
HP C/iX Library Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 4
Manufacturing Part Number: 30026-90004
E1092

U.S.A. October 1992

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1987,1988, 1990 1992, 1996 by Hewlett-Packard Company
2

Introduction to the HP C/iX Library
1 Introduction to the HP C/iX Library

HP C/iX has an extensive library of standard functions that are found in most
implementations of the language. The functions provide facilities for such operations as
input, output, mathematics, string manipulation, and time and date operations. The HP
C/iX implementation provides a high degree of compatibility with the HP-UX standard
library for the C language, and provides all the library functions required by the ANSI
standard for the C language.
Chapter 1 3

Introduction to the HP C/iX Library
Organization of the HP C/iX Library
Organization of the HP C/iX Library
The HP C/iX library consists of several files that can be divided into three groups:
standard library functions, mathematical library functions, and library functions available
only on HP 3000 Series 900 computers.

If you are developing POSIX applications on MPE/iX, you will be using the POSIX/iX
library. This library is separate from the HP C/iX library and is organized differently. The
POSIX/iX library is described in the MPE/iX Developer's Kit Reference Manual.

The Standard Library

The standard library consists of the input/output functions, the general utility functions,
and the program startup routines. All C programs must link in the standard library
because it contains the startup routines necessary for program execution. Failure to link in
this library results in a linker or loader error.

The standard C library functions are provided in three different forms: a relocatable
library (LIBC.LIB.SYS), an executable library (XL.PUB.SYS), and a relocatable library that
is suitable for adding to an executable library that you build (LIBCXL.LIB.SYS).

Each form of the library is intended for different uses. The relocatable form
(LIBC.LIB.SYS) is for programmers who want the HP Link Editor/iX to bind copies of
library functions to the application program at link time. This reduces the amount of
dynamic binding that must be done at run time. However, this makes less efficient use of
memory space because each application duplicates the library functions that it uses.

The executable forms of the library are placed into shared libraries that can be accessed
when applications written in C are executed. System memory usage decreases when C
programs access the shared library. Only one copy of each function is loaded into the
computer's main memory. For example, if several applications use printf , only one copy of
the actual printf executable code is loaded into memory. All applications share the same
copy.

The files that contain the standard library are listed in <Undefined Cross-Reference>:

Table 1-1. Standard Library Files

File Description

XL.PUB.SYS The executable library (XL) form of the standard library, including
executable libraries from other subsystems and languages.

LIBCINIT.LIB.SYS The code necessary to initialize the XL form of standard library.

LIBC.LIB.SYS The relocatable library (RL) form of the standard library functions.

LIBCANSI.LIB.SYS The relocatable library that should be linked along with LIBCINIT or
LIBC if conformance to ANSI C is desired.

LIBCRAND.LIB.SYS The random number related functions, rand and srand , in RL form.
4 Chapter 1

Introduction to the HP C/iX Library
Organization of the HP C/iX Library
The executable form of the standard library in XL.PUB.SYS is automatically searched
when any C program is executed. To use the XL form of the library, you must add the
LIBCINIT.LIB.SYS file to the RL list when linking your program.

To use the relocatable form of the standard library, you must add the LIBC.LIB.SYS file to
the RL list when linking your program. In this case, you must not specify the
LIBCINIT.LIB.SYS file.

NOTE Either the LIBCINIT.LIB.SYS file or the LIBC.LIB.SYS file, but not both,
must be specified in the RL list when linking a C program.

The relocatable library contained in LIBCANSI contains a flag that specifies that
ANSI-conformant behavior is desired. Certain functions, primarily those that perform
input/output operations on text files, interrogate this flag and behave accordingly. To
specify ANSI-conforming behavior for the standard library functions, add
LIBCANSI.LIB.SYS to the RL list when linking your program. If you want behavior
consistent with pre-ANSI releases of the library, do not link with LIBCANSI . Normally,
ANSI-conforming behavior should be requested for new programs.

If you use the CCXLLKcommand to compile and link a C program, or the CCXLGOcommand
to compile, link, and run a C program, then LIBCANSI.LIB.SYS is automatically added to
the RL list in the link step if you compiled in ANSI mode (-Aa option). If you compile and
link with separate commands, specify LIBCANSI if you want ANSI-conforming behavior.

The rand and srand functions are not in the XL or RL versions of LIBC.LIB.SYS . To use
the rand and srand functions, you must add the LIBCRAND.LIB.SYS file to the RL list
when linking your program. There is no XL version of these functions. The special
treatment for the rand and srand functions is due to a name conflict between the HP C/iX
library function rand and the MPE/iX compiler library function rand .

The LIBCXL.LIB.SYS file facilitates building additional executable libraries containing the
standard library and should not be linked into C programs.

The following examples link the standard library into a program. In the examples, assume
that the object files MYOBJ1 and MYOBJ2 were created by the HP C/iX compiler and define
the function main . To use the XL version of the standard library in a program called
MYPROG1, specify the following LINK command:

LINK FROM=MYOBJ1; TO=MYPROG1; RL=LIBCINIT.LIB.SYS,

LIBCWC.LIB.SYS The relocatable library that enables an HP C/iX program to expand valid
file set wildcards into fully qualified permanent file names and pass them
into the main program. See the HP C/iX Reference Manual for details.

LIBCXL.LIB.SYS A relocatable library that is used to build the XL form of the standard
library.

LIBM.LIB.SYS The mathematical library functions in RL form.

LIBMANSI.LIB.SYS An ANSI-conforming version of the mathematical library.

Table 1-1. Standard Library Files

File Description
Chapter 1 5

Introduction to the HP C/iX Library
Organization of the HP C/iX Library
LIBCANSI.LIB.SYS

To use the rand function with the RL version of the standard library in a program called
MYPROG2, specify the following LINK command:

LINK FROM=MYOBJ2;TO=MYPROG2;RL=LIBCRAND.LIB.SYS,LIBC.LIB.SYS,
LIBCANSI.LIB.SYS

For a complete specification of available functions, see chapter 5.

The Math Library

The math library consists of additional mathematical functions, such as trigonometric and
logarithmic functions, that perform floating-point operations.

Two relocatable versions of the math library are provided. The library in
LIBMANSI.LIB.SYS conforms to the ANSI standard for C and is the version you should use.
The library in LIBM.LIB.SYS is compatible with older, pre-ANSI releases of the library,
and is for programs that may be relying on non-ANSI behaviors.

The primary difference between the two libraries is in the way they handle an error, such
as attempting to compute the square root of a negative value. The ANSI version of the
library calls a user-written function named _matherr if one is provided; no error message
is displayed. The older version of the library calls a user-written function named matherr
if one is provided. Otherwise, an error message is displayed.

To use the math library, you must add the library file to your RL list when linking your
program. The math library must precede the standard library (LIBC.LIB.SYS) in the RL
list if the RL form of the standard library is used. The ordering of the files is significant
because of the interdependencies between the libraries. The ordering is not significant if
the XL form of the standard library is linked.

The following example links the math library into a program. In the example, assume the
object file MYOBJwas created by the HP C/iX compiler and defines the function main . To use
the ANSI-conforming math library and the RL version of the standard library in a
program called MYMATH, specify the following link command:

LINK FROM=MYOBJ;TO=MYMATH;RL=LIBMANSI.LIB.SYS,LIBC.LIB.SYS,
LIBCANSI.LIB.SYS

For a complete specification of math library functions, see chapter 5.

Other Library Functions

In addition to the standard library functions and the math library functions, HP C/iX
provides another set of functions that perform miscellaneous tasks.

For a complete specification of available functions, see chapter 5.
6 Chapter 1

Introduction to the HP C/iX Library
Library Header Files
Library Header Files
To use many of the facilities of the HP C/iX library, your C source code should include the
preprocessing directive:

#include incfile .h>

Enclosing incfile .h in angle brackets tells the preprocessing phase of the compiler to look
for that file in a standard location on the system, the H group of the SYS account for HP
C/iX. For example, if you want to use the fprintf function, your program should specify:

#include stdio.h>

This includes the declaration of fprintf , as well as various types and variables used by
the functions found in the stdio.h header file. The standard include file or files that are
needed for each function are specified in the syntax descriptions provided in chapter 5. The
order of inclusion of the header files using the #include directive makes no difference, and
an error does not occur if you include the same header file more than once.

The following table lists and describes the HP C/iX library header files:

Table 1-2. HP C/iX Library Header Files

Header Description

<assert.h> Defines the assert macro.

<ctype.h> Declares macros and external functions useful for testing and mapping
characters.

<errno.h> Declares error variables and defines macros useful for obtaining a more detailed
description of a library function error.

<fcntl.h> a Defines arguments to the open function.

<float.h> Defines macros that describe the floating-point types.

<limits.h> Defines several macros that represent basic C data type limits.

<locale.h> Used for localization. Contains macro definitions, function, and type declarations
needed to select the desired locale.

<malloc.h> Declares memory management functions, mallopt argument functions, and a
structure returned by the mallinfo function. Memory management functions are
also declared in <stdlib.h> .

<math.h> Contains declarations for the HP C/iX math library functions, as well as
functions in the standard library that return floating-point values. Also defines
the structure and constants used by the matherr error-handling mechanisms.

<memory.h> Declares several functions useful for manipulating character arrays and other
objects treated as character arrays. These functions are also declared in
<string.h> .

<mpe.h> Declares several types, constants, and functions that facilitate using the MPE/iX
operating system interface. See chapter 4 for additional information.
Chapter 1 7

Introduction to the HP C/iX Library
Library Header Files
Some of the ANSI-defined header files, as implemented in the HP C/iX library, contain
declarations for entities beyond those required by ANSI C. For example, the header
<math.h> contains a macro definition for M_PI, the value of the mathematical constant pi .
Because M_PI is not a reserved identifier in C, it is possible that a legal C program might
use that identifier for a different purpose. Consequently, it is important that the compiler
not process such declarations when compiling in ANSI mode.

If you have a program that relies on a non-ANSI declaration in one of the standard header
files, and if you want to compile in ANSI mode, you must explicitly request such
declarations to be visible. You do so by adding the following directive to your source file
before including the standard header file:

#define _MPEXL_SOURCE

This tells the preprocessor that your source program needs the extensions present in
MPE/iX. Alternatively, you could specify this using the compiler option -D_MPEXL_SOURCE

<search.h> Defines the types used with the hsearch and tsearch functions.

<setjmp.h> Declares a type and several functions for bypassing the normal function call and
return discipline.

<signal.h> Contains declaration used in dealing with conditions that may be reported during
program execution.

<stdarg.h> Provides a standard method for dealing with variable arguments.

<stddef.h> Defines several macros and types used widely in conjunction with the C library.

<stdio.h> Defines a structure, several functions, and macros useful for I/O.

<stdlib.h> Declares various general utility functions and macros.

<string.h> Declares functions useful for manipulating character arrays and other objects
treated as character arrays.

<time.h> Declares types, global variables, and functions used for manipulating time.

<times.h> b Contains the definition of the struct tms , which is used by some older non-ANSI
library functions.

<unistd.h> Defines macros that are used as arguments to the lseek function. These macros
are also declared in <stdarg.h> .

<values.h> Contains a set of manifest constants, conditionally defined for particular
processor architectures.

<varargs.h> Declares types and macros for declaring variable argument functions. See also
<stdarg.h> .

a. These headers are not defined by the ANSI C standard. Programs using these headers are
likely to be less portable.

b. These headers are not defined by the ANSI C standard. Programs using these headers are
likely to be less portable.

Table 1-2. HP C/iX Library Header Files

Header Description
8 Chapter 1

Introduction to the HP C/iX Library
Library Header Files
when you invoke the compiler. For compatibility with previous releases, this directive is
automatically issued for you if you are not compiling in ANSI mode.
Chapter 1 9

Introduction to the HP C/iX Library
Library Header Files
10 Chapter 1

HP C/iX Library Input and Output
2 HP C/iX Library Input and Output

This chapter discusses HP C/iX library input/output functions and streams.
Chapter 2 13

HP C/iX Library Input and Output
HP C/iX Library Input and Output
HP C/iX Library Input and Output
The C language does not provide any direct facility to perform input or output. Instead, C
implementations usually provide a set of functions that perform I/O. Care must be used
when calling the I/O functions because the compiler does not ensure that the arguments to
the functions are correct. Most errors in calls to I/O functions may not provide the correct
results and may cause addressing violations and abnormal terminations.

HP C/iX provides two I/O facilities. You can call MPE intrinsics directly or call a set of
supplied C functions that provide an interface that is transportable to other systems.
Because most of the C functions are built on top of MPE, they may not execute as quickly
as direct MPE calls. The added time in most cases is small and the resulting portability is
usually well worth the extra execution time.

You should use either HP C/iX I/O functions or MPE/iX intrinsics, but not both, in the
same program. Using HP C/iX I/O functions with MPE/iX intrinsics to operate on the same
file can result in unpredictable program behavior. The HP C/iX I/O routines use data and
file control buffers that are different from the ones used by the MPE/iX I/O intrinsics.

HP C/iX I/O and POSIX I/O functions utilize a byte stream model. The data is treated as
a continuous stream of bytes. There are conceptually no record boundaries.

The HP C/iX I/O functions allow C programs to access any file type supported by MPE.
These functions emulate stream I/O when accessing MPE (non-byte stream) files.

The performance of stream emulation suffers when accessing variable-length records with
certain I/O functions. For example, the HP C I/O function fseek enables the caller to
position a file pointer to any given byte number. In the case of files that are composed of
fixed-sized records, the positioning operation is direct because the address of the record
that contains the interesting byte can be calculated and the file pointer can be positioned
to it. If a file has variable-length records, the fseek function still works, but the
implementation requires the file to be rewound and then all records are read until the
required record is reached. The fseek function is much slower with variable-length record
MPE files than with fixed-length record MPE files.

Basic Stream Usage

Using a stream is similar to using an MPE file. A stream is opened by calling the C library
function fopen() . The fopen function creates a data structure that contains descriptive
data about a stream and returns a pointer to this structure. This pointer designates the
stream in all further transactions.

When you use the fopen function to open an existing file, the fixed attributes of the file
take precedence over the mode requested by fopen() . In particular, an existing ASCII file
is opened as a text stream, and an existing binary file is opened as a binary stream,
regardless of the mode requested by fopen() .

Three constant pointers that designate standard streams opened automatically by the C
startup routines can also be used in further transactions. Refer to the section called
"Standard Files" for details.
14 Chapter 2

HP C/iX Library Input and Output
HP C/iX Library Input and Output
After a stream has been opened, you may read from it or write to it in several ways.
Reading or writing can be done on a character-by-character basis using the inline macros
getc and putc , or on a block-by-block basis using functions such as fread or fwrite . The
macros getchar and putchar and the higher-level functions fgetc , fgets , fprintf ,
fputc , fputs , fread , fscanf , fwrite , gets , printf , puts , and scanf use, or act as if they
use, getc and putc ; they may be freely intermixed.

An open stream can also be controlled by functions such as fseek and rewind . These
functions allow you to position the stream position indicator to an arbitrary byte.

When you are finished using a stream, the stream should be closed. This may be
accomplished by issuing a call to fclose , implicitly by calling exit , or by returning from
the main function. It is important to close all files because the fclose function causes
information that is buffered in memory to be written out to the physical file. Calling an
MPE termination routine does not properly close open streams.

Stream Types

The HP C/iX library supports two stream types: text and binary streams. The stream type
dictates how special characters are to be processed and how records are to be padded.
Streams created by the HP C/iX library default to text streams.

Text Streams

A text stream is an ordered sequence of characters composed into lines with each line
consisting of zero or more characters plus a terminating newline (\n) character.

On MPE/iX, text streams are line-oriented fixed record length ASCII files. Text streams
are usually the product of editor programs and are read directly without any
interpretation by other functions. The newline character is not actually written to the file,
but is used by the HP C/iX I/O functions to indicate when a buffer is full of information and
should be posted to the file.

On input, newline characters are added to the records read from the file to make it appear
as if the newline character is actually in the file. This is done to allow programs, such as
EDITOR, to produce files that can be read by C functions in a manner compatible with other
systems. ASCII files managed by MPE do not actually contain \n characters, but appear to
when read by C functions. Further, the type of record structure used in the file has impact
on what is seen when a file is read. Assume that there is an ASCII MPE file with
variable-length records. If the following 5 bytes are written:

'A', 'B', 'C', 'D', '\n'

only 4 bytes are actually output to the MPE file. The record in the file appears as:

ABCD

The \n is used by the C functions to indicate that a record should be written, but the
newline character is not actually written. When the same record is read back in, the \n is
added to the end of the buffer. The result is that successive getc operations return the same
five characters originally written out:

'A', 'B', 'C', 'D', '\n'

If the same example is examined with an ASCII file composed of fixed-length records, each
Chapter 2 15

HP C/iX Library Input and Output
HP C/iX Library Input and Output
of which is six characters in length, the result is different. Assume the same five
characters are written. When the C I/O system encounters the \n , it gets ready to write out
a record. The record contains "ABCD" at this point. However, since the record is a
fixed-length record with a length of six characters, the two characters after the 'D are
padded with spaces (040). The record written to the MPE file is:

ABCD

where indicates a space. As before, the \n triggers the write, but the actual \n character
is not written out.

When the record is read back into the program, the \n is restored at the end of the record,
but the I/O functions have no way of knowing whether the trailing spaces are pad
characters written by the MPE/iX file system, or actual data characters written by a C
program. This ambiguity is resolved in one of two ways (described below), depending on
whether ANSI-conformant behavior has been requested.

The standard ANSI conformant interpretation, which is requested by including
LIBCANSI.LIB.SYS in the RL list when linking (as described in chapter 1), is to discard all
trailing spaces in fixed-length records when reading text streams. In the example given
above, the result is that the following five characters are read back:

`A', `B', `C', `D', `\n'

However, for compatibility with previous releases of the HP C/iX library, the default
behavior is that trailing spaces in fixed-length records in text files are not stripped. Thus,
if the program in the example is not linked with LIBCANSI , it reads the following seven
characters:

`A', `B', `C', 'D', space, space, `\n'

Because of the special meaning of the \n character, in text streams, you should avoid
writing binary data to a text stream. If the binary data happens to contain a byte with the
same numeric value as the newline character (ASCII code 10), the result is an unexpected
record break.

Binary Streams

Like text streams, binary streams are also ordered sequence of bytes. Binary streams,
however, transparently record data. No special attention is given to \n characters or any
other characters. No padding is performed for binary streams.

If a \n character is written to a binary stream, it is actually written. Binary streams
return the same number of characters originally written except in one special case.

On MPE/iX, if fopen() opens a binary stream it is a fixed-length record format file. If the
file is closed, the last record in the file, if incomplete, is filled with trailing zeros. The
end-of-file is located on a record boundary, regardless of the last byte written to the file.

By default, if you are using POSIX on MPE/iX, fopen() creates a byte stream file. If the
file is closed, the last byte written is the end-of-file.

File Descriptors

To perform I/O operations, you must associate a stream with a file or device. For the
unbuffered I/O operations (the ones in the standard I/O library), you do this by declaring a
16 Chapter 2

HP C/iX Library Input and Output
HP C/iX Library Input and Output
pointer to a structure type called FILE . The FILE structure, which is defined in <stdio.h> ,
contains several fields to hold information about the pointer to the buffer, the file
descriptor, and the file access mode.

The FILE structures provide the operating system with bookkeeping information, but your
only means of access to the stream is the pointer to the FILE structure (called a file
pointer). The file pointer, which you must declare in your program, holds the stream
identifier returned by the fopen function. You use the file pointer to read from, write to, or
close the stream.

For unbuffered functions, you must associate a file with a file descriptor by using the open
function. A file descriptor is a unique integer that identifies a particular file. This file
descriptor is also contained in the FILE structure returned by fopen .

Standard Files

There are three constant pointers defined in stdio.h> that designate standard C streams.
These streams are automatically opened by the C language startup routines. The standard
stream designators are:

The stdin stream is opened for reading. Your program only receives data from the stdin
stream. It cannot write data to this stream. The stdin stream defaults to the standard
MPE file $STDINX. If you run your program in interactive mode, the input device is
normally a keyboard.

The stdout stream is opened for writing. Your program only outputs data to the stdout
stream. It cannot read data from this stream. The stdout stream defaults to the standard
MPE file $STDLIST . If you run your program in an interactive mode, the output device is
normally your terminal.

The stderr stream is also opened for writing. Your program cannot read data from this
stream. Like stdout , this stream defaults to the standard MPE file $STDLIST . For
interactive programs, this file is normally your terminal. The stderr stream is used to
print error and warning messages when an erroneous condition is detected in your
program. The stderr stream is unbuffered by default. An unbuffered stream transfers
data to its destination one byte at a time.

Reading from stdin in Interactive and Batch Modes

When reading from stdin in interactive mode using fgets , gets , fscanf , scanf , or fread ,
the input text stream is not padded with trailing blanks.

When reading from stdin in batch mode using fgets , gets , fscanf , scanf , or fread , the
input stream may or may not be padded with trailing blanks before being terminated with

Table 2-1. Standard Stream Designators

Stream Function Default

stdin Standard Input $STDINX

stdout Standard Output $STDLIST

stderr Standard Error $STDLIST
Chapter 2 17

HP C/iX Library Input and Output
HP C/iX Library Input and Output
a null character. Whether or not padding is applied depends on the file type of the input
batch stream file.

If the batch stream file is a variable record length ASCII file, no padding is applied and
reading from stdin in batch behaves the same as reading in interactive mode.

If the batch stream file has fixed record lengths, the input records are padded with trailing
blanks. When reading from fixed record length batch stream files, be sure to use large
enough buffers to accommodate the entire record, including the null character appended to
the string by the I/O system.

Whether using fixed or variable record length ASCII files, insert the EOD command in the
batch stream file between the embedded program data and the next MPE/iX command.
This prevents the program from accidentally reading command lines from the file.

For example, given the following program

#include stdio.h>
main (void)
{

char iobuff[81];
printf("\n Please enter your name:");
gets(iobuff);
printf("%s\n",iobuff);

}

a batch job to run this program is:

!JOB WALTER.JONES
!RUN ECHONAME
Walter Morgan
!EOD
!SHOWTIME
!EOJ

Restrictions

Due to the implementation of the HP C/iX library and the MPE/iX file system, operations
on certain types of files may be restricted. Refer to appendix B, "Restrictions and Special
Considerations," for more information.
18 Chapter 2

Interfacing with MPE/iX
3 Interfacing with MPE/iX

The mpe.h> header file provides several facilities that allow you to more easily interface
with the MPE/iX operating system. Note that calling MPE/iX directly from C programs
makes the C programs less portable than using the standard C library.

For information about interfacing with MPE/iX intrinsics from the POSIX/iX library, refer
to the MPE/iX Developer's Kit Reference Manual.
Chapter 3 21

Interfacing with MPE/iX
Foptions
Foptions
The structure tag fop names a structure that describes the bit positions of the MPE/iX
FOPEN intrinsic's foptions . The structure is:

struct fop {
unsigned short reserved:2; /* for MPE/iX */
unsigned short typer:3; /* file type */
unsigned short no_f_equ:1; /* no file equations */
unsigned short label:1; /* labeled tape option */
unsigned short carriage:1; /* carriage control needed */
unsigned short format:2; /* record format */
unsigned short designator:3; /* default designator */
unsigned short ascii:1; /* ASCII(1)/binary(0) */
unsigned short domain:2; /* file domain */

};

In addition to the fop structure, mpe.h> contains a typedef called foptions that is the
union of an unsigned short and an fop structure. The typedef is:

typedef union {
struct fop fs;
unsigned short fv;

} foptions;

This typedef is useful for declaring regions of storage that are to serve as foptions . If a
variable f is declared as being type foptions , then f.fv accesses the unsigned short
version of the foptions while f.fs accesses the structural definition of the foptions . For
example:

#include mpe.h>
#pragma intrinsic FOPEN MPE_FOPEN

main
{

foptions f; /* declare f as an foption variable */
. . .

f.fv = 0; /* clear all options to 0 */
f.fs.ascii = 1; /* set ASCII foption to true */
f.fs.no_f_equ = 1; /* disallow file equations */
MPE_FOPEN(. . , f.fv , . . .); /* pass foptions */

. . .
}

Note, in the above example, the foptions variable can be accessed as named bit-fields
using the f.fs construct or as a 16-bit unsigned
short value using the f.fv construct. Also, notice the FOPEN intrinsic has been given the
name MPE_FOPEN in this example to avoid confusion with the C library function fopen .
22 Chapter 3

Interfacing with MPE/iX
Aoptions
Aoptions
Similar to the fop structure, the aop structure provides access to the aoptions used in
FOPEN. It is defined as:

struct aop {
unsigned short reserved:3; /* reserved for MPE/iX */
unsigned short copy:1; /* copy open mode */
unsigned short no_wait:1; /* I/O without wait */
unsigned short multi:2; /* multi-access mode */
unsigned short no_buf:1; /* no buffering */
unsigned short exclusive:2; /* exclusive access flag */
unsigned short locking:1; /* allow locking */
unsigned short multirecord:1; /* multi-record flag */
unsigned short access:4; /* mode of access */

};

Also, a typedef that defines a union type named aoptions is provided:

typedef union {
struct aop as;
unsigned short av;

} aoptions;

If variable a is declared as being type aoptions , then a.av accesses the unsigned short
version of the aoptions while a.as accesses the structural definition of the aoptions .
Chapter 3 23

Interfacing with MPE/iX
Condition Codes
Condition Codes
Many MPE/iX intrinsics return condition code information upon their completion. The
condition codes are defined with macros in the mpe.h header file. The macros are as
follows:

These macros may be used with the ccode function also declared in this header file.

Table 3-1. Standard Stream Designators

CCG Condition Code Greater

CCE Condition Code Equal

CCL Condition Code Less
24 Chapter 3

Interfacing with MPE/iX
MPE/iX File Numbers
MPE/iX File Numbers
The values returned by HP C/iX library functions such as fopen and open do not represent
values that are meaningful to the MPE/iX file system intrinsics. The function
_mpe_fileno , declared in mpe.h , maps a file descriptor returned by a C library function
such as open into an MPE/iX file number that can be passed directly to MPE/iX file system
intrinsics. If fd is a file descriptor returned by the C library function open ,
_mpe_fileno(fd) returns the associated MPE/iX file number. For a description of
_mpe_fileno , see chapter 5.

The _mpe_fileno function is not supported in the POSIX/iX library. However, equivalent
functionality is provided by the _MPE_FILENOmacro. The _MPE_FILENOmacro is described
in the MPE/iX Developer's Kit Reference Manual.
Chapter 3 25

Interfacing with MPE/iX
MPE/iX File Numbers
26 Chapter 3

HP C/iX Library Header Descriptions
4 HP C/iX Library Header Descriptions

This chapter describes the contents of the header files provided with the HP C/iX library.

Some of the header files described in this chapter contain extensions required for
conformance with the POSIX standard. These POSIX extensions are not documented in
this manual. Refer to the MPE/iX Developer's Kit Reference Manual for additional
information about these extensions. The POSIX extensions require the _POSIX_SOURCE
preprocessor macro definition. This macro should not be defined if you are using the HP
C/iX library.
Chapter 4 27

HP C/iX Library Header Descriptions
Available Header Files
Available Header Files
The HP C/iX library is divided into sections. Each section has a header file that defines the
objects found in that section of the library.

The standard ANSI C headers are

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

The non-ANSI HP C/iX header files are

<fcntl.h> <search.h>
<malloc.h> <unistd.h>
<memory.h> <values.h>
<mpe.h> <varargs.h>
28 Chapter 4

HP C/iX Library Header Descriptions
Referencing Library Header Files
Referencing Library Header Files
To reference the HP C/iX library header files, place the #include preprocessor directive in
your source code. The order of inclusion of the header files is of no significance. The same
header file may be included more than once in the same program without generating
errors.

The syntax for including a HP C/iX library header file is:

#include < libraryname .h>

By enclosing libraryname in angle brackets, you instruct the HP C/iX preprocessor to look
for that header file in the H group of the SYS account.

For example, if you want to use the fprintf function, which is in the standard I/O library,
your program must specify:

#include stdio.h>

The declaration of fprintf, various types, and variables used by the I/O function, are
found in the stdio.h header file.

Header file identifiers beginning with an underscore (_) are reserved for library use. You
should not create identifiers that begin with an underscore within your own source code.
Chapter 4 29

HP C/iX Library Header Descriptions
Library Functions and Header File Macros
Library Functions and Header File Macros
The HP C/iX library contains both functions and macros. Macros improve the execution
speed of certain frequently used operations. One drawback to using macros is that they do
not have an address. For example, if a function expects the address of (a pointer to)
another function as an argument, you cannot use a macro name in that argument. The
following example illustrates the drawback:

#define add1(x) ((x)+=1)
extern f(void some_function());
main(void)
{

⋮
f(add1); /* This construct is illegal. */

⋮
}

Using add1 as an argument causes an error. To override a possible macro and ensure that
a library function is referenced as a true function, you can do any of the following:

• Use the #undef directive, which causes the function name to no longer be defined as a
macro.

• Enclose the function name in parentheses to suppress macro expansion.

• Take the address of the function using the & operator.

There are three ways in which a function can be declared:

• In a header file (which might generate a macro). This is the safest method to declare a
standard library function.

#include <stdlib.h>
m=abs(n);

• By explicit declaration. Make sure that your declaration matches the one in this
manual.

extern int abs(int j);
m=abs(n);

• By implicit declaration, if the function return type is int .

m=abs(n);
30 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
Header File Contents
This section describes the contents of the HP C/iX library header files. All header files
provided by HP C/iX are listed. This includes those headers files that comply with the
ANSI C standard, and those that do not comply with this standard. The non-ANSI headers
files are provided for compatibility with other UNIX-based 1 systems and for interfacing
with the MPE operating system.

Diagnostics <assert.h>

The header assert.h> defines the macro assert . If the expression passed to this function
is false (equal to 0), a message is written and the program is terminated.

Character Handling <ctype.h>

The header ctype.h> declares several macros and external functions useful for testing
and mapping characters. The functions enable you to convert between uppercase and
lowercase and to classify characters as digits, nonprintable characters, uppercase, or
lowercase. In all cases, the argument is an int that must be representable as an unsigned
character or the value of the macro EOF.

Because their syntaxes are identical, the following example can be used for all character
classification macros:

for (i=0; array[i] != 0; i++)) {
if (isprint(array[i]))

putchar(array[i]);
else putchar(' ');

}

The following identifiers are defined in <ctype.h> :

1. UNIX is a registered trademark of The Open Group.

Table 4-1. Character Handling Macros and Functions <ctype.h>

Name Type Description

isalnum() function Tests whether an argument is a letter or a decimal digit.

isalpha() function Tests whether an argument is a letter.

isascii() a function Tests whether an argument is in the ASCII character set.

iscntrl() function Tests whether an argument is a control character.

isdigit() function Tests whether an argument is a decimal digit.

isgraph() function Tests whether an argument is any printable non-space character.

islower() function Tests whether an argument is a lowercase letter.
Chapter 4 31

HP C/iX Library Header Descriptions
Header File Contents
Error Handling <errno.h>

The header <errno.h> defines several macros, all relating to the reporting of error
conditions.

When an error occurs in a HP C/iX library function, an error is usually signalled to the
caller through the function return value. The error is signalled by an otherwise impossible
return value, usually -1 or NULL. To provide more information about the cause of the error,
several functions in the standard library and math library set the external variable errno
to a non-zero value when an error occurs.

The external variable errno is declared in this header file. This file also defines many
macro expressions for the various possible values of errno . The value of errno is zero at
program startup, but is never reset to zero by the library functions.

Programs that use errno for error checking should reset errno to zero before a library
function call, then inspect errno after the function call.

Some functions in the standard library call one or more underlying functions to perform
specific tasks. For example, the fopen function calls the open function. In these cases, the
underlying functions may set errno . The errno return values of the underlying functions
are not documented here.

The following is a list of the common error names and their values. The POSIX/iX library
provides additional error names and values. These errors are described in the MPE/iX
Developer's Kit Reference Manual.

isprint() function Tests whether an argument is any printable character including the
space character (octal values 040 through 0176).

ispunct() function Tests whether an argument is any printable character that is not a
space, a digit, or a letter.

isspace() function Tests whether an argument is a white space character.

isupper() function Tests whether an argument is an uppercase letter.

isxdigit() function Tests whether an argument is a hexadecimal digit.

toascii() b function Converts an integer to 7-bit ASCII.

_tolower() macro Converts an uppercase letter to lowercase.

_toupper() macro Converts a lowercase letter to uppercase.

tolower() function Converts an uppercase letter to lowercase.

toupper() function Converts a lowercase letter to uppercase.

a. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

b. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

Table 4-1. Character Handling Macros and Functions <ctype.h>

Name Type Description
32 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
NOTE The values associated with symbolic names are subject to change. It is
suggested that the symbolic names in errno.h> be used rather than the
actual numeric values.

ENOENT (2) No such file. This error occurs when a file name is specified and the file
should exist but doesn't.

EBADF (9) Bad file number. Either a file descriptor does not refer to an open file, a
read (respectively write) request is made to a file that is open only for
writing (respectively reading), or the file descriptor is not in the legal
range of file descriptors.

ENOMEM (12) Not enough space. A brk or sbrk call requested more space than the
system is able to supply.

EACCES (13) Permission denied. An attempt was made to access a file in a way
forbidden by the protection system.

EFAULT (14) Bad address. A bad address argument was detected, such as a null
pointer.

EINVAL (22) Invalid argument. An invalid argument, such as a bad oflag open
argument or a bad lseek offset argument. This can also be set by the math
functions.

EMFILE (24) Too many open files. No process may have more than a system-defined
number of file descriptors open at a time. See _NFILE in stdio.h> .

EFBIG (27) File too large. The current output request would exceed the file limit.

ESEEK (29) Illegal seek. An attempt to seek in a file that does not support seeking
was detected, such as a seek on a terminal file.

EDOM (33) Math argument. The argument of a function in the math package is out of
the domain of the function.

ERANGE (34) Result too large. The value of a function in the math package is not
representable within machine precision.

ENOBUFS (49) No buffer space available. An operation on a file was not performed
because the system lacked sufficient buffer space.

ESYSERR (50) System error. A call from an HP C/iX library function to a system intrinsic,
or to the heap manager, has failed. When the ESYSERR occurs, three
global variables are set:

_mpe_intrinsic _mpe_errno _mpe_status

The _mpe_intrinsic variable returns a numeric value denoting the intrinsic
that has failed. The _mpe_errno variable contains the error number given
by the failing intrinsic or, for a file system error, the number received by an
FCHECK intrinsic call. The _mpe_status variable contains an MPE STATUS
value: the first (high-order) 16 bits contain the error number and the
Chapter 4 33

HP C/iX Library Header Descriptions
Header File Contents
second 16 bits contain the subsystem number. The errno.h> header file lists
the symbolic names used for intrinsics and gives a type definition for
_mpe_status(t_mpe_status).

The following is a list of the _mpe_intrinsic symbolic names and their
values.

I_CREATEPROCESS(1) CREATEPROCESS system intrinsic

I_FCLOSE (3) FCLOSE system intrinsic

I_FCONTROL (4) FCONTROL system intrinsic

I_FFILEINFO (5) FFILEINFO system intrinsic

I_FPOINT (7) FPOINT system intrinsic

I_FREAD (8) FREAD system intrinsic

I_FRENAME (9) FRENAME system intrinsic

I_FWRITE (10) FWRITE system intrinsic

I_HPCIGETVAR (11) HPCIGETVAR system intrinsic

I_HPFOPEN (14) HPFOPEN system intrinsic

I_PRINT (15) PRINT system intrinsic

P_HEAP (16) PASCAL HEAP manager

The three global variables, _mpe_intrinsic , _mpe_errno , and
_mpe_status, are set only when an error occurs and only when errno is
set to ESYSERR. These variables are not cleared on a successful intrinsic
call. The _mpe_status variable is provided to give you direct access to the
error text of a failing intrinsic. You can obtain this information by calling
the intrinsic HPERRMSG with _mpe_status.word as the input. The
HPERRMSGintrinsic can write the error message to the screen or to a buffer.

NOTE When a P_HEAP error occurs, the value of _mpe_status does not return a
valid error text when used as input to HPERRMSG because the PASCAL
HEAP error messages are not in the system catalog. The
_mpe_status.decode.subsys_num variable is set to the Pascal subsystem
number, and _mpe_status.decode.error_num is the error number returned
by the failing HEAP routine.

Example

#pragma intrinsic HPERRMSG
#include <errno.h>
/***/
/* These are the definitions included from errno.h: */

 struct _status_word {
 short error_num; /* error number */
34 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
 short subsys_num; /* subsystem number */
 };

 typedef union {
 struct _status_work decode; /* for individual part access */
 int word; /* for complete struct access */
 } t_mpe_status /* for type definition */

 extern t_mpe_status _mpe_status;
/**/

if (fclose(unopened_file))
 if (errno == ESYSERR)
 HPERRMSG(2, , , _mpe_status.word, , , status);
 else
 perror(0);

To close a file, the HP C/iX library function fclose calls the system intrinsic FCLOSE. If
this intrinsic call fails, errno is set to ESYSERR, _mpe_errno is set to the value returned by
the FCHECK intrinsic, and _mpe_status is set to a value consisting of two parts. The two
parts are as follows: _mpe_status.decode.subsys_num is the file system subsystem
number (143), and _mpe_status.decode.error_num is set to the value returned by the
FCHECK intrinsic (the same as _mpe_errno).

The call to HPERRMSG as shown above writes the proper error message to the terminal
screen. If the function fclose fails for a reason other than a failing intrinsic, the C/iX
library function perror supplies the appropriate messages.

File Control <fcntl.h>

The header <fcntl.h> defines arguments to the open function. The macros define
constant values for file access options. See the open function in chapter 5 for more detailed
information.

NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable.

Floating Types <float.h>

The header <float.h> defines macros that specify the characteristics of floating-point
types. The following macros are defined in this header file:

Table 4-2. Floating Types <float.h>

Name Description

FLT_RADIX Radix of exponent representation.

FLT_MANT_DIG,
DBL_MANT_DIG,
LDBL_MANT_DIG

Number of base-2 digits in the floating-point significand, p.
Chapter 4 35

HP C/iX Library Header Descriptions
Header File Contents
Limits <limits.h>

The header <limits.h> defines several macros that represent basic C data type limits.
The following macros are defined in this header file:

FLT_DIG, DBL_DIG,
LDBL_DIG

Number of decimal digits, q, such that any floating-point number with q
decimal digits can be rounded into a floating-point number with p radix b
digits and back again without change to the q decimal digits.

FLT_EPSILON,
DBL_EPSILON,
LDBL_EPSILON

The difference between 1.0 and the last value greater than 1.0 that is
representable in the given floating-point type.

FLT_MIN_EXP,
DBL_MIN_EXP,
LDBL_MIN_EXP

Minimum negative integer such that 2 raised to that power minus 1 is a
normalized floating-point number.

FLT_MIN, DBL_MIN,
LDBL_MIN

Minimum normalized positive floating-point number.

FLT_MIN_10_EXP,
DBL_MIN_10_EXP,
LDBL_MIN_10_EXP

Minimum negative integers such that 10 raised to that power is in the
range of normalized floating-point numbers.

FLT_MAX_EXP,
DBL_MAX_EXP,
LDBL_MAX_EXP

Maximum integers such that 2 raised to that power minus 1 is a
representable finite floating-point number.

FLT_MAX, DBL_MAX,
LDBL_MAX

Maximum representable finite floating-point number.

FLT_MAX_10_EXP,
DBL_MAX_10_EXP,
LDBL_MAX_10_EXP

Maximum integer such that 10 raised to that power is in the range of
representable floating-point numbers.

Table 4-3. Integral Type Limits <limits.h>

Name Description

CHAR_BIT The number of bits in a char .

CHAR_MAX The maximum value stored in a char .

CHAR_MIN The minimum value stored in a char .

INT_MAX The maximum value stored in an int .

INT_MIN The minimum value stored in an int .

LONG_MAX The maximum value stored in a long .

LONG_MIN The minimum value stored in a long .

MB_LEN_MAX The maximum length of a multibyte character.

Table 4-2. Floating Types <float.h>

Name Description
36 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
Localization <locale.h>

The header <locale.h> contains a structure definition, several macro definitions, and the
declarations for two functions. These allow you to select the desired locale at run time.
This header is used for Native Language Support (NLS).

The macro definitions are constants that define the various categories of objects that can
be localized, such as the collating sequence used in sorting and the monetary symbol of the
local currency. The structure lconv defines a record used for holding values associated
with locale-specific numeric formatting (monetary and otherwise). The functions set and
retrieve the current locale and manipulate the numeric formatting values.

The following identifiers are declared in <locale.h> :

SCHAR_MAX The maximum value stored in a signed char .

SCHAR_MIN The minimum value stored in a signed char .

SHRT_MAX The maximum value stored in a short .

SHRT_MIN The minimum value stored in a short .

UCHAR_MAX The maximum value stored in an unsigned char .

UINT_MAX The maximum value stored in an unsigned int .

ULONG_MAX The maximum value stored in an unsigned long .

USHRT_MAX The maximum value stored in an unsigned short .

Table 4-4. Localization <locale.h>

Name Type Description

LC_ALL macro A constant used to define a category of localizable objects.
Sets and gets the current heterogeneous locales used by all
categories of localizable objects.

LC_COLLATE macro The category that controls the current locale of the strcoll
and strxfrm functions.

LC_CTYPE macro The category that controls the current locale of the character
handling functions.

LC_MONETARY macro The category that controls the current locale for monetary
formatting by the localeconv function.

LC_NUMERIC macro The category that controls the current locale for
decimal-point, digit separator, and monetary formatting by
the localeconv function.

LC_TIME macro The category that controls the current locale for time
formatting by the strftime function.

Table 4-3. Integral Type Limits <limits.h>

Name Description
Chapter 4 37

HP C/iX Library Header Descriptions
Header File Contents
Memory Management <malloc.h>

The header <malloc.h> declares several memory management functions, several mallopt
argument macros and a structure returned by the mallinfo function. The following
identifiers are declared in this header file:

NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable.

Math Library <math.h>

The header <math.h> contains declarations for all functions in the HP C/iX math library.
It contains various function declarations for routines in the standard library that return
floating-point values.

The header also defines structures and constants used by the matherr error-handling
mechanisms, and macros provided for compatibility with other implementations.

lconv type definition A structure type definition for a record containing numeric
and monetary formatting values. See the description of the
localeconv function for more details.

localeconv() function Returns information about the editing symbols of a numeric
quantity specific to a locale.

NULL macro The constant 0.

setlocale() function Controls locale-specific features of the library.

Table 4-5. Memory Management <malloc.h>

Name Type Description

calloc() function Allocates a block of memory.

free() function Frees a block of allocated memory.

mallinfo type definition A data type definition used when declaring parameters and
return values. See the function descriptions for more
information.

mallinfo(
)

function Returns information describing space usage.

malloc() function Allocates a block of memory.

mallopt() function Provides control over the memory allocation algorithm.

realloc() function Changes the size of a block of allocated memory.

Table 4-4. Localization <locale.h>

Name Type Description
38 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
The following identifiers are declared in this header file:

Table 4-6. Math Library Functions <math.h>

Name Type Description

abs() function Computes the absolute value of an integer.

acos() function Returns the arc cosine in radians of an input value.

asin() function Returns the arc sine of an input value.

atan2() function Returns the arc tangent of the input Cartisian coordinates.

atan() function Returns the arc tangent of the input value.

ceil() function Computes the ceiling function that finds the smallest integer that
is greater than or equal to a specified real number.

cos() function Returns a cosine value for an input angle.

cosh() function Computes the hyperbolic cosine of an angle.

DOMAIN macro An integral constant returned through errno when the result is
outside the domain of the returned data type.

erf() a function Returns the statistical error function of the input value.

erfc() b function Returns the complementary error function of the input value.

errno global
variable

A global external int variable that provides additional
information regarding errors encountered in library routines.

exp() function Returns a base number raised to the power of the argument.

fabs() function Computes the absolute value of a floating-point number.

floor() function Computes the largest integer value less than or equal to its
argument.

fmod() function Returns the floating-point remainder of a division operation.

frexp() function Breaks a floating-point number into a normalized fraction and an
integral power of 2.

gamma() function Returns the log gamma of the input value.

hypot() function Returns the length of the hypotenuse of a right triangle.

HUGE macro The identifier for the maximum value of a single-precision
floating-point number. Provided for System V compatibility.

HUGE_VAL macro The ANSI C identifier for the maximum value (+ infinity) of a
single-precision floating-point number. Returned from math
library functions when the result is too large.

j0() function Returns Bessel functions of x of the first kind of order zero.

j1() c function Returns Bessel functions of x of the first kind of order one.
Chapter 4 39

HP C/iX Library Header Descriptions
Header File Contents
jn() function Return Bessel functions of x of the first kind of order i.

ldexp() function Accepts a double value and an integer exponent and returns a
double quantity equal to N * 2exp.

log() function Returns the natural logarithm of a positive number.

log10() function Returns the logarithm base ten of a positive number.

exception type
definition

A data type definition used with the non-standard matherr
function.

M_E macro The base of natural logarithms (e).

M_LOG2E macro The base-2 logarithm of e.

M_LOG10E macro The base-10 logarithm of e.

M_LN2 macro The natural logarithm of 2.

M_LN10 macro The natural logarithm of 10.

M_PI macro The ratio of the circumference of a circle to its diameter.

M_PI_2 macro Half of the ratio of the circumference of a circle to its diameter.

M_PI_4 macro One quarter of the ratio of the circumference of a circle to its
diameter.

M_1_PI macro The reciprocal of the ratio of the circumference of a circle to its
diameter.

M_2_PI d macro Two times the reciprocal of the ratio of the circumference of a
circle to its diameter.

M_2_SQRTPI macro The square root of the ratio of the circumference of a circle to its
diameter.

M_SQRT2 macro The positive square root of 2.

M_SQRT1_2 macro The positive square root of 1/2.

MAXFLOAT macro The largest floating-point number allowed with this architecture.

matherr() function A user written call-back routine that can be invoked by many
functions in the math library when errors are detected.

modf() function Accepts a double value and splits the value into its integer and
fractional parts.

OVERFLOW macro An integral constant returned through errno when an arithmetic
overflow has occurred.

PLOSS macro An integral constant returned through errno when a significant
loss of precision has occurred.

Table 4-6. Math Library Functions <math.h>

Name Type Description
40 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
Memory Handling <memory.h>

The header <memory.h> declares several functions useful for manipulating character
arrays and other objects treated as character arrays. The following functions are declared
by this header file:

pow() function Returns the value of a number raised to the power of an exponent.

signgam external
integer

Contains the sign of the value returned by the gamma function.

sin() function Computes a sine value.

SING macro Expands to an integral constant.

sinh() function Computes the hyperbolic sine of an angle.

sqrt() function Computes the square root of an input value.

tan() function Computes a tangent value.

tanh() function Computes the hyperbolic tangent value of an angle.

TLOSSe macro An integral constant returned through errno when an arithmetic
error has occurred.

y0() function Return Bessel functions of x of the second kind of order zero.

y1() function Return Bessel functions of x of the second kind of order one.

yn() function Return Bessel functions of x of the second kind of order i .

a. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

b. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

c. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

d. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

e. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

Table 4-7. Memory Handling <memory.h>

Name Type Description

memccpy() function Copies characters from one object to another until a specified character
is found or until the specified count is reached.

memchr() function Searches memory for a specified character.

memcmp() function Compares the first n characters of two objects.

Table 4-6. Math Library Functions <math.h>

Name Type Description
Chapter 4 41

HP C/iX Library Header Descriptions
Header File Contents
NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable. Use <string.h> for ANSI compliance.

MPE Aids <mpe.h>

The mpe.h> header file declares several types, constants, and functions that allow you to
more easily interface with the MPE/iX operating system. Refer to chapter 3, "Interfacing
With MPE/iX," for additional information.

NOTE This header file is not defined by the POSIX or ANSI C standards. Programs
using this header are likely to be less portable.

Searching Utilities <search.h>

The header <search.h> contains identifiers used for creating and searching binary trees
and hash tables. The following identifiers are declared:

memcpy() function Copies a specified number of characters from one object to another.

memset() function Initializes an object with a supplied character value.

Table 4-8. Search Utilities <search.h>

Name Type Description

ACTION type definition An enumerated type with the enumerated constants FIND and
ENTER.

ENTRY type definition A structured type defining a record with a search key and data.

hcreate() function Allocates sufficient space for a hash table used by hsearch() .

hdestroy() function Destroys a search table created by hcreate() .

lsearch() function Performs a linear search and update.

tdelete() function Deletes a specified node from a binary search tree.

tfind() function Searches for a specified entry in a binary search tree.

tsearch() function Returns a pointer into a hash table indicating the location of a
specified entry.

twalk() function Traverses a binary search tree and returns the value at the
specified node.

VISIT type definition An enumerated type with the enumerated constants preorder ,
postorder , endorder , and leaf .

Table 4-7. Memory Handling <memory.h>

Name Type Description
42 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable.

Non-local Jumps <setjmp.h>

The header <setjmp.h> declares a type and several functions for bypassing the normal
function call and return discipline. The following identifiers are declared in this header
file:

Signal Handling <signal.h>

The header <signal.h> declares a type, functions, and macros for handling various
signals that can be raised during program execution.

The following identifiers are defined in <signal.h> :

Table 4-9. Nonlocal Jumps <setjmp.h>

Name Type Description

jmp_buf type
definition

An array type used by setjmp to save and by longjmp to restore a
program's environment.

longjmp() function Restores an environment previously saved by setjmp() .

setjmp() function Saves the current environment.

Table 4-10. Signal Handling <signal.h>

Name Type Description

raise function Causes a signal to be raised.

sig_atomic_t type
definition

An integral type, such that an object of this type can be accessed
in an atomic fashion (in one operation), even in the presence of
external interrupts.

SIG_DFL macro Passed as the second parameter to signal() . Specifies default
signal handling.

SIG_ERR macro Returned by signal() to indicate an error when calling the
signal function.

SIG_IGN macro Passed as the second parameter to signal() . Specifies that
exceptions should be ignored.

SIGABRT macro The signal raised by the abort function indicating abnormal
termination.

SIGFPE macro A signal indicating that a floating-point exception or erroneous
arithmetic operation has occurred (for example, divide by 0).

SIGILL macro A signal indicating that an illegal instruction was executed
(possibly after a jump).
Chapter 4 43

HP C/iX Library Header Descriptions
Header File Contents
Variable Number of Arguments <stdarg.h>

The header <stdarg.h> contains a type definition and three macros. These can be used to
determine the arguments of a function that can be called with a variable number of
arguments. The variable number of arguments is indicated by an ellipsis in the function
declaration.

NOTE The header <varargs.h> also contains the same type definitions and macros
described in this section. However, <varargs.h> is not defined by the ANSI C
standard.

The following identifiers are defined in <stdarg.h> :

Common Definitions <stddef.h>

The following identifiers are defined in <stddef.h> :

SIGINT macro A signal indicating that an interactive interrupt has been
received.

signal function Specifies how a signal is to be handled.

SIGSEGV macro A signal indicating that an invalid address to storage has been
requested.

SIGTERM macro A signal indicating that a termination request was sent to the
program.

Table 4-11. Variable Number of Arguments <stdarg.h>

Name Type Description

va_arg macro Returns the type and value of the next argument in the argument
list ap.

va_end macro Terminates access to the variable argument list by making ap
unusable.

va_list type
definition

A pointer to a double used to store information needed by the
<stdarg.h> macros.

va_start macro Initializes the ap pointer (of type va_list) to the argument list for
subsequent use by va_arg and va_end .

Table 4-12. Common Definitions <stddef.h>

Name Type Description

NULL macro The constant 0.

Table 4-10. Signal Handling <signal.h>

Name Type Description
44 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
Input/Output <stdio.h>

The header <stdio.h> defines a structure, functions, and macros that are used for input
and output.

The following identifiers are defined in <stdio.h> :

offsetof (type,
identifier)

macro Expands to an integral constant that has type size_t , the
value of which is the offset in bytes, from the beginning of
a structure designated by type , of the member designated
by identifier .

ptrdiff_t type definition The signed integral type of subtracting two pointers.

size_t type definition The unsigned integral type of the sizeof operator.

wchar_t type definition The integral data type large enough to represent all
members of the largest extended character set among the
supported locales.

Table 4-13. Input/Output <stdio.h>

Name Type Description

BUFSIZ macro Specifies the size of the buffers used by setbuf .

clearerr() macro, function Clears the end-of-file and error indicator of a stream.

ctermid() a function Returns $stdlist as the file name for the terminal.

EOF macro Returned upon end-of-file or upon error by most integer
functions that deal with streams.

fclose() function Closes an open file.

fdopen() function Opens a stream on a file descriptor.

feof() macro, function Tests whether the end-of-file indicator for a stream has been
set.

ferror() macro, function Tests whether the error indicator for a stream has been set.

fflush() function Flushes an I/O buffer to a file.

fgetc() function Returns the next character from an open stream.

fgetpos() function Returns the current file position of an open stream.

fgets() function Reads a string from an open stream.

FILE type definition A type definition for a file descriptor. This type defines a
data structure used internally by the I/O routines to identify
open files and maintain context when accessing files.

Table 4-12. Common Definitions <stddef.h>

Name Type Description
Chapter 4 45

HP C/iX Library Header Descriptions
Header File Contents
FILENAME_MAX macro Specifies the maximum number of characters allowed in a
file name.

fileno() b macro, function Maps a stream pointer to a file descriptor.

fopen() function Opens a file.

FOPEN_MAX macro Specifies the minimum number of files that the operating
system guarantees may be opened simultaneously.

fpos_t type definition A type definition for an object capable of defining all unique
locations within a file.

fprintf() function Writes data in formatted form to an open stream.

fputc() function Writes a character to an output stream.

fputs() function Writes a string to an output stream.

fread() function Reads data items from an open stream.

freopen() function Closes and reopens a stream.

fscanf() function Reads externally formatted data from an open stream.

fseek() function Positions the next I/O operation on an open stream to an
new position.

fsetpos() function Sets the file position for the stream.

ftell() function Returns the current file position indicator for the next I/O
operation on an open stream.

fwrite() function Writes data items to an open stream.

getc() macro, function Reads a character from an open stream.

getchar() macro, function Reads a character from the standard input stream stdin .

gets() function Reads a string from the standard input stream stdin .

getw() c function Reads a word (4 bytes) from an open stream.

L_tmpnam macro Specifies the number of bytes needed to hold a temporary file
name generated by the tmpnam function.

NULL macro The constant 0.

perror() function Prints an error message corresponding to the errno global
variable.

printf() function Writes data in formatted form to the standard output
stream stdout .

putc() macro, function Writes a character to an open stream.

Table 4-13. Input/Output <stdio.h>

Name Type Description
46 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
putchar() macro, function Writes a character to the standard output stream stdout .

puts() function Writes a string to the standard output stream stdout .

putw() function Writes a word (4 bytes) to an open stream.

remove() function Purges an existing file.

rename() function Renames an existing file.

rewind() function Sets the file position indicator for a stream to the beginning
of the file.

scanf() function Reads externally formatted data from the standard input
stream stdin .

SEEK_CUR macro A constant value that may be used as the ptrname
parameter to fseek . Seek relative to the current location in
the file.

SEEK_END macro A constant value that may be used as the ptrname
parameter to fseek . Seek relative to the end of file.

SEEK_SET macro A constant value that may be used as the ptrname
parameter to fseek . Seek relative to the beginning of file.

setbuf() function Assigns a buffer to an open stream.

setvbuf() function Assigns a buffer and buffering method to an open stream.

size_t type definition The unsigned integral type of the sizeof operator.

sprintf() function Writes formatted data to a character string in memory.

sscanf() function Reads formatted data from a character string in memory.

stderr macro The standard error file.

stdin macro The standard input file.

stdout macro The standard output file.

TMP_MAX macro The maximum number of unique file names that can be
generated by the tmp_name function.

tmpfile() function Creates a temporary file.

tmpnam() function Creates a name for a temporary file.

ungetc() function Pushes back a single character onto an open stream.

vfprintf() function Writes data in formatted form to an open stream using a
variable argument list.

vprintf() function Writes data in formatted form to an open stream using a
variable argument list.

Table 4-13. Input/Output <stdio.h>

Name Type Description
Chapter 4 47

HP C/iX Library Header Descriptions
Header File Contents
General Utilities <stdlib.h>

The header <stdlib.h> contains a number of general-purpose declarations and
definitions. It defines functions used for:

• string data type conversion

• multibyte character and string manipulation

• memory management

• array searching and sorting

• integer arithmetic

• communicating with the environment

The following identifiers are defined in <stdlib.h> :

vsprintf() function Writes formatted data to a character string in memory using
a variable argument list.

_IOFBF,
_IOLBF ,
_IONBF

macro Constant expressions with values suitable for use as the
third argument to the setvbuf function.

_NFILE d macro Defines the maximum number of open files allowed per
process.

a. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

b. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

c. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

d. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

Table 4-14. General Utilities <stdlib.h>

Name Type Description

abort() function Terminates a program abnormally.

abs() function Computes the absolute value of an integer.

atexit() function Specifies a function to call when a program terminates.

atof() function Converts a string to a double floating-point value.

atoi() function Converts a string to an integer.

atol() function Converts a string to a long integer.

bsearch() function Performs a binary search of a sorted array.

Table 4-13. Input/Output <stdio.h>

Name Type Description
48 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
calloc() function Allocates a block of memory.

div() function Computes the quotient and remainder of two integers.

div_t type definition A data type definition used when declaring the return value
for div() .

exit() function Terminates the calling process normally.

EXIT_FAILURE macro A value that can be passed to the exit function to indicate
unsuccessful program termination.

EXIT_SUCCESS macro A value that can be passed to the exit function to indicate
successful program termination.

free() function Frees a block of allocated memory.

getenv() function Returns the value of an environment variable.

labs() function Computes the absolute value of a long integer.

ldiv() function Computes the quotient and remainder of two long integers.

ldiv_t type definition A data type definition used when declaring the return value
for ldiv() .

malloc() function Allocates a block of memory.

mblen() function Determines the number of characters in a multibyte
character.

mbstowcs() function Converts a sequence of multibyte characters in a
null-terminated string to a sequence of wide character codes.

mbtowc() function Converts a single multibyte character to its wide character
representation.

MB_CUR_MAX macro Maximum size in bytes of a multibyte character.

NULL macro The constant 0.

qsort() function Sorts an array of objects.

rand() function Returns a random number.

RAND_MAX macro The maximum value returned by the rand function.

realloc() function Changes the size of a block of allocated memory.

size_t type definition The unsigned integral type of the sizeof operator.

srand() function Sets a starting point for calls to the rand function.

strtod() function Converts a string to a double-precision, floating-point number.

strtol() function Converts a string to a long integer value.

Table 4-14. General Utilities <stdlib.h>

Name Type Description
Chapter 4 49

HP C/iX Library Header Descriptions
Header File Contents
String Handling <string.h>

The header <string.h> declares several functions for manipulating character arrays and
other objects treated as character arrays. A string is a sequence of characters terminated
by and including the first null character. A pointer to a string is a pointer to its first
character. The length of the string is the number of characters preceding the first null
character.

The following identifiers are declared by <string.h> :

strtoul() function Converts a string to an unsigned integer representation.

system() function Executes an MPE/iX command.

wchar_t type definition A data type definition used for wide characters.

wcstombs() function Converts a sequence of wide character codes to a sequence of
multibyte characters.

wctomb() function Converts a single wide character value to its multibyte
character representation.

Table 4-15. String Handling <string.h>

Name Type Description

memchr() function Searches memory for a specified character.

memcmp() function Compares the first n characters of two objects.

memcpy() function Copies a specified number of characters from one object to
another.

memmove() function Copies a specified number of characters from one object to
another. Allows source and destination objects to overlap.

memset() function Initializes an object with a supplied character value.

NULL macro The constant 0.

size_t type definition The unsigned integral type of the sizeof operator.

strcat() function Appends one string to another.

strchr() function Locates the first occurrence of a specified character within a
string.

strcmp() function Compares two strings and returns an integer indicating the
result of the comparison.

strcpy() function Copies the contents of one string to another string.

strcspn() function Returns the length of the first substring in one string composed
entirely of non-members of the character set of another string.

Table 4-14. General Utilities <stdlib.h>

Name Type Description
50 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
Date and Time <time.h>

The header <time.h> declares data types, global variables, and functions for storing and
manipulating time values.

The date and time functions enable you to access the date and time maintained by the
system clock. The functions handle daylight savings time, and automatically convert
between standard time and daylight savings time when appropriate.

Most of the functions require the calendar time returned by time() , that is the number of
seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), January 1,
1970.

The following identifiers are declared in this header file:

strerror() function Maps an error number to a message string.

strlen() function Computes the length of the string pointed to by s.

strncat() function Appends a copy of one string to another string.

strncmp() function Compares two strings up to a maximum of n characters and
returns the result of the comparison.

strncpy() function Copies all or part of one string into another string.

strpbrk() function Returns a pointer to the location in one string of the first
occurrence of any member of the character set in another string.

strrchr() function Locates the last occurrence of a supplied character within a
string.

strspn() function Returns the length of the first substring in one string composed
entirely of members of the character set in another string.

strstr() function Locates the first occurrence in one string of the sequence of
characters specified by another string.

strtok() function Divides one string into zero or more tokens. The token
separators consist of any characters contained in another string.

strxfrm() function Transforms a string in a manner appropriate for the current
locale.

Table 4-16. Date and Time <time.h>

Name Type Description

asctime() function Converts a tm structured time variable into a null
terminated 26-character string.

clock() function Reports CPU time used.

clock_t type definition Return values from the clock function.

Table 4-15. String Handling <string.h>

Name Type Description
Chapter 4 51

HP C/iX Library Header Descriptions
Header File Contents
CLOCKS_PER_SEC macro The number of clock ticks per second, as counted by the
clock function.

ctime() function Converts a calendar time into a 26-character ASCII string.

daylight a global variable Communicates with functions in this library. See the
function descriptions in chapter 5 for more information.

difftime() function Computes the difference between two times.

gmtime() function Converts time to Coordinated Universal Time (UTC) in the
structured tm type format.

localtime() function Converts time to the local time zone.

mktime() function Converts a broken-down time of type struct tm to a
calendar time of of type time_t .

NULL macro The constant 0.

size_t type definition The data type used to return values from the sizeof
operator.

strftime() function Creates a formatted time string.

time() function Returns the current calendar time.

time_t type definition A data type definition used to return values from the time
function. It is also used to declare return values and
parameters of other time.h> functions. A time value
represented using type time_t is referred to as a calendar
time.

timezone macro A constant containing the offset of the local time zone to
GMT. The local time zone defaults to EST. This value can be
changed by setting the environment variable TZ using the
SETVAR command.

tm type definition A structure data type definition used to declare parameters
and return values for time.h> functions. Contains the
components of a calendar time value, broken down into
individual fields for year, month, day, hour, and so on. A
time value represented using type struct tm is referred to
as a broken-down time.

tzname b global variable An external variable used to communicate with functions in
this library. See the time function descriptions in chapter 5
for more information.

tzset() function Sets time zone conversion information.

a. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

Table 4-16. Date and Time <time.h>

Name Type Description
52 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
The tm structure, used by several of the <time.h> functions, is shown below:

struct tm {
int tm_sec; /* seconds after the minute (0 through 59) */
int tm_min; /* minutes after the hour (0 through 59) */
int tm_hour; /* hours since midnight (0 through 23) */
int tm_mday; /* day of the month (1 through 31) */
int tm_mon; /* month of the year (0 through 11) */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday (0 through 6) */
int tm_yday; /* day of the year (0 through 365) */
int tm_isdst; /* daylight savings time flag (1 = dst) */

};

Standard Macros <unistd.h>

The header <unistd.h> defines several macros that are used as arguments to the lseek
function.

NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable.

Machine-Dependent Values <values.h>

The header <values.h> contains a set of manifest constants, conditionally defined for
particular processor architectures. The model assumed for integers is binary
representation (one's or two's complement), where the sign is represented by the value of
the high-order bit. The following macros are defined in this header file:

b. These identifiers are not defined by the ANSI C standard. Programs using these
identifiers are likely to be less portable.

Table 4-17. Standard Macros <unistd.h>

Name Type Description

SEEK_CUR macro A constant value that may be used as the whence parameter to lseek .
Seek relative to the current location in the file.

SEEK_END macro A constant value that may be used as the whence parameter to lseek .
Seek relative to the end of file.

SEEK_SET macro A constant value that may be used as the whence parameter to lseek .
Seek relative to the beginning of file.

Table 4-18. Machine-Dependent Values <values.h>

Name Type Description

BITS macro The number of bits in a specified type, such as int .
Chapter 4 53

HP C/iX Library Header Descriptions
Header File Contents
NOTE This header file is not defined by the ANSI C standard. Programs using this
header are likely to be less portable.

Variable Arguments (old form) <varargs.h>

The header <varargs.h> declares several types and macros for calling variable argument
functions.

HIBITS macro The value of a short integer with only the high-order bit
set.

HIBITL macro The value of a long integer with only the high-order bit
set.

HIBITI macro The value of a regular integer with only the high-order
bit set.

MAXSHORT macro The maximum value of a signed short integer.

MAXLONG macro The maximum value of a signed long integer.

MAXINT macro The maximum value of a signed regular integer.

MAXFLOAT, LN_MAXFLOAT macros The maximum value of a single-precision floating-point
number and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE macros The maximum value of a double-precision floating-point
number and its natural logarithm.

MINFLOAT, LN_MINFLOAT macros The minimum positive value of a single-precision
floating-point number and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE macros The minimum positive value of a double-precision
floating-point number and its natural logarithm.

FSIGNIF macro The number of significant bits in the mantissa of a
single-precision floating-point number.

DSIGNIF macro The number of significant bits in the mantissa of a
double-precision floating-point number.

Table 4-19. Variable Arguments <varargs.h>

Name Type Description

va_arg macro Returns the next argument in an argument list.

va_alist type definition A type definition used when declaring the variable used as the ap
parameter to the va_arg , va_end , and va_start macros.

va_start macro Initializes a variable to the beginning of an argument list.

Table 4-18. Machine-Dependent Values <values.h>

Name Type Description
54 Chapter 4

HP C/iX Library Header Descriptions
Header File Contents
NOTE This header file is for non-ANSI mode only. Use stdarg.h> in ANSI mode.
Using this header is likely to make a program less portable.

va_end macro Terminates access to a variable argument list.

Table 4-19. Variable Arguments <varargs.h>

Name Type Description
Chapter 4 55

HP C/iX Library Header Descriptions
Header File Contents
56 Chapter 4

HP C/iX Library Function Descriptions
5 HP C/iX Library Function
Descriptions

This chapter provides descriptions of HP C/iX library functions arranged in alphabetical
order.

If a function conforms to the ANSI C or POSIX standard, a cross-reference to the standard
is given at the end of the function description.
Chapter 5 99

HP C/iX Library Function Descriptions
a64l
a64l
Converts a base-64 ASCII string to a long integer.

Syntax

[long a64l (char s);]

Parameters

s A pointer to a null terminated base-64 ASCII string. Maximum length is 6
bytes; not counting the null terminator.

Return Values

x A long integer containing the binary value of the base-64 ASCII string.

Description

This function maintains numbers stored in base-64 ASCII characters. Long integers can be
represented by up to six characters. Each character represents a digit in a radix-64
notation.

The characters used to represent digits are:

The leftmost character is the least significant digit. For example:

 a0 = (38 x 64 0) + (2 x 64 1) = 166

The a64l function is passed a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains more than six
characters, a64l() uses the first six (leftmost) characters.

See Also

l64a()

Characters Digits

. 0

/ 1

0 through 9 2 through 11

A through Z 12 through 37

a through z 38 through 63
100 Chapter 5

HP C/iX Library Function Descriptions
abort
abort
Terminates a program abnormally.

Syntax
#include <stdlib.h>
void abort (void);

Parameters

None.

Return Values

None.

Description

The abort function causes abnormal program termination to occur unless the signal
SIGABRT is being caught and the signal handler does not return.

The abort function closes all open files if possible and then terminates the process.
Temporary files under MPE/iX are not saved.

Process termination is achieved by calling the system intrinsic QUIT. This intrinsic
transmits an abort message to the list device of the calling process and sets the job control
word (JCW) to indicate that the program terminated in an error state. The C language job
control word (CJCW) is also set to a non zero value to indicate the error condition.

See Also

exit() , raise() , signal() , ANSI C 4.10.4.1, POSIX.1 8.2.3.12, MPE/iX Intrinsics
Reference Manual
Chapter 5 101

HP C/iX Library Function Descriptions
abs
abs
Computes the absolute value of an integer argument.

Syntax
#include <stdlib.h>
int abs (int x);

Parameters

x An integer value whose absolute value is to be computed.

Return Values

x The absolute value of the integer specified in x.

Example

The following program calculates integer absolute values until a zero is entered from the
keyboard:

#include <stdlib.h>
#include <stdio.h>
main(void)
{
int value;
do

{
printf("Enter value: ");
scanf("%d", &value);
if (value == 0)

exit (0);
printf("Absolute value of %d is %d.\n, value, abs(value));
}
while (value !=0);

}

See Also

fabs() , labs() , floor() , ANSI C 4.10.6.1, POSIX.1 8.1
102 Chapter 5

HP C/iX Library Function Descriptions
access
access

Determines the accessibility of a file.

Syntax
#include <unistd.h>
int access (char * fname , int amode);

Parameters

fname A pointer to a character string containing a file name.

amode An integer indicating whether read or write access to a file is requested.

Return Values

0 Requested access is permitted.

−1 Requested access is denied; errno is set to one of the following values:

ENOENT Read, write, or execute (search) permission is requested
for a null path name, or the named file does not exist.

EACCES The requested access is denied.

ESYSERR A call to a system intrinsic failed.

Description

The access function checks for read or read/write access for the file referenced by fname .
The bit pattern contained in amode is constructed as follows:

04 Read access

02 Write access

Other values of amode are not supported.

The access function is not supported in the POSIX/iX library. If called, access() returns
a -1 and sets errno to ENOSYS.
Chapter 5 103

HP C/iX Library Function Descriptions
acos
acos
Returns the arc cosine in radians of the input value.

Syntax
#include <math.h>
double acos (double x);

Parameters

x A real number.

Return Values

n The arc cosine of x.

0 The magnitude of the argument of acos is greater than one or less than
negative one. In addition, errno is set to EDOM.

Description

The acos function returns the arc cosine of x, in the range of zero to pi. A message
indicating a DOMAINerror is printed on the standard error output if x is greater than one or
less than negative one.

Error-handling can be changed by a user-written matherr function.

See Also

matherr() , ANSI C 4.5.2.1, POSIX.1 8.1
104 Chapter 5

HP C/iX Library Function Descriptions
asctime
asctime
Converts a tm structured time variable into a null-terminated 26-character string.

Syntax
#include <time.h>
char *asctime (const struct tm * timeptr);

Parameters

timeptr A pointer to a structure of type tm that contains the broken-down time.

Return Values

x A pointer to the string.

Description

The asctime function provides a way for you to get the current time, modify it in some
way, and then print the result in ASCII form.

The timeptr parameter points to a structure of type tm whose members were assigned
values with localtime() , gmtime() , or explicitly by you. The asctime function returns a
character pointer to a null terminated string with a maximum length of 26 characters.
This string is the same type as the string returned by ctime(). Because asctime()
returns a pointer to a static character array, it is overwritten by subsequent calls to
asctime() .

Example

The date command shown in the section on ctime() can be rewritten using localtime()
and asctime() :

#include <stdio.h>
#include <time.h>
main()
{

int time(), nseconds;
struct tm *ptr, *localtime();
char *string, *asctime();

nseconds = time(NULL);

/* you may modify the current time in tm here */

string = asctime(ptr);
printf("%s", string);

}

This program illustrates an indirect way to obtain the date, but it does enable you to
Chapter 5 105

HP C/iX Library Function Descriptions
asctime
modify the date stored in tm before you print the data. If you only want to print the date,
use the time /ctime combination.

Of all the ctime functions, the localtime function is the most useful. The localtime
function enables you to break up the current time into chunks that can be easily
referenced and examined for such applications as personal calendar programs and
program schedulers. Many of the tm values can be used as indices into arrays containing
strings identifying months and days. For example, declaring an external array like

char *month [] = { "January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December"

};

enables you to use tm_mon as an index into this array to obtain the actual month name.
The same thing can be done with tm_wday if you initialize an array containing the names
of the days of the week.

See Also

clock() , mktime() , localtime() , time() , ANSI C 4.12.3.1, POSIX.1 8.1.1
106 Chapter 5

HP C/iX Library Function Descriptions
asin
asin

Returns the arc sine of the input value in radians.

Syntax
#include math.h>
double asin (double x);

Parameters

x A real number.

Return Values

n The arc sine of x.

0 The magnitude of the argument of asin is greater than one or less than
negative one. errno is set to EDOM.

Description

The asin function returns the arc sine of x, in the range of −pi/2 to pi/2.

A DOMAINerror is printed on the standard error output if x is greater than one or less than
negative one.

Error-handling can be changed by a user-written matherr function.

See Also

matherr() , ANSI C 4.5.2.2, POSIX.1 8.1
Chapter 5 107

HP C/iX Library Function Descriptions
assert
assert

Terminates the program if the assertion is false.

Syntax
#include <assert.h>
void assert (int expression);

Parameters

expression An integer value to be evaluated.

Return Values

None.

Description

The assert macro terminates the program if the assertion is false. The assert macro
takes a single integer (expression) argument. If the expression evaluates to 0 (false),
assert() writes a message containing the expression that tested false and the line
number where the assert occurred. The program then terminates. The macro NDEBUG is
referenced but not defined in <assert.h> . If NDEBUG is defined at the point when
<assert.h> is included, the assert macro calls have no effect. The NDEBUGmacro enables
the operation of the assert macro:

See Also

abort() , ANSI C 4.2.1.1, POSIX.1 8.1

NDEBUG Definition assert macro effect

Defined Calls are ignored (no debugging done)

Undefined Calls are processed (debugging is done)
108 Chapter 5

HP C/iX Library Function Descriptions
atan2
atan2

Returns the arc tangent of the input Cartisian coordinates x and y.

Syntax
#include math.h>
double atan2 (double y, double x)

Parameters

y A real number indicating the Cartisian coordinate y.

x A real number indicating the Cartisian coordinate x.

Return Values

n The arc tangent of (x, y).

0 Indicates both arguments are zero and errno is set to EDOM. A DOMAIN
error is also printed on the standard error output device.

Description

The atan2 function returns the arc tangent of y/x , in the range of −pi to pi. It uses the
signs of both arguments to determine the quadrant of the return value.

Error handling can be changed by a user-written matherr function.

See Also

matherr() , ANSI C 4.5.2.4, POSIX.1 8.1
Chapter 5 109

HP C/iX Library Function Descriptions
atan
atan

Returns the arc tangent of the input value x.

Syntax
#include math.h>
double atan (double x);

Parameters

x A real number.

Return Values

y The arc tangent of x in the range of −pi/2 to pi/2 .

Description

The atan function returns the arc tangent of x, in the range −pi/2 to pi/2 . No range or
domain errors are possible.

See Also

matherr() , ANSI C 4.5.2.3, POSIX.1 8.1
110 Chapter 5

HP C/iX Library Function Descriptions
atexit
atexit

Specifies a function to call when a program terminates.

Syntax
#include <stdlib.h>
int atexit (void (* func) (void));

Parameters

func A pointer to a function to be registered.

Return Values

0 The function is successfully registered.

≠0 An error occurred.

Description

The atexit function registers a function pointed to by func that will be called at normal
program termination. The function is called without arguments. Up to 32 functions can be
registered.

See Also

exit() , ANSI C 4.10.4.2
Chapter 5 111

HP C/iX Library Function Descriptions
atof
atof

Converts a string to a double floating-point number.

Syntax
#include <stdlib.h>
double atof (const char * str);

Parameters

str A pointer to a character string to be converted to a double floating-point
number.

Return Values

x A double floating-point number.

Description

The atof function converts the string of characters that the str argument points to into a
double floating-point number. The atof function skips over white space before looking for
the start of the number. The format of the input string is the same as that accepted by the
%lf scanf format conversion.

This function converts any numeric and numeric formatting characters up to, but not after,
any non-numeric character that it encounters. In this case, atof() returns the number
that has been converted up to that point.

See Also

atoi() , atol() , strtod() , strtol() , strtoul() , ANSI C 4.10.1.1, POSIX.1 8.1
112 Chapter 5

HP C/iX Library Function Descriptions
atoi
atoi

Converts a string to an integer.

Syntax
#include <stdlib.h>
int atoi (const char * str);

Parameters

str A pointer to a character string to convert to an integer.

Return Values

x An integer value upon successful completion.

0 An error occurred. The str argument may have started with an
unrecognized character.

Description

The atoi function converts the string of characters pointed to by the str argument into an
integer. The atoi function skips over white space before looking for the start of the
number. The format of the input string is the same as that accepted by the %d scanf
format conversion.

This function converts as many characters as possible until it encounters an unrecognized
character. For example, if the received string is "19A1" , atoi() returns 19.

See Also

atof() , atol() , strtod() , strtol() , strtoul() , scanf() , ANSI C 4.10.1.2, POSIX.1 8.1
Chapter 5 113

HP C/iX Library Function Descriptions
atol
atol

Converts a string to a long integer.

Syntax
#include
long int atol (const char * str);

Parameters

str A pointer to a character string to be converted to an object of type long
int .

Return Values

x A long integer upon successful completion.

0 An error occurred. The str argument may have started with an
unrecognized character.

Description

The atol function converts the string of characters that str points to into a long integer
(unsigned long int) representation. The atol function skips over white space before
looking for the start of the number. The format of the input string is the same as that
accepted by the %ld scanf format conversion.

This function converts any characters up to, but not after, any unrecognized character it
encounters. In this case, atol returns the number that has been converted up to that
point.

See Also

atof() , atoi() , strtod() , strtol() , strtoul() , scanf() , ANSI C 4.10.1.3, POSIX.1 8.1
114 Chapter 5

HP C/iX Library Function Descriptions
Bessel Functions
Bessel Functions

The Bessel functions are j0 , j1 , jn , y0 , y1 , and yn .

Syntax
#include <math.h>

double j0 (double x);

double j1 (double x);

double jn (int i , double x);

double y0 (double x);

double y1 (double x);

double yn (int i , double x);

Parameters

x A real number input to the Bessel functions.

i An integer value indicating the order to use when calculating the Bessel
functions.

Return Values

n The result of the Bessel function.

-HUGE The input arguments are non-positive.

0 The input argument is too large in magnitude. In addtion, errno is set to
ERANGE.

Description

The j0 and j1 functions return Bessel functions of x of the first kind of orders zero and 1,
respectively. The jn function returns the Bessel function of x of the first kind of order i .

The y0 and y1 functions return the Bessel functions of x of the second kind of orders zero
and 1, respectively. The yn function returns the Bessel function of x of the second kind of
order i . The value of x must be positive.

Non-positive arguments cause y0 , y1 , and yn to return the value -HUGE and sets errno to
EDOM. They also cause a message indicating a DOMAIN error to be printed on the standard
error output, but the process continues.

Arguments too large in magnitude cause j0 , j1 , jn , y0 , y1 and yn to return zero and to set
errno to ERANGE.In addition, a message indicating TLOSSerror is printed on the standard
error output.
Chapter 5 115

HP C/iX Library Function Descriptions
Bessel Functions
Error handling can be changed by a user-written matherr function.

See Also

matherr()
116 Chapter 5

HP C/iX Library Function Descriptions
bsearch
bsearch
Performs a binary search of a sorted array.

Syntax
#include <stdlib.h>
void *bsearch(const void * key , const void * base ,

size_t nmemb, size_t size ,
int (* compar) (const void *, const void *));

Parameters

key A pointer to the search pattern to be found in the table.

base A pointer to the beginning of a table of items to be searched.

nmemb The number of elements in the array.

size The total size, in bytes, of each element of the array.

compar A pointer to the comparison function.

Return Values

x A pointer to an array element that matches the specified search pattern.

NULL No match found.

Description

The bsearch function searches an array of nmemb objects for a member that matches the
object pointed to by key . The size of each member of the array is specified by size .

The contents of the array must be sorted in ascending order according to the comparison
function pointed to by compar . The comparison function is called with two arguments that
point to the key object and to an array member, in that order.

The function must return an integer less than, equal to, or greater than zero indicating if
the first argument is to be considered less than, equal to, or greater than the second.

If two search keys in the array are equal to the specified object, the element matched is
unspecified.

See Also

hsearch() , lsearch() , qsort() , tsearch() , ANSI C 4.10.5.1, POSIX.1 8.1
Chapter 5 117

HP C/iX Library Function Descriptions
calloc
calloc

Allocates a block of memory.

Syntax
#include <stdlib.h>
void *calloc (size_t nelem , size_t elsize);

Parameters

nelem The number of elements, each of size elsize , to be found in the block of
allocated memory.

elsize The size, in bytes, of each element specified in nelem .

Return Values

x A pointer to the allocated space.

NULL There is not enough available memory or elsize is zero.

Description

The calloc function allocates space for an array of nelem elements of size elsize . The
space is initialized to all bits zero. It is suitably aligned for any use.

See Also

malloc() , free() , realloc() , ANSI C 4.10.3.1, POSIX.1 8.1
118 Chapter 5

HP C/iX Library Function Descriptions
catread
catread

Returns a message from a message catalog file in HP-UX format.

Syntax
int catread (int fd , int set_num , int msg_num, char * msg_buf ,

int buflen [,char * arg]);

Parameters

fd An integer containing a file descriptor of the message catalog.

set_num An integer containing the message set number where the message to be
read is located.

msg_num An integer containing the message number within the set to read from the
message catalog.

msg_buf A pointer to a character array in which the message is returned.

buflen An integer containing the length of buffer pointed to by msg_buf .

arg1..n Optional pointers to character strings that can be inserted into the error
message.

Return Values

≥0 The number of non-null bytes placed in the msg_buf . Indicates success.

<0 Indicates set_num or msg_num is not found in the catalog.

Description

The catread function retrieves messages from message catalogs created on HP-UX or
formatted according to the HP-UX message catalog conventions. The catread function is
layered on getmsg .

This function provides interoperability support for message catalogs ported to MPE/iX
from HP-UX systems. For information on how to read message catalogs created on
MPE/iX, refer to the descriptions of the MPE/iX intrinsics CATOPEN, CATCLOSE, and
CATREAD which are documented in the MPE/iX Intrinsics Reference Manual.

The message read from the catalog may have embedded formatting information in the
form ![n] , where n is a digit. An exclamation mark followed by n is replaced by the nth
argument string. If exclamation marks are not numbered, they are replaced by the
arguments in serial order. Either all or none must be numbered.

See Also

getmsg()
Chapter 5 119

HP C/iX Library Function Descriptions
ccode
ccode

Retrieves the condition code for the calling process.

Syntax
#include <mpe.h>
int ccode();

Parameters

None.

Return Values

The general meanings of the values returned by ccode are described below. The specific
meaning depends upon the intrinsic called. Refer to the individual intrinsic descriptions in
the MPE/iX Intrinsics Reference Manual for details on the specific meaning.

Description

The ccode function retrieves the two bit condition code for the calling process. A condition
code is a process-specific value that provides information about the completion status of
system intrinsic functions calls. Many intrinsics use the condition code to signal success,
warning, or failure. From the condition code value, you can learn some basic information
about what happened during execution of the intrinsic.

Value Condition Code Description

0 Condition Code
Greater Than (CCG)

A special condition occurred but may not have affected the
execution of the request.

1 Condition Code
Less Than (CCL)

The request was not granted because an error condition
occurred.

2 Condition Code
Equal (CCE)

This usually indicates that a request was granted.
120 Chapter 5

HP C/iX Library Function Descriptions
ceil
ceil
Computes the ceiling function that finds the smallest integer that is greater than or equal
to the specified real number.

Syntax
#include <math.h>
double ceil (double x);

Parameters

x A real number.

Return Values

n An integer value of type double .

Description

The ceil function returns the smallest integer not less than the argument x.

See Also

floor() , fmod() , ANSI C 4.5.6.1, POSIX.1 8.1
Chapter 5 121

HP C/iX Library Function Descriptions
clearerr
clearerr

Clears the end-of-file and error indicators of a stream.

Syntax
#include <stdio.h>
void clearerr (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

None.

Description

The clearerr function clears the end-of-file and error indicators to zero for the file pointed
to by stream .

See Also

fopen() , ANSI C 4.9.10.1, POSIX.1 8.1
122 Chapter 5

HP C/iX Library Function Descriptions
clock
clock

Reports CPU time used.

Syntax
#include <time.h>
clock_t clock (void)

Parameters

None.

Return Values

x The number of clock ticks consumed by the program.

Description

The clock function returns the amount of CPU time, in microseconds, used since the first
call to clock() . The time reported is the sum of the user and system times of the calling
process.

The resolution of the clock varies, depending on the hardware and on the software
configuration. On MPE/iX, the clock resolution is 10 milliseconds.

The value returned by clock() is defined in microseconds for compatibility with systems
that have CPU clocks with much higher resolution. Because of this, the value returned
wraps around after accumulating only 2147 seconds of CPU time (about 36 minutes).

See Also

ANSI C 4.12.2.1
Chapter 5 123

HP C/iX Library Function Descriptions
close
close

Closes a file.

Syntax
int close (int fildes);

Parameters

fildes An open file descriptor.

Return Values

0 A successful close.

−1 An unsuccessful close and errno is set to one of the following values:

EBADF The fildes parameter is not a valid open file descriptor.

ESYSERR A call to a system intrinsic failed.

Description

The close function closes the file indicated by fildes . The fildes parameter is an open
file descriptor obtained from a call to dup() or open() .

NOTE If linking with the POSIX/iX library, refer to the description of close()
located in the MPE/iX Developer's Kit Reference Manual.

See Also

dup() , open() , read() , write()
124 Chapter 5

HP C/iX Library Function Descriptions
cos
cos

Computes a cosine value for a given angle.

Syntax
#include <math.h>
double cos (double x);

Parameters

x A real number giving the angle measured in radians.

Return Value

n The cosine of the angle.

0 A complete loss of significance. A TLOSS error message is printed on the
standard error output. The external variable errno is set to ERANGE.

Description

The cos function returns the cosine of its argument, x, measured in radians.

This function loses accuracy when its argument is far from zero. For less extreme
arguments causing partial loss of significance, a PLOSS error is generated but no message
is printed and errno is set to ERANGE.

Error handling can be changed by a user-written matherr function.

See Also

sin() , tan() , matherr() , ANSI C 4.5.2.5, POSIX.1 8.1
Chapter 5 125

HP C/iX Library Function Descriptions
cosh
cosh

Computes the hyperbolic cosine of an angle.

Syntax
#include <math.h>
double cosh (double x);

Parameters

x A real number giving the angle measured in radians.

Return Values

HUGE_VAL An overflow condition occurred, and errno is set to ERANGE.

n The hyperbolic cosine of the given angle.

Description

The cosh function returns the hyperbolic cosine of the given angle. Error handling can be
changed by a user-written matherr function.

See Also

tanh() , cos() , matherr() , ANSI C 4.5.3.1, POSIX.1 8.1
126 Chapter 5

HP C/iX Library Function Descriptions
creat
creat

Creates a new file or rewrites an existing file.

Syntax
#include <fcntl.h>
creat (char * pathname , int mode)

Parameters

pathname A pointer to a string containing the pathname of a file to be created or
rewritten. The pathname must be terminated by a null character.

mode The mode parameter is ignored. This parameter is provided for
compatibility with other systems.

Return Values

≥0 Success. A non-negative integer value is returned representing the lowest
unused file descriptor.

−1 An error occurred. No file has been created or modified and errno is set to
one of the following values:

EACCES A file access permission violation is associated with one of
the following:

• Search permission is denied within the accessed group
or account.

• The file does not exist and the group in which the file is
to be created does not permit writing.

• The file exists and write permission is denied.

EMPFILE More than the maximum number of file descriptors are
currently open.

ENOENT The pathname is NULL.

ESYSERR A call to a system intrinsic failed.

Description

The creat function opens for write-only access a file whose pathname is specified in the
string pointed to by pathname . The file offset is set to the beginning of the file. Upon
success, creat returns a file descriptor used by other I/O functions to refer to the file.

The function call below:

creat (path, mode);

is equivalent to the following:
Chapter 5 127

HP C/iX Library Function Descriptions
creat
open (path, O_WRONLY | O_CREAT | O_TRUNC, mode);

NOTE If linking with the POSIX/iX library, refer to the description of creat()
located in the MPE/iX Developer's Kit Reference Manual.

See Also

open()
128 Chapter 5

HP C/iX Library Function Descriptions
crypt
crypt

Provides one-way encryption of passwords.

Syntax
char *crypt (char * key, char *salt);

Parameters

key A pointer to a character string to be encrypted.

salt A pointer to a character string used as the initial value in the hashing
algorithm.

Return Values

x A pointer to a character string containing the encrypted password.

Description

The crypt function is the password encryption function based on the NBS Data
Encryption Standard (DES). It is a one-way algorithm that produces a scrambled
character string based upon the input string. It includes variations from the DES intended
to frustrate the use of hardware implementations of the DES for key search.

The key parameter is your typed password. The salt parameter is a two-character string
chosen from the set [a-zA-Z0-9./] ; this string is used to set the hashing algorithm in one
of 4096 different ways, after which key is used to encrypt repeatedly a constant string. The
returned value points to the encrypted password; the first two characters of the password
is the salt itself.

The return value points to static data that are overwritten by each call.

See Also

setkey() , encrypt()
Chapter 5 129

HP C/iX Library Function Descriptions
ctime
ctime

Converts the current time into a 26-character ASCII string of the form

Fri May 11 09:53:03 1984\n\0

where \n is a newline character and \0 is a terminating null character.

Syntax
#include <time.h>
char *ctime(const time_t * timer);

Parameters

timer A pointer to the time to be converted.

Return Value

x A pointer to a 26-byte character string containing the converted time.

Description

The ctime function converts a Coordinated Universal Time (UTC) value (a value
representing the number of elapsed seconds since 00:00:00 UTC January 1, 1970) into a
character string. The returned 26 character time value is adjusted to the time zone
specified by the TZ (Time Zone) environment variable.

By default, ctime adjusts the returned value to the Eastern Standard Time (EST) zone.
You may override this default behavior by using the MPE/iX command SETVAR TZ name.
Time zone names, and the format of TZTAB.LIB.SYS file containing time zone offsets from
GMT are listed in appendix A, "Time Zones."

Example

Using time and ctime, you can write a simple date command:

#include <stdio.h>
#include <time.h>
main()
{

char *str, *ctime();
time_t time(), nseconds;
nseconds = time(NULL);
str = ctime(&nseconds);
printf("%s\n", str);

}

See Also

time() , ANSI C 4.12.3.2, POSIX.1 8.1
130 Chapter 5

HP C/iX Library Function Descriptions
difftime
difftime

Computes the difference between two times.

Syntax
#include <time.h>
double difftime (time_t time2 , time_t time1);

Parameters

time2 A time, in time_t format.

time1 A time, in time_t format.

Return Values

x Returns time2 - time1 in seconds as a double .

Description

The difftime function computes the time difference between time2 and time1 in seconds.
The time2 parameter should be the later of the two times.

See Also

time() , ANSI C 4.12.2.2
Chapter 5 131

HP C/iX Library Function Descriptions
div
div

Computes the quotient and remainder of two integers.

Syntax
#include <stdlib.h>
div_t div (int numer , int denom);

Parameters

numer The numerator.

denom The denominator.

Return Values

Returns a structure of type div_t , comprising the quotient and the remainder. The
structure contains the following:

int quot; /* quotient */
int rem; /* remainder */

Description

The div function computes and returns the quotient and the remainder of the division of
numer by denom.

If the division is inexact, the sign of the resulting quotient and the algebraic quotient are
the same, and the magnitude of the resulting quotients is the largest integer less than the
magnitude of the algebraic quotient.

If the result cannot be represented, the behavior is undefined; otherwise, quot × denom +
rem equals numer .

See Also

ldiv() , ANSI C 4.10.6.2
132 Chapter 5

HP C/iX Library Function Descriptions
dup
dup

Duplicates an open file descriptor.

Syntax
#include <fcntl.h>
int dup (int fildes);

Parameters

fildes A file descriptor.

Return Values

n A non-negative integer representing the new file descriptor.

−1 An error occurred and errno is set to one of the following values:

EBADF The fildes parameter is not a valid open file descriptor.

EMFILE The maximum number of file descriptors are currently
open.

Description

The dup function returns the lowest-numbered available file descriptor. The new file
descriptor returned by dup() refers to the same open file description as fildes . The data
in the file is not duplicated; only the file descriptor is duplicated.

Using dup() to create two file descriptors that point to the same file is different from
opening the file twice with open() . With dup() , both file descriptors use the same file table
entry, and the same file offset is used for reads and writes. With open() , multiple file
descriptors and file table entries are created, and multiple file offset variables are used
with reads and writes.

The new file descriptor has the following in common with the original file descriptor:

• Both share the same open file description.

• Both share the same file position indicator.

• Both share the same access mode.

NOTE If linking with the POSIX/iX library, refer to the description of dup() located
in the MPE/iX Developer's Kit Reference Manual.

See Also

open()
Chapter 5 133

HP C/iX Library Function Descriptions
ecvt
ecvt

Converts a floating-point number to a string.

Syntax
char *ecvt (double value , int ndigit , int * decpt , int sign);

Parameters

value The floating-point number to be converted to a character string.

ndigit The number of digits to convert.

decpt A pointer to an integer to which the position of the decimal point relative
to the beginning of the string is returned.

sign A pointer to an integer to which a flag indicating the sign of the number is
returned.

Return Values

x A pointer to a character array containing the results of the conversion.

Description

The ecvt function converts value to a null-terminated string of ndigit digits and returns
a pointer to the string. The resulting numeric string is rounded and left-justified without
leading zeros. The position of the decimal point relative to the beginning of the string is
stored indirectly through decpt (negative means to the left of the returned digits). The
decimal point is not included in the returned string. If the sign of the result is negative, the
word pointed to by sign is non-zero. Otherwise, the word pointed to by sign is zero.

The values returned by ecvt() point to a single static data array whose content is
overwritten by each call.

See Also

fcvt() , gcvt()
134 Chapter 5

HP C/iX Library Function Descriptions
encrypt
encrypt

Encrypts a block of data.

Syntax
void encrypt (char * block , int edflag);

Parameters

block A pointer to the character array that is encrypted.

edflag An integer that is ignored by the function.

Return Values

None.

Description

The encrypt function scrambles the data in block using the same hashing algorithm used
by crypt() . The encrypt function performs a one-way encryption on the supplied data in
block using an encryption key previously defined to the encryption algorithm using
setkey .

The argument to encrypt is an 8-byte character array. The array is treated as a binary
number. The argument array is modified in place to a similar array representing the bits of
the argument after having been subjected to the hashing algorithm using the key set by
setkey .

See Also

crypt() , setkey()
Chapter 5 135

HP C/iX Library Function Descriptions
erf
erf

Returns the statistical error function of the input value.

Syntax
#include <math.h>
double erf (double x);

Parameters

x A real number defining the upper limit of the integral.

Return Values

n The integral given by the error function from 0 to x.

Description

The erf function returns the error function of x, defined as:

Figure 5-1. erf function

See Also

exp() , erfc()

2

π

x

o e-t 2
dt
136 Chapter 5

HP C/iX Library Function Descriptions
erfc
erfc
Returns the complementary error function of the input value.

Syntax
#include <math.h>
double erfc (double x);

Parameters

x A real number defining the upper limit of the integral.

Return Values

n The complement of the integral given by the error function from 0 to x.

Description

The erfc function returns the complementary error function, 1- erf(x) . This function is
provided because of the extreme loss of relative accuracy when erf (x) is called for large
values of x. If erf(5) is called and the return value subtracted from 1, 12 places of
accuracy are lost when compared to calling erfc(5) .

See Also

exp() , erf()
Chapter 5 137

HP C/iX Library Function Descriptions
exit
exit

Terminates the calling process normally.

Syntax
#include <stdlib.h>
void exit (int status);

Parameters

status A value passed to the environment upon program termination.

Return Values

None.

Description

The exit function terminates the calling process. The parameter status is returned to the
MPE/iX command interpreter using the CJCW job control word. By convention, a status
value of zero (0) indicates EXIT_SUCCESS, and a value of one (1) indicates EXIT_FAILURE .
You may establish additional return values as required.

Using the return expression statement from main() in a C program has the same effect
as using exit() , where status is equivalent to expression . This value returned using
CJCW is undefined if main() does not return a value or explicitly call exit() .

The exit function causes all functions registered by the atexit function to be called in the
reverse order of their registration. The exit function then triggers the system-level
clean-up procedures. All output streams are flushed. All stream are closed. All files created
by the tmpfile function are deleted.

See Also

abort() , atexit() , ANSI C 4.10.4.3, POSIX.1 8.1
138 Chapter 5

HP C/iX Library Function Descriptions
exp
exp

Returns the base e raised to the power of the argument.

Syntax
#include <math.h>
double exp (double x);

Parameters

x A real number used as the exponent of e.

Return Values

n e raised to the power of x.

HUGE_VAL An overflow condition has occurred and errno is set to ERANGE.

0 An underflow condition has occurred.

Description

exp returns ex.

This function sets errno to ERANGE when an underflow or overflow occurs.

Error handling can be changed by a user-written matherr function.

See Also

matherr(), ANSI C 4.5.4.1, POSIX.1 8.1
Chapter 5 139

HP C/iX Library Function Descriptions
fabs
fabs

Computes the absolute value of a floating-point argument.

Syntax
#include <math.h>
double fabs (double x);

Parameters

x A floating-point value whose absolute value is to be computed.

Return Values

n The absolute value of the floating-point value specified in x.

Example

The following program calculates floating-point absolute values until a zero is entered
from the keyboard:

#include <math.h>
main()
{

double value, fabs();
do
{
printf("Enter value: ");
scanf("%lf", &value);
if (value == 0)

exit
printf("Absolute value of %.12g is %.12g.\n", value, fabs(value));
}
while (value !=0);

}

See Also

abs() , labs() , ANSI C 4.5.6.2, POSIX.1 8.1
140 Chapter 5

HP C/iX Library Function Descriptions
fclose
fclose

Closes an open file.

Syntax
#include <stdio.h>
int fclose (FILE * stream);

Parameters

stream A pointer to the file to be closed.

Return Values

0 The file is successfully closed.

≠0 An error occurred. The file is not closed.

Description

The fclose function flushes the buffer associated with the specified stream, and, if the
buffer was allocated automatically by the standard I/O system, frees the space allocated to
that buffer. The stream is then closed, breaking the connection between your file pointer
and the stream. The fclose function closes files opened by the fopen() , fdopen() , or
freopen() functions.

The fclose function takes a pointer to FILE as its argument (returned from a call to
fopen() , fdopen() , or freopen()). The function posts any information written to the file
that is still in the stream's buffer, and it then closes the file. This disassociates the file and
the stream. If the buffer was automatically allocated, it is deallocated.

There are two reasons why you can open a file, but might never explicitly close the file.
First, notice that all programs in this chapter that open files end with a call to exit() . The
exit() call automatically performs an fclose() operation for every open file in that
program. Second, when a C program is compiled, an exit() call is normally compiled with
your code, so that if you return from main() or reach the } that terminates main() , it is
equivalent to calling exit() .

See Also

exit() , fdopen() , fopen() , freopen(), setbuf() , ANSI C 4.9.5.1, POSIX.1 8.1
Chapter 5 141

HP C/iX Library Function Descriptions
fcvt
fcvt

Converts a floating-point number to a string.

Syntax
char *fcvt (double value , int ndigit , int * decpt , int * sign);

Parameters

value The floating-point number to be converted to a character string.

ndigit The number of digits to convert.

decpt A pointer to an integer to which the position of the decimal point relative
to the beginning of the string is returned.

sign A pointer to an integer to which a flag indicating the sign of the number is
returned.

Return Values

x A pointer to a character array containing the resulting numeric character
string.

Description

The fcvt function converts value to a null-terminated string of ndigit digits and returns
a pointer to the string. The resulting numeric string is rounded and left-justified without
leading zeros. The position of the decimal point relative to the beginning of the string is
stored indirectly through decpt (negative means to the left of the returned digits). The
decimal point is not included in the returned string. If the sign of the result is negative, the
word pointed to by sign is non-zero; otherwise, the word pointed to by sign is zero.

This function is identical to ecvt() , except that the correct digit has been rounded for
printf %f (FORTRAN F-format) output of the number of digits specified by ndigit .

The fcvt function points to a single static data array whose content is overwritten by each
call.

See Also

ecvt() , gcvt()
142 Chapter 5

HP C/iX Library Function Descriptions
fdopen
fdopen

Opens a stream on a file descriptor.

Syntax
#include <stdio.h>
FILE *fdopen (int fildes , const char *type);

Parameters

fildes An open file descriptor.

type A pointer to a character string containing a new access mode. Following
are valid strings and their meanings:

r Open or create file for reading.

w Open or create file for writing.

a Open or create file in append mode. All writes are at
end-of-file.

r+ Open or create file for update (reading and writing).

w+ Open or create file for update.

a+ Open or create file for append update (read anywhere, but
all writes are at end-of-file).

Return Values

x A pointer to an open stream.

NULL An error occurred. There may be too many open files, or the arguments
may have been incorrectly defined.

Description

The fdopen function associates a stream with an open file descriptor. File descriptors are
obtained from the open or dup functions; however, streams are the required form of file
reference for many of the standard I/O library functions. The type of stream must agree
with the mode of the open file.

Opening a file in read mode fails if the file does not exist or cannot be read.

When a file is opened for update, both input and output may be done on the resulting
stream. Do not directly follow output with input without an intervening call to fflush()
or to a file positioning function (fseek() , fsetpos() , or rewind()). Do not directly follow
input with output without an intervening call to a file positioning function unless the input
operation encounters end-of-file.

When a file is opened for append, it is impossible to overwrite information already in the
Chapter 5 143

HP C/iX Library Function Descriptions
fdopen
file. The fseek function may be used to reposition the file pointer to any position in the file,
but when output is written to the file, the current file pointer is disregarded. All output is
written at the end of the file, and the file pointer is repositioned at the end of the output.
When opening a binary file, the file position indicator may, in some cases, be positioned
beyond the last data written because of blank or null padding.

When opened, a stream is fully buffered only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for a stream are cleared.

See Also

open() , dup() , close() , POSIX.1 8.1
144 Chapter 5

HP C/iX Library Function Descriptions
feof
feof

Tests whether the end-of-file indicator for a stream has been set.

Syntax
#include <stdio.h>
int feof (FILE * stream);

Parameters

stream A pointer to a file to be tested.

Return Values

=0 End-of-file has not been set.

≠0 End-of-file has been set.

Description

The feof function is intended to clarify ambiguous return values from standard I/O
functions.

The feof function returns a nonzero value if the end-of-file indicator was set on the
specified stream . It does not reset the indicator. You need to use the clearerr function to
reset it.

Because I/O functions return EOF for end-of-file and error conditions, you can use feof()
and ferror() to distinguish between them. Also, some systems support I/O functions that
take integer data instead of characters. For these functions, you need to use feof() and
ferror() to differentiate between valid data and the EOF flag.

Example

The following program uses feof() :

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int c;
FILE *dfile, *datale, *datagt;

if(argc != 2) {
fprintf(stderr, "usage: intsort filename\n");
exit(1);

}
dfile = fopen(argv[1], "r");
if(dfile == NULL) {
Chapter 5 145

HP C/iX Library Function Descriptions
feof
fprintf("Can't open %s.\n", argv[1]);
exit(1);

}
datale = fopen("dfle", "w");
if(datale == NULL) {

fprintf("Can't create dfle file.\n");
exit(1);

}
datagt = fopen("dfgt", "w");
if(datagt == NULL) {

fprintf("Can't create dfgt file.\n");
exit(1);

}
for(;;) {

if((c = fgetc(dfile)) != EOF) {
if(c <= 'Z' c >= 'A')

fputc(c, datale);
else

fputc(c, datagt);
} else {

if(feof(dfile))
break;

else
fprintf(stderr, "error in reading file \n");
exit(1);

}
}
exit(0);

}

Whenever fgetc() returns an integer equal to EOF, the feof() function checks whether
the end-of-file has been reached. If the end-of-file has been reached, the loop and the
program terminate; if not, an error message is displayed and the program terminates.

See Also

fopen() , ferror() , ANSI C 4.9.10.2, POSIX.1 8.1
146 Chapter 5

HP C/iX Library Function Descriptions
ferror
ferror

Tests whether the error indicator for a stream has been set.

Syntax
#include <stdio.h>
int ferror (FILE * stream);

Parameters

stream A pointer to a file to be tested.

Return Values

0 Error indicator has not been set.

≠0 Error indicator has been set.

Description

The ferror function is intended to clarify ambiguous return values from standard I/O
functions.

The ferror function returns a nonzero value if the error indicator was set on the specified
stream . It does not reset the indicator. You need to use the clearerr function to reset it.

Because I/O functions return EOFfor end-of-file and error conditions, you can use ferror()
and feof() to distinguish between them. Also, some systems support I/O functions that
take integer data instead of characters. For these functions, you need to use ferror() and
feof() to differentiate between valid data and the EOF flag.

See Also

fopen() , feof() , ANSI C 4.9.10.3, POSIX.1 8.1
Chapter 5 147

HP C/iX Library Function Descriptions
fflush
fflush

Flushes an I/O buffer to a file.

Syntax
#include <stdio.h>
int fflush (FILE * stream);

Parameters

stream A file pointer to an output stream.

Return Values

0 Success.

EOF An error occurred.

Description

The fflush function causes any information that was buffered by the stream pointed to by
the stream argument to be flushed out to the associated file. The fflush function returns
an EOF if the flush operation caused a write error. It returns a zero if there was no error.

The fclose and exit functions automatically perform fflush() . Therefore, there is often
no need to call fflush() explicitly before closing a file or terminating a program. However,
it might be necessary to manually fflush() a stream.

For example, data written to a terminal is line buffered by default. This means the system
waits for a newline character before writing the buffer onto the terminal screen. There are
times when you want whatever has been written so far to be written to the screen without
waiting for the newline character. In such situations, you must use fflush.

Another situation when explicit use of the fflush function is needed is when you have
written less than a full buffer of data to a file, and you want the contents of that file
processed by another function. Because less than a full buffer was written, the data is still
in the buffer; the file is still empty. Performing an fflush() causes the buffered data to be
written out to the file, enabling other functions or commands to utilize the file's contents.

See Also

fopen() , exit() , setbuf() , ANSI C 4.9.5.2, POSIX.1 8.1
148 Chapter 5

HP C/iX Library Function Descriptions
fgetc
fgetc

Reads a character from an open stream.

Syntax
#include <stdio.h>
int fgetc (FILE * stream);

Parameters

stream Pointer to an open stream.

Return Values

x The character read, expressed as an integer.

EOF No more input, or an error occurred.

Description

The fgetc function reads the next character from the specified stream and advances the
file position. The character is returned as an integer. When there are no more input
characters, the value EOF is returned.

See Also

fclose() , ferror() , fopen() , fread() , getc() , gets() , putc() , fputc() , scanf() ,
ANSI C 4.9.7.1, POSIX.1 8.1
Chapter 5 149

HP C/iX Library Function Descriptions
fgetpos
fgetpos

Returns the current file position of an open stream.

Syntax
#include <stdio.h>
int fgetpos (FILE * stream , fpos_t * pos);

Parameters

stream A pointer to an open stream.

pos A pointer to an object of type fpos_t , where the current file position
indicator is returned.

Return Values

0 Success.

≠0 An error occurred, and errno is set to indicate the error condition.

Description

The fgetpos function gets the current value of the file position indicator of the open
stream and returns it to the object pointed to by pos . The value returned in pos contains
unspecified data usable by fsetpos() .

See Also

ftell() , fsetpos() , rewind() , ANSI C 4.9.9.1
150 Chapter 5

HP C/iX Library Function Descriptions
fgets
fgets

Reads a string from an open stream.

Syntax
#include <stdio.h>
char *fgets (char * string , int n, FILE * stream);

Parameters

string A pointer to a character array.

n The maximum number of characters to read, plus one.

stream A pointer to an open stream.

Return Values

x If successful, a pointer to a character array.

NULL An error occurred.

Description

The fgets function reads a string from an open stream. The string parameter is a pointer
to a character string, and stream is a file pointer to the input stream.

The fgets function reads n-1 characters or up to a newline character, whichever comes
first. If a newline character is encountered, that character is retained as part of the string.
(Contrast this with the gets function, which replaces the newline character with a null
character.)

The fgets function appends a null character to the string.

The function returns the pointer to the string argument if the read is successful. If an
end-of-file is encountered and no characters were read into the array, the contents of the
array remain unchanged and a null pointer is returned. A null pointer is also returned if
there is a read error. In this case, the contents of the array pointed to by string are
undefined.

Examples

The following program uses fgets() and fputs() to copy a file.

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

char c, line[256], *fgets();
FILE *from, *to;
Chapter 5 151

HP C/iX Library Function Descriptions
fgets
if(argc != 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);

}
from = fopen(argv[1], "r");
if(from == NULL) {

printf("Can't open %s.\n", argv[1]);
exit(1);

}
to = fopen(argv[2], "w");
if(to == NULL) {

printf("Can't create %s.\n", argv[2]);
exit(1);

}
while(fgets(line, 256, from) != NULL)

fputs(line, to);
exit(0);

}

The program above accepts two arguments: the first is the name of the file to be copied,
and the second is the name of the file to be created. The first file is opened for reading, and
the second file is created for writing. The data from the first file is copied directly to the
newly created file.

In this program, the return value of fgets() is compared to NULL in the while loop,
because fgets() returns the null pointer when it reaches the end of its input. You can
easily convert this program to a file print command by doing the following:

1. Change the argc comparison to

if(argc != 2) . . .

2. Remove the to file pointer.

3. Remove the block of code that uses fopen() to open the new file, and assign a value to
to.

4. Change the fputs() call to

fputs(line, stdout);

The new file print program should look like this:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

char c, line[256], *fgets();
FILE *from;
if(argc < 2) {

printf("Usage: cat file\n");
exit(1);

}

from = fopen(argv[1], "r");
if(from == NULL) {
152 Chapter 5

HP C/iX Library Function Descriptions
fgets
printf("Can't open %s.\n", argv[1]);
exit(1);

}
while(fgets(line, 256, from) != NULL)

fputs(line, stdout);
exit(0);

}

See Also

ferror() , fopen() , fread() , getc() , puts() , scanf() ANSI C 4.9.7.2, POSIX.1 8.1
Chapter 5 153

HP C/iX Library Function Descriptions
fileno
fileno

Maps a stream pointer to a file descriptor.

Syntax
#include <stdio.h>
int fileno (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

≥0 An open file descriptor associated with stream .

Description

The fileno function returns the file descriptor associated with stream .

The following symbolic values, located in <unistd.h> , define the file descriptors associated
with stdin , stdout , and stderr streams when the application is started:

This routine is implemented as a macro in <stdio.h> and as a function.

See Also

fdopen() , open() , POSIX.1 8.2.1

File Descriptor
Symbolic Value

Stream Description Value

STDIN_FILENO Standard input stream stdin 0

STDOUT_FILENO Standard output stream stdout 1

STDERR_FILENO Standard error stream stderr 2
154 Chapter 5

HP C/iX Library Function Descriptions
floor
floor

Computes the largest integer value that is less than or equal to its argument.

Syntax
#include <math.h>
double floor (double x);

Parameters

x A real number.

Return Values

n An integer value stored as a double .

Description

The floor function returns the largest integer not greater than x.

See Also

ANSI C 4.5.6.3, POSIX.1 8.1
Chapter 5 155

HP C/iX Library Function Descriptions
fmod
fmod

Returns the floating-point remainder of x divided by y.

Syntax
#include <math.h>
double fmod (double x, double y);

Parameters

x The numerator.

y The divisor.

Return Values

f The remainder of x/y.

NaN Neither x or y is a number, x is +INFINITY , or y is zero. In addition, errno
is set to EDOM.

x An underflow condition has occurred; y may be ±infinity.

0 An overflow condition has occurred.

Description

The fmod function returns the floating-point remainder of the division of x by y. Zero is
returned if y is zero or if x/y overflows. Otherwise the number f with the same sign as x is
returned, such that x =i y + f for some integer i and |f| |y| .

See Also

floor() , ceil() , fabs() , ANSI C 4.5.6.4, POSIX.1 8.1
156 Chapter 5

HP C/iX Library Function Descriptions
fopen
fopen

Opens a stream.

Syntax
#include <stdio.h>
FILE *fopen (const char * fname , const char * mode);

Parameters

fname A pointer to a character string containing the name of the file.

mode A pointer to a character string defining the mode of the file open.

Return Values

x If successful, a pointer to the FILE structure associated with the stream.

NULL The file open operation failed.

Description

The fopen function opens the file named by fname and associates a stream with it. This
function returns a pointer to the FILE structure associated with the stream.

Opening a file in read mode fails if the file does not exist or cannot be read.

When a file is opened for update, both input and output may be done on the resulting
stream. Do not directly follow output with input without an intervening call to fflush()
or to a file positioning function (fseek() , fsetpos() , or rewind()). Do not directly follow
input with output without an intervening call to a file positioning function unless the input
operation encounters end-of-file.

When a file is opened for appending, it is impossible to overwrite information already in
the file. The fseek function can be used to reposition the file pointer to any position in the
file, but when output is written to the file, the current file pointer is disregarded. All
output is written at the end of the file and the file pointer is repositioned at the end of the
output. When opening a binary file the file position indicator may, in some cases, be
positioned beyond the last data written because of blank or null padding.

When opened, a stream is fully buffered only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for a stream are cleared.

The mode parameter points to a character string beginning with one of the following
sequences:

r Open or create text stream for reading.

w Open or create text stream for writing. Truncate to zero length.

a Open or create text stream in append mode. All writes are at end-of-file.
Chapter 5 157

HP C/iX Library Function Descriptions
fopen
rb Open or create binary stream for reading.

wb Open or create binary stream for writing. Truncate to zero length.

ab Open or create binary stream in append mode. All writes are at end-of-file.

r+ Open or create text stream for update (reading and writing).

w+ Open or create text stream for update. Truncate to zero length.

a+ Open or create text stream for append update (read anywhere but all
writes at end-of-file).

r+b or rb+ Open or create binary stream for update (reading and writing).

w+b or wb+ Open or create binary stream for update. Truncate to zero length.

a+b or ab+ Open or create binary stream for append update (reading anywhere but all
writes to end-of-file).

NOTE If you are linking with the POSIX/iX library, the fopen function only creates
or opens byte stream files. Attempting to open any other file type results in an
error.

When fopen() parses mode, all cases of b are ignored in the standard options,
and an MPE byte stream format file is opened and a binary stream is
associated with it. In addition, all other mode options specified below are
invalid.

If you are linking with the HP C/iX library, there are several enhancements that provide
greater control in the MPE file environment. These options should follow the standard
options in the mode string. Spaces may be used in the mode string to improve the
readability of the file's open mode. Notice that the case of the option is important. An
upper case B is different from a lower case b.

Bl n The Bl option specifies the blocking factor to use if this call to fopen()
creates the file. The option character is followed by an integer that
indicates the blocking factor. If the Bl option is not specified, then the
default is one record per block.

Bs If the Bs option is specified, the file is opened or created as a byte stream
file. This is the only required option for opening byte stream files. The
maximum file size for a byte stream file is two gigabytes. If specified, the
Rn option is ignored. The Sn option can be used to reset the file size. This
option is mutually exclusive with the V option. If the Bs or V options are
not specified, the file is created with an MPE fixed-length record format.

Bun The Bu option specifies the number of buffers to be allocated to this file. If
the Bu option is not specified, the default is 2.

C If the C option is specified, then the file will accept carriage control
information. The default is to not have carriage control.

Df n The Df option specifies the final disposition of the file after the file is
158 Chapter 5

HP C/iX Library Function Descriptions
fopen
closed. The affect of each value of n is defined as follows:

If the Df option is not specified and the file is a new file, then the default is
to save the file as a permanent file. If the file is old, the default is not to
change the disposition.

Dsn The Ds option specifies the disk space disposition of the file after the file is
closed for fixed, undefined, and variable format files. The effect of each
value of n is defined as follows:

If the Ds option is not specified, the default is not to return any disk space
allocated beyond the end-of-file indicator.

En The E option specifies the maximum number of extents that can be
allocated to the file.

The maximum value is 32. The default value, if the E option is not
specified, is 8 extents.

Fn The F option indicates the value used as the file code if this call to fopen()
creates the file. If the F option is not specified, the file code is zero.

L If specified, the L option indicates that dynamic locking should be allowed
on this file.

Mn The M option controls multi-access. The option character is followed by an
integer that indicates the level of multi-access for this open request. The
levels are specified in the MPE/iX Intrinsics Reference Manual under the
FOPEN intrinsic description.

Q If the Q option is specified, file equations are disallowed. The default is to
allow file equations.

Rn The R option specifies the size of the record if the file is created by this
open request. If the V option is also used, this option specifies the
maximum size of the variable-sized records. The option letter is followed
by a decimal number that is equal to the number of bytes in the record
size. Notice that the number must be positive. A byte count is always

0 Don't change the disposition.

1 Save the file as a permanent file.

2 Save the file as a temporary file.

3 Don't rewind on close.

4 Purge the file on close.

0 Don't return any disk space allocated beyond the end-of-file indicator.

1 Return to the system any disk space allocated beyond the end-of-file indicator. The EOF
becomes the file limit. No records may be added to the file beyond this new limit.

2 Return to the system any disk space allocated beyond the end-of-file indicator, but do not set
the file limit to EOF, and allow records to be added to the file up to the file limit.
Chapter 5 159

HP C/iX Library Function Descriptions
fopen
specified. The default for text and binary streams is 256 bytes. The default
for byte streams is 1 byte.

Sn The S option specifies the maximum size of the file. The value of n is the
maximum size of the file in records for text and binary streams, and in
bytes for byte streams. Notice that if the S parameter is not specified, the
default is 4095.

Te If the Te option is specified, the file is saved in the temporary file domain.
If the Te option is not specified and the file is a new file, the default is to
save the file as a permanent file. If the file is old, the default is to not
change the disposition.

Tm If the Tmoption is specified, disk read functions trim editor line numbers, if
they exist, and trailing blanks from each record of an ASCII fixed record
length file before returning file data to the reader. This option is used on
files opened with read only access. Random access to file data using
fseek() and lseek() is not permitted. The default is to not trim editor
line numbers and blanks.

Un If the U option is specified, the file is created with n user-label records. If
this option is not specified, the default is no user-label records.

V If the V option is specified, the file is created with an MPE variable-length
record format. If the V or Bs options are not specified, then the file is
created with an MPE fixed-length record format. This option is mutually
exclusive with the Bs option.

Xn The X option controls exclusive access ability for the file. The option
character is followed by an integer that indicates the level of exclusivity
for this open request. The levels are specified in the MPE Intrinsics
Reference Manual under the FOPEN specification.

The following example creates or opens a fixed record binary file for writing with 256 byte
records, a file size of 1000 records, and a file code of 1030:

#include stdio.h>

FILE * stream ;

stream = fopen(" filename ","wb R256 S1000 F1030");

See Also

fclose() , freopen() , fflush() , ANSI C 4.9.5.3, POSIX.1 8.1
160 Chapter 5

HP C/iX Library Function Descriptions
fprintf
fprintf

Writes data in formatted form to an open stream.

Syntax
#include <stdio.h>
int fprintf (FILE * stream , const char * format

[,item [,item]...]);

Parameters

stream A pointer to an open stream where data is to be written.

format A pointer to a character string defining the format of the data to be written
(or the character string itself enclosed in double quotes).

item ,… Each item is a variable or expression specifying the data to write.

Return Values

≥0 The number of characters written.

<0 An error occurred.

Description

The fprintf function enables you to output data in formatted form to an open stream. In
the fprintf function, string is a pointer to an open stream, and format is a pointer to a
character string (or the character string itself enclosed in double quotes) that specifies the
format and content of the data to be written. Each item is a variable or expression
specifying the data to write.

The fprintf format is similar to the printf function. It is made up of conversion
specifications and literal characters. Literal characters are all characters that are not part
of a conversion specification. Literal characters are written to the open stream exactly as
they appear in the format.

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output
a literal percent sign, you must type two percent signs (%%).

2. Zero or more flags, which affect the way a value is written (see below).

3. An optional decimal digit string, which specifies a minimum field width .

4. An optional precision consisting of a dot (.) followed by a decimal digit string.
Chapter 5 161

HP C/iX Library Function Descriptions
fprintf
5. An optional l, h, or L indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.

6. A conversion character, which indicates the type of data to be converted and printed.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be written in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flag s both appear, the 0 flag is
ignored. The 0 flag is also ignored for d, i , o, u, x, and X conversions if a
precision is specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being printed. If the data happens to be smaller
than the field width, the data is blank-padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than field width , the field width is
simply expanded to accommodate the data. An insufficient field width never causes data
to be truncated. If field width is not specified, the resulting field is made just large
enough to hold the data.

The precision is a value that means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.

Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
162 Chapter 5

HP C/iX Library Function Descriptions
fprintf
to be formatted and printed appropriately. The integer conversion characters are:

d, i An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
leading zeros. The default precision is 1. A null string results if a zero
value is printed with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes precision to be expanded, and the octal value is printed with a
leading zero (a C convention). The precision parameter behaves the
same as in d above, except that writing a zero value with a zero precision
results in only the leading zero being written, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in writing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is written with a
leading "0x" (a C convention). The precision behaves as in d above,
except that writing a zero value with a zero precision results in only the
leading "0x" being written, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to write the
hexadecimal value, and the # flag causes the value to be written with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is written. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is written. If a
precision is specified, characters from the string are written until the
number of characters indicated by the precision is reached or until a null
character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are written. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If precision is not specified, six digits are written after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

e The float or double item is converted to scientific notation in style e;
that is, in the form
Chapter 5 163

HP C/iX Library Function Descriptions
fprintf
[-]d.ddde ±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to precision . If precision is not
given, six digits are written after the decimal point. If the precision is
explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

Other conversion characters are:

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

Example

The following program illustrates the use of the fscanf() and fprintf() functions:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int count = 0;
FILE *file;

if(argc != 2) {
fprintf(stderr, "Usage: wdcnt filename\n");
exit(1);
164 Chapter 5

HP C/iX Library Function Descriptions
fprintf
}

file = fopen(argv[1], "r");
if(file == NULL) {

fprintf(stderr, "Can't open %s.\n", argv[1]);
exit(1);

}

while(fscanf(file, "%*s") != EOF)
count;

fprintf(stdout, "Number of words found: %d\n", count);

exit(0);
}

This program counts the number of "words" in the file specified as its only argument. A
word is defined as a string of nonspace characters.

In this program, fprintf() directs error messages to stderr. Error output is written on a
different stream than normal output; the error output (or the normal output) can be
redirected to another destination. For example, invoking the program with stderr set to
the file errmsgs causes all output from erroneous conditions to be collected in the errmsgs
file. In this example, this capability is trivial because the program terminates on any error.
However, this is a very useful capability for programs that output any number of warnings
without terminating. Not only does this command keep the desired output uncluttered
with error messages, but it also enables you to save the output. Thus, it is good
programming practice to write error messages and warnings on stderr and to use stdout
(or any destination file) to output normal data.

See Also

putc() , scanf() , printf() , vprintf() , vfprintf() , fscanf() , ANSI C 4.9.6.1, POSIX.1
8.1
Chapter 5 165

HP C/iX Library Function Descriptions
fprintmsg
fprintmsg

Prints formatted output with numbered arguments.

Syntax
#include <stdio.h>
int fprintmsg (file * stream , char * format [, arg] ...);

Parameters

stream A stream file pointer to which the output is directed.

format A pointer to the string containing formatting information to be output.
format contains optional placeholders and formatting specifications where
arg1 thru argn are to be substituted.

arg1 ... argn A character, character pointer, or integer value giving the parameter to
be converted, formatted, and merged with format prior to output.

Return Values

x The number of characters transmitted.

EOF Indicates failure.

Description

The fprintmsg function places formatted output on the file or device indicated by stream
after performing the parameter substitution. This function is derived from printf . In
fprintmsg , the conversion character %is replaced by the sequence %n$. The n is a decimal
digit in the range 1-9, and indicates that this conversion should be applied to the nth
argument, rather than to the next unused one. All other aspects of formatting are
unchanged. All conversion specifications must contain the %n$ sequence, and you should
make sure the numbering is correct. All parameters must be used exactly once. See printf
for more details on formatting and conversion specifications.

See Also

printf() , printmsg() , sprintmsg()
166 Chapter 5

HP C/iX Library Function Descriptions
fputc
fputc

Writes a character to an output stream.

Syntax
#include <stdio.h>
int fputc (int c, FILE * stream);

Parameters

c A character, expressed as an integer, to be written to the output stream.

stream A pointer to an open stream.

Return Values

x The character written, expressed as an integer.

EOF An error occurred.

Description

The fputc function writes the character specified in c to the specified stream and advances
the file position. The character is returned as an integer.

If the file cannot support positioning requests, or if the stream was opened with append
mode, the character is appended to the output stream.

See Also

fclose() , ferror() , fopen() , fwrite() , fprintf() , getc() , gets() , putc() , puts() ,
fputc() , setbuf() , ANSI C 4.9.7.3, POSIX.1 8.1
Chapter 5 167

HP C/iX Library Function Descriptions
fputs
fputs

Writes a string to an output stream.

Syntax
#include <stdio.h>
int fputs (const char * string , FILE * stream);

Parameters

string A pointer to an array of characters.

stream A pointer to an output stream.

Return Values

≥0 Success.

EOF An error occurred.

Description

The fputs function writes the character string pointed to by string to the specified
stream, stopping when a null character is encountered. The terminating null character is
not written.

Examples

Refer to the examples located in the fgets function description.

See Also

ferror() , fopen() , fread() , printf() , fgets() , putc() , ANSI C 4.9.7.4, POSIX.1 8.1
168 Chapter 5

HP C/iX Library Function Descriptions
fread
fread

Reads data items from an open stream.

Syntax
#include <stdio.h>
size_t fread (void * fileptr , size_t size , size_t nitems ,

FILE * stream);

Parameters

fileptr A pointer to a buffer to hold the data. The type of the buffer is determined
by the type of the data being read.

size The size of each data item, in bytes.

nitems The number of data items to read.

stream A pointer to an open stream.

Return Values

>0 The number of items actually read.

0 Either EOF was detected or an error occurred.

Description

The fread function reads nitems times size number of bytes into the buffer pointed to by
the fileptr argument. The bytes are read from the stream pointed to by the stream
argument.

This function returns the number of items actually read. This may be less than the
number of requested items if an error occurs or an end of file is encountered.

NOTE You must use special care when using fread() to access ASCII files from the
MPE/iX file system. These files are record-oriented text streams. The fread
function returns a new line character, \n , whenever it reaches an end of
record. You must take the \n character into account when reading, writing, or
repositioning within an MPE/iX fixed length ASCII file.

Binary MPE files behave differently from ASCII MPE files. See chapter 2,
"HP C/iX Library Input and Output," for more information.

Example

The following program keeps track of employee data. Each employee is described in a
single structure.
Chapter 5 169

HP C/iX Library Function Descriptions
fread
#include <stdio.h>
struct emp {

char name[40]; /* name */
char job[40]; /* job title */
long salary; /* salary */
char hire[6] /* hire date */
char curve[2] /* pay curve */
int rank; /* percentile ranking */

}
#define EMPS 400 /* no. of employees */
main()
{

int items;
struct emp staff[EMPS];
FILE *data;

data = fopen("empdata", "r");
if(data == NULL) {

fprintf(stderr, "Can't open employee data file.\n");
exit(1);

}

items = fread((char *)staff, sizeof(staff[0]), EMPS, data);
if(items != EMPS) {

fprintf(stderr, "Insufficient data found.\n");
exit(1);

}

fclose(data);
archive("empdata");

/* Employee information processing goes here. */
…

/* Processing is done. Write out new employee records. */

data = fopen("empdata", "w");
if(data == NULL) {

fprintf(stderr, "Can't create new employee file.\n");
exit(1);

}

items = fwrite((char *)staff, sizeof(staff[0]), EMPS, data);
if(items != EMPS) {

fprintf(stderr, "Write error!\n");
exit(1);

}

exit(0);
}
archive(filename)
char *filename;
{

…

170 Chapter 5

HP C/iX Library Function Descriptions
fread
}

This program reads the employee information contained in the binary file empdata. The
data in this file consists of concatenated streams of bytes describing each employee in a
400-employee company. The bytes are written such that, when read correctly, they
correspond exactly with the emp structure defined in the program. The staff array is an
array of structures containing one structure for each employee.

In the fread() call, the sizeof(staff[0]) expression returns the number of bytes in the
emp structure. Because the same number of bytes are in each employee structure, any
element of the staff array can be specified as the sizeof argument; staff [0] is used in
this example. By counting the number of bytes in each structure member, you can
approximate the number of bytes returned by the sizeof operator (in this example, 40 +
40 + 8 + 6 + 2 + 4 = 100 bytes). This might vary due to padding performed by a
programming language or by machine architecture. Specifying EMPS as the nitems
argument tells fread to read 400 structures. Thus, 100 x 400 = 40000 bytes are read,
filling in the information for the members of each structure contained in the staff array.
The fread() and fwrite() functions can read or write any type of data.

The following examples show some fread() calls that read different types of data:

To read a long integer:

long nint;
fread((void *)&nint, sizeof(nint), 1, stream);

To read an array of 100 long integers:

long nint[100];
fread((void *)nint, sizeof(nint[0]), 100, stream);

To read a double-precision floating-point value:

double fpoint;
fread((void *)&fpoint, sizeof(fpoint), 1, stream);

To read an array of 50 floating-point values:

float fpoint[50];
fread((void *)fpoint, sizeof(fpoint[0]), 50, stream);

See Also

fgetc() , getc() , gets() , getchar() , fscanf() , scanf() , ANSI C 4.9.8.1, POSIX.1 8.1
Chapter 5 171

HP C/iX Library Function Descriptions
free
free

Frees a block of allocated memory.

Syntax
#include <stdlib.h>
void free (void * ptr);

Parameters

ptr A pointer to a block of memory previously allocated by a call to calloc() ,
malloc() , or realloc() .

Return Values

None.

Description

The free function frees the block of memory pointed to by ptr , making the space available
for further allocation. The contents of the block are destroyed. The argument to free() is a
pointer to a block previously allocated by calloc() , malloc() , or realloc() .

The malloc and free functions provide a simple generalized memory allocation package.

Undefined results occur if some random pointer is handed to free() .

See Also

calloc() , malloc() , realloc() , ANSI C 4.10.3.2, POSIX.1 8.1
172 Chapter 5

HP C/iX Library Function Descriptions
freopen
freopen

Closes and reopens a stream.

Syntax
#include <stdio.h>
FILE *freopen (const char * fname , const char * type ,

FILE * stream);

Parameters

fname A pointer to a character string that contains the name of the file to be
opened.

type A pointer to a character string defining the mode of the file open.

stream A pointer to an open stream.

Return Values

x If successful, a pointer to the FILE structure associated with the stream.

NULL The file open operation failed.

Description

The freopen function substitutes the named file in place of the open stream . The original
stream is closed, regardless of whether the open succeeds (close errors are ignored). This
function returns a pointer to new stream .

This function is typically used to attach the preopened streams associated with stdin ,
stdout and stderr to other files.

Opening a file in read mode fails if the file does not exist or cannot be read.

When a file is opened for update, both input and output may be done on the resulting
stream. Do not directly follow output with input without an intervening call to fflush()
or to a file positioning function (fseek() , fsetpos() , or rewind()). Do not directly follow
input with output without an intervening call to a file positioning function unless the input
operation encounters end-of-file.

When a file is opened for appending, it is impossible to overwrite information already in
the file. fseek() may be used to reposition the file pointer to any position in the file, but
when output is written to the file, the current file pointer is disregarded. All output is
written at the end of the file and the file pointer is repositioned at the end of the output.
When opening a binary file the file position indicator may, in some cases, be positioned
beyond the last data written, because of blank or null padding.

When opened, a stream is fully buffered only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for a stream are cleared.
Chapter 5 173

HP C/iX Library Function Descriptions
freopen
The type parameter points to a character string beginning with one of the following
sequences:

r Open or create text stream for reading.

w Open or create text stream for writing. Truncate to zero length.

a Open or create text stream in append mode. All writes are at end-of-file.

rb Open or create binary stream for reading.

wb Open or create binary stream for writing. Truncate to zero length.

ab Open or create binary stream in append mode. All writes are at end-of-file.

r+ Open or create text stream for update (reading and writing).

w+ Open or create text stream for update. Truncate to zero length.

a+ Open or create text stream for append update (read anywhere but all
writes at end-of-file).

r+b or rb+ Open or create binary stream for update (reading and writing).

w+b or wb+ Open or create binary stream for update. Truncate to zero length.

a+b or ab+ Open or create binary stream for append update (reading anywhere but all
writes to end-of-file).

NOTE If you are linking with the POSIX/iX library, freopen() parses type and
ignores all cases where b is specified. An MPE byte stream format file is
opened and a binary stream is associated with it. In addition, all other type
options specified below are invalid.

If you are linking with the HP C/iX library, there are several enhancements that provide
greater control in the MPE file environment. These options should follow the standard
options in the type string. Spaces can be used in the type string to improve the readability
of the file's open type. Notice that the case of the option is important. An uppercase B is
different from a lowercase b.

These options are the same options that are used by the fopen() function. For a detailed
description of these options, refer to the description of fopen() .

Bl n The Bl option specifies the blocking factor to use if this call to freopen()
creates the file. The option character is followed by an integer that
indicates the blocking factor. If the Bl option is not specified, then the
default is one record per block.

Bs If the Bs option is specified, the file is opened or created as a byte stream
file. This is the only required option for opening byte stream files. The
maximum file size for a byte stream file is two gigabytes. If specified, the
Rn option is ignored. The Sn option can be used to reset the file size. This
option is mutually exclusive with the V option. If the Bs or V options are
not specified, the file is created with an MPE fixed-length record format.
174 Chapter 5

HP C/iX Library Function Descriptions
freopen
Bun The Bu option specifies the number of buffers to be allocated to this file. If
the Bu option is not specified, the default is 2.

C If the C option is specified, then the file accepts carriage control
information. The default is to not have carriage control.

Df n The Df option specifies the final disposition of the file after the file is
closed. The affect of each value of n is defined as follows:

If the Df option is not specified and the file is a new file, then the default is
to save the file as a permanent file. If the file is old, the default is not to
change the disposition.

Dsn The Ds option specifies the disk space disposition of the file after the file is
closed for fixed, undefined, and variable format files. The affect of each
value of n is defined as follows:

If the Ds option is not specified, the default is not to return any disk space
allocated beyond the end-of-file indicator.

En The E option specifies the maximum number of extents that is allocated to
the file. The maximum value is 32. The default value, if the E option is not
specified, is 8 extents.

Fn The F option indicates the value used as the file code if this call to
freopen() creates the file. If the F option is not specified, the file code is
zero.

L If specified, the L option indicates that dynamic locking should be allowed
on this file.

Mn The M option controls multi-access. The option character is followed by an
integer that indicates the level of multi-access for this open request. The
levels are specified in the MPE Intrinsics Reference Manual under the
FOPEN specification.

Q If the Q option is specified, file equations are disallowed. The default is to
allow file equations.

0 Don't change the disposition.

1 Save the file as a permanent file.

2 Save the file as a temporary file.

3 Don't rewind on close.

4 Purge the file on close.

0 Don't return any disk space allocated beyond the end-of-file indicator.

1 Return to the system any disk space allocated beyond the end-of-file indicator. The EOF
becomes the file limit. No records may be added to the file beyond this new limit.

2 Return to the system any disk space allocated beyond the end-of-file indicator, but do not set
the file limit to EOF, and allow records to be added to the file up to the file limit.
Chapter 5 175

HP C/iX Library Function Descriptions
freopen
Rn The R option specifies the size of the record if the file is created by this
open request. If the V option is also used, this option specifies the
maximum size of the variable sized records. The option letter is followed
by a decimal number that is equal to the number of bytes in the record
size. Notice that the number must be positive. A byte count is always
specified. The default for text and binary streams is 256 bytes. The default
for byte streams is 1 byte.

Sn The S option specifies the maximum size of the file. The value of n is the
maximum size of the file in records for text and binary streams, and in
bytes for byte streams. The default for text and binary streams is 4095
records. The default for byte streams is 2 gigabytes.

Te If the Te option is specified, the file is saved in the temporary file domain.
If the Te option is not specified and the file is a new file, the default is to
save the file as a permanent file. If the file is old, the default is to not
change the disposition.

Tm If the Tmoption is specified, disk read functions trim editor line numbers, if
they exist, and trailing blanks from each record of an ASCII fixed record
length file before returning file data to the reader. This option is used on
files opened with read only access. Random access to file data using
fseek() and lseek() , is not permitted. The default is not to trim editor
line numbers and blanks.

Un If the U option is specified, the file is created with n user-label records. If
this option is not specified, the default is no user-label records.

V If the V option is specified, the file is created with an MPE variable-length
record format. This option is mutually exclusive with the Bs option. If the
V or Bs options are not specified, then the file is created with an MPE
fixed-length record format.

Xn The X option controls exclusive access ability for the file. The option
character is followed by an integer that indicates the level of exclusivity
for this open request. The levels are specified in the MPE/iX Intrinsics
Reference Manual under the FOPEN intrinsic description.

The following example creates or opens a stream associated with a fixed record ASCII file
for writing with 80-byte records and a file size of 1000 records:

#include <stdio.h>

FILE * stream ;

stream = freopen (" filename ","w R80 S1000",stdout);

See Also

fclose() , fopen() , fflush() , ANSI C 4.9.5.4, POSIX.1 8.1
176 Chapter 5

HP C/iX Library Function Descriptions
frexp
frexp

Breaks a floating-point number into a normalized fraction and an integral power of 2.

Syntax
#include <math.h>
double frexp (double value , int *eptr);

Parameters

value A real number input to the function.

eptr A pointer to the integer exponent returned by the function.

Return Values

x A real number between 0.5 and 1.

Description

The frexp function accepts a double value, and returns two values, x and n, such that

value == x * 2 n

where x is a double quantity in the range 0.5 < x < 1, and n is an integer exponent. In the
frexp function, value is the value to be processed, and eptr is a pointer to an integer
variable where the exponent n is to be stored. The quantity x is the return value of frexp .

Example

The following program accepts a number argument and uses frexp to output that
number's representation in the form shown above:

main(argc, argv)
int argc;
char *argv[];
{

double value, x, frexp();
int eptr;

printf("%g = %g * 2^%d\n", value, x, eptr);
}

See Also

ldexp() , modf() , ANSI C 4.5.4.2, POSIX.1 8.1
Chapter 5 177

HP C/iX Library Function Descriptions
fscanf
fscanf

Reads externally formatted data from an open stream.

Syntax
#include <stdio.h>
int fscanf (FILE * stream , const char * format

[,item [,item]...]);

Parameters

stream A pointer to an open stream from which data is to be read.

format A pointer to a character string defining the format of the data to be read
(or the character string itself enclosed in double quotes).

item Each item is the address of a variable into which the data will be placed.
Refer below to descriptions of conversion specifications.

Return Values

≥0 The number of successfully matched and assigned input items.

EOF An error occurred on input (no input characters, or a matching error
occurred before any conversion).

Description

The fscanf function reads externally formatted data from an open stream, converts the
data to internal format, and stores the results in a group of arguments. The format
consists of white-space characters, conversion specifications, and literal characters.

This function behaves identically to the scanf function except that fscanf() reads data
from an open input stream instead of from stdin.

White-Space Characters

White-space characters (blanks, tabs, newlines, or form feeds) cause input to be read up to
the next non-white-space character.

Conversion Specifications

A conversion specification is a character sequence that tells fscanf() how to interpret the
data received at that point in the input.

In the format, a conversion specification is introduced by a percent sign (%), optionally
followed by an asterisk (*) (called the assignment suppression character), optionally
followed by an integer value (called the field width). The conversion specification is
terminated by a character specifying the type of data to expect; the terminating characters
178 Chapter 5

HP C/iX Library Function Descriptions
fscanf
are called conversion characters. The integer and floating-point conversion characters
may be optionally preceded by a character indicating the size of the receiving variable.

When a conversion specification is encountered in a format, it is matched up with the
corresponding item in the item list. The data formatted by that specification is then stored
in the location pointed to by that item. For example, if there are four conversion
specifications in a format, the first specification is matched up with the first item, the
second specification with the second item, and so on.

The number of conversion specifications in the format is directly related to the number of
items specified in the item list. With one exception, there must be at least as many items
as there are conversion specifications in the format. If there are too few items in the item
list, an error occurs; if there are too many items, the excess items are ignored. The one
exception occurs when the assignment suppression character (*) is used. If an asterisk
occurs immediately after the percent sign (before the field
width , if any), the data formatted by that conversion specification is discarded. No
corresponding item is expected in the item list; this is useful for skipping over unwanted
data in the input.

Conversion Characters

There are 14 conversion characters: five format integer data, three format character data,
three format floating-point data, and three special characters.

The integer conversion characters are:

d A decimal integer is expected.

i A signed integer is expected.

o An octal integer is expected.

u An unsigned decimal integer is expected.

x A hexadecimal integer is expected.

The character conversion characters are:

c A single character is expected, normal skip over leading white space is
suppressed.

s A character string is expected.

[A character string is expected, normal skip over leading white space is
suppressed.

The floating-point conversion characters are:

e, f, g A floating-point number is expected (the capitalized forms of these
characters are also accepted).

The special characters are:

p Matches an implementation-defined set of sequences.

n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of characters read from the input
stream so far by this call to fscanf() .
Chapter 5 179

HP C/iX Library Function Descriptions
fscanf
% Matches a single %. No conversion or assignment occurs. The complete
conversion specification is &%&%

Integer Conversion Characters

The d, o, and x conversion characters read characters from the stream until an
inappropriate character is encountered, or until the number of characters specified by the
field width , if given, is exhausted (whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 through 9. For o, an
inappropriate character is any character except +, -, and 0 through 7. For x, an
inappropriate character is any character except +, -, 0 through 9, and the characters a
through f and A through F. Note that negative octal and hexadecimal values are stored in
their twos complement form with sign extension. Thus, they might look unfamiliar if you
print them out later using printf() .

These integer conversion characters can be preceded by a l to indicate that a long int
should be expected rather than an int. They can also be preceded by h to indicate a short
int. The corresponding items in the item list for these conversion characters must be
pointers to integer variables of the appropriate length.

Character Conversion Characters

The c conversion character reads the next character from the open stream no matter what
that character is. The corresponding item in the item list must be a pointer to a character
variable. If a field width is specified, the number of characters indicated by the field
width are read. In this case, the corresponding item must refer to a character array large
enough to hold the characters read.

Note that strings read using the c conversion character are not automatically terminated
with a null character in the array. Because all C library functions that use strings assume
the existence of a null terminator, be sure to add the '\0 ' character yourself. If you do not,
library functions are not able to tell where the string ends, and you get unexpected results.

The s conversion character reads a character string from the open stream, which is
delimited by one or more space characters (blanks, tabs, or newlines). If field width is
not given, the input string consists of all characters from the first nonspace character up to
(but not including) the first space character. Any initial space characters are skipped over.
If a field width is given, characters are read, beginning with the first nonspace
character, up to the first space character, or until the number of characters specified by the
field width is reached (whichever comes first). The corresponding item in the item list
must refer to a character array large enough to hold the characters read, plus a
terminating null character, which is added automatically.

The s conversion character cannot be made to read a space character as part of a string.
Space characters are always skipped over at the beginning of a string, and they terminate
reading whenever they occur in the string. For example, suppose you want to read the first
character from the following input line:

" Hello, there!"

(Ten spaces followed by "Hello, there!"; the double quotes are added for clarity). If you use
%c, you get a space character. However, if you use %1s, you get "H" (the first nonspace
180 Chapter 5

HP C/iX Library Function Descriptions
fscanf
character in the input).

The [conversion character also reads a character string from the open stream. However,
you should use this character when a string is not to be delimited by space characters. The
left bracket is followed by a list of characters, and is terminated by a right bracket. If the
first character after the left bracket is a circumflex (^), characters are read from the open
stream until a character is read that matches one of the characters between the brackets.
If the first character is not a circumflex, characters are read from the open stream until a
character not occurring between the brackets is found. The corresponding item in the item
list must refer to a character array large enough to hold the characters read, plus a
terminating null character which is added automatically. In some implementations, a
minus sign (-) may specify a range of characters.

The three string conversion characters provide you with a complete set of string-reading
capabilities. The c conversion character can be used to read any single character or to read
a character string when the exact number of characters in the string is known beforehand.
The s conversion character enables you to read any character string that is delimited by
space characters and is of unknown length. Finally, the [conversion character enables you
to read character strings that are delimited by characters other than space characters and
that are of unknown length.

Floating-Point Conversion Characters

The e, f, and g (or E, F, and G , respectively) conversion characters read characters
from the open stream until an inappropriate character is encountered, or until the number
of characters specified by the field width , if given, is exhausted (whichever comes first).

The e, f, and g characters expect data in the following form: an optionally signed string
of digits (possibly containing a decimal point), followed by an optional exponent field
consisting of an E or e followed by an optionally signed integer. Thus, an inappropriate
character is any character except +, -, ., 0 through 9, E, or e.

These floating-point conversion characters may be preceded by a lowercase L (l), to
indicate that a double value is expected rather than a float , or by an uppercase L (in
ANSI C) to indicate that a long double value is expected rather than a float . The
corresponding items in the item list for these conversion characters must be pointers to
floating-point variables of the appropriate length.

Literal Characters

Any characters included in the format that are not part of a conversion specification are
literal characters. A literal character is expected to occur in the input at exactly that point.
Note that since the percent sign is used to introduce a conversion specification, you must
type two percent signs (%%) to get a literal percent sign.

Examples

Refer to the example located in the fprintf function description.
Chapter 5 181

HP C/iX Library Function Descriptions
fscanf
See Also

getc() , setlocale() , scanf() , fprintf() , printf() , ANSI C 4.9.6.2, POSIX.1 8.1
182 Chapter 5

HP C/iX Library Function Descriptions
fseek
fseek
Positions the next I/O operation on an open stream to a new position relative to the current
position.

Syntax
#include <stdio.h>
int fseek (FILE * stream , long int offset , int ptrname);

Parameters

stream A pointer to an open stream.

offset The number of bytes to skip over. The offset parameter can be negative
or positive, indicating backward or forward movement in the file,
respectively.

ptrname The reference point in the file from which offset bytes are measured.

Return Values

0 Success.

−1 An error occurred, and errno is set to indicate the error condition.

Description

The fseek function sets the file position indicator for the stream pointed to by stream .

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding offset to the position specified by whence . The specified
position is:

• The beginning of the file if whence is SEEK_SET.

• The current value of the file position indicator if whence is SEEK_CUR.

• The end-of-file if whence is SEEK_END.

For a text stream, either offset is zero, or offset is a value returned from a previous call
to ftell() on the same stream, and whence is SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes any
effect of ungetc() on the same stream. After an fseek() call, the next operation on an
update stream can be either input or output.

NOTE If linking with the POSIX/iX library, fseek() allows the file offset to be set
beyond the end of the existing data in the file. If data is written at this point,
the gap between the old and new end-of-file is zero filled. However, fseek()
cannot by itself extend the size of the file.
Chapter 5 183

HP C/iX Library Function Descriptions
fseek
Example

The following program uses the ftell() and fseek() functions. The program prints each
line of an n-line file in this order: line 1, line n, line 2, line n-1, line 3, and so on.

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

char line[256];
int newlines;
long front, rear, ftell();
FILE *fp;

front = 0;
rear = 0;

if(argc < 2) {
fprintf(stderr, "Usage: print filename\n");
exit(1);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Can't open %s.\n", argv[1]);
exit(1);

}

newlines = countnl(fp) % 2;

fseek(fp, 0, 2);
rear = ftell(fp);

while(front < rear) {
fseek(fp, front, 0);
fgets(line, 256, fp);
fputs(line, stdout);
front = ftell(fp);
findnl(fp, rear);
rear = ftell(fp);
if(newlines == 1) {

if(rear <= front)
break;

}
fgets(line, 256, fp);
fputs(line, stdout);

}

exit(0);
}

countnl(fp)
FILE *fp;
184 Chapter 5

HP C/iX Library Function Descriptions
fseek
{
char c;
int count = 0;

while((c = getc(fp)) != EOF) {

if(c == '\n')

count++ }
rewind(fp);
return(count);

}

findnl(fp, offset)
FILE *fp;
long offset;
{

char c;

fseek(fp, (offset-2), 0);
while((c = getc(fp)) != '\n') {

fseek(fp, -2, 1);
}

}

This program uses the ftell() and fseek() functions to print lines from a file starting at
the beginning and the end of the file, and converging toward the center. The countnl()
function counts the number of lines in the file so the program can decide whether or not to
print a line in the final loop to prevent the middle line being printed twice in files with an
odd number of lines. The findnl() function searches backwards in the file for the next
newline character. When found, this positions the next I/O operation such that fgets()
gets the next line back from the end of the file.

All three types of seeks are represented in this program. The first fseek() of the program
is done relative to the end of the file. All other fseek() operations in the main program are
done relative to the beginning of the file. Finally, findnl() contains an fseek() that is
relative to the current position.

The example located in the fread() function description uses a structure that described
each employee, as shown below:

struct emp {
char name[40]; /* name */
char job[40]; /* job title */
long salary; /* salary */
char hire[6]; /* hire date */
char curve[2]; /* pay curve */
int rank; /* percentile ranking */

}

This function reads the data for 400 employees all at once. Suppose you want the program
to be selective, so that you can specify by employee number (1 through 400) which
employee's information you want. The following program fragment shows how to use
Chapter 5 185

HP C/iX Library Function Descriptions
fseek
fseek to do this:

…
int empno, bytes;
long total;
FILE *data;
struct emp empinfo;

/* check for usage error and open data file */
…

sscanf(argv[1], “%d”, &empno);
bytes = sizeof(empinfo);
total = (empno - 1) * bytes;
fseek(data, total, 0);
fread((char *)&empinfo, sizeof(empinfo), 1, data);

/* print out desired information */
…

exit(0);
}

In this program, argv[1] contains, using a command-line argument, the employee number
about whom information is desired. The employee number is converted to integer form
using sscanf. The number of bytes per employee structure is obtained using sizeof, and
is stored in bytes. The total number of bytes to skip in the data file is found by
multiplying the employee number (minus one) times the number of bytes per employee
structure. This is stored in total. Then, fseek() is used to seek past the specified
number of bytes, relative to the beginning of the data file. This leaves the next I/O
operation positioned at the start of the specified employee's information. The information
is read using fread() .

See Also

ftell() , rewind() , ANSI C 4.9.9.2, POSIX.1 8.1
186 Chapter 5

HP C/iX Library Function Descriptions
fsetpos
fsetpos

Sets the file position for a stream.

Syntax
#include <stdio.h>
int fsetpos (FILE * stream , const fpos_t * pos);

Parameters

stream Pointer to a file.

pos A pointer to a structure that specifies the position of the file position
indicator.

Return Values

0 Success.

≠0 An error occurred, and errno is set to indicate the error condition.

Description

The fsetpos function sets the file position indicator for the stream pointed to by stream
according to the value of the object pointed to by pos . The object pointed to by pos must be
an object obtained from a previous call to fgetpos() on the same stream.

A successful call to fsetpos() clears the end-of-file indicator for the stream and undoes
any effect of ungetc() on the stream. After an fsetpos() call, the next operation on an
update stream may be either input or output.

See Also

fgetpos() , fseek() , ANSI C 4.9.9.3
Chapter 5 187

HP C/iX Library Function Descriptions
ftell
ftell
Returns the current file position indicator for the next I/O operation on an open stream.

Syntax
#include <stdio.h>
long int ftell (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

≥0 The current position for the next I/O operation, expressed as a byte offset
relative to the beginning of the open file. (The first byte is byte 0.)

−1 An error occurred.

Description

The ftell function returns the current value of the file position indicator for the stream
pointed to by stream . For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream, its file position indicator contains unspecified data,
usable by fseek() for returning the file position indicator for the stream to its position at
the time of the call to ftell() . The difference between two such return values is not
necessarily a meaningful measure of the number of characters being read. The first byte of
the file is byte 0.

Examples

Refer to the examples located in the fseek function description.

See Also

rewind() , fseek() , ANSI C 4.9.9.4 , POSIX.1 8.1
188 Chapter 5

HP C/iX Library Function Descriptions
fwrite
fwrite
Writes data items to an open stream.

Syntax
#include <stdio.h>
size_t fwrite (const void * ptr , size_t size ,

size_t nitems , FILE * stream);

Parameters

ptr A pointer to a buffer that holds the data to be written to the open stream.
The type of the buffer is determined by the type of the data being written.

size The size of each data item, in bytes.

nitems The number of data items to write.

stream A pointer to an open stream.

Return Values

>0 The number of items actually written.

Description

The fwrite function is the output analog of the fread function. It writes a buffer pointed
to by the ptr argument to the stream pointed to by the stream argument. The number of
characters written is equal to the size argument times the nitems argument.

The file position indicator (if defined) is advanced by the number of characters successfully
written.

The fwrite function returns the number of elements actually written. This is equal to the
number requested unless fwrite() encounters an error. In this case, the file position
indicator for the stream is indeterminate.

Examples

Refer to the examples located in the fread function description.

See Also

fread() , ANSI C 4.9.8.2, POSIX.1 8.1
Chapter 5 189

HP C/iX Library Function Descriptions
gamma
gamma
Returns the log gamma of the input value.

Syntax
#include <math.h>
double gamma (double x);
extern int signgam;

Parameters

x A real number.

Return Values

n A real number giving the natural log of the absolute value of the gamma of
x.

HUGE Indicates one of the following:

• The parameter x is a non-positive integer, and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

• An overflow condition has occurred, and errno is set to ERANGE.

Description

gamma returns:

ln(| gamma(x) |)

where:

gamma(x)

is defined as:

Figure 5-2.

The sign of gamma(x) is returned in the external integer signgam .

The argument x must be greater than or equal to zero. (The gammafunction is defined over
the reals excluding the non-positive integers.)

The following C program fragment can be used to calculate gamma:

if ((y = gamma(x)) > LN_MAXDOUBLE)
error();

e-t tx-1dt
o

∞

190 Chapter 5

HP C/iX Library Function Descriptions
gamma
y = signgam * exp(y);

where LN_MAXDOUBLE is the lowest value that causes exp to return a range error, and is
defined in the <values.h> header file.

Error handling can be changed by a user-written matherr function.
Chapter 5 191

HP C/iX Library Function Descriptions
gcvt
gcvt
Converts floating-point numbers to strings.

Syntax
char *gcvt (double value , int ndigit , char * buf);

Parameters

value The floating-point number to be converted to a character string.

ndigit The number of digits to convert.

buf A pointer to a character string containing the numeric string to be
formatted and to which the resulting formatted character string is
returned.

Return Values

x A pointer to a character array containing the resulting numeric character
string (the same as buf).

Description

The gcvt function converts the floating-point number in value into a signed numeric
character string. It attempts to produce ndigit significant digits in FORTRAN F-format if
possible; otherwise, E-format is used. A minus sign or decimal point is included as part of
the returned string. Trailing zeros are suppressed.

See Also

ecvt() , fcvt()
192 Chapter 5

HP C/iX Library Function Descriptions
getc
getc
Reads a character from an open stream.

Syntax
#include <stdio.h>
int getc (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

x The character read, expressed as an integer.

EOF No more data, or an error occurred.

Description

The getc function returns the next character from the input stream pointed to by stream .
The getc function is equivalent to the fgetc function except that it is implemented as a
macro. Because getc() can evaluate the stream more than once, the arguments should
never be an expression with side effects.

Examples

A simple version of a command to print a file can be written using getc() and putc() :

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int c;
FILE *fp;

if(argc != 2) {
printf("Usage: cat file\n");
exit(1);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

printf("Can't open %s.\n", argv[1]);
exit(1);

}

while((c = getc(fp)) != EOF)
putc(c, stdout);
Chapter 5 193

HP C/iX Library Function Descriptions
getc
putc('\n', stdout);

exit(0);
}

This program accepts a single argument that is assumed to be the name of a file whose
contents are to be printed on the terminal. The specified file is opened for reading, and the
resulting file pointer fp is used in getc() to read a character from the file. Each character
read is written on stdout using putc() . (Note that stdout, stdin, and stderr are legal
file pointers.) The reading and writing loop terminates when the constant EOF is returned
from getc() , indicating that the end of the file has been reached. This constant is defined
in <stdio.h> .

You can use the flexibility of putc() to send data somewhere other than to the user's
terminal. For example, the file copy program from the previous example can be rewritten
using getc() and putc() .

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

int c;
FILE *from, *to;

if(argc != 3) {
printf("Usage: cp fromfile tofile\n");
exit(1);

}

from = fopen(argv[1], "r");
if(from == NULL) {

printf("Can't open %s.\n", argv[1]);
exit(1);

}
to = fopen(argv[2], "w");
if(to == NULL) {

printf("Can't create %s.\n", argv[2]);
exit(1);

}

while((c = getc(from)) != EOF)
putc(c, to);

exit(0);
}

See Also

fclose() , ferror() , fopen() , fread() , fgetc() , gets() , putc() , fputc() , scanf() ,
ANSI C 4.9.7.5, POSIX.1 8.1
194 Chapter 5

HP C/iX Library Function Descriptions
getchar
getchar
Reads a character from the standard input stream stdin .

Syntax
include <stdio.h>
int getchar (void);

Parameters

None.

Return Values

x The character read from stdin .

EOF Either an end-of-file was detected or an error occurred.

Description

The getchar function reads one character from the standard input stream stdin .

The getchar function returns the next character in the currently defined stdin stream. It
returns an EOF on end-of-file or file read error. The getchar function is identical to getc
(stdin) .

Examples

The following program reads stdin and echos the contents to stdout . The program ends
when an end of file is encountered on stdin .

#include <stdio.h>
main()
{

int c;

while((c = getchar()) != EOF)
putchar(c);

putchar('\n');
}

The variable c is declared as an int type instead of char because sign extension, bit
shifting, and similar operations can cause unexpected results with the char type. EOF is
defined as a negative number. If EOF is assigned to a char variable, and chars are not
signed in the implementation, the comparison for EOF will never be true. Therefore, all
examples in this chapter use the int type.

The last putchar() statement in the program outputs a new line, so further output
appears at the beginning of a new line instead of at the end of the last line of output.

The getchar and putchar functions are most useful in filters (programs that accept and
Chapter 5 195

HP C/iX Library Function Descriptions
getchar
modify data before passing it on). For example, the following program puts parentheses
around each vowel encountered in the input:

#include <stdio.h>
main()
{

int c;

while((c = getchar()) != '\n') {
if(vowel(c)) {

putchar('(');
putchar(c);
putchar(')');

}else
putchar(c);

}
}
vowel(c)
char c;
{

switch(c) {
case 'a':
case 'A':
case 'e':
case 'E':
case 'i':
case 'I':
case 'o':
case 'O':
case 'u':
case 'U':

return (1);
default:

return (0);
}

}

The vowel test is placed in the function vowel ; the program terminates when it encounters
a new line.

The getc and putc functions can behave exactly like the getchar and putchar functions
by specifying the appropriate file pointer. For example,

getc(stdin);

is identical to

getchar();

and

putc(c, stdout);

is identical to

putchar(c);
196 Chapter 5

HP C/iX Library Function Descriptions
getchar
Thus, the putchar() call in the previous program can be stated as

putc(c);

without altering the behavior of the program.

See Also

fread(), getc() , gets() , fscanf() , scanf() , putchar() , ANSI C 4.9.7.6, POSIX.1 8.1
Chapter 5 197

HP C/iX Library Function Descriptions
getenv
getenv
Returns the value of an environment variable.

Syntax
#include <stdlib.h>
char *getenv (const char * name);

Parameters

name The string to search. The string may be either the desired name,
null-terminated, or of the form name=value , in which case getenv() uses
the portion to the left of the = as the search key.

Return Values

x A pointer to a string associated with the environment variable pointed to
by name.

NULL The value pointed to by name was not found in the environment list.

Description

The getenv function searches the environment list for a string that matches the string
pointed to by name, and returns a pointer to the value in the current environment if such a
string is present. If the string is not present, getenv() returns a null pointer.

The environment list consists of JCW variables and MPE/iX variables. Refer to the
MPE/iX Commands Reference Manual for more information on MPE/iX variables.

NOTE If linking with the POSIX/iX library, refer to the description of getenv()
located in the MPE/iX Developer's Kit Reference Manual.

See Also

ANSI C 4.10.4.4
198 Chapter 5

HP C/iX Library Function Descriptions
getmsg
getmsg
Gets a message from a catalog. This function provides support for message catalogs that
are created on HP-UX and moved to an MPE/iX system.

Syntax
char *getmsg (int fd , int set_num , int msg_num, char * buf ,

int buflen);

Parameters

fd An integer containing a file descriptor of an open message catalog file.

set_num An integer containing the message set number where the message to be
read is located.

msg_num An integer containing the message number within the set to read from the
message catalog.

buf A pointer to a character array in which the message is returned.

buflen An integer containing the length of buffer pointed to by buf .

Return Values

x A pointer to the returned string. This is the same value as buf .

NULL Indicates failure. The file descriptor may be invalid, or the message
indicated by set_num and msg_num may not be in the catalog.

Description

The getmsg function gets messages from an HP-UX message catalog. It provides
interoperability support for message catalogs ported to MPE/iX from HP-UX systems. For
information on how to read message catalogs created on MPE/iX with the GENCAT utility,
refer to the descriptions of the MPE/iX intrinsics CATOPEN, CATCLOSE, and CATREAD which
are documented in the MPE/iX Intrinsics Reference Manual.

The getmsg function attempts to read up to buflen -1 bytes of the specified message in the
message catalog into the area pointed to by buf . A null byte is inserted to terminate the
string placed in the buffer.

A message catalog is a specially formatted file containing numbered messages that are
grouped together in message sets. The file contains an index allowing fast access to the
messages. The calling program must open the message catalog before calling getmsg .

See Also

catread()
Chapter 5 199

HP C/iX Library Function Descriptions
getopt
getopt

Gets ASCII characters from an argument vector.

Syntax
int getopt (int argc , char * argv , char * optstring);
extern char * optarg ;
extern int optind , opterr;

Parameters

argc An integer giving the length of the array argv .

argv A pointer to the command line.

optstring A string of recognized option letters.

Return Values

'?' An option letter is not included in optstring . This error message can be
disabled by setting opterr to zero.

EOF All options have been processed.

n The next option letter in argv , starting from argv[1] that matches a letter
in optstring .

optarg An external character pointer that is set to the start of the option
argument, if any, on return from getopt .

optind An external integer that should be initialized to one before the first call to
getopt . The optind value is set to the argv index of the next argument to
be processed on return from getopt .

Description

The getopt function returns the next option letter in argv that matches a letter in
optstring . The optstring argument is a string of recognized option letters. If a letter in
optstring is followed by a colon, the option is expected to have an argument that may or
may not be separated from it by white space.

On return from getopt , optarg points to the start of the option argument.

The getopt function places in optind the argv index of the next argument to be processed.
The external variable optind is initialized to 1 before the first call to getopt() .

The external integer opterr enables or disables printing error messages on the standard
error device.

When all options have been processed (for example, up to the first non-option argument),
getopt returns EOF. The special option can be used to delimit the end of the options. When
this option is processed, EOF is returned and optind is incremented to the argv index
200 Chapter 5

HP C/iX Library Function Descriptions
getopt
beyond .

Options can be any ASCII characters except colon (:), question mark (?), or null (\0). It is
impossible to distinguish between a ? used as a legal option, and the character that getopt
returns when it encounters an invalid option character in the input.

Set opterr to 0 to disable getopt from printing error messages on the standard error
device. Otherwise, getopt prints an error message on the stderr and returns a question
mark (?) when it encounters an option letter not included in optstring .

Example

The following code fragment shows how you can process the arguments for a command
that can take the mutually exclusive options a and b, and the options f and o, both of
which require arguments:

main (argc, argv)
int argc;
char **argv;
{

int c;
extern char *optarg;
extern int optind;

…
while ((c = getopt(argc, argv, "abf:o:")) != EOF)
switch (c) {

case 'a':
if (bflg)

errflg++;
else

aflg++;
break;

case 'b':
if (aflg)

errflg++;
else

bproc();
break;

case 'f':
ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case '?':
errflg++;

}
if (errflg) {

(void) fprintf(stderr, "usage: . . . ");
exit (2);

}
for (; optind argc; optind++) {

if (access(argv[optind], 4)) {
…

Chapter 5 201

HP C/iX Library Function Descriptions
getopt
}

202 Chapter 5

HP C/iX Library Function Descriptions
gets
gets
Reads a string from the standard input stream stdin .

Syntax
#include <stdio.h>
char *gets (char * s);

Parameters

s A pointer to a character array where the string is to be returned.

Return Values

x A pointer to the character array.

NULL An error occurred. If any characters were read, the array contents are
indeterminate.

Description

The gets function reads a string from the standard input stream, stdin , and stores the
string in a character array pointed to by s. The string terminates by a new line in the
input, which gets() replaces with a null character in the array or when end-of-file is
reached.

Example

The following example uses gets() and puts() .

#include <stdio.h>
main()
{

char line[80], *gets();

while((gets(line)) != NULL)
puts(line);

}

To terminate this program, generate an end of file on stdin. Using string comparison and
string length functions, you can write a termination condition for this program.

See Also

ferror() , fopen() , fread() , getc() , puts() , scanf() , ANSI C 4.9.7.7, POSIX.1 8.1
Chapter 5 203

HP C/iX Library Function Descriptions
getpid
getpid

Returns the process identification number.

NOTE If linking with the POSIX/iX libraries, refer to the description of getpid()
located in the MPE/iX Developer's Kit Reference Manual.

Syntax
int getpid (void)

Parameters

None.

Return Values

x The process identification number (PIN) of the calling process.

See Also

MPE/iX intrinsics FATHER and GETPROCID, described in the MPE/iX Intrinsics Reference
Manual.
204 Chapter 5

HP C/iX Library Function Descriptions
getw
getw
Reads a word from an open stream.

Syntax
#include <stdio.h>
int getw (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

x The word read, expressed as an integer.

EOF No more data, or an error occurred.

Description

The getw function returns the next word (int in C) from the named input stream . The
getw function increments the associated file pointer, if defined, to point to the next word.
The size of a word is the size of an integer and varies from machine to machine. The getw
function assumes no special alignment in the file.

See Also

fgetc() , ferror() , getc() , getchar()
Chapter 5 205

HP C/iX Library Function Descriptions
gmtime
gmtime
Converts time to Coordinated Universal Time (UTC) in the structured tm type format.

Syntax
#include <time.h>
struct tm *gmtime (const time_t * timer);

Parameters

timer A pointer to a variable of type time_t .

Return Values

x A pointer to a variable of type tm.

NULL The Coordinated Universal Time (UTC) is not available.

Description

The gmtime function converts a time_t variable, such as that returned by the time
function, into a structured tm format. The converted value is expressed in Coordinated
Universal Time (UTC).

See Also

localtime() , ANSI C 4.12.3.3, POSIX.1 8.1
206 Chapter 5

HP C/iX Library Function Descriptions
hcreate
hcreate
Allocates sufficient space for a hash table used by the hsearch function.

Syntax
#include <search.h>
int hcreate (unsigned nel);

Parameters

nel An estimate of the maximum number of elements that the table contains.
This number may be adjusted upward by the algorithm to obtain a
mathematically favorable table size.

Return Values

≠0 Successful. The space was allocated.

0 The space sufficient to contain the number of entries specified in nel was
not available. Therefore, no space was allocated.

Description

The hcreate function allocates space sufficient for a hash table that is to be searched by
the hsearch function. The size of the space is determined by the nel parameter. The hash
table itself is an array of pointers. The size of the data elements to be searched is not
relevant to determining the amount of memory to be allocated for the hash table.

Only one hash search table may be active at any given time.

The hcreate function must be called before hsearch() to allocate sufficient space for the
hash table.

NOTE The hcreate function and the header file <search.h> are not part of ANSI C.
Using them may make your program less portable.

The hdestroy function may be used to deallocate the hash table when it is no longer
needed.

Examples

The following example reads in strings followed by two numbers and stores them in a hash
table, discarding duplicates. It then reads in strings and finds the matching entry in the
hash table and prints it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
Chapter 5 207

HP C/iX Library Function Descriptions
hcreate
int age, room; /* other than the key. */
};

#define NUM_EMPL 5000 /* number of elements in search table */
#define END_FLAG -1 /* sentinel value for age to terminate

table input */

main()
{

/* space to store strings */
char string_space[NUM_EMPL*20];

/* space to store employee information */
struct info info_space[NUM_EMPL];

/* next available space in string_space */
char *str_ptr = string_space;

/* next available space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();

/* name to look for in table */
char name_to_find[30];
int i = 1;

/* create table */
(void) printf("Enter name, age, and room for table. ");
(void) printf("To terminate input, enter -1 for age.\n");
(void) hcreate(NUM_EMPL);
do {

if (scanf("%s%d%d", str_ptr,info_ptr->age,
info_ptr->room) == EOF) exit(0);

if (info_ptr->age == END_FLAG) break;

/* put information into structure */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* put item into table */
(void) hsearch(item, ENTER);

} while (i++ NUM_EMPL);
/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */

found_item->key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

} else {
(void) printf("No such employee %\n", name_to_find);
208 Chapter 5

HP C/iX Library Function Descriptions
hcreate
}
}

}

See Also

hsearch() , hdestroy()
Chapter 5 209

HP C/iX Library Function Descriptions
hdestroy
hdestroy

Destroys a search table created by hcreate() .

Syntax
#include <search.h>
void hdestroy (void);

Parameters

None.

Return Values

None.

Description

The hdestroy function destroys the search table created by a previous call to hcreate() .
A subsequent call to hcreate() can be made to create a new search table.

Only one hash search table may be active at any given time.

NOTE The hdestroy function and the header file <search.h> are not part of ANSI
C. Using them may make your program less portable.

Examples

Refer to the example located in the hcreate function description.

See Also

hsearch() , hcreate()
210 Chapter 5

HP C/iX Library Function Descriptions
hsearch
hsearch

Returns a pointer into a hash table, indicating the location of a specified entry.

Syntax
#include <search.h>
ENTRY *hsearch (ENTRY item , ACTION action);

Parameters

item A structure of type ENTRY, defined in the <search.h> header file. The item
parameter contains two pointers:

• item. key points to the comparison key.

• item. data points to any other data to be associated with that key.

Pointers to types other than character should be cast to
pointer-to-character.

action A member of an enumeration type ACTION which indicates the disposition
of the entry if it cannot be found in the table. ENTERindicates that the item
should be inserted in the table at an appropriate point. FIND indicates that
no entry should be made. Unsuccessful resolution is indicated by the
return of a null pointer.

Return Values

x A pointer to an object of type ENTRY, giving the location of the item in the
table.

NULL The table is full, or the item was not found.

Description

The hsearch function returns a pointer into a hash table, indicating the location at which
a specified entry can be found. This function uses malloc() to allocate space.

Only one hash search table may be active at any given time. The hcreate function must be
called before hsearch() to allocate sufficient space for the hash table.

The hsearch function is a hash-table search function generalized from Knuth Algorithm D
(6.4) described in The Art of Computer Programming, Vol.3 (Sorting and Searching) by
Donald Ervin Knuth (Reading, Mass.:Addison- Wesley, 1973).

NOTE The hsearch function and the header file <search.h> are not part of ANSI C.
Using them may make your program less portable.
Chapter 5 211

HP C/iX Library Function Descriptions
hsearch
Example

Refer to the example located in the hcreate function description.

See Also

hcreate() , hdestroy()
212 Chapter 5

HP C/iX Library Function Descriptions
hypot
hypot
Computes the length of the hypotenuse of a right triangle.

Syntax
#include <math.h>
double hypot (double x, double y);

Parameters

x A real number indicating the length of one of the sides of the triangle
adjacent to the right angle.

y A real number indicating the length of the other side of the triangle
adjacent to the right angle.

Return Values

n The length of the hypotenuse of a right triangle.

HUGE An overflow condition has occurred; errno is set to ERANGE.

Description

The hypot function returns sqrt (x * x + y * y), taking precautions to avoid overflow.

Error handling can be changed by a user-written matherr function.

See Also

matherr()
Chapter 5 213

HP C/iX Library Function Descriptions
isalnum
isalnum
Tests whether an argument is a letter or a decimal digit.

Syntax
#include <ctype.h>
int isalnum (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a letter or a decimal digit.

0 The argument passed in c is not a letter or a decimal digit.

Description

The isalnum function returns a nonzero value if the argument passed in c is a letter or a
decimal digit (ASCII characters 0 through 9, A through Z, and a through z); otherwise, zero
is returned.

See Also

isalpha() , iscntrl() , isdigit() , isgraph() , islower() , isprint() , ispunct() ,
isspace() , isupper() , isxdigit() , ANSI C 4.3.1.1, POSIX.1 8.1
214 Chapter 5

HP C/iX Library Function Descriptions
isalpha
isalpha
Tests whether an argument is a letter.

Syntax
#include <ctype.h>
int isalpha (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a letter.

0 The argument passed in c is not a letter.

Description

The isalpha macro returns a nonzero value if the argument passed in c is a letter (ASCII
characters A through Z, and a through z); otherwise, the returned value is zero.

See Also

isalnum() , iscntrl() , isdigit() , isgraph() , islower() , isprint() , ispunct() ,
isspace() , isupper() , isxdigit() , ANSI C 4.3.1.2, POSIX.1 8.1
Chapter 5 215

HP C/iX Library Function Descriptions
isatty
isatty
Checks whether a file descriptor is associated with a display device, such as a terminal.

Syntax
int isatty (int fildes)

Parameters

fildes An open file descriptor.

Return Values

1 The file descriptor is a terminal device.

0 The file descriptor is not a terminal device.

Description

The isatty function returns true or false depending on whether or not fildes is
associated with a terminal.

NOTE If linking with the POSIX/iX library, refer to the description of isatty()
located in the MPE/iX Developer's Kit Reference Manual.

See Also

dup() , open()
216 Chapter 5

HP C/iX Library Function Descriptions
iscntrl
iscntrl

Tests whether an argument is a control character.

Syntax
#include <ctype.h>
int iscntrl (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is an ASCII control character.

0 The argument passed in c is not an ASCII control character.

Description

The iscntrl function returns a nonzero value if the argument passed in c is an ASCII
control character (octal values 00 through 037 and 0177); otherwise, the returned value is
zero.

See Also

isalnum() , isalpha() , isdigit() , isgraph() , islower() , isprint() , ispunct() ,
isspace() , isupper() , isxdigit() , ANSI C 4.3.1.3, POSIX.1 8.1
Chapter 5 217

HP C/iX Library Function Descriptions
isdigit
isdigit

Tests whether an argument is a decimal digit.

Syntax
#include <ctype.h>
int isdigit (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a decimal digit.

0 The argument passed in c is not a decimal digit.

Description

The isdigit function returns a nonzero value if the argument passed in c is a decimal
digit (ASCII characters 0 through 9); otherwise, the returned value is zero.

See Also

isalnum() , isalpha() , iscntrl() , isgraph() , islower() , isprint() , ispunct() ,
isspace() , isupper() , isxdigit() , ANSI C 4.3.1.4, POSIX.1 8.1
218 Chapter 5

HP C/iX Library Function Descriptions
isgraph
isgraph

Tests whether an argument is a printable nonspace character.

Syntax
#include <ctype.h>
int isgraph (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is printable.

0 The argument passed in c is not printable.

Description

The isgraph function returns a nonzero value if the argument passed in c is a printable
non-space character; otherwise, the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , islower , isprint , ispunct , isspace , isupper ,
isxdigit , ANSI C 4.3.1.5, POSIX.1 8.1
Chapter 5 219

HP C/iX Library Function Descriptions
islower
islower

Tests whether an argument is a lowercase letter.

Syntax
#include <ctype.h>
int islower (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a lowercase letter.

0 The argument passed in c is not a lowercase letter.

Description

The islower function returns a nonzero value if the argument passed in c is a lowercase
letter (ASCII characters a through z); otherwise, the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , isprint , ispunct , isspace , isupper ,
isxdigit , ANSI C 4.3.1.6, POSIX.1 8.1
220 Chapter 5

HP C/iX Library Function Descriptions
isprint
isprint
Tests whether an argument is any printable character including the space character (octal
values 040 through 0176).

Syntax
#include <ctype.h>
int isprint (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is any printable character including the space
character (octal values 040 through 0176).

0 The argument passed in c is not any printable character.

Description

The isprint function returns a nonzero value if the argument passed in c is any printable
character including the space character (octal values 040 through 0176); otherwise, the
returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , islower , ispunct , isspace , isupper ,
isxdigit , ANSI C 4.3.1.7, POSIX.1 8.1
Chapter 5 221

HP C/iX Library Function Descriptions
ispunct
ispunct
Tests whether an argument is any printable character that is not a space, a digit, or a
letter.

Syntax
#include <ctype.h>
int ispunct (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is any printable character that is not a space, a
digit, or a letter.

0 The argument passed in c is not any printable character that is not a
space, a digit, or a letter.

Description

The ispunct function returns a nonzero value if the argument passed in c is any printable
character that is not a space, a digit, or a letter; otherwise, the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , islower , isprint , isspace , isupper ,
isxdigit , ANSI C 4.3.1.8, POSIX.1 8.1
222 Chapter 5

HP C/iX Library Function Descriptions
isspace
isspace
Tests whether an argument is a white-space character.

Syntax
#include <ctype.h>
int isspace (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a white-space character.

0 The argument passed in c is not a white-space character.

Description

The isspace function returns a nonzero value if the argument passed in c is a white-space
character (white-space characters are space, form feed, newline, carriage return,
horizontal tab, and vertical tab); otherwise, the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , islower , isprint , ispunct , isupper ,
isxdigit . ANSI C 4.3.1.9, POSIX.1 8.1
Chapter 5 223

HP C/iX Library Function Descriptions
isupper
isupper
Tests whether an argument is an uppercase letter.

Syntax
#include <ctype.h>
int isupper (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is an uppercase letter.

0 The argument passed in c is not an uppercase letter.

Description

The isupper function returns a nonzero value if the argument passed in c is an uppercase
letter (ASCII characters A through Z); otherwise, the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , islower , isprint , ispunct , isspace ,
isxdigit . ANSI C 4.3.1.10, POSIX.1 8.1
224 Chapter 5

HP C/iX Library Function Descriptions
isxdigit
isxdigit
Tests whether an argument is a hexadecimal digit.

Syntax
#include <ctype.h>
int isxdigit (int c);

Parameters

c An argument to be evaluated. The argument must be representable as an
unsigned char or the macro EOF.

Return Values

≠0 The argument passed in c is a hexadecimal digit.

0 The argument passed in c is not a hexadecimal digit.

Description

The isxdigit function returns a nonzero value if the argument passed in c is a
hexadecimal digit (ASCII characters 0 through 9, A through F, and a through f); otherwise,
the returned value is zero.

See Also

isalnum , isalpha , iscntrl , isdigit , isgraph , islower , isprint , ispunct , isspace ,
isupper , ANSI C 4.3.1.11, POSIX.1 8.1
Chapter 5 225

HP C/iX Library Function Descriptions
l3tol
l3tol
The l3tol function converts 3-byte integers to long integers.

Syntax
void l3tol (long * lp , char * cp , int * n);

Parameters

lp A pointer to an array of n converted long integers.

cp A pointer to a character string containing the n three-byte integers to be
converted.

n The number of three-byte integers packed in cp .

Return Values

None.

Description

The l3tol function converts a list of n 3-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp .

This function supports file systems where block numbers are 3 bytes long.

See Also

ltol3()
226 Chapter 5

HP C/iX Library Function Descriptions
l64a
l64a
Converts a long integer to a base-64 ASCII string.

Syntax
char *l64a (l)

long l ;

Parameters

l A long integer.

Return Values

x A pointer to the base-64 ASCII string.

NULL The argument is 0.

Description

This function maintains numbers stored in base-64 ASCII characters. Long integers can be
represented by up to six characters. Each character represents a digit in a radix-64
notation.

The characters used to represent digits are:

The leftmost character is the least significant digit. For example:

 a0 = (38 x 64 0) + (2 x 64 1) = 166

This function takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is zero, l64a returns a pointer to a null string.

The value returned by l64a is a pointer into a static buffer, the contents of which are
overwritten by each call.

See Also

a64l()

Characters Digits

. 0

/ 1

0 through 9 2 through 11

A through Z 12 through 37

a through z 38 through 63
Chapter 5 227

HP C/iX Library Function Descriptions
labs
labs
Computes the absolute value of a long integer argument.

Syntax
#include <stdlib.h>
long int labs (long int j);

Parameters

j A long integer value whose absolute value is to be computed.

Return Values

x The absolute value of the long integer specified in j .

Description

The labs function returns the absolute value of the long integer value specified in j .

See Also

abs() , fabs() , ANSI C 4.10.6.3
228 Chapter 5

HP C/iX Library Function Descriptions
ldexp
ldexp
Accepts a double value and an integer exponent exp, and returns a double quantity
equal to value * 2 exp .

Syntax
#include <math.h>
double ldexp (double value , int exp);

Parameters

value A real number that is to be multiplied by 2exp .

exp The integer exponent value to which 2 is raised.

Return Values

n The result of value * 2 exp .

0 An underflow condition has occurred; errno is set to indicate the error.

HUGE_VAL An overflow condition has occurred.

Description

The ldexp function multiplies the floating-point argument value by an integral power of
2exp.

Example

The following program accepts two number arguments, value and exp, and outputs the
result:

main(argc, argv)
int argc;
char *argv[];
{

double value, result, ldexp();
int exp;

result = ldexp(value, exp);
printf("%g * 2^%d = %g\n", value, exp, result);

}

See Also

ANSI C 4.5.4.3, POSIX.1 8.1
Chapter 5 229

HP C/iX Library Function Descriptions
ldiv
ldiv

Computes the quotient and remainder of two long integers.

Syntax
#include <stdlib.h>
ldiv_t ldiv (long int numer , long int denom);

Parameters

numer The numerator.

denom The denominator.

Return Values

Returns a structure of type ldiv_t comprising the quotient and the remainder. The
structure contains the following:

long int quot; /* quotient */
long int rem; /* remainder */

Description

The ldiv function computes and returns the quotient and the remainder of the division of
numer by denom.

If the division is inexact, the sign of the resulting quotient and the algebraic quotient are
the same, and the magnitude of the resulting quotient is the largest long int less than the
magnitude of the algebraic quotient.

If the result cannot be represented, the behavior is undefined; otherwise, quot * denom +
rem equals numer .

See Also

div() , abs() , labs() , ANSI C 4.10.6.4
230 Chapter 5

HP C/iX Library Function Descriptions
lfind
lfind
Performs a linear search.

Syntax
#include <stdio.h>
char *lfind ((char *) key , (char *) base , nelp , sizeof(* key),
compar)
unsigned * nelp
int (* compar) ();

Parameters

key A pointer to the value to be found in the table.

base A pointer to the first element in the table.

nelp A pointer to an integer containing the current number of elements in the
table.

width The size of each datum in the table; it is the width of each table row.

compar A pointer to a comparison function that you must supply, such as strcmp .
It is called with two arguments that point to the elements being compared.
The function must return zero if the elements are equal, and non-zero if
they are not equal.

Return Values

x A character pointer to the table entry being sought.

NULL The searched item is not found.

Description

This function is a linear search function generalized from Knuth Algorithm S (6.1). 1 It
returns a pointer into a table indicating where an item may be found.

This function is the same as lsearch except that if the item is not found, it is not added to
the table. Instead, a null pointer is returned.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element and should be cast to type pointer-to-character.

The comparison function does not need to compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned is declared as type pointer-to-character, but should be cast as type
pointer-to-element.

1. The Art of Computer Programming, Vol.3 (Sorting and Searching) by Donald Ervin Knuth (Reading,
Mass:Addison-Wesley, 1973).
Chapter 5 231

HP C/iX Library Function Descriptions
lfind
See Also

lsearch()
232 Chapter 5

HP C/iX Library Function Descriptions
localeconv
localeconv

Returns information about the editing symbols of a numeric quantity specific to a locale.

Syntax
#include <locale.h>
struct lconv *localeconv (void);

Parameters

None.

Return Values

x A pointer to an object of type struct lconv .

Description

The localeconv function returns a pointer to an object of type struct lconv that
contains information about the editing symbols of a numeric quantity specific to a locale.
The structure returned by localeconv() must not be altered and may be overwritten by
subsequent calls to localeconv() .

The struct type lconv , defined in the header <locale.h> , contains the following members:

struct lconv {
char *decimal_point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;

};

See Also

setlocale() , ANSI C 4.4.2.1
Chapter 5 233

HP C/iX Library Function Descriptions
localtime
localtime
Converts time to the local time zone.

Syntax
#include <time.h>
struct tm *localtime (const time_t * timer);

Parameters

timer A pointer to a variable of type time_t .

Return Values

x A pointer to a structured time variable of type tm.

Description

The localtime function is passed a pointer to a time_t variable whose value is typically
set by the time function. The localtime function converts this value into the structured
tm format expressed in local time, corrected for daylight saving time if applicable, and
returns a pointer to the structure.

By default, localtime() adjusts the return value to Eastern Standard Time (EST). You
may control this by using the MPE/iX command SETVAR TZname. Time zone names, and
the format of TZTAB.LIB.SYS file containing offsets from UTC (Coordinated Universal
Time) are listed in appendix A, "Time Zones."

Example

The following code fragment assigns values to the tm structure members for the local time
zone:

#include <time.h>
…

struct tm *ptr, *localtime();
int time(), nseconds;

…
nseconds = time(NULL);

Once this code is executed, you can use ptr to access the different components of the local
time. For example, ptr -> tm_mon references the month of the year, and ptr -> tm_wday
references the day of the week.

See Also

time() , ctime() , ANSI C 4.12.3.4, POSIX.1 8.1
234 Chapter 5

HP C/iX Library Function Descriptions
log, log10
log, log10

Syntax
#include <math.h>
double log (double x);
double log10 (double y);

Parameters

x A real number whose natural logarithm is to be returned.

y A real number whose logarithm in base 10 is to be returned.

Return Values

n The logarithm of the input value x.

-HUGE The input value x is ≤0, and errno is set to EDOM. A DOMAIN error or SING
error if x=0 is printed on the standard error output device.

Description

The log function returns the natural logarithm of x. The value of x must be positive.

The log10 function returns the logarithm base ten of x. The value of x must be positive.

Error handling can be changed by a user-written matherr function.

See Also

matherr() , ANSI C 4.5.4.4, POSIX.1 8.1
Chapter 5 235

HP C/iX Library Function Descriptions
longjmp
longjmp
Restores an environment previously saved by setjmp() .

Syntax
#include <setjmp.h>
void longjmp (jmp_buf env , int val);

Parameters

env Passes information needed to restore a previous environment. This
variable was used in a previous call to setjmp() to save the environment.
The type jmp_buf (defined in <setjmp.h>) defines an array of unsigned
integers. For this reason, the env argument does not require an & operator.

val Passes a value to be returned by setjmp() . If a zero is passed in this
argument, it is changed to a value of 1 to ensure that longjmp() never
causes setjmp() to return a zero value.

Return Values

None. Control is returned to the program at the statement following the call to setjmp .

Description

The longjmp function restores an environment saved in the env argument by a previous
call to setjmp() . If the env argument is not the result of a successful call to setjmp() , the
operation of longjmp() is undefined and usually results in the program aborting.

After the call to longjmp() completes, the program executes as if the call to setjmp()
(which stored information into the env argument) has returned a second time. The result
of the second return from setjmp() is the return of the value of the nonzero val argument
supplied to longjmp() .

The calling environment defined in env is restored by longjmp() . This includes trimming
the stack so that all stack frames beyond the frame marked by env are removed.

The longjmp function cannot add stack frames. This means that if a sequence of functions
is:

A == calls ==> B == calls ==> C

and setjmp() is used in function C to save an environment in a global env , functions B or
A may not contain any longjmp() calls that reference the env values. Only subordinate
functions may issue calls to longjmp() . As a special case, a function may issue a
longjmp() call that references a setjmp() within itself, although this is not usually done.

The longjmp function works correctly in the context of signals and interrupts and any of
their associated functions. However, the effects of invoking longjmp() from a nested
signal handler (that is, a function invoked as a result of a signal raised while handling
another signal) are undefined.
236 Chapter 5

HP C/iX Library Function Descriptions
longjmp
Control does not return directly from a call to longjmp() , so there are no return values.
Instead, control is returned to setjmp() , and the value stored in val is used as the return
value of setjmp() .

NOTE This function is also implemented as the macro _longjmp .

See Also

setjmp() , ANSI C 4.6.2.1, POSIX.1 8.1
Chapter 5 237

HP C/iX Library Function Descriptions
lsearch
lsearch
Performs a linear search and update.

Syntax
#include <stdio.h>
#include <search.h>
char *lsearch ((char *) key , (char *) base , nelp ,
sizeof(* key), compar)
unsigned * nelp ;
int (* compar)();

Parameters

key A pointer to the value to be found in the table.

base A pointer to the first element in the table.

nelp A pointer to an integer containing the current number of elements in the
table. This integer is incremented if the item is added to the table.

width The width of each table row.

compar A pointer to a comparison function that you must supply, such as strcmp .
It is called with two arguments that point to the elements being compared.
The function must return zero if the elements are equal, and nonzero if
they are not equal.

Return Values

x A character pointer to the element being sought, whether newly added or
pre-existing in the table.

Description

The lsearch function is a linear search function generalized from Knuth Algoritm S (6.1).
1

It returns a pointer into a table indicating where an item may be found. If the item does
not occur, it is added at the end of the table.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function does not need to compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned is declared as type pointer-to-character, but should be cast as type

1. The Art of Computer Programming, Vol.3 (Sorting and Searching) by Donald Ervin Knuth (Reading,
Mass:Addison-Wesley, 1973).
238 Chapter 5

HP C/iX Library Function Descriptions
lsearch
pointer-to-element.

Undefined results can occur if there is not enough room in the table to add a new item.

Example

This fragment reads in TABSIZE strings of length ELSIZE and stores them in a table,
eliminating duplicates.

#include stdio.h>
#include search.h>
#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

…
while (fgets(line, ELSIZE, stdin) != NULL

nel TABSIZE)
(void) lsearch(line, (char *)tab,nel,

ELSIZE, strcmp);
…

See Also

lfind()
Chapter 5 239

HP C/iX Library Function Descriptions
lseek
lseek
Moves the file position indicator.

Syntax
#include <unistd.h>
long lseek (int fildes , long offset , int whence);

Parameters

filedes An open file descriptor.

offset The number of bytes to move the current file position indicator, according
to the method defined by whence .

whence The starting point for the seek operation. The possible values are:

SEEK_SET Seek relative to the beginning of file.

SEEK_CUR Seek relative to the current location in the file.

SEEK_END Seek relative the end of file.

Return Values

≥0 The resulting file position indicator location, as measured in bytes from
the beginning of the file.

−1 An error occurred and errno is set to one of the following values:

EBADF The fildes parameter is not an open file descriptor.

EINVAL The whence parameter is not 0, 1 or 2.

EINVAL The resulting file position indicator would be negative.

ESEEK The fildes parameter does not refer to a file that
supports seeking.

ESYSERR A call to a system intrinsic failed.

Description

The lseek function repositions the file position indicator associated with fildes .

Some devices are incapable of seeking. The value of the file position indicator associated
with such a device is undefined.

NOTE If linking with the POSIX/iX library, refer to the description of lseek()
located in the MPE/iX Developer's Kit Reference Manual.
240 Chapter 5

HP C/iX Library Function Descriptions
lseek
See Also

open() , dup()
Chapter 5 241

HP C/iX Library Function Descriptions
ltol3
ltol3
Converts long integers to 3-byte integers.

Syntax
void ltol3 (char * cp , long * lp , int n)

char * cp ;
long * lp ;
int n;

Parameters

cp A pointer to a character string to which n 3-byte integers are returned.

lp A pointer to an array of n long integers.

n The number of long integers to be converted.

Return Values

None.

Description

The ltol3 function converts long integers (lp) to 3-byte integers (cp).

This function supports file systems where block numbers are 3-byte integers.

See Also

l3tol()
242 Chapter 5

HP C/iX Library Function Descriptions
mallinfo
mallinfo
Returns information describing space usage.

Syntax
#include <malloc.h>
struct mallinfo mallinfo (void);

Parameters

None.

Return Values

x A pointer to an object of type struct mallinfo .

Description

The mallinfo function provides instrumentation describing space usage, but may not be
called until the first small block is allocated.

It returns the following structure:

struct mallinfo {
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */
}

This structure is defined in the <malloc.h> header file.

NOTE The header <malloc.h> and the mallopt() and mallinfo() functions are
not ANSI C and should be avoided if portability is a consideration.

See Also

malloc() , calloc() , mallopt() , realloc()
Chapter 5 243

HP C/iX Library Function Descriptions
malloc
malloc
Allocates a block of memory.

Syntax
#include <stdlib.h>
void *malloc (size_t size);

Parameters

size The number of bytes in the block to be allocated.

Return Values

x A pointer to an allocated block of memory.

NULL There is not enough memory available, or size is 0.

Description

The malloc function returns a pointer to a block of at least size bytes suitably aligned for
any use.

The malloc and free functions provide a simple generalized memory allocation package.

Undefined results occur if the space assigned by malloc() is overrun.

See Also

free() , realloc() , calloc() , ANSI C 4.10.3.3, POSIX.1 8.1
244 Chapter 5

HP C/iX Library Function Descriptions
mallopt
mallopt
Provides control over the memory allocation algorithm.

Syntax
#include <malloc.h>
int mallopt (int cmd, int value);

Parameters

cmd The available values for cmd are:

M_MXFAST Set maxfast to value . The algorithm allocates all blocks
below the size of maxfast in large groups and then passes
them out very quickly. The default value for maxfast is 24.

M_NLBLKS Set numlblks to value . The above mentioned large groups
each contain numlblks blocks. Numlblks must be greater
than 1. The default value for numlblks is 100.

M_GRAIN Set grain to value . The sizes of all blocks smaller than
maxfast are considered to be rounded up to the nearest
multiple of grain . grain must be greater than zero. The
default value of grain is the smallest number of bytes that
allows alignment of any data type. The value parameter is
rounded up to a multiple of the default when grain is set.

M_KEEP Preserve data in a freed block until the next malloc ,
realloc , or calloc . This option is provided only for
compatibility with other systems and is not recommended.

value An integer value used by cmd.

Return Values

0 Success.

1 Indicates malloc() has been previously called or that arguments have
illegal values.

Description

The mallopt function returns a pointer to space suitably aligned, after possible pointer
coercion, for storage of any type of object. It also provides control over the main memory
allocation algorithm. The mallopt function may be called repeatedly, but may not be called
after the first small block is allocated.

The contents of a block are not preserved when it is freed, unless the M_KEEP option of
mallopt() is specified in cmd.
Chapter 5 245

HP C/iX Library Function Descriptions
mallopt
NOTE The header <malloc.h> and the mallopt() and mallinfo() functions are
not ANSI C and should be avoided if portability is a consideration.

See Also

free() , realloc() , calloc() , mallinfo() , mallopt() , malloc()
246 Chapter 5

HP C/iX Library Function Descriptions
matherr
matherr
The matherr function is a user-written call-back routine invoked by many functions in the
math library when errors are detected.

Syntax
#include <math.h>
int matherr (x)

struct exception * x;

Parameters

x A pointer to the exception structure defined in the <math.h> header file.

Return Values

x A user-defined integer value.

Description

Users override the default math library error handler by defining a function named
matherr in their programs. This user-written matherr function must follow the syntax
described above.

When an error occurs, a pointer to the exception structure x is passed to your matherr
function.

The structure is defined as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

The element type is an integer describing the type of error that occurred, from the
following list of constants defined in the header file:

DOMAIN argument domain error

SING argument singularity

OVERFLOW overflow range error

UNDERFLOW underflow range error

TLOSS total loss of significance

PLOSS partial loss of significance

The element name points to a string containing the name of the function that caused the
error. The variables arg1 and arg2 are the arguments you use to invoke the function.
retval is set to the default value that is returned by the function unless your matherr sets
Chapter 5 247

HP C/iX Library Function Descriptions
matherr
it to a different value.

Consult the function descriptions in this chapter to determine if a specific function calls
matherr .

If your matherr function returns nonzero, no error message is printed, and errno is not
set.

If matherr is not supplied, the default error-handling procedures, described with the math
functions involved, are invoked upon error. In every case, errno is set to EDOM or ERANGE,
and the program continues.

Example
#include <math.h>

int matherr(struct exception *x)
{

switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!strcmp(x->name, "sqrt")) {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

}

case SING:
/* all other domain or sing errors, */
/* print message and abort */
(void) fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:
/* print detailed error message */
(void) fprintf(stderr, "loss of significance in %s(%g)=%g\n",

x->name, x->arg1, x->retval);
return (1); /* take no other action */

}
return (0); /* all other errors, execute default procedure */

}

248 Chapter 5

HP C/iX Library Function Descriptions
mblen
mblen
Determines the number of bytes in a multibyte character.

Syntax
#include <stdlib.h>
int mblen(const char * s, size_t n);

Parameters

s A pointer to a single multibyte character.

n A variable of type size_t that controls the number of characters that
mblen searches when scanning for a multibyte character. This argument is
typically set to MB_CUR_MAX.

Return Values

>0 The length of the multibyte character to which s points.

−1 The s parameter does not point to a valid multibyte character.

=0 The s parameter is a null pointer and multibyte character encodings are
not state-dependent, or s points to a null character.

Description

The mblen function examines the multibyte character pointed to by s. If a valid multibyte
character is recognized within n bytes from the location pointed to by s, the length of the
multibyte character is returned.

This function retains state information. Multibyte encodings can be state-dependent,
employing "shift characters" to alter the meaning of subsequent characters. The shift state
is persistent between calls to the routines for processing extended character sets unless
the LC_CTYPE category of the locale is changed.

Calling this function with the s argument set to NULLresets the function to its initial state.
When using a NULL pointer to clear the shift state, zero is returned if the multibyte shift
state was previously clear. A nonzero value is returned if the locale-specific shift state was
previously set.

Locale-specific character sets that are too large to be represented within one byte are
handled in ANSI C by using extended character sets. Extended character sets have two
representations, the internal representation, and the external representation. The
external representation is a multibyte character. The multibyte character is a sequence of
normal characters used to represent the locale-specific extended character. The internal
representation of this multibyte character is a wide character of type wchar_t . The
maximum number of bytes in a multibyte character in the current locale (see also
LC_CTYPE) is given by the macro MB_CUR_MAX.
Chapter 5 249

HP C/iX Library Function Descriptions
mblen
See Also

wchar_t , LC_CTYPE, MB_CUR_MAX, mbtowc() , wctomb() , mbstowcs() , wcstombs() , ANSI C
4.10.7.1
250 Chapter 5

HP C/iX Library Function Descriptions
mbstowcs
mbstowcs
Converts a sequence of multibyte characters in a null-terminated string to a sequence of
wide character codes.

Syntax
#include <stdlib.h>
size_t mbstowcs(wchar_t * pwcs , const char * s, size_t n);

Parameters

pwcs A pointer to an array of wide characters where the converted wide
character codes are stored.

s A pointer to a sequence of multibyte characters to be converted.

n An expression indicating the maximum number of codes to be stored into
the array pointed to by pwcs.

Return Values

x The number of array elements modified, not including a terminating zero.
If x = n, the array is not zero-terminated.

size_t(-1) Invalid multibyte character found.

Description

The multibyte characters from the array pointed to by s are converted to wide character
codes and stored into the array pointed to by pwcs. No more than n elements will be
modified in the array pointed to by pwcs.

See Also

wchar_t , MB_CUR_MAX, mbtowc() , wctomb() , mbstowcs() , wcstombs() , ANSI C 4.10.8.1
Chapter 5 251

HP C/iX Library Function Descriptions
mbtowc
mbtowc
Converts a single multibyte character to its wide character representation.

Syntax
#include <stdlib.h>
int mbtowc(wchar_t * pwc, const char * s,size_t n);

Parameters

pwc A pointer to an object of type wchar_t to which the function returns the
converted value.

s A pointer to a multibyte character to be converted.

n An expression of type size_t indicating the number of characters in s to
be examined. This should be no greater than the value of MB_CUR_MAX.

Return Values

>0 The number of bytes that are in the converted multibyte character.

−1 The s parameter does not point to a valid multibyte character.

0 The s parameter is a null pointer and multibyte character encodings are
not state-dependent, or s points to a null character.

Description

If s is not a null pointer, mbtowc determines the number of bytes in the multibyte
character pointed to by s. It then determines the code for the value of type wchar_t that
corresponds to that multibyte character. (The value of the code corresponding to the null
character is zero.)

If the multibyte character is valid and pwc is not a null pointer, mbtowc stores the code in
the object pointed to by pwc. A maximum of n characters are examined, starting at the
character pointed to by s.

This function retains state information. Multibyte encodings can be state-dependent,
employing "shift characters" to alter the meaning of subsequent characters. The shift state
is persistent between calls to the routines for processing extended character sets unless
the LC_CTYPE category of the locale is changed.

Calling this function with the s argument set to NULLresets the function to its initial state.
When using a NULL pointer to clear the shift state, zero is returned if the multibyte shift
state was previously clear. A nonzero value is returned if the locale-specific shift state was
previously set.

See Also

wchar_t , MB_CUR_MAX, wctomb() , mbstowcs() , wcstombs() , ANSI C 4.10.7.2
252 Chapter 5

HP C/iX Library Function Descriptions
memccpy
memccpy
Copies characters from one memory location to another until a specified character is found
or until the specified count is reached.

Syntax
#include <memory.h>
char *memccpy (char * s1 , char * s2 , int c, int n)

Parameters

s1 A pointer to the target string.

s2 A pointer to the source string.

c The character used to signal the end of the source string.

n The number of bytes to be copied.

Return Values

x A character pointer to the first character in s1 after c.

NULL The c parameter was not found in s2 .

Description

The memccpy function copies characters from memory area s2 into s1 , stopping after the
first occurrence of c has been copied or after n characters have been copied, whichever
comes first. It returns a pointer to the character after the copy of c in s1 , or a null pointer
if c was not found in the first n characters of s2 . This function operates as efficiently as
possible on memory areas (arrays of characters bound by a count that are not terminated
by a null character). There is no check for the overflow of the destination memory area.
Character movement is performed differently in different implementations. Therefore,
avoid overlapping moves.

See Also

memcpy() , memcmp(), memchr()
Chapter 5 253

HP C/iX Library Function Descriptions
memchr
memchr
Searches memory for a specified character.

Syntax
#include <string.h>
void *memchr(const void * s, int c, size_t n);

Parameters

s A pointer to the object to search.

c The character value to find in the object.

n The maximum number of characters to examine.

Return Values

x A pointer to the first occurrence of the character. If the character c is not
found, a null pointer is returned.

Description

The memchr function returns a pointer to the first occurrence of character c in the object
pointed to by s. Only the first n characters of the s array are examined. This function does
not terminate when a null character is encountered. Each character is treated as an
unsigned character.

See Also

memcpy() , memcmp(), memmove(), memset() , ANSI C 4.11.5.1
254 Chapter 5

HP C/iX Library Function Descriptions
memcmp
memcmp
Compares the first n characters of two objects.

Syntax
#include <string.h>
int memcmp(const void * s1 , const void * s2 , size_t n);

Parameters

s1 A pointer to the first object.

s2 A pointer to the second object.

n The number of characters to compare.

Return Values

<0 s1 is less than s2 .

0 s1 is equal to s2 .

>0 s1 is greater than s2 .

Description

The memcmp function compares the first n characters of the object pointed to by s1 to the
first n bytes of the object pointed to by s2 . The result is returned as an integer. Null
characters in the objects do not cause this comparison function to stop.

The contents of "holes" used as padding for alignment with structure objects are
indeterminate. Strings shorter than their allocated space and unions can also cause
comparison problems.

See Also

memccpy() , memchr() , memmove(), memset() , strcmp() , strcoll() , strxfrm() , ANSI C
4.11.4.1
Chapter 5 255

HP C/iX Library Function Descriptions
memcpy
memcpy
Copies a specified number of characters from one object to another.

Syntax
#include <string.h>
void *memcpy(void * s1 , const void * s2 , size_t n);

Parameters

s1 A pointer to the target object.

s2 A pointer to the source object.

n The number of characters to copy.

Return Values

x The value of s1 .

Description

The memcpy function copies n characters from the object pointed to by s2 to the object
pointed to by s1 . Unlike the strcpy function, the memcpy function does not stop when a
null character is encountered. Use memmove() rather than memcpy() if the source and
destination objects might overlap in memory.

See Also

memmove(), strcpy() , memchr() , memset() , ANSI C 4.11.2.1
256 Chapter 5

HP C/iX Library Function Descriptions
memmove
memmove
Copies a specified number of characters from one object to another.

Syntax
#include <string.h>
void *memmove(void * s1 , const void * s2 , size_t n);

Parameters

s1 A pointer to the target object.

s2 A pointer to the source object.

n The number of characters to copy.

Return Values

x The value of s1 .

Description

This function copies n characters from the object pointed to by s2 into the object pointed to
by s1 . The memmove function is similar to memcpy but allows the source and destination
objects to overlap.

See Also

memcpy() , strcpy() , memcpy() , memchr() , memcmp(), memset() , strncpy() , ANSI C
4.11.2.2
Chapter 5 257

HP C/iX Library Function Descriptions
memset
memset

Initializes an object with a supplied character value.

Syntax
#include <string.h>
void *memset(void * s, int c, size_t n);

Parameters

s A pointer to an object.

c The value to be duplicated throughout the object that s points to.

n The number of characters in object s to be filled with the value c.

Return Values

x The value of s.

Description

The memset function stores n copies of the character c into the object pointed to by s. The
value of c is converted to an unsigned char before it is stored.

See Also

memchr() , memcmp(), memcpy() , memmove(), ANSI C 4.11.6.1
258 Chapter 5

HP C/iX Library Function Descriptions
mktemp
mktemp
Creates a unique file name.

Syntax
char *mktemp (char * template)

Parameters

template A character pointer to a string containing a template file name having six
trailing Xs.

Return Values

x A pointer to template , or to a null string if it runs out of letters.

Description

The mktemp function replaces the contents of the string pointed to by template with a
unique file name, and returns the address of template .

This function replaces the Xs in template with a letter and a number. The letter is chosen
so that the resulting name does not duplicate the name of an existing file. If there are
fewer than 6 Xs in template , the letter is dropped first, and then high-order digits of the
process ID are dropped.

The mktemp function returns the unique file name in template . Therefore, you must
refresh the template for every unique file you want to open. If mktemp runs out of letters, it
returns a pointer to the empty string "" .

mktemp does not check to see if the file name part of template exceeds the maximum
length of a file name.

See Also

getpid() , open() , tmpfile() , tmpnam()
Chapter 5 259

HP C/iX Library Function Descriptions
mktime
mktime

Converts a calendar time value of type tm to a time value in time_t .

Syntax
#include <time.h>
time_t mktime(struct tm * timeptr);

Parameters

timeptr A pointer to a structure of type tm, as defined in <time.h> .

Return Values

x The value pointed to by timeptr , as a type time_t .

Description

The mktime function converts the broken-down time in the structure pointed to by
timeptr into a calendar time value. The file pointed to by timeptr is expressed in the local
time. The return value has the same encoding as the values returned by the time function.

The original values of the tm_wday and tm_yday components of the structure (shown
below) are ignored.

A positive or zero value for tm_isdst causes the mktime function to presume initially that
Daylight Saving Time, respectively, is or is not in effect. A negative value for tm_isdst
causes the mktime function to attempt to determine whether Daylight Saving Time is in
effect for the specified time. The original values of the tm components are not restricted to
the ranges indicated below.

On successful completion, the values of the tm_wday and tm_yday components of the
structure are set appropriately. The values of the other components are set to represent
the specified calendar time, but with their values forced into valid ranges.

The final value of tm_mday is not set unless tm_mon and tm_year are determined.

The tm data structure is declared in <time.h> . The declaration is shown below:

struct tm {
int tm_sec; /* seconds after the minute (0 through 59 */
int tm_min; /* minutes after the hour (0 through 59) */
int tm_hour; /* hours since midnight (0 through 23) */
int tm_mday; /* day of the month (1 through 31) */
int tm_mon; /* month of the year (0 through 11) */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday (0 through 6) */
int tm_yday; /* day of the year (0 through 365) */
int tm_isdst; /* daylight savings time flag (1 = dst */

};
260 Chapter 5

HP C/iX Library Function Descriptions
mktime
By default, mktime adjusts the returned value to the Eastern Standard Time (EST) zone.
You may override this default behavior by using the MPE/iX command SETVAR TZ name.
Time zone names, and the format of TZTAB.LIB.SYS file containing time zone offsets from
GMT are listed in appendix A, "Time Zones."

Example

What day of the week is July 4, 2001?

#include <stdio.h>
$include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday", "-unknown"

};
struct tm time_str;

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
if (mktime(time_str) == -1)

time_str.tm_wday = 7;
printf("%s\n", wday[time_str.tm_wday]);

See Also

clock() , difftime() , time() , ANSI C 4.12.2.3, POSIX.1 8.1
Chapter 5 261

HP C/iX Library Function Descriptions
modf
modf

Accepts a double value and splits the value into its integer and fractional parts.

Syntax
#include <math.h>
double modf (double value , double * iptr);

Parameters

value A real number input to the function.

iptr A pointer to a real number output from the function containing the integer
part of value .

Return Values

n The signed fractional part of value .

Description

The modf function splits value into two parts, a fraction and an integer, such that
fraction + integer = value .

iptr points to a double variable where the integer part of value is to be stored. The
fractional part of value is the return value of the function.

Example

The following program shows how to use the modf function:

main(argc, argv)
int argc;
char *argv[];
{

double value, iptr, frac, modf();

printf("Integer part: %g; Fractional part: %g\n", iptr, frac);
}

The program accepts one argument and prints the integer and fractional parts of that
value. Note that the address of iptr is passed to modf() , because modf() expects the
address of a double variable where the integer part can be stored.

See Also

ANSI C 4.5.4.6, POSIX.1 8.1
262 Chapter 5

HP C/iX Library Function Descriptions
_mpe_fileno
_mpe_fileno
Maps a file descriptor to an MPE file number.

Syntax
int _mpe_fileno(int fildes)

Parameters

fildes A file descriptor.

Return Values

x The MPE file number of the fildes .

Description

The _mpe_fileno function returns the MPE file number associated with fildes . This file
number may be passed to MPE file system intrinsics to access files.

Caution should be used when accessing the same file using both MPE file system intrinsics
and C library routines as the calling program is responsible for any coordination required
between the two function libraries.

NOTE The _mpe_fileno function is not supported in the POSIX/iX library. For
equivalent functionality, use the _MPE_FILENO macro and include the header
file <fcntl.h> .

See Also

open() , dup()
Chapter 5 263

HP C/iX Library Function Descriptions
offsetof
offsetof
Finds the offset of a member in a structure.

Syntax
#include <stddef.h>
offsetof (type , member);

Parameters

type The name of a structured data type.

member The name of an element within the data structure type .

Return Values

x The byte offset of member within the structure type returned as an
unsigned integer of type size_t .

Description

The offsetof macro calculates the offset in bytes of member from the beginning of the
structure (type). The value returned is a variable of type size_t , which is defined in
<stddef.h> .

See Also

ANSI C 4.1.5
264 Chapter 5

HP C/iX Library Function Descriptions
open
open
Opens a file for reading or writing.

Syntax
#include <fcntl.h>
int open (char * path , int oflag [,int mode [,char mpe_opts]]);

Parameters

path A pointer to a path name naming a file.

oflag An integer containing open mode bit flags.

mode An unused integer parameter provided for compatibility with other
systems.

mpe_opts A pointer to a string containing file attributes and options.

Return Values

x Upon successful completion, the integer file descriptor is returned.

−1 Unsuccessful completion. In addition, errno is set to the indicated value if
one of the following conditions is true:

ENOENT The fname is null, or the named file does not exist and you
did not use oflag to request that it be created.

EACCES The oflag permission is denied for the named file.

EMFILE The maximum number of file descriptors allowed are
currently open.

EINVAL The oflag specifies incompatible read/write access flags.

ESYSERR A call to a system intrinsic failed.

Description

The open function opens the file descriptor described in fname . It uses the value of oflag
to determine how to open the file.

Opening a file in read mode fails if the file does not exist or cannot be read.

The oflag parameter values are constructed by OR-ing flags from the list below. Notice
that exactly one of the first three flags below must be used.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND If set, the file pointer is set to the end of the file prior to each write.
Chapter 5 265

HP C/iX Library Function Descriptions
open
O_CREAT If the file exists, this flag has no effect. If the file does not exist, the file is
created.

O_TRUNC If the file exists, its length is truncated to zero and the mode and owner are
unchanged. The file pointer used to mark the current position within the
file is set to the beginning of the file.

O_MPEOPTS If this flag is specified, the argument mpe_opts specifies additional open
options that provide greater control in the MPE file environment.

The mode parameter is ignored. It is provided for compatibility with other systems.

The mpe_opts argument points to a string of characters described below. Spaces can be
used in the mpe_opts string to improve readability. Notice that the case of the options is
important. An uppercase B is different from a lowercase b.

b If the b option is specified, the file is created as a binary file if this call to
fopen creates the file. The default is to create an ASCII file.

Bl n The Bl option specifies the blocking factor to use if this call to fopen()
creates the file. The option character is followed by an integer that
indicates the blocking factor. If the Bl option is not specified, then the
default is one record per block.

Bs If the Bs option is specified, the file is opened or created as a byte stream
file. This is the only required option for opening byte stream files. The
maximum file size for a byte stream file is two gigabytes. If specified, the
Rn option is ignored. The Sn option can be used to reset the file size. This
option is mutually exclusive with the V option. If the Bs or V options are
not specified, the file is created with an MPE fixed-length record format.

Bun The Bu option specifies the number of buffers to be allocated to this file. If
the Bu option is not specified, the default is 2.

C If the C option is specified, then the file accepts carriage control
information. The default is to not have carriage control.

Df n The Df option specifies the final disposition of the file after the file is
closed. The affect of each value of n is defined as follows:

If the Df option is not specified and the file is a new file, then the default is
to save the file as a permanent file. If the file is old, the default is not to
change the disposition.

Dsn The Ds option specifies the disk space disposition of the file after the file is
closed for fixed, undefined, and variable format files. The affect of each

0 Don't change the disposition.

1 Save the file as a permanent file.

2 Save the file as a temporary file.

3 Don't rewind on close.

4 Purge the file on close.
266 Chapter 5

HP C/iX Library Function Descriptions
open
value of n is defined as follows:

If the Ds option is not specified, the default is not to return any disk space
allocated beyond the end-of-file indicator.

En The E option specifies the maximum number of extents that can be
allocated to the file. The maximum value is 32. The default value, if the E
option is not specified, is 8 extents.

Fn The F option indicates the value used as the file code if this call to fopen()
creates the file. If the F option is not specified, the file code is zero.

L If specified, the L option indicates that dynamic locking should be allowed
on this file.

Mn The M option controls multiaccess. The option character is followed by an
integer that indicates the level of multiaccess for this open request. The
levels are specified in the MPE/iX Intrinsics Reference Manual under the
FOPEN intrinsic description.

Q If the Q option is specified, file equations are disallowed. The default is to
allow file equations.

Rn The R option specifies the size of the record if the file is created by this
open request. If the V option is also used, this option specifies the
maximum size of the variable-sized records. The option letter is followed
by a decimal number that is equal to the number of bytes in the record
size. Notice that the number must be positive. A byte count is always
specified. If the Roption is not provided, then the default record size is 256
bytes.

Sn The S option specifies the maximum size of the file. The value of n is the
maximum size of the file in records for text and binary streams, and in
bytes for byte streams. Notice that if the S parameter is not specified, the
default is 4095.

Te If the Te option is specified, the file is saved in the temporary file domain.
If the Te option is not specified and the file is a new file, the default is to
save the file as a permanent file. If the file is old, the default is to not
change the disposition.

Tm If the Tmoption is specified, disk read functions trim editor line numbers, if
they exist, and trailing blanks from each record of an ASCII fixed record
length file before returning file data to the reader. This option is used on
files opened with read only access. Random access to file data using
fseek() and lseek() is not permitted. The default is to not trim editor
line numbers and blanks.

0 Don't return any disk space allocated beyond the end-of-file indicator.

1 Return to the system any disk space allocated beyond the end-of-file indicator. The EOF
becomes the file limit. No records may be added to the file beyond this new limit.

2 Return to the system any disk space allocated beyond the end-of-file indicator, but do not set
the file limit to EOF, and allow records to be added to the file up to the file limit.
Chapter 5 267

HP C/iX Library Function Descriptions
open
Un If the U option is specified, the file is created with n user-label records. If
this option is not specified, the default is no user-label records.

V If the V option is specified, the file is created with an MPE variable-length
record format. If the V or Bs options are not specified, then the file is
created with an MPE fixed-length record format. This option is mutually
exclusive with the Bs option.

Xn The X option controls exclusive access ability for the file. The option
character is followed by an integer that indicates the level of exclusivity
for this open request. The levels are specified in the MPE/iX Intrinsics
Reference Manual under the FOPEN intrinsic.

NOTE If linking with the POSIX/iX library, refer to the description of open() located
in the MPE/iX Developer's Kit Reference Manual.

Examples

The following creates or opens a fixed record binary file f1 for writing with 256 byte
records, a file size of 10000 records, and a file code of 1030:

#include <fcntl.h>
int fd ;
fd = open("f1",O_WRONLY | O_CREAT | O_MPEOPTS, 0664, "b R256
s10000 F1030");

To open an existing file f1 for reading:

#include <fcntl.h>
int fd ;
fd = open("f1",O_RDONLY);

See Also

fopen()
268 Chapter 5

HP C/iX Library Function Descriptions
perror
perror

Prints an error message corresponding to errno .

Syntax
#include <stdio.h>
void perror (const char * s);

Parameters

s A pointer to an optional string to be printed with the error message. If a
null pointer is passed, the parameter is ignored.

Return Values

None.

Description

The perror function prints an error message corresponding to the value of errno . First, if
the argument s is not a null pointer or a pointer to a null character, the string s is printed,
followed by a colon and a blank, then the message and a newline character are printed.

See Also

errno , strerror() , ANSI C 4.9.10.4, POSIX.1 8.1
Chapter 5 269

HP C/iX Library Function Descriptions
pow
pow
Returns the value of x raised to the power y.

Syntax
#include <math.h>
double pow (double x, double y);

Parameters

x A real number.

y A real number.

Return Values

n The value of xy.

0 Indicates any of the following:

• The x parameter is zero and y is non-positive. The `errno'' variable is
set to EDOM. A DOMAIN error message is also printed on the standard
error output.

• The x parameter is negative and y is not an integer. The errno variable
is set to EDOM. A DOMAIN error message is also printed on the standard
error output.

• An underflow condition has occurred, and errno is set to ERANGE.

±HUGE_VAL An overflow condition has occurred, and errno is set to ERANGE.

Description

The pow function returns xy. If x is zero, y must be positive. If x is negative, y must be an
integer. Error handling can be changed by a user-written matherr function.

See Also

matherr() , ANSI C 4.5.5.1, POSIX.1 8.1
270 Chapter 5

HP C/iX Library Function Descriptions
printf
printf
Writes data in formatted form to the standard output stream stdout .

Syntax
#include <stdio.h>
int printf (const char * format [,item [,item]...]);

Parameters

format A pointer to a character string defining the format (or the character string
itself enclosed in double quotes).

item ,… Each item is a variable or expression specifying the data to print.

Return Values

≥0 If successful, the number of characters written.

<0 An error occurred.

Description

The printf function enables you to output data in formatted form. In the printf function,
format is a pointer to a character string (or the character string itself enclosed in double
quotes) that specifies the format and content of the data to be printed. Each item is a
variable or expression specifying the data to print.

The printf() format is similar to the scanf function. It is made up of conversion
specifications and literal characters. Literal characters are all characters that are not part
of a conversion specification. Literal characters are printed on stdout exactly as they
appear in the format.

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output
a literal percent sign, you must type two percent signs (%%).

2. Zero or more flags, which affect the way a value is printed (see below).

3. An optional decimal digit string which specifies a minimum field width .

4. An optional precision consisting of a dot (.) followed by a decimal digit string.

5. An optional l, h, or L indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.
Chapter 5 271

HP C/iX Library Function Descriptions
printf
6. A conversion character, which indicates the type of data to be converted and printed.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be printed in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. Space padding
is not performed. If the 0 and - flag s both appear, the 0 flag is ignored. The
0 flag is also ignored for d, i , o, u, x, and X conversions if a precision is
specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being printed. If the data happens to be smaller
than the field width, the data is blank-padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than the field width , the field
width is simply expanded to accommodate the data. An insufficient field
width never causes data to be truncated. If field width is not specified, the resulting
field is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.

Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
to be formatted and printed appropriately. The integer conversion characters are:

d, i An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
272 Chapter 5

HP C/iX Library Function Descriptions
printf
leading zeros. The default precision is 1. A null string results if a zero
value is printed with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded, and the octal value is printed with a
leading zero (a C convention). The precision behaves the same as in d
above, except that printing a zero value with a zero precision results in
only the leading zero being printed, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in printing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is printed with a
leading "0x" (a C convention). The precision behaves as in d above,
except that printing a zero value with a zero precision results in only the
leading "0x" being printed, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to print the
hexadecimal value, and the # flag causes the value to be printed with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is printed. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is printed. If a
precision is specified, characters from the string are printed until the
number of characters indicated by the precision is reached, or until a
null character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are printed. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If precision is not specified, six digits are printed after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

e The float or double item is converted to scientific notation in style e;
that is, in the form

[-]d.ddde ±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision . If precision is
not given, six digits are printed after the decimal point. If the precision
is explicitly zero, the decimal point is eliminated entirely. The exponent
Chapter 5 273

HP C/iX Library Function Descriptions
printf
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

Examples

Some examples of printf() conversion specifications and a brief description are shown
below:

%d Output a signed decimal integer. The field width is just large enough to
hold the value.

%-*d Output a signed decimal integer. The left-justify flag (-) and the blank
flag are specified. The asterisk causes a field width value to be extracted
from the item list. Thus, the item specifying the desired field width must
occur before the item containing the value to be converted by the d
conversion character.

%+7.2f Output a floating-point value. The + flag causes the value to have an initial
sign (+ or -). The value is right-justified in a 7-column field, and has
exactly two digits after the decimal point. This conversion specification is
ideal for a debit/credit column on a finance worksheet. (If the + sign is not
necessary, use the blank flag instead.)

The following program reads a number from stdin and prints the number, followed by its
square and its cube:

#include <stdio.h>
274 Chapter 5

HP C/iX Library Function Descriptions
printf
main()
{

double x;

printf("Enter your number: ");

printf("Your number is %g\n", x);
printf("Its square is %g\nIts cube is %g\n", x*x, x*x*x); }

The g conversion character is used so that the decision about using an exponent is
automatic. Note that the item list contains expressions to calculate x squared and x cubed.
Also note that the address of the variable is required in order to read a value for it with
scanf() , but printf() requires the variable name itself.

The following program accepts a decimal integer and prints the integer itself, its square,
and its cube in decimal, octal, and hexadecimal. The program also prints the headings
"Decimal," "Octal," and "Hexadecimal" and prints the data in tabular form.

#include <stdio.h>
main()
{

long n, n2, n3;

/* get value */

printf("Enter your number: ");

/* print headings */

printf("\n\n Decimal Octal Hexadecimal\n");

/* do the computation */

n2 = n * n;
n3 = n * n * n;
printf("n itself: %7ld %9lo %6lx\n", n, n, n);
printf("n squared: %7ld %9lo %6lx\n", n2, n2, n2);
printf("n cubed: %7ld %9lo %6lx\n", n3, n3, n3);

}

Strings are easy to manipulate using the printf() function. The following program shows
how strings can be inserted in text.

#include <stdio.h>
main()
{

char first[15], last[25];

printf("Enter your first and last names: ");
scanf("%s%s", first, last);
printf("\nWell, hello %s, it's good to meet you!\n", first);
printf("%s, huh? Are you any relation to that famous\n", last);
printf("computer programmer, Mortimer Zigfelder %s?\n", last);
printf("No, sorry, that was my mistake. I was thinking of\n");
Chapter 5 275

HP C/iX Library Function Descriptions
printf
printf("O'%s, not %s.\n", last, last);
}

See Also

fprintf() , vprintf() , sprintf() , putc() , setlocale() , scanf() , ANSI C 4.9.6.3,
POSIX.1 8.1
276 Chapter 5

HP C/iX Library Function Descriptions
printmsg
printmsg
Prints formatted output with numbered arguments to stdout .

Syntax
#include <stdio.h>
int printmsg (format [, arg] ...)

char * format ;

Parameters

format A pointer to the string containing the formatting information. It contains
optional placeholders and formatting specifications where arg1 through
argn are to be substituted.

arg1 ... argn A character, character pointer or integer value giving the parameter to
be converted, formatted, and merged with format prior to output.

Return Values

x The number of characters transmitted.

EOF An error occurred.

Description

The printmsg function places output on the standard output stream stdout after
performing parameter substitution.

The printmsg function is derived from printf() . In printmsg() , the conversion character
% is replaced by the sequence %n$. n is a decimal digit in the range 1-9, and indicates that
this conversion should be applied to the nth argument, rather than to the next unused one.
All other aspects of formatting are unchanged. All conversion specifications must contain
the %n$ sequence, and you should make sure the numbering is correct. All parameters
must be used exactly once.

See printf() for more details on formatting and conversion specifications.

Example

The following creates a date and time printing function:

printmsg(format, weekday, month, day, hour, min);

The format is a pointer to the following string:

"%1$s, %2$s %3$d, %4$d:%5$.2d\n"

The resulting output is:

Sunday, July 3, 10:02
Chapter 5 277

HP C/iX Library Function Descriptions
printmsg
See Also

printf() , fprintmsg() , sprintmsg()
278 Chapter 5

HP C/iX Library Function Descriptions
putc
putc
Writes a character to an open stream.

Syntax
#include <stdio.h>
int putc (int c, FILE * stream);

Parameters

c A character to be written to an open stream.

stream A pointer to an open stream.

Return Values

x The character written.

EOF An error occurred, and errno is set to indicate the error condition.

Description

The putc function writes a single character to the specified stream. This function is
equivalent to fputc() except that it is implemented as a macro. Because putc() can
evaluate the stream more than once, the arguments should never be an expression with
side effects.

Example

Refer to the example located in the getc function description.

See Also

fputc() , getc() , putchar() , puts() , fwrite() , ANSI C 4.9.7.8, POSIX.1 8.1
Chapter 5 279

HP C/iX Library Function Descriptions
putchar
putchar
Writes a character to the standard output stream stdout .

Syntax
#include <stdio.h>
int putchar (int c);

Parameters

c A character to be written to stdout .

Return Values

x The character written to stdout .

EOF An error occurred; errno is set to indicate the error condition.

Description

The putchar function writes a single character c to the standard output stream stdout .
The putchar(c) function is equivalent to putc(c, stdout_ptr) .

Examples

Refer to the examples located in the getchar function description.

See Also

fputc() , putc() , puts() , fwrite() , getchar() , ANSI C 4.9.7.9, POSIX.1 8.1
280 Chapter 5

HP C/iX Library Function Descriptions
puts
puts
Writes a string to the standard output stream stdout .

Syntax
#include <stdio.h>
int puts (const char * s);

Parameters

s A pointer to a character array containing the string to be written to
stdout . The character array must be terminated with a null character.

Return Values

≥0 Success.

EOF An error occurred.

Description

The puts function writes the string from a character array pointed to by s to the standard
output stream stdout. The string is terminated by a null character in the array, which
puts() replaces with a new line in the output.

Examples

The following example uses gets() and puts() :

#include <stdio.h>
main()
{

char line[80], *gets();

while((gets(line)) != NULL)
puts(line);

}

To terminate this program, generate an end of file on stdin. Using string comparison and
string length functions, you can write a termination condition for this program.

See Also

fputc() , fwrite() , gets() , putc() , putchar() , ANSI C 4.9.7.10, POSIX.1 8.1
Chapter 5 281

HP C/iX Library Function Descriptions
putw
putw
Writes a word to an open stream.

Syntax
#include <stdio.h>
int putw (int w, FILE * stream);

Parameters

w A word to be written to an open stream.

stream A pointer to an open stream.

Return Values

0 Indicates success.

Non-zero An error occurred.

Description

The putw function writes the word (int in C) w to the output stream (at the position at
which the file pointer, if defined, is pointing). The size of a word is the size of an integer
and varies from machine to machine. The putw function neither assumes nor causes
special alignment in the file.

See Also

putc() , putchar() , fputc()
282 Chapter 5

HP C/iX Library Function Descriptions
qsort
qsort
Sorts an array of objects.

Syntax
#include <stdlib.h>
void qsort (void * base , size_t nmemb, size_t size ,

int (* compar) (const void *, const void *));

Parameters

base A pointer to an array to be sorted.

nmemb The number of elements in the array.

size The size, in bytes, of each element of the array.

compar A pointer to a user-written comparison function.

Return Values

None.

Description

The qsort function sorts an array of objects. The size parameter specifies the size of each
object.

The contents of the array are sorted in ascending order as determined by the user-written
comparison function compar , which is called with two arguments that point to the objects
being compared. The function must return an integer less than, equal to, or greater than
zero as a consequence of whether its first argument is to be considered less than, equal to,
or greater than the second.

The order of two members that compare as equal in the sorted array is unspecified.

See Also

ANSI C 4.10.5.2, POSIX.1 8.1
Chapter 5 283

HP C/iX Library Function Descriptions
raise
raise
Causes a signal to be raised.

Syntax
#include <signal.h>
int raise (int sig);

Parameters

sig A signal number specifying the signal to be raised.

Return Values

0 The signal was successfully raised.

≠0 The signal was not raised.

Description

The raise function causes the signal specified in sig to be raised to the calling process.

The name and meaning of each signal is given below:

Name Description

SIGABRT Abnormal termination, (for example, by the abort function).

SIGFPE An erroneous arithmetic operation, (for example, divide by 0).

SIGILL An illegal instruction was executed (possibly after a jump).

SIGINT An interactive interrupt signal was received.

SIGSEGV An invalid access to storage.

SIGTERM A termination request was sent to the program.

NOTE Signals are provided for conformance with ANSI C. However, the only way to
generate a signal on MPE/iX is by an explicit call to the raise function. For
information on a more comprehensive facility for handling exceptions, see the
Trap Handling Programmer's Guide.

Examples

Refer to the example located in the signal function description.

See Also

signal() , ANSI C 4.7.2.1
284 Chapter 5

HP C/iX Library Function Descriptions
rand
rand
Returns a random number.

Syntax
#include <stdlib.h>
int rand (void);

Parameters

None.

Return Values

x A pseudo-random integer in the range 0 to RAND_MAX. The macro RAND_MAX
expands to the value 32767.

Description

If the srand function is not used to initialize the random number generator to a particular
starting point, rand() returns the same sequence of numbers every time the program is
executed.

See Also

rand() , srand() , ANSI C 4.10.2.1, POSIX.1 8.1
Chapter 5 285

HP C/iX Library Function Descriptions
rand48
rand48
The drand48 , erand48 , lrand48 , nrand48 , mrand48 , jrand48 , srand48 , seed48 , and
lcong48 functions generate uniformly distributed pseudo-random numbers.

Syntax
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi [3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi [3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi [3];

void srand48 (seedval)
long seedval ;

unsigned short *seed48 (seed16v)
unsigned short seed16v [3];

void lcong48 (param)
unsigned short param [7];

Parameters

xsubi A pointer to a 3-word (48-bit) unsigned short int array used by the
random number generator to store successive values of X.

seedval A 32-bit seed value used to initialize the high-order bits of seed value to
the random number generator

seed16v A pointer to a 3-word (48-bit) unsigned short int array used internally
by the random number generator to hold the previous value of the seed.

param A pointer to a 7-word unsigned short int array arranged as follows:

param[0-2] The 48-bit seed value.

param[3-5] The multiplier A used to expand the random number from
the 0 to 1 range to the desire range.

param[6] The addend C used to shift the random number from the 0
to 1 range to the desired range.
286 Chapter 5

HP C/iX Library Function Descriptions
rand48
Return Values

x Random numbers appropriate to the type and function called (except seed ,
which returns a pointer to the internal buffer where X is stored).

Description

This family of functions generates uniform pseudo-random numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

The drand48 and erand48 functions return non-negative double-precision floating-point
values uniformly distributed over the interval of 0.0 (inclusive) to 1.0 (non-inclusive) or, in
mathematical nomenclature, (0.0,1.0).

The lrand48 and nrand48 functions return non-negative long integers uniformly
distributed over the interval of 0 (inclusive) to 231 (non-inclusive), or (0, 231).

The mrand48 and jrand48 functions return signed long integers uniformly distributed
over the interval of -231 (inclusive) to 231 (non-inclusive), or (-231, 231).

The srand48 , seed48 and lcong48 functions are initialization entry points, one of which
should be invoked before either drand48 , lrand48 or mrand48 is called. Although it is not
recommended practice, constant default initializer values are supplied automatically if
drand48 , lrand48 or mrand48 is called without a prior call to an initialization entry point.
The erand48 , nrand48 , and jrand48 functions do not require an initialization entry point
to be called first.

All the functions work by generating a sequence of 48-bit integer values, Xi, according to
the linear congruential formula:

Xn+1 = (aXn + c) mod m n≥0.

The parameter m = 2 48; therefore 48-bit integer arithmetic is performed. Unless lcong48
has been invoked, the multiplier value a and the addend value c are given by:

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8

The value returned by drand48 , erand48 , lrand48 , nrand48 , mrand48 or jrand48 is
computed by first generating the next 48-bit Xi in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned, are copied from the
high-order (leftmost) bits of Xi and transformed into the returned value.

The drand48 , lrand48 and mrand48 functions store the last 48-bit Xi generated in an
internal buffer, which is why they must be initialized prior to being invoked. The erand48 ,
nrand48 and jrand48 functions require the calling program to provide storage for the
successive Xi values in the array specified as an argument when the functions are invoked.
That is why these functions do not have to be initialized; the calling program merely has to
place the desired initial value of Xi into the array and pass it as an argument. By using
different arguments, the erand48 , nrand48 and jrand48 functions allow separate modules
of a large program to generate several independent streams of pseudo-random numbers.
For example, the sequence of numbers in each stream does not depend upon how many
Chapter 5 287

HP C/iX Library Function Descriptions
rand48
times the functions have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits contained in
its argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16.

The initializer function seed48 sets the value of Xi to the 48-bit value specified in the
argument array. In addition, the previous value of Xi is copied into a 48-bit internal buffer,
used only by seed48 , and a pointer to this buffer is the value returned by seed48 . This
returned pointer, which can be ignored if not needed, is useful if a program is to be
restarted from a given point at some future time. Use the pointer to get at and store the
last Xi value, and then use this value to reinitialize using seed48 when the program is
restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the multiplier
value a, and the addend value c. Argument array elements param[0-2] specify Xi,
param[3-5] specify the multiplier a, and param[6] specifies the 16-bit addend c. After
lcong48 is called, a subsequent call to either srand48 or seed48 restores the standard
multiplier and addend values a and c, as specified previously.

See Also

rand()
288 Chapter 5

HP C/iX Library Function Descriptions
read
read
Reads input from a file.

Syntax
int read (int fildes , char * buffer , unsigned nbyte);

Parameters

fildes An open file descriptor.

buffer A pointer to a buffer where the function returns data.

nbyte The number of bytes to read and place in buffer .

Return Values

>0 Indicates success and the number of bytes read. This number may be less
than nbyte if:

• The file is associated with a communication line.

• The number of bytes left in the file is less than nbyte bytes.

EOF Returned when an end-of-file is reached.

−1 Indicates unsuccessful completion. The errno variable is set if one of the
following conditions is true:

EBADF The fildes parameter is not a valid file descriptor open
for reading.

ESYSERR A call to a system intrinsic failed.

Description

The read function reads nbyte bytes from the file associated with fildes and places the
data read into the buffer pointed to by buffer .

On devices capable of seeking, read() starts at a position in the file given by the file offset
associated with fildes . Upon return from read() , the file pointer is incremented by the
number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a
file offset associated with such a device is undefined.

Unless an error occurs, a process blocks until a read() request is completed.

NOTE If linking with the POSIX/iX library, refer to the description of read() located
in the MPE/iX Developer's Kit Reference Manual.
Chapter 5 289

HP C/iX Library Function Descriptions
read
See Also

open() , write()
290 Chapter 5

HP C/iX Library Function Descriptions
realloc
realloc
Changes the size of a block of allocated memory.

Syntax
#include <stdlib.h>
void *realloc (void * ptr , size_t size);

Parameters

ptr A pointer to a block of memory previously allocated.

size The new size, in bytes.

Return Values

x A successful call to realloc() returns a pointer to the possibly moved
block of allocated memory.

NULL There is not enough available memory. The block pointed to by ptr is left
intact, or, size is 0.

Description

The realloc function changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the block. The location of the block may be changed by this function.
The contents are unchanged up to the lesser of the new and old sizes.

See Also

malloc() , free() , calloc() ANSI C 4.10.3.4, POSIX.1 8.1
Chapter 5 291

HP C/iX Library Function Descriptions
remove
remove
Purges an existing file.

Syntax
#include <stdio.h>
int remove (const char * filename);

Parameters

filename A pointer to a character array containing the name of a file to purge. The
string must be terminated by a null character.

Return Values

0 The file is successfully purged.

−1 An error occurred and errno is set to one of the following values:

ENOENT The file does not exist.

ESYSERR A call to a system intrinsic failed.

Description

The remove function purges the specified file from the file system. The call fails if
filename references an open file.

See Also

ANSI C 4.9.4.1, POSIX.1 8.1
292 Chapter 5

HP C/iX Library Function Descriptions
rename
rename
Renames an existing file.

Syntax
#include <stdio.h>
int rename (const char * oldname , const char * newname);

Parameters

oldname A pointer to a string containing the name of the existing file whose name is
to be changed. The string must be terminated by a null character.

newname A pointer to a string containing the new name of the file. The string must
be terminated by a null character.

Return Values

0 The file is successfully renamed.

−1 An error occurred. The file is not renamed.

Description

The rename function changes the file named by oldname so that it has the name newname.

NOTE The rename function is not supported in the POSIX/iX library. If called,
rename() returns a -1 and sets errno to ENOSYS to indicate that rename() is
not supported.

See Also

remove() , ANSI C 4.9.4.2
Chapter 5 293

HP C/iX Library Function Descriptions
rewind
rewind
Sets the file position indicator for a stream to the beginning of the file.

Syntax
#include <stdio.h>
void rewind (FILE * stream);

Parameters

stream A pointer to an open stream.

Return Values

None.

Description

The rewind function sets the file position indicator for the specified stream to the
beginning of the file.

NOTE If you have a stream open for both reading and writing, a read operation
cannot be followed by a write operation without one of the following occurring
first: a rewind() , an fseek() , or a read operation that encounters end-of-file.
Similarly, a write operation cannot be followed by a read operation unless a
rewind() or fseek() is performed.

Example

Suppose you sometimes wish to use a password on a data file accessed by an application
program. This password is to be optionally stored in encrypted form on the first line of the
file. The line is recognized as a password line if the first two characters are "*P" . If the file
has no password line, access to the file is unrestricted. If a password line is found, the
program prompts for the password before permitting access. The following code looks for a
password line:

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

FILE *pswd;
char line[256];

if(argc != 2) {
fprintf(stderr, "Usage: getpswd file\n");
exit(1);
294 Chapter 5

HP C/iX Library Function Descriptions
rewind
}
pswd = fopen(argv[1], "r");
if(pswd == NULL) {

fprintf(stderr, "Can't open %s.\n", argv[1]);
exit(1);

}
fgets(line, 256, pswd);
if(line[0] == '*' line[1] == 'P') {
/* ask for and check password */
} else

rewind(pswd);
/* application program goes here */
exit(0);

}

If the first two characters of the first line are "*P" , the code that asks for and checks a
password is executed. However, if the first line is not a password line, the file is assumed to
be unprotected. Thus, the file must be rewound so the data contained in the first line is
available to the application program.

See Also

ftell() , fseek() , ANSI C 4.9.9.5, POSIX.1 8.1
Chapter 5 295

HP C/iX Library Function Descriptions
scanf
scanf
Reads externally formatted data from the standard input stream stdin .

Syntax
#include <stdio.h>
int scanf (const char * format [,item [,item]...]);

Parameters

format A pointer to a character string defining the format of the data to be read
(or the character string itself enclosed in double quotes).

item Each item is the address of a variable into which the data will be placed.

Return Values

≥0 The number of successfully matched and assigned input items.

EOF An error occurred on input (no input characters, or a matching error
occurred before any conversion).

Description

The scanf function reads externally formatted data from the standard input stream
stdin , converts the data to internal format, and stores the results in a string of
arguments.

In the scanf function, format is a character pointer to a character string (or the character
string itself enclosed in double quotes), and item is the address of a variable. The scanf
function returns the number of successfully matched and assigned input items or returns
EOF if there are no input characters available or if a matching error occurred before any
conversion was made.

The purpose of the format is to specify how the data to be read is presented on stdin and
what types of data are found there. The format consists of white-space characters,
conversion specifications, and literal characters.

White-Space Characters

White-space characters (blanks, tabs, newlines, or form feeds) cause input to be read up to
the next non-white-space character.

Conversion Specifications

A conversion specification is a character sequence that tells scanf() how to interpret the
data received at that point in the input.

In the format, a conversion specification is introduced by a percent sign (%), optionally
followed by an asterisk (*) (called the assignment suppression character), optionally
296 Chapter 5

HP C/iX Library Function Descriptions
scanf
followed by an integer value (called the field width). The conversion specification is
terminated by a character specifying the type of data to expect; the terminating characters
are called conversion characters. The integer and floating-point conversion characters may
be optionally preceded by a character indicating the size of the receiving variable.

When a conversion specification is encountered in a format, it is matched up with the
corresponding item in the item list. The data formatted by that specification is then stored
in the location pointed to by that item. For example, if there are four conversion
specifications in a format, the first specification is matched up with the first item, the
second specification with the second item, and so on.

The number of conversion specifications in the format is directly related to the number of
items specified in the item list. With one exception, there must be at least as many items
as there are conversion specifications in the format. If there are too few items in the item
list, an error occurs; if there are too many items, the excess items are ignored. The one
exception occurs when the assignment suppression character (*) is used. If an asterisk
occurs immediately after the percent sign (before the field width , if any), the data
formatted by that conversion specification is discarded. No corresponding item is expected
in the item list; this is useful for skipping over unwanted data in the input.

Conversion Characters

There are 14 conversion characters: five format integer data, three format character data,
three format floating-point data, and three special characters.

The integer conversion characters are:

d A decimal integer is expected.

i A signed integer is expected.

o An octal integer is expected.

u An unsigned decimal integer is expected.

x A hexadecimal integer is expected.

The character conversion characters are:

c A single character is expected, normal skip over leading white space is
suppressed.

s A character string is expected.

[A character string is expected, normal skip over leading white space is
suppressed.

The floating-point conversion characters are:

e, f, g A floating-point number is expected (the capitalized forms of these
characters are also accepted).

The special characters are:

p Matches an implementation-defined set of sequences.

n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of characters read from the input
Chapter 5 297

HP C/iX Library Function Descriptions
scanf
stream so far by this call to fscanf() .

% Matches a single %. No conversion or assignment occurs. The complete
conversion specification is &%&%

Integer Conversion Characters

The d, o, and x conversion characters read characters from stdin until an inappropriate
character is encountered, or until the number of characters specified by the field width ,
if given, is exhausted (whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 through 9. For o, an
inappropriate character is any character except +, -, and 0 through 7. For x, an
inappropriate character is any character except +, -, 0 through 9, and the characters a
through f and A through F. Note that negative octal and hexadecimal values are stored in
their twos complement form with sign extension. Thus, they might look unfamiliar if you
print them out later using printf() .

These integer conversion characters can be preceded by a l to indicate that a long int
should be expected rather than an int. They can also be preceded by h to indicate a short
int. The corresponding items in the item list for these conversion characters must be
pointers to integer variables of the appropriate length.

Character Conversion Characters

The c conversion character reads the next character from stdin, no matter what that
character is. The corresponding item in the item list must be a pointer to a character
variable. If a field width is specified, the number of characters indicated by the field
width are read. In this case, the corresponding item must refer to a character array large
enough to hold the characters read.

Note that strings read using the c conversion character are not automatically terminated
with a null character in the array. Because all C library functions that use strings assume
the existence of a null terminator, be sure to add the '\0 ' character yourself. If you do not,
library functions are not able to tell where the string ends and you will get unexpected
results.

The s conversion character reads a character string from stdin which is delimited by one
or more space characters (blanks, tabs, or newlines). If no field width is given, the input
string consists of all characters from the first nonspace character up to (but not including)
the first space character. Any initial space characters are skipped over. If a field width is
given, characters are read, beginning with the first nonspace character, up to the first
space character, or until the number of characters specified by the field width is reached
(whichever comes first). The corresponding item in the item list must refer to a character
array large enough to hold the characters read, plus a terminating null character which is
added automatically.

The s conversion character cannot be made to read a space character as part of a string.
Space characters are always skipped over at the beginning of a string, and they terminate
reading whenever they occur in the string. For example, suppose you want to read the first
character from the following input line:

" Hello, there!"
298 Chapter 5

HP C/iX Library Function Descriptions
scanf
(Ten spaces followed by "Hello, there!"; the double quotes are added for clarity). If you use
%c, you get a space character. However, if you use %1s, you get "H" (the first nonspace
character in the input).

The [conversion character also reads a character string from stdin. However, you should
use this character when a string is not to be delimited by space characters. The left bracket
is followed by a list of characters, and is terminated by a right bracket. If the first
character after the left bracket is a circumflex (^), characters are read from stdin until a
character is read which matches one of the characters between the brackets. If the first
character is not a circumflex, characters are read from stdin until a character not
occurring between the brackets is found. The corresponding item in the item list must
refer to a character array large enough to hold the characters read, plus a terminating null
character which is added automatically. In some implementations, a minus sign (-) may
specify a range of characters.

The three string conversion characters provide you with a complete set of string-reading
capabilities. The c conversion character can be used to read any single character, or to read
a character string when the exact number of characters in the string is known beforehand.
The s conversion character enables you to read any character string which is delimited by
space characters, and is of unknown length. Finally, the [conversion character enables
you to read character strings that are delimited by characters other than space characters,
and which are of unknown length.

Floating-Point Conversion Characters

The e, f, and g (or E, F, and G , respectively) conversion characters read characters
from stdin until an inappropriate character is encountered, or until the number of
characters specified by the field width , if given, is exhausted (whichever comes first).

The e, f, and g characters expect data in the following form: an optionally signed string
of digits (possibly containing a decimal point), followed by an optional exponent field
consisting of an E or e followed by an optionally signed integer. Thus, an inappropriate
character is any character except +, -, ., 0 through 9, E, or e.

These floating-point conversion characters may be preceded by a lowercase L (l), to
indicate that a double value is expected rather than a float , or by an uppercase L (in
ANSI C) to indicate that a long double value is expected rather than a float . The
corresponding items in the item list for these conversion characters must be pointers to
floating-point variables of the appropriate length.

Literal Characters

Any characters included in the format which are not part of a conversion specification are
literal characters. A literal character is expected to occur in the input at exactly that point.
Note that since the percent sign is used to introduce a conversion specification, you must
type two percent signs (%%) to get a literal percent sign.

Suppose that you want to read the following line of data:

NAME: Joe Kool; AGE: 27; PROF: Elec Engr; SAL: 39550

To get the vital data, you must read two strings (containing spaces) and two integers. You
also have data that should be ignored, such as the semicolons and the identifying strings
Chapter 5 299

HP C/iX Library Function Descriptions
scanf
("NAME:"). To read the strings, first note that the identifying strings are always delimited
by space characters. This suggests use of the s conversion character to read them. Second,
you can never know the exact sizes of the NAME and PROF fields, but note that they are
both terminated by a semicolon. Thus, you can use [to read them. Finally, the d
conversion character can be used to read both integers. (Note: On 16-bit processors, you
probably need to use a long int to read the salaries. Thus, ld should be used instead of
d.)

The following code fragment successfully reads this data:

char name[40], prof[40];
int age;
long int salary;

.

.
scanf("%*s%*[]%[^;]%*c%*s%d%*c%*s%*[]%[^;]%*c%*s%ld",name,&age,
prof,&salary);

For easier understanding, break the format into pieces:

%*s This reads the string "NAME:". Since an asterisk is given the string is
simply read and discarded.

%*[] This removes all blanks occurring between "NAME:" and the employee's
name. Note that this removes one or more blanks, giving the format some
flexibility.

%[^;] This reads all characters from the current character up to a semicolon, and
assigns the characters to the array name.

%*c This removes the semicolon left over after reading the name.

%*s This reads the next identifying string, "AGE:", and discards it.

%d This reads the integer age given, and assigns it to age. The semicolon
after the age terminates %d, because that character is not appropriate for
an integer value. Note that the address of age is given in the item list ()
instead of the variable name itself. If this is not done, a memory fault
occurs at runtime due to the attempt of scanf() to use the parameter as a
pointer.

%*c This removes the semicolon following the age.

%*s This reads the next identifying string, "PROF:", and discards it.

%*[] This removes all blanks between "PROF:" and the next string.

%[^;] This reads all characters up to the next semicolon, and assigns them to the
character array prof.

%*c This removes the semicolon following the profession string.

%*s This reads the final identifying string, "SAL:", and discards it.

%ld This reads the final integer and assigns it to the long integer variable
salary. Again, note that the address of salary is given, not the variable
name itself.

Although somewhat confusing to read, this format is quite flexible, because it allows for
300 Chapter 5

HP C/iX Library Function Descriptions
scanf
multiple spaces between items and varying identifying strings (that is, "PROFESSION:"
could be specified instead of "PROF:"). The following scanf() call reads the same data, but
is much less flexible:

scanf("NAME: %[^;]; AGE:%d; PROF: %[^;]; SAL: %d",name,&age,prof,&salary);

In this example, literal characters are used to exactly match the characters in the input
line. This only works if you can be sure that the data always appears in this form.
However, if a typing variation is made, such as typing "SALARY:" instead of "SAL:", the
scanf() fails.

Scanf() waits for more data as long as there are unsatisfied conversion specifications in
the format. Thus, the scanf() call

scanf(“%f%f%f”, &float1, &float2, &float3);

where float1, float2, and float3 are all variables of type float, allows you to enter
data in several ways. For example,

14.77 29.8 13.0

is read correctly by scanf(), as is

14.77
29.8
13.0

Using decimal points in floating-point data is recommended whenever floating-point
variables are being read. However, scanf() converts integer data to floating-point if the
conversion specification so demands. Thus, "13.0" in the previous example could have been
entered as "13" with no side effects.

As a final example, consider the input string:

abcdef137 d14.77ghijklmnop

Suppose the following code fragment is used to read this string:

char arr1[10], arr2[10], arr3[10], arr4[10];
float float1;
scanf("%4c%[^3]%6c%f%[ghijkl]",arr1,arr2,arr3,&float1,arr4);

%4c Reads four characters and assigns them to arr1. Thus, the string abcd is
assigned to arr1. Note that a null character is not appended to the end of
the string.

%[^ 3] Reads all characters from the current character up to the character 3.
This assigns ef1, along with an added null character, to the array arr2.

%6c Reads the next six characters and stores them in the array arr3. Thus, 37
d14 is assigned to arr3. A null character is not appended to the end of the
string.

%f Reads a floating-point value which, due to the lack of a field width, is
terminated by the first inappropriate character. Thus, the value .77 is
assigned to float1.

%[ghijkl] Reads all characters up to the first character not occurring between the
brackets. This stores the string ghijkl, along with an appended null
Chapter 5 301

HP C/iX Library Function Descriptions
scanf
character, in the array arr4.

Note that there are some characters left in stdin that were not read. Any characters left
unread in the input remain there, which might cause unexpected errors.

Suppose that, later in the above program fragment, you want to read a string from stdin
using %s. No matter what string you type in as input, it will never be read, because the %s
conversion specification is satisfied by reading "mnop" (the characters left over from the
previous read operation). To solve this, be sure you have read the entire current line of
input before attempting to read the next. To fix this in the previous scanf() example, add
a %*s%*c conversion specification at the end of the format (%*s reads characters up to the
next newline character, and %*c reads the newline). This reads and discards the excess
characters.

You can use a minus character (-) between characters in the match list inside a [
conversion specifier to indicate a range of characters. For example, the conversion specifier
[A-Z] matches all the characters from A through Z

See Also

fscanf() , sscanf() , getc() , setlocale() , printf() , strtod() , strtol() , ANSI C
4.9.6.4, POSIX.1 8.1
302 Chapter 5

HP C/iX Library Function Descriptions
setbuf
setbuf
Assigns a buffer to an open stream.

Syntax
#include <stdio.h>
void setbuf (FILE * stream , char * buffer);

Parameters

stream A pointer to an open stream.

buffer Either a pointer to a character array for buffered I/O, or null for
unbuffered I/O.

Return Values

None.

Description

Normally, a standard I/O buffer is obtained through a call to malloc() on the first call to
getc() or putc() (which all I/O functions eventually call). The standard I/O system
normally buffers I/O in a buffer which is BUFSIZ bytes long. Exceptions are stdout, which,
when directed to a terminal, is line buffered, and stderr, which is normally unbuffered.

NOTE Using an automatic array as a standard I/O buffer can be dangerous.
Automatic variables are only defined in the code block in which they are
declared. Thus, buffering which relies on an automatic array is only in effect
during the current code block (main program or function). If you pass a file
pointer to another function, and the stream pointed to by that file pointer is
buffered using an automatic array, memory faults or other errors can occur.
Therefore, if you use an automatic array for stream buffering, the stream
should be used and closed only in the code block containing the array
declaration. To avoid this restriction, use global or static arrays for buffering:

char buffer[BUFSIZ];
…

main()
{

…
setbuf (fp, buffer);

}

The setbuf function enables you to change the buffer used for all standard I/O functions.
The following example of a code fragment causes the array buffer to be used for buffering:

…

Chapter 5 303

HP C/iX Library Function Descriptions
setbuf
FILE *fp;
char buffer[BUFSIZ];

fp = fopen(argv[1], "r");
…

setbuf(fp, buffer);
…

This fragment shows the correct order of events. First, the file is opened, and the buffering
is assigned using setbuf() . From that point on any input taken from fp is buffered
through the array buffer. Buffering can be eliminated altogether by specifying the null
pointer in place of the buffer name, as in

setbuf(fp, NULL);

This causes input or output using fp to be completely unbuffered.

The setbuf function is limited to buffer sizes of either BUFSIZ bytes or zero. setbuf()
assumes that the character array pointed to by buffer is BUFSIZ bytes. Passing setbuf()
a (non-null) pointer to a smaller array can cause severe problems during operation because
the standard I/O functions might overwrite memory following the end of the buffer.

See Also

setvbuf() , fopen() , getc() , malloc() , putc() , ANSI C 4.9.5.5, POSIX.1 8.1
304 Chapter 5

HP C/iX Library Function Descriptions
setjmp
setjmp
Saves the current environment.

Syntax
#include <setjmp.h>
int setjmp (jmp_buf env);

Parameters

env An array of unsigned integers as defined by the type jmp_buf .

Return Values

0 Successful completion of setjmp() .

≠0 Returned as a result of a call to longjmp() . The value returned is the
value passed in the val parameter of longjmp() .

Description

The setjmp macro creates an entry point in your program that can be reached with
longjmp() .

The setjmp macro saves the current environment of the calling process in the env
parameter. The parameter env is of type jmp_buf , defined in <setjmp.h> . It is an array of
unsigned integers and therefore the env argument does not require an & operator.

A subsequent call to longjmp() requires that the env variable initialized by setjmp() be
passed as a parameter. This allows longjmp() to restore the program environment saved
by setjmp() and to continue program execution just after the setjmp() statement.

Upon successful completion, the setjmp() macro returns a zero value. A zero indicates
that the return is from setjmp() itself and not a return as a result of a call to longjmp() .

If a nonzero value is returned, this indicates that the return is a result of a call to
longjmp() . After the call to longjmp() is completed, the program executes as if the call to
setjmp() (which stored information into the env argument) had returned a second time.
The result of the second return from setjmp() is the return of the value of the nonzero val
argument supplied to longjmp() .

See Also

longjmp() , ANSI C 4.6.1.1, POSIX.1 8.1
Chapter 5 305

HP C/iX Library Function Descriptions
setkey
setkey
Defines the key used for encrypting blocks of text.

Syntax
void setkey (key)

char * key ;

Parameters

key A pointer to a character string that contains the encryption key.

Return Values

None.

Description

The setkey function provides primitive access to the hashing algorithm used by crypt() .
It is used in conjunction with encrypt to first prime the machine and then encrypt a block
of text.

The argument of setkey is an 8-byte character array treated as a 64-bit binary number.
The string is divided into groups of 8 bits, and the low-order bit in each group is ignored.
This gives a 56-bit key that is used to prime the NBS Data Encryption Standard
encryption algorithm. This is the key that is used with the hashing algorithm to encrypt
the string block with the encrypt function.

See Also

crypt() , encrypt()
306 Chapter 5

HP C/iX Library Function Descriptions
setlocale
setlocale
Controls locale-specific features of the library.

Syntax
#include <locale.h>
char *setlocale (int category , const char * locale);

Parameters

category Specifies that only a certain aspect is to be set to that locale and the others
are unchanged. This parameter can be set to any one of the following
macros (defined in <locale.h>):

• LC_COLLATE

• LC_CTYPE

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

• LC_ALL

locale Typically the name of a supported language. German, for example, is a
supported language.

Return Values

x A pointer to a string that defines the locale.

NULL The program's locale has not been changed. The request has failed.

Description

The setlocale function controls locale-specific features of the library.

The string returned by setlocale must not be altered and may be overwritten by
subsequent calls to setlocale() .

Following is a description of the behavior of setlocale() under four different conditions:

• When in Program Startup

— When a program is started, the locale of the program is the default, C-locale .

• When Locale is Specified

— If locale is specified, the named category is set to that locale.

setlocale (LC_ALL, "german");

• When Locale is Not Specified
Chapter 5 307

HP C/iX Library Function Descriptions
setlocale
— If locale is not specified (an empty string is used), as in the following example,

setlocale (category,"")

the locale is set according to the following scheme:

1. If an equivalent 'LC_ ' environment variable is set, the language is set to the
language specified by the variable.

2. If the environment variable LANG is set, the language is set as specified by LANG.

3. If the JCW NLUSERLANG or NLDATALANG is set:

— For LC_COLLATE and LC_TYPE, the language is set as specified by NLDATALANG.

— For LC_TIME, LC_MONETARYand LC_NUMERIC, the language is set as specified by
NLUSERLANG.

— Otherwise, locale is set to be the C-locale .

• When Locale is Null

— If the locale is a null pointer, the setlocale function returns the current locale of
the named category to the program. For example,

setlocale (LC_MONETARY,NULL);

returns to the program the locale that is set for monetary processing. This is a query
operation that does not change the locale environment of the program.

NOTE The default locale is always the C-locale .

See Also

localeconv() , ANSI C 4.4.1.1, POSIX.1 8.1.2
308 Chapter 5

HP C/iX Library Function Descriptions
setvbuf
setvbuf
Assigns a buffer and buffering method to an open stream.

Syntax
#include <stdio.h>
int setvbuf (FILE * stream , char * buffer ,

int type , size_t size);

Parameters

stream A pointer to an open stream.

buffer Either a pointer to a character array for buffered I/O, or null.

type The method of buffering.

size The size of the buffer.

Return Values

0 Success.

≠0 An error occurred.

Description

The setvbuf function enables you to assign a character array for buffering, and also
provides the means to specify the size of the buffer to be used (size) and the type of
buffering to be done (type). Acceptable values for type (defined in <stdio.h>) include:

_IOFBF Input/output is fully buffered.

_IOLBF Output is line buffered. The buffer is flushed each time a new line is
written, the buffer is full, or input is requested.

_IONBF Input/output is completely unbuffered.

If type _IONBF is specified, stream is totally unbuffered. Because no buffer is needed,
values for buffer and size are ignored.

If buffer is the null pointer and type is specified as _IOFBF or _IOLBF , setvbuf()
automatically allocates a buffer of size bytes through a call to malloc() .

If size is zero, a buffer of size BUFSIZ is used. This behavior can be used to change the
buffer size for a stream even if you still want the standard I/O system to automatically
allocate the buffer. This is particularly useful when a buffer larger than the specified
BUFSIZ is needed.

Examples

In the following examples, the following two calls, though different, are functionally
Chapter 5 309

HP C/iX Library Function Descriptions
setvbuf
identical:

setvbuf(fp, NULL, _IONBF, 0)
setbuf(fp, NULL)

When type is _IOFBF or _IOLBF, buffering for stream is determined by buffer and size.
If buffer is not the null pointer, it must point to a character array of size bytes. All
buffering of stream is then handled through this array.

…
FILE *fp;
char buffer [256]
char *filename;
int retcode;
fp=fopen(filename, "w");
retcode=setvbuf(fp, buffer, _IOFBF, 256);
if (retcode !=0) error ();

This fragment causes stream fp to be buffered through the 256-byte array buffer.
Serious run-time errors can occur if the buffer array is not the size specified in the call to
setvbuf() (here 256 bytes). As with setbuf, it is dangerous to use an automatic array for
the buffer. Note that the return value of setvbuf() can be used to verify that the request
was completed successfully.

…
FILE * fp;
char * filename;
int retcode;

…
fp = fopen(filename, "rt")
retcode=setvbuf(fp, NULL, _IOFBF, 2048);
if(retcode !=0) error();

This fragment buffers stream fp through a 2048-byte buffer that is allocated by the
system.

See Also

setbuf() , ANSI C 4.9.5.6
310 Chapter 5

HP C/iX Library Function Descriptions
signal
signal
Specifies how a signal is to be handled.

Syntax
#include <signal.h>
void (*signal (int sig , void (* func)(int)))(int);

Parameters

sig A signal number.

func A pointer to the function that performs the exception handling.

Return Values

x If successful, the most recent value of func .

SIG_ERR An error occurred; errno is set to a positive value.

Description

The signal function defines the actions to take when the specified signal is raised. The
action can be one of the following:

• Take the default action of terminating the program with some message.

• Ignore the signal.

• Invoke the user-defined signal handling function.

The signal function accepts two arguments: a signal number ("sig"), and a second
argument (of type pointer to function accepting an int) that defines an action to take when
a signal is raised.

You can define your own signal numbers in addition to using any of the predefined signal
names listed below:

SIGABRT Abnormal termination, (for example, by the abort function).

SIGFPE An erroneous arithmetic operation, (for example, divide by 0).

SIGILL An illegal instruction was executed (possibly after a jump).

SIGINT An interactive interrupt signal was received.

SIGSEGV An invalid access to storage.

SIGTERM A termination request was sent to the program.

The second parameter, func , is a pointer to a function accepting an int . The func
parameter defines the action to be taken upon receipt of the signal specified in sig .

In addition to passing the name of a user signal handler, you can use the following
predefined macro values as the func parameter. The macros expand to constant
Chapter 5 311

HP C/iX Library Function Descriptions
signal
expressions that have a type compatible with func , and whose values compare unequal
with any declarable function. These macros cause signal() to behave as follows:

SIG_DFL The default handling for that signal occurs. Usually this default action is
to terminate the program with some message.

SIG_IGN The signal is ignored when it is raised.

If the value is anything else, it is taken to be the address of a function that is called when
the corresponding signal is raised. If func points to a function when a signal is raised, the
following actions occur:

1. The equivalent of signal (sig, SIG_IGN); is performed, to prevent an infinite loop of
signal handler calls if the same signal is raised again while it is being handled.

2. The function is called as follows: (* func)(sig); . The user function may terminate
using return; , or by calling abort() , exit() , or longjmp() .

If a computational exception such as SIGFPE or SIGSEGV is raised, it is inadvisable to
return normally (because the same instruction will very likely be executed again). One
alternative is to use setjmp() at an early stage of the program, when it is in a known
state, and jump to that place using longjmp() when a signal occurs. Another alternative is
to exit the program by calling exit() or abort() .

If you choose to continue with program execution by returning normally or executing
longjmp() , remember to first re-arm the signal handler (by calling signal()), so that
subsequent occurrences of the signal may be caught.

NOTE Signals are provided for conformance with ANSI C. However, the only way to
generate a signal on MPE/iX is by an explicit call to the raise function. For
information on a more comprehensive facility for handling exceptions, see the
Trap Handling Programmer's Guide.

Example
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

jmp_buf state0; /* to hold a known state */

main()
{

void goodbye (int); /* trap handlers */
void segv_handler (int);

signal (SIGINT, SIG_IGN); /* ignore interrupts */
signal (SIGTERM, goodbye);
signal (SIGSEGV, segv_handler);

if (setjmp (state0) == 0) {
/* body */
printf ("about to raise SIGSEGV\n");
312 Chapter 5

HP C/iX Library Function Descriptions
signal
raise(SIGSEGV);
printf ("did not raise SIGSEGV\n");

} else {
printf ("longjmp'ed back\n");

}

printf ("about to raise SIGTERM\n");
if (raise (SIGTERM))

printf ("could not raise SIGTERM\n");
/* else it should not get here.. */

}

void segv_handler (int sig)
{

printf ("Raised SIGSEGV: In handler\n");
longjmp (state0, 100); /* leap back */

}

void goodbye (int sig)
{

printf ("Raised SIGTERM: In handler\n");
exit (0);

}

See Also

raise() , exit() , abort() , ANSI C 4.7.1.1
Chapter 5 313

HP C/iX Library Function Descriptions
sin
sin
Computes a sine value.

Syntax
#include <math.h>
double sin (double x);

Parameters

x A real number measured in radians.

Return Value

n The sine of x measured in radians.

0 Indicates a complete loss of significance for large values of x. A TLOSSerror
message is printed on the standard error output; errno is set to ERANGE.

Description

The sin function loses accuracy when its argument is far from zero. For arguments
causing partial loss of significance, a PLOSS error is generated but no message is printed
and errno is set to ERANGE.

Error-handling can be changed by a user-written matherr function.

See Also

cos() , tan() , ANSI C 4.5.2.6, POSIX.1 8.1
314 Chapter 5

HP C/iX Library Function Descriptions
sinh
sinh
Calculates the hyperbolic sine of an angle.

Syntax
#include <math.h>
double sinh (double x);

Parameters

x A real number.

Return Values

n The hyperbolic sine of the given angle.

±HUGE_VAL An overflow condition has occurred for large absolute values of x; errno is
set to ERANGE.

Description

Error-handling can be changed by a user-written matherr function.

See Also

cosh() , tanh() , sin() , matherr() , ANSI C 4.5.3.2, POSIX.1 8.1
Chapter 5 315

HP C/iX Library Function Descriptions
sleep
sleep
Suspends program execution for an interval.

Syntax
unsigned long sleep (unsigned long seconds);

Parameters

seconds The number of seconds to suspend program execution.

Return Values

x The difference between the requested sleep time and the actual sleep time.

Description

The current process is suspended from execution for the number of seconds specified by the
argument.

The suspension time can be longer than requested by an arbitrary amount due to the
scheduling of other activity in the system.

The seconds parameter must be less than 2,147,485.

The sleep function returns the difference of the requested sleep time and the actual sleep
time if the actual sleep time is less than the requested sleep time.

NOTE If linking with the POSIX/iX library, refer to the description of sleep()
located in the MPE/iX Developer's Kit Reference Manual.
316 Chapter 5

HP C/iX Library Function Descriptions
sprintf
sprintf
Writes formatted data to a character string in memory.

Syntax
#include <stdio.h>
int sprintf (char * string , const char * format

[,item [,item]...]);

Parameters

string A pointer to a buffer in memory where the data is to be written.

format Pointer to a character string defining the format (or the character string
itself enclosed in double quotes).

item ,… Each item is a variable or expression specifying the data to write. Refer
below to descriptions of conversion specifications and characters.

Return Values

≥0 If successful, the number of characters written, not counting the
terminating null character.

<0 An error occurred.

Description

The sprintf function enables you to write data to a buffer in formatted form. The string
parameter is a buffer in memory where the data is written. The format parameter is a
pointer to a character string (or the character string itself enclosed in double quotes) which
specifies the format and content of the data to be written. Each item is a variable or
expression specifying the data to write.

The only difference between sprintf() and printf() is that sprintf() writes data into
a character array, while printf() writes data to stdout , the standard output device.

The sprintf() format is made up of conversion specifications and literal characters.
Literal characters are all characters that are not part of a conversion specification. Literal
characters are written to string exactly as they appear in the format.

The sprintf function returns the number of characters written or a negative value (if an
error is returned).

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output
a literal percent sign, you must type two percent signs (%%).
Chapter 5 317

HP C/iX Library Function Descriptions
sprintf
2. Zero or more flags, which affect the way a value is written (see below).

3. An optional decimal digit string which specifies a minimum field width .

4. An optional precision consisting of a dot (.) followed by a decimal digit string.

5. An optional l, h, or L indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.

6. A conversion character, which indicates the type of data to be converted and written.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be written in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flags both appear, the 0 flag is ignored.
The 0 flag is also ignored for d, i , o, u, x, and X conversions if a precision is
specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being written. If the data happens to be smaller
than the field width, the data is blank- padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than the field width , the field
width is simply expanded to accommodate the data. An insufficient field
width never causes data to be truncated. If no field width is specified, the resulting field
is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.
318 Chapter 5

HP C/iX Library Function Descriptions
sprintf
Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
to be formatted and written appropriately. The integer conversion characters are:

d, i An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
leading zeros. The default precision is 1. A null string results if a zero
value is written with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded, and the octal value is written with a
leading zero (a C convention). The precision behaves the same as in d
above, except that writing a zero value with a zero precision results in
only the leading zero being written, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in writing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is written with a
leading "0x" (a C convention). The precision behaves as in d above,
except that writing a zero value with a zero precision results in only the
leading "0x" being written, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to write the
hexadecimal value, and the # flag causes the value to be written with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is written. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is written. If a
precision is specified, characters from the string are written until the
number of characters indicated by the precision is reached, or until a
null character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are written. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If no precision is specified, six digits are written after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.
Chapter 5 319

HP C/iX Library Function Descriptions
sprintf
e The float or double item is converted to scientific notation in style e;
that is, in the form

[-]d.ddde ±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision . If no precision is
given, six digits are written after the decimal point. If the precision is
explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

Other conversion characters are:

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

Example

The following program formats data. A user enters data and that data is reformatted into
a string, which is passed along to another program, such as a database maintainer. The
string contains the data that the user entered, but in a form using strict field widths for
the various pieces of data.

The database program might require these field widths to be processed correctly, and you
need not require the user to enter the data with the field widths. Users can enter data in a
convenient form without the fixed field restrictions imposed by the database.

#include <stdio.h>
main()
320 Chapter 5

HP C/iX Library Function Descriptions
sprintf
{
char name[31], prof[31], hdate[7], curve[3], string[81];
char *format = "%30s%2d%30s%6ld%6s%2d%2s";
int age, rank;
long salary;

/* start asking questions */
printf("\nName (30 chars max): ");
gets(name);
while(name[0] != ']') {

printf("Age: ");

printf("Job title (30 chars max): ");
gets(prof);
printf("Salary (6 digits max, no comma): ");

printf("Hire date (numerical MMDDYY): ");
gets(hdate);

printf("Pay curve: ");
gets(curve);

/* format string */
sprintf(string,format,name,age,prof,salary,hdate,rank,curve);
printf("\n%s\n", string);

/* start next round */
printf("\nName (30 chars max): ");
gets(name);

}
}

The program above asks questions about name, age, job title, salary, hire date, ranking,
and pay curve. This data is then packed into a 78-character string using the sprintf()
function. This program writes the string on your screen, but in an actual working
environment, the string would probably be passed directly to the database program. Note
that sprintf() function format is specified as an explicit character pointer. When lengthy,
unchanging formats are used, this is more convenient than typing the entire format string,
especially if the item list is long.

See Also

setlocale(), putc() , scanf() , ANSI C 4.9.6.5, POSIX.1 8.1
Chapter 5 321

HP C/iX Library Function Descriptions
sprintmsg
sprintmsg
Prints formatted output with numbered arguments to a character array.

Syntax
int sprintmsg (char * s, char * format [, arg] ...)

Parameters

s A pointer to a character array where the output is directed

format A pointer to the string containing the formatting information. It contains
optional placeholders and formatting specifications where arg1 thru argn
are to be substituted.

arg1 ... argn A character, character pointer, or integer value giving the parameter to
be converted, formatted, and merged with format prior to output.

Return Values

x The number of characters transmitted.

EOF Indicates failure.

Description

This function is derived from printf() . In sprintmsg() , the conversion character % is
replaced by the sequence %n$. The n character is a decimal digit in the range 1-9, and
indicates that this conversion should be applied to the nth argument, rather than to the
next unused one. All other aspects of formatting are unchanged. All conversion
specifications must contain the %n$sequence, and you should make sure the numbering is
correct. All parameters must be used exactly once. See printf() for more details on
formatting and conversion specifications.

See Also

fprintmsg() , printf() , printmsg()
322 Chapter 5

HP C/iX Library Function Descriptions
sqrt
sqrt
Computes the square root of a number.

Syntax
#include <math.h>
double sqrt (double x);

Parameters

x A real number.

Return Values

n The square root of the real number.

0 The x parameter is negative; errno is set to EDOM.

Description

Error handling can be changed by a user-written matherr function.

See Also

pow() , matherr() , ANSI C 4.5.5.2, POSIX.1 8.1
Chapter 5 323

HP C/iX Library Function Descriptions
srand
srand
Sets a starting point for subsequent calls to rand() .

Syntax
#include <stdlib.h>
void srand (unsigned int seed);

Parameters

seed A value that sets the starting point for subsequent calls to the rand
function.

Return Values

None.

Description

The srand function causes subsequent calls to rand() to return a new random sequence
based on the value passed in seed . The sequence of pseudo-random numbers that rand()
produces is always the same for any given seed . Thus, given seed n , the random sequence
is always the same.

If srand() is not used to initialize the random number generator to a particular starting
point, rand() returns the same sequence of numbers as when srand() is first called with a
seed value of one.

See Also

rand() , ANSI C 4.10.2.2, POSIX.1 8.1
324 Chapter 5

HP C/iX Library Function Descriptions
sscanf
sscanf
Reads formatted data from a character string in memory.

Syntax
#include <stdio.h>
int sscanf (const char * string , const char * format

[,item [,item]...]);

Parameters

string A pointer to a buffer in memory containing the formatted data to be read.

format A pointer to a character string defining the format of the data to be read
(or the character string itself enclosed in double quotes).

item The address of a variable into which the data will be placed. Refer below
for descriptions of conversion specifications.

Return Values

≥0 The number of successfully matched and assigned input items.

EOF An error occurred on input (no input characters, or a matching error
occurred before any conversion).

Description

The sscanf function reads externally formatted data from a buffer in memory, converts
the data to internal format, and stores the results in a group of arguments. The format
consists of white-space characters, conversion specifications, and literal characters.

The sscanf function returns the number of successfully matched and assigned input items
or returns EOF if there are no input characters available or if a matching error occurred
before any conversion was made.

This function behaves identically to the scanf() function except that sscanf() reads data
from a character string instead of from stdin.

White-Space Characters

White-space characters (blanks, tabs, newlines, or form feeds) cause input to be read up to
the next non-white-space character.

Conversion Specifications

A conversion specification is a character sequence that tells sscanf() how to interpret the
data received at that point in the input.

In the format, a conversion specification is introduced by a percent sign (%),
Chapter 5 325

HP C/iX Library Function Descriptions
sscanf
optionally followed by an asterisk (*) (called the assignment suppression character),
optionally followed by an integer value (called the field width). The conversion
specification is terminated by a character specifying the type of data to expect; the
terminating characters are called conversion
characters . The integer and floating-point conversion characters may be optionally
preceded by a character indicating the size of the receiving variable.

When a conversion specification is encountered in a format, it is matched up with the
corresponding item in the item list. The data formatted by that specification is then stored
in the location pointed to by that item. For example, if there are four conversion
specifications in a format, the first specification is matched up with the first item, the
second specification with the second item, and so on.

The number of conversion specifications in the format is directly related to the number of
items specified in the item list. With one exception, there must be at least as many items
as there are conversion specifications in the format. If there are too few items in the item
list, an error occurs; if there are too many items, the excess items are ignored. The one
exception occurs when the assignment suppression character (*) is used. If an asterisk
occurs immediately after the percent sign (before the field width , if any), the data
formatted by that conversion specification is discarded. No corresponding item is expected
in the item list; this is useful for skipping over unwanted data in the input.

Conversion Characters

There are 14 conversion characters: five format integer data, three format character data,
three format floating-point data, and three special characters.

The integer conversion characters are:

d A decimal integer is expected.

i A signed integer is expected.

o An octal integer is expected.

u An unsigned decimal integer is expected.

x A hexadecimal integer is expected.

The character conversion characters are:

c A single character is expected, normal skip over leading white space is
suppressed.

s A character string is expected.

[A character string is expected, normal skip over leading white space is
suppressed.

The floating-point conversion characters are:

e, f, g A floating-point number is expected. (The capitalized forms of these
characters are also accepted.)

The special characters are:

p Matches an implementation-defined set of sequences.
326 Chapter 5

HP C/iX Library Function Descriptions
sscanf
n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of characters read from the input
stream so far by this call to fscanf() .

% Matches a single %. No conversion or assignment occurs. The complete
conversion specification is &%&%

Integer Conversion Characters

The d, o, and x conversion characters read characters from string until an inappropriate
character is encountered, or until the number of characters specified by the field width ,
if given, is exhausted (whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 through 9. For o, an
inappropriate character is any character except +, -, and 0 through 7. For x, an
inappropriate character is any character except +, -, 0 through 9, and the characters a
through f and A through F. Note that negative octal and hexadecimal values are stored in
their twos complement form with sign extension. Thus, they might look unfamiliar if you
print them out later using printf() .

These integer conversion characters can be preceded by a l to indicate that a long int
should be expected rather than an int. They can also be preceded by h to indicate a short
int. The corresponding items in the item list for these conversion characters must be
pointers to integer variables of the appropriate length.

Character Conversion Characters

The c conversion character reads the next character from string no matter what that
character is. The corresponding item in the item list must be a pointer to a character
variable. If a field width is specified, the number of characters indicated by the field
width are read. In this case, the corresponding item must refer to a character array large
enough to hold the characters read.

Note that strings read using the c conversion character are not automatically terminated
with a null character in the array. Because all C library functions that use strings assume
the existence of a null terminator, be sure to add the '\0 ' character yourself. If you do not,
library functions are not able to tell where the string ends, and you will get unexpected
results.

The s conversion character reads a character string from string , which is delimited by
one or more space characters (blanks, tabs, or newlines). If field width is not given, the
input string consists of all characters from the first nonspace character up to (but not
including) the first space character. Any initial space characters are skipped over. If a
field width is given, characters are read, beginning with the first nonspace character, up
to the first space character, or until the number of characters specified by the field width
is reached (whichever comes first). The corresponding item in the item list must refer to a
character array large enough to hold the characters read, plus a terminating null
character, which is added automatically.

The s conversion character cannot be made to read a space character as part of a string.
Space characters are always skipped over at the beginning of a string, and they terminate
reading whenever they occur in the string. For example, suppose you want to read the first
Chapter 5 327

HP C/iX Library Function Descriptions
sscanf
character from the following input line:

" Hello, there!"

(Ten spaces followed by "Hello, there!"; the double quotes are added for clarity). If you use
%c, you get a space character. However, if you use %1s, you get "H" (the first nonspace
character in the input).

The [conversion character also reads a character string from string . However, you
should use this character when a string is not to be delimited by space characters. The left
bracket is followed by a list of characters, and is terminated by a right bracket. If the first
character after the left bracket is a circumflex (^), characters are read from string until
a character is read that matches one of the characters between the brackets. If the first
character is not a circumflex, characters are read from string until a character not
occurring between the brackets is found. The corresponding item in the item list must
refer to a character array large enough to hold the characters read, plus a terminating null
character, which is added automatically. In some implementations, a minus sign (-) may
specify a range of characters.

The three string conversion characters provide you with a complete set of string-reading
capabilities. The c conversion character can be used to read any single character, or to read
a character string when the exact number of characters in the string is known beforehand.
The s conversion character enables you to read any character string that is delimited by
space characters and is of unknown length. Finally, the [conversion character enables you
to read character strings that are delimited by characters other than space characters, and
which are of unknown length.

Floating-Point Conversion Characters

The e, f, and g (or E, F, and G , respectively) conversion characters read characters
from string until an inappropriate character is encountered, or until the number of
characters specified by the field width , if given, is exhausted (whichever comes first).

The e, f, and g characters expect data in the following form: an optionally signed string
of digits (possibly containing a decimal point), followed by an optional exponent field
consisting of an E or e followed by an optionally signed integer. Thus, an inappropriate
character is any character except +, -, ., 0 through 9, E, or e.

These floating-point conversion characters may be preceded by a lowercase L (l), to
indicate that a double value is expected rather than a float , or by an uppercase L (in
ANSI C) to indicate that a long double value is expected rather than a float . The
corresponding items in the item list for these conversion characters must be pointers to
floating-point variables of the appropriate length.

Literal Characters

Any characters included in the format that are not part of a conversion specification are
literal characters. A literal character is expected to occur in the input at exactly that point.
Note that since the percent sign is used to introduce a conversion specification, you must
type two percent signs (%%) to get a literal percent sign.
328 Chapter 5

HP C/iX Library Function Descriptions
sscanf
Examples

The following program reads a string from stdin, stores the string in the character array
string , and prints the first word of the string.

#include <stdio.h>
main()
{

char string[80], word[25], *gets();

/* get the string */

printf("Enter your string: ");
gets(string);

/* get the first word */

sscanf(string, "%s", word);
printf("The first word is %s.\n", word);

}

The sscanf() function is often used to convert ASCII characters into other forms, such as
integer or floating-point values. For example, the following program uses sscanf() to
implement a five-function calculator:

#include <stdio.h>
main()
{

char line[80], *gets(), op[4];
long n1, n2;
double arg1, arg2;

/* print prompt (>) and get input */

printf("\n> ");
gets(line);

/* begin loop */

while(line[0] != 'q') {
sscanf(line, "%*s%s", op);
if(op[0] == '+') {

printf("Answer: %g\n\n", arg1+arg2);
} else if(op[0] == '-') {

printf("Answer: %g\n\n", arg1-arg2);
} else if(op[0] == '*') {

printf("Answer: %g\n\n", arg1*arg2);
} else if(op[0] == '/') {

printf("Answer: %g\n\n", arg1/arg2);
} else if(op[0] == '%') {
Chapter 5 329

HP C/iX Library Function Descriptions
sscanf
while(n1 >= n2)
n1 -= n2;

printf("Answer: %ld\n\n", n1);
} else

printf("Can't recognize operator: %s\n\n", op);
printf("> ");
gets(line);

}
}

The calculator program above accepts input lines having the form

value operator value

where value is any number, and operator is the symbol +,
-, *, /, or %, representing addition, subtraction, multiplication, division, or remainder,
respectively. All functions, except for the remainder function, are performed in
floating-point values; values for these functions can be entered with or without a decimal
point. Values for the remainder function must not have a decimal point. There must be at
least one space between each value and the operator.

Note that in this program, the entire input line is read using gets() . Then, the different
parts of the input line are read from line using sscanf() . The input line is stored as an
ASCII string in line , but portions are converted to floating-point or integer values,
depending on the operator.

Examples of valid entries are

15.778 * 3.89
27 % 8
17 + 39.72

The program terminates when it reads a line beginning with the letter "q", such as "quit".

There are two differences between reading data from stdin and reading data from a
string. First, reading data from stdin causes that data to no longer remain in stdin. This
is not true for a string. Because the data is stored in a string, the data remains in memory,
even if that data has been read several times. Second, because the data read from stdin
disappears as you read it, the next read operation from stdin always begins when the
previous read operation is terminated. This is not true when you read from a string using
sscanf() .

Each successive read operation starts at the beginning of the string. Thus, if you want to
read five words from a string stored in a character array, you must read the words in a
single sscanf() call. If you try to read one word in five separate sscanf() calls, each call
starts reading at the beginning of the string and so you read the same word five times.

See Also

getc() , setlocale() , printf() , strtod() , strtol() , ANSI C 4.9.6.6, POSIX.1 8.1
330 Chapter 5

HP C/iX Library Function Descriptions
strcat
strcat
Appends one string to another.

Syntax
#include <string.h>
char *strcat(char * s1 , const char * s2);

Parameters

s1 and s2 Character pointers to null-terminated character strings.

Return Values

x The value of s1 .

Description

The strcat function appends the entire string pointed to by s2 including the terminating
null character onto the end of string s1 . The first character of s2 overwrites the
terminating null character of s1 .

Example

Refer to the example in the strcpy() description.

See Also

strcpy() , strncat() , strncpy() , ANSI C 4.11.3.2, POSIX.1 8.1
Chapter 5 331

HP C/iX Library Function Descriptions
strchr
strchr
Locates the first occurrence of a specified character within a string.

Syntax
#include <string.h.>
char *strchr(const char * s, int c);

Parameters

s A pointer to a null-terminated character string.

c The value to find in the target string.

Return Values

x A character pointer to the first occurrence of c in string s.

NULL The character is not found.

Description

The strchr function searches the null-terminated string s for the first occurrence of c
converted to type char .) The terminating null character is part of the string.

Example

The following example replaces all occurrences of @ in the array string with #:

char *ptr, *strchr(), string[100];
…

while((ptr = strchr(string, '@') != NULL)
*ptr = '#';

See Also

strrchr() , strpbrk() , ANSI C 4.11.5.2, POSIX.1 8.1
332 Chapter 5

HP C/iX Library Function Descriptions
strcmp
strcmp
Compares two strings and returns an integer indicating the result of the comparison.

Syntax
#include <string.h>
int strcmp(const char * s1 , const char * s2);

Parameters

s1 , s2 Pointers to character strings.

Return Values

< 0 The s1 parameter is less than s2

= 0 The s1 and s2 parameters are equal.

> 0 The s1 parameter is greater than s2 .

Description

In the strcmp function, s1 and s2 are character pointers to the null-terminated character
strings to be compared. This function compares the entire strings, stopping as soon as the
result is determined or when a null character is encountered.

See Also

strncmp() , strcoll() , memcmp(), ANSI C 4.11.4.2, POSIX.1 8.1
Chapter 5 333

HP C/iX Library Function Descriptions
strcoll
strcoll
Compares two strings, interpreting them as appropriate for the current locale. This
function is generally used in conjunction with Native Language Support (NLS).

Syntax
#include <string.h>
int strcoll(const char * s1 , const char * s2);

Parameters

s1 A pointer to the first string.

s2 A pointer to the second string.

Return Values

> 0 The s1 parameter is greater than s2 .

= 0 The s1 parameter is equal to s2 .

< 0 The s1 parameter is less than s2 .

Description

The strcoll function returns an integer greater than, equal to, or less than zero,
indicating that the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 . Both strings are interpreted as appropriate to the LC_COLLATEcategory of
the current locale.

See Also

strcmp() , strncmp() , memcmp(), ANSI C 4.11.4.3
334 Chapter 5

HP C/iX Library Function Descriptions
strcpy
strcpy
Copies the contents of s2 into s1 .

Syntax
#include <string.h>
char *strcpy(char * s1 , const char * s2);

Parameters

s1 A pointer to the target string.

s2 A pointer to the source string.

Return Values

x The value of s1 .

Description

In the strcpy function, s2 is a character pointer to the string to be copied, and s1 is a
character pointer to the beginning of the string into which the contents of string s2 are
copied. The strcpy function copies the entire string, up to and including the first null
encountered. Use strlen() and memmove() rather than strcpy() if the string at s2
overlaps s1 ; otherwise, the behavior is undefined.

Examples

The following program uses the strcpy function and the strcat function to build a
character string representing the lowercase alphabet, one character at a time:

#include <stdio.h>
main()
{

int b = 'b', z = 'z', i;
char alpha[30], chr[4];

chr[1] = NULL;
strcpy(alpha, "a");
printf("%s\n", alpha);

for(i = b; i <= z; i) {
chr[0] = i;
strcat(alpha, chr);
printf("%s\n", alpha);

}
}

The array chr is always going to be a two-character array consisting of the next character
in the alphabet followed by a null character. Thus, the second element of chr is set to a null
Chapter 5 335

HP C/iX Library Function Descriptions
strcpy
character early in the program. The first chr element is then successively set to the next
lowercase character in the for loop, and the resulting two-character string is concatenated
onto the end of the alphabet assembled so far in alpha. Note the use of strcpy() to
initialize alpha. Remember that C transforms one or more characters enclosed in double
quotation marks into a character pointer to those characters followed by a null character.
Thus, the strcpy() statement above copies the character 'a' followed by a null character
into alpha.

There are some things to be aware of when using strcpy(), strncpy(), strcat(), and
strncat(). These functions all modify string s1 in some way, but none of them check for
overflow in that string. Therefore, be sure there is enough room in s1 to hold the added or
copied characters plus a terminating null character. Also, be sure you use a character
array for s1 (not just a character pointer), especially when using strcat or strncat. This
is because an explicitly declared array can have sufficient memory allocated to it to contain
all of its elements, but a character pointer simply points to a single location in memory.
Concatenating a string to the end of a string contained in an array is guaranteed to work if
the array is large enough. However, concatenating a string to a string of characters
referenced by a simple character pointer is dangerous, because the concatenated
characters could overwrite data in memory. For example,

char array[100], *ptr = "abcdef";
…

strcat(array, ptr);

works fine, because you are guaranteed that 100 storage elements have been set aside for
the array. However,

char *ptr1 = "abcdef", *ptr2 = "ghijkl";
…

strcat(ptr1, ptr2);

will not work. Although C makes sure there is enough room for the initializing strings
("abcdef" and "ghijkl" in this example), there are no guarantees that there is enough room
to add characters to the end of one of these strings. Therefore, the last fragment could
easily overwrite valid data occurring after the string pointed to by ptr1.

Because string s2 is not modified, you can use arrays or character pointers for this item
with no ill effects.

See Also

memmove(), strlen() , strcat() , strncat() , strncpy() , ANSI C 4.11.2.3, POSIX.1 8.1
336 Chapter 5

HP C/iX Library Function Descriptions
strcspn
strcspn
Returns the length of the first substring in s1 composed entirely of non-members of the
character set s2 .

Syntax
#include <string.h>
size_t strcspn(const char * s1 , const char * s2);

Parameters

s1 A pointer to a character string to search.

s2 A pointer to a character string defining the character set.

Return Values

x The length of the initial segment in s1 formed by characters not in s2 .

Description

The strcspn function sequentially processes each character in the array referenced by s1 .
For each character in the array, it scans s2 looking for a match. If a match is not found, a
counter is incremented and the function continues. If a match is found, the scanning stops.

Example

Given the following two strings:

'A tattletale never wins.'

for string s1 , and

' -Aatle'

for s2. Executing

strcspn(s1, s2);

returns 0, because there is no initial segment of s1 that contains characters not found in
s2 .

See Also

strspn() , ANSI C 4.11.5.3, POSIX.1 8.1
Chapter 5 337

HP C/iX Library Function Descriptions
strerror
strerror
Maps an error number to a message string.

Syntax
#include <string.h>
char *strerror(int errnum);

Parameters

errnum An error number.

Return Values

x A pointer to the error message.

NULL A null pointer is returned if there is no matching error message.

Description

The strerror function returns a pointer to an error message that corresponds with the
specified error number. Do not modify the value of the error message referenced by the
returned pointer.

See Also

ANSI C 4.11.6.2
338 Chapter 5

HP C/iX Library Function Descriptions
strftime
strftime
Creates a formatted time string.

Syntax
#include <time.h>
size_t strftime(char * s, size_t maxsize ,

const char * format ,
const struct tm * timeptr);

Parameters

s A pointer to a character array to which the function returns a formatted
character string.

maxsize The size of the character array.

format A pointer to an array containing conversion specifications and ordinary
multibyte characters to be inserted the string.

timeptr A pointer to a tm variable in broken-down time format.

Return Values

x A value of type size_t indicating the number of characters placed into the
array pointed to by s.

0 The resulting formatted character string is greater than maxsize , and s is
indeterminate.

Description

This function places characters into the array pointed to by s, which is controlled by the
string pointed to by format . This string consists of zero or more conversion specifications
and ordinary multibyte characters. A conversion specification consists of a % followed by a
character that determines the conversion specification's behavior.

All ordinary multibyte characters (including the terminating null character) are copied
unchanged into the array. If copying occurs between objects that overlap, the behavior is
undefined. No more than maxsize characters are placed into the array.

Each conversion specification is replaced by appropriate characters, as described below.
These characters are determined by the program's locale as determined by lc_time and by
the values contained in the structure pointed to by timeptr .

• %a is replaced by the locale's abbreviated weekday name.

• %A is replaced by the locale's full weekday name.

• %b is replaced by the locale's abbreviated month name.

• %B is replaced by the locale's full month name.
Chapter 5 339

HP C/iX Library Function Descriptions
strftime
• %c is replaced by the locale's appropriate date and time representation.

• %d is replaced by the day of the month as a decimal number (01-31).

• %e is replaced by the day of the month as a decimal number (1-31 in a two-digit
right-justified field with leading space> fill).

• %H is replaced by the hour (24-hour clock) as a decimal number (00-23).

• %I is replaced by the hour (12-hour clock) as a decimal number (01-12).

• %j is replaced by the day of the year as a decimal number (001-366).

• %m is replaced by the month as a decimal number (01-12).

• %M is replaced by the minute as a decimal number (00-59).

• %p is replaced by the locale's equivalent of either AM or PM.

• %S is replaced by the second as a decimal number (00-61).

• %Uis replaced by the week number of the year (Sunday as the first day of the week) as a
decimal number (00-53).

• %w is replaced by the weekday as a decimal number [0 (Sunday)-6].

• %W is replaced by the week number of the year (Monday as the first day of week 1) as
decimal number (00-53).

• %x is replaced by the locale's appropriate date representation.

• %X is replaced by the locale's appropriate time representation.

• %y is replaced by the year without century as a decimal number (00-99).

• %Y is replaced by the year with century as a decimal number.

• %Zis replaced by the time zone name, or by no character if no time zone is determinable.

• % is replaced by %.

The behavior is undefined for any conversion specification not described above.

If the total number of resulting characters (including the terminating null character) is not
more than maxsize , strftime returns the number of characters placed into the array
pointed to by s (not including the terminating null character). Otherwise, zero is returned
and the array contents are indeterminate.

See Also

ANSI C 4.12.3.5, POSIX.1 8.1
340 Chapter 5

HP C/iX Library Function Descriptions
strlen
strlen
Computes the length of the string pointed to by s.

Syntax
#include <string.h>
size_t strlen(const char * s);

Parameters

s A pointer to the character string.

Return Values

x The length of the string specified as an unsigned integer.

Description

In the strlen function, s is a character pointer to the null-terminated string to be
scanned. strlen() counts up to, but not including, the terminating null character. The
length of a string containing only a null character is zero.

NOTE Since the value returned by strlen() is an unsigned number, care must be
taken when performing subtraction operations on the value returned by the
function. The following code fragment is incorrect:

…
for (i=0;i<=strlen(string)-1;i++

…

The string length of a null string minus one (strlen(string)-1) is a very
large positive number, not minus one (-1) as was intended. Thus, the code
above does not bypass the for loop, but erroneously executes the loop a large
number of times.

Example
len = strlen(string);

The integer len contains the total number of non-null characters in the string pointed to
by string. Thus,

string[len]

is the terminating null in string.

See Also

ANSI C 4.11.6.3, POSIX.1 8.1
Chapter 5 341

HP C/iX Library Function Descriptions
strncat
strncat

Appends a copy of string 2 to string 1.

Syntax
#include <string.h>
char *strncat(char * s1 , const char * s2 , size_t n);

Parameters

s1 A pointer to a destination.

s2 A pointer to a null-terminated source character string.

n The maximum number of characters to concatenate from s2 to s1 , unless
strncat() first encounters a null terminator in s2 .

Return Values

x The address of s1 .

Description

In the strncat function, s1 and s2 are character pointers to null-terminated character
strings.

The strncat function is similar to strcat() , except that at most n characters are
appended to s1 (or up to a null character, whichever comes first). Note that string s2 need
not be null-terminated when using strncat() if n is less than or equal to the length of s2.
This function returns a character pointer to the null-terminated result. The first character
of s2 overwrites the null terminator of s1 . A terminating null is appended to the result.

This function does not check if there is room in s1 for the additional characters of s2.
Thus, to be safe, s1 should always be a declared array having plenty of space for the
additional characters of s2, plus a terminating null character.

See Also

strcat() , strcpy() , strncpy() , ANSI C 4.11.3.2, POSIX.1 8.1
342 Chapter 5

HP C/iX Library Function Descriptions
strncmp
strncmp
Compares two strings up to a maximum of n characters and returns an integer result of
the comparison.

Syntax
#include <string.h>
int strncmp(const char * s1 , const char * s2 , size_t n);

Parameters

s1 , s2 Pointers to character strings.

n Specifies the maximum number of characters to compare in both s1 and
s2 .

Return Values

<0 s1 is less than s2 .

=0 s1 and s2 are equal.

>0 s1 is greater than s2 .

Description

In the strncmp function, s1 and s2 are character pointers to the null-terminated character
strings to be compared. strncmp() compares at most n characters of both strings. Neither
string need be null-terminated if n is less than or equal to the length of the shorter string.

Example

The following program fragment uses strncmp() to analyze the contents of a file coded
with macros. In this example, a period (.) at the beginning of a line indicates a macro. The
program reads each line of the file and keeps a count of the number of times selected
macros are used, and prints a summary of its findings at the end.

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

char *fgets(), line[100];
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip, nmisc, nlines;

nsh = npp = ntp = nrs = nre = npd = nip = nmisc = nlines = 0;

if(argc != 2) {
fprintf(stderr, "Usage: count file\n");
Chapter 5 343

HP C/iX Library Function Descriptions
strncmp
exit(2);
}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Can't open %s.\n", argv[1]);
exit(1);

}

while(fgets(line, 100, fp) != NULL) {
if(strncmp(line, ".SH", 3) == 0)

else if(strncmp(line, ".PP", 3) == 0)

else if(strncmp(line, ".TP", 3) == 0)

else if(strncmp(line, ".RS", 3) == 0)

else if(strncmp(line, ".RE", 3) == 0)

else if(strncmp(line, ".PD", 3) == 0)

else if(strncmp(line, ".IP", 3) == 0)

else if(line[0] == '.')

}

printf("No. of .SH's: %d\n", nsh);
printf("No. of .PP's: %d\n", npp);
printf("No. of .TP's: %d\n", ntp);
printf("No. of .RS's: %d\n", nrs);
printf("No. of .RE's: %d\n", nre);
printf("No. of .PD's: %d\n", npd);
printf("No. of .IP's: %d\n", nip);
printf("No. of misc. macros: %d\n", nmisc);

fclose(fp);
exit(0);

}

In the program above, strncmp() compares the first three characters of each line read. If
the first three characters match a particular macro, the appropriate counter is
incremented. If the line begins with ". ", but is not one of the macros being searched for, the
"miscellaneous" counter is incremented. The total number of lines in the file is also given.

See Also

strcmp() , strcoll() , memcmp(), ANSI C 4.11.4.4, POSIX.1 8.1
344 Chapter 5

HP C/iX Library Function Descriptions
strncpy
strncpy
Copies all or part of s2 into s1 .

Syntax
#include <string.h>
char *strncpy(char * s1 , const char * s2 , size_t n);

Parameters

s1 A pointer to a destination.

s2 A pointer to a null-terminated source character string.

n The maximum number of characters to copy from s2 to s1 .

Return Values

x The address of s1 .

Description

In the strncpy function, s2 is a character pointer to the string to be copied, and s1 is a
character pointer to the beginning of the string into which the contents of string s2 are
copied. The strncpy function copies up to n characters, or up to and including the first
encountered null character, whichever occurs first. If strncpy() encounters a null before
copying n characters, it pads the string s1 with nulls up to n characters. String s2 does not
have to be null-terminated when using strncpy() if n is less than or equal to the length of
s2 . If there is no null character in the first n characters of s2 , the result is not
null-terminated. If the strings overlap, behavior is undefined.

See Also

memcpy() , memmove(), strcat() , strcpy() , strlen() , strncat() , ANSI C 4.11.2.4,
POSIX.1 8.1
Chapter 5 345

HP C/iX Library Function Descriptions
strpbrk
strpbrk
Returns a pointer to the location in s1 of the first occurrence of any member of the
character set s2 .

Syntax
#include <string.h.>
char *strpbrk(const char * s1 , const char * s2);

Parameters

s1 A pointer to a null-terminated character string to be searched.

s2 A pointer to a null-terminated character string containing a character set.

Return Values

x A character pointer to the first occurrence of a character from s2 in string
s1 .

NULL A character from the character set s2 is not found.

Description

The strpbrk function scans null-terminated string s1 , stopping when it finds a character
from the supplied character set s2 .

Example

This example uses strpbrk() to parse embedded numerical data from user-supplied input
data. For simplicity, assume that the following conventions are used:

• Positive numbers do not begin with +;

• Fractional numbers always begin with zero, as in 0.25 ;

• The first occurrence of a digit in the string signals the beginning of the number to be
read.

The following code fragment does the job:

char line[100], *chrs = "-0123456789", *ptr;
float value;

⋮
ptr = strpbrk(line, chrs);

⋮

The character pointer chrs is initialized to point to a string of characters that might
introduce the embedded number. The strpbrk function then finds the first occurrence of
one of these characters in line and returns a pointer to that location in ptr. Finally, ptr is
346 Chapter 5

HP C/iX Library Function Descriptions
strpbrk
passed to sscanf(), which interprets ptr as if it were a pointer to the beginning of a
string from which input is to be taken. The number is read correctly because ptr points to
the beginning of a number, and because the f conversion terminates at the first
inappropriate character.

See Also

strchr() , strrchr() , ANSI C 4.11.5.4, POSIX.1 8.1
Chapter 5 347

HP C/iX Library Function Descriptions
strrchr
strrchr
Locates the last occurrence of a supplied character within a string.

Syntax
#include <string.h.>
char *strrchr(const char * s, int c);

Parameters

s A pointer to a null-terminated character string.

c The value to find in the target string.

Return Values

x A character pointer to the last occurrence of c in string s. This function
returns a null pointer if the character is not found.

Description

The strrchr function searches the null-terminated string s for the last occurrence of c
(converted to type char). The terminating null character is part of the string.

Example
while((ptr = strrchr(string, '@')) != NULL)

*ptr = '#';

Replace all @'s with #'s, starting from the end of the array, working backward toward the
beginning.

See Also

strchr() , strbrk() , ANSI C 4.11.5.5, POSIX.1 8.1
348 Chapter 5

HP C/iX Library Function Descriptions
strspn
strspn
Returns the length of the first substring in s1 composed entirely of members of the
character set s2 .

Syntax
#include <string.h>
size_t strspn(const char * s1 , const char * s2);

Parameters

s1 A pointer to a null-terminated character string to be searched.

s2 A pointer to a null-terminated character string containing a character set.

Return Values

x The length of the initial segment in s1 formed by characters found in the
s2 character set.

Description

The strspn function sequentially processes each character in the array referenced by s1 .
For each character in the array, it scans s2 looking for a match. If a match is found, a
counter is incremented and the process continues. If a match is not found, this function
ends, returning the value of the counter.

Example

Given the following two strings:

'A tattletale never wins.'

for string s1, and

' -Aatle'

for s2. Executing

strspn(s1, s2);

with the strings shown returns a value of 13, because the first 13 characters in s1 all occur
in s2 "A tattletale ".

See Also

strcspn() , ANSI C 4.11.5.6, POSIX.1 8.1
Chapter 5 349

HP C/iX Library Function Descriptions
strstr
strstr
Locates the first occurrence in one string of the sequence of characters specified by another
string.

Syntax
#include <string.h>
char *strstr(const char * s1 , const char * s2);

Parameters

s1 A pointer to the character string to search.

s2 A pointer to the character string with the search value.

Return Values

x A pointer to the string found in s1 . If s2 is null, the value of s1 is returned.

NULL The s2 was not found in s1 .

Description

The strstr function scans s1 searching for the first occurrence of the sequence of
characters in s2 (excluding the null character). If s2 is found in s1 , a pointer to the start of
that string in s1 is returned.

See Also

strchr() , strrchr() , ANSI C 4.11.5.7, POSIX.1 8.1
350 Chapter 5

HP C/iX Library Function Descriptions
strtod
strtod
Converts a string to a double-precision, floating-point number.

Syntax
#include <stdlib.h>
double strtod (const char * str , char ** ptr);

Parameters

str A pointer to a character string to be converted.

ptr If ptr is not NULL, a pointer to the character terminating the scan is stored
in the object pointed to by ptr .

Return Values

x A double-precision floating-point number resulting from the successful
conversion of the string.

0 Indicates failure unless the value pointed to by str is zero.

• If *ptr is set to str , no number can be formed.

• If *ptr is greater than str , the value pointed to by *str is zero.

• If errno is set to ERANGE, the correct value of the conversion would
cause an underflow.

±HUGE_VAL The conversion would cause an overflow; errno is set to ERANGE.

Description

The strtod() function returns as a double-precision, floating-point number the value
represented by the character string pointed to by str. The string is scanned up to the first
unrecognizable character.

The string must contain a decimal constant or a floating-point constant that may
optionally be preceded by white space. The complete string may contain the following in
the order listed:

1. Optional white-space characters (as defined by isspace()).

2. Optional sign.

3. Required string of digits, optionally containing a decimal point.

4. Optional e or E.

5. Optional sign or space.

6. Integer.
Chapter 5 351

HP C/iX Library Function Descriptions
strtod
See Also

strtol() , strtoul() , atof() , ANSI C 4.10.1.4
352 Chapter 5

HP C/iX Library Function Descriptions
strtok
strtok
Divides string s1 into zero or more tokens. The token separators consist of any characters
contained in string s2.

Syntax
#include <string.h>
char *strtok(char * s1 , const char * s2);

Parameters

s1 A pointer to a string with zero or more tokens.

s2 A pointer to a character string with token delimiters.

Return Values

x A pointer to the first character of a token.

NULL No token found.

Description

A token is a string of characters delimited by one or more token delimiters. In the strtok
function, s1 is a character pointer to the string that is to be broken up into tokens, and s2
is a character pointer to a string consisting of characters to be treated as token separators.

The strtok function returns the next token from s1 each time it is called. The first time
strtok is called, both s1 and s2 must be specified. On subsequent calls, s1 is not specified
(a null pointer is specified in its place). The strtok function remembers the string from
call to call. String s2 must be specified for each call, but need not contain the same
characters (token separators).

The strtok function returns a pointer to the beginning of the token, and writes a null
character into s1 immediately following the end of the returned token, overwriting the
token delimiter. This function returns a null pointer when no tokens remain.

Example

This example assumes that you are reading lines from a file containing several fields
delimited by pound signs (#). The following code could be used to read the fields of each
line:

int count = 0;
char *delims = "#", *token, *arg1, *strtok(), line[256];
arg1 = line;

…
while((token = strtok(arg1, delims)) != NULL) {

count
printf("field %d: %s\n", count, token);
Chapter 5 353

HP C/iX Library Function Descriptions
strtok
arg1 = NULL;
}

This code sees to it that strtok() 's first argument is null after the first call. Also, note
that delims did not change from call to call, but it could have. This greatly increases the
power of strtok, because it enables you to change the token delimiters between calls.

See Also

ANSI C 4.11.5.8, POSIX.1 8.1
354 Chapter 5

HP C/iX Library Function Descriptions
strtol
strtol
Converts a string to a long integer value.

Syntax
#include <stdlib.h>
long strtol (const char * str , char ** ptr , int base);

Parameters

str A pointer to a character string to be converted. If base is set to zero,
leading characters in str define the conversion. After an optional leading
sign, a leading zero indicates octal conversion, and a leading "0x" or "0X"
indicates hexadecimal conversion. Otherwise, decimal conversion is used.

ptr If ptr is not NULL, a pointer to the character terminating the scan is stored
in the object pointed to by ptr .

base If base is between 2 and 36, it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and "0x" or "0X" is
ignored if base is 16. If base is set to zero, the string itself determines the
base .

Return Values

x If successful, a long integer value.

0 Indicates failure unless the value pointed to by str is zero.

• If *ptr is set to str , no number can be formed.

• If *ptr is greater than str , the value pointed to by *str is zero.

LONG_MAX The conversion would cause an overflow; errno is set to ERANGE.

LONG_MIN The conversion would cause an underflow; errno is set to ERANGE.

Description

The strtol function returns as a long integer the value represented by the character
string pointed to by str . The string is scanned up to the first character inconsistent with
base . Leading white-space characters (as defined by the isspace function) are ignored.

See Also

strtod() , strtoul() , atof() , ANSI C 4.10.1.5
Chapter 5 355

HP C/iX Library Function Descriptions
strtoul
strtoul
Converts a string to an unsigned long int representation.

Syntax
#include <stdlib.h>
unsigned long int strtoul (const char *str ,

char **ptr , int base);

Parameters

str A pointer to a character string to be converted. If base is set to zero,
leading characters in str define the conversion. After an optional leading
sign, a leading zero indicates octal conversion, and a leading "0x" or "0X"
indicates hexadecimal conversion. Otherwise, decimal conversion is used.

ptr If ptr is not NULL, a pointer to the character terminating the scan is stored
in the object pointed to by ptr .

base If base is between 2 and 36, it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and "0x" or "0X" is
ignored if base is 16. If base is set to zero, the string itself determines the
base .

Return Values

≠0 A string value converted to a long integer.

0 When *ptr is set to str and a value of zero is returned, it indicates that no
number can be formed.

ULONG_MAX The conversion would cause an overflow; errno is set to ERANGE.

Description

The strtoul function returns as an unsigned long int the value represented by the
character string pointed to by str .

See Also

strtod() , strtol() , atof() , ANSI C 4.10.1.6
356 Chapter 5

HP C/iX Library Function Descriptions
strxfrm
strxfrm
Transforms a string in a manner appropriate for the current locale.

Syntax
#include <string.h>
size_t strxfrm(char * s1 , const char * s2 ,

size_t n);

Parameters

s1 A string pointer to the destination string.

s2 A string pointer to a null-terminated source string.

n The maximum number of characters to transform, including the
terminating null character.

Return Values

x The length of the transformed string, not including the terminating null
character. If the value returned is greater than or equal to n, the contents
of the array referenced by s1 are undefined.

Description

The transformation is such that the strcmp function can be used to compare two
transformed strings, giving the same result as strcoll applied to the original strings.

No more than n characters are placed into the resulting array pointed to by s1 (including
the terminating null character). If copying takes place between overlapping objects, the
behavior is undefined.

See Also

memcmp(), strcmp() , strcoll() , ANSI C 4.11.4.5
Chapter 5 357

HP C/iX Library Function Descriptions
swab
swab
Swaps bytes in an array.

Syntax
void swab (char * from , char * to , int nbytes);

Parameters

from A pointer to the source array.

to A pointer to the target array.

nbytes The number of bytes to copy.

Return Values

None.

Description

This function copies nbytes bytes pointed to by from to the array pointed to by to ,
exchanging adjacent even and odd bytes. It is useful for carrying binary data between
byte-swapped and non-byte-swapped machines. The nbytes parameter should be even and
non-negative. If nbytes is odd and positive, swab() uses nbytes-1 instead. If nbytes is
negative, swab() does nothing.
358 Chapter 5

HP C/iX Library Function Descriptions
system
system
Executes an MPE/iX command.

Syntax
#include <stdlib.h>
int system (const char * string);

Parameters

string A pointer to a string containing an MPE/iX command.

Return Values

0 Success.

<0 An error occurred. The value returned is the negated value of the error
code returned by the HPCICOMMAND intrinsic.

>0 A warning occurred.

Description

The system function executes an MPE/iX command pointed to by string . The command
can include UDCs and command files. The command is executed as if string has been
entered at a terminal. The current process waits until the command completes.

This function is implemented by calling the MPE/iX system intrinsic HPCICOMMAND.
Several commands are not executed when using this function. Refer to the description of
HPCICOMMAND in the MPE/iX Intrinsics Reference Manual for a description of these
commands.

All error and warning messages resulting from the execution of the command are printed
to $STDLIST .

See Also

ANSI C 4.10.4.5
Chapter 5 359

HP C/iX Library Function Descriptions
tan
tan
Computes a tangent value.

Syntax
#include <math.h>
double tan (double x)

Parameters

x A real number giving the angle measured in radians.

Return Values

n The tangent of the angle.

0 Indicates a complete loss of accuracy for large values of x. A TLOSS error
message is printed on the standard error output. errno is set to ERANGE.

Description

The tan function returns the tangent of its argument x, measured in radians. This
function loses accuracy when its argument is sufficiently large. For less extreme
arguments causing partial loss of significance, a PLOSS error is generated but no message
is printed and errno is set to ERANGE.

Error handling can be changed by a user-written matherr function.

See Also

sin() , cos() , ANSI C 4.5.2.7, POSIX.1 8.1
360 Chapter 5

HP C/iX Library Function Descriptions
tanh
tanh
Computes the hyperbolic tangent value for a given angle.

Syntax
#include <math.h>
double tanh (double x);

Parameters

x A real number giving the angle measured in radians.

Return Values

n The hyperbolic tangent of the angle.

Description

This function returns the hyperbolic tangent of its argument (x) in radians.

See Also

sin() , cos() , ANSI C 4.5.3.3, POSIX.1 8.1
Chapter 5 361

HP C/iX Library Function Descriptions
tdelete
tdelete
Deletes a specified node from a binary search tree.

Syntax
#include <search.h>
void *tdelete (void * key , void ** rootp , int (* compar)());

Parameters

key A pointer to an item to be searched for and deleted.

rootp A pointer to the variable at the root of the tree.

compar A pointer to a comparison function supplied by the user.

Return Values

x A pointer to the parent node of the deleted entry.

NULL Entry not found or rootp is NULL on entry.

Description

The tdelete function searches a binary search tree for the specified entry and deletes it if
found. The tree is composed only of pointers. The values reference by these pointers are
stored separately from the tree by the calling program.

The tdelete , tfind , tsearch , and twalk functions manage binary search trees
generalized from Knuth Algorithms T and D (6.2.2) described in The Art of Computer
Programming, Vol3 (Sorting and Searching) by Donald Ervin Knuth (Reading,
Mass.:Addison-Wesley, 1973).

If there is an item in the tree equal to *key (the value pointed to by key), the pointer to the
item is removed from the tree and the descendants of that node are resorted. If no
matching item is found in the tree, a null pointer is returned.

If the deleted node is the root of the tree, the variable pointed to by rootp is changed. A
null value for the variable pointed to by rootp indicates an empty tree.

The pointers to the key and the root of the tree should be of type pointer-to- element, and
cast to type pointer-to-character. Similarly, although declared as type pointer-to-character,
the value returned should be cast into type pointer-to-element.

All comparisons are done with the function compar , which must be supplied by the
programmer. This function is called with two arguments, the pointers to the elements
being compared. The comparison function does not need to compare every byte, so
arbitrary data can be contained in the elements in addition to the values being compared.

The comparison function should return an integer either less than, equal to, or greater
than zero, according to whether the first argument is to be considered less than, equal to,
or greater than the second argument.
362 Chapter 5

HP C/iX Library Function Descriptions
tdelete
If the calling function alters the pointer to the root, results are unpredictable.

NOTE The tdelete function and the header file <search.h> are not part of ANSI C.
Using them may make your program less portable.

Examples

Refer to the example located in the tsearch() function description.

See Also

tfind() , tsearch() , twalk()
Chapter 5 363

HP C/iX Library Function Descriptions
tfind
tfind
Searches for a specified entry in a binary search tree.

Syntax
#include <search.h>
void *tfind (void * key , void ** rootp , int (* compar)());

Parameters

key A pointer to an item to be searched for. If there is an item in the tree equal
to *key (the value pointed to by key), a pointer to the item found is
returned. Otherwise, a null pointer is returned. Only pointers are copied,
so the calling function must store the data.

rootp A pointer to a variable that points to the root of the tree. A null value for
the variable pointed to by rootp indicates an empty tree.

compar All comparisons are done with the function compar , which must be
supplied by the programmer. This function is called with two arguments,
the pointers to the elements being compared.

It returns an integer less than, equal to, or greater than zero, according to
whether the first argument is to be considered less than, equal to, or
greater than the second argument.

The comparison function does not need to compare every byte, so arbitrary
data can be contained in the elements in addition to the values being
compared.

Return Values

If successful, tfind() returns a pointer to the value pointed to by key . Otherwise, a null
pointer is returned either if the entry was not found or if rootp is NULL on entry.

Description

The tfind function searches a binary search tree for the specified entry. The tfind() ,
tsearch() , tdelete() , and twalk() functions manage binary search trees generalized
from Knuth Algorithms T and D (6.2.2) described in The Art of Computer Programming,
Vol3 (Sorting and Searching) by Donald Ervin Knuth (Reading, Mass.:Addison-Wesley,
1973).

All comparisons are done with the function compar , which must be supplied by the
programmer.

The pointers to the key and the root of the tree should be of type pointer-to-element, and
should be cast to type pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into type pointer-to-element.

If the calling function alters the pointer to the root, results are unpredictable.
364 Chapter 5

HP C/iX Library Function Descriptions
tfind
NOTE The tfind function and the header file <search.h> are not part of ANSI C.
Using them may make your program less portable.

Examples

Refer to the example located in the tsearch function description.

See Also

tsearch() , tdelete() , twalk()
Chapter 5 365

HP C/iX Library Function Descriptions
time
time
Returns the current calendar time.

Syntax
#include <time.h>
time_t time (time_t * timer);

Parameters

timer If not NULL, a pointer to where the returned time is stored.

Return Values

x Specifies the time elapsed seconds since the Epoch (00:00:00 Coordinated
Universal Time, January 1, 1970).

0 An error occurred and errno is set to EFAULT.

Description

The time function returns the number of elapsed seconds since the Epoch, 00:00:00
Coordinated Universal Time (Greenwich Mean Time), January 1, 1970. If timer is not
NULL, the return value is also assigned to the object that timer points to.

NOTE If linking with the POSIX/iX library, refer to the description of time() located
in the MPE/iX Developer's Kit Reference Manual.

See Also

clock() , difftime() , mktime() , ANSI C 4.12.2.4
366 Chapter 5

HP C/iX Library Function Descriptions
tmpfile
tmpfile
Creates a temporary file.

Syntax
#include <stdio.h>
FILE *tmpfile (void);

Parameters

None.

Return Values

x A pointer to a stream associated with the temporary file.

NULL The file cannot be opened.

Description

The tmpfile function creates a temporary file using a name generated by tmpnam() and
returns a pointer to the resulting stream. The file is automatically deleted when the
process using it terminates.

If linking with the HP C/iX libraries, the file is opened for update as a binary stream using
wb+ mode.

If linking with the POSIX/iX library, the file is opened for update as a byte stream using
the ws+ mode.

See Also

tmpnam() , ANSI C 4.9.4.3, POSIX.1 8.1
Chapter 5 367

HP C/iX Library Function Descriptions
tmpnam
tmpnam
Creates a name for a temporary file.

Syntax
#include <stdio.h>
char *tmpnam (char * s);

Parameters

s Either NULL or a pointer to an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in stdio.h> .

Return Values

x If s is NULL, a pointer to a static buffer which contains a file name. If s is
not NULL, the value of the argument s.

Description

The tmpnam function generates a file name that can safely be used as a temporary file. This
function generates a different file name each time it is called.

If s is null, tmpnam() leaves its result in an internal static area and returns a pointer to
that area. The next call to tmpnam() destroys the contents of the area. If s is not null, it is
assumed to be the address of an array of at least L_tmpnam bytes, where L_tmpnam is a
constant defined in <stdio.h> ; tmpnam places its result in that array and returns s.

A file created using tmpnam() and fopen() is temporary only in the sense that it is
intended for temporary use. It is your responsibility to remove the file when it is no longer
needed.

Between the time a file name is created and the file is opened, it is possible for some other
process to create a file with the same name. This is extremely unlikely if the other process
is using this function or mktemp() because these functions choose file names in a way that
minimizes duplication.

See Also

tmpfile() , ANSI C 4.9.4.4, POSIX.1 8.1
368 Chapter 5

HP C/iX Library Function Descriptions
toascii
toascii
Converts an integer to 7-bit ASCII.

Syntax
#include <ctype.h>
int toascii (int c);

Parameters

c The integer to convert to ASCII.

Return Values

x Is returned with all bits turned off that are not part of the standard 7-bit
ASCII character.

Description

The toascii function returns its argument with all bits turned off that are not part of a
standard 7-bit ASCII character. It is intended for compatibility with other systems.
Chapter 5 369

HP C/iX Library Function Descriptions
tolower, _tolower
tolower, _tolower
Converts an uppercase letter to lowercase.

Syntax
#include <ctype.h>
int tolower (int c);

Parameters

c An argument to be converted to lowercase.

Return Values

x The lowercase letter that corresponds with c. If c is not an uppercase
letter and the function is called, c is returned unchanged. If c is not an
uppercase letter and the macro is called, the results are undefined.

Description

This conversion routine that downshifts ASCII characters is implemented both as a
function and as a macro. The tolower function and _tolower macro have a domain the
range of getc() (the integers from -1 through 255). If the argument passed in c represents
an uppercase letter, tolower() returns the corresponding lowercase letter. All other
arguments in the domain are returned unchanged.

The _tolower macro accomplishes the same thing as the function, but has a restricted
domain and is faster. The _tolower macro requires a lowercase letter as its argument.
Arguments outside the domain cause undefined results.

NOTE The tolower function and macro do not work with foreign character sets.

Example

The following code fragment might appear in the scanner of a case-insensitive compiler,
where all source input is mapped to lowercase before any processing is performed:

unsigned char *ps;
while (*ps != '\0'){

*ps = tolower(*ps);
&+&+ps;

}

See Also

toupper() , ANSI C 4.3.2.1, POSIX.1 8.1
370 Chapter 5

HP C/iX Library Function Descriptions
toupper, _toupper
toupper, _toupper

Converts a lowercase letter to uppercase.

Syntax
#include <ctype.h>
int toupper (int c);

Parameters

c An argument to be converted to uppercase.

Return Values

x The uppercase letter that corresponds with c. If c is not a lowercase letter
and the function is called, c is returned unchanged. If c is not a lowercase
letter and the macro is called, the results are undefined.

Description

This conversion routine that upshifts ASCII characters is implemented both as a function
and as a macro. The toupper function and _toupper macro have a domain the range of
getc() (the integers from -1 through 255). If the argument passed in c represents an
lowercase letter, toupper() returns the corresponding uppercase letter. All other
arguments in the domain are returned unchanged.

The _toupper macro accomplishes the same thing as the function, but has a restricted
domain and is faster. The _toupper macro requires a lowercase letter as its argument.
Arguments outside the domain cause undefined results.

NOTE The toupper function and macro do not work with foreign character sets.

Examples

The following code fragment might appear in the scanner of a case-insensitive compiler,
where all source input is mapped to uppercase before any processing is performed.

unsigned char *ps;
while (*ps != '\0'){

*ps = toupper(*ps);
&+&+ps;

}

See Also

tolower() , ANSI C 4.3.2.2, POSIX.1 8.1
Chapter 5 371

HP C/iX Library Function Descriptions
tsearch
tsearch
Builds and provides access to a binary search tree.

Syntax
#include <search.h>
void *tsearch (void * key , void ** rootp ,

int (* compar)());

Parameters

key A pointer to an item to be accessed or stored.

rootp A pointer to a variable that points to the root of the tree.

compar A pointer to a comparison function supplied by the programmer.

Return Values

x A pointer to the value pointed to by key .

NULL There is not enough space available to create a new node or rootp is NULL.

Description

The tsearch function builds and accesses a binary search tree. The tsearch , tfind ,
tdelete , and twalk functions manage binary search trees generalized from Knuth
Algorithms T and D (6.2.2) described in The Art of Computer Programming, Vol3 (Sorting
and Searching) by Donald Ervin Knuth (Reading, Mass.:Addison-Wesley, 1973).

The pointers to the key and the root of the tree should be of type pointer-to-element, and
cast to type pointer-to-character. Similarly, although declared as type pointer-to-character,
the value returned should be cast into type pointer-to-element.

If the calling function alters the pointer to the root, results are unpredictable.

If there is an item in the tree equal to *key (the value pointed to by key), a pointer to the
item found is returned. Otherwise, * key is inserted, and a pointer to it is returned. Only
pointers are copied, so the calling function must store the data.

A null value for the variable pointed to by rootp indicates an empty tree; in this case, the
variable is set to point to the item that is at the root of the new tree.

All comparisons are done with the function compar , which must be supplied by you. The
function is called with two arguments, the pointers to the elements being compared.

It returns an integer less than, equal to, or greater than zero, according to whether the
first argument is to be considered less than, equal to, or greater than the second argument.

The comparison function does not need to compare every byte, so arbitrary data can be
contained in the elements in addition to the values being compared.
372 Chapter 5

HP C/iX Library Function Descriptions
tsearch
NOTE The tsearch() function and the header file <search.h> are not part of ANSI
C. Using them makes your program less portable.

Examples

The following code reads in strings and stores structures containing a pointer to each
string and a count of its length. It then walks the tree, printing out the stored strings and
their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */
char *string;
int length;

};

char string_space[10000]; /* space to store strings */
struct node nodes[500]; /* nodes to store */
struct node *root = NULL; /* this points to the root */

main()
{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL i++ 500) {

/* set node */
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);

/* put node into the tree */
(void) tsearch((char *)nodeptr, root,

node_compare);

/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

}
twalk(root, print_node);

}

/* This function compares two nodes, based on an
alphabetical ordering of the string field. */

int
node_compare(node1, node2)
struct node *node1, *node2;
{

Chapter 5 373

HP C/iX Library Function Descriptions
tsearch
return strcmp(node1->string, node2->string);
}

/* This function prints out a node, the first time twalk encounters it. */
void
print_node(node, order, level)
struct node **node;
VISIT order;
int level;
{

if (order == preorder||order == leaf) {
(void)printf("string = %20s, length = %d\n",

(*node)->string, (*node)->length);
}

}

See Also

tfind() , tdelete() , twalk()
374 Chapter 5

HP C/iX Library Function Descriptions
twalk
twalk
Traverses a binary search tree and returns the value at the specified node.

Syntax
#include <search.h>
void *twalk (void * root , void *(action)());

Parameters

root A pointer to the starting node for the tree traversal.

action The name of a user-supplied function to be invoked at each node.

Return Values

None.

Description

The twalk function performs a depth-first, left-to-right traversal of a binary search tree.
The tdelete , tfind , tsearch , and twalk functions manage binary search trees
generalized from Knuth Algorithms T and D (6.2.2). 1

Any node in the tree can be used as the root for a walk below that node.

The pointer to the root of the tree should be of type pointer-to-element, and cast to type
pointer-to-character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to- element.

The root argument to twalk() is one level of indirection less than the rootp arguments to
tsearch() and tdelete() .

The action function supplied by the calling program is invoked at each node. This
function is, in turn, called with three arguments.

void action_routine (struct ** node , visit order , int level)

The first argument is the address of the node being visited.

The second argument is a value from an enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

defined in the <search.h> header file, depending on whether this is the first, second or
third time that the node has been visited during a depth- first, left-to-right traversal of the
tree, or whether the node is a leaf.

There are two nomenclatures used to refer to the order in which tree nodes are visited.
This implementation uses preorder, postorder and endorder to respectively refer to visiting

1. The Art of Computer Programming, Vol3 (Sorting and Searching) by Donald Ervin Knuth (Reading,
Mass.:Addison-Wesley, 1973).
Chapter 5 375

HP C/iX Library Function Descriptions
twalk
a node before any of its children, after its left child and before its right, and after both its
children. The alternate nomenclature uses preorder, inorder, and postorder to refer to the
same visits, which results in some confusion over the meaning of postorder.

The third argument is the level of the node in the tree, with the root being level zero.

NOTE The twalk function and the header file <search.h> are not part of ANSI C.
Using them makes your program less portable.

Examples

Refer to the example located in the tsearch() function description.

See Also

tfind() , tsearch() , tdelete()
376 Chapter 5

HP C/iX Library Function Descriptions
tzset
tzset
Sets time zone conversion information.

Syntax
#include <time.h> /* proto */
void tzset (void);

Parameters

None.

Return Values

None.

Description

The tzset function uses the value of the user-defined environment variable TZ to set time
conversion information used by localtime() , ctime() , strftime() , and mktime() .

The tzset() function sets the external variable tzname :

extern char *tzname[2] = {" std ", " dst "};

where std and dst are described in the HP C/iX Library Reference Manual. If no TZ
environment variable exists, Eastern Standard Time (EST) and Eastern Daylight Time
(EDT) for the United States are used (EST5EDT is assumed for TZ).

See Also

localtime() , ctime() , strftime() , mktime() , POSIX.1 8.3.2
Chapter 5 377

HP C/iX Library Function Descriptions
ungetc
ungetc
Pushes back a single character onto an open stream.

Syntax
#include <stdio.h>
int ungetc (int c, FILE * stream);

Parameters

c A single character to push back.

stream A pointer to an open stream.

Return Values

x The value of the argument c, indicating success.

EOF An error occurred.

Description

The ungetc function pushes the character specified by c (converted to an unsigned char)
back onto the input stream pointed to by stream . The pushed-back character is returned
by subsequent reads on the stream in the reverse order of their pushing. A successful
intervening call to stream to a file positioning function (fseek() , fsetpos() , or rewind())
discards any pushed-back characters for the stream. The external storage corresponding to
the stream is unchanged.

One character pushback is guaranteed. If the ungetc() function is called too many times
on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value of
the file position indicator for the stream after reading or discarding all pushed-back
characters is the same as it was before the characters were pushed back.

For a text stream, the value of its file position indicator after a successful call to ungetc()
is unspecified until all pushed-back characters are read or discarded. For a binary stream,
its file position indicator is decremented by each successful call to ungetc() , if its value
was zero before the call, it is indeterminate after the call.

Examples

The following program reads one character from stdin , pushes it back onto stdin,
rereads the character, and checks to make sure that this character and the character
originally pushed back are the same. A message is printed on stdout stating the outcome
378 Chapter 5

HP C/iX Library Function Descriptions
ungetc
of the comparison.

#include <stdio.h>
main()
{

int c1, c2;

c1 = getchar();
ungetc(c1, stdin);
c2 = getchar();
if(c1 == c2)

printf("They're the same!\n");
else

printf("Oops! They're different!\n");
}

At least one character may be pushed back if data has been read from the stream prior to
the push-back attempt and if the stream is buffered.

See Also

fseek() , fsetpos() , ftell() , fclose() , ferror() , fopen() , fread() , fgetc() , gets() ,
putc() , fputc() , scanf() , fscanf() , ANSI C 4.9.7.11, POSIX.1 8.1
Chapter 5 379

HP C/iX Library Function Descriptions
va_arg
va_arg
Initializes a variable to the beginning of an argument list.

Syntax
#include <stdarg.h>
type va_arg (va_list ap, type);

Parameters

ap A pointer to a double, as defined by type va_list in <varargs.h> . This
variable must be initialized with the macro va_start .

type A data type, either built-in or user-defined.

Return Values

x The value of the next argument in the call, returned as a variable of type
type .

Description

This macro returns the value of the next argument in the argument list of functions that
can be called with a variable number of arguments.

The macros va_start , va_arg , and va_end determine the arguments of functions with
variable-length argument lists. Functions with variable-length argument lists are
indicated by the ellipsis in the function header.

Successive invocations of va_arg return the values of the remaining arguments in
succession. The ap argument is used by the macro to maintain the context of each
successive call. This argument must be initialized by a call to va_start prior to calling
va_arg .

The macro assumes that the return value is of type type . No error checking is performed.
If there is no next argument when va_arg is called , or if type is not compatible with the
type of the actual next argument, the value returned is unpredictable.

When writing functions with a variable number of arguments, you should provide a
method for the calling procedure to either pass the number of actual arguments, or signal
the end of the argument list. In addition, the calling program and function being called
must cooperate closely as to the data types of the items in the variable argument list.

NOTE The header <varargs.h> also contains this macro. However, <varargs.h>
header is not defined by the ANSI C standard.
380 Chapter 5

HP C/iX Library Function Descriptions
va_arg
Examples

Refer to the example located in the va_start macro description.

See Also

va_start , va_end , ANSI C 4.8.1.2
Chapter 5 381

HP C/iX Library Function Descriptions
va_end
va_end
Terminates access to a variable argument list.

Syntax
#include <stdarg.h>
void va_end (va_list ap);

Parameters

ap A pointer to a double, as defined by type va_list in <varargs.h> . This
variable must be initialized with the macro va_start .

Return Values

None.

Description

The va_end macro terminates access to the variable argument list by making ap unusable.
It must be called at the end of accessing the variable argument list.

The macros va_start , va_arg , and va_end determine the arguments of a function that
can be called with a variable number of arguments. The variable number of arguments are
indicated by the ellipsis in the function header.

NOTE The header <varargs.h> also contains this macros described in this section.
However, <varargs.h> is not defined by the ANSI C standard.

Examples

Refer to the example located in the va_start macro description.

See Also

va_arg , va_start , ANSI C 4.8.1.3
382 Chapter 5

HP C/iX Library Function Descriptions
va_start
va_start
Initializes a variable to the beginning of an argument list.

Syntax
#include <stdarg.h>
void va_start (va_list ap, parmN);

Parameters

ap A pointer to a double, as defined by type va_list in <varargs.h> .

parmN The identifier of the rightmost parameter in the variable parameter list in
the function definition. This is the identifier just before the horizontal
ellipsis.

Return Values

None.

Description

The va_start macro initializes ap (of type va_list) for subsequent use by va_arg and
va_end . It must be invoked before va_arg can be used.

The macros va_start , va_arg , and va_end determine the arguments of a function that
can be called with a variable number of arguments. The variable number of arguments are
indicated by the ellipsis in the function header.

NOTE The header <varargs.h> also contains this macro. However, <varargs.h> is
not defined by the ANSI C standard.

Examples

The following program uses <stdarg.h> :

#include <stdarg.h>
#include <stdio.h>

enum arglisttype {NO_VAR_LIST, VAR_LIST_PRESENT};
enum argtype {END_OF_LIST, CHAR, DOUB, INT, PINT};

int func (int a1, enum arglisttype a2, ...)
{

va_list ap;

enum argtype ptype;
int i, *p;
Chapter 5 383

HP C/iX Library Function Descriptions
va_start
char c;
double d;

printf ("arg count = %d\n", a1);

if (a2 == VAR_LIST_PRESENT) {
/* Initialize the varargs mechanism */
va_start(ap, a2); /* pass a2 as an anchor */

/* pick up all the arguments */
do {

/* get the type of the argument */
ptype = va_arg (ap, enum argtype);

/* retrieve the argument based on the type */
switch (ptype) {

case CHAR: c = va_arg (ap, char);
printf ("char = %c\n", c);
break;

case DOUB: d = va_arg (ap, double);
printf ("double = %f\n", d);
break;

case PINT: p = va_arg (ap, int *);
printf ("pointer = %x\n", p);
break;

case INT : i = va_arg (ap, int);
printf ("int = %d\n", i);
break;

case END_OF_LIST :
break;

default: printf ("bad argument type %d\n", ptype);
ptype = END_OF_LIST; /* to break loop */
break;

} /* switch */
} while (ptype != END_OF_LIST);

/* Clean up */
va_end (ap);

} /* if */
}

main()
{

int x = 99;

func (1, NO_VAR_LIST);
func (2, VAR_LIST_PRESENT, DOUB, 3.0, PINT, &x, END_OF_LIST);

}

384 Chapter 5

HP C/iX Library Function Descriptions
va_start
See Also

va_arg , va_end , ANSI C 4.8.1.1
Chapter 5 385

HP C/iX Library Function Descriptions
vfprintf
vfprintf
Writes data in formatted form to an open stream using a variable argument list.

Syntax
#include <stdarg.h>
#include <stdio.h>
int vfprintf (FILE * stream , const char * format ,

va_list arg);

Parameters

stream A pointer to an open stream where data is to be written.

format A pointer to a character string defining the format (or the character string
itself enclosed in double quotes).

arg A variable argument list initialized by va_start (defined in the header
<stdarg.h>).

Return Values

≥0 The number of characters written.

<0 An error occurred.

Description

The vfprintf function enables you to output data in formatted form to an open stream. In
the vfprintf function, string points to an open stream, and format points to a character
string (or the character string itself enclosed in double quotes) that specifies the format
and content of the data to be written. The arg parameter is a variable argument list
containing variables or expressions specifying the data to be written. arg must be
initialized by the va_start macro prior to a call to vfprintf() .

The arg parameter specifies conversion specifications and literal characters. Literal
characters are all characters that are not part of a conversion specification. Literal
characters are written to the open stream exactly as they appear in the format.

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output
a literal percent sign, you must type two percent signs (%%).

2. Zero or more flags, which affect the way a value is written (see below).

3. An optional decimal digit string which specifies a minimum field width .
386 Chapter 5

HP C/iX Library Function Descriptions
vfprintf
4. An optional precision consisting of a dot (.) followed by a decimal digit string.

5. An optional l, h, or L indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.

6. A conversion character, which indicates the type of data to be converted and printed.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be written in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flags both appear, the 0 flag is ignored.
The 0 flag is also ignored for d, i , o, u, x, and X conversions if a precision is
specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being printed. If the data happens to be smaller
than the field width, the data is blank- padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than the field width , the field
width is simply expanded to accommodate the data. An insufficient field
width never causes data to be truncated. If field width is not specified, the resulting
field is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.
Chapter 5 387

HP C/iX Library Function Descriptions
vfprintf
Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
to be formatted and printed appropriately. The integer conversion characters are:

d, i An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
leading zeros. The default precision is 1. A null string results if a zero
value is printed with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded, and the octal value is printed with a
leading zero (a C convention). The precision behaves the same as in d
above, except that writing a zero value with a zero precision results in
only the leading zero being written, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in writing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is written with a
leading "0x" (a C convention). The precision behaves as in d above,
except that writing a zero value with a zero precision results in only the
leading "0x" being written, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to write the
hexadecimal value, and the # flag causes the value to be written with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is written. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is written. If a
precision is specified, characters from the string are written until the
number of characters indicated by the precision is reached, or until a
null character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are written. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If precision is not specified, six digits are written after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.
388 Chapter 5

HP C/iX Library Function Descriptions
vfprintf
e The float or double item is converted to scientific notation in style e;
that is, in the form

[-]d.ddde ±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision . If precision is
not given, six digits are written after the decimal point. If the precision
is explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

Other conversion characters are:

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

See Also

setlocale(), putc() , scanf() , fprintf() , printf() , vprintf() , vsprintf() ,
stdio() , ANSI C 4.9.6.7
Chapter 5 389

HP C/iX Library Function Descriptions
vprintf
vprintf
Writes data in formatted form to the standard output stream stdout using a variable
argument list.

Syntax
#include <stdarg.h>
#include <stdio.h>
int vprintf (const char * format , va_list arg);

Parameters

format A pointer to a character string defining the format (or the character string
itself enclosed in double quotes).

arg A variable argument list initialized by va_start() (defined in the header
<stdarg.h> .)

Return Values

≥0 The number of characters written.

<0 An error occurred.

Description

The vprintf function enables you to output data in formatted form to stdout . In the
vprintf function, string is a pointer to stdout , and format is a pointer to a character
string (or the character string itself enclosed in double quotes) that specifies the format
and content of the data to be written. The arg parameter is a variable argument list
containing variables or expressions specifying the data to be written. The arg parameter
must be initialized by the va_start macro prior to a call to vprintf() .

The arg parameter specifies conversion specifications and literal characters. Literal
characters are all characters that are not part of a conversion specification. Literal
characters are written to stdout exactly as they appear in the format.

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), that signals the beginning of a conversion specification; to output a
literal percent sign, you must type two percent signs (%%).

2. Zero or more flags, that affect the way a value is printed (see below).

3. An optional decimal digit string that specifies a minimum field width .

4. An optional precision , consisting of a dot (.) followed by a decimal digit string.
390 Chapter 5

HP C/iX Library Function Descriptions
vprintf
5. An optional l, h, or L indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.

6. A conversion character, which indicates the type of data to be converted and printed.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be printed in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flags both appear, the 0 flag is ignored.
The 0 flag is also ignored for d, i , o, u, x, and X conversions if a precision is
specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being printed. If the data happens to be smaller
than the field width, the data is blank-padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than the field width , the field width is
simply expanded to accommodate the data. An insufficient field width never causes data
to be truncated. If no field width is specified, the resulting field is made just large
enough to hold the data.

The precision is a value that means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.

Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
Chapter 5 391

HP C/iX Library Function Descriptions
vprintf
to be formatted and printed appropriately. The integer conversion characters are:

d, i An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
leading zeros. The default precision is 1. A null string results if a zero
value is printed with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded, and the octal value is printed with a
leading zero (a C convention). The precision behaves the same as in d
above, except that printing a zero value with a zero precision results in
only the leading zero being printed, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in printing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is printed with a
leading "0x" (a C convention). The precision behaves as in d above,
except that printing a zero value with a zero precision results in only the
leading "0x" being printed, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to print the
hexadecimal value, and the # flag causes the value to be printed with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is printed. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is printed. If a
precision is specified, characters from the string are printed until the
number of characters indicated by the precision is reached, or until a
null character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are printed. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If no precision is specified, six digits are printed after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

e The float or double item is converted to scientific notation in style e;
392 Chapter 5

HP C/iX Library Function Descriptions
vprintf
that is, in the form

[-]d.ddde ±ddd

where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision . If no precision is
given, six digits are printed after the decimal point. If the precision is
explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

Other conversion characters are:

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

See Also

setlocale(), putc() , scanf() , vfprintf() , vsprintf() , stdio() , ANSI C 4.9.6.8
Chapter 5 393

HP C/iX Library Function Descriptions
vsprintf
vsprintf
Writes formatted data to a character string in memory using a variable argument list.

Syntax
#include <stdarg.h>
#include <stdio.h>
int vsprintf (char * string , const char * format ,

va_list arg);

Parameters

string A pointer to a buffer in memory where the data is to be written.

format A pointer to a character string defining the format (or the character string
itself enclosed in double quotes).

arg A variable argument list initialized by va_start (defined in the header
<stdarg.h>).

Return Values

≥0 The number of characters written.

<0 An error occurred.

Description

The arg parameter is a variable argument list containing variables or expressions
specifying the data to be written. The arg parameter must be initialized by the va_start
macro prior to a call to vsprintf() .

This function returns the number of characters written to the string, not counting the
terminating null character, or a negative value (if an error occurs).

The arg parameter specifies conversion specifications and literal characters. Literal
characters are all characters that are not part of a conversion specification. Literal
characters are written to the buffer in memory exactly as they appear in the format.

Conversion Specifications

The following list shows the different components of a conversion specification in their
correct sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output
a literal percent sign, you must type two percent signs (%%);

2. Zero or more flags, which affect the way a value is written (see below).

3. An optional decimal digit string which specifies a minimum field width .

4. An optional precision consisting of a dot (.) followed by a decimal digit string.
394 Chapter 5

HP C/iX Library Function Descriptions
vsprintf
5. An optional l, h, or L, indicating that the argument is of an alternate type. When used
in conjunction with an integer conversion character, an l or h indicates a long or short
integer argument, respectively. When used in conjunction with a floating-point
conversion character, an L indicates a long double argument.

6. A conversion character, which indicates the type of data to be converted and written.

A one-to-one correlation must exist between each specification encountered and each item
in the item list.

The available flags are:

- Causes the data to be left-justified within its output field. Normally, the
data is right-justified.

+ Causes all signed data to begin with a sign (+ or -). Normally, only
negative values have signs.

blank Causes a blank to be inserted before a positive signed value. This is used
to line up positive and negative values in columnar data. Otherwise, the
first digit of a positive value is lined up with the negative sign of a
negative value. If the blank and + flags both appear, the blank flag is
ignored.

Causes the data to be written in an alternate form. Refer to the
descriptions of the conversion characters below for details concerning the
effects of this flag.

0 For d, i , o, u, x, X, e, E, f , g, and Gconversions, leading zeros (following any
indication of sign or base) are used to pad to the field width. No space
padding is performed. If the 0 and - flags both appear, the 0 flag is ignored.
The 0 flag is also ignored for d, i , o, u, x, and X conversions if precision is
specified.

A field width , if specified, determines the minimum number of spaces allocated to the
output field for the particular piece of data being written. If the data happens to be smaller
than the field width, the data is blank-padded on the left (or on the right, if the - flag is
specified) to fill the field. If the data is larger than the field width , the field
width is simply expanded to accommodate the data. An insufficient field
width never causes data to be truncated. If field width is not specified, the resulting
field is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion
character specified. Refer to the descriptions of the conversion characters below for more
details.

NOTE A field width or precision may be replaced by an asterisk (*). If so, the
next item in the item list is fetched, and its value is used as the field width
or precision . The item fetched must be an integer.

Conversion Characters

Conversion characters specify the type of data to expect in the item list and cause the data
Chapter 5 395

HP C/iX Library Function Descriptions
vsprintf
to be formatted and written appropriately. The integer conversion characters are:

d An integer item is converted to signed decimal. The precision , if given,
specifies the minimum number of digits to appear. If the value has fewer
digits than that specified by the precision , the value is expanded with
leading zeros. The default precision is 1. A null string results if a zero
value is written with a zero precision . The # flag has no effect.

u An integer item is converted to unsigned decimal. The effects of the
precision and the # flag are the same as for d.

o An integer item is converted to unsigned octal. The # flag, if specified,
causes the precision to be expanded, and the octal value is written with a
leading zero (a C convention). The precision behaves the same as in d
above, except that writing a zero value with a zero precision results in
only the leading zero being written, if the # flag is specified.

x An integer item is converted to hexadecimal. The letters abcdef are used
in writing hexadecimal values. The # flag, if specified, causes the
precision to be expanded, and the hexadecimal value is written with a
leading "0x" (a C convention). The precision behaves as in d above,
except that writing a zero value with a zero precision results in only the
leading "0x" being written, if the # flag is specified.

X Same as x above, except that the letters ABCDEF are used to write the
hexadecimal value, and the # flag causes the value to be written with a
leading "0X".

The character conversion characters are as follows:

c The character specified by the char item is written. The precision is
meaningless, and the # flag has no effect.

s The string pointed to by the character pointer item is written. If a
precision is specified, characters from the string are written until the
number of characters indicated by the precision is reached, or until a
null character is encountered, whichever comes first. If the precision is
omitted, all characters up to the first null character are written. The # flag
has no effect.

The floating-point conversion characters are:

f The float or double item is converted to decimal notation in style f ; that
is, in the form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the
precision . If precision is not specified, six digits are written after the
decimal point. If the precision is explicitly zero, the decimal point is
eliminated entirely. If the # flag is specified, a decimal point always
appears, even if no digits follow the decimal point.

e The float or double item is converted to scientific notation in style e;
that is, in the form

[-]d.ddde ±ddd
396 Chapter 5

HP C/iX Library Function Descriptions
vsprintf
where there is always one digit before the decimal point. The number of
digits after the decimal point is equal to the precision . If precision is
not given, six digits are written after the decimal point. If the precision
is explicitly zero, the decimal point is eliminated entirely. The exponent
always contains exactly three digits. If the # flag is specified, the result
always contains a decimal point, even if no digits follow the decimal point.

E Same as e above, except that E is used to introduce the exponent instead of
e (style E).

g The float or double item is converted to either style f or style e,
depending on the size of the exponent. If the exponent resulting from the
conversion is less than -4 or greater than the precision , style e is used.
Otherwise, style f is used. The precision specifies the number of
significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if it is followed by a digit. If the # flag is
specified, the result always has a decimal point, even if no digits follow the
decimal point, and trailing zeros are not removed.

G Same as the g conversion above, except that style E is used instead of style
e.

Other conversion characters are:

p The argument is a pointer to void . The value of the pointer is converted to
a sequence of printable characters.

n The argument is a pointer to an integer into which is written the number
of characters written to the output stream so far by this call to fprintf() .
No argument is converted.

% A % is written. No argument is converted. The complete conversion
specification is &%&%.

The item s in the item list may be variable names or expressions. Note that, with the
exception of the s conversion, pointers are not required in the item list. If the s conversion
is used, a pointer to a character string must be specified.

See Also

setlocale(), putc() , scanf() , vfprintf() , vprintf() , stdio() , ANSI C 4.9.6.9
Chapter 5 397

HP C/iX Library Function Descriptions
wcstombs
wcstombs
Converts a sequence of wide character codes to a sequence of multibyte characters.

Syntax
#include <stdlib.h>
size_t wcstombs(char * s, const wchar_t * pwcs , size_t n);

Parameters

s A pointer to a character array to which the converted multibyte characters
are returned.

pwcs A pointer to the sequence of wide characters to be converted.

n A variable of type size_t indicating the maximum number of bytes to
return.

Return Values

x The number of array elements modified, not including a terminating zero.

−1 Invalid wide character found.

Description

The sequence of wide character codes from the array pointed to by pwcs are converted into
a sequence of multibyte characters and stored in the array pointed to by s. The conversion
ends when a null character is stored or n is reached, whichever occurs first.

If a code is encountered that does not correspond to a valid multibyte character, wcstombs
returns (size_t)-1 . Otherwise, this function returns the number of bytes modified (not
including a terminating null character, if any).

See Also

mblen() , mbstowcs() , mbtowc() , wctomb() , ANSI C 4.10.8.2
398 Chapter 5

HP C/iX Library Function Descriptions
wctomb
wctomb
Converts a single wide character value to its multibyte character representation.

Syntax
#include <stdlib.h>
int wctomb(char * s, wchar_t wchar);

Parameters

s A pointer to a character array to which the multibyte character is
returned.

wchar The wide character value to be converted.

Return Values

>0 The length of the multibyte character in bytes.

−1 The wchar parameter does not point to a valid wide character.

0 The wchar parameter is a null character.

Description

The wctomb function converts the wide character wchar to multibyte representation and
stores the result in the array pointed to by s (if s is not a null pointer).

This function retains state information. Multibyte encodings can be state-dependent,
employing "shift characters" to alter the meaning of subsequent characters. The shift state
is persistent between calls to the routines for processing extended character sets unless
the LC_CTYPE category of the locale is changed.

Calling this function with the s argument set to NULLresets the function to its initial state.
When using a NULL pointer to clear the shift state, zero is returned if the multibyte shift
state was previously clear. A nonzero value is returned if the locale-specific shift state was
previously set.

If the value of wchar is zero, wctomb is left in the initial shift state.

If s is not a null pointer, wctomb returns −1 if the value of wchar does not correspond to a
valid multibyte character, or returns the number of bytes in the multibyte character
corresponding to the value of wchar

The value returned cannot be greater than the value of the MB_CUR_MAX macro.

See Also

wchar_t , MB_CUR_MAX, mbtowc() , wcstomb() , mbstowcs() , ANSI C 4.10.7.3
Chapter 5 399

HP C/iX Library Function Descriptions
write
write
Writes data to a file.

Syntax
int write (int fildes , char * buffer , unsigned nbyte);

Parameters

fildes The file descriptor of the file to write to.

buffer A pointer to a buffer containing data to write.

nbyte The number of bytes to write.

Return Values

≥0 The number of bytes written.

−1 An error occurred. The file position indicator remains unchanged and
errno is set to one of the following values:

EBADF The fildes parameter is not a valid file descriptor open
for writing.

EFBIG An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size.

ESYSERR A call to a system intrinsic failed.

Description

The write function writes nbyte bytes from the buffer pointed to by buffer to the file
associated with fildes .

On devices capable of seeking, the actual writing of data proceeds from the position in the
file indicated by the file position indicator. Upon return from write() , the file position
indicator is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the device's current
position. The value of a file position indicator associated with such a device is undefined.

If the file is opened for append mode, the file position indicator is set to the end of the file
prior to each write.

If write() requests that more bytes be written than there is room for, write() fails and −1
is returned.

NOTE If linking with the POSIX/iX library, refer to the description of write()
located in the MPE/iX Developer's Kit Reference Manual.
400 Chapter 5

HP C/iX Library Function Descriptions
write
See Also

read() , open()
Chapter 5 401

HP C/iX Library Function Descriptions
write
402 Chapter 5

Time Zones
A Time Zones

This appendix contains a list of commonly used time zones and the TZ environment
variable strings that correspond to these time zones. The TZ strings are used by the time
and date library functions for adjustment to specific time zones. Refer to the description of
the ctime function in chapter 5 for details.

The first line of each entry contains the time zone name followed by the Daylight Savings
Time zone name, if appropriate. The next few lines contain the geographic locations
associated with this time zone. The last line contains the TZ environment variable string
that corresponds to this time zone.

Hawaiian Standard Time, Hawaiian Daylight Time
United States: Hawaii
HST10

Aleutian Standard Time, Aleutian Daylight Time
United States: Alaska (parts)
AST10ADT

Yukon Standard Time, Yukon Daylight Time
United States: Alaska (parts)
YST9YDT

Pacific Standard Time, Pacific Daylight Time
Canada: British Columbia.
PST8PDT - Canada

Pacific Standard Time, Pacific Daylight Time
United States: California, Idaho (parts), Nevada, Oregon (parts),
Washington.
PST8PDT

Mountain Standard Time, Mountain Daylight Time
Canada: Alberta, Saskatchewan (parts).
MST7MDT - Canada

Mountain Standard Time, Mountain Daylight Time
United States: Colorado, Idaho (parts), Kansas (parts), Montana,
Nebraska (parts), New Mexico, North Dakota (parts), Oregon (parts),
South Dakota (parts), Texas (parts), Utah, Wyoming.
MST7MDT

Mountain Standard Time
United States: Arizona
MST7

Central Standard Time, Central Daylight Time
Appendix A 371

Time Zones
Canada: Manitoba, Ontario (parts), Saskatchewan (parts).
CST6CDT - Canada

Central Standard Time, Central Daylight Time
United States: Alabama, Arkansas, Florida (parts), Illinois, Iowa,
Kansas, Kentucky (parts), Louisiana, Michigan (parts), Minnesota,
Mississippi, Missouri, Nebraska, North Dakota, Oklahoma, South Dakota,
Tennessee (parts), Texas, Wisconsin.
CST6CDT

Eastern Standard Time, Central Daylight Time
United States: Indiana (most)
EST6CDT

Eastern Standard Time, Eastern Daylight Time
Canada: Ontario (parts), Quebec (parts).
EST5EDT - Canada

Eastern Standard Time, Eastern Daylight Time
United States: Connecticut, Delaware, District of Columbia, Florida,
Georgia, Kentucky, Maine, Maryland, Massachusetts, Michigan, New
Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania,
Rhode Island, South Carolina, Tennessee (parts), Vermont, Virginia,
West Virginia.
EST5EDT

Atlantic Standard Time, Atlantic Daylight Time
Canada: Newfoundland (parts), Nova Scotia, Prince Edward Island, Quebec
(parts).
AST4ADT

Newfoundland Standard Time, Newfoundland Daylight Time
Canada: Newfoundland (parts).
NST3:30NDT

Western European Time, Western European Time Daylight Savings Time
Great Britain, Ireland
WET0WETDST

Portuguese Winter Time, Portuguese Summer Time
PWT0PST

Mitteleuropaeische Zeit, Mitteleuropaeische Sommerzeit
MEZ-1MESZ
372 Appendix A

Time Zones
Middle European Time, Middle European Time Daylight Savings Time
Belgium, Luxembourg, Netherlands, Denmark, Norway, Austria, Poland,
Czechoslovakia, Sweden, Switzerland, DDR, DBR, France, Spain, Hungary,
Italy, Yugoslavia
MET-1METDST

South Africa Standard Time, South Africa Daylight Time
SAST-2SADT

Japan Standard Time
Japan
JST-9

Australian Western Standard Time
Australia: Western Australia
WST-8:00

Australian Central Standard Time
Australia: Northern Territory
CST-9:30

Australian Central Standard Time, Australian Central Daylight Time
Australia: South Australia
CST-9:30CDT

Australian Eastern Standard Time
Australia: Queensland
EST-10

Australian Eastern Standard Time, Australian Eastern Daylight Time
Australia: New South Wales, Victoria
EST-10EDT

Australian Eastern Standard Time, Australian Eastern Daylight Time
Australia: Tasmania
EST-10EDT - Tasmania

New Zealand Standard Time, New Zealand Daylight Time
NZST-12NZDT
Appendix A 373

Time Zones
TZTAB Time Zone Adjustment Table
TZTAB Time Zone Adjustment Table
The differences between Coordinated Universal Time (UTC) and local time are described
in table form in the file TZTAB.LIB.SYS. This table can be used in conjunction with
historical information to represent several local areas simultaneously. This file is also used
by mktime() to compute the UTC from the local time.

The TZTAB file contains one or more time zone adjustment entries. The first line of the
entry contains a unique string that is compared to the value of the TZ environment
variable.

The format of the first line of a time zone adjustment entry is:

tzname diff dstzname

where:

tzname Is the time zone name or abbreviation.

diff Is the difference in hours from UTC. Fractional values of diff are
expressed in minutes preceded by a colon. For example, 1:15 equals one
hour and fifteen minutes.

dstzname Is the name or abbreviation of the Daylight Savings Time zone.

The first line of the entry always begins with an alphabetic character.

The second and subsequent lines of each entry contain details about the adjustments for a
time zone. Each line contains seven fields. The seventh field specifies a particular time
zone adjustment. The first through sixth fields describe the time range for the adjustment.
The fields are separated by blanks or tabs. The meanings of each field are as follows:

First field (0-59) Specifies the minute at which a time zone adjustment takes effect.

Second field (0-23) Specifies the hour at which a time zone adjustment takes effect.

Third field (1-31) Specifies the day of the month at which a time zone adjustment takes
effect.

Fourth field (1-12) Specifies the month in which a time zone adjustment takes effect.

Fifth field (1970-1999) Specifies the year in which a time zone adjustment takes effect.

Sixth field (0-6) Specifies the day of the week in which a time zone adjustment takes
effect, with 0 equal to Sunday, 1 to Monday, etc.

The minute, hour, and month fields contain a single number within the range given above
for each. The day of the month, year, and day of the week fields may contain a single
number or a range of numbers separated by a minus sign. Either the day of the month or
the day of the week field must be a range, and the other must be a single number.

The seventh field is a string that describes the time zone adjustment in the following
format:

tznamediff

where:
374 Appendix A

Time Zones
TZTAB Time Zone Adjustment Table
tzname An alphabetic string containing the time zone name or abbreviation. The
tzname value must match either the tzname field in the first line of the
time zone adjustment entry or the dstzname field in the first line of the
entry.

diff The difference in hours from GMT. Any fractional value of diff is shown
in minutes.

Comments are allowed within time zone adjustment entries. They begin with a pound sign
(#) and include all characters up to a new line. Comments are ignored.

Example

The time zone adjustment entry for the Eastern Time Zone in the United States is as
follows:

EST5EDT
0 3 6 1 1974 0-6 EDT4
0 3 22-28 2 1975 0 EDT4
0 3 24-30 4 1976-1986 0 EDT4
0 3 1-7 4 1987-1999 0 EDT4
0 1 24-30 11 1974 0 EST5
0 1 25-31 10 1975-1999 0 EST5

Normally, Eastern Standard Time (EST) is five hours earlier than Coordinated Universal
Time. This is indicated in the first line. However, during Eastern Daylight Time, the
difference is four hours. The first time Eastern Daylight Time took effect was on January
6, 1974 at 3:00 am EDT. This information is given in the second line. Note that the minute
before was 1:59 am EST. The change back to standard time took effect on the last Sunday
in November of the same year. This information is given on the sixth line. At that point,
the time changed from 1:59 am EDT to 1:00 am EST. The transition to Eastern Daylight
Time since then has gone from the last Sunday in February (indicated on the third line) to
the last Sunday in April (fourth line) to the first Sunday in April (fifth line). The return to
standard time for the same period has consistently occurred on the last Sunday in October
(seventh line).

The TZTAB file was developed by Hewlett-Packard. It can support and is compatible with
Native Language Support (NLS).
Appendix A 375

Restrictions and Special Considerations
Identifier Names
B Restrictions and Special
Considerations

This appendix addresses restrictions and considerations that are not in the range of this
manual.

Identifier Names
Function names beginning with an underscore (_) are reserved for library use. Therefore,
you should not specify identifiers that begin with an underscore.

File Access Restrictions

You can open the following special files for read-only or write-only, but not for update:

• variable record length files

• circular files

• RIO files

• message files

• KSAM files

Attempting to open one of these files with update mode will result in an open error.
Random access to these files using fseek , lseek , or rewind is allowed only on files opened
with read access only.

If linking with the POSIX/iX lbrary, only files whose underlying format is byte stream can
be created or opened.

Mixed I/O from the C System and Other Systems
With one exception, concurrent use of the HP C I/O system and another I/O system to
output data to the same disk file is not supported. The one exception is interleaved output
using another I/O system and the HP C I/O system through the standard C streams
stdout and stderr . In this case, if you want the C output to appear in the file after a call
Appendix B 377

Restrictions and Special Considerations
Mixed I/O from the C System and Other Systems
to an output routine is made, you must call the fflush function immediately after the call
or change the buffering scheme for the stdout and stderr streams to completely
unbuffered or line buffered by calling the C library function setvbuf . Refer to the
description of the setvbuf function in chapter 5 for details.
378 Appendix B

System-Dependent Information
C System-Dependent Information

This appendix briefly summarizes the differences between the HP C/iX library as it is
implemented on HP 3000 Series 900 computers and HP 9000 Series 700/800 computers.
Because the HP 9000 Series 700/800 are UNIX-based systems, the summary of differences
given will usually apply to other UNIX-based systems as well. Refer to chapter 5 for
detailed descriptions of the HP C/iX library functions. Refer to the HP C/HP-UX Reference
Manual for complete descriptions of the HP C/HP-UX functions.

Additional differences between POSIX/iX library functions and HP C/HP-UX library
functions are described in the MPE/iX Developer's Kit Reference Manual.

This appendix is organized alphabetically by function name. For each function, a
description of the behavior on both systems is provided.

abort

HP 9000 Series 700/800: The abort function sends a signal to the calling process to
terminate it. If this signal is caught or ignored, abort returns without
terminating the process. If this signal is neither caught nor ignored, a core
dump is produced and a message is issued.

HP 3000 Series 900: The abort function uses the QUIT intrinsic to terminate a process.
This always results in process termination. No core dump is produced.

access

HP 9000 Series 700/800: The following amode parameter bit pattern is supported:

01 execute (search)

This option checks whether a file may be executed.

HP 3000 Series 900: The execute amode parameter bit pattern is not supported.

brk and sbrk

HP 9000 Series 700/800: Newly allocated space obtained from brk and sbrk is set to
zero.

HP 3000 Series 900: Newly allocated space obtained from brk and sbrk is not set to zero.

malloc

HP 9000 Series 700/800: The default memory allocation package provided in the C
library is not the fast memory allocation package. This package is known
as the malloc(3C) package.

HP 3000 Series 900: The memory allocation package provided in the C library is the fast
memory allocation package. This package is known as the malloc(3X)
package on the HP 9000 Series 700/800. It is available on HP 9000 Series
700/800 by using the -lmalloc linker option.

mktemp

HP 9000 Series 700/800: The string of X's in the argument to mktemp are replaced by the
Appendix C 381

System-Dependent Information
current process identification number.

HP 3000 Series 900: The string of X's in the argument to mktemp are replaced by a
randomly generated number.

open

HP 9000 Series 700/800: The following options are available:

O_NDELAY: This option controls whether a process blocks on an I/O
request until the request is completed.

O_EXCL: If O_EXCL and O_CREAT are set, open() fails if the file
exists.

O_SYNCIO: If a file is opened with O_SYNCIO, file system writes for
that file are done through the cache to the disk as soon as
possible, and the process blocks until this is completed.

The O_MPEOPTSoption that allows you to specify MPE-like file attributes is
not available.

HP 3000 Series 900: The O_MPEOPTS option is available. The O_NDELAY, O_EXCL and
O_SYNCIO options are not available.

read

HP 9000 Series 700/800: An open option is available to specify whether or not a process
should block until the read request is complete.

HP 3000 Series 900: No open option is available to specify whether or not a process
should block until the read request is completed. A process always blocks
until the read request is complete.

setjmp and longjmp

HP 9000 Series 700/800: The setjmp and longjmp functions save and restore a signal
mask while _setjmp and _longjmp manipulate only the stack and
registers. The setjmp and longjmp functions may be able to detect a
condition in which the environment of the setjmp no longer exists and
recover.

HP 3000 Series 900: The setjmp and longjmp functions do not save and restore a signal
mask; they manipulate only the stack and registers. The setjmp and
longjmp functions are not able to detect a condition in which the
environment of the setjmp no longer exists.

sleep

HP 9000 Series 700/800: The sleep function is implemented using signals. These signals
may cause the time slept to be more or less than the requested sleep time.
If the actual sleep time is less than the requested sleep time, sleep
returns the difference in these two times.

Seconds must be less than 232.
382 Appendix C

System-Dependent Information
HP 3000 Series 900: The sleep function is implemented by calling the PAUSE intrinsic.
Signals will not interfere with the amount of time slept. Sleep returns its
argument if an error occurs, zero if no error occurs.

Seconds must be less than 2,147,485.

write

HP 9000 Series 700/800: If a write requests more bytes to be written than there is room
for, the write fails and -1 is returned.

An open option is available to specify whether or not a process should
block until the write request has completed.

HP 3000 Series 900: If a write requests more bytes to be written than the file size limit,
only as many bytes as there is room for are written. For example, if there
is space for 20 bytes more in a file before reaching a limit, a write of 512
bytes returns 20. The next write of a non-zero number of bytes gives a
failure return.

No open option is available to specify whether or not a process should
block until the write request has completed. A process blocks until the
write request is completed.
Appendix C 383

	1� Introduction to the HP C/iX Library
	2� HP C/iX Library Input and Output
	3� Interfacing with MPE/iX
	4� HP C/iX Library Header Descriptions
	5� HP C/iX Library Function Descriptions
	A� Time Zones
	B� Restrictions and Special Considerations
	C� System-Dependent Information

