
HP COBOL II/XL Programmer's Guide

900 Series HP 3000 Computer Systems

ABCDE

HP Part No. 31500-90002

Printed in U.S.A. July 1991

E0791

Notice

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard Company.

Copyright c
 1987, 1988, 1991 by HEWLETT-PACKARD COMPANY

This document contains information which is protected by copyright. All rights are reserved.
Reproduction, adaptation, or translation without prior written permission is prohibited,
except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs
(c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Printing History

New editions are complete version of the manual. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the
customer. The dates on the title pages change only when a new update is published. No
information is incorporated into a reprinting unless it appears as a prior update; the edition
does not change when an update is incorporated.

The software code printed alongside the date indicates the version level of the software
product at the time the manual or update was issued. Many product updates and �xes
do not require manual changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

First Edition November 1987 31500A.00.12
Second Edition October 1988 31500A.01.06
Third Edition July 1991 31500A.04.03

iii

iv

Preface

This HP COBOL II/XL Programmer's Guide for the Hewlett-Packard HP COBOL II/XL
programming language is intended for experienced COBOL programmers who are
familiar with the MPE XL �le system and HP 3000 subsystems. It discusses selected
HP COBOL II/XL topics in detail and explains statement interaction where necessary. It
does not explain every feature of HP COBOL II/XL, as the HP COBOL II/XL Reference
Manual does.

The following brie
y describes each chapter.

Chapter 1 Describes HP COBOL II/XL in terms of its relationship to COBOL II,
ANSI COBOL 1985, ANSI COBOL 1974, and its environment.

Chapter 2 Describes HP COBOL II/XL in terms of its features.

Chapter 3 Explains structured programming. Tells you how to design your program
for maximum run-time e�ciency and portability.

Chapter 4 Explains how your program can call subprograms and intrinsics.

Chapter 5 Explains how your program can use �les.

Chapter 6 Explains how to compile and link your program.

Chapter 7 Explains how to debug your program.

v

Additional Documentation

Refer to the following manuals for more information about HP COBOL II/XL:

HP COBOL II/XL Reference Manual (31500-90001)
HP COBOL II/XL Quick Reference Guide (31500-90003)

Refer to the following manual for information about migrating HP COBOL II/V programs to
HP COBOL II/XL:

HP COBOL II/XL Migration Guide (31500-90004)

This manual references the following manuals:

HP FORTRAN 77 Programmer's Guide (5957-4686)
KSAM/3000 Reference Manual (30000-90079)
Using KSAM/XL (32650-90168)
Using Files: A Guide for New Users of HP 3000 Computer Systems (30000-90102)
TurboIMAGE/XL Reference Manual (30391-90001)
HP Pascal/XL Reference Manual (31502-90001)
HP Pascal/XL Programmer's Guide (31502-90002)
HP System Dictionary/XL General Reference Manual (32256-90004)
HP Screen Management Intrinsic Library Reference Manual (32424-90002)
MPE XL Commands Reference Manual (32650-90003)
MPE XL Intrinsics Reference Manual (32650-90028)
MPE XL Error Message Manual, Volume 1 (32650-90066)
MPE XL Error Message Manual, Volume 2 (32650-90152)
Compiler Library/XL Reference Manual (32650-90029)
MPE XL System Debug Reference Manual (32650-90013)
Switch Programming User's Guide (32650-90014)
HP Symbolic Debugger/XL User's Guide (31508-90003)
HP TOOLSET/XL Reference Manual (36044-90001)
HP SQL/XL COBOL Application Programming Guide (36216-90006)

vi

Acknowledgment

At the request of the American National Standards Institute (ANSI), the following
acknowledgment is reproduced in its entirety:

Any organization interested in reproducing the COBOL standard and speci�cations in
whole or in part, using ideas from this document as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their entirety as part of the preface
to any such publication (any organization using a short passage from this document, such
as in a book review, is requested to mention \COBOL" in acknowledgment of the source,
but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein have speci�cally
authorized the use of this material in whole or in part, in the COBOL speci�cations.
Such authorization extends to the reproduction and use of COBOL speci�cations in
programming manuals or similar publications.

FLOW-MATIC (trademark of Sperry Rand Corporation) Programming for the
Univac R
 I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM,
FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

vii

Conventions

Notation Description

Change bars in the margin show where substantial changes have been
made to this manual since the last edition.

UPPERCASE and
UNDERLINING

Within syntax statements, characters in uppercase must be entered
in exactly the order shown. Uppercase words that are underlined are
keywords that are always required when the clause or statement in which
they appear is used in your program. Uppercase words that are not
underlined are optional, and may be included or omitted. They have
no e�ect on program execution and serve only to make source program
listings more readable. The following example illustrates this:

[FILE STATUS IS stat-item].

STATUS must be entered, FILE may be either included or omitted. See also
\Underlining in dialog" on the following page.

italics Within syntax statements, a word in italics represents a formal parameter,
argument, or literal that you must replace with an actual value. In the
following example, you must replace �lename with the name of the �le
you want to release:

RELEASE �lename

punctuation Within syntax statements, punctuation characters (other than brackets,
braces, vertical parallel lines, and ellipses) must be entered exactly as
shown.

{ } Within syntax statements, when several elements within braces are
stacked, you must select one. In the following equivalent examples, you
select ON or OFF:

{ON }

SETMSG {OFF}

SETMSG

�
ON

OFF

�

{| |} Within syntax statements, bars in braces are choice indicators. One or
more of the items within the choice indicators must be speci�ed, but a
single option may be speci�ed only once.

viii

[] Within syntax statements, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter and
its delimiter are not required:

PURGE �lename[,TEMP]

When several elements within brackets are stacked, you can select any one
of the elements or none. In the following equivalent examples, you can
select devicename or deviceclass or neither:

[devicename]

SHOWDEV [deviceclass]

SHOWDEV

�
devicename

deviceclass

�

Underlining in
dialog

When it is necessary to distinguish user input from computer output, the
input is underlined. See also underlining on the previous page.

NEW NAME? ALPHA

[] ... Brackets followed by a horizontal ellipsis indicate either that a previous
bracketed element may be repeated zero or more times, or that elements
have been omitted from the description.

[WITH DUPLICATES] ...

The ellipsis shows that the preceding clause may be repeated inde�nitely.

{ } ... Braces followed by a horizontal ellipses indicate either that the item
within braces may be repeated one or more times, or that elements have
been omitted from the description.

t Within syntax statements, the space symbol t shows a required blank. In
the following example, you must separate modi�er and variable with a
blank:

SET [(modi�er)]t(variable);

<, >, =, <=,

>=, <>

These symbols are used in conditional statements to represent the
keywords LESS THAN, GREATER THAN, EQUAL TO, LESS THAN
OR EQUAL TO, GREATER THAN OR EQUAL TO, and NOT EQUAL
TO, respectively. Although these symbols represent keywords, they are
not underlined.

ix

; The semicolon is used only to improve readability and is always optional.

, The comma is used only to improve readability, and is always optional.

. The period is a terminator or delimiter that is always required where
shown; it must always be entered at the end of every division name,
section name, paragraph name, and sentence.

^ The caret is occasionally used in examples to represent an implied decimal
point in computer memory.

NNNNNNNNNNNNNNNNNNNNNNN
Shading Features that are part of the 1985 ANSI standard are

NNNNNNNNNNNNNNNNNNNN
shaded . They are

accessible through the ANSI85 entry point.

LG200026 198 In some diagrams and tables, a number appears in the lower left
corner. This number is for HP control purposes only and should not be
interpreted as part of the diagram or table.

x

Contents

1. Introduction
Debugging COBOL Programs . 1-3
Subsystems that Interface with HP COBOL II/XL 1-3

2. Features of the 1985 ANSI Standard
Introduction . 2-1
ANSI85 Features . 2-2
ANSI85 Features in the IDENTIFICATION DIVISION: 2-3
The INITIAL Clause . 2-3
The COMMON Clause . 2-3

ANSI85 Features in the ENVIRONMENT DIVISION 2-4
CLASS Clause . 2-4
SYMBOLIC CHARACTERS Clause 2-5

ANSI85 Features in the DATA DIVISION 2-6
EXTERNAL Data Items and Files 2-6
FILLER . 2-6
USAGE IS BINARY and USAGE IS PACKED-DECIMAL 2-7

ANSI85 Features in the PROCEDURE DIVISION 2-8
ADD Statement Enhancement . 2-8
ALPHABETIC-LOWER and ALPHABETIC-UPPER Class Tests 2-9
CALL BY CONTENT . 2-9
De-Editing . 2-10
INITIALIZE Statement . 2-11
INSPECT CONVERTING Statement 2-12
Reference Modi�cation . 2-13
Relational Operators . 2-13
REPLACE Statement . 2-14
Setting Switches . 2-15
Setting Condition Names . 2-16
Table Initialization . 2-16

Obsolete Features . 2-17
Incompatible Features . 2-21
ALPHABET Keyword . 2-21
CANCEL and STOP RUN Statements 2-22
EXIT PROGRAM Statement . 2-22
Exponentiation . 2-23
OCCURS Clause . 2-24
READ NEXT after OPEN I-O, WRITE and REWRITE Statements . . . 2-25
VARYING . . . AFTER Phrase in PERFORM Statement 2-26
File Status Codes . 2-27

Contents-1

3. Programming Practices
Introduction . 3-1
Structured Programming . 3-1
END PROGRAM Header . 3-2
IDENTIFICATION DIVISION: COMMON Clause 3-5
DATA DIVISION: GLOBAL Data Items and Files 3-5
PROCEDURE DIVISION . 3-7
CONTINUE Statement . 3-7
EVALUATE Statement . 3-7
Explicit Scope Terminators . 3-9
NOT Phrases . 3-11
PERFORM Statement Enhancements 3-12
USE GLOBAL AFTER ERROR PROCEDURE ON Statement 3-14
Using a File Open Mode . 3-14
Using a GLOBAL File . 3-14

When to Use Nested Programs and GLOBAL Data 3-15
Run-Time E�ciency . 3-23
Coding Heuristics . 3-23
Coding Heuristics when Calling COBOL Functions 3-26

Control Options . 3-27
The Optimizer . 3-28
Millicode Routines . 3-28
When to Use the Optimizer . 3-29
Transformations . 3-29

Portability . 3-30
Portability Between HP 3000 Architectures 3-31
Portability Between HP 3000 and Non-HP Machines 3-32
Cross-Development . 3-33
HP Extensions . 3-34

4. Subprograms and Intrinsics
Introduction . 4-1
External Names . 4-2
Internal Names . 4-3
Chunk and Locality Set Names . 4-4
Data Alignment on MPE XL . 4-6
Parameter Checking . 4-7
Parameter Passing . 4-8
Passing Parameters by Reference 4-8
Passing Parameters by Content . 4-8
Passing Parameters by Value . 4-8
Parameter Alignment . 4-9
Passing and Retrieving a Return Value 4-9
Working with the Link Editor . 4-9

Call Binding . 4-10
Subprogram Libraries . 4-10
Compile-Time Binding . 4-11
Terminology . 4-11
Call Rules . 4-13

Link-Time Binding . 4-15
Load-Time Binding . 4-16

Contents-2

Execution-Time Binding . 4-17
Switch Stubs . 4-18
Calling COBOL Subprograms . 4-19
Types of Subprograms . 4-19

Calling Non-COBOL Subprograms 4-21
Calling Subprograms Written in C 4-22
Calling Subprograms Written in FORTRAN 77 4-25
Calling Subprograms Written in Pascal 4-29
Calling Subprograms Written in SPL 4-36
Writing Switch Stubs . 4-36

EXTERNAL Data Items and Files 4-54
EXTERNAL Items and FORTRAN 4-57
EXTERNAL Items and Pascal . 4-57
EXTERNAL Items and C . 4-57
Sharing EXTERNAL Items . 4-57
COBOL, FORTRAN, and Pascal Example 4-58

GLOBAL Data Items and Files . 4-60
Calling Intrinsics . 4-61
Using $CONTROL CALLINTRINSIC 4-61
How Intrinsics Are Called . 4-61
Passing Real Numbers to Intrinsics 4-63

5. Files
Introduction . 5-1
Logical Files . 5-5
Sequential Organization Files . 5-8
How to Code Sequential Organization Files 5-9
The FILE STATUS Clause . 5-11
The BLOCK CONTAINS Clause 5-11
The RESERVE Clause . 5-11
The CODE-SET Clause . 5-12
Circular Files . 5-13
Message Files . 5-16
Print Files . 5-19

Random Access Files . 5-20
How to Code Random Access Files 5-21
Assigning Values to Keys . 5-23
Accessing Random Access Files Sequentially 5-24

Relative Organization Files . 5-24
How to Code Relative Organization Files 5-25
Sequential Access . 5-25
Random Access . 5-25
Dynamic Access . 5-25

Indexed Organization Files . 5-30
How to Code Indexed Organization Files 5-30
Creating Indexed Files . 5-33
Sequential Access of Indexed Files 5-34
Random and Dynamic Access 5-34
Generic Keys . 5-35
Duplicate Keys . 5-35

Variable Length Records . 5-36

Contents-3

Physical Files . 5-40
ASSIGN Clause . 5-41
Temporary Physical Files . 5-41
BUILD Command . 5-41
FILE Command . 5-42
Dynamic Files (USING phrase) . 5-44
Multiple Files on a Labelled Tape 5-46

Overwriting Files . 5-47
Updating Files . 5-47
Appending to Files . 5-47
File Status Codes . 5-48
Sequence of Events . 5-56

6. From Program Creation to Program Execution
Introduction . 6-1
Source Program Input . 6-2
ASCII File . 6-2
TSAM File . 6-2
$STDIN File . 6-3

Control File . 6-4
Control Options . 6-5
Performance Options . 6-5
Listing Options . 6-6
Debugging Options . 6-7
Migration Options . 6-9
RLFILE . 6-10
RLINIT . 6-12

Standard Conformance Options . 6-14
Interprogram Communication Options 6-15
Miscellaneous Options . 6-17

Compiling, Linking, and Executing Your Program 6-18
Compiler Entry Points and Modes 6-20
File Equations . 6-21
Native Mode Compiler Command Files and RUN Command 6-22
Compatibility Mode Compiler UDCs and Commands 6-22
Libraries . 6-25
Relocatable Libraries . 6-25
Executable Libraries . 6-26

7. Debugging Your Program
Introduction . 7-1
Control Options for Debugging . 7-1
Compiler Listing . 7-2
Messages . 7-9
Compile-Time Messages . 7-9
Run-Time Error Messages . 7-11
Input-Output Errors . 7-11
Run-Time Traps . 7-12
Data Validation . 7-12

Using Debug . 7-14
Symbol Table Map . 7-15

Contents-4

Verb Map . 7-15
Link Map . 7-16
Maps for Chunked Program . 7-17
Example Maps for Nested and Concatenated Programs 7-20
Subprogram Parameters . 7-24
Register Meanings . 7-25
Calculating Addresses of Data Items 7-26
Calculating Code Addresses . 7-28
Debugging Trap Errors . 7-29
Redirecting Output from Traps 7-29
Illegal ASCII Digit . 7-30
Range Error . 7-33
No Size Error . 7-35
PERFORM Stack Over
ow . 7-36
Invalid GO TO . 7-38
Address Alignment . 7-39
Invalid Decimal Data in NUMERIC Class Condition 7-42
Traps with COBOL Functions 7-44
Trace Traps . 7-47

Symbolic Debuggers . 7-49
HP Symbolic Debugger/XL . 7-49
HP TOOLSET/XL . 7-49

Compiler Limits . 7-50

Index

Contents-5

Figures

1-1. Relationships between HP COBOL II/XL and the ANSI Standards
COBOL'74 and COBOL'85 . 1-1

4-1. How a Switch Stub Works . 4-18
4-2. The FILE Screen . 4-39
4-3. The MAIN Screen . 4-40
4-4. The PROCINFO Screen . 4-41
4-5. The PARMINFO Screen for Parameter DINT 4-42
4-6. The PARMINFO Screen for Parameter BASE 4-43
4-7. The PARMINFO Screen for Parameter STRING 4-44
4-8. The ARRAYLEN Screen for Parameter STRING 4-45
4-9. The COMMIT Screen . 4-46
5-1. Algorithm for Determining Which File to Open 5-40
5-2. Algorithm for Determining File Attributes 5-43
5-3. Run-Time I-O Error Handling . 5-58
6-1. How a Source Program Becomes an Executing Program 6-18
6-2. COBOL Compiler Input and Output 6-19

Contents-6

Tables

1-1. Components of HP COBOL II/XL 1-2
1-2. Subsystems that Interface with HP COBOL II/XL 1-3
3-1. The Scope Terminators . 3-9
4-1. Argument Descriptor Fields . 4-9
4-2. Types of Subprograms and How to Specify Them 4-19
4-3. Comparison of Non-Dynamic, Dynamic, and ANSISUB Subprograms . . . 4-20
4-4. Compatible COBOL and C Types 4-22
4-5. Compatible COBOL and FORTRAN Types 4-25
4-6. Compatible COBOL and Pascal Types 4-29
4-7. Compatible COBOL and SPL Types 4-36
4-8. Intrinsic Parameter Types and Corresponding COBOL Types 4-62
5-1. I-O Statements and File Types . 5-3
5-2. Attributes of File Types . 5-6
5-3. Access Modes, Open Modes, and Valid I-O Statements for Sequential

Organization Files . 5-8
5-4. Acess Modes, Open Modes, and Valid I-O Statements for Relative

Organization Files . 5-26
5-5. Modes to Open Indexed Files for Sequential Access 5-34
5-6. I/O Statements and Error Handling that Applies to Them 5-48
5-7. ANSI 1985 File Status Codes . 5-50
5-8. ANSI 1974 File Status Codes . 5-53
5-9. Di�erences between ANSI 1985 and ANSI 1974 File Status Codes 5-54
6-1. RLFILE/RLINIT Functionally With Speci�ed Object File 6-12
6-2. RLFILE/RLINIT Functionally With Default File 6-13
6-3. Entry Point and Mode Combination 6-20
6-4. Compatibility Mode UDCs . 6-22
6-5. Compatibility Mode Commands 6-22
6-6. Di�erences between Relocatable and Executable Libraries 6-25
7-1. Debugging Control Options . 7-1
7-2. Compile-Time Message Severities 7-10
7-3. Valid Replacements for Invalid Unsigned ASCII Digits 7-13
7-4. Valid Replacements for Invalid Signed ASCII Digits 7-13
7-5. COBOL Maps . 7-14
7-6. Registers 23 through 26 . 7-24
7-7. Registers 0, 1, and 2 . 7-25
7-8. Registers 27, 30, and 31 . 7-25
7-9. Compiler Limits . 7-50

Contents-7

1

Introduction

HP COBOL II/XL is Hewlett-Packard's implementation of the 1985 ANSI COBOL standard
(X3.23-1985) and the 1974 ANSI COBOL standard (X3.23-1974), the COBOL programming
languages that meet the 1985 and 1974 standards set by the American National Standards
Institute (ANSI).

The HP COBOL II/XL compiler compiles COBOL'74 programs as well as COBOL'85
programs. When you invoke it through its ANSI74 entry point (using the COB74XL
command �le), it accepts only syntax that conforms to COBOL'74. When you invoke it
through its ANSI85 entry point (using the COB85XL command �le), it accepts the syntax of
COBOL'85 plus the intrinsic functions that were de�ned in 1989 by Addendum 1 of the ANSI
COBOL'85 standard. The ANSI85 entry point is the default.

Figure 1-1 shows the relationships between the two entry points of the HP COBOL II/XL
compiler and the two revisions of the ANSI standard, COBOL'85 and COBOL'74:

Figure 1-1.

Relationships between HP COBOL II/XL and

the ANSI Standards COBOL'74 and COBOL'85

The HP COBOL II/XL product consists of a compiler, which translates HP COBOL II/XL
programs into machine object �les, and a run-time library. The object code that the compiler
generates contains calls to routines in the run-time library and, if intrinsic functions are used,
to other languages' run-time libraries.

Note Hereafter in this manual, intrinsic functions will be referred to as COBOL
functions .

Introduction 1-1

Table 1-1 lists components of the HP COBOL II/XL product and describes their use.

Table 1-1. Components of HP COBOL II/XL

File Name Use

COBOL.PUB.SYS The HP COBOL II/XL compiler.

in XL.PUB.SYS The HP COBOL II/XL run-time library.

COBCNTL.PUB.SYS Source �le you can use to override the compiler defaults for the
compiler options. The compiler automatically includes a �le named
COBCNTL.PUB.SYS in each source text�le.

COB85XL.PUB.SYS
COB85XLK.PUB.SYS
COB85XLG.PUB.SYS
COB74XL.PUB.SYS
COB74XLK.PUB.SYS
COB74XLG.PUB.SYS

Command �les you can use to compile, link, and run
HP COBOL II/XL programs.

COBCAT.PUB.SYS Error message catalog �le used by the compiler and the run-time
library.

COBMAC.PUB.SYS Macro �le used by the run-time library to display error information
when a trap is detected.

COBEDIT.PUB.SYS Program you can use to develop and maintain COPY libraries.

1-2 Introduction

Debugging COBOL Programs

HP COBOL II/XL runs on the MPE XL operating system. You can use the debuggers that
run on MPE XL to debug your HP COBOL II/XL programs. They are Debug (the MPE XL
System Debugger) and one of two symbolic debuggers: HP Symbolic Debugger/XL or
HP TOOLSET/XL.

Subsystems that Interface with HP COBOL II/XL

Table 1-2 lists HP subsystems with which HP COBOL II/XL can interface.

Table 1-2. Subsystems that Interface with HP COBOL II/XL

Subsystem Description Where to Look for Details

DEBUG MPE XL System Debugger. System Debug Reference
Manual

HP Symbolic Debugger/XL A full-featured symbolic debugger that is
interactive at the source level.

HP Symbolic Debugger/XL
User's Guide

HP TOOLSET/XL A programming environment for
developing COBOL programs. It provides
source management, a symbolic debugger,
and an editor that is speci�cally for
COBOL.

HP TOOLSET/XL Reference
Manual

TurboIMAGE/XL A network database management system.
Your COBOL program accesses
TurboIMAGE/XL routines with intrinsic
calls.

TurboIMAGE/XL Reference
Manual

HPSQL A relational database management
system whose COBOL preprocessor has
macros that generate calls to HPSQL.

HPSQL/XL COBOL
Application Programming
Guide

HP System Dictionary/XL A dictionary of MPE XL data elements. HP System Dictionary/XL
General Reference Manual

Introduction 1-3

2

Features of the 1985 ANSI Standard

Introduction

Throughout the rest of this manual, the term ANSI85 means \HP COBOL II/XL as invoked
through its ANSI85 entry point," and the term ANSI74 means \HP COBOL II/XL as
invoked through its ANSI74 entry point."

ANSI85 features fall into these categories:

Category Description of Category

ANSI85 Features Features of ANSI COBOL 1985 that ANSI COBOL 1974 does not
have.

Post ANSI85 Features ANSI features implemented since ANSI COBOL 1985. Currently,
this consists only of the COBOL functions.

Obsolete Features Features of ANSI COBOL 1985 that will be deleted from the next
full revision of the ANSI COBOL standard.

Incompatible Features Features of ANSI COBOL 1985 that do not work the same way as
the corresponding ANSI COBOL 1974 features.

HP Extensions Features of HP COBOL II/XL that ANSI COBOL 1974 and 1985
do not include.

This chapter explains ANSI85, obsolete, and incompatible features. For obsolete and
incompatible features, it gives justi�cations for their being in those categories. HP extensions
to ANSI COBOL are listed in Chapter 3, \Portability." For a description of the COBOL
functions, see the HP COBOL II/XL Reference Manual .

Features of the 1985 ANSI Standard 2-1

ANSI85 Features

ANSI85 Features

ANSI85 features are those that ANSI74 does not have. If you use them in your program, you
must invoke the COBOL compiler through its ANSI85 entry point.

The ANSI85 features are listed below, by division. Those marked with an asterisk (*) support
structured programming, and are explained in Chapter 3. The others are explained in this
chapter, by division.

Division ANSI85 Feature

Not part of a division * END PROGRAM header

IDENTIFICATION DIVISION INITIAL clause
* COMMON clause

ENVIRONMENT DIVISION CLASS clause
SYMBOLIC CHARACTERS clause

DATA DIVISION EXTERNAL data items and �les
FILLER is now optional

* GLOBAL data items and �les
USAGE data item formats

PROCEDURE DIVISION ADD statement enhancement
ALPHABETIC-LOWER
ALPHABETIC-UPPER
CALL BY CONTENT

* CONTINUE statement
De-editing

* EVALUATE statement
* Explicit scope terminators

INITIALIZE statement
INSPECT CONVERTING statement

* NOT phrases
* PERFORM statement enhancements

Reference modi�cation
Relational operators
REPLACE statement
Setting switches
Setting condition names
Table Initialization

* USE GLOBAL AFTER ERROR
PROCEDURE ON statement

The END PROGRAM header is not considered to be part of any division. It supports nested
and concatenated programs and is explained in Chapter 3.

2-2 Features of the 1985 ANSI Standard

ANSI85 Features

ANSI85 Features in the IDENTIFICATION DIVISION:

This section explains the INITIAL clause, one ANSI85 feature of the IDENTIFICATION
DIVISION. The other ANSI85 feature of the IDENTIFICATION DIVISION, the COMMON
clause, supports structured programming, and is explained in Chapter 3.

The INITIAL Clause

The INITIAL clause is in the PROGRAM-ID paragraph of the IDENTIFICATION
DIVISION. It speci�es that the program is in an initial state whenever it is called, not only
when it is canceled. In an initial state, data is initialized to the values speci�ed in VALUE
clauses.

If a program that speci�es the INITIAL clause contains other programs (directly or
indirectly), the INITIAL clause applies to those programs also.

The INITIAL clause has the same e�ect as the DYNAMIC control option.

Example

PROGRAM-ID. SUB-PROG INITIAL....
DATA DIVISION.
WORKING-STORAGE SECTION.

01 A-COUNT PIC 9(8) COMP-3 VALUE ZEROS.

01 B-COUNT PIC 9(8) COMP-3 VALUE ZEROS

01 CONV-FIELD.

05 YY PIC XX.

05 MM PIC XX.

05 DD PIC XX....

The �elds A-COUNT and B-COUNT are initialized to zeros each time this subprogram is
called, but the initial value of CONV-FIELD is unde�ned.

The COMMON Clause

The other ANSI85 feature in the IDENTIFICATION DIVISION is the COMMON clause.
The COMMON clause supports structured programming and is explained in Chapter 3.

Features of the 1985 ANSI Standard 2-3

ANSI85 Features

ANSI85 Features in the ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION has two ANSI85 features:

CLASS clause.
SYMBOLIC CHARACTERS clause.

Both are in the SPECIAL-NAMES paragraph.

Note The SPECIAL-NAMES paragraph (in the ENVIRONMENT DIVISION)
cannot appear in nested programs. All items in the SPECIAL-NAMES
paragraph are implicitly global.

CLASS Clause

The CLASS clause is in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION. It de�nes a class for use in a class condition in the PROCEDURE DIVISION.
(The CLASS clause allows a user-de�ned class, in addition to the pre-existing ALPHABETIC
and NUMERIC classes.)

Example

The following shows an example of the CLASS clause de�ning a class VALID-GRADE:

SPECIAL-NAMES.

CLASS VALID-GRADE IS "A" "B" "C" "D" "F".

The following example shows how the class VALID-GRADE could be used:

WORKING-STORAGE SECTION.

01 GRADE-LIST.

05 CLASS-GRADES PIC X OCCURS 7 TIMES....
IF GRADE-LIST IS NOT VALID-GRADE THEN PERFORM ERROR-ROUTINE.

The above IF statement will perform ERROR-ROUTINE if GRADE-LIST contains a
character other than A, B, C, D, or F.

2-4 Features of the 1985 ANSI Standard

ANSI85 Features

SYMBOLIC CHARACTERS Clause

The SYMBOLIC CHARACTERS clause is in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. It equates names with ASCII character numbers, creating
�gurative constants. You can use it to name and refer to characters whose ASCII values are in
the range 1..256. It is especially useful for referencing unprintable characters.

Example

The following shows the SYMBOLIC CHARACTERS clause:

SYMBOLIC CHARACTERS BELL IS 8, CARRIAGE-RETURN IS 14.

The above statement in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION
equates the names BELL and CARRIAGE-RETURN with the unprintable characters for the
bell (ASCII character number 8) and carriage return (ASCII character number 14). In your
program, you can refer to these characters by the names BELL and CARRIAGE-RETURN,
as in the following statement:

DISPLAY BELL "JOB COMPLETED" CARRIAGE-RETURN.

Note The �rst character of the COBOL character set is one, not zero. The COBOL
characters in the preceding example and their binary, octal, decimal, and
hexadecimal representations are:

COBOL
Character

Binary
Representation

Octal
Representation

Decimal
Representation

Hexadecimal
Representation

8 0111 7 7 7

14 1101 15 13 D

Features of the 1985 ANSI Standard 2-5

ANSI85 Features

ANSI85 Features in the DATA DIVISION

This section explains the following ANSI85 features of the DATA DIVISION:

EXTERNAL data items and �les.
The keyword FILLER is now optional.
The USAGE data item formats BINARY and PACKED-DECIMAL.

The other ANSI85 feature of the DATA DIVISION, the GLOBAL clause, supports structured
programming, and is explained in Chapter 3.

EXTERNAL Data Items and Files

EXTERNAL data items and �les can be shared by two or more programs. They provide
another way to pass information between programs. With the EXTERNAL clause, separately
compiled programs can share �les (nested programs can share data and �les using the
GLOBAL clause).

Each program must declare the shared EXTERNAL items that it uses. Shared items are
not passed through the USING phrase. The linker matches the EXTERNAL items by name.
Therefore, their names must be exactly the same in each program. For more information, see
Chapter 4.

Note Data items and �les can be declared both EXTERNAL and GLOBAL.

FILLER

The keyword FILLER can be omitted for data items that are never referenced. This saves
coding time and makes the code easier to read.

Example

The following shows two ways of specifying a record. One uses FILLER and the other omits
it:

01 A.

05 B PIC X(5).

05 FILLER PIC X(5) VALUE "NAME:".

01 A.

05 B PIC X(5).

05 PIC X(5) VALUE "NAME:".

2-6 Features of the 1985 ANSI Standard

ANSI85 Features

USAGE IS BINARY and USAGE IS PACKED-DECIMAL

BINARY and PACKED-DECIMAL usage are alternatives to the default, DISPLAY (one
digit per byte). They are the standard for specifying radixes of two (binary) and ten (packed
decimal).

In the past, BINARY was expressed as the implementor-de�ned COMP and PACKED-
DECIMAL was de�ned as the HP extension COMP-3. COMP and COMP-3 still work the
same, but BINARY and PACKED-DECIMAL allow greater future portability between
machines.

When deciding whether to use DISPLAY, BINARY, or PACKED-DECIMAL for a data item,
consider the following:

How the data item is used:

Is it used in arithmetic or printed? If it is used in arithmetic, what are the formats of the
other operands in the expressions? Avoid mixing formats, which necessitates conversion.

Storage space:

A data item of the format S9(9) BINARY occupies four bytes. A data item of the format
S9(9) PACKED-DECIMAL occupies (number of digits+1)/2 bytes (rounded up to the
nearest whole number). In most cases, BINARY data items occupy less space than
PACKED-DECIMAL data items. (See also \Coding Heuristics" in Chapter 3).

Example

The following shows some example �elds declared in WORKING-STORAGE:

01 VAR-FIELDS.

05 VAR1 PIC S9(5) PACKED-DECIMAL VALUE +12345.

05 VAR2 PIC S9(9) BINARY VALUE +12345.

In the above example, VAR1 is stored in three bytes because PACKED-DECIMAL allows
byte-alignment and allocates only the number of bytes required for the de�ned �eld. The
following shows how VAR1 might be stored in memory:

1 2 3 4 5 C

VAR2 is stored in four bytes. Binary �elds are stored in the two's complement form, requiring
two, four, or eight bytes each.

Features of the 1985 ANSI Standard 2-7

ANSI85 Features

ANSI85 Features in the PROCEDURE DIVISION

This section explains the following ANSI85 features of the PROCEDURE DIVISION:

ADD statement enhancement.
ALPHABETIC-LOWER.
ALPHABETIC-UPPER.
CALL BY CONTENT.
De-editing.
INITIALIZE statement.
INSPECT CONVERTING statement.
Reference modi�cation.
Relational operators.
REPLACE statement.
Setting switches.
Setting condition names.
Table initialization.

The other ANSI85 features of the PROCEDURE DIVISION support structured programming,
and are explained in Chapter 3. These are:

CONTINUE statement.
EVALUATE statemnet.
Explicit scope terminators.
NOT phrases.
PERFORM statement enhancements.
USE GLOBAL AFTER ERROR PROCEDURE ON statement.

ADD Statement Enhancement

An ADD statement in ANSI85 can have both a TO phrase and a GIVING phrase. All literals
and values of the identi�ers to the left of the GIVING keyword are added and the result is
stored into each identi�er named to the right of the GIVING keyword. See Format 2 of the
ADD statement in the HP COBOL II/XL Reference Manual .

Example

The following two statements are equivalent:

ADD A TO B GIVING C

ADD A B GIVING C

2-8 Features of the 1985 ANSI Standard

ANSI85 Features

ALPHABETIC-LOWER and ALPHABETIC-UPPER Class Tests

The class test ALPHABETIC-LOWER returns TRUE if every character of the speci�ed data
item is a lowercase letter or a space. The class test ALPHABETIC-UPPER returns the value
TRUE if every character of a speci�ed data item is an uppercase letter or a space.

Example

The following show two IF statements that use the ALPHABETIC-LOWER and
ALPHABETIC-UPPER class conditions:

IF STRING1 IS ALPHABETIC-LOWER PERFORM UPSHIFT.

IF STRING2 IS ALPHABETIC-UPPER THEN PERFORM CAPITAL.

CALL BY CONTENT

When your program passes an actual parameter BY CONTENT, it copies the actual
parameter and passes the address of the copy to the subprogram. If the subprogram changes
the value of its formal parameter, it changes the value of the copy, but it does not change the
value of your program's actual parameter. For more information on parameter passing, see
Chapter 4.

CALL BY CONTENT has a performance penalty, because each parameter passed BY
CONTENT must be copied.

Features of the 1985 ANSI Standard 2-9

ANSI85 Features

De-Editing

De-editing converts an edited numeric �eld to its numeric value, allowing you to move it to
either a numeric �eld or a numeric edited �eld.

Example

The following shows an example of a de-edited move:

WORKING-STORAGE SECTION.

01 PRINT-A PIC $ZZZ,ZZZ.99CR.

01 HOLD-A PIC S9(6)V99.

PROCEDURE DIVISION.

PARA-001.

MOVE -76543.21 TO PRINT-A.

MOVE PRINT-A TO HOLD-A. A de-edited MOVE statement.

The �rst move statement above sends the following data to PRINT-A:

-076543.21

The following value is stored in PRINT-A:

$ 76,543.21CR

The second move statement is the de-edited move. It sends the following data to HOLD-A:

$ 76,543.21CR

The following value is stored in HOLD-A. (There is an implied decimal point between 2 and
3):

0765432J

All edit symbols are removed and blanks are converted to zeros when the edited value is
moved.

2-10 Features of the 1985 ANSI Standard

ANSI85 Features

INITIALIZE Statement

The INITIALIZE statement sets the values of speci�ed types of elementary items in a record
to speci�ed values.

Example

The following example shows the INTIALIZE statement:

WORKING-STORAGE SECTION.

01 RECORD-1.

05 EMP-NO PIC 9(6).

05 EMP-NAME PIC X(20).

05 EMP-PAY PIC 9(5)V99.
05 JOB-TITLE PIC X(20)....

PROCEDURE DIVISION.

MAIN-100.

INITIALIZE RECORD-1 REPLACING NUMERIC BY ZERO

REPLACING ALPHANUMERIC BY SPACES.

The above INITIALIZE statement has the same e�ect and e�ciency as the following MOVE
statements:

MOVE ZERO TO EMP-NO EMP-PAY.

MOVE SPACES TO EMP-NAME JOB-TITLE.

Note that if the record to be initialized contains only elementary items with �llers or items of
the wrong category, the INITIALIZE statement has no e�ect. An error message is output.

Features of the 1985 ANSI Standard 2-11

ANSI85 Features

INSPECT CONVERTING Statement

The INSPECT CONVERTING statement is similar to the INSPECT REPLACING
statement, but it is more e�cient. It allows you to specify several replacements in one string,
rather than requiring an entire line for each replacement.

Example 1

The following two INSPECT statements are equivalent:

INSPECT WORD CONVERTING "ABCD" TO "XYZX" AFTER QUOTE BEFORE "#".

INSPECT WORD REPLACING

ALL "A" BY "X" AFTER QUOTE BEFORE "#"
ALL "B" BY "Y" AFTER QUOTE BEFORE "#"

ALL "C" BY "Z" AFTER QUOTE BEFORE "#"

ALL "D" BY "X" AFTER QUOTE BEFORE "#".

If in the above example the initial value of WORD is:

AC"AEBDFBCD#AB"D

Then the �nal value of WORD is:

AC"XEYXFYZX#AB"D

Converting uppercase letters to their lowercase forms is much easier with the INSPECT
CONVERTING statement than it would be with the INSPECT REPLACING statement.

Example 2

The following two INSPECT statements are equivalent:

INSPECT NAME CONVERTING

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" TO "abcdefghijklmnopqrstuvwxyz".

INSPECT NAME REPLACING

ALL "A" TO "a"

ALL "B" TO "b"...
ALL "Z" TO "z".

Example 3

The following INSPECT CONVERTING statement translates blanks and asterisks to zeros:

INSPECT AMT-DUE CONVERTING " *" TO "00"

2-12 Features of the 1985 ANSI Standard

ANSI85 Features

Reference Modification

Reference modi�cation allows you to reference part of an item whose usage is DISPLAY.
To access a substring within a data item, specify the position of the leftmost character and
length of the substring, in characters. You can specify the position and length with any integer
expression.

Example 1

If the value of the data item A is \ABCDEFGHI", then the following statement moves the
value \CDEFG" to the data item B:

MOVE A (3:5) TO B

Example 2

The data item in a reference modi�cation can also be the target of a move. If the value of the
data item A is \ABCDEFGHI", then the following statement gives A the value \AB*****HI".

MOVE ALL '*' TO A(3:5)

Example 3

This example shows reference modi�cation on the result of a COBOL function call. The
example calls the COBOL function CURRENT-DATE and displays only the characters in
positions 1 through 4. These characters represent the current year.

DISPLAY FUNCTION CURRENT-DATE (1:4).

The above DISPLAY statement displays the following:

1991

See \Reference Modi�cation" in the HP COBOL II/XL Reference Manual for more examples.

Relational Operators

In ANSI85 you can use the relational operators LESS THAN OR EQUAL TO (<=) and
GREATER THAN OR EQUAL TO (>=). An HP extension allows the symbol <> as
shorthand for NOT EQUAL.

Example

The following IF statements use these relational operators:

IF TR-CODE <= 1 PERFORM 310-GET-NEXT-RECORD.

IF STATE CODE >= 50 THEN PERFORM FOREIGN-RTN.

IF CITY-CODE <> 25 PERFORM 420-VALIDATE-CITY.

Features of the 1985 ANSI Standard 2-13

ANSI85 Features

REPLACE Statement

The REPLACE statement a�ects source program text the way the COPY REPLACING
statement a�ects library text. The scope of the REPLACE statement is from its start to
the start of another REPLACE statement or the end of the current concatenated program,
whichever comes �rst.

The program in the following example replaces ANSI85 reserved words that were not reserved
in the 1974 ANSI standard. Remember that the REPLACE statement is executed each
time the program is compiled. It may be more e�cient to use an editor to change the �le
permanently than to consume CPU time to change the �le each time it is compiled.

Example

The following shows a COBOL program before REPLACE execution:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.

DATA DIVISION.

REPLACE ==TEST== BY ==TESTT== Begin REPLACE statement 1.

==TRUE== BY ==TRUE-FLAG==. End REPLACE statement 1.

01 NAME PIC X(30).

01 TEST PIC X. TEST will be replaced.

88 TRUE VALUE "T". TRUE will be replaced.

PROCEDURE DIVISION.

P1.

ACCEPT TEST. TEST will be replaced.

IF TRUE PERFORM P2. TRUE will be replaced.

REPLACE ==ALPHABETIC== Begin REPLACE statement 2.

BY ==ALPHABETIC-UPPER==. End REPLACE statement 2.

IF NAME IS ALPHABETIC THEN ALPHABETIC will be replaced.

SET TRUE-FLAG TO TRUE.

REPLACE OFF. REPLACE statement 3.

PERFORM P3 WITH TEST AFTER

UNTIL NAME IS NOT ALPHABETIC.
...

2-14 Features of the 1985 ANSI Standard

ANSI85 Features

The actual code sent to the compiler becomes the following:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.
DATA DIVISION.

01 NAME PIC X(30).

01 TESTT PIC X.

88 TRUE-FLAG VALUE "T".

PROCEDURE DIVISION.

P1.

ACCEPT TESTT.

IF TRUE-FLAG PERFORM P2.

IF NAME IS ALPHABETIC-UPPER THEN

SET TRUE-FLAG TO TRUE.

PERFORM P3 WITH TEST AFTER

UNTIL NAME IS NOT ALPHABETIC....

Statement 2 overrides statement 1 and the second occurrence of \TEST" remains unchanged.
Statement 3 ends all replacing and the second occurrence of \ALPHABETIC" remains
unchanged.

Setting Switches

The SET statement in COBOL can set external switches to the values ON and OFF. An
ANSI74 program can test the values of switches, but it cannot change their values.

Example

The following declares a switch:

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SWO IS SWITCH-1

The following SET statement uses the switch:

PROCEDURE DIVISION.

PRINT-ROUTINE.

SET SWITCH-1 TO ON.

Features of the 1985 ANSI Standard 2-15

ANSI85 Features

Setting Condition Names

The SET statement in COBOL can set condition names to the value TRUE.

Example

The following declares a condition name, EOF-FLAG:

01 READ-FLAG PIC 9.

88 EOF-FLAG VALUE 1.

The following SET statement uses the condition name EOF-FLAG:

SET EOF-FLAG TO TRUE.

The SET statement above is equivalent to the following MOVE statement:

MOVE 1 TO READ-FLAG.

Example

You cannot set a condition name to FALSE, but you can de�ne two condition names, one for
the true case and one for the false case. The following example illustrates this:

01 FIRST-TIME-FLAG PIC X VALUE "Y".

88 FIRST-TIME VALUE "Y".

88 FIRST-TIME-OFF VALUE "N".

The following example uses the SET statement on both condition names:

IF FIRST-TIME

PERFORM INIT-SECTION

SET FIRST-TIME-OFF TO TRUE

END-IF

Table Initialization

You can initialize a table (a data item that contains an OCCURS clause) by specifying a
VALUE clause for it. Each table element (or \occurrence") receives the value that you specify.

Example

In the following example, the ten elements of table B receive the value zero:

01 A.

05 B PIC S999 OCCURS 10 TIMES VALUE 0.

For dynamic subprograms, this initialization is as e�cient as the same initialization
accomplished by a PERFORM loop for every VALUE clause.

2-16 Features of the 1985 ANSI Standard

Obsolete Features

Obsolete Features

Obsolete features of ANSI85 are those that will be deleted from the next full revision of the
COBOL standard. HP COBOL II/XL supports them, but its successor may not. If you
use obsolete features in your program, you may not be able to compile it on compilers that
implement the next ANSI COBOL.

This table lists the obsolete features, justi�es their being obsolete, and tells you how to make
your program independent of them.

Obsolete Elements of ANSI85 COBOL

Obsolete Feature Justi�cation for Obsolescence
How to Make Your Program
Independent of the Feature

AUTHOR paragraph,
INSTALLATION paragraph,
DATE-WRITTEN paragraph,
DATE-COMPILED paragraph,
SECURITY paragraph

These paragraphs do not a�ect
program operation. Comments
can serve the same purpose as
they do.

Interaction between the COPY
statement and the comment
entries in these paragraphs is
often ambiguous. For example,
how can you tell if a comment
entry contains the word COPY
or a COPY statement?

DATE-COMPILED and
SECURITY are
implementor-de�ned comment
entry paragraphs, most of which
were obsoleted in order to clean
up and regularize COBOL.

Either leave it out entirely, or
identify the information such as
author and installation, with
comments in the
IDENTIFICATION DIVISION.

Features of the 1985 ANSI Standard 2-17

Obsolete Features

Obsolete Elements of ANSI85 COBOL (continued)

Obsolete Feature Justi�cation for Obsolescence
How to Make Your Program
Independent of the Feature

MEMORY-SIZE clause This feature is a carry-over from
the time when many systems
required a speci�cation of
memory size allocation to load
the run unit. Memory capacity
for a family of main frame
models often ranged from 8K to
64K. COBOL programs used the
MEMORY-SIZE clause to
generate objects for speci�c
models.

In today's computing
environment, this function is
more appropriately controlled by
the host operating system. In
1974 Standard COBOL, the
MEMORY-SIZE clause was
optional; therefore, no standard
conforming COBOL
implementations require it.

Leave it out. The operating
system performs its function.

MULTIPLE FILE TAPE clause Allowing users to sequentially
access multiple �les on a labeled
tape without rewinding the tape
is a function of the operating
system, not the COBOL
program.

Instead of using the MULTIPLE
FILE TAPE clause or the
VALUE OF clause (also
obsolete), use a �le equation (see
Chapter 5 for details).

RERUN clause Seven forms of the RERUN
statement are provided.

The RERUN clause provides
only half of a complete
rerun/restart facility. That is,
the syntax and semantics for
restart are not speci�ed. Due to
the variety of forms of the
RERUN clause, there is no
guarantee that a program that
uses it would be transportable.

In today's computing
environment, this feature is
more appropriately controlled by
the host operating system.

Leave it out. The operating
system performs its function.

2-18 Features of the 1985 ANSI Standard

Obsolete Features

Obsolete Elements of ANSI85 COBOL (continued)

Obsolete Feature Justi�cation for Obsolescence
How to Make Your Program
Independent of the Feature

DATA RECORDS clause The DATA RECORDS clause
gives redundant information and
could mislead someone who
reads the program.

Leave it out. The same
information is in the record
description associated with the
�le.

LABEL RECORDS clause Specifying the presence of �le
labels is a function of the
operating system, not the
COBOL program.

Leave it out. The operating
system performs its function.

VALUE OF clause Describing �le label items is a
function of the operating system,
not the COBOL program.

Leave it out. The operating
system performs its function.

REVERSED phrase The hardware necessary for this
function is not widely available;
thus, it is infrequently
implemented and not
appropriate for standardization.

Do not use this phrase. It has
never been implemented for HP
COBOL II/XL.

ENTER statement The ENTER statement is
optional and implementation
de�ned; therefore, it is not
portable and is not appropriate
for standardization.

Do not use this phrase. It has
never been implemented for HP
COBOL II/XL.

STOP LITERAL statement The STOP LITERAL statement
is implementation de�ned;
therefore, it is not portable and
is not appropriate for
standardization.

Do not use the STOP LITERAL
statement. If necessary use
DISPLAY to send messages to
the console. (If a tape mount is
necessary, the operating system
will handle the delay.)

ALTER Statement The ALTER statement makes a
program di�cult to understand
and maintain. The ALTER
statement provides no unique
function, because the GO TO
DEPENDING ON statement
can serve the same purpose.

Use the GOTO DEPENDING
ON statement instead.

Features of the 1985 ANSI Standard 2-19

Obsolete Features

Obsolete Elements of ANSI85 COBOL (continued)

Obsolete Feature Justi�cation for Obsolescence
How to Make Your Program
Independent of the Feature

Debug Module features: *
Object time switch (PARM=1
in RUN command), USE FOR
DEBUGGING statement,
Special register DEBUG-ITEM

Today's computing environment
usually provides interactive
debug facilities, which provide
the function of the Debug
Module without requiring
COBOL source statements.

Do not use features that support
the Debug Module. Refer to the
HP COBOL II/XL Reference
Manual.

Debug your program with
HP Symbolic Debugger/XL,
HP TOOLSET/XL, or DEBUG
(the MPE XL System
Debugger).

* The following Debug Module features are not obsolete and are now part of the nucleus
module:

WITH DEBUGGING MODE clause of the SOURCE-COMPUTER paragraph.
Debugging lines (lines with the letter D in column seven).

2-20 Features of the 1985 ANSI Standard

Incompatible Features

Incompatible Features

Incompatible features are those that work di�erently in ANSI85 and ANSI74. When you
invoke the COBOL compiler through its ANSI85 entry point, it compiles these features
according to ANSI COBOL 1985. When you invoke the compiler through its ANSI74 entry
point, it compiles them according to ANSI COBOL 1974.

There are four exceptions, features that both entry points compile according to ANSI COBOL
1985. See \CANCEL and STOP RUN Statements," \EXIT PROGRAM Statement," and
\Exponentiation."

ALPHABET Keyword

The keyword ALPHABET is required in the ALPHABET clause of an ANSI85 program. In
an ANSI74 program, it is optional.

Example

The following paragraph is legal in ANSI74:

SPECIAL-NAMES. WORD-1 IS WORD-2.

In ANSI85, the above must be changed to:

SPECIAL-NAMES. ALPHABET WORD-1 IS WORD-2.

Justification for Changing the ALPHABET Keyword

Implementor-names are system-names. Alphabet-names and mnemonic-names are user-de�ned
words. In ANSI COBOL 1985, system-names and user-de�ned words form intersecting sets
and can therefore contain the same words. In the legal following clause, if WORD-1 is both
an implementor-name and an alphabet-name, and WORD-2 is both a mnemonic-name and an
implementor-name, then it is impossible to tell whether the implementor-name clause or the
alphabet-name clause is intended.

SPECIAL-NAMES.

WORD-1 IS WORD-2.

The introduction of the keyword ALPHABET in the alphabet-name clause resolves this
ambiguity.

This problem did not exist in ANSI COBOL 1974 because system-names and user-de�ned
words formed disjoint sets (therefore, the above clause was illegal). The keyword ALPHABET
did not appear in the alphabet-name clause of the SPECIAL-NAMES paragraph in ANSI
COBOL 1974.

Allowing system-names and user-de�ned words to intersect makes it easier to move a program
from implementation to implementation, because system-names need not be changed. To
modify an existing program, insert the keyword ALPHABET into the alphabet-name clause.

Features of the 1985 ANSI Standard 2-21

Incompatible Features

CANCEL and STOP RUN Statements

Both ANSI85 and ANSI74 entry points conform to ANSI COBOL 1985, which speci�es that
the CANCEL and STOP RUN statements close all open �les. ANSI COBOL 1974 does not
specify the status of �les that are in open mode when the program is canceled.

Justification for Changing CANCEL and STOP RUN

In 1974 Standard COBOL, the status of �les left in the open mode when the program was
canceled was not de�ned. The change in 1985 Standard COBOL produces a predictable result
for the CANCEL statement. The only programs that may be a�ected are those that cancel
other programs and expect �les associated with the canceled programs to remain open after
the CANCEL statements execute.

In 1974 Standard COBOL, the status of �les left in the open mode when the program
�nished executing was not de�ned. In some cases, this situation could have caused errors.
The change in the 1985 Standard COBOL produces a predictable result for the STOP RUN
statement. Few programs will be a�ected, because many implementations already close �les
after executing the STOP RUN statement.

EXIT PROGRAM Statement

Both ANSI85 and ANSI74 entry points conform to ANSI COBOL 1985, which speci�es
that an implicit EXIT PROGRAM statement is executed when there is no next executable
statement in a called program. ANSI COBOL 1974 does not specify the action in this
situation.

If you want to detect an error in this situation, instead of executing an implicit EXIT
PROGRAM statement, end your program like this:

999-END-PROG SECTION.

DISPLAY "999-END-PROG THIS SHOULD NEVER PRINT".

Justification for Changing EXIT PROGRAM

In 1974 Standard COBOL, this situation was unde�ned. The change in 1985 Standard
COBOL makes programs more transportable. The change only a�ects programs that depend
on another implementation action when the EXIT PROGRAM statement is omitted.

2-22 Features of the 1985 ANSI Standard

Incompatible Features

Exponentiation

Both ANSI85 and ANSI74 entry points conform to ANSI COBOL 1985, which speci�es the
following:

If an expression whose value is zero is raised to a negative or zero power, a size error occurs.
If the value of an exponentiation is not a real number, a size error occurs.

ANSI COBOL 1974 did not address these special cases of exponentiation.

Example

The following expressions cause size error conditions because they raise the value zero to
negative or zero powers:

0**0

0**(-2)

((4*3)-(2*6))**(5-7)

The following expression causes a size error condition because it takes the square root of a
negative number:

-2**(1/2)

Justification for Changing Exponentiation

1974 Standard COBOL did not state what would happen in these special cases of
exponentiation, so implementors were free to decide how to handle them. The change in 1985
Standard COBOL resolves an unde�ned situation and promotes program portability. The
change a�ects few programs, because two of the previously unde�ned cases caused errors and
the other case is consistent with most implementations.

Features of the 1985 ANSI Standard 2-23

Incompatible Features

OCCURS Clause

When a receiving item contains an OCCURS clause with a DEPENDING ON phrase, and the
receiving item also contains the object of the DEPENDING ON phrase, ANSI85 assumes that
the object has its maximum length.

In the same situation, ANSI74 assumes that the object has the length of its current value.
Consequently, a MOVE or READ INTO statement can result in loss of data unless you
change the value of the object of the DEPENDING ON phrase before you change the value of
the entire receiving item.

Example

The following example shows two records that contain tables with OCCURS DEPENDING
ON clauses, where the OCCURS DEPENDING ON items, A-SIZE and B-SIZE, are part of the
record:

FD INPUT-FILE.

01 A.

02 A-TABLE.

03 A-SIZE PIC 99.

03 A-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON A-SIZE.

WORKING-STORAGE SECTION.

01 B.

02 B-TABLE.

03 B-SIZE PIC 99.

03 B-ITEM OCCURS 1 TO 10 TIMES DEPENDING ON B-SIZE.

In the preceding program fragment, assume that the value of A-SIZE is 10 and the value of
B-SIZE is �ve. In ANSI74, the following statements move all of the data in A to B:

MOVE A-SIZE TO B-SIZE.

MOVE A TO B.

In ANSI85, the following statement moves all of the data in A to B:

MOVE A TO B.

In ANSI74, the following statements read INPUT-FILE into B:

READ INPUT-FILE.

MOVE A-SIZE TO B-SIZE.

MOVE A TO B.

In ANSI85, the following statement reads INPUT-FILE into B:

READ INPUT-FILE INTO B.

2-24 Features of the 1985 ANSI Standard

Incompatible Features

Justification for Changing the OCCURS Clause

1974 Standard COBOL computed the value of the length based on the value of the item in the
DEPENDING ON phrase prior to execution of the statement. Using 1974 Standard COBOL
rules with a MOVE or READ INTO statement could have caused loss of data if the value of
the DEPENDING ON data item was not set to indicate the length of the sending data before
the MOVE or READ INTO statement executed.

This change does not a�ect programs that conform to 1974 Standard COBOL. To change
an a�ected program, restructure the a�ected data records so that data items do not follow
variable-length items.

READ NEXT after OPEN I-O, WRITE and REWRITE Statements

In ANSI85, for a relative or indexed �le in dynamic access mode, a READ NEXT statement
that follows an OPEN I-O statement and one or more WRITE statements accesses the �rst
record in the �le when the READ NEXT statement is executed.

In ANSI74, for a relative or indexed �le in dynamic access mode, a READ NEXT statement
that follows an OPEN I-O statement and one or more WRITE statements accesses the �rst
record in the �le when the OPEN I-O statement is executed. Therefore, if one of the WRITE
statements inserts a record before the original �rst record, the READ NEXT statement
accesses the original �rst record instead of the new �rst record.

Example

The �le looks like the following when the OPEN I-O statement is executed:

Original
First
Record
(key=n)

Record Record . . .

A WRITE statement inserts a new �rst record so that the �le looks like the following:

In ANSI74, a READ NEXT statement accesses this record.
#

New
First
Record
(key=n-3)

Original
First
Record
(key=n)

Record Record . . .

"
In ANSI85, a READ NEXT statement accesses this record.

Justification for Changing READ NEXT

It is considered more logical that on execution of the �rst READ statement after an OPEN
statement, the record accessed is the �rst record in the �le at the time that the READ
statement is executed.

Features of the 1985 ANSI Standard 2-25

Incompatible Features

VARYING . . . AFTER Phrase in PERFORM Statement

In the VARYING . . . AFTER phrase in a PERFORM statement, ANSI85 augments
identi�er-2 before it sets identi�er-5 . ANSI74 performs these steps in reverse order: it sets
identi�er-5 before it augments identi�er-2 .

The reason for this change is that the ANSI74 PERFORM statement was often
misinterpreted, resulting in incorrect programs.

ANSI85 and ANSI74 produce di�erent results when identi�er-5 depends on identi�er-2 or
vice versa.

Example

In the following PERFORM statement, Y depends on X:

PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3

ANSI85 executes PARA3 six times with the following values for X and Y:

X: 1 1 1 2 2 3

Y: 1 2 3 2 3 3

ANSI74 executes PARA3 eight times with the following values for X and Y:

X: 1 1 1 2 2 2 3 3

Y: 1 2 3 1 2 3 2 3

In ANSI85 (but not ANSI74), the following statement sequence is equivalent to the statement
above:

PERFORM PARA2 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3.

PARA2.

PERFORM PARA3 VARYING Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

In ANSI85 (but not ANSI74), the above statement sequence is equivalent to the following
nested PERFORM statement:

PERFORM VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

PERFORM VARYING Y FROM X BY 1 UNTIL Y IS GREATER THAN 3

code for PARA-3

END-PERFORM

END-PERFORM.

Justification for Changing PERFORM VARYING

The situation where one VARYING variable depends on another is useful for processing half a
matrix along the diagonal. The rules of 1985 Standard COBOL specify this function properly,
while the rules of 1974 Standard COBOL did not. This change a�ects few existing programs.

2-26 Features of the 1985 ANSI Standard

Incompatible Features

File Status Codes

File status code incompatibilities between ANSI85 and ANSI74 �le status codes are shown in
Table 5-9.

Justification for Changing File Status Codes

1974 Standard COBOL speci�ed only a few �le status code conditions. This made the
following true:

A COBOL program could not distinguish the many di�erent exceptional conditions and
treat them di�erently.

Each implementor speci�ed a di�erent set of implementor-de�ned status codes to cover
many situations in many ways.

The results of many I-O situations were unde�ned. That is, 1974 Standard COBOL stated
that certain criteria were to be met, but not what happened when they were not met.

1985 Standard COBOL attempts to de�ne �le status codes for these unde�ned I-O situations,
so that a COBOL program can check for these error conditions in a standard way and take
corrective action where appropriate.

The addition of new �le status codes a�ects the following kinds of programs:

Programs that check speci�c �le status code values.

Programs that test for speci�c implementor-de�ned status values to detect conditions that
are now de�ned.

Programs that rely on a successful completion status for any of the conditions that are now
de�ned (in the case of new �le status values 04, 05, and 07, this only a�ects programs that
examine both character positions of the �le status to check for successful completion).

Programs that rely on an implementor-dependent action (such as abnormal termination of
the program) when a newly de�ned condition arises.

The STAT74 control option causes the compiler to follow ANSI74 rules even when it is
invoked through its ANSI85 entry point. See Chapter 6 for more information on STAT74.

Features of the 1985 ANSI Standard 2-27

3

Programming Practices

Introduction

This chapter describes programming practices that can help you do the following:

Make your programs structured, so that it is easier to design, code, read, and maintain.

Make your programs faster at run-time.

Make your programs more portable, so that you can run it on other machines with minimal
changes.

Structured Programming

Structured programming makes your program easier to design, code, read, and maintain. It is
loosely de�ned as programming that stresses clear top-down design:

A complex problem is broken into functionally cohesive modules that perform simple tasks.

The structure and control
ow of each module re
ect the programmer's approach to the
problem.

Control
ows from top to bottom (it is not transferred from one module to the middle of
another module).

The COBOL'85 features that support and encourage structured programming are listed
below, by division. These are ANSI85 features. COBOL74 does not have them. If you use
them in your program, you must invoke the HP COBOL II/XL compiler through its ANSI85
entry point.

Division ANSI85 Structured Programming Feature
Not part of a division END PROGRAM header
IDENTIFICATION DIVISION COMMON clause
DATA DIVISION GLOBAL data items and �les
PROCEDURE DIVISION CONTINUE statement

EVALUATE statement
Explicit scope terminators
NOT phrases
PERFORM statement enhancements
USE GLOBAL AFTER ERROR PROCEDURE ON
statement

Programming Practices 3-1

Structured Programming

This section explains the following:

ANSI85 structured programming features, by division.

When to use nested programs and GLOBAL data.

Note The SPECIAL-NAMES paragraph (in the ENVIRONMENT DIVISION)
cannot appear in nested programs. All items in the SPECIAL-NAMES
paragraph are implicitly GLOBAL.

END PROGRAM Header

The END PROGRAM header ends a COBOL source program explicitly, whereas the absence
of additional source lines ends a program implicitly. When a single source �le contains more
than one COBOL program, all but the last unnested program must end explicitly, with an
END PROGRAM header.

When COBOL programs are nested, their hierarchy is described by the sequence of
PROGRAM-ID paragraph/END PROGRAM header pairs. A PROGRAM-ID paragraph and
END PROGRAM header are a pair if they specify the same program name.

Separately compiled programs within a run unit must have unique names. Within a single
separately compiled program, nested programs must have unique names. (Nested programs
are not considered to be separately compiled.)

Note The HP extension ID DIVISION is not supported for applications that use
nested or concatenated programs. Use IDENTIFICATION DIVISION instead.

3-2 Programming Practices

Structured Programming

Example

IDENTIFICATION DIVISION.

PROGRAM-ID. A.
PROCEDURE DIVISION.

BEGIN-A.

DISPLAY "A IS THE OUTERMOST PROGRAM".

CALL "B".

CALL "D".

CALL "E".

IDENTIFICATION DIVISION.

PROGRAM-ID. B.

PROCEDURE DIVISION.

BEGIN-B.

DISPLAY "B IS NESTED WITHIN A".

CALL "C".

IDENTIFICATION DIVISION.

PROGRAM-ID. C.

PROCEDURE DIVISION.

BEGIN-C.

DISPLAY "C IS NESTED WITHIN B".

END PROGRAM C.

END PROGRAM B.

IDENTIFICATION DIVISION.

PROGRAM-ID. D.

PROCEDURE DIVISION.

BEGIN-D.

DISPLAY "D IS NESTED WITHIN A".
END PROGRAM D.

END PROGRAM A.

IDENTIFICATION DIVISION.

PROGRAM-ID. E.

PROCEDURE DIVISION.

BEGIN-E.

DISPLAY "E IS A CONCATENATED PROGRAM".

Programming Practices 3-3

Structured Programming

In the preceding example, the PROGRAM-ID paragraph/END PROGRAM header pairs
describe this nesting hierarchy:

Program A is the parent of programs B and D. (B and D are siblings).

Program A is the grandparent of program C. (C is a child of program B.)

Program E is a concatenated program. That is, it is in the same source �le as A, B, C,
and D, but is not nested within any of them. It is considered to be a separately compiled
program. (It does not need an END PROGRAM header, because it is the last unnested
program in the source �le.)

The relationship between these programs is shown graphically below:

By default, a program can only call its children and separately compiled programs. It cannot
call its siblings, its grandchildren, or their descendants. (In the preceding example, program A
can call B, D, and E, but not C.) The COMMON clause allows exceptions to this rule.

3-4 Programming Practices

Structured Programming

IDENTIFICATION DIVISION: COMMON Clause

The COMMON clause allows a nested program to be called by its siblings and their
descendants, as well as its parent. (By default, it can only be called by its parent.) The
COMMON clause does not allow recursion; that is, the common program cannot be called by
its descendants or itself.

See \Call Rules" in Chapter 4 for an example of the COMMON clause.

DATA DIVISION: GLOBAL Data Items and Files

GLOBAL data items and �les can be accessed from any program nested within the program
that declares it (that is, all of its descendants).

The GLOBAL clause can appear only on 01 level data items, or on an FD level indicator.
Items subordinate to a GLOBAL data item or �le are also GLOBAL. GLOBAL items cannot
be declared in the LINKAGE SECTION.

Example

01 GLOBAL-DATA IS GLOBAL.

05 ITEM1 PICTURE XX.

05 ITEM2 PICTURE 99.

When one program contains another program, the two programs can use the same data
item names (in di�erent DATA DIVISIONs). Unless all of these items are EXTERNAL,
they refer to distinct data items. When the compiler encounters such a name in the
PROCEDURE DIVISION, it assumes that it applies to the �rst data item it �nds that meets
the quali�cations.

For example, in the following program, a GLOBAL data item, ITEM-A, is declared and
displayed in the program OUTER. The program OUTER directly contains the program
NESTED-1. When NESTED-1 displays ITEM-A, it is referencing the ITEM-A declared in
OUTER.

However, NESTED-2, a program directly contained by NESTED-1, declares another ITEM-A.
When NESTED-2 displays ITEM-A, it is referencing the most local ITEM-A (the one it
has declared itself). (If NESTED-2 contained nested programs, it might be desirable for
it to declare its own ITEM-A to be GLOBAL, so that it would be available to its nested
programs.)

The compiler �rst tries to resolve the reference to a data item in the current program. If it
does not �nd it, it searches for GLOBAL items in the enclosing program(s).

Programming Practices 3-5

Structured Programming

Example

IDENTIFICATION DIVISION.

PROGRAM-ID. OUTER.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 ITEM-A IS GLOBAL PICTURE X(20) VALUE "Global item in OUTER".

PROCEDURE DIVISION.

BEGIN.

DISPLAY ITEM-A.

CALL "NESTED-1".

IDENTIFICATION DIVISION.

PROGRAM-ID. NESTED-1.

PROCEDURE DIVISION.

BEGIN.

DISPLAY ITEM-A.

CALL "NESTED-2".

IDENTIFICATION DIVISION.

PROGRAM-ID. NESTED-2.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 ITEM-A PICTURE X(23) VALUE "Local item in NESTED-2".

PROCEDURE DIVISION.

BEGIN.

DISPLAY ITEM-A.

END PROGRAM NESTED-2.

END PROGRAM NESTED-1.

END PROGRAM OUTER.

The above program displays the following:

Global item in OUTER.

Global item in OUTER.

Local item in NESTED-2

A data item or �le can be declared both GLOBAL and EXTERNAL, in which case it is
accessible to all the nested programs with a single declaration and to all the separately
compiled programs that declare it EXTERNAL.

3-6 Programming Practices

Structured Programming

PROCEDURE DIVISION

The PROCEDURE DIVISION has the following ANSI85 structured programming features:

CONTINUE statement.

EVALUATE statement.

Explicit scope terminators.

NOT phrases.

PERFORM statement enhancements.

USE GLOBAL AFTER ERROR PROCEDURE ON statement.

CONTINUE Statement

The CONTINUE statement is a nonexecutable substitute for a conditional or imperative
statement or for the keyword EXIT in an EXIT paragraph.

Example.

IF A < B THEN

IF A < C THEN

CONTINUE

ELSE

MOVE ZERO TO A

END-IF

ADD B TO C.

SUBTRACT C FROM D.

The CONTINUE statement allows control to go to the ADD statement if A is less than C.

EVALUATE Statement

The EVALUATE statement is a multicondition, multibranch statement. It evaluates sets of
conditions. The �rst time all the conditions in a set are true, it executes the associated group
of statements. (Each condition arises from the comparison of a subject with an object. Refer
to the HP COBOL II/XL Reference Manual for details.)

Example 1.

EVALUATE HOURS-WORKED ALSO EXEMPT

WHEN 0 ALSO ANY PERFORM NO-PAY

WHEN 1 THRU 40 ALSO ANY PERFORM REG-PAY

WHEN 41 THRU 80 ALSO "N" PERFORM OVERTIME-PAY

WHEN 41 THRU 80 ALSO "Y" PERFORM REG-PAY

WHEN OTHER PERFORM PAY-ERROR

END EVALUATE

The sets of conditions in the above EVALUATE statement are:

1. HOURS-WORKED is 0 and EXEMPT is any value.
2. HOURS-WORKED is a number from 1 through 40 and EXEMPT is any value.
3. HOURS-WORKED is a number from 41 through 80 and EXEMPT contains \N".
4. HOURS-WORKED is a number from 41 through 80 and EXEMPT contains \Y".

Programming Practices 3-7

Structured Programming

If condition 1 is true, NO-PAY is performed. If condition 1 is false and condition 2 is
true, REG-PAY is performed. If conditions 1 and 2 are false and condition 3 is true,
OVERTIME-PAY is performed. If conditions 1, 2, and 3 are false and condition 4 is true,
REG-PAY is performed. If conditions 1, 2, 3, and 4 are false, PAY-ERROR is performed.

You can always write an EVALUATE statement that is equivalent to a nested IF statement,
but you cannot always write a nested IF statement that is equivalent to an EVALUATE
statement. This is because there is a limit to the depth that IFs can be nested, but an
EVALUATE statement can specify any number of conditions.

Example 2. The following example is equivalent to the example above if there is a period after
END-EVALUATE. See Example 3 below. It uses IF-THEN-ELSE statements instead of an
EVALUATE statement.

IF HOURS-WORKED = 0

PERFORM NO-PAY

ELSE IF HOURS-WORKED >= 1 AND <= 40

PERFORM REG-PAY

ELSE IF EXEMPT ='N'

IF HOURS-WORKED >= 41 AND <= 80

PERFORM OVERTIME-PAY

ELSE PERFORM PAY-ERROR

ELSE IF EXEMPT = 'Y'

IF HOURS-WORKED >= 41 AND <= 80

PERFORM REG-PAY

ELSE PERFORM PAY-ERROR

ELSE PERFORM PAY-ERROR.

3-8 Programming Practices

Structured Programming

Example 3. The following example is also equivalent to the example above, but it uses the
structured form of the IF-THEN-ELSE statement with the END-IF scope terminator:

IF HOURS-WORKED = 0
PERFORM NO-PAY

ELSE

IF HOURS-WORKED >= 1 AND <= 40

PERFORM REG-PAY

ELSE

IF EXEMPT ='N'

IF HOURS-WORKED >= 41 AND <= 80

PERFORM OVERTIME-PAY

ELSE

PERFORM PAY-ERROR

END-IF

ELSE

IF EXEMPT = 'Y'

IF HOURS-WORKED >= 41 AND <= 80

PERFORM REG-PAY

ELSE

PERFORM PAY-ERROR

END-IF

ELSE

PERFORM PAY-ERROR

END-IF

END-IF

END-IF

END-IF

HP COBOL II/XL evaluates the clauses in an EVALUATE statement in order. For fastest
execution, order the clauses from most frequent value to least frequent value.

Explicit Scope Terminators

An explicit scope terminator is a keyword, END-verb, that terminates the scope of the last
instance of the keyword verb. The explicit scope terminators are listed in the following table:

Table 3-1. The Scope Terminators

END-ACCEPT

END-ADD

END-CALL

END-COMPUTE

END-DELETE

END-DIVIDE

END-EVALUATE

END-IF

END-MULTIPLY

END-PERFORM

END-READ

END-RETURN

END-REWRITE

END-SEARCH

END-START

END-STRING

END-SUBTRACT

END-UNSTRING

END-WRITE

Explicit scope terminators help to eliminate logic errors caused by misplaced periods.
With explicit scope terminators, periods are required only to terminate paragraphs in the
PROCEDURE DIVISION.

Programming Practices 3-9

Structured Programming

Example 1. The following example shows the END-IF scope terminator. The �rst END-IF
terminates the scope of IF PROCESS-2-OK. The second END-IF terminates the scope of IF
PROCESS-1-OK.

IF PROCESS-1-OK THEN

IF PROCESS-2-OK THEN

MOVE 2 TO PROCESS-DATA-FLAG

ELSE

MOVE 1 TO PROCESS-DATA-FLAG

END-IF

PERFORM PROCESS-DATA

ELSE

PERFORM PROCESS-1-ERROR-CHECK

END-IF

A conditional statement used with an explicit scope terminator is called a delimited scope
statement . Unlike an ordinary conditional statement, a delimited scope statement is legal
wherever an imperative statement is legal.

Example 2.

READ FILE-IN AT END

ADD A TO B ON SIZE ERROR

PERFORM OVERFLOW-ROUTINE

END-ADD

MOVE SPACES TO REC-IN.

The ADD statement with the ON SIZE ERROR phrase would be a conditional statement if
not for the END-ADD, which terminates its scope and makes it a delimited scope statement.
The ADD statement and the imperative statement MOVE make up the statement group
following the conditional phrase AT END. Ordinary conditional statements are illegal in the
statement group following a conditional phrase.

3-10 Programming Practices

Structured Programming

NOT Phrases

A NOT phrase speci�es a set of statements to be executed if an exception condition does not
occur. The NOT phrases are listed below:

NOT AT END

NOT AT END-OF-PAGE

NOT INVALID KEY

NOT ON EXCEPTION

NOT ON INPUT ERROR

NOT ON OVERFLOW

NOT ON SIZE ERROR

Using NOT phrases can make code more readable and sometimes more e�cient.

Example. The following are functionally equivalent:

READ IN-FILE READ IN-FILE

AT END MOVE 'YES' TO EOF. AT END MOVE 'YES' TO EOF

IF EOF <> 'YES' THEN NOT AT END ADD 1 TO IN-CNT.

ADD 1 TO IN-CNT.

The statements on the left perform two tests for every record read. The statement on the
right performs one test for every record read. In this case, the NOT phrase makes the code
more e�cient as well as more readable.

NOT phrases used with I-O verbs execute only after a successful condition occurs. In the
preceding example on the right, \ADD 1 TO IN-CNT" is not executed if a logic error exists.

Programming Practices 3-11

Structured Programming

PERFORM Statement Enhancements

The enhanced PERFORM statement can contain a list of statements rather than only
procedure names if it ends with an END-PERFORM. This form of the PERFORM statement
is called an in-line PERFORM statement.

Example 1. The following is an in-line PERFORM statement:

PERFORM 10 TIMES

ADD A TO B

ADD 1 TO A

END-PERFORM

Example 2. The in-line PERFORM statement can signi�cantly reduce code fragmentation.
It eliminates the need for short paragraphs whose only functions are to perform other
paragraphs. The following two code fragments are equivalent:

PERFORM A100-CALC-A A-CNT TIMES. PERFORM A-CNT TIMES... ADD C TO A (SUBA)

A100-CALC-A. ADD 1 TO SUBA

ADD C TO A (SUBA). END-PERFORM.

ADD 1 TO SUBA....

The PERFORM on the left executes a separate paragraph in a di�erent location in the
program. The inline PERFORM on the right is functionally equivalent. By embedding the
statements within the PERFORM, the program is much easier to read.

The enhanced PERFORM statement can also specify whether the UNTIL condition is to be
tested before or after the statements or paragraphs have been executed.

Example 3. The following PERFORM statement tests EOF-FLAG and then performs
READ-LOOP if EOF-FLAG is false:

PERFORM READ-LOOP

WITH TEST BEFORE BEFORE is the default.

UNTIL EOF-FLAG

The following PERFORM statement performs READ-LOOP and then tests EOF-FLAG. If
EOF-FLAG is false, it performs READ-LOOP again:

PERFORM READ-LOOP

WITH TEST AFTER

UNTIL EOF-FLAG

3-12 Programming Practices

Structured Programming

Example 4. In-line PERFORM statements can be nested. Nested in-line PERFORM
statements can make your program more readable and less fragmented.

The following shows an example without nested in-line PERFORM statements:

PERFORM PROC-NAME-1

VARYING DEPARTMENT FROM FIRST-DEPT BY 1 UNTIL LAST-DEPARTMENT

AFTER HOURS-PER-EMPLOYEE FROM FIRST-EMP BY 1 UNTIL LAST-EMPLOYEE.

STOP RUN....
PROC-NAME-1....

The following shows an example with nested in-line PERFORM statements:

PERFORM VARYING DEPARTMENT FROM FIRST-DEPT BY 1 UNTIL LAST-DEPARTMENT

{statement-group-1}

PERFORM VARYING HOURS-PER-EMPLOYEE

FROM FIRST-EMP BY 1 UNTIL LAST-EMPLOYEE

{statement-group-2}

END-PERFORM

{statement-group-3}

END-PERFORM

With only statement-group-2 , the second example is functionally equivalent to the �rst. With
statement-group-1 and statement-group-3 , the second example is more powerful than the �rst.

Programming Practices 3-13

Structured Programming

USE GLOBAL AFTER ERROR PROCEDURE ON Statement

The USE GLOBAL AFTER ERROR PROCEDURE ON statement makes the scope of a USE
procedure match the scope of the program that declares the USE procedure. That is, the
statement applies to the program that contains it and to all programs directly or indirectly
contained within that program.

A USE GLOBAL AFTER ERROR PROCEDURE ON statement speci�es either a �le open
mode or the name of a GLOBAL �le.

Using a File Open Mode. An example of the �rst case is the following statement:

USE GLOBAL AFTER ERROR PROCEDURE ON INPUT.

If the program containing this statement, or any program contained in that program,
encounters an error while reading any �le that is open for input, the USE procedure is
invoked. Thus, �le error handling is standardized in the outermost program, even if the errors
occur on �les that are local to inner programs and invisible to the outermost program. (In
the example in the next section, \When to Use Nested Programs and GLOBAL Data," only
the inner programs invoke the GLOBAL USE AFTER ERROR PROCEDURE ON INPUT
statement in the outer program, because only they have �les that are open for input.)

Using a GLOBAL File. An example of the second case is the following statement, where
FILE-A is a GLOBAL �le:

USE GLOBAL AFTER ERROR PROCEDURE ON FILE-A

If a program containing this statement, or any program contained in that program, encounters
an error while accessing FILE-A in any way, the USE procedure is invoked. Thus, the error
handling for the GLOBAL �le FILE-A need only be coded once, even though errors on
FILE-A may be encountered in other (contained) programs.

If more than one USE procedure applies to a situation, the �rst one found is executed. The
search for this \�rst found" USE procedure begins in the program where the situation arises
and proceeds outward through the enclosing programs.

Note An EXIT PROGRAM statement executed directly or indirectly within a
GLOBAL USE procedure has unde�ned results.

3-14 Programming Practices

Structured Programming

When to Use Nested Programs and GLOBAL Data

The structured programming features described in the previous section, \Structured
Programming," are part of ANSI85 COBOL. They allow you to divide your application
into programs whose nesting hierarchy and data organization express and document your
programming approach. This clari�es the logical structure of your program, making it easier
to understand, debug, and maintain.

HP COBOL II/XL has always had divisions, paragraphs, sections, and the PERFORM
statement to organize code. However, the relationship between data and code in complex
COBOL programs has been obscured by the size of the DATA DIVISION and the complexity
of the code. Nested programs o�er a solution to this problem, a way to associate data with
the code that uses it. Data that is used by many programs in an application can be declared
GLOBAL in the DATA DIVISION of the outermost program. Data that is used by one
program can be declared in that program's DATA DIVISION only.

Nested programs are also appropriate for applications where complex tasks are composed of
smaller tasks. The complex task can be initiated by the outer program and the smaller tasks
can be performed by programs nested within it. And the smaller tasks can be broken down
into relatively simple paragraphs and sections. The nesting structure helps document the data
and logic dependencies of the program as a whole.

A good way to decide whether to break an application down into nested programs (instead
of just paragraphs or sections) is to �rst decide on the clearest way to organize the data. If
a task is fairly complex and requires a set of data items and �les that other sections of the
program will not need, then the task is a candidate for nested programming.

Example - A Payroll Application

The following simpli�ed payroll program illustrates the approach discussed above, using nested
programs, GLOBAL data items and �les, and GLOBAL USE procedures.

The nested programs break the payroll application into logical units with distinct
functionality. Note that one of the nested programs is declared COMMON. In this simple
example, it does not need to be COMMON, but in a realistic payroll implementation, this
would be appropriate (see the comments in the program below).

The payroll program contains both local and GLOBAL �les. Local �les are used when only
one program needs to access their data; GLOBAL �les, when all programs do.

A GLOBAL USE procedure is declared ON INPUT. Only local �les are opened for input, so
this USE procedure is only invoked by local �les. Because this USE procedure is GLOBAL,
this code only needs to appear in one place.

The comments in the program itself explain the logic and nesting structure of the program in
more detail.

Programming Practices 3-15

Structured Programming

*PROGRAM-ID. PAYROLL.

* Payroll declares and opens two global files CURR-PAY-REC and
* EMPLOYEE-INFO. For each record in CURR-PAY-REC it calls

* GET-CURR-GROSS and GET-CURR-DEDUCTIONS. It also updates the

* year-to-date payroll fields in EMPLOYEE-INFO.

* It declares a GLOBAL use procedure for INPUT mode, which will

* be used when local files with tax and pay scale tables

* (opened only in input mode) encounter errors.

*

* *****************************

* * PROGRAM-ID. GET-CURR-GROSS.

* * {Calculates current gross, using a local file PAY-FILE

* * which contains the pay rates.}

* * END PROGRAM GET-CURR-GROSS.

* *****************************

*

* *****************************

* * PROGRAM-ID. GET-CURR-DEDUCTIONS.

* * {Calculates current deductions, using a local file TAX-FILE.

* * For simplicity only social security tax is calculated. The

* * complex calculations of a realistic payroll program could

* * be carried out with a set of local data declarations.}

* * END PROGRAM GET-CURR-DEDUCTIONS.

* *****************************

*

* *****************************

* * PROGRAM-ID. HASHED-READ-ON-EMPLOYEE-FILE IS COMMON.

* * Passed a social security number, this routine makes a

* * relative key and executes either a read or rewrite.

* * This program is COMMON. It is callable by any program
* * nested within PAYROLL. (Only the outermost program calls

* * it here but a realistic payroll program might call it

* * to update yearly vacation, sick leave, tax status etc.)

* * END PROGRAM HASHED-READ-ON-EMPLOYEE-FILE.

* *****************************

*

* END PROGRAM PAYROLL.

3-16 Programming Practices

Structured Programming

$PAGE "PAYROLL"

IDENTIFICATION DIVISION.

PROGRAM-ID. PAYROLL.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CURR-PAY-FILE ASSIGN TO "CURRPAY"

ORGANIZATION IS SEQUENTIAL.

SELECT EMPLOYEE-INFO ASSIGN TO "EMPINFO"

ORGANIZATION IS RELATIVE

ACCESS IS RANDOM

RELATIVE KEY IS EMP-INFO-KEY

FILE STATUS IS FILE-STATUS.

DATA DIVISION.

FILE SECTION.

* When the FD is GLOBAL, all subordinate records are also GLOBAL.

FD CURR-PAY-FILE IS GLOBAL.

01 CURR-PAY-REC.

05 CURR-NAME PICTURE X(20).

05 CURR-SS-NO PICTURE X(9).

05 CURR-HOURS PICTURE 999.

05 CURR-GROSS PICTURE $$$,$$$.99.

05 CURR-DEDUCTIONS PICTURE $$$,$$$.99.

FD EMPLOYEE-INFO IS GLOBAL.

01 EMPLOYEE-REC.

05 EMP-SS-NO PICTURE X(9).

05 EMP-JOB-DESCRIPTOR PICTURE 99.

05 EMP-YEARLY-GROSS PICTURE 9(6)V99

USAGE PACKED-DECIMAL.

05 EMP-YEARLY-DEDUCTIONS PICTURE 9(6)V99

USAGE PACKED-DECIMAL.
WORKING-STORAGE SECTION.

01 EMP-INFO IS GLOBAL.

05 UNIQUE-KEY PIC 999.

88 NO-UNIQUE-KEY VALUE 999.

01 EMP-INFO-KEY REDEFINES EMP-INFO IS GLOBAL PIC 9(3).

01 FILE-STATUS IS GLOBAL PIC XX.

01 FILE-NAME IS GLOBAL PIC X(10) VALUE SPACES.

Programming Practices 3-17

Structured Programming

PROCEDURE DIVISION.

DECLARATIVES.

GLOBAL-USE-PROC SECTION.
USE GLOBAL AFTER STANDARD ERROR PROCEDURE ON INPUT.

GLOBAL-USE.

* This will be executed when local files TAX-RATES and

* PAY-RATES encounter an error.

DISPLAY FILE-NAME, " Status is ", FILE-STATUS.

END DECLARATIVES.

PROCESS-PAYROLL SECTION.

OPEN-FILES.

OPEN I-O CURR-PAY-FILE

OPEN I-O EMPLOYEE-INFO.

READ-PAY-FILE.

READ CURR-PAY-FILE

AT END

CLOSE CURR-PAY-FILE

NOT AT END

CALL "HASHED-READ-ON-EMPLOYEE-FILE" USING CURR-SS-NO

CALL "GET-CURR-GROSS"

CALL "GET-CURR-DEDUCTIONS"

DISPLAY CURR-NAME," ", CURR-SS-NO," ", CURR-HOURS,

" ",CURR-GROSS," ", CURR-DEDUCTIONS

WRITE CURR-PAY-REC

CALL "HASHED-REWRITE-ON-EMPLOYEE-FILE" USING CURR-SS-NO

DISPLAY EMP-SS-NO," ",EMP-JOB-DESCRIPTOR," ",

EMP-YEARLY-GROSS," ",EMP-YEARLY-DEDUCTIONS

GO READ-PAY-FILE

END-READ

CLOSE EMPLOYEE-INFO
STOP RUN.

3-18 Programming Practices

Structured Programming

$PAGE "GET-CURR-GROSS"

$CONTROL DYNAMIC

IDENTIFICATION DIVISION.
PROGRAM-ID. GET-CURR-GROSS.

* USE EMP-JOB-DESCRIPTOR TO INDEX TABLE-OF-PAY TO GET WAGE RATE

* AND CALCULATE CURRENT GROSS SALARY.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PAY-RATES ASSIGN TO "PAYRATES"

FILE STATUS IS FILE-STATUS.

DATA DIVISION.

FILE SECTION.

* PAY-RATES is LOCAL to this program.

FD PAY-RATES.

01 TABLE-OF-PAY.

05 RATES OCCURS 99 TIMES.

10 HOURLY-PAY PICTURE 9999V99 USAGE PACKED-DECIMAL.

10 REDEF-HOURLY REDEFINES HOURLY-PAY.

15 SALARY PICTURE 9999V99 USAGE PACKED-DECIMAL.

WORKING-STORAGE SECTION.

01 RATE PICTURE 9999V99 USAGE PACKED-DECIMAL.

01 GROSS PICTURE 9(6)V99 USAGE PACKED-DECIMAL.

01 JOB-CLASS PICTURE 99.

88 NON-EXEMPT VALUE 0 THRU 50.

88 EXEMPT VALUE 51 THRU 99.

01 OVERTIME PICTURE 999.

88 WORKED-OVERTIME VALUE 41 THRU 100.

PROCEDURE DIVISION.

OPEN-LOCAL-FILE.

MOVE "PAYRATES" TO FILE-NAME.
OPEN INPUT PAY-RATES

READ PAY-RATES.

UPDATE-GROSS-PAY.

MOVE EMP-JOB-DESCRIPTOR TO JOB-CLASS

EVALUATE EXEMPT

WHEN TRUE PERFORM SALARIED-LABOR

WHEN FALSE PERFORM HOURLY-LABOR

END-EVALUATE

COMPUTE EMP-YEARLY-GROSS = EMP-YEARLY-GROSS + GROSS

MOVE GROSS TO CURR-GROSS

CLOSE-LOCAL-FILE.

CLOSE PAY-RATES.

EXIT PROGRAM.

Programming Practices 3-19

Structured Programming

HOURLY-LABOR.

MOVE HOURLY-PAY (EMP-JOB-DESCRIPTOR) TO RATE

MOVE CURR-HOURS TO OVERTIME
EVALUATE WORKED-OVERTIME

WHEN FALSE

COMPUTE GROSS = CURR-HOURS * RATE

WHEN TRUE

COMPUTE GROSS = 40 * RATE +

(CURR-HOURS - 40 * RATE * 1.5)

END-EVALUATE.

SALARIED-LABOR.

MOVE SALARY (EMP-JOB-DESCRIPTOR) TO GROSS.

END PROGRAM GET-CURR-GROSS.

3-20 Programming Practices

Structured Programming

$PAGE "GET-CURR-DEDUCTIONS"

IDENTIFICATION DIVISION.

PROGRAM-ID. GET-CURR-DEDUCTIONS.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT TAX-RATES ASSIGN TO "TAXRATES"

FILE STATUS IS FILE-STATUS.

DATA DIVISION.

FILE SECTION.

* TAX-RATES is LOCAL to this program.

* For simplicity, only social security tax is calculated.

FD TAX-RATES.

01 TABLE-OF-TAXES.

05 FICA-TAX-RATE PICTURE 9999V999 USAGE PACKED-DECIMAL.

WORKING-STORAGE SECTION.

01 GROSS PICTURE 9(6)V99 USAGE PACKED-DECIMAL.

01 DEDUCTIONS PICTURE 9(6)V99 USAGE PACKED-DECIMAL.

PROCEDURE DIVISION.

OPEN-LOCAL-FILE.

MOVE "TAXRATES" TO FILE-NAME

OPEN INPUT TAX-RATES

READ TAX-RATES.

UPDATE-DEDUCTIONS.

MOVE CURR-GROSS TO GROSS

COMPUTE DEDUCTIONS = GROSS * FICA-TAX-RATE

COMPUTE EMP-YEARLY-DEDUCTIONS =

EMP-YEARLY-DEDUCTIONS + DEDUCTIONS

MOVE DEDUCTIONS TO CURR-DEDUCTIONS.

CLOSE-LOCAL-FILE.

CLOSE TAX-RATES.
END PROGRAM GET-CURR-DEDUCTIONS.

Programming Practices 3-21

Structured Programming

$PAGE "HASHED-ACCESS-ON-EMPLOYEE-FILE"

IDENTIFICATION DIVISION.

PROGRAM-ID. HASHED-READ-ON-EMPLOYEE-FILE IS COMMON.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 KEY-SWITCH PIC X.

88 SUCCESS VALUE "Y".

88 RESET-SWITCH VALUE "N".

LINKAGE SECTION.

01 SS-NO PICTURE X(9).

PROCEDURE DIVISION USING SS-NO.

BEGIN-HASHED-READ.

SET RESET-SWITCH TO TRUE

MOVE SS-NO(1:3) TO EMP-INFO-KEY

PERFORM UNTIL SUCCESS

READ EMPLOYEE-INFO

INVALID KEY ADD 1 TO UNIQUE-KEY

NOT INVALID KEY IF EMP-SS-NO = SS-NO THEN

SET SUCCESS TO TRUE

END-IF

END-READ

END-PERFORM

EXIT PROGRAM.

ENTRY "HASHED-REWRITE-ON-EMPLOYEE-FILE" USING SS-NO.

BEGIN-HASHED-REWRITE.

IF EMP-SS-NO SS-NO THEN

DISPLAY "HASHING SCHEME REQUIRES READ BEFORE REWRITE"

ELSE
REWRITE EMPLOYEE-REC

INVALID KEY

DISPLAY "Employee-file Status is ", FILE-STATUS

NOT INVALID KEY

EXIT PROGRAM

END-IF.

END PROGRAM HASHED-READ-ON-EMPLOYEE-FILE.

END PROGRAM PAYROLL.

3-22 Programming Practices

Run-Time Efficiency

Run-Time Efficiency

You can improve your program's run-time e�ciency with the following:

An improved algorithm.

This is the most important way you can improve your program's e�ciency. Neither control
options nor the optimizer can make up for a slow algorithm. A program that uses a binary
search (without control options or optimization) is still faster than a program that uses a
linear search (with control options and optimization).

Coding heuristics.

Control options.

The optimizer.

This section discusses the last three ways of improving rum-time e�ciency.

Note Coding heuristics and the optimizer do not signi�cantly improve the
performance of I-O-bound programs.

Coding Heuristics

The following coding heuristics for run-time e�ciency are guidelines, not rules, for writing
programs that run faster. They do not always work, but programmers have learned from
experience that they usually do.

Put variables that are referenced most often (such as array subscripts and counters) at the
beginning of the WORKING-STORAGE SECTION in the main program and nondynamic
subprograms. Put them at the end of the WORKING-STORAGE SECTION in each
dynamic subprogram.

Avoid conversion of data to di�erent types. If two or more variables are operands in the
same operation, declare them to be of the same type. It is more e�cient to have operands
of the same type than to make one of several operands \faster." See the examples below.

If �elds are often used together as operands in arithmetic statements, it is more e�cient to
de�ne them with the same PICTURE clause.

The following examples illustrate the above two points.

The �rst of the following COMPUTE statements is faster than the other two because no
conversion is necessary and the intermediate result is the same as the receiving operand,
DISPLAY-4. The second COMPUTE requires a conversion from BINARY to DISPLAY
because the receiving item is DISPLAY. The third statement requires a conversion from
BINARY to PACKED-DECIMAL because the receiving item is PACKED-DECIMAL.
These conversions take many machine instructions.

01 DISPLAY-4 PIC S9(4). 4 bytes long.

01 BINARY-4 PIC S9(4) BINARY. 2 bytes long.

01 DECIMAL-9 PIC S9(9) PACKED-DECIMAL. 5 bytes long.
...

COMPUTE DISPLAY-4 = DISPLAY-4 + DISPLAY-4.

COMPUTE DISPLAY-4 = BINARY-4 + BINARY-4.

COMPUTE DECIMAL-9 = BINARY-4 + BINARY-4.

Programming Practices 3-23

Run-Time Efficiency

Calculations involving multiplication, division, and exponentiation can require conversions
for intermediate results. When the intermediate results of BINARY operands exceed
18 digits, the operands are converted to PACKED-DECIMAL. This takes many extra
instructions.

The �rst of the following COMPUTE statements is faster then the second because the
intermediate result is 18 digits. The second requires conversion to PACKED-DECIMAL
because the intermediate result is 20 digits. The result of the multiplication is then
converted back to BINARY.

01 BINARY-9 PIC S9(9) BINARY. 4 bytes long.

01 BINARY-10 PIC S9(10) BINARY. 8 bytes long.
...

COMPUTE BINARY-9 = BINARY-9 * BINARY-9.

COMPUTE BINARY-9 = BINARY-10 * BINARY-10.

The �rst of the following COMPUTE statements is faster because the intermediate result
is 16 bits. The intermediate result of the second COMPUTE is 32 bits so the operands
must be converted to 32-bit values.

01 BINARY-2 PIC S9(2) BINARY. 16 bits long.

01 BINARY-3 PIC S9(3) BINARY. 16 bits long.

01 BINARY-4 PIC S9(4) BINARY. 16 bits long.
...

COMPUTE BINARY-4 = BINARY-2 * BINARY-2.

COMPUTE BINARY-4 = BINARY-2 * BINARY-3.

When you MOVE BINARY data items from a larger �eld to a smaller �eld, many
instructions are required to truncate the data. The �rst of the following MOVE
statements is faster than the second because the data must be truncated in the second
MOVE but not the �rst.

01 BINARY-3 PIC S9(3) BINARY. 16 bits long.

01 BINARY-4 PIC S9(4) BINARY. 16 bits long.
...

MOVE BINARY-4 TO BINARY-4.

MOVE BINARY-4 TO BINARY-3.

3-24 Programming Practices

Run-Time Efficiency

If a variable is a subscript or a varying identi�er in a PERFORM loop, declare it to be of
the type PIC S9(9) BINARY SYNC.

When coding the UNTIL condition in a loop, keep this in mind: the comparisons equal and
not equal are faster than the comparisons less than and greater than.

Compile subprograms with the SUBPROGRAM or ANSISUB control option. Calls to
such subprograms execute faster than calls to subprograms compiled with PROGRAM-ID
identi�er IS INITIAL or the DYNAMIC control option, which require that the subprogram
data be reinitialized whenever the program is called.

For less code, use the control option SUBPROGRAM instead of ANSISUB. Performance is
the same, but an ANSISUB subprogram contains extra code that reinitializes its data if the
main program executes a CANCEL statement.

If paragraphs are performed close together timewise, put them close together physically in
your source code.

If a paragraph is performed from only one place, use an in-line PERFORM statement for it.
This applies especially to loops.

Use NOT phrases to minimize checking. NOT AT END is especially useful. See the
example in \NOT Phrases."

Do not pass parameters BY CONTENT.

Do not specify the ON EXCEPTION or ON OVERFLOW phrase in a CALL statement
when you use a literal to specify the program name. If you do, the program is not bound
to the subprogram until run time. This slows the program by approximately .01 second per
CALL, and the loader cannot detect missing subprograms.

Do not use NEXT SENTENCE as the ELSE clause in an IF statement. Use CONTINUE or
END-IF, or reverse the sense of the condition.

Computation is fastest with the following types of operands, listed from the fastest to the
slowest:

PIC S9(9) BINARY, SYNCHRONIZED.

PIC S9(4) BINARY, SYNCHRONIZED.

PACKED-DECIMAL, the fewer digits the faster the computation.

Numeric DISPLAY, the fewer digits the faster the computation.

Computation is faster with signed numbers than with unsigned numbers.

Programming Practices 3-25

Run-Time Efficiency

Coding Heuristics when Calling COBOL Functions

The following are guidelines when your program calls COBOL functions. For more
information on the COBOL functions, see Chapter 10, \COBOL Functions," in the
HP COBOL II/XL Reference Manual .

Some of the functions are implemented as calls to run-time libraries. The rest are
implemented simply as inline code. Inline functions are generally faster than functions
in the run-time library. You might �nd that coding your own routine for some library
functions is faster than calling the COBOL function.

The following functions convert the parameter values to
oating point values to calculate
the function result. These functions will execute faster on systems that have a
oating
point coprocessor. Use the ROUNDED phrase when precision of these function values is
important.

ACOS, ASIN, ATAN, COS, SIN, TAN.
LOG, LOG10, RANDOM, SQRT, SUM.
MAX, MIN (on numeric operands).
NUMVAL, NUMVAL-C.
ORD-MAX, ORD-MIN.
ANNUITY, MEAN, MEDIAN, MIDRANGE, PRESENT-VALUE, RANGE,
STANDARD-DEVIATION, VARIANCE.

The precision of functions that convert the parameter values to
oating point values is
limited to 15 signi�cant digits. Also, fractional values may have rounding errors even if the
total size of the argument is less than or equal to 15 digits. Use of equality comparisons, as
shown below, are not recommended.

Not recommended:

IF FUNCTION COS(ANGLE-RADIANS) = 0.1 THEN

PERFORM P1

END-IF

Recommended alternative:

COMPUTE ROUNDED COS-NUM = FUNCTION COS(ANGLE-RADIANS)

IF COS-NUM > 0.1 THEN PERFORM P1.

where COS-NUM is de�ned as follows:

01 COS-NUM PIC S9V9 COMP.

Another alternative:

IF FUNCTION COS(ANGLE-RADIANS) >= .0999 AND <= 0.1001 THEN

PERFORM P1

END-IF

3-26 Programming Practices

Run-Time Efficiency

Control Options

These control options make a program run faster:

OPTIMIZE=1, which invokes the optimizer. See the section, \The Optimizer", for details.

OPTFEATURES=LINKALIGNED[16], which generates code that accesses
variables in the LINKAGE SECTION more e�ciently. (If the called program
speci�es OPTFEATURES=LINKALIGNED[16], have the calling program specify
OPTFEATURES=CALLALIGNED[16].)

SYNC32, which allows the compiler to align variables along the optimum boundaries.

These control options make a program run more slowly:

VALIDATE, which takes extra time to check that the digits and signs of numeric items are
valid.

BOUNDS, which generates and executes extra code to check ranges.

SYNC16, which speci�es an alignment that is not optimum for Series 900 systems.

ANSISORT, which prevents SORT from reading or writing �les directly.

SYMDEBUG, which generates Symbolic Debug information to be executed in the program
�le.

(If a source program was compiled with SYMDEBUG, you can link the object module with
the NODEBUG option, causing the program to ignore the Symbolic Debug information and
improving its execution speed).

This control option makes a program compile more slowly:

CALLINTRINSIC, which causes the compiler to check the �le SYSINTR for each call
literal.

Programming Practices 3-27

Run-Time Efficiency

The Optimizer

The optimizer is an optional part of the compiler that modi�es your code so that it uses
machine resources more e�ciently, using less space and running faster. Note that the
optimizer improves your code, not your algorithm. Optimization is no substitute for
improving your algorithm. A good, unoptimized algorithm is always better than a poor,
optimized one.

You can compile your program with level one optimization by compiling it with the control
option OPTIMIZE=1.

The advantages of level one optimization are:

The program is approximately 3.1% smaller.

The program runs 2.8% to 4.4% faster. (Programs that use the Central Processor Unit
intensively and those that do relatively little I-O bene�t most.)

The disadvantages of level one optimization are:

The program compiles approximately 10% more slowly.

The symbolic debugger cannot be used with program.

The statement numbers are not visible when using DEBUG or from trap messages (see the
example in Chapter 7 for details).

Level two optimization is not available for HP COBOL II/XL programs for the following
reasons:

The most common COBOL data type is the multibyte string, which is di�cult to optimize.
(The easiest types to optimize are level 01 or 77, 16- or 32-bit, binary data types.)

HP COBOL II/XL programs call millicode routines far more often than non-COBOL
programs do, and the optimizer does not optimize across routine calls. Level two
optimization for COBOL would not have improved performance enough to be worth the
e�ort, which was spent on improving millicode routines and code generation instead.

Millicode Routines

Millicode routines are assembly language routines that deliver high performance for common
COBOL operations such as move and compare. It supports COBOL operations on MPE XL
the way microcode supports them on MPE V.

Millicode routines are very specialized, tuned to provide optimal performance for speci�c
data types of speci�c lengths. Based on operation and data types and lengths, the COBOL
compiler calls the appropriate millicode routines.

The calling convention for a millicode routine di�ers from that of an ordinary routine in the
following ways:

A millicode call requires fewer registers to be saved across a call, making it faster than an
ordinary call.

A millicode call uses general register 31 as the return register, rather than general register 2.

3-28 Programming Practices

Run-Time Efficiency

When to Use the Optimizer

Compile your program with optimization only after you have debugged it. The optimizer can
transform legal programs only.

Once you have compiled your program with optimization, you cannot use the symbolic
debugger to debug it. This is because debug information will be missing from it. The
compiler does not generate debug information and perform optimizations at the same time.

You can still use DEBUG on your program after you have compiled it with optimization;
however, the statement numbers will not appear in the code.

Transformations

The �ve level one optimizer transformations are:

1. Basic block optimization.

The optimizer reads the machine code (speci�cally, the machine instruction list). When it
reads a branch instruction, it creates a basic block of code. It joins two basic blocks into
one extended block in the following two cases:

a. If it can remove the branch instruction and append the \branched to" block to the
\branched from" block.

b. If the basic blocks are logically related and can be optimized as a single unit.

Basic block optimization has these three components:

a. Removal of common expressions in basic blocks.

If more than one expression assigns the same value to the same �eld within the block,
the optimizer removes all but the �rst expression.

b. Removal and optimization of load and copy instructions in basic blocks.

c. Optimization of elementary branches in basic and extended blocks. (Removal of
unnecessary branches and more e�cient arrangement of necessary branches.)

2. Instruction scheduling.

Instruction scheduling reorders the instructions within a basic block to accomplish the
following:

a. Minimize load and store instructions.

b. Optimize the scheduling of instructions that follow branches.

3. Dead code elimination.

Dead code elimination is the removal of all code that will never be executed.

4. Branch optimization.

Branch optimization traces the
ow of IF-THEN-ELSE-IF . . . statements and reorganizes
them more e�ciently.

5. Peephole optimization.

Peephole optimization substitutes simpler, equivalent instruction patterns for more complex
ones.

Programming Practices 3-29

Program Portability

Portability

Portability applies to both programs and �les. The more portable your program or �le is, the
less you need to modify it to use it on machines other than the one for which you originally
created it.

This chapter assumes that you are creating your program or �le for one HP 3000 machine and
then transporting it to another HP 3000 machine or a non-HP machine.

To make your program more portable in both cases, do the following:

Make your program correct.

An incorrect program that works on one machine may not work (or work the same) on
another machine. It may not even work on the same machine if you recompile it with a
later version of the COBOL compiler.

To this end, do not use the following in your program:

Uninitalized variables.

Illegal PERFORM statements (such as recursive PERFORM statements or two or more
PERFORM statements with a common exit point).

Branches out of the range of PERFORM statements.

Do not depend on speci�c error recovery behavior that the HP COBOL II/XL Reference
Manual does not specify. For example:

Do not depend on the truncation of digits when there is no ON SIZE ERROR phrase.

Do not depend on a speci�c result when the value of a data item does not match its
PICTURE string (for example, unsigned data in a signed �eld).

The rest of this section covers these portability issues:

Portability between HP 3000 Architectures.

Portability between HP 3000 and non-HP machines.

Cross-development.

HP extensions.

3-30 Programming Practices

Program Portability

Portability Between HP 3000 Architectures

If you are writing your program for one HP 3000 machine but also intend to run it on another
HP 3000 machine, you should do the following:

Use the CALL INTRINSIC form of the verb to call an intrinsic. This tells the compiler an
intrinsic is being called and allows it to adapt the call to a speci�c operating system.

Do not use the pseudo-intrinsics .LOC. or .LEN. which call operating system intrinsics.
These are HP Extensions and are highly machine dependent. You can use the LENGTH
COBOL function in place of .LEN..

Do not name your program the name of an intrinsic.

Do not call COBOLLOCK or COBOLUNLOCK which are obsolete COBOL 68 features.
Instead, either use the statements EXCLUSIVE and UN-EXCLUSIVE or call the intrinsics
FLOCK and FUNLOCK with CALL INTRINSIC.

Do not declare the identi�er of a CALL identi�er statement to be numeric.

Do not assume that external names will be truncated or dehyphenated. (External names
are compiler-generated names that are recognized outside the program. Chapter 4 explains
them.)

Do not write an illegal program, even if it works on the �rst machine for which you are
writing the program. It may not work the same way on another machine. (Examples
of illegal things that may work di�erently on di�erent machines are: branching out of
PERFORM paragraphs, PERFORM statements with common exit points, and indirectly
recursive PERFORM statements.)

Do not operate on illegal data, even if the results are satisfactory on the �rst machine for
which you are writing the program. The results may cause problems on another machine.
(Examples of illegal data that may cause problems on some machines but not others are:
COMP �eld over
ow, illegal data in PACKED-DECIMAL or numeric DISPLAY �elds, and
signed data in unsigned �elds.)

Do not assume that DISPLAY statement output will have exactly the same format on
di�erent machines.

Initialize all data items before using them.

Do not call unsupported or privileged mode intrinsics.

If you are creating a �le for one HP 3000 machine but also intend to use it on another HP
3000 machine, do not put indexed or SYNC data items in the �le.

Programming Practices 3-31

Program Portability

Portability Between HP 3000 and Non-HP Machines

If you are writing your program for an HP 3000 machine but also intend to run it on a
non-HP machine, you should do the following:

Use only ANSI Standard features.
Do not call system intrinsics directly.

To ensure that your program conforms to the 1985 ANSI COBOL Standard, you can compile
your program with the following $CONTROL options: ANSIPARM, ANSISORT, POST85,
and STDWARN.

The COBOL standard speci�es that the following features are implementation-de�ned. Before
you use them in your program, check the speci�cations of the target machine to ensure that
your program will run correctly on that machine.

Computer name.
Function names ASCII, EBCDIC, and EBCDIK in the SPECIAL-NAMES paragraph.
Carriage control codes C01 through C16.
NO SPACE CONTROL.
TOP.
Radix of data representation.
Default representation and position of the sign for numeric data.
Data alignment.
External switches SW0 through SW15.
Area B size.
Default collating sequences.
Correspondence between STANDARD-1 and the native character set.
Default for a record (variable or �xed) when the program contains no RECORD clause or
when the RECORD clause speci�es a range of characters.
Size and representation of index names and index data items.
Speci�c positioning and generation of implicit FILLER in the SYNCHRONIZED clause.
Whether data items that do not specify USAGE DISPLAY are automatically aligned.
Precise e�ect of USAGE BINARY, USAGE PACKED-DECIMAL, USAGE
COMPUTATIONAL, and USAGE INDEX on alignment and representation.
Methods of evaluating arithmetic expressions.
In the ACCEPT and DISPLAY statements: mnemonic name, size of data transfer, data
conversion (if necessary), and standard device.
Action after the USE PROCEDURE is executed for an error condition.
Value of x in 9x �le status codes.
Format and meaning of �le-info in the ASSIGN clause.
Format of �le labels.
Rules for calling non-COBOL subprograms.

3-32 Programming Practices

Program Portability

If you are creating a �le for an HP 3000 machine but also intend to use it on a non-HP
machine, you should do the following:

Never put indexed data items in the �le.

Do not use SYNC in the �le unless the compiler on the non-HP machine uses 16- or 32-bit
synchronization for COMP and BINARY items. In that case, compile your program with
the control option SYNC16 or SYNC32.

Specify storage format with USAGE DISPLAY unless the non-HP machine stores COMP,
BINARY, and PACKED-DECIMAL data the same way that the HP machine on which you
are creating the �le stores it.

Realize that although SIGN IS SEPARATE is always portable, operations on such items are
very slow.

Use ASSIGN clauses.

Cross-Development

Cross-development is the development of a program on an MPE XL system for the MPE V
system, or vice versa. In both cases, you should do the following:

Consult the HP COBOL II Migration Guide and avoid features that are di�erent on the two
systems.

Be sure that the COBCNTL.PUB.SYS �les on both systems specify the same SYNC option,
preferably SYNC32.

If you are developing a program on an MPE XL system and intend to run it on an MPE V
system, use the Compatibility Mode compiler. It generates code that runs on the MPE V
system. It also
ags features that are not available on MPE V.

If you are developing a program on an MPE V system and intend to run it on an MPE XL
system in Native Mode, be sure that the program and its data are portable, because you must
recompile the program on MPE XL.

Note Ensure that all variables are properly initialized. Uninitialized variables that
did not cause problems on MPE V systems may cause programs to abort on
MPE XL systems.

Programming Practices 3-33

Program Portability

HP Extensions

If your program uses HP extensions, you cannot transport it to non-HP computers. The
following are HP extensions to ANSI COBOL 1985:

NOLIST phrase in the COPY statement.

USAGE COMP-3 (the standard equivalent is USAGE PACKED-DECIMAL).

Intrinsic relation condition.

Random access �les.

The USING phrase of the ASSIGN clause.

WITH DUPLICATES phrase in the RECORD KEY clause of the SELECT statement.

REMARKS paragraph in the IDENTIFICATION DIVISION.

Abbreviation ID for \IDENTIFICATION".

Ability to have a section name that is not followed by a paragraph name.

Quali�ed index names.

Ability to specify the language in the SORT statement.

ACCEPT FREE form of the ACCEPT statement.

SEEK statement.

EXCLUSIVE statement.

UN-EXCLUSIVE statement.

CALL statement extensions. These are the INTRINSIC phrase, the GIVING clause, the
symbol \@" or \n" before a parameter.

The RETURN-CODE special register.

ENTRY statement (secondary entry points).

EXAMINE statement.

GOBACK statement.

Key name is not required to be on the left-hand side of the SEARCH ALL condition.

Index data items in relational conditions.

Special registers TALLY, CURRENT-DATE, TIME-OF-DAY, and WHEN-COMPILED.

Nonnumeric literals longer than 160 characters. (The limit is 255 characters per nonnumeric
literal)

Octal literals.

Interchangeability of single and double quotes.

Inequality operator (<>).

Use of the USE AFTER STANDARD BEGINNING statement to process user labels for
�les.

Native Language Support using $CONTROL NLS.

Nested COPY statements.

3-34 Programming Practices

4

Subprograms and Intrinsics

Introduction

A subprogram is a routine that either is not in the program that calls it, or is nested within
another program. It is the object of a CALL statement. Its source language can be the same
as that of the calling program, or di�erent.

An intrinsic is a system-supplied procedure, an external interface to the operating system
or subsystem services that can be called through the intrinsic mechanism. The intrinsic
mechanism checks the types and bounds of parameter values before using them. An intrinsic
is not di�erent from a subprogram that you write yourself, except that the details of its task
are invisible to you.

This chapter explains the following:

External names, which apply to subprograms, intrinsics, and data.
Internal names, which apply to nested programs.
Locality set names.
Chunk names.
Data alignment on MPE XL (relevant to parameter alignment).
How COBOL checks actual parameters against their formal counterparts.
How COBOL passes actual parameters to subprograms and intrinsics.
When subprogram and intrinsic calls are bound to their de�nitions.
How your COBOL program, compiled in Native Mode, can use switch stubs to call
subprograms compiled in Compatibility Mode.
How your COBOL program can call subprograms written in COBOL.
How your COBOL program can call subprograms written in other languages.
How your COBOL program can share EXTERNAL data items and �les with other
programs.
Brie
y, how your COBOL program can share GLOBAL data items and �les with other
programs (but see Chapter 3 for details).
How your COBOL program can call intrinsics.

Subprograms and Intrinsics 4-1

External Names

External Names

An external name is a compiler-generated name that is recognized outside the program. The
compiler generates an external name for each of the following:

program-id . y
ENTRY statement literal. y
EXTERNAL data item or �le.
Program name that a CALL or CANCEL statement speci�es.

y An external name is only generated for a program-id or ENTRY statement literal of a
separately compiled program. Programs nested within other programs are not separately
compiled, and their names are never external.

The compiler forms the external name from the name in the program as follows:

Converts each hyphen (-) to an underscore (), unless the original name begins with a
backslash (n).
Changes uppercase letters to lowercase letters, unless the original name begins with a
backslash (n).
Truncates the original name to 30 characters if it is longer than 30 characters.

If you compile the program with the control option CMCALL (Compatibility Mode CALL),
the compiler does the following unless the name begins with a backslash (n):

1. Strips hyphens from the name.
2. Changes uppercase letters to lowercase letters.
3. Truncates the name to 15 characters.

Use the CMCALL control option for the following:

Programs that call subprograms written in languages that depend on 1 and 3 above.
Native Mode programs that call Compatibility Mode subprograms.

The above rules do not apply to intrinsics, whose external names are supplied through the
intrinsic mechanism in the �le SYSINTR.PUB.SYS.

Example

The following are example program names and their corresponding external names:

Internal Name External Name

Sub-Total sub_total

\Sub-Total Sub-Total

Name-Longer-Than-Thirty-Characters name_longer_than_thirty_charac

4-2 Subprograms and Intrinsics

Internal Names

Internal Names

An internal name is a compiler-generated name that is not recognized outside the program.
The compiler generates an internal name for each:

program-id of a nested program.
ENTRY statement literal of a nested program.
Nested program name that a CALL or CANCEL statement speci�es.
Nested procedure for USE GLOBAL, ALTERable GOTO, and CALL or CANCEL
identi�er.

Because nested programs cannot be called by programs outside the outermost program
containing them, you only need to know their internal names when you are in DEBUG,
debugging them or a program containing them (see Chapter 7 for their format).

The internal names of outermost programs are of the same format as external names.

Example

The following shows an outer program containing a nested program that itself contains a
nested program. The example illustrates the external name of the outer program and the
internal names of the nested program.

IDENTIFICATION DIVISION.

PROGRAM-ID. ANCESTOR-PROG. The external name is ancestor prog.
...

IDENTIFICATION DIVISION.

PROGRAM-ID. CHILD-PROG. The internal name is ancestor prog003child prog.
...

IDENTIFICATION DIVISION.

PROGRAM-ID. GRANDCHILD-PROG. The internal name is
... ancestor prog004grandchild prog.

END PROGRAM GRANDCHILD-PROG.

END PROGRAM CHILD-PROG.

END PROGRAM ANCESTOR-PROG.

Subprograms and Intrinsics 4-3

Chunk and Locality Set Names

Chunk and Locality Set Names

The locality set name is extracted from the PROGRAM-ID paragraph, according to the
external naming convention (refer to the HP Link Editor/XL Reference Manual for the
de�nition of locality set). The executable code resides in the program �le or an executable
library. For a large program, the executable code is in chunks. Each chunk is in a separate
subspace, but they all reside in the same program �le and locality set.

The chunk name is the locality set name, with a three-digit number enclosed in dollar signs
concatenated to it.

Example 1

If the program-id of a three-chunk program is PROG-1, then the locality set name is prog_1,
and the chunk names are:

prog_1

prog_1$001$

prog_1$002$

You must be aware of chunks in these situations:

When you read a verb map. Each code o�set is o�set from the beginning of a chunk. See
Chapter 7 for information on maps.

When you use DEBUG. Each code o�set is o�set from the beginning of a chunk. See
Chapter 7 for information on debugging.

When you use the LINK command. If you specify the MAP parameter, the command prints
the code o�set for each chunk. Refer to the HP Link Editor/XL Reference Manual for more
information on the LINK command.

4-4 Subprograms and Intrinsics

Chunk and Locality Set Names

Example 2

The following program illustrates chunk names with nested and concatenated programs.
The main program contains a subprogram, which contains another subprogram, and a
concatenated program follows the main program's END PROGRAM header. All the programs
are chunked. With nested or concatenated programs, a new chunk begins whenever a new
program starts. Large programs may be chunked in the middle of the PROCEDURE
DIVISION code.

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN-P.

PROCEDURE DIVISION.

Main program (�rst chunk) starts here.

... Second chunk starts here.

IDENTIFICATION DIVISION. First subprogram (third chunk) starts here.

PROGRAM-ID. SUB-1.

PROCEDURE DIVISION.
... Fourth chunk starts here.

IDENTIFICATION DIVISION. Second subprogram (�fth chunk) starts here.

PROGRAM-ID. SUB-2.

PROCEDURE DIVISION.
... Sixth chunk starts here.

END PROGRAM SUB-2.

END PROGRAM SUB-1.

END PROGRAM MAIN-P.

IDENTIFICATION DIVISION. Concatenated subprogram (seventh chunk).

PROGRAM-ID. CONCAT-P.

PROCEDURE DIVISION.
... Eighth chunk starts here.

END PROGRAM CONCAT-P.

The following table gives the chunk location, number and name for the chunks in the above
example:

Chunk Location Chunk Number Chunk Name

Main program 1 main_p

Main program 2 main_p001

Nested program 3 main_p003sub_1

Nested program 4 main_p003sub_1$001$

Nested program 5 main_p004sub_2

Nested program 6 main_p004sub_2$001$

Concatenated program 7 concat_p

Concatenated program 8 concat_p001

Subprograms and Intrinsics 4-5

Data Alignment

Data Alignment on MPE XL

By default, COBOL data is aligned in the following way on MPE XL:

In the WORKING-STORAGE and FILE sections: level 01 and 77, COMP or BINARY
SYNCHRONIZED, and index data items are 32-bit-aligned.

In the LINKAGE section, all data items are 8-bit-aligned (byte-aligned), even if the
SYNCHRONIZED clause is speci�ed. The SYNCHRONIZED clause adds slack bytes so
that every synchronized item is aligned on the same boundary as if the record were in
WORKING-STORAGE.

The SYNC32 control option does not a�ect the above, because it speci�es the default. The
SYNC16 control option a�ects all sections. Its e�ect is the following:

Level 01 and 77 data items are 32-bit-aligned.
COMP or BINARY SYNCHRONIZED data items and indexed data items are
16-bit-aligned.

On MPE XL, the HP COBOL II/XL compiler assumes that all data items in the LINKAGE
SECTION are byte-aligned unless the subprogram is compiled with the control option
OPTFEATURES = LINKALIGNED or OPTFEATURES = LINKALIGNED16. In the �rst
case, it assumes that they are word-aligned; in the second, halfword-aligned.

4-6 Subprograms and Intrinsics

Parameter Checking

Parameter Checking

When your COBOL program calls an intrinsic, the compiler tries to match information about
the type and alignment for each actual parameter. If this is not possible, the compiler issues
an error message.

When your program calls a subprogram, the actual parameter list that your program passes
is checked at link or load time against the formal parameter list of the subprogram for the
following:

The number of parameters.

The parameter alignment.

The types of parameters (if by value).

Each actual parameter must be of the same type as its corresponding formal parameter. The
program �le speci�es the type of each formal parameter, and if the call is by value, the linker
issues an error message if the corresponding actual parameter is not of that type.

All addresses on Series 900 machines are byte-addressed. An address that is divisible by
two is halfword-aligned . An address that is divisible by four is word-aligned (and also
halfword-aligned , since it is also divisible by two). An actual parameter and its formal
counterpart must be aligned the same. Parameter alignment is checked at the following three
times:

1. When the calling program is compiled.

If the calling program is compiled with the control option OPTFEATURES =
CALLALIGNED, the compiler issues an error message whenever a parameter in the CALL
is not word-aligned.

If the calling program is compiled with the control option OPTFEATURES =
CALLALIGNED16, the compiler issues an error message whenever a parameter in the
CALL is not halfword-aligned.

2. At link or load time.

The linker or loader compares the alignments speci�ed by the calling program and the
called program. If alignments for the same parameter are di�erent, the linker or loader
issues an error message.

3. At execution time.

If an actual and formal parameter are not aligned the same, this error is trapped (if
possible) or the program results are unpredictable. The control option BOUNDS in the
called program turns on the traps that detect this problem.

The number of parameters in the actual and formal parameter lists must be the same. The
linker or loader issues an error message if they are not.

Subprograms and Intrinsics 4-7

Parameter Passing

Parameter Passing

Your program can pass an actual parameter to a subprogram by reference, by content, or by
value.

Passing Parameters by Reference

By default, your program passes an actual parameter by reference. This means that your
program passes the address of the actual parameter to the subprogram. If the subprogram
changes the value of its formal parameter, it also changes the value of your program's actual
parameter.

Passing Parameters by Content

When your program passes an actual parameter by content, the compiler copies the actual
parameter and passes the address of the copy to the subprogram. If the subprogram changes
the value of its formal parameter, it changes the value of the copy, but it does not change the
value of your program's actual parameter. Pass parameters by content to ensure that the
subprogram does not change the value of data items.

Passing Parameters by Value

When your program passes an actual parameter by value, it only passes its value to the
subprogram. If the subprogram changes the value of its formal parameter, it does not
change the value of your program's actual parameter. To pass a parameter by value, enclose
it in backslashes (n) in the CALL statement. Pass parameters by value to intrinsics and
non-COBOL subprograms. Do not pass parameters by value to COBOL subprograms. Only
numeric items can be passed by value.

Note Passing a parameter by content is not the same as passing it by value. The
copy is passed by reference, and the called subprogram cannot tell that it has
received a copy (the call is indistinguishable from a call by reference).

4-8 Subprograms and Intrinsics

Parameter Passing

Parameter Alignment

On MPE XL, the HP COBOL II/XL compiler assumes that all data items in the LINKAGE
SECTION are byte-aligned unless the subprogram is compiled with the control option
OPTFEATURES=LINKALIGNED or OPTFEATURES=LINKALIGNED16. In the �rst
case, it assumes that they are word-aligned. In the second case, it assumes that they are
halfword-aligned.

If the subprogram is compiled with the control option BOUNDS, the compiler will trap
parameter misalignment. Otherwise, you must be sure that your program's actual parameters
are aligned the same or more restrictively as the subprogram's formal parameters. You can
check the alignment of actual parameters by compiling the calling program with the control
option OPTFEATURES=CALLALIGNED (or OPTFEATURES=CALLALIGNED16).

Passing and Retrieving a Return Value

You can return a value from a COBOL subprogram using the RETURN-CODE special
register in the subprogram and the GIVING phrase in the calling program. The
RETURN-CODE is used to pass a value back to the calling program.

Working with the Link Editor

The COBOL compiler does not inform the Link Editor of the formal parameter types for a
COBOL subprogram. You must be sure that your program's actual parameters are of the
same types and lengths as their formal counterparts.

The COBOL compiler generates an argument descriptor �eld for each parameter in the
USING and GIVING clauses of the CALL statement. The Link Editor uses the argument
descriptor �elds to match and check parameters. You can specify the level of checking by
specifying PARMCHECK in the Link Editor command LINK. Level of checking determines
how many argument descriptor �elds the Link Editor ignores.

Table 4-1 gives the values of the argument descriptor �elds that the COBOL compiler sets for
the Link Editor.

Table 4-1. Argument Descriptor Fields

Entity
Argument Descriptor Fields

Mode Type Alignment

Function 6 (function return) Type that the
function returns.

Alignment of function
return type.

Reference
parameter

2 (reference parameter) Matches anything. Alignment of type of
parameter.

Value parameter 1 (value parameter) Type of parameter. Alignment of type of
parameter.

Subprograms and Intrinsics 4-9

Call Binding

Call Binding

The process of matching a subprogram call or an intrinsic call to its de�nition is called call
binding. Call binding can occur at compile time, link time, load time, or execution time.
Di�erent subprograms called by the same program can be bound di�erently.

Subprogram Libraries

If your program contains a subprogram that other programs call, you may decide to put the
subprogram in a library, making it available to other programs.

If you decide to put the subprogram in a library, you must decide what kind of library. The
kinds of libraries are relocatable library (RL) and executable library (XL). In deciding, you
should ask yourself:

1. How important is the size of the calling program?

If you want the calling program to be as small as possible, you should use the executable
library or XL.

2. How important is the execution speed of the calling program?

If you want the calling program to execute as fast as possible, you should use the
relocatable library or RL.

3. Will the subprogram need changes | �xes or updates | that are independent of the
calling program?

If the subprogram will need changes that are independent of the calling program, put it in
an executable library. Then, when you change the subprogram, you will not have to relink
every program that calls it.

It is recommended that you use the XL parameter (of the RUN command or Link Editor) to
specify the name of the executable library that contains the subprogram. The alternative,
which is only available if the executable library name is XL, is not portable (it is to let the
RUN command reference the library with LIB=S (the default), LIB=P, or LIB=G).

4-10 Subprograms and Intrinsics

Call Binding

Compile-Time Binding

Compile-time binding is performed by the compiler. It can only happen when the CALL or
CANCEL target is a nested or concatenated program in the current source �le.

The advantages of compile-time binding are:

Calls to subprograms bound at compile time are faster than calls to subprograms bound at
load time or execution time (but are the same speed as calls bound at link time).

The program �le is portable.

The program �le contains all the information that it needs to resolve calls to the
subprogram. Other programmers can use your program without additional executable
libraries.

The disadvantages of compile-time binding are:

The program �le is larger than it would be if it were bound at load time or execution time
(but the same size as it would be if it were bound at link time).

If you change any nested program, you must recompile and relink the program that contains
it.

Terminology

The call rules that apply to subprograms bound at compile time require the introduction of
new terminology, which is most easily explained with an example.

Subprograms and Intrinsics 4-11

Call Binding

Example.

IDENTIFICATION DIVISION.

PROGRAM-ID. OUTER. Outermost program.

PROCEDURE DIVISION.

BEGIN-OUTER.

IDENTIFICATION DIVISION.

PROGRAM-ID. MIDDLE. Nested program.

PROCEDURE DIVISION.

BEGIN-MIDDLE.

IDENTIFICATION DIVISION.

PROGRAM-ID. INNER. Nested program.

PROCEDURE DIVISION.

BEGIN-INNER.

END PROGRAM INNER.

END PROGRAM MIDDLE.

END PROGRAM OUTER.

IDENTIFICATION DIVISION.

PROGRAM-ID. NEXT. Concatenated program.

PROCEDURE DIVISION.

BEGIN-NEXT.

END PROGRAM NEXT.

In the above program, OUTER is the outermost program, MIDDLE and INNER are nested
programs, and NEXT is a concatenated program. OUTER directly contains MIDDLE, which
directly contains INNER. OUTER indirectly contains INNER. NEXT, the concatenated
program, is not contained in any other program, and is considered to be a separately compiled
program (although it is in the same source �le as OUTER).

4-12 Subprograms and Intrinsics

Call Binding

Call Rules

The call rules that apply to subprograms bound at compile time are the following:

Any program can call a concatenated program (except the program itself).

Normally, a program can only call a nested program if it directly contains the nested
program. However, if the nested program is COMMON, descendants of the program that
contains the COMMON program can call it also. Only recursion is prohibited; that is,
neither the COMMON program itself nor its descendants can call it.

COMMON is valid only for nested programs.

COMMON programs have access to all GLOBAL data that is valid at their nesting level
(this applies to non-COMMON nested programs too).

Example. The following example illustrates the call rules.

IDENTIFICATION DIVISION.

PROGRAM-ID. A.

PROCEDURE DIVISION.

BEGIN-A.

*Program A can call any program it directly contains: programs B and D.

*Program A cannot call any program it indirectly contains: program C.

CALL "B".

CALL "D".

IDENTIFICATION DIVISION.

PROGRAM-ID. B.

PROCEDURE DIVISION.

BEGIN-B.

*Program B can call any program it directly contains: program C.

*Program B can call any COMMON program directly contained by

*program A: program D.

CALL "C".

CALL "D".

Subprograms and Intrinsics 4-13

Call Binding

IDENTIFICATION DIVISION.

PROGRAM-ID. C.

PROCEDURE DIVISION.
BEGIN-C.

*Program C can call any COMMON program directly contained

*by program A: program D.

CALL "D".

END PROGRAM C.

END PROGRAM B.

*Program D IS COMMON and is nested within program A.

IDENTIFICATION DIVISION.

PROGRAM-ID. D IS COMMON.

PROCEDURE DIVISION.

BEGIN-D.

DISPLAY "SUCCESSFUL CALL TO COMMON PROGRAM".

END PROGRAM D.

END PROGRAM A.

Make a program COMMON when programs at various nesting levels need the function that it
performs. For example:

An application has a single program that reads and examines user data entered
on-line. Many other routines call this program to read the next user input. Make the
reading-and-examining program COMMON.

A program handles a variety of error conditions that could happen anywhere in the
execution
ow. Make the error-handling program COMMON.

4-14 Subprograms and Intrinsics

Call Binding

Link-Time Binding

Link-time binding is performed by the link editor. Subprogram code becomes part of the
program �le.

The advantages of link-time binding are:

Calls to subprograms bound at link time are faster than calls to subprograms bound at load
time or execution time.

The program �le is portable. The program �le contains all the information that it needs
to resolve calls to the subprogram. Other programmers can use your program without
additional executable libraries.

The disadvantages of link-time binding are:

The program �le is larger.

If you change the subprogram, you must relink all the programs that call it.

A subprogram can be input to the linker in either a relocatable object �le or a relocatable
library. The default is a relocatable object �le, but the compiler can create a �le of either
type (see Chapter 6 for details on the RLFILE and RLINIT control options, which create
relocatable libraries).

If only one program calls the subprogram, leave it in this relocatable object �le. If more than
one program calls the subprogram, or if the program that calls it also calls other subprograms,
put it in a relocatable library.

Examples

This example uses a relocatable object �le, SUBP, to hold the subprogram until it is linked
with the main program. UPDPGM contains both the main program and the subprogram.

:COB85XL SUBPROG,SUBP;INFO="$CONTROL DYNAMIC"

:COB85XL MAINPROG,MAINP

:LINK FROM=MAINP,SUBP; TO=UPDPGM

The subprogram's relocatable object �le can also be added to a speci�ed relocatable library.
The following adds a subprogram to the RL �le named RLFILE:

:COB85XL SUBPROG,SUBP;INFO="$CONTROL SUBPROGRAM"

:LINKEDIT

BUILDRL RLFILE;LIMIT=10

ADDRL FROM=SUBP

EXIT

If you run this example, use the BUILDRL command only if an RL �le does not already exist.

If a subprogram resides in a relocatable library, the subprogram can be linked with many
di�erent main programs. The subprograms are linked to the main program if it references the
library (it need not specify the names of individual subprograms in the library). For more
information on linking, see Chapter 6.

:LINK FROM=MAINP; TO=UPDPGM;RL=RLFILE

Subprograms and Intrinsics 4-15

Call Binding

Load-Time Binding

Load-time binding is performed by the loader, which is invoked by the RUN command
immediately before it executes the program. The subprogram must reside in an executable
library (not in a relocatable object �le or relocatable library). Subprogram code does not
become part of the program �le. Intrinsics are bound at load time.

The advantages of load-time binding are:

Calls to subprograms bound at load time are thousands of times faster than calls to
subprograms bound at execution time.

You can update a subprogram in an executable library without having to relink the
programs that call it. The more programs that call the subprogram, the more time saved.

The disadvantages of load-time binding are:

Calls to subprograms bound at load time are slightly slower than calls to subprograms
bound at link time (this only slows program execution signi�cantly if the program calls the
subprogram many times)

To run your program, you (or another user) must have both the program �le and the
executable library.

Examples

The following commands create an executable library:

:LINKEDIT

BUILDXL XLFILE;LIMIT=10

EXIT

The following commands compile a subprogram and add the relocatable �le to the executable
library:

:COB85XL SUBPGM,SUBP;INFO="$CONTROL ANSISUB"

:LINKEDIT

ADDXL FROM=SUBP; TO=XLFILE; SHOW; MERGE
EXIT

Any main program calling this subprogram is compiled and linked separately. At execution
time the executable library is searched, the externals are resolved, and the main program and
subprogram are loaded for execution. The following commands accomplish these events:

:COB85XL MAINPGM,MAINP

:LINK FROM=MAINP; TO=UPDPGM

:RUN UPDPGM;XL="XLFILE"

4-16 Subprograms and Intrinsics

Call Binding

Execution-Time Binding

Execution-time binding is performed by a calling program that contains a CALL identi�er
statement or an ON EXCEPTION or ON OVERFLOW phrase. The value of identi�er , a
subprogram name, is not available until execution time. At that time, the program calls a
special routine that checks to see if the called program is contained in the calling program.
If so, the subprogram is nested, and the special routine binds it to the calling program
that contains it. If not, the subprogram is separately compiled, and the program calls
HPGETPROCPLABEL, which binds the separately compiled subprogram. The subprogram
must reside in an executable library speci�ed by the XL=parameter of the link or run
command, or in the program �le.

The advantage of execution-time binding is:

You specify the value of identi�er and you can assign di�erent subprogram names to
identi�er under di�erent conditions.

The disadvantages of execution-time binding are:

Calls to subprograms bound at execution time are thousands of times slower than calls to
subprograms bound at compile time, link time, or load time.

To run the program, you must have access to both the program �le and the executable
library that contains the subprogram.

The compiling and linking for the main program and subprogram is the same for load-time
execution.

Examples

When coding the CALL statement in the main program, the identi�er contains the
subprogram name:

01 SUBP PIC X (8)....
CALL SUBP USING VAR-A.

This allows the entry point to remain unresolved until execution time. During execution, the
value of the �eld SUBP can be modi�ed by the program based on input. When the CALL
statement is executed, it issues a call for the value of SUBP. The following CALL statement
calls the subprogram DATESUB1:

MOVE "DATESUB1" TO SUBP.

CALL SUBP USING VAR-A.

The subprograms must reside in the executable library speci�ed by the XL=parameter of the
link or run command, or in the program �le.

Note Using the ON EXCEPTION or ON OVERFLOW phrase with the CALL
literal statement slows the CALL statement by approximately .01 seconds
and prevents the loader from catching missing subprograms. The ON
EXCEPTION or ON OVERFLOW phrase defers checking for missing
subprograms until execution time.

Subprograms and Intrinsics 4-17

Switch Stubs

Switch Stubs

A switch stub is a program that allows your Native Mode HP COBOL II/XL program to call
a subprogram compiled in Compatibility Mode. You do not have to change or recompile your
program or the subprogram.

Figure 4-1 shows how a switch stub works. When the program calls the subprogram, what
actually happens is that the program calls the switch stub and the switch stub calls the
subprogram. This is transparent to the program and subprogram, except that performance is
slower.

Figure 4-1. How a Switch Stub Works

You must write a switch stub for each Compatibility Mode subprogram that your program
calls. You can create Pascal switch stubs using the Switch Assist Tool (SWAT). SWAT is
an interactive utility. See \Calling Subprograms Written in SPL" for an example that uses
SWAT. For complete information on SWAT, see the Switch Programming User's Guide.

4-18 Subprograms and Intrinsics

Calling COBOL Subprograms

Calling COBOL Subprograms

When your COBOL program calls a subprogram written in COBOL, you should understand
the following:

What type the subprogram is.

How your program passes the actual parameters.

Whether or not the subprogram uses the RETURN-CODE special register.

When the calls to the COBOL subprogram will be bound to its de�nition.

Whether to put the subprogram in a library, and if so, what kind of library.

Types of Subprograms

HP COBOL II/XL has three kinds of subprograms:

1. Non-Dynamic.
2. Dynamic.
3. ANSISUB.

You specify which kind of subprogram you want by using one of the following:

Table 4-2. Types of Subprograms and How to Specify Them

Subprogram Type Option or Clause

Non-Dynamic. $CONTROL SUBPROGRAM

Dynamic. $CONTROL DYNAMIC or the
INITIAL clause of the
PROGRAM-ID paragraph.

ANSISUB $CONTROL ANSISUB

For a description of these subprogram types, see the chapter \Interprogram Communication"
in the HP COBOL II/XL Reference Manual .

When none of the subprogram options above is speci�ed, the COBOL compiler uses the
following rules to determine what type the program is:

If the program is the �rst or only program in the source �le, and the program contains a
LINKAGE SECTION, it is assumed to be a non-dynamic subprogram.

If the program is not the �rst program in the �le (that is, if it is nested or concatenated)
then it is assumed to be a non-dynamic subprogram.

If the program is the �rst or only program in the �le and it has no LINKAGE SECTION, it
is assumed to be a main program.

Only the �rst program in the source �le can be a main program. However, the �rst program is
compiled as a subprogram if you specify any of the subprogram options listed in Table 4-2.

Subprograms and Intrinsics 4-19

Calling COBOL Subprograms

Table 4-3 compares some of the attributes of subprograms.

Table 4-3.

Comparison of Non-Dynamic, Dynamic, and ANSISUB Subprograms

Characteristic Non-Dynamic ANSISUB Dynamic

Initialized: Once, at link time. Once, at link time. Each time the
subprogram is

called.

A�ected by the CANCEL
statement?

No Yes No

Non-dynamic subprograms and ANSISUB subprograms are initialized once, at link time.
Therefore, data in the WORKING-STORAGE SECTION retain their values between calls
and �les remain open between calls.

Dynamic subprograms are initialized every time the subprogram is called. Therefore, data
in the WORKING-STORAGE SECTION do not retain their values between calls and
�les are closed between calls. Dynamic subprograms are not a�ected by the CANCEL
statement. Therefore, they do not contain code to handle the CANCEL statement. Dynamic
subprograms are smaller than ANSISUB subprograms.

If a program contains an INITIAL clause and the control option SUBPROGRAM or
ANSISUB, the INITIAL clause takes precedence.

4-20 Subprograms and Intrinsics

Calling Non-COBOL Subprograms

Calling Non-COBOL Subprograms

Your COBOL program can call subprograms and intrinsics written in C, FORTRAN 77,
Pascal, and SPL. For each call to such a subprogram, the COBOL compiler generates the
following information for the linker:

The type of the identi�er in the GIVING clause of the CALL statement.

The alignment of each identi�er in the USING clause of the CALL statement (for
parameters that are passed by value, the type is generated also).

The number of parameters.

You must ensure that the types of the actual parameters in the CALL statement are
compatible with the types of their corresponding formal parameters in the non-COBOL
subprogram. (Compile-time checking is impossible, because COBOL does not support forward
declarations unless CALLINTRINSIC is used.)

The Control options CALLALIGNED and CALLALIGNED16 cause the compilers to issue a
\Questionable" message for each parameter that is not aligned on a 32-bit or 16-bit boundary,
respectively. The \Questionable" message applies to actual parameters.

Subprograms and Intrinsics 4-21

Calling C Subprograms

Calling Subprograms Written in C

Your COBOL program can call a subprogram written in C if the parameters of the C routine
are of types that have compatible COBOL types. If the C routine is a function, it must return
a type that has a compatible COBOL type, and the identi�er in the GIVING clause of the
CALL statement must be of that compatible COBOL type.

Table 4-4. Compatible COBOL and C Types

COBOL Type C Type

PIC X char

PIC X(n) char [n]

PIC S9 to S9(4)1

USAGE COMP or BINARY

level 01 or 77, or SYNC

short int

PIC S9(5) to S9(9)1

USAGE COMP or BINARY

level 01 or 77, or SYNC

(but not $CONTROL SYNC16).

int

1 For best results, use the largest value in the range.

A C parameter is either passed by value or its address is passed by value. The latter is
preceded by an asterisk (*) in the formal parameter declaration.

If the formal C parameter itself is passed by value, pass the actual COBOL parameter to it by
value (enclose it in backslashes). If the address of the formal C parameter is passed by value,
pass the actual COBOL parameter to it by reference.

Example

The following is a C subprogram that returns a nonvoid value:

1 "CGRANDE.PUBS.COBOL"

int grande (arr,len)

int *arr;

int len;

{

int largest = arr [0], i;

for (i = 1; i< len; i++)

if (largest < arr [i])

largest = arr[i];

return largest;

}

4-22 Subprograms and Intrinsics

Calling C Subprograms

The following is a C subprogram that returns a void value:

1 "CREVERS.PUBS.COBOL"

void reverses (s)
char *s;

{

int right = strlen (s) -1, left = 0;

char t;

for (; left < right; right--, left++) {

t = s [right];

s [right] = s [left];

s [left] = t;

}

}

Many C routines expect a null byte at the end of each ASCII string. The routine reverses,
above, is an example of such a C routine. The following COBOL program, which calls
reverses, declares a null-terminated ASCII string in COBOL. First it declares the null byte as
a PIC X data item (which can be byte-aligned).

The following is a COBOL program that calls the two C subprograms above:

00001 COBCNTL 000010* Defaults for Compatibility Mode compiler follow.

00002 COBCNTL 001100*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,NOVERBS,

WARN

00003 COBCNTL 001200*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,SYNC16,

INDEX16

00004 COBCNTL 001210*

00005 COBCNTL 001300* Defaults for Native Mode compiler follow.

00006 COBCNTL 001400*

00007 COBCNTL 001600*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,NOVERBS,

WARN

00008 COBCNTL 001700*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,SYNC32,
INDEX32

00009 COBCNTL 001800*CONTROL NOVALIDATE,OPTIMIZE=0

00010 COBCNTL 001900*

00011 COBCNTL 002000* For any other options, redirect COBCNTL.PUB.SYS using

00012 COBCNTL 002100* a file equation.

00013 COBCNTL 002200*

00014 001000 ID DIVISION.

00015 002000 PROGRAM-ID. CALLC.

00016 003000

00017 004000 DATA DIVISION.

00018 005000 WORKING-STORAGE SECTION.

00019 006000 01 TABLE-1.

00020 007000 05 TABLE-EL OCCURS 9 PIC S9(9) BINARY SYNC.

00021 008000 01 LARGST PIC S9(9) BINARY SYNC.

00022 008100 01 STRING-REC.

00023 009000 05 STRING-1 PIC X(9) VALUE "ABCDEFGHI".

00024 009100 05 STRING-NULL PIC X VALUE LOW-VALUE.

00025 091100

00026 009200 01 LEN PIC S9(9) BINARY SYNC.

Subprograms and Intrinsics 4-23

Calling C Subprograms

00027 011000

00028 012000 PROCEDURE DIVISION.

00029 013000 01-TEST.
00030 014000

00031 015000 MOVE 10 TO TABLE-EL(1).

00032 016000 MOVE 8 TO TABLE-EL(2).

00033 017000 MOVE 14 TO TABLE-EL(3).

00034 018000 MOVE 9 TO TABLE-EL(4).

00035 019000 MOVE 18 TO TABLE-EL(5).

00036 020000 MOVE 98 TO TABLE-EL(6).

00037 021000 MOVE 7 TO TABLE-EL(7).

00038 022000 MOVE 23 TO TABLE-EL(8).

00039 023000

00040 025100 MOVE 8 TO LEN.

00041 025200 CALL "GRANDE" USING TABLE-1 \LEN\ GIVING LARGST.

00042 026000 DISPLAY LARGST.

00043 027000

00044 028000

00045 029000

00046 030000 DISPLAY STRING-1 " BACKWARDS IS " WITH

NO ADVANCING

00047 031000 CALL "REVERSES" USING STRING-1.

00048 032000 DISPLAY STRING-1.

The following are commands that compile, link, and execute the C subprograms and the
COBOL program above:

:ccxl cgrande,cgrandeo,$null

:ccxl crevers,creverso,$null

:cob85xl callc,callco,$null

:link from=callco,cgrandeo,creverso;to=pcallc

:run pcallc

The COBOL program displays the following:

+000000098

ABCDEFGHI BACKWARDS IS IHGFEDCBA

Note The COBOL function REVERSE is more e�cient than the above
example in C.

4-24 Subprograms and Intrinsics

Calling FORTRAN Subprograms

Calling Subprograms Written in FORTRAN 77

Your COBOL program can call a subprogram written in FORTRAN 77 if the parameters of
the FORTRAN 77 routine are of types that have compatible COBOL types.

Table 4-5 shows compatible COBOL and FORTRAN 77 types. FORTRAN 77 types that are
not in Table 4-5 do not have compatible COBOL types. The number n is an integer.

Table 4-5. Compatible COBOL and FORTRAN Types

COBOL Type FORTRAN 77
Type

Pass two variables to describe the FORTRAN string:

(1) A variable that is a group item or of

type PIC X, that contains the string.

(2) A variable of type PIC S9(9) BINARY SYNC,

that contains the length of the string,

enclosed in backslashes.

CHARACTER*n

PIC S9 to S9(4)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC.

INTEGER*2

PIC S9(5) to S9(9)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC

(but not with $CONTROL SYNC16).

INTEGER*4

1 For best results, use the largest value in the range.

FORTRAN 77 integer parameters are always passed by reference. FORTRAN 77 character
parameters are passed by descriptor (address, length, and value, in that order). If your
COBOL program calls a FORTRAN 77 subprogram, it must pass the actual parameters by
reference or by content.

Your COBOL program can call FORTRAN 77 functions of the types INTEGER*2 and
INTEGER*4. The identi�er in the GIVING clause of the CALL statement in your program
must be of a type that is compatible with the type of the FORTRAN 77 function.

Your COBOL program cannot call FORTRAN 77 character functions, because the data name
in the GIVING clause must be numeric.

Subprograms and Intrinsics 4-25

Calling FORTRAN Subprograms

Example

The following is a FORTRAN 77 subprogram:

INTEGER*4 FUNCTION LARGER(A,L)

INTEGER*4 A(8)

INTEGER*4 LARGST,L

C

C THIS SUBROUTINE FINDS THE LARGEST VALUE IN AN ARRAY

C OF 'L' INTEGERS.

C

LARGST = A(1)

DO 100 I = 2,L

IF (LARGST .LT. A(I)) LARGST = A(I)

100 CONTINUE

LARGER = LARGST

RETURN

END

C **

C * SUBROUTINE BACKWRDS *

C * THIS SUBROUTINE REVERSES AN ARRAY OF 'L' CHARACTERS*

C **

SUBROUTINE BACKWRDS(STR)

CHARACTER STR(10)

CHARACTER N

J = 10

DO 100 K = 1,5

N = STR(K)
STR(K) = STR(J)

STR(J) = N

J = J - 1

100 CONTINUE

RETURN

END

Note The COBOL function REVERSE is more e�cient than the above example in
FORTRAN.

4-26 Subprograms and Intrinsics

Calling FORTRAN Subprograms

The following COBOL program calls the FORTRAN 77 subprogram above:

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. CALLFTN.
003000 DATA DIVISION.

004000 WORKING-STORAGE SECTION.

005000 01 TABLE-INIT.

006000 05 PIC S9(9) COMP SYNC VALUE 10.

007000 05 PIC S9(9) COMP SYNC VALUE 8.

008000 05 PIC S9(9) COMP SYNC VALUE 14.

009000 05 PIC S9(9) COMP SYNC VALUE 9.

010000 05 PIC S9(9) COMP SYNC VALUE 18.

011000 05 PIC S9(9) COMP SYNC VALUE 98.

012000 05 PIC S9(9) COMP SYNC VALUE 7.

013000 05 PIC S9(9) COMP SYNC VALUE 23.

014000 01 TABLE-1 REDEFINES TABLE-INIT.

015000 05 TABLE-EL OCCURS 8

016000 PIC S9(9) COMP SYNC.

017000

018000 01 LARGEST-VALUE PIC S9(9) COMP SYNC.

019000

020000 01 STRING-1 PIC X(10) VALUE "ABCDEFGHIJ".

021000 01 LEN PIC S9(9) COMP SYNC.

022000

023000 PROCEDURE DIVISION.

024000 P1.

025000**

026000* Call FORTRAN 77 subroutine "LARGER" to find the largest *

027000* element in a table on "LEN" elements. *

028000**

029000

030000 MOVE 8 TO LEN.
031000 CALL "LARGER" USING TABLE-1, LEN GIVING LARGEST-VALUE.

032000 DISPLAY LARGEST-VALUE " IS THE LARGEST VALUE IN THE TABLE".

033000

034000**

035000* Call FORTRAN 77 subroutine "BACKWARDS" to reverse a string of*

036000* 10 characters. *

037000* Shows passing character strings to FORTRAN 77 subroutine *

038000**

039000

040000 MOVE 10 TO LEN.

041000 DISPLAY STRING-1 " BACKWARDS IS " WITH NO ADVANCING.

043000 DISPLAY STRING-1.

Subprograms and Intrinsics 4-27

Calling FORTRAN Subprograms

The following commands compile and link the FORTRAN 77 subprogram and the COBOL
program:

:cob85xl callftn, callftno, $null
:ftnxl fortsub, fortsubo, $null

:link from=callftno,fortsubo;to=callftnp

The following command executes the COBOL program:

:callftnp

The COBOL program displays the following:

+000000098 IS THE LARGEST VALUE IN THE TABLE

ABCDEFGHIJ BACKWARDS IS JIHGFEDCBA

4-28 Subprograms and Intrinsics

Calling Pascal Subprograms

Calling Subprograms Written in Pascal

Your COBOL program can call a subprogram written in Pascal if the parameters of the Pascal
subprogram are of types that have compatible COBOL types. Table 4-6 shows compatible
COBOL and Pascal types, assuming default Pascal alignment. See the note below. Pascal
types that are not in Table 4-6 do not have compatible COBOL types. The number n is an
integer.

Table 4-6. Compatible COBOL and Pascal Types

COBOL Type Pascal Type

PIC X CHAR

PIC X(n) PACKED ARRAY [n] OF

where n is the length of

the array.

PIC S9 to S9(4)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC.

SHORTINT

PIC S9(5) to S9(9)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC

(but not with $CONTROL SYNC16)

INTEGER

1 For best results, use the largest value in the range.

Note You can specify any alignment for a Pascal type with the Pascal compiler
option ALIGNMENT. Particularly, you can specify byte alignment (the
COBOL default in the absence of SYNC) for all Pascal types. Refer to the
HP Pascal/XL Reference Manual for more information on the ALIGNMENT
compiler option.

Pascal VAR, UNCHECKABLE ANYVAR, and READONLY parameters are passed by
reference. All other Pascal parameters are passed by value. If your COBOL program calls a
Pascal subprogram, it must pass actual parameters to formal VAR parameters by reference,
and pass numeric actual parameters to non-VAR parameters by value. (Parameters passed by
value are enclosed in backslashes. For example: nXn).

Note Your COBOL program cannot call a Pascal program that has ANYVAR (as
opposed to UNCHECKABLE ANYVAR) parameters, because each ANYVAR
parameter has a hidden parameter that COBOL cannot detect.

Your COBOL program can call Pascal functions of types that have compatible COBOL types.
The identi�er in the GIVING clause of the CALL statement in your program must be of a
type that is compatible with the type of the Pascal function.

Subprograms and Intrinsics 4-29

Calling Pascal Subprograms

Example

The following is a Pascal subprogram:

$SUBPROGRAM$

PROGRAM PASCSUB;

TYPE

STRING_TYPE = PACKED ARRAY[1..10] OF CHAR;

ARRAY_TYPE = ARRAY[1..8] OF INTEGER;

(* *** *)

(* PROCEDURE REVERSE *)

(* *** *)

(* THIS PROCEDURE WILL REVERSE A STRING OF *)

(* 'LEN' CHARACTERS. *)

PROCEDURE REVERSE(VAR STRING1 : STRING_TYPE;

LEN : INTEGER);

VAR

J, K : INTEGER;

TEMP : CHAR;

BEGIN

J := LEN;

FOR K := 1 TO LEN DIV 2 DO

BEGIN

TEMP := STRING1[K];

STRING1[K] := STRING1[J];

STRING1[J] := TEMP;

J := J - 1;
END;

END;

4-30 Subprograms and Intrinsics

Calling Pascal Subprograms

(* *** *)

(* PROCEDURE GRANDE *)

(* *** *)

(* THIS PROCEDURE WILL FIND THE LARGEST *)

(* ITEM IN AN ARRAY OF 'L' ELEMENTS *)

FUNCTION GRANDE(VAR ARR : ARRAY_TYPE;

L : INTEGER) : INTEGER;

VAR

K : INTEGER;

LARGEST : INTEGER;

BEGIN

LARGEST := ARR[1];

FOR K := 2 TO L DO

IF LARGEST < ARR[K] THEN

LARGEST := ARR[K];

GRANDE := LARGEST;

END;

BEGIN

END.

Note The COBOL function REVERSE is more e�cient than the above example in
Pascal.

Subprograms and Intrinsics 4-31

Calling Pascal Subprograms

The following COBOL program calls the Pascal subprogram above:

001000 ID DIVISION.

002000 PROGRAM-ID. IC807R.
003000

004000 DATA DIVISION.

005000 WORKING-STORAGE SECTION.

006000 01 TABLE-1.

007000 05 TABLE-EL OCCURS 8 PIC S9(9) BINARY SYNC.

008000 01 LARGST PIC S9(9) BINARY SYNC.

009000 01 STRING-1 PIC X(10) VALUE "ABCDEFGHIJ".

010000 01 LEN PIC S9(9) BINARY SYNC.

011000

012000 PROCEDURE DIVISION.

013000 0001-TEST.

014000

015000 MOVE 10 TO TABLE-EL(1).

016000 MOVE 8 TO TABLE-EL(2).

017000 MOVE 14 TO TABLE-EL(3).

018000 MOVE 9 TO TABLE-EL(4).

019000 MOVE 18 TO TABLE-EL(5).

020000 MOVE 98 TO TABLE-EL(6).

021000 MOVE 7 TO TABLE-EL(7).

022000 MOVE 23 TO TABLE-EL(8).

023000

024000 MOVE 8 TO LEN.

025000 CALL "GRANDE" USING TABLE-1 \8\ GIVING LARGST.

026000 DISPLAY LARGST.

027000

028000

029000 MOVE 10 TO LEN.

030000 DISPLAY STRING-1 " BACKWARDS IS STRING " WITH NO ADVANCING.
031000 CALL "REVERSE" USING STRING-1 \10\.

032000 DISPLAY STRING-1.

4-32 Subprograms and Intrinsics

Calling Pascal Subprograms

The following commands compile, link, and execute the program and subprogram:

:pasxl pascsub,pascsubo,$null

:cob85xl callpas,callpaso,$null
:link from=callpaso,pascsubo;to=callpasp

:run callpasp

The COBOL program displays the following:

+000000098

ABCDEFGHIJ BACKWARDS IS STRING JIHGFEDCBA

Pascal and COBOL variables are both byte-aligned if:

The Pascal subprogram includes the option $ALIGNMENT 1$.
The COBOL program does not specify SYNC on elementary items in records.

If a COBOL program and a Pascal subprogram share a record that contains both 16- and
32-bit integers, the COBOL program must specify FILLER to ensure that COBOL aligns the
16-bit integers as Pascal does. Otherwise, COBOL aligns 16- and 32-bit integers on 32-bit
boundaries (if SYNC is speci�ed), while Pascal aligns 16-bit integers on 16-bit boundaries and
32-bit integers on 32-bit boundaries.

Example

The following COBOL program passes a record to a Pascal procedure:

001000 ID DIVISION.

002000 PROGRAM-ID. CPASREC.

003000

004000 DATA DIVISION.

005000 WORKING-STORAGE SECTION.

006000 01 PASCAL-RECORD.
007000 05 CHAR1 PIC X.

008000 05 FILLER PIC X.

009000* INT-16-BITS is not synchronized because that would place it on

010000* a 32 bit boundary. FILLER bytes were added to make sure that

011000* it is on a 16 bit boundary.

012000 05 INT-16-BITS PIC S9(4) BINARY.

013000 05 INT-32-BITS PIC S9(9) BINARY SYNC.

014000 05 STRING-VAR PIC X(10).

015000

016000 PROCEDURE DIVISION.

017000 0001-TEST.

018000 CALL "DISPLAY-RECS" USING PASCAL-RECORD.

019000

020000 DISPLAY "A 1 BYTE CHAR, 16, AND 32 BIT INTEGERS"

021000 " AND A STRING"

022000 " PASSED FROM A PASCAL RECORD".

023000 DISPLAY CHAR1.

024000 DISPLAY INT-16-BITS.

025000 DISPLAY INT-32-BITS.

026000 DISPLAY STRING-VAR.

Subprograms and Intrinsics 4-33

Calling Pascal Subprograms

The following Pascal program contains a procedure that the COBOL program calls:

$SUBPROGRAM$

PROGRAM PASREC;
TYPE

PASCAL_RECORD = RECORD

CHAR1 : CHAR;

INT_16_BITS : SHORTINT;

INT_32_BITS : INTEGER;

STRING : PACKED ARRAY [1..10] OF CHAR;

END;

PROCEDURE DISPLAY_RECS(VAR PREC : PASCAL_RECORD);

BEGIN

WITH PREC DO

BEGIN

CHAR1 := 'A';

INT_16_BITS := 9999;

INT_32_BITS := -888888888;

STRING := 'LMNOPQRSTU';

END;

END;

BEGIN

END.

The following commands compile, link, and execute the COBOL and Pascal programs above:

:pasxl pasrec,pasreco,$null

:cob85xl cpasrec,cpasreco,$null

:link from=cpasreco,pasreco;to=cpasrecp

:run cpasrecp

The Pascal types shortint and integer are not byte-aligned by default (shortint is
two-byte-aligned and integer is four-byte-aligned). The option $ALIGNMENT 1$ degrades
performance.

Calculations with byte-aligned numbers do work in Pascal, but you can improve e�ciency by
assigning byte-aligned variables to temporary variables that have the default alignment and
manipulating the temporary variables.

Elementary items in the following COBOL record are byte-aligned.

COBOL record:

01 PACKED-REC.

05 P1 PIC X(3).

05 P2 PIC S9(4) COMP.

05 P3 PIC X(2).

05 P4 PIC S9(9) COMP.

4-34 Subprograms and Intrinsics

Calling Pascal Subprograms

To achieve byte-alignment in the corresponding Pascal record, use $ALIGNMENT 1$ as
shown below:

In the Pascal record, the types shortint 1 and integer 1 are declared as follows:

shortint_1 = $ALIGNMENT 1$ shortint;

integer_1 = $ALIGNMENT 1$ integer;

Equivalent Pascal record:

packed_record = RECORD

p1 : PACKED ARRAY [1..3] OF char;

p2 : shortint_1;

p3 : PACKED ARRAY [1..2] OF char; {For PIC X(2)}

p4 : integer_1;

END;

Subprograms and Intrinsics 4-35

Writing Switch Stubs

Calling Subprograms Written in SPL

Your COBOL program can call a subprogram written in SPL if the parameters of the SPL
subprogram are of types that have compatible COBOL types. Table 4-7 shows compatible
COBOL and SPL types. SPL types that are not in Table 4-7 do not have compatible COBOL
types. The number n is an integer.

Table 4-7. Compatible COBOL and SPL Types

COBOL Type SPL Type

PIC X(n) BYTE ARRAY

PIC S9 to S9(4)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC.

INTEGER

PIC S9(5) to S9(9)1

USAGE COMP or BINARY.

Level 01 or 77, or SYNC

DOUBLE

PIC S9(10) to S9(18)1

USAGE COMP or BINARY.

SYNC.

Exact type is not available.

Declare it as an INTEGER ARRAY

(with four elements) in the

SPL subprogram.

PIC S9(n) USAGE DISPLAY Exact type is not available.

Declare it as a BYTE ARRAY

in the SPL subprogram.

PIC S9(n) USAGE COMP-3 Exact type is not available.

Declare it as a BYTE ARRAY

in the SPL subprogram.

1 For best results, use the largest value in the range.

Writing Switch Stubs

The SPL compiler runs only in Compatibility Mode, while the COBOL compiler runs in
both Compatibility Mode and Native Mode. If your Native Mode COBOL program calls a
Compatibility Mode SPL subprogram, then you must write a switch stub to switch from one
mode to the other and pass parameters. The steps are:

1. Write the SPL and COBOL programs.
2. Use SWAT (Switch Assist Tool) to generate a Pascal switch stub. See \Switch Stubs" for

more information.
3. Compile the SPL program.
4. Using the segmenter, put the SPL program USL into an SL.
5. Compile the COBOL program.
6. Compile the switch stub using the HP Pascal/XL compiler.
7. Link the COBOL program and the switch stub.
8. Execute the COBOL program.

4-36 Subprograms and Intrinsics

Writing Switch Stubs

Note When a Native Mode program calls a Compatibility Mode program, the
Compatibility Mode program must be in an SL. When a Compatibility Mode
program calls a Native Mode program, the Native Mode program must be in
an executable library.

Example

The following illustrates the steps for a Native Mode COBOL program to call a Compatibility
Mode SPL program.

Step 1. Write the SPL program:

$CONTROL SUBPROGRAM

BEGIN
<<***>>

<< CASCII >>

<< Convert a number in base 2,8,10,16 to ascii string for double >>

<< Parms: DINT is DOUBLE integer to convert (VALUE) >>

<< BASE is INTEGER one of 2,8,10,16 (VALUE) >>

<< STRING is BYTE ARRAY to convert into (REFERENCE) >>

<< returns: NUMCHARS INTEGER is number of characters in string >>

<<***>>

INTEGER PROCEDURE cascii(dint, base, string);

VALUE dint,base;

DOUBLE dint;

INTEGER base;

BYTE ARRAY string;

BEGIN

INTEGER i;

LOGICAL lint = dint + 1; << for bit extraction >>

BYTE ARRAY hexstring(0:15);

INTRINSIC dascii;

IF base = 8 OR base = 10 THEN BEGIN

cascii := dascii(dint, base, string);

IF base = 8 THEN cascii := 11;

END

Subprograms and Intrinsics 4-37

Writing Switch Stubs

ELSE IF base = 16 THEN BEGIN

MOVE hexstring := "0123456789ABCDEF";

FOR i := 7 STEP -1 UNTIL 0 DO BEGIN
string(i):=hexstring(lint.(12:4));

dint := dint & DLSR(4);

END;

cascii := 8; << always hex string length >>

END

ELSE IF base = 2 THEN BEGIN

FOR i := 31 STEP -1 UNTIL 0 DO BEGIN

IF lint.(15:1) THEN string(i) := "1"

ELSE string(i) := "0";

dint := dint & DLSR(1);

END;

cascii := 32;

END

ELSE cascii := 0;

END; << cascii >>

END.

Step 1 Continued. Write the COBOL program:

001000 ID DIVISION.

002000 PROGRAM-ID. CALLSPL.

003000

004000 DATA DIVISION.

005000 WORKING-STORAGE SECTION.

006000 01 INTEGER PIC S9(9) BINARY SYNC.

007000 01 BASE PIC S9(4) BINARY SYNC.

008000 01 STRING-VALUE PIC X(32) VALUE SPACES.

009000 01 LEN PIC S9(4) BINARY.

010000 PROCEDURE DIVISION.
011000 0001-TEST.

012000 MOVE 123 TO INTEGER.

013000 MOVE 2 TO BASE.

014000 CALL "CASCII" USING \INTEGER\ \BASE\ @STRING-VALUE

015000 GIVING LEN.

016000 DISPLAY STRING-VALUE.

4-38 Subprograms and Intrinsics

Writing Switch Stubs

Step 2. Use SWAT to generate the switch stub:

To invoke SWAT, type the following command at the MPE XL prompt:

:SWAT

Screen 1. The �rst screen is the FILE screen. Type in the name of the �le where you want
the switch stub to go. In this case the �le name is SWCASCII. Then press the �Enter� key.

NNN
HP30363A.01.00 Switch Assist Tool FILENNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[SWCASCII] FILENAME

SCRIPT PROCESSING ERRORS

NN
NN
NN

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

MODE
NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-2. The FILE Screen

Subprograms and Intrinsics 4-39

Writing Switch Stubs

Screen 2. The next screen is the MAIN screen. Here you specify the name of the
Compatibility Mode procedure and its parameters. Here these are cascii, dint, base, and
string, respectively.

NNN
HP30363A.01.00 Switch Assist Tool MAINN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

[swcascii] NAME OF FILE TO HOLD GENERATED SOURCE CODE

[cascii] NAME OF TARGET CM PROCEDURE

P #1 [dint] #2 [base]

A [string] []

R [] []

A [] []

M [] []

A [] []

T [] []

E [] []

R [] []

[] []

N [] []

A [] []

M [] []

E [] []

S [] []

#31 [] #32 []

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

FILFORM
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-3. The MAIN Screen

4-40 Subprograms and Intrinsics

Writing Switch Stubs

Screen 3. The next screen is the PROCINFO screen. Here you specify information about the
Compatibility Mode procedure.

NNN
HP30363A.01.00 Switch Assist Tool PROCINFONNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

[cascii] NAME OF TARGET ROUTINE

LOCATION OF TARGET PROCEDURE RETURN CONDITION CODE

[x] GROUP SL [] YES, RETURN CONDITION CODE

[] PUB SL [x] NO, DO NOT RETURN CODE

[] SYSTEM SL

FUNCTION RETURN TYPE

[] NONE

[] BYTE

[x] INTEGER

[] LOGICAL

[] DOUBLE

[] REAL

[] LONG

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-4. The PROCINFO Screen

Subprograms and Intrinsics 4-41

Writing Switch Stubs

Screen 4. The next three screens are the PARMINFO screens where you specify information
about each of the parameters of the Compatibility Mode procedure.

NNN
HP30363A.01.00 Switch Assist Tool PARMINFONNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

[DINT] PARAMETER NAME

ADDRESSING METHOD I/O TYPE

[] REFERENCE [x] INPUT ONLY

[x] VALUE [] OUTPUT ONLY

[] INPUT/OUTPUT

DATA TYPE ARRAY SPECIFICATION

[] BYTE [x] NOT AN ARRAY

[] INTEGER [] AN ARRAY

[] LOGICAL

[x] DOUBLE

[] REAL

[] LONG

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-5. The PARMINFO Screen for Parameter DINT

4-42 Subprograms and Intrinsics

Writing Switch Stubs

Screen 5.

NNN
HP30363A.01.00 Switch Assist Tool PARMINFONNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

[BASE] PARAMETER NAME

ADDRESSING METHOD I/O TYPE

[] REFERENCE [x] INPUT ONLY

[x] VALUE [] OUTPUT ONLY

[] INPUT/OUTPUT

DATA TYPE ARRAY SPECIFICATION

[] BYTE [x] NOT AN ARRAY

[x] INTEGER [] AN ARRAY

[] LOGICAL

[] DOUBLE

[] REAL

[] LONG

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-6. The PARMINFO Screen for Parameter BASE

Subprograms and Intrinsics 4-43

Writing Switch Stubs

Screen 6.

NNN
HP30363A.01.00 Switch Assist Tool PARMINFONNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

[STRING] PARAMETER NAME

ADDRESSING METHOD I/O TYPE

[x] REFERENCE [] INPUT ONLY

[] VALUE [] OUTPUT ONLY

[x] INPUT/OUTPUT

DATA TYPE ARRAY SPECIFICATION

[x] BYTE [] NOT AN ARRAY

[] INTEGER [x] AN ARRAY

[] LOGICAL

[] DOUBLE

[] REAL

[] LONG

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-7. The PARMINFO Screen for Parameter STRING

4-44 Subprograms and Intrinsics

Writing Switch Stubs

Screen 7. The next screen is the ARRAYLEN screen where you specify information about the
array parameter STRING.

NNN
HP30363A.01.00 Switch Assist Tool ARRAYLENN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

NNN
[STRING] PARAMETER NAME

LENGTH OF ARRAY

[32] CONSTANT VALUE

[] NAME OF PARAMETER CONTAINING LENGTH

ARRAY LENGTH USAGE

[x] NUMBER OF ELEMENTS

[] NUMBER OF BYTES

[] NEGATIVE = BYTES / POSITIVE = ELEMENTS

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN
NEXT

NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNN
COMMIT

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-8. The ARRAYLEN Screen for Parameter STRING

Subprograms and Intrinsics 4-45

Writing Switch Stubs

Screen 8. The �nal screen is the COMMIT screen where you start the code generation
process.

NN
HP30363A.01.00 Switch Assist Tool COMMITNN
COPYRIGHT (C) HEWLETT-PACKARD 1986. ALL RIGHTS RESERVED.

Press F2 when ready to begin generating code.

NNNNNNNNNNNNNNNNNNNNNNN
GOTO

NNNNNNNNNNNNNNNNNNNNNNNNNN
GENERATE

NNNNNNNNNNNNNNNNNNNNNNN
ENTER

NNNNNNNNNNNNNNNNNNNNNNN
REFRESH

NNNNNNNNNNNNNNNNNNNNNNN
PREV

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN
HELP

NNNNNNNNNNNNNNNNNNNNNNN
EXITNNNNNNNNNNNNNNNNNNNNNNN

MAIN
NNNNNNNNNNNNNNNNNNNNNNNNNN
SOURCE

NNNNNNNNNNNNNNNNNNNNNNN
MODE

NNNNNNNNNNNNNNNNNNNNNNN
SCREEN

NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN

Figure 4-9. The COMMIT Screen

When you press softkey F2, the SWAT tool starts generating code and displays status
messages. When SWAT is �nished, it displays the FILE screen again. Press softkey F8 to
exit.

4-46 Subprograms and Intrinsics

Writing Switch Stubs

This is the switch stub generated:

$check_actual_parm 0$

$check_formal_parm 0$
$os 'MPE/XL'$

$standard_level 'ext_modcal'$

$tables off$

$code_offsets off$

$xref off$

$type_coercion 'representation'$

{**}

{* *}

{* Generated: THU, OCT 8, 1987, 5:46 PM *}

{* *}

{* Switch Assist Tool HP30363A.00.00 *}

{* *}

{**}

PROGRAM Hp__stub_outer_block(input, output);

CONST

Hp__Pidt_Known = 0; { By number }

Hp__Pidt_Name = 1; { By name }

Hp__Pidt_Plabel = 2; { By PLABEL }

Hp__System_Sl = 0;

Hp__Logon_Pub_Sl = 1; { Logon PUB SL }

Hp__Logon_Group_Sl = 2; { Logon GROUP SL }

Hp__Pub_Sl = 3; { Program's PUB SL }

Hp__Group_Sl = 4; { Program's GROUP SL }

Hp__Method_Normal = 0; { Switch copy mode }

Hp__Method_Split = 1;

Hp__Method_No_Copy = 2;

Hp__Parm_Value = 0; { value parameter }

Hp__Parm_Word_Ref = 1; { reference parm, word addr }

Hp__Parm_Byte_Ref = 2; { reference parm, byte addr }

Hp__Ccg = 0; { condition code greater (>) }

Hp__Ccl = 1; { condition code less (<) }

Hp__Cce = 2; { condition code equal (=) }

Hp__All_Ok = 0; { Used in status check }

TYPE

Hp__BIT8 = 0..255;

Hp__BIT16 = 0..65535;

Hp__BIT8_A1 = $ALIGNMENT 1$ Hp__BIT8;

Hp__BIT16_A1 = $ALIGNMENT 1$ Hp__BIT16;

Hp__CM_PROC_NAME = PACKED ARRAY [1..16] OF CHAR;

Subprograms and Intrinsics 4-47

Writing Switch Stubs

Hp__GENERIC_BUFFER = PACKED ARRAY [1..65535] OF CHAR;

Hp__SCM_PROCEDURE =

PACKED RECORD
CASE Hp__p_proc_id_type : Hp__BIT8 OF

Hp__Pidt_Known:

(Hp__p_fill : Hp__BIT8_A1;

Hp__p_proc_id : Hp__BIT16_A1);

Hp__Pidt_Name:

(Hp__p_lib : Hp__BIT8_A1;

Hp__p_proc_name : Hp__CM_PROC_NAME);

Hp__Pidt_Plabel:

(Hp__p_plabel : Hp__BIT16_A1);

END; { record }

Hp__SCM_IO_TYPE = SET OF (Hp__input, Hp__output);

Hp__PARM_DESC =

PACKED RECORD

Hp__pd_parmptr : GLOBALANYPTR;

Hp__pd_parmlen : Hp__BIT16;

Hp__pd_parm_type : Hp__BIT16;

Hp__pd_io_type : Hp__SCM_IO_TYPE;

END;

Hp__SCM_PARM_DESC_ARRAY = ARRAY [0..31] OF Hp__PARM_DESC;

HP__STATUS_TYPE =

RECORD

CASE INTEGER OF

0:

(Hp__all : INTEGER);
1:

(Hp__info : SHORTINT;

Hp__subsys : SHORTINT);

END; { record }

{ Declare all types which can be passed to this stub }

{ so that 16 bit alignments are allowed. }

HP__SHORTINT = $ALIGNMENT 2$ SHORTINT;

HP__INTEGER = $ALIGNMENT 2$ INTEGER;

HP__REAL = $ALIGNMENT 2$ REAL;

HP__LONG = $ALIGNMENT 2$ LONGREAL;

HP__CHAR = $ALIGNMENT 1$ CHAR;

PROCEDURE HPSWITCHTOCM;

INTRINSIC;

PROCEDURE HPSETCCODE;

INTRINSIC;

4-48 Subprograms and Intrinsics

Writing Switch Stubs

PROCEDURE QUIT;

INTRINSIC;

{ End of OUTER BLOCK GLOBAL declarations }

$PAGE$

FUNCTION CASCII $ALIAS 'CASCII'$

(

DINT : HP__INTEGER;

BASE : HP__SHORTINT;

ANYVAR STRING : Hp__GENERIC_BUFFER

) : HP__SHORTINT

OPTION UNCHECKABLE_ANYVAR;

VAR

Hp__proc : Hp__SCM_PROCEDURE;

Hp__parms : Hp__SCM_PARM_DESC_ARRAY;

Hp__method : INTEGER;

Hp__nparms : INTEGER;

Hp__funclen : INTEGER;

Hp__funcptr : INTEGER;

Hp__byte_len_of_parm : Hp__BIT16;

Hp__cond_code : SHORTINT;

Hp__status : HP__STATUS_TYPE;

VAR Hp__retval : HP__SHORTINT;

VAR Hp__loc_DINT : HP__INTEGER;

VAR Hp__loc_BASE : HP__SHORTINT;

begin { STUB procedure CASCII }

{**}

{* *}

{* Generated: THU, OCT 8, 1987, 5:46 PM *}

{* *}

{* Switch Assist Tool HP30363A.00.00 *}

{* *}

{**}

{ Initialization }

{ Setup procedure information--name, lib, etc. }

Hp__proc.Hp__p_proc_id_type := Hp__Pidt_Name; { By name }

Hp__proc.Hp__p_lib := Hp__Group_Sl;

Hp__proc.Hp__p_proc_name := 'CASCII ';

Subprograms and Intrinsics 4-49

Writing Switch Stubs

{ Setup misc. variables }

Hp__method := Hp__Method_Normal;

Hp__nparms := 3;

{ Setup length/pointers for functional return if this }

{ is a FUNCTION. Set length to zero, pointer to NIL }

{ if this is not a FUNCTION. }

Hp__funclen := SIZEOF(Hp__retval);

Hp__funcptr := INTEGER(LOCALANYPTR(ADDR(Hp__retval)));

{ Make a local copy of all VALUE parameters }

Hp__loc_DINT := DINT;

Hp__loc_BASE := BASE;

{ Build parameter descriptor array to describe each }

{ parameter. }

{ DINT -- Input Only by VALUE }

Hp__byte_len_of_parm := 4;

Hp__parms[0].Hp__pd_parmptr :=

ADDR(Hp__loc_DINT);

Hp__parms[0].Hp__pd_parmlen := Hp__byte_len_of_parm;

Hp__parms[0].Hp__pd_parm_type := Hp__Parm_Value;

Hp__parms[0].Hp__pd_io_type := [Hp__input];

{ BASE -- Input Only by VALUE }

Hp__byte_len_of_parm := 2;

Hp__parms[1].Hp__pd_parmptr :=

ADDR(Hp__loc_BASE);

Hp__parms[1].Hp__pd_parmlen := Hp__byte_len_of_parm;

Hp__parms[1].Hp__pd_parm_type := Hp__Parm_Value;

Hp__parms[1].Hp__pd_io_type := [Hp__input];

{ STRING -- Input/Output by REFERENCE }

Hp__byte_len_of_parm := 32;

Hp__parms[2].Hp__pd_parmptr :=

ADDR(STRING);

Hp__parms[2].Hp__pd_parmlen := Hp__byte_len_of_parm;

Hp__parms[2].Hp__pd_parm_type := Hp__Parm_Byte_Ref;

Hp__parms[2].Hp__pd_io_type := [Hp__input, Hp__output];

4-50 Subprograms and Intrinsics

Writing Switch Stubs

{ Do the actual SWITCH call }

HPSWITCHTOCM(Hp__proc, { Procedure info }

Hp__method, { Switch copy method }

Hp__nparms, { Number of parameters }

Hp__parms, { Parm descriptor array }

Hp__funclen, { func ret value length }

Hp__funcptr, { Addr of func return }

Hp__cond_code, { cond. code return }

Hp__status); { SWITCH status code }

if (Hp__status.Hp__all Hp__all_ok) then

BEGIN { SWITCH subsystem error }

QUIT(Hp__status.Hp__info);

END; { SWITCH subsystem error }

CASCII := Hp__retval;

end; { STUB procedure }

BEGIN { Program Outer block code }

END. { Program Outer block code }

Subprograms and Intrinsics 4-51

Writing Switch Stubs

Step 3. Compile the SPL program.

:spl cascii,casciio,$null

Step 4. Using the segmenter, put the SPL program USL in an SL:

:segmenter

HP32050A.02.00 SEGMENTER/3000 (C) HEWLETT-PACKARD CO 1985

-buildsl sl,300,1

-usl casciio

-listusl

USL FILE CASCIIO.PUBS.COBOL74

SEG'

CASCII 152 P A C N R

FILE SIZE 144000(620. 0)

DIR. USED 235(1. 35) INFO USED 161(0.161)

DIR. GARB. 0(0. 0) INFO GARB. 0(0. 0)

DIR. AVAIL. 14143(60.143) INFO AVAIL. 127217(535. 17)

-addsl seg'

-listsl

SL FILE SL.PUBS.COBOL74

SEGMENT 0 SEG' LENGTH 160

ENTRY POINTS CHECK CAL STT ADR

CASCII 0 C 1 0

EXTERNALS CHECK STT SEG

DASCII 0 2 ?

1

USED 1600(7. 0) AVAILABLE 111200(445. 0)

-exit

END OF SUBSYSTEM

4-52 Subprograms and Intrinsics

Writing Switch Stubs

Step 5. Compile the COBOL and switch stub programs:

:cob85xl callspl,callsplo,$null

:pasxl swcascii,swcascio,$null

Step 6. Link the COBOL program and the switch stub:

:link from=callsplo,swcascio;to=callsplp

Step 7. Execute the COBOL program:

:run callsplp

Subprograms and Intrinsics 4-53

EXTERNAL Items

EXTERNAL Data Items and Files

EXTERNAL data items and �les can be shared by two or more programs (for the purpose of
this discussion, a subprogram is also a program). For programs to share an EXTERNAL item:

Each program must declare the EXTERNAL item (data item or �le).

Each program must give the EXTERNAL item exactly the same name, because the Link
Editor matches it to itself in all programs by its external name (see \External Naming
Convention").

Programs that share the EXTERNAL item must either be linked together or reside in the
same object module in an executable library. (To put programs in the same object module
in an executable library, use the MERGE option of the Link Editor command ADDXL).

In the case of shared EXTERNAL records, there is an easy way to ensure that their names
and the names of the items within them are exactly the same in the programs that share
them: put their declarations in a COPY library and copy the library into each program with
the COPY statement.

For an EXTERNAL record, the compiler generates one external name. To �nd the actual
location of an EXTERNAL record, consult the Link Map (see Chapter 7).

The compiler generates two external names for an EXTERNAL �le|one for the FD name
(based on the �le name) and one for the record area (which is the �le name with \ bu�er "
appended to it).

Uses for EXTERNAL data items and �les are:

To allow a main program and separately compiled subprograms to share �les and data
(nested programs can share �les and data using the GLOBAL clause).

To pass parameters between programs without the USING phrase.

Programs that change data other than that passed through the USING phrase have side
e�ects, though, so be very careful.

To reduce program �le size.

EXTERNAL items are stored in space allocated at run time, while internal items are stored
in the program �le. Therefore, you can signi�cantly reduce program �le size by declaring
records that contain huge arrays EXTERNAL.

Note If a �le is declared EXTERNAL in one program, and is opened in another
program that uses the EXCLUSIVE statement, then the �rst program must
declare the �le with L in the ASSIGN clause. This enables dynamic locking.

Similarly, if a �le is declared EXTERNAL in a program that does not write to
it, it must declare it with CCTL in the ASSIGN clause to enable CCTL.

4-54 Subprograms and Intrinsics

EXTERNAL Items

Example

This example shows how to invoke �CONTROL� Y traps from COBOL. The main program
executes a loop until �CONTROL� Y is pressed. The subprogram arms the �CONTROL� Y trap
to execute its secondary entry point when �CONTROL� Y is pressed. The main program and
subprogram communicate through EXTERNAL data items.

The following is the main program:

001000 IDENTIFICATION DIVISION.
001100 PROGRAM-ID. CONTROL-Y-TEST.

001200 ENVIRONMENT DIVISION.

001300 CONFIGURATION SECTION.

001400 SPECIAL-NAMES.

001600 SYMBOLIC CHARACTERS BELL IS 8.

001700 DATA DIVISION.

001800 WORKING-STORAGE SECTION.

001900 1 TOTAL PIC S9(9) COMP VALUE 0.

002100 1 CONTROL-Y EXTERNAL PIC X.

002200 88 CONTROL-Y-HIT VALUE "Y".

002250 88 CONTROL-Y-OFF VALUE "N".

002600 1 LOTS-OF-STUFF EXTERNAL.

002700 5 PIC X(40).

002300 PROCEDURE DIVISION.

002350 P1.

002400 SET CONTROL-Y-OFF TO TRUE.

002500 MOVE ALL "*" TO LOTS-OF-STUFF.

002600 CALL "ARM-CONTROL-Y".

002700 LOOP.

002800 DISPLAY "HI" WITH NO ADVANCING.

002900 ADD 1 TO TOTAL.

003000 IF NOT CONTROL-Y-HIT GO LOOP.

003100*

003200 DISPLAY BELL.

003300 DISPLAY "control-y was hit after " TOTAL " times".

003400 DISPLAY LOTS-OF-STUFF.

003500 SET CONTROL-Y-OFF TO TRUE.

003600 MOVE 0 TO TOTAL.
003700 GO TO LOOP.

Subprograms and Intrinsics 4-55

EXTERNAL Items

The following is the subprogram:

000100$CONTROL DYNAMIC

001200 IDENTIFICATION DIVISION.
001300 PROGRAM-ID. ARM-CONTROL-Y.

001800 DATA DIVISION.

001900 WORKING-STORAGE SECTION.

002000 1 TOTAL PIC S9(9) COMP VALUE 0.

002100 1 PROCNAME PIC X(20) VALUE "!control_y_trap!".

002200 1 PLABEL PIC S9(9) COMP.

002300 1 OLDPLABEL PIC S9(9) COMP.

002400 1 PROGFILE PIC X(40).

002500* another way to pass data

002510 1 CONTROL-Y EXTERNAL PIC X.

002520 88 CONTROL-Y-HIT VALUE "Y".

002530 88 CONTROL-Y-OFF VALUE "N".

002600 1 LOTS-OF-STUFF EXTERNAL.

002700 5 PIC X(40).

002800 PROCEDURE DIVISION.

002850 P1.

002900* get plabel from hpgetprocplabel

003000 CALL INTRINSIC "HPMYPROGRAM" USING PROGFILE.

003100 CALL INTRINSIC "HPGETPROCPLABEL" USING PROCNAME PLABEL \\

003200 PROGFILE.

003300* call xcontrap

003400 CALL INTRINSIC "XCONTRAP" USING PLABEL OLDPLABEL.

003500 EXIT PROGRAM.

003600*

003700 ENTRY "CONTROL-Y-TRAP".

003800 SET CONTROL-Y-HIT TO TRUE.

003900 MOVE "Trap routine reenabled again" TO LOTS-OF-STUFF.

004000* reenable for next time
004100 CALL INTRINSIC "RESETCONTROL".

4-56 Subprograms and Intrinsics

EXTERNAL Items

EXTERNAL Items and FORTRAN

The Link Editor matches FORTRAN named common blocks and COBOL EXTERNAL
records by name (one FORTRAN named common block matches one COBOL EXTERNAL
record).

If the FORTRAN named common block declares more than one variable, it is your
responsibility to align the elementary items of the COBOL record along the proper
boundaries. You may have to specify unused bytes with FILLER. Remember that COBOL
aligns all USAGE BINARY SYNCHRONIZED data items along 32-bit boundaries, regardless
of data item size (unless you compile the program with the SYNC16 control option, in which
case these data items are 16-bit-aligned).

EXTERNAL Items and Pascal

The Link Editor matches Pascal variables declared in the outer block and COBOL
EXTERNAL records. The Pascal program must be compiled with the EXTERNAL,
GLOBAL, or GLOBAL and EXTERNAL options.

Every variable in the outer block of the Pascal program must have a matching COBOL
EXTERNAL record if the Pascal EXTERNAL option is used. This applies only between
Pascal and COBOL.

EXTERNAL Items and C

The Link Editor matches C global variables and COBOL EXTERNAL records.

Sharing EXTERNAL Items

When two COBOL programs share EXTERNAL items, one program can declare some
EXTERNAL items that the other program does not. When a COBOL and a FORTRAN (or
C) program share EXTERNAL items, the COBOL program can declare EXTERNAL records
that do not correspond to FORTRAN named common blocks (or C globals) or vice versa.

Subprograms and Intrinsics 4-57

EXTERNAL Items

COBOL, FORTRAN, and Pascal Example

This COBOL main program, FORTRAN subprogram, and Pascal subprogram can pass
information to each other through shared EXTERNAL items.

The following is the COBOL main program with EXTERNAL records:

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. COBEXT.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400 01 A EXTERNAL.

001500 05 I PIC S9(9) BINARY.

001600 05 J PIC S9(4) BINARY.
001610 05 FILLER PIC XX.

001620 05 K PIC S9(9) BINARY.

001700 PROCEDURE DIVISION.

001800 P1.

001900 CALL "PAS".

002000 MOVE -7 TO I.

002000 MOVE -8 TO J.

002000 MOVE -9 TO K.

002100 CALL "FTN".

002200 DISPLAY "I=" I ", J=" J ", K=" K.

The following is the FORTRAN subprogram with named common block:

SUBROUTINE FTN

COMMON /A/ I,J,K

INTEGER*4 I,K

INTEGER*2 J

WRITE(6,*) I,J,K

END

4-58 Subprograms and Intrinsics

EXTERNAL Items

The following is the Pascal subprogram. It is compiled with the EXTERNAL option:

$EXTERNAL,SUBPROGRAM$

PROGRAM STUFF;
TYPE

COM = RECORD

I: INTEGER;

J: SHORTINT;

K: INTEGER;

END;

VAR

A : COM;

PROCEDURE FTN; EXTERNAL FTN77;

PROCEDURE PAS;

BEGIN

A.I:=5;

A.J:=-5;

A.K:=6;

FTN;

END;

BEGIN

END.

Subprograms and Intrinsics 4-59

GLOBAL Items

GLOBAL Data Items and Files

GLOBAL data items and �les can be shared by two or more programs (or subprograms). For
programs to share a GLOBAL item:

One program must declare the GLOBAL item (data item or �le).

The other programs must be nested within the program that declares the GLOBAL item.

A program nested within the program that declares the GLOBAL item cannot have a local
item with the same name and quali�cation as the GLOBAL item. If it does, references to
that name refer to the local item rather than the GLOBAL item.

For more information, see Chapter 3.

Note If a �le is declared GLOBAL in one program, and is opened in another
program that uses the EXCLUSIVE statement, then the �rst program must
declare the �le with L in the ASSIGN clause. This enables dynamic locking.

Similarly, if a �le is declared GLOBAL in a program that does not write to it,
it must declare it with CCTL in the ASSIGN clause to enable CCTL.

4-60 Subprograms and Intrinsics

Calling Intrinsics

Calling Intrinsics

The section explains some aspects of calling intrinsics. For more information about HP
Intrinsics, see the MPE XL Intrinsics Reference Manual .

Using $CONTROL CALLINTRINSIC

Intrinsics are subprograms whose declarations reside in the intrinsic �le, SYSINTR.PUB.SYS.
Ideally, your program always calls an intrinsic with CALL INTRINSIC instead of CALL, and
does not use the control option CALLINTRINSIC.

The control option CALLINTRINSIC increases compile time because it causes the compiler to
search SYSINTR.PUB.SYS every time your program calls a subprogram with CALL literal . If
the subprogram declaration is in SYSINTR.PUB.SYS, the compiler assumes that you intended
to call it as an intrinsic, and the compiler does the following:

Issues a warning.
Generates code for the subprogram as if your program had called it as an intrinsic.

If you are not sure whether your program always calls an intrinsic with CALL INTRINSIC,
compile it with the CALLINTRINSIC control option, which will identify all of the intrinsic
calls that use CALL. In those calls, change CALL to CALL INTRINSIC. Then, recompile
your program without the CALLINTRINSIC control option.

How Intrinsics Are Called

When your program calls a subprogram as an intrinsic, the compiler reads from
SYSINTR.PUB.SYS the following information about each formal subprogram parameter:

Whether the formal paramater is passed by reference or value.

Don't explicitly specify reference or value. For example, do not include the character n to
pass a data item by value, or the @ sign to pass a data item by reference.

The default value of the formal parameter.

This value is assigned to the formal parameter if your program does not provide an actual
parameter for it. Specify nn for each parameter omitted.

The type of the formal parameter.

The compiler issues an error message if the types of the formal and actual parameters are
not compatible. See Table 4-8 for a list of intrinsic parameter types and corresponding
COBOL types.

The alignment of the formal parameter.

The compiler issues an error message if the actual parameter does not have the same
alignment as the formal parameter.

Subprograms and Intrinsics 4-61

Calling Intrinsics

Table 4-8 lists the intrinsic parameter types and their corresponding COBOL types.

Table 4-8. Intrinsic Parameter Types and Corresponding COBOL Types

Mnemonic
Full Name of Intrinsic

Parameter Type
Size

in Bytes
COBOL Type

(Passed by Reference)
COBOL Type

(Passed by Value)

A Array n USAGE DISPLAY
USAGE PACKED DECIMAL
Group item

Numeric items1

Nonnumeric items1

B Boolean 1 Group item Numeric items
Nonnumeric items1

C Character 1 USAGE DISPLAY
Group item

Numeric items
Nonnumeric items1

- Packed decimal n USAGE PACKED-DECIMAL Not applicable

- Entry point 4 S9(9) BINARY Not compatible

- External ASCII n USAGE DISPLAY
Group item

Not applicable

I16 16-bit signed integer 2 S9(1)-S9(4) BINARY Numeric items

I32 32-bit signed integer 4 S9(5)-S9(9) BINARY Numeric items

I64 64-bit signed integer 8 S9(10)-S9(18) BINARY Numeric items

- Procedure 0 Not compatible Not compatible

REC Record
(generic structure)

n USAGE DISPLAY
USAGE PACKED-DECIMAL
Group item

Numeric items1

Nonnumeric items1

R32 32-bit real 4 Not compatible Numeric items2

R64 64-bit real 8 Not compatible Numeric items2

R128 128-bit real 16 Not compatible Not compatible

U16 16-bit unsigned integer 2 S9(1)-S9(4) BINARY Numeric items

U32 32-bit unsigned integer 4 S9(9) BINARY Numeric items

U64 64-bit unsigned integer 8 S9(18) BINARY Numeric items

- Constant address 4 Not compatible Not compatible

- Local label address 4 Not compatible Not compatible

@32 32-bit address 4 S9(9) BINARY Not compatible

@64 64-bit address 8 S9(18) BINARY Not compatible

S Set 4 Not compatible Numeric items1

1 Size must match exactly. No type conversion is done.

2 For R32, use S9(9) BINARY. For R64, use S9(18) BINARY.

4-62 Subprograms and Intrinsics

Calling Intrinsics

For BINARY �elds, an intrinsic may return a value outside the range of valid numbers for
the COBOL type. Calculations with such values may cause a SIZE ERROR. To prevent the
error, use a MOVE statement to move the contents of such �elds to larger BINARY �elds.
For example, the WHO intrinsic may return 16385 for the terminal parameter. Because the
terminal parameter is COBOL type S9(4) BINARY, the value of terminal can be moved to a
COBOL type S9(5) BINARY to match the type with the contents.

Passing Real Numbers to Intrinsics

Some intrinsics have parameters that are real numbers, for example PAUSE. You can call
these intrinsics by converting a numeric character string representing the real number into

oating-point format. The intrinsic HPEXTIN converts a numeric character string into a

oating-point value. For more information about HPEXTIN, see the Compiler Library/XL
Reference Manual .

Example

The following program reads a numeric value from the terminal, converts the value to

oating-point, and passes it to the PAUSE intrinsic.

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. COBPAUSE.

001200 DATA DIVISION.

001300 WORKING-STORAGE SECTION.

001400 01 CHAR-STRING PIC S999 SIGN IS LEADING SEPARATE.

001500 01 STRING-LEN PIC S9(4) BINARY.

001600 01 REAL-SECONDS PIC S9(9) BINARY VALUE ZERO.

001700 01 ERROR-CODE PIC S9(4) BINARY VALUE ZERO.
001800 PROCEDURE DIVISION.

001900 FIRST-PARA.

002000 DISPLAY "Enter number of seconds to pause."

002100 ACCEPT CHAR-STRING FREE

002150 CALL INTRINSIC ".LEN." USING CHAR-STRING GIVING STRING-LEN

002200 CALL INTRINSIC "HPEXTIN" USING CHAR-STRING STRING-LEN

002300 0 1 0 0 REAL-SECONDS ERROR-CODE

002400 IF ERROR-CODE <> 0

002500 PERFORM HPEXTIN-ERROR

002600 ELSE

002700 CALL INTRINSIC "PAUSE" USING REAL-SECONDS

002800 END-IF

002900 STOP RUN.

003000

003100 HPEXTIN-ERROR.

003200 DISPLAY "HPEXTIN ERROR = " ERROR-CODE.

Subprograms and Intrinsics 4-63

5

Files

Introduction

Files are the basis for input and output. Your COBOL program reads input from �les and
writes output to them.

Files are also a means of interprogram communication. Two or more programs can
communicate using a shared �le. See \DATA DIVISION: GLOBAL Data Items and Files" in
Chapter 3 and \EXTERNAL Data Items and Files" in Chapter 4.

Files that your program declares are called logical �les. Files that exist outside your program
are called physical �les . When you associate a logical �le with a physical �le, everything that
your program does to the logical �le happens to the physical �le. Before your program can
access a logical �le and its associated physical �le, the program must open the �le with the
OPEN verb.

Note You should not use intrinsics to access a �le opened by the COBOL OPEN
statement. When you OPEN a �le, the HP COBOL II/XL run-time system
assumes all accesses to that �le are done with COBOL statements. If you use
intrinsics to access the �le before closing it with the CLOSE statement, the
results are unpredictable.

This chapter presents the following:

Lists the input and output statements and which can be used with each of the four types of
logical �les.

Explains the four types of logical �les that your program can use.

Explains how you can use variable length records.

Explains how physical �les are created and associated with logical �les.

Gives information on overwriting, updating, and appending to �les.

Gives the status codes for �le errors.

Files 5-1

Files

Table 5-1 lists each I-O statement and how each statement is used with each �le type. The
following explains what each entry in Table 5-1 means:

Meanings of Entries in Table 5-1

Table Entry Meaning

Comment This verb or clause is treated as a comment.

Illegal This verb or clause is illegal for this �le type.

Optional This verb or clause is optional. Use it if you want
the functionality it provides.

Required This verb or clause is required.

Select one Select any one of the items in the box with this
entry.

Blank This verb or clause is not applicable to this �le
type.

5-2 Files

Files

Table 5-1. I-O Statements and File Types

I-O Statement How the Statement Can Be Used

Verb
Clause/Phrase

Sequential
Organization

File

Relative
Organization

File

Indexed
Organization

File

Random
Access
File

CLOSE

REEL FOR REMOVAL Comment1 Illegal Illegal Illegal

UNIT FOR REMOVAL Comment1 Illegal Illegal Illegal

WITH NO REWIND Optional Illegal Illegal Illegal

WITH LOCK Optional Optional Optional Optional

FD Required Required Required Required

BLOCK Optional Optional Optional Optional

RECORDING MODE Optional Optional Optional Optional

RECORD CONTAINS Optional Optional Optional Optional

LABEL RECORDS Optional Optional Optional Optional

VALUE OF Optional Optional Optional Optional

DATA RECORDS Comment Comment Comment Comment

LINAGE Optional Illegal Illegal Illegal

WITH FOOTING Optional

LINES AT TOP Optional

LINES AT BOTTOM Optional

CODE-SET Optional Illegal Illegal Illegal

OPEN

INPUT Select one Select one Select one Select one

REVERSED Comment Illegal Illegal Illegal

NO REWIND Comment Illegal Illegal Illegal

OUTPUT Select one Select one Select one Select one

NO REWIND Comment Illegal Illegal Illegal

I-O Select one Select one Select one Select one

EXTEND Optional Optional Optional Illegal

READ

NEXT RECORD Optional Optional Optional Optional

INTO IDENTIFIER Optional Optional Optional Optional

AT END Optional Optional Optional Optional

NOT AT END Optional Optional Optional Optional

INVALID KEY Illegal Optional Illegal Optional

NOT INVALID KEY Illegal Optional Illegal Optional

KEY IS Illegal Illegal Optional Illegal

INVALID KEY Illegal Illegal Optional Illegal

NOT INVALID KEY Illegal Illegal Optional Illegal

1 This phrase causes the CLOSE statement to be treated as a comment. The �le is left open.

Files 5-3

Logical Files

Table 5-1. I-O Statements and File Types (continued)

I-O Statement How the Statement Can Be Used

Verb
Clause/Phrase

Sequential
Organization

File

Relative
Organization

File

Indexed
Organization

File

Random
Access
File

REWRITE

FROM IDENTIFIER Optional Optional Optional Optional

INVALID KEY Illegal Optional Optional Optional

NOT INVALID KEY Illegal Optional Optional Optional

SELECT Required Required Required Required

OPTIONAL Optional Optional Optional Optional

ASSIGN Required Required Required Required

RESERVE Optional Optional Optional Optional

ORGANIZATION Optional Required Required Illegal

RELATIVE Illegal Required Illegal

SEQUENTIAL Optional Illegal Illegal

INDEXED Illegal Illegal Required

ACCESS MODE Optional Optional Optional Required

SEQUENTIAL Optional Optional Optional Illegal

RELATIVE KEY Illegal Optional Illegal

RANDOM Illegal Optional Optional Required

RELATIVE KEY Illegal Optional Optional Illegal

ACTUAL KEY Illegal Illegal Illegal Optional

DYNAMIC Illegal Optional Optional Illegal

RELATIVE KEY Required Illegal

RECORD KEY Illegal Illegal Required Illegal

WITH DUPLICATES Optional

ALTERNATE KEY Illegal Illegal Optional Illegal

WITH DUPLICATES Optional

FILE STATUS Optional Optional Optional Optional

ACTUAL KEY Illegal Illegal Illegal Required

SD Illegal Illegal Illegal Illegal

RECORD CONTAINS

DATA RECORD

WRITE

FROM IDENTIFIER Optional Optional Optional Optional

BEFORE ADVANCING Optional Illegal Illegal Illegal

AFTER ADVANCING Optional Illegal Illegal Illegal

AT END OF PAGE Optional Illegal Illegal Illegal

NOT AT END OF PAGE Optional Illegal Illegal Illegal

INVALID KEY Illegal Optional Optional Optional

NOT INVALID KEY Illegal Optional Optional Optional

5-4 Files

Logical Files

Logical Files

A logical �le is a data structure that your program declares and accesses. Your program can
declare logical �les of these four types:

Sequential organization, including MPE special �les.

Random access.

Relative organization.

Indexed organization.

Each �le type name re
ects the way �les of that type are organized and can be accessed.
Organization and access method, the major attributes of a �le type, determine some of its
other attributes.

This section explains the above �le types and variable records, which every �le type can have.

Files 5-5

Logical Files

Table 5-2 summarizes the attributes of the four �le types for the purpose of comparison. This
section explains each �le type in detail. De�nitions and explanations of some of the terms in
Table 5-2 follow the table.

Table 5-2. Attributes of File Types

Attribute

File Type

Sequential
Organization

Random
Access

Relative
Organization

Indexed
Organization

Key Type Does not use keys. Numeric. Numeric. Alphanumeric.
Must be written
in ascending order
if access mode is
sequential.

Key Quantity One One 1 to 16.

Is Key Unique? Yes Yes No

First Key Zero One Any value.

Open Mode: Input Yes Yes Yes Yes

Open Mode: Output Yes Yes Yes Yes

Open Mode:
Input-Output

Yes Yes Yes Yes

Open Mode: Extend Yes No Yes Yes

Sequential Access Yes Yes Yes Yes

Random Access No Yes Yes Yes

Dynamic Access No No Yes Yes

Records can be
appended

Yes Yes Yes Yes

Records can be deleted No No Yes Yes

Records can be
inserted

No Yes Yes Yes

Records can be
updated

In place. Yes Yes Yes

File portability Completely
portable.

Portable to MPE. Portable to MPE. Portable to MPE.

A�ects program
portability

No Yes No No

Space is allocated for: Records written. Records possible
(maximum key
value plus one,
because �rst key
is zero.)

Records possible
(maximum key
value) and one
tag per record.

In Compatibility
Mode, two �les:
one for records
written and one
for bookkeeping.
In Native Mode,
one �le.

Device on which �le
can reside:

Any Disk only. Disk only. Disk only.

5-6 Files

Logical Files

Below are de�nitions of the terms in column one of Table 5-2.

Term De�nition

Key A value within a record that serves to distinguish it from other
records.

Input open mode Allows a program to read a �le, but not write it. A �le that is
open for input access can be used for input, but not output.

Output open mode Allows a program to write a �le, but not read it. A �le that is
open for output access can be used for output, but not input.

Input-Output open mode Allows a �le to be read and written. A �le that is open for
input-output access can be used for input and/or output.

Extend open mode Allows a �le to be written in sequential access mode only.

Sequential organization Allows �le records to be read in order from �rst to last,
appended to a �le, or written one after another.

Random access Allows �le records to be read or written in any order.

Dynamic access Allows �le to be accessed sequentially or randomly.

Append To append a record to a �le is to add a new record to the end
of the �le.

Delete To delete a record from a �le is to remove the record from the
�le.

Insert To insert a record into a �le is to add a new record to the �le
between two of its existing records (if there is room in the key
order).

Update To update a record is to change its content (without changing
its position in the �le).

File portability The degree to which a �le is portable; the number of
computers on which it can be used, other than the one on
which it was created. A completely portable �le can be used
on any computer. A �le that is portable to MPE can be used
on any MPE computer (if all its data is USAGE DISPLAY).

Program portability The degree to which a program is portable; the number of
computers on which it can be compiled and/or run, other
than the one on which it was originally compiled. File type
can a�ect program portability. A �le type that requires
nonportable procedures to access it makes programs that use
�les of that type nonportable.

Files 5-7

Sequential Organization Files

Sequential Organization Files

A sequential organization �le is so named because it can only be accessed sequentially. It does
not use keys. Because of this simplicity, a sequential organization �le:

Is completely portable (when you are making an ANSI LABELLED TAPE and all data in
the records is USAGE DISPLAY).

Does not limit the portability of the programs that use it.

Requires space only for records that are actually written to it.

Can reside on any device.

This section explains the following:

How to code sequential organization �les.

MPE special �les (specialized sequential organization �les):

Circular �les.

Message �les.

Print �les.

Table 5-3 lists the access modes for sequential organization �les, the open modes associated
with them, and the I-O statements that are valid with those open modes.

Table 5-3.

Access Modes, Open Modes, and Valid I-O Statements for

Sequential Organization Files

Access Mode Open Mode Valid Statements Explanation

Read-only INPUT READ You can read the �le from beginning to end.

Write-only OUTPUT WRITE You can write the �le from beginning to end. If
the �le exists, it is overwritten. If it does not
exist, it is created.

EXTEND WRITE You can append records to the �le. If the �le does
not exist, it is created if the SELECT statement
speci�es the OPTIONAL phrase.

Read-write I-O READ, REWRITE;

WRITE if the
physical �le is a
terminal (HP
extension)

You can process the �le from beginning to end.
You can REWRITE a record immediately after a
READ (update it in place). You cannot add new
records.

A sequential organization �le is appropriate for a program that reads or writes a �le from
beginning to end, without skipping around in it. Examples are transaction �les (which are
read from beginning to end) and back-up �les (which are written from beginning to end).

5-8 Files

Sequential Organization Files

How to Code Sequential Organization Files

The minimum code your program needs to perform input and output with sequential
organization �les is:

In the ENVIRONMENT DIVISION, a SELECT statement with an ASSIGN clause for each
�le.

In the FILE SECTION of the DATA DIVISION, an FD entry to match each SELECT
statement, with an 01 record for each �le.

In the PROCEDURE DIVISION, procedures to OPEN, READ, WRITE, and CLOSE the
�les.

Files 5-9

Sequential Organization Files

Example 1. The following uses a sequential organization �le:

IDENTIFICATION DIVISION.

PROGRAM-ID. FILE-EX1.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT PFILE ASSIGN "PFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE.

01 IREC.

05 NAME PIC X(30).

05 SOC-SEC PIC X(9).

05 HIRE-DATE.

10 MO PIC XX.

10 DA PIC XX.

10 YR PIC XX.

05 SALARY PIC S9(6).

05 PIC X(29).

FD PFILE.

01 PREC.

05 SOC-SEC PIC X(9).

05 PIC XX.

05 NAME PIC X(30).

05 PIC XX.

05 HIRE-DATE.

10 MO PIC XX.

10 PIC X.

10 DA PIC XX.

10 PIC X.
10 YR PIC XX.

05 PIC X(81).

01 HREC.

05 HSOC-SEC PIC X(11).

05 HNAME PIC X(32).

05 HHIRE-DATE PIC X(89).

WORKING-STORAGE SECTION.

01 LNCNT PIC S9(4) BINARY VALUE 60.

01 W-DATE.

05 WYR PIC XX.

05 PIC X(4).

PROCEDURE DIVISION.

P1.

ACCEPT W-DATE FROM DATE.

OPEN INPUT IFILE OUTPUT PFILE.

PERFORM WITH TEST AFTER UNTIL SOC-SEC OF IREC = ALL "9"

READ IFILE

AT END MOVE ALL "9" TO SOC-SEC OF IREC

NOT AT END

5-10 Files

Sequential Organization Files

IF WYR = YR OF IREC THEN

ADD 1 TO LNCNT

IF LNCNT > 50 PERFORM HEADINGS END-IF
MOVE SPACES TO PREC

MOVE CORR IREC TO PREC

WRITE PREC AFTER ADVANCING 1 LINE

END-IF

END-READ

END-PERFORM

CLOSE IFILE PFILE

STOP RUN.

HEADINGS.

MOVE "SOC SEC NO" TO HSOC-SEC.

MOVE "NAME" TO HNAME.

MOVE "HIRE DATE" TO HHIRE-DATE.

WRITE PREC AFTER ADVANCING PAGE.

MOVE 0 TO LNCNT.

The following is input to the program:

Albert Einstein 343567890010587

James Joyce 123456789033086

Alice Walker 987654321020187

Rolando Jiron 333444555121085

This program prints the following:

SOC SEC NO NAME HIRE DATE

343567890 ALBERT EINSTEIN 01 05 87

987654321 ALICE WALKER 02 01 87

The FILE STATUS Clause

The optional FILE STATUS clause speci�es a data-item that contains a �le status code after
any I-O verb (READ, WRITE, OPEN, or CLOSE) is applied to the �le. Your program
can also contain USE procedures that examine the values of such data-items and perform
accordingly. See \File Status Codes" for more information.

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause is not required. It is better to set the block size outside of
the program, when you create the �le with the FILE or BUILD command.

The RESERVE Clause

The RESERVE clause speci�es the number of �le system bu�ers assigned to a COBOL
program at execution time. The default is two bu�ers, which is optimal for most COBOL
programs. A program with extremely heavy I-O and a set of frequently accessed records may
perform better with three bu�ers. Allocating more than three bu�ers is ine�cient use of
memory and rarely improves I-O performance.

Files 5-11

Sequential Organization Files

The CODE-SET Clause

By default, a sequential �le contains ASCII data. If your sequential �le contains non-ASCII
data, you must use the CODE-SET clause to specify its character code convention.

Example. The following program illustrates the CODE-SET clause:

IDENTIFICATION DIVISION.

PROGRAM-ID. FILE-EX1.

* This program converts an EBCDIC file into an ASCII file.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

ALPHABET EBCDIC IS EBCDIC.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT OFILE ASSIGN "OFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE

CODE-SET IS EBCDIC.

01 IREC PIC X(80).

FD OFILE.

01 OREC PIC X(80).

PROCEDURE DIVISION.

P1.

OPEN INPUT IFILE OUTPUT OFILE.

PERFORM WITH TEST AFTER UNTIL IREC = ALL "9"

READ IFILE

AT END MOVE ALL "9" TO IREC
NOT AT END

MOVE IREC TO OREC

WRITE OREC

END-READ

END-PERFORM

CLOSE IFILE OFILE.

Note A non-ASCII �le need not be organized sequentially for a COBOL program to
read or write it.

In the preceding examples, the records of each �le are of the same format. A �le with variable
records requires a RECORD clause. See \Variable Records."

5-12 Files

Sequential Organization Files

Circular Files

A circular �le is organized like a sequential organization �le, except that it has no \last"
record when being written. The record that would be \last" in an ordinary sequential
organization �le is followed (conceptually) by the record that would be \�rst."

The diagrams below shows an ordinary sequential organization �le with eight records and a
circular �le with eight records, for comparison.

The following shows an ordinary sequential organization �le with eight records.

Record 1 Record 2 Record 3 Record 4 Record 5 Record 6 Record 7 Record 8

The following shows a circular �le with eight records (also a sequential organization �le):

Record 1 Record 2 Record 3

Record 8 Record 4

Record 7 Record 6 Record 5

The two ways to create a circular �le are:

Use the MPE BUILD command, like this:

BUILD �lename;CIR

Use the MPE FILE command to cause COBOL to create a circular �le, like this:

FILE �lename;CIR

A circular �le is appropriate for a history �le. A circular �le with n records keeps track of the
last n transactions, and never �lls up.

Files 5-13

Sequential Organization Files

Example. This example program uses the following:

A circular �le for output.

A variable record �le input. See \Variable Records."

A SYMBOLIC CHARACTERS clause, an ANSI85 feature. See Chapter 2.

Assuming that the program is in the �le named filex4, you can use the following sequence of
MPE XL commands to run it:

:file ifile=$stdin

:file ofile,new;cir;rec=-80,,,ascii;disc=20

:cob85xlg filex4

These commands tell the program to do the following:

Read input from the terminal, unless the program is run from a job stream.

Write output to a circular �le that can hold 20 records.

Note The program does not require a circular output �le.

IDENTIFICATION DIVISION.

PROGRAM-ID. FILE-EX4.
* Reads input from terminal to variable record file. Writes to circular

* file. Input consists of commands. Last commands entered can be found

* in circular file. Number of records logged depends on file size.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

SYMBOLIC CHARACTERS CR IS 14.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT OFILE ASSIGN "OFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE

RECORD IS VARYING DEPENDING ON LEN.

01 IREC.

05 ICHARS PIC X OCCURS 0 TO 80 TIMES

DEPENDING ON LEN.

FD OFILE.

01 OREC PIC X(80).

WORKING-STORAGE SECTION.

01 LEN PIC S9(4) BINARY.

01 ERROR-CODE PIC S9(4) BINARY.

01 PARM PIC S9(4) BINARY.

PROCEDURE DIVISION.

5-14 Files

Sequential Organization Files

P1.

OPEN INPUT IFILE OUTPUT OFILE.

PERFORM WITH TEST AFTER UNTIL IREC = "//"
READ IFILE

AT END

MOVE 2 TO LEN

MOVE "//" TO IREC

NOT AT END

IF IREC "//"

ADD 1 TO LEN

MOVE CR TO ICHARS(LEN)

CALL INTRINSIC "COMMAND"

USING IREC ERROR-CODE PARM

WRITE OREC FROM IREC

END-IF

END-READ

END-PERFORM

CLOSE IFILE OFILE

STOP RUN.

Files 5-15

Sequential Organization Files

Message Files

A message �le is organized like a sequential organization �le that is open for input or output
access. Programs use message �les to communicate with each other.

The two ways to create a message �le are:

Use the MPE BUILD command, like this:

BUILD �lename;MSG

Use the MPE FILE command to cause COBOL to create a message �le, like this:

FILE �lename;MSG

You must open a message �le with the INPUT, OUTPUT, or EXTEND option. Sometimes
you must call the FCONTROL intrinsic for full functionality, for example:

To set a timeout interval.

To enable an extended wait.

An extended wait allows your program to wait until another program has read or written the
message �le before it accesses it. For example, your program can wait until another program
has written a message to the message �le before reading it, or your program can wait until
another program has read the message �le before writing it.

Example. Suppose that you have a summary job that cannot run until �ve other jobs have
run. The �ve other jobs are not interdependent; they can run at the same time. The problem
is how to ensure that they have run before the summary job runs. One solution is to use a
message �le. If each of the �ve jobs logs information into the message �le, the summary job
can wait until all �ve jobs have accessed the message �le before it executes.

The program for the summary job follows. Notice that it uses FCONTROL to enable
extended wait. It calls FCONTROL directly, passing the FD name (IFILE) to the intrinsic
as the �le number. (Any COBOL program can call any MPE intrinsic in this manner. The
access mode of the �le is not important.)

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. FILEX6.

003000 ENVIRONMENT DIVISION.

004000 INPUT-OUTPUT SECTION.

005000 FILE-CONTROL.

006000 SELECT IFILE ASSIGN "MFILE".

007000 DATA DIVISION.

008000 FILE SECTION.
009000 FD IFILE.

010000 01 IREC PIC X(8).

011000 WORKING-STORAGE SECTION.

012000 01 TRUE-VALUE PIC 9(4) BINARY VALUE 1.

013000 01 PROGRAM-COUNT PIC S9(4) BINARY VALUE 0.

014000 01 DEPENDENCY-TABLE.

015000 05 PIC X(8) VALUE "FILEX51".

016000 05 PIC X(8) VALUE "FILEX52".

017000 05 PIC X(8) VALUE "FILEX53".

018000 05 PIC X(8) VALUE "FILEX54".

019000 05 PIC X(8) VALUE "FILEX55".

5-16 Files

Sequential Organization Files

020000 01 REDEFINES DEPENDENCY-TABLE.

021000 05 PROGRAM-NAME PIC X(8) OCCURS 5 TIMES

022000 ASCENDING KEY IS PROGRAM-NAME
023000 INDEXED BY I.

024000 PROCEDURE DIVISION.

025000 P1.

026000 WAITING-TO-GO.

027000 OPEN INPUT IFILE.

028000 CALL INTRINSIC "FCONTROL" USING IFILE, 45, TRUE-VALUE.

029000 PERFORM UNTIL PROGRAM-COUNT = 5

030000 READ IFILE

031000 AT END

032000 DISPLAY "AT END on message file should not occur"

033000 GO TO END-OF-PROGRAM

034000 END-READ

035000

036000 SEARCH ALL PROGRAM-NAME

037000 AT END

038000 DISPLAY "filex6: dependency table needs update"

039000 GO TO END-OF-PROGRAM

040000 WHEN PROGRAM-NAME(I) = IREC

041000 ADD 1 TO PROGRAM-COUNT

042000 END-SEARCH

043000

044000 END-PERFORM

045000 CLOSE IFILE.

046000

047000

048000 MAIN-PROGRAM.

049000 DISPLAY "JOBS FILEX51 THRU FILEX55 COMPLETED,"

050000 " FILEX6 CONTINUING".
051000 END-OF-PROGRAM.

052000 STOP RUN.

053000

Files 5-17

Sequential Organization Files

Each of the �ve jobs contains code similar to this:

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. FILEX51.
003000 ENVIRONMENT DIVISION.

004000 INPUT-OUTPUT SECTION.

005000 FILE-CONTROL.

006000 SELECT OFILE ASSIGN "MFILE".

007000 DATA DIVISION.

008000 FILE SECTION.

009000 FD OFILE.

010000 01 OREC PIC X(8).

011000 PROCEDURE DIVISION.

012000 P1.

013000 OPEN EXTEND OFILE.

014000 MOVE "FILEX51" TO OREC

015000 WRITE OREC

016000 CLOSE OFILE

017000 STOP RUN.

5-18 Files

Sequential Organization Files

This job stream streams the �ve jobs and the summary job:

:job jfilemsg,user.account

:purge mfile
:build mfile;msg;rec=-8,,,ascii;disc=10

:stream ,%

%job jfilex6,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex6

%eoj

%job jfilex51,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex51

%eoj

%job jfilex52,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex52

%eoj

%job jfilex53,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex53

%eoj

%job jfilex54,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex54

%eoj

%job jfilex55,me.myacct/paswd;inpri=7;outclass=pp,3

%file mfile;semi

%run pfilex55

%eoj

:eoj

Print Files

A print �le is organized like a sequential organization �le and has carriage control. The
carriage control option cannot be changed after the �le is created. See the \WRITE
Statement" in the HP COBOL II/XL Reference Manual for more information.

Files 5-19

Random Access Files

Random Access Files

A random access �le is so named because any record can be accessed at any time by its key.
The key corresponds to the record number minus one (for example, key zero is the �rst record
and key four is the �fth record).

The MPE XL operating system does not distinguish between random access and sequential
organization �les. Therefore, a random access �le can be treated like a sequential organization
�le.

If it is accessed randomly, a random access �le has these advantages over a sequential
organization �le:

Its records can be accessed in any order.
New records can be inserted between existing records (as well as appended to the end of the
�le until the �le is full, if there is room in key order).
Its records can be updated.

A random access �le has these disadvantages over a sequential organization �le:

It is not ANSI standard (it is a carryover for COBOL 68 compatibility)
It must reside on a disk.
It limits the portability of the programs that access it randomly. (They cannot run on
systems that do not have disk storage on which the �le can reside, for example.)
It requires space for every possible record, rather than only for records that are actually
written to it.
Requires �xed length records.

A random access �le has these advantages over a relative organization �le:

It is a standard MPE �le.
Non-COBOL programs and routines can read it.
Access is much faster. WRITE works on a random access �le record whether it has been
written before or not. On a relative organization �le, WRITE only works on new records.
Overwriting requires REWRITE.

A random access �le has these disadvantages over a relative organization �le:

It is not ANSI standard.
Its records cannot be deleted.

A random access �le can be opened for input, write-only, or input-output access. It is
appropriate for a program that must skip around in the �le. An example is a record �le in
which a few random records are updated at a time.

5-20 Files

Random Access Files

How to Code Random Access Files

The code that your program needs in order to perform input and output with random access
�les is the following:

1. In the ENVIRONMENT DIVISION, a SELECT statement with an ASSIGN clause for
each �le. The clauses ACCESS MODE IS RANDOM and ACTUAL KEY are required.

2. In the FILE SECTION of the DATA DIVISION, an FD entry to match each SELECT
statement, with an 01 record for each �le.

3. In the FILE SECTION or WORKING STORAGE SECTION of the DATA DIVISION,
a de�nition of each data name that you speci�ed in an ACTUAL KEY clause in the
ENVIRONMENT DIVISION. De�ne each data item as an integer large enough to number
every record in the �le. For maximum e�ciency, use PIC S9(9) COMP SYNC.

4. In the PROCEDURE DIVISION, procedures to OPEN, READ, WRITE, REWRITE, and
CLOSE the �les, and to assign keys (record numbers).

Files 5-21

Random Access Files

Example. The following program uses random access �les.

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. RANDCRSC.
003000* This program creates a simple random file to show the

004000* blank record created.

005000 ENVIRONMENT DIVISION.

006000 INPUT-OUTPUT SECTION.

007000 FILE-CONTROL.

008000 SELECT RANDFILE ASSIGN TO "RANDFILE"

009000 ACCESS IS RANDOM

009100 ACTUAL KEY IS RANDKEY.

010000

011000 DATA DIVISION.

012000 FILE SECTION.

013000 FD RANDFILE.

014000 01 RANDREC.

016000 03 FILLER PIC X(10).

016100 WORKING-STORAGE SECTION.

016200 01 RANDKEY PIC 999.

017000 PROCEDURE DIVISION.

018000 P1.

019000 OPEN OUTPUT RANDFILE.

020000 MOVE 0 TO RANDKEY.

020100 MOVE "000" TO RANDREC.

021000 WRITE RANDREC

022000 INVALID KEY PERFORM ERROR-RTN.

023000 MOVE 6 TO RANDKEY.

023100 MOVE "006" TO RANDREC.

024000 WRITE RANDREC

025000 INVALID KEY PERFORM ERROR-RTN.

026000 MOVE 2 TO RANDKEY.
026100 MOVE "002" TO RANDREC.

027000 WRITE RANDREC

028000 INVALID KEY PERFORM ERROR-RTN.

029000 CLOSE RANDFILE.

030000 STOP RUN.

031000 ERROR-RTN.

032000 DISPLAY "KEY ERROR" RANDREC.

033000 STOP RUN.

5-22 Files

Random Access Files

The preceding program creates a temporary random access �le named RANDFILE. The
following command displays information about RANDFILE:

:LISTFTEMP RANDFILE,2

Following is the information displayed:

FILENAME CODE ------------LOGICAL RECORD------------ ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

RANDFILE 10B FA 7 10000 25 16 1 *

The following command displays the contents of RANDFILE:

:PRINT RANDFILE

The above command displays the following:

000 Record 1

Record 2 (blank)

002 Record 3

Record 4 (blank)

Record 5 (blank)

Record 6 (blank)

006 Record 7

Assigning Values to Keys

The PROCEDURE DIVISION must include a procedure that assigns a key to the data
item speci�ed by the ACTUAL KEY clause for each record in the �le. When you write this
key-assigning procedure, keep in mind:

The �rst record must receive the number zero.

It is an error to assign a record number that is greater than the number of records the �le
can hold. (This number is determined when the �le is created with the FILE or BUILD
command.)

A random access �le is allocated space for every possible key, so avoid assigning keys in a
way that creates a lot of unused space. For example, if you assign keys 1000-9999, dummy
records 0-999 will be allocated. If you never intend to use records 0-999, they waste space.

If the keys do not naturally fall within record number zero and the last record in the �le,
you must devise an algorithm to compute the record key | a hashing algorithm, for
example.

A hashing algorithm is any algorithm that maps larger numbers to smaller numbers. The
following are some characteristics of hashing algorithms:

Hashing algorithms often use modular arithmetic.

They add the digits of a larger number together to produce a smaller number.

They map nonnumeric data to numbers and then map those numbers to smaller numbers.

For more information on hashing algorithms, refer to a book on computer algorithms. For an
example of a hashing algorithm, see the example in \Relative Organization Files."

Files 5-23

Relative Organization Files

Accessing Random Access Files Sequentially

The MPE XL operating system does not distinguish between random access and sequential
organization �les. The distinction is made by the HP COBOL II/XL compiler, which
generates di�erent code for random access �les. This means that a �le can be created as a
sequential organization �le by one program and treated as a random access �le by another
program, or vice versa.

When a random access �le is treated as a sequential organization �le, its records are accessed
sequentially, beginning with record zero. The �le system cannot distinguish between dummy
records and real records, however. If the random access �le is an ASCII �le, its dummy
records contain spaces; if it is a binary �le, its dummy records contain binary zeros. Dummy
records are treated as data records.

Relative Organization Files

A relative organization �le is so named because the relative order of its records is constant. It
has MPE XL �le type RIO. It di�ers from a random access �le only in the following ways:

Its �rst key is one, not zero.

Its records can be deleted.

It is portable to MPE computers (not completely portable).

It does not limit the portability of the programs that use it, because it is ANSI Standard.

In addition to space for all possible records, it requires space for one tag per record (the tag
indicates whether the associated record has been deleted).

It is not interchangeable with a sequential organization �le. That is, it cannot be created as
a sequential �le by one program and accessed as a relative organization �le by another, or
vice versa. The reason is that a relative organization �le has an extra bit allocated for each
record. Each bit indicates whether its record has been deleted.

It uses disk space less e�ciently than a random access �le.

I-O is less e�cient than it is on a random access �le.

Simulates variable length records (with �xed length records) transparently.

5-24 Files

Relative Organization Files

How to Code Relative Organization Files

The code that your program needs to perform input and output with relative organization
�les depends on how you want to access the �le. You can access a relative organization �le
sequentially, randomly, or dynamically.

Sequential Access. Sequential access is the default. You may specify ACCESS IS
SEQUENTIAL in the SELECT statement or omit it. Sequential access allows you to access
records in order. Use sequential access when you want to move forward in the �le, but never
backward. For example, a batch payroll program that processes every employee record would
use sequential access.

Random Access. Random access requires that you specify ACCESS IS RANDOM in the
SELECT statement. Random access allows you to access records by key. Use random access
when you want to access records in any order. For example, a personnel application program
that retrieves employee records by employee number would use random access.

Dynamic Access. Dynamic access requires that you specify ACCESS IS DYNAMIC in the
SELECT statement. Dynamic access allows you to skip to any record, before or after the
current record, and then access the �le sequentially from there. Use dynamic access when you
want to access records in order after a certain record. For example, a program that reads
every record written after a certain date, where the date is the key, would use dynamic access.

Files 5-25

Relative Organization Files

Table 5-4 lists the access modes for relative organization �les, the open modes associated with
them, the I-O statements that are valid with those open modes, and the phrases that are valid
and invalid with those I-O statements.

Table 5-4.

Acess Modes, Open Modes, and Valid I-O Statements

for Relative Organization Files

Access Mode Open Mode Valid Statements Valid Phrases Invalid Phrases

Sequential INPUT READ NEXT, INTO, AT
END, NOT AT
END, END-READ

INVALID KEY,
NOT INVALID
KEY

START All phrases. None.

OUTPUT WRITE All phrases. None.

I-O READ NEXT, INTO, AT
END, NOT AT
END, END-READ

INVALID KEY,
NOT INVALID
KEY

REWRITE FROM,
END-REWRITE

INVALID KEY,
NOT INVALID
KEY

START All phrases. None.

DELETE END-DELETE INVALID KEY,
NOT INVALID
KEY

EXTEND WRITE All phrases. None.

5-26 Files

Relative Organization Files

Table 5-4.

Acess Modes, Open Modes, and Valid I-O Statements

for Relative Organization Files (continued)

Access Mode Open Mode Valid Statements Valid Phrases Invalid Phrases

Random INPUT READ INTO, INVALID
KEY, NOT
INVALID KEY,
END-READ

AT END, NOT AT
END

OUTPUT WRITE All phrases. None.

I-O READ INTO, INVALID
KEY, NOT
INVALID KEY,
END-READ

AT END, NOT AT
END

REWRITE,
DELETE, WRITE

All phrases. None.

Dynamic INPUT READ All phrases.
(NEXT is required
to show that
records are to be
accessed
sequentially.)

None.

START All phrases. None.

OUTPUT WRITE All phrases. None.

I-O READ,
REWRITE,
START, DELETE,
WRITE

All phrases. None.

As with a random access �le, a relative organization �le may require that the program have a
hashing algorithm.

Files 5-27

Relative Organization Files

Example. This program writes records to a relative �le, using a simple hashing algorithm to
map Social Security numbers to three-digit numbers. The hashing algorithm uses the last
three digits of the Social Security number as the key. If there is a duplicate key, the hashing
algorithm adds one to the key until it is unique.

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. HASHSC.

003000* This program writes records to a relative file using

004000* a hashing scheme.

005000

006000 ENVIRONMENT DIVISION.

007000 INPUT-OUTPUT SECTION.

008000 FILE-CONTROL.

009000 SELECT RELFILE ASSIGN TO "RELFILE"

010000 ORGANIZATION IS RELATIVE

011000 ACCESS IS RANDOM

012000 RELATIVE KEY IS W-KEY.

013000

014000 DATA DIVISION.

015000 FILE SECTION.

016000 FD RELFILE.

017000 01 REL-REC.

018000 03 REL-SS-NO PIC X(9).

019000 WORKING-STORAGE SECTION.

020000 01 IN-SS-NO.

021000 88 NO-MORE-SS-NUMBERS VALUE ALL "9".

022000 05 FILLER PIC X(6).

023000 05 IN-KEY PIC 999.

024000 01 WRITE-SWITCH PIC XXX.

025000 88 SUCCESS VALUE "YES".

026000 88 RESET-SWITCH VALUE "NO".

027000 01 W-KEY PIC 999.
028000

5-28 Files

Relative Organization Files

029000 PROCEDURE DIVISION.

030000 000-MAIN-PROG.

031000 OPEN OUTPUT RELFILE.
032000 PERFORM 100-GET-SS

033000 PERFORM WITH TEST AFTER UNTIL NO-MORE-SS-NUMBERS

034000 PERFORM 200-WRITE-TO-RELFILE UNTIL SUCCESS

035000 SET RESET-SWITCH TO TRUE

036000 PERFORM 100-GET-SS

037000 END-PERFORM

038000 CLOSE RELFILE.

039000 STOP RUN.

040000

041000 100-GET-SS.

042000 ACCEPT IN-SS-NO.

043000

044000 200-WRITE-TO-RELFILE.

045000 MOVE IN-KEY TO W-KEY

046000 MOVE IN-SS-NO TO REL-SS-NO

047000 PERFORM UNTIL SUCCESS

048000 WRITE REL-REC

049000 INVALID KEY ADD 1 TO W-KEY

050000 NOT INVALID KEY SET SUCCESS TO TRUE

051000 END-WRITE

052000 END-PERFORM.

053000

054000 999-LAST-PARA.

055000 DISPLAY "ERROR -- FELL OFF THE END OF THE PROGRAM".

This program creates a �le that contains the following data:

Social security number 333444001 is record number 001

Social security number 123423007 is record number 007
Social security number 111222008 is record number 008

Social security number 123456009 is record number 009

Social security number 222333007 is record number 010

Social security number 444555010 is record number 011

Files 5-29

Indexed Organization Files

Indexed Organization Files

An indexed �le is so named because each record has an index, which is an alphanumeric key.
An indexed �le is organized as an MPE XL KSAM �le is organized. You can access both
Native Mode and Compatibility Mode KSAM �les from HP COBOL II/XL programs. Refer
to Using KSAM/XL and the KSAM/3000 Reference Manual for details.

An indexed �le di�ers from a relative organization �le only in the following ways:

The primary keys of an indexed �le can be alphanumeric and must be written in ascending
order (according to ASCII value) if access mode is sequential and open mode is OUTPUT
or EXTEND. The primary keys must be USAGE DISPLAY.

An indexed �le can specify one to 16 keys.

The indexed �le's �rst key can be any value.

Its keys need not be unique. Two records can have the same value for one key only if they
have di�erent values for another key. It is recommended that primary keys be unique.

Two �les are required for support of Compatibility Mode KSAM �les, one for data and one
for the index. The data �le has space only for records written, not for every possible record.
For Native Mode KSAM �les, only one �le is required.

An indexed �le is appropriate when alphanumeric keys are appropriate or keys are not unique.
An example is an employee �le where the employees' surnames are the keys. The surnames
are alphanumeric and two or more employees can have the same surname.

An indexed �le is also appropriate for a sparse �le. If you write a record with the index \A"
followed by a record with the index \Z" space is not allocated for the records that could be
inserted between them.

How to Code Indexed Organization Files

Indexed �les can be accessed sequentially, randomly, or dynamically. The code that your
program needs to access indexed �les sequentially is the following:

1. In the ENVIRONMENT DIVISION, a SELECT statement with an ASSIGN clause for
each �le. The clauses RECORD KEY and ORGANIZATION IS INDEXED are required.

2. In the FILE SECTION of the DATA DIVISION, an FD entry to match each SELECT
statement, with an 01 record for each �le. In the FD entry, none of the clauses are
required. The 01 record must contain the data item speci�ed in the RECORD KEY clause
in the ENVIRONMENT DIVISION.

3. In the PROCEDURE DIVISION, procedures to OPEN, READ, WRITE, REWRITE,
DELETE, and CLOSE the �les, and to assign keys, or record numbers.

To access indexed �les randomly or dynamically, add the clause ACCESS MODE IS
RANDOM or ACCESS MODE IS DYNAMIC to the SELECT statement.

5-30 Files

Indexed Organization Files

Example. The following program uses an indexed organization �le:

001000 IDENTIFICATION DIVISION.

002000 PROGRAM-ID. INDEXSC.
003000* This program reads an indexed file dynamically. It does a

004000* random read to get to the specific ALUM record desired, then

005000* it reads sequentially forward through the records of that alumnus

006000* to total all the gifts made by that alumnus.

007000 ENVIRONMENT DIVISION.

008000 INPUT-OUTPUT SECTION.

009000 FILE-CONTROL.

010000 SELECT ALUMFILE ASSIGN TO "ALUMFILE"

011000 ORGANIZATION IS INDEXED

012000 RECORD KEY IS ID-NUMBER WITH DUPLICATES

013000 ACCESS MODE IS DYNAMIC.

014000 SELECT PRINT-FILE ASSIGN TO "PFILE".

015000 DATA DIVISION.

016000 FILE SECTION.

017000 FD ALUMFILE.

018000 01 ALUM-REC.

019000 03 ID-NUMBER PIC X(9).

020000 88 NO-MORE-ALUMS VALUE "//".

021000 03 NAME PIC X(20).

022000 03 GIFT PIC S9(6)V99.

023000 03 FILLER PIC X(43).

024000 FD PRINT-FILE.

025000 01 PRINT-REC.

026000 03 P-ID-NUMBER PIC X(9).

027000 03 PIC X.

028000 03 P-NAME PIC X(20).

029000 03 PIC X.

030000 03 P-TOTAL-GIFTS PIC $$,$$$,$$$.$$.
031000 WORKING-STORAGE SECTION.

032000 01 EOF-SW PIC X VALUE "N".

033000 88 ALUM-EOF VALUE "Y".

034000 01 W-TOTAL PIC S9(7)V99 VALUE 0.

035000 01 HOLD-ALUM.

036000 03 H-ID-NUMBER PIC X(9).

037000 03 H-NAME PIC X(20).

038000 03 H-GIFT PIC S9(6)V99.

039000 03 FILLER PIC X(43).

Files 5-31

Indexed Organization Files

040000 PROCEDURE DIVISION.

041000 000-MAIN-PROG.

042000 OPEN INPUT ALUMFILE OUTPUT PRINT-FILE.
043000 PERFORM UNTIL NO-MORE-ALUMS

044000 PERFORM 100-WHICH-ALUM

045000 IF NOT NO-MORE-ALUMS

046000 PERFORM 150-TOTAL-THE-ALUMS-GIFTS

047000 END-IF

048000 END-PERFORM.

049000 STOP RUN.

050000

051000 100-WHICH-ALUM.

052000 ACCEPT ID-NUMBER.

053000

054000 150-TOTAL-THE-ALUMS-GIFTS.

055000 READ ALUMFILE INTO HOLD-ALUM

056000 KEY IS ID-NUMBER

057000 INVALID KEY PERFORM 200-NO-SUCH-ALUM

058000 NOT INVALID KEY

059000 MOVE ZERO TO W-TOTAL

060000 PERFORM UNTIL H-ID-NUMBER NOT = ID-NUMBER

061000 ADD GIFT TO W-TOTAL

062000 PERFORM 175-SEQUENTIAL-READ

063000 END-PERFORM

064000 END-READ.

065000 PERFORM 300-PRINT-OUT-ALUM.

066000

067000 175-SEQUENTIAL-READ.

068000 READ ALUMFILE NEXT RECORD

069000 AT END MOVE ALL "X" TO ID-NUMBER

070000 END-READ.
071000 200-NO-SUCH-ALUM.

072000 MOVE " THIS ID NUMBER NOT IN ALUMNI FILE"

073000 TO PRINT-REC

074000 MOVE ID-NUMBER TO P-ID-NUMBER

075000 WRITE PRINT-REC.

076000

077000 300-PRINT-OUT-ALUM.

078000 MOVE H-ID-NUMBER TO P-ID-NUMBER

079000 MOVE H-NAME TO P-NAME

080000 MOVE W-TOTAL TO P-TOTAL-GIFTS

081000 WRITE PRINT-REC.

5-32 Files

Indexed Organization Files

Creating Indexed Files

If your program is to use an indexed �le that does not exist, HP COBOL II/XL (Native
Mode) by default creates a temporary Native Mode KSAM �le|one �le. If an indexed �le has
variable length records, HP COBOL II/XL creates a temporary Compatibility Mode KSAM
�le.

HP COBOL II/V (Compatibility Mode) by default creates a temporary Compatibility Mode
KSAM �le. Compatibility Mode KSAM �les consist of two temporary �les: a data �le and an
index �le. The data �le has the name that the ASSIGN clause speci�es. The index �le has
the same name, with \K" appended to it. If the data �le name has eight characters, the index
�le name has the same �rst seven characters and \K" as the eighth character. In the SELECT
statement, include the clause ACCESS MODE IS SEQUENTIAL.

You can force an HP COBOL II/V program to create a Native Mode KSAM �le by using a
FILE equation with the \;KSAMXL" option.

Alternatively, you can create an indexed �le before you execute your program. To create
a Compatibility Mode KSAM �le, use the >BUILD command of the KSAM utility
KSAMUTIL. To create a Native Mode KSAM �le, use the MPE XL :BUILD command with
the \;KSAMXL" option. Both HP COBOL II/V and HP COBOL II/XL programs can access
existing Native Mode KSAM �les and existing Compatibility Mode KSAM �les. For details,
refer to Using KSAM/XL and the KSAM/3000 Reference Manual .

Example. If the following program is compiled with HP COBOL II/XL, the run-time
library creates the Native Mode KSAM �le NFILE . If the program is compiled with HP
COBOL II/V, the run-time library creates a Compatibility Mode KSAM �le consising of two
temporary �les, NFILE and NFILEK . The program copies the records from the sequential �le
to the indexed �le, using the �rst six characters in each record as its key.

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. TFILE.

001500 ENVIRONMENT DIVISION.

001900 INPUT-OUTPUT SECTION.
002000 FILE-CONTROL.

002100 SELECT NEWFILE

002110 ASSIGN TO "NFILE"

002120 ORGANIZATION IS INDEXED

002130 ACCESS MODE IS SEQUENTIAL

002140 RECORD KEY IS NKEY WITH DUPLICATES.

002200 SELECT TFILE ASSIGN TO OFILE.

002300 DATA DIVISION.

002400 FILE SECTION.

002500 FD NEWFILE.

002600 01 NREC.

002610 05 NKEY PIC X(6).

002620 05 PIC X(74).

002700 FD TFILE.

002800 01 TREC.

002810 05 TKEY PIC X(6).

002820 05 PIC X(74).

003200 PROCEDURE DIVISION.

003300 P1.

003400 OPEN INPUT TFILE OUTPUT NEWFILE

Files 5-33

Indexed Organization Files

003410 READ TFILE AT END MOVE ALL "9" TO TREC END-READ

003500 PERFORM UNTIL TREC = ALL "9"

003600 WRITE NREC FROM TREC
003610 INVALID KEY DISPLAY "ERROR" TREC

003620 END-WRITE

003630 READ TFILE AT END MOVE ALL "9" TO TREC END-READ

003700 END-PERFORM

003710 CLOSE TFILE NEWFILE

003780 STOP RUN.

Sequential Access of Indexed Files

For an indexed �le, sequential access is in ascending key order. Attempting to write a record
out of order causes an invalid key error at run time (�le status code 21).

A sequential rewrite to an indexed �le updates the record that was read immediately before
the REWRITE statement executed. If the REWRITE statement was not immediately
preceded by a READ statement, a logic error occurs.

The following table gives the modes in which you must open an indexed �le to perform the
operations READ, WRITE, REWRITE, and DELETE. The KEY IS phrase is not required.

Table 5-5. Modes to Open Indexed Files for Sequential Access

Operation Modes in Which to Open File

READ INPUT or I-O

WRITE OUTPUT, EXTEND, or I-O

REWRITE I-O

DELETE I-O

Random and Dynamic Access

For an indexed �le, random and dynamic access use the primary key to determine which
record to WRITE, REWRITE, or DELETE.

5-34 Files

Indexed Organization Files

Generic Keys

A generic key is a partial key, the �rst n digits of a key. It is speci�ed in the START
statement.

Example. In the following example, SOURCE-NO is a generic key. The START statement
�nds the �rst record that contains the generic key.

SELECT I-FILE ASSIGN TO "INVFILE"

ORGANIZATION IS INDEXED

RECORD KEY IS PART-NO.

01 IREC.

05 PART-NO.

10 SOURCE-NO PIC XXXX.

10 ITEM-NO PIC XXXX.

05 FILLER PIC X(72).

START I-FILE KEY = SOURCE-NO

INVALID KEY DISPLAY "RECORD NOT FOUND"

END-START.

Duplicate Keys

An indexed �le can have duplicate primary keys if the WITH DUPLICATES phrase is
speci�ed. It can be speci�ed for both the RECORD KEY and ALTERNATE KEY clauses.
(Allowing the WITH DUPLICATES phrase with the RECORD KEY clause is an HP
extension.)

Duplicate primary keys severely limit the functions that can be performed on the �le. In
random or dynamic access, DELETE and REWRITE statements apply only to the �rst record
that has the speci�ed primary key.

Files 5-35

Variable Length Records

Variable Length Records

Variable length records are allowed in every logical �le organization.

For random access �les and relative organization �les, HP COBOL II simulates variable length
records by using �xed length records. HP COBOL II builds the �le with a record size two
bytes longer than the largest logical record, rounded up to a two-byte boundary, de�ned
by the program. No space is saved. The �le must be created by an HP COBOL II program
with the same �le characteristics as the program that will access the �le. When creating a
random access �le with variable length records, use a �le equation like the following to force
the creation of �xed length records:

:FILE X;REC=,,F

Variable length record �les created outside of HP COBOL II can be accessed with
ORGANIZATION SEQUENTIAL.

HP COBOL II directly supports variable length records in indexed and sequential
organization �les.

Specify variable length records with the RECORD IS VARYING clause of the FD level
indicator. The following lists methods of specifying variable length records that are not
recommended:

Method Not Recommended Reason

RECORDING MODE IS V The RECORDING MODE clause is not ANSI
standard.

RECORD CONTAINS integer-4 TO
integer-5 CHARACTERS

The RECORD CONTAINS clause does not
necessarily create a variable record �le. It only
causes the compiler to check that the record size
is between the values integer-4 and integer-5 .

5-36 Files

Variable Length Records

When reading variable length records, do one of the following:

In the FILE SECTION, de�ne the record as OCCURS DEPENDING ON, using the same
data item as you use in the DEPENDING ON phrase of the RECORD IS VARYING and
OCCURS clauses.

Use a READ . . . INTO statement to blank out the un�lled part of the record in the
WORKING-STORAGE SECTION.

Before each READ statement executes, blank out the record associated with the FD level
indicator.

Any one of the above ensures that when you overwrite a larger record value with a smaller
one, the record value does not retain \extra" information from the larger record.

Variable length records are appropriate for any of the following:

Saving �le space on disk. In memory, the maximum space is allocated, but on disk, the
actual size is allocated.

Reading tapes of unknown format or MPE records of unde�ned-length. If this is the case,
use the following �le equation:

:FILE logical �lename;DEV=TAPE;REC=,,U

Terminal I-O, because terminal records are always of unde�ned length. This enables you to
know how many characters were entered from the terminal.

Every time you read from a variable length or unde�ned-length �le, the READ statement
assigns the number of characters read to the data name in the DEPENDING ON phrase of
the RECORD IS VARYING clause.

The terminal is the physical �le that is associated with the logical �le. One way to make
this association is with the following �le equation:

:FILE logical �le name;DEV=TERM

The number of characters written is the exact number of characters speci�ed by the data
name in the DEPENDING ON phrase.

An alternative to a variable length record (RECORD IS VARYING) that also ensures that
the exact number of characters is written is to de�ne the record in the FILE SECTION with
an OCCURS DEPENDING ON clause.

Files 5-37

Variable Length Records

Example

The following program illustrates variable length records. It opens the same �le with and
without the DEPENDING ON phrase. Note that in EXAMPLE 2, IREC2 is not overwritten
by a READ statement, but READ INTO does overwrite the working storage record.

IDENTIFICATION DIVISION.

PROGRAM-ID. COBVAR.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN TO "IFILE".

SELECT IFILE2 ASSIGN TO "IFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE

RECORD IS VARYING FROM 10 TO 50 DEPENDING ON LEN.

01 IREC.

05 FILLER PIC X OCCURS 10 TO 50 TIMES DEPENDING ON LEN.

FD IFILE2

RECORD IS VARYING FROM 10 TO 50.

01 IREC2 PIC X(50).

WORKING-STORAGE SECTION.

01 LEN PIC S9(4) BINARY.

01 WREC PIC X(50).

PROCEDURE DIVISION.

P1.

DISPLAY "EXAMPLE 1 OCCURS DEPENDING ON REC"

OPEN INPUT IFILE

PERFORM UNTIL LEN = -1

READ IFILE

AT END MOVE -1 TO LEN
NOT AT END

DISPLAY IREC

DISPLAY LEN

END-READ

END-PERFORM

CLOSE IFILE

DISPLAY SPACE

DISPLAY "EXAMPLE 2 FIXED REC"

OPEN INPUT IFILE2

MOVE ALL "X" TO IREC2

READ IFILE2 AT END MOVE -1 TO LEN

DISPLAY IREC2

DISPLAY SPACE

5-38 Files

Variable Length Records

DISPLAY "EXAMPLE 3 READ INTO WREC"

MOVE ALL "X" TO IREC2 WREC

READ IFILE2 INTO WREC AT END MOVE -1 TO LEN
DISPLAY IREC2

DISPLAY WREC

CLOSE IFILE2.

Assume that IFILE contains the following data:

1234567890

123456789*123456789*

123456789*123456789*123456789*

The preceding program displays the following:

EXAMPLE 1 OCCURS DEPENDING ON REC

1234567890

+00010

123456789*123456789*

+00020

123456789*123456789*123456789*

+00030

EXAMPLE 2 FIXED REC

1234567890XX

EXAMPLE 3 READ INTO WREC

123456789*123456789*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

123456789*123456789*

Files 5-39

Physical Files

Physical Files

A physical �le exists outside your program, on a device such as a tape or disk. In contrast, a
logical �le is a data structure that your program declares. When you associate a physical �le
with a logical �le and execute your program, everything that your program does to the logical
�le happens to the physical �le.

This section explains the following:

The ASSIGN clause, which associates a logical �le with a physical �le.

Temporary physical �les, which exist only while your program is executing.

The MPE BUILD command, which creates a physical �le.

The MPE FILE command, which associates a physical �le with a logical �le and can specify
new attributes for the logical �le.

How to dynamically associate a logical �le with a physical �le at run time with the USING
clause.

How to access multiple physical �les on a labelled tape without rewinding the tape.

Figure 5-1 shows how the COBOL runtime library determines which physical �le to open
when it executes an OPEN statement.

Figure 5-1. Algorithm for Determining Which File to Open

5-40 Files

Physical Files

ASSIGN Clause

The ASSIGN clause associates a logical �le with a physical �le. It is required for �les of all
types.

The OPEN statement looks for a physical �le named in the ASSIGN clause to associate with
the logical �le. It looks for these physical �les in this order:

1. A �le equation �rst.

2. A temporary physical �le second.

3. A permanent physical �le last.

Note If present, the contents of the item in the USING phrase is used instead of the
literal in the ASSIGN clause. See \Dynamic Files (USING phrase)" below for
details.

Temporary Physical Files

If you need a physical �le only while your program executes, you can use a temporary physical
�le. You can obtain a temporary physical �le in either of these two ways:

Let COBOL create the temporary physical �le automatically when you execute your
program. The attributes of the temporary physical �le are those that you specify with the
FD and SELECT statements. (This applies only to old OUTPUT, EXTEND, and I-O �les.)

Use the MPE command BUILD or FILE, specifying TEMP.

BUILD Command

The MPE BUILD command creates a physical �le when it is executed (as opposed to
specifying the attributes of a �le that will be created when a program opens it). Your
program can use such a physical �le by opening it with the OPEN statement.

For more information on the BUILD command, refer to the HP COBOL II/XL Reference
Manual and the MPE XL Commands Reference Manual .

Files 5-41

Physical Files

FILE Command

The MPE FILE command, also called a �le equation, performs one or both of the following:

Associates a physical �le in the MPE environment with the logical �le de�ned by your
program.

Speci�es attributes for the logical �le, overriding the name and other attributes that the
program speci�es in the OPEN statement.

The FILE command can override the following attributes:

File name, including optional node name.

File size, including number of extents (new �les only).

File type (CIR, MSG, or STD) (new �les only).

Block size (new �les only).

Whether the �le is ASCII or binary (new �les only).

Whether the �le has carriage control (new �les only).

Whether access is exclusive or shared.

Number of input/output bu�ers to be assigned to the �le.

File disposition, which is what happens to the �le after it is closed.

Device.

Output priority.

Number of copies to be printed.

Whether the magnetic tape that contains the �le is labelled.

Note The HP COBOL II/XL compiler requires a closer match between physical �le
attributes and program-speci�ed attributes when invoked through its ANSI85
entry point than it does when invoked through its ANSI74 entry point.
Attempting to override a physical �le attribute with a FILE equation causes
permanent error 39. See Table 5-6.

If you want to use one or more FILE commands, execute them before you execute your
program. See Chapter 6.

For more information on the FILE command, refer to the MPE XL Commands Reference
Manual .

5-42 Files

Physical Files

Figure 5-2 shows the algorithm that the run-time library uses to determine �le attributes
when it opens a �le. For the default attributes of the :FILE command, see this command in
the MPE XL Commands Reference Manual .

Figure 5-2. Algorithm for Determining File Attributes

Some �le attributes are �xed. That is, they are established when the �le is created and cannot
be changed. The �xed �le attributes are:

Organization.

Alternate record key.

Primary record key.

Code set.

Minimum and maximum record sizes.

Record type, �xed or variable.

Collating sequence of keys in an indexed �le.

Blocking factor.

The enforcement of �xed �le attributes in ANSI COBOL 1974 were less stringent. If you have
a �xed �le attribute con
ict, do one of the following:

Change your program, matching the attributes of the logical �le to the �xed attributes of
the physical �le.

Recompile your program with the STAT74 control option. The compiler will use the less
stringent checking of ANSI COBOL 1974, but you can still use its ANSI85 entry point.

Recompile your program with the ANSI74 entry point.

Files 5-43

Physical Files

Dynamic Files (USING phrase)

You can assign a logical �le to a physical �le dynamically, at run time. Normally, you assign
the physical �le statically in the ASSIGN clause by naming the �le in the TO phrase. With
the USING phrase of the ASSIGN clause, instead of specifying the name of the physical �le,
you specify a data item to contain the name of the physical �le. You can then change the
value of the data item at run time to open di�erent physical �les. However, for each logical
�le, only one physical �le can be open at a time.

For more information on the ASSIGN clause, see the HP COBOL II/XL Reference Manual .

Example

The following program uses dynamic �le assignment. The program reads a �le name from the
terminal, opens the �le, and displays its contents one screen at a time. It then reads another
�le name from the terminal and displays that �le. This program can display any number of
�les with like �xed �le attributes.

001000 IDENTIFICATION DIVISION.

001100 PROGRAM-ID. DYNFILE.

001200 ENVIRONMENT DIVISION.

001300 INPUT-OUTPUT SECTION.

001400 FILE-CONTROL.

001500 SELECT INFILE ASSIGN USING FILE-NAME

001600 FILE STATUS IS INFILE-STAT.

001700 DATA DIVISION.

001800 FILE SECTION.

001900 FD INFILE.

002000 01 IN-RECORD PIC X(80).

002100 WORKING-STORAGE SECTION.

002200 01 FILE-NAME PIC X(9) VALUE SPACES.

002300 88 NO-MORE-FILES VALUE "//".

002400 01 SCREEN-SIZE PIC 99 VALUE ZERO.

002500 88 SCREEN-FULL VALUE 22.

002600 01 RETURN-KEY PIC X.

002700 01 INFILE-STAT PIC XX.

002800 88 INFILE-EOF VALUE "10".

002900 88 INFILE-NOT-THERE VALUE "35".

5-44 Files

Physical Files

003000 PROCEDURE DIVISION.

003100 FIRST-PARA.

003200 PERFORM UNTIL NO-MORE-FILES
003300 MOVE SPACES TO FILE-NAME, INFILE-STAT

003400 DISPLAY "Enter the name of the file to list."

003500 DISPLAY "Enter // if no more files: "

003600 WITH NO ADVANCING

003700 ACCEPT FILE-NAME

003800 IF NO-MORE-FILES

003900 STOP RUN

004000 ELSE

004100 PERFORM GET-FILE

004200 END-IF

004300 END-PERFORM.

004400

004500 GET-FILE.

004600 OPEN INPUT INFILE

004700 EVALUATE INFILE-STAT

004800 WHEN "35" DISPLAY "Could not find the file."

004900 WHEN "00" PERFORM DISPLAY-FILE

005000 WHEN OTHER

005100 DISPLAY "An error occurred while opening the file."

005200 END-EVALUATE.

005300

005400 DISPLAY-FILE.

005500 PERFORM UNTIL INFILE-EOF

005600 MOVE ZERO TO SCREEN-SIZE

005700 PERFORM UNTIL SCREEN-FULL

005800 READ INFILE

005900 AT END SET SCREEN-FULL TO TRUE

006000 NOT AT END
006100 DISPLAY IN-RECORD WITH NO ADVANCING

006200 ADD 1 TO SCREEN-SIZE

006300 END-READ

006400 END-PERFORM

006500 DISPLAY "Press Return: " WITH NO ADVANCING

006600 ACCEPT RETURN-KEY

006700 END-PERFORM

006800 CLOSE INFILE.

Files 5-45

Overwriting, Updating and Appending to Files

Below is sample output from the above program.

Enter the name of the file to list. The program asks for a �le name.

Enter // if no more files: FILE1 File name is FILE1.

Here is line 1 of FILE1. Contents of FILE1.

Here is line 2 of FILE1. Contents of FILE1.

Press Return: End of FILE1.

Enter the name of the file to list. The program asks for another �le name.

Enter // if no more files: FILEA File name is FILEA.

Here is line 1 of FILEA. Contents of FILEA.

Here is line 2 of FILEA. Contents of FILEA.

Here is line 3 of FILEA. Contents of FILEA.

Here is line 4 of FILEA. Contents of FILEA.

Press Return: End of FILEA.

Enter the name of the file to list. The program asks for another �le name.

Enter // if no more files: FILE2 File name is FILE2.

Could not find the file. FILE2 does not exist.

Enter the name of the file to list. The program asks for another �le name.

Enter // if no more files: FILE3 File name is FILE3.

An error occurred while opening the file. FILE3 has 72-character records.

Enter the name of the file to list. The program asks for another �le name.

Enter // if no more files: // Enter // to end the program.

: Return to the MPE XL prompt.

Multiple Files on a Labelled Tape

Two obsolete features of the ANSI 1985 Standard allow you to sequentially access multiple
physical �les on a labelled tape, without rewinding the tape. They are the MULTIPLE
FILE TAPE clause in the I-O CONTROL paragraph and the VALUE OF clause in the �le
descriptor. Either one, used in conjunction with the CLOSE WITH NO REWIND statement,
allows such access.

Because the MULTIPLE FILE TAPE and VALUE OF clauses are obsolete, a �le equation of
the following form is recommended instead:

FILE �lename; LABEL=volume id, type, expiration date, NEXT

As with the obsolete clauses, the above �le equation may be used in conjunction with the
CLOSE WITH NO REWIND statement.

5-46 Files

Overwriting, Updating and Appending to Files

Overwriting Files

When you overwrite an existing �le, you cannot make it larger unless it is on tape. If it is not
on tape, space is limited to the original allocation.

Updating Files

You can update a sequential �le with the REWRITE statement if the �le resides on a disk. If
it resides on tape, you cannot update it.

Appending to Files

To append records to a �le, you must include the EXTEND phrase in the OPEN statement.
You can add new records until the space originally allocated to the �le is �lled.

Example

The following program appends records to a �le.

IDENTIFICATION DIVISION.

PROGRAM-ID. FILE-EX3.

* This program appends records to a file.

* File ifile will be concatenated to the end of ofile.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IFILE ASSIGN "IFILE".

SELECT OFILE ASSIGN "OFILE".

DATA DIVISION.

FILE SECTION.

FD IFILE.

01 IREC PIC X(80).

FD OFILE.

01 OREC PIC X(80).

PROCEDURE DIVISION.

P1.

OPEN INPUT IFILE EXTEND OFILE.

PERFORM WITH TEST AFTER UNTIL IREC = ALL "9"

READ IFILE

AT END MOVE ALL "9" TO IREC

NOT AT END WRITE OREC FROM IREC

END-READ

END-PERFORM

CLOSE IFILE OFILE

STOP RUN.

Files 5-47

File Status Codes

File Status Codes

The optional FILE STATUS clause speci�es a data-item that contains a �le status code after
any I-O statement (except RETURN) is applied to the �le. Your program can contain USE
procedures that examine the values of such data-items and perform accordingly.

The �rst digit of a �le status code indicates one of the following:

The I-O operation was successful.

An AT END condition occurred.

An INVALID KEY condition occurred.

A permanent error occurred.

A logical error occurred.

An implementation-de�ned condition occurred.

Table 5-6 lists the I/O statements and shows whether USE procedures, �le status codes, or
INVALID KEY, AT END, and EOF conditions apply to them.

Table 5-6. I/O Statements and Error Handling that Applies to Them

I/O Statement
USE

Procedure

FILE
STATUS
CODE

INVALID KEY
AT END
EOF

CLOSE
p p

DELETE
p p p

EXCLUSIVE
p p

OPEN
p p

READ
p p p

RETURN
p

REWRITE
p p p

START
p p p

UN-EXCLUSIVE
p p

WRITE
p p p

Unless more checking is required, your COBOL program should check only the �rst digit of a
�le status code. For example, check for an AT END condition by checking that the �rst digit
of the �le status code is one. This promotes portability for the following two reasons:

The program can be compiled on ANSI74 and ANSI85 compilers.

The program will still work if �le status codes are expanded in the future.

More than one �le status code can apply to a situation (for example, a program can try to
REWRITE a record that is too large and also fail to have a READ before the REWRITE).
In this case, the �le status code re
ects the �rst error detected. The reason is that when the
program detects one error, it does not continue to check for additional errors.

5-48 Files

File Status Codes

Note The COBOL error message catalog �le, COBCAT.PUB.SYS, is updated and
released with each compiler version. It contains all the documentation relevant
to the compiler and run-time error messages for the matching compiler
version, including cause and action information for each error. Following
each new update of the product version, you should use the new version of
COBCAT.PUB.SYS for this information.

Table 5-8 and Table 5-9 give the �le status codes for ANSI85 and ANSI74, respectively. Key
terms that appear in those tables are de�ned below.

Term De�nition

EOF End of �le. The program attempted to read a record following the last
record in the �le.

AT END An AT END condition caused a sequential READ statement to fail.

INVALID KEY One of the categories of �le status codes. A code in this category means
that an I-O operation failed for one of these reasons:

1. A duplicate key existed.
2. A boundary violation occurred.
3. The record sought was not found.
4. A sequence error occurred. This applies to indexed �les only.

Permanent Error A category of �le status code that indicates a problem accessing a
permanent �le. For example, an I-O statement failed due to an error that
precluded further processing of the �le.

Logic Error A category of �le status code that indicates a problem with program logic.
A code in this category means that an I-O statement failed for one of the
following reasons:

1. An improper sequence of I-O statements were performed on the �le.
2. A user-de�ned limit was violated. The record size is an example.

Files 5-49

File Status Codes

Table 5-7 groups the ANSI 1985 �le status codes by category and explains what each code
means for sequential access �les, random access �les, relative organization �les, and indexed
�le Each entry applies to the columns that it crosses; for example, the information on the �le
status code 00 applies to all �le types.

Table 5-7. ANSI 1985 File Status Codes

File Status Code
Category

File Status
Code

File Type

Sequential
Access

Random Access or
Relative

Organization

Indexed
Organization
(KSAM)

Successful 00 Successful. No more information available.

02 Not applicable. READ next key
value that is the
same as current key.
WRITE or
REWRITE creates
duplicate key for
alternate key that
allows duplicates.

04 READ length of record does not match �le.

05 For OPEN, optional �le did not exist, so it was created.

07 File is not a tape,
as the OPEN or
CLOSE statement
states.

Not applicable.

AT END 10 READ error. Either EOF, or optional �le did not exist.

14 Not applicable. READ error.
Record number is
too big for relative
key data item.

Not applicable.

5-50 Files

File Status Codes

Table 5-7. ANSI 1985 File Status Codes (continued)

File Status Code
Category

File Status
Code

File Type

Sequential
Access

Random Access or
Relative

Organization

Indexed
Organization
(KSAM)

INVALID KEY 21 Not applicable. Sequence error.

22 Not applicable. WRITE error.
Tried to write a
duplicate key (does
not apply to
REWRITE.)

WRITE or
REWRITE error.
Tried to write a
duplicate key.

23 Not applicable. START or READ of missing optional
�le, or record does not exist.

24 Not applicable. Tried to WRITE
beyond �le
boundary, or
sequential WRITE
record number is
too big for relative
key data item.

Tried to WRITE
beyond �le
boundary.

Permanent Error 30 No more information available.

31 OPEN, SORT, or MERGE of dynamic �le failed due to �le
name attribute con
ict.

34 Boundary violation.
(Record too big or
too small.)

Not applicable.

35 OPEN error. Required �le does not exist.

37 EXTEND or OUTPUT on unwritable �le, or I-O operation
on �le that does not support it, or INPUT on device that is
invalid for INPUT.

38 OPEN on LOCKed �le (LOCKed when last closed).

39 OPEN was unsuccessful due to �xed �le attribute con
ict.

Files 5-51

File Status Codes

Table 5-7. ANSI 1985 File Status Codes (continued)

File Status Code
Category

File Status
Code

File Type

Sequential
Access

Random Access or
Relative

Organization

Indexed
Organization
(KSAM)

Logic Error 41 OPEN on �le that is already open.

42 CLOSE on �le that was not open.

43 No READ before
REWRITE. READ
is required before
REWRITE.

No READ before REWRITE or
DELETE.

44 Boundary violation
(Record too big or
too small, or
rewritten record not
the same size.)

Boundary violation (Record too big or
too small.)

46 READ after AT
END or after
unsuccessful READ.

READ after AT END or after
unsuccessful READ or START.

47 READ on �le not
open for INPUT.

READ or START on �le not open for
INPUT or I-O.

48 WRITE on �le not open for OUTPUT or EXTEND.

49 REWRITE on �le
not open for I-O.

REWRITE or DELETE on �le not open
for I-O.

Implementation-
De�ned

9x Unexpected error. The x is an ASCII character whose
numeric code is an integer between 0 and 255, inclusive, and
represents a �le system error. For more information, see the
MPE XL error message catalog or the MPE XL Error
Message Manual (Volume 1 or Volume 2).

5-52 Files

File Status Codes

Table 5-8 groups the ANSI 1974 �le status codes by category and explains what each code
means for sequential access �les, random access �les, relative organization �les, and indexed
�le Each entry applies to the columns that it crosses; for example, the information on the �le
status code 00 applies to all �le types.

Table 5-8. ANSI 1974 File Status Codes

File Status Code
Category

File Status
Code

File Type

Sequential
Access

Random Access or
Relative

Organization

Indexed
Organization
(KSAM)

Successful 00 Successful. No more information available.

02 Not applicable. READ next key
value into current
key. WRITE or
REWRITE creates
duplicate key for
alternate key that
allows duplicates.

AT END 10 READ error. Either EOF, or optional �le did not exist.

INVALID KEY 21 Not applicable. Sequence error.

22 Not applicable. WRITE or REWRITE error. Tried to
write a duplicate key.

23 Not applicable. START or READ of missing optional
�le, or record does not exist.

24 Not applicable. Tried to write
beyond �le
boundary, or
sequential WRITE
record number is
too big for relative
key data item.

Tried to write
beyond �le
boundary.

Permanent Error 30 No more information available.

34 Boundary violation.
(Record too big or
too small.)

Not applicable.

Implementation-
De�ned

9x Unexpected error. The x is an ASCII character whose
numeric code is an integer between 0 and 255, inclusive, and
represents a �le system error. For more information, see the
MPE XL error message catalog or the MPE XL Error
Message Manual (Volume 1 or Volume 2).

Table 5-9 compares the ANSI 1985 I-O status codes to their ANSI 1974 equivalents and
explains the execution di�erences between ANSI 1985 and ANSI 1974.

Files 5-53

File Status Codes

Table 5-9. Differences between ANSI 1985 and ANSI 1974 File Status Codes

ANSI 1985
Status Code

Equivalent ANSI
1974 Status Code

Execution Di�erence

ANSI 1985 ANSI 1974

00 Same. Not applicable.

02 Same. Not applicable.

04 00 Same.

05 00 Same.

07 00 Same.

10 Same. Not applicable.

14 00 READ fails becaust the value
of the data item is greater
than the PICTURE that
describes the key.

READ succeeds.

21 Same. Not applicable.

22 Same. Not applicable.

23 Same. Not applicable.

24 24 Same as for ANSI 1974
except that this code is also
returned when the value of
the data item is greater then
the PICTURE that describes
it.

30 Same. Not applicable.

34 None. Not applicable.

35 00 The �le is not created. The �le is created for an
OPEN with the I-O or
EXTEND phrase.

5-54 Files

File Status Codes

Table 5-9.

Differences between ANSI 1985 and ANSI 1974 File Status Codes (continued)

ANSI 1985
Status Code

Equivalent ANSI
1974 Status Code

Execution Di�erence

ANSI 1985 ANSI 1974

37 00 The OPEN fails and a
permanent error condition
exists for the �le.

The OPEN succeeds and the
program continues to
execute, although it can
abort later for another
reason.

38 00 The OPEN fails and a
permanent error condition
exists for the �le.

The OPEN fails and a
message is printed, even
though an error status code
is not returned.

39 00 The OPEN fails and a
permanent error condition
exists for the �le.

The OPEN succeeds and may
print an error message.

41 9x Same.

42 9x Same.

43 00 or 9x DELETE statement fails. DELETE statement
succeeds.

No di�erence for REWRITE statement.

44 00 Statement fails due to logic
error.

Statemenet succeeds.

46 10 Statement fails due to logic
error.

Continues to return AT END
condition or READ ERROR
condition.

47 00 or 9x Statement fails due to logic
error.

If the �le is not open, the
status code is 9x . If the �le is
open in the wrong mode, the
status code is either 9x or 00,
and sometime execution
continues correctly.

48 00 or 9x

49 00 or 9x

ANSI85 error checking is more stringent than ANSI74 error checking. If you want to use
ANSI85 features in your program, but want ANSI74 error checking, use the STAT74 control
option. See Chapter 6.

Files 5-55

File Status Codes

Sequence of Events

If the �le status code indicates that the I-O operation was successful, the following occur:

The NOT AT END or NOT INVALID KEY phrase is executed, if present.
USE procedures, the AT END phrase, and the INVALID KEY phrase are not executed.
If the SELECT phrase for the �le contains a FILE STATUS phrase, the appropriate �le
status code is returned.

If the �le status code indicates an AT END or INVALID KEY condition, the following occur:

The NOT AT END or NOT INVALID KEY phrase is not executed.
The AT END or INVALID KEY phrase is executed, if present.
If there is a USE procedure, but no AT END or INVALID KEY phrase, the USE procedure
is executed.
If the SELECT clause for the �le contains a FILE STATUS clause, the appropriate �le
status code is returned.
The program continues to execute after any error procedures (USE, AT END, or INVALID
KEY) have been executed.

If the �le status code indicates a permanent or logical error or an implementation-de�ned
condition, the following occur:

If the SELECT clause for the �le contains a FILE STATUS clause, the appropriate �le
status code is returned. The program continues to execute after any USE procedures have
been executed.
If the SELECT clause for the �le does not contain a FILE STATUS clause, the program
aborts if no applicable USE procedures exist, and a �le information display is output. (For
an explanation of the �le information display, refer to Using Files: A Guide for New Users
of HP 3000 Computer Systems).
Any applicable USE procedure is executed.
INVALID KEY, NOT INVALID KEY, AT END, and NOT AT END phrases are not
executed.
To get more information about the cause of a 9x error, call CKERROR to convert x to an
MPE XL error number. See also the following example.

5-56 Files

File Status Codes

Example 1

The following program declares a FILE STATUS item, CHECK-TAPE, and checks it after the
READ statement.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT TAPEIN ASSIGN TO "READTAPE"

FILE STATUS IS CHECK-TAPE.

DATA DIVISION.

FILE SECTION.

FD TAPEIN.
01 TAPE-REC PIC X(80).

WORKING-STORAGE SECTION.

77 MPE-ERROR PIC 9(4) USAGE DISPLAY.

01 CHECK-TAPE.

02 STAT-KEY-1 PIC X.

02 STAT-KEY-2 PIC X.

PROCEDURE DIVISION....
READ TAPEIN AT END PERFORM NO-MORE-TAPE.

IF STAT-KEY-1 = "9" THEN

CALL INTRINSIC "CKERROR" USING CHECK-TAPE MPE-ERROR

DISPLAY "9 ERROR IN TAPE READ, MPE ERROR IS " MPE-ERROR

PERFORM ERROR-RTN....

Files 5-57

File Status Codes

Figure 5-3 shows what happens when a run-time I-O error occurs.

Figure 5-3. Run-Time I-O Error Handling

5-58 Files

File Status Codes

Example 2

The following program creates a tape �le, closes it, then opens it as an input �le. Fields in the
input records are compared to the values written to ensure that they were processed correctly.
The program uses the FILE STATUS clause and a USE statement for error handling.

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FILE-A ASSIGN TO

TNAME1

ORGANIZATION SEQUENTIAL
ACCESS SEQUENTIAL

FILE STATUS IS STATUS-FIELD.

DATA DIVISION.

FILE SECTION.

FD FILE-A.

01 FILE-RECORD.

02 FILLER PICTURE X(120).

WORKING-STORAGE SECTION.

01 STATUS-FIELD.

02 SFIELD PIC X.

02 FILLER PIC X.

01 EOF-FLAG PIC 9 VALUE 0.

01 COUNTER PICTURE S9(9) USAGE COMPUTATIONAL.

01 RECORDS-IN-ERROR PIC S9(5) USAGE COMP VALUE ZERO.

01 ERROR-FLAG PICTURE 9.

01 FILE-RECORD-INFORMATION-REC.

03 FILE-RECORD-INFO .

05 FILE-RECORD-INFO-1.

07 XFILE-NAME PIC X(6).

07 XRECORD-NUMBER PIC 9(6).

07 XPROGRAM-NAME PIC X(6).

07 RECORDS-IN-FILE PIC 9(6).

07 XLABEL-TYPE PIC X(1).

07 FILLER PIC X(95).

Files 5-59

File Status Codes

PROCEDURE DIVISION.

DECLARATIVES.

SECT-EXAMPLE-01 SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON FILE-A.

TEST-STATUS.

IF SFIELD EQUAL TO "1"

MOVE 1 TO EOF-FLAG

GO TO EXIT-PARA.

ADD 1 TO RECORDS-IN-ERROR.

EXIT-PARA.

EXIT.

END DECLARATIVES.

SECT-EXAMPLE-02 SECTION.

INITIAL-PARA.

MOVE SPACE TO STATUS-FIELD.

MOVE "FILE-A" TO XFILE-NAME.

MOVE "EXAMPLE" TO XPROGRAM-NAME.

MOVE 500 TO RECORDS-IN-FILE.

MOVE "S" TO XLABEL-TYPE.

MOVE 000001 TO XRECORD-NUMBER.

OPEN OUTPUT FILE-A.

INIT-FILE.

MOVE FILE-RECORD-INFO-1 TO FILE-RECORD.

WRITE FILE-RECORD.

IF XRECORD-NUMBER EQUAL TO 500

GO TO INIT-FILE-EXIT.

ADD 1 TO XRECORD-NUMBER.

GO TO INIT-FILE.

INIT-FILE-EXIT.

DISPLAY "OPEN WRITE FILE-A" .

DISPLAY "FILE CREATED, RECS =" , XRECORD-NUMBER.
CLOSE FILE-A.

* A sequential tape file with 120 character records

* has been created. The file contains 500 records.

INIT-READ.

MOVE ZERO TO COUNTER.

* This test reads and checks the file created in INIT-FILE.

OPEN INPUT FILE-A.

5-60 Files

File Status Codes

TEST-READ.

READ FILE-A RECORD.

IF EOF-FLAG EQUAL TO 1
GO TO TEST-READ-01.

MOVE FILE-RECORD TO FILE-RECORD-INFO-1.

ADD 1 TO COUNTER.

IF COUNTER GREATER THAN 500

DISPLAY "MORE THAN 500 RECORDS"

GO TO FAIL-TEST.

IF COUNTER NOT EQUAL TO XRECORD-NUMBER

ADD 1 TO RECORDS-IN-ERROR

GO TO TEST-READ.

IF XFILE-NAME NOT EQUAL TO "FILE-A"

ADD 1 TO RECORDS-IN-ERROR

GO TO TEST-READ.

IF XLABEL-TYPE NOT EQUAL TO "S"

ADD 1 TO RECORDS-IN-ERROR.

GO TO TEST-READ.

TEST-READ-01.

IF RECORDS-IN-ERROR EQUAL TO ZERO

GO TO PASS-TEST.

DISPLAY "ERRORS IN READING FILE-A" .

FAIL-TEST.

DISPLAY "TEST FAILED".

DISPLAY "RECORDS IN ERROR =" , RECORDS-IN-ERROR.

GO TO EXIT-EXAMPLE.

PASS-TEST.

DISPLAY "TEST PASSED".

DISPLAY "FILE VERIFIED RECS =" , COUNTER .

EXIT-EXAMPLE.

CLOSE FILE-A.
STOP RUN.

Files 5-61

6
From Program Creation
to Program Execution

Introduction

This chapter explains the following:

How to input your source program to the compiler.

The control �le that the compiler puts in the front of your source �le.

The control options with which you can compile your program.

How to compile, link, and edit your program.

From Program Creation

to Program Execution

6-1

Program Creation and Execution

Source Program Input

You can input your source program to the COBOL compiler in these three ways:

1. In an ASCII �le.
2. In an HP TOOLSET TSAM �le.
3. One line at a time, through the standard input �le, $STDIN (which can be your terminal).

ASCII File

Using an editor, you can create your program in an ASCII �le. Then, you can input the
ASCII �le to the COBOL compiler.

TSAM File

Using HP TOOLSET, you can create your program in a TSAM �le.

HP TOOLSET is a software package designed to facilitate three programming activities:
coding, compiling, and debugging. It has six key design features:

Feature Purpose

User Interface Allows you to communicate with HP TOOLSET with
commands and function keys.

On-Line Help Facility Provides an introduction to HP TOOLSET and an on-line
quick reference guide.

Workspace Controls all �les used in development of a single program,
including source, listing, object, and program �les.

Editor Allows you to compose and modify your source program
on the terminal screen.

Program Translator Compiles and prepares your program.

Symbolic Debug Allows you to debug your program.

For complete information on HP TOOLSET, refer to the HP Toolset/XL Reference Manual .

6-2 From Program Creation

to Program Execution

Program Creation and Execution

$STDIN File

You can input your program one line at a time through the standard input �le, $STDIN. The
default for $STDIN is your terminal if you are running the compiler interactively. If you are
running the compiler from a job stream, the default for $STDIN is the job stream �le. In
either case, end the source program with \:�RETURN�".

Example

In this example, your input from the terminal is underlined.

:COB85XL

PAGE 0001 HP31500A.00.00 [85] (C) HEWLETT-PACKARD CO. 1987

> ID DIVISION.

> PROGRAM-ID. TEST.

> PROCEDURE DIVISION.

> P1.

> DISPLAY "hi mom".

> STOP RUN.

>:�RETURN�

0 ERRORS, 0 QUESTIONABLE, 0 WARNINGS

DATA AREA IS 18 BYTES.

CPU TIME = 0:00:02. WALL TIME = 0:01:34.

END OF PROGRAM

From Program Creation

to Program Execution

6-3

Control File

Control File

When you compile your COBOL program, the compiler includes the control �le at the
beginning of your source �le. The default control �le is COBCNTL.PUB.SYS. It contains only
comments, but you can add control options to it.

If a �le equation that names COBCNTL.PUB.SYS as a formal �le designator is in e�ect when
you run the HP COBOL II/XL compiler, the compiler uses that �le equation to �nd the
control �le to include in your program.

Example

If the following �le equation is in e�ect when you run the HP COBOL II/XL compiler, the
compiler uses the �le MYFILE.MYGROUP as the control �le instead of COBCNTL.PUB.SYS:

:FILE COBCNTL.PUB.SYS=MYFILE.MYGROUP

If the compiler cannot open COBCNTL.PUB.SYS or the �le that you substituted for it, it
issues a warning.

To change the defaults in COBCNTL.PUB.SYS permanently, ask your system manager to
change COBCNTL.PUB.SYS. To change them temporarily, use a �le equation to redirect
COBCNTL.PUB.SYS to another �le. The other �le must be in standard COBOL format and
must contain only preprocessor commands and control options.

Standard COBOL format follows these rules:

Columns Contains

1-6 Sequence number.

7 One of the following characters:

Character Means That the Line Contains
t (Blank) COBOL source code
- (hyphen) Continuation line of COBOL source code.
D Debug line.
* Comment.
/ Comment with page eject.
$ Preprocessor command.

8-11 Area A.

12-72 Area B.

73-80 Your own identi�cation �eld, often the program or source �le name. It can
be anything, because the compiler copies it to the list �le and ignores it.
However, for a COBOL copy library, it must be used as text-name.

Both the HP COBOL II/XL and HP COBOL II/V compilers use the same default control �le
(COBCNTL.PUB.SYS). Because some control options are not valid for both compilers, you
can create a di�erent control �le for use with one of the compilers and issue a �le equation to
use the second control �le, as described in the previous example.

6-4 From Program Creation

to Program Execution

Control Options

Control Options

You can put control options in any of these places:

Control �le (COBCNTL.PUB.SYS or its substitute).
COBOL source code.
RUN command info string.

When the source �le contains nested or concatenated programs, certain control options must
appear at the beginning of the source �le. If they appear elsewhere, the compiler issues a
warning and ignores them. They need only be turned on once. The control options in this
category are:

CODE
SYMDEBUG
VERBS

Control options fall into the following categories:

Performance options.
Listing options.
Debugging options.
Migration options.
Standard conformance options.
Interprogram communication options.
Miscellaneous options.

Performance Options

Performance options improve the performance of the compiled COBOL program. Currently,
OPTIMIZE is the only performance option. Its syntax and e�ect are:

Performance Option E�ect

OPTIMIZE=0 Turns o� optimization. This is the default.

OPTIMIZE[=1] Turns on level one optimization.

The following lists all the possible optimization options:

If you specify: You get:
$CONTROL OPTIMIZE Level one optimization.
$CONTROL OPTIMIZE=1 Level one optimization.
$CONTROL OPTIMIZE=0 No optimization, the default.
Nothing No optimization, the default.

Although OPTFEATURES is an interprogram communication option, its settings
CALLALIGNED and LINKALIGNED are designed to improve performance. See
\Interprogram Communication Options."

From Program Creation

to Program Execution

6-5

Control Options

Listing Options

Listing options a�ect the content of the compiler listing. The listing options and their e�ects
are:

Listing Option E�ect

CROSSREF Prints a cross reference to the list �le. The cross reference lists each
data and procedure name and the lines that use them. The default is
NOCROSSREF.

ERRORS=n Sets the error limit to n, an integer. The error limit is the number of
errors that the compiler can �nd before it aborts the program. The
default is ERRORS=100.

LINES=n Sets the number of lines per page to n. The default is 60 lines.

LIST Allows actual output from the control options CODE, CROSSREF,
MAP, SOURCE, and VERBS to be listed. In included �les, use
LOCON instead of LIST. This is the default. (Compare to NOLIST,
LOCON and LOCOFF.)

LOCOFF Like NOLIST, except that it can be used in an included �le and can
be nested. The default is LOCON.

LOCON Like LIST, except that it can be used in an included �le and can be
nested. This is the default.

MAP Prints a map of the program's variables, as o�sets from DP, SP, etc.
The default is NOMAP.

MIXED Includes preprocessor commands in the compiler list �le. This is the
default.

NOCROSSREF Does not print a cross reference to the list �le. This is the default.

NOLIST Turns o� the control options CODE, CROSSREF, MAP, SOURCE,
and VERBS. In included �les, use LOCOFF instead of NOLIST. The
default is LIST.

NOMAP Does not print a map of the program's variables. This is the default.

NOMIXED Excludes preprocessor commands from the list �le. The default is
MIXED.

NOSOURCE Does not print the source program to the list �le. The default is
SOURCE.

NOVERBS Does not print a map of the o�sets of the statements. This is the
default.

NOWARN Does not print warning messages to the list �le. The default is
WARN.

SOURCE Prints the source program to the list �le. This is the default.

VERBS Prints a map of the o�sets of the statements. The default is
NOVERBS.

WARN Prints warning messages to the list �le. This is the default.

6-6 From Program Creation

to Program Execution

Control Options

Debugging Options

Debugging options aid in debugging. The debugging options and their e�ects are:

Debugging Option E�ect

BOUNDS Causes the compiler to generate code that checks for values
out of bounds at run time. You can use this information for
these purposes:

1. To locate values that are out of range in:

a. OCCURS DEPENDING ON identi�er statements.
b. Subscripts.
c. Indexes.
d. Reference modi�cations.

2. To locate illegal execution of performed paragraphs,
speci�cally:

a. Branches out of a performed paragraph.
b. Indirectly recursive PERFORM statements.
c. Performed paragraphs with common exit points.

A limited number of the above three situations will
execute as expected before the compiler aborts.
BOUNDS provides information that may help you locate
the problem.

3. To locate misaligned parameters.

4. To locate unaltered GO TO statements.

BOUNDS is not the default.

CHECKSYNTAX Causes the compiler to include syntax error messages in
the compiler listing, but prevents it from generating code.
Provides a fast way to check the syntax of your program.
This is not the default.

CODE Dumps an unformatted code listing to the temporary �le
COBASSM. The default is NOCODE.

DEBUG Enables �CONTROL�Y trap in the executable program,
allowing program to enter MPE XL System Debugger when
the user types �CONTROL�Y while the program is executing.
DEBUG is for main programs only.

NOCODE Does not dump an unformatted code listing to the �le
COBASSM. This is the default.

NOVALIDATE Does not check decimal and packed decimal �elds for illegal
digits. This is the default. (Compare to VALIDATE.)

SYMDEBUG Puts symbolic debug information in the executable code.
This is not the default.

From Program Creation

to Program Execution

6-7

Control Options

Debugging Option E�ect

VALIDATE Checks numeric and packed decimal operands for illegal
digits and signs in every arithmetic operation. If an operand
is invalid, the program traps to the trap handler, which
does what the programmer speci�ed in the COBRUNTIME
variable. Whether the program continues after that depends
on the value of COBRUNTIME (see \Traps" in Chapter 7).

VALIDATE slows execution, so you can omit it if your
program gets all its data from computations or from other
programs that have checked its validity. VALIDATE is
essential, though, if your program gets data from human
sources (such as input from a terminal or from a �le created
by a person) and does not explicitly use class tests.

The default is NOVALIDATE.

Note Without the VALIDATE control option, HP COBOL II/XL sometimes treats
a blank in a DISPLAY item as if it were a zero and does not trap blanks, but
do not depend on this feature. It is implementation dependent, not standard.

6-8 From Program Creation

to Program Execution

Control Options

Migration Options

Migration options aid in migration (from one machine to another and from one COBOL
standard to another). The migration options and their e�ects are:

Migration Option E�ect

CALLINTRINSIC Causes the compiler to check all CALL statements against the intrinsic
�le, SYSINTR.PUB.SYS. If the subprogram is in the intrinsic �le, but
was not called with the CALL INTRINSIC statement, the compiler
issues a warning message and generates code to call the intrinsic.

INDEX16 Speci�es 16-bit alignment for index data items. This is the default in
Compatibility Mode.

INDEX32 Speci�es 32-bit alignment for index data items. This is the default in
Native Mode.

QUOTE Declares the �gurative constant QUOTE (").

RLFILE Speci�es that each separately compiled program in a source �le goes
into its own object module in the RL �le. Programs nested within it
go into the same object module as it does. See the section \RLFILE"
for more information.

RLINIT Initializes the RL �le to empty. See the section \RLINIT" for more
information.

STAT74 Causes the I-O functions to operate by the ANSI74 standard rather
than the more stringent ANSI85 standard.

SYNC16 Speci�es 16-bit alignment for data items that specify SYNC. The
default is 32-bit alignment (SYNC32).

SYNC32 Explicitly speci�es 32-bit alignment for data items that specify SYNC.
This is the default. (Compare to SYNC16.)

From Program Creation

to Program Execution

6-9

Control Options

RLFILE

The RLFILE control option, with the RLINIT control option, simulates MPE V object
module functionality. On the MPE V operating system, programs and subprograms are
compiled into Relocatable Binary Modules, or RBMs. RBMs are stored by compilers in USLs
(User Segmented Libraries) which are manipulated by the segmenter and the compilers. By
using the COBUSL �le equation to direct compiler output into a pre-existing USL �le you
have the ability to do the following:

Compile several di�erent programs into one USL.

Replace a single RBM in a USL that contains multiple RBMs, by recompiling a single
program.

Cause the USL �le contents to be initialized and cleared with every compilation, by using
the USLINIT compiler option.

The RLFILE control option, with the RLINIT control option which the next section describes,
gives you on MPE XL the equivalent functionality. On MPE XL, compiler output �les are of
two types:

Native Mode Object Files. The �le code is NMOBJ.
Native Mode Relocatable Libraries. The �le code is NMRL.

These �le types are somewhat similar to RBMs, USLs, and RLs on MPE V.

With the RLFILE option, the compiler creates an NMRL object �le. Once main and
subprograms have been compiled into this NMRL, the resulting modules can be separately
manipulated in the Link Editor or separately replaced in subsequent compilations.

RLFILE operates at the level of the separately compiled program. Concatenated programs
(in a single source �le) and programs in entirely di�erent source �les are separately compiled
programs; nested programs are not.

When RLFILE is used, each separately compiled program has a di�erent name, called a
module name, which is visible to the link editor. Module names are external names (see
\External Names" in Chapter 4).

Example 1. This example uses an indirect �le list of concatenated programs (COBSRC) to
create an NMRL.

$CONTROL RLFILE

$INCLUDE MAINP

END PROGRAM MAIN-P.

$INCLUDE SUB1

END PROGRAM SUB-1.

$INCLUDE SUB2

END PROGRAM SUB-2.

The following is the command to compile this example:

COB85XL COBSRC,COBSRCO

6-10 From Program Creation

to Program Execution

Control Options

COBSRCO is an NMRL because the source �le speci�ed RLFILE. A LISTRL command
on COBSRCO in the Link Editor will show three separate object modules in COBSRCO,
containing the entries main p, sub 1 , and sub 2 , respectively. These object modules
correspond to the three concatenated programs in COBSRC, and they can be purged or
separately manipulated in the Link Editor.

If program SUB-1 has an error, it can be recompiled into COBSRCO with the command:

COB85XL SUB1,COBSRCO;INFO="$CONTROL RLFILE"

As the result of this command, the module containing the object code from program SUB-1 in
COBSRCO is replaced with new object code. No other modules in COBSRCO are changed,
because COBSRCO is an NMRL. Thus it is not necessary to recompile all the programs in
COBSRC to �x one of them. (If the object code for SUB-1 didn't exist in COBSRCO, then
the new code would be appended to COBSRCO in a new module.)

If RLFILE is not speci�ed, whether the compiler output �le is an NMRL or an NMOBJ
depends on �le code of the object �le (if it already exists). If the �le that COBOBJ refers
to already exists and has a �le code of NMRL, the object �le will be an NMRL. However,
since RLFILE was not speci�ed, some RLFILE functionality is not enabled. In particular,
concatenated programs, when recompiled, will be put into a single object module within the
NMRL. (Recall that if RLFILE is speci�ed, concatenated programs are put into separate
object modules in the NMRL, allowing them to be separately manipulated in the Link
Editor.)

Example 2. Following the example above, if both programs SUB-1 and SUB-2 have errors,
then the following indirect �le list, named COBSRC1, would compile just those two programs
into the object �le COBSRCO.

$INCLUDE SUB1

END PROGRAM SUB-1.

$INCLUDE SUB2

END PROGRAM SUB-2.

The following is the command to compile the above �le:

COB85XL COBSRC1,COBSRCO

RLFILE is not used, but the target �le COBSRCO is an NMRL. This means that COBSRCO
remains an NMRL, but the code the compiler produces for SUB-1 and SUB-2 appears
in a single object module, instead of two. Recall that the �rst compilation produced an
NMRL with three modules, each containing an entry corresponding to MAIN-P, SUB-1, and
SUB-2. The second compilation results in an NMRL with two modules. The �rst module,
corresponding to MAIN-P, is unchanged, because the main program was not recompiled. The
second two modules, corresponding to SUB-1 and SUB-2, become a single module, containing
entries sub 1 and sub 2.

If you want to create NMRLs but don't want to edit your source to add the RLFILE option,
simply build an empty �le with the code NMRL and direct the output to this �le. (This does
not allow you to manipulate each program separately in the Link Editor, however. Each
compilation produces one module, which can be manipulated.)

From Program Creation

to Program Execution

6-11

Control Options

RLINIT

The RLINIT control option reinitializes an NMRL object �le to empty (similar to USLINIT
on MPE V). It has no e�ect on an NMOBJ object �le.

Example. The following example uses COBSRC1 from the previous example:

$INCLUDE SUB1

END PROGRAM SUB-1.

$INCLUDE SUB2

END PROGRAM SUB-2.

The following command compiles COBSRC1:

COB85XL COBSRC1,COBSRCO;INFO="$CONTROL RLINIT"

The e�ect of this step depends on the �le code of COBSRCO. If COBSRCO is an NMRL, it
is reinitialized to empty before compiled code is written to it, and it remains an NMRL. If
COBSRCO is an NMOBJ, it remains an NMOBJ. To transform COBSRCO from an NMOBJ
to an NMRL, you must purge it and compile with RLINIT or RLFILE.

Table 6-1 and Table 6-2 show how all possible combinations of RLFILE, RLINIT, and the �le
type of the speci�ed object �le a�ect the actual object �le.

Table 6-1 applies when COBOBJ speci�es an object �le. The �le can be $NEWPASS, but it
is $NEWPASS by speci�cation rather than by default (see Table 6-2 for the default case).

Table 6-1. RLFILE/RLINIT Functionally With Specified Object File

RLFILE RLINIT Speci�ed Object File Action

ON ON Nonexistent.
Existing NMRL.
Existing NMOBJ.
Incorrect �le code.1

Create NMRL.
Rewrite NMRL.
Compile-time error.
Compile-time error.

ON OFF Nonexistent.
Existing NMRL.
Existing NMOBJ.
Incorrect �le code.1

Create NMRL.
Compile into NMRL.
Compile-time error.
Compile-time error.

OFF ON Nonexistent.
Existing NMRL.
Existing NMOBJ.
Incorrect �le code.1

Create NMRL.
Rewrite NMRL.
Rewrite NMOBJ.
Compile-time error.

OFF OFF Nonexistent.
Existing NMRL.
Existing NMOBJ.
Incorrect �le code.1

Create NMOBJ.
Rewrite NMRL.2

Rewrite NMOBJ.
Compile-time error.

1 The �le exists, but it is not an NMRL nor an NMOBJ.

2 In this case, not all RLFILE functionality is enabled. See example 2 in the \RLFILE" section.

6-12 From Program Creation

to Program Execution

Control Options

Table 6-2 applies when no �le is speci�ed for COBOBJ and $NEWPASS is the object �le.

Table 6-2. RLFILE/RLINIT Functionally With Default File

RLFILE RLINIT Speci�ed
Object File

Action

ON ON Nonexistent
Existing NMRL
Existing NMOBJ
Incorrect �le code.1

Create NMRL.
Rewrite NMRL
Create NMRL
Create NMRL

ON OFF Nonexistent
Existing NMRL
Existing NMOBJ
Incorrect �le code.1

Create NMRL
Compile into NMRL
Create NMRL
Create NMRL

OFF ON Nonexistent
Existing NMRL
Existing NMOBJ
Incorrect �le code.1

Create NMRL
Rewrite NMRL
Create NMRL
Create NMRL

OFF OFF Nonexistent
Existing NMRL
Existing NMOBJ
Incorrect �le type.1

Create NMOBJ
Compile into NMRL
Rewrite NMOBJ
Create NMOBJ

1 The �le exists, but it is not an NMRL nor an NMOBJ.

From Program Creation

to Program Execution

6-13

Control Options

Standard Conformance Options

Standard conformance options do one of these three things:

Cause the compiler to generate ANSI standard code in certain cases (ANSISORT and
ANSISUB).

Cause the compiler to
ag features that conform to one standard but not another (DIFF74,
STDWARN).

Cancel another standard conformance option (NOSTDWARN).

The standard conformance options and their e�ects are:

Standard Conformance Option E�ect

ANSISORT Allows you to open �les speci�ed in the GIVING or USING
clause of the SORT statement in the input or output
procedure of the same SORT statement. This is not the
default.

ANSISUB Maintains values of data items across calls (as
SUBPROGRAM does) and allows you to use the CANCEL
statement to reset data items to their initial values. The
default is that the compilation unit is a main program.

DIFF74 Flags di�erences between the ANSI 1974 and ANSI 1985
standards. This is not the default.

NOSTDWARN Does not
ag di�erences between HP COBOL II/XL and
Federal Standard COBOL features. See also STDWARN.
This option is the default.

STDWARN Flags di�erences between HP COBOL II/XL and Federal
Standard COBOL (that is, HP extensions are
agged). The
possible
ags are: HIGH, INT, INTSG, MIN, MINDB, and
MINSG. Federal Standard COBOL has three levels: HIGH,
INT (intermediate), and MIN (minimal). The default for
STDWARN is HIGH. For more information, refer to the
HP COBOL II/XL Reference Manual . The default is
NOSTDWARN.

6-14 From Program Creation

to Program Execution

Control Options

Interprogram Communication Options

Interprogram communication options make interprogram communication possible. The
interprogram communication options and their e�ects are:

Interprogram Communication Option E�ect

ANSISUB Maintains values of data items across calls (as
SUBPROGRAM does) and allows you to use
the CANCEL statement to reset data items
to their initial values. The default is that the
compilation unit is a main program.

CMCALL Speci�es MPE V conventions for converting
external names. This is not the default.

DYNAMIC Indicates a subprogram with dynamic storage.
The INITIAL clause has the same e�ect.
(Compare to SUBPROGRAM and ANSISUB.)

OPTFEATURES=CALLALIGNED[16] Checks that actual parameters in CALL
statements are word-aligned. (for
CALLALIGNED) or halfword-aligned (for
CALLALIGNED16).

OPTFEATURES=LINKALIGNED[16] Generates executable code for formal
parameters, assuming that actual parameters
are word-aligned (for LINKALIGNED) or
halfword-aligned (for LINKALIGNED16).

SUBPROGRAM Indicates a subprogram with its own storage. If
your program has a LINKAGE SECTION, this
is the default; otherwise, the default is that the
compilation unit is a main program. (Compare
to DYNAMIC and ANSISUB.)

If your source �le contains nested or concatenated programs, you may wish to turn on
interprogram communication options in the middle of the �le. For example, you may want
some subprograms to be ANSISUB, others to be DYNAMIC, and the �rst program to be the
main program.

In this situation, the following rules apply:

If ANSISUB, DYNAMIC, or INITIAL is turned on for a program, then it also applies to
programs nested within that program.

If ANSISUB, SUBPROGRAM, or DYNAMIC appears in the IDENTIFICATION
DIVISION of a program, then it also applies to programs nested within that program.

If ANSISUB, SUBPROGRAM, or DYNAMIC appears somewhere other than the
IDENTIFICATION DIVISION of a program, it applies to the next programs in the source
�le.

From Program Creation

to Program Execution

6-15

Control Options

Example

The following shows four programs, A, B, C, and D. ANSISUB applies to programs B and C
because C is contained by B, but not to programs A and D. The INITIAL clause in program
D's IDENTIFICATION DIVISION has the same e�ect and scope as DYNAMIC. In this case
it only means that program D is DYNAMIC.

Notice that IS INITIAL takes precedence over the control options.

IDENTIFICATION DIVISION.

PROGRAM-ID. A.

DATA DIVISION....
PROCEDURE DIVISION.

BEGIN....
$CONTROL ANSISUB

IDENTIFICATION DIVISION.

PROGRAM-ID. B....
IDENTIFICATION DIVISION.

PROGRAM-ID. C....
END PROGRAM C.

END PROGRAM B.

IDENTIFICATION DIVISION.

PROGRAM-ID. D IS INITIAL....
END PROGRAM D.

END PROGRAM A.

6-16 From Program Creation

to Program Execution

Control Options

Miscellaneous Options

Miscellaneous options do not �t into any of the preceding option categories. The
miscellaneous options and their e�ects are:

Miscellaneous Option E�ect

LOCKING Allows your program to lock all �les that are opened during its
execution (does not lock the �les itself). This is not the default.

USLINIT This is an HP COBOL II/V option that is ignored by HP COBOL
II/XL.

NLS This option provides support for international (multi-byte or
non-ASCII) characters in certain character operations. For a complete
description, see the appendix \MPE XL System Dependencies" in the
HP COBOL II/XL Reference Manual .

POST85 This option enables the built-in COBOL functions, de�ned in 1989
by Addendum 1 of the ANSI COBOL'85 standard. For a complete
description of all the functions and how to call them, see the chapter
\COBOL Functions" in the HP COBOL II/XL Reference Manual .

From Program Creation

to Program Execution

6-17

Compiling, Linking, and Executing Programs

Compiling, Linking, and Executing Your Program

When you compile your program, the COBOL compiler translates your COBOL source
program to object code and resolves calls to nested programs.

When you link your program, the link editor resolves calls to subprograms that are to be
bound at link time (not all subprograms; see Chapter 4). Your program must be linked
whether it calls such subprograms or not. The link editor uses object code to produce a
program �le.

When you execute your program, the loader loads the program �le into memory and the
operating system executes it.

Figure 6-1 shows how a source program becomes an executing program.

Figure 6-1. How a Source Program Becomes an Executing Program

If the source program consists of a main program and one or more subprograms, the main
program and each subprogram must be compiled separately. The resulting object �les must
be linked together into a single program �le. An object �le cannot contain more than one
program.

6-18 From Program Creation

to Program Execution

Compiling, Linking, and Executing Programs

Figure 6-2 shows the input to the COBOL compiler and the output from it. Note that
COPYLIB and INCLUDE �les can also be used for input. Formal �le designators are in italic
capital letters.

Figure 6-2. COBOL Compiler Input and Output

The rest of this section explains the following:

The two compiler entry points and the two compiler modes.

How to use �le equations with the FILE command.

How to run the COBOL compiler with the MPE XL RUN command.

How to compile, link, and execute your program with Native Mode command �les.

How to compile, link, and execute your program with Compatibility Mode compiler UDCs
or commands.

How to use relocatable and executable libraries.

Examples of compiling, linking, and executing programs.

From Program Creation

to Program Execution

6-19

Compiling, Linking, and Executing Programs

Compiler Entry Points and Modes

The COBOL compiler is \two compilers in one." That is, it has two entry points, ANSI74 and
ANSI85. When you invoke it through the ANSI74 entry point, ANSI COBOL 1974 syntax
and semantics apply. When you invoke it through the ANSI85 entry point, ANSI COBOL
1985 syntax and semantics apply. The ANSI74 entry point is provided for compatibility with
older COBOL compilers.

The COBOL compiler also has two modes, Native Mode and Compatibility Mode. In Native
Mode, the compiler produces object code designed especially for the MPE XL operating
system. This code runs very fast on MPE XL. In Compatibility Mode, the compiler produces
object code designed especially for the MPE V operating system. It runs on MPE XL, but
not as e�ciently as Native Mode object code does, because MPE XL must simulate the MPE
V system hardware and microcode. Compatibility Mode is provided for compatibility with the
MPE V operating system.

Both entry points are available in both modes. In summary, the entry points di�er in the
source code that they recognize, and the modes di�er in the object code that they generate.

Table 6-3 shows what the compiler does with each entry point in Native Mode and
Compatibility Mode.

Table 6-3. Entry Point and Mode Combination

Entry Point Native Mode Compatibility Mode

ANSI85 Translates ANSI COBOL 1985 source
code to MPE XL object code.

Translates ANSI COBOL 1985 source
code to MPE V object code.

ANSI74 Translates ANSI COBOL 1974 source
code to MPE XL object code.

Translates ANSI COBOL 1974 source
code to MPE V object code.

6-20 From Program Creation

to Program Execution

Compiling, Linking, and Executing Programs

File Equations

When you use a �le equation (the FILE command), its formal designator must match the �le
name in the ASSIGN clause of the SELECT statement.

Example

The following SELECT statement declares the logical �le MY-FILE:

SELECT MY-FILE ASSIGN TO "MFILE".

The following �le equation associates the logical �le MY-FILE with the physical �le
REALFILE:

:FILE MFILE=REALFILE

You can use a �le equation to do the following:

Tell your COBOL program to change the temporary �le that it creates to a permanent �le.
For example, the following FILE command causes the temporary �le MFILE to be made a
permanent �le:

:FILE MFILE;SAVE

One alternative to the FILE command is to use the SAVE command SAVE MFILE before
the job or session ends. For example, the following also causes the temporary �le MFILE to
be made a permanent �le:

:SAVE MFILE

Override default �le characteristics.

Create a circular �le.

Create a message �le.

An alternative to a �le equation or the FILE command in each of the above cases is to create
the �le with the BUILD command before you execute the program. For more information on
�les and the FILE command, see Chapter 5.

From Program Creation

to Program Execution

6-21

Compiling, Linking, and Executing Programs

Native Mode Compiler Command Files and RUN Command

You can invoke the Native Mode COBOL compiler and compile your COBOL program in
Native Mode with either the RUN command or one of the six command �les COB85XL,
COB85XLK, COB85XLG, COB74XL, COB74XLK, or COB74XLG. These command �les can
compile, link, and execute your program. You can use one of the six existing command �les or
write your own. For more information on compiling, linking, and executing your program, see
the appendix \MPE XL System Dependencies" in the HP COBOL II/XL Reference Manual .

Compatibility Mode Compiler UDCs and Commands

To compile your program in Compatibility Mode, use a UDC (User-De�ned Command) or
a command to compile, link, and execute your program. Table 6-4 and Table 6-5 list each
UDC and command that invokes the Compatibility Mode COBOL compiler, the entry point
through which it invokes the compiler, and its other e�ects.

Table 6-4. Compatibility Mode UDCs

UDC Entry Point Invokes the compiler and:

COBOLIIX ANSI85 Creates an object �le.

COBOLIIXPREP Links the object �le and creates a program �le.

COBOLIIXGO Creates a program �le in $OLDPASS and runs it.

Table 6-5. Compatibility Mode Commands

Command Entry Point Invokes the compiler and:

COBOLII ANSI74 Creates an object �le.

COBOLIIPREP Links the object �le and creates a program �le.

COBOLIIGO Creates a program �le in $OLDPASS and runs it.

6-22 From Program Creation

to Program Execution

Compiling, Linking, and Executing Programs

Syntax of UDCs

COBOLIIX [text�le][,[usl�le[,[list�le][,[master�le]

[,[new�le]]]]]][,info]

COBOLIIXPREP [text�le][,[prog�le[,[list�le][,[master�le]

[,[new�le]]]]]][,info]

COBOLIIXGO [text�le][,[list�le][,[master�le] [,[new�le]]]][,info]

Syntax of Commands

COBOLII [text�le][,[usl�le[,[list�le][,[master�le] [,[new�le]]]]]]

[;INFO=info][;WKSP=workspacename]

COBOLIIPREP [text�le][,[prog�le[,[list�le][,[master�le]

[,[new�le]]]]]][;INFO=info][;WKSP=workspacename]

COBOLIIGO [text�le][,[list�le][,[master�le][,[new�le]]]]

[;INFO=info][WKSP=workspacename]

From Program Creation

to Program Execution

6-23

Compiling, Linking, and Executing Programs

Parameters

text�le MPE or TSAM �le containing your source program. This �le can be
compiled. The formal designator is COBTEXT. The default is $STDIN.

usl�le Relocatable object code �le. This �le can be linked. The formal
designator is COBUSL. The default is $OLDPASS.

prog�le Executable program �le. This �le can be executed. The default is
$NEWPASS.

list�le MPE �le on which your source code will be listed. The formal designator
is COBLIST. The default is $STDLIST.

master�le MPE or TSAM �le to be merged with text�le to produce a composite
source program. The formal designator is COBMAST. If master�le is
omitted, the entire source is from text�le.

new�le MPE �le into which the merged text�le and master�le is written. For
details, refer to the HP COBOL II/XL Reference Manual. The formal
designator is COBNEW. The default is that no new �le is written.

info A string whose value is a command list of the form:

"$compiler command[$compiler command]..."

where no compiler command contains the character $ (even if it is within
quotes). Refer to the HP COBOL II/XL Reference Manual for more
information on compiler commands.

If the number of commands is long enough, you can use an ampersand (&)
to continue the info string. The length limit for a compiler command is
the same as the length limit for a source program line.

In the listing �le, the string \INFO=" appears where the sequence
numbers normally appear.

The info string is processed before any source, including compiler
commands in the source. Therefore, you may not want to use the default
settings of these commands in the source �le. You should only include
commands such as SUBPROGRAM, which are required for proper
compilation, in the source �le. This allows you to specify commands like
NOLIST, MAP, BOUNDS, or CROSSREF uniquely within the info string
for each compilation.

workspacename Work space in which HP TOOLSET/XL can manage versions of the
source program.

6-24 From Program Creation

to Program Execution

Compiling, Linking, and Executing Programs

Libraries

Your program can use subprograms from relocatable libraries and executable libraries.
Relocatable and executable libraries di�er in content and in when they are referenced. The
following table lists these di�erences:

Table 6-6. Differences between Relocatable and Executable Libraries

Library Contents Referenced At

Relocatable (RL) Relocatable object modules. Link time.

Executable (XL) Executable object modules. Run time.

Relocatable Libraries

A relocatable library contains relocatable object modules and is referenced at link time.

Example. The following shows how you can use the Link Editor to put the subprogram SUB1
into the relocatable library RLLIB. Your input is underlined:

:LINKEDIT

LinkEd>RL RLLIB

LinkEd>ADDRL FROM=SUB1

LinkEd>EXIT

The following command links subprograms from RLLIB with the object �le of the main
program, TMAIN, and creates the program �le TMAINP:

:LINK TMAIN,TMAINP;RL=RLLIB

From Program Creation

to Program Execution

6-25

Compiling, Linking, and Executing Programs

Executable Libraries

An executable library contains executable object modules and is referenced at run time.

The three ways to tell the operating system which executable library contains the
subprograms for your program are:

1. Specify the library in the LINK command.

The advantage of this method is that you need not remember to specify the library in the
RUN command each time you execute your program. The only time you cannot use this
method is when you want to execute the program with di�erent executable libraries at
di�erent times.

The following command links subprograms from XLLIB.GROUP.ACCOUNT with the
object �le of the main program, TMAIN, and creates the program �le TMAINP:

:LINK TMAIN,TMAINP;XL=XLLIB.GROUP.ACCOUNT

Either of the following commands runs the program:

:RUN TMAINP This uses the RUN command.

:TMAINP This uses the implied RUN command.

2. Specify the library in the RUN command.

The advantage of this method is that you can execute the program with di�erent
executable libraries at di�erent times.

The following command executes the program TMAIN, in the program �le TMAINP, with
the executable library XLLIB.GROUP.ACCOUNT:

:RUN TMAINP;XL="XLLIB.GROUP.ACCOUNT"

3. Name the library XL. In the RUN command, specify LIB=G if the library is in your
group, LIB=P if the library is in your account, or LIB=S if the library is NL.PUB.SYS or
XL.PUB.SYS. LIB=S is the default.

This is the least
exible method. It is similar to the method used on the MPE V operating
system.

6-26 From Program Creation

to Program Execution

Compiling, Linking, and Executing Programs

Examples of Compiling, Linking, and Executing Programs

This section contains several examples of compiling, linking and executing programs.

Example 1

The �rst example compiles, links, and executes a program. Either the program calls no
subprograms, or the subprograms that it calls are in the executable library NL.PUB.SYS or
XL.PUB.SYS.

:COB85XL TPROG,,$NULL

:LINK

:RUN $OLDPASS

The �rst command above compiles the COBOL source program, TPROG, into the default
object �le, $OLDPASS. $NULL speci�es no listing.

The second command links the default object �le, $OLDPASS, into the default program �le,
$NEWPASS, which becomes $OLDPASS when it is closed.

The third command executes the program �le, $OLDPASS.

The following single command is equivalent to the above sequence of three commands:

:COB85XLG TPROG,$NULL

Example 2

The second example compiles, links, and executes a main program and two subprograms. The
main program and each subprogram is in a separate object �le. The keyword RUN in the last
command is optional.

:COB85XL TMAIN,TMAINO

:COB85XL SUB1,SUB1O

:COB85XL SUB2,SUB2O

:LINK FROM=TMAINO,SUB1O,SUB2O;TO=TMAINP

:RUN TMAINP

Example 3

The third example compiles, links, and runs concatenated programs. The �rst program is a
main program. It uses an indirect �le list of the programs to be compiled. When programs
are concatenated, the compiler is invoked once for all of them, and the compiler output for
these programs is in a single object �le, so the FROM list in the LINK command only needs
to specify one object �le. The default $OLDPASS is used below.

The \indirect" �le, COBSRC, contains:

$INCLUDE MAINSRC

END PROGRAM MAINSRC.

$INCLUDE SUB1SRC

END PROGRAM SUB1SRC.

$INCLUDE SUB2SRC

END PROGRAM SUB2SRC.

$INCLUDE SUB3SRC

From Program Creation

to Program Execution

6-27

Compiling, Linking, and Executing Programs

The END PROGRAM header is not necessary for the last concatenated program in a �le.
This is an easy way to migrate your current main and subprograms to concatenated programs,
and simplify your compiles and links. The following commands compile and link the �le
COBSRC:

:COB85XL COBSRC

:LINK

:$OLDPASS

The defaults for the object �le and program �le are used above. The RUN keyword is not
necessary to run the program �le, $OLDPASS.

6-28 From Program Creation

to Program Execution

7

Debugging Your Program

Introduction

This chapter does the following:

Lists the control options that aid debugging (explained in Chapter 6.)

Explains how to use the compiler listing and link map in debugging your program.

Lists messages issued at compile time and run time.

Describes Debug, the MPE XL System Debugger.

Describes the symbolic debuggers (HP Symbolic Debugger/XL and HP TOOLSET/XL
debugger).

Lists compiler limits and how to work around some of them.

In this chapter, underlining sets your input apart from the prompt or output that is shown
with it.

The material in this chapter applies only to Native Mode programs.

Control Options for Debugging

The following control options aid debugging. For more information on them, see Chapter 6.
For an example of a compiler listing of a program with these options, see \Maps Example."

Table 7-1. Debugging Control Options

BOUNDS

CODE

DEBUG

MAP

SYMDEBUG

VALIDATE

VERBS

Debugging Your Program 7-1

Debugging Your Program

Compiler Listing

The compiler listing that the compiler produces when you specify the control options MAP
and VERBS provides most of the information that you need to debug your program. The
remainder of the information is supplied by the link map. For information on the MAP and
VERBS control options, see Chapter 6. For information on the link map, see \Link Map,"
under \Using Debug."

The following is a compiler listing for a program that includes the control options MAP,
VERBS, and CROSSREF. Explanations for the bold, bracketed numbers follow the listing.

[1] [2] [3]

PAGE 0001 HEWLETT-PACKARD 31500A.00.00 [85] COBOL II/XL THU, MAR 12, 1987,

11:23 AM (C) HEWLETT-PACKARD CO. 1987

[4]

00001 COBCNTL 001000* COBCNTL.PUB.SYS Defaults are: \

00002 COBCNTL 002000*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,NOVERBS, |

WARN | [5]

00003 COBCNTL 003000*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,SYNC32, |

INDEX32 /

00004 004700$control ansisort

00005 INFO=$control dynamic,verbs,crossref,map [6]

00007 001000 IDENTIFICATION DIVISION.

00008 002000 PROGRAM-ID. DATEFORMAT.

00009 003000 ENVIRONMENT DIVISION.

00010 004000 DATA DIVISION.

00011 005000 WORKING-STORAGE SECTION.

00012 006000 77 PGM-ID PIC X(10) VALUE 'DATEFORMAT'.

00013 007000 01 CHAR-CNT PIC S9(4) BINARY.

00014 008000 01 YEAR-4 PIC 9999.

00015 009000 01 MONTH-NAMES.

00016 010000 05 PIC X(10) VALUE "JANUARY".

00017 011000 05 PIC X(10) VALUE "FEBRUARY".

00018 012000 05 PIC X(10) VALUE "MARCH".

00019 013000 05 PIC X(10) VALUE "APRIL".

00020 014000 05 PIC X(10) VALUE "MAY".

00021 015000 05 PIC X(10) VALUE "JUNE".

00022 016000 05 PIC X(10) VALUE "JULY".

00023 017000 05 PIC X(10) VALUE "AUGUST".

00024 018000 05 PIC X(10) VALUE "SEPTEMBER".

00025 019000 05 PIC X(10) VALUE "OCTOBER".

00026 020000 05 PIC X(10) VALUE "NOVEMBER".

00027 021000 05 PIC X(10) VALUE "DECEMBER".

00028 022000 01 MONTH-TABLE REDEFINES MONTH-NAMES.

00029 023000 05 MONTH-NAME PIC X(10) OCCURS 12 TIMES

00030 024000 INDEXED BY I.

00031 025000 LINKAGE SECTION.

00032 026000 01 DATE-IN.

00033 027000 05 YY-IN PIC 99.

00034 028000 05 MM-IN PIC 99.

00035 029000 05 DD-IN PIC 99.

00036 +030000 01 DATE-OUT PIC X(30).

[7] [8] [9] [10] [11]

7-2 Debugging Your Program

Debugging Your Program

00037 031000 PROCEDURE DIVISION USING DATE-IN DATE-OUT.

00038 032000 STARTA.

00039 033000 display "date-format" date-in

00040 034000 SET I TO MM-IN

00041 035000 ADD 1900 TO YY-IN GIVING YEAR-4

00042 036000 MOVE 1 TO CHAR-CNT

00043 037000 STRING MONTH-NAME(I) DELIMITED BY " "

00044 038000 INTO DATE-OUT

00045 039000 WITH POINTER CHAR-CNT

00046 040000 END-STRING

00047 041000 STRING " " DD-IN ", " YEAR-4 DELIMITED BY SIZE

00048 042000 INTO DATE-OUT

00049 043000 WITH POINTER CHAR-CNT

00050 044000 END-STRING

00051 045000 MOVE SPACES TO DATE-OUT(CHAR-CNT:).

00052 046000

00053 047000 EXIT-PARA.

00054 048000 EXIT PROGRAM.

[12]

PAGE 0002/COBTEXT DATEFORMAT SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

[25][26]

WORKING-STORAGE SECTION

00012 77 PGM-ID SP -114 A DISP AN

00013 01 CHAR-CNT SP -108 2 COMP NS

00014 01 YEAR-4 SP -104 4 DISP N

00015 01 MONTH-NAMES SP -100 78 DISP AN

00016 05 FILLER SP -100 A DISP AN

00017 05 FILLER SP -F6 A DISP AN

00018 05 FILLER SP -EC A DISP AN

00019 05 FILLER SP -E2 A DISP AN

00020 05 FILLER SP -D8 A DISP AN

00021 05 FILLER SP -CE A DISP AN

00022 05 FILLER SP -C4 A DISP AN

00023 05 FILLER SP -BA A DISP AN

00024 05 FILLER SP -B0 A DISP AN

00025 05 FILLER SP -A6 A DISP AN

00026 05 FILLER SP -9C A DISP AN

00027 05 FILLER SP -92 A DISP AN

00028 01 MONTH-TABLE SP -100 78 DISP AN R [23]

00029 05 MONTH-NAME SP -100 A DISP AN O [24]

I SP -11C 4 INDEX NAME

LINKAGE SECTION

00032 01 DATE-IN P 00 0 6 DISP AN

00033 05 YY-IN P 00 0 2 DISP N

00034 05 MM-IN P 00 2 2 DISP N

00035 05 DD-IN P 00 4 2 DISP N

00036 01 DATE-OUT P 01 0 1E DISP AN

[13] [14] [15] [16] [17][18] [19][20] [21] [22]

Note The symbol table map on PAGE 0002 is due to the control option MAP. The
address of each data name in the program is speci�ed in terms of base and
o�set to that base.

Debugging Your Program 7-3

Debugging Your Program

[12]

PAGE 0003/COBTEXT DATEFORMAT SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

STORAGE LAYOUT (#ENTRYS)

FIRST TIME FLAG SP -130 4 \

RUN TIME $. , SP -124 4 |

SORT/MERGE PLABEL SP -120 4 |

INDEX TABLE (1) SP -11C 4 | [27]

TALLY SP -118 4 |

USER STORAGE SP -118 90 |

PARAMETER POINTERS (2) SP -88 8 |

TEMPCELL pool SP -80 44 /

[28]

Note The symbol table map on PAGE 0003 is due to the control option MAP. The
address of each data name in the program is speci�ed in terms of base and
o�set to that base.

PAGE 0004/COBTEXT DATEFORMAT STATEMENT OFFSETS

Entry = dateformat [29]

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

38 84 40 BC 42 188 50 214 53 304

39 84 41 114 46 194 51 2D0 54 308

[30] [31]

Note The verb map on PAGE 0004 is due to the control option VERBS.

7-4 Debugging Your Program

Debugging Your Program

PAGE 0005/COBTEXT DATEFORMAT CROSS REFERENCE LISTING

IDENTIFIERS

CHAR-CNT 00013 00042 00045 00049 00051

DATE-IN 00032 00037 00039

DATE-OUT 00036 00037 00044 00048 00051

DD-IN 00035 00047

I 00030 00040 00043

MM-IN 00034 00040

MONTH-NAME 00029 00043

MONTH-NAMES 00015 00028

MONTH-TABLE 00028

PGM-ID 00012

YEAR-4 00014 00041 00047

YY-IN 00033 00041

[32] [33]

PAGE 0006/COBTEXT DATEFORMAT CROSS REFERENCE LISTING

PROCEDURES

EXIT-PARA 00053

STARTA 00038

PAGE 0007/COBTEXT DATEFORMAT COBOL ERRORS and WARNINGS [34]

COBOL ERRORS:

LINE # SEQ # COL ERROR SEV TEXT OF MESSAGE

------ ------ --- ----- --- ---------------

00046 040000 80 055 W LEFT TRUNCATION MAY OCCUR.

00050 044000 80 055 W LEFT TRUNCATION MAY OCCUR.

[35] [36] [37] [38] [39] [40]

0 ERRORS, 0 QUESTIONABLE, 2 WARNINGS

DATA AREA IS F4 BYTES. [41]

CPU TIME = 0:00:12. WALL TIME = 0:00:29.

[42] [43]

Note The cross reference on PAGE 0005 and PAGE 0006 is due to the control
option CROSSREF. It lists the section, paragraph, and program names
separate from the identi�ers and macros.

Debugging Your Program 7-5

Debugging Your Program

The bracketed numbers on the preceding compiler listing have these meanings:

Num-
ber

Meaning of Listing

[1] Version number of the compiler. Use this number when communicating with
Hewlett-Packard about this compiler.

[2] Entry point (85 for ANSI85, 74 for ANSI74).

[3] Compilation date.

[4] Copyright for compiler.

[5] Control �le (COBCNTL.PUB.SYS here).

[6] info string.

[7] Compiler-generated listing line number (also called statement number).

[8] Columns 73 through 80 of the source �le. If the source contains a copy module from
a COPYLIB, these columns contain the module name.

Anything in columns 73 through 80 appears on the compiler listing. In a macro
or include �le, it is good programming practice to put the name of the macro or
included �le in columns 73 through 80, so that the compiler listing will identify those
source lines as being from that macro or included �le.

[9] If both COBMAST and COBTEXT are speci�ed, a plus (+) appears in this column
of each line of the �le COBTEXT.

[10] Columns one through six of the source �le (source sequence number).

[11] Columns seven through 72 of the source �le (COBOL source code).

[12] PROGRAM-ID.

[13] Compiler-generated listing line number (same as [7]).

[14] Level number.

[15] Data name.

[16] Base. Possible bases are:

Base Use

DP Main program storage.

SP Subprograms with dynamic storage (control option DYNAMIC or
INITIAL clause in the PROGRAM-ID paragraph).

OWN Subprograms with static storage (control option ANSISUB or
SUBPROGRAM).

Pnn Parameter number nn .

EXT External item.

CODE Literals used in program.

7-6 Debugging Your Program

Debugging Your Program

[17] O�set from base (in hexadecimal, positive or negative).

[18] An asterisk after an o�set indicates non-optimal alignment of data name.

[19] Size in bytes (hexadecimal).

[20] USAGE. Terms and meanings are:

Term Meaning

DISP DISPLAY.

COMP COMPUTATIONAL or BINARY.

COMP-SYNC COMPUTATIONAL SYNCHRONIZED or BINARY
SYNCHRONIZED.

COMP-3 COMPUTATIONAL-3 or PACKED-DECIMAL.

INDEX Index (in USAGE IS INDEX).

INDEX NAME Index name (in an INDEXED BY clause).

SEQUENTIAL Organization is sequential, access is sequential.

RANDOM Access is random.

RELATIVE
SEQUENTIAL

Organization is relative, access is sequential.

RELATIVE RANDOM Organization is relative, access is random.

RELATIVE DYNAMIC Organization is relative, access is dynamic.

INDEXED
SEQUENTIAL

Organization is indexed, access is sequential.

INDEXED RANDOM Organization is indexed, access is random.

INDEXED DYNAMIC Organization is indexed, access is dynamic.

[21] Asterisk before category indicates unsigned binary or packed decimal item (arithmetic
is faster with signed numbers than unsigned numbers).

Debugging Your Program 7-7

Debugging Your Program

[22] Category. The categories and their meanings are:

Category Meaning

N Numeric

A Alphabetic

AN Alphanumeric

NE Numeric edited

ANE Alphanumeric edited

NS Signed numeric, sign trailing

SN Signed numeric, sign leading

NS-SEP Signed numeric; sign trailing, separate

SEP-SN Signed numeric; sign leading, separate

[23] R indicates REDEFINES clause.

[24] O indicates OCCURS clause.

[25] J indicates JUSTIFIED clause.

[26] BZ indicates BLANK WHEN ZERO clause.

[27] Internal compiler data. Only the PARAMETER POINTERS are useful to you. It
gives the address of the addresses of the subprogram parameters.

[28] Number of parameters, �les, or index names (decimal).

[29] O�sets in this map are o�sets to this location. This is the PROGRAM-ID name or
chunk name.

[30] Compiler-generated listing line number (same as [7]).

[31] O�set from entry or chunk (hexadecimal).

[32] Name (possibly quali�ed).

[33] Listing line numbers that reference the name (the �rst number is the line on which
the name is declared).

[34] Error message listing.

[35] Approximate listing line number of error.

[36] Approximate source sequence number of error.

[37] Approximate column location of error (column 80 if the error was detected during
code generation).

[38] Error number.

[39] Severity of error.

[40] Error message text.

[41] Approximate total data area size (hexadecimal).

[42] CPU time required to compile the program (hh:mm:ss).

[43] Elapsed time required to compile the program (hh:mm:ss).

7-8 Debugging Your Program

Debugging Your Program

Messages

This section explains the messages that help you debug your program. They are of two types,
compile-time messages and run-time error messages. Compile-time messages are issued by the
compiler, and are not always associated with errors. Run-time error messages are issued by
the COBOL run-time library, and are always associated with errors.

Text for both types of errors comes from the �le COBCAT.PUB.SYS (COBOL CATalog).
Beneath the text of each error message, COBCAT.PUB.SYS has an explanation of the
message. Each line of the explanation begins with a dollar sign ($). For instructions for
printing COBCAT.PUB.SYS, refer to the HP COBOL II/XL Reference Manual .

For run-time error processing, the COBOL run-time library accesses the COBMAC.PUB.SYS
(COBOL MACro) �le, as well as COBCAT.PUB.SYS. The COBMAC �le is used to provide
additional information when a trap is detected.

Compile-Time Messages

Compile-time messages are issued by the compiler. They are of six severities: warning,
questionable, serious, disastrous, nonstandard, and informational. The severity of a message
determines its e�ect on the compiler|whether it continues to compile, whether it generates
code, and whether the code executes correctly.

When the compiler issues a message, it sets the Job Control Word (JCW). You can have your
job stream compile your program and then check the JCW. If the JCW setting is FATAL (in
which case the program did not compile successfully), your job stream will end, rather than
try to link and execute the program.

Debugging Your Program 7-9

Debugging Your Program

For each class of compile-time message, Table 7-2 gives the message number range, the JCW
setting, an explanation, and advice.

Table 7-2. Compile-Time Message Severities

Message
Severity

Message
Number
Range

JCW
Setting Explanation Advice

Warning (W) 1-99 Not set. The compiler generated code
for the program, but it will
not execute correctly in the
\worst case."

If the \worst case" could
happen, change the code so
that it will execute correctly
in that case.

Questionable
Error (Q)

100-399 WARN The compiler generated code
for the program, but it will
probably not execute
correctly.

Change the program to
eliminate this error.

Serious Error
(S)

400-449 FATAL The compiler could not
generate code for the
program.

Change the program to
eliminate this error.

Disastrous
Error (D)

450-499 FATAL The compiler could not
generate code for the
program and cannot continue
to compile it. The compiler
listing includes a stack dump.
(Most disastrous errors are
caused by �le errors from the
�les that the compiler
accesses; for example, when
the compiler cannot �nd the
�le that COBTEXT
references.)

Check the spellings of the �le
names in the �le equations
and the commands that
invoked the compiler.

Nonstandard
Warning (N)

500-539 Not set The compiler generated code
for the program, but it may
not execute correctly on
non-HP computers. A
nonstandard warning
ags an
HP extension to standard
COBOL or a standard
COBOL feature that is above
the level that the control
option STDWARN speci�es.

If the program is to run on
non-HP computers, change
the program to eliminate this
warning.

Informational
Messages (I)

900-999 Not set Usually caused by other
errors in the program.

Correct the other errors in
the program and recompile.

7-10 Debugging Your Program

Debugging Your Program

Run-Time Error Messages

Run-time error messages are numbered from 500 to 755 and are issued by the HP COBOL
II/XL run-time library. Unlike compile-time messages, they are always associated with
errors. The errors fall into two classes: input-output errors and traps. This section explains
input-output errors and data validation, a related issue. This section only brie
y describes
traps. The HP COBOL II/XL Reference Manual explains traps and how to handle them. The
section \Debugging Trap Errors" later in this chapter has example programs that illustrate
these errors.

Input-Output Errors

Input-output errors cause most run-time error messages. When an input-output error occurs,
the following happens:

1. The error message is printed.

2. If the error is �le-related (most are), the �le system error number and message are printed
and the intrinsic PRINTFILEINFO executes, displaying �le information. If the error is not
�le-related, only the error message is printed.

3. If the program contains a FILE STATUS clause, INVALID KEY phrase, AT END phrase,
or USE procedure (that is, if the program can detect the error), then execution continues
without printing any error message or �le information; otherwise, the program aborts (see
Figure 5-3).

Some of the COBOL functions call routines in the Compiler Library or FORTRAN library.
If a Compiler Library or FORTRAN routine detects an error, the Compiler Library will
output an error message. These error messages are documented in the Compiler Library/XL
Reference Manual .

Debugging Your Program 7-11

Debugging Your Program

Run-Time Traps

A run-time trap is an interruption of the
ow of program control, caused by an exception
condition. After a trap-handling routine executes, the program can sometimes be restarted,
depending on how you set the environment variable COBRUNTIME.

The COBOL compiler supports the following traps:

Illegal Decimal Digit (Error 710).

Illegal ASCII Digit (Error 711).

Bad Parameter (Error 745)

No Exception Phrase on CALL (Error 746)

No SIZE ERROR phrase (Error 747)

Paragraph Stack Over
ow (Error 748).

Subscript, Index, Reference Modi�er, or DEP-ON Bounds Error (Error 751).

Address Alignment (Error 753).

Invalid GO TO (Error 754).

For traps to do anything other than abort the program, you must compile your program
with $CONTROL VALIDATE and $CONTROL BOUNDS, and set the global variable
COBRUNTIME before you run your program.

For a complete discussion of these traps and COBRUNTIME, see the appendix \MPE XL
System Dependencies" in the HP COBOL II/XL Reference Manual .

For example programs that illustrate these traps, see \Debugging Trap Errors" later in this
chapter.

Data Validation

When you use the control option VALIDATE and the run-time error handling option M or N
in colunm 1 of COBRUNTIME, and an illegal ASCII or decimal digit is encountered, in most
cases the trap handler changes the source �eld itself, rather than a copy of it. That is, the
source �eld is also the target �eld.

7-12 Debugging Your Program

Debugging Your Program

Table 7-3 gives the valid ASCII digits with which invalid unsigned ASCII digits are replaced if
you specify the run-time error handling option M or N. Any invalid unsigned ASCII digit that
does not appear in Table 7-3 is replaced by zero.

Table 7-3. Valid Replacements for Invalid Unsigned ASCII Digits

Invalid Unsigned
ASCII Digit

Valid
Replacement Digit

A, a, J, j, / 1

B, b, K, k, S, s 2

C, c, L, l, T, t 3

D, d, M, m, U, u 4

E, e, N, n, V, v 5

F, f, O, o, W, w 6

G, g, P, p, X, x 7

H, h, Q, q, Y, y 8

I, i, R, r, Z, z 9

Table 7-4 gives the valid ASCII digits with which invalid signed ASCII digits are replaced if
you specify the run-time error handling option M or N. Any invalid signed ASCII digit that
does not appear in Table 7-4 is replaced by positive zero (f).

Table 7-4. Valid Replacements for Invalid Signed ASCII Digits

Invalid Signed
ASCII Digit

Valid
Replacement Digit

Value of
Replacement Digit

a, /, 1 A +1

b, s, S, 2 B +2

c, t, T, 3 C +3

d, u, U, 4 D +4

e, v, V, 5 E +5

f, w, W, 6 F +6

g, x, X, 7 G +7

h, y, Y, 8 H +8

i, z, Z, 9 I +9

j J -1

k K -2

l L -3

m M -4

n N -5

o O -6

p P -7

q Q -8

r R -9

-,] g 0

Debugging Your Program 7-13

Debugging Your Program

Using Debug

Debug, the MPE XL System Debugger, allows you to analyze your program's object code
while it is executing. With Debug, you can do the following:

Display data item values.

Change data item values and continue program execution.

Set breakpoints at statements.

Set breakpoints at data items. You can cause the program to break when a speci�ed data
item changes value.

Note This section is not a Debug tutorial. It only explains how to obtain run-time
addresses that you can use in Debug commands. For information on the
Debug commands themselves, refer to the MPE XL System Debug Reference
Manual .

While using Debug, you need the maps listed in Table 7-5.

Table 7-5. COBOL Maps

Map Contents of Map Purpose of Map How to Get the Map

Symbol table
map

Data item o�sets. To display or change data
item values and to set
breakpoints at data items.

Compile your program with
control option MAP.

Verb map O�sets of program
statements from starting
addresses in link map.

To set breakpoints at
statements.

Compile your program with
control option VERBS.

Link map Actual starting
addresses.

To set breakpoints at
statements if the program is
in chunks, and to �nd the
addresses of OWN or
EXTERNAL data.

Link Editor command
LISTPROG.

The information in the link
map is also available from
Debug, during program
execution, with the
PROCLIST command. See
the section \Link Map."

7-14 Debugging Your Program

Debugging Your Program

This section does the following:

Explains the symbol table, verb, and link maps.
Gives an example of a chunked program and its maps.
Gives an example of nested and concatenated programs and their maps.
Explains how to get data and program o�sets at run time.
Explains how to �nd subprogram parameters.
Explains register meanings.
Explains how to calculate the addresses of data items.
Explains how to calculate code addresses.
Explains how to debug trap errors with Debug.

Symbol Table Map

A symbol table map lists data item o�sets and lengths. The o�sets and lengths are in bytes,
in hexadecimal representation. You need these o�sets in order to display or change data item
values or set breakpoints at data items.

In a symbol table map, EXTERNAL items have the base EXT. O�sets are o�sets from the
address of the level 01 EXTERNAL item.

To produce a symbol table map of your program, compile it with the control option MAP (see
Chapter 6).

Verb Map

A verb map lists the o�sets of the statements in your program. The o�sets are in bytes, in
hexadecimal representation. They are o�sets from the entry point or chunk named in the
heading of the verb map page. You need them in order to set breakpoints at statements. To
produce a verb map of a COBOL program, compile it with the control option VERBS.

When reading a verb map, remember that some code o�sets are o�set from the beginning of
chunks. See \Maps Example for Chunked Program."

Debugging Your Program 7-15

Debugging Your Program

Link Map

A link map lists the following actual starting addresses, which you need in order to set
breakpoints at statements and display data. A link map is one way to �nd the addresses of
chunk entry points and OWN and EXTERNAL data. The other way is to use the PROCLIST
command when you execute your program under Debug.

Starting addresses of chunks, if applicable. See \Maps Example for Chunked Program."

Each chunk name that appears in the verb map is the starting address of a chunk.
The code o�sets in the verb map are o�sets from the starting addresses of chunks.
Compiler-generated chunk names are of the form program namennn.

Starting address of main program data storage (relative to DP).

Other main program data addresses are o�sets from this address. You do not need the link
map for the main program.

Starting address of subprogram data storage (one per subprogram).

For a subprogram compiled with the ANSISUB or SUBPROGRAM option,
Mnprogram name (where n is a number) contains the starting address of the
subprogram's OWN data. For a subprogram compiled with the DYNAMIC option, SP
contains the ending address of the subprogram's data storage (a value that is only available
while the subprogram is executing). Other subprogram addresses are o�sets from this
address.

You can ignore other addresses.

The link map also shows the program entry point. Refer to the Link Editor manual for the
commands that produce a link map.

7-16 Debugging Your Program

Debugging Your Program

Maps for Chunked Program

For a large program, the executable code is in chunks. Each chunk is in a separate subspace,
but they all reside in the same �le. When reading a verb map and using Debug, code o�sets
are o�set from the beginning of chunks.

Chunk names are derived from the program-id , as explained in Chapter 4. See \Calculating
Code Addresses" to determine how to �nd code addresses of chunks.

Example

The following compiler listing for a chunked program includes a verb map. The following is
the compiler command for this example:

:COB85XL NC101.PROG;INFO="$CONTROL VERBS"

The following is the compiler listing:

**
* COB85XL - Compile COBOL program.

* Object file will be $NEWPASS.

**

PAGE 0001 HP31500A.01.00 [85] (C) HEWLETT-PACKARD CO. 1987

00001 COBCNTL 001000* COBCNTL.PUB.SYS Defaults are:

00002 COBCNTL 002000*CONTROL LIST,SOURCE,NOCODE,NOCROSSREF,ERRORS=100,

NOVERBS,WARN

00003 COBCNTL 003000*CONTROL LINES=60,NOMAP,MIXED,QUOTE=",NOSTDWARN,

SYNC32,INDEX32

00004 INFO=$control verbs

00005 NC1014.1 000100 IDENTIFICATION DIVISION.

00006 NC1014.1 000200 PROGRAM-ID.

00007 NC1014.1 000300 NC101....
02001 NC1014.1 200800 DIV-WRITE-57.

02002 NC1014.1 200900 MOVE "DIV-TEST-57" TO PAR-NAME.

02003 NC1014.1 201000 PERFORM PRINT-DETAIL.

02004 NC1014.1 201100 CCVS-EXIT SECTION.

02005 NC1014.1 201200 CCVS-999999.

02006 NC1014.1 201300 GO TO CLOSE-FILES.

Debugging Your Program 7-17

Debugging Your Program

PAGE 0002/COBTEXT NC101 STATEMENT OFFSETS

Entry = nc101

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

261 3C 317 848 373 F44 428 15CC

262 40 318 860 374 F44 429 16A8

263 40 319 860 375 F6C 430 16B4

264 74 320 890 376 F84 431 16C4

265 BC 321 8A4 377 F84 432 16CC

266 D0 322 8B4 378 10C0 433 16CC

267 E4 323 8E8 379 10F0 434 16E0

268 EC 324 918 380 10F8 435 16E8...
1401 9470 1444 9988 1487 A0E4 1530 A4E8

1402 949C 1445 998C 1488 A0EC 1531 A514

1403 94B4 1446 998C 1489 A0F4

1404 94B4 1447 99B8 1490 A0F4

1405 94C4 1448 99D0 1491 A0F4

PAGE 0008/COBTEXT NC101 STATEMENT OFFSETS

Chunk = nc101$001$

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

1532 8 1587 72C 1642 FEC 1697 1608

1533 8 1588 738 1643 FEC 1698 1610

1534 20 1589 73C 1644 1010 1699 1610

1535 3C 1590 92C 1645 102C 1700 1640...
1978 3C4C 1987 3D98 1996 3E50 2005 3F80

1979 3C54 1988 3DB0 1997 3E18 2006 3F80

1980 3C84 1989 3DB0 1998 3F2C

Note The verb map on PAGE 0002 through PAGE 0008 is due to the control option
VERBS. Notice the entry name nc101 on PAGE 0002 and the chunk name
nc101$001$ on PAGE 0008. O�sets are o�sets from the addresses under SYM
VALUE in the link map.

7-18 Debugging Your Program

Debugging Your Program

PAGE 0011/COBTEXT NC101 COBOL ERRORS and WARNINGS

COBOL ERRORS:

LINE # SEQ # COL ERROR SEV TEXT OF MESSAGE

------ ------ --- ----- --- ---------------

00957 096400 80 050 W ARITHMETIC OVERFLOW MAY OCCUR.

00973 098000 80 050 W ARITHMETIC OVERFLOW MAY OCCUR.

00989 099600 80 050 W ARITHMETIC OVERFLOW MAY OCCUR.

01005 101200 80 050 W ARITHMETIC OVERFLOW MAY OCCUR.

0 ERRORS, 0 QUESTIONABLE, 4 WARNINGS

DATA AREA IS 9FC BYTES.

CPU TIME = 0:01:20. WALL TIME = 0:06:19.

END OF PROGRAM

END OF COBOL COMPILATION

Debugging Your Program 7-19

Debugging Your Program

The following shows a Link Editor session that displays the link map of the chunked program:

:LINK $OLDPASS;MAP

HP Link Editor/XL (HP30315A.02.27) Copyright Hewlett-Packard Co 1986

LinkEd> link $OLDPASS;MAP

PROGRAM : $OLDPASS

XL LIST :

CAPABILITIES : BA, IA

NMHEAP SIZE :

NMSTACK SIZE :

VERSION : 85082112

Sym C H X P Sym Sym Sym Lset

Name Type Scope Value Name

---- - - - - ---- ----- ----- ----

$START$ 0 3 3 sec_p univ 00009A74

_start 0 3 3 sec_p univ 0000AF68 NC101

nc101 0 3 3 pri_p univ 0000AF4C NC101

$RECOVER_END 0 code univ 0001AF4C

$RECOVER_START 0 code univ 0001ADD8

$START$ 0 code univ 00009A90

$UNWIND_END 0 code univ 0001ADB8

$UNWIND_START 0 code univ 0001A4F8

_start 0 code univ 0000B044 NC101

nc101 0 code univ 0000B044 NC101

nc101$001$ 0 code univ 00016094 NC101

M$1 0 data local dp+00000000
.

.

.

The entry names nc101 and nc101$001$ are identi�able by the type code under SYM TYPE.

7-20 Debugging Your Program

Debugging Your Program

Example Maps for Nested and Concatenated Programs

This compiler listing is for two concatenated programs, MAIN-P and CONCAT-P. The �rst
program, MAIN-P, contains a nested program, NESTED-P. The compiler appends the maps
to the end of the listing of all three programs. First the symbol maps and cross reference
appear, followed by the verb maps.

Note that the nested program NESTED-P is compiled with $CONTROL DYNAMIC. Because
of this, the symbol map shows the address for the data item local to this program to be
relative to the stack pointer (SP).

PAGE 0001 HP31500A.01.00 [85] (C) HEWLETT-PACKARD CO. 1987

00001 INFO=$CONTROL MAP,verbs
00002 001000 IDENTIFICATION DIVISION.

00003 001100 PROGRAM-ID. MAIN-P.

00004 001200 DATA DIVISION.

00005 001300 WORKING-STORAGE SECTION.

00006 001400 1 DUMMY-N GLOBAL PIC 99 VALUE 88.

00007 001500 PROCEDURE DIVISION.

00008 001600 BEGIN.

00009 001700 CALL "NESTED-P".

00010 001800

00011 001810$control dynamic

00013 001900 IDENTIFICATION DIVISION.

00014 002000 PROGRAM-ID. NESTED-P.

00015 002100 DATA DIVISION.

00016 002200 WORKING-STORAGE SECTION.

00017 002300 01 LOCAL-DATA PIC X(15).

00018 002400 PROCEDURE DIVISION.

00019 002500 BEGIN.

00020 002600 MOVE "END IN NESTED-P" TO LOCAL-DATA.

00021 002700 ADD 1 TO DUMMY-N.

00022 002800 CALL "CONCAT-P".

00024 002900 END PROGRAM NESTED-P.

00025 003000 END PROGRAM MAIN-P.

00026 003100

00027 003200 IDENTIFICATION DIVISION.

00028 003300 PROGRAM-ID. CONCAT-P.

00029 003400 DATA DIVISION.

00030 003500 WORKING-STORAGE SECTION.

00031 003600 01 LOCAL-DATA PIC X(15).
00032 003700 PROCEDURE DIVISION.

00033 003800 BEGIN.

00034 003900 MOVE "END IN CONCAT-P" TO LOCAL-DATA.

00036 004000 END PROGRAM CONCAT-P.

Debugging Your Program 7-21

Debugging Your Program

PAGE 0002/COBTEXT MAIN-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

WORKING-STORAGE SECTION

00006 01 DUMMY-N DP+ 28 2 DISP N

PAGE 0003/COBTEXT MAIN-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

STORAGE LAYOUT (#ENTRYS)

FIRST TIME FLAG, etc. DP+ 8 4

RUN TIME $. , DP+ 14 4

SORT/MERGE PLABEL DP+ 18 4

TALLY DP+ 24 4

USER STORAGE DP+ 24 6

PAGE 0004/COBTEXT NESTED-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

WORKING-STORAGE SECTION

00017 01 LOCAL-DATA SP -40 F DISP AN

7-22 Debugging Your Program

Debugging Your Program

PAGE 0005/COBTEXT NESTED-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

STORAGE LAYOUT (#ENTRYS)

FIRST TIME FLAG, etc. SP -60 4

RUN TIME $. , SP -54 4

SORT/MERGE PLABEL SP -50 4

TALLY SP -44 4

USER STORAGE SP -44 13

Literal pool ~ S$ CODE 0 14

PAGE 0006/COBTEXT CONCAT-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

WORKING-STORAGE SECTION

00031 01 LOCAL-DATA OWN 20 F DISP AN

PAGE 0007/COBTEXT CONCAT-P SYMBOL TABLE MAP

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY R O J BZ

STORAGE LAYOUT (#ENTRYS)

FIRST TIME FLAG, etc. OWN 0 4

RUN TIME $. , OWN C 4

SORT/MERGE PLABEL OWN 10 4

TALLY OWN 1C 4
USER STORAGE OWN 1C 13

Literal pool ~ S$ CODE 0 10

Debugging Your Program 7-23

Debugging Your Program

PAGE 0008/COBTEXT CONCAT-P STATEMENT OFFSETS

Entry = main_p

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

8 1C 9 1C

PAGE 0009/COBTEXT CONCAT-P STATEMENT OFFSETS

Entry = main_p003nested_p

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

19 60 20 60 21 88 22 E8

PAGE 0010/COBTEXT CONCAT-P STATEMENT OFFSETS

Entry = concat_p

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

33 48 34 48

0 ERRORS, 0 QUESTIONABLE, 0 WARNINGS

DATA AREA IS 84 BYTES.

CPU TIME = 0:00:01. WALL TIME = 0:00:02.

7-24 Debugging Your Program

Debugging Your Program

Subprogram Parameters

Memory contains two copies of each set of subprogram parameters. The two copies allow
multiple entry points.

Parameters are stored in dynamically allocated memory and referenced through the stack
pointer (SP, register 30) or the previous stack pointer (PSP).

You can access one copy only if you are at a breakpoint at the entry point of the subprogram.
The �rst four parameters are in registers:

Table 7-6. Registers 23 through 26

Register Parameter

R26 Parameter one.

R25 Parameter two.

R24 Parameter three.

R23 Parameter four.

The rest of the parameters are stored in memory, beginning with SP-34 and working
backward. The �fth parameter is in SP-34, the sixth parameter is in SP-38, and so on. O�sets
are hexadecimal. The above SP becomes PSP for data references after the entry point.

The location of the other copy appears in the map. Data is not moved there until the �rst
executable subprogram statement executes. You must access this copy if you are past the
subprogram entry point but have not exited the subprogram. All parameters are stored in
memory, beginning with PSP-24 and working backward. Each parameter is stored in four
bytes.

Debugging Your Program 7-25

Debugging Your Program

Register Meanings

The following registers have the following meanings, independent of COBOL:

Table 7-7. Registers 0, 1, and 2

Register Meaning

R0 Always zero.

R1 Scratch register.

R2 Last return address.

The following registers are always present:

Table 7-8. Registers 27, 30, and 31

Register Contents

R27 DP, the data pointer.

R30 SP, the stack pointer.

R31 Millicode return address. Millicode
is special utility code for COBOL
and other languages.

7-26 Debugging Your Program

Debugging Your Program

Calculating Addresses of Data Items

The �rst step in displaying or changing the value of a data item is to �nd its address:

1. Obtain symbol table and link maps for your program.

2. On the symbol table map, �nd the base and o�set of the data item that you want to
display or change. The base is DP, SP, EXT, OWN, or P nn , where nn is the parameter
number.

3. If the base is DP (the address of the DATA DIVISION of the main program), then the
address of the data item is DP+o�set . (DP is di�erent in each XL module.)

4. If the base is SP (the address of the Working Storage of a DYNAMIC subprogram or the
temporary cells of the main program), then the address of the data item is SP-o�set , which
is only valid when you are in the subprogram.

5. If the base is EXT (the address of the program's external variables), �nd the data
item in the link map. Add the address that the link map shows for the data item
to the o�set from the symbol table map. This is the actual address of the data item
(DP+link addr+map o�set). (DP is di�erent in each XL module.)

6. If the base is OWN (the address of the Working Storage of an ANSISUB
or SUBPROGRAM subprogram), then the address of the data item is
address of OWN+o�set . You must �nd address of OWN in the link map. It is
the SYM VALUE of Mn program name (where n is a number), which is DP plus a
number. (DP is di�erent in each XL module.)

7. If the base is P nn , where nn is the parameter number (the address of the LINKAGE
SECTION), �nd the address of PARAMETER POINTERS under STORAGE LAYOUT
in the symbol table map. It is a negative o�set from SP, -mm. The address of the �rst
parameter is SP-mm. The address of parameter nn is:

[(SP-mm) + 4 * nn] + o�set

(The bracketed value is called the indirection operator .)

8. You can obtain data addresses at run time in Debug, using the PROCLIST command (see
the MPE XL System Debug Reference Manual).

Note The formulas for the �rst and nnth parameters are valid only if you are at
or after the �rst statement of the program. If you are at a breakpoint at the
entry point to the subprogram, its parameters have not yet been copied out of
the registers.

Debugging Your Program 7-27

Debugging Your Program

The following format of the PROCLIST command gives you starting o�sets of all data
areas associated with all programs in your program �le. The global area of the outermost
program (main) is shown as M$1, as dp, and as $global$. The COBOL EXTERNAL
item EXT-GRADE is downshifted and the hyphen (\-") replaced with an underscore (\ ").
EXTERNAL items have named storage associated with them at run time.

The OWN data areas associated with a nested program follow the format
M.nested program name, where each nested program name follows the format for
internal names that is explained in Chapter 3.

Example

$3 ($36) nmdebug > proclist,,dataany

571.40000008 $global$

571.40000008 dp

571.40000080 ext_grade

571.40000008 M$1

571.40000038 M.main003valid_grade

571.40000060 M.main004display_bell

Note The above display has been edited for conciseness. You can ignore other
addresses that appear on your screen.

The above addresses are the values known at link time. The value of dp,
571.40000008, must be subtracted from all values and then added to DP. For
example, the address of ext grade is DP+80-8.

For commands that display and change data item values, refer to the MPE XL System Debug
Reference Manual .

7-28 Debugging Your Program

Debugging Your Program

Calculating Code Addresses

You must calculate code addresses in order to set breakpoints in Debug (refer to the MPE XL
System Debug Reference Manual for breakpoint syntax).

To calculate the code address of a speci�c statement:

1. In the verb map, �nd the o�set for the statement.

2. If the portion of the verb map that lists the o�set for the statement does not have \Chunk
= name" in its heading, then the statement o�set is:

program o�set + statement o�set

3. If the portion of the verb map that lists the o�set for the statement has \Chunk = name"
in its heading, �nd the chunk name in the link map. Its SYM VALUE is the chunk address.
The statement o�set is:

chunk o�set + statement o�set

To �nd the o�set of a program or chunk, do one of the following:

Obtain a link map, using the LISTPROG command (see the Link Editor manual). Program
and chunk names are listed with their o�sets.

Use the PROCLIST command in Debug. This allows you to obtain the o�sets at run time.
See the MPE XL System Debug Reference Manual .

Example

Given a program MAIN that contains one chunk and two nested programs, VALID-GRADE
and DISPLAY-BELL, here is one way to get the starting addresses of a main program
and any program it contains. Nested program names are quali�ed with the name of the
outermost program that contains them, so if you supply the main program name appended
and prepended with wild card characters, and use the parameter any , you get the following:

$1 ($33) nmdebug > proclist @main@,,any

528.535b main [1]

528.5400 main001 [2]

528.542b main.valid_grade [3]

528.55e3 main.display_bell [4]

The �rst, third, and fourth items are program names and their o�sets. The second item is a
chunk name and its o�set.

Note The above display has been edited for conciseness. You can ignore other
addresses that appear on your screen.

Debugging Your Program 7-29

Debugging Your Program

Debugging Trap Errors

Debugging trap errors is easier if you have symbol table, verb, and link maps of your program.

The trap error message contains the program counter (pc) address. In the link map, �nd the
value of the pc. The subprogram in which the trap error occurred is the symbol of type code
with the greatest SYM VALUE not greater than the pc value. Subtract that SYM VALUE
from the pc value to get the o�set of the trap.

In the verb map for the subprogram in which the trap occurred, �nd the statement with the
greatest o�set not greater than the o�set of the trap. This is the statement where the trap
occurred.

If the subprogram in which the trap occurred is not written in COBOL, the error message
may be misleading. However, the pc value, link map, and stack marker trace (which is printed
when the program aborts) are accurate.

If you get the system trap error message DATA MEMORY PROTECTION or INVALID
ADDRESS, recompile your COBOL program with the control option BOUNDS and rerun it.
You will probably get a COBOL trap, because these system traps usually result from values
out of bounds.

This section gives at least one debugging example for each type of trap. The types of traps
are:

Illegal ASCII or Decimal Digit.
Range Error.
No Size Error.
PERFORM Stack Over
ow.
Invalid GO TO.
Address Alignment.
Intrinsic Function Traps.

This section also explains:

Trace traps.

Redirecting Output from Traps

The trap examples that follow show output that goes to $STDLIST. The output comes from
two sources, the COBOL run-time library and Debug.

Note The examples that follow print the statement number of the trap as

Stmt #nnn

However, for optimized programs, the statement number appears as ????.

This also occurs for statements that generate a large amount of machine
instructions. In such cases, see the section \Calculating Code Addresses" in
this chapter to determine the statement where the error occurs.

7-30 Debugging Your Program

Debugging Your Program

Illegal ASCII Digit

In this example, a program with illegal ASCII digits is executed with the COBRUNTIME
value A. The e�ect of other COBRUNTIME values is explained after the example.

Given the following compiled source program:

00001 000100$CONTROL MAP,VALIDATE

00003 001000 IDENTIFICATION DIVISION.

00004 002000 PROGRAM-ID. TRAP-ASCII-DIG.

00005 003000 DATA DIVISION.

00006 004000 WORKING-STORAGE SECTION.

00007 005000 01 BAD-VALUE PIC X(4) VALUE "12 4".

00008 006000 01 B REDEFINES BAD-VALUE PIC 9(4).

00009 007000 01 D PIC 9(4).

00010 008000 PROCEDURE DIVISION.

00011 009000 TRAP-TEST.

00012 009100**

00013 009200* Trap test with illegal ASCII digit *

00014 009300**

00015 010000 DISPLAY "Should produce illegal ASCII digit.".

00016 011000 ADD 1 TO B.

00017 012000 DISPLAY BAD-VALUE.

00018 013000 DISPLAY "Test case did not abort.".

00019 014000 STOP RUN.

The section of the map that shows the addresses of items in WORKING-STORAGE is:

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY

WORKING-STORAGE SECTION

00007 01 BAD-VALUE DP+ 30 4 DISP AN

00008 01 B DP+ 30 4 DISP N
00009 01 D DP+ 34 4 DISP N

Debugging Your Program 7-31

Debugging Your Program

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), and the program is compiled with the control option
VALIDATE, this program produces the following information when run in session mode.
(When run in a job stream, the output may look slightly di�erent. When debugging a
program, running it in a session is recommended.)

:$OLDPASS

Should produce illegal ASCII digit.

Illegal ASCII digit (COBERR 711)

Program file: $OLDPASS.H6OPT2.COBOL74

Trap type = 00000200 (22,00), at pc = 000004D0.000083BF

invalid ascii digit

Source address = 40200030, Source = '12 4'

(hex) Source = '31322034'

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 4d0.0000d1fc print_message$093+$314

$$$$ Trap occurred at: trap_ascii_dig+$74, at Stmt #16

PC=4d0.00007ac0 vloop+$c

0) SP=402210e8 RP=4d0.000083c4 trap_ascii_dig+$7c

* 1) SP=402210e8 RP=4d0.00000000 inx_A0000+$14

(end of NM stack)

$$$$ The address $40200030 = DP+$28 may be in main, SUBPROGRAM or EXTERNAL

The most important pieces of information are
agged by the string \$$$$." The �rst gives you
the number of the statement that preceded the trap. The second gives you the address of the
data item that caused the trap. If you look up DP+$28 in the map, you �nd that the data
item BAD-VALUE caused this trap. (Since the output above says that the data item that
caused the trap could be in a main program, be in a subprogram, or be an EXTERNAL item,
you must study the maps and data of your program to determine that BAD-VALUE is the
culprit. The statement number (#16) may also help determine the problem.)

Beneath the line
agged \$$$$" above is a stack trace that shows where in your code the
program aborted. The highest name on this stack that is the name of one of your programs
has the exact address in the program �le where the abort occurred. This may be useful if you
use Debug. Refer to the MPE XL System Debug Reference Manual for more information.

If you change the value of COBRUNTIME and rerun the above program, program behavior
changes as described below.

COBRUNTIME Value Change in Program Behavior

I The trap occurs, but the program ignores it and continues.

M The trap occurs, the above trap information is printed, the
illegal digit is replaced by a legal digit, and the program
continues.

N The trap occurs, the illegal digit is replaced by a legal digit,
and the program continues.

C The trap occurs, the above trap information is printed, and the
program continues.

7-32 Debugging Your Program

Debugging Your Program

The following example shows an illegal ASCII digit error with an invalid sign. The error
occurs when attempting to display variables N4 and N4R.

C

PAGE 0001 COBOL II/XL HP31500A.04.03 [85] TUE, JUL 9, 1991, 5:18

PM Copyright Hewlett-Packard CO. 1987

00001 001000$CONTROL VALIDATE

00002 001100 IDENTIFICATION DIVISION.

00003 001200 PROGRAM-ID.

00004 001300 COBMAIN.

00005 001400 ENVIRONMENT DIVISION.

00006 001500 DATA DIVISION.

00007 001600 WORKING-STORAGE SECTION.

00008 001700 01 A1 PIC X VALUE SPACES.

00009 001800 01 N1 PIC 99 VALUE 0.

00010 001900 01 N2 PIC 99 VALUE 0.

00011 002000 01 N3 PIC S99 VALUE 0.

00012 002010 01 N4 PIC 999.

00013 002020 01 N4R REDEFINES N4 PIC S999.

00014 002100 PROCEDURE DIVISION.

00015 002200 FIRST-PARA.

00016 002300 MOVE 10 TO N1.

00017 002400 MOVE N1 TO N3.

00018 002500 DISPLAY N1, N3.

00019 002510 MOVE 111 TO N4.

00020 002520 DISPLAY N4, N4R.

00021 002600 STOP RUN.

0 ERROR(s), 0 QUESTIONABLE, 0 WARNING(s)

DATA AREA IS 44 BYTES.

CPU TIME = 0:00:01. WALL TIME = 0:00:01.

Debugging Your Program 7-33

Debugging Your Program

10+10

Illegal ASCII digit (COBERR 711)

Program file: $OLDPASS.USER2.COBOL74
Trap type = 00000200 (22,01), at pc = 000000B9.00005E07

invalid ascii digit (S->S)

Source address = 4033A0BC, Source = '111'

(hex) Source = '313131'

DEBUG/XL A.47.01

HPDEBUG Intrinsic at: 678.00351270 cob_trap.print_message+$5c4

$$$$ Trap occurred at: cobmain+$1b4, at Stmt #20

PC=b9.00005e04 cobmain+$1b4

* 0) SP=4033a0f0 RP=b9.00000000 $$inx_A0000+$14

(end of NM stack)

$$$$ The address $4033a0bc = SP-$34 is in cobmain (TEMPCELL or $DYNAMIC)

==

**** COB_QUIT 711 ****

ABORT: $OLDPASS.USER2.COBOL74

NM SYS a.00944414 dbg_abort_trace+$2c

NM USER 678.003502f8 COB_QUIT+$b8

NM SYS a.004403d0 user_trap_caller+$e4

--- Interrupt Marker

NM PROG b9.00005e04 cobmain+$1b4

7-34 Debugging Your Program

Debugging Your Program

Range Error

These errors may occur when a subscript or index references an array out of bounds.

Given the following compiled source program:

00001 001000$CONTROL BOUNDS,MAP

00003 001100 IDENTIFICATION DIVISION.

00004 001200 PROGRAM-ID. BOUNDSEXAMPLE.

00005 001300* This program has a subscript out of bounds.

00006 001400 DATA DIVISION.

00007 001500 WORKING-STORAGE SECTION.

00008 001600 01.

00009 001700 05 PIC X.

00010 001800 05 XX PIC X.

00011 001900 01.

00012 002000 05 Y OCCURS 80 TIMES PIC X.

00013 002100 01 Z PIC S9(9) COMP VALUE 0.

00014 002200 PROCEDURE DIVISION.

00015 002300 P1.

00016 002400**

00017 002500* Trap test with range error *

00018 002600**

10019 002700 MOVE -5 TO Z.

00020 002800 MOVE Y(Z) TO XX.

00021 002900 DISPLAY "Test case did not abort.".

00022 003000 STOP RUN.

The section of the map that shows the addresses of items in WORKING-STORAGE is:

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY

WORKING-STORAGE SECTION

00008 01 FILLER DP+ 28 2 DISP AN

00009 05 FILLER DP+ 28 1 DISP AN

00010 05 XX DP+ 29 1 DISP AN

00011 01 FILLER DP+ 2C 50 DISP AN

00012 05 Y DP+ 2C 1 DISP AN

00013 01 Z DP+ 7C 4 COMP NS

Debugging Your Program 7-35

Debugging Your Program

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), and the program is compiled with the control option
BOUNDS, this program produces the following information when run in a session. (When run
in a job stream, the output may look slightly di�erent. When debugging a program, running
it in a session is recommended.)

:$OLDPASS

SUBSCRIPT/INDEX/REFMOD/DEP-ON out of BOUNDS (COBERR 751)

Program file: $OLDPASS.H6OPT2.COBOL74

Trap type = 00080000 (12,00), at pc = 00000551.000077CB

range error

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 551.0000c594 print_message$093+$314

$$$$ Trap occurred at: boundsexample+$30, at Stmt #20

PC=551.000077c8 boundsexample+$30

* 0) SP=402210d8 RP=551.00000000

(end of NM stack)

$$$$ The variable -5 < 1 (limit)

The most important pieces of information are
agged by the string \$$$$." The �rst gives you
the number of the statement that preceded the trap. The second gives you the bad value of
the index or subscript, compared to the limit.

Beneath the line
agged \$$$$" above is a stack trace that shows where in your code the
program aborted. The highest name on this stack that is the name of one of your programs
has the exact address in the program �le where the abort occurred. This may be useful if you
use Debug. Refer to the MPE XL System Debug Reference Manual for more information.

7-36 Debugging Your Program

Debugging Your Program

No Size Error

The No Size Error trap sometimes occurs where it is not possible to specify ON SIZE
ERROR, as in an expression in a relational condition. If the same expression were in a
COMPUTE statement, the ON SIZE ERROR phrase would execute.

In the following compiled source program, division by zero causes the ON SIZE ERROR trap:

0001 001000 identification division.

0002 001100 program-id. zerotrap.

0003 001200 data division.

0004 001300 working-storage section.

0005 001400 77 n pic 999.

0006 001500 77 bad-value pic s999 value zero.

0007 001600 procedure division.

0008 001700 house.

0009 001800***

0010 001900* Divide by Zero with no Size Error Phrase. *

0011 002000***

0012 002100 Display "Should give NO SIZE ERROR PHRASE".

0013 002200 Compute n = 1 / BAD-VALUE.

0014 002300 Display "Test case did not abort".

0015 002400 Stop run.

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), this program produces the following information when
run in a session. (When run in a job stream, the output may look slightly di�erent. When
debugging a program, running it in a session is recommended.)

:$OLDPASS

Should give NO SIZE ERROR PHRASE

No SIZE ERROR phrase (COBERR 747)

Program file: $OLDPASS.H6OPT2.COBOL74

Trap type = 00000002 (30,00), at pc = 00000531.0000835B

integer divide by 0

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 531.0000d124 print_message$093+$314

$$$$ Trap occurred at: zerotrap+$a0, at Stmt #13

PC=531.00006774 small_divisor+$8

0) SP=402210f0 RP=531.00008360 zerotrap+$a8

* 1) SP=402210f0 RP=531.00000000 inx_A0000+$14

(end of NM stack)

The most important piece of information is
agged by the string \$$$$," which tells you the
number of the statement that preceded the trap.

Beneath the line
agged \$$$$" above is a stack trace that shows where in your code the
program aborted. The highest name on this stack that is the name of one of your programs
has the exact address in the program �le where the abort occurred. This can be useful if you
use Debug. Refer to the MPE XL System Debug Reference Manual for more information.

Debugging Your Program 7-37

Debugging Your Program

PERFORM Stack Overflow

Each program has a PERFORM stack, used to keep track of which paragraphs are executing
and where to return after execution of a paragraph. This stack can over
ow if your program
has control-
ow bugs, as the following example does. It has recursive PERFORM statements.

Given the following compiled source program:

00001 001000$CONTROL BOUNDS,VERBS

00003 001100 IDENTIFICATION DIVISION.

00004 001200 PROGRAM-ID. PERFORM-TRAP.

00005 001300 PROCEDURE DIVISION.

00006 001400 TRAP-TEST.

00007 001500 DISPLAY "Should give paragraph stack overflow.".

00008 001600**

00009 001700* Trap test with recursive performs. *

00010 001800**

00011 001900 PERFORM PAR-A THROUGH PAR-B.

00012 002000 GO TO COMMON-EXIT.

00013 002100 PAR-A.

00014 002200 PERFORM PAR-B.

00015 002300 PAR-B.

00016 002400 PERFORM PAR-A.

00017 002500 COMMON-EXIT.

00018 002600 DISPLAY "Test case did not abort.".

00019 002700 STOP RUN.

Here is the verb map that shows the code o�sets of the program statements:

PAGE 0002/COBTEXT PERFORM-TRAP STATEMENT OFFSETS

Entry = perform_trap

STMT OFFSET STMT OFFSET STMT OFFSET STMT OFFSET ...

6 3C 12 80 15 B4 18 E0

7 3C 13 88 16 B4 19 110

11 68 14 88 17 E0

7-38 Debugging Your Program

Debugging Your Program

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), and the program is compiled with the control option
BOUNDS, this program produces the following information when run in a session. (When run
in a job stream, the output may look slightly di�erent. When debugging a program, running
it in a session is recommended.)

:$OLDPASS

Should give paragraph stack overflow.

Paragraph stack overflow (COBERR 748)

Program file: $OLDPASS.H6OPT2.COBOL74

Trap type = 00800000 (08,00), at pc = 00000531.00007873

paragraph stack overflow

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 531.0000c64c print_message$093+$314

$$$$ Trap occurred at: perform_trap+$b8, at Stmt #16

PC=531.00007870 perform_trap+$b8

* 0) SP=40221278 RP=531.00000000

(end of NM stack)

Perform stack for COBOL program: perform_trap+$b8

Return at end of procedure #2 to perform_trap+$a0 Stmt #14

Return at end of procedure #1 to perform_trap+$cc Stmt #16

Return at end of procedure #2 to perform_trap+$a0 Stmt #14

Return at end of procedure #1 to perform_trap+$cc Stmt #16

Return at end of procedure #2 to perform_trap+$a0 Stmt #14

Return at end of procedure #1 to perform_trap+$cc Stmt #16...
Return at end of procedure #1 to perform_trap+$cc Stmt #16

Return at end of procedure #2 to perform_trap+$a0 Stmt #14

Return at end of procedure #2 to perform_trap+$80 Stmt #11

End of perform stack

The statement number preceding the trap is
agged by the string \$$$$" and the contents of
the PERFORM stack is printed. The phrase \Return at end of procedure #num" means that
the paragraph num has been called, where paragraph zero is the �rst paragraph in the source
program, paragraph one is the second, and so on. (When sections are called, the number of
the last paragraph in the section appears.) This PERFORM stack trace also tells you from
where the paragraph was called: that is the statement number on the far right.

Beneath the line
agged \$$$$" above is a stack trace that shows where in your code the
program aborted. The highest name on this stack that is the name of one of your programs
has the exact address in the program �le where the abort occurred. This can be useful if you
use Debug. Refer to the MPE XL System Debug Reference Manual for more information.

Debugging Your Program 7-39

Debugging Your Program

Invalid GO TO

This example illustrates an invalid GO TO trap, which occurs at an unaltered GO TO
statement:

00001 001000$CONTROL BOUNDS

00002 001100 IDENTIFICATION DIVISION.

00003 001200 PROGRAM-ID. TRAPGOTO.

00004 001300 PROCEDURE DIVISION.

00005 001400 TRAP-TEST.

00006 001500***

00007 001600* Trap test with Invalid Goto *

00008 001700***

00009 001800 DISPLAY "Should produce illegal goto trap.".

00010 001900 PAR.

00011 002000 GO TO.

00012 002100 PAR2.

00013 002200 ALTER PAR TO PAR2.

00014 002300 COMMON-EXIT.

00015 002400 DISPLAY "Test case did not abort.".

00016 002500 STOP RUN.

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), and the program is compiled with the control option
BOUNDS, this program produces the following information when run in a session. (When run
in a job stream, the output may look slightly di�erent. When debugging a program, running
it in a session is recommended.)

:$OLDPASS

Should produce illegal goto trap.

Invalid GOTO (COBERR 754)

Program file: $OLDPASS.H6OPT2.COBOL74

Trap type = 00100000 (11,00), at pc = 00000551.00007817

nil pointer reference

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 551.0000c5ec print_message$093+$314

$$$$ Trap occurred at: trapgoto+$54, at Stmt #11

PC=551.00007814 trapgoto+$54

* 0) SP=402210d8 RP=551.00000000

(end of NM stack)

The most important piece of information is
agged by the string \$$$$." It tells you the
statement number of the unaltered GO TO statement.

Beneath the line
agged \$$$$" above is a stack trace that shows where in your code the
program aborted. The highest name on this stack that is the name of one of your programs
has the exact address in the program �le where the abort occurred. This can be useful if you
use Debug. Refer to the MPE XL System Debug Reference Manual for more information.

7-40 Debugging Your Program

Debugging Your Program

Address Alignment

Address alignment traps are caught by the Link Editor. You must link with
PARMCHECK=0 AND purposely ignore the Link Editor warnings to cause one of these
traps.

This example illustrates parameter misalignment, where a parameter is passed to a COBOL
subprogram that is not 32-bit aligned:

00001 001000$CONTROL MAP

00002 001100 IDENTIFICATION DIVISION.

00003 001200 PROGRAM-ID. TRAPMAIN.

00004 001300 DATA DIVISION.

00005 001400 WORKING-STORAGE SECTION.

00006 001500 01.

00007 001600 05 PIC X.

00008 001700 05 XX PIC X.

00009 001800 PROCEDURE DIVISION.

00010 001900 P1.

00011 002000**

00012 002100* Trap tests with alignment *

00013 002200**

00014 002300 DISPLAY "Should produce alignment trap.".

00015 002400 CALL "Trapsub" USING XX.

00016 002500 DISPLAY "Test case did not abort.".

00017 002600 STOP RUN.

This subsection of the map shows the addresses of items in WORKING-STORAGE. Notice
that parameter XX is on an odd byte boundary (DP+29).

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY

WORKING-STORAGE SECTION

00006 01 FILLER DP+ 28 2 DISP AN

00007 05 FILLER DP+ 28 1 DISP AN

00008 05 XX DP+ 29 1 DISP AN

COBOL subprograms normally assume worst case (byte) alignment, which should never trap.
To cause an address alignment trap, you must do one more thing: compile the subprogram
with OPTFEATURES = LINKALIGNED (this option generates faster code, which assumes
parameters are 32-bit-aligned).

Debugging Your Program 7-41

Debugging Your Program

Here is the compiled subprogram, called by the above main program:

00001 001000$CONTROL MAP,SUBPROGRAM,BOUNDS

00003 001100$CONTROL OPTFEATURES=LINKALIGNED
00003 001200 IDENTIFICATION DIVISION.

00004 001300 PROGRAM-ID. TRAPSUB.

00005 001400 DATA DIVISION.

00006 001500 LINKAGE SECTION.

00007 001600 01 XX PIC X.

00008 001700 PROCEDURE DIVISION USING XX.

00009 001800 P1.

00010 001900 MOVE "**" TO XX.

00011 002000 EXIT PROGRAM.

LINE# LVL SOURCE NAME BASE OFFSET SIZE USAGE CATEGORY

LINKAGE SECTION

00007 01 XX P 00 0 1 DISP AN

Here is the link command, with parameter checking turned o� (if parameter checking is not
turned o�, the link fails to produce a program �le):

:link from=strapm,straps;to=ptrapm;PARMCHECK=0

HP Link Editor/XL (HP30315A.00.23) Copyright Hewlett-Packard Co 1986

LinkEd> link from=strapm,straps;to=ptrapm;PARMCHECK=0

INCOMPATIBLE ALIGNMENT: trapsub (STRAPM, STRAPS) (LINKWARN 1504)

(PARAMETER #1)

The Link Editor tells you which program is being called with the bad parameter.

7-42 Debugging Your Program

Debugging Your Program

When COBRUNTIME is not set (that is, when it has its default value) or when
COBRUNTIME is set to A (Abort), this program produces the following information when
run in a session. (When run in a job stream, the output may look slightly di�erent When
debugging a program, running it in a session is recommended.)

:ptrapm

SHOULD PRODUCE ALIGNMENT TRAP (753)

Address alignment error (COBERR 753)

Program file: PTRAPM.H6OPT2.COBOL74

Trap type = 00200000 (10,00), at pc = 000004D0.0000790F

bad address alignment

DEBUG/XL A.01.00

HPDEBUG Intrinsic at: 4d0.0000c724 print_message$093+$314

$$$$ Trap occurred at: trapsub+$4c, at ????

PC=4d0.0000790c trapsub+$4c

* 0) SP=402212b8 RP=4d0.00007814 trapmain+$54

1) SP=402210d8 RP=4d0.00000000

(end of NM stack)

$$$$ Called from: trapmain+$54, at Stmt #15

$$$$ The address $40200031 = DP+$29 may be in main, SUBPROGRAM or EXTERNAL

The lines with \$$$$" in the above example indicate: the program where the abort occurred
(trapsub), the address in the program with the CALL statement (trapmain), and the address
(DP+$29) of the data item in question.

Debugging Your Program 7-43

Debugging Your Program

Invalid Decimal Data in NUMERIC Class Condition

This example shows how you can force the NUMERIC class condition on packed decimal
data to be true in certain cases where it would otherwise be false. By specifying I in column
9 of COBRUNTIME, any NUMERIC class condition on packed decimal data is true in the
following cases:

A signed value in an unsigned PACKED-DECIMAL �eld.
An unsigned value in a signed PACKED-DECIMAL �eld.
Any invalid sign nibble.

This matches the behavior of HP COBOL II/V programs. Unless you put I in column 9 of
COBRUNTIME, the above conditions cause any NUMERIC class condition to be false.

The following is an example program that contains invalid packed decimal data:

WORKING-STORAGE SECTION.

01 DECIMAL-NO-SIGN PIC 9(3) USAGE PACKED-DECIMAL VALUE 123.

01 DECIMAL-SIGN REDEFINES DECIMAL-NO-SIGN

PIC S9(3) USAGE PACKED-DECIMAL.

PROCEDURE DIVISION.

PARA-001.

DISPLAY "DECIMAL-NO-SIGN is ", DECIMAL-NO-SIGN.

DISPLAY "DECIMAL-SIGN is ", DECIMAL-SIGN.

IF DECIMAL-NO-SIGN IS NUMERIC

DISPLAY "DECIMAL-NO-SIGN is NUMERIC."

ELSE DISPLAY "DECIMAL-NO-SIGN is not NUMERIC."

END-IF.

IF DECIMAL-SIGN IS NUMERIC

DISPLAY "DECIMAL-SIGN is NUMERIC."

ELSE DISPLAY "DECIMAL-SIGN is not NUMERIC."

END-IF.
STOP RUN.

When this program is compiled and run in Native Mode with column 9 of COBRUNTIME set
to anything but I, the program displays the following:

DECIMAL-NO-SIGN is 123

DECIMAL-SIGN is +123

DECIMAL-NO-SIGN is NUMERIC.

DECIMAL-SIGN is not NUMERIC. DECIMAL-SIGN contains an invalid sign.

7-44 Debugging Your Program

Debugging Your Program

When this program is compiled and run either in Native Mode with column 9 of
COBRUNTIME set to I, or in Compatibility Mode, it displays the following:

DECIMAL-NO-SIGN is 123

DECIMAL-SIGN is +123

DECIMAL-NO-SIGN is NUMERIC.

DECIMAL-SIGN is NUMERIC. Invalid sign still makes NUMERIC test true.

The following diagram shows the contents of the single data item named by DECIMAL-NO-
SIGN and rede�ned by DECIMAL-SIGN. The values shown are hexadecimal. Each box in the
diagram represents one packed-decimal digit, which is 4 bits:

1 2 3 F

The rightmost position is the sign of the data value. The F in this position means the value is
unsigned. Any valid signed PACKED-DECIMAL data has either the hexadecimal value C for
a positive value, or D for a negative value, in the rightmost 4 bits. For more information, see
the section \USAGE IS PACKED-DECIMAL or COMPUTATIONAL-3" in Chapter 7 of the
HP COBOL II/XL Reference Manual .

Debugging Your Program 7-45

Debugging Your Program

Traps with COBOL Functions

In the following example, the parameter for the FACTORIAL function is out of range.

00001 000100$control post85

00001 001000 identification division.

00002 001100 program-id. trap-fact.

00003 001200 data division.

00004 001300 working-storage section.

00005 001400 01 n pic s9(18) comp.

00006 001500 01 bad-value pic s999 comp value -1.

00007 001600 procedure division.

00008 001700 p1.

00009 001800***

00010 001900* factorial(-1) with no size error phrase. *

00011 002000***

00012 002100 display "should give no size error phrase"

00013 002200 compute n = function factorial(bad-value)

00014 002300 display "test case did not abort".

When run, the following is output:

should give no size error phrase

No SIZE ERROR phrase (COBERR 747)

Program file: $OLDPASS.PUBS.COBOL74

Trap type = 80000000 (00,00), at pc = 0000035D.000053C7

assertion trap

DEBUG/XL A.47.01

HPDEBUG Intrinsic at: 118.00351270 cob_trap.print_message+$5c4

$$$$ Trap occurred at: trap_fact+$6c, at Stmt #13
PC=35d.000053c4 trap_fact+$6c

* 0) SP=4033a0c8 RP=35d.00000000

(end of NM stack)

==

7-46 Debugging Your Program

Debugging Your Program

In the next example, for a function that uses a procedure in the Compiler Library, an
invalid parameter is detected by the Compiler Library routine. The Compiler Library
routine generates the math library error message and the COBOL trap handler provides the
statement number of the source line that produced the trap.

00001 000100$control post85

00001 001000 identification division.

00002 001100 program-id. trap-sqrt.

00003 001200 data division.

00004 001300 working-storage section.

00005 001400 01 n pic s999v999 comp.

00006 001500 01 bad-value pic s999 comp value -1.

00007 001600 procedure division.

00008 001700 p1.

00009 001800***

00010 001900* sqrt(-1) with no size error phrase. *

00011 002000***

00012 002100 display "should give no size error phrase"

00013 002200 compute n rounded = function sqrt(bad-value)

00014 002300 display "test case did not abort".

When run, the following is output:

should give no size error phrase

No SIZE ERROR phrase (COBERR 747)

Program file: $OLDPASS.PUBS.COBOL74

Library trap type = 0000000B (11)

DEBUG/XL A.47.01

HPDEBUG Intrinsic at: 7a0.00016ec4 cob_trap_lib.print_message+$158

$$$$ Call occurred at: trap_sqrt+$68, at Stmt #13
PC=7a0.00016ec4 cob_trap_lib.print_message+$158

0) SP=4033a480 RP=7a0.00017014 COB_TRAP_LIB+$a8

1) SP=4033a428 RP=7a0.0000d504 COB_TRAP_LIB+$8

export stub: 109.00377d14 FTN_GETLIBTRAP+$6c

2) SP=4033a250 RP=109.00377c74 ?FTN_GETLIBTRAP+$8

export stub: 109.005b1ddc DINVALIDERR+$e4

3) SP=4033a1d8 RP=109.005b12bc _dsqrterr+$1c

4) SP=4033a158 RP=109.005b0c98 label2+$10

5) SP=4033a128 RP=109.005b0b84 ?FTN_DSQRT$+$8

export stub: 308.00005398 trap_sqrt+$68

* 6) SP=4033a0d0 RP=308.00000000

(end of NM stack)

==

*** MATH LIBRARY ERROR 28: DSQRT(X): X < 0.0 OR X = NaN

Debugging Your Program 7-47

Debugging Your Program

The next example shows an IEEE
oating point error.

00001 001000$control post85

00001 001100 identification division.
00002 001200 program-id. trap-float-zero.

00003 001300 data division.

00004 001400 working-storage section.

00005 001500 01 n pic s999v999 comp.

00006 001600 01 bad-value pic s999 comp value zero.

00007 001700 procedure division.

00008 001800 p1.

00009 001900***

00010 002000* divide by zero with no size error phrase. *

00011 002100***

00012 002200 display "should give no size error phrase".

00013 002300 compute n rounded = 1 / function sin(bad-value)

00014 002400 display "test case did not abort".

When run, the following is output:

should give no size error phrase

No SIZE ERROR phrase (COBERR 747)

Program file: $OLDPASS.PUBS.COBOL74

Trap type = 00020000 (14,27), at pc = 0000035D.000053B7

ieee divide by 0 DIV

operand 1 = 3FF0000000000000

operand 2 = 0000000000000000

result = 47C3500000000000

DEBUG/XL A.47.01

HPDEBUG Intrinsic at: 118.00351270 cob_trap.print_message+$5c4
$$$$ Trap occurred at: trap_float_zero+$7c, at Stmt #13

PC=35d.000053b4 trap_float_zero+$7c

* 0) SP=4033a0d0 RP=35d.00000000

(end of NM stack)

==

7-48 Debugging Your Program

Debugging Your Program

Trace Traps

Trace traps are \global" breakpoints that are easy to set up and use, providing a very useful
tool for quickly isolating program problems within Debug.

Trace traps are global in that they apply to all paragraphs and sections, entry and/or exit
points. The COBOL compiler generates them within an object program, and once generated,
they can be armed and used with Debug on MPE XL.

To use trace traps with your program:

1. Compile your program with the control option SYMDEBUG. This causes the compiler to
generate trace trap breakpoints in your code. (Note that these breakpoints are not available
if the SYMDEBUG=XDB option is speci�ed.)

2. Arm the trace trap breakpoints with the Debug command TRAP (see the syntax that
follows).

Syntax. Type the underlined part in response to the Debug prompt.

$nmdebug> TRAP [trap name] [option]

Parameters.

trap name One of the following:

BEGIN_PROCEDURE Stops the program at the entry to each
procedure. For a COBOL program,
\procedure" means program.

END_PROCEDURE Stops the program at the exit from each
procedure. For a COBOL program,
\procedure" means program.

LABELS Stops the program at every section and
paragraph.

EXIT_PROGRAM Stops the program at program exit point.
For a COBOL program, this is usually the
STOP RUN statement.

ENTER_PROGRAM Stops the program at the program entry
point.

TRACE_ALL All of the above.

option One of the following:

LIST List the current setting of trap name. This
is the default.

ARM Arm the trap speci�ed by trap name.

DISARM Disarm the trap speci�ed by trap name.

Debugging Your Program 7-49

Debugging Your Program

Example. If you type the underlined command in response to the Debug prompt, the program
stops at every section and paragraph.

$nmdebug> TRAP LABELS ARM

Note The SYMDEBUG=TOOLSET control option signi�cantly increases the
amount of object code and execution time for your program, so use it only
while you are debugging your program. When the program works, recompile it
without SYMDEBUG.

7-50 Debugging Your Program

Debugging Your Program

Symbolic Debuggers

The symbolic debuggers HP Symbolic Debugger/XL and HP TOOLSET/XL are more
powerful and easier to use than Debug, the MPE XL System Debugger. Maps are
unnecessary, commands are simple, and labeled function keys are available. If these debuggers
are available on your system, you can use them to do the following:

Reference data items by their names, instead of their addresses.
Display data item values.
Change data item values.
Set and clear breakpoints, with optional frequency and proceed counts.
Edit the source �le at a breakpoint (HP TOOLSET/XL only).
Display a compiler listing at a breakpoint.
Trace and retrace program
ow.
Trace changes in data item values between paragraphs.

HP Symbolic Debugger/XL

HP Symbolic Debugger/XL is a powerful, full-featured symbolic debugger that is interactive
at the source level. This allows you to examine the program state in which an error occurs,
correct the situation, and resume execution or abort the program.

For detailed information about HP Symbolic Debugger/XL and its use, refer to the HP
Symbolic Debugger/XL Reference Manual .

HP TOOLSET/XL

HP TOOLSET/XL provides an integrated programming environment, including a symbolic
debugger, a workspace �le manager with version control, function keys set to compile and
prepare source �les, and a full-screen editor.

For detailed information about HP TOOLSET/XL and its use, refer to the HP
TOOLSET/XL Reference Manual .

Debugging Your Program 7-51

Debugging Your Program

Compiler Limits

The following compiler limits are maximum values that you cannot change. If your program
exceeds them, the compiler prints internal error messages. You can work around some of these
limits, as noted.

Table 7-9. Compiler Limits

Limited Entity Maximum Value Work-Around

Value pairs per condition-name.
(A value pair is a literal , such as
3, or of the form literal THRU
literal , such as 10 THRU 20 .)

500 Describe the condition with more
than one condition-name and use
AND or OR.

GO TO DEPENDING ON
paragraph labels.

500 Split the GO TO DEPENDING
ON statement into two
statements.

Size and number of macros. Program dependent. Compiler
prints message 461 (dynamic
error, out of space) when it
reaches the limit of 2000.

Eliminate unused macros. (The
compiler option $CONTROL
CROSSREF indicates where
macros are used.) Break up
macros into smaller macros. Or,
instead of using macros, use
COPY REPLACING.

Total number of pseudo-text
lines in all COPY and
REPLACE statements.

Total Approximately 60. None.

Symbol table entries. Depends on number and lengths
of data item names. If 80% or
more of the symbol table and
intermediate data structure is
used, the compiler prints the
percentage. This indicates that
the compiler is reaching its
limit, you should consider
breaking your program into
smaller pieces.

None, once the symbol table is
full.

Data area. 230 bytes. None.

Paragraph size. 100K bytes. Break paragraph into smaller
paragraphs.

Sort �les. 50 Instead of performing one sort,
perform two sorts and merge the
sorted �les into a single �le.

Operands per INSPECT,
STRING, or UNSTRING
statement.

Approximately 500 operands
(fewer if they are subscripted,
reference modi�ed, or literals).

Break up statements.

7-52 Debugging Your Program

Debugging Your Program

Table 7-9. Compiler Limits (continued)

Limited Entity Maximum Value Work-Around

Nonrede�ned 01 and 77 data
items in the LINKAGE
SECTION.

255 Put separate data items into
records in the subprogram and
the calling program.

PICTURE string. 30 characters. None.

Call BY CONTENT. 64K bytes per call. Pass extra parameters by
reference.

Quali�ers per quali�ed data
name.

50 None.

Identi�er. 30 characters (ANSI Standard). None. (Use a shorter name).

Numeric PICTURE. 18 digits (31 in the intermediate
result).

None.

Levels of a PERFORM . . .
VARYING statement.

7 Use nested PERFORM
statements.

DISPLAY operands. Approximately 500 operands
(fewer if they are subscripted,
reference modi�ed, or numeric
literals).

Use DISPLAY with no advancing.

Depth to which you can nest
parentheses in an expression
(where a single set of
parentheses represents a depth
of one).

30 Break the expression into several
statements.

Nonnumeric literal. 255 characters. None.

TOP of LINAGE clause. 63 None.

Nested IF statements. 30 Use EVALUATE or binary IF
statements.

Nested and concatenated
programs in the same �le.

999 Put some programs in separate
�les.

External data names and �les. 4000 Combine items into records.

Corresponding pairs in ADD,
SUBTRACT, MOVE, or CORR.

500 Break up groups.

Perform table. MAX(N+10,50) where N is the
total di�erent perform exits.

Your program is not ANSI
standard.

Maximum amount of tempcells
used for functions.

64K bytes. Break up statements or use
reference modi�cation to break
up function parameters.

Debugging Your Program 7-53

Index

A

address alignment trap, 7-41
addresses
data item, 7-27

ADD statement enhancement, 2-8
alignment
data, 4-6
parameter, 4-7

ALPHABETIC-LOWER class test, 2-9
ALPHABETIC-UPPER class test, 2-9
ALPHABET keyword, 2-21
ALTER statement
nonobsolete alternative to, 2-19

American National Standards Institute (ANSI),
1-1

ANSI74
entry point, 2-1, 6-20
vs ANSI85, 6-1

ANSI'74 COBOL, 1-1
ANSI85
entry point, 2-1, 6-20
features, 2-1
incompatible features, 2-21
new features, 2-2
obsolete features, 2-17

ANSI'85 COBOL, 1-1
ANSI85 features
ADD statement enhancement, 2-8
ALPHABETIC-LOWER class test, 2-9
ALPHABETIC-UPPER class test, 2-9
BINARY USAGE data item format, 2-7
CALL BY CONTENT, 2-9
CLASS clause, 2-4
DATA DIVISION, 2-6
de-editing, 2-10
ENVIRONMENT DIVISION, 2-4
FILLER, 2-6
IDENTIFICATION DIVISION, 2-3
INITIAL clause, 2-3
INITIALIZE statement, 2-11
INSPECT CONVERTING statement, 2-12
PACKED-DECIMAL USAGE data item

format, 2-7
PROCEDURE DIVISION, 2-8
reference modi�cation, 2-13
relational operators, 2-13

REPLACE statement, 2-14
Setting condition names, 2-16
Setting switches, 2-15
structured programming, 3-1
SYMBOLIC CHARACTERS clause, 2-5
table initialization, 2-16

ANSI (American National Standards Institute),
1-1

ANSISORT control option, 6-14
ANSISUB
control option, 6-14, 6-15
option, 4-20
subprogram, 4-19

appending records to �les, 5-7, 5-47
area A, B, 6-4
argument descriptor �elds, 4-9
ASCII digit replacement
signed, 7-13
unsigned, 7-12

ASCII �les as source program input, 6-2
ASSIGN clause, 5-41
associating logical and physical �les, 5-41
AUTHOR paragraph
nonobsolete alternative to, 2-17

B

basic block optimization, 3-29
BINARY USAGE data item format, 2-7
binding
COBOL subprograms, 4-10
compile-time, 4-11
execution-time, 4-17
link-time, 4-15
load-time, 4-16

BLOCK CONTAINS clause, 5-11
blocked �les, 5-11
BOUNDS control option, 6-7
branch optimization, 3-29
bu�ers, �le system, 5-11
BUILD command, 5-41, 6-21

C

calculating code addresses, 7-29
calculating data item addresses, 7-27
call binding

Index-1

COBOL subprograms, 4-10
compile-time, 4-11
execution-time, 4-17
link-time, 4-15
load-time, 4-16

call by content, 4-8
CALL BY CONTENT, 2-9
call by reference, 4-8
call by value, 4-8
CALLINTRINSIC control option, 4-61, 6-9
call rules for compile-time bound subprograms,

4-13
CALL statement, 4-17
CANCEL statement, 2-22, 4-20
carriage control, 5-19
CCTL in ASSIGN clause, 4-54, 4-60
CHECKSYNTAX control option, 6-7
chunked program, maps example, 7-17
chunk names, 4-4
chunks
names, 7-17
verb maps, 7-17

circular �les, 5-13
CLASS clause, 2-4
CLOSE WITH NO REWIND statement, 5-46
CMCALL control option, 6-15
COB74XL command, 1-1
COB85XL command, 1-1
COBCAT.PUB.SYS, 7-9
COBCNTL.PUB.SYS, 6-4
COBOL subprograms, 4-19
ANSISUB, 4-19
call binding, 4-10
DYNAMIC, 4-19
SUBPROGRAM, 4-19

COBRUNTIME variable, 7-12
code address calculation, 7-29
CODE control option, 6-7
CODE-SET clause, 5-11
coding heuristics, 3-23
command �les, 6-22
COMMON clause, 3-5
Compatibility Mode, 6-20
Compatibility Mode UDCs, 6-22
compiler entry points, 6-20
compiler limits, 7-52
compiler listing
example for unchunked program, 7-2
for debugging, 7-2

compiler modes, 6-20
compile-time call binding, 4-11
call rules, 4-13
terminology, 4-11

compile-time messages, 7-9
classes, 7-9

compiling your program, 6-1, 6-18
ANSI74 vs ANSI85, 6-1
command �les, 6-22
Compatibility Mode UDCs, 6-22
RUN command, 6-22
source program input, 6-2

concatenated program
example, 3-4
maps example, 7-21

CONTINUE statement, 3-7
control �le, 6-4
control options, 6-4, 6-5, 7-1
CALLINTRINSIC, 4-61
debugging, 6-7
interprogram communication, 6-15
listing, 6-6
migration, 6-9
miscellaneous, 6-17
OPTFEATURES=LINKALIGNED[16], 4-6
performance, 6-5
run-time e�ciency, 3-27
standard conformance, 6-14
SYNC16, 4-6
SYNC32, 4-6

control-Y traps example, 4-54
cross-development, 3-33
CROSSREF control option, 6-6
C subprograms, 4-22

D

data alignment, 4-6
DATA DIVISION
ANSI85 features, 2-6

data item format, PACKED-DECIMAL usage,
2-7

data items
calculating addresses of, 7-27
EXTERNAL, 2-6
GLOBAL, 3-5
GLOBAL-and-EXTERNAL, 3-6

DATAMEMORY PROTECTION error message,
7-30

DATA RECORDS clause
nonobsolete alternative to, 2-19

data validation, 7-12
DATE-COMPILED paragraph
nonobsolete alternative to, 2-17

DATE-WRITTEN paragraph
nonobsolete alternative to, 2-17

dead code elimination, 3-29
DEBUG control option, 6-7
debugging, 7-1
compiler limits, 7-52
control options, 7-1
messages, 7-9

Index-2

options, 6-7
symbolic debugger, 7-51
using compiler listings, 7-2

debugging traps, 7-30
address alignment, 7-41
illegal digit, 7-31
invalid GO TO, 7-40
no size error, 7-37
PERFORM stack over
ow, 7-38
range error, 7-35
trace traps, 7-49

debug module
nonobsolete alternative to, 2-20

Debug system debugger, 1-3, 7-14
calculating code addresses, 7-29
calculating data item addresses, 7-27
debugging traps, 7-30
link map, 7-16
maps example, 7-17, 7-21
register meanings, 7-26
subprogram parameters, 7-25
symbol table map, 7-15
verb map, 7-15

de-editing, 2-10
deleting records, 5-7
delimited scope statements, 3-10
DIFF74 control option, 6-14
digit replacement
signed, 7-13
unsigned, 7-12

direct containment, 4-12
disastrous error messages, 7-9
dummy records, 5-23, 5-24
duplicate keys, 5-35
DYNAMIC
control option, 2-3, 6-15
option, 4-20
subprogram, 4-19

dynamic access, 5-7
indexed �les, 5-34

E

END PROGRAM header, 3-2
ENTER statement
nonobsolete alternative to, 2-19

entry points
compiler, 6-20

ENVIRONMENT DIVISION
ANSI85 features, 2-4

error messages
run-time, 7-11

ERRORS control option, 6-6
EVALUATE statement, 3-7
executable code, 4-4
executing your program, 6-18

execution-time call binding, 4-17
EXIT PROGRAM statement, 2-22
explicit scope terminators, 3-9
exponentiation, 2-23
extended blocks, 3-29
extend open mode, 5-7
EXTEND phrase, 5-47
EXTERNAL data items and �les
FORTRAN subprograms, 4-57
multilanguage example, 4-58

EXTERNAL �les
CCTL in ASSIGN clause, 4-54
L in ASSIGN clause, 4-54

EXTERNAL items, 2-6, 4-54
in symbol table map, 7-15
sharing, 4-57

external names, 4-2
external naming convention, 4-54

F

Federal Standard COBOL, 6-14
FILE command, 5-42, 6-21
�le equations, 5-42, 5-46, 6-21
�le number, 5-16
�les
appending to, 5-47
associating logical and physical, 5-42
attributes, 5-6, 5-42, 5-43
blocked, 5-11
control, 6-4
error handling, 5-11, 5-48
EXTERNAL, 2-6
�xed attributes, 5-43
GLOBAL, 3-5
GLOBAL-and-EXTERNAL, 3-6
indexed, 5-30
KSAM (indexed), 5-30
logical, 5-1, 5-5
multiple, 5-46
non-ASCII, 5-11
overwriting, 5-47
physical, 5-1, 5-40
portability, 3-31, 3-33, 5-7
random access, 5-20
relative organization, 5-24
sequential organization, 5-8
temporary physical, 5-41
updating, 5-47

FILE STATUS clause, 5-11, 5-48
�le status codes, 5-48
incompatible, 2-27
portability, 5-48

�le system bu�ers, 5-11
FILLER, 2-6

oating point value, 3-26, 4-63

Index-3

FORTRAN 77
functions, 4-25
subprograms, 4-25

FORTRAN subprograms
EXTERNAL data items and �les, 4-57

functions
FORTRAN 77, 4-25
Pascal, 4-29

G

generic keys, 5-35
GLOBAL
data, 3-15
data items and �les, 3-5

GLOBAL-and-EXTERNAL data items and �les,
3-6

GLOBAL �les
CCTL in ASSIGN clause, 4-60
L in ASSIGN clause, 4-60

GLOBAL items, 4-60
SPECIAL-NAMES paragraph, 3-2

H

hashing algorithms, 5-23
heuristics, 3-23
HP extensions, 3-34
HPSQL, 1-3
HP System Dictionary/XL. See System

Dictionary/XL
HP Toolset/XL. See Toolset/XL
HP TOOLSET/XL, 7-51

I

IDENTIFICATION DIVISION
ANSI85 features, 2-3

illegal digit trap, 7-31
implementation-de�ned features, 3-32
incompatible features, 2-21
ALPHABET keyword, 2-21
CANCEL statement, 2-22
exceptions, 2-21
EXIT PROGRAM statement, 2-22
exponentiation, 2-23
�le status codes, 2-27
OCCURS clause, 2-24
READ NEXT after OPEN I-O and WRITE

statements, 2-25
STOP RUN statement, 2-22
VARYING . . . AFTER phrase in PERFORM

statement, 2-26
INDEX16 control option, 6-9
INDEX32 control option, 6-9
indexed �les, 5-30
creating, 5-33

duplicate keys, 5-35
dynamic access, 5-34
generic keys, 5-35
how to code, 5-30
random access, 5-34
sequential access, 5-34

indirect containment, 4-12
indirection operator, 7-27
informational messages, 7-9
INITIAL clause, 2-3
INITIALIZE statement, 2-11
initializing data, 2-3
INITIAL option, 4-20
in-line PERFORM statements, 3-12
input open mode, 5-7
input-output
error handling, 5-11, 5-48
errors, 7-11
open mode, 5-7
sequential �les, 5-9

inserting records in �les, 5-7
INSPECT CONVERTING statement, 2-12
INSTALLATION paragraph
nonobsolete alternative to, 2-17

instruction scheduling, 3-29
internal names, 4-3
interprogram communication options, 6-15
OPTFEATURES, 6-5

intrinsic �le, 4-61
intrinsics, 4-1, 4-61
parameter checking, 4-7

INVALID ADDRESS error message, 7-30
invalid ASCII digit replacement
signed, 7-13
unsigned, 7-12

invalid GO TO trap, 7-40

J

JCW, 7-9
job control word, 7-9
job stream
inputting source program from, 6-3

K

key-assigning procedure, 5-23
keys
duplicate, 5-35
generic, 5-35

KSAM �les (indexed �les), 5-30

L

labelled tapes, 5-46
LABEL RECORDS clause
nonobsolete alternative to, 2-19

Index-4

libraries
subprogram, 4-10

L in ASSIGN clause, 4-54, 4-60
LINES control option, 6-6
linking your program, 6-1, 6-18
link map, 7-16
link-time call binding, 4-15
LIST control option, 6-6
listing
compiler, 7-2
options, 6-6

load-time call binding, 4-16
locality set names, 4-4
LOCKING control option, 6-17
LOCOFF control option, 6-6
LOCON control option, 6-6
logical �les, 5-1, 5-5
associating with physical �les, 5-42
variable records, 5-36

M

MAP control option, 6-6
maps example
chunked program, 7-17
concatenated program, 7-21
nested program, 7-21

MEMORY-SIZE clause
nonobsolete alternative to, 2-18

message �les, 5-16
messages, 7-9
compile-time, 7-9
run-time, 7-11

migration options, 6-9
millicode routines, 3-28
miscellaneous options, 6-17
MIXED control option, 6-6
modes
compiler, 6-20

module names, 6-10
MPE special �les
circular, 5-13
message �les, 5-16
print �les, 5-19

multiple �les on labelled tapes, 5-46
MULTIPLE FILE TAPE clause, 5-46
nonobsolete alternative to, 2-18

N

names
external, 4-2
internal, 4-3

Native Mode, 6-20
nested programs, 3-15, 4-12
hierarchy, 3-2
maps example, 7-21

NOCODE control option, 6-7
NOCROSSREF control option, 6-6
NODEBUG option, 3-27
NOLIST control option, 6-6
NOMAP control option, 6-6
NOMIXED control option, 6-6
non-ASCII �les, 5-11
non-COBOL subprograms, 4-21
C, 4-22
FORTRAN 77, 4-25
Pascal, 4-29
SPL, 4-36

non-GLOBAL data items with same names, 3-5
nonstandard warnings, 7-9
no size error trap, 7-37
NOSOURCE control option, 6-6
NOSTDWARN control option, 6-14
NOT phrases, 3-11
NOVALIDATE control option, 6-7
NOVERBS control option, 6-6
NOWARN control option, 6-6

O

obsolete features, 2-17
OCCURS clause, 2-24
ON EXCEPTION phrase, 4-17
ON OVERFLOW phrase, 4-17
OPEN I-O statement, 2-25
open modes
extend, 5-7
input, 5-7
input-output, 5-7
output, 5-7

OPEN statement
EXTEND phrase, 5-47

OPTFEATURES=CALLALIGNED[16] control
option, 6-15

OPTFEATURES=LINKALIGNED[16] control
option, 4-6, 6-15

OPTFEATURES option, 6-5
OPTIMIZE control option, 6-5
optimizer, 3-28
transformations, 3-29
when to use, 3-29

options
control, 6-4

outermost programs, 4-12
output open mode, 5-7
overwriting �les, 5-47

P

PACKED-DECIMAL USAGE data item format,
2-7

parameter checking, 4-7

Index-5

number, 4-7
type, 4-7

parameter passing
by content, 4-8
BY CONTENT, 2-9
by reference, 4-8
by value, 4-8

parameters
alignment, 4-7
number, 4-7
type, 4-7

Pascal functions, 4-29
Pascal subprograms, 4-29
peephole optimization, 3-29
performance options, 6-5
PERFORM enhancements, 3-12
PERFORM stack over
ow trap, 7-38
PERFORM statement
VARYING . . . AFTER phrase in, 2-26

physical �les, 5-1, 5-40
associating with logical �les, 5-42

portability, 3-30
between HP and non-HP machines, 3-32
between HP machines, 3-31
cross-development, 3-33
�le, 3-31, 3-33, 5-7
�le status codes, 5-48
HP extensions, 3-34
programs, 5-7

print �les, 5-19
PROCEDURE DIVISION
ANSI85 features, 2-8

program
source input, 6-2
unique names, 3-2

programming practices, 3-1
portability, 3-30
run-time e�ciency, 3-23
structured programming, 3-1

pseudo-text, 7-52

Q

questionable error messages, 7-9
QUOTE control option, 6-9

R

random access, 5-7
indexed �les, 5-34

random access �les, 5-20
accessed sequentially, 5-24
how to code them, 5-21
key-assigning procedure, 5-23

range error trap, 7-35
READ NEXT statement
after OPEN I-O, WRITE, REWRITE, 2-25

real numbers, 4-63
RECORD IS VARYING clause, 5-36
recursion, 3-5
reference modi�cation, 2-13
register meanings, 7-26
relational operators, 2-13
relative organization �les, 5-24
how to code, 5-25

REPLACE statement, 2-14, 7-52
replacing invalid ASCII digits
signed, 7-13
unsigned, 7-12

RERUN clause
nonobsolete alternative to, 2-19

RESERVE clause, 5-11
RETURN-CODE special register, 4-9, 4-19
REVERSED phrase
nonobsolete alternative to, 2-19

REWRITE statement, 2-25
RLFILE control option, 6-10
RLINIT control option, 6-12
RUN command, 6-22
run-time e�ciency, 3-23
coding heuristics, 3-23
control option e�ects, 3-27
optimizer, 3-28

run-time error messages, 7-11
input-output errors, 7-11
traps, 7-12

S

same names for non-GLOBAL data items, 3-5
SAVE command, 6-21
SECURITY paragraph
nonobsolete alternative to, 2-17

separately compiled programs, 4-12
sequential access
indexed �les, 5-34

sequential organization, 5-7
sequential organization �les, 5-8
accessed randomly, 5-24
circular, 5-13
how to code, 5-9
message �les, 5-16
print �les, 5-19

serious error messages, 7-9
Setting condition names, 2-16
Setting switches, 2-15
SOURCE control option, 6-6
source program input, 6-2
ASCII �le, 6-2
job stream, 6-3
$STDIN �le, 6-3
terminal, 6-3

Index-6

TSAM �le, 6-2
SPECIAL-NAMES paragraph, 3-2
SPL subprograms, 4-36
standard COBOL format, 6-4
standard conformance options, 6-14
STAT74 control option, 2-27, 6-9
status codes, 5-48
$STDIN �le
inputting source program through, 6-3

STDWARN control option, 6-14
STOP LITERAL statement
nonobsolete alternative to, 2-19

STOP RUN statement, 2-22
structured programming, 3-1
COMMON clause, 3-5
CONTINUE statement, 3-7
END PROGRAM header, 3-2
EVALUATE statement, 3-7
explicit scope terminators, 3-9
GLOBAL data, 3-15
GLOBAL data items and �les, 3-5
nested programs, 3-15
NOT phrases, 3-11
PERFORM statement enhancements, 3-12
SPECIAL-NAMES paragraph, 3-2
USE GLOBAL AFTER ERROR

PROCEDURE ON statement, 3-14
SUBPROGRAM control option, 6-15
subprogram libraries, 4-10
SUBPROGRAM option, 4-20
subprogram parameters
�nding with Debug, 7-25

subprograms, 4-1
COBOL, 4-19
non-COBOL, 4-21
parameter checking, 4-7
parameter passing, 4-8

SUBPROGRAM subprogram, 4-19
substrings, 2-13
SWAT (Switch Assist Tool), 4-18, 4-36
example, 4-39

switch stubs, 4-18
SYMBOLIC CHARACTERS clause, 2-5, 5-14
symbolic debugger, 7-51
symbol table map, 7-15
SYMDEBUG control option, 6-7
SYNC16 control option, 4-6, 6-9
SYNC32 control option, 4-6, 6-9
SYSINTR.PUB.SYS, 4-61
system debugger Debug, 7-14
System Dictionary/XL, 1-3
system traps
DATA MEMORY PROTECTION, 7-30
INVALID ADDRESS, 7-30

T

table initialization, 2-16
temporary physical �les, 5-41
terminal
inputting source program from, 6-3

terminal input-output, 5-37
TEST AFTER, 3-12
TEST BEFORE, 3-12
Toolset/XL, 1-3
TOOLSET/XL, 7-51
trace traps, 7-49
transformations, 3-29
traps, 7-12
debugging, 7-30
system, 7-30

TSAM �les
as source program input, 6-2

TurboIMAGE/XL, 1-3

U

uniqueness of program names, 3-2
unsigned ASCII digits
invalid, 7-12, 7-13

updating �les, 5-47
updating records, 5-7
USE GLOBAL AFTER ERROR PROCEDURE

ON statement, 3-14
USE procedures
hierarchy, 3-14

USLINIT control option, 6-17

V

VALIDATE control option, 6-8, 7-12
validation of data, 7-12
VALUE OF clause, 5-46
nonobsolete alternative to, 2-19

value pairs
limit, 7-52

variable length records
applications, 5-37

variable record �les, 5-14
variable records, 5-12, 5-36
reading, 5-37
specifying, 5-36
terminal input-output, 5-37

VARYING . . . AFTER phrase
in PERFORM statement, 2-26

verb map, 7-15
VERBS control option, 6-6

W

WARN control option, 6-6
warnings, 7-9
WRITE statement, 2-25

Index-7

X

XCONTRAP example, 4-56

Index-8

	Top of Document
	Preface
	Contents
	Introduction
	Debugging COBOL Programs

	Features of the 1985 ANSI Standard
	ANSI85 Features
	ANSI85 Features in the ENVIRONMENT DIVISION
	ANSI85 Features in the DATA DIVISION
	ANSI85 Features in the PROCEDURE DIVISION
	Obsolete Features
	Incompatible Features

	Programming Practices
	Run-Time Efficiency
	Portability

	Subprograms and Intrinsics
	External Names
	Internal Names
	Chunk and Locality Set Names
	Data Alignment on MPE XL
	Parameter Checking
	Parameter Passing
	Call Binding
	Switch Stubs
	Calling COBOL Subprograms
	Calling Non-COBOL Subprograms
	EXTERNAL Data Items and Files
	GLOBAL Data Items and Files
	Calling Intrinsics

	Files
	Logical Files
	Physical Files
	Overwriting Files
	Updating Files
	Appending to Files
	File Status Codes

	From Program Creation to Program Execution
	Source Program Input
	Control File
	Control Options
	Compiling, Linking, and Executing Your Program

	Debugging Your Program
	Compiler Listing
	Messages
	Using Debug
	Symbolic Debuggers
	Compiler Limits
	Index

