
HP C/HP-UX Programmer's Guide

HP 3000 MPE/iX Computer Systems

Edition 6
Manufacturing Part Number: 92434-90009
E0696

U.S.A. June 1996

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1986, 1987, 1988, 1992, 1994, 1996 by Hewlett-Packard
Company
2

Introduction to HP C 11
Storage and Alignment Comparisons 13
Calling Other Languages 43
Optimizing HP C Programs 59
Programming for Portability 121
Migrating C Programs to HP-UX 159
Using C Programming Tools 165
9

10

Preface
The HP C Programmer's Guide contains a detailed discussion of selected C topics for the
HP 9000 Series 700/800 computer systems. This manual is intended for experienced
programmers who are familiar with HP systems, data processing concepts, and the C
programming language. The manual does not discuss every feature of C. For more
information, refer to the manual HP C/HP-UX Reference Manual.

This manual is organized as follows:

Chapter 1 , “Introduction to HP C,” Introduces HP C.

Chapter 2 , “Storage and Alignment Comparisons,” Compares HP C storage and alignment
on different systems.

Chapter 3 , “Calling Other Languages,” Describes how to call other languages from HP C.

Chapter 4 , “Optimizing HP C Programs,” Describes how to use the optimizer.

Chapter 5 , “Programming for Portability,”Describes how to make new programs easily
transportable among HP systems.

Chapter 6 , “Migrating C Programs to HP-UX,”Discusses issues for migrating C language
programs from VAX computers and HP 9000 Series 300/400 and 500 computers to HP
9000 Series 700/800 computers.

Chapter 7 , “Using C Programming Tools,” Discusses various C programming tools.

Additional Documentation

Refer to the following materials for further information on C language programming:

American National Standard for Information Systems--Programming Language--C,
ANSI/ISO 9899-1990. HP FORTRAN/9000 Programmer's Guide -- This manual explains
how to call C programs from FORTRAN on HP-UX. HP Pascal/HP-UX Programmer's
Guide -- This manual describes how to call C programs from Pascal on HP-UX systems.
COBOL/HP-UX Operating Manual -- This manual provides information on calling C
subprograms from COBOL programs on HP-UX. It also explains how to call COBOL
subprograms from C. HP-UX Reference -- This manual is a three volume reference that
documents commands, system calls, file formats, device files, and other HP-UX related
topics. HP-UX Linker and Libraries Online User Guide -- This onlinehelp describes
programming in general on HP-UX. For example, it covers linking, loading, shared
libraries, and several other HP-UX programming features.HP-UX Floating-Point Guide --
This manual describes the IEEE floating-point standard, the HP-UX math libraries on
Series 700/800 systems, performance tuning related to floating-point routines, and
floating-point coding techniques that can affect application results.
3

Printing History
First Edition, Nov 1986
Second Edition, Nov 1987, MPE/XL: 31506A.00.02 HP-UX: 92453-01A.00.09
Update 1, Oct 1988, MPE/XL: 31506A.01.21 HP-UX: 92453-01A.03.04
Third Edition, August 1992, MPE/iX: 31506A.04.01 HP-UX: 92453-01A.09.17
Fourth Edition, January 1994, MPE/iX: 31506A.04.01 HP-UX: 92453-01A.09.61

Fifth Edition, June 1996, HP C/HP-UX A.10.32
4

Introduction to HP C
1 Introduction to HP C

HP C is Hewlett-Packard's version of the C programming language that is implemented on
the HP 9000 Series 700/800 computers and the HP 3000 Series 900 computers. This
manual discusses the HP 9000 Series 700/800 product. HP C is highly compatible with the
C compiler implemented on the HP 9000 Series 300/400 and CCS/C, Corporate Computer
Systems C compiler for the HP 3000. Some system and hardware-specific differences do
exist. These are documented in the HP C Reference Manual for your system. Also, Chapter
2 of this manual, "Storage and Alignment Comparisons," provides system-specific
information.
Chapter 1 11

Introduction to HP C
HP C Online Help
HP C Online Help
Online help for HP C is available for HP 9000 Series 700 and 800 users. The online help
uses the HP VUE help facility. The VUE help can be accessed from an X Windows display
device. Several methods of invoking the HP C online help are listed below.

Accessing HP C Help with the +help Option

You may access HP C online help with the command line:

cc +help

Accessing HP C Help with the HP VUE Front Panel

To access HP C online help if HP C and HP VUE are installed on your workstation:

1. Click on the ? icon on the HP VUE front panel.

2. The "Welcome to Help Manager" menu appears. Click on the HP C icon.

Accessing HP C Help with the helpview Command

If HP C is installed on another system or you are not running HP VUE, enter the following
command from the system where HP C is installed:

/usr/vue/bin/helpview

NOTE To make it easier to access, add the path /usr/vue/bin to your .profile or
.login file.

The "Welcome to Help Manager" menu appears. Click on the HP C icon.
12 Chapter 1

Storage and Alignment Comparisons
2 Storage and Alignment Comparisons

This chapter focuses on the different ways that internal data storage is allocated on
various platforms and discusses the HP_ALIGN pragma which you can use to overcome
these differences.

The storage and alignment rules of HP C on the HP 9000 Series 700/800 are compared
with those of other systems. (Note that the storage and alignment rules on the HP 3000
Series 900 are the same as those on the HP 9000 Series 700/800.)

Data storage refers to the size of data types. Data alignment refers to the way a system
or language aligns data structures in memory. Data type alignment and storage
differences can cause problems when moving data between systems that have different
alignment and storage schemes. These differences become apparent when data within a
structure is exchanged between systems using files or inter-process communication.

The storage and alignment rules for the following systems are compared:

• HP C on the HP 9000 Series 700/800.

• HP C on the HP 9000 Series 300/400.

• HP Apollo Series 3000/4000.

• HP Apollo Series 10000.

• CCS/C on the HP 1000.

• VAX/VMS C.
Chapter 2 13

Storage and Alignment Comparisons
Data Type Size and Alignments
Data Type Size and Alignments
This section discusses storage sizes and alignment modes for the HP 9000 and HP Apollo
systems as well as the VAX/VMS C, CCS/1000, and CCS/C 3000.

In all, there are a total of seven possible alignment modes which can be grouped into five
categories as described in Table on page 14.

NOTE With the exception of bit-fields, DOMAIN_WORDstructure alignment is the same
as HPUX_WORDstructure alignment, and DOMAIN_NATURALstructure alignment
is the same as HP_NATURAL structure alignment.

The alignment modes listed above can be controlled using the HP_ALIGNcompiler pragma.

Table 2-1. The Alignment Modes

Alignment Mode Description

HPUX_WORD,
DOMAIN_WORD

HPUX_WORD is the native alignment for HP 9000 Series 300 and 400.
DOMAIN_WORDis the native alignment for HP Apollo Series 3000 and 4000.
The most restricted alignment boundary for a structure member is 2
bytes.

HPUX_NATURAL,
DOMAIN_NATURAL

HPUX_NATURAL is the native alignment for HP 9000 Series 700 and 800
and HP 3000 Series 900 and, therefore, is the default alignment mode.
DOMAIN_NATURALis the native alignment for HP Apollo Series 10000. The
alignment of a structure member is related to its size (except for long
double and long pointers), and the most restricted alignment boundary is
8 bytes.

HPUX_NATURAL_S500 HPUX_NATURAL_S500is the native alignment for HP 9000 Series 500. The
alignment of a structure member is related to its size, and the most
restricted alignment boundary is 4 bytes.

NATURAL NATURAL is an architecture-independent alignment mode for HP Series
300, 400, 700, and 800, and HP Apollo Series 3000, 4000, and 10000. In
the NATURALmode, alignment of a structure member is related to its size,
the most restricted alignment boundary being 8 bytes. The difference
between HPUX_NATURALand NATURALare a 1-byte versus 2-byte minimum
structure alignment and size, and the bit-field rules. This alignment
mode is recommended when portability is an issue, since this mode
enables data to be shared among the greatest number of HP-UX and
Domain (HP Apollo) systems.

NOPADDING This mode does not arise from a particular architecture. The most
restricted alignment is 1 byte. NOPADDING alignment causes all structure
and union members and typedefs to be packed on a byte boundary, and
ensures that there will be no full byte padding inside the structure.
Bit-field members either are byte-aligned or aligned immediately
following a previous bit-field member, except in rare cases described in
the section "Alignments of Bit-Fields" below.
14 Chapter 2

Storage and Alignment Comparisons
Data Type Size and Alignments
See the section titled "The HP_ALIGN Pragma" in this chapter for a detailed description of
this pragma. The NATURAL alignment mode should be used whenever possible. This mode
enables data to be shared among the greatest number of HP-UX and Domain (HP Apollo)
systems.
Chapter 2 15

Storage and Alignment Comparisons
Alignment Rules
Alignment Rules
This discussion of alignment rules divides them into sections on scalar types, arrays,
structures and unions, bit-fields, and typedefs.

Alignment of Scalar Types

Scalar types are integral types, floating types, and pointer types. Alignment of scalar types
that are not part of a structure, union, or typedef declaration are not affected by the
alignment mode. Therefore, they are aligned the same way in all alignment modes.

*8 bytes on DOMAIN

NOTE Except for the HPUX_NATURAL and DOMAIN_NATURAL modes, the alignment of
scalar types inside a structure or union may differ. (See the section
"Alignment of Structures and Unions" below.) Also, a type that is defined via
a typedef to any of the scalar types below may have a different alignment.
(See the section "Alignment of Typedefs.")

Alignment of Arrays

An array is aligned according to its element type. For example, a double array is aligned
on an 8-byte boundary; and a float array within a struct is aligned on a 4-byte boundary.

Alignment of array elements is not affected by the alignment mode, unless the array itself

Table 2-2. Aligning Scalar Types

Data Type Size (bytes) Alignment
(bytes)

char, signed char, unsigned char, char enum 1 1

short, unsigned short, signed short, short enum 2 2

int, signed int, unsigned int, int enum 4 4

long, signed long, unsigned long, long enum 4 4

enum 4 4

long long 8 8

pointer 4 4

long pointer 8 4

float 4 4

double 8 8

long double 16* 8
16 Chapter 2

Storage and Alignment Comparisons
Alignment Rules
is a member of a structure or union. An array that is a member of a structure or union is
aligned according to the rules for structure or union member alignment (see the section
"Alignment of Structures and Unions" below for more information.)

An array's size is computed as:

(size of array element type) × (number of elements)

For instance, the array declared below is 400 bytes (4 × 100) long:

int arr[100];

The size of the array element type is 4 bytes and the number of elements is 100.

Alignment of Structures and Unions

In a structure, each member is allocated sequentially at the next alignment boundary
corresponding to its type. Therefore, the structure might be padded internally if its
members' types have different alignment requirements. In a union, all members are
allocated starting at the same memory location. Both structures and unions can have
padding at the end, in order to make the size a multiple of the alignment.

NOTE These rules are not true if the member type has been previously declared
under another alignment mode. The member type will retain its original
alignment, overriding other modes in effect. See the section "The HP_ALIGN
Pragma" below for information on controlling alignment of structures and
unions.

Table on page 17 lists the alignments for structure and union members.

Table 2-3. Aligning Structure or Union Members

Data Type Size
(bytes)

HPUX_WORD
DOMAIN_WORD

HPUX_NATURAL
DOMAIN_NATUR
AL

HPUX_
NATURAL_S
500

NATURAL

char, signed
char, unsigned
char, char enum

1 1 1 1 1

short, unsigned
short, signed
short, short
enum

2 2 2 2 2

int, signed int,
unsigned int, int
enum

4 2 4 4 4

long, signed
long, unsigned
long, long enum

4 2 4 4 4

enum 4 2 4 4 4
Chapter 2 17

Storage and Alignment Comparisons
Alignment Rules
NOTE In NOPADDING alignment mode, the alignment boundary is 1 byte in all
cases except where bitfields are used.

HPUX_WORD/DOMAIN_WORD Alignments

For HPUX_WORD and DOMAIN_WORD alignments, all structure and union types are 2-byte
aligned. Member types larger than 2 bytes are aligned on a 2-byte boundary. Padding is
performed as necessary to reach a resulting structure or union size which is a multiple of 2
bytes.

For example:

struct st {
char c;
long l;
char d;
short b;
int i[2];

} s;

Compiling with the +m option to show the offsets of the identifiers, you will get the
following output. Offsets are given as "byte-offset" @ "bit-offset" in hexadecimal.

Identifier Class Type Address
- - -

s ext def struct st
c member char 0x0 @ 0x0
l member long int 0x2 @ 0x0
d member char 0x6 @ 0x0
b member short int 0x8 @ 0x0

i member ints [2] 0xa @ 0x0

The resulting size of the structure is 18 bytes, with the alignment of 2 bytes, as illustrated

long long 8 2 8 4 8

pointer 4 2 4 4 4

long pointer 8 2 4 4 4

float 4 2 4 4 4

double 8 2 8 4 8

long double 16 2 8 4 8

arrays Follows alignment of array type inside a structure or union.

struct, union Follows alignment of its most restricted member.

Table 2-3. Aligning Structure or Union Members

Data Type Size
(bytes)

HPUX_WORD
DOMAIN_WORD

HPUX_NATURAL
DOMAIN_NATUR
AL

HPUX_
NATURAL_S
500

NATURAL
18 Chapter 2

Storage and Alignment Comparisons
Alignment Rules
in Figure 2-1. on page 19

Figure 2-1. Example of HPUX_WORD/DOMAIN_WORD Alignment for Structures

HPUX_NATURAL/DOMAIN_NATURAL Alignments

For HPUX_NATURALand DOMAIN_NATURALalignments, the alignment of structure and union
types is the same as the strictest alignment of any member. Therefore, they may be aligned
on 1-, 2-, 4-, or 8-byte boundaries. Padding is performed as necessary so that the size of the
object is a multiple of the alignment size.

For example, the declaration shown in the previous section will now be aligned:

Identifier Class Type Address
- -

s ext def struct st
c member char 0x0 @ 0x0
l member long int 0x4 @ 0x0
d member char 0x8 @ 0x0
b member short int 0xa @ 0x0

i member ints [2] 0xc @ 0x0

In this case, the size of the structure is 20 bytes, and the entire structure is aligned on a
4-byte boundary since the strictest alignment is 4 (from the int and long types), as
illustrated in Figure 2-2. on page 19.

Figure 2-2. Example of HPUX_NATURAL/DOMAIN_NATURAL Alignment for
Structures

HPUX_NATURAL_S500 Alignments

For HPUX_NATURAL_S500alignments, series 500 computers align structures on 2- or 4-byte
boundaries, according to the strictest alignment of its members. As with the other
Chapter 2 19

Storage and Alignment Comparisons
Alignment Rules
alignment modes, padding is done to a multiple of the alignment size.

For example, the following code:

struct {
char c;
double d;

} s1;

compiled with the +m option produces:

Identifier Class Type Address
- - -

s1 ext def struct
c member char 0x0 @ 0x0
d member double 0x4 @ 0x0

The entire structure is 4-byte aligned, with a resulting size of 12 bytes.

NATURAL Alignments

For NATURALalignments, structures and unions are aligned on 2-, 4-, or 8-byte boundaries,
according to the strictest alignment of its members. Padding is done to a multiple of the
alignment size.

NOPADDING Alignments

For NOPADDINGalignments, structure or union members are byte aligned; therefore, struct
and union types are byte aligned. This alignment mode does not cause compressed packing
where there are zero bits of padding. It only ensures that there will be no full bytes of
padding in the structure or union, unless bit-fields are used. There may be bit paddings or
even a full byte of padding between members if there are bit-fields. Refer to the section
"Alignment of Bit-Fields" for more information.

Consider the following code fragment:

#pragma HP_ALIGN NOPADDING
typedef struct s {

char c;
short s;

} s1;

s1 arr[4];

The size of s1 is 3 bytes, with 1-byte alignment. Therefore, the size of arr is 12 bytes, with
1-byte alignment. There is no padding between the individual array elements; they are all
packed on a byte boundary (see Figure 2-3. on page 21).
20 Chapter 2

Storage and Alignment Comparisons
Alignment Rules
Figure 2-3. Example of NOPADDING Alignment for Structure s1

Note that if a member of a structure or union has been declared previously under a
different alignment mode, it will retain its original alignment which may not be byte
alignment. The NOPADDING alignment will not override the alignment of the member, so
there may be some padding done within the structure, and the structure may be greater
than byte aligned.

Refer to the section "Aligning Structures Between Architectures" below for examples on on
structure alignment for different systems.

Alignment of Bit-Fields

The alignment modes for bit-fields are grouped differently than they are for the other
types. The three groups are:

• HPUX_NATURAL/HPUX_NATURAL_S500

• DOMAIN_WORD/DOMAIN_NATURAL/NATURAL/NOPADDING

• HPUX_WORD (combination of the previous two)

HPUX_NATURAL/HPUX_NATURAL_S500 Alignments

For HPUX_NATURAL and HPUX_NATURAL_S500 alignments, no bit-field can cross a "natural"
boundary. A bit-field that immediately follows another bit-field is packed into adjacent bits,
unless the second bit-field crosses a natural boundary according to its type. For example:

struct {
int a:5;
int b:15;
int c:17;
char :0;
char d:5;
char e:5;

} foo;

when compiled with the +m option produces:

Identifier Class Type Address
- -

foo ext def struct
a member int 0x0 @ 0x0
b member int 0x0 @ 0x5
c member int 0x4 @ 0x0

<NULL_SYMBOL> member char 0x7 @ 0x0
Chapter 2 21

Storage and Alignment Comparisons
Alignment Rules
d member char 0x7 @ 0x0
e member char 0x8 @ 0x0

The size of the structure is 12 bytes, with 4-byte alignment as illustrated in Figure 2-4. on
page 22.

Figure 2-4. Example of HPUX_NATURAL/HPUX_NATURAL_S500 Alignment for
Structure foo

Since b (being an int type) does not cross any word boundaries, a and b are adjacent. c
starts on the next word because it would cross a word boundary if it started right after b.
The zero length bit-field forces no further bit-field to be placed between the previous
bit-field, if any, and the next boundary described by the zero-length bit field's type. Thus, if
we are at bit 5 and see a zero length bit-field of type int, then the next member will start at
the next word boundary (bits 5-31 will be empty). However, if we are at bit 5 and see a zero
length bit-field of type char, then the next member will start at least at the next byte (bits
5-7 will be empty), depending on whether the next member can start at a byte-boundary.

DOMAIN_WORD/DOMAIN_NATURAL/NATURAL and NOPADDING Alignments

For DOMAIN_WORD, DOMAIN_NATURAL, NATURAL, and NOPADDING alignments:

• All integral types are treated identically; that is, the packing for char a:17 (this is
legal) is the same as for int a:17 .

• Bit-fields can cross "natural" boundaries, unlike for HPUX_NATURAL. That is, for int
a:30; int b:7; , b will start at bit 30.

• No bit-field can cross more than one 2-byte boundary. Thus, for int
a:14; int b:18; , b will start at bit 16. If it started at bit 14, it would illegally cross
both the 2- and 4-byte boundaries.

• The use of any type and size of bit-field alone will only cause the entire structure to
have 2-byte alignment (1-byte for NOPADDING).

NOTE NOPADDINGof bit-fields follows the DOMAINalignment scheme. This may result
in a full byte of padding between two bit-fields.

For example:

struct {
char c;
int i:31; < At offset 2 bytes.

} bar;

The above structure bar will align the bit-field at offset 2 bytes, so that there is a full byte
22 Chapter 2

Storage and Alignment Comparisons
Alignment Rules
of padding between c and i , even with NOPADDING alignment mode (see Figure 2-5. on
page 23.)

Figure 2-5. Example of NATURAL Alignment for Structure bar

HPUX_WORD Alignments

For HPUX_WORD alignments:

• Alignment for char and short bit-fields is identical to that of HPUX_NATURAL.

• Alignment for any other bit-fields (int, long long, enum, for example) is identical to
DOMAIN bit-field alignment.

Note that alignment of a char or short bit-field may not be the same as alignment of a char
or short enum bit-field under the same circumstances.

For example:

#pragma HP_ALIGN HPUX_WORD

char enum b {a};
struct s {

int int_bit :30;
char char_bit :5;

};
struct t {

int int_bit :30;
char enum b char_enum_bit: 5;

};

int main()
{

struct s basic_str;
struct t enum_str;

}

Compilation with the +m option gives the following map:

Identifier Class Type Address
- -

basic_str auto struct s SP-48
int_bit member int 0x0 @ 0x0

char_bit member char 0x4 @ 0x0
enum_str auto struct t SP-42
int_bit member int 0x0 @ 0x0

char_enum_bit member enum 0x3 @ 0x6

Both structures have a resulting size of 6 bytes, with 2-byte alignment as shown in Figure
2-6. on page 24.
Chapter 2 23

Storage and Alignment Comparisons
Alignment Rules
Figure 2-6. Example of Structures basic_str and enum_str

Notice that char_bit follows the HPUX_NATURAL alignment scheme, but char_enum_bit
follows the DOMAIN_WORDalignment scheme, even though the length of their bit-field types
are equivalent.

Alignment of Typedefs

Alignment for typedefs is slightly different than alignment for structures. Within a
structure, the member itself is affected by the alignment mode. However, with a typedef,
the alignment of the type that the typedef name is derived from is affected, not the typedef
name itself. The typedef name is then associated with the derived type.

When a typedef is seen, a new type is created by:

1. Taking the innermost type from which the typedef name is derived (which may be
another derived type).

2. Setting its alignment to what it would be if it were used inside a structure or union
declaration.

3. Creating a derived type from that new type, associating it with the typedef name.

Let us start with a simple example of a declaration under NOPADDING:

typedef int my_int;

Since an int will be 1-byte aligned inside a structure under NOPADDING, my_int will be
1-byte aligned.

Consider a pointer typedef with NOPADDING alignment:

typedef int **my_double_ptr;

my_double_ptr is derived from an integer type; therefore, a new integer type of 1-byte
alignment is created. my_double_ptr is defined to be a 4-byte aligned pointer to another
4-byte aligned pointer which points to a byte-aligned int.

Consider another example, this time with HPUX_WORD:

typedef int *my_ptr;
typedef my_ptr *my_double_ptr;
24 Chapter 2

Storage and Alignment Comparisons
Alignment Rules
In the first typedef, my_ptr will be a 4-byte aligned pointer to a 2-byte aligned int. The
second typedef will create another type for my_ptr which is now 2-byte aligned, since
my_double_ptr is derived from my_ptr . So my_double_ptr is a 4-byte aligned pointer to a
2-byte aligned pointer which points to a 2-byte aligned int.

Similar declarations inside a structure will not have the same resulting alignment.
Consider the following declaration:

#pragma HP_ALIGN NOPADDING

typedef int **my_double_ptr;

struct s {
int **p;

};

In the above example, my_double_ptr is a 4-byte aligned pointer type pointing to another
4-byte aligned pointer which points to a 1-byte aligned int. However, struct s member p
is a 1-byte aligned pointer which points to a 4-byte aligned pointer which points to 4-byte
aligned int. Inside a structure, the member itself is affected by the alignment mode.
However, with a typedef, the typedef name is not directly affected. The innermost type
from which the typedef name is derived is affected by the alignment mode.
Chapter 2 25

Storage and Alignment Comparisons
The HP_ALIGN Pragma
The HP_ALIGN Pragma
The HP_ALIGN pragma controls data storage allocation and alignment of structures,
unions, and type definitions, using typedefs. It enables you to control the alignment mode
when allocating storage space for data. It is especially important when used to control the
allocation of binary data that is transmitted among machines having different hardware
architectures.

The HP_ALIGNpragma takes a parameter indicating which alignment mode to use. Not all
modes are available on all HP platforms; the NATURAL alignment mode is the most widely
available on HP-UX. This mode is the recommended standard.

The syntax for the HP_ALIGN pragma is:

[#pragma HP_ALIGN align_mode [PUSH]]

[#pragma HP_ALIGN POP]

where align_mode is one of the following:

HPUX_WORD This is the Series 300/400 default alignment mode.

HPUX_NATURAL_S500This is the Series 500 default alignment mode.

HPUX_NATURALThis is the HP 9000 Series 700/800 and HP 3000 Series 900 systems
default alignment mode.

NATURAL This mode provides a consistent alignment scheme across HP
architectures.

DOMAIN_WORDThis is the default word alignment mode on HP Apollo architecture.

DOMAIN_NATURALThis is the default natural alignment mode on HP Apollo architecture.

NOPADDING This causes all structures and union members that are not bit-fields to be
packed on a byte boundary. It does not cause compressed packing where
there are zero bits of padding. It only insures that there will be no full
bytes of padding in the structure or union.

NOTE The above alignment modes are only available on HP-UX systems.

The HP_ALIGNpragma affects struct and union definitions as well as typedef declarations.
It causes data objects that are later declared using these types to have the size and
alignment as specified by the pragma.

The alignment pragma in effect at the time of data type declaration has significance. The
alignment pragma in effect at the time of data type declaration has precedence over the
alignment pragma in effect when space for a data object of the previously declared type is
allocated.
26 Chapter 2

Storage and Alignment Comparisons
The HP_ALIGN Pragma
Using the HP_ALIGN Pragma

The HP_ALIGN pragma allows you to control data storage allocation and alignment of
structures, unions, and typedefs.

NOTE The basic scalar types, array types, enumeration types, and pointer types are
not affected by the HP_ALIGN pragma. The pragma only affects struct or
union types and typedefs - No other types are affected by specifying the
HP_ALIGN pragma.

The HP_ALIGN pragma takes a parameter that specifies the alignment mode for example:

#pragma HP_ALIGN HPUX_NATURAL

There is also an optional parameter PUSH, which saves the current alignment mode before
setting the specified mode as the new alignment mode. For example, in the following
sequence:

#pragma HP_ALIGN NOPADDING PUSH
/* decls following */

the current alignment mode is saved on the stack. It is then set to the new alignment
mode, NOPADDING.

The PUSHed alignment mode can be retrieved later by doing a

#pragma HP_ALIGN POP

If the last alignment mode PUSHed on the stack was NOPADDING, the current alignment
mode would now be NOPADDING.

Problems Sometimes Encountered with the HP_ALIGN Pragma

If only one alignment mode is used throughout the entire file, this pragma is
straightforward to use and to understand. However, when a different mode is introduced in
the middle of the file, you should be aware of its implications and effects.

The key to understanding HP_ALIGN is the following concept: typedefs and struct or union
types retain their original alignment mode throughout the entire file. Therefore, when a
type with one alignment is used in a different alignment mode, it will still keep its original
alignment.

This feature may lead to confusion when you have a typedef, structure or union of one
alignment nested inside a typedef, structure or union of another alignment.

Here are some examples of the most common misunderstandings.

Example 1: Using Typedefs The alignment pragma will affect typedef, struct, and
union types. Therefore, in the following declaration:

#pragma HP_ALIGN HPUX_WORD
typedef int int32;

int32 is not equivalent to int . To illustrate:

#pragma HP_ALIGN HPUX_WORD
Chapter 2 27

Storage and Alignment Comparisons
The HP_ALIGN Pragma
typedef int int32;

void routine (int *x);

int main()
{

int *ok;
int32 *bad;

routine(ok);
routine(bad); /* warning */

}

Compiling this with -Aa -c will give two warnings:

warning 604: Pointers are not assignment-compatible.
warning 563: Argument #1 is not the correct type.

These warnings occur because the actual pointer value of bad may not be as strictly
aligned as the pointer type routine expects. This may lead to run-time bus errors in the
called function if it dereferences the misaligned pointer.

Example 2: Using Combination of Different Alignment Modes In the WORD
alignment modes, the members of a structure whose sizes are larger than 2 bytes are
aligned on a 2-byte boundary. However, this is only true if those member types are scalar
or have been previously declared under the same alignment mode. If the member type is a
typedef, struct, or union type which has been declared previously under a different
alignment mode, it will retain its original alignment, regardless of current alignment mode
in effect. For example:

typedef int my_int;

#pragma HP_ALIGN HPUX_WORD

struct st {
char c;
my_int i;

};

int main()
{

char c;
struct st foo;

}

Although the size of my_int is greater than 2 bytes, because it was declared previously
under HPUX_NATURALwith the alignment of 4 bytes it will be aligned on a 4-byte boundary,
causing the entire struct st to be aligned on a 4-byte boundary. Compiling with the +m
option to show the offsets of the identifiers (offsets given as "byte-offset @ bit-offset" in
hexadecimal), you will get the following output:

main

Identifier Class Type Address
- - -
28 Chapter 2

Storage and Alignment Comparisons
The HP_ALIGN Pragma
c auto char SP-48
foo auto struct st SP-44
c member char 0x0 @ 0x0

i member int 0x4 @ 0x0

The resulting size of foo is 8 bytes, with 4-byte alignment.

If you change the type of member i in struct st to be a simple int type, then you will get
the following result:

main

Identifier Class Type Address
- -

c auto char SP-40
foo auto struct st SP-38
c member char 0x0 @ 0x0

i member int 0x2 @ 0x0

This time, the resulting size of foo is 6 bytes, with 2-byte alignment.

Example 3: Incorrect Use of Typedefs and Alignments Often, you might mix
typedefs and alignments without being aware of the actual alignment of the data types.

What may appear to be correct usages of these data types may turn out to be causes for
misaligned pointers and run-time bus errors, among other things. For example, consider
the following program.

<my_include.h>
typedef unsigned short ushort;
extern int get_index(void);
extern ushort get_value(void);

<my_prog.c>
#include "my_include.h"

#pragma HP_ALIGN NOPADDING PUSH
struct s {

ushort member1;
ushort member2;

};
#pragma HP_ALIGN POP

char myBuffer[100];

int main()
{

struct s *my_struct;
int index = get_index();
int value = get_value();
int not_done = 1;

while (not_done) {
my_struct = (struct s*)&myBuffer[index];
my_struct->member1 = value;
Chapter 2 29

Storage and Alignment Comparisons
The HP_ALIGN Pragma
.

.

.

}
}

This code is not written safely. Although struct s is declared under NOPADDINGalignment
mode, it has 2-byte alignment due to the typedef for ushort . However, a pointer to struct
s can be assigned an address that can point to anywhere in the char array (including odd
addresses). If the function get_index always returns an even number, you will not run
into any problems, because it will always be 2-byte aligned. However, if the index happens
to be an odd number, &myBuffer[index] will be an odd address. Dereferencing that
pointer to store into a 2-byte aligned member will result in a run-time bus error.

Below are some examples of what you can do to avoid such behavior.

• Compile with +u1 option, which forces all pointer dereferences to assume that data is
aligned on 1-byte boundaries. However, this will have a negative impact on
performance.

• Put the typedef inside the NOPADDING alignment. However, if you use ushort in
contexts where it must have 2-byte alignment, this may not be what you want.

• Declare struct s with the basic type unsigned short rather than the typedef ushort .

• Make sure that the pointer will always be 2-byte aligned by returning an even index
into the char array.

• Declare another typedef for ushort under the NOPADDING alignment:

typedef ushort ushort_1

and use the new type ushort_1 inside struct s .

As mentioned above, the HP_ALIGNpragma must have a global scope; it must be outside of
any function or enclosing structure or union. For example, suppose you have the following
sequence of pragmas:

#pragma HP_ALIGN HPUX_WORD PUSH

struct string_1 {
char *c_string;
int counter;

};

#pragma HP_ALIGN HPUX_NATURAL PUSH

struct car {
long double car_speed;
char *car_type;

};

#pragma HP_ALIGN POP

struct bus {
int bus_number;
30 Chapter 2

Storage and Alignment Comparisons
The HP_ALIGN Pragma
char bus_color;
};

#pragma HP_ALIGN POP

Variables declared of type struct string_1 , are aligned according to the HPUX_WORD
alignment mode. Variables declared of type struct
car , are aligned according to the HPUX_NATURAL alignment mode. Variables declared of
type struct bus are aligned according to HPUX_WORD.

Accessing Non-Natively Aligned Data with Pointers

Be careful when using pointers to access non-natively aligned data types within structures
and unions. Alignment information is significant, as pointers may be dereferenced with
either 8-bit, 16-bit, or 32-bit machine instructions. Dereferencing a pointer with an
incompatible machine instruction usually results in a run-time error.

HP C permanently changes the size and alignment information of typedefs defined within
the scope of an HP_ALIGN pragma. It makes data objects, such as pointers, declared by
using typedefs, compatible with similar objects defined within the scope of the pragma.

For example, a pointer to an integer type declared with a typedef that is affected by the
HP_ALIGN pragma will be dereferenced safely when it points to an integer object whose
alignment is the same as that specified in the pragma.

The typedef alignment information is persistent outside the scope of the HP_ALIGN
pragma. An object declared with a typedef will have the same storage and alignment as all
other objects declared with the same typedef, regardless of the location of other HP_ALIGN
pragma statements in the program.

There is a slight performance penalty for using non-native data alignments. The compiler
generates slower but safe code for dereferencing non-natively aligned data. It generates
more efficient code for natively aligned data.

The following program generates a run-time error because a pointer that expects
word-aligned data is used to access a half-word aligned item:

#pragma HP_ALIGN HPUX_WORD

struct t1 { char a; int b;} non_native_rec;

#pragma HP_ALIGN POP

main ()
{

int i;
int *p = non_native_rec.b;
i = *p; /* assignment causes run-time bus error */

}

The following program works as expected because the pointer has the same alignment as
the structure:

#pragma HP_ALIGN HPUX_WORD

struct t1 { char a; int b;} non_native_rec;
Chapter 2 31

Storage and Alignment Comparisons
The HP_ALIGN Pragma
typedef int non_native_int;

#pragma HP_ALIGN POP

main ()
{

int i;
non_native_int *p = non_native_rec.b;
i = *p;

}

An alternative to using the HP_ALIGNpragma and typedefs to control non-natively aligned
pointers is to use the +ubytes compiler option of HP C/HP-UX. The +ubytes forces all
pointer dereferences to assume that data is aligned on 8-bit, 16-bit, or 32-bit addresses.
The value of bytes can be 1 (8-bit), 2 (16-bit), or 4 (32-bit). This option can be used when
accessing non-natively aligned data with pointers that would otherwise be natively
aligned. This option can be useful with code that generates the compiler warning message

#565 - "address operator applied to non natively aligned member."

and aborts with a run-time error.

The +ubytes option affects all pointer dereferences within the source file. It can have a
noticeable, negative impact on performance.

NOTE The HP C/iX implementation of the +u option omits the bytes parameter.

Defining Platform Independent Data Structures

One way to avoid trouble caused by differences in data alignment is to define structures so
they are aligned the same on different systems. To do this, use padding bytes — that is,
dummy variables to align fields the same way on different architectures.

For example, use:

struct {
char cl;
char dum1;
char dum2;
char dum3;
int i1;

};

instead of:

struct {
char c1;
int i1;

};
32 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures
Aligning Structures Between Architectures
Differences in data type alignment can cause problems when porting code or data between
systems that have different alignment schemes. For example, if you write a C program on
the Series 300/400 that writes records to a file, then read the file using the same program
on a Series 700/800, it may not work properly because the data may fall on different byte
boundaries within the file because of alignment differences.

Three methods can be used for aligning data within structures so that it can be shared
between different architectures.

• Use only ASCII formatted data. This is the safest method, but has negative
performance and space implications.

• Use the HP_ALIGNpragma, which is available on most HP-UX HP C compilers. It forces
a particular alignment scheme, regardless of the architecture on which it is used. See
"The HP_ALIGN Pragma" section for a detailed description of this pragma.

• Define platform independent data structures using explicit padding.

To illustrate the portability problem raised by different alignments, consider the following
example.

#include stdio.h
struct char_int

{
char field1;
int field2;

};
main (void)

{
FILE *fp;
struct char_int s;

…
fp = fopen("myfile", "w");
fwrite(s, sizeof(s), 1, fp);

…
}

The alignment for the struct that is written to myfile in the above example is shown in
the following diagram.
Chapter 2 33

Storage and Alignment Comparisons
Aligning Structures Between Architectures
Figure 2-7. Comparison of HPUX_WORD and HPUX_NATURAL Byte Alignments

In the HPUX_WORD alignment mode, six bytes are written to myfile . The integer field2
begins on the third byte. In the HPUX_NATURAL alignment mode, eight bytes are written to
myfile . The integer field2 begins on the fifth byte.

Examples of Structure Alignment on Different Systems

The code fragment in <Undefined Cross-Reference> can be used to illustrate the alignment
on various systems.

Figure 2-8. Code Fragment for Comparing Storage and Alignment

struct x {
char y[3];
short z;
char w[5];

};

struct q {
char n;
struct x v[2];
double u;
char t;
int s:6;
char m;

} a = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20.0,21,22,23};

HP C/HP-UX Series 700/800 and HP C/iX

Figure 2-9. on page 36 shows how the data in Figure 2-8. on page 34 is stored in memory
when using HP C on the HP 9000 Series 700/800 and HP 3000 Series 900. The values are
34 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures
shown above the variable names. Shaded cells indicate padding bytes.

Figure 2-9. Storage with HP C on the HP 9000 Series 700/800 and HP 3000 Series
900

The struct q is aligned on an 8-byte boundary because the most restrictive data type
within the structure is the double u .

Table on page 36 shows the padding for the example code fragment:

Table 2-4. Padding on HP 9000 Series 700/800 and HP 3000 Series 900

Padding Location Reason for Padding

a+1 The most restrictive type of the structure x is short ; therefore, the
structure is 2-byte aligned.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary.
Chapter 2 35

Storage and Alignment Comparisons
Aligning Structures Between Architectures
HP C on the Series 300/400

The differences between HP C on the HP 9000 Series 300/400 and HP C on the HP 9000
Series 700/800 and HP 3000 Series 900 are:

• On the Series 300/400, a structure is aligned on a 2-byte boundary. On the HP 9000
Series 700/800 and HP 3000 Series 900, it is aligned according to the most restrictive
data type within the structure.

• On the Series 300/400, the double data type is 2-byte aligned within structures. It is
8-byte aligned on the HP 9000 Series 700/800 and HP 3000 Series 900.

• On the Series 300/400, the long double, available in ANSI mode only, is 2-byte aligned
within structures. The long double is 8-byte aligned on the HP 9000 Series 700/800 and
HP 3000 Series 900.

• On the Series 300/400, the enumerated data type is 2-byte aligned in a structure, array,
or union. The enumerated type is always 4-byte aligned on the HP 9000 Series 700/800
and HP 3000 Series 900, unless a sized enumeration is used.

When the sample code fragment is compiled and run, the data is stored as shown in Figure
2-10. on page 38:

a+17 Aligns the short z on a 2-byte boundary.

a+25 Fills out the structure to a 2-byte boundary.

a+26 through a+31 Aligns the double u on an 8-byte boundary. The bit-field s begins
immediately after the previous item at a+41 . Two bits of padding is
necessary to align the next byte properly.

a+43 through a+47 Fills out the struct q to an 8-byte boundary.

Table 2-4. Padding on HP 9000 Series 700/800 and HP 3000 Series 900

Padding Location Reason for Padding
36 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures
Figure 2-10. Storage with HP C on the HP 9000 Series 300/400

Figure on page 38 shows the padding for the example code fragment:

CCS/C on the HP 1000 and HP 3000

Figure 2-11. on page 39 shows how the members of the structure defined in <Undefined

Table 2-5. Padding on the HP 9000 Series 300/400

Padding
Location

Reason For Padding

a+1 Within structures align short on a 2-byte boundary.

a+5 Aligns the short z on a 2-byte boundary.

a+14 Structures within structures are aligned on a 2-byte boundary.

a+17 Aligns the short z on a 2-byte boundary.

a+25 Doubles are 2-byte aligned within structures.

a+37 Pads a to a 2-byte boundary.
Chapter 2 37

Storage and Alignment Comparisons
Aligning Structures Between Architectures
Cross-Reference> are aligned in memory when using CCS/C on the HP 1000 or HP 3000:

Figure 2-11. Storage with CCS/C

NOTE All data types and structures are 2-byte aligned when using CCS/C on the HP
1000 or HP 3000.

Table on page 39 shows the padding for the example code fragment:

Table 2-6. Padding with CCS/C

Padding
Location

Reason for Padding

a+1 Aligns the structure on a 2-byte boundary.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary. (Aligns the character on a 2-byte
boundary.)

a+17 Aligns the short z on a 2-byte boundary.
38 Chapter 2

Storage and Alignment Comparisons
Aligning Structures Between Architectures
VAX/VMS C

The differences between HP C and VAX/VMS C are:

• In HP C Series 700/800, the double type is 8-byte aligned; in VAX/VMS C, the double
type is 4-byte aligned.

• In HP C, bit-fields are packed from left to right. In VAX/VMS C, the fields are packed
from right to left.

• HP C uses big-endian data storage with the most significant byte on the left. VAX/VMS
C uses little-endian data storage with the most significant byte on the right. (See the
swab function in the HP-UX Reference manual for information about converting from
little-endian to big-endian.)

In VAX/VMS C, the data from the program in <Undefined Cross-Reference> is stored as
shown in <Undefined Cross-Reference>:

a+25 Fills out the structure to a 2-byte boundary and aligns the double u on a 2-byte
boundary.

a+37 Pads a to a 2-byte boundary.

Table 2-6. Padding with CCS/C

Padding
Location

Reason for Padding
Chapter 2 39

Storage and Alignment Comparisons
Aligning Structures Between Architectures
Figure 2-12. Storage on VAX/VMS C

Table on page 41 shows the padding for the example code fragment:

Table 2-7. Padding on VAX/VMS C

Padding
Location

Reason for Padding

a+1 The most restrictive type of any struct x member is short ; therefore, struct x
is 2-byte aligned.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary.

a+17 Needed for alignment of the short z .

a+25
through
a+27

Fills out the structure to a 2-byte boundary and aligns the double u on a 4-byte
boundary.

a+37 Aligns the char m on a byte boundary.

a+39 Fills out the structure to a 4-byte boundary.
40 Chapter 2

Calling Other Languages
3 Calling Other Languages

This chapter describes how to call routines written in other HP languages from HP C
programs.

Invoking routines or accessing data defined or declared in another programming language
from HP C can be tricky. Here are some common problems:

• Mismatched data types for parameters and return values.

• Different language storage layouts for aggregates (arrays, records, variants, structures,
unions, equivalences, and commons).

• Different formats for strings among HP C, HP Pascal, and HP FORTRAN 77.

• Different language values for true, false, eof, and nil.

• Different language bit level justification of objects smaller than 32 bits
(right-justification or most significant bit or byte last versus left-justification or most
significant bit or byte first).

The topics listed above are described in detail in this chapter. For additional information,
refer to Chapter 2, "Storage and Alignment Comparisons," in this manual. Also, the
following manuals have chapters on calling other languages:

• HP Pascal/HP-UX Programmer's Guide

• HP FORTRAN/9000 Programmer's Guide

• COBOL/HP-UX Operating Manual
Chapter 3 43

Calling Other Languages
Comparing HP C and HP Pascal
Comparing HP C and HP Pascal
Table on page 44 summarizes the differences in storage allocation between HP C and HP
Pascal. The footnote numbers refer to notes located in a section immediately following the
table.

Table 3-1. HP C versus HP Pascal Storage Allocation

HP C Type HP C Description Correspondin
g HP Pascal
Type

HP Pascal Description

char, signed
char

1 byte, byte aligned 1 byte, byte aligned; Subrange:
-128 .. 127

unsigned char 1 byte, byte aligned char 1 byte, byte aligned; Subrange: 0 ..
255

short 2 bytes, 2-byte aligned shortint Subrange: -32768..32767

unsigned short 2 bytes, 2-byte aligned Subrange: 0 .. 65535

int 4 bytes, 4-byte aligned integer 4 bytes, 4-byte aligned; Subrange:
-2147483648 .. 2147483647

unsigned int 4 bytes, 4-byte aligned 4 bytes, 4-byte aligned; Subrange:
0 .. 4294967295

long 4 bytes, 4-byte aligned integer Subrange: -2147483648 ..
2147483647

unsigned long 4 bytes, 4-byte aligned 4 bytes, 4-byte aligned; Subrange:
0 .. 4294967295

(See Note 1) longint 8 bytes, 4-byte aligned

float 4 bytes, 4-byte aligned real 4 bytes, 4-byte aligned

double 8 bytes, 8-byte aligned longreal 8 bytes, 8-byte aligned

long double 16 bytes, 16-byte
aligned

enum 4 bytes, 4-byte aligned enumeration
or integer
(See Note 2)

1 byte if fewer than 257 elements;
2 bytes if between 257 and 65536;
otherwise, 4 bytes. 1, 2, or 4-byte
aligned.

char enum 1 byte, 1-byte aligned 1 byte, 1-byte aligned, subrange:
-128..127

short enum 2 bytes, 2-byte aligned short int subrange: -32768..32767

int enum 4 bytes, 4-byte aligned integer 4 bytes, 4-byte aligned, subrange:
-2,147,483,648..2,147,483,647
44 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal
long enum 4 bytes, 4-byte aligned integer 4 bytes, 4-byte aligned, subrange:
-2,147,483,648..2,147,483,647

array [n] of type Size is number of
elements times
element size. Align
according to element
type.

ARRAY [0 ..
n-1] OF type
(See Note 3)

Size is the number of elements
times element size. Align
according to element type.

array [n] of
char

[n] bytes, byte aligned PACKED
ARRAY [0 ..
n-1] OF
CHAR or not
PACKED (See
Note 4)

[n] bytes, byte aligned

struct (See Note
5)

Pascal string
descriptors may be
emulated using C
structures, see the note
for an example.

STRING [n] Size 4+[n]+1 bytes, 4-byte aligned.

Pointer to string
descriptor
structure (See
Note 6)

Pascal VAR parameters
may be emulated using
C pointers to string
descriptor structures.
(See Note 6).

STRING

char * Pointer to a null
terminated array of
characters

pointer to
character
array

(See Note 7)

struct Size of elements plus
padding, aligned
according to largest
type

record (See Note 8)

union Size of elements plus
padding, aligned
according to largest
type

(untagged)
variant
record (See
Note 9)

(See Note 8)

signed bit-fields packed
record (See
Note 10)

unsigned
bit-fields

packed
record (See
Note 11)

Table 3-1. HP C versus HP Pascal Storage Allocation

HP C Type HP C Description Correspondin
g HP Pascal
Type

HP Pascal Description
Chapter 3 45

Calling Other Languages
Comparing HP C and HP Pascal
Notes on HP C and HP Pascal

1. The longint type in HP Pascal is a 64-bit signed integer. A corresponding HP C type
could be any structure or array of 2 words; however, HP C cannot directly operate on
such an object.

2. By default, HP C enumerations are allocated 4 bytes of storage, while HP Pascal
enumerations use the following scheme:

• 1 byte, if fewer than 257 elements.

void Used when
calling an
HP Pascal
procedure
(See Note 12)

pointer 4 bytes, 4-byte aligned pointer to
correspondin
g type

4 bytes, 4-byte aligned

long pointer 8 bytes, 8-byte aligned $ExtnAddr$
pointer or
$ExtnAddr$
VAR
parameter

8 bytes, 4-byte aligned

char 1 byte, 1-byte aligned boolean
(See Note 13)

1 byte, 1 byte aligned

void function
parameter

4 bytes, 4-byte aligned PROCEDURE
parameter

4 bytes, 4-byte aligned

function
parameter

4 bytes, 4-byte aligned FUNCTION
parameter

4 bytes, 4-byte aligned

struct of 1-bit
fields

(See Note 14) set

Pascal files may be
read by C programs
with some effort. (See
Note 15)

file external record oriented file

pointer to void
function

procedure

pointer to
function

function

Table 3-1. HP C versus HP Pascal Storage Allocation

HP C Type HP C Description Correspondin
g HP Pascal
Type

HP Pascal Description
46 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal
• 2 bytes, if between 257 and 65536 elements.

• 4 bytes, otherwise.

If the default enumeration specifier is modified with a char or short type specifier, 1 or
2 bytes of storage are allocated. See Table 3-1 for a description of the sized enumerated
types.

This is important if the items are packed. For example, a 25-element enumeration in
HP Pascal can use 1 byte and be on a byte boundary, so you must use the HP C type
char or a sized enum declaration char enum .

3. HP C always indexes arrays from zero, while HP Pascal arrays can have lower bounds
of any user-defined scalar value. This is only important when passing an array using an
index to subscript the array. When passing the subscript between HP C and HP Pascal,
you must adjust the subscript accordingly. HP C always passes a pointer to the first
element of an array. To pass an array by value, enclose the array in a struct and pass
the struct .

4. HP C char arrays are packed one character per byte, as are HP Pascal arrays (even if
PACKED is not used). HP Pascal permits certain string operations with a packed array
of char when the lower bound is one.

5. The HP Pascal type STRING [n] uses a string descriptor that consists of the following: a
word containing the current length of the string, n bytes for the characters, and an
extra byte allocated by the HP Pascal compiler. Thus, the HP Pascal type STRING[10]
corresponds to the following HP C structure:

typedef struct {
int cur_len; /* 4 bytes */
char chars [10]; /* 10 bytes */
char extra_byte; /* 1 byte */

} STRING_10;

which is initialized like this:

STRING_10 this_string = {
0, /* The current length */
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* The 10 bytes */
0 /* The null byte */

};

Both the C structure and the Pascal string are 4-byte aligned.

6. HP Pascal also has a generic string type in which the maximum length is unknown at
compile time. Objects of this type have the same structure as in Note 5 above; the
objects are only used as VAR formal parameters.

7. A variable of this type is a pointer to a character array if the string is null-terminated;
HP Pascal will not handle the null byte in any special way. An HP C parameter of type
"pointer to char " corresponds to an HP Pascal VAR parameter of type "packed array of
char ." However, the type definition of that VAR parameter must have the bounds
specified.

8. The size is equal to the size of all members plus any padding needed for the alignment.
(See Chapter 2 for details on alignment.) The alignment is that of the member with the
strictest alignment requirement.
Chapter 3 47

Calling Other Languages
Comparing HP C and HP Pascal
9. A union corresponds directly to an untagged HP Pascal variant record. For example, the
HP C union:

typedef union {
int i;
float r;
unsigned char c;

} UNIONTYPE;

corresponds to:

TYPE
UNIONTYPE = RECORD CASE INTEGER OF

1 : (i : INTEGER);
2 : (r : REAL);
3 : (c : CHAR);

END;

The tagged HP Pascal variant record:

TYPE
TAGGED_UNIONTYPE = RECORD CASE tag : INTEGER OF

1 : (i : INTEGER);
2 : (r : REAL);

END;

corresponds to this HP C structure:

typedef struct {
int tag;
union {

int i;
float r;

};
} TAGGED_UNIONTYPE;

10.HP Pascal subranges with a negative value as their lower bound have enough bits
allocated to contain the upper bound, with an extra bit for the sign. Thus, the HP C
structure:

typedef struct {
int b1 : 1;
int b2 : 2;
int b3 : 3;
int b4 : 4;
int b5 : 5;
int b6 : 6;
int b7 : 7;

} BITS;

corresponds to the following untagged HP Pascal record:

TYPE
BITS = PACKED RECORD

b1 : BOOLEAN;
b2 : -2 .. 1;
b3 : -4 .. 3;
b4 : -8 .. 7;
48 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal
b5 : -16 .. 15;
b6 : -32 .. 31;
b7 : -64 .. 63;

END;

11.Unsigned bit-fields map onto HP Pascal packed record fields whose types are the
appropriate subranges. For example, the HP C structure:

typedef struct {
unsigned int b1 : 1;
unsigned int b2 : 2;
unsigned int b3 : 3;
unsigned int b4 : 4;
unsigned int b5 : 5;
unsigned int b6 : 6;
unsigned int b7 : 7;

} BITS;

corresponds to this untagged HP Pascal record:

TYPE
BITS = PACKED RECORD

b1 : 0 .. 1;
b2 : 0 .. 3;
b3 : 0 .. 7;
b4 : 0 .. 15;
b5 : 0 .. 31;
b6 : 0 .. 63;
b7 : 0 .. 127;
END;

12.The type void , when applied to a function declaration, corresponds to an HP Pascal
procedure.

13.HP Pascal allocates one byte for Boolean variables, and only accesses the rightmost bit
to determine its value. HP Pascal uses a 1 to represent true and zero for false; HP C
interprets any nonzero value as true and interprets zero as false.

14.HP Pascal sets are packed arrays of unsigned bits. For example, given the HP Pascal
set:

TYPE
SET_10 = SET OF 0 .. 9;

VAR s: SET_10;

the corresponding HP C struct would be:

typedef struct {
unsigned int b0 : 1;
unsigned int b1 : 1;
unsigned int b2 : 1;
unsigned int b3 : 1;
unsigned int b4 : 1;
unsigned int b5 : 1;
unsigned int b6 : 1;
unsigned int b7 : 1;
unsigned int b8 : 1;
Chapter 3 49

Calling Other Languages
Comparing HP C and HP Pascal
unsigned int b9 : 1;
} SET_10;

SET_10 s;

Also, the following operation in HP Pascal:

s := s + [9];

has the following corresponding HP C code:

s.b9 = 1;

15.HP C and HP Pascal file types and I/O operations do not correspond.

Passing Parameters Between HP C and HP Pascal

This section describes additional information on parameter passing.

1. All HP C parameters are passed by value except arrays and functions, which are always
passed as pointers. Reference parameters to HP Pascal can be implemented in two
ways: first, by passing the address of an object by applying the address operator & to the
variable; second, by declaring a variable to be a pointer to such a type, assigning an
address to the pointer variable, and passing the pointer.

If an HP Pascal procedure or function has a parameter that is an array by value, it can
be called from HP C by passing a struct that contains an array of the corresponding
type.

2. Be careful when passing strings to HP Pascal. If the routine expects a packed array of
char , be sure to pass a char array. If the routine expects a user-defined string, pass the
structure declared in Note 5 above.

The examples below are HP Pascal and HP C source files that show the parameter
passing rules. The HP Pascal file contains 2 subroutines, pass_char_arrays() and
pass_a_string() . The HP C file contains the main line routine that calls these two
subroutines and displays the results. The HP C program is annotated with the expected
results.

The following is the HP Pascal procedure called from HP C:

 $subprogram$
program p;
const len = 10;
type

pac_10 = packed array [1..10] of char;
string_10 = string [len];

function pass_char_arrays (a: pac_10;
var b: pac_10;

c: string_10;
var d: string_10) : integer;

var
i : integer;
ret_val : integer;

begin
50 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal
ret_val := 0;
for i := 1 to len - 1 do
begin

if (a[i] <> ’a’) then
ret_val := 1;

a[i] := ’z’;
if (b[i] <> ’b’) then

ret_val := 256;
b[i] := ’y’;

end;

for i := 1 to strlen (c) do
begin

if (c[i] <> ’c’) then
ret_val := 65536;

c[i] := ’x’;
end;

for i := 1 to strlen (d) do
begin

if (d[i] <> ’d’) then
ret_val := maxint;

d[i] := ’w’;
end;
pass_char_arrays := ret_val;

end;

function pass_a_string (var a: string) : integer;
var

i : integer;
ret_val : integer;

begin
ret_val := 0;
for i := 1 to strlen (a) do
begin

if (a[i] <> ’x’) then
ret_val := maxint;

a[i] := ’q’;
end;
pass_a_string := ret_val;

end;

begin
end.

The following HP C main program calls the HP Pascal procedure:

 #include <stdio.h>
#include <string.h>
static struct string_10 {

int cur_len;
char chars[10];

};
Chapter 3 51

Calling Other Languages
Comparing HP C and HP Pascal
/* a Pascal routine */
extern int pass_char_arrays (/* pac10,

var pac10,
string_10,
var string[10] */);

main(void)
{

static struct string_10 a, b, c, d;
int ret_val;
strcpy (a.chars, "aaaaaaaaa");
strcpy (b.chars, "bbbbbbbbb");
strcpy (c.chars, "ccccccccc");
c.cur_len = strlen (c.chars);
strcpy (d.chars, "ddddddddd");
d.cur_len = 5;
ret_val = pass_char_arrays (a.chars, b.chars, &c, &d);

printf ("a: %s\n", a.chars); /* prints aaaaaaaaa */
printf ("b: %s\n", b.chars); /* prints yyyyyyyyy */
printf ("c: %s\n", c.chars); /* value parm prints xxxxxxxxx */
printf ("d: %s\n", d.chars); /* prints wwwwwdddd */
printf ("return mask: %d\n", ret_val); /* print 0 */

ret_val = pass_a_string (&c);

printf ("c: %s\n", c.chars); /* prints qqqqqqqqq */
printf ("return mask: %d\n", ret_val); /* print 0 */
return 0;

}

The program produces the following output:

a: aaaaaaaaa
b: yyyyyyyyy
c: xxxxxxxxx
d: wwwwwdddd
return mask: 0
c: qqqqqqqqq
return mask: 0

The routine pass_a_string() expects a generic string (described in Note 6 above), so
you must pass an extra argument. The extra argument consists of a value parameter
containing the maximum length of the char array.

3. HP Pascal routines do not maintain a null byte at the end of HP C strings. HP Pascal
determines the current length of the string by maintaining the length in a 4-byte
integer preceding the character data. When an HP Pascal procedure or function (that
takes as a parameter a string by reference) is called, the following code is necessary if
the Pascal routine modifies the string:

pass_a_string (a, temp); /* From note 2 above */
a.chars[a.cur_len] = '\0';
52 Chapter 3

Calling Other Languages
Comparing HP C and HP Pascal
4. In non-ANSI mode, HP C promotes most float (32-bit) arguments to double (64-bit).
Therefore, all arithmetic using objects defined as float is actually using double code.
Float code is only used when the float objects are stored.

In ANSI mode where function prototypes have been declared with a float parameter,
no automatic promotion is performed. If the prototype is within the current scope,
floats will not be automatically promoted.

To call an HP Pascal routine that expects an argument of type REAL (32-bits), you may
either declare a function prototype in ANSI mode, use the +r command line option in
non-ANSI mode to always pass floats as floats , or declare the actual parameter as a
struct with a float as its only field, such as:

typedef struct {float f;} PASCAL_REAL_ARG;

5. HP Pascal global data can usually only be accessed by HP C if the data is declared at
the outermost level. HP Pascal stores the names of the objects in lowercase letters.

For example, the HP Pascal global:

PROGRAM example;

VAR
PASCAL_GLOBAL: INTEGER;

BEGIN END.

is accessed by HP C with this declaration:

extern int pascal_global;

The Pascal compiler directives $GLOBAL$and $EXTERNAL$can be used to share global data
between HP Pascal and HP C.

The $EXTERNAL$directive should be used to reference C globals from a Pascal subprogram .

The $GLOBAL$ directive should be used to make Pascal globals visible to other languages
such as HP C. It should be used if it is necessary to share globals when calling C functions
from a Pascal program .

Linking HP Pascal Routines on HP-UX

When calling HP Pascal routines, you must include the HP Pascal run-time libraries by
adding the following option to the cc command line:

-lcl

Additionally, the -lm option may be necessary if the Pascal routines use the Pascal
predefined math functions.

For details on linking external libraries, see the -l option of the cc(1) and ld(1)
commands in the HP-UX Reference manual.
Chapter 3 53

Calling Other Languages
Comparing HP C and HP FORTRAN 77
Comparing HP C and HP FORTRAN 77
Table on page 55 shows the differences in storage allocation between HP C and HP
FORTRAN 77. The notes the table refers to are located after the table in the section called
"Notes on HP C and HP FORTRAN 77."

Table 3-2. HP C versus HP FORTRAN 77 Storage

HP C Type HP C Description HP FORTRAN 77 Type HP FORTRAN 77
Description

char , signed char ,
char enum

1 byte, byte aligned 1 byte, 1-byte aligned

unsigned char 1 byte, byte aligned CHARACTER*1 1 byte, 1-byte aligned

short , short enum 2 bytes, 2-byte
aligned

INTEGER*2 2 bytes, 2-byte aligned

unsigned short 2 bytes, 2-byte
aligned

int , int enum 4 bytes, 4-byte
aligned

INTEGER*4 or INTEGER 4 bytes, 4-byte aligned

unsigned int 4 bytes, 4-byte
aligned

long , long enum 4 bytes, 4-byte
aligned

INTEGER*4 or INTEGER 4 bytes, 4-byte aligned

unsigned long 4 bytes, 4-byte
aligned

float 4 bytes, 4-byte
aligned

REAL or REAL*4 4 bytes, 4-byte aligned

double 8 bytes, 8-byte
aligned

REAL*8 or DOUBLE
PRECISION

8 bytes, 8-byte aligned

long double 16 bytes, 16-byte
aligned

REAL*16 16 bytes, 16-byte aligned

(See Note 1) 8 bytes, 4-byte
aligned

COMPLEX or COMPLEX*8 8 bytes, 4-byte aligned

(See Note 2) 16 bytes, 8-byte
aligned

DOUBLE COMPLEX or
COMPLEX*16

16 bytes, 8-byte aligned

enum 4 bytes, 4-byte
aligned

INTEGER*4 or INTEGER 4 bytes, 4-byte aligned

pointer to type long
pointer to type

Not available
54 Chapter 3

Calling Other Languages
Comparing HP C and HP FORTRAN 77
Notes on HP C and HP FORTRAN 77

1. The following HP C structure is equivalent to the HP FORTRAN 77 type listed in the
table:

struct complex {
float real_part;
float imag_part;

};

2. The following HP C structure is equivalent to the HP FORTRAN 77 type listed in the
table:

struct double_complex {
double real_part;
double imag_part;

};

string (char *) CHARACTER*n (See
Note 3)

char array CHARACTER*1 array
(See Notes 4 &5)

(See Note 5) Hollerith array

arrays Size is number of
elements times
element size.
Aligned according
to element type.

(See Note 4) Size is number of
elements times element
size. Aligned according to
element type.

struct (See Note 6) STRUCTURE Used to declare
FORTRAN 77 record
structures.

union (See Note 6) UNION Used to declare
FORTRAN 77 union
types.

short (Used for
logical test)

2 bytes, 2-byte
aligned

LOGICAL*2 (See Note
7)

2 bytes, 2-byte aligned

int (Used for logical
test)

4 bytes, 4-byte
aligned

LOGICAL*4 (See Note
7)

4 bytes, 4-byte aligned

void - Used when calling a
SUBROUTINE

function Used when calling a
FUNCTION

Table 3-2. HP C versus HP FORTRAN 77 Storage

HP C Type HP C Description HP FORTRAN 77 Type HP FORTRAN 77
Description
Chapter 3 55

Calling Other Languages
Comparing HP C and HP FORTRAN 77
3. HP FORTRAN 77 passes strings as parameters using string descriptors corresponding
to the following HP C declarations:

char *char_string; /* points to string */
int len; /* length of string */

4. HP C stores arrays in row-major order, whereas HP FORTRAN 77 stores arrays in
column-major order. The lower bound for HP C is always zero; for HP FORTRAN 77,
the default lower bound is 1.

5. HP C terminates character strings with a null byte, while HP FORTRAN 77 does not.

6. The size is equal to the size of all members plus any padding needed for the alignment.
(See Chapter 2 for details on alignment.) The alignment is that of the member with the
strictest alignment requirement.

7. HP C and HP FORTRAN 77 do not share a common definition of true or false. In HP
FORTRAN 77, logical values are determined by the low-order bit of the high-order byte.
If this bit is 1, the logical value is .TRUE. , and if the bit is zero, the logical value is
.FALSE. . HP C interprets nonzero value as true and interprets zero as false.

Mixing C and FORTRAN File I/O

A FORTRAN unit cannot be passed to a C routine to perform I/O on the associated file. Nor
can a C file pointer be used by a FORTRAN routine. However, a file created by a program
written in either language can be used by a program of the other language if the file is
declared and opened within the latter program. C accesses the file using I/O subroutines
and intrinsics. This method of file access can also be used from FORTRAN instead of
FORTRAN I/O.

Be aware that HP FORTRAN 77 on HP 9000 Series 700/800 computers using HP-UX uses
the unbuffered I/O system calls read and write (described in the HP-UX Reference
manual) for all terminal I/O, magnetic tape I/O, and direct access I/O. It uses the system
calls fread and fwrite for all other I/O. This can cause problems in programs that mix C
and FORTRAN I/O. In particular, C programs that use stdio(3S) output procedures such
as printf and fwrite and FORTRAN output statements must flush stdio buffers (by
calling the libc function fflush) if they are in use before returning to FORTRAN output
or the I/O may be asynchronous (if the library is using write).

Mixing FORTRAN direct, terminal, or tape READ statements with stdio
fread input results in the FORTRAN READ commencing from the beginning of the next
block after the contents of the buffer, not from the current position of the input cursor in
the fread buffer. The same situation in reverse may occur by mixing read with a
FORTRAN sequential disc read. You can avoid these problems by using only the read and
write calls in the C program that the FORTRAN I/O library uses.

Passing Parameters Between HP C and HP FORTRAN 77

All parameters in HP FORTRAN 77 are passed by reference. This means that all
arguments in an HP C call to an HP FORTRAN 77 routine must be pointers. In addition,
all parameters in an HP C routine called from HP FORTRAN 77 must be pointers, unless
the HP FORTRAN 77 code uses the $ALIAS directive to define the parameters as value
parameters. Refer to the example called "HP FORTRAN 77 Nested Structure" later in this
56 Chapter 3

Calling Other Languages
Comparing HP C and HP FORTRAN 77
chapter.

Passing string variables of any length must be done by: building and passing a
two-parameter descriptor (defined in Note 3 above), initializing the string appropriately,
and by passing two arguments. The two arguments are the pointer to the characters and
the value of the length word. This is shown below:

char *chars = "Big Mitt";
int len;

…
len = strlen(chars);

pass_c_string (chars, len);
…

Linking HP FORTRAN 77 Routines on HP-UX

When calling HP FORTRAN 77 routines on an HP-UX system, you have to include the HP
FORTRAN 77 run-time libraries by adding the option:

-lcl

to the cc command line.

For details on linking external libraries, see the -l option of the cc(1) and ld(1)
commands in the HP-UX Reference manual.
Chapter 3 57

Calling Other Languages
Comparing Structured Data Type Declarations
Comparing Structured Data Type Declarations
This section shows how to declare a nested structure in HP C, HP Pascal, and HP
FORTRAN 77.

HP C Nested Structure

struct x {
char y [3];
short z;
char w [5];

};

struct q {
char n;
struc t x v [2];
double u;
char t;

} a;

struct u{
union {

int x;
char y[4];

} uval;
};

HP Pascal Nested Structure

TYPE
x = RECORD

y : PACKED ARRAY [1 .. 3] OF CHAR;
z : SHORTINT;
w : PACKED ARRAY [1 .. 5] OF CHAR;
END;

q = RECORD
n : CHAR;
v : PACKED ARRAY [1 .. 2] OF x;
u : LONGREAL;
t : CHAR;
END;

u = RECORD
CASE
Boolean OF

TRUE : (x : INTEGER);
FALSE: (y : ARRAY[1..4] of CHAR);

END;
VAR a:q;

HP FORTRAN 77 Nested Structure

program main
58 Chapter 3

Calling Other Languages
Comparing Structured Data Type Declarations
structure /x/
character*3 y
integer*2 z
character*5 w

end structure

structure /q/
character n
record /x/ v(2)
real*8 u
character t

end structure

structure /u/
union

map
integer*4 x

end map
map

character*4 y
end map

end union
end structure
Chapter 3 59

Calling Other Languages
Comparing Structured Data Type Declarations
60 Chapter 3

Optimizing HP C Programs
4 Optimizing HP C Programs

This chapter discusses the following:

• When and how to use the optimizer.

• The four levels of optimization.

• Profile-based optimization.

The HP C optimizer transforms programs so machine resources are used more efficiently.
The optimizer can dramatically improve application run-time speed. HP C performs only
minimal optimizations unless you specify otherwise. You activate additional optimizations
using HP C command line options.

There are four major levels of optimization: levels 1, 2, 3, and 4. Level 4 optimization can
produce the fastest executable code. Level 4 is a superset of the other levels.

Additional parameters enable you to control the size of the executable program, compile
time, and aggressiveness of the optimizations performed.

Compile time memory and CPU usage increase with each higher level of optimization due
to the increasingly complex analysis that must be performed. You can control the trade-offs
between compile-time penalties and code performance by choosing the level of optimization
you desire.

Generally, the optimizer is not used during code development. It is used when compiling
production-level code for benchmarking and general use.
Chapter 4 59

Optimizing HP C Programs
Summary of Major Optimization Levels
Summary of Major Optimization Levels
The HP C major optimization options are summarized in Table on page 60.

Table 4-1. HP C Major Optimization Options

Option Description Benefits

+O0
(default)

Constant folding and simple register
assignment.

Compiles fastest.

+O1 Level 0 optimizations plus instruction
scheduling and optimizations that can be
performed on small sections of code.

Produces faster programs than level
0. Compiles faster than level 2.

+O2 or -O Level 1 optimizations, plus optimizations
performed over entire functions in a
single file. Optimizes loops in order to
reduce pipeline stalls. Performs scalar
replacement, and analysis of data-flow,
memory usage, loops and expressions.

Can produce faster run-time code
than level 1 if programs use loops
extensively. Compiles faster than
level 3. Loop-oriented floating point
intensive applications may see run
times reduced by 50%. Operating
system and interactive applications
that use the already optimized
system libraries can achieve 30% to
50% additional improvement.

+O3 Level 2 optimizations, plus full
optimization across all subprograms
within a single file. Includes subprogram
inlining.

Can produce faster run-time code
than level 2 on code that frequently
calls small functions. Links faster
than level 4.

+O4 Level 3 optimizations, plus full
optimizations across the entire
application program. Includes global and
static variable optimization and inlining
across the entire program. Optimizations
are performed at link-time.

Produces faster run-time code than
level 3 if programs use many global
variables or if there are many
opportunities for inlining procedure
calls.
60 Chapter 4

Optimizing HP C Programs
Supporting Optimization Options
Supporting Optimization Options
Table on page 61 shows optimization options that support the core optimization levels.
These optimizations are performed only when specifically invoked. They are available at
all optimization levels.

Table 4-2. Other Supporting Optimizations

Option Description Benefits

+ESfic Replaces millicode calls with inline code. Run-time code is faster because fast
indirect calls are used instead of
millicode calls.

+ESlit Places string literals and constants
defined with the ANSI C const type
qualifier into read-only data storage.

Reduces memory requirements and
improves run-time speed in multi-user
applications. Can improve data-cache
utilization.

+I, +P Enables all profile-based optimizations.
Uses execution profile data to identify the
most frequently executed code paths.
Repositions functions, basic blocks, and
aids other optimizations according to
these frequently executed paths.

Improves code locality and cache hit
rates. Improves efficiency of other
optimizations. Benefits most applications,
especially large applications with
multiple compilation units. May be used
at any optimization level.
Chapter 4 61

Optimizing HP C Programs
Enabling Basic Optimization
Enabling Basic Optimization
To enable basic optimizations, use the -O option (equivalent to +O2), as follows:

cc -O sourcefile .c

Basic optimizations do not change the behavior of ANSI C standard-conforming code. They
improve run-time execution time but only increase compile time and link time by a
moderate amount.
62 Chapter 4

Optimizing HP C Programs
Enabling Different Levels of Optimization
Enabling Different Levels of Optimization
There may be times when you want more or less optimization than what is provided with
the basic -O option.

Level 1 Optimization

To enable level 1 optimization, use the +O1 option, as follows:

cc +O1 sourcefile .c

Level 1 optimization compiles quickly, but still provides some run-time speedup.

Level 2 Optimization

To enable level 2 optimization, use the +O2 option, as follows:

cc +O2 sourcefile .c

Level 2 (equivalent to -O) takes more time to compile, but produces greatly improved
run-time speed.

Level 3 Optimization

To enable level 3 optimization, use the +O3 option, as follows:

cc +O3 sourcefile .c

Level 3 does full optimization of all subprograms within a single file.

Level 4 Optimization

To enable level 4 optimization, use the +O4 option, as follows:

cc +O4 sourcefile .c

Level 4 can potentially produce the greatest improvements in speed by performing
optimizations across multiple object files. Level 4 does optimizations at link time, so
compiles will be faster, but links will be longer.

Depending on the size and number of the modules, compiling at level 4 can consume a
large amount of virtual memory. Level 4 may consume roughly 1.25 megabytes per 1000
lines of noncommented source. When you use level 4 on a large application, it is a good idea
to increase the system swap space. For information on increasing system swap space, see
the book HP System Administration Tasks.
Chapter 4 63

Optimizing HP C Programs
Changing the Aggressiveness of Optimizations
Changing the Aggressiveness of Optimizations
At each level of optimization, you can control the aggressiveness of the optimizations
performed.

Use the +Oconservative option at optimization level 2, 3, or 4 if you are not sure if your
code conforms to standards. This option provides more safety.

Use the +Oaggressive option at optimization level 2, 3, or 4 for best performance when
you are willing to risk changes to the behavior of your programs. Using the +Oaggressive
option can cause your program to have compilation or run-time problems that require
troubleshooting.

Enabling Only Conservative Optimizations
You can enable conservative optimizations at the second, third, or fourth optimization
levels by using the +Oconservative option, as follows:

cc +O2 +Oconservative sourcefile .c

or:

cc +O3 +Oconservative sourcefile .c

or:

cc +O4 +Oconservative sourcefile .c

Conservative optimizations are optimizations that do not change the behavior of code, in
most cases, even if the code does not conform to standards.

Use the conservative optimizations provided with level 2, 3, and 4 when your code is
non-ANSI.

Enabling Aggressive Optimizations
To enable aggressive optimizations at the second, third, or fourth optimization levels,
use the +Oaggressive option as follows:

cc +O2 +Oaggressive sourcefile .c

or:

cc +O3 +Oaggressive sourcefile .c

or:

cc +O4 +Oaggressive sourcefile .c
64 Chapter 4

Optimizing HP C Programs
Removing Compilation Time Limits When Optimizing
Aggressive optimizations are new optimizations or are optimizations that can change the
behavior of programs. These optimizations may do any of the following:

• convert certain library calls to millicode and inline instructions

• cause the inlined routines strcpy() , sqrt() , fabs() , and alloca() to not return the
routine's completion status in ERRNO

• alter exception handling and asynchronous interrupt handling as a result of instruction
scheduling optimization

• cause less precise floating-point results

• cause programs that perform comparisons between pointers to shared memory and
pointers to private memory to run incorrectly

Use aggressive optimizations with stable, well-structured, ANSI-conforming code. These
types of optimizations give you faster code, but are riskier than the default optimizations.

Removing Compilation Time Limits When Optimizing
You can remove optimization time restrictions at the second, third, or fourth optimization
levels by using the +Onolimit option as follows:

cc +O2 +Onolimit sourcefile .c

or:

cc +O3 +Onolimit sourcefile .c

or:

cc +O4 +Onolimit sourcefile .c

By default, the optimizer limits the amount of time spent optimizing large programs at
levels 2, 3, and 4. Use this option if longer compile times are acceptable because you want
additional optimizations to be performed.

Limiting the Size of Optimized Code
You can disable optimizations that expand code size at the second, third, and fourth
optimization levels by using the +Osize suboption, as follows:

cc +O2 +Osize sourcefile .c

or:

cc +O3 +Osize sourcefile .c

or:
Chapter 4 65

Optimizing HP C Programs
Specifying Maximum Optimization
cc +O4 +Osize sourcefile .c

Most optimizations improve execution speed and decrease executable code size. A few
optimizations significantly increase code size to gain execution speed. The +Osize option
disables these code-expanding optimizations.

Use this option if you have limited main memory, swap space, or disk space.

Specifying Maximum Optimization
To get maximum optimization, use:

cc +Oall
Performs maximum optimization.

Use +Oall with stable, well-structured, ANSI-conforming code. These types of
optimizations give you the fastest code, but are riskier than the default optimizations.

You can use +Oall at optimization levels 2, 3, and 4. The default is +Onoall.

The +Oall option by itself (specified without the +02, +03, or +04 options) combines the
+O4 +Oaggressive +Onolimit options. This combination performs aggressive
optimizations with unrestricted compile time at the highest level of optimization.

Combining Optimization Parameters
Optimization parameters that affect code size, compile-time, and the aggressiveness of the
optimizations performed can be combined with a level of optimization.

For example, to specify conservative optimizations at level 2 and disable code-expanding
optimizations, use:

cc +O2 +Oconservative +Osize sourcefile .c

+Olimit and +Osize can be used with either +Oaggressive or +Oconservative .

You cannot use +Oaggressive with +Oconservative .
66 Chapter 4

Optimizing HP C Programs
Summary of Optimization Parameters
Summary of Optimization Parameters

The HP C optimization parameters are summarized in Table on page 67.

Table 4-3. HP C Optimization Parameters

Option What It Does Level of Opt

+O[no]aggressive The +O[no]aggressive option enables optimizations
that can result in significant performance improvement,
but that can change a program's behavior. These
optimizations include newly released optimizations and
the optimizations invoked by the following advanced
optimization options: a

• +Osignedpointers

• +Oregionsched

• +Oentrysched

• +Onofltacc

• +Olibcalls

• +Onoinitcheck

• +Ovectorize

 The default is +Onoaggressive .

2, 3, 4

+O[no]all The +Oall option performs maximum optimization,
including aggressive optimizations and optimizations
that can significantly increase compile time and memory
usage. The default is +Onoall .

4

+O[no]conservative The +O[no]conservative option causes the optimizer to
make conservative assumptions about the code when
optimizing it. Use +Oconservative when conservative
assumptions are necessary due to the coding style, as
with non-standard conforming programs. The
+Oconservative option relaxes the optimizer's
assumptions about the target program. The default is
+Onoconservative .

2, 3, 4

+O[no]info +Oinfo displays informational messages about the
optimization process. This option supports the core
optimization levels, and therefore, can be used at levels
0-4. The default is +Onoinfo .

0, 1, 2, 3, 4

+O[no]limit The +Olimit option suppresses optimizations that
significantly increase compile-time or that can consume a
lot of memory. The +Onolimit option allows
optimizations to be performed regardless of their effect
on compile-time or memory usage. The default is
+Olimit .

2, 3, 4
Chapter 4 67

Optimizing HP C Programs
Profile-Based Optimization
Profile-Based Optimization
Profile-based optimization (PBO) is a set of performance-improving code transformations
based on the run-time characteristics of your application.

There are three steps involved in performing this optimization:

1. Instrumentation - Insert data collection code into the object program.

2. Data Collection - Run the program with representative data to collect execution
profile statistics.

3. Optimization - Generate optimized code based on the profile data.

Invoke profile-based optimization through HP C by using any level of optimization and the
+I and +P options on the cc command line.

Compile times will be fast and link times will be slow when using PBO because code
generation happens at link time.

Instrumenting the Code

To instrument your program, use the +I option as follows:

cc -Aa +I -O -c sample.c
Compile for instrumentation.

cc -o sample.exe +I -O sample.o
Link to make instrumented executable.

The first command line uses the -O option to perform level 2 optimization and instruments
the code. The -c option in the first command line suppresses linking and creates an
intermediate object file called sample.o . The .o file can be used later in the optimization
phase, avoiding a second compile.

The second command line uses the -o option to link sample.o into sample.exe . The +I
option instruments sample.exe with data collection code. Note that instrumented
programs run slower than non-instrumented programs. Only use instrumented code to
collect statistics for profile-based optimization.

+O[no]size The +Osize option suppresses optimizations that
significantly increase code size. The +Onosize option
does not prevent optimizations that can increase code
size. The default is +Onosize .

2, 3, 4

a. See <Undefined Cross-Reference> and the following section for details about advanced
optimization options.

Table 4-3. HP C Optimization Parameters

Option What It Does Level of Opt
68 Chapter 4

Optimizing HP C Programs
Profile-Based Optimization
Collecting Data for Profiling

To collect execution profile statistics, run your instrumented program with representative
data as follows:

sample.exe < input.file1
Collect execution profile data.

sample.exe < input.file2

This step creates and logs the profile statistics to a file, by default called flow.data . The
data collection file is a structured file that may be used to store the statistics from multiple
test runs of different programs that you may have instrumented.

Performing Profile-Based Optimization

To optimize the program based on the previously collected run-time profile statistics,
relink the program as follows:

cc -o sample.exe +P -O sample.o

An alternative to this procedure is to recompile the source file in the optimization step:

cc -o sample.exe +I -0 sample.c
instrumentation

sample.exe < input.file1
data collection

cc -o sample.exe +P -O sample.c
optimization

Maintaining Profile Data Files

Profile-based optimization stores execution profile data in a disk file. By default, this file is
called flow.data and is located in your current working directory.

You can override the default name of the profile data file. This is useful when working on
large programs or on projects with many different program files.

The FLOW_DATA environment variable can be used to specify the name of the profile data
file with either the +I or +P options. The +df command line option can be used to specify
the name of the profile data file when used with the +P option.

The +df option takes precedence over the FLOW_DATA environment variable.

In the following example, the FLOW_DATA environment variable is used to override the
flow.data file name. The profile data is stored instead in /users/profiles/prog.data .

%setenv FLOW_DATA /users/profiles/prog.data
%cc -Aa -c +I +O3 sample.c
%cc -o sample.exe +I +03 sample.o
%sample.exe < input.file1
%cc -o sample.exe +P +03 sample.o

In the next example, the +df option is used to override the flow.data file name with the
name /users/profiles/prog.data .

%cc -Aa -c +I +O3 sample.c
Chapter 4 69

Optimizing HP C Programs
Profile-Based Optimization
%cc -o sample.exe +I +03 sample.o
%sample.exe < input.file1
%mv flow.data /users/profile/prog.data
%cc -o sample.exe +df /users/profiles/prog.data +P +03 sample.o

Maintaining Instrumented and Optimized Program Files

You can maintain both instrumented and optimized versions of a program. You might keep
an instrumented version of the program on hand for development use, and several
optimized versions on hand for performance testing and program distribution.

Care must be taken when maintaining different versions of the executable file because the
instrumented program file name is used as the key identifier when storing execution
profile data in the data file.

The optimizer must know what this key identifier name is in order to find the
execution profile data. By default, the key identifier name used to retrieve the profile
data is the instrumented program file name used to run the program for data collection.

When you optimize a program file and the optimized program file name is different from
the instrumented program file name, you must use the +pgm option. Specify the
instrumented program file name with this option. The optimizer uses this value as the key
identifier to retrieve execution profile data.

In the following example, the instrumented program file name is sample.inst . The
optimized program file name is sample.opt . The +pgm name option is used to pass the
instrumented program name to the optimizer:

%cc -Aa -c +I +O3 sample.c
%cc -o sample.inst +I +03 sample.o
%sample.inst < input.file1
%cc -o sample.opt +P +03 +pgm sample.inst sample.o

Profile-Based Optimization Notes

When using profile-based optimization, please note the following:

• Because the linker performs code generation for profile-based optimization, linking
object files compiled with +I and +P takes more time than linking ordinary object files.
However, compile-times will be relatively fast. This is because the compiler is only
generating the intermediate code.

• Profile-based optimization has a greater impact on application performance at each
higher level of optimization.

• Profile-based optimization should be enabled during the final stages of application
development. To obtain the best performance, re-profile and re-optimize your
application after making source code changes.

• If you use level-4 or profile-based optimization and do not use +DAto generate code for a
specific version of PA-RISC, note that code generation occurs at link time. Therefore,
the system on which you link, rather than compile, determines the object code
generated.

• If you use level-4 or profile-based optimization and do not use +DSto specify instruction
70 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
scheduling, note that instruction scheduling occurs at link time. Therefore, the system
on which you link, rather than compile, determines the implementation of instruction
scheduling.

For more information on profile-based optimization, see the HP-UX Linker and
Libraries Online User Guide .

Controlling Specific Optimizer Features
Most of the time, specifying optimization level 1, 2, 3, or 4 should provide you with the
control over the optimizer that you need. Additional parameters are provided when you
require a finer level of control.

At each level, you can turn on and off specific optimizations using the
+O[no] optimization option. The optimization parameter is the name of a specific
optimization technique described below. The optional prefix [no] disables the specified
optimization.

The following section describes the optimizations that can be turned on or off, their
defaults, and the optimization levels at which they may be used. The options listed in
<Undefined Cross-Reference> are described below.

Table 4-4. HP C Advanced Optimization Options

Option Option

+O[no]dataprefetch +O[no]entrysched

+O[no]fail_safe +O[no]fastaccess

+O[no]fltacc +O[no]global_ptrs_unique

+O[no]initcheck +O[no]inline

+Oinline_budget +O[no]libcalls

+O[no]loop_transform +O[no]loop_unroll

+O[no]moveflops +O[no]parallel

+O[no]parallel_env +O[no]parmsoverlap

+O[no]pipeline +O[no]procelim

+O[no]ptrs_ansi +O[no]ptrs_strongly_type
d

+O[no]ptrs_to_globals +O[no]regionsched

+O[no]regreassoc +O[no]sideeffects

+O[no]signedpointers +O[no]static_prediction

+O[no]vectorize +O[no]volatile
Chapter 4 71

Optimizing HP C Programs
Controlling Specific Optimizer Features
+O[no]dataprefetch

Optimization level(s): 2, 3, 4

Default: +Onodataprefetch

When +Odataprefetch is enabled, the optimizer will insert instructions within innermost
loops to explicitly prefetch data from memory into the data cache. Data prefetch
instructions will be inserted only for data structures referenced within innermost loops
using simple loop varying addresses (that is, in a simple arithmetic progression). It is only
available for PA-RISC 2.0 targets.

The math library contains special prefetching versions of vector routines. If you have a
PA-RISC 2.0 application that contains operations on arrays larger than 1 megabyte in size,
using +Ovectorize in conjunction with +Odataprefetch may improve performance
substantially.

Use this option for applications that have high data cache miss overhead.

+O[no]entrysched

Optimization level(s): 1, 2, 3, 4

Default: +Onoentrysched

The +Oentrysched option optimizes instruction scheduling on a procedure's entry and exit
sequences. Enabling this option can speed up an application. The option has undefined
behavior for applications which handle asynchronous interrupts. The option affects
unwinding in the entry and exit regions.

At optimization level +02 and higher (using dataflow information), save and restore
operations become more efficient.

This option can change the behavior of programs that perform exception-handling or that
handle asynchronous interrupts. The behavior of setjmp() and longjmp() is not affected.

+O[no]fail_safe

Optimization level(s): 1, 2, 3

Default: +Ofail_safe

The +Ofail_safe option allows compilations with internal optimization errors to continue
by issuing a warning message and restarting the compilation at +O0.

You can use +Onofail_safe at optimization levels 1, 2, 3, or 4 when you want the internal
optimization errors to abort your build.

This option is disabled when compiling for parallelization.

+O[no]whole_program_mode

Table 4-4. HP C Advanced Optimization Options

Option Option
72 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
+O[no]fastaccess

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onofastaccess at optimization levels 0, 1, 2 and 3, +Ofastaccess at
optimization level 4

The +Ofastaccess option optimizes for fast access to global data items.

Use +Ofastaccess to improve execution speed at the expense of longer compile times.

+O[no]fltacc

Optimization level(s): 2, 3, 4

Default: +Ofltacc at levels 2, 3, and 4

The +Onofltacc option allows the compiler to perform floating-point optimizations that
are algebraically correct but that may result in numerical differences. In general, these
differences will be insignificant.

The +Onofltacc option also enables the optimizer to generate fused multiply-add (FMA)
instructions. This optimization is enabled by default at optimization level 2 or higher.

Specifying +Ofltacc disables the generation of FMA instructions as well as other
floating-point optimizations. Use +Ofltacc if it is important that the compiler evaluate
floating-point expression according to the order specified by the language standard.

Use the +Onofltacc option at optimization level 2 or higher. If you are optimizing code at
level 2 or higher and do not specify +Onofltacc or +Ofltacc , the optimizer will use FMA
instructions, but will not perform floating-point optimizations that involve expression
reordering.

At optimization level 2 or higher, the optimizer fuses adjacent multiply and add
operations. Fused Multiply-Add (FMA) is implemented by the FMPYFADD and FMPYNFADD
instructions and improves performance but occasionally produces results that may differ
in accuracy from results produced by code without FMA. In general, the differences are
slight.

FMA instructions are only available on PA-RISC 2.0 systems.

The +Ofltacc option disables fusing.

+O[no]global_ptrs_unique [= name1,name2, ...nameN]

Optimization level(s): 2, 3, 4

Default: +Onoglobal_ptrs_unique

Use this option to identify unique global pointers, so that the optimizer can generate more
efficient code in the presence of unique pointers, for example by using copy propagation
and common sub-expression elimination. A global pointer is unique if it does not alias with
any variable in the entire program.

This option supports a comma-separated list of unique global pointer variable names.

Refer to your online HP C Online Reference for examples.
Chapter 4 73

Optimizing HP C Programs
Controlling Specific Optimizer Features
+O[no]initcheck

Optimization level(s): 2, 3, 4

Default: unspecified

The initialization checking feature of the optimizer has three possible states: on, off, or
unspecified. When on (+Oinitcheck), the optimizer initializes to zero any local, scalar,
non-static variables that are uninitialized with respect to at least one path leading to a use
of the variable.

When off (+Onoinitcheck), the optimizer issues warning messages when it discovers
definitely uninitialized variables, but does not initialize them.

When unspecified, the optimizer initializes to zero any local, scalar, non-static variables
that are definitely uninitialized with respect to all paths leading to a use of the variable.

Use +Oinitcheck to look for variables in a program that may not be initialized.

+O[no]inline[= name1, name2, ...nameN]

Optimization level(s): 3, 4

Default: +Oinline

When +Oinline is specified without a name list, any function can be inlined. For inlining to
be successful, follow prototype definition for function calls in the appropriate header file.

When specified with a name list, the named functions are important candidates for
inlining. For example, saying

+Oinline=foo,bar +Onoinline

indicates that inlining be strongly considered for foo and bar ; all other routines will not be
considered for inlining, since +Onoinline is given.

When this option is disabled with a name list, the compiler will not consider the specified
routines as candidates for inlining. For example, saying

+Onoinline=baz,x

indicates that inlining should not be considered for baz and x; all other routines will be
considered for inlining, since +Oinline is the default.

The +Onoinline disables inlining for all functions or a specific list of functions.

Use this option when you need to precisely control which subprograms are inlined. Use of
this option can be guided by knowledge of the frequency with which certain routines are
called and may be warranted by code size concerns.

+Oinline_budget[= n]

Optimization level(s): 3, 4

Default: +Oinline_budget=100

where n is an integer in the range 1 - 1000000 that specifies the level of aggressiveness, as
follows:

• n = 100 Default level of inlining.
74 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
• n > 100 More aggressive inlining. The optimizer is less restricted by compilation time
and code size when searching for eligible routines to inline.

• n = 1 Only inline if it reduces code size.

The +Onolimit and +Osize options also affect inlining. Specifying the +Onolimit option
has the same effect as specifying +Oinline_budget=200. The +Osize option has the same
effect as +Oinline_budget=1 .

Note, however, that the +Oinline_budget option takes precedence over both of these
options. This means that you can override the effect of +Onolimit or +Osize option on
inlining by specifying the +Oinline_budget option on the same compile line.

+O[no]libcalls

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onolibcalls

Use the +Olibcalls option to increase the runtime performance of code which calls
standard library routines in simple contexts. The +Olibcalls option expands the
following library calls inline:

• strcpy()

• sqrt()

• fabs()

• alloca()

Inlining will take place only if the function call follows the prototype definition the
appropriate header file. Fast subprogram linkage is also emitted to tuned millicode
versions of the math library functions sin, cos, tan, atan 2, log, pow,
asin, acos, atan, exp, and log10. (See the HP-UX Floating-Point Guide for the most
up-to-date listing of the math library functions.) The calling code must not expect to access
ERRNO after the function's return.

A single call to printf() may be replaced by a series of calls to putchar() . Calls to
sprintf() and strlen() may be optimized more effectively, including elimination of some
calls producing unused results. Calls to setjmp() and longjmp() may be replaced by their
equivalents _setjmp() and _longjmp() , which do not manipulate the process's signal
mask.

Use +Olibcalls to improve the performance of selected library routines only when you are
not performing error checking for these routines.

Using +Olibcalls with +Ofltacc will give different floating point calculation results than
those given using +Ofltacc without +Olibcalls .

The +Olibcalls option replaces the obsolete -J option.

+O[no]loop_transform

Optimization level(s): 3, 4

Default: +Oloop_transform
Chapter 4 75

Optimizing HP C Programs
Controlling Specific Optimizer Features
The +O[no]loop_transform option enables [disables] transformation of eligible loops for
improved cache performance. The most important transformation is the reordering of
nested loops to make the inner loop unit stride, resulting in fewer cache misses.

+Onoloop_transform may be a helpful option if you experience any problem while using
+Oparallel .

+O[no]loop_unroll[=unroll factor]

Optimization level(s): 2, 3, 4

Default: +Oloop_unroll

The +Oloop_unroll option turns on loop unrolling. When you use +Oloop_unroll , you can
also use the unroll factor to control the code expansion. The default unroll factor is 4, that
is, four copies of the loop body. By experimenting with different factors, you may improve
the performance of your program.

+O[no]moveflops

Optimization level(s): 2, 3, 4

Default: +Omoveflops

Allows [or disallows] moving conditional floating point instructions out of loops. The
+Onomoveflops option replaces the obsolete +OE option. The behavior of floating-point
exception handling may be altered by this option.

Use +Onomoveflops if floating-point traps are enabled and you do not want the behavior of
floating-point exceptions to be altered by the relocation of floating-point instructions.

+O[no]parallel

Optimization level(s): 3, 4

Default: +Onoparallel

When a program is compiled with the +Oparallel option, the compiler looks for
opportunities for parallel execution in loops and generates parallel code to execute the loop
on the number of processors set by the MP_NUMBER_OF_THREADS environment variable
discussed in the section "Parallel Execution" at the end of this chapter.

If a program made of multiple files has any of its files compiled with the +Oparallel
option, then the remaining files must be compiled with either the +Oparallel or
+O[no]parallel_env option. The reason for the +Oparallel_env option is to ensure a
consistent execution environment for all files in the program, including those that you do
not want compiled for parallel execution.

+O[no]parallel (continued)

+Onoloop_transform and +Onoinline may be helpful options if you experience any
problem while using +Oparallel .

You may use +Oparallel at optimization levels 3 and 4. The default is +Onoparallel at
levels 0-4. +Oparallel disables +Ofailsafe .
76 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
Parallelization is incompatible with the prof tool, so the -p option is disabled by
+Oparallel . Parallelization is compatible with gprof . Special *crt0.o startup files are
required for programs compiled for a parallel environment. The parallel runtime library,
libmp.a , must be linked in.

For additional information, see the section "Parallel Execution" at the end of this chapter.

+O[no]parallel_env

Optimization level(s): 3, 4

Default: +O[no]parallel_env

Use +Oparallel_env to compile code to work in a parallelized program, but without
parallelizing loops. The +Oparallel_env option (used in association with the +Oparallel
option) ensures a consistent execution environment for all files in the program, including
those that you do not want compiled for parallel execution.

For additional information, see the section "Parallel Execution" at the end of this chapter.

+O[no]parmsoverlap

Optimization level(s): 2, 3, 4

Default: +Oparmsoverlap

The +Oparmsoverlap option optimizes with the assumption that the actual arguments of
function calls overlap in memory.

The +Onoparmsoverlap option replaces the obsolete +Om1 option.

Use +Onoparmsoverlap if C programs have been literally translated from FORTRAN
programs.

+O[no]pipeline

Optimization level(s): 2, 3, 4

Default: +Opipeline

Enables [or disables] software pipelining. The +Onopipeline option replaces the obsolete
+Os option.

Use +Onopipeline to conserve code space.

+O[no]procelim

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onoprocelim at levels 0-3, +Oprocelim at level 4

When +Oprocelim is specified, procedures that are not referenced by the application are
eliminated from the output executable file. The +Oprocelim option reduces the size of the
executable file, especially when optimizing at levels 3 and 4, at which inlining may have
removed all of the calls to some routines.
Chapter 4 77

Optimizing HP C Programs
Controlling Specific Optimizer Features
When +Onoprocelim is specified, procedures that are not referenced by the application are
not eliminated from the output executable file.

The default is +Onoprocelim at levels 0-3, and +Oprocelim at level 4.

If the +Oall option is enabled, the +Oprocelim option is enabled.

+O[no]ptrs_ansi

Optimization level(s): 2, 3, 4

Default: +Onoptrs_ansi

Use +Optrs_ansi to make the following two assumptions, which the more aggressive
+Optrs_strongly_typed does not make:

• An int *p is assumed to point to an int field of a struct or union.

• char * is assumed to point to any type of object.

When both are specified, +Optrs_ansi takes precedence over +Optrs_strongly_typed .

For more information about type aliasing see the section "Aliasing Options" later in this
chapter.

+O[no]ptrs_strongly_typed

Optimization level(s): 2, 3, 4

Default: +Onoptrs_strongly_typed

Use +Optrs_strongly_typed when pointers are type-safe. The optimizer can use this
information to generate more efficient code.

Type-safe (that is, strongly-typed) pointers are pointers to a specific type that only point to
objects of that type, and not to objects of any other type. For example, a pointer declared as
a pointer to an int is considered type-safe if that pointer points to an object only of type
int , but not to objects of any other type.

Based on the type-safe concept, a set of groups are built based on object types. A given
group includes all the objects of the same type.

The term type-inferred aliasing is a concept which means any pointer of a type in a
given group (of objects of the same type) can only point to any object from the same group;
it can not point to a typed object from any other group.

For more information about type aliasing see the section "Aliasing Options" later in this
chapter.

Type casting to a different type violates type-inferring aliasing rules. See Example 2 below.

Dynamic casting is allowed. See Example 3 below.

+O[no]ptrs_strongly_typed (continued)

For finer detail, see the "[NO]PTRS_STRONGLY_TYPED pragma" section later in this
chapter..

Example 1: How Data Types Interact
78 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
The optimizer generally spills all global data from registers to memory before any
modification to global variables or any loads through pointers. However, you can instruct
the optimizer on how data types interact so that it can generate more efficient code.

If you have the following:

1 int *p;
2 float *q;
3 int a,b,c;
4 float d,e,f;
5 foo()
6 {
7 for (i=1;i<10;i) {
8 d=e
9 *p=..
10 e=d+f;
11 f=*q;
12 }
13 }

With +Onoptrs_strongly_typed turned on, the pointers p and q will be assumed to be
disjoint because the types they point to are different types. Without type-inferred aliasing,
*p is assumed to invalidate all the definitions. So, the use of d and f on line 10 have to be
loaded from memory. With type-inferred aliasing, the optimizer can propagate the copy of d
and f and thus avoid two loads and two stores.

This option can be used for any application involving the use of pointers, where those
pointers are type safe. To specify when a subset of types are type-safe, use the
[NO]PTRS_STRONGLY_TYPED pragma. The compiler issues warnings for any
incompatible pointer assignments that may violate the type-inferred aliasing rules
discussed in "Aliasing Options" later in this chapter.

Example 2: Unsafe Type Cast

Any type cast to a different type violates type-inferred aliasing rules. Do not use
+Optrs_strongly_typed with code that has these "unsafe" type casts. Use the
[NO]PTRS_STRONGLY_TYPED pragma to prevent the application of type-inferred
aliasing to the unsafe type casts.

struct foo{
int a;
int b;

} *P;

struct bar {
float a;
int b;
float c;

} *q;

P = (struct foo *) q;
/* Incompatible pointer assignment
through type cast */

Example 3: Generally Applying Type Aliasing
Chapter 4 79

Optimizing HP C Programs
Controlling Specific Optimizer Features
Dynamic cast is allowed with +Optrs_strongly_typed or +Optrs_ansi . A pointer
dereference is called dynamic cast if a cast is applied on the pointer to a different type.

In the example below, type-inferred aliasing is applied on P generally, not just to the
particular dereference. Type-aliasing will be applied to any other dereferences of P.

struct s {
short int a;
short int b;
int c;

} *P
* (int *)P = 0;

For more information about type aliasing see the section "Aliasing Options" at the end of
this chapter.

+O[no]ptrs_to_globals[= name1, name2, ...nameN]

Optimization level(s): 2, 3, 4

Default: +Optrs_to_globals

By default global variables are conservatively assumed to be modified anywhere in the
program. Use this option to specify which global variables are not modified through
pointers, so that the optimizer can make your program run more efficiently by
incorporating copy propagation and common sub-expression elimination.

This option can be used to specify all global variables as not modified via pointers, or to
specify a comma-separated list of global variables as not modified via pointers.

Note that the on state for this option disables some optimizations, such as aggressive
optimizations on the program's global symbols.

For example, use the command line option +Onoptrs_to_globals=a,b,c to specify global
variables a, b, and c as not being accessed through pointers. No pointer can access these
global variables. The optimizer will perform copy propagation and constant folding
because storing to *p will not modify a or b.

int a, b, c;
float *p;
foo()
{

a = 10;
b = 20;

*p = 1.0;
c = a + b;

}

If all global variables are unique, use the following option without listing the global
variables:

+Onoptrs_to_globals

In the example below, the address of b is taken. This means b can be accessed indirectly
through the pointer. You can still use +Onoptrs_to_globals as: +Onoptrs_to_globals
+Optrs_to_globals=b .

int b,c;
80 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
int *p;

p=b;

foo()

For more information about type aliasing see the section "Aliasing Options" at the end of
this chapter.

+O[no]regionsched

Optimization level(s): 2, 3, 4

Default: +Onoregionsched

Applies aggressive scheduling techniques to move instructions across branches. This
option is incompatible with the linker -z option. If used with -z , it may cause a SIGSEGV
error at run-time.

Use +Oregionsched to improve application run-time speed. Compilation time may
increase.

+O[no]regreassoc

Optimization level(s): 2, 3, 4

Default: +Oregreassoc

If disabled, this option turns off register reassociation.

Use +Onoregreassoc to disable register reassociation if this optimization hinders the
optimized application performance.

+O[no]sideeffects=[name1, name2, ...nameN]

Optimization level(s): 2, 3, 4

Default: assume all subprograms have side effects

Assume that subprograms specified in the name list might modify global variables.
Therefore, when +Osideeffects is enabled the optimizer limits global variable
optimization.

The default is to assume that all subprograms have side effects unless the optimizer can
determine that there are none.

Use +Onosideeffects if you know that the named functions do not modify global
variables and you wish to achieve the best possible performance.

+O[no]signedpointers

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onosignedpointers

Perform [or do not perform] optimizations related to treating pointers as signed quantities.
Applications that allocate shared memory and that compare a pointer to shared memory
Chapter 4 81

Optimizing HP C Programs
Controlling Specific Optimizer Features
with a pointer to private memory may run incorrectly if this optimization is enabled.

Use +Osignedpointers to improve application run-time speed.

+O[no]static_prediction

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onostatic_prediction

+Ostatic_prediction turns on static branch prediction for PA-RISC 2.0 targets.

PA-RISC 2.0 has two means of predicting which way conditional branches will go: dynamic
branch prediction and static branch prediction. Dynamic branch prediction uses a
hardware history mechanism to predict future executions of a branch from its last three
executions. It is transparent and quite effective unless the hardware buffers involved are
overwhelmed by a large program with poor locality.

With static branch prediction on, each branch is predicted based on implicit hints encoded
in the branch instruction itself; the dynamic branch prediction is not used.

Static branch prediction's role is to handle large codes with poor locality for which the
small dynamic hardware facility will prove inadequate.

Use +Ostatic_prediction to better optimize large programs with poor instruction
locality, such as operating system and database code.

Use this option only when using PBO, as an amplifier to +P. It is allowed but silently
ignored with +I , so makefiles need not change between the +I and +P phases.

+O[no]vectorize

Optimization level(s): 0, 1, 2, 3, 4

Default: +Onovectorize

+Ovectorize allows the compiler to replace certain loops with calls to vector routines.

Use +Ovectorize to increase the execution speed of loops.

When +Onovectorize is specified, loops are not replaced with calls to vector routines.

Because the +Ovectorize option may change the order of operations in an application, it
may also change the results of those operations slightly. See the HP-UX Floating-Point
Guide for details.

The math library contains special prefetching versions of vector routines. If you have a
PA2.0 application that contains operations on very large arrays (larger than 1 megabyte in
size), using +Ovectorize in conjunction with +Odataprefetch may improve performance
substantially.

You may use +Ovectorize at levels 3 and 4. +Onovectorize is also included as part of
+Oaggressive and +Oall .

This option is only valid for PA-RISC 1.1 and 2.0 systems.
82 Chapter 4

Optimizing HP C Programs
Controlling Specific Optimizer Features
+O[no]volatile

Optimization level(s): 1, 2, 3, 4

Default: +Onovolatile

The +Ovolatile option implies that memory references to global variables cannot be
removed during optimization.

The +Onovolatile option implies that all globals are not of volatile class. This means
that references to global variables can be removed during optimization.

The +Ovolatile option replaces the obsolete +OV option.

Use this option to control the volatile semantics for all global variables.

+O[no]whole_program_mode

Optimization level(s): 4

Default: +Onowhole_program_mode

The +Owhole_program_mode option enables the assertion that only the files that are
compiled with this option directly reference any global variables and procedures that are
defined in these files. In other words, this option asserts that there are no unseen accesses
to the globals.

When this assertion is in effect, the optimizer can hold global variables in registers longer
and delete inlined or cloned global procedures.

All files compiled with +Owhole_program_mode must also be compiled with +O4. If any of
the files were compiled with +O4 but were not compiled with +Owhole_program_mode , the
linker disables the assertion for all files in the program.

The default, +Onowhole_program_mode , disables the assertion.

Use this option to increase performance speed, but only when you are certain that only the
files compiled with +Owhole_program_mode directly access any globals that are defined in
these files.
Chapter 4 83

Optimizing HP C Programs
Using Advanced Optimization Options
Using Advanced Optimization Options
Several advanced optimization options can be specified on the same command line. For
example, the following command line specifies aggressive level 3 optimizations with
unrestricted compile time, disables software pipelining, and disables moving conditional
floating-point instructions out of a loop:

cc +O3 +Oaggressive +Onolimit +Onomoveflops +Onopipeline \
sourcefile.c

Specify the level of optimization first (+O1, +O2, +O3, or +04), followed by any
+O[no]optimization options.
84 Chapter 4

Optimizing HP C Programs
Level 1 Optimization Modules
Level 1 Optimization Modules

The level 1 optimization modules are:

• Branch optimization.

• Dead code elimination.

• Faster register allocation.

• Instruction scheduler.

• Peephole optimization.

The examples in this section are shown at the source code level wherever possible.
Transformations that cannot be shown at the source level are shown in assembly
language. See <Undefined Cross-Reference> for descriptions of the assembly language
instructions used.

Branch Optimization

The branch optimization module traverses the procedure and transforms branch
instruction sequences into more efficient sequences where possible. Examples of possible
transformations are:

• Deleting branches whose target is the fall-through instruction; that is, the target is two
instructions away.

• When the target of a branch is an unconditional branch, changing the target of the first
branch to be the target of the second unconditional branch.

• Transforming an unconditional branch at the bottom of a loop, branching to a
conditional branch at the top of the loop, into a conditional branch at the bottom of the
loop.

• Changing an unconditional branch to the exit of a procedure into an exit sequence
where possible.

• Changing conditional or unconditional branch instructions that branch over a single
instruction into a conditional nullification in the following instruction.

• Looking for conditional branches over unconditional branches, where the sense of the
first branch could be inverted and the second branch deleted. These result from null
then clauses and from then clauses that only contain goto statements. For example,
the code:

if(a) {
⋮

statement 1
} else {

goto L1;
}
statement 2

L1:
Chapter 4 85

Optimizing HP C Programs
Level 1 Optimization Modules
becomes:

if(!a) {
goto L1;

}
statement 1
statement 2

L1:

Dead Code Elimination

The dead code elimination module removes unreachable code that is never executed.

For example, the code:

if(0) {
a = 1;

} else {
a = 2;

becomes:

a = 2;

Faster Register Allocation

The faster register allocation module, used with unoptimized code, analyzes register use
faster than the coloring register allocator (a level 2 module).

This module performs the following:

• Inserts entry and exit code.

• Generates code for operations such as multiplication and division.

• Eliminates unnecessary copy instructions.

• Allocates actual registers to the dummy registers in instructions.

Instruction Scheduler

The instruction scheduler module performs the following:

• Reorders the instructions in a basic block to improve memory pipelining. For example,
where possible, a load instruction is separated from the use of the loaded register.

• Where possible, follows a branch instruction with an instruction that can be executed as
the branch occurs.

• Schedules floating-point instructions.

For example, the code:

LDW -52(0,30),r1
ADDI 3,r1,r31 ;interlock with load of r1
LDI 10,r19

becomes:
86 Chapter 4

Optimizing HP C Programs
Level 1 Optimization Modules
LDW -52(0,sp),r1
LDI 10,r19
ADDI 3,r1,r31 ;use of r1 is now separated from load

Peephole Optimizations

The peephole optimization process involves looking at small windows of machine code for
optimization opportunities. Wherever possible, the peephole optimizer replaces assembly
language instruction sequences with faster (usually shorter) sequences, and removes
redundant register loads and stores.

For example, the code:

LDI 32,r3
AND r1,r3,r2
COMIB,= 0,r2,L1

becomes:

BB,>= r1, 26, L1

Table 4-5. Descriptions of Assembly Language Instructions

Instruction Description

LDWoffset(sr, base), target Loads a word from memory into register target.

ADDI const, reg, target Adds the constant const to the contents of register reg and puts the
result in register target.

LDI const, target Loads the constant const into register target.

LDOconst(reg),target Adds the constant const to the contents of register reg and puts the
result in register target.

ANDreg1, reg2, target Performs a bitwise AND of the contents of registers reg1 and reg2
and puts the result in register target.

COMIBcond const, reg, lab Compares the constant const to the contents of register reg and
branches to label lab if the condition cond is true.

BBcond reg,num,lab Tests the bit number num in the contents of register reg and
branches to label lab if the condition cond is true.

COPYreg, target Copies the contents of register reg to register target.

STWreg, offset(sr, base) Store the word in register reg to memory.
Chapter 4 87

Optimizing HP C Programs
Level 2 Optimization Modules
Level 2 Optimization Modules
Level 2 performs optimizations within each procedure. At level 2, the optimizer performs
all optimizations performed at the prior level, with the following additions:

• FMAC synthesis.

• Coloring register allocation.

• Induction variable elimination and strength reduction.

• Local and global common subexpression elimination.

• Advanced constant folding and propagation. (Simple constant folding is done by level 0
optimization.)

• Loop invariant code motion.

• Store/copy optimization.

• Unused definition elimination.

• Software pipelining.

• Register reassociation.

• Loop unrolling.

The examples in this section are shown at the source code level wherever possible.
Transformations that cannot be shown at the source level are shown in assembly
language.

Coloring Register Allocation

The name of this optimization comes from the similarity to map coloring algorithms in
graph theory. This optimization determines when and how long commonly used variables
and expressions occupy a register. It minimizes the number of references to memory (loads
and stores) a code segment makes. This can improve run-time speed.

You can help the optimizer understand when certain variables are heavily used within a
function by declaring these variables with the register qualifier. The first 10 register
qualified variables encountered in the source are honored. You should pick the ten most
important variables to be most effective.

The coloring register allocator may override your choices and promote to a register a
variable not declared register over one that is, based on estimated speed improvements.

The following code shows the type of optimization the coloring register allocation module
performs. The code:

LDI 2,r104
COPY r104,r103
LDO 5(r103),r106
COPY r106,r105
LDO 10(r105),r107
88 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules
becomes:

LDI 2,r25
LDO 5(r25),r26
LDO 10(r26),r31

Induction Variables and Strength Reduction

The induction variables and strength reduction module removes expressions that are
linear functions of a loop counter and replaces each of them with a variable that contains
the value of the function. Variables of the same linear function are computed only once.
This module also simplifies the function by replacing multiplication instructions with
addition instructions wherever possible.

For example, the code:

for (i=0; i<25; i) {
r[i] = i * k;

}

becomes:

t1 = 0;
for (i=0; i<25; i) {

r[i] = t1;
t1 += k;

}

Local and Global Common Subexpression Elimination

The common subexpression elimination module identifies expressions that appear more
than once and have the same result, computes the result, and substitutes the result for
each occurrence of the expression. The types of subexpression include instructions that
load values from memory, as well as arithmetic evaluation.

For example, the code:

a = x + y + z;
b = x + y + w;

becomes:

t1 = x + y;
a = t1 + z;
b = t1 + w;

Constant Folding and Propagation

Constant folding computes the value of a constant expression at compile time. For
example:

A = 10;
B = A + 5;
C = 4 * B;

can be replaced by:
Chapter 4 89

Optimizing HP C Programs
Level 2 Optimization Modules
A = 10;
B = 15;
C = 60;

Loop Invariant Code Motion

The loop invariant code motion module recognizes instructions inside a loop whose results
do not change and moves them outside the loop. This ensures that the invariant code is
only executed once.

For example, the code:

x = z;
for(i=0; i<10; i)
{

a[i] = 4 * x + i;
}

becomes:

x = z;
t1 = 4 * x;
for(i=0; i<10; i)
{

a[i] = t1 + i;
}

Store/Copy Optimization

Where possible, the store/copy optimization module substitutes registers for memory
locations, by replacing store instructions with copy instructions and deleting load
instructions.

For example, the following HP C code:

a = x + 23;
where a is a local variable

return a;

produces the following code for the unoptimized case:

LDO 23(r26),r1
STW r1,-52(0,sp)
LDW -52(0,sp),ret0

and this code for the optimized case:

LDO 23(r26),ret0

Unused Definition Elimination

The unused definition elimination module removes unused memory location and register
definitions. These definitions are often a result of transformations made by other
optimization modules.

For example, the function:
90 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules
f(int x)
{

int a,b,c:

a = 1;
b = 2;
c = x * b;
return c;

}

becomes:

f(int x)
{

int a,b,c;

b = 2;
c = x * b;
return c;

}

Software Pipelining

Software pipelining is a code transformation that optimizes program loops. It rearranges
the order in which instructions are executed in a loop. It generates code that overlaps
operations from different loop iterations. Software pipelining is useful for loops that
contain arithmetic operations on floats and doubles.

The goal of this optimization is to avoid CPU stalls due to memory or hardware pipeline
latencies. The software pipelining transformation adds code before and after the loop to
achieve a high degree of optimization within the loop.

Example

The following pseudo-code fragment shows a loop before and after the software pipelining
optimization. Four significant things happen:

• A portion of the first iteration of the loop is performed before the loop.

• A portion of the last iteration of the loop is performed after the loop.

• The loop is unrolled twice.

• Operations from different loop iterations are interleaved with each other.

The following is a C for loop:

#define SIZ 10000
float x[SIZ], y[SIZ]; *Software pipelining works with*\
int i; *floats and doubles. *\
init();
for (i = 0;i<= SIZ;i++);

{
x[i] =x[i] / y[i] + 4.00
}

When this loop is compiled with software pipelining, the optimization can be expressed in
Chapter 4 91

Optimizing HP C Programs
Level 2 Optimization Modules
pseudo-code as follows:

R1 = 0;
Initialize array index.

R2 = 4.0;
Load constant value.

R3 = Y[0];
Load first Y value.

R4 = X[0];
Load first X value.

R5 = R4 / R3;
Perform division on first element:n = X[0] / Y[0].

do {
Begin loop.

R6 = R1;
Save current array index.

R1++;
Increment array index.

R7 = X[R1];
Load current X value.

R8 = Y[R1];
Load current Y value.

R9 = R5 + R2;
Perform addition on prior row:X[i] = n + 4.0.

R10 = R7 / R8;
Perform division on current row:m = X[i+1] / Y[i+1].

X[R6] = R9;
Save result of operations on prior row.

R6 = R1;
Save current array index.

R1++;
Increment array index.

R4 = X[R1];
Load next X value.

R3 = Y[R1];
Load next Y value.

R11 = R10 + R2;
Perform addition on current row:X[i+1] = m + 4

R5 = R4 / R3;
Perform division on next row:n = X[i+2] / Y[i+2]
92 Chapter 4

Optimizing HP C Programs
Level 2 Optimization Modules
X[R6] = R11
Save result of operations on current row.

} while (R1 <= 100);
End loop.

R9 = R5 + R2;
Perform addition on last row:X[i+2] = n + 4

X[R6] = R9;
Save result of operations on last row.

This transformation stores intermediate results of the division instructions in unique
registers (noted as n and m). These registers are not referenced until several instructions
after the division operations. This decreases the possibility that the long latency period of
the division instructions will stall the instruction pipeline and cause processing delays.

Prerequisites of Pipelining

Software pipelining is attempted on a loop that meets the following criteria:

• It is the innermost loop.

• There are no branches or function calls within the loop.

• The loop is of moderate size.

This optimization produces slightly larger program files and increases compile time. It is
most beneficial in programs containing loops that are executed a large number of times.
This optimization is not recommended for loops that are executed only a small number of
times.

Use the +Onopipeline option with the +O2, +O3, or +O4 option to suppress software
pipelining if program size is more important than execution speed. This will perform level
two optimization, but disable software pipelining.

Register Reassociation

Array references often require one or more instructions to compute the virtual memory
address of the array element specified by the subscript expression. The register
reassociation optimization implemented in the PA-RISC compilers tries to reduce the cost
of computing the virtual memory address expression for array references found in loops.

Within loops, the virtual memory address expression can be rearranged and separated into
a loop varying term and a loop invariant term. Loop varying terms are those items whose
values may change from one iteration of the loop to another. Loop invariant terms are
those items whose values are constant throughout all iterations of the loop. The loop
varying term corresponds to the difference in the virtual memory address associated
with a particular array reference from one iteration of the loop to the next.

The register reassociation optimization dedicates a register to track the value of the
virtual memory address expression for one or more array references in a loop and updates
the register appropriately in each iteration of a loop.
Chapter 4 93

Optimizing HP C Programs
Level 2 Optimization Modules
The register is initialized outside the loop to the loop invariant portion of the virtual
memory address expression and the register is incremented or decremented within the
loop by the loop variant portion of the virtual memory address expression. On PA-RISC,
the update of such a dedicated register can often be performed for "free" using the
base-register modification capability of load and store instructions.

The net result is that array references in loops are converted into equivalent but more
efficient pointer dereferences.

For example:

int a[10][20][30];

void example (void)
{

int i, j, k;

for (k = 0; k < 10; k++)
for (j = 0; j < 10; j++)

for (i = 0; i < 10; i++)
{

a[i][j][k] = 1;
}

}

after register reassociation is applied to the innermost loop becomes:

int a[10][20][30];

void example (void)
{

int i, j, k;
register int (*p)[20][30];

for (k = 0; k < 10; k++)
for (j = 0; j < 10; j++)

for (p = (int (*)[20][30]) a[0][j][k] , i = 0; i < 10; i++)
{

*(p++[0][0]) = 1;
}

}

In the above example, the compiler-generated temporary register variable, p, strides
through the array a in the innermost loop. This register pointer variable is initialized
outside the innermost loop and auto-incremented within the innermost loop as a
side-effect of the pointer dereference.

Register reassociation can often enable another loop optimization. After performing the
register reassociation optimization, the loop variable may be needed only to control the
iteration count of the loop. If this is case, the original loop variable can be eliminated
altogether by using the PA-RISC ADDIB and ADDB machine instructions to control the loop
iteration count.
94 Chapter 4

Optimizing HP C Programs
Level 3 Optimizations
Level 3 Optimizations
Level 3 optimization includes level 2 optimizations, plus full optimization across all
subprograms within a single file. Level 3 also inlines certain subprograms within the input
file. Use +O3 to get level 3 optimization.

Level 3 optimization produces faster run-time code than level 2 on code that frequently
calls small functions within a file. Level 3 links faster than level 4.

Inlining within a Single Source File

Inlining substitutes functions calls with copies of the function's object code. Only functions
that meet the optimizer's criteria are inlined. This may result in slightly larger executable
files. However, this increase in size is offset by the elimination of time-consuming
procedure calls and procedure returns.

Example of Inlining

The following is an example of inlining at the source code level. Before inlining, the source
file looks like this:

/* Return the greatest common divisor of two positive integers, */
/* int1 and int2, computed using Euclid's algorithm. (Return 0 */
/* if either is not positive.) */
int gcd(int1,int2)

int int1;
int int2;

{
int inttemp;

if ((int1 < = 0) || (int2 < = 0)) {
return(0);

}
do {

if (int1 < int2) {
inttemp = int1;
int1 = int2;
int2 = inttemp;

}
int1 = int1 - int2;

} while (int1 > 0);
return(int2);

}

main()
{

int xval,yval,gcdxy;
/* statements before call to gcd */
gcdxy = gcd(xval,yval);
/* statements after call to gcd */

}

Chapter 4 95

Optimizing HP C Programs
Level 3 Optimizations
After inlining, the source file looks like this:

main()
{

int xval,yval,gcdxy;
/* statements before inlined version of gcd */
{

int int1;
int int2;

int1 = xval;
int2 = yval;
{

int inttemp;

if ((int1 < = 0) || (int2 < = 0)) {
gcdx y = (0);
goto AA003;

}
do {

if (int1 < int2) {
inttemp = int1;
int1 = int2;
int2 = inttemp;

}
int1 = int1 - int2;

} while (int 1 > 0);
gcdx y = (int2);

}
}

AA003 : ;
/* statements after inlined version of gcd */

}

96 Chapter 4

Optimizing HP C Programs
Level 4 Optimizations
Level 4 Optimizations
Level 4 performs optimizations across all files in a program. At level 4, all optimizations of
the prior levels are performed. Two additional optimizations are performed:

• Inlining across multiple source files.

• Global and static variable optimization.

Interprocedural global optimizations across all files within a program searches across
function boundaries to produce better and faster code sequences. Normally, global
optimizations are performed within individual functions or source code files.
Interprocedural optimizations look at function interactions within a program and
transform particular code sequences into faster code. Since information about every
function within a program is required, this level of optimization must be performed at link
time.

Inlining Across Multiple Files

Inlining at Level 4 is performed across all procedures within the program. Inlining at level
3 is done within one file.

Inlining substitutes function calls with copies of the function's object code. Only functions
that meet the optimizer's criteria are inlined. This may result in slightly larger executable
files. However, this increase in size is offset by the elimination of time-consuming
procedure calls and procedure returns.

Global and Static Variable Optimization

Global and static variable optimizations look for ways to reduce the number of instructions
required for accessing global and static variables. The compiler normally generates two
machine instructions when referencing global variables. Depending on the locality of the
global variables, single machine instructions may sometimes be used to access these
variables. The linker rearranges the storage location of global and static data to increase
the number of variables that can be referenced by single instructions.

Global Variable Optimization Coding Standards

Since this optimization rearranges the location and data alignment of global variables,
avoid the following programming practices:

• Making assumptions about the relative storage location of variables, such as generating
a pointer by adding an offset to the address of another variable.

• Relying on pointer or address comparisons between two different variables.

• Making assumptions about the alignment of variables, such as assuming that a short
integer is aligned the same as an integer.
Chapter 4 97

Optimizing HP C Programs
Guidelines for Using the Optimizer
Guidelines for Using the Optimizer
The following guidelines help you effectively use the optimizer and write efficient HP C
programs.

1. Use register variables where needed.

2. Hash table sizes should be in powers of 2; field sizes of variables should also be in
powers of 2.

3. Where possible, use local variables to help the optimizer promote variables to registers.

4. When using short or char variables or bit-fields, it is more efficient to use unsigned
variables rather than signed because a signed variable causes an extra instruction to be
generated.

5. The code generated for a test for a loop termination is more efficient with a test against
zero than for a test against some other value. Therefore, where possible, construct loops
so the control variable increases or decreases towards zero.

6. Do loops and for loops are more efficient than while loops because opportunities for
removing loop invariant code are greater.

7. Whenever possible, pass and return pointers to large structs instead of passing and
returning large structs by value.

8. Do shift, multiplication, division, or remainder operations using constants instead of
variables whenever possible.

9. Insure all local variables are initialized before they are used.

10.Use type checking tools like lint to help eliminate semantic errors.
98 Chapter 4

Optimizing HP C Programs
Optimizer Assumptions
Optimizer Assumptions
During optimization, the compiler gathers information about the use of variables and
passes this information to the optimizer. The optimizer uses this information to ensure
that every code transformation maintains the correctness of the program, at least to the
extent that the original unoptimized program is correct.

When gathering this information, the HP C compiler makes the following assumption:
while inside a function, the only variables that can be accessed indirectly through a
pointer or by another function call are:

• Global variables, that is, all variables with file scope.

• Local variables that have had their addresses taken either explicitly by the & operator,
or implicitly by the automatic conversion of array references to pointers.

In general, you do not need to be concerned about this assumption. Standard
conformant C programs do not violate this assumption. However, if you have code that
does violate this assumption, the optimizer can change the behavior of the program in
an undesired way. In particular, you should avoid the following coding practices to
ensure correct program execution for optimized code:

• Avoid referencing outside the bounds of an array.

• Avoid passing incorrect number of arguments to functions.

• Avoid accessing an array other than the one being subscripted. For example, the
construct a[b-a] where a and b are the same type of array actually references the array
b, because it is equivalent to *(a+(b- a)) , which is equivalent to *b . Using this
construct might yield unexpected optimization results.

• Avoid referencing outside the bounds of the objects a pointer is pointing to. All
references of the form *(p+i) are assumed to remain within the bounds of the variable
or variables that p was assigned to point to.

• Avoid using variables that are accessed by external processes. Unless a variable is
declared with the volatile attribute, the compiler will assume that a program's data
structures are accessed only by that program. Using the volatile attribute may
significantly slow down a program.

• Avoid using local variables before they are initialized. When you request optimization
level 2, 3, or 4, the compiler tries to detect and flag violations of this rule.

• Avoid relying on the memory layout scheme when manipulating pointers; incorrect
optimizations may result. For example, if p is pointing to the first member of structure ,
it should not be assumed that p1 points to the second member of the structure. Another
example: if p is pointing to the first in a list of declared variables, p1 should not be
assumed to be pointing to the second variable in the list.
Chapter 4 99

Optimizing HP C Programs
Optimizer Pragmas
Optimizer Pragmas
Pragmas give you the ability to:

• Control compilation in finer detail than what is allowed by command line options.

• Give information about the program to the compiler.

Pragmas cannot cross line boundaries and the word pragma must be in lowercase letters.
Optimizer pragmas may not appear inside a function.

Optimizer Control Pragmas

The OPTIMIZE and OPT_LEVEL pragmas control which functions are optimized, and which
set of optimizations are performed. These pragmas can be placed before any function
definitions and override any previous pragma. These pragmas cannot raise the
optimization level above the level specified in the command line.

OPT_LEVEL 0, 1, and 2 provide more control over optimization than the +O1 and +O2
compiler options because these pragmas can be used to raise or lower optimization at a
function by function level inside the source file using different levels for different
functions. Whereas, the compiler options can only be used for an entire source file.
(OPT_LEVEL 3 and 4 can only be used at the beginning of the source file.)

<Undefined Cross-Reference> shows the possible combinations of options and pragmas
and the resulting optimization levels. The level at which a function will be optimized is the
lower of the two values specified by the command line optimization level and the
optimization pragma in force.

Table 4-6. Optimization Level Precedence

Command-line
Optimization
Level

#Pragma
OPT_LEVEL

Resulting
OPT_LEVEL

none OFF 0

none 1 0

none 2 0

+O1 OFF 0

+O1 1 1

+O1 2 1

+O1 3 1

+O1 4 1

+O2 OFF 0

+O2 1 1

+O2 2 2
100 Chapter 4

Optimizing HP C Programs
Optimizer Pragmas
The values of OPTIMIZE and OPT_LEVEL are summarized in Table on page 101.

Inlining Pragmas

When INLINE is specified without a functionname , any function can be inlined. When
specified with functionname(s) , these functions are candidates for inlining.

The NOINLINE pragma disables inlining for all functions or specified functionname(s) .

The syntax for performing inlining is:

#pragma INLINE [functionname(1) , ..., functionname(n)]
#pragma NOINLINE [functionname(1) , ..., functionname(n)]]

+O2 3 2

+O2 4 2

+O3 OFF 0

+O3 1 1

+03 2 2

+03 3 3

+03 4 3

+04 OFF 0

+04 1 1

+04 2 2

+04 3 3

+O4 4 4

Table 4-7. Optimizer Control Pragmas

Pragma Description

#pragma OPTIMIZE ON Turns optimization on.

#pragma OPTIMIZE OFF Turns optimization off.

#pragma OPT_LEVEL 1 Optimize only within small blocks of code

#pragma OPT_LEVEL 2 Optimize within each procedure.

#pragma OPT_LEVEL 3 Optimize across all procedures within a source file.

#pragma OPT_LEVEL 4 Optimize across all procedures within a program.

Table 4-6. Optimization Level Precedence

Command-line
Optimization
Level

#Pragma
OPT_LEVEL

Resulting
OPT_LEVEL
Chapter 4 101

Optimizing HP C Programs
Optimizer Pragmas
For example, to specify inlining of the two subprograms checkstat and getinput , use:

#pragma INLINE checkstat, getinput

To specify that an infrequently called routine should not be inlined when compiling at
optimization level 3 or 4, use:

#pragma NOINLINE opendb

See the related +O[no]inline optimization option.

Alias Pragmas

The compiler gathers information about each function (such as information about function
calls, variables, parameters, and return values) and passes this information to the
optimizer. The NO_SIDE_EFFECTS and ALLOCS_NEW_MEMORY pragma tell the optimizer to
make assumptions it can not normally make, resulting in improved compile-time and
run-time speed. They change the default information the compiler collects.

If used, the NO_SIDE_EFFECTSand ALLOCS_NEW_MEMORYpragmas should appear before the
first function defined in a file and are in effect for the entire file. When used appropriately,
these optional pragmas provide better optimization.

NO_SIDE_EFFECTS Pragma

By default, the optimizer assumes that all functions might modify global variables. To
some degree, this assumption limits the extent of optimizations it can perform on global
variables. The NO_SIDE_EFFECTS directive provides a way to override this assumption. If
you know for certain that some functions do not modify global variables, you can gain
further optimization of code containing calls to these functions by specifying the function
names in this directive.

NO_SIDE_EFFECTS has the following form:

pragma NO_SIDE_EFFECTS functionname(1) , ..., functionname(n)

All functions in functionname are the names of functions that do not modify the values of
global variables. Global variable references can be optimized to a greater extent in the
presence of calls to the listed functions. Note that you need the NO_SIDE_EFFECTSdirective
in the files where the calls are made, not where the function is defined. This directive takes
effect from the line it first occurs on to the end of the file.

ALLOCS_NEW_MEMORY pragma

The ALLOCS_NEW_MEMORYpragma states that the function functionname returns a pointer
to new memory that it either allocates or a routine that it calls allocates.
ALLOCS_NEW_MEMORY has the following form:

pragma ALLOCS_NEW_MEMORYfunctionname(1) , ..., functionname(n)

The new memory must be memory that was either newly allocated or was previously freed
and is now reallocated. For example, the standard routines malloc() and calloc() satisfy
this requirement.

Large applications might have routines that are layered above malloc() and calloc() .
These interface routines make the calls to malloc() and calloc() , initialize the memory,
102 Chapter 4

Optimizing HP C Programs
Optimizer Pragmas
and return the pointer that malloc() or calloc() returns. For example, in the program
below:

struct_type *get_new_record(void)
{
struct_type *p;

if ((p=malloc(sizeof(*p))) == NULL) {
printf("get_new_record():out of memory\n");
abort();
}

else {
/* initialize the struct */
º
return p;
}

the routine get_new_record falls under this category, and can be included in the
ALLOCS_NEW_MEMORY pragma.

FLOAT_TRAPS_ON pragma

Informs the compiler that the function(s) may enable floating-point trap handling. When
the compiler is so informed, it will not perform loop invariant code motion (LICM) on
floating-point operations in the function(s) named in the pragma. This pragma is required
for proper code generation when floating-point traps are enabled.

[#pragma FLOAT_TRAPS_ON {functionname,...functionname _ALL}]

For example:

#pragma FLOAT_TRAPS_ON xyz,abc

informs the compiler and optimizer that xyz and abc have floating-point traps turned on
and therefore LICM optimization should not be performed.

[NO]PTRS_STRONGLY_TYPED Pragma

The PTRS_STRONGLY_TYPED pragma allows you to specify when a subset of types are
type-safe. This provides a finer lever of control than +O[no]ptrs_strongly_typed .

#pragma PTRS_STRONGLY_TYPED BEGIN

#pragma PTRS_STRONGLY_TYPED END

#pragma NOPTRS_STRONGLY_TYPED BEGIN

#pragma NOPTRS_STRONGLY_TYPED END

Any types that are defined between the begin-end pair are taken to apply type-safe
assumptions. These pragmas are not allowed to nest. For each BEGIN an associated END
must be defined in the compilation unit.

The pragma will take precedence over the command line option. Although, sometimes both
are required (see example 2).
Chapter 4 103

Optimizing HP C Programs
Optimizer Pragmas
Example 1

double *d;
#pragma PTRS_STRONGLY_TYPED BEGIN
int *i;
float *f;
#pragma PTRS_STRONGLY_TYPED END
main(){
........................
}

In this example only two types, pointer-to-int and pointer-to-float will be assumed to be
type-safe.

Example 2

cc +Optrs_strongly_typed foo.c

/*source for Ex.2 */
double *d;

...
#pragma NOPTRS_STRONGLY_TYPED BEGIN
int *i;
float *f;
#pragma NOPTRS_STRONGLY_TYPED END

...
main(){

...
}

In this example all types are assumed to be type-safe except the types bracketed by
pragma NOPTRS_STRONGLY_TYPED. The command line option is required because the
default option is +Onoptrs_strongly_typed .
104 Chapter 4

Optimizing HP C Programs
Aliasing Options
Aliasing Options
To be conservative, the optimizer assumes that a pointer can point to any object in the
entire application. Instead, if the optimizer can be educated on the application's pointer
usage, then the optimizer can generate more efficient code, due to the elimination of some
false assumptions. Such behavior can be communicated to the optimizer by using the
following options:

• +O[no]ptrs_strongly_typed

• +O[no]ptrs_to_globals[=list]

• +O[no]global_ptrs_unique[=list]

• +O[no]ptrs_ansi

where list is a comma-separated list of global variable names.

Here are the type-inferred aliasing rules:

• Type-aliasing optimizations are based on the assumption that pointer dereferences
obey their declared types.

• A C variable is considered address-exposed if and only if the address of that variable
is assigned to another variable or passed to a function as an actual parameter. In
general, address-exposed objects are collected into a separate group based on their
declared type. Global variables and static variables are considered address-exposed by
default. Local variables and actual parameters are considered address-exposed only if
their address has been computed using the address operator .

• Dereferences of pointers to a certain type will be assumed to only alias with the
corresponding equivalent group. An equivalent group includes all the address exposed
objects of the same type. The dereferences of pointers are also assumed to alias with
other pointer dereferences associated with the same equivalent group.

In the example

int *p, *q;

*p and *q are assumed to alias with any objects of type int . Also *p and *q are
assumed to alias with each other.

• Signed/Unsigned type distinctions are ignored in grouping objects into an equivalent
group. Likewise, long and int types are considered to map to the same equivalent
group. However, the volatile type qualifier is considered significant in grouping
objects into equivalent groups (e.g., a pointer to int will not be considered to alias with
a volatile int object).

• If two type names reduce to the same type, they are considered synonymous.

In the following example, both types type_old and type_new will reduce to the same
type, struct foo .

typedef struct foo_st type_old;
typedef type_old type_new;
Chapter 4 105

Optimizing HP C Programs
Aliasing Options
• Each field of a structure type is placed in a separate equivalent group which is distinct
from the equivalent group of the field's base type. (The assumption here is that a
pointer to int will not be assigned the address of a structure field whose type is int).
The actual type name of a structure type is not considered significant in constructing
equivalent groups (e.g., dereferences of a struct foo pointer and a struct bar pointer
will be assumed to alias with each other even if struct foo and struct bar have
identical field declarations).

• All fields of a union type are placed in the same equivalent group, which is distinct from
the equivalent group of any of the field's base types. (Thus, all dereferences of pointers
to a particular union type will be assumed to alias with each other, regardless of which
union field is being accessed.)

• Address-exposed array variables are grouped into the equivalent group of the array
element type.

• Explicit pointer typecasts applied to expression values will be honored in that it would
alter the equivalent group associated with an ensuing use of the typecast expression
value. For example, an int pointer that is first typecast into a float pointer and then
dereferenced will be assumed to potentially access objects in the float equivalent group
— and not the int equivalent group. However, type-incompatible assignments to pointer
variables will not alter the aliasing assumptions on subsequent references of such
pointer variables.

In general, type incompatible assignments can potentially invalidate some of the
type-safe assumptions, and such constructs may elicit compiler warning messages.

NOTE Variables declared to be of type void * need to be typecast into a pointer to a
specific type before they can be dereferenced.
106 Chapter 4

Optimizing HP C Programs
Parallel Execution
Parallel Execution
This section provides information on parallel execution.

Transforming Eligible Loops for Parallel Execution (+Oparallel)

The +Oparallel option causes the compiler to transform eligible loops for parallel
execution on multiprocessor machines.

If you link separately from the compile line and you compiled with the +Oparallel option,
you must link with the cc command and specify the +Oparallel option to link in the right
startup files and runtime support.

When a program is compiled with the +Oparallel option, the compiler looks for
opportunities for parallel execution in loops and generates parallel code to execute the loop
on the number of processors set by the MP_NUMBER_OF_THREADS environment variable
discussed below. By default, this is the number of processors on the executing machine.

For a discussion of parallelization, including how to use the +Oparallel option, see
"Parallelizing C Programs" below. For more detail on +Oparallel , see the description in
"Controlling Specific Optimizer Features" earlier in this chapter.

Executing Serially within a Parallel Environment (+Oparallel_env)

The +Oparallel_env option causes cc to compile all source files specified on the command
line to execute serially (that is, on a single processor) within a parallel execution
environment. The +Oparallel_env option ensures a consistent execution environment for
all files in a parallel-executing program.

If you link separately from the compile line and you compiled with the +Oparallel_env
option, you must link with the cc command and specify the +Oparallel option to link in
the right startup files and runtime support.

Environment Variables for Parallel Programs

Two environment variables are available for use with parallel programs:

• MP_NUMBER_OF_THREADS

• MP_HEAP_MBYTES

MP_NUMBER_OF_THREADS

The MP_NUMBER_OF_THREADS environment variable enables you to set the number of
processors that are to execute your program in parallel. If you do not set this variable, it
defaults to the number of processors on the executing machine.

On the C shell, the following command sets MP_NUMBER_OF_THREADS to indicate that
programs compiled for parallel execution can execute on two processors:

setenv MP_NUMBER_OF_THREADS 2

If you use the Korn shell, the command is:
Chapter 4 107

Optimizing HP C Programs
Parallel Execution
export MP_NUMBER_OF_THREADS=2

MP_HEAP_MBYTES

For this release, parallel programs have a fixed amount of heap storage. If your parallel
program allocates dynamic memory (or calls a program that does) and it runs out of
memory, use the MP_HEAP_MBYTES environment variable to increase the size (in
megabytes) of the data segment. For programs not compiled with the +Oparallel option,
the HP-UX kernel configuration parameter maxdsize sets the maximum size of the data
segment. MP_HEAP_MBYTES has a default value of 16.

Parallelizing C Programs

The following sections discuss how to compile C programs for parallel execution, inhibitors
to parallelization, and related diagnostic messages.

Compiling Code for Parallel Execution

If a program has one or more of its files compiled with the +Oparallel option, then the
remaining files must be compiled with the +Oparallel_env option. This requirement
ensures a consistent execution environment for all files in the program, including any that
you want to execute serially.

The following command lines compile (without linking) three source files: x.c , y.c , and
z.c . The files x.c and y.c are compiled for parallel execution. The file z.c is compiled for
serial execution, even though its object file will be linked with x.o and y.o .

cc +O4 +Oparallel -c x.c y.c
cc +O4 +Oparallel_env -c z.c

The following command line links the three object files, producing the executable file
para_prog :

cc +O4 +Oparallel -o para_prog x.o y.o z.o

As this command line implies, if you link and compile separately, you must use cc , not ld .
The command line to link must also include the +Oparallel option in order to link in the
right startup files and runtime support.

NOTE To ensure the best performance from a parallel program, do not run more
than one parallel program on a multiprocessor machine at the same time.
Running two or more parallel programs simultaneously or running one
parallel program on a heavily loaded system, will slow performance.

The C compiler will issue warning 8007 if you attempt to compile a program with the
+Oparallel option and the program calls a system routine with any of the following
names: dial , exec , execl , execle , execlp , execv , execve , execvp , f77fork , fork ,
f77vfork , grantpt , key_decryptsession , key_encryptsession , key_gendes ,
key_setsecret , popen , syslog , system , vfork , wordexp , or wordfree .

The text of warning 8007 is: Call to system function routine may inhibit parallel
execution .

At runtime, compiler-inserted code performs a check to determine if the call is to a system
108 Chapter 4

Optimizing HP C Programs
Parallel Execution
routine or to a user-defined routine with the same name as a system routine. If the call is
to a system routine, the code inhibits parallel execution.

NOTE If your program makes explicit use of threads, do not attempt to parallelize it.

Parallel Execution and Shared Memory

A program compiled with the +Oparallel option and executing on more than one
processor mostly uses shared memory instead of the normal process data and stack
segments. (If it executes on one processor, it uses the normal process data segment instead
of shared memory.) If a parallel-executing program requires large amounts of memory, you
may need to increase shmmax, the HP-UX kernel configuration parameter that sets the
maximum size of a shared-memory segment.

A program compiled with +Oparallel sizes its shared-memory stack with the smaller of
shmmax and the default stack size, which is set by maxssiz , another HP-UX kernel
configuration parameter.

To set these configuration parameters, run the System Administration Manager (SAM)
and get to the configuration area.

Profiling Parallelized Programs

Profiling a program that has been compiled for parallel execution is performed in much the
same way as it is for non-parallel programs:

1. Compile the program with the -G option.

2. Run the program to produce profiling data.

3. Run gprof against the program.

4. View the output from gprof .

The differences are:

• Running the program in Step 2 produces a gmon.out file for the master process and
gmon.out.1 , gmon.out.2 , and so on for each of the slave processes. Thus, if your
program is to execute on two processors, Step 2 will produce two files, gmon.out and
gmon.out.1 .

• The flat profile that you view in Step 4 indicates loops that were parallelized with the
following notation:

routine_name ##pr_line_0123

where routine_name is the name of the routine containing the loop, pr (parallel region)
indicates that the loop was parallelized, and 0123 is the line number of the beginning of
the loop or loops that are parallelized.

Conditions Inhibiting Loop Parallelization

The following sections describe different conditions that can inhibit parallelization.

Additionally, +Onoloop_transform and +Onoinline may be helpful options if you
experience any problem while using +Oparallel .
Chapter 4 109

Optimizing HP C Programs
Parallel Execution
Calling Routines with Side Effects The compiler will not parallelize any loop
containing a call to a routine that has side effects. A routine has side effects if it does any
of the following:

• Modifies its arguments

• Modifies an extern or static variable

• Redefines variables that are local to the calling routine

• Performs I/O

• Calls another subroutine or function that does any of the above

Indeterminate Iteration Counts If the compiler determines that a runtime
determination of a loop's iteration count cannot be made before the loop starts to execute,
the compiler will not parallelize the loop. The reason for this precaution is that the
runtime code must know the iteration count in order to know how many iterations to
distribute to the different processors for execution.

The following conditions can prevent a runtime count:

• The loop is an infinite loop.

• A conditional break statement or goto out of the loop appears in the loop.

• The loop modifies either the loop-control or loop-limit variable.

• The loop is a while construct and the condition being tested is defined within the loop.

Data Dependence When a loop is parallelized, the iterations are executed
independently on different processors, and the order of execution will differ from the serial
order that occurs on a single processor. This effect of parallelization is not a problem. The
iterations could be executed in any order with no effect on the results. Consider the
following loop:

for (i=0; i<5; i++)
a[i] = a[i] * b[i]

In this example, the array a would always end up with the same data regardless of
whether the order of execution were 0-1-2-3-4, 4-3-2-1-0, 3-1-4-0-2, or any other order. The
independence of each iteration from the others makes the loop eligible candidate for
parallelization.

Such is not the case in the following:

for (i=1; i<5; i++)
a[i] = a[i-1] * b[i]

In this loop, the order of execution does matter. The data used in iteration i is dependent
upon the data that was produced in the previous iteration [i-1]. a would end up with very
different data if the order of execution were any other than 1-2-3-4. The data dependence
in this loop thus makes it ineligible for parallelization.

Not all data dependences must inhibit parallelization. The following paragraphs discuss
some of the exceptions.

Nested Loops and Matrices Some nested loops that operate on matrices may have a
110 Chapter 4

Optimizing HP C Programs
Parallel Execution
data dependence in the inner loop only, allowing the outer loop to be parallelized. Consider
the following:

for (i=0; i<10; i++)
for (j=1; j<100; j++)

a[i][j] = a[i][j-1] + 1;

The data dependence in this nested loop occurs in the inner [j] loop: Each row access of
a[j,i] depends upon the preceding row [j-1] having been assigned in the previous
iteration. If the iterations of the j loop were to execute in any other order than the one in
which they would execute on a single processor, the matrix would be assigned different
values. The inner loop, therefore, must not be parallelized.

But no such data dependence appears in the outer loop: Each column access is
independent of every other column access. Consequently, the compiler can safely distribute
entire columns of the matrix to execute on different processors; the data assignments will
be the same regardless of the order in which the columns are executed, so long as each
executes in serial order.

Assumed Dependences When analyzing a loop, the compiler will err on the safe side
and assume that what looks like a data dependence really is one and so not parallelize the
loop. Consider the following:

for (i=100; i<200; i++)
a[i] = a[i-k];

The compiler will assume that a data dependence exists in this loop because it appears
that data that has been defined in a previous iteration is being used in a later iteration.
However, if the value of k is 100, the dependence is assumed rather than real because
a[i-k] is defined outside the loop.

Runtime Messages

This section discusses runtime error, warning, and informational messages that are
unique to parallelized programs. Following each message is an explanation of the message
and a corrective action.

Error Messages

File I/O output lost from parallelized loop. (Parallel Library 211)

The parallel runtime library lost output from an I/O statement within a parallelized loop.
This error typically occurs because the tmp directory's file system ran out of disk space. You
should remove any unwanted files.

Trouble reserving shared memory for the stack. (Parallel Library 212)
Trouble allocating shared memory for static variables.(Parallel Library 213)
Trouble allocating shared memory for the stack and static variables.
(Parallel Library 214)

The parallel runtime library could not reserve shared memory for the program's stack
and/or static variables.

Make sure that your program has adequate swap space. Also, use ipcs (1) and ipcrm (1) to
remove any unused shared memory segments. If that fails, you should consider increasing
Chapter 4 111

Optimizing HP C Programs
Parallel Execution
the HP-UX kernel's shmmax (shared memory maximum) configuration parameter if
necessary.

Warning Messages

Warning: could not use requested number of processes.
Using 1 process. (Parallel Library 311)

The parallel runtime library could not start the requested number of processes for use in
executing the program. Possible causes include exceeding the system limit on the number
of forked processes or setting the environment variable MP_NUMBER_OF_THREADS to an
out-of-bounds value.

NOTE Warning messages 312 through 315 can indicate an error in the parallel
runtime library. If you get one of these messages, report it to your local HP
service representative.

Warning: trouble establishing cleanup handler.
Use kill(1) and ipcrm(1) to clean up. (Parallel Library 312)

The parallel runtime library could not establish a signal handler used for cleaning up in
the event of a terminating signal such as SIGTERM; see signal (5). If the program does
not exit normally it could leave behind unused processes and shared memory segments.

Warning: trouble establishing SIGCHLD handler. Program could
wait forever. (Parallel Library 313)

The parallel runtime library could not establish a signal handler that monitors the
unexpected termination of the processes used for parallel execution. If one of the processes
dies unnoticed (for example, because of a floating-point exception), the program could wait
forever for the process to complete. In this case you would have to use kill (1) to terminate
the program.

Warning: trouble removing " filename ", used for file I/O output from
parallelized loop. (Parallel Library 314)

The parallel runtime system could not remove a temporary file. Remove the file with rm(1)
if necessary.

Warning: trouble freeing shared memory. Use ipcrm(1) to clean up.
(Parallel Library 315)

The parallel runtime system had trouble freeing shared memory. Use ipcs (1) to find
shared memory segments that the program could have left behind and ipcrm (1) to remove
them.

Informational Messages

Note: using only 1 process because program contains call to " routine ".
(Parallel Library 411)

When starting up, the parallel runtime library checks to see whether the program contains
calls to system routines that could cause incorrect parallel execution. If the program calls
any disallowed routines, the runtime system runs the program on a single processor. If you
want the program to execute on multiple processors, you must eliminate the call to routine .
112 Chapter 4

Programming for Portability
5 Programming for Portability

The syntax of C is well defined as a result of the efforts of the ANSI X3J11 Technical
Committee. The standard C function libraries are rich with features that isolate programs
from operating system specific function calls. These factors make C programs highly
portable between various combinations of hardware platforms and operating systems.

The C programming language was first described in The C Programming Language, by
Brian Kernighan and Dennis Ritchie. This original language definition has proven
powerful enough to provide the functionality that programmers need. The HP C compiler
supports this language definition, including some Berkeley Software Distribution (BSD)
extensions.

S.C. Johnson developed the Portable C Compiler (pcc) that became available on a wide
range of systems, including the VAX and the HP 9000 Series 300/400 computers. The
syntax and semantics of HP C are closely compatible with those of pcc.

In December, 1989, the American National Standards Institute (ANSI) approved a
standard for the C programming language. The ANSI standard clarified a number of areas
that were ambiguous and tended to vary among C compilers. It gave full specifications for
the required library and codified a number of extensions that have been added to C over
the years. (ANSI mode first became available with release 7.0 on the Series 800, release
7.40 on Series 300/400, and release 8.05 on Series 700. Compatibility mode supports the C
syntax and semantics of previous releases.)

The ANSI standard specifies which aspects of C are required to work the same on
conforming implementations, and which can work differently. Since many
ANSI-conforming compilers are available on a wide variety of platforms, it is easy to
develop portable programs. HP C, when invoked in ANSI mode and used with the
preprocessor (cpp), headers, libraries, and linker, conforms fully with the standard.

Portable C programs are clear, reliable, and easily maintainable and can be easily
transported from one machine to another. With few modifications, C programs written
with portability in mind can be recompiled and run on different computers. For specific
information on system dependencies, refer to the HP C/HP-UX Reference Manual.

The ANSI C standard document American National Standard for Information Systems -
Programming Language C, ANSI/ISO 9899-1990 contains complete details on the
language including an appendix with a comprehensive list of portability issues. This
document is available from ANSI at 11 West 42nd Street, New York City, New York, 10036,
telephone (212) 642-4900.

This chapter discusses some guidelines for making your C programs more portable.
Emphasis is placed on HP C specific portability issues, especially as they relate to porting
from pre-ANSI mode HP C (Kernighan and Ritchie plus BSD extensions) to ANSI mode
HP C.
Chapter 5 121

Programming for Portability
Guidelines for Portability
Guidelines for Portability

This section lists some things you can do to make your HP C programs more portable.

• Use the ANSI C compiler option whenever possible when writing new programs. HP C
conforms to the standard when it is invoked with the -Aa option. The -w and +e options
should not be used with the -Aa option, as these options will suppress warning
messages and allow non-conforming extensions.

• When you recompile existing programs, try compiling in ANSI mode. ANSI C mandates
more thorough error checking, so portability problems are more likely to be flagged by
the compiler in this mode. (Bugs are also more likely to be caught.) Many existing
programs will compile and execute correctly in ANSI mode with few or no changes.

• Pay attention to all warnings produced by the compiler. Most warnings represent
potentially problematic program constructs. You should consider warnings to be
portability risks.

• For an additional level of warnings, compile with the +w1 option. Pay particular
attention to the warnings that mention "ANSI migration" issues. These identify most
program constructs that are legal but are likely to work differently between pre-ANSI
and ANSI compilers.

• Consult the detailed listing of diagnostic messages in the HP C Reference Manual for
more information on how to correct each problem. For most messages, a reference to the
relevant section of the ANSI standard is also given.

• On HP-UX, use lint , the C program syntax checker, to detect potential portability
problems in your program. The lint utility also produces warnings about poor style,
lack of efficiency, and inconsistency within the program.

• Use the #define, #if, and #ifdef preprocessing directives and typedef declarations
to isolate any necessary machine or operating system dependencies.

• Declare all variables with the correct types. For example, functions and parameters
default to int. On many implementations, pointers and integers are the same size, and
the defaults work correctly. However, for maximum portability, the correct types should
be used.

• Use only the standard C library functions.

• Code bit manipulation algorithms carefully to gain independence from machine-specific
representations of numeric values. For example, use x & ~3 instead of x & 0xFFFFFFFC
to mask the low-order 2 bits to zero.

• Avoid absolute addressing.

Examples

The following example illustrates some ways to program for portability. In this example,
the include files IEEE.h and floatX.h isolate machine-dependent portions of the code.
These include files use the #define and typedef mechanisms to define macro constants
and type definitions in the main body of the program.
122 Chapter 5

Programming for Portability
Guidelines for Portability
The main program fmult.c uses the #ifdef preprocessor command to include floatX.h
by default. If the option -D IEEE_FLOAT is passed to the compiler, and subsequently the
preprocessor, the program will use the IEEE representation for the structure float_rep
rather than a machine-dependent representation.

Partial contents of the file IEEE.h :

#define FLT_MAX 3.4028235E38
#define PLUS_INFINITY 0X7F800000
#define MINUS_INFINITY 0XFF800000
typedef struct {

unsigned sign : 1;
unsigned exp : 8;
unsigned mant : 23;

} FLOAT_REP;
#define EXP_BIAS 127
…

Partial contents of the file floatX.h :

#define FLT_MAX 1.70141E38
#define PLUS_INFINITY 0X7FFFFFFE
#define MINUS_INFINITY 0XFFFFFFFE
typedef struct {

unsigned sign : 1;
unsigned mant : 23;
unsigned exp : 7;
unsigned exp_sign : 1;

} FLOAT_REP;
#define EXP_BIAS 0
…

Partial contents of the file fmult.c :

#ifdef IEEE_FLOAT
#include "IEEE.h"
#else
#include "floatX.h"
#endif
union {

float f;
FLOAT_REP f_rep;
FLOAT_INT f_int;

} float_num;
float f_mult(float val1, float val2)
{

if (val1 > 1.0F val2 >1.0F) {
if (val1 > FLT_MAX/val2 ||

val2 > FLT_MAX/val1) {
float_num.f_int = PLUS_INFINITY;

return float_num.f;
}

…

Chapter 5 123

Programming for Portability
Practices to Avoid
Practices to Avoid
To make a program portable, you need to minimize machine dependencies. The following
are programming practices you should avoid to ensure portability:

• Using dollar signs ($) in identifiers.

• Using underscores (_) as the first character in an identifier.

• Using sized enumerations.

• Reliance on implicit expression evaluation order.

• Making assumptions regarding storage allocation and layout.

• Dependence on the number of significant characters in an identifier. Identifiers should
differ as early as possible in the name. ANSI C requires that the first 31 characters of
an internal name are significant. Only the first 6 characters of an external name are
required to be significant by ANSI C.

• Dereferencing null pointers.

• Dependence on pointer representation.

• Dependence on being able to dereference a pointer to an object that is not correctly
aligned.

• Dependence on the ability to store a pointer in a variable of type int.

• Dependence on case distinctions in external names.

• Dependence on char being signed or unsigned.

• Dependence on bitwise operations in signed integers.

• Dependence on bit-fields of any type except int , unsigned int , or signed int .

• Dependence on the sign of the remainder in integer division.

• Dependence on right shifts of negative signed values.

• Dependence on more than six declarators modifying a basic type.

• Dependence on values of automatic variables after a longjmp call when the values were
changed between the setjmp and longjmp calls.

• Dependence on being able to call setjmp within an arbitrarily complex expression.

• Dependence on file system characteristics.

• Dependence on string literals being modifiable.

• Dependence on extern declarations within a block being visible outside of the block.
124 Chapter 5

Programming for Portability
General Portability Considerations
General Portability Considerations
This section summarizes some of the general considerations to take into account when
writing portable HP C programs. Some of the features listed here may be different on other
implementations of C. Differences between Series 300/400 versus 700/800
implementations are also noted in this section.

Data Type Sizes and Alignments

Table 2-1 in Chapter 2 shows the sizes and alignments of the C data types on the different
architectures.

Differences in data alignment can cause problems when porting code or data between
systems that have different alignment schemes. For example, if you write a C program on
Series 300/400 that writes records to a file, then read the file using the same program on
Series 700/800, it may not work properly because the data may fall on different byte
boundaries within the file due to alignment differences. To help alleviate this problem, HP
C provides the HP_ALIGN pragma, which forces a particular alignment scheme, regardless
of the architecture on which it is used. The HP_ALIGN pragma is described in Chapter 2.

Accessing Unaligned Data

The Series 700/800 like all PA-RISC processors requires data to be accessed from locations
that are aligned on multiples of the data size. The C compiler provides an option to access
data from misaligned addresses using code sequences that load and store data in smaller
pieces, but this option will increase code size and reduce performance. A bus error
handling routine is also available to handle misaligned accesses but can reduce
performance severely if used heavily.

Here are your specific alternatives for avoiding bus errors:

1. Change your code to eliminate misaligned data, if possible. This is the only way to get
maximum performance, but it may be difficult or impossible to do. The more of this you
can do, the less you'll need the next two alternatives.

2. Use the +ubytes compiler option available at 9.0 to allow 2-byte alignment. However,
the +ubytes option, as noted above, creates big, slow code compared to the default code
generation which is able to load a double precision number with one 8-byte load
operation. Refer to the HP C/HP-UX Reference Manual (Series 700/800) for more
information.

3. Finally, you can use allow_unaligned_data_access() to avoid alignment errors.
allow_unaligned_data_access() sets up a signal handler for the SIGBUS signal.
When the SIGBUS signal occurs, the signal handler extracts the unaligned data from
memory byte by byte.

To implement, just add a call to allow_unaligned_data_access() within your main
program before the first access to unaligned data occurs. Then link with -lhppa . Any
alignment bus errors that occur are trapped and emulated by a routine in the
libhppa.a library in a manner that will be transparent to you. The performance
Chapter 5 125

Programming for Portability
General Portability Considerations
degradation will be significant, but if it only occurs in a few places in your program it
shouldn't be a big concern.

Whether you use alternative 2 or 3 above depends on your specific code.

The +ubytes option costs significantly less per access than the handler, but it costs you on
every access, whether your data is aligned or not, and it can make your code quite a bit
bigger. You should use it selectively if you can isolate the routines in your program that
may be exposed to misaligned pointers.

There is a performance degradation associated with alternative 3 because each unaligned
access has to trap to a library routine. You can use the unaligned_access_count variable
to check the number of unaligned accesses in your program. If the number is fairly large,
you should probably use 2. If you only occasionally use a misaligned pointer, it is probably
better just use the allow_unaligned_data_access handler. There is a stiff penalty per
bus error, but it doesn't cause your program to fail and it won't cost you anything when you
operate on aligned data.

The following is a an example of its use within a C program:

extern int unaligned_access_count;
/* This variable keeps a count

of unaligned accesses. */

char arr[]="abcdefgh";
char *cp, *cp2;
int i=99, j=88, k;
int *ip; /* This line would normally result in a

bus error on Series 700 or 800 */
main()
{

allow_unaligned_data_access();
cp = (char *)&i;
cp2 = &arr[1];
for (k=0; k<4; k++)

cp2[k] = * (cp+k);
ip = (int *)&arr[1];
j = *ip;
printf("%d\n", j);
printf("unaligned_access_count is : %d\n", unaligned_access_count);

}

To compile and link this program, enter

cc filename .c -lhppa

This enables you to link the program with allow_unaligned_data_access() and the int
unaligned_access_count that reside in /usr/lib/libhppa.a .

Note that there is a performance degradation associated with using this library since each
unaligned access has to trap to a library routine. You can use the
unaligned_access_count variable to check the number of unaligned accesses in your
program. If the number is fairly large, you should probably use the compiler option.
126 Chapter 5

Programming for Portability
General Portability Considerations
Checking for Alignment Problems with lint

If invoked with the -s option, the lint command generates warnings for C constructs that
may cause portability and alignment problems between Series 300/400 and Series 700/800,
and vice versa. Specifically, lint checks for these cases:

• Internal padding of structures. lint checks for instances where a structure member
may be aligned on a boundary that is inappropriate according to the most-restrictive
alignment rules. For example, given the code

struct s1 { char c; long l; };

lint issues the warning:

warning: alignment of struct 's1' may not be portable

• Alignment of structures and simple types. For example, in the following code, the
nested struct would align on a 2-byte boundary on Series 300/400 and an 8-byte
boundary on Series 700/800:

struct s3 { int i; struct { double d; } s; };

In this case, lint issues this warning about alignment:

warning: alignment of struct 's3' may not be portable

• End padding of structures. Structures are padded to the alignment of the
most-restrictive member. For example, the following code would pad to a 2-byte
boundary on Series 300/400 and a 4-byte boundary for Series 700/800:

struct s2 { int i; short s; };

In this case, lint issues the warning:

warning: trailing padding of struct/union 's2' may not be portable

Note that these are only potential alignment problems. They would cause problems only
when a program writes raw files which are read by another system. This is why the
capability is accessible only through a command line option; it can be switched on and off.

lint does not check the layout of bit-fields.

Ensuring Alignment without Pragmas

Another solution to alignment differences between systems would be to define structures
in such a way that they are forced into the same layout on different systems. To do this, use
padding bytes — that is, dummy variables that are inserted solely for the purpose of
forcing struct layout to be uniform across implementations. For example, suppose you
need a structure with the following definition:

struct S {
char c1;
int i;
char c2;
double d;

};

An alternate definition of this structure that uses filler bytes to ensure the same layout on
Chapter 5 127

Programming for Portability
General Portability Considerations
Series 300/400 and Series 700/800 would look like this:

struct S {
char c1; /* byte 0 */
char pad1,pad2,pad3; /* bytes 1 through 3 */
int i; /* bytes 4 through 7 */
char c2; /* byte 8 */
char pad9,pad10,pad11, /* bytes 9 */

pad12,pad13,pad14, /* through */
pad15; /* 15 */

double d; /* bytes 16 through 23 */
};

Casting Pointer Types

Before understanding how casting pointer types can cause portability problems, you must
understand how Series 700/800 aligns data types. In general, a data type is aligned on a
byte boundary equivalent to its size. For example, the char data type can fall on any byte
boundary, the int data type must fall on a 4-byte boundary, and the double data type
must fall on an 8-byte boundary. A valid location for a data type would then satisfy the
following equation:

location mod sizeof(data_type) == 0

Consider the following program:

#include <string.h>
#include <stdio.h>
main()
{

struct chStruct {
char ch1; /* aligned on

an even boundary */
char chArray[9]; /* aligned on

an odd byte boundary */
} foo;

int *bar; /* must be aligned
on a word boundary */

strcpy(foo.chArray, "1234"); /* place a value
in the ch array */

bar = (int *) foo.chArray; /* type cast */
printf("*bar = %d\n",*bar); /* display the value */

}

Casting a smaller type (such as char) to a larger type (such as int) will not cause a
problem. However, casting a char* to an int* and then dereferencing the int* may cause
an alignment fault. Thus, the above program crashes on the call to printf() when bar is
dereferenced.

Such programming practices are inherently non-portable because there is no standard for
how different architectures reference memory. You should try to avoid such programming
practices.
128 Chapter 5

Programming for Portability
General Portability Considerations
As another example, if a program passes a casted pointer to a function that expects a
parameter with stricter alignment, an alignment fault may occur. For example, the
following program causes an alignment fault on Series 700/800:

void main (int argc, char *argv[])
{

char pad;
char name[8];

intfunc((int *)name[1]);
}

int intfunc (int *iptr)
{

printf("intfunc got passed %d\n", *iptr);
}

Type Incompatibilities and typedef

The C typedef keyword provides an easy way to write a program to be used on systems
with different data type sizes. Simply define your own type equivalent to a provided type
that has the size you wish to use.

For example, suppose system A implements int as 16 bits and long as 32 bits. System B
implements int as 32 bits and long as 64 bits. You want to use 32 bit integers. Simply
declare all your integers as type INT32 , and insert the appropriate typedef on system A:

typedef long INT32;

The code on system B would be:

typedef int INT32;

Conditional Compilation

Using the #ifdef C preprocessor directive and the predefined symbols __hp9000s300 ,
__hp9000s700 , and __hp9000s800 , you can group blocks of system-dependent code for
conditional compilation, as shown below:

#ifdef __hp9000s300
…

Series 300/400-specific code goes here...
…

#endif

#ifdef __hp9000s700
…

Series 700-specific code goes here...
…

#endif

#ifdef __hp9000s800
…

Series 700/800-specific code goes here...
Chapter 5 129

Programming for Portability
General Portability Considerations
…
#endif

If this code is compiled on a Series 300/400 system, the first block is compiled; if compiled
on Series 700, the second block is compiled; if compiled on either the Series 700 or the
Series 800, the third block is compiled. You can use this feature to ensure that a program
will compile properly on either Series 300/400 or 700/800.

If you want your code to compile only on the Series 800 but not on the 700, surround your
code as follows:

#if (defined(_ _hp9000s800) &&!defined(_ _hp9000s700))

 Series 800-specific code goes here...

#endif

Isolating System-Dependent Code with #include Files

#include files are useful for isolating the system-dependent code like the type definitions
in the previous section. For instance, if your type definitions were in a file mytypes.h , to
account for all the data size differences when porting from system A to system B, you
would only have to change the contents of file mytypes.h . A useful set of type definitions is
in /usr/include/model.h .

NOTE If you use the symbolic debugger, xdb , include files used within union ,
struct , or array initialization will generate correct code. However, such use
is discouraged because xdb may show incorrect debugging information about
line numbers and source file numbers.

Parameter Lists

On the Series 300/400, parameter lists grow towards higher addresses. On the Series
700/800, parameter lists are usually stacked towards decreasing addresses (though the
stack itself grows towards higher addresses). The compiler may choose to pass some
arguments through registers for efficiency; such parameters will have no stack location at
all.

ANSI C function prototypes provide a way of having the compiler check parameter lists for
consistency between a function declaration and a function call within a compilation unit.
lint provides an option (-Aa) that flags cases where a function call is made in the absence
of a prototype.

The ANSI C <stdarg.h > header file provides a portable method of writing functions that
accept a variable number of arguments. You should note that <stdarg.h> supersedes the
use of the varargs macros. varargs is retained for compatibility with the pre-ANSI
compilers and earlier releases of HP C/HP-UX. See varargs(5) and vprintf(3S) for details
and examples of the use of varargs .
130 Chapter 5

Programming for Portability
General Portability Considerations
The char Data Type

The char data type defaults to signed. If a char is assigned to an int , sign extension takes
place. A char may be declared unsigned to override this default. The line:

unsigned char ch;

declares one byte of unsigned storage named ch . On some non-HP-UX systems, char
variables are unsigned by default.

Register Storage Class

The register storage class is supported on Series 300/400 and 700/800 HP-UX, and if
properly used, can reduce execution time. Using this type should not hinder portability.
However, its usefulness on systems will vary, since some ignore it. Refer to the HP-UX
Assembler and Supporting Tools for Series 300/400 for a more complete description of the
use of the register storage class on Series 300/400.

Also, the register storage class declarations are ignored when optimizing at level 2 or
greater on all Series.

Identifiers

To guarantee portable code to non-HP-UX systems, the ANSI C standard requires
identifier names without external linkage to be significant to 31 case-sensitive characters.
Names with external linkage (identifiers that are defined in another source file) will be
significant to six case-insensitive characters. Typical C programming practice is to name
variables with all lower-case letters, and #define constants with all upper case.

Predefined Symbols

The symbol __hp9000s300 is predefined on Series 300/400; the symbols __hp9000s800
and hppa are predefined on Series 700/800; and __hp9000s700 is predefined on Series 700
only. The symbols __hpux and __unix are predefined on all HP-UX implementations.

This is only an issue if you port code to or from systems that also have predefined these
symbols.

Shift Operators

On left shifts, vacated positions are filled with 0. On right shifts of signed operands,
vacated positions are filled with the sign bit (arithmetic shift). Right shifts of unsigned
operands fill vacated bit positions with 0 (logical shift). Integer constants are treated as
signed unless cast to unsigned. Circular shifts are not supported in any version of C. Shifts
greater than 32 bits give an undefined result.

The sizeof Operator

The sizeof operator yields an unsigned int result, as specified in section 3.3.3.4 of the
ANSI C standard (X3.159-1989). Therefore, expressions involving this operator are
inherently unsigned. Do not expect any expression involving the sizeof operator to have a
negative value (as may occur on some other systems). In particular, logical comparisons of
Chapter 5 131

Programming for Portability
General Portability Considerations
such an expression against zero may not produce the object code you expect as the
following example illustrates.

main()
{

int i;
i = 2;

if ((i-sizeof(i)) < 0) /* sizeof(i) is 4,
but unsigned! */

printf("test less than 0\n");
else

printf("an unsigned expression cannot be less than 0\n");
}

When run, this program will print

an unsigned expression cannot be less than 0

because the expression (i-sizeof(i)) is unsigned since one of its operands is unsigned
(sizeof(i)). By definition, an unsigned number cannot be less than 0 so the compiler will
generate an unconditional branch to the else clause rather than a test and branch.

Bit-Fields

The ANSI C definition does not prescribe bit-field implementation; therefore each vendor
can implement bit-fields somewhat differently. This section describes how bit-fields are
implemented in HP C.

Bit-fields are assigned from most-significant to least-significant bit on all HP-UX and
Domain systems.

On all HP-UX implementations, bit-fields can be signed or unsigned , depending on how
they are declared.

On the Series 300/400, a bit-field declared without the signed or unsigned keywords will
be signed in ANSI mode and unsigned in compatibility mode by default.

On the Series 700/800, plain int , char , or short bit-fields declared without the signed or
unsigned keywords will be signed in both compatibility mode and ANSI mode by default.

On the Series 700/800, and for the most part on the Series 300/400, bit-fields are aligned so
that they cannot cross a boundary of the declared type. Consequently, some padding within
the structure may be required. As an example,

struct foo
{

unsigned int a:3, b:3, c:3, d:3;
unsigned int remainder:20;

};

For the above struct , sizeof(struct foo) would return 4 (bytes) because none of the
bit-fields straddle a 4 byte boundary. On the other hand, the following struct declaration
will have a larger size:

struct foo2
{

unsigned char a:3, b:3, c:3, d:3;
132 Chapter 5

Programming for Portability
General Portability Considerations
unsigned int remainder:20;
};

In this struct declaration, the assignment of data space for c must be aligned so it doesn't
violate a byte boundary, which is the normal alignment of unsigned char . Consequently,
two undeclared bits of padding are added by the compiler so that c is aligned on a byte
boundary. sizeof(struct foo2) returns 6 (bytes) on Series 300/400, and 8 on Series
700/800. Note, however, that on Domain systems or when using #pragma HP_ALIGN
NATURAL, which uses Domain bit-field mapping, 4 is returned because the char bit-fields
are considered to be int s.)

Bit-fields on HP-UX systems cannot exceed the size of the declared type in length. The
largest possible bit-field is 32 bits. All scalar types are permissible to declare bit-fields,
including enum.

Enum bit-fields are accepted on all HP-UX systems. On Series 300/400 in compatibility
mode they are implemented internally as unsigned integers. On Series 700/800, however,
they are implemented internally as signed integers so care should be taken to allow
enough bits to store the sign as well as the magnitude of the enumerated type. Otherwise
your results may be unexpected. In ANSI mode, the type of enum bit-fields is signed int
on all HP-UX systems.

Floating-Point Exceptions

HP C on Series 700/800, in accordance with the IEEE standard, does not trap on floating
point exceptions such as division by zero. By contrast, when using HP C on Series 300/400,
floating-point exceptions will result in the run-time error message Floating exception
(core dumped) . One way to handle this error on Series 700/800 is by setting up a signal
handler using the signal system call, and trapping the signal SIGFPE. For details, see
signal(2), signal(5), and "Advanced HP-UX Programming" in HP-UX Linker and Libraries
Online User Guide.

For full treatment of floating-point exceptions and how to handle them, see HP-UX
Floating-Point Guide.

Integer Overflow

In HP C, as in nearly every other implementation of C, integer overflow does not generate
an error. The overflowed number is "rolled over" into whatever bit pattern the operation
happens to produce.

Overflow During Conversion from Floating Point to Integral Type

HP-UX systems will report a floating exception - core dumped at run time if a
floating point number is converted to an integral type and the value is outside the range of
that integral type. As with the error described previously under "Floating Point
Exceptions," a program to trap the floating-point exception signal (SIGFPE) can be used.
See signal(2) and signal(5) for details.
Chapter 5 133

Programming for Portability
General Portability Considerations
Structure Assignment

The HP-UX C compilers support structure assignment, structure-valued functions, and
structure parameters. The structs in a struct assignment s1=s2 must be declared to be
the same struct type as in:

struct s s1,s2;

Structure assignment is in the ANSI standard. Prior to the ANSI standard, it was a BSD
extension that some other vendors may not have implemented.

Structure-Valued Functions

Structure-valued functions support storing the result in a structure:

s = fs();

All HP-UX implementations allow direct field dereferences of a structure-valued function.
For example:

x = fs().a;

Structure-valued functions are ANSI standard. Prior to the ANSI standard, they were a
BSD extension that some vendors may not have implemented.

Dereferencing Null Pointers

Dereferencing a null pointer has never been defined in any C standard. Kernighan and
Ritchie's The C Programming Language and the ANSI C standard both warn against such
programming practice. Nevertheless, some versions of C permit dereferencing null
pointers.

Dereferencing a null pointer returns a zero value on all HP-UX systems. The Series
700/800 C compiler provides the -z compile line option, which causes the signal SIGSEGVto
be generated if the program attempts to read location zero. Using this option, a program
can "trap" such reads.

Since some programs written on other implementations of UNIX rely on being able to
dereference null pointers, you may have to change code to check for a null pointer. For
example, change:

if (*ch_ptr != '\\0')

to:

if ((ch_ptr != NULL) &&*ch_ptr != '\\0')

Writes of location zero may be detected as errors even if reads are not. If the hardware
cannot assure that location zero acts as if it was initialized to zero or is locked at zero, the
hardware acts as if the -z flag is always set.

Expression Evaluation

The order of evaluation for some expressions will differ between HP-UX implementations.
This does not mean that operator precedence is different. For instance, in the expression:

x1 = f(x) + g(x) * 5;
134 Chapter 5

Programming for Portability
General Portability Considerations
f may be evaluated before or after g, but g(x) will always be multiplied by 5 before it is
added to f(x) . Since there is no C standard for order of evaluation of expressions, you
should avoid relying on the order of evaluation when using functions with side effects or
using function calls as actual parameters. You should use temporary variables if your
program relies upon a certain order of evaluation.

Variable Initialization

On some C implementations, auto (non-static) variables are implicitly initialized to 0.
This is not the case on HP-UX and it is most likely not the case on other implementations
of UNIX. Don't depend on the system initializing your local variables; it is not good
programming practice in general and it makes for nonportable code.

Conversions between unsigned char or unsigned short and int

All HP-UX C implementations, when used in compatibility mode, are unsigned
preserving. That is, in conversions of unsigned
char or unsigned short to int , the conversion process first converts the number to an
unsigned int . This contrasts to some C implementations that are value preserving
(that is, unsigned
char terms are first converted to char and then to int before they are used in an
expression).

Consider the following program:

main()
{

int i = -1;
unsigned char uc = 2;
unsigned int ui = 2;

if (uc > i)
printf("Value preserving\n");

else
printf("Unsigned preserving\n");

if (ui < i)
printf("Unsigned comparisons performed\n");

}

On HP-UX systems in compatibility mode, the program will print:

Unsigned preserving
Unsigned comparisons performed

In contrast, ANSI C specifies value preserving; so in ANSI mode, all HP-UX C compilers
are value preserving. The same program, when compiled in ANSI mode, will print:

Value preserving
Unsigned comparisons performed

Temporary Files ($TMPDIR)

All HP-UX C compilers produce a number of intermediate temporary files for their private
Chapter 5 135

Programming for Portability
General Portability Considerations
use during the compilation process. These files are normally invisible to you since they are
created and removed automatically. If, however, your system is tightly constrained for file
space these files, which are usually generated on /tmp or /usr/tmp , may exceed space
requirements. By assigning another directory to the TMPDIRenvironment variable you can
redirect these temporary files. See the cc manual page for details.

Input/Output

Since the C language definition provides no I/O capability, it depends on library routines
supplied by the host system. Data files produced by using the HP-UX calls write(2) or
fwrite(3) should not be expected to be portable between different system implementations.
Byte ordering and structure packing rules will make the bits in the file system-dependent,
even though identical routines are used. When in doubt, move data files using ASCII
representations (as from printf(3)), or write translation utilities that deal with the byte
ordering and alignment differences.

Checking for Standards Compliance

In order to check for standards compliance to a particular standard, you can use the lint
program with one of the following -D options:

• -D_XOPEN_SOURCE

• -D_POSIX_SOURCE

For example, the command

lint -D_POSIX_SOURCE file.c

checks the source file file.c for compliance with the POSIX standard.

If you have the HP Advise product, you can also check for C standard compliance using the
apex command.
136 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C
Porting to ANSI Mode HP C
This section describes porting non-ANSI mode HP C programs to ANSI C. Specifically, it
discusses:

• Compile line options.

• ANSI C name spaces.

• Differences that can lead to porting problems.

ANSI Mode Compile Option (-Aa)

To compile in ANSI C mode, use the -Aa compile time option. By default, HP C compilers
use non-ANSI mode; that is HP C compilers use the language definition defined in
Kernighan and Ritchie's The C Programming Language, First Edition, as well as selected
BSD (Berkeley Software Distribution) extensions. ANSI mode may become the default in a
future release.

The -w and +e options should not be used at compile time for true ANSI compliance. These
options suppress warning messages and allow HP C extensions that are not ANSI
conforming.

HP C Extensions to ANSI C (+e)

There are a number of HP C extensions enabled by the +e option in ANSI mode:

• Long pointers.

• Dollar sign character $ in an identifier.

• Compiler supplied defaults for missing arguments to intrinsic calls (For example
FOPEN("filename",fopt,,rsize) , where ,, indicates that the missing aopt
parameter is automatically supplied with default values.)

• Sized enumerated types: char enum , short enum , int enum , and long enum .

• Long long integer type. Note, the long long data type is only available in HP C Series
700/800.

These are the only HP C extensions that require using the +e option.

When coding for portability, you should compile your programs without the +e command
line option, and rewrite code that causes the compiler to generate messages related to HP
C extensions.

const and volatile Qualifiers

HP C supports the ANSI C const and volatile keywords used in variable declarations.
These keywords qualify the way in which the compiler treats the declared variable.

The const qualifier declares variables whose values do not change during program
execution. The HP C compiler generates error messages if there is an attempt to assign a
value to a const variable. The following declares a constant variable pi of type float with
Chapter 5 137

Programming for Portability
Porting to ANSI Mode HP C
an initial value of 3.14 :

const float pi = 3.14;

A const variable can be used like any other variable. For example:

area = pi * (radius * radius);

But attempting to assign a value to a const variable causes a compile error:

pi = 3.1416; /* This causes an error. */

Only obvious attempts to modify const variables are detected. Assignments made using
pointer references to const variables may not be detected by the compiler.

However, pointers may be declared using the const qualifier. For example:

char *const prompt = "Press return to continue> ";

An attempt to reassign the const pointer prompt causes a compiler error. For example:

prompt = "Exiting program."; /* Causes a compile time error. */

The volatile qualifier provides a way to tell the compiler that the value of a variable may
change in ways not known to the compiler. The volatile qualifier is useful when declaring
variables that may be altered by signal handlers, device drivers, the operating system, or
routines that use shared memory. It may also prevent certain optimizations from
occurring.

The optimizer makes assumptions about how variables are used within a program. It
assumes that the contents of memory will not be changed by entities other than the
current program. The volatile qualifier forces the compiler to be more conservative in its
assumptions regarding the variable.

The volatile qualifier can also be used for regular variables and pointers. For example:

volatile int intlist[100];
volatile char *revision_level;

For further information on the HP C optimizer and its assumptions, see Chapter 4,
"Optimizing HP C Programs." For further information on the const and volatile
qualifiers see the HP C/UX Reference Manual.

ANSI Mode Function Prototypes

Function prototypes are function declarations that contain parameter type lists.
Prototype-style function declarations are available only in ANSI mode. You are encouraged
to use the prototype-style of function declarations.

Adding function prototypes to existing C programs yields three advantages:

• Better type checking between declarations and calls because the number and types of
the parameters are part of the function's parameter list. For example:

struct s
{

int i;
}

int old_way(x)
138 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C
struct s x;
{
/* Function body using the old method for

declaring function parameter types
*/

}
int new_way(struct s x)

{
/* Function body using the new method for

declaring function parameter types
*/

}
/* The functions "old_way" and "new_way" are

both called later on in the program.
*/
old_way(1); /* This call compiles without complaint. */
new_way(1); /* This call gives an error. */

In this example, the function new_way gives an error because the value being passed to
it is of type int instead of type struct
x.

• More efficient parameter passing in some cases. Parameters of type float are not
converted to double . For example:

void old_way(f)
float f;
{

/* Function body using the old method for
declaring function parameter types

*/
}

void new_way(float f)
{

/* Function body using the new method for
declaring function parameter types

*/
}

/* The functions "old_way" and "new_way" are
both called later on in the program.

*/
float g;

old_way(g);
new_way(g);

In the above example, when the function old_way is called, the value of g is converted
to a double before being passed. In ANSI mode, the old_way function then converts the
value back to float . When the function new_way is called, the float value of g is passed
without conversion.

• Automatic conversion of function arguments, as if by assignment. For example, integer
parameters may be automatically converted to floating point.

/* Function declaration using the new method
Chapter 5 139

Programming for Portability
Porting to ANSI Mode HP C
for declaring function parameter types
*/

extern double sqrt(double);

/* The function "sqrt" is called later
on in the program.

*/

sqrt(1);

In this example, any value passed to sqrt is automatically converted to double .

Compiling an existing program in ANSI mode yields some of these advantages because of
the existence of prototypes in the standard header files. To take full advantage of
prototypes in existing programs, change old-style declarations (without prototype) to new
style declarations. On HP-UX, the tool protogen (see protogen(1) in the on-line man
pages) helps add prototypes to existing programs. For each source file, protogen can
produce a header file of prototypes and a modified source file that includes prototype
declarations.

Mixing Old-Style Function Definitions with ANSI Function Declarations

A common pitfall when mixing prototypes with old-style function definitions is to overlook
the ANSI rule that for parameter types to be compatible, the parameter type in the
prototype must match the parameter type resulting from default promotions applied to the
parameter in the old-style function definition.

For example:

void func1(char c);
void func1(c)
char c;
{ }

gets the following message when compiled in ANSI mode:

Inconsistent parameter list declaration for "func1"

The parameter type for c in the prototype is char . The parameter type for c in the
definition func1 is also char , but it expects an int because it is an old-style function
definition and in the absence of a prototype, char is promoted to int .

Changing the prototype to:

void func1(int c);

fixes the error.

The ANSI C standard does not require a compiler to do any parameter type checking if
prototypes are not used. Value parameters whose sizes are larger than 64 bits (8 bytes)
will be passed via a short pointer to the high-order byte of the parameter value. The
receiving function then makes a copy of the parameter pointed to by this short pointer in
its own local memory.
140 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C
Function Prototype Considerations

There are three things to consider when using function prototypes:

• Type differences between actual and formal parameters.

• Declarations of a structure in a prototype parameter.

• Mixing of const and volatile qualifiers and function prototypes.

Type Differences between Actual and Formal Parameters

When a prototype to a function is added, be careful that all calls to that function occur with
the prototype visible (in the same context). The following example illustrates problems
that can arise when this is not the case:

func1(){
float f;
func2(f);

}

int func2(float arg1){
/* body of func2 */

}

In the example above, when the call to func2 occurs, the compiler behaves as if func2 had
been declared with an old-style declaration int func2() . For an old-style call, the default
argument promotion rules cause the parameter f to be converted to double . When the
declaration of func2 is seen, there is a conflict. The prototype indicates that the parameter
arg1 should not be converted to double , but the call in the absence of the prototype
indicates that arg1 should be widened. When this conflict occurs within a single file, the
compiler issues an error:

Inconsistent parameter list declaration for "func2".

This error can be fixed by either making the prototype visible before the call, or by
changing the formal parameter declaration of arg1 to double . If the declaration and call of
func2 were in separate files, then the compiler would not detect the mismatch and the
program would silently behave incorrectly.

On HP-UX, the lint(1) command can be used to find such parameter inconsistencies
across files.

Declaration of a Structure in a Prototype Parameter

Another potential prototype problem occurs when structures are declared within a
prototype parameter list. The following example illustrates a problem that may arise:

func3(struct stname *arg);
struct stname { int i; };

void func4(void) {
struct stname s;
func3(s);

}

In this example, the call and declaration of func3 are not compatible because they refer to
Chapter 5 141

Programming for Portability
Porting to ANSI Mode HP C
different structures, both named stname . The stname referred by the declaration was
created within prototype scope. This means it goes out of scope at the end of the
declaration of func3 . The declaration of stname on the line following func3 is a new
instance of struct stname . When conflicting structures are detected, the compiler issues
an error:

types in call and definition of 'func3' have incompatible
struct/union pointer types for parameter 'arg'

This error can be fixed by switching the first two lines and thus declaring struct stname
prior to referencing it in the declaration of func3 .

Mixing of const and volatile Qualifiers and Function Prototypes

Mixing the const and volatile qualifiers and prototypes can be tricky. Note that this
section uses the const qualifier for all of its examples; however, you could just as easily
substitute the volatile qualifier for const . The rules for prototype parameter passing are
the same as the rules for assignments. To illustrate this point, consider the following
declarations:

/* pointer to pointer to int */
int **actual0;

Figure 5-1.

/* const pointer to pointer to int */
int **const actual1;

Figure 5-2.

/* const pointer to const pointer to int */
int *const *const actual2;

Figure 5-3.

/* const pointer to const pointer to const int */
const int *const *const actual3;
142 Chapter 5

Programming for Portability
Porting to ANSI Mode HP C
Figure 5-4.

These declarations show how successive levels of a type may be qualified. The declaration
for actual0 has no qualifiers. The declaration of actual1 has only the top level qualified.
The declarations of actual2 and actual3 have two and three levels qualified. When these
actual parameters are substituted into calls to the following functions:

void f0(int **formal0);
void f1(int **const formal1);
void f2(int *const *const formal2);
void f3(const int *const *const formal3);

The compatibility rules for pointer qualifiers are different for all three levels. At the first
level, the qualifiers on pointers are ignored. At the second level, the qualifiers of the formal
parameter must be a superset of those in the actual parameter. At levels three or greater
the parameters must match exactly. Substituting actual0 through actual3 into f0
through f3 results in the following compatibility matrix:

C = compatible

S = not compatible, qualifier level two of formal is not a superset of actual
parameter

N = not compatible, qualifier level three doesn't match

Table 5-1. º

f0 f1 f2 f3

actual0 C C C N

actual1 C C C N

actual2 S S C N

actual3 NS NS N C
Chapter 5 143

Programming for Portability
Using Name Spaces in HP C and ANSI C
Using Name Spaces in HP C and ANSI C
The ANSI standard specifies exactly which names (for example, variable names, function
names, type definition names) are reserved. The intention is to make it easier to port
programs from one implementation to another without unexpected collisions in names. For
example, since the ANSI C standard does not reserve the identifier open , an ANSI C
program may define and use a function named open without colliding with the open(2)
system call in different operating systems.

HP Header File and Library Implementation of Name Spaces

The HP header files and libraries have been designed to support several different name
spaces. On HP-UX systems, four name spaces are available:

Figure 5-5.

The HP library implementation has been designed with the assumption that many
existing programs will use more routines than those allowed by the ANSI C standard.

If a program calls, but does not define, a routine that is not in the ANSI C name space (for
example, open), then the library will resolve that reference. This allows a clean name
space and backward compatibility.

The HP header file implementation uses preprocessor conditional compilation directives to
select the name space. In non-ANSI mode, the default is the HP-UX name space.
Compatibility mode means that virtually all programs that compiled and executed under
previous releases of HP C on HP-UX continue to work as expected. The following table
provides information on how to select a name space from a command line or from within a
144 Chapter 5

Programming for Portability
Using Name Spaces in HP C and ANSI C
program using the defined libraries.

In ANSI mode, the default is ANSI C name space. The macro names _POSIX_SOURCE,
_XOPEN_SOURCE, and _HPUX_SOURCE may be used to select other name spaces. The name
space may need to be relaxed to make existing programs compile in ANSI mode. This can
be accomplished by defining the _HPUX_SOURCE macro definition.

For example, in HP-UX:

include sys/types.h
include sys/socket.h

results in the following compile-time error in ANSI mode because socket.h uses the
symbol u_short and u_short is only defined in the HP-UX name space section of types.h :

"/usr/include/sys/socket.h", line 79: syntax error:
u_short sa_family;

This error can be fixed by adding -D_HPUX_SOURCE to the command line of the compile.

Table 5-2. Selecting a Name Space in ANSI Mode

When using the
name space…

Use command line
option…

or #define in source program Platform

HP-UX -D_HPUX_SOURCE #define _HPUX_SOURCE HP-UX Only

XOPEN -D_XOPEN_SOURCE #define _XOPEN_SOURCE HP-UX Only

POSIX -D_POSIX_SOURCE #define _POSIX_SOURCE HP-UX

ANSI C default default HP-UX
Chapter 5 145

Programming for Portability
Silent Changes for ANSI C
Silent Changes for ANSI C
Non-ANSI mode HP C is different from ANSI mode HP C in ways that generally go
unnoticed. On HP-UX, many of these silent differences can be found by running the lint(1)
program. The following list provides some of these silent changes:

• Trigraphs are new in ANSI C. A trigraph is a three character sequence that is replaced
by a corresponding single character. For example, ??= is replaced by #. For more
information on trigraphs, refer to "Preprocessing Directives" in the HP C/HP-UX
Reference Manual.

• Promotion rules for unsigned char and unsigned short have changed. Non-ANSI
mode rules specify when an unsigned char or unsigned short is used with an integer
the result is unsigned . ANSI mode rules specify the result is signed . The following
program example illustrates a case where these rules differ:

main(){
unsigned short us = 1;
int i = -2;
printf("%s\n",(i+us)>0 ? "non-ANSI mode" : "ANSI mode");

}

Note that differences in promotion rules can occur under the following conditions: 1

— An expression involving an unsigned char or unsigned short produces an
integer-wide result in which the sign bit is set: that is, either a unary operation on
such a type, or a binary operation in which the other operand is int or a "narrower"
type.

— The result of the preceding expression is used in a context in which its condition of
being signed is significant: it is the left operand of the right-shift operator or either
operand of /,%,<,<=,>, or >=.

• Floating-point expressions with float operands may be computed as float precision in
ANSI mode. In non-ANSI mode they will always be computed in double precision.

• Initialization rules are different in some cases when braces are omitted in an
initialization.

• Unsuffixed integer constants may have different types. In non-ANSI mode, unsuffixed
constants have type int . In the ANSI mode, unsuffixed constants less than or equal to
2147483647 have type int . Constants larger than 2147483647 have type unsigned . For
example:

-2147483648

has type unsigned in the ANSI mode and int in non-ANSI mode. The above constant is
unsigned in the ANSI mode because 2147483648 is unsigned , and the - is a unary
operator.

1. Rationale for Proposed American National Standard for Information Systems - Programming
Language C (311 First Street, N.W., Suite 500, Washington, DC 20001-2178; X3 Secretariat:
Computer and Business Equipment Manufacturers Association), pages 34-35
146 Chapter 5

Programming for Portability
Silent Changes for ANSI C
• Empty tag declarations in a block scope create a new struct instance in ANSI mode.
The term block scope refers to identifiers declared inside a block or list of parameter
declarations in a function definition that have meaning from their point of declaration
to the end of the block. In the ANSI mode, it is possible to create recursive structures
within an inner block. For example:

struc t x { int i; };
{ /* inner scope */

struct x;
struc t y { struct x *xptr; };
struc t x { struct y *yptr; };

}

In ANSI mode, the inner struct x declaration creates a new version of the structure
type which may then be referred to by struct y . In non-ANSI mode, the struct x;
declaration refers to the outer structure.

• On Series 700/800, variable shifts (<< or >>) where the right operand has a value
greater than 31 or less than 0 will no longer always have a result of 0. For example,

unsigned int i,j = 0xffffffff , k = 32;
i = j >> k; /* i gets the value 0 in compatibility mode, */

/* 0xffffffff(-1) in ANSI mode. */
Chapter 5 147

Programming for Portability
Porting between HP C and Domain/C
Porting between HP C and Domain/C
All HP-UX and Domain computers have ANSI C compilers. Strictly standard-compliant
programs are highly portable between all these architectures.

The following Domain/C extensions are not supported on HP-UX in compatibility mode
and in most cases, are not supported in ANSI mode either:

• Reference variables.

• The following preprocessor directives: #attribute , #options , #section , #module ,
#debug , #eject , #list , #nolist , and #systype .

• std_$call .

• attribute modifier and options specifier.

• systype predefined macro.

• _BFMTCOFF predefined macro.

• _ISPM68K predefined macro.

• _ISPA88K predefined macro.

• _ISPPA_RISC predefined macro.

• Partial specification of struct and union members.

Function prototypes, struct and union initialization, and the predefined names and , all
of which are ANSI C features, are supported on HP-UX in ANSI mode.

Compile line options are different between HP-UX C and Domain/C. Check the respective
cc(1) page for complete descriptions.

There are other differences between HP-UX C and Domain/C:

• Alignment: All Domain workstations have hardware or software assists to handle
misaligned data. Programs that rely on these features will not run on the Series 800.

• Floating-point exceptions: All Domain workstations, by default, enable invalid
operation, divide by zero, and overflow exception traps. Programs that rely on fault
detection, for instance, to enter a fault handler or to terminate execution on
encountering a fault, will ordinarily generate useless output on HP-UX. However, the
PA1.1 math library for the Series 700/800 provides a function fpsetdefaults (3M),
which enables these traps and therefore allows such programs to run as expected. For
more information, see the HP-UX Floating-Point Guide.

• struct layout and alignment, especially bit-field, is different.

• float data type: Domain/C optimizes a statement all of whose atoms are float or
floating-point constants, to be evaluated in float rather than double .

• register declarations: Domain/C completely ignores register declarations, except to
ensure that language constraints are not violated.

• Include file search rules are different.
148 Chapter 5

Programming for Portability
Porting between HP C and Domain/C
• Programs that rely on undefined behaviors, for instance, the order of expression
evaluation and the application of unsequenced side-effects, will probably execute
differently.
Chapter 5 149

Programming for Portability
Porting between HP C and VMS C
Porting between HP C and VMS C
The C language itself is easy to port from VMS to HP-UX for two main reasons:

• There is a high degree of compatibility between HP C and other common industry
implementations of C as well as within the HP-UX family.

• The C language itself does not consider file manipulation or input/output to be part of
the core language. These issues are handled via libraries. Thus, C avoids some of the
thorniest issues of portability.

In most cases, HP C (in compatibility mode) is a superset of VMS C. Therefore, porting
from VMS to HP-UX is easier than porting in the other direction. The next several
subsections describe features of C that can cause problems in porting.

Core Language Features

• Basic data types in VMS have the same general sizes as their counterparts on HP-UX.
In particular, all integral and floating-point types have the same number of bits.
struct s and union s do not necessarily have the same size because of different
alignment rules.

• Basic data types are aligned on arbitrary byte boundaries in VMS C. HP-UX
counterparts generally have more restrictive alignments.

• Type char is signed by default on both VMS and HP-UX.

• The unsigned adjective is recognized by both systems and is usable on char , short ,
int , and long . It can also be used alone to refer to unsigned int .

• Both VMS and HP-UX support void and enumdata types although the allowable uses of
enum vary between the two systems. HP-UX is generally less restrictive.

• The VMS C storage class specifiers globaldef , globalref , and globalvalue have no
direct counterparts on HP-UX or other implementations of UNIX. On HP-UX, variables
are either local or global, based strictly on scope or static class specifiers.

• The VMS C class modifiers readonly and noshare have no direct counterparts on
HP-UX.

• struct s are packed differently on the two systems. All elements are byte aligned in
VMS whereas they are aligned more restrictively on the different HP-UX architectures
based upon their type. Organization of fields within the struct differs as well.

• Bit-fields within struct s are more general on HP-UX than on VMS. VMS requires that
they be of type int or unsigned whereas they may be any integral type on HP-UX.

• Assignment of one struct to another is supported on both systems. However, VMS
permits assignment of struct s provided the types of both sides have the same size.
HP-UX is more restrictive because it requires that the two sides be of the same type.

• VMS C stores floating-point data in memory using a proprietary scheme. Floats are
stored in F_floating format. Doubles are stored either in D_floating format or
G_floating format. D_floating format is the default. HP-UX uses IEEE standard
150 Chapter 5

Programming for Portability
Porting between HP C and VMS C
formats which are not compatible with VMS types but which are compatible with most
other industry implementations of UNIX.

• VMS C converts floats to doubles by padding the mantissa with 0s. HP-UX uses IEEE
formats for floating-point data and therefore must do a conversion by means of
floating-point hardware or by use of library functions. When doubles are converted to
floats in VMS C, the mantissa is rounded toward zero, then truncated. HP-UX uses
either floating point hardware or library calls for these conversions.

The VMS D_floating format can hide programming errors. In particular, you might
not immediately notice that mismatches exist between formal and actual function
arguments if one is declared float and the counterpart is declared double because the
only difference in the internal representation is the length of the mantissa.

• Due to the different internal representations of floating-point data, the range and
precision of floating-point numbers differs on the two systems according to the following
tables:

• VMS C identifiers are significant to the 31st character. HP-UX C identifiers are
significant to 255 characters.

• register declarations are handled differently in VMS. The register reserved word is
regarded by the compiler to be a strong hint to assign a dedicated register for the
variable. On Series 300/400, the register declaration causes an integral or pointer
type to be assigned a dedicated register to the limits of the system, unless optimization
at level +O2 or greater is requested, in which case the compiler ignores register
declarations. Series 700/800 treats register declarations as hints to the compiler.

• If a variable is declared to be register in VMS and the & address operator is used in
conjunction with that variable, no error is reported. Instead, the VMS compiler converts
the class of that variable to auto . HP-UX compilers will report an error.

• Type conversions on both systems follow the usual progression found on
implementations of UNIX.

• Character constants (not to be confused with string constants) are different on VMS.

Table 5-3. VMS C Floating-Point Types

Format Approximate Range of |x| Approximate Precision

F_floating 0.29E-38 to 1.7E38 7 decimal digits

D_floating 0.29E-38 to 1.7E38 16 decimal digits

G_floating 0.56E-308 to 0.99E308 15 decimal digits

Table 5-4. HP-UX C Floating-Point Types

Format Approximate Range of |x| Approximate Precision

float 1.17E-38 to 3.40E38 7 decimal digits

double 2.2E-308 to 1.8E308 16 decimal digits

long double 3.36E-4932 to 1.19E4932 31 decimal digits
Chapter 5 151

Programming for Portability
Porting between HP C and VMS C
Each character constant can contain up to four ASCII characters. If it contains fewer, as
is the normal case, it is padded on the left by NULLs. However, only the low order byte
is printed when the %c descriptor is used with printf . Multicharacter character
constants are treated as an overflow condition on Series 300/400 if the numerical value
exceeds 127 (the overflow is silent). In compatibility mode, Series 700/800 detects all
multicharacter character constants as error conditions and reports them at compile
time.

• String constants can have a maximum length of 65535 characters in VMS. They are
essentially unlimited on HP-UX.

• VMS provides an alternative means of identifying a function as being the main program
by the use of the adjective main program that is placed on the function definition. This
extension is not supported on HP-UX. Both systems support the special meaning of
main() , however.

• VMS implicity initializes pointers to 0. HP-UX makes no implicit initialization of
pointers unless they are static , so dereferencing an uninitialized pointer is an
undefined operation on HP-UX.

• VMS permits combining type specifiers with typedef names. So, for example:

typedef long t;
unsigned t x;

is permitted on VMS. This is permitted only in compatibility mode on Series 300/400; it
is not allowed in ANSI C mode on any HP-UX system. To accomplish this on Series
700/800, change the typedef to include the type specifier:

typedef unsigned long t;
t x;

Or use a #define :

#define t long
unsigned t x;

Preprocessor Features

• VMS supports an unlimited nesting of #include s. HP-UX in compatibility mode
guarantees 35 levels of nesting. HP-UX in ANSI mode guarantees 57 levels of nesting.

• The algorithms for searching for #include s differs on the two systems. VMS has two
variables, VAXC$INCLUDE and C$INCLUDE which control the order of searching. HP-UX
follows the usual order of searching found on most implementations of UNIX.

• #dictionary and #module are recognized in VMS but not on HP-UX.

• The following symbols are predefined in VMS but not on HP-UX: vms, vax , vaxc ,
vax11c , vms_version , CC$gfloat , VMS, VAX, VAXC, VAX11C, and VMS_VERSION.

• The following symbols are predefined on all HP-UX systems but not in VMS:

_ _hp9000s300 on Series 300/400
_ _hp9000s700 on Series 700
_ _hp9000s800 on Series 700/800
_ _hppa on Series 700/800
152 Chapter 5

Programming for Portability
Porting between HP C and VMS C
_ _hpux and _ _unix on all systems

• HP-UX preprocessors do not include white space in the replacement text of a macro.
The VMS preprocessor does include the trailing white space. If your HP C program
depends on the inclusion of the white space, you can place white space around the
macro invocation.

Compiler Environment

• In VMS, files with a suffix of .C are assumed to be C source files, .OBJ suffixes imply
object files, and .EXE suffixes imply executable files. HP-UX uses the normal
conventions on UNIX that .c implies a C source file, .o implies an object file, and a.out
is the default executable file (but there is no other convention for executable files).

• varargs is supported on VMS and all HP-UX implementations. See vprintf(3S) and
varargs(5) for a description and examples.

• curses is supported on VMS and all HP-UX implementations. See curses(3X) for a
description.

• VMS supports VAXC$ERRNO and errno as two system variables to return error
conditions. HP-UX supports errno although there may be differences in the error codes
or conditions.

• VMS supplies getchar and putchar as functions only, not as macros. HP-UX supplies
them as macros and also supplies the functions fgetc and fputc which are the function
versions.

• Major differences exist between the file systems of the two operating systems. One of
these is that the VMS directory SYS$LIBRARY contains many standard definition files
for macros. The HP-UX directory /usr/include has a rough correspondence but the
contents differ greatly.

• A VMS user must explicitly link the RTL libraries SYS$LIBRARY:VAXCURSE.OLB,
SYS$LIBRARY:VAXCRTLG.OLB or SYS$LIBRARY:VAXCRTL.OLB to perform C input/output
operations. The HP-UX input/output utilities are included in /lib/libc , which is
linked automatically by cc without being specified by the user.

• Certain standard functions may have different interfaces on the two systems. For
example, strcpy() copies one string to another but the resulting destination may not
be NULL terminated on VMS whereas it always will be on HP-UX.

• The commonly used HP-UX names end , edata and etext are not available on VMS.
Chapter 5 153

Programming for Portability
Calling Other Languages
Calling Other Languages
It is possible to call a routine written in another language from a C program, but you
should have a good reason for doing so. Using more than one language in a program that
you plan to port to another system will complicate the process. In any case, make sure that
the program is thoroughly tested in any new environment.

If you do call another language from C, you will have the other language's anomalies to
consider plus possible differences in parameter passing. Since all HP-UX system routines
are C programs, calling programs written in other languages should be an uncommon
event. If you choose to do so, remember that C passes all parameters by value except
arrays and structures. The ramifications of this depend on the language of the called
function.

Table 5-5. C Interfacing Compatibility

C HP-UX Pascal FORTRAN

char none byte

unsigned char char character (could reside on an odd
boundary and cause a memory
fault)

char * (string) none none

unsigned char *
(string)

PAC+chr(0) (PAC = packed
array[1.. n] of char)

Array of char+char(0)

short (int) -32768..32767 (shortint on Series
700/800)

integer*2

unsigned short (int) BIT16 on Series 700/800; none on
Series 300/400 (0..65535 will
generate a 16-bit value only if in a
packed structure)

none

int integer integer (* 4)

long (int) integer integer (* 4)

unsigned (int) none none

float real real (* 4)

double longreal real*8

long double a none real*16

type* (pointer) ^var , pass by reference, or use
anyvar

none

&var (address) addr(var) (requires $SYSPROG$) none

*var (deref) var^ none
154 Chapter 5

Programming for Portability
Calling Other Languages
Calling FORTRAN

You can compile FORTRAN functions separately by putting the functions you want into a
file and compiling it with the -c option to produce a .o file. Then, include the name of this
.o file on the cc command line that compiles your C program. The C program can refer to
the FORTRAN functions by the names they are declared by in the FORTRAN source.

Remember that in FORTRAN, parameters are usually passed by reference (except
CHARACTER parameters on Series 700/800, which are passed by descriptor), so actual
parameters in a call from C must be pointers or variable names preceded by the address-of
operator (&).

The following program uses a FORTRAN block data subprogram to initialize a common
area and a FORTRAN function to access that area:

double precision function get_element(i,j)
double precision array
common /a/array(1000,10)
get_element = array(i,j)
end

block data one
double precision array
common /a/array(1000,10)

C Note how easily large array initialization is done.
data array /1000*1.0,1000*2.0,1000*3.0,1000*4.0,1000*5.0,

* 1000*6.0,1000*7.0,1000*8.0,1000*9.0,1000*10.0/
end

The FORTRAN function and block data subprogram contained in file xx.f are compiled
using f77 -c xx.f .

The C main program is contained in file x.c :

main()
{
int i;

extern double get_element(int *, int *);

for (i=1; i <= 10; i)
printf("element = %f\n", get_element(&i,&i));

}

struct record (cannot always be done; C
and Pascal use different packing
algorithms)

structure

union record case of… union

a. long double is available only in ANSI mode.

Table 5-5. C Interfacing Compatibility

C HP-UX Pascal FORTRAN
Chapter 5 155

Programming for Portability
Calling Other Languages
The C main program is compiled using cc -Aa x.c xx.o .

Another area for potential problems is passing arrays to FORTRAN subprograms. An
important difference between FORTRAN and C is that FORTRAN stores arrays in
column-major order whereas C stores them in row-major order (like Pascal).

For example, the following shows sample C code:

int i,j;
int array[10][20];

for (i=0; i<10; i++) {
for (j=0; j<20; j++) /* Here the 2nd dimension

varies most rapidly */
array [i][j]=0;

}

Here is similar code for FORTRAN:

integer array (10,20)

do J=1,20
do I=1,10 !Here the first dimension varies most rapidly

array(I,J)=0
end do

end do

Therefore, when passing arrays from FORTRAN to C, a C procedure should vary the first
array index the fastest. This is shown in the following example in which a FORTRAN
program calls a C procedure:

integer array (10,20)

do j=1,20
do i=1,10

array(i,j)=0
end do

end do
call cproc (array)

.

.

.
cproc (array)
int array [][];

for (j=1; j<20; j++) {
for (i=1; i<20; i++) /* Note that this is the reverse from

how you would normally access the
array in C as shown above */

array [i][j]= ...
}

.

.

.

There are other considerations as well when passing arrays to FORTRAN subprograms.
156 Chapter 5

Programming for Portability
Calling Other Languages
It should be noted that a FORTRAN main should not be linked with cc .

Calling Pascal

Pascal gives you the choice of passing parameters by value or by reference (var
parameters). C passes all parameters (other than arrays and structures) by value, but
allows passing pointers to simulate pass by reference. If the Pascal function does not use
var parameters, then you may pass values just as you would to a C function. Actual
parameters in the call from the C program corresponding to formal var parameters in the
definition of the Pascal function should be pointers.

Arrays correlate fairly well between C and Pascal because elements of a multidimensional
array are stored in row-major order in both languages. That is, elements are stored by
rows; the rightmost subscript varies fastest as elements are accessed in storage order.

Note that C has no special type for boolean or logical expressions. Instead, any integer can
be used with a zero value representing false, and non-zero representing true. Also, C
performs all integer math in full precision (32-bit); the result is then truncated to the
appropriate destination size.

To call Pascal procedures from C on the Series 700/800, a program may first have to call
the Pascal procedure U_INIT_TRAPS . See the HP Pascal Programmer's Guide for details
about the TRY/RECOVER mechanism.

As true of FORTRAN main s, a Pascal main should not be linked with cc .

The following source is the Pascal module:

module a;
export

function cfunc : integer;
function dfunc : integer;

implement
function cfunc : integer;

var x : integer;

begin
x := MAXINT;
cfunc := x;

end;

function dfunc : integer;
var x : integer;

begin
x := MININT;
dfunc := x;

end;
end.

The command line for producing the Pascal relocatable object is

$ pc -c pfunc.p
Chapter 5 157

Programming for Portability
Calling Other Languages
The command line for compiling the C main program and linking the Pascal module is

$ cc x.c pfunc.o -lcl

The following output results:

2147483647
-2147483648
158 Chapter 5

Migrating C Programs to HP-UX
6 Migrating C Programs to HP-UX

This chapter discusses issues to consider when migrating C language programs from VAX
systems, HP 9000 Series 300/400, and HP 9000 Series 500 computers to HP 9000 Series
700/800 computers. The first section lists some steps you need to take to migrate an
application program to an HP 9000 Series 700/800 computer. Subsequent sections in this
chapter highlight major differences between various C compilers and suggest how to
modify source files to ease migration.

Because C is a highly portable language, if you follow the recommendations given in the
chapter "Programming for Portability," your program should migrate easily. However, if
you use system-dependent programming practices, a program that executes successfully
on one computer may not execute properly when transferred to a HP 9000 Series 700/800
computer. For example, if you use system-specific I/O routines outside of the standard C
library, you will have difficulty with portability.
Chapter 6 159

Migrating C Programs to HP-UX
Migrating an Application
Migrating an Application
Following are the general steps to migrate a C program from an HP-UX or UNIX system.

1. Test your program on the current system so you have a copy of the results.

2. Use the tar command (see the HP-UX Reference manual) with the cv options to
transfer the source files you want to migrate to tape.

3. Use the tar command with the r option to transfer any associated data files to tape.

4. Install the source files and any related data files on the HP 9000 Series 700/800 using
the tar command with the x option.

5. Check your makefiles for any implementation-specific options. Change programs
depending on implementation-specific command options. On HP-UX systems, these
options are generally preceded by -W or +, and may include options to be passed to ld or
cpp . You can optionally include the -g option to permit symbolic debugging.

6. Review the lists of "Guidelines for Portability" and "Practices to Avoid" in the previous
chapter and check over the source code for system-dependent programming. (If the
source files are extensive, you may want to skip this step and catch errors when you run
lint or compile.)

7. Search for instances of #include files and make sure that the files or routines included
appear in the correct directory or library on the HP 9000 Series 700/800 computer.

8. Run lint , a C program checker that verifies source code and prints warning messages
about problems with the source code style, efficiency, portability, and consistency.

9. Compile the program on the HP 9000 Series 700/800 computer using the cc command.
(Refer to the HP C/HP-UX Reference Manual for details about the cc command and
options, and explanations of error, warning, and panic messages.) Change the source
code to resolve any messages you receive.

10.Recompile the program until you receive no messages.

11.Link the program. The linker reports any symbols that cannot be found.

12.Run the program on the HP 9000 Series 700/800 computer. Compare the results with
those received on the original computer.

Byte Order
The VAX computer has a different byte order from HP 9000 computers. Binary data files
created on a VAX computer may need to be swapped before they can be interpreted on an
HP 9000 Series 700/800 computer. Use the descriptions of storage and alignment on both
systems to write a programming tool to reorder the data. The C library function swab (see
the HP-UX Reference Manual) can be used to swap bytes, if that is sufficient for the
particular application. Otherwise, you need to write a customized tool. ASCII code and
160 Chapter 6

Migrating C Programs to HP-UX
Data Alignment
data files should migrate to the HP 9000 Series 700/800 without change.

Data Alignment
The HP 9000 Series 700/800 is stricter than other machines with respect to data
alignment. Misaligned data addresses cause bus errors when attempting to dereference
them. Use the +w1 option when compiling to report occurrences of "Casting from loose to
strict alignment." Fix occurrences that result from using the address of a more loosely
aligned item (such as char) to access a more strictly aligned item (such as int).

Unsupported Keywords
Some implementations of C permit use of the keywords asm, fortran , and entry . These
are not supported on the HP 9000 Series 700/800 computers. You must rewrite any code
that uses these keywords.

Predefined Macro Names
In non-ANSI mode, there are several HP C specific macro names defined. These names
may conflict with identifiers used in the source code.

The HP 9000 700/800 preprocessors predefine the macro names PWB, hpux, and unix. The
HP 9000 Series 700/800 predefines the macro name hp9000s800 ; the HP 9000 Series 500
predefines hp9000s500; and the HP 9000 Series 300/400 predefine the macro name
hp9000s300 . The VAX predefines the macro name vax. If any of these macro names is
used as an identifier in the source code, use the #undef preprocessor directive to
"undefine" the macro or rename the identifier(s).

In ANSI mode, none of the above macro names are defined and you should not have
difficulty with these HP C specific macro names.

White Space
HP 9000 Series 300/400, 500, and 700/800 preprocessors do not include trailing white
space in the replacement text of a macro. The VAX preprocessor includes the trailing white
space. If your program depends on the inclusion of the white space, you can place white
Chapter 6 161

Migrating C Programs to HP-UX
Hexadecimal Escape Sequence
space around the macro invocation.

Hexadecimal Escape Sequence
The HP 9000 Series 700/800 compiler allows character constants containing hexadecimal
escape sequences. For example, can be expressed with the hexadecimal escape sequence .
The HP 9000 Series 200, 300, and 500 do not allow hexadecimal escape sequences.

Check your source files for any occurrences for \x , and verify that a hexadecimal escape
sequence is intended.

Invalid Structure References
The HP 9000 Series 700/800 compiler does not allow structure members to be referenced
through a pointer to a different type of object. The VAX pcc and HP 9000 Series 200 and
500 compilers allow this. Change any invalid structure references to cast the pointer to the
appropriate type before referencing the member. For example, given the following:

struct x {
int y;

}z;
char *c;
c -> y=5;

c -> y=5; is invalid. Instead, use the following code:

c = (char *) &z;
((struct x *) c)->y = 5;

Leading Underscore
External names on the HP 9000 Series 700/800 do not contain a leading underscore. You
need to change any programs that rely on external names containing leading underscores.
Note that all languages on the HP 9000 Series 700/800 follow the same convention.
Therefore, only assembly language code and names that were aliased in other languages
are affected by this. Because there is no leading underscore, external names contain one
additional significant character. Identifiers that differ only in the 255th character will
denote different items on the HP 9000 Series 700/800.
162 Chapter 6

Migrating C Programs to HP-UX
Library Functions
Library Functions
The set of library routines available on HP-UX systems may differ from those available on
BSD 4.2 systems. If you encounter an unresolved function after linking, refer to the
HP-UX Reference Manual to see if there is an HP-UX function that does what you want it
to do. If not, you will have to write one of your own.

Floating-Point Format
The VAX floating-point representation is different from that on HP 9000 computers. You
will have to change any programs dependent on the characteristics of VAX floating point.
In particular, this difference could expose errors in the code that happen to work
acceptably on the VAX. These errors include mismatched function return types (float on
one side, double on the other), and passing the address of a double instead of a float to
scanf. The VAX representation of a float differs in the number of bits in the exponent, as
well as the mantissa. Therefore, mismatched types can cause a vastly different answer on
HP 9000 computers.

Bit-Fields
The HP 9000 Series 700/800 C compiler treats bit-fields without the unsigned type
modifier as signed. The VAX, HP 9000 Series 300/400, and 500 compilers treat them as
unsigned

Data Storage and Alignment
The alignment requirements of some data types are different on the HP 9000 Series
700/800. Check any externally imposed data structure layouts for differences. These may
include byte and bit-field order, if you are migrating from a VAX, or different internal
padding for structure member alignment. On the HP 9000 Series 700/800, doubles must
be aligned on a 64-bit boundary, whereas other machines require alignment on a 32-bit
boundary. Refer to Chapter 2 for complete storage and alignment information.
Chapter 6 163

Migrating C Programs to HP-UX
Typedefs
Typedefs
The HP C compiler does not allow combining type specifiers with typedef names.

For example:

typedef long t;
unsigned t var;

Compilers derived from pcc accept this code, but HP C does not. Change the typedef to
include the type specifier:

typedef unsigned long t;
t var;

or use a define:

#define t long
unsigned t var;
164 Chapter 6

Using C Programming Tools
7 Using C Programming Tools

This chapter contains a list and a description of the C tools. It also provides "how to use"
information on lint and discusses HP specific features of lex and yacc . For more
information on each of the HP C tools see the manpages or HP-UX Reference Vol. 1: Section
1. Another general source of information on lex and yacc is lex and yacc by John R.
Levine, Tony Mason, and Doug Brown.
Chapter 7 165

Using C Programming Tools
Description of C Programming Tools
Description of C Programming Tools
Below is a brief description of each of the C tools.

• cb is a C program beautifier.

• cflow is a C flow graph generator.

• cpp is the C language preprocessor.

• ctags is a C programming tool that creates a tag file for ex(1) or vi(1) from the specified
C, Pascal, and FORTRAN sources.

• cxref is a C program cross-reference generator.

• lex is a program generator for lexical analysis of text.

• lint is a C program checker.

• yacc is a programming tool for describing the input to a computer program.
166 Chapter 7

Using C Programming Tools
HP Specific Features of lex and yacc
HP Specific Features of lex and yacc
The following native language support features have been added to the HP C lex and yacc
tools:

• LC_CTYPEand LC_MESSAGESenvironment variable support in lex - Determines the size
of the characters and language in which messages are displayed while you use lex .

• -m command line option for lex - Specifies that multibyte characters may be used
anywhere single byte characters are allowed. You can intermix both 8-bit and 16-bit
multibyte characters in regular expressions if you enable the -m command line option.

• -w command line option for lex - Includes all features in -m and returns data in the
form of the wchar_t data type.

• %l <locale> directive for lex - Specifies the locale at the beginning of the definitions
section. Any valid locale recognized by the setlocale function can be used. This
directive is similar to using the LC_CTYPE environment variable. To receive wchar_t
support with %l, use the -w command line option.

• LC_CTYPE environment variable support in yacc - Determines the native language set
used by yacc and enables multibyte character sets. Multibyte characters can appear in
token names, on terminal symbols, strings, comments, or anywhere ASCII characters
can appear, except as separators or special characters.

• If you see the diagnostic message yacc stack overflow , then add the macro

#define RUNTIME_YYMAXDEPTH

at the beginning of the user subroutine section in the .y file.
Chapter 7 167

Using C Programming Tools
Using lint
Using lint
The main purpose of lint is to supply the programmer with warning messages about
problems with the source code's style, efficiency, portability, and consistency. The lint
command can be used before compiling a program to check for syntax errors and after
compiling a program to test for subtle errors such as type differences.

Error messages and lint warnings are sent to standard error (stderr). Once the code
errors are corrected, the C source file(s) should be run through the C compiler to produce
the necessary object code.

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are options flags to control lint checking and messages, files are the files
to be checked that end with .c or .ln , and library descriptors are the names of
libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppresses messages about assignments of long values to variables that
are not long.

-b Suppresses messages about break statements that cannot be reached.

-c Only checks for intrafile bugs; leaves external information in files suffixed
with .ln .

-h Does not apply heuristics (which attempt to detect bugs, improve style,
and reduce waste).

-n Does not check for compatibility with either the standard or the portable
lint library.

-o name Creates a lint library from input files named llib-l name.ln .

-p Attempts to check portability to other dialects of C language.

-s Checks for cases where the alignment of structures, unions, and pointers
may not be portable.

-u Suppresses messages about function and external variables used and not
defined or defined and not used.

-v Suppresses messages about unused arguments and functions.

-x Does not report variables referred to by external declarations but never
used.

-Aa Invokes lint in ANSI mode.

-Ac Invokes lint in compatibility mode. The default is compatibility mode.

The names of files that contain C language programs should end with the suffix .c , which
is mandatory for lint and the C compiler.
168 Chapter 7

Using C Programming Tools
Using lint
The lint command accepts certain arguments, such as:

-lm

The lint library files are processed almost exactly like ordinary source files. The only
difference is that functions that are defined on a library file but are not used on a source
file do not result in messages. The lint command does not simulate a full library search
algorithm and will print messages if the source files contain a redefinition of a library
routine.

By default, lint checks the programs it is given against a standard library file which
contains descriptions of the programs which are normally loaded when a C language
program is run. When the -p option is used, another file is checked containing descriptions
of the standard library routines which are expected to be portable across various
machines. The -n option can be used to suppress all library checking.

lint also recognizes the -LINTLIBRARY the HP C -Wp option. The lint -LINTLIBRARY
option is equivalent to using lint comment /*LINTLIBRARY*/ in source files. lint also
recognizes the -Wp option and passes named arguments to the preprocessor.

Directives

The alternative to using options to suppress lint 's comments about problem areas is to
use directives. Directives appear in the source code in the form of code comments. The
lint command recognizes five directives.

/*NOTREACHED*/ Stops an unreachable code comment about the next line of code.

/*NOSTRICT*/ Stops lint from strictly type checking the next expression.

/*ARGSUSED*/ Stops a comment about any unused parameters for the following function.

/*VARARGSn*/ Stops lint from reporting variable numbers of parameters in calls to a
function. The function's definition follows this comment. The first n
parameters must be present in each call to the function; lint comments if
they aren't. If /*VARARGS*/ appears without the n, none of the parameters
must be present. This comment must precede the actual code for a
function. It should not precede extern declarations.

/*LINTLIBRARY*/ Tells lint that the source file is used to create a lint library file and
to suppress comments about the unused functions. lint objects if other
files redefine routines that are found there. This directive must be placed
at the beginning of a source file.

Problem Detection

Remember that a compiler reports errors only when it encounters program source code
that cannot be converted into object code. The main purpose of lint is to find problem
areas in C source code that it considers to be inefficient, nonportable, bad style, or a
possible bug, but which the C compiler accepts as error-free because it can be converted
into object code.

Comments about problems that are local to a function are produced as each problem is
Chapter 7 169

Using C Programming Tools
Using lint
detected. They have the following form:

(line #) warning: message text

Information about external functions and variables is collected and analyzed after lint
has processed the source files. At that time, if a problem has been detected, it outputs a
warning message with the form

message text

followed by a list of external names causing the message and the file where the problem
occurred.

Code causing lint to issue a warning message should be analyzed to determine the source
of the problem. Sometimes the programmer has a valid reason for writing the problem
code. Usually, though, this is not the case. The lint command can be very helpful in
uncovering subtle programming errors.

The lint command checks the source code for certain conditions, about which it issues
warning messages. These can be grouped into the following categories:

• variable or function is declared but not used

• variable is used before it is set

• portion of code is unreachable

• function values are used incorrectly

• type matching does not adhere strictly to C rules

• code has portability problems

• code construction is strange

The code that you write may have constructions in it that lint objects to but that are
necessary to its application. Warning messages about problem areas that you know about
and do not plan to correct can be suppressed. There are two methods for suppressing
warning messages from lint . The use of lint options is one. The lint command can be
called with any combination of its defined option set. Each option causes lint to ignore a
different problem area. The other method is to insert lint directives into the source code.
For information about lint directives, see the section "Directives" in this chapter.

Unused Variables and Functions

The lint command objects if source code declares a variable that is never used or defines a
function that is never called. Unused variables and functions are considered bad style
because their declarations clutter the code.

Unused static identifiers cause the following message:

(1)static identifier 'name' defined but never used

Unused automatic variables cause the following message:

(1) warning: 'name' unused in function 'name'

A function or external variable that is unused causes the message

name defined but never used
170 Chapter 7

Using C Programming Tools
Using lint
followed by the function or variable name, the line number and file in which it was defined.
The lint command also looks at the special case where one of the parameters of a function
is not used. The warning message is:

warning: (line number) 'arg_name' in func_name'

If functions or external variables are declared but never used or defined, lint responds
with

name declared but never used or defined

followed by a list of variable and functions names and the names of files where they were
declared.

Suppressing Unused Functions and Variables Reports

Sometimes it is necessary to have unused function parameters to support consistent
interfaces between functions. The -v option can be used with lint to suppress warnings
about unused parameters.

If lint is run on a file that is linked with other files at compile time, many external
variables and functions can be defined but not used, as well as used but not defined. If
there is no guarantee that the definition of an external object is always seen before the
object code is used, it is declared extern . The -u option can be used to stop complaints
about all external objects, whether or not they are declared extern . If you want to inhibit
complaints about only the extern declared functions and variables, use the -x option.

Set/Used Information

A problem exists in a program if a variable's value is used before it is assigned. Although
lint attempts to detect occurrences of this, it takes into account only the physical location
of the code. If code using a local variable is located before the variable is given a value, the
message is:

warning: 'name' may be used before set

The lint command also objects if automatic variables are set in a function but not used.
The message given is:

warning: 'name' set but not used in function 'func_name'

Note that lint does not have an option for suppressing the display of warnings for
variables that are used but not set or set but not used.

Unreachable Code

The lint command checks for three types of unreachable code. Any statement following a
goto , break , continue , or return statement must either be labeled or reside in an outer
block for lint to consider it reachable. If neither is the case, lint responds with:

warning: (line number) statement not reached

The same message is given if lint finds an infinite loop. It only checks for the infinite loop
cases of while(1) and for(;;) . The third item that lint looks for is a loop that cannot be
entered from the top. If one is found, then the message sent is:

warning: loop not entered from top
Chapter 7 171

Using C Programming Tools
Using lint
The lint command's detection of unreachable code is by no means exhaustive. Warning
messages can be issued about valid code, and conversely lint may overlook code that
cannot be reached.

Programs that are generated by yacc or lex can have many unreachable break
statements. Normally, each one causes a complaint from lint . The -b option can be used
to force lint to ignore unreachable break statements.

Function Value

The C compiler allows a function containing both the statement

return();

and the statement

return (expression);

to pass through without complaint. The lint command, however, detects this
inconsistency and responds with the message:

warning: function 'name' has 'return(expression)' and 'return'

The most serious difficulty with this is detecting when a function return is implied by flow
of control reaching the end of the function. This can be seen with a simple example:

f(a)
{

if (a) return (3);
g();

}

Notice that if a tests false, f will call g and then return with no defined value. This will
trigger a message for lint . If g (like exit) never returns, the message will still be
produced when in fact nothing is wrong. In practice, some potentially serious bugs have
been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is sometimes or
never used. When the value is never used, it may constitute an inefficiency in the function
definition. When the value is sometimes used, it may represent bad style (e.g., not testing
for error conditions).

The lint command will not issue a diagnostic message if that function call is cast as void .
For example,

(void) printf("%d\n",i);

tells lint to not warn about the ignored return value.

The dual problem — using a function value when the function does not return one — is
also detected. This is a serious problem.

The lint command does not have an option for suppressing the display of warning for
inconsistent return functions and functions that return no value.

Portability

The -p option of lint aids the programmer is writing portable code in four areas:
172 Chapter 7

Using C Programming Tools
Using lint
• character comparisons

• pointer alignments (this is default on PA-RISC computers)

• length of external variables

• type casting

Character representation varies on different machines. Characters may be implemented
as signed values. As a result, certain comparisons with characters give different results on
different machines. The expression

c<0

where c is defined as type char , is always false if characters are unsigned values. If,
however, characters are signed values, the expression could be either true or false. Where
character comparisons could result in different values depending on the machine used,
lint outputs the message:

warning: nonportable character comparison

Legal pointer assignments are determined by the alignment restrictions of the particular
machine used. For example, one machine may allow double-precision values to begin on
any modulo-4 boundary, but another may restrict them to modulo-8 boundaries. If
alignment requirements are different, code containing an assignment of a double pointer
to an integer pointer could cause problems. The lint command attempts to detect where
the effect of pointer assignments is machine dependent. The warning that it outputs is:

warning: possible pointer alignment problem

The amount of information about external symbols that is loaded depends on: the machine
being used, the number of significant characters, and whether or not uppercase/lowercase
distinction is kept. The lint -p command truncates all external symbols to six characters
and allows only one case distinction. (It changes uppercase characters to lowercase.) This
provides a worst-case analysis so that the uniqueness of an external symbol is not
machine-dependent.

The effectiveness of type casting in C programs can depend on the machine that is used.
For this reason, lint ignores type casting code. All assignments that use it are subject to
lint 's type checking.

Alignment Portability

The -s option of the lint command checks for the following portability considerations:

• pointer alignments (same as -p option)

• a structure's member alignments

• trailing padding of structures and unions

The checks made for pointer alignments are exactly the same as for the -p option. The
warning for these cases is:

warning: possible pointer alignment problem

The alignment of structure members is different between architectures. For example,
MC680x0 computers pad structures internally so that all fields of type int begin on an
even boundary. In contrast, PA-RISC computers pad structures so that all fields of type
Chapter 7 173

Using C Programming Tools
Using lint
int begin on a four-byte boundary. The following structure will be aligned differently on
the two architectures:

struct s
{ char c;

long l; /* The offset equals 2 on MC680x0 computers */
}; /* and 4 on PA-RISC computers. */

In many cases the different alignment of structures does not affect the behavior of a
program. However, problems can happen when raw structures are written to a file on one
architecture and read back in on another. The lint command checks for cases where a
structure member is aligned on a boundary that is not a multiple of its size (for example,
int on int boundary, short on short boundary, and double on double boundary). The
warning that it outputs is:

warning: alignment of struct 'name' may not be portable

The lint command also checks for cases where the internal padding added at the end of a
structure may differ between architectures. The amount of trailing padding can change the
size of a structure. The warning that lint outputs is:

warning: trailing padding of struct/union 's' may not be portable

Strange Constructions

A strange construction is code that lint considers to be bad style or a possible bug.

The lint command looks for code that has no effect. For example,

*p;

where the * has no effect. The statement is equivalent to "p;". In cases like this, the
message

warning: null effect

is sent.

The treatment of unsigned numbers as signed numbers in comparison causes lint to
report the following:

warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;
.
.
.

if (x >=0) ...

The lint command also objects if constants are treated as variables. If the boolean
expression in a conditional has a set value due to constants, such as

if(1 !=0) ...

lint 's response is:

warning: constant in conditional context

To avoid operator precedence confusion, lint encourages using parentheses in expressions
174 Chapter 7

Using C Programming Tools
Using lint
by sending the message:

warning: precedence confusion possible: parenthesize!

The lint command judges it bad style to redefine an outer block variable in an inner
block. Variables with different meanings should normally have different names. If
variables are redefined, the message sent is:

warning: name redefinition hides earlier one

The -h option suppresses lint diagnostics of strange constructions.

Standards Compliance

The lint libraries are arranged for standards checking. For example,

lint -D_POSIX_SOURCE file.c

checks for routines referenced in file.c but not specified in the POSIX standard.

The lint command also accepts ANSI standard C -Aa as well as compatible C -Ac . In
ANSI mode, lint invokes the ANSI preprocessor (/lib/cpp.ansi) instead of the
compatibility preprocessor (/lib/cpp). ANSI mode lint should be used on source that is
compiled with the ANSI standard C compiler.
Chapter 7 175

	1� Introduction to HP C
	2� Storage and Alignment Comparisons
	3� Calling Other Languages
	4� Optimizing HP C Programs
	5� Programming for Portability
	6� Migrating C Programs to HP-UX
	7� Using C Programming Tools

