DCE for the HP 3000

HP 3000 MPE/iX Computer Systems
Edition 2

(D Preateis

Manufacturing Part Number: B3821-90002
E1095

U.S.A. October 1995

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing
or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1995 by Hewlett-Packard Company.

Contents

1. General Information

Version Identification. 12
DCE/3000 Components and Files e e e 13
Domestic and International Version 17
Configuration and Diagnostic TOOIS 18
Release Limitations e e 19
Limitations of OSF DCE 1.0.2 e e e e e e e e e 19
Unsupported Configurations 19
Interoperability of the Domestic and International Versions. 20
Kerberos Authentication Protocol Compatibility 20
Security for DCE USEr ACCOUNTSottt et e e e e e e e e e e 20
DCE/3000 versus DCE/9000: Differences. oottt e e 21
File Naming Convention. e e e e e 21
Managing DCE DaBmMONS ottt ettt e e e et e e e e 21
Security and Remote Login Utilities e e e 21
Release DOCUMENTSo e e e e e 22

2. Installing DCE/3000 Software

Hardware and Software ReqUIremMeENtS e 23
Distribution Media.o 24
Preinstallation Planning e 25

Determining Cell BoUuNdaries. 25

Intercell COmMMUNICALIONS oot e e e e 25
Accounting Structure Change 26
Checking the System State 27
INStallatioN 28

3. Configuring DCE Cells

Using the DCE Configuration Tool e e 30
Using the DCE Configuration OptionS e e 31
Configuringan Initial Cell e e 31
Configuring @ DTS SeIVEr 33
Configuring a DCE Client (Client-Only System) i 36
Removing or Reconfiguring a Client e e e e 37
Removing or Reconfiguring @ Server e 39

4. Programming Notes

Threads ArChitectUre. e e 42
Threads 0N MPE/iX. e e e 42
Process Management and Threads e 42
Development, Debugging, and Application Execution of Threads. 43

BreaKpOiNtS.. e 43
COMIMIANAS . . . i 44
Environmental Variables e 44
Limitations e e 45
Building DCE Programst e e e e e e 46

Contents

Header Fileso 46
Compiler Flagso 46
Unresolved EXternals 46
MPE/iX Makefile EXample e 47
HP-UX Makefile EXample 49

5. Programming with Kernel Threads

Threads Synchronization and Communication 52
Mutexes (Mutual Exclusion Objects). 52
Condition Variables e 52
JoIN FaCilityo e 52

Threads Scheduling 53

Writing Threaded Applications. e 54

Writing Thread-Safe Code. e e e e 56

Reentrant INterfaces 57

SEAIO INTEr aCeS. . . .o 58

Debugging Threaded Applications i e e e e e 59

Process Management ComMmMandsottt et e 60

Process Management INTriNSICSot 62

Changes t0 AIF ROULINES.ttt e e e e e e e e e e e 64

Input Reference Parameter Protection for INtrinsics. i, 66

File Access From Threads e e 68

GlanNCEX L .o e 69

XL PUB. Y S, L 70

PTHREAD INTriNSICSottt e e e e e e 71

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figures

DCE Main MeNU e e 30
DCE Configuration Menu. 31
Initial Cell Configuration ettt e 32
Reconfiguring QUESTION 32

Figure 3-5. Entering Information e 32
Figure 3-6. MUltiple LANS. 33
Figure 3-7. Name of LAN e e e ettt 33
Figure 3-8. Additional Server Configuration e 34
Figure 3-9. DTS Configuration MeNU e et ettt et e 34
Figure 3-10. DTS Time Provider MenuU. e 35
Figure 3-11. Hostname QUESTION. et ettt ettt 35
Figure 3-12. Security Client 36
Figure 3-13. Add CDS Client. e e et e ettt 37
Figure 3-14. Using Multiple LANS QUESTIONo e 37
Figure 3-15. Continue or EXit e et 37
Figure 3-16. Unconfigured NOE 38
Figure 3-17. CoNtiNUANCE. ettt 38
Figure 3-18. RemMOVE MESSA0E o ottt et e e e e e 38
Figure 3-19. REMOVE MESSA0E o e e e e 39

Figures

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 2-1.
Table 5-1.

Tables

CDS COmMPONENTS . .ot e e e e 13
DTS COmMPONENTS 13
Security COmMpPONENtS 14
RPC COomMPONENTS e 15
Miscellaneous ComMPONENTSt 16
DCE Program Name COmMPAariSONSottt ettt e 21
DCE/3000 File STruCture e e e 26
Thread-Safe XL.PUB.SYS Modules. 70

Tables

Preface

This manual describes the DCE for the HP 3000, it is based on OSF
DCE version 1.0.2 source code.

This manual is organized into the following chapters:

Chapter 1, “General Information,” provides information on version
identification and components and limitations.

Chapter 2, “Installing DCE/3000 Software,” provides hardware and
software requirements, media and preinstallation planning.

Chapter 3, “Configuring DCE Cells,” provides general information on
using the DCE configurator tool and options.

Chapter 4, “Programming Notes,” the section provides the architecture
of threads on MPE/iX as well as building DCE programs.

Chapter 5, “Programming with Kernel Threads,” provides basic thread
creation and management routines,

10

General Information

This version of DCE/3000 (version A.01.02) is based on OSF DCE version 1.0.2 source
code. It provides the following OSF components for the core services:

< Remote Procedure Calls (RPC) — support the development of distributed
applications by making requests to remotely networked machines as if they were
local. RPCs also implement network protocols used by clients and servers to
communicate with each other.

< Kernel Threads — supports the interfaces defined in Draft 4 of the POSIX 1003.4a
specification, with some exceptions as stated in this document.

« Cell Directory Service (CDS) — manages a database of information about the
resources in a group of machines called a DCE cell. The database consists of the
names of resources and associated attributes.

< Distributed Time Service (DTS) — provides synchronized time for the computers
in a DCE cell.

e DCE Security — provides secure communications through the use of services such
as authentication, which guarantees the identity of users, and authorization, which
keeps track of user privileges.

In the DCE/3000 version A.01.12, the DCE application library is provided as both an
archive library (libdce.g and an executable library (DCEXL.HPDCE.SY$. The concept of an
executable library is like the shared library on HP-UX. If you use the archive library,
each application binary will contain its own copy of the DCE routines that it calls
directly or indirectly. If you use shared library, all DCE applications can share the single
copy of the DCEXL on a system.

Chapter 1

11

General Information
Version ldentification

Version ldentification

Version information for the individual DCE/3000 components can be obtained by
running the Version utility against the DCE program. You will find the product version
(B3821AA A.01.02 for the domestic version, or B3822AA A.01.02 for the international
version) and the program version control information at the beginning of the Version
output. For example, the following is the output from the Version utility for an RPCD

program:

:version RPCD.HPDCE.SYS
VERSION B.79.01 Copyright (C) Hewlett-Packard 1987.
All Rights Reserved.

RPCD.DCEPROGS.PTHDCE

SOM #1

$Header: nrt0.s,v 1.12 87/06/08 09:36:52 cary Exp $
B3821AA A.01.02 RPCD-001
LIBPTHD1.0.2-001

DCEmpesrc-003

LIBNCK1.0.2-005

LIBIDL1.0.2-001
ERRNO_WRAPPERS-000
DCEsys802addr-003

DCEioctl-003

LIBSEC1.0.2-002

DCEsignals-001
B0508000/SSICSOCN/$Revision: 1.1 $
[IND]@ (#)gethost: AOO05000

MAX STACK SIZE: 786432

MAX HEAP SIZE: 40960000

CAPABILITIES: BA,IA,PM,MR,DS,PH

UNSAT PROC NAME:

ENTRY NAME:

LIBRARY SEARCH LIST: othdxl.threads.sys envxl.hpdce.sys

12

Chapter 1

Table 1-1

General Information
DCE/3000 Components and Files

DCE/3000 Components and Files

The DCE/3000 components, their corresponding files, the files size (in sectors), and a
description of the files are listed in the following tables, Table 1-1 shows the CDS

components.

CDS Components

Filename Sector Size Description
cdsd.pub.sys 32 command file
/usr/bin/cdsd 16 shell script
cdsd.hpdce.sys 4,309 program
cdscp.pub.sys 16 command file
/usr/bin/cdscp 16 shell script
cdscp.hpdce.sys 2,188 program
cdsadv.pub.sys 32 command file
/usr/bin/cdsadv 16 shell script
cdsadv.hpdce.sys 2,333 program
cdsclerk.hpdce.sys 12,766 program

NOTE

Table 1-2

Chapter 1

The file sizes list in these tables are for product B3822AA. The sizes may be different for

product B3821AA.

The DTS components are shown in Table 1-2.

DTS Components

Filename Sector Size Description
dtscp.pub.sys 16 command file
{usr/bin/dtscp 16 shell script
dtscp.hpdce.sys 688 program
dtsd.pub.sys 32 command file
/usr/bin/dtsd 16 shell script
dtsd.hpdce.sys 1,724 program
dtsnullp.pub.sys 32 command file
/usr/bin/dts_null_provider 16 shell script
dtsnullp.hpdce.sys 174 program

13

General Information
DCE/3000 Components and Files

Table 1-2 DTS Components
Filename Sector Size Description
dtsntpp.pub.sys 32 command file
/usr/bin/dts_ntp_provider 16 shell script
dtsntpp.hpdce.sys 242 program
The Security components are shown in Table 1-3.
Table 1-3 Security Components

Filename Sector Size Description
secd.pub.sys 32 command file
/usr/bin/seed 16 shell script
secd.hpdce.sys 15,815 program
secclntd.pub.sys 32 command file
/usr/bin/sec_clientd 16 shell script
secclntd.hpdce.sys 278 program
seccrtdb.pub.sys 16 command file
/usr/bin/sec_create_db 16 shell script
seccrtdb.hpdce.sys 15,951 program
secadmin.pub.sys 16 command file
/usr/bin/sec_admin 16 shell script
secadmin.hpdce.sys 263 program
rgyedit.pub.sys 16 command file
/usr/bin/rgy_edit 16 shell script
rgyedit.hpdce.sys 2,369 program
acledit.pub.sys 16 command file
/usr/bin/acl_edit 16 shell script
acledit.hpdce.sys 329 program
dcelogin.pub.sys 16 command file
/usr/bin/dce_login 16 shell script
dcelogin.hpdce.sys 107 program
kinit.pub.sys 16 command file
/usr/bin/Kinit 16 shell script

14

Chapter 1

Table 1-3

Table 1-4

Chapter 1

Security Components

General Information

DCE/3000 Components and Files

Filename Sector Size Description
kinit.hpdce.sys 1,396 program
klist.pub.sys 16 command file
/usr/bin/klist 16 shell script
klist.hpdce.sys 331 program
destroy.pub.sys 16 command file
/usr/bin/kdestroy 16 shell script
kdestroy.hpdce.sys 279 program

RPC Components

The RPC components are shown in Table 1-4.

Filename Sector Size Description
rpcd.pub.sys 32 command file
/usr/bin/rpcd 16 shell script
rpcd.hpdce.sys 547 program
rpcep.pub.sys 16 command file
/usr/bin/rpccp 16 shell script
rpcep.hpdce.sys 290 program
idl.pub.sys 16 command file
/usr/bin/idl 16 shell script
idl.hpdce.sys 2,166 program
uuidgen.pub.sys 16 command file
/usr/bin/uuidgen 16 shell script
uuidgen.hpdce.sys 125 program

15

General Information

DCE/3000 Components and Files

The miscellaneous components are shown in Table 1-5.

Table 1-5 Miscellaneous Components

Filename

Description

/etc/dce_config/*

shell scripts for dce_config tool

/usr/lib/libdce.a

NMRL

DCEXL.HPDCE.SYS

DCE shared library

/usr/include/dce/*.h

header files

/usr/include/dce/*.idl

idl files

/opt/dce local/*

directories for DCE use

16

Chapter 1

Chapter 1

General Information
Domestic and International Version

Domestic and International Version

The DCE/3000 Security component of /usr/lib/libdce.auses the Data Encryption Standard
(DES) algorithm as its default encryption algorithm. Because the United States DOD
restricts the export of DES software, DCE/3000 supports two binary versions:

< Domestic (B3821AA) — this version contains the DES encryption algorithm and
makes it available to user applications; it is available to HP customers in the United
States only.

< International (B3822AA) — this version strips the DES encryption algorithm,
making them available to user applications; it is available to all HP customers.

The International version of the software disables the RPC data protection level privacy,
disallowing users the ability to encrypt their data in RPCs. If an application specifies the
privacy level of data protection while using the international version of /usr/lib/libdce.athe
application receives an rpc_s_unsupported protect legetor. This restriction does not apply
to the Domestic version.

17

General Information
Configuration and Diagnostic Tools

Configuration and Diagnostic Tools

The dce_config configuration tool, provided by OSF, is available in the MPE/iX
environment. Some MPE/iX commands, such as SHOWPROCand ALTPROC are enhanced
to display information for the threaded tasks under DCE. Glance/XL also displays
information about individual threads in a task, however the threads are currently
identified by their pin number, not their thread ID within the task. Refer to the Threads
section for more details.

18 Chapter 1

General Information
Release Limitations

NOTE

Chapter 1

Release Limitations

Some of the limitations described here reflect limitations of OSF DCE 1.0.2, other
limitations are specific to this release only.

Limitations of OSF DCE 1.0.2

= There is no support for application localization (only English is supported), or for
application internationalization.

Localization is defined as making software interfaces appear in the native language of
the country in which the software is run. For example, all the user interfaces and
messages of an application localized for Italy would be in the Italian language.

Internationalization is defined as enabling an application that is distributed across
international boundaries to be localized for users in different countries. For example, an
application might consist of a server that communicates with clients in Japan and the
Netherlands. The internationalized server could return information in such a form that
its clients in Japan could display the information in Japanese, and its clients in the
Netherlands could display the information in Dutch.

e The passwd_import tool, which imports user account information from /etc/passwd
files to the Registry database, does not import the passwords themselves. Therefore,
after you have used the passwd_import tool to create skeletal DCE accounts in the
Registry database, you must use the rgy_edit tool to add passwords to those
accounts.

Unsupported Configurations

DCE/3000 (version A.01.02) does not support any of the OSF DCE extended services and
configurations, this includes:

e DFS
= X.500 Global Directory Services

= Access to the CDS namespace through the X/Open Directory Service (XDS) and
X/Open Object Management (XOM) services

= Diskless Operation

= The “+” character. This is not supported in the MPE/iX HFS name syntax; therefore,
GMT files (GMT+0 through GMT+13) cannot be created under
/opt/dcelocal/etc/zoneinfd his could cause the dtscp program to interpret your local
time incorrectly from the show current timeommand.

19

General Information
Release Limitations

Interoperability of the Domestic and International Versions

The Domestic and International versions are interoperable with one limitation,
Domestic-based application servers or clients that specify the privacy RPC data
protection level are not interoperable with servers or clients based on the International
version.

Neither the Domestic or International versions of DCE are interoperable with any DCE
version that have been built with the DES code omitted. Some DCE ports from other
vendors were built in this way in order to meet United Sates export requirements. If you
are running a DCE port from another vendor, check with that vendor for details.

Kerberos Authentication Protocol Compatibility

The DCE Security authentication service implements the Kerberos Version 5 Revision 5
protocol specification. Although Kerberos Version 5 includes backward compatibility
support for Kerberos Version 4, DCE Security does not implement this support.

Security for DCE User Accounts

A user’s DCE credentials are not automatically removed by exiting a shell or logging out.
Unless you plan to leave background processes running that require your DCE
credentials, you should manually remove your credentials before logging out by running
the kdestroy utility. This makes the system more secure by decreasing the opportunity
for someone to gain access to your network credentials.

If you do not use kdestroy, DCE credentials are retained in the directory
/opt/dcelocal/var/security/credBo avoid unnecessary disk space usage, inactive credential files
should be periodically purged from this directory.

20 Chapter 1

Chapter 1

General Information
DCE/3000 versus DCE/9000: Differences

DCE/3000 versus DCE/9000: Differences

It is assumed that readers have the basic understanding of the differences between
MPE/iX POSIX environment and a UNIX based system environment. This section is
intended to give end users some key concepts on their first exposure to DCE/3000.

File Naming Convention

The traditional MPE directory structure is made up for a three-level hierarchy and
names for those accounts, groups, and files are all upshifted. The addition of POSIX
functionality to MPE/iX makes it possible for DCE programs and utilities to have the
same name and location as they are used on an HP 9000. While those DCE programs can
be executed in the MPE shell environment, a similar MPE name is also available from
the MPE CI environment. Table 1-6 lists some examples of the similarities in names.

Table 1-6 DCE Program Name Comparisons
Shell MPE CI
acl_edit ACLEDIT
rgy_edit RGYEDIT
dce_login DCELOGIN
sec_admin SECADMIN
klist KLIST
rpcep RPCCP
cdscp CDSCP

Managing DCE Daemons

The DCE daemons (rpcd, secd, cdsd, and so on) are run as MPE/iX jobs that log on as
manager.sydf passwords are required, you are prompted for them.

It is important to set the job limit high enough so that all the DCE daemons can logon.
For better performance, these daemons should run in the CS queue. Be sure to issue the
jobpri cscommand at startup, to allow these jobs to run in the C queue.

Security and Remote Login Utilities

You can use standard MPE remote login commands to perform remote DCE cell
administration; there are no DCE-integrated MPE/iX login utilities. However, this
exposes the cell administrator's password to network attackers whenever you perform a
task on a remote system. If a network attacker obtains the password, the security of the
cell's DCE services is compromised. The most secure way to perform the cell
administration is to log in locally to each system you need to administer.

21

General Information
Release Documents

Release Documents

The following lists the documents associated (shipped) with this release of DCE/3000:

= Introduction to OSF DCE (ISBN 0-13-490624-1) (HP P/N B3190-90005)

< DCE Application Environment Specification — RPC (ISBN 0-13-043688-7) (HP P/N
B3190-90011)

- OSF DCE User’s Guide and Reference (ISBN 0-13-643842-3) (HP P/N B3190-90017)
= Understanding DCE (ISBN 1-56592-005-8) (HP P/N B3190-90018)
- Guide to Writing DCE Applications (ISBN 1-56592-045-7) (HP P/N B3190-90029)

= OSF DCE Application Development Reference (ISBN 0-13-186776-8) (HP P/N
B3190-90032)

= OSF DCE Administration Reference (ISBN 0-13-186750-4) (HP P/N B3190-90033)

e OSF DCE Administration Guide — Core Components (ISBN 0-13-186735-0)
(HP P/N B3190-90034)

e OSF DCE Application Development Guide (ISBN 0-13-186768-7) (HP P/N
B3190-90036)

= NCS 1.5.1 to DCE RPC Transition Guide (E0293) (HP P/N B3192-90002)
= DCE for the HP 3000 (E0295) (HP P/N B3821-90001) This Document

22 Chapter 1

2 Installing DCE/3000 Software

This section defines the hardware/software requirements, media, preinstallation
planning, account structure changes, and the basic installation procedure required for
this release of DCE/3000.

Hardware and Software Requirements

Any system that you want to make a member of a DCE cell must meet certain hardware
and software requirements. The system requirements are:

System Type Any HP 3000 (Series 900) system.

Operating System The system that you want to install DCE/3000 on
must be running on MPE/iX release C.50.02
(Express 2, MPE/iX 5.0 push (C.50.02)).

Disk Space A minimum of 300,000 sectors of disc space are
required to install the DCE/3000 software.

If the system that you are installing on is to be
configured as a DCE/3000 client, a minimum of

50 Mb free space is required on the system volume
set.

If the system that you are installing on is to be
configured as a DCE/3000 server, a minimum of
100 Mb free space is required on the system volume

set.
Memory A minimum of 64 Mb of memory is recommended.
Network Dependencies You must have the HP NS Transport product
installed.

Chapter 2 23

Installing DCE/3000 Software
Distribution Media

Distribution Media

DCE/3000 is not included on the MPE/iX release/update tapes. The DCE/3000 software
is shipped on either of two types of media:

= 8mm DAT tape
= 6250 bpi mag tape

DCE/3000 product installation should be completed only after all other HP 3000
products have been installed or updated.

24 Chapter 2

Installing DCE/3000 Software
Preinstallation Planning

NOTE

Chapter 2

Preinstallation Planning

Preinstallation planning involves deciding on how many cells to configure, which
systems to include in each cell, and where to run the DCE services (for example,
Security, CDS, and DTS). This section provides some decision making guidelines for
preinstallation planning.

Determining Cell Boundaries

Before installation, map the boundaries of your cell by listing the systems that will
compose your cell. You may find it practical (or necessary) to divide your site into more
than one cell.

Consider the following factors when determining the cell boundaries:

< A major criterion for determining cell boundaries is to include principals that share a
common purpose and that have similar privileges.

= Multiple cells require more administrative overhead in setting up and maintenance.

= If you are creating more than one cell for your site, you must determine appropriate
cell names to support inter-cell communication.

Set the system clock to be less than 5 minutes apart for all systems that you plan to
configure in a cell. This must be done even if you do not plan to configure a DTS server.

Intercell Communications

To implement intercell communications, you must start at least one Global Directory
Agent (GDA) daemon per cell. Because this DCE/3000 release does not support GDA,
you need to find a node in your DCE cell environment that will support a GDS server.
Check the reference pages of intercell Communications for that DCE node.

25

Installing DCE/3000 Software
Accounting Structure Change

Accounting Structure Change

Most files from the DCE/3000 product tape should be restored to the SUPPORTaccount,
depending on the version:

= B3821AA for the domestic version (installation job 100B3821A).
= B3822AA for the international version (installation job 100B3822A).

When the installation is complete, the DCE files are moved and new groups and
directories are created. Table 2-1 lists the DCE file locations:

Table 2-1 DCE/3000 File Structure
Directory Description
HPDCE.SYS This group contains all the NM programs for DCE/3000.
THREADS.SYS This group contains the threads library OTHDXL.
PUB.SYS This group contains all the MPE scripts to execute DCE commands from the
MPE CI.
/usr/bin This directory contains all the POSIX scripts to execute the DCE commands,

and the dce libdce.a library.

/opt/dcelocal

This directory and its subdirectories are created for DCE configuration and
runtime use.

/usr/include/dce

This directory contains the .h and .idl files for developing DCE applications.

letc This directory contains miscellaneous POSIX files.
/usr/temp This directory contains one file that is used by the security daemon.
NOTE The HFS directory /opt/dcelocal/var/security/creds used to retain all the DCE credentials for

all users. Therefore the ACD on this directory is created to allow all CD (Create
Directory Entries) and DD (Delete Directory Entries) permissions to other users.

26 Chapter 2

Chapter 2

Installing DCE/3000 Software
Checking the System State

Checking the System State

When installing DCE/3000, your system is not required to be in the single user state.
However, once you have installed the DCE/3000 software and are reinstalling or
updating it, all DCE users must be logged off, and all DCE servers and clients must be
stopped. If any DCE file is being accessed during a reinstallation or update, those DCE
files may not be reinstalled or updated in a consistent state.

Before installing DCE/3000 software, ensure that the system is running MPE/iX version
C.50.02 or later (DCE/3000 requires the OS thread changes in this release of MPE/iX).

27

Installing DCE/3000 Software

Installation

NOTE

NOTE

Installation

To

1.
2.

Do

install DCE/3000, perform the following steps:
Log off all users and log on at the console as MANAGER.SYS

Create the following groups if they do not exist. At the system prompt, enter:

NEWGROUP HPDCE.SYS

NEWGROUP THREADS.SYS

NEWGROUP B3821A.SUPPORDr product B3821AA
or

NEWGROUP B3822A.SUPPORDr product B3822AA

Restore the files from your DCE product tape.

not use the local option in the RESTOREcommand. If the local option is used, the DCE
files will not be restored correctly.

At the system prompt, enter:

FILE TAPE;DEV=TAPE
RESTORE *TAPE;@.@.@;SHOW

Start the product installation job by entering the following:

STREAM 100B3821.B3821A.SUPPORO®r product B3821AA
or
STREAM 100B3822.B3822A.SUPPOR®r product B3822AA

If the message “DCE has been successfully installed” is displayed at the console, the
DCE installation has completed successfully.

If the message is not displayed or if a warning message(s) is display at the console,
the DCE software has probably not completed its installation. Check the spoolfile to
find out why it will not complete.

If you currently have DCE configured but stopped, then the /etc/rc.dce file contains the

current configuration. The installation job (I0UB3821 or IOUB3822) will not write
over this file, instead it renames the new /etc/rc.dce file to /etc/rc.dce.102. It is
strongly recommended that you compare your /etc/rc.dce file with the /etc/rc.dcel02
file and make any necessary changes.

Ensure that the network services are brought up with the appropriate interface
name. You must install the DCE software on all of the HP 3000 systems that you plan
to configure in your cell. After all of the systems have DCE/3000 installed, you can
configure your cell.

Refer to Chapter 3, “Configuring DCE Cells,” for cell configuration information.

28

Chapter 2

NOTE

Configuring DCE Cells

This section provides general information on using the DCE configurator to add your
MPE/iX HP 3000 system into a cell. It is divided into two subsections:

= Using the DCE Configuration Tool — provides detailed steps to bring up the DCE
Configuration main menu (these steps must be completed each time you change the
DCE cell configuration).

= Using the DCE Configuration Options — provides detailed steps for each option in
the DCE configuration main menu (basic familiarity with DCE terms and concepts
are assumed, as described in the Introduction to OSF DCE (B3190-90005).

To configure a cell, you must have previously completed the installation procedure (refer
to Chapter 2, “Installing DCE/3000 Software,” for planning and installation
information).

Chapter 3

29

Configuring DCE Cells
Using the DCE Configuration Tool

Using the DCE Configuration Tool

The DCE configurator (called dce_config) is a shell script based configuration tool, this
enables you to run dce_config from within the MPE/iX POSIX shell.

Check the following preliminary tasks before you enable the DCE configuration main
menu:

Ensure that the system network is running (RPC requires network sockets).
Create an MPE/iX group named DCECONFG At the system prompt, enter:
NEWGROUP DCECONFIG

You must be in an MPE/iX group (that is, your working directory must be an MPE/iX
group not a POSIX directory) when you start the POSIX shell that runs dce_config.

Perform the following steps to obtain the DCE Main Menu for configuring cells:

1.

Log on to the console as MANAGER.SYS,DCECONFGALt the system prompt, enter:
HELLO MANAGER.SYS,DCECONFG

Enter the POSIX shell. At the system prompt, enter:

sh.hpbin.sys -L

The shell prompt is displayed (for example, shell/iX>).

Ensure that /usr/binis in your shell command search path. At the shell prompt, enter:
export PATH=/usr/bin:$PATH

Bring up the DCE configuration main menu. At the shell prompt, enter:

dce_config

The DCE Main Menu as shown in Figure 3-1 is displayed on the console.

Figure 3-1 DCE Main Menu
6CE Main Menu \

1. CONFIGURE configure and start DCE daemons
2. START re-start DCE daemons
3. STOP top DCE daemons
4. UNCONFIGURE remove a host from CDS and SEC databases
5. REMOVE stop DCE daemons and remove data files created by DCE daemons

99. EXIT

selection:

_

/

From this menu you can configure your system as a DCE server or client system.

30

Chapter 3

Figure 3-2

Configuring DCE Cells
Using the DCE Configuration Options

Using the DCE Configuration Options

The DCE configure options allow you to perform multiple tasks on a given DCE cell. This
subsection includes the required steps (in order):

1. Configuring an Initial Cell

2. Configuring a DTS Server

3. Configuring a DCE Client (Client-Only System)
4. Removing or Reconfiguring a Client

5. Removing or Reconfiguring a Server

For more information about your configuration options (why and/or when to use them),
refer to the OSF DCE Administration Guide — Core Components (B3190-90034)
document.

Configuring an Initial Cell

When creating a DCE cell, servers must be configured before clients. Configuration must
be performed in the following order:

1. Security server

2. CDS server

3. Time server(s)

4. Time provider

When these server systems have been configured, the client systems can be configured.

To configure an MPE/iX system as the primary server for the core DCE services, perform
the following steps:

1. Select “1. CONFIGURE"from the DCE Main Menu, the DCE Configuration Menu as
shown in Figure 3-2 is displayed:

DCE Configuration Menu

6CE Configuration Menu \

99. EXIT

selection:

_

1. Initial Cell Configuration
2. Additional Server Configuration
3. DCE Client

98. Return to previous menu

Chapter 3

31

Configuring DCE Cells
Using the DCE Configuration Options

2. Select “1. Initial Cell Configuration"from the DCE Configuration Menu, the Initial Cell
Configuration menu as shown in Figure 3-3 is displayed:

Figure 3-3 Initial Cell Configuration

mitial Cell Configuration \

1. Security Server
2. Initial CDS Server

98. Return to previous menu

99. EXIT
selection:
3. Select “1. Security Serverfrom the Initial Cell Configuration menu.
If you are re-configuring a cell, answer “Y” to the following question shown in Figure
3-4 (this is always a safe answer).
Figure 3-4 Reconfiguring Question
(remove all remnants of previous DCE configurations? Y)
If this is your first cell configuration, or if you have previously run REMOVE, answer
“n” to the question displayed.
4. Enter a cell name, keyseed, cell administrator’s principal name, and the principal’s
password as shown in Figure 3-5.
Figure 3-5 Entering Information
/ enter the name of your cell: my_cell_name \
... enter keyseed for initial database master key: <anykey>
...Cell Administrator’s principal name: cell_admin
...password for the Cell Administrator: password
Re-enter desired password: password

- /

Progress messages are displayed from dce_config and other programs it invokes.
Common messages displayed include “password must be changegdifom the dce_login)
and “bye” (from rgy_edit), these are not errors or warnings.

32 Chapter 3

Figure 3-6

Configuring DCE Cells
Using the DCE Configuration Options

Security configuration takes approximately five to ten minutes. When complete, three
DCE daemon jobs (rpcd, secd and secclntd) are running.

After the Security server has completed configuration, dce_config returns to the
DCE Configuration menu.

5. From the DCE Configuration Menu, select “1. Initial Cell Configuration” Then select “2.
Initial CDS Serverto configure the CDS server.

This machine creates a cell directory, the namespace is initialized, and ACLs are set
for all new namespace entries.

6. Respond to the “..multiple LANs..” question in Figure 3-6:
« If the DCE cell machines will be on different LANS, respond Y (yes).

« If the DCE cell machines will be on the same LANSs, respond N (no).

Multiple LANs

(Are you using multiple LAN's within this cell? N >

NOTE

Figure 3-7

Failure to answer the “.multiple LANS..” question correctly results in an incorrect network
profile and a non functional DCE cell. A “Y” answer is the safest if you are unsure.

If your cell does span multiple LAN's, dce_config asks for the name of the LAN as
shown in Figure 3-7, where the machine being configured resides. The name you provide
is arbitrary, and is used by dce_config to store cell profile information.

Name of LAN

(What is the name of the LAN? lan_50)

NOTE

Chapter 3

CDS configuration takes longer than Security configuration (approximately one hour on
small systems). When complete, another two DCE daemon jobs (cdsadyv, cdsd) are up
and running.

Configuring a DTS Server

DTS servers may be configured on any system in the cell. A minimum of three Time
servers is recommended for any cell with three or more member systems. Refer to the
OSF DCE Administration Guide — Core Components (B3190-90034) for a discussion of
the optimum placement of servers in a cell with gateway or WAN links.

If you do not want to configure DTS or if you do not have three systems in a cell, you can
skip this section.

Before configuring a DTS server, you must complete the “Initial Cell Configuration”on that
system. It is recommended that the system that you plan to add a DTS server to is
configured as a DCE client before starting the DTS server configuration.

33

Configuring DCE Cells
Using the DCE Configuration Options

To configure a DTS server, perform the following steps:

1. Select “2. Additional Server Configurationfrom the DCE Configuration Menu. The
Additional Server Configuration menu as shown in Figure 3-8 is displayed.

Figure 3-8 Additional Server Configuration
ﬁdditional Server Configuration \

1. Additional CDS Server(s)
2.DTS

3. Replica Security Server

98. Return to previous menu

99. EXIT

selection:
o %

2. Select “2. DTS” to configure the DTS server. The DTS Configuration Menu as shown
in Figure 3-1 is displayed.

Figure 3-9 DTS Configuration Menu
6TS Configuration Menu \

1. DTS Local Server

2. DTS Global Server (needed only in multi-LAN cells)

3. DTS Clerk (needed only when changing back to a clerk)
4. DTS Time Provider

98. Return to previous menu
99. EXIT

selection:
\ %

3. Start the DTS daemon:

e [or servers on the same LAN, select “1. DTS Local Server”

e [or servers that intend to communicate across LAN boundaries, select “2. DTS
Global Server”

For a discussion about the use of DTS global servers for time servers
communicating between LANS, refer to the OSF DCE Administration Guide —
Core Components (B3190-90034).

Either selection starts the DTS daemon.

34 Chapter 3

Configuring DCE Cells
Using the DCE Configuration Options

NOTE DTS requires at least three servers in order to function. Skipping DTS will not have a
direct impact on Security and CDS. However, Security requires that clock skew
among systems be no more than five minutes. If the difference is more than 5
minutes, you can use the MPE/iX SETCLOCKcommand to reset your system clocks
on the DTS server systems. Ensure that the system time and TIMEZONE are
both set correctly with SETCLOCK

4. When the Time servers have completed their configuration in a cell, select “4. DTS
Time Provider’from the DTS Configuration Menu to configure a DTS time provider on
one of the time servers in a cell. The DTS Time Provider Menu as shown in Figure
3-10 is displayed.

Figure 3-10 DTS Time Provider Menu

KDTS Time Provider Menu \

1. Configure a NULL time provider
2. Configure a NTP time provider

98. Return to previous menu
99. EXIT

selection:

- /

NOTE A time provider should be configured on one node only within the cell.

The DTS NULL time provider configures a system to trust its own clock as an
accurate source of time. The DTS NTP time provider obtains an accurate source of
time from other systems outside the cell. Refer to the OSF DCE Administration
Guide — Core Components (B3192-90034) for more information about time provider.

If you selected “2. Configure an NTP time providerfespond to the question in Figure 3-11.

Figure 3-11 Hostname Question

(Enter the hostname where the NTP server is running: MyHost)

5. To ensure that all DTS servers are configured correctly, use the following commands:

shell/iX> dtscp show all
shell/iX> dtscp show state
shell/iX> dtscp show local servers

The show local servers command displays all DTS servers in the cell except for your
own system.

Chapter 3 35

Configuring DCE Cells
Using the DCE Configuration Options

6. Todisplay the current time from the dtscpprogram, setup the following softlink in the
shell:

shell/iX> id /etc/zoneinfo
shell/iX> in -s US/Pacific localtim€alifornia local time

When the localtime softlink has been set, then the time can be displayed with the
following command:

shell/iX> dtscp show current time

Configuring a DCE Client (Client-Only System)

A DCE client can not be configured without a functional DCE cell. In other words, when
you configure your machine as a DCE client, the DCE cell that you are going to configure
needs to be up and running. You need to know the name of the cell and the names of the
systems that the DCE servers (Security, CDS and DTS) reside.

Before preceding with the DCE Client configuration, ensure that the HOSTS.NET.SYSile
in your machine contains the IP addresses for the systems that are running as Servers.
When complete, follow the description in the “Startup the DCE Configurationthenu to bring up
the DCE main menu.

The following steps enable you to add your machine as a DCE client node:
1. Select “1. Configure”from the DCE Main Menu.
2. Select “3. DCE Client”from the DCE Configuration menu.

3. Respond to the questions as shown in Figure 3-12.

Figure 3-12 Security Client

/ Enter the name of your cell (without /,,,/): n22cell \

What is the name of the Security Server for this cell? serverl

You can either continue or exit from dce_config.
Do you wish to continue (y/n)? (y): y
Enter Cell Administrator’s principal name: cell_admin

Enter password: password

This machine is ow a security client.

/

Two DCE daemon jobs (rpcd, secclntd) are streamed and are running. You are
informed that your machine is now a Security client.

4. Respond to the questions shown in Figure 3-13 to add CDS client configuration to
your system:

36 Chapter 3

Configuring DCE Cells
Using the DCE Configuration Options

Figure 3-13 Add CDS Client

- A

Continue or exit from dce_config. Do you wish to continue? Y

Enter name of primary CDS server: serverl

Can my+machine broadcast to serverl?

Answer “Yes” if my_machine (the name of your machine) is on the same LAN as the
remainder of the cell. If you are not sure if they are on the same LAN, respond “No.”
An incorrect “No” answer causes a local CDS cache to be set up for the client machine;

an incorrect “Yes” answer results in an incorrect network profile and a non-functional
DCE cell.

5. Respond to the “...multiple LAN's...” question as shown in Figure 3-14.

Figure 3-14 Using Multiple LANs Question

<Are you using multiple LAN’s within this cell? (n): n >

One DCE daemon job (cdsadv) is now running and you are informed that this
machine is now a CDS client.

6. If you want to continue adding your machine as a DTS client, refer to Figure 3-15 and
respond with a “Yes” to the following prompt; however, if you are not using DTS
within the cell or you want this node to be a DTS server, respond “No” to the prompt:

Figure 3-15 Continue or Exit

...continue or exit from dce_config. Do you wish to continue? y

7. Respond “No” to the ...make this a DFS clieprompt. DCE/3000 does not support DFS.

Removing or Reconfiguring a Client
The procedure described below is used for:

= removing a client

= reconfiguring a client

Chapter 3 37

Configuring DCE Cells
Using the DCE Configuration Options

= stopping a cell
= changing the name of a cell
= changing or modifying a configuration

To remove or reconfigure a client (the client cannot be a Security server or a CDS server),
perform the following steps:

1. Bring up the DCE main menu (as described in “Using the DCE Configuration Tool”
earlier in this section).

2. Select the “4. UNCONFIGURE"option (this option can be executed from any system in
the cell). The UNCONFIGUREoption removes the target machine from the cell Security
database and the CDS namespace; therefore, do not use the UNCONFIGUREoption on
a system that is used as a Security server or a CDS server.

NOTE DCE client daemons must be running on the system executing the UNCONFIGUREoption.
If DCE daemons have been stopped, use the START option from the DCE Main Menu
to restart the daemons before using the UNCONFIGUREoption.

3. The system prompts for the name of the client system to be unconfigured as shown in
Figure 3-16.

Figure 3-16 Unconfigured Node

<Enter hostname of node to be unconfigured: my_client >

NOTE If there were any errors unconfiguring the client system, then the client must be
unconfigured from another system in the cell.

4. The system prompts for a continuance as shown in Figure 3-17 (unconfiguring a node
removes its ability to operate in a cell), you must respond.

Figure 3-17 Continuance

<Do you wish to continue (y/n)? Y >

The dce_config tool deletes the registry entries and CDS entries for the client, then
the following message as shown in Figure 3-18 is displayed:

Figure 3-18 Remove Message

A dce_config REMOVE will need to be performed from node
before reconfiguring it.

5. The DCE Main Menuis displayed, select the “5. REMOVE" option on the client system.

The “5. REMOVE” option stops all running DCE daemons and removes all previous
configuration files on the local machine.

38 Chapter 3

NOTE

Figure 3-19

Configuring DCE Cells
Using the DCE Configuration Options

Removing or Reconfiguring a Server

The procedure described below is used for:

removing a DCE server

reconfiguring a DCE server

changing the name of a cell

changing or modifying a configuration

restoring a server after a system crash

If you want to unconfigure the server, do not perform an “UNCONFIGURE”, instead
perform a “REMOVE” option.

Removing a Security or CDS server requires that you reconfigure the entire cell.

If you are removing both the clients and servers, all client systems must be unconfigured
and removed before the server systems are removed. If you want to remove and
reconfigure a client, you can do so without reconfiguring the other members of a cell.

To remove or reconfigure a server, perform the following steps:

1.
2.

Ensure you are not DCE logged in as a DCE cell principal.

Bring up the DCE Main Menu (as described in “Using the DCE Configuration Tool”
earlier in this section).

Select “5. REMOVE” from the DCE Main Menu. The dce_config tool displays the
following message as shown in Figure 3-19:

Remove Message

REMOVE will remove the nodes’s ability to operate in the cell.
A reconfiguration of the node will be required. if this is not

a server node, then this node should be unconfigured before a
REMOVE is done. Do you wish to continue (y/n)?

Chapter 3

A “Yes” response stops all running DCE daemons in that system and removes all files
created during the initial cell configuration.

39

Configuring DCE Cells
Using the DCE Configuration Options

40 Chapter 3

Programming Notes

This section assumes that DCE application developers have some experienced in porting
standard C applications to the MPE/iX POSIX environment. For application developers
who are not familiar with the MPE/iX POSIX and C language interface, please read the
MPE/iX Developer’s Kit (36430A) first.

Chapter 4

41

Programming Notes
Threads Architecture

NOTE

Threads Architecture

This section describes the architecture of threads on MPE/iX.

The following terminology is adopted throughout the remainder of this document. The
term process refers to the MPE/iX operating system notion of process. The term task is
defined as a multi-threaded application (depending on the implementation, a task can
consist of a single process or multiple processes).

Threads on MPE/iX

A multi-threaded task on MPE/iX is implemented with multiple processes (one per
thread). A task’s threads are a cooperative processes in that they share some resources
that are normally private to a process. All threads within a task share the same SR 5
space as the initial thread (a process created using run or createprocess). The heap and
global variables are shared by all threads, along with loader information and system
information regarding open files and sockets.

All other process resources are private to the thread. Each thread has its own NM stack,
CM stack, pin number, PIB, PIBX, TCB, PCB, PCBX, process port, and so on. Fields
within these data structures that are shared among threads (such as, file system
information) are kept in a common location.

Process Management and Threads

An initial thread is a process created using run or createprocess (or fork and exec for
POSIX). The threads of a task cannot exist independently of the initial thread. If the
initial thread terminates or is killed, all of the task’s threads are terminated. A
secondary thread cannot be adopted by another task.

Each thread begins execution at an entry point specified at creation time. The entry
point is an MPE/iX procedure with one parameter. This procedure resides in either the
program file or the linked libraries of the task.

When a thread is created, the following attributes can be specified:

Stack size: NM stack size for the thread

Inherit scheduling: inherit the scheduling policies of the creating thread
Priority: priority of the thread

Scheduling policy: round robin, FIFO,...

Scheduling scope: priority is global/local

These attributes are required in order to be POSIX compliant. POSIX also permits each
implementation to add its own thread creation attributes. The following attribute was
added for MPE/iX:

Debug: enter debug before starting the thread

PH capability is required to create a thread.

From a process management point of view, thread creation is just an abbreviated form of
process creation.

42 Chapter 4

Programming Notes
Threads Architecture

All threads are created as siblings. The threads of a task all have the same father task;
namely, the father of the initial thread. If a thread creates a child using creatprocess,
that child is the child of the task, not of the thread. From the tasks child-point-of-view,
its father is the initial thread. When a thread exits, the children and the threads it
created are not terminated.

Threads do not “own” the child processes they create. However, threads may find it
necessary to wait for the termination of the offspring that they created. Therefore, a
thread is permitted to wait for a specific child to terminate and is permitted to wait on
the termination of any child. Refer to the suspend and activate intrinsics for more
explanation.

While threads are implemented with multiple processes, to the end user threads should
appear to coexist within a single process. Process management hides the MPE/iX
implementation of threads from the programmer. The process handling intrinsics work
on a task basis.

Development, Debugging, and Application Execution of Threads

This section discusses the development, debugging, and execution of applications that
use threads on MPE/iX. It should be read before attempting to create or run an
application that uses threads.

Debug has the following features to facilitate debugging in a threaded environment:

= Breakpoints
< Commands

< Environmental Variable

Breakpoints.
There are three types of breakpoints available when debugging a threaded program:
Breakpoint Type Description

Task-Wide Breakpoints that are recognized by any thread
within a task.

Thread-Specific Breakpoints that are identical to pin-specific
breakpoints, but are thread-private, and are specified
using an enhanced syntax.

Stop-All-Threads Breakpoints with this option, when encountered by a
thread within a threaded task suspend all other
threads within the task until a CONTINUE command
is issued.

The syntax for the address and pin parameters to breakpoint commands includes the
specification:

logaddr [:pin|:@]
and the following for threads:
logaddr [:[[init_thread_pin].tin |.@][:@1]

where tin is the thread number returned by pthread_create. The pin number of the
initial thread can be obtained using SHOWPROC The syntax [init_thread pin}in specifies a
thread, [init_thread_pin].@specifies a task-wide breakpoint, and :@ following a

Chapter 4 43

Programming Notes
Threads Architecture

[init_thread_pin}in specification specifies a stop-all-threads breakpoint option.

For example:
Example Breakpoint
B thd_mtx:2e.2

B thd_mtx:.2

B start_thread:2c.@

B start_thread:.@

B HPFOPEN::@

B HPFOPEN:.3:@

B HPFOPEN:.@:@

Commands

Description

Sets a breakpoint at thd_mtx to be recognized by tin
2 of the task with initial thread 2e.

Sets a breakpoint at thd_mtx to be recognized by tin
2 of the current task.

Sets a task-wide breakpoint at start_thread to be
recognized by all threads within the task with initial
thread 2c.

Sets a task-wide breakpoint at start_thread to be
recognized by all threads within the current task.

Sets a breakpoint at HPFOPEN for the current pin
(tin) with the stop-all-threads option that is honored
if the pin belongs to a threaded task.

Sets a breakpoint at HPFOPEN for tin 3 of the
current task, and the breakpoint has the
stop-all-threads option.

Sets a task-wide breakpoint at HPFOPEN for the
current task, and the breakpoint has the
stop-all-threads option.

The following commands aid in debugging threaded applications.

Command
TIN [init_thread_pin.]tin

SUSPEND

ACTIVATE

Environmental Variables

Description

This command causes debug to switch to the
environment of the specified tin. The default
init_thread_pinis that of the current task. Privilege
mode is required to switch to any tin in another task.

This command suspends all other threads within the
task of the tin being debugged. The suspended
threads are not resumed automatically with the
continue command.

This command resumes the threads that were
suspended by the SUSPENDcommand. It should be
issued from the same tin that issued the SUSPEND
command.

There are two environment variables that simplify debugging applications:

Environment Variable
SS _TERM_KEEPLOCK

Description

When set to TRUE, a pin (tin) being debugged
retains the terminal semaphore while
single-stepping. This prevents any other pin (tin),

44

Chapter 4

Programming Notes
Threads Architecture

that is waiting to enter debug, from obtaining the
terminal semaphore and interfering with the debug
session.

TERM_KEEPLOCK Allows a process to retain the terminal semaphore
under all conditions until the process terminates or
the variable is reset to FALSE. However, this
variable has the potential to create a deadlock. For
example, a deadlock occurs if the process owning the
terminal semaphore waits for another process that in
turn is waiting for the debug terminal semaphore.

Limitations
The following are know limitations for the debugthread commands:

< The break command followed by an abort command hangs the task if the initial
thread is waiting to enter debug (such as, another thread is currently in debug).

= The SUSPENDcommand has the potential to hang a task if the user does not issue an
ACTIVATE command before doing the CONTINUE command.

= Each thread has its own debug environment. For example, loaded macros and
environmental variables are not shared by threads within a task, and must be dealt
with on an individual basis for each thread.

Chapter 4 45

Programming Notes

Building DCE Programs

Building DCE Programs

Header Files

In addition to the standard POSIX libraries and HP C/XL functions, you may have to
include the DCE header files, which can be found in the /usr/include/dcelirectory. If your C
applications use Try/Catch for exception handling, you should include the following
statement in the C programs:

#include <dce/pthread_exc.h>

There are no MPE/iX equivalent libraries for /ust/lib/libbb.aor /ust/lib/libc_r.a The reentrant
functions that are defined in MPE/iX and the thread-safe wrapper functions are in
{ust/lib/libdce.a.

MPE/iX does not have the file strings.h The HP-UX strings.hincludes string.h sys/stdsyms.and
some definitions that are strictly for C++ and HP-UX.

Compiler Flags

When compiling DCE applications using ANSI C under the MPE ClI, set the following
compiler switches:

-D_POSIX_SOURCE -D_MPEXL_SOURCE -D_SOCKET_SOURCE -D_REENTRANT -Aa

When compiling under the MPE POSIX shell, you need the above flags except for the -Aa
option. If -Aais set, /bin/c89displays a large amount of error messages (by definition, the
POSIX environment always uses the ANSI C compiler).

Unresolved Externals

When porting applications from a UNIX environment to MPE/iX, you may receive
unresolved external errors during a compile, link, or run phase. It is likely that the
unresolved externals are not part of the POSIX.1 standard. To find out if a function is
defined in the POSIX environment, look at the manpage for that function on a UNIX
system. At the bottom of the manpage, there is a section titled STANDARD
CONFORMANCE, which lists the function name and the standard it conforms to. If the
manpage does not have POSIX.1 listed as one of the standards then that function is not
part of the MPE/iX POSIX Environment. To get around this porting issue, you may have
to write a routine to emulate the functionality for the unresolved external.

46 Chapter 4

Programming Notes
Building DCE Programs

MPE/iX Makefile Example

The following is an MPE/iX makefile example.
#
(c) Copyright 1992, 1993 Hewlett-Packard Co.
#
@(#)HP DCE/3000 1.0.2
@#)Module: Makefile $Revision:1.1.7.2 $
$Date:1993/07/08 00:06:21%
Makefile modified for use on an HP 3000.

#

DEBUG =

INCENV = -I. -l/usrf/include

ANSI_FLAGS =-D_POSIX_SOURCE

HP_FLAGS =-D_REENTRANT -D_MPEXL_SOURCE -D_SOCKET_SOURCE
CFLAGS = ${ANSI_FLAGS} ${DEBUG} ${HP_FLAGS} ${INCENV}

LDFLAGS =

LIBS = -ldce -Isocket -Isvipc -Im -lc

PROGRAMS = sleeper_server sleeper_client

server_OFILES = sleeper_sstub.o manager.o server.o

client_OFILES = sleeper_cstub.o client.o

IDLFLAGS = -keep c_source ${INCENV}

IDLFILES = sleeper.idl

IDLGEN = sleeper.h sleeper_*stub.c sleeper_*aux.c
IDL = /SYS/HPBIN/SH idl

all: objects ${PROGRAMS}

objects: ${server_OFILES} ${client_OFILES}

fresh: clean all

clean:;

rm -f ${server_OFILES} ${client_OFILES} ${PROGRAMS} ${IDLGEN}
clobber: clean

rm -f a.out core ERRS make.out *~
sleeper_server: ${server_OFILES}

$(CC) ${LDFLAGS} ${server_OFILES} ${LIBS} -0 $@

mv -f sleeper_server /SYS/PUB/SLEEPSRV

callci linkedit \"altprog sleepsrv.pub.sys\;xI="othdxl.threads.sys'\"

mv -f /SYS/PUB/SLEEPSRY sleeper_srver
sleeper_client: ${client_OFILES}

Chapter 4 47

Programming Notes
Building DCE Programs

$(CC) ${LDFLAGS} ${client_OFILES} ${LIBS} -0 $@
mv -f sleeper_client /SYS/PUB/SLEEPCLT
callci linkedit \"altprog sleepclt.pub.sys\;xI="othdxl.threads.sys"\"
mv -f /[SYS/PUB/SLEEPCLT sleeper_client
sleeper_cstub.c sleeper_sstub.c sleeper.h: ${IDLFILES}
$(IDL) ${IDLFLAGS} ${IDLFILES}
sleeper_cstub.o sleeper_sstub.o manager.o server.o client.o: sleeper.h

manager.o server.o client.o: common.h

48

Chapter 4

Programming Notes
Building DCE Programs

HP-UX Makefile Example

The following is an HP-UX makefile example.
#
(c) Copyright 1992, 1993 Hewlett-Packard Co.
#
@(#)HP DCE/9000 1.0.2
@(#)Module: Makefile $Revision: 1.1.7.2 $
$Date: 1993/07/08 00:06:21$
Makefile for use with an HP 9000.

#

DEBUG =g

INCENV = -I. -l/usrf/include/reentrant

ANSI_FLAGS =-Aa-D_POSIX_SOURCE

HP_FLAGS =-D_REENTRANT -DTRACING

CFLAGS = ${ANSI_FLAGS} ${DEBUG} ${HP_FLAGS} ${INCENV}
LDFLAGS = ${DEBUG} -WI, -a, archive

LIBS = -lbb -Idce -Im -Ic_r

PROGRAMS = sleeper_server sleeper_client

server_OFILES = sleeper_sstub.o manager.o server.o

client_OFILES = sleeper_cstub.o client.o

IDLFLAGS = -keep c_source ${INCENV}
IDLFILES = sleeper.idl
IDLGEN = sleeper.h sleeper_*stub.c sleeper_*aux.c
IDL =idl
all: objects ${PROGRAMS}
objects: ${server_OFILES} ${client_OFILES}
fresh: clean all
clean:;
rm -f ${server_OFILES} ${client_OFILES} ${PROGRAMS} ${IDLGEN}
clobber: clean

rm -f a.out core ERRS make.out *~
sleeper_server: ${server_OFILES}
$(CC) ${LDFLAGS} ${server_OFILES} ${LIBS} -0 $@
sleeper_client: ${client_OFILES}
$(CC) ${LDFLAGS} ${client_OFILES} ${LIBS} -0 $@
sleeper_cstub.c sleeper_sstub.c sleeper.h: ${IDLFILES}
$(IDL) ${IDLFLAGS} ${IDLFILES}
sleeper_cstub.o sleeper_sstub.o manager.o server.o client.o: sleeper.h

manager.o server.o client.o: common.h

Chapter 4 49

Programming Notes
Building DCE Programs

50 Chapter 4

Programming with Kernel Threads

Programming with threads, is useful for structuring programs, enhancing performance
through concurrency and overlapping 1/0, making client/server interaction more
efficient, and increases programming complexity. Some things you need to address when
programming with threads are:

e Creation and management of threads.

e Threads synchronization and communication.
e Threads scheduling.

e Error handling

A traditional non-threaded process has a single thread of control, started and
terminated with the process, and multi-threaded programs require that threads be
created and terminated explicitly.

The HP 3000 Kernel Threads Service provides basic thread creation and management
routines. Refer to the OSF DCE Application Development Guide (B3190-90036) and the
OSF DCE Application Development Reference (B3190-90032) for detailed information on
thread creation and management.

Chapter 5

51

Programming with Kernel Threads
Threads Synchronization and Communication

Threads Synchronization and Communication

All threads in a process execute within a single address space and share resources.
When threads share resources in an unsynchronized way, incorrect output can result
from race conditions or thread scheduling anomalies. The DCE Threads Service provides
the following facilities and routines to synchronize thread access to shared resources.

Mutexes (Mutual Exclusion Objects)

Mutexes are used to synchronize access by multiple threads to a shared resource,
allowing access by only one thread at a time. Routines for creating and managing
mutexes are:

pthread_mutex_init(mutex,attr)
pthread_mutex_destroy(mutex)
pthread_mutex_lock(mutex)
pthread_mutex_trylock(mutex)
pthread_mutex_unlock(mutex)

Condition Variables

Condition variables provide an explicit communication vehicle between threads. A
condition variable is a shared resource, and requires a mutex to protect it. You use a
condition variable to block one or more threads until some condition becomes true, then
any or all of the blocked threads can be unblocked. Routines for creating and managing
condition variables are:

pthread_cond_init(cond,attr)
pthread_cond_broadcast(cond)
pthread_cond_signal(cond)
pthread_cond_wait(cond,mutex)
pthread_cond_destroy(cond)

Join Facility

The join facility is the simplest means of synchronizing threads, and uses neither shared
resources or mutexes. The join facility causes the calling thread to wait until the
specified thread finishes and returns a status value to the calling thread. Routines for
joining and detaching threads are:

pthread_join(thread,status)
pthread_detach(thread)

Refer to the OSF DCE Application Development Guide (B3190-90036) and the OSF DCE
Application Development Reference (B3190-90032) for detailed information on threads
synchronization and communication.

52 Chapter 5

Programming with Kernel Threads
Threads Scheduling

NOTE

Chapter 5

Threads Scheduling

HP 3000 Kernel Threads scheduling is handled through the dispatcher, therefore each
thread is visible to and known by the kernel. Altering the scheduling of one or more
threads in a task is accomplished with the same tools and methods used to alter the
scheduling of any non-threaded task.

The HP 3000 Kernel Threads Service is a kernel based implementation of POSIX
1003.4a Draft 4 threads. Individual threads created within a given task may use the
same processor at any given time; the threads are independently scheduled by the
kernel. Therefore, a multi-threaded process can take advantage of the increased
concurrency available on a multi-CPU machine.

53

Programming with Kernel Threads
Writing Threaded Applications

Writing Threaded Applications

The following are hints on writing multithreaded DCE applications:

All DCE applications are multithreaded — When writing DCE applications, keep in
mind, that the DCE runtime software is multithreaded and all DCE applications are
multithreaded; even if the application code itself does not explicitly create threads.

Using non-thread-safe libraries — When making calls to libraries you do not
specifically know to be thread-safe, you must provide your own locking scheme to
prevent multiple threads from executing the same library calls concurrently. While a
given call may appear to be innocuous with respect to threads, it is very difficult to
know exactly what interactions can occur within the library, or with other libraries.
For example, suppose non-thread-safe routines 1 and 2 make a call to routine A (also
non-thread-safe), if routines 1 and 2 use different mutexes to lock their calls to
routine A, then routines 1 and 2 can both get into routine A at the same time
(violating the programmer's attempt to make the calls thread-safe).

Using fork() in a threaded application — fork() is not allowed from a threaded task.

environ is a process-wide resource — Programmers must coordinate threads that use
the putenv()and getenv()interfaces to change and read environ.

Signal mask: a thread-specific resource — The signal mask is a thread-specific
resource; therefore, if one thread manipulates the signal mask, it only affects signals
that specific threads might be interested in (POSIX 1003.4a Draft 3 behavior).

Handling synchronous terminating signals — The default behavior of OSF DCE 1.0.2
is to translate synchronous terminating signals into exceptions. If the exception is not
caught, the thread that caused the exception is terminated. Any thread that goes
through the terminate code causes the entire task to be terminated.

Establish synchronous signal handlers using sigaction()}— The MPE/iX POSIX C
Library supports the following routines for setting up signal handlers:

signal()
sigaction()

Of these routines, only sigaction()is supported in a DCE application. It is used to establish
handlers for synchronous signals on an individual thread basis only.

Asynchronous signals — There is no supported mechanism for establishing signal
handlers for asynchronous signals on MPE/iX.

Cancelling threads blocked on a system call — The HP 3000 Kernel Threads Service
provides a cancellation facility that enables one thread to terminate another. The
cancelled thread normally terminates at a well-defined point. Terminating a thread
that is blocked while executing system code is not possible on MPE/iX; only threads
executing non-system code may be cancelled.

Using waitpid() — The waitpid() routine allows the parent thread to specify which child
it cares about by specifying its PID. This call only works for the initial thread;
because children created by any thread within the task are considered children of the
whole task.

Using setjmpand longjmp— Do not use calls to setjimpand longjmp, these routines save
and restore the signal mask and could inadvertently cause a signal that another

54

Chapter 5

Programming with Kernel Threads
Writing Threaded Applications

thread is waiting on to be masked. Instead, use _setjmpand _longjmpg these routines
do not manipulate the signal mask.

When executing _longjmpbe aware of the following:

— Ensure you are returning to a state saved within the context of the same thread.

— If you longjmpover a TRY clause, an exception could try to _longjmpto a stack
frame that no longer exists; and vice versa.

— Do not _longjmpout of a signal handler.

e Use pthread_yield to allow other threads processor time — If your application is
running on a single-processor machine, and you want to permit other threads access
to the processor, you can use pthread_yield to notify the scheduler that the current
thread is willing to release the processor to other threads of the same or higher
priority. If no threads of the same or higher priority are ready to execute, the thread
continues.

An example of the use of pthread_yield is to avoid spinning in a tight loop, such as:
while (flag);

by using pthread_yield as:

while (flag) pthread_yield();

Use pthread_yield with caution; misuse can cause unnecessary context switching and
increasing overhead with no increase in “fairness.” For example, it is counterproductive
for a thread to yield while it has a needed resource locked.

Chapter 5 55

Programming with Kernel Threads
Writing Thread-Safe Code

Writing Thread-Safe Code

The standard C/XL library is not completely thread safe on the HP 3000.
Hewlett-Packard has provided a set of wrapper functions to intercept calls to the C

library and make them thread safe. The wrapper definitions reside in the
{ustfinclude/thdwrp.file.

56 Chapter 5

Programming with Kernel Threads
Reentrant Interfaces

Reentrant Interfaces

Many /lib/libc.a (POSIX C Library) routines return pointers to internal static data. This
causes problems in a multithreaded program; while one thread tries to access the data

another thread could be modifying it in some way.

The following are interfaces that should be called by multithreaded programs. These
versions of the interfaces are different from the original versions.

The reentrant definitions currently defined in /lib/libc.aare:

opendir_r readdir_r getgrgid_r getgrnam_r

getpwnam_r getwpuid_r getlogin_r
In addition, the following are provided as part of /usr/lib/libdce.son the HP 3000:

asctime_r crypt_r ctime_r ecvt r

fevt_r gmtime_r 164a_r localtime_r

There are four reentrant routines that are not defined in the DCE/3000 header files. To
use them, add the following lines to the /usr/include/time.tile, just before the last line (#endif

f*_TIME_INCLUDED */). For example:
ifdef _REENTRANT
extern int asctime_r(const struct tm *, char *, int);
extern int ctime_r(const time_t *, char *, int);
extern int gmtime_r(const time_t *, struct tm *);
extern int localtime_r(const time_t *, struct tm *);
endif ¥ _REENTRANT */stdio Interfaces

Chapter 5 57

Programming with Kernel Threads

stdio Interfaces

stdio Interfaces

Some of the stdio interfaces (such as getchar(and putchar() are available as functions
within C/XL and as macros defined in stdio.h The macro versions exist for performance
reasons. Calls to the library implementation of these interfaces is intercepted by the
thread wrapper functions, making them thread-safe; but the macros have not been made
thread-safe. Since the thread-safe wrapper implementations should be used by default,
the names of the macros have been changed by adding an _unlockedsuffix (for example,
getchar_unlocked()). This allows programmers to invoke the _unlockedmacros and not
pay the performance penalty of an extra function call and the cost of acquiring and
releasing a lock.

Some of the _unlockedinterfaces are outlined in POSIX 1003.4a, Draft 5. To support the
use of the _unlockedinterfaces, the functions flockfile() and funlockfile() are provided. These
functions can be used to explicitly lock and unlock a file object. Therefore, exclusive
access to a file for a series of _unlockedstdio calls is ensured, without having to lock and
unlock the file on every call.

The additional stdio interfaces in thdwrp.hare:

getc_unlocked getchar_unlocked

putc_unlocked putchar_unlocked

The functions flockfile() and funlockfile() are implemented as part of /usr/lib/libdce.a

58 Chapter 5

Chapter 5

Programming with Kernel Threads
Debugging Threaded Applications

Debugging Threaded Applications

The following are hints for debugging threaded applications:

Set breakpoints for global data bugs — To simplify debugging problems involving
unexpected changes in global data, use HPDEBUG to set task-wide data
breakpoints. Otherwise, make sure there is a breakpoint that every thread will hit.
Even when you are single-stepping, another thread can intervene between source
statements executed by the thread you are following. One way you can know that this
is happening is if the intervening thread hits a breakpoint.

You can prevent other threads from intervening while single stepping in HPDEBUG.
This is done by setting the HPDEBUG environment variable

SS TERM_KEEPLOCK. Setting this variable causes you to hold the terminal
semaphore for the current thread until a CONTINUE command is issued. Effectively,
no other thread is able to obtain the terminal semaphore and interfere with your
debug session. Another method is to create breakpoints within your task that have
the “Stop-all-Threads” options. This option, when hit by any thread in the task, stops
execution of all threads in the task until a CONTINUE command is issued. It is
possible to create a deadlock situation when using SS TERM_KEEPLOCK with
“Stop-all-Threads” set in your task.

Debugging a threaded server — Do not debug multiple threads in the server, debug
one at a time. To do this, set a breakpoint at the procedure you want to catch and
continue. Then make only one remote procedure call from the client; you will hit the
breakpoint, step through until you locate the bug, then continue or quit.

Debugging a threaded client — If the threads in a client do not interact, debug only
one of them at a time.

59

Programming with Kernel Threads
Process Management Commands

SHOPROC

Process Management Commands

Process management (threads related) features of commands are listed here. For

det

ailed information about the commands, refer to the MPE/iX Commands Reference

Manual (32650-90006).

Using the ;PIN= parameter, pin.thread_gdn be specified to denote a specific thread of
the task.

Using the ;FORMAT=SUMMARY option displays one line for each thread of the task.
After the individual threads have been displayed, a composite or summary line is
displayed containing the summation of the CPU time for all threads in the task, and
the QPRI and STATE are blank. (This is done because, each thread in the task can
have different values for the QPRI and STATE fields and there is no single value
that can represent the task as a whole.)

Using the pinspec parameter displays the process. The pinspec is a Process
Identification Number (PIN). Any user can show processes matching their own user
and account names; they belong to the user. A user with SM or OP capabilities can
show any process (and its threads if any) on the system through its pin (or
pin.thread_ifl The System Manager can see system processes by specifying the
SYSTEMoption.

If pinspec is 0, then the caller’s pin is used.

To reference a specific thread of a task, pinspec must be of the form pin.thread_id
Specifying pin.Oresults in an error.

NOTREE is the default for pinspec=[#p]pirtarget processes and can be overridden with
the TREEoption.

Using the SUMMARY format displays a subset of a process’ attributes. Included are
the queue name, process priority, CPU time, execution state, associated JOB or
SESSION number, PIN (indented to show tree structure), program name, threads
related information (if any), and INFO=string(if any) or command step if the process is
ClL.LPUB.SYS

SUMMARY is the default format for pinspec=[#p]pin

From the SHOWPROGCdisplay, the CPUTIME field is displayed in hh:mm:ssor m:ss.mls
A pair of asterisks (**) is displayed in the hours field if an overflow occurs. This is the
summation of the CPUTIMEsfor the individual threads in the task. For the individual
threads, only the CPUTIME consumed by that thread is displayed.

From the PIN(5) display, the PIN of an unthreaded task or the PIN of a threaded task
is shown.

From the PIN(9) display, the pin.thread_idf the individual threads in a threaded task
are shown. Where, the pin.thread_ids abcde.fgh (abcde is the task PIN, and fgh is the
thread_id. The SUMMARY format indents the PIN column by two spaces for each child
process. The indentation is used to represent descendants.

From the QPRI(5)display, a combination of the queue and priority is displayed (Qnnn
[*]). Where, Q is a single character abbreviation of the processes scheduling queue,
nnn is the processes priority, and * indicates a system process. When using the
SUMMARY format the QPRI field is blank on the summary line of a threaded task.

60

Chapter 5

ALTPROC

Chapter 5

Programming with Kernel Threads
Process Management Commands

From the STATE(5)or STATE(7)display, the execution state of the process is indicated.
STATE can be one of the following:

WAIT: Generic process block, usually waiting for a message.
BLKCB: Blocked for control block.

BLKMM: Blocked for memory manager.

READY: Ready to execute or executing.

Using the SUMMARY format, the STATE field is blank on the summary line of a
threaded task.

Using the ;PIN= parameter, pin.thread_ictan be specified to denote a specific thread of
the task.

Specify pin.thread_idto alter the attributes of a single thread.

Using the pinspec parameter displays the processes whose attributes are to be
altered. Any user can show processes matching their own user and account names;
they belong to the user. A user with SM or OP capabilities can alter any process (and
its threads if any) on the system through its pin (or pin.thread_ijl. The System
Manager can see system processes by specifying the SYSTEM option.

If pinspec is 0, then the caller’s pin is used.

To reference a specific thread of a task, pinspec must be of the form pin.thread_id
Specifying pin.Oresults in an error.

NOTREE is the default for pinspec=[#p]pirtarget processes and can be overridden with
the TREE option.

61

Programming with Kernel Threads
Process Management Intrinsics

PROCINFO

Process Management Intrinsics

Process management (threads related) features of intrinsics are listed here. For detailed
information about the intrinsics, refer to the MPE/iX Intrinsics Reference Manual
(32650-90013).

The PROCINFOIntrinsic returns threads related information to the caller. Four item
numbers do this:

ltem#=13(threaded task option (132)) — returns an integer that can have one of the
following values:

0 This task was never multi-threaded during its life-span.

1 This PIN was multi-threaded at some point during its existence (for
example, it was created by the RUN command or CREATEPROCESS
intrinsic and has executed at least one PTHREAD intrinsic.

2 The task is currently multi-threaded.
The user must have PM capability.

ltem#=14(thread type option (132)) — returns an integer that can have the following
values:

0 This PIN was never multi-threaded.

1 The PIN passed is that of the initial thread (for example, a process
created by the RUN command or CREATEPROCES$ntrinsic that
has executed at least one PTHREAD intrinsic).

2 The PIN passed is that of a secondary thread of the task.
The user must have PM capability.

ltem#=15(number of threads option (132)) — returns an integer that can have the
following values:

0 This PIN was never multi-threaded during its life-span.

1 This PIN was multi-threaded at some point during its existence (for
example, it was created by the RUN command or CREATEPROCESS
intrinsic and has executed at least one PTHREAD intrinsic.

n This PIN is part of a threaded task and n is the number of threads
currently associated with the task.

The user must have PM capability.

Iltem#=16(list of thread PINs option (16-bit signed integer array)) - the user must pass
in an array large enough to hold the PINs of all threads associated with the task. The
first element of the array must contain the array size; PROCINFOfills the array
starting from the second element. If the array size is not large enough, PROCINFO
fills the available space and returns an error indicating that the array size was
insufficient. The last element of the array will be a zero. The user must have PM
capability.

62

Chapter 5

SUSPEND and
ACTIVATE

FATHER

GETPRIORITY

GETPROCINFO

KILL

PROCTIME

SENDMAIL and
RECEIVEMAIL

TERMINATE and
QUIT

Chapter 5

Programming with Kernel Threads
Process Management Intrinsics

If a thread invokes SUSPEND(or ACTIVATE) only that thread is suspended. Other
restrictions for suspending a thread are:

e Child waits — A thread is only be permitted to wait for the children it created. An
attempt to wait on a child created by another thread results in an error.

= Father waits — Only the initial thread can issue a father wait. An error is returned to
secondary threads issuing a father wait.

All threads have the same father, namely the father of the initial thread. If a secondary
thread creates a child process, the father of the child process is the initial thread of the
task.

A threaded process can change its own priority. However, an initial thread or a
secondary thread cannot have its priority changed by another process.

This works the same with any threaded process.

The children of a task can only be killed by the initial thread. A KILL issued by a
secondary thread returns an error indicating that the thread is not the father of the
child.

This routine returns the CPU time that the thread has accumulated.

An error is returned under the following conditions:

< If called from a secondary thread.

If calling SENDMAIL and sending to a child that is a secondary thread.
= If calling RECEIVEMAIL and receiving from a child that is a secondary thread.

= If calling SENDMAIL and sending to the father and the father is a thread (either
initial or secondary).

= If calling RECEIVEMAIL and receiving from the father and the father is a thread
(either initial or secondary).

If a thread calls TERMINATE or QUIT, the task, including all of its threads, is terminated.

63

Programming with Kernel Threads
Changes to AIF Routines

Changes to AIF Routines

The following AIF routine item numbers are associated with kernel threads:

AIFPROCGET and The following are the associated item numbers:
AIFPROCPUT

ltem# Name (Type) and Description

2137 Thread Type (132) — Indicates what type of thread this process is.
Valid values are:
0 Regular process (not a thread).
1 Initial thread (process created by the RUN command

or CREATEPROCESS$hat has executed at least one
PTHREAD intrinsic).

2 Secondary thread (process created by the
HPTHDCREATEIntrinsic).
2138 Initial Thread Pin (132) — Returns the PIN of the initial thread for this

process. If the process is not part of a threaded task, then a PIN of O is
returned. If the process is an initial thread, then its own PIN is
returned.

2139 Initial Thread PID (REC) — Returns the PID of the initial thread for
this process. If the process is not part of a threaded task, then a PID of
0 is returned. If the process is an initial thread, then its own PID is
returned.

Record type: longint_type(Refer to the AIF Reference Manual)

2140 List of Secondary Thread PIDs (REC) — Returns of list of PIDs of all
the secondary threads. The first word must hold the size, in longwords,
of the rest of the buffer area. The first word, upon return, specifies the
number of PIDs returned.

This item is relevant only if the process is an initial thread or a
secondary thread. If a regular process is specified, then no PIDs are
returned and a value of O is returned in the first word.

Record type: I64rec_typg(Refer to the AIF Reference Manual).

2141 TIN (132) — Returns the Thread Identification Number. Each thread
must have a unique TIN. For a regular process (non-thread) the value 0
is returned.

64 Chapter 5

Programming with Kernel Threads
Changes to AIF Routines

AIFSYSWIDEGET Following is the associated item number:

Chapter 5

Item#
2137

Name (Type) and Description

Thread Type (132A) — Passing this criteria returns the PIDs of
processes with the thread type equal to the specified criteria value.
Valid values for this item are:

0 Regular process (not a thread).

1 Initial thread (process created by the RUN command
or CREATEPROCESShat has executed at least one
PTHREAD intrinsic).

2 Secondary thread (process created by the
HPTHDCREATEIntrinsic).

65

Programming with Kernel Threads
Input Reference Parameter Protection for Intrinsics

FDEVICECONTROL

FCONTROL

AIF Intrinsics

POSIX Intrinsics

Input Reference Parameter Protection for Intrinsics

When an intrinsic accepts a reference parameter, the data within that parameter could
be changed by another thread if the data does not lie on the calling thread's stack. If it
appeared that a corrupt input reference parameter could either cause the system to
abort or corrupt system data structures, protection was added to that intrinsic.

The following list contains intrinsics that make input reference parameter protection
difficult. Programmers need to provide their own scheme for protecting the input
reference parameter data during the execution of these intrinsics.

The LENGTHparameter given to the intrinsic must exactly describe the length of the
BUFFERparameter. If LENGTHis either longer or shorter than the actual length of the
BUFFERparameter, unexpected results could occur.

There is no input reference parameter protection provided for the PARAMparameter.

There is no input reference parameter protection provided for any of the AIF parameters.

The following POSIX intrinsics were found to have input reference parameters that
could be corrupted when used in a threaded environment.

POSIX Intrinsic Input Reference Parameter Name
chmod path

closedir dirp

mkdir path

opendir dirname

opendir_r dirname

readdir dirp

readdir_r dirp

rewinddir dirp

rmdir path

unlink path

creat path

open path

getenv name

ioctl arg (and all areas pointed to by arg)

66 Chapter 5

Programming with Kernel Threads
Input Reference Parameter Protection for Intrinsics

MKS Routines Some routines from MKS available for POSIX are:
confstr fnmatch getopt glob
popen regerror regexec sysconf
system wordexp

It is up to the caller to provide the necessary protection scheme for input reference
parameters used by the MKS routines.

Chapter 5 67

Programming with Kernel Threads
File Access From Threads

Fi

le Access From Threads

The following is a high-level overview of the file system functionality available:

The file system supports thread sharable NM disk files, including user mapped files
and spoolfiles. CM files (tapes, cir, rio, CM KSAM) are thread private
(Thread-Non-Sharable). Thread-Semi-Sharable terminals and printers are
supported. Thread-Semi-Sharable means that some, but not all, intrinsics can be
called from all threads for these file types.

PRINT and READX can be used by any thread if $STDIN or $STDLIST is an
AVESTA or Virtual Terminal. They are only supported for the initial thread, if the
terminal is a TMUX Terminal. READ is supported for the initial thread only for all
terminal types.

Only the initial thread can open Thread-Non-Sharable or Thread-Semi-Sharable files
as system files. Only the initial thread can re-open system files if the system files are
printers or terminals. However, HPFDUPLICATE allows each thread to get their
own file descriptor for a system file.

FCHECK (filenum) returns the last error that the calling thread incurred on the file
if that error is also the last file system error for the calling thread.

FLOCK behaves as an advisory lock outside task boundaries; if one thread in a task
has a file FLOCKed, all other threads block if they call a file system intrinsic on the
file.

For IOWAIT, only the thread that opened the file for NOWAIT 10 can call IOWAIT
for that file, and only the thread that opened the file with NOWAIT can call any 10
intrinsics on the file.

68

Chapter 5

Chapter 5

Programming with Kernel Threads
GlanceXL

GlanceXL

GlanceXL displays a task’s thread information and child information separately. The
thread information is not formatted like that found in SHOWPROC. Each thread looks
like an individual process, having it's pin number (used by the dispatcher) displayed, as
opposed to it's thread number within the task.

69

Programming with Kernel Threads

XL.PUB.SYS

Table 5-1

XL.PUB.SYS

In a threaded environment, any XL module that used global or static variables has the
potential to have these data areas corrupted. The following table lists the modules that
appear to be safe to use in a threaded environment. However, until all modules are
explicitly thread-safe, it is recommended that you provide your own locking scheme to
prevent multiple calls to all entry points.

Thread-Safe XL.PUB.SYS Modules

Module Name

Description

Module Name

Description

STIS209S VPLUS/NV SENTRYTI TURBOIMAGE/XL
HP31900 MPE/iX HP36961 NCS RUNTIME
PSICOMN PSI COMMON FMT IND FORMATTER
LANCELOT NIO LAN DRIVER LSS IND LSS

SOCKET NET SOCKETS SO1STLIB TOOLSET LIBRARY
NMEVNT SYSMGR NMEVENT S258391C TURBOIMAGE/XL
U_QFABS CORE LIBRARIES S29S391C TURBOIMAGE/XL
ACTUTILS IMAGE/SQL HP32007 BSC LINK/XL
HP32015 HP LAN MANAGER DBCORE.P ALLBASE/XL HP SQL
HP30293 SNA IMF/XL HP30294 LU 6.2 API/XL
HP32589 HOST DIAGNOSTIC HP36936 HP SYSTEM MANAGER
HP36957 FTP/XL STEALTH FDDI LAN DRIVER
GALAHAD TOKEN RING DRIVER AHPDINT INTRINSICS DRIVER
PSILAPB PSI LAPB DRIVER SNMP HP SNMP/XL AGENT
PSISDLC PSI SDLC DRIVER HPSQL2 ALLBASE/XL HP SQL
HPSQL3 ALLBASE/XL HP SQL HP32209 VPLUS

HPSQLS5 ALLBASE/XL HP SQL HPSQLS ALLBASE/XL HP SQL

70

Chapter 5

Programming with Kernel Threads
PTHREAD Intrinsics

PTHREAD Intrinsics
The following are the PTHREAD intrinsics supported for DCE/3000. The PTHREAD
procedure and type declarations are located in the PTHREADH.THREADSfile.
int
pthread_cond_broadcast (cond)
pthread_cond_t *cond;
int
pthread_cond_destroy (cond)
pthread_cond_t *cond;
int
pthread_cond_init (cond, attr)
pthread_cond_t *cond;
pthread_condattr_t attr;
int
pthread_cond_signal (cond)
pthread_cond_t *cond;
int
pthread_cond_timedwait (cond, mutex, abstime)
pthread_cond_t *cond,;
pthread_mutex_t *mutex;
struct timespec *abstime; /* version 5 syntax */
int
pthread_cond_wait (cond, mutex)
pthread_cond_t *cond;
pthread_mutex_t *mutex;
int
pthread_mutex_destroy (mutex)
pthread_mutex_t *mutex;
int
pthread_mutex_init (mutex, attr)
pthread_mutex_t *mutex;
pthread_mutexattr_t attr;
int
pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;

int

Chapter 5 71

Programming with Kernel Threads
PTHREAD Intrinsics

pthread_mutex_trylock (mutex) /* returns 0 if owned */
pthread_mutex_t *mutex /* by current thread */
[* (ver 5) versus */
/*-1 (ver 3) */
int
pthread_mutex_unlock (mutex)
pthread_mutex_t *mutex;
int
pthread_cancel (thread)
pthread_thread_t thread,;
int

pthread_setasynccancel (state) /* May only set async */

/* cancel off!! */
int state; /* Async Cancels not */
/* supported. */

int
pthread_setcancel (state)
int state;
void
pthread_testcancel ()
int
pthread_keycreate (key, destructor) /* version 5 syntax.*/
pthread_key_t *key; [* The destructor is*/
void (*destructor) () /* now called when */
/* thread exits! */
int
pthread_getspecific (key, value) /* version 4 semantics */
pthread_key_t key;
void **value;
int
pthread_setspecific (key, value) /* version 4 semantics */
pthread_key_t key;
void *value;
int
pthread_once (once_block, init_routine)
pthread_once_t *once_block;
void (*init_routine)();

pthread_thread_t

72

Chapter 5

Programming with Kernel Threads
PTHREAD Intrinsics

pthread_self ()

void

pthread_yield ()

int

pthread_attr_create (attr)
pthread_attr_t *attr;

int

pthread_attr_delete (attr)
pthread_attr_t *attr;

int

pthread_attr_setstacksize (attr, stacksize)
pthread_attr_t *attr;
long stacksize;

int

pthread_create (thread, attr, start_routine, arg)
pthread_thread_t *thread,;
pthread_attr_t attr; /* attr IGNORED! */
pthread_
void *(*start_routine) ();
void *arg;

int

pthread_join (thread, exit_status)
pthread_thread_t thread;
void **exit_status;

int

pthread_detach (thread)
pthread_thread_t *thread,;

pthread_exit (exit_status)
void *exit_status;

int

pthread_get_expiration_np (delta, abstime)
struct timespec *delta;
struct timespec *abstime;

int

pthread_delay_np (interval)

struct timespec *interval;

Chapter 5 73

Programming with Kernel Threads
PTHREAD Intrinsics

The following macros are defined in pthread.h to register and unregister per-thread
cleanup handlers:

pthread_cleanup_push(routine_parm, arg_parm)

pthread_cleanup_pop(exception)

74 Chapter 5

Symbols

$STDIN, 68
$STDLIST, 68

A

account structure, 23
accounting, 26
ACD, 26
ACLs, 33
ACTIVATE, 63
activate, 43
ACTIVATE command, 45
AlF, 64
AIlF Intrinsics, 66
AIFPROCGET, 64
AIFPROCPUT, 64
AIFSYSWIDEGET, 65
algorithm

default, 17
ALTPROC command, 18
asynchronous signals, 54
authentication, 20

B

B3821AA, 12, 26, 28
B3822AA, 12, 26, 28
BLKCB, 61
BLKMM, 61
Breakpoints, 43
stop-all-threads, 43
task-wide, 43
thread-specific, 43
breakpoints, 59

C

C queue, 21
C/XL library, 56
CD, 26

CD (Create Directory Entries), 26

CDS, 11, 13

CDS client, 36

CDS components, 13
CDS configuration, 33
CDS namespace, 19
cdsadv, 33

cdsd, 33

cell boundaries, 25

Cell Directory Service (CDS), 11

cell name, 32

changing a configuration, 38

changing cell name, 38
changing configuration, 39
changing name of cell, 39
CM stack, 42
Commands, 43, 44
commands

ACTIVATE, 44, 45

ALTPROC, 18

break, 45

CONTINUE, 45, 59

debug, 45

Index

dtscp show all, 35

dtscp show current time, 36

dtscp show local server, 35

dtscp show state, 35

jobpri cs, 21

RESTORE, 28

RUN, 62

SETCLOCK, 35

SHOWPROC, 18, 44

SUSPEND, 44, 45

TIN, 44
compiler flags, 46
compiling, 46
components

CDS, 13

DTS, 13

miscellaneous, 16

OSF, 11

RPC, 15

Security, 14
condition variables, 52
configuration

options, 31

order, 31
configurations

unsupported, 19
configure system

client system, 30

DCE server, 30
configuring

CDS server, 31

DCE cells, 29

DTS client, 31

DTS server, 31

initial cell, 31

security server, 31

time provider, 31

time server, 31
CONTINUE, 59
CONTINUE command, 45, 59
core services, 11
CPUTIME, 60
Create Directory Entries (CD), 26
CREATEPROCESS, 62
createprocess, 42
CS queue, 21

D

Data Encryption Standard, 17
Data Encryption Standard (DES), 17
DCE cell, 23
DCE cell principal, 39
DCE client node, 36
DCE configuration options, 29
DCE configuration tool, 29
DCE configurator

dce_config, 30
DCE daemon

cdsadv, 33

cdsd, 33
DCE daemon jobs

75

Index

csadv, 37
rpcd, 33, 36
secclntd, 33, 36
secd, 33
DCE Daemons, 21
cdsd, 21
rpcd, 21
secd, 21
DCE daemons
stopping, 39
DCE file locations, 26
DCE installation, 28
DCE main menu, 30
DCE program name comparisons, 21
DCE Security, 11, 20
DCE servers
CDS, 36
DTS, 36
Security, 36
DCE/3000, 11
dce_config, 18, 30, 32, 38, 39
dce_login, 32
DCECONFG, 30
DCEXL, 11
DD, 26
DD (Delete Directory Entries), 26
debug, 42
debug thread commands, 45
debugging treaded applications, 59
Delete Directory Entries (DD), 26
DES (Data Encryption Standard), 17
descendents, 60
DFS, 19
disk space, 23
Diskless Operation, 19
Distributed Time Service (DTS), 11
DOD, 17
domestic version, 12
DTS, 11, 13
DTS components, 13
DTS daemon, 34
DTS NTP, 35
DTS NTP time provider, 35
DTS NULL, 35
DTS NULL time provider, 35
dtscp show all command, 35
dtscp show current time command, 36
dtscp show local server command, 35
dtscp show state command, 35

E

environ, 54

Environmental Variable, 43

Environmental Variables, 44
SS TERM_KEEPLOCK, 45
TERM_KEEPLOCK, 45

error handling, 51

exec, 42

execution state, 61

F
FATHER, 63

FCHECK, 68
FCONTROL, 66
FDEVICECONTROL, 66
FIFO, 42

file locations, 26

file naming convention, 21
FLOCK, 68

fork, 42

free space, 23

G

GDA, 25

GDS, 25

GETPRIORITY, 63
GETPROCINFO, 63

GlanceXL, 69

global data bugs, 59

Global Directory Agent (GDA), 25
Global Directory Services, 19
GMT, 19

H

hardware requirements, 23
HFS directory, 26

HP C/XL, 46

HP NS Transport, 23
HPDEBUG, 59
HPFDUPLICATE, 68
HPOPEN, 44
HPTHDCREATE, 64, 65

inherit scheduling, 42
initial thread, 42
installation, 28
installation job
100B3821A, 26
100B3822A, 26
intercell communications, 25
international version, 12
internationalization, 19
intrinsics
activate, 43
suspend, 43
10, 68
IOWAIT, 68

J

jobpri cs, 21
jobpri cs command, 21

K

kdestroy, 20
Kerberos, 20
Kernel Threads, 53
Kernel Treads, 11
keyseed, 32

KILL, 63

76

L

Limitations, 45
limitations, 19

OSF DCE 1.0.2, 19
localization, 19
localtime, 36

M

makefile, 47
MANAGER.SYS, 28
manager.sys, 21

media, 23, 24

memory, 23

miscellaneous components, 16
MKS routines, 67

modifying a configuration, 38
modifyng configuration, 39
MPE CI environment, 21
MPE shell environment, 21
MPE/iX, 21

MPE/iX HFS, 19
multi-theraded task, 42
multithreaded, 54

mutexes, 52

Mutual Exclusion Objects, 52
my_machine, 37

N

network dependencies, 23
NM stack, 42

NOTREE, 60, 61
NOWAIT, 68

NOWAIT 10, 68

@)

operating system, 23
OS thread, 27

OSF, 18

OSF components, 11

P

Parameters
BUFFER, 66
LENGTH, 66
PARAM, 66
reference, 66

passwd_import, 19

password, 32

PCB, 42

PCBX, 42

PIB, 42

PIBX, 42

PIN, 60

pin number, 42

pinspec, 60

planning
preinstallation, 25

POSIX, 21, 30

POSIX compliant, 42

preinstallation, 23, 25

preinstallation planning, 25

Index

principal name, 32
principal password, 32
PRINT, 68

priority, 42

process, 42

Process Identification Number (PIN), 60
process management, 60
process port, 42
PROCINFO, 62
PROCTIME, 63

progress messages, 32
PTHREAD, 62, 65, 71
PTHREAD Intrinsics, 71
PTHREAD.THREADS, 71
pthread_create, 44
pthread_yield, 55

Q

QPRI, 60
QUIT, 63

R

READ, 68
READX, 68
READY, 61
RECEIVEMAIL, 63
reconfiguring, 32

DTS client, 31

DTS server, 31
reconfiguring a client, 37
reconfiguring DCE server, 39
reentrant definitions, 57
reentrant routines, 57
Registry database, 19
reinstalling, 27
remote login utilitiy, 21
Remote Procedure Calls (RPC), 11
REMOVE, 39
removing

DTS client, 31

DTS server, 31
removing a client, 37
removing DCE server, 39
requirements

hardware, 23

software, 23

system, 23
RESTORE command, 28
restoring server, 39
rgy_edit, 19, 32
round robin, 42
RPC, 11, 15, 17, 20, 30
RPC components, 15
RPCD, 12
rpcd, 33
run, 42
RUN command, 62

S

safe code, 56
scheduling policy, 42
scheduling scope, 42

77

Index

seccintd, 33 tools

secd, 33 configuration, 18
security, 21 dce_config, 18
Security client, 36 diagnostic, 18
Security Components, 14 passwd import’ 19

SENDMAIL, 63 rgy_edit, 19
SETCLOCK, 35 tread safe, 56
SETCLOCK commnd, 35 TREE option. 60
SHOWPROC, 44, 69 TRY 55p ’
SHOWPROC command, 18 Trv/Catch. 46
SHOWPROC display, 60 y !
signal handlers, 54

single mask, 54 u
softlink, 36 UNCONFIGURE, 38, 39
software requirements, 23 unconfigured, 38
spoolfile, 28 unsupported configurations, 19
SR 5 space, 42 updating, 27
SS TERM_KEEPLOCK, 59 utilities
stack size, 42 kdestroy, 20
STANDARD CONFORMANCE, 46 remote login, 21
start_thread, 44
STATE, 60, 61 Vv
stdio interfaces, 58)
stop DCE daemon, 39 versions
stopping a cell, 38 domestic, 12, 17, 20
SUMMARY format, 60 international, 12, 17, 20
SUSPEND, 63
suspend, 43 W
SUSPEND command, 45
synchronous signals, 54 WAIT, 61
system clock, 25
SYSTEM option, 60 X
system requirements, 23 X/Open Directory Service (XDS), 19
system state, 27 X/Open Object Management (XOM), 19
system type, 23 XDS, 19
XL.PUB.SYS, 70

T XOM, 19
tapes

6250 bpi mag, 24

8mm DAT, 24

release, 24

update, 24
task, 42
TCB, 42

TERMINATE, 63

terminating signals, 54

thd_mtx, 44

Threaded applications, 54

Threads
communication, 52
creation, 51
File Access, 68
management, 51
Non-Sharable, 68
scheduling, 51, 53
Semi-Sharable, 68
synchronization, 52

threads, 42

thread-safe, 54

three-level hierarchy, 21

Time servers, 33

TIN, 64

TMUX, 68

78

	1 General Information
	Version Identification
	DCE/3000 Components and Files
	Domestic and International Version
	Configuration and Diagnostic Tools
	Release Limitations
	Limitations of OSF DCE 1.0.2
	Kerberos Authentication Protocol Compatibility
	Security for DCE User Accounts

	DCE/3000 versus DCE/9000: Differences
	File Naming Convention
	Managing DCE Daemons
	Security and Remote Login Utilities

	Release Documents

	2 Installing DCE/3000 Software
	Hardware and Software Requirements
	Distribution Media
	Preinstallation Planning
	Determining Cell Boundaries
	Intercell Communications

	Accounting Structure Change
	Checking the System State
	Installation

	3 Configuring DCE Cells
	Using the DCE Configuration Tool
	Using the DCE Configuration Options
	Configuring an Initial Cell
	Configuring a DTS Server
	Removing or Reconfiguring a Client
	Removing or Reconfiguring a Server

	4 Programming Notes
	Threads Architecture
	Threads on MPE/iX
	Process Management and Threads
	Development, Debugging, and Application Execution of Threads

	Building DCE Programs
	Header Files
	Compiler Flags
	Unresolved Externals
	MPE/iX Makefile Example
	HP-UX Makefile Example

	5 Programming with Kernel Threads
	Threads Synchronization and Communication
	Mutexes (Mutual Exclusion Objects)
	Condition Variables
	Join Facility

	Threads Scheduling
	Writing Threaded Applications
	Writing Thread-Safe Code
	Reentrant Interfaces
	stdio Interfaces
	Debugging Threaded Applications
	Process Management Commands
	Process Management Intrinsics
	Changes to AIF Routines
	Input Reference Parameter Protection for Intrinsics
	File Access From Threads
	GlanceXL
	XL.PUB.SYS
	PTHREAD Intrinsics
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Index

