
HP 3000 Computer Systems

HP FORTRAN 77/iX

Reference

ABCDE

HP Part No. 31501-90010

Printed in U.S.A. June 1992

E0692

Fourth Edition

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or use of this material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced, or translated
to another language without the prior written consent of
Hewlett-Packard Company.

Copyright c 1988, 1989, 1990, 1992 by Hewlett-Packard Company

Printing History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software
Version

First Edition October 1988 31501A.02.00

Second Edition October 1989 31501A.03.05

Third Edition December 1990 31501A.04.11

Fourth Edition June 1992 31501A.04.31

iii

Preface This is the reference manual for the HP FORTRAN 77 programming
language as it is implemented on the MPE/iX operating system.
This manual assumes that the reader has been trained in the
FORTRAN language and knows FORTRAN programming
techniques.

For MPE/iX only, this manual replaces the following two manuals:

HP FORTRAN 77 Reference Manual (5957-4685)

HP FORTRAN 77/XL Reference Manual Supplement
(31501-90001)

The information previously contained in the reference manual and
supplement is now contained in this manual.

Chapter Summary This manual is organized into the following chapters:

chapter 1 Introduces the vocabulary and structure of
HP FORTRAN 77. It includes an example
source �le.

chapter 2 Describes fundamental parts of the HP
FORTRAN 77 language. It identi�es the
character set, de�nes keywords and symbolic
names, and describes data types.

chapter 3 Describes each statement in the HP
FORTRAN 77 language.

chapter 4 Describes the HP FORTRAN 77
input/output statements in detail. It de�nes
all format descriptors and includes examples
of their use.

chapter 5 Describes �le formats and related I/O topics.

chapter 6 Describes some fundamentals of using HP
FORTRAN 77 under this operating system,
such as how to invoke the compiler and
linker.

chapter 7 Provides descriptions of the compiler
directives available in HP FORTRAN 77
under this operating system.

chapter 8 Describes the interface between HP
FORTRAN 77 and other languages, as well as
with the operating system.

chapter 9 Describes facilities in HP FORTRAN 77
under this operating system that are useful
for run-time error management.

iv

chapter 10 Describes how HP FORTRAN 77 data types
are formatted in memory.

appendix A Lists and describes compile-time error
messages, compiler warnings, ANSI warnings,
and run-time errors.

appendix B Lists the HP FORTRAN 77 intrinsic
functions.

appendix C Compares HP FORTRAN 77 with the
ANSI 77 standard, FORTRAN 66/V, and
FORTRAN 7X.

appendix D Presents HP's implementation of the ASCII
character set.

appendix E Lists a program using indexed sequential
access (ISAM).

Additional
Documentation

The following manuals are referenced in this manual:

HP FORTRAN 77/iX Programmer's Guide (31501-90011)

HP FORTRAN 77/iX Migration Guide (31501-90004)

HP Link Editor/iX Reference Manual (32650-90030)

HP Pascal/iX Reference Manual (31502-90001)

HP Pascal/iX Programmer's Guide (31502-90002)

Trap Handling Programmer's Guide (32650-90026)

Compiler Library/XL Reference Manual (32650-90029)

MPE/iX Intrinsics Reference Manual (32650-90028)

Native Language Programmer's Guide (32650-90022)

HP Symbolic Debugger/iX User's Guide (31508-90003)

The HP FORTRAN 77/iX Programmer's Guide contains detailed
discussions of selected HP FORTRAN 77 topics.

The HP FORTRAN 77/iX Migration Guide contains information on
how to run FORTRAN 66/V and HP FORTRAN 77/V programs
on the MPE/iX operating system and how to convert them to HP
FORTRAN 77/iX programs.

v

Conventions UPPERCASE In a syntax statement, commands and
keywords are shown in uppercase characters.
The characters must be entered in the
order shown; however, you can enter the
characters in either uppercase or lowercase.
For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word
in italics represents an optional parameter or
argument that you must replace with the
actual value. In the following example, you
must replace �lename with the name of the
�le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In the
following example, yes is the user's response
to the prompt:

Do you want to continue? >> yes

vi

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose
optional elements. In the following example,
OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select OPTION or parameter or neither. The
elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select parameter zero or more times.
Each instance of parameter must be preceded
by a comma:

[,parameter][...]

In the example below, you only use the
comma as a delimiter if parameter is
repeated; no comma is used before the �rst
occurrence of parameter :

[parameter][,...]

vii

Conventions
(continued)

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA, or B.
The elements cannot be repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses
indicate where portions of an example have
been omitted.

� In a syntax statement, the space symbol �
shows a required blank. In the following
example, parameter and parameter must be
separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the
keyboard. For example, �Return� represents the
carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character.
For example, �CTRL� Y means that you press
the control key and the Y key simultaneously.

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

If no base is speci�ed, decimal is assumed.

viii

Contents

1. Introduction to HP FORTRAN 77
The FORTRAN 77 Compiler 1-2
FORTRAN Vocabulary 1-2
Sample FORTRAN Source File 1-2
FORTRAN Terms 1-4

Source File Structure 1-6

2. Language Elements
The FORTRAN 77 Character Set 2-1
Special Symbols 2-3
Keywords 2-4
Comments 2-4
Symbolic Names 2-5
External Names 2-6
FORTRAN Intrinsic Functions 2-6

Data Types 2-7
BYTE (LOGICAL*1) Data Type 2-10
BYTE Constants 2-10

INTEGER*2 Data Type 2-11
INTEGER*2 Constant 2-11

INTEGER*4 Data Type 2-13
INTEGER*4 Constant 2-13

REAL*4 Data Type 2-15
REAL*4 Constant 2-15

REAL*8 Data Type 2-17
REAL*8 Constant 2-17

REAL*16 Data Type 2-18
REAL*16 Constant 2-18

COMPLEX*8 Data Type 2-19
COMPLEX*8 Constant 2-19

COMPLEX*16 Data Type 2-20
COMPLEX*16 Constant 2-20

LOGICAL*2 Data Type 2-21
LOGICAL*2 Constants 2-21

LOGICAL*4 Data Type 2-22
LOGICAL*4 Constants 2-22

CHARACTER Data Type 2-22
CHARACTER Constant 2-23

Typeless Constants 2-24
Hollerith Constants 2-27
Octal Constants 2-30
Octal Constants in Assignments 2-30

Contents-1

Octal Constants as Actual Parameters 2-31
Hexadecimal Constants 2-33
Hexadecimal Constants in Assignments 2-34
Hexadecimal Constants as Actual Parameters . . 2-35

Variables 2-36
Simple Variables 2-36
Arrays 2-36
Array Declarators 2-36
Adjustable Arrays 2-38
Dynamic Arrays 2-39
Subscripts 2-39
Array Element Storage 2-40
Arrays as Parameters 2-41

Character Substrings 2-42
Records . 2-43
Structure Declarations 2-43
Record Declarations 2-44
Record References 2-44

Expressions 2-46
Arithmetic Expressions 2-47
Hierarchy of Arithmetic Operators 2-48
Consecutive Operators 2-50
Expressions with Mixed Operands 2-51
Arithmetic Constant Expressions 2-52

Character Expressions 2-53
Character Constant Expressions 2-53

Relational Expressions 2-54
Arithmetic Relational Expressions 2-54
Character Relational Expressions 2-55

Logical Expressions 2-56
Bit Masking Expressions 2-58

3. FORTRAN Statements
FORTRAN Statement Format 3-1
Statement Classi�cation 3-2
Order of Statements 3-7
ACCEPT Statement (Executable) 3-8
ASSIGN Statement (Executable) 3-10
Assignment Statement (Executable) 3-11
Arithmetic Assignment Statement (Executable) . 3-12
Logical Assignment Statement (Executable) . . . 3-16
Character Assignment Statement (Executable) . . 3-17
Aggregate Assignment Statement (Executable) . . 3-18

BACKSPACE Statement (Executable) 3-19
BLOCK DATA Statement (Nonexecutable) 3-21
BYTE Statement (Nonexecutable) 3-23
CALL Statement (Executable) 3-24
CHARACTER Statement (Nonexecutable) 3-26
CLOSE Statement (Executable) 3-29
COMMON Statement (Nonexecutable) 3-32
COMPLEX Statement (Nonexecutable) 3-34

Contents-2

COMPLEX*8 Statement (Nonexecutable) 3-35
COMPLEX*16 Statement (Nonexecutable) 3-35
CONTINUE Statement (Executable) 3-36
DATA Statement (Nonexecutable) 3-37
Implied DO Loops in DATA Statements 3-40

DECODE Statement (Executable) 3-42
DELETE Statement (Executable) 3-44
DIMENSION Statement (Nonexecutable) 3-46
DO Statement (Executable) 3-48
Labeled and Block DO Loops 3-49
Labeled DO Loop 3-50
Block DO Loop 3-51

DO Loop Execution 3-52
Implied DO Loop 3-53
Implied DO Loops in Input/Output Statements . 3-53
Collapsed Implied DO Loop 3-54

DO-WHILE Statement (Executable) 3-55
Nesting DO Loops 3-56
Ranges of DO Loops 3-56
Extended Range DO Loop 3-57
END DO Statement (Executable) 3-57

DOUBLE COMPLEX Statement (Nonexecutable) . 3-58
DOUBLE PRECISION Statement (Nonexecutable) . 3-58
ELSE Statement (Executable) 3-58
ELSE IF Statement (Executable) 3-58
ENCODE Statement (Executable) 3-59
END Statement (Executable) 3-61
END DO Statement (Executable) 3-62
END MAP Statement (Nonexecutable) 3-62
END STRUCTURE Statement (Nonexecutable) . . 3-62
END UNION Statement (Nonexecutable) 3-62
ENDFILE Statement (Executable) 3-63
ENDIF Statement (Executable) 3-65
ENTRY Statement (Nonexecutable) 3-66
EQUIVALENCE Statement (Nonexecutable) 3-69
Equivalence of Character Variables 3-70
Multi-Dimensioned Equivalence 3-70

EXTERNAL Statement (Nonexecutable) 3-71
FORMAT Statement (Nonexecutable) 3-72
FUNCTION Statement (Nonexecutable) 3-78
GOTO Statement (Executable) 3-81
Unconditional GOTO Statement (Executable) . . 3-81
Computed GOTO Statement (Executable) 3-81
Assigned GOTO Statement (Executable) 3-82

IF Statement (Executable) 3-84
Arithmetic IF Statement (Executable) 3-84
Logical IF Statement (Executable) 3-86
Block IF Statement (Executable) 3-87
IF-THEN Statement (Executable) 3-87
ELSE Statement (Executable) 3-87
ELSE IF Statement (Executable) 3-88

Contents-3

ENDIF Statement (Executable) 3-88
Nesting IF Statements 3-88

IMPLICIT Statement (Nonexecutable) 3-90
INCLUDE Statement (Nonexecutable) 3-93
INQUIRE Statement (Executable) 3-94
INTEGER Statement (Nonexecutable) 3-99
INTEGER*2 Statement (Nonexecutable) 3-101
INTEGER*4 Statement (Nonexecutable) 3-101
INTRINSIC Statement (Nonexecutable) 3-102
LOGICAL Statement (Nonexecutable) 3-103
LOGICAL*1 Statement (Nonexecutable) 3-105
LOGICAL*2 Statement (Nonexecutable) 3-105
LOGICAL*4 Statement (Nonexecutable) 3-105
MAP Statement (Nonexecutable) 3-105
NAMELIST Statement (Nonexecutable) 3-106
ON Statement (Executable) 3-107
OPEN Statement (Executable) 3-109
PARAMETER Statement (Nonexecutable) 3-117
Alternate PARAMETER Statement (Nonexecutable) 3-120

PAUSE Statement (Executable) 3-121
PRINT Statement (Executable) 3-122
PROGRAM Statement (Nonexecutable) 3-124
READ Statement (Executable) 3-126
Standard Input READ Statement (Executable) . . 3-126
File READ Statement (Executable) 3-128

REAL Statement (Nonexecutable) 3-132
REAL*4 Statement (Nonexecutable) 3-134
REAL*8 Statement (Nonexecutable) 3-134
REAL*16 Statement (Nonexecutable) 3-134
RECORD Statement (Nonexecutable) 3-135
RETURN Statement (Executable) 3-136
REWIND Statement (Executable) 3-138
REWRITE Statement (Executable) 3-140
SAVE Statement (Nonexecutable) 3-143
Statement Function Statement (Nonexecutable) . . 3-144
STOP Statement (Executable) 3-146
STRUCTURE Statement (Nonexecutable) 3-147
Field Declarations 3-149
Unnamed Fields 3-149
Data Initialization 3-149
UNION Statement (Nonexecutable) 3-150
MAP Statement (Nonexecutable) 3-151

SUBROUTINE Statement (Nonexecutable) 3-153
SYSTEM INTRINSIC Statement (Nonexecutable) . 3-154
A Value Parameter 3-155
Example 3-155

A Reference Parameter 3-156
The ANYVAR Parameter and

UNCHECKABLE ANYVAR Option 3-156
An EXTENSIBLE Parameter 3-157
Example 3-157

Contents-4

A DEFAULT PARMS Parameter 3-158
A READONLY Parameter 3-158

TYPE Statement (Executable) 3-159
UNION Statement (Nonexecutable) 3-160
UNLOCK Statement (Executable) 3-161
VIRTUAL Statement (Nonexecutable) 3-163
VOLATILE Statement (Nonexecutable) 3-164
WRITE Statement (Executable) 3-166

4. Input/Output
Formatted Input/Output 4-1
Formatted Input 4-1
Formatted Output 4-4
Carriage Control 4-6

Format Speci�cations 4-7
Format Speci�cations in Format Statements . . . 4-8
Format Speci�cations in Input/Output Statements 4-9

Format Descriptors 4-10
Numeric Format Descriptors 4-13
Integer Format Descriptor (I) 4-14
Real Format Descriptors (D, E, F, G) 4-15
Floating-Point Format Descriptors (D, E) 4-16
Fixed-Point Format Descriptor (F) 4-17
Fixed- or Floating-Point Format Descriptor (G) . 4-18
Character Format Descriptors (A, R) 4-19
Numeric Data with Character Format Descriptors 4-20

Logical Format Descriptor (L) 4-22
Octal Format Descriptors (@, K, O) 4-23
Hexadecimal Format Descriptor (Z) 4-24
Variable Format Descriptor (<expression>) . . . 4-26
Monetary Format Descriptor (M) 4-29
Numeration Format Descriptor (N) 4-30

Edit Descriptors 4-31
Blank Interpretation Edit Descriptors (BN, BZ) . 4-31
End-of-Line Edit Descriptors (NL, NN, $) 4-32
Plus Sign Edit Descriptors (S, SP, SS) 4-34
Literal Edit Descriptors ('string', \string", H) . . 4-34
Input Bytes Remaining Edit Descriptor (Q) . . . 4-35
Position Edit Descriptor (X) 4-35
Tab Edit Descriptors (T, TL, TR) 4-36
Record Terminator Edit Descriptor (/) 4-36
Colon Edit Descriptor (:) 4-36
Scale Factor Edit Descriptor (P) 4-38

Repeat Speci�cation 4-40
Nesting of Format Speci�cations 4-40
Processing a Format Speci�cation 4-41
Unformatted Input/Output 4-42
Unformatted Input 4-42
Unformatted Output 4-43

List-Directed Input/Output 4-44
List-Directed Input 4-44

Contents-5

List-Directed Output 4-48
Namelist-Directed Input/Output 4-52
Namelist Speci�er 4-52
Namelist-Directed Input 4-53
Namelist-Directed Output 4-58

5. File Handling
The OPEN Statement 5-1
The FNUM Procedure 5-2
The FSET Procedure 5-3
The UNITCONTROL Procedure 5-4
Automatically Opening Files 5-5

6. Compiling and Running HP FORTRAN 77/iX Programs
The FTNXL Command 6-2
The FTNXLLK Command 6-4
The FTNXLGO Command 6-6
Running the Compiler 6-7
Passing Run Command Parameters 6-9
Listing Format 6-10

7. Compiler Directives
E�ects of the Directives 7-3
ALIAS Directive 7-6
ALIGNMENT Directive 7-11
ANSI Directive 7-13
ASSEMBLY Directive 7-14
CHECK ACTUAL PARM Directive 7-15
CHECK FORMAL PARM Directive 7-16
CHECK OVERFLOW Directive 7-17
CODE Directive 7-18
CODE OFFSETS Directive 7-19
CONTINUATIONS Directive 7-20
COPYRIGHT Directive 7-21
CROSSREF Directive 7-22
DEBUG Directive 7-26
ELSE Directive 7-27
ENDIF Directive 7-28
EXTERNAL ALIAS Directive 7-29
FTN3000 66 Directive 7-30
FTN3000 66 CHARS 7-30
FTN3000 66 IO 7-31
FTN3000 66 LOGICALS 7-33

HP1000 Directive 7-34
ARRAYS Option 7-34
ALIGNMENT Option 7-36
STRING MOVE Option 7-37
DO LOOP Option 7-37

HP3000 16 Directive 7-38
IF Directive 7-41
INCLUDE Directive 7-43

Contents-6

INIT Directive 7-44
LINES Directive 7-45
LIST Directive 7-46
LIST CODE Directive 7-47
LITERAL ALIAS Directive 7-48
LOCALITY Directive 7-49
LONG Directive 7-50
LOWERCASE Directive 7-51
MIXED FORMATS Directive 7-52
NLS Directive 7-54
NLS SOURCE Directive 7-56
NOSTANDARD Directive 7-57
CHARS Option 7-57
LOGICALS Option 7-57
IO Option 7-58
SYSTEM Option 7-58
INTRINSICS Option 7-59
OPEN Option 7-59

ONETRIP Directive 7-60
OPTIMIZE Directive 7-61
Flagging Uninitialized Variables 7-65
Example 7-66
Loop Unrolling 7-68
Limits on Use 7-68
Example 7-70

PAGE Directive 7-72
Page Eject with Control-L 7-72

PAGEWIDTH Directive 7-73
POSTPEND Directive 7-74
RANGE Directive 7-75
RLFILE Directive 7-76
RLINIT Directive 7-77
SAVE LOCALS Directive 7-78
SEGMENT Directive 7-79
SET Directive 7-80
SHORT Directive 7-81
STANDARD LEVEL Directive 7-82
SUBTITLE Directive 7-83
SYMDEBUG Directive 7-84
SYMTABLE Directive 7-85
SYSINTR Directive 7-87
SYSTEM INTRINSIC Directive 7-88
TABLES Directive 7-89
TITLE Directive 7-91
UPPERCASE Directive 7-92
VERSION Directive 7-93
WARNINGS Directive 7-94
XREF Directive 7-95

Contents-7

8. Interfacing with Non-FORTRAN Subprograms
Parameter Passing Methods 8-1
Use of COMMON and Labels 8-2
Files . 8-2
FORTRAN and C 8-3
Logicals 8-3
Arrays 8-3
Files . 8-3
Parameter Passing Methods 8-4
Complex Numbers 8-4
Character 8-5
Default Character Passing Method 8-5

Hollerith 8-5
FORTRAN and Pascal Data Types 8-6
Condition Codes 8-8
Built-In Functions 8-9

9. Managing Run-Time Errors and Exceptions
Trapping Run-Time Errors 9-1
Trap Actions 9-5
Arithmetic Trap Procedure 9-5
System Trap Procedure 9-5
Basic External Function Trap Procedure . . . 9-6
Internal Function Trap Procedure 9-6
Control-Y Trap Procedure 9-6

Exiting a Trap Procedure 9-6
I/O Run-Time Errors 9-7

10. Data Format in Memory
Overow Conditions 10-2
BYTE (LOGICAL*1) Format 10-3
INTEGER*2 Format 10-4
INTEGER*4 Format 10-4
REAL*4 Format 10-5
REAL*8 Format 10-6
REAL*16 Format 10-8
COMPLEX*8 Format 10-11
COMPLEX*16 Format 10-12
LOGICAL*2 Format 10-13
LOGICAL*4 Format 10-14
Character Format 10-14
Hollerith Format 10-14

Contents-8

A. Diagnostic Messages
Compile-Time Diagnostics A-1
Run-Time Errors A-2
Compile-Time Errors A-3
Compile-Time Warnings A-49
ANSI Warnings A-62
Run-Time Errors A-73

B. Intrinsic Functions and Math Subroutines
Invoking an Intrinsic Function B-1
Generic and Speci�c Function Names B-2
Summary of the Intrinsic Functions B-3
Notes for Tables B-1 through B-8 B-17

FORTRAN Intrinsic Functions and Subroutines . . B-23
DATE Subroutine B-23
IDATE Subroutine B-23
EXIT Subroutine B-23
RAN Function B-23
SECNDS Function B-24
TIME Subroutine B-25
Setting the TZ Environment Variable B-25

Function Descriptions B-28
ABS Function B-28
ACOS Function B-29
ACOSD Function B-29
ACOSH Function B-30
AINT Function B-30
ANINT Function B-31
ASIN Function B-31
ASIND Function B-32
ASINH Function B-32
ATAN Function B-33
ATAN2 Function B-33
ATAND Function B-34
ATAN2D Function B-34
ATANH Function B-35
BADDRESS Function B-35
BTEST Function B-36
CHAR Function B-36
CMPLX Function B-37
CONJG Function B-37
COS Function B-38
COSD Function B-38
COSH Function B-39
DBLE Function B-39
DCMPLX Function B-40
DIM Function B-40
DNUM Function B-42
DPROD Function B-42
EXP Function B-43
IAND Function B-43

Contents-9

IBCLR Function B-44
IBITS Function B-44
IBSET Function B-45
ICHAR Function B-45
IEOR Function B-46
IMAG Function B-46
INDEX Function B-47
INT Function B-48
INUM Function B-49
IOR Function B-49
ISHFT Function B-50
ISHFTC Function B-50
IXOR Function B-52
IZEXT B-52
JNUM Function B-52
LEN Function B-53
LGE Function B-53
LGT Function B-54
LLE Function B-54
LLT Function B-55
LOG Function B-55
LOG10 Function B-56
MAX Function B-56
MIN Function B-57
MOD Function B-57
MVBITS Subroutine B-58
NINT Function B-59
NOT Function B-59
QEXT Function B-60
QNUM Function B-60
QPROD Function B-61
REAL Function B-62
RNUM Function B-62
SIGN Function B-63
SIN Function B-63
SIND Function B-64
SINH Function B-64
SIZEOF Function B-64
SQRT Function B-65
TAN Function B-65
TAND Function B-66
TANH Function B-66
ZEXT Function B-67

Contents-10

C. FORTRAN Comparisons
Extensions to the Standard C-2
MIL-STD-1753 Extensions C-2
Other Extensions C-2

Comparison of HP FORTRAN 77 and FORTRAN
66/V C-6

Comparison of HP FORTRAN 77 and FORTRAN 7X C-9

D. HP Character Set

E. Indexed Sequential Access Program

Index

Contents-11

Figures

1-1. Sample FORTRAN Source File 1-3
3-1. Required Order of Statements 3-7
4-1. Output Formatting 4-8
4-2. Input Formatting 4-10
10-1. BYTE (LOGICAL*1) Format 10-3
10-2. INTEGER*2 Format 10-4
10-3. INTEGER*4 Format 10-4
10-4. REAL*4 Format 10-5
10-5. REAL*8 Format 10-6
10-6. REAL*16 Format 10-8
10-7. COMPLEX*8 Format 10-11
10-8. COMPLEX*16 Format 10-12
10-9. LOGICAL*2 Format 10-13
10-10. LOGICAL*4 Format 10-14
B-1. MVBITS Subroutine B-58

Contents-12

Tables

2-1. Data Type Keywords 2-7
2-2. Data Type Speci�cations 2-8
2-3. Constant Data Types 2-9
2-4. Conversion of Mixed Type Operands 2-52
2-5. Truth Table for Logical Operators 2-57
2-6. Truth Table for Masking Operators 2-58
3-1. Executable and Nonexecutable Statements 3-2
3-2. Classi�cation of Statements 3-4
3-3. Type Conversion for Arithmetic Assignment

Statements of the Form: Variable = Expression 3-13
3-4. Examples of Type Conversions for Arithmetic

Assignment Statements of the Form: Variable =
Expression 3-15

3-5. Default Format Descriptor Field Values 3-75
3-6. Format Descriptors 3-76
3-7. Edit Descriptors 3-77
3-8. Interrupt Conditions 3-108
4-1. Carriage Control Characters 4-6
4-2. Format Descriptors 4-11
4-3. Edit Descriptors 4-12
4-4. Contents of Character Data Fields 4-19
4-5. List-Directed Input Format 4-45
4-6. List-Directed Output Format 4-49
5-1. UNITCONTROL Options 5-4
6-1. Formal File Designators 6-7
6-2. Values for the PARM Parameter 6-7
7-1. Default State of the Compiler Directives 7-3
7-2. Levels of Checking 7-15
7-3. Data Alignment on MPE V and MPE/iX 7-39
8-1. HP FORTRAN 77 and HP Pascal Data Types . . 8-6
8-2. Condition Codes 8-8
A-1. Types of FORTRAN Diagnostics A-1
B-1. Arithmetic Functions B-3
B-2. Bit Manipulation Functions B-6
B-3. Character Functions B-7
B-4. Numeric Conversion Functions B-8
B-5. Transcendental Functions B-12
B-6. Miscellaneous Functions B-16
B-7. Built-in Functions B-16
B-8. Time Zones and TZ Environment Variable Values B-26

Contents-13

1

Introduction to HP FORTRAN 77

The FORTRAN language was the �rst high level computer language
to receive wide acceptance for application programming in the
scienti�c community. First implemented in 1957, FORTRAN evolved
through many changes and extensions, until in 1966 the American
National Standards Institute (ANSI) published a \Standard
FORTRAN" (X3.9-1966). This standard provided the basic structure
of most FORTRAN compilers for many years.

Many compilers extended the standard. To further de�ne the
FORTRAN standard to include many of the extensions, ANSI
updated the standard in 1977. The document describing this new
standard, American National Standard Programming Language
FORTRAN, ANSI X3.9-1978 was published in 1978. Because most
of the work on the language was completed in 1977, this standard
FORTRAN is often called FORTRAN 77. In this manual, the ANSI
standard is referred to as \the ANSI 77 standard."

HP FORTRAN 77 is based on the ANSI 77 standard. It has many
extensions to provide a more structured approach to program
development and more exibility in computing for scienti�c
applications. Wherever such an extension is described, it is
speci�cally referred to as \an extension to the ANSI 77 standard."
As part of its extensions, FORTRAN 77 fully implements those
extensions described in the Department of Defense publication
Military Standard FORTRAN, DOD Supplement to American
National Standard X3.9-1978 , MIL-STD-1753. Wherever such an
extension is described, it is speci�cally referred to as \MIL-STD-1753
standard extension to the ANSI 77 standard."

Note In the rest of this manual, the term \FORTRAN" speci�cally refers
to \HP FORTRAN 77".

Introduction to HP FORTRAN 77 1-1

The FORTRAN 77
Compiler

The FORTRAN 77 compiler constructs object language programs
from source language �les written according to the rules of the
FORTRAN language described in this manual. The FORTRAN 77
compiler is executable under various operating systems. The code
generated by the compiler, standard binary output �les, can be
loaded and executed under the speci�c operating system. Exact
details for specifying these �les are found in the reference manuals for
the operating system being used and in Chapter 10 of this manual.

FORTRAN 77 is a multipass compiler. A pass is a processing cycle
of the source program. When the compiler is invoked, it produces a
relocatable binary object program according to the options speci�ed
in its run string. Source and object listings can be produced if
speci�ed in the compiler. Refer to Chapter 5 for more details on the
FORTRAN 77 compiler run string.

FORTRAN
Vocabulary

A FORTRAN source �le is composed of one or more program units.
Each of the program units is constructed from characters grouped
into lines and statements.

Sample FORTRAN
Source File

Figure 1-1 shows a sample FORTRAN source �le, consisting of one
main program unit (exone) and one subprogram unit (nfunc). The
line numbers are shown for reference only and do not appear in the
source �le. The de�nitions of the FORTRAN source �le terms that
follow refer to the sample program in Figure 1-1.

1-2 Introduction to HP FORTRAN 77

1 $LIST ON

2 PROGRAM exone

3 C This program shows program structure.

4 C The purpose of the program is to compute

5 C the sum of the first n integers using

6 C a function subprogram unit.

7 C

8 INTEGER*4 sum,nfunc ! Specification statement.

9 *

10 WRITE(6,'('' Enter value-->'')') ! Prompt user.

11 READ *,n ! Enter integer limit to sum.

12 * Compute sum in subprogram nfunc.

13 sum=nfunc(n) ! Invoke subprogram.

14 WRITE(6,33) n,sum

15 33 FORMAT(" Sum of the first ",I6,

16 1 " integers = ",I10) ! Continuation line.

17 STOP

18 END
19 *

20 * Function subprogram unit follows.

21 INTEGER*4 FUNCTION nfunc(k)

22 D PRINT *, 'nfunc called, k = ', k

23 nfunc = 0

24 DO i = 1,k ! Loop to compute sum.

25 nfunc = nfunc+i

26 END DO

27 RETURN ! Return value in function name.

28 END

Figure 1-1. Sample FORTRAN Source File

Introduction to HP FORTRAN 77 1-3

FORTRAN Terms Executable Program An executable program is one that can
be used as a self-contained computing
procedure. An executable program consists
of one main program and its subprograms,
if any. (Figure 1-1 shows an executable
program in its entirety.)

Program Unit A program unit is a group of statements
organized as a main program, a subprogram,
or a block data subprogram. (In Figure 1-1,
exone and nfunc are program units.)

Main Program A main program is a set of statements and
comments beginning with a PROGRAM
statement or any other statement except a
FUNCTION, SUBROUTINE, or BLOCK
DATA statement, and ending with an END
statement. (In Figure 1-1, lines 1 through 18
are a main program.)

Subprogram A FORTRAN subprogram is a set of
statements and comments headed by a
FUNCTION, SUBROUTINE, or BLOCK
DATA statement. When headed by a
FUNCTION statement, it is called a
function subprogram (In Figure 1-1, see
lines 21 through 28); when headed by a
SUBROUTINE statement, it is called a
subroutine subprogram; and when headed
by a BLOCK DATA statement, it is called a
block data subprogram. Subprograms can
also be written in other languages, such as
Pascal or C.

Line A line is a string of up to 72 characters. All
characters must be from the HP ASCII
character set, described in Appendix D.
The character positions in a line are called
columns, and are consecutively numbered
1, 2, 3, . . . , 72 from left to right. (In
Figure 1-1, 1 through 28 are lines.)

Initial Line An initial line is not a comment line or a
continuation line, and contains the digit 0 or
a blank in column 6. Columns 1 through 5
can contain a statement label or blanks. (In
Figure 1-1, lines 2, 8, 10, 11, 13, 14, 15, 17,
18, and 21 through 28 are initial lines.)

Continuation Line A continuation line is a subsequent line of
a multiple line statement. A continuation
line contains any characters other than the
digit 0 or a blank in column 6, and does not
contain the character C, *, or $ in column

1-4 Introduction to HP FORTRAN 77

1. Any characters can appear in columns
2 through 5. A tab character in column 1
through 6 and immediately followed by
a digit from 1 to 9 is also a continuation
indicator to the compiler; there must be
blanks or nothing before the tab character.
A line that is longer than 72 characters
must use a continuation character and be
continued on the next line.

A continuation line can follow only
an initial statement line or another
continuation line (unless separated from
an initial line or continuation line by a
comment line). By default, a statement can
have up to 19 continuation lines. If the
CONTINUATIONS compiler directive is
speci�ed, a statement can have up to 99
contnuation lines. (In Figure 1-1, line 16 is a
continuation line.)

Statement A statement is an initial line optionally
followed by continuation lines. The
statement is written in columns 7 through
72. The order of the characters in the
statement is columns 7 through 72 of the
�rst line, columns 7 through 72 of the �rst
continuation line, and so on. (In Figure 1-1,
lines 2, 8, 10, 11, 13 through 18, and 21
through 28 are statements.)

Directive Line A directive line contains a $ in column 1,
and the text of the directive to the compiler
in columns 2 through 72. (Refer to Chapter
8 for a list of the valid compiler directives.)
A directive line can be continued. (In
Figure 1-1, line 1 is a directive line.)

Comment Line A comment line is marked by a C, an !, or
an * in column 1. (In Figure 1-1, lines 3
through 7, 9, 12, 19, and 20 are comment
lines.)

An exclamation point (!) in columns 7
through 72 signi�es an end-of-line comment.
This is an extension to the ANSI 77
standard. (In Figure 1-1, lines 8, 10, 11,
13, 16, 23, and 27 contain end-of-line
comments.)

Debug Line A debug line is marked by a D in column 1.
It acts as either a statement or a comment
line, depending on the current setting of the

Introduction to HP FORTRAN 77 1-5

DEBUG compiler directive. (In Figure 1-1,
line 22 is a debug line).

Source File
Structure

FORTRAN is column sensitive:

Compiler directive lines (those starting with keywords preceded by
a dollar sign) begin in column 1.

All other FORTRAN statements can begin in columns 7 through
72. This permits indenting to improve program appearance.

Statement labels appear in columns 1 through 5.

Column 6 must be blank or contain a digit 0 for all lines except
continuation, comment, and directive lines.

A C, !, or * in column 1 denotes a comment line.

A D in column 1 denotes a debug line.

Tabs in columns 1 to 6 advance to column 7, while tabs in columns
7 to 72 are treated as spaces.

Figure 3-1 shows the required order of FORTRAN statements within
program units.

1-6 Introduction to HP FORTRAN 77

2

Language Elements

A FORTRAN program is a sequence of statements that, when
executed in a speci�ed order, process data to produce desired results.
Because each program has di�erent data needs, FORTRAN provides
11 data types for constants, variables, functions, and expressions.
FORTRAN also provides three additional constant formats, which
are extensions to the ANSI 77 standard. All are described in
\Data Types" later in this chapter. Keywords, special characters,
special symbols, symbolic names, and data make up the statements
of a FORTRAN program. This chapter describes the elements of
statements.

The FORTRAN 77
Character Set

Each language element is written using the letters A to Z, the digits 0
to 9, and the following special characters:

Character Character Name Character Character Name
Blank , Comma

= Equals : Colon
+ Plus ' Apostrophe (single quote)
- Minus
* Asterisk
/ Slash ! Exclamation point 1

(Left parenthesis " Quotation mark 1 (double quote)
) Right parenthesis % Percent sign 1

. Decimal point & Ampersand 1

$ Dollar sign _ Underscore 1 (break)

Note:
1. Extension to the ANSI 77 standard.

A tab character (Control-I) in columns 1 to 6 causes blank characters
to be inserted up through column 6. For example, a tab character in
column 2 inserts blanks in columns 2 to 6. Elsewhere, except when
embedded in a literal string, a tab is interpreted as a blank character.
If a tab character in column 1 to 6 is followed immediately by a digit
from 1 to 9, with blanks or nothing before the tab character, the
digit is treated as a continuation line indicator.

As an extension to the ANSI 77 standard, the 26 lowercase letters
(a to z) are allowed. The compiler considers them identical to their
uppercase equivalents, except in character or Hollerith constants.

Language Elements 2-1

(Note that this di�ers from the C language, in which lowercase letters
are distinct from uppercase letters in identi�ers.) Lowercase letters
can improve program readability.

2-2 Language Elements

In addition, any printable ASCII character can be used in character
and Hollerith constants, and in comments.

Blanks can be used anywhere within a statement. They are
ignored except in character and Hollerith constants and in compiler
directives.

Special Symbols The special symbols are groups of characters that de�ne speci�c
operators and values. The special symbols are:

Symbol Symbol Name Symbol Symbol Name
** Exponentiation .TRUE. Logical true
// Concatenation .FALSE. Logical false

.EQ. Equal .NOT. Logical negation

.NE. Not equal .AND. Logical AND

.LT. Less than .OR. Logical inclusive OR

.LE. Less than or equal .EQV. Logical equivalence

.GT. Greater than .NEQV. Logical nonequivalence (same as .XOR.)

.GE. Greater than or equal .XOR. Logical exclusive OR1 (same as .NEQV.)

Note:
1. Extension to the ANSI 77 standard.

Language Elements 2-3

Keywords Keywords are prede�ned FORTRAN entities that identify a
statement or compiler directive. The statement keywords of
FORTRAN are listed below. The compiler directive keywords are
given in Chapter 7.

ACCEPT 1

ASSIGN
BACKSPACE
BLOCK DATA
BYTE 1

CALL
CHARACTER
CLOSE
COMMON
COMPLEX
CONTINUE
DATA
DECODE 1

DELETE
DIMENSION
DO
DOUBLE COMPLEX 1

DOUBLE PRECISION
ELSE
ELSE IF
ENCODE 1

END
END DO 2

END MAP 1

END STRUCTURE 1

END UNION 1

ENDIF
ENDFILE
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO

IF
IMPLICIT
INCLUDE 2

INQUIRE
INTEGER
INTRINSIC
LOGICAL
MAP 1

NAMELIST 1

NONE 2

OPEN
PARAMETER
PAUSE
PRINT
PROGRAM
READ
REAL

RECORD 1

RETURN
REWIND
REWRITE
SAVE
STOP
STRUCTURE 1

SUBROUTINE
THEN
TYPE 1

UNION 1

UNLOCK
VIRTUAL 1

VOLATILE 1

WHILE 2

WRITE

Notes:
1. Extension to the ANSI 77 standard.
2. MIL-STD-1753 standard extension to the ANSI 77 standard.

Comments FORTRAN uses two types of comments: comment lines and
embedded comments. A comment line is denoted in a source �le by
a C, *, or ! in column 1, or by a blank line. A comment line is not
a statement and does not a�ect the program in any way. Comment
lines can be placed anywhere in a source �le, including between lines
of a continued statement.

An exclamation point (!) following a statement on the same line
indicates the beginning of an embedded comment, unless the
exclamation point is contained in a character or Hollerith constant.
The compiler ignores the exclamation point and any text following;
that is, it treats them as blanks. This use of the exclamation point is
an extension to the ANSI 77 standard. Exclamation points are not
allowed in directive lines.

2-4 Language Elements

Symbolic Names Symbolic names de�ne the names of any of the following:

Main program
Subroutine or function
Block data subprogram
Common block
Named constant
Simple variable
Array
Record, structure, and record �eld
Namelist group-name

Symbolic names can be user-de�ned or prede�ned by FORTRAN.
Each symbolic name consists of a sequence of characters, the �rst of
which must be a letter. The rest can be letters, digits, the underscore
character (_), or the dollar sign ($). The underscore character and
the dollar sign in symbolic names are extensions to the ANSI 77
standard. Letters can be uppercase or, as an extension to the ANSI
77 standard, lowercase. The name can be any length, but only the
�rst 32 characters are signi�cant. This is also an extension to the
ANSI 77 standard, because the standard permits only six characters.

Examples

FORTRAN_COMPILER_INITIALIZATION_SUBROUTINE

char_string

NumBer_of_ERRors

VAR$_1

REAL_VALUE

sum_of_real_values

error_flag

EXTERNAL_routine$

Notice that, because only the �rst 32 characters are signi�cant, the
compiler considers the following to be the same name:

Character 32

|

FORTRAN_COMPILER_INITIALIZATION_SUBROUTINE

FORTRAN_COMPILER_INITIALIZATION_SUBPROGRAM

Because uppercase and lowercase letters are not distinguished in
symbolic names, the following are equivalent:

result3

RESULT3

ResulT3

Note Case is signi�cant only when a letter is used in a character or
Hollerith constant.

Language Elements 2-5

The name that identi�es a variable, named constant, or function
also identi�es its default data type. A �rst letter of I, J, K, L,
M, or N implies type INTEGER, either INTEGER*4 (default) or
INTEGER*2, depending on the setting of the compiler directives
LONG and SHORT. See \Data Types" for more detail. Any other
letter implies type REAL. This default implied typing can be
rede�ned with an IMPLICIT statement. It can be overridden with an
explicit type statement.

A symbolic name that identi�es a main program, subroutine, block
data subprogram, or common block has no data type.

Symbolic names can be identical to keywords because the
interpretation of a sequence of characters is implied by its context.
Similarly, the symbolic name of a named constant or variable can be
the same as the symbolic name of a common block, without conict.

The following are valid statements in FORTRAN:

Examples Notes

READ = IF + DO * REAL READ, IF, DO, and REAL are recognized as
variables. They can also be used elsewhere
as keywords in statements.

IF (IF .EQ. GOTO) GOTO

99

The IF and GOTO within the logical
expression are recognized as variables. The
IF and GOTO outside the expression are
recognized as statement keywords.

DO 10 j = 1.5 The symbol DO 10 j is recognized as a
variable, even though it contains blanks,
mixed case, and the characters DO.

Although FORTRAN permits the above examples, using them is
poor programming practice because they lessen program readability.

External Names External names are a special type of user-de�ned name used by the
linker. In FORTRAN, external names are generated for subroutines,
functions, entry points, and common blocks. Unless the ALIAS
or EXTERNAL ALIAS directive is used (refer to Chapter 7), the
external name is the same as the name used in the source code. A
FORTRAN external name should never conict with the name of a
system routine or intrinsic.

FORTRAN Intrinsic
Functions

FORTRAN intrinsic functions are symbolic names that are
prede�ned by FORTRAN. Refer to Appendix B for a list of the
FORTRAN intrinsic functions.

If a user-de�ned symbolic name is the same as a prede�ned symbolic
name, any use of that name within the same program unit refers to
the user-de�ned name. That is, the intrinsic function of that name is
not recognized within the program unit. (Also refer to \EXTERNAL
Statement (Nonexecutable)" in Chapter 3.)

2-6 Language Elements

Data Types Each constant, variable, function, or expression is of one type only.
The type de�nes:

The set of values that an entity of that type can assume.

The amount of storage that variables of that type require.

The operations that can be performed on an entity of that type.

Warning messages are issued for duplicate data type declarations.

HP FORTRAN 77 has 11 data types, falling into �ve general
categories, as shown in Table 2-1.

Table 2-1. Data Type Keywords

General Name Data Type Keyword Equivalent Keyword

Integer BYTE 2 LOGICAL*1 2

INTEGER*2 2 INTEGER 1,3 (option)

INTEGER*4 2 INTEGER 1,3 (default)

Real REAL*4 2 REAL 1

REAL*8 2 DOUBLE PRECISION 1

REAL*16 2 (none)

Complex COMPLEX*8 2 COMPLEX 1

COMPLEX*16 2 DOUBLE COMPLEX 2

Logical LOGICAL*2 2 LOGICAL 1,3 (option)

LOGICAL*4 2 LOGICAL 1,3 (default)

Character CHARACTER 1 (none)

Notes:
1. ANSI 77 standard.
2. Extension to the ANSI 77 standard.
3. The equivalence depends on the setting of the compiler
directives LONG and SHORT.
4. BYTE is a one byte integer which may be used in a
logical context. It is sometimes called LOGICAL*1.

A keyword shown in column 3 of Table 2-1 has the same meaning
as the keyword to the left in column 2 (subject to the compiler
directives noted in the table). Consequently, in the rest of this
manual, the data types will be referred to speci�cally by the
keywords in column 2, and generally by the names in column 1.

For example, the word \Integer" will always mean any data de�ned
with any of the keywords in the cells on the same row, and the
keyword REAL*8 will always include data de�ned as DOUBLE
PRECISION.

Language Elements 2-7

Note By default, the type keywords INTEGER and LOGICAL are
equivalent to INTEGER*4 and LOGICAL*4, respectively. This is
the same as the e�ect of the LONG compiler directive. The SHORT
compiler directive may be used to make INTEGER and LOGICAL
equivalent to INTEGER*2 and LOGICAL*2, respectively. See
Chapter 7 for further details. In addition, compiler run-string options
can have the same e�ect. See Chapter 6 for further details.

The storage size and the range of values for each data type are shown
in Table 2-2. Storage is measured in 8-bit bytes. Storage format is
described in Chapter 10.

Table 2-2. Data Type Specifications

Data Type Range of Values Storage

BYTE
(LOGICAL*1)

signed decimal �128 to +127 (a 1-byte integer);
.TRUE. or .FALSE.;
one 8-bit ASCII character

1 byte

INTEGER*2 �32768 to +32767 2 bytes

INTEGER*4 �2147483648 to +2147483647 4 bytes

REAL*4 0.0 and
�1.175494�10�38

to
�3.402823�10+38

4 bytes

REAL*8 0.0 and
�2.225073858507202�10�308

to
�1.797693134862315�10+308

8 bytes

REAL*16 0.0 and
�3.362103143112093506262677817321753�10�4932

to
�1.189731495357231765085759326628007�10+4932

16 bytes

COMPLEX*8 Real and imaginary parts each have REAL*4 range. 8 bytes

COMPLEX*16 Real and imaginary parts each have REAL*8 range. 16 bytes

LOGICAL*2 .TRUE. or .FALSE. 2 bytes

LOGICAL*4 .TRUE. or .FALSE. 4 bytes

CHARACTER One or more 8-bit ASCII characters 1 byte per
character

As extensions to the ANSI 77 standard, HP FORTRAN 77 also
provides three special constant data types, Hollerith, octal, and
hexadecimal, shown in Table 2-3 with their ranges and storage sizes.
These di�er from other data types in that they cannot be associated
with variables, functions, or expressions.

2-8 Language Elements

Table 2-3. Constant Data Types

Data Type Range of Values Storage

Hollerith One or more 8-bit ASCII characters 1 1 byte per
character

Octal Dependent on context 2 16 bytes

Hexadecimal Dependent on context 3 16 bytes

Notes:
1. See \Typeless Constants" and \Hollerith Constants" in this

chapter.
2. See \Typeless Constants" and \Octal Constants" in this

chapter.
3. See \Typeless Constants" and \Hexadecimal Constants" in

this chapter.

Each data type is described in this chapter, along with a description
of the constants of each type. A constant is a data element that
represents one speci�c value, such as -3, .TRUE., 'character
constant', or 47.21E-8.

The PARAMETER statement allows you to give symbolic names to
constants. The operations that can be performed on each data type
are described in \Expressions" in this chapter. Each FORTRAN type
statement is described in detail in Chapter 3. Refer to Chapter 10 for
details on the data format in memory of each type.

Language Elements 2-9

BYTE (LOGICAL*1) Data
Type

The BYTE (LOGICAL*1) data type can represent:

A signed 8-bit integer in the range �128 to +127.
The logical values true and false.
An 8-bit ASCII character.

Variables and constants of type BYTE are stored in one byte. Refer
to Chapter 10 for details. LOGICAL*1 and BYTE are extensions to
the ANSI 77 standard. They are equivalent.

You can specify a BYTE variable explicitly by declaring it:

In a LOGICAL*1 or BYTE type statement.
In a LOGICAL, LOGICAL*2, or LOGICAL*4 type statement with
a *1 length override.

You can specify a BYTE variable implicitly without declaring it by
beginning it with a letter that implies LOGICAL*1 or BYTE. Such
initial letters can be set with an IMPLICIT statement. There is no
default.

BYTE Constants

A BYTE constant can be:

An integer constant, in the range �128 to +127.
A logical constant, .TRUE. or .FALSE., representing true or false,
respectively. The periods are required, as shown.
A character constant of one character.

Note The underlying de�nition of a BYTE/LOGICAL*1 data type is
as a one-byte integer. Its use as a logical and character datum
is an addition to this de�nition. In most cases, these uses are
unrestricted; however, when it is a list item in list-directed READ
and WRITE statements it can only be used as a one-byte integer.
See \List-Directed Input/Output" in Chapter 4 for further details.

2-10 Language Elements

INTEGER*2 Data Type The INTEGER*2 data type represents the set of signed whole
numbers in the range �32768 to +32767. Variables and constants of
type INTEGER*2 are stored in two bytes. Refer to Chapter 10 for
details. INTEGER*2 is an extension to the ANSI 77 standard.

You can specify an INTEGER*2 variable explicitly by declaring it:

In an INTEGER*2 type statement.
In an INTEGER type statement when INTEGER is equivalent to
INTEGER*2.
In an INTEGER or INTEGER*4 type statement with a *2 length
override.

You can specify an INTEGER*2 variable implicitly without declaring
it by beginning it with a letter that implies INTEGER*2, or that
implies INTEGER when INTEGER is equivalent to INTEGER*2.
By default, the initial letters I, J, K, L, M, and N imply INTEGER.
These defaults can be changed with an IMPLICIT statement.

Note By default, the type keyword INTEGER is equivalent to
INTEGER*4. This is the same as the e�ect of the LONG compiler
directive. The SHORT compiler directive may be used to make
INTEGER equivalent to INTEGER*2. See Chapter 7 for further
details. In addition, compiler run-string options can have the same
e�ect. See Chapter 6 for further details.

INTEGER*2 Constant

An integer constant consists of an optional plus (+) or minus (-) sign
followed by one or more decimal digits (0 to 9). An INTEGER*2
constant has the whole-number range �32768 to +32767.

The default type for integer constants depends on the default type
for the INTEGER keyword. If the default type for INTEGER is
INTEGER*2 (that is, the SHORT compiler directive is in e�ect),
then integer constants in the range �32768 to +32767 default to
INTEGER*2. Otherwise (if LONG is in e�ect or the value is too
large), integer constants default to INTEGER*4.

You may specify an INTEGER*2 constant explicitly by appending
the letter I to the number. This is an extension to the ANSI 77
standard.

An integer constant value outside the INTEGER*4 range generates a
compile-time error. If I is appended to the constant, a value outside
the INTEGER*2 range also generates a compile-time error. When
assigned to or read into a variable at run-time, a number outside the
range of the variable causes an overow condition. The handling of
overow conditions is system dependent. Refer to Chapter 9 for more
details.

Examples

The following are valid INTEGER*2 constants.

Language Elements 2-11

-32767 -638 30000I -4I 0 45

2-12 Language Elements

INTEGER*4 Data Type The INTEGER*4 data type represents the set of signed whole
numbers in the range �2147483648 to +2147483647. Variables and
constants of type INTEGER*4 are stored in four bytes. Refer to
Chapter 10 for details. INTEGER*4 is an extension to the ANSI 77
standard.

You can specify an INTEGER*4 variable explicitly by declaring it:

In an INTEGER*4 type statement.
In an INTEGER type statement when INTEGER is equivalent to
INTEGER*4.
In an INTEGER or INTEGER*2 type statement with a *4 length
override.

You can specify an INTEGER*4 variable implicitly without declaring
it by beginning it with a letter that implies INTEGER*4, or that
implies INTEGER when INTEGER is equivalent to INTEGER*4.
By default, the initial letters I, J, K, L, M, and N imply INTEGER.
These defaults can be changed with an IMPLICIT statement.

Note By default, the type keyword INTEGER is equivalent to
INTEGER*4. This is the same as the e�ect of the LONG compiler
directive. The SHORT compiler directive may be used to make
INTEGER equivalent to INTEGER*2. See Chapter 7 for further
details. In addition, compiler run-string options can have the same
e�ect. See Chapter 6 for further details.

INTEGER*4 Constant

An integer constant consists of an optional plus (+) or minus (-) sign
followed by one or more decimal digits (0 to 9). An INTEGER*4
constant has the whole-number range �2147483648 to +2147483647.

The default type for integer constants depends on the default type
for the INTEGER keyword. If the default type for INTEGER is
INTEGER*2 (that is, the SHORT compiler directive is in e�ect),
then integer constants in the range �32768 to +32767 default to
INTEGER*2. Otherwise (if LONG is in e�ect or the value is too
large), integer constants default to INTEGER*4.

You may specify an INTEGER*4 constant explicitly by appending
the letter J to the number. This is an extension to the ANSI 77
standard.

An integer constant value outside the INTEGER*4 range generates
a compile-time error. When assigned to or read into a variable at
run-time, a number outside the range of the variable causes an
overow condition. The handling of overow conditions is system
dependent. Refer to Chapter 9 for more details.

Examples

The following are valid INTEGER*4 constants.

-3 14 -99526 30000J

Language Elements 2-13

-4J 2147483647 0 32768

2-14 Language Elements

REAL*4 Data Type The REAL*4 data type, sometimes called \single precision",
represents the set of real numbers whose normal range is 0.0 and
�1.175494�10�38 to �3.402823�10+38 and whose precision is
approximately seven decimal digits. Variables and constants of type
REAL*4 are stored in four bytes in oating point format. Refer
to Chapter 10 for details. REAL*4 is an extension to the ANSI 77
standard. It is equivalent to the ANSI standard REAL type.

You can specify a REAL*4 variable explicitly by declaring it:

In a REAL*4 or a REAL type statement.
In a REAL*8, REAL*16, or DOUBLE PRECISION type
statement with a *4 length override.

You can specify a REAL*4 variable implicitly without declaring it by
beginning it with a letter that implies REAL*4 or REAL. By default,
the initial letters A to H and O to Z imply REAL. These defaults can
be changed with an IMPLICIT statement.

REAL*4 Constant

A REAL*4 constant must contain a decimal point or an exponent or
both. It can have a leading plus (+) or minus (-) sign. The exponent
is speci�ed with the letter E.

Syntax

sn.n

s.n

sn.

sn.nEse

s.nEse

sn.Ese

snEse

Item Description/Default Restrictions

s Optional sign. None.

n Whole number or fraction of
value.

One or more decimal digits.

e Exponent. One or more decimal digits.

The construct Ese represents a power of 10. For example:

14.E-5 = 14. � 10�5 = .00014

5.834E2 = 5.834 � 102 = 583.4

Examples

The following are valid REAL*4 constants.

-.74E-12 1.99526. .125 5.997255E8

Language Elements 2-15

-99526. 10. 23.99844E-25 6E0

2-16 Language Elements

REAL*8 Data Type The REAL*8 data type, sometimes called \double precision",
represents the set of real numbers whose normal range is 0.0 and
�2.225073858507202�10�308 to �1.797693134862315�10+308 and
whose precision is approximately 17 decimal digits. Variables and
constants of type REAL*8 are stored in eight bytes in oating point
format. Refer to Chapter 10 for details. REAL*8 is an extension
to the ANSI 77 standard. It is equivalent to the ANSI standard
DOUBLE PRECISION type.

You can specify a REAL*8 variable explicitly by declaring it:

In a REAL*8 or a DOUBLE PRECISION type statement.
In a REAL*4 or REAL*16 type statement with a *8 length
override.

You can specify a REAL*8 variable implicitly without declaring
it by beginning it with a letter that implies REAL*8 or DOUBLE
PRECISION. Such initial letters can be set with an IMPLICIT
statement. There is no default.

REAL*8 Constant

A REAL*8 constant can contain a decimal point. It must have an
exponent. It can have a leading plus (+) or minus (-) sign. The
exponent is speci�ed with the letter D.

Syntax

sn.nDse

s.nDse

sn.Dse

snDse

Item Description/Default Restrictions

s Optional sign None

n Whole number or fraction of
value.

One or more decimal digits.

e Exponent. One or more decimal digits.

The construct Dse represents a power of 10. For example:

14.D-5 = 14. � 10�5 = .00014

5.834D2 = 5.834 � 102 = 583.4

Examples

The following are valid REAL*8 constants.

-.74D-12 10.D0 5.99725529D8

1.99526D1 23.9984432697338D-25 6D0

Language Elements 2-17

REAL*16 Data Type The REAL*16 data type, sometimes called \quad precision",
represents the set of real numbers whose normal range is 0.0
and �3.362103143112093506262677817321753�10�4932 to
�1.189731495357231765085759326628007�10+4932 and whose
precision is approximately 34 decimal digits. Variables and constants
of type REAL*16 are stored in 16 bytes in oating point format.
Refer to Chapter 10 for details. REAL*16 is an extension to the
ANSI 77 standard.

You can specify a REAL*16 variable explicitly by declaring it:

In a REAL*16 type statement.
In a REAL*4, REAL*8, or DOUBLE PRECISION type statement
with a *16 length override.

You can specify a REAL*16 variable implicitly without declaring
it by beginning it with a letter that implies REAL*16. Such initial
letters can be set with an IMPLICIT statement. There is no default.

REAL*16 Constant

A REAL*16 constant can contain a decimal point. It must have an
exponent. It can have a leading plus (+) or minus (-) sign. The
exponent is speci�ed with the letter Q.

Syntax

sn.nQse

s.nQse

sn.Qse

snQse

Item Description/Default Restrictions

s Optional sign None

n Whole number or fraction of
value.

One or more decimal digits.

e Exponent. One or more decimal digits.

The construct Qse represents a power of 10. For example:

14.Q-5 = 14. � 10�5 = .00014

5.834Q2 = 5.834 � 102 = 583.4

Examples

The following are valid REAL*16 constants.

6Q0 -6.475175119438025110924438958227647Q-4966

1.0Q+15 +1.189731495357231765085759326628007Q+4932

.00001Q-10 3.14159265358979Q0

2-18 Language Elements

COMPLEX*8 Data Type The COMPLEX*8 data type de�nes a set of complex numbers whose
representation is an ordered pair of REAL*4 values. The �rst of the
pair represents the real part of the value and the second represents
the imaginary part. Each part has the same range and precision as
a REAL*4 value. Variables and constants of type COMPLEX*8 are
stored in eight bytes as two REAL*4 values. Refer to Chapter 10 for
details. COMPLEX*8 is an extension to the ANSI 77 standard. It is
equivalent to the ANSI standard COMPLEX data type.

You can specify a COMPLEX*8 variable explicitly by declaring it:

In a COMPLEX*8 or a COMPLEX type statement.
In a COMPLEX*16 or DOUBLE COMPLEX type statement with
a *8 length override.

You can specify a COMPLEX*8 variable implicitly without declaring
it by beginning it with a letter that implies COMPLEX*8 or
COMPLEX. Such initial letters can be set with an IMPLICIT
statement. There is no default.

COMPLEX*8 Constant

The form of a COMPLEX*8 constant is an ordered pair of
numeric constants (which may each be REAL*4, INTEGER*4,
or INTEGER*2), separated by a comma, and surrounded by
parentheses.

Syntax

(real part , imag part)

Examples

The following are valid COMPLEX*8 constants.

(3.0,-2.5E3) (3.5,5.4) (45.9382,12)

(0,0) (-187,-160.5)

Language Elements 2-19

COMPLEX*16 Data Type The COMPLEX*16 data type de�nes a set of complex numbers
whose representation is an ordered pair of REAL*8 values. The
�rst of the pair represents the real part of the value and the second
represents the imaginary part. Each part has the same range and
precision as a REAL*8 value. Variables and constants of type
COMPLEX*16 are stored in 16 bytes as two REAL*8 values. Refer
to Chapter 10 for details. COMPLEX*16 and DOUBLE COMPLEX
are extensions to the ANSI 77 standard. They are equivalent.

You can specify a COMPLEX*16 variable explicitly by declaring it:

In a COMPLEX*16 or DOUBLE COMPLEX type statement.
In a COMPLEX*8 or COMPLEX type statement with a *8 length
override.

You can specify a COMPLEX*16 variable implicitly without
declaring it by beginning it with a letter that implies COMPLEX*16
or DOUBLE COMPLEX. Such initial letters can be set with an
IMPLICIT statement. There is no default.

COMPLEX*16 Constant

The form of a COMPLEX*16 constant is an ordered pair of numeric
constants, separated by a comma, and surrounded by parentheses.
One of the pair of constants must be REAL*8. The other can be
REAL*8, REAL*4, INTEGER*4, or INTEGER*2).

Syntax

(real part , imag part)

Examples

The following are valid COMPLEX*16 constants.

(-187,-160.5) (0,5.99537D5) (3.5,5.4D0)

(0,0D0) (3.0,-2.5D3) (45.9382D0,12)

(-153D-12,4.66257) (1.56792456774D-24,-9.74375486354D-21)

2-20 Language Elements

LOGICAL*2 Data Type The LOGICAL*2 data type represents the logical values true and
false. Variables and constants of type LOGICAL*2 are stored in two
bytes. Refer to Chapter 10 for details. LOGICAL*2 is an extension
to the ANSI 77 standard.

You can specify an LOGICAL*2 variable explicitly by declaring it:

In a LOGICAL*2 type statement.
In a LOGICAL type statement when LOGICAL is equivalent to
LOGICAL*2.
In a LOGICAL, LOGICAL*1, or LOGICAL*4 type statement with
a *2 length override.

You can specify a LOGICAL*2 variable implicitly without declaring
it by beginning it with a letter that implies LOGICAL*2, or that
implies LOGICAL when LOGICAL is equivalent to LOGICAL*2.
Such initial letters can be set with an IMPLICIT statement. There is
no default.

Note By default, the type keyword LOGICAL is equivalent to
LOGICAL*4. This is the same as the e�ect of the LONG compiler
directive. The SHORT compiler directive may be used to make
LOGICAL equivalent to LOGICAL*2. See Chapter 7 for further
details. In addition, compiler run-string options can have the same
e�ect. See Chapter 6 for further details.

LOGICAL*2 Constants

A LOGICAL*2 constant has the following forms and values:

Constant Value

.FALSE. Logical false

.TRUE. Logical true

The periods are required, as shown.

Language Elements 2-21

LOGICAL*4 Data Type The LOGICAL*4 data type represents the logical values true and
false. Variables and constants of type LOGICAL*4 are stored in four
bytes. Refer to Chapter 10 for details. LOGICAL*4 is an extension
to the ANSI 77 standard.

You can specify an LOGICAL*4 variable explicitly by declaring it:

In a LOGICAL*4 type statement.
In a LOGICAL type statement when LOGICAL is equivalent to
LOGICAL*4.
In a LOGICAL, LOGICAL*1, or LOGICAL*2 type statement with
a *4 length override.

You can specify a LOGICAL*4 variable implicitly without declaring
it by beginning it with a letter that implies LOGICAL*4, or that
implies LOGICAL when LOGICAL is equivalent to LOGICAL*4.
Such initial letters can be set with an IMPLICIT statement. There is
no default.

Note By default, the type keyword LOGICAL is equivalent to
LOGICAL*4. This is the same as the e�ect of the LONG compiler
directive. The SHORT compiler directive may be used to make
LOGICAL equivalent to LOGICAL*2. See Chapter 7 for further
details. In addition, compiler run-string options can have the same
e�ect. See Chapter 6 for further details.

LOGICAL*4 Constants

A LOGICAL*4 constant has the following forms and values:

Constant Value

.FALSE. Logical false

.TRUE. Logical true

The periods are required, as shown.

CHARACTER Data Type The CHARACTER data type represents a string of characters. The
string can consist of any characters from the 8-bit ASCII character
set, described in Appendix D. Variables and constants of type
CHARACTER are stored in one byte per character.

You can specify an CHARACTER variable explicitly by declaring it
in a CHARACTER type statement.

You can specify a CHARACTER variable implicitly without
declaring it by beginning it with a letter that implies CHARACTER.
Such initial letters can be set with an IMPLICIT statement. There is
no default.

Each character in a string has a character position that is numbered
consecutively: 1, 2, 3, and so forth. The number indicates the
sequential position of a character in the string, from left to right.

2-22 Language Elements

CHARACTER Constant

The form of a character constant is an apostophe (') or quotation
mark ("), optionally followed by a string of characters, and
terminated with a pairing apostrope or quotation mark. The use of
the quotation mark is an extension to the ANSI 77 standard.

Syntax

'
�
character

��
...

�
'

"
�
character

��
...

�
"

The length of a character constant is the number of characters
between the delimiting characters (which are not counted).

If an apostrophe is included in a string delimited by apostrophes,
or a quotation mark is included in a string delimited by quotation
marks, it must be written twice with no intervening blanks to
distinguish it from the delimiting characters. Such pairs count as one
character.

As an extension to the ANSI 77 standard, null strings are permitted
in the same context where other strings are allowed. Null strings
and non-null strings are equivalent because they follow the rules of
character constants or typeless constants depending on the context.

As an extension to the ANSI 77 standard, character literals can
represent numeric constants. See the following section, \Typeless
Constants", for details.

You can include nonprintable characters in a string, but it is better
to specify these with the CHAR intrinsic function and concatenate
them to a string. See Appendix B for details. The blank character is
valid and signi�cant in a CHARACTER value. Lowercase characters
are not identical to their uppercase equivalents in CHARACTER
values.

Examples

'Input the next item' "Item #1 =>"

'EXPECTING A "1" OR A "2"' "EXPECTING A ""1"" OR A ""2"""

'EXPECTING A ''1'' OR A ''2''' "EXPECTING A '1' OR A '2'"

'That''s life!' "That's life!"

'' ""

Language Elements 2-23

Typeless Constants Hollerith, octal, and hexadecimal constants (see following sections)
are considered typeless constants. Character constants that are used
in numeric expressions are handled like Hollerith constants. Typeless
constants are extensions to the ANSI 77 standard. A typeless
constant is a constant that does not undergo the type checking that
would normally prevent you from using it in expressions.

The following four assignments to INTEGER*4 variable i result in
identical values for i.

i = 'ffff' character constant

i = 1717986918 decimal integer constant

i = '66666666'X hexadecimal constant

i = 4Hffff Hollerith constant

The numeric value of the character constant 'ffff' is quite di�erent
from the numeric value of the hexadecimal constant 'ffff'X.

'ffff' = "ffff" = 1717986918 the fs are letters having ASCII

byte values

'ffff'X = 'FFFF'X = 65535 the fs are hexadecimal digits

having half-byte values

Typical uses of typeless constants include:

Performing integer arithmetic with binary values
Manipulating expressions oriented to bit masks
Pattern handling
Performing simple arithmetic on ASCII values

All typeless constants are internally converted to a 32-digit (16-byte)
hexadecimal value and eventually converted to one of the FORTRAN
77 standard types. The conversion rule for typeless constants is as
follows: If a typeless constant appears in an expression with an
operand that has an assigned type, it takes the type of the other
operand. If this rule cannot be applied, the typeless constant is
converted to INTEGER*4.

The following examples illustrate the conversion rule for typeless
constants:

2-24 Language Elements

Examples Notes

REAL r

r = 'CAFE'X + 1

The hexadecimal value of 'CAFE' is taken as
INTEGER*4 because the other operand, 1, is an
INTEGER*4. 'CAFE' becomes the integer value 51966,
which is added to the value 1. The resulting integer
value 51967 is assigned to r.

INTEGER n

n = 'CAFE'X + 0I

The hexadecimal value of 'CAFE' is taken as
INTEGER*2 because the other operand, 0I, is
INTEGER*2. Therefore the value �13570 is assigned
to n.

REAL r

r = 'CAFE'X + 1.0

The hexadecimal value of 'CAFE' is taken as the real
value 7.28198E�41 because the other operand, 1.0, is
real. The value 7.28198E�41 is so small that, when it is
added to 1.0 using oating-point arithmetic, the result
is 1.0, which is the value assigned to r.

Note As illustrated in the last example, you must use caution when mixing
typeless constants and oating-point types.

Language Elements 2-25

When typeless constants are passed as parameters to subprograms,
the default INTEGER*4 type is assumed unless the constant is
embedded in an expression. Therefore, the statement:

CALL SUBROUTINE('CAFE'X)

passes the INTEGER*4 value 51966 to the subroutine. However, the
statement:

CALL SUBROUTINE('CAFE'X+0.0)

passes the real value 7.28198E�41 and the statement:

CALL SUBROUTINE(('CAFE'X+0)+0.0)

passes the real value 51966.0.

Typeless constants can be used wherever constant expressions are
allowed. They can be mixed with other constants regardless of their
�nal value. Therefore, expressions such as the following are possible:

I = z'a' + "bc" * (-123b/('x'-1)) + '0'x - 9j

This assignment yields the value 1 (of type INTEGER*4).

When character and Hollerith constants are found in arithmetic
expressions such as the one above, they are padded on the right with
blanks (hexadecimal 20). Therefore, the following are all equivalent:

I = '0'

I = '0���'

I = 1H0

I = 4h0���

2-26 Language Elements

Hollerith Constants Hollerith constants are an extension to the ANSI standard. They are
available for compatibility with older programs and with some system
routines. They can appear in arithmetic expressions representing
ASCII values. A Hollerith constant consists of a positive integer
constant specifying the number of characters (including blanks),
followed by the letter H and the character string, which can include
trailing blanks.

Syntax

nHc
�
c
��
...

�
Examples

2H$$

8Ha string

12HReport Title

6H&proga

3H12a

7Hqu'oted

Hollerith constants can be used in most places where an integer
constant is allowed, such as in assignment statements, DATA
statements, PARAMETER statements, and equality comparisons (for
example, .EQ. or .NE.). Hollerith constants can be assigned and
compared to arithmetic variables and expressions, but not to logical
expressions. When necessary, a Hollerith constant is truncated on the
right or blank-�lled on the right so that its length is equal to that of
the other operand. The resulting type of the Hollerith constant is
that of the argument on the other side of the operator. Hollerith to
Hollerith operations are not allowed.

Data type is not assumed when Hollerith constants are used as
arguments. Note, however, that Hollerith constants cannot be passed
as character constants. Hollerith and character constants are not
interchangeable.

When Hollerith constants are used as arguments, no blank �lling
occurs. Therefore, the lengths of Hollerith constants must correspond
correctly with formal arguments.

Language Elements 2-27

Examples Notes

r = 2Hab These two statements are equivalent.

r = 4Hab��

COMPLEX c

IF (c .NE. 19Hwhen the wind blows) . . .
These two statement pairs are
equivalent.

COMPLEX c

IF (c .NE. 8Hwhen the) . . .

i2 = 2hxy The resulting value of i2 is 30841
(type INTEGER*2).

i4 = 2hxy The resulting value of i4 is
2021204000 (type INTEGER*4).

2-28 Language Elements

Blank �lling and truncation to resolve length di�erences can be
accomplished on Hollerith constants only, and not on arithmetic
variables created from Hollerith data. On arithmetic variables, the
appropriate arithmetic conversions are performed. For example, if i2
is equal to 2Hxy, and i4 is equal to i2, then i4 is not equal to 4Hxy.

Note Hollerith literals can represent numeric constants. See \Typeless
Constants" earlier in this chapter for details.

Language Elements 2-29

Octal Constants Octal constants are an extension to the ANSI 77 standard. They
are a special format of octal values that are stored internally as
hexadecimal values of up to 32 hexadecimal digits (16 bytes).
Eventually they are converted to a standard type.

Octal constants are left-padded with zeros. For example,

O'7777'

is stored internally as the hexadecimal value:

00000000000000000000000000000FFF

(that is, FFF preceded by 29 zeros).

Three formats are allowed for octal constants:

Syntax

snB

O'n'

'n'O

Item Description/Default Restrictions

s Optional sign. None.

n Unsigned octal number. Contains only the octal
digits 0 to 7.

The O'n' form is a MIL-STD-1753 standard extension to the ANSI
77 standard.

Octal constants can be used in most places where an integer constant
is allowed. See \Typeless Constants" earlier in this chapter for
details.

Note For good programming style, you should avoid using octal constants
in oating-point expressions.

Examples

400B O'2137' '2137'O

100000B O'37777777777' 37777777777B

Octal constants are not assigned a type. The data type to which they
are converted is determined by the context in which they are found,
as explained in the next two sections.

Octal Constants in Assignments

When associated with another operand in an assignment statement,
an octal constant takes the type of the other operand. If no type can
be taken from the other operand, INTEGER*4 is assumed.

2-30 Language Elements

If not associated with another operand in an assignment statement,
an octal constant takes the type of the entity on the left side of the
equal sign. This is illustrated in the �rst two assignments in the
following examples.

Examples Notes

INTEGER*2 I2

INTEGER*4 I4

.

.

.

I2 = O'54131'

The resulting value of I2 is 22617 (type
INTEGER*2). This is the numeric equivalent of
the Hollerith constant 'XX'.

I4 = o'54132' The resulting value of I4 is 22618 (type
INTEGER*4). This is the numeric equivalent of
the Hollerith constant 'XY'.

I2 = I4 - O'1' The resulting value of I4 is 22617 (INTEGER*2).
This is the numeric equivalent of 'XX' . Note
that this operation is not possible using Hollerith
constants (see the next two assignments).

I2 = 2HXX The resulting value of I2 is 22617 (type
INTEGER*2).

I4 = 2HXY The resulting value of I4 is 1482235936 (type
INTEGER*4). Two blanks have been appended.

I2 = I4 - O'1' The resulting value of I2 is 8223 (type
INTEGER*2). The result has been truncated.

I4 = 1 + 4H0000 + O'1' The resulting value of I4 is 808464434 (type
INTEGER*4). This is the numeric equivalent of
'0002' .

Octal Constants as Actual Parameters

When used as actual parameters, octal constants are converted to
INTEGER*4. To pass an octal constant as a di�erent data type, use
the constant in an expression of the desired type.

Examples Notes

CALL example(O'7777') Passes the value 4095 as data type INTEGER*4
(the default).

CALL example(O'7777' + 0i)Passes the value 4095 as data type INTEGER*2.

Language Elements 2-31

Note When the data type that receives an octal constant does not have
su�cient space to hold all the signi�cant bits, a warning is issued and
the constant is left-truncated to �t as many bits as possible into the
variable. For example, if the following assignment is made:

I2 = o'76543210'

I2 (INTEGER*2) is assigned the value o'143210', which is
the maximum number of bits of that value that can �t into the
INTEGER*2 variable.

2-32 Language Elements

Hexadecimal Constants Hexadecimal (base 16) constants are an extension to the ANSI 77
standard. They are stored internally as hexadecimal values of up to
32 hexadecimal digits (16 bytes), and eventually they are converted
to a standard type. The Z'n' form is a MIL-STD-1753 extension to
the ANSI 77 standard.

Hexadecimal constants are left-padded with zeros. For example,

Z'FFFF'

is stored internally as:

0000000000000000000000000000FFFF

(that is, FFFF preceded by 28 zeros).

The following formats are allowed for hexadecimal constants:

Syntax

Z'n'

'n'X

Item Description/Default Restrictions

n Unsigned hexadecimal
number.

Contains the hexadecimal
digits 0 to 9 and A to F.

Either form can be used in most places where an integer constant is
allowed. See \Typeless Constants" earlier in this chapter for details.

Examples

Z'f921'

z'CAFE'

'F9A1'X

'cafe'x

Hexadecimal constants are not assigned a type. They are converted
to a standard FORTRAN type according to the context in which
they are found. This is explained in the next two sections.

Language Elements 2-33

Hexadecimal Constants
in Assignments

When associated with another operand in an assignment statement, a
hexadecimal constant takes the type of the other operand. If no type
can be taken from the other operand, INTEGER*4 is assumed.

If not associated with another operand in an assignment statement, a
hexadecimal constant takes the type of the entity on the left side of
the equal sign. This is illustrated in the �rst two assignments in the
following example.

Examples Notes

INTEGER*2 I2

INTEGER*4 I4

DOUBLE PRECISION R8

.

.

.

I2 = Z'FFFF'

The resulting value of I2 is �1 (type
INTEGER*2).

I4 = Z'FFFF' The resulting value of I4 is 65535 (type
INTEGER*4).

R8 = z'3ff0000000000000'The resulting value of R8 is 1.0 (type s''
`REAL*8'').

I4 = Z'3FF0000000000000'- R8The resulting value of I4 is 0 (type
INTEGER*4).

I4 = Z'1' - R8 The resulting value of I4 is �1 (type
INTEGER*4).

I4 = z'1' + 4H0000 + o'1'The resulting value of I4 is 808464434 (type
INTEGER*4). This is the numeric equivalent of
'0002'.

Note As a good programming practice, you should avoid using hexadecimal
constants in oating-point expressions.

2-34 Language Elements

Hexadecimal Constants
as Actual Parameters

When used as actual parameters, hexadecimal constants are
converted to INTEGER*4. To pass a hexadecimal constant as a
di�erent data type, the constant should be used in an expression of
the desired type.

Examples Notes

CALL example(Z'FFF') Passes the value 4095 as data type INTEGER*4
(the default).

CALL example(Z'FFF' + 0i)Passes the value 4095 as data type INTEGER*2.

Note When the data type that receives a hexadecimal constant does
not have su�cient space to hold all the signi�cant bits, a warning
is issued and the constant is left-truncated to �t as many bits as
possible into the variable. For example, if the following assignment is
made:

I2 = z'abcdef'

I2 (type INTEGER*2) is assigned the value z'cdef'.

Language Elements 2-35

Variables A variable name is a symbolic name that represents a data element
whose value can be changed during program execution by the use of
assignment statements, READ statements, and so forth.

A variable can represent a single value of one simple type, such as
character, complex, integer, logical, or real; a collection of values of
the same type, as in an array; or a collection of values of di�erent
types, as in a record.

Refer to \Symbolic Names" earlier in this chapter for a description of
valid variable names.

Simple Variables A simple variable is used to process a single data item. It identi�es a
storage area that can contain only one value at a time. Subscripted
variables are treated in this manual as simple variables unless stated
otherwise.

Examples

total

voltage

Final_Score

i

sum_of_values

ERROR_FLAG1

array3_element(i,j)

FORMAT

Arrays An array is a collection of several values of the same type. An array
name is a symbolic name that represents all values or elements of an
array. To designate exactly one element of the array, follow the array
name with one or more subscripts.

A group of values arranged in a single row is a one-dimensional array.
The elements of such an array are identi�ed by a single subscript.
If two subscripts are used to identify an element of an array, then
that array is two-dimensional, and so forth. An array can have an
unlimited number of dimensions. The number of dimensions allowed
in an array is system dependent.

Array Declarators

Array declarators are used in DIMENSION, COMMON, VIRTUAL,
and type declaration statements to de�ne the number of dimensions,
the number of elements per dimension (called bounds), and the data
to be stored in the elements.

Syntax

name (d
�
, d

��
...

�
)

2-36 Language Elements

Item Description/Default Restrictions

name Symbolic name of the array. None.

d Dimension declarator. There must be one
dimension declarator for
each dimension of the array.

Examples Notes

DIMENSION xyz(4,2,4) Three-dimensional REAL array of xyz with 32
elements.

COMMON iabc(3,4) Two-dimensional INTEGER*4 array of iabc
with 12 elements.

INTEGER*2 I2(4) One-dimensional INTEGER*2 array of I2 with 4
elements.

The syntax of a dimension declarator is:

Syntax

�
m :

�
n

Item Description/Default Restrictions

m Lower dimension bound. None.

n Upper dimension bound. The upper bound must be
greater than or equal to the
lower bound.

If only the upper dimension bound is speci�ed, the value of the
lower dimension bound is one. The value of either dimension bound
can be positive, negative, or zero; however, the value of the upper
dimension bound must be greater than or equal to the value of the
lower dimension bound.

The lower and upper dimension bounds are arithmetic expressions
containing constants, symbolic names of constants, or variables. The
expressions de�ning the upper and lower bounds must not contain a
function or array element reference. The upper dimension bound
of the last dimension in the array declarator of a formal argument
can be an asterisk, signifying that the last dimension is assumed
(unde�ned).

Note Using an asterisk in a dimension declarator is limited to declarators
of formal arguments of subprograms.

The array bounds indicate the number of dimensions of the array and
the maximum number of elements in each dimension. The number of

Language Elements 2-37

elements in each dimension is de�ned by n - m + 1, where n is the
upper bound and m is the lower bound.

Examples Notes

name(4,-5:5,6) Speci�es a three-dimensional array.
The �rst dimension can have four
elements, the second 11, and the
third six.

decision_table (2,3,2,2,3,4,2) Speci�es a seven-dimensional array.

m(0:0) Speci�es a one-dimensional array of
one element: m(0).

list(10) Speci�es a one-dimensional array of
10 elements: list(1) to list(10).

A complete array declarator for a particular array can be used once
only in a program unit, although the array name can appear in
several speci�cation statements. For example, if the array declarator
is used in a DIMENSION statement, the array name can only be
used in a COMMON or type statement. If the complete array
declarator is used in a COMMON or type statement, the array must
not be mentioned in a DIMENSION statement.

Normally, array bounds are speci�ed with integer constants. If the
bounds are speci�ed with integer variables, the integer variables must
be formal arguments to the subprogram. However, the array itself
can either be a formal argument or a nonstatic local variable (that
is, one that does not appear in a SAVE or DATA statement). See
\Adjustable Arrays" and \Dynamic Arrays" in the following sections
for further information.

Adjustable Arrays

Normally, array bounds are speci�ed by integer constants and are
determined by the values of these constants. In an adjustable array,
one or more of the array bounds are speci�ed by an expression
involving integer variables instead of integer constants.

Adjustable arrays can be used in subprograms to allow the array
bound to be de�ned as a value passed from the caller of the
subprogram. The array bounds are therefore formal arguments, and
storage is allocated for the array by the caller of the subprogram in
which the array is found. The next example illustrates an adjustable
array.

2-38 Language Elements

Examples Notes

PROGRAM main

INTEGER array(10)

i = 10

CALL routine(array,i)

END

SUBROUTINE routine(ar,i)

INTEGER ar(i)

ar(1) = i

END

Storage is allocated for array by the program
main. The subprogram routine uses the variable
i only for bounds checking and subscript
calculation.

Dynamic Arrays

An array that is a nonstatic local variable is called a dynamic array.
For a dynamic array, storage is allocated by the current subprogram
dynamically on the stack. This dynamic array feature is an HP
extension to the ANSI 77 standard. The next example illustrates the
use of a dynamic array.

Examples Notes

PROGRAM main

i = 10

CALL routine(i)

END

SUBROUTINE routine(i)

INTEGER dyn_array(i)

dyn_array(i) = i

END

main passes only the integer i to routine.
dyn_array is a nonstatic local array. The
subprogram allocates storage for 10 4-byte
integers on the stack for dyn_array.

Subscripts

Subscripts designate a speci�c element of an array. An array element
reference (subscripted variable) must contain the array name followed
by as many subscripts as there are dimensions in the array. The
subscripts are separated by commas and enclosed in parentheses.
Each subscript value must fall between the declared lower and upper
bounds for that dimension.

For example, a subscripted variable for a one-dimensional array of
three elements declared by a(3) or a(1:3) could have the form
a(1), a(2), or a(3) to represent the elements of the array a. If a
subscript is outside its declared lower and upper bounds, the results
are unpredictable; the compiler does not generate an error message
(unless the RANGE option is speci�ed).

Language Elements 2-39

Examples Notes

arr(1,2) Represents the element 1,2 of the array arr. If
arr was declared by arr(10,20), arr would
describe a two-dimensional table and arr(1,2)

would describe the element in the second column
of the �rst row.

chess_board(i,j,k) Subscripts i, j, and k are variables that represent
di�erent elements of array chess_board.

arr(i+4,j-2) Subscripts i+4 and j-2 are expressions that
represent speci�c elements of array arr when
evaluated.

Array Element Storage

The total number of elements in an array is calculated by multiplying
the number of elements in each dimension. For example, the array
declarator i(3,4,-3:5) indicates that array i contains 108 elements:

3*4*(5-(-3)+1) = (3*4*9) = 108

The amount of memory needed to store an array is determined by
the number of elements in the array and the type of data that the
array contains.

LOGICAL*1 arrays store each element in one byte.

INTEGER*2 and LOGICAL*2 arrays store each element in two
bytes.

INTEGER*4, REAL*4, and LOGICAL*4 arrays store each
element in four bytes.

REAL*8 and COMPLEX*8 arrays store each element in eight
bytes.

REAL*16 and COMPLEX*16 arrays store each element in 16
bytes.

CHARACTER arrays store each character in one byte.

A one-dimensional array is stored as a linear list. Arrays of higher
dimensions are stored in \column major order", with the �rst
subscriptvarying most rapidly, the second the next most rapidly, and
so forth, with the last varying least rapidly.

Example

Array declarator: arr(2,0:1,-5:-4)

Array storage: arr(1,0,-5)

arr(2,0,-5)

arr(1,1,-5)

arr(2,1,-5)

arr(1,0,-4)

arr(2,0,-4)

2-40 Language Elements

arr(1,1,-4)

arr(2,1,-4)

Arrays as Parameters

When arrays are passed as parameters, the size of the actual
argument array must not exceed the size of the formal argument
array. Because array bounds across separate compilation units are
not checked at run-time, no warning is issued if the actual array size
exceeds the formal array size. Altering these unreserved locations
could yield unpredictable results.

Language Elements 2-41

Character Substrings A character substring is a contiguous portion of a character variable.

Syntax

name (
�
�rst

�
:
�
last

�
)

array (s
�
, s

��
...

�
) (

�
�rst

�
:
�
last

�
)

Item Description/Default Restrictions

name Character variable name. None.

array(s[,s][...])Character array element. None.

�rst Integer expression that
speci�es the leftmost
position of the substring.

Default value is one.

last Integer expression that
speci�es the rightmost
position of the substring.

Default value is the length of
the string.

The value of �rst and last must be such that:

1 <= �rst <= last <= len

where len is the length of the character variable, named constant, or
array element. The length of a substring is last - �rst + 1.

Examples Notes

name(2:4) If the value of name is 'SUSANNA', then
name(2:4) speci�es 'USA'.

address(:4) If the value of address is '1452 NORTH', then
address(:4) speci�es '1452'.

city(6,2) (5:8) If the value of city(6,2) is 'SAN JOSE', then
city(6,2) (5:8) speci�es 'JOSE'.

title or title(:) These specify the complete character variable.

2-42 Language Elements

Records A record is a collection of one or more data items called �elds. The
�elds of a record can be of any type including records or structures.
Like arrays, records can contain more than one data element. Unlike
arrays, records can contain data elements of di�erent types. An array
element is identi�ed with a unique index, a record element is accessed
with a unique name.

Structure Declarations Structure declarations are used to de�ne the form of a record. The
STRUCTURE statement speci�es the name of the structure. The
name is used by the RECORD statement to identify the structure
that is used as the form for a record.

A structure establishes the size, shape, type, and names of the
di�erent �elds. A structure declaration does not allocate storage. A
record declaration establishes a memory reference using the declared
structure. There can be more than one record for a given structure
declaration.

A structure is declared with a statement block, starting with the
STRUCTURE statement and ending with the END STRUCTURE
statement. The following statements can be used within the block to
de�ne the structure:

Data type declarations that de�ne the �elds within the structure.

Substructures that are nested structure declarations.

Mapped common area (union declarations).

Examples

The following example declares the structure birth which contains
four �elds: day, month, birth_yr, and curr_yr. Notice that
curr_yr is initialized as 1989. Records de�ned with the structure
birth will have the �eld curr_yr initialized to 1989.

STRUCTURE /birth/

LOGICAL*1 day, month

INTEGER*2 birth_yr

INTEGER*2 curr_yr /1989/

END STRUCTURE

In the following example, the structure student is declared. It
contains the �elds name, sex, school_yr, and b_date. Notice that
name and b_date are also structures, or substructures within the
structure student. The structure name is unnamed because it is not
declared with slashes as student is declared. However, name does
contain the �elds last, first, and middle. The record b_date has
the form of structure birth, the structure declared in the example
above.

STRUCTURE /student/

STRUCTURE /name/

CHARACTER*20 last, first, middle

Language Elements 2-43

END STRUCTURE

CHARACTER*1 sex

LOGICAL*1 school_yr
RECORD /birth/ b_date

END STRUCTURE

Record Declarations Records are comparable to variables and arrays. The name of
a structure is used to de�ne the data type of the record. The
RECORD statement is similar to a type declaration, since it can
de�ne record scalars and arrays.

Example

The following example is based on the structure student (which has
the structure birth used within it), shown in the previous section.

RECORD /student/ class(30)

The above RECORD statement creates an array of 30 records that
have the structure student. In all 30 records, the �eld values are
unde�ned except b_date.curr_yr which is initialized to 1989 in the
birth structure declaration.

Record References A �eld in a record is referenced by combining the record name and
the �eld name with a period (.). If a record or a �eld is an array, its
name can be subscripted.

Syntax

recspec
�
. �eldspec

��
...

�

Item Description/Default Restrictions

recspec The name of a record. If it is
an array, the name may be
subscripted.

If the record is an array and
a �eldspec is present, the
recspec must include a
subscript.

�eldspec The name of a �eld within
the record. If the �eld is an
array, the name may be
subscripted.

If the �eld is an array and a
following �eldspec is present,
the current �eldspec must
include a subscript.

Examples

Using the record array class, which was de�ned in the previous
section, the following variables can be speci�ed:

class(3).name.first(1:10) A character substring

class(5).school_yr A LOGICAL*1 element

class An array

class(30) A record

class(15).b_date A record

2-44 Language Elements

class(15).b_date.birth_yr An INTEGER*2 element

Language Elements 2-45

Expressions An expression can be a constant, simple or subscripted variable,
function reference, substring, scalar record �eld reference, or a
combination of operands, joined by arithmetic, character, logical, or
relational operators. There are four types of expressions:

Arithmetic
Character
Logical
Relational

Arithmetic expressions return a single value of type INTEGER*2,
INTEGER*4, REAL*4, REAL*8, REAL*16, COMPLEX*8, or
COMPLEX*16. Character expressions return character values.
Relational and logical expressions evaluate to either true or false (a
logical value).

2-46 Language Elements

Arithmetic Expressions Arithmetic expressions perform arithmetic operations. An arithmetic
expression can consist of a single operand or of one or more operands
plus arithmetic operators, parentheses, or both. An arithmetic
operand can be a numeric constant, the symbolic name of a numeric
constant, an array element reference, scalar record �eld reference,
or a function reference. As an extension to the ANSI 77 standard,
an arithmetic operand can also be a logical variable or constant,
depending upon compiler directives, as described in Chapter 7.

The arithmetic operators are:

Operator Meaning

+ Addition; unary plus (positive or plus sign)

- Subtraction; unary minus (negation or minus sign)

* Multiplication

/ Division

** Exponentiation

A unary operator a�ects one operand only. For example, the unary
minus (also called a minus sign, or sign of negation) designates the
expression following it to be negative.

The following are valid arithmetic expressions:

a

-4. + z

3.145

SQRT(r + d)

arr(5,2)*45.5

num(i)

.true. .XOR. foundit

a**2

(c**4)*d

total + sum_of_values

number_of_successes/number_of_tries*100

Multiplication must be speci�ed explicitly. FORTRAN has no
implicit multiplication that can be indicated by a(b) or ab; the form
a*b must be used.

Language Elements 2-47

Hierarchy of Arithmetic Operators

The order of evaluation of an arithmetic expression is established by
a precedence among the operators. This precedence determines the
order in which the operands are to be combined. The precedence of
the arithmetic operators is:

Operator Rank Meaning

** Highest Exponentiation

* /
... Multiplication and division

+ - Lowest Addition and subtraction, unary plus and minus

Expressions within parentheses are evaluated �rst. Exponentiation
precedes all arithmetic operations within an expression;
multiplication and division occur before addition and subtraction.

For example, the expression:

-a**b + c * d + 6

is evaluated in the following order:

a**b is evaluated to form the operand op1.

c*d is evaluated to form the operand op2.

-op1 + op2 + 6 is evaluated to form the result.

If an expression contains two or more operators of the same
precedence, the following rules are applied:

Two or more exponentiation operations are evaluated from right to
left.

Multiplication and division or addition and subtraction are
evaluated from left to right.

The expression:

2**3**a

is evaluated in the following order:

3**a is evaluated to form op1.

2**op1 is evaluated.

2-48 Language Elements

The expression:

a/b*c

is evaluated in the following order:

a/b is evaluated to form op1.

op1*c is evaluated.

The expression:

i/j + c**j**d - h*d

is evaluated in the following order:

j**d is evaluated to form op1.

c**op1 is evaluated to form op2.

i/j is evaluated to form op3.

h*d is evaluated to form op4.

op3 + op2 is evaluated to form op5.

op5 - op4 is evaluated.

Parentheses can control the order of evaluation of an expression.
Each pair of parentheses contains a subexpression that is evaluated
according to the rules stated above. When parentheses are nested in
an expression, the innermost subexpression is evaluated �rst.

The expression:

((a + b)*c)**d

is evaluated in the following order:

a+b is evaluated to form op1.

op1*c is evaluated to form op2.

op2**d is evaluated.

The expression:

((b**2 - 4*a*c)**.5)/(2*a)

is evaluated in the following order:

The subexpression b**2 - 4*a*c is evaluated to form op1.

op1**.5 is evaluated to form op2.

2*a is evaluated to form op3.

op2/op3 is evaluated.

Note The actual order of evaluation may be di�erent from that shown, but
the result is the same as if the described order were followed (except
when referencing functions that have side e�ects).

Language Elements 2-49

Consecutive Operators

As an extension to the ANSI 77 standard, consecutive operators in
arithmetic expressions are allowed if the second operator is a unary
plus (+) or minus (-).

The expression:

A ** - B * C

is evaluated in the following order:

B is negated to form op1.

A**op1 is evaluated to form op2.

op2*C is evaluated.

The expression:

A + - B * - C

is evaluated in the following order:

C is negated to form op1.

B*op1 is evaluated to form op2.

op2 is negated to form op3.

A+op3 is evaluated.

2-50 Language Elements

Expressions with Mixed Operands

Integer, real, and complex operands can be intermixed freely in an
arithmetic expression. As an extension to the ANSI 77 standard,
logical operands can be intermixed with numeric operands.

Before an arithmetic operation is performed, the lower type is
converted to the higher type. The type of the expression is that of
the highest type operand in the expression. Operand types rank from
highest to lowest in the following order:

Data Type Rank
COMPLEX*16 Highest
COMPLEX*8
REAL*16
REAL*8
REAL*4
INTEGER*4
INTEGER*2
LOGICAL*4
LOGICAL*2
LOGICAL*1 Lowest

An exception to the above is that, if one operand is REAL*8 and
the other is COMPLEX*8, the result is COMPLEX*16. Another
exception is that, if one operand is REAL*16 and the other is
COMPLEX*8 or COMPLEX*16, the result is COMPLEX*16.

The conversion precedence for mixed type arithmetic expressions is
described in Table 2-4. For example, if a and b are real variables and
i and j are integer variables, then, in the expression a*b-i/j, a is
multiplied by b to form the real value op1. Next, i is divided by j
with integer division to form the integer value op2. Finally, op2 is
converted to real, and subtracted from op1, to produce a real result.

Language Elements 2-51

Table 2-4. Conversion of Mixed Type Operands

L*1 L*2 L*4 I*2 I*4 R*4 R*8 R*16 C*8 C*16

L*1 L*1 L*2 L*4 I*2 I*4 R*4 R*8 R*16 C*8 C*16

L*2 L*2 L*2 L*4 I*2 I*4 R*4 R*8 R*16 C*8 C*16

L*4 L*4 L*4 L*4 I*4 I*4 R*4 R*8 R*16 C*8 C*16

I*2 I*2 I*2 I*4 I*2 I*4 R*4 R*8 R*16 C*8 C*16

I*4 I*4 I*4 I*4 I*4 I*4 R*4 R*8 R*16 C*8 C*16

R*4 R*4 R*4 R*4 R*4 R*4 R*4 R*8 R*16 C*8 C*16

R*8 R*8 R*8 R*8 R*8 R*8 R*8 R*8 R*16 C*16 C*16

R*16 R*16 R*16 R*16 R*16 R*16 R*16 R*16 R*16 C*16 C*16

C*8 C*8 C*8 C*8 C*8 C*8 C*8 C*16 C*16 C*8 C*16

C*16 C*16 C*16 C*16 C*16 C*16 C*16 C*16 C*16 C*16 C*16

Key to symbols in Table 2-4:

Symbol Stands for Data Type
L*1 LOGICAL*1
L*2 LOGICAL*2
L*4 LOGICAL*4
I*2 INTEGER*2
I*4 INTEGER*4
R*4 REAL*4
R*8 REAL*8
R*16 REAL*16
C*8 COMPLEX*8
C*16 COMPLEX*16

When any value is raised to an integer power, the operation is
performed by repeated multiplications. When any value is raised to
a noninteger power, the operation is performed by logarithms and
exponentiation.

Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in
which each operand is an arithmetic constant, the symbolic name of
an arithmetic constant, or an arithmetic constant expression enclosed
in parentheses. Variables, array elements, record �eld references, and
function references are not allowed, with the following exception: As
an extension to the ANSI 77 standard, some intrinsic functions are
allowed in the PARAMETER statement.

2-52 Language Elements

Character Expressions A character expression performs character operations. Evaluation of
a character expression produces a result of type CHARACTER.

The simplest form of a character expression is a character constant,
the symbolic name of a character constant, a character variable
reference, a character array element reference, a character substring
reference, a scalar record �eld reference of type CHARACTER, or a
character function reference. More complicated character expressions
can be formed by using two or more character operands together
with the character operator. The character operator, concatenation,
is formed by two slashes, //.

Syntax

c1 // c2

Item Description/Default Restrictions

c1 , c2 Character expressions, or
character entities as
described above.

None.

The result of a concatenation operation is a character string whose
value is the value of c1 concatenated on the right with the value of
c2 . The length of the resulting string is the sum of the lengths of c1
and c2 . For example, the value of 'FOOT' // "BALL" is the string
'FOOTBALL'.

Parentheses have no e�ect on the value of a character expression. For
example, the expression

'ab'//('CD'//'ef')

is the same as the expression

'ab' // 'CD' //'ef'

The result of either expression is 'abCDef'.

Examples

char_string (5:9)

'constant string'

string1//string2//'another string'

home//'/'//filename

Character Constant Expressions

A character constant expression is a character expression in which
each operand is a character constant, the symbolic name of a
character constant, or a character constant expression enclosed
in parentheses. Variables, substrings, array elements, record �eld
references, and function references are not allowed, with the following
exception: As an extension to the ANSI 77 standard, some intrinsic
functions are allowed in the PARAMETER statement.

Language Elements 2-53

Relational Expressions Relational expressions compare the values of two arithmetic
expressions or two character expressions. Evaluation of a relational
expression produces a result of type logical.

Syntax

op1 relop op2

Item Description/Default Restrictions

op1 , op2 Expressions Must be either arithmetic or
character

relop Relational operator None

The relational operators are:

Operator Meaning

.EQ. Equal

.NE. Not equal

.LT. Less than

.LE. Less than or equal

.GT. Greater than

.GE. Greater than or equal

Each relational expression is evaluated and assigned the logical value
true or false depending on whether the relation between the two
operands is satis�ed (true) or not (false).

Note Aggregate record references are not permitted in relational
expressions.

Arithmetic Relational Expressions

Arithmetic expressions used as operands in a relational expression are
evaluated according to the previously de�ned rules for arithmetic
expressions. If the expressions are of di�erent types, the one with
the lower rank is converted to the higher ranking type as speci�ed
in Table 2-4. Once the expressions are evaluated and converted
to the same type, they are compared. An arithmetic relational
expression is interpreted as having the logical value true if the values
of the operands satisfy the relation speci�ed by the operator. If
the operands do not satisfy the speci�ed relation, the expression
is interpreted as the logical value false. The following are valid
arithmetic relational expressions:

a .GT. 237
a + b - c .LT. num

i + j .GE. z + 1

2-54 Language Elements

o .GT. p

Expressions of complex data types can be used as operands with
.EQ. and .NE. relational operators only. The concept of less than or
greater than is not de�ned for complex numbers.

Character Relational Expressions

Character relational expressions compare two operands, each of which
is a character expression. The character expressions are evaluated;
then the two operands are compared character by character, starting
from the left. The initial characters of the two operands are �rst
compared. If the initial character is the same in both operands, the
comparison proceeds with the second character of each operand.
When unequal characters are encountered, the greater of these two
characters in ASCII value is the greater operand. Therefore, the
ranking of the operands is determined by the �rst character position
at which the two operands di�er. If the operands do not di�er at any
position, the two operands are equal.

For example, when the two expressions 'PEOPLE'and 'PEPPER' are
compared, the �rst expression is considered less than the second.
This is determined by the third character O, which is less than P in
the ASCII collating sequence. Refer to Appendix D for the ASCII
collating sequence.

If the operands are of unequal length, the comparison is made as if
the shorter string was padded with blanks on the right to the length
of the longer string.

Examples Notes

IMPLICIT CHARACTER*6 (a-n) All variables beginning with the
letters a to n are CHARACTER
type.

'the' .LT.'there'

'MAY 23' .GT. 'MAY 21'

name .LE. 'PETERSEN'

char_stri .GE. char_str2

first .EQ. a_string(2:8)

Language Elements 2-55

Logical Expressions Logical expressions produce results of type logical with values of
true or false. A logical expression can consist of a single operand
or one or more operands plus a logical operator. A logical operand
can be a logical constant, the symbolic name of a logical constant, a
logical variable, a logical array element reference, a scalar record �eld
reference of logical type, or a relational expression. As an extension
to the ANSI 77 standard, integer variables or constants can also be
used as logical operands, depending upon compiler directives. Refer
to chapter 8 for further information.

The logical operators are:

Operator Meaning

.NOT. Logical negation (unary)

.AND. Logical AND

.OR. Logical inclusive OR

.EQV. Logical equivalence

.NEQV. Logical nonequivalence (same as .XOR.)

.XOR. Logical exclusive OR (same as .NEQV.)

The unary operator .NOT. gives the complement (that is, the
opposite) of the logical value of the operand immediately following
the .NOT. operator.

The .AND. operator returns a value of true only if the logical
operands on both sides of the .AND. operator evaluate to true.

The .OR. operator returns a value of true if one or both of the logical
operands on either side of the .OR. operator are true.

The .NEQV. and .XOR. operators return a value of true only if one
(but not both) of the logical operands on either side of the operator
is true. As an extension to the ANSI 77 standard, .XOR. can be used
in place of .NEQV.

The .EQV. operator returns a value of true if the logical operands on
either side of the .EQV. operator are both true or both false.

Table 2-5 is a truth table for the logical operators.

2-56 Language Elements

Table 2-5. Truth Table for Logical Operators

a b .NOT. a a .AND.
b

a .OR. b a
.NEQV.

b
a .XOR.

b

a .EQV.
b

True True False True True False True

True False False False True True False

False True True False True True False

False False True False False False True

The order of evaluation of a logical expression is established by the
following precedence of the logical operators:

.NOT. highest

.AND.

.OR.

.EQV. .NEQV. .XOR. lowest

If there is more than one operator of the same precedence, evaluation
occurs from left to right.

Examples

The expression:

a .OR. b .AND. c

is evaluated in the following order:

b .AND. c is evaluated to form lop1.

a .OR. lop1 is evaluated.

The expression:

z .LT. b .OR. .NOT. k .GT. z

is evaluated as follows:

k .GT. z is evaluated to form lop1.

.NOT. lop1 is evaluated to form lop2.

z .LT. b is evaluated to form lop3.

lop3 .OR. lop2 is evaluated.

The expression:

z .AND. d .OR. lsum(q,d) .AND. p .AND. i

is evaluated in the following order:

z .AND. d is evaluated to form lop1.

Language Elements 2-57

lsum(q,d) is evaluated to form lop2.

lop2 .AND. p is evaluated to form lop3.

lop3 .AND. i is evaluated to form lop4.

lop1 .OR. lop4 is evaluated.

The expression:

a .AND. (b .AND. c)

is evaluated in the following order:

b .AND. c is evaluated to form lop1.

a .AND. lop1 is evaluated.

As shown in the last example, parentheses can be used to control
the order of evaluation of a logical expression. As with arithmetic
expressions, the actual order of evaluation may be di�erent from
that stated above, but the result is the same as if these rules were
followed.

Bit Masking
Expressions

As an extension to the ANSI 77 standard, the logical operators can
be used with integer operands to perform bit masking operations.
You must be aware of the internal binary representations of the data
in order to use the masking operators to produce predictable results.
(Refer to Chapter 10 for details on data representation in memory.)

A complete truth table is shown in Table 2-6 (a version of Table 2-5
with true = 1 and false = 0). A bit by bit comparison is done of the
operands (i and j), and the corresponding bit of the result is set
according to the truth table.

FORTRAN also supplies these bit masking operations and other
bit manipulation operations as intrinsic functions, described in
Appendix B. These functions comply with the MIL-STD-1753
extension to the ANSI 77 standard.

Table 2-6. Truth Table for Masking Operators

i j .NOT. i i .AND. j i .OR. j i .NEQV.
j

i .XOR. j

i .EQV. j

1 1 0 1 1 0 1

1 0 0 0 1 1 0

0 1 1 0 1 1 0

0 0 1 0 0 0 1

Examples

.AND. returns the logical product of two operands:

2-58 Language Elements

op1: 0111111111111110 (3276610)

op2: 0001011001011001 (572110)

result: 0001011001011000 (572010)

.NEQV. and .XOR. return the symmetric di�erence of two operands:

op1: 0000000011111111 (25510)

op2: 0001011001011001 (572110)

result: 0001011010100110 (579810)

Language Elements 2-59

3

FORTRAN Statements

Statements are the fundamental building blocks of FORTRAN
program units. This chapter describes the general form of a
statement and then discusses the di�erent categories of statements.
Following the general discussions are detailed descriptions of
FORTRAN statements in alphabetical order. Each description
includes the statement syntax, applicable rules, and examples.

FORTRAN
Statement Format

A FORTRAN statement has the following general form:

�
label

�
statement

The label identi�es a particular statement so that it can be
referenced from another portion of the program. A statement label
consists of one to �ve digits placed anywhere in columns 1 through 5.
Each label must be unique within a program unit; blanks and leading
zeros are ignored by the compiler. Labels are optional and need not
appear in numerical order.

Examples Notes
99999 Largest label

0300 Identical labels
300

30 0

1 Smallest label

The statement itself is written in columns 7 through 72. If a
statement is too long for one line, it can be continued on the next
line. This is indicated by placing a character other than a zero or
a blank in column 6. Columns 1 through 5 of a continuation line
are ignored, except that column 1 cannot contain the character $, C,
!, or *. By default, each statement can have up to 19 continuation
lines. If the CONTINUATIONS compiler directive is speci�ed, each
statement can have up to 99 continuation lines.

FORTRAN Statements 3-1

Statement
Classification

A FORTRAN statement can be either executable or nonexecutable.
Executable statements specify the actions that the program is to
take. Nonexecutable statements contain information such as the
characteristics of operands, type of data, and format speci�cations
for input/output. Each FORTRAN statement is categorized in
Table 3-1.

Table 3-1. Executable and Nonexecutable Statements

Executable Statements Nonexecutable Statements

ACCEPT
ASSIGN
Assignment
BACKSPACE
CALL
CLOSE
CONTINUE
DECODE
DELETE
Block DO
Labeled DO
DO-WHILE
ELSE IF
ELSE
ENCODE
END
END DO
ENDFILE
ENDIF
GOTO
Arithmetic IF
Block IF
Logical IF
INQUIRE
OPEN
PAUSE
PRINT
READ
RETURN
REWIND
REWRITE
STOP
TYPE
UNLOCK
WRITE

BLOCK DATA
BYTE
CHARACTER
COMMON
COMPLEX (*8, *16)
DATA
DIMENSION
DOUBLE COMPLEX
DOUBLE PRECISION
END MAP
END STRUCTURE
END UNION
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
IMPLICIT
INCLUDE
INTEGER (*2, *4)
INTRINSIC
LOGICAL (*1, *2, *4)
MAP
NAMELIST
PARAMETER
PROGRAM
REAL (*4, *8, *16)
RECORD
SAVE
Statement Function
STRUCTURE
SUBROUTINE
SYSTEM INTRINSIC
UNION
VIRTUAL
VOLATILE

Executable and nonexecutable statements can be further grouped
into seven functional categories, displayed in Table 3-2. The
categories are:

Program unit statements.

3-2 FORTRAN Statements

Speci�cation statements.
Value assignment statements.
Initialization statements.
Control statements.
Input/output statements.
Program halt or suspension statements.

FORTRAN Statements 3-3

Table 3-2. Classification of Statements

Program Unit
Statements

Description

BLOCK DATA Identi�es a program unit as a block data
subprogram.

END Identi�es the end of a program unit.

ENTRY Provides an alternative entry into a function or
subroutine.

FUNCTION Identi�es a program unit as a function subprogram.

PROGRAM Identi�es a program unit as a main program.

Statement Function De�nes a one-statement function.

SUBROUTINE Identi�es a program unit as a subroutine
subprogram.

Speci�cation
Statements

Description

COMMON Reserves a block of memory that can be used by
more than one program unit.

DIMENSION De�nes the dimensions and bounds of an array.

END MAP De�nes the end of a MAP statement group.

END STRUCTURE De�nes the end of a STRUCTURE statement
group.

END UNION De�nes the end of a UNION statement group.

EQUIVALENCE Associates variables so that they share the same
place in memory.

EXTERNAL Identi�es subprogram names used as actual
arguments or as nonintrinsics.

IMPLICIT Speci�es the type associated with the �rst letter of
a symbolic name.

INTRINSIC Identi�es intrinsic function names used as actual
arguments.

MAP Identi�es a group of statements that de�ne the
form of �elds within a union.

NAMELIST De�nes a list of variables or array names and
associates that list with a group-name.

(Continued on the next page)

3-4 FORTRAN Statements

Table 3-2. Classification of Statements (continued)

Speci�cation
Statements

Description

PARAMETER De�nes named constants.

RECORD De�nes records declared in a previous structure
declaration.

SAVE Retains the value of an entity after execution of a
RETURN or END statement in a subprogram.

STRUCTURE Begins a group of statements that de�nes the form
of a record.

Type Speci�cation Assigns an explicit type to a variable.

UNION Associates �elds within a structure so that they
occupy the same physical location in memory.

VIRTUAL De�nes the dimensions and bounds of an array;
like DIMENSION.

VOLATILE Identi�es variables, arrays, or common blocks that
will not be selected for global analysis or
optimization by the compiler.

Value Assignment
Statements

Description

ASSIGN Assigns a statement label to an integer variable.

Assignment Assigns values to variables at execution time.

Initialization
Statements

Description

DATA Assigns initial values to variables before execution.

Type Speci�cation Can optionally initialize variables before execution.

Control Statements Description

CALL Transfers control to an external procedure.

CONTINUE Causes execution to continue; has no e�ect of its
own.

Block DO,
Labeled DO

Executes a group of statements a speci�c number
of times.

DO-WHILE Executes a group of statements while a condition
is true.

END DO Terminates a DO or DO-WHILE block.

ENDIF Terminates an IF-THEN block.

ELSE Marks the beginning of a block of statements to be
executed if the logical expression in its
corresponding IF-THEN statement evaluates to
false.

ELSE IF Same as an ELSE statement that has an IF-THEN
statement as the �rst statement of its ELSE block.

GOTO Transfers control to a speci�ed statement.

(Continued on the next page)

FORTRAN Statements 3-5

Table 3-2. Classification of Statements (continued)

Control Statements Description

Arithmetic IF Transfers control based on a condition.

Block IF Executes optional groups of statements based on
one or more conditions.

Logical IF Conditionally executes a statement based on a
logical value.

RETURN Transfers control from a subprogram back to the
calling program.

Input/Output
Statements

Description

ACCEPT Transfers input data from the standard input unit
to an internal storage area.

BACKSPACE Positions a �le at the previous record.

CLOSE Terminates access to a �le.

DECODE Transfers data from internal storage to variables.

DELETE Deletes an indexed sequential access (ISAM)
record.

ENCODE Transfers data from variables to internal storage.

ENDFILE Writes an end-of-�le.

FORMAT Describes how input/output information is
arranged.

INQUIRE Supplies information about �les.

OPEN Allows access to a �le.

PRINT Transfers data out.

READ Transfers data in.

REWIND Positions a �le at beginning-of-�le.

REWRITE Updates an indexed sequential access (ISAM)
record.

TYPE Transfers data out.

UNLOCK Unlocks an indexed sequential access (ISAM)
record.

WRITE Transfers data out.

Program Halt
Statements

Description

PAUSE Causes a program suspension.

STOP Terminates program execution.

3-6 FORTRAN Statements

Order of Statements Statements are restricted as to where they can appear in a program
unit. Within a program unit, the following rules apply:

PROGRAM, SUBROUTINE, FUNCTION, and BLOCK DATA
statements can appear only as the �rst statement in a program
unit.

All speci�cation statements must precede all statement function
statements and executable statements.

IMPLICIT statements must precede all other speci�cation
statements except PARAMETER statements.

All statement function statements must precede all executable
statements.

FORMAT and ENTRY statements can appear anywhere.

The last line of a program unit must be an END statement.

The required order of statements is shown in Figure 3-1.

Vertical lines delineate varieties of statements that can be
interspersed. For example, DATA statements can be interspersed
with statement function statements and executable statements.

Horizontal lines delineate varieties of statements that must not be
interspersed. For example, statement function statements must not
be interspersed with executable statements.

Figure 3-1. Required Order of Statements

FORTRAN Statements 3-7

ACCEPT Statement
(Executable)

The ACCEPT statement transfers input data from the standard
input unit to an internal storage area. Input data is transferred
under sequential mode access. The ACCEPT statement cannot be
connected to user-speci�ed logical units.

Item Description/Default Restrictions

fmt Format designator. See \Semantics".

namelist group name Symbolic name
specifying a list of
variables or arrays
previously declared in a
NAMELIST statement.

None.

variable

array element

character substring

array name

scalar record �eld name

Variable location where
data is to be stored.

None.

implied do list A list of variables in an
implied DO loop. See
\DO Statement
(Executable)" for
details.

None.

3-8 FORTRAN Statements

Semantics

The format designator, fmt, must be one of the following:

The statement label of a FORMAT statement.

An INTEGER*4 variable to which the statement label of a
FORMAT statement has been assigned through an ASSIGN
statement.

A character or noncharacter array name that contains the
representation of a format speci�cation (use of a noncharacter
array is an extension to the ANSI 77 standard).

A character expression that evaluates to the representation of a
format speci�cation.

An asterisk, which speci�es list-directed input. See \List-Directed
Input/Output" in Chapter 4.

The ACCEPT statement is an extension to the ANSI 77 standard.

Examples Notes

ACCEPT 100,number,string

100 FORMAT(I3,A10)

number and string are input
according to the FORMAT
statement 100.

ACCEPT *,var1,var2,var3(1) var1, var2, and var2 are input
according to list-directed formating.

ACCEPT NAME1 The ACCEPT statement transfers
input data to the entities associated
with the NAME1 namelist group.

FORTRAN Statements 3-9

ASSIGN Statement
(Executable)

The ASSIGN statement assigns a statement label to an INTEGER*4
variable.

Item Description/Default Restrictions

label Statement label. Must be the label of an
executable statement or a
FORMAT statement.

variable INTEGER*4 simple
variable.

None.

Semantics

The variable de�ned as a label by the ASSIGN statement can
subsequently be used in an assigned GOTO statement or as the
format speci�er in an input/output statement.

A variable must be de�ned with a statement label value in order
to be referenced in an assigned GOTO statement or be used as a
format identi�er in an input/output statement. While de�ned with
a statement label value, the variable must not be referenced in any
other way; that is, it should not be rede�ned with an assignment
statement or used as a variable in an expression. Also, the variable
cannot be passed to a subroutine or function and used within that
program unit.

An integer variable de�ned with a statement label value can be
rede�ned with the same or a di�erent statement label value or an
integer value.

Examples Notes

ASSIGN 10 TO label1 Assigns the statement label 10 to
the variable label1.

ASSIGN 20 TO last1...
GOTO last1

Assigns the statement label 20 to
the variable last1. The label is that
of an executable statement.

ASSIGN 100 TO form1...

100 FORMAT (F6.1,2X,I5/F6.1)...

READ (5,form1) sum, ki, ave1

Assigns the statement label 100 to
the variable form1. The label is that
of a FORMAT statement.

3-10 FORTRAN Statements

Assignment
Statement
(Executable)

The assignment statement evaluates an expression and assigns the
resulting value to a data item. There are four kinds of assignment
statements:

Arithmetic
Logical
Character
Aggregate

Item Description/Default Restrictions

variable1

array element

scalar record �eld name

substring

Variable or array
element.

If arithmetic
assignment, type must
be integer, real, or
complex.

If logical assignment,
type must be logical.

If character assignment,
type must be character.

expression The expression to
which the variable or
array element is being
assigned.

If the variable or array
element is arithmetic,
expression must be an
arithmetic expression; if
logical, expression must
of type logical; if
character, expression
must be of type
character.

aggregate1

aggregate2

A record with one or
more �elds.

Both must be declared
with the same
structure.

FORTRAN Statements 3-11

Arithmetic Assignment
Statement (Executable)

Semantics

If the type of the variable on the left of the equal sign di�ers from
that of the expression, type conversion takes place. The expression is
evaluated and the result is converted to the type of the variable on
the left. The converted result then replaces the current value of the
variable. Conversion rules for the assignment statement are shown in
Table 3-3, followed by examples in Table 3-4. See also Table 2-4.

3-12 FORTRAN Statements

Table 3-3.

Type Conversion for Arithmetic Assignment Statements

of the Form: Variable = Expression

Rule Variable
Type

Expression Type Rules

a. INTEGER*k
(or LOGI-
CAL*k)
(see Note 3)

INTEGER*n If k � n, assign INTEGER*k . If k
< n, assign least signi�cant byte or
half word to variable. See Note 1.

b. INTEGER*k
(or LOGI-
CAL*k)
(see Note 3)

REAL*n Truncation.

c. INTEGER*k
(or LOGI-
CAL*k)
(see Note 3)

COMPLEX*8 Real part is REAL*4. Apply rule b
to real part. Imaginary part is not
used.

d. INTEGER*k
(or LOGI-
CAL*k)
(see Note 3)

COMPLEX*16 Real part is REAL*8. Apply rule b
to real part. Imaginary part is not
used.

e. REAL*k INTEGER*n Float and assign REAL*k . See Note
2.

f. REAL*k REAL*n Round and assign REAL*k .

g. REAL*k COMPLEX*8 Real part is REAL*4. Apply rule f
to real part. Imaginary part is not
used.

h. REAL*k COMPLEX*16 Real part is REAL*8. Apply rule f
to real part. Imaginary part is not
used.

i. COMPLEX*8 INTEGER or
REAL

Convert to REAL*4 by rule e or f
and assign to real part. Imaginary
part = 0.

j. COMPLEX*16INTEGER or
REAL

Convert to REAL*8 by rule e or f
and assign to real part. Imaginary
part = 0.

k. COMPLEX*k COMPLEX*n Apply rule f to real and imaginary
parts.

Notes for Table 3-3

1. If the value of the expression is between �32768 and +32767, the
result of the conversion from INTEGER*4 to INTEGER*2 is
correct; otherwise, the result is incorrect.

FORTRAN Statements 3-13

2. When converting from INTEGER*4 to REAL*4, the precision can
be lost because INTEGER*4 holds 31 signi�cant bits, while the
number of signi�cant bits for REAL*4 is system dependent. Refer
to Chapter 10 for more details on data representation.

3. As an extension to the ANSI 77 standard, logical variables
appearing in an arithmetic context may be treated as integer
variables, depending upon compiler directives.

In Table 3-4, k and n represent examples of possible combinations of
byte sizes for the particular data type. For example, if the variable is
INTEGER*k and the expression is REAL*n, k can be 2 or 4, while n
can be 4, 8, or 16. This represents six possible combinations of byte
sizes.

3-14 FORTRAN Statements

Table 3-4.

Examples of Type Conversions for Arithmetic

Assignment Statements

of the Form: Variable = Expression

Rule Variable
Type

Variable Value Expression Value Expression
Type

a. INTEGER*4
or LOGI-
CAL*4

542 542 INTEGER*2

a. INTEGER*2
or LOGI-
CAL*2

Unde�ned (see
Note 1).

86420 INTEGER*4

b. INTEGER*2
or INTE-
GER*2

3 3.842 REAL*4

b. INTEGER*2
or LOGI-
CAL*2

373 373.7Q0 REAL*16

c. INTEGER*2
or LOGI-
CAL*2

502 (5.0297E2,1.27E�5) COMPLEX*8

d. INTEGER*4
or LOGI-
CAL*4

�48170 (�4.817D4,1.0096D7) COMPLEX*16

e. REAL*4 59. 59 INTEGER*2

f. REAL*8 10.D+09 10.E+09 REAL*4

f. REAL*4 1.7014E+38 1.7014118344D+38 REAL*8

h. REAL*4 8.425 (8.425,�6.02E�2) COMPLEX*8

h. REAL*8 2.2964D�8 (2.2964D�8,6.2881D�4)COMPLEX*16

h. REAL*16 3.57Q297 (3.57D297,�1.0D32) COMPLEX*16

i. COMPLEX*8 (50.0,0) 50 INTEGER*2

i. COMPLEX*8 (25.0,0) 25 REAL*4

j. COMPLEX*16(14.23D�17,0.) 14.23E�17 REAL*4

j. COMPLEX*16(1.0D28,0.0D0) 1.0000000000000000000635Q28REAL*16

k. COMPLEX*8 (�4.817E4,1.0096E7(�4.817D4,1.0096D7) COMPLEX*16

k. COMPLEX*16(8.425D0, 6.02D�2)(8.425,�6.02E�2) COMPLEX*8

FORTRAN Statements 3-15

Examples Notes

total = subtotal + tally De�nes the value of total as the value of
subtotal + tally.

sum = sum + 1 Replaces the value of sum with the value of
sum + 1.

rate(10) = new_rate * 5 De�nes the 10th element of the array rate

as the value of new_rate multiplied by 5.

Logical Assignment
Statement (Executable)

Semantics

Both the variable and the expression must logical types in a logical
assignment statement.

Examples Notes

LOGICAL log1

i = 10

log1 = i .EQ. 10

log1 is assigned the value .TRUE.
because i equals 10.

LOGICAL log_res, flag_set

num = 100

flag_set = .TRUE.

log_res = NUM .GT. 200 .AND. flag_set

log_res is assigned the value
.FALSE. because num is not greater
than 200.

3-16 FORTRAN Statements

Character Assignment
Statement (Executable)

Semantics

If the length of the variable is greater than the length of the
expression, the value of the expression is left-justi�ed in the variable,
and blanks are placed in the remaining positions. If the length of the
variable is less than the length of the expression, the value of the
expression is truncated from the right until it is the same length as
the variable.

Examples Notes

CHARACTER*6 name

CHARACTER*4 instrument(6),k

name = 'CYBELE'...

The variable name is assigned the
character string "CYBELE".

k = 'horn'

instrument(5) = k...

The �fth element of the array
instrument is assigned the
character string "horn".

instrument(4) = name(3:5) // 'L' The fourth element of the array
instrument is assigned the
character string "BELL".

CHARACTER*21 employee_name

employee_name = 'GEORGE WASHINGTON'

The variable employee_name is
assigned the value
"GEORGE�WASHINGTON����".

CHARACTER security_code*4

security_code = 'ZXYwvu'

The variable security_code is
assigned the value "ZXYw".

CHARACTER address*20

address (1:4) = '1645'

address(6:14) = 'First St.'

The �rst through fourth characters
of the variable address are assigned
the value "1645" and the sixth
through fourteenth the value "First
St.".

FORTRAN Statements 3-17

Aggregate Assignment
Statement (Executable)

Semantics

The �eld values of the aggregate on the left side of the equal sign are
assigned to the corresponding �elds of the aggregate on the right
side of the equal sign. The two aggregates must be declared with the
same structure name.

Examples Notes

STRUCTURE/student/

CHARACTER*32 name

INTEGER*2 age

END STRUCTURE

A structure named student is
declared with two �elds, name, a
32-byte character type, and age, a
2-byte integer type.

STRUCTURE/teacher/

CHARACTER*32 name

INTEGER*2 age

END STRUCTURE

A structure named teacher is
declared with two �elds whose
names and data types are identical
to the structure student.

RECORD/student/math_student

RECORD/student/english_student

RECORD/teacher/math_teacher

Two records named math_student

and english_student are declared
using the structure named student.
One record named math_teacher is
declared using the structure named
teacher.

math_student = english_student This is a valid aggregate assignment
statement, since both variables were
declared with the same structure
name.

math_student = math_teacher This is an illegal aggregate
assignment statement, since the two
variables were declared with
di�erent structure names, even
though the two structures are
identical in form.

3-18 FORTRAN Statements

BACKSPACE
Statement
(Executable)

The BACKSPACE statement positions a sequential �le or device at
the preceding record.

Item Description/Default Restrictions

unit Expression giving the
unit number of a
connected �le.

Must be a nonnegative
integer.

variable name

array element

scalar record �eld name

Error code return. Must be an integer
type.

label Statement label. Must be an executable
statement in the same
program unit as the
BACKSPACE
statement.

Semantics

If the pre�x UNIT= is omitted and the unit speci�er is present, unit
must be the �rst item in the list.

If the ERR speci�er is present and an error occurs during execution
of a BACKSPACE statement, control transfers to the statement
speci�ed by label rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for IOSTAT error codes.

FORTRAN Statements 3-19

If the �le is positioned at its beginning, a BACKSPACE statement
has no e�ect.

As an extension to the ANSI 77 standard, BACKSPACE operations
are allowed on �les open for direct access. The �le is positioned at
the preceding record, provided it is not already at the beginning of
the �le.

Examples Notes

BACKSPACE 10 The sequential �le connected to unit
10 is backspaced one record.

BACKSPACE (UNIT=k+3,IOSTAT=j,ERR=100)The �le connected to unit k+3 is
backspaced one record. If an error
occurs, control transfers to
statement 100, and the error code is
stored in variable j. If no error
occurs, j is set to 0, and control
transfers to the next statement.

BACKSPACE (UNIT=k+3,IOSTAT=j) The �le connected to unit k+3 is
backspaced one record. If an error
occurs, the error code is stored in
the variable j. If no error occurs, j
is set to 0. In both cases, control
transfers to the next statement.

BACKSPACE (UNIT=k+3,ERR=100) The �le connected to unit k+3 is
backspaced one record. If an error
occurs, control transfers to
statement 100. If no error occurs,
control transfers to the next
statement.

3-20 FORTRAN Statements

BLOCK DATA
Statement
(Nonexecutable)

The BLOCK DATA statement identi�es the beginning of a block
data subprogram.

Item Description/Default Restrictions

subprogram nameSubprogram name. Must not be the same as the
name of an external
procedure, the main
program, a common block,
or any other block data
subprogram in the same
execution program, nor can
it be the same as any local
name in this block data
subprogram.

Semantics

Block data subprograms provide initial values for variables and array
elements in labeled common blocks.

Block data subprograms de�ne the size and reserve storage space for
each labeled common block and, optionally, initialize the variables,
records, and arrays declared in the common block. A block data
subprogram begins with a BLOCK DATA statement. It ends with an
END statement.

The BLOCK DATA statement must be the �rst noncomment
statement in a block data subprogram. Each named common block
referenced in an executable FORTRAN program can be de�ned in a
block data subprogram.

Speci�cation statements, data initialization statements, and blank
common statements are allowed in the body of a block data
subprogram. Acceptable statements include the COMMON, DATA,
DIMENSION, END MAP, END STRUCTURE, END UNION,
IMPLICIT, MAP, PARAMETER, RECORD, SAVE, STRUCTURE,
and UNION statements, and all explicit type statements (such as
INTEGER*4 or REAL*8). EXTERNAL and INTRINSIC statements
are not allowed.

The block data subprogram without a name is treated the same as
a named block data subprogram. However, there cannot be more
than one unnamed block data subprogram in the same program. If a
program contains more than one unnamed block data subprogram,
the results are unpredictable.

FORTRAN Statements 3-21

Example Notes

BLOCK DATA myblock

COMMON /xxx/x(5),b(10),c

COMMON /set1/iy(10)

DATA iy/1,2,4,8,16,32,64,128,256,512/

DATA b/10*1.0/...

END

myblock is the optional name of a
block data subprogram to reserve
storage locations for the named
common blocks xxx and set1.
Arrays iy and b are initialized in
the DATA statements shown. The
remaining elements in the common
block can optionally be initialized or
typed in the block data subprogram.

BLOCK DATA name1

COMMON a,b,c

DATA a,b,c/10.0,20.0,30.0/

END

name1 is the optional name of a
block data subprogram to reserve
storage locations for the blank
common block. The real variables a,
b, and c are initialized as shown in
the DATA statement.

3-22 FORTRAN Statements

BYTE Statement
(Nonexecutable)

The BYTE type speci�cation statement explicitly assigns the BYTE
(LOGICAL*1) data type to symbolic names, and optionally assigns
initial values to variables.

See also \LOGICAL Statement (Nonexecutable)".

Semantics

The BYTE statement is an extension to the ANSI 77 standard. The
BYTE statement has the same e�ect as the LOGICAL*1 statement.

If an item being declared in a BYTE statement is an array name
with a dimension declarator, the length speci�er precedes the
dimension declarator.

As an extension to the ANSI 77 standard, you can initialize
variables or arrays in a type speci�cation statement by enclosing
the initialization values between slashes. The following examples
illustrate this method of initialization:

BYTE I*1/25/,J/.TRUE./

BYTE array(10)/10*.FALSE./

See \DATA Statement (Nonexecutable)" for further information on
initializing variables and arrays.

FORTRAN Statements 3-23

CALL Statement
(Executable)

The CALL statement transfers control to a subroutine.

Item Description/Default Restrictions

*

&

Alternate return. None.

label Statement label of an
executable statement.

Must be in the same
program unit as the CALL
statement.

Semantics

When a CALL statement is executed, any expressions in the actual
argument list are evaluated and control passes to the subroutine. For
a normal return from the subroutine, execution continues with the
statement following the CALL statement. When an alternate return
is taken, execution continues with the statement label in the actual
argument list that corresponds to the return number speci�ed in the
subroutine's RETURN statement.

The use of & as an alternate return is an extension to the ANSI 77
standards.

3-24 FORTRAN Statements

Examples Notes

CALL print_forms(top,lh,rh) Calls the subroutine print_forms.
Passes three arguments.

CALL exit Calls the subroutine exit. Passes no
arguments.

CALL test_data (m,n,val,*10)...

10 total = val + 6.34...

END

SUBROUTINE test_data (j,k,w,*)...

RETURN 1...

END

Calls the subroutine test_data.
Passes three arguments. *10 means
that the return point is the
statement labeled 10 if the
subroutine executes the alternate
return RETURN 1.

As an extension to the FORTRAN 77 standard, a call can be made
with arguments missing. The compiler passes a zero by value for any
missing arguments. For example, the statement:

CALL fun (a,,b,,)

is equivalent to:

CALL fun (a,0,b,0)

with the zero being passed by value.

FORTRAN Statements 3-25

CHARACTER
Statement
(Nonexecutable)

The CHARACTER type speci�cation statement explicitly assigns the
CHARACTER data type to symbolic names, and optionally assigns
initial values to the variables.

Semantics

If an array declarator is speci�ed in a type statement, the declarator
for that array must not appear in any other speci�cation statement
(such as DIMENSION). If only the array name is speci�ed, an
array declarator must appear within a DIMENSION or COMMON
statement.

The length speci�cation can be one of the following:

An unsigned nonzero integer constant.

3-26 FORTRAN Statements

An integer constant expression with a positive value. The integer
expression must be enclosed in parentheses and cannot contain
variable names. Example: (-3 + 4).

An asterisk enclosed in parentheses: (*).

A variable enclosed in parentheses. This is an extension to the
ANSI 77 standard.

A length speci�cation can be appended to the end of a symbolic
name to designate its length. If the length speci�cation is a variable,
it must be a formal argument to the program unit in which the
character type is declared. The variable must also be an integer type,
and it must contain a positive value. If the length speci�cation is
omitted, the length is assumed to be one.

The CHARACTER*(*) form can be used only for named constants,
formal arguments, function subprograms, or entry names in
functions.

Note If the symbolic name has an appended length speci�cation, the
speci�cation overrides the length n in the CHARACTER*n
speci�cation. Therefore, CHARACTER*6 q, CHARACTER q*6, and
CHARACTER*10 q*6 are all equivalent. Each reserves space for a
character variable named q of length 6. Also, CHARACTER*(*) name

and CHARACTER name*(*) are equivalent.

Examples Notes

CHARACTER*5 name(6)*10,zip(6) The variables name and zip are
character arrays with six elements
each. Each element in name has a
length of 10. Each element in zip

has a length of 5.

CHARACTER*6 var

CALL sub (var)...

SUBROUTINE sub (var1)

The variable var is de�ned as type
CHARACTER and as six characters
long.

CHARACTER*(*) var1 The variable var1 is de�ned as
being of type CHARACTER and as
having the same length as the
variable var in the calling
subroutine.

As an extension to the ANSI 77 standard, you can initialize
variables or arrays in a type speci�cation statement by enclosing
the initialization values between slashes. The following examples
illustrate this method of initialization:

CHARACTER*10 string/'0123456789'/

CHARACTER*25 stringtab(10)*10/10*'THIS IS IT'/,name*4/'BILL'/

FORTRAN Statements 3-27

See \DATA Statement (Nonexecutable)" for further information on
initialization.

3-28 FORTRAN Statements

CLOSE Statement
(Executable)

The CLOSE statement terminates the connection of a �le to a unit.

Item Description/Default Restrictions

unit Speci�es the unit
number of the �le.

Must be an integer
expression.

dsp See \Semantics". None.

dsps See \Semantics". None.

label Statement label of an
executable statement.

Must be in the same
program unit as the
CLOSE statement.

character expression Character expression
that determines the
disposition of the �le.

The value must be
either 'KEEP' or
'DELETE'.

variable name

array element name

scalar record �eld name

Error code return. Must be an integer
type.

Semantics

If the ERR speci�er is used and an error occurs during execution of
a CLOSE statement, control transfers to the statement speci�ed by
label rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for IOSTAT error codes.

FORTRAN Statements 3-29

If STATUS='KEEP' is speci�ed, the �le continues to exist after
execution of the CLOSE statement. 'KEEP' is the default for
named �les; that is, specifying STATUS='KEEP' or not specifying the
STATUS parameter has the same e�ect. However, STATUS='KEEP' is
an error if a scratch �le is being closed.

The STATUS='KEEP' speci�er is not allowed on scratch �les because
scratch �les are deleted upon execution of CLOSE or at normal
program termination.

In the STATUS speci�er, only the �rst character is signi�cant.

If STATUS='DELETE' is speci�ed, the �le does not exist after
execution of the CLOSE statement.

The DISP and DISPOSE speci�ers, which are extensions to the ANSI
77 standard, are included for compatibility with programs originally
written in another version of FORTRAN. If used in a program, their
syntax is checked, but they are otherwise ignored by the compiler.

A CLOSE statement must contain a unit number and at most one
each of the other options.

A CLOSE statement need not be in the same program unit as the
OPEN statement that connected the �le to the speci�ed unit. If a
CLOSE statement speci�es a unit that does not exist or has no �le
connected to it, no action occurs.

3-30 FORTRAN Statements

Examples Notes

CLOSE (10) Disconnects the �le connected to
unit 10. The �le continues to exist.

CLOSE (UNIT=6,STATUS='DELETE') Disconnects the �le connected to
unit 6. The �le no longer exists.

CHARACTER*6 cstat

cstat = 'DELETE'

CLOSE (UNIT=6,STATUS=cstat)

This produces the same results as
the preceding statement.

CLOSE (5,IOSTAT=io_error,ERR=100)Disconnects and keeps the �le
connected to unit 5. If an error
occurs, control is transferred to
statement 100 and the error code is
stored in the variable io_error. If
no error occurs, io_error is set to 0
and control transfers to the next
statement.

CLOSE (5,IOSTAT=io_error) Disconnects and keeps the �le
connected to unit 5. If an error
occurs, the error code is stored in
the variable io_error. If no error
occurs, io_error is set to 0. In both
cases, control transfers to the next
statement.

CLOSE (5,ERR=100) Disconnects and keeps the �le
connected to unit 5. If an error
occurs, control transfers to
statement 100. If no error occurs,
control transfers to the next
statement.

FORTRAN Statements 3-31

COMMON Statement
(Nonexecutable)

The COMMON statement speci�es a block of storage space that can
be used by more than one program unit.

Item Description/Default Restrictions

block name Name of a labeled common
block.

Must be di�erent from all
intrinsic names, subroutine
names, and the program
name.

Semantics

The following data items cannot appear in a COMMON statement:

The names of formal arguments in a subprogram.

A function, subroutine, or intrinsic function name.

As an extension to the ANSI 77 standard, a COMMON statement
can contain a name that has been initialized in a DATA statement or
a type statement.

A variable cannot be speci�ed more than once in the COMMON
statements within a program unit.

Each omitted block name speci�es blank common, which means that
a common block name is not speci�ed but the compiler supplies a
hidden name. The appearance of two slashes (//) with no block
name between them declares the variables that follow to be in blank
common.

A common block name or blank common speci�cation can appear
more than once in one or more COMMON statements in a program
unit. The variable list following each successive appearance of the
same common block name is treated as a continuation of the list for
that block name.

3-32 FORTRAN Statements

For example, the COMMON statements:

COMMON a,b,c/x/y,z,d//w,r

COMMON /cap/hat,visor,//tax,/x/o,t

are equivalent to the following COMMON statement:

COMMON a,b,c,w,r,tax,/x/y,z,d,o,t,/cap/hat,visor

The length of a common block is determined by the number and type
of the variables in the list associated with that block.

The total size of a COMMON block must be less than one gigabyte.
(A gigabyte is 1,073,741,824 (230) bytes.)

Common block storage is allocated at link time. It is not local to any
one program unit.

Note Global data declared in a COMMON block cannot be shared between
a calling program and a subprogram in an executable library.

Each program unit that uses the common block must include a
COMMON statement that contains the block name (if a name was
speci�ed). The list assigned to the common block by the program
unit need not correspond to any other program unit by name, type,
or number of elements. The only consideration is the size of the
common blocks referenced by the di�erent program units. The size
of an unlabeled (blank) common block can di�er between program
units, but the size of a labeled common block should be the same in
all program units.

As an extension to the ANSI 77 standard, character and
noncharacter data can be mixed in a given common block.

Examples Notes

COMMON a, b, c The variables a, b, and c are placed in
blank common.

COMMON pay, time, /color/redThe variables pay and time are placed in
blank common; the variable red is placed in
common block color.

COMMON /a/a1,a2,//x(10),y,/c/dThe variables a1 and a2 are placed in
common block a; x(10) and y are placed in
blank common; d is placed in common block
c.

FORTRAN Statements 3-33

COMPLEX
Statement
(Nonexecutable)

The COMPLEX type speci�cation statement explicitly assigns the
COMPLEX*8 and COMPLEX*16 data types to symbolic names, and
optionally assigns initial values to variables.

The following syntax includes the COMPLEX, COMPLEX*8,
COMPLEX*16, and DOUBLE COMPLEX statements.

Semantics

The COMPLEX*8 statement and the COMPLEX statement are
equivalent. The COMPLEX*16 statement and the DOUBLE
COMPLEX statement are equivalent. The COMPLEX*8 and
COMPLEX*16 statements are extensions to the ANSI 77 standard.

3-34 FORTRAN Statements

As an extension to the ANSI 77 standard, a length speci�er can
follow the item being declared. This speci�er overrides the data
length implied by the type statement. If the item is an array name
with a dimension declarator, the length speci�er precedes the
dimension declarator. The following example illustrates this syntax:

COMPLEX*16 a*8(10)

As an extension to the ANSI 77 standard, you can initialize
variables or arrays in a type speci�cation statement by enclosing
the initialization values between slashes. The following example
illustrates this method of initialization:

COMPLEX*8 num*16/(138.16,124.16)/

See \DATA Statement (Nonexecutable)" for further information on
initialization.

COMPLEX*8
Statement
(Nonexecutable)

The COMPLEX*8 statement, which is an extension to the ANSI
77 standard, is a special case of the COMPLEX statement. See
\COMPLEX Statement (Nonexecutable)" for details.

COMPLEX*16
Statement
(Nonexecutable)

The COMPLEX*16 statement, which is an extension to the ANSI
77 standard, is a special case of the COMPLEX statement. See
\COMPLEX Statement (Nonexecutable)" for details.

FORTRAN Statements 3-35

CONTINUE
Statement
(Executable)

The CONTINUE statement creates a reference point in a program
unit.

Semantics

The CONTINUE statement should always be written with a label;
it marks a point in the program where a label is needed but the
programmer does not want to associate the label with any speci�c
action.

In programs in earlier versions of FORTRAN, the CONTINUE
statement is usually the last statement in a labeled DO loop that
otherwise would end in a prohibited statement such as a GOTO
statement. As a MIL-STD-1753 standard extension to the ANSI 77
standard, the END DO statement now serves this purpose. (See \DO
Statement (Executable)" for examples of the END DO statement.) If
a CONTINUE statement appears elsewhere in a program or if it is
not labeled, it performs no function and control passes to the next
statement.

Examples Notes

DO 20 i = 1,10

10 x = x + 1

y = SQRT(x)

PRINT *, y

IF (x .LT. 25.) GOTO 20

GOTO 10

20 CONTINUE

Because the last statement in the loop is a
GOTO statement, a CONTINUE statement
terminates the loop.

3-36 FORTRAN Statements

DATA Statement
(Nonexecutable)

The DATA statement assigns initial values to variables before
execution begins.

Item Description/Default Restrictions

iteration constant Nonzero unsigned integer.
The default is one.

None.

iteration constant name Named constant, de�ned by
a PARAMETER statement,
representing a nonzero
unsigned integer. The
default is one.

None.

* Repeat speci�er. None.

Semantics

The number of items in the constant list must agree with the number
of variables in the variable list. Each subscript in an array element
in the variable list must be an integer or short integer constant
expression, or an integer or short integer expression containing only
constants and implied DO variables. If the variable list contains an
array name without a subscript, one constant must be speci�ed for
each element of that array. The elements in the constant list are
associated with the elements of the array in column-major order.

FORTRAN Statements 3-37

The assignment of constants in a DATA statement to their
corresponding variables follows the rules of the assignment statement.
(See \Assignment Statement (Executable)" for details.)

If a constant has a type of character or logical, the corresponding
variable must be of the same type. Character variables can be
initialized with octal, hexadecimal or hollerith constants as well. If
a constant is of any numeric type (integer, real, or complex), the
corresponding variable can be of any numeric type. Type conversion
occurs automatically among the various numeric types, as in
assignment statements.

The length of a character constant and the declared length of its
corresponding character variable do not have to be the same. If the
constant is shorter than the variable, the variable is �lled on the right
with blank characters. If the constant is longer than the variable, the
constant is truncated, losing characters from the right.

Any local variable except a record can be initialized in a DATA
statement, before execution of the program. A local variable
mentioned in a DATA statement is treated the same way as one
speci�ed in a SAVE statement. Labeled common variables can also
be initialized in a DATA statement within a block data subprogram.

The total size of local variables in a single subroutine must be less
than one gigabyte. (A gigabyte is 1,073,741,824 (230) bytes.)

A variable or array element must not appear in a DATA statement
more than once because a variable is initialized only once. If two
variables (numeric or character) share the same storage space
through the EQUIVALENCE statement, only one can appear in a
DATA statement.

Each subscript expression in a DATA statement must be an integer
constant expression, except for implied DO loop variables.

The use of octal and hexadecimal constants in DATA statements are
MIL-STD-1753 standard extensions to the ANSI 77 standard.

DATA statements can be placed anywhere after speci�cation
statements in a program unit.

DATA statements cannot be used in procedures contained in
executable libraries.

3-38 FORTRAN Statements

Examples Notes

DATA a,b,c,d/3.0,3.1,3.2,3.3/ The values 3.0, 3.1, 3.2, and 3.3 are
assigned to a, b, c, and d,
respectively.

DIMENSION i(3)

DATA i/3*2/

All three elements of i are assigned
an initial value of 2.

DIMENSION i(3)

DATA i(1)/2/i(2)/2/i(3)/2/

All three elements of i are assigned
an initial value of 2. Equivalent to
the previous example.

DIMENSION i(3)

DATA i(1),i(2),i(3)/2,2,2/

All three elements of i are assigned
an initial value of 2. Equivalent to
the previous two examples.

PARAMETER (init_val = -1)

DIMENSION m(10)

DATA m/10*init_val/

Each element of m is assigned an
initial value of init_val that is a
named constant previously de�ned
in a PARAMETER statement.

FORTRAN Statements 3-39

Implied DO Loops in
DATA Statements

The implied DO loop in a DATA statement acts like the implied DO
loop in an input/output statement. It is executed at compilation
time to initialize parts of arrays or generate a full variable list.

The format of an implied DO loop in a DATA statement is shown
below:

Item Description/Default Restrictions

implied do list Data list in the form of an
implied DO loop.

Can contain other nested
implied DO loops.

index Variable that controls the
number of times the
elements in substring name,
array element name, or
implied do list are read or
written.

None.

init Integer expression that is the
initial value given to index

at the start of the execution
of the implied DO loop.

init can use only constants
and the indexes of outer
loops.

limit Integer expression that is the
termination value for index .

limit can use only constants
and the indexes of outer
loops.

step Integer expression that is the
increment by which index is
changed after each execution
of the DO loop; step can be
positive or negative. Its
default value is one.

step can use only constants
and the indexes of outer
loops. step should not equal
0. If it does, an error occurs,
as setting step equal to 0 can
cause the loop to be skipped
entirely.

The index can be used in expressions for subscript values or position
speci�ers of character substrings. Inner implied DO loops can use the
indexes of outer loops.

3-40 FORTRAN Statements

The iteration count in an implied DO loop in a DATA statement
must be positive.

Examples Notes

DIMENSION i(3)

DATA (i(k),k=1,3)/3*2/

An implied DO loop assigns an
initial value of 2 to all three
elements of i. Equivalent to the
previous three examples.

CHARACTER k(10,5)

DATA ((k(i,j),j=1,5),i=1,10)/50*'x'/

Two nested implied DO loops assign
the literal character x to each
element in an array of 50 elements,
k(10,5).

FORTRAN Statements 3-41

DECODE Statement
(Executable)

The DECODE statement transfers data from internal storage to
variables according to a format speci�cation.

3-42 FORTRAN Statements

Item Description/Default Restrictions

count Integer expression that
speci�es the number of bytes
to be translated.

Must be the �rst item.

fmt Format designator. Must be the second item.
Must be as speci�ed for the
PRINT Statement.

unit Internal storage designator. Must be the third item.
Must be a scalar record �eld
name or array name.
Assumed-size and
adjustable-size arrays are
not permitted.

ios Integer variable or array
element for error code
return.

None.

label Statement label of an
executable statement. If an
error occurs or an end-of-�le
is detected during execution
of the DECODE statement,
control transfers to the
statement speci�ed by this
label rather than aborting
the program.

None.

list List specifying the data to
be transferred.

Each list item must be a
variable name, an array
element, an array name, a
substring, or a scalar record
�eld name

Semantics

The DECODE statement is provided for compatibility with older
versions of FORTRAN. It is a nonstandard statement and its use in
new programs is strongly discouraged. If possible, use the internal
�le capabilities of the READ statement instead.

Examples Notes

CHARACTER*20 buf

INTEGER i, j, k

BUF = 'XX1234 45 -12XXXXXX'

DECODE (15,'(2x,3I4,1X)', buf) i,j,k

i, j, and k receive the values 1234,
45, and �12.

FORTRAN Statements 3-43

DELETE Statement
(Executable)

The DELETE statement deletes a record from an indexed sequential
access (ISAM) �le.

Item Description/Default Restrictions

unit Expression specifying unit
number of a connected �le.

Must be a nonnegative
integer.

variable name

array element

scalar record �eld name

Error code return. Must be an integer type.

label Statement label. Must be an executable
statement in the same
program unit.

Semantics

In the most recent operation on the �le, the record to be deleted
must have been read with a READ statement. If the most recent
operation was not a read of a record, a run-time error occurs.

If the pre�x UNIT= is omitted and the unit speci�er is present, unit
must be the �rst item in the list.

If the ERR speci�er is present and an error occurs during execution
of the DELETE statement, control transfers to the speci�ed
statement rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for IOSTAT error codes.

3-44 FORTRAN Statements

Examples Notes

READ (10,key='111-22-333',KEYID=0) employee_rec

DELETE (10,ERR=555, IOSTAT=I)

Deletes a record with the key
value 111-22-333.

FORTRAN Statements 3-45

DIMENSION
Statement
(Nonexecutable)

The DIMENSION statement de�nes the dimensions and bounds of
arrays.

Dimension Declarator

Item Description/Default Restrictions

array name Symbolic name of the array. None.

�rst Lower dimension bound.
Defaults to 1.

Must be less than or equal
to last .

last Upper dimension bound. Must be greater than or
equal to �rst .

* Dynamic upper bound. Can only appear in the last
upper bound of a formal
argument of a subprogram.

Semantics

There must be one dimension declarator for each dimension in the
array.

When an array is de�ned in a DIMENSION statement, only the
name of the array, not the complete declarator, can be used in a type
or COMMON statement.

Only the upper dimension bound of the last dimension in an array
declarator of a formal argument can be an asterisk.

As an extension to the ANSI 77 standard, an array can have an
unlimited number of dimensions.

See \Array Declarators" in Chapter 2 for further details.

3-46 FORTRAN Statements

Examples Notes

INTEGER*2 arri

DIMENSION arri(-3:1,4)

The type statement speci�es arri as
a two-byte integer. Only the name
of the array is used, not the
complete array declarator.

The DIMENSION statement causes
20 words of memory to be allocated
for the array arri. An equivalent
type speci�cation would be:

INTEGER*2 arri(-3:1,4)

COMPLEX num(5,5)

DIMENSION num(5,5)

This construct is illegal because num
is declared as an array twice.

FORTRAN Statements 3-47

DO Statement
(Executable)

A DO statement de�nes the beginning of a DO loop. DO loops are
groups of statements that are executed repeatedly zero or more
times, or a list within one statement that is executed a speci�ed
number of times.

The maximum level to which DO statements, or a mixture of IF and
DO statements, can be nested is 20. Exceeding this number makes
programs unnecessarily complicated and can cause internal compiler
errors stating that the statement is too complicated.

Item Description/Default Restrictions

label Statement label of an
executable statement.

Referenced statement
terminates the DO loop.

index Loop control variable. Must be a simple variable of
an integer or real data type.

init Expression that is the initial
value for index .

Must be an integer or real
expression.

limit Expression that is the
termination value for index .

Must be an integer or real
expression.

step Expression that is the
increment for index after
each execution of the DO
loop. step can be positive or
negative. Its default value is
one.

Must be an integer or real
expression. step should not
equal 0. If it does, an error
occurs if the RANGE
directive is ON. If RANGE
is OFF, an in�nite loop
could result.

3-48 FORTRAN Statements

Semantics

DO loops are grouped into four categories:

Labeled DO loops
Block DO loops
Implied DO loops
DO-WHILE loops

A labeled or block DO loop executes a group of statements a
speci�ed number of times. An implied DO loop is similar to a labeled
DO loop, but it is used in a READ, WRITE, PRINT, or DATA
statement. A DO-WHILE loop executes a group of statements while
a speci�ed condition is true.

Labeled and Block DO
Loops

The labeled and block DO statements control execution of groups
of statements by causing the statements to be repeated a speci�ed
number of times. The DO statement de�nes this repetition, or loop.
The repeated statement or group of statements is known as the range
of the DO loop.

Semantics

In a labeled DO loop, the statement with the label must follow
the DO statement in the sequence of statements within the same
program unit.

In a block DO loop, the label is omitted and a following END DO
statement terminates the loop. The block DO loop is an extension to
the ANSI 77 standard.

init , limit , and step are indexing parameters as well as arithmetic
expressions. index , init , limit , and step should all be of the same
type. If they are not, init , limit , and step are converted to the same
type as index . This can sometimes produce unexpected results, as
shown in the examples.

FORTRAN Statements 3-49

Labeled DO Loop

A labeled DO loop begins with a DO statement that speci�es the
label of the terminating statement of the loop. The terminating
statement of a labeled DO loop must follow the DO statement. It
must not be one of the following:

3-50 FORTRAN Statements

Another DO statement
A DO-WHILE statement
An assigned GOTO statement
An unconditional GOTO statement
An arithmetic IF statement
Any of the four statements associated with the block IF statement:
IF-THEN statement
ELSE statement
ELSE IF statement
ENDIF statement

A RETURN statement
A STOP statement
An END statement
Any nonexecutable statement

The terminating statement of a labeled DO loop can be a logical IF
statement.

A labeled DO loop can be terminated with an END DO statement.
As in all labeled DO loops, this terminating END DO statement
must have a label that matches the label of the DO statement.

Examples Notes

DO 100 i = 1,10...

100 CONTINUE

The group of statements terminating with
the one labeled 100 is repeated 10 times.

DO 200 j = 1,10,2...
200 IF (a(j) .EQ. 0) STOP

The group of statements terminating with
the one labeled 200 is repeated �ve times.

DO 300 r = 1.0,2.0,.1...

300 END DO

The group of statements terminating with
the one labeled 300 is repeated 11 times.
Although this loop ends with an END DO
statement, it is not a block DO loop. Notice
that the label in the DO statement
corresponds with the one on the END DO
statement.

DO 10 i = 1,10,2

WRITE (6,'("i =",I2)')i

i = i-2

10 CONTINUE

Error. Attempted modi�cation of i in this
example produces a compilation error.

Block DO Loop

A block DO loop, an extension to the ANSI 77 standard, functions
the same as a labeled DO loop. It di�ers in not using a label in its
DO statement. Each block DO loop must be terminated with an
END DO statement, which does not require a label.

Block DO loops can be nested (as described in \Nesting DO Loops"
later in this section), but each level of nesting must be terminated by
a separate END DO statement.

FORTRAN Statements 3-51

Examples Notes

DO j = 10,1,-2...
END DO

Block DO loop. The group of statements
terminating with the END DO statement is
repeated �ve times.

DO j = 10,1,2...

END DO

Block DO loop. The group of statements
terminating with the END DO statement is
not executed. (The DO loop is skipped
entirely unless the ONETRIP directive is
ON.)

DO Loop Execution When a DO statement is executed, the following actions occur:

1. limit and step are evaluated, then index and init are evaluated. If
necessary, init , limit , and step are converted to the same type as
index . The value of init is assigned to index .

2. If the number of times the loop would execute is negative or
zero, the loop is skipped and control transfers to the statement
following the termination statement of the DO loop. This occurs
when init exceeds limit and step is positive, or init is less than
limit and step is negative.

3. The range of the loop is executed.

4. index is incremented by the value of step. Note that this is done
before testing if the loop has been executed the correct number of
times.

5. If the loop has been executed fewer than the correct number of
times, steps 3 through 5 are repeated.

Within the range of a DO loop, modi�cation of init , limit , or step
does not a�ect the number of iterations of the loop, because these
values are established when the loop is entered. Modi�cation of index
within the range of the loop is not permitted. Refer to the examples
above under \Labeled DO Loop" for such an attempt.

Upon normal completion of the DO loop, the value of the control
variable is de�ned to be the next value assigned as a result of the
incrementation. For example, in the loop:

DO i=1,5...
END DO

the value of i after normal completion of the loop is 6.

In the loop:

DO i=1,10,3...
END DO

the value of i after normal completion of the loop is 13.

3-52 FORTRAN Statements

Upon premature exit from the DO loop, the control variable retains
its value at the time of exit.

Implied DO Loop Implied DO loops are found in input/output statements (READ,
WRITE, and PRINT) and in DATA statements. An implied
DO loop contains a list of data elements to be read, written, or
initialized, and a set of indexing parameters.

Inner loops can use the indexes of outer loops.

For DATA statements, only integer index variables and expressions
can be used. For READ, WRITE, and PRINT statements, real index
variables are also permitted.

Examples

DATA a, b, (vector(i), i = 1,10), k /2.5,-1.0,10*0.0,999/

DATA ((matrix(i,j), i = 0,5), j = 5,10) /36*-1/

The syntax of implied DO loops in DATA statements, is described
in \DATA Statement (Nonexecutable)". The syntax of implied DO
loops in input/output statements is described below.

Implied DO Loops in
Input/Output
Statements

FORTRAN Statements 3-53

Item Description/Default Restrictions

index Loop variable that controls
the number of times the
preceding element list is read
or written.

Must be a simple variable
whose type is integer or real.

init Expression that is the initial
value for index .

Must be an integer or real
expression.

limit Expression that is the
termination value for index .

Must be an integer or real
expression.

step Expression that is the
increment for index after
each execution of the DO
loop. step can be positive or
negative. Its default value is
one.

Must be an integer or real
expression. step should not
equal 0. If it does, an error
occurs if the RANGE
directive is ON. If RANGE
is OFF, an in�nite loop
could result.

Semantics

The implied DO loop acts like a labeled or block DO loop. The range
of the implied DO loop is the list of elements to be input or output.
The implied DO loop can transfer a list of simple variables, array
elements, or any combination of allowable data elements. The control
variable (index) is assigned the value of init at the start of the loop.
Execution continues as for DO loops.

Implied DO loops can also be nested. Nested implied DO loops
follow the same rules as other nested DO loops. For example, the
statement:

WRITE (6,*) ((a(i,j), i = 1,2), j = 1,3)

produces the following output:

a(1,1) a(2,1) a(1,2,) a(2,2) a(1,3) a(2,3)

The �rst, or nested, DO loop is satis�ed once for each execution of
the outer loop. (Refer to \Nesting DO Loops" later in this section.)

Collapsed Implied DO Loop

If an implied DO loop meets certain criteria, the DO loop is collapsed
and only one internal I/O call is required. The reduced number of
I/O calls can yield signi�cantly faster execution time. An implied
DO loop is collapsed if the initial index value is less than or equal to
the �nal index value and if the step value is less than or equal to one.

3-54 FORTRAN Statements

DO-WHILE Statement
(Executable)

As a MIL-STD-1753 standard extension to the ANSI 77 standard,
the DO-WHILE statement controls execution of a group of
statements by causing the statements to be repeated while a logical
expression is true. The DO-WHILE construct is an important
element of structured programming.

Each DO-WHILE loop must be terminated by a separate END
DO statement, which does not require a label. Note that if the
DO-WHILE statement uses the label option, the END DO statement
that terminates the DO loop must have a label, and the two labels
must match.

A DO-WHILE loop evaluates as follows: the logical expression
is evaluated and tested at the beginning of the DO loop. If the
expression evaluates to true, the group of statements between the
DO-WHILE statement and the corresponding END DO statement,
referred to as the range of the DO-WHILE loop, is executed and the
logical expression is tested again. If the logical expression evaluates
to false, the DO-WHILE loop terminates and execution continues
with the statement following the END DO statement.

The rules for transfers into the range of a DO-WHILE loop are the
same as for other DO loops. (Refer to \Ranges of DO Loops" later in
this section.)

Examples Notes

DO WHILE (i .NOT. 999)

READ(5,33) i...
END DO

Repeatedly reads input until entry
of a terminating ag (999 in this
example).

index = 1

DO WHILE (array(index) .NE. value

+ .AND. index .LE. limit)

index = index + 1

END DO

FORTRAN Statements 3-55

Nesting DO Loops DO loops can contain other DO loops. This is called nesting . The
only restriction is that each level (that is, each successive loop) must
be completely contained within the preceding loop.

In a labeled DO loop, the last statement of an inner (nested) loop
must either be the same as, or occur before, the last statement of
the outer loop. (For programming clarity, always use a separate
terminating statement for each loop.)

DO loops can be nested as long as the range of statements in any DO
loop does not overlap the range of the preceding loop. Refer to the
examples for an illustration of such an illegal construction.

Combinations of DO loops and IF blocks can be nested to a depth
that is system dependent.

Ranges of DO Loops The range of the DO loop is de�ned as the �rst statement following
the DO statement up to and including the terminating statement
de�ned by label or, in the absence of label , up to and including the
next unmatched END DO statement.

A DO loop can be exited at any time. Normally, a DO loop is
exited when the loop has been completed. Control continues at the
statement following the loop's termination statement. A DO loop can
be exited prematurely with, for example, a GOTO statement that
transfers control out of the loop.

It is illegal to transfer control into the range of a DO loop from
outside the range unless you have previously jumped out of the loop.

The following example shows an illegal construction, one in which the
ranges of two loops overlap.

Here is an example that shows the unexpected results possible when
index , init , limit , and step are not all of the same type. If they are
not, init , limit , and step are converted to the same type as index .

Example Notes

DO i = 1,3,.1

WRITE (6,*) i

END DO

The programmer intends to increment i by
10ths. Instead, when .1 is converted to type
integer, it becomes zero, which creates an
error because step must not be zero.

3-56 FORTRAN Statements

Extended Range DO
Loop

As an extension to the ANSI 77 standard, the range of a DO loop
can be extended outside the loop. A control statement in the DO
loop can transfer control out of the loop, and, after execution of any
number of statements, control can branch back into the DO loop.
The return to the DO loop must be made from a statement in the
extended range of the loop.

A DO loop index cannot be modi�ed in the loop's extended range.

The following example illustrates the use of an extended range DO
loop:

END DO Statement
(Executable)

The END DO statement terminates a block DO or DO-WHILE loop.

If used to terminate a labeled DO loop, the END DO statement must
be labeled. See the examples under \Labeled DO Loop".

FORTRAN Statements 3-57

DOUBLE COMPLEX
Statement
(Nonexecutable)

The DOUBLE COMPLEX statement is the same as the
COMPLEX*16 statement. For more information, refer to
\COMPLEX Statement (Nonexecutable)".

DOUBLE PRECISION
Statement
(Nonexecutable)

The DOUBLE PRECISION statement is the same as the REAL*8
statement. For more information, refer to \REAL Statement
(Nonexecutable)".

ELSE Statement
(Executable)

The ELSE statement is part of the block IF construct. For more
information, refer to \IF Statement (Executable)".

ELSE IF Statement
(Executable)

The ELSE IF statement is part of the block IF construct. For more
information, refer to \IF Statement (Executable)".

3-58 FORTRAN Statements

ENCODE Statement
(Executable)

The ENCODE statement transfers data from variables to internal
storage according to a format speci�cation.

FORTRAN Statements 3-59

Item Description/Default Restrictions

count Integer expression that
speci�es the number of bytes
to be translated.

Must be the �rst item.

fmt Format designator. Must be the second item;
must be as speci�ed for the
PRINT statement.

unit Internal storage designator. Must be the third item;
must be a scalar variable or
array name; assumed-size
and adjustable-size arrays
are not permitted.

ios Integer variable, array
element, or scalar record
�eld for error code return.

None.

label Statement label of an
executable statement; if an
error occurs or an end-of-�le
is detected during execution
of the ENCODE statement,
control transfers to the
statement speci�ed by this
label rather than aborting
the program.

None.

list List specifying the data to
be transferred. Each item
must be a variable name, an
array element name, an
array name, a scalar record
�eld name, a substring, or
an expression.

If list contains a function
reference, that function must
not contain any PRINT,
READ, WRITE, ENCODE,
or DECODE statements.

Semantics

The ENCODE statement is provided for compatibility with older
versions of FORTRAN. It is a nonstandard statement, and its use in
new programs is strongly discouraged. If possible, use the internal
�le capabilities of the WRITE statement instead.

Examples Notes

CHARACTER*20 buf

ENCODE (15,'(2x,3I4,1X)', buf) 1234,45,-12

After this ENCODE
statement, buf contains:

��1234��45�-12������

where � represents a blank.

3-60 FORTRAN Statements

END Statement
(Executable)

The END statement indicates the end of a program unit, that is, the
end of a program, subroutine, function, or block data subprogram.

Semantics

If an END statement is executed in a subprogram, it has the same
e�ect as a RETURN statement. If an END statement is executed in
a main program, the program terminates.

An END statement can be labeled, but it cannot be continued. It
must be the last statement in a program unit.

Example Notes

PROGRAM xtest

INTEGER i

i = 1

PRINT *, i

END

The END statement terminates
program xtest.

FORTRAN Statements 3-61

END DO Statement
(Executable)

The END DO statement terminates the block DO and DO-WHILE
statement blocks. It is described in \DO Statement (Executable)".

END MAP Statement
(Nonexecutable)

The END MAP statement terminates a MAP statement block.
For more information, refer to \STRUCTURE Statement
(Nonexecutable)".

END STRUCTURE
Statement
(Nonexecutable)

The END STRUCTURE statement terminates a STRUCTURE
statement block. For more information, refer to \STRUCTURE
Statement (Nonexecutable)".

END UNION
Statement
(Nonexecutable)

The END UNION statement terminates a UNION statement
block. For more information, refer to \STRUCTURE Statement
(Nonexecutable)".

3-62 FORTRAN Statements

ENDFILE Statement
(Executable)

The ENDFILE statement writes an end-of-�le record to the speci�ed
sequential �le or device.

Item Description/Default Restrictions

unit Unit number of a
connected �le.

None.

variable name

array element

scalar record �eld name

Error code return. Must be an integer data
type.

label Statement label of an
executable statement.

Must be in the same
program unit.

Semantics

If the UNIT= part of the UNIT speci�er does not appear and other
speci�ers do, unit must be the �rst element.

If the ERR speci�er is used and an error occurs during execution of
the ENDFILE statement, control transfers to the speci�ed statement
rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for IOSTAT error codes.

In a disk �le, an end-of-�le record can occur only as the last record.
After execution of an ENDFILE statement, the �le is positioned
beyond the end-of-�le record. Some devices (magnetic tape units,
for example) can have multiple end-of-�le records, with or without
intervening data records.

FORTRAN Statements 3-63

As an extension to the ANSI 77 standard, ENDFILE operations are
allowed on �les open for direct access.

Examples Notes

ENDFILE 10 An end-of-�le record is written to
the �le connected to unit 10.

ENDFILE (UNIT=12,IOSTAT=j,ERR=100)An end-of-�le record is written to
the �le connected to unit 12. If an
error occurs, control transfers to
statement 100 and the error code is
stored in variable j. If no error
occurs, j is set to zero and control
transfers to the next statement.

ENDFILE (UNIT=12,IOSTAT=j) An end-of-�le record is written to
the �le connected to unit 12. If an
error occurs, the error code is stored
in variable j. If no error occurs, j is
set to zero. In both cases, control
transfers to the next statement.

ENDFILE (UNIT=12,ERR=100) An end-of-�le record is written to
the �le connected to unit 12. If an
error occurs, control transfers to
statement 100. If no error occurs,
control transfers to the next
statement.

3-64 FORTRAN Statements

ENDIF Statement
(Executable)

The ENDIF statement is part of the block IF construct. For more
information, refer to \IF Statement (Executable)".

FORTRAN Statements 3-65

ENTRY Statement
(Nonexecutable)

The ENTRY statement provides an alternate name, argument list,
and starting point for a function or subroutine. It can appear only in
a subroutine or function subprogram, not in a main program or block
data subprogram.

Item Description/Default Restrictions

name Name for the alternate
starting point.

None.

* Placeholder for alternate
return points.

Asterisk is permitted only in
a subroutine.

Semantics

The formal arguments in an ENTRY statement can di�er in
order, number, type, and name from the formal arguments in the
FUNCTION statement, SUBROUTINE statement, or other ENTRY
statements. However, for each call to the subprogram through a
given entry point, only the formal arguments of that entry point can
be used.

When records are passed as arguments to entry points, all the �elds
in the record must agree in type, order, and dimension with the
declared formal arguments.

If no formal arguments are listed after a particular ENTRY
statement, no arguments are passed to the subprogram when a call to
that ENTRY name is made.

The ENTRY statement name cannot appear as a variable in any
statement prior to the ENTRY statement, except in a type statement
within a function subprogram.

Within a subprogram, an entry name must not appear both as an
entry name in an ENTRY statement and as a formal argument in

3-66 FORTRAN Statements

a FUNCTION or SUBROUTINE statement, or another ENTRY
statement. An entry name must not appear in an EXTERNAL
statement.

An ENTRY statement can appear anywhere in a subprogram after
the FUNCTION or SUBROUTINE statement, with the exception
that the ENTRY statement must not appear between a block IF
statement and its corresponding END IF statement, or between a DO
statement and the end of its DO loop.

A subprogram can have zero or more ENTRY statements. An
ENTRY statement is a nonexecutable statement. If control falls
into an ENTRY statement, the statement is treated as an unlabeled
CONTINUE statement; that is, control moves to the next statement.

Within a function subprogram, all variables whose names are
also the names of entries are associated with each other and with
the variable, if any, whose name is also the name of the function
subprogram. Therefore, any such variable that becomes de�ned
causes all associated variables of the same type to become de�ned,
and all those of a di�erent type to become unde�ned. Such variables
are not required to be of the same type unless the type is character,
but the variable whose name references the function must be in a
de�ned state when a RETURN or END statement is executed in
the subprogram. An associated variable of a di�erent type must not
become de�ned during execution of the function reference.

The asterisks in an ENTRY statement are similar to those of the
SUBROUTINE statement.

Example

(User input is underlined.)

PROGRAM sum

INTEGER i,j

WRITE (6,*) 'Enter two numbers: '

READ (5,*) i,n

IF (i .EQ. 0) THEN

CALL sum1(j)

ELSE IF (j .EQ. 0) THEN

CALL sum1(i)

ELSE

CALL sum2(i,j)

ENDIF

END

SUBROUTINE sum2(i,j)

WRITE (6,*) 'Neither number equals 0.'

i = i + j

ENTRY sum1(i)

WRITE (6,*) 'The sum of the numbers is', i, '.'

RETURN

END

FORTRAN Statements 3-67

Enter two numbers: 9 0

The sum of the numbers is 9.

Enter two numbers: 1 2

Neither number equals 0.

The sum of the numbers is 3.

3-68 FORTRAN Statements

EQUIVALENCE
Statement
(Nonexecutable)

The EQUIVALENCE statement associates variables so that they
share the same storage space.

Semantics

Function names, formal arguments, dynamic arrays, and record
names must not appear in an EQUIVALENCE statement. Each
array or substring subscript must be an integer constant expression.

The EQUIVALENCE statement conserves storage. For example,
arrays that are manipulated at di�erent times in the same program
can share the same storage space through the EQUIVALENCE
statement. Thus, the same storage space is used for each array.

Equivalenced data items can be of di�erent types. As an extension
to the ANSI 77 standard, character and noncharacter data items
can share the same storage space through the EQUIVALENCE
statement.

The EQUIVALENCE statement does not cause type conversion
or imply mathematical equivalence. If an array and a simple
variable share the same storage space through the EQUIVALENCE
statement, the array does not have the characteristics of a simple
variable and the simple variable does not have the characteristics
of an array. They only share the same storage space. Care should
be taken when data types of di�erent sizes share the same storage
space, because the EQUIVALENCE statement speci�es that each
data item in a list has the same �rst storage unit. For example, if an
INTEGER*4 variable and a REAL*8 variable share the same storage
space, the integer value occupies the same space as the leftmost word
of the two-word real value.

FORTRAN Statements 3-69

Equivalence of
Character Variables

As an extension to the ANSI 77 standard, character and
noncharacter data items can share the same storage space.

Example Notes

EQUIVALENCE (a,b),(c(2),d,e) The variables a and b share the
same storage space; c(2), d, and e

share the same storage space.

Multi-Dimensioned
Equivalence

As an extension to the ANSI 77 standard, it is possible to indicate
the element of an array with two or more dimensions by specifying its
position as if it were a single dimension array.

Example

BYTE message (4,10)

INTEGER name (10)
EQUIVALENCE (name, message(1))

Memory Storage Locations for Message and Name

Array MESSAGE Storage Space Byte
Number

Array NAME

MESSAGE(1,1)
MESSAGE(2,1)
MESSAGE(3,1)
MESSAGE(4,1)

1 through 4 NAME(1)

MESSAGE(1,2)
MESSAGE(2,2)
MESSAGE(3,2)
MESSAGE(4,2)

5 through 8 NAME(2)

MESSAGE(1,3)
MESSAGE(2,3)
MESSAGE(3,3)
MESSAGE(4,3)

9 through 12 NAME(3)

MESSAGE(1,4)
MESSAGE(2,4)
MESSAGE(3,4)
MESSAGE(4,4)

13 through 16 NAME(4)

...
...

...

MESSAGE(1,10)
MESSAGE(2,10)
MESSAGE(3,10)
MESSAGE(4,10)

37 through 40 NAME(10)

3-70 FORTRAN Statements

EXTERNAL
Statement
(Nonexecutable)

The EXTERNAL statement identi�es a name as representing a
subprogram name and permits the name to be used as an actual
argument in subprogram calls.

Item Description/Default Restrictions

procedure nameName of a subprogram. Each name can appear once
only in a given EXTERNAL
statement, and in at most
one EXTERNAL statement
in a given program unit.

The EXTERNAL statement provides a means of using the names
of subroutine subprograms and function subprograms as actual
arguments. The EXTERNAL statement is necessary to inform the
compiler that these names are subprograms or function names, not
variable names. Whenever a subprogram name is passed as an
actual argument, it must be placed in an EXTERNAL statement
in the calling program. If an intrinsic function name appears in
an EXTERNAL statement, the compiler assumes that a user
subprogram by that name exists; the intrinsic function is not
available to that program unit. A name cannot appear in both an
EXTERNAL and INTRINSIC statement.

Examples Notes

PROGRAM my_sin

EXTERNAL sin

REAL sin, x, y

READ(5,*) y

x = sin(y)

WRITE(6,*) x

END

This call is to the user-written function
named sin, not to the intrinsic function
SIN. A statement function name must not
appear in an EXTERNAL statement.

EXTERNAL b1

CALL sub(a,b1,c)...

END

The EXTERNAL statement declares b1 to
be a subprogram name. The call to sub

passes the values of a and c, and passes the
name of the subprogram (b1).

SUBROUTINE sub(x,y,z)

z = y(z)

RETURN

END

The reference to y causes b1 to be called.

FORTRAN Statements 3-71

FORMAT Statement
(Nonexecutable)

The FORMAT statement describes how input and output
information is to be arranged.

Descriptor List

Variable Format Descriptor

Item Description/Default Restrictions

label Statement label. Required.

repeat spec Repeat speci�cation. Must be an unsigned
positive integer constant or a
variable format descriptor
whose value is positive.

format descriptorFormat descriptor. See the
following Format Descriptor
syntax diagram and table for
details.

None.

edit descriptor Edit descriptor. See the
following Edit Descriptor
syntax diagram and table for
details.

None.

descriptor list A list of format and edit
descriptors.

None.

expression A positive integer expression. None.

3-72 FORTRAN Statements

Format Descriptor

Item Description/Default Restrictions

d Number of digits in fractional
part. If omitted, the default
value is based on the data type
of the I/O list element. (Refer
to Table 3-5 for default values.)

Must be an unsigned positive
integer constant or a variable
format descriptor whose value
is positive.

e Number of digits in exponent
part. If omitted, the default
value is based on the data type
of the I/O list element. (Refer
to Table 3-5 for default values.)

Must be an unsigned positive
integer constant or a variable
format descriptor whose value
is positive.

m Minimum number of digits to
be output. The default is one.

Must be an unsigned positive
integer constant or a variable
format descriptor whose value
is positive.

w Field width. If omitted, the
default value is based on the
data type of the I/O list
element. (Refer to Table 3-5 for
default values.)

Must be an unsigned positive
integer constant or a variable
format descriptor whose value
is positive.

FORTRAN Statements 3-73

Edit Descriptor

3-74 FORTRAN Statements

Item Description/Default Restrictions

c Column position. Must be an unsigned positive integer
constant or a variable format descriptor
whose value is positive.

k Scale value. Must be an integer constant or a variable
format descriptor.

n Number of characters. Must be an unsigned positive integer
constant.

stringA series of one or more
ASCII characters.

The H format has the form of a Hollerith
constant. The " and ' formats have the
form of character constants.

t Number of columns to
skip.

Must be an unsigned positive integer
constant or a variable format descriptor
whose value is positive.

x Number of columns to
skip.

Must be an unsigned positive integer
constant.

Table 3-5. Default Format Descriptor Field Values

Format Descriptor List Element Type w d e

@, I, K, O, Z INTEGER*2, LOGICAL*1, LOGICAL*2 7

@, I, K, O, Z INTEGER*4, LOGICAL*4 12

L LOGICAL*1, LOGICAL*2, LOGICAL*4 2

I REAL*4, COMPLEX*8 12

I REAL*8, COMPLEX*16 23

I REAL*16 44

D, E, F, G, M, N INTEGER*2, LOGICAL*1, LOGICAL*2 15 7 2

D, E, F, G, M, N INTEGER*4, LOGICAL*4 25 16 2

D, E, F, G, M, N REAL*4, COMPLEX*8 15 7 2

D, E, F, G, M, N REAL*8, COMPLEX*16 25 16 2

D, E, F, G, M, N REAL*16 42 33 3

Note When using �eld descriptors without a �eld width value, the
descriptors must be separated by commas. For example, (I4 I4) is
allowed because the �rst �eld width value is present. However, (I
I4) is invalid. The descriptors must be separated with a comma, as
in (I,I4), because the �rst �eld width value is not present.

The format descriptors are summarized in Table 3-6.

FORTRAN Statements 3-75

Table 3-6. Format Descriptors

Descriptor List Element Data Type

A[w] Any character or Hollerith

R[w] Any character or Hollerith

D[w.d] Any real or complex

E[w.d [Ee]] Any real or complex

F[w.d] Any real or complex

G[w.d [Ee]] Any real or complex

M[w.d] Any real

N[w.d] Any real

I[w [.m]] Any integer; decimal format

@[w [.m]] Any integer; octal format

K[w [.m]] Any integer; octal format

O[w [.m]] Any integer; octal format

Z[w [.m]] Any integer; hexadecimal digits

L[w] Any logical

d , e, m, and w are described above in the item
list for the Descriptor List syntax.

Each of the format descriptors can be preceded by a repeat
speci�cation (the 4 in 4I7, for example). See repeat spec in the item
list for the Format Descriptor syntax.

Example Notes

10 FORMAT(I3,5F12.3) The speci�cation is for an integer
number with a �eld width of 3, and
�ve real numbers with a �eld width
of 12 and three signi�cant digits to
the right of the decimal point.

The edit descriptors are summarized in Table 3-7.

3-76 FORTRAN Statements

Table 3-7. Edit Descriptors

Descriptor Function

BN Ignore blanks.

BZ Treat blanks as zeros.

nHstring Hollerith literal.

"string" Literal editing.

'string' Literal editing.

NL Restore newline.

NN No newline.

$ No newline; same as NN.

kP Scale factor.

Q Number of characters remaining in current input record.

S Processor determines sign output; same as SS.

SP Output optional plus signs.

SS Inhibit optional plus sign output.

Tc Skip to column c.

TLt Skip t positions to the left.

TRt Skip t positions to the right.

xX Skip x positions to the right

/ Begin new record.

: Terminate format if I/O list empty.

c, k , n, string , t , and x , are described above in the item list for the
Edit Descriptor syntax.

Both apostrophes and quotation marks can be used in input/output
statements and in FORMAT statements. For example:

WRITE (6,'("Average is ",I5)') iaverage

and:

WRITE (6,'(''Average is '',I5)') iaverage

are equivalent.

FORTRAN Statements 3-77

FUNCTION
Statement
(Nonexecutable)

The FUNCTION statement identi�es a program unit as a function
subprogram.

3-78 FORTRAN Statements

Semantics

FORTRAN Statements 3-79

For more information on types, refer to the discussions of each type
elsewhere in this chapter. If the type is not speci�ed, the name is
typed the same way as the variables.

The formal arguments in a FUNCTION statement can be used as:

Variables.
Array names.
Subprogram names.
Record names.

The formal arguments should be of the same type as the actual
arguments that are passed to the function from the calling program
unit. When passing records as arguments to a function, all �elds
must be the same type, order, and dimension as the declared formal
arguments.

If a formal argument of type character has a length of (*) declared,
the formal argument assumes the length of the associated actual
argument for each reference of the function. If the function is of type
CHARACTER*(*), it assumes the length declared for it by the calling
program. (The length may be subsequently rede�ned within the
calling program.)

Examples Notes

FUNCTION comp() De�nes a function comp with no
arguments.

INTEGER FUNCTION timex(a,b,k) De�nes an integer function timex

with three arguments.

CHARACTER*6 FUNCTION namex(q) De�nes a character function namex

six characters long, with one
argument.

3-80 FORTRAN Statements

GOTO Statement
(Executable)

The GOTO statement transfers control to a labeled statement in
the same program unit. It has three forms, which are described
separately below:

Unconditional GOTO
Computed GOTO
Assigned GOTO

Unconditional GOTO
Statement (Executable)

The unconditional GOTO statement transfers control to the speci�ed
statement.

Item Description/Default Restrictions

label Label of an executable
statement.

None.

Computed GOTO
Statement (Executable)

The computed GOTO statement transfers control to one of several
statements, depending on the value of an expression.

Item Description/Default Restrictions

label Label of an executable
statement.

None.

expression Arithmetic expression. Any integer or real type.

The use of noninteger expressions is an extension to the ANSI 77
standard. The computed GOTO statement passes control to one of
several labeled statements depending on the result of an evaluation.
The expression is evaluated and truncated to an integer value (the
index). The index selects the statement label in the label list.

For example, if the index is 1, control passes to the statement whose
label appears in the �rst position in the list of labels. If the index
value is 2, the second label in the list is used, and so on. If the
value of the expression is less than 1 or greater than the number of

FORTRAN Statements 3-81

labels in the label list, control passes to the statement following the
computed GOTO.

Assigned GOTO
Statement (Executable)

The assigned GOTO statement transfers control to the statement
whose label is stored in the variable by an ASSIGN statement.

Item Description/Default Restrictions

label Label of an executable
statement.

None.

variable Integer simple variable. Must be INTEGER*4.

The variable must be given a label value of an executable statement
through an ASSIGN statement prior to execution of the GOTO
statement. When the assigned GOTO statement is executed, control
transfers to the statement whose label matches the label value of
variable.

The optional labels following variable form a list of label values that
variable might assume. If you use the list of labels, the compiler can
sometimes produce more e�cient object code.

However, if the label list is speci�ed and the value in variable is not
in the list, the results are not de�ned. A run-time range error can
result if the RANGE compiler directive is ON.

3-82 FORTRAN Statements

Examples Notes

GOTO 20 In this unconditional GOTO statement,
control passes to the statement labeled 20
when the GOTO statement is executed.
Statement 20 can be before or after the
GOTO statement, but must be present in
the same program unit.

a = 3

GOTO (30,60,50,100) a

In this computed GOTO statement, because
a has a value of 3, control passes to
statement 50.

b = 1.5

z = 1

GOTO (10,20,40,40) b + z

In this computed GOTO statement, because
INT(b + z) = 2, control passes to
statement 20.

ASSIGN 10 TO age

GOTO age

In this assigned GOTO statement, control
transfers to statement 10 when the GOTO
statement is executed.

ASSIGN 100 TO time

GOTO time (90,100,150)

In this assigned GOTO statement, control
transfers to statement 100 when the GOTO
statement is executed.

FORTRAN Statements 3-83

IF Statement
(Executable)

The IF statement provides a means for decision making. There are
three types of IF statements:

Arithmetic IF
Logical IF
Block IF

The maximum level to which a mixture of IF and DO statements,
can be nested is 20. Exceeding this number makes programs
unnecessarily complicated and can cause internal compiler errors
stating that the statement is too complicated.

Arithmetic IF Statement
(Executable)

An arithmetic IF statement transfers control to one of two or three
labeled statements, depending on whether an expression evaluates to
a negative, zero, or positive value.

Item Description/Default Restrictions

exp Arithmetic expression. Any type except complex,
logical, or character.

labeln

labelz

labelp

Label of an executable
statement.

None.

When an arithmetic statement is executed, exp is evaluated. If the
value is negative, control passes to the statement whose label is
labeln . If the value is zero, control passes to the statement whose
label is labelz . If the value is positive, control passes to the statement
whose label is labelp.

As an extension to the ANSI 77 standard, labelp is optional. If
labelp is omitted, control transfers to labeln when the value of exp is
negative or to labelz when the value of exp is zero or positive.

If the value of the expression exceeds the range of the expression,
an overow condition occurs. Overow conditions are not detected
by the compiler. A hardware overow during evaluation of any
expression causes a run-time error, which halts the program.
Overow conditions can often be avoided by using logical instead of
arithmetic IF statements.

Two of the labels in the label list can be the same; control branches
to one of two possible statements rather than three. In fact, all of
the labels in the list can be the same, in which case control branches

3-84 FORTRAN Statements

to the statement bearing the label, regardless of the results of the
evaluation.

If two of three labels are the same, and one of them indicates the
next statement, the statement should be rewritten as a logical IF for
improved readability.

For example, these arithmetic IF statements:

IF (exp) 10,10,20

10 ...

IF (exp) 10,20,10

20 ...

are the same as these logical IF statements:

IF (exp .GT. 0) GOTO 20

10 ...

IF (exp .NE. 0) GOTO 10

20 ...

Examples Notes

testa = 0.

IF (testa) 50,100,50

Because testa equals zero, control passes to
statement 100.

i = 10

j = -(15)

IF (i + j) 10,20,30

Because i + j is negative, control passes to
statement 10.

z = 10.

a = 60.

IF (a + z) 100,100,60

Because a + z is positive, control passes to
statement 60.

IF (a + b) 10,20,30 Control passes to statement 10, 20, or 30
depending on the value of a + b.

FORTRAN Statements 3-85

Logical IF Statement
(Executable)

The logical IF statement evaluates a logical expression and executes
one statement if the expression is true.

Item Description/Default Restrictions

exp Logical expression. None.

statement Executable statement. Cannot be a DO, END,
block IF, or logical IF
statement.

The logical IF statement is a two-way decision maker. If the logical
expression contained in the IF statement is true, the statement
contained in the IF statement is executed and control passes to
the next statement. If the logical expression is false, the statement
contained in the IF statement is not executed and control passes to
the next statement in the program.

Examples Notes

a = b

IF (a .EQ. b) GOTO 100

Because the expression a .EQ. b is true,
control passes to statement 100.

IF (p .AND. q) res=10.5 If p and q are both true, the value of res is
replaced by 10.5; otherwise the value of res
is unchanged.

3-86 FORTRAN Statements

Block IF Statement
(Executable)

The block IF statement block is an extension of the logical IF
statement, allowing one of a set of blocks of statements to be
executed, depending on the value of one or more logical expressions.
The blocks within the block IF statement block are managed by four
statements:

IF-THEN statement
ELSE statement
ELSE IF statement
ENDIF statement

IF-THEN Statement (Executable)

The IF-THEN statement evaluates a logical expression and permits
the execution of two speci�ed blocks of statements, depending on the
results.

Item Description/Default Restrictions

exp Logical expression. None.

Semantics

The IF-THEN statement, like the logical IF statement, is a two-way
decision maker. If the logical expression in the IF-THEN statement
evaluates to true, the block of statements between the IF-THEN
statement and the next following ELSE, ELSE IF, or ENDIF
statement is executed. If the logical expression in the IF-THEN
statement evaluates to false, the block of statements between the
corresponding ELSE or ELSE IF and ENDIF statements is executed.
If no ELSE or ELSE IF block is present, control passes to the
statement following the ENDIF statement.

ELSE Statement (Executable)

The ELSE statement terminates the block of the corresponding
IF-THEN statement and marks the beginning of the ELSE block.

The ELSE statement serves as a beginning marker for the block
of statements to be executed if the logical expression in its
corresponding IF-THEN or ELSE IF statement evaluates to false. If

FORTRAN Statements 3-87

so, the block of statements between the ELSE and its corresponding
ENDIF statement is executed. If the logical statement evaluates
to true, the statements in the IF-THEN block are executed until
an ELSE statement is encountered. Control then transfers to the
statement following the ENDIF statement.

ELSE IF Statement (Executable)

The ELSE IF statement is a special case of an ELSE statement. It
functions the same as an ELSE statement that has an IF-THEN
statement as the �rst statement of its ELSE block.

Item Description/Default Restrictions

exp Logical expression. None.

ENDIF Statement (Executable)

The ENDIF statement terminates an IF-THEN or ELSE statement
block.

When an IF-THEN block is terminated by an ELSE or ENDIF
statement, or an ELSE block is terminated by its associated ENDIF
statement, control transfers to the statement following the ENDIF
statement.

Nesting IF Statements

One block IF statement can contain any number of ELSE IF
sub-blocks but only one ELSE sub-block. The depth to which
combinations of DO loops and IF blocks can be nested is system
dependent.

Using ELSE IF does not change the nesting level of the IF block.
(The term nesting level refers to the number of preceding IF-THEN
statements minus the number of preceding ENDIF statements.) The
nesting level must be equal to zero at the end of each program unit.
An IF-THEN statement increases the nesting level by one, while the
ENDIF statement decreases the nesting level by one.

3-88 FORTRAN Statements

Example Nesting Level

IF (exp1) THEN

:

IF (exp2) THEN

:

ELSE IF (exp3) THEN

:

ELSE

:

ENDIF

:

ELSE IF (exp4) THEN

:

ENDIF

0
1
:
2
:
2
:
2
:
1
:
1
:
0

Examples Notes

x = y

IF (x.EQ.y) THEN

x=x+1

ENDIF

Because x = y, the value of x is replaced by
the value of x+1. Note that this is equivalent
to the following logical IF statement:

IF (x.EQ.y) x=x+1

IF (x.LT.0) THEN

y = SQRT (ABS(x))

z = x+1-y

ELSE

y = SQRT (x)

z = x-1

ENDIF

If x < 0, one block of code is executed; if x
� 0, a di�erent block of code is executed.

IF (n(i).EQ.0) THEN

n (i) = n (j)

j = j+1

IF (j.LT.k) THEN

k = k-1

ELSE IF (j.EQ.k) THEN

k = k+1

ENDIF

ELSE

m = i

k = n(i)

ENDIF

This example demonstrates nesting of IF
blocks using the construct:

IF (exp1) THEN

:

IF (exp2) THEN

:

ELSE IF (exp3) THEN

:

ENDIF

ELSE

:

ENDIF

FORTRAN Statements 3-89

IMPLICIT Statement
(Nonexecutable)

The IMPLICIT statement overrides or con�rms the default type
associated with the �rst letter of a variable name.

3-90 FORTRAN Statements

Semantics

For more information on types, refer to the discussions of each type,
elsewhere in this chapter.

An IMPLICIT statement speci�es a default type for all variables,
arrays, named constants, function subprograms, ENTRY names in
function subprograms, and statement functions that begin with any
letter that appears in an IMPLICIT statement and are not explicitly
given a type. It does not change the type of any intrinsic functions.

The IMPLICIT statement itself can be overridden for speci�c names
when these names appear in a type statement. For example,

IMPLICIT INTEGER (A)

speci�es that items whose names start with the letter A default to
type INTEGER. However, a subsequent type statement, such as

REAL ABLE

overrides the IMPLICIT defaults and sets the variable ABLE to type
REAL.

Uppercase and lowercase letters are equivalent in arguments to the
IMPLICIT statement. Therefore, both the following

IMPLICIT INTEGER (Q)

IMPLICIT INTEGER (q)

are the same.

An explicit type speci�cation in a FUNCTION statement overrides
an IMPLICIT statement for the function name. Note that the
length is also overridden when a particular name appears in a
CHARACTER or CHARACTER FUNCTION statement.

Note A variable in parentheses cannot be used as a length speci�er for a
character data type in an IMPLICIT statement.

The IMPLICIT NONE form is a MIL-STD-1753 extension to the
ANSI 77 standard. If IMPLICIT NONE is speci�ed, implicit data
typing is disabled and all variables, arrays, named constants, function
subprograms, entry names in function subprograms, and statement
functions (but not intrinsic functions) must be explicitly typed.
If IMPLICIT NONE is speci�ed, it must be the only IMPLICIT
statement in the program unit. The types of intrinsic functions are
not a�ected. The IMPLICIT NONE statement is recommended
for general use as an excellent structured programming construct,
because it forces the declaration of all user-de�ned names.

Within the speci�cation statements of a program unit, IMPLICIT
statements must precede all other speci�cation statements, except
PARAMETER statements. A letter must not be speci�ed more than
once, whether singly or in a range of letters, in all the IMPLICIT
statements in a program unit.

FORTRAN Statements 3-91

Specifying a range of letters (for example, A-E) has the same e�ect as
writing a list of single letters (for example, A,B,C,D,E).

Examples Notes

IMPLICIT COMPLEX*16(i,j,k),INTEGER*2(a-c)All user-de�ned symbolic names
beginning with i, j, or k default to
type COMPLEX*16. Those
beginning with a, b, or c default to
type INTEGER*2.

IMPLICIT NONE

INTEGER i,j,k

REAL x,y,z

a = x+y

STOP

END

All names must be declared. An
error occurs in the fourth line
because a was not declared.

3-92 FORTRAN Statements

INCLUDE Statement
(Nonexecutable)

The INCLUDE statement is a MIL-STD-1753 extension to the
ANSI 77 standard. It causes the compiler to include and process
subsequent source statements from a speci�ed �le or device. When
end-of-�le is read from this �le or device, the compiler continues
processing at the line following the INCLUDE statement.

Item Description/Default Restrictions

name File name. None.

INCLUDE statements cannot be continued. Include �les can be
nested nonrecursively; that is, an INCLUDE statement cannot
mention an active include �le. The maximum number of include �les
that can be open at one time is eight.

Line numbering within the listing of an included �le begins with one.
A plus sign is displayed just to the left of the line number in the
include �le. When the included �le listing ends, the include level
decreases appropriately and the previous line numbering resumes.

Files may also included with a compiler directive. Refer to
\INCLUDE Directive" in Chapter 7 for more information.

Example

INCLUDE 'specs'

FORTRAN Statements 3-93

INQUIRE Statement
(Executable)

The INQUIRE statement provides information about selected
properties of a �le or unit number.

3-94 FORTRAN Statements

FORTRAN Statements 3-95

Item Description/Default Restrictions

unit Unit number of a sequential
�le.

Integer expression � 0.

name Speci�es �le name for
inquiry by �le name.

Character expression.

label Control transfers to the
speci�ed executable
statement if an error
condition exists on the
named �le or unit.

Must be the statement label
of an executable statement
in the same program unit.

ios ios = zero if no error; ios =
positive value if error
condition exists.

Integer variable, array
element, or scalar record
�eld.

ex ex = true if named �le
exists;
ex = false otherwise.

LOGICAL*4 variable, array
element, or scalar record
�eld.

opnd od = true if named �le or
unit has been opened; od =
false otherwise.

LOGICAL*4 variable, array
element, or scalar record
�eld.

num FORTRAN logical unit
number of the external
named �le; if no unit is
connected to the named �le,
num is unde�ned.

INTEGER*4 variable, array
element, or scalar record
�eld.

nmd nmd = true if speci�ed unit
is not a scratch �le; nmd =
false otherwise.

LOGICAL*4 variable, array
element, or scalar record
�eld.

fn Returns prede�ned system
�le name or name used in
OPEN statement. If the �le
has no name or is not
connected, fn is unde�ned.

Character variable, array
element, substring, or scalar
record �eld.

use See \Semantics". Character variable, array
element, substring, or scalar
record �eld.

acc Returns 'SEQUENTIAL' or
'DIRECT', depending upon
whether speci�ed unit or �le
is connected for sequential or
unit access, respectively. If
the �le is not connected, acc
is unde�ned.

Character variable, array
element, substring, or scalar
record �eld.

seq Returns 'YES' if connected
for sequential access, 'NO' if
not connected for sequential
access, and 'UNKNOWN' if the
processor is unable to
determine the access type.

Character variable, array
element, substring, or scalar
record �eld.

dir Returns 'YES' if connected
for direct access, 'NO' if not
connected for direct access,
and 'UNKNOWN' if the

Character variable, array
element, substring, or scalar
record �eld.

3-96 FORTRAN Statements

Item Description/Default Restrictions

fm Returns 'FORMATTED' if
connected for formatted data
transfer, 'UNFORMATTED' if
connected for unformatted
data transfer, and is
unde�ned if the �le is not
connected.

Character variable, array
element, substring, or scalar
record �eld.

fmtd Returns 'YES' if connected
for formatted data transfer,
'NO' if connected for
unformatted data transfer,
and 'UNKNOWN' if the
processor is unable to
determine the format of data
transfer.

Character variable, array
element, substring, or scalar
record �eld.

unf Returns 'YES' if connected
for unformatted data
transfer, 'NO' if connected
for formatted data transfer,
and 'UNKNOWN' if the
processor is unable to
determine the form of data
transfer.

Character variable, array
element, substring, or scalar
record �eld.

rcl Returns the record length of
the speci�ed unit or �le
connected for direct access,
measured in bytes;. If the �le
is not connected for direct
access, rcl is unde�ned.

INTEGER*4 variable, array
element, or scalar record
�eld.

nr nr is assigned the next
record number to be read or
written on the speci�ed unit
or �le; if no records have
been read or written, nr =
1; if the �le is not connected
for direct access or its status
is indeterminate, nr is
unde�ned.

INTEGER*4 variable, array
element, or scalar record
�eld.

blnk Returns 'ZERO' or 'NULL',
depending upon the blank
control in e�ect. If the
speci�ed �le is not connected
or not connected for
formatted data transfer, blnk
is unde�ned.

Character variable, array
element, substring, or scalar
record �eld.

mrec See \Semantics". Integer variable, array
element, or scalar record
�eld.

node See \Semantics". Integer variable, array
element, or scalar record
�eld.

cctl See \Semantics". Value not checked.

d�le See \Semantics". Value not checked.

FORTRAN Statements 3-97

Semantics

If the ERR speci�er is present and an error occurs during the
execution of the INQUIRE statement, control transfers to the
speci�ed statement rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the ios variable and the program is not aborted. Refer
to Appendix A for IOSTAT error codes.

Either the UNIT or FILE speci�er, but not both, must be present in
the speci�er list. If the pre�x UNIT= is omitted and the unit speci�er
is present, unit must be the �rst item in the list.

Most of the information described in the syntax table is assigned
through the OPEN statement; see \OPEN Statement (Executable)".

When a variable is speci�ed in the syntax table as unde�ned, its
value may or may not be changed from its previous value by the
INQUIRE statement. Therefore, the value is meaningless if the �le
or unit either does not exist or cannot be accessed at the time the
INQUIRE is executed.

The following speci�ers, extensions to the ANSI 77 standard, are
included for compatibility with programs originally written in
another version of FORTRAN.

CARRIAGECONTROL
DEFAULTFILE
KEYED

MAXREC
NODE
ORGANIZATION

RECORDTYPE
USE

If used in a program, their syntax is checked, but they are otherwise
ignored by the compiler.

ACCESS=acc will return acc=`SEQUENTIAL' for �les opened with
ACCESS=`APPEND'.

3-98 FORTRAN Statements

INTEGER Statement
(Nonexecutable)

The INTEGER statement is a type speci�cation statement that
explicitly assigns the INTEGER*2 and INTEGER*4 data types to
symbolic names, and optionally assigns initial values to variables.

The following syntax includes the INTEGER, INTEGER*2, and
INTEGER*4 statements.

FORTRAN Statements 3-99

Semantics

As an extension to the ANSI 77 standard, a length speci�er can
follow the item being declared. This speci�cation overrides the length
implied by the type statement. If the item being declared is an array
name with a dimension declarator, the length speci�er precedes the
dimension declarator.

The INTEGER*2 statement, an extension to the ANSI 77 standard,
declares items to be 2-byte integers. The INTEGER*4 statement,
also an extension to the ANSI 77 standard, declares items to be
4-byte integers.

Note By default, the INTEGER statement is equivalent to the
INTEGER*4 statement. This is the same as the e�ect of the LONG
compiler directive. The SHORT compiler directive may be used to
make INTEGER equivalent to INTEGER*2. See Chapter 7 for
further details. In addition, compiler run-string options can have the
same e�ect. See Chapter 7, \Compiler Directives" for further details.

If an array declarator is speci�ed in a type statement, the declarator
for that array must not appear in any other speci�cation statement
(such as DIMENSION). If only the array name is speci�ed, an
array declarator must appear within a DIMENSION or COMMON
statement.

Each symbolic name can appear in a type statement only once.

Examples Notes

INTEGER run,time The variables run and time are
4-byte integers.

INTEGER*2 rn,hours(4,5) The variable rn and each element of
the two- dimensional array hours

are short integers.

INTEGER counter*2,index*4,matx(4,5)*2The variable counter and each
element of the two-dimensional
array matx are short integers. index
is a long integer.

3-100 FORTRAN Statements

INTEGER*2
Statement
(Nonexecutable)

The INTEGER*2 statement, which is an extension to the ANSI
77 standard, is a special case of the INTEGER statement. See
\INTEGER Statement (Nonexecutable)" for details.

INTEGER*4
Statement
(Nonexecutable)

The INTEGER*4 statement, which is an extension to the ANSI
77 standard, is a special case of the INTEGER statement. See
\INTEGER Statement (Nonexecutable)" for details.

FORTRAN Statements 3-101

INTRINSIC
Statement
(Nonexecutable)

The INTRINSIC statement identi�es a name as representing an
intrinsic function and permits the name to be used as an actual
argument.

Item Description/Default Restrictions

function Name of an intrinsic
function.

Each name can appear once
only in a given INTRINSIC
statement and in at most
one INTRINSIC statement
within a given program unit.

The INTRINSIC statement provides a means of using intrinsics
as actual arguments. The INTRINSIC statement is necessary to
inform the compiler that these names are intrinsic names and not
variable names. Whenever an intrinsic name is passed as a function
parameter, it must be placed in an INTRINSIC statement in the
calling program.

The names of intrinsic functions for type conversion| CHAR,
CMPLX, DBLE, FLOAT, ICHAR, IDINT, IFIX, INT, REAL,
SNGL| for logical relationships| LGE, LGT, LLE, LLT| and
for choosing the largest or smallest value| AIMAX0, AIMIN0,
AJMAX0, AJMIN0, AMAX0, AMAX1, AMIN0, AMIN1, IMAX0,
IMAX1, IMIM0, JMAX0, JMAX1, JMIN0, JMIN1, MAX, MAX0,
MAX1, MIN, MIN0, MIN1| must not be used as actual arguments.

A name must not appear in both an EXTERNAL and an
INTRINSIC statement in the same program unit.

Example Notes

INTRINSIC SIN,TAN

CALL MATH(SIN,TAN)

The INTRINSIC statement informs
the compiler that SIN and TAN are
intrinsics.

3-102 FORTRAN Statements

LOGICAL Statement
(Nonexecutable)

The LOGICAL type speci�cation statement explicitly assigns the
LOGICAL*1, LOGICAL*2, and LOGICAL*4 data types to symbolic
names, and optionally assigns initial values to variables.

The following syntax includes the LOGICAL, LOGICAL*1,
LOGICAL*2, and LOGICAL*4 statements. See also \BYTE
Statement (Nonexecutable)".

FORTRAN Statements 3-103

Semantics

The LOGICAL*1, LOGICAL*2, and LOGICAL*4 statements are
extensions to the ANSI 77 standard. LOGICAL*1 declares items to
be 1-byte logicals, LOGICAL*2 declares them to be 2-byte logicals,
and LOGICAL*4 declares them to be 4-byte logicals.

Note By default, the LOGICAL statement is equivalent to the
LOGICAL*4 statement. This is the same as the e�ect of the LONG
compiler directive. The SHORT compiler directive may be used to
make LOGICAL equivalent to LOGICAL*2. See Chapter 7 for
further details. In addition, compiler run-string options can have the
same e�ect. See \Compiler Options" for further details.

If an array declarator is speci�ed in a type statement, the declarator
for that array must not appear in any other speci�cation statement
(such as DIMENSION). If only the array name is speci�ed, an
array declarator must appear within a DIMENSION or COMMON
statement.

As an extension to the ANSI 77 standard, the length speci�er can
follow the item being declared. This speci�cation overrides the length
implied by the type statement. If the item being declared is an array
name with a dimension declarator, the length speci�er precedes the
dimension declarator.

Each symbolic name can appear in a type statement only once.

As an extension to the ANSI 77 standard, you can initialize
variables or arrays in a type declaration statement by enclosing
the initialization values between slashes. See \DATA Statement
(Nonexecutable)" for details about initialization.

Examples Notes

LOGICAL is_ok*2,error*4,bool is_ok is a 2-byte logical variable.
error and bool are both 4-byte
logical variables.

LOGICAL ok*4/.TRUE./ ok is a 4-byte logical variable,
initialized to the value true.

LOGICAL*2 bool(10)/10*.FALSE./ bool is an array of 10 2-byte logical
elements, each initialized to the
value false.

3-104 FORTRAN Statements

LOGICAL*1
Statement
(Nonexecutable)

The LOGICAL*1 statement, which is an extension to the ANSI
77 standard, is a special case of the LOGICAL statement.
See \LOGICAL Statement (Nonexecutable)" for details. The
LOGICAL*1 statement is equivalent to the BYTE statement, which
is described in \BYTE Statement (Nonexecutable)".

LOGICAL*2
Statement
(Nonexecutable)

The LOGICAL*2 statement, which is an extension to the ANSI
77 standard, is a special case of the LOGICAL statement. See
\LOGICAL Statement (Nonexecutable)" for details.

LOGICAL*4
Statement
(Nonexecutable)

The LOGICAL*4 statement, which is an extension to the ANSI
77 standard, is a special case of the LOGICAL statement. See
\LOGICAL Statement (Nonexecutable)" for details.

MAP Statement
(Nonexecutable)

The MAP statement begins a MAP statement block. For more
information, refer to \STRUCTURE Statement (Nonexecutable)".

FORTRAN Statements 3-105

NAMELIST
Statement
(Nonexecutable)

The NAMELIST statement de�nes a list of variables or array names
and associates that list with a unique group-name. The group-name
can then be used in namelist-directed I/O to de�ne the variables or
arrays to be read or written.

Item Description/Default Restrictions

namelist group nameSymbolic name for the
variables or arrays to be
read or written in
namelist-directed I/O.

None.

variable

array name

List of variables or array
names separated by
commas, that are
associated with the
preceding
namelist group name.

Array elements,
assumed-sized arrays,
adjustable arrays, record
references, and character
substrings are not permitted.

The namelist variables or arrays can be of any data type and can be
explicitly or implicitly typed. A variable or array name can appear
more than one namelist.

It is not necessary that an input record be read in for every entity in
an associated namelist. However, input of variables names not found
in the namelist is an error. Records are written in the order they
appear in the namelist.

Example Notes

INTEGER I,K(30)

CHARACTER*20 A

NAMELIST /FOO/I,K,A/BOO/A,I

This NAMELIST statement speci�es
two group names, FOO and BOO.

See \Namelist-Directed Input/Output" in Chapter 4 for further
information about namelist-directed I/O.

3-106 FORTRAN Statements

ON Statement
(Executable)

The ON statement speci�es the action to be taken following a
subsequent interruption of program execution.

The interrupt condition speci�es the interrupt to be handled, such as
an arithmetic error or a keyboard interrupt.

Parameters

interrupt condition Keywords specifying an interrupt
condition, as given in Table 3-8.

trap procedure A procedure that will be executed if
the speci�ed interrupt condition occurs
following the execution of the ON
statement.

Before an interrupt can be trapped, the ow of control must pass
through an ON statement that speci�es the particular interrupt
condition. Once established, an interrupt trap can only be changed
by another ON statement that speci�es the same interrupt condition.

FORTRAN Statements 3-107

Table 3-8. Interrupt Conditions

Type of Trap Interrupt Condition
Keywords

Equivalent Keywords

Arithmetic REAL*4 DIV 0
REAL*4 OVERFLOW
REAL*4 UNDERFLOW
REAL*4 INEXACT
REAL*4 ILLEGAL

REAL DIV 0
REAL OVERFLOW
REAL UNDERFLOW
REAL INEXACT
REAL ILLEGAL

REAL*8 DIV 0
REAL*8 OVERFLOW
REAL*8 UNDERFLOW
REAL*8 INEXACT
REAL*8 ILLEGAL

DOUBLE PRECISION DIV 0
DOUBLE PRECISION OVERFLOW
DOUBLE PRECISION UNDERFLOW
DOUBLE PRECISION INEXACT
DOUBLE PRECISION ILLEGAL

REAL*16 DIV 0
REAL*16 OVERFLOW
REAL*16 UNDERFLOW
REAL*16 INEXACT
REAL*16 ILLEGAL

(none)
(none)
(none)
(none)
(none)

INTEGER*2 DIV 0
INTEGER*2 OVERFLOW 1

INTEGER*4 DIV 0
INTEGER*4 OVERFLOW 1

INTEGER DIV 0 2

INTEGER OVERFLOW 1,2

INTEGER DIV 0 2

INTEGER OVERFLOW 1,2

System SYSTEM ERROR (none)

Basic External Function EXTERNAL ERROR (none)

Internal Function INTERNAL ERROR (none)

Control-Y CONTROLY (none)

Notes:

1. There is no check for integer overows unless the CHECK OVERFLOW directive is included
to generate the overow-checking code.

2. If INTEGER is speci�ed, the trap handling is set for the default integer type, as de�ned by
the SHORT or LONG compiler directive.

There are three possible actions:

The ABORT option causes the program to abort.

The CALL option speci�es a subroutine to be executed.

The IGNORE option causes the interrupt to be ignored.

For further information about the range of values for
interrupt condition and the details of the actions, as well as sample
programs for trapping external and internal errors, see \Trapping
Run-Time Errors" in Chapter 9 and refer to the HP Compiler
Library/iX Reference Manual .

3-108 FORTRAN Statements

OPEN Statement
(Executable)

The OPEN statement establishes a connection between a unit
number and a �le. It also establishes or veri�es the properties of a
�le.

FORTRAN Statements 3-109

3-110 FORTRAN Statements

Item Description/Default Restrictions

unit Speci�es unit number. Integer expression � 0.

name Character variable. May be �xed or variable.

label Control transfers to speci�ed
executable statement if error
encountered on OPEN.

Must be the statement
label of an executable
statement in the same
program unit.

ios ios = 0 if no error; ios = positive
value if error condition exists.

Integer variable, array
element, or scalar record
�eld.

sta Speci�es �le as 'OLD', 'NEW',
'SCRATCH', or 'UNKNOWN' (default).
See Note 1.

Character variable, array
element, substring, or
scalar record �eld.

acc Speci�es �le access to be 'DIRECT',
'KEYED', or 'SEQUENTIAL'
(default). See Note 2.

Character variable, array
element, substring, or
scalar record �eld.

fm Speci�es data format to be
'FORMATTED' or 'UNFORMATTED'. If
absent and ACCESS='SEQUENTIAL' is
speci�ed, 'FORMATTED' is assumed;
If absent and ACCESS='DIRECT' is
speci�ed, 'UNFORMATTED' is
assumed. If absent and KEYED is
speci�ed, UNFORMATTED is assumed.

Character variable, array
element, substring, or
scalar record �eld.

rcl Speci�es record length for direct
access and ISAM �les; length is
measured in bytes.

Numeric expression.

blnk Speci�es treatment of blanks within
numbers in input. If 'NULL'
(default), blanks are ignored. If
'ZERO', blanks are treated as zeros.

Character variable, array
element, substring, or
scalar record �eld.

mrec See \Semantics". Integer variable, array
element, or scalar record
�eld.

use See \Semantics". Character variable, array
element, substring, or
scalar record �eld.

node See \Semantics". Integer variable, array
element, or scalar record
�eld.

key spec See \Semantics". Integer variable, character
expression, or scalar record
�eld.

asvar See \Semantics". Value not checked.

blsz See \Semantics". Value not checked.

bufct See \Semantics". Value not checked.

cctl See \Semantics". Value not checked.

d�le See \Semantics". Value not checked.

FORTRAN Statements 3-111

Item Description/Default Restrictions

exdsz See \Semantics". Value not checked.

init See \Semantics". Value not checked.

org See \Semantics". Value not checked.

uopen See \Semantics". Value not checked.

Note 1

If = then the and

STATUS 'OLD' FILE speci�er is required The �le must exist.

'NEW' FILE speci�er is required The �le named must not exist.

'SCRATCH' FILE speci�er must not be present A scratch �le is created.

If = and if the then

STATUS 'UNKNOWN' FILE speci�er is present The �le named is created if it does
not already exist.

FILE speci�er is not present A nondisk unit is connected to the
unit speci�ed.

Note 2

If = then the and the

ACCESS 'SEQUENTIAL' RECL speci�er may be present File is opened for sequential access.

'DIRECT' RECL speci�er is required File is opened for direct access.

'KEYED' RECL speci�er is required.
RECORDTYPE must be �xed.

File is opened as a �xed length ISAM
�le.

'APPEND' File is opened for sequential access
beginning after the last record of the
�le.

If ACCESS=`APPEND' is speci�ed
with READONLY, a runtime error
will occur.

Semantics

The name �eld can also be the ASCII representation of a device �le.

The UNIT speci�er is required in the keyword list. If the pre�x
UNIT= is omitted, unit must be the �rst item in the list. At most one
each of the other items can appear in the keyword list.

If the ERR speci�er is present and an error occurs during execution
of the OPEN statement, control transfers to the speci�ed statement
rather than aborting the program.

3-112 FORTRAN Statements

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the ios variable and the program is not aborted. Refer
to Appendix A for IOSTAT error codes.

For the character expressions used with STATUS, ACCESS, FORM,
and BLANK, only the �rst character in each is signi�cant.

The following speci�ers, extensions to the ANSI 77 standard, are
included for compatibility with programs originally written in
another version of FORTRAN.

ASSOCIATEVARIABLE
BLOCKSIZE
BUFFERCOUNT
CARRIAGECONTROL
DEFAULTFILE
DISP

DISPOSE
EXTENDSIZE
INITIALSIZE
MAXREC
NAME
NODE

NOSPANBLOCKS
ORGANIZATION
RECORDSIZE
TYPE
USE
USEROPEN

If used in a program, their syntax is checked, but they are otherwise
ignored by the compiler.

Once a �le is connected to a unit number, the unit can be referenced
by any program unit in the program. If a unit is already connected
to an existing �le, execution of another OPEN statement for that
unit is permitted. If the FILE speci�er is absent or the �le name
is the same, the current �le remains connected. Otherwise, an
automatic close is performed before the new �le is connected to the
unit. A redundant OPEN call can be used to change only the value
of the BLANK option. However, attempts to change the values
of any other speci�ers with a redundant OPEN are ignored. A
redundant OPEN does not a�ect the current position of the �le.

The same �le cannot be connected to two di�erent units. An attempt
to open a �le that is connected to a di�erent unit by the same name
causes an error.

As an extension to the ANSI 77 standard, indexed sequential access
(ISAM) is allowed on an OPEN statement. Indexed �les can be
accessed with a key, which is part of the record. The speci�er
KEY=key spec speci�es the length of the key. key spec has the form:

exp1 : exp2
�
: data type

�
where exp1 is the �rst byte position of the key and exp2 is the last
byte position of the key. data type is the data type of the key and
must be integer or character. The length of the key is determined by
the expression:

exp2 - exp1 + 1

The following table shows the use of ACCESS, RECL, and
RECORDTYPE to determine whether an indexed �le is variable or
�xed length.

FORTRAN Statements 3-113

ACCESS RECL RECORDTYPE File Type

'SEQUENTIAL'Absent Variable length �le

'SEQUENTIAL'Present Variable length �le
(RECL = maximum record length)

'DIRECT' Absent Error

'DIRECT' Present Fixed length �le

'KEYED' Present Variable Error
(RECL = maximum record length)

'KEYED' Present Fixed Fixed length index sequential
access �le

'KEYED' Absent Variable Error
(Maximum record length is 2048
bytes)

'KEYED' Absent Fixed Error

By default, �les are opened for shared read/write access.

Rewinding a �le opened with ACCESS=`APPEND' repositions the
�le pointer at the beginning of the �le.

Backspacing a �le that is opened with ACCESS=`APPEND' can
reposition the �le pointer beyond the initial access point.

An inquire with ACCESS=acc returns acc='SEQUENTIAL' for �les
opened with ACCESS='APPEND'.

If ACCESS=`APPEND' is speci�ed with READONLY, a runtime
error will occur.

The READONLY speci�er causes the �le to be opened for read only
access. READONLY can be speci�ed on a �le to prevent writing into
it by accident. Any attempt to write to a read-only �le generates a
\FILE SYSTEM ERROR" message.

The SHARED speci�er explicitly sets the �le for shared access. This
permits the �le to be shared by multiple programs. Since shared is
also the default condition, SHARED has no e�ect.

Note When a �le is opened with the unit speci�er speci�ed, but with no
�le speci�er, a scratch �le is opened. Therefore, the following two
statements are equivalent:

OPEN (UNIT=19)
OPEN (UNIT=19, STATUS='SCRATCH')

3-114 FORTRAN Statements

Examples Notes

OPEN (10,FILE='inv',

1ACCESS='SEQUENTIAL',

2ERR=100,IOSTAT=ios)

The �le inv is connected to unit 10
as a sequential �le. If an error
occurs, control transfers to
statement 100 and the error code is
placed in the variable ios.

OPEN (ACCESS='DIRECT',

1UNIT=4,RECL=50,

2FORM='FORMATTED',FILE=next1)

The character variable next1
contains the name of the �le to be
connected to unit 4 as a formatted,
direct access �le with a record
length of 50 characters.

program append

character*2 FN

character*20 STR, line

integer recnum

PARAMETER(LU=15)

PARAMETER(FN='Afile')

PARAMETER(STR='This is record')

C Open file and write to it sequentially

CALL OPEN_AND_WRITE(LU,FN,STR)

C Open existing file for APPEND access

OPEN(unit=LU,file=FN,access='append',iostat=ios,err=99)

DO I = 26, 50

WRITE(LU,500) STR, i

END DO

REWIND(LU)

DO I = 1, 50

READ(LU,500) line, recnum

IF (line .ne. STR) THEN

WRITE(6,*) 'line = ',line

STOP 'READ FAILED - read back incorrect'

END IF

IF (recnum .ne. i) THEN

WRITE(6,*) 'recnum = ',recnum

STOP 'READ FAILED - read back incorrect'

END IF

END DO

CLOSE(LU,status='keep')

STOP

FORTRAN Statements 3-115

99 continue

WRITE(6,*) 'iostat value = ',ios
STOP 'APPEND OPEN FAILED'

500 FORMAT(2X,A20,I4)

END

subroutine OPEN_AND_WRITE(LUNIT,FNAME,STR)

character*2 FNAME

character*20 STR

OPEN(unit=LU,file=FNAME,access='sequential',iostat=ios,err=98)

DO I = 1, 25

WRITE(LU,499) STR, i

END DO

CLOSE(LU)

98 continue

WRITE(6,*) 'iostat value = ',ios

STOP 'OPEN FAILED'

499 FORMAT(2X,A20,I4)

END

3-116 FORTRAN Statements

PARAMETER
Statement
(Nonexecutable)

The PARAMETER statement de�nes named constants. After a
name is de�ned in a PARAMETER statement, subsequent uses of
the name are treated as if the value of the constant was used.

Item Description/Default Restrictions

cname Symbolic name that
represents a constant.

Name cannot appear in any
statement before
PARAMETER, except a
type statement.

cexp Constant expression or
intrinsic function.

If cexp is an intrinsic
function, its arguments must
be constants.

PARAMETER statements must precede any statement function and
executable statements in a program unit.

If the symbolic name cname is an integer, real, complex, or logical
data type, the corresponding expression cexp must be an arithmetic
or logical constant expression. If the symbolic name cname is a
character data type, the corresponding expression cexp must be a
character constant expression.

As an extension to the ANSI 77 standard, the following FORTRAN
intrinsics can be used in cexp. When used in cexp, these intrinsics
must have constant arguments and the type of their return value
must be the same as that of cname.

ABS
CHAR
CMPLX
CONJG
DCMPLX
DIM

IAND
ICHAR
IMAG
IOR
ISHFT
IXOR

MAX
MIN
MOD
NOT
SIGN

Each cname is the symbolic name of a constant that is de�ned
with the value of the expression cexp appearing to the right of the
equal sign, in accordance with the rules for assignment statements.
Any symbolic name of a constant that appears in an expression
cexp must have been de�ned previously in the same or a di�erent
PARAMETER statement in the same program unit.

FORTRAN Statements 3-117

A symbolic name of a constant must not be de�ned more than once
in a program unit.

If a symbolic name of a constant is not of the default implied
type, its type must be speci�ed by a type statement or IMPLICIT
statement prior to its �rst appearance in a PARAMETER statement.
If the length speci�ed for the symbolic name of a constant of type
character is not the default length of one, its length must be speci�ed
in a type statement or IMPLICIT statement prior to the �rst
appearance of the symbolic name of the constant. Its type and length
must not be changed by subsequent statements, including IMPLICIT
statements. If a symbolic name of type CHARACTER*(*) is de�ned in
a PARAMETER statement, its length is the length of the expression
assigned to it.

Once such a symbolic name is de�ned, that name can appear in any
subsequent statement of the de�ning program unit as a constant in
an expression or DATA statement. A symbolic name of a constant
must not be part of a format speci�cation.

A symbolic name in a PARAMETER statement can identify only the
corresponding constant in that program unit.

Examples Notes

PARAMETER (minval=-10,maxval=50)

PARAMETER (debug=.TRUE.)

PARAMETER (file='WELCOM')

INTEGER lower,upper

PARAMETER (lower=0, upper=7)

DIMENSION a (lower:upper)

DO 10 i=lower,upper

a (i) = 1.0

10 CONTINUE

PARAMETER (pi=3.14159)

radius = diameter/2

area = pi *(radius**2)

CHARACTER bell

PARAMETER (bell = CHAR(7))

CHAR in constant expression.

INTEGER case_shift

PARAMETER (case_shift = ICHAR('a') - ICHAR('A'))

ICHAR in constant
expression.

COMPLEX complex_two

PARAMETER (complex_two = 2)

Arithmetic conversion
performed.

PARAMETER (limit = 1000)

PARAMETER (limit_plus_1 = limit+1)

Legal use of previously
de�ned name.

3-118 FORTRAN Statements

Example

The following program:

PROGRAM parameters

LOGICAL first_name_greater, scnd_name_greater

CHARACTER ch*(*), name1*(*), name2*(*)

INTEGER length

PARAMETER (ch = 'Guess my length')

PARAMETER (name1 = 'William',

+ name2 = 'David')

PARAMETER (length = LEN(ch))

C Either form of lexical compare is allowed in PARAMETER

PARAMETER (first_name_greater = LGT(name1, name2),

+ scnd_name_greater = name2 .GT. name1)

WRITE (6,10) ch, length

IF (first_name_greater) THEN

WRITE (6,*) name1, 'is lexically greater than', name2

ELSE IF (scnd_name_greater) THEN

WRITE (6,*) name2, 'is lexically greater than', name1

ELSE

WRITE (6,*) name1, 'and', name2, 'have the same name'

END IF

10 FORMAT (' The length of ''',(A),''' is ',I2)

END

produces the following output:

The length of 'Guess my length' is 15

William is lexically greater than David

FORTRAN Statements 3-119

Alternate PARAMETER
Statement

(Nonexecutable)

An alternate version of the PARAMETER statement is included
for compatibility with other versions of FORTRAN. The alternate
version di�ers from the ANSI 77 standard in two ways:

The parameter list is not bounded by parentheses.
The type of the constant cexp determines the type of cname
(regardless of explicit or implicit typing).

Alternate PARAMETER statements must precede any executable
statements in a program unit.

The following example illustrates the alternate PARAMETER
statement. The output follows the example.

Example

PROGRAM showpars

IMPLICIT INTEGER (i), REAL (r)

PARAMETER i1 = 'AB' ! Alternate; i1 is type character

PARAMETER (i2 = 2.0) ! Standard; i2 is type integer

PARAMETER i3 = 3.0 ! Alternate; i3 is type real

PARAMETER r1 = 6 ! Alternate; r1 is type integer

PARAMETER (r2 = 6) ! Standard; r2 is type real

i4 = 4 ! First executable statement

PARAMETER i5 = 5 ! Assignment statement, not PARAMETER

! PARAMETER i5 is a variable

WRITE (*,*) i1, i2, i3, i4, i5, PARAMETER i5, r1, r2

END

Output:

AB 2 3.0 4 0 5.0 6 6.0

Note that PARAMETER i5 in the example above is a variable because it
follows an executable statement. (FORTRAN assumes meaning from
context and has no reserved words.)

3-120 FORTRAN Statements

PAUSE Statement
(Executable)

The PAUSE statement causes a temporary break in program
execution.

Item Description/Default Restrictions

constant Integer or character constant
to be displayed in the
PAUSE message.

Cannot be a constant name
or a constant expression.

The PAUSE statement optionally writes a message and, if standard
input is a terminal, waits for the user to request the program to
continue.

If constant is omitted, no message is written. If a constant is given,
the message PAUSE followed by the constant value is written.

On MPE/iX, the PAUSE statement causes a program break if the
program is operating in interactive mode, but does not break if the
program is operating in batch mode. In either case, the constant
given with the PAUSE statement is printed on the standard list
device. In interactive mode, the PAUSE statement serves the same
function as using the BREAK key and all MPE/iX commands
allowed in BREAK mode can be used. To resume execution of the
program in interactive mode, enter the RESUME command.

FORTRAN Statements 3-121

PRINT Statement
(Executable)

The PRINT statement only transfers data from memory to the
standard output unit. (FORTRAN unit 6 is preconnected to the
standard output device.)

Item Description/Default Restrictions

fmt Format designator. See \Semantics".

implied do list An implied DO loop.
Refer to \DO
Statement
(Executable)".

None.

Semantics

The format designator must be one of the following:

The statement label of a FORMAT statement.

An INTEGER*4 variable to which the statement label of a
FORMAT statement has been assigned by an ASSIGN statement.

A character or noncharacter array name that contains the
representation of a format speci�cation. The use of a noncharacter
array is an extension to the ANSI 77 standard.

A character expression that evaluates to a valid format string.
Variable format descriptors are allowed only in character constant
expressions.

An asterisk to specify list-directed output (refer to \List-Directed
Input/Output" in Chapter 4).

Each item in the list of data to be transferred must be one of the
following:

A constant
A variable name
An expression
An array name

3-122 FORTRAN Statements

An array element
A substring
A scalar record �eld name
An implied DO loop

The PRINT statement is equivalent to the TYPE statement.

Examples Notes

PRINT 10,num,des num and des are printed
according to FORMAT
statement 10.

PRINT *,'x=',x 'x=' and the value of x are
printed according to
list-directed formatting.

INTEGER fmt

ASSIGN 200 TO fmt

PRINT fmt,rat,cat

rat and cat are printed
according to FORMAT
statement 200.

PRINT '(4I3)',i,j,k*2,330 i, j, k*2, and the constant
330 are printed according to
the format speci�cation in
the PRINT statement itself.

PRINT 100

100 FORMAT ("End of report")

The character constant in
the FORMAT statement is
printed.

PRINT '(" x SIN(x) COS(x)"//(I3,2F7.3))',

+(i,SIN(i/57.3),COS(i/57.3),i=0,360,5)

Prints a literal heading and
73 rows of values as
indicated by the implied DO
in the output list.

FORTRAN Statements 3-123

PROGRAM
Statement
(Nonexecutable)

The PROGRAM statement de�nes the name of a program.
Optionally, as an extension to the ANSI 77 standard, it also de�nes
the formal arguments of the main program in which the statement
appears.

Item Description/Default Restrictions

name Name of the program (and
its main entry point).

None.

parameter Optional program argument. Must be of type
CHARACTER*N.

The PROGRAM statement must be the �rst noncomment statement
in a module, except for certain compiler directives, described in
Chapter 7.

The MPE/iX RUN command has two optional parameters, PARM
and INFO, whose values you can pass to any FORTRAN 77 program.
The PARM �eld is a 16-bit or 32-bit signed integer. The INFO
�eld is a character string of up to 255 characters, including the
apostrophes (') or quotation marks ("). You can obtain the values
of PARM or INFO in a FORTRAN 77 program by specifying
appropriate parameters in the PROGRAM statement. These
parameters can specify a variable for PARM, a variable for INFO, or
both.

After placing the variables in the PROGRAM statement, you should
declare the variables as the correct types. The variables must be
local variables in the main program unit. The variable for PARM
must be type INTEGER*2 or INTEGER*4. The variable for INFO
must be a character variable, expressed as CHARACTER*(*).

The PROGRAM statement can have at most two parameters and
they must be used as mentioned above (but can be in any order).

3-124 FORTRAN Statements

Examples Notes

PROGRAM main Speci�es main as the name of the program.

PROGRAM main() Speci�es main as the name of the program, with
no arguments.

PROGRAM runit(a,b) Speci�es runit as the name of the program, and
speci�es its arguments as a,b. Note that one of
these arguments must be an INTEGER*2 or
INTEGER*4 and the other must be a
CHARACTER*(*).

FORTRAN Statements 3-125

READ Statement
(Executable)

The READ statement transfers data from a �le to program variables.
There are two kinds of READ statements:

Standard input READ
File READ

The standard input READ statement complements the PRINT
statement. The �le READ statement complements the WRITE
statement. A more detailed description of the READ statement is
found in Chapter 4.

Standard Input READ
Statement (Executable)

The standard input READ statement transfers data to memory from
a unit that is designated as the standard input unit. (FORTRAN
unit 5 is preconnected to the system standard input, usually the
user's terminal.)

Item Description/Default Restrictions

fmt Format designator. See \Semantics".

namelist group nameSymbolic name specifying a
list of variables or arrays
previously declared in a
NAMELIST statement.

None.

implied do list An implied DO loop. Refer
to \DO Statement
(Executable)".

None.

3-126 FORTRAN Statements

Semantics

The format designator must be one of the following:

The statement label of a FORMAT statement.

An INTEGER*4 variable to which the statement label of a
FORMAT statement has been assigned by an ASSIGN statement.

A character or noncharacter array name that contains the
representation of a format descriptor list enclosed in parentheses.
The use of a noncharacter array is an extension to the ANSI 77
standard.

A character expression that evaluates to the representation of a
format descriptor list enclosed in parentheses.

An asterisk, which speci�es list-directed output. See \List-Directed
Input/Output" in Chapter 4 for details.

Each item in the variable list specifying where the data is to be
transferred must be one of the following:

A variable name.
An array element name.
An array name.
A substring.
An implied DO loop containing the above items only.
A scalar record element name.

Examples Notes

READ 10,num,des Reads the values of num and des

according to FORMAT statement
10.

READ *,a,b,n Reads the values of a, b, and n

according to list-directed formatting.

ASSIGN 100 TO fmt

READ fmt,al,h1

Reads the values of al and h1

according to FORMAT statement
100.

READ '(3I3)',i,j,k Reads the values of i, j, and k

according to the format speci�cation
in the READ statement itself.

READ 5 Skips a record on the standard input
device.

FORTRAN Statements 3-127

File READ Statement
(Executable)

The �le READ statement transfers data from a �le to memory.

3-128 FORTRAN Statements

Item Description/Default Restrictions

unit Arithmetic expression
of type integer.

See \Semantics".

address Expression specifying
unit number of a
sequential �le.

Must be an integer:
zero or positive.

char variable Internal �le from which
input is taken.

Character variable or
scalar record �eld.

char array element Internal �le from which
input is taken.

Character array
element or scalar record
�eld.

char substring Internal �le from which
input is taken.

Character substring.

integer expression Expression specifying
the unit number of a
sequential �le.

Must be an integer:
zero or positive.

* Asterisk indicates that
the standard input
device (unit 5, usually
the terminal) is to be
used.

None.

fmt Format designator. fmt must be as
speci�ed for a standard
input READ above.

namelist group name Symbolic name
specifying a list of
variables or arrays
previously declared in a
NAMELIST statement.

Cannot appear in a
statement containing a
format speci�er.

ios Integer variable or
integer array element
name for error return.

Must be an integer
type.

label Statement label of an
executable statement.

Must be the label of a
statement in the same
program unit.

rec Speci�es the record
number in a direct
access �le.

If fmt is an asterisk, a
record speci�er must
not be present.

zbf Variable, array name,
or array element name.

Extension to ANSI 77
standard; cannot be a
character type.

zln Integer expression used
with ZLEN.

Extension to ANSI 77
standard.

end Statement label of an
executable statement.

None.

key value See \Semantics". Integer variable,
character expression, or
scalar record �eld.

key num See \Semantics". None.

FORTRAN Statements 3-129

Semantics

A �le READ statement must contain a unit speci�er and at most one
of each of the other speci�ers.

If the pre�x UNIT= is omitted, unit must be the �rst item in the list.
This is the unit number for the input device or �le.

If the pre�x FMT= is omitted, fmt must be the second item in the list
and unit (without a pre�x) must be the �rst item.

If fmt is omitted and no NML speci�er is present, the access is
unformatted (binary). record name and aggregate variables can only
be used in unformatted reads.

If a record number is speci�ed, the unit must be connected for direct
access. You can specify a record number through the REC speci�er.
Note that REC cannot appear with the END or NML speci�ers nor
with the FMT=* form of the FMT speci�er. You can also specify a
record number with the @ speci�er.

If the ERR speci�er is present and an error occurs during execution
of the READ statement, control transfers to the speci�ed statement
rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for the IOSTAT error codes.

If the END speci�er is present and an end-of-�le is encountered in a
sequential �le during the execution of the READ statement, control
transfers to the speci�ed statement. In this case, ios is set to -1.

The ZBUF and ZLEN speci�ers and the address alternative used as
a parameter for the UNIT speci�er are extensions to the ANSI 77
standard, and are included for compatibility with programs originally
written in another version of FORTRAN. If used in a program, their
syntax is checked, but they are otherwise ignored by the compiler.

As an extension to the ANSI 77 standard, indexed sequential access
(ISAM) is allowed with a READ statement. The following speci�ers
are used to establish the desired match criterion to read a record
from an indexed �le:

KEY = key value

KEYEQ = key value

KEYGT = key value

KEYLT = key value

where key value is an integer value or character expression. Any one
of the speci�ers can appear in a READ statement. The speci�ers can
be omitted. If a speci�er is not present, the primary key is assumed
if it is the �rst read of the �le. Otherwise, the �le is read sequentially
from the last position of the previous read.

3-130 FORTRAN Statements

If the KEYID speci�er is not present, the primary key is assumed.
The subsequent reads do not assume the previous KEYID value for
the current read.

As an extension to the ANSI 77 standard, sequential reads (without
the REC speci�er) are allowed on �les open for direct access. If the
REC speci�er is omitted, a READ statement reads the next record.

Examples Notes

READ (8,10)a,b,c Reads the values of a, b, and c from
the �le connected to unit 8 according
to FORMAT statement 10.

ASSIGN 4 TO num

READ (UNIT=3,ERR=50,FMT=num)

Reads the value of z from the �le
connected to unit 3 according to
FORMAT statement 4. If an error
occurs, control transfers to
statement 50.

READ (10)x Reads the value of x from the �le
connected to unit 10. Because fmt is
omitted, the data is unformatted.

READ (10,FMT=*,END=60)b Reads the value of b from the �le
connected to unit 10, according to
list-directed formatting. If an
end-of-�le is encountered, control
passes to statement 60.

READ (2,'(I3)',REC=10)i Reads the value of i from the 10th
record of the direct access �le
connected to unit 2, according to the
format speci�cation in the READ
statement itself.

READ (10) Skips a record in the �le connected
to unit 10.

CHARACTER*8 a

REAL b

a = ' $27.97'

READ (a(4:8),'(F5.2)') b

Reads the value of b from the
character variable a according to the
format speci�cation in the READ
statement itself.

READ (10,KEYID=0,KEYEQ='100',ERR=101)bufReads an ISAM record with primary
key value '100' into buf.

FORTRAN Statements 3-131

REAL Statement
(Nonexecutable)

The REAL type speci�cation statement explicitly assigns the
REAL*4, REAL*8, and REAL*16 data types to symbolic names, and
optionally assigns initial values to variables.

The following syntax includes the REAL, REAL*4, REAL*8,
REAL*16, and DOUBLE PRECISION statements.

3-132 FORTRAN Statements

Semantics

The REAL and REAL*4 statements are equivalent. The DOUBLE
PRECISION and REAL*8 statements are equivalent. The REAL*16
statement has no equivalent. The REAL*4, REAL*8, and REAL*16
statements are extensions to the ANSI 77 standard.

As an extension to the ANSI 77 standard, a length speci�er can
follow the item being declared. This speci�er overrides the data
length implied by the type statement. If the item is an array name
with a dimension declarator, the length speci�er precedes the
dimension declarator.

If an array declarator is speci�ed in a type statement, the declarator
for that array must not appear in any other speci�cation statement
(such as DIMENSION). If only the array name is speci�ed, then an
array declarator must appear within a DIMENSION or COMMON
statement.

Each symbolic name can appear in a type statement only once.

As an extension to the ANSI 77 standard, you can initialize
variables or arrays in a type declaration statement by enclosing the
initialization values between slashes. The second example below
illustrates this method of initialization. See \DATA Statement
(Nonexecutable)" for further information on initialization.

Examples Notes

REAL item

DIMENSION item(2,3,5)

item is a three-dimensional array
containing 30 4-byte real elements.

DOUBLE PRECISION

+measure/384E-04/,test/2.1/

measure is an 8-byte real variable,
initialized to .0384. test is an
8-byte real variable, initialized to
2.1.

REAL*16 accurate(5) accurate is an array containing 5
16-byte real elements.

FORTRAN Statements 3-133

REAL*4 Statement
(Nonexecutable)

The REAL*4 statement, which is an extension to the ANSI 77
standard, is a special case of the REAL statement. See \REAL
Statement (Nonexecutable)" for details. The REAL*4 statement is
equivalent to the REAL statement.

REAL*8 Statement
(Nonexecutable)

The REAL*8 statement, which is an extension to the ANSI 77
standard, is a special case of the REAL statement. See \REAL
Statement (Nonexecutable)" for details. The REAL*8 statement is
equivalent to the DOUBLE PRECISION statement.

REAL*16 Statement
(Nonexecutable)

The REAL*16 statement, which is an extension to the ANSI 77
standard, is a special case of the REAL statement. See \REAL
Statement (Nonexecutable)" for details.

3-134 FORTRAN Statements

RECORD Statement
(Nonexecutable)

The RECORD statement declares a record variable that has the form
previously declared in a STRUCTURE statement.

Item Description/Default Restrictions

struc name Name of a previously
declared structure.

Cannot be the name of a
structure currently being
declared.

variable name Variable name. None.

array name Array name. None.

array declaratorArray declaration. None.

Semantics

Record names can be used in COMMON, DIMENSION, and SAVE
statements. They can not be used in DATA, EQUIVALENCE, and
NAMELIST statements.

Record �eld values are initially unde�ned, but can be initialized in
the structure declaration.

Refer to \STRUCTURE Statement (Nonexecutable)" for more
information on structures and their use with records.

Examples Notes

RECORD/student/rec1,math_student(10)rec1 is a record variable that has
the form declared for the student
structure. math_student is an array
variable that has ten record
elements in the form declared for the
student structure.

FORTRAN Statements 3-135

RETURN Statement
(Executable)

The RETURN statement transfers control from a subprogram back
to the calling program unit.

Item Description/Default Restrictions

rtnnum Integer expression specifying
the alternate return number.

See \Semantics".

Semantics

Normally, control returns from a subroutine to the calling program
unit at the statement following the CALL statement. Specifying
alternate return statements allows return to the calling program unit
at any labeled executable statement within it.

When the RETURN statement occurs in a subroutine subprogram
and no alternate return is speci�ed, control returns to the �rst
executable statement following the CALL statement that invoked the
subroutine.

When the RETURN statement occurs in a function, control returns
to the statement containing the function call. Alternate returns are
not allowed in functions.

The scalar expression, rtnnum, may have the range of values 1 to n,
where n is the number of alternate returns speci�ed in the CALL
statement. The value of rtnnum identi�es the ordinal position of the
statement label in the actual argument list of the CALL statement.

The asterisks in the SUBROUTINE statement are for documentation
purposes. The number of asterisks should be the same as the number
of statement labels in the CALL statement. For consistency with the
ANSI standard, if rtnnum is a constant, its value should be less than
or equal to the number of asterisks in the SUBROUTINE statement.
However, if the value of rtnnum exceeds the number of asterisks in
the SUBROUTINE statement, compilation, load, and execution are
not a�ected. An error is generated if alternate returns are speci�ed
and no asterisks appear in the SUBROUTINE statement.

When the value of rtnnum is not in the range 1 to n, control returns
to the statement following the CALL statement. When a variable or
expression represents rtnnum, only one asterisk is required in the
SUBROUTINE statement, although it is good programming practice
to have the number of asterisks in the SUBROUTINE statement
always match the number of labels in the CALL statement.

3-136 FORTRAN Statements

rtnnum may have any numeric data type. If rtnnum is not an
integer, it will be converted to one. If the $HP1000 ARRAYS
compiler directive is in e�ect, rtnnum may be an array name. If
rtnnum is an array name, the �rst element of the array will be used.

Examples Notes

PROGRAM main...

CALL matrx (*10,m,*20,n,k,*30)...

10 . . . ! executable statement...

20 . . . ! executable statement...

30 . . . ! executable statement...

END

The CALL statement speci�es three
possible return labels, plus the
normal return point (the statement
following the CALL).

SUBROUTINE matrx(m,n,k,*,*,*)...

k=2...

RETURN k

END

The SUBROUTINE statement
contains a number of asterisks equal
to the number of statement labels in
the CALL statement.

k evaluates to the value 2, causing
control to pass to the second
alternate return label speci�ed in the
CALL statement (20). If k evaluates
to a value outside the range 1 to 3,
control returns to the statement
following the CALL statement.

FORTRAN Statements 3-137

REWIND Statement
(Executable)

The REWIND statement positions a sequential �le or device at its
beginning.

Item Description/Default Restrictions

unit Integer expression
specifying unit number
of a connected �le.

Must be zero or
positive.

variable name

array element

scalar record �eld name

Error code return. Must be an integer data
type.

label Statement label. Must be an executable
statement in the same
program unit.

Semantics

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for the IOSTAT error codes.

If an error occurs during execution of the REWIND statement
and the ERR speci�er is present, control transfers to the speci�ed
statement rather than aborting the program.

If the �le or device is already positioned at its beginning, a REWIND
statement has no e�ect.

As an extension to the ANSI 77 standard, the REWIND statement
may be used with �les open for direct access. It positions the �le
before the �rst record.

3-138 FORTRAN Statements

Examples Notes

REWIND 10 The �le connected to unit 10 is
positioned at its beginning.

REWIND (UNIT=5, IOSTAT=j, ERR=100)The �le connected to unit 5 is
positioned at its beginning. If an
error occurs, control transfers to
statement 100 and the error code is
returned in j. If no error occurs, j is
set to zero and control transfers to
the next statement.

REWIND (UNIT=62, IOSTAT=j) The �le connected to unit 62 is
positioned at its beginning. If an
error occurs, the error code is stored
in the variable j. If no error occurs,
j is set to zero. In both cases,
control transfers to the next
statement.

REWIND (UNIT=12, ERR=100) The �le connected to unit 12 is
positioned at its beginning. If an
error occurs, control transfers to
statement 100. If no error occurs,
control transfers to the next
statement.

FORTRAN Statements 3-139

REWRITE Statement
(Executable)

The REWRITE statement is used to update existing records in an
ISAM �le. The record being updated is the most recent record read
from the �le by a READ statement. REWRITE unlocks the record if
it is locked.

3-140 FORTRAN Statements

Item Description/Default Restrictions

unit Integer expression
specifying the unit
number of a �le.

Must be zero or
positive.

address Integer expression. None.

char variable Internal �le written. Character variable or
scalar record �eld.

char array element Internal �le written. Character array
element or scalar record
�eld.

char substring Internal �le written. Character substring.

integer expression Integer expression
specifying the unit
number of an internal
�le.

Must be zero or
positive.

fmt Format designator. fmt must be as speci�ed
in a PRINT statement.

namelist group name Symbolic name
specifying a list of
variables or arrays
previously declared in a
NAMELIST statement.

Cannot appear in a
statement containing a
format speci�er.

ios Integer variable or
array element for error
return.

Must be an integer
type.

label Statement label of an
executable statement.

Must be the label of a
statement in the same
program unit.

Semantics

A REWRITE statement must contain a unit number and at most
one of each of the other options.

If the pre�x UNIT= is omitted, unit must be the �rst item in the list.
This is the unit number for the output device or �le.

If the pre�x FMT= is omitted, fmt must be the second item in the
list and the unit (without a pre�x) must be the �rst item. If fmt is
not present and a namelist group name is not speci�ed, the write is
unformatted (binary).

record name and aggregate variables can only be used in unformatted
writes.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for the IOSTAT error codes.

FORTRAN Statements 3-141

If the ERR speci�er is present and an error occurs during execution
of the REWRITE statement, control transfers to the speci�ed
statement rather than aborting the program.

Examples Notes

READ (10,KEY='111-22-333',ERR=555)

+EMPLOYEE_REC

EMPLYEE_REC.BONUS =

+EMPLOYEE_REC.SALARY * 0.1

REWRITE(10,ERR=556,IOSTAT=I)

+EMPLOYEE_REC

Updates a record. It reads the
record, changes the �elds, and then
updates the record by using
REWRITE.

3-142 FORTRAN Statements

SAVE Statement
(Nonexecutable)

The SAVE statement causes the speci�ed variables in the program
unit to maintain their values after the execution of a RETURN or
END statement.

Semantics

The following items must not be mentioned in a SAVE statement:
formal argument names, procedure names, and names of variables in
a common block.

A SAVE statement without a list of variable names or common block
names declares that all allowable variables in the subprogram must
be saved.

The total size of local variables in a single subroutine must be less
than one gigabyte. (A gigabyte is 1,073,741,824 (230) bytes.)

When a common block name is speci�ed, all of the variables in
that common block are saved. Within an executable program, if a
common block name is mentioned in a SAVE statement, it must
be mentioned in a SAVE statement in each subprogram where it
appears.

A SAVE statement is optional in a main program and has no e�ect.

SAVE statements cannot be used in procedures contained in
executable libraries.

Examples Notes

SUBROUTINE matrix...

SAVE a,b,c,/dot/...
RETURN

The SAVE statement saves the values of a, b,
and c, and the values of all of the variables in the
common block dot.

SUBROUTINE fixit

SAVE...
RETURN

The SAVE statement saves the values of all of
the variables in the subroutine fixit.

FORTRAN Statements 3-143

Statement Function
Statement
(Nonexecutable)

The statement function statement de�nes a one-statement function.

Item Description/Default Restrictions

name Name of the function. None.

parm Formal argument. Must be a simple variable.

exp Arithmetic, logical, or
character expression.

None.

A statement function is a program-de�ned, single-statement
computation that applies only to the program unit in which it is
de�ned. A statement function statement can appear only after the
speci�cation statements and before the �rst executable statement of
the program unit.

The expression de�nes the actual computational procedure, which
results in one value. When the statement function is referenced,
the expression is evaluated using the actual arguments, and the
value is assigned to the function name. The expression must be an
arithmetic, logical, or character expression.

The type of a statement function is determined by using the
statement function name in a type statement or by implicit typing.
The type of expression in a statement function statement must be
compatible with the de�ned type of the name of the function. For
example, arithmetic expressions must be used in arithmetic statement
functions, logical expressions in logical statement functions, and
character expressions in character statement functions.

The arithmetic expression in an arithmetic statement function
need not be the same type as the function name. For example, the
expression can be type integer and the function name can be de�ned
as type real. The expression value is converted to the statement
function type at the time it is assigned to the function name.

Statement functions can reference other previously de�ned statement
functions. Statement functions cannot contain calls to themselves,
nor can they contain indirect recursive calls.

The values of any formal arguments in the expression are supplied by
the actual arguments when the statement function is referenced. All
other variables and constants in the expression derive their values
from their de�nitions in the program unit.

3-144 FORTRAN Statements

Examples Notes

disp(a,b,c)=a + b*c disp is a statement function with three dummy
arguments, a, b, and c.

tim(t1)=t1/2 + b tim is a statement function with one dummy
argument, t1. b is an actual variable that is
declared elsewhere in the program unit.

FORTRAN Statements 3-145

STOP Statement
(Executable)

The STOP statement terminates program execution.

Item Description/Default Restrictions

constant Integer or character constant
to be displayed in the STOP
message.

Cannot be a constant name
or constant expression.

The STOP statement terminates program execution immediately
without allowing execution to reach the END statement of the main
program unit.

If constant is supplied, the message \STOP constant value" is written
to the standard error unit and the program terminates. If constant is
omitted, the program terminates without a message.

Examples Notes

STOP 7777 The message STOP 7777 is written to
standard error.

STOP 'Program ended!' The message STOP Program ended! is
written to standard error.

STOP Nothing is written to standard error.

READ *,a,b

IF (a .LT. b) STOP 56789

10 b = b-1

IF (b .EQ. a) STOP 'All done'

GOTO 10

END

If a is less than b, execution terminates with
the message STOP 56789. When b equals a,
execution terminates with the message STOP
All done.

3-146 FORTRAN Statements

STRUCTURE
Statement
(Nonexecutable)

The STRUCTURE statement names and begins the declaration of
a structure in a structure block. A structure is the \data type" of a
record variable. It must be declared before a RECORD statement
can refer to it. The END STRUCTURE statement terminates a
structure block.

A structure block has the following elements:

STRUCTURE statement Begins the structure declaration.

Declaration body Declares the �elds of the
structure, including their names,
data types, order, and alignment.
Fields are in the order of their
declaration in the structure.

END STRUCTURE statement Ends the structure declaration.

STRUCTURE Statement

END STRUCTURE Statement

Item Description/Default Restrictions

struc name Name of the structure. Used
in the RECORD statement
to de�ne the form of a
record variable.

Required at the outermost
level of the structure. Can
also be used to name a
substructure.

�eld name Field name for a
substructure.

Required for a substructure.
Not permitted at the
outermost level of the
structure.

Semantics

The declaration body consists of declaration statements that de�ne
symbolic names. The symbolic names are the �eld names of the

FORTRAN Statements 3-147

structure. These �eld declarations can be any combination of the
following:

Type speci�cation statement Any type speci�cation statement
de�ning variables or array
declarators.

Substructure declaration A substructure can be declared in
two ways:

1. With a RECORD statement
using a previously de�ned
structure.

2. As a structure declaration block
having a �eld name.

If a struc name is also speci�ed,
the substructure can be
referenced as a structure
declaration by a subsequent
RECORD statement.

Recursive structure declarations
are not permitted. A structure
which is currently being de�ned
can not refer to itself.

Union declaration A union declaration block, described
below, speci�es two or more �elds
that share a common location
within the structure.

Unnamed �eld The special symbolic name, %FILL,
can be used in a structure as the
\name" of an empty �eld. %FILL is
described below.

Structure names must be unique between structures. However,
structure �elds, variables, and common blocks can have the same
name as a structure.

Field names must be unique at the same structure level. However,
for example, a structure can contain a �eld named field1 and a
substructure of that structure can also contain a �eld named field1.

For convenience in declaring constants, PARAMETER statements
may be placed between the statements in a structure block. However,
it is important to note that a PARAMETER statement within a
structure block has the same e�ect as if it were outside the block.

Note A structure declaration does not allocate storage. Structure
declarations only specify the form for a record.

3-148 FORTRAN Statements

Field Declarations All �elds declared within a structure must be explicitly typed. The
IMPLICIT statement has no e�ect on �eld names within a structure
declaration block.

A �eld that is an array must be speci�ed as an array name with
dimension declarator within the explicit type speci�cation statement.
The DIMENSION statement is not permitted within a structure. For
example:

REAL*4 field2(10)

declares field2 to be an array of 10 4-byte real values.

Dynamic, assumed size, or adjustable arrays can not be declared
within a structure declaration. Also, character items with passed
length or variable length can not be declared within a structure.

Unnamed Fields Unnamed �elds, substructures, and records can be declared in a
structure by using the special name %FILL as a dummy �eld name.
These unnamed �elds can be used for alignment. They cannot be
referenced or initialized. For example:

STRUCTURE /align/

CHARACTER*3 shortname

BYTE %FILL

REAL*4 vector(10)

END STRUCTURE

Data Initialization Fields within a structure can be given initial values, using the
initialization rules for the type speci�cation statements. Uninitialized
�elds are unde�ned until they are assigned values.

Unnamed �elds cannot be initialized.

When a record is declared, its �elds are initialized to the values
speci�ed in the structure declaration.

If more than one map block initializes the same area in a union
block, the last initialization takes precedence.

FORTRAN Statements 3-149

UNION Statement
(Nonexecutable)

The UNION statement begins the declaration of a union block in a
structure block. A union block de�nes a shared data section of a
structure. The END UNION statement terminates a union block.

A union block has the following elements:

UNION statement Begins the union declaration.

Declaration body Two or more map declaration
blocks.

END UNION statement Ends the union declaration.

UNION Statement

END UNION Statement

A union declaration de�nes the form of a data location within a
structure that is shared by di�erent groups of data items during
program execution. The data groups are de�ned with map
declaration blocks in the union declaration. The map blocks share
the same physical storage space. When one �eld of a map block is
accessed then all the �elds in that map are de�ned and the �elds of
the other maps in that union are unde�ned.

The overall size of a union declaration is the size of the largest map
block within the union.

3-150 FORTRAN Statements

MAP Statement
(Nonexecutable)

The MAP statement begins the declaration of a map block in a union
declaration block. The END MAP statement terminates a map
block.

A MAP block has the following elements:

MAP statement Begins the MAP declaration.

Declaration body Declares the �elds of the map
block, including their names,
data types, order, and alignment.
Fields are in the order of their
declaration.

END MAP statement Ends the MAP declaration.

MAP Statement

END MAP Statement

A map declaration block speci�es the form of the �elds within a
union declaration block. The rules for a map declaration body are
the same as the rules for a structure declaration body.

Each map block within a union begins at the same data location in
memory. Consequently, the initialization of �elds within one map
may a�ect and be a�ected by initializations within another map.
The same data area may be initialized more than once. Only the
last initialization of that area is valid. For example, in the following
union block:

UNION

MAP

CHARACTER*8 a /"01234567"/
END MAP

MAP

CHARACTER*4 b

CHARACTER*4 c /"ABCD"/

END MAP

END UNION

�eld b is initialized to "0123", c to"ABCD", and a to "0123ABCD".

FORTRAN Statements 3-151

Examples Notes

STRUCTURE /num1/

INTEGER*4 i, j

END STRUCTURE

The structure num1 de�nes two 4-byte
integer �elds, i and j, which occupy
consecutive words in memory.

STRUCTURE /num2/

UNION

MAP

INTEGER*4 i

REAL*4 a

END MAP

MAP

INTEGER*4 j

LOGICAL*1 x(10)

END MAP

END UNION

END STRUCTURE

RECORD /num2/ overlay

The structure num2 de�nes a union that
contains two map blocks. The �rst map
consists of a 4-byte integer, i, followed by a
4-byte real, a. The second map consists of a
4-byte integer, j, followed by an array, x, of
10 1-byte logical elements. Integers i and j

occupy the same storage location. Real a
occupies the same storage as the �rst four
elements of array x. The entire union is 14
bytes long.

The record overlay has the structure of
num2. It has the following fully quali�ed
variable names:

overlay - a record or aggregate
overlay.i - a 4-byte integer
overlay.a - a 4-byte real
overlay.j - a 4-byte integer
overlay.x - an array of 10 1-byte logicals

STRUCTURE /outer/

STRUCTURE /inner/ self

INTEGER*4 ssn

INTEGER*2 age

CHARACTER*18 name

END STRUCTURE

RECORD /inner/ spouse

RECORD /num1/ data

END STRUCTURE

RECORD /outer/ personal

RECORD /inner/ someone

The structure outer contains a substructure
declaration having both a struc name,
inner, and a �eld name, self. The
struc name allows the substructure to be
used as a structure form in the RECORD
statement that de�nes the �eld spouse and
in the separate RECORD statement that
de�nes someone. The second RECORD
statement in the structure refers to the
structure num1 de�ned above.

The record personal has the following fully
quali�ed variable names:

personal - a record or aggregate
personal.self - a record or aggregate
personal.self.ssn - a 4-byte integer
personal.self.age - a 2-byte integer
personal.self.name - an 18-byte
character
personal.spouse - a record or aggregate
personal.spouse.ssn - a 4-byte integer
personal.spouse.age - a 2-byte integer
personal.spouse.name - an 18-byte
character
personal.data - a record or aggregate
personal.data.i - a 4-byte integer
personal.data.j - a 4-byte integer

The record someone has the following fully
quali�ed variable names:

someone - a record or aggregate
someone.ssn - a 4-byte integer
someone.age - a 2-byte integer
someone.name - an 18-byte character

3-152 FORTRAN Statements

SUBROUTINE
Statement
(Nonexecutable)

The SUBROUTINE statement identi�es a program unit as a
subroutine subprogram.

Item Description/Default Restrictions

* Indicates an alternate
return.

None.

Semantics

The formal arguments in a SUBROUTINE statement can be
variables, array names, record names, or subprogram names. The
formal arguments must be of the same type and structure as the
actual arguments passed to the subroutine. In particular, the �elds in
actual and formal record arguments must agree in type, order, and
dimension.

Asterisks in the SUBROUTINE statement can specify one or more
alternate returns. Alternate returns are described in \RETURN
Statement (Executable)".

Examples Notes

SUBROUTINE add Begins a subroutine named add that has no
formal arguments.

SUBROUTINE sub(z,i,d,*,*,*)Begins a subroutine named sub with three
arguments and three alternate return points.

FORTRAN Statements 3-153

SYSTEM INTRINSIC
Statement
(Nonexecutable)

The MPE/iX �le SYSINTR.PUB.SYS contains information about
the attributes of subprograms. These subprograms are usually
user-callable system subprograms, such as FOPEN. All intrinsics
mentioned in the MPE/iX manuals must be accessed through
this facility. The information about a particular subprogram
includes such items as the number and type of parameters, whether
parameters are called by ANYVAR, READONLY, reference,
UNCHECKABLE ANYVAR, or value, and whether the subprogram
parameters have the options DEFAULT PARMS, EXTENSIBLE, or
both. See the subsequent sections for an explanation of the preceding
terms. Note that these terms relate to the way parameters are
declared in HP Pascal/iX subprograms found in SYSINTR.PUB.SYS.
FORTRAN reads the SYSINTR �le for specially designated
subprograms and generates the indicated code sequences.

You can designate that the SYSINTR �le is to be searched for a
particular subprogram by using the SYSTEM INTRINSIC statement.

Syntax

Item Description/Default Restrictions

IntrinsicName The name of the subprogram in the
SYSINTR �le.

If the name cannot be found in
the SYSINTR �le, an error
message is issued.

This facility provides these advantages over the usual way of
accessing external subprograms:

Convenient access to routines written in any language is provided.
For each such subprogram, the list of actual parameters does not
have to be complete.

Missing parameters (which must be speci�ed as
DEFAULT PARMS in the intrinsic �le) are indicated by commas
or a right parenthesis. The occurrence of a right parenthesis before
the formal parameter list is exhausted implies the rest of the
parameters are missing (which means they are DEFAULT PARMS
or EXTENSIBLE, as speci�ed in the intrinsic �le).

The VALUE, REFERENCE, ANYVAR,
UNCHECKABLE ANYVAR, or READONLY attribute
of a formal parameter is recognized and the appropriate code
for the actual parameter is automatically generated for the call.
(An ALIAS compiler directive might otherwise be necessary

3-154 FORTRAN Statements

to indicate how parameters should be passed or the routine
might not even be callable because of the parameter type.)
Parameter checking is performed at the highest level (level 3
of CHECK ACTUAL PARM) at compile time. * Automatic
typing of SYSINTR �le functions is provided. Thus, the intrinsic
mechanism automatically types the function return type for you.
For example, the statement

SYSTEM INTRINSIC FOPEN, BINARY

results in FOPEN being typed INTEGER*2 and BINARY being
typed LOGICAL*2.

You can also specify that a Pascal intrinsic �le other than
SYSINTR.PUB.SYS be searched for the subprogram name. This can
be done by using the SYSINTR compiler directive. See \SYSINTR
Directive" in Chapter 7. For information on building Pascal intrinsic
�les, refer to the HP Pascal Reference Manual .

For more information about system intrinsics, see the SYSINTR
Compiler Directive.

The SYSTEM INTRINSIC statement must appear before any
executable statement in the program.

The SYSTEM INTRINSIC compiler directive functions exactly
the same as the SYSTEM INTRINSIC statement, except that the
directive has a global e�ect.

A Value Parameter This is a parameter that is passed by value; that is, a copy of the
value of the actual parameter is passed to a routine and assigned
to the formal parameter of that routine. If the routine changes the
value of the formal parameter, it does not change the value of the
actual parameter. An actual value parameter can be a constant, an
expression, a variable, or a function result.

The need for passing a FORTRAN 77/iX parameter by value
arises when you have a system intrinsic that requires a certain
parameter be passed by value. For example, the following program
calls the system intrinsic HPCICOMMAND, which requires its
fourth parameter (0) to be passed by value, and executes the
MPE/iX system DATE command. For more information on
HPCICOMMAND, read the MPE/iX Intrinsic Reference Manual .

Example

$STANDARD_LEVEL SYSTEM ! Display no warnings

PROGRAM excommand

SYSTEM INTRINSIC HPCICOMMAND

CHARACTER*10 command

INTEGER*2 cmderror, parmnum

FORTRAN Statements 3-155

command = "DATE"//char(13)

CALL HPCICOMMAND(command, cmderror, parmnum, 0)

END

The program excommand uses the system intrinsic HPCICOMMAND
to execute the MPE/iX DATE command. The results from executing
the program look similar to this:

THU, JAN 16, 1992, 8:41 AM

Note that the above example will be referenced in the sections
\A Reference Parameter" and \The ANYVAR Parameter and
UNCHECKABLE ANYVAR Option."

A Reference Parameter This is a parameter that is passed by reference; that is, the address
of the actual parameter is passed to the routine and associated with
the formal parameter. If the routine changes the value of the formal
parameter, it changes the value of the actual parameter. An actual
reference parameter must be a variable name.

In FORTRAN 77/iX, all variables are passed by reference except
when interfacing with other programming languages and accessing
FORTRAN 77/iX system intrinsics.

An example of passing parameters by reference can the seen in the
section \A Value Parameter." In this example, the parameters
cmderror and parmnum are passed by reference back to the calling
program.

The ANYVAR Parameter
and UNCHECK-
ABLE ANYVAR

Option

When a parameter in the formal parameter list of an HP Pascal/iX
procedure declaration is denoted ANYVAR, it means that a variable
of any type can be passed to it as the actual parameter. The address
of the actual parameter will be passed and the code in the procedure
will access it as the type speci�ed for the formal parameter in
the procedure declaration. In this way, intrinsic procedures can
be created with the HP Pascal/iX language that accept any type
of variable as their actual parameters (assuming data alignment
requirements are met).

For ANYVAR parameters, the length of the actual parameter must
be passed as a \hidden parameter" in the parameter list. Hidden
parameters are parameters that do not appear in formal or actual
parameter lists, but are nevertheless passed to routines (they are
always integers).

UNCHECKABLE ANYVAR is an HP Pascal/iX procedure option
that speci�es that ANYVAR hidden parameters will not be created
for a routine. This allows its parameter list to be compatible with
the parameter list of a rountine written in a language other than HP
Pascal/iX.

An example of an ANYVAR parameter being declared as uncheckable
can be found in the section \A Value Parameter." In this example,
the ANYVAR parameter command has been declared uncheckable by

3-156 FORTRAN Statements

the HP Pascal/iX UNCHECKABLE ANYVAR option and no hidden
parameters are passed for the ANYVAR parameter.

An EXTENSIBLE
Parameter

EXTENSIBLE is an HP Pascal/iX procedure option that identi�es a
procedure that has an extensible parameter list .

An extensible parameter list has a �xed number of nonextension
parameters and a variable number of extension parameters. The
integer n after the keyword EXTENSIBLE speci�es that the �rst n
parameters in the formal parameter list are nonextension parameters
(n can be zero). Any other parameters are extension parameters .

A nonextension parameter is required. Every call to the routine must
provide an actual parameter for it.

An extension parameter is optional. A call to the routine can omit
its actual parameter from the actual parameter list. However, if
the actual parameter list contains an actual parameter for the xth
extension parameter, it must contain actual parameters for those
before it.

The number of extension parameters in an extensible parameter list
is exible: you can add new ones later, and you need not recompile
programs that call the routine.

Example

The program in this section uses the intrinsic HPFOPEN to open a
�le named testfile for reading and displays the �le name, number
and status. For more information on HPFOPEN, read the MPE/iX
Intrinsic Reference Manual .

The MPE/iX intrinsic HPFOPEN is extensible and provides default
parameters. The extensible parameters in HPFOPEN are: status,
itemnum1, item1, itemnum2, and item2. These parameters can be
omitted. HPFOPEN's nonextensible parameter is filenum and it
cannot be omitted from the actual parameter list unless it has a
default value assigned to it (see the section \A DEFAULT PARMS
Parameter"). Note that the parameters itemnum1 and item1 and
itemnum2 and item2 must appear in pairs in the actual parameter
list of the HPFOPEN intrinsic.

Compiling and executing the following program:

$STANDARD_LEVEL SYSTEM ! Display no warnings

PROGRAM openfile

SYSTEM INTRINSIC HPFOPEN

INTEGER*4 filenum, status, itemnum1, itemnum2, item2

CHARACTER*20 item1

PARAMETER(itemnum1 = 2, itemnum2 = 11)

item1 = 'testfile' ! The file name is "testfile"

FORTRAN Statements 3-157

item2 = 0 ! The file "testfile" has READ access

CALL HPFOPEN(filenum, status, itemnum1, item1, itemnum2, item2)

PRINT '(" File Name : " A20)',item1

PRINT '(" File Number: " I6)',filenum

PRINT '(" File Status: " I6)',status

PRINT *,CHAR(13)

END

produces these results:

File Name : testfile

File Number: 9

File Status: 0

Note that the example in this section is referenced in the section \A
DEFAULT PARMS Parameter."

A DEFAULT PARMS
Parameter

DEFAULT PARMS is an HP Pascal/iX procedure option that
speci�es default values to be assigned to formal parameters when
actual parameters are not passed to them. For example, the
HPFOPEN intrinsic used in the program in the section \An
EXTENSIBLE Parameter" could have the status variable omitted
from the parameter list and it would still work. If you replaced the
program line:

CALL HPFOPEN(filenum, status, itemnum1, item1, itemnum2, item2)

with this program line:

CALL HPFOPEN(filenum,, itemnum1, item1, itemnum2, item2)

you would get the following results:

File Name : testfile

File Number: 9

File Status: 0

If a nonextension parameter has a default value, its actual parameter
can be left out of the actual parameter list, and its default value is
assigned to the formal parameter.

A default value must be a constant expression that is assignment
compatible with its parameter. The value nil is the only legal default
for reference, ANYVAR, function or procedure parameters.

A READONLY
Parameter

READONLY is an HP Pascal/iX parameter that protects the actual
parameter from modi�cation within an MPE/iX intrinsic procedure
that is called from a FORTRAN 77/iX program.

3-158 FORTRAN Statements

TYPE Statement
(Executable)

The TYPE statement transfers data from memory to the standard
output unit. (FORTRAN unit 6 is preconnected to the standard
output unit.)

Semantics

The TYPE statement, which is an extension to the ANSI 77
standard, is equivalent to the PRINT statement. See \PRINT
Statement (Executable)" for further information.

FORTRAN Statements 3-159

UNION Statement
(Nonexecutable)

The UNION statement begins a UNION statement block in a
STRUCTURE statement block. For more information, refer to
\STRUCTURE Statement (Nonexecutable)".

3-160 FORTRAN Statements

UNLOCK Statement
(Executable)

The UNLOCK statement unlocks a record that was locked by a
READ on an ISAM �le. If an ISAM �le is shared by more than one
process, you should unlock the records after each READ if they are
not being updated. If the �le is not shared, UNLOCK has no e�ect.

Item Description/Default Restrictions

unit Integer expression
specifying unit number of
a connected �le.

Must be zero or positive.

variable name

array element

scalar record �eld name

Error code return. Must be an integer type.

label Statement label. Must be an executable
statement in the same
program unit.

Semantics

If the pre�x UNIT= is omitted, unit must be the �rst item in the list.

If the ERR speci�er is present and an error occurs during execution
of the UNLOCK statement, control transfers to the speci�ed
statement rather than aborting the program.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for the IOSTAT error codes.

If the �le is positioned at its beginning, a UNLOCK statement has no
e�ect upon the �le.

FORTRAN Statements 3-161

Examples Notes

OPEN(10,file='EMP_FILE',

+ACCESS='KEYED',STATUS='OLD',SHARED)

111 READ (10,ERR=111,END=222) EMPLOY_REC

UNLOCK (10,ERR=112)

PRINT 11,EMPLOYEE_REC.SSN,

+ EMPLOYEE_REC.FIRST_NAME

+ EMPLOYEE_REC.LAST_NAME,

+ EMPLOYEE_REC.SALARY,

+ EMPLOYEE_REC.REVIEW_DATE

GOTO 111

112 PRINT *,'Can not unlock: ssn', EMPLOYEE_REC.SSN

GOTO 111

222 PRINT *,'Employee salary review report printed'

STOP

This example generates a
report. The READ
statement locks the record
when it reads it. The
UNLOCK statement unlocks
the record to allow other
users to access it. If the
record is locked by another
user, the ERR speci�er
causes the READ statement
to be reexecuted until the
record is available.

3-162 FORTRAN Statements

VIRTUAL Statement
(Nonexecutable)

The VIRTUAL statement de�nes the dimensions and bounds of
arrays.

Item Description/Default Restrictions

array name Symbolic name of the
array.

None.

dimension declarator De�nes the number of
dimensions and the
range of each
dimension.

Same as for the
DIMENSION
statement.

The VIRTUAL statement, which is an extension to the ANSI
77 standard, is equivalent to the DIMENSION statement. See
\DIMENSION Statement (Nonexecutable)" for further information.

FORTRAN Statements 3-163

VOLATILE
Statement
(Nonexecutable)

The VOLATILE statement speci�es variables, arrays, and common
blocks that will not be selected for global analysis and optimization
by the compiler.

Item Description/Default Restrictions

variable name

array name

record name

common block name

Variable, array, record, or common
block that is not being optimized.

None.

Semantics

The VOLATILE statement is an extension to the ANSI 77 standard.

If an array variable name is speci�ed, all of the elements in that
array become volatile. Likewise, if a common block variable is
speci�ed, the entire common block becomes volatile. A variable that
is overlapping (through EQUIVALENCE) on a volatile variable also
becomes volatile.

Even though variables, arrays, records, and common block names
listed in a VOLATILE statement are allocated storage, the
VOLATILE statement cannot be used for declaring the size of an
array or common block. When referenced, volatile variables are
loaded from memory. When a volatile variable is changed, the
variable is stored into memory (that is, the variable is not held in the
registers).

Variables can be placed in shared memory with the
SHARED COMMON compiler directive so that they can be accessed
by more than one program. Any variable placed in shared common
is considered volatile. If you declare a common block as shared
common, the compiler implicitly attributes volatile to that block.
That is, you do not have to separately declare a common block as
volatile and then compile and install that common block as shared.

The VOLATILE statement can also be used when variables, arrays,
or common blocks are shared between the program and the exception
handler. If you do not use the VOLATILE statement, the exception

3-164 FORTRAN Statements

handler might use the incorrect value for a shared quantity because
the value was kept in the registers and not updated in memory.

Example Notes

INTEGER a, b, c, d

INTEGER p, q, r

COMMON /block1/ a, b, c

VOLATILE /block1/, q, r

The common block block1 and
variables q and r are volatile and
will not be selected for global
analysis or optimization. An
equivalent VOLATILE statement is

VOLATILE q, r, /block1/

INTEGER a, b

EQUIVALENCE (a,b)

VOLATILE a

The variable b also becomes volatile.

FORTRAN Statements 3-165

WRITE Statement
(Executable)

The WRITE statement transfers data from memory to a �le or
device.

3-166 FORTRAN Statements

Item Description/Default Restrictions

unit Integer expression
specifying the unit
number of a �le.

Must be zero or
positive.

address Arithmetic expression
of type integer.

See \Semantics".

char variable Internal �le written. Character variable or
scalar record �eld.

char array element Internal �le written. Character array
element or scalar record
�eld.

char substring Internal �le written. Character substring.

integer expression Integer expression
specifying the unit
number of an internal
�le.

Must be zero or
positive.

* Asterisk indicates that
the standard output
device (unit 6, usually a
terminal) is to be used.

None.

fmt Format designator. fmt must be as
speci�ed in the PRINT
statement.

namelist group name Symbolic name
specifying a list of
variables or arrays
previously declared in a
NAMELIST statement.

Cannot appear in a
statement containing a
format speci�er.

ios Integer variable, array
element, or scalar
record �eld name for
error return.

Must be an integer
type.

label Statement label of an
executable statement.

Must be the label of a
statement in the same
program unit.

rec Speci�es the record
number in a direct
access �le.

If fmt is an asterisk, a
record speci�er must
not be present.

zbf Variable, array name,
or array element name.

Extension to ANSI 77
standard; cannot be a
character type.

zln Integer expression. None.

Semantics

FORTRAN Statements 3-167

A WRITE statement must contain a unit number and at most one of
each of the other options.

If the pre�x UNIT= is omitted, unit must be the �rst item in the list.
This is the unit number for the output device or �le.

If the pre�x FMT= is omitted, fmt must be the second item in the
list and unit (without a pre�x) must be the �rst item. If fmt is not
present and a namelist group name is not speci�ed, the write is
unformatted (binary).

record name and aggregate variables can only be used in unformatted
writes.

If the IOSTAT speci�er is present and an error occurs, the error code
is returned in the IOSTAT variable and the program is not aborted.
Refer to Appendix A for the IOSTAT error codes.

You must specify a record number if a �le is direct access. The
record number can be speci�ed through REC. You can also specify
the record number by following the unit number with the @ speci�er.

If the ERR speci�er is present and an error occurs during execution
of the WRITE statement, control transfers to the speci�ed statement
rather than aborting the program.

The ZBUF and ZLEN speci�ers and the address alternative used as a
parameter of the UNIT speci�er are included for compatibility with
programs originally written in another version of FORTRAN. If one
is used in a program, its syntax is checked but it is otherwise ignored
by the compiler.

As an extension to the ANSI 77 standard, sequential WRITE
operations (without the REC speci�er) are allowed on �les open for
direct access. If the REC speci�er is omitted, a WRITE statement
writes the next record.

Refer to Chapter 4 for more information on the WRITE statement.

3-168 FORTRAN Statements

Examples Notes

WRITE (7,10) a,b,c The values of a, b, and c are written to the
�le connected to unit 7 according to
FORMAT statement 10.

ASSIGN 4 TO num

WRITE (UNIT=3,IOSTAT=j,

+ERR=5,FMT=num) z

The value of z is written to the �le
connected to unit 3, according to FORMAT
statement 4. If an error occurs, control
transfers to statement 5 and the error code
is returned in j.

WRITE (10) (x + y) The value of the expression (x + y) is
written to the �le connected to unit 10.
Because fmt is omitted, the data is
unformatted.

WRITE (10,FMT=*) b The value of b is written to the �le
connected to unit 10 according to
list-directed formatting.

WRITE (2,'(I3)',REC=10) iThe value of i is written to the 10th record
of the direct �le connected to unit 2
according to the format speci�cation in the
WRITE statement itself.

WRITE (*) One record is skipped on the standard
output device.

FORTRAN Statements 3-169

4

Input/Output

Input/output (I/O) statements allow you to enter data into a
program and to transfer data between a program and a disk �le,
terminal, or other device. There are four types of input/output:

Formatted input/output.

Unformatted input/output.

List-directed input/output.

Namelist-directed input/output.

For each type of input/output, there are one or more input
statements and corresponding output statements.

In the examples in this chapter, � represents a blank.

Formatted
Input/Output

Formatted input/output allows you to control the use of each
character of a data record. This control is speci�ed in a FORMAT
statement or in the input/output statement itself.

Formatted Input Formatted input is speci�ed by the following input statements. Only
the brief forms of the relevant syntax elements are shown here. For
the complete syntax, refer to \READ Statement (Executable)" in
Chapter 3.

Syntax

READ fmt , list

READ (unit , fmt) list

Item Description/Default Restrictions

fmt Format designator. See \Semantics".

unit Unit number of the �le. None.

list List of variables that
speci�es where the data is to
be transferred.

See \Semantics".

Semantics

Input/Output 4-1

The format designator, fmt, must be one of the following:

The statement label of a FORMAT statement.

A variable name that has been assigned the statement label of a
FORMAT statement.

A character expression.

A character array name that contains the representation of a
format speci�cation.

An asterisk, indicating list-directed formatting.

list can contain implied DO loops.

For information on implied DO loops, refer to the section \DO
Statement (Executable)" in Chapter 3.

The �rst READ statement syntax shown above transfers information
from the standard input device (preconnected to unit 5). The second
READ statement transfers data from a �le or device.

Reading always starts at the beginning of a record. Reading stops
when the list is satis�ed, provided that the format speci�cation and
the record length are in agreement with the list. If the list is omitted,
the �le pointer is positioned at the next record without data transfer.
If the format speci�cation is longer than the list, reading stops
at the �rst repeatable edit descriptor, colon, or right parenthesis
terminating the format after the list is satis�ed. If the list is longer
than the format speci�cation, reading skips to the next record, which
is read using part or all of the format speci�cation again. However,
if a carriage return is entered but no value, the element is set to
zero (0). This process continues until the list is satis�ed. If the
list is longer than the record and the format speci�cation does not
cause a skip to the next record, error 910 (Access past end of record
attempted) occurs. The record is treated as if blanks were added to
the end to satisfy the input list.

After the READ, the �le pointer is positioned at the beginning of the
next record. Each READ statement begins reading values from a
fresh record of the �le; any values left unread in records accessed by
previous READ statements are ignored. For example, if the record
contains six data elements, a READ statement such as

READ (4,100) i,j

reads only the �rst two elements. The remaining four elements are
not read because any subsequent READ statement reads values
from the next record, unless the �le pointer is repositioned (with
BACKSPACE or REWIND, for example) prior to the next READ.

You can use a comma (,) to terminate the input of noncharacter data
or to assign the value of zero to selected values. The next �eld starts
immediately after the comma.

4-2 Input/Output

You cannot use the comma to terminate the input �eld or to assign
values when using the A, R, M, or N format descriptors, because the
comma has a meaning for these descriptors.

For example, if the program

PROGRAM comma

INTEGER a, b, c, d, e

a = 1

b = 2

c = 3

d = 4

e = 5

READ(5,'(I2, 3I2, I2)') a, b, c, d, e

PRINT *, a, b, c, d, e

END

has this input (remember, � represents a space):

�9�8,

the following is printed:

�9�8�0�0�0

The program terminates reading values after the comma (that is,
after reading the value of b).

Similarly, if the input is

�7�4,�3�2

the following is printed:

7 4 0 3 2

The value zero is assigned to c.

Finally, if the input is

12,14,16

the following is printed:

�12�0�14�0�16

An array name in a list represents all the elements in the array.
Values are transferred to the array elements in accordance with the
standard array storage order. Refer to \Variables" in Chapter 2 for
details.

Input/Output 4-3

Formatted Output Formatted output is speci�ed by the following output statements.
Only the brief forms of the relevant syntax elements are shown here.
For the complete syntax, refer to \PRINT Statement (Executable)"
in Chapter 3 and \WRITE Statement (Executable)" in Chapter 3.

Syntax

PRINT fmt , list

WRITE (unit , fmt)
�
,
�
list

Item Description/Default Restrictions

fmt Format designator. See \Semantics".

unit Unit number of the �le. None.

list List of variables or
expressions that speci�es the
data to be transferred.

See \Semantics".

4-4 Input/Output

Semantics

The format designator, fmt, must be one of the following:

The statement label of a FORMAT statement.

A variable name that has been assigned the statement label of a
FORMAT statement by an ASSIGN statement.

A character expression.

A character array name that contains the representation of a
format speci�cation.

An asterisk, indicating list-directed formatting.

If list is omitted, a blank line is written (unless a literal appears in
the format before a repeatable format descriptor). list can contain
implied DO loops. For syntax and detailed information on implied
DO loops, see \DO Statement (Executable)" in Chapter 3.

The PRINT statement transfers information to the standard output
device (preconnected to unit 6). The WRITE statement transfers
information to disk �les or to output devices.

The optional comma (,) in the WRITE syntax is an extension to the
ANSI 77 standard.

Each WRITE statement begins writing values into a fresh record
of the destination �le; any space left unused in records accessed
by previous WRITE statements is ignored. After the transfer is
completed, the �le record pointer is advanced.

Writing always starts at the beginning of a record. Writing stops
when the list is satis�ed, provided that the format speci�cation and
the record length agree with the list. If the format speci�cation
is longer than the list, writing stops at the �rst repeatable edit
descriptor, colon, or right parenthesis terminating the format after
the list is satis�ed. If the list is longer than the format speci�cation,
writing skips to the next record, which is written using part or all of
the format speci�cation again.

This process continues until the list is satis�ed. If the list is longer
than the output record and the format speci�cation does not cause a
skip to the next record, the record is truncated at the record length
of the �le. After the write process, the �le pointer is positioned at
the beginning of the next record.

Array names in the list represent all the elements of the array. Array
element values are transferred according to the standard array
storage order. See \Variables" in Chapter 2.

Note Record names and aggregates are not permitted in formatted I/O.

Input/Output 4-5

Carriage Control The �rst character of each output record is always considered to be a
carriage control character for devices that recognize carriage control.
The standard carriage control characters are listed in Table 4-1.

Table 4-1. Carriage Control Characters

Character Vertical Spacing Before Printing

� (blank) One line (single spacing)

0 Two lines (double spacing)

1 To �rst line of next page (page eject)

+ No advance (overprinting)

Any other character Device dependent

4-6 Input/Output

Format
Specifications

A format speci�cation is a list of format descriptors and edit
descriptors, enclosed in parentheses. It is equivalent to a FORMAT
statement without the label and FORMAT keyword.

Format Speci�cation Syntax

(descriptor list)

Descriptor List Syntax

8<
:
�
repeat spec

�
format descriptor�

repeat spec
�
(descriptor list)

edit descriptor

9=
;
� �

,
�
...

�

Item Description/Default Restrictions

edit descriptor An edit descriptor, as
described in Table 4-3.

None.

format descriptorA format descriptor, as
described in Table 4-2.

None.

repeat spec must be an unsigned positive integer constant or a
variable format descriptor whose value is positive.

The format descriptors describe how the data appears and the edit
descriptors specify editing information. For example, in the following
format speci�cation:

(I3,3X,3F12.3)

the format descriptor I3 speci�es an integer number with a �eld
width of three (the integer takes up a total of three character
positions), the edit descriptor 3X speci�es that three character
positions are to be skipped, and the format descriptor 3F12.3
speci�es three real numbers, each with a �eld width of 12 and
three signi�cant digits to the right of the decimal point. A PRINT
statement using this format speci�cation could be of the form:

PRINT '(I3,3X,3F12.3)',i,a,b,c

The relationships are shown in Figure 4-1.

Format Speci�ers I3 3X F12.3 F12.3 F12.3

Output Variables i a b c

Output Record 345 ��� 65376453.324 ���14321.265 �4765321.321

Field Widths 3 3 12 12 12

Input/Output 4-7

Figure 4-1. Output Formatting

Format speci�cations can be supplied in FORMAT statements or
written as character expressions in input/output statements.

Format Specifications in
Format Statements

A format speci�cation can be placed in a FORMAT statement that is
referenced by a corresponding READ, WRITE, or PRINT statement.
For the complete syntax de�nition, refer to \FORMAT Statement
(Nonexecutable)" in Chapter 3.

FORMAT Statement Syntax

label FORMAT format speci�cation

Item Description/Default Restrictions

label Required statement label. None.

format speci�cationFormat speci�cation, de�ned
above.

None.

Examples Notes

READ (5,10) a,i,d,e

10 FORMAT(A2,I3,D8.2,F12.2)

The format descriptors A2, I3, D8.2,
and F12.2 in the FORMAT
statement correspond with the list
variables a, i, d, and e in the READ
statement. List element a
corresponds with the format
descriptor A2, i with I3, d with
D8.2, and e with F12.2.

A FORMAT statement can be used by several input/output
statements. Make sure that each variable in the input/output list
corresponds with its respective format descriptor in the format
speci�cation.

4-8 Input/Output

Format Specifications in
Input/Output
Statements

The format speci�cation can be contained in the input/output
statement as a character expression.

Examples Notes

READ (4,'(A3,3X,F10.2)') a,z The variables a and z are read
according to the format speci�cation
(A3,3X,F10.2).

CHARACTER*6 a

DATA a /'(3I3) '/

PRINT a,i,j,k

WRITE (6,'(F10.2)') d

The three integers i, j, and k are
printed according to the format
speci�cation (3I3). The variable d
is written as a �xed-point number
according to the format speci�cation
(F10.2).

Care must be taken when the format speci�cation in an input/output
statement contains an apostrophe or a quotation mark. Whenever
an apostrophe (') appears within an apostrophe edit descriptor, it
must be represented by two consecutive apostrophes. Similarly, if a
quotation mark (") appears in a quotation mark edit descriptor, it
must be represented by two consecutive quotation marks.

Each of these, in turn, must be represented by two apostrophes or
quotation marks if the format is a character literal contained in an
input/output statement. Notice, therefore, that four consecutive
apostrophes are required in the second example below.

Examples Notes

WRITE (6,'(3X,''THIS IS THE END'')')Writes the following record:

���THIS IS THE END

WRITE (6,'(''Isn''''t it true!'')')Writes the following record:

Isn't it true!

WRITE (6,'("Isn''t it true!")') Writes the same record as the
previous example.

Input/Output 4-9

Format Descriptors The descriptors in a format speci�cation must be separated by a
comma except before and after a slash (/) edit descriptor, a colon
(:) edit descriptor, or between a scaling (P) edit descriptor and an
immediately following D, E, F, or G edit descriptor. For example, if
a slash descriptor is used to indicate a new line of output or a new
record on input, the comma that would separate the descriptors is
not necessary. The speci�cation:

3I,F4.0,/I5,F12.6

is equivalent to:

3I,F4.0/I5,F12.6

Format descriptors can be preceded by a repeat speci�cation (for
example, the 3 in 3F12.4).

Format and edit descriptors can include another set of format or
edit descriptors, or both, enclosed in parentheses; this is called
nesting. The nested format speci�cation can be preceded by a repeat
speci�cation.

For example, the information shown on the input record in Figure 4-2
could be accessed with a FORMAT statement like the following:

10 FORMAT (I3,F7.4,3(F7.2,I3),F12.4)

A READ statement using the FORMAT statement could be:

READ 10,i,a,b,j,d,k,e,m,f

Format Speci�ers I3 F7.4 F7.2 I3 F7.2 I3 F7.2 I3 F12.4

Input Variables i a b j d k e m f

Input Record �26 26.4336 �342.26 �24 2373.86 439 �649.79 ��4 ���4395.4972

Field Widths 3 7 7 3 7 3 7 3 12

Figure 4-2. Input Formatting

The READ statement would read values for i and a, then repeat the
nested format speci�cation (F7.2,I3) three times to read values for
b and j, for d and k, and for e and m, and, �nally, read a value for f.

The format descriptors are summarized in Table 4-2; the edit
descriptors, in Table 4-3. A detailed explanation of the descriptors
follows the tables.

4-10 Input/Output

Table 4-2. Format Descriptors

Data Type Format
Descriptor

Additional Explanation

INTEGER*2, INTEGER*4 I[w [.m]] None

REAL*4, REAL*8, REAL*16
COMPLEX*8, COMPLEX*16

F[w.d] Fixed-point format
descriptor

REAL*4, REAL*8, REAL*16
COMPLEX*8, COMPLEX*16

D[w.d]
E[w.d [Ee]]

Floating-point format
descriptor

REAL*4, REAL*8, REAL*16
COMPLEX*8, COMPLEX*16

G[w.d [Ee]] Fixed- or oating-point
format descriptor

On input: INTEGER*2,
INTEGER*4
On output: any type

@[w [.m]]
K[w [.m]]
O[w [.m]]

Octal

On input: INTEGER*2,
INTEGER*4
On output: any type

Z[w [.m]] Hexadecimal

LOGICAL*1, LOGICAL*2,
LOGICAL*4

L[w] None

REAL*4, REAL*8, REAL*16 M[w.d] Monetary format;
�xed-point

REAL*4, REAL*8, REAL*16 N[w.d] Numeration format;
�xed-point

Character, Hollerith, or any
other type (treated as
character)

A[w] Character or Hollerith data
is left-justi�ed in memory
and external format

Character, Hollerith, or any
other type (treated as
character)

R[w] Character or Hollerith data
is right-justi�ed in memory
and external format

Input/Output 4-11

Table 4-3. Edit Descriptors

Edit Descriptor Function

BN Ignore blanks.

BZ Treat blanks as zeros.

nHstring Hollerith literal editing

"string" Literal editing.

'string' Literal editing.

NL Restore newline.

NN No newline.

$ No newline; same as NN.

kP Scale factor.

Q Number of characters remaining in current input record.

SP Output optional plus signs.

SS Inhibit optional plus sign output.

S Processor determines sign output; same as SS.

Tc Skip to column c.

TLt Skip t positions to the left.

TRt Skip t positions to the right.

xX Skip x positions to the right.

/ Begin new record.

: Terminate format if I/O list is empty.

4-12 Input/Output

Numeric Format
Descriptors

The numeric format descriptors specify the input/output �elds of
integer, real, and complex data types. The following rules apply to
all numeric format descriptors:

The �eld width, w , speci�es the total number of characters that
a data �eld occupies, including any leading plus or minus sign,
decimal point, or exponent.

On input, leading blanks are not signi�cant. Trailing and
embedded blanks are treated as null characters unless the BZ
edit descriptor is encountered or the unit was connected with
BLANK='ZERO' speci�ed. A �eld of all blanks is considered to be a
0.

On output, the data item is right-justi�ed in the �eld. If the item
length is less than the �eld width, leading blanks are inserted in
the �eld. If the item is longer than the �eld width for certain
descriptors, the entire �eld is �lled with dollar signs, as speci�ed in
the output examples of the particular descriptors.

A complex list item is treated as two real items, and a double
complex list item as two double precision items.

If a numeric list item is used with a numeric descriptor of a
di�erent type, the value is converted as needed.

Input/Output 4-13

Integer Format
Descriptor (I)

The I[w [.m]] format descriptor de�nes a �eld for an integer number.
The corresponding input/output list item must be a numeric type.
The optional m value speci�es a minimum number of digits to be
output. If m is not shown, a default value of one is assumed. The m
value is ignored on input.

On input, the Iw format descriptor causes the interpretation of the
next w positions of the input record; the number is converted to
match the type of the list element currently using the descriptor. A
plus sign is optional for positive values. A decimal point must not
appear in the �eld.

Input Examples

Descriptor Input Field Value Stored

I4 �1�� 1

I5 ����� 0

I2 -1 �1

I4 -123 �123

I3 �12 12

I2 123 12

On output, the Iw or Iw.m format descriptor causes output of a
numeric variable as a right-justi�ed integer value (rounding takes
place if necessary). The �eld width, w , should be one greater than
the expected number of digits, to allow for a minus sign for negative
values. If m = 0, a 0 value is output as all blanks.

Output Examples

Descriptor Internal Value Output Field

I4 +452.25 �452

I2 +6234 **

I3 �11.92 -12

I5 �52 ���52

I3 �124 ***

I10 123456.5 ����123457

I6.3 3 ���003

I3.0 0 ���

I3.3 �123 ***

4-14 Input/Output

Real Format
Descriptors (D, E, F, G)

The D[w.d], E[w.d [Ee]], F[w.d], and G[w.d [Ee]] format descriptors
de�ne �elds for real or complex numbers. (Note that two descriptors
must be speci�ed for a complex value.) The input/output list item
corresponding to a D, E, F, or G descriptor must be a numeric type.

On input, all of these format descriptors work identically.

The input �eld for these descriptors consists of an optional plus or
minus sign followed by a string of digits that may contain a decimal
point. If the decimal point is omitted in the input string, the number
of digits equal to d from the right of the string are interpreted to be
to the right of the decimal point. If a decimal point appears in the
input string and conicts with the format descriptor, the decimal
point in the input string takes precedence. This basic form can be
followed by an exponent in one of the following forms:

A signed integer constant.
An E followed by an integer constant.
A D followed by an integer constant.

All three exponent forms are processed the same way. The following
are examples of valid input �elds:

Input Examples

Descriptor Input Field Value Stored

F6.5 4.51E4 45100.0

G4.2 51-3 .00051

E8.3 7.1�E�5 710000.

D9.4 ���45E+35 .0045�1035

BZ,F7.1 54E34� �5.4 x 10340 (overow error)

F12.10 34 3.4�10�9

The BZ edit descriptor equates blanks to zeros. It is described in
\Blank Interpretation Edit Descriptors (BN, BZ)".

The appearance of the output �eld depends on whether the format
descriptor speci�es a �xed- or oating-point format.

Input/Output 4-15

Floating-Point Format
Descriptors (D, E)

The D[w.d] and E[w.d [Ee]] format descriptors de�ne a oating-point
�eld on output for real and complex values. The value is rounded to
d digits. The exponent part consists of e digits. If Ee is omitted, the
exponent occupies two positions. The �eld width, w , should follow
the general rule:

w >= d + 7

or, if Ee is used,

w >= d + e + 5

to provide positions for a leading blank, the sign of the value, the
decimal point, d digits, the letter E, the sign of the exponent, and the
exponent.

Output Examples

Descriptor Internal Value Output Field

D10.3 +12.342 ��.123E+02

E10.3E3 �12.3454 -.123E+002

E12.4 +12.340 ���.1234E+02

D12.4 �.00456532 ��-.4565E�02

D10.10 99.99913 **********

E11.5 +999.997 �.10000E+04

E10.3E4 .624�10�30 .624E-0030

4-16 Input/Output

Fixed-Point Format
Descriptor (F)

The F[w.d] format descriptor de�nes a �xed-point �eld on output
for real and complex values. The value is rounded to d digits to the
right of the decimal point. The �eld width, w , should be four greater
than the expected length of the number, to provide positions for a
leading blank, the sign, the decimal point, and a roll-over digit for
rounding if needed.

Output Examples

Descriptor Internal Value Output Field

F5.2 +10.567 10.57

F3.1 �254.2 ***

F6.3 +5.66791432 �5.668

F8.2 +999.997 �1000.00

F8.2 �999.998 -1000.00

F7.2 �999.997 *******

F4.1 23 23.0

Input/Output 4-17

Fixed- or Floating-Point
Format Descriptor (G)

The G[w.d [Ee]] format descriptor de�nes a �xed- or oating-point
�eld, as needed, on output for real and complex values. The G format
descriptor is interpreted as an Fw.d descriptor for �xed-point form
or as an Ew.d [Ee] descriptor for oating-point form according to the
magnitude of the data. If the magnitude is less than 0.1 or greater
than or equal to 10**d (after rounding to d digits), the Ew.d[Ee]
format descriptor is used; otherwise the Fw.d format descriptor is
used. When Fw.d is used, trailing blanks are included in the �eld
where the exponent would have been. The �eld occupies w positions;
the fractional part consists of d digits, and the exponent part consists
of e digits. If Ee is omitted, the exponent occupies two positions.
The �eld width, w , should follow the general rule for oating-point
descriptors:

w >= d + 7

or, if Ee is used,

w >= d + e + 5

to provide for a leading blank, the sign of the value, d digits, the
decimal point, and, if needed, the letter E, the sign of the exponent,
and the exponent.

Descriptor Internal Value Interpreted As Output Field

G10.3 +1234 E10.3 ��.123E+04

G10.3 �1234 E10.3 �-.123E+04

G12.4 +12345 E12.4 ���.1235E+05

G12.4 +9999 F8.0,4X ���9999.����

G12.4 �999 F8.1,4X ��-999.0����

G7.1 +.09 E7.1 �.9E-01

G5.1 �.09 E5.1 *****

G12.1 +9999 E12.2 �����.1E+05

G8.2 +999 E8.2 �.10E+04

G7.2 �999 E7.2 *******

G8.2 0 E8.2 �00E+00

4-18 Input/Output

Character Format
Descriptors (A, R)

The A[w] and R[w] format descriptors de�ne �elds for character
and noncharacter data. The size of the list variable (byte length)
determines the maximum e�ective value for w . If w is not speci�ed,
the size of the �eld is equal to the size of the input/output variable.

As an extension to the ANSI 77 standard, any data type can be used
with the A and R descriptors.

Using the A and R format descriptors for input and output, w can be
equal to, less than, or greater than the speci�ed byte size of the input
or output variable. If w is equal to the length of the variable, the
character data �eld is the same as the variable. If w is less than or
greater than the length of the variable, there are eight possibilities for
the character data �eld, summarized in Table 4-4.

The R format descriptor is an extension to the ANSI 77 standard.

Table 4-4. Contents of Character Data Fields

Input Descriptor Length of Input Variable Result

A[w] w < len Left-justi�ed in variable, followed by blanks.

w > len Taken from right part of �eld.

R[w] w < len Right-justi�ed in variable, preceded by binary zeros.

w > len Taken from right part of �eld.

Output Descriptor Length of Output Variable Result

A[w] w < len Taken from left part of variable.

w > len Right-justi�ed in variable, preceded by blanks.

R[w] w < len Taken from right part of variable.

w > len Right-justi�ed in variable, preceded by blanks.

In the following examples, � or � represents a blank and t represents
a byte of binary zeros.

Input/Output 4-19

Input Examples

Descriptor Input Field Internal
Length

Value Stored

A3 XYZ 3 XYZ

R3 XYZ 4 tXYZ

A5 ABC�� 10 ABC��������

R9 RIGHTMOST 4 MOST

A5 CHAIR 5 CHAIR

R8 CHAIR��� 8 CHAIR���

A4 ABCD 2 CD

Output Examples

Descriptor Internal Value Internal
Length

Output Field

A6 ABCDEF 6 ABCDEF

R4 ABCDEFGH 4 EFGH

A4 ABCDE 5 ABCD

A8 STATUS 6 STATUS��

A4 NEXT 4 NEXT

R8 STATUS 6 ��STATUS

Numeric Data with Character Format Descriptors

The A and R character format descriptors can be used with integer
and real data types.

If you specify the NOSTANDARD compiler directive, the data is
output in reverse order, starting at the right and progressing to the
left.

Example

PROGRAM demo

! Output numeric data with character format using an external write.

INTEGER*4 i4

i4 = 4Habcd

WRITE(6,100) i4

100 FORMAT(a)

STOP

END

If you specify the NOSTANDARD compiler directive, dcba is output.
If it is not speci�ed, abcd is output.

4-20 Input/Output

For more information refer to \NOSTANDARD Directive" in
Chapter 7.

Input/Output 4-21

Logical Format
Descriptor (L)

The L[w] format descriptor de�nes a �eld for logical data. The
input/output list item corresponding to a L descriptor must be a
logical type.

On input, the �eld width is scanned for optional blanks followed by
an optional decimal point, followed by a T for true or an F for false.
The �rst nonblank character in the input �eld (excluding the optional
decimal point) determines the value to be stored in the declared
logical variable. If the �rst nonblank character is not a T or an F, an
error occurs.

Input Examples

Descriptor Input Field Value Stored

L5 ���T� .TRUE.

L2 F1 .FALSE.

L4 �x�T Error

L5 �RT� Error

L7 TFALSE� .TRUE.

L7 .FALSE. .FALSE.

On output, a T or an F is right-justi�ed in the output �eld depending
on whether the value of the list item is true or false.

Output Examples

Descriptor Internal Value Output Fields

L5 .FALSE. ����F

L4 .TRUE. ���T

L1 .TRUE. T

L2 .FALSE. �F

The logical value true or false is determined by the least signi�cant
bit of the most signi�cant byte of the internal representation.

4-22 Input/Output

Octal Format
Descriptors (@, K, O)

As an extension to the ANSI 77 standard, the @[w [.m]], K[w [.m]],
and O[w [.m]] format descriptors de�ne a �eld for octal data. These
descriptors provide conversion between an external octal number
and its internal representation. On output, list elements may be of
any type, though character variables are output only as the octal
equivalent of their ASCII representation (no length descriptor).
Variables to receive octal input must be integer types.

On input, the presence of too many digits for the integer variable (or
list element) to receive produces unde�ned results. Legal octal digits
are 0 through 7. Plus and minus signs are not permitted on input
nor printed on output. If any nonoctal digit appears, an error occurs.

On output, if w is greater than the number of converted octal digits
(including blanks between words but excluding leading zeros), the
octal digits are right-justi�ed in the output �eld. Blanks are inserted
at the boundaries of machine words in internal representation. If w
is less than the number of converted octal digits, the �eld is �lled
with asterisks. This primarily a�ects the output of negative values.
Because negative values are output without a sign, their high-order
bits are nonzero and cause the �eld to be �lled with asterisks if w is
less than the number of octal digits in the entire output value.

The optional m value speci�es a minimum number of digits to be
output, forcing leading zeros as necessary up to the �rst non-zero
digit. The m is ignored on input.

Input Examples

Descriptor Input Field
(Octal)

Value Stored
(Octal)

@6 123456 123456

2K4 00360005 000036 and 000005

O5 12934 Error

@6 17777B Error

K9 -37000000 Error

Output Examples

Descriptor Internal Value
(Decimal)

Output Field
(Octal)

K6 99 ���143

O2 99 **

@8 �1 (INTEGER*4) ********

@6 32767 �77777

Input/Output 4-23

Hexadecimal Format
Descriptor (Z)

As an extension to the ANSI 77 standard, the Z[w [.m]] format
descriptor de�nes a �eld for hexadecimal data. This descriptor
provides conversion between an external hexadecimal number
and its internal representation. On output, list elements may be
of any type, though character variables are output only as the
hexadecimal equivalent of their ASCII representation (without a
length descriptor). Variables to receive hexadecimal input must be an
integer type.

On input, the presence of too many digits for the integer variable (or
list element) to receive produces unde�ned results. Legal hexadecimal
digits are 0 through 9 and A through F. Plus and minus signs are not
permitted on input, nor printed on output. If any nonhexadecimal
digit appears, an error occurs.

On output, if w is greater than the number of converted hexadecimal
digits (including blanks between words but excluding leading
zeros), the hexadecimal digits are right-justi�ed in the output �eld.
Blanks are inserted at the boundaries of machine words in internal
representation. If w is less than the number of converted hexadecimal
digits, the �eld is �lled with asterisks. This primarily a�ects the
output of negative values. Because negative values are output
without a sign, their high-order bits are nonzero and cause the �eld
to be �lled with asterisks if w is less than the number of hexadecimal
digits in the entire output value.

The optional m value speci�es a minimum number of digits to be
output, forcing leading zeros as necessary up to the �rst non-zero
digit. The m is ignored on input.

Input Examples

Descriptor Input Field
(Hexadecimal)

Value Stored
(Hexadecimal)

Z6 123ABC 123ABC

2Z4 009F0005 00009F and 000005

Z5 12G34 Error

Z6 Z111111 Error

Z9 37000000 Error

4-24 Input/Output

Output Examples

Descriptor Internal Value
(Decimal)

Output Field
(Hexadecimal)

Z6 99 ����63

Z2 299 **

Z7 �1 (INTEGER*4) *******

Z6 32767 ��7FFF

Input/Output 4-25

Variable Format
Descriptor

(<expression>)

Variable format descriptors, having the form <expression>, allow the
values of integer variables, integer constant names, and character
constants to be used in format speci�cations. Integer variable format
descriptors may be used wherever an integer may appear, except they
cannot be used to specify the number of characters in a Hollerith
descriptor. Character-constant variable format descriptors may be
used anywhere in the format speci�cation between the opening and
closing parentheses. The following is an example of a variable format
descriptor:

I<isize>

In this example, the I format descriptor performs an integer data
transfer with a �eld width equal to the value of isize when the
format is used.

Variables may be INTEGER*2 or INTEGER*4. The value of a
variable format descriptor must be of a valid magnitude for its use in
the format; otherwise an error occurs.

Variable format descriptors are only permitted in FORMAT
statements and in constant format speci�cations used in I/O
statements. They are not allowed in run-time formats (that is, those
that are prepared in arrays or character expressions at run-time).

If a variable is used, its value is reevaluated each time it is
encountered in the normal format scan. If the value of a variable
used in a descriptor changes during execution of the I/O statement,
the new value is used the next time the format item containing the
descriptor is processed.

Example

The following program illustrates the use of variable format
descriptors:

PROGRAM varfmt1

INTEGER n

PARAMETER (n = 3)

REAL x(n,n)

C Data for two-dimensional array x(n,n):

DATA x / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 /

C Print out the constants 1 through 3 in variable width fields.

DO 10 j = 1,3

PRINT 100,j

100 FORMAT (1x, I<j>)

10 CONTINUE

C Print out the lower diagonal elements of matrix x.

DO 20 i = 1,n

PRINT 101, (x(i,k), k = 1,I)

101 FORMAT (1x, <I>F5.1)

4-26 Input/Output

20 CONTINUE

END

Input/Output 4-27

Output (� is a blank):

�1 Format speci�cation (1x,I<j>) became (1x,I1)

��2 Format speci�cation (1x,I<j>) became (1x,I2)

���3 Format speci�cation (1x,I<j>) became (1x,I3)

���1.0 Format speci�cation (1x,<I>F5.1) became

(1x,1F5.1)

���2.0��5.0 Format speci�cation (1x,<I>F5.1) became

(1x,2F5.1)

���3.0��6.0��9.0 Format speci�cation (1x,<I>F5.1) became

(1x,3F5.1)

4-28 Input/Output

Monetary Format
Descriptor (M)

The M[w.d] format descriptor de�nes a �eld for a real number
without an exponent (�xed-point) written in monetary form.

On output, the M format descriptor causes output of a numeric value
in ASCII character �xed-point form, right-justi�ed with commas and
a dollar sign. The least signi�cant digit (position d) is rounded. If
needed, a leading minus sign is printed before the dollar sign.

In addition to the number of numeric digits, the �eld width w must
allow for the number of commas expected plus four characters to
hold the sign, the dollar sign, the decimal point, and a rollover digit
(if necessary). If w is greater than the number of positions required
for the output value, the output is right-justi�ed in the �eld with
blank spaces to the left. If w is less than the number of positions
required, the output value of the entire �eld is �lled with asterisks.

On input, the M format descriptor causes interpretation of the next w
positions of the input record as a real number without an exponent.
The �eld width is expected (but not required) to have a dollar sign
and commas embedded in the data as described for M output (the
dollar sign and commas are ignored). If commas are used, the usage
must be consistent; that is, commas must occur every three digits of
the nonfractional part of the input value. The number is converted
to an internal representation value for the variable (list element)
currently using the format descriptor.

Input Examples

Descriptor Input Field Value Stored

M10.3 ���$12.340 12.340

M10.3 ��$12.3402 12.3402

M13.3 ����80175.397 80175.397

M12.2 -$80,175.397 �80175.397

M12.2 ���99999.996 99999.996

Output Examples

Descriptor Internal Value Output Field

M10.3 +12.3402 ���$12.340

M10.3 �12.3404 ��-$12.340

M13.3 +80175.3965 ��$80,175.397

M12.2 +99999.996 �$100,000.00

M12.2 �99999.996 -$100,000.00

M11.2 �99999.995 ***********

Input/Output 4-29

Numeration Format
Descriptor (N)

The N[w.d] �eld descriptor de�nes a �eld for a real number without
an exponent (�xed-point) written in numeration form (that is, with
commas, which are then ignored, in the input �eld).

On output, the N �eld descriptor causes output of a numeric value in
ASCII character �xed-point form, right-justi�ed with commas. The
least signi�cant digit is rounded. If needed, a leading minus sign is
printed before the most signi�cant digit.

In addition to the number of numeric digits, the �eld width w must
allow for the number of commas expected, plus three characters to
hold the sign, the decimal point, and a rollover digit (if necessary).
If w is greater than the number of positions required for the output
value, the output is right-justi�ed in the �eld with blank spaces to
the left. If w is less than the number of positions required for the
output value, the entire �eld is �lled with asterisks.

On input, the N �eld descriptor causes interpretation of the next w
positions of the input record as a real number without an exponent.
The �eld width is expected (but not required) to have commas
embedded in the data as described for N output (the commas are
ignored). If commas are used, the usage must be consistent; that is,
commas must occur every three digits of the dollar part of the input
value. The number is converted to an internal representation value
for the variable (list element) currently using the �eld descriptor.

Input Examples

Descriptor Input Field Value Stored

N10.3 ����12.340 12.340

N10.3 ���12.3402 12.3402

N13.3 ����80175.397 80175.397

N12.2 ���80175.397 80175.397

N12.2 ��99,999.996 99999.996

N13.2 ���10,000.317 �10000.317

Output Examples

Descriptor Internal Value Output Field

N10.3 +12.3402 ����12.340

N10.3 �12.3404 ����12.340

N13.3 +80175.3965 ���80,175.397

N12.2 �80175.396 ���80,175.40

N12.2 +99999.996 ��100,000.00

N10.2 �99999.995 **********

4-30 Input/Output

Edit Descriptors Edit descriptors specify editing between numeric, Hollerith, and
logical �elds on input and output records. There are 19 edit
descriptors.

BN, BZ, and Q apply only to input.
NL, NN, $, S, SP, and SS apply only to output.
H, "string", 'string', P, T, TL, TR, X, /, and : apply to both
input and output.

Blank Interpretation
Edit Descriptors (BN,

BZ)

The BN and BZ edit descriptors interpret embedded and trailing
blanks in numeric input �elds. At the beginning of input statement
execution, blank characters are ignored. (An exception to this rule
occurs when the unit is connected with BLANK='ZERO' speci�ed in
the OPEN statement.) Note that BN and BZ override the BLANK
speci�er for the current READ statement. If a BZ edit descriptor
is encountered in the format speci�cation, trailing and embedded
blanks in succeeding numeric �elds are treated as zeros. The BZ
edit descriptor remains in e�ect until a BN edit descriptor or the
end of the format speci�cation is encountered. If BN is speci�ed or
defaulted, all embedded blanks are removed and the input number is
right-justi�ed within the �eld width. The BN and BZ edit descriptors
a�ect the D, E, F, G, I, @, K, O, and Z format descriptors during
the execution of an input statement. They have no e�ect during
execution of an output statement. They have no e�ect at any time
on the A, L, M, N, and R format descriptors.

Input Examples

Descriptor Input Field BN Editing BZ Editing

I4 1�2� 12 1020

F6.2 �4�.�2 4.2 40.02

E7.1 5�.�E1� 5.�101 50.0�1010

I2 �� 0 0

E5.0 3E4�� 3.�104 3.�10400 (overow)

Input/Output 4-31

End-of-Line Edit
Descriptors (NL, NN, $)

As extensions to the ANSI 77 standard, FORTRAN 77 has edit
descriptors to control the action taken at the end of an output line
or record. These actions include controlling the cursor position on a
terminal after a write and performing multiple writes on the same
output line.

The NL, NN, and $ end-of-line edit descriptors (also known as prompt
edit descriptors) control the carriage-return/line-feed (newline)
characters normally appended to a sequential output record.

The NN and $ edit descriptors suppress the move to the next line
before the write operation to the terminal, giving the appearance of
appending the result of the write operation (containing the NN or $
descriptor) to the current line. These descriptors perform multiple
write operations to one apparent line of a carriage control output
device.

The NL edit descriptor causes a newline character to be appended
after the write operation containing the NL descriptor. The NL edit
descriptor advances to the next line after each write containing the
NL descriptor. NN (equivalent to $) is the default in HP FORTRAN
77/iX.

These descriptors apply to sequential output only. They are ignored
by READ statements and direct access WRITE statements.

The $ edit descriptor is the same as NN and is included for
compatibility with other versions of FORTRAN. The prompt edit
descriptors are an extension to the ANSI 77 standard.

The following program shows how to use the NL and NN descriptors
to produce 50-column records. Unless they are used together, the
program does not produce the desired e�ect, which, in this case, is
to produce 10 �elds per line. The FORMAT statement labeled 200
produces the desired e�ect, while statements 300, 400, and 500 do
not. The program is followed by its output.

4-32 Input/Output

Example

PROGRAM test

n=23
WRITE(6,100) (i, i=1,7)

WRITE(6,200) (i, i=1,n)

WRITE(6,*)

WRITE(6,*)

WRITE(6,100) (i, i=1,7)

WRITE(6,300) (i, i=1,n)

WRITE(6,*)

WRITE(6,*)

WRITE(6,100) (i, i=1,7)

WRITE(6,400) (i, i=1,n)

WRITE(6,*)

WRITE(6,*)

WRITE(6,100) (i, i=1,7)

WRITE(6,500) (i, i=1,n)

100 FORMAT (7I5)

200 FORMAT (NN, 3I5, :, /, NL, (10I5))

300 FORMAT (3I5, :, /, NL, (10I5))

400 FORMAT (3I5, :, /, (10I5))

500 FORMAT (NN, 3I5, :, /, (10I5))

END

Output

1 2 3 4 5 6 7 1 2 3

4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23

1 2 3 4 5 6 7

1 2 3

4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23

1 2 3 4 5 6 7

1 2 3

4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Input/Output 4-33

Plus Sign Edit
Descriptors (S, SP, SS)

The S, SP, and SS edit descriptors control printing of optional plus
signs in numeric output. A formatted output statement does not
normally print optional plus signs. However, an SP edit descriptor
in the format descriptor forces optional plus signs to print in any
subsequent numeric output. The S and SS descriptors inhibit printing
of optional plus signs in subsequent numeric output.

Literal Edit Descriptors
('string', \string", H)

The literal edit descriptors are used to write a character constant
to the output record or to skip columns in an input record. The
'string' (apostrophe) and "string" (quotation mark) descriptors
have the form of a character constant. The length of an apostrophe
or quotation mark descriptor is the number of characters between the
delimiters. As with character constants, two consecutive apostrophes
in an apostrophe descriptor or two consecutive quotation marks in
a quotation mark descriptor count as one character. The quotation
mark edit descriptor is an extension to the ANSI 77 standard.

The nHstring edit descriptor has the form of a Hollerith constant;
n is the number of characters in string , including any blanks. The
length of an H descriptor is n.

On output, the character constant is written.

On input, a literal edit descriptor behaves like a right tab (TR) of the
same length as string . The input characters are skipped. The use
of literal edit descriptors on input is an extension to the ANSI 77
standard.

Output Examples

Descriptor Field Width Output Field

'BEGIN DATA INPUT' 16 BEGIN DATA INPUT

"DAVID'S TURN" 12 DAVID'S TURN

"THE END���" 10 THE END���

'��SPACE��' 10 ��SPACE��

"$*[/\%<;,#!" 11 $*[/\%<;,#!

'Aren''t' 5 Aren't

"""" 1 "

'"' 1 "

7H$�Help! 7 $�Help!

4-34 Input/Output

Input Bytes Remaining
Edit Descriptor (Q)

As an extension to the ANSI 77 standard, the Q edit descriptor
returns the number of bytes remaining on the current input record.
The value is returned to the next item in the input list, which must
be an integer variable. This is useful when the exact contents of the
input record are to be read, avoiding the blank padding of further
variables read.

This descriptor applies to input only. It is ignored in output
statements.

Position Edit Descriptor
(X)

The xX edit descriptor skips x positions of an input/output record. x
must be a positive integer.

The X descriptor is identical to the TR descriptor.

On input, the X edit descriptor causes the next x positions of the
input record to be skipped.

Input Examples

Descriptors Input Record Values Stored

F6.2,3X,I2 673�21END45 673.21, 45

1X,I2,A3 $6�END 6, END

On output, the X edit descriptor causes x positions of the output
record to be �lled with blanks. If the positions were already de�ned,
they are left unchanged. This can happen when the T or TL edit
descriptor is used.

Output Examples

Descriptors Internal Values Output Fields

F8.2,2X,I3 5.87,436 ����5.87��436

F4.2,3X,"TOTAL" 32.4 32.4���TOTAL

Input/Output 4-35

Tab Edit Descriptors (T,
TL, TR)

The tab edit descriptors position the cursor on the input or output
record. The Tc edit descriptor speci�es an absolute column number
(c), while the TLt and TRt descriptors specify a number of column
positions to skip the left (TL) or right (TR) of the current cursor
position. The TR descriptor is identical to the X descriptor. If
the T or TL descriptor causes subsequent format descriptors to
overwrite previous �elds, the last character written for a particular
column position in the output record is the character output for
that position. On input, characters can be reread, possibly under a
di�erent editing format.

Input Example

Descriptors Input Record Stored Values

A4,T1,F4.0 1234 '1234', 1234.0

Output Examples

Descriptors Internal Values Output Record

T5,F3.1 1.0 ����1.0

F3.1,TR4,F3.2 1.0, .11 1.0����.11

T10,F3.1,TL12,F3.2 1.0, .11 .11������1.0

Record Terminator Edit
Descriptor (/)

The / edit descriptor terminates processing of the current record
and begins processing of a new record (such as a new line on a line
printer or a terminal). The / edit descriptor has the same result for
both input and output: it terminates the current record and begins a
new one. For example, on output, a new line is printed; on input, a
new line is read.

Colon Edit Descriptor (:
)

If there are no more items in the input/output list, the colon edit
descriptor (:) terminates format control (just as if the �nal right
parenthesis in the format speci�cation had been reached). If more
items remain in the list, the colon edit descriptor has no e�ect.

Output Examples

Descriptors Internal Values Output Record

(10('value=',I2)) 1, 2 value= 1 value= 2 value=

(10(:,'value=',I2)) 1, 2 value= 1 value= 2

In the �rst example, the descriptor 'value=' is repeated an extra
time because format control is not terminated until the descriptor I2
is reached and not satis�ed. In the second example, the : descriptor

4-36 Input/Output

terminates format control before the string value= can be output a
third time.

Input/Output 4-37

Scale Factor Edit
Descriptor (P)

The scale factor edit descriptor, kP (k is the scale value), is a
descriptor that modi�es the output of the D[w.d], E[w.d], and
G[w.d] (interpreted as E[w.d]) format descriptors and the �xed-point
output of the F[w.d] format descriptor. The scale factor also
modi�es the �xed-point inputs to the D[w.d], E[w.d], F[w.d], and
G[w.d] format descriptors. A scale factor has no e�ect on the output
of the G[w.d] (interpreted as F[w.d]) descriptor or on oating-point
input.

For example, if a number of data items are stored without decimal
points but are supposed to be interpreted as containing an implied
decimal point two positions from the right, using a scale factor of �2
causes the items to be printed with the decimal point. Thus, with
the format descriptor F7.2, the value 123 is printed 123.00, and with
the format descriptor -2PF7.2, it is printed 1.23.

When a format speci�cation is interpreted, the scale factor is set to
0. Each time a scale factor descriptor is encountered in a format
speci�cation, a new value is set. This scale value remains in e�ect for
all subsequent a�ected format descriptors or until use of the format
speci�cation ends.

Examples Notes

(E10.3,F12.4,I9)No scale factor change. The default value, zero, remains
in e�ect.

(E10.3,2PF12.4,I9)Scale factor is zero for E10.3, changes to 2 for F12.4,
has no e�ect on I9.

On input, the scale factor a�ects �xed-�eld (no exponent) input to
the D[w.d], E[w.d], F[w.d], and G[w.d] format descriptors. The
external value is multiplied by 10 raised to the (�k)th power, as
illustrated below.

Input Examples

Descriptors Input Field Value Stored

E10.4 ��123.9678 123.9678

2PD10.4 ��123.9678 1.239678

�2PG11.5 ��123.96785 12396.785

�2PE12.5 123967.85E02 123967.85E02 (Note)

Note: If the input includes an exponent, the scale factor has
no e�ect.

On output, the scale factor a�ects D[w.d], E[w.d], F[w.d], and
G[w.d] (interpreted as E[w.d]) format descriptors only. The scale
factor has no e�ect on the G[w.d] (interpreted as F[w.d]) �eld
descriptor.

4-38 Input/Output

For E[w.d], D[w.d], and G[w.d] (interpreted as E[w.d]) format
descriptors, the scale factor has the e�ect of shifting the decimal
point of the output number to the right k places while reducing the
exponent by k (the value of the mantissa remains the same). The
number of signi�cant digits printed is equal to (d + k).

Output Examples for E, D, and G

Descriptors Stored Value Output Field

E12.4 12.345678 ���.1235E+02

3PE12.4 12.345678 ���123.5E�01

-3PD12.4 12.345678 ���.0001D+05

1PG11.3 1234 ��1.234E+03

For the F[w.d] format descriptor, the internal value is multiplied by
10 raised to the (+k)th power, as illustrated below.

Output Examples for F

Descriptors Input Field Value Stored

F11.3 1234.500 1234.500

-2PF11.3 1234.500678 12.345

2PF11.3 1234.500678 123450.068

The scale factor need not immediately precede its format descriptor.
For example, the format speci�cation:

(3P,I2,F4.1,E5.2)

is equivalent to:

(I2,3P,F4.1,E5.2)

If the scale factor does not immediately precede a D[w.d], E[w.d],
F[w.d], or G[w.d] format descriptor, it should be separated
from other descriptors by commas or slashes. If the scale factor
immediately precedes a D, E, F, or G format descriptor, the comma or
slash descriptor is optional.

For example, the format speci�cation:

(I2,3PF4.1,E5.2)

is equivalent to:

(I2,3P,F4.1,E5.2)

The scale factor a�ects all D, E, F, and G descriptors until either the
end of the format speci�cation or another scale factor is encountered.

Input/Output 4-39

Repeat Specification The repeat speci�cation is a positive integer written to the left of the
format descriptor it controls. If a scale factor is needed also, it is
written to the left of the repeat speci�cation.

The repeat speci�cation allows one format descriptor to be used
for several list elements. It can also be used for nested format
speci�cations; thus edit descriptors can be repeated by enclosing
them in parentheses as shown above.

Examples Notes

(3F10.5) Equivalent to (F10.5,F10.5,F10.5)

(2I3,2(3X,A5)) Equivalent to (I3,I3,3X,A5,3X,A5)

(L2,2(F2.0,2PE4.1),I5) Equivalent to
(L2,F2.0,2PE4.1,F2.0,E4.1,I5)

(2P3G10.4) Equivalent to
(2PG10.4,G10.4,G10.4)

Nesting of Format
Specifications

The group of format and edit descriptors in a format speci�cation
can include one or more other groups enclosed in parentheses (called
groups at nested level n). Each group at nested level 1 can include
one or more other groups at nested level 2; those at level 2 can
include groups at nested level 3, and so forth.

Examples Notes

(E9.3,I6,(2X,I4)) One group at nested level 1.

(L2,A3/(E10.3,2(A2,L4)))One group at nested level 1 and one at level 2.

(A,(3X,(I2,(A3)),I3),A) One group at nested level 1, one at level 2,
and one at level 3.

4-40 Input/Output

Processing a Format
Specification

A formatted input/output statement references each element in a
series of list elements, and the corresponding format speci�cation is
scanned to �nd a format descriptor for each list element. As long
as a list element and �eld descriptor pair occurs, normal execution
continues.

If a program does not provide a one-to-one match between list
elements and format descriptors, execution continues only until
a format descriptor, an outer right parentheses, or a colon is
encountered and there are no list items left. If there are fewer
format descriptors than list elements, the following three steps are
performed:

1. The current record terminates.

2. A new record begins.

3. Format control returns to the repeat speci�cation for the
rightmost speci�cation group at nested level 1. If there is no
group at level 1, control returns to the �rst descriptor in the
format speci�cation.

Examples Notes

(I5,2(3X,I2,(I4))) Control returns to 2(3X,I2,(I4))

(F4.1,I2) Control returns to (F4.1,I2)

(A3,(3X,I2),4X,I4) Control returns to (3X,I2),4X,I4

When part or all of a format speci�cation is repeated, the current
scale factor is not changed until another scale factor is encountered.
Repetition also has no e�ect on the BN and BZ edit descriptors.

Input/Output 4-41

Unformatted
Input/Output

Unformatted input/output allows you to transfer data in internal
representation (binary). Each unformatted input/output statement
transfers exactly one record. Unformatted input/output to devices is
done in binary mode.

Unformatted Input Unformatted input is speci�ed by the following input statement.
Only the brief forms of the relevant syntax elements are shown here.
For the complete syntax, refer to \READ Statement (Executable)" in
Chapter 3.

Syntax

READ (unit
�
...

�
) list

Item Description/Default Restrictions

unit Unit number of the �le. None.

list List of variables that
speci�es where the data is to
be transferred.

None.

If list is omitted, the �le is moved to the next record without data
transfer. The list can contain implied DO loops. For syntax and
detailed information on implied DO loops, refer to \DO Statement
(Executable)" in Chapter 3.

With unformatted input, the format speci�er (FMT) cannot be
present in the WRITE statement.

Because only one record is read when an unformatted READ
statement is executed, the number of list elements must be less than
or equal to the number of values in the record. A complex item
requires two real values.

The type of each input value should agree with the type of the
corresponding list item. A complex value in the input record,
however, can correspond to two real list items, or two real values can
correspond to one complex list item.

The data is transferred exactly as it is written; thus, no precision is
lost.

4-42 Input/Output

Unformatted Output Unformatted output is speci�ed by the following output statement.
Only the brief forms of the relevant syntax elements are shown here.
For the complete syntax, refer to \WRITE Statement (Executable)"
in Chapter 3.

Syntax

WRITE (unit)
�
,
�
list

Item Description/Default Restrictions

unit Unit number of the �le. None.

list List of variables or
expressions that speci�es the
data to be transferred.

None.

The list can contain implied DO loops. For syntax and detailed
information on implied DO loops, refer to \DO Statement
(Executable)" in Chapter 3. If list is omitted, an empty record is
written. If list contains a function reference, that function must not
contain any READ or WRITE statements.

With unformatted output, the format speci�er FMT cannot be
present in the WRITE statement.

The output list must not specify more values than can �t into one
record. If the speci�ed values do not �ll the record, the remainder of
the record is unde�ned.

Input/Output 4-43

List-Directed
Input/Output

List-directed input/output allows you to transfer data without
specifying its exact format. The format of the data is determined by
the data itself.

List-Directed Input List-directed input is speci�ed by the following input statements:
Only the brief forms of the relevant syntax elements are shown here.
For the complete syntax, refer to \READ Statement (Executable)" in
Chapter 3.

Syntax

READ * , list

READ (unit , *
�
...

�
) list

Item Description/Default Restrictions

unit Unit number of the internal
or external �le.

None.

list List of variables that
speci�es where the data is to
be transferred.

None.

If list is omitted, the �le is positioned at the next record without
data transfer. The list can contain implied DO loops. For syntax and
detailed information on implied DO loops, refer to \DO Statement
(Executable)" in Chapter 3.

The �rst READ statement syntax shown above transfers information
from the standard input device. Unit 5 is preconnected to the
standard input device. The second READ statement transfers data
from a disk �le or device.

List-directed input from an internal �le is an extension to the ANSI
77 standard.

Data for list-directed input consists of values separated by one or
more blanks, or by a slash or comma preceded or followed by any
number of blanks. An end-of-record also acts as a separator except
within a character constant. Leading blanks in the �rst record read
are not considered part of a value separator unless followed by a slash
or comma. Input data can also take either of the forms:

r*c

r*

where:

r is an unsigned, nonzero integer constant.

c is a constant.

4-44 Input/Output

The r*c form means r repetitions of the constant c, and the r*
form means r repetitions of null values. Neither form can contain
embedded blanks, except where permitted in the constant c.

Reading always starts at the beginning of a new record. As many
records as required to satisfy the list are read unless a slash in the
input record is encountered.

Embedded blanks in input values are not allowed (they are always
interpreted as value separators).

The forms of values in the input record are described in Table 4-5.
See \Data Types" in Chapter 2 for more details.

Table 4-5. List-Directed Input Format

Data Type Input Record Format

INTEGER*2
INTEGER*4
LOGICAL*1

Same form as integer constants.

Note: LOGICAL*1 (BYTE) requires integer input, not
logical input.

REAL*4
REAL*8
REAL*16

Any valid form for real constants.

In addition, the exponent can be indicated by a signed
integer constant (the D, E, or Q can be omitted), and the
decimal point can be omitted for those values with no
fractional part.

COMPLEX*8
COMPLEX*16

Any valid form for complex constants.

Each of the numbers can be preceded or followed by blanks
or the end of a record.

LOGICAL*2
LOGICAL*4

A �eld of characters in which the �rst nonblank character
(excluding an optional leading decimal point) must be a T

for true or an F for false.

Note: LOGICAL*1 (BYTE) requires integer input, not
logical input.

CHARACTERSame form as character constants.

Character constants can be continued from one record to the
next. The end-of-record does not cause a blank or any other
character to become part of the constant.

If the length of the character constant is greater than or
equal to the length, len, of the list item, only the leftmost
len characters of the constant are transferred. If the length
of the constant is less than len, the constant is left-justi�ed
in the list item with trailing blanks.

The data in the input record is converted to that of the list item,
following the type conversion rules given in Table 3-3.

Example

Input/Output 4-45

The statement:

READ *,s,t,x,y,z

and the input record:

��'TOTAL'��(42�,�1),TRUE��362���563.63D6

cause the following assignments to take place, assuming the variable
is of the speci�ed type:

Variable Data Type Value Assigned

s CHARACTER*5 'TOTAL'

t COMPLEX*8 (42.,1.)

x LOGICAL*4 .TRUE.

y REAL*4 362.

z REAL*8 563.63�106

A null value can be speci�ed in place of a constant when you do
not want the value of the corresponding list item to change. If the
value is de�ned, it retains its value; if the value is unde�ned, it
remains unde�ned. A null value is indicated by two successive value
separators (two commas separated by any number of blanks) or by a
comma before the �rst input value on a line.

Example

The statement:

READ *,x,y,z

and the input record:

�,5.12�,��

cause the following assignments to take place:

Variable Data Type Value Assigned

x REAL*4 Retains previous value.

y REAL*4 5.12

z REAL*4 Retains previous value.

Encountering an end-of-line (end-of-record) in the input record causes
the read to be continued on the next record until the input list items
are satis�ed. If a slash (/) is encountered, the read terminates and
the remaining items in the input list are unchanged.

An end-of-record is treated like a blank. An end-of-record is not itself
data and is not placed in a character item when a character constant

4-46 Input/Output

is continued on another line. (That is, character constants can be
continued.)

Input/Output 4-47

List-Directed Output List-directed output is speci�ed by the following output statements:
Only the brief forms of the relevant syntax elements are shown here.
For the complete syntax, refer to \PRINT Statement (Executable)"
in Chapter 3 and \WRITE Statement (Executable)" in Chapter 3.

Syntax

PRINT * , list

WRITE (unit , *
�
...

�
) list

Item Description/Default Restrictions

unit Unit number of the internal
or external �le.

None.

list List of variables or
expressions that speci�es the
data to be transferred.

See \Semantics".

Semantics

If list contains a function reference, that function must not contain
any READ or WRITE statements. The list can contain implied DO
loops. For syntax and detailed information on implied DO loops,
refer to \DO Statement (Executable)" in Chapter 3.

List-directed output to an internal �le is an extension to the ANSI 77
standard.

The PRINT statement transfers information to the standard output
unit. The WRITE statement transfers information to external �les or
devices. Unit number 6 is preconnected to the standard output �le.

The forms of values in a list-directed output record are described in
Table 4-6. See \Data Types" in Chapter 2 for more details.

4-48 Input/Output

Table 4-6. List-Directed Output Format

Data Type Output Record Format

INTEGER*2
INTEGER*4
LOGICAL*1

Output as integer constants.

Note: LOGICAL*1 (BYTE) produces integer output, not
logical output.

REAL*4
REAL*8
REAL*16

Output with or without an exponent, depending on the
magnitude of the value.

COMPLEX*8
COMPLEX*16

Output as two REAL*4 or REAL*8 values, separated by
commas and enclosed in parentheses.

LOGICAL*2
LOGICAL*4

Output as a T for the value true and an F for the value false.

Note: LOGICAL*1 (BYTE) produces integer output, not
logical output.

CHARACTERA character value is not delimited by apostrophes or
quotation marks, and each apostrophe or quotation mark
within the value is written as one character.

Input/Output 4-49

Every value is preceded by exactly one blank, except character
values. Trailing zeros after a decimal point are omitted. A blank
character is also inserted at the beginning of each record to provide
carriage control when the �le is printed.

Sample Program Data

Internal Values Data Type

a = 11.15 REAL*4

b = .11145D�05 REAL*8

c = (10 , 3.0) COMPLEX*8

d = (1.582D�03 , 4.9851) COMPLEX*16

e = .TRUE. LOGICAL*2

f = .FALSE. LOGICAL*4

i = 11250 INTEGER*4

j = �32799 INTEGER*4

n = 'PROGRAM NAME' CHARACTER*15

p = 'test.out' CHARACTER*8

r = 32Q�4300 REAL*16

Sample Output from Sample Program Data

Output Statement Output Record

PRINT *,a,i �11.15�11250 (Note)

WRITE(6,*)c �(10.,3.)

WRITE(6,*)j,e �-32799�T

PRINT *,b �1.1145E-6 (Note)

WRITE(6,*)d �(1.582E-3,4.9851)

WRITE(6,*)n,p PROGRAM�NAME���test.out

Note: Output to the standard output unit. The �rst
output character (not shown) is converted to provide
single-spacing carriage control.

4-50 Input/Output

The total length of each list-directed output record to an external
�le is 72 bytes or less, including carriage control. Items that would
overow the 72-byte record if added to the current record cause the
current record to be written out and a new record started. The
item that caused the overow begins the new record. Character
strings longer than 71 characters are broken into as many records as
necessary, with each record given a leading blank for carriage control.

List-directed output to an internal �le uses the item length of the
internal �le as the record length to determine where output items
must be broken. Slashes, as value separators, and null values are not
output by list-directed formatting.

Input/Output 4-51

Namelist-Directed
Input/Output

Namelist-directed input/output statements are similar in function
to formatted statements. However, they use di�erent mechanisms
to control the translation of data. Formatted I/O statements use
explicit format speci�ers; namelist-directed I/O statements use data
types.

Namelist Specifier The namelist speci�er is an argument used in an I/O statement to
specify that namelist-directed I/O is being used and to identify the
group name of the entities that may be modi�ed on input or written
on output.

Syntax

�
NML =

�
group name

Item Description/Default Restrictions

group name Name of a list of variables or
array names previously
de�ned in a NAMELIST
statement.

None.

If the pre�x NML= is omitted, the unit number must be the �rst item
in the list and the group name must be the second. A namelist
speci�er cannot occur in a statement that contains a format speci�er.

4-52 Input/Output

Namelist-Directed Input The namelist-directed READ statement reads external records
sequentially until it �nds the speci�ed group name. Using the data
types of the entities in the corresponding NAMELIST statement, it
then translates the data from external to internal form and assigns
the translated data to the speci�ed namelist entities.

External File Syntax

$group name entity1 = value1
�
, entity2 = value2

� �
,...

�
$
�
END

�
Example

NAMELIST /FOO/I,J,K,/BOO/L,M,K

CHARACTER*10 K

INTEGER I,J,L,M...
OPEN(8,...)

READ(UNIT=8,NML=BOO)

A sample data �le for FOO follows. Notice that the comma which
follows the string to initial K is optional.

$BOO L=10, M=45,

K='hellohello'

$

$FOO I=23

K='hello',

J=11

$END

Namelist-directed input data can contain a multiplier to repeat a
value. Input data can take either of the following forms:

r*c

r*

where r is an unsigned, nonzero integer constant and c is a constant.
The r*c form produces r repetitions of the constant c. The r* form
produces r repetitions of null values. Neither form can contain
embedded blanks, except where permitted in constant c.

The namelist-directed READ statement changes the values of only
those namelist entities that appear in the input data. Similarly, when
character substrings and array elements are speci�ed, the values of
only the speci�ed variable substrings and array elements are changed.
When a list of values is assigned to an array name, the �rst value
in that list is assigned to the �rst element of the array, the second
value to the second element, and so on. The consecutive commas
indicate that the value of the array element in that position remains
unchanged.

When a list of values is assigned to an array element , the assignment
begins with the speci�ed array element rather than with the �rst
element of the array.

Input/Output 4-53

You can input a question mark (?) to a namelist READ statement
to print the current value of all the items on the namelist. Input is
allowed from either a terminal or �le and output is written to unit
6. Unit 6 must be connected to a terminal for the question mark
to generate output. If unit 6 is not connected to a terminal, the
question mark is ignored.

4-54 Input/Output

The following is a sample namelist program and its output using the
query feature:

PROGRAM query

INTEGER lu, iu

PARAMETER (lu = 6)

PARAMETER (iu = 5)

CHARACTER*1 i1

CHARACTER*10 j1

CHARACTER*255 k1

DATA i1 /' '/

DATA j1 /' '/

NAMELIST/n/i1,j1,k1

DO i = 1,255

k1(i:i+1) = ' '

END DO

WRITE(lu,25) 'Enter ? to see current namelist values'

WRITE(lu,25) 'then enter the values i1 and j1 as shown below:'

WRITE(lu,25) '$N'

WRITE(lu,25) 'i1=''I'' j1=''CAN'''

WRITE(lu,25) '$END'

READ(iu,nml=n)

WRITE(lu,25) '---'

WRITE(lu,25) 'Enter ? to see i1 and j1 initialized'

WRITE(lu,25) 'then enter the value k1 as shown below:'

WRITE(lu,25) '$N'

WRITE(lu,25) 'k1=''ANSWER'''
WRITE(lu,25) '$END'

READ(iu,nml=n)

WRITE(lu,25) '---'

WRITE(lu,25) 'Enter ? to verify i1, j1 and k1 initialized'

WRITE(lu,25) 'then enter the following:'

WRITE(lu,25) '$N'

WRITE(lu,25) '$END'

READ(iu,nml=n)

WRITE(lu,25) '---'

WRITE(lu,25) 'Enter ? again to verify multiple question marks'

WRITE(lu,25) 'then enter the following:'

WRITE(lu,25) '$N'

WRITE(lu,25) '$END'

READ(iu,nml=n)

STOP

25 FORMAT(a)

END

Input/Output 4-55

The output is shown below. User input is underlined.

Enter ? to see current namelist values

then enter the values i1 and j1 as shown below:

$N

i1='I' j1='CAN'

$END

?

$N

I1 =' '

J1 =' '

K1 ='

'

$END

$N

i1='I' j1='CAN'

$END

Enter ? to see i1 and j1 initialized

then enter the value k1 as shown below:

$N

k1='ANSWER'
$END

?

$N

I1 ='I'

J1 ='CAN '

K1 ='

'

$END

$N

k1='ANSWER'

$END

4-56 Input/Output

Enter ? to verify i1, j1 and k1 initialized

then enter the following:
$N

$END

?

$N

I1 ='I'

J1 ='CAN '

K1 ='ANSWER

'

$END

$N

$END

Enter ? again to verify multiple question marks

then enter the following:

$N

$END

?

$N

I1 ='I'

J1 ='CAN '

K1 ='ANSWER

'

$END

$N

$END

Input/Output 4-57

Namelist-Directed
Output

The namelist-directed WRITE statement is a sequential write
that translates internal storage to external records according to
the speci�ed namelist. Only the brief forms of the relevant syntax
elements are shown here. For the complete syntax, refer to \READ
Statement (Executable)" in Chapter 3.

Syntax

WRITE (unit ,
�
NML =

�
group name

�
...

�
)

Namelist-directed output is suitable for use as namelist-directed
input.

Namelist Output File Syntax

$group name
entity = value...
$END

Each entity is begun on a separate line.

Example

CHARACTER*5 BLA(2)

INTEGER HA,SOO

LOGICAL KOG

NAMELIST /BLANK/HA,SOO,KOG,BLA

BLA(1) = 'hello'

BLA(2) = 'HELLO'

KOG = .FALSE.

HA = 123

SOO = 17...
WRITE(xxx,NML=BLANK)...
END

Output:

$BLANK

HA = 123

SOO = 17

KOG = F

BLA = 'hello', 'HELLO'

$END

4-58 Input/Output

5

File Handling

This chapter describes the OPEN statement and the procedures used
for MPE/iX �le handling.

The OPEN
Statement

Files are always referenced in FORTRAN 77 programs using unit
numbers. Under MPE/iX, FORTRAN 77 preconnects two units at
the beginning of every program. Unit �ve is connected to $STDIN
by the formal �le designator FTN05 and unit six is connected to
$STDLIST by the formal �le designator FTN06. If a �le equation is
present for either FTN05 or FTN06, the temporary and permanent
�le domains are searched before a new �le is created. An OPEN
statement is not required to perform I/O with units �ve and six.
Units �ve and six can be reassigned using the OPEN statement at
any time.

The OPEN statement connects MPE/iX �les to FORTRAN unit
numbers. If present, the FILE clause in the OPEN statement
must specify a legal MPE/iX �le name that is connected to the
speci�ed unit. If the status clause on the OPEN statement speci�es
SCRATCH, FORTRAN 77 creates an MPE/iX nameless �le and
deletes it when the �le is closed. An OPEN status of UNKNOWN
causes FORTRAN to open or create the �le indicated by the FILE
clause, or if no FILE clause is present, to create an MPE/iX nameless
�le. All �les created by FORTRAN are created as MPE/iX \NEW"
and are saved unless the DELETE option appears in the CLOSE
statement (except SCRATCH �les, which are always deleted).
FORTRAN 77 creates �les of type BINARY if the FORM clause
speci�es UNFORMATTED, otherwise it creates �les of type ASCII.
The RECL parameter in the OPEN statement always speci�es byte
length, not word length as is sometimes used in MPE/iX.

File Handling 5-1

The FNUM
Procedure

Occasionally you might want to use MPE/iX intrinsics to perform
I/O directly. You can intermix FORTRAN I/O and intrinsic I/O to
the same �le by using the FNUM procedure.

The FNUM procedure can be called from an HP FORTRAN 77
program as follows:

i = FNUM(unit)

Item Description/Default Restrictions

unit Positive integer (INTEGER*2 or
INTEGER*4) that speci�es the �le
table entry for which the MPE/iX
system �le is to be extracted.

Must be nonnegative.

Refer to the HP FORTRAN 77/iX Programmer's Guide for an
example of using the FNUM function.

5-2 File Handling

The FSET Procedure The FSET procedure changes the MPE/iX operating system �le
number assigned to a given FORTRAN 77 logical unit number.

The FSET procedure is called from an HP FORTRAN 77 program as
follows:

CALL FSET(unit, newfile, oldfile)

Item Description/Default Restrictions

unit Positive integer constant or variable
(INTEGER*2 or INTEGER*4) that
speci�es the �le table entry for which
the change is to be made.

Must be nonnegative.

newfile Positive integer constant or variable
(INTEGER*2 or INTEGER*4) that
speci�es the new MPE/iX �le number
to be assigned to unit.

None.

oldfile Integer variable to which the procedure
returns the old value of the �le number
that was assigned to unit.

None.

Arguments to FSET may be INTEGER*2 or INTEGER*4, but all
the arguments in a given call must match in size.

Refer to the HP FORTRAN 77/iX Programmer's Guide for an
example of using the FSET procedure.

File Handling 5-3

The UNITCONTROL
Procedure

The UNITCONTROL procedure enables a FORTRAN 77 program to
request several actions for any FORTRAN logical unit.

The UNITCONTROL procedure is called from an HP FORTRAN 77
program as follows:

CALL UNITCONTROL(unit,opt)

Item Description/Default Restrictions

unit Positive integer (INTEGER*2 or
INTEGER*4) that specci�es the unit
number of the �le to be used.

Must be nonnegative.

opt Integer (INTEGER*2 or INTEGER*4)
that speci�es the option (see table 5-1).

None.

The options for the UNITCONTROL intrinsic are listed in table 5-1.

Table 5-1. UNITCONTROL Options

Option Description

-1 Rewind (but don't close �le).

0 Backspace.

1 Write an EOF mark.

2 Skip backward to a tape mark.

3 Skip forward to a tape mark.

4 Unload the tape and close the �le.

5 Leave the tape loaded and close the �le.

6 Convert the �le to prespacing.

7 Convert the �le to postpacing.

8 Close the �le.

Refer to the HP FORTRAN 77/iX Programmer's Guide for an
example of using the UNITCONTROL intrinsic.

5-4 File Handling

Automatically
Opening Files

For compatibility with FORTRAN 66/V, the FORTRAN 77 I/O
library automatically opens units 1 through 99 (excluding 5 and 6)
to the formal �le designators FTN01 throught FTN99, respectively.
OPEN statements are not required for these �les, though a :FILE
equation is usually required. If no :FILE equation is used, and the
�rst executed I/O statement to that unit is not READ or WRITE,
the �le will be opened with direct unformatted attributes.

If the �rst I/O to a unit is READ or WRITE, the format of the �le is
based on the attributes of the READ/WRITE speci�ed by the user.
If the READ is a sequential formatted READ, the �le will be opened
with sequential formatted attributes.

PROGRAM main

C Write to a unit without explicitly opening it.

WRITE(50,*) 'hello world'

STOP

END

In the above program, the formal �le FTN50 is opened with sequential
formatted attributes because no explicit OPEN of unit 50 is
encountered prior to the WRITE and no :FILE equation is present
for FTN50.

For more information on the OPEN statement, see chapter 3,
\FORTRAN Statements".

File Handling 5-5

6

Compiling and Running HP FORTRAN 77/iX Programs

Before a FORTRAN 77 program can be executed, the following must
occur:

1. The FORTRAN 77 compiler translates the source code into an
object �le.

2. The HP Link Editor/iX (LINKEDIT.PUB.SYS) links one or more
object �les into a program �le.

3. The MPE/iX operating system loads and executes the program
�le.

You can advance through each of these steps independently,
controlling each process along the way. In particular, you can use the
MPE/iX commands FTNXL, LINK, and RUN for steps 1, 2, and 3,
respectively.

Alternatively, you can combine steps with a single MPE/iX
command. The MPE/iX command FTNXLLK performs steps 1 and
2 and the command FTNXLGO performs steps 1, 2, and 3.

This chapter discusses the MPE/iX commands FTNXL, FTNXLLK,
and FTNXLGO in detail and also explains how you can invoke the
FORTRAN 77 compiler with the RUN command. Refer to the HP
Link Editor/iX Reference Manual for details on the LINK command.

Compiling and Running HP FORTRAN 77/iX Programs 6-1

The FTNXL
Command

The MPE/iX command FTNiX invokes the FORTRAN 77 compiler
and causes the compiler to process the speci�ed source program and
generate object code to an object �le.

Syntax

FTNXL
�
text�le

��
,
�
object�le

��
,
�
list�le

� � �
��

; INFO=

,

�
" text "

�

Item Description/Default Restrictions

text�le The name of the input �le
that the FORTRAN 77
compiler will read; the
default is $STDIN.

Must be an ASCII �le or a
system de�ned �le name
such as $STDIN.

object�le The name of the relocatable
object �le or relocatable
library �le on which the
compiler will write the
object code; the default is
$OLDPASS.

Must be a binary �le or a
system de�ned �le name
such as $OLDPASS; must
have code type NMOBJ or
NMRL.

list�le The name of the �le on
which the compiler will write
the program listing; the
default is $STDLIST.

Must be an ASCII �le or a
system de�ned �le name
such as $STDLIST.

text A speci�cation of initial
compiler directives.

Compiler directives must be
separated by semi-colons or
commas; \$" will be inserted
at the beginning of the
string automatically.

Description

If text�le is omitted, the default �le is $STDIN, which is the current
input device. In a session, this device is the terminal, allowing you
to enter source code interactively. For interactive mode, a special
prompt (>) appears on the screen. Indicate the end of the source
code by entering a colon (:) immediately after the prompt. If list�le
is $STDLIST, the listing is echoed back to the terminal. If list�le is
$NULL or a �le other than $STDLIST, the listing is not echoed back
to the terminal, but is directed to $NULL or to the speci�ed �le.

If object�le is omitted, the �le $OLDPASS is the default. If
$OLDPASS does not exist, the system uses $NEWPASS and renames
it to $OLDPASS at the end of the compile. You can create a new
object �le in one of three ways:

By specifying a nonexistent object �le in the FTNXL command.
This creates a permanent object �le of the correct type.

6-2 Compiling and Running HP FORTRAN 77/iX Programs

By saving a default $OLDPASS object �le with the SAVE
command.

By building a new �le of NMOBJ or NMRL type with the BUILD
command. The �lecode parameter must be NMOBJ or NMRL, as
in the following commands:

:BUILD MYOBJ; DEV=DISC; CODE=NMOBJ

:BUILD MYRL; DEV=DISC; CODE=NMRL

If the object �le is of type NMRL, any existing module with an
entry point duplicating one in the current compilation unit will
be replaced. See the RLFILE and RLINIT compiler directives in
Chapter 7 for additional information.

If list�le is omitted, the system assigns the �le $STDLIST as the
default �le. Typically, this is the terminal in a session or the printer
in a batch job.

The text �eld of the INFO parameter permits you to specify the
compiler directives that initially take e�ect. FORTRAN 77 places a
dollar sign ($) in front of the text �eld and places the string before
the �rst line of source code in the text �le. For example,

FTNXL myfile ;INFO="SHORT;HP3000_16"

Compiling and Running HP FORTRAN 77/iX Programs 6-3

The FTNXLLK
Command

The MPE/iX command FTNXLLK compiles a FORTRAN 77
program into an object �le and then links this object �le into a
speci�ed program �le.

Syntax

FTNXLLK
�
text�le

��
,
�
prog�le

��
,
�
list�le

� � �
��

; INFO=

,

�
" text "

�

Item Description/Default Restrictions

text�le The name of the input �le
that the FORTRAN 77
compiler will read; the
default is $STDIN.

Must be an ASCII �le or a
system de�ned �le name
such as $STDIN..

prog�le The name of the �le that
will contain the program
after the compile and link is
complete. The default is
$OLDPASS.

If the speci�ed �le exists, the
�le must have the �le code
NMPRG. If the �le does not
exist, a permanent program
�le is created.

list�le The name of the �le on
which the compiler will write
the program listing; the
default is $STDLIST.

Must be an ASCII �le or a
system de�ned �le name
such as $STDLIST.

text A speci�cation of initial
compiler directives.

None.

Description

If text�le is omitted, the default �le is $STDIN, which is the current
input device. In a session, this device is the terminal, allowing you
to enter source code interactively. For interactive mode, a special
prompt (>) appears on the screen. Indicate the end of the source
code by entering a colon (:) immediately after the prompt. If list�le
is $STDLIST, the listing is echoed back to the terminal. If list�le is
$NULL or a �le other than $STDLIST, the listing is not echoed back
to the terminal, but is directed to $NULL or to the speci�ed �le.

You can create a new program �le in one of three ways:

By specifying a nonexistent program �le in the FTNXLLK
command. This creates a permanent �le of the correct type.

By saving a default $OLDPASS program �le with the SAVE
command.

By building a new program �le of NMPRG type with the BUILD
command. The �lecode parameter must be NMPRG, as in the
following command:

:BUILD MYPRG; CODE = NMPRG

6-4 Compiling and Running HP FORTRAN 77/iX Programs

If the object �le is of type NMRL, any existing module with an
entry point duplicating one in the current compilation unit will
be replaced. See the RLFILE and RLINIT compiler directives in
Chapter 7 for additional information.

If you specify an existing program �le, the system reuses this �le. An
error occurs if this �le is too small or if the �lecode parameter is not
NMPRG.

If list�le is omitted, the system assigns the �le $STDLIST as the
default �le. Typically, this is the terminal in a session or the printer
in a batch job.

The text �eld of the INFO parameter permits you to specify the
compiler directives that initially take e�ect. FORTRAN 77 places a
dollar sign ($) in front of the text �eld and places the string before
the �rst line of source code in the text �le.

Compiling and Running HP FORTRAN 77/iX Programs 6-5

The FTNXLGO
Command

The MPE/iX command FTNXLGO compiles, prepares, and
executes a FORTRAN 77 program. After successful completion of
FTNXLGO, the program �le is the temporary �le $OLDPASS, which
you can save using the MPE/iX SAVE command.

Syntax

FTNXLGO
�
text�le

��
,
�
list�le

� � ��
; INFO=

,

�
" text "

�

Item Description/Default Restrictions

text�le The name of the input �le
that the FORTRAN 77
compiler will read; the
default is $STDIN.

Must be an ASCII �le or a
system de�ned �le name
such as $STDIN.

list�le The name of the �le on
which the compiler will write
the program listing; the
default is $STDLIST.

Must be an ASCII �le or a
system de�ned �le name
such as $STDLIST.

text A speci�cation of initial
compiler directives.

None.

Description

If text�le is omitted, the default �le is $STDIN, which is the current
input device. In a session, this device is the terminal allowing you
to enter source code interactively. For interactive mode, a special
prompt (>) appears on the screen. Indicate the end of the source
code by entering a colon (:) immediately after the prompt. If list�le
is $STDLIST, the listing is echoed back to the terminal. If list�le is
$NULL or a �le other than $STDLIST, the listing is not echoed back
to the terminal, but is directed to $NULL or to the speci�ed �le.

If list�le is omitted, the system assigns the �le $STDLIST as the
default �le. Typically, this is the terminal in a session or the printer
in a batch job.

The text �eld of the INFO parameter permits you to specify the
compiler directives that initially take e�ect. FORTRAN 77 places a
dollar sign ($) in front of the text �eld and places the string before
the �rst line of source code in the text �le.

If $OLDPASS exists, the object �le is $OLDPASS. Otherwise,
$NEWPASS is used. If $OLDPASS exists and is of type NMRL, the
�le is appended to and module replacement occurs if there are any
duplicate entry points. Using the RLFILE or RLINIT directives
when compiling with the default object �le causes $OLDPASS to be
of type NMRL. See the RLFILE and RLINIT compiler directives
Chapter 7 for additional information.

6-6 Compiling and Running HP FORTRAN 77/iX Programs

Running the
Compiler

The FORTRAN 77 compiler is a program �le named FTNCOMP in
the PUB group of the SYS account. To execute FTNCOMP, use the
MPE/iX command RUN or simply enter the �le name.

The default source, object �le, and listing �les for the compiler are
$STDIN, $NEWPASS, and $STDLIST, respectively. To override
these default values, you must:

1. Equate the nondefault �le with its formal designator using an
MPE/iX FILE command.

2. Select an appropriate value for the PARM parameter of the RUN
command. This value indicates which �les are not defaulted.

The FORTRAN 77 compiler recognizes the formal �le designators
listed in Table 6-1.

Table 6-1. Formal File Designators

Formal Designator File

FTNTEXT Source �le

FTNOBJ Object �le

FTNLIST Listing �le

The PARM parameter of the RUN command indicates which �les
have appeared in the �le equations. The compiler opens these �les
instead of the default �les. For the FORTRAN 77 compiler, the
PARM parameter accepts an integer value in the range 0 to 7, as
shown in Table 6-2.

Table 6-2. Values for the PARM Parameter

Value Files Present in the FILE Command

0 None

1 Source

2 Listing

3 Listing, source

4 Object

5 Object, source

6 Object, listing

7 Object, listing, source

Compiling and Running HP FORTRAN 77/iX Programs 6-7

The low order three bits of the PARM �eld represent these three
�les:

Bit 29 Bit 30 Bit 31

object listing source

If the PARM parameter sets a bit for the text �le and no FTNTEXT
�le equation exists, an attempt is made to use a permanent �le
named FTNTEXT. If the permanent �le FTNTEXT does not exist,
an error is generated.

If the PARM parameter sets a bit for either the listing �le or the
object �le and no �le equation exists for FTNLIST or FTNOBJ,
the compiler creates a permanent �le with the name FTNLIST or
FTNOBJ to which the appropriate output is directed. On the other
hand, if a �le equation exists and the bit is not set in the PARM
value, the compiler uses the default �le.

Setting PARM to 0 is equivalent to the FTNXL command with no
parameters.

The RUN command also has an optional INFO parameter.
FORTRAN 77 places a dollar sign ($) in front of the text �eld and
places the string before the �rst line of source code in the text �le.
Thus, as with the FTNXL, FTNXLLK, and FTNXLGO commands,
you can use the INFO parameter of the RUN command to specify
initial compiler directives.

Example

:FILE FTNTEXT=SOURCEX

:FILE FTNOBJ=SOURCEO

:RUN FTNCOMP.PUB.SYS; PARM=5; INFO="TABLES"

The commands above runs the compiler (FTNCOMP.PUB.SYS),
reads the source from SOURCEX, and outputs the object �le
into SOURCEO. By default, the listing is output to the terminal
(STDLIST) and the TABLES directive is placed before the �rst line
of source.

6-8 Compiling and Running HP FORTRAN 77/iX Programs

Passing Run
Command
Parameters

A maximum of two input parameters from a program's RUN
command can be passed to a program. One parameter must be a
CHARACTER*(*) data type and the other an INTEGER*2 or
INTEGER*4 type. For example, if you want to pass two parameters
to the program named test, where one parameter is a character
string and other is an integer, you need these statements:

PROGRAM test(p1,p2)

CHARACTER*(*) p1

INTEGER p2

In the program's RUN command, the character parameter is
identi�ed with the INFO string and the INTEGER parameter is
identi�ed with the PARM word. Data is passed to the program test

with the following RUN command:

:RUN test; INFO="infile";PARM=3

Compiling and Running HP FORTRAN 77/iX Programs 6-9

Listing Format The following is an example of the compiler listing format with
symbol table generation speci�ed. On the left side of the compiler
listing, there are three columns of numbers:

Column one lists the statement numbers

Column two lists the line numbers

Column three lists the nesting level numbers

PAGE 1 HEWLETT-PACKARD HP31501A.00.01

HP FORTRAN 77 (C) HEWLETT-PACKARD CO. 1987 THURS, JAN 1, 1987, 12:01 PM

0 1 $TABLES
1 2 PROGRAM fibonacci

1 3

2 4 INTEGER*4 count, fibs, i, j, k

2 5

3 6 100 WRITE(6,10)

4 7 READ(5,*) fibs

5 8 IF (fibs .LT. 1) THEN

6 9 1 WRITE(6,20)

7 10 1 GOTO 100

8 11 1 ENDIF

9 12 i = 0

10 13 j = 1

11 14 k = 1

12 15 count = 1

13 16 DO WHILE (count .LE. fibs)

14 17 1 WRITE(6,30) count, k

15 18 1 i = j

16 19 1 j = k

17 20 1 k = i + j

18 21 1 count = count + 1

19 22 1 END DO

20 23 10 FORMAT (' How many Fibonacci numbers would you like?')

21 24 20 FORMAT (' Sorry, number must be greater than zero.')

22 25 30 FORMAT (' Fibonacci number ',I4,' is ',I4)

23 26 END

6-10 Compiling and Running HP FORTRAN 77/iX Programs

Name Class Type Offset Location

---- ----- ---- ------ --------

COUNT Variable Integer*4 SP -72 Local

fibonacci Program

FIBS Variable Integer*4 SP -68 Local

I Variable Integer*4 SP -64 Local

J Variable Integer*4 SP -60 Local

K Variable Integer*4 SP -56 Local

10 Stmt Label Format 20

20 Stmt Label Format 21

30 Stmt Label Format 22

100 Stmt Label Executable 3

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

PROCESSOR TIME 0: 0: 4 ELAPSED TIME 0: 0:45

NUMBER OF LINES = 26

Compiling and Running HP FORTRAN 77/iX Programs 6-11

7

Compiler Directives

Compiler directives are commands within the source program that
indicate to the compiler exactly how it (or a program it is compiling)
is to function.

A compiler directive must begin with a $ in column 1. A compiler
directive can be continued by using a backslash (\) to terminate
the line you want to continue. Each continuation line must begin
with a $. A compiler directive cannot occur within a continued
FORTRAN statement. More than one directive can be placed on a
line by separating the directives with commas or semicolons, except
when indicated.

Compiler options speci�ed in the �le take precedence over compiler
options speci�ed on the command line.

In general, compiler directives speci�ed in your program will a�ect all
�les that are included (using the INCLUDE statement) in that �le.
Compiler directives that appear before an executable statement have
a global e�ect on all routines within that �le.

If ON or OFF is applicable but not speci�ed, ON is assumed. For
example, the LIST directive can be speci�ed as any of the following,
with the �rst two equivalent:

$LIST ON

$LIST

$LIST OFF

The keywords OPTION and CONTROL can be used, but are not
necessary.

They are included for backward compatibility. Thus, the following
three are equivalent to the preceding:

$OPTION LIST ON

$OPTION LIST

$OPTION LIST OFF

as are these three:

$CONTROL LIST ON

$CONTROL LIST

$CONTROL LIST OFF

In contrast to other statements, blanks are signi�cant within compiler
directives.

Compiler Directives 7-1

The directive name or the words ON or OFF can be written in any
combination of uppercase and lowercase letters.

If any directive other than those listed in this manual is used, it
produces the warning message

Warning: Compiler option identifier expected (724)

In this manual, \program head" is any of the following statements:
PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA.

7-2 Compiler Directives

Effects of the
Directives

Table 7-1 lists the default condition if a compiler directive is omitted.
The default condition remains in e�ect until speci�cally changed.

Table 7-1. Default State of the Compiler Directives

Compiler Directive Default State

ANSI OFF

CHECK ACTUAL PARM Level 3

CHECK FORMAL PARM Level 3

CHECK OVERFLOW INTEGER

CODE ON

CODE OFFSETS OFF

CONTINUATIONS 19 lines

COPYRIGHT NONE

DEBUG OFF

ELSE NONE

ENDIF NONE

EXTERNAL ALIAS NONE

FTN3000 66 OFF

HP3000 16 OFF

IF NONE

INCLUDE NONE

INIT OFF

LINES 56

LIST ON

LIST CODE OFF

LITERAL ALIAS OFF

LOCALITY NONE

LONG LONG

LOWERCASE ON

NLS OFF

NOSTANDARD OFF

Continued on next page

Compiler Directives 7-3

Table 7-1.

Default State of the Compiler Directives (continued)

Compiler Directive Default State

ONETRIP OFF

OPTIMIZE OFF

PAGE NONE

PAGEWIDTH 80

RANGE OFF

RLFILE NONE

RLINIT NONE

SAVE LOCALS OFF

SET NONE

SHORT (LONG)

STANDARD LEVEL HP

SUBTITLE NONE

SYMDEBUG OFF

SYSINTR SYSINTR.PUB.SYS

SYSTEM INTRINSIC NONE

TABLES OFF

TITLE NONE

UPPERCASE OFF

VERSION NONE

WARNINGS ON

XREF OFF

The following directives have special e�ects:

ALIAS, if placed before the PROGRAM statement, has a global
e�ect (that is, it a�ects all procedures or function calls throughout
the program). If placed after the PROGRAM statement, the
directive is in e�ect only in the current program unit (that is, it
only has a local e�ect).

COPYRIGHT must be issued separately for each program unit;
that is, it only has a local e�ect.

INCLUDE is invoked once for each �le to be included.

PAGE takes e�ect (once for each occurrence) at the place it is
issued.

7-4 Compiler Directives

SYSTEM INTRINSIC, if placed before the PROGRAM statement,
has a global e�ect (that is, it declares system intrinsics throughout
the program). If placed before the �rst nondirective statement of
a program unit, it takes e�ect thereafter. This directive works
exactly like the SYSTEM INTRINSIC statement, except with a
global e�ect.

VERSION must be issued separately for each program unit; that
is, it only has a local e�ect.

In this chapter, the term \program head" is any of the following
statements: PROGRAM, SUBROUTINE, FUNCTION, or BLOCK
DATA.

Compiler Directives 7-5

ALIAS Directive The ALIAS directive speci�es that a subroutine, function, entry,
or common block name has an external name di�erent from its
internal name and, optionally, that a subroutine or function has a
nonstandard calling sequence or parameter passing mechanism.

Specifying the name of the language automatically generates the
appropriate type of parameter for that language. Thus, specifying
Pascal causes all parameters, including character, to be passed by
reference; specifying C causes all noncharacter parameters less than
or equal to 64 bits to be passed by value and all others by reference.
The ALIAS directive applies to subroutines, entries, and functions
used externally; the directive does not apply to the program unit
being de�ned.

The ALIAS directive can function in two modes: local and global.

Syntax

$ALIAS name

�
=

�
'external name'

"external name"

��24PascalC

COBOL

3
5

2
4 (

8<
:

%VAL

%REF

%DESCR

9=
;
�
,...

�
)

3
5

name is a named common block name if it is
enclosed in slashes, or else a subroutine,
function, or entry name.

external name is a string that can include special characters.
When external name is speci�ed, the
compiler changes the external name of the
subroutine or common block to the speci�ed
string. external name must be delimited by
single quotation marks and is downshifted
by default, unless an UPPERCASE or
LITERAL ALIAS directive speci�es
otherwise.

Default None.

Location A global ALIAS directive must appear before the
program head of the program unit (or before the �rst
statement of a default program, that is, one with no
PROGRAM statement).

A local ALIAS directive must appear within the
boundaries of a particular program unit; that is it
must appear after the program head of the program
unit (PROGRAM, SUBROUTINE, or FUNCTION
statement), if any, and before any DATA, statement
function, or executable statement.

7-6 Compiler Directives

Toggling/
Duration

A global ALIAS directive applies to all program
units subsequent to its appearance.

A local ALIAS directive applies only to the
particular program unit and is not de�ned for later
program units.

Attempts to rede�ne ALIAS names generate a
warning message.

Compiler Directives 7-7

Additional Information

Note The compiler always changes external name to lower case, no matter
how it is entered. If you want to pass this parameter in mixed case,
use the LITERAL ALIAS directive; if you want to pass it in upper
case, use the UPPERCASE directive.

The language option enables the compiler to correctly pass
parameters to other languages. If you make no speci�cation, the
compiler assumes you are calling an HP FORTRAN 77 subprogram.

If %VAL, %REF, or %DESCR appears in the ALIAS directive, it
represents the parameter passing information for the given subroutine
or function, which must be external. There are three parameter
passing mechanisms:

%VAL passing by value.

%REF passing by reference (the default for noncharacter
data).

%DESCR passing by descriptor (the default for character data
and for all procedures).

Using alternative parameter passing information allows a FORTRAN
program or subprogram to call a procedure or function written in
another language, such as Pascal or C. This includes system intrinsic
functions (which are described in the appropriate reference manual),
as well as user-written routines. (Passing a datum by reference is
equivalent in C to passing a pointer to that datum.)

Using the language identi�cation automatically takes care of
character parameter passing for Pascal, and all parameter passing for
Pascal if all are VAR parameters. Using the language identi�cation
automatically takes care of all parameter passing for C, provided
C's standard conventions are followed. In C, all arrays, character
variables greater than one byte, and other items that are greater than
eight bytes are passed by reference. Other items (besides arrays and
characters longer than one byte) that are less than or equal to eight
bytes are passed by value in C.

To pass a FORTRAN CHARACTER variable by reference instead of
by descriptor (in other words, to pass a pointer to the variable itself
instead of passing a descriptor), do the following:

$ALIAS rout="extname" (%ref)

.

.

.

CHARACTER*10 name

.

.

.

CALL rout(name)

7-8 Compiler Directives

Examples

$ALIAS fun = '.CDBL'
$ALIAS /blk/ = '$TIME'

$ALIAS execle_2args = 'execle'(%REF,%REF,%REF,%VAL,%REF)

$ALIAS copy_time = 'sprintf' C

Compiler Directives 7-9

The ALIAS directive can also be used as another method of accessing
some MPE/iX and library routines. However, because it is not a
reliable method for accessing these, it is recommended that the
interface routines be used instead whenever possible.

An example of using the ALIAS directive is shown below:

PROGRAM print_time

*

$ALIAS get_time = 'time' C (%ref)

$ALIAS format_time = 'ctime' (%ref)

$ALIAS copy_time = 'sprintf' C

INTEGER format_time

*

CHARACTER*26 buf

INTEGER char_ptr

REAL*8 tmbuf

*

* get time since Jan 1, 1970 in numerical form

*

CALL get_time (tmbuf)

*

* convert numeric to ASCII string

*

char_ptr = format_time (tmbuf)

*

* now put C string into a FORTRAN string

*

CALL copy_time (buf, '%s'//char(0), char_ptr)

*

WRITE (6,*) buf

END

7-10 Compiler Directives

ALIGNMENT
Directive

The ALIGNMENT directive aligns COMPLEX*8 data on 4 or 8 byte
boundaries as speci�ed by the user.

Syntax

$ALIGNMENT COMPLEX_8

�
4

8

�

4 Aligns all COMPLEX*8 data on 32 bit boundaries.

8 Aligns all COMPLEX*8 data on 64 bit boundaries.

Default 64 bit boundaries.

Location This directive may appear before any program
or subprogram unit, but may not appear among
executable statements within a program or
subprogram unit.

Toggling/
Duration

When multiple $ALIGNMENT directives are found
in a program, the last occurrence of the directive will
be in e�ect until reset by a later occurrence of the
directive.

Example

PROGRAM DemonstrateAlign

CALL initialize

CALL modify8

CALL test8

CALL initialize

CALL modify4

CALL test4

END

SUBROUTINE initialize ! initialized common block to 0.
COMMON /block/ intarray

INTEGER*4 intarray(4)

DO 10 i=1,4

intarray(i) = 0

10 CONTINUE

END

$ALIGNMENT COMPLEX_8 8

SUBROUTINE modify8

COMMON / block/ i4, c8

INTEGER*4 i4

COMPLEX*8 c8

I4 = '7FFFFFFF'x

c8 = '7FFFFFFF7FFFFFFF'x

END

Compiler Directives 7-11

SUBROUTINE test8

COMMON /block/ intarray

INTEGER*4 intarray(4)
IF (intarray(2) .EQ. 0) THEN

PRINT*, "The data was 8 byte aligned this time."

ELSE

PRINT*, "The data was 4 byte aligned this time."

ENDIF

END

$ALIGNMENT COMPLEX_8 4

SUBROUTINE modify4

COMMON /block/ i4, c8

INTEGER*4 i4

COMPLEX*8 c8

i4 = '7FFFFFFF'x

c8 = '7FFFFFFF7FFFFFFF'x

END

SUBROUTINE test4

COMMON /block/ intarray

INTEGER*4 intarray(4)

IF (intarray(2) .EQ. 0 THEN

PRINT*, "The data was 8 byte aligned this time."

ELSE IF (intarray(4) .EQ. 0) THEN

PRINT*, "The data was 4 byte aligned this time."

ENDIF

END

Output:

The data was 8 byte aligned this time. The data was 4 byte aligned
this time.

7-12 Compiler Directives

ANSI Directive The ANSI directive turns the generation of listing information on or
o� in compliance with the ANSI 77 standard.

ANSI tells the compiler to include warning messages in the list �le
when features of FORTRAN (other than compiler directives) that are
not a part of the ANSI 77 standard are used.

Syntax

$ANSI

�
ON

OFF

�

Default O�; warnings are not included in the list �le.

Location The ANSI directive must appear before any
nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Applies to all program units subsequent to its
appearance. May be toggled.

Compiler Directives 7-13

ASSEMBLY Directive The ASSEMBLY directive turns on or o� the generation of an
assembly listing. It is equivalent to the LIST CODE directive.

The listing is written to a separate, temporary �le named
FTNASSM .

Syntax

$ASSEMBLY

�
ON

OFF

�

Default O�; no assembly listing is generated.

Location The ASSEMBLY directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

7-14 Compiler Directives

CHECK ACTUAL PARM
Directive

This directive speci�es the level of checking the HP Link Editor/iX
performs when a program calls a subroutine or function.

Syntax

$CHECK_ACTUAL_PARM

8>><
>>:

0

1

2

3

9>>=
>>;

The level 0, 1, 2, or 3 determines the amount of information placed
in the object �le. The HP Link Editor/iX uses this information to
indicate the level of checking on the parameters of the subroutine or
function; the levels are listed in Table 7-2.

Table 7-2. Levels of Checking

Level Description

0 No checking.

1 Check the function type.

2 Check the function type and the number of subroutine or function
parameters.

3 Check the function type, the number of subroutine or function
parameters, and the type of each parameter.

Default Level 3. If the subroutine or function has a lower
checking level (as found in the subroutine or
function's CHECK FORMAL PARM directive, if
speci�ed), the HP Link Editor/iX ignores the level
indicated by the CHECK ACTUAL PARM directive
and uses the lower level. The compiler generates no
parameter checking information for subroutines or
functions declared SYSTEM INTRINSIC.

Location The CHECK ACTUAL PARM directive can appear
anywhere in the source code.

Toggling/
Duration

This directive remains in e�ect until the next
occurrence of CHECK ACTUAL PARM.

Compiler Directives 7-15

CHECK FORMAL PARM
Directive

This directive speci�es the level of checking the HP Link Editor/iX
performs when a subroutine or function is called.

Syntax

$CHECK_FORMAL_PARM

8>><
>>:

0

1

2

3

9>>=
>>;

The level 0, 1, 2, or 3 determines the amount of information placed
in the object �le. The HP Link Editor/iX uses this information
to check the formal parameters of the declared procedure or
function against the actual parameters in the calling program,
subroutine, or function. The possible levels are the same as for the
CHECK ACTUAL PARM directive and are listed in Table 7-2.

Default Level 3.

If the checking level of the subroutine or function call
is lower, the HP Link Editor/iX ignores the checking
level speci�ed by the CHECK FORMAL PARM
directive and uses the lower value.

Location This directive must appear before any nondirective
statement in the program unit, including the
program head.

Toggling/
Duration

This directive remains in e�ect until the next
occurrence of CHECK FORMAL PARM. Cannot
be toggled after the appearance of nondirective
statements in a program unit.

7-16 Compiler Directives

CHECK OVERFLOW
Directive

The CHECK OVERFLOW directive generates code that traps when
an overow occurs in integer arithmetic.

You can use CHECK OVERFLOW with the ON statement to make
your program branch to a trap subroutine. If this directive is not
used, the ON statement will have no e�ect on integer overow errors.

Syntax

$CHECK_OVERFLOW

8<
:

INTEGER_2

INTEGER_4

INTEGER

9=
;
�
ON

OFF

�

INTEGER_2 turns on code generation to catch INTEGER*2
overows.

INTEGER_4 turns on code generation to catch INTEGER*4
overows.

INTEGER turns on code generation to catch both
INTEGER*2 and INTEGER*4 overows.

Default INTEGER; trap code for overows in integer
arithmetic is not generated.

For MPE V compatibility, the default is the same
as if INTEGER has been speci�ed. Therefore, to
increase the performance of your program, specify
$CHECK OVERFLOW INTEGER OFF to suppress
the additional code generated to perform the
checking.

Location This directive can appear anywhere in your program.

Toggling/
Duration

Applies to all routines subsequent to its appearance.
May be toggled.

Impact on
Performance

The overhead for turning on INTEGER*2 checking
is signi�cant. Several extra instructions are
generated for each INTEGER*2 operation. The
overhead associated with INTEGER*4 checking is
insigni�cant.

Compiler Directives 7-17

CODE Directive The CODE directive turns on or o� the generation of object code.

Syntax

$CODE

�
ON

OFF

�

ON The compiler generates object code.

OFF The compiler checks syntax only.

Default On; object code is generated.

Location The CODE directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

7-18 Compiler Directives

CODE OFFSETS
Directive

The CODE OFFSETS directive turns on or o� the generation of the
machine code o�sets of each FORTRAN statement.

Syntax

$CODE_OFFSETS

�
ON

OFF

�

Default O�; no machine code o�sets are generated for
individual FORTRAN statements.

Location The CODE OFFSETS directive must appear before
any nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Additional Information

The o�sets are listed by statement number at the end of the listing.

You cannot specify $CODE_OFFSETS ON if you are using optimization
directives (such as $OPTIMIZE ON).

Compiler Directives 7-19

CONTINUATIONS
Directive

The CONTINUATIONS directive de�nes the maximum number of
continuation lines allowed in a source program statement.

Syntax

$CONTINUATIONS n

n is an integer from 0 to 99.

Default 19 is the maximum number of continuation lines
allowed.

Location The CONTINUATIONS directive can appear
anywhere in the source �le. It must be the only
directive on the line.

Toggling/
Duration

The CONTINUATIONS directive applies to all
source �le lines subsequent to its appearance. May
be reset.

7-20 Compiler Directives

COPYRIGHT
Directive

The COPYRIGHT directive places a nonexecutable literal string in
the binary object �le. The string may be read by tools that display
the object code generated.

Syntax

$COPYRIGHT

�
'copyright name'

"copyright name"

��
DATE

�
'copyright date'

"copyright date"

��

copyright name is a string that speci�es a name that becomes
part of the notice. Characters beyond 72 are
truncated.

copyright date is a string that speci�es the date or dates that
become part of the notice. Characters beyond 72
are truncated. If copyright date is omitted, the
current year is used. If the DATE suboption is
omitted, the current year is used. Although the
date can be omitted, we encourage you to specify
a year.

Default None; no notice is included in the binary object �le.

Location The COPYRIGHT directive must appear before any
nondirective statements in the program. It must
precede an executable program unit (one beginning
with a PROGRAM, FUNCTION, or SUBROUTINE
statement). The copyright message is placed in the
object and executable �les. If an executable program
unit does not follow the COPYRIGHT directive, the
directive is ignored.

The notice also appears in the executable �le.

Toggling/
Duration

Applies to entire program. May not be toggled.

Additional Information

The text of the notice is:

(C) Copyright copyright date by copyright name. All rights

reserved. No part of this program may be photocopied,

reproduced, or transmitted without the prior consent of

copyright name.

Compiler Directives 7-21

CROSSREF Directive The CROSSREF directive produces a cross reference listing of a
program unit. It is equivalent to the XREF directive.

Syntax

$CROSSREF

�
ON

OFF

�

Default O�. No cross reference listing is generated.

Location Must appear before any nondirective statements
in the program unit. It must precede an
executable program unit (for example PROGRAM,
FUNCTION, or SUBROUTINE.)

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Example

The following is a sample program using the CROSSREF directive.

1 $CROSSREF

2 INTEGER FUNCTION icp(op)

3 COMMON /chars/ iblnk,ibkslsh,iequal,irparen,ilparen,

4 1 icomma,iperiod,iplus,iminus,isemi,idollar,ileta,iletz

5 C ...

6 C ... returns incoming priority of op

7 INTEGER op

8 INTEGER legal(34)

9 data legal /2h(,2h+ ,2h- ,2h* ,2h/ ,2h^ ,2h-1,2h-2,

10 1 2h-3,2h-4,2h-5,2h-6,2h-7,2h-8,2h-9,2h10,

11 2 2h11,2h12,2h13,2h14,2h15,2h16,2h17,2h18,

12 3 2h19,2h20,2h21,2h22,2h23,2h24,2h25,2h26,

13 4 2h27,2h) /

14 icp=-1

15 DO 20 i=1,34

16 IF (op .EQ. legal(i)) GO TO 30

17 20 CONTINUE

18 C ...
19 C ... illegal op to icp

20 CALL eror(7)

21 RETURN

22 C ...

23 30 GO TO (80,40,40,50,50,60,70,70,70,70,70,70,70,70,70,

24 1 70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,

25 2 70,70,70,80),i

26 40 icp=1

27 RETURN

28 50 icp=2

29 RETURN

30 60 icp=4

7-22 Compiler Directives

31 RETURN

Compiler Directives 7-23

32 70 icp=5

33 RETURN

34 80 icp=100
35 RETURN

36 END

The following is the cross reference listing for the above program.
The default line width is 80 columns. It can be changed using the
PAGEWIDTH directive.

SYMBOL TYPE FILE LINE

------ ---- ---- ----

CHARS/ (COMMN) crossref.f $3

EROR (PROC) crossref.f #20

I (VAR) crossref.f !15 16 25

IBKSLSH (VAR) crossref.f %3

IBLNK (VAR) crossref.f %3

ICOMMA (VAR) crossref.f %4

ICP (PROC) crossref.f *2 !14 !26 !28 !30 !32 !34

IDOLLAR (VAR) crossref.f %4

IEQUAL (VAR) crossref.f %3

ILETA (VAR) crossref.f %4

ILETZ (VAR) crossref.f %4

ILPAREN (VAR) crossref.f %3

IMINUS (VAR) crossref.f %4

IPERIOD (VAR) crossref.f %4

IPLUS (VAR) crossref.f %4

IRPAREN (VAR) crossref.f %3

ISEMI (VAR) crossref.f %4

LEGAL (VAR) crossref.f *8 @9 16

OP (ARGMT) crossref.f %2 *7 16

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

7-24 Compiler Directives

SYMBOL The symbol name.

TYPE The class of the symbol:

ARGMT - argument passed to a procedure or function.
COMMN - name of a common block.
CONST - named constant in a PARAMETER statement.
NMLST - NAMELIST variable.
PROC - internal or external procedure or function name.
VAR - variables.

FILE The �le where the symbol is found.

LINE One or more rows of line numbers that indicate where the
symbol is found. Each line has a su�x that indicates the
status of the symbol at time of access.

blank - symbol is being referenced.
! - symbol is being modi�ed.
* - symbol is being de�ned and declared.
% - symbol is being declared.
^ - symbol is being declared, de�ned, and modi�ed.
- symbol is being called.
$ - symbol is declared, de�ned, and used.
@ - symbol is declared and modi�ed.

Compiler Directives 7-25

DEBUG Directive The DEBUG directive enables the processing of debug lines (those
with a D or d in column 1) as statement lines instead of comment
lines.

Syntax

$DEBUG

�
ON

OFF

�

Default O�; lines containing a D in column 1 are treated as
comment lines by the compiler.

Location The DEBUG directive can appear anywhere in a
program unit.

Toggling/
Duration

May be toggled. DEBUG ON remains in e�ect
until DEBUG OFF or the end of the program is
encountered.

Examples

.

.

.

D PRINT *, 'This line won''t print.'

$DEBUG

D PRINT *, 'This line WILL print.'

$DEBUG OFF

D PRINT *, 'Just another comment line.'

.

.

.

7-26 Compiler Directives

ELSE Directive The ELSE directive is used with the IF directive. The ELSE
directive semantically parallels the FORTRAN ELSE statement.

Syntax

$ELSE

Default None.

Location The ELSE directive must be the only directive that
appears on the line. The source following the $ELSE
line is compiled only if the expression, which is part
of an IF directive, has a value of false.

Compiler Directives 7-27

ENDIF Directive The ENDIF directive terminates the IF directive. Each IF directive
requires an ENDIF, and vice-versa.

Syntax

$ENDIF

Default None.

Location The ENDIF directive must be the only directive that
appears on the line. It may appear after the last
FORTRAN END statement.

7-28 Compiler Directives

EXTERNAL ALIAS
Directive

The EXTERNAL ALIAS directive allows the user to specify a new
external name for all occurrences of a given procedure or function
name.

Syntax

$EXTERNAL_ALIAS name =

�
'new external name'

"new external name"

�

name is a name appearing in the source code.

new external name is the name to which all references
to name are to be changed. The
new external name is a string which can
include special characters. It must be
delimited by apostrophes (') or quotation
marks ("). Only the �rst 15 characters
are signi�cant.

Default None; procedures and functions retain their current
names.

Location The EXTERNAL ALIAS directive must appear
before any executable statements in the program
unit.

Toggling/
Duration

Cannot be toggled using another
EXTERNAL ALIAS directive after the
appearance of executable statements in the program
unit. However, the LOWERCASE directive could be
used as a toggle.

Additional Information

The EXTERNAL ALIAS directive di�ers from the ALIAS directive
in the following ways:

The EXTERNAL ALIAS directive changes both actual and formal
uses of the name (that is, calls and entry points), whereas the
ALIAS directive changes only actual references (calls).

Only procedures or function calls can be speci�ed; common blocks
cannot be speci�ed.

No parameter passing or language information can be speci�ed; use
the ALIAS directive instead.

Compiler Directives 7-29

FTN3000 66
Directive

The FTN3000 66 directive allows you to specify FORTRAN 66/V
features for compatibility with FORTRAN 77.

Syntax

$FTN3000_66

2
4LOGICALSIO

CHARS

3
5
�
ON

OFF

�

Default O�.

Location The FTN3000 66 directive can appear anywhere in a
program unit.

Toggling/
Duration

You cannot turn o� FTN3000 66 before an entry
point if FTN3000 66 has been turned on for the
primary entry point because multiple entries into
a routine must have the same character passing
method as the primary entry for that routine.

The following example shows an illegal use of
FTN3000 66:

$FTN3000_66 CHARS ON

SUBROUTINE routine1(a,b)

CHARACTER*10 a,b,c

WRITE(6,*) a

$FTN3000_66 CHARS OFF ! ILLEGAL

ENTRY ent1(b,c)

WRITE(6,*) b,c

END

FTN3000 66 CHARS When FORTRAN 77 passes character items as arguments to a
subroutine or function, the item is passed by descriptor. That
is, the item is passed with a byte address and a length by value.
Other languages, such as HP Pascal/iX and HP COBOL II/iX, pass
character items by reference without the length. If the FTN3000 66
CHARS directive is turned on in HP FORTRAN 77/iX, character
items are passed by reference without the length by value. This
makes character passing compatible between other languages and
FORTRAN 77.

When the FTN3000 66 directive is turned on, CHARACTER*(*)
types are only permitted in the main program.

7-30 Compiler Directives

FTN3000 66 IO The FTN3000 66 IO directive creates compatibility with FORTRAN
66/V �les. This compatibility is achieved by reading and writing
CHARACTER items in unformatted �les in two-byte blocks and by
performing multiple physical I/O operations for I/O lists that request
them.

When reading and writing CHARACTER items in unformatted �les
in two-byte blocks, each odd-length item is padded with a trailing
blank. For example, a CHARACTER*5 item is followed by a blank
before the next data item so that the following item will begin on an
even 16-bit boundary. The default does not leave any space between
data items in unformatted �les.

The following is an example of a program using the FTN3000 66
IO directive to write CHARACTER items in an unformatted �le in
two-byte blocks:

Example

$FTN3000_66 IO

CHARACTER CH*5, CH2

OPEN (1, FILE='MYFILE', STATUS='NEW', ACCESS='DIRECT',

> FORM='UNFORMATTED', RECL=8)

CH = "AZWXY"

CH2 = "B"

WRITE(1, REC=1)CH,CH2

STOP

END

The following command displays the binary output of the above
program in hexadecimal:

:fcopy from=MYFILE; to=; hex

MYFILE RECORD 0 (%0, #0)

Output:

A Z W X Y _ B _

0000: 415A 5758 5920 4220

The underscore represents the blank inserted by the FTN3000 66 IO
option to pad the �rst item (CH) to an even (16-bit) word boundary.

When performing multiple physical I/O operations for I/O lists
that request them, the I/O library performs unformatted sequential
READs and WRITEs of length longer than the �le's record length
to (or from) as many records as necessary. These records are used in
sequence until the entire list of elements has been transferred. The
default does not allow the I/O list items' combined length to exceed
the record length.

Note If the storage required exceeds the size of the record, transfer
continues into the next record. This usually leaves part of that next
record unused.

Compiler Directives 7-31

The following example shows the I/O library performing unformatted
sequential READs and WRITEs of length longer than the �le's
record length to (and from) as many records as necessary.

7-32 Compiler Directives

Example

$FTN3000_66 IO
PROGRAM sofx1c

INTEGER*4 iarr(256)

INTEGER*4 i4(18), i5, i6, i7

OPEN (12,file='rsofx1c', FORM='UNFORMATTED', ACCESS='DIRECT',

> RECL=74) ! create file with 18.5 32-bit words long

CLOSE (12, status='KEEP')

OPEN (12,FILE='rsofx1c', FORM='UNFORMATTED', ACCESS='SEQUENTIAL')

WRITE (12) iarr

REWIND 12

READ (12) i4, i5, i6, i7 !read multiple records in pieces

REWIND 12

READ (12) iarr ! full array read

END

The following �le description shows that the WRITE above has
written 14 physical records to hold the data in the array iarr.
Twelve bytes at the end of the last physical record are unused:

:listf rsofx1c,2

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

RSOFX1C 37W FB 14 4095 3 43 1 32''

FTN3000 66 LOGICALS FTN3000 66 LOGICALS causes the FORTRAN 77 compiler to
generate and use the same internal representations for logical data as
in FORTRAN 66/V. These speci�c internal representations are also
used by other non-HP machines. When FTN3000 66 LOGICALS
is turned on, LOGICAL*2 is represented by two whole bytes and
LOGICAL*4 is represented by four whole bytes. With FTN3000 66
logicals, -1 represents the value .TRUE. and zero represents the value
.FALSE..

In addition to allowing compatibility of logical data, FTN3000 66
LOGICALS allows logical data to be mixed with numeric types and
be treated as integers when they appear in a numeric context.

Compiler Directives 7-33

HP1000 Directive The HP1000 directive speci�es options for compatibility with
FORTRAN 7X, which is the version of FORTRAN 77 on the HP
1000 computer.

Syntax

$HP1000

2
664
ARRAYS

ALIGNMENT

STRING_MOVE

DO_LOOP

3
775
�
ON

OFF

�

Default O�.

Specify OFF or do not use the directive if your
program does not rely on speci�c data layout or the
ripple e�ect of the STRING MOVE option and
if it has no string array initializations in DATA
statements. If used with no other parameters, the
ON option turns on all the options.

Location The HP1000 directive must appear before any
nondirective statements in a program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

ARRAYS Option The ARRAYS option causes arrays to be handled as they are in
FORTRAN 7X. Using this option, you can reference an array element
without specifying all of the subscripts. The option also modi�es
the way that character strings are assigned to integer arrays in
DATA statements. Normally HP FORTRAN 77/iX requires that all
subscripts be speci�ed when accessing an array element in a program.
If the ARRAYS option is turned on, you can omit one or more of the
subscript speci�ers from the list. The �rst element number for that
dimension is assumed for omitted speci�ers.

For example, for the real array RARRAY(5,5,5):

R = RARRAY(4)

is equivalent to:

R = RARRAY(4,1,1)

and for the array IARRAY(10,-5:5):

IARRAY(1) = 10

is equivalent to:

IARRAY(1,-5) = 10

7-34 Compiler Directives

In HP FORTRAN 77/iX, when you initialize an integer array with
character strings, you must specify a separate string for each array
element. For example:

INTEGER iarray(5)

DATA iarray/'abcd','efgh','ijkl','mnop','qrst'/

With the ARRAYS option, you can initialize more than one array
element with a single string. For example, the following allows you to
initialize the entire preceding array:

INTEGER iarray(5)

DATA iarray/'abcdefghijklmnopqrst'/

If the string is not long enough to initialize the entire array, as many
elements as possible are initialized with the �rst string. If there is
another string, it is used starting with the next element. If there are
not enough strings, the remainder of the array is blank-�lled. For
example:

INTEGER iarray(10)

DATA iarray/'abcdef','ijkl','mnopqrstuvwxyz'/

results in:

iarray(1)= 'abcd'

iarray(2)= 'ef��'

iarray(3)= 'ijkl'

iarray(4)= 'mnop'

iarray(5)= 'qrst'

iarray(6)= 'uvwx'

iarray(7)= 'yz��'

iarray(8)= '����'

iarray(9)= '����'

iarray(10)='����'

(where each � represents a blank).

Compiler Directives 7-35

ALIGNMENT Option The ALIGNMENT option of the HP1000 directive aligns data
on 16-bit boundaries, rather than on the HP FORTRAN 77/iX
boundary formats shown in the following table:

Alignment HP1000 Alignment Format HP FORTRAN 77/HP-UX
Alignment Format

8-bit Character Character

16-bit LOGICAL*2, LOGICAL*4,
INTEGER*2, INTEGER*4,
REAL*4, REAL*8, REAL*16,
COMPLEX*8, COMPLEX*16

INTEGER*2, LOGICAL*2

32-bit LOGICAL*4, INTEGER*4,
REAL*4, COMPLEX*8

64-bit REAL*8, REAL*16,
COMPLEX*16

Use this option when you need the data layout speci�ed by either
EQUIVALENCE or COMMON statements to be exactly the same as
in a FORTRAN 77 (FORTRAN 7X) program, such as when calling
database intrinsics. Using the ALIGNMENT option may cause
degradation in run-time performance.

Exercise caution when changing the directive between program units
of a single program. In particular, mixing a speci�cation for HP1000
alignment and native alignment can produce unpredictable results.

7-36 Compiler Directives

STRING MOVE Option The STRING MOVE option causes assignments of character
variables to be done byte-by-byte, which creates a ripple e�ect when
the source and target are overlapped. For example,

CHARACTER*12 a

a(1:1) = '*'

a(2:12) = a(1:11)

results in a having the value:

'**��������

��'

if STRING MOVE is o�.

If STRING MOVE is on, the result in a is:

'************'

DO LOOP Option The DO LOOP option causes the compiler to allow the DO loop
control index to be modi�ed within the range of the loop, as for
FORTRAN 7X. Modi�cation of the DO loop index does not a�ect
the number of times the loop executes because the index value is
established when the loop is entered. For example, the loop in the
following program executes �ve times, even though the value of I is
modi�ed within the loop:

Example

$HP1000 DO_LOOP ON

PROGRAM showdo

DO i = 1,5 ! This loop will execute five times.

PRINT *, i

i = i + 25

END DO

END

Output:

1

27

53

79

105

Compiler Directives 7-37

HP3000 16 Directive The HP3000 16 directive:

allows MPE/iX programs to correctly access MPE V data �les that
contain oating point data

aligns noncharacter data on 16-bit boundaries and character data
on 8-bit boundaries, as on MPE V

performs character moves the same as on MPE V when there is an
overlapping character substring that should ripple across

Syntax

$HP3000_16

2
666664

ON

OFF

ALIGNMENT

REALS

STRING_MOVE

3
777775

Item Description Restrictions

ON Turns on ALIGNMENT,
REALS, and
STRING MOVE options.

None.

OFF Turns o� ALIGNMENT,
REALS, and
STRING MOVE options.

For accessing IEEE oating
point data with no
assumptions of MPE V data
layout and rippling
overlapping character
substrings.

ALIGNMENT Aligns noncharacter data on
16-bit boundaries.

Not for accessing MPE V
oating point numbers or
rippling overlapping
character substrings.

REALS For accessing MPE V
oating point numbers.

Makes no assumptions of
MPE V data alignment and
rippling overlapping
character substrings.

STRING_MOVE Performs a byte-by-byte
move of a character
substring when a character
substring is assigned to
another character substring
and the substrings overlap.

Makes no assumptions of
MPE V data alignment or
the format of the oating
point data.

7-38 Compiler Directives

MPE V and MPE/iX have di�erent data alignments, as summarized
in Table 7-3.

Table 7-3. Data Alignment on MPE V and MPE/iX

Alignment MPE V MPE/iX

8-bit CHARACTER CHARACTER

16-bit COMPLEX*8, COMPLEX*16
INTEGER*2, INTEGER*4
LOGICAL*2, LOGICAL*4
REAL*4, REAL*8, REAL*16

INTEGER*2
LOGICAL*2

32-bit COMPLEX*8
INTEGER*4
LOGICAL*4
REAL*4

64-bit COMPLEX*16
REAL*8, REAL*16

Default O�. Specify OFF or do not use the directive when
your program uses IEEE oating point data (as
opposed to MPE V oating point data), when your
program does not rely on MPE V data layout, and
when the ripple e�ect of overlapping character
substrings is not necessary.

Location The HP3000 16 directive must appear before any
nondirective statement in a program unit.

Toggling/
Duration

Exercise caution when changing the directive
between program units of a single program
because mixing MPE V and MPE/iX real numbers
gives incorrect results and using COMMON
and EQUIVALENCE variables might produce
unpredictable results if you mix MPE V and
MPE/iX alignment.

Impact on
Performance

Use the ON option only when your program accesses
MPE V oating point data, when you need data
aligned as on MPE V, and when you are assigning
a character substring to another character substring
and the substrings overlap by one character. Of
all the options, the ON option causes the greatest
degradation in program performance.

The STRING MOVE option has a performance
degradation on all character substring moves that
overlap because the compiler cannot generate code
for a fast move.

Additional Information

Compiler Directives 7-39

The ON option turns on the ALIGNMENT, REALS, and STRING_MOVE

options.

The ALIGNMENT option aligns data on 16-bit boundaries, rather than
on the MPE/iX boundaries shown in Table 7-3. Use this option
only if you require the preceding condition and if your program
does not access �les containing MPE V oating point numbers or
rippling overlapping character substrings is not necessary. If your
program accesses MPE V oating point numbers, or requires rippling
overlapping character substrings, use the REALS or STRING_MOVE
option. Use this option when you need to rely on EQUIVALENCE
and COMMON speci�cations for MPE data layout, as when calling
database intrinsics.

The REALS option reads, writes, and executes oating point numbers
in MPE V representation, rather than using IEEE oating point
standards (as used on MPE/iX). Use this option only if you require
the preceding condition and if your program makes no assumptions
on data alignment or rippling overlapping character substrings. If
you require 16-bit data alignment, use the ON or ALIGNMENT option.

The STRING_MOVE option performs a byte-by-byte move whenever a
character substring is assigned to another character substring and
the substrings overlap. Use this option if your program expects the
characters to be rippled across.

Example

.

.

CHARACTER*10 ch

.

.

.
ch = "* "

ch[2:10] = ch[1:9]

After the assignment on MPE V, ch contains the following:

On MPE/iX without using the STRING MOVE option, ch contains
the following:

**��������

where � represents a blank.

Refer to the HP FORTRAN 77/iX Programmer's Guide for more
details on this directive.

7-40 Compiler Directives

IF Directive The IF directive conditionally compiles blocks of source code.

Syntax

$IF (condition list)

condition list is a logical expression for conditional
compilation.

Default None.

Location The IF directive can appear anywhere
in the source code. It must be the only
directive that appears on the line.

Toggling/ Duration The IF directive remains in e�ect until
terminated by an ENDIF directive.

Additional Information

The condition list is interpreted as having identi�ers for operands
and .NOT., .AND., and .OR. for operators. The operator precedence
ranking is from .NOT.,highest, to .OR., lowest; this precedence can
be overridden with parentheses.

Directives used with IF are ELSE, ENDIF, and SET. The IF
directive has an optional ELSE block, and a required ENDIF that
delimits it. An identi�er is given a value with the SET compiler
directive.

The semantics of conditional compilation closely parallel those of the
IF statement. If the expression evaluates to true, the text between
the $IF and the next ENDIF or next ELSE is compiled. If the
expression evaluates to false, that text is treated as a comment.

IF directives can be nested to 16 levels. If a user nests further than
16 levels, an error message is issued and the code within the illegal
$IF block is not compiled.

There can be, at most, one ELSE corresponding to each IF.

The identi�ers in SET and IF compiler directives are in no way
related to FORTRAN variables in the source text. That is, if the
same variable name is used both as an identi�er for one of these
directives and elsewhere within a program, the one has no e�ect upon
the other.

Compiler Directives 7-41

Examples

$SET (DEBUG=.TRUE.,TOGGLE=.FALSE.)

$SET (SYSTEM1=.TRUE.)
.

.

.

$IF (DEBUG .AND. TOGGLE)

$IF (SYSTEM1)

$IF (.NOT. (DEBUG .AND. TOGGLE))

$IF (.TRUE.)

.

.

.

$ELSE

.

.

.

$ENDIF

$ENDIF

$ENDIF

$ENDIF

$IF (SYSTEM1 .OR. TOGGLE)

.

.

.

$ENDIF

.

.

.

7-42 Compiler Directives

INCLUDE Directive The INCLUDE directive includes the contents of a �le at the current
position in the source.

Syntax

$INCLUDE

�
'�lename'

"�lename"

�

�lename names a �le whose contents are to be included at
the current position in the source.

Default None.

Location The INCLUDE directive can appear anywhere
within a program unit.

The INCLUDE directive can also appear as
a statement starting in column seven, with
no initial ''$''. See \INCLUDE Statement
(Nonexecutable)" in Chapter 3 for a complete
description.

Additional Information

The �lename can be fully quali�ed by group and account names and
a lockword (a password associated with an individual �le). Uppercase
and lowercase letters are equivalent.

The compiler reads the designated �le until it encounters an EOF
marker. Then, the compiler resumes processing from the source line
after the INCLUDE directive. The compiler ignores any additional
directive listed on the same line as the INCLUDE directive.

Included code can itself contain additional INCLUDE directives, to a
maximum nesting level of eight.

Line numbering within the listing of an included �le begins with
one. Each line in the included �le has a plus sign to the left of the
line number. When the included �le listing ends, the include level
decreases appropriately and the previous line numbering resumes.

Example

$INCLUDE 'globf77'

Compiler Directives 7-43

INIT Directive The INIT directive turns on or o� the generation of the code that
initializes all variables for the program unit it immediately precedes.

Syntax

$INIT

�
ON

OFF

�

Default O�; no code to initialize variables for the next
program unit is generated.

Location The INIT directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

The INIT directive applies only to the program unit
that immediately follows it.

Additional Information

Arithmetic variables are initialized to zero, logical variables to false,
and character variables to all null characters.

Using this directive can decrease the portability of a FORTRAN 77
program.

7-44 Compiler Directives

LINES Directive The LINES directive sets the number of lines per page in the listing
�le to the given integer.

Syntax

$LINES number

number is an integer greater than or equal to 5, and less than
32768.

Default 56 lines per page.

Location The LINES directive can appear anywhere within the
program unit.

Toggling/
Duration

Applies until the next LINES directive or until the
end of the program.

Compiler Directives 7-45

LIST Directive The LIST directive turns on or o� inclusion of the source program
in the listing �le, starting with the line after the one containing the
option.

Syntax

$LIST

�
ON

OFF

�

ON The source program is included in the listing
program.

OFF Only diagnostics go into the list �le.

Other list directives such as CODE OFFSETS
and TABLES have no e�ect until LIST is turned
ON again.

Default On; the source program is included in the listing �le.

Location The LIST directive can appear anywhere within the
program unit.

Toggling/
Duration

Applies until the next LIST directive, if any, changes
it.

7-46 Compiler Directives

LIST CODE
Directive

The LIST CODE directive turns on or o� the generation of an
assembly listing. It is equivalent to the ASSEMBLY directive.

Syntax

$LIST_CODE

�
ON

OFF

�

Default O�; no assembly listing is generated.

Location The LIST CODE directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Once it has been turned on for a source �le, it cannot
be turned o�.

Additional Information

The listing generated is written to a temporary �le named
FTNASSM .

Compiler Directives 7-47

LITERAL ALIAS
Directive

The LITERAL ALIAS directive determines whether external names
appearing in the ALIAS directive and the EXTERNAL ALIAS
directive are to have their case shifted or left as is.

Syntax

$LITERAL_ALIAS

�
ON

OFF

�

ON Any external names in an ALIAS directive or an
EXTERNAL ALIAS directive are processed just
as they appear; that is, they are neither upshifted
or downshifted. This permits mixed-case external
names.

OFF External names are either upshifted or
downshifted, depending on the setting of the
UPPERCASE directive.

Default O�; external names are either upshifted or
downshifted, depending on the setting of the
UPPERCASE directive.

Location The LITERAL ALIAS directive must appear before
any nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

7-48 Compiler Directives

LOCALITY Directive The LOCALITY directive groups the generated code from a program
unit together in the same general memory area as other program
units having the same LOCALITY name.

Syntax

$LOCALITY

�
'name'

"name"

�

Default None; procedures that call each other are not
necessarily grouped in the same general memory
area.

Location The LOCALITY directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Impact on
Performance

This directive can improve run-time performance
because grouping procedures that frequently call each
other makes memory access more e�cient.

Compiler Directives 7-49

LONG Directive The LONG directive sets the default size for integer and logical data
types and constants to four bytes. The INTEGER and LOGICAL
type names are set equivalent to INTEGER*4 and LOGICAL*4,
respectively.

Syntax

$LONG
�
INTEGERS

�
INTEGERS Optional; this word has no e�ect.

Default LONG (4 bytes) if neither the LONG nor the
SHORT directive is given.

Location The LONG directive must appear before any
nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Cannot be changed after the appearance of
nondirective statements in a program unit.

7-50 Compiler Directives

LOWERCASE
Directive

The LOWERCASE directive turns on or o� shifting to lower case of
all FORTRAN external names. This directive does not a�ect the
external name of the ALIAS and EXTERNAL ALIAS directives or
intrinsic names if \$LITERAL ALIAS ON" has been speci�ed.

See \ALIAS Directive" and \LITERAL_ALIAS Directive".

Specifying $UPPERCASE ON (or $UPPERCASE) is equivalent to specifying
$LOWERCASE OFF.
Specifying $UPPERCASE OFF is equivalent to specifying $LOWERCASE ON

(or $LOWERCASE).

Syntax

$LOWERCASE

�
ON

OFF

�

Default On; all FORTRAN external names are shifted to
lowercase.

Location The LOWERCASE directive can appear anywhere
within the program unit.

Toggling/
Duration

Can be toggled with either another LOWERCASE
directive or with an EXTERNAL ALIAS directive.
(Note that the EXTERNAL ALIAS directive
cannot be used after the appearance of nondirective
statements in a program unit.)

If the LOWERCASE directive is toggled within a
program unit, the point of declaration (or the point
of �rst use if implicitly declared) determines the case
of external names.

Compiler Directives 7-51

MIXED FORMATS
Directive

The MIXED FORMATS directive allows you to cause a numeric
format descriptor of a type di�erent from the numeric list item to
override the data type of the list item.

Syntax

$MIXED_FORMATS

�
ON

OFF

�

Default O�.

Location The MIXED FORMATS directive can appear
anywhere in your program.

Toggling/
Duration

Remains in e�ect until another occurrence of the
MIXED FORMATS directive changes it.

Additional Information

Note The MIXED FORMATS directive is not recommended for general
use. It is an extension to the ANSI 77 standard, and programs using
it are not portable to systems without mixed formatting capability.
If list items and actual data types do not match, a oating-point
exception could occur.

When MIXED FORMATS is on, the type of the numeric format
descriptor in input or output overrides the type of the list item.
However, no type conversion is done on the list item. The example
below illustrates the e�ect of the MIXED FORMATS directive.

Example

PROGRAM mixfmts

$MIXED_FORMATS ON

INTEGER*4 i4

REAL*4 r4

CHARACTER*12 std, mixed

EQUIVALENCE (i4,r4)

C Integer type coercion

i4 = -12

100 FORMAT (I12)

WRITE (mixed,100) r4

WRITE (std,100) i4

IF (mixed .NE. std) STOP 'Failed 1'

C Real type coercion

r4 = 123.456

101 FORMAT (E12.3)

WRITE (std,101) r4

WRITE (mixed,101) i4

IF (mixed .NE. std) STOP 'Failed 2'

STOP 'Passed.'

7-52 Compiler Directives

END

Compiler Directives 7-53

NLS Directive The NLS (Native Language Support) directive supports special
processing to handle foreign language text and data.

Syntax

$NLS

�
LITERALS

COMPARE

��
ON

OFF

�

ON turns on both LITERALS and COMPARE.

OFF turns o� all NLS processing. By default, the
Native-Computer character set and collating
sequence is used.

LITERALS enables the handling of native language
characters in strings and comments during
compilation of a source program. Run-time
native language I/O is also enabled.

COMPARE enables all operators that deal with string
comparisons (LGE, LGT, LLE, LLT) to
compare string variables and string constants
using the collating sequence corresponding to
the speci�ed NLDATALANG JCW. Run-time
native language I/O is also enabled.

Default O�; the Native-Computer character set and collating
sequence is used.

Location The NLS directive must appear before any
nondirective statements in a program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Impact on
Performance

Using the LITERALS option decreases compile time
performance.

Additional Information

Note $NLS LITERALS replaces the NLS SOURCE compiler directive. Any
occurrences of $NLS_SOURCE in FORTRAN source programs should
be replaced with $NLS LITERALS.

To use the NLS directive, NLUSERLANG and NLDATALANG
must be set. NLDATALANG determines the language used for
string comparisons and scanning FORTRAN source programs.
NLUSERLANG determines the language used to output compiler
error messages. For example, to set NLDATALANG and
NLUSERLANG, specify the following:

:SETJCW NLDATALANG 221

:SETJCW NLUSERLANG 0

7-54 Compiler Directives

In the example above, 221 is the JCW value for Japanese and zero
is the JCW value of Native-Computer (the default value). Refer to
the Native Language Programmer's Guide for a complete list of JCW
values.

Examples

Following is a FORTRAN source �le called test:

$NLS ON

PROGRAM testnls

CHARACTER*10 st1,st2

st1 = 'coin'

st2 = 'change'

IF (LLT(st1,st2)) PRINT *,'This is the Spanish language.'

IF (LGT(st1,st2)) PRINT *,'This is the English language.'

STOP

END

Following are examples of setting the MPE JCWs for test, followed
by the output from the program for each setting:

:SETJCW NLUSERLANG 0 Tells the compiler to print compile-
time messages using the default mes-
sage catalog.

:SETJCW NLDATALANG 12 Tells the compiler to do lexical com-
parisons in Spanish and to expect
Spanish characters in the source �le.

:FTNiXLK TEST

:SAVE $OLDPASS,NLSPROG

:NLSPROG

Output:

This is the Spanish language.

:SETJCW NLDATALANG 0

:NLSPROG

Output:

This is the English language.

Note The Spanish alphabet has both the letters \c" and \ch". Because \c"
comes before \ch" in the Spanish alphabet, coin is considered to be
lexically less than change. In English, change is considered to be
lexically less than coin.

Compiler Directives 7-55

NLS SOURCE
Directive

The NLS SOURCE directive was replaced by NLS LITERALS. We
recommend that you replace all instances of NLS SOURCE with
NLS LITERALS.

7-56 Compiler Directives

NOSTANDARD
Directive

The NOSTANDARD directive speci�es options for compatibility with
industry standard non-HP FORTRAN 77 programs.

Syntax

$NOSTANDARD

2
66666664

CHARS

LOGICALS

IO

SYSTEM

INTRINSICS

OPEN

3
77777775

�
ON

OFF

�

Default O�.

If NOSTANDARD is speci�ed without options, all
options are ON.

Location The LOGICALS, SYSTEM, INTRINSICS, and
OPEN options must appear before any nondirective
statements in the program unit, including the
program head. However, the CHARS and IO options
are allowed anywhere in the program unit.

Toggling/
Duration

CHARS and IO apply until another NOSTANDARD
directive changes them.

CHARS Option By default, the compiler passes character items by descriptor.
That is, the address of the item is passed by reference immediately
followed by the length of the item passed by value. The CHARS
option causes the length parameter to be passed at the end of the
parameter list by value. This option is provided for migrating
programs that have character passing incompatibilities with HP
FORTRAN 77. The NOSTANDARD CHARS directive is allowed
anywhere in the program unit.

LOGICALS Option The LOGICALS option causes the compiler to treat logicals as two
whole bytes for LOGICAL*2 and four whole bytes for LOGICAL*4.
The value .TRUE. is represented by -1 and the value .FALSE. is
represented by zero. If this option is not speci�ed, by default HP
FORTRAN 77 uses only one byte to store the logical .TRUE. or
.FALSE. value, even if LOGICAL*2 or LOGICAL*4 is speci�ed.

Note You can speci�y LOGICAL or LOGICALS for this option.

Compiler Directives 7-57

IO Option When using character format descriptors A[w] or R[w] with integer
and real data types, the IO option causes data to be output
in reverse order, starting at the right and progressing left. For
more information, see \Character Format Descriptors (A, R)" in
Chapter 4. The NOSTANDARD IO option is allowed anywhere in
the program unit.

SYSTEM Option Several intrinsic functions are available through the NOSTANDARD
directive. They include:

DATE Returns a string in the form dd-mm-yy,
such as 15-09-88.

IDATE Returns 3 integer values representing
the current month, day, and year.

EXIT Terminates the program as if a STOP
statement without an argument has
been encountered.

RAN A random number generator of the
multiplicative congruential type that
returns a oating-point number in the
range between 0.0 and 1.0 exclusively.

SECNDS Returns the number of seconds elapsed
since midnight minus the number of
seconds passed as an argument.

TIME Returns a string in the form hh:mm:ss,
such as 22:10:30.

Note Functions RAN and SECNDS cannot be used with the $HP3000 16
ON directive. This directive causes the oating-point format to be
classic HP 3000 instead of IEEE, and will not be recognized by
these functions. The compiler attempts to �nd a compatibility mode
routine for these which does not exist.

For information on these intrinsics, see \FORTRAN Intrinsic
Functions and Subroutines" in Appendix B.

7-58 Compiler Directives

INTRINSICS Option This directive allows the 9000 Series 800 to return an INTEGER*2
when $SHORT is enabled, but an INTEGER*4 when $SHORT is not
enabled (like on the 9000 Series 300 and other vendors' FORTRAN
compilers).

INT

IFIX

IDINT

IQINT

IDNINT

IQNINT

MAX1

MIN1

ZEXT

OPEN Option The OPEN option allows multiple OPENs of the same �le with
di�erent unit numbers. By default, multiple OPENs of the same �le
cause a run time error.

$NOSTANDARD OPEN ON

program main

C connect DataFile to unit 10
OPEN(10,FILE='DataFile')

C connect DataFile to unit 20 for reading only

C Note: without NOSTANDARD OPEN ON, this would

C cause an error at runtime

OPEN(20,FILE='DataFile',READONLY)

STOP

END

Compiler Directives 7-59

ONETRIP Directive The ONETRIP directive turns on or o� the requirement that the
body of each DO loop (other than DO WHILE loops) is executed at
least once, in compliance with the previous ANSI 66 standard.

Syntax

$ONETRIP

�
ON

OFF

�

Default O�; individual DO loop bodies are not required to
execute at least once.

Location The ONETRIP directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

7-60 Compiler Directives

OPTIMIZE Directive The OPTIMIZE directive sets up optimizer options that can improve
performance.

Syntax

$OPTIMIZE

2
6666666666666666664

LEVEL1

LEVEL2

LEVEL2_MIN

LEVEL2_MAX

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_FLOATING_INVARIANT

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_SHARED_COMMON_PARMS

ASSUME_NO_SIDE_EFFECTS

ASSUME_PARM_TYPES_MATCHED

LOOP_UNROLL
�
COPIES=n SIZE=n STATISTICS

�

3
7777777777777777775

�
ON

OFF

�

ON Alone, speci�es level 2
optimization.

With a preceding option, sets
that option on.

OFF Alone, speci�es level 0
optimization. This is the
default.

With a preceding option, sets
that option o�.

LEVEL1 Speci�es level 1 optimization.

LEVEL2 Speci�es level 2 optimization,
with the following ASSUME

settings:

ASSUME_NO_EXTERNAL_PARMS ON

ASSUME_NO_FLOATING_INVARIANT ON

ASSUME_NO_PARAMETER_OVERLAPS ON

ASSUME_NO_SHARED_COMMON_PARMS ON

ASSUME_NO_SIDE EFFECTS OFF

ASSUME_PARM_TYPES_MATCHED ON

LOOP_UNROLL ON

LEVEL2_MIN Speci�es level 2 optimization
with all the ASSUME settings OFF.

LEVEL2_MAX Speci�es level 2 optimization
with all the ASSUME settings ON.

Compiler Directives 7-61

ASSUME_NO_EXTERNAL_PARMS Assumes that none of the
parameters passed to the current
procedure are from an external
space, that is, di�erent from
the user's own data space.
Parameters can come from
another space if they come from
operating system space or if they
are in a space shared by other
users.

ASSUME_NO_FLOATING_INVARIANT Assumes that no oating
invariant operations are executed
conditionally with loops.

ASSUME_NO_PARAMETER_OVERLAPS Assumes that no actual
parameters passed to a
procedure overlap each other.

ASSUME_NO_SHARED_COMMON_PARMS This directive should be ON when
all of the following are true:

The parameter passed to the
current procedure is part of a
common block used by that
procedure.
The parameter is named
di�erently than the variable
name it has in the common
block.
The parameter is reassigned
with the same value within the
procedure.

ASSUME_NO_SIDE_EFFECTS Assumes that the current
procedure changes only local
variables. It does not change any
variables in COMMON, nor does
it change parameters.

ASSUME_PARM_TYPES_MATCHED Assumes that all of the actual
parameters passed were the type
expected by this subroutine.

LOOP_UNROLL Unrolls DO loops having 60
or less operations four times.
For further details, see \Loop
Unrolling" in this chapter. The
default is ON.

There are �ve levels of optimization:

Level 0 Does no optimizing. This is obtained by
specifying $OPTIMIZE OFF.

7-62 Compiler Directives

Level 1 Optimizes only within each basic block. This is
obtained by specifying $OPTIMIZE LEVEL1 ON.

Level 2 minimum Optimizes within each procedure with no
assumptions on interactions of procedures. That
is, the compiler assumes nothing, making this the
most conservative level 2 optimization. This level
is obtained by specifying $OPTIMIZE LEVEL2_MIN

ON within each procedure.

Level 2 normal Optimizes within each procedure with normal
assumptions on interactions of procedures set as
described earlier. In general, these settings are
appropriate for most FORTRAN programs. This
level is obtained by specifying $OPTIMIZE LEVEL2

ON, $OPTIMIZE ON or just $OPTIMIZE within each
procedure.

Level 2 maximum Optimizes within each procedure with all
assumptions on interactions of procedures set to
OFF. This is obtained by specifying $OPTIMIZE

LEVEL2_MAX ON within each procedure.

Compiler Directives 7-63

A basic block is a set of instructions to be executed in sequence, with
one entrance, the �rst instruction, and one exit, the last; the block
contains no branches.

Parameters can come from another space if they come from the
operating system or if they are in a space shared by other users.

The following options are meaningful only when the compiler is
performing level 2 optimization, that is, only if the option ON,
LEVEL2, LEVEL2_MIN, or LEVEL2_MAX has been speci�ed:

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_SIDE_EFFECTS

ASSUME_PARM_TYPES_MATCHED

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_SHARED_COMMON_PARMS

ASSUME_NO_FLOATING_INVARIANT

LOOP_UNROLL

Default O�.

Location The following OPTIMIZE options must appear
before any nondirective statements in the program
unit:

OFF

ON

LEVEL1

LEVEL2

LEVEL2_MIN

LEVEL2_MAX

ASSUME_NO_PARAMETER_OVERLAPS

ASSUME_NO_EXTERNAL_PARMS

ASSUME_NO_SHARED_COMMON_PARMS

ASSUME_NO_FLOATING_INVARIANT

These options can appear anywhere within a
program unit:

ASSUME_NO_SIDE_EFFECTS

ASSUME_PARM_TYPES_MATCHED

LOOP_UNROLL

Toggling/
Duration

The optimize options remain in e�ect until they are
changed by another OPTIMIZE directive.

Impact on
Performance

This directive can improve performance. Loop
unrolling, which usually improves performance, can
occasionally degrade performance because of large
loops (register spilling) and code expansion (crossing
the page boundary causing cache misses and TLB
misses.)

7-64 Compiler Directives

Flagging Uninitialized
Variables

When the compiler is performing level 2 optimization, it will detect
any uninitialized non-static simple local variables. However, it
will not detect uninitialized common variables, static variables, or
variables of character and complex type. For example:

$OPTIMIZE

FUNCTION func(type)

COMMON /a/comvar

SAVE statvar
REAL foo,type

type = 10.2

foo = comvar

foo = statvar

foo = typo

RETURN

END

The variable typo is agged as an uninitialized variable because
it was typed incorrectly and, therefore, not initialized. However,
statvar and comvar are not agged because of their global and
static characteristics. A warning message will be issued when an
uninitialized variable is detected.

Compiler Directives 7-65

Example

C Start with minimum level 2 optimization.

$OPTIMIZE LEVEL2_MIN

PROGRAM FEQ7

INTEGER num(10), ans, calculate

CHARACTER*2 option(10)

C

C For the next two calls, the parameter type declarations are the same in

C the main program and the subroutine or function. Therefore, we can

C further optimize the program by setting the following optimizer option.

$OPTIMIZE ASSUME_PARM_TYPES_MATCHED ON

call getnum_option(num,option)

C

C For the next call, the function will not change the parameter value or
C any global variables in COMMON blocks. Therefore, we can further

C optimize the program by setting the following optimizer option.

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS ON

ans= calculate(num,option)

$OPTIMIZE ASSUME_NO_SIDE_EFFECTS OFF

WRITE(6,*) 'Result = ',ans

END

C

C For the next subroutine, we know that the actual parameters passed to

C this subroutine are not overlapped with each other, from a shared

C common block, nor from another space different from the user's own

C program, thus we can further optimize the program by setting the

C following optimizer options.

$OPTIMIZE ASSUME_NO_PARAMETER_OVERLAPS ON

$OPTIMIZE ASSUME_NO_EXTERNAL PARMS ON

$OPTIMIZE ASSUME_NO_SHARED_COMMON PARMS ON

SUBROUTINE getnum_option(value,operation)

INTEGER value(10)

CHARACTER*2 operation(10)

DO 10 i = 1,10

20 WRITE(6,*) 'Please input operation type and integer value :'

READ(5,*) operation(i),value(i)

IF (operation(i).EQ.' ') GOTO 30

IF ((operation(i).NE.'**').AND.

/ (operation(i).NE.'*').AND.
/ (operation(i).NE.'/').AND.

/ (operation(i).NE.'-').AND.

/ (operation(i).NE.'+')) GOTO 20

10 CONTINUE

30 RETURN

END

C

7-66 Compiler Directives

C For the next subroutine, we know that the actual parameters passed to

C this subroutine are not overlapped with each other, not from

C external space, nor from a shared common block. We can thus leave the
C ASSUME_NO_PARAMETER_OVERLAPS, ASSUME_NO_EXTERNAL_PARMS, and

C ASSUME_NO_SHARED_COMMON_PARMS settings ON.

C

FUNCTION calculate(value,operation)

INTEGER value(10),calculate,ans

CHARACTER*2 operation(10)

ans = 0

DO 10 i = 1,10

IF (operation(i).EQ.' ') GOTO 30

IF (operation(i).EQ.'**') THEN

ans = ans ** value(i)

ELSE IF (operation(i).EQ.'*') THEN

ans = ans * value(i)

ELSE IF (operation(i).EQ.'/') THEN

ans = ans / value(i)

ELSE IF (operation(i).EQ.'-') THEN

ans = ans - value(i)

ELSE IF (operation(i).EQ.'+') THEN

ans = ans + value(i)

ENDIF

10 CONTINUE

30 calculate = ans

RETURN

END

Compiler Directives 7-67

Loop Unrolling

$OPTIMIZE LOOP_UNROLL

2
66664

ON

OFF

COPIES = n

,SIZE = n

STATISTICS

3
77775

ON Turns on loop unrolling. ON is the default at level 2.

OFF Turns o� loop unrolling.

COPIES = n Tells the compiler to unroll the loop n times. The
default is four times.

SIZE = n Tells the compiler to unroll the loops that have less
than n operations. The default is 60 operations.

STATISTICS Tells the compiler to give statistics about the
unrolled loops.

Limits on Use

DO loops at level 2 are unrolled four times by default. If the loop
limit is either not known at compile time or is less than four times,
an extra copy of the DO loop body is generated. This is called
unrolling the loop four or more times.

Although loop unrolling optimization usually increases performance,
it can occasionally degrade performance because of large loops
(register spilling) and code expansion (crossing the page boundary
causing cache misses and TLB misses.) When you encounter these
circumstances, you can turn o� loop unrolling locally by using the
compiler directive. Use the compiler directive $OPTIMIZE to specify
optimization level in the source and for changing the assumptions
made by the compiler. You can use a suboption LOOP UNROLL to
control some constraints:

$OPTIMIZE LOOP_UNROLL

You can also use the LOOP UNROLL suboption on the $OPTIMIZE
directive to change the DO LOOP constraints for unrolling
dynamically:

You can unroll a DO loop more than four times.

You can force a DO loop to unroll despite its large size.

You can �nd the reason why a DO loop is not unrolled.

The highest level of optimization must be on for LOOP UNROLL to
work. Otherwise, LOOP UNROLL is ignored. If LOOP UNROLL
is ignored, but STATISTICS has been speci�ed, you will still get the
DO loop statistics.

7-68 Compiler Directives

Note The number of operations reported by STATISTICS is approximate.
Each assignment, arithmetic operation, and logical operation counts
as an operation. Each subscript of a subscripted variable counts as a
separate operation.

Compiler Directives 7-69

To unroll the loop two times instead of four times (which is the
default), use

$OPTIMIZE LOOP_UNROLL COPIES=2

To unroll a DO loop that is larger than the default, use

$OPTIMIZE LOOP_UNROLL COPIES=2, SIZE=500

substituting an appropriate size for the digit 500.

Example

C Example to illustrate the use of LOOP_UNROLL

$OPTIMIZE ON

PROGRAM UNROLL_EXAMPLE

DIMENSION A(10), B(10,10)

DIMENSION X(10,10,10), Y(10,10,10), Z(10,10,10)

. .

. .

C The inner loop has only one statement. The loop can be unrolled

C 10 times avoiding a branch and an extra copy of the loop. A straight

C line code is generated for the inner loop.

$OPTIMIZE LOOP_UNROLL COPIES=10

DO 20 J=1,10

DO 10 I=1,10

A(I) = A(I) + B(I,J)

10 CONTINUE

20 CONTINUE

C Change COPIES back to default.

$OPTIMIZE LOOP_UNROLL COPIES=4

. .

. .

C This DO loop has more than 60 operations.

C This does not get unrolled by default. The LOOP_UNROLL option is used

C to unroll it two times by increasing the SIZE to a large value.

$OPTIMIZE LOOP_UNROLL COPIES=2, SIZE=200

DO 40 I=1,10

DO 30 J=1,20

V1 = X(I,J+1,K) - X(I,J-1,K)

V2 = Y(I,J+1,K) - Y(I,J-1,K)

V3 = Z(I,J+1,K) - Z(I,J-1,K)

X(I,J,K) = X(I,J,K) + A11*V1 + A2*V2 +

* A3*V3 + S*(Y(I+1,J,K)-2.0*X(I,J,K)+X(I-1,J,K))

Y(I,J,K) = Y(I,J,K) + A1*V1 + A2*V2 +

* A3*V3 + S*(Y(I+1,J,K)-2.0*Y(I,J,K)+Y(I-1,J,K))

7-70 Compiler Directives

Z(I,J,K) = Z(I,J,K) + A1*V1 + A2*V2 +

* A3*V3 + S*(Z(I+1,J,K)-2.0*Z(I,J,K)+Z(I-1,J,K))
30 CONTINUE

40 CONTINUE

C Change the options back to the default values.

$OPTIMIZE LOOP_UNROLL COPIES=4, SIZE=60

. .

. .

STOP

END

Compiler Directives 7-71

PAGE Directive The PAGE directive sends a form feed to the list �le or device, which
causes a skip to a new page before continuing with the program
listing.

Syntax

$PAGE

Default None.

Location The PAGE directive can appear anywhere within the
program unit.

Toggling/
Duration

Cannot be toggled.

Page Eject with
Control-L

A control-L (ASCII 12) in column 1 of any source line has the
same e�ect as if the line were preceded by the PAGE directive; the
compiler removes the control-L from the listing.

If a control-L is found anywhere else on a source line, it is treated
like a blank and remains in the program listing. Its presence may
a�ect an output device that displays the listing �le.

7-72 Compiler Directives

PAGEWIDTH
Directive

The PAGEWIDTH directive allows you to specify the length of
output lines in the listing �le.

Syntax

$PAGEWIDTH n

n is an integer constant from 79 to 150.

Default 80.

Values outside of this range will cause a warning and
the value will be ignored. Output lines longer than n
are broken into multiple lines as necessary so that no
line has more than n columns of data on the listing
�le. The value of n does not include any appended
newline characters used to break the line.

Location May occur anywhere within a program.

Toggling/
Duration

Applies until another PAGEWIDTH directive is
encountered.

Compiler Directives 7-73

POSTPEND
Directive

The POSTPEND Directive allows C programmers to access
FORTRAN routines and data as per BSD programming standards.

syntax

$POSTPEND

�
ON

OFF

�

Default O�.

Location This directive must appear before any nondirective
statement in a program unit, including the program
head.

Other Information

The $POSTPEND directive postpends an underbar to the end of the
names of references to user declared routines, declarations of user
routines and references and declarations of user declared COMMON
blocks.

External names de�ned by the ALIAS or EXTERNAL ALIAS
directive are not a�ected by the POSTPEND directive and will
not have an underbar postpended to them even if the POSTPEND
directive is on.

In the following example, a FORTRAN 77 subprogram �le has the
POSTPEND directive on and declares a function called ftnsub which
adds two numbers and returns the result. A C program �le calls the
FORTRAN 77 subroutine ftnsub by referring to ftnsub.

Example

FORTRAN 77 File:

$POSTPEND ON

SUBROUTINE ftnsub()

PRINT *, "In FORTRAN routine ftnsub."

RETURN

END

C File:

main()
{

ftnsub_(); /* The call to ftnsub_ is resolved to the FORTRAN 77 routine ftnsub.*/

}

7-74 Compiler Directives

RANGE Directive The RANGE directive turns on or o� compile-time bounds checking
for:

subscript and substring expressions

bit-manipulation intrinsic functions

DO loop increment counts that are not equal to zero

assigned GOTOs

Range checking is not performed on the �nal dimension of
assumed-sized arrays.

Syntax

$RANGE

�
ON

OFF

�

Default O�; no compile-time bounds checking for subscript
and substring expressions, bit-manipulation intrinsic
functions, DO loop increment counts that are not
equal to zero, and assigned GOTOs is done.

Location The RANGE directive can appear anywhere within
the program unit.

Toggling/
Duration

Applies until another RANGE directive is
encountered.

Compiler Directives 7-75

RLFILE Directive This directive causes each program unit to be compiled into its own
object module.

Syntax

$RLFILE

Default None; the compiler creates a relocatable object �le
containing one module for all procedures.

Location The RLFILE directive must occur before any
nondirective statement in the program unit,
including the program head.

Impact on
Performance

This directive results in less e�cient use of library
space than compiling each procedure individually
from separate source �les because, for each
procedure in the source program �le, a module
is either added or updated (if it already exists)
in a relocatable library. (Refer to the HP Link
Editor/iX Reference Manual for more information on
relocatable libraries.) This directive puts additional
information into the object �le (of type NMRL), thus
signi�cantly increasing the object �le size.

Additional Information

Each program unit (identi�ed by a PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statement) is compiled into its own
object module and placed into a �le of type NMRL. The default
�le name is $OLDPASS. In subsequent compilations into the same
RL �le, program units will replace corresponding object modules
of the same name. This functionality allows you to add and delete
entries on the program unit level (versus module level) using the Link
Editor.

This directive provides the same functionality available with
FORTRAN 77/V when doing multiple compiles into the same USL
�le.

7-76 Compiler Directives

RLINIT Directive This directive causes the compiler to initialize the RL �le to empty
(thus deleting all object modules) before placing any object code into
it. This occurs before compilation begins. This directive provides the
same functionality available with USLINIT in FORTRAN 77/V.

Syntax

$RLINIT

Default None. If the RLINIT directive is not used and an RL
�le is the compilation target, all object modules with
entry points duplicated in the current compilation
unit are replaced; other object modules are then left
intact.

If the RLINIT directive is used without the
RLFILE directive, all program units in the current
compilation are compiled into a single object module.
If the speci�ed target does not exist, a �le of type
NMRL is created.

Location The RLINIT directive must occur before any
nondirective statements in the program.

Compiler Directives 7-77

SAVE LOCALS
Directive

The SAVE LOCALS directive automatically saves any local
variables encountered. This is the same as specifying SAVE in each
subprogram of each source �le. This directive forces static storage for
all local variables in order to provide a convenient path for importing
FORTRAN 66 and 77 programs that were written to depend on
static allocation of memory (that is, variables retaining their values
between invocations of the respective program units).

Syntax

$SAVE_LOCALS

�
ON

OFF

�

Default O�; local variables are not automatically saved.

Location The SAVE LOCALS directive must appear before
any nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in the program unit.

7-78 Compiler Directives

SEGMENT Directive This directive, included for compatibility with programs in earlier
versions of FORTRAN, is the same as the LOCALITY directive. The
SEGMENT directive produces the warning \SEGMENT has been
mapped to LOCALITY on this operating system."

Compiler Directives 7-79

SET Directive The SET directive assigns values to identi�ers used in IF directives.

Syntax

$SET (ag1 =

�
.TRUE.

.FALSE.

��
, ag2 =

�
.TRUE.

.FALSE.

���
...

�
)

ag is one or more identi�ers given logical constant
values.

The identi�ers in SET and IF compiler directives
are in no way related to FORTRAN variables in the
source text. That is, if the same variable name is
used both as an identi�er for one of these directives
and elsewhere within a program, the one has no
e�ect upon the other.

Default None.

Location The SET directive can appear anywhere within a
program unit.

Toggling/
Duration

The identi�er retains its value until changed by
another SET directive.

Examples

$SET (TOGGLE=.TRUE.,DEBUG=.FALSE.)

$SET (SYSTEM1=.TRUE.)

7-80 Compiler Directives

SHORT Directive The SHORT directive sets the default size for integer and logical data
types and constants to two bytes. The INTEGER and LOGICAL
type names are set equivalent to INTEGER*2 and LOGICAL*2,
respectively.

Syntax

$SHORT
�
INTEGERS

�
The keyword INTEGERS in the directive is optional and has no
e�ect.

Default Long (4 bytes) if neither the LONG nor the SHORT
directive is given.

Location The SHORT directive must appear before any
nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in the program unit.

Compiler Directives 7-81

STANDARD LEVEL
Directive

The STANDARD LEVEL directive sets the level of syntax that the
compiler processes routinely.

Syntax

$STANDARD_LEVEL

8<
:

ANSI

HP

SYSTEM

9=
;

If the compiler encounters a FORTRAN language feature not legal at
the speci�ed level, it issues a warning message on the listing and then
compiles the feature normally.

ANSI refers to the ANSI 77 FORTRAN standard
(ANSI X3.9-1978). Specifying the ANSI level is
semantically equivalent to specifying $ANSI ON.
This level has the fewest language features of
the three. Warnings are given for any non-ANSI
features.

HP the default, indicates Hewlett-Packard Standard
FORTRAN (FORTRAN 77). This level allows
more language features than the ANSI level and
includes the MIL-STD 1753 extensions. Warnings
are given for system-speci�c features only.

SYSTEM indicates FORTRAN 77 plus additional system
dependent features added to the language. This
level has the most language features of the three.
No warnings are given for nonstandard features.

Default HP; allows MIL-STD 1753 extensions.

Location STANDARD LEVEL must appear before any
nondirective statement in a program unit, including
the program head.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Example

$STANDARD_LEVEL HP

7-82 Compiler Directives

SUBTITLE Directive The SUBTITLE directive lists the subtitle string on the second line
of each page of the program listing following the appearance of the
directive in the source code.

Syntax

$SUBTITLE

�
'subtitle string'

"subtitle string"

�

Default None; no subtitle string is listed.

If the subtitle string is longer than 72 characters, it is
truncated to 72.

Location The SUBTITLE directive can appear anywhere
within the program unit.

Toggling/
Duration

Applies until another SUBTITLE directive is
encountered.

Example

$SUBTITLE 'Assigned GOTO''s or, The Joy of FORTRAN'

Compiler Directives 7-83

SYMDEBUG
Directive

The SYMDEBUG directive causes the compiler to include in the
object �le the information needed by a symbolic debugger.

Syntax

$SYMDEBUG

�
XDB

TOOLSET

� �
ON

OFF

�

$SYMDEBUG ON (or $SYMDEBUG or $SYMDEBUG TOOLSET) the
compiler places debug information into the object
�le for HP Toolset/iX to use.

$SYMDEBUG XDB

ON

(or $SYMDEBUG XDB) the compiler places
xdb-speci�c information into the object �le for
xdb to use.

Default O�; no symbolic debugger information is included in
the object �le.

Location The SYMDEBUG directive must appear before
any nondirective statements in the program unit,
including the program head.

Toggling/
Duration

Symbolic debugging information continues to be
generated for all program units until $SYMDEBUG OFF

is encountered.

Warning The SYMDEBUG directive cannot be used on optimized code. If the

SYMDEBUG directive is used with the OPTIMIZE directive, a warning

is issued and the OPTIMIZE directive is ignored.

7-84 Compiler Directives

SYMTABLE Directive The SYMTABLE directive, included for compatibility with programs
in earlier versions of FORTRAN, is the same as the TABLES
directive. The symbol table information is printed even if an error
occurs at compile time.

Syntax

$SYMTABLE

�
ON

OFF

�

Default O�.

Location The SYMTABLE directive must precede any
nondirective statements in a program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Example

0 1 $SYMTABLE ON

1 2 PROGRAM TEST

2 3 INTEGER I,J(20)

3 4 CHARACTER*30 NAME

4 5 COMMON /COM1/ I

5 6 NAME = 'JOE SMITH'

6 7 DO 100 ,I=1,20

7 8 1 J(I) = I

8 9 1 100 CONTINUE

9 10 CALL ROUTINE1

10 11 END

0 12

Name Class Type Offset Location

---- ----- ---- ------ --------

/COM/ Common

I Variable Integer*4 COM+0 /COM1/

J Array (1 Dim) Integer*4 SP -160 Local
NAME Variable Character*30 SP -80 Local

routine1 Subroutine

test Program

100 Stmt Label Executable 8

1 13 SUBROUTINE ROUTINE1

2 14 WRITE(6,*) 'END OF TEST'

3 15 END

Compiler Directives 7-85

Name Class Type Offset Location

---- ----- ---- ------ --------

routine1 Subroutine

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

7-86 Compiler Directives

SYSINTR Directive The SYSINTR directive permits you to specify a Pascal intrinsic
�le to be searched for a subroutine or function declared with the
SYSTEM INTRINSIC directive.

Syntax

$SYSINTR

�
'sysintr �lename'

"sysintr �lename"

�

sysintr �lename is the name of a Pascal intrinsic �le.

Default SYSINTR.PUB.SYS will be the Pascal intrinsic �le
searched.

Location The SYSINTR directive can appear anywhere in a
program.

Toggling/
Duration

A �le speci�ed in a SYSINTR directive remains in
e�ect until SYSINTR appears again.

The SYSINTR directive is not in e�ect until
speci�ed, and it remains in e�ect until another
SYSINTR directive appears.

Additional Information

You can provide a complete pathname for sysintr �lename.

The MPE/iX �le SYSINTR.PUB.SYS contains information about
the attributes of subprograms. These subprograms are usually
user-callable system subprograms, such as FOPEN. All intrinsics
mentioned in the MPE/iX manuals must be accessed through
this facility. The information about a particular subprogram
includes such items as the number and type of parameters,
whether parameters are called by value, reference, ANYVAR,
UNCHECKABLE ANYVAR, or READONLY, and whether the
subprogram has DEFAULT PARMS parameters, EXTENSIBLE
parameters, or both. See the section \SYSTEM INTRINSIC
Statement (Nonexecutable)" found in Chapter 3 of this reference
manual for an explanation of the preceding terms. FORTRAN reads
the SYSINTR �le for specially designated subprograms and generates
the indicated code sequences.

System intrinsic �les can be created with Pascal by using Pascal's
BUILDINT compiler directive, described in the HP Pascal
Programmer's Guide.

Compiler Directives 7-87

SYSTEM INTRINSIC
Directive

The SYSTEM INTRINSIC directive functions exactly the same as
the SYSTEM INTRINSIC statement.

Syntax

$SYSTEM INTRINSIC intrinsic name
�
,intrinsic name

��
,...

�
intrinsic name is the name of a system intrinsic.

Default None.

Location The SYSTEM INTRINSIC directive must appear
before the �rst nondirective statement of the
program unit in which it is to start taking e�ect.

The SYSTEM INTRINSIC directive must be the
only directive on a line.

Toggling/
Duration

Information associated with the SYSTEM
INTRINSIC directive is retained across all program
units in the �le following the speci�cation, while the
SYSTEM INTRINSIC statement is in e�ect only for
the program unit in which it is declared. See System
Intrinsic Statement.

7-88 Compiler Directives

TABLES Directive The TABLES directive turns on or o� the symbol table information
in the listing �le. The symbol table information is printed even if an
error occurs at compile time.

Syntax

$TABLES

�
ON

OFF

�

Default O�; no symbol table information is included in the
listing �le.

Location The TABLES directive must appear before any
nondirective statements in the program unit.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in a program unit.

Example

0 1 $TABLES ON

1 2 PROGRAM TEST

2 3 INTEGER I,J(20)

3 4 CHARACTER*30 NAME

4 5 COMMON /COM1/ I

5 6 NAME = 'JOE SMITH'

6 7 DO 100 ,I=1,20

7 8 1 J(I) = I

8 9 1 100 CONTINUE

9 10 CALL ROUTINE1

10 11 END

0 12

Name Class Type Offset Location

---- ----- ---- ------ --------

/COM/ Common

I Variable Integer*4 COM+0 /COM1/

J Array (1 Dim) Integer*4 SP -160 Local
NAME Variable Character*30 SP -80 Local

routine1 Subroutine

test Program

100 Stmt Label Executable 8

1 13 SUBROUTINE ROUTINE1

2 14 WRITE(6,*) 'END OF TEST'

3 15 END

Compiler Directives 7-89

Name Class Type Offset Location

---- ----- ---- ------ --------

routine1 Subroutine

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

7-90 Compiler Directives

TITLE Directive The TITLE directive lists the title string at the top of each page of
output following the appearance of the directive in the source code.

If the title string is longer than 72 characters, it is truncated to 72.

Syntax

$TITLE

�
'title string'

"title string"

�

Default None; no title string is listed at the top of each page
of output.

Location The TITLE directive can appear anywhere within
the program unit.

Toggling/
Duration

The TITLE directive remains in e�ect until another
TITLE directive is encounters.

Example

$TITLE 'Optimization of CONTINUE statements'

Compiler Directives 7-91

UPPERCASE
Directive

The UPPERCASE directive turns on or o� shifting to upper case of
all FORTRAN external names. This directive does not a�ect the
external name of the ALIAS and EXTERNAL ALIAS directives
or intrinsic names if $LITERAL_ALIAS ON has been speci�ed. See
\ALIAS Directive" and \LITERAL_ALIAS Directive".

Specifying $LOWERCASE ON (or $LOWERCASE) is equivalent to specifying
$UPPERCASE OFF.
Specifying $LOWERCASE OFF is equivalent to specifying $UPPERCASE ON

(or $UPPERCASE).

Syntax

$UPPERCASE

�
ON

OFF

�

Default O�; external names are not shifted to upper case.

Location The UPPERCASE directive can appear anywhere
within the program unit.

Toggling/
Duration

The UPPERCASE directive remains in e�ect until
either a LOWERCASE or another UPPERCASE
directive is encountered.

If the UPPERCASE directive is toggled within a program unit, the
point of declaration (or the point of �rst use if implicitly declared)
determines the case of external names.

7-92 Compiler Directives

VERSION Directive The VERSION directive inserts a string speci�ed by the user into the
auxiliary record header of the executable �le, for purposes of version
identi�cation.

If the version string is longer than 72 characters, it is truncated to
72.

Syntax

$VERSION

�
'version id'

"version id"

�

Default None; nothing is inserted.

Location The VERSION directive must appear before any
nondirective statement in a program unit, including
the program head.

Toggling/
Duration

The VERSION directive must be speci�ed for each
program unit within which it is to take e�ect.

Compiler Directives 7-93

WARNINGS
Directive

The WARNINGS directive turns on or o� the output of warnings.

Syntax

$WARNINGS

�
ON

OFF

�

Default On; warnings are output.

Location The WARNINGS directive can appear anywhere
within the program unit.

Toggling/
Duration

The WARNINGS directive remains in e�ect until
another WARNINGS directive is encountered.

7-94 Compiler Directives

XREF Directive The XREF directive produces a cross reference listing of a program
unit. It is equivalent to the CROSSREF directive.

Syntax

$XREF

�
ON

OFF

�

Default O�; no cross reference listing is produced.

Location The XREF directive must appear before any
nondirective statements in the program unit and
it must precede an executable program unit like
PROGRAM, FUNCTION, or SUBROUTINE.

Toggling/
Duration

Cannot be toggled after the appearance of
nondirective statements in the program unit.

Example

The following is a sample program using the XREF directive.

1 $XREF

2 INTEGER FUNCTION icp(op)

3 COMMON /chars/ iblnk,ibkslsh,iequal,irparen,ilparen

4 1 icomma,iperiod,iplus,iminus,isemi,idollar,ileta,iletz

5 C ...

6 C ... returns incoming priority of op

7 INTEGER op

8 INTEGER legal(34)

9 data legal /2h(,2h+ ,2h- ,2h* ,2h/ ,2h^ ,2h-1,2h-2,

10 1 2h-3,2h-4,2h-5,2h-6,2h-7,2h-8,2h-9,2h10,

11 2 2h11,2h12,2h13,2h14,2h15,2h16,2h17,2h18,

12 3 2h19,2h20,2h21,2h22,2h23,2h24,2h25,2h26,

13 4 2h27,2h) /

14 icp=-1

15 DO 20 i=1,34

16 IF (op .EQ. legal(i)) GO TO 30

17 20 CONTINUE

18 C ...
19 C ... illegal op to icp

20 CALL eror(7)

21 RETURN

22 C ...

23 30 GO TO (80,40,40,50,50,60,70,70,70,70,70,70,70,70,70,

24 1 70,70,70,70,70,70,70,70,70,70,70,70,70,70,70,

25 2 70,70,70,80),i

26 40 icp=1

27 RETURN

28 50 icp=2

29 RETURN

30 60 icp=4

Compiler Directives 7-95

31 RETURN

32 70 icp=5

33 RETURN
34 80 icp=100

35 RETURN

36 END

The following is the cross reference listing for the above program.
The default line width is 80 columns. It can be changed with the
PAGEWIDTH directive.

SYMBOL TYPE FILE LINE

------ ---- ---- ----

CHARS/ (COMMN) xref.f $3

EROR (PROC) xref.f #20

I (VAR) xref.f !15 16 25

IBKSLSH (VAR) xref.f %3

IBLNK (VAR) xref.f %3

ICOMMA (VAR) xref.f %4

ICP (PROC) xref.f *2 !14 !26 !28 !30 !32 !34

IDOLLAR (VAR) xref.f %4

IEQUAL (VAR) xref.f %3

ILETA (VAR) xref.f %4

ILETZ (VAR) xref.f %4

ILPAREN (VAR) xref.f %3

IMINUS (VAR) xref.f %4

IPERIOD (VAR) xref.f %4

IPLUS (VAR) xref.f %4

IRPAREN (VAR) xref.f %3

ISEMI (VAR) xref.f %4

LEGAL (VAR) xref.f *8 @9 16

OP (ARGMT) xref.f %2 *7 16

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0

7-96 Compiler Directives

SYMBOL The symbol name.

TYPE The class of the symbol:

ARGMT - argument passed to a procedure or function.
COMMN - name of a common block.
CONST - named constant in a PARAMETER statement.
NMLST - NAMELIST variable.
PROC - internal or external procedure or function name.
VAR - variables.

FILE The �le where the symbol is found.

LINE One or more rows of line numbers that indicate where the
symbol is found. Each line has a su�x that indicates the
status of the symbol at time of access.

blank - symbol is being referenced.
! - symbol is being modi�ed.
* - symbol is being de�ned and declared.
% - symbol is being declared.
^ - symbol is being declared, de�ned, and modi�ed.
- symbol is being called.
$ - symbol is declared, de�ned and used.
@ - symbol is declared and modi�ed.

Compiler Directives 7-97

8

Interfacing with Non-FORTRAN Subprograms

Any non-FORTRAN program unit can be used as a part of an
executable FORTRAN program if the program unit has a calling
sequence and method of execution compatible with FORTRAN 77.
In addition, a FORTRAN subprogram can be used by programs
written in other languages if the FORTRAN subprogram is
compatible with the calling program's requirements. This chapter
discusses issues to consider when interfacing FORTRAN programs to
other languages.

Parameter Passing
Methods

All arguments of a subprogram written in FORTRAN are passed
by reference, except for character variables, which are passed
by descriptor. This means that the addresses of the values are
passed instead of the actual values of the arguments. Therefore, a
FORTRAN subprogram expects a list of addresses for the formal
arguments passed to it (for character variables, FORTRAN expects
an address and a length), one for each argument and in the order
given by the formal argument list contained within the subprogram.

Although values are normally passed by reference (indirectly), they
can be passed by value (directly) to invoke non-FORTRAN program
units that allow passing arguments by value. To accomplish this, use
the ALIAS compiler directive to indicate how each of the parameters
is to be passed. The language option of the ALIAS directive can also
indicate the language of the routine being called so the compiler can
pass arguments to the routine in the manner expected. For example,
in Pascal, when a formal parameter is a PAC variable (PACKED
ARRAY[1..n] OF CHAR), only a pointer to the variable is expected.
However, FORTRAN 77 also passes the length of the character
variable. If you indicate with the ALIAS directive that the routine
being called is a Pascal routine, FORTRAN 77 will not pass the
length of the character variable.

FORTRAN does not allow arrays to be passed by value. It is not
possible to interface a FORTRAN program to a non-FORTRAN
program unit that requires an array parameter to be passed by value.

Also, as in calling FORTRAN functions that have no parameters,
an empty parameter list, (), must be given when referencing any
non-FORTRAN function that has no parameters.

Interfacing with Non-FORTRAN Subprograms 8-1

Use of COMMON
and Labels

Non-FORTRAN program units cannot access a FORTRAN
COMMON area and FORTRAN program units cannot access
the global variables of non-FORTRAN programs. All data must
be passed through the parameter lists. If a FORTRAN program
calls a non-FORTRAN program unit, the FORTRAN program
can contain COMMON areas, but the non-FORTRAN unit
cannot use global variables. If a non-FORTRAN program calls a
FORTRAN subprogram, the program can use global variables and
the FORTRAN routine can use COMMON variables. The global
variables and COMMON variables occupy distinct areas of memory.

Labels cannot be used as parameters when calling non-FORTRAN
program units.

Files A FORTRAN unit number cannot be passed to a non-FORTRAN
subprogram to perform input/output on the associated �le. Similarly,
�le variables of a non-FORTRAN program cannot be passed to a
FORTRAN program to enable �le access. However, a �le can always
be accessed by using system intrinsics. Support for such access is
provided by the FSET and FNUM intrinsics, described in chapter 5,
\File Handling".

8-2 Interfacing with Non-FORTRAN Subprograms

FORTRAN and C This section describes how to interface with C.

Logicals C has no logical type; it uses integers instead. A FORTRAN
LOGICAL*2 is represented by a C short integer, and a LOGICAL*4
by a C long integer. FORTRAN and C do not share a common
de�nition of true and false. In C, zero is false, and any nonzero value
is true.

Arrays FORTRAN stores arrays in column-major order, while C stores them
in row-major order.

Files A FORTRAN unit cannot be passed to a C routine to perform
I/O on the associated �le. Nor can a C �le pointer be used by a
FORTRAN routine. However, a �le created by a program written in
either language can be used by a program of the other language if the
�le is declared and opened within the latter program.

C accesses �les using its own I/O subroutines and intrinsics. This
method of �le access can also be used from FORTRAN instead of
FORTRAN I/O. Be aware that HP FORTRAN 77 on HP 3000 Series
900 MPE/iX uses the unbu�ered I/O system calls read and write

(described in the MPE/iX Reference manual) for terminal I/O,
magnetic tape I/O, and direct access I/O.

Interfacing with Non-FORTRAN Subprograms 8-3

Parameter Passing
Methods

FORTRAN passes noncharacter parameters by reference, while
FORTRAN character strings are \passed by descriptor." The
descriptors are system-de�ned and are described under \Character"
later in this section. Therefore all actual parameters in a C call
to a FORTRAN routine must be pointers or variables pre�xed
with the address operator (&), and all formal parameters in a C
routine called from FORTRAN must be pointer variables, unless
a FORTRAN ALIAS directive de�nes them as value parameters.
FORTRAN character data passed as parameters or to a C routine
can be handled in a special manner by specifying the C option to
the ALIAS directive, or by using the ALIAS directive with the
optional parameter information list, as described under \ALIAS
Directive," later in this chapter. Alternately, a structure can be
de�ned corresponding to the FORTRAN character descriptor.

If a FORTRAN program is receiving a parameter from a C program,
the parameter is by reference if it is an array; otherwise, the
parameter is passed by value if it is less than or equal to 64 bits, or
by reference if it is greater.

If a FORTRAN program is passing a parameter to a C program, and
the C program declares it to be of type array, the C program expects
the parameter to be passed by reference. If the C program declares
it to be a structure or union greater than 64 bits, the C program
copies the parameter into a temporary memory location. The
parameter-passing mechanism is then by reference, but the e�ect is as
if by value, because the value cannot be changed. If the parameter is
less than or equal to 64 bits, it is passed by value.

This parameter passing is handled correctly by specifying C in the
language option of the ALIAS directive. (See \ALIAS Directive"
earlier in this chapter.)

Complex Numbers C has no complex numbers. However, a COMPLEX*8 number can
be represented in C by the following structure:

struct complex {

float real_part, imaginary_part;

}

Similarly, a FORTRAN COMPLEX*16 number can be represented
by the same structure with the real and imaginary parts being of C
type double.

8-4 Interfacing with Non-FORTRAN Subprograms

Character When FORTRAN passes character parameters, it passes them by
descriptor. The descriptor includes two items: a pointer to the
�rst character in the string and an integer value for the declared
length of the string. When passing FORTRAN character strings
to C subprograms, you must be sure to accommodate the length
descriptor. Use the default character passing method to accomodate
the length descriptor when passing a character string to a C
subprogram. Note that parameters from FORTRAN are all passed
by reference, except for the character length descriptors, which are
passed by value.

Default Character Passing Method

When you use the default method of character passing, an integer
length descriptor is passed after each character parameter. Therefore,
you need to provide two variables in the parameter list of the C
subprogram for each FORTRAN character variable passed. For
example, if FORTRAN passes the C subprogram two parameters
(two strings and one integer), the C subprogram must be able to
accept �ve parameters (two strings and three integers). This is
illustrated in the following example:

FORTRAN code:

INTEGER*4 num

CHARACTER*10 str1,str2

CALL testproc (str1,str2,num)

C code:

testproc (str1,strlen1,str2,strlen2,num)

int*num;

char*str1;

char*str2;

int strlen1;

int strlen2;

Hollerith The FORTRAN Hollerith data type is similar to the C char array.

Interfacing with Non-FORTRAN Subprograms 8-5

FORTRAN and
Pascal Data Types

When a FORTRAN program interfaces with a Pascal program unit,
be aware of the corresponding data types shown in table 8-1. In
particular, note the di�erences between character strings and Boolean
variables between the two languages.

Table 8-1. HP FORTRAN 77 and HP Pascal Data Types

HP FORTRAN 77 Type HP Pascal Type

INTEGER*4 INTEGER or integer subrange beyond the range
0 .. 65535

INTEGER*2 SHORTINT or integer subrange inside the range
0 .. 65535

REAL*4 REAL

REAL*8 LONGREAL

BYTE,
LOGICAL*1

Integer subrange inside the range 0..255

CHARACTER CHAR

CHARACTER*n PACKED ARRAY [1..n] OF CHAR

LOGICAL*4 INTEGER or

SET (4 bytes)

LOGICAL*2 Integer subrange inside the range 0..65535 or

SET (2 bytes)

COMPLEX*8 RECORD
real part : REAL;
imag part : REAL;
END;

COMPLEX*16 RECORD
real part : LONGREAL;
imag part : LONGREAL;
END;

REAL*16 No corresponding Pascal data type.

HP FORTRAN 77 has a one-word descriptor that describes the
maximum length of the string while PACs (PACKED ARRAY[1..n]
OF CHAR) in Pascal do not. Therefore, when you pass a character
string to a Pascal string, Pascal expects a pointer to that string only.

Boolean variables also di�er between the two languages. Pascal
Boolean variables are one-byte variables, while FORTRAN logical
variables are two or four bytes (LOGICAL*2 or LOGICAL*4).

8-6 Interfacing with Non-FORTRAN Subprograms

Also note the following when a FORTRAN program interfaces with a
Pascal program unit:

HP FORTRAN 77 cannot pass arrays by value, so you cannot call
a Pascal routine with a value parameter of a type corresponding to
an HP FORTRAN 77 array type.

All data must be passed through the parameter lists because HP
FORTRAN 77 cannot specify global variables and Pascal cannot
specify COMMON blocks.

HP FORTRAN 77 expects parameters to be passed by reference,
with the exception of the maximum length of a character string, as
described earlier.

Parameter type checking should be turned o� because HP
FORTRAN 77 generates di�erent types of check values from
Pascal.

Files and labels cannot be passed between HP FORTRAN 77 and
Pascal.

Interfacing with Non-FORTRAN Subprograms 8-7

Condition Codes Frequently, condition codes are returned to a FORTRAN 77 program
by system intrinsics. These condition codes are listed in table
8-2. Speci�c meanings depend on individual intrinsics; refer to the
MPE/iX Intrinsics Reference Manual for condition codes of speci�c
intrinsics.

Table 8-2. Condition Codes

Condition Code Meaning

CCE Condition code is zero. This generally indicates that the request
was granted.

CCG Condition code is greater than zero. A special condition
occurred but it might not have a�ected the execution of the
request. (For example, the request was executed, but the default
values were assumed as intrinsic call parameters.)

CCL Condition code is less than zero. The request was not granted,
but the error condition might be recoverable.

Beside condition codes, some intrinsics return additional error
information to the calling program through their return values.

The condition code can be checked with the CCODE() function.
CCODE returns an integer value indicating the condition code
resulting from a call to a system intrinsic.

It is good practice to check the condition code using an arithmetic
IF statement immediately following the intrinsic call, as shown in
the following example. Similarly, the CCODE function must not
appear in the INTRINSIC statement that is to be passed as an
actual parameter to a subroutine that expects a procedure parameter
because the condition code would be lost.

The following program checks the condition code after calling a
system intrinsic.

PROGRAM printop2

C

C EXAMPLE PROGRAM TO CALL SYSTEM INTRINSIC PRINTOP

C

CHARACTER message*14

LOGICAL lmessage (7)

SYSTEM INTRINSIC printop

EQUIVALENCE (lmessage, message)

message='This is a test'

CALL printop (lmessage, -14, 0)

IF (CCODE()) 20, 10, 20

10 STOP 'Successful Write'

20 STOP 'Intrinsic returned bad condition code'

END

8-8 Interfacing with Non-FORTRAN Subprograms

Built-In Functions Arguments of a FORTRAN subprogram are passed by reference,
except for character variables, which are passed by descriptor. To
call subprograms written in another language, you might have to
pass arguments that are di�erent from those used by FORTRAN. To
handle this di�erence, HP FORTRAN 77/iX has built-in functions,
as summarized below:

Intrinsic
Function

Description Restrictions

%VAL(arg) Passes the argument as an
immediate value. If the
argument is shorter than 32
bits, it is sign-extended to a
32-bit value.

arg can be a constant,
variable, array element, or
an expression.

%REF(arg) Passes the address of the
value.

arg can be a numeric value,
a character expression, an
array, an array element, or a
procedure name.

%LOC(value) Returns the internal address
of a storage element. The
result is of type
INTEGER*4. %LOC is
equivalent to the FORTRAN
intrinsic BADDRESS.

value can be a variable
name, an array element
name, an array name, a
character substring name, or
an external procedure name.

These functions are extensions to the ANSI standard.

To change the form of the argument, the built-in functions can
be used in the argument list of a CALL statement or a function
reference, as shown below.

Examples Notes

CALL routine(%VAL(a),k)Passes the argument a as an immediate value.

CALL routine2(%REF(a))Passes the argument a by reference.

Note The built-in functions %VAL or %REF can only be called in the
actual argument list.

Interfacing with Non-FORTRAN Subprograms 8-9

9

Managing Run-Time Errors and Exceptions

This chapter describes tools and methods for managing run-time
errors and exceptions. Common run-time errors and exceptions
include memory violations, oating-point exceptions, and
input/output errors. The input/output error messages and
recommended solutions are given in Appendix A.

Trapping Run-Time
Errors

The MPE/iX implementation of FORTRAN 77 provides a trap
handling mechanism that allows you to control how a program
interruption is handled. An interruption may be handled by:

Executing a speci�ed procedure.

Ignoring the interruption.

Aborting the program.

The trap-handling mechanism is initiated with the ON statement.

Whenever a major error occurs during the execution of a program, of
a hardware instruction, of a procedure from the System Library, or
of a user-called intrinsic, your program normally aborts and an error
message is printed. You can change this action by establishing traps
for any of the following kinds of interruptions:

Arithmetic errors.
Basic external function errors.
Internal function errors.
Control-Y user interrupts.

Managing Run-Time Errors and Exceptions 9-1

This is a program that traps external errors:

PROGRAM TEST
REAL*8 A

ON EXTERNAL ERROR CALL ERRORHANDLE

A = 8.0

PRINT *, "01 DACOS(A) ", DACOS(A)

PRINT *, "Normal Exit from Main"

END

SUBROUTINE ERRORHANDLE(ERRORNUM, RESULT, OP1, OP2)

INTEGER*4 ERRORNUM

REAL*8 RESULT, OP1, OP2

PRINT *, "Control returned to SUBROUTINE ERROR"

PRINT *, "Internal Error occured ERROR NUMBER = ", ERRORNUM

PRINT *, "What error number to be passed to caller = "

READ *, ERRORNUM

PRINT *, "What result to be passed to caller = "

READ *, RESULT

PRINT *, "oop1 = ", OP1

END

9-2 Managing Run-Time Errors and Exceptions

This program shows how an internal error can be trapped to the
user-de�ned error recovery routine ERRORHANDLE.

* ERRORNUM is the error that is generated in function DNUM.

* RESULT is the result computed before the error occurs. The

* computation process is not yet complete.

* OPERAND1 is the operand that is passed to DNUM.

*

* ERRORNUM can be changed in the trap routine ERRORHANDLE. When the error

* number is set to zero, then a normal termination sequence occurs and

* the standard error message prints. When the error number is set to

* a non-zero value, a user defined result can be passed back by the

* trap routine. The error number that is modified in the trap routine

* won't modify the error generated in DNUM.

*

PROGRAM TESTING

REAL *8 A

ON INTERNAL ERROR CALL ERRORHANDLE

100 A = DNUM('A')

PRINT *,A

* GENERATE ERROR 61 ** Number out of range **

A = DNUM('12.000E+8934')

PRINT *,A

GOTO 100

END

SUBROUTINE ERRORHANDLE(ERRORNUM, RESULT, OPERAND1, NUMBER)

INTEGER*4 ERRORNUM

REAL*8 RESULT

CHARACTER OPERAND1*(*)

INTEGER*2 NUMBER
PRINT *, "Control returned to SUBROUTINE ERROR"

PRINT *, "Internal Error occured ERROR NUMBER = ", ERRORNUM

PRINT *, "What error number to be passed to caller = "

READ *, ERRORNUM

PRINT *, "What result to be passed to caller = "

READ *, RESULT

PRINT *, "Operand1 = ", OPERAND1

PRINT *, NUMBER

END

Managing Run-Time Errors and Exceptions 9-3

This program shows how a divide by zero can be trapped for libf
math function FTN DTOD(a,b).

* If ERRORNUM = 0, the program will ABORT. A non-zero value for

* ERRORNUM causes the function to return the value of the result.

*

* The result in the error recovery must match the parameter that was

* passed.

*

* This will cause Internal error 68.

*

PROGRAM TESTING

REAL *8 A, B, C

INTEGER*4 I, J, K

ON INTERNAL ERROR CALL ERRORHANDLE

C = -2.0

A = 0.0

B = A**C

PRINT *, "DtoD B= ", B

PRINT *, "Main End."

END

SUBROUTINE ERRORHANDLE(ERRORNUM, RESULT)

INTEGER*4 ERRORNUM

REAL*8 RESULT

PRINT *, "Control returned to SUBROUTINE ERROR"

PRINT *, "Internal Error occured ERROR NUMBER = ", ERRORNUM

PRINT *, "What error number to be passed to caller = "

READ *, ERRORNUM

PRINT *, "What result to be passed to caller = "

READ *, RESULT
END

Refer to the HP Compiler Library/iX Reference Manual for more
information about trapping errors.

9-4 Managing Run-Time Errors and Exceptions

Trap Actions The action taken after an interrupt is trapped depends on the
speci�cation in the most recently executed ON statement for that
interrupt condition.

If ABORT was speci�ed, a standard error message is generated and
the program is aborted.

If IGNORE was speci�ed, processing continues with the next
instruction.

If the condition causing the interrupt is an integer division by
zero, the result is set to zero. For other conditions, the previous
content of the target register is supplied as the result. IGNORE
is particularly valuable for preventing Control-Y interrupts at
inconvenient times in a program.

If CALL was speci�ed, the normal (ABORT) error message
is suppressed, and control is transferred to the speci�ed trap
procedure.

Zero or more arguments describing the error are passed to the trap
procedure, which can attempt to analyze or recover from the error,
or can execute some other programming path speci�ed by the user,
such as an alternate return.

Further details are given in the following sections.

Arithmetic Trap Procedure

For the ON INTEGER*2 OVERFLOW statement to be e�ective,
the CHECK OVERFLOW INTEGER compiler option must also be
enabled. This is the default on MPE/iX.

If emulated oating point numbers have been selected by the
HP3000 16 directive, any reference in the ON statement to the
INEXACT or ILLEGAL trap is ignored, the traps are not set, and
the compiler generates a warning message.

In each of the above cases, the corresponding trap requires one
reference parameter that is of the same type as that associated with
the error condition. When the trap is called, the parameter is the
result of the operation that caused the trap to be invoked.

System Trap Procedure

The trap procedure that is called for system errors must have
one parameter that is an integer array. The link editor performs
parameter type checking. When the trap procedure is called, the
contents of the parameter is an array of eight parameters de�ned by
the system. For more details, refer to the Trap Handling manual.
This parameter group immediately follows the parameters to the
intrinsic in which the error occurred.

Managing Run-Time Errors and Exceptions 9-5

Basic External Function Trap Procedure

The trap procedure that is called for external function errors must
have four formal arguments in the following order:

1. A single integer containing the error number that is determined by
the external function in which the error occurred.

2. The result.

3. The �rst operand.

4. The second operand.

If the trap procedure returns normally and has set the error number
(�rst argument) to zero, a standard message is printed and the
program aborts.

Internal Function Trap Procedure

The trap procedure that is called for internal function errors must
have two formal arguments in the following order:

1. A single integer containing the error number that is determined by
the internal function in which the error occurred.

2. The result.

If the trap procedure returns normally and has set the error number
(�rst argument) to zero, a standard message is printed and the
program aborts.

Control-Y Trap Procedure

The speci�ed user subroutine is called if you specify CONTROLY in
an ON statement and if you type Control-Y from the terminal while
the program is running.

No parameters are permitted in this trap procedure.

The actions to be taken after a trap occurs are speci�ed by the
CALL procedure.

If you specify CALL procedure for an error condition when an error
occurs, the corresponding trap (if enabled) suppresses output of
the normal error message, transfers control to a user-de�ned trap
procedure, and passes zero or more parameters describing the error
to this procedure. This procedure can attempt to analyze or recover
from the error, or can execute another programming path you
specify.

Exiting a Trap
Procedure

Upon exit from a trap procedure, control returns to the instruction
following the one that activated the trap. However, in the case of
external and internal function traps, if the trap procedure returns
normally and has set the error number (�rst argument) to zero, a
standard message is printed and the program aborts.

9-6 Managing Run-Time Errors and Exceptions

I/O Run-Time Errors During the execution of a FORTRAN 77 program, error messages
may be printed on the output unit by the input/output library
supplied for FORTRAN programs. The error message and a
complete listing of run-time errors returned in the IOSTAT variable
or printed on the output unit are listed in Appendix A.

If the IOSTAT and ERR speci�ers are present, or the END speci�er,
or all three, the I/O error number is stored in the IOSTAT variable
and control transfers to the ERR label, where a user routine can
decode and handle the error if desired. Range checking errors
(when the RANGE directive is ON) in arguments to input/output
statements occur outside the input/output system and are handled as
fatal out-of-range errors; they are not trapped by the IOSTAT and
ERR speci�ers.

Managing Run-Time Errors and Exceptions 9-7

10

Data Format in Memory

HP FORTRAN 77 has the following data types:

General Name Data Type

Integer BYTE (LOGICAL*1)

INTEGER*2

INTEGER*4

Real REAL*4

REAL*8

REAL*16

Complex COMPLEX*8

COMPLEX*16

Logical LOGICAL*2

LOGICAL*4

Character CHARACTER

In addition, the Hollerith format is available for compatibility with
older programs and with some system routines.

This chapter describes the format of each data type when stored in
memory.

Note In the oating-point formats, when dealing with numbers at or close
to the limits of the range, a program can exceed the range during
ASCII-to-binary conversion and vice-versa. This is due to rounding
errors.

Note Make sure all variables are properly initialized. The MPE/iX Link
Editor does not initialize all the stack space as the Segmenter does
on MPE V. Uninitialized variables that did not cause problems
on MPE V/E-based systems might cause programs to abort on
MPE/iX-based systems.

HP FORTRAN 77/V stores variables greater than eight bytes
indirectly; HP FORTRAN 77/iX stores the variables directly.

Data Format in Memory 10-1

Overflow Conditions Each data type has its own format and range. An overow condition
occurs when numbers outside the range of a particular type are
assigned to, or read into, the corresponding variables at run-time.

For read operations, an error message is issued and the program
terminates unless the ERR or IOSTAT speci�er is present. For
assignments, truncation occurs. For integer variables, this truncation
is performed such that the high order bits are ignored. For REAL*4
variables assigned as REAL*8 values, the low order bits are ignored,
preserving the magnitude, but losing the precision. Truncation for
complex variables is the same as that for real variables.

This process is not to be confused with evaluation of an expression
whose result is too large or small for the data type involved, which
causes machine errors unless the corresponding ON statement trap
has been set.

10-2 Data Format in Memory

BYTE (LOGICAL*1)
Format

A BYTE or LOGICAL*1 datum is always an exact representation of
a one-byte integer whose values can be positive, negative, or zero.

The BYTE format occupies eight bits and has a range of:

�128 to +127

Figure 10-1. BYTE (LOGICAL*1) Format

A BYTE datum can also be used as a logical value, representing true
or false. If bit 0 is 1, the value is true; otherwise it is false.

Data Format in Memory 10-3

INTEGER*2 Format An INTEGER*2 datum is always an exact representation of an
integer, whose values can be positive, negative, or zero.

An INTEGER*2 datum occupies half a 32-bit word (two bytes), in
two's complement format, and has a range of:

�32768 to +32767 (�215 to +215�1)

Figure 10-2. INTEGER*2 Format

INTEGER*4 Format An INTEGER*4 datum is always an exact representation of an
integer, whose values can be positive, negative, or zero.

An INTEGER*4 datum occupies one 32-bit word (four bytes), in
two's complement format, and has a range of:

�2147483648 to +2147483647 (�231 to +231�1)

Figure 10-3. INTEGER*4 Format

10-4 Data Format in Memory

REAL*4 Format A REAL or REAL*4 datum is a processor approximation of a real
number, whose values can be positive, negative, or zero.

A REAL*4 datum occupies one 32-bit word in memory, in
oating-point format. It has an approximate normalized range of:

0.0
and
�1.175494�10�38 to �3.402823�10+38

In addition, it has an approximate denormalized range of:

�1.401298�10�45 to �1.175494�10�38

Figure 10-4. REAL*4 Format

The REAL*4 format has an 8-bit exponent and a 23-bit fraction.
Signi�cance to the user is approximately seven decimal digits. The
sign bit is zero for plus, 1 for minus. The exponent �eld contains 127
plus the actual exponent (power of two) of the number. Exponent
�elds containing all zeros and all ones are \reserved." If the exponent
is zero and the fraction zero, the number is interpreted as a signed
zero. If the exponent is zero and the fraction not zero, the number
is called \denormalized." A oating-point number stored in a
\normalized" form has a binary point to the left of the fraction
�eld and an implied leading 1 to the left of the binary point; the
denormalized number does not have this implied leading 1 to the left
of the binary point.

If the exponent is all ones and the fraction is zero, the number is
regarded as a signed in�nity. If the exponent is all ones and the
fraction is not zero, then the interpretation is \not-a-number" (NaN).
Attempts to operate on in�nities and NaNs cause a system trap.

Data Format in Memory 10-5

REAL*8 Format A REAL*8 or DOUBLE PRECISION datum is a processor
approximation to a real number, whose values can be positive,
negative, or zero.

A REAL*8 datum occupies two consecutive 32-bit words in memory
in oating-point format. It has an approximate normalized range of:

0.0
and
�2.225073858507202�10�308 to �1.797693134862315�10+308

In addition, it has an approximate denormalized range of:

�4.940656458412466�10�324 to �2.225073858507201�10�308

Figure 10-5. REAL*8 Format

A REAL*8 datum is 64-bit-aligned; that is, its address is divisible by
eight.

The REAL*8 format has an 11-bit exponent and a 52-bit fraction.
Signi�cance to the user is approximately 16 decimal digits. The sign
bit is zero for plus, one for minus. The exponent �eld contains 1023
plus the actual exponent (power of 2) of the number. Exponent �elds
containing all zeros and all ones are \reserved." If the exponent is
zero and the fraction zero, the number is interpreted as a signed zero.
If the exponent is zero and the fraction not zero, the number is called
\denormalized." A oating-point number stored in a \normalized"
form has a binary point to the left of the fraction �eld and an
implied leading 1 to the left of the binary point; a denormalized
number does not have this implied leading 1 to the left of the binary
point.

10-6 Data Format in Memory

If the exponent is all ones and the fraction is zero, the number is
regarded as a signed in�nity. If the exponent is all ones and the
fraction is not zero, then the interpretation is \not-a-number" (NaN).
Attempts to operate on denormalized numbers, in�nities, and NaNs
cause a system trap.

Data Format in Memory 10-7

REAL*16 Format A REAL*16 datum is a processor approximation to a real number,
whose values can be positive, negative, or zero. This is an extension
to the ANSI 77 standard.

An REAL*16 datum occupies four consecutive 32-bit words in
memory, in oating-point format. It has an approximate normalized
range of:

0.0
and
�3.362103143112093506262677817321753�10�4932

to
�1.189731495357231765085759326628007�10+4932

In addition, it has an approximate denormalized range of:

�6.475175119438025110924438958227647�10�4966

to
�3.362103143112093506262677817321752�10�4932

Figure 10-6. REAL*16 Format

10-8 Data Format in Memory

A REAL*16 datum is 64-bit-aligned; that is, its address is divisible
by eight.

Data Format in Memory 10-9

The REAL*16 format has a 15-bit exponent and a 112-bit fraction.
Signi�cance to the user is approximately 34 decimal digits. The sign
bit is zero for plus, one for minus. The exponent �eld contains 16,383
plus the actual exponent (power of 2) of the number. Exponent �elds
containing all zeros and all ones are \reserved." If the exponent is
zero and the fraction zero, the number is interpreted as a signed zero.
If the exponent is zero and the fraction not zero, the number is called
\denormalized." A oating-point number stored in a \normalized"
form has a binary point to the left of the fraction �eld and an
implied leading 1 to the left of the binary point; a denormalized
number does not have this implied leading 1 to the left of the binary
point.

Note If the ANSI directive is ON, the use of REAL*16 intrinsics, constants
or directives produces an ANSI warning at compile time.

If the exponent is all ones and the fraction is zero, the number is
regarded as a signed in�nity. If the exponent is all ones and the
fraction is not zero, then the interpretation is \not-a-number" (NaN).
Attempts to operate on denormalized numbers, in�nities, and NaNs
cause a system trap.

10-10 Data Format in Memory

COMPLEX*8 Format A COMPLEX or COMPLEX*8 datum is a processor approximation
to the value of a complex number.

A COMPLEX*8 datum occupies two consecutive 32-bit words in
memory. The real and the imaginary parts are each stored in one
word, in the format of a REAL*4 datum. The value of each part is
determined as for a REAL*4 datum.

Figure 10-7. COMPLEX*8 Format

Data Format in Memory 10-11

COMPLEX*16
Format

A COMPLEX*16 or DOUBLE COMPLEX datum is a processor
approximation to the value of a complex number.

A COMPLEX*16 datum occupies four consecutive 32-bit words in
memory. The real and the imaginary parts are each stored in two
words, in the format of a REAL*8 datum. The value of each part is
determined as for a REAL*8 datum.

Figure 10-8. COMPLEX*16 Format

10-12 Data Format in Memory

LOGICAL*2 Format A LOGICAL*2 datum is a representation of true or false.

The LOGICAL*2 format occupies half of one 32-bit word in memory.

If the least signi�cant bit (8) of the most signi�cant byte is 1, the
value is true; otherwise it is false.

Figure 10-9. LOGICAL*2 Format

Data Format in Memory 10-13

LOGICAL*4 Format A LOGICAL*4 datum is a representation of true or false.

The LOGICAL*4 format occupies one 32-bit word in memory.

If the least signi�cant bit (24) of the most signi�cant byte is 1, the
value is true; otherwise it is false.

Figure 10-10. LOGICAL*4 Format

Character Format A character datum is a character string taken from the HP ASCII
character set. An ASCII character occupies one byte (eight bits) of a
32-bit word, and are packed four to a word in memory.

Character variables and constants can start or end or both in the
middle of a word. The other bytes of the word may be used by the
compiler as part of other variables or constants, or they may be
unused.

When character items are passed as actual arguments, the address
of the characters is passed, followed by an integer containing the
number of characters in the string. The integer is passed by value.

Hollerith Format The Hollerith format is available for compatibility with older
programs and with some system routines. Hollerith constants
are described in \Hollerith Constants" in Chapter 2. A Hollerith
constant has the same format when stored in memory as a character
datum.

Hollerith constants start on word boundaries. When passed as actual
parameters, the word address is used (no descriptor).

10-14 Data Format in Memory

A

Diagnostic Messages

Errors can be detected during several stages of the program
development cycle. Errors resulting from illegal FORTRAN syntax
and semantics are compile-time errors, and those from logic are
run-time errors. During the execution of FORTRAN programs, errors
can be generated from several sources, including library routine
reference errors, input/output formatter errors, and remote �le access
errors.

Note The generic term \error," when referring to the diagnostic messages,
includes warnings, disasters, and all errors.

Compile-Time
Diagnostics

Table A-1 lists the three types of FORTRAN compiler diagnostics.

Table A-1. Types of FORTRAN Diagnostics

Type Description

Warning The compiler continues to process the statement, but the
object code may be erroneous. The program should be
recompiled. Warnings are numbered 700 and above.

Warnings 800 through 829 are warnings of non-ANSI
features and are issued only when the ANSI compiler
directive is speci�ed. Message 830 appears when the ANSI
compiler directive is speci�ed or when the
STANDARD LEVEL compiler directive is set to HP.

Error The compiler ignores the remainder of the erroneous source
statement, including any continuation lines. No object code
is generated, and the program must be recompiled.
Compilation continues beyond the erroneous statement, but
only to check for errors. Errors are numbered below 700.

Disaster The compiler ignores the remainder of the FORTRAN
source �le. The error must be corrected before compilation
can proceed.

Diagnostic Messages A-1

Run-Time Errors During execution of the object program, error messages may be
printed on the output unit by the input/output library supplied for
FORTRAN programs. The error message is printed in the form:

*** FORTRAN zzz Error nnn: mmm

File: �f, Unit: uuu

Last format: xxx

where:

zzz is \I/O" or \RANGE".

nnn is the error number.

mmm is the error message.

�f is the name of the �le upon which I/O failed.

uuu is the unit number associated with the �le.

xxx is the most recent format attempted or completed.

The File: line is issued only if there is an I/O error. If an internal
�le is being used, the message is Internal File.

The Last format: line is issued only if applicable, that is, only if
there is an error in a formatted transfer.

If the IOSTAT=ios and ERR=label speci�ers are present, or the
END=label speci�er, or all three, the I/O error number is stored in
ios and control transfers to label, where a user routine can decode
and handle the error if desired. If the END= speci�er is present and an
end-of-�le is encountered on a READ, ios is set to -1.

In the following list of messages, where more than one meaning is
given in the CAUSE section, there are several possible causes, though
probably only one will pertain to a speci�c occurrence. Where
more than one action is given in the ACTION section, there are
several possible solutions. Try one at a time, recompile, then run the
program again.

Note The run-time diagnostics are distinct from the compile-time
diagnostics, except for format errors, which are issued at compile
time when detected by the compiler or at run time when detected by
the I/O library.

When the compiler �nds run-time errors, it issues error messages
in the range 900 to 981. The run-time errors are implementation
dependent. Errors 5000 and above are internal errors. If you receive
one of these errors, please contact your HP service representative.

A-2 Diagnostic Messages

Compile-Time Errors A compile-time error is one detected by the compiler. There are two
types of compile-time errors:

Those that can be attributed to a speci�c source statement.

Those that can be detected only after processing of an entire
module.

1 COMPILE-TIME

ERROR

I/O control parameter expected

CAUSE An unrecognized word was found where
an I/O control keyword is required.

2 COMPILE-TIME

ERROR

Expecting operator

CAUSE An operator is missing.

3 COMPILE-TIME

ERROR

String expected

CAUSE A string expression in the syntax is
missing.

4 COMPILE-TIME

ERROR

"/" expected

CAUSE A \/" is missing.

5 COMPILE-TIME

ERROR

"-" expected

CAUSE A \-" is missing.

Diagnostic Messages A-3

6 COMPILE-TIME

ERROR

Integer or string expected

CAUSE An integer or a string expression is
missing.

8 COMPILE-TIME

ERROR

Integer expected

CAUSE An integer item is missing where it is
required.

11 COMPILE-TIME

ERROR

Expecting expression or

subexpression

CAUSE An expression is missing where it is
required.

12 COMPILE-TIME

ERROR

Logical end of statement already

encountered

CAUSE More input is found in the input line
after the logical end of a statement.

13 COMPILE-TIME

ERROR

Unrecognizable statement

CAUSE The input line is not a legal FORTRAN
statement.

14 COMPILE-TIME

ERROR

"THEN" expected

CAUSE The \THEN" keyword is missing in an
IF-THEN statement.

15 COMPILE-TIME

ERROR

"," or ")" expected

CAUSE A \," or a \)" is missing where it is
required.

A-4 Diagnostic Messages

16 COMPILE-TIME

ERROR

"," expected

CAUSE A \," is missing where it is required.

17 COMPILE-TIME

ERROR

"(" or "=" expected

CAUSE A \(" or \=" is missing where it is
required.

18 COMPILE-TIME

ERROR

")" expected

CAUSE The number of opening and closing
parentheses is unbalanced.

19 COMPILE-TIME

ERROR

"(" expected

CAUSE The number of opening and closing
parentheses is unbalanced.

20 COMPILE-TIME

ERROR

"=" expected

CAUSE A \=" is missing where it is required.

21 COMPILE-TIME

ERROR

Value expected

CAUSE An expression or subexpression is
missing.

22 COMPILE-TIME

ERROR

Integer expression expected

CAUSE An integer expression is missing where it
is required.

Diagnostic Messages A-5

23 COMPILE-TIME

ERROR

Identifier expected

CAUSE An identi�er is missing where it is
required.

25 COMPILE-TIME

ERROR

"TO" expected

CAUSE The keyword \TO" is missing.

26 COMPILE-TIME

ERROR

"DS" expected

CAUSE

28 COMPILE-TIME

ERROR

Expecting I/O control list or unit

specifier

CAUSE There is no I/O control list or unit
speci�er in an I/O statement.

29 COMPILE-TIME

ERROR

Expecting format specifier

CAUSE The format speci�er in a formatted I/O
statement is missing.

30 COMPILE-TIME

ERROR

Label, statement, or "THEN"

expected

CAUSE

31 COMPILE-TIME

ERROR

"DO", "IF", or "WHILE" expected

CAUSE The keyword \DO", \IF", or \WHILE"
is expected.

A-6 Diagnostic Messages

32 COMPILE-TIME

ERROR

Label or control variable expected

CAUSE

33 COMPILE-TIME

ERROR

"IF" expected

CAUSE The keyword \IF" is missing.

34 COMPILE-TIME

ERROR

Expecting I/O control list or format

specifier

CAUSE

35 COMPILE-TIME

ERROR

Expecting identifier, "(", or label

CAUSE

36 COMPILE-TIME

ERROR

Expecting ":"

CAUSE A \:" is missing where it is required.

37 COMPILE-TIME

ERROR

Label expected

CAUSE

38 COMPILE-TIME

ERROR

"DO" expected

CAUSE The keyword \DO" is missing.

Diagnostic Messages A-7

39 COMPILE-TIME

ERROR

Bad expression

CAUSE

40 COMPILE-TIME

ERROR

"FUNCTION" or identifier expected

CAUSE

41 COMPILE-TIME

ERROR

Expecting identifier or "("

CAUSE

42 COMPILE-TIME

ERROR

Expecting length specification

CAUSE

44 COMPILE-TIME

ERROR

Expecting a type

CAUSE

46 COMPILE-TIME

ERROR

"," or "/" expected

CAUSE A \," or \/" is missing where it is
expected.

48 COMPILE-TIME

ERROR

Expecting identifier or "/"

CAUSE

A-8 Diagnostic Messages

49 COMPILE-TIME

ERROR

Expecting identifier or ","

CAUSE

50 COMPILE-TIME

ERROR

Expecting letter

CAUSE

51 COMPILE-TIME

ERROR

Expecting constant

CAUSE A constant expression is missing.

60 COMPILE-TIME

ERROR

"ON" condition expected

CAUSE

61 COMPILE-TIME

ERROR

"CALL" or "ABORT" expected

CAUSE

101 COMPILE-TIME

ERROR

Routine or array name used illegally

CAUSE Some unquali�ed identi�ers (for
example, subprogram or array names)
can be used only as actual arguments.
This error is issued when one of these
identi�ers is used as other than an
actual argument.

Diagnostic Messages A-9

102 COMPILE-TIME

ERROR

Constant expression required

CAUSE An expression that must be constant
(evaluated at compile time) using
literals and named constants cannot be
evaluated, either because a term is not
constant or an operation (for example, a
function call) cannot be performed.

103 COMPILE-TIME

ERROR

Variable, array element, or

substring name expected

CAUSE An assignable variable reference is
expected but a nonassignable expression
is encountered.

104 COMPILE-TIME

ERROR

Numeric expression required

CAUSE The expression cannot be of type logical
or character.

105 COMPILE-TIME

ERROR

Integer expression required

CAUSE The expression must be of type integer.

106 COMPILE-TIME

ERROR

Integer variable required

CAUSE An assignable integer variable reference
(for example, one assignable as an I/O
parameter) is required.

107 COMPILE-TIME

ERROR

Complex expression not allowed

CAUSE

A-10 Diagnostic Messages

108 COMPILE-TIME

ERROR

Logical expression required

CAUSE

109 COMPILE-TIME

ERROR

Character expression required

CAUSE

110 COMPILE-TIME

ERROR

Types of operands incompatible with

operator and/or each other

CAUSE The type conversions that permit the
operation to occur cannot be performed.
Either the operands are not compatible
with each other, or one or more are not
compatible with the operator.

111 COMPILE-TIME

ERROR

Left-hand and right-hand sides are

not assignment compatible

CAUSE Where an assignment must be
performed, the value of the expression
to be assigned cannot be converted into
the type of the variable necessary for
assignment.

112 COMPILE-TIME

ERROR

Illegal or inconsistent type for

routine

CAUSE A FUNCTION or ENTRY statement
has a bad type. This error is usually
caused by a mismatch between the types
of entries into a subprogram.

113 COMPILE-TIME

ERROR

Duplicate declaration or definition

CAUSE An identi�er or some attribute of an
identi�er (for example, type) is multiply
de�ned.

Diagnostic Messages A-11

114 COMPILE-TIME

ERROR

Array not declared

CAUSE An identi�er used as an array is not
declared as such.

115 COMPILE-TIME

ERROR

This statement not allowed in this

kind of module

CAUSE 1. A RETURN statement appears in a
program module.

2. An executable statement appears in a
block data module.

116 COMPILE-TIME

ERROR

Program, block data, or common block

name used illegally

CAUSE

117 COMPILE-TIME

ERROR

Constant name used illegally

CAUSE

118 COMPILE-TIME

ERROR

Illegal or inconsistent use of

routine name

CAUSE 1. An intrinsic function is used as a
subroutine, or an intrinsic subroutine
as a function.

2. An unrecognized routine name is
declared intrinsic.

3. A routine used as an actual argument
is not declared intrinsic or external.

A-12 Diagnostic Messages

119 COMPILE-TIME

ERROR

Illegal to use argument here

CAUSE

120 COMPILE-TIME

ERROR

Illegal use of label

CAUSE 1. A label is inconsistently used.
(The three types of labels - for
formats, executable statements,
and nonexecutable statements - are
mutually exclusive in usage.)

2. A label is referenced but never
de�ned.

121 COMPILE-TIME

ERROR

Illegal label name

CAUSE

122 COMPILE-TIME

ERROR

Illegal module or entry name

CAUSE A module or entry name is either illegal
or previously declared as something else.

123 COMPILE-TIME

ERROR

Referenced identifier is not a

function or array

CAUSE

124 COMPILE-TIME

ERROR

Subroutine or function name

expected

CAUSE An identi�er not representing a
subprogram name is declared external or
intrinsic.

Diagnostic Messages A-13

125 COMPILE-TIME

ERROR

Illegal statement function name

CAUSE

126 COMPILE-TIME

ERROR

Number of subscripts does not match

declared number

CAUSE

127 COMPILE-TIME

ERROR

Number of parameters does not match

declared number

CAUSE The declared number of parameters to a
statement function does not match the
number used.

128 COMPILE-TIME

ERROR

Illegal or inconsistent alternate

return

CAUSE 1. Alternate returns are declared in a
program unit, where they are illegal
(they are allowed only in subroutines
and entries within subroutines).

2. A return statement with an alternate
return value is found within a
program unit in which alternate
returns are illegal.

129 COMPILE-TIME

ERROR

Illegal operator

CAUSE

130 COMPILE-TIME

ERROR

Illegal or duplicate argument

CAUSE A formal argument in a program,
subprogram, or entry statement either
appears more than once or is previously
de�ned.

A-14 Diagnostic Messages

131 COMPILE-TIME

ERROR

Illegal or duplicate SAVE statement

CAUSE 1. A formal argument or variable in
common is saved.

2. A variable is saved more than once.
3. A SAVE statement saving all

variables is encountered with
SAVE statements saving individual
variables.

132 COMPILE-TIME

ERROR

Illegal or duplicate COMMON

definition

CAUSE 1. An identi�er not representing a
variable is placed in a common block.

2. A variable is declared to be in
common more than once.

3. A formal argument or saved variable
is placed in common.

133 COMPILE-TIME

ERROR

Illegal length in type statement

CAUSE A length �eld is attached to a simple
type forming an unsupported or illegal
type.

Diagnostic Messages A-15

134 COMPILE-TIME

ERROR

Structure no declared

CAUSE A reference to an undeclared structure
in a RECORD statement.

135 COMPILE-TIME

ERROR

Recursive structure declaration

CAUSE A reference was made to a structure
inside itself.

136 COMPILE-TIME

ERROR

Illegal or duplicate IMPLICIT

declaration

CAUSE 1. In an IMPLICIT statement, an
illegal pre�x character (that is,
not a through z or A through Z) is
encountered.

2. A pre�x character is declared implicit
more than once.

3. IMPLICIT NONE is encountered
with other IMPLICIT speci�cations.

A-16 Diagnostic Messages

137 COMPILE-TIME

ERROR

Identifier not declared

CAUSE An identi�er does not appear in a type
statement when IMPLICIT NONE is
speci�ed.

138 COMPILE-TIME

ERROR

Illegal or inconsistent EQUIVALENCE

statement

CAUSE 1. A formal parameter or a dynamic
array is equivalenced using the
EQUIVALENCE statement.

2. An identi�er not representing a
variable is equivalenced using the
EQUIVALENCE statement.

3. A variable is illegally equivalenced to
more than one position.

4. A variable is forced to be misaligned
with the current EQUIVALENCE
statement.

139 COMPILE-TIME

ERROR

Illegal literal

CAUSE

140 COMPILE-TIME

ERROR

Illegal DO termination statement

CAUSE A statement not allowed as the last
statement in a DO loop is used as such.

141 COMPILE-TIME

ERROR

Illegal control flow - transfer into

block

CAUSE

Diagnostic Messages A-17

143 COMPILE-TIME

ERROR

Missing label on FORMAT statement

CAUSE A FORMAT statement is used without
a label.

144 COMPILE-TIME

ERROR

Illegal array declaration

CAUSE 1. A calculated dimension size has
overowed the word size of the
machine.

2. A zero or negative dimension size has
been declared.

3. A nonconstant array dimension is
improperly speci�ed.

145 COMPILE-TIME

ERROR

No result assigned to function

CAUSE There is no assignment of any value to
the function result.

146 COMPILE-TIME

ERROR

Missing FORMAT statement

CAUSE

147 COMPILE-TIME

ERROR

Illegal initialization

CAUSE 1. variable is initialized in a program
unit in which initialization is not
permitted.

2. A data value is not constant.
3. A subscript or substring expression in

a DATA statement is not constant.

A-18 Diagnostic Messages

148 COMPILE-TIME

ERROR

Subscript out of range

CAUSE

149 COMPILE-TIME

ERROR

Illegal assignment to DO index

CAUSE

150 COMPILE-TIME

ERROR

Illegal implied DO expression

CAUSE

151 COMPILE-TIME

ERROR

Duplicate label definition

CAUSE

152 COMPILE-TIME

ERROR

Declaration of routine as both

EXTERNAL and INTRINSIC

CAUSE

153 COMPILE-TIME

ERROR

Inconsistent parameter type

CAUSE A parameter identi�er and the
expression to be assigned to it are not
assignment compatible.

Diagnostic Messages A-19

154 COMPILE-TIME

ERROR

Illegal parameter in option

CAUSE

155 COMPILE-TIME

ERROR

Illegal use of string whose length

is unknown

CAUSE

156 COMPILE-TIME

ERROR

Illegal STOP or PAUSE value

CAUSE The value to be written by a STOP or
PAUSE statement is not an integer or
character literal.

157 COMPILE-TIME

ERROR

Incompatible types

CAUSE

158 COMPILE-TIME

ERROR

Duplicate initialization

CAUSE A variable is initialized more than once
with DATA statements or in type
declaration statements.

159 COMPILE-TIME

ERROR

Illegal number and/or types of

arguments to intrinsic function

CAUSE The number or types of arguments to an
intrinsic routine are incompatible with
the routine or each other (they must all
be of the same type).

A-20 Diagnostic Messages

160 COMPILE-TIME

ERROR

Illegal use of intrinsic function as

actual argument

CAUSE A generic intrinsic routine name is
passed as an actual argument to a
subprogram.

161 COMPILE-TIME

ERROR

Named constant typed following

definition in PARAMETER statement

CAUSE

162 COMPILE-TIME

ERROR

Illegal use of Hollerith or octal or

hexadecimal constant

CAUSE A disallowed operation is attempted
on a Hollerith, octal, or hexadecimal
constant.

163 COMPILE-TIME

ERROR

Assigned GOTO on wrong type

CAUSE The assigned variable is not of type
INTEGER*4.

164 COMPILE-TIME

ERROR

ASSIGN statement: bad type or

unreferenced label

CAUSE 1. The assigned variable not of type
INTEGER*4.

2. The label being assigned is attached
to a nonexecutable statement.

Diagnostic Messages A-21

165 COMPILE-TIME

ERROR

Illegal typing of identifier

CAUSE An attempt is made to type an identi�er
representing an entity that cannot be
typed (for example, a subroutine name
or a program name).

166 COMPILE-TIME

ERROR

Expression does not represent a

value

CAUSE An expression (such as an array name,
external routine name, or intrinsic
function name), although valid as an
actual argument, does not represent a
single value and is therefore meaningless
in this context. Parameterless function
calls without empty parentheses, (), can
also cause this error.

168 COMPILE-TIME

ERROR

System intrinsic name not found in

system intrinsic file

CAUSE

169 COMPILE-TIME

ERROR

Invalid system intrinsic name

CAUSE

170 COMPILE-TIME

ERROR

Result type of function not

compatible with system intrinsic

definition

CAUSE The user-speci�ed function type is
incompatible with the type in the
system intrinsic de�nition.

A-22 Diagnostic Messages

171 COMPILE-TIME

ERROR

This type of parameter not allowed

in a system intrinsic call

CAUSE

172 COMPILE-TIME

ERROR

Null parameter not permitted here

CAUSE A null parameter is passed to a
system intrinsic that is not OPTION
VARIABLE.

173 COMPILE-TIME

ERROR

This system intrinsic cannot be

called by FORTRAN routines

CAUSE The system intrinsic procedure contains
formal parameters that cannot be folded
to any FORTRAN data type.

174 COMPILE-TIME

ERROR

PROCEDURE or FUNCTION call not

compatible with system intrinsic

definition

CAUSE A procedure call is made to a system
intrinsic that expects a function call,
or a function call is made to a system
intrinsic that expects a procedure call.

175 COMPILE-TIME

ERROR

PROGRAM parameter must be INTEGER*4

or CHARACTER*(*) value

CAUSE The program parameter on a HP 3000
system is declared explicitly or typed
implicitly with a type other than
INTEGER*4 or CHARACTER*(*).

176 COMPILE-TIME

ERROR

Illegal namelist group name

CAUSE

Diagnostic Messages A-23

177 COMPILE-TIME

ERROR

Illegal identifier in namelist

group

CAUSE

178 COMPILE-TIME

ERROR

Dummy arguments not allowed in

namelist

CAUSE

179 COMPILE-TIME

ERROR

Number of parameters not compatible

with system intrinsic definition

CAUSE

180 COMPILE-TIME

ERROR

This statement not part of HP

standard FORTRAN 77

CAUSE This statement is not available on all
implementations of HP FORTRAN 77.

181 COMPILE-TIME

ERROR

IGNORE option not allowed with ON

statement on this operating system

CAUSE

182 COMPILE-TIME

ERROR

This type of ON condition not

allowed with this FORTRAN data type

CAUSE

A-24 Diagnostic Messages

183 COMPILE-TIME

ERROR

Illegal type in ON statement

CAUSE

184 COMPILE-TIME

ERROR

This ON condition not allowed on

this operating system

CAUSE

185 COMPILE-TIME

ERROR

Incorrect control character

specified for this operating system

CAUSE

186 COMPILE-TIME

ERROR

ABORT not allowed with this ON

condition

CAUSE

187 COMPILE-TIME
ERROR

Initialization of shared common
blocks not allowed

CAUSE Initialization of common blocks declared
to be in shared memory cannot be
initialized at compile-time.

188 COMPILE-TIME

ERROR

Expression with concatenation or

substrings may not be passed by

value

CAUSE

Diagnostic Messages A-25

189 COMPILE-TIME

ERROR

Built-in functions %REF, %VAL used

in invalid context

CAUSE Illegal arguments used in built-in
functions.

191 COMPILE-TIME

ERROR

Illegal structure declaration

CAUSE Either a �eld name was given at
the outermost level of a structure
declaration or the use of dynamic,
assumed size, or adjustable arrays.
Passed length and variable length
character items are also not permitted
with a structure declaration.

192 COMPILE-TIME

ERROR

Illegal use of %FILL

CAUSE %FILL was used outside of a structure
declaration.

A-26 Diagnostic Messages

201 COMPILE-TIME

ERROR

No matching IF statement

CAUSE An ENDIF statement appears without a
matching IF statement.

202 COMPILE-TIME

ERROR

Expecting ENDIF statement

CAUSE An IF statement appears without a
matching ENDIF statement.

203 COMPILE-TIME

ERROR

Expecting DO terminator

CAUSE An ENDDO statement is missing.

204 COMPILE-TIME

ERROR

Wrong DO terminator

CAUSE

205 COMPILE-TIME

ERROR

Premature or unexpected DO

terminator

CAUSE

206 COMPILE-TIME

ERROR

No matching WHILE statement

CAUSE

207 COMPILE-TIME

ERROR

No matching DO statement

CAUSE An ENDDO statement was found with
no matching DO statement.

Diagnostic Messages A-27

208 COMPILE-TIME

ERROR

Expecting END DO for DO WHILE

CAUSE

210 COMPILE-TIME

ERROR

IMPLICIT not allowed in or after

executable statements

CAUSE The IMPLICIT statement is a
speci�cation statement and cannot
appear in or after any executable
statements.

211 COMPILE-TIME

ERROR

PARAMETER not allowed in or after

executable statements

CAUSE

212 COMPILE-TIME

ERROR

This specification statement not

allowed in or after executable

statements

CAUSE

213 COMPILE-TIME

ERROR

Statement function not allowed in or

after executable statements

CAUSE

214 COMPILE-TIME

ERROR

ENTRY not allowed within DO, DO

WHILE, or block IF statement

CAUSE

A-28 Diagnostic Messages

215 COMPILE-TIME

ERROR

Missing END statement

CAUSE A program unit has no END statement.
Note that this can be caused by a
compiler directive appearing in the
wrong location between compilation
units.

216 COMPILE-TIME

ERROR

IMPLICIT not allowed after previous

specification statements

CAUSE

217 COMPILE-TIME

ERROR

IMPLICIT not allowed after DATA or

statement function

CAUSE

218 COMPILE-TIME

ERROR

PARAMETER or ALIAS not allowed after

DATA or statement function

CAUSE

219 COMPILE-TIME

ERROR

This specification statement not

allowed after DATA or statement

function

CAUSE

220 COMPILE-TIME

ERROR

No matching STRUCTURE, UNION, or MAP

statement

CAUSE An END STRUCTURE, END UNION,
or END MAP was encountered without
a respective declaration statement.

Diagnostic Messages A-29

221 COMPILE-TIME

ERROR

This statement is only allowed

within a structure declaration

CAUSE UNION or MAP statement encountered
outside of a structure declaration.

222 COMPILE-TIME

ERROR

Missing END [STRUCTURE | UNION |

MAP] statement

CAUSE An executable statement was
encountered before a corresponding
END statement in a STRUCTURE,
UNION, OR MAP declaration.

223 COMPILE-TIME

ERROR

This statement not allowed within a

structure declaration

CAUSE Illegal nonexecutable statement
encountered in a structure
declaration; statements can include
EQUIVALENCE, IMPLICIT,
COMMON, DIMENSION, EXTERNAL,
INTRINSIC, DATA, AND NAMELIST.

224 COMPILE-TIME

ERROR

Expecting MAP statement

CAUSE Within a UNION only MAP
declarations are permitted.

225 COMPILE-TIME

ERROR

This statement is only allowed

within a union declaration

CAUSE A MAP declaration was encountered
outside of a UNION declaration.

241 COMPILE-TIME

ERROR

Multiple main programs

CAUSE

A-30 Diagnostic Messages

301 COMPILE-TIME

ERROR

Undefined character(s) on line

CAUSE

302 COMPILE-TIME

ERROR

Ill-formed number

CAUSE

303 COMPILE-TIME

ERROR

Ill-formed FORMAT string

CAUSE

304 COMPILE-TIME

ERROR

Error in Hollerith literal

CAUSE

305 COMPILE-TIME

ERROR

Continuation line error

CAUSE

306 COMPILE-TIME

ERROR

Error in label field

CAUSE

307 COMPILE-TIME

ERROR

Unmatched quotation marks

CAUSE

Diagnostic Messages A-31

309 COMPILE-TIME

ERROR

Arithmetic overflow

CAUSE

310 COMPILE-TIME

ERROR

Array subscript overflow

CAUSE

311 COMPILE-TIME

ERROR

End of file encountered

CAUSE

312 COMPILE-TIME

ERROR

End of line encountered

CAUSE

313 COMPILE-TIME

ERROR

This character or group of

characters not permitted here

CAUSE

314 COMPILE-TIME

ERROR

CHARACTER*(*) is only permitted

in the outermost block with the
directives being used

CAUSE CHARACTER*(*) cannot be used
outside the outermost block with the
$FTN3000_66 directive.

315 COMPILE-TIME

ERROR

Label field of continuation line is

not blank

CAUSE

A-32 Diagnostic Messages

316 COMPILE-TIME

ERROR

Continuation limit exceeded

CAUSE The number of continuation lines
exceeds the default or speci�ed limit.
The default number of continuation lines
is 19.

317 COMPILE-TIME

ERROR

Entry points not consistent for

subroutine or function with the

directives being used

CAUSE When using directives that change the
calling convention, all entry points to a
program unit must be consistent.

318 COMPILE-TIME

ERROR

Variable length specifier not a

formal argument

CAUSE When using a variable length speci�er in
a declaration statement, that variable
must be a formal argument to the
program unit.

325 COMPILE-TIME

ERROR

Unknown logical operator or

constant

CAUSE

330 COMPILE-TIME

ERROR

Unknown I/O control word

CAUSE

335 COMPILE-TIME

ERROR

Unknown compiler directive

CAUSE

Diagnostic Messages A-33

340 COMPILE-TIME

ERROR

Compiler buffering limit exceeded

CAUSE Data bu�ers inside the compiler
have been �lled to capacity. No
further processing can be done on
this statement. The statement's data
requirements must be decreased.

350 COMPILE-TIME

ERROR

This statement is too complicated

CAUSE The expression in this statement is too
complicated for the compiler to handle.

360 COMPILE-TIME

ERROR

Structure name required at outer

structure level

CAUSE At the outermost structure declaration
level, the structure must be named.

361 COMPILE-TIME

ERROR

Field name required for structure

CAUSE A nested substructure must have a �eld
name.

A-34 Diagnostic Messages

393 COMPILE-TIME

ERROR

Unbalanced quotes

CAUSE Missing a beginning or closing quote in
a statement.

394 COMPILE-TIME

ERROR

Unbalanced parentheses

CAUSE Parentheses are not matched in a
statement.

395 COMPILE-TIME

ERROR

Undefined symbol

CAUSE

397 COMPILE-TIME

ERROR

Undefined token class

CAUSE

Diagnostic Messages A-35

398 COMPILE-TIME

ERROR

Undefined character class

CAUSE

399 COMPILE-TIME

ERROR

Undefined special character

CAUSE

400 COMPILE-TIME

ERROR

Invalid type of UNIT specifier

CAUSE The UNIT speci�er must be an
INTEGER expression.

401 COMPILE-TIME

ERROR

UNIT specifier not an external unit

CAUSE The UNIT speci�er was an internal �le.

402 COMPILE-TIME

ERROR

Invalid UNIT for auxiliary

statement

CAUSE The UNIT speci�er given was an
internal �le. An internal �le cannot be
used with this type of I/O statement.

A-36 Diagnostic Messages

403 COMPILE-TIME

ERROR

Invalid FMT identifier

CAUSE The FMT speci�er must be one of the
following:
1. Statement label of a FORMAT

statement.
2. Variable that has been assigned

the statement label of a FORMAT
statement.

3. Character or non-character array
name that contains the representation
of a FORMAT statement.

4. A character expression.
5. An asterisk.

404 COMPILE-TIME

ERROR

Internal file requires FORMATTED or

list-directed use

CAUSE Attempted UNFORMATTED I/O on an
internal �le.

405 COMPILE-TIME

ERROR

If REC appears, END cannot

CAUSE The END speci�er cannot appear in an
I/O statement if the REC speci�er is
present.

406 COMPILE-TIME

ERROR

Invalid type of REC specifier

CAUSE The record speci�er for direct access is
not of type integer or does not represent
a value.

407 COMPILE-TIME

ERROR

IOSTAT specifier not INTEGER*4 or

INTEGER*2 variable or array element

CAUSE The IOSTAT speci�er must be an
INTEGER*4 or INTEGER*2 variable or
array element.

Diagnostic Messages A-37

410 COMPILE-TIME

ERROR

FILE specifier not character

expression

CAUSE The FILE speci�er is valid only in an
INQUIRE or OPEN statement and must
be a character variable, array element,
or substring.

412 COMPILE-TIME

ERROR

STATUS specifier not character

expression

CAUSE The STATUS speci�er is valid only in
an OPEN statement and must be a
character variable, array element, or
substring.

413 COMPILE-TIME

ERROR

ACCESS specifier not character

expression

CAUSE The ACCESS speci�er is valid only in
an INQUIRE or OPEN statement and
must be a character variable, array
element, or substring.

414 COMPILE-TIME

ERROR

FORM specifier not character

expression

CAUSE The FORM speci�er is valid only in an
INQUIRE or OPEN statement and must
be a character variable, array element,
or substring.

415 COMPILE-TIME

ERROR

BLANK specifier not character

expression

CAUSE The BLANK speci�er is valid only in an
INQUIRE or OPEN statement and must
be a character variable, array element,
or substring.

416 COMPILE-TIME

ERROR

Both FILE and UNIT may not appear

A-38 Diagnostic Messages

CAUSE The FILE and UNIT speci�ers cannot
both appear in an input/output
statement.

Diagnostic Messages A-39

417 COMPILE-TIME

ERROR

EXIST not LOGICAL*4 variable or

array element name

CAUSE The EXIT= speci�er of an INQUIRE
statement must be assignable and of
type LOGICAL*4.

418 COMPILE-TIME

ERROR

OPENED not LOGICAL*4 variable or

array element name

CAUSE The OPENED= speci�er of an INQUIRE
statement must be assignable and of
type LOGICAL*4.

419 COMPILE-TIME

ERROR

NAMED not LOGICAL*4 variable or

array element name

CAUSE The NAMED= speci�er of an INQUIRE
statement must be assignable and of
type LOGICAL*4.

420 COMPILE-TIME

ERROR

NUMBER not INTEGER*4 variable or

array element name

CAUSE The NUMBER= speci�er of an INQUIRE
statement must be assignable and of
type LOGICAL*4.

422 COMPILE-TIME

ERROR

NEXTREC not INTEGER*4 variable or

array element name

CAUSE The NEXTREC= speci�er of an INQUIRE
statement must be assignable and of
type LOGICAL*4.

423 COMPILE-TIME

ERROR

NAME not character variable or array

element name

CAUSE The NAME= speci�er of an INQUIRE
statement must be an assignable
character data item.

A-40 Diagnostic Messages

424 COMPILE-TIME

ERROR

ACCESS not character variable or

array element name

CAUSE The ACCESS= speci�er of an INQUIRE
statement must be an assignable
character data item.

425 COMPILE-TIME

ERROR

SEQUENTIAL not character variable

or array element name

CAUSE The SEQUENTIAL= speci�er of an
INQUIRE statement must be an
assignable character data item.

426 COMPILE-TIME

ERROR

DIRECT not character variable or

array element name

CAUSE The DIRECT speci�er is valid only in
an INQUIRE statement and must be a
character variable, array element, or
substring.

427 COMPILE-TIME

ERROR

FORM not character variable or array

element name

CAUSE The FORM= speci�er of an INQUIRE
statement must be an assignable item of
type CHARACTER.

428 COMPILE-TIME

ERROR

FORMATTED not character variable or

array element name

CAUSE The FORMATTED speci�er is valid
only in an INQUIRE statement and
must be a character variable, array
element, or substring.

429 COMPILE-TIME

ERROR

UNFORMATTED not character variable

or array element name

CAUSE The UNFORMATTED speci�er is valid
only in an INQUIRE statement and
must be a character variable, array
element, or substring.

Diagnostic Messages A-41

A-42 Diagnostic Messages

430 COMPILE-TIME

ERROR

BLANK not character variable or

array element name

CAUSE The BLANK= speci�er of an INQUIRE
statement must be an assignable item of
type CHARACTER.

434 COMPILE-TIME

ERROR

Duplicate declaration of specifier

CAUSE A particular speci�er was used twice
within an I/O statement.

435 COMPILE-TIME

ERROR

Unit specifier required

CAUSE I/O statement requires a UNIT speci�er.

436 COMPILE-TIME

ERROR

If WRITE, no END specifier allowed

CAUSE The END speci�er is not allowed in a
WRITE statement.

437 COMPILE-TIME

ERROR

RECL not INTEGER*4 variable or array

element name

CAUSE The RECL= speci�er in an INQUIRE
statement must be of type INTEGER*4.

438 COMPILE-TIME

ERROR

Illegal I/O parameter

CAUSE This I/O speci�er is allowed in other
kind(s) of I/O statements(s), but is not
allowed in this kind.

441 COMPILE-TIME

ERROR

FILE or UNIT parameter required

CAUSE The INQUIRE statement requires either
a FILE= speci�er or a UNIT= speci�er.

Diagnostic Messages A-43

447 COMPILE-TIME

ERROR

Internal file must be sequential

CAUSE Direct access I/O was attempted on an
internal �le.

448 COMPILE-TIME

ERROR

Direct access file cannot use list

directed I/O

CAUSE Attempted to do list-directed I/O on a
�le opened for direct access.

449 COMPILE-TIME

ERROR

Assumed size array not allowed

CAUSE The internal �les may not be assumed
size arrays.

450 COMPILE-TIME

ERROR

NML not allowed with formatted or

list directed I/O

CAUSE Attempted to use NML speci�er for
formatted or list-directed I/O.

451 COMPILE-TIME

ERROR

Direct access file cannot use

namelist directed I/O

CAUSE Namelist directed I/O is not allowed on
a �le opened for direct access.

452 COMPILE-TIME

ERROR

I/O list not allowed in namelist

directed I/O statement

CAUSE Namelist directed I/O statement must
not have I/O list.

A-44 Diagnostic Messages

454 COMPILE-TIME

ERROR

Array cannot be adjustable or

assumed size in ENCODE/DECODE

CAUSE An adjustable or assumed size array
was used as the unit parameter in an
ENCODE/DECODE statement.

455 COMPILE-TIME

ERROR

Illegal use of aggregate reference

in I/O list

CAUSE unformatted I/O is the only I/O that
can be performed on aggregate record
references.

500 COMPILE-TIME

ERROR

Fatal internal compiler error

CAUSE An error occurred in the compiler or
run-time library that was improperly
handled. Please report this problem to
your HP representative.

501 COMPILE-TIME

ERROR

Include file cannot be opened

CAUSE The include �le cannot be found, is
already opened exclusively, or is some
other type of illegal �le.

502 COMPILE-TIME

ERROR

Include level limit exceeded

CAUSE The nesting level limit has been
exceeded for include statements or
directives. The maximum nesting depth
is 8.

Diagnostic Messages A-45

503 COMPILE-TIME

ERROR

Nesting level limit exceeded

CAUSE The maximum level of nesting (75) for
global values has been reached.

504 COMPILE-TIME

ERROR

Range violation detected at

compilation time

CAUSE The compiler detected an attempt to
access an array outside its declared
bounds.

505 COMPILE-TIME

ERROR

Unable to open file

CAUSE The �le is not present or not readable.

506 COMPILE-TIME

ERROR

Unable to open FORTRAN message

catalog

CAUSE The internal catalog containing the error
messages cannot be opened. (And note
that only the number, and not the text,
of this error message appears.)

508 COMPILE-TIME
ERROR

Unable to obtain extra data segment

CAUSE The system con�guration is insu�cient
to provide compiler's extra data
segment. (On MPE/V systems only.)

558 COMPILE-TIME

ERROR

Unable to open compiler

communication file

CAUSE Unable to open UCODEIN, a �le
used for communication between the
two compiler processes. (On MPE/V
systems only.)

A-46 Diagnostic Messages

559 COMPILE-TIME

ERROR

Unable to open compiler

communication file

CAUSE Unable to open UCODEOUT, a �le
used for communication between the
two compiler processes. (On MPE/V
systems only.)

561 COMPILE-TIME

ERROR

Create process failed: no process

handling capability

CAUSE The second compiler process could not
be created due to a lack of process
handling capabilities. (On MPE/V
systems only.)

564 COMPILE-TIME

ERROR

Create process failed: out of system

resources

CAUSE The system did not have enough
resources to create the second compiler
process. (On MPE/V systems only.)

566 COMPILE-TIME

ERROR

Create process failed: FTN2.PUB.SYS

does not exist

CAUSE The second compiler process could not
be created because its program �le does
not exist. (On MPE/V systems only.)

575 COMPILE-TIME

ERROR

Create process failed: exceeds

configuration

CAUSE The system con�guration did not allow
the second compiler process to be
created. (On MPE/V systems only.)

576 COMPILE-TIME

ERROR

Create process failed: hard load

error occurred

CAUSE Error 16 is returned from
CREATEPROCESS intrinsic. (On
MPE/V systems only.)

Diagnostic Messages A-47

577 COMPILE-TIME

ERROR

Create process failed: illegal

priority class specified

CAUSE Error 17 is returned from
CREATEPROCESS intrinsic. (On
MPE/V systems only.)

601 COMPILE-TIME

ERROR

Unable to open system intrinsic file

CAUSE The system intrinsic �le cannot be
opened, is already opened exclusively, or
is some other type of illegal �le.

602 COMPILE-TIME

ERROR

Corrupt system intrinsic file

CAUSE

603 COMPILE-TIME

ERROR

Invalid system intrinsic file name

CAUSE The speci�ed �le is not a system
intrinsic �le.

604 COMPILE-TIME

ERROR

Functions SECNDS and RAN are not

supported in compatibility mode.

CAUSE These functions were written for IEEE
oating-point format only. Do not
use them with the $HP3000 16 ON
directive.

A-48 Diagnostic Messages

Compile-Time
Warnings 700 COMPILE-TIME

WARNING

Missing semantics in option: option

ignored

CAUSE Internal error. Please notify your HP
representative.

701 COMPILE-TIME

WARNING

Arithmetic overflow

CAUSE The operation can cause arithmetic
overow.

703 COMPILE-TIME
WARNING

Type conversion performed

CAUSE During evaluation, a smaller, simpler
data type had to be converted to
another data type for compatibility.

704 COMPILE-TIME

WARNING

Overflow in numeric literal

CAUSE The value speci�ed in this numeric
constant is too large in absolute value
for its data type on this machine.

705 COMPILE-TIME

WARNING

Illegal SHORT option type

CAUSE The type suboption speci�ed is not a
legal type for the SHORT compiler
option.

706 COMPILE-TIME

WARNING

Illegal LONG option type

CAUSE The type suboption speci�ed is not
a legal type for the LONG compiler
option.

Diagnostic Messages A-49

708 COMPILE-TIME

WARNING

Directive continuation line not

found

CAUSE Next noncomment line is not a directive.

709 COMPILE-TIME

WARNING

This option is allowed only at the

beginning of a program unit: ignored

CAUSE For consistency, this option must be
declared before the PROGRAM or
SUBROUTINE statement.

710 COMPILE-TIME

WARNING

ALIAS directive improperly applied:

directive ignored

CAUSE Improper speci�cation of the ALIAS
directive.

711 COMPILE-TIME

WARNING

This compiler option not available

on this operating system: option

ignored

CAUSE The compiler has recognized this
compiler option as valid; however, it
is not available on the host operating
system.

712 COMPILE-TIME

WARNING

Illegal comment

CAUSE The \!" is not allowed for embedding a
comment.

714 COMPILE-TIME

WARNING

Conditional compilation nesting

level exceeded: this option and

corresponding ELSE and ENDIF

options ignored

CAUSE The nesting level of the conditional
compilation directives has exceeded the
limit. The limit is 16.

A-50 Diagnostic Messages

716 COMPILE-TIME

WARNING

Compiler directive does not begin in

column 1

CAUSE A dollar sign, \$", denoting a compiler
directive was found in a column other
than column 1.

717 COMPILE-TIME

WARNING

Short doubles not allowed by this

compiler

CAUSE The REAL*6 data type is not
permitted.

718 COMPILE-TIME

WARNING

")" expected in option: ignored

CAUSE The \) " is expected in the directive $IF
(expr) or $SET (list).

719 COMPILE-TIME

WARNING

"(" expected in option: ignored

CAUSE The \(" is expected in the directive $IF
(expr) or $SET (list).

720 COMPILE-TIME

WARNING

"=" expected in option: ignored

CAUSE The directive $SET expects expressions
in the form:

$SET (flat =

�
.TRUE.

.FALSE.

�
)

721 COMPILE-TIME

WARNING

Unsupported specifier: option

ignored

CAUSE This nonstandard I/O speci�er is not
supported.

Diagnostic Messages A-51

722 COMPILE-TIME

WARNING

Illegal form of UNIT specified:

ignored

CAUSE The UNIT speci�er in this statement
was of improper form, and thus ignored.

723 COMPILE-TIME

WARNING

Identifier expected in option:

ignored

CAUSE This option requires an identi�er.

724 COMPILE-TIME

WARNING

Compiler option identifier expected

CAUSE A valid compiler directive word was
expected, but none encountered.

725 COMPILE-TIME

WARNING

OPTIMIZE and SYMDEBUG mutually

exclusive: option ignored

CAUSE The $OPTIMIZE cannot be used when
$SYMDEBUG is ON.

726 COMPILE-TIME

WARNING

If trap handling procedure modifies

globals, optimization may fail

CAUSE The optimizer assumes that the trap
handling code does not e�ect globals.
Violating this assumption can cause
incorrect code.

728 COMPILE-TIME

WARNING

Divide by zero detected at compile

time; zero result inserted

CAUSE During compilation, a divide by zero
was detected.

729 COMPILE-TIME

WARNING

This ON condition not available with

emulated floating point programs:

trap not set

A-52 Diagnostic Messages

CAUSE The speci�ed error condition may not
be trapped with emulated oating point
programs.

Diagnostic Messages A-53

730 COMPILE-TIME

WARNING

Illegal string in option or

statement: ignored

CAUSE An illegal date in the $COPYRIGHT
directive; check the syntax.

731 COMPILE-TIME

WARNING

Expecting constant in option:

ignored

CAUSE A .TRUE. or .FALSE. is expected in the
$SET option.

732 COMPILE-TIME

WARNING

Logical end of option already

encountered: option ignored

CAUSE Extra character found in an option that
has already been processed.

734 COMPILE-TIME

WARNING

"/" expected in option: ignored

CAUSE A syntax error was found in the
COMMON statement.

735 COMPILE-TIME

WARNING

Unrecognizable compiler option or

suboption

CAUSE The compiler option or suboption does
not exist.

736 COMPILE-TIME

WARNING

"HP9000" and "FTN3000_66" mutually

exclusive: previous option turned

off

CAUSE

739 COMPILE-TIME

WARNING

Illegal literal in option: ignored

CAUSE A number was not enclosed in quotation
marks, or there was an invalid notation
such as a number 9 for an octal literal.

A-54 Diagnostic Messages

740 COMPILE-TIME

WARNING

This language cannot be specified on

this operating system: HP FORTRAN 77

assumed

CAUSE Illegal language suboption was speci�ed
for the $ALIAS directive on host
operating system.

741 COMPILE-TIME

WARNING

Expecting identifier or "(" in

option: ignored

CAUSE

742 COMPILE-TIME

WARNING

Expecting .AND. or .OR. in option:

ignored

CAUSE

743 COMPILE-TIME

WARNING

System intrinsic file name too long:

truncated

CAUSE The �le name can not exceed the length
allowed by the operating system.

744 COMPILE-TIME

WARNING

System intrinsic file format may be

incorrect for this operating system

CAUSE The system intrinsic �le is not in the
correct format.

745 COMPILE-TIME

WARNING

Conditional compilation expression

too complicated: .TRUE. assumed

CAUSE The limit of the number of conditional
expressions has been exceeded.

746 COMPILE-TIME
WARNING

Duplicate specification of system
intrinsic

CAUSE A system intrinsic is speci�ed more than
once.

Diagnostic Messages A-55

747 COMPILE-TIME

WARNING

Compiler suboption identifier

expected

CAUSE This suboption requires an identi�er.

748 COMPILE-TIME

WARNING

Expecting identifier or " / " in

option: ignored

CAUSE The identi�er or \/" expected by the
directive must be speci�ed, such a
$EXTERNAL.ALIAS used with no name
speci�er.

749 COMPILE-TIME

WARNING

$SEGMENT has been mapped to

$LOCALITY on this operating system

CAUSE The $SEGMENT directive used on
MPE/V is accepted as a synonym for
$LOCALITY, though their memories
are not identical.

750 COMPILE-TIME

WARNING

Types of arguments to function do

not agree

CAUSE The formal and actual arguments to a
function do not match.

752 COMPILE-TIME

WARNING

Nonintrinsic function declared

INTRINSIC

CAUSE This function is not in the intrinsic
table.

753 COMPILE-TIME

WARNING

Incorrect number of values in DATA

list

CAUSE The number of values in DATA list is
fewer than or exceeds the number of
variable, array and substring elements in
the DATA statement.

A-56 Diagnostic Messages

754 COMPILE-TIME

WARNING

Illegal parameter in option: option

ignored

CAUSE This option cannot have the given
parameters.

755 COMPILE-TIME

WARNING

Identifier has been truncated to 32

characters

CAUSE Identi�ers can have only 32 signi�cant
characters. Any identi�ers longer than
32 characters are truncated to 32.

756 COMPILE-TIME

WARNING

Duplicate specification of shared

memory option: this option ignored

CAUSE The KEY option in $SHARED_MEMORY is
already speci�ed.

757 COMPILE-TIME

WARNING

SHARED_COMMON key has been

truncated to maximum length

CAUSE The name �eld for the KEY option in
$SHARED_COMMON has been exceeded.

758 COMPILE-TIME

WARNING

Procedure or function call not

compatible with system intrinsic

definition

CAUSE

759 COMPILE-TIME

WARNING

OPTIMIZER detected potential

uninitialized variable

CAUSE

761 COMPILE-TIME
WARNING

ALIAS option not allowed in or after
executable statements: option

ignored

CAUSE All ALIAS options must be speci�ed
before executable statements.

Diagnostic Messages A-57

762 COMPILE-TIME

WARNING

If "PFA" is specified, "SYMDEBUG"

cannot be turned off

CAUSE

763 COMPILE-TIME

WARNING

This option cannot be turned off on

this operating system

CAUSE Some options are intrinsically ON in the
operating system.

764 COMPILE-TIME

WARNING

This algebraic expression can be

reduced

CAUSE

767 COMPILE-TIME

WARNING

Duplicate declaration or

definition, using first type

CAUSE Redeclaration of a variable with a
di�erent type.

768 COMPILE-TIME

WARNING

"OPTIMIZE" and DEBUG options

mutually exclusive: DEBUG option

ignored.

CAUSE

769 COMPILE-TIME

WARNING

"OPTIMIZE" and DEBUG options

mutually exclusive: OPTIMIZE

ignored.

CAUSE

770 COMPILE-TIME

WARNING

DESTINATION ARCHITECTURE was

previously specified. Directive
ignored.

CAUSE

A-58 Diagnostic Messages

771 COMPILE-TIME

WARNING

DESTINATION SCHEDULER was

previously specified. Directive

ignored.

CAUSE

772 COMPILE-TIME

WARNING

Attempting to pass entire array

as value parameter. Arguments

specified pass by value in ALIAS

Directive. Unexpected results may

occur.

CAUSE

775 COMPILE-TIME

WARNING

"," or ")" expected in option:

ignored

CAUSE A comma \," or a right parenthesis \)"
is expected in the directive.

776 COMPILE-TIME

WARNING

"," expected in option: ignored

CAUSE

777 COMPILE-TIME

WARNING

Array with (*) dimensions cannot be

range checked

CAUSE Range checking can only be done for
arrays with known dimensions.

Diagnostic Messages A-59

778 COMPILE-TIME

WARNING

Array reference out of bounds

CAUSE The array is referenced by a subscript
value that is out of the declared bounds.

779 COMPILE-TIME

WARNING

Undefined conditional compilation

variable: .TRUE. assumed

CAUSE The indenti�er(s) used within the
condition list in the $IF was not $SET.

781 COMPILE-TIME

WARNING

Test may fail due to floating point

imprecision

CAUSE .EQ. and .NE. operators test for exact
bitwise equality, an unlikely result
from oating-point operations. Unless
this is a FORTRAN 66 program with
characters stored in the oating-point
items, this is probably a coding error.

782 COMPILE-TIME

WARNING

Unable to load "LANG" environment

variable for NLS: proceeding with
n-computer

CAUSE The LANG variable has not been set
prior to program execution or has been
set to an illegal value.

783 COMPILE-TIME

WARNING

Unable to load "NLDATALANG" JCW for

NLS: proceeding with n-computer

CAUSE The NLDATALANG variable has not
been set prior to program execution or
has been set to an illegal value. (On
MPE/iX systems only.)

784 COMPILE-TIME

WARNING

Unable to load collation table for

NLS: proceeding with n-computer

CAUSE There is no colation table on the system
for the speci�ed LANG value.

A-60 Diagnostic Messages

785 COMPILE-TIME

WARNING

Illegal FORTRAN NLS call: FORTRAN

source code must be compiled with -Y

CAUSE The FORTRAN source �le was not
compiled with the -Y option and NLS
features were used.

791 COMPILE-TIME

WARNING

No matching IF directive: ignored

CAUSE An ENDIF with no matching IF.

792 COMPILE-TIME

WARNING

Expecting ENDIF directive: ignored

CAUSE An IF with no matching ENDIF.

793 COMPILE-TIME

WARNING

Missing or unsupported suboption

encountered: Directive ignored.

CAUSE

798 COMPILE-TIME

WARNING

Missing semantics for this option:

ignored

CAUSE Internal error. Please notify your HP
representative.

799 COMPILE-TIME

WARNING

Error in option: option ignored

CAUSE The option is ignored because of an
error in the speci�cation.

Diagnostic Messages A-61

ANSI Warnings
801 ANSI WARNING ANSI Warning: mixed character and

noncharacter data in EQUIVALENCE

CAUSE To be ANSI standard, an entity of type
CHARACTER may be equivalenced
only with other entities of type
CHARACTER.

802 ANSI WARNING ANSI Warning: mixed character and

noncharacter data in COMMON block

CAUSE To be ANSI standard, all entities in
a COMMON block must be of type
CHARACTER if a character variable or
character array is present in that block.

803 ANSI WARNING ANSI Warning: mixed lengths for

types of entries

CAUSE The types of entries are of di�erent
lengths.

804 ANSI WARNING ANSI Warning: item in COMMON block

needs to be aligned

CAUSE Item did not align along machine
required boundaries producing
non-contiguous allocation of space for
variables in COMMON block.

805 ANSI WARNING ANSI Warning: use of octal or

hexadecimal constant

CAUSE Octal and hexadecimal constants are HP
extensions to ANSI FORTRAN 77.

806 ANSI WARNING ANSI Warning: logical operation

performed on integer data

CAUSE One of the operands in a logical
operation (.NOT, .AND, etc.) is integer.

A-62 Diagnostic Messages

807 ANSI WARNING ANSI Warning: use of block DO, DO

WHILE, or END DO statement

CAUSE These looping constructs are MIL-STD
1753 and HP extensions to ANSI
FORTRAN 77.

808 ANSI WARNING ANSI Warning: use of IMPLICIT NONE

statement

CAUSE IMPLICIT NONE is a MIL-STD 1753
extension to ANSI FORTRAN 77.

809 ANSI WARNING ANSI Warning: length specified for

noncharacter data type

CAUSE INTEGER*2, INTEGER*4, REAL*4,
REAL*8, LOGICAL*1, LOGICAL*2,
LOGICAL*4, COMPLEX*8, and
COMPLEX*16 data types are HP
extensions to ANSI FORTRAN 77.

810 ANSI WARNING ANSI Warning: use of DOUBLE COMPLEX

data type

CAUSE DOUBLE COMPLEX data items are an
HP extension to ANSI FORTRAN 77.

811 ANSI WARNING ANSI Warning: use of PROGRAM

parameters

CAUSE Parameters appearing in a PROGRAM
statement is an HP extension to ANSI
FORTRAN 77.

812 ANSI WARNING ANSI Warning: more than seven array

dimensions

CAUSE It is non-ANSI standard to have more
than seven array dimensions.

Diagnostic Messages A-63

813 ANSI WARNING ANSI Warning: FUNCTION, SUBROUTINE,

or ENTRY name called recursively

CAUSE Allowing program units to call
themselves is an HP extension to ANSI
FORTRAN 77.

814 ANSI WARNING ANSI Warning: use of INCLUDE

statement

CAUSE The INCLUDE statement is a MIL-STD
1753 extension to ANSI FORTRAN 77.

815 ANSI WARNING ANSI Warning: improper use of

CHARACTER*(*)

CAUSE The concatenation of character variables
of length (*) is non-ANSI standard.

816 ANSI WARNING ANSI Warning: use of lowercase

letters

CAUSE Use of lower case letters outside
character constants is an HP extension
to ANSI FORTRAN 77.

817 ANSI WARNING ANSI Warning: use of end-of-line

comments

CAUSE Use of \!" is an extension to the ANSI
standard.

818 ANSI WARNING ANSI Warning: use of name(s)

greater than six characters long

CAUSE ANSI standard allows names of length
six or less.

A-64 Diagnostic Messages

819 ANSI WARNING ANSI Warning: use of underscore or

dollar sign in identifier(s)

CAUSE The use of an underscore (\ ") or
dollar sign (\$") in symbolic names is a
non-ANSI standard feature.

820 ANSI WARNING ANSI Warning: noncharacter array

used as FORMAT specifier

CAUSE Use of non-character arrays as a
FORMAT speci�er is non-ANSI
standard.

821 ANSI WARNING ANSI Warning: use of nonstandard

intrinsic function

CAUSE ANSI standard allows use of purely
integral expression in a computed
GOTO statement.

822 ANSI WARNING ANSI Warning: noninteger expression

in computed GOTO statement

CAUSE

823 ANSI WARNING ANSI Warning: use of Hollerith

literal

CAUSE Use of Hollerith literals is an extension
to the ANSI standard.

824 ANSI WARNING ANSI Warning: use of double

quotation mark (")

CAUSE The ANSI standard only supports the
apostrophe (') as string delimiters.

825 ANSI WARNING ANSI Warning: substring extracted

from named constant

CAUSE

Diagnostic Messages A-65

826 ANSI WARNING ANSI Warning: use of nonstandard

FORMAT descriptor

CAUSE A format descriptor was used that is an
HP extension to ANSI FORTRAN 77.

827 ANSI WARNING ANSI Warning: initialization of

integer with character data

CAUSE Initialization of integer variables
(INTEGER and BYTE) with character
data is an extension to the ANSI
standard.

828 ANSI WARNING ANSI Warning: use of named constant

inside a literal

CAUSE Use of named constants in a COMPLEX

literal is an extension to the ANSI
standard.

829 ANSI WARNING ANSI Warning: use of I or J suffix

with integer constant

CAUSE I and J su�xes used to denote
INTEGER*2 and INTEGER*4
constants are HP extensions to ANSI
FORTRAN 77.

830 ANSI WARNING ANSI Warning: this system-specific

feature is not part of HP standard

FORTRAN 77

CAUSE This feature is not available on all HP
operating systems.

831 ANSI WARNING ANSI Warning: branch into IF block

CAUSE It is non-ANSI standard to transfer
control into the range of an IF block.

A-66 Diagnostic Messages

832 ANSI WARNING ANSI Warning: use of ENCODE/DECODE

CAUSE ENCODE/DECODE is not part of
ANSI FORTRAN 77.

833 ANSI WARNING ANSI Warning: use of "BYTE" or

"LOGICAL*1" data type

CAUSE BYTE or LOGICAL*1 is not part of
ANSI FORTRAN 77.

834 ANSI WARNING ANSI Warning: use of dynamic array

CAUSE Use of dynamic arrays is an extension to
the ANSI standard.

835 ANSI WARNING ANSI Warning: use of variable length

specifier

CAUSE A variable length speci�er used in a type
declaration statement is a non-ANSI
standard feature.

836 ANSI WARNING ANSI Warning: transfer into the

range of a DO loop or IF block

CAUSE It is non-ANSI standard to transfer
control into the range of a DO loop or
an IF block.

837 ANSI WARNING ANSI Warning: use of arithmetic

"IF" with two labels

CAUSE An IF statement only contains two
labels. The standard requires that three
labels be speci�ed.

838 ANSI WARNING ANSI Warning: use of nonstandard

record specifier following unit

CAUSE The UNIT=num@rec format of
specifying records for direct access �les
is part of FORTRAN 66.

Diagnostic Messages A-67

A-68 Diagnostic Messages

839 ANSI WARNING ANSI Warning: use of "TYPE"

statement

CAUSE TYPE statement is a non-ANSI
standard feature. The PRINT statement
is the equivalent ANSI standard
statement.

840 ANSI WARNING ANSI Warning: data initialization

in type declaration statement

CAUSE It is non-ANSI standard to initialize
data in a type declaration statement.

841 ANSI WARNING ANSI Warning: use of nonstandard

"PARAMETER" statement

CAUSE The PARAMETER statement is in
FORTRAN 66 format.

842 ANSI WARNING ANSI Warning: use of noninteger in

integer context

CAUSE A noninteger is found in places where an
integer expression is required.

843 ANSI WARNING ANSI Warning: use of logical in

numeric context. Converted to

integer.

CAUSE A logical expression is found in places
where a numeric expression is required.

844 ANSI WARNING ANSI Warning: mixing logical with

numeric type

CAUSE A logical expression is mixed with a
numeric expression.

Diagnostic Messages A-69

845 ANSI WARNING ANSI Warning: COMMON variables

initialized in non-BLOCK DATA

subprograms

CAUSE It is non-ANSI standard to initialize
COMMON variables in non-BLOCK
DATA subprograms.

846 ANSI WARNING ANSI Warning: no result assigned to

function

CAUSE

847 ANSI WARNING ANSI Warning: use of illegal

lexical item

CAUSE

848 ANSI WARNING ANSI Warning: use of tab

indentation

CAUSE

849 ANSI WARNING ANSI Warning: use of consecutive

arithmetic operators

CAUSE

850 ANSI WARNING ANSI Warning: use of nonstandard

syntax

CAUSE A comma preceding the iolist in
a WRITE statement is non-ANSI
standard.

851 ANSI WARNING ANSI Warning: use of %REF or %VAL

built-in functions

CAUSE

A-70 Diagnostic Messages

852 ANSI WARNING ANSI Warning: use of nonstandard

EQUIVALENCE

CAUSE

853 ANSI WARNING ANSI Warning: zero passed by value

for NULL parameters

CAUSE

854 ANSI WARNING ANSI Warning: use of VIRTUAL

statement

CAUSE

855 ANSI WARNING ANSI Warning: use of nonstandard

I/O specifier

CAUSE

856 ANSI WARNING ANSI Warning: use of the ACCEPT

statement

CAUSE

857 ANSI WARNING ANSI Warning: blank common

initialized in block data

subprogram

CAUSE

858 ANSI WARNING ANSI Warning: use of quad precision

constant

CAUSE

861 ANSI WARNING ANSI Warning: use of record types

CAUSE

Diagnostic Messages A-71

Note Errors 5000 and above are internal errors. If you receive one of these
errors, please contact your HP service representative and report the
details of this message. This means more investigation is required.

A-72 Diagnostic Messages

Run-Time Errors
900 RUN-TIME ERROR Error in format

CAUSE Format speci�cation contains
unrecognizable code or string, contains
an impossible format (F0.s or G2.9,
for example), or a format descriptor
describes a �eld too wide for internal
bu�ers.

ACTION Change format speci�cation to proper
syntax.

901 RUN-TIME ERROR Negative unit number specified

CAUSE Unit number was not greater than or
equal to zero.

ACTION Use a nonnegative unit number.

902 RUN-TIME ERROR Formatted I/O attempted on

unformatted file

CAUSE Formatted I/O was attempted on a �le
opened for unformatted I/O.

ACTION Open the �le for formatted I/O; do
unformatted I/O on this �le.

903 RUN-TIME ERROR Unformatted I/O attempted on

formatted file

CAUSE Unformatted I/O was attempted
on a �le opened for formatted I/O.
Terminals, for example, are opened as
formatted �les.

ACTION Open the �le for unformatted I/O; do
formatted I/O on this �le.

Diagnostic Messages A-73

904 RUN-TIME ERROR Direct I/O attempted on sequential

file

CAUSE Direct operation attempted on
sequential �le; direct operation
attempted on opened �le connected to a
terminal.

ACTION Use sequential operations on this �le;
open �le for direct access; do not do
direct I/O on a �le connected to a
terminal.

905 RUN-TIME ERROR Error in list-directed read of

logical data

CAUSE Found repeat value, but no asterisk; �rst
character after optional decimal point
was not T or F.

ACTION Change input data to correspond to
syntax expected by list-directed input
of logicals; use input statement that
corresponds to syntax of input data.

907 RUN-TIME ERROR Error in list-directed I/O read of

character data

CAUSE Found repeat value, but no asterisk;
characters item not delimited by
quotation marks.

ACTION Change input data to correspond to
syntax expected by list-directed input
of characters; use input statement that
corresponds to syntax of input data.

908 RUN-TIME ERROR Could not open file specified

CAUSE Tried to open a �le that the system
would not allow because: (1) access to
the �le was denied by the �le system
due to access restriction, or (2) named
�le does not exist, or (3) type of access
requested is impossible.

A-74 Diagnostic Messages

ACTION Correct the name to invoke the �le
intended.

Diagnostic Messages A-75

909 RUN-TIME ERROR Sequential I/O attempted on direct

access file

CAUSE Attempted a BACKSPACE, REWIND,
or ENDFILE on a terminal or other
device for which these operations are not
de�ned.

ACTION Do not use BACKSPACE, REWIND, or
ENDFILE.

910 RUN-TIME ERROR Access past end of record attempted

CAUSE Tried to do I/O on record of a �le past
beginning or end of record.

ACTION Perform I/O operation within bounds of
the record; increase record length.

912 RUN-TIME ERROR Error in list I/O read of complex

data

CAUSE Problem reading complex data: (1) no
left parenthesis and no repeat value, or
(2) found repeat value, but no asterisk,
or (3) no comma after real part, or (4)
no closing right parenthesis.

ACTION Change input data to correspond to
syntax expected by list-directed input of
complex numbers; use input statement
corresponding to syntax of input data.

913 RUN-TIME ERROR Out of free space

CAUSE Library cannot allocate an I/O block
(from an OPEN statement), parse array
(for formats assembled at run time), �le
name string (from OPEN), or characters
from list-directed read.

ACTION Allocate more free space in the heap
area; open fewer �les; use FORMAT
statements in place of assembling
formats at run time in character
arrays; read fewer characters. Use the

A-76 Diagnostic Messages

\MAXSIZE" kernel parameter to change
the heap size for the Series 800.

Diagnostic Messages A-77

914 RUN-TIME ERROR Access of unconnected unit

attempted

CAUSE Unit speci�ed in I/O statement has not
previously been connected to anything.

ACTION Connect unit before attempting I/O on
it (that is, OPEN it); perform I/O on
another already connected unit.

915 RUN-TIME ERROR Read unexpected character

CAUSE Read a character that is not admissible
for the type conversion being performed;
input a value into a variable that was
too large for the type of the variable.

ACTION Remove from input data any characters
that are illegal in integers or real
numbers.

916 RUN-TIME ERROR Error in read of logical data

CAUSE An illegal character was read when
logical data was expected.

ACTION Change input data to correspond to
syntax expected when reading logical
data; use input statement corresponding
to syntax of input data.

917 RUN-TIME ERROR Open with named scratch file

attempted

CAUSE Executed OPEN statement with
STATUS='SCRATCH', but also named
the �le.

ACTION Either open �le with
STATUS='SCRATCH', or name the �le
in an OPEN statement.

A-78 Diagnostic Messages

918 RUN-TIME ERROR Open of existing file with

STATUS='NEW' attempted

CAUSE Executed OPEN statement with
STATUS='NEW', but �le already exists.

ACTION Use OPEN without STATUS
speci�er, or with STATUS='OLD', or
STATUS='UNKNOWN'.

920 RUN-TIME ERROR Open of file connected to different

unit attempted

CAUSE Executed OPEN statement with a UNIT
speci�er that is already associated with
a di�erent �le name.

ACTION Use an OPEN statement with a UNIT
speci�er that is not connected to a �le
name; open the connected �le to the
same unit name.

921 RUN-TIME ERROR Unformatted open with BLANK

specifier attempted

CAUSE OPEN statement speci�ed with
FORM='UNFORMATTED' and
BLANK=XX.

ACTION Use either FORM='FORMATTED' or
BLANK=XX when opening �les.

922 RUN-TIME ERROR Read on illegal record attempted

CAUSE Attempted to read a record of a
formatted or unformatted direct �le that
is beyond the current end-of-�le.

ACTION Read records that are within the bounds
of the �le.

Diagnostic Messages A-79

923 RUN-TIME ERROR Open with illegal FORM specifier

attempted

CAUSE FORM speci�er did not begin with \F",
\f", \U", or \u".

ACTION Use either 'FORMATTED' or
'UNFORMATTED' for the FORM
speci�er in an OPEN statement.

924 RUN-TIME ERROR Close of scratch file with

STATUS='KEEP' attempted

CAUSE The �le speci�ed in the CLOSE
statement was previously opened with
'SCRATCH' speci�ed in the STATUS
speci�er.

ACTION Open the �le with a STATUS other
than 'SCRATCH'; do not specify
STATUS='KEEP' in the CLOSE
statement for this scratch �le.

925 RUN-TIME ERROR Opened with illegal STATUS

specifier attempted

CAUSE STATUS speci�er did not begin with
\O", \o", \N", \n", \S", \s", \U", or
\u".

ACTION Use 'OLD', 'NEW', 'SCRATCH', or
'UNKNOWN' for the STATUS speci�er
in OPEN statement.

926 RUN-TIME ERROR Close with illegal STATUS specifier

attempted

CAUSE STATUS speci�er did not begin with
\K", \k", \D", or \d".

ACTION Use 'KEEP' or 'DELETE' for the
STATUS speci�er in a CLOSE
statement.

A-80 Diagnostic Messages

927 RUN-TIME ERROR Open with illegal ACCESS specifier

attempted

CAUSE ACCESS speci�er did not begin with
\S", \s", \D", or \d".

ACTION Use 'SEQUENTIAL' or 'DIRECT' for
the ACCESS speci�er in an OPEN
statement.

929 RUN-TIME ERROR Open of direct file with no RECL

specifier attempted

CAUSE OPEN statement had
ACCESS='DIRECT', but no RECL
speci�er.

ACTION Add RECL speci�er; specify
ACCESS='SEQUENTIAL'.

930 RUN-TIME ERROR Open with RECL less than 1 attempted

CAUSE RECL speci�er in OPEN statement was
less than or equal to zero.

ACTION Use a positive number for RECL
speci�er in OPEN statement.

931 RUN-TIME ERROR Open with illegal BLANK specifier

attempted

CAUSE BLANK speci�er did not begin with
\N", \n", \Z", or \z".

ACTION Use 'NULL' or 'ZERO' for BLANK
speci�er in OPEN statement.

933 RUN-TIME ERROR Sequential end-of-file with no END=

specifier

CAUSE End-of-�le mark read by a READ with
no END= speci�er indicating a label to
which to jump.

Diagnostic Messages A-81

ACTION Use the END= speci�er to handle the
EOF; check logic.

A-82 Diagnostic Messages

934 RUN-TIME ERROR OPEN of readonly file with

ACCESS='APPEND' ATTEMPTED

CAUSE

ACTION

936 RUN-TIME ERROR Append I/O attempted on sequential

only file/device

CAUSE

ACTION

937 RUN-TIME ERROR Illegal record number specified

CAUSE Record number less than one was
speci�ed for direct I/O.

ACTION Use record numbers greater than zero.

942 RUN-TIME ERROR Error in list-directed read -

character data read for assignment

to noncharacter variable

CAUSE A character string was read for a
numerical or logical variable.

ACTION Check input data and input variable
type.

944 RUN-TIME ERROR Record too long in direct

unformatted I/O

CAUSE Output requested is too long for
speci�ed (or preexisting) record length.

ACTION Make the number of bytes output by
WRITE less than or equal to the �le
record size.

945 RUN-TIME ERROR Error in formatted I/O

Diagnostic Messages A-83

CAUSE More bytes of I/O were requested than
exist in the current record.

ACTION Match the format to the data record.

A-84 Diagnostic Messages

950 RUN-TIME ERROR Subscript, substring, or parameter

out of bounds at statement number

nnn

CAUSE An index to an array or substring
reference was outside of the declared
limits at the speci�ed statement
number.

ACTION Check all indexes to arrays and
substrings in and around the given
statement number.

951 RUN-TIME ERROR Label out of bounds in assigned GOTO

at statement number nnn

CAUSE The value of the variable did not
correspond to any of the labels in the
list in an assigned GOTO statement.

ACTION Check for a possible logic error in the
program or an incorrect list in the
assigned GOTO statement at or near
the given statement number.

952 RUN-TIME ERROR Zero increment value in DO loop at

statement number nnn

CAUSE A DO loop with a zero increment has
produced an in�nite loop.

ACTION Check for a logic error in or near the
given statement number.

953 RUN-TIME ERROR No repeatable format descriptor in

format string

CAUSE No format descriptor was found to
match I/O list items.

ACTION Add at least one repeatable format
descriptor to format statement.

Diagnostic Messages A-85

954 RUN-TIME ERROR Illegal use of empty format

CAUSE An empty format, (), was used with list
items speci�ed.

ACTION Remove items from I/O list; �ll in
format speci�cations with appropriate
format descriptors.

955 RUN-TIME ERROR Open with no FILE= and STATUS='OLD'

or 'NEW'

CAUSE OPEN statement is incomplete.

ACTION Change status to 'SCRATCH' or
'UNKNOWN' or add �le speci�er.

956 RUN-TIME ERROR File system error

CAUSE The �le system returned an error status
during an I/O operation.

ACTION See the associated �le system error
message.

957 RUN-TIME ERROR Format descriptor incompatible with

numeric item in I/O list

CAUSE A numeric item in the I/O list was
matched with a nonnumeric format
descriptor.

ACTION Match format descriptors to I/O list.

A-86 Diagnostic Messages

958 RUN-TIME ERROR Format descriptor incompatible with

character item in I/O list

CAUSE A character item in the I/O list was
matched with a format descriptor other
than \A" or \R".

ACTION Match format descriptors to I/O list.

959 RUN-TIME ERROR Format descriptor incompatible with

logical item in I/O list

CAUSE A logical item in the I/O list was
matched with a format descriptor other
than \L".

ACTION Match format descriptors to I/O list.

960 RUN-TIME ERROR Format error: Missing starting left

parenthesis

CAUSE Format did not begin with a left
parenthesis.

ACTION Begin format with left parenthesis.

961 RUN-TIME ERROR Format error: Invalid format

descriptor

CAUSE Format descriptor did not begin with a
character that can start a legal format
descriptor.

ACTION Specify correct format descriptor.

Diagnostic Messages A-87

962 RUN-TIME ERROR Unexpected character found

following a number in the format

string

CAUSE Format error: character in the set
IFEDGMNK@OLAR(PHX expected
and not found.

ACTION Specify correct format descriptor to
follow number.

963 RUN-TIME ERROR Format error: Trying to scale

unscalable format specifier

CAUSE The speci�er being scaled is not \F",
\E", \D", \M", \N", or \G".

ACTION Scale only speci�ers for oating-point
I/O.

964 RUN-TIME ERROR Format error: Parentheses too
deeply nested

CAUSE Too many left parentheses for the
format processor to stack.

ACTION Nest parentheses less deeply.

965 RUN-TIME ERROR Format error: Invalid tab specifier

CAUSE A speci�er beginning with \T" is not a
correct tab speci�er.

ACTION Correct the speci�er beginning with
\T".

966 RUN-TIME ERROR Format error: Invalid blank

specifier

CAUSE A speci�er beginning with \B" did not
have \N" or \Z" as the next character.

ACTION Correct the speci�er beginning with
\B".

A-88 Diagnostic Messages

967 RUN-TIME ERROR Format error: Specifier expected

but end of format found

CAUSE The end of the format was reached when
another speci�er was expected.

ACTION Check the end of the format for a
condition that would lead the processor
to look for another speci�er (possibly a
missing right parenthesis).

968 RUN-TIME ERROR Format error: Missing separator

CAUSE Other speci�er found when /, :, or)

expected.

ACTION Insert separator where needed.

969 RUN-TIME ERROR Format error: Digit expected

CAUSE Number not found following format
descriptor requiring a �eld width.

ACTION Specify �eld width where required.

970 RUN-TIME ERROR Format error: Period expected in

floating point format descriptor

CAUSE No period was found to specify the
number of decimal places in an \F",
\G", \E", or \D" format descriptor.

ACTION Specify the number of decimal places for
the �eld.

Diagnostic Messages A-89

971 RUN-TIME ERROR Format error: Unbalanced

parentheses

CAUSE More right parentheses than left
parentheses were found.

ACTION Correct format so parentheses balance.

972 RUN-TIME ERROR Format error: Invalid string in

format

CAUSE String extends past the end of the
format or is too long for bu�er.

ACTION Check for unbalanced quotation mark or
for \H" format count too large; or break
up long string.

973 RUN-TIME ERROR Record length different in

subsequent OPEN

CAUSE Record length speci�ed in redundant
OPEN conicted with the value as
opened.

ACTION Only BLANK= speci�er may be
changed by a redundant OPEN.

974 RUN-TIME ERROR Record accessed past end of internal

file record (variable)

CAUSE An attempt was made to transfer more
characters than internal �le length.

ACTION Match READ or WRITE with internal
�le size.

975 RUN-TIME ERROR Illegal new file number requested in

fset function

CAUSE The �le number requested to be set was
not a legal �le system �le number.

ACTION Check that the FOPEN jsucceeded and
the �le number is correct.

A-90 Diagnostic Messages

Diagnostic Messages A-91

976 RUN-TIME ERROR Unexpected character in "NAMELIST"

read

CAUSE Unexpected character in NAMELIST
read.

ACTION Remove illegal character from data.

977 RUN-TIME ERROR Illegal subscript or substring in

"NAMELIST" read

CAUSE Illegal subscript or substring in
NAMELIST read.

ACTION Specify only array elements within the
bounds of the array being read.

978 RUN-TIME ERROR Too many values in "NAMELIST" read

CAUSE Too many values in NAMELIST read.

ACTION Supply only as many values as the
length of the array.

979 RUN-TIME ERROR Variable not in "NAMELIST" group

CAUSE Variable not in NAMELIST group in
NAMELIST read.

ACTION Read only the variables in this
NAMELIST.

980 RUN-TIME ERROR "NAMELIST" I/O attempted on

unformatted file

CAUSE NAMELIST I/O on unformatted
(binary) �le.

ACTION Use NAMELIST I/O only on formatted
�les.

A-92 Diagnostic Messages

981 RUN-TIME ERROR Value out of range in numeric read

CAUSE Value read for numeric item is to
big/small.

ACTION Read only values that �t in the range of
the numeric type being read.

989 RUN-TIME ERROR Illegal FORTRAN NLS call: FORTRAN

source code must be compiled with -Y

CAUSE The FORTRAN source �le was not
compiled with the -Y option and NLS
features were used. The problem is
critical enough that program execution
cannot continue.

ACTION Recompile the FORTRAN source code
with -Y option.

990 RUN-TIME ERROR Open with illegal record type
specifier

CAUSE

ACTION

Diagnostic Messages A-93

B

Intrinsic Functions and Math Subroutines

An intrinsic function is a built-in function that returns a single
value. A math subroutine is a prede�ned subroutine that performs
a particular mathematical task. Intrinsic functions and math
subroutines convert values from one data type to another, perform
data manipulation, and also perform basic mathematical functions,
such as calculating sines, cosines, and square roots of numbers.

This chapter describes the intrinsic functions and prede�ned math
subroutines of HP FORTRAN 77.

Invoking an Intrinsic
Function

An intrinsic function is invoked when the function name and any
argument appear in an expression. For example, the statement

root = SQRT(value1 + value2)

invokes the function SQRT, which computes the square root of
value1 + value2. The resulting square root is then assigned to the
variable root.

Some intrinsics, such as MVBITS, are actually subroutines. A
subroutine is invoked in the following way:

CALL subroutine name

You can de�ne and call your own function subprogram with the
same name as an intrinsic function. However, the intrinsic function
will be used unless your function is declared as an external function
with the EXTERNAL statement. Refer to your HP FORTRAN 77
Programmer's Guide for information on de�ning your own function
subprogram.

Declaring an intrinsic function in a type statement has no e�ect on
the type of the intrinsic function. For example, the statements:

INTEGER*4 float

x = float(y)

do not change the data type of float to INTEGER*4; the type of
float remains REAL*4. An IMPLICIT statement does not change
the type of an intrinsic function either.

Intrinsic Functions and Math Subroutines B-1

Generic and Specific
Function Names

Each of the intrinsic functions has a generic name, one or more
speci�c names, or both generic and speci�c names. A generic name
can be used with any of the valid data types for the function. A
speci�c name can be used with only the speci�ed data type. If both
a generic and a speci�c name exist, either can be used to invoke the
function. However, generic names are recommended because they are
more exible.

For example, the generic function COS(arg) can have an argument
of type REAL*4, REAL*8, REAL*16, COMPLEX*8, or
COMPLEX*16. The data type of the result will be the same as that
of the argument.

The speci�c function DCOS(arg) takes a REAL*8 argument.
Any other data type is invalid. The data type of the result is
REAL*8. Similarly, the speci�c function CCOS(arg) can take only a
COMPLEX*8 argument.

If a function (such as MOD) requires more than one argument, all
arguments to that function must be the same general data type. For
example, INTEGER*2 arguments can be mixed with INTEGER*4
arguments, but integer and real arguments cannot be mixed.

Note, however, that if mixed types are used, INTEGER*2 arguments
will be sign-extended when promoted to INTEGER*4 arguments.

If a subroutine (such as MVBITS) requires more than one argument,
all arguments to that subroutine must be the same data type.
For example, INTEGER*2 arguments cannot be mixed with
INTEGER*4 arguments.

If a generic or speci�c name appears as a formal argument, that
name does not identify an intrinsic function in that program unit or
statement function. For example, in this subroutine

SUBROUTINE sub(log,f)

.

.

.

f = log(f)

END

log is not an intrinsic function.

B-2 Intrinsic Functions and Math Subroutines

Summary of the
Intrinsic Functions

This section lists the intrinsic functions of HP FORTRAN 77. Tables
B-1 through B-6 show the de�nition of each function, the number of
arguments, the generic name for each group of functions, the speci�c
name for each function, the types of arguments allowed, and the
argument and function type. Table B-7 lists the random number
generator functions available in FORTRAN.

Table B-8 lists the built-in functions available in FORTRAN.

For complete descriptions of many of the FORTRAN intrinsic
functions, see \Function Descriptions".

Table B-1. Arithmetic Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Absolute
value

jaj 1 ABS

IABS

JIABSy
HABSy
IIABSy
BABSy
ABS
DABS
QABSy
CABS
ZABSy
CDABSy
JIABSy
HABSy
IIABSy
BABSy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
REAL*4
REAL*8
REAL*8
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Remainderinga�INT(a/b)*b2 MOD JMODy
HMODy
IMODy
BMODy
AMOD
DMOD
QMODy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

Intrinsic Functions and Math Subroutines B-3

Table B-1. Arithmetic Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Transfer
of sign

jaj if b�0

�jaj if
b<0

2 SIGN

ISIGN

JISIGNy
HSIGNy
IISIGNy
BSIGNy

DSIGN
QSIGNy
JISIGNy
HSIGNy
IISIGNy
BSIGNy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Positive
di�erence

a�b if
a>b

0 if a<b

2 DIM

IDIM

JIDIMy
HDIMy
IIDIMy
BDIMy
DIM
DDIM
QDIMy
JIDIMy
HDIMy
IIDIMy
BDIMy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1
REAL*4
REAL*8
REAL*16
INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

REAL*8
product of
REAL*4

a*b 2 DPROD REAL*4 REAL*8

REAL*16
product of
REAL*8

a*b 2 QPRODyREAL*8 REAL*16

Choosing
largest
value

max
(a,b, . . .)

�2 MAX

MAX0

MAX1

AMAX0

IMAX0y
JMAX0y
AMAX1
DMAX1
QMAX1y
IMAX0
JMAX0
IMAX1y
JMAX1y
AIMAX0y
AJMAX0y

INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
INTEGER*2
INTEGER*4
REAL*4
REAL*4
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
REAL*4
REAL*4

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

B-4 Intrinsic Functions and Math Subroutines

Table B-1. Arithmetic Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Choosing
smallest
value

min
(a,b, . . .)

�2 MIN

MIN0

MIN1

AMIN0

IMIN0y
JMIN0y
AMIN1
DMIN1
QMIN1y
IMIN0
JMIN0
IMIN1y
JMIN1y
AIMIN0y
AJMIN0y

LOGICAL*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
INTEGER*2
INTEGER*4
REAL*4
REAL*4
INTEGER*2
INTEGER*4

LOGICAL*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
REAL*4
REAL*4

Imaginary
part of a
complex
argument

ai 1 IMAGy AIMAG
DIMAGy

COMPLEX*8
COMPLEX*16

REAL*4
REAL*8

Conjugate
of a
complex
argument

(ar,�ai) 1 CONJG CONJG
DCONJGy

COMPLEX*8
COMPLEX*16

COMPLEX*8
COMPLEX*16

Logical
product

2 IANDy JIANDy
HIANDy
IIANDy
BIANDy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Logical
sum

2 IORy JIORy
HIORy
IIORy
BIORy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Exclusive
OR

2 IXORy
or
IEORy

JIEORy
JIXORy
HIEORy
IIEORy
IIXORy
BIEORy
BIXORy

INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*2
INTEGER*2
LOGICAL*1
LOGICAL*1

INTEGER*4
INTEGER*4
INTEGER*2
INTEGER*2
INTEGER*2
LOGICAL*1
LOGICAL*1

Complement 1 NOTy JNOTy
HNOTy
INOTy
BNOTy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

y indicates that the function is an extension to the ANSI 77
standard.

Intrinsic Functions and Math Subroutines B-5

Table B-2. Bit Manipulation Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Bit test 2 BTESTy BJTESTy
HTESTy
BITESTy
BBTESTy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

LOGICAL*4
LOGICAL*2
LOGICAL*2
LOGICAL*1

Bit set 2 IBSETy JIBSETy
HBSETy
IIBSETy
BBSETy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Bit clear 2 IBCLRy JIBCLRy
HBCLRy
IIBCLRy
BBCLRy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*4
LOGICAL*1

Bit move 5 MVBITSyMVBITSy
HMVBITSy
BMVBITSy

INTEGER*4
INTEGER*2
LOGICAL*1

Logical
shift

2 ISHFTy JISHFTy
HSHFTy
IISHFTy
BSHFTy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

Circular
shift

3 ISHFTCyJISHFTCy
HSHFTCy
IISHFTCy
BSHFTCy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*4
LOGICAL*1

Bit
extraction

3 IBITSy JIBITSy
HBITSy
IIBITSy
BBITSy

INTEGER*4
INTEGER*2
INTEGER*2
LOGICAL*1

INTEGER*4
INTEGER*2
INTEGER*4
LOGICAL*1

y indicates that the function is an extension to the ANSI 77
standard.

B-6 Intrinsic Functions and Math Subroutines

Table B-3. Character Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Conversion
to
character

1 CHAR ----

INTEGER*4
INTEGER*2
LOGICAL*1

CHARACTER
CHARACTER
CHARACTER

Conversion
to INTE-
GER*4

1 ICHAR CHARACTERINTEGER*4

Conversion
to INTE-
GER*2

1 INUMy CHARACTERINTEGER*2

Conversion
to INTE-
GER*4

1 JNUMy CHARACTERINTEGER*4

Conversion
to
REAL*4

1 RNUMy CHARACTERREAL*4

Conversion
to
REAL*8

1 DNUMy CHARACTERREAL*8

Conversion
to
REAL*16

1 QNUMy CHARACTERREAL*16

Length Length of
character
entry

1 LEN CHARACTERINTEGER*4

Index of a
substring

Location
of
substring
b in string
a

2 INDEX CHARACTERINTEGER*4

Lexically
greater
than or
equal

a�b 2 LGE CHARACTERLOGICAL*4

Lexically
greater
than

a>b 2 LGT CHARACTERLOGICAL*4

Lexically
less than
or equal

a�b 2 LLE CHARACTERLOGICAL*4

Lexically
less than

a<b 2 LLT CHARACTERLOGICAL*4

y indicates that the function is an extension to the ANSI 77
standard.

Intrinsic Functions and Math Subroutines B-7

Table B-4. Numeric Conversion Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Type
conversion

Conversion
to INTE-
GER*2
and IN-
TEGER*4
using
INT(a)

1 INT

IDINT

IQINTy

IINTy
JINTy
IIDINTy
JIDINTy
IIQINTy
JIQINTy

IIDINTy
JIDINTy
IIQINTy
JIQINTy

LOGICAL*1y
REAL*4
REAL*4
REAL*8
REAL*8
REAL*16
REAL*16
COMPLEX*8
COMPLEX*8
COMPLEX*16
COMPLEX*16
REAL*8
REAL*8
REAL*16
REAL*16

INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4

Type
conversion

Conversion
to INTE-
GER*2
and
INTE-
GER*4;
zero-
extend
using
ZEXT(i)

1 ZEXTy27

IZEXTy

JZEXTy

LOGICAL*1y
LOGICAL*2
INTEGER*2
LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

Type
conversion

Conversion
to
REAL*4

1 REAL

FLOAT

FLOATIy
FLOATJy

SNGL
SNGLQy

FLOATI
FLOATJ

LOGICAL*1y
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
INTEGER*2
INTEGER*4

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4

(Continued on the next page)

B-8 Intrinsic Functions and Math Subroutines

Table B-4. Numeric Conversion Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Type
conversion

Conversion
to
REAL*8

1 DBLE

DFLOAT

DFLOTI
DFLOTJ

DBLE

DBLEQy

DREALy
DFLOTI
DFLOTJ

LOGICAL*1y
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
INTEGER*2
INTEGER*4

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

Intrinsic Functions and Math Subroutines B-9

Table B-4. Numeric Conversion Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Type
conversion

Conversion
to
REAL*16

1 QEXTy

QFLOAT

QFLOTI
QFLOTJ

QEXTDy

QFLOTI
QFLOTJ

LOGICAL*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
INTEGER*2
INTEGER*4
INTEGER*4

REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16

Type
conversion

Conversion
to COM-
PLEX*8

1 or 2z CMPLX ----

LOGICAL*1y
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16

COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8

Type
conversion

Conversion
to COM-
PLEX*16

1 or 2z DCMPLXy----

LOGICAL*1y
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16

COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16

Type
conversion

Conversion
to INTE-
GER*4

1 ICHAR CHARACTERINTEGER*4

Type
conversion

Conversion
to
character

1 CHAR ----

INTEGER*4
INTEGER*2
LOGICAL*1y

CHARACTER
CHARACTER
CHARACTER

y indicates that the function is an extension to the ANSI 77
standard.

z if type COMPLEX*8 or COMPLEX*16 is used, there can only
be one argument.

(Continued on the next page)

B-10 Intrinsic Functions and Math Subroutines

Table B-4. Numeric Conversion Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Truncation REAL(INT(a))

DBLE(INT(a))

1 AINT

IDINT

IQINTy

AINT
DINT
DDINTy
QINTy
IIDINTy
JIDINTy
IIQINTy
JIQINTy

REAL*4
REAL*8
REAL*8
REAL*16
REAL*8
REAL*8
REAL*16
REAL*16

REAL*4
REAL*8
REAL*8
REAL*16
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4

Nearest
whole
number

INT(a+.5)
if a�0

INT(a�.5)
if a<0

1 ANINT ANINT
DNINT
QNINTy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Nearest
integer

INT(a+.5)
if a�0

INT(a�.5)
if a<0

1 NINT

IDNINT

IQNINTy

ININTy
JNINTy
IIDNNTy
JIDNNTy
IIQNNTy
JIQNNTy
IIDNNTy
JIDNNTy
IIQNNTy
JIQNNTy

REAL*4
REAL*4
REAL*8
REAL*8
REAL*16
REAL*16
REAL*8
REAL*8
REAL*16
REAL*16

INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4

y indicates that the function is an extension to the ANSI 77
standard.

Intrinsic Functions and Math Subroutines B-11

Table B-5. Transcendental Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Sine sin(a) 1 SIN SIN
DSIN
QSINy
CSIN
ZSINy
CDSINy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

Cosine cos(a) 1 COS COS
DCOS
QCOSy
CCOS
ZCOSy
CDCOSy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

Tangent tan(a) 1 TAN TAN
DTAN
QTANy
CTAN
ZTANy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16

Arcsine asin(a) 1 ASIN ASIN
DASIN
QASINy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arccosine acos(a) 1 ACOS ACOS
DACOS
QACOSy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent atan(a)

atan(a/b)

1

2

ATAN

ATAN2

ATAN
DATAN
QATANy
ATAN2
DATAN2
QATAN2y

REAL*4
REAL*8
REAL*16
REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16
REAL*4
REAL*8
REAL*16

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

B-12 Intrinsic Functions and Math Subroutines

Table B-5. Transcendental Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Sine
(degree)

sin(a) 1 SINDy SINDy
DSINDy
QSINDy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Cosine
(degree)

cos(a) 1 COSDy COSDy
DCOSDy
QCOSDy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Tangent
(degree)

tan(a) 1 TANDy TANDy
DTANDy
QTANDy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arcsine
(degree)

asin(a) 1 ASINDy ASINDy
DASINDy
QASINDy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arccosine
(degree)

acos(a) 1 ACOSDy ACOSDy
DACOSDy
QACOSDy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent
(degree)

atan(a)

atan(a/b)

1

2

ATANDy

ATAN2Dy

ATANDy
DATANDy
QATANDy
ATAN2Dy
DATAN2Dy
QATAN2Dy

REAL*4
REAL*8
REAL*16
REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16
REAL*4
REAL*8
REAL*16

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

Intrinsic Functions and Math Subroutines B-13

Table B-5. Transcendental Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Hyperbolic
sine

sinh(a) 1 SINH SINH
DSINH
QSINHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
cosine

cosh(a) 1 COSH COSH
DCOSH
QCOSHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
tangent

tanh(a) 1 TANH TANH
DTANH
QTANHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
arcsine

asinh(a) 1 ASINHy ASINHy
DASINHy
QASINHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
arccosine

acosh(a) 1 ACOSHy ACOSHy
DACOSHy
QACOSHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
arctangent

arccos(a) 1 ATANHy ATANHy
DATANHy
QATANHy

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

y indicates that the function is an extension to the ANSI 77
standard.

(Continued on the next page)

B-14 Intrinsic Functions and Math Subroutines

Table B-5. Transcendental Functions (continued)

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Square
root

a**(1/2) 1 SQRT SQRT
DSQRT
QSQRTy
CSQRT
ZSQRTy
CDSQRTy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

Exponential e**a 1 EXP EXP
DEXP
QEXPy
CEXP
ZEXPy
CDEXPy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

Natural
logarithm

log(a) 1 LOG ALOG
DLOG
QLOGy
CLOG
ZLOGy
CDLOGy

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16

Common
logarithm

log10(a) 1 LOG10 ALOG10
DLOG10
QLOG10y

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

y indicates that the function is an extension to the ANSI 77
standard.

Intrinsic Functions and Math Subroutines B-15

Table B-6. Miscellaneous Functions

Function DescriptionNo.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Byte
address

baddress(a) 1 BADDRESSy---- Any INTEGER*4

Byte
address

1 %LOCy ---- Any INTEGER*4

Bytes of
storage

SIZEOF 1 SIZEOF |- Any except
dynamic or
assumed-size
array.

INTEGER*4

y indicates that the function is an extension to the ANSI 77
standard.

Table B-7. Built-in Functions

Function Description No.
of

Args.

Generic
Name

Speci�c
Name

Type of
Argument

Type of
Function

Pass
argument
by
reference

1 %REFy ---- Any ----

Pass
argument
by value

1 %VALy ---- Any ----

y indicates that the function is an extension to the ANSI 77
standard.

B-16 Intrinsic Functions and Math Subroutines

Notes for Tables B-1
through B-8

1. For a of type INTEGER*4 or INTEGER*2, INT(a) = a. For a of
type REAL*4 or REAL*8, there are two cases:

A. If |a|<1, INT(a)=0.

B. If |a|>1, INT(a) is the integer whose magnitude is the
magnitude of a and whose sign is the same as that of a.

For example:

INT(-3.7) = -3

For a of type COMPLEX*8, INT(a) is the value obtained by
applying the above rule to the real part of a.

For a of type REAL*4, IFIX(a) is the same as INT(a). IFIX
behaves di�erently when either NOSTANDARD INTRINSICS or
HP9000 300 is on. See chapter 7 for more information.

If SHORT is on, IFIX returns an INTEGER*2; if LONG is on, it
returns an INTEGER*4.

2. For a of type REAL*4, REAL(a) is a. For a of type INTEGER*4
or REAL*8, REAL(a) is as much precision of the signi�cant
part of a as a REAL*4 datum can contain. For a of type
COMPLEX*8, REAL(a) is the real part of a.

For a of type INTEGER*4, FLOAT(a) is the same as REAL(a).

3. For a of type REAL*8, DBLE(a) is a. For a of type INTEGER*4
or REAL*4, DBLE(a) is as much precision of the signi�cant
part of a as a REAL*8 datum can contain. For a of type
COMPLEX*8, DBLE(a) is as much precision of the signi�cant
part of the real part of a as a REAL*8 datum can contain. For a
of type COMPLEX*16, DBLE(a) is the real part of a.

4. CMPLX can have one or two arguments. If there is one argument,
it can be of type INTEGER*4, REAL*4, REAL*8, or
COMPLEX*8. If there are two arguments, they must both be
of the same type and can be of type INTEGER*4, REAL*4, or
REAL*8.

For a of type COMPLEX*8, CMPLX(a) is a. For a of type
INTEGER*4, REAL*4, or REAL*8, CMPLX(a) is the
COMPLEX*8 value whose real part is REAL(a) and whose
imaginary part is 0. For a of type COMPLEX*16, CMPLX(a) is:

CMPLX(REAL(a), REAL(IMAG(a)))

CMPLX(a,b) is the COMPLEX*8 value whose real part is
REAL(a) and whose imaginary part is REAL(b).

These rules also apply to DCMPLX. For a of type COMPLEX*8,
DCMPLX(a) is:

DCMPLX(DBLE(a), DBLE(IMAG(a)))

Intrinsic Functions and Math Subroutines B-17

5. A COMPLEX*8 value is expressed as an ordered pair of
REAL*4s or REAL*8s (ar,ai), where ar is the real part and ai

the imaginary part. ABS or CABS is de�ned as:

SQRT (ar^+2^- + ai^+2^-)

6. All angles in trigonometric functions are expressed in radians.

7. CONJG is de�ned as (ar,ai); see note 5.

8. ISHFT(a,b) is de�ned as the value of the �rst argument (a)
shifted by the number of bit positions designated by the second
argument (b). If b>0, shift left; if b<0, shift right; if b=0, no shift.
If b>15 or b<-15 (a is INTEGER*2), or b>31 or b<-31 (a is
INTEGER*4), the result is 0. Bits shifted out from the left or
right end are lost, and 0's are shifted in from the opposite end.
The type of the result is the same as the type of a.

9. IXOR and IEOR are de�ned as the bitwise modulo-2 sum
(exclusive OR) of the two arguments. That is, if the bits match,
the result bit is 1; otherwise, it is 0.

10. ICHAR converts from a character to an integer, based on the
internal representation of the character. Characters in the ASCII
character set have the standard ASCII values.

The value of ICHAR(a) is an integer in the range 0 � ICHAR(a)

� 255, where a is an argument of type character and length 1.

If a is longer than one character, the �rst character is used.

11. INDEX(a,b) returns an integer value representing the starting
position within character string a of a substring identical to
string b. If b occurs more than once within a, INDEX(a,b)
returns the starting position of the �rst occurrence.

If b does not occur in a, the value 0 is returned. If LEN(a) <

LEN(b), 0 is also returned.

12. LGE(a,b) returns the value true if a=b or if a follows b in ASCII
collating sequence; otherwise it returns the value false.

LGT(a,b) returns the value true if a follows b in ASCII collating
sequence; otherwise it returns the value false.

LLE(a,b) returns the value true if a=b or if a precedes b in
ASCII collating sequence; otherwise it returns the value false.

LLT(a,b) returns the value true if a precedes b in ASCII
collating sequence; otherwise it returns the value false.

If the operands for LGE, LGT, LLE, and LLT are of unequal
length, the shorter operand is treated as if padded on the right
with blanks to the length of the longer operand.

In HP FORTRAN 77, LGE, LGT, LLE, and LLT behave exactly
the same as .GE., .GT., .LE., and .LT. because HP computers
use the standard ASCII character set. The intrinsic functions
should be used for code that might be ported to another system

B-18 Intrinsic Functions and Math Subroutines

because they always obey the ASCII collating sequence. Using
the operators on another system may produce di�erent results.
For example:

LLT('9','A')

is always true. However:

('9' .LT. 'A')

may be false on some systems.

Note The NLS directive can change the results of these functions. See
\NLS Directive" in Chapter 7.

Intrinsic Functions and Math Subroutines B-19

13. As a MIL-STD-1753 standard extension to the ANSI 77
standard, ISHFTC(a,b,c) is de�ned as the right-most c bits
of the argument a shifted circularly b places. That is, the bits
shifted out of one end are shifted into the opposite end. No
bits are lost. The unshifted bits of the result are the same as
the unshifted bits of the argument a. The absolute value of the
argument b must be less than or equal to c. The argument c
must be greater than or equal to 1 and less than or equal to 16 if
a is INTEGER*2, or less than or equal to 32 if a is INTEGER*4.

14. The functions IBITS, BTEST, IBSET, IBCLR, and MVBITS

are de�ned by the MIL-STD-1753 de�nition, in which bit
positions are numbered from right to left, with the rightmost
(least signi�cant) bit numbered 0. Note that this numbering
is not necessarily used in presenting the data formats in the
machine-speci�c supplements to this manual.

15. As a MIL-STD-1753 standard extension to the ANSI 77
standard, bit sub�elds can be extracted from a �eld. Bit
sub�elds are referenced by specifying a bit position and a length.
Bit positions within a numeric storage unit are numbered from
right to left, and the rightmost bit position is numbered 0. Bit
�elds cannot extend from one numeric storage unit into another
numeric storage unit, and the length of a �eld must be greater
than zero.

The function IBITS(a,b,c) extracts a sub�eld of c bits in
length from a, starting with bit position b and extending left c
bits. The result �eld is right-justi�ed and the remaining bits set
to 0. The value of b+c must be less than or equal to 16 if a is
INTEGER*2, or less than or equal to 32 if a is INTEGER*4.

16. As a MIL-STD-1753 standard extension to the ANSI 77
standard, the bit move subroutine CALL MVBITS (a,b,c,d,e)

moves c bits from positions b through b+c-1 of argument
a to positions e through e+c-1 of argument d. The portion
of argument d not a�ected by the movement of bits remain
unchanged. All arguments are integer expressions, except d,
which must be a variable or array element. Arguments a and d

are permitted to be the same numeric storage unit. The values of
b+c and e+c must be less than or equal to the lengths of a and b

respectively.

17. As a MIL-STD-1753 standard extension to the ANSI 77
standard, individual bits of a numeric storage unit can be tested
and changed with the bit processing routines described in Notes
18, 19, and 20. Each function has two arguments, a and b, which
are integer expressions. a speci�es the binary pattern. b speci�es
the bit position (rightmost bit is 0).

18. The function BTEST is a logical function. The bth bit of
argument a is tested. If it is 1, the value of the function is true;
if it is 0, the value is false. If b is greater than or equal to 16 or

B-20 Intrinsic Functions and Math Subroutines

32 (depending on whether a is a 16- or 32-bit element), the result
is false.

19. The result of the function IBSET(a,b) is equal to the value of a
with the bth bit set to 1. If b is greater than or equal to 16 or 32
(depending on whether a is a 16- or 32-bit element), the result is
a.

20. The result of the function IBCLR(a,b) is equal to the value of a
with the bth bit set to 0. If b is greater than or equal to 16 or 32
(depending on whether a is a 16- or 32-bit element), the result is
a.

21. In AINT(a) or ANINT(a), if INT(a) or INT(a+.5) is outside the
range of integers, then these intrinsics return numbers equal
to either the most positive or the most negative value (on the
particular system) having the same type as the type of their
argument, a.

Intrinsic Functions and Math Subroutines B-21

22. The ZEXT function expands any �xed-point argument to either
an INTEGER*2 or INTEGER*4 without extending the sign of
the argument (that is, the high-order bits are set to zero). The
generic name ZEXT behaves like IZEXT when the SHORT directive
is enabled. ZEXT behaves like JZEXT when SHORT is not enabled.

23. The size of the integer function returned by BADDRESS is system
dependent.

24. The argument of SIN, DSIN, COS, DCOS, TAN, or DTAN must be
in radians, which are treated as modulo 2*�. The argument of
DSIND, COSD, DCOSD, TAND, or DTAND must be in degrees, which
are treated as modulo 360.

25. The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2,
or DATAN2 is in radians. The result of ASIND, DASIND, ACOSD,
DACOSD, ATAND, DATAND, ATAN2D , or DATAN2D is in degrees.

26. MVBITS and SRAND are actually subroutine calls and not
functions, and therefore do not have a resulting type.

27. If SHORT is enabled, ZEXT behaves like IZEXT and returns an
INTEGER*2 result. If SHORT is not enabled, ZEXT behaves
like JZEXT and returns an INTEGER*4 result.

28. Use $NOSTANDARD INTRINSICS for compatibility
compatibility with DEC/VAX FORTRAN 77 and other vendors'
FORTRAN compilers. Use $HP9000 300 INTRINSICS for series
300 compatibility.

B-22 Intrinsic Functions and Math Subroutines

FORTRAN Intrinsic
Functions and
Subroutines

Following are system intrinsics accessed with the NOSTANDARD
SYSTEM compiler directive.

DATE Subroutine DATE returns a string in the form dd-mmm-yy (for example,
15-SEP-88).

DATE is called as follows:

CHARACTER*9 DSTRING

CALL DATE(DSTRING)

IDATE Subroutine IDATE returns three integer values representing the current month,
day, and year. IDATE is called as follows:

INTEGER MONTH,DAY,YEAR

CALL IDATE(MONTH,DAY,YEAR)

YEAR returns a two digit number in the range of zero to 99. To
obtain a four-digit calendar year, add 1900 to YEAR.

EXIT Subroutine EXIT causes a program to terminate as if a STOP statement without
an argument was encountered.

Following is the syntax for EXIT:

CALL EXIT()

The above call to EXIT terminates the program and returns control
to the operating system.

RAN Function RAN is a general random number generator of the multiplicative
congruential type. The result is a oating-point number that is
uniformly distributed in the range between 0.0 inclusive and 1.0,
exclusive. Following is a call to RAN:

Y = RAN(ISEED)

where ISEED must be an INTEGER*4 constant, variable, or array
element.

RAN stores a value in ISEED and uses it later to calculate the next
random number. RAN uses the following algorithm to calculate the
value and update the seed:

SEED = MOD(69069 * SEED + 1,2 ** 32)

SEED is a 32-bit number whose high-order 24 bits are converted to a
oating-point number and stored in Y. RAN returns Y and stores the
new seed in ISEED.

Intrinsic Functions and Math Subroutines B-23

SECNDS Function SECNDS returns the number of seconds elapsed since midnight minus
the number of seconds passed in as an argument. SECNDS measures
intervals of seconds up to 24 hours. It can handle cases where the
start time is before midnight and the end time is after, as long as the
interval does not exceed 24 hours.

Example

$NOSTANDARD SYSTEM

PROGRAM benchmark
REAL*4 TIME0,TIME1

INTEGER I

TIME0 = SECNDS (0.0)

PRINT *,TIME0

C code to be limited

F = 0.0

DO I = 1,100

F = SIN(REAL(I)) + F

END DO

C end code to be timed

TIME1 = SECNDS (TIME0)

PRINT *,TIME1

END

The second call to SECNDS returns the seconds elapsed since midnight
minus the number of seconds passed in by TIME0.

Note Functions RAN and SECNDS cannot be used with the $HP3000 16
ON directive. This directive causes the oating-point format to be
classic HP 3000 instead of IEEE, and will not be recognized by
these functions. The compiler attempts to �nd a compatibility mode
routine for these which does not exist.

An alternative is to use the MPE/iX TIMER intrinsic. For example,
to get the number of seconds after midnight you would compile and
execute:

$STANDARD_LEVEL SYSTEM

PROGRAM cktimer

SYSTEM INTRINSIC TIMER

INTEGER*4 I, T

T = TIMER()

I = MOD((T/1000), 86400)

PRINT *,I

END

where 86400 is the number of seconds per day. The value is an
integer.

B-24 Intrinsic Functions and Math Subroutines

TIME Subroutine TIME returns a string in the form hh:mm:ss (for example, 22:10:30).

TIME is called as follows:

$NOSTANDARD SYSTEM

PROGRAM checktime

CHARACTER*8 timebuff

CALL TIME(timebuff)

PRINT *,timebuff
END

Setting the TZ Environment Variable

To get the correct time, you must set the evironment variable TZ
to your local time zone. To set the TZ, use the MPE/iX SETVAR
command. For example, the following command sets the time zone to
Central Standard Time and Central Daylight Time, which would be
correct for Chicago, Illinois:

:SETVAR TZ 'CST6CDT'

The following table lists some time zones. Check you local time zone
to be sure you use the correct one.

Intrinsic Functions and Math Subroutines B-25

Table B-8. Time Zones and TZ Environment Variable Values

TZ Values Time Zone Geographic Area

HST10 Hawaiian Standard Time, Hawaiian
Daylight Time.

United States: Hawaii.

AST10ADT Aleutian Standard Time, Aleutian Daylight
Time.

United States: Alaska (parts).

YST9YDT Yukon Standard Time, Yukon Daylight
Time.

United States: Alaska (parts).

PST3PDT Paci�c Standard Time, Paci�c Daylight
Time.

Canada: British Columbia. United States:
California, Idaho(parts), Nevada, Oregon
(parts), Washington.

MST7MDT Mountain Standard Time, Mountain
Daylight Time.

Canada: Alberta, Saskatchewan (parts). United
States: Colorado, Idaho (parts), Kansas (parts),
Montana, Nebraska (parts), New Mexico, North
Dakota (parts), Oregon (parts), South Dakota
(parts), Texas (parts), Utah, Wyoming.

MST7 Mountain Standard Time. United States: Arizona.

CST6CDT Central Standard Time, Central Daylight
Time.

Canada: Manitoba, Ontario (parts),
Saskatchewan (parts). United States: Alabama,
Arkansas, Florida (parts), Illinois, Iowa,
Kansas, Kentucky (parts), Louisiana, Michigan
(parts), Minnesota, Mississippi, Missouri,
Nebraska, North Dakota, Oklahoma, South
Dakota, Tennessee (parts), Texas, Wisconsin.

EST6CDT Eastern Standard Time, Central Daylight
Time.

United States: Indiana (most).

EST5EDT Eastern Standard Time, Eastern Daylight
Time.

Canada: Ontario (parts), Quebec (parts).
United States: Connecticut, Delaware, District
of Columbia, Florida, Georgia, Kentucky,
Maine, Maryland, Massachusetts, Michigan,
New Hampshire, New Jersey, New York, North
Carolina, Ohio, Pennsylvania, Rhode Island,
South Carolina, Tennessee (parts), Vermont,
Virginia, West Virginia.

AST4ADT Atlantic Standard Time, Atlantic Daylight
Time.

Canada: Newfoundland (parts), Nova Scotia,
Prince Edward Island, Quebec (parts).

NST3:30NDT Newfoundland Standard Time,
Newfoundland Daylight Time.

Canada: Newfoundland (parts).

WET0WETDST Western European Time, Western European
Time Daylight Savings Time.

Great Britain, Ireland.

PWT0PST Portuguese Winter Time, Portuguese
Summer Time

MEZ-1MESZ Mitteleuropaeische Zeit, Mitteleuropaeische
Sommerziet.

MET-1METDST Middle European Time, Middle European
Time Daylight Savings Time.

Belgium, Luxembourg, Netherlands, Denmark,
Norway, Austria, Poland, Czechoslovakia,
Sweden, Switzerland, Germany, France, Spain,
Hungary, Italy, Yugoslavia.

B-26 Intrinsic Functions and Math Subroutines

Table B-8. Time Zones and TZ Environment Variable Values (continued)

TZ Values Time Zone Geographic Area

SAST-2SADT South Africa Standard Time, South Africa
Daylight Time.

South Africa.

JST-9 Japan Standard Time Japan.

WST-8:00 Australian Western Standard Time Australia: Western Australia

CST-9:30 Australian Central Standard Time Australia: Northern Territory.

CST-9:30CDT Australian Central Standard Time,
Australian Central Daylight Time.

Australia: South Australia

EST-10 Australian Eastern Standard Time Australia: Queensland.

EST-10EDT Australian Eastern Standard Time,
Australian Eastern Daylight Time

Australia: New South Wales, Tasmania,
Victoria.

NZT-12NZDT New Zealand Standard Time, New Zealand
Daylight Time.

New Zealand

If TZ is not set, time assumes Eastern Standard Time (EST5EDT).

The time di�erential is automatically adjusted for daylight savings
time according to the values in the time and zone adjustment table
(the �le TZTAB.LIB.SYS).

Note Make sure your system administrator has correctly set the hardware
clock. The hardware clock must be set to Greenwich Mean Time
(Universal Coordinated Time or UTC) for TIME to return the
correct local time.

Intrinsic Functions and Math Subroutines B-27

Function
Descriptions

The FORTRAN 77 generic functions follow, in alphabetical
order. The functions that do not have a generic name are listed
alphabetically by speci�c name.

ABS Function ABS(arg) is a generic function that returns the absolute value of
an INTEGER*4, REAL*4, REAL*8, REAL*16, or COMPLEX*8
argument. A complex value is expressed as an ordered pair of
REAL*4 or REAL*8 numbers in the form (ar,ai) where ar is the
REAL*4 part and ai is the imaginary part. If arg is COMPLEX*8,
ABS(arg) is equal to the square root of (ar**2 + ai**2). For
INTEGER*4, REAL*4, REAL*8, and REAL*16 arguments, the
result is the same data type as the argument. For COMPLEX*8
arguments, the result is REAL*4.

Examples

Function Call Value Returned to a

a = ABS(100) 100

a = ABS(-100.0) 100.0

a = ABS(vector) 28.32716, where vector =

(12.84,25.25)

a =

ABS(-1.23451234512345D2)

123.451234512345

The speci�c function names are ABS for REAL*4 arguments, CABS
for COMPLEX*8 arguments, DABS for REAL*8 arguments,

QABS for REAL*16 arguments,

IABS and JIABS for INTEGER*4 arguments, HABS and IIABS for
INTEGER*2 arguments, and ZABS and CDABS for COMPLEX*16
arguments. IABS can also be used as a generic name for HABS, and
accept INTEGER*2 arguments.

B-28 Intrinsic Functions and Math Subroutines

ACOS Function ACOS(arg) is a generic function that returns the arccosine of a
REAL*4, REAL*8, or

REAL*16 argument.

The value of arg must be less than or equal to one. The result is
expressed in radians and is the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ACOS(0.0628) 1.5079550

a = ACOS(0.0) 1.5707964

a = ACOS(0.0D0) 1.570796326794897

The speci�c function names are ACOS for REAL*4 arguments,
DACOS for REAL*8 arguments, and QACOS for REAL*16
arguments.

ACOSD Function ACOSD(arg) is a generic function that returns the arccosine of a
REAL*4, REAL*8, or REAL*16 argument. The value of arg must be
less than or equal to one. The result is expressed in degrees and is
the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ACOSD(0.2) 11.5370

a = ACOSD(1.0) 0.0

a = ACOSD(0.8D0) 36.86989764584401

The speci�c function name is ACOSD for REAL*4 arguments,
DACOSD for REAL*8 arguments, and QACOSD for REAL*16
arguments.

Intrinsic Functions and Math Subroutines B-29

ACOSH Function ACOSH(arg) is a generic function that returns the hyperbolic
arccosine of a REAL*4, REAL*8, or REAL*16 argument.

The argument must be greater than or equal to one and less than or
equal to the maximum number allowed on your system. The result is
the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ACOSH(1.2) 0.622362

a = ACOSH(1.0) 0.0

a = ACOSH(1.0D0) 0.0

The speci�c function names are ACOSH for REAL*4 arguments,
DACOSH for REAL*8 arguments,

and QACOSH for REAL*16 arguments.

AINT Function AINT(arg) is a generic function that truncates the fractional digits
from a REAL*4, REAL*8, or REAL*16 argument. The result is the
the same data type as the argument.

Examples

Function Call Value Returned to
a

a =

AINT(324.7892)

324.0

a =

AINT(324.7892D2)

32478.0

The speci�c function names are AINT for REAL*4 arguments; DINT
and DDINT for REAL*8 arguments;

and QINT for REAL*16 arguments.

If arg is less than one, the result is zero. If arg is greater than one,
the result is the value with the same sign as arg with a magnitude
that does not exceed arg .

B-30 Intrinsic Functions and Math Subroutines

ANINT Function ANINT(arg) is a generic function that returns the nearest whole
number. The argument can be REAL*4, REAL*8, or REAL*16. The
result is INT (arg + 0.5) if arg is positive or zero, and is INT(arg
- 0.5) if arg is negative. The result is the same data type as the
argument.

Examples

Function Call Value Returned to
a

a =

ANINT(-678.44)

-678.0

a = ANINT(678.44) 678.0

a = ANINT(0.00) 0.0

a = ANINT(6.78

D1)

68.0

The speci�c function names are ANINT for REAL*4 arguments,
DNINT for REAL*8 arguments, and QNINT for REAL*16
arguments.

ASIN Function ASIN(arg) is a generic function that returns the arcsine of a
REAL*4, REAL*8, or REAL*16 argument. The value of arg must be
less than or equal to one. The result is expressed in radians and is
the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ASIN(0.30) 0.304692

a = ASIN(0.30D0) 0.3046926540153975

The speci�c function names are ASIN for REAL*4 arguments,
DASIN for REAL*8 arguments, and QASIN for REAL*16
arguments.

Intrinsic Functions and Math Subroutines B-31

ASIND Function ASIND(arg) is a generic function that returns the arcsine of a
REAL*4, REAL*8, or REAL*16 argument. The value of arg must be
less than or equal to one. The result is expressed in degrees and is
the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ASIND(0.30) 17.4576

a = ASIND(0.30D0) 17.45760312372209

The speci�c function names are ASIND for REAL*4 arguments,
DASIND for REAL*8 arguments, and QASIND for REAL*16
arguments.

ASINH Function ASINH(arg) is a generic function that returns the hyperbolic arcsine
of a REAL*4, REAL*8, or REAL*16 argument; the result is the
same data type as the argument.

Examples

Function Call Value Returned to
a

a = ASINH(0.30) 0.2956731

a = ASINH(0.30D0) 0.295673047563423

The speci�c function names are ASINH for REAL*4 arguments,
DASINH for REAL*8 arguments, and QASINH for REAL*16
arguments.

B-32 Intrinsic Functions and Math Subroutines

ATAN Function ATAN(arg) is a generic function that returns the arctangent of a
REAL*4, REAL*8, or REAL*16 argument. The result is expressed
in radians and is the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ATAN(1.0) 0.7853982

a =

ATAN(3.141592653D0)

1.262627255624651

The speci�c function names are ATAN for REAL*4 arguments,
DATAN for REAL*8 arguments, and QATAN for REAL*16
arguments.

ATAN2 Function ATAN2(arg1,arg2) is a generic function that returns the arctangent
of arg1/arg2 . The arguments can be REAL*4, REAL*8, or
REAL*16. The result is expressed in radians and is the same data
type as the arguments. The arguments cannot both be zero.

Examples

Function Call Value Returned to a

a = ATAN2(1.0, 2.0) 0.4636476

a = ATAN2(3.141592653D0,

1.0D0)

1.262627255624651

The speci�c function names are ATAN2 for REAL*4 arguments,
DATAN2 for REAL*8 arguments,

and QATAN2 for REAL*16 arguments.

Intrinsic Functions and Math Subroutines B-33

ATAND Function ATAND(arg) is a generic function that returns the arctangent of a
REAL*4, REAL*8, or REAL*16 argument. The result is expressed
in degrees and is the same data type as the argument.

Examples

Function Call Value Returned to
a

a = ATAND(1.0) 45.0

a = ATAND(2.5D0) 68.19859051364820

The speci�c function names are ATAND for REAL*4 arguments,
DATAND for REAL*8 arguments, and QATAND for REAL*16
arguments.

ATAN2D Function ATAN2D(arg1,arg2) is a generic function that returns the
arctangent of arg1/arg2 . The arguments can be REAL*4, REAL*8,
or REAL*16. The result is expressed in degrees and is the same data
type as the arguments. The arguments cannot both be zero.

Examples

Function Call Value Returned to a

a = ATAN2D(1.0, 2.0) 26.5651

a = ATAN2D(2.0D0, 1.0D0) 63.43494882292201

The speci�c function names are ATAN2D for REAL*4 arguments,
DATAN2D for REAL*8 arguments, and QATAN2D for REAL*16
arguemnts.

B-34 Intrinsic Functions and Math Subroutines

ATANH Function ATANH(arg) is a generic function that returns the hyperbolic
arctangent of a REAL*4, REAL*8, or REAL*16 argument. The
value of arg must be less than one. The result is the same data type
as the argument.

Examples

Function Call Value Returned to
a

a = ATANH(0.30) 0.3095196

a = ATANH(0.30D0) 0.309519604203112

The speci�c function names are ATANH for REAL*4 arguments,
DATANH for REAL*8 arguments, and QATANH for REAL*16
arguments.

BADDRESS Function BADDRESS(arg) is a generic function that returns the byte address of
arg as an integer of the same size as the address. arg may be of any
type. BADDRESS(arg) may not be passed as an actual argument.

Examples

Function Call Value Returned to i

i = BADDRESS(i) Address of integer variable i.

i =

BADDRESS(char)

Address of CHARACTER*9
variable char.

i = BADDRESS(log) Address of logical variable log.

i = BAD-

DRESS(cmplxarr)

Address of complex array cmplxarr.

There are no speci�c function names for BADDRESS.

As an extension to the FORTRAN 77 standard, %LOC returns the
address of arg the same as BADDRESS. arg can be a variable, an array
element, an array, a character substring, or external procedure.

Intrinsic Functions and Math Subroutines B-35

BTEST Function BTEST(arg1, arg2) is a generic function that tests individual bits
of storage. The arguments are INTEGER*4 and the result is
LOGICAL*4. If the arg2 th bit of arg1 is equal to one, the result is
true. If the arg2 th bit is equal to zero, the result is false. If arg2 is
greater than or equal to the bit size of arg1 , the result is false. Bit
positions are numbered right to left, with the rightmost bit numbered
zero.

Examples

Function Call Value Returned to
i

i = BTEST(3,0) .TRUE.

i = BTEST(0,0) .FALSE.

i = BTEST(0,3) .FALSE.

i = BTEST(4,1) .FALSE.

The speci�c function names are BTEST and BJTEST for
INTEGER*4 arguments and HTEST and BITEST for INTEGER*2
arguments.

CHAR Function CHAR(i) is a speci�c function that returns the character value in
the ith position of the ASCII collating sequence. The argument is
INTEGER*4 and the result is character.

Examples

Function Call Value Returned to
c

c = CHAR(97) 'a'

c = CHAR(122) 'z'

c = CHAR(53) '5'

There is no generic name for this function.

B-36 Intrinsic Functions and Math Subroutines

CMPLX Function CMPLX(arg) (or CMPLX(arg1,arg2)) is a speci�c function that
performs type conversion to a COMPLEX*8 value. CMPLX can
have one or two arguments.

If you specify one argument, the argument can be INTEGER*4,
REAL*4, REAL*8, REAL*16, or COMPLEX*8.

If you specify two arguments, the arguments must be the same type
and both must be INTEGER*4, REAL*4, REAL*8, or REAL*16.

If only one argument is used and it is not of type COMPLEX*8,
the result is COMPLEX*8, with REAL(arg) used as the real part
and the imaginary part equal to zero. For one argument of type
COMPLEX*8, the result is the same as the argument, or as much
of the argument that can �t in a COMPLEX*8 variable. For
two arguments, arg1 and arg2 , the result is COMPLEX*8, with
REAL(arg1) used as the real part and REAL(arg2) used as the
imaginary part.

Examples

Function Call Value Returned to c

c = CMPLX(1.0) (1.0, 0.0)

c = CMPLX(1.0, 1.0) (1.0, 1.0)

c = CMPLX(1, 0) (1.0, 0.0)

c = CMPLX(3.141592653D0,

0.0D0)

(3.1415927, 0.0)

There are no speci�c names for this function.

CONJG Function CONJG(arg) is a generic function that returns the conjugate of a
COMPLEX*8 or COMPLEX*16 argument. The result is the same
data type as the argument.

Examples

Function Call Value Returned to a

a =

CONJG(var1)

(3.0, 0.0), where var1 =

(3.0, 0.0)

a =

CONJG(var2)

(3.0, -1.0), where var2 =

(3.0, 1.0)

The speci�c function names are CONJG for COMPLEX*8 arguments
and DCONJG for COMPLEX*16 arguments.

Intrinsic Functions and Math Subroutines B-37

COS Function COS(arg) is a generic function that returns the cosine of a REAL*4,
REAL*8,

REAL*16,

or COMPLEX*8 argument. The argument is expressed in radians.
The result is the same data type as the argument.

Examples

Function Call Value Returned to
a

a = COS(0.0) 1.0

a = COS(0.0628) 0.9980288

The speci�c function names are COS for REAL*4 arguments, CCOS
for COMPLEX*8 arguments, DCOS for REAL*8 arguments, QCOS
for REAL*16 arguments, and ZCOS and CDCOS for COMPLEX*16
arguments.

COSD Function COSD(arg) is a generic function that returns the cosine of a REAL*4,
REAL*8, or REAL*16. The argument is expressed in degrees. The
result is the same data type as the argument.

Examples

Function Call Value Returned to
a

a = COSD(60.0) .50000

a =

COSD(0.0628D0)

.9999993993188778

The speci�c function names are COSD for REAL*4 arguments,
DCOSD for REAL*8 arguments, and QCOSD for REAL*16
arguments.

B-38 Intrinsic Functions and Math Subroutines

COSH Function COSH(arg) is a generic function that returns the hyperbolic cosine of
a REAL*4, REAL*8, or REAL*16 argument. The result is the same
data type as the argument.

Examples

Function Call Value Returned to
a

a = COSH(1.0) 1.5430807

a = COSH(3.0) 10.06766

a = COSH(3.0D0);; 10.0676619957778

The speci�c function names are COSH for REAL*4 arguments,
DCOSH for REAL*8 arguments,

and QCOSH for REAL*16 arguments.

DBLE Function DBLE(arg) is a generic function that converts the argument to
REAL*8. The argument can be INTEGER*4, REAL*4, REAL*8,
REAL*16, or COMPLEX*8. For a REAL*16 argument, the result
is as much precision of arg as a REAL*8 item can contain. For an
INTEGER*4 or REAL*4 argument, the result is as much precision
of the signi�cant part of the argument as the argument can provide.
For a REAL*8 argument, the result is the argument. For a REAL*16
argument, the result is as much precision of the signi�cant part of
arg as a REAL*8 item can contain. For a COMPLEX*8 argument,
the result is as much precision of the signi�cant REAL*4 part of the
argument as the argument can provide.

Examples

Function Call Value Returned to a

a = DBLE(4) 4.0

a =

DBLE(4.0)

4.0

a =

DBLE(4.0D2)

400.0

a =

DBLE(var1)

4.0, where var1 = (4.00,

2)

The speci�c function names are DFLOAT for INTEGER*4
arguments and DBLEQ for REAL*16 arguments.

Intrinsic Functions and Math Subroutines B-39

DCMPLX Function DCMPLX(arg) (or DCMPLX(arg1,arg2)) is a generic function that
performs type conversion to a COMPLEX*16 value. DCMPLX can
have one or two REAL*8 arguments. If you specify one argument,
the argument can be INTEGER*4, REAL*4, REAL*8, REAL*16, or
COMPLEX*8. If you specify two arguments, the arguments must be
of the same type and both must be INTEGER*4, REAL*4, REAL*8,
or REAL*16.

For one argument not of type COMPLEX*8, the result is
COMPLEX*16, with DBLE(arg) used as the real part and
the imaginary part equal to zero. For one argument, of type
COMPLEX*8, the result is the same as the argument. For two
arguments, arg1 and arg2 , the result is COMPLEX*16, with
DBLE(arg1) used as the real part and DBLE(arg2) used as the
imaginary part.

Examples

Function Call Value Returned
to c

c = DCMPLX(1.0) (1.0, 0.0)

c = DCMPLX(1.0, 0.0) (1.0, 0.0)

c = DCMPLX(3.141592653D0,

0.0D0)

(3.1415927,

0.0)

There are no speci�c names for this function.

DIM Function DIM(arg1,arg2) is a generic function that returns a positive
di�erence. The arguments must be the same data type and can be
INTEGER*4, REAL*4, REAL*8, or REAL*16. The result is the
same type as the arguments. The result is (arg1 - arg2) if arg1 is
greater than arg2 . The result is zero if arg1 is less than or equal to
arg2 .

Examples

Function Call Value Returned to
a

a = DIM(56.9,

45.4)

11.5

a = DIM(45.4,

56.9)

0.0

a = DIM(45.4,

45.4)

0.0

B-40 Intrinsic Functions and Math Subroutines

The speci�c function names are DIM for REAL*4 arguments, DDIM
for REAL*8 arguments, QDIM for REAL*16 arguments, IDIM
and JIDIM for INTEGER*4 arguments, and HDIM and IIDIM for
INTEGER*2 arguments. IDIM can also be used as a generic name of
HDIM, and accept INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-41

DNUM Function DNUM(arg) is a speci�c function that returns the REAL*8 value
represented in the character string arg .

Blanks are not signi�cant in the input string.

Examples

Function Call Value Returned to d8

d8 = DNUM('123.5') 123.5D0

d8 = DNUM('-99.25') -99.25D0

d8 =

DNUM('327.125E75')

327.125D75

d8 = DNUM(' 24 5

')

245D0 (blanks are
ignored)

There is no generic name for this function.

DPROD Function DPROD(arg1,arg2) is a speci�c function that returns the REAL*8
product of two REAL*4 arguments (arg1 *arg2). The result is a
REAL*8 number with none of the fractional portion lost and is equal
to DBLE(arg1) * DBLE(arg2).

Examples

Function Call Value Returned to
d

d = DPROD(2.2,

2.2)

4.840

d = DPROD(1.0,

2.0)

2.0

There is no generic name for this function.

B-42 Intrinsic Functions and Math Subroutines

EXP Function EXP(arg) is a generic function that returns an exponential result
(e**arg). The argument can be REAL*4, REAL*8, REAL*16,
COMPLEX*8, or COMPLEX*16. The result is the same data type
as the argument.

Examples

Function Call Value Returned to a

a =

EXP(3.0)

20.08554

a =

EXP(1.5D1)

(3269017.37247211)

a =

EXP(var)

(10.85226, 16.90140), where var =

(3.0, 1.0)

The speci�c function names are EXP for REAL*4 arguments,
DEXP for REAL*8 arguments, QEXP for REAL*16 arguments,
CEXP for COMPLEX*8 arguments, and ZEXP and CDEXP for
COMPLEX*16 arguments.

IAND Function IAND(arg1,arg2) is a generic function that returns the logical
product, or bitwise AND, of two INTEGER*4 arguments. The result
is INTEGER*4.

Examples

Function Call Value Returned to
i

i = IAND(0, 0) 0

i = IAND(1, 0) 0

i = IAND(0, 1) 0

i = IAND(1, 1) 1

The speci�c function names are IAND and JIAND for INTEGER*4
arguments and HIAND and IIAND for INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-43

IBCLR Function IBCLR(arg1,arg2) is a generic function that returns arg1 with the
arg2 th bit cleared (set to zero). If arg2 is greater than or equal to
the bit size of arg1 , the result is equal to arg1 . The arguments and
result are INTEGER*4.

Bit positions are numbered from right to left, with the rightmost
(least signi�cant) bit numbered zero.

Examples

Function Call Value Returned to
i

i = IBCLR(3, 4) 3

i = IBCLR(1, 2) 1

i = IBCLR(1, 0) 0

The speci�c function names are IBCLR and JIBCLR for
INTEGER*4 arguments and HBCLR and IIBCLR for INTEGER*2
arguments.

IBITS Function IBITS(arg1, arg2, arg3) is a generic function that extracts a sub�eld
of arg3 bits in length from arg1 , starting with bit position arg2 and
extending left arg3 bits. The arguments and result are INTEGER*4.
The extracted bits are right-justi�ed in the result with the remaining
bits set to zero. The value of (arg2 + arg3) must be less than or
equal to 16 if arg1 is INTEGER*2, or 32 if arg1 is INTEGER*4.

Bit positions are numbered from right to left, with the rightmost
(least signi�cant) bit numbered zero.

Examples

Function Call Value Returned to
i

i = IBITS(3, 4,

8)

0

i = IBITS(16, 4,

8)

1

i = IBITS(12, 2,

2)

3

The speci�c function names are IBITS and JIBITS for INTEGER*4
arguments and HBITS and IIBITS for INTEGER*2 arguments.

B-44 Intrinsic Functions and Math Subroutines

IBSET Function IBSET(arg1,arg2) is a generic function that returns the value of arg1
with the arg2 th bit set to 1. If arg2 is greater than or equal to the
bit size of arg1 , the result is arg1 . The arguments and the result are
INTEGER*4.

Bit positions are numbered from right to left, with the rightmost
(least signi�cant) bit numbered zero.

Examples

Function Call Value Returned to
i

i = IBSET(3, 4) 19

i = IBSET(1, 2) 5

i = IBSET(1, 0) 1

The speci�c function names are IBSET and JIBSET for INTEGER*4
arguments and HBSET and IIBSET for INTEGER*2 arguments.

ICHAR Function ICHAR(arg) is a speci�c function that converts a character argument
to an INTEGER*4 value. The result depends on the collating
position of the argument in the ASCII collating sequence. If arg is
longer than one character, the �rst character is used.

Examples

Function Call Value Returned to
i

i = ICHAR('a') 97

i = ICHAR('z') 122

i = ICHAR('5') 53

There is no generic name for this function.

Intrinsic Functions and Math Subroutines B-45

IEOR Function IEOR(arg1,arg2) is a generic function that returns the bitwise
exclusive OR of two INTEGER*4 arguments. The result is
INTEGER*4.

Examples

Function Call Value Returned to
i

i = IEOR(1, 0) 1

i = IEOR(1, 1) 0

i = IEOR(0, 0) 0

An alternate generic function name is IXOR. The speci�c function
names are IEOR and JIEOR for INTEGER*4 arguments and HIEOR
and IIEOR for INTEGER*2 arguments.

IMAG Function IMAG(arg) is a generic function that returns the imaginary part
of a complex number. The argument can be COMPLEX*8 or
COMPLEX*16. For COMPLEX*8 arguments, the result is REAL*4;
for COMPLEX*16 arguments, the result is REAL*8. A complex
number is expressed as an ordered pair of REAL*4 or REAL*8
numbers in the form (ar,ai), where ar is the REAL*4 part and ai is
the imaginary part. The result is the REAL*4 value of ai .

Examples

Function Call Value Returned to a

a = IMAG(var1) (0.00, where var1 =

(25.058, 0.0)

a = IMAG(var2) (3.5, where var2 =

(25.3, 3.5)

a = IMAG(var3) (3.5, where var3 =

(25.3D0, 3.5D0)

The speci�c function names are AIMAG for COMPLEX*8
arguments, and DIMAG for COMPLEX*16 arguments.

B-46 Intrinsic Functions and Math Subroutines

INDEX Function INDEX(arg1,arg2) is a speci�c function that returns the location of
substring arg2 within string arg1 . Both arguments must be character
strings. If string arg2 occurs as a substring within string arg1 , the
result is an INTEGER*4 indicating the starting position of the
substring arg2 within arg1 . The character positions are numbered
from left to right with the leftmost character numbered 1. If arg2
does not occur as a substring, the result is zero. If arg2 occurs more
than once within arg1 , the result is the starting position of the �rst
occurrence. If the length of arg1 is less than the length of arg2 , the
result is zero.

Examples

Function Call Value Returned to i

i = INDEX('ABCD',

'BC')

2

i = INDEX('10552',

'5')

3

i = INDEX('ABC',

'XY')

0

i = INDEX('ABC',

'abc')

0

There is no generic name for this function.

Intrinsic Functions and Math Subroutines B-47

INT Function INT(arg) is a generic function that converts data types to
INTEGER*4. The argument can be INTEGER*4, REAL*4,
REAL*8, REAL*16, or COMPLEX*8; the result is INTEGER*4. If
arg2 exceeds the largest integer allowed, the result is unde�ned.

If arg is an INTEGER*4, INT(arg) = arg . If arg is REAL*4,
REAL*8, or REAL*16 and arg is less than one, the result is zero. If
arg is greater than one, the result of INT (arg) is the INTEGER*4
with the same sign as arg whose magnitude does not exceed arg . If
arg is COMPLEX*8, the real part of arg is used and the result is
found by applying the rules to the real part of arg .

Examples

Function Call Value Returned to i

i = INT(-3.7) -3

i = INT(25) 25

i = INT(25.9D0) 25

i = INT(var) 30, where var =

(30.57, 0.0)

The speci�c function names are IINT, JINT, IFIX, and JIFIX for
REAL*4 arguments, IIDINT and JIDINT for REAL*8 arguments,
and IIQINT and JIQINT for REAL*16 arguments. IDINT can be
used as a generic for REAL*8 arguments. IQINT can be used as a
generic forREAL*16 arguments. IDINT can be used as a generic for
REAL*8 arguments. IQINT can be used as a generic for REAL*16
arguments. INT, IQINT, IFIX, and IDINT behave di�erently when
either NOSTANDARD INTRINSICS or HP9000 300 is on. See
chapter 7 for more information.

B-48 Intrinsic Functions and Math Subroutines

INUM Function INUM(arg) is a speci�c function that returns the INTEGER*2 value
represented in the character string arg .

Blanks are not signi�cant in the input string.

Examples

Function Call Value Returned to i2

i2 = INUM('123') 123

i2 = INUM('-99') -99

i2 = INUM('32767') 32767

i2 = INUM(' 24 ') 24 (blanks are ignored)

There is no generic name for this function

IOR Function IOR(arg1,arg2) is a generic function that returns the logical
(bitwise) sum (Boolean OR) of two INTEGER*4 arguments. The
result is INTEGER*4.

Examples

Function Call Value Returned to
i

i = IOR(1, 1) 1

i = IOR(0, 0) 0

i = IOR(1, 0) 1

The speci�c function names are IOR and JIOR for INTEGER*4
arguments and HIOR and IIOR for INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-49

ISHFT Function ISHFT(arg1,arg2) is a generic function that returns the value of arg1
shifted by arg2 bit positions. If arg2 is greater than zero, the shift is
to the left; if arg2 is less than zero, the shift is to the right; if arg2
equal zero, no shift occurs.

If arg is an INTEGER*2 argument and arg2 is greater than 15 or
arg2 is less than -15, the result is zero. If arg2 is an INTEGER*4
and arg2 is greater than 31 or arg2 is less than �31, the result is
zero.

Bits shifted out from the left or right end are lost. Zeros are shifted
in from the opposite end. The result is the same type as the
arguments.

Examples

Function Call Value Returned to
a

a = ISHFT(3, 4) 48

a = ISHFT(1, 4) 16

a = ISHFT(1, -4) 0

The speci�c function names are ISHFT and JISHFT for INTEGER*4
arguments and HSHFT and IISHFT for INTEGER*2 arguments.

ISHFTC Function ISHFTC(arg1, arg2, arg3) is a generic function that returns the
circular shift of an INTEGER*4 argument. The result is the
rightmost a arg3 bits of arg1 shifted circularly arg2 places. That is,
the bits shifted out of one end are shifted into the opposite end. No
bits are lost.

The unshifted bits of the result are the same as the unshifted bits
of the argument arg1 . The absolute value of the argument arg2
must be less than or equal to arg3. The argument arg3 must be
greater than or equal to one and less than or equal to 16 if arg1
is INTEGER*2, or must be less than or equal to 32 if arg1 is
INTEGER*4. If arg3 does not fall within this range, the results can
be unde�ned.

Examples

Function Call Value Returned to
i

i = ISHFTC(3, 4,

8)

48

i = ISHFTC(1, 4,

8)

16

B-50 Intrinsic Functions and Math Subroutines

The speci�c function names are ISHFTC and JISHFTC for
INTEGER*4 arguments and HSHFTC and IISHFTC for
INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-51

IXOR Function IXOR(arg1,arg2) is a generic function that returns the bitwise
exclusive OR of two INTEGER*4 arguments. The result is
INTEGER*4.

Function Call Value Returned to
i

i = IXOR(1, 0) 1

i = IXOR(1, 1) 0

i = IXOR(0, 0) 0

The alternate generic function name is IEOR. The speci�c function
names are IEOR and JIXOR for INTEGER*4 arguments and
HIEOR and IIXOR for INTEGER*2 arguments.

IZEXT IZEXT(arg) is a generic function that returns a �xed-point argument
of type INTEGER*2 without extending the sign bit of the argument.

In the following example, i2 is an INTEGER*2 variable and L1 is a
LOGICAL*1 variable.

Examples

Function Call Value Returned to
i2

i2 = IZEXT(-L1) -1

i2 = IZEXT(L1) 255, where L1 = -1

JNUM Function JNUM(arg) is a speci�c function that returns the INTEGER*4 value
represented in the character string arg .

Blanks are not signi�cant in the input string.

Examples

Function Call Value Returned to
i

i = JNUM('123') 123

i = JNUM('-99') -99

i =

JNUM('2000000000')

2000000000

i = JNUM(' 24

')

24 (blanks are
ignored)

There is no generic name for this function.

B-52 Intrinsic Functions and Math Subroutines

LEN Function LEN(arg) is a speci�c function that returns the length of a character
string. The argument is type character and the result is an
INTEGER*4 indicating the length of the argument.

Examples

Function Call Value Returned to
i

i = LEN('string') 6

i =

LEN('howlongami')

10

There is no generic name for this function.

LGE Function LGE(arg1, arg2) is a speci�c function that returns a logical result
indicating whether arg1 is lexically greater than or equal to arg2 .
The arguments are character strings. The result is true if arg1 is
equal to arg2 or if arg1 follows arg2 in the ASCII collating sequence.
In all other cases, the result is false. If arg1 and arg2 have unequal
lengths the shorter operand is treated as if padded on the right with
blanks to the length of the longer operand.

Examples

Function Call Value Returned to
i

i = LGE('ABC',

'BC')

F

i = LGE('BC',

'ABC')

T

i = LGE('ABC',

'ABC')

T

There is no generic name for this function.

Intrinsic Functions and Math Subroutines B-53

LGT Function LGT(arg1,arg2) is a speci�c function that returns a logical
result indicating whether arg1 is lexically greater than arg2 . The
arguments are character strings. The result is true if arg1 follows
arg2 in the ASCII collating sequence. In all other cases, the result
is false. If arg1 and arg2 have unequal lengths, the shorter operand
is treated as if padded on the right with blanks to the length of the
longer operand.

Examples

Function Call Value Returned to
i

i = LGT('ABC',

'BC')

F

i = LGT('BC',

'ABC')

T

i = LGT('ABC',

'ABC')

F

There is no generic name for this function.

LLE Function LLE(arg1, arg2) is a speci�c function that returns a logical result
indicating whether arg1 is lexically less than or equal to arg2 . The
arguments are character strings. The result is true if arg1 is equal to
arg2 or if arg1 precedes arg2 in the ASCII collating sequence. In all
other cases, the result is false. If arg1 and arg2 have unequal lengths,
the shorter operand is treated as if padded on the right with blanks
to the length of the longer operand.

Examples

Function Call Value Returned to
i

i = LLE('ABC',

'BC')

T

i = LLE('BC',

'ABC')

F

i = LLE('ABC',

'ABC')

T

There is no generic name for this function.

B-54 Intrinsic Functions and Math Subroutines

LLT Function LLT(arg1, arg2) is a speci�c function that returns a logical result
indicating whether arg1 is lexically less than arg2 . The arguments
are character strings. The result is true if arg1 precedes arg2 in the
ASCII collating sequence. In all other cases, the result is false. If
arg1 and arg2 have unequal lengths, the shorter operand is treated
as if padded on the right with blanks to the length of the longer
operand.

Examples

Function Call Value Returned to
i

i = LLT('ABC',

'BC')

T

i = LLT('BC',

'ABC')

F

i = LLT('ABC',

'ABC')

F

There is no generic name for this function.

LOG Function LOG(arg) is a generic function that returns the natural logarithm
(logarithm base e) of a REAL*4, REAL*8, REAL*16, COMPLEX*8,
or COMPLEX*16 argument; the argument must be greater than zero
for REAL*4, REAL*8, and REAL*16 arguments. The result is the
same data type as the argument.

Examples

Function Call Value Returned to a

a = LOG(6.0) 1.791795

a = LOG(6.0D0) 1.791759469228055

a = LOG(var1) (1.7917595, 0.00), where var1 =

(6.0D0, 0D0)

The speci�c function names are ALOG for REAL*4 arguments,
CLOG for COMPLEX*8 arguments, DLOG for REAL*8 arguments,
QLOG for REAL*16, and ZLOG and CDLOG for COMPLEX*16
arguments.

Intrinsic Functions and Math Subroutines B-55

LOG10 Function LOG10(arg) is a generic function that returns the common logarithm
(logarithm base 10) of a REAL*4, REAL*8, or REAL*16 argument;
the argument must be greater than zero. The result is the same data
type as the argument.

Examples

Function Call Value Returned to
a

a = LOG10(6.0) 0.7781513

a = LOG10(6.0D0) 0.778151250383644

The speci�c function names are ALOG10 for REAL*4 arguments,
DLOG10 for REAL*8 arguments, and QLOG10 for REAL*16
arguments.

MAX Function MAX(arg1,arg2, . . .) is a generic function that returns the
largest value from the list of arguments. The arguments can be
INTEGER*4, REAL*4, REAL*8, or REAL*16. The number of
arguments can vary, but there must be at least two. The result is the
same data type as the arguments.

Examples

Function Call Value Returned to
a

a = MAX(5, -2, 54, 11,

52)

54

a = MAX(5.0, 43.24,

44.1, 78.2)

78.2

The function names are AMAX0, AIMAX0, and AJMAX0 for
INTEGER*4 arguments with a REAL*4 result; AMAX1 for REAL*4
arguments; DMAX1 for REAL*8 arguments; QMAX1 for REAL*16
arguments; MAX0, IMAX0, and JMAX0 for INTEGER*4 arguments;
and MAX1, IMAX1, and JMAX1 for REAL*4 arguments with an
INTEGER*4 result.

MAX1 behaves di�erently when either NOSTANDARD INTRINSICS
or HP9000 300 is on.

B-56 Intrinsic Functions and Math Subroutines

MIN Function MIN(arg1,arg2 [, . . .]) is a generic function that returns the
smallest value from the list of arguments. The arguments can be
INTEGER*4, REAL*4, REAL*8, or REAL*16; the number of
arguments can vary, but there must be at least two. The result is the
same data type as the arguments.

Examples

Function Call Value Returned to
a

a = MIN(5, -2, 54, 11,

52)

-2

a = MIN(5.0, 43.24,

44.1, 78.2)

5.0

The function names are AMIN0, AIMIN0, and AJMIN0 for
INTEGER*4 arguments with a REAL*4 result; AMIN1 for REAL*4
arguments; DMIN1 for REAL*8 arguments; QMIN1 for REAL*16
arguments; MIN0, JMIN0, and IMIN0 for INTEGER*4 arguments;
and MIN1, IMIN1, and JMIN1 for REAL*4 arguments with an
INTEGER*4 result.

MIN1 behaves di�erently when either NOSTANDARD INTRINSICS
or HP9000 300 is on.

MOD Function MOD(arg1,arg2)) is a generic function that divides arg1 by arg2 and
returns the remainder. The argument types can be INTEGER*4,
REAL*4, REAL*8, or REAL*16. The result is the same data type as
the arguments. If arg2 is zero, the result is unde�ned.

Examples

Function Call Value Returned to
a

a = MOD(30,13) 4

a = MOD(30.0,

13.0)

4.0

a = MOD(5, -3) 2

a = MOD(-5, 3) -2

a = MOD(-5, -3) -2

The speci�c function names are MOD and JMOD for INTEGER*4
arguments, AMOD for REAL*4 arguments, DMOD for REAL*8
arguments, QMOD for REAL*16 arguments, and HMOD and IMOD
for INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-57

MVBITS Subroutine MVBITS(arg1, arg2, arg3, arg4, arg5) is a subroutine that moves arg3
bits starting from position arg2 of arg1 to position arg5 of arg4 .
The portion of arg4 not a�ected by the movement of bits remains
unchanged. All arguments are INTEGER*4 expressions, except arg4,
which must be an INTEGER*4 variable or array element. Arguments
arg1 and arg4 can be the same numeric storage unit. The value of
arg2 + arg3 cannot exceed the bit length of arg1 and the value of
(arg5 + arg3) cannot exceed the bit length of arg4 .

Bit positions are numbered from right to left, with the rightmost
(least signi�cant) bit numbered zero. Figure B-1 shows how the
MVBITS subroutine works.

Figure B-1. MVBITS Subroutine

B-58 Intrinsic Functions and Math Subroutines

NINT Function NINT(arg) is a generic function that returns the nearest integer.
The argument can be REAL*4, REAL*8, or REAL*16; the result is
INTEGER*4. If arg exceeds the largest integer allowed, the result is
unde�ned. If the argument is positive or zero, the result is equal to
INT(arg + 0.5). If the argument is negative, the result is equal to
INT(arg - 0.5).

Examples

Function Call Value Returned to
i

i = NINT(123.456) 123

i = NINT(123.987) 124

i = NINT(123.5) 124

i =

NINT(-123.456)

-123

i =

NINT(-123.987)

-124

The function names are NINT, ININT, and JNINT for REAL*4
arguments; IIDNNT, JIDNNT, and IDNINT for REAL*8 arguments;
and IQNINT, IIQNNT, and JIQNNT for REAL*16 arguments. NINT,
IDNINT, and IQNINT behave di�erently when either NOSTANDARD
INTRINSICS or HP9000 300 is on. See chapter 7 for more
information.

NOT Function NOT(arg) is a generic function that returns the bitwise complement of
an INTEGER*4 argument. The result is INTEGER*4.

Examples

Function Call Value Returned to
i

i = NOT(1) -2

i = NOT(0) -1

i = NOT(5) -6

i = NOT(-1) 0

The preceding examples show the use of twos complement arithmetic.

The speci�c function names are NOT and JNOT for INTEGER*4
arguments and HNOT and INOT for INTEGER*2 arguments.

Intrinsic Functions and Math Subroutines B-59

QEXT Function QEXT(arg) is a generic function that converts the argument to
REAL*16. The argument can be INTEGER*4, REAL*4, REAL*8,
REAL*16, COMPLEX*8, or COMPLEX*16. For an INTEGER*4,
REAL*4, or REAL*8 argument, the result is as much precision of the
signi�cant part of the argument as the argument can provide. For a
REAL*16 argument, the result is the argument. For a COMPLEX*8
or COMPLEX*16 argument, the result is as much precision of the
signi�cant real part of the argument as the argument can provide.

Examples

Function Call Value Returned to a

a = QEXT(4) 4.0

a =

QEXT(4.0)

4.0

a =

QEXT(4.0D2)

400.0

a =

QEXT(var1)

4.0, where var1=(4.00,

2)

The speci�c function name is QEXTD for REAL*8 arguments.

QNUM Function QNUM(arg) is a speci�c function that returns the REAL*16 value
represented in the character string arg .

Blanks are not signi�cant in the input string.

Examples

Function Call Value Returned to d8

q16 = QNUM('123.5') 123.5

q16 = QNUM('-99.25') -99.25

q16 =

QNUM('327.125E75')

3.27125e+77

q16 = QNUM(' 24 5

')

245.0

There is no generic name for this function.

B-60 Intrinsic Functions and Math Subroutines

QPROD Function QPROD(arg1,arg2) is a speci�c function that returns the REAL*16
product of two REAL*8 arguments (arg1* arg2). The result is a
REAL*16 number with none of the fractional portion lost and is
equal to QEXT(arg1) * QEXT(arg2).

Examples

Function Call Value Returned to q

q = QPROD(2.2d0,

2.2d0)

4.84000000000000078159700933611024

q = QPROD(1.0d0,

2.0d0)

2.0

There is no generic name for this function.

Intrinsic Functions and Math Subroutines B-61

REAL Function REAL(arg) is a generic function that converts an argument to a
REAL*4 number. The argument can be INTEGER*4, REAL*4,
REAL*8, REAL*16, COMPLEX*8, or COMPLEX*16. If arg is
REAL*4, the result is equal to arg . If arg is INTEGER*4, REAL*8,
or REAL*16 the result is as much precision of the signi�cant part of
arg as a REAL*4 item can contain. For a COMPLEX*8 argument
(ar,ai), the result is ar . For a COMPLEX*16 argument (ar,ai),
the result is as much signi�cance of ar as a REAL*4 data item can
contain.

Examples

Function Call Value Returned to r

r = REAL(5) 5.0

r = REAL(5.5) 5.5

r = REAL(5.55555D2) 555.555

r = REAL(var) 5.5, where var =

(5.5, 5)

The speci�c function names are FLOATI and FLOATJ for
INTEGER*4 arguments, SNGL for REAL*8 arguments, and SNGLQ
for REAL*16 arguments.

RNUM Function RNUM(arg) is a speci�c function that returns the REAL*4 value
represented in the character string arg .

Blanks are not signi�cant in the input string.

Examples

Function Call Value Returned to r4

r4 = RNUM('123.5') 123.5EO

r4 = RNUM('-99.25') -99.25EO

r4 =

RNUM('327.125E15')

327.125E15

r4 = RNUM(' 24. 5

')

24.5 (blanks are
ignored)

There is no generic name for this function.

B-62 Intrinsic Functions and Math Subroutines

SIGN Function SIGN(arg1,arg2) is a generic function that transfers the sign
from one numeric value to another. SIGN(arg1,arg2) returns the
magnitude of arg1 with the sign of arg2 . The arguments can be
INTEGER*4, REAL*4, REAL*8, or REAL*16. The result is the
same data type as the arguments. The result is arg1 if arg2 is
positive or zero, and arg1 if arg2 is negative.

Examples

Function Call Value Returned to a

a = SIGN(45.84,

-133.0)

-45.84

a = SIGN(45.84,

133.0)

45.84

a = SIGN(-45.84,

-133.0)

-45.84

The speci�c function names are SIGN for REAL*4 arguments,
DSIGN for REAL*8 arguments, QSIGN for REAL*16, JISIGN for
INTEGER*4 arguments, and HSIGN and IISIGN for INTEGER*2
arguments. ISIGN can also be used as a generic function name for
integer arguments, and accepts INTEGER*2 and INTEGER*4
arguments.

SIN Function SIN(arg) is a generic function that returns the sine of the argument.
The argument is expressed in radians and is REAL*4, REAL*8,
REAL*16, or COMPLEX*8. The result is the same data type as the
argument.

Examples

Function Call Value Returned to
a

a = SIN(0.0) 0.0

a = SIN(1.5708) 1.0

a = SIN(0.0628) 0.06275873

The speci�c function names are SIN for REAL*4 arguments, DSIN
for REAL*8 arguments, QSIN for REAL*16 arguments, CSIN for
COMPLEX*8 arguments, and ZSIN and CDSIN for COMPLEX*16
arguments.

Intrinsic Functions and Math Subroutines B-63

SIND Function SIND(arg) is a generic function that returns the sine of the
argument. The argument is expressed in degrees and is REAL*4,
REAL*8, or REAL*16. The result is the same data type as the
argument.

Examples

Function Call Value Returned to
a

a = SIND(30.0) .500000

a = SIND(20.0) .342020

a = SIND(45.0D0) .7071067811865476

The speci�c function names are SIND for REAL*4 arguments,
DSIND for REAL*8 arguments, and QSIND for REAL*16
arguments.

SINH Function SINH(arg) is a generic function that returns the hyperbolic sine of a
REAL*4, REAL*8, or REAL*16 argument. The result is the same
data type as the argument.

Examples

Function Call Value Returned to
a

a = SINH(0.0) 0.0

a = SINH(1.5708) 2.3013079

The speci�c function names are SINH for REAL*4 arguments,
DSINH for REAL*8 arguments, and QSINH for REAL*16
arguements.

SIZEOF Function SIZEOF(arg) is a generic function that returns the number of bytes of
storage used by the argument. The argument cannot be a dynamic
or assumed-size array; any other argument with a valid data type is
allowed, including constants and arbitrary expressions.

B-64 Intrinsic Functions and Math Subroutines

SQRT Function SQRT(arg) is a generic function that returns the square root of a
REAL*4, REAL*8, REAL*16, COMPLEX*8, or COMPLEX*16
argument. The result is the same data type as the argument. The
argument cannot be negative for REAL*4 and REAL*8 values.

Examples

Function Call Value Returned to a

a = SQRT(9.0) 3.0

a = SQRT(49.0D0) 7.0

a = SQRT(var) (5.0, 0.0), where var =

(25, 0.0)

The speci�c function names are SQRT for REAL*4 arguments,
CSQRT for COMPLEX*8 arguments, DSQRT for REAL*8
arguments, QSQRT for REAL*16 arguments, and ZSQRT and
CDSQRT for COMPLEX*16 arguments.

TAN Function TAN(arg) is a generic function that returns the tangent of the
argument. The argument is expressed in radians, and its type is
REAL*4, REAL*8, REAL*16, COMPLEX*8, or COMPLEX*16.

The value of arg must be less than or equal to the maximum number
allowed on your system and not close to (�(2n + 1) * �/2), where
n is an INTEGER*4. The result is the same data type as the
argument.

Examples

Function Call Value Returned to
a

a = TAN(3.0) -0.1425465

a = TAN(1.0) 1.5574077

The speci�c function names are TAN for REAL*4 arguments,
DTAN for REAL*8 arguments, QTAN for REAL*16, CTAN for
COMPLEX*8 arguments, and ZTAN for COMPLEX*16 arguments.

Intrinsic Functions and Math Subroutines B-65

TAND Function TAND(arg) is a generic function that returns the tangent of the
argument. The argument is expressed in degrees, and its type is
REAL*4, REAL*8, or REAL*16. The result is the same data type as
the argument.

Examples

Function Call Value Returned to
a

a = TAND(3.0) 0.0524078

a = TAND(3.0D1) .5773502691896257

The speci�c function names are TAND for REAL*4 arguments,
DTAND for REAL*8 arguments, and QTAND for REAL*16.

TANH Function TANH(arg) is a generic function that returns the hyperbolic tangent
of a REAL*4, REAL*8, or REAL*16 argument. The result is the
same data type as the argument.

Examples

Function Call Value Returned to
a

a = TANH(3.0) 0.9950548

a = TANH(1.0) .7615942

The speci�c function names are TANH for REAL*4 arguments,
DTANH for REAL*8 arguments, and QTANH for REAL*16
arguments.

B-66 Intrinsic Functions and Math Subroutines

ZEXT Function ZEXT(arg) is a generic function that returns a �xed-point argument
of the same size or larger without extending the sign bit of the
argument. The size of the result depends on whether the SHORT
directive is enabled. If SHORT is enabled, ZEXT behaves like
IZEXT and returns an INTEGER*2 result. If SHORT is not
enabled, ZEXT behaves like JZEXT and returns an INTEGER*4
result. (IZEXT and JZEXT are explained below.) ZEXT behaves
di�erently when either NOSTANDARD INTRINSICS or HP9000 300
is on. See chapter 7 for more information.

If SHORT is on, ZEXT returns an INTEGER*2; if LONG is on, it
returns an INTEGER*4.

In the following examples, i4 is an INTEGER*4 variable and
SHORT is not enabled.

Examples

Function Call Value Returned to
i4

i4 =

ZEXT(-32768i)

32768j*

i4 = ZEXT(-1) 65535j

* Note that i4 = -32768i would assign -32768j to i4.

IZEXT is a generic function that accepts LOGICAL*1, LOGICAL*2,
or INTEGER*2 arguments, and returns an INTEGER*4 result.
JZEXT is a generic function that accepts LOGICAL*1, LOGICAL*2,
LOGICAL*4, INTEGER*2 or INTEGER*4 arguments, and returns
an INTEGER*4 result.

The speci�c function names are IZEXT for INTEGER*2 arguments
and JZEXT for INTEGER*4 arguments. IZEXT accepts an
INTEGER*2 argument and returns an INTEGER*2 result. JZEXT
accepts either an INTEGER*2 or INTEGER*4 argument and returns
an INTEGER*4 result.

Intrinsic Functions and Math Subroutines B-67

C

FORTRAN Comparisons

This appendix makes the following comparisons:

The HP FORTRAN 77 compiler is compared with the ANSI 77
standard by listing HP FORTRAN 77 extensions to the ANSI 77
standard.

The HP FORTRAN 77 compiler is compared with FORTRAN
66/V.

The HP FORTRAN 77 compiler is compared with FORTRAN 7X.

Note FORTRAN 66/V has previously been known as FORTRAN/3000.

FORTRAN Comparisons C-1

Extensions to the
Standard

HP FORTRAN 77 fully implements the ANSI 77 standard for
FORTRAN. HP FORTRAN 77 also contains many extensions to
this standard. This appendix categorizes and lists these extensions.
Complete descriptions are given at the point in the manual where
each topic is found.

MIL-STD-1753
Extensions

The HP FORTRAN 77 compiler fully implements the Military
Standard De�nition (MIL-STD-1753) of extensions to the ANSI 77
standard. These extensions are as follows:

DO WHILE loops.

INCLUDE statement (also INCLUDE directive).

IMPLICIT NONE statement.

The following bit manipulation intrinsic functions:

BTEST

IAND

IBCLR

IBITS

IBSET

IEOR

IOR

ISHFT

ISHFTC

MVBITS

NOT

Octal and hexadecimal constants in DATA and PARAMETER
statements. A further extension of MIL-STD-1753 is the ability
to include octal and hexadecimal constants in expressions within
assignments and to use them as actual parameters.

READ and WRITE past end-of-�le.

Other Extensions These are the system dependent and all other extensions to the ANSI
77 standard.

Block DO loops.

Extended range DO loops.

Label omitted in block Do loop.

128-bit complex data type (COMPLEX*16), as approved by the
IFIP WG 2.5 Numerical Software Group.

8-bit integer data type (BYTE or LOGICAL*1).

16-bit integer data type (INTEGER*2).

16-bit logical data type (LOGICAL*2).

Underscores and dollar signs in symbolic names.

Lower case letters as part of FORTRAN character set.

Symbolic names greater than six characters.

Equivalence of character and noncharacter items.

Character and noncharacter items can be mixed in same common
block.

Exclamation point (!) at the beginning of an embedded comment.

C-2 FORTRAN Comparisons

Byte length speci�ed in numeric type statements, for example,
INTEGER*4. (Including the byte length in CHARACTER type
statements is part of the ANSI 77 standard).

Compiler directives.

Integer intrinsic functions cover both two-byte (INTEGER*2) and
four-byte (INTEGER*4) integers.

Concatenation of an item of type CHARACTER*(*).

Mixed lengths among character-typed entries.

Unlimited number of array dimensions (the ANSI 77 standard
speci�es only seven).

The logical operators|.AND., .EQV., .NEQV., .NOT., .OR., and
.XOR.|can be applied to integer data to perform bit masking and
bit manipulation.

A numeric array can be used as a format speci�er in an
input/output statement.

Formal parameters can be speci�ed for a program and can be
passed as values from the run string.

Recursion is permitted.

Hollerith, octal, and hexadecimal typeless constants.

The letter J appended to an integer constant to explicitly specify
type INTEGER*4.

The letter I appended to an integer constant to explicitly specify
type INTEGER*2.

Logical operands can be intermixed with numeric operands.

Length speci�cation can be a variable enclosed in parentheses.

A length speci�er can follow the item being declared.

Quotation marks used as string delimiters.

Integer values can be input or output in octal or hexadecimal
format.

The SYSTEM INTRINSIC statement (from FORTRAN 66/V).

The ON statement (from FORTRAN 66/V).

Additional format speci�cations: @, K, O, Q, R, Z.

Variable format descriptors.

VOLATILE statement.

List-directed I/O transfers can be made on internal �les.

Data initialization can be performed in type declaration statements
by enclosing the initialization value in slashes (/ /).

A COMMON statement can contain a name that has been
initialized in a DATA statement or type declaration statement.

FORTRAN Comparisons C-3

A variable of type integer can be used as a character length
speci�er.

Dynamic arrays.

Optional label in an Arithmetic IF.

A tab in column 1-6 immediately followed by a digit from 1-9, and
blanks or nothing before the tab character, is a line continuation.

Consecutive operators are allowed if the second operator is either a
unary plus (+) or minus (-).

Multi-dimensioned EQUIVALENCE.

A CALL can have missing arguments, which are replaced by a zero
passed by value.

An optional comma (,) is allowed to precede the I/O list within a
WRITE statement.

Null strings are allowed in the same context where other strings are
allowed.

The use of & instead of * for alternate return arguments is allowed.

Keyword statements: ACCEPT, DECODE, DOUBLE COMPLEX,
ENCODE, NAMELIST, TYPE, VIRTUAL.

PROGRAM statement allows the declaration of parameters for the
main program unit.

Use of noninteger expressions in computed GOTO statements.

Allows blank commons to be initialized by block data subprograms.

REAL*16.

Support of user de�ned structure types (records).

C-4 FORTRAN Comparisons

The following intrinsic functions are included:

%LOC

%REF

%VAL

ACOSD

ACOSH

AIMAX0

AIMIN0

AJMAX0

AJMIN0

ASIND

ASINH

ATAN2D

ATAND

ATANH

BABS

BADDRESS

BBCLR

BBITS

BBSET

BBTEST

BDIM

BIAND

MIEOR

BIOR

BITEST

BIXOR

BJTEST

BMOD

BMVBITS

BNOT

BSHFT

BSHFTC

BSIGN

BTEST

CDABS

CDCOS

CDEXP

CDLOG

CDSIN

CDSQRT

COSD

DACOSD

DACOSH

DASIND

DASINH

DATAN2D

DATAND

DATANH

DBLEQ

DCMPLX

DCONJG

DCOSD

DDINT

DFLOAT

DFLOTI

DFLOTJ

DIMAG

DNUM

DREAL

DSIND

DTAND

FLOATI

FLOATJ

HABS

HBCLR

HBITS

HBSET

HDIM

HIAND

HIEOR

HIOR

HMOD

HMVBITS

HNOT

HSHFT

HSHFTC

HSIGN

HTEST

IAND

IBCLR

IBITS

IBSET

IEOR

IIABS

IIAND

IIBCLR

IIBITS

IIBSET

IIDIM

IIDINT

IIDNNT

IIEOR

IIFIX

IINT

IIOR

IISHFT

IISHFTC

IISIGN

IIXOR

IMAG

IMAX0

IMAX1

IMIN0

IMIN1

IMOD

ININT

INOT

INUM

IOR

IQINT

IQNINT

IRAND

ISHFT

ISHFTC

IXOR

IZEXT

JIABS

JIAND

JIBCLR

JIBITS

JIBSET

JIDIM

JIDINT

JIDNNT

JIEOR

JIFIX

JINT

JIOR

JISHFT

JISHFTC

JISIGN

JIXOR

JMAX0

JMAX1

JMIN0

JMIN1

JMOD

JNINT

JNOT

JNUM

JZEXT

MVBITS

NOT

QABS

QACOS

QACOSD

QACOSH

QASIN

QASIND

QASINH

QATAN

QATAN2

QATAN2D

QATAND

QATANH

QCOS

QCOSD

QCOSH

QDIM

QEXP

QEXT

QEXTD

QINT

QLOG

QLOG10

QMAX1

QMIN1

QMOD

QNINT

QNUM

QPROD

QSIGN

QSIN

QSIND

QSINH

QSQRT

QTAN

QTAND

QTANH

RAND

RNUM

SIND

SNGLQ

TAND

ZABS

ZCOS

ZEXP

ZEXT

ZLOG

ZSIN

ZSQRT

ZTAN

FORTRAN Comparisons C-5

Comparison of HP
FORTRAN 77 and
FORTRAN 66/V

FORTRAN 66/V is an implementation of ANSI FORTRAN
(X3.9-1966) with several extensions to the standard. Listed below
are some of the di�erences between FORTRAN 66/V and HP
FORTRAN 77. This is not a complete list of di�erences, but most of
the signi�cant features are compared. For more information about
di�erences between FORTRAN 66/V and HP FORTRAN 77, see the
FORTRAN 66/V to HP FORTRAN 77/V Migration Guide.

Free-format source code is allowed in FORTRAN 66/V, but not in
HP FORTRAN 77.

Identi�ers in HP FORTRAN 77 can contain an underscore (_) or a
dollar sign ($). Neither of these is allowed in FORTRAN 66/V.

The default size of integers in FORTRAN 66/V is two bytes
(INTEGER*2), while in HP FORTRAN 77 it is four bytes
(INTEGER*4). INTEGER*4 is termed DOUBLE INTEGER in
FORTRAN 66/V.

The default size of logicals in FORTRAN 66/V is two
bytes (LOGICAL*2). In HP FORTRAN 77 it is four bytes
(LOGICAL*4). FORTRAN 66/V does not support LOGICAL*4.

HP FORTRAN 77 has DOUBLE COMPLEX and BYTE data
types.

Both HP FORTRAN 77 and FORTRAN 66/V support character
substrings; however, the notation is di�erent in the two compilers.
In HP FORTRAN 77, the size of the array and length of the string
for character variables are in the opposite order from FORTRAN
66/V.

The syntax and semantics of substring designators are di�erent in
FORTRAN 66/V and FORTRAN 77.

Partial word designators exist in FORTRAN 66/V but not
FORTRAN 77. Bit extraction is accomplished in FORTRAN 77 by
the IBITS and MVBITS functions.

The notation for octal, character, and hexadecimal constants is
di�erent in the two compilers.

In FORTRAN 66/V, only the upper bound of an array is speci�ed.
The lower bound is always assumed to be 1. In HP FORTRAN 77,
both upper and lower bounds can be given. If the lower bound is
omitted, it is assumed to be 1.

FORTRAN 66/V has a symbol table size limit of 8191 words. This
restriction does not exist in HP FORTRAN 77.

HP FORTRAN 77 provides a concatenation operator for character
variables. This feature is not available in FORTRAN 66/V.

HP FORTRAN 77 provides the additional logical operators .EQV.
and .NEQV..

C-6 FORTRAN Comparisons

The order of evaluating comparisons using the logical IF statement
is di�erent in the two compilers.

The order for evaluating arithmetic expressions with two or more
operators of the same precedence is di�erent in the two compilers.
In HP FORTRAN 77, the evaluation is right to left for exponential
and left to right for all other operations.

Mixed mode expressions are evaluated di�erently in the two
compilers.

The PROGRAM statement in HP FORTRAN 77 can include
parameters that enable the program to access the PARM value and
the INFO string of the run string. The PROGRAM statement in
FORTRAN 66/V has no parameters.

The PARAMETER statement in HP FORTRAN 77 allows the
use of constant expressions. In FORTRAN 66/V, only a simple
constant can be assigned.

HP FORTRAN 77 has a SAVE statement that is not available in
FORTRAN 66/V. It allows variables in a subroutine to be saved
from one call of the subroutine to the next.

In HP FORTRAN 77, the IF and DO statements are greatly
expanded to provide more structured programming constructs.
These statements are a superset of those provided in FORTRAN
66/V.

HP FORTRAN 77 provides an INCLUDE statement and an
$INCLUDE compiler directive that allow source from another �le
to be included. This feature is not available in FORTRAN 66/V,
which uses MASTERFILES and NEWFILES for source control.

HP FORTRAN 77 has a number of I/O statements not available
in FORTRAN 66/V. In HP FORTRAN 77, OPEN, CLOSE, and
INQUIRE statements are provided, so there is no need to call
system intrinsics to do routine I/O operations.

In HP FORTRAN 77, all I/O statements allow a status word and
error label as optional parameters. In FORTRAN 66/V, the error
label is allowed in some (but not all) of the I/O statements, and
status words are not allowed.

HP FORTRAN 77 does not contain the ACCEPT and DISPLAY
statements, as FORTRAN 66/V does.

There are signi�cant di�erences in the format and edit descriptors
of HP FORTRAN 77 and FORTRAN 66/V.

The S edit descriptor has di�erent meanings in the two compilers.

In HP FORTRAN 77, functions can have empty parameter lists.
This is denoted by (). In FORTRAN 66/V, a formal parameter
has to be passed to a function for which there would otherwise be
no parameter.

FORTRAN Comparisons C-7

These compiler directives and options are part of FORTRAN 66/V
but not HP FORTRAN 77:

CONTROL CROSSREF ALL

CONTROL CROSSREF

CONTROL ERRORS

CONTROL FILE

CONTROL FIXED

CONTROL FREE

CONTROL LABEL

CONTROL NOLABEL

CONTROL NOSTAT

CONTROL SOURCE

CONTROL STAT

EDIT

ERRORS

TRACE

The syntax of many compiler directives di�ers between FORTRAN
66/V and HP FORTRAN 77. Also, some FORTRAN 66/V
compiler directives are system dependent in FORTRAN 77 and
may not be available on all operating systems. See Chapter 7 for
details.

In FORTRAN 66/V, the condition code is accessed by using .CC.

in an arithmetic IF statement. HP FORTRAN 77 provides an
INTEGER*2 function, CCODE, that can be used wherever an
integer expression is allowed.

In FORTRAN 77 parentheses are required around parameters in
PARAMETER statements.

Some functions have di�erent names in FORTRAN 66/V and
FORTRAN 77 because of di�erent default parameter types.

While FORTRAN 66/V reserves one word for constants passed as
parameters, FORTRAN 77 reserves two words. Therefore you must
use caution in FORTRAN 77 when passing parameter constants
from procedures in other languages.

Logical items are implemented very di�erently in FORTRAN 66/V
and FORTRAN 77. (However, compiler directives that eliminate
this incompatibility are available. See Chapter 7 for further
information.)

Some FORTRAN 66/V functions don't exist in FORTRAN 77. See
the FORTRAN 66/V to HP FORTRAN 77/V Migration Guide for
a list of these functions.

When FORTRAN 66/V passes a character variable to a
subprogram, it passes a character pointer alone. When FORTRAN
77 passes a character variable, it passes a length parameter in
addition to the character pointer. (The extra length parameter
should be taken into account to avoid exceeding parameter limits
in FORTRAN 77.)

FORTRAN 66/V allows composite numbers, whereas FORTRAN
77 does not allow them.

Debug line notation is di�erent in FORTRAN 66/V and
FORTRAN 77.

C-8 FORTRAN Comparisons

Comparison of HP
FORTRAN 77 and
FORTRAN 7X

Note The FORTRAN 77 Reference Manual cited in this section is the
reference manual for FORTRAN 7X (FORTRAN 77 for the HP 1000
computer system), not the manual you are reading now.

One of the major di�erences between FORTRAN 7X and HP
FORTRAN 77 is that the former can be run in an ANSI 66 mode.
This capability is not part of HP FORTRAN 77.

Conicts are sometimes generated regarding program execution
in the two modes of FORTRAN 7X, ANSI 66 and ANSI 77. HP
FORTRAN 77 can resolve one of these ANSI 66-ANSI 77 conicts.
In FORTRAN 7X's ANSI 77 mode, DO loops can be skipped,
depending on the values of the control variables; in ANSI 66 mode,
all DO loops execute at least once. In HP FORTRAN 77, the
ONETRIP directive can be used to specify whether to skip or
execute.

Other conicts that can be resolved in FORTRAN 7X (by specifying
mode) but not in HP FORTRAN 77 are:

Computed GOTO value out-of-bounds condition.

Intrinsics declared in EXTERNAL and type statements (use the
INTRINSIC statement instead in HP FORTRAN 77).

Refer to the FORTRAN 77 Reference Manual (for the HP 1000
computer system) for a description of each of the above conicts.

The following are additional di�erences between FORTRAN 7X and
HP FORTRAN 77:

The EMA statement is not part of HP FORTRAN 77.

In FORTRAN 7X a multidimensional array can be referenced
by a single dimension in the EQUIVALENCE statement. (See
\EQUIVALENCE Statement" in the FORTRAN 77 Reference
Manual .) This extension is not part of HP FORTRAN 77.

In FORTRAN 7X, the BLOCK DATA, FUNCTION, PROGRAM,
and SUBROUTINE statements allow comments to be speci�ed.
This is not part of HP FORTRAN 77 (since it has no NAM
record).

In HP FORTRAN 77, instead of specifying the program type and
priority in the PROGRAM statement, you can specify formal
parameters and pass values from the run string.

HP FORTRAN 77 has no LIST or NOLIST option for the
INCLUDE statement or directive as in FORTRAN 7X. (Refer to
the FORTRAN 77 Reference Manual .)

FORTRAN Comparisons C-9

The CALL EXIT extension is not part of HP FORTRAN 77.

The FILES directive reserves room for the DCB in FORTRAN 7X.
This is not necessary in HP FORTRAN 77. The directive is agged
with a warning message and ignored.

The ALIAS directive in HP FORTRAN 77 does not have the
DIRECT, NOABORT, and NOEMA options, but does have the
parameter passing information option.

In FORTRAN 7X, true is equal to any negative value and false to
any nonnegative value. In HP FORTRAN 77/iX, the low-order bit
of the high-order byte determines the logical value. See Chapter 10
for details.

The FORTRAN intrinsics (see Appendix B) are the same in HP
FORTRAN 77, except for the following:

PCOUNT ISSW EXEC REIO

The FTN control statement is not part of HP FORTRAN 77.

Compiler invocations di�er, as do compiler options and directives.

The carriage control character for no advance in HP FORTRAN 77
is \+", as speci�ed in the ANSI 77 standard. FORTRAN 7X uses
the nonstandard *" instead.

In FORTRAN 7X, if the FORMAT statement speci�es a record
size greater than 67 words, LGBUF must be called. This
restriction does not apply to HP FORTRAN 77, where nothing
special is required.

In FORTRAN 7X, the sizes of the w, d, and n �elds in format
speci�cations are checked at compile-time for a value greater than
2047. In HP FORTRAN 77 these �elds are checked at compile
time if they appear in FORMAT statements. Numeric format
descriptors must not specify a �eld width greater than 140.
Character �eld widths are not restricted.

HP FORTRAN 77 allows an unlimited number of array
dimensions, whereas FORTRAN 7X (and the ANSI 77 standard)
allows only seven.

The six-byte REAL data type is implemented in FORTRAN 7X,
but not in HP FORTRAN 77.

In FORTRAN 7X, as an extension to the ANSI 77 standard,
unlimited continuation lines are permitted. In HP FORTRAN 77,
only 99 are permitted.

FORTRAN 7X include compatibility features that are not a part
of the ANSI 77 standard. Compatibility features included in
FORTRAN 7X but not HP FORTRAN 77 are as follows:

Extended precision type.
Improper array dimensioning in EQUIVALENCE statement.

C-10 FORTRAN Comparisons

Record number connected to unit number (earlier-style
direct-access I/O).
Statement function in EXTERNAL statements as arguments.
Parentheses around simple I/O lists.
$ as statement separator.
Storage of Hollerith constants.
Unformatted I/O and paper tape length words.

Refer to the FORTRAN 77 Reference Manual for a detailed
description of each of the above features.

The ASSIGN and the assigned GOTO statements require a 32-bit
integer variable in HP FORTRAN 77. This is not a restriction in
FORTRAN 7X.

FORTRAN 7X allows repeat count for both format and edit
descriptors in format statements. HP FORTRAN 77 allows only
format descriptors to have repeat counts.

In FORTRAN 7X, as an extension to the ANSI 77 standard, a DO
variable can be modi�ed.

In FORTRAN 7X, array names may be used alone to specify the
�rst element of the array. This is nonstandard and not allowed in
HP FORTRAN 77.

FORTRAN Comparisons C-11

D

HP Character Set

HP Character Set D-1

D-2 HP Character Set

HP Character Set D-3

E

Indexed Sequential Access Program

The following program uses indexed sequential access (ISAM) I/O.
Its operation is described in comments within the program.

C**

C This program shows different indexed sequential access operations.

C This program is menu driven. It creates an ISAM file with three

C keys and writes some records into the file. It then displays the

C menu and prompts for these options: add, read, delete, and modify

C a record. This program has an option to dump the entire ISAM file.

C**

PROGRAM test1

INTEGER key,phone

CHARACTER buf*80,filename*8,keyed*5,unfo*4

EQUIVALENCE (buf(1:4),phone)
LOGICAL modified

C***

C field definition

C 1:4:integer ----------- primary key

C 5:15: character -------- alternate key (last name)

C 16:25: character ------- alternate key (first name)

C 26:80: character ------- not a key (for general description)

C***

filename = 'datafile'

keyed = 'keyed'

unfo = 'unfo'

C***

C Define primary key as 1:4:integer

C secondary key1 : 5:15:character

C secondary key2 : 16:25:character

C***

C OPEN ISAM file as

OPEN(10,file='DATAFILE',access='keyed',form='unfo',recl=80,

1 key=(1:4:integer,5:15:character,16:25),err=1000)

Indexed Sequential Access Program E-1

C***

C ADD some records

C***
phone = 1231111

buf(5:15) = 'micky'

buf(16:25)= 'mouse'

buf(26:) = ' DISNEYLAND'

WRITE (10,err=1) buf ! records might already be created

phone = 1232222

buf(5:15) = 'donald'

buf(16:25)= 'duck'

buf(26:) = ' DISNEYLAND'

WRITE (10) buf

phone = 1233333

buf(5:15) = 'big'

buf(16:25)= 'bird'

buf(26:) = ' SESAME STREET'

WRITE (10) buf

C***

C PRINT the menu

C***

5 CONTINUE

1 PRINT *,' ****************'

PRINT *,' M E N U'

PRINT *,' ****************'

PRINT *,' '

PRINT *,' 1. ADD A RECORD'

PRINT *,' 2. READ A RECORD'
PRINT *,' 3. DELETE A RECORD'

PRINT *,' 4. MODIFY A RECORD'

PRINT *,' 5. MENU'

PRINT *,' 6. EXIT'

PRINT *,' 7. DUMP THE FILE'

PRINT *,' '

PRINT *,' '

2 PRINT 11

11 FORMAT(' enter your option :',$)

READ *,i

GOTO (100,200,300,400,500,600,700) I

PRINT *,'invalid option, try again'

GOTO 2

12 FORMAT(1x,'enter phone number:',$)

13 FORMAT(1x,'enter first name:',$)

14 FORMAT(1x,'enter last name:',$)

15 FORMAT(1x,'enter project name(optional):',$)

E-2 Indexed Sequential Access Program

C***

C ADD a record

C***
100 PRINT 12

READ *,phone

PRINT 13

READ (*,'(A10)') buf(16:25)

PRINT 14

READ (*,'(A11)') buf(5:15)

PRINT 15

READ (*,'(A55)') buf(26:80)

WRITE (10,err=101) buf

GOTO 1

101 PRINT *,'error in reading, try again'

GOTO 1

Indexed Sequential Access Program E-3

C***

C READ a record

C***
200 PRINT *,' 1. BY PHONE NUMBER'

PRINT *,' 2. BY FIRST NAME'

PRINT *,' 3. BY LAST NAME'

PRINT *,' '

PRINT *,' '

PRINT 11

READ *,i

IF (I .EQ. 1) THEN

PRINT 12

READ *,phone

READ (10,keyeq=phone,keyid=0,err=212,end=211,iostat=ii) buf

PRINT *,phone,' ',buf(5:)

ELSEIF (I .EQ. 2) THEN

PRINT 13

READ (*,'(A10)') buf(16:25)

READ (10,keyeq=buf(16:25),keyid=2,err=212,end=211,iostat=ii) buf

PRINT *,phone,' ',buf(5:)

ELSEIF (I .EQ. 3) THEN

PRINT 14

READ (*,'(A11)') buf(5:15)

READ (10,keyeq=buf(5:15),keyid=1,err=212,end=211,iostat=ii) buf

PRINT *,phone,' ',buf(5:)

ELSE

PRINT *,'invalid option, try again'

GOTO 200

ENDIF

GOTO 1

211 PRINT *,'record does not exist, try again',ii

GOTO 1

212 PRINT *,'error in reading :' ,ii

GOTO 1

C***

C DELETE a record

C***

300 PRINT 12

READ *,phone

READ (10,keyeq=phone,err=301) buf !default primary key

PRINT *,phone,' ',buf(5:70)

DELETE(10,err=302)

GOTO 1

301 PRINT *,'error in reading the record for delete'

GOTO 1

302 PRINT *,'error in deleting the record'

GOTO 1

E-4 Indexed Sequential Access Program

C***

C MODIFY a record

C***
400 modified = .false.

PRINT 12

READ *,phone

READ(10,keyeq=phone,err=402) buf ! default is primary key

PRINT *,phone,' ',buf(5:)

401 PRINT *,' 1. first name'

PRINT *,' 2. last name',ii

PRINT *,' 3. project'

PRINT *,' 4. exit'

PRINT *,' '

PRINT 11

READ *,i

IF (I. EQ. 1) THEN

PRINT 13

READ (*,'(A10)') buf(16:25)

modified = .true.

ELSEIF (I. EQ. 2) THEN

PRINT 14

READ (*,'(A11)') buf(5:15)

modified = .true.

ELSEIF (I .EQ. 3) THEN

PRINT 15

READ (*,'(A55)') buf(26:80)

modified = .true.

ELSEIF (I .EQ. 4) THEN

IF (modified .EQ. .true.) THEN

REWRITE(10,err=441) buf
PRINT *,phone,' ',buf(5:70)

GOTO 1

ENDIF

ELSE

PRINT *,'invalid option, try again'

GOTO 401

ENDIF

GOTO 401

402 PRINT *,'record does not exist, try again'

GOTO 1

441 PRINT *,' rewriting the record failed'

GOTO 1

Indexed Sequential Access Program E-5

C******** MENU

500 GOTO 1

C******** EXIT

600 CLOSE (10)

STOP

C***

C DUMP all the records in the ISAM file

C***

700 phone = 0

READ (10,keygt=phone,err=702,iostat=ii) buf ! default is primary key

PRINT *, phone,' ',buf(5:76)

DO i=1,100 ! reading ISAM sequentailly

READ (10,err=702,end=701,iostat=ii) buf

PRINT *, phone,' ',buf(5:)

ENDDO

GOTO 1

701 PRINT *,' number of records in the file :',(i-1),ii

GOTO 1

702 PRINT *,' error in reading :',ii

GOTO 1

1000 PRINT *,' open failed on isam '

END

E-6 Indexed Sequential Access Program

Index

A ABORT trap action, 9-5
ABS intrinsic function, B-28
ACCEPT statement, 3-8
ACOSD intrinsic function, B-22, B-29
ACOSH intrinsic function, B-30
ACOS intrinsic function, B-22, B-29
actual arguments
EXTERNAL statement, 3-71
intrinsic function, 3-102

adjustable array, 2-38
aggregate assignment statement, 3-18
AIMAG intrinsic function, B-46
AIMAX0 intrinsic function, B-56
AIMIN0 intrinsic function, B-57
AINT intrinsic function, B-21, B-30
AJMAX0 intrinsic function, B-56
AJMIN0 intrinsic function, B-57
ALIAS directive, 2-6, 7-6
ALIAS,parameter passing with C, 8-4
ALIGNMENT
+A option, 7-36
directive, 7-11
HP1000 directive option, 7-36

ALOG10 intrinsic function, B-56
ALOG intrinsic function, B-55
alternate PARAMETER statement, 3-120
alternate returns
SUBROUTINE statement, 3-153

AMAX0 intrinsic function, B-56
AMAX1 intrinsic function, B-56
American National Standards Institute (ANSI), 1-1
AMIN0 intrinsic function, B-57
AMIN1 intrinsic function, B-57
AMOD intrinsic function, B-57
.AND. operator, 2-3
ANINT intrinsic function, B-21, B-31
ANSI
directive, 7-13
warnings, A-62

ANSI 66 mode, C-9
ANSI 77 standard, 1-1
ANSI 77 standard extension
alternate PARAMETER statement, 3-120
arithmetical logical variables, 3-14
ASSOCIATEVARIABLE, OPEN statement, 3-113

Index-1

BACKSPACE, 3-20
B form of octal constant, 2-30
block DO loop, 3-49, 3-51
BLOCKSIZE, OPEN statement, 3-113
BUFFERCOUNT, OPEN statement, 3-113
BYTE data type, 2-10
BYTE statement, 2-4, 3-23
CARRIAGECONTROL, INQUIRE statement, 3-98
CARRIAGECONTROL, OPEN statement, 3-113
character, noncharacter data items, 3-70
COMMON statement, 3-32
COMPLEX*16 statement, 3-34
COMPLEX*8 statement, 3-34
computed GOTO, 3-81
consecutive operators, 2-50
DECODE statement, 2-4
DEFAULTFILE, INQUIRE statement, 3-98
DEFAULTFILE, OPEN statement, 3-113
directive, 7-82
DISP in CLOSE statement, 3-30
DISP, OPEN statement, 3-113
DISPOSE in CLOSE statement, 3-30
DISPOSE, OPEN statement, 3-113
dollar sign in symbolic names, 2-5
DOUBLE COMPLEX statement, 2-4, 3-34
dynamic array, 2-39
embedded comment, 2-4
ENCODE statement, 2-4
END MAP statement, 3-151
end-of-line edit descriptors, 4-32
END STRUCTURE statement, 3-147
END UNION statement, 3-150
exclamation point, 2-4
extended range DO loop, 3-57
EXTENDSIZE, OPEN statement, 3-113
hexadecimal constant, 2-8, 2-33
hexadecimal format descriptor, 4-24
Hollerith constant, 2-8, 2-27
indexed sequential access, OPEN statement, 3-113
indexed sequential access, READ statement, 3-130
initialization in type statement, 3-23, 3-27, 3-35, 3-104, 3-133
INITIALSIZE, OPEN statement, 3-113
input bytes remaining edit descriptor, 4-35
INTEGER*2 data type, 2-11
INTEGER*2 statement, 3-99
INTEGER*4 data type, 2-13
INTEGER*4 statement, 3-99
integer item as logical operand, 2-56
intrinsic function in PARAMETER, 2-52, 2-53
intrinsics in PARAMETER statement, 3-117
ISAM, OPEN statement, 3-113
ISAM, READ statement, 3-130
I su�x with INTEGER*2 constant, 2-11
I su�x with integer constant, 2-11
J su�x with integer constant, 2-13

Index-2

KEYED, INQUIRE statement, 3-98
KEYID, READ statement, 3-130
length of symbolic names, 2-5
length speci�er after item, 3-104
length speci�er following item, 3-35, 3-133
length speci�er, TYPE statement, 3-100
list-directed input, internal �le, 4-44
list-directed output, internal �le, 4-48
LOGICAL*1 data type, 2-10
LOGICAL*1 statement, 3-103, 3-104
LOGICAL*2 data type, 2-21
LOGICAL*2 statement, 3-103, 3-104
LOGICAL*4 data type, 2-22
LOGICAL*4 statement, 3-103, 3-104
logical item as operand, 2-47
logical operands in expressions, 2-51
lowercase letters, 2-1
lowercase symbolic names, 2-5
MAP statement, 3-151
MAXREC, INQUIRE statement, 3-98
MAXREC, OPEN statement, 3-113
missing actual arguments, 3-25
mixed data in a COMMON block, 3-33
multi-dimensioned equivalence, 3-70
NAMELIST statement, 2-4
NAME, OPEN statement, 3-113
NODE, INQUIRE statement, 3-98
NODE, OPEN statement, 3-113
noncharacter array, 3-122
noncharacter types, A and R, 4-19
NOSPANBLOCKS, OPEN statement, 3-113
octal constant, 2-8, 2-30
octal format descriptors, 4-23
O form of octal constant, 2-30
optional label in arithmetic IF, 3-84
ORGANIZATION, INQUIRE statement, 3-98
ORGANIZATION, OPEN statement, 3-113
parameters in PROGRAM statement, 3-124
quotation mark, 2-23
quotation mark, FORMAT, 4-9
REAL*16 statement, 3-132, 3-133
REAL*4 statement, 3-132, 3-133
REAL*8 statement, 3-132, 3-133
RECORDSIZE, OPEN statement, 3-113
RECORDTYPE, INQUIRE statement, 3-98
RECORDTYPE, OPEN statement, 3-113
R format descriptor, 4-19
sequential READ on direct access, 3-131
STRUCTURE statement, 3-147
typeless constant, 2-24
TYPE, OPEN statement, 3-113
TYPE statement, 2-4, 3-123, 3-159
underscore in symbolic names, 2-5
UNION statement, 3-150
unlimited number array dimensions, 3-46

Index-3

USE, INQUIRE statement, 3-98
use of & as alternate return, 3-24
USE, OPEN statement, 3-113
USEROPEN, OPEN statement, 3-113
variable as length speci�cation, 3-27
VIRTUAL statement, 2-4, 3-163
WRITE operations, 3-168
X form of hexadecimal constant, 2-33
.XOR. in place of .NEQV., 2-56
ZBUF, READ statement, 3-130
ZBUF speci�cation, 3-140, 3-166
ZBUF, WRITE statement, 3-168
ZLEN, READ statement, 3-130
ZLEN speci�cation, 3-140, 3-166
ZLEN, WRITE statement, 3-168

ANSI (American National Standards Institute), 1-1
ANSI X3.9-1978, 1-1

apostrophe
character constant, 2-23
edit descriptor, 4-34
format speci�cations, 4-9
FORMAT statements, 3-77
within character constant, 2-23

arithmetic assignment statement, 3-12
examples, 3-15

arithmetic expressions, 2-47
constant expression, 2-52
order of evaluation, 2-48
parentheses in, 2-48
relational expressions, 2-54

arithmetic IF statement, 3-84
arithmetic operators
hierarchy, 2-48

arithmetic trap procedure, 9-5
array
bounds, 2-38
declarators, 2-36
de�ned by symbolic name, 2-5
element storage, 2-40

arrays, 2-36, 8-3
adjustable, 2-38
as parameters, 2-41
dynamic, 2-39
one-dimensional, 2-36
two-dimensional, 2-36

ARRAYS, HP1000 directive option, 7-34
ASIND intrinsic function, B-22, B-32
ASINH intrinsic function, B-32
ASIN intrinsic function, B-22, B-31
ASSEMBLY directive, 7-14
assigned GOTO statement, 3-82
assignment statement, 3-11
ASSIGN statement, 3-10
ASSOCIATEVARIABLE
OPEN statement, 3-113

Index-4

asterisk
array declarator, 3-46
ENTRY statement, 3-67
** operator, 2-47
* operator, 2-47
SUBROUTINE statement, 3-136, 3-153
upper dimension bound, 2-37

ATAN2D intrinsic function, B-22, B-34
ATAN2 intrinsic function, B-22, B-33
ATAND intrinsic function, B-22, B-34
ATANH intrinsic function, B-35
ATAN intrinsic function, B-22, B-33, B-34

B BACKSPACE statement, 3-19
BADDRESS intrinsic function, B-22, B-35
basic external function trap procedure, 9-6
B form of octal constant, 2-30
binary object program, relocatable, 1-2
bit
manipulation, 2-58, B-20
masking expressions, 2-58
masking operations, 2-58
shifting, B-18

BITEST intrinsic function, B-36
BJTEST intrinsic function, B-36
blank common statement
allowed in block data subprogram, 3-21

blank �lling of Hollerith constants, 2-29
blank interpretation edit descriptors, 4-31
blanks
compiler directives, 7-1
interpretation within a statement, 2-3

BLOCK DATA statement, 3-21
block data subprogram
de�ned by symbolic name, 2-5

block DO loop, 3-49, 3-51
block IF
ENDIF statement, 3-65

block IF statement, 3-87
BLOCKSIZE
OPEN statement, 3-113

bounds checking, 7-75
break in program execution
PAUSE statement, 3-121

BTEST intrinsic function, B-20, B-21, B-36
BUFFERCOUNT
OPEN statement, 3-113

built-in functions
%REF, 8-9
%VAL, 8-9

BYTE
constant, 2-10
data type, 2-10
format, 10-3

Index-5

statement, 3-23

C C
and FORTRAN, 8-3
and Hollerith, 8-5
arrays, 8-3
character representation, 8-5
character variables, 8-5
complex numbers, 8-4
default character passing, 8-5
�les, 8-3
logicals, 8-3
parameter passing, 8-4

CABS intrinsic function, B-18, B-28
CALL statement, 3-24
CARRIAGECONTROL
INQUIRE statement, 3-98
OPEN statement, 3-113

carriage control characters, 4-5, 4-6
case
IMPLICIT statement, 3-91
signi�cance, 2-5

CCODE, 8-8
CCOS intrinsic function, B-38
CDABS intrinsic function, B-28
CDCOS intrinsic function, B-38
CDEXP intrinsic function, B-43
CDLOG intrinsic function, B-55
CDSIN intrinsic function, B-63
CDSQRT intrinsic function, B-65
CEXP intrinsic function, B-43
character
format, 10-14
format descriptors, 4-19
format descriptors and numeric data, 4-20
relational expressions, 2-55
set, 2-1
substrings, 2-42

character assignment statement, 3-17
examples, 3-17

character constant
expressions, 2-53
in numeric context, 2-24
length, 2-23

CHARACTER constant, 2-23
character conversion to integer, B-18
CHARACTER data type, 2-22
character expression, 2-53
character operator, 2-53
character parameters, passing, 8-5
character position, 2-22
character set, 2-1
character set, HP, D-1
CHARACTER statement, 3-26

Index-6

character string
nonprintable characters, 2-23

CHAR intrinsic function, B-36
CHECK ACTUAL PARM directive, 7-15
CHECK FORMAL PARM directive, 7-16
CHECK OVERFLOW directive, 7-17
circular bit shift function, B-19
CLOG intrinsic function, B-55
CLOSE statement, 3-29
CMPLX intrinsic function, B-17, B-37
CODE directive, 7-18
CODE OFFSETS directive, 7-19
collapsed implied DO loop, 3-54
colon edit descriptor, 4-36
column-major order, 2-40
column-major storage, 8-3
column sensitivities, 1-6
comma
format speci�cation, 4-10

comment, 2-4
embedded, 2-4
end-of-line, 1-5
line, 1-5, 2-4

COMMON and labels, 8-2
common block, 3-21
de�ned by symbolic name, 2-5

COMMON statement, 3-32
allowed in block data subprogram, 3-21

comparisons, C-1
FORTRAN 66/V, C-6
FORTRAN 7X, C-9
HP FORTRAN 77 and FORTRAN 66/V, C-6
HP FORTRAN 77 and FORTRAN 7X, C-9

compilation, 6-2, 6-4
compilation,preparation,execution, 6-6
compiler directives, 2-4, 7-1
NOSTANDARD, 4-20

compiler,running, 6-7
compile-time
bounds checking, 7-75
diagnostics, A-1
errors, A-3

compile-time warnings, A-49
compiling, 6-1
COMPLEX*16
constant, 2-20
data type, 2-20
format, 10-12
statement, 3-34

COMPLEX*8
constant, 2-19
data type, 2-19
format, 10-11
statement, 3-34

COMPLEX constant, 2-19

Index-7

COMPLEX data type, 2-19
complex numbers, 8-4
C, 8-4

COMPLEX statement, 3-34
computed GOTO statement, 3-81
concatenation operator, 2-53
condition codes, 8-8
CONJG intrinsic function, B-18, B-37
consecutive operators, 2-50
constant
BYTE, 2-10
CHARACTER, 2-23
character in numeric context, 2-24
COMPLEX, 2-19
COMPLEX*16, 2-20
COMPLEX*8, 2-19
DOUBLE COMPLEX, 2-20
DOUBLE PRECISION, 2-17
hexadecimal, 2-24, 2-33
Hollerith, 2-24, 2-27
INTEGER, 2-11, 2-13
INTEGER*2, 2-11
INTEGER*4, 2-13
LOGICAL, 2-21, 2-22
LOGICAL*1, 2-10
LOGICAL*2, 2-21
LOGICAL*4, 2-22
octal, 2-24, 2-30
REAL, 2-15
REAL*16, 2-18
REAL*4, 2-15
REAL*8, 2-17
typeless, 2-24

continuation line, 1-4
CONTINUATIONS directive, 7-20
continue line on next line, 3-1
CONTINUE statement, 3-36
CONTROL, keyword, 7-1
control-L, page eject, 7-72
control transfer
GOTO statement, 3-81

Control-Y trap procedure, 9-6
COPYRIGHT directive, 7-21
COSD intrinsic function, B-22, B-38
COSH intrinsic function, B-39
COS intrinsic function, B-22, B-38
creating a new object �le, 6-2
CROSSREF directive, 7-22
CSIN intrinsic function, B-63
CSQRT intrinsic function, B-65
CTAN intrinsic function, B-65
current input device ($STDIN), 6-2, 6-4, 6-6

Index-8

D DABS intrinsic function, B-28
DACOSD intrinsic function, B-22, B-29
DACOSH intrinsic function, B-30
DACOS intrinsic function, B-22, B-29
DASIND intrinsic function, B-22, B-32
DASINH intrinsic function, B-32
DASIN intrinsic function, B-22, B-31
data format in memory, 10-1
DATAN2D intrinsic function, B-22, B-34
DATAN2 intrinsic function, B-22, B-33
DATAND intrinsic function, B-22
DATANH intrinsic function, B-35
DATAN intrinsic function, B-22, B-33, B-34
DATA statement, 3-37
allowed in block data subprogram, 3-21

DATA statements
implied DO loop, 3-40

data transfer
binary, 4-42
�le to memory, 3-128
�le to program variable, 3-126
memory to �le or device, 3-166
to devices, 4-42

data type, 2-7
BYTE, 2-10
CHARACTER, 2-22
COMPLEX, 2-19
COMPLEX*16, 2-20
COMPLEX*8, 2-19
default, 2-6
DOUBLE COMPLEX, 2-20
DOUBLE PRECISION, 2-17
INTEGER, 2-13
INTEGER*2 , 2-11
INTEGER*4, 2-13
LOGICAL, 2-21, 2-22
LOGICAL*1, 2-10
LOGICAL*2, 2-21
LOGICAL*4, 2-22
REAL, 2-15
REAL*16, 2-18
REAL*4, 2-15
REAL*8, 2-17
six-byte REAL, C-10

data types, 8-6
DATE intrinsic subroutine, B-23
DBLE intrinsic function, B-17, B-39
DBLEQ intrinsic function, B-39
DCMPLX intrinsic function, B-17, B-40
DCOSD intrinsic function, B-22, B-38
DCOSH intrinsic function, B-39
DCOS intrinsic function, B-22, B-38
DDIM intrinsic function, B-40
DDINT intrinsic function, B-30
DEBUG compiler directive, 1-5

Index-9

DEBUG directive, 7-26
debugging, symbolic, 7-84
debug line, 1-5
decimal point
with real constant, 2-15, 2-17, 2-18

declarator
dimension, 3-46

DECODE statement, 3-42
default character passing
C, 8-5

default data type, 2-6
DEFAULTFILE
INQUIRE statement, 3-98
OPEN statement, 3-113

default source (on MPE/iX), 6-7
DELETE statement, 3-44
denormalized, 10-5
%DESCR, ALIAS directive, 7-8
descriptor
format, 3-73
list, 3-72
variable format, 3-72

DEXP intrinsic function, B-43
DFLOAT intrinsic function, B-39
diagnostic messages, A-1
ANSI warnings, A-62
compile-time errors, A-3
compile-time warnings, A-49
run-time, A-73

DIMAG intrinsic function, B-46
dimension declarator, 3-46
dimension elements
number, 2-37

DIMENSION statement, 3-46
allowed in block data subprogram, 3-21

DIM intrinsic function, B-40
DINT intrinsic function, B-30
directive
HP3000 16, 7-38
POSTPEND, 7-74
RLFILE, 7-76
RLINIT, 7-77
SEGMENT, 7-79

directive line, 1-5
directives
ALIAS, 2-6, 7-6
ALIGNMENT, 7-11
ANSI, 7-13
ASSEMBLY, 7-14
CHECK ACTUAL PARM, 7-15
CHECK FORMAL PARM, 7-16
CHECK OVERFLOW, 7-17
CODE, 7-18
CODE OFFSETS, 7-19
CONTINUATIONS, 7-20

Index-10

COPYRIGHT, 7-21
CROSSREF, 7-22
DEBUG, 7-26
ELSE, 7-27
ENDIF, 7-28
EXTERNAL ALIAS, 2-6, 7-29
FTN3000 66, 7-30
FTN3000 66 CHARS, 7-30
FTN3000 66 IO, 7-31
HP1000, 7-34
IF, 7-41
INCLUDE, 7-43
INIT, 7-44
LINES, 7-45
LIST, 7-46
LIST CODE, 7-47
LITERAL ALIAS, 7-48
LOCALITY, 7-49
LONG, 7-50
LOWERCASE, 7-51, 7-92
MIXED FORMATS, 7-52
NLS SOURCE, 7-56
NOSTANDARD, 7-57
ONETRIP, 7-60
OPTIMIZE, 7-61
PAGE, 7-72
PAGEWIDTH, 7-73
RANGE, 7-75
SAVE LOCALS, 7-78
SET, 7-80
SHORT, 7-81
STANDARD LEVEL, 7-82
SUBTITLE, 7-83
SYMDEBUG, 7-84
SYMTABLE, 7-85
SYSINTR, 7-87
SYSTEM INTRINSIC, 7-88
TABLES, 7-89
TITLE, 7-91
UPPERCASE, 7-51, 7-92
VERSION, 7-93
WARNINGS, 7-94
XREF, 7-95

DISP
CLOSE speci�er, 3-30
OPEN statement, 3-113

DISPOSE
CLOSE speci�er, 3-30
OPEN statement, 3-113

DLOG10 intrinsic function, B-56
DLOG intrinsic function, B-55
DMAX1 intrinsic function, B-56
DMIN1 intrinsic function, B-57
DMOD intrinsic function, B-57
DNINT intrinsic function, B-31

Index-11

DNUM intrinsic function, B-42
dollar sign, 2-5
DO LOOP
HP1000 directive option, 7-37

DO loops, 3-48
execution, 3-52, 7-60
exiting, 3-56
implied, 3-53
nesting, 3-56
range, 3-56
transfer control into, 3-56

DO statement, 3-48
double complex. See COMPLEX*16
double precision. See REAL*8
double precision format descriptors, 4-15
double quotation mark. See quotation mark
DO-WHILE statement, 3-55
DPROD intrinsic function, B-42
DSIGN intrinsic function, B-63
DSIND intrinsic function, B-22, B-64
DSINH intrinsic function, B-64
DSIN intrinsic function, B-22, B-63
DTAND intrinsic function, B-22, B-66
DTANH intrinsic function, B-66
DTAN intrinsic function, B-22, B-65
dynamic array, 2-39, 3-69

E edit descriptors, 4-10, 4-31
apostrophe, 4-34
blank interpretation, 4-31
colon, 4-36
end-of-line, 4-32
Hollerith, 4-34
input bytes remaining, 4-35
literal, 4-34
nesting, 4-40
plus sign, 4-34
position, 4-35
quotation mark, 4-34
record terminator, 4-36
scale factor, 4-38
tab, 4-36

e�ciency
object code, 3-82

ELSE block, 3-87
ELSE directive, 7-27
ELSE IF statement, 3-88
ELSE statement, 3-87
embedded comments, 2-4
ENCODE statement, 3-59
END DO statement, 3-51, 3-55, 3-57
ENDFILE statement, 3-63
ENDIF directive, 7-28
ENDIF statement, 3-65, 3-88

Index-12

END MAP statement, 3-151
allowed in block data subprogram, 3-21

end-of-�le record
ENDFILE statement, 3-63

end-of-line edit descriptors, 4-32
END speci�er
READ statement, 3-130

END statement, 3-61
END STRUCTURE statement, 3-147
allowed in block data subprogram, 3-21

END UNION statement, 3-150
allowed in block data subprogram, 3-21

ENTRY statement, 3-66
.EQ. operator, 2-3
EQUIVALENCE statement, 3-69
.EQV. operator, 2-3
error messages, A-1
errors
run-time, 9-1

ERR speci�er
ENDFILE statement, 3-63
OPEN statement, 3-112
READ statement, 3-130
REWIND statement, 3-138
REWRITE statement, 3-141
WRITE statement, 3-168

exclamation point, 1-5
for embedded comment, 2-4

exclusive OR, B-18
executable program, 1-4
executable statements, listed, 3-2
exiting a trap, 9-6
exiting DO loops, 3-56
EXIT intrinsic subroutine, B-23
EXP intrinsic function, B-43
exponent
with real constant, 2-15, 2-17, 2-18

expressions, 2-46
arithmetic, 2-47
arithmetic constant, 2-52
arithmetic relational, 2-54
character, 2-53
character constant, 2-53
character relational, 2-55
relational, 2-54
with mixed operands, 2-51

extended range DO loop, 3-57
EXTENDSIZE
OPEN statement, 3-113

extensions
ANSI standard, HP FORTRAN 77, C-2
MIL-STD-1753 standard, HP FORTRAN 77, C-2
to the ANSI 77 standard, 1-1

EXTERNAL ALIAS directive, 2-6, 7-29
external function trap procedure, 9-6

Index-13

external names, 2-6
EXTERNAL statement, 3-71
not allowed in block data subprogram, 3-21

F .FALSE. operator, 2-3
�le handling, 8-2
�les, 8-3
automatically opening, 5-5
handling, 5-1

%FILL �eld name in structures, 3-149
�xed-point format descriptor, 4-17, 4-18
oating-point, 2-15, 2-17, 2-18
oating-point format descriptors, 4-16, 4-18
FLOAT intrinsic function, B-17, B-62
FMT speci�er
READ statement, 3-130
REWRITE statement, 3-141
WRITE statement, 3-168

FNUM procedure, 5-2
formal arguments
ENTRY statement, 3-66
FUNCTION statement, 3-80
SUBROUTINE statement, 3-153

format and edit descriptors
nesting, 4-10, 4-40

format descriptor, 3-73, 4-10
character, 4-19, 4-20
double precision, 4-15
�xed-point, 4-17, 4-18
oating-point, 4-16, 4-18
hexadecimal, 4-24
integer, 4-14
logical, 4-22
monetary, 4-29
Mw.d, 4-29
numeration, 4-30
numeric, 4-13
Nw.d, 4-30
octal, 4-23
real, 4-15
repeat speci�cation, 4-10, 4-40
variable, 4-26

format designator
formatted output, 4-5

format in memory
BYTE, 10-3
character, 10-14
COMPLEX*16, 10-12
COMPLEX*8, 10-11
Hollerith, 10-14
INTEGER*2, 10-4
INTEGER*4, 10-4
LOGICAL*1, 10-3
LOGICAL*2, 10-13

Index-14

LOGICAL*4, 10-14
REAL*16, 10-8
REAL*4, 10-5
REAL*8, 10-6

format speci�cations, 4-7
input/output statements, 4-9
nesting, 4-40
processing, 4-41

FORMAT statement, 3-72, 4-8
formatted input, 4-1, 4-2
formatted output, 4-4, 4-43
format designator, 4-5
PRINT statement, 3-122, 4-4
WRITE statement, 4-4

form feed, 7-72
FORTRAN
77, 1-1
and C, 8-3
character set, 2-1
compiler, 1-2
intrinsic functions, 2-6
source �le, sample listing, 1-2
statement format, 3-1
terms, 1-4
vocabulary, 1-2

FORTRAN 66/V
compared to HP FORTRAN 77, C-6

FORTRAN 77 and Pascal data types,table, 8-6
FORTRAN 7X
compared to HP FORTRAN 77, C-9

FORTRAN comparisons, C-1
FORTRAN source �le, sample listing, 1-2
FSET procedure, 5-3
FTN3000 66
IO, 7-31

FTN3000 66 CHARS, 7-30
FTN3000 66 directive, 7-30
FTN3000 66 IO, 7-31
FTNCOMP, 6-7
FTNiX, 6-2
FTN.PUB.SYS, 6-7
FTNXLGO, 6-6
FTNXLLK, 6-4
function
de�ned by symbolic name, 2-5
instrinsic, B-18

FUNCTION statement, 3-78
function subprogram, 3-78

Index-15

G .GE. operator, 2-3
gigabyte, 3-33, 3-38, 3-143
GOTO statement, 3-81
assigned, 3-82
computed, 3-81
unconditional, 3-81

group name
namelist, 4-52

.GT. operator, 2-3

H HABS intrinsic function, B-28
HBCLR intrinsic function, B-44
HBITS intrinsic function, B-44
HBSET intrinsic function, B-45
HDIM intrinsic function, B-40
HEIOR intrinsic function, B-46
hexadecimal constant, 2-24
hexadecimal constants, 2-33
actual parameters, 2-35
assignments, 2-34

hexadecimal format descriptor, 4-24
HIAND intrinsic function, B-43
HIEOR intrinsic function, B-52
HIOR intrinsic function, B-49
HMOD intrinsic function, B-57
HNOT intrinsic function, B-59
Hollerith, 8-5
case signi�cance, 2-1
constant, 2-24, 2-27
edit descriptor, 4-34
format, 10-14

HP1000 directive, 7-34
HP3000 16 directive, 7-38
HP FORTRAN 77, 1-1
HSHFTC intrinsic function, B-50
HSHFT intrinsic function, B-50
HSIGN intrinsic function, B-63
HTEST intrinsic function, B-36

I IABS intrinsic function, B-28
IAND intrinsic function, B-43
IBCLR intrinsic function, B-20, B-21, B-44
IBITS intrinsic function, B-20, B-44
IBSET intrinsic function, B-20, B-21, B-45
ICHAR intrinsic function, B-18, B-45
IDATE intrinsic subroutine, B-23
IDIM intrinsic function, B-40
IDINT intrinsic function, B-48
IDNINT intrinsic function, B-59
IEOR intrinsic function, B-46, B-52
IEOR intrisic function, B-18
IF directive, 7-41
IFIP WG 2.5 Numerical Software Group, C-2
IFIX intrinsic function, B-48

Index-16

IF statement, 3-84
arithmetic, 3-84
block, 3-87
logical, 3-86

IF-THEN statement, 3-87
IGNORE trap action, 9-5
IIABS intrinsic function, B-28
IIAND intrinsic function, B-43
IIBCLR intrinsic function, B-44
IIBITS intrinsic function, B-44
IIBSET intrinsic function, B-45
IIDIM intrinsic function, B-40
IIDNNT intrinsic function, B-59
IIEOR intrinsic function, B-46
IIOR intrinsic function, B-49
IIQNNT intrinsic function, B-59
IISHFTC intrinsic function, B-50
IISHFT intrinsic function, B-50
IISIGN intrinsic function, B-63
IIXOR intrinsic function, B-52
IMAG intrinsic function, B-46
IMAX0 intrinsic function, B-56
IMAX1 intrinsic function, B-56
IMIN0 intrinsic function, B-57
IMIN1 intrinsic function, B-57
IMOD intrinsic function, B-57
IMPLICIT NONE statement, 3-91
IMPLICIT statement, 3-90
allowed in block data subprogram, 3-21
default data type, 2-6
record �eld declaration, 3-149

implied DO loops, 3-53
DATA statement, 3-40
DATA statements, 3-56
input/output statements, 3-53
nesting, 3-54

INCLUDE directive, 7-43
nesting level, 7-43

include �les
nesting, 7-43

INCLUDE statement, 3-93
indexed sequential access
OPEN statement, 3-113
program, E-1
READ statement, 3-130

INDEX intrinsic function, B-18, B-47
INFO=
with FTNXL command, 6-2
with FTNXLGO command, 6-6
with FTNXLLK command, 6-4

INFO parameter,RUN command, 6-8
INFO parameter with the BUILD command, 6-3
ININT intrinsic function, B-59
INIT directive, 7-44
initial line, 1-4

Index-17

INITIALSIZE
OPEN statement, 3-113

INOT intrinsic function, B-59
input
formatted, 4-1, 4-2
list-directed, 4-44
unformatted, 4-42

input bytes remaining edit descriptor, 4-35
input/output, 4-1
list-directed, 4-44
namelist-directed, 4-52
unformatted, 4-42

input statements, 4-1
INQUIRE statement, 3-94
INTEGER*2
constant, 2-11
constant I su�x, 2-11
data type, 2-11
format, 10-4
statement, 3-99

INTEGER*4
constant, 2-13
constant J su�x, 2-13
data type, 2-13
format, 10-4
statement, 3-99

integer constant
I su�x, 2-11
J su�x, 2-13

INTEGER constant, 2-11, 2-13
INTEGER data type, 2-13
integer format descriptors, 4-14
integer overow condition, 2-11, 2-13
INTEGER statement, 3-99
internal function trap procedure, 9-6
interrupt handling
ON statement, 9-1

INT intrinsic function, B-17, B-48
intrinsic function, 2-6, B-1, B-3, B-28
ABS, B-28
ACOS, B-22, B-29
ACOSD, B-22, B-29
ACOSH, B-30
AIMAG, B-46
AIMAX0, B-56
AIMIN0, B-57
AINT, B-21, B-30
AJMAX0, B-56
AJMIN0, B-57
ALOG, B-55
ALOG10, B-56
AMAX0, B-56
AMAX1, B-56
AMIN0, B-57
AMIN1, B-57

Index-18

AMOD, B-57
ANINT, B-21, B-31
as actual argument, 3-102
ASIN, B-22, B-31
ASIND, B-22, B-32
ASINH, B-32
ATAN, B-22, B-33, B-34
ATAN2, B-22, B-33
ATAN2D, B-22, B-34
ATAND, B-22, B-34
ATAND2, B-34
ATANH, B-35
BADDRESS, B-22, B-35
BITEST, B-36
BJTEST, B-36
BTEST, B-20, B-21, B-36
CABS, B-18, B-28
CCOS, B-38
CDABS, B-28
CDCOS, B-38
CDEXP, B-43
CDLOG, B-55
CDSIN, B-63
CDSQRT, B-65
CEXP, B-43
CHAR, B-36
CLOG, B-55
CMPLX, B-17, B-37
CONJG, B-18, B-37
COS, B-22, B-38
COSD, B-22, B-38
COSH, B-39
CSIN, B-63
CSQRT, B-65
CTAN, B-65
DABS, B-28
DACOS, B-22, B-29
DACOSD, B-22, B-29
DACOSH, B-30
DASIN, B-22, B-31
DASIND, B-22, B-32
DASINH, B-32
DATAN, B-22, B-33, B-34
DATAN2, B-22, B-33
DATAN2D, B-22, B-34
DATAND, B-22
DATANH, B-35
DBLE, B-17, B-39
DBLEQ, B-39
DCMPLX, B-17, B-40
DCOS, B-22, B-38
DCOSD, B-22, B-38
DCOSH, B-39
DDIM, B-40
DDINT, B-30

Index-19

DEXP, B-43
DFLOAT, B-39
DIM, B-40
DIMAG, B-46
DINT, B-30
DLOG, B-55
DLOG10, B-56
DMAX1, B-56
DMIN1, B-57
DMOD, B-57
DNINT, B-31
DNUM, B-42
DPROD, B-42
DSIGN, B-63
DSIN, B-22, B-63
DSIND, B-22, B-64
DSINH, B-64
DTAN, B-22, B-65
DTAND, B-22, B-66
DTANH, B-66
EXP, B-43
FLOAT, B-17, B-62
generic name, B-2
HABS, B-28
HBCLR, B-44
HBITS, B-44
HBSET, B-45
HDIM, B-40
HEIOR, B-46
HIAND, B-43
HIEOR, B-52
HIOR, B-49
HMOD, B-57
HNOT, B-59
HSHFT, B-50
HSHFTC, B-50
HSIGN, B-63
HTEST, B-36
IABS, B-28
IAND, B-43
IBCLR, B-20, B-21, B-44
IBITS, B-20, B-44
IBSET, B-20, B-21, B-45
ICHAR, B-18, B-45
IDIM, B-40
IDINT, B-48
IDNINT, B-59
IEOR, B-18, B-46, B-52
IFIX, B-48
IIABS, B-28
IIAND, B-43
IIBCLR, B-44
IIBITS, B-44
IIBSET, B-45
IIDIM, B-40

Index-20

IIDNNT, B-59
IIEOR, B-46
IIOR, B-49
IIQNNT, B-59
IISHFT, B-50
IISHFTC, B-50
IISIGN, B-63
IIXOR, B-52
IMAG, B-46
IMAX0, B-56
IMAX1, B-56
IMIN0, B-57
IMIN1, B-57
IMOD, B-57
INDEX, B-18, B-47
ININT, B-59
INOT, B-59
INT, B-17, B-48
INUM, B-49
invoking, B-1
IOR, B-49
IQINT, B-48
IQNINT, B-59
ISHFT, B-18, B-50
ISHFTC, B-19, B-50
ISIGN, B-63
IXOR, B-18, B-46, B-52
IZEXT, B-22, B-52, B-67
JIABS, B-28
JIAND, B-43
JIBCLR, B-44
JIBITS, B-44
JIBSET, B-45
JIDIM, B-40
JIDINT, B-48
JIDNNT, B-59
JIEOR, B-46
JIFIX, B-48
JINT, B-48
JIOR, B-49
JIQINT, B-48
JIQNNT, B-59
JISHFT, B-50
JISHFTC, B-50
JISIGN, B-63
JIXOR, B-52
JMAX0, B-56
JMAX1, B-56
JMIN0, B-57
JMIN1, B-57
JMOD, B-57
JNINT, B-59
JNOT, B-59
JNUM, B-52
JZEXT, B-22, B-67

Index-21

LEN, B-53
LGE, B-18, B-53
LGT, B-18, B-54
LLE, B-18, B-54
LLT, B-18, B-55
LOG, B-55
LOG10, B-56
MAX, B-56
MAX0, B-56
MAX1, B-56
MIN, B-57
MIN0, B-57
MIN1, B-57
MOD, B-57
MVBITS, B-20, B-22
NINT, B-59
NOT, B-59
QABS, B-28
QACOS, B-29
QACOSD, B-29
QACOSH, B-30
QASIND, B-32
QASINH, B-32
QATAN, B-33, B-34
QATAN2, B-33
QATAN2D, B-34
QATANH, B-35
QCOS, B-38
QCOSD, B-38
QCOSH, B-39
QDIM, B-40
QEXP, B-43
QEXT, B-60
QEXTD, B-60
QINT, B-30
QLOG, B-55
QLOG10, B-56
QMAX1, B-56
QMOD, B-57
QNINT, B-31
QNUM, B-60
QPROD, B-61
QSIGN, B-63
QSIN, B-63
QSIND, B-64
QSINH, B-64
QSQRT, B-65
QTAN, B-65
QTAND, B-66
QTANH, B-66
RAN, B-23
REAL, B-17, B-62
RNUM, B-62
SECNDS, B-24
SIGN, B-63

Index-22

SIN, B-22, B-63
SIND, B-64
SINH, B-64
SIZEOF, B-64
SNGL, B-62
SNGLQ, B-62
speci�c name, B-2
SQRT, B-65
TAn, B-65
TAN, B-22, B-65
TAND, B-22, B-66
TANH, B-66
ZABS, B-28
ZCOS, B-38
ZEXP, B-43
ZEXT, B-22, B-67
ZSIN, B-63
ZSQRT, B-65
ZTAN, B-65

INTRINSIC statement, 3-102
not allowed in block data subprogram, 3-21

intrinsic subroutine
DATE, B-23
EXIT, B-23
IDATE, B-23
MVBITS, B-20, B-58
TIME, B-25

INUM intrinsic function, B-49
IOR intrinsic function, B-49
I/O run-time errors, 9-7
IOSTAT speci�er
ENDFILE statement, 3-63
INQUIRE statement, 3-98
OPEN statement, 3-112
READ statement, 3-130
REWIND statement, 3-138
REWRITE statement, 3-141
WRITE statement, 3-168

IQINT intrinsic function, B-48
IQNINT intrinsic function, B-59
ISAM, E-1
OPEN statement, 3-113
READ statement, 3-130

ISHFTC intrinsic function, B-19, B-50
ISHFT intrinsic function, B-18, B-50
ISIGN intrinsic function, B-63
I su�x with integer constant, 2-11
IXOR intrinsic function, B-18, B-46, B-52
IZEXT intrinsic function, B-22, B-52, B-67

Index-23

J JIABS intrinsic function, B-28
JIAND intrinsic function, B-43
JIBCLR intrinsic function, B-44
JIBITS intrinsic function, B-44
JIBSET intrinsic function, B-45
JIDIM intrinsic function, B-40
JIDINT intrinsic function, B-48
JIDNNT intrinsic function, B-59
JIEOR intrinsic function, B-46
JIFIX intrinsic function, B-48
JINT intrinsic function, B-48
JIOR intrinsic function, B-49
JIQINT intrinsic function, B-48
JIQNNT intrinsic function, B-59
JISHFTC intrinsic function, B-50
JISHFT intrinsic function, B-50
JISIGN intrinsic function, B-63
JIXOR intrinsic function, B-52
JMAX0 intrinsic function, B-56
JMAX1 intrinsic function, B-56
JMIN0 intrinsic function, B-57
JMIN1 intrinsic function, B-57
JMOD intrinsic function, B-57
JNINT intrinsic function, B-59
JNOT intrinsic function, B-59
JNUM intrinsic function, B-52
J su�x with integer constant, 2-13
JZEXT intrinsic function, B-22, B-67

K KEYED
INQUIRE statement, 3-98

KEYID
READ statement, 3-130

keywords, 2-4

L labeled DO loops, 3-49, 3-50
language elements, 2-1
length of symbolic names, 2-5
LEN intrinsic function, B-53
.LE. operator, 2-3
LGE intrinsic function, B-18, B-53
LGT intrinsic function, B-18, B-54
line, 1-4
LINES directive, 7-45
link editor, 6-1, 7-15, 7-16
linker, 2-6
LIST CODE directive, 7-47
list-directed input, 4-44
list-directed output, 4-48
LIST directive, 7-46
list�le
with FTNXL command, 6-2
with FTNXLGO command, 6-6
with FTNXLLK command, 6-4

Index-24

listing, 6-8
listing format, 6-10
LITERAL ALIAS directive, 7-48
literal edit descriptors, 4-34
LLE intrinsic function, B-18, B-54
LLT intrinsic function, B-18, B-55
LOCALITY directive, 7-49
LOG10 intrinsic function, B-56
LOGICAL*1
constant, 2-10
data type, 2-10
format, 10-3
statement, 3-103

LOGICAL*1 statement, 3-104
LOGICAL*2
constant, 2-21
data type, 2-21
format, 10-13
statement, 3-103

LOGICAL*2 statement, 3-104
LOGICAL*4
constant, 2-22
data type, 2-22
format, 10-14
statement, 3-103

LOGICAL*4 statement, 3-104
logical assignment statement, 3-16
examples, 3-16

logical expression, 2-56
logical format descriptor, 4-22
logical IF statement, 3-86
logicals, 8-3
LOGICAL statement, 3-103
LOG intrinsic function, B-55
LONG directive, 7-50
loops, 3-48
lowercase, 2-1, 2-5
IMPLICIT statement, 3-91

LOWERCASE directive, 7-51, 7-92
lower dimension bound, 2-37
.LT. operator, 2-3

M main program, 1-4
de�ned by symbolic name, 2-5

MAP statement, 3-151
allowed in block data subprogram, 3-21

math subroutines, B-1
MAX0 intrinsic function, B-56
MAX1 intrinsic function, B-56
MAX intrinsic function, B-56
MAXREC
INQUIRE statement, 3-98
OPEN statement, 3-113

memory, data format in, 10-1

Index-25

Military Standard De�nition, C-2
MIL-STD-1753 standard extension, 1-1
bit masking operations, 2-58
BTEST bit test function, B-21
DO-WHILE statement, 3-55
END DO, 2-4
END DO statement, 3-51, 3-55
hexadecimal constants, 3-38
HP FORTRAN 77, C-2
IBCLR bit clear function, B-21
IBITS bit extraction function, B-20
IBSET bit set function, B-21
IMPLICIT NONE, 3-91
INCLUDE, 2-4
INCLUDE statement, 3-93
ISHFTC, B-19
MVBITS bit move subroutine, B-20
NONE, 2-4
octal constants, 3-38
O form of octal constant, 2-30
WHILE, 2-4
Z form of hexadecimal constant, 2-33

MIN0 intrinsic function, B-57
MIN1 intrinsic function, B-57
MIN intrinsic function, B-57
MIXED FORMATS directive, 7-52
MOD intrinsic function, B-57
monetary data �eld, 4-29
monetary format descriptor, 4-29
MPE/iX command
combining steps with one, 6-1

MPE/iX object �le, 6-1
MPE/iX operating system, 6-1
multi-dimensioned equivalence, 3-70
multipass compiler, 1-2
MVBITS
bit move subroutine, B-20
intrinsic function, B-20, B-22

MVBITS intrinsic subroutine, B-58
Mw.d format descriptor, 4-29

N NAME
OPEN statement, 3-113

named constants
de�ned by symbolic name, 2-5
de�nition, 3-117

namelist
comparison to formatted I/O, 4-52
group-name, 3-106
group name, 4-52
namelist-directed input, 4-53
namelist-directed output, 4-58
namelist-directed READ, 4-53
namelist-directed WRITE, 4-58

Index-26

speci�er, 4-52
namelist group-name
de�ned by symbolic name, 2-5

NAMELIST group-name, 3-166
namelist group name, 3-140
NAMELIST statement, 3-106
NaN (not-a-number), 10-5, 10-6, 10-10
.NE. operator, 2-3
.NEQV. operator, 2-3
nesting
DO loops, 3-56
format and edit descriptors, 4-10, 4-40
IF block, 3-88
IF statement, 3-88
implied DO loops, 3-54
include �les, 7-43
INCLUDE statements, 3-93

nesting level
INCLUDE directives, 7-43

$NEWPASS,with FTNXL command, 6-2
NINT intrinsic function, B-59
NLS SOURCE directive, 7-56
NODE
INQUIRE statement, 3-98
OPEN statement, 3-113

nonexecutable statements, listed, 3-2
non-FORTRAN program units, 8-1
non-null string, 2-23
nonprintable characters
in character string, 2-23

normalized, 10-5
NOSPANBLOCKS
OPEN statement, 3-113

NOSTANDARD compiler directive, 4-20
NOSTANDARD directive, 7-57
NOSTANDARD intrinsic functions
RAN, B-23
SECNDS, B-24

NOSTANDARD intrinsic subroutines
DATE, B-23
EXIT, B-23
IDATE, B-23
TIME, B-25

not-a-number (NaN), 10-5, 10-6, 10-10
NOT intrinsic function, B-59
.NOT. operator, 2-3
$NULL, 6-2, 6-4, 6-6
null string, 2-23
numeration data �eld, 4-30
numeration format descriptor, 4-30
Numerical Software Group
IFIP WG 2.5, C-2

numeric format descriptors, 4-13
Nw.d format descriptor, 4-30

Index-27

O object �le
creating a new, 6-2
creating a new with the BUILD command, 6-3
creating a new with the FTNXL command, 6-2
creating a new with the SAVE command, 6-2
description, 6-1

object program, relocatable, 1-2
octal constants, 2-24, 2-30
actual parameters, 2-31
assignments, 2-30

octal format descriptors, 4-23
O form of octal constant, 2-30
$OLDPASS, 6-6
$OLDPASS,with FTNXL command, 6-2
one-dimensional array, 2-36
ONETRIP directive, 7-60
ON statement, 3-107
OPEN statement, 3-109, 5-1
operands
mixed, 2-51

operating system, 6-1
operator
addition (unary plus), 2-47
character, 2-53
concatenation, 2-3, 2-53
division, 2-47
equal, 2-3, 2-54
exclusive OR, 2-3
exponentiation, 2-3, 2-47
greater than, 2-3, 2-54
greater than or equal, 2-3, 2-54
less than, 2-3, 2-54
less than or equal, 2-3
logical AND, 2-3
logical equivalence, 2-3
logical false, 2-3
logical negation, 2-3
logical nonequivalence, 2-3
logical OR, 2-3
logical true, 2-3
multiplication, 2-47
not equal, 2-3, 2-54
** operator, 2-3, 2-47
* operator, 2-47
+ operator, 2-47
- operator, 2-47
// operator, 2-3
/ operator, 2-47
precedence, 2-48
relational, 2-54
subtraction (unary minus), 2-47

OPTIMIZE directive, 7-61
OPTION, keyword, 7-1
OR
exclusive, B-18

Index-28

order of statements, 3-7
ORGANIZATION
INQUIRE statement, 3-98
OPEN statement, 3-113

.OR. operator, 2-3
output, 4-1
formatted, 4-4, 4-43
list-directed, 4-48
statements, 4-1
unformatted, 4-43

overow
IF statement, 3-84

overow condition
integer, 2-11, 2-13

overow conditions, 10-2

P PACKED ARRAY OF CHAR (Pascal), 8-1
PAC (Pascal PACKED ARRAY OF CHAR), 8-1
PAGE directive, 7-72
page eject
control-L, 7-72

PAGEWIDTH directive, 7-73
parameter passing methods, 8-1, 8-4
PARAMETER statement, 3-117
allowed in block data subprogram, 3-21
alternate version, 3-120

parentheses
arithmetic expressions, 2-48

PARM parameter and the RUN command, 6-7
Pascal
and FORTRAN 77 data types,table, 8-6
data types, 8-6
interfacing to, 8-6

pass by reference
description, 8-1

pass by value, 8-1
PAUSE statement, 3-121
plus sign edit descriptors, 4-34
position edit descriptor, 4-35
POSTPEND Directive, 7-74
precision
double. See REAL*8
quad. See REAL*16
single. See REAL*4

prede�ned symbolic names, 2-6
PRINT statement, 3-122
formatted output, 4-4
list-directed output, 4-48
standard output unit, 4-5

procedures
FNUM, 5-2
FSET, 5-3
UNITCONTROL, 5-4

prog�le

Index-29

with FTNXLLK command, 6-4
program �le
creating a new, 6-4
execution, 6-7
MPE/iX operating system, 6-1

program head, 7-2
PROGRAM statement, 3-124
program termination
STOP statement, 3-146

program unit, 1-4
main, 1-2
statements, listed, 3-3

program units
non-FORTRAN, 8-1

Q QABS intrinsic function, B-28
QACOSD intrinsic function, B-29
QACOSH intrinsic function, B-30
QACOS intrinsic function, B-29
QASIND intrinsic function, B-32
QASINH intrinsic function, B-32
QATAN2D intrinsic function, B-34
QATAN2 intrinsic function, B-33
QATANH intrinsic function, B-35
QATAN intrinsic function, B-33, B-34
QCOSD intrinsic function, B-38
QCOSH intrinsic function, B-39
QCOS intrinsic function, B-38
QDIM intrinsic function, B-40
QEXP intrinsic function, B-43
QEXTD intrinsic function, B-60
QEXT intrinsic function, B-60
QINT intrinsic function, B-30
QLOG10 intrinsic function, B-56
QLOG intrinsic function, B-55
QMAX1 intrinsic function, B-56
QMIN1 intrinsic function, B-57
QMOD intrinsic function, B-57
QNINT intrinsic function, B-31
QNUM intrinsic function, B-60
QPROD intrinsic function, B-61
QSIGN intrinsic function, B-63
QSIND intrinsic function, B-64
QSINH intrinsic function, B-64
QSIN intrinsic function, B-63
QSQRT intrinsic function, B-65
QTAND intrinsic function, B-66
QTANH intrinsic function, B-66
QTAN intrinsic function, B-65
quad precision. See REAL*16
quotation mark
character constant, 2-23
double. See quotation mark
format speci�cations, 4-9

Index-30

FORMAT statements, 3-77
single. See apostrophe
within character constant, 2-23

quotation mark edit descriptor, 4-34

R RANGE directive, 7-75
GOTO statement assignment labels, 3-82

ranges of DO loops, 3-56
RAN intrinsic function, B-23
READ from �le statement, 3-128
READ from standard input unit statement, 3-126
READ statement, 3-126
formatted input, 4-1
list-directed input, 4-44
standard input unit, 4-2
unformatted input, 4-42

REAL*16
constant, 2-18
data type, 2-18
format, 10-8
statement, 3-132, 3-133

REAL*4
constant, 2-15
data type, 2-15
format, 10-5
statement, 3-132, 3-133

REAL*8
constant, 2-17
data type, 2-17
format, 10-6
statement, 3-132, 3-133

REAL constant, 2-15
REAL data type, 2-15
six-byte, C-10

real format descriptors, 4-15
REAL intrinsic function, B-17, B-62
REAL statement, 3-132
records, 2-43, 2-44
RECORDSIZE
OPEN statement, 3-113

RECORD statement, 3-135
allowed in block data subprogram, 3-21

record terminator edit descriptor, 4-36
RECORDTYPE
INQUIRE statement, 3-98
OPEN statement, 3-113

%REF, ALIAS directive, 7-8
%REF, built-in function, 8-9
reference
pass by, 8-1

relational
operators, 2-54

relational expressions, 2-54
arithmetic, 2-54

Index-31

character, 2-55
relocatable binary object program, 1-2
repeat speci�cation
descriptors, 3-76
format descriptors, 4-10, 4-40

RETURN statement, 3-136
REWIND statement, 3-138
REWRITE statement, 3-140
RLFILE directive, 7-76
RLINIT directive, 7-77
RNUM intrinsic function, B-62
row-major storage, 8-3
RUN command,program �le execution, 6-7
running, 6-1
running the compiler, 6-7
run-time errors, 9-1, A-73

S sample listing
FORTRAN source �le, 1-2

SAVE LOCALS directive, 7-78
SAVE statement, 3-143
allowed in block data subprogram, 3-21

scale factor edit descriptor, 4-38
scratch �le
OPEN statement, 3-113

SECNDS intrinsic function, B-24
SEGMENT directive, 7-79
SET directive, 7-80
SHORT directive, 7-81
SIGN intrinsic function, B-63
simple variables, 2-36
de�ned by symbolic name, 2-5
examples, 2-36

SIND intrinsic function, B-64
single precision. See REAL*4
single quotation mark. See apostrophe
SINH intrinsic function, B-64
SIN intrinsic function, B-22, B-63
six-byte REAL data type, C-10
SIZEOF intrinsic function, B-64
SNGL intrinsic function, B-62
SNGLQ intrinsic function, B-62
source code, 6-1
source �le, 1-2
source �le structure, 1-6
special characters, 2-1
special symbols, 2-3
speci�cation statements, listed, 3-3
SQRT intrinsic function, B-65
Standard FORTRAN (X3.9-1966), 1-1
standard input, 4-44
standard input unit
READ statement, 3-126, 4-2

STANDARD LEVEL directive, 7-82

Index-32

standard output, 4-48
standard output unit
PRINT statement, 3-122, 4-5

statement function statement, 3-144
statement keywords, 2-4
statements, 3-1
ACCEPT, 3-8
aggregate assignment, 3-18
arithmetic assignment, 3-12
ASSIGN, 3-10
assignment, 3-11
BACKSPACE, 3-19
BLOCK DATA, 3-21
BYTE, 3-23
CALL, 3-24
CHARACTER, 3-26
character assignment, 3-17
classi�cation of, 3-2
CLOSE, 3-29
COMMON, 3-32
COMPLEX, 3-34
COMPLEX*16, 3-34
COMPLEX*8, 3-34
CONTINUE, 3-36
control, 3-3
DATA, 3-37
DECODE, 3-42
DELETE, 3-44
DIMENSION, 3-46
DO, 3-48
DOUBLE COMPLEX, 3-34
DOUBLE PRECISION, 3-132
ENCODE, 3-59
END, 3-61
END DO, 3-57
ENDFILE, 3-63
ENDIF, 3-65
END MAP, 3-151
END STRUCTURE, 3-147
END UNION, 3-150
ENTRY, 3-66
EQUIVALENCE, 3-69
executable, 3-2
EXTERNAL, 3-71
FORMAT, 3-72
format of, 3-1
FUNCTION, 3-78
GOTO, 3-81
IF, 3-84
IMPLICIT, 3-90
IMPLICIT NONE, 3-91
INCLUDE, 3-93
initialization, 3-2
input/output, 3-3, 4-1
INQUIRE, 3-94

Index-33

INTEGER, 3-99
INTEGER*2, 3-99
INTEGER*4, 3-99
INTRINSIC, 3-102
LOGICAL, 3-103
LOGICAL*1, 3-103
LOGICAL*2, 3-103
LOGICAL*4, 3-103
logical assignment, 3-16
MAP, 3-151
NAMELIST, 3-106
nonexecutable, 3-2
ON, 3-107
OPEN, 3-109, 5-1
order of, 3-7
PARAMETER, 3-117
PAUSE, 3-121
PRINT, 3-122
PROGRAM, 3-124
program halt, 3-3
program unit, 3-3
READ, 3-126
REAL, 3-132
REAL*16, 3-132
REAL*4, 3-132
REAL*8, 3-132
RECORD, 3-135
RETURN, 3-136
REWIND, 3-138
REWRITE, 3-140
SAVE, 3-143
speci�cation, 3-3
statement function, 3-144
STOP, 3-146
STRUCTURE, 3-147
SUBROUTINE, 3-153
SYSTEM INTRINSIC, 3-154
TYPE, 3-159
UNION, 3-150
UNLOCK, 3-161
value assignment, 3-2
VIRTUAL, 3-163
VOLATILE, 3-164
WRITE, 3-166

STATUS speci�er
OPEN statement, 3-113

$STDIN, 6-2, 6-4, 6-6
$STDLIST, 6-2, 6-4, 6-6
STOP statement, 3-146
storage
array element, 2-40

string
non-null, 2-23
null, 2-23

STRING MOVE

Index-34

HP1000 directive option, 7-37
structure, 2-43
structures, 2-43
%FILL, 3-149
unnamed �eld, 3-149

STRUCTURE statement, 3-147
allowed in block data subprogram, 3-21

subprogram, 1-4
subprogram name
EXTERNAL statement, 3-71

subprogram unit, 1-2
subroutine
de�ned by symbolic name, 2-5
math, B-1

SUBROUTINE statement, 3-153
subroutine subprogram
SUBROUTINE statement, 3-153

subscripted variables, 2-36
subscripts, 2-39
substrings, 2-42
SUBTITLE directive, 7-83
symbolic debugging, 7-84
symbolic names, 2-4, 2-5
array, 2-36
length, 2-5
prede�ned, 2-6
used as keywords, 2-6
user-de�ned, 2-6
variable, 2-36

symbols, special, 2-3
symbol table, 7-85, 7-89
SYMDEBUG directive, 7-84
SYMTABLE directive, 7-85
SYSINTR directive, 7-87
SYSTEM INTRINSIC directive, 7-88
system intrinsics, 7-87
SYSTEM INTRINSIC statement, 3-154
system trap procedure, 9-5

T tab character, 2-1
tab edit descriptors, 4-36
TABLES directive, 7-89
TAND intrinsic function, B-22, B-66
TANH intrinsic function, B-66
TAN intrinsic function, B-22, B-65
terms, 1-4
text�le
with FTNXL command, 6-2
with FTNXLGO command, 6-6
with FTNXLLK command, 6-4

TIME intrinsic subroutine, B-25
TITLE directive, 7-91
trap action
ABORT, 9-5

Index-35

IGNORE, 9-5
trap actions, 9-5
trap exiting, 9-6
trapping run-time errors, 9-1
trap procedure
arithmetic, 9-5
basic external function, 9-6
Control-Y, 9-6
external function, 9-6
internal function, 9-6
system, 9-5
user interrupt, 9-6

trigonometric functions, B-18
trip count
DO loop execution, 3-52

.TRUE. operator, 2-3
two-dimensional array, 2-36
two-way decisions, 3-86
TYPE
OPEN statement, 3-113

type association
variable name, 3-90

typeless constant, 2-24
TYPE statement, 3-159
type statements
allowed in block data subprogram, 3-21
default data type, 2-6

U unary operator, 2-47
unconditional GOTO statement, 3-81
underbars, 7-74
underscore character, 2-5
unformatted input, 4-42
unformatted output, 4-43
uninitialized variables, OPTIMIZE directive, 7-65
UNION statement, 3-150
allowed in block data subprogram, 3-21

UNITCONTROL procedure, 5-4
unit number
OPEN statement, 3-109

UNIT speci�er
ENDFILE statement, 3-63
INQUIRE statement, 3-98
OPEN statement, 3-112
READ statement, 3-130
REWRITE statement, 3-141
WRITE statement, 3-168

UNLOCK statement, 3-161
unnamed �eld in structures, 3-149
uppercase, 2-5
IMPLICIT statement, 3-91

UPPERCASE directive, 7-51, 7-92
upper dimension bound, 2-37
asterisk, 2-37

Index-36

USE
INQUIRE statement, 3-98
OPEN statement, 3-113

user interrupt trap procedure, 9-6
USEROPEN
OPEN statement, 3-113

usl�le
with FTNXL command, 6-2

V %VAL, ALIAS directive, 7-8
%VAL, built-in function, 8-9
value assignment statements, 3-2
value,pass by, 8-1
variable format descriptor, 3-72
variable format descriptors, 4-26
variable name
type association, 3-90

variables, 2-36
VERSION directive, 7-93
VIRTUAL statement, 3-163
vocabulary
FORTRAN, 1-2

VOLATILE statement, 3-164

W warning messages, A-1
WARNINGS directive, 7-94
WRITE statement, 3-166
formatted output, 4-4, 4-43
list-directed output, 4-48
unformatted output, 4-43

X X3.9-1966, Standard FORTRAN, 1-1
X3.9-1978, MIL-STD-1753, 1-1
X form of hexadecimal constant, 2-33
.XOR. operator, 2-3
XREF directive, 7-95

Z ZABS intrinsic function, B-28
ZBUF
READ statement, 3-130
WRITE statement, 3-168

ZCOS intrinsic function, B-38
ZEXP intrinsic function, B-43
ZEXT intrinsic function, B-22, B-67
Z form of hexadecimal constant, 2-33
ZLEN
READ statement, 3-130
WRITE statement, 3-168

ZSIN intrinsic function, B-63
ZSQRT intrinsic function, B-65

ZTAN intrinsic function, B-65

Index-37

	Contents
	Introduction to HP FORTRAN 77
	The FORTRAN 77 Compiler
	Vocabulary
	FORTRAN Terms
	Source File Structure

	Language Elements
	Character Set
	Special Symbols
	Keywords
	Comments
	Symbolic Names
	Data Types
	Variables
	Records
	Expressions

	FORTRAN Statements
	Statement Format
	Classification
	Order of Statements
	ACCEPT Statement
	ASSIGN Statement
	Assignment Statement
	BACKSPACE Statement
	BLOCK DATA
	BYTE Statement
	CALL Statement
	CHARACTER
	CLOSE Statement
	COMMON Statement
	COMPLEX Statement
	COMPLEX*8
	COMPLEX*16
	CONTINUE
	DATA Statement
	DECODE Statement
	DELETE Statement
	DIMENSION
	DO Statement
	DOUBLE COMPLEX
	DOUBLE PRECISION
	ELSE Statement
	ELSE IF Statement
	ENCODE Statement
	END Statement
	END DO Statement
	END MAP Statement
	END STRUCTURE
	END UNION
	ENDFILE Statement
	ENDIF Statement
	ENTRY Statement
	EQUIVALENCE
	EXTERNAL
	FORMAT Statement
	FUNCTION
	GOTO Statement
	IF Statement
	IMPLICIT Statement
	INCLUDE Statement
	INQUIRE Statement
	INTEGER Statement
	INTEGER*2
	INTEGER*4
	INTRINSIC
	LOGICAL Statement
	LOGICAL*1
	MAP Statement
	NAMELIST
	ON Statement
	OPEN Statement
	PARAMETER
	Alternate PARAMETER
	PAUSE Statement
	PRINT Statement
	PROGRAM
	READ Statement
	REAL Statement
	REAL*4 Statement
	REAL*8 Statement
	REAL*16 Statement
	RECORD Statement
	RETURN Statement
	REWIND Statement
	REWRITE Statement
	SAVE Statement
	Statement Function
	STOP Statement
	STRUCTURE
	SUBROUTINE
	SYSTEM INTRINSIC
	TYPE Statement
	UNION Statement
	UNLOCK Statement
	VIRTUAL Statement
	VOLATILE
	WRITE Statement

	Input/Output
	Formatted
	Format Specifications
	Format Descriptors
	Edit Descriptors
	Repeat Specification
	Nesting of Format
	Processing a Format
	Unformatted Input/Output
	List-Directed
	Namelist-Directed

	File Handling
	The OPEN Statement
	The FNUM Procedure
	The FSET Procedure
	The UNITCONTROL
	Automatically Opening Files

	Compiling and Running HP FORTRAN 77/iX Programs
	The FTNXL Command
	The FTNXLLK Command
	The FTNXLGO Command
	Running the Compiler
	Passing Run Command Parameters
	Listing Format

	Compiler Directives
	Effects of the Directives
	ALIAS Directive
	ALIGNMENT
	ANSI Directive
	ASSEMBLY Directive
	CHECK ACTUAL PARM
	CHECK FORMAL PARM
	CHECK OVERFLOW
	CODE Directive
	CODE OFFSETS
	COPYRIGHT
	CROSSREF Directive
	DEBUG Directive
	ELSE Directive
	ENDIF Directive
	EXTERNAL ALIAS
	FTN3000 66
	HP1000 Directive
	HP3000 16 Directive
	IF Directive
	INCLUDE Directive
	INIT Directive
	LINES Directive
	LIST Directive
	LIST CODE
	LITERAL ALIAS
	LOCALITY Directive
	LONG Directive
	LOWERCASE
	MIXED FORMATS
	NLS Directive
	NLS SOURCE
	NOSTANDARD
	ONETRIP Directive
	OPTIMIZE Directive
	PAGE Directive
	PAGEWIDTH
	POSTPEND
	RANGE Directive
	RLFILE Directive
	RLINIT Directive
	SAVE LOCALS
	SEGMENT Directive
	SET Directive
	SHORT Directive
	STANDARD LEVEL
	SUBTITLE Directive
	SYMDEBUG
	SYMTABLE Directive
	SYSINTR Directive
	SYSTEM INTRINSIC
	TABLES Directive
	TITLE Directive
	UPPERCASE
	VERSION Directive
	WARNINGS
	XREF Directive

	Interfacing with Non-FORTRAN Subprograms
	Parameter Passing
	Use of COMMON and Labels
	Files
	FORTRAN and C
	FORTRAN and Pascal Data Types
	Condition Codes
	Built-In Functions

	Managing Run-Time Errors and Exceptions
	Trapping Run-Time Errors
	I/O Run-Time Errors

	Data Format in Memory
	Overflow Conditions
	BYTE (LOGICAL*1) Format
	INTEGER*2 Format
	INTEGER*4 Format
	REAL*4 Format
	REAL*8 Format
	REAL*16 Format
	COMPLEX*8 Format
	COMPLEX*16
	LOGICAL*2 Format
	LOGICAL*4 Format
	Character Format
	Hollerith Format

	Diagnostic Messages
	Compile-Time Diagnostics
	Run-Time Errors
	Compile-Time Errors
	Compile-Time Warnings
	Run-Time Errors

	Intrinsic Functions and Math Subroutines
	Invoking an Intrinsic Function
	Generic and Specific Function Names
	Summary of the Intrinsic Functions
	FORTRAN Intrinsic Functions
	Function Descriptions

	FORTRAN Comparisons
	Extensions to the Standard
	Comparison of HPFORTRAN 77 and FORTRAN 66/V
	Comparison of HP FORTRAN 77 and FORTRAN 7X

	HP Character Set
	Indexed Sequential Access Program
	Index

