
HP C/iX Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 3
Manufacturing Part Number: 31506-90011
E0499

U.S.A. April 1999

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1990, 1992, 1996, 1999 by Hewlett-Packard Company
2

Introduction
1 Introduction

HP C originates from the C language designed in 1972 by Dennis Ritchie at Bell
Laboratories. It descended from several ALGOL-like languages, most notably BCPL and a
language developed by Ken Thompson called B.

Work on a standard for C began in 1983. The Draft Proposed American National
Standard for Information SystemsProgramming Language C was completed and was
approved by the Technical Committee X3J11 on the C Programming Language in
September, 1988. It was forwarded to X3, the American National Standards Committee on
Computers and Information Processing, early in 1989.

In December of 1989, the ANSI board approved the American National Standard for
Programming Language C, X3.159.

C has been called a "low-level, high-level" programming language. C's operators and data
types closely match those found in modern computers. The language is concise and C
compilers produce highly efficient code. C has traditionally been used for systems
programming, but it is being used increasingly for general applications.

The most important feature that C provides is portability. In addition, C provides many
facilities such as useful data types, including pointers and strings, and a functional set of
data structures, operators, and control statements.

The creation of an ANSI standard for C raises the question of compatibility with
preexisting implementations of the language. For the most part, the committee that
developed the standard adopted the goal of codifying existing practice, rather than
introducing new language features that had never been tried. They went to great lengths
to minimize changes which would "break" existing programs.

Many programs compile and execute properly in an ANSI C environment with no changes.
In the vast majority of cases where a change is required, the offending construct will be
identified by a warning or error message produced by the compiler. In a few cases, which
are believed to be rare in actual practice, certain program constructs will be accepted but
will behave differently under ANSI C. HP C/iX is capable of producing migration warnings
to help identify code where such "quiet changes" would occur.
Chapter 1 3

Introduction
ANSI Mode
ANSI Mode
Unless you are writing code that must be recompiled on a system where ANSI C is not
available, it is recommended that you use the ANSI mode of compilation for your new
development. It is also recommended that you use ANSI mode to recompile existing
programs after making any necessary changes.

Because an ANSI-conforming compiler is required to do more thorough error detection and
reporting than has been traditional among C compilers, you may find that your
productivity will be enhanced because more errors will be caught at compile time. This
may be especially true if you use the major new feature, function prototypes.

Non-ANSI Mode
You may not want to change your existing code, or you may have old code that relies on
certain non-ANSI features. Therefore, a non-ANSI mode of compilation has been provided.
In this mode, virtually all programs that compiled and executed under previous releases of
HP C/iX will continue to work as expected.

If you do not specify the mode of compilation, non-ANSI mode is the default. However, the
default mode will be changed to ANSI on some future release.

Focus of This Manual
This manual presents ANSI C as the standard version of the C language. Where certain
constructs are not available in non-ANSI mode, or would work differently, it is noted and
the differences are described.

HP C/iX, when invoked in ANSI mode, is intended to be a conforming implementation of
ANSI C, as specified by American National Standard X3.159. This manual uses the
terminology of that standard and attempts to explain the language defined by that
standard, while also documenting the implementation decisions and extensions made in
HP C/iX. It is not the intent of this document to replicate the standard. Thus, you are
encouraged to refer to the standard for any fine points of the language not covered here.
4 Chapter 1

Lexical Elements
2 Lexical Elements

This chapter describes the lexical elements of the C language, using Backus-Naur form.
Chapter 2 7

Lexical Elements
Tokens
Tokens

A token is the smallest lexical element of the C language.
8 Chapter 2

Lexical Elements
Syntax
Syntax
token := keyword

identifier
constant
string-literal
operator

punctuator
Chapter 2 9

Lexical Elements
Description
Description
The compiler combines input characters together to form the longest token possible when
collecting characters into tokens. For example, the sequence integer is interpreted as a
single identifier rather than the reserved keyword int followed by the identifier eger .

A token cannot exceed 509 characters in length. Consecutive source code lines can be
concatenated together using the backslash (\) character at the end of the line to be
continued. The total number of characters in the concatenated source lines cannot exceed
509.

The term white space refers to the set of characters that includes spaces, horizontal tabs,
newline characters, vertical tabs, form feeds, and comments. You can use white space
freely between tokens, and extra spaces are ignored in your programs. But note that at
least one space may be required to separate tokens. So, a character such as a hyphen (-)
can take on different meanings depending upon the white space around it.

For example:

a- -1

is different from

a1
10 Chapter 2

Lexical Elements
Keywords
Keywords
The following keywords are reserved in the C language. You cannot use them as program
identifiers. Type them as shown, using lowercase characters.

auto do goto signed union
break double if sizeof unsigned
case else int static void
char enum long sizeof volatile
const extern register struct while
continue float return switch
default for short typedef
Chapter 2 11

Lexical Elements
Identifiers
Identifiers
An identifier is a sequence of characters that represents an entity such as a function or a
data object.

Syntax
identifier := nondigit

identifier nondigit
identifier digit

nondigit := any character from the set:
_ a b c d e f g h i j k l m n o p
q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X
Y Z

digit := any character from the set:
0 1 2 3 4 5 6 7 8 9

dollar-sign := the $ character

Description

Identifiers must start with a nonnumeric character followed by a sequence of digits or
nonnumeric characters. Internal and external names may have up to 255 significant
characters.

Identifiers are case sensitive. The compiler considers uppercase and lowercase characters
to be different. For example, the identifier CAT is different from the identifier cat. This is
true for external as well as internal names.

An HP extension to the language non-ANSI mode allows $ as a valid character in an
identifier as long as it is not the first character. The following are examples of legal and
illegal identifiers:

Legal

Sub_Total
X
aBc
Else
do_123

Illegal

3xyz First character is a digit
const Conflict with a reserved word
#note First character not alphabetic or _
Num'2 Contains an illegal character

All identifiers that begin with the underscore () character are reserved for system use. If
you define identifiers that begin with an underscore, the compiler may interpret them as
internal system names. The resulting behavior is undefined.
12 Chapter 2

Lexical Elements
Identifiers
Finally, identifiers cannot have the same spelling as reserved words. For example, int
cannot be used as an identifier because it is a reserved word. INT is a valid identifier
because it has different case letters.

Identifier Scope

The scope of an identifier is the region of the program in which the identifier has meaning.
There are four kinds of scope:

1. File Scope — Identifiers declared outside of any block or list of parameters have scope
from their declaration point until the end of the translation unit.

2. Function Prototype Scope — If the identifier is part of the parameter list in a
function declaration, then it is visible only inside the function declarator. This scope
ends with the function prototype.

3. Block Scope — Identifiers declared inside a block or in the list of parameter
declarations in a function definition have scope from their declaration point until the
end of the associated block.

4. Function Scope — Statement labels have scope over the entire function in which they
are defined. Labels cannot be referenced outside of the function in which they are
defined. Labels do not follow the block scope rules. In particular, goto statements can
reference labels that are defined inside iteration statements. Label names must be
unique within a function.

A preprocessor macro is visible from the #define directive that declares it until either the
end of the translation unit or an #undef directive that undefines the macro.

Identifier Linkage

An identifier is bound to a physical object by the context of its use. The same identifier can
be bound to several different objects at different places in the same program. This
apparent ambiguity is resolved through the use of scope and name spaces. The term name
spaces refers to various categories of identifiers in C (see "Name Spaces" later in this
chapter for more information).

Similarly, an identifier declared in different scopes or in the same scope more than once
can be made to refer to the same object or function by a process called linkage. There are
three kinds of linkage:

1. Internal — Within a single translation unit, each instance of an identifier with
internal linkage denotes the same object or function.

2. External — Within all the translation units and libraries that constitute an entire
program, each instance of a particular identifier with external linkage denotes the same
object or function.

3. None — Identifiers with no linkage denote unique entities.

If an identifier is declared at file scope using the storage-class specifier static , it has
internal linkage.

If an identifier is declared using the storage-class specifier extern , it has the same linkage
as any visible declaration of the identifier with file scope. If there is no visible declaration
with file scope, the identifier has external linkage.
Chapter 2 13

Lexical Elements
Identifiers
If the declaration of an identifier for a function has no storage-class specifier, its linkage is
determined exactly as if it were declared with the storage-class specifier extern . If the
declaration of an identifier for an object has file scope and no storage-class specifier, its
linkage is external.

The following identifiers have no linkage:

• An identifier declared to be anything other than an object or a function.

• An identifier declared to be a function parameter.

• A block scope identifier for an object declared without the storage-class specifier
extern .

For example:

extern int i; /* External linkage */
static float f; /* Internal linkage */
struc t Q { int z; }; /* Q and z both have no linkage */

static int func() /* Internal linkage */
{

extern int temp; /* External linkage */
static char c; /* No linkage */
int j; /* No linkage */
extern float f; /* Internal linkage; refers to */

/* float f at file scope */
}

Two identifiers that have the same scope and share the same name space cannot be spelled
the same way. Two identifiers that are not in the same scope or same name space can have
the same spelling and will bind to two different physical objects. For example, a formal
parameter to a function may have the same name as a structure tag in the same function.
This is because the two identifiers are not in the same name space.

If one identifier is defined in a block and another is defined in a nested (subordinate) block,
both can have the same spelling. For example:

{
int i; <-A

.

. <-B

.
{

float i; <-C
. <-D
.
.

} <-E
.
. <-F
.

} <-G

In the example above, the identifier i is bound to two physically different objects. One
object is an integer and the other is a floating-point number. Both objects, in this case, have
14 Chapter 2

Lexical Elements
Identifiers
block scope. At location A, identifier i is declared. Its scope continues until the end of the
block in which it is defined (point G). References to i at location B refer to an integer object.

At point C, another identifier is declared. The previous declaration for i is hidden by the
new declaration until the end of the block in which the new i is declared. References to the
identifier i result in references to a floating-point number (point D). At the end of the
second block (point E), the floating-point declaration of i ends. The previous declaration of
i again becomes visible, and references to identifier i at point F reference an int.

Storage Duration

Identifiers that represent variables have a real existence at runtime, unlike identifiers
that represent abstractions like typedef names or structure tags. The duration of an
object's existence is the period of time in which the object has storage allocated for it.
There are two different durations for C objects:

1. Static — An object whose identifier is declared with external or internal linkage, or
with the storage-class specifier static , has static storage duration. Objects with static
storage duration have storage allocated to them when the program begins execution.
The storage remains allocated until the program terminates.

2. Automatic — An object whose identifier is declared with no linkage, and without the
storage-class specifier static , has automatic storage duration. Objects with automatic
storage duration are allocated when entering a function and deallocated on exit from a
function. If you do not explicitly initialize such an object, its contents when allocated
will be indeterminate. Further, if a block that declares an initialized automatic duration
object is not entered through the top of the block, the object will not be initialized.

Name Spaces

In any given scope, you can use an identifier for only one purpose. An exception to this rule
is caused by separate name spaces. Different name spaces allow the same identifier to be
overloaded within the same scope. This is to say that, in some cases, the compiler can
determine from the context of use which identifier is being referred to. For example, an
identifier can be both a variable name and a structure tag.

Four different name spaces are used in C:

1. Labels — The definition of a label is always followed by a colon (:). A label is only
referenced as the object of a goto statement. Labels, therefore, can have the same
spelling as any nonlabel identifier.

2. Tags — Tags are part of structure, union, and enumeration declarations. All tags for
these constructs share the same name space (even though a preceding struct, union
or enum keyword could clarify their use). Tags can have the same spelling as any
non-tag identifier.

3. Members — Each structure or union has its own name space for members. Two
different structures can have members with exactly the same names. Members are
therefore tightly bound to their defining structure. For example, a pointer to structure
of type A cannot reference members from a structure of type B. (You may use unions or
a cast to accomplish this.)

4. Other names — All other names are in the same name space, including variables,
Chapter 2 15

Lexical Elements
Identifiers
functions, typedef names, and enumeration constants.

Conceptually, the macro prepass occurs before the compilation of the translation unit. As a
result, macro names are independent from all other names. Use of macro names as
ordinary identifiers can cause unwanted substitutions.

Types

The type of an identifier defines how the identifier can be used. The type defines a set of
values and operations that can be performed on these values. There are three major
category of types in C — object type, function type, and incomplete type.

1. Object Type

There are 3 object types — scalar, aggregate, and union. These are further subdivided
(see figure 2-1).

a. Scalar — These types are all objects that the computer can directly manipulate.
Scalar types include pointers, numeric objects, and enumeration types.

1. Pointer — These types include pointers to objects and functions.

2. Arithmetic — These types include floating and integral types.

• Floating: The floating types include the following:

Float — A 32-bit floating point number. Double — A 64-bit double precision
floating point number. Long double — A 128-bit quad precision floating point
number.

• Integral: The integral types include all of the integer types that the computer
supports. This includes type char , signed and unsigned integer types, and the
enumerated types.

Char — An object of char type is one that is large enough to store an ASCII
character. Internally, a char is a signed integer.

Integer — Integers can be short or long; they are normally signed, but can be
made unsigned by using the keyword unsigned with the type. In C, a
computation involving unsigned operands can never overflow; high-order bits
that do not fit in the result field are simply discarded without warning. A
short int is a 16-bit integer. A long int (or int) is a 32-bit integer. Integer
types include signed char and unsigned char (but not "plain" char).

Enumerated — Enumerated types are explicitly listed by the programmer;
they name specified integer constant values. The enumerated type color
might, for example, define red,
blue , and green. An object of type enum color could then have the value
red, blue, or green.

b. Aggregate — Aggregate types are types that are composed of other types. With
some restrictions, aggregate types can be composed of members of all of the other
types including (recursively) aggregate types. Aggregate types include:

1. Structures — Structures are collections of heterogeneous objects. They are
similar to Pascal records and are useful for defining special-purpose data types.
16 Chapter 2

Lexical Elements
Identifiers
2. Arrays — Arrays are collections of homogeneous objects. C arrays can be
multidimensional with conceptually no limit on the number of dimensions.

c. Unions — Unions, like structures, can hold different types of objects. However, all
members of a union are "overlaid"; that is, they begin at the same location in
memory. This means that the union can contain only one of the objects at any given
time. Unions are useful for manipulating a variety of data within the same memory
location.

2. Function Type

A function type specifies the type of the object that a function returns. A function that
returns an object of type T can be referred to as a "function returning T," or simply, a T
function.

3. Incomplete Type

The void type is an incomplete type. It comprises an empty set of values. Only pointers
and functions can have void type. A function that returns void is a function that returns
nothing. A pointer to void establishes a generic pointer.

Figure 2-1 illustrates the C types.

Figure 2-1. C Types
Chapter 2 17

Lexical Elements
Constants
Constants
A constant is a primary expression whose literal or symbolic value does not change.

Syntax
constant := floating-constant

integer-constant
enumeration-constant
character-constant

Description

Each constant has a value and a type. Both attributes are determined from its form.
Constants are evaluated at compile time whenever possible. This means that expressions
such as

2+8/2

are automatically interpreted as a single constant at compile time.

Floating Constants

Floating constants represent floating-point values.

Syntax

floating-constant :=
fractional-constant [exponent-part] [floating-suffix]
digit-sequence exponent-part [floating-suffix]

fractional-constant :=
[digit-sequence] . digit-sequence
digit-sequence .

exponent-part :=
e [sign] digit-sequence
E [sign] digit-sequence

sign :=
+
-

digit-sequence :=
digit
digit-sequence digit

floating-suffix :=
F
f
L
l

18 Chapter 2

Lexical Elements
Constants
NOTE Suffixes in floating-constants are available only in ANSI mode.

Description

A floating constant has a value part that may be followed by an exponent part and a suffix
specifying its type. The value part may include a digit sequence representing the
whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. The exponent includes an e or an E followed by an exponent consisting of an
optionally signed digit sequence. Either the whole-number part or the fraction part must
be used; either the period or the exponent part must be used.

The format of floating-point numbers is given in Chapter 9, HP C/iX Implementation
Topics.

A floating constant may include a suffix that specifies its type. F or f specifies type float
(single precision). L or l specifies long double (quad precision). The default type
(unsuffixed) is double .

Examples

3.28e+3f float constant = 3280
6.E2F float constant = 600
201e1L long double constant = 2010
4.8 double constant = 4.8
Chapter 2 19

Lexical Elements
Integer Constants
Integer Constants
Integer constants represent integer values.

Syntax
integer-constant :=

decimal-constant [integer-suffix]
octal-constant [integer-suffix]
hexadecimal-constant [integer-suffix]

decimal-constant :=
nonzero-digit
decimal-constant digit

octal-constant :=
0
octal-constant octal-digit

hexadecimal-constant :=
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit := any character from the set
1 2 3 4 5 6 7 8 9

octal-digit := any character from the set
0 1 2 3 4 5 6 7

hexadecimal-digit := any character from the set
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :=
unsigned-suffix [long-sufix]
long-suffix [unsigned-suffix]

unsigned-suffix := any character from the set
u U

long-suffix := any character from the set
l L

NOTE The u and U suffixes are available only in ANSI mode.
20 Chapter 2

Lexical Elements
Integer Constants
Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base (decimal, octal, or hexadecimal) and suffix that specifies its
type.

The size and type of integer constants are described in Chapter 9, HP C/iX Implementation
Topics.

Octal constants begin with a zero and can contain only octal digits. Several examples of
octal constants are:

077 01L 01234567 0222l

Hexadecimal constants begin with either 0x or 0X. The case of the x character makes no
difference to the constant's value. The following are examples of hexadecimal constants:

0xACE 0XbAf 0x12L

The suffix L or l stands for long. The suffix Uor u stands for unsigned. Both can be used on
all three types of integer constants (decimal, octal, and hexadecimal).

The type of an integer constant is the first of the corresponding list in which its value can
be represented, as described below.

• Unsuffixed decimal: int, unsigned long int .

• Unsuffixed octal or hexadecimal: int, unsigned int .

• Suffixed by the letter u or U: unsigned int .

• Suffixed by the letter l or L: long int,
unsigned long int .

• Suffixed by both the letters u or U and l or L: unsigned long int .

Examples
0xFFFFu unsigned int, hexadecimal
4196L signed long int, decimal
0X89ab signed int, hexadecimal
047L signed long int, octal
64U unsigned int, decimal
15 signed int, decimal
15L signed long int, decimal
15U unsigned int, decimal
15UL unsigned long int, decimal
15LU unsigned long int, decimal
0125 signed int, octal
Chapter 2 21

Lexical Elements
Enumeration Constants
Enumeration Constants
Enumeration constants are identifiers defined to have an ordered set of integer values.

Syntax
enumeration-constant := identifier

Description

The identifier must be defined as an enumerator in an enum definition. Enumeration
constants are specified when the type is defined. An enumeration constant has type int .
22 Chapter 2

Lexical Elements
Character Constants
Character Constants
A character constant is a constant that is enclosed in single quotes.

Syntax
character-constant:

'c-char-sequence'
L'c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except

the single-quote ', backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

NOTE \a and \? are available only in ANSI mode.

Description

There are two types of character constants — integral character constants and wide
character constants.

Integral character constants are of type int . They do not have type char . However,
because a char is normally converted to an int in an expression, this seldom is a problem.
The contents can be ASCII characters, octal escape sequences, or hexadecimal escape
sequences. Octal escape sequences consist of a backslash, (\) followed by up to three octal
digits. Hexadecimal escape sequences also start with a backslash, which is followed by
Chapter 2 23

Lexical Elements
Character Constants
lowercase x and any number of hexadecimal digits. It is terminated by any
non-hexadecimal characters. The digits of the escape sequences are converted into a single
8-bit character and stored in the character constant at that point. For example, the
following character constants have the same value:

'A' '\101' '\x41'

They all represent the decimal value 65.

Character constants are not restricted to one character; multi-character character
constants are allowed. The value of an integral character constant containing more than
one character is computed by concatenating the 8-bit ASCII code values of the characters,
with the leftmost character being the most significant. For example, the character constant
'AB ' has the value 256*'A'+'B' = 256*65+66 = 16706 . Only the rightmost four
characters participate in the computation.

Wide character constants (type wchar_t) are of type unsigned int . A wide character
constant is a sequence of one or more multibyte characters enclosed in single quotes and
prefixed by the letter L. The value of a wide character constant containing a single
multibyte character is a member of the extended execution character set whose value
corresponds to that of the multibyte character. The value of a multibyte character can be
found by calling the function mbtowc .

For multi-character wide character constants, the entire content of the constant is
extracted into an unsigned integer and the resulting character is represented by the final
value.

Some characters are given special representation in escape sequences. These are
nonprinting and special characters that programmers often need to use (listed in
<Undefined Cross-Reference> below).

Table 2-1. Special Characters

Character Description

\n New line

\t Horizontal tab

\v Vertical tab

\b Backspace

\r Carriage return

\f Form feed

\\ Backslash character

\' Single quote

\' Double quote

\a Audible or visible alert (control G)

\? Question mark character '? '
24 Chapter 2

Lexical Elements
Character Constants
Examples
'a' represents the letter a, the value 97
'\n' represents the newline character, the value 10
'\?' represents a question mark, the value 63
'7' represents the character 7, the value 55
'\0' represents the null character, the value 0
'\101' represents the letter A, the value 65
Chapter 2 25

Lexical Elements
String Literals
String Literals
A string literal is a sequence of zero or more characters enclosed in double quotation
marks.

Syntax
string-literal:

" [s-char-sequence] "
L" [s-char-sequence] "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except

double quote, backslash, or newline
escape-sequence

Description

You can type special characters in a character string literal using the escape sequence
notation described previously in the section on character constants. The double quote
character (') must be represented as an escape sequence if it is to appear inside a string
literal. Represent the string 'he said "hi" ' with

"he said \"hi\""

A character string has static storage duration and type array of char .

The actual characters stored in a character string literal are the exact characters specified.
In addition, a null character (\0) is automatically added to the end of each character string
literal by the compiler. Note that the null character is added only to string literals. Arrays
of characters are not terminated with the extra character.

Character string literals that have no characters consist of a single null character.

Note that a string literal containing one character is not the same as a character constant.
The string literal "A" is stored in two adjacent bytes with the A in the first byte and a null
character in the second byte; however, the character constant 'A ' is a constant with type
int and the value 65 (the ASCII code value for the letter A).

ANSI C allows the usage of wide string literals. A wide string literal is a sequence of zero
or more multibyte characters enclosed in double-quotes and prefixed by the letter L. A wide
string literal has static storage duration and type "array of wchar_t. " It is initialized with
the wide characters corresponding to the given multibyte characters.

Examples
L"abc##def"
26 Chapter 2

Lexical Elements
String Literals
Character string literals that are adjacent tokens are concatenated into a single character
string literal. A null character is then appended. Similarly, adjacent wide string literal
tokens are concatenated into a single wide string literal to which a code with value zero is
then appended. It is illegal for a character string literal token to be adjacent to a wide
string literal token.

char *string = "abc" "def";
Chapter 2 27

Lexical Elements
Operators
Operators
An operator specifies an operation to be performed on one or more operands.

Syntax
operator := One selected from the set

Description

Operator representations may require one, two, or three characters. The compiler matches
the longest sequence to find tokens. For example,

is parsed as if it had been written

which results in a syntax error. An alternate parse

is not chosen because it does not follow the longest first rule, even though it results in a
syntactically correct expression. As a result, white space is often important in writing
expressions that use complex operators. The precedence of operators is discussed in more
detail in Chapter 5.

The obsolete form of the assignment operators (=* instead of *=) is not supported. If this
form is used, the compiler parses it as two tokens (= and *).

The operators [], ?: , and () (function call operator) occur only in pairs, possibly
separated by expressions. You can use some operators as either binary operators or unary
operators. Often the meaning of the binary operator is much different from the meaning of
the unary operator. For example, binary multiply and unary indirection:

a * b versus *p
28 Chapter 2

Lexical Elements
Punctuators
Punctuators
A punctuator is a symbol that is necessary for the syntax of the C language, but performs
no runtime operation on data and produces no runtime result.

Syntax
punctuator := One selected from:

[] () { } * , : = ; # ...

Description

Some punctuators are the same characters as operators. They are distinguished through
the context of their use.

Example
#include <stdio.h> /* # marks the processing directive "include" */
main() /* (and) mark the beginning and end of

argument list */

{ /* { marks the beginning of a block */
printf("\nHello world\n"); /* ; marks the end of a statement */

} /* } marks the end of a block */
Chapter 2 29

Lexical Elements
Comments
Comments
You can include comments to explain code in your program by enclosing the text with /*
and */ characters. If the /* character sequence is located within a string literal or a
character constant, the compiler processes them as "normal" characters and not as the
start of a comment.

You cannot nest comments. To comment blocks of code, enclose the block within the #if
and #endif statements, as shown below:

#if 0
.
.

code
.
.

#endif
30 Chapter 2

Data Types and Declarations
3 Data Types and Declarations

In C, as in many other programming languages, you must declare identifiers before you
can use them. The declarable entities in C are objects; functions; tags and members of
structures, unions, and enumerated types; and typedef names. This chapter describes
declarations, type specifiers, storage-class specifiers, structure and union specifiers,
enumerations, declarators, type names, and initialization. Data types and declarations are
defined using Backus-Naur form.
Chapter 3 25

Data Types and Declarations
Program Structure
Program Structure

A translation unit consists of one or more declarations and function definitions.

Syntax
translation-unit ::=

external-declaration
translation-unit external-declaration

external-declaration ::=
function-definition
declaration

Description

A C program consists of one or more translation units, each of which can be compiled
separately. A translation unit consists of a source file together with any headers and
source files included by the #include preprocessing directive. Each time the compiler is
invoked, it reads a single translation unit and (typically) produces a relocatable object file.
A translation unit must contain at least one declaration or function definition.
26 Chapter 3

Data Types and Declarations
Declarations
Declarations
A declaration specifies the attributes of an identifier or a set of identifiers.

Syntax
declaration ::=

declaration-specifiers [init-declarator-list] ;

declaration-specifiers ::=
storage-class-specifier [declaration-specifiers]
type-specifier [declaration-specifiers]
type-qualifier [declaration-specifiers]

init-declarator-list ::=
init-declarator
init-declarator-list , init-declarator

init-declarator ::=
declarator
declarator = initializer

Description

Making a declaration does not necessarily reserve storage for the identifiers declared. For
example, the declaration of an external data object provides the compiler with the
attributes of the object, but the actual storage is allocated in another translation unit.

A declaration consists of a sequence of specifiers that indicate the linkage, storage
duration, and the type of the entities that the declarators denote.

You can declare and initialize objects at the same time using the init-declarator-list syntax.
The init-declarator-list is a comma-separated sequence of declarators, each of which may
have an initializer.

Function definitions have a slightly different syntax as discussed in 'Function Declarators'
later in this chapter. Also, note that it is often valid to define a tag (struct , union , or enum)
without actually declaring any objects.

Examples

Valid Declarations:

extern int pressure []; /* size will be declared elsewhere *
/
extern int lines = 66, pages; /* declares two variables,

initializes the first one *
/
static char private_func (float); /* a function taking a float,

returning a char, not known
outside this unit *

/

Chapter 3 27

Data Types and Declarations
Declarations
const float pi = 3.14; /* a constant float, initialized *
/
const float *const pi_ptr = π /* a constant pointer to a constant

float, initialized with an
address constant *

/
static j1, j2, j3; /* initialized to zero by default *
/
typedef struct

{double real, imaginary;} Complex; /* declares a type name *
/
Complex impedance = {47000}; /* second member defaults to zero *
/
enum color {red=1, green, blue}; /* declares an enumeration tag and

three constants *
/
int const short static volatile signed

really_Strange = {sizeof '\?'}; /* pretty mixed up *
/

Invalid Declarations:

int ; /* no identifier */
; /* no identifier */
int i; j; /* no specifiers for j */
28 Chapter 3

Data Types and Declarations
Storage-Class Specifiers
Storage-Class Specifiers
A storage-class specifier is one of several keywords that determines the duration and
linkage of an object.

Syntax
storage-class ::=

typedef
extern
static
auto
register

Description

You can use only one storage-class specifier in a declaration.

The typedef keyword is listed as a storage-class specifier because it is syntactically
similar to one.

The keyword extern affects the linkage of a function or object name. If the name has
already been declared in a declaration with file scope, the linkage will be the same as in
that previous declaration. Otherwise, the name will have external linkage.

The static storage-class specifier may appear in declarations of functions or data objects.
If used in an external declaration (either a function or a data object), static indicates that
the name cannot be referenced by other translation units. Using the static storage class
in this way allows translation units to have collections of local functions and data objects
that are not exported to other translation units at link time.

If the static storage class is used in a declaration within a function, the value of the
variable is preserved between invocations of that function.

The auto storage-class specifier is permitted only in the declarations of objects within
blocks. An automatic variable is one that exists only while its enclosing block is being
executed. Variables declared with the auto storage-class are all allocated when a function
is entered. Auto variables that have initializers are initialized when their defining block is
entered normally. This means that auto variables with initializers are not initialized when
their declaring block is not entered through the top.

The register storage class suggests that the compiler store the variable in a register, if
possible. You cannot apply the & (address-of) operator to register variables.

If no storage class is specified and the declaration appears in a block, the compiler defaults
the storage duration for an object to automatic. If the declaration of an identifier for a
function has no storage-class specifier, its linkage is determined exactly as if it were
declared with the extern storage-class specifier.

If no storage class is specified and the declaration appears outside of a function, the
compiler treats it as an externally visible object with static duration.
Chapter 3 29

Data Types and Declarations
Storage-Class Specifiers
Refer to chapter 2 for a description of storage duration and linkage.
30 Chapter 3

Data Types and Declarations
Type Specifiers
Type Specifiers
Type specifiers indicate the format of the storage associated with a given data object or the
return type of a function.

Syntax
type-specifier ::=

char
short
int
long
unsigned
signed
float
double
void
struct-or-union-specifier
enum-specifier
typedef-name

Description

Most of the type specifiers are single keywords. (Refer to chapter 9 for sizes of types.) The
syntax of the type specifiers permits more types than are actually allowed in the C
language. The various combinations of type specifiers that are allowed are shown in Table
3-1. Type specifiers that are equivalent appear together in a box. For example, specifying
unsigned is equivalent to unsigned int . Type specifiers may appear in any order,
possibly intermixed with other declaration specifiers.

Table 3-1. C Type Specifiers

void

char

signed char

unsigned char

short, signed short, short int, or signed short int

unsigned short, or unsigned short int

int, signed, signed int, or no type specifiers

unsigned, or unsigned int

long, signed long, long int, or signed long int

unsigned long, or unsigned long int

float
Chapter 3 31

Data Types and Declarations
Type Specifiers
If no type specifier is provided in a declaration, the default type is int .

Floating-point types in C are float (32 bits), double (64 bits), and long double (128 bits).

double

long double

struct-or-union specifier

enum-specifier

typedef-name

Table 3-1. C Type Specifiers
32 Chapter 3

Data Types and Declarations
Type Qualifiers
Type Qualifiers

Syntax
type-qualifier ::= const

volatile

Description

This section describes the type qualifiers — volatile and const .

The volatile type qualifier directs the compiler not to perform certain optimizations on
an object because that object can have its value altered in ways beyond the control of the
compiler.

Specifically, when an object's declaration includes the volatile type qualifier,
optimizations that would delay any references to (or modifications of) the object will not
occur across sequence points. A sequence point is a point in the execution process when
the evaluation of an expression is complete, and all side-effects of previous evaluations
have occurred.

The volatile type qualifier is useful for controlling access to memory-mapped device
registers, as well as for providing reliable access to memory locations used by
asynchronous processes.

The const type qualifier informs the compiler that the object will not be modified, thereby
increasing the optimization opportunities available to the compiler.

An assignment cannot be made to a constant pointer, but an assignment can be made to
the object to which it points. An assignment can be made to a pointer to constant data, but
not to the object to which it points. In the case of a constant pointer to constant data, an
assignment cannot be made to either the pointer, or the object to which it points.

Type qualifiers may be used alone (as the sole declaration-specifier), or in conjunction with
type specifiers, including struct, union, enum, and typedef. Type qualifiers may also
be used in conjunction with storage-class specifiers.

Table 3-2 illustrates various declarations using the const and volatile type qualifiers.

Table 3-2. Declarations using const and volatile

Declaration Meaning

volatile int vol_int; Delclares a volatile int variable.

const int *ptr_to_const_int;
int const *ptr_to_const_int;

Both declare a variable pointer to a constant int.

int *const const_ptr_to_int; Declares a constant pointer to a variable int.

int *volatile vpi, *pi; Declares two pointers: vpi is a volatile pointer to
an int; pi is a pointer to an int.
Chapter 3 33

Data Types and Declarations
Type Qualifiers
When a type qualifier is used with a variable typed by a typedef name, the qualifier is
applied without regard to the contents of the typedef. For example,

typedef int *t_ptr_to_int;
volatile t_ptr_to_int vol_ptr_to_int;

In the example above, the type of vol_ptr_to_int is volatile t_ptr_to_int , which
becomes volatile pointer to int . If the type t_ptr_to_int were substituted directly
in the declaration,

volatile int *ptr_to_vol_int;

the type would be pointer to volatile int .

Type qualifiers apply to objects, not to types. For example,

typedef int *t;
const t *volatile p;

In the example above, p is a volatile pointer to a const pointer to int . volatile applies to
the object p, while const applies to the object pointed to by p. The declaration of p can also
be written as follows:

t const *volatile p;

If an aggregate variable such as a structure is declared volatile, all members of the
aggregate are also volatile.

If a pointer to a volatile object is converted to a pointer to a non-volatile type, and the
object is referenced by the converted pointer, the behavior is undefined.

int const *volatile vpci; Declares a volatile pointer to a constant int.

const *pci; Declares a pointer to a constant int. Since no
type specifier was given, it defaults to int.

Table 3-2. Declarations using const and volatile

Declaration Meaning
34 Chapter 3

Data Types and Declarations
Structure and Union Specifiers
Structure and Union Specifiers
A structure specifier indicates an aggregate type consisting of a sequence of named
members. A union specifier defines a type whose members begin at offset zero from the
beginning of the union.

Syntax
struct-or-union specifier :=

struct-or-union [identifier] { struct-declaration-list }
struct-or-union identifier

struct-or-union ::=
struct
union

struct-declaration-list ::=
struct-declaration
struct-declaration-list struct-declaration

struct-declaration ::=
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list ::=
type-specifier [specifier-qualifier-list]
type-qualifier [specifier-qualifier-list]

struct-declarator-list ::=
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator ::=
declarator
[declarator] : constant-expression

Description

A structure is a named collection of members. Each member belongs to a name space
associated with the structure. Members in different structures can have the same names
but represent different objects.

Members are placed in physical storage in the same order as they are declared in the
definition of the structure. A member's offset is the distance from the start of the structure
to the beginning of the member. The compiler inserts pad bytes as necessary to insure that
members are properly aligned. For example, if a char member is followed by a float
member, one or more pad bytes may be inserted to insure that the float member begins
on an appropriate boundary.

The HP C Programmer's Guide provides a detailed comparison of storage and alignment
on HP computers.
Chapter 3 35

Data Types and Declarations
Structure and Union Specifiers
Unions are like structures except that all members of a union have a zero offset from the
beginning of the union. In other words, the members overlap. Unions are a way to store
different type of objects in the same memory location.

A declarator for a member of a structure or union may occupy a specified number of bits.
This is done by following the declarator with a colon and a constant non-negative integral
expression. The value of the expression indicates the number of bits to be used to hold the
member. This type of member is called a bit-field. Only integral type specifiers are allowed
for bit-field declarators.

In structures, bit-fields are placed into storage locations from the most significant bits to
the least significant bits. Bit-fields that follow one another are packed into the same
storage words, if possible. If a bit-field will not fit into the current storage location, it is put
into the beginning of the next location and the current location is padded with an unnamed
field.

A colon followed by an integer constant expression indicates that the compiler should
create an unnamed bit-field at that location. In addition, a colon followed by a zero
indicates that the current location is full and that the next bit-field should begin at the
start of the next storage location. Refer to chapter 9 for the treatment of the sign for
bit-fields. Although bit-fields are permitted in unions (ANSI mode only), they are just like
any other members of the union in that they have a zero offset from the beginning of the
union. That is, they are not packed into the same word, as in the case of structures. The
special cases of unnamed bit-fields and unnamed bit-fields of length zero behave
differently with unions; they are simply unnamed members that cannot be assigned to.

The unary address operator (&) may not be applied to bit-fields. This implies that there
cannot be pointers to bit-fields nor can there be arrays of bit-fields.

The largest bit-field is the length of an int (refer to chapter 9 for exact sizes). Bit-fields do
not straddle a word boundary.
36 Chapter 3

Data Types and Declarations
Structure and Union Tags
Structure and Union Tags
Structures and unions are declared with the struct or union keyword. You can follow the
keywords with a tag that names the structure or union type much the same as an enumtag
names the enumerated type. (Refer to the section 'Enumeration' later in this chapter for
information on enumerated types.) Then you can use the tag with the struct or union
keyword to declare variables of that type without respecifying member declarations. A
structure tag occupies a separate name space reserved for tags. Thus, a structure tag may
have the same spelling as a structure member or an ordinary identifier. Structure tags also
obey the normal block scope associated with identifiers. Another tag of the same spelling in
a subordinate block may hide a structure tag in an outer block.

A struct or union declaration has two parts: the structure body, where the members of the
structure are declared (and possibly a tag name associated with them); and a list of
declarators (objects with the type of the structure).

Either part of the declaration can be empty. Thus, you can put the structure body
declaration in one place, and use the struct type in another place to declare objects of that
type. For example, consider the following declarations.

struct s1 {
int x;
float y;

};

struct s1 obj1, *obj2;

The first example declares only the struct body and its associated tag name. The second
example uses the struct tag to declare two objects — obj1 and obj2 . They are, respectively,
a structure object of type "struct s1" and a pointer object, which point to an object type
"struct s1."

This allows you to separate all the struct body declarations into one place (for example, a
header file) and use the struct types elsewhere in the program when declaring objects.
Consider the following example:

struct examp {
float f; /* floating member */
int i; /* integer member */

}; /* no declaration list */

In this example, the structure tag is examp and it is associated with the structure body
that contains a single floating-point quantity and an integer quantity. Note that no objects
are declared after the definition of the structure's body; only the tag is being defined.

A subsequent declaration may use the defined structure tag:

struct examp x, y[100];

This example defines two objects using type struct
examp. The first is a single structure named x and the second, y, is an array of structures of
type struct examp.

Another use for structure tags is to write self-referential structures. A structure of type S
Chapter 3 37

Data Types and Declarations
Structure and Union Tags
may contain a pointer to a structure of type S as one of its members. Note that a structure
can never have itself as a member because the definition of the structure's content would
be recursive. A pointer to a structure is of fixed size, so it may be a member. Structures
that contain pointers to themselves are key to most interesting data structures. For
example, the following is the definition of a structure that is the node of a binary tree:

struct node {
float data; /* data stored at the node */
struct node *left; /* left subtree */
struct node *right; /* right subtree */

};

This example defines the shape of a node type of structure. Note that the definition
contains two members (left and right) that are themselves pointers to structures of type
node .

The C programming rule that all objects must be defined before use is relaxed somewhat
for structure tags. A structure can contain a member that is a pointer to an as yet
undefined structure. This allows for mutually referential structures:

struct s1 { struct s2 *s2p; };
struct s2 { struct s1 *s1p; };

In this example, structure s1 references the structure tag s2 . When s1 is declared, s2 is
undefined. This is valid.

Example
struct tag1 {

int m1;
int :16; /* unnamed bit-field */
int m2:16; /* named bit-field; packed into */

/* same word as previous member */
int m3, m4;

}; /* empty declarator list */

union tag2 {
int u1;
int :16;
int u2:16; /* bit-field, starts at offset 0 */
int u3, u4;

} fudge1, fudge2; /* declarators denoting objects of the */
/* union type */

struct tag1 obj1, *obj2; /* use of type "struct tag1", */
/* whose body has been declared */
/* above */
38 Chapter 3

Data Types and Declarations
Enumeration
Enumeration
The identifiers in an enumeration list are declared as constants.

Syntax
enum-specifier ::=

enum[identifier] {enumerator-list}
enum [identifier]

enumerator-list ::=
enumerator
enumerator-list , enumerator

enumerator ::=
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant ::= identifier

Description

The identifiers defined in the enumerator list are enumeration constants of type int . As
constants, they can appear wherever integer constants are expected. A specific integer
value is associated with an enumeration constant by following the constant with an equal
sign (=) and a constant expression. If you define the constants without using the equal
sign, the first constant will have the value of zero and the second will have the value of
one, and so on. If an enumerator is defined with the equal sign followed by a constant
expression, that identifier will take on the value specified by the expression. Subsequent
identifiers appearing without the equal sign will have values that increase by one for each
constant. For example,

enum color {red, blue, green=5, violet};

defines red as 0, blue as 1, green as 5, and violet as 6.

Enumeration constants share the same name space as ordinary identifiers. They have the
same scope as the scope of the enumeration in which they are defined. Note that enum
constant names must be unique.

The identifier in the enum declaration behaves like the tags used in structure and union
declarations. If the tag has already been declared, you can use the tag as a reference to
that enumerated type later in the program.

enum color x, y[100];

In this example, the color enumeration tag declares two objects. The x object is a scalar
enum object, while y is an array of 100 enums.

An enumeration tag cannot be used before its enumerators are declared.
Chapter 3 39

Data Types and Declarations
Enumeration
Examples
enum color {RED, GREEN, BLUE};

enum objectkind {triangle, square=5, circle}; /* circle == 6 */
40 Chapter 3

Data Types and Declarations
Declarators
Declarators

A declarator introduces an identifier and specifies its type, storage class, and scope.

Syntax
declarator ::=

[pointer] direct-declarator

direct-declarator ::=
identifier
(declarator)
direct-declarator [[constant-expression]]
direct-declarator (parameter-type-list)
direct-declarator ([identifier-list])

pointer ::=
* [type-qualifier-list]
* [type-qualifier-list] pointer

type-qualifier-list ::=
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list ::=
parameter-list
parameter-list , ...

parameter-list ::=
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration ::=
declaration-specifiers declarator
declaration-specifiers [abstract-declarator]

identifier-list ::=
identifier
identifier-list , identifier

Description

Various special symbols may accompany declarators. Parentheses change operator
precedence or specify functions. The asterisk specifies a pointer. Square brackets indicate
an array. The constant-expression specifies the size of an array.

A declarator specifies one identifier and may supply additional type information. When a
construction with the same form as the declarator appears in an expression, it yields an
entity of the indicated scope, storage class, and type.

If an identifier appears by itself as a declarator, it has the type indicated by the type
specifiers heading the declaration.
Chapter 3 41

Data Types and Declarations
Declarators
Declarator operators have the same precedence and associativity as operators appearing
in expressions. Function declarators and array declarators bind more tightly than pointer
declarators. You can change the binding of declarator operators using parentheses. For
example,

int *x[10];

is an array of 10 pointers to ints. This is because the array declarator binds more tightly
than the pointer declarator. The declaration

int (*x)[10];

is a single pointer to an array of 10 ints. The binding order is altered with the use of
parentheses.

Pointer Declarators

If Dis a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration T *D declares D to be a pointer to type T. D can be any
general declarator of arbitrary complexity. For example, if D were declared as a pointer
already, the use of a second asterisk indicates that D is a pointer to a pointer to T.

Some examples:

int *pi; /* pi: Pointer to an int */
int **ppi; /* ppi: Pointer to a pointer to an int */
int *ap[10]; /* ap: Array of 10 pointers to ints */
int (*pa)[10]; /* pa: Pointer to array of 10 ints */
int *fp(); /* fp: Function returning pointer to int */
int (*pf)(); /* pf: Pointer to function returning an int */

The binding of * (pointer) declarators is of lower precedence than either [] (array) or ()
(function) declarators. For this reason, parentheses are required in the declarations of pa
and pf .

Array Declarators

If Dis a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration

T D[constant-expression];

declares D to be an array of type T.

You declare multidimensional arrays by specifying additional array declarators. For
example, a 3 by 5 array of integers is declared as follows:

int x[3][5];

This notation (correctly) suggests that multidimensional arrays in C are actually arrays of
arrays. Note that the [] operator groups from left to right. The declarator x[3][5] is
actually the same as ((x[3])[5]) . This indicates that x is an array of three elements each
of which is an array of five elements. This is known as row-major array storage.

You can omit the constant-expression giving the size of an array under certain
circumstances. You can omit the first dimension of an array (the dimension that binds
most tightly with the identifier) in the following cases:
42 Chapter 3

Data Types and Declarations
Declarators
• If the array is a formal parameter in a function definition.

• If the array declaration contains an initializer.

• If the array declaration has external linkage and the definition (in another translation
unit) that actually allocates storage provides the dimension.

Following are examples of array declarations:

int x[10]; /* x: Array of 10 integers */
float y[10][20]; /* y: Matrix of 10x20 floats */
extern int z[]; /* z: External integer array of undefined */

/* dimension */
int a[]={2,7,5,9}; /* a: Array of 4 integers */
int m[][3]= { /* m: Matrix of 2x3 integers */

{1,2,7},
{6,6,6} };

Note that an array of type T that is the formal parameter in a function definition has been
converted to a pointer to type T. The array name in this case is a modifiable lvalue and can
appear as the left operand of an assignment operator. The following function will clear an
array of integers to all zeros. Note that the array name, which is a parameter, must be a
modifiable lvalue to be the operand of the ++ operator.

void clear(a, n)
int a[]; /* has been converted to int * */
int n; /* number of array elements to clear */
{

while(n) /* for the entire array */
a = 0; / clear each element to zero */

}

Function Declarators

If Dis a declarator, and T is some combination of type specifiers and storage class specifiers
(such as int), then the declaration

T D (parameter-type-list)

or

T D ([identifier-list])

declares Dto be a function returning type T. A function can return any type of object except
an array or a function. However, functions can return pointers to functions or arrays.

If the function declarator uses the form with the parameter-type-list , it is said to be in
"prototype" form. The parameter type list specifies the types of, and may declare identifiers
for, the parameters of the function. If the list terminates with an ellipsis (,…), no
information about the number of types of the parameters after the comma is supplied. The
special case of void as the only item in the list specifies that the function has no
parameters.

If a function declarator is not part of a function definition, the optional identifier-list
must be empty.

Function declarators using prototype form are only allowed in ANSI mode.
Chapter 3 43

Data Types and Declarations
Declarators
Functions can also return structures. If a function returns a structure as a result, the
called function copies the resulting structure into storage space allocated in the calling
function. The length of time required to do the copy is directly related to the size of the
structure. If pointers to structures are returned, the execution time is greatly reduced.
(But beware of returning a pointer to an auto struct — the struct will disappear after
returning from the function in which it is declared.)

The function declarator is of equal precedence with the array declarator. The declarators
group from left to right. The following are examples of function declarators:

int f(); /* f: Function returning an int */
int *fp(); /* fp: Function returning pointer to an int */
int (*pf)(); /* pf: Pointer to function returning an int */
int (*apf[])(); /* apf: Array of pointers to functions */

/* returning int */

Note that the parentheses alter the binding order in the declarations of pf and apf in the
above examples.
44 Chapter 3

Data Types and Declarations
Type Names
Type Names
A type name is syntactically a declaration of an object or a function of a given type that
omits the identifier. Type names are often used in cast expressions and as operands of the
sizeof operator.

Syntax
type-name ::=

specifier-qualifier-list [abstract-declarator]

abstract-declarator ::=
pointer
[pointer] direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)
[direct-abstract-declarator] [[constant-expression]]
[direct-abstract-declarator] ([parameter-type-list])

Description

Type names are enclosed in parentheses to indicate a cast operation. The destination type
is the type named in the cast; the operand is then converted to that type.

A type name is a declaration without the identifier specified. For example, the declaration
for an integer is int i . If the identifier is omitted, only the integer type int remains.

Examples
int int
int * Pointer to int
int () Function returning an int
int *() Function returning a pointer to int
int (*)() Pointer to function returning an int
int [3]; Array of 3 int
int *[3]; Array of 3 pointers to int
int (*)[3]; Pointer to an array of 3 int

The parentheses are necessary to alter the binding order in the cases of pointer to function
and pointer to array. This is because function and array declarators have higher
precedence than the pointer declarator.
Chapter 3 45

Data Types and Declarations
Type Definitions Using typedef
Type Definitions Using typedef
The typedef keyword, useful for abbreviating long declarations, allows you to create
synonyms for C data types and data type definitions.

Syntax
typedef-name ::= identifier

Description

If you use the storage class typedef to declare an identifier, the identifier is a name for the
declared type rather than an object of that type. Using typedef does not define any objects
or storage. The use of a typedef does not actually introduce a new type, but instead
introduces a synonym for a type that already exists. You can use typedef to isolate
machine dependencies and thus make your programs more portable from one operating
system to another.

For example, the following typedef defines a new name for a pointer to an int:

typedef int *pointer;

Instead of the identifier pointer actually being a pointer to an int, it becomes the name for
the pointer to the int type. You can use the new name as you would use any other type. For
example:

pointer p, *ppi;

This declares p as a pointer to an int and ppi as a pointer to a pointer to an int.

One of the most useful applications of typedef is in the definition of structure types. For
example:

typedef struct {
float real;
float imaginary;

} complex;

The new type complex is now defined. It is a structure with two members, both of which
are floating-point numbers. You can now use the complex type to declare other objects:

complex x, *y, a[100];

This declares x as a complex , y as a pointer to the complex type and a as an array of 100
complex numbers. Note that functions would have to be written to perform complex
arithmetic because the definition of the complex type does not alter the operators in C.

Other type specifiers (void, char, short, int, long, signed,
unsigned, float, and double) cannot be used with a name declared by typedef . For
example, the following typedef usage is illegal:

typedef long int li;
.
.
.

46 Chapter 3

Data Types and Declarations
Type Definitions Using typedef
unsigned li x;

typedef identifiers occupy the same name space as ordinary identifiers and follow the
same scoping rules.

Structure definitions which are used in typedef declarations can also have structure tags.
These are still necessary to have self-referential structures and mutually referential
structures.

Example
typedef unsigned long ULONG; /* ULONG is an unsigned long */
typedef int (*PFI)(int); /* PFI is a pointer to a function */

/* taking an int and returning an int */

ULONG v1; /* equivalent to "unsigned long v1" */
PFI v2; /* equivalent to "int (*v2)(int)" */
Chapter 3 47

Data Types and Declarations
Initialization
Initialization
An initializer is the part of a declaration that provides the initial values for the objects
being declared.

Syntax
initializer ::=

assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list ::=
initializer
initializer-list , initializer

Examples
wchar_t wide_message[]=L"x$$z";

You initialize structures as you do any other aggregate:

struct{
int i;
unsigned u:3;
unsigned v:5;
float f;
char *p;

} s[] = {
{1, 07, 03, 3.5, "cats eat bats" },
{2, 2, 4, 5.0, "she said with a smile"}

};

Note that the object being declared (s) is an array of structures without a specified
dimension. The compiler counts the initializers to determine the array's dimension. In this
case, the presence of two initializers implies that the dimension of s is two. You can
initialize named bit-fields as you would any other member of the structure.

If the value used to initialize a bit-field is too large, it is truncated to fit in the bit-field.

For example, if the value 11 were used to initialize the 3-bit field u above, the actual value
of u would be 3 (the top bit is discarded).

A struct or union with automatic storage duration can also be intialized with a single
expression of the correct type.

Description

A declarator may include an initializer that specifies the initial value for the object whose
identifier is being declared.

Objects with static storage duration are initialized at load time. Objects with automatic
48 Chapter 3

Data Types and Declarations
Initialization
storage duration are initialized at runtime when entering the block that contains the
definition of the object. An initialization of such an object is similar to an assignment
statement.

You can initialize a static object with a constant expression. You can initialize a static
pointer with the address of any previously declared object of the appropriate type plus or
minus a constant.

You can initialize an auto scalar object with an expression. The expression is evaluated at
run-time, and the resulting value is used to initialize the object.

When initializing a scalar type, you may optionally enclose the initializer in braces.
However, they are normally elided. For example,

int i = {3};

is normally specified as

int i = 3;

When initializing the members of an aggregate, the initializer is a brace-enclosed list of
initializers. In the case of a structure with automatic storage duration, the initializer may
be a single expression returning a type compatible with the structure. If the aggregate
contains members that are aggregates, this rule applies recursively, with the following
exceptions:

• Inner braces may be optionally elided.

• Members that are themselves aggregates cannot be initialized with a single expression,
even if the aggregate has automatic storage duration.

In ANSI mode, the initializer lists are parsed "top-down;" in non-ANSI mode, they are
parsed "bottom-up." For example,

int q [3] [3] [2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

};

produces the following layout:

ANSI Mode Non-ANSI Mode
-
1 0 0 0 0 0 1 0 2 3 4 5
2 3 0 0 0 0 6 0 0 0 0 0
4 5 6 0 0 0 0 0 0 0 0 0

It is advisable to either fully specify the braces, or fully elide all but the outermost braces,
both for readability and ease of migration from non-ANSI mode to ANSI mode.

Because the compiler counts the number of specified initializers, you do not need to specify
the size in array declarations. The compiler counts the initializers and that becomes the
size:

int x[] = {1, 10, 30, 2, 45};

This declaration allocates an array of int called x with a size of five. The size is not
specified in the square brackets; instead, the compiler infers it by counting the initializers.
Chapter 3 49

Data Types and Declarations
Initialization
As a special case, you can initialize an array of characters with a character string literal. If
the dimension of the array of characters is not provided, the compiler counts the number of
characters in the string literal to determine the size of the array. Note that the terminating
'\0' is also counted. For example:

char message [] = "hello";

This example defines an array of characters named message that contains six characters.
It is identical to the following:

char message [] = {'h','e','l','l','o','\0'};

You can also initialize a pointer to characters with a string literal:

char *cp = "hello";

This declares the object cp as a character pointer initialized to point to the first character
of the string 'hello '.

It is illegal to specify more initializers in a list than are required to initialize the specified
aggregate. The one exception to this rule is the initialization of an array of characters with
a string literal.

char t[3] = "cat";

This initializes the array t to contain the characters c, a, and t . The trailing '\0'
character is ignored.

If there are not enough initializers, the remainder of the aggregate is initialized to zero.

More examples include:

char *errors [] = {
"undefined file",
"input error",
"invalid user"

};

In this example, the array errors is an array of pointers to character (strings). The array
is initialized with the starting addresses of three strings, which will be interpreted as error
messages.

An array with element type compatible with wchar_t (unsigned int) may be initialized by
a wide string literal, optionally enclosed in braces. Successive characters of the wide string
literal initialize the members of the array. This includes the terminating zero-valued
character, if there is room or if the array is of unknown size.

Example
struct SS { int y; };
extern struct SS g(void);
func()
{

struct S S z = g();
}

When initializing a union, since only one union member can be active at one time, the first
member of the union is taken to be the initialized member.
50 Chapter 3

Data Types and Declarations
Initialization
Union initialization is only available in ANSI mode.

Example
union {

int i;
float f;
unsigned u:5;

} = { 15 };
Chapter 3 51

Data Types and Declarations
Function Definitions
Function Definitions
A function definition introduces a new function.

Syntax
function-definition ::=
[declaration-specifiers] declarator [declaration-list] compound-statement

Description

A function definition provides the following information about the function:

1. Type. You can specify the return type of the function. If no type is provided, the default
return type is int. If the function does not return a value, it can be defined as having a
return type of void . You can declare functions as returning any type except a function
or an array. You can, however, define functions that return pointers to functions or
pointers to arrays.

2. Formal parameters. There are two ways of specifying the type and number of the
formal parameters to the function:

a. A function declarator containing an identifier list

The identifiers are formal parameters to the function. You must include at least one
declarator for each declaration in the declaration list of the function. These
declarators declare only identifiers from the identifier list of parameters. If a
parameter in the identifier list has no matching declaration in the declaration list,
the type of the parameter defaults to int .

b. A function declarator containing a parameter type list (prototype form).

In this case, the function definition cannot include a declaration list. You must
include an identifier in each parameter declaration (not an abstract declarator). The
one exception is when the parameter list consists of a single parameter of type void ;
in this case do not use an identifier.

NOTE Function prototypes can be used only in ANSI mode.

3. Visibility outside defining translation unit. A function can be local to the
translation unit in which it is defined (if the storage class specifier is static).
Alternatively, a function can be visible to other translation units (if no storage class is
specified, or if the storage class is extern).

4. Body of the function. You supply the body that executes when the function is called
in a single compound statement following the optional declaration-list.

Do not confuse definition with declaration, especially in the case of functions. Function
definition implies that the above four pieces of information are supplied. Function
declaration implies that the function is defined elsewhere.
52 Chapter 3

Data Types and Declarations
Function Definitions
You can declare formal parameters as structures or unions. When the function is called,
the calling function's argument is copied to temporary locations within the called function.

All functions in C may be recursive. They may be directly recursive so the function calls
itself or they may be indirectly recursive so a function calls one or more functions which
then call the original function. Indirect recursion can extend through any number of
layers.

In function definitions that do not use prototypes, any parameters of type float are
actually passed as double , even though they are seen by the body of the function as floats.
When such a function is called with a float argument, the float is converted back to float on
entry into the function.

NOTE In non-ANSI mode, the type of the parameter is silently changed to double, so
the reverse conversion does not take place.

In a prototype-style definition, such conversions do not take place, and the float is both
passed and accessed in the body as a float.

Char and short parameters to nonprototype-style function definitions are always
converted to type int. This conversion does not take place in prototype-style definitions.

In either case, arrays of type T are always converted to pointer to type T, and functions are
converted to pointers to functions.

Single dimensioned arrays declared as formal parameters need not have their size
specified. If the name of an integer array is x, the declaration is as follows:

int x[];

For multidimensional arrays, each dimension must be indicated by a pair of brackets. The
size of the first dimension may be left unspecified.

The storage class of formal parameters is implicitly 'function parameter.' A further storage
class of register is accepted.

Examples

The following example shows a function that returns the sum of an array of integers.

int total(data, n) /* function type, name, formal list */
int data[]; /* parameter declarations */
int n;
{

auto int sum = 0; /* local, initialized */
auto int i; /* loop variable */

for(i=0; i<n; i) /* range over all elements */
sum += data[i]; /* total the data array */

return sum; /* return the value */
}

This is an example of a function definition without prototypes.

int func1 (p1, p2) /* old-style function definition */
Chapter 3 53

Data Types and Declarations
Function Definitions
int p1, p2; /* parameter declarations */
{ /* function body starts */

int l1; /* local variables */
l1 = p1 + p2;
return l1;

}

Here is an example of a function definition using prototypes.

char *func2 (void) /* new-style definition */
/* takes no parameters */

{
/* body */

}

int func3 (int p1, char *p2, ...) /* two declared parameters:
p1 & p2 */

/* "..." specifies more,
undeclared parameters

of unspecified type */
{

/* body */ /* to access undeclared
parameters here, use the
functions declared in the
<stdarg.h> header file. */

}

54 Chapter 3

Type Conversions
4 Type Conversions

The use of different types of data within C programs creates a need for data type
conversions. For example, some circumstances that may require a type conversion are
when a program assigns one variable to another, when it passes arguments to functions, or
when it tries to evaluate an expression containing operands of different types. C performs
data conversions in these situations.

• Assignment — Assignment operations cause some implicit type conversions. This
makes arithmetic operations easier to write. Assigning an integer type variable to a
floating type variable causes an automatic conversion from the integer type to the
floating type.

• Function call — Arguments to functions are implicitly converted following a number
of 'widening' conversions. For example, characters are automatically converted to
integers when passed as function arguments in the absence of a prototype.

• Normal conversions — In preparation for arithmetic or logical operations, the
compiler automatically converts from one type to another. Also, if two operands are not
of the same type, one or both may be converted to a common type before the operation is
performed.

• Casting — You can explicitly force a conversion from one type to another using a cast
operation.

• Returned values — Values returned from a function are automatically converted to
the function's type. For example, if a function was declared to return a double and the
return statement has an integer expression, the integer value is automatically
converted to a double.

Conversions from one type to another do not always cause an actual physical change in
representation. Converting a 16-bit short int into a 64-bit double causes a representational
change. Converting a 16-bit signed short int to a 16-bit unsigned short int does not cause a
representational change.
Chapter 4 49

Type Conversions
Integral Promotions
Integral Promotions
Wherever an int or an unsigned int can be used in an expression, a narrower integral type
can also be used. The narrow type will generally be widened by means of a conversion
called an integral promotion. All ANSI C compilers follow what are called value preserving
rules for the conversion. In HP C the value preserving integral promotion takes place as
follows: a char, a short int, a bit-field, or their signed or unsigned varieties, are widened to
an int; all other arithmetic types are unchanged by the integral promotion.

NOTE Many older compilers, including previous releases of HP C, performed
integral promotions in a slightly different way, following unsigned preserving
rules. In order to avoid "breaking" programs that may rely on this non-ANSI
behavior, non-ANSI mode continues to follow the unsigned preserving rules.
Under these rules, the only difference is that unsigned char and unsigned
short are promoted to unsigned int, rather than int.

In the vast majority of cases, results are the same. However, if the promoted result is used
in a context where its sign is significant (such as a division or comparison operation),
results can be different between ANSI mode and non-ANSI mode. The following program
shows two expressions that are evaluated differently in the two modes.

#include
main ()
{

unsigned short us = 1;
printf ("Quotient = %d\n",-us/2);
printf ("Comparison = %d\n",us<-1);

}

To avoid situations where unsigned preserving and value preserving promotion rules yield
different results, you could refrain from using an unsigned char or unsigned short in an
expression that is used as an operand of one of the following operators: >>, /, %, <, <=, >, or
>=. Or remove the ambiguity by using an explicit cast to specify the conversion you want.

If you enable ANSI migration warnings, the compiler will warn you of situations where
differences in the promotion rules might cause different results.

In non-ANSI mode, as with many pre-ANSI compilers, the results will be:

Quotient = 2147483647
Comparison = 1

ANSI C gives the following results:

Quotient = 0
Comparison = 0
50 Chapter 4

Type Conversions
Usual Arithmetic Conversions
Usual Arithmetic Conversions
In many expressions involving two operands, the operands are converted according to the
following rules, known as the usual arithmetic conversions. The common type resulting
from the application of these rules is also the type of the result. These rules are applied in
the sequence listed below.

1. If either operand is long double, the other operand is converted to long double.

2. If either operand is double, the other operand is converted to double.

3. If either operand is float, the other operand is converted to float.

4. Integral promotions are performed on both operands, and then the rules listed below
are followed.

a. If either operand is unsigned long int, the other operand is converted to unsigned
long int.

b. If one operand is long int and the other is unsigned int, both operands are converted
to unsigned long int.

c. If either operand is long int, the other operand is converted to long int.

d. If either operand is unsigned int, the other operand is converted to unsigned int.

e. Otherwise, both operands have type int.

NOTE In non-ANSI mode, the rules are slightly different.

Rule 1: Does not apply, because long double is not supported in non-ANSI mode.

Rule 3: Does not apply, because in non-ANSI mode, whenever a float appears in an
expression, it is immediately converted to a double.

Rule 4: The integral promotions are performed according to the unsigned
preserving rules when compiling in non-ANSI mode.
Chapter 4 51

Type Conversions
Arithmetic Conversions
Arithmetic Conversions
In general, the goal of conversions between arithmetic types is to maintain the same
magnitude within the limits of the precisions involved. A value converted from a less
precise type to a more precise type and then back to the original type results in the same
value.

Integral Conversions

A particular bit pattern, or representation, distinguishes each data object from all others of
that type. Data type conversion can involve a change in representation.

When signed integer types are converted to unsigned types of the same length, no change
in representation occurs. A short int value of -1 is converted to an unsigned short int value
of 65535.

Likewise, when unsigned integer types are converted to signed types of the same length,
no representational change occurs. An unsigned short int value of 65535 converted to a
short int has a value of -1.

If a signed int type is converted to an unsigned type that is wider, the conversion takes
(conceptually) two steps. First, the source type is converted to a signed type with the same
length as the destination type. (This involves sign extension.) Second, the resulting signed
type is converted to unsigned. The second step requires no change in representation.

If an unsigned integer type is converted to a signed integer type that is wider, the unsigned
source type is padded with zeros on the left and increased to the size of the signed
destination type.

In general, conversions from wide integer types to narrow integer types discard high-order
bits. Overflows are not detected.

Conversions from narrow integer types to wide integer types pad on the left with either
zeros or the sign bit of the source type as described above.

A "plain" char is treated as signed.

A "plain" int bit-field is treated as signed.

Floating Conversions

When an integer value is converted to a floating type, the result is the equivalent
floating-point value. If it cannot be represented exactly, the result is the nearest
representable value. If the two nearest representable values are equally near, the result is
the one whose least significant bit is zero.

When floating-point types are converted to integral types, the source type value must be in
the representable range of the destination type or the result is undefined. The result is the
whole number part of the floating-point value with the fractional part discarded as shown
in the following examples:

int i;
i = 9.99; /* i gets the value 9 */
52 Chapter 4

Type Conversions
Arithmetic Conversions
i = -9.99; /* i gets the value -9 */
float x1 = 1e38; /* legal; double is converted to float */
float x2 = 1e39; /* illegal; value is outside of range */

/* for float */
long double x3 = 1.f; /* legal; float is converted to long */

/* double */

When a long double value is converted to a double or float value, or a double value is
converted to a float value, if the original value is within the range of values representable
in the new type, the result is the nearest representable value (if it cannot be represented
exactly). If the two nearest representable values are equally near, the result is the one
whose least significant bit is zero. When a float value is converted to a double or long
double value, or a double value is converted to a long double value, the value is unchanged.

Arrays, Pointers, and Functions

An expression that has function type is called a function designator. For example, a
function name is a function designator. With two exceptions, a function designator with
type "function returning type" is converted to an expression with type "pointer to function
returning type." The exceptions are when the function designator is the operand of sizeof
(which is illegal) and when it is the operand of the unary & operator.

In most cases, when an expression with array type is used, it is automatically converted to
a pointer to the first element of the array. As a result, array names and pointers are often
used interchangeably in C. This automatic conversion is not performed in the following
contexts:

• When the array is the operand of sizeof or the unary &.

• When the array is a character string literal initializing an array of characters.

• When the array is a wide string literal initializing an array of wide characters.
Chapter 4 53

Type Conversions
Arithmetic Conversions
54 Chapter 4

Expressions
5 Expressions

This chapter describes forming expressions in C, discusses operator precedence, and
provides details about operators used in expressions.

An expression in C is a collection of operators and operands that indicates how a
computation should be performed. Expressions are represented in infix notation. Each
operator has a precedence with respect to other operators. Expressions are building blocks
in C. You use the C character set to form tokens. Tokens, combined together, form
expressions. Expressions can be used in statements.

The C language does not define the evaluation order of subexpressions within a larger
expression except in the special cases of the &&, ||, ?: , and , operators. When
programming in other computer languages, this may not be a concern. C's rich operator
set, however, introduces operations that produce "side effects." The ++ operator is a prime
example. The ++ operator increments a value by 1 and provides the value for further
calculations. For this reason, expressions such as

b = ++a*2 + ++a*4;

are dangerous. The language does not specify whether the variable a is first incremented
and multiplied by 4 or is first incremented and multiplied by 2. The value of this
expression is undefined.
Chapter 5 55

Expressions
Operator Precedence
Operator Precedence
Precedence is the order in which the compiler groups operands with operators. The C
compiler evaluates certain operators and their operands before others. If operands are not
grouped using parentheses, the compiler groups them according to its own rules.

<Undefined Cross-Reference> shows the rules of operator precedence in the C language.
<Undefined Cross-Reference> lists the highest precedence operators first. Most operators
group from the left to the right but some group from the right to the left. The grouping
indicates how an expression containing several operators of the same precedence will be
evaluated. Left to right grouping means the expression

a/b * c/d

behaves as if it had been written:

a/b)*c)/d)

Likewise, an operator that groups from the right to the left causes the expression

a = b = c

to behave as if it had been written:

a = (b = c)

Table 5-1. C Operator Precedence

Operators Grouping

() [] -> . left to right

+ ! ~ - * & sizeof (See note 1

below.)
right to left

(type) right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

 != left to right

left to right

^ left to right

| left to right

left to right

|| left to right

?: right to left
56 Chapter 5

Expressions
Operator Precedence
1 Note that the +, -, *, and operators listed in this row are unary operators.

= *= /= %= += -= <<= >>= &= ^=
|=

right to left

, left to right

Table 5-1. C Operator Precedence

Operators Grouping
Chapter 5 57

Expressions
Lvalue Expressions
Lvalue Expressions
An lvalue (pronounced "el-value") is an expression that designates an object. A modifiable
lvalue is an lvalue that does not have an array or an incomplete type and that does not
have a "const"-qualified type.

The term "lvalue" originates from the assignment expression E1=E2, where the left
operand E1 must be a modifiable lvalue. It can be thought of as representing an object
"locator value." For example, if E is the name of an object of static or automatic storage
duration, it is an lvalue. Similarly, if E denotes a pointer expression, *E is an lvalue,
designating the object to which E points.

Examples

Given the following declarations:

int *p, a, b;
int arr[4];
int func();

a /* Lvalue */
a + b /* Not an lvalue */
p /* Lvalue */
p / Lvalue */
arr /* Lvalue, but not modifiable */
(arr + a) / Lvalue */
arr[a] /* Lvalue, equivalent to *(arr+a) */
func /* Not an lvalue */
func() /* Not an lvalue */
58 Chapter 5

Expressions
Primary Expressions
Primary Expressions
The term primary expression is used in defining various C expressions.

Syntax
primary-expression :=

identifier
constant
string-literal
(expression)

Description

A primary expression is an identifier, a constant, a string literal, or an expression in
parentheses that may or may not be an lvalue expression. Primary expressions are the
basic components of all expressions.

An identifier can be a primary expression provided that you have declared it properly. A
single identifier may or may not be an lvalue expression. A function name is not an lvalue.

A constant is a primary expression and can never be an lvalue.

A string literal is a primary expression. The type of the string literal is "array of
characters." If the string literal appears in any context other than as the operand of
sizeof , the operand of unary &, or the initializer for an array of characters, it is converted
to a pointer to the first character.

Examples
identifier: var1

constant: 99

string-literal: "hi there"

(expression) (ab)
Chapter 5 59

Expressions
Postfix Operators
Postfix Operators
Postfix operators are unary operators that attach to the end of postfix expressions. A postfix
expression is any expression that may be legally followed by a postfix operator.

Syntax
postfix-expression :=

primary-expression
postfix-expression [expression]
postfix-expression ([argument-expression-list])
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression
postfix-expression

argument-expression-list :=
assignment-expression
argument-expression-list , assignment-expression

Examples

The following are examples of postfix operators:

The 'element of' operator ([]) : array1[10]

The postfix increment operator (++) : index++

The postfix decrement operator () : index

The argument list of function calls : func(arg1,arg2,arg3)

The selection operator (.) : struct_name.member

The selection operator (->) : p_struct->member
60 Chapter 5

Expressions
Array Subscripting
Array Subscripting
A postfix expression followed by the [] operator is a subscripted reference to a single
element in an array.

Syntax
postfix-expression [expression]

Description

One of the operands of the subscript operator must be of type pointer to T (T is an object
type), the other of integral type. The resulting type is T.

The [] operator is defined so that E1[E2] is identical to (*((E1)+(E2))) in every
respect. This leads to the (counterintuitive) conclusion that the [] operator is
commutative. The expression E1[E2] is identical to E2[E1].

C's subscripts run from 0 to n-1 where n is the array size.

Multidimensional arrays are represented as arrays of arrays. For this reason, the notation
is to add subscript operators, not to put multiple expressions within a single set of
brackets. For example, int x[3][5] is actually a declaration for an array of three objects.
Each object is, in turn, an array of five int. Because of this, all of the following expressions
are correct:

x
x[i]
x[i][j]

The first expression refers to the 3 by 5 array of int. The second refers to an array of five
int, and the last expression refers to a single int.

The expression x[y] is an lvalue.

There is no arbitrary limit on the number of dimensions that you can declare in an array.

Because of the design of multidimensional C arrays, the individual data objects must be
stored in row-major order. As another example, the expression

a[i,j] = 0

looks as if array a were doubly subscripted, when actually the comma in the subscript
indicates that the value of i should be discarded and that j is the subscript into the a
array.
Chapter 5 61

Expressions
Function Calls
Function Calls
Function calls provide a means of invoking a function and passing arguments to it.

Syntax
postfix-expression ([argument-expression-list])

Description

The postfix-expression must have the type "pointer to function returning T." The result of
the function will be type T. Functions can return any type of object except array and
function. Specifically, functions can return structures. In the case of structures, the
contents of the returned structure is copied to storage in the calling function. For large
structures, this can use a lot of execution time.

Although the expression denoting the called function must actually be a pointer to a
function, in typical usage, it is simply a function name. This works because the function
name will automatically be converted to a pointer, as explained in chapter 4.

C has no call statement. Instead, all function references must be followed by parentheses.
The parentheses contain any arguments that are passed to the function. If there are no
arguments, the parentheses must still remain. The parentheses can be thought of as a
postfix call operator.

If the function name is not declared before it is used, the compiler enters the default
declaration:

extern int identifier ();

Function arguments are expressions. Any type of object can be passed to a function as an
argument. Specifically, structures can be passed as arguments. Structure arguments are
copied to temporary storage in the called function. The length of time required to copy a
structure argument depends upon the structure's size.

If the function being called has a prototype, each argument is evaluated and converted as
if being assigned to an object of the type of the corresponding parameter. If the prototype
has an ellipsis, any argument specified after the fixed parameters is subject to the default
argument promotions described below.

The compiler checks to see that there are as many arguments as required by the function
prototype. If the prototype has an ellipsis, additional parameters are allowed. Otherwise,
they are flagged are erroneous. Also, the types of the arguments must be
assignment-compatible with their corresponding formal parameters, or the compiler will
emit a diagnostic message.

If the function does not have a prototype, then the arguments are evaluated and subjected
to the default argument promotions; that is, arguments of type char or short (both signed
and unsigned) are promoted to type int, and float arguments are promoted to double.

In this case, the compiler does not do any checking between the argument types and the
types of the parameters of the function (even if it has seen the definition of the function).
62 Chapter 5

Expressions
Function Calls
Thus, for safety, it is highly advisable to use prototypes wherever possible.

In both cases, arrays of type T are converted to pointers to type T, and functions are
converted to pointers to functions.

Within a function, the formal parameters are lvalues that can be changed during the
function execution. This does not change the arguments as they exist in the calling
function. It is possible to pass pointers to objects as arguments. The called function can
then reference the objects indirectly through the pointers. The result is as if the objects
were passed to the function using call by reference. The following swap function illustrates
the use of pointers as arguments. The swap() function exchanges two integer values:

void swap(int *x,int *y)
{

int t;

t = *x;
*x = *y;
*y = t;

}

To swap the contents of integer variables i and j , you call the function as follows:

swap(i, j);

Notice that the addresses of the objects (pointers to int) were passed and not the objects
themselves.

Because arrays of type T are converted into pointers to type T, you might think that arrays
are passed to functions using call by reference. This is not actually the case. Instead, the
address of the first element is passed to the called function. This is still strictly call by
value since the pointer is passed by value. Inside the called function, references to the
array via the passed starting address, are actually references to the array in the calling
function. Arrays are not copied into the address space of the called function.

All functions are recursive both in the direct and indirect sense. Function A can call itself
directly or function A can call function B which, in turn, calls function A. Note that each
invocation of a function requires program stack space. For this reason, the depth of
recursion depends upon the size of the execution stack.
Chapter 5 63

Expressions
Structure and Union Members
Structure and Union Members
A member of a structure or a union can be referenced using either of two operators: the
period or the right arrow.

Syntax
postfix-expression . identifier
postfix-expression -> identifier

Description

Use the period to reference members of structures and unions directly. Use the arrow
operator to reference members of structures and unions pointed to by pointers. The arrow
operator combines the functions of indirection through a pointer and member selection. If
P is a pointer to a structure with a member M, the expression P->M is identical to (*P).M.

The postfix-expression in the first alternative must be a structure or a union. The
expression is followed by a period (.) and an identifier. The identifier must name a member
defined as part of the structure or union referenced in the postfix-expression. The value of
the expression is the value of the named member. It is an lvalue if the postfix-expression is
an lvalue.

If the postfix-expression is a pointer to a structure or a pointer to a union, follow it with an
arrow (composed of the - character followed by the >) and an identifier. The identifier must
name a member of the structure or union which the pointer references. The value of the
primary expression is the value of the named member. The resulting expression is an
lvalue.

The . operator and the -> operator are closely related. If S is a structure, M is a member of
structure S, and is a valid pointer expression, S.M is the same as (S)->M .
64 Chapter 5

Expressions
Postfix Increment and Decrement Operators
Postfix Increment and Decrement Operators
The postfix increment operator ++ adds one to its operand after using its value. The postfix
decrement operator subtracts one from its operand after using its value.

Syntax
postfix-expression
postfix-expression

Description

You can only apply postfix increment ++ and postfix decrement operators to an operand
that is a modifiable lvalue with scalar type. The result of a postfix increment or a postfix
decrement operation is not an lvalue.

The postfix-expression is incremented or decremented after its value is used. The
expression evaluates to the value of the object before the increment or decrement, not the
object's new value.

If the value of X is 2, after the expression A=X is evaluated, A is 2 and X is 3.

Avoid using postfix operators on a single operand appearing more than once in an
expression. The result of the following example is unpredictable:

*p = *p;

The C language does not define which expression is evaluated first. The compiler can
choose to evaluate the left side of the = operator (saving the destination address) before
evaluating the right side. The result depends on the order of the subexpression evaluation.

Pointers are assumed to point into arrays. Incrementing (or decrementing) a pointer
causes the pointer to point to the next (or previous) element. This means, for example, that
incrementing a pointer to a structure causes the pointer to point to the next structure, not
the next byte within the structure. (Refer also to "Additive Operators" for information on
adding to pointers.)
Chapter 5 65

Expressions
Unary Operators
Unary Operators
You form unary expressions by combining a unary operator with a single operand. All
unary operators are of equal precedence and group from right to left.

Syntax
unary-expression :=

postfix-expression
unary-expression
unary-expression

unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator := one selected from
* - ~ ! +

Examples

The unary plus operator : +var

The unary minus operator : -var

The address-of operator : &var

The indirect operator : *ptr

The logical NOT operator : !var

The bitwise NOT operator : ~var
66 Chapter 5

Expressions
Prefix Increment and Decrement Operators
Prefix Increment and Decrement Operators
The prefix increment or decrement operator increments or decrements its operand before
using its value.

Syntax
unary-expression
unary-expression

Description

The operand for the prefix increment ++ or the prefix decrement operator must be a
modifiable lvalue with scalar type. The result is not an lvalue.

The operand of the prefix increment operator is incremented by 1. The resulting value is
the result of the unary-expression.

The prefix decrement operator behaves the same way as the prefix increment operator
except that a value of one is subtracted from the operand.

For any expression E, the unary expressions E and (E=1) yield the same result. If the
value of X is 2, after the expression A=X is evaluated, A is 3 and X is 3.

Pointers are assumed to point into arrays. Incrementing (or decrementing) a pointer
causes the pointer to point to the next (or previous) element. This means, for example, that
incrementing a pointer to a structure causes the pointer to point to the next structure, not
the next byte within the structure. (Refer also to "Additive Operators" for information on
adding to pointers.)
Chapter 5 67

Expressions
Address and Indirection Operators
Address and Indirection Operators
The address () and indirection (*) operators are used to locate the address of an operand
and indirectly access the contents of the address.

Syntax
cast-expression

* cast-expression

Description

The operand of the unary indirection operator (*) must be a pointer to type T. The resulting
type is T. If type T is not a function type, the unary-expression is an lvalue.

The contents of pointers are memory addresses. No range checking is done on indirection
operations. Specifically, storing values indirectly through a pointer that was not correctly
initialized can cause bounds errors or destruction of valid data.

The operand of the unary address-of operator () must be a function designator or an lvalue.
This precludes taking the address of constants (for example, 3), because 3 is not an lvalue.
If the type of the operand is T, the result of the address of operator is a pointer to type T.
The operator may not be applied to bit fields or objects with the register storage class.

It is always true that if E is an lvalue, then *E is an lvalue expression equal to E.
68 Chapter 5

Expressions
Unary Arithmetic Operators
Unary Arithmetic Operators
A unary arithmetic operator combined with a single operand forms a unary expression
used to negate a variable, or determine the ones complement or logical complement of the
variable.

Syntax
+ cast-expression
- cast-expression
~ cast-expression
! cast-expression

Description

The unary plus operator operates on a single arithmetic operand, as is the case of the
unary minus operator. The result of the unary plus operator is defined to be the value of its
operand. For example, just as -2 is an expression with the value negative 2, +2 is an
expression with the value positive 2.

In spite of its definition, the unary plus operator is not purely a no-op. According to the
ANSI standard, an unary plus operation is an expression that follows the integral
promotion rule. For example, if i is defined as a short int, then sizeof (i) is 2. However,
sizeof (+i) is 4 because the unary plus operator promotes i to an int. The result of the
unary - operator is the negative value of its operand. The operand can be any arithmetic
type. The integral promotion is performed on the operand before it is used. The result has
the promoted type and is not an lvalue.

The result of the unary ~ operator is a one's (bitwise) complement of its operand. The
operand can be of any integral type. The integral promotion is performed on the operand
before it is used. The result has the promoted type and is not an lvalue.

The result of the unary ! operator is the logical complement of its operand. The operand
can be of any scalar type. The result has type int and is not an lvalue. If the operand had a
zero value, the result is 1. If the operand had a nonzero value, the result is 0.
Chapter 5 69

Expressions
The sizeof Operator
The sizeof Operator
The sizeof operator is used to determine the size (in bytes) of a data object or a type.

Syntax
sizeof unary-expression
sizeof (type-name)

Description

The result of the sizeof operator is an unsigned int constant expression equal to the
size of its operand in bytes. You can use the sizeof operator in two different ways. First,
you can apply the sizeof operator to an expression. The result is the number of bytes
required to store the data object resulting from the expression. Second, it may be followed
by a type name inside parentheses. The result then is the number of bytes required to
store the specified type.

In either usage, the sizeof operator is a compile-time operator that you can use in place of
an integer constant.

The usual conversion of arrays of T to pointers to T is inhibited by the sizeof operator.
The sizeof operator returns the number of bytes in an array rather than the number of
bytes in a pointer.

When you apply the sizeof operator to an expression, the expression is not compiled into
executable code. This means that side effects resulting from expression evaluation do not
take place.
70 Chapter 5

Expressions
Cast Operators
Cast Operators
The cast operator is used to convert an expression of one type to another type.

Syntax
cast-expression :=

unary-expression
(type-name) cast-expression

Description

An expression preceded by a parenthesized type name causes the expression to be
converted to the named type. This operation is called a cast. The cast does not alter the
type of the expression, only the type of the value. Unless the type name specifies void type,
the type name must specify a scalar type, and the operand must have scalar type.

The result of a cast operation is not an lvalue.

Conversions involving pointers (other than assignment to or from a "pointer to void " or
assignment of a null pointer constant to a pointer) require casts.

A pointer can be cast to an integral type and back again provided the integral type is at
least as wide as an int.

A pointer to any object can safely be converted to a pointer to char or a pointer to void ,
and back again. If converted to a pointer to char , it will point to the first (lowest address)
byte of the original object. For example, a pointer to an integer converted to a character
pointer points to the most significant byte of the integer.

A pointer to a function of one type can safely be converted to a pointer to a function of
another type, and back again.
Chapter 5 71

Expressions
Multiplicative Operators
Multiplicative Operators
The multiplicative operators perform multiplication (*), division (/), or remainder (%).

Syntax
multiplicative-expression :=

cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression cast-expression

Description

Each of the operands in a multiplicative expression must have arithmetic type. Further,
the operands for the % operator must have integral type.

The usual arithmetic conversions are performed on the operands to select a resulting type.
The result is not an lvalue.

The result of the multiplication operator * is the arithmetic product of the operands.

The result of the division operator / is the quotient of the operands.

The result of the mod operator %is the remainder when the left argument is divided by the
right argument. By definition, a%ba-a/b)*b) . The second operand (/ or %) must not be 0.

The following table describes the result of a/b for positive and negative integer operands,
when the result is inexact.

For example, -5/2 -2 . The true quotient is -2.5; the smallest integer greater than -2.5 is
-2.

The following table describes the sign of the result of ab for positive and negative

Table 5-2. C Operator Precedence

b positive b negative

a
positive

Largest
integer less
than the
true
quotient.

Smallest
integer
greater than
the true
quotient.

a
negative

Smallest
integer
greater than
the true
quotient.

Largest
integer less
than the
true
quotient.
72 Chapter 5

Expressions
Multiplicative Operators
operands, when the result is not zero.

For example:

-5 2 -1

Examples
var1 * var2

var1 / var2

var1 var2

Table 5-3. C Operator Precedence

b positive b negative

a
positive

+ +

a
negative

- -
Chapter 5 73

Expressions
Additive Operators
Additive Operators
The additive operators perform addition (+) and subtraction (-).

Syntax
additive-expression :=

multiplicative-expression
additive-expression multiplicative-expression
additive-expression - multiplicative-expression

Description

The result of the binary addition operator + is the sum of two operands. Both operands
must be arithmetic, or one operand can be a pointer to an object type and the other an
integral type. The usual arithmetic conversions are performed on the operand if both have
arithmetic type. The result is not an lvalue.

If one operand is a pointer and the other operand is an integral type, the integral operand
is scaled by the size of the object pointed to by the pointer. As a result, the pointer is
incremented by an integral number of objects (not just an integral number of storage
units). For example, if p is a pointer to an object of type T, when the value 1 is added to p,
the value of 1 is scaled appropriately. Pointer p will point to the next object of type T. If any
integral value i is added to p, i is also scaled so that p will point to an object that is i
objects away since it is assumed that p actually points into an array of objects of type T.
Use caution with this feature. Consider the case where p points to a structure that is ten
bytes long. Adding a constant 1 to p does not cause p to point to the second byte of the
structure. Rather it causes p to point to the next structure. The value of one is scaled so a
value of ten (the length in bytes of the structure) is used.

The result of the binary subtraction operator - is the difference of the two operands. Both
operands must be arithmetic; the left operand can be a pointer and the right can be an
integral type; or both must be pointers to the same type. The usual arithmetic conversions
are performed on the operands if both have arithmetic type. The result is not an lvalue.

If one operand is a pointer and the other operand is an integral type, the integral operand
is scaled by the size of the object pointed to by the left operand. As a result, the pointer is
decremented by an integral number of objects (not just an integral number of storage
units). See the previous discussion on the addition operator + for more details.

If both operands are pointers to the same type of object, the difference between the
pointers is divided by the size of the object they point to. The result, then, is the integral
number of objects that lie between the two pointers. Given two pointers p and q to the
same type, the difference p-q is an integer k such that adding k to q yields p.

Examples
var1+var2

var1-var2
74 Chapter 5

Expressions
Bitwise Shift Operators
Bitwise Shift Operators
The bitwise shift operators shift the left operand left (\<\<) or right (\>\>) by the number
of bit positions specified by the right operand.

Syntax
shift-expression :=

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Description

Both operands must be of integral type. The integral promotions are performed on both
operands. The type of the result is the type of the promoted left operand.

The left shift operator << shifts the first operand to the left and zero fills the result on the
right. The right shift operator >> shifts the first operand to the right. If the type of the left
operand is an unsigned type, the >> operator zero fills the result on the left. If the type of
the left operand is a signed type, copies of the sign bit are shifted into the left bits of the
result (sometimes called sign extend).

Example
var1>>var2
Chapter 5 75

Expressions
Relational Operators
Relational Operators
The relational operators compare two operands to determine if one operand is less than,
greater than, less than or equal to, or greater than or equal to the other.

Syntax
relational-expression :=

shift-expression
relational-expression shift-expression
relational-expression > shift-expression
relational-expression = shift-expression
relational-expression >= shift-expression

Description

The usual arithmetic conversions are performed on the operands if both have arithmetic
type. Both operands must be arithmetic or both operands must be pointers to the same
type. In general, pointer comparisons are valid only between pointers that point within the
same aggregate or union.

Each of the operators (less than), (greater than), (less than or equal) and >= (greater
than or equal) yield 1 if the specified relation is true; otherwise, they yield 0. The resulting
type is int and is not an lvalue.

When two pointers are compared, the result depends on the relative locations in the data
space of the objects pointed to. Pointers are compared as if they were unsigned integers.

Because you can use the result of a relational expression in an expression, it is possible to
write syntactically correct statements that appear valid but which are not what you
intended to do. An example is a<b<c . This is not a representation of "a is less than b and b
is less than c." The compiler interprets the expression as (a<b)<c . This causes the
compiler to check whether a is less than b and then compares the result (an integer 1 or 0)
with c.

Examples
var1 < var2

var1 > var2

var1 <= var2

var1 >= var2
76 Chapter 5

Expressions
Equality Operators
Equality Operators
The equality operators equal-to (==) and not-equal-to (!=) compare two operands.

Syntax
equality-expression :=

relational-expression
equality-expression relational-expression
equality-expression != relational-expression

Description

The usual arithmetic conversions are performed on the operands if both have arithmetic
type. Both operands must be arithmetic, or both operands must be pointers to the same
type, or one operand can be a pointer and the other a null pointer constant or a pointer to
void.

Both of the operators (equal) and != (not equal) yield 1 if the specified relation is true;
otherwise they will yield 0. The result is of type int and is not an lvalue.

The and != operators are analogous to the relational operators except for their lower
precedence. This means that the expression a<bc<d is true if and only if a<b and c<d have
the same truth value.

Use caution with the operator. It resembles the assignment operator (=) and is often
pronounced the same when programs are read. Further, you can use the operator in
expressions syntactically the same as you would the = operator. For example, the
statements

if(ab) return 0;

if(a=b) return 0;

look very much alike, but are very different. The first statement says "if a is equal to b,
return a value of zero." The second statement says "store b into a and if the value stored is
nonzero, return a value of zero."

Examples
var1==var2

var1!=var2
Chapter 5 77

Expressions
Bitwise AND Operator
Bitwise AND Operator
The bitwise AND operator (&) performs a bitwise AND operation on its operands. This
operation is useful for bit manipulation.

Syntax
AND-expression ::=

equality-expression
AND-expression & equality-expression

Description

The result of the binary & operator is the bitwise AND function of the two operands. Both
operands must be integral types. The usual arithmetic conversions are performed on the
operands. The type of the result is the converted type of the operands. The result is not an
lvalue.

For each of the corresponding bits in the left operand, the right operand, and the result,
the following table indicates the result of a bitwise AND operation.

Examples
var1 & var2

Table 5-4. C Operator Precedence

Bit in Left
Operand

Bit in Right
Operand

Bit in Result

0 0 0

0 1 0

1 0 0

1 1 1
78 Chapter 5

Expressions
Bitwise Exclusive OR Operator
Bitwise Exclusive OR Operator
The bitwise exclusive OR operator (^) performs the bitwise exclusive OR function on its
operands.

Syntax
exclusive-OR-expression ::=

AND-expression
exclusive-OR-expression ^ AND-expression

Description

The result of the binary operator is the bitwise exclusive OR function of the two operands.
Both operands must be integral types. The usual arithmetic conversions are performed on
the operands. The type of the result is the converted type of the operands. The result is not
an lvalue.

For each of the corresponding bits in the left operand, the right operand, and the result,
the following table indicates the result of an exclusive OR operation.

You can use the exclusive OR operation for complementing bits. If a mask integer is
exclusive OR'd with another integer, each bit position in the mask having a value of one
will cause the corresponding position in the other operand to be complemented.

Example
var1 ^ var2

Table 5-5. C Operator Precedence

Bit in Left
Operand

Bit in Right
Operand

Bit in Result

0 0 0

0 1 1

1 0 1

1 1 0
Chapter 5 79

Expressions
Bitwise Inclusive OR Operator
Bitwise Inclusive OR Operator
The bitwise inclusive OR operator (|) performs the bitwise inclusive OR function on its
operands.

Syntax
inclusive-OR-expression :=

exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Description

The result of the binary operator is the bitwise OR function of the two operands. Both
operands must be integral types. The usual arithmetic conversions are performed on the
operands. The type of the result is the converted type of the operands. The result is not an
lvalue.

For each of the corresponding bits in the left operand, the right operand, and the result,
the following table indicates the result of a bitwise OR operation.

Example
var1 | var2

Table 5-6. C Operator Precedence

Bit in Left
Operand

Bit in Right
Operand

Bit in Result

0 0 0

0 1 1

1 0 1

1 1 1
80 Chapter 5

Expressions
Logical AND Operator
Logical AND Operator
The logical AND operator (&&) performs the logical AND function on its operands.

Syntax
logical-AND-expression :=

inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Description

Each of the operands must have scalar type. The type of the left operand need not be
related to the type of the right operand. The result has type int and has a value of 1 if both
of its operands compare unequal to 0, and 0 otherwise. The result is not an lvalue.

The logical AND operator guarantees left-to-right evaluation. If the first operand
compares equal to zero, the second operand is not evaluated.

This feature is useful for pointer operations involving pointers that can be NULL. For
example, the following statement:

if(p!=NULL && *p=='A') *p='B';

The first operand tests to see if pointer p is NULL. If p is NULL, an indirect reference
could cause a memory access violation. If p is non-NULL, the second operand is safe to
evaluate. The second expression checks to see if p points to the character 'A'. If the
second expression is true, the expression is true and the character that p points to is
changed to 'B'. Had the pointer been NULL, the if statement would have failed and the
pointer would not be used indirectly to test for the 'A' character.

Example
var1 && var2
Chapter 5 81

Expressions
Logical OR Operator
Logical OR Operator
The logical OR operator () performs the logical OR function on its operands.

Syntax
logical-OR-expression :=

logical-AND-expression
logical-OR-expression || logical-AND-expression

Description

Each of the operands must be of scalar type. The type of the left operand need not be
related to the type of the right operand. The result has type int and has a value of 1 if
either of its operands compare unequal to 0, and 0 otherwise. The result is not an lvalue.

The logical OR operator guarantees left-to-right evaluation. If the first operand compares
unequal to 0, the second operand is not evaluated.

Example
var1 || var2
82 Chapter 5

Expressions
Conditional Operator
Conditional Operator
The conditional operator (?:) performs an if-then-else using three expressions.

Syntax
conditional-expression :=

logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Description

A conditional expression consists of three expressions. The first and the second expressions
are separated with a ? character; the second and third expressions are separated with a :
character.

The first expression is evaluated. If the result is nonzero, the second expression is
evaluated and the result of the conditional expression is the value of the second
expression. If the first expression's result is zero, the third expression is evaluated and the
result of the conditional expression is the value of third expression.

The first expression can have any scalar type. The second and third expressions can be any
of the following combinations:

1. Both arithmetic.

• The usual arithmetic conversions are performed on the second and third expressions.
The resulting type of the conditional expression is the result of the conversion.

2. Both are pointers to type T.

• Arrays are converted to pointers, if necessary. The result is a pointer to type T.

3. Identical type object.

• The types can match and be structure, union, or void . The result is that specific
type.

4. Pointer and Null pointer constant or a pointer to void

• One expression may be a pointer (or array that is converted to a pointer) and the
other a null pointer constant or a pointer to void. The result is the same type as the
type of the pointer operand.

In all cases, the result is not an lvalue.

Note that either the second or the third expression is evaluated, but not both. Although not
required for readability, it is considered good programming style to enclose the first
expression in parentheses. For example:

min = (val1<val2) ? val1:val2;
Chapter 5 83

Expressions
Conditional Operator
Example

This expression returns x if a is 0, or return y if a is not 0.

a == 0 ? x : y

The following statement prints "I have 1 dog." if num is equal to 1, or "I have 3
dogs." , if num is 3.

printf ("I have %d dog%s.\n",num, (num>1) ? "s" : "");
84 Chapter 5

Expressions
Assignment Operators
Assignment Operators
Assignment operators assign the value of the right operand to the object designated by the
left operand.

Syntax
assignment-expression ::=

conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator := one selected from the set
= *= /= %= += -= <<= >>= &= ^= |=

Description

Each assignment operator must have a modifiable lvalue as its left operand. An
assignment operator stores a value into the left operand. The C language does not define
the order of evaluation of the left and right operands. For this reason, you should avoid
operations with side effects (such as ++ or --) if their operands appear on both the left and
right side of the assignment. For example, you should not write an expression like the
following because the results depend on which operand is evaluated first.

*p++ = *p--

Simple Assignment

In simple assignment, the value of the right operand replaces the value of the object
specified by the left operand. If the source and destination objects overlap storage areas,
the results of the assignment are undefined.

The left and right operands can be any of the following combinations:

1. Both arithmetic

If both of the operands are arithmetic types, the type of the right operand is converted
to the type of the left operand. The converted value is then stored in the location
specified by the left operand.

2. Both structure/union

If both operands are structures or unions of the same type, the right structure/union is
copied into the left structure/union. A union is considered to be the size of the largest
member of the union, and it is this number of bytes that is moved.

3. Left operand is a pointer to type T

In this case, the right operand can also be a pointer to type T. The right operand is then
copied to the left operand.

The right operand can also be a null pointer constant or a pointer to void.

A special case of pointer assignment involves the assignment of a pointer to void to
Chapter 5 85

Expressions
Assignment Operators
another pointer. No cast is necessary to convert a "pointer to void " to any other type of
pointer.

An assignment is not only an operation, it is also an expression. Each operand must have
an arithmetic type consistent with those allowed by the binary operator that is used to
make up the assignment operator. You can use the += and -= operators with a left operand
that is a pointer type.

Compound Assignment

Given the general assignment operator op=, if used in the expression

A op= B

the result is equal to the following assignment

A = A op (B)

except that the expression represented by A is evaluated only once.

Therefore,

A[f()] += B

is very different from

A[f()] = A[f()] + B

because the latter statement causes the function f() to be invoked twice.

Assignment operators are useful to reference complex subscript operators. For example:

a[j+2/i] += 3.5

In this case, the subscript expression is evaluated only once.

Examples
a += 5 Add 5 to a.
a *= 2 Multiply a by 2.
a = b Assign b to a.
a <<= 1 Left shift a by 1 bit
86 Chapter 5

Expressions
Comma Operator
Comma Operator
The comma operator is a binary operator whose operands are expressions. The expression
operands are evaluated from left to right.

Syntax
expression ::=

assignment-expression
expression , assignment-expression

Description

The comma operator is a "no-operation" operator. Its left operand is evaluated for its side
effects only. Its value is discarded. The right operand is then evaluated and the result of
the expression is the value of the right operand.

Because the comma is a punctuator in lists of function arguments, you need to use care
within argument lists to ensure that the comma is treated as a comma operator and not as
an argument separator.

f(a, (b=7, b), c);

This example passes three arguments to f() . The first is the value of a, the second is the
value of b which is set equal to 7 before the function call, and the third is the value of c.
The comma separating the assignment expression and the argument b is enclosed in
parentheses. It is therefore interpreted as a comma operator and not as an argument
separator.

Examples
func(a, (b=0, b), c) /* set b to 0 before passing it to func. */

index++ , a = index /* increment index and then assign it to a.*/

i=0, j=0, k=0 /* initialize i,j,k to 0 */
Chapter 5 87

Expressions
Constant Expressions
Constant Expressions
Constant expressions are expressions that can be evaluated during translation rather than
run-time.

Syntax
constant-expression ::=

conditional-expression

Description

A constant expression must evaluate to an arithmetic constant expression, a null pointer
constant, an address constant, or an address constant plus or minus an integral constant
expression.

An integral constant expression must involve only integer constants, enumeration
constants, character constants, sizeof expressions, and casts to integral types. You cannot
include the array subscripting (), member access (. and ->), and address of ()operators in
integral constant expressions. An integral constant expression with the value 0, or such an
expression cast to type void * , is called a null pointer constant. An address constant is a
pointer to an object of static storage duration or to a function designator.

Further, you cannot use a function call, an increment or a decrement operator, or
indirection or assignment operations in a constant expression.

Constant expressions are usually used for "allocation" type operations. An example of this
is array allocation. The size of an array is given as a constant expression.

Examples
2 * 2
3 + 3
(-2.5) + 99.8 * 4.5
88 Chapter 5

Statements
6 Statements

This chapter describes the statements in the C programming language. The statements
are grouped as follows:

• Labeled Statements

• Compound Statement or Block

• Expressions and Null Statement

• Selection Statements

• Iteration Statements

• Jump Statements

Statements are the executable parts of a C function. The computer executes them in the
sequence in which they are presented in the program, except where control flow is altered
as specified in this chapter.

Syntax

statement ::=
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Example

labl:
x=y;
{

int x;
x=y;

}
x=y;
if (x<y)

x=y;
for (i=1; i<10; i)

a[i]=i;
goto labl;
Chapter 6 81

Statements
Labeled Statements
Labeled Statements
Labeled statements are those preceded by a label.

Syntax
labeled-statement ::=

identifier : statement
case constant-expression : statement
default: statement

Description

You can prefix any statement using a label so at some point you can reference it using goto
statements. This includes statements already having labels. In other words, any statement
can have one or more labels affixed to it.

The case and default labels can only be used inside a switch statement. These are
discussed in further detail in the section on the switch statement appearing later in this
chapter.

Example
if (fatal_error)

goto get_out;
.
.
.

get_out: return(FATAL_CONDITION);
82 Chapter 6

Statements
Compound Statement or Block
Compound Statement or Block
Compound or block statements allow you to group other statements together in a block of
code.

Syntax
compound-statement ::=

{ [declaration-list][statement-list] }

declaration-list ::=
declaration
declaration-list declaration

statement-list ::=
statement
statement-list statement

Description

You can group together a set of declarations and statements and use them as if they were a
single statement. This grouping is called a compound statement or a block.

Except when declared as extern , variables and constants declared in a block are local to
that block and any subordinate blocks declared therein. If the objects are initialized, the
initialization is performed each time the compound statement is entered from the top
through the left brace ({) character. If the statement is entered via a goto statement or in
a switch statement, the initialization is not performed.

Any object declared with static storage duration is created and initialized when the
program is loaded for execution. This is true even if the object is declared in a subordinate
block.

Example
if (x != y)
{

int temp;

temp = x;
x = y;
y = temp;

}

Chapter 6 83

Statements
Selection Statements
Selection Statements
A selection statement alters a program's execution flow by selecting one path from a
collection based on a specified controlling expression. The if statement and the switch
statement are selection statements.

Syntax
selection-statement ::=

if (expression) statement
if (expression) statement else statement
switch (expression) statement

Example
if (expression) statement:

if (x<y) x=y;

if (expression) statement else statement:

if (x<y) x=y; else y=x;

switch (expression) statement:

switch (x)
{ case 1: x=y;

break;
default: y=x;

break;
}

84 Chapter 6

Statements
The if Statement
The if Statement
The if statement executes a statement depending on the evaluation of an expression.

Syntax
if (expression) statement
if (expression) statement else statement

Description

The if statement is for testing values and making decisions. An if statement can
optionally include an else clause. For example:

if (j<1)
func(j);

else
{

j=x++;
func(j);

}

The first statement is executed only if the evaluated expression is true (i.e., evaluates to a
nonzero value). The expression may be of any scalar type. Note that expressions involving
relational expressions actually produce a result and may therefore be used in an if
statement.

If you include the else clause, the statement after the else is executed only if the
evaluated expression is false (i.e., evaluates to a zero value). Under no circumstances are
both statements in an if-else statement executed (unless you include a goto statement
from one substatement to the other).

If the first substatement is entered as the result of a goto to a label, the second
substatement (if provided) is not executed.

The "dangling else" problem associated with if statements of this form is resolved by
associating the else with the last lexically preceding if (without an else) that is in the
same block, but not in an enclosed block.

The else-if construction is useful to include more than one alternative to the if
statement. The following is an example of a three-way branch using the else-if chain:

if(a==b)
k = 1;

else if(a==c)
k = 2;

else if(a==d)
k = 4;

Regardless of the relationships between the variables a, b, and c, only one statement
assigning a value to k is executed. You should use the else-if chain in place of the switch
statement when the controlling expressions are not constant expressions. However,
nesting too many else-if statements can make a program cumbersome.
Chapter 6 85

Statements
The if Statement
The tests are each executed in order until successful or until the end of the selection
statement is reached. In the previous example, if a is equal to d, all three comparisons
would be executed. On the other hand, if a is equal to c, only the first two comparisons are
executed. Therefore, conditions that are most likely to be true should be tested first in an
else-if chain. The switch statement, however, may execute only one comparison
(depending on efficiency tradeoffs). Use the switch statement where possible to make a
program more readable and efficient (See "The switch Statement" below).
86 Chapter 6

Statements
The switch Statement
The switch Statement
The switch statement executes one or more of a series of cases based on the value of an
expression. It offers multiway branching.

Syntax
switch (expression)

statement

Description

The expression after the word switch is the controlling expression. The controlling
expression must have integral type. The statement following the controlling expression is
typically a compound statement. The compound statement is called the switch body.

The statements in the switch body may be labeled with case labels. The case label is
followed by an integral constant expression and a colon. No two case constant expressions
in the same switch statment may have the same value.

When the switch statement executes, integral promotions are performed on the
controlling expression; the result is compared with the constant expressions after the case
labels in the switch body . If one of the constant expressions matches the value of the
controlling expression, control passes to the statement following that case expression.

If no expression matches the value of the control expression and a statement in the switch
body is labeled with the default label, control passes to that statement. Only one
statement of the switch body may be labeled the default . By convention, the default
label is included last after the case labels, although this is not required by the C
programming language.

If there is no default , control passes to the statement immediately following the switch
body and the switch effectively becomes a no-operation statement.

The switch statement operates like a multiway else-if chain except the values in the
case statements must be constant expressions, and, most importantly, once a statement is
selected from within the switch body , control is passed from statement to statement as in
a normal C program. Control may "fall" through to following case statements. Using a
break statement is the most common way to leave a switch body. If a break statement is
encountered, control passes to the statement immediately following the switch body.

Example

The following example shows a switch statement that includes several case labels. The
program selects the case whose constant matches getchar.

switch (getcha r ())
{

case 'r':
case 'R':

moveright ();
Chapter 6 87

Statements
The switch Statement
break;
case 'l':
case 'L':

moveleft ();
break;

case 'b':
case 'B':

moveback ();
break;

case 'a':
case 'A':
default:

moveahead ();
break;

}

88 Chapter 6

Statements
Iteration Statements
Iteration Statements
You use iteration statements to force a program to execute a statement repeatedly. The
executed statement is called the loop body. Loops execute until the value of a controlling
expression is 0. The controlling expression may be of any scalar type.

C has several iteration statements: while, do-while, and for . The main difference
between these statements is the point at which each loop tests for the exit condition. Refer
to the goto, continue , and break statements for ways to exit a loop without reaching its
end or meeting its exit condition.

Syntax
iteration-statement ::=

while (expression) statement
do statement while (expression);
for ([expression1] ; [expression2] ; [expression3]) statement

Examples

These three loops all accomplish the same thing (they assign i to a[i] for i from 0 to 4):

The while loop

i = 0;
while (i < 5)
{

a[i] = i;
i++;

}

The do-while loop

i = 0;
do
{

a[i] = i;
i++;

} while (i < 5);

The for loop

for (i = 0; i < 5; i++)
{

a[i] = i;
}

Chapter 6 89

Statements
The while Statement
The while Statement
The while statement evaluates an expression and executes the loop body until the
expression evaluates to false.

Syntax
while (expression)

statement

Description

The controlling expression is evaluated at run time. If the controlling expression has a
nonzero value, the loop body is executed. Then control passes back to the evaluation of the
controlling expression. If the controlling expression evaluates to 0, control passes to the
statement following the loop body. The test for 0 is performed before the loop body is
executed. The loop body of a while statement with a controlling constant expression that
evaluates to 0 never executes.

Example
i = 0;
while (i < 3) {

func (i);
i++;

}

The example shown above calls the function func three times, with the argument values of
0, 1, and 2.
90 Chapter 6

Statements
The do Statement
The do Statement
The do statement executes the loop body one or more times until the expression in the
while clause evaluates to 0.

Syntax
do statement while (expression)

Description

The loop body is executed. The controlling expression is evaluated. If the value of the
expression is nonzero, control passes to the first statement of the loop body. Note that the
test for a zero value is performed after execution of the loop body. The loop body executes
one time regardless of the value of the controlling expression.

Example
i = 0;
do {

func (i);
i++;

} while (i<3);

This example calls the function func three times with the argument values of 0, 1, and 2.
Chapter 6 91

Statements
The for Statement
The for Statement
The for statement evaluates three expressions and executes the loop body until the second
expression evaluates to false.

Syntax
for ([expression1] ; [expression2] ; [expression3]) statement

Description

The for statement is a general-purpose looping construct that allows you to specify the
initialization, termination, and increment of the loop. The for uses three expressions.
Semicolons separate the expressions. Each expression is optional, but you must include
the semicolons.

Expression1 is the initialization expression that typically specifies the initial values of
variables. It is evaluated only once before the first iteration of the loop.

Expression2 is the controlling expression that determines whether or not to terminate the
loop. It is evaluated before each iteration of the loop. If expression2 evaluates to a
nonzero value, the loop body is executed. If it evaluates to 0, execution of the loop body is
terminated and control passes to the first statement after the loop body. This means that if
the initial value of expression2 evaluates to zero, the loop body is never executed.

Expression3 is the increment expression that typically increments the variables
initialized in expression1 . It is evaluated after each iteration of the loop body and before
the next evaluation of the controlling expression.

The for loop continues to execute until expression2 evaluates to 0, or until a jump
statement, such as a break or goto , interrupts loop execution.

If the loop body executes a continue statement, control passes to expression3 . Except for
the special processing of the continue statement, the for statement is equivalent to the
following:

expression1;
while (expression2) {

statement
expression3;

}

You may omit any of the three expressions. If expression2 (the controlling expression) is
omitted, it is taken to be a nonzero constant.

For example:

for (i=0; i<3; i++) {
func(i);

}

This example calls the function func three times, with argument values of 0, 1, and 2.
92 Chapter 6

Statements
Jump Statements
Jump Statements
Jump statements cause the unconditional transfer of control to another place in the
executing program.

Syntax
jump-statement ::=

goto identifier ;
continue;
break;
return [expression] ;

Examples

These four fragments all accomplish the same thing (they print out the multiples of 5
between 1 and 100):

i = 0;
while (i < 100)
{

if (++i % 5)
continue; /* unconditional jump to top of while loop */

printf ("%2d ", i);
}
printf ("\n");

i = 0;
L: while (i < 100)

{
if (++i % 5)

goto L: /* unconditional jump to top of while loop */
printf ("%2d ", i);

}
printf ("\n");

i = 0;
while (1)
{

if ((++i % 5) == 0)
printf ("%2d ", i);

if (i > 100)
break; /* unconditional jump past the while loop */

}
printf ("\n");

i = 0;
while (1)
Chapter 6 93

Statements
Jump Statements
{
if ((++i % 5) == 0)

printf ("%2d ", i);
if (i > 100) {

printf ("\n");
return; /* unconditional jump to calling function */

}
}

94 Chapter 6

Statements
The goto Statement
The goto Statement
The goto statement transfers control to a labeled statement that is within the scope of the
current function.

Syntax
goto identifier ;

Description

The goto statement causes an unconditional branch to the named label in the current
function. Because you can use goto statements to jump to any statement that can be
labeled, the potential for their abuse is great. For example, you can branch into loop bodies
and enter blocks at points other than the head of the block. This can cause problems if you
attempt to access variables initialized at the beginning of the block. Generally, you should
avoid using goto statements because they disturb the structure of the program, making it
difficult to understand. A common use of goto statements in C is to exit from several levels
of nested blocks when detecting an error.
Chapter 6 95

Statements
The continue Statement
The continue Statement
The continue statement is used to transfer control during the execution of an iteration
statement.

Syntax
continue;

Description

The continue statement unconditionally transfers control to the loop-continuation portion
of the most tightly enclosing iteration statement. You cannot use the continue statement
without an enclosing for , while, or do statement.

In a while statement, a continue causes a branch to the code that tests the controlling
expression.

In a do statement, a continue statement causes a branch to the code that tests the
controlling expression.

In a for statement, a continue causes a branch to the code that evaluates the increment
expression.

Example
for (i=0; i<=6; i++)

if(i==3)
continue;

else
printf("%d\n",i);

This example prints:

0
1
2
4
5
6

96 Chapter 6

Statements
The break Statement
The break Statement
The break statement terminates the enclosing switch or iteration statement.

Syntax
break;

Description

A break statement terminates the execution of the most tightly enclosing switch or
iteration statement. Control is passed to the statement following the switch or iteration
statement. You cannot use a break statement unless it is enclosed in a switch or iteration
statement. Further, a break will only break out of one level of switch or iteration
statement. To exit from more than one level, you must use a goto statement.

When used in the switch statement, break normally terminates each case statement. If
you use no break (or other unconditional transfer of control), each statement labeled with
case flows into the next. Although not required, a break is usually placed at the end of the
last case statement. This reduces the possibility of errors when inserting additional cases
at a later time.

For example:

for (i=0; i<=6; i++)
if(i==3)

break;
else

printf ("%d\n",i);

This example prints:

0
1
2

Chapter 6 97

Statements
The return Statement
The return Statement
The return statement causes a return from a function.

Syntax
return [expression] ;

Description

When a return statement is executed, the current function is terminated and control
passes back to the calling function. In addition, all memory previously allocated to
automatic variables is considered unused and may be allocated for other purposes.

If an expression follows the return keyword, the value of the expression is implicitly cast
to match the type of the function in which the return statement appears. If the type of the
function is void, no expression may follow the return statement.

A given function may have as many return statements as necessary. Each may (or may
not) have an expression, as required. Note that the C language does not require that
return statements have expressions even if the function type is not void. If a calling
program expects a value and a function does not return one (that is, a return statement
has no expression), the value returned is undefined.

Reaching the final } character of a function without encountering a return is equivalent to
executing a return statement with no expression.
98 Chapter 6

Preprocessing Directives
7 Preprocessing Directives

Preprocessing directives function as compiler control lines. They enable you to direct the
compiler to perform certain actions on the source file. You can use the preprocessing
directives to make a number of textual changes in the source before it is syntactically and
semantically analyzed and translated. Since preprocessing occurs conceptually before the
compilation process, there is generally no relationship between the syntax of a translation
unit and preprocessing directives. There are some restrictions on where #pragma directives
may appear within a translation unit. Refer to chapter 8 for details.

Syntax

preprocessor-directive :=
include-directive newline
macro-directive newline
conditional-directive newline
line-directive newline
error-directive newline
pragma-directive newline

Description

The preprocessing directives control the following general functions:

1. Source File Inclusion

You can direct the compiler to include other source files at a given point. This is
normally used to centralize declarations or to access standard system headers such as
stdio.h.sys .

2. Macro Replacement

You can direct the compiler to replace token sequences with other token sequences. This
is frequently used to define names for constants rather than hard coding them into the
source files.

3. Conditional Inclusion

You can direct the compiler to check values and flags, and compile or skip source code
based on the outcome of a comparison. This feature is useful in writing a single source
that will be used for several different computers.

4. Line Control

You can direct the compiler to increment subsequent lines from a number specified in a
control line.

5. Pragma Directive

Pragmas are implementation-dependent instructions that are directed to the compiler.
Because they are system dependent, they are not portable.

All preprocessing directives begin with a pound sign (#) as the first character in a line of a
source file. The # character is followed by any number of spaces and horizontal tab
Chapter 7 95

Preprocessing Directives
characters and the preprocessing directive. The directive is terminated by a new-line
character. You can continue directives, as well as normal source lines, over several lines by
ending lines that are to be continued with a backslash (\).

NOTE In ANSI mode, white space may precede the # character in preprocessing
directives.

Comments in the source file that are not passed by default through the preprocessor are
replaced with a single white-space character. Examples

include-directive : #include <stdio.h>

macro-directive : #define MAC x+y

conditional-directive : #ifdef MAC

line-directive : #line 5 "myfile"

pragma-directive : #pragma INTRINSIC func
96 Chapter 7

Preprocessing Directives
Source File Inclusion
Source File Inclusion
You can include the contents of other files within the source file using the #include
directive.

Syntax
include-directive :=

#include < filename >
#include " filename "
#include identifier

Description

The #include preprocessor directive enables you to insert the contents of the specified
external file into the source file prior to compilation. The file name in the #include
directive may be enclosed in angle brackets (< >) or double quotation marks . File names
enclosed in angle brackets are assumed to be standard include files that are provided with
the HP C/iX compiler. All standard include files reside in the H group of the SYS account.

The arguments to the #include directive are subject to macro replacement before the
directive processes them. In the third form above, identifier must be in the form of one
of the first two choices after macro replacement by the preprocessor.

For example:

#define varname "my_file"
#include varname

Error messages produced by the compiler usually supply the file name where the error
occurred as well as the file relative line number of the error.

The HP C/iX preprocessing phase allows for the use of non-standard (UNIX 1 -like root
names) file names in certain #include directives. This minimizes the required source code
changes when transporting code between different systems.

The preprocessor strips include file names enclosed in angle brackets of all prefixes and
suffixes. The preprocessor then searches for a file with the resulting name in the Hgroup of
the SYS account. If the file is not found, an error is issued.

For example, if you specify the following directive:

#include <stdio.h>

the preprocessor searches for STDIO.H.SYS . If you specify:

#include <sys/errno.h>

the preprocessor strips the sys/ prefix and searches for ERRNO.H.SYS.

1. UNIX is a trademark of AT&T in the U.S. and other countries.
Chapter 7 97

Preprocessing Directives
Source File Inclusion
Examples
#include <stdio.h>

#include "myheader"

#ifdef MINE
define filename "file1"
#else
define filename "file2"
#endif

#include filename

Preprocessor Search of Include Files in Quotation Marks

The preprocessor searches for include files enclosed in double quotation marks, (for
example #include myfile), as follows:

1. If the include filename contains an MPE/iX group and account name, then the
preprocessor searches the specified group and account. If no group and account is
specified, it searches the group and account where the source file resides. If filename is
not found, the preprocessor performs step 2.

2. The preprocessor removes any extensions and adds the H group to filename . It then
searches the H group of the account where the source file resides. If the preprocessor
does not find filename , it performs step 3.

3. The preprocessor adds the SYSaccount to filename .Hand searches for filename .H.SYS.

4. If the filename is still not found, the preprocessor issues an error.

Examples
#include "MYFILE"

The preprocessor starts by looking for MYFILE in the group and account where the source
file is located. It then looks for MYFILE.H in the account where the source file is located,
and finally looks for MYFILE.H.SYS .

#include "MYFILE.X"

Assuming the source file is located in SRCGROUP.SRCACCT, the preprocessor looks for the
include file in the following order:

1. MYFILE.X.SRCACCT

2. MYFILE.SRCGROUP.SRCACCT

3. MYFILE.H.SRCACCT

4. MYFILE.H.SYS

Include Files Within Include Files

Files that are included can also use the #include directive. The compiler supports up to 35
98 Chapter 7

Preprocessing Directives
Source File Inclusion
levels of nested include files.

Note that this search path is based on the group and account where the source file is
located and not where the include file is "included". To illustrate, assuming that a program
MAIN.SRCGROUP.SRCACCT contains the following directive:

#include "HEADER1.X.Y"

and HEADER1.X.Y contains another include directive:

#include "HEADER2"

The preprocessor looks for HEADER2.SRCGROUP.SRCACCTeven though the file that includes
it is in X.Y .

The above searching algorithm can be modified in 2 ways; by using file equations or by
using the -I option. Since include files are always fully qualified before searching by the
preprocessor, a fully qualified file name must be used in a file equation to be effective.

Example
:file MYFILE.SRCGROUP.SRCACCT=HEADER.X.Y

#include "MYFILE"

This directs the preprocessor to look for HEADER.X.Y instead of
MYFILE.SRCGROUP.SRCACCT.

-I Compiler Option

You can alter the search algorithm used for locating included files by specifying the -I
compiler option in the following format:

-I group [. account]

You use this option to specify a group and optionally an account where the preprocessor
searches for included files before searching the source file's H group and the H group of the
SYS account. If you omit the account specification, the account of the current user is used.
Note that this is the only case where the user's account is used when searching for the
include files. You can cause the preprocessor to search more than one group (and account)
for included files by specifying more than one -I option. -I options are scanned left to
right.

If the included file is enclosed in angle brackets, the preprocessor strips the name of
non-standard prefixes and suffixes and then searches the groups and accounts in the -I
option(s) for the file. If the file is not found, the H group of the SYS account is searched.

If the included file name is enclosed in double quotation marks, the preprocessor first
searches for that file without changing the file name. It then strips the file name of prefixes
and suffixes and searches in the group and the account of the source file. If the file is not
found, the groups and accounts, if any, specified in the -I option(s) are searched. Then, the
H group of the source file is searched. If the file is still not found, the H group of the SYS
account is searched last.

In summary, the preprocessor searches for names of included files enclosed in angle
brackets only in the groups or accounts specified in any -I options, then in the H group of
Chapter 7 99

Preprocessing Directives
Source File Inclusion
the SYS account, but never searches the group and account in which the source file is
located. When the name is enclosed in double quotation marks, the group and account in
which the source file is located is searched. If you use the -I compiler option, the indicated
groups and accounts are searched before the H and H.SYS groups and accounts are
searched, regardless of which characters surround the name.

Example

If you are compiling a local file TESTFILE in GRP1.ACCT1 that includes the preprocessor
directive:

#include "MYHEADER"

and you want it to include the file MYHEADER in HOMEGRP.HOMEACCT, use the command:

CCXL TESTFILE;INFO="-IHOMEGRP.HOMEACCT"
100 Chapter 7

Preprocessing Directives
Recommendations for Using Include Files
Recommendations for Using Include Files
If you have include files or source files spread throughout your file system, you may want
to become familiar with the following recommendations for arranging include files in a
flexible and consistent manner. However, if you keep all source and include files in a single
group and account on your system, the recommendations listed below may not be useful to
you.

There is no best way to arrange include files on a system but there are practices to follow
that make the use of include files simple and efficient for most cases. Include file searching
for standard files enclosed by angle brackets is fully described in chapter 8. The following
recommendations are for include file names enclosed by double quotes.

• Put include files in the same group and account as the source file with which they are
associated. This is the default search place for files that are not fully qualified and for
qualified files that are not found in the first try.

• If you have standard files to be shared by source files in the same account but in
different groups, put them in the H group of the source file's account. Be aware that if
source files specify file.h for these standard files, a FILE equation command is
required to open any file other than file.h.srcacct . Consequently, this is the first file
opened by the preprocessor because the account of the source file is implied before any
-I options are examined.

• Use the -I option to tell the preprocessor where to find include files that are not in the
exact group or the H group of the source file's account. Qualify the -I option with group
and account if you want searches in the account of the source file. Omit the account
specification only if you want searches made in the account of the current user, as you
might when using job files that log on in other accounts.

• If you want to override the defaults for a single include file, or small subset of include
files, use MPE/iX's FILE command to equate the file that is opened by the preprocessor
to the file that you want to use. Use the rules for include file searching to determine
exactly what file the preprocessor opens and use that fully qualified name in the file
equation.

Examples

For the source file FILE1.MYGRP.OURACCT that needs a special header file called MYDEFS,
put MYDEFS in MYGRP.OURACCT and use:

#include "MYDEFS"

in FILE1.MYGRP.OURACCT . The name MYDEFS.H in the include statement also works, as
does putting the MYDEFS file in H.OURACCT, but neither of those choices reflects the
intended use of the file MYDEFS.

If you want to substitute the file FIXDEFS for MYDEFS when compiling
FILE1.MYGRP.OURACCT in the above example, use the file equation:

:FILE MYDEFS.MYGRP.OURACCT = FIXDEFS
Chapter 7 101

Preprocessing Directives
Recommendations for Using Include Files
It is important to note that a fully qualified formal designator is required for the file to be
successfully equated, as the preprocessor builds a fully qualified file name before
attempting an open. The exception to this rule is when the preprocessor opens a file using
a -I option that only specifies a group. If a file equation and this type of -I option are both
needed to find a file, it is likely that the file could be moved to a more effective location and
a simpler searching strategy used.

For the source file FILE2.MYGRP.OURACCTthat needs a general header file called OURDEFS,
put OURDEFS in H.OURACCT and use:

#include "OURDEFS.H"

or use:

#include "OURDEFS"

in FILE2.MYGRP.OURACCT. The first form is more restrictive because it finds the file before
the -I options are examined. The second allows a -Igrp.acct specification to be used to
include a different set of header files.

In summary, the best overall strategy is to locate your include files in the appropriate
groups and accounts and use FILE commands and the -I compiler option to handle
exceptional cases.
102 Chapter 7

Preprocessing Directives
Macro Replacement
Macro Replacement
You can define text substitutions in your source file with C macro definitions.

Syntax
macro-directive :=

#define identifier [replacement-list]
#define identifier ([identifier-list])

[replacement-list]
#undef identifier

replacement-list :=
token
replacement-list token

Description

A #define preprocessing directive of the form:

#define identifier [replacement-list]

defines the identifier as a macro name that represents the replacement list. The macro
name is then replaced by the list of tokens wherever it appears in the source file (except
inside of a string or character constant, or comment). A macro definition remains in force
until it is undefined through the use of the #undef directive or until the end of the
translation unit.

Macros can be redefined without an intervening #undef directive. Any parameters used
must agree in number and spelling, and the replacement lists must be identical. All
whitespace is treated equally.

The replacement-list may be empty. If the token list is not provided, the macro name is
replaced with no characters.

If the define takes the form

#define identifier ([identifier-list]) replacement-list

a macro with formal parameters is defined. The macro name is the identifier and the
formal parameters are provided by the identifier-list which is enclosed in parentheses. The
first parenthesis must immediately follow the identifier with no intervening whitespace. If
there is a space between the identifier and the (, the macro is defined as if it were the first
form and that the replacement list begins with the (character.

The formal parameters to the macro are separated with commas. They may or may not
appear in the replacement list. When the macro is invoked, the actual arguments are
placed in a parentheses-enclosed list following the macro name. Comma tokens enclosed in
additional matching pairs of parentheses do not separate arguments but are themselves
components of arguments.

The actual arguments replace the formal parameters in the token string when the macro is
invoked.
Chapter 7 103

Preprocessing Directives
Macro Replacement
If a formal parameter in the macro definition directive's token string follows a # operator,
it is replaced by the corresponding argument from the macro invocation, preceded and
followed by a double-quote character (") to create a string literal. This feature may be used
to turn macro arguments into strings. This feature is often used with the fact that the
compiler concatenates adjacent strings.

After all replacements have taken place during macro invocation, each instance of the
special ## token is deleted and the tokens preceding and following the ## are concatenated
into a single token. This is useful in forming unique variable names within macros.

The following example illustrates the use of the # operator for creating string literals out of
arguments and concatenating tokens:

#define debug(s, t) printf("x " # s "= %d, x" # t " %s", x##s, x##t)

Invoked as: debug(1, 2);

Results in:

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);

which, after concatenation, results in:

printf("x1= %d, x2= %s", x1, x2);

Spaces around the # and ## are optional.

NOTE The # and ## operators are only supported in ANSI mode.

The most common use of the macro replacement is in defining a constant. Rather than
hard coding constants in a program, you can name the constants using macros then use
the names in place of actual constants. By changing the definition of the macro, you can
more easily change the program:

#define ARRAY_SIZE 1000

float x[ARRAY_SIZE];

In this example, the array x is dimensioned using the macro ARRAY_SIZE rather than the
constant 1000. Note that expressions that may use the array can also use the macro
instead of the actual constant:

for(i=0; i<ARRAY_SIZE; i) f+=x[i];

Changing the dimension of x means only changing the macro for ARRAY_SIZE; the
dimension will change and so will all the expressions that make use of the dimension.

Some other common macros used by C programmers include:

#define FALSE 0
#define TRUE 1

The following macro is more complex. It has two parameters and will produce an in-line
expression which is equal to the maximum of its two parameters:

#define MAX(x,y) ((x) > (y) ? (x) : (y))

Parentheses surrounding each argument and the resulting expression insure that the
precedences of the arguments and the result will not improperly interact with any other
104 Chapter 7

Preprocessing Directives
Macro Replacement
operators that might be used with the MAX macro.

Using a macro definition for MAX has some advantages over a function definition. First, it
executes faster because the macro generates in-line code, avoiding the overhead of a
function call. Second, the MAX macro accepts any argument types. A functional
implementation of MAX would be restricted to the types defined for the function. Note
further that because each argument to the MAX macro appears in the token string more
than once, check to be sure that the actual arguments to the MAX macro do not have any
"side effects." The following example

MAX(a, b);

might not work as expected because the argument a is incremented two times when a is
the maximum.

The following statement

i = MAX(a, b+2);

is expanded to:

i = ((a) > (b+2) ? (a) : (b+2));

Examples
#define isodd(n) (((n % 2) == 1) ? (TRUE) : (FALSE))
/* This macro tests a number and returns TRUE if the number is odd. It will
*/
/* return FALSE otherwise.
*/

#define eatspace() while((c=getc(input)) = = ' ' || c == '\n' || c == '\t')
;
/* This macro skips white spaces.
*/
Chapter 7 105

Preprocessing Directives
Predefined Macros
Predefined Macros
ANSI C provides the , , , , and predefined macros.

Table 7-1 describes the complete set of macros that are predefined to produce special
information. They may not be undefined.

NOTE , , and are only defined in ANSI mode.

In addition to the above macros, HP C/iX provides the following predefined macros, which
can be used when cross-compiling between the HP-UX and MPE/iX operating systems:

Table 7-1. Predefined Macros

Macro Name Description

Produces the date of compilation in the form Mmm dd yyyy .

Produces the name of the file being compiled.

Produces the current source line number.

Produces the decimal constant 1, indicating that the
implementation is standard-conforming.

Produces the time of compilation in the form hh:mm:ss .
106 Chapter 7

Preprocessing Directives
Conditional Compilation
Conditional Compilation
Conditional compilation directives allow you to delimit portions of code that are compiled if
a condition is true.

Syntax
conditional-directive :=

#if constant-expression newline [group]
#ifdef identifier newline [group]
#ifndef identifier newline [group]
#else newline [group]
#endif

Here, constant-expression may also contain the defined operator:

defined identifier
defined (identifier)

Description

You can use #if, #ifdef, or #ifndef to mark the beginning of the block of code that will
only be compiled conditionally. An #else directive optionally sets aside an alternative
group of statements. You mark the end of the block using an #endif directive. The
structure of the conditional compilation directives can be shown using the #if directive:

#if constant-expression
.
.

/* (Code that compiles if the expression evaluates */
/* to a nonzero value.) */
#else

.

.
/* (Code that compiles if the expression evaluates */
/* to a zero value.) */
#endif

The constant-expression is like other C integral constant expressions except that all
arithmetic is carried out in long int precision. Also, the expressions cannot use the
sizeof operator, a cast, or an enumeration constant.

You can use the defined operator in the #if directive to use expressions that evaluate to 0
or 1 within a preprocessor line. This saves you from using nested preprocessing directives.

The parentheses around the identifier are optional. For example:

#if defined (MAX) ! defined (MIN)
.
.
.

Without using the defined operator, you would have to include the following two
directives to perform the above example:
Chapter 7 107

Preprocessing Directives
Conditional Compilation
#ifdef max
#ifndef min

The #if preprocessing directive has the form:

#if constant-expression

Use #if to test an expression. The compiler evaluates the expression in the directive. If it
is true (a nonzero value), the code following the directive is included. If the expression
evaluates to false (a zero value), the compiler ignores the code up to the next #else ,
#endif , or #elif directive.

All macro identifiers that appear in the constant-expression are replaced by their
current replacement lists before the expression is evaluated. All defined expressions are
replaced with either 1 or 0 depending on their operands.

Whichever directive you use to begin the condition (#if, #ifdef, or #ifndef), you must
use #endif to end the if-section.

The following preprocessing directives are used to test for a definition:

#ifdef identifier
#ifndef identifier

They behave like the #if directive but are considered true if the identifier was
previously defined using a #define directive.

You can nest these constructions. Delimit portions of the source program using conditional
directives at the same level of nesting, or with a -D option on the command line.

Use the #else directive to specify an alternative section of code to be compiled if the #if ,
#ifdef , or #ifndef conditions fail. The code after the #else directive is compiled if the
code following any of the if directives does not compile.

The #elif constant-expression directive tests whether a condition of the previous #if ,
#ifdef , or #ifndef was false. #elif is syntactically the same as the #if directive and can
be used in place of an #else directive.

Examples

The following are examples of valid combinations of these conditional compilation
directives:

#ifdef SWITCH
/* compiled if SWITCH is defined */

#else
/* compiled if SWITCH is undefined */

#endif /* end of if */

#if defined(THING)
/* compiled if THING is defined */

#endif /* end of if */

#if A>47
/* compiled if A evaluates > 47 */

#else
if A < 20
108 Chapter 7

Preprocessing Directives
Conditional Compilation
/* compiled if A evaluates < 20 */
else

/* compiled if A >= 20 and <= 47 */
endif /* end of if , A < 20 */
#endif /* end of if , A > 47 */

#ifdef (HP9000_S800) /* If HP9000_S800 is defined, INT_SIZE */
define INT_SIZE 32 /* is defined to be 32 (bits). */
#elif defined (HPVECTRA) && defined (SMALL_MODEL)
define INT_SIZE 16 /* Otherwise, if HPVECTRA and */

/* SMALL_MODEL are defined, INT_SIZE */
/* is defined to be 16 (bits). */

#ifdef DEBUG /* If DEBUG is defined, display */
printf("table element : \n"); /* the table elements. */
for (i=0 ; i < MAX_TABLE_SIZE; ++i)

printf("%d %f\n", i, table[i]);
#endif

NOTE The #elif directive is only supported in ANSI mode.
Chapter 7 109

Preprocessing Directives
Line Control
Line Control
You can cause the compiler to increment line numbers during compilation from a number
specified in a line control directive. (The resulting line numbers appear in error message
references, but do not alter the line numbers of the actual source code.)

Syntax
line-directive :=

#line digit-sequence [filename]

Description

The #line preprocessing directive causes the compiler to treat lines following it in the
program as if the name of the source file were filename and the current line number is
digit-sequence. This is to control the file name and line number that is given in diagnostic
messages, for example. This feature is used primarily for preprocessor programs that
generate C code. It enables them to force the compiler to produce diagnostic messages with
respect to the source code that is input to the preprocessor rather than the C source code
that is output and subsequently input to the compiler.

The compiler defines two macros that you can use for error diagnostics. The first is , an
integer constant equal to the value of the current line number. The second is , a quoted
string literal equal to the name of the input source file. Note that you can change and
using #include or #line directives.

Example
#line digit-sequence [filename] : #line 5 "myfile"
110 Chapter 7

Preprocessing Directives
Pragma Directive
Pragma Directive
You can provide instructions to the compiler through inclusion of pragmas.

Syntax
pragma-directive :=
#pragma replacement-list

Description

The #pragma preprocessing directive provides implementation-dependent information to
the compiler. Any pragma that is not recognized by the compiler is ignored.

See chapter 8 for descriptions of pragmas recognized by HP C/iX.

Example
#pragma replacement-list : #pragma intrinsic func
Chapter 7 111

Preprocessing Directives
Error Directive
Error Directive

Syntax

#error [pp-tokens]

The #error directive causes a diagnostic message, along with any included token
arguments, to be produced by the compiler.

Examples
#ifndef (HP_C)
#error "HP_C not defined!" /* This directive will produce */
#endif /* diagnostic message "HP_C not */

/* defined!" */

#if TABLE_SIZE % 256 != 0
#error "TABLE_SIZE must be a multiple of 256!"
#endif /* This directive will produce */

/* the diagnostic message */
/* "TABLE_SIZE must be a */
/* multiple of 256!" */

NOTE The #error directive is only supported in ANSI mode.
112 Chapter 7

Preprocessing Directives
Trigraph Sequences
Trigraph Sequences
The C source code character set is a superset of the ISO 646-1983 Invariant Code Set. To
enable programs to be represented in the reduced set, trigraph sequences are defined to
represent those characters not in the reduced set. A trigraph is a three character sequence
that is replaced by a corresponding single character. Table 7-2 gives the complete list of
trigraph sequences and their replacement characters.

Any ? that does not begin one of the trigraphs listed above is not changed.

NOTE Trigraphs are replaced in ANSI mode only.

Table 7-2. Trigraph Sequences and Replacement Characters

Trigraph
Sequence

Replacement

?? #

??/

??' ^

??([

??)]

??! |

?? {

?? }

??- ~
Chapter 7 113

Preprocessing Directives
Trigraph Sequences
114 Chapter 7

Compiling and Running HP C/iX Programs
8 Compiling and Running HP C/iX
Programs

This chapter describes how to compile, link, and run HP C programs on the MPE/iX
operating system. The following steps must occur before you can execute an HP C/iX
program:

1. Translate the source code into an object file.

2. Link one or more object files into a program file.

3. Load and execute the program file.

You can perform each of these steps independently, controlling the details of each step. Use
the MPE/iX commands CCXL, LINK, and RUN to accomplish steps 1, 2, and 3,
respectively.

Alternatively, you can combine the steps using a single MPE/iX command. CCXLLK
performs steps 1 and 2, while CCXLGO performs steps 1, 2, and 3.
Chapter 8 111

Compiling and Running HP C/iX Programs
Compiling HP C/iX Programs
Compiling HP C/iX Programs
You can compile HP C/iX programs using the MPE/iX commands CCXL, CCXLLK or
CCXLGO, or by explicitly running the CCOMXL.PUB.SYS program.

CCXL Command

The CCXL command invokes the HP C/iX compiler and generates an object file.

Syntax

CCXL [textfile] [,[objectfile] [,[listfile]] [;INFO="options"]

Parameters

textfile is the source file that the HP C/iX compiler reads. If omitted, the default is
$STDIN.

objectfile is the relocatable object file to which the compiler writes the object code. If
omitted, the default is $NEWPASS.

listfile is the listing file. If omitted, the default is $STDLIST.

options are compiler options you want to take effect; separate options with a
blank. See "HP C/iX Compiler Options" later in this chapter for specific
options.

Description

If you omit textfile , the current input device, $STDIN, is used by default. Typically, the
terminal is the standard input device, and this allows you to enter source code
interactively. Indicate the end of the interactive session by entering a colon (:).

If you omit listfile , the standard listing file, $STDLIST , is used by default. Typically, a
listing is sent to the terminal during a terminal session or to the printer in a batch job. If
listfile is a file other than $STDLIST, the compiler writes errors and warnings to
$STDLIST and listfile .

Examples

CCXL MYTEXT,,MYLIST

This example compiles the HP C/iX source file MYTEXT, puts the object code in $NEWPASS
(by default), and writes the list file to MYLIST.

CCXL MYTEXT,MYOBJ;INFO="-Ddebug -v"

This example compiles the source file MYTEXT, places the object code in the file MYOBJ,
sends the list file to the terminal, and passes two options to the compiler. The -Ddebug
option defines debug as if it were defined using the #define preprocessor statement and
has the value of 1. The -v option echoes the different stages of processing the source file
goes through during compilation.
112 Chapter 8

Compiling and Running HP C/iX Programs
Compiling HP C/iX Programs
CCXLLK Command

The CCXLLK command invokes the HP C/iX compiler, generates an object file, and links
the object file with the HP C/iX library to produce an executable program file.

Syntax

CCXLLK [textfile] [,[programfile] [,[listfile]] [;INFO="options"]

Parameters

textfile is the source file that the HP C/iX compiler reads. If omitted, the default is
$STDIN.

programfile is the program file to which the linker writes the linked program. If
omitted, the default is $NEWPASS.

listfile is the listing file. If omitted, the default is $STDLIST.

options are compiler options you want to take effect; separate options with a
blank. See "HP C/iX Compiler Options" later in this chapter for specific
options.

Description

If you omit textfile, the current input device, $STDIN, is used by default. Typically, the
terminal is the standard input device, and this allows you to enter source code
interactively. You should indicate the end of the interactive session by entering a colon (:).

If you omit listfile, the standard listing file, $STDLIST , is used by default. Typically, a
listing is sent to the terminal during a terminal session or to the printer in a batch job. If
listfile is a file other than $STDLIST, the compiler writes errors and warnings to
$STDLIST and listfile .

Examples

CCXLLK MYTEXT,MYPROG

This example compiles the source file MYTEXT, places the linked program in MYPROG, and
writes the list file to $STDLIST.

CCXLLK ,MYPROG,MYLIST;INFO="-Wc,-r"

This example compiles from $STDIN (by default), places the linked program in MYPROG,
writes the list file to MYLIST, and passes the -Wc,-r option to the compiler.

CCXLGO Command

The CCXLGO command invokes the HP C/iX compiler, generates an object file, links the
object file with the HP C/iX library to produce an executable program, and then runs the
program.

Syntax

CCXLGO [textfile] [,[listfile] [;INFO="options"]
Chapter 8 113

Compiling and Running HP C/iX Programs
Compiling HP C/iX Programs
Parameters

textfile is the source file that the HP C/iX compiler reads. If omitted, the default is
$STDIN.

listfile is the listing file. If omitted, the default is $STDLIST.

options are compiler options you want to take effect; separate options with a
blank. See "HP C/iX Compiler Options" later in this chapter for specific
options.

Description

If you omit textfile, the current input device, $STDIN, is used by default. Typically, the
terminal is the standard input device, and this allows you to enter source code
interactively. You should indicate the end of the interactive session by entering a colon (:).

If you omit listfile, the standard listing file, $STDLIST , is used by default. Typically, a
listing is sent to the terminal during a terminal session or to the printer in a batch job. If
listfile is a file other than $STDLIST, the compiler writes errors and warnings to
$STDLIST and listfile .

CCXLGO has the side effect of creating a temporary program file named $NEWPASS.

Example

CCXLGO MYTEXT,$NULL

This example compiles the HP C/iX source file MYTEXT without listing it to the terminal,
links and runs the resulting program, and places the linked program in $NEWPASS. If
$NULL is omitted, the compilation listing appears on the screen.

RUN CCOMXL.PUB.SYS

You can also compile HP C/iX programs using the MPE RUN command. The HP C/iX
compiler is located in the program file CCOMXL in the PUB group of the SYS account. The
compiler uses the default files unless you override the default values. To override the
default values you needed to perform the following steps:

1. Equate the file you want to substitute for the default file with its formal file designator
using the MPE FILE command.

2. Select an appropriate value of the PARM parameter of the RUN command. This value
indicates which files are not defaulted.

The HP C/iX compiler recognizes the following default files and formal file designators:

Table 8-1. Default Files and Designators

File Type Default Designator

Source $STDIN CCTEXT

Object $NEWPASS CCOBJ
114 Chapter 8

Compiling and Running HP C/iX Programs
Compiling HP C/iX Programs
The PARM parameter of the RUN command indicates which files have been equated. This
directs the compiler to use these files instead of the default files. The RUN command takes
a PARM parameter with an integral value in the range 0 to 7. The low-order three bits of
the PARM value represent the source, object, and list files as shown in the following
diagram.

Bit 29 Bit 30 Bit 31

| object | listing | source |

The integral value sets the low-order bits as shown in the following table.

An error occurs if you use a PARM value that sets a bit for a file for which no file equation
exists. If a file equation exists, but the bit is not set in the PARM value, the compiler uses
the default value.

The RUN command also has an optional INFO parameter. You can use this parameter to
pass options, delimited with blanks, to the compiler.

Example

FILE CCTEXT = MYFILE
FILE CCLIST = MYLIST
RUN CCOMXL.PUB.SYS;PARM=3;INFO="-O"

This example compiles the file MYFILE, places the object code in $NEWPASS (the default),
writes the listing to MYLIST, and passes the -O option to the compiler.

List $STDLIST CCLIST

Table 8-2. Low-order Bit Values

Value Files in FILE Commands

0 None

1 Source

2 Listing

3 Listing, source

4 Object

5 Object, source

6 Object, listing

7 Object, listing, source

Table 8-1. Default Files and Designators

File Type Default Designator
Chapter 8 115

Compiling and Running HP C/iX Programs
HP C/iX Compiler Options
HP C/iX Compiler Options
You can pass options to the HP C/iX compiler in the INFO parameter of the CCXL,
CCXLLK, and CCXLGO commands, or using the INFO parameter of the RUN command, if
you invoke the compiler using CCOMXL.PUB.SYS. You must separate options with a
blank. Any string of characters not separated with a blank is considered a single option.
For example, -Wc,-r is considered one option with -r as an argument to the option; it
inhibits the promotion of float to double . In addition, note that the case of the options is
significant.

The following options are available:

Option Description

-A level where level can be a or c.

a Requests a compilation on ANSI C mode. By using the -Aa option, you are
requesting a strict implementation of ANSI C. ANSI C specifies which names are
available in the standard libraries and headers, which are reserved for the
implementation, and which must be left available for the user. HP C/iX in ANSI
mode conforms to these restrictions, and only names permitted by ANSI C are
defined or declared in the standard libraries and headers. However, if you want to
compile using ANSI mode but want the naming restriction relaxed, you can
include the following line in the start of your source before including any header
files:

#define _MPEXL_SOURCE

This will allow you to gain access to names that are legal in non-ANSI mode.

c This is a non-ANSI implementation and the default compilation mode.

-C Prevents the preprocessing phase from stripping C comments.

-Dname
-d [name=de
f]

Defines nameto the preprocessing phase as if defined using the #define directive.
If the definition is not given, name is defined as 1.

-E Only runs the preprocessing phase on the input file and sends the result to
$STDLIST. When you use this option, object file and listing file specifications are
ignored.

-g Causes the compiler to generate additional information needed by the Symbolic
Debugger. This option is incompatible with optimization.

-I group[.a
cct]

Changes the search algorithm used by the preprocessing phase for finding
#include files. For additional information, see chapter 7.

-O Invokes the optimizer to perform all optimizations. This option is not compatible
with symbolic debugging. Refer to the HP C Programmer's Guide for details on
optimization.
116 Chapter 8

Compiling and Running HP C/iX Programs
HP C/iX Compiler Options
The +arg1 +arg2 notation can be used as a shorthand for the -arg1,-arg2 notation.

The arguments to the compiler option can be one or more of the following:

-P Only runs the preprocessing phase on the source file and stores the result in the
file normally used for the object file. For example, preprocessor output from the
command CCXL MYSOURCE, CPPLIST;INFO="-P" is sent to the ASCII file
CPPLIST.

-Uname Removes any initial definition of name in the preprocessing phase.

-v Enables the verbose mode, producing a step-by-step description of the
compilation process on the listing file.

-w Suppresses warning messages.

-Wx,arg1[,
arg2,
...,argn]

Hands off the arguments arg1 through argn to the phase x of the compilation; x
can be one of the following values:

Value Description

p Preprocessor

c Compiler

Argument Description

-Csize Creates the output file for the preprocessing phase with a record length of size.
The default is 512 bytes.

-e Allows the use of extension features, such as long pointers and using the $
character in the identifier name.

-F size Creates the output file for the preprocessing phase with a limit of size. The
default is 7500 records.

-m Causes the identifier maps to be printed. Refer to chapter 11, "The Listing Facility,"
for listing options and format.

-o Causes the code offsets to be printed. Refer to chapter 11, "The Listing Facility," for
listing options and format.

-Obbnum Specifies the maximum number of basic blocks allowed in a procedure which is to
be optimized at level 2. A basic block is a sequence of code with a single entry point,
single exit point, and no internal branches. Optimizing procedures with a large
number of basic blocks can take a long time and use a large amount of memory. If
the limit is exceeded, a warning message lists the name of the procedure and the
number of basic blocks it contains, and then level 1 optimization is performed. The
default value for this limit, if this option is not present is 500. This option implies
level 2 optimization (equivalent to -O or +O2).

Option Description
Chapter 8 117

Compiling and Running HP C/iX Programs
HP C/iX Compiler Options
The preprocessor phase supports the aforementioned -C, -D,
-I , and -U options, as well as the following:

-H n Changes the internal macro definition table to be n bytes in size. The
macro symbol table is increased proportionally. You should specify a value
greater than the 128000 byte default. Use this option when the
preprocessing phase issues a "too many defines" or "too much defining"
message.

-P Processes the input without producing the line control information used by
the next pass of the compiler.

-T Forces the preprocessor to use only the first eight characters in
distinguishing different preprocessor names (included for backward
compatibility to other systems).

Examples

CCXL MYTEXT;INFO="-Ddebug -Wc,-r -O"

This example compiles MYTEXT with debug defined as 1 (-Ddebug), inhibits promotion of
float expressions to double (-Wc,-r), and enables all possible optimizations (-O).

CCXL MYTEXT,CPPOUT;INFO="-P -C -Ddebug"

-Oopt Invokes optimizations selected by opt . If opt is 1, only level 1 optimizations are
performed. If opt is 2, all optimizations are performed. The option +02 is the same
as -O.

-Rnum Only allows the first num 'register' variables to actually have the 'register' class.
Use this option when the register allocator issues an "out of general registers"
message.

-r Inhibits the automatic promotion of float to double in evaluating expressions and
passing arguments (-r is invalid in ANSI mode).

-u Forces the compiler to generate code to access pointers with half-word addressing.
You should only use this option when you cannot guarantee that pointers will
always reference word-aligned items. See "Pointers to Half-Word Aligned Data
Items" in chapter 9 for more information.

-wn Specifies the level of the warning messages; n can be one of the following values:

Value Description

1 All warnings are issued.

2 Only warnings indicating that code generation might be affected are issued; equivalent
to the compiler default without any w options.

3 No warnings are issued.

Argument Description
118 Chapter 8

Compiling and Running HP C/iX Programs
HP C/iX Compiler Options
This example only executes the preprocessing phase on MYTEXT(-P) , leaves the output
with the comments intact in CPPOUT (-C), and defines debug as 1 (-Ddebug).

CCOPTS CI Variable

Options may also be passed to the compiler using the Command Interpreter variable
CCOPTS. The compiler picks up the value of CCOPTS and places its contents before any
arguments in the INFO string.

Example

SETVAR CCOPTS "-g"
CCXL MYFILE;INFO="-v"

is equivalent to:

CCXL MYFILE;INFO="-g -v"
Chapter 8 119

Compiling and Running HP C/iX Programs
Pragmas
Pragmas
You may include the following pragmas within a source file, but you may not use them
within a function. A pragma is valid from the point that it is included to the end of the
source file or until another pragma changes its status.

[#pragma OPTIMIZE {ONOFF }]

Turns all optimizations ON or OFF, depending on which option you use.

[#pragma OPT_LEVEL {12 }]

Sets optimization level to local when you specify OPT_LEVEL 1, or sets optimization level to
global and local when you specify OPT_LEVEL 2.

#pragma NO_SIDE_EFFECTS functionname 1,...,functionname n

States that functionname and all the functions that functionname calls will not modify
any of a program's local or global variables. This information allows better optimizations to
be performed when optimization level 2 has been specified.

#pragma ALLOCS_NEW_MEMORYfunctionname 1,...,functionname n

States that the function functionname returns a pointer to "new" memory, such as heap
space, that it allocates or a routine that it calls allocates. This information allows better
optimizations to be performed when optimization level 2 has been specified.

#pragma COPYRIGHT "string"

Places a copyright notice using string as the company name into the relocatable object
module or the program file.

#pragma COPYRIGHT_DATE"string"

Specifies a date string to be used in a copyright notice appearing in an object module.

#pragma VERSIONID "string"

Specifies a version number to be associated with a particular piece of software. The string
is placed into the object file produced when the software is compiled.

#pragma PAGE

Causes a page break in the listing and begins a new page.

#pragma LINES linenum

Sets the number of lines per page to linenum.

#pragma WIDTH pagewidth

Sets the width of the page to pagewidth.

#pragma TITLE "string"

Makes string the title of the listing.

#pragma SUBTITLE "string"

Makes string the subtitle of the listing.
120 Chapter 8

Compiling and Running HP C/iX Programs
Pragmas
[#pragma LIST {ONOFF }]

Turns listing functionality ON or OFF. The default is ON.

[#pragma AUTOPAGE {ONOFF }]

When ON, causes a page break in the listing after each function definition. The default is
OFF.

#pragma LOCALITY "string"

Specifies a name to be associated with the code that is written to a Relocatable Object
Module. All code following the locality pragma will be associated with the name given until
the end of the current source file or until another locality pragma is encountered. Locality
of code is at the function level. Without the locality pragma, the name CODE is associated
with the generated code.

For more information on optimizer pragmas, refer to chapter 7. For more information on
the listing pragmas, refer to chapter 11.

[#pragma HP_ALIGN {MPE_16POP}]

The MPE_16 option directs the HP C/iX compiler to set the alignment of int , float , and
double in structures and unions to be aligned according to the MPE/V alignment scheme.
This option also sets the alignment of structures and unions to start and end on at least a
half-word boundary. The HP_ALIGN MPE_16 pragma facilitates reading TurboImage
databases and MPE/V based binary files on MPE/iX systems.

The POP option turns off the HP_ALIGN pragma and alignment reverts to word (32-bit)
alignment. For more information on data alignment, refer to chapter 9, "HP C/iX
Implementation Topics."
Chapter 8 121

Compiling and Running HP C/iX Programs
Linking the C Library
Linking the C Library
This section describes the procedure necessary to link C library functions into your
program using the MPE/iX LINK command. For many applications, linking the
LIBCINIT.LIB.SYS file in the RL list, as done by the CCXLLK and CCXLGO commands, is
sufficient. Applications that use mathematical or random number functions, or programs
compiled using ANSI mode, will nee to link with additional libraries.

C Library Organization

The C library consists of several files that may be separated into two functional areas: the
standard library and the mathematical library.

The standard library consists of the input/output functions, the general utility functions
that perform operations such as string and memory manipulation, and the program
startup functions. All C programs must link in the standard library because it contains the
startup routines necessary for program execution. Failure to link in this library will result
in a linker or loader error. The standard library is available in the system executable
library (XL.PUB.SYS) and also as a relocatable library (RL).

The math library consists of additional mathematical functions, such as the trigonometric
and logarithmic functions, that perform floating point operations. The math library is only
available in RL form.

For further information on the organization of the HP C/iX Library, refer to the HP C/iX
Library Reference Manual.

Linking the Library Files

To use the executable standard library, add the LIBCINIT.LIB.SYS file to the RL list when
linking your program. To use the relocatable standard library, add the LIBC.LIB.SYS file
to the RL list when linking. Note that you may choose either the executable (XL) or
relocatable (RL) library form, but not both.

Additionally, if the program is compiled using ANSI mode (the -Aa option), the relocatable
library LIBCANSI.LIB.SYS must also be added to the RL list regardless of whether
LIBCINIT.LIB.SYS or LIBC.LIB.SYS is used. This is to ensure that certain file behaviors
conform to ANSI specifications. For a detailed description of LIBCANSI.LIB.SYS , see the
HP C/iX Library Reference Manual. For a detailed discussion of the LINK command, see
the MPE/iX Commands Reference Manual.

To use the math library, add the LIBM.LIB.SYS file to the RL list when linking your
program. The LIBM.LIB.SYS file must precede the LIBC.LIB.SYS file in the RL list if the
RL form of the standard library is used. The ordering of the files is significant because of
the interdependencies of the libraries. The ordering is not significant if the XL form of the
standard library is linked.

In addition to LIBM.LIB.SYS , there is also LIBMANSI.LIB.SYS , the ANSI conforming
version of the math library. You must decide which version of the math library to use and
link with the appropriate RL.
122 Chapter 8

Compiling and Running HP C/iX Programs
Linking the C Library
The rand and srand functions are conceptually part of the standard library but reside in a
different library file, LIBCRAND.LIB.SYS. To use these functions, add the
LIBCRAND.LIB.SYS file to the RL list when linking your program. These functions are
not available in XL form. This special treatment for the rand and srand functions is due to
a name conflict between the HP C/iX library function rand and the MPE/iX compiler
library function rand .

Examples

To link the object file MYOBJ and the RL form of the standard library into the program file
MYPROG, enter:

LINK FROM=MYOBJ; TO=MYPROG; RL=LIBC.LIB.SYS

To link the object file MYOBJ together with the random number generation functions rand
and srand , the math library routines, and the RL form of the standard library, enter:

LINK FROM=MYOBJ; TO=MYPROG; RL=LIBCRAND.LIB.SYS,LIBM.LIB.SYS,LIBC.LIB.SYS

Remember that either LIBC.LIB.SYS or LIBCINIT.LIB.SYS must be linked into your
program.

To link a program under ANSI mode, enter:

LINK FROM=OBJFILE; TO=PROGFILE; RL=LIBCINIT.LIB.SYS,LIBCANSI.LIB.SYS

Non-ANSI is the default mode.
Chapter 8 123

Compiling and Running HP C/iX Programs
Running HP C/iX Programs
Running HP C/iX Programs
You can run HP C/iX programs using the RUN command or by entering the program name
(an implied run). You can pass parameters to the main program and redirect the standard
input (stdin), standard output (stdout), and error output (stderr) to specific files by
using the INFO string.

Program Parameters

You can pass parameters to an HP C/iX program by declaring them in the function main as
shown in the following example:

main(argc, argv, envp, parm, info)
int argc;
char *argv[];
char *envp[];
int parm;
char *info;

NOTE The envp parameter is required as a placeholder in the formal parameter list
for main . This parameter is not initialized on MPE/iX and must not be used. It
is provided for compatibility with programs on other systems that pass envp
to main.

You invoke the program (called MYPROG) with the following command:

RUN MYPROG; INFO="STR1 STR2 STR3"; PARM=11

The C compiler separates the INFO string into argv arguments using blanks as argument
delimiters and sets argc to the number of argv elements. To pass an argument that
contains embedded blanks, enclose the argument in quotes. Use single quotes to delimit
the argument if the INFO string is enclosed in double quotes; use double quotes if the
INFO string is enclosed in single quotes. A quote may be included within a quoted string
by escaping the quote with another quote similar to the manner in which the MPE/iX
command interpreter allows quotes to be passed in the INFO string. The argv[0]
argument is set equal to the program name, and argv[argc] is set equal to NULL. The
PARM and INFO values are passed unchanged to the program. The order of the
declaration of parameters to main is significant, but the names of the formal parameters
can be any valid identifier. For the previous RUN command:

argv[0] = MYPROG.MYGROUP.MYACCT
argv[1] = "STR1"
argv[2] = "STR2"
argv[3] = "STR3"
argv[4] = NULL
argc = 4
parm = 11
info = "STR1 STR2 STR3"

To include blanks within a single entry in the argv array, the following command:
124 Chapter 8

Compiling and Running HP C/iX Programs
Running HP C/iX Programs
RUN MYPROG; INFO="STR1 'STR2 WITH BLANKS' STR3"

yields:

argv[0] = MYPROG.MYGROUP.MYACCT
argv[1] = "STR1"
argv[2] = "STR2 WITH BLANKS"
argv[3] = "STR3"
argv[4] = NULL
argc = 4
info = "STR1 'STR2 WITH BLANKS' STR3"

To include a single quote in a single quoted argument, the following command:

RUN MYPROG; INFO="STR1 'STR2 WITH QUOTE HID' 'DEN' STR3"

yields:

argv[0] = MYPROG.MYGROUP.MYACCT
argv[1] = "STR1"
argv[2] = "STR2 WITH QUOTE HID'DEN"
argv[3] = "STR3"
argv[4] = NULL
argc = 4
info = "STR1 'STR2 WITH QUOTE HID' 'DEN' STR3"

A maximum of 1023 argv[] entries are allowed and the maximum length of the info string
is 279 characters.

Redirection of Standard Files

The special characters <, >, >>, and & may be specified in the INFO string to redirect
standard files for a compiled HP C/iX program. The special characters are described in the
following table.

The redirection characters and the file names which follow these characters do not appear
in the argv vectors or the argc count. For example,

RUN MYPROG; INFO= "FILE1 FILE2 >& OUTFILE"

runs MYPROG with FILE1 and FILE2 passed in argv and redirects both the diagnostic

Table 8-3. Redirection Characters

Character Description

< The name immediately following this symbol in the INFO string is considered a file
name and the standard input for the program is read from that file.

> The name immediately following this symbol in the INFO string is considered a file
name and the standard output of the program is sent to that file.

>> The name immediately following this symbol in the INFO string is considered a file
name and the standard output of the program is appended to the end of the file.

& When included after > or >, this character redirects the diagnostic output as well as
the standard output to the specified file. The diagnostic output cannot be redirected
separately from standard output.
Chapter 8 125

Compiling and Running HP C/iX Programs
Running HP C/iX Programs
output and the standard output to the file OUTFILE. In this example, argc is set to 3.

The Fileset Wildcard Feature

If the fileset wildcard feature is selected when the program is linked, the INFO string
handler for a compiled HP C/iX program expands valid fileset wildcards into fully qualified
permanent file names and passes them into the main program through the argv vectors.
To use the wildcard feature, add the relocatable library LIBCWC.LIB.SYS to the FROM
list when linking your program. If this file is not in the FROM list, the wildcard feature is
not enabled. The CCXLLK and CCXLGO commands do not include this library when
linking.

Example

LINK FROM=MYOBJ,LIBCWC.LIB.SYS; RL=LIBCINIT.LIB.SYS; TO=MYPROG

This example enables the wildcard feature for INFO strings passed to MYPROG.

The fileset wildcards characters for an HP C/iX program are @, ?, and #. They are based on
the standard MPE/iX wildcards recognized by commands and subsystems. The wildcard
characters are described in the following table.

These characters can be used as follows:

Character Description

n@ Represents all filenames starting with the character n.

@n Represents all filenames ending with the character n.

n@x Represents all filenames starting with the character n and ending with the
character x.

n Represents all filenames starting with the character n followed by a
maximum of seven digits.

?n@ Represents all filenames whose second character is n.

n? Represents all 2-character filenames starting with the character n.

?n Represents all 2-character filenames ending with the character n

NOTE Each wildcard character is one of the 8-character limit for account, group, and
filename. A valid wildcard fileset must start with an alphabetic character, an
@, or a ?. Invalid wildcard filesets are passed unaltered to the main program.

Example

If the permanent files in the group and account MYGROUP.MYACCT contains FILE1 , FILEX ,
MYFILE, and MYPROG, the following:

RUN MYPROG; INFO="@ FILE# FILE?"

yields:
126 Chapter 8

Compiling and Running HP C/iX Programs
Running HP C/iX Programs
argv[0] = "MYPROG.MYGROUP.MYACCT" /* name of program */
argv[1] = "FILE1.MYGROUP.MYACCT" /* @ */
argv[2] = "FILEX.MYGROUP.MYACCT" /* @ */
argv[3] = "MYFILE.MYGROUP.MYACCT" /* @ */
argv[4] = "MYPROG.MYGROUP.MYACCT" /* @ */
argv[5] = "FILE1.MYGROUP.MYACCT" /* FILE# */
argv[6] = "FILE1.MYGROUP.MYACCT" /* FILE? */
argv[7] = "FILEX.MYGROUP.MYACCT" /* FILE? */
argv[8] = NULL
argc = 8
info = "@ FILE# FILE?"

If no files are found in the fileset, or an error occurs in attempting to expand a wildcard
fileset, a diagnostic message is printed to $STDLIST and the process terminates
immediately. Attempting to use a wildcard fileset that would expand the number of argv
elements beyond the 1023 element maximum also results in an error.

Escaping Special INFO String Characters

Special INFO string characters are characters that have special meaning to the C INFO
string parser. They include the standard I/O redirection characters <, >, and &, as well as
the fileset wildcard characters @, ?, and # if the wildcard feature is enabled. If you wish to
pass strings containing these characters into a program in the argv vectors, you must
enclose these strings with either single or double quotes. Use single quotes if your INFO
string is delimited with double quotes, and double quotes if your INFO string is delimited
with single quotes. This will disable their special functions and cause the INFO string
parser to pass them along to the main program.

Example

RUN MYPROG; INFO ="'@' '<IDENTIFIER>'"

yields:

argv[0] = "MYPROG.MYGROUP.MYACCT"
argv[1] = "@"
argv[2] = "<IDENTIFIER>"
argv[3] = NULL
argc = 3
info = "'@' '<IDENTIFIER>'"

HP C/iX and Job Control Words

When an HP C/iX program terminates normally, a special job control word, CJCW, is set to
the exit value of the program. It contains the value of the parameter passed to the C
library routine exit , or _exit , or the value returned from the function main if exit is not
explicitly called. The convention for C programs is to exit with a nonzero value if an error
condition has occurred, or exit with zero if no errors have occurred. CJCW could be used for
checking the exit value of a program in a job file, or programmatically checking the exit
value of a child process. The value of CJCW is unpredictable if the function main does not
take care to return a value or if the exit function is not explicitly called. Examples

main() {
Chapter 8 127

Compiling and Running HP C/iX Programs
Running HP C/iX Programs
.

.
exit(7);

}

or

main() {
.
.
return(7);

}

Either of the above examples sets CJCW to the value of 7 on program termination.

If a C program calls the C library routine abort , the system job control word JCW is set to
FATAL and a diagnostic message is printed to $STDLIST . CJCW is set to a nonzero value.

Arithmetic Traps

C/iX programs execute with all arithmetic traps disabled. The C program startup routines
call the ARITRAP intrinsic with an argument of zero to disable the traps.
128 Chapter 8

Compiling and Running HP C/iX Programs
Special Preprocessor Considerations
Special Preprocessor Considerations
The HP C/iX compiler first executes a preprocessing phase during which all preprocessor
directives (lines beginning with #) are interpreted and acted upon. See chapter 7 for
detailed information about preprocessing. This section describes features unique to the
preprocessing phase on MPE/iX systems.

Preprocessor Output File

During the preprocessing phase, an output file is created for use by the compiler. Although
the file is created with a record size and file limit that is sufficiently large for most
applications, it is possible for a source program to expand beyond the default file limit and
record size. You can use two HP C/iX compiler options, +F and +C, to overcome this
problem.

Typically, the file limit may be exceeded if you compile a very large source file or if you use
many #include directives. The compiler issues an error message indicating that the file
limit of the preprocessor output file was exceeded. To resolve this error, you must
recompile the source file using the +F compiler option to specify a larger file limit. Any
unused file space is returned when the output file is closed so you should specify a
sufficiently large file limit.

A source file might have a line that expands beyond the default record size if it contains a
large macro, a number of macros, macros that include other macros, or any combination of
these conditions. This problem is more difficult to detect because many lines can exceed
the default size without causing an error. It is only when a token, such as an identifier, is
split across two records in the output file that an error occurs. The error occurs on the line
that contains the expanded macro. To resolve this type of error, recompile using the +C
option to specify a larger record size, or reduce the size of the macro. The default record
size is 512 bytes.

Predefined Macros

The preprocessor on MPE/iX has one predefined macro, mpexl , to aid the identification and
isolation of system dependent code. This macro behaves as if the preprocessor directive
#define mpexl 1 is included at the top of the file. The mpexl macro is typically used with
the #ifdef statement.

Example

#ifdef mpexl
MPE/iX specific code ...

#endif
Chapter 8 129

HP C/iX Implementation Topics
9 HP C/iX Implementation Topics

This chapter describes topics that are specific to programming in C on MPE/iX.

The following topics are included:

• Data types

• Bit-fields

• IEEE floating-point format

• Lexical elements

• Qualifying structures and union references

• Data alignment

• Type mismatches in external names

• Expressions

• Pointers

• Array limits

• Scope of extern declarations

• Conversions among real numbers

• Variable length argument lists

• Include file locations
Chapter 9 145

HP C/iX Implementation Topics
Data Types
Data Types
Data types are implemented in HP C/iX as follows:

• The char type is signed.

• All types can have the register storage class, although it is only honored for scalar
types. Ten register declarations per function are honored. More are honored when the
+R option is used.

• The signed integer types are represented internally using twos complement form.

• Structures (and unions) start and end on the alignment boundary of their most
restrictive member.

Table 9-1 lists the sizes and ranges of different HP C/iX data types.

Refer to the HP C Programmer's Guide for comparisons of data storage and alignment on
the following computer systems:

• HP 3000 Series 900

• HP 3000/V

• HP 9000 Series 300/400

• HP 9000 Series 700/800

Table 9-1. HP C/iX Data Types

Type Bits Bytes Low Bound High Bound Comments

char 8 1 -128 127 Character

signed char 8 1 -128 127 Signed integer

unsigned char 8 1 0 255 Unsigned integer

short 16 2 -32,768 32,767 Signed integer

unsigned
short

16 2 0 65,535 Unsigned integer

int 32 4 -2,147,483,648 2,147,483,647 Signed integer

unsigned int 32 4 0 4,294,967,295 Unsigned integer

long 32 4 -2,147,483,648 2,147,483,647 Signed integer

unsigned long 32 4 0 4,294,967,295 Unsigned integer

float 32 4 See (a) below. See (b) below. Floating-point

double 64 8 See (c) below. See (d) below. Floating-point

long double 128 16 See (e) below. See (f) below. Floating-point

enum 32 4 -2,147,483,648 2,147,483,647 Signed integer
146 Chapter 9

HP C/iX Implementation Topics
Data Types
Comments

In the following comments, the low bounds of float , double , and long double data types
are given in their normalized and denormalized forms. Normalized and denormalized
refer to the way data is stored. Normalized numbers are represented with a greater degree
of accuracy than denormalized numbers. Denormalized numbers are very small numbers
represented with fewer significant bits than normalized numbers.

a. Least normalized: 1.17549435E-38F
Least denormalized: 1.4012985E-45F

b. 3.40282347E+38F

c. Least normalized: 2.2250738585072014E-308
Least denormalized: 4.9406564584124654E-324

d. 1.7976931348623157E+308

e. Least normalized: 3.3621031431120935062626778173217526026E-4932L
Least denormalized: 6.4751751194380251109244389582276465525E-4966L

f. 1.1897314953572317650857593266280070162E+4932L
Chapter 9 147

HP C/iX Implementation Topics
Bit-Fields
Bit-Fields

• Bit-fields in structures are packed from left to right (high-order to low-order).

• The high order bit position of a "plain" integer bit-field is treated as a sign bit.

• Bit-fields of types char, short, long , and enum are allowed.

• The maximum size of a bit-field is 32 bits.

• If a bit-field is too large to fit in the current word, it is moved to the next word.

• The range of values in an integer bit-field are:

-2,147,483,648 to 2,147,483,647 for 32-bit signed quantities

0 to 4,294,967,295 for 32-bit unsigned quantities

• Bit-fields in unions are allowed only in ANSI mode.
148 Chapter 9

HP C/iX Implementation Topics
IEEE Floating-Point Format
IEEE Floating-Point Format
The internal representation of floating-point numbers conforms to the IEEE floating-point
standard, ANSI/IEEE 754-1985, as shown in Figure 9-1.

Figure 9-1. Internal Representation of Floating-Point Numbers

The s field contains the sign of the number. The exp field contains the biased exponent
(exp = E + bias , where E is the real exponent) of the number. The values of bias and the
maximum and minimum values of the unbiased exponent appear in the following table:

Emin-1 is used to encode 0 and denormalized numbers.

Emax+1 is used to encode infinities and NaNs.

NaNs are binary floating-point numbers that have all ones in the exponent and a nonzero
fraction. NaN is the term used for a binary floating-point number that has no value (that
is, "Not A Number").

If E is within the range

Emin <= E <= Emax

the mantissa field contains the number in a normalized form, preceded by an implicit 1
and binary point.

In accordance with the IEEE standard, floating-point operations are performed with traps

Table 9-2. HP C/iX Data Types

float double long double

bias +127 +1023 +16383

Emax +127 +1023 +16383

Emin -126 -1022 -16382
Chapter 9 149

HP C/iX Implementation Topics
Lexical Elements
not enabled, and the result of such an operation is that defined by the standard. This
means, for example, that dividing a positive finite number by zero will yield positive
infinity, and no trap will occur. Dividing zero by zero or infinity by infinity will yield a NaN,
again with no trap. For a discussion of infinity arithmetic and operations with NaNs, in the
context of the IEEE standard, see the HP Precision Architecture and Instruction Set
Reference Manual.

Note that infinities and NaNs propagate through a sequence of operations. For example,
adding any finite number to infinity will yield infinity. An operation on a NaN will yield a
NaN. This means that you may be able to perform a sequence of calculations and then
check just the final result for infinity or NaN.

Lexical Elements

• Identifiers: 255 characters are significant in internal and external names.

• Character Constants: Any character constant of more than one character produces a
warning. The value of an integral character constant containing more than one
character is computed by concatenating the 8-bit ASCII code values of the characters,
with the leftmost character being the most significant. For example, the character
constant 'AB ' has the value 256*'A'+'B' = 256*65+66 = 16706 . Only the rightmost
four characters participate in the computation.

• The case of alphabetic characters is always significant in external names.

• The execution character set and the source character set are both ASCII.

• Nonprinting characters in character constants and string literals must be represented
as escape sequences.

Structures and Unions
Structure or union references that are not fully qualified (see example below) are flagged
with an error by the compiler.

struct{
int j;
struct {int i;}in;

} out;
out.i=3;

The correct statement for the example above is out.in.i = 3; .
150 Chapter 9

HP C/iX Implementation Topics
Type Mismatches in External Names
Type Mismatches in External Names
It is illegal to declare two externally visible identifiers of different types with the same
name in separately compiled translation units. The linker might not diagnose such a
mismatch.

Data Alignment Pragma
This section discusses the HP_ALIGN data alignment pragma and the differences between
the data alignment architectures of the MPE/iX and MPE/V systems.

The HP_ALIGN data alignment pragma allows you to control the alignment of fields within
structures and unions. It facilitates the interchange of data between MPE systems having
different data alignment architectures.

Data alignment architectures specify the number of bits allocated to store various data
types, whether a data type is aligned on a byte, two-byte, word, or double word boundary,
and padding among bit-fields. The differences in data alignment architectures are
especially important to consider when passing data from one machine to another.

The HP_ALIGN pragma facilitates transferring data among MPE V and MPE/iX systems
and when accessing TurboImage databases from HP C/iX.

The syntax for the HP_ALIGN pragma is:

[#pragma HP_ALIGN {MPE_16POP}]

The MPE_16 option directs the HP C/iX compiler to set the alignment of int , float , and
double in structures and unions to be aligned according to the MPE/V alignment scheme.
This option also sets the alignment of structures and unions to start and end on at least a
half-word boundary.

The POP option turns off the HP_ALIGN pragma and alignment reverts to word (32-bit)
alignment. For example:

#pragma HP_ALIGN MPE_16
struct {char a; double b; int c;} d;
#pragma HP_ALIGN POP

Comparison of MPE/V and MPE/iX Data Alignment

MPE/V systems align data within structures and unions differently than MPE/iX systems.
The data alignment rules for these two systems are described using the following code
fragment for comparison purposes:
Chapter 9 151

HP C/iX Implementation Topics
Data Alignment Pragma
Figure 9-2. Code Fragment for Comparing Storage and Alignment

struct x {
char y[3];
short z;
char w[5];

};

struct q {
char n;
struct x v[2];
double u;
char t;
int s:6;
char m;

} a = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20.0,21,22,23};
152 Chapter 9

HP C/iX Implementation Topics
Data Alignment Pragma
Native Data Alignment on HP C/iX

Figure 9-3 shows how the data in Figure 9-2. on page 154 is stored in memory when using
HP C/iX. The values are shown above the variable names. Memory locations containing
shading are padding bytes.

Figure 9-3. Storage with HP C/iX

The structure a is aligned on an 8-byte boundary because the most restrictive data type
within the structure is the double u .

Table on page 153 shows the padding for the example code fragment:

Table 9-3. Padding on HP 9000 Series 700/800 and HP 3000 Series 900

Padding Location Reason for Padding

a+1 Aligns the structure x on a 2-byte boundary because the most
restrictive member is short .
Chapter 9 153

HP C/iX Implementation Topics
Data Alignment Pragma
Data Alignment Using HP_ALIGN MPE_16

When the sample code fragment is compiled and run using the HP_ALIGN
MPE_16 pragma, data is stored as shown in Figure 9-4. on page 157.

Figure 9-4. Storage Using the HP_ALIGN MPE_16 Pragma

a+5 Aligns the short z on a 2-byte boundary.

a+13 Fills out the struct x to a 2-byte boundary.

a+17 Aligns the short z on a 2-byte boundary.

a+25 Fills out the structure to a 2-byte boundary.

a+26 through a+31 Aligns the double u on an 8-byte boundary. The bit-field s begins
immediately after the previous item at a+41 . Two bits of padding is
necessary to align the next byte properly.

a+43 through a+47 Fills out the struct q to an 8-byte boundary.

Table 9-3. Padding on HP 9000 Series 700/800 and HP 3000 Series 900

Padding Location Reason for Padding
154 Chapter 9

HP C/iX Implementation Topics
Data Alignment Pragma
Table on page 157 shows the padding for the example code fragment when using
HP_ALIGN MPE_16:

The differences between the HP_ALIGN MPE_16 and the native MPE/iX alignments are:

• MPE/V aligned records are aligned on a 2-byte boundary. MPE/iX aligned records are
aligned according to the most restrictive data type within the structure.

• MPE/V aligned doubles are 2-byte aligned. MPE/iX aligned doubles are 8-byte aligned
within structures.

• MPE/V aligned long doubles, available in ANSI mode only, are 2-byte aligned. MPE/iX
aligned long doubles are 8-byte aligned within structures.

• MPE/V aligned enumerated data types are 2-byte aligned in a structure, array, or
union. MPE/iX aligned enumerated types are always 4-byte aligned.

Table 9-4. Padding Using the HP_ALIGN MPE_16 Pragma

Padding
Location

Reason For Padding

a+1 Within structures, align structure x on a 2-byte boundary.

a+5 Aligns the short z on a 2-byte boundary.

a+13 Structures within structures are aligned on a 2-byte boundary.

a+17 Aligns the short z on a 2-byte boundary.

a+25 Doubles are 2-byte aligned within structures.

a+36 Aligns char m on a byte boundary.
Chapter 9 155

HP C/iX Implementation Topics
Pointers to Half-Word Aligned Data Items
Pointers to Half-Word Aligned Data Items
Pointers in HP C for the HP 3000 Series 900 by default point to objects aligned on 32-bit
word addresses. By default, the machine instructions for pointers generated by the
compiler depend on the data being word aligned. A run-time memory fault occurs if a
pointer to a word-aligned data item accesses a half-word (16-bit) aligned data item. Using
non-natively aligned structures can produce this situation.

In the following example, a run-time memory fault occurs under normal conditions
because pi points to a half-word aligned field.

#pragma HP_ALIGN MPE_16
struct { char a; int b; } c;
int *pi;

pi = c.b; /* Now pi points to a half-word aligned integer. */

The +u compiler option resolves this by causing the compiler to generate code to access
pointers with half-word addressing.

For best performance you should encapsulate this option, and after reading a data item
into a half-word aligned structure, immediately copy the contents, member by member to a
word aligned structure.
156 Chapter 9

HP C/iX Implementation Topics
Long and Short Pointers
Long and Short Pointers
HP C defines two classes of data pointers: short and long pointers. A short pointer is a
32-bit pointer that contains the offset of an object local to its process. A long pointer is a
64-bit pointer that may point to an object outside its current process space. The high-order
32 bits of a long pointer contain a space ID number, and the low-order 32 bits represent an
offset within the space defined by that space ID.

A short pointer can point to any addressable object within its own process space. This
includes local and global variables, function parameters, and heap variables. Long pointers
may point to any addressable object on the system. This includes objects that are outside
the space of the current process. Long pointers are useful for calling system intrinsics that
require long pointer parameters (such as PRINT), and for accessing user-mapped files.

Miscellaneous Pointer Features

• Pointers to functions should not be compared using relational operators because the
pointers represent external function labels and not actual addresses.

• Dereferencing a pointer that contains an invalid value results in a trap if the address
references protected memory or if the address is not properly aligned for the object
being referenced.

• A declaration of a pointer to an undefined structure tag is allowed, and the tag need not
be defined in the source module unless the pointer is used in an expression.

• fp() is equivalent to in an expression when fp is of type pointer to function.

Declaring Long Pointers

You declare long pointer variables or parameters using the normal (short pointer) syntax
except you need to substitute a caret (^) for the asterisk(*). Refer to chapter 3 for
information on declaring pointers.

For example:

/* int_pointer is a long pointer to an integer */
int ^int_pointer;

/* char_pointer is a long pointer to a character */
char ^char_pointer;

Long pointers may not be declared with initializers. Therefore, a statement such as:

char ^long_ptr = "some string";

is not allowed. Also, long function pointers are not allowed.

Using Long Pointers

Long pointers are dereferenced the same as short pointers. If p is declared as a long
pointer to an int , such as int ^p; , then *p returns the contents of that integer. If p is
declared as a pointer to a structure containing a member mem, p->mem will return the
Chapter 9 157

HP C/iX Implementation Topics
Long and Short Pointers
contents of that member.

To produce a long pointer that points to the same object as a short pointer, you can use an
assignment statement. For example, after the assignment statement in the following C
code, long_ptr and short_ptr both point to the same object.

int ^long_ptr; /* long_ptr is a long pointer to an integer */
int *short_ptr; /* short_ptr is a short pointer to an integer */

.

.

.
long_ptr = short_ptr;

After the assignment statement, the low-order 32 bits of the long pointer are identical to
the original short pointer.

A short pointer may not be assigned the contents of a long pointer unless the long pointer
points to an object within the space of the current process.

You can apply the unary operator & to a long pointer to get the address of the pointer. The
resulting type of the operation &long_ptr is a short pointer. The following example assigns
the address of a long pointer to a variable declared as a short pointer to a long pointer.

int ^long_ptr;
int ^*sprt_to_lptr;

sptr_to_lptr = &long_ptr;

Note that the variable sptr_to_lptr must be declared as a short pointer to a long pointer
because the type of &long_ptr is a short pointer.

Standard pointer arithmetic and pointer subscripting may be applied to long pointers, but
only the low-order 32 bits are used and modified.

Comparison of long pointers using the relational operators <, <=, >, and >= compares only
the low order 32 bits, the offset portion. The high order 32 bits, the ID portion, are ignored.
Comparison of long pointers using the relational operators, == and != , compares both the
low order 32 bits and the high order 32 bits.

Assignment of zero (NULL) to a long pointer assigns zero to the high order 32 bits and to
the low order 32 bits.

Casts can be applied to long pointers but you must observe the standard alignment
restrictions. For example, a long pointer to a character should not be cast to a long pointer
to an integer because an integer has more restrictive alignment requirements than a
character. Integers are aligned on 4 byte boundaries and characters are aligned on byte
boundaries.

There are no standard conversion rules for passing long pointer parameters to other
routines. Therefore, no implicit conversions are performed when these parameters are
passed. That is, short pointers are not converted to long pointers when a function call is
made, and vice versa.

All pointers passed to standard C library routines, including the heap manager routines,
must be short pointers.
158 Chapter 9

HP C/iX Implementation Topics
Expressions
Expressions
The value of an expression that overflows or underflows is undefined, except when the
operands are unsigned.

Maximum Number of Dimensions of an Array

Arrays can have up to 252 dimensions.

Scope of extern Declarations
Identifiers for objects and functions declared within a block and with the storage class
extern have the same linkage as any visible declaration with file scope. If there is no
visible declaration with file scope, the identifier has external linkage, and the definition
remains visible until the end of the translation unit.

However, because this is an extension to ANSI C, a warning will be issued on subsequent
uses of the identifier if the absence of this extended visibility could cause a change in
behavior on a port to another conforming implementation.

Conversions Between Floats, Doubles, and Long Doubles

• When a long double is converted to a double or float , or when a double is converted
to a float, the original value is rounded to the nearest representable value of the new
type. If the original value is equally close to two distinct representable values, then the
value chosen is the one with the least significant bit equal to zero.

• Conversions between floating-point types involve a change in the exponent, as well as
the mantissa. It is possible for such a conversion to overflow.

Statements

• The types of switch expressions and their associated case label constants do not need
to match. Integral types can be mixed.
Chapter 9 159

HP C/iX Implementation Topics
Preprocessor
• All expressions of integral types are allowed in switch statements.

Preprocessor

• The maximum nesting depth of #include files is 35.

• HP C/iX supports the #line digit-sequence "filename" directive. This directive is
used to set the line number and file name for compile time diagnostics.

• See chapter 7 "Preprocessing Directives."
160 Chapter 9

HP C/iX Implementation Topics
The varargs Macros
The varargs Macros
The varargs macros allow accessing arguments of functions where the number and types
of the arguments can vary from call to call.

NOTE The <varargs.h> header has been superseded by the standard header
<stdarg.h> , which provides all the functionality of the varargs macros. See
the HP C/iX Library Reference Manual for more details on <stdarg.h> . The
<varargs.h> header is retained for compatibility with pre-ANSI compilers
and earlier releases of HP C/iX.

To use varargs , a program must include the header <varargs.h>. A function that expects
a variable number of arguments must declare the first variable argument as va_alist in
the function declaration. The macro va_dcl must be used in the parameter declaration.

A local variable should be declared of type va_list. This variable is used to point to the
next argument in the variable argument list.

The va_start macro is used to initialize the argument pointer to the initial variable
argument.

Each variable argument is accessed by calling the va_arg macro. This macro returns the
value of the next argument, assuming it is of the specified type, and updates the argument
pointer to point to the next argument.

The va_end macro is provided for consistency with other implementations; it performs no
function on the 900 Series HP3000 computers.

The following example demonstrates the use of the <varargs.h> header:

Example
#include <varargs.h>
#include <stdio.h>

enum arglisttype {NO_VAR_LIST, VAR_LIST_PRESENT};
enum argtype {END_OF_LIST, CHAR, DOUB, INT, PINT};

int foo (va_alist)
va_dcl /* Note: no semicolon */
{

va_list ap;
int a1;
enum arglisttype a2;

enum argtype ptype;
int i, *p;
char c;
double d;

/* Initialize the varargs mechanism */
Chapter 9 161

HP C/iX Implementation Topics
The varargs Macros
va_start(ap);

/* Get the first argument, and arg list flag */
a1 = va_arg (ap, int);
a2 = va_arg (ap, enum arglisttype);

printf ("arg count = %d\n", a1);

if (a2 == VAR_LIST_PRESENT) {
/* pick up all the arguments */
do {

/* get the type of the argument */
ptype = va_arg (ap, enum argtype);

/* retrieve the argument based on the type */
switch (ptype) {

case CHAR: c = va_arg (ap, char);
printf ("char = %c\n", c);
break;

case DOUB: d = va_arg (ap, double);
printf ("double = %f\n", d);
break;

case PINT: p = va_arg (ap, int *);
printf ("pointer = %x\n", p);
break;

case INT : i = va_arg (ap, int);
printf ("int = %d\n", i);
break;

case END_OF_LIST :
break;

default: printf ("bad argument type %d\n", ptype);
ptype = END_OF_LIST; /* to break loop */
break;

} /* switch */
} while (ptype != END_OF_LIST);

}

/* Clean up */
va_end (ap);

}

main()
{

int x = 99;

foo (1, NO_VAR_LIST);
foo (2, VAR_LIST_PRESENT, DOUB, 3.0, PINT, &x, END_OF_LIST);

}

162 Chapter 9

HP C/iX Implementation Topics
Location of Files
Location of Files
The following table lists the location of files used in compiling, linking, and running HP
C/iX programs.

Table 9-5. Location of Files

File or Library Location

CCXL CCXL.PUB.SYS

CCXLLK CCXLLK.PUB.SYS

CCXLGO CCXLGO.PUB.SYS

CCSTDRL CCSTDRL.LIB.SYS

Compiler CCOMXL.PUB.SYS

Preprocessor (non-ANSI) CPP.PUB.SYS

Preprocessor (ANSI) CPPANSI.PUB.SYS

Error catalog CCMSGCAT.PUB.SYS

Linker LINKEDIT.PUB.SYS

C Library (RL) LIBC.PUB.SYS

C Library (XL) XL.PUB.SYS

C Library (XL initializer) LIBCINIT.LIB.SYS

Wildcard feature LIBCWC.LIB.SYS

LIBCRAND LIBCRAND.LIB.SYS

XDB end info XDBEND.LIB.SYS

Math library LIBM.LIB.SYS

Math library (ANSI version) LIBMANSI.LIB.SYS

Additional ANSI library LIBCANSI.LIB.SYS
Chapter 9 163

Using Intrinsics
10 Using Intrinsics

This chapter describes the use of intrinsic functions in HP C/iX programs.

System routines on the MPE/iX operating system are generally referred to as intrinsics
because they are an integral or "intrinsic" part of the operating system. The essential
characteristic of an intrinsic is that a description of its interface is stored, in a compiled
form, in a specially formatted file known as an intrinsic file. MPE/iX intrinsics are
described in the file SYSINTR.PUB.SYS. Additionally, you can define your own intrinsics
and store their descriptions in your own intrinsic files, using the HP Pascal/iX compiler.

You use the intrinsic pragma to declare that the calling conventions for a particular
function are to be found by the compiler in an intrinsic file. You use the intrinsic_file
pragma to give the name of the intrinsic file, if it is other than SYSINTR.PUB.SYS.

An advantage of declaring a system routine as an intrinsic is that it often simplifies the
function call in the HP C source program. For example, parameters may be optional; they
can be omitted from the call and the compiler will generate the appropriate default values.
Furthermore, any "hidden" parameters required by the intrinsic will be generated
automatically. Finally, the compiler checks the types of the actual arguments against the
types of the intrinsic parameters and issues diagnostics if mismatches are found.
Chapter 10 175

Using Intrinsics
Intrinsic Pragma
Intrinsic Pragma
You use the intrinsic pragma to declare an external function as an intrinsic. It has the
following format:

#pragma intrinsic intrinsic-name 1 [user-name] [, intrinsic-name2 [user-name]
]...

Where:

intrinsic-name is the name of the intrinsic you want to call.

user-name is any valid C identifier. If specified, you must use this name to invoke the
intrinsic from the source program.

Examples
#pragma intrinsic FOPEN
#pragma intrinsic FCLOSE myfclose
#pragma intrinsic FCHECK, FGETINFO
#pragma intrinsic FWRITE mpe_fwrite, FREAD mpe_fread

The first example shows how to declare the FOPEN intrinsic as an external function. The
second example shows how to declare FCLOSE; you must call it by the name myfclose in
your program. The third and fourth examples each declare two intrinsics. The fourth
provides alternative names for the intrinsics.

When you designate an external function as an intrinsic, the compiler refers to the
intrinsic file to determine the function type, the number of parameters, and the type of
each parameter. The compiler then uses this information to perform the necessary
conversions and insertions to correctly invoke the routine, or to issue warnings and errors
if proper invocation is not possible.

Specifically, for intrinsic calls, the HP C/iX compiler does the following:

• Converts all value parameters to the type expected by the intrinsic function.
Conversions are performed as if an assignment is done from the argument value to the
formal parameter. This is known as assignment conversion . If a value cannot be
converted, an error message is issued.

• Converts addresses passed as reference parameters to the proper address type. This
means that short addresses are coerced to long addresses as required by the intrinsic
function. An integer value of zero is considered a legal value (NULL) for any address
parameter.

• Allows missing arguments in the call to the intrinsic if the intrinsic defines default
values for those parameters. The compiler supplies the default values for the missing
arguments, or issues an error message if there is no defined default value. Missing
arguments are allowed within an argument list or at the end of an argument list.

• Issues an error message if there are too many arguments.
176 Chapter 10

Using Intrinsics
Intrinsic Pragma
• Inserts "hidden" arguments required to correctly call Pascal routines that have
ANYVAR parameters (size is hidden) or that are EXTENSIBLE (parameter count is
hidden).

If you declare a system intrinsic using an extern declaration rather than an intrinsic
program, and if you do not provide a function prototype, none of the above checks,
conversions, or insertions are done. The address of an intrinsic can be taken, but if a call is
made using a pointer to the intrinsic, the above checks are not performed. The intrinsic
call then degenerates into a normal C function call.

To ensure that all calls are handled correctly by the compiler, the intrinsic pragma should
declare the name of the intrinsic using an identifier with the identical case that is used by
the function calls in the program, especially if the optional user-name is not specified. No
other functions in the program should have the same name as any intrinsic that is
declared, regardless of the case. This is because the actual run time symbol used to call an
intrinsic is not necessarily the same case as the identifier used to declare that intrinsic.

There are a few HP C library routines, such as fopen or fwrite , that have the same names
as intrinsic functions. If you wish to call any of these C library routines that always use
lower case identifiers from a program that also calls the intrinsics with the same name, the
intrinsics must be declared and called using mixed case or upper case identifiers, or by
using the optional user-name.
Chapter 10 177

Using Intrinsics
Intrinsic_file Pragma
Intrinsic_file Pragma
The intrinsic_file pragma specifies the name of the file in which the compiler can
locate information about intrinsic functions. It has the following format:

#pragma intrinsic_file "filename"

where filename is the fully qualified filename of the file you want the compiler to use to
look up information about intrinsics declared using the intrinsic pragma. If you do not
include the group and account name of the file, the compiler looks in the group and account
of the current user.

If you do not use this pragma, the compiler looks in a file called SYSINTR.PUB.SYS by
default. The file SYSINTR.PUB.SYS contains descriptions of all MPE/iX intrinsics. You
only need to use the intrinsic_file pragma if you are building your own intrinsic files
using the HP Pascal/iX compiler and you must specify a file other than the default. Refer to
the HP Pascal Programmer's Guide for information about building your own intrinsic files.

The compiler refers to the specified file until another intrinsic_file pragma is
encountered. To return the search to SYSINTR.PUB.SYS, specify the intrinsic_file
pragma with a null string:

#pragma intrinsic_file

Some examples of intrinsic_file and intrinsic pragmas follow.

#pragma intrinsic FOPEN, FCLOSE, FREAD /* SYSINTR.PUB.SYS used */
#pragma intrinsic_file "MYINTR"
#pragma intrinsic mytest1, mytest2 /* MYINTR.MYGROUP.MYACCT used */
#pragma intrinsic_file ""
#pragma intrinsic FCHECK, FGETINFO /* SYSINTR.PUB.SYS used */

In the first pragma, the compiler searches the default file for information about the FOPEN,
FCLOSE, and FREAD pragmas. The second pragma specifies a different file for the compiler
to search, MYINTR. The third pragma declares two intrinsics, mytest1 and mytest2 , that
must be described in MYINTR. The fourth pragma returns the search to SYSINTR, where
FCHECK and FGETINFO descriptions are found.
178 Chapter 10

Using Intrinsics
Condition Codes
Condition Codes
Condition codes are temporary values that provide basic information about the execution
of intrinsics. Many of the MPE/iX intrinsics alter the condition code upon their completion.
You can review condition code values to determine the success of an intrinsic call. To
recover the condition code, call the HP C/iX library routine, ccode , immediately upon
returning from an intrinsic. This ensures that no other instruction alters the condition
code. You should only use the ccode routine in simple if statements or assignment
statements because of the possible side effects of the order of expression evaluation.

The following macros in the MPE.H header file define condition code values:

The specific meaning of the condition code depends on which intrinsic function is called.
Refer to the description of each intrinsic in the MPE/iX Intrinsics Reference Manual for
the exact meaning of the condition code.

Example

The following code segment illustrates typical condition code checking.

SOME_INTRINSIC_FUNC(arg1, arg2);
if (ccode() != CCE)

error_handler(); /* Intrinsic call failed; */
/* set up error handler */

Table 10-1. Condition Code Values

Macro Value Meaning

CCG Condition code greater A special condition occurred but may not have affected the
execution of the request.

CCL Condition code less The request was not granted, but the error condition may be
recoverable.

CCE Condition code equal This generally indicates that the request was granted.
Chapter 10 179

Using Intrinsics
Calling Trap Intrinsics
Calling Trap Intrinsics
The MPE/iX trap intrinsics often require a plabel parameter that is either by value or by
reference. The HP C/iX implementation of plabel is simply the "pointer to function" type.
Whenever a function pointer is used, the compiler is actually generating a plabel. Since
plabel is not a basic data type across languages, and other languages do not support the
integer value zero as a valid null pointer, the intrinsic mechanism describes plabels as
integers in both the documentation and SYSINTR file. This means that a cast must be
applied to the plabel parameters for trap intrinsics that are called from C, or the compiler
issues an error. Remember that using a function name in a context other than a function
call yields "pointer to function."

Example
#pragma intrinsic XCONTRAP
#include <stdio.h>
void func1(void)
{

printf("control-Y was hit\n");
}

main(void)
{
void (*oldfunc1)();

/* First parm is plabel by value, */
/* second plabel is by reference. */
XCONTRAP((int)func1, (int*)&oldfunc1);

}

180 Chapter 10

The Listing Facility
11 The Listing Facility

The HP C/XL compiler generates a listing by default. This listing appears on the
$STDLIST file, or it can be redirected to a file as explained in chapter 8.
Chapter 11 183

The Listing Facility
Listing Format
Listing Format
The listing consists of the following information:

• A banner on the top of each page.

• A line number for each source line.

• The nesting level for each statement or declaration.

There are two styles of listing available: non-ANSI mode and ANSI mode.

Non-ANSI Mode

In non-ANSI mode, the text of the listing is the output of the preprocessor after macro
substitution with #include files inserted.

ANSI Mode

In ANSI mode, the text of the listing is the original version of the source file before macro
substitution; #include files are inserted. To produce the non-ANSI style listing, compile
with the +Lp option instead of the +L option.

NOTE The +Lp option only has this effect when it is used in conjunction with the -Aa
option.

In either mode, comments are stripped from the listing (unless the -C option is specified).
184 Chapter 11

The Listing Facility
Listing Pragmas
Listing Pragmas
The listing facility provides a number of pragmas to control various aspects of the listing
format. The available pragmas are described below.

#pragma LINES linenum

Sets the number of lines per page to linenum . Default is 63. Minimum number is 20 lines.

#pragma WIDTH pagewidth

Sets the width of the page to pagewidth . Default is 80 columns. Minimum number is 50
columns.

NOTE If the WIDTH pragma is being used, put it before any TITLE or SUBTITLE
pragmas, since the title and subtitle field widths vary with the page width.

#pragma TITLE "string"

Sets the page title to string . string is truncated without warning to 44 characters less
than the page width. Default is the empty string.

#pragma SUBTITLE "string"

Sets the page subtitle to string . string is truncated without warning to 44 characters
less than the page width. Default is the empty string.

NOTE The TITLE and SUBTITLE pragmas do not take effect until the second page,
because the banner on the first page appears before the pragmas.

#pragma PAGE

Causes a page break and the start of a new page.

[#pragma AUTOPAGE {ONOFF}]

Causes a page break after each function definition. Default is OFF.

[#pragma LIST {ONOFF}]

Turns the listing ON/OFF. The default is ON. Use this pragma as a toggle to turn listing off
around any source lines that you do not want to be listed, such as include files.
Chapter 11 185

The Listing Facility
Listing Options
Listing Options
Two compiler options are provided to write additional information to the listing. The
-Wc,-m (abbreviated +m) option is used to generate identifier maps. The -Wc,-o
(abbreviated +o) option is used to generate code offsets.

Identifier Maps

When the +moption is specified, the compiler produces a series of identifier maps, grouped
by function. The map shows the declared identifiers, storage class, type, and address or
constant value.

The first column of the map lists, in alphabetical order, the initial 20 characters of all the
identifiers declared in the function. Member names of structures and unions appear
indented under the structure or union name.

The second column displays the storage class of each identifier. The compiler distinguishes
the following storage classes:

auto external definition static
constant member typedef
external register

The third column shows the type of the identifier. The types include:

array int union
char long int unsigned char
double long double unsigned int
enum short int unsigned long
float signed char unsigned short
function struct void

The type qualifiers, const and vol (for volatile), can also appear in the third column.

The fourth column indicates the relative register location of an identifier. Members of a
union type are in the form W @ B, where W is the byte offset and B is the bit offset within
the word. Both offsets are given in hexadecimal notation. Example

main(void)
{

enum colors {red, green, blue} this_color;
struct SS {

char *name;
char sex;
int birthdate;
int ssn;
float gpa;
struct SS *previous;
} pupil_rec;

union UU {
int flag;
float average;
} datum;
186 Chapter 11

The Listing Facility
Listing Options
struct SS second_pupil;

this_color = red;
pupil_rec.sex = 'm';
datum.flag = 1;
second_pupil.gpa = 3.72;

}

G L O B A L I D E N T I F I E R M A P

Identifier Class Type Address
- -

main ext def int () main

L O C A L I D E N T I F I E R M A P S

main

Identifier Class Type Address
- -

blue const enum colors 2
datum auto union UU SP-64

flag member int 0x0 @ 0x0
average member float 0x0 @ 0x0

green const enum colors 1
pupil_rec auto struct SS SP-60

name member char * 0x0 @ 0x0
sex member char 0x4 @ 0x0
birthdate member int 0x8 @ 0x0
ssn member int 0xc @ 0x0
gpa member float 0x10 @ 0x0
previous member struct * 0x14 @ 0x0

red const enum colors 0
second_pupil auto struct SS SP-88

name member char * 0x0 @ 0x0
sex member char 0x4 @ 0x0
birthdate member int 0x8 @ 0x0
ssn member int 0xc @ 0x0
gpa member float 0x10 @ 0x0
previous member struct * 0x14 @ 0x0

this_color auto enum colors SP-36

Code Offsets

When the -Wc,-o (or +o) option is specified, the compiler produces a series of the code
offsets for each executable statement, grouped by function. Source line numbers are given
in decimal notation followed by the associated code address specified in hexadecimal
notation. The code address is relative to the beginning of the function.
Chapter 11 187

The Listing Facility
Listing Options
Example

#include <stdio.h>
main(void)
{

int j;
void func1 (int);
void func2 (int);

for (j=0;) {
func1 (j);
func2 (j);

}
}

void func1 (int i)
{

while (i) {
if (!(i % 5))

printf ("%d is divisible by 5\n", i);
;

}
}

void func2 (int j)
{

int k, m;

k = j % 10 ? 1 : 0;
if (k) {

m = 23;
k = m * m;

}
}

C O D E O F F S E T S

main "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset
7 8 8 18 9 20

func1 "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset
17 c 18 14 19 24 20 34

func2 "myfile.c"

Line Offset Line Offset Line Offset Line Offset Line Offset
30 4 31 20 32 28 33 30
188 Chapter 11

Run-Time Diagnostic Messages
A Run-Time Diagnostic Messages

This appendix lists the run-time error messages generated by HP C/XL programs. The
error messages are listed in numerical order. Possible causes for each error are provided
along with actions you may take to correct the error. An example of an HP C run-time error
is shown below:

**** MISSING NAME FOR REDIRECT (CERR 4)

where:

MISSING NAME FOR REDIRECT is the message text.

CERR indicates the subsystem name.

4 indicates the diagnostic message number.
Appendix A 189

Run-Time Diagnostic Messages
Error Messages
Error Messages

1 AMBIGUOUS INPUT REDIRECT

More than one input redirection character (<) appears in the INFO string. For example,

RUN prog; INFO="< infile1 < infile2 "

Remove one of the input redirection specifiers.

2 AMBIGUOUS OUTPUT REDIRECT

More than one output redirection character (>) appears in the INFO string. For example,

RUN prog; INFO="> outfile1 > outfile2 "

Remove one of the output redirection specifiers.

3 BAD NAME FOR REDIRECT

The file name specified for input/output redirection in the INFO string does not begin with an
asterisk (*), a dollar sign ($), or an alphabetic character. For example,

RUN prog; INFO="> 2badfile "

Specify a valid file name for input/output redirection.

4 MISSING NAME FOR REDIRECT

An input/output redirection character (< or >) appears in the INFO string but no
corresponding file name is specified. For example,

RUN prog; INFO="<"

Specify a file name for the redirection.

5 UNMATCHED QUOTE WITHIN INFO STRING

A quoted string within the INFO string contains a beginning quote but no matching end
quote. For example,

RUN prog; INFO="' quoted string "

Add a matching end quote to the quoted string.

6 REDIRECTION OF STDIN FAILED

The file specified for input redirection in the INFO string can not be opened. For example,

RUN prog; INFO="< badfile "

where badfile does not exist.

Check to see if the file specified for redirection exists and is accessible for reading by the user
invoking the program.

7 REDIRECTION OF STDOUT FAILED
190 Appendix A

Run-Time Diagnostic Messages
Error Messages
The file specified for output redirection in the INFO string can not be opened. For example,

RUN prog; INFO="> badfile "

where badfile can not be opened for writing.

Check to see if the file specified for redirection is accessible for writing by the user invoking
the program.

9 NO FILES FOUND IN FILE-SET

A file-set wildcard specified in the INFO string did not match any files. For example,

RUN prog; INFO="@. nofiles "

where nofiles is a group containing no files.

Check to see if the file-set wildcard represents a non-empty file-set.

10 ERROR IN EXPANDING FILE-SET WILDCARD

The file-set wildcard expander encountered an error in trying to expand a file-set wildcard
in the INFO string. For example,

RUN prog; INFO="@. badgroup "

where badgroup is a non-existent group.

Check to see if the file-set wildcard represents a valid file-set.

12 INFO STRING ARG LIST TOO LONG

The number of arguments (argv elements) specified in the INFO string exceeds the 1023
argument limit. For example,

RUN prog; INFO="@.@.@"

where the file-set @.@.@ contains more than 1023 files.

Reduce the number of arguments specified in the INFO string.

13 AMBIGUOUS USE OF QUOTES WITHIN INFO STRING

A quote character that is not a closing quote or an escaped quote is specified within a quoted
string in the INFO string. For example,

RUN prog; INFO="'abcd'e"

The quote character between the characters d and e is not considered a closing quote
because the character following it is not a valid string terminator, such as a space, tab or
redirection character.

Insert a string terminator character after the closing quote. For example,

RUN prog; INFO="'abcd' e"
Appendix A 191

Syntax Summary
B Syntax Summary

This appendix presents a summary of the C language syntax as described in this manual.
Appendix B 197

Syntax Summary
Lexical Grammar
Lexical Grammar

Tokens
token ::= keyword

identifier
constant
string-literal
operator
punctuator

preprocessing-token ::=
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character cannot be one of the above

Keywords
keyword ::= any word from the set:

auto extern sizeof
break float static
case for struct
char goto switch
const if typedef
continue int union
default long unsigned
do register void
double return volatile
else short while
enum signed

Identifiers
identifier ::= nondigit

identifier nondigit
identifier digit
identifier dollar-sign

nondigit ::= any character from the set:
_ a b c d e f g h i j k l m n o p
q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X
Y Z $

digit := any character from the set:
198 Appendix B

Syntax Summary
Lexical Grammar
0 1 2 3 4 5 6 7 8 9

dollar-sign ::= the $ character

Constants
constant ::=

floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant ::=
fractional-constant [exponent-part] [floating-suffix]
digit-sequence exponent-part [floating-suffix]

fractional-constant ::=
[digit-sequence] . digit-sequence
digit-sequence .

exponent-part ::=
e [sign] digit-sequence
E [sign] digit-sequence

sign ::=
+
-

digit-sequence ::=
digit
digit-sequence digit

floating-suffix ::=
f l F L

integer-constant ::=
decimal-constant [integer-suffix]
octal-constant [integer-suffix]
hexadecimal-constant [integer-suffix]

decimal-constant ::=
nonzero-digit
decimal-constant digit

octal-constant ::=
0
octal-constant octal-digit

hexadecimal-constant ::=
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit
Appendix B 199

Syntax Summary
Lexical Grammar
nonzero-digit ::= any character from the set:
1 2 3 4 5 6 7 8 9

octal-digit ::= any character from the set
0 1 2 3 4 5 6 7

hexadecimal-digit ::= any character from the set
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :=
unsigned-suffix [long-suffix]
long-suffix [unsigned-suffix]

unsigned-suffix ::=
u U

long-suffix ::=
l L

enumeration-constant ::= identifier

character-constant ::=
' c-char-sequence '
L' c-char-sequence '

c-char-sequence ::=
c-char
c-char-sequence c-char

c-char ::=
any character in the source character set except

the single quote ('), backslash (\), or new-line character
escape-sequence

escape-sequence ::=
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence ::=
\’ \” \? \\ \ddd \xdd
\a \b \f \n \r \t \v

octal-escape-sequence ::=
octal-digit
octal-digit octal-digit
octal-digit octal-digit octal-digit

hexadecimal-escape-sequence ::=
x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit
200 Appendix B

Syntax Summary
Lexical Grammar
String Literals
string-literal ::=

" [s-char-sequence] "
L" [s-char-sequence] "

s-char-sequence ::=
s-char
s-char-sequence s-char

s-char ::=
any character in the source character set except

the double-quote (") , backslash (\),
or new-line character
escape-sequence

Operators
operator ::= One selected from:

[] () . ->
++ -- & * + - ~ ! sizeof
/ %
<< >> < > <= >= == != ^ | && ||
? :
= *= /= %= += -= <<= >>= &= ^= |=
, # ##

Punctuators
punctuator ::= One selected from:

[] () { } * , : = ; ... #

Header Names
header-name ::=

<h-char-sequence >
" q-char-sequence "

h-char-sequence ::=
h-char
h-char-sequence h-char

h-char ::=
any character in the source character set except

the newline character and

q-char-sequence ::=
q-char
q-char-sequence q-char

q-char ::=
any character in the source character set except

the newline character and "
Appendix B 201

Syntax Summary
Lexical Grammar
Preprocessing Numbers
pp-number ::=

digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .
202 Appendix B

Syntax Summary
Phrase Structure Grammar
Phrase Structure Grammar

Expressions
primary-expression ::=

identifier
constant
string-literal
(expression)

postfix-expression ::=
primary-expression
postfix-expression [expression]
postfix-expression ([argument-expression-list])
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression
postfix-expression

argument-expression-list ::=
assignment-expression
argument-expression-list , assignment-expression

unary-expression ::=
postfix-expression

unary-expression
unary-expression

unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator ::= one selected from
& * + - ~ !

cast-expression ::=
unary-expression
(type-name) cast-expression

multiplicative-expression ::=
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %%cast-expression

additive-expression ::=
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Appendix B 203

Syntax Summary
Phrase Structure Grammar
shift-expression ::=
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression ::=
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression ::=
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

AND-expression ::=
equality-expression
AND-expression & equality-expression

exclusive-OR-expression ::=
AND-expression
exclusive-OR-expression ^ AND-expression

inclusive-OR-expression ::=
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression ::=
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression ::=
logical-AND-expression
logical-OR-expression || logical-AND-expression

conditional-expression ::=
logical-OR-expression
logical-OR-expression ? logical-OR-expression :

conditional-expression

assignment-expression ::=
conditional-expression
unary-expression assign-operator assignment-expression

assign-operator ::= one selected from the set
= *= /= %= += -= <<= >>= &= |=

expression ::=
assignment-expression
expression , assignment-expression
204 Appendix B

Syntax Summary
Phrase Structure Grammar
constant-expression ::=
conditional-expression

Declarations
declaration ::=

declaration-specifiers [init-declarator-list] ;

declaration-specifiers ::=
storage-class [declaration-specifiers]
type-specifier [declaration-specifiers]
type-qualifier [declaration-specifiers

init-declarator-list ::=
init-declarator
init-declarator-list , init-declarator

init-declarator ::=
declarator
declarator = initializer

storage-class-specifier ::=
typedef
extern
static
auto
register

type-specifier ::=
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union specifier ::=
[struct-or-union identifier] [{struct-declaration-list}]
struct-or-union identifier

struct-or-union ::=
struct
union

struct-declaration-list ::=
Appendix B 205

Syntax Summary
Phrase Structure Grammar
struct-declaration
struct-declaration-list struct-declaration

struct-declaration ::=
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list ::=
type-specifier [specifier-qualifier-list]
type-qualifier [specifier-qualifier-list]

struct-declarator-list ::=
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator ::=
declarator
[declarator] : constant-expression

enum-specifier ::=
enum [identifier] { enumerator-list }
enum [identifier]

enumerator-list ::=
enumerator
enumerator-list , enumerator

enumerator ::=
enumeration-constant
enumeration-constant = constant-expression

type-qualifier ::=
const
noalias
volatile

declarator ::=
[pointer] direct-declarator

direct-declarator ::=
identifier
(declarator)
direct-declarator [[constant-expression]]
direct-declarator (parameter-type-list)
direct-declarator ([identifier-list])

pointer ::=
* [type-qualifier-list]
* [type-qualifier-list] pointer

type-qualifier-list ::=
type-qualifier
type-qualifier-list type-qualifier
206 Appendix B

Syntax Summary
Phrase Structure Grammar
parameter-type-list ::=
parameter-list
parameter-list , ...

parameter-list ::=
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration ::=
declaration-specifiers declarator
declaration-specifiers [abstract-declarator]

identifier-list ::=
identifier
identifier-list , identifier

type-name ::=
specifier-qualifier-list [abstract-declarator]

abstract-declarator ::=
pointer
[pointer] direct-abstract-declarator

direct-abstract-declarator ::=
(abstract-declarator)
[direct-abstract-declarator] [[constant-expression]]
[direct-abstract-declarator] ([parameter-type-list])

typedef-name ::=
identifier

initializer ::=
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list ::=
initializer
initializer-list , initializer

Statements
statement ::=

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

labeled-statement ::=
identifier : statement
case constant-expression : statement
Appendix B 207

Syntax Summary
Phrase Structure Grammar
default: statement

compound-statement ::=
{ [declaration-list] [statement-list] }

declaration-list ::=
declaration
declaration-list declaration

statement-list ::=
statement
statement-list statement

expression-statement ::=
[expression] ;

selection-statement ::=
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement ::=
while (expression) statement
do statement while (expression)
for ([expression] ; [expression] ; [expression]) statement

jump-statement ::=
goto identifier ;
continue ;
break ;
return [expression] ;

External Definitions
translation-unit ::=

external-declaration
translation-unit external-declaration

external-declaration ::=
function-definition
declaration

function-definition ::=
[declaration-specifiers] declarator [declaration-list]

compound-statement
208 Appendix B

Syntax Summary
Preprocessing Directives
Preprocessing Directives
preprocessing-file ::=

[group]

group ::=
group-part
group group-part

group-part ::=
[pp-tokens] new-line
if-section
control-line

if-section ::=
if-group [elif-groups] [else-group] endif-line

if-group ::=
if constant-expression new-line [group]
ifdef identifier new-line [group]
ifndef identifier new-line [group]

elif-groups ::=
elif-group
elif-groups elif-group

elif-group ::=
elif constant-expression new-line [group]

else-group ::=
else new-line [group]

endif-group ::=
endif new-line

control-line ::=
include pp-tokens new-line
define identifier replacement-list new-line
define identifier ([identifier-list]) replacement-list newline
undef identifier new-line
line pp-tokens new-line
error [pp-tokens] new-line
pragma [pp-tokens] new-line
new-line

replacement-list ::=
[pp-tokens]

pp-tokens ::=
preprocessing-token
pp-tokens preprocessing-token
Appendix B 209

Syntax Summary
Preprocessing Directives
new-line ::=
the new-line character
210 Appendix B

	1� Introduction
	2� Lexical Elements
	3� Data Types and Declarations
	4� Type Conversions
	5� Expressions
	6� Statements
	7� Preprocessing Directives
	8� Compiling and Running HP C/iX Programs
	9� HP C/iX Implementation Topics
	10� Using Intrinsics
	11� The Listing Facility
	A� Run-Time Diagnostic Messages
	B� Syntax Summary

