and price: 2, 9.25

Enter quantity and price: 6, 1.72

Enter quantity and price: 1, 15.91

Enter quantity and price: 14, 2.75

STOP Normal Termination

After the program executes, the contents of the �le pfile is:

5

3 5.16

2 9.25

6 1.72

1 15.91

14 2.75

If the �le pfile already existed, an error occurs.

3-8 File Handling

Reading From an
Existing File Using

STATUS='OLD'

To read data from an existing �le, you must �rst open the �le with
the OPEN statement. For example, the following program opens
and reads the existing �le pfile that was created in the previous
example. By specifying STATUS='OLD', the �le pfile must exist or
else the program will terminate.

PROGRAM open_specifiers2

INTEGER*4 number, quantity
REAL*4 price

CHARACTER stmt_name*8

C Open file "pfile"; if it does not exist, go to statement 999:

stmt_name = 'OPEN'

OPEN(9, FILE='pfile', STATUS='OLD', ERR=999, IOSTAT=ios)

C Read the file to get the number of records;

C if an error occurs, go to statement 999:

stmt_name = 'READ 1'

READ(9, '(I10)', ERR=999, IOSTAT=ios) number

C Read the file to get the data;

C if an error occurs, go to statement 999:

stmt_name = 'READ 2'

DO i = 1, number

READ(9, '(I10, F9.2)', ERR=999, IOSTAT=ios)

* quantity, price

WRITE(6, '(1X, I5, I10, F9.2)') i, quantity, price

END DO

CLOSE(9)

STOP 'Normal termination'

999 CALL report_error(ios, stmt_name, 'pfile')

STOP 'Error termination'

END

File Handling 3-9

SUBROUTINE report_error(ios, stmt_name, file_name)

INTEGER*4 ios, eof, found, not_found
CHARACTER stmt_name*(*), file_name*(*)

PARAMETER (eof = -1, found = 918, not_found = 908)

IF (ios .EQ. found) THEN

WRITE(6,*) stmt_name, ' error: the file ',

* file_name, ' already exists.'

ELSE IF (ios .EQ. not_found) THEN

WRITE(6,*) stmt_name, ' error: the file ',

* file_name, ' was not found.'

ELSE IF (ios .LE. eof) THEN

WRITE(6,*) stmt_name, ' End of file ', file_name

ELSE

WRITE(6,*) stmt_name, ' error', ios, ' on file', file_name

END IF

END

This program reads the quantity and price from the �le and prints
each line. The variable number controls the loop that reads the
records. Again, the CLOSE statement disconnects the unit from the
�le name.

One line of data is read or written by one READ or WRITE
statement. The format descriptors speci�ed in the READ or WRITE
statement de�ne the data of each line in the �le. Therefore, each line
must be read with the same format descriptors used to write the �le.

When this program executes, the following is output:

1 3 5.16
2 2 9.25

3 6 1.72

4 1 15.91

5 14 2.75

STOP Normal termination

If the �le pfile did not exist, an error occurs.

3-10 File Handling

Appending to a File To write data to an existing �le, you must �rst open the �le with the
OPEN statement. For example, the following program opens and
writes to the existing �le prices, whose contents are as follows:

3 5.16

2 9.25

6 1.72

1 15.91

14 2.75

The program �rst �nds the end of the �le, and then accepts the new
data.

PROGRAM write_exist

LOGICAL forever

PARAMETER (forever = .TRUE.)

INTEGER*4 number, quantity, count

REAL*4 price

C Open the file "prices" and connect it to unit 8:

OPEN(8, FILE = 'prices', STATUS='OLD')

C Position the file pointer to the end of the file:

DO WHILE (forever)

READ(8, '(X)', END=100)

END DO

C Backspace to write over the end-of-file record

100 BACKSPACE 8

C Get new data and write the data to the file "prices":

WRITE(6,*) 'How many records do you want to add?'

READ(5,*) number

DO i = 1, number

WRITE(6,*) 'Enter quantity and price: '

READ(5,*) quantity, price
WRITE(8, '(1X, I10, F9.2)') quantity, price

END DO

C Close the file; terminate connection to unit 8:

CLOSE(8)

END

A sample run is shown below:

How many records do you want to add? 2

Enter quantity and price: 1, 1.50

Enter quantity and price: 5, 2.25

File Handling 3-11

After the program executes, the contents of prices look like this:

3 5.16

2 9.25
6 1.72

1 15.91

14 2.75

1 1.50

5 2.25

The new data is appended to the end of the existing �le.

File Access The examples so far have been sequential access �les; unless
otherwise speci�ed in the OPEN statement, �les are opened for
sequential access. But, FORTRAN �les can be accessed (read or
written) in three ways: sequential, direct, or indexed sequential.

Sequential Access Files

Sequential access �les are read and written in sequence; that is, �les
are accessed in the order in which they were written. In a sequential
access �le, the following is true:

The �le pointer points to the current record.
The READ or WRITE statement operates on the current record.
After the READ or WRITE, the �le pointer advances to the next
record.

The end of a sequential �le is marked by an end-of-�le (EOF) record.
A diagram of how a sequential access �le is structured is shown in
Figure 3-1.

3-12 File Handling

Figure 3-1. Sequential Access Files

Note that each record in a sequential access �le can be a di�erent
size.

The default speci�ers in the OPEN statement for sequential access
�les are summarized below:

Speci�er Default

STATUS 'UNKNOWN'

ACCESS 'SEQUENTIAL'

FORM 'FORMATTED'

BLANK 'NULL'

The BLANK speci�er describes how blanks within numbers are
treated on input from formatted �les. If BLANK='NULL', blanks are
ignored; if BLANK='ZERO', blanks are treated as zeros.

For example, the statement: OPEN(1, FILE='infile',

STATUS='OLD', BLANK='ZERO') connects a �le named infile to
logical unit number one. The �le infile exists as a sequential �le for
formatted I/O. All blanks will be treated as zeros on input.

File Handling 3-13

Direct Access Files

Direct access �les are read and written according to the record
number; the record number can then be used in random order. Each
record in the �le has a record number that is speci�ed by the REC
speci�er on a READ or WRITE statement. Each record in a direct
�le must be the same size, as speci�ed in the OPEN statement.
A diagram of how a direct access �le is structured is shown in
Figure 3-2.

Figure 3-2. Direct Access Files

Note that each record is the same size and that there is no end-of-�le
(EOF) record in a direct access �le.

3-14 File Handling

Once established, the record number of a speci�c record cannot
be changed or deleted, although the record can be rewritten. The
records can be read or written in any order. For example, record
number 3 can be written before writing record number 1.

The records of a direct access �le cannot be read or written using
list-directed formatting. Because a direct access �le does not have an
end-of-�le record, the END speci�er in the direct access READ or
WRITE statement is not allowed.

The default speci�ers in the OPEN statement for direct access �les
are summarized below:

Speci�er Default

STATUS 'UNKNOWN'

ACCESS 'DIRECT'

FORM 'UNFORMATTED'

BLANK 'NULL'

If FORM='FORMATTED' is speci�ed, BLANK defaults to 'NULL'.

The �le format of a direct access �le can be formatted or
unformatted, as described below:

Type of Format Description

FORMATTED Records are blank-�lled to the speci�ed record length.

UNFORMATTED Records are null-�lled to the speci�ed record length.

To create a direct access �le, specify an OPEN statement with the
ACCESS='DIRECT' speci�er and the RECL (record length) speci�er.
For example, the statement:

OPEN(2, FILE='dfile', ACCESS='DIRECT', RECL=120)

opens the �le dfile for direct access. The �le is associated with unit
two and has a record length of 120 bytes.

A temporary scratch �le can be a direct access �le. The statement:

OPEN(4, STATUS='SCRATCH', ACCESS='DIRECT', RECL=120)

connects a direct access scratch �le to the FORTRAN unit four.

File Handling 3-15

The program below shows how to create and write data to a direct
access �le.

PROGRAM direct_access

INTEGER quantity

C Open the file "dfile" for direct access

C (the record length is 120 bytes and the default type is unformatted):

OPEN(2, FILE='dfile', ACCESS='DIRECT', RECL=120)

C Prompt for number of transactions:

WRITE(6, '(A,NN)') "Enter number of transactions:"

READ(5,*) number

C Enter data and write the data to the direct access file using

C the id number as the record number:

DO i = 1, number

WRITE(6, '(A,NN)') "Enter id number: "

READ(5,*) id

WRITE(6, '(A,NN)') "Enter quantity and price: "

READ(5,*) quantity, price

WRITE(2, REC=id) quantity, price

END DO

CLOSE(2)

END

A sample run of the program is shown below:

Enter number of transactions: 5

Enter id number: 4

Enter quantity and price: 14 16.00

Enter id number: 1

Enter quantity and price: 9 9.25

Enter id number: 6

Enter quantity and price: 1 142.90

Enter id number: 2

Enter quantity and price: 60 1.50

Enter id number: 5

Enter quantity and price: 3 74.70

When the program executes, the records 4, 1, 6, 2, and 5 are written
to the �le dfile.

3-16 File Handling

The program below reads and prints the contents of the �rst �ve
records in reverse order from the �le dfile.

PROGRAM direct_read

INTEGER quantity

C Open the file "dfile"

OPEN(2, FILE='dfile', ACCESS='DIRECT', RECL=120)

C Read and print the first five records:

DO i = 5, 1, -1

READ(2, REC=i) quantity, price

WRITE(6, '(1X, I5, I5, F9.2)') i, quantity, price

END DO

END

The program produces the following output:

5 3 74.70

4 14 16.00

3 0 0.00

2 60 1.50

1 9 9.25

Note that record 3 is �lled with zeros because that record is empty.

The sequential operations READ, WRITE, BACKSPACE,
ENDFILE, and REWIND can be used on direct access �les.

File Handling 3-17

Indexed Sequential Access Files

Indexed sequential �les (ISAM) are read and written randomly by a
key or sequentially without a key. The key is part of the record. Files
are of �xed length. Each record in the �le has a primary key and
one or more secondary or optional keys. These keys are part of the
record that is being written into the �le. Each record in an ISAM �le
must be the same size as speci�ed in the OPEN statement by RECL.
The ACCESS speci�er in an OPEN statement should be speci�ed
as 'KEYED' for ISAM. An ISAM �le has two physical �les; a data
�le containing user records and an index �le holding indexes to the
records in the data �le.

A diagram of how an indexed sequential �le is structured is shown in
Figure 3-3.

Figure 3-3. Indexed Sequential Access Files

The system will create two �les one with the name given in the
OPEN statement and the other with a K appended to the �le name.
If the original �le name in the OPEN statement is already eight
characters long, the system will replace the last character of the �le
name with a K. For example, a �le named DATAFILE would have K
appended to it as follows: DATAFILK.

3-18 File Handling

The following table shows how a �le is speci�ed variable or �xed
length in an OPEN statement.

ACCESS RECL RECORDTYPE File Type.

SEQUENTIALAbsent Variable �le.

SEQUENTIALPresent Variable �le
(RECL= maximum record length)

DIRECT Absent Error.

DIRECT Present Fixed record length �le.

KEYED Present Variable Error.

KEYED Present Fixed Fixed record length ISAM �le.

KEYED Absent Fixed Error.

File Handling 3-19

For example, the statement:

OPEN (10,FILE='file1',KEY=(1:4:integer,10:15:character),ACCESS='keyed')

connects a �le named file1 to logical unit 10.

The program below shows how to create and write data to an
indexed sequential �le.

PROGRAM isam_write

STRUCTURE /cust/

INTEGER*4 phone_num ! primary key

CHARACTER*15 last_name ! first alternate key

CHARACTER*15 first_name

CHARACTER*1 middle_init

CHARACTER*20 street

CHARACTER*15 city

CHARACTER*2 state

INTEGER*4 zip

CHARACTER*6 %fill

END STRUCTURE

RECORD /cust/ customer_rec

CHARACTER*1 temp

C Open a file "test" for indexed (keyed) access with record length

C of 80 bytes and with phone number as the primary key, and the

C last name of the customer as the secondary key.

OPEN (10,FILE='test',ACCESS='keyed',RECL=80,FORM='unformatted',

1 RECORDTYPE='fixed',KEY=(1:4:INTEGER,5:19:CHARACTER))

8 WRITE (6,'(A,NN)') "continue to add(Y/N)? "

READ (5,'(A1)') temp

IF (temp .eq. 'N') GOTO 100

WRITE (6,'(A,NN)') "phone number: "

READ (5,*) customer_rec.phone

WRITE (6,'(A,NN)') "last_name: "

READ (5,10) customer_rec.last_name

WRITE (6,'(A,NN)') "first name: "

READ (5,10) customer_rec.first_name

WRITE (6,'(A,NN)') "middle init: "

READ (5,11) customer_rec.middle_init

WRITE (6,'(A,NN)') "street: "

READ (5,12) customer_rec.street

WRITE (6,'(A,NN)') "city: "

3-20 File Handling

READ (5,10) customer_rec.city

WRITE (6,'(A,NN)') "state: "
READ (5,13) customer_rec.state

WRITE (6,'(A,NN)') "zip: "

READ (5,*) customer_rec.zip

WRITE (10,err=200) customer_rec

GOTO 8

10 FORMAT(A15)

11 FORMAT(A1)

12 FORMAT(A20)

13 FORMAT(A2)

100 STOP

200 PRINT *,' error in writing'

END

The program below shows how to read an ISAM �le with an
alternate key and to read it sequentially.

PROGRAM isam_read

STRUCTURE /cust/

INTEGER*4 phone_num ! primary key

CHARACTER*15 last_name ! first alternate key

CHARACTER*15 first_name

CHARACTER*1 middle_init

CHARACTER*20 street

CHARACTER*15 city

CHARACTER*2 state
INTEGER*4 zip

CHARACTER*6 %fill

END STRUCTURE

CHARACTER*15 temp_name

LOGICAL done

C Open the isam file created in the previous example.

C key, recl, and recordtype are optional for an existing file

OPEN (10,FILE='test',FORM='unformatted',STATUS='old',RECL=80,

1 RECORDTYPE='fixed',KEY=(1:4:INTEGER,5:19:CHARACTER))

File Handling 3-21

C Read a record with an alternate key(last name) and list all the

C names with that name as the last name

WRITE(6,'(A,NN)') " enter the last name: "

READ (5,10) temp_name

10 FORMAT (A15)

READ (10,KEYEQ=temp_name,KEYID=1,ERR=101) customer_rec

WRITE (6,11) customer_rec.phone_num, customer_rec.last_name,

1 customer_rec.first_name

11 FORMAT (I7,X4,A,X2,A)

C Read sequentially and list phone number and the name until

C last name changes.

done = .false.

DO WHILE (not done)

READ (10,KEYEQ=temp_name,KEYID=1,ERR=101) customer_rec

IF (customer_rec.last_name = temp_name) THEN

WRITE (6,11) customer_rec.phone_num, customer_rec.last_name,

1 customer_rec.first_name

ELSE

done = .true.

ENDIF

ENDDO

STOP

101 PRINT *,'error in reading'

END

3-22 File Handling

Unformatted I/O Unformatted I/O statements do not use format descriptors and do
not convert the data on input or output. The data is transferred in
internal (binary) representation to the external device. Unformatted
I/O cannot be used for internal or formatted �les. Note that
terminals are opened as formatted �les.

Unformatted Input

The unformatted READ statement transfers one line from the
speci�ed unit to the storage locations of the variables listed in the
READ statement list.

For example, the statement:

READ (5) i, flag, ready

places values directly into i, flag, and ready without any data type
conversions from character to internal (binary) form.

The data type of each input value should agree with the type of the
corresponding list item.

The following program shows the unformatted input statements.

PROGRAM unformatted_input

INTEGER i(1000)

OPEN(9, FILE = 'bdata', FORM = 'UNFORMATTED')

C Unformatted input statements from unit 9.

C (The array i is read in internal binary format from unit 9.)

READ(9) i

CLOSE(9)

END

Unformatted Output

The unformatted WRITE statement writes to the speci�ed output
unit without any format conversion.

For example, the statement:

WRITE (6) i, flag, ready

writes the values of i, flag, and ready without any format
conversion.

If a list is omitted in the WRITE statement, a null line is written.

File Handling 3-23

Using Formatted and
Unformatted Files

FORTRAN �les can be either formatted or unformatted. If not
speci�ed in the OPEN statement, sequential �les are defaulted to be
formatted and direct access �les are defaulted to be unformatted.

A formatted �le is read and written with formatted I/O statements.
That is, the READ or WRITE statements contain a format or
list-directed speci�cation.

An unformatted �le is read and written with unformatted I/O
statements. That is, the READ and WRITE statements do not
contain format speci�cations.

For example, in the program below, unit 10 is connected to a
formatted �le and unit 11 is connected to an unformatted �le. Both
�les are sequential access �les.

PROGRAM format_unformat

REAL*4 value

INTEGER*4 count

CHARACTER*16 name

DATA value /123.456/

DATA count /123456/

DATA name /'John Doe'/

C Open the formatted and unformatted sequential files:

OPEN(10, FILE='file1', FORM='FORMATTED')

OPEN(11, FILE='file2', FORM='UNFORMATTED')

C Write the data to the formatted file

C (36 bytes will be written):

WRITE(10, '(F10.3, I10, A16)') value, count, name

C Write the 24 data bytes to the unformatted file

C (24 data bytes will be written):

WRITE(11) value, count, name

CLOSE(10)

CLOSE(11)

END

The formatted WRITE statement uses the (F10.3, I10, A16) format
speci�cation, which speci�es that 36 characters are to be written to
the disk.

3-24 File Handling

The unformatted WRITE statement writes the data to the �le
without conversion. The number of bytes written to the disk
correspond to the number of bytes allocated to the variables in the
declaration statement. In this example, there is a 4-byte real, a
4-byte integer, and a 16-byte character variable, for a total of 24
bytes. The advantage of the unformatted WRITE statement is that
the numeric data takes up less room on the disk and that the slow
conversion from binary to character format is not done. For oating
point data, using unformatted I/O ensures that accuracy is not lost
by the conversion and rounding process used for ASCII I/O.

File Handling 3-25

Using the INQUIRE
Statement

The INQUIRE statement returns information about a �le or unit.
The information returned can be about one of the following:

A �le that is not connected to a unit

A �le that is connected to a unit

A FORTRAN I/O unit

For example, the statement:

INQUIRE(FILE='abcfile', ERR=999, EXIST=ex, ACCESS=ac)

returns information about the �le abcfile to the variables ex and
ac. If an error occurs during the INQUIRE, control transfers to the
statement labeled 999.

Here is another INQUIRE statement:

INQUIRE(FILE='exfile', IOSTAT=ios, ERR=99, EXIST=ex,

* OPENED=iop, NUMBER=num, ACCESS=acc)

This statement requests information on the �le exfile. If exfile
exists and is connected to a unit in the program, the variables ex and
iop return the value true. The unit number of the �le is stored in
num and the character variable acc is de�ned.

If the �le exfile does not exist, ex and iop return the value false,
and ios is zero if there was no error, or is a system-de�ned value
greater than zero if there was an error.

3-26 File Handling

The program below opens the �le pfile and uses the INQUIRE
statement to return information about the �le to the variables ios,
iop, ex, and ac.

PROGRAM inquire_info

LOGICAL ex, iop

CHARACTER*10 ac

OPEN(8, FILE='pfile')

INQUIRE(FILE='pfile', IOSTAT=ios, OPENED=iop,

* EXIST=ex, ACCESS=ac, ERR=100)

PRINT *, "iop = ", iop ! iop returns T if the file is opened

PRINT *, "ex = ", ex ! ex returns T if the file exists

PRINT *, "ac = ", ac ! ac returns the type of file access

IF (ios .NE. 0) THEN ! ios returns the I/O status

PRINT *, "ios =", ios

ENDIF

100 CLOSE(8)

END

Because the �le pfile exists and successfully opens, the program
prints the following:

iop = T

ex = T

ac = SEQUENTIAL

File Handling 3-27

Similarly, the program below uses the INQUIRE statement to return
information about
unit 8. Note that this INQUIRE statement refers to the connection
to I/O unit 8, not to the �le pfile.

PROGRAM inquire_info2

LOGICAL ex, iop

CHARACTER*10 ac

OPEN(8, FILE='pfile')

INQUIRE(UNIT=8, IOSTAT=ios, OPENED=iop,

* EXIST=ex, ACCESS=ac, ERR=100)

PRINT *, ios ! ios returns the I/O status

PRINT *, iop ! iop returns T if the unit is opened

PRINT *, ex ! ex returns T if the unit exists

PRINT *, ac ! ac returns the type of file access

100 CLOSE(8)

END

Because unit 8 is connected, the program prints the following:

0

T

T

SEQUENTIAL

3-28 File Handling

Positioning the File
Pointer

The BACKSPACE, REWIND, and ENDFILE statements control the
position of the �le pointer within a sequential access �le.

The unit speci�ers UNIT, IOSTAT, and ERR can be used on the �le
positioning statements.

The BACKSPACE Statement

The BACKSPACE statement positions the �le pointer back one
record. For example, the statement:

BACKSPACE 10

moves the �le pointer for unit 10 back one record.

The REWIND Statement

The REWIND statement positions the �le pointer at the beginning of
the �le. For example, the statement:

REWIND(UNIT=13, IOSTAT=ios, ERR=99)

moves the �le pointer to the initial point in the �le connected to the
logical unit 13. If an error occurs, the error number is stored in the
variable ios and control transfers to
statement 99.

The ENDFILE Statement

The ENDFILE statement writes an end-of-�le record as the next
record. For example, the statement:

ENDFILE 13

writes an end-of-�le record as the next record of the �le connected to
unit number 13.

File Handling 3-29

Example of Using the File Positioning Statements

The �le positioning statements are used in the following program:

PROGRAM positioning

INTEGER*4 quantity

REAL*4 price

C Open the file connected to unit 10:

OPEN(10, FILE = 'pfile')

C Read some records:

DO i = 1, 5

READ(10,'(I10, F9.2)') quantity, price

END DO

C Move the file pointer from unit 10 to the previous record:

BACKSPACE 10

C Move the file pointer to the initial point in the file connected

C to logical unit 10.

C If an error occurs, the error number is

C stored in the variable ios and control transfers to statement 99.

REWIND(10, IOSTAT=ios, ERR=99)

C Write an end-of-file record as the next record of the file connected

C to unit number 10:

ENDFILE 10

STOP

C Error handling section:

99 WRITE(6, '("ERROR = ", I6)') ios

END

3-30 File Handling

File Handling Examples This section demonstrates the use of several options of the �le
handling statements.

Computing the Mean of Data in a Sequential File

The following program computes the mean of all the data items in
the disk �le data. The �le contains an unknown number of records,
with each record containing one real number.

PROGRAM compute_mean

sum = 0.0 ! Initialize

n = 0 ! Initialize

OPEN(3, IOSTAT = ios, ERR = 99, FILE = 'data',

* ACCESS = 'SEQUENTIAL', STATUS = 'OLD')

10 READ (3, 22, END=88, IOSTAT = ios, ERR = 99) anum

22 FORMAT (F10.5)

sum = sum + anum !Add data entries

n = n + 1 ! Count entries

GO TO 10 ! Loop

C Out of loop

88 avg = sum / n

WRITE(6,33) avg ! Output to preconnected unit 6

33 FORMAT (1X, 'The average is ', F12.6)

CLOSE(3)

STOP

C If there is an error in the OPEN or READ, output to the

C preconnected unit 6.

99 WRITE(6,44) ios

44 FORMAT (1X, 'Error encountered = ', I6)

END

If the �le data contains the following:

1.0

2.0

3.0

4.0

the output of the program looks like this:

The average is 2.500000

If the �le data does not exist, an error occurs and the error number
is output.

File Handling 3-31

Inserting Data Into a Sorted Sequential File

This program inserts a single number in the proper position in a
sorted sequential �le.

PROGRAM insert_number

C Declare and initialize variables:

IMPLICIT NONE

REAL anum, fnum

INTEGER ios1, ios2, EOF

PARAMETER (EOF = -1)

C Open the files:

OPEN(18, FILE='oldfile', STATUS='UNKNOWN', IOSTAT=ios1, ERR=99)

OPEN(17, FILE='newfile', STATUS='NEW', IOSTAT =ios2, ERR=99)

C Prompt for number to be inserted and begin reading the file:

PRINT *, 'Enter number to be inserted: '

READ *, anum

READ(18, *, END=100, IOSTAT=ios1, ERR=99) fnum

C Copy fnum to 'newfile' until EOF is reached or until fnum � anum

DO WHILE (fnum .LT. anum)

WRITE(17, *) fnum

READ(18), *, END=100, ERR=99, IOSTAT=ios1) fnum

END DO

C Write the inserted number to 'newfile':

100 WRITE(17, *) anum

C Copy data to 'newfile' until EOF is reached:
DO WHILE(ios1 .NE. EOF)

WRITE(17, *) fnum

READ(18, *, ERR=99, IOSTAT=ios1) fnum

END DO

CLOSE(17)

CLOSE(18)

STOP 'All Done'

C Error handling section

99 WRITE (6, '(1X, "ERROR = ", 2I6)') ios1, ios2

END

If the �le oldfile originally contained the following:

1.0

2.0

3.0

3-32 File Handling

4.0

5.0

and you run the program to insert the number 3.5, the �le newfile
looks like this after execution:

1.0

2.0

3.0

3.5

4.0

5.0

File Handling 3-33

Internal Files Internal �les provide a way of reformatting, converting, and
transferring data from one area of memory to another; no input or
output devices are used. If you use internal �les to reformat data,
you do not have to write data to a �le and reread the �le with a
di�erent format. Instead, internal �les allow conversion between
numeric and character data types.

An internal �le is an area of storage internal to the program. An
internal �le can be a character variable, a character array element, a
character array, or a character substring. Each variable, substring, or
array element is one record; if the �le is an array, each array element
is one record. For example, the statement:

CHARACTER*15 city(50)

de�nes a character array containing 50 elements of 15 characters
each. The array can be referenced as an internal �le named city

containing 50 records of 15 characters each.

You cannot use the OPEN or CLOSE statement, any �le positioning
statements, or any �le status statements with internal �les.

Reading From an
Internal File

Data is usually read from internal �les with a formatted READ
statement. The name of the internal �le is speci�ed on the READ
statement. For example, the READ statement in the following
program reads four records from the internal �le course and stores
the data into variables a, b, c, and d.

PROGRAM internal_read1

CHARACTER*10 course(4), a, b, c, d

DATA course / 'chemistry','biology','zoology','botany'/

C Read from internal file 'course'

READ(course, '(A10)') a, b, c, d

WRITE(6,*) a

WRITE(6,*) b

WRITE(6,*) c

WRITE(6,*) d

STOP

END

The output of this program is:

chemistry

biology

zoology

botany

3-34 File Handling

You can use the READ statement to convert data. For example,
consider the following program:

PROGRAM internal_read2

CHARACTER int_file*20, string*20

INTEGER a, b, c, d, e

DATA string /' 31 61 4 18 91'/

C Assign the character string to the internal file:

int_file = string

C Read the internal file and convert the data type:

READ(int_file, '(5I4)') a, b, c, d, e

C Check the contents of the file:

WRITE(6,*) 'a = ', a

WRITE(6,*) 'b = ', b

WRITE(6,*) 'c = ', c

WRITE(6,*) 'd = ', d

WRITE(6,*) 'e = ', e

END

This program performs the following: reads the character data from
the internal �le int_file, converts the character string into internal
integer format, and stores the converted data into the variables a, b,
c, d, and e. The output of the program is shown below:

a = 31

b = 61

c = 4

d = 18
e = 91

As an HP extension to the FORTRAN 77 standard, list-directed
READ operations can use internal �les.

File Handling 3-35

Writing to an Internal
File

Data is written to internal �les with a formatted WRITE statement.
The name of the internal �le is speci�ed in the WRITE statement.
For example, the statement:

WRITE(UNIT=address_var, FMT='(I10)') street_address

or:

WRITE(address_var, '(I10)') street_address

writes the value of street_address into the �rst ten positions of
the internal �le address_var. The variable address_var must be a
variable or array of type CHARACTER. If address_var has a length
greater than ten, the rest of the record is �lled with blanks.

The WRITE statement in the program below de�nes an internal �le
name and writes �ve records to the �le.

PROGRAM internal_write

CHARACTER*14 name(5)

INTEGER a, b, c, d, e

DATA a/14/, b/57/, c/0/, d/-123/, e/95/

C Write to the internal file:

WRITE(name, '(1X, I4)') a, b, c, d, e

END

After the program executes, the array name is assigned the following
values (the values are 14 characters long):

Element Value

name(1) 14

name(2) 57

name(3) 0

name(4) -123

name(5) 95

<|||14 characters long|||>

3-36 File Handling

Another example of writing to a character variable in an internal �le
is shown below, where a format speci�cation is built at execution
time. This program only shows how internal �les work, not
necessarily e�cient programming practices.

PROGRAM internal_write2

CHARACTER*14 ifmt

INTEGER iarray(5)

DATA iarray/1, 2, 3, 4, 5/

C Prompt for format specification variables:

WRITE(6,*) 'Enter number of spaces before the array contents:'

READ(5,*) n

WRITE(6,*) 'Enter the repetition factor: '

READ(5,*) m

C Create the internal file containing the format:

WRITE(ifmt,10) n, m

10 FORMAT (1X, '(', I2, 'X,' I2, '(I2,X))')

C Print the array using the format in the internal file:

WRITE(6,*) 'The contents of the array "iarray" is: '

WRITE(6,ifmt) iarray

C Print the format used to store the data:

WRITE(6,*) 'The format used to print the contents is: '

WRITE(6,*) 'FORMAT ', ifmt

END

The program prompts you for portions of the FORMAT statement;
the WRITE statement then writes the variables n and m to the
character string in the internal �le. Therefore, when the WRITE
statement executes, the format speci�cation will have the desired
format.

A sample run of the program looks like this:

Enter number of spaces before the array contents: 10

Enter the repetition factor: 5

The contents of the array "iarray" is: 1 2 3 4 5

The format used to print the contents is: FORMAT (10X, 5(I2,X))

As an HP extension to the FORTRAN 77 standard, list-directed
WRITE operations can use internal �les.

File Handling 3-37

4

HP FORTRAN 77/iX File Operations

This chapter describes the following:

Characteristics requested by the OPEN statement processor

Prede�ned units and �les

Creating and closing �les

Carriage control �les

Magnetic tapes

Procedures for �le handling

The OPEN
Statement
Processor

The FORTRAN 77 OPEN statement gives you more control over �le
connection and �le characteristics than older versions of FORTRAN.
The run-time library translates the OPEN statement to call the
MPE/iX FOPEN system intrinsic. The OPEN statement processor
implements the options speci�ed in the OPEN statement by assigning
the options to corresponding options in the FOPEN intrinsic. The
options in the OPEN statement do not override the characteristics of
an existing �le; that is, a FILE equation pertaining to the �le takes
precedence over the FOPEN arguments. Any FOPEN option not
speci�ed by FORTRAN 77 is supplied with the �le system defaults.

The options speci�ed in the OPEN statement determine the values of
the FOPTIONS and AOPTIONS arguments to the FOPEN intrinsic.
The default FILESIZE (number of records) is 4096 and the default
NUMEXTENTS (number of extents allowed) is 32. Because both
values are four times greater than the MPE/iX default, you do not
need a FILE equation with a �le of more than 1023 records. If the
MPE/iX defaults are used, no additional disc space is allocated for
small �les.

The name or formal �le designator for a �le is created by joining the
characters FTN with the two-digit FORTRAN logical unit (LU)
number. For example, �le 8 is FTN08 and �le 10 is FTN10.

HP FORTRAN 77/iX File Operations 4-1

Predefined Units
and Files

Units �ve and six are the prede�ned I/O units for FORTRAN 77.
These units are opened by the I/O library before the �rst I/O
statement is executed. Unit �ve is opened as formal �le designator
FTN05, which defaults to $STDINX. ($STDIN is not the default;
this prevents logging o� if an input line of :EOF is entered and allows
input of lines containing a colon in the �rst position.) The formal
designator for unit 6 is FTN06, which defaults to $STDLIST. Both
FTN05 and FTN06 are �rst opened by FOPEN as MPE/iX OLD or
TEMP �les so they can be redirected by a :FILE equation. If no
�le or �le equation exists for FTN05 or FTN06, another FOPEN is
executed to open the �les as NEW MPE/iX �les.

For example, using the equation

:FILE FTN06 = outfile

with the FORTRAN 77 statement

WRITE(6,*) " This will be diverted into the file 'outfile'."

causes the output to be written to the �le outfile instead of to the
terminal.

FTN05 Unit �ve is �rst opened with FOPTIONS of octal 157, which opens
$STDINX as an OLD or TEMP ASCII �le with variable length
records. If there is no existing �le (or �le equation) for FTN05,
the �rst FOPEN fails and another FOPEN is attempted with
FOPTIONS of octal 154. Octal 154 has the same �le characteristics
as octal 157, except a NEW �le is requested. The AOPTIONS
for both calls are octal 300, requesting read-only, shared access to
the �le. Shared access is requested in case FORTRAN 77 I/O is
performed from subprograms called from another language that
might have already opened $STDINX. Access is denied if exclusive
access was requested.

FTN06 Unit six is �rst opened with FOPTIONS of octal 517, which opens
$STDLIST as an OLD or TEMP ASCII �le with variable length
records and with carriage control. If there is no existing �le (or �le
equation) for FTN06, the �rst FOPEN call fails and another FOPEN
is attempted with FOPTIONS of octal 514. Octal 514 has the same
�le characteristics as octal 517, except a NEW �le is requested. The
AOPTIONS for both calls are octal 301, requesting write-only, shared
access to the �le.

4-2 HP FORTRAN 77/iX File Operations

FTN01 Through FTN99
(Excluding FTN05 and

FTN06)

For compatibility with FORTRAN 66/V, the FORTRAN 77 I/O
library automatically opens units 1 through 99 (excluding 5 and 6)
to the formal �le desginators FTN01 through FTN99, respectively.
OPEN statements are not required for these �les, though a :FILE
equation is usually required (as it is in FORTRAN 66/V).

Units 0 and those greater than 99 must be opened with an OPEN
statement before being used.

HP FORTRAN 77/iX File Operations 4-3

Creating Files with
the OPEN Statement

Existing �les (OLD or TEMP) connected with the OPEN statement
already have de�ned characteristics; therefore, the arguments to the
FOPEN intrinsic are ignored. Similarly, FILE equations referenced
in the OPEN statement are overridden by the characteristics of the
corresponding device or �le.

By default, �les connected by the OPEN statement processor besides
FTN05 and FTN06 are opened by FOPEN with AOPTIONS of
4, requesting read/write access. This prepares the system for any
arbitrary mix of READ and WRITE statements. As an extension to
the ANSI standard, the READONLY speci�er on OPEN is allowed.
Such �les are opened by FOPEN with AOPTIONS of 0, requesting
readonly access. OPEN statements corresponding to �les (or �le
equations) that can only be read or written are valid unless an
operation is requested that is not allowed on the �le. Invalid requests
cause a �le system error.

STATUS='NEW' When the OPEN statement speci�es STATUS='NEW', the FORTRAN
compiler makes sure that the referenced �le does not exist by
attempting to open the �le as an MPE/iX OLD or TEMP �le. If
the �le exists, the �le is closed and an error is reported. Normally,
the �rst FOPEN fails because no �le exists and the FOPEN is tried
again with FOPTIONS requesting an MPE/iX NEW �le. This
attempt usually succeeds in creating the �le; if not, a �le system
error is reported.

STATUS='OLD' When the OPEN statement speci�es STATUS='OLD', the
corresponding FOPEN intrinsic speci�es to only search the MPE/iX
OLD or TEMP �le domains. The temporary job domain is searched
�rst; therefore, TEMP �les are connected before permanent (OLD)
�les of the same name. If the FOPEN fails (no such named �le
exists), an error is reported.

STATUS='SCRATCH' When the OPEN statement speci�es STATUS='SCRATCH', the �le is
opened as a nameless MPE/iX �le. Therefore, in accordance with the
ANSI standard, it is impossible to save the �le. If the �le is not a
scratch �le, the �le is de�ned by the FORM and ACCESS options in
the OPEN statement.

STATUS='UNKNOWN' OPEN statements that omit the STATUS speci�er default to
STATUS='UNKNOWN'. STATUS='UNKNOWN' is implemented as if OLD
were speci�ed, with the exception that if the �rst FOPEN fails, the
open is reattempted with NEW status.

4-4 HP FORTRAN 77/iX File Operations

FORM='UNFORMATTED'
and

FORM='FORMATTED'

The FORM option speci�es the type of transfers that can be
performed on the �le. FORM='UNFORMATTED' implies that only
unformatted (binary) transfers are performed, so an MPE/iX
BINARY �le is requested in the corresponding FOPEN intrinsic.
When the OPEN statement speci�es FORM='UNFORMATTED', bit 13 is
cleared to zero in the FOPTIONS parameter.

The default FORM='FORMATTED' implies that only formatted
and/or list-directed transfers can be performed. Accordingly, an
MPE/iX ASCII �le is requested by setting bit 13 in the FOPTIONS
parameter. Attempting a transfer type not allowed on the associated
�le results in an error.

AC-
CESS='SEQUENTIAL'

Sequential READ and WRITE statements can have I/O lists of
records with varying lengths; in fact, the ANSI standard does
not specify an upper limit to the length of a sequential record.
To e�ciently implement varying lengths, use MPE/iX variable
record length �les as the default sequential �le type (FOPTIONS
bit eight cleared to zero and bit nine set). This implies that �les
opened for sequential access cannot be accessed directly because it
is impossible to access variable record length �les by FREADDIR
or FWRITEDIR. The record length requested for sequential �les is
zero, implying that the MPE/iX default of the con�gured physical
record size of the device is to be used (256 bytes on disk �les). Also,
on variable record length �les created by the OPEN statement, the
MPE/iX default becomes the maximum logical record length. The
default can be overridden by using a FILE equation that speci�es a
longer record length. For example, the command

:FILE outfile; REC = -5120,,V,ASCII

speci�es that variable length records up to 5120 bytes long can be
written or read.

The FCONTROL intrinsic that implements the BACKSPACE
statement for �les of �xed and unde�ned record lengths does not
apply to variable record length �les. Therefore, variable record length
�les must be backspaced by rewinding and then reading forward to
the previous record. Even though the FORTRAN 77 library performs
the rewinding and reading forward, this is clearly not a performance
feature of the implementation. A �le equation to specify a new �le as
�xed record length type will save execution time for programs that
often backspace.

HP FORTRAN 77/iX File Operations 4-5

ACCESS='DIRECT' OPEN statements that specify ACCESS='DIRECT' must include the
maximum length of the records to be read or written. This allows
�xed record length �les of the appropriate length to be requested in
the FOPEN. Accordingly, bits eight and nine of the FOPTIONS are
set to zero for the FOPEN call. The required RECL speci�er sets
the record length of the �le created. If an odd number of bytes is
requested for the RECL option on a direct unformatted �le, MPE/iX
rounds the length up to the next higher word length (the byte count
becomes even). This is done because binary �les are strictly de�ned
in terms of 16-bit words. The increased byte count is returned if the
INQUIRE statement requests the record length.

4-6 HP FORTRAN 77/iX File Operations

Closing Files Once opened by prede�nition or with the OPEN statement, �les are
closed either by executing a CLOSE statement or by terminating the
program.

Executing the CLOSE
Statement

The CLOSE statement explicitly causes the corresponding unit
to be closed. The disposition of the �le is controlled by the
STATUS speci�er in the CLOSE statement, with the exception
of STATUS='SCRATCH' �les. If the status is not speci�ed in the
CLOSE statement, named �les default to KEEP (kept as an MPE/iX
permanent �le) and scratch �les default to DELETE. An error occurs
if you attempt to save a scratch �le.

Note When a sequential �le is closed, the last record written to the �le is
the last record of the �le.

Files opened in the temporary job domain are closed as permanent
�les. If the FCLOSE fails (such as if the permanent �le name already
exists), the FCLOSE is attempted again in the temporary domain.
An error occurs if the second FCLOSE fails.

Terminating a Program All �les remaining open when your program terminates are closed
either by the FORTRAN 77 library or by the MPE/iX operating
system. The disposition of �les is determined by the type of program
termination. There are two types of termination: normal and error.

Normal termination occurs when a program executes a STOP or
END statement in the main program. Both statements close all
opened �les as if a CLOSE statement requesting default disposition
had been executed on the corresponding units.

Error termination occurs when a program terminates because
of errors detected by the FORTRAN 77 library, the Compiler
Library, or by the MPE/iX operating system. Errors found by the
FORTRAN 77 library (primarily I/O errors) that are not trapped by
the ERR or IOSTAT speci�ers in the READ and WRITE statements
cause error messages to be printed. Errors detected by the Compiler
Library (primarily math function errors) or by MPE/iX cause error
messages to be printed. Any open �les are closed by the MPE/iX
operating system, not by the FORTRAN 77 library. When closed by
MPE/iX, an FCLOSE with MPE/iX default status (not FORTRAN
77 status) is performed, which closes �les in the domain in which
they were opened. Because �les are always created in the NEW �le
domain, such an FCLOSE operation causes newly created �les to be
deleted.

HP FORTRAN 77/iX File Operations 4-7

Carriage Control
Files

The preconnected unit six (FTN06) is opened with carriage control
(CCTL). When initially opening empty �les (EOF points to zero),
the CCTL bit and the device type are checked. The appropriate
FWRITE is then performed to set the �le for prespacing. Prespacing
mode is when the carriage control character is in column one of the
formatted output.

Terminals and Line
Printers

When the �le is a terminal or line printer, the device is set into
prespacing mode by performing an FWRITE of length zero with
carriage control option of 101 octal. Because the carriage control is
immediately executed on these devices, the control code does not
have to be actually written as data to the �le.

Disk Files If a carriage control disk �le is opened and found to be empty, the
I/O library writes the carriage control option of 101 octal (ASCII
\A") into the �le. This allows the �le to be later copied to a CCTL
device and still retain the carriage control. The I/O library performs
an FWRITE of one byte length to embed the prespacing code. For
example, the following statement is valid:

WRITE(12,'("A")')

FILE Equation If you want to create a CCTL �le on a unit other than FTN06, you
must provide a �le equation for the opened �le that includes the
CCTL characteristic. A CCTL FILE command for a �le that already
exists without carriage control in the �le label is overridden by the
existing �le's characteristics. For example, the equation

:FILE outfile; CCTL

with the FORTRAN 77 statements

OPEN(16, FILE='outfile')

WRITE(16,100) " This will be written at the top of a page."

100 FORMAT ('1', A)

causes the output to be written to the disk �le outfile with carriage
control preserved. When the �le is copied to a carriage control
output device, the output line is printed at the top of a page.

4-8 HP FORTRAN 77/iX File Operations

Using Magnetic
Tapes

Magnetic tapes can be directly read or written from FORTRAN 77
programs by a FILE equation. As a MIL-SPEC 1753 extension to
the ANSI standard, such tapes can be read or written in multiple
logical �les on the same tape. The most portable format is a
�xed record length ASCII �le with a speci�ed blocking factor of
one. However, the blocking factor of one wastes tape because the
interrecord gaps are longer on the tape than on a single formatted
record of normal length. For example, the equation

:FILE OUTFILE; DEV=TAPE; REC=-80,10,F,ASCII

with the FORTRAN 77 statements

OPEN(16,FILE='OUTFILE')

DO i = 1,400

WRITE(16,*) " This will be written on a tape 400 times."

ENDDO

causes a tape �le to be created with ASCII logical records 80 bytes
long in blocks of 10 logical records per physical record.

FORTRAN/3000 programs that use the UNITCONTROL intrinsic
are supported by HP FORTRAN 77/iX. All the options of the
FORTRAN/3000 version are supported on HP FORTRAN 77/iX,
including those operations commonly used for magnetic tape
handling.

HP FORTRAN 77/iX File Operations 4-9

Using the File
Handling Procedures

This section describes the FSET, FNUM, and UNITCONTROL
procedures. Refer to the HP FORTRAN 77/iX Reference Manual for
more details on these procedures.

FSET Procedure The FSET procedure changes the MPE/iX operating system �le
number assigned to a given FORTRAN logical unit number in the �le
table.

The FSET procedure can be called from a FORTRAN 77 program as
follows:

CALL FSET(unit,new�le,old�le)

Item Description/Default Restrictions

unit Positive integer constant or variable
(INTEGER*2 or INTEGER*4) that
speci�es the FORTRAN �le unit for which
the change is to be made.

Must be nonnegative.

newfile Positive integer constant or variable
(INTEGER*2 or INTEGER*4) that
speci�es the new MPE/iX �le number to be
assigned to unit.

Must be nonnegative.

oldfile Integer variable to which the procedure
returns the old value of the �le number that
was assigned to unit.

Cannot be the same variable as
newfile.

4-10 HP FORTRAN 77/iX File Operations

The following program shows how to use the FSET procedure to
assign a FORTRAN logical unit number.

$WARNINGS OFF

$SHORT

PROGRAM fset_example

C

C FOPEN, FSET, and FCLOSE Example

IMPLICIT NONE

INTEGER filenumber,oldnum

SYSTEM INTRINSIC FOPEN,FCLOSE

CHARACTER buffer*72,filename*16

PARAMETER (FILENAME = 'maillist')

filenumber = FOPEN(filename,1B,105B)

IF (ccode())30,10,30

C Call FSET to assign the FORTRAN unit number five to "filenumber"

10 CALL FSET(5,filenumber,oldnum)

PRINT *,'Old file number = ',oldnum

PRINT *,'FOPEN number = ',filenumber

20 READ(5, '(A72)' ,END=40)buffer ! Read to EOF

WRITE(6,100)buffer(1:19)

100 FORMAT(T2,A20)

GO TO 20

30 PRINT *,'Could not open file'

STOP

C Close the file

40 CALL FCLOSE(filenumber,1B,0B)

IF (ccode())50,60,50

50 PRINT *,'Could not close file'

STOP

60 PRINT *,'File closed successfully'

STOP

END

HP FORTRAN 77/iX File Operations 4-11

This is the output of the program:

Old file number = 11

FOPEN number = 10
SMILEY FACE

MICKEY MOUSE

SLIM JIM

CHARITY BELL

DONALD DUCK

JOE SMOE

CLAIRE PLIMSOL

INDIANA JONES

JAKE FAKE

File closed successfully

FNUM Procedure The FNUM procedure returns the MPE/iX system �le number
assigned to a given FORTRAN 77 logical unit number. This
procedure returns an INTEGER*2 or INTEGER*4 value.

The FNUM procedure can be called from an HP FORTRAN 77/iX
program as an external function as follows:

I = FNUM(unit)

Item Description/Default Restrictions

unit Positive integer (INTEGER*2 or INTEGER*4)
that speci�es the FORTRAN �le unit for which the
MPE/iX system �le number is to be extracted. The
value returned is the same size as the argument.

Must be nonnegative.

See the UNITCONTROL procedure description below for an example
of using the FNUM procedure.

4-12 HP FORTRAN 77/iX File Operations

UNITCONTROL
Procedure

The UNITCONTROL procedure allows an HP FORTRAN 77/iX
program to request several actions (see below) for any FORTRAN 77
logical unit.

The UNITCONTROL procedure is called as follows:

CALL UNITCONTROL(unit,opt)

Item Description/Default Restrictions

unit Positive integer (INTEGER*2 or INTEGER*4)
that speci�es the unit number of the �le to be used.

Must be nonnegative.

opt Integer (INTEGER*2 or INTEGER*4) that
speci�es the option (see Table 4-1).

None.

The options for the UNITCONTROL intrinsic are listed in Table 4-1.

Table 4-1. UNITCONTROL Options

Option Description

-1 Rewind (but don't close the �le)

0 Backspace

1 Write an EOF mark.

2 Skip backward to a tape mark

3 Skip forward to a tape mark

4 Unload the tape and close the �le

5 Leave the tape loaded and close the �le

6 Convert the �le to prespacing

7 Convert the �le to postspacing

8 Close the �le

Note Use the REWIND, BACKSPACE, ENDFILE, and CLOSE
statements instead of the -1, 0, 1, and 8 options. These statements
are part of the FORTRAN 77 language and are more portable.

Option values outside the range of -1 through 8 are ignored and no
action is taken.

HP FORTRAN 77/iX File Operations 4-13

The program below shows how to use the FNUM and
UNITCONTROL procedures. The SHORT compiler directive forces
the integer and logical default size to two bytes.

$WARNINGS OFF

$SHORT

PROGRAM unit_fnum_ex

C Example program using FNUM and UNITCONTROL

IMPLICIT NONE

SYSTEM INTRINSIC HPMERGEINIT

CHARACTER buffer*72

INTEGER*4 keysonly,numkeys,keys(8),infiles(3),status

INTEGER*4 outputfile(2),error

C Merge two sorted files, MAIL1 (unit 20) and MAIL2 (unit 21)

C into a third file, MAIL3 (unit 22)

C Open all files

OPEN(20,FILE='mail1',STATUS='OLD',ERR=200)

OPEN(21,FILE='mail2',STATUS='OLD',ERR=300)

OPEN(22,FILE='mail3',STATUS='NEW',ERR=400)

C Establish keys for SORT - major at column 11 for 9 bytes

C (LAST NAME) and minor at column 1 for 10 bytes (FIRST NAME)

keys(1) = 11

keys(2) = 9

keys(3) = 10
keys(4) = 0

keys(5) = 1

keys(6) = 10

keys(7) = 10

keys(8) = 0

keysonly = 0

numkeys = 2

C Establish MPE/iX filenumbers for input files (MAIL1 and MAIL2)

C by referencing the FNUM procedure

infiles(1) = FNUM(20)

infiles(2) = FNUM(21)

infiles(3) = 0

4-14 HP FORTRAN 77/iX File Operations

C Establish MPE/iX filenumbers for output file (MAIL3) by

C referencing the FNUM procedure

outputfile(1) = FNUM(22)

outputfile(2) = 0

C Merge the files

CALL HPMERGEINIT(status,infiles,,outputfile,,

> keysonly,numkeys,keys,,,,,error)

IF (error .NE. 0) STOP 'Merge failed'

C Display the new merged file

REWIND 22

20 READ(22,'(A72)',END=30) buffer

WRITE(6,100)buffer

100 FORMAT(T2,A)

GO TO 20

C Call UNITCONTROL to close the files MAIL1, MAIL2, and MAIL3,

C which is the same as using the CLOSE statement

30 CALL UNITCONTROL(20,8)

CALL UNITCONTROL(21,8)

CALL UNITCONTROL(22,8)

STOP

200 PRINT *,'Could not open file - MAIL1'

STOP

300 PRINT *,'Could not open file - MAIL2'
STOP

400 PRINT *,'Could not open output file - MAIL3'

END

HP FORTRAN 77/iX File Operations 4-15

This is the output of the program:

PLAINS ANTELOPE 201 OPENSPACE AVE BIGCOUNTRY WY
LOIS ANYONE 6190 COURT ST METROPOLIS NY

KING ARTHUR 329 EXCALIBUR ST CAMELOT CA

ALI BABA 40 THIEVES WAY SESAME CO

BLACK BEAR 47 ALLOVER DR ANYWHERE US

JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY

KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND

SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA

ANIMAL CRACKERS 1000 CRUNCH LN COOKIE US

MULE DEER 963 FOREST PL HIGHCOUNTRY CA

WHITETAIL DEER 34 WOODSY PL BACKCOUNTRY ME

JAMES DOE 4193 ANY ST ANYTOWN MD

JANE DOE 3959 TREEWOOD LN BIGTOWN MA

PRAIRIE DOG 493 ROLLINGHILLS DR OPENSPACE ND

JOHN DOUGHE 239 MAIN ST HOMETOWN MA

MALLARD DUCK 79 MARSH PL PUDDLEDUCK CA

JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA

KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA

SNOWSHOE HARE 742 FRIGID WAY COLDSPOT MN

MOUNTAIN LION 796 KING DR THICKET NM

SPACE MANN 9999 GALAXY WAY UNIVERSE CA

SWAMP RABBIT 4444 DAMPLACE RD BAYOU LO

NASTY RATTLER 243 DANGER AVE DESERTVILLE CA

BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO

GREY SQUIRREL 432 PLEASANT DR FALLCOLORS MA

4-16 HP FORTRAN 77/iX File Operations

5

Subprograms

A subprogram is an independent section of code called by a main
program or by another subprogram. Subprograms make programs
more readable and easier to maintain, write, and debug.

Subprograms can be grouped into these three categories:

Subroutines

Functions

Function subprograms

Statement functions

Intrinsic functions

Block Data Subprograms

A program unit, such as a main program or a subprogram, is a
sequence of FORTRAN statements. Table 5-1 summarizes the
components of program units.

Table 5-1. Components of Program Units

Component Description How Identi�ed

Main program De�nes the main entry point. Can begin with the PROGRAM
statement.

Subroutine Returns values through argument
lists or common blocks.

Begins with the SUBROUTINE
statement.

Function Returns values through the
function name, argument lists, or
common blocks.

Begins with the FUNCTION
statement.

Statement function Calculates a single result; cannot
be referenced outside of the
program unit that de�nes it.

De�ned in a program unit.

Block data
subprogram

Provides initial values for named
and blank common blocks.

Begins with the BLOCK DATA
statement.

This chapter describes subroutine, function, and block data
subprogams.

Subprograms 5-1

Subroutines Subroutines are user-written procedures that perform a
computational process or a subtask for another program unit.
Subroutines usually perform part of an overall task, such as solving
a mathematical problem, performing a sort, or printing in a special
format. Values are passed to the subroutine and returned to the
calling program unit by using arguments or common blocks.

Structure of a
Subroutine

The �rst statement of a subroutine must be a SUBROUTINE
statement. Here are some examples of SUBROUTINE statements:

SUBROUTINE next(arg1, arg2)

SUBROUTINE last(a, *, *, b, i, k, *)

SUBROUTINE noarg

The subroutine names are next, last, and noarg. Values are passed
to a subroutine by dummy arguments (arg1, arg2, a, b, i, and k in
the above examples) or common blocks. Dummy arguments are also
called formal arguments. Dummy arguments, common blocks, and
asterisks are explained later in this chapter.

A subroutine can contain any statement except another
SUBROUTINE statement, or a BLOCK DATA, FUNCTION, or
PROGRAM statement. As an extension to the ANSI 77 standard,
HP FORTRAN 77 subroutines can be recursive. That is, a
subroutine can call itself either directly or indirectly. For example, in
the program below, the subroutine rsub1 directly calls itself.

PROGRAM recursive ! Main program

INTEGER count

count = 0

CALL rsub1(count)

PRINT *, 'final count = ', count

END

SUBROUTINE rsub1(num) ! Subroutine rsub1

IF (num .LT. 5) THEN

num = num + 1

PRINT *, 'num = ', num

CALL rsub1(num) ! rsub1 directly calls itself

END IF

END

5-2 Subprograms

The program produces the following output:

num = 1

num = 2
num = 3

num = 4

num = 5

final count = 5

A program that indirectly calls itself is similar in principle to a
subroutine that calls a procedure that in turn calls the original
subroutine.

The END statement in a subroutine causes control to be passed back
to the calling program.

The RETURN statement also transfers control back to the calling
program. You only need to use RETURN statements for returning to
the calling program from a place other than the end of a subprogram.
When the RETURN statement in the subroutine is executed, control
normally returns to the statement following the CALL statement
in the calling program. If necessary, there can be several RETURN
statements in a subprogram.

The STOP statement in a subroutine terminates program execution.
For example, the output of the program:

PROGRAM stopit

CALL sub

PRINT *, 'Hello'

END

SUBROUTINE sub

PRINT *, 'Goodbye'
STOP

END

is:

Goodbye

Subprograms 5-3

Invoking Subroutines A subroutine is executed when a CALL statement is speci�ed in a
program unit. Here are some examples of CALL statements:

CALL next(x, y)

CALL last(a, *10, *20, b, i, k, *30)

CALL noarg

When the subroutine is executed, the actual arguments x, y, a, b, i,
and k in the CALL statement are associated with their equivalent
dummy arguments in this way:

PROGRAM main

.

.

.

CALL sub1(actual_arg1, actual_arg2, actual_arg3)

END

l l l
SUBROUTINE sub1(dummy_arg1, dummy_arg2, dummy_arg3)

END

The subroutine is then executed using the actual argument values.
Arguments can be variable names, array names, array elements,
record names, record �eld names, constants, and expressions.

Values can also be passed to a subroutine by specifying an alternate
return form using asterisks. The use of arguments and asterisks is
described later in this chapter.

5-4 Subprograms

Alternate Returns From
Subroutines

Normally control from a subroutine returns to the calling program
unit at the statement following the CALL statement. However, you
can specify an alternate return that allows control to return to the
calling program unit at any labeled executable statement.

An alternate return is speci�ed in the called subroutine by the
RETURN statement with an integer expression or constant that
identi�es the number of a statement label in the CALL statement.
The SUBROUTINE statement must contain one or more asterisks
(*) or ampersands (&) corresponding to alternate return labels in
the CALL statement. An example of a CALL statement and its
associated SUBROUTINE and alternate return statements is shown
below.

PROGRAM alternate

n = 2

CALL sub(n, *10, *20, *30)

10 i = 1

GO TO 50

20 i = 2

GO TO 50

30 i = 3

50 PRINT *, 'i = ', i

PRINT *, 'n = ', n

END

SUBROUTINE sub(n, *, *, *)

RETURN n ! Return to the nth statement

END

Control returns to the main program from the subroutine as follows:

Returns To
Statement

With This
Value of n

10 1

20 2

30 3

In this example, because n is equal to two, control returns to
statement 20. The value of i will be set to two. The output from the
program looks like this:

i = 2

n = 2

If the RETURN statement contains an expression, the value
of the expression cannot exceed the number of asterisks in the
SUBROUTINE statement. Also, for ease of understanding and
portability, the number of asterisks in the SUBROUTINE should
equal the number of alternate return labels speci�ed in the CALL

Subprograms 5-5

statement. If an expression in a RETURN statement has a value that
is either less than one or greater than the number of alternate return
labels in the CALL statement, control is returned to the statement
following the CALL statement.

5-6 Subprograms

An example of a program that uses alternate returns follows. The
subroutine searches a �le named parts to validate a part number.
Each record in parts is an integer array of two elements; the �rst is
the part number and the second is a code. A negative code indicates
an obsolete part number. All existing part numbers are in the �le
parts. The records in the �le are ordered by increasing part number
and, for simplicity, the search for a part number is sequential. The
return from the subroutine to the main program is summarized
below:

Condition Type of Return

Part number is found and the part number is not
obsolete

Normal return to main

Part number is obsolete First alternate return is taken

Part number is not found Second alternate return is taken

PROGRAM prog

INTEGER part_number

C Get a part number

PRINT *, 'Enter part number '

READ *, part_number

CALL validate(part_number, *100, *200)

C Normal return. Process for valid part number.

PRINT *, part_number

GO TO 999

C First alternate return. Process for obsolete part number.

100 PRINT *, 'Obsolete part number = ', part_number

GO TO 999

C Second alternate return. Process for invalid part number.

200 PRINT *, 'Invalid part number = ', part_number

999 END

SUBROUTINE validate(part_number, *, *)

INTEGER parts_file_record(2), part_number

LOGICAL obsolete_flag, part_found_flag

C Initialize variables

obsolete_flag = .FALSE.

part_found_flag = .FALSE.

parts_file_record(1) = 0

Subprograms 5-7

C Search for part number and set flags accordingly

OPEN(111, FILE='parts', STATUS='OLD')

DO WHILE (parts_file_record(1) .LT. part_number)

READ(111,*) parts_file_record

IF (parts_file_record(1) .EQ. part_number) THEN

part_found_flag = .TRUE.

IF (parts_file_record(2) .LT. 0) obsolete_flag = .TRUE.

ENDIF

END DO

CLOSE(111)

C Return to calling program depending on flags

IF (obsolete_flag) RETURN 1

IF (.NOT. part_found_flag) RETURN 2

RETURN

END

5-8 Subprograms

Functions FORTRAN functions can be grouped into categories, as summarized
in Table 5-2.

Table 5-2. Categories of FORTRAN Functions

Type of Function Description

Function Subprogram A user-de�ned function

Statement Function A user-de�ned single statement function

Intrinsic Function A FORTRAN built-in function

A function name in an expression causes the function to be
evaluated; the function then assigns a value to the function name.
As with a subroutine, a function can also return values through its
arguments or through common blocks. However, these side e�ects
should be avoided because they inhibit clarity. The e�ect of a
function should be the calculation of a single result returned through
the function name.

Function Subprograms A function subprogram is a user-written FORTRAN function in a
program. A function is invoked by using the function name, followed
by the argument list.

The FUNCTION statement is the �rst statement of a function. Here
are some examples of FUNCTION statements:

FUNCTION time()

INTEGER*4 FUNCTION add(k, j)

LOGICAL FUNCTION key_search(char_string, key)

The function names are: time, add, and key_search. Values are
passed to function subprograms by arguments (k,j, char_string,
and key in the statements above are arguments) or common blocks.
An argument list is not required, but you must use parentheses to
di�erentiate the function name from a simple variable.

Subprograms 5-9

An example of a user-de�ned function is shown below:

PROGRAM main

READ (5,'(2F10.0)') a, b

x = bigger(a, b)

WRITE (6,100) a, b, x

100 FORMAT (1X, 2F10.2, /, 1X, 'The largest value is', F10.2)

END

FUNCTION bigger(a, b) ! Function to return the larger value

IF (a .LT. b) THEN

bigger = b

ELSE

bigger = a

ENDIF

END

A function can contain declaration, assignment, input/output,
and ow control statements; a function cannot contain another
FUNCTION statement, a BLOCK DATA, a SUBROUTINE, or a
PROGRAM statement. As an extension to the ANSI 77 standard, an
HP FORTRAN 77 function subprogram can be recursive. That is, a
function can contain a direct or indirect reference to itself.

The END statement transfers control back to the calling program
where the function call was made. The function subprogram always
returns to the expression from which it was invoked. Alternate
returns are not allowed in function subprograms.

The RETURN statement also transfers control back to the calling
program. You only need to use RETURN statements for returning
to the calling program from a place other than the end of a function.
The last line of a function must be an END statement.

To associate a value with the function subprogram name, the
function name must be used within the function in one or more of
these ways:

Speci�ed on the left side of an assignment statement

Included as an element of an input list in a READ statement

Be an actual argument of a function or subroutine reference

5-10 Subprograms

Some examples demonstrating how to associate a value to the
function name are shown below. Consider this function:

INTEGER FUNCTION factorial(n)
INTEGER fact, n

fact = 1

DO 10 i = 2,n

fact = fact * I

10 CONTINUE

factorial = fact

END

In the function factorial above, the value fact is assigned to
the function name factorial. Note that the DO loop will not be
executed if n equals zero or one.

Here is another function:

FUNCTION tot(num,sum)

REAL num, sum

IF (num .GE. 0.0) THEN

tot = sum + num

ELSE

READ (5,*) tot

ENDIF

END

In the function tot above, a value is assigned to the function
name tot in one of two ways: by appearing on the left side of an
assignment statement or by appearing in the input list of a READ
statement.

Finally, look at the function next1:

FUNCTION next1(back)

IF (back .GT. 1.5) THEN

CALL gtfwrd(next1)

ELSE

CALL gtback(next1)

ENDIF

END

The function next1 shows how a function name is associated with a
value in one of two subroutines. Within the subroutines, next1 must
be assigned a value.

Subprograms 5-11

Because a value is assigned to the function subprogram name, the
value's data type must be de�ned. The data type associated with the
function name is determined in one of these ways:

If the data type is included with the FUNCTION statement, the
name is assigned that type. For example, a FUNCTION statement
explicitly speci�ed as an integer looks like this:

INTEGER FUNCTION funcname()

A function name cannot have the data type speci�ed more than
once in a program. For example, using the following statements
together is illegal:

INTEGER FUNCTION funcname()

INTEGER funcname

If the data type is not included in the FUNCTION statement, the
function name can be declared in a type statement within the
function. The type statements are: CHARACTER, COMPLEX*8,
COMPLEX*16, INTEGER*2, INTEGER*4, LOGICAL*1,
LOGICAL*2, LOGICAL*4, REAL*4, REAL*8, and REAL*16,
as well as BYTE, COMPLEX, DOUBLE COMPLEX, DOUBLE
PRECISION, INTEGER, LOGICAL, and REAL.

For example, the following statements de�ne an integer function:

FUNCTION funcname()

INTEGER funcname

If the data type is not included in the FUNCTION statement and
is not declared in a type statement, the type is assigned implicitly
according to the �rst letter of the function name. Unless modi�ed
by an IMPLICIT statement, function names beginning with the
letters A through H and O through Z de�ne a REAL data type;
letters I through N de�ne an INTEGER data type.

The data type of the value associated with the function name in each
program unit must agree with the type of the function.

5-12 Subprograms

When you reference a character function, the length of the function
must be the same as that declared in the function. There is always
agreement of length if a length of asterisk (*) is speci�ed in the
function. For example, a character function and a program that calls
the function are shown below. The function returns the character
string with all preceding and trailing blanks removed.

PROGRAM test

CHARACTER*20 input_string, result, stringtrim

DO WHILE (input_string(1:1) .NE. '0')

WRITE (6,'(A,NN)') 'Enter a string: '

READ (5,'(A)') input_string

result = stringtrim(input_string,length)

WRITE (6,'(A1,A,A1)') ':', result(1:length), ':'

END DO

END

CHARACTER*(*) FUNCTION stringtrim(string,length)

CHARACTER*(*) string

INTEGER length, left, right, i, j

DO k= 1, LEN(stringtrim)

stringtrim(k:k)=" " ! Initialize stringtrim

END DO

left = 1

right = LEN(string) ! The intrinsic function LEN returns

C the length of the string.

DO WHILE ((string(left:left) .EQ. ' ') .AND. (left .LT. right))

left = left + 1

END DO

DO WHILE ((string(right:right) .EQ. ' ') .AND. (right .GT. left))

right = right - 1

END DO

length = right - left + 1

DO 10 i = 1, length

stringtrim(i:i) = string(left:left)

left = left + 1

10 CONTINUE

C The default is to return one blank if a string is all blanks

END

Subprograms 5-13

A sample run, where � represents a blank, looks like this:

Enter a string: string

:string:
Enter a string: ����four

:four:

Enter a string: three���

:three:

Enter a string: ���blanks��� �

:blanks:

Enter a string: �������

: :

Enter a string: 0

:0:

The value returned by the function is the value last assigned to the
function name at the time a RETURN statement is executed in the
function.

Consider this example of a calling program unit and a function
subprogram. The program asks for input of two numbers m and n

and computes the combinations of m items taken n at a time. That is,
the function computes the following:

m!

n!(m-n)!

The function subprogram factorial is invoked in the expression
that calculates result.

PROGRAM main

INTEGER*4 factorial, result

WRITE (6,*) 'Enter m and n: '

READ (5,*) m, n

result = factorial(m) / (factorial(n) * factorial(m-n))

WRITE (6,'(1X, I5, " things taken ", I5,

c " at a time = ", I8)') m, n, result

END

INTEGER FUNCTION factorial(num)

INTEGER fact, num

fact = 1

DO 10 i=2, num

fact = fact * i

10 CONTINUE

factorial = fact

END

5-14 Subprograms

Two runs might look like this:

Enter m and n: 7, 4

7 things taken 4 at a time = 35

Enter m and n: 10, 2

10 things taken 2 at a time = 45

Statement Functions A statement function is a user-de�ned single-statement computation
that can only be called in the program unit that de�nes it. The
form of a statement function is similar to an arithmetic, logical, or
character assignment statement. Only one value is returned from a
statement function.

A statement function is invoked just like a function subprogram.
When your program calls a statement function, the dummy
arguments are replaced by actual arguments within the function
expression. For example, if you de�ne the function calculate as:

calculate(x, y, z) = y * x * (y + x) - z

the statement:

result = a + calculate(a, b, c)

gives the same result as if you had written:

result = a + (b * a * (b + a) - c)

Following are some more examples of statements functions:

root(a, b, c) = (-b + SQRT(b * b - 4. * a * c)) / (2. * a)

disp(c, r, h) = c * 3.1416 * r * r * h

indexq(a,j) = IFIX(a) + j - ic

The statement function is called with its symbolic name and an
actual argument list in an arithmetic, logical, or character expression.
For example, the program below de�nes and calls a statement
function.

PROGRAM functionex

root(a, b, c) = (-b + SQRT(b * b - 4. * a * c)) / (2. * a)

var1 = 2.0

var2 = -9.0

var3 = 4.0

var4 = root(var1, var2, var3)

END

The value of var4 will be 4.0.

Subprograms 5-15

A statement function can call another statement function. For
example, the program below de�nes a statement function that calls
another statement function.

PROGRAM functionex2

add(a, b, c) = a + b + c

add25(d, e, f) = add(d, e, f) + 25.0

DATA value1, value2, value3 /5.0, 10.0, 15.0/

result = add25(value1, value2, value3)

PRINT *, result

END

All statement function de�nitions must precede the �rst executable
statement in the program unit and must follow any speci�cation
statements in a program unit. The name of a statement function
cannot be the same as a variable name, an array name, or a record
name in the same program unit.

All arguments in the dummy argument list are simple variables and
assume the value of the actual arguments in the same program unit
when the function is invoked; that is, dummy arguments are replaced
by actual arguments. The actual arguments can be variables,
constants, and expressions. Variables in the statement function not
included in the argument list assume the current value of the variable
name in the program unit. For example, in the statement function:

indexq(a, j) = IFIX(a) + j - ic

the variable ic is not an argument, but is an ordinary variable
de�ned outside the statement function.

A call to a statement function does not cause control to \jump"
to another section of code; instead, the compiler substitutes the
statement function code into the program code. A statement function
cannot call itself directly or indirectly; that is, statement functions
are not recursive.

The data type of a statement function is determined in the same way
as for a variable. The type is either declared explicitly in a type
statement or determined implicitly by the function name. If the type
of the statement function is not the same type as the expression
to the right of the equal sign in the statement function and if the
function name and expression are both numeric, both logical, or both
character, the expression is converted to the type of the function. For
example, the statement function:

f(i) = i + j

has integer variable i and j and a real function name f. The
expression i + j is converted to real.

An intrinsic function is a built-in function that is available to your
program. Intrinsic functions perform operations such as converting a
value from one data type to another and perform basic mathematical

5-16 Subprograms

functions, such as �nding sines, cosines, and square roots of numbers.
The HP FORTRAN 77/iX Reference Manual describes each intrinsic
function in detail and discusses the data types of arguments allowed
and the argument and function type.

Subprograms 5-17

Arguments to
Subprograms

Communication between the calling program and the referenced
subprogam is accomplished by passing values through an argument
list. An argument list consists of one or more items separated by
commas and enclosed in parentheses. In addition, values can be
passed through common blocks to and from subprograms.

The calling program unit passes actual arguments to a subprogram.
Dummy arguments \refer" to the same locations as actual
arguments; therefore, arguments are passed by reference.

Actual arguments can be variables, array names, array elements,
character substrings, subprogram names, record names, record
�eld names, constants, expressions, and alternate return speci�ers.
Dummy arguments can be variables, array names, and record names.

Whenever a function or subroutine is called, an association occurs
between each actual argument and its corresponding dummy
argument. The �rst actual argument is associated with the �rst
dummy argument, the second actual argument with the second
dummy argument, and so on. The number of actual arguments
must be the same as the number of dummy arguments (although
certain intrinsic functions allow a variable number of arguments).
Also, actual arguments in a subroutine call or function reference
should agree in order and data type with the corresponding dummy
arguments.

To see how the dummy and actual arguments correspond, look at the
following example:

PROGRAM main

DIMENSION q(20), r(20)

EXTERNAL fcn ! Required for fcn to be an actual argument;

C otherwise will be treated as a variable.

.

.

.

CALL sub1(q, x, i, r(1), fcn)

.

.

.

END

SUBROUTINE sub1(arry, z, in1, tmp, f)

DIMENSION arry(20)

.

.

.
r = f(in1, tmp)

END

5-18 Subprograms

The arguments correspond to each other as follows: q is an array
name, so the dummy parameter arry must be dimensioned in the
subprogram. x is a real variable; the dummy parameter (z) in the
second position of the subroutine argument list must also be a real
variable. i corresponds to in1. r(1) is an element of array r and
can correspond to a single variable name (tmp) (not dimensioned)
or an array (dimensioned) in the dummy argument list. fcn is a
function name; therefore, f must be used in the context of a function
in the subprogram.

A subprogram uses the actual arguments passed from the calling
program to replace the dummy arguments and perform the
computation. For example, consider this program:

PROGRAM example

INTEGER a, b

READ (5,*) a, b

WRITE(6,*) a, b

CALL switch(a,b)

WRITE(6,*) a, b

END

SUBROUTINE switch(x,y)

INTEGER x, y, temp

temp = x

x = y

y = temp

END

The calling program unit passes actual arguments a and b to the
subroutine switch. The subroutine uses variables x and y as dummy
arguments. Because the actual arguments are passed by reference,
the variables x and y refer to the storage locations of variables a and
b. The variables will then assume the current value of the actual
arguments. Changing the values of the dummy arguments passed by
reference changes the values of the actual arguments in the calling
program unit.

Some examples of how statement functions de�ne their arguments are
shown below.

The statement:

func(q, r, s) = q * r / s

is a statement function with simple variables.

The function description:

FUNCTION next(z, i, j)

DOUBLE PRECISION i

Subprograms 5-19

DIMENSION j(10)

de�nes these arguments: z is a REAL variable; i is a REAL*8
variable; j is a 10-element INTEGER array.

5-20 Subprograms

The subroutine description:

SUBROUTINE add(q, f, get)

q = get(f)

de�nes these arguments: q and f are real variables and get is a
function name. In the context in which get is used, get could either
be an array or a function. But, because get was not declared as an
array, get is a function name.

All variable names are local to the program unit that de�nes them.
In a statement function, all actual variable names are local to that
statement. Similarly, dummy arguments are local to the subprogam
unit or statement function containing them. Therefore, the dummy
arguments can be the same as names appearing elsewhere in another
program unit. No element of a dummy argument list can occur in a
common (except as a common block name), EQUIVALENCE, or
DATA statement.

If the actual argument is a constant, symbolic name of a constant,
function reference, expression involving operators, or expression
enclosed in parentheses, the associated dummy argument must not be
rede�ned within the subprogram.

Passing Constants FORTRAN accepts a constant value as an argument. For example, a
call to a subroutine can look like this:

CALL sublib(books, num, 4.0)

.

.

.

SUBROUTINE sublib(titles, number, value)

The call to the subroutine sublib causes the subroutine to associate
the constant 4.0 with the third dummy argument, value.

Because a constant cannot be changed in value, the dummy
argument in the subprogram that corresponds to the actual constant
should not be rede�ned in the subprogram.

Subprograms 5-21

Passing Expressions You can use expressions as actual arguments; an actual argument can
be any legal expression whose result is a value of the same data type
as the dummy arguments.

For example, consider these statements:

CALL baseball(team + 5.0, player1, player2,

* SQRT(3.0 - num), win, loss)

SUBROUTINE baseball(home, member1, member2,
* value, wscore, lscore)

When the call to the subroutine baseball occurs, FORTRAN
evaluates each expression and associates the result with the
corresponding entry in the dummy argument list, as follows:

Dummy Argument Corresponding Actual Argument

home result of (team + 5.0)

member1 player1

member2 player2

value result of SQRT(3.0 - num)

wscore win

lscore loss

5-22 Subprograms

You can pass character expressions and character expressions
involving concatentation of operands whose lengths are (*),
indicating unde�ned length. For example, the following program
shows how to pass character expressions:

PROGRAM main

CHARACTER*10 string1, string2, string3, string4

string1 = 'one'

string2 = 'two'

string3 = 'three'

string4 = 'four'

CALL sub(string1, string2, string3, string4)

END

SUBROUTINE sub(a, b, c, f)

CHARACTER*(*) a, b, d, e, f

CHARACTER*20 c

PARAMETER (d = 'string1', e = 'string2')

c = a // b

* Legal character expressions as actual arguments:

CALL check(c)

CALL check(d)

CALL check(d // e)

CALL check(f)

CALL check(a // b)

CALL check(a // d)

END

SUBROUTINE check(z)

CHARACTER *(*) z

print *, z

END

The output from this program is as follows:

one two

string1

string1string2

four

one two

one string1

Subprograms 5-23

When an actual argument is an expression, the dummy argument in
the subprogram unit that corresponds to the actual expression should
not be reassigned in the subprogram.

5-24 Subprograms

Passing Character Data When character data is passed to a subprogram, both the dummy
and actual arguments must be a character data type. The length
of the dummy argument must be less than or equal to that of the
actual argument. If the length of the dummy argument is less than
the length of the corresponding actual argument, only the leftmost
characters of the actual argument, up to the length of the dummy
argument, are associated with the dummy argument. For example,
if an actual character argument is a variable assigned the value
abcdefgh and the length of the dummy argument is four, only the
characters abcd are associated with the dummy argument.

Here is an example of a character argument:

FUNCTION size(string)

CHARACTER*10 string

If a dummy argument of type character is an array name, the
length restriction applies to the entire array and not to each array
element. The length of an individual dummy array element can be
di�erent from the length of an actual array element or array element
substring. For example, a main program can have the statements:

FUNCTION main

CHARACTER a(10)*20 ! Length of 20 declared

CALL sub(a)

.

.

.

END

and the subroutine sub can have the following statements:

SUBROUTINE sub(b)

CHARACTER b(10)*10 ! Length of 10 declared

.

.

.

END

The length of the dummy array element b di�ers from that of the
corresponding actual array element a.

Subprograms 5-25

The dummy argument array must not extend beyond the end of the
associated actual argument array. For example, the program:

PROGRAM main

CHARACTER a(10)*10 ! 10 elements of length 10 declared

CALL sub(a)

.

.

.

END

SUBROUTINE sub(b)

CHARACTER b(20)*20 ! 20 elements of length 20 declared

.

.

.

END

could have unexpected results.

If an actual argument is a character substring, the length of the
actual argument is the length of the substring. If an actual argument
is the concatenation of two or more operands, the sum of the lengths
of the operands is the length of the actual argument.

The length of a dummy argument can be declared by an asterisk, as
shown below:

SUBROUTINE sub(char_dummy)

CHARACTER*(*) char_dummy

In this example, the dummy argument char_dummy assumes the
length of the associated actual argument for each reference of the
subroutine. If the actual argument is an array or array element
name, the length assumed by the dummy argument is that length.

5-26 Subprograms

Passing Arrays Functions and subroutines can process entire arrays. Association
between an actual array argument and the corresponding dummy
array argument follows the same rules described for single-valued
arguments. The array name in a dummy argument list is de�ned as
an array in a type or DIMENSION statement within the subprogram,
and a similar declaration appears in the invoking program for the
actual array name.

You should make sure that the declared array type is the same
for both array names. For instance, if a main program has the
statements:

PROGRAM main

INTEGER*2 a(24)

.

.

.

CALL mysub(a)

.

.

.

END

the subroutine mysub must include a similar declaration, like this:

SUBROUTINE mysub(b)

INTEGER*2 b(24)

.

.

.

END

If the subroutine processes an array of character strings, the declared
lengths must also match.

Because each element of an array can be uniquely identi�ed and used
just like a single-valued variable, an array element can be used as an
argument to a subprogram. For example, the statement:

CALL suba(int1, int2, 5.0, 9, array(3), array(5))

is a valid call to a subroutine subprogram.

Because only the name of an array appears in the dummy argument
list of a subprogram, an array must be declared in a type or
DIMENSION statement. The number and size of an actual argument
array can di�er from the number and size in the corresponding
dummy argument array. The size of the dummy argument array
cannot exceed the size of the actual argument array. Because array
bounds across separate compilation units are not checked at run
time, no warning is issued if the dummy array size exceeds the
actual array size. Altering these unreserved locations could yield
unpredictable results or run-time errors.

Subprograms 5-27

Adjustable Dimensions

Normally, array bounds are speci�ed by integer constants and
are �xed by the values of these constants. However, you can use
adjustable arrays in subprograms. Adjustable dimensions allow you
to create a subprogram that can accept varying sizes of actual array
arguments. For adjustable declarations, one or more of the array
bounds is speci�ed by an expression involving integer variables or
expressions, rather than by integer constants.

For example, here is a subroutine with a �xed array declared:

SUBROUTINE sub1(array)

DIMENSION array(25)

The exact number of elements that array contains is 25 elements.
An array that can contain a variable number of elements is declared
like this:

SUBROUTINE sub2(array, n)

DIMENSION array(n)

The value of n must be passed as an actual argument or must be in a
common block.

An example of an adjustable array declaration in a program is
shown below. The example declares an array iarr in the main
program. The array iarr has two dimensions of 10 elements each.
A subroutine sb is called to �ll iarr with values. The variables i
and j are set equal to the array bounds and these variables are
used as actual arguments to be passed to the subroutine. The
subroutine dummy arguments k and m assume the values passed to
them through i and j. These variables are used in an INTEGER
statement to establish the bounds for array ivar.

PROGRAM ardim

INTEGER iarr(10, 10)

i = 10

j = 10

CALL sb(iarr, i, j)

WRITE (6, '(1X, 10I3)') iarr

END

SUBROUTINE sb(ivar, k, m)

INTEGER ivar(k, m)

DO nr = 1, k

DO nc = 1, m

ivar(nr, nc) = nr * nc

END DO

END DO

5-28 Subprograms

RETURN

END

Subprograms 5-29

The following output is produced by the program:

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90100

Assumed-Size Arrays

The assumed-size array is another form of adjustable dimensions
in subprograms. For assumed-size arrays, the subscript of the last
dimension of the array is speci�ed by an asterisk. Because the last
bound of the dimension is not passed as an argument, the bound can
take any value. The results are unpredictable when the dummy array
is referenced and the last dimension index expression exceeds the size
of the actual argument.

The following example demonstrates the use of assumed-size arrays.
The last subscript of the array arry can take any value from 0 to 6.

PROGRAM main

DIMENSION a(10, 10)

CALL sub1(a)

.

.

.

END

SUBROUTINE sub1(z)

DIMENSION z(10, *)

INTEGER num(5, 10, 0:6)

j = 5

i = func1(num, j)

.

.

.

END

FUNCTION func1(arry, k)

INTEGER arry(k, 10, 0:*)

.

.

.

END

5-30 Subprograms

A variable that dimensions a dummy argument in a bounds
expression within a type or DIMENSION statement in a subprogram
can appear either in a common block or as a dummy argument, but
not both.

Adjustable and assumed-sized array declarations cannot be used
in COMMON statements, in main programs, or in BLOCK DATA
subprograms.

You can pass the names of functions and subroutines as arguments to
other subprograms. All subprogram names used as actual arguments
must be listed in an EXTERNAL statement in the calling program.

Any intrinsic function name that is an actual argument must appear
in an INTRINSIC statement in the calling program. For example,
the statement:

INTRINSIC sqrt, cos

speci�es that the program intends to invoke one or more subprograms
for which sqrt and cos are to be actual arguments used in functions.
If the INTRINSIC statement is not included, sqrt and cos are
assumed to be variables.

An intrinsic function name can appear in an EXTERNAL statement
to allow the function name to be used as an actual argument. For
example, the statement:

EXTERNAL sin, tan

speci�es that the user-written subprograms sin and tan will be used
as arguments. As a result, the intrinsic functions SIN and TAN cannot
be used in that program or subprogram.

If the subprogram name is not listed in an EXTERNAL or
INTRINSIC statement, the FORTRAN compiler treats the
subprogram name as a simple variable.

Subprograms 5-31

Multiple Entries into
Subprograms

A subroutine call or function reference usually invokes the
subprogram at the entry point de�ned by the SUBROUTINE or
FUNCTION statement. The �rst statement executed is the �rst
executable statement in the subprogram. However, you can use the
ENTRY statement to de�ne other entry points within the function or
subroutine.

The entry point can be anywhere within a function or subroutine
after the FUNCTION or SUBROUTINE statement, but not within
an IF block or DO loop. The ENTRY statement can only be used in
a subroutine or function subprogram, not in a main program or block
data subprogram. A subprogram can have any number of ENTRY
statements.

The ENTRY statement, a nonexecutable statement, looks like this:

ENTRY name(argument list)

where name is the entry point name, and the optional argument
list is made up of variable names, array names, dummy procedure
names, or an asterisk. The asterisk, indicating an alternate return, is
permitted only in a subroutine.

When an entry name is used to enter a subprogram, execution
begins with the �rst executable statement that follows the ENTRY
statement. The ow of control is illustrated in the following diagram.

PROGRAM main

|<---- CALL entry1(val)

| CALL entry2(val) ------>|

| |

| END |

| |

| SUBROUTINE sub |

| |

-----> ENTRY entry1(a) |

a = a + 5.0 |

RETURN ! Return to main |

|

ENTRY entry2(a) <--------

a = a + 10.0

END ! Return to main

5-32 Subprograms

A subroutine with entry points search and punctuation is shown
below:

SUBROUTINE linka(d, n, f)
INTEGER d, n, f, table, document

C In subroutine linka, via primary entry point

DO 10 i = 1, f, n

.

.

.

10 CONTINUE

RETURN

ENTRY search(table, f)

C In subroutine linka, via entry point search

DO 20 i = 1, f

.

.

.

20 CONTINUE

RETURN

ENTRY punctuation(document)

C In subroutine linka, via entry point punctuation

DO 30 i = 1, 5

.

.

.

30 CONTINUE
END

In this subroutine, the names search and punctuation de�ne
alternate entry points into subroutine linka.

The �rst statement executed in the subroutine is determined by the
entry point, as follows:

Call to the Entry Point First Statement Executed

CALL linka(var1, var2, var3) DO 10 I = 1, f, n

CALL search(var1, var2) DO 20 I = 1, f

CALL punctuation(var1) DO 30 I = 1, 5

Subprograms 5-33

The order, type, and names of the dummy arguments in an
ENTRY statement can di�er from the dummy arguments in the
FUNCTION, SUBROUTINE, and other ENTRY statements in
the same subprogram. However, each reference to a function
or subroutine must use an actual argument list that agrees in
order, number, and type with the dummy argument list in the
corresponding FUNCTION, SUBROUTINE, or ENTRY statement.
Type agreement is not required for actual arguments that have no
type, such as a subroutine name or an alternate return speci�er as an
actual argument.

The following example shows a function with entry points of di�erent
data types:

REAL FUNCTION f(x) ! Real function f

INTEGER k, i

.

.

.

ENTRY k(i) ! Integer function k

.

.

.

END

The declarations of the dummy arguments can precede their use in
an ENTRY statement. For example, in the following function:

FUNCTION x(array1, q)

INTEGER q

INTEGER array1(q)

.

.

.

ENTRY y (r, q)

.

.

.

array1(q) = 100

.

.

.

END

the variable q is declared before the ENTRY statement and the last
element of the array is set to 100.

In a function subprogram, a variable name that is the same as
an entry name cannot appear in any statement that precedes the
appearance of the entry name in an ENTRY statement, except in a
type statement.

Within a subprogram, an entry name cannot appear both as an
entry name in an ENTRY statement and as a dummy argument in a

5-34 Subprograms

FUNCTION, SUBROUTINE, or ENTRY statement. An entry name
cannot appear in an EXTERNAL statement.

Subprograms 5-35

Common Blocks In addition to passing values through arguments, common blocks can
provide communication between program units and subprograms.
Before a FORTRAN program is executed, computer storage is
allocated for each program and subprogram. In addition, a common
block of storage is reserved for use by all program units. Program
units de�ne the data to be reserved in common blocks with the
COMMON statement.

There are two kinds of common blocks: blank common and labeled
common.

Blank Common Blocks The blank COMMON statement looks like this:

COMMON list

where list is variable names, array names, or array names with
declared dimensions, all separated by commas. The COMMON
statement instructs the compiler to establish an area of storage
shared by all program units using blank COMMON statements.

For example, if the statements:

REAL time, distance, car(2,3)

INTEGER count

COMMON car, count, time, distance

are in a program unit A, during execution, the common storage is
organized as follows:

Word Item

1 car(1,1)

2 car(2,1)

3 car(1,2)

4 car(2,2)

5 car(1,3)

6 car(2,3)

7 count

8 time

9 distance

If a program unit B contains the same set of statements, each
reference made to car, count, time, or distance references the same
storage accessed by program unit A.

Within another program unit, the same data can be known by a
di�erent symbolic name. For example, if program unit C contains the
statements:

5-36 Subprograms

REAL array1(2), array2(3)

INTEGER i, j

COMMON i, array1, j, array2

Subprograms 5-37

The common block would be accessed as follows:

Word Item Name From
Program Unit C

Item Name From
Program Unit A

1 i car(1,1)

2 array1(1) car(2,1)

3 array1(2) car(1,2)

4 j car(2,2)

5 array2(1) car(1,3)

6 array2(2) car(2,3)

7 array2(3) count

As you can see, inconsistent COMMON statements make a program
hard to follow. To avoid errors, modules containing a COMMON
statement should specify the same organization of the common
area. This can be accomplished by declaring the common area in an
INCLUDE �le, and including the �le in each subprogram that needs
it.

As an extension to the ANSI standard, variables in blank common
blocks can be initialized using DATA statements.

An example of how common blocks can pass values to and from
subprograms is shown below. The variable q in the main program
shares storage space with x in the subroutine. When a value for
q is determined by the READ statement, x automatically shares
this value. Similarly, r and y also share storage space, as does the
variable side in the main program and in the subprogram. The
subroutine uses the values input for q and r to compute the length of
the hypotenuse of a right triangle.

PROGRAM comex

COMMON q, r, side

READ *, q, r

CALL tri

PRINT *, side

END

SUBROUTINE tri

COMMON x, y, side

side = SQRT(x**2 + y**2)

END

5-38 Subprograms

Labeled Common
Blocks

In some programs, you might want to subdivide the common area
into smaller blocks with each block having a unique name. To do
this, the labeled form of the COMMON statement is used as follows:

COMMON /name/list, ..., /name/list

where name is the common block name and list is the list of
variable names, arrays, and array declarators.

Before a program is executed, one block of storage is allocated
for each unique named common area that was speci�ed from the
program units.

Labeled common blocks allow each program unit to have its own
named common area.

For example, the statement:

COMMON /block1/a, b, c, /block2/x, y, z

de�nes these two labeled common blocks:

Common Block block1:

a

b

c

Common Block block2:

x

y

z

Subprograms 5-39

To see how labeled common blocks work, consider this partial
program:

PROGRAM main
COMMON var1, var2, var3

COMMON /block1/ var4, var5, var6

.

.

.

END

SUBROUTINE sub(x)

COMMON /block1/ a, b, c

.

.

.

END

FUNCTION func(y)

COMMON f1, f2, f3

.

.

.

END

The items var4, var5, and var6 in the main program are in the
common block named block1. The same storage words are referred
to by the names a, b, and c in subroutine sub. The items var1, var2
and var3 in the main program are in blank common. The same
storage words are used by the names f1, f2, and f3 in function func.

Unlike local variables in a subprogram, items in blank and named
common blocks remain de�ned after the execution of a RETURN or
END statement in a subprogram.

Arrays and variables in labeled or blank common can be initialized
by using DATA statements in a BLOCK DATA subprogram.

5-40 Subprograms

Block Data
Subprograms

Block data subprograms de�ne the size and reserve storage space
for common blocks. Block data subprograms can also initialize the
variables and arrays declared in the common block. A block data
subprogram begins with a BLOCK DATA statement and ends with
an END statement.

For example, consider this block data subprogram:

BLOCK DATA datablock1

INTEGER i, n, t

REAL x, y, z

COMMON /block1/ n, t

COMMON /block2/ i, x(10)

DATA n, t /5, 25/

DATA x /10*1.0/

END

This block data subprogram speci�es that n and t are in named
common block block1 and these are to be initialized to 5 and 25,
respectively. The block block2 contains i and the ten elements in
array x. The variable i is unde�ned and each element in array x is
initialized to 1.0.

The block data subprogram is a nonexecutable program module that
can be placed anywhere after the main program. The name of the
subprogram can be omitted, but a program cannot have more than
one unnamed block data subprogram.

The BLOCK DATA statement must be the �rst noncomment
statement in a block data subprogram. Each common block
referenced in an executable FORTRAN program can be de�ned in a
block data subprogram.

Speci�cation statements, data initialization, and blank common
statements are allowed in the body of a block data subprogram.
Block data statements cannot contain executable statements.
Acceptable statements include: COMMON, DATA, DIMENSION,
IMPLICIT, PARAMETER, SAVE, and type speci�cation
(INTEGER*4, REAL*8, and so on), statements. EXTERNAL and
INTRINSIC statements are not allowed.

Here is another example of a BLOCK DATA subprogram:

BLOCK DATA null

COMMON /xxx/ x(5), b(10), c

COMMON /set1/ iy(10)

DATA iy/1,2,4,8,16,32,64,128,256,512/

DATA b/10*1.0/

END

Subprograms 5-41

The name null is the optional name of a BLOCK DATA subprogram
used to reserve storage locations for the named common blocks xxx
and set1. Arrays iy and b are initialized in the DATA statements.
The remaining elements in the common block can optionally be
initialized or typed in the block data subprogram.

5-42 Subprograms

Using the SAVE
Statement

The SAVE statement retains the value of local variables after
the execution of a RETURN or END statement in a function or
subroutine. The SAVE statement allows data to be shared among
subprograms because the values of entities are saved beyond the
scope of the program units in which they are declared. However,
an item in a common block can become unde�ned or rede�ned in
another unit.

The items that can be speci�ed by the SAVE statement are: named
common blocks enclosed in slashes, a variable name, or any array
name. Each item can appear only once. The items that cannot be
speci�ed by the SAVE statement are: dummy argument names,
subprogram names, and names of individual items in a common
block. If no individual items are speci�ed, all variables, arrays, and
common block data are saved.

If a common block name is in a SAVE statement in one subprogram
of an executable program, the block name must be speci�ed in
a SAVE statement in every subprogram in which it appears. A
common block name surrounded by slashes in a SAVE statement
speci�es all the entities in the block.

Execution of a RETURN or END statement within a subprogram
causes the items in a subprogram to become unde�ned, except for:

Items speci�ed by SAVE statements.

Items in common blocks that are not declared in the calling
program.

Items that have been de�ned in a DATA statement and not
rede�ned.

The following program shows show the SAVE statement works:

PROGRAM main

INTEGER sub1

WRITE(6,*) sub1(.TRUE.), sub1(.FALSE.),

* sub1(.FALSE.), sub1(.FALSE.)

END

INTEGER FUNCTION sub1(first)

INTEGER count
LOGICAL first

SAVE

IF(first) count = 0

count = count + 1

sub1 = count

Subprograms 5-43

RETURN

END

The output of this program looks like this:

1 2 3 4

The variable count is incremented each time sub1 is called. The
SAVE statement in the subroutine saves the value of count until the
next call to sub1.

5-44 Subprograms

6

Writing Efficient Programs

Ideally, a program should compile quickly, run quickly, and use a
minimal amount of memory for code and data.

You can take steps to minimize both time and space used by a
program; however, you might have to trade one type of e�ciency
to achieve another. For example, on a machine with 32-bit words,
your program might run faster if 32-bit integers (INTEGER*4) are
used, but will use twice as much data space as using 16-bit integers.
It is up to you as to which of the resources are most valuable in
your programming environment and to consider the trade-o�s.
Avoid optimization techniques that decrease the readability, clarity,
portability, and maintainability of your program.

Note The development of an e�cient algorithm is the most important step
towards e�cient coding. The improvement achieved by the source
manipulation techniques described in this chapter may be minimal
compared to improving the overall method of solving the task.

Also, the suggestions in this chapter might reduce the readability of
your program.

This chapter describes ways you can improve your program e�ciency
in these �ve areas:

Compile time

Run time

Code space

Data space

Operating system issues

Writing Efficient Programs 6-1

Compile-Time
Efficiency

To avoid ine�cient compiler options, do not use compiler options
that generate symbol table information, code o�sets, and code
listings. These options cause the compiler to generate additional
information and should be used only when the information generated
is needed for debugging.

6-2 Writing Efficient Programs

Run-Time Efficiency The suggestions below help to decrease the time needed to run your
program.

Declare Integer and
Logical Variables

Efficiently

Declare integer and logical sizes equal to 32 bits (4 bytes) which
is the HP 3000 Series 900 word size. That is, use the defaults of
INTEGER*4 and LOGICAL*4.

Avoid Using Arrays When possible, avoid using arrays because they are addressed
indirectly; that is, their address must be found �rst, and then the
element at that address must be found.

Use Efficient Data
Types

When a choice of data type is possible for a variable, choose
according to the following hierarchy:

Table 6-1. Data Type Efficiency

Type of Data Type Order of E�ciency

Floating Point REAL*4 (fastest)
REAL*8
REAL*16 (slowest)

Integer INTEGER*4 (fastest)
INTEGER*2 (slowest)

Complex COMPLEX*8 (fastest)
COMPLEX*16 (slowest)

However, as mentioned below, it is ideal to have variables that are
used together in expressions to be all the same type.

Avoid Mixed-Mode
Expressions

Avoid mixed-mode expressions. For example, the assignment
statement:

int = 1.0 + int

where int is an integer, requires converting int to a real number and
then converting the result back to an integer during execution. A
more e�cient assignment statement would be:

int = 1 + int

Writing Efficient Programs 6-3

Eliminate Slow
Arithmetic Operators

When possible, replace slower arithmetic operations with faster
operations. The arithmetic operations are listed below from fastest to
slowest:

Addition and subtraction + � (Fastest)

Multiplication *

Division /

Exponentiation ** (Slowest)

In some cases, multiplication operations can replace exponentiation,
addition operations can replace multiplication, and multiplication
operations can replace division. For example,

i = j**2 can be written as i = j * j

a = 2.0 * b can be written as a = b + b

x = y / 10 can be written as x = y * 0.1

Note The last example might cause an error if you are porting your
program to another system because the internal representation of 0.1
might vary between systems.

Use Statement
Functions

Use statement functions instead of short function subprograms.
This eliminates the overhead involved with loading parameters and
avoids a procedure call for the subprogram call. However, statement
functions are expanded in-line and thus increase the program size.

Reduce External
References

Eliminate unnecessary function calls. For example, the statement:

c = log(a) + log(b)

can be rewritten as:

c = log(a * b)

Also, the statement :

x = y**2

explicitly requires a procedure call to an exponential function
procedure. Rewriting this statement as:

x = y * y

avoids the procedure call.

6-4 Writing Efficient Programs

If a function is called more than once with the same arguments, you
can eliminate the additional procedure calls by assigning the result to
a temporary variable. For example, the statements:

a = MIN(x,y) + 1.0

b = MIN(x,y) + 4.0

can be rewritten as:

minval = MIN(x,y)

a = minval + 1.0

b = minval + 4.0

The rewritten statements above are more e�cient, but the readability
is reduced.

Combine DO Loops Combine adjacent DO loops that are executed the same number of
times. For example, the statements:

DO 100 i = 1,20

100 a(i) = b(i) + c(i)

DO 200 j = 1,20

200 x(j) = y(j) + z(j)

can be replaced with the statements:

DO 100 i = 1,20

a(i) = b(i) + c(i)

x(i) = y(i) + z(i)

100 CONTINUE

Eliminate Short DO
Loops

Break short DO loops into separate statements to eliminate the
overhead associated with the loop. For example, the statements:

DO 50 i = 1,3

50 c(i) = a(i) * b(i)

can be replaced with the statements:

c(1) = a(1) * b(1)

c(2) = a(2) * b(2)

c(3) = a(3) * b(3)

However, removing DO loops makes programs longer and is not
practical if the number of loop interations is large.

Writing Efficient Programs 6-5

Eliminate Common
Operations in Loops

Minimize operations inside of a loop. If the result of an operation is
the same throughout the loop, move the expression before or after
the loops so the expression is only executed once. For example, the
loop:

sum = 0.0

DO 100 i = 1,n

100 sum = sum + value * a(i)

can be replaced with:

sum=0.0

DO 100 i = 1,n

100 sum = sum + a(i)

sum = value * sum

Use Efficient IF
Statements

In block IF statements, order the conditions so that the most likely
condition is tested �rst. For example, if the value of arg is three in
most cases, write a compound IF statement as:

IF (arg .EQ. 3) THEN

.

.

.
ELSE IF (arg .EQ. 1) THEN

.

.

.

ELSE IF (arg .EQ. 2) THEN

.

.

.

ELSE

.

.

.

When using the logical operators .AND. and .OR. in an IF condition,
the code generated only checks enough conditions to determine the
result of the entire logical expression. If several logical expressions
are connected with .OR., checking discontinues as soon as an
expression evaluates to .TRUE.. When .AND. is used, checking
discontinues as soon as a .FALSE. condition is found. Therefore,
order the conditions so the least number of checks is done. For
example, if it is more likely that variable a will equal zero than it is
that b will be greater than 100, write the IF statement as:

IF ((a .EQ. 0) .OR. (b .GT. 100))

or:

IF ((b .GT. 100) .AND. (a .EQ. 0))

6-6 Writing Efficient Programs

Avoid Formatted I/O When possible, use unformatted I/O. Formatted I/O requires costly
conversions between binary and ASCII format.

When using formatted I/O, put the format string in a separate
FORMAT statement instead of using a variable. For example, use
the statements:

WRITE (6,20) var

20 FORMAT (F10.2)

instead of:

CHARACTER*7 a

DATA a/'(F10.2)'/

WRITE (6,a) var

Format speci�ers contained in variables are not parsed when a
program is compiled. Instead, a format processing routine is called
by the compiled program each time the format is used.

Specify the Array Name
for I/O

When reading or writing an array, speci�y the array name instead of
using an implied DO loop. This allows the array to be operated on as
a whole, instead of performing individual operations for each element.
For example, specify:

WRITE (6, '(A1)') myarray

instead of:

WRITE (6, '(A1)') (myarray(i,j), i=1,10), j=1,10)

Avoid Using Range
Checking

Turn range checking on only when necessary. This option causes
extra code to be included in your program to check the bounds when
a substring or array element is referenced. Code is also generated for
checking assigned GOTO statements. This added code causes your
program to take longer to execute, as well as using additional code
space.

Use Your System
Language

In some cases it might help e�ciency to write part of your program
in the system language of your machine. For example, if you have to
move an entire array to another array with the same dimensions,
your system language might allow you to move the array as a single
block instead of moving each array element separately. If the array is
large, using the system language could save a signi�cant amount of
execution time.

Minimize Segment
Faults

On systems using memory segmenting, segment your program with
e�ciency in mind. If a large amount of interaction takes place
between two program units, make sure that the program units are
placed in the same segment. Try to minimize the total number of
segments used, without making any one segment too large.

Writing Efficient Programs 6-7

MPE/iX Run-Time
Efficiency Topics

To improve run-time e�ciency on the MPE/iX operating system, do
the following:

When using the CHECK OVERFLOW compiler directive, specify

$CHECK_OVERFLOW INTEGER OFF

If left in the default state of ON, the directive generates extra code
for each integer assignment for integer overow checking.

Use MPE/iX intrinsic I/O instead of the FORTRAN READ and
WRITE statements. The FORTRAN statements generate several
procedure calls for each statement. However, MPE/iX intrinsics
make programs system-dependent and di�cult to port.

When possible, use DO loops instead of DO WHILE loops. The
code generated to evaluate the DO loop counter is more e�cient if
the loop counter is type INTEGER*4 and if there are no ASSIGN
statements in the program unit.

Avoid using common variables, variables initialized by DATA
statements, arrays, equivalenced data, and variables with a length
greater than 64 bits. These structures are addressed indirectly;
that is, their addresses must �rst be found and then the elements
at those addresses found.

Avoid using the HP3000 16 compiler directive. Instead, change
equivalence and common data to take advantage of the HP
Precision Architecture, convert �les that contain real data to IEEE
format, and modify character assignments if your application takes
advantage of the ripple e�ect of overlapping character strings.

Use the LOCALITY compiler directive to strategically place
subroutines and functions in memory.

6-8 Writing Efficient Programs

Code Space
Efficiency

The suggestions below help to decrease the amount of space needed
to store your program.

Use Function
Subroutines

Use function subprograms instead of statement functions because
the code to execute statement functions is generated every place the
function is called. Of course, you are sacri�cing run-time e�ciency
because an extra procedure call is executed for the subprogram call.

Avoid Formatted I/O When possible, avoid formatted I/O because the format strings are
stored in your program.

Use Character
Substrings

When assigning a character constant to a character variable that is
longer than the constant, specify a substring equal to the constant
size for the variable. For example, if charstring is longer than three
characters, use the statement:

charstring(1:3) = 'ABC'

instead of:

charstring = 'ABC'

This eliminates the code that is generated to �ll the remainder of
the character variable with blanks. However, this should be done
only if you do not need the remainder of the variable to be �lled with
blanks.

Writing Efficient Programs 6-9

Data Space
Efficiency

The suggestions below help to decrease the amount of space needed
to store data.

Eliminate Redundant or
Unused Variables

Eliminate redundant or unused variables. Redundant variables are
de�ned and used only one time. For example, in the statements:

temp1 = a * 25.0

temp2 = b**3

answer = temp1 + temp2

the variables temp1 and temp2 are redundant. The three lines can be
rewritten as:

answer = a * 25.0 + b**3

The cross reference facility can be used to locate the redundant
and unused variables. Refer to the CROSSREF or XREF compiler
directive in the HP FORTRAN 77/iX Reference.

Avoid Common
Variables

Common variables remain in your data space throughout the run of
your program, but local variables typically are only in the data space
when the subroutine in which they are declared is active. Do not
place variables that are accessed by only one routine into common
blocks.

When using COMMON and EQUIVALENCE statements, group
variables of the same type. This prevents wasted space due to
di�erences in data type alignment.

Use INTEGER*2 and
LOGICAL*2 Data

To save data space, use the SHORT compiler option so that integer
and logical data use 16 bits instead of 32 bits. However, be aware
that some constructs require 4-byte types. Among these are all
integer and logical I/O speci�ers whose values are set by the I/O
library (such as most INQUIRE statement speci�ers) and integer
variables in ASSIGN statements.

Note You can decrease performance by using 16-bit data.

6-10 Writing Efficient Programs

Performance Tuning This section provides more information on how your program
interacts with the MPE/iX operating system on the 900 HP Series
3000 computer and what can be done to optimize the relationship.
Before reading this chapter, you should understand the memory
model used by the compiler.

Writing Efficient Programs 6-11

Grouping Related
Routines

To understand how a program uses memory, you need to know how
these areas are mapped into the physical segments of the 900 Series
HP 3000 computer.

The main memory is divided into page frames of a �xed size, each of
which can contain one virtual page. Data ow between main memory
and external storage occurs in units of pages; the page size is 4K
bytes. The stack and data areas belong to a separate virtual space
from the code area. The maximum size of each virtual space is 232

bytes, but the code, data, and stack areas only use one-fourth of the
space. Therefore, the maximum size of the code area is 230 bytes and
the maximum size of the stack and data area combined is 230 bytes.

You can make programs more e�cient by grouping routines that
frequently call each other. Fitting routines into a page boundary
eliminates page faults that might otherwise occur. (Grouping data
that is frequently used also lessens the possibility of a page fault.)
Group routines using the LOCALITY compiler directive (refer to
the HP FORTRAN 77/iX Reference for more information about
this directive). When you use the LOCALITY directive in routines
with the same locality name, the compiler arranges the routines
next to each other in the code space. Specifying a locality name for
block data subprograms that contain common blocks also causes the
compiler to place common blocks having the same locality name next
to each other. Therefore, if the common blocks �t into one page, all
page faults are eliminated when accessing data within the blocks.

Besides limiting page size, the following are additional reasons to
group related routines:

1. On the 900 Series HP 3000 computer, which is equipped with a
cache memory, careful segmentation of code and data eliminates
unnecessary cache misses. Because one cache miss is equivalent
to at least two instruction cycles, a signi�cant improvement is
achieved by rearranging code and data. * Grouping related
routines or data avoids long branching. On the 900 Series HP
3000 computer, the maximum distance of a branch is 64K
instructions. If a routine calls another routine that is further than
64K instructions away, a long branch stub is generated within the
64K limit. The long branch stub serves as a transit routine, which
in turn calls the target routine.

If subroutines or functions are randomly scattered in a large
program, long branch stubs are likely to be generated. However,
by grouping related routines with the LOCALITY directive,
you can eliminate most long branchings. * The 900 Series HP
3000 computer references data through the dp (data pointer) and
sp (stack pointer) base registers. The range that the computer
can reach is from dp-8K to dp+8K and from sp-8K to sp+8K,
respectively. If the data used by the current program is larger
than 16K, the compiler has to switch the dp or sp base registers

6-12 Writing Efficient Programs

to access data in di�erent 16K segments. For example, if a is in
location 0 while b is in location 16K+1 and the code states

DO i = 1,10
a(i) = b(i)

the compiler must switch dp to point to 16K to load the value
of b. The compiler then must switch back to 0 to store to a(i).
Grouping a and b could place b within the 16K range and
eliminate the base register switching.

Writing Efficient Programs 6-13

Shifting Data from
the Data Area to the
Stack Area

Another improvement in performance can be gained by shifting data
from the data area to the stack area. In general, accessing data
from the stack or code area takes one machine instruction, while
accessing data from the data area requires two instructions. To
shift data, use assignment statements if you do not require the data
values to remain the same across routines. Shifting data eliminates
initializing data with DATA statements. Then, instead of routines
communicating through common blocks, you can use parameters.

Shifting data from the data to the stack area also produces more
opportunities for the optimizer to allocate register variables, and
thereby improving optimization.

Integer Overflow
Checking

Integer overow checking is turned on for 16-bit and 32-bit
arithmetic to be compatible with FORTRAN 77/V. The 16-bit
integer overow checking generates three extra instructions to check
the overow for loads and stores. The 32-bit overow checking
generates overow instructions that cannot be optimized. To turn o�
integer overow checking, specify $CHECK_OVERFLOW INTEGER OFF.

6-14 Writing Efficient Programs

Using the Optimizer The optimizer is an optional part of the compiler that modi�es your
program so that machine resources are used more e�ciently, using
less space and running faster. The optimizer consists of 12 modules:
�ve for level one optimization and seven for level two optimization.

This section describes the following:

When and how to use the optimizer

Level one and two optimization modules

Optimizer assumptions

How to write code that is easily optimized

What to do if your optimized program fails

Introduction to the
Optimizer

You can run the optimizer in one of three ways:

1. No optimization (this is the default).

2. Level one optimization: This level only performs a subset of the
available optimization modules. The transformations performed
are local to small subsections of code, and therefore are performed
quickly with little run-time storage required by the compiler.
Level one optimization should be used when some optimization is
desired, but when compile time performance is more important
than run time performance.

3. Level two optimization: This level of optimization performs
all of the available optimization modules. Transformations are
performed over the scope of each procedure. If you use this level
of optimization, the compiler uses more memory and takes longer
to process your program.

When to Use the
Optimizer

Use the optimizer only on debugged code that is ready to run,
because the compiler cannot generate debug information and perform
optimizations at the same time. After level two optimizations are
performed, the code is radically reordered and variable values might
not be maintained in memory, which makes symbolic debugging
impossible. Therefore, once a program is optimized, you cannot use
symbolic debugging unless you recompile without optimization.

Invoking the Optimizer
on MPE/iX

Invoke the optimizer by specifying the OPTIMIZE compiler directive
in your source �le or by passing the directives through the INFO
string. For level one optimization, use the command

$OPTIMIZE LEVEL1

For level two optimization, use the command

$OPTIMIZE

or

$OPTIMIZE LEVEL2

Writing Efficient Programs 6-15

Level One Optimization
Modules

The level one optimization modules are:

Branch optimization

Dead code elimination

Faster register allocation

Instruction scheduler

Peephole optimization

The examples in this section are shown at the source code level
wherever possible; transformations that cannot be shown at the
source level are shown in assembly language.

Table 6-2 summarizes the assembly language routines.

Table 6-2. Descriptions of Assembly Language Routines

Instruction Description

LDW o�set(sr, base), target Loads a word from memory into register target. sr is the
space register (0 through 7); base is the base register (0
through 31).

ADDI const, reg, target Adds the constant const to the contents of register reg and
puts the result in register target.

LDI const, target Loads the constant const into register target.

AND reg1, reg2, target Performs a bitwise AND of the contents of registers reg1
and reg2 and puts the result in register target.

COMIB, cond, const, reg, lab Compares the constant const to the contents of register reg
and branches to label lab if the condition cond is true.

BB, cond, reg, num, lab Tests the bit number num in the contents of register reg and
branches to label lab if the condition cond is true.

COPY reg, target Copies the contents of register reg to register target.

STW reg, o�set(sr, base) Stores the word in register reg to memory. sr is the space
register (0 through 7); base is the base register (0 through
31).

6-16 Writing Efficient Programs

Branch Optimization Module

The branch optimization module makes branch instruction
sequences more e�cient whenever possible. Examples of possible
tranformations are:

Deleting branches whose target is the fall-through instruction (that
is, the target is two instructions away)

When the target of a branch is an unconditional branch, changing
the target of the �rst branch to be the target of the second
unconditional branch

Transforming an unconditional branch at the bottom of a loop,
which branches to a conditional branch at the top of the loop, into
a conditional branch at the bottom of the loop

Changing an unconditional branch to the exit of a procedure into
an exit sequence where possible

Changing conditional or unconditional branch instructions that
branch over a single instruction into a conditional nulli�cation in
the previous instruction

Looking for conditional branches over unconditional branches,
inverting the sense of the �rst branch and deleting the second
branch. These result from null THEN clauses and from THEN
clauses that only contain GOTO statements. For example, the
code

IF (x) THEN

statement 1

ELSE

GOTO 100

ENDIF

statement 2

100 statement 3

becomes

IF (.NOT. x) GOTO 100

statement 1

statement 2

100 statement 3

Writing Efficient Programs 6-17

Dead Code Elimination Module

The dead code elimination module removes unreachable code that is
never executed.

For example, the code

if (.FALSE.) then

a=1

else

a=2

endif

becomes

a=2

Faster Register Allocation Module

The faster register allocation module, used with unoptimized code,
analyzes register use faster than the advanced register allocator (a
level two module).

This module performs the following:

Inserts entry and exit code

Generates code for operations (such as multiplication and division)

Eliminates unnecessary copy instructions

Allocates actual registers to the dummy registers in instructions

Instruction Scheduler Module

The instruction scheduler module performs the following:

Reorders the instructions in a basic block to improve memory
pipelining. (For example, where possible, a load instruction is
separated from the use of the loaded register.)

Where possible, follows a branch instruction with an instruction
that can be executed as the branch occurs.

Schedules oating point instructions.

For example, the code

LDW -52(0,30),r1

ADDI 3,r1,r31 ;interlock with load of r1

LDI 10,r19

becomes

LDW -52(0,sp),r1

LDI 10,r19

ADDI 3,r1,r31 ;use of r1 is now separated from load

6-18 Writing Efficient Programs

Peephole Optimization
Module

The peephole optimization module is a machine-dependent module
that makes a pass through an intermediate representation of the code
applying patterns to a small window of code looking for optimization
opportunities. The optimizations performed are:

Changing the addressing mode of instructions so they use shorter
sequences

Substituting sequences of instructions that access bit �elds with
shorter, equivalent instructions

For example, the code

LDI 32,r3

AND r1,r3,r2

COMIB,= 0,r2,L1

becomes

BB,>= r1, 26, L1

Level Two Optimization
Modules

The level two optimization modules are:

Advanced register allocation

Induction variables and strength reduction

Common subexpression elimination

Constant folding

Loop invariant code motion

Store/Copy optimization

Unused de�nition elimination

The examples in this section are shown at the source code level
wherever possible; transformations that cannot be shown at the
source level are shown in assembly language. See Table 6-2 for a
description of the assembly language routines.

Writing Efficient Programs 6-19

Advanced Register Allocation Module

The advanced register allocation module performs some copy
optimizations, as well as allocating registers. Before the register
allocator is run, the instructions contain register numbers that do
not correspond to actual registers. The register allocator assigns
real registers to these instructions and removes unnecessary COPY
instructions.

For example, the following code shows the type of optimization the
coloring register allocation module performs. The code

LDI 2,r104

COPY r104,r103

LDO 5(r103),r106

COPY r106,r105

LDO 10(r105),r107

becomes

LDI 2,r25

LDO 5(r25),r26

LDO 10(r26),r31

Strength Reduction

The induction variables and strength reduction module removes
linear functions of a loop counter and replaces them with the
loop counter. Variables of the same linear function are computed
only once. This module also simpli�es the function by replacing
multiplication instructions with addition instructions wherever
possible.

For example, the code

DO i = 1,10

j(i) = i*k

END DO

becomes

t1 = k

DO i = 1,10

j(i) = t1

t1 = t1+k

END DO

6-20 Writing Efficient Programs

Common Subexpression Elimination

The common subexpression elimination module identi�es expressions
that appear more than once and have the same result, computes
the result, and substitutes the result for each occurrence of the
expression. The types of subexpressions include instructions that
load values from memory, as well as arithmetic evaluation.

For example, the code

a = x + y + z

b = x + y + w

becomes

t1 = x + y

a = t1 + z

b = t1 + w

Constant Folding Module

While the optimizer is collecting information about uses and
de�nitions of resources, the constant folding module replaces constant
expressions with their values.

For example, the code

a = 1

b = 2

c = a + b

becomes

a = 1

b = 2

c = 3

Loop Invariant Code Motion Module

The loop invariant code motion module recognizes instructions
inside a loop whose results do not change and moves the instructions
outside the loop.

For example, the code

x = z

DO i = 1,10

a(i) = 4 * x + i

END DO

becomes

x = z

t1 = 4 * x

DO i = 1,10

a(i) = t1 + i

END DO

Writing Efficient Programs 6-21

Store/Copy Optimization Module

Where possible, the store/copy optimization module substitutes
registers for memory locations by replacing store instructions with
copy instructions and deleting load instructions.

For example, the following FORTRAN 77 code

INTEGER FUNCTION i

.

.

.

i = j + 23

RETURN

END

produces this code for the unoptimized case

LDO 23(r26),r1

STW r1,-52(0,sp)

LDW -52(0,sp),ret0

and this code for the optimized case:

LDO 23(r26),ret0

Unused Definition Elimination Module

The unused de�nition elimination module removes unused memory
location and register de�nitions. These de�nitions are often a result
of transformations made by other optimization modules.

For example, the function

INTEGER FUNCTION f(x)

INTEGER x,a,b
a = 1

b = 2

f = x * b

RETURN

END

becomes

INTEGER FUNCTION f(x)

INTEGER x,a,b

b = 2

f = x * b

RETURN

END

6-22 Writing Efficient Programs

Optimizer Guidelines These guidelines will help you use the optimizer e�ectively and write
e�cient HP FORTRAN 77 programs.

1. Where possible, expand procedures with fewer than �ve lines in
the program or convert them to macros. The optimizer makes
better use of register variables if the procedures have fewer than
100 lines. If a loop only contains a procedure call, it is more
e�cient to put the loop in the procedure.

2. Make hash table sizes and �eld sizes of variables in powers of two.

3. Where possible, use local variables to help the optimizer promote
variables to registers.

4. Where possible, construct loops so the control variable increases
or decreases towards zero. The code generated for a test of a loop
termination is more e�cient with a test against zero than for a
test against some other value.

5. Where possible, use constants instead of variables for shift,
multiplication, division, and remaindering.

6. Where possible, avoid using extensive equivalencing and memory
mapping schemes.

HP FORTRAN 77 Optimizer Assumptions

During optimization, the compiler gathers information about the
use of variables and passes this information to the optimizer.
The optimizer uses this information to ensure that every code
transformation maintains the correctness of the program (at least to
the extent that the original unoptimized program is correct). When
gathering this information, the HP FORTRAN 77 compiler assumes
that inside a routine (either a function or a subroutine), the only
variables that can be accessed directly or indirectly or by another
function call are:

Common variables declared in this routine

Local variables (all static variables and nonstatic variables)

Parameters to this routine

In general, you do not need to be concerned about this assumption.
Good programming practices preclude code that violates the
assumption. However, if you have code that violates the assumption,
the optimizer can change the behavior of the program in an
undesired way. In particular, you should avoid the following coding
practices to ensure correct program execution for optimized code:

Avoid referencing outside the bounds of an array.

Avoid using variables that can be accessed by a process other than
the program, such as shared common variables. The compiler
assumes that the program is the only process accessing its data.
The only exception to this is if a semaphore in the form of a

Writing Efficient Programs 6-23

function call is used to \lock" and \unlock" access to a shared
variable. In this case, optimization is assumed to be correct.

6-24 Writing Efficient Programs

OPTIMIZE Compiler Directive

The OPTIMIZE compiler directive gives you the ability to give
information about the program to the compiler.

The OPTIMIZE directive controls which functions are optimized and
which set of optimizations is performed. Some directives must be
placed before the function to be optimized, while others can appear
anywhere within the function.

This is the syntax of the OPTIMIZE compiler directive:

Syntax

$OPTIMIZE

2
6666666666666666664

LEVEL1

LEVEL2

LEVEL2_MIN

LEVEL2_MAX

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_FLOATING_INVARIANT

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_SHARED_COMMON_PARMS

ASSUME_NO_SIDE_EFFECTS

ASSUME_PARM_TYPES_MATCHED

LOOP_UNROLL
�
COPIES=n SIZE=n STATISTICS

�

3
7777777777777777775

�
ON

OFF

�

ON Alone, speci�es level 2
optimization.

With a preceding option, sets
that option o�.

OFF Alone, speci�es level 0
optimization. This is the
default.

With a preceding option, sets
that option o�.

LEVEL1 Speci�es level 1 optimization.

LEVEL2 Speci�es level 2 optimization,
with the following ASSUME

settings:

ASSUME_NO_EXTERNAL_PARMS ON

ASSUME_NO_FLOATING_INVARIANT ON

ASSUME_NO_PARAMETER_OVERLAPS ON

ASSUME_NO_SHARED_COMMON_PARMS ON

ASSUME_NO_SIDE EFFECTS OFF

ASSUME_PARM_TYPES_MATCHED ON

LOOP_UNROLL ON

Writing Efficient Programs 6-25

LEVEL2_MIN Speci�es level 2 optimization
with all the ASSUME settings OFF.

LEVEL2_MAX Speci�es level 2 optimization
with all the ASSUME settings ON.

ASSUME_NO_EXTERNAL_PARMS Assumes that none of the
parameters passed to the current
procedure are from an external
space, that is, di�erent from
the user's own data space.
Parameters can come from
another space if they come from
operating system space or if they
are in a space shared by other
users.

ASSUME_NO_FLOATING_INVARIANT Assumes that no oating
invariant operations are executed
conditionally with loops.

ASSUME_NO_PARAMETER_OVERLAPS Assumes that no actual
parameters passed to a
procedure overlap each other.

ASSUME_NO_SHARED_COMMON_PARMS This directive should be ON when
all of the following are true:

The parameter passed to the
current procedure is part of a
common block used by that
procedure.
The parameter is named
di�erently than the variable
name it has in the common
block.
The parameter is reassigned
with the same value within the
procedure.

ASSUME_NO_SIDE_EFFECTS Assumes that the current
procedure changes only local
variables. It does not change any
variables in COMMON, nor does
it change parameters.

ASSUME_PARM_TYPES_MATCHED Assumes that all of the actual
parameters passed were the type
expected by this subroutine.

LOOP_UNROLL Unrolls DO loops having 60
or less operations four times.
For further details, see \Loop
Unrolling" in this chapter. The
default is ON.

6-26 Writing Efficient Programs

There are �ve levels of optimization:

Level 0 Does no optimizing. This is obtained by
specifying $OPTIMIZE OFF.

Level 1 Optimizes only within each basic block. This is
obtained by specifying $OPTIMIZE LEVEL1 ON.

Level 2 minimum Optimizes within each procedure with no
assumptions on interactions of procedures. That
is, the compiler assumes nothing, making this the
most conservative level 2 optimization. This level
is obtained by specifying $OPTIMIZE LEVEL2_MIN

ON within each procedure.

Level 2 normal Optimizes within each procedure with normal
assumptions on interactions of procedures set as
described earlier. In general, these settings are
appropriate for most FORTRAN programs. This
level is obtained by specifying $OPTIMIZE LEVEL2

ON, $OPTIMIZE ON or just $OPTIMIZE within each
procedure.

Level 2 maximum Optimizes within each procedure with all
assumptions on interactions of procedures set to
OFF. This is obtained by specifying $OPTIMIZE

LEVEL2_MAX ON within each procedure.

A basic block is a set of instructions to be executed in sequence, with
one entrance, the �rst instruction, and one exit, the last; the block
contains no branches.

Parameters can come from another space if they come from the
operating system or if they are in a space shared by other users.

With level two optimization, the compiler and optimizer can achieve
very sophisticated optimization. Use the ASSUME options to provide
the information required for level two optimization.

ASSUME_NO_PARAMETER_OVERLAPS tells the compiler that the
parameters passed to the current routine never overlap each other, as
in the following code:

subroutine a(i,j,k)

.

.

.

PROGRAM b

CALL a(l,m,n)

END

Writing Efficient Programs 6-27

The ASSUME_NO_PARAMETER_OVERLAPS option should usually be set to
ON. However, for the following code

subroutine a(i,j,k)
.

.

.

END

PROGRAM b

CALL a(l,l,m)

END

the ASSUME_NO_PARAMETER_OVERLAPS option should not be set to ON
because the �rst two parameters passed to A are actually the same
variable (that is, the parameters overlap).

ASSUME_NO_SIDE_EFFECTS ON tells the compiler that all the
procedure calls after this option do not change any of the common
variables or the contents of the parameters being passed. For
example, in the following code

PROGRAM a

COMMON c,d,e

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS ON

CALL s1(i,j,k)

CALL s2(l,m,n)

END

the compiler assumes that subroutines s1 and s2 will not change the
values of parameters i, j, k, l, m, n, or common variables c, d, or e.

ASSUME_NO_PARM_TYPES_MATCHED ON tells the compiler that the type
declaration of each of the parameters in the called routine is the same
as that of the caller. For example, in the following code

PROGRAM a

INTEGER i,j,k

$OPTIMIZE ASSUME_PARM_TYPES_MATCHED ON

CALL s1(j)

END

SUBROUTINE s1(j)

INTEGER j

j = 1

END

the type declaration of parameter i in the called routine is integer,
matching the type declaration in the caller, PROGRAM a.

6-28 Writing Efficient Programs

However, for the following code

PROGRAM a

INTEGER i,j,k
CALL s1(i)

END

SUBROUTINE s1(j)

INTEGER j(3)

j(1) = 1

END

the ASSUME PARAMETERS MATCHED option has to be set to
OFF before the call to s1 because the called subroutine s1 declares
parameter j to be an integer array, which is not the same as an
integer in the caller a. Notice that s1 is actually intended to change
the contents of j(2), which is not i but the variable following i.
However, what follows i is system dependent.

ASSUME_NO_EXTERNAL_PARMS ON tells the compiler that none
of the parameters passed to the current procedure are from
an external space. That is, none are di�erent from the user's
own data space. For example, if you are accessing data in the
operating system, you are accessing data from an external space.
Shared data or shared common variables fall into this category.
If ASSUME_NO_EXTERNAL_PARMS is OFF, the compiler is unable to
perform certain optimizations, such as array accessing optimization.

The following options are meaningful only when the compiler is
performing level 2 optimization, that is, only if the option ON,
LEVEL2, LEVEL2_MIN, or LEVEL2_MAX has been speci�ed:

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_SIDE_EFFECTS
ASSUME_PARM_TYPES_MATCHED

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_FLOATING_INVARIANT

LOOP_UNROLL

Writing Efficient Programs 6-29

Default O�.

Location The following OPTIMIZE options must appear
before any nondirective statements in the program
unit:

OFF

ON

LEVEL1

LEVEL2
LEVEL2_MIN

LEVEL2_MAX

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_SHARED_COMMON_PARMS

ASSUME_NO_FLOATING_INVARIANT

These options can appear anywhere within a
program unit:

ASSUME_NO_SIDE_EFFECTS

ASSUME_PARM_TYPES_MATCHED

LOOP_UNROLL

Toggling/
Duration

The optimize options remain in e�ect until they are
changed by another OPTIMIZE directive.

Impact on
Performance

This directive can improve performance. Loop
unrolling, which usually improves performance, can
occasionally degrade performance because of large
loops (register spilling) and code expansion (crossing
the page boundary causing cache misses and TLB
misses.)

Flagging Uninitialized
Variables

When the compiler is performing level 2 optimization, it will detect
any uninitialized non-static simple local variables. However, it
will not detect uninitialized common variables, static variables, or
variables of character and complex type. For example:

$OPTIMIZE

FUNCTION func(type)

COMMON /a/comvar

SAVE statvar

REAL foo,type
type = 10.2

foo = comvar

foo = statvar

foo = typo

RETURN

END

The variable typo is agged as an uninitialized variable because
it was typed incorrectly and, therefore, not initialized. However,
statvar and comvar are not agged because of their global and

6-30 Writing Efficient Programs

static characteristics. A warning message will be issued when an
uninitialized variable is detected.

Writing Efficient Programs 6-31

Example

C Start with minimum level 2 optimization.

$OPTIMIZE LEVEL2_MIN

PROGRAM FEQ7

INTEGER num(10), ans, calculate

CHARACTER*2 option(10)

C

C For the next two calls, the parameter type declarations are the same in

C the main program and the subroutine or function. Therefore, we can

C further optimize the program by setting the following optimizer option.

C

$OPTIMIZE ASSUME_PARM_TYPES_MATCHED ON

call getnum_option(num,option)

C
C For the next call, the function will not change the parameter value or

C any global variables in COMMON blocks. Therefore, we can further

C optimize the program by setting the following optimizer option.

C

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS ON

ans= calculate(num,option)

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS OFF

WRITE(6,*) 'Result = ',ans

END

C

C For the next subroutine, you know that the actual parameters passed

C to this subroutine are not overlapped with each

C other or from a space different from your program.

C Thus, you can further optimize

C the program by setting the following optimizer options.

C

$OPTIMIZE ASSUME_NO_PARAMETER_OVERLAPS ON

$OPTIMIZE ASSUME_NO_EXTERNAL_PARMS ON

SUBROUTINE getnum_option(value,operation)

INTEGER value(10)

CHARACTER*2 operation(10)

DO 10 i = 1,10

20 WRITE(6,*) 'Please input operation type and integer value :'

READ(5,*) operation(i),value(i)

IF (operation(i).EQ.' ') GOTO 30

IF ((operation(i).NE.'**').AND.

/ (operation(i).NE.'*').AND.

/ (operation(i).NE.'/').AND.

/ (operation(i).NE.'-').AND.

/ (operation(i).NE.'+')) GOTO 20

10 CONTINUE

30 RETURN

6-32 Writing Efficient Programs

END

C

C For the next subroutine, you know that the actual parameters passed to
C this subroutine are not overlapped with each

C other and not from an external space.

C Thus, you can leave the

C ASSUME_NO_PARAMETER_OVERLAPS and ASSUME_NO_EXTERNAL_PARMS

C settings ON.

C

FUNCTION calculate(value,operation)

INTEGER value(10),calculate,ans

CHARACTER*2 operation(10)

ans = 0

DO 10 i = 1,10

IF (operation(i).EQ.' ') GOTO 30

IF (operation(i).EQ.'**') THEN

ans = ans ** value(i)

ELSE IF (operation(i).EQ.'*') THEN

ans = ans * value(i)

ELSE IF (operation(i).EQ.'/') THEN

ans = ans / value(i)

ELSE IF (operation(i).EQ.'-') THEN

ans = ans - value(i)

ELSE IF (operation(i).EQ.'+') THEN

ans = ans + value(i)

ENDIF

10 CONTINUE

30 calculate = ans
RETURN

END

Writing Efficient Programs 6-33

The ASSUME NO FLOATING INVARIANT option should be set
to ON unless you need to turn it o� for a speci�c subprogram. The
following example illustrates this option.

C This program gets a divide by zero trap when compiled without

C ASSUME_NO_FLOATING_INVARIANT ON specified (the default). Because

C b/a is an invariant floating point operation (FLOP), it is moved

C out of the loop and executed whether the condition i.GT.10 is

C true or false. The ASSUME_NO_FLOATING_INVARIANT directive tells

C the optimizer not to perform this code for FLOPs that are executed

C conditionally.

$OPTIMIZE ASSUME_NO_FLOATING_INVARIANT OFF

PROGRAM test

REAL a, b, c

DATA c/1.0/, b/1.0/, a/0.0/

READ *, n

DO i=1,n

IF (i .GT. 10) THEN

c = b/a

ENDIF

c = c + i

END DO

PRINT *, a, b, c

END

6-34 Writing Efficient Programs

Loop Unrolling

$OPTIMIZE LOOP_UNROLL

2
66664

ON

OFF

COPIES = n

SIZE = n

STATISTICS

3
77775

ON Turns on loop unrolling. ON is the default at level 2.

OFF Turns o� loop unrolling.

COPIES = n Tells the compiler to unroll the loop n times. The
default is four times.

SIZE = n Tells the compiler to unroll the loops that have less
than n operations. The default is 60 operations.

STATISTICS Tells the compiler to give statistics about the
unrolled loops.

Limits on Use

DO loops at level 2 are unrolled four times by default. If the loop
limit is either not known at compile time or is less than four times,
an extra copy of the DO loop body is generated. This is called
unrolling the loop four or more times.

Although loop unrolling optimization usually increases performance,
it can occasionally degrade performance because of large loops
(register spilling) and code expansion (crossing the page boundary
causing cache misses and TLB misses.) When you encounter these
circumstances, you can turn o� loop unrolling locally by using the
compiler directive. Use the compiler directive $OPTIMIZE to specify
optimization level in the source and for changing the assumptions
made by the compiler. You can use a suboption LOOP UNROLL to
control some constraints:

$OPTIMIZE LOOP_UNROLL

Writing Efficient Programs 6-35

You can also use the LOOP UNROLL suboption on the $OPTIMIZE
directive to change the DO LOOP constraints for unrolling
dynamically:

You can unroll a DO loop more than four times.

You can force a DO loop to unroll despite its large size.

You can �nd the reason why a DO loop is not unrolled.

The highest level of optimization must be on for LOOP UNROLL to
work. Otherwise, LOOP UNROLL is ignored. If LOOP UNROLL
is ignored, but STATISTICS has been speci�ed, you will still get the
DO loop statistics.

Note The number of operations reported by STATISTICS is approximate.
Each assignment, arithmetic operation, and logical operation counts
as an operation. Each subscript of a subscripted variable counts as a
separate operation.

6-36 Writing Efficient Programs

To unroll the loop two times instead of four times (which is the
default), use

$OPTIMIZE LOOP_UNROLL COPIES=2

To unroll a DO loop that is larger than the default, use

$OPTIMIZE LOOP_UNROLL COPIES=2, SIZE=500

substituting an appropriate size for the digit 500.

Example

C Example to illustrate the use of LOOP_UNROLL

$OPTIMIZE ON

PROGRAM UNROLL_EXAMPLE

DIMENSION A(10), B(10,10)

DIMENSION X(10,10,10), Y(10,10,10), Z(10,10,10)

...

...

C The inner loop has only one statement. The loop can be unrolled

C 10 times avoiding a branch and an extra copy of the loop. A straight

C line code is generated for the inner loop.

$OPTIMIZE LOOP_UNROLL COPIES=10

DO 20 J=1,10

DO 10 I=1,10

A(I) = A(I) + B(I,J)

10 CONTINUE

20 CONTINUE

C Change COPIES back to default.

$OPTIMIZE LOOP_UNROLL COPIES=4

. .

. .

C This DO loop has more than 60 operations.

C This does not get unrolled by default. The LOOP_UNROLL option is used

C to unroll it two times by increasing the SIZE to a large value.

$OPTIMIZE LOOP_UNROLL COPIES=2, SIZE=200

DO 40 I=1,10

DO 30 J=1,20

V1 = X(I,J+1,K) - X(I,J-1,K)

V2 = Y(I,J+1,K) - Y(I,J-1,K)

V3 = Z(I,J+1,K) - Z(I,J-1,K)

X(I,J,K) = X(I,J,K) + A11*V1 + A2*V2 +

* A3*V3 + S*(Y(I+1,J,K)-2.0*X(I,J,K)+X(I-1,J,K))

Writing Efficient Programs 6-37

Y(I,J,K) = Y(I,J,K) + A1*V1 + A2*V2 +

* A3*V3 + S*(Y(I+1,J,K)-2.0*Y(I,J,K)+Y(I-1,J,K))

Z(I,J,K) = Z(I,J,K) + A1*V1 + A2*V2 +

* A3*V3 + S*(Z(I+1,J,K)-2.0*Z(I,J,K)+Z(I-1,J,K))

30 CONTINUE

40 CONTINUE

C Change the options back to the default values.

$OPTIMIZE LOOP_UNROLL COPIES=4, SIZE=60

. .

. .

STOP

END

What to Do If the
Optimized Program

Fails

Occasionally a program works di�erently after optimization. If this
happens:

1. Make sure that optimizer assumptions were not violated. If they
were, correct the code and recompile, or recompile the code
without optimization.

2. Isolate the problem code and �rst try optimization with level
one modules. If that does not work, recompile the code without
optimization.

If the problem still occurs, contact the HP Software Support Center
or your HP representative.

6-38 Writing Efficient Programs

7

Programming for Portability

This chapter describes how to port FORTRAN 77 programs from
other systems onto HP systems, and how to make new programs
easily transportable between HP systems. The suggestions in this
chapter are derived from basic concepts of structured programming
and good programming practices. However, because portability is the
main topic of this chapter, some of the suggestions might not result
in run-time e�ciency.

In general, methods for program portability fall into these �ve
categories:

Restricting a program to features and statements that are a part of
the HP FORTRAN 77 standard.

Making a program's data storage consistent and well-de�ned.

Designing the source code so changes can be easily made to the
program.

Avoiding unstructured programming constructs and features.

Understanding operating system issues.

Using these methods does not guarantee that your program will
compile, link, and load successfully, and run on a new system
exactly as it did on the previous system. Di�erences in the machine
architecture and the operating system limit that possibility. However,
following the methods in this chapter will minimize the changes you
will have to make to any HP FORTRAN 77 program.

Programming for Portability 7-1

Restricting
Programs to the
HP FORTRAN 77
Standard

The �rst step in writing portable FORTRAN 77 programs is to only
use features of the language that are available on every system to
which you port your programs. For HP systems, this feature set is
de�ned by the HP FORTRAN 77 standard, which fully implements
the ANSI standard for FORTRAN as de�ned by the ANSI X3.9-1978
documents. HP FORTRAN 77 also includes all of the extensions
contained in the Military Standard (MIL-STD-1753) de�nition
of FORTRAN 77. In addition, HP has included extensions for
compatibility, portability, and readability. The syntax and semantics
of these extensions to the ANSI standard are described in the HP
FORTRAN 77/iX Reference.

Do not use any feature that is not a part of the standard. When
moving FORTRAN 77 programs from a non-HP system to di�erent
HP systems, identifying features that are not de�ned in the HP
FORTRAN 77 standard can be di�cult. However, you can use the
ANSI compiler directive to help identify nonstandard features in HP
FORTRAN 77 programs.

When the ANSI compiler directive is used in a program, all features
not conforming to the ANSI standard are agged with appropriate
warning messages. An output listing with ANSI ON easily identi�es
all non-ANSI features. However, the ANSI directive also ags any
MIL-STD-1753 or HP extensions with warnings. Therefore, it is still
a tedious task to use the full capabilities of HP FORTRAN 77 if
you only use the ANSI compiler directive. Most HP FORTRAN 77
compilers include additional directives that allow you to speci�cally
de�ne which features will be agged. Refer to the HP FORTRAN
77/iX Reference for more details on the ANSI directive and
for information on other compiler directives that help identify
nonstandard features.

When using compiler directives to help identify nonstandard features,
place the directives in the source �le when your program is being
developed. If this is done, any deviation from the chosen standard is
immediately agged. If you are going to transfer an existing program
between systems, insert the directive and recompile the program on
the new system; any nonstandard features are agged. Also, if you
modify your program in the future and recompile the program with
the directives included, the nonstandard features are again agged.
Therefore, by using the ANSI directive or a system-dependent
directive, it is easy to identify features that are not common to both
systems.

7-2 Programming for Portability

Using Consistent
Data Storage

Because machine architectures di�er between systems, the methods
of storing data also di�er. Default sizes for data types might also
di�er between HP and non-HP systems, resulting in the data storage
accidentally overlapping. This creates a program that compiles and
loads on both HP and non-HP systems without errors, but produces
di�erent results with the same input data. However, if data storage is
used carefully and consistently, programs producing varied results on
di�erent systems with the same data will be less frequent.

Guidelines for consistency and integrity of a program's data storage
are described below. Using these guidelines might not produce a
program that makes optimal use of space, or executes as quickly as
possible; however, using these guidelines will produce code that is
easily portable and is fairly e�cient.

Use the LONG and
SHORT Compiler

Directives

If you are porting between HP systems, data type consistency is
easily maintained because the implicit defaults for HP FORTRAN
77 data types on all HP implementations are the same. That is,
on all systems, the type INTEGER defaults to INTEGER*4 and
the type REAL defaults to REAL*4. However, if your program
was developed on a non-HP compiler or on an HP compiler that is
not an implementation of the HP FORTRAN 77 standard (such
as FORTRAN/3000, FORTRAN 4X, or FORTRAN/1000), the
default data type sizes might not be the same. For example, the type
INTEGER defaults to INTEGER*2 under FORTRAN/3000.

You can use the HP FORTRAN 77 LONG and SHORT compiler
directives to change the default data type sizes. The LONG
directive on HP systems only documents the HP FORTRAN 77
default because the default is already four bytes for INTEGER and
LOGICAL values. However, the SHORT directive sets the default for
INTEGER and LOGICAL to two bytes. For example, if you insert a
SHORT directive in every unit to be ported from FORTRAN/3000,
the implicit data type sizes will not change and therefore should not
create any problems. Refer to the HP FORTRAN 77/iX Reference
for more information on the LONG and SHORT directive.

Consistent data storage on HP systems is obtained by using the
implicit HP FORTRAN 77 defaults or by using the LONG and
SHORT directives. However, because the data type sizes are not
clearly documented in the program itself, these methods are not
recommended for programs that might be ported more than once.
Instead, declare all variables, as described later in this chapter.

Programming for Portability 7-3

Use Length
Specifications in All

Type Statements

Not only should all the variables be explicitly declared, but their
individual sizes should be de�ned and documented. By declaring
sizes, you avoid the possibility of di�erent default sizes causing
invalid run-time results and you ensure that the common and
equivalence lengths are the same. Also, the data storage is well
de�ned, with the exact amount of variable storage speci�ed in the
declarations. This guideline is not recommended if performance is a
priority.

7-4 Programming for Portability

Declare All Variables Implicit declaration of variables according to the standard HP
FORTRAN 77 conventions (variables beginning with the letters I
through N are INTEGER; the rest are REAL) causes a default data
item's size to be assigned. In addition, implicit declarations are
not documented, making modi�cations di�cult. Although implicit
declarations might save programming time during the initial writing
phase, it might take more time for debugging and modifying the
program. Therefore, declaring all variables in a program should save
programming time, as well as ensuring the integrity of the data
structures.

Because HP FORTRAN 77 has an implicit declaration facility
de�ned as part of the ANSI language, you might forget to declare
all variables. For example, it would be easy to forget to declare an
index of a DO loop if the loop was added after the initial design was
complete. You can use the IMPLICIT NONE statement to turn o�
the implicit declaration facility. The IMPLICIT NONE statement (a
MIL-STD-1753 extension) generates error messages for undeclared
variables. Placing this statement in each program unit immediately
following the PROGRAM, SUBROUTINE, FUNCTION, or
BLOCK DATA statement guarantees that no variable declaration is
overlooked.

Avoid Using the
EQUIVALENCE

Statement

Data alignment requirements di�er between systems. For example,
noncharacter data on some machines must be word-aligned, while
character data on other machines must be aligned on a byte
boundary. Considering the di�erent machine word sizes between
systems, you can see how data alignment and equivalence overlapping
could change without being noticed when a program is ported
between systems. Therefore, when possible, avoid equivalences
between character and noncharacter data.

Because systems store data di�erently, an EQUIVALENCE statement
can cause storage allocation problems. Complicated equivalence
expressions have a higher chance of problems in the storage allocation
algorithm; therefore, do not try to conserve storage by using
equivalences. Also, long and complicated equivalence expressions can
be confusing when changes have to be made to the program.

Declare Common
Blocks the Same in
Every Program Unit

Because common blocks are implemented di�erently on di�erent HP
systems, you should declare each common block exactly the same in
every program unit in which it is used. By doing this, your program
is easier to read and is consistent in data storage. If common blocks
are not declared the same, some of the same problems associated
with the EQUIVALENCE statement could occur. However, because
the declarations are in di�erent program units (and possibly in
di�erent �les), the problems are more di�cult to �nd and correct.

To ensure that the declarations remain identical, use the INCLUDE
statement or INCLUDE compiler directive. Place each common block
declaration and associated variable declarations in a separate �le;

Programming for Portability 7-5

reference the �le by using the INCLUDE statement or directive in
every program unit that uses the common block. There is no chance
of errors due to unmatched declarations if all program units that
share a declaration �le are recompiled whenever the declaration �le
changes. However, if all program units are not recompiled when their
declaration �le changes, di�erences in the old and new common block
de�nitions might cause incorrect run-time results.

7-6 Programming for Portability

Initialize Data Before
the Algorithm Begins

The initialization of memory locations varies between systems. Some
systems check and initialize all allocated memory to a set value.
Most systems leave the allocated memory in the same state as the
previous program that used the memory. Therefore, to ensure storage
portability, initialize all data before the actual algorithm begins.

Using HP FORTRAN 77, you can initialize data in two ways:

1. Use assignment statements to improve documentation and
readability if your program is small, has very few variables, and
does not have common blocks.

2. Use DATA statements with BLOCK DATA subprograms for
initializing common blocks if you need more control over the initial
values.

Refer to the HP FORTRAN 77/iX Reference for the syntax and
semantics of these statements.

Avoid Accessing the
Representation of

Logical Values

The representation for the logical values .TRUE. and .FALSE.
di�ers between implementations of HP FORTRAN 77. Therefore,
avoid accessing these values (such as by using the EQUIVALENCE
statement) and testing their internal values. You should also not
use logical variables to pass nonlogical data (such as character data)
because the clarity and readability of the program is reduced.

Maintain Parameter
Type and Length

Consistency

The �nal guideline for data storage portability is to maintain type
and length consistency for subroutine and function parameters
and function values being returned. For example, serious problems
in data overlapping can result if a program calls a subroutine
with two INTEGER*2 parameters when the subroutine expects
two INTEGER*4 parameters. Because FORTRAN 77 passes all
parameters by reference, the program's data area will become
corrupt because the subroutine manipulates four extra bytes of data.
Problems like this often appear when trying to port to another
system.

Care should especially be taken for character data. The
CHARACTER*(*) declaration should only be used when a routine
must be called with di�erent character parameter sizes. In these
situations, the routines should be written to guarantee that the
current length of a character parameter is not exceeded. The
length can be passed as a separate parameter or determined in the
subprogram by using the LENGTH intrinsic function. Programs
should be written to avoid data corruption from inconsistent
type and length of parameters. On your system, there may be a
system-speci�c directive that helps ensure consistent parameter type
and length; for details, see the HP FORTRAN 77/iX Reference
Manual .

By following the data storage guidelines described in this section, you
will avoid most data overlap and data size problems. In summary, all
the variables and parameters should be declared so that any system's

Programming for Portability 7-7

storage allocation algorithm produces data areas that function
identically. Alignment problems are avoided by a minimal use of the
EQUIVALENCE statement. All common blocks of the same name
should have the same internal structure. Data should be explicitly
initialized. The internal representation of logical values should not be
relied upon. Type and length consistency should be maintained for
parameters and return values.

7-8 Programming for Portability

Writing Programs
That Can Be Easily
Modified

If a program will be moved from one system to another, it is unlikely
that the program will compile, link, load, and run correctly on the
�rst attempt. Therefore, an easily portable program should also be
able to be easily changed. This section describes some guidelines for
writing programs that can be easily modi�ed.

One way to write a program that can be easily modi�ed is to space
and indent statements. Without spacing and indenting, the program
is hard to read. For example, the following FORTRAN program
segment does not indent or space between logical blocks:

J1=0

DO I=1,30

J1=J1+1

IF(A(I,J1).EQ.0)THEN

DO J=1,30

IF(J.NE.I)THEN

A(I,J)=1

ELSE

A(I,J)=0

ENDIF
END DO

ELSE IF(A(I,J1).EQ.1)THEN

DO J=1,30

IF(J.NE.I)THEN

A(I,J)=0

ELSE

A(I,J)=1

ENDIF

END DO

ELSE

A(I,J1)=999

ENDIF

END DO

Programming for Portability 7-9

It is not obvious what happens in the section or code, nor is it easy
to see how the statements are nested. In contrast, the same program
segment that indents at each nesting level and double-spaces between
each logical section is shown below:

J1 = 0

DO I=1,30

J1 = J1 + 1

IF (A(I,J1) .EQ. 0) THEN

DO J=1,30

IF (J .NE. I) THEN

A(I,J) = 1

ELSE

A(I,J) = 0

ENDIF

END DO

ELSE IF (A(I,J1) .EQ. 1) THEN

DO J=1,30

IF (J .NE. I) THEN

A(I,J) = 0

ELSE

A(I,J) = 1

ENDIF

END DO

ELSE

A(I,J1) = 999

ENDIF

END DO

The nesting levels are now obvious. The logic of the program is also
easy to follow. Therefore, indenting and spacing makes a signi�cant
contribution to the readability of a program.

7-10 Programming for Portability

However, the purpose of the program segment is not obvious. One
way to make a program's function clear is to use meaningful variable
names. The ANSI standard restricts variable names to six uppercase
letters and numbers per variable name; using this limit, meaningful
names can be constructed. HP FORTRAN 77 names can be any
length (with a system-speci�c limit on the number of signi�cant
characters) and can contain any combination of upper and lowercase
letters, digits, and the underscore character. The variable must
begin with a letter. The following program segment uses meaningful
variable names.

Column_index = 0

DO Row_index=1,30

Column_index = Column_index + 1

IF (Matrix(Row_index,Column_index) .EQ. 0) THEN

DO Col_count=1,30

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = 1

ELSE

Matrix(Row_index,Col_count) = 0

ENDIF

END DO

ELSE IF (Matrix(Row_index,Column_index) .EQ. 1) THEN

DO Col_count=1,30

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = 0

ELSE

Matrix(Row_index,Col_count = 1

ENDIF
END DO

ELSE

Matrix(Row_index, Column_index) = 999

ENDIF

END DO

A glance at the segment above shows that the program performs a
matrix transformation. Therefore, using meaningful symbolic names
improves the understanding of a program.

Programming for Portability 7-11

Even though the readability of the example has improved by good
programming practices, it is not obvious what kind of matrix
transformation is taking place. To provide detailed information,
use comments. A comment is identi�ed by a C or * in column one.
In addition, by appending an exclamation point (!) to the end of
a source or directive line, the remainder of the line is treated as a
comment. Adding comments to the example results in the following:

Column_index = 0

C Check each element along the principal diagonal.

DO Row_index=1,30

Column_index = Column_index + 1 !Avoids extra loop, retains clarity

IF (Matrix(Row_index,Column_index) .EQ. 0) THEN

C If the principal diagonal element is 0,

C set all other elements in that row to 1.

DO Col_count=1,30

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = 1

ELSE

Matrix(Row_index,Col_count) = 0

ENDIF

END DO

ELSE IF (Matrix(Row_index,column_index) .EQ. 1) THEN

C If the principal diagonal element is 1,
C set all other elements in that row to 0.

DO Col_count=1,30

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = 0

ELSE

Matrix(Row_index,Col_count) = 1

ENDIF

END DO

ELSE

Matrix(Row_index,Column_index) = 999 !Mark inconsistent row.

ENDIF

END DO

7-12 Programming for Portability

Now, with just a quick glance at the example, the program's function
is obvious. However, be careful not to use too many comments and
do not include comments that only repeat the actions of the code;
these comments will obscure a program's function. Therefore, use a
few, e�ective comments instead of many unhelpful comments.

A �nal method of making a program readable and easy to change is
to use named constants instead of numeric or string literals. This
is done by using the HP FORTRAN 77 PARAMETER statement;
refer to the HP FORTRAN 77/iX Reference for details on the
PARAMETER statement. By using named constants, the literal is
documented with a meaningful name. Also, if the value needs to be
changed, only the PARAMETER statement has to be changed, not
every occurrence of the literal.

Programming for Portability 7-13

Adding PARAMETER statements and named constants to the
example results in the following:

PARAMETER (Lower_bound = 1, Upper_bound = 30)

PARAMETER (Invalid_row = 999)

PARAMETER (Repl_val_a = 0, Repl_val_b = 1)

PARAMETER (Column_start = Lower_bound - 1)

.

.

.

Column_index = Column_start

C Check each element along the principal diagonal.

DO Row_index=Lower_bound,Upper_bound

Column_index = Column_index + 1 !Avoids extra loop, retains clarity

IF (Matrix(Row_index,Column_index) .EQ. Repl_val_a) THEN

C If the principal diagonal element is Repl_val_a,

C set all other elements in that row to Repl_val_b.

DO Col_count=Lower_bound,Upper_bound

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = Repl_val_b

ELSE

Matrix(Row_index,Col_count) = Repl_val_a

ENDIF

END DO

ELSE IF (Matrix(Row_index,Column_index) .EQ. Repl_val_b) THEN

C If the principal diagonal element is Repl_val_b,

C set all other elements in that row to Repl_val_a.

DO Col_count=Lower_bound,Upper_bound

IF (Col_count .NE. Row_index) THEN

Matrix(Row_index,Col_count) = Repl_val_a

ELSE

Matrix(Row_index,Col_count) = rep1_val_b

ENDIF

END DO

ELSE

Matrix(Row_index,Column_index) = Invalid_row !Mark inconsistent row

ENDIF

END DO

7-14 Programming for Portability

In summary, spacing and indenting statements make the program
structure clearly visible. Adding meaningful variable names give
general details about a program's function. When comments are
e�ectively used, important details become apparent. Using named
constants improves documentation in the code and provides an easy
way of changing values. If you apply the guidelines given above, your
programs will be readable, easier to modify, and will be portable.

Avoiding
Unstructured
FORTRAN 77
Features

One factor in making a program transportable is to \plan for the
future" in regard to changes. In general, the unstructured features of
FORTRAN 77 make programs harder to understand and modify, and
therefore reduce portability. Some of the unstructured features are:

Assigned GOTO statement

ASSIGN statement

Computed GOTO statement

Arithmetic IF statement

Any use of Hollerith data

EQUIVALENCE statement

The list above includes only the least structured features of
FORTRAN 77. You should also omit any other features from your
programs that you think are unstructured.

Identifying
Nonstandard
Features

The STANDARD LEVEL compiler directive helps identify
nonstandard features. This directive has three possible options:
ANSI, HP, and SYSTEM.

The STANDARD LEVEL ANSI option has the same e�ect as the
ANSI ON compiler directive and ags all non-ANSI features with
warning messages.

The STANDARD LEVEL HP option issues warning messages for
features that are not part of the FORTRAN 77 standard and gives
a quick assessment of the non-HP FORTRAN 77 or system-speci�c
features in your programs.

The default STANDARD LEVEL SYSTEM option does not issue
warning messages for nonstandard or system-speci�c features.

Refer to the HP FORTRAN 77/iX Reference for more details on
the syntax and semantics of the ANSI and STANDARD LEVEL
compiler directives.

Programming for Portability 7-15

Avoiding Data
Storage
Inconsistencies

The CHECK FORMAL PARM and CHECK ACTUAL PARM
compiler directives help to avoid data storage inconsistencies between
a program and its subprograms. If properly used, these directives
supply parameter information to the system loader or Link Editor for
checking inconsistencies in type, length, and number of parameters.
Refer to the HP FORTRAN 77/iX Reference for a complete
description.

Using Comments When your program has code that is speci�c to the MPE/iX
operating system, place a C or * in the �rst column of each line of
system-speci�c code to identify the lines as comment lines. When
not compiling on MPE/iX, the code remains in the program without
being executed. When the program is compiled on MPE/iX, remove
the C or *.

7-16 Programming for Portability

Using Conditional
Compilation
Directives

Use the conditional compilation directives listed in table 8-1.

Table 7-1. Conditional Compilation Directives

Directive Description

$IF Conditionally compiles blocks of code.

$ELSE Used with the IF directive; marks the beginning of the ELSE block of
code.

$ENDIF Ends the IF directive.

$SET Assigns values to identi�ers used in IF directives.

Programming for Portability 7-17

For example, the partial program below uses the system intrinsics if
the program is run on an MPE/iX system and uses FORTRAN I/O
for portable code.

PROGRAM sysmpeix

$SET (os_mpe_ix = .TRUE.)

CHARACTER buffer(80)

$IF (os_mpe_ix)

SYSTEM INTRINSIC FREAD, FWRITE

$ENDIF

.

.

.

$IF (os_mpe_ix)

C MPE/iX intrinsic I/O; System-specific:

length = FREAD(filenum1, buffer, 80)

CALL FWRITE(filenum2, buffer, length, 0)

$ELSE

C FORTRAN I/O; Portable version:

READ(5,100) buffer

WRITE(6,200) buffer

100 FORMAT(80A1)

200 FORMAT(1X, 80A1)

$ENDIF

.

.

.

END

7-18 Programming for Portability

Resolving
Incompatibilities
between MPE V and
MPE/iX: the
HP3000 16

Directive

This section describes how to use the HP3000 16 compiler directive.
This directive helps resolve some of the incompatibilities between
the MPE V and MPE/iX operating systems and architectures. The
di�erences between the systems are:

Data alignment

Floating point data

Overlapping character substring moves

This is the syntax of the HP3000 16 compiler directive:

Programming for Portability 7-19

Do not use the HP3000 16 compiler directive if the application that
is ported from MPE V to MPE/iX is not a�ected by any of the
above incompatibilities. Likewise, if the application has only one
of the incompatibilities, specify only the appropriate option in the
directive. Table 7-2 summarizes the options.

Table 7-2. HP3000 16 Directive Options

Option Description

ON Turns on all three options (ALIGNMENT, REALS, and STRING MOVE).

OFF Turns o� all three options (ALIGNMENT, REALS, and STRING MOVE).

ALIGNMENT Emulates MPE V data alignment.

REALS Emulates MPE V oating point data.

STRING MOVE Emulates a ripple move (which is used on MPE V) for overlapping character
substrings.

Note In this chapter, the term \HP3000 oating point" refers to
Hewlett-Packard proprietary oating point data used on the 16-bit
HP3000 systems. Floating point data used on the 32-bit HP3000
systems is IEEE standard.

The compiler options degrade performance, as described below.
Because of the performance degradation, only use the options that
are necessary.

The ON Option This option turns on the ALIGNMENT, REALS, and
STRING MOVE options. Use the ON option only if all three options
are needed.

The OFF Option This options turns o� the ALIGNMENT, REALS, and
STRING MOVE options. This is the default.

7-20 Programming for Portability

The ALIGNMENT Option MPE V aligns noncharacter data on 16-bit boundaries and character
data on 8-bit boundaries. MPE/iX aligns data on 8-, 16-, 32-, and
64-bit boundaries, depending on the data type. Table 7-3 shows the
corresponding data alignments.

Table 7-3. Data Alignment on MPE V and MPE/iX

Alignment MPE V MPE/iX

8-bit CHARACTER CHARACTER, LOGICAL*1, BYTE

16-bit COMPLEX*8, COMPLEX*16,
INTEGER*2, INTEGER*4,
LOGICAL*2, LOGICAL*4, REAL*4,
REAL*8

INTEGER*2, LOGICAL*2

32-bit COMPLEX*8 INTEGER*4,
LOGICAL*4, REAL*4

64-bit COMPLEX*16, REAL*8, REAL*16

Use the ALIGNMENT option if your application assumes MPE V
data packing for common and equivalence data or if the application
makes calls to database intrinsics. Alternatively, the application can
be modi�ed to use MPE/iX alignment.

The following is an example of an equivalence structure that assumes
16-bit data alignment:

INTEGER*2 int_array(10)

INTEGER*4 var1, var2

EQUIVALENCE (var1, int_array(2)),

(var2, int_array(5))

Programming for Portability 7-21

Figure 7-1 shows how the structure is stored in memory on the MPE
V system.

Figure 7-1. MPE V Structure

Figure 7-2 shows how the structure is stored in memory on the
MPE/iX system.

Figure 7-2. MPE/iX Structure

7-22 Programming for Portability

Because the INTEGER*2 (2-byte) and INTEGER*4 (4-byte)
integers are stored on 16-bit boundaries on the MPE V system, the
above EQUIVALENCE statement is not a problem (as shown in
Figure 7-1). However, on MPE/iX, the compiler will have trouble
aligning the variable var1 on the array int_array(2) because var1

should be 32-bit aligned and int_array(2) is on a 16-bit boundary.
At this point, the compiler shifts the array int_array 16 bits so that
it can align the variable var1 on a 32-bit boundary. However, now
the variable var2 is not aligned on a 32-bit boundary (as shown in
Figure 7-3), so the compiler issues an error message.

Figure 7-3. Shifted MPE/iX Structure

Using the MPE/iX default alignment yields the best performance
(see Table 7-2). Using the ALIGNMENT option of the HP3000 16
directive to force 16-bit alignment of noncharacter data does not
noticeably a�ect performance, even though three instructions for
LOAD and STORE operations are needed for misaligned data versus
one instruction for aligned data. Also note that all of the data in the
program is not misaligned.

Programming for Portability 7-23

The REALS Option MPE/iX uses the IEEE oating point standard for representing
REAL*4, REAL*8, REAL*16, COMPLEX*8, and COMPLEX*16
types. MPE V uses proprietary HP3000 oating point to represent
these types. The REALS option reads, writes, and executes all
oating point numbers in the proprietary HP3000 oating point
format.

Use the REALS option if your program accesses a binary at �le or
accesses a database that contains proprietary HP3000 oating point.
This option is not necessary if the at �les are ASCII �les. When
using the REALS option, all oating point data is in proprietary
HP3000 oating point. Therefore, real parameters passed to external
routines are in the proprietary HP3000 oating point format. If
the REALS option is speci�ed and a system intrinsic is called that
requires a real parameter, a proprietary HP3000 oating point
number is passed. FREAD or FWRITE can be called because the
�les that are being accessed contain proprietary HP3000 oating
point. Some modi�cations might have to be made if a system
intrinsic is called that expects an IEEE oating point number.

The PAUSE intrinsic and some Compiler Library, Scienti�c Library,
V/3000, and DSG routines expect IEEE oating point real numbers.
If the Compiler Library routines are declared as external or declared
by the SYSTEM INTRINSIC statement, use the more e�cient
FORTRAN intrinsic functions instead of the compiler library
routines. If you use the REALS option, the compiler calls the
FORTRAN intrinsic function, which expects a proprietary HP3000
oating point number. The compiler makes the following emulation
routines available:

em_extin'

em_inext'

em_hpextin (same as em_extin')

em_hpinext (same as em_inext')

em_pause

If your program calls the Compiler Library routines INEXT' or
EXTIN' or calls the PAUSE system intrinsic, the easiest code change
is to call the above routines. If your program calls the Scienti�c
Library, V/3000, DSG, and IFS routines that expect IEEE oating
point, the real parameters passed to these routines must be converted
to IEEE oating point. Upon return, the real parameters or function
return values must be converted from IEEE to the proprietary
HP3000 oating point. The FPCONVERT routine converts oating
point numbers in either direction.

When you use the REALS option of the HP3000 16 directive, the
oating point emulation routines must be used on proprietary
HP3000 oating point numbers. There can be major performance
degradation if your program uses a lot of oating point arithmetic.

7-24 Programming for Portability

The STRING MOVE
Option

The STRING MOVE option should only be used when the
application assumes that overlapping character substring moves
have a ripple e�ect, as on MPE V. MPE/iX does not ripple the
overlapping character substring moves and therefore increases
performance on character moves. For example, the result of the
program fragment

character ch*10

ch(1:1) = '* '
ch(2:10) = ch(1:9)

depends on the operating system. On MPE V, the character string
ch is �lled with asterisks (*). On MPE/iX, the �rst and second
positions contain asterisks and the remainder of the string is
unde�ned.

Do not use this option if your program does not rely on the ripple
e�ect of character substring moves. If there are overlapping character
substrings when you use the STRING MOVE option, the string
is moved one byte at a time. Without this option, a fast move is
used. For example, in a fast move of 20 characters, two sets of eight
characters are moved, followed by one set of four characters.

Programming for Portability 7-25

8

Interfacing with Other Languages

This chapter describes how to call routines written in HP Pascal/iX,
HP COBOL/iX, or HP C/iX from an HP FORTRAN 77/iX
program, and how to call an HP FORTRAN 77/iX subroutine or
function from HP Pascal/iX, HP COBOL/iX, or HP C/iX.

If you call other languages from HP FORTRAN 77/iX, the actual
parameters of the internal procedure or function must match the
formal parameters of the external procedure or function. The
CHECK ACTUAL PARM compiler option determines the level
of the checking information placed in the object �le for the Link
Editor when performing a LINK or ADDXL. Refer to the HP
FORTRAN 77/iX Reference Manual for more information on the
CHECK ACTUAL PARM compiler directive.

When calling HP FORTRAN 77/iX from other languages, you
must match the parameters appearing in the non-FORTRAN 77
program with the formal parameters of the external FORTRAN 77
procedure or function. The CHECK FORMAL PARM compiler
option determines the checking information placed in the object �le
for the Link Editor when performing a LINK or ADDXL. Refer to
the HP FORTRAN 77/iX Reference Manual for more information on
the CHECK FORMAL PARM compiler option.

All parameters passed to an HP FORTRAN 77/iX subprogram must
be passed by reference. By default, HP FORTRAN 77/iX passes
parameters of all types by reference, except for character data.
When passing character data, a descriptor is passed that includes
the address and length of the string. HP FORTRAN 77/iX allows
parameters to be passed by value to invoke non-FORTRAN 77
program units that allow passing arguments by value. When passing
parameters by value, the ALIAS compiler directive must indicate how
each parameter is passed.

HP FORTRAN 77/iX does not allow arrays to be passed by
value. Therefore, an HP FORTRAN 77/iX program cannot call a
non-FORTRAN 77 program unit that requires an array parameter
to be passed by value. Also, when you call functions that have no
parameters, you must specify an empty parameter list, ().

Interfacing with Other Languages 8-1

HP Pascal/iX HP Pascal/iX is the ANSI standard version of Pascal for the HP
3000 Series 900 computer.

An HP Pascal/iX procedure or function can be called from an HP
FORTRAN 77/iX program and an HP FORTRAN 77/iX program
can call an HP Pascal/iX procedure or function if the data types
of the parameters match (see Table 8-1). The language code of
the ALIAS compiler directive should be used for correctly passing
parameters.

Table 8-1. HP FORTRAN 77/iX and HP Pascal/iX Types

HP FORTRAN 77/iX Type HP Pascal/iX Type

INTEGER*2 SHORTINT
Integer subrange in the range
-32768 to +32767

INTEGER*4 INTEGER
Integer subrange in the range
-2147483648 to +2147483647

REAL*4 REAL

REAL*8 LONGREAL

CHARACTER*1 CHAR

CHARACTER*n PACKED ARRAY [1..n] OF CHAR

LOGICAL*1 (BYTE) Integer subrange in the range
-128 to +127

LOGICAL*2 Integer subrange in the range
-32768 to +32767
SET (1 word)

LOGICAL*4 Integer subrange in the range
-2147483648 to +2147483647
SET (2 words)

COMPLEX*8 RECORD
real part : REAL;
imag part : REAL;
END;

COMPLEX*16 RECORD
real part : LONGREAL;
imag part : LONGREAL;
END;

8-2 Interfacing with Other Languages

Calling HP Pascal/iX
from HP FORTRAN 77/iX

HP FORTRAN 77/iX cannot pass arrays by value, so you cannot
call an HP Pascal/iX routine with a value parameter of a type
corresponding to an HP FORTRAN 77/iX array type. You must use
the %VAL parameter of the ALIAS compiler directive for other types
of HP Pascal/iX value parameters.

All data transferred between HP FORTRAN 77/iX and HP
Pascal/iX must be passed through parameter lists because HP
FORTRAN 77/iX cannot specify global variables and HP Pascal/iX
cannot specify common blocks. The calling HP FORTRAN 77/iX
program can have a common area, but the external HP Pascal/iX
procedure or function cannot access this common area.

Parameter checking should be turned o� because HP Pascal/iX
generates di�erent type check values from HP FORTRAN 77/iX
values. To turn o� the checking, specify $CHECK_ACTUAL_PARM 0$ in
the HP FORTRAN 77/iX program, or specify $CHECK_FORMAL_PARM

0$ in the HP Pascal/iX procedure.

HP FORTRAN 77/iX program that calls an HP Pascal/iX
procedure:

PROGRAM call_pascal

c Calling an HP Pascal/iX procedure

$ALIAS pasprog PASCAL(%REF)

CHARACTER str*30

str='Pass this string'

CALL pasprog(str)

PRINT *,str

END

Interfacing with Other Languages 8-3

External HP Pascal/iX procedure:

$SUBPROGRAM$
PROGRAM pascal;

TYPE charstr = PACKED ARRAY[1..30] OF CHAR;

{ Turn parameter checking off because HP Pascal/iX generates different

parameter type check values than HP FORTRAN 77/iX. }

$CHECK_FORMAL_PARM 0$

PROCEDURE pasprog(VAR str:charstr);

VAR output : TEXT;

BEGIN

{ Open OUTPUT so we can display the string to verify that

it was passed correctly }

REWRITE(output,'$STDLIST');

WRITELN(output,str);

{ Add to the string }

strmove(strlen(' back again'),' back again',1,str,17);

END;

BEGIN

END.

8-4 Interfacing with Other Languages

Calling HP FORTRAN
77/iX from HP Pascal/iX

An HP FORTRAN 77/iX subroutine or function can be called from
an HP Pascal/iX program if the data types of the parameters match
(see Table 8-1). However, be careful when passing character strings.
HP FORTRAN 77/iX expects an additional word that describes
the maximum length of the string, while PAC's (packed array of
char) in Pascal do not. When an HP Pascal/iX character string is
passed to HP FORTRAN 77/iX, the compiler expects the string to
be passed by reference (the address of the string) and then expects
the maximum length of the string to be passed by value. If the HP
FORTRAN 77/iX routine is declared EXTERNAL FTN77 in the
HP Pascal/iX program, the length is automatically passed as HP
FORTRAN 77/iX expects it.

HP Pascal/iX cannot access an HP FORTRAN 77/iX common area
and cannot pass a �le or a label to an external HP FORTRAN 77/iX
routine.

The following example shows how to pass character strings between
HP Pascal/iX and HP FORTRAN 77/iX.

HP Pascal/iX program that calls an HP FORTRAN 77/iX
subroutine:

PROGRAM callfort(OUTPUT);

CONST str_stuff='Pass this string to FORTRAN 77';

TYPE pac = PACKED ARRAY[1..50] OF CHAR;

VAR str : pac;

cur_len:integer;

{ Declare the external HP FORTRAN 77/iX program as EXTERNAL FTN77 so the

PAC is passed correctly and so compatible data type information is

generated for the Link Editor. Two parameters are passed: the

the PAC by reference (or the address of the string) and a one-

word integer by reference, which is the current length of the PAC.

HP Pascal/iX passes the maximum length of str (50 in this example)

by value between these two arguments to satisfy HP FORTRAN 77/iX

requirements for passing character data. }

PROCEDURE fortprog(VAR str:pac;
VAR cur_len:integer);

EXTERNAL FTN77;

BEGIN

str:=str_stuff;

{ Get the current length of the PAC }

cur_len:=strlen(str_stuff);

WRITELN(str);

{ Call the HP FORTRAN 77/iX subroutine and pass the PAC

and the current length of the PAC }

fortprog(str,cur_len);

{ Do a linefeed to print the concatenated string on the following line}

Interfacing with Other Languages 8-5

WRITELN;

WRITELN(str);

END.

8-6 Interfacing with Other Languages

HP FORTRAN 77/iX subroutine:

SUBROUTINE fortprog(str,cur_len)
c The formal parameters are the character string and the current

c length of the string; the maximum length of the character

c string is a hidden parameter that HP FORTRAN 77/iX uses.

IMPLICIT NONE

INTEGER*4 cur_len

c Use maximum length (the 2nd actual parameter) as the character length:

CHARACTER str*(*)

c Concatenate the strings and print result

str = str(1:cur_len) // ' and then back again'

PRINT *,str

RETURN

END

Interfacing with Other Languages 8-7

HP COBOL II/iX The data types of HP FORTRAN 77/iX and HP COBOL
II/iX di�er. Numeric HP COBOL II/iX data types are binary
packed-decimal or in ASCII format (see Table 8-2). However,
by taking the size and the format into consideration, you can
successfully match HP FORTRAN 77/iX and HP COBOL II/iX
types.

Table 8-2. HP COBOL II/iX Numeric Types and Formats

HP COBOL II/iX
Type

Description of the Format

COMP-3 Packed decimal format with the sign in the rightmost half-byte
and 2 digits per byte.

COMP Binary format; the sign bit 0 is for positive, 1 for negative.

The size S9 to S9(4) is 2 bytes.
The size S9(5) to S9(9) is 4 bytes.
The size S9(10) to S9(18) is 8 bytes.

DISPLAY Unpacked decimal format (ASCII).

Unsigned:
alphanumeric format;
no leading or trailing sign;
1 character per byte.

Sign is leading:
alphanumeric format;
sign overpunched in leftmost byte.

Sign is trailing:
alphanumeric format;
sign overpunched in rightmost byte.

Sign is leading and is separate:
�rst byte is ASCII '-' for negative and '+' for positive.

Sign is trailing and is separate:
last byte is ASCII '-' for negative and '+' for positive.

8-8 Interfacing with Other Languages

Table 8-3 shows examples of possible matches between HP COBOL
II/iX and HP FORTRAN 77/iX types.

Table 8-3. HP COBOL II/iX and HP FORTRAN 77/iX Data Types

HP COBOL II/iX Type HP FORTRAN 77/iX Type

PIC X(N) CHARACTER*n

PIC S9(01)-S9(04) COMP INTEGER*2 {-9999..9999}

PIC S9(05)-S9(09) COMP INTEGER*4 {999,999,999..999,999,999}

PIC S9(10)-S9(18) COMP INTEGER*4 varname(2)

The HP COBOL II/iX types 01 and 77 always start on word
boundaries.

Interfacing with Other Languages 8-9

Calling HP COBOL II/iX
from HP FORTRAN 77/iX

HP COBOL II/iX expects parameters to be passed by reference.
When passing character data to an HP COBOL II/iX routine, the
ALIAS compiler directive must indicate that the routine language is
HP COBOL II/iX, so only the string address is passed and not the
additional length. For example,

HP FORTRAN 77/iX program that calls an HP COBOL II/iX
subprogram:

$ALIAS cobsubr COBOL

PROGRAM fortran_cobol

IMPLICIT NONE

INTEGER*4 int1,int2,int3

C By default, all parameters are passed by reference.

int1 = 25000

int2 = 30000

CALL cobprog(int1,int2,int3)

PRINT *,int3

END

HP COBOL II/iX subprogram:

$CONTROL SUBPROGRAM

IDENTIFICATION DIVISION.

PROGRAM-ID. COBPROG.
AUTHOR. LD.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. HP3000.

OBJECT-COMPUTER. HP3000.

DATA DIVISION.

LINKAGE SECTION.

77 IN1 PIC S9(09) COMP.

77 IN2 PIC S9(09) COMP.

77 OUT PIC S9(09) COMP.

PROCEDURE DIVISION USING IN1, IN2, OUT.

PARA-1.

ADD IN1, IN2, GIVING OUT.

GOBACK.

8-10 Interfacing with Other Languages

Calling HP FORTRAN
77/iX from HP COBOL

II/iX

The GIVING phrase must be used when calling an HP FORTRAN
77/iX function from HP COBOL II/iX.

Example 1

HP COBOL II/iX program that calls an HP FORTRAN 77/iX
function:

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. CALLFTN.
003000 DATA DIVISION.

004000 WORKING-STORAGE SECTION.

005000 01 TABLE-INIT.

006000 05 PIC S9(9) COMP SYNC VALUE 10.

007000 05 PIC S9(9) COMP SYNC VALUE 8.

008000 05 PIC S9(9) COMP SYNC VALUE 14.

009000 05 PIC S9(9) COMP SYNC VALUE 9.

010000 05 PIC S9(9) COMP SYNC VALUE 18.

011000 05 PIC S9(9) COMP SYNC VALUE 98.

012000 05 PIC S9(9) COMP SYNC VALUE 7.

013000 05 PIC S9(9) COMP SYNC VALUE 23.

014000 01 TABLE-1 REDEFINES TABLE-INIT.

015000 05 TABLE-EL OCCURS 8

016000 PIC S9(9) COMP SYNC.

017000

018000 01 LARGEST-VALUE PIC S9(9) COMP SYNC.

019000

020000 01 STRING-1 PIC X(10) VALUE "ABCDEFGHIJ".

021000 01 LEN PIC S9(9) COMP SYNC.

022000

Interfacing with Other Languages 8-11

023000 PROCEDURE DIVISION.

024000 P1.

025000**
026000* Call FORTRAN subroutine "LARGER" to find the largest element *

027000* in a table on "LEN" elements. *

028000**

029000

030000 MOVE 8 TO LEN.

031000 CALL "LARGER" USING TABLE-1, LEN GIVING LARGEST-VALUE.

032000 DISPLAY LARGEST-VALUE " IS THE LARGEST VALUE IN THE TABLE".

033000

034000**

035000* Call FORTRAN subroutine "BACKWARDS" to reverse a string of *

036000* 10 characters. *

037000* Shows passing character strings to FORTRAN subroutine *

038000**

039000

040000 MOVE 1 TO LEN.

041000 DISPLAY STRING-1 " BACKWARDS IS " WITH NO ADVANCING

042000 CALL "BACKWRDS" USING STRING-1 \LEN\.

043000 DISPLAY STRING-1.

8-12 Interfacing with Other Languages

HP FORTRAN 77/iX function:

INTEGER*4 FUNCTION LARGER(A,L)
INTEGER*4 A(8)

INTEGER*4 LARGST,L

C

C THIS SUBROUTINE FINDS THE LARGEST VALUE IN AN ARRAY

C OF 'L' INTEGERS.

C

LARGST = A(1)

DO 100 I = 2,L

IF (LARGST .GT. A(I)) GO TO 100

LARGST = A(I)

100 CONTINUE

LARGER = LARGST

RETURN

END

C **

C * SUBROUTINE BACKWRDS *

C * THIS SUBROUTINE REVERSES AN ARRAY OF 'L' CHARACTERS*

C **

SUBROUTINE BACKWRDS(STR)

CHARACTER STR(10)

CHARACTER N

J = 10

DO 100 K = 1,5

N = STR(K)
STR(K) = STR(J)

STR(J) = N

J = J - 1

100 CONTINUE

RETURN

END

Interfacing with Other Languages 8-13

Example 2

HP COBOL II/iX program that calls an HP FORTRAN 77/iX
function:

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLFTN2.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 INT-1 PIC S9(4) COMP SYNC VALUE 13.

01 INT-2 PIC S9(4) COMP SYNC.

01 STRING-1 PIC X(10) VALUE "0123456789".

PROCEDURE DIVISION.

P1.

CALL "FUNC1" USING INT-1,@STRING-1 GIVING INT-2.

DISPLAY STRING-1.

DISPLAY INT-2.

HP FORTRAN 77/iX function:

$FTN3000_66 CHARS ON

INTEGER*2 FUNCTION func1(i,string)

CHARACTER string*10
INTEGER*2 i

WRITE(6,*) i, string

string = 'This is it'

func1 = i

END

8-14 Interfacing with Other Languages

HP C/iX HP C/iX, when invoked in ANSI mode, is a conforming
implementation of ANSI C, as speci�ed by American National
Standard X3.159-1989. It runs on the HP 3000 Series 900 computer.

An HP C/iX procedure or function can be called from an HP
FORTRAN 77/iX program and an HP FORTRAN 77/iX program
can call an HP C/iX procedure or function if the data types of
the parameters match (see the table below). The ALIAS compiler
directive should be used for correctly passing parameters.

Table 8-4. HP FORTRAN 77/iX and HP C/iX Types

HP FORTRAN 77/iX Type HP C/iX Type

| char

CHARACTER*1 unsigned char

INTEGER*2 short

| unsigned short

INTEGER*4
or INTEGER

int

| unsigned int

INTEGER*4 long

| unsigned long

REAL or REAL*4 oat

REAL*8 or DOUBLE
PRECISION

long oat

REAL*8 or DOUBLE
PRECISION

double

COMPLEX or
COMPLEX*8

(See Note 1)

DOUBLE COMPLEX
or COMPLEX*16

(See Note 2)

Interfacing with Other Languages 8-15

HP FORTRAN 77/iX and HP C/iX Types (Continued)

HP FORTRAN 77/iX Type HP C/iX Type

INTEGER*4 enum

Not available. pointer to type

long pointer to
type

CHARACTER*n
(See Note 3)

string
(char *)

CHARACTER*1
array
(See Notes 4 & 5)

char
array

Hollerith array See Note 5)

(See Note 4) arrays

LOGICAL*2
(See Note 6)

short (Used for
logical test)

LOGICAL*4
(See Note 6)

int (Used for
logical test)

Used when calling a
SUBROUTINE

void

Used when calling a
FUNCTION

function

8-16 Interfacing with Other Languages

Notes on HP FORTRAN
77/iX and HP C/iX Types

1. The FORTRAN 77 type of COMPLEX or COMPLEX*8 is
equivalent to the following HP C/iX structure:

struct complex {

float real_part;

float imag_part;

};

2. The FORTRAN 77 type of DOUBLE COMPLEX or
COMPLEX*16 is equivalent to the following HP C/iX structure:

struct complex {

double real_part;

double imag_part;

};

3. HP FORTRAN 77 passes character strings as parameters using
string descriptors corresponding to the following HP C/iX
declarations:

char *char_string; /* points to string */

int len; /* length of string */

4. HP FORTRAN 77/iX stores arrays in column-major order
whereas HP C/iX stores arrays in row-major order. The default
lower bound for HP FORTRAN 77 is one; for HP C, the lower
bound is always zero.

5. HP FORTRAN 77 does not terminate character or Hollerith
strings with a null byte, but HP C does.

6. HP FORTRAN 77 and HP C do not share a common de�nition of
true or false. In HP FORTRAN 77, logical values are determined
by the low-order bit of the high-order byte. If this bit is 1, the
logical value is .TRUE., and if the bit is zero, the logical value is
.FALSE.. HP C uses any nonzero value to represent true and uses
zero for false.

Files and I/O A FORTRAN unit cannot be passed to a C routine to perform
I/O on the associated �le. Nor can a C �le pointer be used by a
FORTRAN routine. However, a �le created by a program written in
either language can be used by a program of the other language if the
�le is declared and opened within the latter program.

Mixing FORTRAN direct, terminal, or tape READ statements with
stdio fread input results in the FORTRAN READ commencing
from the beginning of the next block after the contents of the bu�er,
not from the current position of the input cursor in the fread bu�er.
The same situation in reverse may occur by mixing read with a
FORTRAN sequential disk read.

Interfacing with Other Languages 8-17

Parameter Passing
between HP FORTRAN

77 and HP C

The major di�erence is that FORTRAN and C pass parameters
di�erently|FORTRAN by reference and C by value. This means
that all actual parameters in an HP C call to an HP FORTRAN
77 routine must be pointers or variables pre�xed with the unary
address-of operator &. In addition, all formal parameters in an HP C
routine called from HP FORTRAN 77 must be pointers, unless you
use the $ALIAS directive in the HP FORTRAN 77 code to change
FORTRAN's parameter passing mechanism so the parameters are
de�ned as value parameters. Refer to the HP FORTRAN 77/iX
Reference, chapter 7 for more information about the $ALIAS
directive.

To pass string variables of any length from an HP C call to
an HP FORTRAN 77 subroutine you must build and pass a
two-parameter descriptor (de�ned in Note 3 above), initialize the
string appropriately, and pass two arguments. The two arguments
are the pointer to the characters and the value of the length word.
This is shown below:

/* C program */

extern print_str();

main()

{

char *str ="ABCDEFG";

int len;

len = strlen (str);

(void) print_str (str, len);

}

C FORTRAN program

C

SUBROUTINE print_str (str, len)

C ASSUME MAX LENGTH OF 300

character*300 str

integer len

if (len .GE. 5) then

print *, str(1:5)

else

print *, str(1:len)

endif

END

8-18 Interfacing with Other Languages

This example shows passing a character string from a FORTRAN
program to a C function. The function returns the number of
characters in the string before a space. Otherwise it returns the
maximum string length.

/* C program */

#define MSLEN 300

sizer(x) char *x;

{

register int i;

for (i=0; i <MSLEN; i++)

if (x[i] == ' ') return(i);

return(MSLEN);

}

C FORTRAN program

$alias sizer='sizer'(%ref)

program test

character*300 x

integer sizer

external sizer

integer i

data x/"abcdefghi klmnop"/

i = sizer(x)

print *,i

end

Interfacing with Other Languages 8-19

Using System
Intrinsics

MPE/iX system intrinsics are procedures and functions written in
HP Pascal/iX. The system intrinsics handle individual programming
operations and are invoked by procedure or function calls. This
chapter describes how to de�ne and call the system intrinsics.

FORTRAN 77 intrinsic functions are part of the FORTRAN 77
library in acordance with the ANSI and MIL-STD-1753 standards.
The FORTRAN 77 intrinsics do not have to be de�ned as system
intrinsics. Do not confuse MPE/iX system intrinsics with FORTRAN
77 intrinsics; this chapter only discusses system intrinsics. Refer to
the HP FORTRAN 77/iX Reference Manual for a description of the
FORTRAN 77 intrinsics. Refer to the MPE/iX Intrinsics Reference
Manual and the HP FORTRAN 77/iX Reference Manual for a full
description of the system intrinsics.

In addition to the system intrinsics de�ned in the MPE/iX Intrinsics
Reference Manual , each subsystem (such as VPLUS, HPIMAGE,
etc.) can de�ne procedures or functions in the SYSINTR �le. You
can also create intrinsic declarations for your own procedures or
functions via the HP Pascal/iX compiler using the BUILDINT
directive.

Defining System
Intrinsics

To de�ne a system intrinsic in a FORTRAN 77 program, place the
SYSTEM INTRINSIC statement before any executable statement
in each procedure or function in which the intrinsic is used.
Alternatively, the SYSTEM INTRINSIC directive can be used with
the same result as the SYSTEM INTRINSIC statement, except
that the directive has a global e�ect. The SYSTEM INTRINSIC
directive must appear before the �rst nondirective statement of the
program unit in which it is to start taking e�ect. It is not necessary
to de�ne how the parameters are passed because FORTRAN 77 gets
this information from the SYSINTR �le for system intrinsics. For
example,

C SYSTEM INTRINSIC directive:

$SYSTEM INTRINSIC calendar ! Only needs to be declared once;

! does not have to be redefined if

! subsequent functions of procedures

! call calendar.

C SYSTEM INTRINSIC statement:

SYSTEM INTRINSIC calendar ! Must be declared in each

! procedure or function

! that calendar is used.

8-20 Interfacing with Other Languages

Matching Actual and
Formal Parameters

When a procedure or function is identi�ed as an intrinsic, the
formal parameters do not have to be listed. When an intrinsic is
called, the compiler checks the SYSINTR �le to compare the actual
parameters with the formal parameters. Table 8-5 shows how HP
FORTRAN 77/iX actual parameters are matched to the intrinsic
formal parameters.

Table 8-5. HP FORTRAN 77/iX and HP Pascal/iX Data Types

HP FORTRAN 77/iX
Data Type

Corresponding HP Pascal/iX
Data Type

Description

INTEGER*2 SHORTINT or range type
(User-de�ned)

16-bit signed integer (I16)

INTEGER*4 INTEGER or range type
(User-de�ned)

32-bit signed integer (I32)

Not available LONGINT or range type
(User-de�ned)

64-bit signed integer (I64)

INTEGER*2 BOOLEAN or range type
(User-de�ned)

16-bit unsigned integer (U16)

INTEGER*4 User-de�ned range type 32-bit unsigned integer (U32)

Not available User-de�ned range type 64-bit unsigned integer (U64)

REAL*4 REAL 32-bit real (R32)

REAL*8 LONGREAL 64-bit real (R64)

LOGICAL*2 BOOLEAN Boolean (B)

CHARACTER CHAR Character (C)

INTEGER*4 LOCALANYPTR 32-bit address (@32)

Not available GLOBALANYPTR 64-bit address (@64)

Equivalent array type ARRAY (any type) Array (A)

Array type RECORD (any type) Record (REC)

Interfacing with Other Languages 8-21

Example

PROGRAM intrinsic_example

IMPLICIT NONE

SYSTEM INTRINSIC fopen,read,fgetinfo,fclose,printfileinfo

SYSTEM INTRINSIC fcontrol

CHARACTER*36 filename,cmd,fname

CHARACTER tab*10

INTEGER*2 ifnum,recsize

INTEGER*2 tlen,i

INTEGER*4 eof

1 FORMAT (1X)

2 FORMAT (A,'Input file > ')

3 FORMAT (1X,'The file ',A8,' has record length of ',I3)

4 FORMAT (1X,'and contains ',I3,' records.')

PRINT *, ' '

tab = ' '

eof = 0

recsize = 0

WRITE(6,1)

WRITE(6,2) tab

tlen = read(cmd,-36)

filename = cmd(1:tlen) // ' '

PRINT *, 'Input = ', filename

C Open the old permanent file with exclusive update access

ifnum = fopen(filename,1B,105B)

IF (CCODE()) 5,6,5

5 STOP 'Open failed'

6 CALL fcontrol(ifnum,5,0B) ! Call fcontrol to rewind the file

IF (CCODE())7,8,7

7 CALL printfileinfo(ifnum)

8 CALL FGETINFO(ifnum,,,,recsize,,,,,,eof) ! Get file information

IF (CCODE())10,9,10

9 WRITE(6,3) filename,recsize

WRITE(6,4) eof

10 CALL FCLOSE(ifnum,1,0)

STOP

END

8-22 Interfacing with Other Languages

Some MPE/iX intrinsics are OPTION EXTENSIBLE, which means
that a partial formal parameter list can be passed to the intrinsic.
The example above passed a partial parameter list to FOPEN
and FGETINFO. The MPE/iX intrinsic FGETINFO is an option
extensible intrinsic with up to 20 parameters. In the example above,
the statement

CALL FGETINFO(ifnum,,,,recsize,,,,,,eof)

does not use the second through the fourth or the sixth through the
tenth parameters. Commas must be in the parameter list to inform
the compiler that the �rst, �fth, and eleventh parameters are the
only parameters being passed. Also note that you do not have to
list any parameters following the eleventh parameter if they are not
needed.

Interfacing with Other Languages 8-23

9

Debugging FORTRAN 77 Programs

HP FORTRAN 77/iX programs can be symbolically debugged using
one of the following:

xdb symbolic debugger

HP Toolset/iX

This chapter describes both methods of debugging.

Using xdb The symbolic debugger xdb is a powerful debugging facility. Refer
to the HP Symbolic Debugger/iX User's Guide for a complete
description of xdb.

There are two ways to compile your program with symbolic debugger
information:

Use the info-string option to specify the symbolic debugger option
when you compile your program. For example:

:FTNXLLK test_xdb,testprog;INFO="symdebug xdb"

Embed the symbolic debugger option in the �rst statement of your
source code. For example:

$SYMDEBUG XDB ON

PROGRAM test_debug

.

.

declarations

statements

.

.

END

To start the debugger on a program called test_xdb, execute the
following command:

xdb test_xdb

Debugging FORTRAN 77 Programs 9-1

The symbolic debugger (xdb) is the primary tool for debugging a
program that does not execute properly. The debugger supports
debugging capabilities on C, FORTRAN, and Pascal programs.

In addition to the symbolic debugger, HP FORTRAN 77 o�ers a
range checking option for detecting run-time errors, as described
earlier in this chapter.

To analyze a program, the debugger uses the executable �le and
related source �les.

The debugger has many commands for viewing and manipulating
your program. This section discusses how you can use it to:

Look at the execution stack

Look at the contents of your source �les

Look at data values

Control execution of your program with both single step execution
and the use of breakpoints

This section presents some basic getting started information for using
the symbolic debugger.

Table 9-1 lists some simple xdb commands that are described in this
chapter.

Table 9-1. Sample xdb Commands

Command Description

r Run the program

b 82 Set a breakpoint at line 82

c Continue running until the next breakpoint

s Single step through the next source line

t Print a trace of the current execution stack

v View a \window" of lines

/string Search forward in the source for string

p abc Print the value of variable abc

p abc = 2.2 Assign a new value to abc

p buffer\10d Print the �rst 10 elements of array buffer in
decimal format

q Quit the debugger

9-2 Debugging FORTRAN 77 Programs

The Strategy When your program does not execute properly, use the following
strategy to locate and correct any problems:

1. Invoke the symbolic debugger. The result is that you create
a debugging environment in which you can now execute your
program.

2. Execute the program in the debugging environment and then use
the debugger commands to locate the execution bugs.

3. Once you have located the problem code, exit the debugger,
retrieve the appropriate source �les, make the required changes,
recompile, and relink the program.

4. If your program still executes incorrectly, go back to running the
debugger.

Program Requirement Before the symbolic debugger can be used to analyze a FORTRAN
program, you must compile the program with the SYMDEBUG XDB
directive.

This ensures that necessary debugging information is incorporated
into the object code. Do not use the optimizer while debugging code
because the compiler cannot generate debug information and perform
optimizations at the same time.

Debugging FORTRAN 77 Programs 9-3

Linker and Debugger
Interaction

You should be aware that using the symbolic debugger greatly
increases the size of your program (often by a factor of two or three)
because of the tables it creates. When you execute your program in
the debugger environment, three tables are generated:

A debug name and type table

A value table

A source line table

The debugger uses the �rst two tables to store information about
program status and data values, and it uses the latter to associate
lines of source code with object code.

Code for updating these tables is incorporated into a program's
object code. The result is that, once created by the debugger, the
tables are updated every time the linker is invoked to link the object
�les. The linker does not allow you to inhibit this updating.

When your program is executing correctly and you no longer need
the symbolic debugger, you must recompile the source �les and then
relink the object �les to remove the debugging information. Without
the maintenance of the three debugger tables, the program occupies
less space and links faster. Also, in a program's production version,
you probably do not want to supply the debugger capabilities
provided by the three tables.

In some cases it may be necessary to maintain two versions of a
program: one with debugging information for software support
purposes and a production version that has the debugging
information removed. If you want the program to be sharable, it is
necessary to remove the debugging information from the production
version because the debugger does not work on sharable code.

Invoking the Debugger Once you have prepared your program for the debugger and it is in
an executable �le (in the following example called ALL), invoke the
xdb debugger by typing

xdb ALL

Note that xdb returns the number of procedures and, if you are not
using an HP terminal, prints the �rst executable line. If you are
using an HP terminal, the screen displays the �rst executable line of
code (surrounded by text) centered in the source window, a line with
the �le, procedure, and line number information, and a command
window. Then xdb waits for you to input a command like

s

(which allows you to step through one line of code at a time).

9-4 Debugging FORTRAN 77 Programs

Exiting the Debugger To exit the debugger, type

q

You are prompted for con�rmation that you really want to exit from
xdb. This is a safeguard in case you accidentally type the letter q.

Executing Your Program To execute your program in the debugger environment, type

r

The r command allows you to specify any arguments that your
program needs. Simply follow the command with the argument list:

r; info="info string"; parm=375

Redirection arguments can be supplied as follows:

r; STDIN=READDATA; STDLIST=OUTFILE

This means that the input is coming from the �le readdata and the
output is to be placed in the �le outfile.

The program now has control and xdb waits for the program to
terminate or to receive a signal. A signal such as an interrupt from
the terminal, a memory fault, or a breakpoint in the program causes
control to return to xdb and the program to suspend.

If you need to kill the program process, type

k

which is interpreted by xdb as an interrupt signal.

Viewing the Execution
Stack

The debugger supports an environment that provides detailed
information about the execution of your program. If the program
halts incorrectly, the debugger's execution stack can be useful in
determining the reason. Each time a routine is executed, the routine
name is placed on the stack. The bottom of the stack is always the
main program routine and the top is the name of the routine in
which the program halted. To view the debugger stack, type

t

The t command causes a maximum of 20 routine calls to be printed,
starting from the top of the stack. You can change the number of
routine calls shown by typing

t n

where n is the number of called routine names you want to see (a
stack depth of n).

The T command works the same as the t command, but the T
command also prints the values of the local variables for each of the
routines on the stack.

Debugging FORTRAN 77 Programs 9-5

Viewing the Source File The xdb debugger has several commands that you can use to look at
your program source �le while you are in the debugger environment.
The debugger keeps track of the last �le, routine, and line viewed
(referred to as the current �le , current routine, and current line).
The debugger uses the last location viewed to determine the e�ect of
several of its commands.

The last viewed current values are not the same as the location of the
next line to be executed in the program. Changing the current �le,
current routine, or current line by moving around in a source �le
does not change the pointer to the next execution line. However,
when program execution is suspended, the last line executed becomes
the current line and the �le and routine that contain it become the
current �le and current routine.

To �nd out what the current �le, routine, and line number values are,
type

v

The values are displayed in the form

�le:procedure:line number

To view a di�erent �le or routine, use the �le or routine name as an
argument with the v command. For example, the command

v �lename

makes �lename the current �le and displays its �rst executable line.
Similarly,

v procedurename

makes procedurename the current routine.

Once you are in the �le or routine you want to view (that is, once it
is the current �le), you can move around in the �le with the p, +, -,
/, and ? commands. All of these commands change the current line
value and are described in the following sections.

The View Command

The form of the view (v) command is

v line

where line is the line number of the �rst line you want printed in the
current �le. If you do not specify line , the default is the current line.
Thus, typing v causes the current line to be printed in the center of
the source window, surrounded by the text �le.

After using the v command, the new current line becomes the line
following the last line printed. If the line just printed is the last line
in the �le, that line is the current line.

9-6 Debugging FORTRAN 77 Programs

The Window Command

The window (w) command changes the size of the source window to a
new value of n; n can range from 1 to 20. Changing the size of the
source window also changes the size of the command window.

The form of the command is

w n

The default value for n is two-thirds the length of the screen, minus
one. For most HP terminals, n is 15.

The Move Command

The commands for moving around in a �le, relative to the current
line, are + and -. The +n command moves n lines past the current
line and the -n command moves n lines before the current line.
Specify the number of lines you want to move by immediately
following the command with the number. If you do not specify the
number of lines to move, the number defaults to one.

For example,

+9

moves nine lines after the current line and the line you move to
becomes the new current line.

The Search Commands

The / command searches forward through the current �le and the ?
command searches backward. Follow both commands with the string
you want to search for. For example,

/doggie

causes a forward search for the string doggie.

Wild card characters and regular expressions that are supported by
some text editors are not supported by the debugger. You must
literally specify the string. If you do not specify a search string,
the string previously speci�ed is used. Searches wrap around the
beginning and end of the �le. When a search string is located, the
line containing it becomes the new current line.

Viewing Program Data When your program execution is suspended, you can look at the
current values of its variables.

Listing the Variables

The l command gives you a listing of the values of all of the
parameters and local variables in a particular routine. If l is typed
by itself, the listing is for the current routine. If you enter

l routine

Debugging FORTRAN 77 Programs 9-7

the listing is for the routine in your program called routine.

9-8 Debugging FORTRAN 77 Programs

Finding a Variable's Value

You can �nd the value of a variable (or expression) with the p
command:

p name

The debugger searches for a local variable or parameter called name
in the current routine.

The following example shows the command used with an expression:

p 1+2

The response is 3.

To �nd the value of a local variable or parameter in a routine other
than the current routine, type

p routine:name

which gives you the value of variable name during the most recent
execution of routine. If the debugger cannot �nd a local variable or
parameter called name in routine, the debugger looks for a common
or static variable with that name.

Execution Control There are two primary ways of controlling the execution of your
program in the xdb environment:

You can set breakpoints in the program that cause execution to be
suspended at particular locations.

You can use the s or S commands to single step through the
program's execution.

Breakpoints A breakpoint is a special debugger signal generator that can be
inserted in a particular location in your program where you want
execution to halt. Once you have halted the program, you can
analyze its execution environment.

To use breakpoints, you should know:

How to set them

How to recover from them

How to delete them

Debugging FORTRAN 77 Programs 9-9

Setting Breakpoints

The command b sets breakpoints. It has many variations, but the
simplest one has the form

b

This causes a breakpoint to be set at the current line of the current
�le and routine or the �rst executable statement following the current
line. Using the commands mentioned earlier in \Viewing the Source
File", move to the location in your source �le where you want the
breakpoint. The �le, routine, and line that you move to becomes the
new current �le, routine, and line. Type

v

to con�rm what the current values are. To set the breakpoint, type

b

Another form of the b command allows you to specify any line in the
current �le where you want a breakpoint set. It has the form

b n

where n is the number of the line.

Recovering from Breakpoints

Breakpoints suspend program execution at particular locations. Once
a program is suspended, you can resume execution at the place where
it stopped with the c command.

Typing

c

causes the program to continue executing at the �rst executable
statement following the statement that caused its suspension.

9-10 Debugging FORTRAN 77 Programs

Deleting Breakpoints

To delete breakpoints from your program, use the db or db*
command. The db command removes one breakpoint, while db*
removes all breakpoints. By typing

db

you remove any breakpoint set at the current line. If there is no
breakpoint to remove, you receive a listing of all of the breakpoints in
your program. The lines of the listing are in the form

number routine:line count commands

number is an integer label that the debugger assigns to each
breakpoint. routine and line locate the breakpoint by routine name
and line number. count and commands are attributes of breakpoints
that are described in the HP Symbolic Debugger/iX User's Guide.

To request a listing of the breakpoints in your program, type

lb

To delete a breakpoint at a location other than the current line,
reference the breakpoint by the integer label number the debugger
has assigned to it. First, use the lb command to get a list of the
breakpoints and locate the one you want to delete. Next, use the
number label associated with the breakpoint together with the d
command in the form

d number

If you want to delete all of the breakpoints in your program, type

db*

Using Breakpoints for Execution Tracing

One variation of the set breakpoint command is useful when you
want to be noti�ed when a routine is called but do not want
execution to halt. The command

bp routine

causes routine's name to be printed when routine is called and then
resumes execution.

Debugging FORTRAN 77 Programs 9-11

Single Step Commands The commands for specifying single step execution of your program
are the s and S commands. Typing

s

executes one statement and suspends the program. Typing

s n

executes n statements before the program suspends.

The default value for n is 1.

The S command also allows single stepping through a program.
When routine calls are reached in the currently executing routine,
they are treated as statements and are executed. If, however, a called
routine contains a breakpoint, execution halts at that point. As with
the s command, you can specify the number of statements (n) to be
executed.

To leave single step execution, use the c command. Typing

c

causes normal execution to resume.

Additional Debugger
Capabilities

This chapter has given you a avor of what the symbolic debugger
can do and how you use it; however, there is much more is available.
Capabilities that are not covered here are:

The record/playback mechanism. Record mode allows you to
record a sequence of debugger commands that are required to get
a program into a particular state. You can then use the playback
mode to return the program to that state at any time.

Assertion control commands. These commands are used to specify
sets of commands that are executed after every statement in your
program.

Toggle disassembler/toggle source. This mode provides detailed
information by displaying the machine instructions and registers
used in the program's execution.

For more information on these capabilities, refer to the HP Symbolic
Debugger/iX User's Guide.

Removing Debugging
Information

Once your program executes correctly, remove the debugging code
that has been incorporated into your program. The maintenance of
the three tables used by the symbolic debugger increases the amount
of space required by the program and slows down its linking speed.
In addition, the tables supply many debugging capabilities that are
not necessary (and not wanted) in the program's production version.

To remove the debugging code, you must recompile and relink the
program without the SYMDEBUG XDB directive.

9-12 Debugging FORTRAN 77 Programs

Using HP Toolset/iX HP Toolset/iX performs the following:

Sets breakpoints

Interactively displays and modi�es the values of variables

Displays subroutines or functions currently called

Traces each subroutine or function as it executes

Traces variables as they are modi�ed by the program

Compiling Programs for
HP Toolset/iX

To symbolically debug, you must compile your program with the
SYMDEBUG compiler directive, which instructs the compiler to
generate additional information needed by HP Toolset/iX.

The directive

$SYMDEBUG
�
ON
�

or

$SYMDEBUG
�
TOOLSET

�
must be included at the beginning of your source �le or passed to the
compiler through the INFO string.

Invoking HP Toolset/iX To invoke HP Toolset/iX, enter

RUN TOOLSET.PUB.SYS

or

TOOLSET

In the examples in this chapter, underlined items represent user
input.

Setting Up for Symbolic
Debug

Once you are in HP Toolset/iX, you must set up a workspace as
shown below:

workspace wsname

Create workspace wsname? yes

Default language for wsname? fortran

A screen is displayed after the workspace is set up. The HP
Toolset/iX workspace features described in the HP Toolset/iX
Reference Manual are not available for HP FORTRAN 77/iX. To
directly proceed to symbolic debug, press the � f3 � key (Set OK).
This exits the \Set" screen and places you at the HP Toolset/iX
prompt, \>>".

Refer to the HP Toolset/iX Reference Manual for a detailed
description of HP Toolset/iX.

Debugging FORTRAN 77 Programs 9-13

When to Use HP
Toolset/iX

Using the symbolic debugger increases the size of your program
(often by a factor of two or three).

When your program executes correctly and you no longer need the
symbolic debugger, remove the compiler option, recompile the source
�les, and relink the object �les. Without the debugging information,
the program occupies less space, allowing it to link and execute
faster.

You might want to maintain two versions of a program: one with
debugging information for support purposes and one production
version that has the debugging information removed.

Running a Program The RUN command executes a program that has been compiled
with Symbolic Debug. The RUN command either executes the
program that is currently set up in your workspace (which is useful
for non-FORTRAN programs), or executes a program that you
specify (used for FORTRAN programs). The program must have
been compiled with the SYMDEBUG compiler directive. Refer to the
HP Toolset/iX Reference Manual for the complete syntax of the RUN
command and a detailed description of the parameters.

Syntax

RUN prog�le

To make a program known to HP Toolset/iX, enter the following:

USE prog�le

RUN prog�le

Setting Breakpoints The AT command allows you to set up to 15 active breakpoints in
your program. You can set a breakpoint specifying a subroutine
or function name or you can specify a location with an o�set. The
breakpoint is permanent unless the FOR clause is used. There are
additional features of this command, as shown in the syntax below:

Syntax

AT

�
location

NEXT

�� �
EVERY

�
n
�
TIMES

� ��
FOR

�
n

ALL

��
TIMES

� �

�
DO

�
command-list

BREAK

� �

Examples

The following statement sets a breakpoint at the beginning of the
subroutine named sub1:

AT sub1

The following statement sets a breakpoint at line 20 in the function
named func2:

9-14 Debugging FORTRAN 77 Programs

AT func2#20

Note You cannot directly set a breakpoint at FORTRAN entry statements.
However, using the AT NEXT command stops your program from
entering any subroutine. Therefore, the AT NEXT command allows you
to stop at entry statements.

Tracing Names The CALLS command displays the names of the subroutines and
functions that are currently executing. The trace begins with the
most recently called subroutine or function. The statement following
the call is also displayed.

Syntax

CA
�
LLS

�

Note For entry calls, the name of the enclosing subroutine is displayed.
However, the accompanying statement number reects execution of
the entry statement.

Debugging FORTRAN 77 Programs 9-15

Clearing Breakpoints The CLEAR command removes breakpoints from your program.

Syntax

CL
�
EAR

�
8<
:

location

next

ALL

9=
;

Example

The following statement clears the breakpoint at the location sub1:

CL sub1

Displaying Variables The DISPLAY command causes the current contents of the speci�ed
FORTRAN variable (data item) to be displayed on your terminal
in octal, integer, character, or hexadecimal format. By default, the
variables are displayed in the format most appropriate for the data
type.

Syntax

DI
�
SPLAY

�
8<
:

rec-item

data-item

"literal"

9=
;

2
664
O
�
CTAL

�
I
�
NTEGER

�
C
�
HARACTER

�
H
�
EXADECIMAL

�

3
775� � FOR �n � ITEMS � �

Example

If your program has the declarations

INTEGER*4 long_integer_var
REAL*4 real_var

DOUBLE COMPLEX double_complex_var

LOGICAL*2 short_logical_var

INTEGER*4 array_var(2:5,1:3)

CHARACTER*8 array_char_var(4,4,4)

INTEGER*2 i, j

COMMON /BLKA/i(4), j(6), alpha

CHARACTER*4 alpha

COMMON k,l

9-16 Debugging FORTRAN 77 Programs

The following is output using DISPLAY commands:

>>DISPLAY long_integer_var

--> Stmt #101: Var: LONG_INTEGER_VAR = 1234567890

>>DIS real_var

--> Stmt #101: Var: REAL_VAR = 0.123456E38

>>DIS double_complex_var

--> Stmt #101: Var: DOUBLE_COMPLEX_VAR = (8.2E308,7.1E308)

>>DIS short_logical_var

--> Stmt #101: Var: SHORT_LOGICAL_VAR = .TRUE.

>>DISPLAY array_var

--> Stmt #101: Var ARRAY_VAR

--> Starting with ARRAY_VAR[2:1]

4321 6654 87654321 6789

--> Continuing with ARRAY_VAR[2:2]

65432 121 159753 0

--> Continuing with ARRAY_VAR[2:3]

456 1 369 5

If the value of ARRAY_CHAR_VAR(1,2,3) is abcdefgh, the output is

>>DISPLAY array_char_var(1,2,3)FOR 4 ITEMS

--> Stmt #101: Var ARRAY_CHAR_VAR = 'efgh'

where the �nal subscript in the command is the start character.

>>DIS blka

--> Stmt #101: COMMON BLOCK: BLKA

I - ARRAY

--> Starting with I(1)

0 4321 54 3

--> Starting with J(1)
1 23 45 67 87 5

ALPHA = 'abcd'

Use the identi�er COM' to display an unnamed common block. For
example,

>>DIS COM'

--> Stmt #103: COMMON BLOCK: COM'

K=2

L=3

Debugging FORTRAN 77 Programs 9-17

Modifying Variables The MOVE command transfers the value of a literal, a �gurative
constant (such as .TRUE. and .FALSE.), or a variable, to another
variable.

Syntax

MOV
�
E
�
8<
:

literal

data-item-1

�g-constant

9=
;TO data-item-2

� �
FOR

�
n
�
ITEMS

� �

Example

If your program has the declarations

INTEGER*4 long_integer_var

REAL*4 real_var

REAL*8 long_real_var
DOUBLE COMPLEX double_complex_var

LOGICAL*2 short_logical_var

LOGICAL*4 array_var(25)

CHARACTER*8 array_char_var

the following is output using the MOVE command:

>>MOVE 45 to long_integer_var

--> Stmt#1: Var: LONG_INTEGER_VAR = 45

>>MO 3.14E38 TO real_var

--> Stmt#1: Var: REAL_VAR = 3.14E38

>>MO (13.3E73,14.4E60) TO double_complex_var

--> Stmt#1: Var: DOUBLE_COMPLEX_VAR = (13.3E73,14.4E60)

>>MO .TRUE. TO short_logical_var

--> Stmt#1: Var: SHORT_LOGICAL_VAR = .TRUE.

>>MO 20 TO array_var(1) FOR 5 TIMES

--> Stmt#1: Var: ARRAY_VAR[1]

--> Starting with ARRAY_VAR[1] 20 20 20 20 20

>>MO 'This is nice' TO array_char_var

--> Stmt#1: Var: ARRAY_CHAR_VAR = 'This is nice'

>>MO real_var TO long_real_var

--> Stmt#1: Var: long_real_var = 3.14E38

9-18 Debugging FORTRAN 77 Programs

Redoing a Command The REDO command allows you to correct and re-execute the last
command or command list. The command editing is performed with
EDITOR program operators.

Syntax

RED
�
O
�

Example

>>MVE 30 TO long_integer_var

**Undefined TOOLSET/iX command keyword. (101)

>>REDO

MVE 30 TO long_integer_var

iO

MOVE 30 TO long_integer_var

�CR�

-->Stmt#1: Var: LONG_INTEGER_VAR = 30

Restarting Your
Program

The RESUME command starts or restarts the execution of your
program at the location at which it was halted.

Syntax

RES
�
UME

�

Displaying Breakpoints The SHOW DEBUG command displays the breakpoints and the
names of any data item traced in the current program.

Syntax

SHO
�
W
�
D
�
EBUG

�

Debugging FORTRAN 77 Programs 9-19

Using the Trace
Facilities

The TRACE command displays each subroutine or function name as
it is executed. An identifying message is displayed at the start and
end of each subroutine or function.

Syntax

T
�
RACE

��
OFF

�
The DATATRACE command monitors the value of a data item. If
the value changes, a message containing the location and the new
value is displayed.

Syntax

DA
�
TATRACE

�
data-item

�
DO command-list

�
NOMESSAGE

�
OFF

�

The RETRACE command lists the last n subroutines or functions
that have executed, ending with the most recent subroutine or
function.

Syntax

RET
�
RACE

��
PROCEDURES

�

Accessing MPE/iX
Debug

The SYSDEBUG command allows you to access MPE/iX DEBUG
from HP Toolset/iX.

Syntax

SYS
�
DEBUG

�

Ending Execution of a
Program Prematurely

The END RUN command ends execution of your program
prematurely. This command immediately terminates your program
and returns control to HP Toolset/iX.

Syntax

EN
�
D
�
RU
�
N
�

Exiting HP Toolset/iX The EXIT command exits HP Toolset/iX and returns control to the
MPE/iX operating system.

Syntax

EX
�
IT
�

Example

>>EXIT

END OF PROGRAM

9-20 Debugging FORTRAN 77 Programs

Index

9 900 Series HP 3000 architecture, 1-11

A ACCESS='DIRECT', 4-6
accessing disk, 3-1
accessing MPE/iX debug, 9-20
accessing the representation of logical values, 7-7
ACCESS='SEQUENTIAL', 4-5
ACCESS='SEQUENTIAL' option, 3-2
actual arguments
in subprograms, 5-18
in subroutines, 5-4

actual parameters, 8-21
addressing mode, 1-3
adjustable dimensions, 5-28
A format descriptor, 2-21
ALIAS compiler directive, 8-1
alignment of data, 1-2
ALIGNMENT option, 7-21
alternate returns from a subroutine, 5-5
ANSI compiler directive, 7-2
ANSI standard, 4-9
AOPTIONS, 4-1, 4-4
apostrophe edit descriptor, 2-43
apostrophes for character data, 2-2
appending to a �le, 3-11
architecture, 1-11
argument lists, 5-18
arguments to subprograms, 5-18
arithmetic operators, 6-4
array elements, equivalence, 1-4
arrays, 2-57
adjustable dimensions, 5-28
assumed-size, 5-30
passed in a subprogram, 5-27

ASCII logical records, 4-9
assembly language routines, 6-16
assigning data areas, 1-12
ASSIGN statement, 2-55
assumed-size arrays, 5-30
ASSUME NO EXTERNAL PARMS option, 6-29
ASSUME NO PARAMETER OVERLAPS option, 6-27
ASSUME NO PARM TYPES MATCHED option, 6-28
ASSUME NO SIDE EFFECTS option, 6-28
AT command, 9-14

Index-1

B BACKSPACE statement, 3-29, 4-5, 4-13
blank common blocks, 5-36
blanks in the input �eld
BN descriptor, 2-52
BZ descriptor, 2-52

BLANK speci�er, 3-13
BLOCK DATA statement, 5-41
block data subprograms, 5-41
blocking factor, 4-9
BN edit descriptor, 2-52
breakpoints
clearing, 9-16
displaying, 9-19
setting, 9-14

bytes, returning number of, 2-49
BZ edit descriptor, 2-54

C Calling HP COBOL II/iX from HP FORTRAN 77/iX, 8-10
Calling HP FORTRAN 77/iX from HP COBOL II/iX, 8-11
Calling HP FORTRAN 77/iX from HP Pascal/iX, 8-5
Calling HP Pascal/iX from HP FORTRAN 77/iX, 8-3
CALLS command, 9-15
CALL statement
alternate return, 5-5
invoking subroutines, 5-4

carriage control �les, 4-8
CCTL, 4-8
CCTL �le, 4-8
character data, 8-1
in a subprogram, 5-25
list-directed, 2-2

character format descriptors
A, 2-21
input �eld, 2-25
output �eld, 2-26
R, 2-21

character format descriptors and numeric data, 2-29
character positions
T edit descriptor, 2-40
TL edit descriptor, 2-41
TR edit descriptor, 2-42
X edit descriptor, 2-39

character variables, equivalence, 1-8
CHECK ACTUAL PARM compiler option, 8-1
CHECK FORMAL PARM compiler directive, 7-16, 8-1
CHECK OVERFLOW directive, 6-8
CLEAR command, 9-16
clearing breakpoints, 9-16
CLOSE statement, 4-7, 4-13
description, 3-1
STATUS speci�er, 3-3

closing �les, 4-7
code area, 1-11
code space e�ciency, 6-9

Index-2

colon edit descriptor, 2-50
comments, 7-16
common blocks, 1-12
blank common, 5-36
declaring, 7-5
description, 5-36
EQUIVALENCE statement, 1-9
labeled common, 5-39

common blocks in memory, 1-12
COMMON statement, 5-36
common subexpression elimination module, 6-21
compiler directive
HP3000 16, 7-19
STANDARD LEVEL, 7-15

compiler directives
INCLUDE, 7-5
LONG, 7-3
NOSTANDARD, 2-29
SHORT, 7-3

compiler library, 4-7
compile-time e�ciency, 6-2
complex format descriptors, 2-17
conditional compiler directives, 7-17
connecting �les, 3-1
constants passed in a subprogram, 5-21
correcting a command, 9-19
creating a new �le, 3-6
creating �les, 4-4
current record, 3-1, 3-12

D data alignment, 1-2, 1-10, 7-21
data area, 1-11, 6-14
data classes, 1-3
data objects, 1-11
data space e�ciency, 6-10
DATA statements, 6-8
data storage
consistent, 7-3
description, 1-1

DATATRACE command, 9-20
data types, 8-2
debug, 9-20
debugging, 9-1
using xdb, 9-1

default �le properties, 3-2
descriptor mode of addressing, 1-3
descriptors, format, 2-10
device type, 4-8
D format descriptor, 2-17
dimensions
adjustable, 5-28

direct access �le
creating, 3-15
description, 3-14

Index-3

reading and writing, 3-15
direct access option, 4-6
directives
OPTIMIZE, 6-25

direct mode of addressing, 1-3
disconnecting �les, 3-1
disk �les, 3-1, 4-8
DISPLAY command, 9-16
displaying breakpoints, 9-19
displaying functions, 9-20
displaying names, 9-15
displaying subroutines, 9-20
displaying variables, 9-16
DO loop, implied, 2-56
DO loops, 6-8
DO WHILE loops, 6-8
dummy arguments
in subprograms, 5-18
in subroutines, 5-2

E $ edit descriptor, 2-38
/ edit descriptor, 2-38
: edit descriptor, 2-50
edit descriptor
$, 2-38
:, 2-50
apostrophe, 2-43
BN, 2-52
BZ, 2-54
colon, 2-50
H, 2-44
NL, 2-38
NN, 2-38
P, 2-44
Q, 2-49
quotation mark, 2-43
S, 2-49
slash, 2-38
SP, 2-49
SS, 2-49
summary, 2-11
T, 2-40
TL, 2-41
TR, 2-42
X, 2-39

e�ciency
code space, 6-9
compile-time, 6-2
data space, 6-10
run-time, 6-3

e�cient programs, 6-1
E format descriptor, 2-17
ELSE compiler directive, 7-17
ENDFILE statement, 3-29, 4-13

Index-4

ENDIF compiler directive, 7-17
ending execution, 9-20
end-of-�le record, 3-12, 3-34
END RUN command, 9-20
END statement, 4-7
description, 5-10
subroutines, 5-3

entries into subprograms, 5-32
ENTRY statement, 5-32
EOF, 4-8
equivalence
array elements, 1-4
character variables, 1-8

EQUIVALENCE statement
array elements, 1-4
arrays with di�erent dimensions, 1-7
avoid using, 7-5
character variables, 1-8
common blocks, 1-9
data alignment, 1-10
data storage, 1-4
description, 1-4
multi-dimensioned arrays, 1-6

errors, �le handling, 3-2
error termination, 4-7
ERR speci�er, 3-3
ERR speci�ers, 4-7
examples
�le handling, 3-31
using �le positioning statements, 3-30

EXIT command, 9-20
exiting HP Toolset/iX, 9-20
expressions passed in a subprogram, 5-22
extents, 4-1

F FCLOSE, 4-7
FCONTROL intrinsic, 4-5
F format descriptor, 2-17
�le
closing, 4-7

�le access
description, 3-12
direct, 3-14
indexed sequential, 3-18
ISAM, 3-18
sequential, 3-12

�le characteristics, 4-1
FILE command, 4-1
�le connections, 4-1
FILE equation, 4-1, 4-8, 4-9
�le handling errors, 3-2
ERR speci�er, 3-3
IOSTAT speci�er, 3-5
STATUS speci�er, 3-3

Index-5

�le handling procedures, 4-10
�le handling statement examples, 3-31
�le operations, 4-1
�le pointer, 3-1, 3-29
�le positioning
BACKSPACE statement, 3-29
ENDFILE statement, 3-29
examples, 3-30
REWIND statement, 3-29

�le properties, 3-2
�les
appending to, 3-11
creating, 3-6
direct access, 3-14
formatted, 3-24
indexed sequential, 3-18
INQUIRE statement, 3-26
internal, 3-34
ISAM, 3-18
reading, 3-9
sequential, 3-12
unformatted, 3-24

�les,creating, 4-4
�le size, 4-1
FILESIZE, 4-1
�les,prede�ned, 4-2
FNUM procedure, 4-12
FOPEN intrinsic, 4-1
FOPTIONS, 4-1
FOR clause, 9-14
formal parameters, 8-21
format control, 2-50
@ format descriptor, 2-12
format descriptor
character, 2-29
monetary, 2-34
Mw.d, 2-34
numeration, 2-36
Nw.d, 2-36
repeating, 2-31

format speci�cations, 2-1, 2-12
FORMAT statement, 2-5
formatted �les, 3-24
formatted form option, 4-5
formatted input, 2-6
formatted input/output, 2-1
formatted output, 2-7
formatted statements, 2-5
FORM='FORMATTED', 4-5
FORM='FORMATTED' option, 3-2
FORM='UNFORMATTED', 4-5
FORTRAN/3000, 4-9
FORTRAN 77 library, 4-7
FREADDIR, 4-5
free format, 2-1

Index-6

FSET procedure, 4-10
FTN05, 4-2
FTN06, 4-2
functions, 5-1
categories, 5-9
description, 5-9
intrinsic, 5-16
statement, 5-15
subprograms, 5-9
user-de�ned, 5-10

FUNCTION statement, 5-9, 5-12
FWRITE, 4-8
FWRITEDIR, 4-5

G G format descriptor, 2-17
GIVING phrase, 8-11
grouping related routines, 6-12

H H edit descriptor, 2-44
hollerith edit descriptor, 2-44
HP3000 16 compiler directive, 6-8
description, 7-19
options, 7-20

HP COBOL II/iX, 8-8
HP Pascal/iX, 8-2
HP Toolset/iX
description, 9-1
exiting, 9-20
invoking, 9-13
when to use, 9-14

I IF compiler directive, 7-17
I format descriptor, 2-12
IF statements, 6-6
IMPLICIT NONE statement, 7-5
implied DO loop, 2-56
improving MPE/iX run-time e�ciency, 6-8
INCLUDE compiler directive, 7-5
INCLUDE statement, 7-5
inconsistencies of data storage, 7-16
indexed sequential access �les, 3-18
indirect mode of addressing, 1-3
induction variables, 6-20
initialized variables, 1-12
initializing data, 7-7
input
unformatted, 3-23

input/output statement speci�cation, 2-55
INQUIRE statement, 3-26, 4-6
integer format descriptors
@ descriptor, 2-12
I descriptor, 2-12
input �eld, 2-13
K descriptor, 2-12

Index-7

O descriptor, 2-12
output �eld, 2-15
Z descriptor, 2-12

interfacing with other languages, 8-1
internal �les
description, 3-34
reading, 3-34
writing, 3-36

intrinsic functions, 5-16
intrinsic I/O, 6-8
intrinsics,system, 8-20
invoking subroutines, 5-4
I/O errors, 4-7
I/O library, 4-8
IOSTAT speci�er, 3-5
IOSTAT speci�ers, 4-7
ISAM, 3-18

K K format descriptor, 2-12

L labeled common blocks, 5-39
languages,interfacing with, 8-1
length speci�cations, 7-4
L format descriptor, 2-30
line printer, 4-8
link editor, 1-12, 8-1
list-directed
character data, 2-2
input, 2-1
output, 2-3
READ statement, 2-1

list-directed I/O, 2-1
literal data, 2-43
apostrophe edit descriptor, 2-43
H edit descriptor, 2-44
quotation mark edit descriptor, 2-43

LOCALITY compiler directive, 6-8
local variables in memory, 1-12
logical format descriptor
input �eld, 2-30
L descriptor, 2-30
output �eld, 2-30

logical records, 4-9
logical values, 7-7
LONG compiler directive, 7-3

Index-8

M machine instructions, 1-11
magnetic tapes, 4-9
main memory, 6-12
maintaining parameter type and length
consistency, 7-7

memory area assignment, 1-12
memory areas, 1-11
memory areas, summary, 1-13
memory data areas, 3-34
modi�able programs, 7-9
modifying variables, 9-18
monetary data �eld, 2-34
monetary format descriptor, 2-34
MOVE command, 9-18
MPE/iX debug, 9-20
MPE/iX operating system, 4-7
MPE/iX run-time e�ciency, 6-8
MPE V operating system, 7-19
MPE V system, 7-22
multiple entries into subprograms, 5-32
Mw.d format descriptor, 2-34

N named common blocks, 1-12
new �les, 3-6
new lines, 2-38
$ descriptor, 2-38
/ descriptor, 2-38
NL descriptor, 2-38
NN descriptor, 2-38
slash descriptor, 2-38

new status option, 4-4
NL edit descriptor, 2-38
NN edit descriptor, 2-38
noncharacter data, 7-21
nonstandard features, 7-15
normal termination, 4-7
NOSTANDARD compiler directive, 2-29
number of bytes, Q edit descriptor, 2-49
number of extents, 4-1
numeration data �eld, 2-36
numeration format descriptor, 2-36
numeric data types, 8-8
NUMEXTENTS, 4-1
Nw.d format descriptor, 2-36

Index-9

O OFF option, 7-20
O format descriptor, 2-12
OLD �les, 4-4
old status option, 4-4
ON option, 7-20
OPEN statement
ACCESS='SEQUENTIAL' option, 3-2
appending to a �le, 3-11
connecting �les, 3-1
creating �les, 4-4
description, 4-1
ERR speci�er, 3-3
FORM='FORMATTED' option, 3-2
IOSTAT speci�er, 3-5
options, 4-1
processor, 4-1
reporting errors, 3-2
STATUS='OLD' status, 3-9
STATUS speci�er, 3-3
STATUS='UNKNOWN' option, 3-2

optimization
techniques, 6-1

optimization, branch, 6-17
optimization, level one, 6-15
optimization,level one, 6-15
optimization, level one modules, 6-16
optimization, level two, 6-15, 6-19
optimization,level two, 6-15
OPTIMIZE compiler directive, 6-15
OPTIMIZE directive, 6-25
optimized programs, troubleshooting, 6-38
OPTIMIZE options, 6-25
optimizer assumptions, 6-23
output
unformatted, 3-23

overlapping character substrings, 7-25

P parameter list, 8-1
PARAMETER statement, 2-55
parameter types, 7-7
Pascal, 8-2
Pascal data types, 8-21
passing arrays, 5-27
passing by reference, 8-1
passing by value, 8-1
passing character data, 5-25
passing constants, 5-21
passing expressions, 5-22
passing subprograms, 5-31
P edit descriptor, 2-44
performance tuning, 6-11
plus sign
S edit descriptor, 2-49
SP edit descriptor, 2-49

Index-10

SS edit descriptor, 2-49
portable programs, 7-1
positioning the �le pointer, 3-29
preconnected units, 2-1
prede�ned �les, 4-2
prede�ned units, 4-2
prespacing mode, 4-8
PRINT statement
formatted, 2-7

programming for portability, 7-1
program,terminating, 4-7
program unit, 5-5
proprietary oating point data, 7-20

Q Q edit descriptor, 2-49
quotation mark edit descriptor, 2-43

R reading an existing �le, 3-9
READ statement, 6-8
formatted input, 2-6
list-directed, 2-1
unformatted, 3-23

real format descriptors, 2-17
D descriptor, 2-17
E descriptor, 2-17
F descriptor, 2-17
G descriptor, 2-17
input �eld, 2-17
output �eld, 2-19

REALS option, 7-24
RECL option, 4-6
recursive subroutines, 5-2, 5-10
REDO command, 9-19
redoing a command, 9-19
removing breakpoints, 9-16
repeating speci�cations, 2-31
reporting �le handling errors, 3-2
restarting a program, 9-19
restricting programs to HP FORTRAN 77 standard, 7-2
RESUME command, 9-19
RETRACE command, 9-20
RETURN statement
alternate return, 5-5
containing an expression, 5-5
description, 5-10
subroutines, 5-3

REWIND statement, 3-29, 4-13
R format descriptor, 2-21
routines, grouping related, 6-12
RUN command, 9-14
running a program, 9-14
run-time
e�ciency, 6-3

Index-11

S saved variables in memory, 1-12
SAVE statement, 1-12, 5-43
scale factors, 2-44
scratch status option, 4-4
S edit descriptor, 2-49
sequential access, 4-5
sequential access �les, 3-12
SET compiler directive, 7-17
setting breakpoints, 9-14
setting up a workspace, 9-13
setting up for symbolic debug, 9-13
shifting data, 6-14
SHORT compiler directive, 4-14, 7-3
SHOW DEBUG command, 9-19
slash edit descriptor, 2-38
slash in input �eld, 2-2
SP edit descriptor, 2-49
SS edit descriptor, 2-49
stack area, 1-11, 6-14
standard features of HP FORTRAN 77, 7-2
standard input, 2-1
STANDARD LEVEL compiler directive, 7-15
standard output, 2-1
starting a program, 9-19
statement functions, 5-1, 5-15
STATUS='NEW', 4-4
STATUS='OLD', 4-4
STATUS='SCRATCH', 4-4
STATUS speci�er, 4-7
'DELETE' status, 3-3
'KEEP' status, 3-3
'NEW' status, 3-3, 3-6
'OLD' option, 3-9
'OLD' status, 3-3
'SCRATCH' status, 3-3
'UNKNOWN' status, 3-2, 3-3

STATUS='UNKNOWN', 4-4
$STDINX, 4-2
$STDLIST, 4-2
STOP statement, 4-7
subroutines, 5-3

storage allocation
addressing mode, 1-3
EQUIVALENCE statement, 1-4
variable types, 1-2

storage assignment, 1-11
STRING MOVE option, 7-25
structure of a subroutine, 5-2
subprograms
arguments, 5-18
block data, 5-41
categories, 5-1
multiple entries, 5-32
passing, 5-31
SAVE statement, 5-43

Index-12

subroutines
alternate returns, 5-5
common block, 5-36
description, 5-2
invoking, 5-4
recursive, 5-2
structure, 5-2

SUBROUTINE statement, 5-2
subsystems, 8-20
summary of the memory areas, 1-13
symbolic debugger
additional capabilities, 9-12
breakpoints, 9-9
controlling execution, 9-9
delete breakpoints, 9-11
description, 9-1
execute program, 9-5
execution control, 9-9
exiting, 9-5
invocation, 9-4
listing variables, 9-7
move command, 9-7
program requirement, 9-3
recover from breakpoints, 9-10
remove debugging information, 9-12
search commands, 9-7
set breakpoints, 9-10
single step execution, 9-12
tracing execution using breakpoints, 9-11
values of variables, 9-9
view command, 9-6
view execution stack, 9-5
view program data, 9-7
view source �le, 9-6
window command, 9-7

symbolic debugging, 9-1
SYMDEBUG compiler directive, 9-14
SYSDEBUG command, 9-20
system intrinsics
de�ning, 8-20
description, 8-20

T TABLES ON compiler directive, 1-12
tapes,magnetic, 4-9
T edit descriptor, 2-40
TEMP �les, 4-4
terminal printer, 4-8
terminating a program, 4-7
termination
error, 4-7
normal, 4-7

TL edit descriptor, 2-41
Toolset/iX
description, 9-1

Index-13

exiting, 9-20
invoking, 9-13
when to use, 9-14

TRACE command, 9-20
trace facilities
DATATRACE command, 9-20
RETRACE command, 9-20
TRACE command, 9-20

tracing names, 9-15
transfering values, 9-18
transportable programs, 7-1
TR edit descriptor, 2-42

U unformatted �les, 3-24
unformatted form option, 4-5
unformatted input, 3-23
unformatted I/O, 3-23
unformatted output, 3-23
unformatted READ statement, 3-23
unformatted WRITE statement, 3-23
uninitialized local variables, 1-12
uninitialized variables, OPTIMIZE directive, 6-30
UNITCONTROL intrinsic, 4-9
UNITCONTROL options, 4-13
UNITCONTROL procedure, 4-13
unit numbers, 2-1
units,prede�ned, 4-2
unknown status option, 4-4
unnamed common blocks, 1-12
unstructured features, 7-15
using consistent data storage, 7-3

V variable assignment, 1-12
variable format descriptors, 2-8
variables
displaying, 9-16

variable types, 1-2

W workspace, 9-13
workspace program �le, 9-13
WRITE statement, 6-8
formatted, 2-7, 3-24
list-directed output, 2-3
unformatted, 3-23

writing e�cient programs, 6-1

X xdb
commands, 9-2
description, 9-1

X edit descriptor, 2-39

Z Z format descriptor, 2-12

Index-14

	Top of Document
	Preface
	Contents
	Data Storage
	Variable Type
	Addressing Mode
	The EQUIVALENCE Statement
	HP FORTRAN 77/iX Storage Assignment

	Formatted Input/Output
	List-Directed Statements
	Formatted Statements
	Summary of the Descriptors
	Format Specifications
	Alternative Methods of Specifying Input/Output
	Using the Implied DO Loop

	File Handling
	Disk Files
	Internal Files

	HP FORTRAN 77/iX File Operations
	The OPEN Statement Processor
	Predefined Units and Files
	Creating Files with the OPEN Statement
	Closing Files
	Carriage Control Files
	Using Magnetic Tapes
	Using the File Handling Procedures

	Subprograms
	Subroutines
	Functions
	Arguments to Subprograms
	Multiple Entries into Subprograms
	Common Blocks
	Block Data Subprograms
	Using the SAVE Statement

	Writing Efficient Programs
	Compile-Time Efficiency
	Run-Time Efficiency
	Code Space Efficiency
	Data Space Efficiency
	Performance Tuning
	Grouping Related Routines
	Shifting Data from the Data Area to the Stack Area
	Integer Overflow Checking
	Using the Optimizer

	Programming for Portability
	Restricting Programs to the HP FORTRAN 77 Standard
	Using Consistent Data Storage
	Writing Programs That can be Easily Modified
	Avoiding Unstructured FORTRAN 77 Features
	Identifying Nonstandard Features
	Avoiding Data Storage Inconsistencies
	Using Comments
	Using Conditional Compilation Directives
	Resolving Incompatibilities between MPE V and MPE/IX: the HP3000_16

	Interfacing with Other Languages
	HP Pascal/iX
	HP COBOL II/iX
	HP C/iX
	Using System Intrinsics
	Defining System Intrinsics
	Matching Actual and Formal Parameters

	Debugging FORTRAN 77 Programs
	Using xdb
	Using HP Toolset/iX
	Index

