
HP Business BASIC/XL
Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 1
Manufacturing Part Number: 32715-90001
E1187

U.S.A. November 1987

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1987 by Hewlett-Packard Company
2

1- 1

Chapter 1 Introductions

HP Business BASIC/XL is a high level programming language implemented on
the 900 Series HP 3000. The BASIC language was developed to teach
beginners about computer programming. HP Business BASIC/XL takes
advantage of that ease of use, yet also provides a full interface to the
powerful MPE XL operating system.

HP Business BASIC/XL contains built-in interfaces to the IMAGE database
management system, VPLUS screen handler, and terminal softkeys. It also
features a report generator, sophisticated error handling capabilities,
and a static analyzer in the interpreter.

HP Business BASIC/XL has an interpreter and a compiler. Programs can be
developed with the interpreter, which has the features of an editor,
debugger, and calculator. Working programs can be compiled to increase
their speed and decrease their required storage space.

The interpreter checks the syntax of each line as it is entered, provides
immediate feedback about syntax errors and the effect of program
modifications, and allows quick transition between editing and running a
program.

HP Business BASIC/XL provides many statements and commands that
facilitate debugging. The interpreter's HELP command provides immediate
information about the syntax and function of any HP Business BASIC/XL
keyword or statement. Used as a calculator, the interpreter returns the
value of any expression. TRACE statements print messages when one line
transfers control to another line or when variables are assigned a val-
ue.The PAUSE statement suspends program execution, during which time
variable values and program lines can be displayed and modified. Pro-
gram execution can then be continued, and the effect of any changes can
be examined.

1-2

2-: 1

Chapter 2 Program Development Environment

Introduction

HP Business BASIC/XL's program development environment is a line editor
and program interpreter that aids in program development and manages
program files. HP Business BASIC/XL also has a compiler to compile
programs. Compiled programs run faster than interpreted ones, so it is
often a good idea to develop a program in the interpreter and compile it
once it is running correctly. The compiler is explained in chapter 9.

The material in this chapter is summarized below:

TITLE CONTENT

The Interpreter How to enter the interpreter.

The Current Program General information about the structure of a
 program currently in the interpreter.

Creating and Modifying a How to create and modify an HP Business
Program BASIC/XL program; how to name it, list it,
 and protect it from listing and
 modification.

Managing Program Files How to save a program on a disk file,
retrieve it, and execute it; how to make it
executable but protect it from listing and

 modification.

Debugging a Program How to suspend program execution to examine
 variable values and change code, and then

resume execution from the same point; how to
trace line execution and changes in variable

 values.

HELP Statement How to display information about HP Business
BASIC/XL statements, commands, and errors.

Accessing the Operating How to execute operating system commands
System from HP Business BASIC/XL.

Calculator Mode How HP Business BASIC/XL evaluates
 expressions that are not within programs.

2-: 2

NOTE In the examples in this chapter, user input is underlined. User
 input ends with RETURN unless otherwise specified. In some
 examples, RETURN is shown to clarify that example.

The Interpreter

Typing the command BBXL in response to the operating system prompt will
run the interpreter. You can use options to specify a file from which
input will be read or a file to which output will be written or both.
You can also use a file which contains commands to be executed by the
interpreter, called a command file.

Syntax

 BBXL [cfile [, ifile [, ofile [, xlfile]]]]

Parameters

cfile Command file which can contain both commands and program
lines. The command file cfile must be an ASCII file.

 Its formal file name is BASCOM and its default
 assignment is $STDINX.

ifile HP Business BASIC/XL program input file which contains
data for INPUT statements. The input file ifile must be

 an ASCII file. Its formal file name is BASIN and its
 default assignment is $STDINX.

ofile HP Business BASIC/XL program output file, that the PRINT
statement sends output to. The output file ofile must

 be an ASCII file. Its formal file name is BASOUT and
 its default assignment is $STDLIST.

xlfile The xlfile parameter specifies one or more executable
libraries to the interpreter. A single library may be

referenced by entering the fully qualified library file
 name. Two or more libraries may be referenced by
 enclosing the list of libraries in quotes, separating
 each name with commas, semicolons, or spaces.

Examples

The first example below uses a command file called Command, and uses the
executable libraries Lib.Pub.Sys and Mylib in the log on group and
account. The second example specifies an input file (Infil) and an
output file (Outfil).

 BBXL Command,,,"Lib.Pub.Sys,Mylib.!hpgroup.!hpacct"

2-: 3

 BBXL ,Infil,Outfil

HP Business BASIC/XL can also be run as a program using the following
syntax:

 RUN HPBBXL.PUB.SYS [;PARM= n]

The PARM option is used to specify two things to the interpreter:

1. How much space the interpreter should reserve for representing the
 currently-executing subunit.

2. Which of the BASCOM, BASIN, or BASOUT files has been respecified
 using a file equate. n specifies which of the parameters have
 been redefined. The following are the values of n:

 0 No redefinition of the files.

 1 BASCOM has been redefined.

 2 BASIN has been redefined.

 3 BASCOM and BASIN have been redefined.

 4 BASOUT has been redefined.

 5 BASCOM and BASOUT have been redefined.

 6 BASIN and BASOUT have been redefined.

 7 BASCOM, BASIN, and BASOUT have been redefined.

To set both of these parameters on the same run of the interpreter, add
the two values together and use their sum as the PARM value.

Consider the following two files (HELLO and RUNHELLO) in the following
example:

The HELLO file contains the HP Business BASIC/XL program:

 10 PRINT "HELLO"

The RUNHELLO file contains the commands:

 GET HELLO
 RUN
 EXIT

You can run the HELLO program by typing in the following command in
response to the operating system prompt:

 BBXL RUNHELLO

2-: 4

The commands in the RUNHELLO file are executed by HP Business BASIC/XL's
interpreter. In response to the RUN command, "HELLO" is printed on the
terminal's screen. Incorporating the command into a stream job has the
same effect.

Redirecting BASCOM, BASIN, and BASOUT is useful when running stream
jobs.

Any of the file parameters can be specified by a local file equate
statement.

The HELLO program can be run by typing the following commands in response
to the operating system prompt or by including the commands in a stream
file, as illustrated below:

 FILE BASCOM = RUNHELLO
 RUN HPBBXL.PUB.SYS;PARM=1

The Current Program in the Interpreter

Within the interpreter, the program being created, modified, executed,
or debugged resides in the interpreter's work space. This program is
referred to as the current program.

The current program can be permanently saved in a disk file by using the
SAVE and RESAVE commands. The GET command is used to read the contents
of a permanent disk file into the interpreter's work space.

Line Ranges

Many commands and statements in this chapter operate on ranges of pro-
gram lines. In syntax specifications, line_range is a range of lines
and line_range_list is a list of line ranges.

The syntax of line_range_list is shown below.

Syntax

line_range [, line_range]...

Parameters

line_range One of the following:

 ALL
su_spec
ln_spec1 [/ ln_spec2]

ALL All program lines. In a command or statement where
line_range or line_range_list is optional, ALL is the

 default unless otherwise specified.

su_spec One of the following program unit specifiers:

 SUB sub_id Range is all of sub_id , which
 must exist.

2-: 5

 [SUB] FN func_id Range is all of FN func_id , which
 must exist.

 MAIN Range is all of the main
 program, which must exist.

ln_spec1 First line in range, specified by one of the following:

line_num If line_num does not exist,
line_range is null (see Table

 2-1 and Table 2-2).

line_num {+|-} offset The line that is offset lines
 from the line numbered line_num
 (see offset , below). The line
 numbered line_num must exist in
 the program. If line_num {+|-}

offset does not exist, the
 existing line nearest it is used
 (see Table 2-1 and Table 2-2).

 FIRST First program line.

 LAST Last program line.

 * Last line executed (undefined
 for a stopped program). The
 command LIST * displays this
 line.

line_label Must be defined in the currently
 executing program unit.

line_label {+|-} The line that is offset lines
offset from the line labeled line_label

 (see offset , below). The label
line_label must be defined in

 the currently executing program
 unit. If line_label {+|-}

offset does not exist, the line
 nearest it is used (see Table
 2-1 and Table 2-2).

 MAIN The first line of the main
 program. The main program must
 exist.

 SUB sub_id The first line of the subprogram
sub_id . The subprogram must

 exist.

 [SUB] FN func_id The first line of the function
 FN func_id . The function must
 exist.

offset Number of actual lines past (or
 before) line_num . For example,
 10+3 is the line three lines
 from line 10. This is not
 necessarily line 13. In the
 following program, it is line
 50:

 10 PRINT "HI"
 20 X=4
 30 PRINT X
 50 END

2-: 6

ln_spec2 Last line in range. The line_num through line_label
 {+|-} offset are the same as specified for ln_spec1 .
 MAIN, SUB and FN change to the corresponding last line
 in each.

 MAIN Last line in main program. The
 default is ln_spec1 .

 SUB sub_id Last line in sub_id .

 [SUB] FN func_id Last line in FN func_id .

Examples

The following shows examples of specifying line ranges.

ALL !Specifies all lines
 SUB Sub1 !Specifies all lines in Sub1
 FNAdd, FNScramble$!Specifies all of FNAdd and FNScrable$
 MAIN, FNAdd/FNScramble$!Specifies all of FNAdd, FNScramble, and
 !all of the main program
 100,1000+50,Label+50 !Specifies lines 100, and the lines that are 50
 !lines past 1000 and 50 lines past Label
 FIRST+100/LAST-350 !Specifies 100 lines past FIRST through 350 lines
 !before LAST
 */LAST !Specifies the last executed line through the
 !last program line
 -50/+10,SUB Sub1/LAST !Specifies 50 lines before the last executed
 !line through 10 lines after the last executed
 !line, and the first line of Sub1 through the
 !last program line
 FIRST/FNAdd !Specifies the first program line through the
 !last line of FNAdd
 MAIN/2000 !Specifies the first line of the main program
 !through line 2000
 100/150 !Specifies lines 100 through 150

Table 2-1 shows where the line range begins when ln_spec1 is not in the
program. Table 2-2 shows where the line range ends when ln_spec2 is not
in the program.

Table 2-1. Where Line Range Begins When ln_spec1 is Not in
Program

ln_spec1	ln_spec2 is	Program does not	Program does not have	
	Specified	have line_num	line_num {+	-}
			offset	
			(but has line_num)	

line_num	No	Nothing happens.	Not applicable.

line_num	Yes	Range begins with	Not applicable.
		existing line number that	
		is closest to but greater	
		than line_num .	

line_num {+	-} offset	Irrelevant	Error occurs.	If
			line_num {+	-} offset

2-: 7

			is before first	
			program line, range	
			begins with first	
			program line.	
			If	
			line_num {+	-} offset
			is after last program	
			line, range begins	
			with last program	
			line.	

Table 2-2. Where Line Range Ends When ln_spec2 is Not in Program

ln_spec2	Program does not have	Program does not have	
	line_num	line_num {+	-} offset
		(but has line_num)	

line_num	Range ends with existing	Not applicable.
	line number that is	
	closest to but less than	
	line_num .	

line_num {+	-} offset	Error occurs.	If line_num {+	-} offset
		is before first program		
		line, range ends with		
		first program line.		
		If line_num {+	-} offset	
		is after last program		
		line, range ends with		
		last program line.		

Examples

Refer to this program when reading the examples that follow it:

 100 A=3
 110 B=4
 120 PRINT A,B
 130 Add: C=A+B
 140 PRINT C
 150 END
 160 DEF FNTwo
 170 PRINT "In FNTwo"
 180 RETURN 2
 190 FNEND

Range Specified Range Used (or Effect)

10 Nothing happens
10/120 100/120
10/125 100/120
110 110
10+1 Error
10+1/130 Error
100+2 120

2-: 8

100+2/140 120/140
100+2/145 120/140
100+2/150-1 120/140
200-3 Error
100/200-3 Error
110-3/140-1 100/130
130+5 180
Add 130 If the main unit is currently executing, otherwise
 an error results.
Add-1/Add+1 120/140 If the main unit is currently executing,
 otherwise an error results.
MAIN 100/150
FNTwo 160/190

Halt Key

Pressing CONTROL Y while a program is executing suspends the program.
Any I/O (Input or Output) operation that is in process finishes before
program execution is suspended. For example, if the program is reading a
disk file, that read will complete before the program is suspended. When
the HALT is executed, the cursor appears on the terminal screen. To
resume program execution, use the CONTINUE command, described later in
this chapter.

Pressing the halt key twice in rapid succession suspends the program,
but any I/O operation that is in progress is aborted.

INDENT Command

The INDENT command indents the bodies of constructs. This tool makes it
easy to see the nesting level of the program's constructs. The INDENT
command modifies lines without displaying them.

Syntax

 INDENT [num_expr1 [, num_expr2]]

Parameters

num_expr1 The value num_expr1 +8 is the starting column number of
 every line that is not in the body of a structured
 statement. The value of num_expr1 must be in the range
 [1,63]. Default is one.

num_expr2 Increment for calculating starting column numbers of
 nested (indented) lines. If a line is in the body of
 one structured statement, it is nested (and indented)
 once and begins in column(num_expr1 +8)+ num_expr2 . If a
 line is in the body of n structured statements, it is
 nested (and indented) n times, and begins in column
 (num_expr1 +8)+(n * num_expr2). The value of num_expr2
 must be in the range [0,63]. The default is three.

The INDENT statement indents the part of the line that follows the line
number and label. It does not indent the line number or the label of a
line. The line number is always right-justified in columns two through
seven. For a labeled line, the indented line will contain the line
number, one blank space, the label and a colon (:). The rest of the line
begins in the column specified by the INDENT command, with two

2-: 9

exceptions:

* If the label or colon occupies the specified column, then the rest of
 the line begins in the next available column.

 * If the specified column is beyond 72, then the rest of the line
 begins in column 72.

A comment (beginning with "!") is listed in the column originally en-
tered (relative to the line number), if possible. If this is not pos-
sible because the statement occupies that column, then the comment
begins in the next available column.

If a modified line is too long, the LIST command displays:

 * The line, except characters beyond the maximum line length.
 * An asterisk (*) in the last column of the line (the asterisk is
 character 500).

Examples

The following example shows the effect of the INDENT command. First, the
starting column of each line is set to seven and each nested line is
indented three. The second INDENT command changes the starting column
to three, and the indentation to five.

 > list
 ! exam217
 5 ! BEGIN PROGRAM
 10 DIM A(5),B$(2,4)[2]
 20 INTEGER X,Y,Z
 30 Loop1: FOR I=1 TO 5 !Fill A
 40 A(I)=I
 45 PRINT I
 50 NEXT I
 60 Loop2: FOR I=1 TO 2 !Fill B
 70 FOR J=1 TO 4
 75 REM INNER LOOP
 80 B$(I,J)=CHR$(I)+CHR$(J)
 85 PRINT I,J
 90 NEXT J
 100 NEXT I
 999 END
 > indent 7,3
 > list
 ! exam217
 5 ! BEGIN PROGRAM
 10 DIM A(5),B$(2,4)[2]
 20 INTEGER X,Y,Z
 30 Loop1: FOR I=1 TO 5 !Fill A
 40 A(I)=I
 45 PRINT I

2-: 10

 50 NEXT I
 60 Loop2: FOR I=1 TO 2 !Fill B
 70 FOR J=1 TO 4
 75 REM INNER LOOP
 80 B$(I,J)=CHR$(I)+CHR$(J)
 85 PRINT I,J
 90 NEXT J
 100 NEXT I
 999 END
 > indent 3,5
 > list
 ! exam217
 5 ! BEGIN PROGRAM
 10 DIM A(5),B$(2,4)[2]
 20 INTEGER X,Y,Z
 30 Loop1: FOR I=1 TO 5 !Fill A
 40 A(I)=I
 45 PRINT I
 50 NEXT I
 60 Loop2: FOR I=1 TO 2 !Fill B
 70 FOR J=1 TO 4
 75 REM INNER LOOP
 80 B$(I,J)=CHR$(I)+CHR$(J)
 85 PRINT I,J
 90 NEXT J
 100 NEXT I
 999 END
 >

LIST Command

The LIST command lists all or part of a program to the destination
specified by the SEND SYSTEM OUTPUT TO statement (usually the terminal)
or to a specified device (usually a spooled printer). The LIST command
is a command-only statement. That is, it can only be issued at the
interpreter prompt and cannot be placed in a program. Compiler
formatting options can be used to print page titles or page numbers,
control the number of lines printed per page and print a list of the
identifiers in the program.

Syntax

 [{NONAME }]
LIST [line_range_list] [TO dev_spec] [;{FORMATTED}]
 [{FORMAT }]

Parameters

dev_spec See "Device Specification Syntax," in chapter 6. If
 this parameter is specified, the LIST command lists the
 lines on the specified device (dev_spec); otherwise, it
 appends them to the file specified by the most recently
 executed SEND SYSTEM OUTPUT TO statement.

NONAME The program name is not listed if this parameter is

2-: 11

 specified. This is relevant only when the program has a
 name, that is, if it was retrieved by the GET command or
 named with the NAME command. If you have just typed in
 the program, and have not used the NAME command, the
 program will not have a name.

FORMATTED The listing is formatted using a set of the compiler
FORMAT listing options that appear in the program if this
 parameter is specified. The set of COPTIONS used to
 format the interpreter listing are: LINES, LIST, ID
 TABLES, PAGE, PAGESUB, TITLE, and TITLESUB. These are
 explained in chapter 9.

The LIST command may add or remove blanks and parentheses to make lines
more readable. It also does the following:

* Lists lines in line number order, whether or not they were entered in
 that order.
* Lists identifiers with first letters upshifted and all other letters

 downshifted.
 * Lists keywords in all uppercase letters.
* Lists empty statements as empty comments (for example, it lists the

 line "500 Label:" as "500 Label: !").

The column at which long lines are broken depends on the output device
and WIDTH. On a terminal screen, the default line length is 80; on a line
printer, it is 132.

If a line exceeds the maximum length, the LIST command prints an asterisk
(*) in its last column and truncates the line at the maximum length.

To stop the LIST command, press CONTROL Y.

Examples

The following example shows the LIST command. Without parameters, the
LIST command below displays the entire program. When LIST has the
parameter 10/90, lines 10 through 90 are displayed.

 > 10 real ALPHA, BeTa,delta
 > 5 SHORT c, d, e
 > 100 !
 > 73 Correction:
 > LIST
 5 SHORT C,D,E
 10 REAL Alpha,Beta,Delta
 73 Correction: !
 100 !
 > LIST 10/90
 10 REAL Alpha,Beta,Delta
 73 Correction: !
 >

LIST SUBS Command

2-: 12

The LIST SUBS command prints the name and starting line number of every
subunit in the program, and indicates the currently executing program
unit with an asterisk (*). The LIST SUBS command is a command-only
statement. That is, it can only be issued at the interpreter prompt and
cannot be placed in a program.

Syntax

 LIST SUBS

Example

The following example shows the use of the LIST SUBS command. When you
type LIST SUBS, the first line and subunit name are displayed for each
subunit in the program.

 > LIST
 10 PRINT "this is the main"
 20 CALL A
 100 SUB A
 110 PRINT " in sub a"
 120 PRINT FNX
 130 SUBEND
 100000 DEF FNX
 100100 PRINT " in fnx"
 100200 RETURN 5
 100300 FNEND
 > LIST SUBS
 First Line Subunit name
 ---------- ------------
 10 MAIN *
 100 A
 100000 FNX

MODIFY Command

The MODIFY command replaces, deletes, or inserts characters in one or
more program lines. The MODIFY command is a command-only statement.
That is, it can only be issued at the interpreter prompt, and cannot be
placed in a program.

Syntax

{MODIFY}
{MOD } [line_range_list]

The MODIFY command displays the lines of line_range_list one at a time.
If a program line occupies more than one physical line, each physical
line is displayed separately. When a line is displayed, the cursor is
positioned immediately under the beginning of that portion of the line
to be modified. Choose one of the editing commands in Table 2-4 or type
thecharacters to be replaced.

2-: 13

After editing the line, press RETURN. The MODIFY command displays the
modified line for further modification. When you are finished with the
modifications, type RETURN after the modified line is displayed. HP
Business BASIC/XL modifies the line and, if it is correct, incorporates
the modified line into the program. Then the next line in the
line_range_list is displayed for modification. If the modified line
has a syntax error, the error message associated with that error is dis-
played and you return to the MODIFY mode for that line.

If you have difficulty modifying the line and wish to start with the
version of the line that you had when you began, type "//" or CONTROL Y.

Table 2-4. MODIFY Subcommands

Subcommand	Modification	Usage

D (or d)	Delete one character or a series	Type D under each character to be
	of characters.	deleted.

D (or d)	Delete a series of characters.	Type D under the first and last
		characters to be deleted.

D (or d)E (or e)	Delete from one character to the	Type D under the first character
	end of the line.	to be deleted and E (or e)
		immediately after D.

D(or d)&	Delete from one character to the	Type D under the first character
	continuation character (&).	to be deleted and & immediately
		after D.

I (or i)	Insert characters.	Type I under the character before
		which characters are to be
		inserted; after I, type the
		characters to be inserted.

R (or r)	Replace characters.	Type R under the first character
		of the string to be replaced.
		After R, type the n characters
		that will replace the first
		character and the next n -1
		characters.

// or CONTROL Y	Cancel modifications on current	Type one of the following under
	line.	the line: // or CONTROL Y.

Any other	Replace characters.	Type the characters that will
character		replace those in the preceding
		line.

2-: 14

If a modified line is too long, the MODIFY command displays the
following:

 * The line, except characters beyond the maximum line length.
* An asterisk (*) in the last column (the asterisk is character 500).

To cancel modifications on a line, type "//" or CONTROL Y. The original
line will be displayed for modification.

To stop the MODIFY command, type "//" or CONTROL Y before modifying the
currently displayed line, or type "//" or CONTROL Y immediately followed
by "//" or CONTROL Y.

Examples

The following examples show the use of the MODIFY command. Lines 30,40,
50, and lines 100 through 180 are modified. "//" is used to cancel the
modification of line 150.

 > LIST
 10 REM 5/21/84
 20 PRINT "BEGIN"
 30 SHORT INTEGER A,B
 40 SHORT INTEGER C,D
 50 INTEGER E,F,G,H,I
 60 READ A,B
 70 READ C,D
 80 READ E,F
 90 DATA 1,2,3,4,5,6,7,8,9
 100 PRINT "A,B,E,F"
 110 PRINT A,B,E,F
 120 PRINT G,H,I
 130 PRINT A,B,H,I
 140 PRINT I,H,G,A,B,C
 150 PRINT E,F,G,H
 160 PRINT F,A,B,C,D,E
 170 PRINT
 180 PRINT "END"
 999 END

 > MODIFY 30/50,100/180
 30 SHORT INTEGER A,B

DDDDDD RETURN
 30 INTEGER A,B
 RETURN
 40 SHORT INTEGER C,D

D D RETURN
 40 INTEGER C,D
 RETURN
 50 INTEGER E,F,G,H,I

DE RETURN
 50 INTEGER E,F

2-: 15

 RETURN
 100 PRINT "A,B,E,F"

IC,D, RETURN
 100 PRINT "A,B,C,D,E,F"
 RETURN
 110 PRINT A,B,E,F

RC,D,E,F RETURN
 110 PRINT A,B,C,D,E,F
 RETURN
 120 PRINT G,H,I

B,C,D,E,F,A RETURN
 120 PRINT B,C,D,E,F,A
 RETURN
 130 PRINT A,B,H,I

IC,D,E,F, RETURN
 130 PRINT C,D,E,F,A,B,H,I

DE RETURN
 130 PRINT C,D,E,F,A,B
 RETURN
 140 PRINT I,H,G,A,B,C

D DID,E,F RETURN
 140 PRINT D,E,F,A,B,C
 RETURN
 150 PRINT E,F,G,H

DE RETURN
 150 PRINT

// RETURN
 150 PRINT E,F,G,H

RA,B,C,D RETURN
 150 PRINT E,F,A,B,C,D
 RETURN
 160 PRINT F,A,B,C,D,E

// RETURN

 > LIST
 10 REM 5/21/84
 20 PRINT "BEGIN"
 30 INTEGER A,B
 40 INTEGER C,D
 50 INTEGER E,F
 60 READ A,B
 70 READ C,D
 80 READ E,F
 90 DATA 1,2,3,4,5,6,7,8,9
 100 PRINT "A,B,C,D,E,F"
 110 PRINT A,B,C,D,E,F
 120 PRINT B,C,D,E,F,A
 130 PRINT C,D,E,F,A,B
 140 PRINT D,E,F,A,B,C
 150 PRINT E,F,A,B,C,D
 160 PRINT F,A,B,C,D,E
 170 PRINT

2-: 16

 180 PRINT "END"
 999 END
 >

NAME Command

The NAME command names or renames the current program. The NAME command
is a command-only statement. That is, it can only be issued at the
interpreter prompt and cannot be placed in a program.

Syntax

 NAME [fname]

Parameters

fname A name for the current program. fname is a valid MPE
 file name that conforms to MPE file name rules. If

fname is not specified, the program has no name.
 Therefore, the NAME command can be used to delete a
 program's name. The SAVE and RESAVE commands use fname
 as the program name.

Examples

 NAME "Test1" !The current program is called Test1
 NAME "File2.grp" !The current program is called File2.grp
 NAME !The current program now has no name

REDO Command

The REDO command allows you to replace, delete, or insert characters in
the last line that was accessed. The line may have been entered or it
may have been accessed by any of the MODIFY, GET, LINK, MERGE, CHANGE, or
REDO commands. The REDO command works exactly like the MODIFY command,
except that it can modify a command as well as a program line. The REDO
command is a command-only statement. That is, it can only be issued at
the interpreter prompt and cannot be placed in a program.

Note that the GET command accesses each line of the program.
Consequently, a REDO following a GET will display the last line that the
GET has accessed.

Syntax

 REDO

Example

The following example shows the use of the REDO command to correct syntax
errors.

 > 20 INTGGER N,P,R RETURN
 20 INTGGER N,P,R

2-: 17

 ^
 Syntax error at character 12
 Statement needs =
 > REDO RETURN
 20 INTGGER N,P,R

E
 20 INTEGER N,P,R

Iumber RETURN
 20 INTEGER Number,P,R
 RETURN
 > LIST 20 RETURN
 20 INTEGER Number,P,R
 >

RENUMBER Command

The RENUMBER command renumbers one range of program lines. The range can
be the whole program. The RENUMBER command is a command-only statement.
That is, it can only be issued at the interpreter prompt, and cannot be
placed in a program.

Syntax

{RENUMBER} {TO}
{RENUM } [line_range] {, } [beginning_line_number] [BY increment]
{REN }

Parameters

line_range Lines to be renumbered. If you are specifying
 line numbers, use the line numbers that you had
 before issuing the RENUMBER command. The
 default is all program lines.

beginning_line_number New line number for the first line to be
 renumbered. The default is 10.

increment Increment. Number of lines between each
 renumbered line. The default is 10.

Secured lines remain secure when they are renumbered.

The RENUMBER command is not executed if it would rearrange lines. The
lines that surround the lines that are being renumbered must still
surround them after they are renumbered.

If a RENUMBER command would renumber a line with a number greater than
999999, then an error occurs and the command is not executed.

The RENUMBER command renumbers every line in the line_range . It also
substitutes the new line number for the old one in every reference to an
existing line (for example, if line 100 becomes line 350, the statement
"GOTO 100" becomes "GOTO 350"). The RENUMBER command does not change
line numbers that reference nonexistent lines.

2-: 18

Examples

 > LIST
 100 GOTO 200
 120 RESTORE 190
 190 GOTO 110 !(Line 110 does not exist)
 200 DATA ABC
 > RENUMBER
 > LIST
 10 GOTO 40
 20 RESTORE 30
 30 GOTO 110 !(110 does not change)
 40 DATA ABC
 > RENUM 20/40 TO 100 BY 5
 > LIST
 10 GOTO 110
 100 RESTORE 105
 105 GOTO 110 !(110 does not change, but now exists)
 110 DATA ABC
 > REN TO 500
 > LIST
 500 GOTO 530
 510 RESTORE 520
 520 GOTO 530 !(110 becomes 530)
 530 DATA ABC

SCRATCH Statement

The SCRATCH statement can be used to reset variables to their default
values, erase the current program, reset the values returned by
functions, or reset the entire interpreter environment.

Syntax

 [ALL]
 [PROG]
SCRATCH [COM]
 [VARS]

Parameters

ALL Set the HP Business BASIC/XL interpreter environment to
 the same state as that on initial entry following the
 BBXL command.

COM Deallocates all variables. Also stops program execution
 if the SCRATCH statement is in a subunit.

PROG Erases the current program in the interpreter's work
 space. PROG is the default option set for SCRATCH.

VARS Deallocates all variables except those in common areas.
 Also stops program execution if the SCRATCH statement is
 in a subunit.

The options used with the SCRATCH statement permit you to select the
level of features to be reset. Thus, SCRATCH VARS resets only those

2-: 19

features listed below the heading in the following list. SCRATCH COM
reinitializes the common area variables as well as resetting the fea-
tures performed in a SCRATCH VARS. Likewise, SCRATCH PROG resets the
SCRATCH PROG, SCRATCH COM and SCRATCH VARS features. Using SCRATCH ALL
resets all the features indicated for each of the SCRATCH options and
resets the interpreter back to its initial state. The following list
summarizes the features reset with each option level:

SCRATCH ALL.

* Interpreter's Configuration File read and configurable options reset.

* FILES ARE IN reset to home group and account under which HP Business
 BASIC/XL is running.

 * SEND OUTPUT TO reset to DISPLAY.

 * SEND SYSTEM OUTPUT TO reset to DISPLAY.

 * COPY ALL OUTPUT TO reset to DISPLAY.

* Output line width set to printer line width if HP Business BASIC/XL
 is running in batch mode.

* Output line width set to terminal line width if HP Business BASIC/XL
 is running interactively.

 * FLUSH INPUT buffer.

 * Branch-during-input keys cleared.

 * Typing definitions of the programmable function keys restored.

SCRATCH COM.

 * COMMON area variables reset according to INIT options selected.

SCRATCH PROG.

 * Current program erased.

 * Current program name erased.

 * Current program lockword erased.

* DEFAULT option to assign values to variables on arithmetic overflow
 or underflow set OFF.

 * Random seed number set to default value of PI/180.

 * STANDARD numeric output format set.

 * Angular units set to RADIANS.

2-: 20

 * BREAK key enabled.

 * Response function return value set to 0.

 * CURKEY function return value set to 0.

 * DBASE is reset.

 * WORKFILE is reset.

 * Form filename reset.

SCRATCH VARS.

* Non-COMMON area variables reset according to INIT option specified.

 * Any Tracing is turned off.

 * ERRL return value set to 0.

 * ERRN return value set to 0.

 * All open files that have been opened with the HP Business BASIC/XL
 ASSIGN statement that are not in a common area are closed.

SECURE Statement

The SECURE statement prevents program lines from being listed or
modified.

Syntax

 SECURE line_range_list

You cannot perform the following on a secured line:

 * Modify.
 * List (except for the line number, followed by an asterisk).
 * Move or copy.

You can perform the following on a secured line:

 * Delete.
 * Renumber.

Example

The following shows the results of using the SECURE statement:

 > LIST
 100 INTEGER A,B,C
 110 LET A=1
 120 LET B=2

2-: 21

 130 LET C=3
 140 PRINT A+B+C
 999 END
 > SECURE 110/130
 > LIST
 100 INTEGER A,B,C
 110 *
 120 *
 130 *
 140 PRINT A+B+C
 999 END
 > MODIFY 120
 Line 120 secured and cannot be modified.

In the above example, lines 110 through 130 were secured.

XREF Command

XREF is an interpreter command that generates a cross reference of the
entire current program, just the main program unit, or any procedure or
function of the current program. A cross reference is a list of the
identifiers in the specified part of the current program that includes
the following information: name, type, class, and line numbers on which
it is used. The cross reference is sorted according to identifier names.

Syntax :

 [WITH LIST]
XREF [sub_name [,sub_name]...] [WITH SOURCE] [TO listfile]

Parameters

sub_name Either MAIN or the name of the procedure or function for
 which the cross reference is to be generated. A cross
 reference is generated from the entire program if this
 is not specified.

WITH LIST If this parameter is specified, the cross reference
WITH SOURCE immediately follows the listing of the source code for
 each individual part (MAIN, procedure, or function). If
 it is not specified, the identifiers from the main are
 listed under a banner containing the word MAIN, and
 identifiers from each procedure or function are listed
 under a one-line banner with the name of the procedure
 or function.

listfile The name of the file the cross reference is to be
 printed to. If not specified, the cross reference is
 printed to the destination specified by the SEND SYSTEM
 OUTPUT TO statement (usually the terminal).

The cross reference is generated on a subunit basis. The following
information is provided for each identifier:

Name Name of the identifier.

Class Class to which the identifier belongs. Class
 information is designed to convey dimensionality and
 usage information. Dimensionality is specified by
 SIMPLE, identifiers declared implicitly or explicitly as
 scalars, and array identifiers declared implicitly or
 explicitly with the DIM statement as arrays. For

2-: 22

 numeric and string variables, usage is also
 characterized by the location of the declaration of the
 variable in the program, PARAMETER, or COMMON. If
 neither of those is specified, the variable is local.
 Identifiers that are not variables are characterized by
 their usage in the program as SUBPROGRAM, FUNCTION,
 EXTERNAL, or LABEL.

Type The data type of the identifier: SHORT REAL, REAL,
 SHORT INTEGER, INTEGER, SHORT DECIMAL, DECIMAL, or
 STRING.

Declaration Whether the numeric or string variable has been
 explicitly declared.

Occurrence The line numbers of the statements that the identifier
 occurs in. The line numbers of statements in which a
 new value is potentially assigned to the identifier are
 followed by an (*). The line number of the statement
 that the identifier is declared in is followed by an
 ampersand (@).

If either WITH LIST or WITH SOURCE is specified, the formatting of the
cross reference's output is controlled by any of the compiler options
such as LINES, LIST, PAGE, PAGESUB, TITLE, and TITLESUB present in the
program. Otherwise, the default compiler options are in effect.

NOTE Because of the large amount of internal information that must be
evaluated when creating a cross-reference, a cross-reference for a
large program can take a considerable amount of time. As a result,

 there may be a long delay before the first output is printed or
 displayed.

The following is a sample output of the cross reference:

 PAGE 1 HP Business BASIC/XL HP32715A.00.00 (c) Hewlett-Packard Co.
 1989 MON, MAY 18, 1989 4:44 PM

 * * * * * * * * * * * * * * * * * MAIN * * * * * * * * * * * * * * * * *

 A SIMPLE SHORT INTEGER
 250@ 470* 1210* 1590* 1660 3420* 3430 3450 3550*
 3560 3590

 A$ SIMPLE STRING
 230@ 1250* 1260* 1270 1290 1520* 1530 1540 1610*
 1630 1650 1790* 1800 1820 2070* 2080 2100 2210*
 2220 2230* 2250 2290 2300 2570* 2710* 2760 3030*
 3060* 3070 3670 3680

 B SIMPLE SHORT INTEGER
 250@ 3430

 B ARRAY SHORT INTEGER
 280@

 B$ SIMPLE STRING
 230@ 1760* 1780 2040* 2060

 B1 SIMPLE SHORT INTEGER

2-: 23

 260@

 B2 SIMPLE SHORT INTEGER

 260@

 I1 SIMPLE COMMON SHORT INTEGER
 220@ 1920* 1930 1940 2800* 2810 2820 2850* 2880
 2890 2910* 2920 2930 2940 2950 2970 3190* 3200
 3210 3280* 3290 3670* 3680 3750

 Z SIMPLE COMMON SHORT INTEGER
 220@ 1270* 1280 1630* 1640 1800* 1810 2080* 2090
 2220* 2240 2760* 2770 3160* 3680 3700 3720

Examples

 >XREF !Default parameters
 >XREF TO Printer !Listing to Printer
 >XREF WITH LIST !Cross reference will follow the source
 !for each program part
 >XREF MAIN,Sub1,FNX TO Display !Listing for selected program units,
 !to the terminal
 >XREF SUB Sub2 WITH LIST !Cross reference for Sub2

Program File Management

A program file is a file that contains an HP Business BASIC/XL program.
The program is stored in a file in one of the following formats:

BASIC SAVE A binary program file that contains a correct HP
 Business BASIC/XL program. It can be stored and

retrieved more efficiently than an ASCII or BASIC DATA
 file. It does not have to be converted to ASCII or

BASIC DATA format when it is stored, or have the syntax
 checked when it is retrieved. A program is to be
 compiled must be stored in this form.

NOTE "Clean" BASIC SAVE files from time to time by
saving the program in that file to an ASCII file

from the interpreter, using GET to bring the ASCII
file into the interpreter and then using RESAVE to

 store the file to the BASIC SAVE file. This is
 necessary because the interpreter does not do

complete "garbage collection" when program lines
 are deleted or modified.

ASCII An ASCII program file has fixed-length 80-byte records.
 Each program line is a series of one or more records.
 If a line exceeds the record length, the record ends

with a continuation character (&) and the line continues
in the next record. An ASCII file looks like the output

 of the LIST;NONAME command.

2-: 24

BASIC DATA A BASIC DATA file has fixed length 128-word records.

In an ASCII or BASIC DATA file, a line that exceeds 500 characters is
truncated and an asterisk is substituted for the 500th character. An
error occurs when the line is accessed.

Table 2-5 explains the program file management commands and statements
and shows which of them are compilable.

Table 2-5. File Management Commands and Statements

Statement or Command	Compilable	File Type	Effect

GET	No	BASIC SAVE	Replaces current program
			with program in specified
			disk file.
			Can execute program,
			starting at any line in
			the main program.

GET	No	ASCII	Retrieves program from
			specified disk file, one
		BASIC DATA	line at a time. Syntaxes
			each line. Converts
			syntactically illegal
			lines to comments. Can
			replace all or part of
			current program.
			Can execute program,
			starting at any line in
			the main program.
			Renumbers new lines.

GET SUB	No	BASIC SAVE	Adds specified subunit(s)
			to current program.

LINK	No	ASCII	Same as GET for ASCII and
			BASIC DATA files, except:
		BASIC DATA	cannot replace busy
			lines, execution must
			resume in program unit
			that executed LINK
			statement, does not
			affect variables.

MERGE	No	ASCII	Same as LINK, except:
			replaces current line
		BASIC DATA	only if retrieved line
			has or receives same line
			number, execution resumes
			at line following MERGE
			statement.

| | | | |
| RESAVE | No | Any | Stores current program in |

2-: 25

			existing or new disk
			file.

RUN	No	Any	Executes current or
			specified program,
			beginning at first or
			specified line.

RUNONLY	Yes	BASIC SAVE	Protects interpreted HP
			Business BASIC/XL program
			from listing and
			modification, but allows
			execution.

SAVE	No	Any	Stores current program in
			new disk file.

The term fname appears in the syntax specifications of several file
management commands and statements. For a description of fname , see
"File Identification," in chapter 6.

GET Statement

The GET statement retrieves a program from a disk file and can execute
it. The file type greatly affects the result of the GET statement, as
stated in Table 2-6.

Syntax

 GET fname [, line_num][; execution_line]

Parameters

fname The file name of the file containing the program that is
 to be retrieved. The file is in the BASIC SAVE, ASCII,
 or BASIC DATA format.

line_num Line number to be assigned to the first retrieved line.

execution_line Line identifier at which to begin execution subsequent
 to completing execution of the GET statement.

See Table 2-6 for more information on all of the above.

Table 2-6. How File Type Affects GET Statement

Affected	fname Is BASIC SAVE File	fname Is ASCII Or BASIC DATA File
Parameter		

fname	Program specified by fname	Program specified by fname is
	replaces current program and its	retrieved line by line. Each line
	variables. Common blocks remain	is checked for correct syntax.
	only if they are declared by the	Syntactically illegal lines are
	new program.	converted to comments. The GET
		stops if it retrieves a command
		(it does not execute the command).

2-: 26

| | | |

line_num	Ignored.	Current program lines from
		line_num to the end of the program
		are deleted. Default for line_num
		is one. Lines before line_num are
		not affected. First retrieved
		line is renumbered line_num ; if
		its old line number was n, then
		the number (line_num - n) is added
		to every line number in the
		retrieved lines (their own line
		numbers and the line numbers that
		they reference).

execution_line	If execution_line is specified,	If execution_line is specified,
	the new program begins executing	the resulting program begins
	at that line. The line must be in	executing at that line. The line
	the main program. If	must be in the main program.
	execution_line is not specified,	
	and a program executed the GET	
	statement, then the new program	
	begins executing at its first	
	line. If execution_line is not	
	specified, and the GET command was	
	executed, control returns to the	
	terminal.	

Examples

The contents of Filea and Fileb are:

Filea (BASIC SAVE) Fileb (ASCII)

--

 10 PRINT "Program A" 10 PRINT "Program B"
 20 CALL A_sub 20 CALL B_sub
 30 PRINT "END of Program A" 30 PRINT "End of Program B"
 40 STOP 40 STOP
 100 SUB A_sub 100 SUB B_sub
 110 PRINT "In subprogram A_sub" 110 PRINT "In subprogram B_sub"
 120 SUBEND 120 SUBEND

Example 1

The following examples show the effect of the GET statement of an ASCII
file while there is a program in the interpreter. Lines beginning with
line_num are deleted from the first program.

 > GET "Filea"
 > LIST
 ! Filea
 10 PRINT "Program A"
 20 CALL A_sub
 30 PRINT "End of Program A"
 40 STOP
 100 SUB A_sub
 110 PRINT "In subprogram A_sub"
 120 SUBEND
 > GET "Fileb",40
 > LIST

2-: 27

 ! FileA
 10 PRINT "Program A"
 20 CALL A_sub
 30 PRINT "End of Program A"
 40 PRINT "Program B"
 50 CALL B_sub
 60 PRINT "End of Program B"
 70 STOP
 130 SUB B_sub
 140 PRINT "In subprogram B_sub"
 150 SUBEND
 >

Example 2

The following example shows the effect of a programmatic GET of an ASCII
file. Because the GET specifies line 120, Program A is left intact, and
Program B becomes part of A_sub.

 > GET "Filea"
 > LIST
 ! Filea
 10 PRINT "Program A"
 20 CALL A_sub
 30 PRINT "End of Program A"
 40 STOP
 100 SUB A_sub
 110 PRINT "In subprogram A_sub"
 120 SUBEND
 > 15 GET "Fileb",120;20 !First line of Fileb is 120, execution &

skips to 20
 > 16 PRINT "This line should be skipped."
 > LIST
 ! Filea
 10 PRINT "Program A"
 15 GET "Fileb", 120;20 !First line of Fileb is 120, execution skips to 20
 16 PRINT "This line should be skipped."
 20 CALL A_sub
 30 PRINT "End of Program A"
 40 STOP
 100 SUB A_sub
 110 PRINT "In subprogram A_sub"
 120 SUBEND
 > RUN
 Program A
 In subprogram A_sub
 Program B
 In subprogram B_sub
 End of Program B
 > LIST
 ! Filea
 10 PRINT "Program A"
 15 GET "Fileb", 120;20 !First line of Fileb is 120, execution skips to 20
 16 PRINT "This line should be skipped."
 20 CALL A_sub
 30 PRINT "End of Program A"
 40 STOP
 100 SUB A_sub
 110 PRINT "In subprogram A_sub"
 120 PRINT "Program B"
 130 CALL B_sub
 140 PRINT "End of Program B"
 150 STOP
 210 SUB B_sub
 220 PRINT "In subprogram B_sub"
 230 SUBEND

2-: 28

 >

GET SUB Statement

The GET SUB statement retrieves specified subunits from a BASIC SAVE
file and adds them to the current program. Current program lines are not
affected. If the current program executed the GET SUB statement,
execution continues at the line following the GET SUB statement.

The GET SUB statement retrieves subunits from BASIC SAVE files only. Use
the MERGE statement to retrieve subunits from ASCII and BASIC DATA
files.

Syntax

 GET SUB fname [, first_line [, increment]] [; first_sub [, last_sub]]

Parameters

fname BASIC SAVE file containing subunits to be retrieved.

first_line A numeric literal that is the line number assigned to
 the first retrieved line. If not specified, the default
 value is the last line number + 1.

increment A numeric literal that is the increment used for
 renumbering the retrieved lines. If not specified, the
 default value for the increment is 10.

first_sub A numeric literal that is the number of the first
 subunit to retrieve from the fname file. The first
 subprogram or multi-line function in the fname file is
 designated number 1. If no value is specified, the
 value of first_sub is one. If the value of first_sub is
 greater than the highest numbered subunit in the fname
 file, then an error occurs.

last_sub A numeric literal that is the number of the last subunit
 to retrieve from the fname file. If last_sub is greater
 than the number of the last subunit in the fname file,
 then all subunits from first_sub through the last
 subunit in the fname file are retrieved. If no value is
 specified, the value is the highest numbered subunit in
 the fname file.

Examples

Consider a BASIC SAVE file named SUBFILE.

 10 ! A file of subunits
 20 SUB Subunit_1
 30 SUBEND
 40 SUB Subunit_2
 50 SUBEND
 60 SUB Subunit_3
 70 SUBEND
 80 SUB Subunit_4
 90 SUBEND

2-: 29

The following program statement retrieves Subunit_1 through Subunit_4.
Numbering of the first line of Subunit_1 begins at the highest line
number in the current program + 1. The line numbers of subsequent lines
are incremented by 10.

 10 GET SUB "SUBFILE"

 10 GET SUB "SUBFILE" ;1 !Retrieves Subunit_1 through Subunit_4
 10 GET SUB "SUBFILE" ;2,4 !Retrieves Subunit_2 through Subunit_4
 10 GET SUB "SUBFILE" ;3,3 !Retrieves Subunit_3
 10 GET SUB "SUBFILE",100,10 ;3 !Retrieves Subunit_3 and Subunit_4
 and begins numbering at line 100 with
 lines subsequently incremented by 10.

LINK Statement

The LINK statement is identical to the GET statement for ASCII and BASIC
DATA files, except in the following ways:

* Busy lines in the current program cannot be replaced (see "Busy Lines
 and Busy Subunits" for the definition of "busy").

* Execution must resume within the program unit that executed the LINK
 statement.

* The LINK statement does not affect local or common variables in the
 current program. Redeclarations are ignored.

Syntax

 LINK fname [, line_num] [; execution_line]

Parameters

fname The filename of the file containing the program in the
 ASCII or BASIC DATA file format that is to be retrieved.

line_num Line number to be assigned to the first retrieved line.
 If this parameter is not specified, retrieved lines are
 not renumbered.

execution_line Line identifier that program resumes execution at after
 file is retrieved. Must belong to the program unit that
 executed the LINK statement. Default is the line
 following the LINK statement (or the line that replaced
 the LINK statement).

 Execution does not resume after a LINK command unless
execution_line is specified.

Examples

 LINK "File1" !File1 is retrieved
 LINK "File2",200 !File2 is retrieved, the first line is 200
 LINK "File3",300;330 !File3 is retrieved, the first line is 330,
 ! the current program resumes at line 300
 LINK "File4";150 !File4 is retrieved, the current program
 !resumes at line 150

2-: 30

MERGE Statement

The MERGE statement is identical to the LINK statement, except in the
following ways:

 * A current line is replaced only if its line number belongs to a
retrieved line. The retrieved line may have the same line number if

 it has been renumbered.

 * If a subunit header (a SUB or DEF statement) is inserted anywhere
 except immediately before another subunit header, it becomes a
 comment and a warning is issued.

 * If a subunit header is replaced by anything but another subunit
header, an error occurs. Lines retrieved before the error occurred

 remain in the program.

Syntax

 MERGE fname [, line_num][; execution_line]

Parameters

fname The filename of the file containing the program stored
 in the ASCII or BASIC DATA file to be retrieved.

line_num Line number to be assigned to the first retrieved line.
 Retrieved lines are not renumbered if this parameter is
 not specified.

execution_line Line identifier where execution resumes after the file
 is retrieved. The default is the line following the
 MERGE statement (or the line following the line that
 replaced the MERGE statement).

 Execution does not resume after a MERGE command unless
execution_line is specified.

Examples

 MERGE "File1" !File1 is retrieved
 MERGE "File2",100 !File2 is retrieved, the first line is line 100
 MERGE "File3",250;250 !File3 is retrieved, the first line is line 250
 !and the current program resumes at line 250
 MERGE "File4";600 !File4 is retrieved, and the current program
 !resumes at line 600

RESAVE Statement

The RESAVE statement stores the current program in an existing or a new
disk file. It can store a file in the ASCII, BASIC DATA, or BASIC SAVE
formats.

Syntax

 [LIST]
RESAVE [BDATA] [fname [, line_range_list][; NOMSG]]

2-: 31

If neither LIST nor BDATA is specified, the program is stored in the
format of the existing file if the file already exists. If fname refers
to a new file, and neither LIST nor BDATA is specified, the default is
type BASIC SAVE.

Parameters

LIST Stores program in ASCII format. If the file exists, it
 must be an ASCII file.

BDATA Stores program in BASIC DATA format. If the file
 exists, it must be a BASIC DATA file.

fname This specifies a new or existing file. RESAVE
 overwrites an existing file. If fname does not exist,
 RESAVE creates it and issues a warning that the file did
 not exist.

fname defaults to the file name of the current program
 as determined by the most recent GET or NAME command if
 this parameter is not specified.

line_range_ If the program is to be stored in ASCII or BASIC DATA
list format, line_range_list is as explained in "Specifying
 Line Ranges."

 If the program is to be stored in program format, a
 program unit is the smallest unit that can be specified,
 and the main program is always stored, whether it is
 specified or not. If a ln_spec1 is a line number or
 label, it must belong to the first line of a program
 unit; if ln_spec2 is a line number or label, it must
 belong to the last line of a program unit. If ln_spec1
 and ln_spec2 do not belong to the same program unit, all
 program units between them are stored.

NOMSG Suppresses messages issued by RESAVE. The WARNINGS ON
 and WARNINGS OFF statements do not affect these
 messages.

Examples

 RESAVE "File6" !File 6 is the same type as the existing file
 RESAVE LIST "File7" !File 7 is in ASCII format
 RESAVE BDATA "File8" !File 8 is a BASIC DATA file
 RESAVE "File9",MAIN,5000/5999 !File 9 is a main program, lines 5000/5999
 RESAVE "File10",Sub1/Sub6;NOMSG !File 10 is Sub1/Sub6, and no
 !RESAVE messages are issued

RUN Command

The RUN Command executes the current program or retrieves a program from
a disk file and executes it. Execution begins at the specified line or
the first program line. The RUN command is a command-only statement.
That is, it can only be issued at the interpreter prompt and can not be
placed in a program.

Syntax

 [{,}]
RUN [fname] [{;} line_id] [; INFO= str_expr]

2-: 32

Parameters

fname The name of the disk file containing the program to be
 retrieved and executed. This program replaces the
 program that is in the interpreter when the RUN command
 is issued. The current program in the interpreter's
 workspace is executed if fname is not specified. If

fname specifies a nonexistent file, an error occurs, and
 the current program is not overwritten.

line_id The line number or line label in the main program at
 which to begin execution. The default is the first
 program line. If line_id is a line number that is not
 in the program, execution begins at the line with the
 next higher line number.

str_expr Assigns the value, a string, to be returned by a call to
 the INFO$ function. (See chapter 5).

The RUN command retrieves a disk file the way that the GET statement
does, except that the RUN command removes all common declarations; the
GET statement does not.

Before executing the program, the RUN command allocates space for
variables, initializes them, and resets the following parameters in the
interpreter:

Program execution Stopped
Numeric output format Standard
DEFAULT OFF
Random number seed PI/180
ERRL 0
ERRN 0
BREAK Enabled
Automatic line numbering Off
Options Options specified in configuration file

Note that the RUN, HOP, and STEP commands stop any program that is
executing when the command is entered. Then program execution begins as
specified.

Example

 RUN !Runs the current program
 RUN "File1" !Runs program File1
 RUN "File2";200 !Runs program File2, execution begins at line 200
 RUN "File3",200 !Runs program File3, execution begins at line 200
 RUN;1200 !Runs the current program, execution begins at
 !line 1200
 RUN;INFO="TEST CODE" !Runs the current program, the INFO$ function
 !returns TEST CODE
 RUN "File1"; INFO="Name" !Runs program File1, the INFO$ function
 !returns Name
 RUN "File2";200;INFO="1985" !Runs File2, execution begins at line 200,
 !the INFO$ function returns 1985
 RUN "File3",200;INFO="West" !Runs File3, execution begins at line 200,
 !the INFO$ function returns WEST
 RUN;1200;INFO="yellow" !Runs the current program, execution begins
 !at line 1200, the INFO$ function
 !returns yellow

2-: 33

Consider the execution of the following program sequence with and with-
out the INFO option:

 1000 !
 1010 IF INFO$="DEBUG" THEN
 1020 PRINT "Just before assignment to Sum"
 1030 PRINT " Subtotal_1 = ";Subtotal_1
 1040 PRINT " Subtotal_2 = ";Subtotal_2
 1050 ENDIF
 1060 !
 1070 Sum=Subtotal_1+Subtotal_2
 1080 PRINT "The total is: ";Sum
 >RUN
 The total is: 1169.04
 >RUN;INFO="DEBUG"
 Just before assignment to Sum
 Subtotal_1 = 475.53
 Subtotal_2 = 693.51
 The total is: 1169.04

RUNONLY Statement

The RUNONLY statement protects an interpreted HP Business BASIC/XL
program from listing and modification, but allows its execution.
Run-only status cannot be reversed. Once a program is protected with the
RUNONLY statement, it can only be run with the GET statement.

Syntax

 RUNONLY fname

Parameters

fname The file name of the file that will be protected. This
 file must be a BASIC SAVE file.

When a run-only program is retrieved, it begins executing at its first
line unless another run-only program retrieved it and specified a
starting line.

Example

 RUNONLY "File1" !Protects File1
 RUNONLY "File2.lab" !Protects File2 in the group lab

SAVE Statement

The SAVE statement stores the current program in the interpreter's work
space in a new disk file. The SAVE statement can store a file in any
format.

Syntax

 [LIST]
SAVE [BDATA] [fname [, line_range_list][; NOMSG]]

2-: 34

If neither LIST nor BASIC DATA is specified, the program is stored in the
BASIC SAVE format.

Parameters

LIST Stores program in ASCII format.

BDATA Stores program in BASIC DATA format.

fname This must specify a new file.

fname defaults to the file name of the current program
 as determined by the most recent GET or NAME command if
 this parameter is not specified.

line_range_ If the program is to be stored in ASCII or BASIC DATA
list format, line_range_list has the syntax explained in
 "Specifying Line Ranges" earlier in this chapter.

 If the program is to be stored in program format, a
 program unit is the smallest unit that can be specified,
 and the main program is always stored, whether it is
 specified or not. If ln_spec1 is a line number or
 label, it must belong to the first line of a program
 unit; if ln_spec2 is a line number or label, it must
 belong to the last line of a program unit. If ln_spec1
 and ln_spec2 do not belong to the same program unit, all
 program units between them are stored.

NOMSG Suppresses messages issued by SAVE. The WARNINGS ON and
 WARNINGS OFF statements do not affect these messages.

Examples

 SAVE "File1" !Saves File1 as type BASIC SAVE
 SAVE LIST "File2" !Saves File2 as type ASCII
 SAVE BDATA "File3" !Saves File3 as type BASIC DATA
 SAVE "File4",MAIN,5000/5999 !Saves File4 as a main program, with
 !lines 5000/5999
 SAVE "File5",Sub1/Sub6;NOMSG !Saves File 5 as Sub1/Sub6, any SAVE
 !messages are suppressed.

Program Debugging

Two HP Business BASIC/XL features make debugging the current program
easier: trace statements and suspension during execution. Trace
statements print messages when one line transfers control to another
that is not sequentially the next line in the program, or when a variable
is assigned a value.

The program is suspended when one of the following occurs:

 * The program executes a PAUSE statement.

 * You press CONTROL Y (when no ON HALT is active).

 * You press CONTROL Y twice in rapid succession.

 * An error occurs (and error-handling is not active).

2-: 35

When program execution is suspended, control returns to the terminal
keyboard. From the keyboard, you can do any of the following:

 * Variable values can be displayed (type the variable name and press
 RETURN).

 * Commands can be executed.

 * Variable values can be changed (with the LET command).

 * Program lines can be modified (with the MODIFY command).

 * Program lines can be inserted.

* Program lines can be deleted (with the DELETE command or as explained
 in "Creating and Modifying a Program").

 * Control can be transferred to another part of the program (with a
 GOTO, GOSUB, or CALL command).

* Program lines can be added (as explained in "Creating and Modifying a
 Program").

A busy line or subunit cannot be modified or deleted when the program is
suspended. See "Busy Lines and Busy Subunits" for more information.

Table 2-7 lists the debugging statements and commands and their effects.
All of the debugging statements and commands affect the current program.
None of the debugging commands are compilable.

Table 2-7. Program Debugging Commands

Command	Command or	Effect
	Statement?	

CALLS	Command	Prints names of busy program units on
		system printer.

CONTINUE	Command	Restarts suspended program.

FILES	Command	Prints names and numbers of open files on
		system printer.

HOP	Command	Executes program and suspends it at next
		line that is in same program unit and not
		in a loop.

PAUSE	Statement	Suspends program execution.*

2-: 36

STEP	Command	Executes next line of suspended program and
		suspends program at line following it.

Trace Statements	Either	See Table 2-8.

Untrace Statements	Either	See Table 2-9.

Table 2-7 Note

* The PAUSE statement is defined in chapter 4.

Busy Lines and Busy Subunits

A line is busy if one of the following is true:

 * The line made a call that has not returned.

 * The line was interrupted with the halt key before it finished
executing. (Not all lines can be interrupted in this way. A PRINT

 statement is an example of a line that cannot be busy.)

A busy line cannot be modified or deleted.

A subunit is busy if it has been called, but has not returned.

A busy subunit can be modified, but not deleted. When modifying a
subunit, observe the following restrictions:

 * A busy SUB statement can only be changed to another SUB statement.

 * A busy DEF statement can only be changed to another DEF statement.
Numeric type variables can only be changed to another numeric type.

 The type cannot be changed from numeric to string or vice versa.

* Changes to the subunit header take effect the next time the subunit
 is called.

To make other header changes to a busy DEF or SUB statement, you must
first stop the program with the STOP command (chapter 4 explains the STOP
command).

CALLS Command

The CALLS command prints the names of busy program units on the system
printer or another device. (The SEND SYSTEM OUTPUT TO statement
specifies the device; see chapter 6.) The CALLS command is a
command-only statement. That is, it can only be issued at the
interpreter prompt and cannot be placed in a program.

2-: 37

Syntax

CALLS

Example

If the program is not running:

 > CALLS
 MAIN Not executing.

If the program has paused at line 10:

 > CALLS
 MAIN @ 10

Suppose that the following are true:

 Line 10 of the main program calls subunit FNBeep$.
 Line 40 of FNBeep$ calls subunit FNBeep.
 Line 50 of FNBeep calls subunit B.
 The program pauses at line 100 in subunit B.

Then:

 > CALLS
 SUB B @ 100
 FNBeep @ 50
 FNBeep$ @ 40
 MAIN @ 10

CONTINUE Command

The CONTINUE command restarts a suspended program. The CONTINUE command
is a command-only statement. That is, it can only be issued at the
interpreter prompt and cannot be placed in a program.

Syntax

{CONTINUE}[line_id]
{CONT }[*]

Parameters

line_id Line that program execution will restart at. The line
 must belong to the program unit that was executing when
 the program was suspended. An error occurs if line_id
 is not in the program.

* Restarts the program at the last line executed.

If neither line_id nor * is specified, the CONTINUE command restarts
program execution at the next line to be executed.

2-: 38

An error occurs if the CONTINUE command is executed and there is no
current program in the work space.

Examples

The following shows examples of the CONTINUE command:

 CONTINUE
 CONT
 CONTINUE 100 !Continues the program at line 100
 CONT Label5 !Continues the program at the line number in Label5
 CONT * !Continues the program at the last line executed

FILES Command

The FILES command prints the file numbers of the files that have been
declared in the currently executing subunit. If a file is open, the
FILES command prints the file name after the number. The FILES command
prints a message if a file is not open. The FILES command also prints
COMMON after each common file and PARAMETER after each file that was
passed to the subunit as a parameter. The FILES command prints its
information on the system printer. The FILES command is a command-only
statement. That is, it can only be issued at the interpreter prompt and
cannot be placed in a program.

Syntax

FILES

Examples

The following shows an example of the FILES command:

 > FILES
 #1: File is not currently open.
 #2: MYFILE.MYGROUP.MYACCT, REC:1, WRD:1
 #3: MYFILE1.MYGROUP.MYACCT, REC:1, WRD:1, PARAMETER
 #4: MYFILE2.MYGROUP.MYACCT, REC:1, WRD:1, COMMON

If no files are declared in the currently executing subunit the FILES
command will return a message.

 > FILES
 No files are declared in the current subprogram.

HOP Command

The HOP command can single-step from one line of a program unit to the
next line of the same program unit, without suspending execution during
loops or subunits. Specifically, the HOP command does the following:

 * Does a TRACE PAUSE on the line that follows the next line to be
 executed (even if it is in another program unit).

2-: 39

 * Does a CONTINUE.

The HOP command is a command-only statement. That is, it can only be
issued at the interpreter prompt and cannot be placed in a program.

Syntax

HOP

The HOP command is useful for the following:

 * Hopping through a GOSUB or CALL.
* Hopping through a loop (when executed on the last line of the loop).

The breakpoint that the HOP statement sets is reset by the next HOP
statement (only one HOP breakpoint per program).

Example

The following shows an example of the HOP command. The program pauses at
line 110. The HOP command has been issued during that pause.

 > LIST
 ! exam246
 100 LET A=3
 105 PRINT "HI"
 110 PAUSE
 120 PRINT A
 130 PRINT A+A
 140 PRINT A*A
 150 PRINT "BYE"
 999 END
 > RUN
 HI
 > HOP
 3
 130 PRINT A+A
 > HOP
 6
 140 PRINT A*A
 > hop
 9
 150 PRINT "BYE"
 > HOP
 BYE
 999 END

STEP Command

The STEP command--or several STEP commands--can single-step through a
suspended program. Specifically, the STEP command does the following:

 1. Executes the line that the program is suspended at.

 2. Displays the next line to be executed.

 3. Suspends the program at the displayed line.

2-: 40

The STEP command is a command-only statement. That is, it can only be
issued at the interpreter prompt and cannot be placed in a program.

Pressing CONTROL E also issues the STEP command.

Syntax

STEP

Examples

The following shows an example of the STEP command. The program pauses
at line 110, and the STEP command is issued during that pause.

 > LIST
 100 LET A=3
 105 PRINT "HI"
 110 PAUSE
 120 PRINT A
 130 PRINT A+A
 140 PRINT A*A
 150 PRINT "BYE"
 999 END
 > RUN
 HI
 > STEP
 3
 130 PRINT A+A
 > STEP
 6
 140 PRINT A*A
 > STEP
 9
 150 PRINT "BYE"
 > CONT
 BYE
 >

Trace and Untrace Statements

Trace statements trace lines, variables, or both. Untrace statements
cancel trace statements.

A trace statement, while tracing lines, prints the following message
whenever one line transfers control to another:

 TRACE IN LINE line_num1 ; BRANCH TO line_num2

A trace statement, while tracing variables, prints the following mes-
sages whenever variables change value:

For a scalar variable:

 TRACE IN LINE line_num ; var_name = new_value

For an entire array variable:

 TRACE IN LINE line_num ; ARRAY var_name IS CHANGED

2-: 41

For an array element:

 TRACE IN LINE line_num ; array_name (Subscript_of_element) = new_value
 TRACE IN LINE line_num ; ELEMENT n IN ARRAY var_name = new_value

Trace statements print their output on the system printer. (The system
printer is specified by the SEND SYSTEM OUTPUT TO statement. The default
is the standard list device, that is, the terminal if HP Business
BASIC/XL is running interactively.)

Every trace and untrace statement can also be a command.

Table 2-8 shows which trace statements trace lines, which trace vari-
ables and how the trace statements differ. For details about a partic-
ular trace statement, see the section about that statement.

Table 2-8. Trace Statements

Statement	Traces lines	Traces variables

TRACE ALL	Throughout program.	Throughout program.

TRACE EXEC[UTION]	From execution of first	No.
	specified line through	
	execution of last	
	specified line.	

TRACE EXEC[UTION] VAR[S]	No.	From execution of first
		specified line through
		execution of last
		specified line.

TRACE LINES	Within specified range.	No.

TRACE PAUSE	Within specified range	No.
	and pauses before each	
	line is executed.	

TRACE VAR[S]	No.	As specified.

TRACE VAR[S] IN	No.	In specified program
		units or lines.

TRACE WAIT	No.	No.

Table 2-9 matches each trace statement with the untrace statements that
partially or totally cancel it.

2-: 42

Table 2-9. Trace/Untrace Statement Correspondence

Trace Statement	Untrace Statements That Cancel It

TRACE ALL	UNTRACE LINES
	UNTRACE VAR[S]
	UNTRACE VAR[S] IN
	UNTRACE ALL
	TRACE OFF

TRACE EXEC[UTION]	UNTRACE EXEC[UTION]
	TRACE OFF

TRACE EXEC[UTION] VAR[S]	UNTRACE EXEC[UTION] VAR[S]
	TRACE OFF

TRACE LINES	UNTRACE LINES
	UNTRACE ALL
	TRACE OFF

TRACE PAUSE	UNTRACE PAUSE
	TRACE OFF

TRACE VAR[S]	UNTRACE VAR[S]
	UNTRACE ALL
	TRACE OFF

TRACE VAR[S] IN	UNTRACE VAR[S] IN
	UNTRACE VAR[S]
	UNTRACE ALL
	TRACE OFF

TRACE WAIT	TRACE OFF
	TRACE WAIT n where n <0

TRACE ALL and UNTRACE ALL

The TRACE ALL statement is the equivalent of the TRACE LINES and TRACE
VARS statements. It traces lines and variables throughout the program.

The UNTRACE ALL statement cancels TRACE ALL.

Syntax

TRACE ALL

UNTRACE ALL

2-: 43

TRACE EXEC and UNTRACE EXEC

The TRACE EXEC statement traces lines, beginning when the first specified
line executes and ending when the last specified line executes. If lines
are not specified, TRACE EXEC applies to the entire program. If the first
specified line does not exist or is not executed, TRACE EXEC does not
trace lines. If the last specified line does not exist or is not exe-
cuted, the TRACE EXEC statement does not stop tracing lines (unless an
UNTRACE EXEC or TRACE OFF statement executes).

The UNTRACE EXEC statement cancels the TRACE EXEC statement (for every
line).

Syntax

 {EXECUTION}
TRACE {EXEC } [line_id1 [TO line_id2]]

 {EXECUTION}
UNTRACE {EXEC }

Parameters

line_id1 Line tracing begins when this line executes. If this
 line does not execute, line tracing never begins.
 Default is the first program line.

line_id2 Line tracing ends when this line executes. If this line
is not specified or does not execute, line tracing does
not end until an UNTRACE EXEC or a TRACE OFF statement

 executes.

TRACE EXEC VARS and UNTRACE EXEC VARS

The TRACE EXEC VARS statement traces variables, beginning when the first
specified line executes and ending when the last specified line exe-
cutes. If lines are not specified, TRACE EXEC VARS applies to the entire
program. If the first specified line does not exist or is not executed,
TRACE EXEC VARS does not trace variables. If the last specified line
does not exist or is not executed, the TRACE EXEC VARS statement does not
stop tracing variables (unless an UNTRACE EXEC or TRACE OFF statement
executes).

The UNTRACE EXEC VARS statement cancels TRACE EXEC VARS (for every
line).

Syntax

 {EXECUTION} {VARS}
TRACE {EXEC } {VAR } [line_id1 [TO line_id2]]

 {EXECUTION}{VARS}

2-: 44

UNTRACE {EXEC }{VAR }

Parameters

line_id1 Variable tracing begins when this line executes. If
 this line does not execute, variable tracing never
 begins. The default is the first program line.

line_id2 Variable tracing ends when this line executes. If this
 line is not specified or does not execute, variable
 tracing does not end until an UNTRACE EXEC VARS or an
 TRACE OFF statement executes.

TRACE LINES and UNTRACE LINES

The TRACE LINES statement traces specified lines.

The UNTRACE LINES statement cancels TRACE LINES for specified lines (not
necessarily for every line that TRACE LINES traces).

Syntax

TRACE LINES [line_range_list1]

UNTRACE LINES [line_range_list2]

Parameters

line_range_ Lines to be traced. The default is all program lines.
list1

line_range_ Lines that TRACE LINES is to be canceled for (can be a
list2 subset of line_range_list1). The default is all program
 lines.

TRACE PAUSE and UNTRACE PAUSE

The TRACE PAUSE statement traces specified lines exactly as TRACE LINES
does. It also suspends the program like the PAUSE statement does before
the lines are executed. The CONTINUE command causes the suspended
program to resume execution.

The UNTRACE PAUSE statement cancels TRACE PAUSE for specified lines (not
necessarily for every line that TRACE PAUSE traces). If another trace
statement traces those lines, that statement continues to trace them,
but TRACE PAUSE does not delay the program after the trace messages that
are associated with those lines.

Syntax

TRACE PAUSE [line_range_list1]

UNTRACE PAUSE [line_range_list2]

2-: 45

Parameters

line_range_ Lines to be traced with pause. The default is all
list1 program lines.

line_range_ Lines for which TRACE PAUSE is to be canceled (can be a
list2 subset of line_range_list1). The default is all program
 lines.

TRACE VARS and UNTRACE VARS

The TRACE VARS statement traces specified variables.

The UNTRACE VARS statement cancels TRACE VARS for specified variables
(not necessarily for every variable that TRACE VARS traces).

Syntax

 {VARS}
TRACE {VAR } [var_name1 [, var_name2]...]

 {VARS}
UNTRACE {VAR } [var_name3 [, var_name4]...]

Parameters

var_name1 var_name1 specifies variable to be traced. The default
 is all variables in the program.

var_name2 Each var_name2 specifies an additional variable to be
 traced.

var_name3 var_name3 specifies a variable that TRACE VARS is to be
 canceled for. The default is all variables in the
 program.

var_name4 Each var_name4 specifies an additional variable that
 TRACE VARS is to be canceled for.

TRACE VARS IN and UNTRACE VARS IN

The TRACE VARS IN statement traces all variables in one or more specified
subunits.

The UNTRACE VARS IN statement cancels TRACE VARS IN for specified
subunits (not necessarily for every subunit that TRACE VARS IN
specified).

Syntax

 {VARS}
TRACE {VAR } IN sub_id1 [, sub_id3]...

 {VARS}
UNTRACE {VAR } IN sub_id2 [, sub_id4]...

2-: 46

Parameters

sub_id1 sub_id1 specifies a subunit that variables will be
 traced in. sub_id1 is specified by [SUB] sub_id or
 MAIN.

sub_id3 Each sub_id3 specifies an additional subunit that
 variables will be traced in. Each sub_id3 is specified
 by [SUB] sub_id or MAIN.

sub_id2 sub_id2 specifies a subunit that variables will no
 longer be traced in. sub_id is specified by [SUB]

sub_id or MAIN.

sub_id4 Each sub_id4 specifies an addition subunit that
 variables will no longer be traced in. Each sub_id4 is
 specified by [SUB] sub_id or MAIN.

The UNTRACE ALL, UNTRACE VARS, and TRACE OFF statements also cancel the
TRACE VARS IN statement.

Example

The following shows examples of the TRACE VARS IN command. The first
example is in a program, the last two are issued as commands.

 10 TRACE VARS IN MAIN, SUB A
 TRACE VARS IN Sub_a, Sub_b, FNX
 UNTRACE VARS IN X,Y,Z

TRACE WAIT

The TRACE WAIT statement delays the program for a specified time after
each trace message (for line tracing and variable tracing).

Syntax

TRACE WAIT num_expr

Parameters

num_expr Number of seconds to delay the program after each trace
 message. The value of num_expr must be in the range
 [-32768, 32767]. If num_expr < 0, TRACE WAIT does not
 delay the program after trace messages.

TRACE OFF

The TRACE OFF statement cancels every TRACE statement.

Syntax

TRACE OFF

OPTION TRACE and OPTION NOTRACE

The OPTION TRACE statement enables the trace statements in the program

2-: 47

unit that contains it. The OPTION NOTRACE statement disables the trace
statements in the program unit that contains it. If a program unit
contains neither an OPTION TRACE nor an OPTION NOTRACE statement, the
global option applies (its default is GLOBAL OPTION TRACE).

Syntax

OPTION TRACE

 {NO TRACE}
OPTION {NOTRACE }

The OPTION TRACE and OPTION NOTRACE statements can appear anywhere in a
program unit. The highest-numbered TRACE statement affects the entire
program unit the entire time that the program unit is executing.

Example

 100 TRACE LINES
 110 READ A,B
 120 IF A=B THEN GOTO 140
 130 PRINT "A<>B"
 140 PRINT "A=B"
 .
 .
 .
 200 OPTION TRACE
 .
 .
 .
 300 OPTION NOTRACE
 999 END

In the above program, the OPTION NOTRACE statement at line 300 disables
the trace statement at line 100, despite the OPTION TRACE statement at
line 200. HP Business BASIC/XL does not trace the branch from line 120
to line 140 when the program runs.
The Program Analyst

The interpreter maintains extensive data structures that describe the
current program. That information can be valuable for developing and
maintaining programs. The Program Analyst is an environment that makes
this information available and provides tools for analyzing the
information. The Program Analyst can be used for design optimization,
memory usage analysis, program statistics information, and optimization
of subunit sizes.

ANALYST

The ANALYST command enters the Program Analyst environment. The
following conditions must be met to successfully run the Program Ana-
lyst:

2-: 48

 * The terminal fully supports the terminal-specific features of HP
 Business BASIC/XL.
 * The interpreter is running in a session, rather than a batch job.
 * There is at least one program line in the current program.
 * The program is not running or paused.
 * The program has no VERIFY errors.
 * The destination for OUTPUT and SYSTEM OUTPUT is the display.

Syntax

ANALYST [screen_argument]

Parameters

screen_argument An argument that specifies which screen to enter. If no
 screen is specified, the Main Menu/Browse screen is
 displayed.

Table 2-10 lists each argument, and the screen that it displays.

Table 2-10. Analyst Command Arguments

--
Argument	Screen Selected
--
S	Static Analysis.
O	Optimize.
D	Data Types.
C	Suggest COPTIONs.
G	Replace GOSUBs.
P	Optimize PACKFMTs.
E	Extract Subunit.
--

This section describes each screen. Each action that occurs in a
particular screen is explained. The following control actions work from
any screen:

 * To exit the Program Analyst press f8.
 * Pressing HALT while the Program Analyst is waiting for input
 transfers control to the next height level screen.
* Pressing HALT while the Program Analyst is writing information to the

 screen returns control to the Main Menu/Browse screen.
* Pressing HALT while in the Main Menu/Browse screen exits the Program

 Analyst.

All files created by the Program Analyst have a set of comments giving
the file name, the date and time of creation, the name of the screen
being used, and the original name of the program as their first few
lines.

2-: 49

The user interface capabilities used in the Program Analyst are avail-
able in HP Business BASIC/XL applications through the following state-
ments and functions:

 ON KEY
 ON HALT
 CURSOR
 RESPONSE
 ACCEPT
 TINPUT

NOTE The features of the Program Analyst can change from one release to
 the next. Whenever you receive a new version of HP Business
 BASIC/XL, check the NEWS category in the HELP facility for
 information on changes and enhancements.

In some screens, the Program Analyst creates file whose names have the
form BBPAnn. After you have merged one of these files, purge it. If you
have many of these files in your group, the Program Analyst spends extra
time trying to find an unused name.

The Main Menu/Browse Screen. The purpose of this screen is to provide
general information about the current program.

The Main Menu/Browse Screen displays the following information about the
current program:

 * The name of the program (the BSAVE file name).
 * The time and date when the program was last saved.
 * The overall subunit space and fixed data space requirements of the
 program.
* The subunit space and fixed data space requirement of each subunit.

 * The source code listing, shown in blocks of eight lines.

The cursor is on the first character of the current subunit name. Table
2-11 shows the actions that you can perform while in the Main Menu/Browse
screen.

Table 2-11. Main Menu/Browse Screen Actions

Action	Effect

Softkeys	Pressing one of the labeled softkeys moves between adjacent subunits
	or to a different screen.

Line number	Entering a line number moves to that line. If the line exists, it is
	the first line displayed, and the subunit containing it is the

2-: 50

| | current subunit. |
| | |

Subunit Name	Entering a subunit name moves to that subunit. If the name entered
	matches a subunit in the program, that subunit is the current subunit
	and its first eight lines are displayed.

RETURN	Pressing RETURN displays the next eight lines of the current subunit.
	This method can only be used in the current subunit, and cannot be
	used to move to the next subunit.

The Static Analysis Screen. The purpose of this screen is to provide
detailed statistics about the program and its system requirements.

The Static Analysis screen displays detailed information about each
subunit of a program. It contains three types of information. The
following lists describe the information that this screen provides.

Interpreter Resource Utilization : This section contains information
about resource utilization within the interpreter. Resources include
tables, data segments, and interpreter space. The fields and their
contents are:

Field Contents

Global Tables The amount of space (in words) taken to store the
 interpreter's directory information for locating
 and managing all of the programs subunits.
 Included are tables holding the names of the
 subunits.

Local Tables For the subunit being displayed, this value is the
 amount of space for all tables that reside in the
 subunit space area of the interpreter's data
 stack.

New Run-time Tables When a program contains references to external
 routines or intrinsics, the interpreter requires
 additional space for parameter information at
 run-time. This value is an estimate of that space
 requirement.

Recoverable The interpreter's tables can sometimes become
 cluttered with unnecessary information,
 particularly when extensive editing has been done.
 The tables can be cleaned by saving the program in
 ASCII format (through the SAVE LIST command) and
 then issuing a GET command. The value displayed
 is an estimate of the number of words in the
 subunit space that would be recovered by a SAVE
 LIST and GET.

COMMON Space The spaced required by all variables declared in
 COM statements.

Local Space Space for locally declared (or undeclared)
 variables and parameters. This number is broken
 down into Numeric Space and String Space fields.

2-: 51

Software Metrics This section provides statistics about the program.
Many techniques exist for measuring the size and complexity of software
and the amount of structure it contains. The Program Analyst can measure
these features quickly and accurately. The significance of the numbers
is left up to the programmer. The fact that the numbers are generated
should not be considered an endorsement of a particular technique, nor
is
it the intent to pass judgement on the user's code. This section
contains the following information:

Field Contents

Source Lines The number of lines in the subunit. This is the
 number of unique line numbers. Continuation lines
 are not counted.

Comments The total number of comments including REM
 statements, comment lines, and comments placed at
 the end of other program lines.

NCSS Non-Comment Source Statements. The number of
 program lines that do not consist entirely of a
 comment or REM.

Code Volume An attempt to quantify the information content of
(Halstead) a group of source statements, in this case a
 subunit or program. Code volume is a number
 calculated from the number of unique identifiers
 and operators and the number of occurrences of
 these identifiers and operators.

Complexity (McCabe) This value is the number of decision points in the
 subunit or program, plus one.

Structure Compliance Indicates the percentage of branches that are
(DeMarco) accomplished without explicit GOTO statements.
 All of the structured statements are counted as
 branches, including each value or range in a CASE
 statement.

Statement Frequency The Statement Frequency section lists the 21 most
frequently used statements in the subunit. The statement names are
displayed with the frequency count.

The Optimize Screens. The Program Analyst contains four screens that
are specifically designed to help improve the efficiency of the current
program. The next four sections describe each of these screens.

The Data Types Screen. The purpose of this screen is to provide
information to minimize run-time conversions through more efficient
definitions of variable data types.

This screen displays information for the entire MAIN subunit. The name
of the subunit and the first and last line numbers are displayed at the
top of the screen. A predicted number of conversions is below the
subunit information is shown in a table. The lines with the most
conversions are indicated to the right of the table. The Program Analyst
predicts static conversion numbers. If a statement (such as a FOR
statement) is to be executed multiple times, the Program Analyst counts

2-: 52

the conversion only once. If the Program Analyst finds a control
variable that is a floating-point type, or a default REAL or DECIMAL type
and the Program Analyst can determine that the starting value, limit,
and step (if present) are all integers, the line number of the FOR loop
is reported. A FOR loop that meets those criteria is very inefficient
because the control variable has to be converted. In addition, the FOR
loop can produce incorrect results.

After the information about the MAIN subunit is display, the cursor is at
the beginning of the Line Range field at the top of the screen. To move
to a different part of the program, enter a line range or a single line
number, or press a softkey to move to the previous or next subunit. If
you select a single line, the line itself is listed at the bottom of the
screen. The data type of each numeric variable is displayed.

The Program Analyst cannot accurately detect conversions that occur
during a call to an external routine, an intrinsic, a subprogram, or a
function. Conversions may be generated if an actual parameter does not
match the declared parameter. Also, any conversions that take place to
determine which CASE to execute in a SELECT structure are not reported.

If your program uses GLOBAL OPTION DECIMAL and does not have OPTION
DECIMAL or OPTION REAL statements in each of the subunits, issue the
VERIFY command before entering the Program Analyst . This notifies all
the subunits that they will be executing in DECIMAL mode and ensures that
you get the most accurate information about conversions.

The Suggest COPTIONs Screen. The purpose of this screen is to predict
the benefit of each of the compiler options (COPTIONs) in terms of
generated code savings.

The Suggest COPTIONs screen estimates the number of words of compiled
code that would be eliminated through the use of each compiler option.
The information is displayed in four columns. The first column contains
the names of all the compiler options. If the subunit or program
currently being displayed has a compiler option in effect, the code
savings is displayed in the Current column. If the program or subunit is
not current taking advantage of that option, the potential savings is
displayed in the Potential column. The final column indicates whether
any features that would prevent the use of an option are being used. The
Program Analyst cannot estimate the actual size of a compiled subunit.

When you enter the Suggest COPTIONs screen, the cursor is positioned
under the first letter in the subunit or program name. You can type a
subunit name or line number or press a softkey to move to another subunit
or line.

The Replace GOSUBs Screen. The purpose of this screen is to replace
GOSUB statement with the subroutines the reference. This improves
performance in some situations.

If a program has GOSUBs that execute many thousands of times, the

2-: 53

overhead associated with them becomes noticeable. The Replace GOSUBs
screen can, with certain restrictions, be used to replace a GOSUB with
the body of the referenced subroutine. This is possible when there are
enough available line numbers after the GOSUB to insert the entire
subroutine before the next line, and the subroutine does not contain and
GOTO statements or any lines that are targets of branches.

The Replace GOSUBs screen prompts you for a line range to use to search
for eligible GOSUBs. It also asks for the maximum number of lines to be
inserted for each GOSUB. The Program Analyst then creates an ASCII file
containing a copy of the referenced subroutine. If you choose to replace
the GOSUB with the subroutine, the GOSUB statement is deleted and the
copy of the subroutine is inserted in its place. If the subroutine
contains consecutive assignment statements, the Program Analyst combines
them into fewer lines if possible.

The existence of this screen should not suggest that all GOSUBs should be
eliminated. Only those that are used very frequently should be
considered for replacement.

The Replace GOSUBs screen is useful in conjunction with the Extract
Subunit screen described later. Replace GOSUBs can help to resolve
subroutine references that might otherwise prevent a successful
extraction.

The Optimize PACKFMTs Screen. The purpose of this screen is to generate
SKIP clauses for PACKFMT statement to minimize packing and unpacking of
variables.

Often a subunit needs to access only a few items specified in a PACKFMT
statement. In a PACK or UNPACK statement, the entire record will be
transferred between the string buffer and the variable, even if the
PACKFMT statement has information for many more items than the subunit
is using.

To improve efficiency, the PACKFMT specification can contain one or more
SKIP clauses. A SKIP specifies that a certain number of bytes in the
string buffer are to be ignored during an UNPACK and skipped over during
a PACK.

The Optimize PACKFMTs screen determines which items can be skipped,
calculates the number of bytes to skip, and then modifies a PACKFMT
accordingly.

When you enter this screen, you are prompted for the line number of a
PACKFMT statement. You can enter a line number or use a softkey to list
the line numbers of all of the PACKFMT statements in your program. If
the correct line number of a PACKFMT is entered, each item in the PACKFMT
statement is examined. If the PACKFMT statement is used anywhere else in
the subunit, or if it is in common or is a parameter to the subunit, the
Program Analyst assumes that it is needed and cannot be skipped.
Otherwise, the Program Analyst determines the number of bytes in that

2-: 54

item and generates a SKIP. If adjacent items can be skipped, the Program
Analyst creates only one SKIP clause to cover those items. The items
that can be skipped are highlighted.

If skippable items are found, pressing RETURN will cause the Program
Analyst to create an ASCII file containing the following statements:

 * The original PACKFMT line with the actual statement commented out
 with a !.
 * The new PACKFMT statement with a line number one greater than the
 original.

When this file is merged (using the MERGE command) back into the program,
the original line serves as documentation of the complete record layout.
If you are referencing a PACKFMT statement by a line number instead of a
label, you need to modify the appropriate PACK or UNPACK statement.

When determining the number of bytes in a string variable, the Program
Analyst uses the maximum declared length (or 18 if the string is
undeclared). The Program Analyst assumes that strings are always padded
out to their maximum length before packing them. This is recommended
practice because the maximum length is always used during an UNPACK.

The Optimize PACKFMTs screen can also be used to optimize IN DATASET
statements. You can modify a IN DATASET statement so that it looks like
a PACKFMT statement, optimize the modified statement, merge the state-
ment
into the program, and then modify it back to an IN DATASET statement.

The Extract Subunit Screen. The purpose of this screen is to assist in
dividing large subunits into smaller subunits.

Manually removing lines form one part of a program and using the lines to
create a new subunit can be tedious. There are many dependencies that
must be examined. The Program Analyst can be very useful for extracting
subunits. Using the information in the interpreter, the Program Analyst
can detect all of the following dependencies:

 * Branches that will be broken if lines are removed.
* Variables that have been shared between the old and new subunits that

 must become parameters or placed in common.
 * Single-line functions definitions and OPTION, IMAGE, and PACKFMT
 statements that will be needed in the new subunit.

On entry of a line range, the Program Analyst displays the effects of
removing this line range from its subunit. The Program Analyst examines
all GOTOs, GOSUBs, and structured statements to determine whether they
would be affected. It also determines whether variables (including
files) need to be passed as parameters to the proposed new subunit. Once
you have identified a line range that can be extracted without breaking
any branches or structures, the Program Analyst creates the new subunit
and the CALL to it.

2-: 55

NOTE The Program Analyst allows you to extract a subunit even if there
are broken branches. Manual editing may be required before the new

 program can run.

Factors Affecting Extraction. The following factors that can affect
extraction cannot be fully analyzed:

 * DATA, READ, and RESTORE statements.
 * Report Writer usage.
 * SORT USING statements.
 * THREAD statements.
 * RETURN statements.
 * ON ERROR, ON KEY, ON HALT, etc.

The Program Analyst may produce warnings if these features are used in
the subunit being divided. However, the Program Analyst continues to
create the subunit. If will be up to you to make any necessary manual
changes.

When the Program Analyst creates a new subunit, it handles the following
requirements automatically:

 * Creation of parameter lists.
 * Copying of necessary common block declarations.
 * Copying of necessary single-line function definitions.
 * Copying of necessary IMAGE and PACKFMT statements.
 * Moving declarations of variables that are only using in the new
 subunit into that subunit.
 * Copying of OPTION statements.

The Program Analyst does not alter your program. It produces two ASCII
files that you can GET and MERGE to create an altered program. If you
are planning to extract more than one subunit, you must do the GET and
MERGE for the first subunits before analyzing subsequent subunits.

Extracting a Subunit. The following is a list of the steps required to
extract a subunit:

1. Renumber the program to allow space between lines so the Program
 Analyst can insert any necessary lines.

2. Get and examine a listing. The Program Analyst normally assumes
 lines are to be extracted from the MAIN subunit. Also, the
 Program Analyst cannot create a multi-line function this way.
 Look at the listing to find logical subunit material.

 3. Enter the Program Analyst and go to the Extract Subunit screen.
Enter the line range that you want to analyze. Use existing line

2-: 56

 numbers.

 4. When you enter a line range, the Program Analyst displays
information about branches, structured statement, variables, and

 detectable problem conditions. Try different line ranges until
 you find one that will not cause many broken branches.

 5. Press the softkey labeled Extract. Use any legal HP Business
 BASIC/XL identifier. The Program Analyst creates the two files
 used to produce the altered program. The first file is the
 original program with the extracted lines replaced by a CALL
 statement, and the second is the new subunit.

 6. Exit the Program Analyst.

7. GET the original program file (the one whose name begins with g)
 and then MERGE the new subunit file (the one whose name begins

with m). Use a line number on the MERGE command that will add the
 new subunit to the end of the program.

8. Renumber the program, and SAVE it. During the SAVE, the Program
 Analyst will identify any remaining broken structures that will
 need manual correction.

INFO Command

The INFO command prints information about the current interpreter
environment. The INFO command is a command-only statement. That is, it
can only be issued at the interpreter prompt and cannot be placed in a
program. Default values can be changed by running the HP Business
BASIC/XL configuration utility program as described in Appendix C.

Syntax

INFO

Example

The following shows the results of the INFO command:

 >INFO
 Current settings:
 Numeric format STANDARD
 Angular units RAD
 DEFAULT expression evaluation OFF
 Options REAL, INIT, BASE 0,
 NO DECLARE, TRACE
 Home group (FILES ARE IN) None defined
 Destination of SEND OUTPUT TO DISPLAY
 Destination of SEND SYSTEM OUTPUT TO DISPLAY
 Destination of COPY ALL OUTPUT TO DISPLAY
 Subunit size 499 words
 Native Language 0 (Native-3000)
 DATE$ default 0

2-: 57

HELP Command

The HELP command displays information about one or more HP Business
BASIC/XL commands, statements, and errors. Because a HELP command can
end in an unquoted string literal, it cannot be followed by a comment.
The HELP command is a command-only statement.

Syntax

 [unquoted_str_lit]
HELP [str_lit]

Parameters

unquoted_str_lit String of the form

topic,subtopic

 where topic and subtopic are unquoted string literals
 (for example, AUTO,SYNTAX). Characters beyond the
 fortieth are ignored.

str_lit Its value is a string of the form

"topic,subtopic"

 (for example, "AUTO,SYNTAX").

If neither unquoted_str_lit nor str_lit is specified, the HELP command
enters the HELP subsystem, where it prompts for them (the prompt is
Help>). After displaying information on one topic, the HELP subsystem
prompts for another.

If the HELP command recognizes unquoted_str_lit or str_lit as a sub-
topic, but not as a topic, it uses the last topic.

When the HELP command cannot recognize a spelling, the HELP command
displays information on the topic or subtopic with the closest spelling
(the first letter must be correct).

The information on a command or statement includes a list of similar
commands and statements; for example, the information on INPUT lists
ACCEPT, ENTER, and LINPUT.

If the information for a command, statement, or error fills more than one
terminal screen, the HELP command displays one screen of information and
then asks:

 Do you want to see more? (Y/N) Y

To answer yes, do one of the following:

 * Press RETURN.
 * Type Y over the last Y and press RETURN.

To answer no, do one of the following:

2-: 58

Type N over the last Y and press RETURN.

To exit the HELP subsystem, type one of the following in uppercase,
lowercase, or a combination of uppercase and lowercase:

 EXIT
 EXI
 EX
 E

Accessing the Operating System

The operating system can be accessed from HP Business BASIC/XL with the
SYSTEM, SYSTEMRUN, or EXIT commands as follows:

SYSTEM Executes an operating system command, a UDC, a program,
 or a command file from HP Business BASIC/XL (and returns
 to HP Business BASIC/XL). You can also type

 :

 instead of SYSTEM.

SYSTEMRUN Runs another program from HP Business BASIC/XL (and
 returns to HP Business BASIC/XL).

EXIT Exits HP Business BASIC/XL (and does not return).

The SYSTEM and SYSTEMRUN commands are executable from within a program,
and are discussed in chapter 4.

EXIT Command

The EXIT command exits HP Business BASIC/XL. It is a command-only
statement and cannot appear in a program.

Syntax

{EXIT [BASIC]}
{:: }

Typing EXIT after changing your program without saving the complete
program will result in the following question:

 UnSAVEd source modifications will be lost. Do you really want to
EXIT? Y

To exit, press RETURN or Y RETURN. To return to HP Business BASIC/XL,
press any other character key followed by RETURN. Function keys and oth-
er special keys will not return you to HP Business BASIC/XL.

The :: form of the EXIT command does not check for source modifications
before exiting.

2-: 59

Example

 EXIT
 ::

The Calculator

The HP Business BASIC/XL interpreter can be used as a calculator. If you
type in a numeric expression without a line number, HP Business BASIC/XL
will return the value of that expression. Table 2-12 summarizes the what
happens with each response to the interpreter prompt. Note that at the
end of each line, you can type either RETURN or CONTROL E.

Table 2-12. The Calculator

In Response to the	Then press:	Effect
Interpreter Prompt (>), Type:		

Expression (except a numeric	RETURN	HP Business BASIC/XL displays the
literal)		value of the expression.

num_lit	RETURN	HP Business BASIC/XL deletes the
		program line that is numbered
		num_lit .

Program line	RETURN	HP Business BASIC/XL adds the
		program line to the program.

Anything else	RETURN	RETURN is treated as CONTROL E

Anything	CONTROL E	HP Business BASIC/XL executes the
		statement that would result from
		putting "DISP" before what was
		typed.

Nothing	CONTROL E	HP Business BASIC/XL executes the
		STEP command. Refer to "Debugging
		a Program" earlier in this chapter
		for more information.

Example

 > 2+2 RETURN (numeric expression)
 4
 > (5*(27/3)) RETURN (numeric expression)
 45
 > Index1=12 RETURN (assignment)
 12
 > Index2=3 RETURN (assignment)
 3
 > Index1*Index2 RETURN (numeric expression)

2-: 60

 36
 > 10 PRINT RETURN (program line)
 > 10 (line number with nothing else deletes line)
 > Index1*Index2 RETURN (numeric expression)
 36
 > Index1=12 RETURN (assignment)
 12
 > Index2=Index1 RETURN (assignment)
 12
 > 10 PRNIT RETURN (syntax error)
 Error

3- 1

Chapter 3 Language Elements

Introduction

This chapter describes elements of the HP Business BASIC/XL language.
It covers executable input, statements, variables, operators, and sub-
units.

Executable Input Units

An executable input unit can be input and executed without being part of
a larger structure. The following are the three executable input units
in HP Business BASIC/XL:

 * Expressions.
 * Commands.
 * Programs.

Table 3-1 compares them.

Table 3-1. Executable Input Units

Executable Input	Composed of	For More Information
Units		

Expression	Operands and operator, or function	On expressions in general:
	and arguments. Operands and	Chapter 3.
	arguments are variables or	
	expressions.	On executing expressions:
		"Calculator Mode" in Chapter 2.
		On variables: Chapter 3.

Command	Most statement elements, except	On commands in general: Chapter
	line number and line label.	3.

Program	Numbered program lines (statements	On program lines in general:
	that are not commands).	Chapters 3 and 4.
		On program development and
		execution: Chapter 2.

Statements and Their Elements

This section contains the following information:

3- 2

* Gives the syntax of the general statement and briefly explains each
 statement element.
 * Explains the different types of statements.
 * Provides further information on the statement elements keyword and
 identifier.
 * Lists the places in a program where spaces are required or are
 illegal.
 * Compares remarks and comments.
 * Explains how statements form a program.

Statement Syntax

Every HP Business BASIC/XL statement has the following syntax, although
not every statement can have all of the optional elements shown. See
"Statement Types" in this chapter for restrictions on the general syn-
tax.

Syntax

{ line_num [line_label :]} [Statement_body] [comment]

Parameters

line_num Integer in the range[1, 999999]. Leading zeros are not
 significant. Each program line in a program must have a
 unique line number. Program lines are executed in line
 number order unless control statements specify otherwise.

line_label Identifier. For a description of an identifier, see
 "Identifiers". If a program line has a label, it can be
 referenced by either its label or line number.

statement_body The part of the statement that is specified by its
 syntax specification. Syntax specifications for
 individual statements appear in chapter 4. The

statement-body is composed of the following statement
 elements:

Table 3-2. Statement Elements

Statement Element	Explained in

Keyword	"Keywords".

Variable name	"Variable Names".

Spaces	"Spaces".

Literal	"Numeric Literals" and "String Literals".

Expression	"Operators" or "Subunits".

3- 3

comment Any character string, including the null string. A
comment cannot follow a HELP command or an IMAGE or DATA

 statement.

Statement Types

The HP Business BASIC/XL statement types and their relations are shown
in Figure 3-1. Figure 3-1 also lists the characteristics of each state-
ment type.

Figure 3-1. Statement Types

3- 4

The following are command-only statements:

ANALYST CONTINUE HOP NAME

AUTO COPY INFO REDO

CALLS CWARNINGS LIST RENUMBER

CHANGE EXIT(or ::) LIST SUBS RUN

COMPGO FILES MODIFY STEP

COMPILE FIND MOVE VERIFY

COMPLINK HELP XREF

A command-only statement cannot be a program line. Every other Business
BASIC\XL statement can be a command or a program line. There are also
some statements that cannot be a command. That is, they can only appear
in program lines.

The following are statements that can appear as part of a program line,
but can not be issued as a command:

ACCEPT END WHILE IF THEN ELSE OPEN FORM SUBEND

CASE END IF IMAGE OPTION SUBEXIT

CLEAR FORM ENTER IN DATASET PACKFMT SUBPROGRAM

CLOSE FORM EXIT IF INPUT PAUSE THREAD IS

COPTION EXTERNAL INTEGER READ TINPUT

DATA FLUSH INPUT INTRINSIC READ FORM WHILE

DECIMAL FNEND LENTER REAL WORKFILE IS

DEF FN FOR LINPUT REPEAT WRITE FORM

DIM GLOBAL COPTION LOOP SELECT UNTIL

ELSE GLOBAL EXTERNAL MAT INPUT SHORT DECIMAL

END LOOP GLOBAL INTRINSIC MAT READ SHORT INTEGER

END SELECT GLOBAL OPTION NEXT SHORT REAL

All other statements can be issued as a command, and can appear in a
program line.

Keywords

Keywords are the basis of statements.

A keyword can be entered in the following ways:

 * All uppercase letters (for example, PRINT).
 * All lowercase letters (for example, print).

A keyword cannot be entered using a combination of uppercase and
lowercase letters; for example, PrINt, or Print.

Regardless of how keywords are entered, HP Business BASIC/XL lists them
in uppercase.

3- 5

Examples

 10 LET B$="Chocolate" !LET is a keyword
 20 PRINT X !PRINT is a keyword
 30 ON I GOTO 100,200,300 !ON and GOTO are keywords

Identifiers

An identifier is a character string that has the following
characteristics:

 * Begins with a letter.
 * Contains any combination of letters, digits, and underscores (_).
 * Has 63 or fewer characters.

HP Business BASIC/XL uses identifiers for several purposes. Table 3-3
shows those uses.

Table 3-3. Identifier Uses

Use of Identifier	Required Modifier	Example

Numeric variable name	None	Total

Line label	None	Return_point:

User-defined subprogram name	None	Routine

User-defined function name	Prefix FN	FNAdd

String variable name	Suffix $	Name$

An identifier can be entered in the following ways:

 * All uppercase letters; for example, NAMES (See note below).
 * All lowercase letters; for example, names.
* A combination of uppercase and lowercase letters; for example NaMeS.

NOTE If an identifier has the same spelling as a keyword, it must be
 typed in a combination of uppercase and lowercase letters. For
 example, "Print" or "pRiNt" is an identifier, but "print" or
 "PRINT" is a keyword. If such an identifier appears where the
 keyword is illegal, Business BASIC\XL recognizes it as an
 identifier. For example, HP Business BASIC/XL interprets "PRINT
 IF" as "PRINT If", where If is an identifier.

3- 6

In general, identifiers should not have the same name and spelling
 as keywords. This can be very confusing, especially when
 attempting to debug a program.

Regardless of how an identifier is entered, HP Business BASIC/XL prints
it with the first character upshifted and the others downshifted. For
example, "NAMes" and "NAMES" become "Names", and both refer to the same
entity.

Examples

Table 3-4. Legal Identifiers

--
Legal Identifier	Printed
--
X	X
--
grand_total	Grand_total
--
Sub_total_123	Sub_total_123
--
i	I
--
A_	A_
--
variablename	Variablename
--
LEGAL_IDENTIFIER	Legal_identifier
--

Table 3-5. Illegal Identifier

--
Illegal Identifier	Reason It Is Illegal
--
1XYZ	First character is not a letter.
--
#illegal	First character is not a letter.
--
sub'total	Contains a character that is not a letter, digit or underscore.
--

3- 7

Spaces

One of the following must separate a keyword and an identifier:

 * Space.
 * Comma.
 * Parenthesis.
 * Operator.

With few exceptions, spaces can appear anywhere in a program. Table 3-6
lists the places where spaces cannot appear and gives examples.

Table 3-6. Places Where Spaces Are Not Allowed

Space Is Not Allowed	Correct Example	Incorrect Example

Within a line number.	1020	10 20

Within a keyword.	PRINT	PR INT

Within an identifier.	Grandtotal	Grand total

Within a numeric literal.	10000	10 000

Within a multicharacter relational operator	<>	< >
symbol.		

Between the identifier and $ in a string	Astring$	Astring $
variable name.		

Between the FN and the identifier in a	FNAdd	FN Add
function name.		

When a keyword has an alternate spelling that contains an embedded
space, the two parts can be separated by more than one space. The key-
words in the left column below can also be initially spelled as shown
in the right column. The space in the second column can be replaced
with more than one space. HP Business BASIC/XL prints these keywords
as shown in the left column.

3- 8

Table 3-7. Keywords with Alternate Spellings

Keyword	Alternate Spelling

ENDIF	END IF

ENDLOOP	END LOOP

ENDSELECT	END SELECT

ENDWHILE	END WHILE

FNEND	FN END

GOSUB	GO SUB

GOT0	GO TO

SUBEND	SUB END

SUBEXIT	SUB EXIT

Comments versus Remarks

Both comments and remarks are used for documentation only. Table 3-8
summarizes their similarities and differences.

Table 3-8. Comments vs Remarks

	Relationship to	How Recognized	Effect on Run-time Efficiency
	Program		

Comment	Optional part of	Follows ! on	None (HP Business BASIC/XL ignores
	program line.	program line.	everything after !).

Remark	Nonexecutable	Begins with the	Slight (HP Business BASIC/XL must
	program line.	keyword REM.	read the word REM to determine
			that it does not need to do
			anything else for that line).

A comment can follow an empty statement as shown in line 400:

3- 9

 300 REM This is a remark.
 400 !This comment follows an empty statement.
 500 PRINT "Hello" !This comment is part of an executable program line.

HP Business BASIC/XL lists a remark with one blank between the keyword
REM and the text of the remark, as in line 300 above. HP Business
BASIC/XL lists a comment with one space before the exclamation point, as
in line 400 above. A comment cannot follow a HELP command.

Program Structure

A program is a sequence of program lines. It is good programming
practice to end a program with an END statement and use STOP statements
within the program if the program must be stopped before it ends.
However, the END statement can appear more than once in a program, and it
need not be the last line.

Syntax

program_line [program_line]...[END] [program_line]...

Parameters

program_line Any statement except a command (that is, any statement
 with a line number).

The order that program lines are executed in is determined by line
numbers and control statements. Program lines are executed in line
number order unless control statements specify otherwise. Control
statements are in chapter 4.

The lines of a program can be entered in any order. HP Business BASIC/XL
arranges them in line number order before listing them or executing the
program. Chapter 2 explains how to enter program lines.

A program can be divided into program units, one main program and one or
more subunits. Execution begins with the first line of the main program
unit. Subunits are covered later in this chapter.

Variables

In HP Business BASIC/XL, a variable can be numeric or string, scalar or
array, local parameter, or common. This section explains declaring and
using variables.

Certain characteristics of variables can be changed in a program unit.
The OPTION and GLOBAL OPTION statements can change the following program
unit characteristics:

 * Default numeric type.
 * Initialization of numeric variables to zero.
 * Implicit variable declaration.
 * Default lower bound of arrays.
 * Trace statement output control.

3- 10

 * Whether program main is the outer block for a multiprogram
 application.

The OPTION and GLOBAL OPTION statements are explained in chapter 4.

Variable Declaration

A variable can be declared as local to one program unit or common to two
or more program units. A local variable can be accessed only by the
program unit in which it is declared, whereas a common variable can be
accessed by every program unit that declares it.

A local variable can be declared explicitly by a variable declaration
statement, or implicitly the first time it is used. A common variable
must be explicitly declared with the COM statement in every program unit
that uses it.

Table 3-9 lists the variable declaration statements and the
characteristics of the variables that they can declare.

Table 3-9. Variable Declaration Statements

Variable Declaration Statement	Type of Variables Declared

COM	Any

DIM	Any

SHORT INTEGER	Short Integer
SHORT INT	

INTEGER	Integer
INT	

SHORT REAL	Short Real
SHORT	

REAL	Real

SHORT DECIMAL	Short Decimal
SHORT DEC	

DECIMAL	Decimal

3- 11

| DEC | |
| | |

Variable declaration statements can appear anywhere in a program. In
the interpreter, before the main procedure or function is executed, HP
Business BASIC/XL allocates space for both explicitly and implicitly
declared variables. A variable cannot be explicitly declared more than
once in a program unit.

If a variable appears in a program line, but not in a declaration
statement, its name determines whether it is a numeric or string vari-
able and the context determines whether it is a scalar or an array.

Variable Names

Table 3-10 gives examples of numeric and string variables names.

Table 3-10. Variable Names

Variable Type	Variable Name	Examples

Numeric	Identifier	Sum
		Grand_total
		X

String	Identifier with $ appended	Name$
		Date1$
		A$

A variable name is recognized throughout the program unit that declares
it.

Within a program unit, the following items can have the same name:

 * Scalar numeric variable.
 * Scalar string variable.
 * Numeric array variable.
 * String array variable.
 * Line label.
 * Common area name.

Context determines whether the name refers to a scalar variable, an array
variable or a line label.

Example

The following are examples of declaring variables:

3- 12

100 INTEGER B !Declares scalar numeric variable B
 110 INTEGER B(5) !Declares numeric array variable B
 120 DIM B$[15] !Declares scalar string variable B$
 130 DIM B$(3)[15] !Declares string array variable B$
 140 B: STOP !This line has a label, line label B
 150 PRINT B !B refers to scalar numeric variable
 160 PRINT B(1) !B refers to numeric array variable
 170 PRINT B$!B$ refers to scalar string variable
 180 PRINT B$(3) !B$ refers to string array variable
 190 GOTO B !B refers to line label
 999 END

Numeric Variable Declaration Statements. Each numeric variable
declaration statement explicitly declares one or more numeric scalar or
array variables. The type of the variables depends on the statement.

Table 3-11 lists the numeric variable types, the number of bits used to
store the value, the range of each type, the precision of each type, and
the declaration statement that declares variables of that type. HP
Business BASIC/XL accepts the character "D" as well as "E" to indicate
scientific notation.

Table 3-11. Numeric Variable Data Types

Numeric Type	Size	Range	Precision	Declaration
	(in bits)			Statement

Short integer	16	[-32768, 32767]	Exact	SHORT INTEGER

Integer	32	[-2147483648, 2147483647]	Exact	INTEGER

Short decimal	32	[-9.99999 E63, -9.99999	Exact (6	SHORT DECIMAL
		E-63], 0, [9.99999 E-63,	digits)	
		9.99999 E63]		

Decimal	64	[-9.99999999999 E511,	Exact (12	DECIMAL
		-1.00000000000 E-511], 0,	digits	
		1.00000000000 E-511,		
		9.99999999999 E511]		

Short real	32	[-3.40282 E38, -1.17549	Not Exact (6	SHORT REAL
		E-45], 0, [1.17549 E-45,	digits)	
		3.40282 E38]		

Real	64	[-1.79769313486231 E308,	Not Exact (15	REAL
		-4.94065645841247 E-324], 0,	digits	
		[4.94065645841247 E-324,		
		1.79769313486231 E308]		

The syntax for each of these declaration statements is in chapter 4.

3- 13

Array Variables. An array is an ordered collection of variables of the
same type. If the array elements are string variables, they have the
same maximum length.

An array element is legal wherever a scalar variable is legal.

An array variable is declared with a DIM, COM, or numeric declaration
statement. The syntax for each of these is in chapter 4.

Implicit Declaration. If a program unit does not contain an OPTION
DECLARE statement, its local variables can be declared implicitly, that
is, the first time they are used, rather than with a COM, DIM, or numeric
declaration statement.

Table 3-12 shows the characteristics that HP Business BASIC/XL gives to
implicitly declared variables.

Table 3-12. Characteristics of Implicitly Declared Variables

Syntax of	Kind and Type of Variable	Size of Variable
First Variable Reference		

identifier	Scalar variable of default	Not applicable
	numeric type.	

identifier (i1,...,in)	Array variable of default	Dimensions: n where 1<= n <=6
	numeric type.	Lower bound: default Upper
		bound: 10

-
identifier $	Scalar string variable.	Maximum length: 18
		characters

identifier $(i1,...,in)	String array variable.	Dimensions: n where 1 <= n
		<= 6 Lower bound: default
		Upper bound: 10 Maximum
		length of each element: 18
		characters

Variable Initialization

Before executing a program unit, HP Business BASIC/XL allocates space
for its local variables. When HP Business BASIC/XL exits the program
unit, it deallocates local variable space.

Table 3-13 shows how and when HP Business BASIC/XL initializes local and
common variables.

3- 14

Table 3-13. Variable Initialization

	Local Variable	Common Variable

Initialized to	Numeric: zero.	Numeric:zero.
	String: null string.	String: null string.

When	Before HP Business BASIC/XL	Before HP Business BASIC/XL
	executes the program unit that	executes the first program unit
	declares the variable (for the	that declares the variable.
	main program unit, this is only	
	when a RUN or GET command is	
	executed).	

How Often	Each time HP Business BASIC/XL	Once.
	executes that program unit.	

Unless	OPTION NOINIT applies to that	GLOBAL OPTION NOINIT was
	program unit.	specified.

Variable Reference

HP Business BASIC/XL can reference an entire scalar or array variable, a
single array element, or a substring of a string variable. A substring
reference can be made to a scalar string variable or a string array
element.

Table 3-14 explains how to reference variables and variable parts, and
gives examples.

Table 3-14. Variable References

Variable	Reference by	Examples

Scalar	var_name	X
		A$

Entire array	var_name or var_name (*[,*]...)	B(*), S$(*)

Array element	var_name (num_expr [, num_expr]...)	B(1)
	One num_expr per dimension.	S$(2,4,6)
	For each dimension, num_expr is in the	
	range [lower_bound , upper_bound]	

| | | |

3- 15

Substring *	str_name [num_expr1,num_expr2]	A$[1,5]
	str_name [num_expr1;num_expr2]	A$[5;3]
	str_name [num_expr1]	S$[5]

Table 3-14 Note

* If the substring reference belongs to a string array variable,
str_name must be an array element reference.

Variable Assignment

Numeric values must be assigned to numeric variables and string values
must be assigned to string variables. A substring reference results in a
string value that can be assigned to a string variable. Also, a string
value can be assigned to a substring on the left hand side of the
assignment statement.

Table 3-15 lists the types of values that can be assigned to variables.

Table 3-15. Possible Variable Assignments

Variable	Can Be Assigned Value of	Example

Numeric	Numeric variable	A=B
	Numeric expression	A=(B+3)*(C/5)
	Numeric literal	A=358

String	String variable	A$=B$
	String expression	A$=B$+C$
	String literal	A$="abcde"
	Substring	A$=B$[1,10]

Substring	String variable	A$[1,5]=C$
	String expression	A$[5]=C$+D$
	String literal	A$[1;3]="abc"
	Substring	A$[1;3]=B$[1;3]

When a string value is assigned to a string variable, the length of the
string variable becomes the current length of the string value. The
current length cannot exceed the maximum length of the string variable.

Several statements can assign values to variables. They are the
following:

ACCEPT LENTER READ

ENTER LET TINPUT

INPUT LINPUT

3- 16

Numeric Literals

Numeric literals are real numbers or integers.

Syntax

For literal integers (lit_integer):

digit [digit]

For literal real numbers:

lit_integer [.[lit_integer]][E[+,-] lit_integer] . lit_integer

[E[+,-] lit_integer]

Parameters

digit A single digit 0..9.

lit_integer A number consisting of any combination of the digits 0..9.

Examples

Table 3-16. Examples of Numeric Literals

| |
| Literal Integers Literal Real Numbers |
8 9.00
123 35.9E+6
406903 .74E-3

A literal integer is stored as an integer or a short integer, depending
on the range required.

Context determines the data type used to store a literal fixed-point or
floating-point number. A literal floating-point number is stored as a
real or decimal, depending on the precision required.

A literal that is beyond the range of the data type that it is to be
stored in is rounded. If it is beyond the range of the largest data
type, an error occurs.

String Literals

String literals are quoted string literals or special character string
literals.

Syntax

Quoted string literal:

3- 17

 { nonquote }
"{"" }..."

Special character string literal:

' integer

Parameters

nonquote Nonquoted string literal. Any character except a double
 quote(").

integer Special character string literal. Must be in the range
 [0,255]. Represents an ASCII character.

Examples

The quoted string literals in the left column below are printed as shown
in the right column. The fourth example is the null string.

Table 3-17. Examples of String Literals

String Literal	Printed

"cat"	cat

"black cat"	black cat

"12345"	12345

""	Nothing

""""	"

"say 'hi'"	say 'hi'

"say ""hi"""	say "hi"

The following are special character string literals representing ASCII
characters

Character	What It	Note
	Represents	

| | | |
| '0 | NUL | null |

3- 18

| | | |

'7	BEL	entry rings terminal's bell

'13	CR	carriage return

'48	0	zero

String Lengths

Associated with every string variables is a maximum length and a current
length. Table 3-18 explains the two types of length. The units are the
number of eight bit characters.

Table 3-18. Maximum vs Current String Length

	Maximum Length	Current Length

Definition	Length of longest string value	Length of string value that is
	that can be assigned to string	currently assigned to string
	variable.	variable.

Range	[1, 32767].	[0, curlength] where curlength is
		current length.

Assigned	Once, when string variable is	Each time a value is assigned to
	declared.	string variable.

Default	18 (for implicitly declared string	Zero (length of the null string).
	variable).	

When program execution begins in a main, procedure or function in which a
local string variable is declared either explicitly or implicitly and
OPTION INIT is active, the current length is initialized to zero. The
effect of initializing a string variable to zero is to set the value of
the string to the null string.

Strings declared in a common area are initialized to the null string if
the INIT option is active when the main procedure or function that
contains the first occurrence of that common area begins execution.

Examples

 100 DIM A$!Maximum length of A$ is 18 by default
 110 DIM B$[5] !Maximum length of B$ is 5
 120 A$="Cat" !Current length of A$ is 3
 130 B$="Birds" !Current length of B$ is 5

3- 19

 140 C$="Elephants" !Current length of C$ is 9, implicit definition
 150 A$="Caterpillar" !Now the current length of A$ is 11
 999 END

Substrings

Substring Operations. Substring operations are classified into two
types; references and assignments. Substring references are
specifications of a string of characters that are to be extracted from a
string variable. The value of the string with the substring reference is
never changed. Substring references can occur alone on the right hand
side of assignment statements, in PRINT and PACK statements, and as
arguments to some built-in string functions, for example, UPC$.
Execution of a statement which contains a substring assignment results
in a possible change to the value of the string variable. Substring
assignment can occur as the target of an assignment statement on the left
hand side, in INPUT, TINPUT, LENTER, and other input statements and in
the UNPACK statement.

Substring References. A substring reference is a user-specified string
of characters that begins at a character specified by an index for a
string variable and has a length. By definition, the index of the first
character in a string is one. The length of a substring determines the
index of the last character in the string. If the index of the
substring's last character in the string is greater than the actual
length of the string variable then spaces are added to the characters
referenced until a string of characters with the appropriate length is
built.

There are two methods for specifying the substring value to be
referenced. The first is specification of the start index alone. The
second is specification of the start index and either the index of the
last character or the length.

Start Index Only. Syntax

str_var [start]

Parameters

str_var A valid string variable name or string variable array
 element reference.

Start A numeric literal or expression that evaluates to a
 value between 1 and LEN(str_var)+1, inclusive.

Example

Consider the following substring reference:

 10 PRINT A$[Start]

The statement references the substring starting at the character at in-

3- 20

dex Start in the string, A$. If LEN(A$) = 0 then the value is a null
string. Otherwise, it is that string beginning at character index start
of A$ and ending at character index LEN(A$). (LEN is a function that
returns the length of a string. It is described in chapter 5.) If start
= (LEN(A$)+1) then the value is the null string.

Start Index and End Index or Length.

Syntax

str_var [start , end] str_var [start ; length]

Parameters

str_var A valid string variable name or string variable array
 element reference.

start A numeric literal or expression that evaluates to a
 value between 1 and LEN(str_var)+1, inclusive.

end A numeric literal or expression that evaluates to a
 value between start -1 and 32767, inclusive.

length A numeric literal or expression that evaluates to a
 value between 0- and 32770, inclusive .

Example

Consider the following two statements:

 10 PRINT A$[Start,End]
 20 PRINT A$[Start;Length]

Both statements reference the substring starting at the character at
index Start in the string, A$.

If End = (Start-1) or Length =0, then the value is the null string.

If Start = LEN(A$)+1), then the value is a string of (End-Start+1) or
Length spaces.

If End or (Start+Length-1) > MAXLEN(A$) then an error occurs.

For statement 10, if LEN(A$) >= End, then the value is the string
beginning at character index Start of A$ and ending at character index
End. Otherwise, the value is all of the characters from character index
Start of A$ until character index LEN(A$) with spaces appended to the end
of the value for a total of (End-Start+1) characters.

For statement 20, if LEN(A$) >= (Start+Length-1) then the value is the
string beginning at character index Start of A$ and ending at character
index (Start+Length-1). Otherwise, the value is all characters from
character index Start of A$ until character index LEN(A$) with spaces
appended to the end of the value for a total of Length characters.

 10 A$="basic" !Substring values on the RHS of assignment

3- 21

 20 B$=A$[1] !Assigns "basic" to B$ - characters 1 to LEN(B$)
 30 B$=A$[2,3] !Assigns "as" to B$ - characters 2,3
 40 B$=A$[2;3] !Assigns "asi" to B$ - characters 2,3,4
 50 B$=A$[4,7] !Assigns "ic " to B$ - characters 4,5 + 2 spaces
 60 B$=A$[6;2] !Assigns " " to B$ - a null string + 2 spaces
 70 B$=A$[7,10] !Range error because 7 > LEN(A$)+1

Substring Assignment. A substring assignment begins at a user-speci-
fied index corresponding to a character position in a string variable
and has a length. By definition, the index of the first character in a
string is one. The length of the substring determines the index of the
last character in the string to which a value is assigned. If the number
of characters assigned to the string is less than the length of the
substring specified, then spaces are assigned to the remaining charac-
ters in the string variable until the number of characters assigned is
equal to the length of the substring.

There are two methods for specifying the target substring. The first is
the specification of the starting index alone, and the second is
specification of the starting index and either the index of the last
character or the length.

Start Index Only. Syntax

str_var [start]

Parameters

str_var A valid string variable name or string variable array
 element reference.

start A numeric literal or expression that evaluates to a
 value between 1 and LEN(str_var)+1, inclusive.

Example

Consider the following assignment statement:

 10 A$[Start]=B$

Execution of this statement assigns the value of B$ to A$ beginning at
character Start.

If Start= (LEN(A$)+1), then a string append is done.

If the LEN of the string following assignment is greater than that before
assignment, then the actual length of A$ is reset.

If (Start+LEN(B$)-1) <= MAXLEN(A$), then the value of B$ is assigned to
A$. Otherwise, (MAXLEN(A$)-Start+1) characters from the value of B$ are
assigned to A$.

Note that as long as 1 <= Start <= LEN(A$)+1, then regardless of the
length of B$, no bounds violation occurs during the string assignment.

Start Index and End Index or Length.

3- 22

Syntax

str_var [start , end] str_var [start ; length]

Parameters

str_var A valid string variable name or string variable array
 element reference.

start A numeric literal or expression that evaluates to a
 value between 1 and LEN(str_var)+1, inclusive.

end A numeric literal or expression that evaluates to a
 value between start -1 and 32767, inclusive.

length A numeric literal or expression that evaluates to a
 value between 0- and 32767, inclusive.

Example

Consider the following two assignment statements:

 10 A$[Start,End]=B$
 20 A$[Start;Length]=B$

Execution of either of these statements assigns the value of B$ to A$
beginning at character Start.

If Start = (LEN(A$)+1) then a string append is done.

If the LEN of the string after the assignment is greater than that before
assignment then the actual length of A$ is reset.

If LEN(B$) >= (End-Start+1) or Length then the number of characters from
B$ assigned to A$ is equal to (End-Start+1) or Length, respectively. If
LEN(B$) < (End-Start+1) or Length, then the value of B$ is assigned to A$
beginning at character position Start. Spaces assigned to each remain-
ing character in A$ up to and including the character with index End or
until a total of Length characters has been assigned.

If End or (Start+Length-1) > MAXLEN(A$), then a bounds violation occurs.

 10 B$="basic" !Assigns a value to B$
 20 A$[1]=B$!Value of A$ is "basic"
 30 A$[2,6]=B$!Value of A$ is now "bbasic"
 40 A$[1;5]=B$!Value of A$ is now "basicc"
 50 A$[4,6]=B$!Value of A$ is now "basbas"
 60 A$[7]=B$!Value of A$ is "basbasbasic" - string append
 70 A$[1,6]=B$!Value of A$ is "basic basic" - 1 space was assigned
 80 A$[13;5]=B$!Range error because 13 &> LNE(A$)+1
 90 A$[LEN(A$)+1]=B$!Value of A$ is "basic basicbasic" - string append

Expressions

An expression is an operator with its operands or a function call. HP
Business BASIC/XL evaluates an expression and returns a result.

3- 23

Syntax

 { operand }
[operand] operator { func_name [(parameter [, parameter]...)]}

Parameters

operand First operand is required if operator is binary and not
 allowed if operator is unary.

 Each operand is one of the following:

 * A literal.
 * A variable name.
 * An expression.

 Operand type restriction depends on the operator.

operator Determines how the value(s) of the operands(s)
 produce(s) the result.

func_name Function name. HP Business BASIC/XL supports the
 following types of functions:

 * Predefined function.
 * Single-line user-defined function.
 * Multi-line user-defined function.

parameter The number of parameters depends on the function. Each
 parameter is one of the following:

 * A literal.
 * A variable name.
 * An expression.

 Parameter type restrictions are dependent on the types
 of the function's formal parameters.

The result of an operation or a predefined function depends on the values
of the operands or parameters, but the values of the operands and
parameters do not change.

A user-defined function can change the values of its parameters if the
parameters are passed by reference.

Operators

HP Business BASIC/XL has three unary operators: unary plus(+), unary
minus (-), and NOT. All other HP Business BASIC/XL operators are binary.
Also, each HP Business BASIC/XL operator is either an arithmetic,
relational, Boolean, or string operator, depending on the types of its
operands and result.

For each operator category, Table 3-19 gives the operand and result
types.

Table 3-19. Operands and Result Types of Operators

Operator	Operand Type	Result Type
Category		

3- 24

| | | |

Arithmetic	Numeric	Numeric

Relational	Numeric or string	Boolean*

Boolean	Boolean*	Boolean*

String	String	String

Table 3-19 Note

* A Boolean value is actually a numeric value. TRUE is one and FALSE
 is zero.

Arithmetic Operators

An arithmetic operator has numeric operands and a numeric result.

Table 3-20 identifies each arithmetic operator as unary or binary and
gives its name and an example.

Table 3-20. Arithmetic Operators

Operator	Unary	Operation Name	Example
	or		(expression=result)
	Binary		

+	Unary	Unary plus	+5=5

+	Binary	Addition	1+2=3

-	Unary	Unary minus	-(4+4)=-8

-	Binary	Subtraction	8-4=4

*	Binary	Multiplication	9*7=63

/	Binary	Real division	36/4=9.0

DIV	Binary	Integer division	37 DIV 4=9

| | | | |

3- 25

| MOD | Binary | Modulus | 37 MOD 4=1 |
| | | | |

^	Binary	Exponentiation	2^3=8

**	Binary	Exponentiation	2**3=8

MIN	Binary	Minimum	5 MIN 4=4

MAX	Binary	Maximum	5 MAX 4=5

The result of real division is of the default numeric type. The result
of integer division is truncated to a whole number. If the result is
within range, the type is integer. Otherwise, it is decimal or real.

Examples

The following examples show the results of division on different data
types:

 3 DIV 2 = 1 -10 DIV 5 = -2 9.999999999 DIV 1 = 9
 3/2 = 1.5 -10/5 = -2 9.999999999/1 = 9.999999999

The result of the operation

num_expr1 MOD num_expr2

is

num_expr1 -(num_expr2 *INT(num_expr1 / num_expr2))

where INT(x) returns the largest integer less than or equal to x, for
any numeric expression x. By definition, x MOD 0 =x for any numeric
expression x. The result of the MOD operation is of the default numeric
type, DECIMAL or REAL.

Examples

The following are examples of the result of the MOD statement. Each
example shows the math required to determine the result.

38 MOD 6 = 38 - (6*INT(38/6))
 = 38 - (6*6)
 = 38 - 36
 = 2

 13 MOD -2 = 13 - (-2*INT(13/-2))
 = 13 - (-2*-7)
 = 13 - 14
 = -1

 -13 MOD 2 = -13 - (2*INT(-13/2))
 = -13 - (2*-7)

3- 26

 = -13 - (-14)
 = -13 + 14
 = 1

 -13 MOD -2 = -13 - (-2*INT(-13/-2))
 = -13 - (-2*6)
 = -13 - (-12)
 = -13 +12
 = -1
 3 MOD 5 = 3 - (5*INT(3/5))
 = 3 - (5*0)
 = 3 - 0
 = 3

Relational Operators

A relational operator has either two numeric operands, two ASCII string
operands, or the result of another relational expression and a Boolean
result. Every relational operator is binary.

Table 3-21 gives the name and an example of each relational operator.

Table 3-21. Relational Operators

Operator	Operation Name	Example (expression=result)

<	Less Than	(1<2)=TRUE

<=	Less Than or Equal	(2<=1)=FALSE

=	Equal	(9=7)=FALSE

>=	Greater Than or Equal	(9>=4)=TRUE

<>	Not Equal	(36<>45)=TRUE

#	Not Equal	12#(6+6)=FALSE

String Comparisons. String comparisons are made by comparing each
string operand character by character from left to right. The charac-
ters are compared based on each character's ordinal value in the ASCII
character set. The ordinal value of a character is the value in the
decimal code column in the ASCII character code table presented in Ap-
pendix D. To compare two strings when using a native language other than
NATIVE-3000(language #0), the language the system uses before the
introduction of Native Language Support, use the LEX function (for more
information on Native Language Support refer to "Native Language Sup-
port" in chapter 6, or the Native Language Programmer's Guide).

3- 27

The null string ("") is less than every string except itself, to which it
is equal. The following explanation does not apply to the null string.

HP Business BASIC/XL compares the strings S1$ and S2$ as follows
(S1$[c;1] and S2$[c;1] are corresponding characters).

 1. c =1

 2. If CHR$(S1$[c;1])<CHR$(S2$[c;1]), then S1$ is less than S2$.
 Stop.

 3. If CHR$(S1$[c;1])>CHR$(S2$[c;1]), then S1$ is greater than S2$.
 Stop.

4. CHR$(S1$[c;1])=CHR$(S2$[c;1]). If c +1 is in the range [1, MIN(
 LEN(S1$), LEN(S2$))], then c = c +1 and return to step 2.

 5. If LEN(S1$) = LEN(s2$) then S1$ is equal to S2$. Stop.

 6. If LEN(S1$) > LEN(s2$) then S1$ is greater than S2$. Stop.

 7. If LEN(S1$) < LEN(s2$) then S1$ is less than S2$. Stop.

(MIN and LEN are the predefined minimum and length functions.)

Examples

The following expressions are TRUE:

 "Abc" = "Abc" "Cat" <> "Cats" "Bird" < "Cats"
 "Abc" <= "Abc" "Cat" < "Cats" "Ears" > "Early"

"Abc" >= "Abc" "Cat" <= "Cats" "Bir d " + "Dog" = "Bird Dog"

The following expressions are FALSE:

 "Abc" # "Abc" "Cat" = "Cats" "Bird" >= "Cats"
 "Abc" < "Abc" "Cat" < "Bats" "Ears" < "Early"

"Abc" > "Abc" "BAT" = "bat" "Bird" + "Dog" = "Bird Dog"

Boolean Operators

A Boolean operator has one or two operands and a Boolean result.

The Boolean values TRUE and FALSE are represented by the numeric values
one and zero. The operands of a Boolean expression can be Boolean or
numeric values. A numeric operand is considered TRUE if it is nonzero
and FALSE if it is zero.

HP Business BASIC/XL also provides the two keywords TRUE and FALSE. TRUE
is a numeric constant of short integer type equal to one. FALSE is a

3- 28

numeric constant of short integer type equal to zero. Depending on the
operator, HP Business BASIC/XL evaluates a Boolean expression either
completely or partially.

Logical HP Business BASIC/XL always evaluates both operands.
evaluation

Partial HP Business BASIC/XL always evaluates the first operand,
evaluation but evaluates the second operand only if its value could
 change the value of the expression.

Table 3-22 identifies each Boolean operator as unary or binary, gives
its name, and tells whether it is evaluated logically or partially.

Table 3-22. Boolean Operators

Operator	Unary or Binary	Operation Name	Logical or Partial
			Evaluation

NOT	Unary	Negation	Logical

LAND	Binary	Logical AND	Logical

AND	Binary	AND	Partial

LOR	Binary	Logical OR	Logical

OR	Binary	OR	Partial

XOR	Binary	Exclusive OR	Logical

Table 3-23 is the truth table for the NOT operator.

Table 3-23. NOT Truth Table

X	NOT X

TRUE	FALSE

FALSE	TRUE

3- 29

Examples

These expressions are TRUE:

 NOT 0 NOT (X-X) NOT (5 = 3) NOT ("HP" < "Competitors)

These expressions are FALSE:

 NOT 1 NOT 3600 NOT (5 > 3) NOT("HP" # "Hewlett Packard")

Table 3-24 is the truth table for the LAND and AND operators. The AND
operator evaluates the first operand, and if it is FALSE the result is
FALSE and the second operand is not evaluated. The LAND operator
evaluates both operands regardless of the value of the first one.

Table 3-24. LAND/AND Truth Table

X	Y	X {LAND AND} Y

TRUE	TRUE	TRUE

TRUE	FALSE	FALSE

FALSE	TRUE	FALSE

FALSE	FALSE	FALSE

Examples

These expressions are TRUE:

 (2 > 1) AND (1 > 0) (2 > 1) LAND (1 > 0)
 ((X-1) <= X) AND (X <= (X+1)) ((X-1) <= X) LAND (X <= (X+1))
 1 AND (1+0) 1 LAND (1+0)
 (3*5) AND ((1+2)/5) (3*5) LAND ((1+2)/5)
 ("a" < "b") AND ("ant" < "bug") ("a" < "b") LAND ("ant" < "bug")

These expressions are FALSE:

 (2 = 1) AND (1 > 0) (2 = 1) LAND (1 > 0)
 ((X-1) <= X) AND (X > (X+1)) ((X-1) <= X) LAND (X > (X+1))
 (3*5) AND (0/5) (3*5) LAND (0/5)
 ("a" = "ant") AND ("b" = "bug") ("a" = "ant") LAND ("b" = "bug")

The program on the left below evaluates FNI(I); the program on the right
does not. If the function FNI adds one to its argument, then the program
on the left prints "0 1" and the program on the right prints "0 0".

 10 I=0 10 I=0
 20 PRINT (I LAND FNI(I)); I 20 PRINT (I AND FNI(I)); I

3- 30

 99 END 99 END

If array A has Maxindex elements, and Index is greater than Maxindex,
then the statement

 100 IF (Index <= Maxindex) AND (A(Index) =5) THEN GOTO 500

does not evaluate A(Index), and an error does not occur. The statement

 200 IF (Index <= Maxindex) LAND (A(Index) = 5) THEN GOTO 600

does evaluate A(Index), and an error occurs (subscript out of range).

Table 3-25 is the truth table for the LOR and OR operators. The OR
operator evaluates the first operand, and if it is TRUE, the result is
TRUE and the second operand is not evaluated. The LOR operator evaluates
both operands regardless of the value of the first.

Table 3-25. LOR/OR Truth Table

X	Y	X {OR LOR} Y

TRUE	TRUE	TRUE

TRUE	FALSE	TRUE

FALSE	TRUE	TRUE

FALSE	FALSE	FALSE

Examples

These expressions are TRUE:

 (X < (X+1)) OR (2 < 3) (X < (X+1)) LOR (2 < 3)
 (X <= (X+1)) OR (5 = 3) (X <= (X+1)) LOR (5 = 3)
 (9-(3**2)) OR ("a" < "z") (9-(3**2)) LOR ("a" < "z")

These expressions are FALSE:

 0 OR (5-5) 0 LOR (5-5)
 (9-(3**2)) OR (9-(6+3)) (9-(3**2)) LOR (9-(6+3))
 (X-X) OR ("a" > "z") (X-X) LOR ("a" > "z")

The program on the left below evaluates FNI(I); the program on the right
does not. If the function FNI subtracts one from its argument, then the
program on the left prints "1 0" and the program on the right prints "1
1".

3- 31

 10 I=1 10 I=1
 20 PRINT (I LOR FNI(I)); I 20 PRINT (I OR FNI(I)); I
 99 END 99 END

If array A has Maxindex elements, and Index is greater than Maxindex,
then the statement

 100 IF (Index &> Maxindex) OR (A(Index) =5) THEN GOTO 500

does not evaluate A(Index), and an error does not occur. The statement

 200 IF (Index &> Maxindex) LOR (A(Index) =5) THEN GOTO 600

does evaluate A(Index), and an error occurs (subscript out of range).

Table 3-26 is the truth table for the XOR operator. XOR is different
from the OR and LOR operators in that it returns TRUE only when the first
or the second operator is TRUE, but the operators are not both TRUE. The
OR and LOR operators return TRUE if one or both operands are TRUE.

Table 3-26. XOR Truth Table

X	Y	X OR Y

TRUE	TRUE	FALSE

TRUE	FALSE	TRUE

FALSE	TRUE	TRUE

FALSE	FALSE	FALSE

Examples These expressions are TRUE:

 0 XOR 1 (3-(2+1)) XOR 85 (6 <=5) XOR (7+3)
 1 XOR 0 35677 XOR (9-(3*3)) (X < (X-1) XOR ("A" = "A")

These expressions are FALSE:

 0 XOR 0 ("cat" = "dog") XOR ("a" = "b") (X = (X+1)) XOR (X-X)
 1 XOR 1 ("cat" < "dog") XOR ("a" < "b") 365 XOR 366

String Concatenation Operator

The string concatenation operator has two string operands and a string
result.

3- 32

Syntax

str_expr1 + str_expr2

The resulting string is the value of str_expr1 with the value of
str_expr2 appended to it. The length of the resulting string is the sum
of the two lengths.

Example

 10 Mystery1$="hot"+"dog" !Mystery1$'s length is set to 6
 20 Mystery2$="base"+"ball" !Mystery2$'s length is set to 8
 30 PRINT Mystery1$+"s"+" and "+Mystery2$
 40 ! Line 30 prints -- hotdogs and baseball

Evaluation of Expressions

HP Business BASIC/XL evaluates a simple (one operator) expression by
evaluating its operands or actual parameters from left to right, and
then performing the operation or function.

Examples

 10 A=2
 20 B=7
 30 C=A+B
 99 END

In line 30 of the above program, HP Business BASIC/XL evaluates A and B
(in that order) and then adds their values (2 and 7, respectively) to
produce the result, 9.

 100 X=10
 110 Y=15
 120 Z=20
 130 Max_xyz=MAX(X,Y,Z)
 999 END

In line 130 of the above program, HP Business BASIC/XL evaluates the
expression MAX(X,Y,Z) by first evaluating X, Y, and Z (in that order) and
then comparing their values (10,15, and 20, respectively) and returning
the largest value (20).

More complex expressions can be constructed by substituting expressions
for the operands or parameters. For example, the expressions A+B and
MAX(X,Y,Z) are operands of the addition operator in the expression
(A+B)+MAX(X,Y,Z). HP Business BASIC/XL evaluates (A+B)+MAX(X,Y,Z) by
first evaluating A+B and MAX(X,Y,Z) (in that order) as explained above,
and then adding their values (nine and 20, respectively) to produce the
result, 29.

When an expression has expressions for operands or parameters, operator
hierarchy determines the order in which the component operations are
performed. The general rule of left to right expression evaluation
applies to the evaluation of each subexpression. For example, operator
hierarchy dictates that the expression 2*3+4*5 is evaluated as (2*3) +

3- 33

(4*5), where the expressions in parentheses are evaluated first.

Operator Hierarchy

When an expression contains several operators, operator precedence is
used to determine the evaluation order. The operator hierarchy
establishes the precedence relationship among the HP Business BASIC/XL
operators. Expressions with operators of equal precedence are evaluated
from left to right.

Table 3-27 shows the HP Business BASIC/XL operator hierarchy. An
operator takes precedence over those below it in the table. Operators on
the same line of the table have equal precedence.

Table 3-27. Operator Hierarchy

--
Operator or Operator Category	Symbol(s)
--
Subexpressions within Parentheses	()
--
Exponentiation Operator *	**, ^
--
Unary Operators	+, -, NOT
--
Multiplication and Division Operators	*, MOD, /, DIV
--
Addition and Subtraction Operators	+, -
--
Minimum and Maximum Operators	MIN, MAX
--
Relational Operators	<, <=, =, =>, >, <>, #
--
Boolean AND Operators	LAND, AND
--
Boolean OR Operators	LOR, OR, XOR
--

Table 3-27 Note

* A unary operator is applied to the exponent before the exponentiation
 operator is applied to its arguments. For example, -2**-2 is
 equivalent to -(2**(-2)).

3- 34

Examples

 4+7*2 = 4+(7*2) = 4+14 = 18
 (4+7)*2 = 11*2 = 22
 3-2+1 = (3-2)+1 = 1+1 = 2
 3-(2+1) = 3-3 = 0
 NOT A**3 MOD 12 + 75 = B AND C OR D =
 (((((NOT(A**3)) MOD 12) + 75) = B) AND C) OR D

Result Type

If an arithmetic operation has two operands of the same type, the
operation is performed using that type. The intermediate result is of
that type, and an error occurs if the intermediate result is out of the
range of the final result type. The following are exceptions:

 * Short integer arithmetic, performed in integer arithmetic.

 * Exponentiation in which the base is converted to a real for all
 types. The exponent is converted to a real for decimal, short
 decimal, and short real. The exponents for integers and short

integers are not converted. That is, a short integer remains a short
 integer, and an integer remains an integer.

Examples

 10 INTEGER A,B
 20 REAL C
 30 C=A+B
 99 END

In line 30 of the above program, the intermediate result of A+B is an
integer. It is converted to a real number when it is assigned to the
real variable, C.

If an arithmetic operation has two operands of different types, one or
both operands are converted to one type before the operation. The type
that they are converted to depends on the default numeric type.

Precision can be lost when numbers are converted between real and dec-
imal types. Overflow can occur when numbers are converted to a type
with a smaller range (for example, real to short real).

Subunits

A program can be divided into program units consisting of one main
program unit followed by one or more subunits. In this section, the main
program unit is called the main program.

A subunit is a series of program lines that can be called with
parameters, by another program unit. The calling program unit transfers
control to the subunit; the subunit executes and returns control to the
calling program unit. The calling program unit can be the main program
or another subunit.

3- 35

A subunit can contain any program lines that are valid in a main program,
including variable declaration statements. Except for common variables,
the variables that are defined in a subunit, including formal parame-
ters, are local to that subunit. All variable names in the subunit rep-
resent variables that are distinct from variables with the same names
in other program units. HP Business BASIC/XL allocates space for local
variables when it enters a subunit, and releases that space to memory
when it returns to the calling program.

When HP Business BASIC/XL enters a subunit, it suspends the ON ERROR, ON
END, and ON HALT specifications form the last program unit until control
returns to that program unit. Exceptions to this rule are those "ON"
conditions that specify subunit calls, for example, ON ERROR CALL
Error_Routine.

A subunit is either a subprogram or a user-defined multi-line function.
A subprogram performs a task, but does not return a value to the calling
program unit. A multi-line function returns a value to the calling
program unit unless it is called as a subprogram, in which case the
result is discarded.

Table 3-28 summarizes the differences between subprograms and multi-line
functions.

Table 3-28. Subprograms vs Multi-line Functions

Subunit Type	Subprogram	Multi-line Function

Begins with	SUBPROGRAM or SUB statement.	DEF FN statement.

Ends with	SUBEND statement.	FNEND statement.

Returns to	Line following subprogram call.	Line containing function
		call.

Returns via	SUBEXIT or SUBEND statement.	RETURN statement.

Returns with	No.	Yes.
value		

Subprograms

A subprogram is a subunit that performs a task and returns control to the
program unit that called it. It does not return a value to the calling
program unit.

3- 36

Syntax

SUB_stmt [stmt]... SUBEND_stmt

Parameters

SUB_stmt SUBPROGRAM or SUB statement. Not executable. Indicates
 that the lines that follow are a subprogram.

stmt Can be a SUBEXIT statement that returns control to the
 calling program unit before the SUBEND statement is
 executed, or can be any executable statement. These
 statements constitute the body of the subprogram.

SUBEND_stmt SUBEND statement. Indicates the end of the subprogram.

A subprogram follows the editing procedure described in chapter 2.

A program unit calls a subprogram with a CALL statement. The subprogram
returns control to the statement following the CALL statement.

Example

10 READ A,B !Main program begins
 15 DATA 48,50
 20 CALL Sub1(A,B) !Main program calls Sub1; go to line 100
 30 PRINT A
 40 PRINT B
 99 END !Main program ends
 100 SUB Sub1 (X,Y) !Subprogram Sub1 begins
 105 DIM String$[1]
 110 IF X<0 THEN SUBEXIT !If X<0, Sub1 ends early; go to line 30
 115 String$=CHR$(X+Y) !If X=>0, Sub1 continues
 120 PRINT String$
 999 SUBEND !Subprogram Sub1 ends; go to line 30

User-Defined Multi-Line Functions

A user-defined multi-line function is a subunit that returns a value to
the calling program unit. The value returned by a function has a
specific type. A function that returns a numeric value is called a
numeric function; A function that returns a string value is called a
string function.

Syntax

DEFFN_stmt stmt [stmt] . . . FNEND_stmnt

Parameters

DEFFN_stmnt DEF FN statement. Not executable. Indicates that the
 lines that follow are a multi-line function.

stmt Executable statements that make up the body of the
 function. At least one stmt must be a RETURN statement
 that returns a value and control to the calling program
 unit.

FNEND_stmt FNEND statement. Indicates the end of the function.

3- 37

A function is edited using the procedures described in chapter 2.

A program unit calls a multi-line function the same way it calls a
predefined or single-line function: by its name, followed by an actual
parameter list if it has one. The list of actual parameters is enclosed
in parentheses, and the individual parameters are separated by commas.

Example

10 READ A,B !Main program begins
 15 DATA 48, 50
 20 C$=FNFunc$(A,B) !Main program calls FNFunc$; go to line 100
 30 PRINT C$
 99 END !Main program ends
 100 DEF FNFunc$(X,Y) !Function FNFunc$ begins
 105 DIM String$[1]
 115 String$=CHR$(X+Y)
 120 RETURN String$!FNFunc$ returns value to line 20
 999 FNEND !Function FNFunc$ ends

A multi-line function can also be called as a subprogram with the CALL
statement. In this case, the value returned by the function is
discarded.

If a program has more than one subunit with the same name, the name
references the first subunit that it finds. The following is the search
order:

 1. Single-line function.
 2. Local external or intrinsic subunit.
 3. Internal multi-line function (one defined by the program).
 4. Global external or intrinsic subunit.

Parameter Passing

An actual parameter can be passed to a subprogram by reference or by
value. Actual parameters are passed by reference unless the individual
actual parameter is enclosed in parentheses or is an expression or
substring. Enclosing the actual parameter in parentheses specifies that
the actual parameter is to be passed by value.

Table 3-29 compares the two methods. String or numeric literals are
always passed by value. Arrays are always passed by reference.

Table 3-29. Parameter Passing Methods

	Actual Parameter	Actual Parameter
	Passed by Reference	Passed by Value

Formal parameter	The actual parameter itself.	Assigned the value of the actual
is		parameter.

| | | |
| Subprogram can | If it changes corresponding formal | No. |

3- 38

change actual	parameter.	
parameter		

Variables Passed	File designators*.	All not mentioned to the left.
This Way		
	Arrays.	Scalar variables enclosed in
		parentheses.
	Array elements.	
		String literals.
	Scalar numeric variables.	
		Numeric literals.
	Unsubscripted scalar string	
	variables.	Expressions
		Substrings

Corresponding	Exactly the same type and both	Compatible types.**
parameters must	scalar or both array.	
be		

Table 3-29 Notes

* An actual parameter that corresponds to a formal file designator
parameter must have a value that can be converted to a short integer

 in the range [1, 32767].

** An actual and formal parameter are compatible if the parameters are
both string or both numeric (they must also be scalar, because whole

 arrays cannot be passed by value). If the parameters are of
different numeric types, HP Business BASIC/XL converts the value of

 the actual parameter to the numeric type of the formal parameter
 before assigning it to the formal parameter.

Example

 10 A,B=0
 20 CALL Sub(A,(B)) !A is passed by reference
 25 REM !B is passed by value
 30 PRINT A !Prints 1 (Sub changed A)
 40 PRINT B !Prints 0 (Sub did not change B)
 99 END
 100 SUB Sub (X,Y) !A corresponds to X; B corresponds to Y
 110 X=X+1
 120 Y=Y+2
 130 PRINT X !Prints 1
 140 PRINT Y !Prints 2
 150 SUBEND

The number of actual parameters in a subprogram call must be the same as
the number of formal parameters in the SUBPROGRAM or DEF FN statement
that defines the beginning of the subprogram or function. The actual
parameters are evaluated and assigned to the corresponding formal
parameters from left to right.

Initial Subprogram Environment

Every program unit has its own operating environment. When HP Business

3- 39

BASIC/XL enters a subprogram, it initializes the environment. When
control returns to the calling program unit, HP Business BASIC/XL
reinstates the environment of the calling program unit.

Table 3-30 lists the characteristics that define the operating
environment of a program unit and explains how each characteristic is
initialized.

Table 3-30. Program Unit Operating Environment

Operating Environment	Initial Value
Characteristic	of Characteristic Upon
	Program Unit Entry

Data pointer position.	First datum in first DATA statement in
	program unit.

Accessible files.	Files passed as parameters and common files
	that program unit declares.

Trigonometric unit.	Radians.

Print format for numeric data.	Standard.

Default lower bound for arrays.	Depends on OPTION BASE.

ON ERROR specifications.	ON ERROR GOTO and ON ERROR GOSUB
	specifications that were active in the
	calling program unit are inactive; ON ERROR
	CALL specifications that were active in the
	calling program unit are active.

ON END specifications.	ON END specifications that were active in
	the calling program unit are inactive.

Using Common Variables in Subunits

A subunit can declare an entire common area or an initial subset of a
common area that is declared in the main program. It can only access the
common variables that it declares.

A program unit declares common areas with COM statements. A subprogram
cannot contain common variables with the same names as its formal
parameters or local variables.

Example

 10 COM A(4,4), B, INTEGER C, D(3,3), E$[28], F$(2,4)[56]

3- 40

 .
 .
 .
 99 END
 100 SUB Payroll
 110 COM X(*,*), Y, INTEGER Z,Q()
 .
 .
 .
 199 SUBEND
 200 DEF FNAccounts (X,Y,Z)
 210 COM I()
 .
 .
 .
 299 FNEND

The following table shows the correspondence between common variable
names in the above program.

Table 3-31. Common Variable Names Correspondence

Name of Common Variable	Name of Common Variable	Name of Common Variable
in Main Program	in Payroll	in FNAccounts

A	X	I

B	Y	None

C	Z	None

D	Q	None

E$	None	None

F$	None	None

VERIFY Command

The VERIFY command verifies specified program units; that is, it checks
that they are well-formed and prints messages if it finds errors. The
VERIFY command is a command-only statement, and it cannot be executed
when the program is running.

A program unit is well-formed if it has the following characteristics:

 * Properly matched constructs.
 * Consistent array references.
 * No incorrectly placed statements (for example, SUBEXIT in a

3- 41

 function).
 * No undeclared variables under OPTION DECLARE.

Syntax

 [ALL]
VERIFY [[{,}]]
 [progunit [{;} progunit]...]

Parameters

ALL Specifies all program units in the program, including
 the main program unit. ALL is the default.

progunit One of the following:
 [SUB] subunit_name .
 [SUB] function_name .
 [SUB]MAIN.

A program unit cannot execute unless it is well-formed . For this reason,
HP Business BASIC/XL verifies a program unit at the following times:

 * At run time, if it was modified since its last call.
 * Before saving it in a BASIC Save file.

Therefore, you do not need to issue the VERIFY command to check a program
before you run it, because HP Business BASIC/XL will issue it
automatically. The purpose of the VERIFY command is to allow you to
VERIFY a program as you develop it, without having to RUN or SAVE it.

Example

The following example shows what happens when a program is not
well-formed . The example below shows the results of the VERIFY command.
HP Business BASIC/XL has issued the VERIFY command when the programmer
typed RUN.

>10 OPTION DECLARE !This specifies that all variables must be declared
 >20 WHILE A !A is not declared, and the WHILE statement
 >25 !is not closed
 >30 PRINT A
 >RUN
 Error 179
 Structured constant on line 20 not properly closed.
 Error 1403
 Undeclared variable A found in subunit MAIN.
 Error 157
 VERIFY error(s) in program .

Calling External Subunits

External routines fall into the following categories:

 * Procedures (routines that do not return values).
 * Functions (routines that return values).

3- 42

An external routine is called with the CALL statement. An external
function can be called with either the CALL statement or the FNCALL
function; the method depends on the function name and whether its result
can be discarded. Table 3-32 tells how to call each type of external
subunit.

Table 3-32. External Subunit Calls

External Routine	Dependency	How to Call

Subprogram	None.	Use CALL statement.

Function	Return value can be thrown away.	Use CALL statement.

Function	Internal name is a legal HP	Call as a user-defined function is
	Business BASIC/XL function name.	called.

Function	Internal name is not a legal HP	Call FNCALL function.
	Business BASIC/XL function name.	

FNCALL is a predefined function that takes a function call as its
parameter. Executing an FNCALL call is equivalent to executing the
parameter (a function call). An internal function (a predefined function
or function defined by the program) cannot be called with FNCALL. An
external function with an illegal HP Business BASIC/XL function name
must be called with FNCALL. An FNCALL call can appear wherever a user-
defined function call can appear.

Examples

 10 INTRINSIC ("Isubs") Sub1 !Declares intrinsic subprogram
 15 CALL Sub1 !Calls intrinsic Sub1
 20 EXTERNAL Sub2 !Declares external subprogram
 25 CALL Sub2 !Calls external Sub2
 30 INTRINSIC Irr_result1 !Function with irrelevant result
 35 CALL Irr_result1
 40 EXTERNAL REAL Irr_result2 !Function with irrelevant result
 45 CALL Irr_result2
 50 INTRINSIC FNRead !Function with legal name
 55 C$=FNRead
 60 EXTERNAL REAL FNWrite ALIAS "Write" !Function with legal name
 65 Real1=FNWrite
 70 EXTERNAL INTEGER Store (REAL X) !Function with illegal name
 71 !to show use of FNCALL
 75 Int1=FNCALL(Store(Real1))
 80 INTRINSIC Getfile ALIAS "Get_file" !Function with illegal name
 81 !aliased to legal name
 85 IF FNCALL(Getfile("File2")) THEN CALL Sub1
 99 END

3- 43

External Parameter Type Correspondence

When a program calls an external routine, the types of the actual
parameters must correspond to the types of the formal parameters.

When a program declares an external function that is not declared as
INTRINSIC, the return type in the EXTERNAL statement must correspond to
the return type in the function's original definition.

Table 3-33 shows the correspondence between parameter types in HP
Business BASIC/XL, HP Pascal/XL, and HP C/XL.

Table 3-33. Parameter Type Correspondence

HP Business	Formal	Formal	Formal	Formal
BASIC/XL	Parameter	Parameter	Parameter	Parameter
Actual	Typed Declared	Type in	Type in	Type in
Parameter	in EXTERNAL	HP Business	HP Pascal/XL	HP C/XL
Type	Declaration	BASIC/XL		

String$	String$	String$	STRING	Not supported

String$	BYTE STRING$	Not supported	Packed array of	char
			char	

Any type except	BYTE	Not supported	Any type	char
String$			requiring exactly	
			8 bits of storage	

SHORT INTEGER	SHORT INTEGER	SHORT INTEGER	SHORTINT	short

INTEGER	INTEGER	INTEGER	INTEGER	int

SHORTREAL	SHORTREAL	SHORTREAL	REAL	float

REAL	REAL	REAL	LONGREAL	double

SHORT DECIMAL	SHORT DECIMAL	SHORT DECIMAL	Not supported*	Not supported*

DECIMAL	DECIMAL	DECIMAL	Not supported*	Not supported*

Table 3-33 Note

* Decimal parameters can be passed to an external routine written in
 any language by defining an appropriate type in that language.

3- 44

Parameter type correspondence for numeric arrays is the same as that for
scalar numeric parameters. The corresponding formal parameter for string
array parameters in the procedure or function header for the procedure or
function must be a string array that conforms to the type expected by An
HP Business BASIC/XL procedure or function.

All arrays are passed by reference.

Examples

If the external HP Pascal/XL function func is defined:

 function func (c: color;
 var s: str5;
 var i1: int1;
 var i2: integer;
 r: real;
 var l: longreal): real;

And the types color, str5, and int1 are defined:

 color = (red,blue,yellow);
 str5 = packed array [1..5] of char;
 int1 = shortint;
 int2 = integer;

Then the following EXTERNAL statement is correct:

 100 EXTERNAL PASCAL SHORT REAL FNFunc ALIAS "func" &
 (BYTE VALUE C, BYTE S$, SHORT INTEGER I1, INTEGER I2, &
 SHORT REAL VALUE R, REAL L)

4-: 1

Chapter 4 Statements
Introduction

This chapter contains descriptions of each statement that can be used to
form programs in HP Business BASIC/XL. The statements are arranged in
alphabetical order. Each description contains the complete syntax of the
statement, examples, and other necessary information.

ACCEPT

The ACCEPT statement obtains a string of characters from the designated
input device without echoing those characters to the display as they are
entered. If a string variable is included in the ACCEPT statement, the
value of the string of characters is assigned to the string variable.
The characters in the entered string must be from the ASCII or default
foreign character set. Otherwise, the terminal beeps.

No line feed is generated following statement execution, so the cursor
remains on the same line.

Syntax

 [[separator]]
ACCEPT [str_var] [[separator] option_clause [option_clause]]...

Parameters

str_var The string variable that the input string is assigned
 to. Characters are assigned to the variable when you
 type RETURN. Characters, such as a comma or a double
 quote, are not considered to be a data item separator
 or terminator within the input string. An ACCEPT
 statement without a str_var discards the input.

option_clause One of the following:

 {TIMEOUT [=] timeout_num_expr }
 {ELAPSED [=] elapsed_num_var }
 {CHARS [=] chars_num_expr }

timeout_num_ expr Numeric expression for the maximum amount of time, in
 seconds, allowed for you to enter input. The input
 time limit is determined as follows:

 Value of Input Time Limit
timeout_num_ expr

 Zero or less Unlimited

 In the range That number of seconds rounded to
 (0,255) nearest second

 Greater than 255 Set to 255 seconds

 If input time is limited through the use of the
 TIMEOUT option, HP Business BASIC/XL transfers
 control to the next program statement when the time
 limit is exceeded without assigning a new value to
 the specified str_var .

elapsed_num_var A numeric variable that the time, in seconds, used to
 enter the input is returned to. If the TIMEOUT
 option is also specified, and that time limit is
 exceeded, elapsed_num_var is set to -256.

 If the ELAPSED option is not selected, the elapsed

4- 2

 time is not measured.

chars_num_expr A numeric expression that evaluates to the maximum
 number of characters that can be input. Typing this
 number of characters causes the generation of a
 carriage return and assignment of the value to the
 specified str_var . Then the program begins execution
 of the next statement in the program.

separator One of the following:

 {WITH}
 {, }
 {; }

Each option_clause can occur only once in an ACCEPT statement.

Examples

The following examples show the use of the ACCEPT statement. Lines 10 -
60 will assign the input string to a string variable, whole lines 70 -
110 discard the input.

 10 ACCEPT String_var1$
 20 ACCEPT String_var2$, TIMEOUT Time_limit
 30 ACCEPT String_var3$ WITH TIMEOUT=Time_limit
 40 ACCEPT String_var4$ WITH TIMEOUT Time_limit, ELAPSED Elapsed_time
 50 ACCEPT String_var5$, CHARS Num_chars, ELAPSED Elapsed_time
 60 ACCEPT String_var6$, ELAPSED Elapsed_time, CHARS 5, TIMEOUT 3
 70 ACCEPT
 80 ACCEPT TIMEOUT 5
 90 ACCEPT ELAPSED Elapsed_time
 100 ACCEPT CHARS 1
 110 ACCEPT TIMEOUT 1, CHARS 1

ADVANCE

The ADVANCE statement moves the datum pointer of a specified BASIC DATA
file a given number of datum from its current position. Use of any other
file type with this statement results in an error.

Syntax

 [{,}]
ADVANCE#fnum ; num_expr [{;} STATUS[=] num_var]

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. fnum is a numeric expression that
 evaluates to a positive short integer.

num_expr A numeric expression that indicates the number of datum
 and the direction that the pointer will move. The
 absolute value of this expression is the number of datum
 in the file that the ADVANCE statement moves the datum
 pointer. If num_expr is positive, the datum pointer
 moves ahead. If num_expr is negative, the datum pointer
 moves back. Consider the first datum in the file to be
 labeled number one. If the current position in the file
 plus the value of num_expr is either less than zero or
 greater than the total number of datum in the BASIC DATA
 file, an end of file error occurs.

num_var num_var is a numeric variable that returns the status of
 the ADVANCE operation. The value assigned to num_var is
 zero if ADVANCE is successful. If either the beginning
 or the end-of-file marker is passed, the difference
 between num_expr and the number of items actually
 skipped prior to reaching the file delimiter is
 returned. Note that if num_expr is negative, the value
 returned to num_var in the event of trying to advance

4-: 3

 past the beginning of file marker is negative.

Examples

The following program shows the use of the ADVANCE statement. Line 15
positions the datum pointer at datum 1, that is, the first datum in the
file. Line 20 advances that pointer 6 datums, to datum 7. Lines 30-40
read and print that record. Datum 7 is the first field in record 4.
Line 50 positions the back at datum 4. (The READ in line 30 advanced the
pointer to datum 8). Lines 60-70 read and print that datum.

 >list
 ! ADVANCE
 5 DIM A$[30]
 10 ASSIGN #1 TO "Datafile"
 15 POSITION #1;BEGIN
 20 ADVANCE #1;6
 30 READ #1;A$,Rec_no
 40 PRINT A$,Rec_no
 50 ADVANCE #1;-4
 60 READ #1;Rec_no
 70 PRINT Rec_no
 80 ASSIGN * TO #1
 >run
 This is record number 4
 2
 >

ASSIGN

The ASSIGN statement opens a file (makes it accessible) or closes a file
(makes it inaccessible) in the program executing the statement. The file
is opened by HP Business BASIC/XL when the program assigns the file a
file number. HP Business BASIC/XL uses the file number to identify the
file for reading and writing information. The ASSIGN statement
disassociates a file from its file number and closes the file. When HP
Business BASIC/XL closes a file, it releases the buffer space that was
allocated to it.

Syntax

To open a file:

 { fname TO #fnum } [,RESTRICT[=] ioaccess]
ASSIGN { #fnum TO fname } [,STATUS[=] num_var] [[, useraccess]]

[,MASK[=] str_expr]

To close a file:

 {* TO #fnum }
ASSIGN { #fnum TO *}

Parameters

fname A string literal or string expression that contains the
 file name. It must include the lockword used when the
 file was created, if any. This parameter can be back
 referenced to a file equation.

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It evaluates to a positive short
 integer. If fnum is associated with another open file,
 the ASSIGN statement opening the file first closes the
 open file before opening the one specified by fname .

 If you attempt to close an already closed fnum , the
 ASSIGN statement does nothing.

num_var A variable that returns the status of the ASSIGN
 statement. The ASSIGN statement sets the value of this
 variable to zero if it opens the file successfully;
 otherwise, it sets it to a nonzero value.

4- 4

 A nonzero value represents the file error code returned
 by the file subsystem of the MPE XL operating system.
 The error number can be translated to an MPE XL file
 system error message by looking up the table of file
 system error codes in the MPE XL Intrinsics Reference

Manual under the FCHECK intrinsic.

ioaccess If a file is opened by a program, the ioaccess
 specification determines how the program can access the
 file. The value of ioaccess is one of the following
 keywords:

 READ The program can read from the file, but
 cannot write to it.

 WRITE The program can write to the file, but
 cannot read from it.

 APPEND The program can perform sequential
 writes to the file starting after the
 last record. It cannot read from the
 file or perform direct writes to the
 file.

 READWRITE The program can read from and write to
 the file. This is the default I/O
 access if the RESTRICT option is not
 specified.

useraccess If a file is open to one program, useraccess determines
 how other programs can access the file. It also
 determines whether the program that opened the file can
 open it again without closing it first. The value of

useraccess is one of the following keywords:

 EXCLUSIVE Other programs cannot access the file.
 The program that opened it must close
 it before opening it again. The
 sequence:

 ASSIGN fname TO #fnum1 ,RESTRICT=READ,
 EXCLUSIVE
 ASSIGN fname TO #fnum2

 is illegal. The sequence must be:

 ASSIGN fname TO #fnum1 ,RESTRICT=READ,
 EXCLUSIVE
 ASSIGN * TO fnum1
 ASSIGN fname TO #fnum2

 SINGLEUSER Other programs cannot write to the
 file, but the program that opened it
 can open it again without closing it
 first. The sequence:

 ASSIGN fname TO #fnum1 ,RESTRICT=READ,
 SINGLEUSER
 ASSIGN fname TO #fnum2

 is legal; it opens the file fname twice
 in the same program, at the same time.
 SINGLEUSER is the default if this
 parameter is not specified.

 You must have LOCK capabilities at both
 the account and group level in order to
 open the file multiple times. If you
 do not have those capabilities, then
 the default access is EXCLUSIVE.

 SHARED Other programs can access the file.

4-: 5

 SHAREREAD Other programs can read the file, but
 cannot write to it.

str_expr A string expression that evaluates to a string with a
 length of six characters. The string serves as a mask
 used to scramble and unscramble file data, excluding
 format words, EOR marks, and EOF marks. If a mask is
 specified the first time a file is assigned, the same
 mask must be specified each time the file is assigned;
 otherwise, the data cannot be properly unscrambled.

Examples

The following examples show the use of the ASSIGN statement to open and
close files. Line 30 assigns a file with read access, allowing other
programs to use it. File1 also has a mask. Line 40 assigns a file with
append access. Line 50 assigns a file with readwrite access (default).
Line 60 assigns a file with write access, allowing other programs to read
it, and has a mask. Line 70 assigns the file with readwrite access and
line 80 assigns the file for read access, allowing no one else to access
the program. Line 90 assigns the file using a back referenced file
equation.

 10 ASSIGN * TO #1 !Closes file designated as #1
 20 ASSIGN #2 TO * !Closes file designated as #2
 30 ASSIGN "File1" TO #3,STATUS=S,RESTRICT=READ,SHARED,MASK="ScRmBL"
 40 ASSIGN #4 TO "File2",STATUS X,RESTRICT APPEND,SINGLEUSER
 50 ASSIGN "File3.lab" TO #5,STATUS Open
 60 ASSIGN "F4.mktg.hp" TO #6,RESTRICT=WRITE,SHAREREAD,MASK="zzypdq"
 70 ASSIGN #7 TO "File5",RESTRICT READWRITE
 80 ASSIGN #8 TO "File6",RESTRICT=READ,EXCLUSIVE
 90 ASSIGN "*file3" to #9

BEEP

When HP Business BASIC/XL is running interactively, the BEEP statement
sends a CONTROL G (ASCII character 7) to the terminal, causing it to
beep. When HP Business BASIC/XL is running in a job stream, the BEEP
statement does nothing.

Syntax

BEEP

Example

When the following program is run, the terminal will beep once.

 10 BEEP

BEGIN REPORT

The BEGIN REPORT statement activates a report, but does not start report
output. The report description is verified and some Report Writer
expressions are evaluated. The report is not activated unless BEGIN
REPORT executes correctly. This statement can not appear within a report
description.

Syntax

BEGIN REPORT line_id

Parameters

line_id The line number or line label of the REPORT HEADER for
 the report to use. The line indicated can be a comment,
 provided that only comments occur between the given line
 and the REPORT HEADER statement.

Examples

 100 BEGIN REPORT 500
 100 BEGIN REPORT Report_1

4- 6

An error occurs if a report is active when BEGIN REPORT executes. This
statement searches for a REPORT HEADER statement starting with the line
indicated. Only comments can occur between the given line and the REPORT
HEADER statement.

Once the REPORT HEADER is found, the Report Writer scans the report
description. The report scan uses two passes. The first pass determines
what sections are valid, and then the second pass evaluates necessary
expressions. The following actions take place during the scanning
process:

First Pass:

 * Section statements are made busy. In addition, the TOTALS, GRAND
 TOTALS, PRINT DETAIL IF, BREAK IF, and BREAK WHEN statements are made
 busy. Busy lines cannot be deleted or modified (See "Busy Lines and
 Subunits" in chapter 2).

 * All level expressions are evaluated. This affects HEADER, TRAILER,
 BREAK IF, and BREAK WHEN statements. TOTALS statements are
 indirectly affected, as they are ignored if the last HEADER or
 TRAILER section has a level expression equal to zero.

Second Pass:

 * The PAGE LENGTH, LEFT MARGIN, PAUSE EVERY, SUPPRESS AT, and SUPPRESS
 FOR statements are evaluated.

 * The TOTALS and GRAND TOTALS are set to zero.

 * BREAK IF and BREAK WHEN statements are evaluated. This includes
 evaluation of the control expressions and the BY clause values. The
 OLDCV and OLDCV$ values are initialized. For BREAK WHEN statements
 with a BY clause, the initial limit and multiple values are set up.

 * The WITH clauses of the PAGE HEADER and PAGE TRAILER sections are
 evaluated if present. This determines the usable page size. A check
 is made to ensure that there are lines left on the page after the
 PAGE sections are counted.

If any error occurs during BEGIN REPORT, the report is not activated.

BEGIN TRANSACTION

The BEGIN TRANSACTION statement defines the beginning of a sequence of
TurboIMAGE procedure calls that are to be regarded as a single logical
transaction for the purposes of logging and recovery. The MSG parameter
allows you to log additional information in the log file. TurboIMAGE
logs database transactions on the transaction log file if any of the
following are true:

 * The database is open in one of the following modes:
 * Modify with enforced locking.
 * Update.
 * Exclusive modify.
 * Modify.

 * The database is enabled for logging by the database administrator.

 * The system console has enabled a logging process.

The transaction log file is explained in the TurboIMAGE/XL Database
Management System .

Syntax

BEGIN TRANSACTION dbname $, MSG[=] str_expr , [, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database
 name. This must be the dbname $ returned by a successful
 DBOPEN statement.

4-: 7

str_expr A string of ASCII characters of up to 512 characters in
 length to be written as part of the BEGIN TRANSACTION
 log record.

status_array A 10-element short integer array to which TurboIMAGE
 returns any error codes or other status information. If
 an HP Business BASIC/XL database statement specifies the
 STATUS option, an error does not abort the program.
 Following execution of the database statement the
 program can check status_array and handle the error.
 The values returned by TurboIMAGE to this array are
 detailed in the description of the status parameter of
 the equivalent TurboIMAGE library procedure.

Examples

The following shows the use of the BEGIN TRANSACTION statement.

 100 BEGIN TRANSACTION Db$,MSG=Message$,STATUS=S(*)
 110 BEGIN TRANSACTION Db$,MSG Message$,STATUS S(*)

BREAK IF

The BREAK IF statement provides a general mechanism for automatic summary
level breaks. The DETAIL LINE statement causes the execution of the
statement. If the break condition is true, all summary levels from the
BREAK level and up are triggered. This causes TRAILER and HEADER
sections to be printed. The BREAK IF statement can occur anywhere in the
report description. There can only be one BREAK statement per summary
level, either BREAK IF or BREAK WHEN. There is no BREAK statement for the
report level.

Syntax

BREAK break_level IF boolean_expr

Parameters

break_level The summary level that is triggered if the break
 condition is satisfied. This value must be in the range
 [0, 9]; a level of zero causes the statement to be
 ignored.

boolean_expr An expression that evaluates to a numeric value. If the
 value is nonzero, a break is triggered at this level.

Examples

The following examples show the use of the BREAK IF statement.

 100 BREAK 3 IF Abc > Def or Abc < Ghi
 100 BREAK 5 IF Last_name$<> Old_last$ AND &
 First_name$ <> Old_first$

The BEGIN REPORT statement sets all BREAK IF statements to busy, unless
the break_level is zero. When the report ends, the lines are no longer
busy. The level expression is evaluated only during BEGIN REPORT. The
Boolean expression is evaluated during DETAIL LINE, TRIGGER BREAK, and
BEGIN REPORT.

The DETAIL LINE statement checks all BREAK statements when its total flag
is nonzero. All BREAK statements are checked in this case. BREAK
statements are evaluated from level one to level nine, in order. For
BREAK IF, the Boolean expression is evaluated. If the expression is true
(nonzero), a break is triggered at the given level. The value of the
LASTBREAK built-in function is changed immediately. DETAIL LINE
remembers the lowest broken level and triggers all the TRAILER and HEADER
sections from that level through nine.

BREAK WHEN

The BREAK WHEN statement provides a general mechanism for automatic
summary level breaks. The DETAIL LINE statement causes the execution of

4- 8

the statement. If the break condition is true, all summary levels from
the BREAK level and up are triggered. This causes TRAILER and HEADER
sections to be printed.

The BREAK WHEN statement can occur anywhere in the report description.
There can only be one BREAK statement per summary level, either BREAK IF
or BREAK WHEN. There is no BREAK statement for the report level.

Syntax

BREAK break_level WHEN control_expr [CHANGES]

BREAK break_level WHEN num_ctl_expr [CHANGES] BY num_by_expr

Parameters

break_level The summary level triggered if the break condition is
 satisfied. This value must be in the range [0, 9]; a
 level of zero causes the statement to be ignored.

control_expr A numeric or string expression. When BREAK WHEN is
num_ctl_expr evaluated, the value of this expression is recorded.
 Then this value is compared at the next DETAIL LINE to
 see if any change has occurred. A break occurs occur if
 a change takes place.

num_by_expr A numeric expression indicating how much the control
 expression must change before a break occurs. See below
 for exact details about how this works. The control
 expression must be numeric to use a BY clause.

Examples

 100 BREAK 1 WHEN Salesman$ CHANGES
 100 BREAK 3 WHEN Region CHANGES
 100 BREAK N WHEN Product CHANGES BY Base_product_num

The BEGIN REPORT statement sets all BREAK WHEN statements to busy, unless
the break_level is zero. When the report ends, the lines are no longer
busy. The level expression is evaluated only during BEGIN REPORT. In
addition, the BY clause value is evaluated only during BEGIN REPORT. The
control expression is evaluated during DETAIL LINE, TRIGGER BREAK, and
BEGIN REPORT.

The DETAIL LINE statement checks all BREAK statements when its total-flag
is nonzero. The BREAK statements are evaluated in summary level order,
from one to nine. The control expression of the BREAK WHEN statement is
evaluated at this time. Conditions for satisfying a break are given
below. The LASTBREAK function is set as soon as a break condition is
found. DETAIL LINE remembers the lowest level broken and triggers the
TRAILER and HEADER sections from that level through nine. First, the
TRAILERS are triggered from the highest existing level descending to the
lowest level broken. Next, the HEADERS are triggered from the lowest
level broken up to the highest existing level.

When BEGIN REPORT executes, the level expressions for all BREAK
statements are evaluated first. A second pass is made for BREAK WHEN
statements. During this pass, the control expression is evaluated and
the result put into OLDCV (or OLDCV$) for the break level. Then, if
present, the BY clause is evaluated and its value recorded. This value
is used when a break occurs at the current level.

The TRIGGER BREAK statement also evaluates the BREAK WHEN control
expressions for all broken levels. This is to update the OLDCV and
OLDCV$ values for all broken levels. These evaluations are done before
the actual break occurs.

All OLDCV values are updated when a break occurs. The values are updated
between the printing of the TRAILER sections and the HEADER sections.

Satisfying a BREAK WHEN Condition

There are two forms of the BREAK WHEN statement; both have a control

4-: 9

expression. The statements differ in what changes can be specified for
the control expression.

String Control Variables. When the report is activated via BEGIN REPORT,
the value of the control expression is recorded. With each DETAIL LINE,
the current value of the control expression is compared to the recorded
value in OLDCV$. If the two values are not the same, the break level is
triggered.

After any break at the specified level, the new value of the control
expression is recorded in place of the old value, OLDCV$. This process
takes place after all trailers have been output, but before headers are
printed.

Examples

 BREAK 3 WHEN Sales_Office$ CHANGES

In this example, a break at level 3 occurs whenever the control
expression Sales_Office$ changes value.

Numeric Control Variables. Numeric control expressions have an optional
BY clause in the BREAK WHEN statement. If the BY clause is not present
or evaluates to zero, the statement works exactly as it does with a
string control expression. That is, a break is triggered whenever the
control expression in OLDCV changes value.

The BY clause establishes a limit value that the control expression must
exceed before a break occurs. The numeric expression in the BY clause
determines the increment by which the limit changes after a break.
However, the limit is NOT set by adding the BY expression to the control
expression.

When a BEGIN REPORT executes, the control expression is recorded and the
BY clause is evaluated. At this time, a break limit is set up as well.
This limit is set up in the following manner:

 * If the BY expression is positive, the limit is set to the multiple of
 the BY clause closest to, but still greater than, the control
 expression.

 * If the BY expression is negative, the limit is set to the multiple of
 the BY clause closest to, but still less than, the control
 expression.

At each DETAIL LINE, the control expression is compared to the limit
value. If the control expression is greater than or equal to the limit
(less than or equal if BY was negative), a break is triggered. After the
trailers print, but before the headers are output, a new limit is
established using the rules above. The BY clause is not reevaluated;
only the limit is changed.

The break limit is reevaluated at any break at the BREAK WHEN level.
This can be caused by breaking at this level or a lower level from a
DETAIL LINE or a TRIGGER BREAK statement.

Examples

 BREAK N WHEN Product_no CHANGES
 BREAK 8 WHEN Profits CHANGES BY 100000
 BREAK A(1) WHEN Sales CHANGES BY -50

In the first example, a break takes place when the control PRODUCT_NO
changes value. It does not matter how much it changes, nor whether it
gets larger or smaller.

In the second example, a break occurs when the variable PROFITS exceeds a
multiple of one hundred thousand. Assuming that PROFITS has an initial
value of 50000, the first break limit is 100000. If PROFITS then changes
to 235000, break level 8 is triggered; the next break limit is set to
300000, the next multiple larger than PROFITS.

The third example is similar to the second, except that the BY clause is

4- 10

negative. If SALES has an initial value of 480, the break limit is set
to 450 (not 430). If SALES gets larger, no break ever occurs. Only when
SALES becomes 450 or less does the break occur. For example, if SALES
drops to 220, a break occurs and the new limit is set to 200. It is
important to remember that this is the multiple of a BY clause.

Control Expression Storage Requirements

The control expression for BREAK WHEN statements is kept by the OLDCV
function. The data space required to contain this expression is
determined during BEGIN REPORT, when the values are first examined. The
space for OLDCV and OLDCV$ are allocated as follows:

 * For numeric variables and array elements, space is allocated based on
 the data type of the variable. There should be no way to get an
 error with OLDCV in this case.

 * For other numeric space is allocated based on the data type returned
 when the expression is initially examined. Thus, if BEGIN REPORT
 finds an INTEGER expression, space is allocated for an INTEGER. If
 the expression later returns a REAL outside the INTEGER range, an
 error occurs.

 * For other string variables and array elements, space for OLDCV$ is
 allocated based on the maximum length of the string variable. Thus,
 the value of the string may be shorter than the space allocated.

 * For string expressions including substrings, space for OLDCV$ is
 allocated based on the actual length of the evaluated expression.
 This could cause a string overflow if a later evaluation returns a
 longer string.

A BY clause stores two values: the BY value itself, and the limit, which
causes a break. Both of these values are stored in REAL or DECIMAL,
depending on the option in the report subunit.

CALL

The CALL statement transfers control from the program unit that the
statement occurs in to a specified subprogram. The subprogram that
control is transferred to must be defined in the program or a run-time
error occurs.

The CALL statement can also transfer control to a user-defined multi-line
function. When used in this manner, the function is actually called as a
subprogram. The value returned by the function is discarded.

Syntax

CALL sub_name [(a_param [, a_param]...)]

Parameters

sub_name Subprogram that control is transferred to.

a_param Actual parameter - a value, a variable or an expression,
 This parameter has a value of the appropriate type to be
 assigned to the corresponding formal parameter in the
 SUB statement that begins the subprogram or multi-line
 function sub_name.

 The CALL statement assigns the values of the actual
 parameters to the corresponding formal parameters and
 transfers control to the subprogram.

Execution of a SUBEXIT or SUBEND statement in the subprogram returns
control to the statement following the CALL statement provided there are
no pending softkey interrupt requests.

Example

 10 READ A,B$
 15 DATA 1,"Sample"
 20 CALL Subrtn(A,B$) !Control goes to line 100

4-: 11

 30 PRINT "Done"
 99 END
 100 SUBPROGRAM Subrtn(Number,String$)
 110 IF Number<1 THEN SUBEXIT
 120 FOR I=1 TO Number
 130 PRINT RPT$(String$,Number)
 140 NEXT I
 150 SUBEND !Returns control to line 30

If a program has more than one subunit with the same name, the CALL
statement calls the first one that it finds. The following is the search
order:

 1. Single-line function
 2. Local external or intrinsic function
 3. Internal multi-line function (one defined by the program)
 4. Global external or intrinsic subunit

If the program is using softkey handling, the program checks for the key
after the subend statement, but before execution of the next main program
line. Thus, control can not go to the next line following the CALL, but
to a line specified by an ON KEY statement.

CASE and CASE ELSE

The CASE and CASE ELSE statements are part of the SELECT construct.
Refer to the SELECT statement for more information.

CATALOG

The CATALOG statement displays directory information about specified
files. The format of the directory information displayed depends on the
operating system.

Syntax

{CATALOG}
{CAT }[option_list]

Parameters

option_list option , [option] [, option]

 {FILE[=] filename_or_fileset }
option {TYPE[=] file_code }
 {COUNT[=] num_var }

 Each option can occur only once in a CATALOG statement.

filename_or_ An fname as described chapter 6 or a set of files
fileset specified by incorporating "wild card" characters. This
 is the set of files that directory information is
 displayed for. Wild card characters represent a set of
 characters and are operating system dependent. On the
 HP3000 operating with the MPE XL operating system,
 information on the use of wild card characters can be
 obtained by typing ":help listf parms". For example,
 the "@" symbol specifies zero or more alphanumeric
 characters. Thus, the filename, "ab@" specifies the
 file "ab" and all additional files that have the "ab"
 prefix. If the FILE option is not selected, the default
 value for a filename_or_fileset is the user's group and
 account or the group and account specified in the most
 recent FILES ARE IN statement.

file_code A string expression of up to five characters in length
 specifying the type of file and indicated by a file
 code. If the TYPE option is selected, then directory
 information is displayed about only those files with the
 designated file_code . The values of file-code available
 to the user are operating system dependent. The values
 for MPE XL are available in the MPE XL Commands

4- 12

Reference Manual under the BUILD command's file code
 mnemonics. Valid values include "BSVXL", "BDTXL", "JL",
 or "1200". If the TYPE option is not specified, then
 TYPE information is not used as a selection criteria for
 determining which file's directory information is
 displayed.

num_var A numeric variable to which the total number of files
 found is returned.

The CATALOG statement lists its information on the standard list device
or on the device specified by the most recently executed SEND SYSTEM
OUTPUT TO statement. Table 4-1 shows how specifying file_code or fname ,
both, or neither, determines CATALOG statement output on the HP 3000.

Table 4-1. CATALOG Statement Output

--
FILE and TYPE option selected	Files That the CATALOG
	Statement Lists Directory
	Information For
--
Neither	All files.
--
TYPE only	Files that have an MPE file code matching
	file_code .
--
FILE only	Files that match the filename_or_fileset
	specification.
--
FILE and TYPE	Files that match the filename_or_fileset
	specification that also have the MPE file code
	matching file_code .
--

Examples

 CAT
 CAT file1
 CAT FILE ="File1"
 CAT TYPE = "BDTXL"

 10 CAT FILE ="@BB@",TYPE="BSVXL",COUNT=Count
 20 CAT FILE ="@.PUB.SYS",COUNT=System_count

CAUSE ERROR

The CAUSE ERROR statement causes an HP Business BASIC/XL program to
behave as though the specified error had occurred. If an ON ERROR
statement has been issued, then the user-specified recovery action is
executed.

Syntax

CAUSE ERRORerror_number

Parameters

error_number A numeric value that is the same as an HP Business
 BASIC/XL error number.

Example

 10 ON ERROR GOTO 200
 20 CAUSE ERROR 2 !This causes an error 2, memory overflow

4-: 13

 30 !Control transfers to line 200
 .

 .

 .

 200 Error handler: !Start of error handling routine

 .

 .

 .

CLEAR FORM

The CLEAR FORM statement sets the contents of all fields on the currently
displayed form to blanks or another default value. This statement is
used with JOINFORM as well as VPLUS, but the DEFAULT clause is ignored
when using JOINFORM. If there is no active form, executing a CLEAR form
causes a run-time error.

Syntax

CLEAR FORM [default_clause]

Parameters

default_clause The optional keyword DEFAULT assigns the initial values
 from the VPLUS form file to each field. The correct
 syntax is:

 {DEFAULT }
 [WITH] {DEFAULTS}

Examples

The following examples show the use of the CLEAR FORM statement.

 500 CLEAR FORM
 510 CLEAR FORM DEFAULT
 530 CLEAR FORM WITH DEFAULT

CLOSE FORM

CLOSE FORM closes the currently active form. This statement is used with
both JOINFORM and VPLUS.

When an VPLUS form is active, the form file is also closed. CLOSE FORM
does not close JOINFORM files. When execution of the CLOSE FORM
statement is complete, the cursor is at the top of display memory and
memory lock, format lock, and block mode are off.

When CLEARALL, CLEARREST, or REMAIN are not specified, the form is closed
by deleting the individual lines of the form. The contents of display
memory above and below the form are not deleted. When the form is
deleted, the contents of display memory that follows the form are
scrolled into the area of display memory that previously contained the
form.

Syntax

 [{;}]
 [{,} CLEARALL]
CLOSE FORM [CLEARREST]
 [REMAIN]

Parameters

CLEARALL Specifies that the form should be deleted from the
 screen by placing the cursor at the home position and
 clearing all of display memory.

CLEARREST Specifies that the form should be deleted from the

4- 14

 screen by placing the cursor at the first line of the
 form, and clearing display memory from that position to
 the end. The area of display memory above the form is
 not affected.

REMAIN Specifies that the form should be left on the screen.
 It is unprotected after it is closed.

Examples

The following statements show the use of the CLOSE FORM statement.

 200 CLOSE FORM !FORM is cleared from the screen
 210 CLOSE FORM ;REMAIN !FORM is left on the screen
 220 CLOSE FORM ,REMAIN !FORM is left on the screen
 230 CLOSE FORM !FORM is cleared from the screen
 240 CLOSE FORM ;CLEARREST !Display memory is cleared from the
 245 !first line of the form to the end
 250 CLOSE FORM :CLEARALL !All of display memory is cleared

If REMAIN is entered preceded by a "," HP Business BASIC/XL will replace
it with a ";".

COM

The COM statement declares a common area. The common area is a global
data area that is first declared in the main program. One or more
variables can be declared in each declared common area. Each common
variable in a COM area declared in the main program unit is accessible
within the main program unit and in all called procedures or functions
that declare the common area in which the variable occurs. Unlike local
variables, the value of a common variable is retained following the exit
from a called procedure or function. A new common area can also be
declared in a called procedure or function if the GLOBAL OPTION
SUBPROGRAM NEWCOM or GLOBAL OPTION MAIN NEWCOM is used in the main
program area preceding the procedure or function. New common areas
declared in these routines are allocated when first encountered during
program execution and can be referenced in any routine called from that
routine. The common area is deallocated when the routine in which it was
allocated completes execution.

Syntax

COM [/ identifier /] type_list [, type_list]...

Parameters

identifier Name of common area. If an identifier is specified,
 the declared common area is "labeled" with the name
 of the identifier. If an identifier is not
 specified, then the common area is referred to as
 the unnamed common area. You can have a maximum of
 ten named commons and one unnamed common.

 COM statements in different program units with the
 same label refer to the same common area and unnamed
 COM statements refer to the unnamed common area.
 This identifier is truncated to eight characters.

 {[type] num_com_item [, num_com_item]...}
type_list { non_num_com_item }

type One of the following:
 SHORT INTEGER
 INTEGER
 SHORT DECIMAL
 DECIMAL
 SHORT REAL
 SHORT
 REAL
 unspecified

4-: 15

 If a type is not specified, implicit declaration
 rules apply. After type , each num_com_item is of
 that type until another type or a non_num_com_item
 appears.

num_com_item Numeric variable declaration (for a scalar or array
 variable).

 If the COM statement is in a subunit, num_com_item
 must represent a numeric array with the abbreviation

identifier ([*[,*]...])

 with one asterisk per dimension or without
 asterisks. Not using asterisks specifies any number
 of dimensions. Either format is legal, but the
 format without asterisks is noncompilable. To
 facilitate program documentation, numeric values can
 be used in place of the asterisks, but these values
 are ignored during program execution.

non_num_com_item String variable declaration (for a scalar or array
 variable) or file designator. If maximum length is
 not specified for a string variable, it is 18.

 Maximum length is not specified if the COM statement
 is in a subunit.

 If the COM statement is in a subunit,
non_num_com_item must represent a string array with

 the abbreviation

identifier $([*[,*]...])

 with one asterisk per dimension or without
 asterisks. Not using asterisks specifies any number
 of dimensions. Either format is legal, but the
 format without asterisks is noncompilable. The
 maximum length of each element is the same as
 declared in the main program. To facilitate program
 documentation, numeric values can be used in place
 of the asterisks, but these values are ignored
 during program execution.

 The syntax of an HP Business BASIC/XL file number
 is:

 # numeric_literal

numeric_literal is a positive integer in the range
 [1, 32767]. The file designated by the actual
 parameter in the COM area is referenced by
 # numeric_literal within the subunit declaring the
 com area. If the main procedure or function in
 which the HP Business BASIC/XL file number occurs is
 to be compiled, the numeric_literal must be a
 positive integer in the range [1, 16].

To make it easier to copy com area to subunits, the declaration of the
com area in the main program can be copied directly to the subunit. The
numeric values specifying the range of subscripts for a dimension for
either numeric or string array variables do not need to be changed to
asterisks. However, HP Business BASIC/XL interprets the values as place
holders for each dimension. The dimension information in the common area
in the program unit in which the common area is declared, usually the
main, is used to determine the array dimensionality and the subscript
bounds.

Example 1: Common Declarations

 10 COM INTEGER A,B, REAL C,D, A$[7], P,Q, DECIMAL X,Y,Z, #2

Variable(s) Type

4- 16

A,B Integer
C,D Real
A$ String with maximum length of 7 characters
P,Q Default numeric type
X,Y,Z Decimal
#2 File designator

 100 COM N,S$,N_array(1:5),S_array$(1:2,1:4)[6]

Variable(s) Type

N Default numeric type
S$ String with default maximum length (18)
N_array Array of default numeric type
S_array$ Array of strings with maximum length of 6

Example 2: Concatenation of Common Variable Lists If two COM statements
in the same program unit have the same area name, their variable lists
are concatenated.

Lines 200 and 210 are equivalent to line 300. Common area Area 3
contains the same variables whether the program unit contains lines 200
and 210 or line 300.

 200 COM /Area3/ SHORT INTEGER J,K,L
 210 COM /Area3/ REAL M,N,O, DECIMAL P,Q

 300 COM /Area3/ SHORT INTEGER J,K,L, REAL N,N,O, DECIMAL P,Q

Example 3: Correspondence of Common Variables in Main and Subunit When
two program units declare the same common area, corresponding common
items refer to the same entities. The entities (for example, variables
or files) can have different names in different program units, however,
because the different names refer to the same areas in memory, they must
have the following:

 * The same type.
 * The same number of dimensions.

If the main program unit contains the statements:

 10 COM /Area4/ REAL A,B$[60], INTEGER C, #8
 20 COM /Area4/ DECIMAL E(1:25,1:50), F$(0:4,0:4,0:4)[12]

Then a subunit can contain the statements:

 350 COM /Area4/ REAL X,Y$
 360 COM /Area4/ INTEGER C, #10, DECIMAL E()
 370 COM /Area4/ F$(*,*,*)

Corresponding variables are compatible:

Main Program Unit Program Subunit

REAL A REAL X
B$[60] Y$
INTEGER C INTEGER C
8 # 10
DECIMAL E(1:25,1:50) DECIMAL E()
F$(0:4,0:4,0:4)[12] F$(*,*,*)

If the main program unit assigns a value to the variable that it calls A,
and then calls the program subunit, the value of X is the same as that
assigned to A in the main because A and X are different names for the
same variable.

If the main program unit contains the statements:

 10 COM /Area4/ SHORT REAL A, B$[60], INTEGER C, #15
 20 COM /Area4/ DECIMAL E, F$(0:4,0:4,0:4)[12]

Then a procedure in the same program cannot contain the statements:

 450 COM /Area4/ REAL Num, String$, SHORT INTEGER D

4-: 17

 460 COM /Area4/ Q$, DECIMAL A(*,*), B()

The conflict in type and /or dimension for each variable is:

Main Program Unit Program Subunit

SHORT REAL A REAL Num
INTEGER C SHORT INTEGER D
#15 Q$
DECIMAL E DECIMAL A(*,*)
F$(0:4,0:4,0:4)[12] B()

Within a program unit, the following variables cannot have the same name:

 * A common scalar variable and a local scalar variable.
 * A common array variable and a local array variable.

In most cases, the main program declares every common area that the
program uses, whether the main program uses it or not. Before HP
Business BASIC/XL executes the main program unit, it allocates space for
all common variables, using the default numeric type and default lower
bound set by GLOBAL OPTION statements.

A procedure need only declare the common areas that it uses. A procedure
can declare all or part of the defined common area (starting at the
beginning), but cannot add items to it.

Exceptions to the foregoing occur if the NEWCOM suboption of the
MAIN/SUBPROGRAM global option is used. If NEWCOM is specified in the
current procedure, then, when the procedure begins execution, new common
areas in the subunit that are not declared in the main program are
allocated space. Also, the space for common areas declared in the main
program that are not used in the procedure is deallocated.

Examples

If the main program unit contains the COM statements:

 10 COM /Area5/ INTEGER A,B, REAL C,D, DECIMAL E,F
 20 COM /Area5/ A$,B$,C$

Then a procedure can declare all of Area5:

 100 COM /Area5/ INTEGER X,Y
 110 COM /Area5/ REAL R1,R2
 120 COM /Area5/ DECIMAL D1,D2
 130 COM /Area5/ A$, B$, C$

Or part of Area5, starting at the beginning:

 200 COM /Area5/ INTEGER Part1,Part2, REAL Part3, Part4
 210 COM /Area5/ DECIMAL D

But a procedure cannot omit the beginning of Area5:

 300 COM /Area5/ REAL P,Q
 310 COM /Area5/ DECIMAL D1,D2

And it cannot add to Area5:

 400 COM /Area5/ INTEGER Int1,Int2, REAL Real1,Real2
 410 COM /Area5/ DECIMAL Dec1, Dec2, A$, B$, C$
 420 COM /Area5/ SHORT Sh1, Sh2, Sh3

Common variables are initialized as explained in "Initializing
Variables," in chapter 3.

COMMAND

The COMMAND statement executes a string expression as if its value were a
program line.

Syntax

COMMANDstr_expr

4- 18

Parameters

str_expr Its value must be an executable statement with 500 or
 fewer characters. If it is not, an error occurs.

 The executable statement cannot be any of the following:

 * A command-only statement (for example, LIST).

 * A program-only statement (for example, INPUT).

 * The COMMAND statement.

 * Any statement that defines a construct (for example:
 WHILE, END WHILE, or REPEAT).

 The statement cannot be a declaration statement, because
 declaration statements are not executable.

Examples

 100 READ I
 105 DATA 1
 110 IF I THEN
 120 Routine$="Routine1"
 130 ELSE
 140 Routine$="Routine2"
 150 ENDIF
 160 COMMAND "GOSUB " + Routine$!Issue the GOSUB statement
 170 STOP
 180 Routine1: I=I+(2*I)+(3*I)
 190 RETURN
 200 Routine2: I=I*(2+I)*(3+I)
 210 RETURN
 220 END

The COMMAND statement is not compilable.

CONVERT

This statement converts a string into a number, with an option for
specifying a line number or label to branch to if an error occurs.
Similar to the VAL function, the CONVERT statement translates a string of
ASCII characters into a numeric value that is assigned to a supplied
numeric variable. Unlike VAL, the CONVERT statement converts the numeric
value to the type of the numeric variable supplied. If a line label or
number is supplied and an error occurs, CONVERT branches to the
designated line without requiring an ON ERROR statement.

Syntax

 {TO} [{,}]
CONVERTstr_expr {, } num_var [{;} line_ref]
 {; }

Parameters

Str_expr A string, substring, or other string expression.

 The string representation is CONVERTed using the
 following syntax:

 ['+']
 [space]...['-'] num_char [num_char]...['.']

 [{'e'}['+']]
 [num_char]...[{'l'}['-'] num_char [num_char]...]
 [{'d'}]

num_char is a numeric character in the range [0, 9]. If
 a syntax error occurs before conversion of the first
 numeric character, error 32 is generated if line_ref is
 not supplied. Once the first numeric character has been
 converted, if a syntax error occurs, then the value

4-: 19

 assigned to num_var is the value converted immediately
 prior to the syntax error. An HP Business BASIC/XL
 error number is not generated for this condition. The
 string is deblanked before it is converted.

num_var A numeric variable.

line_ref A line label or line number that is in the same
 procedure as the CONVERT statement. Specification of a

line_ref supersedes the error handling action specified
 in an ON ERROR statement.

Examples

 10 A$="123"
 20 CONVERT A$ TO A !A is now 123, and its type is the default numeric.
 99 END

 10 A$="123abc"
 20 CONVERT A$ TO A !A is now 123, and its type is the default numeric.
 99 END

COPY ALL OUTPUT TO

The COPY ALL OUTPUT TO statement copies interpreter and program output on
the file or device specified by dev_spec . If the dev_spec is a disk file
that already exists, additional information is appended to the file.

Syntax

COPY ALL OUTPUT [TO] dev_spec

Parameters

dev_spec A device specification statement. It includes a
 destination device and can also have the MARGIN and
 FIELD keywords. If the device is a disk file, you can
 also specify a FILESIZE. See chapter 6 for more
 information.

Examples

The examples below show some of the different ways to combine parameters
in the COPY ALL OUTPUT TO statement.

 100 COPY ALL OUTPUT TO "MYFILE"
 110 COPY ALL OUTPUT TO "LISTFILE", MARGIN 20
 120 COPY ALL OUTPUT TO Filename$, FILESIZE Num_records
 130 COPY ALL OUTPUT TO Filename$, FILESIZE Num_records, MARGIN Z, FIELD N+1
 140 COPY ALL OUTPUT TO A$+B$, FIELD 10
 150 COPY ALL OUTPUT TO DISPLAY, FIELD X+2, MARGIN 10
 160 COPY ALL OUTPUT TO NULL
 170 COPY ALL OUTPUT TO PRINTER

The SEND OUTPUT TO statement overrides the COPY ALL OUTPUT TO statement.
If a program contains both statements, then PRINT statement output is
displayed only on the device that the SEND OUTPUT TO statement specifies.

Between the initiation of report writer output with the DETAIL LINE,
TRIGGER BREAK, TRIGGER PAGE BREAK or END REPORT statement and termination
of the report, execution of a COPY ALL OUTPUT TO statement generates an
error.

COPYFILE

The COPYFILE statement copies one file to another file or to a device
referenced by a file operation. It does not affect the original file.

Syntax

 [{,}]
COPYFILE fname1 [TO fname2] [, lock_word {;} STATUS[=] num_var]

4- 20

Parameters

fname1 fname of the file to be copied.

fname2 fname of the copy of the file that is to be created.
 The name must not be the name of a file that already
 exists, otherwise a duplicate file name error occurs.
 The COPYFILE statement creates a file with this name and
 gives it the attributes of the original file. If this
 parameter is not specified, the COPYFILE statement
 copies the original file to the standard list device or
 to the device specified by the most recently executed
 SEND OUTPUT TO statement.

 Similar to the formal_designator described in the Device
 Specification Syntax in chapter 6, fname2 can also be
 one of "$STDLIST", "$NULL" or "* fname ". The * fname
 syntax is used to reference device files that have been
 previously defined using file equations.

lock_word String expression that evaluates to the lockword for
fname1 . It is required if fname1 has a lockword.

 The lockword is not added to the copied file.

num_var The COPYFILE statement assigns zero to num_var if the
 copy is completed successfully; otherwise, the value is
 set to a nonzero value.

Examples

 100 CREATE ASCII "File1", RECSIZE=100, FILESIZE=1200
 120 CREATE ASCII "File3", RECSIZE=100, FILESIZE=2400
 130 PROTECT "File1", "zzxyz" !add lockword "zzxyz" to File1
 140 PROTECT "File3", "pqpqqp" !add lockword "pqpqqp" to File3
 150 COPYFILE "File1" TO "File2", "zzxyz" !lockword required for access
 155 !to File1 - File2 is created
 160 COPYFILE "File2" TO "File4" !File2 has no lockword.
 170 COPYFILE "File2" TO "File6"
 180 COPYFILE "File2" !displays the contents of File2
 185 !on the terminal display
 190 SEND OUTPUT TO "File5"
 200 COPYFILE "File2" !writes the contents of File2
 999 END !to File5

 10 COPYFILE "File1/Lock1" TO "File2" !File2 does not have a lockword
 20 COPYFILE "File3" TO "File4", "Lock3" !File4 does not have a lockword

 100 SYSTEM "FILE LINE; DEV=LP"
 120 SYSTEM "FILE LASER; DEV=PP,8;ENV=LP602.ENV2680A.SYS;CCTL"
 140 COPYFILE TEXT TO "*LASER"
 160 COPYFILE WORK TO "*LINE"

CREATE

The CREATE statement creates a BASIC DATA, binary, or ASCII data file.

Syntax

CREATE [file_type] fname [,RECSIZE [=] num_expr1]

[,FILESIZE [=] num_expr2] [,STATUS [=] num_var]

Parameters

file_type The value of file_type can be either the keyword ASCII
 or binary. Specifying either keyword results in the
 creation of a file of the corresponding type. If no

file_type is specified, then a BASIC DATA file is
 created.

fname String literal or string expression containing the name
 of the file.

4-: 21

RECSIZE These clauses can be in any order.
FILESIZE STATUS

num_expr1 Record length. If positive, each record has r words.
 If r is negative, each record has r bytes. If not
 specified, and file is type BASIC DATA, each record has
 256 bytes (128 words).

num_expr2 File size; maximum number of records in file. Cannot
 change after the file is created. The default is
 established by the operating system.

num_var If the CREATE statement successfully creates the file,
 it sets this variable to zero; otherwise, it sets it to
 a nonzero value.

Examples

The following examples show the use of the CREATE statement.

 10 CREATE ASCII "File1",RECSIZE=-100,FILESIZE=1000,STATUS=File1stat
 20 CREATE "File2.mktg",FILESIZE=2500
 30 CREATE "File3.lab.hp",RECSIZE 300,FILESIZE 5000,STATUS=Created
 40 CREATE ASCII "File4",STATUS=Success
 50 CREATE BINARY Binfile
 60 CREATE BINARY File5,RECSIZE=-80,FILESIZE=5000,STATUS=Created

CURSOR

The CURSOR statement is used to position the cursor and to set display
enhancements. The actions specified in the cursor-item list are carried
out left to right. Any error in a list of actions causes execution to
terminate. There are three pointers that JOINFORM maintains. These are
the input, output, and cursor pointers. Setting the input pointer also
sets the cursor pointer. Setting the cursor pointer does not change the
input or output pointers. Reading a variable from a JOINFORM with the
INPUT or ENTER statement advances the input pointer. The order of the
input and output fields is defined when the form is created with the
JOINEDIT program. The IFLD, OFLD, CFLD, SETIFLD, SETOFLD, and SETCFLD
functions are allowed only while a JOINFORM is active.

Syntax

CURSORcursor_item_list

Parameters

cursor_item_ A list containing one or more unique selections from the
list following options, separated by commas or semicolons.

 [{,}] {,} {,}
Row [{;} Col] {;} Col (Enhance_string {;} num_chars)

 {IFLD }
 {OFLD }
 {CFLD }
 {SETIFLD} (field)
 {SETOFLD}
 {SETCFLD}

Row Specifies the row display memory coordinate. This
 coordinate must be a numeric expression, variable, or
 constant.

Col Specifies the column display memory coordinate. This
 coordinate must be a numeric expression, variable, or
 constant.

enhance_string A quoted string of characters, or a string variable
 specifying the display enhancement:
 * h or H: Half-Bright
 * i or I: Inverse
 * b or B: Blinking

4- 22

 * u or U: Underline

num_chars A numeric expression, variable, or constant that
 specifies the length of the display enhancement.

IFLD This function moves the cursor to the field output field
 in a JOINFORM. The current input field number is set to

field .

OFLD This function moves the cursor to the field output field
 in a JOINFORM. The current output field number is set to

field .

CFLD This function moves the cursor to the field input field
 in a JOINFORM. The current input and output field
 numbers are not modified when this function is executed.
 A subsequent INPUT statement will position the cursor to
 this field, but will read data beginning at the field
 specified input pointer.

SETIFLD This function sets the current input field number to
field . The cursor is not moved.

SETOFLD This function sets the current output field number to
field . The cursor is not moved.

SETCFLD This function sets the current cursor field number to
field . The cursor is not moved. The current input and

 output field numbers are not modified. A subsequent
 INPUT statement will position the cursor to field , but
 will read data beginning at the input pointer.

field A numeric expression, variable or constant that
 evaluates to a numeric value that specifies the number
 of a field on the JOINFORM.

Cursor Position on the Terminal Screen

For the purpose of CURSOR positioning, the first row in display memory is
row 1. The leftmost column in display memory is column 1. When
specifying the cursor position with the CURSOR statement in conjunction
with the row and column, at least one of row and column must be
specified. An error occurs when the value for a row or column is greater
than 999. If a row number greater than the number of lines in the
display memory is specified the cursor is positioned to the last row. If
a column number greater than 80 is specified one line is skipped.
Regardless of where the cursor is in display memory, it always remains
visible on the display screen. Therefore, the CURSOR statement can be
used to scroll or page through display memory.

The functions SETIFLD, SETOFLD, and SETCFLD set the internal field
pointer, but do not move the cursor. A subsequent INPUT or OUTPUT
statement positions the cursor to the current cursor field or output
field. This is more efficient than using IFLD, OFLD, or CFLD, because
those functions set the internal field pointer and position the cursor.
The cursor would then have been moved twice.

Screen Enhancements

A screen enhancement is set beginning at the current position of the
cursor for a length that is determined by num_chars . Legal enhancement
strings contain the characters h or H for "Half-bright", i or I for
"Inverse", b or B for "Blinking" or u or U for "Underline". The empty
string (" ") indicates that enhancements are to be turned off. The
enhancement string may contain any of the characters above and use a
blank (" "), comma (","), or semicolon (";") as a separator between
characters for visual clarity.

An enhancement string that contains only blanks, commas, or semicolons is
treated as an empty string that turns off enhancements. The legal values
for num_chars are -999..999. Depending on the value of num_char , one of
the following will occur:

4-: 23

 * num_chars evaluates to a positive value; num_chars characters are set
 to the specified enhancement one character at a time. Each of the
 individual characters is prefixed with the appropriate escape
 sequence required for the enhancement. The escape sequence prefixing
 the character following the last character to be enhanced contains
 the enhancement terminator.

 * num_chars evaluates to zero; the escape characters that turn on the
 specified enhancement prefix the characters at the current cursor
 position. The enhancement is terminated as follows. If there is an
 enhancement on the line at a point following the current cursor
 position then that enhancement terminates the specified enhancement.
 Otherwise, the specified enhancement extends only to (and including)
 the last non-blank character on the line.

 * num_chars evaluates to a negative value; the character at the current
 cursor position is prefixed with the escape sequence for the
 specified enhancement. The character at the position in screen
 memory that is num_chars to the right of the current cursor position
 is followed by the enhancement terminator.

 The enhancement terminator causes the next character to not have
 enhancements. This may cause strange results when putting an
 enhancement on a line with existing enhancements. Enhancements that
 go past the end of the line may also cause some strange results.
 Thus, characters between the current cursor position and the
 enhancement terminator are not individually enhanced.

 For example, 'CURSOR (,1),("HI",50)' performs exactly the same
 function as 'CURSOR (,1),("HI",-50)' if, in the latter case, the
 current line contains no enhancement terminators. Execution of the
 second statement is faster.

The use of positive and non-positive enhancement lengths intermixed on a
single screen produces unpredictable results. Therefore, we do not
recommend this.

Examples

 10 DISP '27"H"'27"J";
 20 OPEN FORM "main:jfmain" !Simple form with five 18 character fields
 30 FOR I = 1 TO 5 !Start output to each field
 40 PRINT RPT$(VAL$(I),3) !Set fld1 to 111, fld2 to 222, etc
 50 NEXT I
 60 CURSOR IFLD(4) !Positions the cursor to the fourth field
 70 INPUT A$!a carriage return here will read 444
 71 !into A$ and increment IFLD(x) to the fifth field
 80 CURSOR CFLD(1) !Positions the cursor to the first field
 81 !on the form
 90 INPUT B$!A carriage return here will read 555
 91 !into B$, not the 111 from the first field
 92 !The first field is where the cursor is
 93 !located when the carriage return was pressed
 95 CURSOR SETIFD(2),SETCFLD(2) !Sets the cursor and input pointers
 96 !to the second field, but does not move
 97 !the cursor
 98 INPUT C$!The cursor is now moved to the cursor
 !field specified in line 95 and reads
 99 !the contents of the current input
 100 !field into C$
 101 CURSOR SETIFLD(5) !Sets the input field to field 5
 102 ENTER D$!Reads the contents of input field
 103 ! 5 into D$
 105 CLOSE FORM;REMAIN
 110 PRINT A$,LIN(1),B$!A$=444, B$=555
 999 END

DATA

The DATA statement lists data for the READ statement. The data that the
DATA statement provides is assigned to variables by the READ statement.

4- 24

Syntax

DATA datum [, datum]...

Parameters

datum Numeric or string literal. A string literal can be
 enclosed in quotes, but doesn't have to be. If it is
 enclosed in quotes it is called a quoted string literal;
 if not, it is called an unquoted string literal.
 Leading and trailing spaces are not part of an unquoted
 string literal, but embedded spaces are.

A DATA statement is not executable. When the program reaches a DATA
statement, it proceeds to the next line following it.

A data pointer points to the datum that is assigned to the next variable.
Before a program unit is executed, the data pointer is set to point to
the first datum in the program unit's first or lowest-numbered DATA
statement. The data in a DATA statement are read from left to right.
When all the data in one DATA statement are read, the data pointer is
positioned at the first datum in the next DATA statement. Within a
program unit, DATA statements are used in line number order.

When one program unit calls another, the data pointer points to the first
data item in the called program unit. When the called program unit
returns control to the calling program unit, the data pointer returns to
its position in the calling program unit at the time of the call.

Examples

 10 DATA "2", truffles, "four", A B C, 56

Datum Description

"2" Quoted string literal
truffles Unquoted string literal
"four" string literal
A B C Unquoted string literal
56 Numeric literal

The following program shows the use of the data statement. It reads, and
then prints three variables.

 >LIST
 ! DATAEX
 10 READ A,B,C$
 20 DATA 1,2,"THREE"
 30 PRINT A
 40 PRINT B
 50 PRINT C$
 60 END
 >RUN
 1
 2
 THREE
 >

DBASE IS

The DBASE IS statement identifies the database to be searched or sorted.
The statement is global to the entire program. Once specified, it
remains in effect until another DBASE IS statement is executed. The
database identified in this statement must be open. If it is not, an
error occurs.

Syntax

DBASE IS dbname $

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database

4-: 25

 name. dbname must be the variable that was passed to a
 successful DBOPEN.

Examples

 100 DBASE IS Db_name$

When dbname $ is a null string, the DBASE IS specification is reset to
nothing. It is not an error to specify a null string. An error occurs
if a string with all blanks is specified.

DBCLOSE

The DBCLOSE statement terminates database access, makes a data set
temporarily or permanently inaccessible, or rewinds a data set.

Syntax

 DBCLOSE dbname $[,MODE[=] dbclose_mode]
 [,DATASET[=] dataset]
 [,STATUS[=] status_array(*)]

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database
 name. dbname $ must be the variable that was passed to a
 successful DBOPEN.

dbclose_mode A numeric expression that evaluates to one of the
 following TurboImage database modes:

Mode Effect

 1 Terminate access to entire database and
 ignore the dataset parameter.
 (Default)

 2 Terminate access to dataset , but leave
 database open.

 3 Rewind the data set.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

 100 DBCLOSE Data_base$,STATUS status(*)
 110 DBCLOSE Data_base$,MODE=1,STATUS=Status(*)
 120 DBCLOSE Data_base$,MODE=2,DATASET Dataset$,STATUS status(*)

DBDELETE

The DBDELETE statement deletes a record from a manual master or detail
data set.

The database must be open in mode one, three, or four. See the DBOPEN
statement for the meaning of these modes. If mode one is selected, a
covering lock is required.

4- 26

Syntax

DBDELETEdbname $, DATASET[=] dataset [, Status[=] status_array(*)]

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

 110 DBDELETE Data_base$,DATASET=Data_set$,STATUS=Status(*)
 120 DBDELETE Data_base$,DATASET Data_set$,STATUS Status(*)

DBERROR

The DBERROR statement moves a database error message as an ASCII string
to a string variable specified using the RETURN parameter. The
conversion of the error number in the status_array is as listed in the
DBERROR message table in the section describing the DBERROR library
procedure in the TurboImage/XL Database Management System .

Syntax

DBERROR STATUS[=] status_array(*) , RETURN[=] str_var

Parameters

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

str_var A string variable at least 72 characters in length that
 serves as the buffer to which the multi-line error
 message is returned.

Examples

 110 DBERROR STATUS=Status(*),RETURN=Message$

DBEXPLAIN

DBEXPLAIN prints a multi-line message on MPE's standard list device,
usually a terminal, which describes the most recent TurboIMAGE library
procedure call. Information about the results of the call are explained
on the basis of the information contained in the status_array parameter.
In the event of an error, the message printed is more detailed than the
message returned by the DBERROR statement. This statement must be placed
immediately after the library procedure call.

4-: 27

Syntax

DBEXPLAIN STATUS[=] status_array (*)

Parameters

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

 100 DBEXPLAIN STATUS=Status(*)

DBFIND

The DBFIND statement locates the master set entry that matches a
specified search item value. It sets up pointers to the first and last
entries of the detail data set chain in preparation for chained access to
data entries which are numbers of the chain. The path is determined and
chain pointers located on the basis of a specified search item and its
value.

Syntax

 { str_expr1 }
DBFIND dbname $, DATASET[=] dataset , ITEMS[=]{ num_expr1 } ,

 { str_expr2 }
KEY[=]{ num_expr2 } , [STATUS[=] status_array (*)]

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a detail data set.
 The name must be left-justified and, if shorter than 16
 characters, must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

str_expr1 A string expression that evaluates to the left-justified
 name of a detail data set search item that has a maximum
 length of 16 characters. If shorter than 16 characters,
 the value must be terminated by a semicolon or blank.

num_expr1 A numeric expression that evaluates to a short integer
 referencing the search item number that defines the path
 containing the desired chain.

str_expr2 If the dataset is to be read in CALCULATED mode (mode
 seven), str_expr2 evaluates to the name of the search
 item to be used in calculated access to locate the
 desired chain head in the master data set. The maximum
 string length is 16 characters.

num_expr2 If the dataset is to be read in CALCULATED mode (mode
 seven), num_expr2 evaluates to a short integer
 referencing the search item number to be used in
 calculated access to locate the desired chain head in
 the master data set. This can also be a short integer
 numeric array.

status_array A 10-element short integer array to which TurboIMAGE

4- 28

 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

 100 DBFIND Db$,DATASET Ds$,ITEMS K$,KEY A$
 110 DBFIND Db$,DATASET Ds$,ITEMS=N,KEY=A$
 120 DBFIND Db$,DATASET Ds$,ITEMS N1,KEY N2
 130 DBFIND Db$,DATASET Ds$,ITEMS=K$,KEY=N
 140 DBFIND Db$,DATASET Ds$,ITEMS K$,KEY A$,STATUS S(*)
 150 DBFIND Db$,DATASET Ds$,ITEMS=N,KEY=A$,STATUS=S(*)
 160 DBFIND Db$,DATASET Ds$,ITEMS N1,KEY N2,STATUS S(*)
 170 DBFIND Db$,DATASET Ds$,ITEMS=K$,KEY=N,STATUS=S(*)

DBGET

DBGET reads an entire record or specified data items from a data set.
The DBGET statement can be used in the following ways:

DBGET...USING reads data into an internal buffer that
 is used as a source for unpacking into a
 list of local variables.

DBGET...INTO reads data into the buffer specified.

DBGET...USING...INTO reads data into the buffer specified by
 the INTO clause that is used as a source
 for unpacking into a list of local
 variables.

Syntax

 {INTO str_var }
 {USING line_id }
DBGET dbname $ { {,} }
 {USING line_id INTO str_var {;} DATASET[=] dataset }

[, MODE[=] read_mode]

[, ITEMS= item_list]

[{ str_expr }]
[, KEY={ num_expr }]

[, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

str_var The string variable buffer that the values of the data
 items specified in the item_list are moved into. The
 values in str_var must be assigned to HP Business
 BASIC/XL variables using HP Business BASIC/XL's UNPACK
 statement.

line_id A line number or label for a PACKFMT or IN DATASET
 statement. The referenced statement is used to unpack
 data automatically into program variables.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer

4-: 29

 corresponding to the desired dataset number.

read_mode Either a numeric expression that evaluates to one of the
 following or a string expression that evaluates to one
 of the equivalent mnemonics:

Value Mnemonic TurboIMAGE Mode

--
--

1 READ Reread
2 SERIAL Serial forward read

3 SERIALBACK Serial backward read

4 DIRECT Direct read

5 CHAIN Chained forward read

6 CHAINBACK Chained backward read

7 CALCULATED Calculated read

8 PRIMARY Primary calculated read

 If this parameter is not specified, the default value is
 two, (serial).

item_list The list parameter for the DBGET TurboIMAGE library
 procedure. The name of a string or an array of one-word
 integers containing an ordered set of data item
 identifiers. The value for each element in the ordered
 list of data item identifiers is packed into str_var in
 the same order that they appear in the list.

 If the item_list is a string variable, then the names of
 the data items must be left-justified, separated by
 commas and terminated with a semicolon or blank. The
 embedded blanks are allowed and no name can appear more
 than once.

 The data item_list can contain special symbols such as
 @, which specifies all data items in the data set.
 Consult the Special List Parameter Constructs table in
 the explanation of the DBPUT library procedure in the

TurboIMAGE/XL Database Management System for additional
 special symbols and their usage.

 If referencing data items by number, the first word in
 the short integer array must be the total number of
 elements in the array. This number is followed by that
 number of unique data item numbers contained in the
 first word of the array.

 The item_list specified is returned internally by
 TurboIMAGE as the current list . Consult the

TurboIMAGE/XL Database Management System for details
 about the benefits of using TurboIMAGE's current list .
 If the ITEMS option is not specified, HP Business
 BASIC/XL sets the item_list to "@;".

num_expr Used only with DIRECT read mode, mode 4. Its value is
 the integer record number of the entry to be read.

str_expr Used only with CALCULATED or PRIMARY read mode, modes 7
 and 8, respectively. Its value is a search item value
 for the master data set referenced in dataset .

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array

4- 30

 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

The following examples show the use of the DBGET statement.

 100 DBGET Db$ INTO S$,DATASET=Ds$,STATUS=S(*)
 110 DBGET Db$ INTO S$,DATASET=Ds$,MODE=1,STATUS=S(*)
 120 DBGET Db$ INTO S$,DATASET=Ds$,MODE=2,STATUS=S(*)
 130 DBGET Db$ INTO S$,DATASET=Ds$,MODE=3,ITEMS=I$,STATUS=S(*)
 140 DBGET Db$ INTO S$,DATASET=Ds$,MODE=4,ITEMS=I$,KEY=K$,STATUS=S(*)
 150 DBGET Db$ INTO S$,DATASET=Ds$,MODE=7,STATUS=S(*),ITEMS=I$,KEY=N
 160 DBGET Db$ INTO S$,DATASET Ds$,MODE 8,KEY N,STATUS S(*)
 170 DBGET Db$ INTO S$,DATASET Ds$,STATUS S(*)
 180 DBGET Db$ INTO S$,DATASET Ds$,STATUS S(*),ITEMS I$
 190 DBGET Db$ INTO S$,DATASET Ds$,ITEMS I$,STATUS S(*)
 200 DBGET Db$ INTO S$,DATASET Ds$,ITEMS I$,KEY N,STATUS S(*)
 210 DBGET Db$ INTO S$,DATASET Ds$,KEY K$,STATUS S(*)
 220 DBGET Db$ USING 400; DATASET Ds$
 230 DBGET Db$ USING Pack1; DATASET Ds$,STATUS=S(*)
 240 DBGET Db$ USING Pack1 INTO S$,DATASET=Ds$
 400 IN DATASET Ds$ USE A,B, SKIP 10,D$
 410 Pack1: PACKFMT A,B, SKIP 10,D$

The following statements:

 100 DBUPDATE Dbase$ USING 200 INTO D$; DATASET = "parts"
 200 PACKFMT A,Price,Company$

are equivalent to:

 100 DBGET Dbase$ INTO D$;DATASET="parts"
 110 UNPACK USING 200;D$
 200 PACKFMT A,Price,Company$

DBINFO

The DBINFO statement provides information about the database specified.
The information returned is restricted by the user class number when the
database is opened. Any data items, data sets, or paths of the database
that are inaccessible to that user are considered to be nonexistent.

Syntax

 {DATASET [=] dataset }
DBINFO dbname $, {ITEMS [=] item }

, MODE [=] mode , RETURN [=] str_var [, STATUS [=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

item A string or numeric expression that evaluates to the
 name of a data item or evaluates to a numeric value
 referencing a data item, respectively. Whether the
 DATASET or ITEMS option is selected is dependent on the
 mode selected as described in the DBINFO library
 procedure in the TurboIMAGE/XL Database Management

System .

4-: 31

mode A numeric expression that evaluates to a short integer
 indicating the type of information desired. Available
 modes are detailed in the explanation of the DBINFO
 library procedure in the TurboIMAGE/XL Database

Management System .

str_var The name of the string to which the requested
 information is returned. The required length is
 dependent on the type of information to be returned as
 specified by the MODE parameter.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

The following examples show the use of the DBINFO statement.

 120 DBINFO Db$,DATASET=Ds$,MODE=M,RETURN=Buf$,STATUS=S(*)
 130 DBINFO Db$,DATASET Ds$,MODE M,RETURN Buf$,STATUS S(*)
 140 DBINFO Db$,ITEMS S$,MODE M,RETURN Buf$,STATUS S(*)
 150 DBINFO Db$,ITEMS S$,MODE M,RETURN Buf$,STATUS S(*)

DBLOCK

The DBLOCK statement applies a logical lock to a database, a data set, or
a data item value to all but one user. Then, the user can write to the
locked area. The PREDICATE statement aids in locking database items in
DBLOCK modes five and six. Without the PREDICATE statement, the PACK
statement must be used to build a predicate string for the DBLOCK
statement.

Syntax

DBLOCKdbname $ [, MODE [=] lock_mode]
[{DATASET [=] dataset }]
[, {DESCRIPTOR [=] str_expr }]

[, STATUS [=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

lock_mode Evaluates to an integer indicating the type of locking
 desired:

 Code Effect
 1 (default) Locks database unconditionally
 2 Locks database conditionally
 3 Locks data set unconditionally
 4 Locks data set conditionally
 5 Locks data item entry unconditionally
 6 Locks data item entry conditionally

 If a data item is locked unconditionally in mode 5, the
 entry for that item does not have to exist for the lock
 to succeed.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer

4- 32

 corresponding to the desired dataset number. Required
 only if lock_mode is three or four.

str_expr A string expression that is required only if lock_mode
 is five or six. Its value is a predicate lock string
 that describes the locking condition. The PREDICATE
 statement is used to set up the predicate lock string.
 The format of the PREDICATE lock descriptors is
 presented in the description of the DBLOCK library
 procedure in the TurboIMAGE/XL Database Management

System .

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

The following examples show the use of the DBLOCK statement. In line 30,
a PREDICATE statement has been issued for use with lines 150 and 160.

 30 PREDICATE Pred$ FROM Ds$ WITH Item$="skates"
 100 DBLOCK Db$,STATUS=S(*)
 110 DBLOCK Db$,MODE=1,STATUS=S(*)
 120 DBLOCK Db$,MODE=2,STATUS=S(*)
 130 DBLOCK Db$,MODE 3,DATASET Ds$,STATUS S(*)
 140 DBLOCK Db$,MODE 4,DATASET Ds$,STATUS S(*)
 150 DBLOCK Db$,MODE 5,DESCRIPTOR Pred$,STATUS S(*)
 160 DBLOCK Db$,MODE 6,DESCRIPTOR Pred$,STATUS S(*)

DBMEMO

The DBMEMO statement sends a message to the transaction log file.

Syntax

DBMEMOdbname $, MSG[=] str_expr [, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

str_expr A string of ASCII characters of up to 512 characters in
 length to be written to the log file.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

The following examples show the use of the DBMEMO statement.

 110 DBMEMO Db$,MSG=Message$,STATUS=Stat(*)
 120 DBMEMO Db$,MSG Message$,STATUS Stat(*)

DBOPEN

The DBOPEN statement initiates database access and sets TurboIMAGE's user

4-: 33

class number and access mode for subsequent database operations. The
first two characters in the dbname variable must be blanks.

Syntax

DBOPENdbname $[, PASSWORD[=] str_expr] [, MODE[=] open_mode]

[, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. The first two characters in the string must be
 blanks followed immediately by the actual database name.
 This variable must be used in all other statements that
 call this database.

str_expr Evaluates to the database's password. Required the if
 database is protected with a password.

open_mode A numeric expression that evaluates to one of the valid
 TurboIMAGE access modes in Table 4-2. See the
 description of the DBOPEN library procedure in the

TurboIMAGE/XL Database Management System for more
 information. If not specified, the default is seven,
 exclusive read.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Table 4-2. Database Access Modes

Open	Allows	And concurrent	Concurrent Modes Allowed
Mode			

1	Modify with enforced locking	Modify	1, 5

2	Update	Update	2, 6

3	Exclusive modify	None	None

4	Modify	Read	6

5	Read	Modify	1, 5

6	Read	Modify	6 and either 2, one 4, or
			8

7	Exclusive read	None	None

| | | | |

4- 34

| 8 | Read | Read | 6, 8 |
| | | | |

Examples

The following statements show the use of the DBOPEN statement.

 90 Database$ = " Clients" !Database name is preceded by two spaces
 100 DBOPEN Data_base$,STATUS=S(*)
 110 DBOPEN Data_base$,PASSWORD="synergy",STATUS=S(*)
 120 DBOPEN Data_base$,PASSWORD=Pw$,MODE=4,STATUS=S(*)
 130 DBOPEN Data_base$,PASSWORD=Pw$,MODE=2,STATUS=Status(*)
 140 DBOPEN Data_base$,MODE 1,STATUS Status(*)
 150 DBOPEN Data_base$,MODE 7,STATUS S(*)
 160 DBOPEN Data_base$,STATUS Status(*)
 170 DBOPEN Data_base$,PASSWORD "Quanta",STATUS Status(*)

DBPUT

The DBPUT statement adds new entries to a manual master or detail data
set.

The database must be open in access mode one, three, or four (see Table
4-2 in "DBOPEN Statement" for the meanings of these modes). A covering
lock must be in place if mode one is used.

DBPUT...USING... Data will be packed into an internal buffer
 from the list of local variables specified in
 the PACKFMT statement before writing into the
 data set.

DBPUT...FROM... Data will be transferred from the buffer into
 the data set.

DBPUT...USING...FROM... Data will be packed into the buffer specified
 in the FROM clause using the PACKFMT list that
 will then be transferred into the data set.

Syntax

 {USING line_id } {,}
DBPUT dbname $ {FROM[=] str_var } {;} DATASET[=] dataset
 {USING line_id FROM[=] str_var }

[, ITEMS[=] item_list] [, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and if shorter than 16
 characters must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

str_var The string variable containing the data item values to
 be added to the database. The values must be in the
 same order as their data item identifiers in the

items_list parameter. The values must be packed into
str_var from their corresponding HP Business BASIC/XL

 variables using HP Business BASIC/XL's PACK statement.

line_id A line number or label for a PACKFMT or IN DATASET
 statement. The referenced statement is used to
 automatically pack data from program variables.

item_list The name of an ordered set of data item identifiers,
 either names or numbers. The value of each data item is

4-: 35

 in the corresponding position in the ordered set of
 values contained in str_var . Any search or sort items
 defined for the entry must be included in item_list .
 Fields of unreferenced items are filled with binary
 zeros.

 If the item_list is a string variable, the list of data
 item names must be left justified in the string.
 Individual data item names are separated by commas and
 the last is followed by a semicolon or blank. Embedded
 blanks are not allowed and no name can appear more than
 once.

 The data item_list can contain special symbols such as
 @, which specifies all data items in the data set.
 Consult the Special List Parameter Constructs table in
 the explanation of the DBPUT library procedure in the

TurboIMAGE/XL Database Management System for additional
 special symbols and their usage.

 If referencing data items by number, the first word in
 the short integer array must be the total number of
 elements in the array. This number is followed by that
 number of unique data item numbers.

 The item_list specified is returned internally by
 TurboIMAGE as the current list . Consult the

TurboIMAGE/XL Database Management System for details
 about the benefits of using TurboIMAGE's current list .
 If the ITEMS option is not specified, HP Business
 BASIC/XL sets the item_list to "@;".

Examples

The following examples show the use of the DBPUT statement.

 110 DBPUT Db$ FROM S$,DATASET=Ds$,STATUS=S(*)
 130 DBPUT Db$ FROM S$,DATASET=Ds$,STATUS=S(*)
 150 DBPUT Db$ FROM S$,DATASET Ds$,STATUS S(*),ITEMS I$
 170 DBPUT Db$ FROM S$,DATASET Ds$,ITEMS I$,STATUS S(*)
 220 DBPUT Db$ USING 400; DATASET Ds$
 230 DBPUT Db$ USING Pack1; DATASET Ds$,STATUS=S(*)
 400 IN DATASET Ds$ USE A,B, SKIP 10,D$
 410 Pack1: PACKFMT A,B, SKIP 10,D$
 420 DBPUT D6$ USING 400, FROM=S$,DATASET=Ds$

The following statements:

 100 DBPUT Dbase$ USING 200 FROM=D$; DATASET = "parts"
 200 PACKFMT A,Price,Company$

are equivalent to:

 100 PACK USING 200;D$
 100 DBPUT Dbase$ FROM D$;DATASET="parts"
 200 PACKFMT A,Price,Company$

DBUNLOCK

The DBUNLOCK statement cancels the restriction imposed by the DBLOCK
statement with the same dbname.

Syntax

DBUNLOCKdbname $[, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable, whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

status_array A 10-element short integer array to which TurboIMAGE

4- 36

 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Redundant DBUNLOCK statements are ignored.

Examples

The following example shows the use of the DBUNLOCK statement.

 100 DBUNLOCK Db$
 110 DBUNLOCK Db$,STATUS=S(*)
 120 DBUNLOCK Db$,STATUS S(*)

DBUPDATE

The DBUPDATE statement replaces the values of data items in the current
address of a specified dataset.

The database must be open in access mode one, two, three, or four (see
Table 4-2 in "DBOPEN Statement" for more on the meanings of these modes).

DBUPDATE...USING... Data will be packed into an internal
 buffer from the list of local
 variables specified in the PACKFMT
 statement that can update the dataset.

DBUPDATE...FROM... The buffer specified in the FROM
 clause is used to update the data set.

DBUPDATE...USING...FROM... Data will be packed into the buffer
 specified in the FROM clause using the
 PACKFMT can be used to update the data
 set.

Syntax

 {USING line_id }{,}
DBUPDATEdbname $ {FROM[=] str_var }{;} DATASET[=] dataset
 {USING line_id FROM[=] str_var }

[, ITEMS[=] item_list] [, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

str_var The string variable containing the data item values to
 be added to the database. The values must be in the
 same order as their data item identifiers in the

items_list parameter. The values must be packed into
str_var from their corresponding HP Business BASIC/XL

 variables using HP Business BASIC/XL's PACK statement.

line_id A line number or label for a PACKFMT or IN DATASET
 statement. The referenced statement is used to
 automatically pack data from program variables.

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and, if shorter than 16
 characters, must be terminated by a semicolon or blank.
 This parameter can also be an integer or short integer
 corresponding to the desired dataset number.

item_list The name of an ordered set of data item identifiers,
 either names or numbers. The value of each data item is

4-: 37

 in the corresponding position in the ordered set of
 values contained in str_var . Any search or sort items
 defined for the entry must be included in item_list .
 Fields of unreferenced items are filled with binary
 zeros.

 If the item_list is a string variable, the list of data
 item names must be left justified in the string.
 Individual data item names are separated by commas and
 the last is followed by a semicolon or blank. Embedded
 blanks are not allowed and names cannot appear more than
 once.

 The data item_list can contain special symbols such as @
 that specifies all data items in the data set. Consult
 the Special List Parameter Constructs table in the
 explanation of the DBPUT library procedure in the

TurboIMAGE/XL Database Management System for additional
 special symbols and their usage.

 If referencing data items by number, the first word in
 the short integer array must be the total number of
 elements in the array. This number is followed by the
 unique data item number.

 The item_list specified is returned internally by
 TurboIMAGE as the current list . Consult the

TurboIMAGE/XL Database Management System for details
 about the benefits of using TurboIMAGE's current list .
 If the items option is not specified, HP Business
 BASIC/XL sets the item_list to "@;".

Examples

The following examples show the use of the DBUPDATE statement.

 110 DBUPDATE Db$ FROM S$,DATASET=Ds$,STATUS=S(*)
 130 DBUPDATE Db$ FROM S$,DATASET=Ds$,STATUS=S(*)
 150 DBUPDATE Db$ FROM S$,DATASET Ds$,STATUS S(*),ITEMS I$
 170 DBUPDATE Db$ FROM S$,DATASET Ds$,ITEMS I$,STATUS S(*)
 220 DBUPDATE Db$ USING 400; DATASET Ds$
 230 DBUPDATE Db$ USING Pack1; DATASET Ds$,STATUS=S(*)
 400 IN DATASET Ds$ USE A,B, SKIP 10,D$
 410 Pack1: PACKFMT A,B, SKIP 10,D$

The following statements:

 100 DBGET Dbase$ USING 200 FROM D$; DATASET = "parts"
 200 PACKFMT A,Price,Company$

are equivalent to:

 100 PACK USING 200;D$
 110 DBUPDATE Dbase$ FROM D$;DATASET="parts"
 200 PACKFMT A,Price,Company$

DECIMAL

This statement defines a variable as a type DECIMAL. If the SHORT option
is used with it, the variable is type SHORT DECIMAL.

Syntax

 { num_var } [{ num_var }]
[SHORT] DEC[IMAL] { arrayd } [,{ arrayd }]...

Parameters

num_var Name of scalar numeric variable to be declared.

arrayd Numeric array description. The syntax for the array is
 described under the DIM statement.

Examples

4- 38

The following are examples of declaring variables of types DECIMAL and
SHORT DECIMAL.

 100 SHORT DECIMAL Price
 120 SHORT DECIMAL Cost1,Cost2(7),Cost3
 130 DECIMAL Length
 140 DECIMAL D1,D2,D3(6,8),D4(3,5)

DEF FN

The DEF FN statement defines the beginning of a multi-line function. It
is not executable.

Syntax

Numeric function:

DEF [type] FN identifier [(f_param [, f_param]...)]

String function:

DEF FNidentifier $ [(f_param [, f_param]...)]

Parameters

type Numeric type (for example, INTEGER, SHORT REAL). If type
 is specified, the numeric function returns a numeric
 value of that type. If type is not specified, the
 numeric value returned has the default numeric type. A
 string function returns a string value.

FNidentifier , Function name. A blank is not allowed between FN and
FNidentifier $ the identifier. For example, if the identifier is Add,
 the function name is FNAdd or FNAdd$.

f_param A formal parameter. Formal parameters for multi-line
 functions are specified like as they are for
 subprograms. The SUBPROGRAM statement explains the
 specification.

Example

 DEF INTEGER FNAdd (INTEGER A,B(*), REAL C,D(*), E$(*,*,*),F$,G)
 DEF FNSearch$(E$(*,*,*),F$, G, #20)

Each of the above statements defines the beginning of a multi-line
function. FNAdd is a numeric (type INTEGER) function, and FNSearch is a
string function.

Each has the following formal parameters:

Parameter Type

A Scalar integer variable
B Integer array variable
C Scalar real variable
D Real array variable
E$ String array variable
F$ Scalar string variable
G Scalar variable with the default numeric type
#20 File designator

If a program has more than one multi-line function with the same name,
the name refers to the first function with that name; that is, the one
that has the lowest-numbered DEF FN statement. The others cannot be
called.

If a program unit has a single-line function with the same name as a
multi-line function, that program unit can only call the single-line
function. Other program units can still call the multi-line function.

DEFAULT OFF

Values that are out of range cause arithmetic errors, explained under the
DEFAULT ON statement. The DEFAULT ON statement overrides those error

4-: 39

messages. The DEFAULT OFF statement is used following a DEFAULT ON
statement to reinstate those error messages. The DEFAULT OFF value is
also set when you initially enter to the interpreter.

Syntax

DEFAULT OFF

If the DEFAULT OFF value is set, program execution is suspended when you
encounter one of these errors.

DEFAULT ON

Values that are out of range cause the arithmetic errors in the following
table. If a DEFAULT ON statement is executed before one of these errors
occurs, the error is overridden and a default value is substituted for
the value that is out of range.

Syntax

DEFAULT ON

If one of the errors in Table 4-3 occurs before a DEFAULT ON statement is
executed or after a DEFAULT OFF statement is executed, program execution
is suspended.

The DEFAULT OFF value is set when you initially enter the interpreter.

Table 4-3. DEFAULT ON Values

Error	Error Description	Default Values
Number		

20	Short integer precision overflow.	32767 or -32768

21	Short decimal precision overflow.	{+ -}9.99999E+63

22	Decimal precision overflow.	{+ -}9.99999999999E+511

24	TAN(N*PI/2) where N is an odd integer.	1.157920892373161E+77

26	Zero to negative power.	1.157920892373161E+77

29	LGT or LOG of zero.	-1.79769313486231E+308

31	Division by zero.	Default type maximum

1139	Integer precision overflow.	-2147483648 or 2147483647

1140	Real precision overflow.	{+ -}1.79769313486231E+308

1141	Short real precision overflow.	{+ -}3.40282E+38

4- 40

Examples

The following examples show the result of using the DEFAULT ON statement.
In the first example, the program does not have DEFAULT ON and a short
integer precision overflow results. In the second example, there is a
DEFAULT ON statement and the default value of 32767 is substituted for
the out of range 2*A.

 >list
 10 SHORT INTEGER A,B
 20 A=32767
 30 B=2*A
 40 PRINT A
 50 PRINT B
 60 END
 >run
 Error 20 in line 30
 SHORT INTEGER precision overflow.
 >15 DEFAULT ON
 >list
 10 SHORT INTEGER A,B
 15 DEFAULT ON
 20 A=32767
 30 B=2*A
 40 PRINT A
 50 PRINT B
 60 END
 >run
 32767
 32767
 >

DEG

The DEG statement indicates that angular units will be specified in
degrees. The default is Radians. One degree represents 1/360 of a
circle. This statement is used with trigonometric functions.

Syntax

DEG

Example

 10 Radius = 10
 20 DEG
 30 Area = PI*Radius**2
 40 PRINT Area
 50 END

DETAIL LINE

The DETAIL LINE statement is the foundation for Report Writer execution.
When the DETAIL LINE statement is executed, all break conditions are
tested and triggered, if appropriate, before the detail line output is
produced. In addition, this statement causes all totals to be
incremented.

This statement can not occur within a report definition. Also, it can
not be executed while any other break condition such as a level break or
a page break is being executed.

Syntax

 [[LINES]]
DETAIL LINE totals_flag [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

totals_flag A numeric expression in the SHORT INTEGER range. This
 value is used as a Boolean to determine what work must

4-: 41

 be done.

num_lines The maximum number of lines expected to be needed by
 this statement. This number reflects ALL output done
 before the next DETAIL LINE statement executes.

image An image string or a line reference to an IMAGE line.

output_list A list of output items that is identical to the list for
 the PRINT USING statement.

Examples

The following examples show the DETAIL LINE statement.

 100 DETAIL LINE J WITH 3 LINES
 100 DETAIL LINE True
 100 DETAIL LINE 0 WITH 2 LINES USING Image_line;A, B

If the report has not been activated, DETAIL LINE reports an error. If
the report output has not started, this statement starts the report
output. When starting the report, DETAIL LINE evaluates all BREAK
statements in order to update OLDCV/OLDCV$ values, but no break takes
place. Once the report output has started, all work depends on the value
of the totals_flag .

The totals flag is always evaluated by DETAIL LINE. If its value is TRUE
(nonzero), break conditions are checked and totals are automatically
accumulated. If the totals flag is FALSE (zero), this work is not done.

The output of DETAIL LINE can be controlled by the PRINT DETAIL IF
statement. If this statement exists in the report, it is evaluated. If
the PRINT DETAIL IF statement is FALSE (zero), the DETAIL LINE statement
ends. The WITH and USING clauses are not executed.

If PRINT DETAIL IF returns TRUE, or if the statement does not occur in
the report description, the WITH and USING clauses are executed if they
exist.

The work done by DETAIL LINE is shown in the following section. The
description of executing a break condition occurs after the TRIGGER BREAK
statement.

Execution of DETAIL LINE

The following is a sequential description of what happens when the DETAIL
LINE statement executes.

 * Checks are made to see that DETAIL LINE can be executed. For this to
 take place, the report must be active and that there are no Report
 Writer sections currently executing.

 * If necessary, the report is started. This will cause the REPORT
 HEADER, PAGE HEADER, and all HEADER sections to execute.

 * The totals_flag is evaluated. This value is used as a Boolean value.

 * If the totals_flag is true (nonzero), do the following:

 * Evaluate ALL break statements, watching for the lowest numbered
 BREAK statement that is satisfied. The BREAK IF and BREAK WHEN
 statements are evaluated in summary level order, from one to
 nine. During these checks, the CURRENT LEVEL from the RWINFO
 built-in function changes to reflect the BREAK statement
 executed.

 * If a BREAK condition is satisfied, LASTBREAK is set to the lowest
 numbered BREAK statement with a satisfied BREAK condition. Take
 the following steps:

 * Set CURRENT LEVEL to LASTBREAK.

 * Trigger breaks from level LASTBREAK through nine. This causes the
 TRAILER and HEADER sections to execute. Some Report Writer counters

4- 42

 are updated, totals are reset and OLDCV values are reset. This
 process is described under TRIGGER BREAK.

 * Accumulate all TOTALS. GRAND TOTALS are evaluated and added
 first, then TOTALS are done in ascending level number order.

 * Evaluate the PRINT DETAIL IF statement. If the statement does
 not occur, or if the expression is true (nonzero), do the
 following:

 * Evaluate the WITH clause of DETAIL LINE. If the number of
 lines left before the page trailer or end of page is smaller
 than the WITH value, automatically trigger a page break. If
 a WITH clause is not specified, there must be one line left
 on the page.

 * If the USING clause is present on the DETAIL LINE statement,
 print the detailed line as indicated by the USING clause and
 the expressions that follow it.

DIM

The DIM statement declares one or more string or array variables.

Syntax

DIM type_list [, type_list]...

Parameters

 {[type] num_item [, num_item]...}
type_list { non_num_item }

type One of the following:
 SHORT INTEGER
 INTEGER
 SHORT DECIMAL
 DECIMAL
 SHORT REAL
 SHORT (Current default type, either a REAL or a
 DECIMAL)
 REAL
 unspecified

 If a type is not specified, implicit declaration
 rules apply. (These rules are explained in
 "Implicit Declaration" in chapter 3). After type ,
 each num_item is of that type until another type
 or a non_num_item appears.

num_item A numeric variable name or a numeric array
 declaration. A numeric array is declared as:

identifier [(array_subscripts)]

non_num_items A scalar string variable name or a string array
 declaration. A scalar string variable can be
 declared as either of the following:

 { identifier $ }
 { identifier $[num_expr3]}

 The first declaration results in a scalar string
 variable that can contain a maximum of 18
 characters (default length). The second
 declaration specifies the maximum length that the
 string may contain is num_expr3 characters.

 A string array is declared as either of the
 following:

 { identifier $(array_subscripts) }
 { identifier $(array_subscripts)[num_expr3]}

4-: 43

 In the first declaration, each element of the
 array can have a maximum length of 18 characters
 (default value). In the second declaration, the
 maximum length of each element is num_expr3
 characters.

array_subscripts A list specifying each dimension . Each dimension
 is separated from the next by commas. An array
 has between one and six dimensions. The default
 is one dimension.

dimension A single number or a pair of numbers that has the
 syntax:

 [num_expr1 :] num_expr2

num_expr1 Lower bound for the dimension. If the DIM
 statement is in the main program unit, the value
 of num_expr1 must be constant. num_expr1 is less
 than or equal to num_expr2 . The default is
 default lower bound specified in the appropriate
 OPTION BASE statement or the HP Business BASIC/XL
 configuration file.

num_expr2 Upper bound for the dimension. If the DIM
 statement is in the main program unit, the value
 of num_expr2 must be constant.

num_expr3 Maximum length of each string in the array. The
 default length is 18.

Examples

 10 !Numeric Arrays
 20 DIM Default_type_Arr(20)
 30 DIM INTEGER Int_Arr1(40)
 40 DIM REAL Real_Arr3(10:20,10,9)
 50 DIM DECIMAL Dec_Arr(40), Dec_Arr2(10,4), REAL Real_Arr2(2,2:4)

 10 !String Arrays
 20 OPTION BASE 1
 30 DIM Default_length_string$
 40 DIM Str_len_80$[80]
 50 DIM Str_arr1_len_80$(10)[80]
 60 DIM Str_arr2_len_20$(10:15,-10:0,5,3)[20]

DISABLE

The DISABLE statement suppresses the execution of a branch specified by
pressing a branch-during-input key and places the branch into the
interrupt queue. The interrupt queue contains branches that are to be
executed. The key-generated branches in the queue are stored by HP
Business BASIC/XL in a format that includes the key number. The branch
information for each key is able to be stored only once.

If a key defined as a branch-during-input key is pressed while key
generated branch processing is DISABLED, the branch is added to the
interrupt queue. If the function key is subsequently redefined by an ON
KEY statement and pressed again while the first branch is still in the
queue, then the original branch information is overwritten by that
present in the second ON KEY statement. There can be at most eight
interrupts pending in the queue; one for each of the eight softkeys. The
interrupt for a specific key can only be stored once. Pressing a key
multiple times while DISABLE is in effect does not result in multiple
executions of that key's action when interrupts are enabled.

Syntax

DISABLE

Examples

 100 DISABLE

4- 44

DISP

The DISP statement outputs several values. It can use output functions
to output control characters. The DISP statement is similar to the PRINT
statement. The only difference between the DISP and PRINT statements is
that the DISP statement uses the standard list device, and the PRINT
statement uses the output device specified by the most recently executed
SEND OUTPUT TO statement. If the most recently executed SEND OUTPUT TO
statement specifies the standard list device, or if the program does not
contain a SEND OUTPUT TO statement, then the PRINT statement is
equivalent to the DISP statement.

Syntax

 [,]
DISP [output_item_list] [;]

Parameters

 [{[,]...}]
output_item_ list [,]... output_item [{; } output_item]...

output_item One of the following:

num_expr

str_expr

array_name (*) Array reference. See "Array
 References in Display List"
 for more information.

 {PAGE }
 {{CTL} }

output_function {{LIN} }
 {{SPA} (num_expr)}
 {{TAB} }

 See "Output Functions in
 Display List" for more
 information.

FOR_clause (FOR num_var = num_expr1 TO
num_expr2 [STEP num_expr3],
d_list)

 See the section that follows,
 "FOR Clause in Display List",
 for more information.

, A separator. This prints each new item in a separate
 output field.

; A separator. This prints each new item right next to
 the previous item.

Examples

 100 DISP
 110 DISP,
 120 DISP;
 130 DISP X,X+Y;A$,LWC$(A$+B$);P(*),Q$(*);PAGE,TAB(10+X),
 140 DISP Z(*), (FOR I=1 TO 10, Z(I); 2*Z(I); I*Z(I)), D$;
 150 DISP A,,B

The DISP statement evaluates the expressions in the display list from
left to right and displays their values on the standard list device. It
displays numeric values in the current numeric output format (see
"Numeric Format Statements").

A DISP statement without a display list prints a carriage return and a
line feed (a CRLF) on the output file or device.

4-: 45

FOR Clause in Display List

The display list of a DISP statement can contain a FOR clause. The FOR
clause is similar to the FOR NEXT construct.

Syntax

(FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3], output_item_list)

Parameters

num_var A numeric variable assigned the sequence of
 values: num_expr1 , num_expr1 +num_expr3,

num_expr1 +(2* num_expr3), etc. The DISP or PRINT
 statement prints the values of the elements of d_list
 for each value that is less than num_expr2 if

num_expr3 is positive or greater than num_expr2 (if
num_expr3 is negative).

num_expr1 First value assigned to num_var .

num_expr2 Value that num_var is compared to before the DISP or
 PRINT statement prints a value. If num_var >

num_expr2 , the loop is not executed.

num_expr3 Amount that num_var increases by if num_expr2 is
 positive or decreases if num_expr2 is negative at end
 of the loop. The default value is 1 if the step
 option is not specified.

output_item_ list Same as d_list in DISP or PRINT statement syntax.

Examples

The following example shows the use of a FOR clause in the display list.

 20 DISP "Values for A are: ",(FOR I=1 TO 4, A(I);),,,"X Value: ",X

If each variable is assigned the following values prior to execution of
line 20:

 A(1) = 10
 A(2) = 20
 A(3) = 30
 A(4) = 40
 X = 50

The output generated by line 20 is:

 Values for A are: 10 20 30 40
 X Value: 50

Display list FOR clauses can be nested.

 20 DISP (FOR I=1 TO 3, (FOR J=1 TO 2 (FOR K=1 TO 2, B(I,J,K))))

For each combination of values of I, J, and K, the following table shows
the variable value that the above statement prints.

Value of I	Value of J	Value of K	Variable Printed

1	1	1	B(1,1,1)

1	1	2	B(1,1,2)

1	2	1	B(1,2,1)

4- 46

1	2	2	B(1,2,2)

2	1	1	B(2,1,1)

2	1	2	B(2,1,2)

2	2	1	B(2,2,1)

2	2	2	B(2,2,2)

3	1	1	B(3,1,1)

3	1	2	B(3,1,2)

3	2	1	B(3,2,1)

3	2	2	B(3,2,2)

DISP USING

The DISP USING statement dictates the format of the values that it prints
by specifying either a format string or an IMAGE statement. The PRINT
USING statement is similar to the DISP USING statement. Table 4-4
compares them.

Table 4-4. Comparison of DISP USING and PRINT USING

Statement	Prints output to

DISP USING	Standard list device.

PRINT USING	ASCII data file, if specified; otherwise, the device specified by the
	most recently executed SEND OUTPUT TO statement. If that device is
	the standard list device, PRINT USING is equivalent to DISP USING.

Syntax

DISP USING image [; output_item [, output_item]...]

Parameters

image Either a string expression or the line identifier of an
 IMAGE statement. See "Format String and IMAGE
 Statement" for more information.

output_item Numeric or string expression. It can be a scalar
 variable, an array element or a substring.

4-: 47

Examples

 110 DISP USING 100 !Uses the IMAGE statement at line 100
 120 DISP USING Image1 !Uses the IMAGE statement at the line
 125 !contained in Image1
 130 DISP USING Image$!Uses the IMAGE statement in Image$
 160 DISP USING "5X" !Uses the image "5X"
 200 IMAGE1: 2A 4X

ELSE

The ELSE statement is used as part of the IF THEN ELSE construct. It is
used to indicate what is to be executed if a specified numeric expression
is zero or FALSE. Refer to the IF THEN ELSE statement for information.

ENABLE

The ENABLE statement initiates the execution of any key-generated
branches in the interrupt queue that have been suppressed by a DISABLE
statement. No action is taken when the interrupt queue is empty. If
more than one branch is in the queue, then the branch with the highest
priority is executed immediately following execution of the ENABLE
statement. Subsequent branches are executed as described in the
"Priority of Handling the Branch" section in chapter 8.

Syntax

ENABLE

Examples

 100 ENABLE

ENDIF

The ENDIF statement is part of the IF THEN ELSE construct. It is used
indicate the end of that construct. Refer to the IF THEN ELSE statement
for more information.

ENDLOOP

The ENDLOOP statement is part of the LOOP construct. It is used to
indicate the end of that construct. Refer to the LOOP statement for more
information.

END REPORT

The END REPORT statement closes a report normally. It causes all trailer
sections to be printed, including the report trailer.

This statement can occur anywhere in the report subunit. It can be used
as a command.

Syntax

END REPORT

Examples

The following example shows a line containing the END REPORT statement.

 100 END REPORT

The END REPORT statement gives an error if there is not an active report.
If report output has not started, this statement starts the output.

The END REPORT statement prints all TRAILER sections in descending order
from level nine to level one. After these trailers, the REPORT TRAILER
section executes. Finally a PAGE TRAILER is printed and a page eject
occurs to clear the last page of the report.

The END REPORT statement is guaranteed to end the report, even if an
error occurs. Most errors are caught in the report sections and halt the
program, but a few errors can occur during END REPORT itself. Whether
there are errors or not, there are not active reports at the end of this

4- 48

statement.

END REPORT DESCRIPTION

This stand-alone statement marks the end of a report description. There
is no output associated with this statement.

Syntax

END REPORT DESCRIPTION

Examples

The following example shows a line containing the END REPORT DESCRIPTION
statement.

 100 END REPORT DESCRIPTION

The END REPORT DESCRIPTION statement acts as a comment if there is no
active report; if BEGIN REPORT has not executed.

If a report is active and this statement is executed, two possible
actions may occur. If another report section is active, that section is
ended. Otherwise, the statement is unexpected and an error occurs.

END SELECT

The END SELECT statement is part of the SELECT construct. It is used to
indicate the end of that construct. Refer to the SELECT statement for
more information.

END TRANSACTION

The END TRANSACTION statement defines the end of the sequence of
TurboIMAGE procedure calls begun by the BEGIN TRANSACTION statement. The
MSG parameter allows you to log additional information in the log file.

Syntax

END TRANSACTIONdbname $, MSG[=] str_expr , [, MODE[=] mode]

[, STATUS[=] status_array (*)]

Parameters

dbname $ A string variable whose value is a TurboIMAGE database
 name. dbname must be the variable that was passed to a
 successful DBOPEN.

str_expr A string of ASCII characters of up to 512 characters in
 length to be written as part of the END TRANSACTION log
 record.

mode If not specified, the value is set to one. The modes
 are the following:

 * mode1: end logical transaction.

 * mode2: end logical transaction and write contents
 of the logging buffer in memory to disk.

status_array A 10-element short integer array to which TurboIMAGE
 returns an error code. If an HP Business BASIC/XL
 database statement specifies the STATUS option, an error
 does not abort the program. Following execution of the
 database statement the program can check status_array
 and handle the error. The values returned by TurboIMAGE
 to this array are detailed in the description of the

status parameter of the equivalent TurboIMAGE library
 procedure.

Examples

The following examples show the use of the END TRANSACTION statement.

 110 END TRANSACTION Db$,MSG=M$,MODE=1

4-: 49

 120 END TRANSACTION Db$,MSG M$,MODE 2,STATUS S(*)
 130 END TRANSACTION Db$,MSG=M$,STATUS=S(*)

END WHILE

The END WHILE statement is part of the WHILE construct. It is used to
indicate the end of that construct. Refer to the WHILE statement for
more information.

ENTER

The ENTER statement assigns characters that are already present in
display memory to HP Business BASIC/XL variables. User input from the
keyboard is not accepted.

A value is read from the display memory starting from the cursor position
until each enter_item has been assigned or until the end of data on the
line. When there are no more data on a display memory line, the
remaining variables in the ENTER statement are not assigned a new value.
Commas act to separate values on the line like they do in the INPUT
statement. Since any necessary conversion is performed on the data read
from the display memory prior to assigning it to HP Business BASIC/XL
variables, it is possible to get an error ENTERing numeric variables.
For example, attempting to assign the value '99*8' to a numeric
variable causes an error.

The ENTER statement can be used to read data from fields of an active
JOINFORM into HP Business BASIC/XL variables. Refer to Appendix F of
this manual for more information.

Syntax

 { enter_element }[{,}{ enter_element }]
ENTER { for_clause }[{;}{ for_clause }]...

Parameters

enter_item enter_element or for_clause

enter_element One of the following:

num_var
str_var $
array_name ([*[,*]...])
str_array_name $([*[,*]...])

 The last format above has one asterisk per dimension or
 does not have asterisks. Not using asterisks specifies
 any number of dimensions. Either format is legal, but
 the format without asterisks is not compilable.
 Substrings are also allowed.

for_clause (FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3],
enter_item [, enter_item]...)

 A for_clause is useful for reading array elements.
 Refer to "FOR Clause in Input List" in chapter 6 for
 more information.

Examples

 300 ENTER Num_var !Enters a value for Num_var
 310 ENTER Num_var,Str_var$!Enters a numeric and a string value
 330 ENTER (FOR I=1 to 2,A$(I)) !Enters two elements of a string array

EXIT IF

The EXIT IF statement is part of the LOOP construct. It is used to
indicate when to exit the construct. Refer to the LOOP statement for
more information.

EXTERNAL and GLOBAL EXTERNAL

The EXTERNAL or GLOBAL EXTERNAL statement defines a non-intrinsic

4- 50

procedure or function in an executable library so that the procedure can
be called from within the HP Business BASIC/XL program. The purpose of
the statement is to specify the name of the procedure or function that is
called from within the HP Business BASIC/XL program. If the name in the
executable library is different from that to be used within HP Business
BASIC/XL, the name of the entry point in the executable library can be
specified in the alias clause. The formal parameter list for the
EXTERNAL statement must correspond to the formal parameter list in the
procedure header of the external routine. Parameters are passed by
reference unless the formal parameter is preceded by the keyword VALUE.

Since the language used to write the external procedure or function
determines the size and format anticipated for the actual parameters, the
language that the external procedure or function is written in must be
included in the external's definition. If the external returns a value,
(it is a function) then the type of the value returned must be specified
if it is not the default numeric type for the main program, subprogram,
or function that the definition occurs in.

Syntax

 {EXTERNAL}
GLOBAL {EXT } [lang] return_type identifier [ALIAS quoted_& str_lit]

[[[{,}]]]
[[[ptype] parameter [{;} [ptype] parameter] ...]]

Parameters

GLOBAL Allowed only if the statement is in the main block of
 the program. If GLOBAL appears, the statement is a
 GLOBAL EXTERNAL statement; if GLOBAL is omitted, the
 statement is an EXTERNAL statement.

 A GLOBAL EXTERNAL definition can appear only in the main
 block of the program and allows the external to be
 called from either the main block or any procedure or
 function within that program. An EXTERNAL statement can
 appear in the main block or any procedure or function
 and allows the declared external to be called locally.

 Any local EXTERNAL declaration statement takes
 precedence over that of a GLOBAL EXTERNAL declaration
 statement, but only while the main block or procedure
 that contains the local EXTERNAL definition is
 executing.

lang One of the following terms for the language that the
 external procedure or function is written in:

 BASIC HP Business BASIC/XL (default if
 not specified)

 PASCAL Pascal/XL

 PASCAL EXTENSIBLE A PASCAL/XL routine declared
 using the EXTENSIBLE option. It
 is followed here by the numeric
 literal, extensible_count .

extensible_count is the number of
 required parameters for the call
 to the external routine. The
 required parameters must be
 supplied for each call from the
 HP Business BASIC/XL calling
 routine. Additional non-required
 formal parameters can be supplied
 in the actual parameter list
 following the required
 parameters. Note that a call to
 an EXTENSIBLE routine will pass
 an additional "hidden" parameter

4-: 51

 to specify the number of
 parameters actually passed.
 Refer to the HP PASCAL Reference

Manual for additional
 information.

 HPC HP C/XL

return_type Type of the value returned by the function. Can be any
 HP Business BASIC/XL type or the type BYTE (see "Calling
 External Subunits" in chapter 3).

identifier The name used within the HP Business BASIC/XL program to
 call the function or procedure. If calling a function
 directly without using the FNCALL keyword, this name
 must follow the syntax of an HP Business BASIC/XL
 function name; that is, the prefix 'FN' must precede the
 name. This name is downshifted before searching the
 executable library for the entry point.

quoted_str_lit The name of the procedure or function in the executable
 library. This name is referred to as the alias name.
 The string provided is the case-sensitive name of the
 external routine in the executable library.

ptype Parameter type. Applies to all parameters between this
ptype specification and the next ptype or string

 parameter (as in the DIM statement). The ptype can be
 any HP Business BASIC/XL type or the type BYTE (see
 "Calling External Subunits" in chapter 3). Each formal
 parameter specified to be a BYTE String$ must be
 preceded by the keyword BYTE.

parameter One of the following:

 [VALUE] If lang is BASIC, VALUE is ignored. If
identifier lang is PASCAL or HPC, VALUE indicates

 that the parameter immediately
 following it is to be passed by value
 (rather than by reference).

 # fnum where fnum is a file number as
 described in chapter 6.

array_name Gives one asterisk per dimension or
 ([*[,*]...]) does not have asterisks. No asterisks
 indicates an undefined number of
 dimensions. Either format is legal,
 but the format without asterisks is not
 compilable. The maximum length of each
 element is the same as declared for the
 actual parameter by the calling program
 unit.

Examples

 100 GLOBAL EXTERNAL Calculate
 110 GLOBAL EXTERNAL Add(INTEGER X,Y)
 115 GLOBAL EXTERNAL PASCAL String_op(BYTE Str1$,Str2$)
 120 EXTERNAL BASIC Subtract ALIAS "sub"(INTEGER X,Y;REAL Z)
 130 EXTERNAL PASCAL REAL FNDiv ALIAS "DIV"(INTEGER A,B)
 140 EXTERNAL PASCAL INTEGER FNDiv2 ALIAS "divide"(INTEGER A,B)
 150 EXTERNAL PASCAL Blob(INTEGER VALUE A, B)

For a call to String_op, both actual parameters are passed by reference.
The first actual parameter is passed as a packed array of character. The
second actual parameter is passed as a Pascal string.

For a call to Blob, the first actual parameter is an integer passed by
value, and the second actual parameter is an integer passed by reference.

The following example shows is a HP Business BASIC/XL program that calls

4- 52

an external Pascal program. The Pascal program is called using the
PASCAL EXTENSIBLE keywords.

 extrext2
 10 EXTERNAL PASCAL EXTENSIBLE=2 Pascal_extensible_2(SHORT INTEGER P1,&
 REAL VALUE P2, INTEGER P3, SHORT REAL VALUE P4)
 15 ! Declare and initialize the variables to be used as actual parameters
 20 SHORT INTEGER Sint1
 30 REAL Real1
 40 INTEGER Int1
 50 SHORT REAL Sreal1
 60 Sint1=1;Real1=2;Int1=3;Sreal1=4
 70 CALL Pascal_extensible_2(Sint1,Real1) ! pass 2 parameters
 80 CALL Pascal_extensible_2(Sint1,Real1,Int1) ! pass 3 parameters
 90 CALL Pascal_extensible_2(Sint1,Real1,Int1,Sreal1) ! pass 4 parameters

FILES ARE IN

The FILES ARE IN statement is used to specify a different default
location for data files, for example; a group, group.account, or account
other than that assigned by the operating system. Each data file resides
in the newly specified default location. However, explicitly stating the
group or the group.account in a data file name in a subsequent statement
overrides the location specified in the FILES ARE IN statement.

Syntax

FILES [ARE] [IN] str_expr

Parameters

str_expr A string expression that evaluates to a group.account.

Examples

 100 FILES ARE IN "sfm.mktg"
 110 CREATE "File1",FILESIZE=1200 !File1=FILE1.SFM.MKTG
 120 CREATE "File2",FILESIZE=1500 !File2=FILE2.SFM.MKTG
 130 CREATE "File3.lab.HP",FILESIZE=5000 !File3=FILE3.LAB.HP
 999 END

FILTER

The FILTER statement starts the database retrieval process for HP
Business BASIC/XL's Data Base Sort Feature. A boolean expression that
can contain both built-in or user-defined functions, is used as the
search condition. When the FILTER statement is executed, the data sets
contained in the thread list are accessed in the order and hierarchy
specified by the THREAD IS statement. The data retrieved from each data
set are unpacked into the local variables as defined in the respective IN
DATASET statement. For each data set from the thread list, the search
condition is evaluated. If the search condition is true, the record
pointers of the data set records that have been read are written out to
the workfile; otherwise, they are ignored and the next data set record is
searched.

If a search condition is not needed, the keyword ALL can be used to
retrieve all the records.

The FILTER statement expects the workfile to be non-empty. If the
workfile is empty and the FILTER statement is executed, an error occurs.

Syntax

 { search_condition }
FILTER USING line_id ; {ALL }

Parameters

line_id Line label on line number that identifies the line that
 defines the THREAD IS statement.

search_ Any logical expression.

4-: 53

condition

Examples

The following examples show the use of the FILTER statement.

 400 FILTER USING 300; ALL
 410 FILTER USING Thread_list; TRIM$(Name$)="widgets" AND
 Price < .25

FIXED

The FIXED statement sets the default numeric output format to fixed-point
and specifies the number of digits to be printed to the right of the
decimal point. The FLOAT and STANDARD statements also set the default
numeric output format.

Syntax

FIXED num_expr

Parameters

num_expr Its rounded value, n, must be in the short integer
 range. When HP Business BASIC/XL outputs a number in
 fixed-point format, it prints n digits to the right of
 the decimal point. If n is less than one, HP Business
 BASIC/XL prints no decimal point and no decimal digits.
 If n is greater than 16, HP Business BASIC/XL prints 16
 decimal digits.

A numeric literal that is expressed in scientific notation can be printed
in fixed-point format, but it will be followed with E+ nn for exponents
that are less than two digits andE+ nnn for exponents that are three
digits. Each n is a digit.

Examples

 10 FIXED 2
 20 PRINT 123;.4567;-79810;-1.235E+47
 99 END

The above program prints:

 123.00 .46 -78910.00 -1.24E+47

If line 10 is changed to

 10 FIXED 3

then the program prints:

 123.000 .457 -78910.000 -1.234E+47

FLOAT

The FLOAT statement sets the default numeric output format to
floating-point and specifies the number of digits to be printed to the
right of the decimal point. The FIXED and STANDARD statements also set
the default numeric output format.

Syntax

FLOAT num_expr

Parameters

num_expr Its rounded value, n, must be in the short integer
 range. When HP Business BASIC/XL outputs a number in
 fixed-point format, it prints n digits to the right of
 the decimal point. If n is less than one, HP Business
 BASIC/XL prints no decimal point and no decimal digits.
 If n is greater than 16, HP Business BASIC/XL prints 16
 decimal digits.

4- 54

Floating-point format is appropriate for very large and very small
numbers. Floating-point format is

 {+}
[-] d [[d]...]E {-} dd [d]

where d is a numeric digit. The leftmost minus sign prints if the number
is negative. The decimal point prints unless n is zero, and it is
followed by n digits. To express the number in fixed-point format, raise
ten to the power of the exponent (represented by {+|-} dd [d]) and multiply
it by the mantissa (represented by [-] d [. d [d]...]).

Examples

 10 FLOAT 2
 20 PRINT 123;.4567;-79810;-1.235E+47
 99 END

The above program prints:

 1.23E+02 4.57E-01 -7.98E+04 -1.24E+47

If line 10 is changed to

 10 FLOAT 3

then the program prints:

 1.230E+02 4.567E-01 -7.981E+04 -1.235E+47

FLUSH INPUT

The FLUSH INPUT statement empties the input buffer. The input buffer is
a buffer where all the data that you have typed in is stored. If an
INPUT statement reads three variables, and you have typed in six, the
last three remain in the input buffer. If there is data remaining in the
input buffer and another INPUT statement is issued, the INPUT statement
will pick up that remaining data. The FLUSH INPUT clears that buffer, so
that the next INPUT statement will not use that data.

Syntax

FLUSH INPUT

Examples

 100 INPUT A,B,C: !Extra input for this statement, e.g., 1,2,3,4,5,6
 110 INPUT :D,E,F !is used by this statement, i.e., D = 4, E = 5, F = 6
 120 !but
 200 INPUT A,B,C: !extra input for this statement
 210 FLUSH INPUT !is flushed from the buffer
 220 INPUT :D,E,F !and not used by this statement.
 999 END

FNEND

The FNEND statement defines the end of a multi-line function. A
multi-line function returns both control of the execution and a value via
a RETURN statement. The FNEND statement serves as a marker for the last
statement in the function. Therefore, an error occurs if the FNEND
statement actually executes.

Syntax

{FNEND }
{FN END}

The FNEND statement is legal only in a multi-line function. It is
illegal in the main program or a subprogram.

It is good programming practice to end a multi-line function with an
FNEND statement and use RETURN statements within the function. However,
an FNEND statement can appear more than once in a multi-line function at
either the beginning of the next subunit or at the end of the containing
program. The start of the next subunit in a program does indicate the

4-: 55

end of the multi-line function, but for program documentation purposes it
is a good idea to include the FNEND.

Example

 10 READ A
 25 DATA 3
 20 C= FNMath(A) !Calls the function.
 30 PRINT C
 99 END
 100 DEF FNMath(X) !Start of the function.
 110 Y=X*2
 120 RETURN Y !Return from the function.
 999 FNEND !Indicates the end of the function.

FOR

The FOR and NEXT statements define a loop that is repeated until the
value of the loop control variable is greater than or less than a
specified value. The value of the loop control variable can increase or
decrease.

Syntax

 FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3] [stmt]...

 NEXT num_var

Parameters

num_var The numeric loop control variable that assumes the
 values num_expr1 , num_expr1 + num_expr3 ,

num_expr1 +(2* num_expr3), etc. on successive executions
 of the loop body. The loop body executes once for each
 value that is less than or equal to num_expr2 (if

num_expr3 is positive) or greater than or equal to
num_expr2 (if num_expr3 is negative).

 The num_var in the FOR and NEXT statements must be the
 same.

num_expr1 The initial value that num_var is assigned.

num_expr2 Value that num_var is compared to before the loop body
 is executed. If num_expr3 is positive and num_var >

num_expr2 , the loop body is not executed. Similarly, if
num_expr3 is negative and num_var < num_expr2, the loop

 body is not executed.

num_expr3 Amount that num_var is incremented by (if num_expr2 is
 positive) or decremented (if num_expr2 is negative)
 following execution of the statements in the loop body.

stmt If num_expr2 is positive, this statement or statements
 executes each time num_var <= num_expr2 . If num_var is
 negative, this statement executes each time num_var >=

num_expr2 . These statements constitute the loop body.

Examples

 10 FOR I=2 TO 10 STEP 2 !This will loop 5 times.
 20 PRINT "I=",I !Values are: 2,4,6,8,10
 30 PRINT "I+I=",I+I !Values are: 4,8,12,16,20
 40 PRINT "I*I=",I*I !Values are: 4,16,36,64,100
 50 NEXT I

 10 FOR J=4 TO 1 STEP -1 !This will loop 4 times
 20 PRINT J !Values 4,3,2,1
 30 NEXT J

 100 FOR K=1 TO 20 !This will loop 20 times
 110 PRINT K !Values 1,2,3,...,19,20
 120 NEXT K

4- 56

If num_expr3 is positive, and the first value is greater than the last
value, or if num_expr3 is negative, and the first value is less than the
last value, then the loop is never executed.

 20 FOR I=10 TO 1
 30 PRINT I !Never executed
 40 NEXT I

FOR constructs can be nested.

 100 FOR I=1 TO 3 !Outside FOR loop
 110 FOR J=1 TO 5 !Inside FOR loop
 120 PRINT "*";
 130 NEXT J
 135 PRINT
 140 NEXT I
 999 END

The above program prints:

NOTE An error occurs if nested loops have the same loop control variable
 (num_var).

 If you use mixed mode arithmetic on the control variable, the
 results can be unpredictable. For example, if I is an integer, and
 the STEP value is .1, STEP is rounded to zero.

Entering from a statement other than the FOR statement the body of a FOR
loop causes an error at the NEXT statement, because no FOR statement is
active.

GET KEY

The GET KEY statement's action depends on whether a filename parameter is
included in the statement. If a filename parameter is included and the
file has a BKEY format, then the GET KEY statement defines the fields of
the user-definable keys by obtaining all of the required information from
the file. If the file specified does not have a BKEY format, an error
occurs. If the filename is not specified, then the value of the fields
for the user-defined keys is the value of the fields set during the
previous GET KEY, SCRATCH KEY, or SAVE KEY statement. The default key
set (blank key labels, and the ASCII 7 BEL function) is displayed when
GET KEY is issued without first issuing SCRATCH KEY, SAVE KEY or a GET
KEY.

Syntax

{GET KEY}
{GETKEY } [fname]

Parameters

fname The file that GET KEY uses to obtain information about
 the user-definable keys. A file name represented by a
 quoted string literal, an unquoted string literal or a
 string expression as described in chapter 6.

Examples

 GET KEY
 GETKEY "keydef" !Uses file Keydef

4-: 57

 100 GETKEY
 200 GETKEY keydef2 !Uses file Keydef2
 300 GET KEY Filename$ + "." + Groupname$!Uses the file named in
 310 !Filename$ in group Groupname$

GLOBAL EXTERNAL

The GLOBAL keyword modifier to the EXTERNAL statement. It allows either
the main block or any procedure or function within a program to call an
external. It's use and syntax are explained in the EXTERNAL statement.

GLOBAL INTRINSIC

The GLOBAL keyword is a modifier to the INTRINSIC statement. It allows
an intrinsic definition to affect every program unit in the program.
It's use and syntax are explained in the INTRINSIC statement.

GLOBAL OPTION

The GLOBAL keyword is a modifier to the OPTION statement. It makes
selected options global to every program unit in the program. It's use
and syntax are explained in the OPTION statement.

GOSUB

The GOSUB statement unconditionally transfers control to a specified
line. The line must be in the same program unit as the GOSUB statement.
If that line is not executable (for example, if it is a comment or
declaration), control transfers to the first executable statement
following it. GOSUB can be entered as GO SUB, but HP Business BASIC/XL
will always list it as GOSUB.

GOSUB routines can be nested. It is however, a good programming practice
to treat these routines as local subunits, that is always using the GOSUB
routine to execute them and the RETURN statement to return from them. It
is possible to use the GOTO statement into and out of subroutines, but
this not a good structured programming practice and should be avoided.
The number of levels of nesting is limited. It is set with the COPTION
MAXGOSUB. The default for this COPTION is 10.

The RETURN statement returns control to the line following the GOSUB
statement (see the RETURN statement in this chapter).

Syntax

{GOSUB }
{GO SUB} line_id

Parameters

line_id Line number or line label of the line that control
 transfers to. It must be in the same program unit as
 the GOSUB statement.

Examples

 10 REM Main Program Unit
 20 GOSUB 90 !Transfer to line 90
 30 REM Print sides of square
 40 PRINT "| |"
 50 PRINT "| |"
 70 GO SUB 90 !Is listed as GOSUB 90
 80 STOP
 90 REM Subroutine to print top and bottom of the square
 100 PRINT "+----+"
 120 RETURN
 999 END

4- 58

When the above program is listed, line 70 will list as GOSUB 90.

The program prints this square:

 +----+
 | |
 | |
 +----+

The GOSUB statement is a local subroutine call. The local subroutine is
not a separate program unit (subunit); it belongs to the program unit
that contains it. Parameters cannot be passed to it, but it can access
all variables declared in that program unit.

 10 REM Main Program Unit
 20 A = 3
 30 GOSUB 100
 40 PRINT A
 50 STOP
 100 REM Subroutine
 110 A = 1
 120 RETURN
 999 END

In the above program, line 40 prints 1 (not 3).

GOSUB OF

The GOSUB OF statement is one of the GOSUB corollaries of the ON GOTO and
GOTO OF statements. Control transfers to the selected line, L, by "GOSUB
L" rather than "GOTO L." A RETURN statement returns control to the
statement that follows the GOSUB OF statement. Although the GOSUB OF
statement can be input as GO SUB OF, HP Business BASIC/XL always lists it
as GOSUB OF.

Syntax

{GOSUB } [{ else_line_id }]
{GO SUB} num_expr OF line_id [, line_id]... [ELSE {CONTINUE }]

Parameters

num_expr A numeric expression that is evaluated and converted to
 an integer, n. The integer n must be between one and
 the number of line_id s, or an error occurs if no ELSE
 clause is present. Control is transferred to the n th

line_id .

line_id Line number or line label of the line that control is
 transferred to. The line must be in the same program
 unit as the GOSUB OF statement.

else_line_id Line number or line label of the line that control is
 transferred to if the value of num_expr is not between 1
 and the number of line_ids specified.

CONTINUE A keyword used to specify that no branch should be made.
 The program continues executing at the next line

Examples

 1 READ I, J
 2 GOSUB I OF 10,20,30 !Go to subroutine at line 10, 20, or 30
 3 GOSUB J OF 40,50,60 ELSE 99 !Go to subroutine at line 40,50, or 60 or to
 !line 99
 4 STOP !if J < 1 or J > 3
 10 REM Subroutine for I=1
 11 PRINT "I is one"

4-: 59

 12 RETURN !Return to line 3
 20 REM Subroutine for I=2
 21 PRINT "I is two"
 22 RETURN !Return to line 3
 30 REM Subroutine for I=3
 31 PRINT "I is three"
 32 RETURN !Return to line 3
 40 REM Subroutine for J=1
 41 PRINT "J is one"
 42 RETURN !Return to line 4
 50 REM Subroutine for J=2
 51 PRINT "J is two"
 52 RETURN !Return to line 4
 60 REM Subroutine for J=3
 61 PRINT "J is three"
 62 RETURN !Return to line 4
 90 DATA 3,2
 99 END

In the above program, line 2 will be listed as GOSUB I OF 10,20,30.

The ON GOSUB statement works like the GOSUB OF statement. The following
statements are equivalent:

 150 ON I GOSUB 10, 20, 30, Quit
 150 GOSUB I OF 10, 20, 30, Quit

GOTO

The GOTO statement unconditionally transfers control to a specified line.
The line must be in the same program unit as the GOTO statement. If the
line is not executable (a comment or declaration, for example) HP
Business BASIC/XL executes the first executable statement following it.

Syntax

{GOTO }
{GO TO} line_id

Parameters

line_id Line number or line label of the line that control
 transfers to. It must be in the same program unit as
 the GOTO statement. Although the GOTO statement can be
 entered as either GO TO or GOTO, HP Business BASIC/XL
 will always list it as GOTO.

Examples

 10 GOTO 30 !Transfer control to line 30
 20 A = 1 !Never executed
 30 A = 2 !Executed immediately after line 10
 40 GO TO Remark !Transfer control to line 60
 50 PRINT "HI" !Never executed
 60 Remark: !Unexecutable statement; execute next line
 70 PRINT A !Executed after line 40
 99 END

Line 40 will list as GOTO Remark.

GOTO OF

The GOTO OF statement transfers control to one of several lines,
depending on the value of a numeric expression. Although this statement
can be entered as either GOTO OF or GO TO OF, HP Business BASIC/XL will
always list it as GOTO OF.

Syntax

4- 60

{GOTO } [{ else_line_id }]
{GO TO} num_expr OF line_id [, line_id]... [ELSE {CONTINUE }]

Parameters

num_expr A numeric expression that is evaluated and converted to
 an integer, n. The integer n must be between one and
 the number of line_id s, or an error occurs if no ELSE
 clause is present. Control transfers to the n th

line_id .

line_id A line number or line label of a line that control can
 be transferred to. The line specified must be in the
 same program unit as the GOTO OF statement.

else line_id The ELSE clause allows the specification of a line that
 control transfers to if the value of num_expr is NOT
 between 1 and the number of line_id s specified.

CONTINUE A keyword that specifies that no branch should be made.
 Execution will continue at the next line.

Examples

 100 READ I,J
 110 GOTO I+J OF One,Two,Three,Four ELSE End_program
 140 One: PRINT "One 1"
 145 STOP
 150 Two: PRINT "Two 2 2"
 155 STOP
 160 Three: PRINT "Three 3 3 3" !Since I+J =3, this is executed
 165 STOP !Program then stops
 170 Four: PRINT "Four 4 4 4 4"
 175 DATA 1,2
 900 End_program: !Executed if I+J is greater than 4
 999 END

The ON GOTO statement works like the GOTO OF statement. The following
statements are equivalent:

 150 ON I GOTO 10,200,ReInit,Quit
 150 GOTO I OF 10,200,ReInit,Quit

GRAD

The GRAD statement indicates that angular units will be specified in
Grads. The default is Radians. A Grad is 1/400 of a circle. This
statement is used with trigonometric functions.

Syntax

GRAD

Example

 10 Radius = 10
 20 GRAD
 30 Area = PI * Radius**2
 40 PRINT Area

GRAND TOTALS

The GRAND TOTALS statement provides an easy means for automatic
accumulation of numeric data in the Report Writer. The GRAND TOTALS
statement provides totaling for an entire report.

The GRAND TOTALS statement must appear in the REPORT HEADER, REPORT
TRAILER, or REPORT EXIT section. Each report description can have only

4-: 61

one such statement.

Syntax

 [{,}]
GRAND TOTALS [ON] num_expr [{;} num_expr]...

Parameters

num_expr Any numeric expression can be totaled. There can be as
 many expressions as desired. When referring to a
 particular total, a sequence number is used. The first
 expression is sequence number 1, the second is number 2,
 and so on.

Examples

 100 GRAND TOTALS Sales, Commission, Quantity

The BEGIN REPORT statement makes the GRAND TOTALS statement busy and it
remains busy until an END REPORT or STOP REPORT statement executes. The
GRAND TOTALS statement is used ONLY if contained in a HEADER or TRAILER
section with a nonzero level number. BEGIN REPORT sets all accumulated
totals to zero.

The GRAND TOTALS calculation occurs when a DETAIL LINE statement
executes, but only when the totals flag of the DETAIL LINE is nonzero.
The accumulated values are reset to zero for any summary level where a
break occurs. This is done after the TRAILER sections print. After all
break conditions are processed, the totals accumulate.

TOTALS statements are evaluated starting with GRAND TOTALS and working to
level nine. For each statement, the expressions are evaluated from left
to right.

All totals are stored in either REAL or DECIMAL data type, depending on
the data type option in effect when the report started. However, the
expressions themselves are evaluated like any other expression in HP
Business BASIC/XL. This means that an individual expression can cause an
overflow error without causing an overflow in the total.

HEADER

The HEADER statement allows you to define logical levels for separating
and summarizing data printed in a report. The HEADER section is used to
print headings for a particular level in the report. There are nine
levels available.

In order to define a report level, there must be a HEADER or TRAILER
statement in the report description. However, there can not be more than
one HEADER section for a single level within the report description. If
a WITH or USING clause is not present, the statement does not produce
output. However, other statements in this section can produce output.

Syntax

 [[LINES]]
HEADERlevel_number [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

level_number A numeric expression in the range [0, 9]. This defines
 the summary or break level for this header section.
 This number creates different summary levels for data,
 and causes breaks in the report at appropriate times. A
 level of zero causes the entire section to be ignored.

4- 62

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An IMAGE string or a line reference to an IMAGE line.

output-list A list of output items. This list is identical to the
 list used by PRINT USING.

Examples

 100 HEADER 1 WITH 3 LINES
 100 HEADER Order(1) USING Hd_image;Who

The HEADER statement generates an error if there is not an active report.

If a report section is active (executing) and encounters this statement,
then that report section ends.

When BEGIN REPORT executes, the level _ number of each HEADER statement is
evaluated. HEADER sections with level numbers equal to zero are ignored.
All of the level numbers are fixed by BEGIN REPORT and the HEADER
statements become busy. All nonzero HEADER levels must be distinct and
within the range of one to nine. The levels do not have to be
contiguous. A HEADER statement can define a section without a
corresponding TRAILER section and vice versa.

HEADER statements and sections execute when an automatic break occurs
from BREAK IF or BREAK WHEN, or when the TRIGGER BREAK statement
executes. HEADER sections are printed in ascending sequence by level
number. See the DETAIL LINE statement for more details about automatic
breaks.

The HEADER sections automatically execute when report output starts. The
headers follow the printing of the report header and page header,
printing in ascending order.

A particular HEADER section executes the HEADER statement first. This
causes evaluation of the WITH clause first (which can cause a page break)
followed by the execution of the USING clause. Additional statements in
the HEADER section execute after the HEADER statement.

IF THEN or IF THEN ELSE

The IF THEN or IF THEN ELSE statement executes a "then clause" if the
evaluated numeric expression is TRUE (nonzero). If the evaluated numeric
expression is FALSE (zero), the IF THEN statement transfers control to
the statement immediately following it, and the IF THEN ELSE statement
executes an "else clause." Each clause is either an executable statement
or a line identifier. If it is a line identifier, then execution
transfers control to that line. The syntax of this statement requires
that the entire statement be contained on one line. The statement can
also be used as a command.

Syntax

 IF num_expr THEN then_clause [ELSE else_clause]

Parameters

num_expr A numeric expression considered TRUE if it evaluates to
 nonzero and FALSE if it evaluates to zero.

then_clause Executable program statement or line_id . If num_expr is
 TRUE (nonzero), the IF THEN statement executes the
 executable program statement or transfers control to

line_id . line_id is the line number or line label to
 which control transfers.

4-: 63

else_clause Executable program statement or line_id . If num_expr is
 FALSE (zero), the IF THEN ELSE statement executes the
 executable program statement or transfers control to

line_id . line_id is the line number or line label to
 which control transfers.

Examples

 10 IF A=B THEN C=3 !Contains executable statement (C=3)
 20 IF X=Y THEN GOTO 40 !Contains executable stmt (GOTO 40)
 21 IF X=Y THEN 40 !Contains line identifier (40)
 30 IF J<>0 THEN Initialize !Contains line identifier (Initialize)

Lines 20 and 21 above are equivalent.

IF THEN ELSE Construct

The IF THEN ELSE construct is an alternate form of the IF THEN ELSE
statement. The IF THEN, ELSE, and ENDIF keywords define a construct that
executes one statement or set of statements if a numeric expression is
TRUE (nonzero) and another statement or set of statements if that numeric
expression is FALSE (zero).

Syntax

 [ELSE]
 [[else_clause_stmt]] {ENDIF }
IF num_expr THEN [then_clause_stmt]...[.] {END IF}
 [.]
 [.]

Parameters

num_expr A numeric expression that is considered TRUE if it
 evaluates to nonzero; FALSE if it evaluates to zero.

then_clause_ One or more program lines that execute if num_expr is
stmt TRUE. These statements comprise the THEN clause.

else_clause_ One or more program lines that execute if num_expr is
stmt FALSE. These statements comprise the ELSE clause.

After either the IF or ELSE clause executes, control transfers to the
line following the ENDIF statement.

Examples

 10 IF I THEN !The IF THEN portion of the construct
 20 PRINT "I IS NOT ZERO" !The THEN clause statement
 30 ELSE
 40 PRINT "I IS ZERO" !The ELSE clause statement
 50 ENDIF

 20 IF A=B THEN
 30 PRINT "A=B" !The THEN clause statements --
 40 PRINT A !will execute if A = B
 50 ELSE
 60 PRINT "A<>B" !The ELSE clause statements --
 70 PRINT A,B !will execute if A <> B
 90 ENDIF

A statement in the IF or ELSE clause can transfer control out of the IF
THEN ELSE construct.

 105 IF (K+J)*I=0 THEN
 110 PRINT "OK"
 115 GOTO 200 !Control transfers to line 200
 120 ELSE

4- 64

 125 PRINT "NOT OK"
 130 GOSUB Error-routine !Control transfers to Error-routine
 135 END IF

IF THEN ELSE constructs can be nested; that is, the IF or ELSE clause of
one IF THEN ELSE structure can contain another IF THEN ELSE construct.
The ENDIF is associated with the most recently preceding IF THEN ELSE
construct.

 100 IF I THEN !Begin outer construct
 110 IF J THEN !Begin inner construct
 120 PRINT "I and J are not 0"
 130 ELSE !ELSE for inner construct
 140 PRINT "J is 0 but I is not"
 150 ENDIF !End inner construct
 160 ELSE !ELSE for outer construct
 170 PRINT "I is 0"
 180 ENDIF !End outer construct

The ELSE clause can be omitted.

 406 IF Number_left THEN
 407 PRINT "There are numbers left"
 408 STOP
 409 END IF

Control transfer into a THEN or ELSE clause, but this is not a
recommended programming practice.

IMAGE

The IMAGE statement specifies the output format for the output items in
the display list of a DISP USING or PRINT USING statement. If the image
of a DISP USING or PRINT USING statement is a line identifier, the line
identifier must identify an IMAGE statement. Because an IMAGE statement
can end in an unquoted string literal, it cannot be followed by a
comment. The IMAGE statement is not executable.

Syntax

IMAGE format_string

Parameters

format_string format_string (if it belongs to an IMAGE statement) or
 its value (if format_string itself is the image of a
 PRINT or DISP statement) has the following syntax:

format_spec [, format_spec]...

 [num_expr] (format_spec [, format_spec]...)

format_spec One of the format specifiers described in "Format
 Specifiers" in chapter 6.

num_expr Repeat factor. Rounded to a short integer, n. The
format_string n (format_spec_list) is equivalent to n

 adjacent copies of format_spec_list (see examples).

Examples

 100 DISP USING 110; A,B,C
 200 PRINT USING 210; A,B,C
 300 DISP USING 310; P,Q
 400 PRINT USING 410;A,R

The IMAGE statements that they reference are:

4-: 65

 110 IMAGE DDD,XX,DDD,XX,DDD,XX
 210 IMAGE 3 (DDD,XX)
 310 IMAGE DDDDD,XX,ZZZ.DD
 410 IMAGE 5D,2X,3Z.DD

The format strings of lines 110 and 210 are equivalent, as are the format
strings of lines 310 and 410. In line 210, three is the repeat factor
represented by num_expr , above. In line 410, the numbers 5, 2, and 3 are
also called repeat factors; "Digit Symbols" and "Space Specifications" in
chapter 6 explain them.

IN DATASET

The IN DATASET statement specifies the record format of a particular data
set. It is used to unpack data after the data is retrieved from a
database by a SORT, SEARCH, or DBGET statement. It is also used to
specify how data is packed for use by DBPUT and DBUPDATE statements.

The record format of a data set is required in order to accurately
compute the location of the sort key and to evaluate the search
condition. Therefore, a program must contain IN DATASET statements to
SEARCH or SORT a database. When used, this statement must correspond to
the record layout of the data set in the database.

If a string, string array, or numeric array is used as a formal parameter
in an IN DATASET statement a compile time error will occur when that
parameter is referenced before the sorted key in a SORT statement.

Syntax

IN DATASET dataset USE [REALV] item_list

Parameters

dataset A string expression with a maximum length of 16
 characters. Its value is the name of a data set. The
 name must be left-justified and, if shorter than 16
 characters, must be terminated by a semicolon or blank.

REALV The default real data type in a native mode program is
 in IEEE floating point real format. Therefore, REALV
 must be specified in the IN DATASET statement if the MPE
 V real data format is desired.

item_list A list of any of the following separated by commas:
 Scalar numeric variable
 Scalar string variable
 Substring
 String or numeric array
 String or numeric literal
 A numeric literal type converted with one of the
 following built-in functions:
 SINTEGER
 INTEGER
 SREAL
 REAL
 SDECIMAL
 DECIMAL

 Space specifier: SKIP number , where number is a numeric
 constant.

Examples

The following examples show the use of the IN DATASET statement.

 300 IN DATASET Dset$ USE A, B, SKIP 4, D$
 400 IN DATASET Dset$ USE 3.019,"Super",SREAL(1)

4- 66

The SKIP feature is used to bypass data in a dataset record that is not
needed by the program. The numeric constant that immediately follows
SKIP specifies the number of bytes to bypass. There must be an IN
DATASET statement for each data set defined in the thread list. Refer to
the THREAD IS statement description below for details about the thread
list. The IN DATASET statement is a nonexecutable statement and is
treated internally like a PACKFMT statement.

INPUT

The INPUT statement assigns data values obtained from the terminal or a
file to one or more variables.

Syntax

 [[{,}]]
INPUT[:] [input item [{;} input_item]...] [:]

Parameters

: A colon specifies that either data currently in the
 input buffer should be assigned prior to prompting for
 input or extra input is saved in the input buffer.

 * If a colon precedes the input_items , the INPUT
 statement assigns values in the input buffer to

input_elements , from left to right, before prompting
 you for input or reading input from a file. If this
 colon is not specified, HP Business BASIC/XL empties
 the input buffer before accepting input values.

 * If a colon follows the input_item s, the INPUT
 statement stores unassigned input values that are
 not required to satisfy assignments to the

input_items in the input buffer.

 {[prompt_option] input_element }
input_item { for_clause }

 An INPUT statement without input_items puts the program
 in the input state until you press RETURN, but the
 values entered are not assigned to any input_element s.

 {PROMPT str_expr }[,]
prompt_option { str_lit }[;]

 If the prompt is not followed by a separator or a comma,
 a carriage return is generated and user input begins on
 the next line. Semicolons suppress the carriage return
 and input can be typed on the same line as the prompt.
 See "INPUT Prompt" in chapter 6 for more information.

input_element One of the following variables that a value is assigned
 to:

num_var
str_var
array_name ([*[,*]...])

 The last format above has either zero or one asterisk
 per dimension. The absence of asterisks specifies any
 number of dimensions. Either format is legal, but the
 format without asterisks is noncompilable.

for_clause (FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3],
input_item [, input_item]...)

 A for_clause is useful for reading array elements (an

4-: 67

 array can also be input with the MAT INPUT statement).
 See "FOR Clause in Input List" for more information.

Examples

The following examples show several ways to use the INPUT statement.

 INPUT
 INPUT A,B$,C(*)
 INPUT A,B$,C(*):
 INPUT:
 INPUT: A,B$,C(*)
 INPUT: A,B$,C(*):
 INPUT A$ A,B$,C(*)
 INPUT PROMPT D$; X,Y, PROMPT D1$+D2$, Z
 INPUT "Input 2 numbers",X,Y,PROMPT D1$+"A";Z,"Input name",N$:
 INPUT: (FOR I=1 TO 10, W(I), WW(I,I))
 INPUT "Input A and elements of V"; A, (FOR J=1 TO 5, V[J]):

An INPUT statement that begins with a colon assigns the values in the
input buffer before prompting you for input or reading it from a file.

An INPUT statement that ends in a colon stores unassigned input values in
an input buffer.

An INPUT statement that does not begin or end with a colon empties the
input buffer before prompting for input.

FOR Clause in Input List

An input list can contain a FOR clause. The FOR clause is similar to the
FOR NEXT construct.

Syntax

(FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3], input_item

[, input_item]...)

Parameters

num_var Assigned the sequence of values: num_expr1 ,
num_expr1 + num_expr3 , num_expr1 +(2* num_expr3), etc. The

 INPUT statement reads one input value for each value of
 num_var that is less than num_expr2 (if num_expr3 is
 positive) or greater than num_expr2 (if num_expr3 is
 negative).

num_expr1 First value assigned to num_var .

num_expr2 Value that num_var is compared to before the INPUT
 statement reads a value. If num_expr3 is positive and

num_var > num_expr2 , loop execution is terminated. If
num_expr3 is negative and num_var < num_expr2 , the loop

 execution is terminated.

num_expr3 Amount that num_var increases by at the end of the loop.
 The default = 1.

input_item Same as input_item in INPUT statement syntax.

Examples

 10 INPUT "Input 4 numbers: ", (FOR I=1 TO 4, A(I)), "Input X: ", X

If you input the underlined values during execution:

 Input 4 numbers:

4- 68

10, 20, 30, 40
 Input X:

50

Following execution of line 10, the values assigned to each variable will
be:

 A(1) = 10
 A(2) = 20
 A(3) = 30
 A(4) = 40
 X = 50

Input list FOR clauses can be nested.

 20 INPUT (FOR I=1 TO 3, (FOR J=1 TO 2 (FOR K=1 TO 2, B(I,J,K))))

For each combination of values of I, J, and K, the following table shows
the value that the above INPUT state assigns to each variable.

Value of I	Value of J	Value of K	Variable Read

1	1	1	B(1,1,1)

1	1	2	B(1,1,2)

1	2	1	B(1,2,1)

1	2	2	B(1,2,2)

2	1	1	B(2,1,1)

2	1	2	B(2,1,2)

2	2	1	B(2,2,1)

2	2	2	B(2,2,2)

3	1	1	B(3,1,1)

3	1	2	B(3,1,2)

3	2	1	B(3,2,1)

3	2	2	B(3,2,2)

4-: 69

INTEGER

This statement defines a variable of type INTEGER. If the SHORT option is
included, the variable is of type SHORT INTEGER.

Syntax

 { num_var } [{ num_var }]
[SHORT] INT[EGER] { arrayd } [,{ arrayd }]...

Parameters

num_var Name of scalar numeric variable to be declared.

arrayd Numeric array description. The syntax for the array is
 described under the DIM statement.

Examples

 100 SHORT INTEGER I
 120 SHORT INTEGER A,B(6,9),Sum
 130 INTEGER Total
 140 INTEGER Var1,Var2,Var3(1,2,3),Var4(1:10,1:10)

INTRINSIC and GLOBAL INTRINSIC

The INTRINSIC or GLOBAL INTRINSIC statement defines procedures or
functions that are not in the current program without requiring an
explicit definition of the entire procedure or function heading. The
external procedure or function either can be in an executable library or
can be linked with the current program after the current program is
compiled. A GLOBAL INTRINSIC statement must appear in the main program.
These intrinsics can be called from the main or any procedure or function
in the current program. An INTRINSIC statement defines intrinsics local
to the program unit that the definition occurs in. Local definitions
supersede global definitions.

Syntax

[GLOBAL] INTRINSIC [(" fname ")] identifier [ALIAS str_lit]

[{,}]
[{;} identifier [ALIAS str_lit]]...

Parameters

GLOBAL Allowed only if the statement is in the main program.
 If GLOBAL appears, the statement is a GLOBAL INTRINSIC
 statement. If GLOBAL is omitted, the statement is an
 INTRINSIC statement. A GLOBAL INTRINSIC statement
 affects every program unit in the program. An INTRINSIC
 statement affects only the program unit that contains
 it.

 Information supplied in an INTRINSIC statement overrides
 information in a GLOBAL INTRINSIC statement, while the
 program unit that contains the INTRINSIC statement is
 executing.

fname Intrinsic file that contains the definitions of the
 intrinsics in the list of intrinsics that follow. The
 default is the default intrinsic file of the operating
 system (SYSINTR.PUB.SYS on MPE XL).

identifier Internal name; name that HP Business BASIC/XL program
 uses to call this intrinsic. If the intrinsic is a
 function and the program calls it without the FNCALL
 function, then identifier must be a legal function name;

4- 70

 that is, it must begin with FN, as in FNAdd. The actual
 name to use for the call is returned from the definition
 in the intrinsic file.

str_lit The alias is the name, if different from the name to be
 used in the HP Business BASIC/XL program, of the
 intrinsic in the fname file. The string provided is
 assumed to be the case-sensitive name of the intrinsic
 file entry. The actual name to use for the call is
 returned from the definition in the intrinsic file.

Examples

The following examples show the use of the INTRINSIC statement. Lines
10, 20, and 50 show the GLOBAL option. Lines 30, 40 and 80 specify file
names, and the rest use the operating system default. Lines 50, 60, and
70 specify the actual procedure or function name with the ALIAS keyword
when the actual name is different than the internal HP Business BASIC/XL
name.

 10 GLOBAL INTRINSIC Findjcw !Entry searched for is:
 15 !FINDJCW in SYSINTR.PUB.SYS
 20 GLOBAL INTRINSIC Fmtcalendar,Command,Read_char
 30 INTRINSIC ("FILE1.LAB") Findjcw,Fmtcalendar,Command
 40 INTRINSIC ("FILE2.MKTG") Put_char;Put_block;Open_file
 50 GLOBAL INTRINSIC FNFind ALIAS "Find"
 60 INTRINSIC FNStore ALIAS "Store",FNRetrieve ALIAS "Retrieve"
 70 INTRINSIC FNAdd ALIAS "Add";FNSub ALIAS "Subtract"
 80 INTRINSIC ("File3") Print_file ALIAS "print_file_info"

LDISP

The LDISP statement provides an alternative form of output for the DISP
statement. Under normal circumstances, the LDISP statement clears the
current line before printing the output list. The screen line clears
from the cursor to the end of the line. Note that only one line clears
even if multiple lines prints. LDISP interacts differently with an
active JOINFORM. If the cursor is within the form, LDISP will move the
cursor to the first line after the form, clear the line and then print.
For more information about how LDISP interacts with JOINFORM, refer to
Appendix F.

Syntax

 [,]
LDISP [output_item_list] [;]

Parameters

output_item_ list [,]... output_item [{ [,]...} output_item]...]

output_item One of the following:

num_expr

str_expr

array_name (*) Array reference. See "Array
 References in Display List" in
 chapter 6.

 {PAGE }
 {{CTL} }

output_function {{LIN} }
 {{SPA} (num_expr)}
 {{TAB} }

 See "Output Functions in Display

4-: 71

 List" in chapter 6.

FOR_clause (FOR num_var = num_expr1 TO
num_expr2 [STEP num_expr3],
d_list)

 See "FOR Clause in Display List"
 in the DISP and PRINT statements
 in this chapter.

Examples

 10 V$="Hi there."
 20 DISP V$
 30 LDISP V$

In the above example, if you type RUN and the screen already has
characters on the next two lines:

 >RUN
 12345678901234567890
 12345678901234567890

then following program execution, the screen contains

 >RUN
 Hi there.01234567890
 Hi there.

LEFT MARGIN

The LEFT MARGIN statement is a Report Writer statement that defines the
column in which a report line will start printing. This allows you to
adjust the left margin on the output device. The MARGIN statement
adjusts the right margin.

The LEFT MARGIN statement does not apply to terminal output. The output
is adjusted if the standard output is redirected to a non-terminal device
such as a printer. The COPY ALL OUTPUT statement, if applicable,
reflects the left margin of the standard output.

There cannot be more than one LEFT MARGIN statement in a report
description.

Syntax

LEFT [MARGIN] column

Parameters

column The column that the first character of a report line is
 in. That is, column - 1 spaces appear on the left of
 each line. The left margin column must have a value
 between 1 and 132.

Examples

The following examples show the LEFT MARGIN statement.

 100 LEFT MARGIN 10 !First column is 10, preceded by 9 blank spaces
 100 LEFT MARGIN 35 !First column is 35, preceded by 34 blank spaces

The LEFT MARGIN statement is evaluated only by BEGIN REPORT and is busy
only during evaluation.

The default value is 1 if there is no left margin statement. The
distance between the left and right margins must be at least 20
characters, or an error occurs. This is checked at BEGIN REPORT and

4- 72

whenever the right margin changes.

When report output is done, all output is preceded by column -1 spaces.
However, the left margin only applies if the output device is not a
terminal. For terminal devices, the left margin is always 1.

The left margin applies to both the standard output file and the COPY ALL
OUTPUT file, if output is being copied. If the left margin is too large
for the COPY ALL OUTPUT file or for the standard output file, there is an
error in BEGIN REPORT.

LENTER

The LENTER statement assigns all or part of a line of display memory to a
string variable. User input from the keyboard is not accepted.

The assigned string value begins at the cursor position and ends at the
rightmost column for that line in display memory. Commas are read as
characters, not as data item separators.

LENTER interacts in a special way with an active JOINFORM. This is
described in detail in Appendix F.

Syntax

LENTER str_var

Parameters

str_var A string variable that will accept the data. An error
 occurs when the input string value exceeds its maximum
 length. If this value is a substring, and the input
 string value exceeds its length, the input string value
 is truncated on the right (no error occurs). See
 "Substring References" in chapter 3 for more
 information.

Examples

The following examples show the use of the LENTER statement.

 320 LENTER Str_var$
 330 LENTER Sub_str$ [2;3]
 340 LENTER Sub_str$[1]

LET

The LET statement assigns a value to one or more variables.

Syntax

 { num_var [, num_var]...= num_expr }
[LET] { str_var [, str_var]...= str_expr }

Parameters

num_var Numeric variable(s) that the value of num_expr is/are
 assigned.

str_var String variable(s) that the value of str_expr is/are
 assigned.

num_expr Value that num_var will contain. This can be either a
 literal, or an expression.

str_expr Value that str_var will contain. This can be either a
 literal or an expression.

4-: 73

Examples

 10 LET Number=3 !Assignment: 3, to Number
 20 Num1, Num2, Num3=4+6 !Assignment: 10, to Num1, Num2, and Num3
 30 String$="cat" !Assignment: "cat" to String$
 40 LET Str1$,Str2$= "Ab" + "CdE" !Assignment: "AbCdE", to Str1$, and Str2$

HP Business BASIC/XL accesses variables in LET statements from left to
right. If variables have not been declared, and implicit declaration is
illegal, an error occurs. If no error occurs, HP Business BASIC/XL
evaluates the expression and assigns its value to the variables, from
right to left. If the value is numeric, HP Business BASIC/XL converts it
to the type of each of the variables prior to assigning it to the
variables.

 10 OPTION NODECLARE !Implicit declaration is legal
 20 OPTION REAL !Default numeric type is real
 30 INTEGER A !Integer A is explicitly declared
 40 DECIMAL B !Decimal B is explicitly declared
 50 LET A,B,C=(5+4)*3 !Real C is implicitly declared
 99 END

In line 50, HP Business BASIC/XL does the following:

 * Accesses A, B, and C in that order
 * Evaluates (5+4)*3
 * Assigns the following values in the following order:

To: The Value:

 C real 27.0
 B decimal 27.0
 A integer 27

When HP Business BASIC/XL converts a numeric value to a numeric variable
type that has fewer significant digits than the value does, it rounds the
value first. An error occurs if the value is outside the range of the
variable type. An error also occurs if an assigned string value is too
long for it's string variable (that is, if the length of the string value
exceeds the maximum length of the string variable).

If an assignment statement has more than one variable to the left of the
equal sign, for example; A,B,C=5, and an error occurs in the middle of
the assignment statement, the variables after (or to the right of) the
error contain the new value. The variables before (or to the left of)
the error do not. The variable in which the error occurred does not
contain a new value.

In the example below, an error occurs when 80,000 is assigned to C in
line 30 (C, a short integer can have a maximum value of 32767). D and E
are assigned the value 80,000, but A, B, and C still have the value zero
following the error.

 10 SHORT INTEGER C
 20 A,B,C,D,E=0
 30 A,B,C,D,E=80000
 99 END

Multiple Assignment Statement

The multiple assignment statement is a series of LET statements,
separated by semicolons. The LET keyword can only appear in the first
LET statement.

Syntax

LET_stmt [; LET_stmt]...

4- 74

Parameters

LET_stmt A LET statement

Example

 10 LET A,B=5; C$="HI";D=4+2

LINPUT

LINPUT statement execution places the program in the input state and
assigns a string value obtained from the terminal or input file to a
single string variable. The string value accepted is an unquoted string
literal. Double quotes are characters. Unlike the INPUT statement, the
LINPUT statement includes the leading and trailing blanks as part of the
string value. Commas and semicolons are not recognized as item
separators or terminators, but are characters. LINPUT also reads one
record of an ASCII file into a string variable.

Syntax

 LINPUT [prompt_option] str_var LINPUT #fnum [, rnum]; str_var

Parameters

prompt_option The LINPUT statement displays its prompt the same way
 and under the same conditions as the INPUT statement.
 See the prompt_option parameter under the INPUT
 statement for more information.

str_var A string variable. An error occurs if the variable is a
 string rather than a substring and the input string
 value exceeds the string variable's maximum length. If
 the variable specified is a substring, and the input
 string value exceeds its length, the input string value
 is truncated on the right (no error occurs). See
 "Substring References" in chapter 3 for more
 information.

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

rnum Record number, a numeric expression. A file I/O
 statement that specifies rnum is direct; otherwise, it
 is sequential.

Examples

 05 B$= "Please enter A$ "
10 LINPUT A$!Prints a question mark (?) and a carriage return.

 20 LINPUT PROMPT B$; A$!Prints "Please enter A$"
30 LINPUT PROMPT B$+": ", A$!Print "Please enter A$:" and a carriage return

 40 LINPUT "Enter A$: "; A$[1,3] !Prints "Enter A$:"

If the data from the record exceeds the maximum length of the string
variable, an error occurs if str_var is a string (rather than a
substring). For example, an error occurs at line 140 of the following
sequence:

 120 DIM C$[8]
 130 PRINT #1,1; "more than eight"
 140 LINPUT #1,1; C$

If str_var is a substring, then the record data is truncated on the
right. For example, there is no error in the above sequence if line 140
is replaced with:

4-: 75

 140 LINPUT #1,1; C$[1;8]

LOCK

The LOCK statement requests exclusive access to a file, for the program
that executes the lock statement. If the file cannot be accessed at the
time the LOCK statement is executed, an option can be specified to delay
execution of the LOCK statement until the program has exclusive access.

Syntax

LOCK #fnum [; WAIT num_var]

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

num_var A numeric variable that contains a file locking flag.
 Two conditions occur dependent on the value assigned to

num_var prior to the LOCK statement:

 * Zero: File unlocking occurs unconditionally. If
 the file is being accessed by another program,
 execution of the LOCK statement is suspended until
 the file can be locked.

 * Non- Zero: File locking occurs only if the file is
 not currently locked. If the file is locked,
 program execution resumes without locking the file.

 If the file is successfully locked, the value one is
 assigned to num_var . If the value of num_var prior to
 the call is nonzero, then an unsuccessful attempt to
 lock the file results in zero being assigned to num_var .

Examples

 100 CREATE "File1",FILESIZE=1200 !Creates File1
 200 ASSIGN "File1" TO #10 !Assigns File1
 300 LOCK #10 !Locks File1
 400 PRINT #10; A,B,C
 500 UNLOCK #10 !Unlocks File1 after printing
 999 END

LOOP

The LOOP, EXIT IF, and ENDLOOP statements define a loop that repeats
until the numeric expression in the EXIT IF statement is TRUE (nonzero).

Syntax

 [EXIT IF num_expr]
 [[stmt]] {ENDLOOP }
LOOP [stmt]...[.]...{END LOOP}
 [.]
 [.]

Parameters

stmt A program line that can be another LOOP statement.
 These statements constitute the loop body.

num_expr A numeric expression that determines program control.
 Considered FALSE if the value following evaluation is
 zero, TRUE if it evaluates to nonzero. If FALSE,
 control is transferred to the line following the EXIT IF

4- 76

 statement; if TRUE, control is transferred to the line
 following the ENDLOOP statement. If the loop does not
 contain an EXIT IF statement, and control is not
 transferred out of the loop by some other means (for
 example, a GOTO statement) the loop never ends.

Examples

 100 LET I=0 !Initialize I
 110 LOOP !Begin loop
 120 PRINT I !Print I (at this line, I=0,1,2,...,99)
 130 LET I=I+1 !Increment I (at this line, I=1,2,3,...,100)
 140 EXIT IF I=100 !If I=100, go to line 160; else go to line 120
 150 ENDLOOP !End loop
 160 PRINT I !Print I (at this line, I=100)
 999 END

 100 READ I !Read number to be guessed, I
 101 Low=1 !Lowest possible guess
 102 High=100 !Highest possible guess
 103 Tries=0 !Number of tries to guess I
 110 LOOP
 111 Tries=Tries+1 !Count one for guessing I=Low in 120
 120 EXIT IF I=Low !If Low=I, go to 230; else go to 121
 121 Tries=Tries+1 !Count one for guessing I=High in 130
 130 EXIT IF I=High !If High=I, go to 230; else go to 140
 140 Guess=(Low+High)/2 !Guess average of Low and High
 145 Tries=Tries+1 !Count one for guessing I=Guess in 150
 150 EXIT IF I=Guess !If Guess=I, go to 230; else go to 160
 160 SELECT Guess-I !If I<>Guess, reset Low or High
 170 CASE < 0 !If Guess < I,
 180 Low=Guess !then Guess is the new lowest guess.
 190 CASE > 0 !If Guess > I,
 200 High=Guess !then Guess is the new highest guess.
 210 END SELECT
 220 END LOOP
 230 PRINT Tries !Print number of tries needed
 250 DATA 47
 999 END

Loops can be nested. An EXIT IF statement in a nested loop belongs to
the innermost loop that contains it.

 1 Num_row=4
 2 Num_col=5
 10 Row=1
 11 LOOP !Begin outer loop
 12 Column=1
 13 LOOP !Begin inner loop
 14 PRINT A(Row,Column)
 15 Column=Column+1
 16 EXIT IF Column=(Num_col+1) !Exit inner loop (go to line 18)
 17 ENDLOOP !End inner loop
 18 PRINT
 19 Row=Row+1
 20 EXIT IF Row=(Num_row+1) !Exit outer loop (go to line 99)
 21 ENDLOOP !End outer loop
 99 END

Entering a LOOP construct from a statement other than the LOOP statement
is considered to be a bad programming practice, and is not recommended.
However, calling a local subroutine using GOSUB or calling an external
subroutine using CALL from within a loop construct can be very useful.

 100 I=0
 110 LOOP !Begin loop
 130 EXIT IF I=100
 140 GOSUB 200 !Leave loop for subroutine

4-: 77

 145 I=I+1 !Reenter loop here
 150 END LOOP !End loop
 160 STOP
 200 REM Subroutine !Begin subroutine
 210 PRINT I
 220 RETURN !Return to loop
 999 END

If a program unit contains an EXIT IF statement that is not in a loop, an
error occurs.

MARGIN

The MARGIN statement sets the margin for the terminal screen or for an
ASCII file. Also, see the MARGIN option described in the "Device
Specification Syntax" section of chapter 6.

Syntax

MARGIN [#fnum ;] num_expr

Parameters

fnum A file number that HP Business BASIC/XL uses to
 reference the file for which the margin is to be set.
 This is a numeric expression that evaluates to a
 positive short integer greater than zero. If it is not
 an ASCII file, the MARGIN statement has no effect. The
 default is the terminal screen.

num_expr Maximum length of an output line on the terminal screen
 or in the ASCII file, provided that num_expr does not
 exceed the maximum length of a screen line, usually 80
 characters, or the record length of the file. If

num_expr does exceed the maximum length of a screen
 line, the margin is the maximum length instead of

num_expr . If num_expr exceeds the file's record length,
 the margin is the record length instead of num_expr .

 An output line that is longer than the physical margin
 allows overflows onto the next physical line.

Examples

The following examples show the use of the MARGIN statement. Lines 10
and 40 set the margin for the default fnum , the terminal screen.

 10 MARGIN 40
 20 MARGIN #2; Num_char_to_right_hand_margin
 30 MARGIN #1; X-5
 40 MARGIN Terminal_line_length

MAT =

The MAT = statement assigns the value of an expression to an array. Some
forms of the MAT statement can redimension the array before the
assignment.

Syntax

The numbers preceding these syntax specifications are referenced in Table
4-5. They are not part of the MAT statement syntax.

(1) MAT num_array1 = num_array2

(2) MAT num_array1 = (num_expr)

(3a) MAT num_array1 = num_array2 op (num_expr)

4- 78

(3b) MAT num_array1 = (num_expr) op num_array2

(4) MAT num_array1 = num_array2 op num_array3

 {CON}
(5) MAT num_array1 = {ZER} [(dims)]
 {IDN}

(6) MAT num_array1 = s_or_a_function (num_array2)

(7) MAT num_array1 = array_function (num_array2)

(8) MAT num_array1 = MUL (num_array2, num_array3)

Parameters

op +, -, *, /, <, <=, =,>=, <>, or #

num_array1 In equation (4), num_array1 must have the same number
 of dimensions as num_array2 and num_array3 . It must
 have at least as many elements as each of num_array2
 and num_array3 .

num_array3 In equation (4), num_array3 must have the same number
 of dimensions as num_array2 . Each dimension of

num_array3 must have the same number of elements as
 the corresponding dimension of num_array2 . However,
 corresponding dimensions of num_array3 and num_array2
 can have different bounds (for example, num_array2
 can be declared "DIM A(1:2,1:4)" and num_array3 can
 be declared "DIM B(2:3,2:5)").

 In equation (8), num_array2 and num_array3 can both
 be matrices, or one can be a matrix and one can be a
 vector. The dimensions of num_array2 and num_array3
 are subject to the restrictions in Table 4-6.

CON Sets each element of array to one.

ZER Sets each element of array to zero.

IDN Makes array an identity matrix. If dims is
 specified, it must specify a square matrix. If dims
 is not specified, array must be a square matrix.

dims If specified, the statement redimensions num_array1
 before assigning values to its elements.

s_or_a_function A scalar or array function; one of the following:

 ABS ACS ASN ATN CEIL LGT
 DECIMAL EXP FRACT INT INTEGER LOG
 REAL SDECIMAL SGN SIN SINTEGER SQR
 SREAL TAN TRUNC COS

 See chapter 5 for more information about these
 functions.

array_function See chapter 5 and Table 4-6 for more information
 about these functions.

 CSUM Stores column sums of matrix in
 vector.

 RSUM Stores row sums of matrix in
 vector.

 TRN Transposes rows and columns of

4-: 79

 matrix.

 INV Inverts square matrix.

 MUL Multiplies two matrices or a
 vector and a matrix.

Table 4-5 through Table 4-6 give more information about the MAT =
statement.

Table 4-5 Gives the new dimensions of and value of num_array1 for
 each form of the MAT = statement.

Table 4-6 Shows how the dimensions of num_array2 and num_array3
 determine the new dimensions of num_array1 .

Table 4-5. Forms of MAT = Statement

Form	Redimensions num_array1	Where num_array1 (i) and num_array2 (i)
	to Dimension of:	are Corresponding Elements: num_array1 (i)=

1	num_array2	num_array2 (i)

2	Does not redimension	num_expr
	num_array1	

3a	num_array2	num_array2 (i) op num_expr

3b	num_array2	num_expr op num_array2 (i)

4	num_array2 ,	num_array2 (i) op num_array3 (i)
	num_array3	
	(same)	

5	Specified dimensions, if any	ZER: 0
		CON: 1
		IDN: 1 if it is on the top-left-to-bottom-ri
		diagonal; 0 otherwise

6	num_array2	scalar_or_array_function (num_array2)

7	See Table 4-6	See Table 4-6
8		

4- 80

Table 4-6. Dimensions of Array Function Arguments and Results

Array	Dimensions of	Dimensions of	Dimensions of
Function	num_array2	num_array3	num_array1 (result)

CSUM	(m,n)	Not applicable	(n)

RSUM	(m,n)	Not applicable	(m)

TRN	(m,n)	Not applicable	(n,m)

INV	(m,m)	Not applicable	(m,m)

MUL	(m,n)	(n,p)	(m,p)

MUL	(m,n)	(n)	(m)

MUL	(m)	(m,p)	(p)

Examples

 10 DIM A(4),B(4),C(4),D(4),E(2,4),F(2)
 20 READ (FOR I=1 TO 4,A(I))
 30 READ (FOR I=1 TO 2,(FOR J=1 TO 4,E(I,J)))
 40 !
 50 ! Form 1:
 60 MAT B=A !B has the same elements as A, B(1) = A(1), etc
 70 !
 80 ! Form 2:
 90 MAT C=(2+3) !All elements of C have the value of 5
 100 !
 110 ! Form 3:
 120 MAT D=(2)*B ! All elements of D are worth 2 * B, D(1) =20 ,etc
 130 MAT D=B*(2) !Alternate form 3b, results are the same as line 61
 140 !
 150 ! Form 4:
 160 MAT C=A+B !Each element, I of C is the total of A(I) + B(I)
 170 !
 180 ! Form 5:
 190 MAT B=CON ! Each element of B is now 1
 200 !
 210 ! Form 6:
 220 MAT D=SQR(A) ! Each element, I of D is now the square root of A(I)
 230 !
 240 ! Form 7:
 250 MAT C=CSUM(E) ! Each element, I of C is now the sum of the entries
 260 ! in column I of E
 270 !
 280 ! Form 8:
 290 MAT F=MUL(E,A) ! Array F contains the result of the matrix
 300 ! multiplication of E and A
 310 !

4-: 81

 320 !
 330 DATA 10,20,30,40
 340 DATA 1,2,3,4,5,6,7,8
 999 END

MAT INPUT

The MAT INPUT statement accepts values from the terminal keyboard to one
or more arrays. If new dimensions are specified for the arrays, the MAT
INPUT statement redimensions them before assigning values to them. It
assigns values element by element, in row-major order.

Syntax

MAT INPUT array [dims][, array [dims]]...

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variables names are suffixed with a "$".

dims Array dimensions used in syntax specification
 statements. Its syntax is

 (dim1 [, dim2 [, dim3 [, dim4 [, dim5 [, dim6]]]]])

 where dim1 through dim6 each have the syntax

 [num_expr1 :] num_expr2

 and num_expr1 and num_expr2 are the lower and upper
 bounds (respectively) of the dimension. If num_expr1 is
 not specified, it is the default lower bound.

Examples

 100 MAT INPUT A,B,C$
 120 MAT INPUT D$

If array A has four elements, the following statements are equivalent:

 100 MAT INPUT A
 100 INPUT A(*)
 100 INPUT A(1),A(2),A(3),A(4)
 100 INPUT (FOR I=1 TO 4, A(I))

When reading from the terminal keyboard, the MAT INPUT statement prompts
for input with a question mark (?). Respond to the prompt by typing a
list of values. Separate values with a comma. Press RETURN to store the
values. The MAT INPUT statement prompts for input until it has assigned
a value to every array element.

The behavior of the MAT INPUT statement follows the general behavior of
the INPUT statement, described in chapter 6.

If A is

 0 0
 0 0

before the statement

 10 MAT INPUT A

executes, and the response to the statement is

 ? 2,4 RETURN

4- 82

 ? RETURN

 ? 8 RETURN

then A is:

 2 4
 0 8

MAT PRINT

The MAT PRINT statement prints one or more arrays to the standard list
device or a data file. It prints them element by element, varying the
rightmost subscript fastest.

Syntax

For printing to a string variable or the standard list device:

 [{,}] [,]
MAT PRINT array [{;} array]...[;]

For printing to a data file:

 [{,}] [{,}]
MAT PRINT #fnum [, rnum [, wnum]]; array [{;} array]...[{;} END]

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variables names are suffixed with a "$".

fnum File number of a data file. For more information, see
 "File Identification," in chapter 6.

rnum Record number. If specified, the statement performs a
 direct write on the data file specified by fnum . For
 more information on rnum and direct reads, see "File
 Input and Output," in chapter 6.

wnum Word number. If specified, the statement performs a
 direct word write on the file specified by fnum. That
 file must be a BASIC DATA file. For more information on

rnum and direct word reads, see "File Input and Output,"
 in chapter 6.

{,|;} Determines spacing between elements of preceding array ,
 if array is a numeric array. If a comma follows array ,
 each element is printed at the beginning of a
 20-character field. If a semicolon follows array ,
 elements are separated by two spaces. Each string array
 element is printed on a separate line.

END Statement prints EOF after last element of last array .
 File must be ASCII or binary.

The following statements can also print arrays:

 DISP, PRINT
 DISP USING, PRINT USING

If array A has four elements, the following statements are equivalent:

 100 MAT PRINT A
 100 PRINT A(*)
 100 PRINT A(1),A(2),A(3),A(4)
 100 PRINT (FOR I=1 TO 4, A(I))

4-: 83

The following shows an example of printing an array with MAT PRINT.

 >list
 ! mprtexam
 5 OPTION BASE 1
 10 DIM A(2,2)
 20 A(1,1)=0
 21 A(1,2)=0
 22 A(2,1)=0
 23 A(2,2)=0
 30 MAT INPUT A
 40 MAT PRINT A
 >run
 ?1,2,3,4
 1 2

 3 4

MAT READ

The MAT READ statement assigns values from one or more DATA statements or
a data file to one or more arrays. If new dimensions are specified for
the arrays, the MAT READ statement redimensions them before assigning
values to them. It assigns values element by element, varying the
rightmost subscript fastest. The MAT READ statement cannot take input
from the terminal keyboard.

Syntax

MAT READ [#fnum [, rnum [, wnum]];] array [dims][, array [dims]]...

Parameters

fnum File number of a data file. If this parameter is
 specified, the MAT READ statement reads from a data
 file. If it not specified, the MAT READ statement reads
 from DATA statements. A program line can read from a
 DATA statement or a file, and a command can only read
 from a file. For more information on fnum , see "File
 Identification," in chapter 6.

rnum Record number. If this parameter is specified, the
 statement performs a direct read on the data file
 specified by fnum . For more information on rnum and
 direct reads, see "File Input and Output," in chapter 6.

wnum Word number. If this parameter is specified, the
 statement performs a direct word read on the file
 specified by fnum . That file must be a BASIC DATA file.
 For more information on rnum and direct word reads, see
 "File Input and Output," in chapter 6.

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variables names are suffixed with a "$".

dims Array dimensions used in syntax specification
 statements. Its syntax is

 (dim1 [, dim2 [, dim3 [, dim4 [, dim5 [, dim6]]]]])

 where dim1 through dim6 each have the syntax

 [num_expr1 :] num_expr2

 and num_expr1 and num_expr2 are the lower and upper
 bounds (respectively) of the dimension. If num_expr1 is
 not specified, it is the default lower bound.

4- 84

Examples

The following examples show the MAT READ statement. Each reads a group
of arrays into array variables. In lines 100 and 120, the entire arrays
are read, and in lines 110 and 130 selected elements are read.

 100 MAT READ #1; A,B,C$
 110 MAT READ #2; A(1:3),B(0:4,0:6),C$(3,4,5,6)
 120 MAT READ #1,7; D$
 130 MAT READ #4,6,2; Q,P(9,9),R

If array A has four elements, the following statements are equivalent:

 100 MAT READ #1; A
 100 READ #1; A(*)
 100 READ #1; A(1),A(2),A(3),A(4)
 100 READ #1; (FOR I=1 TO 4, A(I))

NEXT

The NEXT statement is part of the FOR construct. Refer to the FOR
statement for more information.

OFF DBERROR

The OFF DBERROR statement deactivates any ON DBERROR statement that
affects the program unit containing the OFF DBERROR statement.

Syntax

OFF DBERROR

If the program unit containing an OFF DBERROR statement calls another
program unit, then the ON DBERROR statement is inactivated in the called
program unit also.

If the OFF DBERROR statement is in a called subunit, the ON DBERROR
statement is reactivated when control returns to the calling program
unit.

OFF END

The OFF END statement disables the ON END statement.

Syntax

OFF END #fnum

Parameters

fnum The file number that the OFF END affects. This is the
 same fnum specified in the ON END statement.

It disables the ON END statement that specifies the same fnum .

Examples

 100 ASSIGN #1 TO "File1"
 110 ASSIGN #2 TO "File2a"
 120 ASSIGN #3 TO "File3"
 130 ON END #1 GOTO 999
 140 ON END #2 GOSUB 200 !ON END statement for file #2
 150 ON END #3 CALL End3
 160 READ #1; A1,B1,C1
 170 READ #2; A2,B2,C2
 180 READ #2; D,E,F
 190 READ #3; A3,B3,C3
 195 STOP

4-: 85

 197 !
 200 ASSIGN #2 TO "File2b"
 210 OFF END #2 !Disables the ON END statement in line 140
 220 RETURN
 225 !
 230 SUB End3
 240 PRINT "Reusing File3"
 250 POSITION #3;BEGIN
 260 SUBEND

OFF ERROR

Execution of the OFF ERROR statement deactivates any ON ERROR statement
that affects the program unit containing the OFF ERROR statement.

Syntax

OFF ERROR

If a program unit executes an OFF ERROR statement and then calls another
program unit, any previous ON ERROR statement is inactive in the called
program unit also.

If the OFF ERROR statement is in a subunit, the last previous ON ERROR
statement is reactivated when control returns to the calling program
unit.

The following program segment illustrates OFF ERROR.

Examples

 100 ON ERROR CALL Error
 105 I=J/0 !Trapped by line 100 ON ERROR
 110 CALL Sub1
 120 I=J/0 !Trapped by line 100 ON ERROR
 130 END
 200 SUB Sub1
 210 I=J/0 !Trapped by line 100 ON ERROR
 220 OFF ERROR
 225 I=J/0 !Not trapped
 230 CALL Sub2
 240 I=J/0 !Not trapped
 300 SUB Sub2
 310 I=J/0 !Not trapped
 320 CALL Sub3
 400 SUB Sub3
 410 I=J/0 !Not trapped
 420 ON ERROR GOTO 430
 425 I=J/0 !Trapped by line 420 ON ERROR
 430 PRINT "Error at 425"
 440 SUBEND
 500 SUB Error
 510 PRINT "Error at 105, 120, or 210"
 515 I=0
 520 SUBEND

OFF HALT

The OFF HALT statement deactivates the currently active ON HALT
statement.

Syntax

OFF HALT

If the OFF HALT statement is in a subunit, it deactivates the currently
active ON HALT statement only while the subunit is executing. Any active
ON HALT statement in the calling program unit is reactivated when control

4- 86

returns to the calling program unit.

OFF KEY

The OFF KEY statement restores the last typing aid key definition for a
user-definable key or set of keys. If no typing aid key definitions are
active then the default key definitions are restored.

Syntax

OFF KEY [key_number_list]

Parameters

key_number_list A list of integers or numeric expressions that evaluate
 to an integer in the range of [1, 8] separated by commas
 or semicolons. No more than eight values can be
 specified for each statement. If the integer is not in
 the specified range, an error occurs. If values are not
 specified, typing aid definitions for all keys are
 restored.

Examples

The first example shows the use of the OFF KEY statement as a command.

 >OFF KEY 1

 100 OFF KEY ! Restores the typing aid definition of all keys
 110 OFF KEY 1 ! Restores the typing aid definition of key 1
 120 OFF KEY 1,2,3,8 !Restores the typing aid definition of keys 1,2,3 and 8

ON DBERROR

The ON DBERROR statement defines a database error-handling routine. The
ON DBERROR statement is unnecessary if each database operation utilizes
the STATUS option because the status array returns the error code, and
the error does not stop the program.

The ON DBERROR statement is disabled by the OFF DBERROR statement.

Syntax

 {GOTO }
 {{GO TO } }
ON DBERROR {{GOSUB } line_id }
 {{GO SUB} }
 {CALL sub_id }

Parameters

line_id Line label or line number.

sub_id Subunit identifier.

Table 4-7 shows the similarities and differences between the three forms
of the ON DBERROR statement.

4-: 87

Table 4-7. ON DBERROR Statements

Statement Executed If	Line to Which	Scope of ON DBERROR
Run-Time Error Occurs	Error-Handling Code	Statement
After ON DBERROR	Transfers Control When	
Statement Executes	it Ends	

-
GOTO line_id	None.	Program unit that
		contains it.

GOSUB line_id	Line following the line	Program unit that
	where the error occurred.	contains it.

CALL sub_id	Line following the line	Program unit that
	where the error occurred.	contains it and program
		unit that this program
		unit calls (until called
		program unit executes a
		local ON DBERROR
		statement or an OFF
		DBERROR statement).

Examples

 100 ON DBERROR GOTO 500 !Goes to line 500
 110 ON DBERROR GOTO Rtn5 !Goes to the line number in Rtn5
 120 ON DBERROR GOSUB 650 !Goes to the subroutine at line 650
 130 ON DBERROR GOSUB Rtn7 !Goes to the subroutine at the line in Rtn7
 140 ON DBERROR CALL Error !Goes to the Error subroutine

ON END

The ON END statement traps the end-of-file condition for a specified
file. That is, if an end-of-file is encountered during an I/O operation,
the ON END statement causes an interrupt. When HP Business BASIC/XL
responds to the interrupt, it transfers control to the line, subroutine,
or subprogram specified by the ON END statement.

The OFF END statement disables the ON END statement. If an end-of-file
is encountered during an I/O operation, and no ON END statement is
associated with it (or its ON END statement is disabled), an error
occurs. An active ON ERROR statement can trap this error. See the ON
ERROR statement for more information.

Syntax

 {GOTO }
 {{GO TO } }
ON END #fnum {{GOSUB } line_id }
 {{GO SUB} }
 {CALL sub_id }

Parameters

fnum The file number of the file that the ON END statement
 applies to.

line_id Line label or line number. Control will transfer to
 this line_id when the ON END statement executes.

4- 88

sub_id Subunit identifier. Control transfers to this subunit
 when the ON END statement executes.

Examples

The following example uses the ON END statement to trap an end-of-file
error. Lines 20-90 set up the file. Line 200 contains the ON END
statement. Lines 210-240 read the file, and an end-of-file occurs. The
ON END statement prints line 300, and execution continues.

 10 DIM A(15),B(15)
 20 CREATE "Test1",FILESIZE=15,RECSIZE=10
 30 ASSIGN #1 TO "Test1"
 40 FOR I=1 TO 3
 50 A(I)=I
 60 B(I)=I*2
 70 PRINT #1;A(I),B(I)
 80 NEXT I
 90 POSITION #1;BEGIN
 200 ON END #1 GOTO 300
 210 FOR I=1 TO 15
 220 READ #1;A1,B1
 230 PRINT A1,B1
 240 NEXT I
 250 END
 300 PRINT " End of data file reached !! "
 310 STOP
 >run
 1 2
 2 4
 3 6
 End of data file reached !!

ON ERROR

The ON ERROR statement defines an error-handling routine to handle all
run-time errors that are not trapped by an ON DBERROR or ON END statement
in the same program.

Syntax

 {GOTO }
 [{GO TO }]
ON ERROR [{GOSUB } line_id]
 [{GO SUB}]
 [CALL sub-id]

Parameters

line_id Line label or line number. Control will transfer to
 this line_id when the ON ERROR statement executes.

sub_id Subunit identifier. Control will transfer to this
 subunit when the ON ERROR statement executes.

Table 4-8 shows the similarities and differences between the three forms
of the ON ERROR statement.

4-: 89

Table 4-8. ON ERROR STATEMENTS

Statement Selected	Line to Which	Scope of ON ERROR
	Control is Transferred	Statement
	following ON ERROR	
	processing	

GOTO line_id	None.	Program unit that contains
		it.

GOSUB line_id	Line following the line	Program unit that contains
	where the error occurred.	it.

CALL sub_id	Line following the line	Program unit that contains
	where the error occurred.	it and program unit that it
		calls, until called unit
		executes a local ON ERROR
		statement or an OFF ERROR
		statement.

HP Business BASIC/XL provides predefined functions that can be used in
error recovery routines. They are ERRL, ERRN, ERRM$, and ERRMSHORT$.
They are defined in chapter 5.

Examples

 100 ON ERROR CALL Default
 110 READ A,B
 120 C=B/A !Error can occur here
 130 DISP A,B,C
 135 END
 140 SUB Default
 150 C=0
 160 SUBEND

The next three examples show how the three forms of the ON ERROR
statement transfer control when errors occur.

 100 ON ERROR GOTO 140
 110 I=J/0 !Error occurs; go to line 140.
 120 PRINT "DONE" !This statement is never executed.
 130 GOTO 999
 140 PRINT "ERROR" !Execute line 999 next.
 999 END

 100 ON ERROR GOSUB 140
 110 I=J/0 !Error occurs; gosub line 140.
 120 PRINT "DONE"
 130 GOTO 999
 140 PRINT "ERROR"
 150 RETURN !Return to line 120.
 999 END
 100 ON ERROR CALL Error
 110 I=J/0 !Error occurs; call to line 140.
 120 PRINT "DONE"
 130 END
 135 SUB Error
 140 PRINT "ERROR"
 150 SUBEND !Return to line 120.

The next three examples show the scope of the three forms of the ON ERROR

4- 90

statement.

 100 ON ERROR GOTO 115
 105 A=B/0 !Error occurs; go to line 115
 115 PRINT "ERROR"
 116 CALL Sub1
 120 END
 130 SUB Sub1 !ON ERROR at line 100 inactive within Sub1
 140 I=J/0 !Error aborts program
 150 SUBEND

 100 ON ERROR GOSUB 115
 105 A=B/0 !Error occurs; gosub line 115.
 110 CALL Sub1
 115 PRINT "ERROR"
 116 RETURN !Return to line 110.
 120 END
 130 SUB Sub1 !ON ERROR at line 100 inactive in Sub1
 140 I=J/0 !Error aborts program.
 150 SUBEND

 100 ON ERROR CALL Error
 110 A=B/0 !Error occurs; call Error; return will be to
 115 !line 115
 120 CALL Sub1
 130 END
 141 SUB Error
 150 PRINT "ERROR"
 160 SUBEND
 170 SUB Sub1 !ON ERROR still active within Sub1
 180 I=J/0 !Error occurs; call Error
 190 SUBEND

The next example shows how a local ON ERROR statement overrides an active
ON ERROR statement in the calling program unit.

 100 ON ERROR CALL Error
 105 P=Q/0 !Error occurs; call Error
 110 CALL Sub1
 115 R=S/0 !Error occurs; call Error
 120 CALL Sub2
 125 T=U/0 !Error occurs; call Error
 130 END
 140 SUB Sub1
 150 A=B/0 !Error occurs; call Error
 160 SUBEND
 170 SUB Sub2
 175 M=N/0 !Error occurs; call Error
 180 ON ERROR GOSUB 240 !Overrides line 100
 190 I=J/0 !Error occurs; GOSUB 210
 200 GOTO 230
 210 PRINT "Error at line 190"
 220 RETURN
 230 SUBEND
 240 SUB Error
 250 PRINT "Error at line 105,115,125,150, or 175"
 260 SUBEND

ON GOSUB

The ON GOSUB statement is one of the GOSUB corollaries of the ON GOTO and
GOTO OF statements. Control is transferred to the selected line, L, by
"GOSUB L" rather than "GOTO L." A RETURN statement returns control to the
statement that follows the ON GOSUB statement. Although the ON GOSUB
statement can be input as ON GOSUB or ON GO SUB, HP Business BASIC/XL
will always list it as ON GOSUB.

4-: 91

Syntax

 {GOSUB }
ON num_expr {GO SUB} line_id [, line_id]...[ELSE else_line_id]

Parameters

num_expr A numeric expression that is evaluated and converted to
 an integer, n. The integer n must be between one and
 the number of line_id s, or an error occurs if no ELSE
 clause is present. Control is transferred to the n th

line_id .

line_id Line number or line label of the line to which control
 is transferred. The line must be in the same program
 unit as the ON GOSUB statement.

else_line_id Line number or line label of the line to which control
 is transferred if the value of num_expr is not between
 one and the number of line_ids specified.

Examples

 1 READ I, J
 2 ON I GOSUB 10,20,30 !Go to subroutine at line 10, 20, or 30
 3 ON J GOSUB 40,50,60 ELSE 99 !Go to subroutine at line 40,50, or 60 or to
 !line 99
 4 STOP !if J < 1 or J > 3
 10 REM Subroutine for I=1
 11 PRINT "I is one"
 12 RETURN !Return to line 3
 20 REM Subroutine for I=2
 21 PRINT "I is two"
 22 RETURN !Return to line 3
 30 REM Subroutine for I=3
 31 PRINT "I is three"
 32 RETURN !Return to line 3
 40 REM Subroutine for J=1
 41 PRINT "J is one"
 42 RETURN !Return to line 4
 50 REM Subroutine for J=2
 51 PRINT "J is two"
 52 RETURN !Return to line 4
 60 REM Subroutine for J=3
 61 PRINT "J is three"
 62 RETURN !Return to line 4
 90 DATA 3,2
 99 END

The GOSUB OF statement works exactly the same as the ON GOSUB statement.
The following statements are equivalent:

 150 ON I GOSUB 10, 20, 30, Quit
 150 GOSUB I OF 10, 20, 30, Quit

ON GOTO

The ON GOTO statement transfers control to one of several lines,
depending on the value of a numeric expression. Although the ON GOTO
statement can be input as ON GOTO or ON GO TO, HP Business BASIC/XL
always lists it as ON GOTO.

Syntax

 {GOTO }
ON num_expr {GO TO} line_id [, line_id]...[ELSE else_line_id]

4- 92

Parameters

num_expr A numeric expression that is evaluated and converted to
 an integer, n. The integer n must be between one and
 the number of line_id s, or an error occurs if no ELSE
 clause is present. Control is transferred to the n th

line_id .

line_id A line number or line label of a line to which control
 can be transferred. The line specified must be in the
 same program unit as the ON GOTO statement.

else_line_id The ELSE clause allows the specification of a line to
 which control is transferred if the value of num_expr is
 NOT between one and the number of line_id s specified.

Examples

 10 I=2
 20 ON I GOTO 30,40,50
 30 PRINT "I IS 1"
 35 GOTO 99
 40 PRINT "I IS 2" !Line 20 transfers control here
 45 GOTO 99
 50 PRINT "I IS 3"
 99 END

The GOTO OF statement works exactly the same as the ON GOTO statement.
The following statements are equivalent:

 150 ON I GOTO 10,200,ReInit,Quit
 150 GOTO I OF 10,200,ReInit,Quit

ON HALT

The ON HALT statement specifies an action that the program executes when
it traps pressing of the halt key.

If an ON HALT statement is active when the halt key is pressed, the ON
HALT Statement traps the halt key, and the ON HALT directive (GOTO, GOSUB
or CALL) is executed. The program is not suspended as it is when no ON
HALT statement is present in the program.

Syntax

 {GOTO }
 [{GO TO }]
ON HALT [{GOSUB } line_id]
 [{GO SUB}]
 [CALL sub_id]

Parameters

line_id Line label or line number. Control will transfer to
 this line_id when the ON HALT statement executes.

sub_id Subunit identifier. Control will transfer to this
 subunit when the ON HALT statement executes.

Table 4-9 shows the similarities and differences between the three forms
of the ON HALT statement.

4-: 93

Table 4-9. ON HALT Statements

Statement Selected	Line to Which	Scope of ON HALT
	Control is Transferred	Statement
	following ON HALT	
	processing	

GOTO line_id	None.	Program unit that contains
		it.

GOSUB line_id	Line following the line that	Program unit that contains
	was executing when the halt	it.
	key was pressed.	

CALL sub_id	Line following the line that	Program unit that contains
	was executing when the halt	it and program unit that it
	key was pressed.	calls, until called unit
		executes a local ON HALT
		statement or an OFF HALT
		statement.

If you use the CALL option, it cannot have parameters. To achieve the
effect of a CALL with parameters, use the GOSUB form and put the desired
CALL statement at the GOSUB destination.

Examples

 10 ON HALT GOSUB 20
 20 CALL Sub3 (A,B) !Control goes here if the halt key is pressed.

An ON HALT statement is deactivated by execution of another ON HALT
statement or by an OFF HALT statement.

ON KEY

The ON KEY statement defines a branch that is to be executed when a
specific branch-during-input key is pressed during execution of an HP
Business BASIC/XL input or READ FORM statement.

Syntax

 {CALL subprogram }
ON KEY key_number_list {GOTO line_id }
 {GOSUB line_id }

[{;}]
[{,} LABEL [=] key_label]

[{;} {PRI }]
[{,} {PRIORITY} [=] priority_level]

Parameters

key_number_list A list of integers selected from the set of [1..8] or
 numeric expressions that evaluate to integers in the
 range of [1..8] separated by commas or semicolons. This
 set indicates which branch-during-input key is to be
 trapped. If the integer is not in the specified range,
 an error occurs. No more than eight values can be
 specified for each statement.

4- 94

subprogram A valid subprogram name.

line_id A line number or line label.

key_label A quoted string of characters used to fill in the label
 field of the user-definable key. The string that you
 use is specific for your terminal. If the label is <=
 fifteen characters, it is centered in the key label. If
 the key label is missing, "f1" through "f8" are used.

priority_level A num_expr between 1 and 15, inclusive, used to
 determine the order in which multiple branches specified
 by interrupts and branch-during-input statements are
 handled. If this option is not selected, the branch is
 placed on the interrupt queue with a priority of 1.

Examples

 100 ON KEY 1 GOTO 120
 110 ON KEY 1 GOTO Help_label
 120 ON KEY 3 CALL Help
 130 ON KEY 1 CALL Help_routine,LABEL=" HELP "
 140 ON KEY 1,2 GOSUB 10,LABEL=Label$
 150 ON KEY 4,5 CALL Assist,PRI=4
 160 ON KEY 2 CALL Help_entry,LABEL=" HELP ENTRY",PRI=10
 170 ON KEY 7,8 CALL Exit_routine,LABEL=" exit",PRIORITY=15

The following example is designed to illustrate the behavior of the ON
KEY statement with regard to labels and priorities.

 10 ON KEY 1 CALL Suba; LABEL = "Main"
 20 PRESS KEY 1
 30 PRINT "Done"
 40 SUB Suba
 50 ON KEY 1 GOTO Myline;PRIORITY = 4;LABEL = "Suba"
 60 PRINT "In Suba"
 70 PRESS KEY 1
 80 SUBEXIT
 90 Myline: PRINT "Myline"
 100 SUBEND

Running this program produces the following output:

 In Suba
 Myline
 Done

In line 10, KEY 1 is defined with a call action. Main is the label of
function key 1.

In line 20, KEY 1 is pressed. This causes the Suba routine in lines 40
through 100 to be executed. On line 50 KEY 1 is defined with a GOTO
action. Label "Suba" appears on function key 1. Next, the PRINT
statement in line 60 is executed. Following that, in line 70, KEY 1 is
pressed. Since the priority of KEY 1 is defined to be 4, the action
associated with the ON KEY statement is taken. Remember that KEY 1 was
given a priority of 1 on line 10 and a call action was taken. The call
action remains active unless KEY 1 is redefined with a higher priority in
the subunit. Since this is the case in the above example, line 90 is
executed. Line 100 causes a branch to line 30. The PRINT statement in
line 30 is executed and the program ends.

OPEN FORM

This statement opens a form and displays it on the terminal. There are
several options provided to control or preserve information already on
the screen.

4-: 95

If there is no form currently active and a form file is specified in
form_file_name , the file type of the form file is examined to determine
whether the file to be activated is an VPLUS form file or a JOINFORM
File. If there is no form file specified as part of the form name, the
most recently opened form file is used. An error occurs if no form file
has been opened and the form_file_name is omitted.

Any function key that is defined using HP Business BASIC/XL's ON KEY
statement takes precedence over the definition of the key defined by the
VPLUS form. Therefore, you can define user-defined branch-during-input
keys and the associated key labels that are to be active during the form
processing prior to opening the form.

Syntax

 [{;}]
 [{,} HOME]
OPEN FORMform_name [OVERLAY]
 [FREEZE]
 [APPEND]

If the comma is used as the separator above, HP Business BASIC/XL will
accept it, but will replace it with a semicolon.

Parameters

form_name The form_name is a string expression with the following
 format:

form_member_name [: form_file_name]

 The form_member_name is the name of the form that you are
 opening. The form_file_name is the name of the file that
 contains the form.

HOME The HOME, OVERLAY, FREEZE, and APPEND options are ignored if
OVERLAY the form to be opened is a JOINFORM.
FREEZE
APPEND Only one of these options can be used in an OPEN statement.
 When the HOME keyword is specified, any existing form is
 cleared and the form being opened is placed at the top of
 display memory. When the APPEND keyword is specified, the
 form being opened is positioned following the currently
 active form; if none is active, HOME is substituted. OVERLAY
 is the keyword to use when you wish to replace the currently
 active form without otherwise disturbing display memory. The
 FREEZE keyword causes memory locking of any currently active
 form followed by an APPEND. If none of these options is
 specified, HOME is the default.

Examples

The following examples show the OPEN FORM statement.

 100 OPEN FORM "FORM1:ABC" !Opens FORM1 in ABC
 110 OPEN FORM A$;OVERLAY !Opens the form in A$
 120 OPEN FORM Form$+":FORMFILE" !Opens the form in Form$
 130 OPEN FORM "XYZ";FREEZE !Opens form XYZ
 140 OPEN FORM "XYZ";HOME !Opens form XYZ

OPTION

The OPTION and GLOBAL OPTION statements can change the program unit
characteristics shown in Table 4-10. The value of each program unit
characteristic is initially set to the value in the HP Business BASIC/XL
configuration file, HPBBCNFG.PUB.SYS supplied with HP Business BASIC/XL.
The current values of each characteristic are displayed by the INFO
command.

4- 96

Table 4-10. Changeable Program Unit Characteristics

Program Unit	Option (Default First)	Effect
Characteristic		

Default numeric	REAL	Implicitly declared numeric
type (type	DECIMAL	variables are type REAL.
assigned to		Implicitly declared numeric
implicitly		variables are type DECIMAL.
declared numeric		
variables).		

Initialization of	INIT	Numeric variables are initialized
numeric variables	NOINIT	to zero.
to zero.		Numeric variables are not
		initialized to zero.

Implicit variable	NODECLARE	Implicit variable declaration is
declaration. *	DECLARE	legal.
		Implicit variable declaration is
		illegal.

Default of lower	BASE 0	Default lower bound is zero.
bound of arrays.	BASE 1	Default lower bound is one.

Trace statement	TRACE	Enables trace statements.
output control.	NOTRACE	Disables trace statements.

Table 4-10 Note

* If an implicit variable declaration is illegal, using a variable that
 is not explicitly declared causes an error. If the program is
 interpreted, the error occurs at run time; if the program is
 compiled, it occurs at compile time.

Table 4-11. Global Program Subunit Options

Program Unit	Option (Default	Effect
Characteristics	First)	

Declare current		Current program starts multi-program
program status in a		application. NEWCOM allows new commons
multi-program	[NONEWCOM]	when program loaded. NONEWCOM prevents new
application. Control	MAIN [NEWCOM]	commons.
creation and deletion		
of COM areas.		

**The MAIN and		Identifies current program as a module of
SUBPROGRAM global		multi-program application, but not the
options control both	SUBPROGRAM	initial main. This program can not be RUN;
program execution and		only a programmatic GET can run this
the creation and	[NONEWCOM]	program. NEWCOM allows creation and
deletion of common	[NEWCOM]	deletion of COM blocks when the GET occurs.
areas.		NONEWCOM prevents this.

4-: 97

| | | |

Table 4-11 Note

** The default value if neither is specified is MAIN NONEWCOM. The value
 of this option is not set in the configuration utility nor is the
 value displayed in the INFO command's display.

Syntax

[GLOBAL] OPTION option_list

Parameters

GLOBAL Allowed only if the statement is in the main program.
 If GLOBAL appears, the statement is a GLOBAL OPTION
 statement; if GLOBAL is omitted, the statement is an
 OPTION statement. A GLOBAL OPTION statement affects
 every program unit in the program. An OPTION statement
 affects only the program unit that contains it.

 An OPTION statement overrides a GLOBAL OPTION statement,
 but only while the program unit that contains it is
 running.

option-list A list of one to five unique options separated by
 commas. Each option can be one of each of the following
 pairs:
 DECIMAL or REAL
 INIT or NOINIT
 DECLARE or NODECLARE
 BASE 0 or BASE 1
 TRACE or NOTRACE

 With GLOBAL specified, one of the following additional
 options can also be specified:
 MAIN
 SUBPROGRAM
 MAIN NONEWCOM
 MAIN NEWCOM
 SUBPROGRAM NONEWCOM
 SUBPROGRAM NEWCOM

The term "OPTION x statement" where x is DECIMAL, REAL, INIT, NOINIT,
DECLARE, NODECLARE, TRACE, NOTRACE MAIN, or SUBPROGRAM means an OPTION or
GLOBAL OPTION statement that contains the OPTION x. For example, the
line

 120 GLOBAL OPTION BASE 1, REAL, NOINIT, NODECLARE

can be called a GLOBAL OPTION statement, an OPTION BASE statement, an
OPTION REAL statement, an OPTION NOINIT statement, or an OPTION NODECLARE
statement.

If a program unit contains conflicting OPTION x statements, then the
option active in the subunit is determined by the OPTION or GLOBAL OPTION
statement with the highest line number. An OPTION statement can reset
the same option that a GLOBAL OPTION statement has set in the main
program.

The following are the default options for a program unit without an
OPTION statement:

 REAL
 INIT
 NODECLARE
 BASE 0

4- 98

 TRACE
 MAIN NONEWCOM

OPTION and GLOBAL OPTION statements are processed immediately before the
program units containing them are run. Neither statement can be used as
a command.

The MAIN and SUBPROGRAM global options are used chiefly for compiling
multi-program applications. A program that uses the SUBPROGRAM option
can only be run by execution of a GET program line from within an
executing program. Trying to RUN a program in the interpreter that has a
GLOBAL OPTION SUBPROGRAM statement results in an error. Programs that
contain the GLOBAL OPTION MAIN can be executed by using the RUN command
in the interpreter as well as by executing a GET statement for that
program in an executing program.

A suboption of the MAIN/SUBPROGRAM option is NONEWCOM or NEWCOM. The
suboption relevant at the execution of the GET statement is that in the
called program unit, not that suboption present in the caller. The
NONEWCOM suboption prevents the deletion and addition of COM areas
regardless of whether the called program uses the COM area. COM areas
named in both the calling and called programs are checked to ensure that
the declarations in each match. NONEWCOM is the active suboption if
neither suboption is specified. The NONEWCOM suboption causes every
programmatic GET to compare COM area names. Any COM areas not named in
both programs are deleted and any COM areas named only in the new program
are created.

Examples

The comments in the following example explain the extent that local
OPTION statements override the GLOBAL OPTION statement in the main
program.

 100 GLOBAL OPTION DECIMAL, INIT, DECLARE, BASE 0
 .
 .
 125 CALL Sub1
 .
 .
 150 CALL Sub2
 .
 .
 175 CALL Sub3
 .
 .
 200 SUB Sub1
 210 OPTION REAL, NOINIT !Options: REAL,NOINIT,DECLARE,BASE 0
 .
 .
 250 SUBEND
 300 SUB Sub2
 310 OPTION NODECLARE
 320 OPTION BASE 1 !Options: DECIMAL, INIT, NODECLARE, BASE 1
 .
 .
 350 SUBEND
 400 SUB Sub3
 410 OPTION DECIMAL !Options: Same as global options
 .
 .
 450 SUBEND
 999 END

Each of the following three programs declares the variable A implicitly.
In the first and third programs, A is real. In the second program, A is
decimal.

4-: 99

 10 OPTION REAL 10 OPTION DECIMAL 10 REM No option specified
 20 A = PI 20 A = PI 20 A = PI
 99 END 99 END 99 END

In the first and second programs below, the variables are initialized to
zero when the program is run; in the third, they are not.

 10 OPTION INIT 10 REM No option specified 10 OPTION NOINIT
 20 INTEGER X,Y,Z 20 REAL A,B,C,D,E 20 DECIMAL P,Q
 99 END 99 END 99 END

In the first and second programs below, implicit variable declaration is
legal. Numeric variable X and string variable A$ are implicitly
declared, and no error occurs. In the third program, implicit variable
declaration is illegal. A run-time error occurs at line 20.

 10 OPTION NODECLARE 10 REM No option specified 10 OPTION DECLARE
 20 X = 4535 20 X = 4535 20 X = 4535
 30 A$ = "Hi" 30 A$ = "Hi" 30 A$ = "Hi"
 99 END 99 END 99 END

Each of the following programs declares numeric array A and string array
B$. In the first and second programs, the arrays have lower bounds zero.
Therefore, A has six elements and B$ has 15 (three rows and five
columns). In the third program, the arrays have lower bound one. Array
A has five elements and B$ has eight (two rows and four columns). For
more information, see "Array Variables" in chapter 3.

 10 OPTION BASE 0 10 REM No option specified 10 OPTION BASE 1
 20 DIM A(5) 20 DIM A(5) 20 DIM A(5)
 30 DIM B$(2,4) 30 DIM B$(2,4) 30 DIM B$(2,4)
 99 END 99 END 99 END

An example of the MAIN/SUBPROGRAM global option requires the definition
of a program file in addition to the program currently in the
interpreter. The example demonstrates the allocation of new and
deallocation of old common areas.

 >LIST
 10 ! current program in the interpreter
 20 GLOBAL OPTION MAIN NONEWCOM
 30 COM /Com1/ Main1,Main2
 40 COM /Com2/Main3,Main4
 50 Main1=1;Main2=2;Main3=3;Main4=4

 .

 .

 .
 >RUN
 1 2 0 0

 >LIST
 ! SUBFILE
 10 ! program in SUBFILE
 20 GLOBAL OPTION SUBPROGRAM NEWCOM
 30 COM /Com1/ Sub1,Sub2
 40 COM /Com3/ Sub3,Sub4
 50 PRINT Sub1;Sub2;Sub3;Sub4

The NONEWCOM/NEWCOM option in the called program in SUBFILE states that
new common areas can be allocated. This allows allocation of Com3.
Since Com2 is not used in the program in SUBFILE, Com2 is deallocated.
As can be seen by program execution, the values assigned to the Com1
common area variables in the callee are those referenced by the variables
in Com1 in the called program.

4- 100

PACK

The PACK statement assigns the values of data from one or more variables
to one scalar string variable, in the order specified by the names of the
variables in the referenced PACKFMT statement.

Syntax

PACK USING line_id ; str_var

Parameters

line_id Identifies the program line of the appropriate PACKFMT
 statement that specifies the variables to be packed and
 the format in which to pack them within str_var .

str_var Scalar string variable into which variables are to be
 packed.

When packing a string variable into str_var , if the length of the value
of the string variable in the PACKFMT is less than that string variable's
maximum length, the PACK statement blank-fills the unused portion and
packs the entire string variable.

When packing a substring into str_var , if the length of the value of the
substring in the PACKFMT is less than the length of the substring, the
PACK statement blank-fills the unused portion and packs the substring
length.

Examples

 See the UNPACK Statement.

PACKFMT

The PACKFMT statement is a list of variables that are to be packed or
unpacked by the PACK and UNPACK statements. You can also specify the
number of characters to be skipped between data values.

Syntax

PACKFMT [REALV] pack_item [, pack_item]...

Parameters

REALV The default real data type in a native mode program is
 an IEEE floating point real format. Therefore, you must
 specify "REALV" in the PACKFMT statement if the MPE V
 real data format is desired. The keyword, "REALV" will
 be ignored on MPE V.

pack_item One of the following:

 * Scalar numeric variable.

 * Scalar string variable.

 * Substring.

 * String or numeric array.

 * Space specifier: SKIP number .

 * String or numeric literal.

 * Numeric literal type converted with one of the
 following built in functions:
 SINTEGER

4-: 101

 INTEGER
 SREAL
 REAL
 SDECIMAL
 DECIMAL

 where number is a positive short integer numeric
 constant that specifies the number of characters
 skipped. The skip feature is used to bypass unneeded
 data in a data set. For the PACK USING and UNPACK USING
 statements, that number of characters (bytes) are
 skipped in the specified str_var . For the DBGET USING,
 DBPUT USING and DBUPDATE USING statements that number of
 characters is skipped in the implicit str_var . In both
 cases, use of this option can save time when accessing a
 subset of the variables in a data set.

Examples

The following example shows the PACKFMT statement. It declares the
variables, and then specifies three PACKFMT statements.

 100 INTEGER Number,Times(4)
 110 DIM String$[10],A$[10]
 120 PACKFMT Number,String$,A$[6],Times(*)
 130 PACKFMT Times(*),SKIP 2,String$,SKIP 5,Number,SKIP 1,A$[1;5]
 140 PACKFMT 2, INTEGER(7.2),"wow"

PAGE HEADER

The PAGE HEADER statement prints at the top of every page of a report
unless suppressed. The first page header follows the report header.
This section is activated by any automatic page break or the TRIGGER PAGE
BREAK statement. The PAGE HEADER section is optional.

Syntax

 [[LINES]]
PAGE HEADER [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string or a line reference to an IMAGE line.

output_list A list of output items, identical to the list described
 in the PRINT USING statement.

Examples

The following examples show the use of the PAGE HEADER statement.

 100 PAGE HEADER
 110 PAGE HEADER WITH 4 LINES
 120 PAGE HEADER WITH 2 LINES USING Hdr;Co_name$,Pg
 130 Hdr: IMAGE 30X,25A,4D,/ !Image statement for line 120.

The WITH clause of the PAGE HEADER section is evaluated only once, when
BEGIN REPORT executes. This number of lines specified is used throughout
the rest of the report, and helps define the "effective" page size. The
page header section does not have to print as many lines as are reserved.
If it does not, other lines may be printed in the rest of the space.

4- 102

The USING clause is executed each time a page header is printed.

The PAGE HEADER statement generates an error if a report is not active.

If a report section is active; that is, executing, and encounters this
statement, then that report section is ended.

The PAGE HEADER statement executes when an automatic page break condition
occurs, or when the TRIGGER PAGE BREAK statement is executed. Under
these circumstances, the PAGE TRAILER prints, followed by the PAGE
HEADER.

After the page eject, the Report Writer pauses if the PAUSE EVERY
statement applies. The page function values; such as, page number,
number of pages output, NUMLINE function, and number of lines left on the
page are then reset. The PAGE HEADER prints after this. Thus, the PAGE
HEADER lines do count as part of the NUMLINE value.

The PAGE HEADER does not print if the SUPPRESS PAGE HEADER ON statement
has been executed. The TRIGGER PAGE BREAK statement can suppress the
page header with its SUPPRESS option. Refer to TRIGGER PAGE BREAK for
more information. If the page header is suppressed, none of the
statements in the PAGE HEADER section are executed.

If the REPORT HEADER section executes a TRIGGER PAGE BREAK, so that a
"cover" page is printed, the PAGE HEADER is printed only at the top of
the new page. The PAGE HEADER is not printed twice as might be expected.

PAGE LENGTH

The PAGE LENGTH statement is used to set the size of a report page. You
can specify the page length and the top and bottom margin size with this
statement. There can be only one PAGE LENGTH statement in a report
description.

Syntax

PAGE LENGTHlength [, blank_top [, blank_bottom]]

Parameters

length Expression is a numeric expression in the range [0,
 32767]. A value of zero indicates an infinite page
 length. This prevents error 260, "Insufficient space
 for printer output within the current page". The
 default value is 60.

blank_top A numeric expression indicating how many blank lines
 should be in the top margin. These lines are printed
 before the page header, and are not suppressed by the
 SUPPRESS HEADER ON statement. The value must be between
 zero and the length of the page. The default value is
 zero.

blank_bottom A numeric expression indicating how many blank lines are
 in the bottom margin. These lines are printed after the
 page trailer and are not subject to page trailer
 suppression. The value must be between zero and the
 length of the page. The default value is zero.

NOTE After the report definition is scanned by BEGIN REPORT, a final
 check is made on the page size. The following condition must hold
 or an error occurs:

 Page_length - Blank_top - Blank_bottom -
 Page_header_size - Page_Trailer_size >=3

4-: 103

Examples

The following examples show the use of the PAGE LENGTH statement.

 100 PAGE LENGTH 60,0,0
 100 PAGE LENGTH 66,2,2 ! HP 250/260 default

The PAGE LENGTH statement is evaluated only during BEGIN REPORT. The page
size cannot change during the report. The statement is busy only while
being evaluated.

PAGE TRAILER

The PAGE TRAILER statement in the PAGE TRAILER section is a Report Writer
statement used to print lines at the bottom of every page of a report.
This statement is executed when an automatic page break occurs or when
the TRIGGER PAGE BREAK statement executes. A page trailer is printed
after the REPORT TRAILER section and when a report ends. The page
trailer does not execute when the report terminates abnormally; for
example, when a STOP, or STOP REPORT executes in the program.

Syntax

 [[LINES]]
PAGE TRAILER [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string, or a line reference to an IMAGE line.

output_list A list of output items, identical to PRINT USING.

Examples

The following examples show the use of the PAGE TRAILER statement.

 100 PAGE TRAILER
 100 PAGE TRAILER WITH N LINES

The WITH clause is evaluated only when BEGIN REPORT executes. This
causes the indicated number of lines to be reserved for all page
trailers. If the PAGE TRAILER section does not print on all the reserved
lines, the remaining lines are printed as blank lines. The Report Writer
cannot write extra lines in the page trailer.

The USING clause is evaluated each time a PAGE TRAILER is printed.

The PAGE TRAILER statement generates an error if no report is active.

If a report section is active; that is, executing, and encounters this
statement, then that report section is ended.

The PAGE TRAILER statement and section executes when an automatic page
break condition occurs, or when the TRIGGER PAGE BREAK statement is
executed. In these circumstances, the PAGE TRAILER prints, followed by
PAGE HEADER.

An error occurs if the program attempts to write a line in the page
trailer area and the page trailer is not suppressed.

4- 104

In order to perform a page break, the PAGE TRAILER section first prints
enough blank lines to position the page trailer properly on the page.
Then the PAGE TRAILER statement executes its USING clause, if present.
The PAGE TRAILER section executes next, terminating when another REPORT
WRITER section statement is encountered. Blank lines are then printed
for the remaining lines reserved by the PAGE TRAILER and for the bottom
margin.

The page function values; that is, number of lines printed on a page,
number of lines left on a page, and number of lines output are then
updated, followed by execution of a PAGE HEADER.

The PAGE TRAILER does not print if the SUPPRESS PAGE TRAILER ON statement
has been executed. The TRIGGER PAGE BREAK statement can suppress the
page trailer with its SUPPRESS option. Refer to TRIGGER PAGE BREAK for
more information. If the page trailer is suppressed, none of the
statements in the PAGE TRAILER section are executed.

PAUSE

The PAUSE statement suspends program execution. While the program is
suspended, you can display and modify values of individual variables,
modify program lines, and execute commands.

Syntax

PAUSE [str_expr]

Parameters

str_expr String expression that the PAUSE statement displays
 before suspending program execution.

A suspended program resumes execution when the CONTINUE command is
executed.

PAUSE cannot be a command. The following are the equivalent to a PAUSE
command:

 * Control Y (if no ON HALT statement is active).
 * Control Y twice in rapid succession (even if an ON HALT statement is
 active).

Examples

 > LIST
 ! mat
 10 OPTION BASE 1
 20 DIM Matrix_read(3,3),Matrix_inverse(3,3)
 30 ASSIGN #1 TO "matrix"
 40 MAT READ #1; Matrix_read
 50 PAUSE
 60 MAT Matrix_inverse=INV(Matrix_read)
 70 PAUSE
 > RUN
 > MAT PRINT Matrix_read
 1 0 3

 1 5 2

 6 1 1

 > MAT PRINT Matrix_inverse
 0 0 0

 0 0 0

 0 0 0

4-: 105

 > CONT
 > MAT PRINT Matrix_ inverse

 -.035714285714857 -.0357142857142857 .1785714285714286

 -.130952380952381 .2023809523809524 -.0119047619047619

 .3452380952380952 .0119047619047619 -.0595238095238095

 > 80 CREATE "inverse"
 > 90 ASSIGN #2 TO "inverse"
 > 100 MAT PRINT #2;Matrix_inverse
 > 110 PRINT "Done with program"
 > 120 END
 > CONT
 Done with program
 >

In the above program, the program is paused at line 50, and the first two
MAT PRINT statements are executed. The program is then continued, and
pauses again at line 70. At that time, the third MAT PRINT is executed,
and lines 80 through 120 are added to the program. The program is then
continued to completion. After this last CONT command, the new lines
(80-120) are executed.

PAUSE EVERY

The PAUSE EVERY statement is a Report Writer statement that allows you to
pause at the end of a report page. This statement is useful for looking
at reports on the terminal as well as directing printers to stop for
paper replacement at specified times.

Only one PAUSE EVERY statement can occur in a report description.

Syntax

 {AFTER EVERY} [PAGE]
PAUSE {AFTER } num_pages [PAGES]
 {EVERY }

Parameters

num_pages A numeric expression indicating how often the Report
 Writer should pause. Output will be suspended every
 page that is a multiple of num_pages . The value of the
 expression must be a non-negative integer. A value of
 zero causes the statement to be ignored.

Examples

The following examples show the use of the PAUSE EVERY statement.

 100 PAUSE EVERY 1 PAGES
 100 PAUSE AFTER EVERY Pause_every PAGES

This statement is evaluated only by BEGIN REPORT. It is busy only during
its evaluation. If the expression is zero, the statement is ignored and
no pauses take place.

The PAUSE EVERY statement is active when report output occurs on the
terminal. Reports redirected to non-terminal devices do not suspend
output. The SUPPRESS PRINT FOR statement prevents the pause from taking
place while output is suppressed. However, the pages are counted while
output is suppressed, so the pause takes place on the first page that is
a multiple of num_pages that gets printed.

When the report pauses, no prompt is given. This prevents extraneous
characters from appearing on a printed report. The report writer waits

4- 106

until a carriage return is pressed before continuing. Any characters
typed are not echoed. Essentially, the report writer executes the ACCEPT
statement to accomplish the pause.

POSITION

The POSITION statement positions the record pointer of a specified file
at a specified record. The RESET option can reset the file to an empty
file.

Syntax

 { rnum }
 {BEGIN}
POSITION #fnum ; {END }
 {RESET}

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

rnum A numeric expression. Positions record pointer at the
 record specified by rnum.

BEGIN Positions record pointer at first record in the file.

END Positions record pointer at the EOF mark, beyond the
 last record in the file.

RESET Positions record pointer at first record in the file and
 immediately writes an EOF marker. All previous contents
 of the file are lost following execution of the POSITION
 statement with this option.

The POSITION statement is used to position the record pointer before a
sequential read or write to a file if the pointer is not already in the
desired position. The POSITION statement is unnecessary before a direct
read or write, because a direct read or write statement specifies a
record.

Examples

The following examples show the use of the POSITION statement.

 10 POSITION #1; 10 ! Record pointer is at record 10.
 20 POSITION #2; Nextrec ! Record pointer is at record indicated in Nextrec.
 30 POSITION #3; BEGIN ! Record pointer is at the first record.
 40 POSITION #4; END ! Record pointer is at the EOF mark.
 50 POSITION #5; RESET ! Deletes the contents of the file. #5

PREDICATE

The PREDICATE statement aids in locking database items. Without this
statement, the PACK statement must be used to build a predicate string
for the DBLOCK statement. The TurboIMAGE/3000 database requires a
precise format for this string. The PREDICATE statement builds the
string in the correct format and requires only the relevant information.
An entire dataset, items within a dataset, or even a subset of an item
can be locked using the PREDICATE statement. Note that more than one
lock specification may be given at once. The string resulting from the
PREDICATE statement is used in the DESCRIPTOR clause of the DBLOCK
statement to lock the database.

4-: 107

Syntax

PREDICATE whole_str FROM dataset
[[{>=}]]
[WITH item_name [{<=} expr]]
[[{= }]]
[[{,} [[{>=}]]]]
[[{;} dataset [WITH item_name [{<=} expr]]]...]
[[[[{= }]]]]

Parameters

whole_str A string variable or string array element that is filled
 by the PREDICATE statement with the locking information
 required by TurboIMAGE. The string can then be used in
 the DBLOCK statement to perform the locking.

dataset The dataset name or number to be locked. If the WITH
 clause is not given the entire dataset is locked.
 Otherwise, items within the dataset are locked.

item_name A string expression containing "@" or the name of the
 database item to lock. The item must be in the dataset
 requested. If item_name is not "@", then the relational
 operators and the value of the data item to be locked
 must be included. If they are not, database error -123,
 "illegal relop in a descriptor" will result.

expr An expression used to limit which items are locked.
 Only the items from item_name that satisfy the relation
 are locked. If the WITH option is not selected, then
 the entire dataset is locked.

Examples

The following examples show the PREDICATE statement.

 100 PREDICATE Pred$ FROM Dset$ WITH Item$="xyz"; Dset2$ WITH Name$ >="TOYS"
 200 PREDICATE Pred$ FROM Dset1$; Dset2$; "parts"
 300 PREDICATE Pred$ FROM Dset1$; Dset2$ WITH Item$ = "skates"
 400 DBLOCK Base$, MODE=5, DESCRIPTOR= Pred$

PRESS KEY

The PRESS KEY statement simulates the pressing of a branch-during-input
key from within a program.

Syntax

PRESS KEY key_number

Parameters

key_number An integer or a numeric expression that evaluates to an
 integer in the range [1, 8].

Examples

 100 PRESS KEY 8 ! Performs the branch associated with the currently
 110 ! defined ON KEY statement for f8 in the current
 120 !subunit.

PRINT

The PRINT statement can output several values. It can use output
functions to output control characters. The PRINT statement is similar
to the DISP statement. The PRINT statement uses the output device
specified by the most recently executed SEND OUTPUT TO statement, and the

4- 108

DISP statement uses the standard list device. If the most recently
executed SEND OUTPUT TO statement specifies the standard list device, or
if the program has not executed a SEND OUTPUT TO statement, then the
PRINT statement is equivalent to the DISP statement. The PRINT statement
can also transfer the value of one or more variables to a data file.

Syntax

 [,]
PRINT [output_item_list] [;] PRINT #fnum [, rnum [, wnum]];

output_item_list

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

rnum Record number, a numeric expression. If a file I/O
 statement specifies rnum, it is direct; otherwise, it is
 sequential.

wnum Word number, a numeric expression. If a file I/O
 statement specifies wnum, it is direct word. This is
 only allowed with BASIC DATA files.

 [{[,]...}]
output_item_ [,]... output_item [{; } output_item]...
list

output_item One of the following:

num_expr

str_expr

 , A separator that prints each new item
 in a separate output field.

 ; A separator that prints each new item
 right next to the previous item.

array_name (*) Array reference. See "Array References
 in Display List" in chapter 6 for more
 information.

 {PAGE }
 {{CTL} }

output_function {{LIN} }
 {{SPA} (num_expr)}
 {{TAB} }

 See "Output Functions in Display List"
 in chapter 6 for more information.

FOR_clause (FOR num_var = num_expr1 TO num_expr2
 [STEP num_expr3], d_list)

 See the section that follows, "FOR
 Clause in Display List", for more
 information.

4-: 109

Examples

Below are several examples of the PRINT statement.

 200 PRINT
 210 PRINT,
 220 PRINT;
 230 PRINT X,X+Y;A$,LWC$(A$+B$);P(*),Q$(*);PAGE,TAB(10+X);
 240 PRINT Z(*), (FOR I=1 TO 10, Z(I); 2*Z(I); I*Z(I)), D$
 250 PRINT X,B$,C(*),D$(*),
 260 PRINT A,,B
 270 PRINT "THE ANSWER IS: "; Final_total

The PRINT statement evaluates the expressions in the display list from
left to right, and displays their values on the appropriate output
device. It displays numeric values in the current numeric output format
(see "Numeric Format Statements").

A PRINT statement without a display list prints a carriage return and a
line feed (a CRLF) on the output file or device.

The following examples show the PRINT statement used with data files.

 100 PRINT #1; A,B,C
 110 PRINT #2,5; D$,E
 120 PRINT #3,7,4; F(),G$(*,*)
 130 PRINT #4; N,M,(FOR I=1 TO 5, A(I,I), B$(I,I))

The PRINT statement writes BASIC DATA, binary, and ASCII files
differently; see Table 4-12.

4- 110

Table 4-12. Effect of File Type on PRINT Statement

	BASIC DATA	Binary	ASCII

Sequential Write	Record indicated by	Record indicated by	Record indicated by
Starts at	record pointer.	record pointer.	record pointer.

And Writes	As many records as needed	As many records as	As many records as
	for output list.	needed for output	needed for output
		list.	list.

Direct Write	Record rnum.	Record rnum.	Record rnum.
Starts at			

And Writes	One record. Error occurs	One record. Error	One record. Error
	if record cannot	occurs if record	occurs if record
	accommodate output list.	cannot accommodate	cannot accommodate
		output list.	output list.

Direct Word Write	Word wnum of record rnum.	Not allowed.	Not allowed.
Starts at			

And Writes.	As many records as needed	Not allowed.	Not allowed.
	for output list.		

NOTE Data that is written to an ASCII file by a PRINT statement cannot
 be read accurately by a READ statement unless the PRINT statement
 writes commas between data items on the file. For example, the
 statement:

 200 READ #1; A,B,C$,D$

 can read the data written by the statement:

 100 PRINT #1; 123, ",", 456, ",abc", ",def"

 but not by the statement:

 110 PRINT #1; 123,456,"abc","def"

FOR Clause in Display List

The display list of a PRINT statement can contain a FOR clause. The FOR
clause is similar to the FOR NEXT construct.

Syntax

(FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3], output_item_list)

4-: 111

Parameters

num_var A numeric variable assigned the sequence of values:
num_expr1 , num_expr1 +num_expr3, num_expr1 +(2* num_expr3),

 etc. The DISP or PRINT statement prints the values of
 the elements of d_list for each value that is less than

num_expr2 if num_expr3 is positive or greater than
num_expr2 (if num_expr3 is negative).

num_expr1 First value assigned to num_var .

num_expr2 Value to which num_var is compared before the DISP or
 PRINT statement prints a value. If num_expr3 is
 positive and num_var > num_expr2 , the loop execution is
 terminated. If num_expr3 is negative and num_var <

num_expr2 , the loop execution is terminated.

num_expr3 Amount by which num_var increases at the end of the
 loop. The default value is 1 if the step option is not
 specified.

output_item_ Same as d_list in DISP or PRINT statement syntax.
list

Examples

 PRINT "Values for A are: ",(FOR I=1 TO 4, A(I);),,,"X Value: ",X

If each variable is assigned the following values prior to execution of
line 20:

 A(1) = 10
 A(2) = 20
 A(3) = 30
 A(4) = 40
 X = 50

The output generated by line 20 is:

 Values for A are: 10 20 30 40
 X Value: 50

Display list FOR clauses can be nested.

 20 PRINT (FOR I=1 TO 3, (FOR J=1 TO 2, (FOR K=1 TO 2, B(I,J,K))))

For each combination of values of I, J, and K, the following table shows
the variable value that the above statement prints.

Value of I	Value of J	Value of K	Variable Printed

1	1	1	B(1,1,1)

1	1	2	B(1,1,2)

1	2	1	B(1,2,1)

1	2	2	B(1,2,2)

4- 112

2	1	1	B(2,1,1)

2	1	2	B(2,1,2)

2	2	1	B(2,2,1)

2	2	2	B(2,2,2)

3	1	1	B(3,1,1)

3	1	2	B(3,1,2)

3	2	1	B(3,2,1)

3	2	2	B(3,2,2)

PRINT DETAIL IF

The PRINT DETAIL IF statement allows the Report Writer to suppress detail
lines without affecting the rest of the report generation. This
statement affects only the output associated with the DETAIL LINE
statement. All PRINT statements as well as all output generated by
report sections are unaffected. Additionally, all breaks and totaling
are done normally.

There cannot be more than one PRINT DETAIL IF statement in a report
description.

Syntax

[PRINT] DETAIL IF boolean_expr

Parameters

boolean_expr A numeric expression used to determine if printing
 should take place. Output is suppressed if the
 expression is false (zero).

Examples

 100 DETAIL IF Pdi !Prints if Pdi is true.
 100 PRINT DETAIL IF FNX > 0 !Prints if FNX is > 0.

The PRINT DETAIL IF statement becomes busy when BEGIN REPORT executes and
remains busy until an END REPORT or a STOP REPORT is executed. The
statement is executed by the execution of a DETAIL LINE statement.

When DETAIL LINE executes, the PRINT DETAIL IF expression is evaluated
just before detailed output takes place. That is, the statement is
executed immediately before the WITH and USING clauses of DETAIL LINE. If
the PRINT DETAIL IF expression is false (zero), the WITH and USING
clauses are NOT evaluated. All HEADER and TRAILER output still takes
place. Normal PRINT statements still produce output as well.
The following programs both suppress the output of DETAIL LINE. However,

4-: 113

controlling the detailed output with PRINT DETAIL IF is more automatic
and centralized in one place:

Suppressed by program:

 100 REPORT HEADER
 ...
 200 END REPORT DESCRIPTION
 ...
 500 IF Pdi THEN
 510 DETAIL LINE 0 WITH N LINES USING A;X,Y
 515 ELSE
 520 DETAIL LINE 1 WITH N LINES USING A;X,Y
 530 ENDIF

Suppressed by Report Writer:

 100 REPORT HEADER
 110 PRINT DETAIL IF Pdi
 ...
 200 END REPORT DESCRIPTION
 ...
 500 DETAIL LINE 1 WITH N LINES USING A;X,Y

PRINT USING

The PRINT USING statement dictates the format of the values that it
prints, by specifying either a format string or an IMAGE statement. The
DISP USING statement is similar to the PRINT USING statement, and Table
4-13 compares them.

Table 4-13. DISP USING compared to PRINT USING

Statement	Prints output to

DISP USING	Standard list device.

PRINT USING	The device specified by the most recently executed SEND OUTPUT TO
	statement. If that device is the standard list device, or if the
	program has not executed a SEND OUTPUT TO statement, PRINT USING is
	equivalent to DISP USING.

Syntax

PRINT USING image [; output_item [, output_item]...]

Parameters

image Either a string expression or the line identifier of an
 IMAGE statement. See "Format String" or the IMAGE
 Statement for more information.

output_item Numeric or string expression.

Examples

 110 Image$="D,2D,4A,2X,6A"
 120 IMAGE 4A,AAA,3A
 130 Image1=120
 210 PRINT USING 300; Num, Str$, A+B
 220 PRINT USING Image1; S$(2,6), T$[1;3], S$(1,4)[5,7]
 230 PRINT USING Image$; A, B, C$, D$

4- 114

 260 PRINT USING "DD2XZZ"; A, B
 300 IMAGE DDD,4A,DD

PROTECT

The PROTECT statement assigns a lockword to a file to protect the file
against unauthorized copying, renaming, and purging. A COPYFILE, RENAME,
or PURGE statement cannot access the file unless it specifies the
associated lockword.

Syntax

PROTECTfname [, lock_word]

Parameters

fname The file name. A string expression or literal.

lock_word A string expression representing a valid file system
 lockword. If omitted, any existing lockword is removed.

Examples

 PROTECT "File1", "Lock1" !Lock1 is assigned as the lockword for File1.

 PROTECT "File1/Lock1","Lock2" !Changes the lockword for File1.

PURGE

The PURGE statement removes a file's name from the directory and releases
its disk space, permanently.

Syntax

 [{,}]
PURGEfname [, lock_word] [{;} STATUS[=] num_var]

Parameters

fname The PURGE statement removes fname from the directory and
 releases the disk space that was allocated to that file.
 The file data are irretrievably lost.

lock_word String expression that evaluates to the lockword for
fname . It is required if the file has a lockword.

num_var The PURGE statement assigns a zero to num_var on
 successful completion of the file's removal from the
 system; otherwise, a nonzero value is assigned.

 A nonzero value represents the file error code returned
 by the file subsystem of the MPE XL operating system.
 The error number can be translated to an MPE XL file
 system error message by looking up the table of file
 system error codes in the MPE XL Intrinsics Reference

Manual under the FCHECK intrinsic.

Examples

 10 CREATE "File1", FILESIZE=1320
 20 CREATE "File2", FILESIZE=2950
 30 PROTECT "File1", "123ZINC" !Lockword added to File1.
 40 PURGE "File1", "123ZINC" !File1 is purged.
 50 PURGE "File2" !File2 is purged.
 99 END

RAD

4-: 115

The RAD statement indicates that angular units will be specified in
Radians. This is the default.

A Radian is 1/(2*PI) of a circle. This statement is used with
trigonometric functions.

Syntax

RAD

Example

 10 Radius=10
 20 RAD
 30 Area=PI*Radius**2
 40 PRINT Area

RANDOMIZE

The RANDOMIZE statement resets the value of a seed that the RND function
uses for random number generation. The seed is set to one of 116 values
that are available to it.

Syntax

RANDOMIZE [n]

Parameters

n An optional parameter specifying a value for the seed.

Examples

 10 RANDOMIZE !A random seed value.
 20 RANDOMIZE 1.793 !The seed is 1.793.

READ

The READ statement assigns data from one or more DATA statements to
specified variables. It also assigns the value of one or more data items
in a file to one or more variables.

Syntax

 { variable }{ [variable]}
READ { read_for_loop }{,[read_for_loop]} READ #fnum [, rnum [, wnum]]

[; input_list]

Parameters

variable Variable reference; that is, a variable name, array
 reference (one element or an entire array), or substring
 reference (see "Referencing Variables" in chapter 3 for
 syntax).

read_for_loop A FOR loop within a READ statement used to assign
 individual datum to variables. See below for syntax and
 an explanation.

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

rnum Record number, a numeric expression. If a file I/O
 statement specifies rnum, it is direct; otherwise, it is
 sequential

4- 116

wnum Word number, a numeric expression. If a file I/O
 statement specifies wnum, it is a direct word. Direct
 word reads are allowed only with BASIC DATA files.

 [{,}]
input_list item [{;} item]...

 Each item is a numeric or string variable, an array
 reference, or a FOR clause. An array reference has the
 syntax

array_name ([*[,*]...])

 with one asterisk per dimension or it does not have
 asterisks. Not using asterisks specifies any number of
 dimensions. Either format is legal, but the format
 without asterisks is noncompilable.

 A FOR clause has the syntax

 (FOR num_var = num_expr3 TO num_expr4
 [STEP num_expr5], input_list)

 A sequential read must have an input_list .

If a direct read does not have an input_list , it is the same as the POSITION #fnum;rnum
statement. That is, it positions the file at the beginning of record rnum.

When used with data files, the READ statement assigns one file datum to
one input item. It accesses its input items from left to right. It
reads BASIC DATA, binary, and ASCII files differently; see Table 4-14.

Table 4-14. Effect of File Type on READ Statement

	BASIC DATA	Binary	ASCII

Sequential Read	Datum indicated by	Record indicated by	Record indicated by
Starts at	datum pointer.	record pointer	record pointer.
		(possibly within	
		unexhausted record).	

And Reads	As many records as	As many records as	As many records as
	needed to satisfy	needed to satisfy	needed to satisfy
	input list.	input list.	input list.

Direct Read Starts at	Record rnum.	Record rnum.	Record rnum.

And Reads	As many records as	As many records as	As many records as
	needed to satisfy	needed to satisfy	needed to satisfy
	input list.	input list.	input list.

Direct Word Read	Word wnum of record	Not allowed.	Not allowed.
Starts at	rnum.		

And Reads	As many records as	Not allowed.	Not allowed.
	needed to satisfy		
	input list.		

4-: 117

When reading from a binary file, HP Business BASIC/XL does not convert
data to the types of the variables to which it assigns them. For
example, if a program tries to read decimal data that is in a binary file
into real variables, the numbers returned are incorrect.

Examples

 10 DATA 12,13,14
 20 DATA 15,16,17,18
 30 READ A,B !A=12, B=13
 40 READ C !C=14
 99 END

After line Data pointer is at: In line:

--
--

 20 12 10

 30 14 10

 40 15 20

If possible, a datum from a DATA statement is interpreted as the type of
data required by the variable into which it is read. If an underflow
occurs, the value zero is assigned to the variable. Before a datum is
assigned to a variable, it is converted to the type of the variable, if
possible. A numeric variable requires a numeric literal, and a string
variable requires a string literal or any unquoted string. Numeric
literals are also unquoted string literals and can thus be assigned to a
string variable.

 10 DATA 1234, "56", "seven", "eight", 12
 20 READ N,A$!N=1234, A$="56"
 30 READ B$, C$!B$="seven", C$="eight"
 40 READ D$!D$="12"
 99 END

Specification of a substring of a string variable does not always "use
up" the value that is read into it. However, following the READ, the
data pointer moves to the next datum anyway. The rules of substring
assignment apply to READ.

 10 DIM Str$[3], Str_array$(1:5)[6]
 20 DATA Anteater, Bear, Cat, Dog
 30 READ Str$[1:3] !Str$="Ant"
 40 READ Str_array$(1)[1,2], Str_array$(2)[1;1] ! Str_array$(1)="Be",
 99 END ! Str_array$(2)="C"

The READ statement assigns values from left to right when multiple
variables are specified. Thus, variable subscripts can be assigned just
prior to assignment to an array element. For example, in the statement

 2450 READ X,Y,A(X,Y)

values are assigned to X and Y before the subscripts of the A array are
evaluated.

An example of using READ statements with data files:

 100 READ #1; A,B,C
 110 READ #2,5; D$,E
 120 READ #3,7,4; F(),G$(*,*)
 130 READ #4; N,M,(FOR I=1 TO 5, A(I,I), B$(I,I))

4- 118

FOR Loops in READ statements

The READ statements in the previous examples have contained only
references to individual variables. A READ statement can contain a FOR
loop designed to assign values to specific array elements or substrings
of a string variable.

Syntax

(FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3], input_list)

Parameters

num_var The numeric loop control variable that assumes the
 values num_expr1 , num_expr1 + num_expr3 ,

num_expr1 +(2* num_expr3) on successive executions of the
 loop body.

num_expr1 The initial value that num_var is assigned.

num_expr2 Value to which num_var is compared before the loop body
 is executed.

num_expr3 Amount by which num_var is incremented or decremented.
 The default is one.

input_list The list of items to be read. This is the same as for
 the READ statement without the FOR loop.

A READ statement executes the following steps each FOR loop specified:

 1. num_var = num_expr1

 2. If num_expr3 is positive; go to step 3 else num_expr3 is negative
 got to step 4.

 3. If num_var <= num_expr2 , then assign data to the input_list
 elements, and go to step 5; otherwise, stop.

 4. If num_var >= num_expr2 , then assign data to the input_list
 elements, and go to step 5; otherwise, stop.

 5. num_var = num_var + num_expr3 .

 6. Return to step 3 or 4 if num_expr3 is positive or negative ,
 respectively.

Examples

A variable specified within a FOR loop in a READ statement must contain a
reference to num_expr1 as a subscript or substring if the data are not to
be repeatedly assigned to the same variable or array element. When

 100 READ (FOR I=1 TO 4 STEP 1 A(I))

is executed, the index I assumes the values 1, 2, 3, and 4 and assigns
the data to the array elements A(1), A(2), A(3), and A(4). The statement

 200 READ (FOR I=2 to 6 STEP 2, A$[I;1])

assigns the first character in each of the next three double-quoted
string literal data items to positions 2, 4 and 6 in A$.

FOR loops within READ statements can be nested; for example, the
following statement reads data into a 3-by-5 array.

 250 READ (FOR I=1 TO 3, (FOR J=1 TO 5, A(I,J))

4-: 119

READ FORM

The READ FORM statement assigns the values entered into the fields of a
VPLUS form to HP Business BASIC/XL variables. A time limit for input can
be specified by using the TIMEOUT clause.

Syntax

READ [FROM] FORM
[[{,}]]
[form_item [{;} form_item ...]]

[{,}]
[{;} TIMEOUT [=] time_expr]

[{,}]
[{;} NOEDIT [[=] key_number_list]]

Parameters

form_item One of the following:

form_element
for_clause
skip_clause

form_element One of the following:

num_var
str_var $
array_name ([*[,*]...])
str_array_name $([*[,*]...])

 The last two formats above have one asterisk per
 dimension or does not use asterisks. Not using
 asterisks specifies any number of dimensions. Either
 format is legal, but the format without asterisks is not
 compilable. Substrings are also allowed.

for_clause (FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3],
form_item [, form_item]...)

 A for_clause is useful for reading array elements.
 Refer to the INPUT statement for more information.

skip_clause SKIP skip_expr

 A skip_clause is used to skip one or more fields in the
 form to avoid the necessity of assigning them. The

skip_expr is a numeric expression that evaluates to the
 number of fields to skip.

time_expr Time_expr is a numeric expression that evaluates to the
 number of seconds that you have to fill in any input
 fields on the form. You must depress the ENTER key or a
 user-defined branch-during-input key before this time or
 an HP Business BASIC/XL error occurs. Under the latter
 conditions, no input is assigned to the form
 variable(s).

key_number_list A list of integers or numeric expressions that evaluate
 to an integer in the range of [1..8] separated by commas
 or semicolons. No more than 8 values can be specified
 for each statement. If the integer is not in the
 specified range, an error occurs. If you do not specify
 values, all keys do not have editing completed.

The READ FORM statement is terminated by pressing the ENTER key or a

4- 120

user-defined branch-during-input key. Fields with matching data items
are converted and assigned to the corresponding HP Business BASIC/XL
variables.

The READ FORM statement is designed to assign the information in all the
fields on an entire screen at once. Each field is assigned to a single
variable or array element. The first form_item is assigned the value of
the first field on the form, the second form_item is assigned the next
value, etc. Each variable specified in a for_clause is assigned the
value from a single field. Each element of the array specified by the
array_name(*) notation is also assigned from a single field.

Skip_clause is used; for example, if you wish to only assign the value of
the fourteenth field to a variable without reading and converting fields
one through thirteen. Simply include the option, SKIP 13.

The following is an example of a READ FORM statement that assigns values
from a form with at least 13 fields assuming the A array has five
elements and the B$ array has two elements.

 READ FORM Surname$, Firstname$, Initials, SKIP 3, &
 (FOR I=1 to 5 STEP 2,A(I)), B$(*), Choice1$, Choice2$

The first three fields are read into Surname$, Firstname$ and Initial$.
The next three fields are ignored. The for_clause reads values into
A(1), A(3), and A(5). B$(*) reads values into B$(1) and B$(2). The
twelfth and thirteenth fields are read into Choice1$ and Choice2$
respectively. This same statement causes a run-time error if the active
form has fewer than thirteen fields.

The TIMEOUT clause requires that you respond within a set amount of time.
If input is not complete within this time, an error condition occurs.
The built-in RESPONSE function returns a value of two.

If no VPLUS form is active, or a JOINFORM is active, executing a READ
FORM statement causes a run-time error. See Appendix F for information
on reading values from a JOINFORM form.

Examples

The following examples show the READ FORM statement.

 300 READ FORM
 310 READ FORM A;TIMEOUT=100
 320 READ FROM FORM A;TIMEOUT 100;NOEDIT=8
 330 READ FORM A,B;C$;NOEDIT
 340 READ FORM A,SKIP 2;C$

REAL

This statement defines a variable as a type REAL. If the SHORT option is
used with it, the variable is type SHORT REAL.

Syntax

 { num_var } [{ num_var }]
[SHORT] REAL { arrayd } [, { arrayd }]...

Parameters

num_var Name of scalar numeric variable to be declared.

arrayd Numeric array description. The syntax for the array is
 described under the DIM statement.

Examples

The following examples show the REAL and SHORT REAL statements.

4-: 121

 100 SHORT REAL Fraction
 120 SHORT REAL Reading1, Reading2(36,36)
 130 REAL Distance
 140 REAL Time1(0:35,1:36,3),Time2

REDIM

An array can be redimensioned explicitly or implicitly. The REDIM
statement explicitly redimensions one or more arrays. Unlike the DIM
statement, it is executable.

You can do the following by redimensioning an array:

 * Change the bounds of one or more dimensions.
 * Decrease the number of elements accessible.

Redimensioning cannot do the following:

 * Change the number of dimensions.
 * Change the element values.
 * Change the storage order.
 * Increase the original number of elements (the number of elements
 assigned to it by the most recent call to the program unit that
 declared it).

Syntax

REDIM array dims [, array dims]...

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variables names are suffixed with a "$".

dims Array dimensions used in syntax specification
 statements. Its syntax is

 (dim1 [, dim2 [, dim3 [, dim4 [, dim5 [, dim6]]]]])

 where dim1 through dim6 each have the syntax

 [num_expr1 :] num_expr2

 and num_expr1 and num_expr2 are the lower and upper
 bounds (respectively) of the dimension. If num_expr1 is
 not specified, it is the default lower bound.

Examples

 100 OPTION BASE 0
 105 DIM A(1:4,3) !A is 4x4, with 16 elements.
 110 DIM B(1,2,1:3) !B is 2x3x3, with 18 elements.
 120 REDIM A(1:3,0:1) !A is now 3x2, with 6 elements.
 130 REDIM B(1,1,2) !B is now 2x2x3, with 12 elements.
 999 END

If A and B look like this before redimensioning:

 A: 1 2 3 4 B: 1 2 3
 5 6 7 8 4 5 6
 9 0 1 2 7 8 9
 3 4 5 6
 1 2 3
 4 5 6
 7 8 9

then they look like this after redimensioning:

4- 122

 A: 1 2 B: 1 2 3
 3 4 4 5 6
 5 6
 7 8 9
 1 2 3

Arrays can also be explicitly redimensioned by the MAT READ and MAT INPUT
statements, or implicitly redimensioned by the MAT = statement.

REM

The REM statement specifies a remark. It is the first keyword on a
comment line. HP Business BASIC/XL ignores the rest of that line.

Syntax

REM

Examples

 10 REM The rest of this line is ignored

RENAME

The RENAME statement changes the name of a file.

Syntax

RENAMEfname1 TO fname2 [, lock_word]

Parameters

fname1 Old fname of file.

fname2 New fname of file.

lock_word String expression that evaluates to the lockword for
fname1 . It is required if fname1 has a lockword. The

 lockword is not added to fname2 .

Examples

 10 CREATE "File1/secret", FILESIZE=1320 !File1 has a lockword "secret"
 20 CREATE "File2", FILESIZE=2950 !File2 has no lockword
 30 RENAME "File1" TO "First", "secret" !Lockword must be specified
 40 RENAME "First" TO "Number1", !No lockword required
 50 RENAME "File2" TO "Number2" !No lockword required
 99 END

REPEAT

The REPEAT and UNTIL statements define a loop that repeats until the
boolean expression in the UNTIL statement is TRUE (nonzero).

Syntax

REPEAT [stmt] . . . UNTIL boolean_expr

Parameters

stmt Program line that is executed until boolean_expr
 evaluates to TRUE. These statements constitute the loop
 body. The loop body is always executed once prior to
 the evaluation of boolean_expr .

boolean_expr Considered FALSE if it evaluates to zero; TRUE
 otherwise.

4-: 123

Examples

 10 Nums_read=0
 20 REPEAT !Begin loop
 30 READ Number
 40 Nums_read=Nums_read+1
 50 UNTIL Number !End loop when Number<>0
 60 PRINT Nums_read," numbers read"
 99 END

REPEAT constructs can be nested.

 100 REPEAT !Begin outer loop
 110 READ Number1
 120 REPEAT !Begin inner loop
 130 READ Number2
 140 UNTIL Number1-Number2 !End inner loop
 150 UNTIL Number1+Number2 !End outer loop
 160 PRINT Number1,Number2
 999 END

Entering a REPEAT loop in the middle of the loop is considered to be a
bad programming practice, and is not recommended. However, calling a
local subroutine using GOSUB or calling an external subroutine using CALL
from within a REPEAT construct can be useful.

 100 REPEAT !Begin loop
 110 READ N1,N2
 120 IF (N1 MOD 2) THEN GOSUB 200 !If N1 is odd, exit the loop
 125 PRINT N1
 130 UNTIL N2 !End loop
 140 STOP
 200 N1=2*N1
 210 RETURN !Return to inside of loop
 999 END

REPORT EXIT

The REPORT EXIT statement defines a Report Writer section that executes
when the STOP REPORT statement executes in a program. This condition
typically indicates than an error has been detected and that the report
must be stopped abnormally. The REPORT EXIT section allows the program
to produce a meaningful message and finish the report gracefully. If no
WITH or USING clause is present, the statement produces no output.

Syntax

 [[LINES]]
REPORT EXIT boolean_expr [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

boolean_expr If this expression is zero (FALSE), the REPORT EXIT
 section does not execute. For nonzero values (TRUE),
 the REPORT EXIT statement and section will execute.
 This provides you with more control over early report
 termination.

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string or a line reference to an IMAGE line.

output-list A list of output items, identical to the list used by
 the PRINT USING statement.

4- 124

Examples

The following examples show the use of the REPORT EXIT statement.

 100 REPORT EXIT TRUE
 100 REPORT EXIT Implementor > 0 WITH 3 LINES USING Rpt_image

The REPORT EXIT statement generates an error if no report is active.

If a report section is active (executing) and encounters this statement,
then that report section is ended.

The REPORT EXIT section executes ONLY when STOP REPORT is executed in a
program. A STOP REPORT command stops the report immediately. When STOP
REPORT is executed, the REPORT EXIT section evaluates the Boolean
condition first. If the result is FALSE (zero), control returns to the
STOP REPORT statement. If the result is TRUE (nonzero), the REPORT EXIT
statement and section are executed. A page eject is always done, whether
or not this statement is executed.

The REPORT EXIT section is executed even if report output has not
started.

NOTE It is recommended that you include a TRIGGER PAGE BREAK at the
 beginning of the REPORT EXIT section. This ensures that there are
 enough lines left on the page to print the message, and provides a
 last page of the report that is dedicated completely to the REPORT
 EXIT output.

REPORT HEADER

The REPORT HEADER statement marks the beginning of a report description.
This statement is required to define a report and is executed when the
report output is started. If neither a WITH nor a USING clause is
present, the REPORT HEADER produces no output.

Syntax

 [[LINES]]
REPORT HEADER [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string, or a line reference to an IMAGE line.

output-list A list of output items, identical to the list used by
 the PRINT USING statement.

Examples

The following examples show the REPORT HEADER statement.

 100 REPORT HEADER
 100 REPORT HEADER WITH 3 LINES
 200 REPORT HEADER USING Rh_image;DATE$

If no report is active, that is, BEGIN REPORT has not been executed,
program execution branches from the REPORT HEADER statement to the

4-: 125

statement after the matching END REPORT DESCRIPTION statement.

If a report is active and the REPORT HEADER statement is executed, two
possible actions can occur. If another report section is active, that
section is ended. Otherwise, the statement is unexpected and an error
occurs.

The REPORT HEADER section is executed when report output begins. The
section only executes once. Report output starts when any of the
following statements executes after a BEGIN REPORT statement has been
executed:

 DETAIL LINE
 TRIGGER BREAK
 TRIGGER PAGE BREAK
 END REPORT

When the REPORT HEADER section executes, the REPORT HEADER statement
output, if any, is done first. For further information about the REPORT
HEADER refer to the WITH and USING clauses. Execution continues with the
line following the REPORT HEADER until another Report Writer section
statement is encountered.

REPORT TRAILER

The REPORT TRAILER section defines a block of code to be executed at the
end of a report only if the END REPORT statement is executed. The report
trailer is printed after the break-level trailers. This section is
optional. The REPORT TRAILER statement must occur within a report
description; that is, between the REPORT HEADER statement and the END
REPORT DESCRIPTION statement. If neither the WITH or USING clause is
present, the statement produces no output, but, there must be at least
one line of space left on the page.

Syntax

 [[LINES]]
REPORT TRAILER [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string, or a line reference to an IMAGE line.

output-list A list of output items, identical to the list used by
 the PRINT USING statement.

Examples

The following examples show the use of the REPORT TRAILER statement.

 100 REPORT TRAILER
 100 REPORT TRAILER WITH 3 LINES USING Rt;DATE$

If a report is not active, the REPORT TRAILER statement generates an error.

If the statement is encountered when a report section is not executing,
an error occurs. If a report section is active; for example, a TRAILER
section, that section ends.

The REPORT TRAILER section becomes active when END REPORT executes. All
of the break level trailers are printed before the report trailer. A
page trailer is printed after the report trailer.

4- 126

RESAVE KEY

The RESAVE KEY statement's action is dependent on whether a filename
parameter is included in the statement. If a filename parameter is
included and the file does not previously exist, the RESAVE KEY statement
stores the typing aid definitions in a BKEY file. The file to which the
information is saved has a special format and a BKEY file code. If no
filename parameter is specified, the RESAVE KEY statement causes HP
Business BASIC/XL to store the current typing aid key definitions
internally as the current definition. The RESAVE KEY statement does not
save information for keys defined as branch-during-input keys, it saves
only the key definition information for keys defined as typing aid definitions.

The file referenced by fname must exist and have a BKEY file format. An
error occurs if the format is not correct. If any user-definable keys have been
defined as branch-during-input keys when a RESAVE or SAVE statement is executed in the
interpreter or in a compiled program, the last typing aid key definition for that key
is the information written to the BKEY file.

Typing aid keys are discussed in detail in chapter 8, User-definable Keys.

Syntax

RESAVE KEY [fname]

Parameters

fname A file name represented by a quoted string literal, an
 unquoted string literal or a string expression as
 described in chapter 6.

Examples

 RESAVE KEY typeaid

 200 RESAVE KEY typeaid1 !File is typeaid1
 210 RESAVE KEY Filename$ + "." + Groupname$!Uses the data in Filename$
 211 !and Groupname$

RESTORE

The RESTORE statement resets the data pointer to the beginning of a DATA
statement so that the data can be reused.

Syntax

RESTORE [line_id]

Parameters

line_id Line identifier of a DATA statement in the same program
 unit as the RESTORE statement. The RESTORE statement
 positions the data pointer at the first datum in the
 specified DATA statement. If no line_id is specified,
 then the data pointer is positioned to the first datum
 in the first DATA statement in the program unit.

Example

 100 DATA 1,2,3
 110 DATA 4,5,6
 120 READ A,B,C !A=1, B=2, C=3
 130 READ D,E,F !D=4, E=5, F=6
 140 RESTORE 110 !Applies to line 110
 150 READ G,H,I !G=4, H=5, I=6 (from line 110)
 160 RESTORE !Applies to line 100 (by default)
 170 READ J,K,L !J=1, K=2, L=3 (from line 100)
 999 END

4-: 127

RETURN

The RETURN statement returns control to the program unit that called a
subroutine or multi-line function. When used in a subroutine, control is
returned to the statement following the GOSUB statement. When used in a
multi-line function, the value of the expression immediately following
RETURN is returned to the statement or expression where the call was made.

Syntax

RETURN [expr]

Parameters

expr A numeric expression if the RETURN statement is in a
 numeric function, and a string expression if the RETURN
 statement is in a string function.

 HP Business BASIC/XL evaluates the expression and
 returns it value to the program unit that called the
 function. If the function is numeric, HP Business
 BASIC/XL converts the value to the function type before
 return it (the function type is either declared in the
 DEF FN statement that defines the function, or if not
 declared is the default numeric type).

 This parameter is not used when the RETURN is used in
 conjunction with a subroutine.

If a multi-line function does not contain a RETURN statement, an error
occurs when execution reaches the FNEND statement. The multi-line
function RETURN statement that returns a value is legal only within a
multi-line function. It is illegal in the main program or a subprogram.

Examples

 10 READ A !Example of RETURN within a multi-line function
 20 C= FNAdd(A)
 30 PRINT C
 99 END
 100 DEF FNAdd(X)
 120 Y= X+2
 130 RETURN Y !FNAdd returns value to line 20
 140 FNEND

GOSUB statements can be nested; that is, calls to more than one GOSUB
statement can be executed before a RETURN statement is executed. The
first RETURN statement executed matches the most recently executed GOSUB
statement, the second RETURN statement executed matches the second most
recently executed GOSUB statement, and so on.

 10 REM Main Program Unit
 20 PRINT "B"
 25 GOSUB First !Go to line 100; First prints "ASI"
 30 PRINT "C"
 35 STOP
 100 First: REM First subroutine
 110 PRINT "A";
 120 GOSUB second !Go to line 200; Second prints "S"
 130 PRINT "I"
 140 RETURN !Return to line 25 to print "C"
 200 Second: REM Second subroutine
 210 PRINT "S";
 220 RETURN !Return to line 130 to print "I"
 999 END

The output from the above program is BASIC.

4- 128

After a GOSUB statement is executed, the subroutine to which it transfers
control is "open". When a matching RETURN statement is executed, the
subroutine is "closed." An error occurs if a RETURN statement is executed
when no subroutine is open.

 10 REM Main Program Unit
 20 GOSUB 100 !Open subroutine at line 100
 25 RETURN !No open subroutine;error occurs
 30 STOP
 100 REM Subroutine
 110 PRINT "In sub"
 120 RETURN !Close subroutine; return to line 30
 999 END

SAVE KEY

The SAVE KEY statement's action is dependent on whether a filename
parameter is included in the statement. If a filename parameter is
included and the file does not previously exist, the SAVE KEY statement
stores the typing aid definitions in a BKEY file. The file to which the
information is saved has a special format and a BKEY file code. If no
filename parameter is specified, the SAVE KEY statement causes HP
Business BASIC/XL to store the current typing aid key definitions
internally as the current definition. The SAVE KEY statement does not
save information for keys defined as branch-during-input keys, it saves
only the key definition information for keys defined as typing aid definitions.

The SAVE KEY statement saves key labels, it does not save any actions
that a program has set up when it traps those labeled keys. If a key is
pressed, it will paint the screen. Any actions associated with that key
have not been saved so they will not be performed.

NOTE It is important to do a SAVE KEY without the fname parameter
 following the initial setting of the fields of the user-definable
 keys for use as typing aid keys.

If this is not done, exiting from a program containing an OFF KEY
statement restores the user-definable keys to the values present before
you set those displayed on entry to the program. If you had just entered
the interpreter, the values of the typing aid keys are restored to the
terminal's default typing aid key definitions rather than your
user-defined typing aid keys. In other words setting the typing aid key
definitions and then executing, a program containing the OFF KEY
statement, restores the terminal's default typing aid definitions.

HP Business BASIC/XL stores the values of typing aid keys internally.
SAVE KEY without an fname parameter can be used in conjunction with GET
KEY without an fname parameter to access HP Business BASIC/XL's
internally stored values. The GET KEY statement without an fname
parameter restores the definitions of the keys present at the last
previous SAVE KEY statement without an fname parameter if the following
condition is met: no other SAVE KEY, RESAVE KEY, GET KEY or SCRATCH KEY
statement precedes the GET KEY statement without an fname parameter.
Thus, GET KEY can be used without an fname parameter to restore
definitions of any of the fields changed by the method outlined in the
terminal's reference manual.

Syntax

SAVE KEY [fname]

Parameters

fname A file name represented by a quoted string literal, an

4-: 129

 unquoted string literal or a string expression as
 described in chapter 6.

Examples

The following examples show the use of the SAVE KEY statement, and also
show that SAVE key is also available as a command.

 SAVE KEY
 SAVE KEY typeaid

 100 SAVE KEY
 110 SAVE KEY typeaid1

SCRATCH KEY

The SCRATCH KEY statement resets the current typing aid contents of the
attribute, label, and key definition fields of an individual or group of
user-definable keys. The values of each field for the specified keys are
assigned the default values, blank labels, local, and BEL. HP Business
BASIC/XL also stores the default values of the keys as those retrieved by
a GET KEY statement without a filename parameter.

Syntax

SCRATCH KEY [key_number_list]

Parameters

key_number_list A list of integers selected from the set of [1..8] or
 numeric expressions that evaluate to an integer in the
 range of [1..8] separated by commas or semicolons. If
 the integer is not in the specified range, an error
 occurs. No more than eight values can be specified for
 each statement. If no values are specified, all of the
 keys are scratched.

Examples

 SCRATCH KEY ! Resets typing aid definition of all user-definable
 ! keys
 100 SCRATCH KEY ! Resets typing aid definition of all user-definable keys
 110 SCRATCH KEY 1 ! Resets typing aid definition of user-definable key
 ! number one
 120 SCRATCH KEY 1,2,6
 130 SCRATCH KEY Typing_aid_key_number

SEARCH

The SEARCH statement starts the database retrieval process for HP
Business BASIC/XL's Database Sort Feature. Functions, built-in as well
as user-defined, can be used in the search condition. When the SEARCH
statement is executed, the data sets contained in the thread list are
accessed in the order and hierarchy specified by the THREAD IS statement.
The data retrieved from each data set are unpacked into the local
variables as defined in the respective IN DATASET statement. For each
type of data sets from the thread list, the search condition is
evaluated. If the search condition is true, the record pointers to the
data set records that have been read are written out to the workfile;
otherwise, they are ignored and the next data set record is searched.
The workfile is a file created and used by the program to store the
record number of the data set items that satisfy the search condition.
You can access this file.

If no search condition is needed, the keyword ALL can be used and all
records are retrieved.

When the SEARCH statement is executed, the workfile can be empty or

4- 130

nonempty. If the workfile is empty, all data records in the data sets,
mentioned in the threadlist, are searched. If, however, the workfile is
nonempty searching is done only on the records whose pointers are
contained in the workfile. The pointers to those records whose data fail
the search condition are dropped from the workfile.

Syntax

 { search_condition }
SEARCH USING line_id ; {ALL }

Parameters

line_id Line label on line number that identifies the line on
 which a THREAD IS statement is defined.

search_ Any logical expression.
condition

Examples

The following shows the use of the SEARCH statement.

 400 SEARCH USING 300; ALL
 410 SEARCH USING Thread_list; TRIM$(Name$)="HP" AND Price > 0

SELECT

The SELECT, CASE, CASE ELSE, and END SELECT statements define a construct
that executes one set of statements, depending on the value of an
expression.

Syntax

 [CASE case_descriptor] [CASE ELSE]
 [[stmt]] [[stmt]]
SELECT select_expr [.]...[.] END SELECT
 [.] [.]
 [.] [.]

Parameters

select_expr An expression evaluated and compared to the case
descriptor 's. If the value is numeric, it is converted

 to the default numeric type first.

case_descriptor One of the following:

 * num_item [, num_item]...

 * str_item [, str_item]...

num_item One of the following:

 * num_lit [TO num_lit [EXCLUSIVE]

 * {<,<=,>=,>} num_lit

EXCLUSIVE If specified, the range excludes the two specified
num_lits . For example, CASE 10 TO 20 EXCLUSIVE excludes

 both 10 and 20.

str_item One of the following:

 * str_lit [TO str_lit [EXCLUSIVE]

 * {<,<=,>=,>} str_lit

4-: 131

 Each case_descriptor must be a numeric literal if
select_expr evaluates to a numeric value and a string

 literal if it evaluates to a string value.

 If the select_expr value is equal to one of the
 specified case_descriptor literals or is within the
 range specified in the case_descriptor , then the case
 clause associated with the case_descriptor is executed.

stmt Program line. It is executed if select_expr fits the
 associated case_descriptor . Each sequence of program
 lines between a CASE and either the next CASE or an END
 SELECT constitutes a case clause.

Examples

 100 SELECT Number
 110 CASE < 0 !If Number is negative.
 120 READ Number
 130 CASE 0 !If Number is zero
 140 LET Number=Default
 150 CASE 1 TO 10 !If Number is 1 - 10
 160 PRINT Number
 170 GOTO Routine1

180 CASE 10 TO 20 EXCLUSIVE !If Number is 11 - 19 (due to the EXCLUSIVE keyword)
 190 PRINT Number
 200 Number=2*Number
 210 GOSUB Routine2
 220 CASE 20,30,40 !If Number is 20, 30 or 40
 230 PRINT Number
 240 GOSUB 450
 250 CASE ELSE !If Number is any other value
 260 LET Number=Default
 270 END SELECT

HP Business BASIC/XL evaluates the select expression and compares its
value with each case descriptor's starting with the first and proceeding
in line number order, until a case descriptor describes the value or
every case descriptor has been checked.

When a case descriptor describes the value, the statements in its case
clause are executed; then, control is transferred to the statement
following the END SELECT statement. If more than one case descriptor
describes the value, only the first one's case clause is executed.

If no case descriptor describes the value, the CASE ELSE clause is
executed, if there is one. If there is no CASE ELSE clause, control is
transferred to the statement following the END SELECT statement.

The string value of a select_expr is compared with the quoted string
literals character by character. The following code segment outputs In
the first half of the dictionary.

 100 Str_var$ = "dog"
 110 SELECT Str_var$
 120 CASE "a" To "m"
 130 PRINT "In the first half of the dictionary."
 140 CASE "dog"
 150 PRINT "my pet."
 160 END SELECT

 10 SELECT A+B
 20 CASE < 0 !A+B < 0
 21 PRINT "Negative"
 22 STOP
 30 CASE 0 !A+B = 0
 31 PRINT "Zero"
 32 LET X=Default

4- 132

 40 CASE 1 TO 10 !1 <= A+B <= 10
 41 PRINT "1 thru 10"
 42 GOSUB Routine1
 50 CASE 10 TO 20 EXCLUSIVE !10 < A+B < 20
 51 PRINT "Between 10 & 20"
 52 GOSUB Routine2
 60 CASE 20,22,24 !A+B = 20, 22, or 24
 61 PRINT "Special Case #1"
 62 GOSUB Spec_case1
 70 CASE 21,23,25 !A+B = 21, 23, or 25
 72 PRINT "Special Case #2"
 73 GOSUB Spec_case2
 80 CASE > 30 !A+B > 30
 81 PRINT "Over 30 by:"
 82 PRINT (A+B)-30
 83 STOP
 90 CASE ELSE !26 <= A+B <= 30
 91 PRINT "26 thru 30"
 92 GOSUB Routine3
 100 END SELECT

SELECT constructs can be nested.

 100 SELECT Color1$!Start outer construct
 110 CASE "red", "blue", "yellow" !First case in outer construct
 120 GOSUB Primary
 130 SELECT Color1$!Start first inner construct
 140 CASE "red" !Case in first inner construct
 150 PRINT "RED"
 160 PRINT "ORANGE,PURPLE"
 170 CASE "blue" !Case in first inner construct
 180 PRINT "BLUE"
 190 PRINT "PURPLE,GREEN"
 200 CASE "yellow" !Case in first inner construct
 210 PRINT "YELLOW"
 220 PRINT "ORANGE,GREEN"
 230 END SELECT !End first inner construct
 240 CASE "green","purple","orange" !Second case in outer construct
 250 GOSUB Secondary
 260 SELECT Color2$!Start second inner construct
 270 CASE "green" !Case in second inner construct
 280 PRINT "YELLOW+BLUE"
 290 CASE "purple" !Case in second inner construct
 300 PRINT "BLUE+RED"
 310 CASE "orange" !Case in second inner construct
 320 PRINT "RED+YELLOW"
 330 END SELECT !End second inner construct
 340 END SELECT !End outer construct

Entering the middle of a SELECT construct from a statement other than the
SELECT statement is considered to be a bad programming practice, and is
not recommended. However, if control is transferred to a statement that
is in the middle of a SELECT construct, execution proceeds in line number
order starting with that statement. When a CASE, CASE ELSE, or END
SELECT statement is reached, control is transferred to the statement
following the END SELECT statement.

Control can be transferred out of a SELECT construct and then back by
using a GOSUB or CALL statement.

 100 SELECT T
 110 REM Clause 1
 120 CASE < 0
 121 CALL Sub1 !Jump out of SELECT construct
 122 PRINT T !Return to construct from 520
 130 REM Clause 2
 131 CASE 0
 132 GOSUB 300 !Jump out of construct

4-: 133

 133 PRINT 2*T !Return to construct from 310
 134 PRINT T
 140 REM Clause 3
 141 CASE > 0
 142 GOSUB 400 !Jump out of construct
 150 END SELECT !Return to construct from 410
 160 STOP
 300 REM Do anything !Arrive from Clause 2, line 132
 310 RETURN !Return to Clause 2, line 133
 400 REM Do anything !Arrive from Clause 3, line 142
 410 RETURN !Return to Clause 3, line 122
 500 SUB Sub1 !Called from Clause 1 line 121
 510 REM In procedure
 520 SUBEND !Return to clause 1 line 122
 999 END

SEND OUTPUT TO

The SEND OUTPUT TO statement specifies the output device for the PRINT
statement, the PRINT USING statement, and the default target file for the
COPYFILE statement. If the dev_spec is a disk file that already exists,
additional information is appended to the file.

Syntax

[SEND] OUTPUT [TO] dev_spec

If a program does not contain a SEND OUTPUT TO statement, the output
device for the PRINT statement is the terminal if HP Business BASIC/XL is
running interactively or the standard list device if HP Business BASIC/XL
is running in a job stream. The default target file for the COPYFILE
statement is the standard list device.

The SEND OUTPUT TO statement overrides the COPY ALL OUTPUT TO statement;
if a program contains both statements, then the PRINT statement output is
displayed only on the device specified in the SEND OUTPUT TO statement.
A SEND OUTPUT TO statement generates an error if it executes between the
initiation of report writer output with the DETAIL LINE, TRIGGER BREAK,
TRIGGER PAGE BREAK, or END REPORT statement and termination of the report.

Examples

 >list
 10 SYSTEM "FILE LP;DEV=LP"
 20 SYSTEM "FILE LASER3;DEV=PP,3;ENV=LP602.HPENV.SYS;CCTL"
 30 SEND OUTPUT TO "*LP" !Output sent to LP
 40 PRINT "Send a line to the printer."
 50 SEND OUTPUT TO DISPLAY,MARGIN=40 !Output sent to DISPLAY
 60 PRINT "Line to display on the terminal showing margin at 40."
 70 SEND OUTPUT TO "*LASER3" !Output sent to LASER3
 80 PRINT "Send a line to the laser printer."
 >run
 Line to display on the terminal showing
 margin at 40.
 >

SEND SYSTEM OUTPUT TO

The SEND SYSTEM OUTPUT TO statement specifies the output device to which
interpreter output is sent.

Syntax

[SEND] SYSTEM OUTPUT [TO] dev_spec

HP Business BASIC/XL interpreter output that is normally sent to the
system's standard list device, usually, the terminal, can be redirected
to other output devices specified by dev_spec . The interpreter

4- 134

statements and commands effected by SEND SYSTEM OUTPUT TO are CHANGE,
COPY, FIND, INFO, LIST, LIST SUBS, MODIFY, MOVE, and REDO. If a program
does not contain a SEND SYSTEM OUTPUT TO statement, output is sent to the
system standard list device.

Examples

 100 SEND SYSTEM OUTPUT TO DISPLAY ! Terminal
 110 SEND SYSTEM OUTPUT TO PRINTER ! Spool file sent to
 115 ! system printer
 120 SEND SYSTEM OUTPUT TO "SYSOUT", FILESIZE 230 ! A user-defined file

SET PAGENUM

The SET PAGENUM statement allows you to change the page number maintained
by the Report Writer. The page number available through the PAGENUM
built-in function is affected. This statement can appear anywhere in the
subunit containing the report description.

Syntax

 [TO]
SET PAGENUM [,] page_expr
 [;]

Parameters

page_expr A numeric expression. Its value must be a non-negative
 number in the INTEGER range.

Examples

 100 SET PAGENUM TO Last_page + 3 !Pagenumber is 3 greater than the
 101 !number in Last_page
 100 SET PAGENUM TO 0 !Pagenumber is 0

The Report Writer maintains a page number for use by the user. The
PAGENUM built-in function returns this page number. The page number can
be changed at any time using the SET PAGENUM statement. This allows the
addition of pages from other sources in a printed report.

The page number can be set to zero, which is particularly useful for
reports with a report header on a page by itself. Negative page numbers
are not allowed.

The page number does not affect the SUPPRESS FOR statement, which
suppresses report output. The count of page breaks is distinct from the
page number count kept by the report writer.

SETLEN

The SETLEN statement sets the current length of a HP Business BASIC/XL
string variable to a specified length.

Syntax

 {TO}
SETLEN str_var {, } num_expr
 {; }

Parameters

str_var The variable who length is to be set. A string variable
 or a string array element.

num_expr A numeric expression that evaluates to the length of the
 string.

4-: 135

An HP Business BASIC/XL program can pass an HP Business BASIC/XL string
as an actual parameter to a Pascal PAC or C array formal parameter, but
only the string characters are passed (the current string length is not).
If the HP Business BASIC/XL program passes the string by reference, and
the Pascal or C external routine changes its current length, then the HP
Business BASIC/XL program must reset the current length when it resumes
control.

Examples

 100 EXTERNAL PASCAL INTEGER FNAbbreviate(BYTE A$)
 110 INTEGER New_length
 120 READ String$
 130 New_length = FNAbbreviate(String$) !Calls the function to set
 131 !the length
 140 SETLEN String$ TO New_length !Sets string to length
 141 !returned by FNAbbreivate
 150 PRINT String$
 999 END

SHORT

This statement defines a variable as a type SHORT REAL.

The SHORT statement can also be used as an option with the REAL, DECIMAL
or INTEGER statements to declare SHORT REAL, SHORT DECIMAL, or SHORT
INTEGER types. See each of those statements for syntax and examples.
SHORT and SHORT REAL are equivalent.

Syntax

 { num_var } [{ num_var }]
SHORT {arrayd } [,{ arrayd }]...

Parameters

num_var Name of scalar numeric variable to be declared.

arrayd Numeric array description. The syntax for the array is
 described under the DIM statement.

Examples

 100 SHORT I
 120 SHORT L,M
 130 SHORT A(3)

SORT

The SORT statement sorts the record pointers contained in a workfile.
The SORT statement must also specify the sort keys and their usage
(ascending/descending). Since the record pointers must be sorted by the
data to which they point, the database must be accessed once more.
However, only the records whose pointers are in the workfile need to be
read. The order in which the data sets are to be read is governed by the
thread list. Sort keys specified must be defined in an IN DATASET
statement. After sorting is done, the workfile contains the same record
pointers but they are sorted.

The SEARCH and SORT statements are related, yet independent statements.
SEARCH can be done before or after SORT. If no SEARCH has been done when
SORT is executed, the workfile is empty, and a SEARCH ALL is issued
first. In other words, the SORT statement does an implicit SEARCH ALL if
it is executed before a SEARCH statement. On the other hand, if the
SEARCH is done after the SORT, then all the record pointers contained in
the workfile are searched. The workfile may then contain fewer records
after a SEARCH because the record pointers to any data records that do
not satisfy the SEARCH condition are deleted from the workfile.

4- 136

Syntax

SORT USING line_id; key_list

Parameters

line_id Line label or line number that identifies the line on
 which the THREAD IS statement is defined.

key_list List of variables. The DES keyword can follow each
 variable in the list. Specifying DES means that the
 data is sorted in descending order. If not specified,
 data are sorted in ascending order. Whole arrays are
 not allowed.

Examples

 600 SORT USING 300; A DES, B !Sorts using THREAD statement on line 300

SORT ONLY

As mentioned in the description of the SORT statement, SORT does an
implicit SEARCH ALL if the workfile is empty. SORT ONLY does not do the
SEARCH ALL. It sorts the database records whose record pointers are
already in the workfile. An error is generated if the workfile is empty.
SORT ONLY does only half of what SORT can do. Its main purpose is to
save the amount of code generated by the compiler when only a SORT is
required.

Syntax

SORT ONLY USING line_id; key_list

Parameters

line_id Line label or line number list that identifies the line
 on which THREAD IS statement is defined.

key_list List of variables. The DES keyword can follow each
 variable in the list. Specifying DES means that the
 data will be sorted in descending order. If not
 specified, data are sorted in ascending order. Whole
 arrays are not allowed.

Examples

 100 SORT ONLY USING 200;mp_ham$, Loc DES !Sorts using THREAD in line 200
 200 THREAD IS 300,400
 300 IN DATASET Dset1$ USE SKIP 10, Emp_nam$
 400 IN DATASET Dset2$ USE Addr$, LOC

STANDARD

The STANDARD statement sets the default numeric output format to
standard. The FLOAT and FIXED statements also set the default numeric
output.

Syntax

STANDARD

Standard numeric format depends on the type of the number being
formatted. Floating-point literals are of the default numeric type.
Table 4-15 tells which digits are printed for each numeric type.

4-: 137

Table 4-15. Standard Numeric Output Formats

Type	Digits Printed

SHORT INTEGER	All
INTEGER	

SHORT DECIMAL	Most significant 6
DECIMAL	

DECIMAL	Most significant 12

REAL	Most significant 16

Examples

 10 STANDARD
 20 PRINT 123;.4567;-79810;-1.235E+47
 99 END

The above program prints:

 123 .4567 -78910 -1.235E+47

STOP

The STOP statement terminates program execution.

Syntax

STOP

The STOP statement can be in a main program or a subunit. A program can
contain more than one STOP statement.

Examples

 100 READ I
 110 ON I GOSUB 200,300,400
 120 STOP !After return from the above ON GOSUB, the program
 130 !stops.
 200 I=I+1
 210 RETURN
 300 I=I+I
 310 RETURN
 400 I=I*I
 410 RETURN
 999 END

The STOP, END, or SCRATCH statement can stop a program. When a program
stops, the following occurs:

 * Subroutine return pointers are lost.

 * FOR NEXT loop "bookkeeping" is lost.

 * Subunit call "bookkeeping" is lost.

4- 138

 * Files are closed (except those declared in COMMON).

 * Data pointers are lost.

 * ON END, ON ERROR, ON DBERROR, ON GOTO, and ON GOSUB statements are
 deactivated.

STOP REPORT

The STOP REPORT statement is a Report Writer statement that can be used
to terminate a report prematurely. This statement can also be used when
the user does not know if a report is active as no error is generated by
this statement.

The STOP REPORT statement is implicitly used when a report ends
abnormally for other circumstances, such as a STOP statement or END
statement. Note that this statement can occur anywhere in the report
subunit.

Syntax

STOP REPORT

Examples

 100 STOP REPORT !Terminates a report

The STOP REPORT statement does not start report output if it has not
already begun.

This statement performs different actions for active reports, depending
on its usage. As a program statement, the STOP REPORT statement looks
for a REPORT EXIT section in the report description. If present, the
REPORT EXIT condition is evaluated. This section is then executed if the
expression is true (nonzero). It is not executed if the condition is
false or if the REPORT EXIT section does not exist.

As a command, or when called implicitly, for example, during a STOP, STOP
REPORT does not look for a REPORT EXIT statement. The report is simply
terminated.

If report output has started, the STOP REPORT statement always prints a
page eject as its last action. This is done to guarantee that HP
Business BASIC/XL does not print any system output on the report. Thus,
a TRIGGER PAGE BREAK is not needed in the REPORT EXIT section.

STOP REPORT automatically ends all GOSUBS that were executed by the
report; for example, all GOSUBS done after the last executable Report
Writer statement are prematurely ended. Execution resumes at the line
following STOP REPORT. This includes ON ERROR GOSUB, ON HALT GOSUB and so
on.

In all cases, STOP REPORT deactivates a report. No errors can prevent
this from happening.

SUB

The SUB statement defines the beginning of a subprogram. It is not
executable.

Syntax

{SUBPROGRAM}
{SUB } sub_name [(f_param [, f_param]...)]

Parameters

sub_name Subprogram name. This is an identifier.

4-: 139

f_param A formal parameter. One of the following:

 [type] num_var num_var is a numeric variable
 and type is one of the
 following:
 SHORT
 SHORT REAL
 SHORT INTEGER
 SHORT DECIMAL
 REAL
 INTEGER
 DECIMAL

 If type is not specified,
num_var is declared with the

 default numeric type. If type
 is specified, it determines
 the type of each num_var
 between it and the next type
 or the next nonnumeric

f_param .

str_var $ String variable. Its maximum
 length is the same as that of
 the actual parameter.

 [type] num_var Abbreviated numeric array
 ([*[,*]...]) declaration, with one asterisk
 per dimension or no asterisks.
 No asterisks specifies any
 number of dimensions. Either
 format is legal, but the
 format without asterisks is
 noncompilable when there is no
 reference in the subunit that
 allows the compiler to
 determine the number of
 dimensions for the array.

type is one of the following:
 SHORT
 SHORT REAL
 SHORT INTEGER
 SHORT DECIMAL
 INTEGER
 REAL
 DECIMAL

 If type is not specified,
num_var is declared with the

 default numeric type. If type
 is specified, it determines
 the type of each num_var
 between it and the next type
 or the next nonnumeric

f_param .

str_var $ ([*[,*]...]) Abbreviated string array
 declaration, with one asterisk
 per dimension or no asterisks.
 No asterisks specifies any
 number of dimensions. Either
 format is legal, but the
 format without asterisks is
 noncompilable. The maximum
 length of each element is the
 same as declared for the
 actual parameter by the

4- 140

 calling program unit.

 # fnum A file designator. fnum is a
 positive short integer greater
 than zero. The file
 designated by the actual
 parameter file designator is
 referenced by # fnum within the
 subprogram.

Examples

 SUBPROGRAM Sub1 (A(*), B$(*,*), INTEGER X,Y, P$, C,D, #15)
 SUB Sub2 (A(), B$(*), INTEGER X,Y P$, C,D, #15)

The above statements define the beginning of subprograms named Sub1 and
Sub2 that have the following formal parameters:

Parameter Type

A Array of default numeric type.
B$ A 2-dimensional string array variable in Sub1.
 A 1-dimensional string array variable in Sub2.
X and Y Integer variables.
P$ String variable.
C and D Variables of default numeric type.
#15 File designator.

NOTE If a program has more than one subprogram with the same name, all
 calls refer to the first one; that is, the one with the
 lowest-numbered SUBPROGRAM statement. The others cannot be called.

SUBEND

The SUBEND statement ends a subprogram. Like the SUBPROGRAM statement,
which begins a subprogram, the SUBEND statement is not executable. It
returns control to the program unit that called the subprogram.
Specifically, the statement returns control to the line following the
CALL statement that originally called the subprogram. Although the
SUBEND statement can be input as SUBEND or SUB END, HP Business BASIC/XL
will always list it as SUBEND.

Syntax

{SUBEND }
{SUB END}

If a subprogram does not end with a SUBEND statement; that is, if the
SUBEND statement is accidentally omitted, SUBEND is implied. Control
does not pass to the following subunit.

Example

 10 CALL Sub1(L,M,N) !Call Sub1 from main program
 99 END !End main program
 100 SUB Sub1 (A,B,C) !Begin Sub1
 110 A=B+C
 120 CALL Sub2(A,B,C) !Call Sub2 from Sub1
 130 SUBEND !End Sub1
 140 !
 200 SUB Sub2(X,Y,Z) !Begin Sub2
 210 X=Y*Z
 220 SUBEND !End Sub2

4-: 141

The SUBEND statement is legal only in a subprogram. It is illegal in the
main program or a multi-line function.

It is good programming practice to end a subprogram with a SUBEND
statement, and use SUBEXIT statements within the subprogram. The SUBEND
statement can appear more than once within a subprogram, and it need not
be the last line. One subprogram ends where the next subunit begins, or
where the program ends.

SUBEXIT

The SUBEXIT statement returns control to the program unit that called the
subprogram. SUBEXIT can be used to exit a subprogram prior to execution
of the SUBEND statement. Like the SUBEND statement, the SUBEXIT
statement returns control to the statement following the CALL statement
that called the subprogram. Although the SUBEXIT statement can be
entered as either SUBEXIT or SUB EXIT, HP Business BASIC/XL will always
enter it as SUBEXIT.

Syntax

{SUBEXIT }
{SUB EXIT}

The SUBEXIT statement is optional. If a program does not contain one,
execution of the SUBEND statement returns control to the calling program
unit.

A program can contain more than one SUBEXIT statement. Usually, a
SUBEXIT statement is executed conditionally.

Example

 10 READ A,B
 20 CALL Sub(A,B) !Control transfers to line 100
 30 PRINT "DONE"
 80 DATA 1,2
 99 END
 100 SUB Sub(X,Y) !Start of Subprogram
 105 INTEGER Z
 110 IF X<0 THEN SUBEXIT !If X < 0, control returns to line 30
 120 LET Z=X+Y
 130 IF Z<0 THEN SUBEXIT !If Z < 0, control returns to line 30
 140 PRINT Z
 999 SUB END

A SUBEXIT statement is legal only in a subprogram. SUBEXIT is illegal in
a main program or multi-line function.

SUBPROGRAM

The SUBPROGRAM statement is the long form of the SUB statement. Refer to
the SUB statement for information.

SUPPRESS AT

The SUPPRESS AT statement allows the Report Writer to produce a report at
particular summary levels. All output from lower numbered levels are
executed. Those sections with levels at or higher than the indicated
level are not executed. Except for the printout reduction, a report is
produced exactly as if all sections were being printed. That is, all
breaks occur normally and all totals are accumulated.

There cannot be more than one SUPPRESS AT statement in a report
description.

4- 142

Syntax

 {AT [LEVEL]}
SUPPRESS [PRINT] {LEVEL } suppress_level

Parameters

suppress_level A numeric expression with a value from zero to nine. A
 level of zero causes the statement to be ignored. All
 output from the suppress_level and higher summary levels
 is suppressed.

Examples

The following examples show the use of the SUPPRESS AT statement.

 100 SUPPRESS PRINT AT N+M
 100 SUPPRESS AT 4

The SUPPRESS AT statement is evaluated by BEGIN REPORT. It is busy only
during evaluation. If the indicated level is zero, the statement is
ignored and all output takes place.

Once report output starts, output is only produced by the HEADER and
TRAILER sections with summary levels lower than SUPPRESS AT. The report
sections (REPORT HEADER, REPORT TRAILER, and REPORT EXIT) are at level
zero and can never be suppressed with this statement. The PAGE HEADER
and PAGE TRAILER sections are not affected by this statement.

Only the actual printing of the report is affected. BREAK IF and BREAK
WHEN conditions are still checked, and totals are still accumulated.
PRINT and DETAIL LINE output are not affected by SUPPRESS AT. Only the
HEADER and TRAILER sections are suppressed.

SUPPRESS FOR

The SUPPRESS FOR statement provides a means of inhibiting print for a
specified number of pages at the beginning of a report. The report is
generated normally, but no output is actually produced until the correct
number of pages have been processed.

Syntax

 [PAGE]
SUPPRESS [PRINT] FOR num_pages [PAGES]

Parameters

num_pages A numeric expression indicating how many pages should be
 skipped before printing starts. This must be a
 non-negative valid INTEGER value.

Examples

The following show the use of the SUPPRESS FOR statement.

 100 SUPPRESS PRINT FOR Spf PAGES
 100 SUPPRESS FOR 1 PAGE

The SUPPRESS FOR statement is evaluated by BEGIN REPORT, and is busy
during its evaluation.

The report is generated normally, but all output is prevented by this
statement. The Report Writer counts the number of physical pages
produced. When the correct number of pages has been produced, actual
output starts up. All Report Writer errors, including the not enough
lines on a page, may occur while output is suppressed.

4-: 143

As an example of using this statement, assume that the first nine pages
of a report have been printed, and an error occurs on the tenth page.
After fixing the error, the user may wish to re-run the program. Since
the first nine pages are correct, the following statement prevents the
reprinting of those pages:

 SUPPRESS PRINT FOR 9 PAGES

Suppressing print for zero pages allows all output to take place.

SUPPRESS HEADER

This statement enables and disables the execution of the PAGE HEADER
section. Unlike the TRIGGER PAGE BREAK options, the suppression is in
force across multiple pages.

This statement can occur anywhere in the same subunit as the report
description.

Syntax

 {ON }
SUPPRESS HEADER {OFF}

Examples

 100 SUPPRESS HEADER ON

The SUPPRESS HEADER ON statement prevents the execution of all PAGE
HEADER sections until a SUPPRESS HEADER OFF statement is encountered.
The statement takes effect beginning with the next PAGE HEADER to be
printed. Thus, it cannot affect the current page once the page has started.

If the SUPPRESS HEADER ON statement appears in the REPORT HEADER section,
the PAGE HEADER does not appear after the report header.

The SUPPRESS HEADER OFF statement re-enables the output of PAGE HEADER.
It takes effect on the next page.

The SUPPRESS options of the TRIGGER PAGE BREAK do not reset the settings
of the SUPPRESS HEADER statement. For example, if SUPPRESS HEADER ON has
been executed, then both of the following statements suppress the page header:

 TRIGGER PAGE BREAK
 TRIGGER PAGE BREAK, SUPPRESS HEADER

Because the page header is suppressed anyway, no output is expected. The
temporary suppression in the second statement does not cause the page
header to resume printing on the next page. Only a SUPPRESS HEADER OFF
statement can do that.

SUPPRESS TRAILER

This statement enables and disables the execution of the PAGE TRAILER
section. Unlike the TRIGGER PAGE BREAK options, the suppression is in
force across multiple pages.

This statement can occur anywhere in the same subunit as the report
description.

Syntax

 {ON }
SUPPRESS TRAILER {OFF}

Examples

 100 SUPPRESS TRAILER OFF

4- 144

The SUPPRESS TRAILER ON statement prevents the execution of the PAGE
TRAILER section. If this statement occurs during the execution of a PAGE
TRAILER, it does not take effect until the next page. If executed before
the PAGE TRAILER for the current page, the PAGE TRAILER does not appear
on the current page.

When the PAGE TRAILER is suppressed, the lines normally reserved for the
page trailer are available to you. Therefore, this statement can
increase the size of a page. The bottom margin reserved in the PAGE
LENGTH statement are not suppressed.

The SUPPRESS TRAILER OFF statement re-enables the execution of the PAGE
TRAILER section. Normally, this is all that this statement does.
However, if you have already printed in the area reserved for the page
trailer, the SUPPRESS TRAILER OFF statement causes an automatic page
break.

The SUPPRESS options of the TRIGGER PAGE BREAK do not reset the settings
of the SUPPRESS TRAILER statement. For example, if SUPPRESS TRAILER ON
has been executed, then both of the following statements suppress the
page trailer:

 TRIGGER PAGE BREAK
 TRIGGER PAGE BREAK, SUPPRESS TRAILER

Because the page trailer is suppressed anyway, no output is expected.
The temporary suppression in the second statement does not cause the page
trailer to resume printing on the next page. Only a SUPPRESS TRAILER OFF
statement can do that.

SYSTEM

The SYSTEM statement executes an operating system command from HP
Business BASIC/XL.

Syntax

As a statement or command:

 [[{,}]]
SYSTEM [str_expr [{;} STATUS [=] num_var]]

As a command only:

 { str_lit }
:{ unquoted_str_lit }

Parameters

str_expr An operating system command, a UDC, a program file name,
 or a commandfile. For information on operating system
 commands, see the operating system reference manual and
 the Console Operator's Guide . If this parameter is not
 specified, HP Business BASIC/XL returns control to the
 operating system. You can then return to HP Business
 BASIC/XL by typing RESUME at the operating system prompt.

 See the MPE XL Intrinsics Manual for information on what
 will be selected if commands, UDCs, programs or
 commandfiles exist with the same names.

 If HP Business BASIC/XL is running from a batch job,
str_expr must be specified.

 If str_expr is specified, the SYSTEM command executes
 the CICOMMAND intrinsic, accessing the operating system
 only to execute the specified command, and return to HP
 Business BASIC/XL.

4-: 145

 If any error or warning results from the command the JCW
 CIERROR will be changed to reflect the error or warning.

num_var If str_expr is specified, num_var returns the operating
 system error number. If str_expr is not specified,

num_var returns the interpreter command error number,
 which is:

0 No error (if HP Business BASIC/XL is running interactively).

1 Error (if HP Business BASIC/XL is running from a batch job).

NOTE Just as on-line information on HP Business BASIC/XL is available by
 typing HELP in response to the ">" prompt, information on operation
 system commands is available by typing :HELP.

Examples

 10 SYSTEM !Returns to operating system.
 20 SYSTEM "LISTF" !Issues the LISTF command.
 30 SYSTEM "SETMSG OFF"0 !Issues the SETMSG command.
 40 SYSTEM "LISTF"; STATUS=S !Issues the LISTF command and returns status.
 50 SYSTEM "LISTF", STATUS S !Same as line 40.

SYSTEMRUN

The SYSTEMRUN statement runs another program from HP Business BASIC/XL.
The new program can be any program that the operating system can run or.
HP Business BASIC/XL is suspended until the new program finishes, unless
otherwise specified. This statement is primarily available for MPE/V
compatibility; on MPE XL, the SYSTEM statement also can run other programs.

Syntax

As a statement or command:

 [{,}]
SYSTEMRUNstr_expr [{;} STATUS [=] num_var]

As a command only:

 { str_lit }
:RUN { unquoted_str_lit }

Parameters

str_expr The run string that the operating system recognizes for
 any program (HP Business BASIC/XL or not). For the
 syntax of this run string, see the appropriate operating
 system manual or type

 :HELP RUN

 .

 The following parameters can be added to the operating
 system run string (run string parameters are separated
 by semicolons):

 NOSUSP HP Business BASIC/XL is not suspended.

 PRI= Priority of new program. This is one
 of: BS, CS, DS, or ES. BS is highest;
 ES is lowest. If the specified

4- 146

 priority exceeds the highest priority
 that the system permits for the log-on
 account, then the priority is the
 highest possible below BS. The default
 priority is HP Business BASIC/XL's
 priority.

num_var Returns job control word (JCW) of called process.

For more information about these parameters, see the MPE XL INTRINSICS
Reference Manual or type

 :HELP RUN

Examples

 100 SYSTEMRUN "Prog1"
 200 SYSTEMRUN "Prog2;MAXDATA=31000"
 300 SYSTEMRUN "Prog3;MAXDATA=20000;INFO=""Text3"""
 400 SYSTEMRUN "Prog4;NOSUSP"; STATUS=S
 500 SYSTEMRUN "Prog5;NOSUSP;PRI=DS", STATUS=S
 600 SYSTEMRUN "Prog6;MAXDATA=10000;NOSUSP;PRI=DS",STATUS S
 700 SYSTEMRUN "Prog7;NMSTACK=395000;XL=""XL.pub.tools,lib7.diag.sys"""
 800 SYSTEMRUN Progname$+Run_options$+";unsat=debug"

You can execute a program on another terminal if that terminal is not in
use (that is, no one is logged on). HP Business BASIC/XL requires
additional settings beyond those which MPE XL requires in order for such
programs to execute correctly.

To use a remote terminal, the specific device must be given a name with a
file equation. To use HP Business BASIC/XL programs (or the interpreter)
on that terminal, use a file equation similar to the following:

 FILE <name>,NEW;DEV=<ldev>,ACC=INOUT;REC=-500;CCTL

You must specify the logical device number of the terminal, and the name
must be a legal file name. If the access used is not INOUT, the system
console will ask if the device can be used; this will then require an
operator response.

The record size and CCTL specifications are for HP Business BASIC/XL. If
these are not specified, neither input nor output can be guaranteed to be
correct. If a record size of less than 500 bytes is used, any type of
input, or a READ statement may cause the program to abort.

In order to run a program on another terminal, redirect $STDLIST and
$STDIN to the equated file name.

 10 SYSTEM "file term,new;dev=55;acc=inout;rec=-500;cctl"
 20 SYSTEMRUN "myprog;stdlist=*term;stdin=*term"
 30 SYSTEMRUN "myprog;stdlist=*term;stdin=*term;nosusp"

Line 20 will run the program MYPROG on the terminal whose logical device
number is 55. This program will run correctly, allowing forms and keys
to be used. The program above will wait for MYPROG to finish before
executing line 30.

Line 30 also runs the MYPROG program. In this case, the NOSUSP in the
systemrun command will allow the current program to continue without
waiting for MYPROG to finish. Both programs will continue to run at the
same time. However, NOSUSP can affect the handling of the HALT key (CONTROL Y).

THEN

The THEN statement is part of the IF THEN ELSE and IF THEN statements and
constructs. Refer to the IF THEN statement for more information.

4-: 147

THREAD IS

The THREAD IS statement defines the thread list that is used by the
SEARCH/SORT process. A thread list is a list of data sets in a database
being searched. The thread list defines the hierarchy as well as the
relationship between the data sets. In a THREAD IS statement, each data
set is represented by a line label that refers to an IN DATASET statement
of the corresponding data set.

Syntax

 [[PATH num_expr]]
THREAD [IS] [line_id [LINK identifier] {,1;}] ... line_id

Parameters

line_id Line number or line label that identifies the line on
 which the IN DATASET statement of the dataset is
 defined.

num_expr A numeric expression that evaluates to an integer that
 represents the path to use when accessing a detail data
 set that is connected to it's master by multiple paths.

identifier A variable that holds a link value used when trying to
 access data in a detail data set that is not linked to
 any other data sets in the current thread list.

Examples

 100 Set1 : IN DATASET "parts" USE A, B
 200 Set2 : IN DATASET "customer" USE Comp$
 300 THREAD IS Set1, Set2

The THREAD IS statement on line 100 indicates that during a SEARCH or
SORT, the data set "parts" is accessed first. The data for "parts" is
retrieved and unpacked into variables A and B. Then the data set
"customer" is read, its data retrieved and unpacked into the variable
Comp$.

In going from one data set to the other while walking the thread list,
you can optionally specify the path to be used in case there is more than
one or the key value to be used in case it is from a detail to a master.

The THREAD IS statement must satisfy the following conditions:

 * The thread list can be one to ten data sets long.

 * The first data set can be either a master set or a detail set.
 However, the thread must not have two consecutive data sets of the
 same type. That is, a master set cannot follow a master set and a
 detail data set cannot follow a detail data set.

 * You can optionally specify which path (PATH) to use when connecting
 two sets. If PATH is not specified, path 1 is assumed.

 Example :

 400 THREAD IS Set1, Set2 PATH 2, Set3, Set4

 * In case there are no paths defined in the database between a detail
 set and a master set, THREAD allows you to define a temporary link by
 specifying a link variable (LINK) in the detail set. The link
 variable, if used, must be defined in the HP Business BASIC/XL
 program and must appear in the IN DATASET statement of the detail
 set. It must also be of the same data type as the key in the master.

4- 148

Example :

 500 THREAD IS Set1, Set2 LINK Var, Set3, Set4

 * An error results if the specified path between the data sets does not
 exist and (for detail sets) no LINK is specified. Link cannot be
 used to connect a master to a detail.

 * The THREAD statement is nonexecutable. Its validity will be checked
 at run time by the SEARCH statement or the SORT statement.

TINPUT

The TINPUT statement obtains a string of characters from an input device.
The characters are echoed to the display as they are entered. If a
string or numeric variable is included in the TINPUT statement, then the
value of the string of characters entered is assigned to the variable.
TINPUT options control the maximum amount of time allowed for input, the
time required for input, the maximum number of characters that can be
input, and the line feed generated subsequent to the statement execution.
At least one option must be selected when using the TINPUT statement.

Syntax

TINPUT [var] [separator] option_clause [separator option_clause]...

 {TIMEOUT [=] timeout_num_expr }
 {ELAPSED [=] elapsed_num_var }
option_clause -> {CHARS [=] chars_num_expr }
 {NOLF }

 {WITH}
separator -> {, }
 {; }

EACH individual option_clause can occur only once in a TINPUT statement.

Parameters

var The numeric or string variable to which the input is
 assigned. A TINPUT statement without a var discards
 the input. Characters are assigned to the variable
 when you type RETURN. For string variables, note that
 no character, such as a comma or a double quote, is
 considered to be a data item separator or terminator
 within the input string. Leading and trailing blanks
 are also included in the string of characters
 assigned to a string variable.

 For numeric variables, the input character string is
 interpreted as a numeric literal and is assigned to
 the numeric variable. In this case, a comma is a
 valid item separator or terminator. If using the
 European format, set by the Native Language Number,
 then a semicolon replaces the comma as a separator or
 terminator. Any leading, embedded and trailing
 blanks are suppressed. If an invalid character is
 entered, then an HP Business BASIC/XL error occurs.

timeout_num_ expr Numeric expression for the maximum amount of time, in
 seconds, allowed by the user to enter input. The
 input time limit is determined as follows:

 Value of timeout_num_ expr Input Time Limit

 Zero or less Unlimited

 In the range (0,255) That number of seconds

4-: 149

 rounded to nearest
 second

 Greater than 255 Set to 255 seconds

 If the TIMEOUT option is not selected, then the input
 time limit is unlimited.

 If input time is limited through the use of the
 TIMEOUT option, HP Business BASIC/XL transfers
 control to the next program statement when the time
 limit is exceeded without assigning a new value to
 the specified var .

elapsed_num_var A numeric variable to which the time, in seconds,
 taken to enter the input is returned. If the ELAPSED
 option is not selected, the elapsed time is not
 measured. If TIMEOUT is also specified, and a
 timeout occurs, elapsed_num_var is set to -256.

chars_num_expr A numeric expression that evaluates to the maximum
 number of characters that can be input. Typing this
 number of characters will cause the generation of an
 automatic carriage return and assignment of the value
 to the specified str_var . The program will then
 begin execution of the next statement in the program.

NOLF Suppresses the automatic line feed normally generated
 after pressing RETURN, subsequent to reaching the
 TIMEOUT limit specified, or after typing in that
 number of characters specified in the CHARS option.

Examples

The following examples show the TINPUT statement.

 10 TINPUT String_var1$, TIMEOUT Time_limit
 20 TINPUT String_var2$, ELAPSED Elapsed_time
 30 TINPUT String_var3$, CHARS Num_chars
 40 TINPUT String_var4$, NOLF
 50 TINPUT String_var5$, WITH TIMEOUT=10, ELAPSED=Elapsed_time
 60 TINPUT String_var6$, ELAPSED Elapsed time, CHARS 1, NOLF
 70 TINPUT Num_var WITH ELAPSED=Elapsed_time
 80 TINPUT Num_var, TIMEOUT Time_limit
 90 TINPUT CHARS 2
 100 TINPUT TIMEOUT 5
 110 TINPUT ELAPSED Elapsed_time
 120 TINPUT CHARS=1,NOLF

TOTALS

The TOTALS statement is a Report Writer statement that provides an easy
means for automatic accumulation of numeric data. It provides totaling
at the individual summary levels in a report.

A TOTALS statement can appear in a HEADER or TRAILER section only. There
cannot be more than one TOTALS statement for each summary level. The
TOTALS statement is not used if it is contained in a section with a level
of zero, as the section is unused.

Syntax

 [{,}]
TOTALS [ON] num_expr [{;} num_expr]...

Parameters

num_expr Any numeric expression can be totaled. There can be as

4- 150

 many expressions as desired. When referring to a
 particular total, a sequence number is used. The first
 expression is sequence number 1, the second is number 2,
 and so on.

Examples

 100 TOTALS ON My_var, TRUNC(Sales), Quantity*100

The BEGIN REPORT statement makes the TOTALS statement busy and it remains
busy until an END REPORT or STOP REPORT statement is executed. The
TOTALS statement is used ONLY if contained in a HEADER or TRAILER section
with a nonzero level number. There can only be one TOTALS statement per
summary level. All accumulated totals are set to zero by BEGIN REPORT.

The TOTALS calculation occurs when a DETAIL LINE statement executes, but
only when the totals flag of the DETAIL LINE is nonzero. The accumulated
values are reset to zero for any summary level where a break occurs.
This is done after the TRAILER sections are printed. After all break
conditions are processed, the totals are accumulated.

The TOTALS statements are evaluated starting with GRAND TOTALS and
working to level nine. For each statement, the expressions are evaluated
from left to right. The value of each expression is added to previous totals.

All totals are stored in either REAL or DECIMAL data type, depending on
the data type option in effect when the report started. However, the
expressions themselves are evaluated as any other expression in HP
Business BASIC/XL. This means that an individual expression may cause an
overflow error without causing an overflow in the total.

TRAILER

The TRAILER statement allows you to define logical levels for separating
and summarizing data printed in a report. The TRAILER section is used to
print trailing data for a particular level in the report of which there
are nine levels available.

In order to define a report level, there must be a TRAILER or HEADER
statement in the report description. However, there can not be more than
one TRAILER section for a single level within the report description. If
no WITH or USING clause is present, the statement produces no output.
However, other statements in this section might produce output.

Syntax

 [[LINES]]
TRAILER level_number [WITH num_lines [LINE]]

[USING image [; output_list]]

Parameters

level_number A numeric expression with a value from 0 to 9. This
 defines the summary or break level for this trailer
 section. This number is used to create different
 summary levels for data, and to cause breaks in the
 report at appropriate times. A level of zero causes the
 entire section to be ignored.

num_lines The maximum number of lines expected to be needed by the
 section statement. This number reflects ALL output done
 by the section.

image An image string or a line reference to an IMAGE line.

output-list A list of output items, identical to the list used by
 the PRINT USING statement.

4-: 151

Examples

 100 TRAILER 1 WITH 3 LINES
 100 TRAILER Order(1) USING Hd_image;Who

If a report section is active when this statement is seen, the section is
ended. An error occurs if this statement is executed directly when a
report section is not active.

When BEGIN REPORT executes, the level _ number of each TRAILER statement is
evaluated and the statement is made BUSY. TRAILER sections with level
numbers equal to zero are ignored. All of the level numbers are
therefore fixed by BEGIN REPORT and the statements are made busy. All
nonzero TRAILER levels must be distinct and within the range of one to
nine. The levels do not have to be contiguous. A TRAILER statement can
define a section without a corresponding HEADER section and vice versa.

TRAILER sections are executed when an automatic break occurs from BREAK
IF or BREAK WHEN, or when the TRIGGER BREAK statement. TRAILER sections
are printed in descending sequence by level number. See DETAIL LINE and
EXECUTION FLOW for more details on automatic breaks.

The TRAILER sections are automatically executed when the report output
stops normally. The trailers precede the printing of the report trailer
and page trailer, printing in descending order.

A particular TRAILER section executes the TRAILER statement first. This
causes the evaluation of the WITH clause first that may cause a page
break, followed by the execution of the USING clause. Any additional
statements in the TRAILER section execute after the TRAILER statement.

TRIGGER BREAK

The TRIGGER BREAK statement allows you to manually cause a Report Writer
break to take place. This results in the printing of the TRAILER and
HEADER sections.

The TRIGGER BREAK statement can not occur within a report description.

Syntax

TRIGGER BREAK break_level

Parameters

break_level A numeric expression in the range zero to nine. A level
 of zero has no effect. Other values cause a break to
 take place at the given level.

Examples

 100 TRIGGER BREAK 5
 100 IF Old_data <> New_data THEN TRIGGER BREAK N

The TRIGGER BREAK statement generates an error if a report is not active.
If report output has not started, this statement starts the report,
followed immediately by the break.

The break_level is evaluated after starting the report if this is
necessary. Then all BREAK statements are evaluated in order to determine
the new values for OLDCV and OLDCV$. Then the break actually occurs.

Executing a Report Writer Break

The execution of a summary level break involves several steps. Each step
can execute several different sections of the report. The processing of
the break is described below, in the order in which actions are taken.

4- 152

A break can be caused either by DETAIL LINE, when a BREAK IF or BREAK
WHEN condition is satisfied, or by the TRIGGER BREAK statement. In
either case, the Report Writer function LASTBREAK is set to the lowest
break that occurred.

 1. Execute TRAILER sections from level nine down to the level
 contained by LASTBREAK. Each section first executes the TRAILER
 statement. The WITH clause is evaluated, and if the number of
 lines left on the page is less than the WITH value, a page break
 is automatically triggered. If the USING clause is present, it is
 then executed. Then the lines in the section are executed. The
 WITH clause accounts for all PRINT output generated by the
 section.

 2. Update the OLDCV and OLDCV$ values. These values are not
 recalculated; the values found during the DETAIL LINE or TRIGGER
 BREAK are stored until this point, at which time the values are
 put into the OLDCV area. All OLDCV values from levels LASTBREAK
 to nine are updated.

 3. Zero all TOTALS expressions from level LASTBREAK to nine.

 4. Set NUMDETAIL to zero for levels LASTBREAK to nine.

 5. Update NUMBREAK for levels LASTBREAK to nine. Also, the total
 number of breaks [NUMBREAK(0)] is incremented.

 6. Finally, all HEADER sections are executed from LASTBREAK to nine.
 Each section first executes the HEADER statement. The WITH clause
 is evaluated, and if the number of lines left on the page is less
 than the WITH value, a page break is automatically triggered. If
 the USING clause is present, it is then executed. Then the lines
 in the section are executed. The WITH clause accounts for all
 PRINT output generated by the section.

Errors during a section can cause the break to stop early. However, most
errors do not cause this to happen. Having fewer lines left on the page
than the WITH value automatically triggers a page break.

TRIGGER PAGE BREAK

The TRIGGER PAGE BREAK statement allows you to do page breaks manually.
This statement can occur anywhere except in the PAGE HEADER and PAGE
TRAILER sections of a report description. When this statement is
encountered, a page break executes immediately.

The suppress options of the TRIGGER PAGE BREAK statements allow for more
flexibility than automatic page breaks. The use of these options may
affect the number of lines available for printing on the page.

Syntax

 [{ [{,}]}]
 [{,} {HEADER [{;} TRAILER]}]
TRIGGER PAGE BREAK [{;} SUPPRESS { [{,}]}]
 [{TRAILER [{;} HEADER]}]

Examples

The following examples show the TRIGGER PAGE BREAK statement.

 100 TRIGGER PAGE BREAK
 100 TRIGGER PAGE BREAK, SUPPRESS TRAILER
 100 TRIGGER PAGE BREAK, SUPPRESS HEADER, TRAILER

This statement causes an error if no report is active. If report output
has not begun, this statement starts the report.

4-: 153

When no suppress options are specified, this statement acts identically
to an automatic page break; for example, one caused by a WITH clause on
any Report Writer statement. The following actions are taken:

 * Print blank lines up to the location where the PAGE TRAILER should
 begin.

 * Execute the PAGE TRAILER section, if present. During this process,
 the number of lines left on the page is reset to the page trailer
 size.

 * Print the blank lines at the top of the page.

 * Execute the PAGE HEADER section, if present.

The SUPPRESS options of the TRIGGER PAGE BREAK statement alter the
actions listed above. With these options, you can suppress the PAGE
TRAILER on the current page and the PAGE HEADER at the top of the next
page. These options apply only to the current page break. More
permanent suppression can be done with the SUPPRESS HEADER and SUPPRESS
TRAILER statements.

If the TRIGGER PAGE BREAK statements specify that TRAILER is to be
suppressed, then the PAGE TRAILER section is not executed. Instead,
blank lines are printed for the PAGE TRAILER. All other steps apply as
stated above.

When the SUPPRESS HEADER option is encountered, all steps take place as
indicated above, except for the execution of the PAGE HEADER section.
The top margin specified in the PAGE LENGTH statement is not suppressed.
Since the PAGE HEADER is not printed, there are more lines available on
the page.

As an example, consider a report description such as the following, where
a TRIGGER PAGE BREAK occurs at the end of the REPORT HEADER:

 100 REPORT HEADER
 110 PAGE LENGTH 60,0,0
 .
 .
 .
 200 TRIGGER PAGE BREAK, SUPPRESS TRAILER
 210 PAGE HEADER WITH 3 LINES USING Ph_1
 .
 .
 .
 500 END REPORT DESCRIPTION

When this report starts printing, the REPORT HEADER section executes
first. After the desired title is printed (lines 110 to 199), the report
executes a page break. Suppressing the page trailer on this first page,
causes a title page to print at the start of the report.

NOTE Normally the PAGE HEADER is printed immediately after the REPORT
 HEADER. However, when the TRIGGER PAGE BREAK executes in the report
 header section, the PAGE HEADER executes at the top of the second
 page. The Report Writer does not put out a second page header.

UNLOCK

The UNLOCK statement relinquishes the exclusive access that the LOCK
statement requested for a file.

4- 154

Syntax

UNLOCK#fnum

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer.

Examples

 100 CREATE "File1",FILESIZE=1200
 200 ASSIGN "File1" TO #10 !Assigns file to #10.
 300 LOCK #10 !File is locked.
 400 PRINT #10; A,B,C
 500 UNLOCK #10 !File is unlocked after printing.
 999 END

For more information, see the LOCK statement.

UNPACK

The UNPACK statement assigns the values of individual data items
contained in one scalar string variable to one or more HP Business
BASIC/XL variables. The correspondence of the values in the scalar
string variable is determined by the order of the variables listed in the
referenced PACKFMT statement.

Syntax

UNPACK USING line_id ; str_var

Parameters

line_id Specifies the program line of the appropriate PACKFMT
 statement that specifies the variables to be unpacked
 and the current format in which they are packed within

str_var .

str_var Scalar string variable from which variables are to be
 unpacked.

Examples

The following example shows the use of the UNPACK statement. Lines 120
and 130 contain the PACKFMT statements that the UNPACK statements use.
Lines 210 and 220 PACK the data using those PACKFMT statements, and lines
235 and 236 UNPACK the data, and assigns them to the referenced
variables.

 100 INTEGER Number, Times(4)
 105 INTEGER Num, N1(4)
 110 DIM String$[10], S1$[10], S2$[10]
 115 DIM A$[10], P1$[60], P2$[60]
 120 Pack1: PACKFMT Number,String$,A$,Times(*)
 130 Pack2: PACKFMT Times,SKIP 2,String$,SKIP 1,Number,SKIP 1,A$[3;5]
 140 Number=1234
 150 Times(1)=65
 160 Times(2)=73
 170 Times(3)=42
 180 Times(4)=90
 190 String$="abcd"
 200 A$="efghi"
 210 PACK USING Pack1; P1$
 220 PACK USING Pack2; P2$
 230 Pack3: PACKFMT Num,S1$,S2$,N1(*)
 235 UNPACK USING Pack3;P1$

4-: 155

 236 PRINT Num,S1$,S2$,(FOR I=1 TO 4, N1(I))
 240 Pack4: PACKFMT N1,SKIP 2,S1$,SKIP 1,Num,SKIP 1,S2$[3;5]
 245 UNPACK USING Pack4; P2$
 246 PRINT N1(1),N1(2),N1(3),N1(4),S1$,Num,S2$
 250 END

UNTIL

The UNTIL statement is part of the REPEAT UNTIL construct. Refer to the
REPEAT statement for more information.

UPDATE

The UPDATE statement assigns a value to the current datum of a specified
BASIC DATA file, if the assignment is legal. The UPDATE statement cannot
change the type of the datum, and it cannot change the length of a string
datum.

Syntax

UPDATE #fnum ; expr

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the BASIC DATA file. It is a numeric
 expression that evaluates to a positive short integer.

expr Its value is assigned to the current datum or the datum
 indicated by the file's datum pointer if the assignment
 is legal.

 If the new value is not of the same type as the old
 value, the UPDATE statement converts the new value to
 the old type. If this is impossible, an error occurs.

 If expr is a string, and it is shorter than the string
 that it replaces, it is blank-filled on the right. If

expr is a string that is longer than the string that it
 replaces, it is truncated on the right.

Examples

The following statements show the update statement.

 10 UPDATE #1; 1234 !Updates #1
 20 UPDATE #2; "CAT" !Updates #2
 30 UPDATE #3; SIN(X+35) !Updates #3 with the results of a function
 40 UPDATE #3; LWC$("JOHN " + "DOE") !Updates #4 with "john doe"

WAIT

The WAIT statement delays program execution.

Syntax

WAIT [num_expr]

Parameters

num_expr Number of seconds that the program is delayed (can be a
 REAL value). If num_expr is not specified, the program
 waits for a user interrupt, a CONTROL Y.

Examples

 10 WAIT 120 !120 seconds (2 minutes)
 15 WAIT 0.5 !0.5 seconds

4- 156

 20 WAIT Wait_time !Number of seconds specified by Wait_time
 25 WAIT Wait_time+60 !One minute more than specified by Wait_time
 30 WAIT !Until user interrupt (control-Y)

WARNINGS OFF

The WARNINGS OFF statement suppresses the warning messages that HP
Business BASIC/XL normally displays. Use WARNINGS ON to return to the
default.

Syntax

WARNINGS OFF

WARNINGS ON

The WARNINGS ON statement allows HP Business BASIC/XL to display warning
messages, as it does by default. This statement is used to deactivate a
WARNINGS OFF statement.

WARNINGS ON

WHILE

The WHILE and END WHILE statements define a loop that repeats until the
numeric expression in the WHILE statement evaluates to FALSE (zero).

Syntax

 WHILE num_expr [DO] [stmts]...END WHILE

Parameters

num_expr Considered FALSE if it evaluates to zero; TRUE
 otherwise. If it is TRUE, the statement or statements
 in the loop are executed. If it is FALSE, the statement
 following ENDWHILE is executed. Following execution of
 the statements in the loop body, num_expr is again
 evaluated to determine whether the loop body is executed
 again.

stmts Program lines that are executed if num_expr is TRUE.
 These statement constitute the loop body.

Examples

 10 I=50 !Let I be the first number to be printed, 50
 20 WHILE I<>0 !If I<>0, execute loop (lines 30 and 40)
 30 PRINT I !Print current number, I
 40 I=I-1 !Let I be the next number to be printed
 50 END WHILE !Return to line 20
 99 END

WHILE constructs can be nested.

 100 Num_rows=3 !Number of rows in matrix M
 110 Num_cols=4 !Number of columns in matrix M
 120 Row=1 !Let Row be first row to be printed
 130 WHILE Num_rows-Row !BEGIN OUTER WHILE LOOP
 140 Col=1 !Let Col be first column to be printed
 150 WHILE Num_cols-Col !BEGIN INNER WHILE LOOP
 160 PRINT M(Row,Col) !Print one matrix element
 165 Col=Col+1 !Let Col be next column to be printed
 170 END WHILE !END INNER WHILE LOOP
 180 Row=Row+1 !Let Row be next row to be printed
 190 END WHILE !END OUTER WHILE LOOP
 999 END

4-: 157

Entering a WHILE loop from a statement other than the WHILE statement is
considered to be a bad programming practice, and is not recommended. Use
of a GOSUB or CALL statement from within a WHILE loop can be useful.

 100 PRINT "Sum of the odd numbers 1 to 150 is: "
 110 N=1
 120 Sum=0
 130 WHILE 150-N !Begin loop
 140 IF N MOD 2 THEN CALL Odd(Sum,N)
 150 N=N+1
 160 ENDWHILE !End loop
 170 PRINT Sum
 180 END
 190 !
 200 SUB Odd(Sum,N) !Return to loop
 210 Sum=Sum+N
 220 SUBEND !Return to next line following CALL

WORKFILE IS

The WORKFILE IS statement identifies the file, called a workfile, that
holds the record pointers of the selected records in the database. This
statement is global in nature and deactivates any previously defined
workfile. The file designated as the workfile must be open. The
workfile itself must be a binary file with record size (in words) equal
to twice the number of data sets in the THREAD IS statement. It must be
defined before the SORT or SEARCH statement is executed. Since the
workfile is, by definition, a user-defined file, it is subject to the
same rules and restrictions that apply to HP Business BASIC/XL files. In
addition, open it with both read and write capability.

Syntax

WORKFILE IS #fnum

Parameters

fnum A numeric expression that evaluates to a positive short
 integer greater than zero. The value is the same as
 that used to open the workfile.

Examples

 100 ASSIGN #1 TO "filex" !File #1 is filex
 200 WORKFILE IS #1 !filex is the workfile

WRITE FORM

The WRITE FORM can be used to display the value of an HP Business
BASIC/XL variable in a field of a VPLUS form, position the cursor, or
write to the message window of the VPLUS form. It is possible to do any
combination of these operations in a single statement.

Syntax

WRITE [TO] FORM

[[{,}]]
[form_item [{;} form_item ...]]

[{,}]
[{;} CURSOR [=] cursor_expr]
[{,}]
[{;} MSG [=] message_expr] form_item ->

{ form_element | for_clause | skip_clause }

4- 158

Parameters

form_element One of the following:

num_var
str_var $
array_name ([*[,*]...])
str_array_name $([*[,*]...])

 The last format above has one asterisk per dimension or
 no asterisks. No asterisks specifies any number of
 dimensions. Either format is legal, but the format with
 no asterisks is not compilable. Substrings are also
 allowed.

for_clause (FOR num_var = num_expr1 TO num_expr2 [STEP num_expr3],
form_item [, form_item]...)

 A for_clause is useful for reading array elements.
 Refer to the INPUT statement in this chapter for more
 information.

skip_clause SKIP skip_expr

 A skip_clause is used to skip one or more fields in the
 form to avoid the necessity of displaying values for
 them. The skip_expr is a numeric expression that
 evaluates to the number of fields to skip.

cursor_expr Either a numeric or a string expression. If a string
 expression is used, it must be the name of a field in
 the form that is active.

 If a numeric expression is used, it is a field number.
 The fields corresponding to the value of the numeric
 expressions are:

 0: for input field on the form.
 positive field number according to the form.
 value:
 negative field number according to the terminal.
 value:

message_expr A string expression. Its value is written to the
 message window located at the bottom of each VPLUS form.

The WRITE FORM statement writes an entire screen of information at once.
The value of each field is obtained from a single variable or array
element. The value of the first form_item is written to the first field
on the form, the value of the second form_item is written to the second
field on the form, etc. The value of each data item specified in a
for_clause is written to a single field. The value of each element of
the array specified by the array_name (*) notation is also written to a
single field. Use of the option SKIP 3 allows you to write a value in
the fourth field of the form without having to write information in the
preceding three.

The clauses are evaluated in the following order:

 1. Any message that is to be written to the message window.

 2. Any specified final cursor positioning takes place.

 3. Any data that is to be written to the fields.

It is important to understand that cursor positioning is of value only
for a subsequent READ FORM; using a WRITE FORM to position the cursor for
a subsequent WRITE FORM does not produce the expected results unless you

4-: 159

position the cursor to the first field. Use the SKIP clause to begin
writing to a field other than the first field.

If no VPLUS form is active, executing a WRITE FORM statement causes a
run-time error.

Examples

The following examples show the use of the WRITE FORM statement.

 400 WRITE FORM Num_var
 410 WRITE FORM A,B;C$
 420 WRITE FORM A,B;C$
 430 WRITE FORM A,SKIP 3,B
 440 WRITE FORM ;MSG="ERROR: BAD NAME";CURSOR=5
 450 WRITE FORM ;CURSOR="Emp-name"
 460 WRITE FORM A;SKIP 3,B;MSG="ERROR: BAD NAME";CURSOR=5

4- 160

5-1

Chapter 5 Functions
Introduction

HP Business BASIC/XL has a set of predefined standard functions. These
functions do not need to be defined to be called, nor is a calling
statement necessary. They can be treated like any expression. For
example, in the program below, Bnum and Cnum are assigned the return
value from the ABS function.

 10 Anum = -10
 20 Bnum = ABS(Anum) !Absolute value function
 30 Cnum = ABS(3) !Absolute value function
 40 PRINT Anum,Bnum,Cnum,ABS(-24) !Prints -10,10,3,24

The return value for each function has a specific data type. You can,
however, assign the return value to a variable of a different type, and
HP Business BASIC/XL will convert the return value to the type of the
variable that the function is assigned to.

ABS

The ABS function returns the absolute value of a number.

Syntax

ABS(n)

Parameters

n The number whose absolute value is to be returned. n
 can be of any numeric type.

The return variable is the same type as n, except for INTEGER and SHORT
INTEGER types. INTEGER variables return a REAL number, and SHORT INTEGER
variables return an INTEGER.

Examples

 10 Abs = ABS(-10) !Abs is 10
 20 Abs = ABS(10) !Abs is 10

ACS

The ACS function returns the principal value of the arc cosine of a
number. The argument value will be in the range of [-1, 1]. The result
can be expressed in angular units of degrees, grads, or radians.

Syntax

ACS(n)

Parameters

n The number to be evaluated. n is a REAL number.

The ACS function returns a REAL number.

Examples

 10 A = ACS(0.5) !A = 60.00 (degrees)
 20 B = ACS(0.5) !B = 66.67 (grads)
 30 C = ACS(0.5) !C = 1.05 (radians)

5- 2

ASN

The ASN function returns the principal value of the arc sine of a number.
The argument value is in the range [-1, 1]. The result can be expressed
in angular units of degrees, grads or radians.

Syntax

ASN(n)

Parameters

n The number to be evaluated. n is a REAL number in the
 range of [-1, 1].

The ASN function returns a REAL number.

Examples

 10 A = ASN(0.6) !A = 36.87(Degrees)
 20 B = ASN(0.6) !B = 40.97(Grads)
 30 C = ASN(0.6) !C = .64(Radians)

ATN

The ATN function returns the principal value of the arc tangent of a
number. The result can be expressed in angular units of degrees, grads,
or radians.

Syntax

ATN(n)

Parameters

n The number to be evaluated. n is a REAL number.

The ATN function returns a REAL number.

Examples

 10 A = ATN(0.7) !A = 34.99 (Degrees)
 20 B = ATN(0.7) !B = 38.88 (Grads)
 30 C = ATN(0.7) !C = .61 (Radians)

AVG

The AVG function is a Report Writer function that returns the average
value of a Report Writer total. It returns the value of the TOTAL(Level,
Sequence)/NUMDETAIL(Level) functions. See those functions for further
detail.

Syntax

AVG(level , sequence)

Parameters

level The summary level number. It must be in the range [0,
 9].

sequence Indicates which expression in the given TOTALS statement
 should be returned. The first expression is sequence
 number one. An error occurs if the sequence number is
 less than one or greater than the number of expressions
 in the totals statement.

Example

The following program segment calls the AVG function.

 100 Level1=3
 120 Sequence1=2
 130 Average=AVG(Level1,Sequence1)

BINAND

5-3

The BINAND function returns the binary AND for two numbers. The result
of this function is a short integer that contains a one in each bit for
which the same bit in both of the arguments is a one.

It returns a short integer R such that:

R (n) = N1(n) AND N2(n)

for all n in [0, 15] where N1(n) and N2(n) represent the value of bit n
of each expression and R represents the short integer result of BINAND.

Syntax

BINAND(N1,N2)

Parameters

N1 Binary representation of a numeric expression. N1 is a
 short integer.

N2 Binary representation of a numeric expression. N2 is a
 short integer.

Examples

The example below shows a layout of each bit of the arguments, and the
resulting bit layout of the result.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1= 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1
 N2= 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0

 BINAND(N1,N2)=0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0

BINCMP

The BINCMP function returns the binary complement for all R such that

R (n) = NOT N1(n)

for all n in [0, 15] where N1(n) represents the value of bit n in N1 and
R represents the short integer result of the function. HP Business
BASIC/XL stores a negative number as the two's complement of its absolute
value. The two's complement of a number is its complement or the results
of the BINCMP function, plus one.

Syntax

BINCMP(N1)

Parameters

N1 Binary representation of a numeric expression. This is
 a short integer.

Examples

The example below shows the bit layout for the argument, N1. It shows
the bit layout for the result of the BINCOMP function.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1= 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0

 BINCMP(N1)= 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1

BINOR

The BINOR function returns the Binary OR for all R such that

 R(n)=N1(n) OR N2(n)

for all n in [0, 15] where N1(n) and N2(n) represent the value of bit n
in each expression and R represents the short integer result of the
function. That is, if a particular bit in either argument contains a
one, the resulting bit will be one. If both arguments have a zero in a
particular bit, the result will have a zero in that bit.

5- 4

Syntax

BINOR(N1, N2)

Parameters

N1 Binary representation of the value of a numeric
 expression. This is a short integer.

N2 Binary representation of the value of a numeric
 expression. This is a short integer.

Examples

The example below shows the bit layout for the BINOR function. It shows
each bit of both arguments, and the result of the BINOR function.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1= 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1
 N2= 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0

 BINOR(N1,N2)= 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1

BINXOR

The BINXOR function returns the Binary Exclusive OR for all R such that

R (n) = N1(n) XOR N2(n)

for all n in [0, 15] where N1(n) and N2(n) represent the value of bit n
in each expression and R represents the short integer result of the
function. That is, if a particular bit of both arguments have the same
contents (either zero or one) the same bit in the result will contain a
zero. If a particular bit in both arguments do not have the same
contents, the same bit in the result will contain a one.

Syntax

BINXOR(N1, N2)

Parameters

N1 Binary representation of a numeric expression. This is
 a short integer.

N2 Binary representation of a numeric expression. This is
 a short integer.

Examples

The example below shows the bit layout for the BINXOR function. It shows
the values in each bit of the arguments, and the values in each bit of
the result.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1= 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1
 N2= 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0
 BINXOR(N1,N2)=0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1

BITLR

The BITLR function returns the value of a particular bit of an
expression, where 0 is the Most Significant (or leftmost) bit. The
result is a SHORT INTEGER.

Syntax

BITLR(N1, N2)

Parameters

N1 Binary representation of a numeric expression. This is
 a SHORT INTEGER. This is the number containing the bit
 to be extracted.

N2 Binary representation of a numeric expression. This is

5-5

 a SHORT INTEGER. This is the number of the bit to be
 extracted from N1.

Examples

The example below shows a bit layout for N1. It shows the results of the
BITLR function for several values of the second parameter (N2).

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1= 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1

 BITLR(N1,15)=1, BITLR(N1,11)=1, BITLR(N1,8)=0, BITLR(N1,3)=0

BITRL

The BITRL function returns the value of a particular bit of an
expression, where 15 is the Most Significant (or leftmost) bit. The
result is a SHORT INTEGER.

Syntax

BITRL(N1, N2)

Parameters

N1 Binary representation of a numeric expression. This is
 a SHORT INTEGER. This is the number containing the bit
 to be extracted.

N2 Binary representation of a numeric expression. This is
 a SHORT INTEGER. This is the number of the bit to be
 extracted from N1.

Examples

The example below shows the bit layout for N1. It shows the result of
the BITRL functions for several values of the second parameter (N2).

 Bit Number: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 N1= 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1

 BITRL(N1,15)=0, BITRL(N1,11)=0, BITRL(N1,8)=1, BITRL(N1,3)=1

BRK

The BRK function returns the status that BREAK and CONTROL Y (halt) had
before the BRK function was called. It can also change the status of
these, depending on the value of the argument passed. BRK is a Boolean
function that returns the value TRUE (one) or FALSE (zero).

Syntax

BRK (num_expr)

Parameters

num_expr This value determines whether BRK changes the status of
 BREAK and CONTROL Y, as follows:

num_expr Status of BREAK and CONTROL Y

 Negative Does not change status

 Zero Disables both

 Positive Enables both

The BRK function returns:

TRUE (one) If BREAK and CONTROL Y were enabled before the BRK
 function was called.

FALSE (zero) If BREAK and CONTROL Y were disabled before the BRK
 function was called.

When BREAK is enabled, pressing BREAK causes the operating system to
suspend HP Business BASIC/XL. The operating system command :RESUME

5- 6

restarts HP Business BASIC/XL. If CONTROL Y is enabled and pressed and a
program is being executed, a message is printed indicating that HALT was
pressed and control is returned to the HP Business BASIC/XL interpreter.
If CONTROL Y is pressed while in the HP Business BASIC/XL interpreter,
only the message is printed.

When BREAK and CONTROLY are disabled, pressing either has no result.

Examples

 10 Was_enabled=BRK(-1) !BRK does not change status
 11 Was_enabled=BRK((10+10)-(10*10)) !BRK does not change status
 20 Was_enabled=BRK(0) !Disables BREAK and CONTROL Y
 21 Was_enabled=BRK((X-Y)-(X+(-Y))) !Disables BREAK and CONTROL Y
 30 Was_enabled=BRK(1) !Enables BREAK and CONTROL Y
 31 Was_enabled=BRK(ABS(X)) !Enables BREAK and CONTROL Y
 !(if X != 0)
 40 Was_enabled=BRK(X) !Action depends on value of X
 50 IF BRK(X) THEN GOTO 100 !Action depends on value of X

BUFTYP Function

The BUFTYP function returns the number that represents the type of the
next item in the input buffer. See the INPUT statement in chapter 4 for
an explanation of the input buffer. The BUFTYP function returns the same
numeric values representing HP Business BASIC/XL data types returned by
the DATATYP and TYP functions (see Table 5-1).

Table 5-1. Numbers Representing Input Data Types

--
BUFTYPE	Type of Next Item in
Result	DATA Statement or Input
	Buffer
--
1	DECIMAL
--
2	Entire string
--
4	End-of-record (EOR) mark
--
5	SHORT INTEGER
--
11	INTEGER
--
13	REAL
--

Syntax

BUFTYP

The BUFTYP function determines the type of a numeric datum by its format,
whether it contains a decimal point or is expressed in scientific
notation, its value, and the default numeric type.

Table 5-2 explains how BUFTYP determines the type of a numeric datum.

5-7

Table 5-2. Type Assignment by BUFTYP Function

Range	Without Decimal Point and	With Decimal Point or
	Not Expressed in	Expressed in
	Scientific Notation	Scientific Notation

[-32768, 32767]	SHORT INTEGER	REAL

[-2147483648, 2147483647]	INTEGER	REAL

Outside integer ranges but inside	REAL	REAL
real range		

Outside real ranges	DECIMAL	DECIMAL

Examples

 10 A=BUFTYP !After this call, A will contain the data type of the
 20 !next item in the input buffer.

CCODE

The CCODE function returns the condition code set by the last called MPE
XL intrinsic. The results are:

Intrinsic condition CCODE Meaning:
code: Returns:

--

CCG 0 A special condition occurred
 but the request may have
 been granted.

CCL 1 An error has occurred and
the request was not granted.

CCE 2 Request has been granted.

Refer to the MPE XL Intrinsics Reference Manual for more information.

Syntax

CCODE

Examples

The example below calls an intrinsic (Findjcw), and then uses the CCODE
function to make sure the intrinsic was executed successfully.

 10 INTRINSIC Findjcw
 20 CAll Findjcw
 30 IF CCODE < 2 THEN GOSUB 300
 .
 .
 .

CEIL

The CEIL function returns the smallest integral number that is greater
than or equal to the specified number. This function returns a value
that is the same type as the argument.

5- 8

Syntax

CEIL(n)

Parameters

n The number to be evaluated. This can be of any numeric
 type.

Examples

 10 A = CEIL(3.7) !A = 4
 20 B = CEIL(-3.7) !B = -3

CHR$

The CHR$ function returns the single ASCII character associated with a
number.

Syntax

CHR$(N)

Parameters

N The numeric expression to be evaluated. This must
 evaluate to a value within the range of an HP Business
 BASIC/XL integer. If N is greater than 256, then HP
 Business BASIC/XL performs (N MOD 256), and the CHR$
 returns the ASCII character of that result.

Examples

 10 A$ = CHR$(65) !A$ = A
 20 B$ = CHR$(321) !B$ = A

CLOCK

The CLOCK function returns the current value of the system clock in
seconds. This is an INTEGER. On the HP 3000, the value of the system
clock is the number of seconds since the time 00:00:00 on January 1,
1980.

Syntax

CLOCK

Since the CLOCK function is precise to the nearest second, two calls to
CLOCK within the same second may return equal values.

Examples

 100 Start=CLOCK
 .
 .
 .
 900 Stop=CLOCK
 910 PRINT "Elapsed time: "; Stop - Start
 999 END

COL

The COL function returns the number of columns in an array as it is
currently dimensioned. If it is a vector (a one dimensional array), the
number of columns is one. Otherwise, the number of columns is the size
of the rightmost dimension. The result is an integer value by default.

Syntax

COL(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variables names are suffixed with a "$".

5-9

Examples

OPTION BASE 1 is assumed.

The following shows several examples of the result of the COL function on
arrays A, B,C,D,E, and F.

 A(2,2): 1 2 B(2,4): 1 2 3 4 C(4,3,2): 1 2 0 4 0 0 1 2
 4 5 5 6 7 8 5 1 1 0 4 5 0 0
 2 0 3 2 1 2 0 1

 D(3,3): 1 0 1 E(2,2): 8 3 F(5): 5 4 3 2 1
 3 5 7 4 7
 9 0 9

 COL(A) = 2
 COL(B) = 4
 COL(C) = 2
 COL(D) = 3
 COL(E) = 2
 COL(F) = 1

COMPRESS$

The COMPRESS$ function returns a copy of string in which a single blank
space replaces each run of blank spaces.

Syntax

COMPRESS$(S $)

Parameters

S$ A string expression to be compressed.

Examples

 10 A$ = COMPRESS$("c a t") !A$ = "c a t"

COS

The COS function returns the cosine of a number. The result is a real
number. The argument and result can be expressed in angular units of
degrees, grads, or radians.

Syntax

COS(n)

Parameters

n The number that is to be evaluated. This is a REAL
 number.

Examples

 10 A = COS(45) !A = .71 (Degrees)
 20 B = COS(45) !B = .76 (Grads)
 30 C = COS(45) !C = .53 (Radians)

CPOS

The CPOS function returns the column position of the cursor in display
memory. For terminals that have a display 80 columns wide, a value in
the range 1..80 is returned. A return value of 1 corresponds to the
leftmost column and a return value of 80 corresponds to the rightmost
column. The program fragment:

 100 CURSOR (,45) ! Position cursor to column 45
 120 PRINT CPOS ! Prints position of the cursor in display memory

prints the number 45. CPOS determines the cursor position by reading it
from the terminal. Therefore, typing on the keyboard while a CPOS
statement is executing may cause an error.

5- 10

Syntax

CPOS

Examples

 200 PRINT CPOS

CPU

If called from within either an interpreted or compiled program, the CPU
function returns the number of CPU seconds elapsed since the beginning of
program execution.

If typed directly in response to the interpreter prompt, the CPU function
returns the total number of CPU seconds required for the execution of the
last previous program to execute in the interpreter.

The result of this function is a REAL number.

Syntax

CPU

Examples

 100 Cpu_time = CPU
 110 PRINT "CPU time is: " ; CPU
 >

The above example returns a REAL value that contains the elapsed CPU
time.

CSUM

The CSUM function returns an array that contains the sum of the elements
of each column of an array. Both arrays must be of the same type. The
result has the format

 MAT num_array1 = CSUM(num_array2)

where element i of num_array1 is the sum of the elements in column i in
num_array2 . num_array2 is dimensioned (m, n) and num_array1 is
dimensioned (n). The data type of the resulting array is the same as
that of the argument.

The CSUM function is used in the MAT = statement, with two dimensional
arrays.

Syntax

CSUM(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 This array can be of any type.

Examples

 10 DIM A(4)
 20 DIM B(3,4)
 .
 .
 .
 80 MAT A = CSUM(B)

IF B is

 8 5 7 3
 0 2 9 1
 4 6 0 5

then A is

5-11

 12 13 16 9

CURKEY

The CURKEY function returns the integer value of the last
branch-during-input key pressed. If the value returned is 0, then no
branch-during-input keys have been pressed during the execution of the
program. The value returned representing a key is in the range [1, 8].

Syntax

CURKEY

Example

100 PRINT CURKEY !Prints the value of the last branch-during-input
 105 !key pressed.
 110 IF CURKEY > 0 THEN ENABLE !If a branch-during-input key was pressed,
 115 !then the branch occurs.

DAT3000$

The DAT3000$ function returns a substring of the date string returned by
the HP 3000 DATELINE intrinsic. On the HP 3000 under MPE XL, the date
string is a string of 27 characters with the following format:

 MON, MAR 3, 1986, 12:44 PM

Syntax

DAT3000$ (num_expr1 , num_expr2)

Parameters

num_expr1 A numeric expression that evaluates to the position of
 the first character of the date string.

num_expr2 A numeric expression that evaluates to the position of
 the last desired character of the date string.

 Both num_expr1 and num_expr2 must evaluate to a value in
 the range of [1, 27], inclusive. The value of num_expr1
 must be less than or equal to the value of num_expr2 .
 If any of these conditions is violated an error occurs.

Examples

 10 A$=DAT3000$(1,17)
 15 PRINT "12345678901234567"
 20 PRINT A$
 99 END

The above program prints:

 12345678901234567
 MON, MAR 3, 1986

 10 A$=DAT3000$(1,10)
 15 PRINT "1234567890"
 20 PRINT A$
 99 END

The previous program prints:

 1234567890
 MON, MAR

DATATYP

The DATATYP function returns a number that represents the data type of
the next value to be read from a DATA statement (see Table 5-3).

5- 12

Table 5-3. Numbers Representing Input Data Types

--
DATATYP	Type of Next Item in
Result	DATA Statement
--
1	DECIMAL
--
2	Entire string
--
4	End-of-record (EOR) mark
--
5	SHORT INTEGER
--
11	INTEGER
--
13	REAL
--

Syntax

DATATYP

Examples

 10 READ A,B$
 20 PRINT DATATYP
 30 DATA 1.0,"hello",3

Line 20 above will print 5. Since the first two items have been read,
the value 3 is the next item in the DATA statement.

DATE$

If the system date has been set, the DATE$ function returns an
eight-character string that contains the current system date.

If the system date has not been set, the DATE$ function returns the null
string.

Syntax

DATE$ [(num_expr)]

Parameters

num_expr Determines date format as shown in Table 5-4.

Table 5-4. Effect of DATE$ Function Parameter

num_expr	Date format

Not specified	The default specified by HP Business BASIC/XL Configuration Utility
	(see appendix C). If HP Business BASIC/XL Configuration Utility has
	not set default, it is U. S. format. This is compatible with the
	HP250.

| | |

5-13

| Integer zero | U. S. format: mm/dd/yy . |
| | |

Integer one	European format: dd.mm.yy .

Other	Error.

Examples

 10 DIM Us_date$[8], Eur_date$[8], Default_date$[8]
 20 Us_date$=DATE$(0)
 30 Eur_date$=DATE$(1)
 40 Default_date$=DATE$
 50 PRINT Us_date$
 60 PRINT Eur_date$
 70 PRINT Default_date$
 99 END

If the system date is June 12, 1984, the above program prints:

 06/12/84
 12.06.84
 06/12/84

DEBLANK$

The DEBLANK$ function returns a copy of a string without blanks.

Syntax

DEBLANK$(S $)

Parameters

S $ The string expression to be deblanked.

Examples

 10 A$ = DEBLANK("c a t") !A$ = "cat"

DECIMAL

The DECIMAL function converts a number to DECIMAL format.

Syntax

DECIMAL(n)

Parameters

n The number that is to be converted to decimal. This can
 be any numeric data type.

Examples

 10 Dec_val = DECIMAL(3) !Dec_val = 3.00

DET

The DET function returns the determinant of a square numeric matrix. If
the matrix is DECIMAL or SHORT DECIMAL, HP Business BASIC/XL converts it
to REAL before computing the determinant. The result is of the default
numeric type.

Syntax

DET(num_sq_matrix)

Parameters

num_sq_matrix A two dimensional numeric array with the same number of
 rows as columns.

5- 14

Examples

OPTION BASE 1 is assumed.

 A(2,2): 1 2 D(3,3): 1 0 1 E(2,2): 8 3
 4 5 3 5 7 4 7
 9 0 9

 DET(A) = -3
 DET(D) = 0
 DET(E) = 44

DOT

The DOT function returns the dot product, or inner product, of two
vectors. The elements of the two vectors must be of the same type. If
they are short integer arrays, the result is an integer; otherwise, the
result is the same type. Intermediate calculations for computing the DOT
product of two short decimal type vectors are performed after converting
each of the appropriate elements to decimal type values. Therefore, in
compiled programs, short decimal overflow is reported as decimal
overflow. The result is of the default numeric type.

Syntax

DOT(num_vector1 , num_vector2)

Parameters

num_vector1 A numeric one dimensional array.

num_vector2 A numeric one dimensional array.

Examples

OPTION BASE 1 is assumed.

 A(4) = 1 2 3 4
 B(4) = 2 2 2 2

 DOT (A,B) = 1*2+2*2+3*2+4*2= 21

DROUND

The DROUND function rounds a number to a specified number of digits. The
result is of type DECIMAL.

Syntax

DROUND(n1, n2)

Parameters

n1 The number to be rounded. Although this can be of any
 numeric type, it is converted to DECIMAL.

n2 The number of digits that n1 is to be rounded to.

Examples

 10 A = DROUND(.3214,3) !A = .321
 20 B = DROUND(.3215,3) !B = .322
 30 C = DROUND(5.07,2) !C = 5.1

ERRL

The ERRL function returns information about the last error trapped by an
ON ERROR statement. It returns the line number that the error occurred
in.

Syntax

ERRL

Example

 100 ON ERROR CALL Fixit

5-15

 110 I=J/0 !The error occurred here.
 120 END
 200 SUB Fixit
 210 PRINT ERRL
 250 SUBEND

The above program prints:

 110

ERRM$

The ERRM$ returns information about the last error trapped by an ON ERROR
statement. It returns an error message associated with the error number,
as listed in Appendix A.

Syntax

ERRM$

Example

 100 ON ERROR CALL Fixit
 110 I=J/0 !The error occurred here.
 120 END
 200 SUB Fixit
 210 PRINT ERRM$
 250 SUBEND

The above program prints:

 Division by zero, or modulo 0.

ERRMSHORT$

The ERRMSHORT$ functions returns information about the last error trapped
by the ON ERROR statement. It returns an error message of the form:

 ERROR n IN LINE m

where n is the HP Business BASIC/XL error number, and m is the line
number that the error occurred in.

Syntax

ERRMSHORT$

Example

 100 ON ERROR CALL Fixit
 110 I=J/0 !The error occurred here.
 120 END
 200 SUB Fixit
 210 PRINT ERRMSHORT$
 250 SUBEND

The above program prints:

 ERROR 31 IN LINE 110

ERRN

The ERRN function returns information about the last error trapped by the
ON ERROR statement. It returns the HP Business BASIC/XL error number.

Syntax

ERRN

Examples

 100 ON ERROR CALL Fixit
 110 I=J/0 !The error occurred here.
 120 END
 200 SUB Fixit
 210 PRINT ERRN

5- 16

 250 SUBEND

The above program prints:

 31

EXP

The EXP function returns the value of e ** n. The result is a REAL
number.

Syntax

EXP(n)

Parameters

n The power that e is to be raised to. Although this can
 be of any numeric type, it is converted to REAL.

Examples

 10 A = EXP(0) !A = 1
 20 B = EXP(1) !B = 2.71828
 30 C = EXP(1.0) !C = 2.718281828459

FNUM

The FNUM function returns the MPE XL file number of a file. This is used
primarily when calling MPE XL file intrinsics.

Syntax

FNUM(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. An optional #
 can precede fnum .

Examples

 100 MPE_num = FNUM(1) !MPE_num is the MPE file number of file 1.
 120 REM !MPE_num can then be used to call intrinsics

FRACT

The FRACT function returns the fractional part of a number. The result
can be of type REAL, SHORT REAL, DECIMAL, or SHORT DECIMAL.

Syntax

FRACT(n)

Parameters

n The number to be evaluated. This can be of any numeric
 type.

Examples

 10 A = FRACT(2.7) !A = .7
 20 B = FRACT(45) !B = 0

INFO$

The INFO$ function returns the value of a string that was assigned to
INFO following the command RUN;INFO=S$.

Syntax

INFO$

Examples

 >RUN;INFO="Debug"

5-17

In the program:

 120 IF INFO$="Debug" THEN
 ...
 180 ENDIF

In this case, the above block would execute since the expression
INFO$="Debug" is true.

The INFO$ function can also be used with an HP Business BASIC/XL program
file.

 :RUN Prog1;INFO="Debug"

The INFO$ function can be used within Prog1.

INT

The INT function returns the largest integer that is less than or equal
to a specified number. The result is of type INTEGER.

Syntax

INT(n)

Parameters

n The number to be evaluated. This argument can be of any
 numeric type.

Examples

 10 A = INT(4.5) !A = 4
 20 B = INT(-0.3) !B = -1

INTEGER

The INTEGER function converts a number to an integer. The result is of
type INTEGER.

Syntax

INTEGER(n)

Parameters

n The number to be converted. This can be of any numeric
 type.

Examples

 10 A = INTEGER(3.0) !A = 3

INTERPRETED

The INTERPRETED function returns a value that determines whether a
program is being run in the interpreter or as a compiled program.

The return value is as follows:

Table 5-5. Result of INTERPRETED Function

Result	Meaning

0	Compiled program.

1	Interpreted program.

5- 18

Syntax

INTERPRETED

Examples

 10 A=INTERPRETED
20 IF A=1 THEN GOSUB 100 !Control transfers to 100 if this program is interpreted

 30 ELSE GOSUB 200 !Control transfers to 200 if this program is compiled
 .

 .

 .

INV

The INV function returns an array that is the inverse of a specified
array. Both arrays must be of the same floating-point type. HP Business
BASIC/XL converts a DECIMAL or SHORT DECIMAL array to REAL before
computing the inverse.

This function has the form

 MAT num_array1 = INV(num_array2)

where num_array1 is the inverse of num_array2 . Num_array1 and num_array2
are both dimensioned (m,m) MUL(num_array1 , num_array2) is an identity
matrix. An identity matrix is a square matrix in which each element on
the upper-left to lower-right diagonal is one and all others are zero.
For example:

 1 0 0
 0 1 0
 0 0 1

The function is used in the MAT = statement, with two dimensional arrays.

Syntax

INV(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.

Examples

 10 DIM A(3,3),B(3,3)
 .
 .
 .
 50 MAT A = INV(B)

If B is

 1 2
 3 4

then A is

 -2 1
 1.5 -0.5

ITM

The ITM function returns the number of data items between the beginning
of a record and its current position in the same record. In other words,
it returns the number of datum between the beginning of the current
record and the current datum pointer (after a direct read, this number is
one).

Syntax

ITM(fnum)

5-19

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. For this
 function, fnum must specify a BASIC DATA file. An
 optional # can precede fnum .

Examples

 10 CREATE "File1", FILESIZE=10 !BASIC DATA file; each PRINT
 11 ! statement starts a new record.
 12 ASSIGN "File1" TO #1
 13 POSITION #1; BEGIN !Pointer at record 1.
 14 PRINT #1; 10 !Print 10 on record 1;
 16 PRINT #1; 20,30 !Print 20 and 30 on the same record ;
 18 DISP ITM(#1) !Pointer is at record 1.
 19 !Three datum are between
 20 ! the pointer and the beginning
 21 ! of the record; display value 3.
 99 END

LASTBREAK

The LASTBREAK function is a Report Writer function that returns the level
number of the last BREAK statement satisfied. If more than one BREAK
statement is satisfied, it returns the lowest level number. If no report
is active, it returns -1. If no breaks have occurred, it returns zero.

Syntax

LASTBREAK

Examples

 100 Level = LASTBREAK !Level contains the level of the last BREAK.

LEN

The LEN function returns the length of a string expression in number of
characters.

Syntax

LEN(S $)

Parameters

S $ The string expression whose length is to be returned.

Examples

 10 A = LEN("Cat") !A = 3

LEX

The LEX function is used to compare two strings in a Native Language
dependent manner. For example:

 LEX(String1$, String2$,Nl_var)

returns:

 -1 if String1$ < String2$
 0 if String1$ = String2$
 1 if String1$ > String2$

Syntax

LEX(str_expr1 , str_expr2 [nl_num_expr])

Parameters

str_expr1, String variables, quoted strings, the values returned
str_expr2 from a string function, or any expressions using the
 appropriate string operators to construct an

5- 20

 expression.

nl_num_expr A numeric expression that evaluates to a Native
 Language ID. If nl_num_expr is -1, the underlying
 native language number is used as the language
 specifier. If a non-negative number is used, that
 number is taken directly as the language specifier.
 If the native language option is not specified then
 the option defaults to zero (the underlying native
 language).

The underlying native language specifies NATIVE-3000. NATIVE-3000 is the
system language that does not consider Native Language Support. For more
information on Native Language Support, refer to "Native Language
Support" in chapter 6.

The native language number used for the comparison is determined by the
normal selection process. A native language number can be supplied as
the third argument.

LGT

The LGT function returns the log to the base 10 of a number. The result
is a REAL number.

Syntax

LGT(n)

Parameters

n The number that log to the base l0 is evaluated to.
 This is a REAL number.

Examples

 10 A = LGT(100) !A = 2
 20 B = LGT(0.01) !B = -2

LOG

The LOG function returns the log of e to a number. e is a constant that
has the value of 2.718281828. This function returns a REAL number.

Syntax

LOG(n)

Parameters

n The number that log e is evaluated to. This argument is
 a REAL number.

Examples

 10 A = LOG(1) !A = 0
 20 B = LOG(2.718281828) !B = 1

LTRIM$

The LTRIM$ returns a copy of a string expression without leading blanks.

Syntax

LTRIM$(S $)

Parameters

S $ The string expression that is to be trimmed.

Examples

 10 A$ = LTRIM(" Hi") !A$ = "Hi"

LWC$

The lowercase function, LWC$, converts a string with any uppercase

5-21

letters to a string containing only lowercase letters. An optional
second parameter can be used to specify the native language number.

Syntax

LWC$ (str_expr [, nl_num_expr])

Parameters

str_expr A string variable, a quoted string, the value returned
 from a string function, or any expression using the
 appropriate string operators to construct a string
 expression.

nl_num_expr A numeric expression that evaluates to a Native Language
 ID. If nl_num_expr is set to -1, the underlying native
 language number is used as the language specifier. If a
 non-negative value is used, that number is taken
 directly as the language specifier. If this option is
 not specified then the option defaults to zero (the
 underlying native language).

The underlying native is NATIVE-3000. NATIVE-3000 is the language the
system uses before considering Native Language Support. Refer to "Native
Language Support" in chapter 6 for more information.

MAX

The MAX function returns the largest value in a group of numbers. The
result of this function is of the same type as the argument.

Syntax

MAX(n [, n]...)

Parameters

n Each number that is to be evaluated. These can be of
 any numeric type.

Examples

 10 A = MAX(3,1,2) !A = 3

MAXLEN

The MAXLEN function returns the maximum length of a string expression, in
characters. The maximum length is determined by the DIM statement or the
system default.

Syntax

MAXLEN(S $)

Parameters

S $ A string expression whose maximum length is to be
 returned.

Examples

 10 DIM A$[30]
 20 B = MAXLEN(A$) !B = 30

MIN

The MIN function returns the smallest value in a series of numbers. The
result of this function will be of the same type as the arguments.

Syntax

MIN(n [, n]...)

Parameters

n Each number that is to be evaluated. These can be of

5- 22

 any numeric type.

Examples

 10 A = MIN(3,1,2) !A = 1

MUL

The MUL function returns an array that is the result of multiplying two
arrays. The arrays being multiplied must be of the same numeric type and
the result array must be a different variable than either of the arrays
being multiplied. This function has the form:

 MAT num_array1 = MUL(num_array2 , num_array3)

where num_array1 is num_array2 multiplied by num_array3 . Table 5-6 shows
the dimensions of each array in different cases.

Table 5-6. Dimensions of MUL Function Arguments and Results

Dimensions of	Dimensions of	Dimensions of
num_array2	num_array3	num_array1
		(result)

(m,n)	(n,p)	(m,p)

(m,n)	(n)	(m)

(m)	(m,p)	(p)

This function is used with the MAT = statement, with two dimensional
arrays.

Syntax

MUL(array1 , array2)

Parameters

array1 Structured collection of variables of the same type.
 The structure is determined when the array is declared.

array2 Structured collection of variables of the same type.
 The structure is determined when the array is declared.

Examples

Example 1.

 10 DIM A(2,4), B(2,3),C(3,4)
 .
 .
 .
 110 MAT A = MUL(B,C)

If B is

 5 3 1
 2 7 8

and C is

 1 2 8 5
 7 1 3 7
 6 4 2 9

then A is

5-23

 32 17 51 55
 99 43 53 131

Example 2.

 10 DIM A(2,1),B(2,4),C(4,1)
 .
 .
 .
 80 MAT A = MUL(B,C)

If B is

 9 8 7 6
 1 2 3 4

and C is

 1
 2
 3
 4

then A is

 78
 42

Example 3.

 10 DIM A(1,4),B(1,3),C(3,4)
 .
 .
 .
 110 MAT A = MUL(B,C)

If B is

 6 9 2

and C is

 1 2 8 5
 7 1 3 7
 6 4 2 9

then A is

 81 29 79 111

NUM

The NUM function returns the ASCII code that corresponds to the first
character of a string. This is an integer in the range [0, 255].

Syntax

NUM(S $)

Parameters

S $ A string expression whose first character will be
 evaluated.

Examples

 10 A = NUM("Angle") !A = 65

NUMBREAK

The NUMBREAK function is a Report Writer function that returns the number
of BREAK conditions satisfied for levels one through the given level.
Lower numbered breaks are counted because they automatically trigger a
break at the given level. If there is no active report, an error occurs.

5- 24

Syntax

NUMBREAK(level)

Parameters

level The summary level number. This must be in the range [0,
 9].

Example

 100 No_conds = NUMBREAK(level3) !Returns the number of break
 101 !BREAK conditions satisfied

NUMDETAIL

This Report Writer function returns the number of DETAIL LINES with a
non-zero totals_flag executed for the given level. This value is reset
to zero each time a break occurs at the indicated level. If a report is
not active, an error occurs.

The level number can be zero. Zero returns the total number of DETAIL
LINE statements that accumulate totals. This value is used by the AVG
function.

Syntax

NUMDETAIL(level)

Parameters

level The summary level number. This must be in the range of
 [0, 9]

Example

 110 Numbers = NUMDETAIL(Level1) !Numbers receives the number of
 111 !DETAIL LINES executed.

NUMLINE

The NUMLINE function is a Report Writer function that returns the number
of lines printed on the current page. This number includes the blank
lines at the top of the page (from PAGE LENGTH) and the page header.
Each line printed with DETAIL LINE, PRINT, or PRINT USING also increments
this value. If no report is active, -1 is returned.

Syntax

NUMLINE

Examples

 100 Lines= NUMLINE !Lines receives the number of lines on the current page

NUMREC

The NUMREC function returns the number of records in a file that contain
data.

Syntax

NUMREC(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. An optional #
 can precede fnum .

Example

 110 Filesize= NUMREC(2) !Filesize is the number of records in file 2

5-25

OLDCV

The OLDCV function is a Report Writer function that returns the value of
a BREAK WHEN control expression. The value stored is the value the last
time a break at the given level (or lower level) occurred. The BREAK
WHEN statement at this level must have a numeric control expression.

The OLDCV value is not available until report output is started.
References to this function before that time generate an error.

Syntax

OLDCV(level)

Parameters

level A summary level number. This must be in the range [1,
 9].

Examples

 100 bwval= OLDCV(level2) !bwval receives the value of BREAK WHEN condition

OLDCV$

The OLDCV$ is a Report Writer function that returns the value of a BREAK
WHEN control expression. The value stored is the value the last time a
break at the given level (or lower level) occurred. The BREAK WHEN
statement at this level must have a string control expression.

The OLDCV$ value is not available until report output is started.
References to this function before that time generate an error.

Syntax

OLDCV$(level)

Parameters

level A summary level number. This must be in the range [1,
 9].

Examples

 100 bwcont$ = OLDCV$(Level4) !bwcont$ receives the value of a BREAK
 101 !WHEN string control expression.

PAGENUM

The PAGENUM function is a Report Writer function that returns the current
page number. The page number is set to 1 when a report is activated.
You can reset this value with the SET PAGENUM statement. If no report is
active, -1 is returned.

Syntax

PAGENUM

Example

 100 Cpage = PAGENUM !Cpage receives the current page number

POS

The POS function returns the starting character of a string embedded in
another string. It will return 0 if the specified substring is not
found.

Syntax

POS(S1 $, S2 $)

Parameters

S1 $ A string expression indicating the string that the
 substring is to occur in.

5- 26

S2 $ A string expression indicating the substring. The
 function returns the position of the first character of

S2 $.

Examples

 10 A = POS("abcde","fg") !A = 0
 20 B = POS("abcde","cd") !B = 3

REAL

The REAL function converts a number to a real number. The result is of
type REAL.

Syntax

REAL(n)

Parameters

n The number to be converted. This can be of any numeric
 type.

Examples

 10 A = REAL(2) !A = 2.0000

REC

The REC function returns the number of the record indicated by a file's
record pointer.

Syntax

REC(fnum)

Parameters

fnum The file number by which HP Business BASIC/XL identifies
 the file. It is a numeric expression that evaluates to
 a positive short integer. An optional # can precede

fnum .

Examples

 10 CREATE "File1",RECSIZE=5,FILESIZE=10 !BDATA file; 10 5-word records
 11 ASSIGN "File1" TO #1
 12 POSITION #1;BEGIN !Pointer at record 1.
 13 DISP REC(#1) !Display 1.
 14 POSITION #1;3 !Pointer at record 3.
 15 DISP REC(#1) !Display 3.
 16 PRINT #1,7; 502 !Print 502 on record 7
 18 DISP REC(#1) !Display 7.
 19 POSITION #1;END !Pointer at end of file.
 20 DISP REC(#1)
 99 END

RECSIZE

The RECSIZE function returns the number of bytes per record in a file.
The result of this function is of type INTEGER.

Syntax

RECSIZE(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. An optional #
 can precede fnum .

Examples

 100 Rec=RECSIZE(2) !Rec is number of bytes per record of file 2

5-27

RESPONSE

The RESPONSE function returns information about the method and type of
input last entered from the keyboard. The statements listed below affect
the value that is returned by this function:

 * INPUT

 * LINPUT

 * TINPUT

 * ACCEPT

 * PRESS KEY

 * FLUSH INPUT

Likewise, the actions that are listed below affect the value that is
returned by the RESPONSE function:

 * Pressing any branch-during-input key.

 * Pressing the HALT key (control Y).

 * Specifying a HARD HALT.

 * Execution of the PRESS KEY statement.

NOTE Input using the ENTER and LENTER statements does not affect the
 value returned by this function.

A FLUSH INPUT statement sets the value returned by RESPONSE to zero.

This function can be used in conjunction with the input statements and
softkeys to determine how the user has a responded to a program's input
statement. Table 5-7 lists the possible values returned by this function
with their corresponding meanings.

Table 5-7. RESPONSE Function Return Values and Their Meanings

Value	Meaning

-1 through -8:	One of the user-definable keys , f1 through f8, was pressed. The
	value corresponds to the negative number of the actual key pressed.

-255:	The HALT key was pressed.

0:	There has not been any input entered or a FLUSH INPUT statement
	preceded the function call.

1:	The HARD HALT key was pressed.

2:	A timeout has occurred. This occurs during the execution of a TINPUT
	or ACCEPT statement.

| | |

5- 28

| 10: | The last previous input is valid. |
| | |

11:	The input was accepted without a carriage return. The TINPUT and
	ACCEPT statements allow suppression of the carriage return by
	specification of the CHARS and NOLF options.

Syntax

RESPONSE

Examples

 10 ON KEY 1 GOSUB Help;LABEL="Help"
 100 LOOP
 200 INPUT "Your Name; ";Name$
 300 EXIT IF RESPONSE > 2
 400 ENDLOOP
 500 STOP
 600 HELP:!
 700 PRINT "In Help"
 800 RETURN

The program above continues to prompt for the user's name until it is
entered on the keyboard. If the user presses f1, the program executes
the specified HELP subroutine. When it returns from the HELP subroutine,
since RESPONSE returns a value of -1, the program reprompts for the
user's name.

REVISION

The REVISION function returns the revision number of HP Business BASIC/XL
running on the system. The result is of type INTEGER.

Syntax

REVISION

Examples

 10 DISP REVISION

RND

The RND function returns a pseudo-random number in the range of [0.0,
1.0]. The result is of type REAL. You can supply a dummy parameter.

Syntax

RND[(n)]

Parameters

n A dummy parameter. This dummy parameter, called a seed,
 is used by the RND function to completely determine a
 pseudo-random number sequence. For each seed number, a
 different random number sequence is generated. In order
 for the sequence to be correctly followed for multiple
 random numbers, the seed value from the previous RND
 call must be used as input for the next RND call, as
 each call changes the seed value. This is of type REAL.

Examples

 10 A = RND !A = 0.237298
 20 B = RND(4) !B = 0.789717

5-29

ROTATE

The ROTATE function returns the result of moving each bit of a number a
specified number of bits. If the number of bits to be moved is positive,
the bits move toward the right and if negative, the bits move left. If a
bit is rotated past the last bit in the number, it is placed at the other
end of the number. That is, the bits wrap around.

Syntax

ROTATE(N1,N2)

Parameters

N1 Binary representation of the value of a numeric
 expression. This is of type short integer. This is the
 number whose bits are to be rotated.

N2 Binary representation of the value of a numeric
 expression. This is a short integer. This parameter
 specifies the number of places the bits of N1 are to be
 rotated. N2 must be in the range [-32767, 32767].

Examples

The following example shows the bit layout for N1 and N2. It shows the
bit layouts for N1 after the ROTATE function.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0

 ROTATE(N1,-1) 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0
 ROTATE(N1,1) 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1
 ROTATE(N1,2) 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0
 ROTATE(N1,18) 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0
 ROTATE(N1,4) 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1

In the above example, note that ROTATE(N1,2)=ROTATE(N1,18) because 2=18
MOD 16.

ROUND

The ROUND function rounds a number to a specified power of 10. The
result is of type DECIMAL.

Syntax

ROUND(n1 [, n2])

Parameters

n1 The number to be rounded. This is of type DECIMAL.

n2 The power of 10 that n1 is to be rounded to. If n2 is
 not specified, 0 is the default.

Examples

 10 A = ROUND(32767,2) !A = 32800
 20 B = ROUND(32067,3) !B = 32000
 30 C = ROUND(5.07,0) !C = 5
 40 D = ROUND(5.07) !D = 5
 50 E = ROUND(5.07,-1) !E = 5.1

ROW

The ROW function returns the number of rows in an array as it is
currently dimensioned. If it is a vector (one dimensional array), the

5- 30

number of rows is the number of elements. Otherwise, the number of rows
is the size of the dimension that is second from the right in the dims of
the DIM statement. The result is an integer value by default.

Syntax

ROW(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.
 String variable names are suffixed with a "$".

Examples

OPTION BASE 1 is assumed.

 A(2,2): 1 2 B(2,4): 1 2 3 4 C(4,3,2): 1 2 0 4 0 0 1 2
 4 5 5 6 7 8 5 1 1 0 4 5 0 0
 2 0 3 2 1 2 0 1

 D(3,3): 1 0 1 E(2,2): 8 3 F(5): 5 4 3 2 1
 3 5 7 4 7
 9 0 9

 ROW(A) = 2
 ROW(B) = 2
 ROW(C) = 3
 ROW(D) = 3
 ROW(E) = 2
 ROW(F) = 5

RPOS

RPOS is a numeric function that returns the number of the row where the
cursor is currently located. An integer in the range of one through the
maximum number of lines in your terminal's display memory is returned.
If your terminal has two pages of display, the value 48 is returned if
the cursor is located on the last line of display memory. The program
fragment:

 100 CURSOR (999) !Position the cursor
 120 T_rows = RPOS !Moment of truth; how much display memory?

can be used to find the number of lines of display memory in a terminal.
However, if the value 999 is returned, your terminal may have exceeded
the valid display memory range for these statements. HP Business
BASIC/XL determines cursor position by reading the position from the
terminal. So, typing on the keyboard during the execution of an RPOS
statement may cause an error.

Syntax

RPOS

Examples

 300 PRINT RPOS

RPT$

The RPT$ function returns a string that results from concatenating a specified string a specified number of times.

Syntax

 RPT$(S $,N)

5-31

Parameters

S $

A string expression that contains the string to be concatenated.
N The number of times thatS $ is to be concatenated. This is of type INTEGER.

Examples 20 A$ = RPT$("xy",3) !A$="xyxyxy"

RSUM

The RSUM function returns an array that contains the sum of the elements
of each row of an array. Both arrays must be of the same type. This has
the format

 MAT num_array1 = RSUM(num_array2)

where element i of num_array1 is the sum of the elements in row i in
num_array2 . num_array2 is dimensioned (m, n) and num_array1 is
dimensioned (m).

This function is used in the MAT = statement, with two-dimensional
arrays.

Syntax

RSUM(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.

Examples

 10 DIM A(3)
 20 DIM B(3,4)
 .
 .
 .
 80 MAT A = RSUM(B)

IF B is

 8 5 7 3
 0 2 9 1
 4 6 0 5

then A is

 23 12 15

RTRIM$

The RTRIM$ function returns a copy of a string without trailing blanks.

Syntax

RTRIM$(S $)

Parameters

S $ A string expression that is to be evaluated.

Examples

5- 32

 10 A$ = RTRIM("Hi ") !A$ = "Hi"

RWINFO

The RWINFO function is a Report Writer function that returns various
pieces of information that may be useful in controlling the Report
Writer. Table 5-8 shows the values returned. If there is no active
report, -1 is returned.

Table 5-8. RWINFO Return Values

| |
| Input Value Description |
1 Page Size. Zero indicates an infinite page size.
2 Effective Page Size. Defined as page_size - # blank lines at top - #
blank lines at bottom - size of PAGE HEADER - size of PAGE TRAILER.
3 NUMLINE value.
4 Lines left on current page. Includes the page trailer and blank
lines at the bottom. Includes the page header if used in the PAGE
HEADER section. Returns zero for an infinite size page.
5 Lines left on effective page. Equal to effective page size minus
NUMLINE. Returns zero for an infinite size page.
6 Returns 1 if last page break was caused by DETAIL LINE statement.
Returns 0 if any other statement causes a page break.
7 PAGENUM value.
8 Number of pages left to suppress.
9 Number of logical pages produced. This number is not affected by
PAGENUM, and increments even when output is suppressed.
10 LASTBREAK value.
11 LEFT MARGIN column. Reflects the value given in the LEFT MARGIN
statement, even if the left margin is not used.
12 Current summary level. Set during all HEADER and TRAILER sections,
and during BREAK statement evaluation. Returns zero when not in a
break condition.
13 PAGE HEADER size.
14 PAGE TRAILER size.
15 Returns 1 if DETAIL LINE causes a break. Otherwise, zero is
returned.

Syntax

RWINFO(input_value)

Parameters

input_value A number specifying the information that RWINFO is to
 return. See Table 5-8 above for specific values.

Examples

 110 In_value = 7
 120 RWvalue= RWINFO(In_value) !RWvalue receives the PAGENUM value.

5-33

SCAN

The SCAN function returns an integer containing the position of the first
common character in two strings, scanning from left to right. It returns
the position of the character in the first string specified. An optional
third string parameter will return that first common character. If the
two strings do not have common characters, SCAN returns 0 and the third
string returns the null string.

Syntax

SCAN(S1 $, S2 $[, S3 $])

Parameters

S1 $ A string expression containing one of the two strings
 that will be scanned. The position that SCAN returns is
 the position of the common character in this string.

S2 $ A string expression containing the second of the two
 strings that will be scanned.

S3 $ An optional parameter that will contain the first
 character that is common to S1 $ and S2 $. SCAN assigns a
 value to S3 $.

Examples

 10 A = SCAN("abc","xbzz",A$) !A = 2 and A$ = "b"
 20 B = SCAN("abc","djq",B$) !B = 0 and B$ = "", the null string
 30 C = SCAN("abc","cba",C$) !C = 1 and C$ = "a"

SDECIMAL

The SDECIMAL function converts a number to short decimal. The result of
this function is of type SHORT DECIMAL.

Syntax

SDECIMAL(n)

Parameters

n The number to be converted. This is of any numeric
 type.

Examples

 10 A = SDECIMAL(5.678) !A = 5.678

SGN

The SGN function evaluates the sign of a number. It returns the
following value:

 -1 if n is negative.
 0 if n is zero.
 1 if n is positive.

Syntax

SGN(n)

Parameters

n The number that is to be evaluated. This can be of any
 numeric type.

5- 34

Examples

 10 A = SGN(-239) !A = -1
 20 B = SGN(9-(3*3)) !B = 0
 30 C = SGN(78.8) !C = 1

SHIFT

The SHIFT function moves each bit of a number a specified number of
places. If the number of places is positive, the bits move to the right,
and if negative, to the left. If a bit is shifted out of the number, it
is dropped.

Syntax

SHIFT(N1,N2)

Parameters

N1 Binary representation of the value of a numeric
 expression. This is a short integer. This is the
 number whose bits are to be shifted.

N2 Binary representation of the value of a numeric
 expression, a short integer. This is the number that
 specifies how many places to shift the bits. N2 must be
 in the range [-32767, 32767].

Examples

The following shows the bit layout for N1, and several examples of the
SHIFT function. Each example uses a different value for N2.

 Bit Number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 N1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0
 SHIFT(N1,-1) 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0
 SHIFT(N1,1) 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1
 SHIFT(N1,-3) 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0
 SHIFT(N1,4) 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1

SIN

The SIN function returns the sine of a number. The result can be
expressed in angular units of degrees, grads, or radians. The result is
of type REAL.

Syntax

SIN(n)

Parameters

n The number to be evaluated. This is of type REAL.

Examples

 10 A = SIN(60) !A = .87 (Degrees)
 20 B = SIN(60) !B = .81 (Grads)
 30 C = SIN(60) !C = -.30 (Radians)

SINTEGER

The SINTEGER function converts a number to a short integer. The result
is of type SHORT INTEGER.

Syntax

SINTEGER(n)

5-35

Parameters

n The number to be converted. This can be of any numeric
 type.

Examples

 10 A = SINTEGER(5.678) !A = 6

SIZE

The SIZE function returns the number of records in a file, including
unused or empty records. The result is of type INTEGER.

Syntax

SIZE(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. An optional #
 can precede fnum .

Examples

 160 Filesize = SIZE(1) !Filesize is the number of records in file 1

SLEN

The SLEN function returns the string length of the next datum in a file.
If that item is not a string, SLEN returns -1. The result is of type
INTEGER.

Syntax

SLEN(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. Fnum must
 specify a BASIC DATA file. An optional # can precede

fnum .

Examples

 100 CREATE "File1",FILESIZE=1000 !BDATA file; series of data items.
 110 ASSIGN "File1" TO #1
 120 POSITION #1; BEGIN !Rewind File1 before writing it.
 130 PRINT #1; "abc", 123 !"abc" is item 1, 123 is item 2.
 140 POSITION #1; BEGIN !Rewind File1.
 150 DISP SLEN(1) !Next item, "abc", is a string;
 155 ! return its length, 3.
 160 READ #1; A$!Read item 1.
 170 DISP SLEN(1) !Next item, 123, is not a string;
 175 ! return -1.
 999 END

SQR

The SQR function returns the positive square root of a number. The
result is of type REAL.

5- 36

Syntax

SQR(n)

Parameters

n The number to be evaluated. This is of type REAL.

Examples

 10 A = SQR(25) !A = 5

SREAL

The SREAL function converts a number to a short real. The result is of
type SHORT REAL.

Syntax

SREAL(n)

Parameters

n The number to be converted. This can be of any numeric
 type.

Examples

 10 A = SREAL(4) !A = 4.0000

SUM

The SUM function returns the sum of the elements in a numeric array. If
the array is a short integer array, the result is an integer; otherwise,
the result is the same type as the array.

Syntax

SUM(num_array)

Parameters

num_array Structured collection of variables of the same numeric
 type. The structure is determined when the array is
 declared.

Examples

OPTION BASE 1 is assumed.

 A(2,2): 1 2 B(2,4): 1 2 3 4 C(4,3,2): 1 2 0 4 0 0 1 2
 4 5 5 6 7 8 5 1 1 0 4 5 0 0
 2 0 3 2 1 2 0 1

 D(3,3): 1 0 1 E(2,2): 8 3 F(5): 5 4 3 2 1
 3 5 7 4 7
 9 0 9

 SUM(A) = 1+2+4+5 = 12
 SUM(B) = 1+2+3+4+5+6+7+8 = 36
 SUM(C) = 1+2+4+5+1+1+2+3+2+1+2+4+5+1+2+1 = 35
 SUM(D) = 1+1+3+5+7+9+9 = 35
 SUM(E) = 8+3+4+7 = 22
 SUM(F) = 5+4+3+2+1 = 15

5-37

TAN

The TAN function returns the tangent of a number. The result is of type
REAL.

Syntax

TAN(n)

Parameters

n The number to be evaluated. This is of type REAL.

Examples

 10 A = TAN(50) !A = 1.19 (Degrees)
 20 B = TAN(50) !B = 1.00 (Grads)
 30 C = TAN(50) !C = -.27 (Radians)

TASKID

The TASKID function returns the current task number. The task number is
the PIN (Process Identification Number) for a process (in this case the
PIN for the HP Business BASIC/XL interpreter or the compiled program).
The PIN is assigned by the operating system for keeping track of multiple
processes. You can use the PIN to find out more information about a
process.

Syntax

TASKID

Examples

 10 Pin = TASKID !After this call, pin will contain the PIN
 11 !for this process.

TIME

The TIME function returns information about the current time of day, and
the actual time elapsed since a program began execution.

Syntax

TIME (num_expr)

Parameters

num_expr A numeric expression that evaluates to an integer.

 If num_expr evaluates to a real value, the TIME function
 rounds it to the nearest short integer before returning
 information.

 The TIME function returns the following information
 dependent on the value of num_expr :

num_expr Value Information Returned

 Less than zero Clock time since interpreter or
 compiled program began running
 Zero Minute of current time of day
 One Hour of current time of day
 Two Current day
 Three or greater Current year

Examples

5- 38

 100 Run_time = TIME(-1) !Returns clock time since program started
 110 Minute = TIME(0) !Returns the current minute
 120 Hour = TIME(1) !Returns the current hour
 130 Day = TIME(2) !Returns the current day
 140 Year = TIME(3) !Returns the current year
 150 Year = TIME(4.8) !Also returns the current year

TIME$

The TIME$ function returns the current system time. The TIME$ function
without an argument returns the time in the form "hh:mm:ss". For
example:

TIME$(0)

returns the time in the NATIVE-3000 format which is "hh.mm AP" where hh
is in 12-hour format and AP is either AM or PM. TIME$ and TIME$(0) are
not the same. TIME$(8) returns the time in the German format "hh.mm"
where hh is in 24-hour format.

Syntax

TIME$[(nl_num_expr)]

Parameters

nl_ num_expr A numeric expression that evaluates to a Native Language
 ID. When the Native Language ID is not supplied, the
 current default value is used.

TOTAL

The TOTAL function is a Report Writer function that returns accumulated
totals. The level number must match the level number of a TOTALS
statement. The level number can be zero. Zero accesses the GRAND TOTALS
statement.

Totals are always returned as REAL or DECIMAL numbers, depending on the
setting of OPTION REAL/DECIMAL in the report subunit. If the current
subunit has a different setting, the value may be converted if used in an
expression.

Syntax

TOTAL (level , sequence)

Parameters

level The summary level number. This is in the range [0, 9].

sequence Indicates which expression in the given TOTALS statement
 should be returned. The first expression is sequence
 number one. An error occurs if the sequence number is
 less than one or greater than the number of expressions
 in the TOTALS statement.

Examples

 100 Tot = TOTAL(Level1,Seq) !Tot receives the accumulated totals for the
 101 !level specified by Level1, and the
 102 !expression specified by Seq.

TRIM$

The TRIM$ function returns a copy of a string without leading or trailing
blanks.

5-39

Syntax

TRIM$(S $)

Parameters

S $ A string expression that is to be trimmed.

Examples

 10 A$ = TRIM$(" ab ") !A$ = "ab"

TRN

The TRN function returns an array whose elements are the exchanged rows
and columns of a specified array. Both arrays must be the same type. It
has the form

 MAT num_array1 = TRN(num_array2)

where the rows of num_array1 are the columns of num_array2 , and the
columns of num_array1 are the rows of num_array2 . num_array1 is
dimensioned (n, m) and num_array2 is dimensioned (m, n).

This function is used with the MAT = statement, with two-dimensional
arrays.

Syntax

TRN(array)

Parameters

array Structured collection of variables of the same type.
 The structure is determined when the array is declared.

Examples

 10 DIM A(4,3),B(3,4)
 .
 .
 .
 80 MAT A = TRN(B)

If B is

 8 5 7 3
 0 2 9 1
 4 6 0 5

then A is

 8 0 4
 5 2 6
 7 9 0
 3 1 5

TRUNC

The TRUNC function returns the integer part of a number. The result is
of the same numeric type as the argument.

Syntax

TRUNC(n)

Parameters

5- 40

n The number that is to be evaluated. This is of any
 numeric type.

Examples

 10 A = TRUNC(57.571) !A = 57
 20 B = TRUNC(-57.541) !B = -57

TYP

The TYP function returns a number that represents the type of the next
datum in a file. See Table 5-9 below.

Table 5-9. Numbers Representing File Data Types

--
TYP Result	Type of Next Item in File
--
0	Unrecognized
--
1	DECIMAL
--
2	Entire string
--
3	End-of-file (EOF) mark
--
4	End-of-record (EOR) mark
--
5	SHORT INTEGER
--
6	SHORT DECIMAL
--
8	Beginning of string
--
9	Middle of string
--
10	End of string
--
11	INTEGER
--
12	SHORT REAL
--
13	REAL
--

5-41

Syntax

TYP(fnum)

Parameters

fnum The file number that HP Business BASIC/XL uses to
 identify the file. It is a numeric expression that
 evaluates to a positive short integer. Fnum must
 specify a BASIC DATA file. An optional # can precede

fnum .

Examples

 110 Type = TYP(2) !Type is type of next datum in file 2

UPC$ Function

The uppercase function, UPC$, converts a string with any lowercase
letters to a string that is entirely uppercase. An optional second
parameter can be used to specify the native language number.

Syntax

UPC$ (str_expr [, nl_num_expr])

Parameters

str_expr A string variable, a quoted string, the value returned
 from a string function, or any expression using the
 appropriate string operators to construct an expression.

nl_num_expr A numeric expression that evaluates to a Native Language
 ID. If nl_num_expr is set to -1, the underlying native
 language number is used as the language specifier. If a
 nonnegative value is used, that number is taken directly
 as the language specifier. If the native language
 option is not specified, then the option defaults to
 zero.

Examples

 10 A$ = UPC$("Joe") !A$ = "JOE"

USRID

The USRID function returns the User ID (logical device) number of the
job/session input device.

Syntax

USRID

Examples

 10 SYSTEM "SHOWJOB" !Lists the system jobs and sessions on your terminal
 20 PRINT USRID !The User ID and Logical device number of the session
 21 !or job that is running this program is displayed.

VAL

The VAL function returns a number representing the numeric string at the
beginning of a string expression. It will ignore the rest of the string
expression.

Syntax

VAL(S $)

5- 42

Parameters

S $ A string expression to be evaluated. If S $ does not
 start with a legal integer or real number, an error
 occurs.

Examples

 10 A = VAL("12ABC") !A = 12
 20 B = VAL("3.45pq") !B = 3.45
 20 C = VAL("9.00") !C = 9.00

VAL$

The VAL$ function returns the string formed by enclosing a number in
quotes.

Syntax

VAL$(N)

Parameters

N A numeric expression that is to be evaluated. This can
 be of any numeric type.

Examples

 10 A$ = VAL$(12) !A$ = "12"
 20 B$ = VAL$(3.45) !B$ = "3.45"

VERSION$

The VERSION$ function returns a string indicating the current version of
HP Business BASIC/XL. The string has the form V.bb.ff (V=Version,
bb=build, ff=fix).

Syntax

VERSION$

Examples

 10 A$ = VERSION$!A$ = A.00.00

WORD

The WORD function returns the position of an embedded substring within a
string. The substring is considered embedded only if the characters
surround the substring are nonalphabetic.

Syntax

WORD(S1 $, S2 $)

Parameters

S1 $ A string expression containing the string to be
 searched.

S2 $ A string expression containing the substring to be found
 in S1 $.

Examples

 10 A = WORD("cat","a") !A = 0
 20 B = WORD("a cat","a") !B = 1
 30 C = WORD("c a t","a") !C = 3

5-43

 40 D = WORD("c,a.t","a") !D = 3

WRD

The WRD function returns the number of the word indicated by the file's
word pointer. The result is of type INTEGER.

Syntax

WRD(fnum)

Parameters

fnum The file number by which HP Business BASIC/XL identifies
 the file. It is a numeric expression that evaluates to
 a positive short integer. Fnum must specify a BASIC
 DATA file. An optional # can precede fnum .

Examples

 10 CREATE "File1",RECSIZE=5,FILESIZE=10 !BDATA file; 10 5-wd recs.
 11 ASSIGN "File1" TO #1
 12 PRINT #1,9,2; 36 !Print 36 on record 9, word 2;
 13 ! move pointer to word 3.
 14 PRINT #1,9,4; 567 !Print 567 on record 9, word 4;
 15 ! move pointer to record 5.
 16 DISP WRD(#1) !Display 5.
 17 PRINT #1,9,5; 98 !Print 98 on record 9, word 5;
 18 ! move pointer to record 10, word 1
 19 DISP WRD(#1) !Display 1.
 99 END

5- 44

6- 1

Chapter 6 Input and Output
Introduction

An HP Business BASIC/XL program can receive input from any of the
following:

 * A terminal keyboard.
 * An input file.
 * A data file.

It can produce output on any of the following:

 * A terminal screen.
 * A printer.
 * A data file.

An output statement that specifies the output format produces formatted
output; an output statement that does not specify the output format
produces unformatted output.

This chapter explains the following:

 * Receiving input from a terminal keyboard or an input file.
 * Producing unformatted output on a terminal screen, a printer, or a
 data file supported by the operating system, but not a BASIC DATA
 file.
 * The format specifiers available to produce formatted output.

When an HP Business BASIC/XL output statement passes a character sequence
to an output device, the resulting output depends on the output device's
interpretation of the individual characters. For example, a sequence
that repositions the cursor on a terminal may be ignored by a printer.
Information about how an individual output device interprets a specific
character sequence is contained in the manual for that output device.

Input from the Keyboard or Input File

This section describes the use of the ACCEPT, INPUT, LINPUT, and TINPUT
statements. These statements are defined in chapter 4. If HP Business
BASIC/XL is running interactively, these statements accept input from a
terminal keyboard. Each of these statements suspends an executing
program so that you can enter values on the keyboard.

The program is in the input state while it is suspended waiting for
input. The input state ends when you press RETURN. The input consists of
all characters that you type before pressing RETURN. ACCEPT and TINPUT
optionally allow the programmer to specify the length of the input item.
The program leaves the input state when the designated number of
characters is entered.

If HP Business BASIC/XL is running in a job stream, these statements take
input from the job stream file or an input file. The input is obtained
from the next record in the appropriate file.

The ACCEPT, INPUT, LINPUT, and TINPUT statements differ in the type of
input that they accept and whether they echo input to the display.
Options are available to print a specific prompt on the terminal, specify
the maximum time allowed for input, monitor the amount of time required
for input, specify the maximum input length, and suppress the line feed
following input. Table 6-1, Table 6-2, and Table 6-3 present this
information.

6-: 2

Table 6-1. Keyboard Input Statements

Statement	Acceptable Input	Variable(s) to Which Statement
		Can Assign Input

ACCEPT	Characters from ASCII or default	One string variable.
	foreign character set.	

INPUT	List of literals.	One or more scalar variables,
		array elements, or arrays.

LINPUT	String literal.	One scalar string variable or
		string array element.

TINPUT	Literal.	One scalar variable or array
		element.

Table 6-2. Keyboard Input Statements

Statement	Echo Input to Display	Print a Prompt for
		Terminal Input

ACCEPT	No	No

INPUT	Yes	Yes

LINPUT	Yes	Yes

TINPUT	Yes	No

Table 6-3. Keyboard Input Statement Options

Statement	Specify	Monitor Time	Specify	Suppress LF
	Maximum Input	Required for	Maximum Input	Following
	Time Allowed	Input	Length	Input

ACCEPT	Yes	Yes	Yes	Yes

INPUT	No	No	No	No

LINPUT	No	No	No	No

| | | | | |
| TINPUT | Yes | Yes | Yes | Yes |

6- 3

| | | | | |

Input Prompt

This section explains how prompts are displayed when HP Business BASIC/XL
is running interactively. Input prompts are not displayed if HP Business
BASIC/XL is running in a job stream.

A prompt can be supplied for each input element except within a FOR
clause. The default prompt is a question mark.

Table 6-4 shows how the prompt option and the separator that follows
affect the cursor position.

Table 6-4. Effect of Input Prompt and Separator on Cursor

Is Prompt	Prompt that	Separator	Where HP Business BASIC/XL
Supplied?	HP Business BASIC/XL	Following	Puts the Cursor After
	Uses	Prompt	Printing the Prompt and Putting
			the Program in the Input State

Yes	The prompt that was	;	HP Business BASIC/XL does not move
	supplied.		the cursor.

Yes	The prompt that was	,	At the beginning of the next line.
	supplied.		

Yes	The prompt that was	None	At the beginning of the next line.
	supplied.		

No	Question mark (?).	Not	At the beginning of the next line.
		applicable	

Interactive Input from a Terminal

This section explains how to enter input when HP Business BASIC/XL is
running interactively. The rules for input from a keyboard also apply to
input from an input file.

After the INPUT statement displays a prompt and puts the program into the
input state, you can type values on the terminal keyboard. Individual
values are separated by commas or semicolons. If numeric values are
expressed in European format where either a comma or period is the radix
indicator, then input values must be separated with semicolons.

Double quotes surrounding string values are optional. The string must be
enclosed in quotes if it contains a comma, a semicolon, or leading or
trailing blanks. Otherwise, these symbols are interpreted as item
separators. If a string value that is enclosed in quotes contains a
quote, the quote that it contains must be duplicated; for example, the
unquoted string

"Hi," he said.

must be quoted (because it contains a comma), and the quotes that it
contains must be duplicated:

"""Hi,"" he said."

6-: 4

Variable Assignment during Interactive Input

When you press RETURN, the INPUT statement assigns the values to the
variables specified by the input list. The first value input is assigned
to the leftmost variable in the input list, the second value to the next
variable, and so on.

If you type more values than the number of variables listed in the input
list, the INPUT statement ignores the extra values. If you type fewer
values than the number of variables listed in the input list, the INPUT
statement prompts you for more values until values have been assigned to
all variables. If the input list contains an array reference, you must
input one value for each array element. If a user prompt is not
specified for the additional variables requiring values, the prompt is
?? .

If you input a value that cannot be assigned to its corresponding
variable; for example, you input a string for a numeric variable, the
INPUT statement reprompts you. Assignments to preceding variables are
not affected.

Job Stream Input

This section explains how the INPUT statement reads input when HP
Business BASIC/XL is running in a job stream. The input for an input
statement in a jobstream is either included in the stream file or
obtained from a file specified by a redirection of the interpreter's
input. The method of redirecting the interpreter's input is discussed at
the beginning of chapter 2. Here, we discuss the method for including
the input for INPUT statements in a stream file. The records in the job
stream file immediately following the command that begins program
execution are used to satisfy the input items for the INPUT statement.
The values in the stream file are separated by commas, semicolons, or EOR
marks. HP Business BASIC/XL suppresses prompts specified in any prompt
option in an INPUT statement when HP Business BASIC/XL is running a
stream job.

Variable Assignment during Job Stream Input

The INPUT statement assigns the values in the job stream file to the
variables specified in the input list. The first value in the stream
file record is assigned to the leftmost variable in the input list, the
second value to the next variable, and so on.

If the record in the stream file has more values than the number of
variables in the input list, the additional values are ignored. If the
record has fewer values than the input list needs, HP Business BASIC/XL
reads the next record to find additional values. If records or values
are not found, an error occurs. If the input list contains an array
reference, the record must contain one value for each array element.
Colons in the INPUT statement save unassigned input values or use input
values saved from previous INPUT statements.

If a value in the input file record cannot be assigned to its
corresponding variable, HP Business BASIC/XL aborts the program. This
occurs if the record contains a string value that is to be assigned to a
numeric variable.

If numeric values are expressed in the format in which a comma is the
radix indicator, then input values must be separated with semicolons or
EOR marks.

The rules for string input from a job stream file are the same as the
rules for string input during an interactive session from a terminal.

Unformatted Output

This section explains how to produce unformatted output on an output
device:

 * Unformatted output statements that have one of the following
 characteristics:

6- 5

 * Produce output, but do not specify format.
 * Are the BEEP, DISP, and PRINT statements.

 * Numeric format statements that have the following characteristic:

 * Specify format for numeric output of the DISP and PRINT
 statements.

 * Output device specification statements that performs one of the
 following:

 * Directs output to specific output devices.

 * If a program does not contain output device specification
 statements, then all output from the program and the HP Business
 BASIC/XL interpreter is displayed on the standard list device.
 If HP Business BASIC/XL is running interactively, the standard
 list device is the terminal. If HP Business BASIC/XL is running
 in a job stream, the standard list device is the line printer of
 the computer system that HP Business BASIC/XL is running on. The
 MARGIN statement sets the terminal screen margin.

Each statement is defined in chapter 4.

The Display List

Commas and Semicolons in Display List. A comma or semicolon in the
display list separates individual output items in the output_item_list .
Table 6-5 summarizes the differences between commas and semicolons as
separators.

Table 6-5. Semicolon vs Comma in Display List

Separator	Second item is displayed	Display Enhancements Active from
		First Item Remain Active

Semicolon	Immediately after first item.	Yes.

Comma	At beginning of next output field.	No.

If a DISP or PRINT statement ends with a comma or a semicolon, then it
does not print a carriage return and a line feed after its display list.
Subsequent output appears on the same line.

If a DISP or PRINT statement does not end with a comma or semicolon, it
prints a carriage return and a line feed after its display list.
Subsequent output to the same device appears on the next line.

Array References in Display List. The DISP or PRINT statement prints an
array in row-major order; that is, the rightmost subscript varies
fastest. Each time the rightmost subscript reaches its maximum value,
the DISP or PRINT statement prints a carriage return and a line feed.

The spacing of array elements depends on what follows the array
specification in the display list, as shown in Table 6-6.

Table 6-6. Semicolon vs Comma After an Array

If array is	Numeric elements are printed	String elements are printed
followed by		

| | | |
| Semicolon | Side by side. | On consecutive output lines. |

6-: 6

| | | |

--
Comma	In consecutive output fields.	On consecutive output lines.

Nothing (it is	In consecutive output fields.	On consecutive output lines.
the last item in		
the list)		

The DISP or PRINT statement prints two blank lines after printing the
entire array.

An array can also be printed with the MAT PRINT statement, described in
chapter 4.

Output Functions in Display List. The display list of a DISP or PRINT
statement can contain any of the following output function calls:

 CTL (num_expr)
 END
 LIN (num_expr)
 PAGE
 SPA (num_expr)
 TAB (num_expr)

Each output function call directs the DISP or PRINT statement to print
one or more control characters on the output file or device. If a
control character is sent to an output file, it affects the operation of
the line printer that prints the output file. If a control character is
sent to an output device, it affects the device itself.

The following paragraphs explain the individual output functions, using
these terms:

n Value of num_expr ; for example, n is 10 in "TAB 2*5".

cl Number of the current output line; for example, cl is 12 if the
 next output item is printed on the twelfth line of the output
 file.

cc Number of the current output character position; for example, cc
 is 20 if the first character of the next output item will be
 printed in the twentieth character position of the output line.

m The right page margin, output line length. It is set with the
 MARGIN parameter in the output device specification. See "Device
 Specification Syntax" for more information.

CTL The CTL function returns the carriage control character that is
 represented by n. On the operating system in which HP Business
 BASIC/XL is running, n must be the code for a carriage control
 character. HP Business BASIC/XL does not check this. The DISP
 or PRINT statement prints the output items that precede the CTL
 call prior to generating the carriage control character. For the
 effects of specific carriage control characters, see the manual
 for the operating system in which HP Business BASIC/XL is
 running.

END The END function returns the end-of-file character. It can only
 be used when the specified output device is a file.

LIN The LIN function returns ABS(n) line feed characters.

 If n is positive, the following occurs:

 "LIN (num_expr)" specifies n line feed characters and a
 carriage return character. The next output item is printed at
 the beginning of line cl+n .

6- 7

 If n is zero, the following occurs:

 "LIN (num_expr)" specifies only a carriage return character
 (zero line feed characters). The next output item is printed
 at the beginning of line cl (line cl is overwritten).

 If n is negative, the following occurs:

 "LIN (num_expr)" specifies -n line feed characters and no
 carriage return character. The next output item is printed on
 line cl+(-n) , starting at character position cc +1.

PAGE The PAGE function returns a form feed character. When the file
 is printed, the form feed character advances the line printer to
 the next physical page. PAGE affects only ASCII files opened
 with carriage control specified. If the output device is a
 terminal, or an ASCII file with no carriage control specified,
 PAGE has no effect.

SPA The SPA function returns n spaces or a carriage return character
 if the current output line has fewer than n spaces left; that is,
 if cc+n exceeds m.

 If n is positive, the following occurs:

 The next output item is printed on the current output line,
 starting at character position cc+n , if possible.

 If cc+n exceeds m, the following occurs:

 The SPA call specifies a carriage return character. The next
 output item is printed at the beginning of line cl+1 .

 If n is negative, the following occurs:

 An error occurs.

TAB The TAB function resets cc (and prints a carriage return
 character, if necessary).

 If n is positive, the following occurs:

 If TAB increases cc and n <= m then the next output item is
 printed on line cl , starting at character position n. If TAB
 increases cc and n exceeds m, the next output item is printed
 on line cl +1 starting at character position n MOD m. If TAB
 decreases cc , the next output item is printed on line cl +1,
 starting at character position cc .

 If n is zero, the following occurs:

 The TAB call has no effect.

 If n is negative, the following occurs:

 An error occurs.

Unless the output function call is the last item in the output list, HP
Business BASIC/XL ignores the delimiter (comma or semicolon) following
it. If that delimiter is immediately followed by one or more commas, HP
Business BASIC/XL skips one output field for each comma. For example,
the first comma in PRINT PAGE,,,A has no effect, but HP Business BASIC/XL
skips one output field for the second comma and another for the third.

Numeric Format Statements

The FIXED, FLOAT, and STANDARD statements are numeric format statements.
Each statement specifies a different default numeric format--fixed-point,
floating-point, or standard, respectively. The unformatted output
statements, DISP and PRINT output numeric values in the default numeric
format.

Before the program executes a numeric format statement, the default
numeric format is standard.

6-: 8

If a program contains more than one numeric format statement, the most
recently executed statement applies, with one exception: numeric format
statements in a subunit are canceled when control returns to the calling
program unit.

Examples

 10 FIXED 2 !Fixed-point format goes into effect
 15 INPUT X
 16 PRINT X !Print X in fixed-point format
 20 CALL Sub1(X) !Call Sub1; format is fixed-point
 30 PRINT X !Print X in floating-point format
 99 END
 100 SUB Sub1(N)
 105 PRINT N !Print N in fixed-point format
 110 STANDARD !Standard format goes into effect
 115 PRINT N !Print N in standard format
 116 CALL Sub2(N) !Call Sub2; format is standard
 117 PRINT N !Print N in standard format
 120 SUBEND !Return to line 30 and floating-point format
 200 SUB Sub2(P)
 210 PRINT P !Print P in standard format
 220 FLOAT 4 !Floating-point format goes into effect
 230 PRINT P !Print P in floating-point format
 240 SUBEND !Return to line 117 and floating-point format

If 125.7689 is entered for x in line 5, the above program prints:

 ?125.7689
 125.77
 125.77
 125.7689
 125.7689
 1.2577 E+02
 1.2577 E+02
 1.2577 E+02

Output Device Specification

The SEND OUTPUT TO, SEND SYSTEM OUTPUT TO, and COPY ALL OUTPUT TO are
output specification statements. Table 6-7 indicates what they specify.

Table 6-7. Device Specification Statements

Device Specification Statement	Specifies

SEND OUTPUT TO	Device for PRINT statement output.

SEND SYSTEM OUTPUT TO	System printer.

COPY ALL OUTPUT TO	Device for interpreter and program output.

Each of these statements is defined in chapter 4.

If an output specification statement specifies a spooled output device,
HP Business BASIC/XL opens a spool file. If a subsequently executed
output specification statement specifies the same spooled device, HP
Business BASIC/XL closes the spool file that it opened for the first
statement and opens another spool file. Unless the first spool file is
the standard list device, it is ready for printing when HP Business
BASIC/XL closes it. See "Spooled Output Devices" for more information.

If a program does not contain output device specification statements,

6- 9

then all output from the program and the HP Business BASIC/XL interpreter
is displayed on the standard list device. If HP Business BASIC/XL is
running interactively, the standard list device is the terminal. If HP
Business BASIC/XL is running in a job stream, the standard list device is
the line printer of the computer system HP Business BASIC/XL is running
on.

An output specification statement in any program unit affects the entire
program. If a program contains more than one SEND OUTPUT TO, SEND SYSTEM
OUTPUT TO, or COPY ALL OUTPUT TO statement, the most recently executed
one applies. It cancels any previously executed statement of its kind,
but not output specification statements of another kind. For example, a
SEND OUTPUT TO statement cancels any previously executed SEND OUTPUT TO
statements, but not SEND SYSTEM OUTPUT TO or COPY ALL OUTPUT TO
statements.

Spooled Output Devices. If an output device specification statement
specifies a spooled device, HP Business BASIC/XL opens a spool file. If
a subsequently executed output device specification statement specifies
the same spooled device, HP Business BASIC/XL closes the spool file that
it opened for the first statement and opens another one unless the
spooled device is PRINTER. See the next paragraph for information about
spooled device PRINTER. For example, if *LP is a file reference to a
spooled device, then when HP Business BASIC/XL executes the statement
SEND OUTPUT TO "*LP", it opens a spool file for PRINT statement output.
If HP Business BASIC/XL then executes the statement SEND SYSTEM OUTPUT TO
"*LP", it closes the spool file that it opened for PRINT statement output
and opens another spool file for system output.

If the standard list device is a spooled device, then HP Business
BASIC/XL opens a spool file when it executes the statement SEND SYSTEM
OUTPUT TO PRINTER or COPY ALL OUTPUT TO PRINTER. However, if HP Business
BASIC/XL then executes the statement SEND OUTPUT TO PRINTER, it does not
close the spool file and open another one. Therefore, it sends system
output and PRINT statement output to the same spool file.

Device Specification Syntax (dev_spec). Each output device specification
statement specifies an output device. The output device is called
dev_spec (device specification) in the syntax specification for each
statement. If dev_spec is not a legal output device, an error occurs and
HP Business BASIC/XL substitutes the standard list device for dev_spec .
The syntax for dev_spec follows.

Syntax

 [[,MARGIN num_expr1], FIELD num_expr2]
dest [[,FIELD num_expr2], MARGIN num_expr1]

Parameters

dest Destination device. See Table 6-8.

num_expr1 A numeric expression that evaluates to the number of
 characters in an output line. num_expr1 is rounded to
 an integer, n1, which is called the margin. It is best
 thought of as the number of characters to reach the
 right margin. After an output statement prints n1
 characters on a line, it prints a carriage return and
 line feed on that line. Remaining characters are
 printed on the next line.

 The margin cannot be less than the output field width,
num_expr2 . If n1 is less than the field width, the

 margin is set to the value of the field width. If the
 output file is an ASCII disk file with fixed-length
 records, the margin cannot exceed the record length.
 For these files, if n1 is greater than the record
 length, the margin is set to the value of the record
 length.

 Default margin: See Table 6-9. Also, see the MARGIN

6-: 10

 statement.

num_expr2 A numeric expression that evaluates to the number of
 characters in an output field. num_expr2 is rounded to
 an integer, n2, called the output field width.

 The output line begins with n1 DIV n2 output fields of
n2 characters each. If n1 MOD n2 is not zero, the

 output line ends with one output field of n1 MOD n2
 characters. For example; a line with margin 75 and
 output field width 20 begins with three 20-character
 fields and ends with a 15-character field.

 If the length of an output item exceeds the output field
 width, it is still printed.

 Default output field width: See Table 6-10.

NOTE If HP Business BASIC/XL is running interactively, an output
 specification statement that specifies a margin has a side effect:
 it sets the terminal margin to n1.

Table 6-8 gives the possible destination values and the devices that they
specify.

Table 6-8. Destination Device Specifiers

--
Specifier	Destination
--
NULL	The system $NULL file. Usually used to discard
	output.
--
DISPLAY	Terminal if HP Business BASIC/XL is running
	interactively; equivalent to PRINTER if HP Business
	BASIC/XL is running in a job stream.
--
PRINTER	The system printer, or if the system printer is a
	spooled device, a spool file to be sent to the
	system's printer. In the statements SEND SYSTEM
	OUTPUT TO, and SEND OUTPUT TO, if you specify
	dev_spec to be PRINTER, HP Business BASIC/XL uses
	the file equation specified as your printer file.
	This information is kept in the HP Business
	BASIC/XL configuration file and can be changed by
	running CNFGHPBB.Pub.Sys.
--
formal_designator	formal_designator has the same syntax as fname
	described in "File Identification" in chapter 9.
	Additionally, the formal_designator syntax includes
[{ ,}]	the quoted string literals "$STDLIST", "$NULL" and
[{ .}FILESIZE[=] fsize]	"* fname ". The * fname syntax is used to reference
[{ ,}]	device files that have been previously defined
	using file equations. The formal_designator for
	dev_spec must reference a device or an ASCII or
	BDATA file. If the file does not exist, HP
	Business BASIC/XL creates an ASCII disk file with
	fixed length 80 byte records. FILESIZE is an
	optional parameter allowing specification of the
	maximum number of records in the file. fsize is a

6- 11

	numeric expression that is evaluated and rounded to
	an integer as required.
--

Table 6-9 gives the default margins for different types of destination
devices.

Table 6-9. Default Margins

Destination	Default Margin if Margin Was	Default Margin if Margin Was Not
Device	Previously Specified for the	Previously Specified for the
	Device	Device

Terminal	Last specified margin.	80

Line printer	Last specified margin.	132

Other	132	132

Table 6-10 gives the default output field widths for different types of
destination devices.

Table 6-10. Default Output Field Widths

Destination	Default Output Field Width if	Default Output Field Width if
Device	Output Field Width Was Previously	Output Field Width Was Not
	Specified for the Device	Previously Specified for the
		Device

Terminal	Last specified output field width.	20

Line printer	Last specified output field width.	20

Other	20	20

HP Business BASIC/XL opens an existing ASCII disk file in append mode ;
new records are appended to the existing records in the file. "Data
Files", later in this chapter, has more information.

If HP Business BASIC/XL tries to append an additional record to an ASCII
disk file for which the end-of-file marker is at the physical end of
file, an error message is displayed on the terminal. Redirect the output
to DISPLAY at that point. A new file can then be specified to accept the
redirected output. If you repeatedly encounter problems with the file
size, use the FILESIZE option to create a larger file.

FORMATTED OUTPUT

This section explains the format specifiers available to produce
formatted output. These are available with the DISP USING, PRINT USING,
and IMAGE Statements. The DISP USING and PRINT USING statements are

6-: 12

formatted output statements; they specify the output format to be used in
printing data. A DISP USING or PRINT USING statement can specify output
to format directly in a format string or indirectly by referencing an
image statement.

The format string or IMAGE statement describes the output format exactly,
specifying the following:

 * Type of output.
 * Spacing.
 * Position of the following, if appropriate:
 * Plus or minus signs.
 * Radix indicators.
 * Exponents.
 * Dollar signs.
 * Blanks.
 * Control characters.

Format String

The format string specifies the output format for the output items in the
display list of a DISP USING or PRINT USING statement. It is also used
in an IMAGE statement.

Syntax

format_string

Parameters

format_string format_string (if it belongs to an IMAGE statement) or
 its value (if format_string itself is the image of a
 PRINT or DISP statement) has the following syntax:

format_spec [, format_spec]...

 [num_expr] (format_spec [, format_spec]...)

format_spec One of the format specifiers described in "Format
 Specifiers" in the following section.

num_expr Repeat factor. Rounded to a short integer, n. The
format_string n (format_spec_list) is equivalent to n

 adjacent copies of format_spec_list (see examples).

Examples

The format strings of lines 100 and 200 are equivalent. In line 200,
three is the repeat factor represented by num_expr , above.

 100 DISP USING "DDD,XX,DDD,XX,DDD,XX"; A,B,C
 200 PRINT USING "3 (DDD,XX)"; A,B,C
 300 DISP USING "DDDDD,XX,ZZZ.DD"; P,Q

Format Specifiers

The format_spec in a format string or IMAGE statement is one of the
specifiers listed in Table 6-11. Each numeric, nonliteral string, or
compact specifier corresponds to one output item in the display list of a
DISP USING or PRINT USING statement. A space, dollar, control character,
or literal string specifier does not correspond to an item in the display
list. Instead, it directs the DISP USING or PRINT USING statement to
print or suppress characters.

Table 6-11 lists the format specifiers, tells what they specify and how
they are symbolized, and whether they can contain repeat factors.

6- 13

Table 6-11. Format Specifiers

Specifier	Specifies	Symbolized by	Can Contain Repeat
			Factor

Numeric	One numeric output	D,Z,*,.,R,S, M,C,P,E	Yes
	item.		

String literal	That the literal be	Quoted string	No
	printed exactly.	literal.	

String	One string output	A	Yes
	item.		

Compact	One numeric or string	K	No
	output item.		

Space	One or more spaces.	X	Yes

Dollar	Dollar sign.	$	Yes

Control Character	That control	#,+,-,@,/	No
	characters be printed		
	or suppressed.		

Starting with the leftmost output item in the display list and starting
at the beginning of the format string or IMAGE statement, HP Business
BASIC/XL matches each output item to the next numeric, nonliteral string,
or compact specifier. For example, in the statement

 100 DISP USING "2X,DD,3X,5A"; 12,"HELLO"

2X and 3X are space specifiers, the numeric specifier DD corresponds to
the value 12 and the string specifier 5A corresponds to the value
"HELLO".

If the specifiers outnumber the output items, HP Business BASIC/XL
ignores the extra specifiers. For example, in the sequence

 200 PRINT USING 210; A,B
 210 IMAGE Z,X,D,2X,ZZ,3X,DD

the numeric specifier Z corresponds to the variable A, X is a space
specifier, the numeric specifier B corresponds to the variable B, and the
specifiers 2X,ZZ,3X, and DD are ignored.

If the output items outnumber the specifiers, HP Business BASIC/XL reuses
the format string or IMAGE statement. For example, in the statement

 300 DISP USING "5A,X,2D,X"; "HELLO",12,"HOWDY",34

the string specifier 5A corresponds to "HELLO" and "HOWDY" and the
numeric specifier 2D corresponds to 12 and 34.

6-: 14

An error occurs if a numeric specifier corresponds to a string value or
if a string specifier corresponds to a numeric value. For example, the
statement

 400 PRINT USING "DDZ.DD"; "GOOD-BYE!"

causes an error, since DDZ.DD is a numeric specifier and "GOOD-BYE!"is a
string.

Numeric Specifiers

A numeric specifier specifies the output format for a numeric value. It
can contain digit symbols, radix symbols, sign symbols, digit-separator
symbols, an exponent symbol, and repeat factors (numeric expressions).
Each symbol represents one printed character.

Syntax

fraction_part
 []
integer_part [{E fraction_part }]
 [{ fraction_part E}]

Parameters

 {{D} }
 [S] {{Z} }
integer_part [M][n]{{*} }
 {{C} }
 {K...}

 {.} [S]
fraction_part {R}[[n]D[D]...][M][n]D[D]...

n Repeat factor; a numeric expression. The symbol that
 follows it is repeated n times; for example, 5D is
 equivalent to DDDDD.

See the sections "Digit Symbols" and "Digit-Separator Symbols" for
restrictions on combinations of the symbols D, Z, *, C, and P that the
above syntax specifiers do not reflect.

Table 6-12 summarizes the types of symbols that a numeric specifier can
contain, what each type specifies, and the individual symbols of each
type and their differences.

Table 6-12. Numeric Specifier Symbols

Symbol	Symbol Type	A symbol of this type	This symbol specifies that
		specifies	

D	Digit	One digit position.	Each leading zero is replaced
			with a blank.

Z	Digit	One digit position.	Leading zeros are printed.

*	Digit	One digit position.	Each leading zero is replaced
			with an asterisk (*).

| | | | |
| . | Radix | Position of radix; which | Radix is a period (.). |

6- 15

		separates integer and	
		fractional parts of a number.	

R	Radix	Position of radix.	Radix is a comma (,).

S	Sign	Position of sign symbol (+ or	+ is printed if number is
		-).	positive; - is printed if
			number is negative.

M	Sign	Position of sign symbol.	Blank is printed if number is
			positive; - is printed if
			number is negative.

C	Digit-separator	Position of digit-separator	Digit-separator is comma (U.S.
		symbol (comma or period) that	notation).
		separates groups of digits (as	
		in 1,000,000).	

P	Digit-separator	Position of digit-separator	Digit-separator is period
		symbol.	(European notation).

E	Exponent	Scientific notation and the	Not applicable.
		position of the symbol E in	
		that notation.	

Digit Symbols. Each of the three digit symbols, D,Z, and *, specifies
one digit position. The DISP USING or PRINT USING statement prints one
digit of the output value for each digit symbol in the format specifier.

The digit symbols vary in that:

D Replaces each leading zero with a blank (" ").

Z Prints leading zeros.

* Replaces each leading zero with an asterisk (*).

A repeat factor can precede a digit symbol.

Examples

 20 DISP USING 50; 5,5,5
 30 DISP USING 60; 25,367,5448
 40 DISP USING 60; 12345,12345,12345
 50 IMAGE ZZZZZ,XX,DDDDD,XX,*****
 60 IMAGE 5Z,2X,5D,2X,5*
 99 END

The above program prints:

 00005 5 ****5
 00025 367 *5448
 12345 12345 12345

Lines 50 and 60 are equivalent (line 60 uses repeat factors). Each of
the specifiers XX and 2X specifies two spaces (see "Edit Specifiers",
later in this chapter, for more information). Notice that the specifiers

6-: 16

5Z, 5D, and 5* output a five-digit value the same way (because the value
has no leading zeros).

The digits in the integer part of a number can be represented by any
digit symbol; however, all of the digits must be represented by the same
digit symbol, with one exception. The digit in the one's place can be
represented by Z, regardless of the symbol that represents the other
digits. For example, DDD.DD, ZZZ.DD, ***.DD, DDZ.DD, and **Z.DD are
legal. DZD.DD, Z**.DD, and *DZ.DD are illegal. Each digit in the
fractional part of a number must be represented by D.

Examples

 100 A=123.45
 110 B=67.8
 120 C=90
 130 D=0.2
 140 E=0.76
 150 PRINT USING 200; A,A,A,A,A
 160 PRINT USING 200; B,B,B,B,B
 170 PRINT USING 200; C,C,C,C,C
 180 PRINT USING 200; D,D,D,D,D
 190 PRINT USING 200; E,E,E,E,E
 200 IMAGE DDD.DD,2X, ZZZ.DD,2X, ***.DD,2X, DDZ.DD,2X, **Z.DD
 999 END

The above program prints:

 123.45 123.45 123.45 123.45 123.45
 67.80 067.80 *67.80 67.80 *67.80
 90.00 090.00 *90.00 90.00 *90.00
 .20 000.20 ***.20 0.20 **0.20
 .76 000.76 ***.76 0.76 **0.76

If a numeric output format specifies x digits to the right of the radix,
and the output value is precise to more than x digits, the DISP USING or
PRINT USING statement prints the output value, rounded to x decimal
places. Rounding the output does not actually change the value.

If a numeric output format specifies x digits to the right of the radix,
and the output value is precise to fewer than x digits, the DISP USING or
PRINT USING statement prints zeros in place of the missing digits.

Examples

 100 X=1.2938
 110 Y=3.7465
 120 Z=4.99
 130 DISP USING 160; X,X,X,X
 140 DISP USING 160; Y,Y,Y,Y
 150 DISP USING 160; Z,Z,Z,Z
 160 IMAGE D.DDDD,2X, D.DDD,2X, D.DD,2X, D.D
 170 DISP USING "D.DDDD,2X,D.DDDD,2X,D.DD"; X,Y,Z
 999 END

The above program prints:

 1.2938 1.294 1.29 1.3
 3.7465 3.747 3.75 4.0
 4.9900 4.990 4.99 5.0
 1.2938 3.7465 4.99

Radix Symbols. The radix symbols, (period (.) and R), specify the
character that separates the integer and fractional parts of a number.
It can be either a decimal point or a comma. In a numeric specifier, a
period (.) specifies a decimal point and an R specifies a comma. A
numeric specifier can have at most one radix symbol.

6- 17

Examples

 DISP USING "DD.DD,2X,DDRDD"; 12.34, 12.34

The above statement prints:

 12.34 12,34

Sign Symbols. The sign symbols, (S and M), specify the sign character.
A numeric specifier can have at most one sign symbol.

The sign symbols vary in that:

S Prints a plus (+) if the output value is positive, and a minus
 (-) if it is negative.

M Prints a blank if the output value is positive, and a minus if it
 is negative.

Examples

 100 IMAGE SDD,2X,SDD
 200 IMAGE MDD,2X,MDD
 300 DISP USING 100; 10,-10
 400 DISP USING 200; 10,-10
 999 END

The above program prints:

 +10 -10
 10 -10

The sign can be printed between digits.

Examples

 650 PRINT USING "2(DSD,2X,DMD,2X)"; -12,-34,56,78

The above statement prints:

 1-2 3-4 5+6 7 8

Digit-Separator Symbols. The digit-separator symbols, (C and P), specify
the character that separates groups of digits as the commas do in
"1,000,000". The symbol C specifies a comma; the symbol P, a period.

Before printing a digit-separator symbol, the DISP USING or PRINT USING
statement prints at least one digit of the output value. That digit can
be a leading zero, if leading zeros are printed.

Examples

 100 W=1234567
 110 X=800342
 120 Y=1234
 130 Z=150
 140 PRINT USING 300; W,W,W
 150 PRINT USING 400; W,W,W
 160 PRINT USING 300; X,X,X
 170 PRINT USING 400; X,X,X
 180 PRINT USING 300; Y,Y,Y
 190 PRINT USING 400; Y,Y,Y
 200 PRINT USING 300; Z,Z,Z
 210 PRINT USING 400; Z,Z,Z
 300 IMAGE 7Z,2X,ZC3ZC3Z,2X,ZP3ZP3Z
 400 IMAGE 7D,2X,DC3DC3D,2X,DP3DP3D
 500 PRINT USING "DCDDD.DD,2X,DCDDDPZZ"; 123456,123456
 600 PRINT USING "DDCDDCDD"; 123456

6-: 18

 999 END

The above program prints:

 1234567 1,234,567 1.234.567
 1234567 1,234,567 1.234.567
 0800342 0,800,342 0.800.342
 800342 800,342 800.342
 0001234 0,001,234 0.001.234
 1234 1,234 1.234
 0000150 0,000,150 0.000.150
 150 150 150
 1,234.56 1,234.56
 12,34,56

Exponent Symbol. The exponent symbol, E, specifies scientific notation.
A numeric specifier must have at least one digit symbol before the symbol
E. The DISP USING or PRINT USING statement prints the output value in the
format

{+} {+}
{-} digit [digit ...][. digit [digit ...]]E{-} digit digit

The exponent symbol can precede or follow the fractional part of the
numeric specifier. The numeric specifier must contain a sign symbol if
the output value is negative.

Examples

 100 N=123.45
 110 DISP USING "D.DDDE"; N !1.235E+02 (rounded)
 120 DISP USING "DDDDD.E"; N !12345.E-02
 130 DISP USING "3D.2DE"; -N !Overflow error
 140 DISP USING "S3D.2DE"; -N !-123.45E+00
 999 END

String Specifiers

A string specifier specifies the output format for a string value. The
specifier can be nonliteral or literal. A nonliteral string specifier
contains the symbol A, which can be preceded by a repeat factor (numeric
expression). A literal string specifier is a quoted literal.

Syntax

Nonliteral string specifier:

[num_expr]A

Literal string specifier:

str_lit

Parameters

num_expr Repeat factor. Its value is the length of the output
 string. If this is not specified, the default is one.

str_lit Literal string specifier. It must be enclosed in quotes
 and it can only appear in an IMAGE statement (not in a
 format string). It does not correspond to an item in
 the display list; the DISP USING or PRINT USING
 statement prints str_lit itself.

A nonliteral string specifier specifies the output format for a string
value in the display list. It can appear in either an IMAGE statement or
a format string.

6- 19

Examples

Legal:

 500 PRINT USING 310
 510 IMAGE 30X,"Title"

Illegal:

 600 PRINT USING "30X,"Title""

If num_expr has the value n and the corresponding output item is a string
of length s, then:

If DISP USING or PRINT USING statement prints

n = s Entire string

n < s First n characters of the string

n>s Entire string, followed by n-s blanks

Examples

 99 S$="GOODBYE"
 100 DISP USING "7A"; S$!Format length = output string length.
 110 DISP USING "4A"; S$!Format length < output string length.
 120 DISP USING "8A"; S$!Format length > output string length.
 130 DISP USING 140; S$
 140 IMAGE 7A,"TO YOU" !image contains literal.
 150 DISP USING "4AX3A"; S$!Insert blank in printed string.

Where "Å" represents a blank, the above program prints:

 GOODBYE
 GOOD
 GOODBYEÅ
 GOODBYETO YOU
 GOOD BYE

Standard Format Specifier

A standard format specifier represents one string or numeric value of any
size. It consists of one symbol, K. If K represents a string value, the
DISP USING or PRINT USING statement prints the entire string. If K
represents a numeric value, the statement prints the value in the
standard format, without leading or trailing blanks.

Syntax

K

Examples

 10 X=123
 20 Y=.4567
 30 Z=-1.234E+47
 40 A$="cat"
 50 B$="bird"
 100 PRINT USING "K"; X
 110 PRINT USING "K"; Y
 120 PRINT USING "K"; Z
 130 PRINT USING "K,K,K"; X,Y,Z
 140 PRINT USING "K"; A$
 150 PRINT USING "K,K"; A$,B$
 160 PRINT USING "K,K,K,K,K"; X,A$,Y,B$,Z
 999 END

6-: 20

The above program prints:

 123
 .4567
 -1.234E+47
 123.4567-1.234E+47
 cat
 catbird
 123cat.4567bird-1.234E+47

Space Specifiers

A space specifier specifies one or more spaces.

Syntax

[num_expr1]X[X]...

Parameters

num_expr1 Repeat factor. Its value is rounded to a short integer.

The specifier nX is equivalent to a sequence of nX symbols. The DISP
USING or PRINT USING statement prints one space for every X.

Examples

 110 DISP USING "3D,XXX,3D,XXX,3D"; 123,456,789
 120 DISP USING "3D,3X,3D,3X,3D"; 123,456,789
 999 END

The above program prints:

 123 456 789
 123 456 789

Dollar Specifier

A dollar specifier specifies a dollar sign ($) and consists of one
symbol, $. When the symbol $ precedes a numeric specifier, the DISP
USING or PRINT USING statement prints a dollar sign ($) before printing
the value that corresponds to the numeric specifier. The statement
prints the dollar sign immediately before the first printed digit of the
output value.

Syntax

$

Examples

 10 A=1234
 20 DISP USING "$DCDDD.DD"; A
 30 DISP USING "$DDDCDDD.DD"; A
 40 DISP USING "$DDDCDDZ.DD"; A
 50 DISP USING "$ZZZCZZZ.DD"; A
 99 END

The above program prints:

 $1,234.00
 $ 1,234.00
 $ 1,234.00
 $1,234.00
 $001,234.00

6- 21

Control Character Specifiers

A control character specifier specifies that one or more control
characters for carriage return, line feed, or form feed be printed or
suppressed. It consists of one symbol: #, +, -, @, or /.

Table 6-13 lists the control character specifiers, their positions in the
image , (the item that is output) and their effect on the DISP USING or
PRINT USING statement.

Table 6-13. Control Character Specifiers

Specifier	Position in Image	Effect on Output

#	First format_spec	Suppresses carriage return and
		line feed that would otherwise be
		printed after display list values.

+	First format_spec	Suppresses line feed that would
		otherwise be printed after display
		list values.

-	First format_spec	Suppresses carriage return that
		would otherwise be printed after
		display list values.

@	Any format_spec . Can also replace	Prints formfeed.
	comma.	

/	Any format_spec . Can also replace	Formfeed followed by line feed.
	comma except that two @s must be	
	separated by a comma.	

Examples

 10 A$="ABC"
 20 DISP USING "3A"; A$
 30 DISP USING "K"; "xyz"
 40 DISP USING "#,3A"; A$!Suppress carriage return & line feed
 50 DISP USING "K"; "xyz"
 60 DISP USING "-,3A"; A$!Suppress carriage return only
 70 DISP USING "K"; "xyz"
 99 END

The above program prints:

 ABC
 xyz
 ABCxyz
 ABC
 xyz

The sequence:

 100 DISP USING "+,3A"; A$
 110 DISP USING "K"; "xyz"

6-: 22

prints ABC, followed by a carriage return character but not a line feed
character. When the output file is printed on a line printer, xyz is
printed over ABC.

The statement:

 200 DISP USING "DD,@,DD@DD@,@DD"; 12,13,14,15

prints 12, a form feed character, 13, a form feed character, 14, two form
feed characters, 15. When the output file is printed on a line printer,
12 is printed on the current page, 13 on the next page, 14 on the next,
and 15 two pages after 14.

The statement:

 300 DISP USING "Z,/,ZZ/ZZZ//ZZZZ/,//ZZZZZ"; 1,2,3,4,5

prints:

 1
 02
 003

 0004

 00005

Data Files

A data file contains data that an HP Business BASIC/XL program can read
or has written. The file can be stored on a disk, magnetic tape, or
cards. HP Business BASIC/XL uses program files as well as data files.
The material in this section applies only to data files, unless otherwise
noted. See chapter 2 for information about program files.

The following summarizes the material in this section:

TITLE CONTENT

Data File Types The three types of data files that HP Business
 BASIC/XL uses

File Identification How HP Business BASIC/XL identifies a data file

File Input and Output Read from or write to a data file.

Data File Types

HP Business BASIC/XL uses three types of data files: BASIC DATA, binary,
and ASCII. Table 6-14 shows their similarities and differences.

Table 6-14. Data File Types

	ASCII	BASIC DATA	Binary

How Created	CREATE statement or	CREATE statement or	CREATE statement or
	operating system	operating system	operating system
	command.	command.	command.

Fixed Length	Yes, if created with	Yes, if created with	Yes, if created with
	CREATE statement. If	CREATE statement. If	CREATE statement. If
	created with an	created with an	created with an
	operating system	operating system	operating system
	command, it depends	command, it depends	command, it depends

6- 23

| | on the command. | on the command. | on the command. |
| | | | |

Formatted	No	Yes	No

Input	READ statement,	READ statement.	READ statement.
	LINPUT statement.		

Output	PRINT statement.	PRINT statement.	PRINT statement.

Misc.	Data items are	READ statement	No wasted space; no
	separated by commas	type-checks BASIC	item separators as
	or record boundaries	DATA file data before	there are in ASCII
	in an ASCII input	assigning it to	files. No item
	file.	variables.	descriptors as there
			are in a BASIC DATA
	PRINT statement must	Direct word reads and	file.
	print commas between	writes are possible	
	data items if READ	(see "File Input and	
	statement is to read	Output").	
	ASCII file after it		
	is printed.	Conceptually, a	
		series of data items	
		actually, a series of	
		records.	

The BASIC DATA file is the only formatted file. It contains format words
that describe each datum. When a program writes a datum to a BASIC DATA
file, HP Business BASIC/XL writes the appropriate format words to the
BASIC DATA file (the statement that writes to the file need not specify
them). When a program reads a string datum from a BASIC DATA file, HP
Business BASIC/XL checks the format words for its type and for its size.

Conceptually, a BASIC DATA file is a series of data items, rather than a
series of records. Actually, it is composed of records; each record
contains as many whole data items as it can, with one immediately
following another. A datum never crosses a record boundary.

ASCII and binary files are unformatted; they do not contain format words
that describe their data.

File Identification

The CREATE statement or operating system command that creates a file
names the file; the ASSIGN statement assigns a file number to it. The
CATALOG and file management statements reference files by their names;
the file functions and other statements reference them by their numbers.

fname is a file name used in the Syntax Specification in chapter 4.
fname is represented by one of the following:

 * A quoted string literal (for example, "Myfile").

 * An unquoted string literal (for example, Myfile).

 * A string expression (for example, "File"+ A$).

The following restrictions apply to an unquoted string literal file
representation:

 * It must begin with a letter (uppercase or lowercase).

6-: 24

 * Its first nonalphabetic character cannot be "$".

 * It cannot contain the following characters:
 * comma (,)
 * semicolon (;)
 * space ()
 * exclamation point (!)
 * right parenthesis ())

The format of the file name depends on the operating system. For
example, if HP Business BASIC/XL is running on the HP 3000 under MPE XL,
the format of fname is

filename [/ lockword][. groupname [. accountname]]

where filename, lockword, groupname, and accountname are strings of one
to eight alphanumeric characters. The first character must be alphabetic
in each.

File Number Syntax (fnum). fnum is the file number that HP Business
BASIC/XL uses to identify the file. In the syntax specifications in
chapter 4, fnum is any numeric expression that evaluates to a positive
short integer greater than zero. The operating system may identify the
same file with another number (see the file function FNUM). The character
must precede fnum , except when fnum is a parameter in a call to one of
HP Business BASIC/XL's predefined file functions (then the # is
optional).

Examples

Legal fname Representation

"*myfile" Quoted string literal - file back
 reference
Abc$ String expression
"mylife. mygroup" Quoted string literal
File$+Group$+ Account$ String expression
myfile Legal unquoted string literal
myfile/password. mygroup Legal unquoted string literal

Illegal fname Reason it is illegal

*myfile Does not start with a letter
Abc$.mygroup First nonalphabetic character is "$"
Abc);def Contains ")"

An HP Business BASIC/XL program must assign a file number to a file
before it can access it; it must open the file. A program can assign
more than one file number to a file; open it more than once. See the
ASSIGN Statement for more information.

Filecodes. If you list your data or program files, you will see the
following file code mnemonic associated with each type of file:

Filecodes

Mnemonic	Filecode	Description

BSAVE	1244	HP Business BASIC/V Save
		file.

BSVXL	1247	HP Business BASIC/XL Save
		file.

6- 25

| | | |

BDATA	1242	HP Business BASIC/V Data
		file.

BDTXL	1248	HP Business BASIC/XL Data
		file.

BBNCM	1249	MPE/V binary file.

The filecode associated with each of the data files is used to identify
whether the file stores information in the MPE/V or MPE XL format. When
the file is opened by HP Business BASIC/XL, the file code is used to
determine the data storage format. If the file code indicates that the
file is was created on MPE/V, all the subsequent work of floating-point
real data conversion is done automatically. Therefore, it is possible to
share data among MPE XL native mode applications and existing programs
not yet migrated from compatibility mode. However, if the data file is
only intended for native mode programs and the data file was created
on MPE/V or in compatibility mode, run the conversion program
BBCTMPEV.PUB.SYS to avoid the performance impact of data conversion.

File Input and Output

File input and output (I/O) statements read input from and write output
to data files. The following input statements are available:

 LINPUT
 MAT READ
 READ

The following output statements are available:

 PRINT
 UPDATE

In addition, the CATALOG statement is used to display directory
information about specified files. All of these statements are explained
in chapter 4.

Each data file has a record pointer and a word pointer associated with
it. A BASIC DATA file has a datum pointer as well:.

record pointer Indicates the next record to be read or written.

word pointer Indicates the next word (within the next record) to be
 read or written.

datum pointer Indicates the next datum to be read or the next place
 to write a datum.

After any file I/O operation, the record, word, and datum pointers
advance to the next respective record, word, or datum depending on the
type of I/O operation. The POSITION statement positions the record
pointer at a specified record. The ADVANCE statement moves the record
pointer forward or backward. These statements are defined in chapter 4.

Regardless of file type, a file I/O operation can be:

sequential Sequentially reads or writes to the record in the file
 indicated by the position of the record pointer.

direct The record pointer is moved directly to a specific

6-: 26

 record prior to reading or writing.

On a BASIC DATA file, a file I/O operation can also be:

direct word Both the record and word pointers are moved to a
 specific word in the file prior to reading and writing.

Refer to Table 6-15 for the data storage and data item descriptor size
for each data type in the BASIC DATA file. This is useful for direct
record and word I/O to a BASIC DATA file.

Table 6-15. BASIC DATA File Contents

	Data Storage Size	Descriptor Size (in
	(in fileword)	fileword) and
		[Descriptor Value]

Short Integer	1	1 [5]

Integer	2	1 [6]

Short Decimal	2	1 [7]

Short Real	2	1 [8]

Decimal	4	1 [9]

Real	4	1 [10]

Entire String (for string	(total no. of chars + 1)	2 [1], second word is the
that fits into one record)	div 2	total no. of chars in the
		string

Beginning of String	(record size -2)	2 [2], second word - total
		no. of chars in string

Middle of String	(record size - 2)	2 [3], second - total no.
		of chars left

End of String	(total no. of chars left +	2 [4], second word = total
	1) div 2	no. of chars left

Table 6-15 Note: The length of each fileword is two bytes for
consistency with the MPE XL file system.

Native Language Support

This section summarizes the features of HP Business BASIC/XL that
facilitate the production of native language independent code. Refer to

6- 27

the Native Language Programmer's Guide for more information on Native
Language Support or NLS.

Selecting a Native Language

HP Business BASIC/XL determines the native language number at the
start-up of the interpreter and when a compiled program is executed by
making the following checks in the order shown:

 1. The initial default is NATIVE-3000 (Language #0).

 2. The operating system default language is determined by the NLINFO
 intrinsic.

 3. The HP Business BASIC/XL configuration file is checked for
 language specification.

 4. The value of the MPE NLDATALANG job control word or jcw is used if
 defined.

At all times while running the HP Business BASIC/XL interpreter and
executing a compiled HP Business BASIC/XL program, there is an associated
native language number. This number is referred to as the underlying
native language number in this section, and in the descriptions of NLS
statements and in NLS functions.

Displaying the Native Language Number

The INFO command displays the language number and the name of the
language in the following format:

Native Language 0(Native-3000)

Changing the Native Language Number

The underlying native language number can be changed with the RUN and
SCRATCH ALL commands. Each time the RUN command is issued, HP Business
BASIC/XL checks the value of the MPE jcw, NLDATALANG. If it is defined
and has a different value from the current native language number, then
the native language number changes. This causes HP Business BASIC/XL to
open the message catalog appropriate for that language (HHBBCnnn.PUB.SYS
for language nnn; for example, HPBBC009.PUB.SYS for Italian). If it is
not possible to open that catalog, HHBBCAT.PUB.SYS is used instead.

The native language can also be changed by the SCRATCH ALL command. The
SCRATCH ALL command follows the same procedure outlined under "Selecting
a Native Language" for determining a language number. If this results in
a number that is different from the current one, the native language
number changes.

Changing the NLDATALANG jcw does not affect the underlying native
language number until the next RUN or SCRATCH ALL command is executed.
Obviously, the language number cannot change during the execution of a
compiled program.
The ways of changing the NLDATALANG jcw include the following:

 * Using HP Business BASIC/XL's "SYSTEM" command:

 >SYSTEM "setjcw nldatalang=3"

 * Using HP Business BASIC/XL's ":" escape:

 >:setjcw nldatalang=3

String Functions

Relevant string functions have been enhanced to allow an option numeric
argument that specifies a native language number. In each case, if the

6-: 28

argument's value is -1, the underlying native language number is used as
the language specifier. If a non-negative value is used, that number is
taken directly as the language specifier. If the native language option
is not specified, then the option defaults to zero. The following
functions include parameters for NLS:

 LWC$
 UPC$
 LEX
 DATE$
 TIME$

These functions are defined and explained in chapter 5.

7- 1

Chapter 7 The Report Writer
Introduction

The Report Writer consists of HP Business BASIC/XL statements that aid in
report generation by doing various bookkeeping jobs. In the Report
Writer certain control structures cause the statements to be executed at
the appropriate times. The PRINT and IMAGE statements specify the actual
printing of the report.

Report Writer statements are categorized into the following four classes:

 * Report Writer Section Statements.

 * Report Writer Block Statements.

 * Report Writer Executable Statements.

 * Report Writer Built-In Functions.

This chapter describes the four classes of the Report Writer in detail.
Syntax and descriptions of each statement are in chapter 4.

General Information

Be aware of the following item, since it affects various Report Writer
statements:

 * The report sections (REPORT HEADER, REPORT TRAILER, and REPORT EXIT)
 are at level zero.

Report Writer section statements define the headers and trailers printed
in the report. These statements are included within the report
description. A REPORT HEADER section defines the beginning of the report
description and the END REPORT DESCRIPTION statement defines the end of
the report description. Both of these sections are required, whereas all
other Report Writer sections are optional.

A Report Writer section starts with a section statement. It ends when
the next section statement occurs in the report description. The section
can contain any legal HP Business BASIC/XL program statements. These
statements execute when the section is activated by the Report Writer.

The following are Report Writer section statements:

 * REPORT HEADER

 * REPORT TRAILER

 * PAGE HEADER

 * PAGE TRAILER

 * HEADER

 * TRAILER

 * REPORT EXIT

 * END REPORT DESCRIPTION

The WITH and USING clauses, used with the Report Writer section
statements, are described later in this section.

All of the report writer section statements are made BUSY and their
expressions are evaluated when BEGIN REPORT executes, preventing their
modification and deletion. When the report ends, these section
statements are no longer busy. That is, these report writer section
statements are busy for the duration of an active report.

7-2

WITH and USING Clauses

The WITH and USING clauses control the automatic page break mechanism and
to aid in the printing of each section. The WITH and USING clauses can
occur in all of the Report Writer section statements except END REPORT
DESCRIPTION and in the DETAIL LINE statements. These clauses are both
optional; however if both clauses occur, the WITH clause must appear first.

The USING clause is an implicit PRINT USING statement.

 [LINES]
Syntax. WITH num_lines [LINE]

USING image [; output_list]

Parameters.

num_lines The maximum number of lines the section statement
 expects to need. This can be any non-negative integer,
 including zero. This number reflects ALL output done by
 the section. For DETAIL LINE, all lines printed between
 any two detail lines is included.

image An image string or a line reference to an IMAGE line to
 control printing.

output-list A list of output items, identical to the list used by
 the PRINT USING statement.

Examples. The following are examples of the WITH and USING clauses:

 100 REPORT HEADER WITH 3 LINES
 110 DETAIL LINE USING 100;A, B
 120 PAGE TRAILER WITH 2 LINES USING Pt;PAGENUM, DATE$

Whenever a section becomes active, the first action executed is the
section statement. The WITH clause is evaluated first. If the number of
lines left on the page is smaller than the WITH value, an automatic page
break results. Otherwise, the WITH clause has no effect.

The WITH clause ensures that a certain number of lines are available
before the page trailer prints. If this condition is not satisfied, the
page break ensures that enough lines are available. If a WITH clause is
not present, the default is one.

The USING clause executes after the WITH clause. This clause is similar
to a PRINT USING statement in the report section statement. See PRINT
USING for more details.

If an error occurs during evaluation of the WITH clause, such as a
negative number of lines specified, the USING clause does not execute.
If the USING clause encounters an error, it stops printing. In either
case, however, the rest of the report section executes. That is, if
there is an error in the WITH clause, the USING clause will not execute,
but the rest of the section will execute.

Exceptional Cases. The WITH clauses of the PAGE HEADER and PAGE TRAILER
sections are exceptional. Instead of evaluating the WITH clause at each
page break, the Report Writer evaluates the PAGE HEADER and PAGE TRAILER
size only when BEGIN REPORT executes. This action allows the Report
Writer to define the number of lines normally available for printing.
The maximum size of the page header and the size of the page trailer are
fixed throughout the report. Refer to the PAGE HEADER and PAGE TRAILER
statements for more details.

The USING clauses of the PAGE HEADER and PAGE TRAILER sections are
evaluated each time there is a page break.

Report Writer Block Statements

The Report Writer block statements further define a report by providing
execution control as well as report layout. All of these statements must
occur within a report description. Some of the statements must occur
within certain sections of the report. The point each statement becomes
busy at, or is evaluated, varies from statement to statement.

7- 3

If a Report Writer block statement executes when a report is not active,
an error occurs. When there is an active report, the direct execution of
the statement acts as a comment. These statements execute only when
certain other Report Writer statements execute, such as DETAIL LINE.

The following are Report Writer block statements:

 * PAGE LENGTH

 * LEFT MARGIN

 * PAUSE EVERY

 * SUPPRESS AT

 * SUPPRESS FOR

 * PRINT DETAIL IF

 * TOTALS

 * GRAND TOTALS

 * BREAK IF

 * BREAK WHEN

Report Writer Executable Statements

The Report Writer executable statements drive the report process. A
report becomes active when a BEGIN REPORT statement executes. However,
this is distinct from starting report output. Starting report output is
caused by other Report Writer executable statements. The DETAIL LINE
statement is the primary method of printing the report. END REPORT and
STOP REPORT cease report activity.

These statements must appear in the same subunit as the report
description they use. They can appear anywhere within the subunit,
although some of these statements are not allowed inside the actual
report description.

Activating and Starting a Report

A distinction must be made between activating a report and starting a
report output. This distinction is important because of the interactions
of PRINT with the report writer.

The BEGIN REPORT statement activates a report. This means that the
report description is scanned and verified, and certain important
expressions are evaluated. After activation, the Report Writer built-in
functions are referenced without error, and all Report Writer executable
statements, except BEGIN REPORT, execute without error. The errors
returned when report section statements are seen changes when the report
is activated. A report remains active until one of the following occurs:

 * An END REPORT or STOP REPORT statement executes.
 * The report subunit ends or stops.
 * A GET statement executes.

Once a report is activated, report output can start. The following
statements are the only statements that can start report output:

 DETAIL LINE
 TRIGGER BREAK
 TRIGGER PAGE BREAK
 END REPORT

When report output begins, the following steps take place:

 1. The REPORT HEADER section executes to print the report header.

 2. If present, the PAGE HEADER section executes to print the page
 header.

 3. Any HEADER sections defined execute from level 1 to level 9, in
 ascending order.

Before report output starts, all PRINT statements do not affect the

7-4

report. However, once the report output starts, PRINT statements count
as lines in the report.

The following are Report Writer executable statements:

 * BEGIN REPORT

 * DETAIL LINE

 * TRIGGER BREAK

 * END REPORT

 * STOP REPORT

 * TRIGGER PAGE BREAK

 * SUPPRESS HEADER

 * SUPPRESS TRAILER

 * SET PAGENUM

Report Writer Built-in Functions

The Report Writer built-in functions have two main purposes. Some of
these functions retrieve information Report Writer has kept for you, such
as the automatic totals. Other functions help you control Report Writer
flow and output.

Unlike the Report Writer statements, the Report Writer built-in functions
are used in subunits other than the one containing the report.

The functions are listed in Table 7-1, along with a brief description.
They are defined and explained in chapter 5.

Table 7-1. Report Writer Functions and Returned Values

--
Function	Description
--
AVG (Level,Sequence)	Returns the average value of a totaled item.
--
LASTBREAK	Returns the level number of the last BREAK statement
	satisfied.
--
NUMBREAK (Level)	Returns the number of BREAK conditions satisfied for the
	given level.
--
NUMDETAIL (Level)	Returns the number of DETAIL LINES with a non-zero
	totals_flag executed for the given level.
--
OLDCV (Level)	Returns the value of a BREAK WHEN control expression.
--
OLDCV$(Level)	Returns the value of a BREAK WHEN control expression.
--
NUMLINE	Returns the number of lines printed on the current page.
--
PAGENUM	Returns the current page number.
--
| | |

7- 5

RWINFO (Expression)	Returns various pieces of information that is useful in
	controlling the Report Writer.
--
TOTAL (Level, Sequence)	Returns accumulated totals.
--

Other Statements

The PRINT and PRINT USING statements produce report output after report
output has begun. These statements are used in conjunction with the
USING clauses of Report Writer statements to generate the report. Before
report output begins and when a report is not active, these statements do
not affect the report.

System output, such as LIST output and display output using the DISP
statement, does not affect output even on the same terminal. This aids
in debugging a report.

When error 260 "no lines left on page" occurs, be sure not to use PRINT
to display an error message. This causes an infinite loop, because
printing the message causes the error again. Instead, use DISP
statements or trap on ERROR 260 and trigger a page break first.

The COPY ALL OUTPUT and SEND OUTPUT statements cannot execute once report
output begins. These statements can execute for an active report before
output starts.

The TAB function of PRINT always works relative to the left margin. If a
report specifies a left margin of 10, a

 PRINT TAB(10);...

moves to the tenth column past the margin (column 19). A TAB(1) moves to
the left margin column.

7-6

8- 1

Chapter 8 User-Defined Keys

Introduction

User-definable keys, also called softkeys or programmable function keys,
are the eight function keys, f1 - f8, that are on HP terminals. There
are nine statements and two functions available in HP Business BASIC/XL
that let you define and use these function keys. You have the following
two options for specifying the actions to be taken after pressing a
user-definable key.

Typing Aid Key - Pressing a key defined as a typing aid key displays
strings of characters commonly used for editing or data entry. The
attribute field of the function key determines whether the string is
executed locally, transmitted to the host computer, or treated in the
same manner as the alphanumeric keys.

Branch-During-Input - A branch-during-input key is pressed only when an
input statement or READ FORM statement is being executed. The result of
pressing the branch-during-input key is a program interrupt followed by
resumption of program execution at a point specified in the HP Business
BASIC/XL statement defining the key.

The default values for the user-definable keys are blank labels, local
execution, and the key definition field set to ASCII character 7, BEL.
Pressing a key that has default values rings the terminal's bell.

The type of terminal that you are using is automatically determined when
you enter the HP Business BASIC/XL interpreter. A field in the
configuration file, HPBBCNFG.PUB.SYS, can be set to specify whether the
user-definable keys should be saved when you enter the interpreter so
that the values can be restored upon exit. If you selected this option
and you encounter problems with the interpreter's ability to save and
restore the value of the keys, and you are not using a fully compatible
HP terminal as described in Appendix E, set the Is an HP compatible
terminal entry in the HP Business BASIC/XL configuration file to N. For
more information about setting the HP Business BASIC/XL configuration
file, refer to Appendix C.

When the HP Business BASIC/XL interpreter is a batch job, or when BASIN
or BASLIST have been redirected, branch-during-input keys are still
allowed, but key labels are ignored.

Typing Aid Keys

Typing aid keys set the key definition field to a character string. When
you press the key, the stored string is sent to the input device. The
key's attribute field determines the manner in which the key is
interpreted. For example, consider the situation in which you are in the
interpreter's editor, and the key definition field for key 1 is set to
the value LIST and the key's attribute field is set to T (indicating the
content of the key is to be "transmitted" to the host computer). When
you press key 1, the LIST command is displayed on the terminal and
subsequently executed. The following statements are related to defining
typing aid keys:

 * GET KEY - Retrieves the definition of the typing aid keys from a BKEY
 file.

 * SAVE KEY and RESAVE KEY - Stores the current definitions of the
 typing aid key in a BKEY file.

f

8-: 2

 * SCRATCH KEY - Restores the default key definitions for the terminal.

These statements are defined in chapter 4.

You can define user-definable keys either before or after entering the
interpreter. Consult your terminal reference manual for the method used
to set the fields for your terminal's user-definable keys.

A field in the configuration file can be set to indicate whether you wish
to save the values of the user-definable keys prior to entering the
interpreter.

 * If the field in the configuration file is set to indicate that the
 user-definable keys are saved when you enter the interpreter or at
 the start of a compiled program, then when you execute the first keys
 statement the keys in the terminal is saved. The values of the
 user-definable keys are restored to the terminal when you exit the
 program.

 * If the field in the configuration file is set to indicate that the
 values of the user-definable keys are not saved when you enter the
 interpreter, then the first KEY command except SAVE KEY causes the
 values of the keys to be set to the default values, blank labels,
 local, and BEL. Issuing a SAVE KEY command before executing any keys
 statement causes HP Business BASIC/XL to store the current typing aid
 key definitions.

Key values are retrieved from a file by issuing a GET KEY command.
However, when you exit HP Business BASIC/XL with the SAVE KEY option in
effect, the previous values are restored as the user-definable key
definitions.

Branch-During-Input Keys

By defining a branch-during-input key you provide a method of altering
program flow from within an input statement. For example, you can write
a help facility that is accessed by pressing a branch-during-input key
while the program is executing an input statement. Statements and
functions used to define the branch-during-input keys are described
below:

 * ON KEY and OFF KEY - Activation and deactivation, respectively, of a
 single key or set of keys defined as branch-during-input keys.

 * ENABLE - Specifies that any key-generated branch in the interrupt
 queue is to be processed. If the queue is empty, branch-during-input
 keys are processed immediately when pressed.

 * DISABLE - Specifies that any key-generated branches are to be added
 to the interrupt queue without processing.

 * PRESS KEY - Allows the simulation of pressing a branch-during-input
 key from within the program.

 * CURKEY - A function that returns the number of the last
 branch-during-input key pressed.

 * RESPONSE - A function that returns how input was terminated,
 including which softkey was pressed.

These statements are defined in chapter 4. CURKEY and RESPONSE are
defined in chapter 5.

Branch-during-input keys are active only during program execution and
only when pressed following an input prompt (that is, while INPUT,
TINPUT, ACCEPT, or LINPUT statements execute) and before pressing RETURN.
They are also active during execution of a READ FORM statement. Any
input characters typed between the input prompt and the pressing of the
user-definable key defined as a branch-during-input key are lost. Only
one branch-during-input key can be pressed during a given input
statement.

8- 3

The resulting branch (GOTO, GOSUB or CALL) to be taken is specified in
the ON KEY statement used to define the branch-during-input key. The
definition of the branch-during-input key overwrites the current typing
aid definition for that key. However, the HP Business BASIC/XL
interpreter remembers the last previous typing aid definition for that
key. When an OFF KEY statement for that user-definable key is executed,
the typing aid definition is restored.

SAVE KEY fname and RESAVE KEY fname save only the typing aid definitions
for the keys. If a key is currently defined as a branch-during-input
key, the last previous typing aid definition is written to the file if
either of these statements execute. Remember that the last previous
typing aid definition is set by either a SAVE KEY, SAVE or RESAVE KEY
fname , GET KEY fname , or SCRATCH KEY.

Priority of Handling the Branch after Pressing Branch-During-Input Keys.

The branching that is performed in response to the ON KEY statement can
be considered a restricted interrupt of the normal program flow. As
such, the order it is handled in depends on the number of higher priority
interrupts that must be handled when the branch-during-input key is
pressed. Chapter 4 contains the statements for interrupt handling for
DBERROR, EOF (end of file), run-time errors, and HALT (CONTROL Y). The
priority for handling these interrupts is:

HALT 16

SHIFT HALT 17

EOF (end of file) 17

run-time errors 17

The priority level for the branch-during-input keys can be set to any
integer between 1 and 15, inclusive. If a priority level is not
specified in the ON KEY statement, the priority is set to 1. The
branches specified by the interrupt handlers and the branch-during-input
keys are added to the interrupt queue. The branch with the highest
associated priority is processed first. If there is more than one
key-generated branch in the interrupt queue with the same priority, the
branch resulting from pressing the highest numbered key is processed
first.

There are now two conditions to consider:

 * If the specified branch is a GOSUB or CALL, then the interrupt queue
 for the program unit that the key was pressed in is checked
 immediately following the execution of the RETURN statement that
 returns control to the calling program unit.

 * If the branch is a GOTO, then the statement that is the target of the
 branch is executed. Following execution of the target statement, the
 interrupt queue is checked again.

In either case, if the interrupt queue is not empty, then the next branch
in the queue with equal priority to that just executed or the branch with
the highest remaining priority executes. The process continues until
there are no more branches to execute remaining in the queue. At this
point, program execution continues at the next executable statement in
the program.

If only one GOSUB or CALL branch generated by a branch-during-input key
is in the interrupt queue when the ENABLE statement executes, the GOSUB
or CALL executes and then execution resumes at the statement following
the input statement.

Execution of RUN, STOP, END, SCRATCH PROG, or SCRATCH ALL clears the
interrupt queue of any key generated branches remaining to be executed.

The DISABLE statement lets the program add branches to the interrupt
queue, but delays execution of the branches. The ENABLE statement allows
the handling of queued branch information to continue or begin.

f

8-: 4

Subunits

The ON KEY CALL statement is active in all subunits called by the subunit
that the statement is in unless the user-definable key is redefined
within the called subunit. If the key is redefined, the definition on
exit from the called subunit is restored to the ON KEY call that it had
upon entry. ON KEY GOTO and ON KEY GOSUB are active only within the
subunit that they are in. Similarly, an OFF KEY restores the typing aid
key definitions to those keys specified only for the subunit that the OFF
KEY is in. When you exit from the subunit, the values that the fields
of the keys had upon entry to the subunit are restored. If a
branch-during-input key is pressed within a compiled subunit called from
a program running in the interpreter, the specified branch is added to
the interrupt queue and handled when you return to the interpreter.

Using Function Keys in a Batch Job

Function keys can be used in a batch job, or when standard input is taken
from a disk file. There are some restrictions, however.

The ON KEY and OFF KEY statements are used normally. However, batch jobs
ignore the LABEL specified in the ON KEY statement. Only the action and
the priority are used.

HP Business BASIC/XL always looks for keys from terminal input
statements, such as INPUT and LINPUT. The file input statements do not
expect or examine data for key presses. During batch processing,
however, "terminal" input does come from a file, so HP Business BASIC/XL
must look for key presses in the standard input. To press a key, you
must know how HP Business BASIC/XL recognizes a key.

When input is requested, HP Business BASIC/XL accepts data from the
standard input (BASIN) file until the end of the line occurs. A function
key check is performed immediately, before any blanks are trimmed from
the input line. A function key consists of two characters: an escape
character (ASCII 27) followed by a lower case letter between p and w,
inclusive. (These are the default terminal definitions and represent
function keys 1 to 8 respectively.) To represent a key press, these two
characters must appear as the last two characters in the input data. If
the escape occurs anywhere else in the input, the sequence is part of the
input.

You must exercise caution in creating batch jobs or disk files for HP
Business BASIC/XL with key presses. If fixed format files are used, the
escape sequence must appear as the last two characters of a record.
Otherwise, the escape sequence will not be recognized as a key press. A
sample input file might look like:

 The following example shows

 Column: Column: Remarks:
 0 ...78
 1 ...90

 this is a test. Data to an INPUT statement.
 <esc>p This will be taken as data
 .p (. represents <esc>) Press key

9- 1

Chapter 9 Compiler

Introduction

The compiler increases execution speed of programs that have been
developed using the interpreter.

The interpreter is an extremely powerful development tool. It
facilitates program creation, modification, and debugging by allowing the
programmer to stop and start the program at will, examine or change the
values of variables at any time, and trace program execution. The price
of this power and flexibility is program execution speed.

The compiler produces relocatable object code files that can be linked
and executed directly by the operating system. Compiled code executes
significantly faster than interpreted code, but it is not easily examined
or changed.

This chapter explains the following:

 * Compiling and running an HP Business BASIC/XL program.

 * Noncompilable statements that require the interpreter environment and
 therefore do not work in the compiler.

 * CWARNINGS command (an interpreter command that lists noncompilable
 statements).

 * Noncompilable program units (main programs or subunits) that must be
 modified in the interpreter before they can be compiled.

 * COPTION and GLOBAL COPTION statements that specify compiler options
 and directives and are ignored by the interpreter.

 * OPTION and GLOBAL OPTION statements in compiled programs.

 * That the main program of a compiled program is a procedure rather
 than an outer block.

 * Calling compiled subunits (procedures and functions) from an
 interpreted program.

 * How ON ERROR CALL, ON HALT CALL, and ON END CALL statements behave
 across compiled subunit calls.

NOTE Not every program unit that can be interpreted can be compiled.
 Whether a program can be compiled depends on the number and type of
 statements it contains.

Non-compilable Statements and the CWARNINGS Command

Some HP Business BASIC/XL statements require the interpreter environment
and therefore cannot be compiled. Non-compilable HP Business BASIC/XL
statements cause compiler warnings. Some statements also generate code
that causes a run-time error.

The following statements are effectively ignored by the compiler:

9-: 2

 * All trace statements.
 * All untrace statements.
 * PAUSE statement.

When the compiler encounters one of these statements that are primarily
for debugging, it issues a warning message and continues. The compiler
does not generate code for the statement that caused the warning.

The following statements cause a run-time error:

COMMAND GETSUB RESAVE SECURE

DEFAULT LINK SAVE

DELETE MERGE SCRATCH

When the compiler encounters one of these statements, it issues a warning
message and generates code that causes run-time error #2103. The
INTERPRETED built-in function can be used to avoid executing these
statements in a compiled program.

The compiler must be able to determine the number of dimensions of every
array at compile time. If it encounters an undeclared array or an array
parameter for which the dimensions cannot be determined at compile time,
for example, an array that appears only in a MAT PRINT statement, the
compiler issues an error message. The interpreter command, CWARNINGS,
lists noncompilable statements in the current program. The CWARNINGS
command is a command-only statement.

Syntax

CWARNINGS

Non-compilable Program Units

A program unit cannot be compiled unless it is well-formed . A
well-formed program unit has properly matching constructs, such as a NEXT
for every FOR, and its array references are consistent with its array
declarations.

The interpreter checks a program unit's form before executing or saving
it. When a program containing a poorly formed program unit is saved, the
interpreter issues a warning message and marks the program unit as
noncompilable.

If the programmer attempts to compile the program, the compiler issues
the error message

 VERIFY is needed on subunit program_unit

and does not generate code for program_unit . The compiler cannot
diagnose the error; the programmer must return to the interpreter and use
the VERIFY command.

COPTION and GLOBAL COPTION Statements

The COPTION and GLOBAL COPTION statements gives you control over the code
and listing that the compiler generates.

The GLOBAL COPTION statement is allowed only in the main block of a
program. It establishes defaults to be used throughout the program. The
COPTION statement can be used in any program unit.

Syntax

 { i_option }[{ i_option }]
[GLOBAL] COPTION { s_option }[, { s_option }]...

9- 3

Parameters

GLOBAL Allowed only if the statement is in the main block of
 the program. If GLOBAL appears, the statement is a
 GLOBAL COPTION statement; if GLOBAL is omitted, it is a
 COPTION statement. A GLOBAL COPTION statement affects
 every program unit in the program. A COPTION statement
 affects only the program unit that contains it.

 A COPTION statement overrides a GLOBAL COPTION
 statement, but only while the program unit that contains
 it is being compiled or executed.

i_option One of the in-line options listed in Table 9-2.

s_option One of the subunit options listed in Table 9-3, with the
 restriction that USLINIT can appear only in a GLOBAL
 COPTION statement.

A GLOBAL COPTION statement is allowed only in the main block of a
program. It changes the default options in the main program and in every
subunit. If two GLOBAL COPTION statements contain opposite options (for
example, ID TABLES and NO ID TABLES), the statement with the higher line
number sets the option. If a GLOBAL COPTION statement contains opposite
options, the rightmost reference sets the option.

A COPTION statement is allowed in the main program and in subunits. It
sets program unit options only in the program unit containing it. See
Table 9-1 and Table 9-3 for more information.

If two COPTION statements contain opposite options, the statement with
the higher line number sets the option. If a COPTION statement contains
opposite options, the rightmost reference sets the option.

In-Line verses Program Unit Options

Compiler options take effect in one of two methods: in-line or program
unit. In-line options take effect when the COPTION or GLOBAL COPTION
statement is processed normally; that is, when the statement is compiled
in line number order. They remain in effect until another in-line option
changes the setting of the option.

Program unit compiler options are processed before a program unit is
compiled. Before the first line of a program unit is compiled, the
compiler searches for and processes all of the program unit options. If
a COPTION statement does not specify a particular program unit option,
the setting of the GLOBAL COPTION statement applies. Program unit
options normally apply ONLY to the subunit in which they occur.

The Compiler Options

The compiler options are split into four general categories. Each of the
following categories control specific portions of the compilation
process:

 * Listing.
 * Code Space and Performance.
 * Data Space.
 * Miscellaneous.

9-: 4

Table 9-1. Listing Options

Option 12	Effect	Type	Default

LINES [=] num_lit (10 <= num_lit	Sets the number of lines	INLINE	60
<= 9999)	per page for the compiler		
	listing.		

	Enables and disables	INLINE	LIST
	compiler source listing		
{ NOLIST }	and requested tables. ID		
LIST { NO LIST}	TABLES and LABEL TABLES		
	can be listed only if		
	listing is enabled.		

	Prints identifiers, their	PROGRAM UNIT	NO ID TABLES
	types and their		
{ NO ID}	hexidecimal addresses at		
ID [TABLES] { NOI D } [TABLES]	the end of each program		
	unit (provided LIST is		
	active). The NOID option		
	suppresses this		
	information.		

	Prints each program line	PROGRAM UNIT	NO LABEL
	number and the code		TABLES
{ NO LABEL}	offset of the beginning		
LABEL [TABLES] { NOLABEL }	of that line (provided		
	that LIST is also		
[TABLES]	active).		
	Suppresses what LABEL		
	TABLES would print.		

	Causes page eject. The	INLINE	None.
	next line of the compiler		
PAGE	listing prints on a new		
	page. (Compare to		
	PAGESUB.)		

	Generates a page break	PROGRAM UNIT	Program
	and page header before		units do not
PAGESUB	the first line of the		start on new
	program unit is printed.		pages.
	If used in a GLOBAL		
	COPTION statement, every		
	program starts on a new		
	page; otherwise, only the		
	current subunit starts on		
	a new page.		

TITLE [=] quoted_str_lit	Replaces the standard HP	INLINE	See Note 1.
	Business BASIC/XL		
	compiler pagetitle with		
	quoted_str_lit at the top		
	of each page of the		
	compiler listing.		
	(Compare to TITLESUB		
	below.)		

9- 5

| | | | |

TITLESUB [=] quoted_str_lit	Substitutes	PROGRAM UNIT	See Note 2.
	quoted_str_lit in the		
	page title at the		
	beginning of the subunit.		

	Enable or suppress	INLINE	WARN
	compile-time warning		
{ NOWARN }	messages. The final		
WARN { NO WARN}	statistics includes a		
	count of warnings even		
	when warnings are		
	suppressed.		

Table 9-1 Notes

1 An HP Business BASIC/XL compiler page header consists of a page
 number followed by a page title; For example:

HP Business BASIC/XL Compiler HP32715A.00.00 Copyright Hewlett-Packard Co.
1989
 SUN, JAN 1, 1989, 2:01 PM

2 If included in a subunit, HP Business BASIC/XL replaces the page
 title in the page header with quoted_str_lit on the next page break.
 The difference between TITLE and TITLESUB is that with the latter,
 the title change takes place the instant a subunit is entered. Thus
 if there are any page breaks within the subunit before the COPTION
 TITLESUB = " quoted_str_lit " statement, the new title is in effect.
 With COPTION TITLE = " quoted_str_lit ", the title will not change
 until after the actual statement.

Table 9-2. Code and Performance COPTIONS

Option	Meaning	Type & Defaults	Effects on
			Compiled Program

	Emits or suppresses code	PROGRAM UNIT	NO ERROR saves
	to trap errors. When		approximately 3
ERROR [HANDLING]	NOERROR is in effect, an	ERROR HANDLING	words per line.
	ON ERROR statement causes		(Not all
{ NOERROR }	a compile-time error. If		statements
{ NO ERROR} [HANDLING]	a run-error occurs (with		perform ERROR
	NO ERROR), HP Business		checking);
	BASIC/XL prints an error		performance
	message. If the compiled		increases also.
	program was called from		
	the interpreter, control		
	returns to the		
	interpreter; otherwise,		
	the program aborts.		

	Emits or suppresses code	INLINE	NO HALT saves
	to check for the HALT key		approximately 3
HALT [CHECKING]	at the end of each line.	HALT checking	words per line.
			(Not all
{ NOHALT }			statements
{ NO HALT} [CHECKING]			perform HALT
			checking);
			performance
			increases also.

9-: 6

| | | | |

	Level of optimization.	Subprogram	0 = No
			optimization.
{ 0}			1 = Local
OPTIMIZE { 1}			optimization.
			The default is 1.

	Emit or suppress code	INLINE	Code savings
	that causes a run-time		vary, but option
RANGE [CHECKING]	error when one of the	RANGE CHECKING	NORANGE can save
	following occurs:		12 to 16 words
{ NO RANGE}			per array or
{ NORANGE } [CHECKING]	1. An array index or		substring access.
	a substring index		
	is out of bounds.		
	2. An integer to		
	short integer		
	conversion		
	overflows.		
	3. The nested GOSUB		
	level is greater		
	than the default		
	MAXGOSUB level or		
	the value		
	specified in		
	COPTION MAXGOSUB.		
	4. The file number		
	used is greater		
	than the default		
	MAXFILES or the		
	MAXFILES value in		
	the COPTION		
	MAXFILES.		

	Allows or disallows array	PROGRAM UNIT	Reduces code for
REDIM	redimensioning. Not		array access
	allowing dimensions to	REDIM	(unless array is
NO REDIM	change allows for more		variably
	compile-time and less		dimensioned).
	run-time checking of		Performance
	array bounds. GLOBAL		improves
	COPTION [NO] REDIM		corresponding to
	affects arrays in COM.		code reduction.

Table 9-3. Dataspace COPTIONS

Option	Meaning	Type	Default

MAXFILES [=] num_lit	Specifies the largest	Program Unit	16
	file number used in this		
	subunit. Each invocation		
	of a subunit allocates 1		
	word for each legal file		
	number.		

MAXGOSUBS [=] num_lit	Allows GOSUB statements	None	10
	to be nested to a depth		
	of num_lit . A run-time		

9- 7

	error occurs if more than		
	num_lit GOSUB statements		
	execute before a RETURN		
	(in one subunit). Each		
	invocation of a subunit		
	allocates one word for		
	each possible GOSUB.		

Table 9-4. Other COPTIONS

Option	Meaning	Type	Default

	Allows you to insert a	Program Unit	none
	copyright statement in		
COPYRIGHT=quoted_str	the program. No effect		
	on program execution.		

	Allows you to compile	Program	Compile current
	each of the main block		program as
RLFILE	and each subunit as a		individual object
	separate object file into		file into an
	an RL file. You can		NMOBJ file.
	compile more than one		
	program subunit into an		
	RL.		

	Directs the compiler to	Program	RL not
	initialize the RL before		initialized.
RLINIT	compiling code into it.		

	Allows you to group	Program Unit	No locality set
	multiple object modules		specified.
LOCALITY= quoted_str	into a locality set when		
	they are compiled into an		
	RL. This will help in		
	maintaining and using RL		
	commands such as PURGERL.		

Table 9-4 NOTE For a detailed description of relocatable libraries (RLs)
see the HPLINK EDITOR/XL Reference Manual .

COPTION and GLOBAL COPTION Statements

The COPTION and GLOBAL COPTION statements gives you control over the code
and listing that the compiler generates.

The GLOBAL COPTION statement is allowed only in the main block of a
program. It establishes defaults to be used throughout the program. The
COPTION statement can be used in any program unit.

Syntax

 { i_option }[{ i_option }]
[GLOBAL] COPTION { s_option }[, { s_option }]...

Parameters

GLOBAL Allowed only if the statement is in the main block of

9-: 8

 the program. If GLOBAL appears, the statement is a
 GLOBAL COPTION statement; if GLOBAL is omitted, it is a
 COPTION statement. A GLOBAL COPTION statement affects
 every program unit in the program. A COPTION statement
 affects only the program unit that contains it.

 A COPTION statement overrides a GLOBAL COPTION
 statement, but only while the program unit that contains
 it is being compiled or executed.

i_option One of the in-line options listed in Table 9-2.

s_option One of the subunit options listed in Table 9-3, with the
 restriction that USLINIT can appear only in a GLOBAL
 COPTION statement.

A GLOBAL COPTION statement is allowed only in the main block of a
program. It changes the default options in the main program and in every
subunit. If two GLOBAL COPTION statements contain opposite options (for
example, ID TABLES and NO ID TABLES), the statement with the higher line
number sets the option. If a GLOBAL COPTION statement contains opposite
options, the rightmost reference sets the option.

A COPTION statement is allowed in the main program and in subunits. It
sets program unit options only in the program unit containing it. See
Table 9-1 and Table 9-3 for more information.

If two COPTION statements contain opposite options, the statement with
the higher line number sets the option. If a COPTION statement contains
opposite options, the rightmost reference sets the option.

In-Line verses Program Unit Options

Compiler options take effect in one of two methods: in-line or program
unit. In-line options take effect when the COPTION or GLOBAL COPTION
statement is processed normally; that is, when the statement is compiled
in line number order. They remain in effect until another in-line option
changes the setting of the option.

Program unit compiler options are processed before a program unit is
compiled. Before the first line of a program unit is compiled, the
compiler searches for and processes all of the program unit options. If
a COPTION statement does not specify a particular program unit option,
the setting of the GLOBAL COPTION statement applies. Program unit
options normally apply ONLY to the subunit in which they occur.

The Compiler Options

The compiler options are split into four general categories. Each of the
following categories control specific portions of the compilation
process:

 * Listing.
 * Code Space and Performance.
 * Data Space.
 * Miscellaneous.

Table 9-1. Listing Options

Option 12	Effect	Type	Default

LINES [=] num_lit (10 <= num_lit	Sets the number of lines	INLINE	60
<= 9999)	per page for the compiler		
	listing.		

9- 9

	Enables and disables	INLINE	LIST
	compiler source listing		
{ NOLIST }	and requested tables. ID		
LIST { NO LIST}	TABLES and LABEL TABLES		
	can be listed only if		
	listing is enabled.		

	Prints identifiers, their	PROGRAM UNIT	NO ID TABLES
	types and their		
{ NO ID}	hexidecimal addresses at		
ID [TABLES] { NOI D } [TABLES]	the end of each program		
	unit (provided LIST is		
	active). The NOID option		
	suppresses this		
	information.		

	Prints each program line	PROGRAM UNIT	NO LABEL
	number and the code		TABLES
{ NO LABEL}	offset of the beginning		
LABEL [TABLES] { NOLABEL }	of that line (provided		
	that LIST is also		
[TABLES]	active).		
	Suppresses what LABEL		
	TABLES would print.		

	Causes page eject. The	INLINE	None.
	next line of the compiler		
PAGE	listing prints on a new		
	page. (Compare to		
	PAGESUB.)		

	Generates a page break	PROGRAM UNIT	Program
	and page header before		units do not
PAGESUB	the first line of the		start on new
	program unit is printed.		pages.
	If used in a GLOBAL		
	COPTION statement, every		
	program starts on a new		
	page; otherwise, only the		
	current subunit starts on		
	a new page.		

TITLE [=] quoted_str_lit	Replaces the standard HP	INLINE	See Note 1.
	Business BASIC/XL		
	compiler pagetitle with		
	quoted_str_lit at the top		
	of each page of the		
	compiler listing.		
	(Compare to TITLESUB		
	below.)		

TITLESUB [=] quoted_str_lit	Substitutes	PROGRAM UNIT	See Note 2.
	quoted_str_lit in the		
	page title at the		
	beginning of the subunit.		

	Enable or suppress	INLINE	WARN
	compile-time warning		
{ NOWARN }	messages. The final		

9-: 10

WARN { NO WARN}	statistics includes a		
	count of warnings even		
	when warnings are		
	suppressed.		

Table 9-1 Notes

1 An HP Business BASIC/XL compiler page header consists of a page
 number followed by a page title; For example:

HP Business BASIC/XL Compiler HP32715A.00.00 Copyright Hewlett-Packard Co.
1989
 SUN, JAN 1, 1989, 2:01 PM

2 If included in a subunit, HP Business BASIC/XL replaces the page
 title in the page header with quoted_str_lit on the next page break.
 The difference between TITLE and TITLESUB is that with the latter,
 the title change takes place the instant a subunit is entered. Thus
 if there are any page breaks within the subunit before the COPTION
 TITLESUB = " quoted_str_lit " statement, the new title is in effect.
 With COPTION TITLE = " quoted_str_lit ", the title will not change
 until after the actual statement.

Table 9-2. Code and Performance COPTIONS

Option	Meaning	Type & Defaults	Effects on
			Compiled Program

	Emits or suppresses code	PROGRAM UNIT	NO ERROR saves
	to trap errors. When		approximately 3
ERROR [HANDLING]	NOERROR is in effect, an	ERROR HANDLING	words per line.
	ON ERROR statement causes		(Not all
{ NOERROR }	a compile-time error. If		statements
{ NO ERROR} [HANDLING]	a run-error occurs (with		perform ERROR
	NO ERROR), HP Business		checking);
	BASIC/XL prints an error		performance
	message. If the compiled		increases also.
	program was called from		
	the interpreter, control		
	returns to the		
	interpreter; otherwise,		
	the program aborts.		

	Emits or suppresses code	INLINE	NO HALT saves
	to check for the HALT key		approximately 3
HALT [CHECKING]	at the end of each line.	HALT checking	words per line.
			(Not all
{ NOHALT }			statements
{ NO HALT} [CHECKING]			perform HALT
			checking);
			performance
			increases also.

	Level of optimization.	Subprogram	0 = No
			optimization.
{ 0}			1 = Local
OPTIMIZE { 1}			optimization.
			The default is 1.

| | | | |

9- 11

	Emit or suppress code	INLINE	Code savings
	that causes a run-time		vary, but option
RANGE [CHECKING]	error when one of the	RANGE CHECKING	NORANGE can save
	following occurs:		12 to 16 words
{ NO RANGE}			per array or
{ NORANGE } [CHECKING]	1. An array index or		substring access.
	a substring index		
	is out of bounds.		
	2. An integer to		
	short integer		
	conversion		
	overflows.		
	3. The nested GOSUB		
	level is greater		
	than the default		
	MAXGOSUB level or		
	the value		
	specified in		
	COPTION MAXGOSUB.		
	4. The file number		
	used is greater		
	than the default		
	MAXFILES or the		
	MAXFILES value in		
	the COPTION		
	MAXFILES.		

	Allows or disallows array	PROGRAM UNIT	Reduces code for
REDIM	redimensioning. Not		array access
	allowing dimensions to	REDIM	(unless array is
NO REDIM	change allows for more		variably
	compile-time and less		dimensioned).
	run-time checking of		Performance
	array bounds. GLOBAL		improves
	COPTION [NO] REDIM		corresponding to
	affects arrays in COM.		code reduction.

Table 9-3. Dataspace COPTIONS

Option	Meaning	Type	Default

MAXFILES [=] num_lit	Specifies the largest	Program Unit	16
	file number used in this		
	subunit. Each invocation		
	of a subunit allocates 1		
	word for each legal file		
	number.		

MAXGOSUBS [=] num_lit	Allows GOSUB statements	None	10
	to be nested to a depth		
	of num_lit . A run-time		
	error occurs if more than		
	num_lit GOSUB statements		
	execute before a RETURN		
	(in one subunit). Each		
	invocation of a subunit		
	allocates one word for		
	each possible GOSUB.		

9-: 12

Table 9-4. Other COPTIONS

Option	Meaning	Type	Default

	Allows you to insert a	Program Unit	none
	copyright statement in		
COPYRIGHT=quoted_str	the program. No effect		
	on program execution.		

	Allows you to compile	Program	Compile current
	each of the main block		program as
RLFILE	and each subunit as a		individual object
	separate object file into		file into an
	an RL file. You can		NMOBJ file.
	compile more than one		
	program subunit into an		
	RL.		

	Directs the compiler to	Program	RL not
	initialize the RL before		initialized.
RLINIT	compiling code into it.		

	Allows you to group	Program Unit	No locality set
	multiple object modules		specified.
LOCALITY= quoted_str	into a locality set when		
	they are compiled into an		
	RL. This will help in		
	maintaining and using RL		
	commands such as PURGERL.		

Table 9-4 NOTE For a detailed description of relocatable libraries (RLs)
see the HPLINK EDITOR/XL Reference Manual .

OPTION and GLOBAL OPTION Statements

The OPTION and GLOBAL OPTION statements set options for interpreted
programs (see chapter 2). The compiler ignores the options these
statements set, with the exceptions given in Table 9-5.

Table 9-5. Interpreter Options That Affect Compiled Programs

Option	Effect on Compiled Program

DECIMAL	Same as effect on interpreted program.
REAL	
BASE 0	
BASE 1	
INIT	

NOINIT	The compiler does not generate code to initialize numeric variables
	(string lengths are still initialized to zero). If the compiled

9- 13

	program accesses a variable before assigning a value to it, no error
	occurs, but the value of the variable is indeterminate.

MAIN	Defines this as the main program of a multi-program application.
	Outer block is generated.

SUBPROGRAM	Identifies this program as a module of a multi-program application.
	Code is produced for the main subunit, but no outer block is
	generated.

NEWCOM	The compiled main subunit deallocates undefined COM blocks when
	called, and allocates new defined commons.

NO NEWCOM	The compiler only generates code to check common name and sizes.
	Commons are not allocated or deallocated. When used with option
NONEWCOM	MAIN, code for initial allocation goes in the outer block instead of
	the code for the main subunit.

The defaults are: REAL, BASE 0, INIT, MAIN, NEWCOM

Examples

 10 GLOBAL COPTION LABEL TABLES, ID TABLES
 20 INTEGER I
 30 DIM Deck(52), Suit$(4)[8], Ranks$(13)[6]
 35 TRACE VARS Deck
 40 COPTION TITLE="Start of initialization", PAGE
 50 Suit$(1)="spades"
 :
 200 COPTION NORANGE CHECKING
 210 FOR I=1 TO 62
 220 Deck(I)=I
 230 NEXT I
 :
 1000 DEF FNPrint$(INTEGER Row, Col, S$)
 1010 COPTION TITLESUB="Function FNPrint",PAGESUB,NOWARN,NOLABEL TABLES
 1015 PAUSE
 1020 Move_to(Row, Col)
 1030 RETURN S$
 1090 FNEND
 1095 !***** Subprogram to move the cursor.
 2000 SUB Move_to (INTEGER Row, Col)
 2005 COPTION TITLESUB="Subprogram Move_to", PAGESUB
 2010 PRINT '27"&a";VAL$(Row);"r";VAL$(Col);"C";
 2020 SUBEND

The compiler listing for the above program is:

 PAGE 1 HP Business BASIC/XL Compiler HP32115B.00.00 (c) Hewlett-Packard
 1985-1987 TUE, AUG 25, 1987, 11:19 AM

 10 GLOBAL COPTION LABEL TABLES, ID TABLES
 20 INTEGER I
 30 DIM Deck(52), Suit$(4)[8], Ranks$(13)[6]
 35 TRACE VARS Deck
 WARNING 2050: TRACE or PAUSE statement found and ignored.

 40 COPTION TITLE="Start of initialization", PAGE

 PAGE 2 Start of initialization

9-: 14

 50 Suit$(1)="spades"
 60 Suit$(2)="hearts"
 70 Suit$(3)="clubs"
 80 Suit$(4)="diamonds"
 .
 .
 .
 200 COPTION NORANGE CHECKING
 210 FOR I=1 TO 62
 220 Deck(I)=I
 230 NEXT I
 .
 .
 .

 I D E N T I F I E R T A B L E

 IDENTIFIER CLASS TYPE ADDRESS

 Deck ARRAY REAL SP- $774,I
 I SIMPLE INTEGER SP- $778
 Ranks$ ARRAY STRING SP- $76C,I
 Suits$ ARRAY STRING SP- $770,I

 PAGE 3 function fnprint

 1000 DEF FNPrint$(SHORT INTEGER Row, Col, S$)
 1010 COPTION TITLESUB="Function FNPrint",PAGESUB,NO WARN,NO LABEL TABLES
 1015 PAUSE
 1020 Move_to(Row, Col)
 1030 RETURN S$
 1090 FNEND
 1095 !***** Subprogram to move the cursor.

 I D E N T I F I E R T A B L E

 IDENTIFIER CLASS TYPE ADDRESS

 Col SIMPLE PARAMETER INTEGER PSP-$28,I
 FNPrint$ FUNCTION STRING
 Move_to SUBPROGRAM
 Row SIMPLE PARAMETER INTEGER PSP-$24,I
 S$ SIMPLE PARAMETER STRING PSP-$2C,I

 PAGE 4 move_to

 2000 SUB Move_to (INTEGER Row, Col)
 2005 COPTION TITLESUB="Subprogram Move_to", PAGESUB
 2010 PRINT '27"&a";VAL$(Row);"r";VAL$(Col);"C";
 2020 SUBEND

 I D E N T I F I E R T A B L E

 IDENTIFIER CLASS TYPE ADDRESS

 Col SIMPLE PARAMETER INTEGER PSP-$28,I
 Move_to SUBPROGRAM
 Row SIMPLE PARAMETER INTEGER PSP-$24,I

 C O D E O F F S E T S

 LINE OFFSET LINE OFFSET LINE OFFSET LINE OFFSET LINE OFFSET

 MAIN

 10=000001EC 20=000001EC 30=000001EC 35=000001EC 40=000001EC
 50=000001EC 60=00002A8 70=00000364 80=00000420 90=000004DC
 200=00000594 210=00000594 220=000005C4 230=000005FC

9- 15

 FNPrint$

 1000=000000D4 1010=000000D4 1015=000000D4 1020=000000D4 1030=00000100
 1090=00000118 1095=00000150

 move_to

 2000=000000D0 2005=000000D0 2010=000000D0 2020=000002C0

 Number of errors = 0 Number of warnings = 2
 Processor time = 00:00:01 Elapsed time = 00:00:02
 Number of lines = 26 Lines / CPU minute = 1560.0

 END OF PROGRAM

Notes on the Example

LINE COMMENT

--

10 Makes LABEL TABLES and ID TABLES the default throughout the program.

 40 Changes the title and starts a new page.
200 Turns off range checking in the lines that follow. Because the FOR

 loop limit value is mistyped (62 when it should have been 52), the
 result of line 220 is unpredictable.

1010 Sets the title, prints the first line of the function on a new page,
 suppresses compile-time warning messages, and suppresses the label
 table for the current subunit.

 The PAUSE statement on line 1015 causes a compile-time warning.
 Although there is no warning message, the final statistics reflect
 the warning.

 1095 This line illustrates the problem of putting comments before the
subunit to which they apply. Although an interpreter listing would

look right, the comment at line 1095 actually belongs to the function
FNPrint$. Therefore, in the compiler listing, it appears before the
identifier map, the code offsets table, and the page break that the

 PAGESUB option causes.

Compiling and Running Programs

You can run the compiler from the interpreter or from the operating
system. The commands are slightly different, but the steps are the same.
Figure 9-1 shows how a BSVXL file becomes an executing program (files are
boxed and steps are in capital letters).

 |--------------------------|
 | |
 | BASIC SAVE file |
 | (BSVXL) |
 |--------------------------|
 |
 v
 COMPILATION STEP
 |
 v
 |--------------------------|
 | |
 | Relocatable Object file |
 | (NMOBJ or RL) |
 |--------------------------|
 |
 v
 LINK STEP

9-: 16

 |
 v
 |--------------------------|
 | |
 | NMPROG file |
 | (NMPRG) |
 |--------------------------|
 |
 v
 RUN STEP
 |
 v
 |--------------------------|
 | |
 | Executing |
 | Program |
 | |
 |--------------------------|

Figure 9-1. Steps to Compile and Run a Program

The compilation step translates a BASIC SAVE file into object code,
machine instructions in binary form, and stores those instructions in a
relocatable object module in a specially formatted disk file with file
code NMOBJ. See the HPLink Editor/XL Reference Manual for more
information about linking object files.

The running step binds the program to referenced externals from an
Executable Library, moves the program and its data stack into main
memory, and initiates execution.

NOTE The difference between a BASIC SAVE file and a program file is
 important. A BASIC SAVE file contains HP Business BASIC/XL program
 source code in a special format. The GET command can make that
 program the current program in the interpreter. A program file
 contains executable program code and runs under the operating
 system.

The compiling, linking, and running steps can be performed individually,
or the first step and successive steps can be performed with a single
command.

Table 9-6 gives the syntax of every command that performs one or more
steps of the compilation process. It also gives the type of the default
operating system file $OLDPASS if the command is successful. (See the
MPE XL Commands Reference Manual for more information on $OLDPASS, and
the :RUN MPE XL command.) Explanations of the command parameters follow
Table 9-6.

Table 9-6. Compilation Process Commands

Step(s)	Command from Interpreter	Command from	Effect on
		Operating System	$OLDPASS

Compilation		:BBXLCOMP [text =]	If objfile is not
		infile [,[obj=]	specified and
	COMPILE [infile]	objfile [,[list=]	command succeeds,
		listfile]]	then $OLDPASS is
	{ ,}		the NMOBJ
	[{ ;} OBJ[=] objfile]		relocatable
	[]		object file.

9- 17

	[{ ,}]		
	[{ ;} LIST[=] listfile]		

Compilation		:BBXLLK [text =]	If progfile is
Linking		infile [,[prog=]	not specified and
	COMPLINK [infile]	progfile [,[list=]	command succeeds,
		listfile]]	then $OLDPASS is
	{ ,}		the program file.
	[{ ;} PROG[=] progfile]		
	[]		
	[{ ,}]		
	[{ ;} LIST[=]]		
	[listfile]		

Compilation		:BBXLGO [text =]	If the command
Linking Running		infile [,[list=]	succeeds, then
	COMPGO [infile]	listfile [,[xl=]	$OLDPASS is the
		xlfile]]	program file.
	[{ ,}]		
	[{ ;} LIST[=] listfile]		

Linking	Use the SYSTEM command.	:LINK FROM= objfile	None
		TO= progfile	
		[;cap= cap_list]	

Running	SYSTEMRUN	:RUN progfile	None
	progfile [;xl=‘xlfile']	[;xl='xlfile']	

Table 9-6 Notes

 1. COMPLINK and COMPGO link the program with the default capabilities
 of IA and BA, and any additional capabilities MR, DH, and PH that
 are consistent with the capabilities of the user.

 2. infile, objfile, listfile, and progfile are fname s (see chapter
 6).

 3. OBJ, LIST, and PROG can be in any order.

 4. All but SYSTEMRUN are command-only statements.

Command Parameters

Each of the following parameters is a file name, but its form depends on
command type. A file name can be any string expression in an interpreter
command. A file name must be a valid, unquoted file name in an operating
system command.

Parameters

infile Name of BASIC SAVE source file containing HP Business
 BASIC/XL program. If infile is not a NMBSV file, an
 error occurs and compilation terminates.

 This parameter is required in operating system commands,
 but is optional in interpreter commands. The default

infile for an interpreter command is the current
 program, automatically saved in a temporary NMBSV file.

9-: 18

objfile Name of binary file that the compiler writes the object
 code into. It can be either an NMOBJ or an NMRL file.
 The default objfile is $OLDPASS if it exists and is type
 NMOBJ; otherwise, it is $NEWPASS. If the system uses
 $NEWPASS as objfile , it changes the name of the file to
 $OLDPASS when it closes it.

 To create a new, permanent NMOBJ file, do any one of the
 following:

 * Specify a filename that is not in a directory as
 this parameter. The operating system creates a
 permanent NMOBJ file of the correct size and type.

 * $OLDPASS is the NMOBJ file, save it to the permanent
 file space with the operating system command :SAVE
 $OLDPASS, filename .

 * Build an NMOBJ file with the link editor command,
 BUILDRL.

 * Build a file with the operating system command
 :BUILD, using filecode parameter NMOBJ.

 To create a new, permanent NMRL file, do any one of the
 following:

 * Build an NMRL file with the link editor command,
 BUILDRL.

 * Build a file with the operating system command
 :BUILD, using filecode parameter NMRL.

listfile Name of ASCII file that the compiler writes the compiler
 listing into. The default listfile is $STDLIST.

listfile can be the terminal or a spoolfile.

progfile Name of binary file that the link editor writes the
 program into. The default progfile , $NEWPASS, is
 renamed $OLDPASS when closed.

 To create a new, permanent program file, do any one of
 the following:

 * Specify a filename that is not in a directory as
 this parameter. The system creates a temporary file
 of the correct size and type.

 * If $OLDPASS is the NMPRG file, save it to the
 permanent file space with the operating system
 command :SAVE $OLDPASS, filename .

 * Build a new file with the operating system command
 :BUILD, using filecode parameter NMPRG.

 If progfile exists, the operating system reuses it. An
 error occurs if progfile is too small, or if its
 filecode is not NMPRG.

Main Program Procedure

The main program of a compiled program is not an outer block, but a
procedure. The outer block of a compiled HP Business BASIC/XL program
initializes the program and then calls the main program. The name of the
outer block is always BB_PROGRAM. The name of the main program procedure
is the upshifted name of the file that contains the program source code;
for example, if the filename of the file containing the program is
MYPROG.MYGROUP, the main program procedure name is MYPROG.

9- 19

The main program procedure can be put into an executable library and
called as an external subunit. If you compile a program from within the
interpreter without specifying the name of the file, the name of the
current program will be the name of the main procedure entry point. If
the current program does not have a name, BBCINP will be the entry point
name. See "Calling External Subunits from Interpreter" later in this
chapter for more details.

Calling Compiled Subunits From the Interpreter

An interpreted program can call a compiled subunit under the following
conditions:

 * The compiled subunit and any subunits that it calls must be in an
 executable library. Use the link editor to add the relocatable
 object file to an executable library. See the HPLink Editor/XL

Reference Manual for details. The interpreter can be run using the
 XL parameter to specify which executable library to search.

 * The interpreted program unit must contain a definition of the
 compiled subunit. The subunit uses an EXTERNAL, INTRINSIC or ANYPARM
 statement, or it can be implicitly declared in an ANYPARM, underbar,
 or call.

An external subunit call is syntactically identical to an internal
subunit call. The CALL statement calls an external procedure, and an
external multi-line function call is legal wherever an internal
multi-line function is legal.

The ON ERROR CALL, ON HALT CALL, and ON END CALL statements cannot
reference external subunits.

An external subunit cannot call an interpreted subunit.

On Call Statements and Compiled Subunits

The following example illustrates the behavior of the ON ERROR CALL
statement across compiled subunit calls. The ON HALT CALL and ON END
CALL statements behave the same way.

Examples

Interpreted Program External Subunits
--

 10 ON ERROR CALL Errsub 100 SUB Extproc
 20 GLOBAL EXTERNAL Extproc 110 ON ERROR CALL Blob
 30 CALL First_sub 120 CALL Squiggle
 . .
 . .
 . .
 500 SUB First_sub 400 SUBEND
 . 410 SUB Squiggle
 . 420 PRINT 1/0
 . 430 .
 600 CALL Extproc .
 610 PRINT 1/0 .
 . 500 SUBEND
 . 510 SUB Blob
 . .
 700 SUBEND .
 720 SUB Errsub .
 . 590 SUBEND
 .
 .
 800 SUBEND

9-: 20

Line Result of Executing Line

10 Errsub will handle errors.

600 Control transfers to Extproc. Now Errsub does not
 handle errors.

110 Blob will handle errors.

420 Error occurs (division by zero). Control transfers to
 Blob.

590 Control returns to line 430.

400 Control returns to First_sub (line 610). Now Errsub
 handles errors again.

610 Error occurs (division by zero). Control transfers to
 Errsub.

a- 1

Appendix A Error Messages
Numbered Error Messages (2 - 216)

--

2 MESSAGE 1. Memory overflow.
 2. Not enough data space available for the local variables.

 CAUSE The system does not have enough memory to run the program.
Most probable case is that the program is too big or too many

variables are used in the program. Message 1 comes out at run
 time and message 2 comes out as a verify error.
 ACTION Break the program up into smaller subprograms or use fewer
 variables.

--

3 MESSAGE 1. Line not found, or not in current program unit.
 2. Renumbering label specified is not in the current program
 unit.

3. Execution line specified is not in the current program unit.

 CAUSE 1. The line referenced is not found within the program unit
 being executed.

 2. This occurs in the interpreter only. The line label
 specified as the first line to be read from an ASCII program
 file for a GET, LINK, or MERGE does not exist in the file.

 3. Interpreter only: The parameter to the RUN command
 specifying the line on which execution is to begin is not
 within the current program. For example, if the current
 program has no lines then RUN; 10 will generate this error.

ACTION Be certain that the line number specified exists in the current
 program.

--

4 MESSAGE RETURN without GOSUB.

CAUSE A RETURN statement is encountered without a corresponding GOSUB
 statement.

 ACTION Delete the statement or check the program for errors.

--

5 MESSAGE Encountered end of function before RETURN was executed.

 CAUSE A user-defined multi-line function does not end in a RETURN
 statement.

 ACTION Add a RETURN statement.

--

6 MESSAGE 1. FOR without NEXT.
 2. No FOR loop active for this NEXT.
 3. Illegal imbedded FOR loop variable.

 CAUSE 1. Interpreter message only; a FOR loop is not ended by a
 corresponding NEXT. This usually happen in an embedded FOR
 loop.

a- 2

 2. In the interpreter, error occurs because execution of a
 NEXT in a FOR..NEXT construct does not have a corresponding

active FOR. The situation occurs when a branch is made to the
 middle of a FOR..NEXT construct without execution of the
 corresponding FOR statement. This message also appears in
 compiled programs with COPTION RANGE CHECKING selected.
 This error occurs because execution of a NEXT in a FOR..NEXT
 construct does not have a corresponding active FOR. The
 situation occurs when a branch is made to the middle of a

FOR..NEXT construct without execution of the corresponding FOR
 statement.

 3. The same variable is being used as a FOR loop control
variable for an outer and inner FOR loop in a nested FOR loop

 in one of the following statements: READ, READ FORM, WRITE
 FORM, PRINT DISPLAY, PRINT USING, INPUT, or READ #"fnum".

 For example, 10 READ (FOR I=1 TO 3,(FOR I=4 TO 7,A(I,I)))

ACTION Check program for FOR loop errors, particularly branching into
the middle of FOR loop. Each of the loop control variables in

a nested FOR construct in one of the above statements must have
 a distinct name.

--

7 MESSAGE 1. Attempt to call an undefined subprogram or function.
 2. Subunit "subunit_name" does not exist.
 3. Attempt to FNCALL a non-existent function.

CAUSE 1. The function name in a CALL statement is not defined in the
 current program or an EXTERNAL statement is missing.

 2. The procedure or function in the current program named
"subunit_name" does not exist. "subunit_name" could have been

 specified in any statement that requires a line range, for
 example, LIST, TRACE statements, CHANGE, and VERIFY.

3. The FNCALL was made to an external function that does not
 exist.

 ACTION Define the function or subunit.

--

8 MESSAGE 1. Improper parameter matching of parameter #N.
 2. Improper parameter matching with VAR.

 CAUSE The formal parameter defined in the EXTERNAL statement or
 retrieved from the intrinsic file does not match the type of
 the corresponding actual parameter in the parameter list for
 the call. Depending on the cause, one of the two above

messages will appear; N is the parameter number and VAR is the
 name of the formal parameter that is mis-matched.

ACTION Replace the actual parameter in the call to the external with a
 variable of the correct type. The type of the variable can
 also be coerced with one of the built-in functions: REAL,

SREAL, INTEGER, SINTEGER, or DECIMAL. Note that doing so will
result in an expression being passed as the actual parameter.

Expressions are evaluated at the time of the call and the value
 is assigned to a temporary cell. The temporary cell becomes
 the actual parameter.

--

9 MESSAGE Improper number of parameters.
 CAUSE The number of parameters passed to a function in a CALL

statement does not match the number of parameters specified in
 the function itself.

ACTION Check the function definition and add or delete the appropriate
 parameter.

a- 3

--

12 MESSAGE Attempt to redeclare a variable, VAR, in line N.

CAUSE An already declared variable VAR is being redeclared in line N.

 ACTION Only declare the variable once.

--

15 MESSAGE Invalid bounds on array dimension or string length.

 CAUSE Strings or arrays are declared with an invalid bound. E.g.
 DIM A$[0]

 ACTION Change the declaration to use a valid bound.

--

16 MESSAGE Improper array dimensions.

 CAUSE 1. An array is defined with an invalid dimension or defined
 with more than 6 dimensions. For example, DIM A(-1).

 2. A MAT statement detected that one of the operands is not
 properly dimensioned for that particular matrix operation.

Example : MA T A = B * C where B is not dimensioned the same as
 C.

 ACTION Redefine the array with a valid dimension.

--

17 MESSAGE Subscript out of range.

CAUSE When an array element is referenced, the subscript is outside
the range of the array. For example, accessing element 3 of a

 2-element array.

 ACTION Check subscript for correct range.

--

18 MESSAGE 1. Substring out of range or substring too long.
 2. Input string too long.

CAUSE 1. This error is most often caused by incompatible string or
 substring assignment. For example, assigning a string to
 another string of shorter length, or referencing a string
 beyond its actual length.

2. Trying to input A string that is longer than the max length
 of the receiving variable has been input.

ACTION 1. Make sure the string being referenced is within its actual
 and maximum length.

 2. Input a shorter string, or use substring input.

--

19 MESSAGE 1. Improper value in program statement.
 2. Computed GOTO/GOSUB expression out of range.

 CAUSE Message 1 : An improper value is detected when evaluating
 binary built-in functions BITLR and BITRL.

Message 2 : An improper value is detected when executing the
 ON X GOTO/GOSUB statement. For example, X contains a value
 that is outside of its intended range.

 ACTION Check program for correct value.

--

20 MESSAGE 1. SHORT INTEGER precision overflow.
2. Numeric expression for CAUSE ERROR must be in SHORT INTEGER

a- 4

 range.

 CAUSE 1. Most often caused by assigning to a short integer an
expression whose value is beyond a short integer (16 bit) range

 of (-32768, 32767).

2. The value supplied in a CAUSE ERROR statement is beyond the
 range of a short integer.

 ACTION Check the expression for accuracy or use another data type.

--

21 MESSAGE SHORT DECIMAL precision overflow.

 CAUSE Most often caused by assigning an expression whose value is
 beyond the range of a legal short decimal.

 ACTION Check the expression for accuracy or use another data type.

--

22 MESSAGE DECIMAL precision overflow.

 CAUSE Most often caused by assigning an expression whose value is
 beyond the range of a decimal quantity.

 ACTION Check the expression for accuracy or use another data type.

--

24 MESSAGE TAN(N*PI/2) when N is odd.

 CAUSE The argument of a TAN function will produce a result of
 infinity.

 ACTION Check argument for accuracy.

--

25 MESSAGE Argument of ASN or ACS is >1 in absolute value.

CAUSE The call to the mathematical functions ARC SINE and ARC COSINE
 contains an invalid argument.

 ACTION Check argument for accuracy.

--

26 MESSAGE Zero to negative power

 CAUSE A zero raised to a negative power results in infinity, an
 invalid quantity.

 ACTION Check the expression for accuracy.

--

27 MESSAGE Negative to nonintegral power

CAUSE A negative number raised to a nonintegral power will result in
 a complex number which is not supported by Business BASIC.

 ACTION Check the expression for accuracy.

--

28 MESSAGE Argument of LOG or LGT is negative.

CAUSE The call to the log functions contains an invalid argument, in
 this case a negative number.

 ACTION Check the argument for accuracy.

--

29 MESSAGE Argument of LOG or LGT is 0.

a- 5

CAUSE The call to the log functions contains an invalid argument, in
 this case a zero quantity.

 ACTION Check the argument for accuracy.

--

30 MESSAGE Argument of SQR is negative.

 CAUSE The square root function SQR is called with a negative
 argument.

 ACTION Check the argument for accuracy.

--

31 MESSAGE Division by zero, or modulo zero.

 CAUSE A division by zero is detected during the evaluation of an
 expression.

 ACTION Check the expression for accuracy.

--

32 MESSAGE String not a valid number, or string where numeric data
 required.

 CAUSE The string parameter to the VAL function does not contain a
 number.

 ACTION Check parameters for accuracy.

--

33 MESSAGE 1. Bad argument to the NUM function.
 2. RPT$ number of repetitions must be zero or greater.
 3. Repeated string would exceed the maximum string length.

CAUSE Message 1 : The string parameter to the NUM function contains
 an invalid character.

 Message 2 : The repeat count parameter of the RPT$ function
 contains an invalid count; probably negative.

Message 3 : The result length of the repeated string exceeds
 the maximum limit for a string variable.

 ACTION Check arguments for accuracy.

--

34 MESSAGE Line referenced is not an IMAGE statement

CAUSE The line referenced by a PRINT USING statement is not an IMAGE
 statement.

 ACTION Add the required IMAGE statement.

--

35 MESSAGE Improper IMAGE format specification, character N.

CAUSE Character N of the IMAGE statement contains an invalid format
 specification.

 ACTION Modify the wrong format with a valid specification.

--

36 MESSAGE Out of data.

CAUSE The READ statement tries to read more than what is contained in
 the DATA statements.

 ACTION Use RESTORE statement to reuse data or add more data to the
 DATA statements.

a- 6

--

40 MESSAGE 1. Improper REPLACE or DELETE.
 2. RENUMBER cannot alter line sequence.
 CAUSE 1. Because they affect the structure of the program, some

statements may not be deleted or replaced individually. These
are the SUB statement and the DEF FN statement. An attempt to

 replace or delete either of these statements will result in
 this error.

 2. The sequence of lines in a program was altered by a TO
clause which has a value outside the original range of values

 to be renumbered.

 ACTION 1. Do not delete or replace the line, or delete the whole
 sub-procedure or function.

 2. Be certain that the renumbering is done so that the
sequence of statements in the current program is not altered.

--

42 MESSAGE Attempt to replace or delete busy line or subprogram.

CAUSE A line or subprogram was deleted or replaced in the middle of
 its execution.

 ACTION Do not delete this line or subprogram until the end of its
 execution.

--

43 MESSAGE Matrix not square.

 CAUSE The matrix passed to the built-in functions INV (matrix
 inversion) and DET (determinant) is not a square matrix.

 ACTION Redefine the matrix to make it square.

--

44 MESSAGE Illegal operand in matrix transposition or matrix
 multiplication.

 CAUSE The operands passed to the built-in matrix functions TRN
(transpose) and MUL (multiply) are not declared correctly, so

 the operation cannot be performed.

 ACTION Redefine the operands.

--

47 MESSAGE 1. VAR COMMON area does not exist.
2. Dimension or type of COMMON variable in line N doesn't match

 main.
 3. Variable list in line N exceeds the COMMON declaration in
 main.
 4. VAR COMMON area is larger than defined in the original
 program.
 5. COMMON declaration in line N doesn't match the original
 program.
 6. VAR COMMON area has more variables than the original
 program.
 CAUSE All messages in this error number concern with errors with

COMMON declarations; N is a line number where the error occurs
 and VAR is the name of the COMMON area.

1. A subprogram contains a named COMMON that does not exist in
 the main program.

 2. A COMMON in a subprogram contains variables that do not
 match that declared in the main program.

3. A COMMON in a sub-program contains more variables than is

a- 7

 declared in the main program.

 Messages four through six only occur when executing a GET in
 the interpreter.

4. A program that is brought into the interpreter by the GET
command contains a COMMON that is larger than the program that

 contains the GET command.

5. A program that is brought into the interpreter by the GET
command contains variables in COMMON that do not match those in

 the program that contains the GET command.

6. A program that is brought into the interpreter by the GET
 command contains more variables in a COMMON area than is
 declared in the program that contains the GET command.

ACTION Check COMMON or its variables for consistency with subprogram
 or main.

--

48 MESSAGE Recursion not allowed in single line functions.

 CAUSE A single line function is calling itself.

 ACTION Redefine the function to eliminate recursion.

--

49 MESSAGE Subunit specified in ON declaration not found.

 CAUSE The subunit in an ON...CALL...statement does not exist.

 ACTION Provide the missing subunit or call another subunit.

--

50 MESSAGE File number out of range.

CAUSE The file number in an ASSIGN # statement exceeds the range of a
 positive, non-zero 16 bit integer; (1, 32767).

 ACTION Change the file number.

--

51 MESSAGE The file is not currently open.

 CAUSE A file was accessed without first being opened.
 ACTION Open the file before accessing it.

--

52 MESSAGE Improper group.account specifier.

CAUSE The group or account does not exist when a fully qualified file
 name is used in a file reference.

 ACTION Use a correct group.account specifier for the file.

--

53 MESSAGE Improper file name.

CAUSE The file name used either contains characters that are illegal
in file names or the file name is longer than the legal length.

 ACTION Change the file name.

--

54 MESSAGE 1. Duplicate file name.
 2. File already exists; use RESAVE to overwrite.

 CAUSE 1. A file that already exists was created.

 2. The current program was saved to a file that already

a- 8

 exists.

 ACTION 1. Use a different file name or purge the existing file.

 2. Use the RESAVE command or SAVE into a new file.

--

55 MESSAGE Permanent directory overflow.

CAUSE The file directory is full, no more new files can be created.

 ACTION Purge some old and unused files.

--

56 MESSAGE File does not exist.

 CAUSE A file that does not exist was referenced.

 ACTION Use a different file or create the file.

--

58 MESSAGE 1. Operation inconsistent with file type or device type.
 2. Invalid file type: Must be ASCII, BASIC DATA, or BASIC
 SAVE.
 3. Invalid file type: Must be ASCII or BASIC DATA file.

CAUSE 1. A file was accessed in a way that is illegal either because
 of the file type or because of the device the file is on.
 Examples are :
 A direct read/write on a tape file.

 A direct word read on an ASCII file.

2. The file code on a file for a GET, RUN, or GET SUB command
 is not a BASIC data, BASIC SAVE, or ASCII file.

 3. A MERGE or LINK command was issued for a file that is
 neither a BASIC data file nor an ASCII file.

 ACTION 1. Change the access method or move the file to a different
 device.

2. Make sure these commands are used with the valid file code.
 Only BASIC DATA, BASIC SAVE, or ASCII files are valid file
 types.

3. Resave the program for the MERGE or LINK using the SAVE or
 SAVE LIST command.

--

59 MESSAGE End of file found.

 CAUSE A file was accessed beyond its logical end. This is usually
caused by trying to read more data that the file contains or by

 writing to a file that is already full.

ACTION Expand the file or don't access records beyond the logical end
 of the file.

--

60 MESSAGE Physical or logical end of record found in direct access mode.

CAUSE The record size of a file is not big enough to hold the entire
 output list during a direct record write.

 ACTION Reduce the output list or re-create the file with a larger
 record size.

--

61 MESSAGE BASIC data file record size too small for data item.

a- 9

CAUSE The record size of the HP Business BASIC data file is too small
 for the numeric data item being output.

 ACTION Re-create the file and increase the record size.

--

62 MESSAGE File is protected, wrong lockword/password specified.

CAUSE The wrong lockword has been used in trying to open a protected
 file.

 ACTION Use the correct lockword.
--

63 MESSAGE Invalid record size specification.

 CAUSE The RECSIZE specification in a CREATE statement is invalid;
 most probably too large.

ACTION The maximum record size allowed is installation defined. Check
 your installation for RECSIZE limit and modify the CREATE
 statement.

--

65 MESSAGE Incorrect data type in BASIC data file.

 CAUSE A numeric item from a BASIC data file was read into a string
 variable or vice versa.

 ACTION Use a different variable or redefine the current one.

--

68 MESSAGE Syntax error at character N.

 CAUSE All syntax errors are error number 68. N points to the
 character in the statement that produced the error. This
 message is usually followed by another more specific

description. For a list of the syntax error messages, see the
 last section of this appendix.

 ACTION Re-enter the statement.

--

92 MESSAGE Cannot access file because file is being accessed or is
 accessed exclusively.

CAUSE This error is most often caused when a file that is opened for
 exclusive access in another statement is accessed or a file
 that is still open (active) is purged.

 ACTION Close the file before accessing it.

--

93 MESSAGE Operation inconsistent with file open mode.

CAUSE A file is accessed in a way that is inconsistent with its file
open mode. For example, a file that is open for read only is

 written to.

 ACTION Close the file and re-open it in a different mode.

--

100 MESSAGE IMAGE specification expects a numeric item.

CAUSE A string value has been assigned when the format specification
 in the IMAGE statement specifies a numeric format.

 ACTION Change the format specification.
--

101 MESSAGE IMAGE specification expects a string item.

a- 10

CAUSE A numeric value has been assigned when the format in the IMAGE
 statement specifies a character format.

 ACTION Change the format specification.

--

102 MESSAGE Format specification too long.

 CAUSE The output format of an item in an IMAGE statement is longer
 than the internal buffer can handle.

 For example, IMAGE DD.DD,510X,K .

The specification 510X overflows the internal buffer used for
 formatted input.

 ACTION Reduce the size of the format specification, or break it up
 into two or more separate formats.

--

103 MESSAGE No IMAGE format specifications exist.

 CAUSE An item was output using formatted output, but the IMAGE
 statement does not contain any format specifier.

 ACTION Add the appropriate format specifier to the IMAGE statement.

--

104 MESSAGE File open conflict with previous open mode.

CAUSE A file has been opened a second time after it has been opened
already, and the second open mode conflicts with the first one.

For instance, a file that is open for APPEND cannot be opened
 in any other mode.

 ACTION Re-open the file in a different mode.

--

110 MESSAGE Program unit is too large. No space available to process this
 line.

 CAUSE The program is too big to be processed by the interpreter.

 ACTION See Error 2 - memory overflow.

--

111 MESSAGE Too many REMARKS or DATA in subunit or too many subunits in
 program.

 CAUSE The program is too big to be processed by the interpreter.

 ACTION See Error 2 - memory overflow.
--

112 MESSAGE Cannot add subunits because of size of largest subunit.

 CAUSE Program is too big to be processed by the interpreter.

 ACTION Reduce the subunit size.

--

113 MESSAGE Programs cannot be RUN when the subunit space has been set
 above 12400 words.

CAUSE The subunit space is set too large for the program to be run in
 the interpreter. This message is mainly for the Program
 Analyst.

 ACTION Reduce the subunit space size.

a- 11

--

114 MESSAGE Size requested for subunit space is too large. Default size
 will be used.

 CAUSE The subunit space size requested is too large (larger than
 20000), the default size of 10466 words is used.

 ACTION None, the default size will be used.

--

115 MESSAGE Too much data space used in this subunit.

CAUSE The most probable cause is that the common area in this subunit
 contains a variable that is too big. For instance, an array
 A(10000) in a COM statement.

 ACTION Reduce the size of large arrays.

--

117 MESSAGE Not enough memory available for local variables in subunit.

 CAUSE The program is too big to be processed by the interpreter.

 ACTION Reduce the size of the program.

--

119 MESSAGE Unable to allocate data space, request would cause total to
 exceed configured limit.

 CAUSE The program is too big to be processed by the interpreter.

 ACTION Reduce the size of the program.

--

131 MESSAGE Device unavailable.
CAUSE The device to which a file is assigned is not available. For

 example, a file is assigned to a tape drive that is either
already assigned or is not turned on. This message is usually

 returned by the operating system.

 ACTION Assign the file to a different device or resolve the problem
 with the requested device

--

132 MESSAGE Cannot READ a number from a quoted string.

 CAUSE This error message only comes from a compiled program. The
READ statement specifies a numeric variable but there is string

 data in the DATA statement.

 ACTION Correct the DATA statement or read the string data into a
 string variable.

--

134 MESSAGE Unit not ready or online.

CAUSE The device to which a file is assigned is not ready to be used.
For example, a tape drive may not be online when a tape file is

 being read.

 ACTION Ready the device and continue.

--

150 MESSAGE Type of CASE expression does not match type of SELECT.

 CAUSE The SELECT variable and the CASE expression do not match in
 data type. For example, the SELECT specifies a numeric
 variable but the CASE specifies a string variable.

a- 12

ACTION Change the SELECT and CASE statements to use data of the same
 type.

--

151 MESSAGE This statement cannot occur in this report section

 CAUSE The interpreter has detected a statement in a report section
that does not belong there. This error is part of error 157,

 VERIFY error.

 ACTION Delete the statement.

--

152 MESSAGE Structured construct mismatch with lines N and M.

CAUSE A multi-line construct is mismatched in its begin and end. For
instance, an multi-line IF is closed with an ENDWHILE statement
or vice versa. This error is part of error 157, VERIFY error.

 ACTION Add the necessary statement.
--

153 MESSAGE Structured construct error with line N.

CAUSE The interpreter has detected a statement that is not meaningful
in that context. For instance, an ELSE statement found in the
program that is not part of any multi-line IF statement. This

 error is part of error 157, VERIFY error.

 ACTION Delete line N.

--

154 MESSAGE GRAND TOTALS must go in REPORT HEADER, REPORT TRAILER or REPORT
 EXIT.

 CAUSE The GRAND TOTALS statement is in the wrong part of a report
writer section. This error is part of error 157, VERIFY error.

 ACTION Move this line to the appropriate section.

--

155 MESSAGE TOTALS must go in HEADER or TRAILER section.

 CAUSE The TOTALS line is in the wrong section of the Report Writer
 code. This error is part of error 157, VERIFY error.

 ACTION Move the TOTALS line to the appropriate section.

--

156 MESSAGE This statement must occur within a report definition.

CAUSE The interpreter detected a statement in the report description
section that should be in the report definition section. This

 error is part of error 157, VERIFY error.

 ACTION Remove the statement.

--

157 MESSAGE VERIFY error(s) in program.

 CAUSE The interpreter, before executing your program, must first
 verify that the program is correctly structured. Any errors
 detected during VERIFY are reported separately, followed by
 this error message.

 ACTION Correct the error indicated and re-run the program.

--

158 MESSAGE This statement may not be used in a report definition.

a- 13

CAUSE A statement that should not appear inside a report definition
 has been detected. This error is part of error 157, VERIFY
 error.

 ACTION Delete the statement.
--

171 MESSAGE Statement can only occur in a SUB.

CAUSE A multi-line function is found to contain a statement that has
meaning only in a SUB. For instance, a SUBEXIT statement is in

a multi-line function. This error is part of error 157, VERIFY
 error.

 ACTION Delete or replace the statement.

--

174 MESSAGE Statement on line N can only occur in a numeric function.

 CAUSE A string function contains a numeric value in its RETURN
 statement. This error is part of error 157, VERIFY error.

 ACTION Change the return value to the correct type.

--

175 MESSAGE Statement on line N can only occur in a string function.

 CAUSE A numeric function contains a string value in its RETURN
 statement. This error is part of error 157, VERIFY error.

 ACTION Change the return value to the correct type.

--

176 MESSAGE Statement on line N can only occur in a multi-line function.

CAUSE The statement on the cited line is allowed only in a multi-line
 function.

 ACTION Make sure that this statement is in a function or use a
 different statement.

--

177 MESSAGE Dimensions of VAR use local variables.

CAUSE A variably dimensioned array VAR uses a local variable in its
 definition. For instance, DIM A(Loc) where Loc is a local

variable in the SUB where A is defined. This error is part of
 error 157, VERIFY error.

 ACTION Redefine the array.

--

178 MESSAGE Dimensions of VAR use single line functions containing local
 variables.

 CAUSE A variably dimensioned array uses a single line function to
 return its dimension. The single line function uses a local

variable of the SUB in which it is defined. This error is part
 of error 157, VERIFY error.

 ACTION Redefine the variably dimensioned array.

--

179 MESSAGE Structured construct on line N not properly closed.

CAUSE The interpreter has detected a multi-line construct that has no
closing statement. For instance, a SELECT has no corresponding

 ENDSELECT statement, or a multi-line IF has no ENDIF. This
 error is part of error 157, VERIFY error.

a- 14

 ACTION Add the required closing statement.

--

180 MESSAGE Illegal data in input.

CAUSE An illegal data item has been detected during input. If input
 data is numeric, this probably means there are non-numeric
 characters in the data. For string input, it could mean the
 data is longer than the receiving variable.

 ACTION Check input data for accuracy.

--

182 MESSAGE Current CHARS value of N exceeds valid range of 1 to 500.

CAUSE In the ACCEPT or TINPUT statement, the CHARS option specifies N
 characters, more characters than allowed.

 ACTION Input fewer characters.

--

200 MESSAGE Line referenced is not a PACKFMT statement.

CAUSE In a PACK or UNPACK statement, the referenced PACKFMT line is
 not a PACKFMT statement.

 ACTION Check the PACK or UNPACK statement to make sure the line
 referenced is a PACKFMT line.

--

202 MESSAGE String in PACK/UNPACK statement not long enough for PACKFMT
 list.

CAUSE The string variable in a PACK or UNPACK statement is not long
 enough to accommodate all the variables specified in the
 PACKFMT statement.

 ACTION Check the PACKFMT list for accuracy or redefine the string
 variable in the PACK or UNPACK statement.

--

210 MESSAGE Bad data base status array.

CAUSE The status array for the database statements is not a ten word
 array of short integers.
 ACTION Correct the data type of the status array.

--

211 MESSAGE No DBASE IS statement active.

CAUSE A database has been sorted or searched without first defining
 it with a DBASE IS statement.

 ACTION Add a DBASE IS statement.

--

212 MESSAGE Data set N in thread list not in data base.

CAUSE One of the data sets defined in a THREAD IS statement, number
 N, does not exist in the database.

 ACTION Check the database for valid data sets.

--

213 MESSAGE Illegal items in IN DATASET statement.

 CAUSE The IN DATASET statement used by SORT to locate the sort key
 contains an illegal specification.

a- 15

 ACTION Delete the illegal specification in question.

--

214 MESSAGE Substring not allowed in IN DATASET statement with SORT.

 CAUSE The IN DATASET statement used by SORT to locate the sort key
 contains a substring variable.

 ACTION Replace the substring variable with a string.

--

215 MESSAGE Variable dimensioned array not allowed in IN DATASET statement
 with SORT.

 CAUSE The IN DATASET statement used by SORT to locate the sort key
 contains a variably dimensioned array variable.

 ACTION Replace it with a regularly dimensioned array.

--

216 MESSAGE IN DATASET does not allow string parameters to be used.

 CAUSE The IN DATASET statement used by SORT to locate the sort key
contains a string variable which is passed into the procedure

 as a parameter from another procedure.

ACTION Use a locally defined string variable of the same length as the
 parameter.

--

Numbered Error Messages (219 - 1118)

--

219 MESSAGE Line referenced is not an IN DATASET statement.

CAUSE In the SEARCH, SORT, DBGET, DBPUT, and DBUPDATE statements, a
 line was referenced that was not an IN DATASET or PACKFMT
 statement, but should be.

 ACTION Add the missing statement.

--

233 MESSAGE Data base not open.

 CAUSE The database being accessed has not been opened.

 ACTION Open the database.

--

234 MESSAGE Improper dataset linkage in a THREAD statement.

 CAUSE Data sets specified in a THREAD IS statement can be linked
 together either by a path number or a variable name. The
 program has not linked the data sets in either way.

 ACTION Correct the linkage or use the default one.

--

235 MESSAGE No WORKFILE is active.

 CAUSE No WORKFILE is specified during the execution of the SORT or
 SEARCH statement.

 ACTION Define the workfile by using a WORKFILE IS statement.

--

236 MESSAGE Unable to find the item in the IN DATASET list.

 CAUSE The SORT statement cannot locate the key in any of the IN

a- 16

 DATASET statements referenced.

 ACTION Add the key used in an IN DATASET statement.

--

238 MESSAGE Improper PATH or LINK specified in a THREAD statement.

 CAUSE The PATH must be a valid path defined in the database schema
and the LINK variable, if used, must be the same data type as

 the key.

 ACTION Use the correct PATH number or LINK variable.

--

239 MESSAGE Workfile has wrong file type or open mode.
CAUSE A WORKFILE must be a binary file and opened for read and write.

 One of these conditions is not satisfied.

 ACTION Correct the file type or open mode.

--

240 MESSAGE Line referenced is not a THREAD IS statement.

CAUSE A THREAD IS statement is not being referenced in a SORT/SEARCH
 operation.

 ACTION Add the missing THREAD IS statement.

--

241 MESSAGE Workfile record size not long enough for thread list.

 CAUSE The workfile's record size is too short.

 ACTION Make sure the record size of a workfile is at least N 32-bit
 words (or 2N 16-bit words) long; where N is the number of
 datasets in the thread.

--

242 MESSAGE String variables not allowed in WORKFILE.

 CAUSE Only numbers can be written into a workfile.

ACTION If a string is being written to a workfile, something is wrong
in the program, possibly between HP Business BASIC/XL and the
database. Check the program for errors and delete the string

 from the output list.

--

243 MESSAGE The workfile is empty for a FILTER or SORT ONLY statement.

CAUSE The workfile is empty when a FILTER or SORT ONLY statement is
 encountered.

ACTION Create the workfile first before these statements are executed.

--

244 MESSAGE Thread list contains more than 10 data sets.

 CAUSE A maximum of 10 data sets is allowed in a thread.

 ACTION Reduce the number of data sets in the thread.

--

245 MESSAGE Improper sort key used.

 CAUSE Only simple variables can be used as key. Other types of
variables, such as array elements or substrings will result in

 this error.

 ACTION Change the key to use only simple variables.

a- 17

--

246 MESSAGE The SORTINIT intrinsic failed during SORT.

 CAUSE The SORT statement encountered some system level problem.

ACTION Use the CCODE function to check the condition code returned by
SORTINIT and consult the SORT-MERGE/XL General Users Guide for

 an explanation of the error condition.

--

250 MESSAGE BEGIN REPORT does not reference a REPORT HEADER statement.

 CAUSE The statement referenced by BEGIN REPORT is not a REPORT
 HEADER.

 ACTION Make sure BEGIN REPORT reference a REPORT HEADER statement.

--

251 MESSAGE Report Writer is already active.

CAUSE A Report Writer has been executed more than once or more than
 one report was active at one time.

 ACTION Only one active Report is allowed at any one time. Stop the
 active Report before starting another one.

--

252 MESSAGE Duplicate Report Writer Section statement with line {line
 number}.

 CAUSE 1. A Report Writer Section which may only be defined once
 within a report has been defined more than once.

2. Two or more HEADER N or TRAILER N statements use the same
 value for N, resulting in two sections with the same level
 number.

 ACTION 1. Remove or consolidate sections so that only one such
 section is defined in the report.

2. Change HEADER level values and TRAILER level values so that
 each level is used only once.

--

253 MESSAGE Duplicate Report Writer Block statement.

 CAUSE 1. More than one of the following occurs in a report
definition: PRINT DETAIL IF, GRAND TOTALS, PAGE LENGTH, PAUSE

 AFTER, SUPPRESS PRINT AT, SUPPRESS PRINT FOR, LEFT MARGIN

 2. TOTALS ON occurs in both a HEADER and a TRAILER section
 with the same level number, or more than one TOTALS ON
 statement occurs within one section.

3. Two or more BREAK WHEN or BREAK IF statements are defined
 at the same level number.
 ACTION 1. Remove the duplicate statements.

2. Consolidate the TOTALS ON statements for a section into one
 statement. Include this in either the HEADER or TRAILER
 statement, but not both.

3. All BREAK statements must specify different levels. Change
the level numbers to ensure that each BREAK WHEN and BREAK IF

 statement refers to a unique level.

--

254 MESSAGE 1. Blank lines specified are larger than page size.
 2. Blank lines value out of the range 0 to 255.

a- 18

 CAUSE These are both Report Writer errors:

 1. Blank_top or blank_bottom values are greater than the
 page_length value on the PAGE LENGTH statement.

 2. Blank_top or blank_bottom values on the PAGE LENGTH
 statement are out of range.

 ACTION 1. (Blank_top + blank_bottom) must be < page_length.

 2. Use a value in the range 0 to 255.

--

255 MESSAGE 1. Unacceptable value for Report Writer expression.
 2. Subscript of report writer built-in function is out of
 range.

CAUSE 1. A page_number expression is less than zero for one of the
following statements: PAUSE AFTER, PAUSE EVERY, SUPPRESS FOR,

 SET PAGENUM. Or, a PAGE LENGTH < 0 or > 32767 was specified
 (maximum XL page length: 2147483647).

 2. Out-of-range subscript for one of the Report Writer
 built-in functions:NUMBREAK, NUMDETAIL, RWINFO.

 ACTION 1. Use a page_number value >= zero.

2. Consult the reference manual for the legal subscript range.

--

256 MESSAGE 1. Left margin too close to right margin of output file.
 2. Left margin too close to right margin of COPY ALL OUTPUT
 file.

 CAUSE These are all Report Writer errors:

An attempt has been made to make the distance between the left
 margin and the right margin less than the size of an output
 field item.

ACTION The number of characters between the left margin and the right
 margin must be set to at least the width of an output field
 item. An output field item is initially 20 characters wide,
 but can be set to 15.
--

257 MESSAGE 1. Report Writer statement illegal when a report is not active.
 2. Attempt to evaluate report writer built-in when no report
 active.
 3. Report Writer operation outside the scope of an active
 report.

CAUSE An attempt has been made to execute a report writer statement
 or function which may not be executed when a report was not
 active. Or, it may be that a report is active, but the
 statement or function in question does not appear in the
 subunit in which the report is active.

 ACTION These statements and functions may only be executed when a
 report is active. The BEGIN REPORT statement activates a
 report. If the report is active in another subunit then you

can put the report and the statement or function which caused
the error in the same subunit, or the desired information can

 be computed in the report subunit and passed to the other
 subunit.

--

258 MESSAGE Effective page size too small.

CAUSE This indicates that the Report Writer blank line specifications
at the top and bottom of the page plus the number of lines in

a- 19

the page header and page trailer sections is too large for the
 size of page you are using.

ACTION Adjust the line specification on the PAGE LENGTH, PAGE HEADER,
 or PAGE TRAILER statements so that at least three lines are

left on the page after subtracting out blank top, blank bottom,
 header size, and trailer size.

--

259 MESSAGE Illegal execution of a Report Description section statement.

 CAUSE All GOSUB statements activated from a Report Writer section
have not returned before the end of the section has been seen.

The end of the report writer section is marked by the execution
 of any Report Section statement (HEADER, END REPORT
 DESCRIPTION).

ACTION The program logic must be changed so that all GOSUBs have been
 RETURNed from before the next report section statement is
 executed.

--

260 MESSAGE Insufficient space for printed output within the current page.

 CAUSE 1. There are no lines left on the page for Report Writer
 output before the PAGE TRAILER or bottom blank lines are
 printed.

 2. The PAGE TRAILER prints more lines than are reserved.
 ACTION 1. Check the size of the PAGE. Make sure that all Report

Section statements use the WITH <number> LINES clause, and that
the number of lines includes all output produced by the Report
Section. Make sure that DETAIL LINE uses the WITH clause and

 that it includes all output which may occur before the next
DETAIL LINE or Report Section. Output from PRINT, PRINT USING,

 and COPYFILE is considered report output. DISP, DISP USING,
DISP, and all Business BASIC system output (such as CAT, error

 messages) are not considered report output.

2. Change the number of lines reserved in the WITH clause, or
change the number of lines printed by the PAGE TRAILER section.

--

261 MESSAGE Left margin specified is less than 1 or greater than printer
 width.

 CAUSE 1. LEFT MARGIN is set to 0 or less.

 2. LEFT MARGIN is too close to the right margin for output
 device.

 3. LEFT MARGIN is too close to the right margin of COPY ALL
 OUTPUT device.

 ACTION 1. Set value to at least 1.

 2. Set value to (at most) one tab stop (20 characters) from
 the right margin.

 3. LEFT MARGIN must also be at least one tab stop less than
the device size of the COPY OUTPUT device. Change the value of

 left margin, turn off COPY ALL OUTPUT, or change the size of
 COPY device.

--

264 MESSAGE Level number is out of the range 1 through 9.

CAUSE 1. The level number is less than zero or greater than nine in
one of the following: HEADER, TRAILER, BREAK WHEN, BREAK IF,

 SUPPRESS PRINT AT.

a- 20

 2. The level number out of range in TRIGGER BREAK.

ACTION 1. If a constant is used, change the report definition to use
 levels 1 thru 9. If an expression is used, this error is

reported during BEGIN REPORT execution. Verify that all level
number expressions return 0-9. (Level zero cause statement to

 be ignored.)

2. Check value used by TRIGGER BREAK. Modify program logic or
 TRIGGER BREAK statement to use 1-9.

--

265 MESSAGE (GRAND) TOTALS statement not active at the level requested.

 CAUSE 1. There is no GRAND TOTALS statement in the report and
 TOTAL(0,n) is used.

2. TOTAL(L,N) is used, but there is no TOTALS ON statement at
 level L.

ACTION 1. Add a GRAND TOTALS statement, or change the TOTAL built-in
 function to use a defined level.

 2. Add a TOTALS statement at level L, or change the TOTAL
 built-in function to use a defined level.

--

266 MESSAGE Sequence parameter out of range for (GRAND) TOTALS at desired
 level.

 CAUSE TOTAL(L, N) is used, but fewer than N expressions are being
 totalled at level L.

ACTION Count the number of expressions defined at level L and change
the TOTAL call to ensure N does not exceed this number or add

 more expressions to the TOTALS ON or GRAND TOTALS statement.

--

267 MESSAGE WITH number LINES value is negative or greater than page size.

 CAUSE 1. The WITH value is less than zero.

 2. The WITH value is larger than defined page size.

 ACTION 1. Change the WITH clause to use zero or more lines. Check
expressions to ensure that negative numbers are not being used.

 2. The WITH value may not be larger than first value to the
PAGE LENGTH command, unless PAGE LENGTH 0 is used. Change the

 WITH clause and check expressions used in the WITH clause.
Check PAGE LENGTH command for correct page size specification.

--

268 MESSAGE OLDCV($) at requested level does not have a BREAK WHEN active.

CAUSE OLDCV(L) or OLDCV$(L) is being used, but level L does not have
 a BREAK WHEN statement.

 ACTION If level L exists, add a BREAK WHEN statement, or change a
 BREAK IF statement into a BREAK WHEN statement. Check the

value of level to ensure the correct level is being indicated.

--

269 MESSAGE OLDCV($) function does not match control variable data type.

 CAUSE 1. OLDCV(L) has been used with a string control variable.

 2. OLDCV$(L) has been used with a numeric control variable.

 ACTION Make sure that level L is the desired level. Change program
 logic to ensure that the correct type is being checked.

a- 21

--

270 MESSAGE Cannot redirect or copy output while a report is active.

CAUSE A SEND OUTPUT or COPY ALL OUTPUT statement was executed after
 an active report started printing report output.

ACTION Redirect or start copying output before any report output. The
 following statements will start report output: DETAIL LINE,
 TRIGGER BREAK, TRIGGER PAGE BREAK, and END REPORT.

Alternatively, delay redirection or copy until the report has
 ended (after END REPORT or STOP REPORT).

--

271 MESSAGE 1. Statement illegal during DETAIL LINE or page break
 processing.
 2. Statement illegal during page break processing.

 CAUSE These are all Report Writer errors:

 1. A DETAIL LINE or TRIGGER BREAK statement has been
encountered while a DETAIL LINE or TRIGGER BREAK statement is

 executing.

 2. A TRIGGER PAGE BREAK has been encountered while a page
 break is being performed.

 ACTION 1. Program logic must be changed such that only one DETAIL
 LINE or TRIGGER BREAK statement executes at a time.

 2. Program logic must be changed so that TRIGGER PAGE BREAK
does not execute while the PAGE HEADER or PAGE TRAILER section

 is active.

--

272 MESSAGE END REPORT may not be executed while any report section is
 active

CAUSE An END REPORT statement is encountered while a report section
 (such as HEADER or REPORT TRAILER) is executing.

 ACTION Program logic must be change so that END REPORT does not
 execute during any break or page break processing.

Alternatively, use STOP REPORT to stop the report immediately.

--

273 MESSAGE STOP REPORT is already executing.

CAUSE A STOP REPORT statement is encountered during the processing of
 a STOP REPORT statement.

 ACTION Program logic must be changed to ensure that only one STOP
 REPORT statement is executed at once.

--

284 MESSAGE Buffer for block read of JOINFORM is too small.

 CAUSE The buffer in the call to bb_block_read is not large enough.
ACTION The buffer must be large enough to hold all characters from all

 fields on the form plus one byte per field.

--

285 MESSAGE Form file inconsistent, possibly corrupted.

CAUSE When JOINEDIT needs to make several writes to a JOINEDIT form
file to complete an operation it marks the file "inconsistent"
before the first write and "consistent" after the last one has

 been completed successfully. This is done because JOINEDIT
 might abort after the first write but before the last one.
 This protects against an internally inconsistent form file

a- 22

 being considered consistent.

ACTION There may be little that can be done in this case. Call HP for
assistance in piecing together your form file. It is helpful

 to know what changes were made since the last time the form
 file was consistent.

--

286 MESSAGE Error when writing to form. Form possibly not displayed
 correctly.

CAUSE After displaying a form, BASIC does a cursor position check to
 see if the cursor is where it should be after display of the
 form. If it is not in the expected position then this error
 occurs.

ACTION There are several reasons for this problem, such as a corrupted
form or a terminal that does not have enough memory to display

 the form.

--

287 MESSAGE No input fields in form.

CAUSE The program has tried to read data from a form, but there are
 no input fields on that form.

 ACTION The form must have an input field for input to occur.

--

288 MESSAGE No output fields in form.

CAUSE The program has tried to write data to a form, but there are no
 output fields on that form.

 ACTION For output to occur while a form is active, there must be an
output field in the form. The exception to this is the LDISP

statement. See the JOINFORM appendix for an explanation of how
 LDISP works when a JOINFORM form is active.

--

289 MESSAGE Output too long for output field {field_number}.
CAUSE This indicates that an output statement has tried to display a

value which is too long to fit in the current output field of
 the active JOINFORM form.

ACTION The field must be made larger or the data smaller. The largest
 field size is 80 characters.

--

291 MESSAGE Illegal operation inside form.

 CAUSE The LENTER statement cannot be executed when the cursor is
 located within the currently-active JOINFORM form.

ACTION Before executing the LENTER statement, use the CURSOR statement
 to position the cursor to a location outside of the form.

--

292 MESSAGE Attempt to read past last input field of form.

CAUSE The input field pointer is undefined because all the fields on
 the form have already been read.

ACTION Use the CURSOR IFLD(input_field_number) statement to position
 the input field pointer to the desired field.

--

293 MESSAGE Attempt to write past last output field of form.

a- 23

CAUSE The output field pointer is undefined because all the fields on
 the form have already been written.

ACTION Use the CURSOR OFLD(output_field_number) statement to position
 the output field pointer to the desired field.

--

294 MESSAGE Operation only allowed when a joinform is active.

CAUSE The IFLD, OFLD and CFLD clauses of the CURSOR statement are not
 legal when a JOINFORM form is not active. The bb_block_read
 routine cannot be called when a JOINFORM form is not active.

 ACTION Use the OPEN FORM statement to activate a form.

--

295 MESSAGE Field number of CURSOR statement does not exist.

 CAUSE There is no field on the form with the cursor field number
 indicated by the IFLD, CFLD, or OFLD item on the CURSOR
 statement.

 ACTION Check your form definition (possibly by using JOINEDIT) to
determine the field number of the field you want the cursor to

 be on.
--

296 MESSAGE Form not found in formsfile.

CAUSE An attempt to open a JOINFORM form failed because no form with
 that name exists in the specified form file.

 ACTION Make sure the formfile and formname are specified in the
correct order, "formname:formfile". Use JOINEDIT to display or

 print the directory of forms in the formfile.

--

297 MESSAGE Found invalid data in formsfile.

CAUSE The name of the JOINFORM in the directory of the currently open
 JOINFORM file does not match the name in the header of the

actual JOINFORM. The JOINFORM file has probably been corrupted.

 ACTION Re-create the JOINFORM file using the JOINFORM editor to
 salvage as much of the uncorrupted form information as
 possible.

--

298 MESSAGE Input field "input_field" too long for variable "item_number".

CAUSE The value of a JOINFORM field, input_field, was assigned to a
string variable that is too short. The string variable is the

 item_number variable specified in a variable list following
 either an INPUT or ENTER statement.

 ACTION Declare the length of the string variable to be greater than
 its currently declared length.

 ACTION Use a substring specifier following the variable in the
 variable list. For example, 10 INPUT A$[1].

--

299 MESSAGE Numeric data expected in input field "input_field" for variable
 "item_number".

 CAUSE The value of the input field, numbered input_field, of the
currently displayed JOINFORM is not numeric. The item_number

 variable in the variable list following an INPUT or ENTER
 statement is numeric, so the non-numeric value cannot be
 assigned.

a- 24

 ACTION Reenter a numeric value in the appropriate field in the
 JOINFORM.

--

320 MESSAGE Invalid item name in PREDICATE statement.

 CAUSE The value of the item name at the time of execution of the
 PREDICATE statement is the null string.

ACTION Ensure that the value of the string expression that represents
the name of the database item to lock in the specified data set

 is correct.
--

321 MESSAGE Invalid relational operator in PREDICATE statement.

CAUSE Run-Time: The only valid relational operators in a WITH clause
 of a PREDICATE statement are one of:

 =

 >=

 <=

 Use of any other relational operators will cause an error.

 ACTION Use only one of the above relation operators.

--

322 MESSAGE Predicate string too short for the predicate elements.

CAUSE The data set and item information that is being packed into the
predicate string is greater in length than the maximum length

 declared for the string variable.

 ACTION Increase the length of the string variable that is to be the
 predicate string for the DBLOCK statement by declaring the

string with a length greater than 18 characters or increasing
 the length of the already declared string.

--

323 MESSAGE Improper data set or base name used.

 CAUSE String data set parameter specifying the data set name for a
 BASIC statement that interfaces with TurboIMAGE exceeds the
 maximum length of 16 characters.

ACTION Check the string to be certain that is less than 16 characters
in length before using the name as a data set name in a BASIC

 TurboIMAGE statement.

--

324 MESSAGE Buffer not long enough for information returned by DBMS.

CAUSE If this error occurs with a DBGET the input buffer into which
 the information in the database is to be transferred was too

short for the information actually written to the buffer. As a
 result, the values of other program variables cannot be
 guaranteed.

If this error occurs with a DBINFO the return string to which
 the information is to be returned is too short for the

information actually written to the buffer. As a result, the
 values of other program variables cannot be guaranteed.

ACTION Rewrite the program increasing the size of the input buffer or
 return string. Recovery using ON DBERROR during program
 execution is not advised because of possible program data
 corruption.
 CAUSE The return message string for the DBMESSAGE statement is not

a- 25

 the minimum length required for the call to the TurboIMAGE
 library routine.

ACTION Rewrite the program, increasing the size of the string variable
 used with the RETURN clause of the DBERROR statement.

--

800 MESSAGE Data Base Management System error "error_number".

 CAUSE A TurboIMAGE database error with the error number,
 "error_number", has occurred.

ACTION Look up "error_number" in the TurboIMAGE/XL Database Management
System and take the appropriate action. Additional information

can be made available in the program by use of the ON DBERROR
 statement in conjunction with the DBINFO statement.

--

900 MESSAGE Error 2: Memory overflow.
 Error 2: Not enough data space available for the local
 variables.
 Error 51: The file is not currently open.
 Error 52: Improper group.account specifier.
 Error 53: Improper file name.
 Error 54: Duplicate file name.
 Error 55: Permanent directory overflow.
 Error 56: File does not exist.
 Error 58: Operation inconsistent with file type or device
 type.
 Error 59: End of file found.
 Error 62: File is protected, wrong lockword/password
 specified.

Error 92: Cannot access file because file is being accessed
 or is accessed exclusively.
 Error 93: Operation inconsistent with file open mode.
 Error 131: Device unavailable.
 Error 134: Unit not ready or online.

 CAUSE See the description corresponding to the respective error
 number.

 ACTION See the description corresponding to the respective error
 number.

--

905 MESSAGE Improper fileset specified.

 CAUSE An illegal file_set argument has been passed to the CAT
 command.

ACTION Check the Accessing Files Programmer's Guide for a description
of file set specifications. Or, enter the MPE XL help system

 and ask for help on the PARMS of the LISTF command.

--

906 MESSAGE Improper filetype specified in CATALOG.
 CAUSE The argument to the TYPE parameter of the CAT command is not
 legal. It is longer than five characters.

ACTION In CAT File_set$;TYPE=Type$ the Type$ string must not be longer
 than five characters.

--

910 MESSAGE Improper operating system filename.

 CAUSE The filename specified is not a legal MPE filename.

ACTION Consult the Accessing Files Programmer's Guide for information
 on forming filenames.

a- 26

--

911 MESSAGE Invalid lockword specified.

 CAUSE An invalid file lockword was supplied.

ACTION A lockword must have no more than eight characters, beginning
 with an alphabetic character and followed alphanumeric
 characters. Check that the specified lockword has these
 characteristics.

--

912 MESSAGE CATALOG's work-file size has been exceeded.

 CAUSE The CATALOG command directs the output from the MPE :LISTF
 command to a temporary file. This message appears when the
 file is not large enough for the number of files involved.

 ACTION Create a larger LISTF temporary file with:

 :FILE LISTF;REC=-68,64,F,ASCII;DISC=nnnnn,32;NOCTL;TEMP

where nnnnn is a number large enough to hold the :LISTF output.
 The default value of nnnnn is 10000. To create a file large

enough to do a CATALOG on a given number of files,nr_files, use
 the following:

 nnnnn >=nr_files+(CEIL(nr_files/53)*5)+2

--

913 MESSAGE Short real overflow during conversion from Compatibility Mode
 short real data.

CAUSE The range of Native Mode (IEEE) short real data is smaller than
 the range of Compatibility Mode (MPE/V) short real data.

ACTION If the data is in a BASIC DATA file then the conversion utility
can be used to convert between REAL types. If the data is in a

database then either use Compatibility Mode BASIC to read the
data or manual conversion of the database will be required. If

 the data is internal to the program then changing the target
 variable to REAL may solve the problem.
--

914 MESSAGE Short real underflow during conversion from Compatibility Mode
 short real data.

CAUSE The range of Native Mode (IEEE) short real data is smaller than
 the range of Compatibility Mode (MPE/V) short real data.

ACTION If the data is in a BASIC data file then the conversion utility
can be used to convert between REAL types. If the data is in a

database then either use Compatibility Mode BASIC to read the
data or manual conversion of the database will be required. If

 the data is internal to the program then changing the target
 variable to REAL may solve the problem.

--

915 MESSAGE Real overflow during conversion to Compatibility Mode Real
 data.

 CAUSE The range of Native Mode (IEEE) real data is larger than the
 range of Compatibility Mode (MPE/V) REAL data.

 ACTION This value can't be represented as a CM real value. Your
 program logic might allow the largest and smallest CM real
 values to be used to represent NM values that are out of CM
 real range.

--

916 MESSAGE Real underflow during conversion to Compatibility Mode Real

a- 27

 data.

 CAUSE The range of Native Mode (IEEE) real data is larger than the
 range of Compatibility Mode (MPE/V) REAL data.

 ACTION This value can't be represented as a CM real value. Your
program logic might allow the CM values closest to zero to be

 used to represent NM values that are out of CM real range.

--

917 MESSAGE NM-specific real value, such as NaN and Infinity, occurs while
 converting to CM real value.

 CAUSE NM real values (such as NaN - "Not a Number", and infinity)
 have no corresponding value in CM real representation.

ACTION If NaN occurs then check the logic of the program that produced
it. If infinity occurs, then see if the logic of your program

permits the maximum or minimum representable real to be used in
 place of infinity.

--

1101 MESSAGE New line number not between 1 and 999999.

CAUSE A line number has been typed (or created by AUTO) that is not
 within the legal range for line numbers.

 ACTION Line numbers must be in the range: 1 to 999999.
--

1102 MESSAGE SYSTEM MESSAGE {number}.

 CAUSE {number} identifies an operating system error that occurred
 during execution of a SYSTEM command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1103 MESSAGE Number is incomplete.

 CAUSE This occurs during execution of the :RUN command. The
 SYSTEMRUN command has a parameter of the form:

 keyword=% or keyword=-

 An octal number should follow the "%" and "-".

ACTION See the appropriate operating system reference manual for more
 information.

--

1104 MESSAGE Entrypoint name is missing.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1105 MESSAGE Entrypoint name has more than 15 characters in it.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1106 MESSAGE First character in entrypoint name is not a letter.

 CAUSE This occurs during execution of the :RUN command.

a- 28

ACTION See the appropriate operating system reference manual for more
 information.

--

1107 MESSAGE Program name's File name is missing.

CAUSE This occurs during execution of the :RUN command. No program
 file name was given to the SYSTEMRUN command.

ACTION See the appropriate operating system reference manual for more
 information.
--

1108 MESSAGE Program name's File name longer than 8 characters.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1109 MESSAGE First character in Program name's File name is not a letter.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1110 MESSAGE Missing equals sign after the keyword {keyword}.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1111 MESSAGE Missing quote after "{INFO | XL} =".

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
 command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1112 MESSAGE Missing ending quote of {INFO | XL | UNSAT} string.

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
 command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1113 MESSAGE {keyword} requires a number.

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
 command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1114 MESSAGE {keyword} must be less than or equal to {number}.

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
 command.

ACTION See the appropriate operating system reference manual for more

a- 29

 information.

--

1115 MESSAGE {keyword} must be greater than or equal to {number}.

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
command. The value given for parameter of the RUN command is

 less than the minimum value allowed for that parameter.

ACTION See the appropriate operating system reference manual for more
 information.

--

1116 MESSAGE Missing semicolon.

CAUSE This occurs during execution of the :RUN command or SYSTEMRUN
 command. The :RUN arguments must be separated by ";".

ACTION See the appropriate operating system reference manual for more
 information. For example,

 10 SYSTEMRUN "report.utils;lib=g;maxdata=10000"

--

1117 MESSAGE No Help available on that {topic | subtopic}.

 CAUSE The HELP system does not contain information about the topic
 requested.

 ACTION Make sure that the request is correct. If it is correct,
submit a Service Request for inclusion of help for that topic.

--

1118 MESSAGE {INFO, XL or UNSAT} string exceeds the maximum allowance.

 CAUSE 1. The MPE INFO string is too long.

 2. The XL="list" string is too long.

 3. The UNSAT="list" string is too long.

 ACTION 1. The MPE INFO string must be 200 characters or less.

2. The XL="list" string cannot be longer than 80 characters.

 3. The UNSAT="list" string cannot be longer than 31
 characters.

--

Numbered Error Messages (1119 - 1240)

--

1119 MESSAGE One of "S", "P", or "G" must come after "LIB=".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1120 MESSAGE Missing keyword "NEW" after STDLIST specification.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1121 MESSAGE Unrecognized keyword.

a- 30

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1122 MESSAGE Out of system resources for program "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1123 MESSAGE Program "{program_name}" does not exist.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1124 MESSAGE Invalid program "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1125 MESSAGE Entrypoint name does not exist or is invalid for program.

 CAUSE This occurs during execution of the :RUN command.
ACTION See the appropriate operating system reference manual for more

 information.

--

1126 MESSAGE Increased MAXDATA is larger than configuration MAXDATA.

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1127 MESSAGE Hard load error for program "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1128 MESSAGE Specified $STDIN could not be opened for program
 "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1129 MESSAGE Specified $STDLIST could not be opened for program
 "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

a- 31

--

1130 MESSAGE Could not activate new process for program "{program_name}".

 CAUSE This occurs during execution of the :RUN command.

ACTION See the appropriate operating system reference manual for more
 information.

--

1131 MESSAGE One of "BS", "CS", "DS", or "ES" must come after "PRI=".

CAUSE This occurs during execution of the MPE :RUN command or the HP
 Business BASIC/XL SYSTEMRUN command.

ACTION See the appropriate operating system reference manual for more
 information.
--

1132 MESSAGE In a job, the WAIT statement must specify a time limit.

 CAUSE In your job, a WAIT statement does not specify a time limit.

ACTION Specify a value for the WAIT of less than 1.157920892373161E+74
 seconds.

--

1133 MESSAGE The string specified is too long.

CAUSE 1. The string given in the COPTION TITLE="string" or COPTION
 TITLESUB="string" command is too long.

2. The string given in the COPTION COPYRIGHT="string" command
 is too long.

3. The string, Image$, given in a "PRINT USING Image$;Value"
 statement is too long.

4. The set name is too long in: COPTION LOCALITY="set_name".

 5. The total length of the string supplied to the SYSTEMRUN
 command is too long.

 ACTION 1. The TITLE string is limited to a length of 132.

2. The COPYRIGHT string is limited to a length of 268435455.

 3. The maximum length of an IMAGE string is 500 characters.

 4. The name is limited to 16 characters.

 5. The string must be 500 characters or less. Make certain
 that the string specified is within these limits.

--

1134 MESSAGE Only the words Yes, No, or Exit are allowed as input.

CAUSE You typed something other than Yes, Y, No, N, Exit, E or // in
response to the question "Do you want to see more on this topic

 (Yes, No, Exit)?" while in HELP mode.

 ACTION Answer as requested.

--

1135 MESSAGE SYSTEM with no parameters is not allowed from a batch job.

 CAUSE The SYSTEM statement or the ":" command has been executed in
 batch mode.

 ACTION If you have a set of MPE commands to execute, recode the
 commands to:

 SYSTEM "command1"

a- 32

 SYSTEM "command2"
 ...

It may be that you have simply forgotten the "exit" command and
 are running into the job's prompt character:

 :job jobname,user.acct/passwd

 :

 :hpbb

 10 print "Hi, Mom!"

 run

 :

 :eoj

The ":" after the "run" command is read by HP Business BASIC/XL
 as the HP Business BASIC/XL "SYSTEM" command. In this case,
 insert an "exit" command between the"run" command and the
 following ":"...

 :job jobname,user.acct/passwd

 :

 :hpbb

 10 print "Hi, Mom!"

 run

 exit

 :

 :eoj

--

1136 MESSAGE This BASIC program has not been PREPed with Process Handling
 (PH) capability.

 CAUSE The program tried to run another program (possibly with the
 SYSTEMRUN command) without previously having been given the
 Process Handling capability.

 ACTION Re-PREP the program with CAP=PH.

--

1137 MESSAGE End of data on input device.

 CAUSE 1. The interpreter has encountered the end of the command
 input file. (The file BASCOM has been redirected.)
 2. The program has read beyond the end of the file to which

BASIN has been redirected. The program is expecting more data
in the file than it should or the file doesn't contain as much

 data as it should.

 3. ":EOD" was typed in response to a request for input.

ACTION 1. End the command file with the "exit" command to terminate
 the interpreter without an error.

 2. Correct the data file or the program logic.

 3. This is usually intentional.

--

1138 MESSAGE Error {error_number} in reading input.

 CAUSE A file system error has occurred while reading input.

a- 33

 ACTION Look up the error_number in the description of the fcheck
intrinsic in the MPE XL Intrinsics Reference Manual for a text

 description of the problem.

--

1139 MESSAGE INTEGER precision overflow.

 CAUSE 1. An arithmetic operation involving INTEGER operands has
 produced a result which is out of the range of an INTEGER

(possibly after implicit type conversion to make both arguments
 have the same type).

 2. A number that is out of the INTEGER range has been
 converted to an INTEGER.

3. A value that is out of the range of INTEGER has been read
 into an INTEGER variable.

4. The largest possible negative integer (-2,147,483,648) has
 been made into a negative number. This is the one negative

integer value which cannot be represented as a positive integer
 value.

 ACTION 1, 2, 3. A (SHORT) REAL or (SHORT) DECIMAL may provide a
 sufficiently larger range.

 4. Assign the number to a type with a larger range (REAL or
 DECIMAL), then make that negative.

--

1140 MESSAGE REAL precision overflow.

 CAUSE 1. An arithmetic operation involving REAL operands has
produced a result which is out of the range of a REAL (possibly
after implicit type conversion to make both arguments have the

 same type).

 2. A number that is out of the range of REAL has been
 converted to a REAL.

3. A value that is out of the range of REAL has been read into
 a REAL.

ACTION A DECIMAL may provide a sufficiently larger range. (Be aware
 that the precision of DECIMAL differs.)

--

1141 MESSAGE SHORT REAL precision overflow.

CAUSE 1. An arithmetic operation involving SHORT REAL operands has
 produced a result which is out of the range of a SHORT REAL

(possibly after implicit type conversion to make both arguments
 have the same type).

 2. A number that is out of the range of SHORT REAL has been
 converted to a SHORT REAL.

 3. A value that is out of the range of SHORT REAL has been
 read into a SHORT REAL.

 4. The value to the EXP() function is out of the range
 [-87.3366 .. 88.7228].

 ACTION 1, 2, 3. Use a REAL (or DECIMAL) for the type of the target
variable instead of SHORT REAL. (Be aware that the precision of

 these types is different.)

 4. The argument to EXP must be within the indicated range.

--

1142 MESSAGE Can't write to file {file_name}.

a- 34

 CAUSE 1. The interpreter was unable to write to the program file
 while trying to do a SAVE or RESAVE.

 2. The interpreter was unable to mark the indicated file as
 "run only" when executing the RUN ONLY statement.

 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

1143 MESSAGE Can't read from file.

 CAUSE 1. The compiler was unable to read the file containing the
 program to be compiled.

2. The interpreter was unable to complete a GET SUB statement
because of an error when reading from the file containing the

 subunit to GET.

 3. The interpreter was unable to complete a GET statement
because of an error when reading from the file containing the

 program to GET.

 4. The interpreter was unable to mark the indicated file as
 "run only" when executing the RUN ONLY statement.
 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

1144 MESSAGE Arithmetic overflow on exponentiation.

CAUSE An arithmetic exception was encountered during the processing
 of an arithmetic expression containing an exponentiation
 operator. Values of variables or literals cause the numeric

value of the intermediate result to exceed the allowable range
 of the intermediate type.

ACTION Rearrange the expression so that no overflow will occur during
 the evaluation.

 ACTION Trap values that you know will cause this condition.

ACTION Convert values so that an intermediate type with a larger range
 of values is used.

--

1145 MESSAGE File version does not match current HPBB version.

CAUSE The file version on the BASIC SAVE file indicates that the file
 was saved by an interpreter that is a later version than the
 interpreter or compiler being used.

ACTION Save an ASCII version with the SAVE LIST command from the later
version and create a version with the older interpreter. The

 same file can now be used with the older compiler.

--

1147 MESSAGE Invalid file type: Must be BASIC SAVE file.

 CAUSE The source file specified as the input file for the compiler
 does not have a BSVXL file code.

ACTION If you saved the file as an ASCII file, GET the file into the
 interpreter and resave it using the command:

 SAVE "filename"

 "filename" must not have previously existed.

--

1150 MESSAGE Bad decimal numeric data found.

a- 35

CAUSE Some recent input operation, a read from file or database has
resulted in a decimal value being read into a variable with a
decimal type that does not have the correct format. In other

 words, the value in the file has been corrupted.

 ACTION Correct the value in the file or database.

--

1151 MESSAGE Cannot RUN a program with OPTION SUBPROGRAM in effect.
 CAUSE A program in the interpreter has been run with GLOBAL OPTION
 SUBPROGRAM in the main of the program.

ACTION Remove the GLOBAL OPTION SUBPROGRAM to run the program in the
 interpreter. You will probably have to add calls to the
 procedures and functions in the current program in the
 interpreter, if you have not already done so.

 ACTION If there are only procedures or functions in the current
 program in the interpreter (this means that there are no

executable statements in the main of the current program), you
will have to compile the program and put it into an executable
library. You can use a program with the appropriate calls to

your procedures or functions from the interpreter to test your
 program.

--

1152 MESSAGE Irrecoverable error encountered.

CAUSE The interpreter cannot recover to a consistent internal state
 that guarantees that all user information is not corrupted.
 You will usually see this message as the interpreter is
 aborting and just prior to a stack trace indicating the

location in the code that the abort occurred and the preceding
 internal procedure calls made by the interpreter.

ACTION Please copy the information that is on your screen and try to
 describe the steps that immediately preceded the problem.

Submit this report to your System Administrator to forward to
 the HP Service Engineer.

--

1153 MESSAGE WARNING 1153: Procedure name "procedure_name" is too long.

CAUSE The procedure name, function name or the alias specified in an
INTRINSIC or EXTERNAL statement or the name of the intrinsic in
the intrinsic file exceeds the maximum length of 60 characters.
This is an error rather than a warning, since processing of the

 statement is interrupted and the program cannot be run. The
 name returned from the intrinsic file may be displayed as

"procedure name". Note that because of the definition of the
intrinsic mechanism, the name to be called may not be the same
as either the name in the INTRINSIC statement or the specified

 alias in the ALIAS clause.

ACTION Shorten the procedure name, function name or the alias name in
the INTRINSIC or EXTERNAL statement or be certain that the name

 of the intrinsic in the intrinsic file is within the
 appropriate bounds.

--

1154 MESSAGE Not enough memory available.

CAUSE Current operation has exhausted the amount of space allocated
 to hold information in the interpreter. Since HP Business
 BASIC does not do garbage collection of its previously used
 space, you may have to do this.
 ACTION If you obtained this message while entering a program in the
 interpreter, try to save the current version as an ASCII
 program file using the command:

a- 36

 SAVE LIST "filename".

 If this is successful, then do a GET "filename"

If you obtained this message trying to run a program, then the
run-time data structures used to store the values of variables

 could not be allocated because of space constraints. Try to
 reduce the size of large arrays or eliminate unnecessary or
 unused variables.

--

1155 MESSAGE Unable to open intrinsic file "intr_filename".

 CAUSE intr_filename does not exist as specified or it is being
 accessed exclusively.

 ACTION Check to be certain that the file exists or that it is not
 being accessed exclusively.

--

1157 MESSAGE Procedure "procedure" is not in the intrinsic file.

 CAUSE Interpreter: The name or alias specified in the INTRINSIC
statement was not found in the intrinsic file prior to running

 that main, program or function.

 Compiler: The name or alias specified in the INTRINSIC
 statement in the intrinsic file was not found prior to
 compiling that main, program or function.

ACTION Check the name of the intrinsic file to be certain that you are
using the one that contains the correct name or alias. If this
does not work, change the name or alias to conform to the name

 in the intrinsic file.

--

1158 MESSAGE The procedure "procedure_name" is being used where a function
 is needed.

 CAUSE A procedure is being called when a return value is expected,
 either as a function call or with the use of the FNCALL
 keyword.

ACTION Either change the procedure to a function or call the procedure
 as a procedure.

--

1159 MESSAGE Call to procedure "procedure_name" failed.

CAUSE The call to the HP Business BASIC/XL built-in function TASKID
 failed. The "procedure_name" is PROCINFO, the MPE intrinsic
 called to obtain the information.

ACTION The most likely cause of this is an operating system problem.
 The problem is not an HP Business BASIC/XL problem.

--

1167 MESSAGE Procedure "procedure_name" cannot be called as a function.

 CAUSE The intrinsic file indicates that procedure_name is a
procedure, but it has been defined in the INTRINSIC statement

 as having a return value.

ACTION Change the INTRINSIC definition for the procedure by removing
 the type declaration for the return value.

--

1169 MESSAGE Command "_" ANYPARM call allowed only in PAUSEd executing
 subunit with _"procedure_name" call.

a- 37

CAUSE An ANYPARM external before execution of the main, procedure, or
function that contains the ANYPARM call was called before the

interpreter has scanned that routine to initialize the internal
 structures required for the call.

ACTION Add a PAUSE statement at the beginning of the main, procedure,
or function that contains the call and execute the program. A

call from the interpreter can be made when the program executes
 the PAUSE statement and returns control to the interpreter.

--

1177 MESSAGE Value for BYTE parameter # "parameter_number" exceeds range for
 BYTE type.

 CAUSE A BYTE parameter to an external exceeded the range of
 [-256,255].

ACTION Check the value of the actual parameter to be certain that it
 is within the specified range. Note that BYTE types are not
 sign extended.

--

1180 MESSAGE Parameters out of range for the function.

CAUSE The parameters to the DAT3000$ built-in function must satisfy
 the following three conditions:

1. The first parameter must be greater than or equal to one.

 2. The second parameter must be less than or equal to 27.

 3. The first parameter must be less than or equal to the
 second parameter.

 ACTION Be certain that the parameters to the DAT3000$ satisfy the
 above conditions before calling the built-in function.

--

1181 MESSAGE Error in accessing the HELP message file.
CAUSE The interpreter was unable to open the catalog HPBBHELP.PUB.SYS

 following the HELP command.

 ACTION Be certain that the file HPBBHELP.PUB.SYS is present on your
 system and that no one is accessing the file exclusively.

--

1182 MESSAGE Call to "procedure_name" has "number_formal" parameter(s);
 declaration has "number_actual" parameters.

 CAUSE The number of formal parameters defined in the EXTERNAL
statement or in the intrinsic file does not match the number of

 actual parameters supplied for the call from the program.

ACTION Correct either the definition in the EXTERNAL statement or the
 call so that the number of parameters is the same.

--

1183 MESSAGE Too few parameters, or missing parameter in call to
 "procedure_name".

 CAUSE A call to a procedure or function does not have the correct
 number of actual parameters that correspond to the number of

formal parameters declared in the procedure or function header.

 ACTION Correct the call to the procedure or function so that the
number of actual parameters corresponds to the number of formal

 parameters defined.

--

a- 38

1186 MESSAGE Interpreter BUILD file failure: please PURGE temp files
 prefixed BBTEMP.

CAUSE Certain HP Business BASIC/XL statements and commands create a
 file in the temporary file space to store information. HP
 Business BASIC/XL uses the "BBTEMP" prefix as the first six
 characters in the temporary filename. If you have created a
 large number of files with this prefix, HP Business BASIC/XL
 will be unable to process the information required.

ACTION Check the temporary file space using the command, ":listftemp"
 to confirm that there are too many files with the prefix

"BBTEMP". Modify your program so that you use filenames with a
 different prefix and purge those unused files prefixed with
 "BBTEMP" that are in the temporary file space.

--

1187 MESSAGE Interpreter BUILD file failure: please check whether disk space
 full.

CAUSE Certain HP Business BASIC/XL statements and commands create a
file in the temporary file space to store information. In this

 case, HP Business BASIC/XL was unable to build the required
 file.
 ACTION Check with your System Administrator concerning the system's

available disk space. You may have also reached your account
 or group disk space limits.

--

1189 MESSAGE FNCALL of a subprogram is not allowed.

 CAUSE The name specified as a parameter to FNCALL is the name of a
 procedure in the current program.

 ACTION Call the procedure using the CALL statement.

--

1190 MESSAGE ROUND argument cannot be power rounded in the range of
 decimals.

CAUSE The argument to be rounded is converted to a decimal value and
a value to be added to that value for the round is determined.

 Overflow on the addition causes this error to be generated.

 ACTION Check values before rounding so that overflow does not occur
 during the rounding operation.

--

1191 MESSAGE DROUND argument cannot be digit rounded in the range of
 decimals.

CAUSE The argument to be rounded is converted to a decimal value and
a value to be added to that value for the round is determined.

 Overflow on the addition causes this error to be generated.

 ACTION Check values before rounding so that overflow does not occur
 during the rounding operation.

--

1192 MESSAGE Matrix is singular, cannot be inverted.

CAUSE A matrix cannot be inverted because the current values of the
 individual elements are such that the matrix is singular.

 ACTION Check for singularity prior to trying to invert the matrix.

--

1194 MESSAGE Bad data in form field for item "form_item_number".

a- 39

CAUSE One of the following errors occurred when trying to assign the
 value of a field to a scalar or an element of the array
 specified in "form_item_number". This happened when a VPLUS
 form was read with the READ FORM statement.

1. The length of a numeric value in a form field exceeded the
 maximum length of a numeric literal.

2. There were illegal characters in the numeric literal in the
 form field.

3. (Scalars only) The conversion of the ASCII numeric literal
 in the form field to a numeric value of the appropriate type
 failed.

ACTION Use internal error handling using ON ERROR statements to trap
 these errors and specify recovery procedures.

--

1195 MESSAGE String not big enough for form field for item "form_item",
 subitem "array_element_number".

 CAUSE A VPLUS form was read with the READ FORM statement and the
conversion of the ASCII numeric literal in the form field to a

 numeric value of the appropriate type failed. The resulting
value would have been assigned to the "array_element_number" of
the array which is number "form_item" in list of READ FORM form

 items.

ACTION Use internal error handling using ON ERROR statements to trap
 this error and specify recovery procedures.

--

1196 MESSAGE Invalid file parameters specified in user's :FILE LISTF
 command.

 CAUSE An error was detected in the LISTF file equation required to
 build the workfile for the CAT command.

 ACTION Check the LISTF file equation by using the command,

 ":LISTEQ"

from the interpreter. The LISTF file equation is required to
 be in the following format:

 FILE LISTF;REC=-68,64,F,ASCII;DISC=nnnnn,32;NOCCTL;TEMP

 where nnnnn is some positive integer value reflecting the
maximum estimated number of files that will be processed when

using the CAT command. The FILE command can be set from within
 the interpreter using the SYSTEM command.

--

1197 MESSAGE No Form file specified now or in the past.

 CAUSE A form was opened without first opening a form file.

 ACTION Add the name of the form file containing the desired form to
 the OPEN FORM statement.

--

1198 MESSAGE No Form open.
 CAUSE A CLEAR FORM statement for a VPLUS form was executed when no
 form was open.

 ACTION Add code to open the form prior to trying to clear it.

--

1199 MESSAGE Account or user MAXPRI= does not permit this value for PRI=.

a- 40

 CAUSE The account or user priority is not set as high as that
 requested in the PRI clause of the SYSTEMRUN command.

 ACTION Use a lower priority for the PRI clause or have your System
 Administrator raise your MAXPRI value.

--

1203 MESSAGE Line number "line_number" does not exist.

 CAUSE "line_number" specified in a command, for example,

 LIST 1+10

 where line number 1 is not a line in the current program.

ACTION Re-enter the command using a line number that is present in the
 current program.

--

1204 MESSAGE Label not found in current program unit.

 CAUSE The label specified in a command, for example,

 LIST Label1

where Label1 is not a label on a line in the current program.

 ACTION Re-enter the command using a valid label.

--

1211 MESSAGE Command-only statements are not allowed in a COMMAND statement.

 CAUSE In the interpreter, entries can be either a command, a
statement in a program, or both. Those keywords that can only

 be commands, such as LIST, cannot occur in the quoted string
 literal or as the value of the string variable following the
 keyword COMMAND.

ACTION Remove the command from the quoted string literal or assign a
value to the string variable that does not include the command.

--

1212 MESSAGE A command is not allowed here; it must be a program line.
 MODIFY only accepts lines which begin with a line number. (
 message #1606)

 CAUSE Use of the MODIFY command was used to change a line to a
 command such as LIST or RUN.
 ACTION A modified line must always begin with a line number. Make
 sure that there is a line number.

--

1216 MESSAGE File record size too small for program line.

CAUSE The record size of the ASCII file to which the listing is being
directed at the time of a LIST, FIND, MODIFY, or CHANGE is less

 than the minimum size of 22 characters.

 ACTION Increase the record size of the file to greater than 22
 characters.

--

1217 MESSAGE Not enough room to make copy or move between lines
 "line_number_1" and "line_number_2".

 CAUSE COPY or MOVE failed because the number of available lines
between "line_number_1" and "line_number_2" is not sufficient.

 ACTION Neither MOVE nor COPY will renumber lines so that they will
automatically fit in the designated target area. If you want

a- 41

 to move or copy lines and the range is not sufficient, use
 RENUMBER to renumber the line immediately following the
 location to which the lines are targeted, "line_number_2".
 Renumber to a high enough number to allow sufficient space.

--

1218 MESSAGE Cannot MOVE lines into a subunit which is moving.

 CAUSE The actual message is: Lines are not contained in the same
subunit. During editing, an attempt is made to MOVE at least

one entire procedure or function and part of an additional one.

 ACTION MOVE only entire internal procedures and functions.

--

1219 MESSAGE Lines "line_number_1"/"line_number_2" copied but then deleted
 because of the error.

CAUSE A syntax error encountered during partially completed COPY of
 lines.

 ACTION Correct the syntax error and COPY again.

--

1220 MESSAGE Destination line, "line_number", lies within source range,
 "low_range"/"high_range".

 CAUSE A range of lines was moved or copied, and the destination of
 one of the lines is a line number that would be in the range
 ["low_range","high_range"].

 ACTION It is possible to obtain the same results using two moves:

 1. MOVE the lines to another destination where they fit.
 2. Delete the original lines.

 3. MOVE the lines to the desired destination.

--

1221 MESSAGE Program not running.

CAUSE The CONTINUE command was entered when a program is not paused
 or halted.

ACTION Be certain that the program is paused or halted before entering
CONTINUE. This can be done by entering the command: "LIST *"

 to display the current line.

--

1227 MESSAGE Current line is not defined.

CAUSE The command: "LIST *" was used when no program is running in
 the interpreter.

 ACTION The "LIST *" command will only list the current line when a
 program is paused or halted in the interpreter.

--

1228 MESSAGE Command is too long.

CAUSE The quoted string literal or the value of the string expression
 following COMMAND exceeds the maximum allowed value of 500
 characters.

 ACTION Shorten the length of the string literal or the value of the
 string expression.

--

1229 MESSAGE Program lines are not allowed in a COMMAND statement.

a- 42

CAUSE The quoted string literal or the value of the string expression
 following COMMAND cannot begin with a numeric value.

ACTION Change the string so that it begins with a character in the set
 [a..z] or [A..Z].

--

1230 MESSAGE Tried to delete current line while there are still line ranges
 left.

 CAUSE A program that deletes the current line has been run. For
 example:

 10 DELETE 10,20

 20 PRINT "line to delete"

 ACTION Do not include the current line in the range of lines to be
 deleted.
--

1231 MESSAGE Not enough data space available to start GET SUB.

CAUSE The total amount of space available for the current program has
 been exhausted. You may be able to do your own garbage
 collection to condense space.

 ACTION Since you are trying to do a GET SUB from a BASIC SAVE
 formatted file, you should do garbage collection on:

 1. The original current program file if it is stored in the
 BASIC SAVE file format.

 2. All previous files involved in GET SUB commands or
statements from which procedures or functions that are part of

the current program at the time of the error were obtained. In
order to do the actual garbage collection, you will need to do

 a GET, SAVE LIST, GET, and RESAVE sequence for each of the
 above files:

 GET "original_filename"

 SAVE LIST "new_filename"

 GET "new_filename"

 RESAVE "original_filename"

You can then PURGE "new_filename" and repeat the sequence with
 the next file.

ACTION If you obtained this message while running a program, then the
run-time data structures used to store the values of variables
might not be allocatable because of space constraints. Try to

 reduce the size of large arrays or eliminate unnecessary or
 unused variables.

--

1232 MESSAGE Could not renumber subunit during GET SUB. Last subunit
 removed.

CAUSE Renumbering the procedure or function to be part of the current
program would result in a line number greater than the maximum

 line number, 999999.

ACTION Use RENUMBER to increase the number of available line numbers
in the current program before the GET SUB statement or command.

Use a different first line number to begin the numbering of the
 new function or procedure in the current program.

 Use a smaller line increment in the GET SUB statement or
 command so that the entire procedure or function fits in the

a- 43

 current program.

--

1233 MESSAGE Could not add subunit name during GET SUB. Last subunit
 removed.
 CAUSE The interpreter was unable to obtain sufficient space to add

the name of a procedure or function during execution of a GET
 SUB command or statement.

ACTION Take action similar to that recommended for error number 1231.

--

1234 MESSAGE Renumbering lines invalid for GET SUB statement.

CAUSE A line number in the current program conflicts with one of the
line numbers for the procedure or function to be read into the
interpreter from the BASIC SAVE file specified in the GET SUB

statement. Either the new line number already exists or a line
 in the current program would now be included in the new
 procedure or function.

 ACTION Be certain that the entire range of lines into which the new
procedure is to be read has no program lines prior to execution

 of the GET SUB statement or command.

--

1235 MESSAGE First subunit specified in GET SUB statement does not exist.

 CAUSE Either no subunit number exists or the range of values that
supposedly corresponds to the subunit numbers does not exist in

 the BASIC SAVE file for the GET SUB statement or command.

ACTION The numbering of the procedures and functions in the specified
BASIC SAVE file begins with one and each subsequent procedure

or function is one greater. Be certain that the value that you
 are using corresponds to this numbering system.

--

1236 MESSAGE GET SUB statement requires a BASIC SAVE file.

CAUSE The file code for the file specified in the GET SUB command or
 statement does not have a BSVXL file code.

ACTION GET the file with the subunit into the interpreter, PURGE the
file and use the SAVE command to save a new version of the file

 with the correct file code.

--

1238 MESSAGE GET SUB subunit specifications must be greater than 0.

 CAUSE Either no subunit exists in the GETSUB file or the subunit
 number specified is less than or equal to zero.

ACTION The numbering of the procedures and functions in the specified
BASIC SAVE file begins with one and each subsequent procedure

or function is one greater. Be certain that the value that you
 are using corresponds to this numbering system.

--

1240 MESSAGE Line range "line_range" contains a nonexistent line reference.
CAUSE An attempt was made to save or resave a portion of the current

 program that contains a main and at least one procedure or
 multi-line function when the "line_range" of the line ranges
 specified has no program lines and the file to which the
 current program is being saved is a BASIC SAVE file.

 ACTION SAVE or RESAVE the information to an ASCII file.

ACTION Use only line ranges which contain at lease one line when using

a- 44

 the line range option of the SAVE or RESAVE command when
 writing to a BASIC SAVE file.

--

Numbered Error Messages (1241 - 1738)

--

1241 MESSAGE Line range "line_range" contains no lines.

 CAUSE Part of the current program was saved or resaved to a BASIC
SAVE file using the line range list option. The range of lines

 selected did not contain any lines. For example, you might
 have typed:

 SAVE "save_filename",SUB A/20

 when the current program was:

 20 PRINT B

 30 SUB A

 ACTION The line range option with SAVE to a BASIC SAVE file is
 restricted to saving MAIN and individual procedures and

multi-line functions. If you wish to save individual parts of
the current program using the line range option, SAVE or RESAVE

 to an ASCII file using the SAVE LIST or RESAVE command.

--

1242 MESSAGE Line number is not first line of subunit in line range
 "line_range".

 CAUSE Part of the current program was saved or resaved to a BASIC
SAVE file using the line range list option. The range of lines

 selected did not specify an entire main, procedure, or
 function. For example, you might have typed:

 SAVE "save_filename",20

 when the current program was:

 10 PRINT A

 20 PRINT B
 ACTION The line range option with SAVE to a BASIC SAVE file is
 restricted to saving MAIN and individual procedures and

multi-line functions. If you wish to save individual parts of
the current program using the line range option, SAVE or RESAVE

 to an ASCII file using the SAVE LIST or RESAVE command.

--

1243 MESSAGE Line number is not last line of subunit in line range
 "line_range".

 CAUSE Part of the current program was saved or resaved to a BASIC
SAVE file using the line range list option. The range of lines

 selected did not specify an entire main, procedure, or
 function. For example, you might have typed:

 SAVE "save_filename",10

 when the current program was:

 10 PRINT A

 20 PRINT B

 ACTION The line range option with SAVE to a BASIC SAVE file is
 restricted to saving MAIN and individual procedures and

multi-line functions. If you wish to save individual parts of
the current program using the line range option, SAVE or RESAVE

a- 45

 to an ASCII file using the SAVE LIST or RESAVE command.

--

1245 MESSAGE No SAVE/RESAVE done, program contains no lines.

 CAUSE There are no lines in the current program to be saved.

ACTION Enter a program line in the interpreter prior to doing a SAVE
 or RESAVE.

--

1246 MESSAGE No SAVE/RESAVE done, default file does not exist.

CAUSE The current program has been saved or resaved, but no file name
 has been specified either for the current program or in the
 command.

ACTION Use the NAME command to name the current program and then do a
 SAVE or RESAVE.

ACTION Specify the name of the file to which the current program is to
 be saved as par of the SAVE or RESAVE command.

--

1247 MESSAGE RESAVE file must be of type BASIC SAVE, BASIC DATA, or ASCII

CAUSE The current program has been saved to a file which has no file
 code and is not an ASCII file or has a file code other than
 BSVXL or BDTXL.

ACTION Correct the spelling of the name of the current program in the
 interpreter using the NAME command and then do a SAVE or
 RESAVE.

ACTION Choose another filename to which to save the current program.
 Use SAVE LIST "filename", SAVE BDATA "filename" or SAVE
 "filename" to save the current program to the alternative
 filename.

--

1248 MESSAGE File type given doesn't match the type of the file
 named/implied.

CAUSE The current program has been resaved using the LIST option to a
file that is not an ASCII file or using the BDATA option to a

 file that does not have a BSVXL file code.

ACTION Use RESAVE LIST to resave the current program to an ASCII file.
 Use RESAVE BDATA to store the current program to a file that
 has a BSVXL file code.

--

1249 MESSAGE No RESAVE done, unable to purge the old file.

CAUSE The RESAVE command failed either because of simultaneous file
 access by two users or because of a serious file system
 problem.

ACTION Retry the command. If it does not work a second time, use SAVE
to save the current program. Try to purge the old file using
the PURGE command and then rename the newly created file with
the RENAME command. If this does not work correctly, contact

 your System Administrator.

--

1250 MESSAGE Execution label specified is not in the current program unit.

CAUSE This is a substitute message for error number 3: The parameter
to the RUN command specifying the line on which execution is to

begin is not present in the current program. For example, if

a- 46

 the current program has no lines then RUN; Label

 will generate this error.

ACTION Be certain that the line label specified exists in the current
 program.

--

1253 MESSAGE Line number is invalid or missing, GET terminated.

 CAUSE This occurs in the interpreter only. During the GET of an
ASCII file a line in the file has been encountered which does

 not begin with a numeric literal that should correspond to a
 line number.

ACTION Use the SYSTEMRUN command from within BASIC to run an editor.
Change the line displayed during the GET so that it begins with
a numeric literal. Save the new version, exit the editor, and
use the GET command to make the ASCII file the current program

 file.

--

1254 MESSAGE Line number would be illegal if renumbered, GET terminated.

 CAUSE A GET of a program would result in a line number beyond the
 maximum line number in the interpreter, 999999.

 ACTION Check the last line number and the range of the lines to be
 included in the current program prior to using GET. The

RENUMBER command can create additional space in the interpreter
by reducing the range of the program line numbers before using

 GET.

--

1260 MESSAGE Found 11th named COMMON area in subunit "subunit_name", only 10
 are allowed.

CAUSE More than the maximum number of COMMON areas have been declared
 in the current MAIN, procedure, or function. The

"subunit_name" is either MAIN or the name of the procedure or
 function in which the error occurred.

ACTION Delete one of the named COMMON areas in the specified subunit.
If the variables have to be declared in a COMMON, add them to

one of the named COMMON areas that are already declared or pass
 them to the procedure or function as parameters.

--

1261 MESSAGE Not enough memory available for the existing COMMON
 declarations.

CAUSE The total COM area declared in the current main, procedure, or
 function exceeds the maximum space allocatable to common
 declarations but is less than the total amount of space
 allocatable to all declarations.

 ACTION Reduce the number of declarations in the COM area to include
only those absolutely necessary for all procedures or functions
that include that COM area. All variables not required in all

 can either be declared locally or passed as parameters.

--

1262 MESSAGE Unable to allocate enough memory for the COMMON variables.

CAUSE HP Business BASIC/XL was unable to allocate enough memory for
 the COMMON variables.

ACTION Reduce the number of declarations in the common areas. Reduce
 the size of the common area.

--

a- 47

1270 MESSAGE Arrays need to be of the same type.

CAUSE The type of the floating point numeric argument to the matrix
built-in functions, CSUM, INV, MUL, RSUM, and TRN must be the

 same as the type of the numeric target of the MAT assignment
statement in which the built-in occurs. Both of the arguments

 to the DOT operation must be the same numeric type.

ACTION Coerce the argument prior to performing the built-in operation
 or coerce the result after the assignment.

--

1271 MESSAGE Wrong type for inverse.

 CAUSE The array that is the argument for the INV matrix built-in
function is not of type SHORT DECIMAL, DECIMAL, SHORT REAL or

 REAL.

 ACTION Correct the type of the argument so that it is one of the
 floating point types supported in HP Business BASIC/XL.

--

1272 MESSAGE Could not purge the temporary save file, system error
 #"error_number".

 CAUSE During execution of one of the statements or commands that
 requires the creation of a temporary BASIC SAVE file, a file
 was created and could not be purged following use. The
 statements requiring creation of a BASIC SAVE file for this
 purpose are COMPILE, COMPGO, and COMPLINK.

ACTION Note the return value of "error_number" and report the problem
to your System Administrator. If you see this error message,

 check the contents of your temporary file space with the
:LISTFTEMP command from within HP Business BASIC/XL. If you are

 unable to purge the files either from within HP Business
 BASIC/XL or the Command Interpreter of MPE, then log off and
 log on again.

--

1273 MESSAGE Could not "message" while compiling, system error #
 "system_error_number".

CAUSE message corresponds to the command that the interpreter could
 not process when trying to run the compiler:

 FILE BBCTEXT="text_filename"
 FILE BBCOBJ="obj_or_rl_filename"
 FILE BBCLIST="list_filename"
 RESET BBCTEXT="text_filename"
 RESET BBCOBJ="obj_or_rl_filename"
 RESET BBCLIST="list_filename"

 "system_error_number" is the error number returned from the
 Command intrinsic.
 ACTION These errors should only occur when the system is having

trouble performing fundamental file operations. Try to repeat
the same operation from the interpreter. If you again run into

 problems, contact your System Administrator.

--

1274 MESSAGE Could not "message" during link, error #"error_number".

CAUSE message corresponds to a command that the interpreter could not
 process when trying to link a compiled program. The
 interpreter must build a stdin and stdlist file for the
 linkeditor. The following commands are related to file
 manipulation:

 BUILD the stdlist file "stdlist_filename"

a- 48

 BUILD the stdin file "stdin_filename"
 FILE PFILE="stdin_filename",OLDTEMP
 FILE LFILE="stdlist_filename",OLDTEMP
 RESET PFILE
 RESET LFILE
 PURGE "stdin_filename",TEMP
 PURGE "stdlist_filename",TEMP

 For this set of messages, "error_number" is the error number
returned from the command intrinsic indicating the system error

 encountered.

 The interpreter must also enter command information into the
 stdin file. The following messages reflect possible file
 system problems encountered:

 FOPEN the stdin file
 FWRITE to the stdin file
 FCLOSE the stdin file

 For this set of messages, "error_number" is the file system
 error number.

 ACTION These errors should only occur when the system is having
trouble performing fundamental file operations. Try to repeat

the same operation from the interpreter. If you again run into
 problems, contact your System Administrator.

CAUSE message corresponds to a problem encountered when trying to run
the linkeditor to link the program. The problem can either be

 the result of a problem with the program or with the system.
If the message is only: system run of linkeditor then try to

 repeat the error. If you can do so, this indicates a system
problem and should be discussed with your System Administrator.

 If the message is preceded by the output from the segmenter
 explaining the problems with the program, then you should
 consult the HPLink Editor/XL Reference Manual .

 error_number is the JCW following the execution of the
 linkeditor program.

ACTION If the segmenter or linkeditor is aborting then repeat the same
 operation from the interpreter. If you again run into
 problems, contact your System Administrator.

For the second class of problems, look carefully at the error
 output from the segmenter or linkeditor, consult the
 appropriate reference manual and fix the problem.

--

1275 MESSAGE Terminal does not recognize escape sequences used by BASIC for
 terminal control.

 CAUSE One of the HP Business BASIC/XL statements dependent on
 terminal interactions, such as FORM statements, CURSOR

statements, or KEY statements, is being used on a terminal that
does not return the correct escape sequences when queried or on

 a system on which the configuration file, HPBBCNFG.PUB.SYS,
 specifies that the terminal is not compatible with BASIC's
 terminal-specific features.

 ACTION If you are working on a terminal that is compatible with HP
 Business BASIC/XL's terminal-specific features, check the
 configuration file.

ACTION If you are working on a terminal that is not compatible with HP
Business BASIC/XL's terminal-specific features, you will not be

 able to use these features.

--

a- 49

1276 MESSAGE Invalid KEY number. Must be between 1 and 8.

 CAUSE The value of a numeric literal or a numeric expression
 corresponding to one of the keys specified in an ON KEY, OFF
 KEY, or PRESS KEY statement is not within the range [1,8].

 ACTION Correct the value of the numeric literal or, if it is an
 expression, perform run-time checking of the value of the
 numeric variable or numeric expression prior to using that
 value in the statement.

--

1277 MESSAGE File is not a BKEY file.

 CAUSE The name of the file specified in the GET KEY or RESAVE KEY
 statement does not have a BKEY file code.

ACTION Be certain that the file to which you are trying to resave keys
 does not exist or has a BKEY format.

 ACTION Be certain that the file from which you are trying to obtain
key definitions using the GET KEY statement has a BKEY format.

--

1278 MESSAGE Invalid PRIORITY number. Must be between 1 and 15
CAUSE When this occurs in the interpreter, this syntax error occurs

 because the numeric literal in the PRIORITY clause of the ON
 KEY statement is not within the range [1,15].

When this occurs at run-time, the value of the numeric variable
 in the PRIORITY clause of the ON KEY statement is not within
 the range [1, 15].

 ACTION Re-enter the line using a valid numeric literal value.

ACTION Check the value of the numeric variable before using it in the
 PRIORITY clause.

--

1279 MESSAGE Invalid CURSOR parameter.

CAUSE One of the parameters for the position option is not within the
 limits of current screen memory on the terminal being used.

CAUSE The parameter specifying the screen enhancement has an invalid
 letter specified as a requested enhancement.

 ACTION Be certain that the maximum value for the cursor position is
 within bounds of the current screen memory.

ACTION Be certain that the screen enhancement specified is one of: h,
 i, b, u, H, I, B, U, or the empty string.

--

1283 MESSAGE Program Analyst cannot be used if OUTPUT or SYSTEM OUTPUT are
 redirected.

CAUSE The [SEND] OUTPUT [TO] or [SEND] SYSTEM OUTPUT TO statement has
 been used to redirect the output to a device other than the
 reserved word DISPLAY or the system file $STDLIST.

 ACTION Use the INFO command to determine the device to which the
 output is being sent and correctly reset the output to be
 directed to DISPLAY.

--

1284 MESSAGE Valid arguments for ANALYST command are M, O, E, S, G, C, D and
 P.

 CAUSE Incorrect entry following the ANALYST command.

a- 50

 ACTION Re-enter the command followed by one of the valid characters
 displayed. These characters select which of the ANALYST's
 screens will be initially displayed.

--

1285 MESSAGE Program Analyst cannot be used when program contains no lines.

CAUSE The ANALYST command has been used when there is no program in
 the interpreter.
 ACTION Only use the ANALYST when there is a program in the
 interpreter.

--

1286 MESSAGE Program Analyst can run on HP-supported terminals only.

 CAUSE The ANALYST command has been used from a terminal that HP
 Business BASIC/XL does not recognize as fully supporting
 features such as CURSOR and ON KEY.

ACTION Use a different terminal. Also check to see if a configuration
file that specifies that the terminal is not HP-supported has

 been used.

--

1287 MESSAGE Program Analyst cannot be run in batch mode.

 CAUSE An ANALYST command has been encountered by the interpreter
 while in batch mode.

 ACTION Remove the ANALYST command from the stream file.

--

1288 MESSAGE Program Analyst cannot be used while program is running.

 CAUSE An ANALYST command has been used while a program was paused
 (either by the PAUSE statement or by an unhandled error).

 ACTION Issue the STOP command before the ANALYST command.

--

1289 MESSAGE Program Analyst cannot be used with VERIFY errors in program.

 CAUSE The ANALYST command was used when the program in the
interpreter contained structural errors. Some examples are a

 WHILE without ENDWHILE or an ELSE without IF.

 ACTION Modify the program so that there are no VERIFY errors.

--

1291 MESSAGE No VPLUS Form open.

CAUSE A Forms I/O statement has been used when no form is currently
 active.

 ACTION Be sure that the OPEN FORM statement is executed before any
 Forms I/O operation is attempted.

--

1292 MESSAGE Bad form name "formname".

CAUSE The string in quotes was used in a OPEN FORM statement, but is
 not a valid form name.

 ACTION Check the syntax and correct the program.
--

1293 MESSAGE "filename" is not a forms file.

 CAUSE The filename in quotes is an existing file, but not a VPLUS
 forms file.

a- 51

 ACTION Use the correct filename for the forms file.

--

1294 MESSAGE Normal Input and Output cannot occur when a VPLUS form is open.

 CAUSE A PRINT, DISP, INPUT, or similar operation has been executed
 while a VPLUS form is active.

 ACTION If a form has been left active inadvertently, then insert a
CLOSE FORM statement. Otherwise, use the READ FORM and WRITE

 FORM statements.

--

1295 MESSAGE Problem with reading from or writing to the terminal.

 CAUSE A VPLUS error occurred while the program was reading from or
 writing to a terminal.

 ACTION Check the hardware connection.

--

1296 MESSAGE Too many items specified in WRITE FORM or READ FORM.

 CAUSE More items have been specified in a WRITE FORM or READ FORM
 statement than the declared in the FORM.

 ACTION Check the FORM specification or the FORM I/O statement.

--

1297 MESSAGE Form field not big enough for item "num".

CAUSE The value of the item specified in the WRITE FORM will overflow
 the declared type for the FORM.

ACTION Correct the range or length of the item specified in the FORM.

 ACTION Correct the value of the item in the WRITE FORM statement.

--

1298 MESSAGE Form field not big enough for item "num", subitem "array
 element num"

 CAUSE The value of the array element used in this item number
 specified in the WRITE FORM statement will overflow the
 declared type for the FORM.

ACTION Correct the range or length of the item specified in the FORM.

 ACTION Correct the value of the array element for the item in the
 WRITE FORM statement.
--

1299 MESSAGE String not big enough for form field for item "num".

 CAUSE The string item used in the WRITE FORM statement cannot fit
 into the FORM field.

ACTION Correct the string length in the FORM specification or correct
 the string item in the WRITE FORM statement.

--

1340 MESSAGE NLS not installed.

 CAUSE Native Language Support is not supported on your system.

 ACTION You must log on as MANAGER.SYS and run the utility program,
 LANGINST.PUB.SYS to install native languages on your system.

Please refer to the Native Language Programmer's Guide for more
 information about installing native languages.

--

a- 52

1341 MESSAGE Native language #"num" is not configured.

 CAUSE The specified native language is not configured.

 ACTION You must log on as MANAGER.SYS and run the utility program,
 LANGINST.PUB.SYS to add the language number to the
 configuration file. Please refer to the Native Language

Programmer's Guide for more information about adding native
 languages on your system.

--

1342 MESSAGE Illegal language specification for LEX.

CAUSE The language number specified in the LEX function is less than
 -1.

ACTION Make sure that the language number is greater than or equal to
 -1.

--

1356 MESSAGE Error in calculating new break limit for BREAK...WHEN...BY
 statement.

CAUSE An arithmetic error overflow or underflow occurred while trying
 to calculate the next multiple value to BREAK the report.

ACTION Verify the value specified on the BY clause. It is approaching
the limit of real for OPTION REAL, or approaching the limit of

 decimal for OPTION DECIMAL.

--

1400 MESSAGE Uninitialized variable or array element used (!).

CAUSE When OPTION NOINIT is on, numeric variables are not initialized
to zero. Referencing the uninitialized variable will result in

 a run time error in the interpreter.
 ACTION Initialize the variable or array element or take out OPTION
 NOINIT. OPTION INIT is the default.

--

1403 MESSAGE Undeclared variable "name" found in subunit "name".

 CAUSE When OPTION DECLARE is on, implicit variable declaration is
 illegal.

ACTION Either declare the variable or take out OPTION DECLARE. OPTION
 NO DECLARE is the default.

--

1404 MESSAGE Single line function and current subunit have the same name.

 CAUSE A single-line function and the current subunit have the same
 name.

 ACTION Change the single-line function name or the current function
 name.

--

1411 MESSAGE Parameter to DATE$ must be >= -2.

 CAUSE The native language number specified in the call to DATE$ is
 less than -1.

 ACTION Correct the native language number.

--

1413 MESSAGE Parameter to TIME$ must be >= -1.

a- 53

 CAUSE The native language number specified in the call to TIME$ is
 less than -1.

 ACTION Correct the native language number.

--

1414 MESSAGE Language parameter to UPC$ or LWC$ must be >= -1.

 CAUSE The native language number specified in the call to UPC$ or
 LWC$ is less than -1.

 ACTION Correct the native language number in the second parameter.

--

1415 MESSAGE The form specified does not exist.

 CAUSE The form name specified in the OPEN FORM statement does not
 exist in the forms file. For example,

 10 OPEN FORM "MAIN: form1.test"

 The form name, MAIN, does not exist in "form1.test".
 ACTION Check the form name and the form file name.

--

1416 MESSAGE Field data reformatting (finishing) failed. (VPLUS
 #"error-num")

CAUSE An error occurred while processing specifications defined for
the final phase of fields editing. Please refer to Data Entry

and Forms Management System VPLUS/3000 for a detailed
 description of the "error-num" returned in VFINISHFORM
 intrinsic.

ACTION Please read the ACTION section regarding "error-num" returned
 in VFINISHFORM intrinsic.

--

1417 MESSAGE CURSOR positioning failed. (VPLUS #"error-num")

CAUSE An error occurred in CURSOR positioning. Please refer to Data
Entry and Forms Management System VPLUS/3000 for a detailed

description of "error-num" returned in VPLACECURSOR intrinsic.

 ACTION Please read the ACTION section regarding the "error-num"
 returned in VPLACECURSOR intrinsic.

--

1418 MESSAGE Incompatible version of VPLUS installed.

 CAUSE A current version of VPLUS is not installed.

 ACTION Please consult the system manager.

--

1419 MESSAGE Field initialization data errors detected. (VPLUS
 #"error-num")

CAUSE An error occurred in data initialization. Please refer to Data
Entry and Forms Management System VPLUS/3000 for a detailed

description of "error-num" returned in the VINITFORM intrinsic.

ACTION Please read the ACTION section regarding "error-num" returned
 in the VINITFORM intrinsic.

--

1420 MESSAGE Field editing data errors detected. (VPLUS #"error-num")

CAUSE An error occurred in data editing. Please refer to Data Entry
and Forms Management System VPLUS/3000 for a detailed

a- 54

 description of "error-num" returned in the VFIELDEDITS
 intrinsic.

ACTION Please read the ACTION section regarding "error-num" returned
 in the VFIELDEDITS intrinsic.

--

1421 MESSAGE "error-num" (HPDERR "error-message").

 CAUSE An error occurred in one of the HPDialog routines. Please
 refer to the HPDialog Reference Manual for a detailed
 description of "error-num" returned.

ACTION Please read the ACTION section regarding "error-num" returned
 in HPDialog intrinsic routines.

--

1490 MESSAGE VERIFY command not allowed while program is running.

 CAUSE A VERIFY command has been used while a program was suspended
 (either by the PAUSE statement or by an unhandled error).

 ACTION Issue a STOP command to stop your program.

--

1491 MESSAGE FORMATTED option to LIST not allowed while program is running.

 CAUSE A LIST command with the FORMATTED option has been used while
the program was suspended (either by the PAUSE statement or by

 an unhandled error).

 ACTION Issue a STOP command to stop your program.

--

1492 MESSAGE XREF command not allowed while program is running.

CAUSE An XREF command has been used while the program was suspended
(either by the PAUSE statement, by hitting HALT key, or by an

 unhandled error).

 ACTION Issue a STOP command to stop your program.

--

1496 MESSAGE GETHEAP failure in library.

 CAUSE This is a heap management problem. The system does not have
 enough memory to run the program. The most probable case is

that the program is too big or too many variables are used in
 the program.

 ACTION Break the program up into smaller subprograms or use fewer
 variables.

 ACTION You need to do garbage collection by saving the program in
 ASCII format and GET the program again in the interpreter.

--

1497 MESSAGE RTNHEAP failure in library.

CAUSE This is a heap management problem due to an internal problem.
 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

1498 MESSAGE Catastrophic program error.

 CAUSE This is an internal problem.

 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

a- 55

--

1499 MESSAGE Catastrophic error in heap management (unable to return heap
 space).

 CAUSE This is a heap management problem due to internal problems.

 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

1500 MESSAGE Internal consistency check #"num" failed. Report the problem
 to HP.

 CAUSE This is an internal problem.

 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

1502 MESSAGE WARNING "warning message".

 CAUSE This warning message is generated by the SYSTEM statement or
":" as a system command. When the STATUS clause is specified

in the SYSTEM statement, you will not see the warning message.

 ACTION None.

--

1503 MESSAGE WARNING 1503: Default STACKsize from program "prog-name".

 CAUSE The stacksize specified in the SYSTEMRUN statement was less
 than 512.

 ACTION None. The default stacksize is used to run the program.

--

1504 MESSAGE WARNING 1504: Default DLsize from program "prog-name".

CAUSE The dlsize specified in the SYSTEMRUN statement was less than
 zero.

 ACTION None. The default dlsize is used to run the program.
--

1505 MESSAGE WARNING 1505: Default MAXDATA from program "prog-name".

 CAUSE The maximum stack area value, MAXDATA, specified in the
 SYSTEMRUN statement is less than or equal to zero.

 ACTION None. The default configuration maximum is used to run the
 program.

--

1506 MESSAGE WARNING 1506: DLsize rounded up to next 128 word multiple in
 program "prog-name".

 CAUSE The dlsize specified in the SYSTEMRUN statement was not a
 multiple of 128.

 ACTION None. The new dlsize value is used to run the program.

--

1507 MESSAGE WARNING 1507: MAXDATA decreased to configuration maximum in
 program "prog-name".

 CAUSE The maximum stack area value, MAXDATA, specified in the
SYSTEMRUN statement is larger than configured maximum for your

 system.

 ACTION None. MAXDATA is decreased to the configured maximum.

a- 56

--

1508 MESSAGE WARNING 1508: MAXDATA increased to DLsize + globsize +
 STACKsize in program "prog-name".

 CAUSE The maximum stack area value, MAXDATA, specified in the
SYSTEMRUN statement is smaller than the minimum required to run

 the program.

 ACTION None. MAXDATA is increased to run the program.

--

1509 MESSAGE WARNING 1509: "parm-name" was specified more than once, last
 value taken.

CAUSE A parameter to the SYSTEMRUN statement was specified more than
 once.

 ACTION None. Only the last value for that particular parameter is
 used. The rest are ignored.

--

1511 MESSAGE WARNING 1511: Extra semicolon ignored.

CAUSE An extra delimiter has been entered in the SYSTEMRUN statement.

 ACTION None. The extra semicolon is ignored.
--

1536 MESSAGE WARNING 1536: The spelling of that "string" was corrected

 CAUSE This is a HELP command warning in the interpreter.

 ACTION The spelling of the "string" entered in the HELP command is
 corrected to the topic that is closest in spelling to the
 "string" entered. Help information is provided on the
 corrected topic.

--

1539 MESSAGE WARNING 1539: The spelling of that "string" was truncated

 CAUSE This is a HELP command warning in the interpreter.

 ACTION None.

--

1564 MESSAGE UnSAVEd source modifications will be lost. Do you really want
 to EXIT? Y

 CAUSE In the interpreter, the EXIT command was issued before a
 program that was modified had been saved.

ACTION Save the program first or press the return key to exit without
 saving the modifications.

--

1602 MESSAGE Modify command found at or past continuation character. Try
 again

CAUSE A line was modified at or past the continuation character, "&".

 ACTION Redo the modification.

--

1603 MESSAGE Line "linenum" is busy and cannot be changed.

CAUSE A "linenum" is busy if one of the following condition is true:

 The line made a call which has not returned.

The line was interrupted with the halt key before it finished

a- 57

 executing.

 ACTION Change or modify the line when it has finished execution.

--

1605 MESSAGE Line "linenum" secured and cannot be modified.

CAUSE The line number specified is secured and cannot be modified. A
secured line cannot be listed, only an asterisk is displayed.

 ACTION Re-enter the line.
--

1608 MESSAGE TRACE VARS list can only be used in a program or when PAUSEd.

 CAUSE A TRACE VARS list is not allowed in COMMAND mode.

 ACTION Use TRACE VARS list in a program.

--

1733 MESSAGE The formal parameter space request for "proc_name",
 "num_bytes", exceeds the maximum value available of
 "limit_num_bytes" bytes.

 CAUSE During processing of the EXTERNAL and INTRINSIC, the formal
 parameter space for the definition exceeds the maximum value
 allowable.

 ACTION Reduce the number of formal parameters to the external, or
redefine the intrinsic file definition so that fewer parameters

 are required.

--

1734 MESSAGE Unable to close intrinsic file "intr_file_name.

CAUSE An invalid file system value was returned when trying to close
 the intrinsic file, "intr_file_name".

 ACTION This is a file system problem that might be circumvented by
 terminating all processes that reference the file.

--

1735 MESSAGE Error reading intrinsic file "intr_file_name".

CAUSE There is either invalid parameter information in the intrinsic
 file for the parameter or a file system problem.

 ACTION Rebuild the intrinsic file.

--

1736 MESSAGE Parameter #parm_num to procedure proc_name is invalid as a
 formal parameter.

CAUSE The formal parameter obtained from the intrinsic file is not a
 type that is supported in HP Business BASIC/XL. The types
 supported in HP Business BASIC/XL are 16 bit integer, 32 bit
 integer, 32 bit IEEE floating point, 64 bit IEEE floating
 point, and string.

 ACTION If possible, define the intrinsic as an external and use a
 formal parameter that has the same size as that in the
 intrinsic file.

--

1737 MESSAGE Error reading intrinsic file "intr_file_name" while processing
 procedure information for proc_name.

CAUSE There is either invalid procedure information in the intrinsic
 file or a file system problem.

 ACTION Rebuild the intrinsic file.

a- 58

--

1738 MESSAGE Type mismatch for parameter #parm_num, formal parameter type is
 formal_parm_type while actual parameter type is
 actual_parm_type.

 CAUSE The type of the formal and actual parameters do not match.

 ACTION Correct the actual parameter number parm_num so that it is
 formal_parm_type type.

--

Numbered Error Messages (1739 - 2103)

--

1739 MESSAGE The dimensionality of formal and actual parameter #parm_num do
 not match.

 CAUSE Scalar formal parameter and array actual parameter or vice
 versa do not match, or formal and actual array parameters do
 not have the same number of dimensions.

ACTION Correct actual parameter number parm_num so that it is the same
 dimensionality as the formal parameter.

--

1740 MESSAGE Actual parameter #parm_num to be passed by reference is not a
 variable.

 CAUSE A literal or an expression actual parameter is being passed
 where the formal parameter specifies that a variable by
 reference is required.

ACTION Assign the value of the literal or expression to a variable of
 the type and dimensionality that corresponds to that of the

formal parameter. Substitute the variable for the literal or
 expression that is parameter number parm_num.

--

1741 MESSAGE Missing actual parameter without default value specified for
 formal parameter #parm_num of type parm_type.

CAUSE A required parameter in the call is missing. When HP Business
 BASIC/XL attempts to provide the default value, none is
 present. The error will occur when a parameter is missing:

 CALL Ext(A,,B)
 For example, the error will occur when three parameters are
 required and only two are provided:

 CALL Need_three(A,B)

Normally, HP Business BASIC/XL will provide the defaults that
 allow the externals to be called by using the information
 present in the intrinsic file.

 ACTION Add the default parameter to the definition in the intrinsic
 file. Supply the actual parameter, parm_num, of type
 parm_type.

--

1742 MESSAGE Invalid formal parameter type for parameter #parm_num:
 parm_type.

CAUSE The actual parameter number parm_num does not have a type that
 corresponds to one of the HP Business BASIC/XL data types.

ACTION Change the definition in the intrinsic file or use the default
 by leaving out the actual parameter in the actual parameter
 list.

a- 59

--

1743 MESSAGE Non-numeric or non-scalar actual parameter #parm_num cannot be
 passed by value.

CAUSE The actual parameter number parm_num is either non-numeric or
 is not a scalar parameter.

ACTION Only scalar numeric values can be passed by value. Alter the
 actual parameter so that it is a scalar.

--

1744 MESSAGE The actual parameter space requested for the call to proc_name
exceeds the maximum value of num_words at parameter #parm_num.

CAUSE The space allocated by the interpreter for parameter space was
 exhausted when loading parameter number parm_num during the
 call to proc_name.

 ACTION Reduce the number of actual parameters for the call to
 proc_name.

--

1745 MESSAGE The structure of the HP Business BASIC/XL string array actual
parameter is incompatible with the formal parameter #parm_num.

 CAUSE An HP Business BASIC/XL string array was passed to a non-HP
 Business BASIC/XL external.

 ACTION Assign the element of the string array to a scalar string.
--

1746 MESSAGE Actual parameter #parm_num to be passed by anyvar is not a
 variable.

CAUSE The intrinsic file specifies that formal parameter parm_num for
 the call to the intrinsic must be a variable passed by
 reference.

 ACTION Assign the value of the literal or expression to a variable.
Substitute that variable for the literal or expression that is

 parameter number parm_num.

--

1747 MESSAGE The type of the value returned by function func_name,
 function_return_type, has no equivalent type in Business
 BASIC/XL.

CAUSE function_return_type is not a valid HP Business BASIC/XL data
 type that can be returned by a function.

 ACTION Use the CALL statement to call the function without a return
 value.

--

1748 MESSAGE The type or dimensionality of formal and actual parameter
 #parm_num do not match.

 CAUSE Either the type or dimensionality of the formal and actual
 parameters do not match.

ACTION Check formal parameter number parm_num to be certain that the
 corresponding actual parameter in the call has both the same
 type and dimensionality.

--

1749 MESSAGE ALIAS name provided, alias_name, exceeds the maximum length of
 max_length characters.

 CAUSE The length of an alias name is too long.

a- 60

 ACTION Reduce the length of the alias name.

--

1750 MESSAGE Formal parameter #parm_num of type parm_type to procedure
proc_name has no corresponding Business BASIC/XL data type and

 no default value.

 CAUSE An error occurred while processing the definition of the
intrinsic proc_name, specifically while looking up information

 for formal parameter number parm_num. HP Business BASIC/XL
will not be able to call proc_name because the data type of the
formal parameter has no corresponding type and no default value

 is supplied.

 ACTION Redefine the external proc_name in a new intrinsic file and
 supply the default.
 Define the external proc_name in an EXTERNAL statement and
 supply the appropriate formal parameters.

--

1751 MESSAGE A BYTE type array parameter is an invalid data type for formal
 parameter #parm_num.

 CAUSE An external definition contained a BYTE type parameter. For
 example,

 EXTERNAL A(BYTE VALUE(A(*))

 BYTE keywords are not allowed.

 ACTION Remove the BYTE keyword from the list of formal parameters.

--

1752 MESSAGE BYTE type is an invalid data type for formal parameter
 #parm_num to an Business BASIC/XL external.

 CAUSE BYTE type formal parameters are not valid in an HP Business
 BASIC/XL external definition.

 ACTION Remove the BYTE keyword form the list of formal parameters.

--

1753 MESSAGE A scalar BYTE reference parameter is an invalid data type for
 formal parameter #parm_num.

 CAUSE A reference parameter of type BYTE is invalid. For example,

 EXTERNAL PASCAL A(BYTE A)

 ACTION Change the external's definition so that parameter number
 parm_num is passed by value.

--

1754 MESSAGE Array formal parameter #parm_num by value is invalid.

 CAUSE Only scalar formal parameters can be passed by value.

 ACTION Remove the VALUE form the definition of the formal parameter
 number parm_num in the formal parameter list.

--

1755 MESSAGE String or BYTE string formal parameter #parm_num by value is
 invalid.

CAUSE An external definition has a string parameter passed by value.
 For example,

 EXTERNAL PASCAL A(VALUE A$)

 EXTERNAL PASCAL B(BYTE VALUE A$)

a- 61

 ACTION Remove the VALUE keyword from the definition of the formal
 parameter number parm_num.

--

1756 MESSAGE Intrinsic filename "intr_file_name" exceeds the maximum
 filename length of max_file_name_length characters.

 CAUSE An invalid filename has been provided.

 ACTION Correct the name of the file.

--

1757 MESSAGE Formal parameter #parm_num passed by value to procedure
 proc_name has incorrect default size of num_bytes bytes.

CAUSE The information for the default size supplied in the intrinsic
 file contains an error.

 ACTION Rebuild the intrinsic file.

--

1758 MESSAGE Formal parameter #parm_num passed by reference to procedure
 proc_name has incorrect default size of num_bytes bytes.

CAUSE The information for the default size supplied in the intrinsic
 file contains an error.

 ACTION Rebuild the intrinsic file.

--

1759 MESSAGE Unable to lead procedure proc_name when searching in library
 list beginning with xl_name.

 CAUSE The entry point name specified does not exist in any of the
 libraries in the library list.

 ACTION Check the spelling of the external. Use the linkeditor to
 check the names of the entry points in the libraries.

--

1760 MESSAGE Procedure or function proc_name not found in intrinsic file
 "intr_file_name".

 CAUSE The intrinsic entry does not exist in the intrinsic file,
 intr_file_name.

ACTION Check the entries in the intrinsic file to be certain that the
 entry exists.

--

1761 MESSAGE EXTENSIBLE value provided exceeds the valid range of
 lower_bound to upper_bound.
 CAUSE The value following the EXTENSIBLE keyword is not within the
 bounds of lower_bound to upper_bound.

ACTION Change the definition so that the value is within the specified
 range.

--

1762 MESSAGE External procedure proc_name has been previously defined.

CAUSE The procedure or function name to be used to call the external,
proc_name, is not unique in the main, procedure, or function.

 Calls to the procedure or function will be ambiguous.

 ACTION Change the spelling of one of the names of the procedures in
 the external or intrinsic definitions.

--

a- 62

1763 MESSAGE External name provided, proc_name, exceeds the maximum length
 of max_num_characters .

 CAUSE The external name length is too long.

ACTION Shorten the name so that it is less than max_num_characters in
 length.

--

1764 MESSAGE Intrinsic intr_name parameter parm_num by reference has invalid
 address type specification of address_type.

 CAUSE Parameter number parm_num of the intrinsic intr_name has an
 invalid address type specified in the intrinsic file.

 ACTION Rebuild the intrinsic file.

--

1765 MESSAGE External proc_name has an entry point name, ent_point_name,
returned from the intrinsic file, that exceeds the maximum of

 max_num_chars characters.

 CAUSE The entry point name is too long.

 ACTION Rebuild the intrinsic file using a shorter entry point name.

--

1766 MESSAGE The actual parameter space request for the call to proc_name of
 num_words words exceeds the maximum value of max_num_words
 words.

 CAUSE An ANYPARM call requires num_words words of parameter space
 when only max_num_words words are available.

 ACTION Each actual parameter in the call to the ANYPARM procedure
 requires two words of actual parameter space. Reduce the
 number of actual parameters to the call.
--

1800 MESSAGE WARNING 1800: No closing quotation mark found!.

 CAUSE A string literal had no closing quotation mark.

ACTION None. The interpreter will insert the missing quotation mark.

--

1801 MESSAGE WARNING 1801: String too long; re-enter from item "item-no"

CAUSE A string that is longer than the declared string variable was
 entered.

ACTION Re-enter a string that is within the declared length or modify
 the program to extend the declared string length.

--

1802 MESSAGE WARNING 1802: Input too long. Please re-enter.

 CAUSE A string that is longer than the declared string variable in
 the INPUT statement has been entered.

ACTION Re-enter a string that is within the declared length or modify
 the program to extend the declared string length.

--

1804 MESSAGE WARNING 1804: The file "filename" did not previously exist

 CAUSE A file that did not previously exist has been resaved.

ACTION None. The program will be saved with the SAVE command, rather
 than the RESAVE command.

ETE
a- 63

--

1805 MESSAGE MESSAGE 1805: Statement not implemented in HPBB (at character
 "char-num")

 CAUSE The program uses an unimplemented feature.

 ACTION Do not use the unimplemented feature.

--

1806 MESSAGE WARNING 1806: Name at character "number" too long. Name
 Truncated.

 CAUSE The identifier specified is longer than 64 characters.

 ACTION None. The identifier is truncated to 64 characters.

--

1807 MESSAGE WARNING 1807: Bad numeric input; re-enter from item "item-no"

 CAUSE The value entered does not match the type of the numeric
 variable in the INPUT statement.
 ACTION Re-enter the correct numeric value.

--

1809 MESSAGE WARNING 1809: The PROTECT word "string" was truncated to
 "string".

 CAUSE The lockword specified is longer than 8 characters.

 ACTION None. The new lockword is truncated to 8 characters.

--

1811 MESSAGE WARNING 1811: COMMON area name too long, truncated to
 "string".

 CAUSE The common name specified is longer than nine characters.

 ACTION None. The new name is truncated to nine characters.

--

1812 MESSAGE WARNING 1812: This statement is not compilable.

 CAUSE This is a warning message issued by the interpreter command,
CWARNINGS, that lists statements that are not compilable. Any
statement that modifies an HP Business BASIC/XL program at run

 time or requires the interpreter environment cannot be
 compiled.

 This warning occurs with the following statements:

COMMAND GET MERGE SCRATCH DEFAULT GETSUB RESAVE SECURE DEL
 LINK

 ACTION The following change will prevent the execution of a
 non-compilable statement in a compiled program:

 100 GET "abc"

 change to

 100 IF INTERPRETED THEN GET "abc"

--

1813 MESSAGE WARNING 1813: This statement is not compilable. (generates no
 code)

CAUSE This is a warning message generated by the interpreter command,
CWARNINGS, that lists statements that cause compiler warnings.
These statements are primarily for debugging and the compiler

 does not generate any code for them.

a- 64

 ACTION None.

--

1814 MESSAGE WARNING 1814: Only one copy of subunit "name" will be saved.
 CAUSE Multiple copies of a subunit were saved under the same name.
 For example

 > SAVE FILEX, SUB A, SUB B, SUB A (SUB A is entered twice)

> SAVE FILEX, 10/100, SUB B (SUB B is already saved in 10/100
)

 ACTION None. Only one copy of subunit will be saved.

--

1815 MESSAGE WARNING 1815: The file contains invalid (SECUREd) program
 lines.

CAUSE A program that has secured program lines in ASCII or in BASIC
 DATA format has been saved. These secured lines will cause
 syntax error during GET because only an "asterisk" is stored
 for each secured statement.

 ACTION When program lines are secured, always save the program in
 BASIC SAVE format.

--

1816 MESSAGE WARNING 1816: Renumbering line ignored when GETting a BASIC
 SAVE file.

 CAUSE A line was renumbered during a BASIC SAVE GET.

 ACTION None. You are allowed to renumber program lines only when
 getting a BASIC DATA or an ASCII file.

--

1817 MESSAGE WARNING 1817: Unable to do a required purge of the temporary
 file.

CAUSE A temporary file was created and could not be purged following
 its use.

 ACTION None. This is just a warning.

--

1818 MESSAGE WARNING 1818: NLS not installed, unable to open native message
 catalog.

 CAUSE Native Language Support is not installed on your system.

ACTION You must log on as MANAGER.SYS and run the LANGINST program to
add languages to the configuration file. Please refer to the

Native Language Programmer's Guide for more information about
 installing native languages.

--

1819 MESSAGE WARNING 1819: Native language "num" is not configured

 CAUSE The specified native language is not configured.
ACTION You must log on as MANAGER.SYS and run the LANGINST program to

 add the language number to the configuration file. Please
 refer to the Native Language Programmer's Guide for more
 information about installing native languages.

--

1820 MESSAGE WARNING 1820: Error message text is now inaccessible.

 CAUSE The message catalog file, HPBBCAT.PUB.SYS, is inaccessible.

a- 65

 ACTION Exit Business BASIC and find out what is wrong with
 HPBBCAT.PUB.SYS.

--

1821 MESSAGE WARNING 1821: Recommend that you exit Business BASIC and retry.

 CAUSE The message catalog is inaccessible. This message is an
 additional message to warning 1820.

 ACTION Exit Business BASIC and find out what is wrong with
 HPBBCAT.PUB.SYS.

--

1822 MESSAGE WARNING 1822: Unable to open message catalog for native
 language "num".

CAUSE The message catalog for the native language number num is not
 available.

ACTION None. The default message catalog file, HPBBCAT.PUB.SYS, for
 language number 0 is used instead.

--

1823 MESSAGE It is recommended that you VERIFY and then RESAVE this program.

 CAUSE This warning message is generated if you have an old file
version. This does not mean the file cannot be read. It is a

 suggestion.

 ACTION VERIFY and RESAVE the program.

--

1830 MESSAGE WARNING 1830: Programs cannot be RUN with this amount of
 subunit space.

CAUSE The amount of space available on the system is not sufficient
 to run HP Business BASIC/XL.

 ACTION Consult your system manager.

--

1831 MESSAGE WARNING 1831: RLINIT, RLFILE, and LOCALITY apply to MPE/XL
 only.

CAUSE These compiler options apply to a native mode program on MPE/XL
 only and will be ignored on other systems.

 ACTION None.

--

1832 MESSAGE WARNING 1832: USLINIT applies only to MPE/V systems.

CAUSE COPTION USLINIT applies to MPE/V system only and is ignored on
 MPE/XL system.

 ACTION None.

--

2001 MESSAGE VERIFY is needed on subunit "name".

 CAUSE A program containing a poorly formed program unit has been
saved. The interpreter issues a warning message and marks the

 program unit as noncompilable.

ACTION Use the VERIFY command in the interpreter to find and correct
 the problem.

--

2004 MESSAGE An expression is not allowed here.

a- 66

 CAUSE A parameter to the compiler options contains an expression.

ACTION Only use numbers or quoted strings for parameters in compiler
 options.

--

2005 MESSAGE ERROR, HALT, or KEY statement found while NO ERROR HANDLING
 option in effect.

CAUSE When COPTION NO ERROR HANDLING is used, ON ERROR, ON HALT, or
 ON KEY statements cause a compile time error.

ACTION Take out the COPTION or do not use the ON ERROR, ON KEY, or ON
 HALT statements.

--

2006 MESSAGE Parameter on "coption name" option is out of range.

 CAUSE A numeric parameter to a compiler option is outside of it's
legal range. For example, a parameter of the LINES option is

 outside the range of [0..9999].

ACTION Change the value to be the legal range for the compiler option.

--

2008 MESSAGE Error creating process: "error-num "

 CAUSE The CREATEPROCESS intrinsic failed with error-num.
ACTION Please refer to the MPE XL Intrinsics Reference Manual for the

 error numbers returned in the CREATEPROCESS intrinsic, or
 consult your system manager.

--

2009 MESSAGE Error "error-num" in COMMAND intrinsic: "error-msg"

 CAUSE The COMMAND intrinsic failed.

 ACTION Please refer to the MPE XL Intrinsics Reference Manual for
 error numbers returned in the COMMAND intrinsic, or consult
 your system manager.

--

2010 MESSAGE Couldn't open input file.

CAUSE The input file specified for the compiler could not be opened.
 Probable causes are that the file does not exist or it is
 opened in a conflicting mode.

 ACTION Check the compiler input file.

--

2011 MESSAGE Number of dimensions for array "name" not known in subunit
 "name"

 CAUSE The number of dimensions for the array name cannot be
 determined at compile time.

ACTION Use the interpreter to explicitly dimension the array, specify
the exact number of asterisks in an array parameter, or access

 a specific array element.

--

2012 MESSAGE Total space needed for variables is too big.

 CAUSE The number or size of variables in the program exceeds the
 limit.

 ACTION Reduce the number or size of variables in the program.

--

a- 67

2013 MESSAGE Total space needed for parameters is too big.

 CAUSE The number or size of parameters to the subunit exceeds the
 limit.

 ACTION Reduce the number or size of parameters to the subunit.

--

2014 MESSAGE Total space needed for DATA is too big.

CAUSE The number or size of values in the DATA statements exceeds the
 limit.
 ACTION Reduce the number or size of values in the DATA statements.

--

2017 MESSAGE Fatal compiler error; compile terminated.

 CAUSE A fatal compiler error was encountered, and the compile
 terminated because of one of the following errors:

 47 "Name" COMMON area does not exist.

47 Dimensions or type of COMMON variable in line "num" doesn't
 match main.

 1143 Can't read from file.

 1499 Catastrophic error in heap management (unable to return
 space).

 2001 VERIFY is needed on subunit "name".

 2012 Total space needed for variables is too big.

 2013 Total space needed for parameters is too big.

 2014 Total space needed for DATA is too big.

2011 Number of dimensions for array "name" not known in subunit
 "name".

 ACTION Use the interpreter to correct the problem, and recompile.

--

2018 MESSAGE Can't open internal communication file. File system error
 "error-num".

 CAUSE An HP Business BASIC/XL internal file could not be opened.

ACTION Consult your system manager or refer to the MPE XL Intrinsics
Reference Manual .

--

2019 MESSAGE Expression too complicated.

 CAUSE The expression in the statement is too complicated, it might
 cause stack overflow or code segment overflow.

 ACTION The expression should be made simpler by putting parts of it
into temporary variables, and then using the variables in the

 expression.

--

2020 MESSAGE Redimension of "array-name"() illegal because of NO REDIM
 compiler option.
 CAUSE When COPTION NO REDIM is used to disallow redimensioning of

arrays, any statements that attempt to change the dimension of
 arrays will cause a compile time error. For example:

 10 COPTION NO REDIM

 20 DIM A(1,2)

a- 68

 30 MAT READ A(1,1) ! attempt to redim. A

ACTION Change the compiler option or change the statements so that no
 redimensioning is done.

--

2021 MESSAGE BASIC Compiler Backend Error: [in procedure proc_name] 'Actual
 backend error message.' Fatal compiler error; compile
 terminated.

 CAUSE A problem has been detected by one of the code generating
subsystems of the compiler. The error has occurred in either

the optimizer or the code generator itself. The procedure name
being compiled when the error occurred will be substituted for
proc_name, if it is known. In order to clarify the nature of
the error, the actual backend error message is printed as the

 second line in the error message. All of these errors will
cause the compiler to abort. Serious errors will result in a

 stack trace as well. The stack trace is helpful as
 documentation for resolving the problem with your HP
 representative.

 ACTION Some of the problems can be corrected by reading the text of
the 'Actual backend error message' and rectifying the problem.
Other problems are internal compiler code generation problems

 that should be reported to your HP representative.

 Examples of 'Actual backend error message':
 ** MESSAGE Cannot open object file
 obj_file_name (5209)

CAUSE The object code file specified in the
command to run the compiler cannot be

opened because the system is out of
disk space or because your disk space

 limit, as set by the system
 administrator, has been reached.

ACTION Make sure that a sufficient amount of
 disk space exists.

 ** MESSAGE Invalid file code for object file
 obj_file_name (5211)

CAUSE The object code file specified in the
command to run the compiler does not

 have an NMOBJ or NMRL file code.

 ACTION Check the file code for the file
 named obj_file_name or the file

specified by you as the object code
 file. BBCOBJ is the file that the
 compiler uses after it has been
 equated to your file.

** MESSAGE File file_name has invalid file code;
 expected NMRL (5381)

CAUSE The object code file specified in the
command to run the compiler does not

 have an NMRL file code.

 ACTION Check the file code for the file
named file_name or the file specified

 by you as the object code file.
BCOBJ is the file that the compiler

 uses after it has been equated to
your file. Either build an RL file

 using the linkeditor or do not use
 the RL compile options.

a- 69

 ** MESSAGE File file_name has invalid record
size. Expected 128W records (5383)

CAUSE The object code file specified in the
command to run the compiler is an RL

file with an NMRL file code that does
 not have 128 word records.

ACTION Check the record length for the file
named file_name or the file specified

 by you as the object code file.
BBCOBJ is the file that the compiler

 uses after it has been equated to
your file. Build a new RL file using

 the linkeditor.

--

2050 MESSAGE WARNING 2050: TRACE or PAUSE statement found and ignored.

 CAUSE The compiler did not generate any code for a TRACE or PAUSE
 statement.

 ACTION None. These statements are used primarily for debugging.

--

2051 MESSAGE WARNING 2051: Multiple copy of subunit "sub-name" found and not
 compiled.

CAUSE Multiple copies of a subunit that have the same name were found
 in the program.

ACTION If a program has more than one subunit with the same name, only
the one with the lowest line number is compiled. To compile a

higher-numbered subunit, remove the lower-numbered one with the
 same name.

--

2053 MESSAGE WARNING 2053: Noncompilable statement; run-time error will
 result.

CAUSE Any statement that attempts to modify an HP Business BASIC/XL
 program at run time or requires the interpreter environment
 will result in a run-time error. The following statements
 generate this warning.

 COMMAND

 GET

 MERGE

 SCRATCH

 DEFAULT

 GETSUB

 RESAVE

 SECURE

 DELETE

 LINK

 ACTION The following change will prevent the execution of a
 non-compilable statement in the compiled program:

 100 GET "abc"is changed to 100 IF INTERPRETED THEN GET "abc"

--

2054 MESSAGE WARNING 2054: "array-name"() may be redimensioned despite NO

a- 70

 REDIM compiler option.
CAUSE A matrix operation that might cause an implicit redimensioning

of an array will generate this warning message at compile time.
 For example,

 10 COPTION NOREDIM

 20 DIM A(4,2), B(2), C(5)

 30 MAT C = MUL(A,B) ! C may be redimensioned

ACTION None, if you know exactly how the array will be redimensioned.
Otherwise, the results will be unpredictable when the array is

 redimensioned. The compiler will not generate code to check
 the array bounds with COPTION NOREDIM.

--

2055 MESSAGE WARNING 2055: Redim of "array-num"() possible; check REDIM
 coption of actual parms

 CAUSE The array that is passed in the actual parameter might be
 redimensioned and COPTION NOREDIM is used in the caller
 subroutine.

ACTION None if you know exactly how the array will be redimensioned.
Otherwise, the results will be unpredictable when the array is

 redimensioned and you are not aware of the changes. The
compiler will not generate code to check the array bounds with

 COPTION NOREDIM.

--

2056 MESSAGE WARNING 2056: [on line line_num:]'Actual backend warning
 message.'

 or

WARNING 2056: in procedure proc_name: 'Actual backend warning
 message.'

 or

WARNING 2056: on line line_num in procedure proc_name: 'Actual
 backend warning message.'

CAUSE This warning describes a non-fatal event that occurred during
program compilation. The line_num and proc_name are printed,

 if available.

ACTION None, other than to be aware that the event may have an effect
 on results.

 Example of 'Actual backend warning message':

** MESSAGE Previous version of entry proc_name
 was replaced (5080)

CAUSE The object code for the entry listed
has been replaced in the specified RL

 file.

--

2100 MESSAGE Too many GOSUBs before a RETURN. Use MAXGOSUBS option to
 increase maximum.

 CAUSE Too many GOSUB statements were executed before a RETURN
 statement was executed.

 ACTION Use the MAXGOSUBS compiler option to increase the maximum
 number of GOSUB statements allowed before a RETURN.

--

a- 71

2101 MESSAGE An unknown arithmetic error occurred.

 CAUSE This is caused by an internal problem.

 ACTION Further investigation of this problem is required. Please
 contact your Hewlett-Packard representative.

--

2103 MESSAGE Attempt to execute a noncompilable statement.

CAUSE Any statement that attempts to modify an HP Business BASIC/XL
 program at run time or requires the interpreter environment
 will result in run-time error. The following statements
 generate this message.

 COMMAND

 GET

 MERGE

 SCRATCH

 DEFAULT

 GETSUB

 RESAVE

 SECURE

 DELETE

 LINK

 ACTION The following change will prevent the execution of a
 non-compilable statement in the compiled program:

100 GET "abc" is changed to 100 IF INTERPRETED THEN GET "abc"

--

Syntax errors

The following error messages are the syntax errors. They are all error
68, although in some cases you will get these messages instead of the
message for error 68 (Syntax error at character N). Those errors are
marked as substitute errors.

 MESSAGE One of the clauses is not allowed with this statement.

 CAUSE One of the clauses following an HP Business BASIC/XL database
 keyword incorrectly occurs following that keyword.

 ACTION Check the syntax of the database statement in the Help Catalog
 or the HP Business BASIC/XL Reference Manual to be certain that
 you are using the correct syntax.

 MESSAGE One of the clauses occurred more than once.

 CAUSE One of the clauses following an HP Business BASIC/XL database
 keyword has been repeated.

 ACTION Check the syntax of the database statement in the Help Catalog
 or the HP Business BASIC/XL Reference Manual to be certain that
 you are using the correct syntax.

 MESSAGE The statement is missing one or more clauses.

a- 72

 CAUSE This is a substitute message for error number 68. One or more
 of the clauses following an HP Business BASIC/XL database
 keyword is missing.

 ACTION Check the syntax of the database statement in the Help Catalog
 or the HP Business BASIC/XL Reference Manual to be certain that
 you are using the correct syntax.

 MESSAGE The line number is not between 1 and 999999.

 CAUSE This is a substitute message for error number 68. The line
 number associated with GOTO, CONTINUE, BEGIN REPORT, GOSUB, or
 CONVERT, or the line number used in a command such as SAVE,
 FIND, or GET is not in the line range [1, 999999].

 ACTION Use a line number in the range [1, 999999].

 MESSAGE This statement is not allowed in a COMMAND statement.

 CAUSE This is a substitute message for error number 68. Illegal
 syntax in a COMMAND statement. For example

 10 COMMAND "if a then input b"

 The error will only be generated with command strings that
 contain the following keywords: FLUSH INPUT, ENTER, INPUT,
 LENTER, ACCEPT, COMMAND, LINPUT, MAT INPUT, MAT READ, PAUSE, or
 TINPUT.
 ACTION Modify the quoted string literal or the value of the string
 variable following the COMMAND keyword so that it does not
 include any of the above keywords.

 MESSAGE The class of an active subunit may not be changed.

 CAUSE This is a substitute message for error number 68. A program
 line that is a procedure header line, (SUB), has been replaced
 during editing with a program line that is a function header,
 (DEF), or vice versa.

 ACTION Procedure and function header lines cannot replace each other.
 If you want to change a procedure to a function or vice versa,
 enter the new header line at the end of the current program and
 use the COPY command to copy the body. Next, do a DEL SUB of
 the original header and body.

 MESSAGE The generic type (string/number) of an active function may not
 change.

 CAUSE This is a substitute message for error number 68. The type of
 value returned by a function was changed when the program was
 paused or halted while in the function. A numeric type was
 changed to a string type or vice versa.

 ACTION Allow the program execution to terminate and then make the
 required changed.

 MESSAGE Number after ' in string is not between 0 and 255.

 CAUSE The singe quote (') in a string literal is used to denote a
 character by its ASCII equivalent number. For 8-bit
 characters, these numbers can range from 0 to 255. A single
 quote was encountered followed by a number greater than 255.

 ACTION Determine the correct number for the desired character.

a- 73

 MESSAGE A number between 0 and 255 must follow ' in the string.

 CAUSE A single quote was encountered in a string literal and was not
 followed by a digit.

 ACTION Determine the correct ASCII character number for the desired
 character and place it after the '.

 MESSAGE Unknown character " " found (ASCII nnn).

 CAUSE A character was encountered which was not in the set of legal
 HP Business BASIC/XL characters.
 ACTION If the character was entered inadvertently, retype the line
 (using REDO is not recommended). If the illegal character is
 part of a string, use the singe quote (') notation to specify
 the character.

 MESSAGE Parser stack overflow. Statement too complex.

 CAUSE The statement entered was so complex that HP Business BASIC/XL
 was unable to process it without overflowing internal tables.

 ACTION Break up the line into at least two less complex statements.

 MESSAGE This statement is not allowed in this context.

 CAUSE A statement has been entered in a place in the program where it
 cannot legally go. For example, a SUB statement was entered in
 the middle of another subunit or a GLOBAL statement was used in
 a subunit other than MAIN.

 ACTION Add new SUBs and multi-line DEFs only at the end of the
 program. Use GLOBAL statements only in MAIN.

 MESSAGE Could not create number from input line text.

 CAUSE A statement was entered with an invalid line number.

 ACTION Use an integer line number in the range [1, 999999].

 MESSAGE OPTION BASE must use 0 or 1.

 CAUSE An OPTION BASE statement was entered specifying a base other
 than zero or one.

 ACTION If arrays are to have lower bounds other than zero or one,
 those bounds must be explicitly stated in the array
 declaration. Only zero or one is specified as the default
 lower bound with the OPTION statement or HPBBCNFG.Pub.Sys.

 MESSAGE Whole array reference illegal in this context.

 CAUSE A whole array reference (an array name followed by an asterisk
 with parentheses) has been used where only a scalar or simple
 data item is allowed.

 ACTION Use the MAT statements to manipulate whole arrays.

 MESSAGE Variably dimensioned arrays and strings illegal in MAIN
 program.

a- 74

 CAUSE A variable has been used to declare the array size or the
 string length in a string array declaration, and this is not
 allowed in MAIN.

 ACTION Declare the array dimension or the string length explicitly in
 MAIN.

 MESSAGE Improper string length declaration.

 CAUSE A variable instead of a constant has been used to declare the
 length of a string declaration in MAIN.

 ACTION Declare the sting length explicitly in MAIN.

 MESSAGE Either DATASET or ITEMS clause must be given.

 CAUSE A statement that requires a DATASET or ITEMS clause has been
 entered with neither a DATASET nor an ITEMS clause.

 ACTION Provide the required clause.

 MESSAGE You may not specify both the DATASET and the ITEMS clause.

 CAUSE The DBINFO statement does not allow both the DATASET and ITEMS
 clauses.

 ACTION Check the DBINFO mode to specify either the ITEMS clause or the
 DATASET clause, but not both.

 MESSAGE You may not specify both the DATASET and the DESCRIPTOR
 clauses.

 CAUSE The DBLOCK statement does not allow both the DATASET and the
 DESCRIPTOR clauses.

 ACTION Check the LOCK mode. If the LOCK mode is 3 or 4, specify the
 DATASET clause. If the LOCK mode is 5 or 6, specify the
 DESCRIPTOR clause.

 MESSAGE This statement is not allowed in an IF statement typed from the
 keyboard.

 CAUSE A statement performing terminal input has been included as part
 of an IF statement entered without a line number.

 ACTION None. Terminal input statements are not allowed from the
 keyboard. Place the statement in a program.

 MESSAGE No more than 8 keys may be specified in this state.
 CAUSE An ON KEY or OFF KEY statement has a list of more than eight
 key numbers.

 ACTION Modify the statement to specify no more than eight keys.

 MESSAGE Between 1 and 8 keys must be specified in this statement.

 CAUSE An ON KEY statement did not specify any key numbers or
 specified more than eight key numbers.

 ACTION Correct the statement to include at least one but not more than
 eight keys.

a- 75

 MESSAGE Only =, >=, and <= are allowed here.

 CAUSE An invalid relational operator was specified in the PREDICATE
 statement.

 ACTION Check the relational operator. Only =, >=, and <= are allowed
 in the PREDICATE statement.

 MESSAGE Illegal line number: !

 CAUSE GET (of an ASCII file), LINK, or MERGE has created a line
 reference that is greater than 999999.

 ACTION Renumber using a lower line number.

 MESSAGE Built-in function xxx has wrong type in parameter nn.

 CAUSE In the parameter list of built-in function xxx, a string was
 found where a numeric value was required or a numeric value was
 found where a string was required.

 ACTION Check the syntax for the built-in function and use the correct
 parameter types.

 MESSAGE Wrong number of arguments for built-in function xxx.

 CAUSE A built-in function xxx was used with the wrong number of
 arguments.

 ACTION Check the syntax for the built-in function and use the correct
 number of arguments.

 MESSAGE Operators not allowed in array built-in functions.

 CAUSE Only an array variable is allowed in the MAT built-in function.
 ACTION Put an array variable inside the MAT built-in function. Put a
 parentheses around the built-in function to assign a value to
 an array.

 MESSAGE Built-in function "name" not allowed here.

 CAUSE The built-in function used in the MAT assign statement is
 invalid.

 ACTION Check the built-in function name.

 MESSAGE Illegal character in data item or missing data items.

 CAUSE Only the following are legal separators for the data items in
 the DATA statement:

 ,
 ;
 !

 ACTION Check the syntax of the DATA statement.

 MESSAGE Empty arguments not allowed in built-in functions.

 CAUSE Unexpected empty arguments, ", ,", are specified as parameters
 to a built-in function.

 ACTION Specify a value between the commas.

a- 76

 MESSAGE New array bounds must be specified in REDIM statement.

 CAUSE New array dimensions were not specified in a REDIM statement.

 ACTION Specify the new array bounds.

 MESSAGE Undefined variable or improperly used keyword.

 CAUSE A line has been entered for immediate execution that has an
 unknown identifier. This may be an undefined variable or a
 keyword that has been misspelled or misplaced.

 ACTION Do not attempt to use an undefined variable in the calculator.

 MESSAGE BREAK ... WHEN ... BY requires a numeric control expression.
 CAUSE A numeric control expression representing a "step" value for
 triggering breaks is required in the BY clause.

 ACTION Change the syntax to use only numeric expressions in the BY
 clause.

 MESSAGE The WRITE FORM statement requires at least one clause.

 CAUSE You must specify at least one clause in the WRITE FORM
 statement.

 ACTION Check the syntax of the statement in the Help Catalog or the HP
Business BASIC/XL Reference Manual to be certain that you are

 using the correct syntax.

 MESSAGE This CHANGE command cannot change the type of a variable.

 CAUSE The CHANGE <vars> command allows variable names to be changed
 to a new name. However, you are not allowed to change the type
 of a variable from numeric to string or vice versa.

 ACTION Do not attempt to change the type of a variable with the CHANGE
 <vars> command.

 MESSAGE Line too long to process the CHANGE command.

 CAUSE The CHANGE command exceeds 500 characters.

 ACTION Shorten the CHANGE command to 500 characters or fewer.

 MESSAGE This statement or phrase applies only on MPE V systems.

 CAUSE You have used a feature that is only available on MPE V
 systems. For example, SPL language is not allowed in the
 EXTERNAL statement on MPE XL systems.

 ACTION Check your program and use the correct syntax for MPE XL.
 Rewrite any SPL programs that will be called by HP Business
 BASIC/XL.

B-1

Appendix B Statement Groups
Table B-1 is a list of Business BASIC/XL statements, grouped by
functionality. Each statement is defined and explained in chapter 4.

Table B-1. Functional List of HP Business BASIC/XL Statements.

--
Functionality	Statement
--
Array Operations	MAT =
	MAT INPUT
	MAT PRINT
	MAT READ
	REDIM
--
Control	COMMAND
	FOR NEXT
	GOSUB
	GOSUB OF
	GOTO
	GOTO OF
	IF THEN
	IF THEN ELSE
	LOOP
	ON GOSUB
	ON GOTO
	REPEAT UNTIL
	RETURN
	SELECT
	STOP
	WAIT
	WHILE DO
--
Database Management	BEGIN TRANSACTION
	DBASE IS
	DBCLOSE
	DBDELETE
	DBERROR
	DBEXPLAIN
	DBFIND
	DBGET
	DBINFO
	DBLOCK
	DBMEMO
	DBOPEN
	DBPUT
	DBUNLOCK
	DBUPDATE
	END TRANSACTION
	FILTER
	IN DATASET
	ON DBERROR
	OFF DBERROR

B- 2

	PACK
	PACKFMT
	PREDICATE
	SEARCH
	SORT
	SORT ONLY
	THREAD IS
	UNPACK
	WORKFILE IS
--
Data Files	ADVANCE
	ASSIGN
	LINPUT
	LOCK
	POSITION
	PRINT
	READ
	UNLOCK
--
External Routines and Intrinsics	EXTERNAL
	INTRINSIC
	SETLEN
--
Forms	CLEAR FORM
	CLOSE FORM
	OPEN FORM
	READ FORM
	WRITE FORM
--
Input and Output	ACCEPT
	BEEP
	COPY ALL OUTPUT TO
	DISP
	DISP USING
	FIXED
	FLOAT
	IMAGE
	INPUT
	LDISP
	LINPUT
	MARGIN
	PRINT
	PRINT USING
	SEND OUTPUT TO
	SEND SYSTEM OUTPUT TO
	STANDARD
	TINPUT
--
Interrupt Handling	OFF ERROR
	OFF HALT
	OFF KEY
	ON ERROR
	ON HALT
	ON KEY
	WARNINGS OFF
	WARNINGS ON
--

B-3

JOINFORM	ACCEPT
	CLEAR FORM
	CLOSE FORM
	CURSOR
	DISP
	ENTER
	INPUT
	LDISP
	LENTER
	LINPUT
	OPEN FORM
	PRINT
--
Operating System Access	SYSTEM
	SYSTEMRUN
--
Report Writer	BEGIN REPORT
	BREAK IF
	BREAK WHEN
	DETAIL LINE
	END REPORT
	END REPORT DESCRIPTION
	GRAND TOTALS
	HEADER
	LEFT MARGIN
	PAGE HEADER
	PAGE LENGTH
	PAGE TRAILER
	PAUSE EVERY
	PRINT DETAIL IF
	REPORT EXIT
	REPORT HEADER
	REPORT TRAILER
	SET PAGENUM
	STOP REPORT
	SUPPRESS AT
	SUPPRESS FOR
	SUPPRESS HEADER
	SUPPRESS TRAILER
	TOTALS
	TRAILER
	TRIGGER BREAK
	TRIGGER PAGE BREAK
--
Screen Formatting	CURSOR
	ENTER
	LENTER
--
Subunits	CALL
	DEF FN
	FNEND
	RETURN
	SUB
	SUBEND
	SUBEXIT
	SUBPROGRAM
--

B- 4

User-definable Keys	CURKEY
	DISABLE
	ENABLE
	GET KEY
	OFF KEY
	ON KEY
	PRESS KEY
	RESAVE KEY
	SAVE KEY
	SCRATCH KEY
--
Variable Operations	COM
	CONVERT
	DATA
	DEFAULT OFF
	DEFAULT ON
	DIM
	OPTION
	READ
	RESTORE
--

C-: 1

Appendix C HP Business BASIC/XL Configuration Utility
The configuration file (HPBBCNFG.PUB.SYS), supplied with HP Business
BASIC/XL, is a convenient way of supplying defaults to HP Business
BASIC/XL for the language features shown in Table C-1 at the end of
this appendix. The HP Business BASIC/XL configuration utility
(CNFGHPBB.PUB.SYS) is a program that allows you to create and change
configuration files.

A configuration file is used to customize the HP Business BASIC/XL
environment to the conventions of your installation. For example,
suppose that most applications are financial and it is a convention that
all variables be declared. In this case, you can use the configuration
utility to create a configuration file with all of the original defaults,
except with OPTION DECIMAL instead of OPTION REAL and OPTION DECLARE
instead of OPTION NODECLARE. Programmers then could avoid having to
include a line such as the following in programs that are run in this
environment:

 10 GLOBAL OPTION DECIMAL,DECLARE

MPE XL file equations can be used to cause HP Business BASIC/XL to use a
file other than HPBBCNFG.PUB.SYS for configuration information. This is
useful, for example, when an individual user wishes to have a different
HP Business BASIC/XL environment than the site standard. This alternate
configuration file does not have to reside in PUB.SYS, it can be in any
place you have access to. For example, to run a version of the HP
Business BASIC/XL interpreter that has Swedish as the native language,
you could create a user defined command in MPE XL that uses a
configuration file in the local group, as shown below:

 SWEDHPBB
 FILE HPBBCNFG.PUB.SYS=SWEDCNFG
 BBASIC
 RESET HPBBCNFG.PUB.SYS

If you type SWEDHPBB, the configuration file is set to SWEDCNFG, the HP
Business BASIC/XL interpreter is invoked, and when you exit from the
interpreter, the configuration file is reset to the system default
configuration file. The file, SWEDCNFG, is a configuration file that has
the native language parameter of 13.

The standard HP Business BASIC/XL defaults take effect when one of the
following occurs:

 * HP Business BASIC/XL runs without a configuration file.
 * HP Business BASIC/XL runs with a configuration file that was created
 by running the configuration utility and accepting the original
 defaults that it supplied.
 * HP Business BASIC/XL runs with a configuration file, but is unable to
 access it.

Although OPTION statements in your program will override the defaults in
the configuration file, the defaults contained in the configuration file
take effect when one of the following occurs:

 * The HP Business BASIC/XL interpreter runs.

 * A SCRATCH ALL or a SCRATCH PROG command executes (this only applies
 in the interpreter).

 * A compiled HP Business BASIC/XL program runs.

C- 2

How to Run the Configuration Utility

To run the configuration utility, issue the MPE XL command:

 :RUN CNFGHPBB.PUB.SYS

The configuration utility looks for the file, HPBBCNFG.PUB.SYS. To create
or change a configuration file that has another name, you must set up a
file equation before running the configuration utility. For example:

 FILE HPBBCNFG.PUB.SYS = HPBBCNFG.mygroup.myacct

If the file is not found, it is created (assuming that you have the
required capabilities). It is then filled in with the original defaults
and you are given the chance to override them. If the file already
exists, you can change the contents.

D-: 1

Appendix D ASCII Character Codes
Table D-1 maps each ASCII character to its decimal and hexadecimal code,
its symbol, and its name. Each code is stored in eight bits; so the
decimal codes are in the range [0, 255] and the hexadecimal codes are in
the range [0, FF].

Table D-1. ASCII Character Codes

Decimal	Hexadecimal Code	Symbol	Name
Code			

0	00	NUL	Null

1	01	SOH	Start of heading

2	02	STX	Start of text

3	03	EXT	End of text

4	04	EOT	End of transmission

5	05	ENQ	Inquiry

6	06	ACK	Acknowledge

7	07	BEL	Bell

8	08	BS	Backspace

9	09	HT	Horizontal tab

10	0A	LF	Line feed

11	0B	VT	Vertical tab

12	0C	FF	Form feed

D- 2

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

13	0D	CR	Carriage return

14	0E	SO	Shift out

15	0F	SI	Shift in

16	10	DLE	Data link escape

17	11	DC1	Device control 1

18	12	DC2	Device control 2

19	13	DC3	Device control 3

20	14	DC4	Device control 4

21	15	NAK	Negative acknowledgement

22	16	SYN	Synchronous idle

23	17	ETB	End of transmission block

24	18	CAN	Cancel

25	19	EM	End of medium

26	1A	SUB	Substitute

27	1B	ESC	Escape

28	1C	FS	File separator

29	1D	GS	Group separator

D-: 3

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

30	1E	RS	Record separator

31	1F	US	Unit separator

32	20	SP	Space

33	21	!	Exclamation mark

34	22	"	Quotation mark

35	23	#	Number sign

36	24	$	Dollar sign

37	25	%	Percent sign

38	26	&	Ampersand

39	27	'	Apostrophe

40	28	(Left parenthesis

41	29)	Right parenthesis

42	2A	*	Asterisk

43	2B	+	Plus sign

44	2C	,	Comma

45	2D	-	Minus sign

D- 4

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

46	2E	.	Full stop

47	2F	/	Solidus

48	30	0	Zero

49	31	1	One

50	32	2	Two

51	33	3	Three

52	34	4	Four

53	35	5	Five

54	36	6	Six

55	37	7	Seven

56	38	8	Eight

57	39	9	Nine

58	3A	:	Colon

59	3B	;	Semicolon

60	3C	<	Less-than sign

61	3D	=	Equal sign

62	3E	>	Greater-than sign

D-: 5

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

| | | | |
| | | | |
| 63 | 3F | ? | Question mark |
|--
| | | | |
| 64 | 40 | @ | Commercial "at" sign |
| | | | |

65	41	A	Uppercase A

66	42	B	Uppercase B

67	43	C	Uppercase C

68	44	D	Uppercase D

69	45	E	Uppercase E

70	46	F	Uppercase F

71	47	G	Uppercase G

72	48	H	Uppercase H

73	49	I	Uppercase I

74	4A	J	Uppercase J

75	4B	K	Uppercase K

76	4C	L	Uppercase L

77	4D	M	Uppercase M

78	4E	N	Uppercase N

79	4F	O	Uppercase O

D- 6

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

80	50	P	Uppercase P

81	51	Q	Uppercase Q

82	52	R	Uppercase R

83	53	S	Uppercase S

84	54	T	Uppercase T

85	55	U	Uppercase U

86	56	V	Uppercase V

87	57	W	Uppercase W

88	58	X	Uppercase X

89	59	Y	Uppercase Y

90	5A	Z	Uppercase Z

91	5B	[Left bracket

92	5C	\	Reverse solidus

93	5D]	Right bracket

94	5E	^	Circumflex accent

95	5F	_	Underline

D-: 7

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

96	60	‘	Grave accent

97	61	a	Lowercase a

98	62	b	Lowercase b

99	63	c	Lowercase c

100	64	d	Lowercase d

101	65	e	Lowercase e

102	66	f	Lowercase f

103	67	g	Lowercase g

104	68	h	Lowercase h

105	69	i	Lowercase i

106	6A	j	Lowercase j

107	6B	k	Lowercase k

108	6C	l	Lowercase l

109	6D	m	Lowercase m

110	6E	n	Lowercase n

111	6F	o	Lowercase o

112	70	p	Lowercase p

D- 8

Table D-1. ASCII Character Codes (continued)

Decimal	Hexadecimal Code	Symbol	Name
Code			

113	71	q	Lowercase q

114	72	r	Lowercase r

115	73	s	Lowercase s

116	74	t	Lowercase t

117	75	u	Lowercase u

118	76	v	Lowercase v

119	77	w	Lowercase w

120	78	x	Lowercase x

121	79	y	Lowercase y

122	7A	z	Lowercase z

123	7B	{	Left brace

124	7C			Vertical line

125	7D	}	Right brace

126	7E	~	Tilde

127	7F		Delete

E-: 1

Appendix E HP Terminals and Language Features
This appendix contains information about HP terminals that are fully and
partially compatible with HP Business BASIC/XL's terminal-specific
language features. Redirecting output can make a terminal appear to HP
Business BASIC/XL as a batch job.

Fully Compatible Terminals

The following are terminals compatible with all of BASIC's
terminal-specific language features:

150 2394 2624

2382 2397 2626

2392 2622 2627
2393A 2623

Valid Terminal-Specific Statements for Fully Compatible Terminals:

The following statements perform correctly when used on fully compatible
terminals. (All forms features refer to VPLUS.)

 OPEN FORM CURSOR RESAVE KEY CURKEY
 CLOSE FORM RPOS SCRATCH KEY ON KEY
 CLEAR FORM CPOS ENABLE OFF KEY
 WRITE FORM GET KEY DISABLE ENTER
 READ FORM SAVE KEY PRESS KEY LENTER

Partially Compatible Terminals

The following terminals are compatible with a subset of BASIC's
terminal-specific features. If the configuration file says that the
terminal is supported, but the terminal is not an HP terminal, the
terminal is treated as a 2640.

125 2644

2640 2645

2641 2647

2642 2648

Valid Subset of Terminal-Specific Statements for Partially Compatible
Terminals:

The following statements perform correctly when used on partially
compatible terminals. The statement "Labels are ignored" means that the
labels of the terminal's user-definable keys are not updated.

 CURSOR DISABLE OFF KEY (labels are ignored)
 RPOS PRESS KEY ENTER
 CPOS CURKEY LENTER
 ENABLE ON KEY (labels are ignored)

Minimal Subset of Terminal-Specific Statements:

Other remaining terminals and batch jobs are less compatible with BASIC's
terminal-specific statements. The valid subset of statements for these
terminals is shown below:

 ENABLE ON KEY (labels are ignored)
 DISABLE OFF KEY (labels are ignored)
 PRESS KEY
 CURKEY

E- 2

The following terminals are compatible with all of the JOINFORM
statements listed in Appendix F:

150 2393A
2382 2394

2392 2397

f- 1

Appendix F JOINFORM
JOINFORM Statements

JOINFORM is a FORMS/260 compatible forms package available in HP Business
BASIC/XL. The JOINFORM package cannot be accessed by any other languages
on the HP 3000. Use of JOINFORM is supported only on the HP150 and
HP239X Terminals. It is intended to provide an easy-to-use alternative
to VPLUS forms for HP260 users converting their applications.

OPEN FORM

OPEN FORM opens a form file. It tries to find form_member_name in
form_file_name if a form file is specified. Otherwise it searches the
currently open, default form file. If the specified form exists, it is
displayed at the current cursor position. Form names are limited to
eight characters.

If a form is already active when OPEN FORM is executed, it is deactivated
and the new form is inserted at the cursor position.

The Keywords HOME, OVERLAY, APPEND, and FREEZE have no effect when a
JOINFORM is opened.

Syntax

 [HOME]
 [OVERLAY]
OPEN FORMform_name [;] [FREEZE]
 [APPEND]

Parameters

form_name Form_name is a string expression with the following format:
form_member_name [: form_file_name]

Form_member_name is the name of the form you are opening.
Form_file_name is a quoted string literal that is the name of

 the file that contains the form.

HOME The HOME, OVERLAY, FREEZE, and APPEND options are ignored if
OVERLAY the form to be opened is a JOINFORM.
FREEZE
APPEND

Examples

 130 OPEN FORM "Appl1"
 140 OPEN FORM Form2
 150 OPEN FORM Form$
 160 OPEN FORM "form1:joinfile"

CLEAR FORM

CLEAR FORM clears all input and output field entries on the form. The
form is not drawn on the screen. The input, output, and cursor field
pointers are reset to the first input and first output field. The cursor
is placed in the first input field. If the form does not have input
fields, the cursor is placed in the left upper corner.

The optional keyword [[WITH] DEFAULT[S]] has no effect for converted
JOINFORM. It is ignored.

If there is no active form, CLEAR FORM returns an error.

f: 2

Syntax

CLEAR FORM [[WITH] DEFAULT[S]]

Examples

 150 CLEAR FORM !Clears all fields

CLOSE FORM

CLOSE FORM deactivates and erases the form that is currently active. If
no option is specified, the form is erased by deleting all lines occupied
by the form, so the lines following the form are moved up on the screen.
Use the CLEARREST option to clear the form by clearing display memory
from the first line of the form to the end of display memory. Use the
CLEARALL option to clear the form by clearing all of display memory. Use
the REMAIN option to deactivate a form without erasing it.

If the cursor is in the form when CLOSE FORM is called, it is positioned
to the line that followed the form. If the cursor is outside of the
form, it is positioned to the same line again after the form is deleted.

If no form is active, CLOSE FORM returns immediately without performing
any action.

Syntax

 [{;}]
 [{,} CLEARREST]
CLOSE FORM [CLEARALL]
 [REMAIN]

Examples

 90 CLOSE FORM
 100 CLOSE FORM ;CLEARREST
 110 CLOSE FORM ;CLEARALL
 120 CLOSE FORM ;REMAIN

CURSOR

The CURSOR statement positions the terminal cursor within an active
JOINFORM. When positioning the cursor while a JOINFORM is active two
parameters must be supplied. The first parameter is either CFLD, IFLD,
OFLD, SETCFLD, SETIFLD, or SETOFLD. This parameter specifies the type of
field that the cursor is being moved into. The second argument is the
number of the field of that type on the form. 'CURSOR OFLD (5)' means
"position the cursor to the fifth output field within the defined output
order of the active form". The SETCFLD, SETIFLD, and SETOFLD parameters
set the internal field pointer, as do the CFLD, IFLD, and OFLD
parameters, but they do not move the cursor. A subsequent INPUT, DISP,
or PRINT statement will move the cursor to the desired field before the
input or output operation takes place. There is a performance
improvement because the cursor is not moved. CFLD stands for cursor
field and IFLD stands for input field.

The IFLD, OFLD, CFLD, SETCFLD, SETIFLD, and SETOFLD options of the CURSOR
statement cannot be executed unless a JOINFORM is active.

Syntax

 {IFLD }
 {OFLD }
 {CFLD }
CURSOR {SETIFLD} (field_number)
 {SETOFLD}
 {SETCFLD}

Parameters

IFLD, OFLD, A keyword that specifies the type of field the cursor
CFLD moves into.

SETIFLD, A keyword that sets the internal field pointer for the

f- 3

SETOFLD, type of field indicated.
SETCFLD

field_number The number of the field that the cursor will move to.

Examples

 100 CURSOR OFLD (35) !Moves cursor to output field 35.
 110 CURSOR SETIFLD (4) !Sets the input field pointer to field 4.

TFLD

TFLD is a built-in numeric function that returns the field number of the
last input field accessed in the form. The cursor pointer is moved
either by a CURSOR IFLD(), CFLD(), or an INPUT statement.

NOTE The actual cursor position and fieldnum returned to TFLD are only
 identical when the fields were walked through using the RETURN key.
 The TAB key moves the cursor to the next field (or the previous
 field when BACKTAB is pressed) in screen order. This is not
 recognized by TFLD since TAB and BACKTAB are local to the terminal.
 TFLD also does not recognize moving the cursor using the cursor
 positioning keys.

 TFLD returns zero if executed when no JOINFORM is active.

Syntax

TFLD

PRINT and DISP

PRINT and DISP are standard HP Business BASIC/XL statements. Their
syntax is exactly the same for normal output and output to JOINFORM.
However, if a form is active, HP Business BASIC/XL calls a special forms
output routine that behaves like a PRINT or DISP statement on the HP260
does. If a ", " is used to separate the items, each item is displayed in
a separate field. If a "; " is used to separate them, then the output is
buffered and displayed when a ", " is found or the statement is
completed. The first field that an item is to be displayed in is defined
by the output field pointer. The output field pointer can be positioned
with the CURSOR OFLD statement. After an item is displayed in a field,
the output field pointer is incremented.

The syntax for the PRINT and DISP statements are in chapter 4.

LDISP

The result of an LDISP statement depends on whether a form is active.

When no JOINFORM is active, the current line is cleared from the current
cursor position to the end of the line. Output of the values of the
output_item begins at the current cursor position on the screen. If the
output requires more than the number of characters remaining on the
cleared line, additional lines on the screen are used. However, the
additional lines are not cleared before character output begins.

If a JOINFORM is active, the form is then inactivated. The cursor is
repositioned to the first column of the first line following the form.
Output then proceeds as if no JOINFORM were active. Following output,
the cursor does not return to its previous position in the now inactive
form. If the cursor is already outside the form, LDISP behaves as if no
JOINFORM were active.

f: 4

Syntax

LDISP [d_list]

Parameters

 [{,...}]
d_list [,]... output_item_list [{; } output_item]...

output_item One of the following:

num_expr

str_expr

array_name(*) Array reference. See "Array References
 in the Output Item List" in chapter 6
 for more information.

 {PAGE }
 {{CTL} }

output_function {{LIN} }
 {{SPA} (num_expr)}
 {{TAB} }

 See "Output Functions in the Display
 List" in chapter 6 for more
 information.

FOR_clause (FOR num_var = num_expr1 TO num_expr2
 [STEP num_expr3], d_list)

 See "FOR Clause in Output Item List" in
 chapter 6 for more information.

Examples

Assume that the following program statements are executed while a form is
active:

 10 V$="Hi there."
 20 DISP V$!Prints in form field
 30 LDISP V$!Prints outside form

INPUT

When an INPUT statement is executed while a JOINFORM is active, the
cursor is placed in the current cursor field. You can input data until
RETURN is pressed. If no input elements are specified, only the cursor
field pointer is increased. Otherwise, the entered data is assigned to
the variables in the input item list. Following the assignment, the
cursor field pointer and the input field pointer are increased.

If the cursor field pointer already points to the last input field in the
form, it is reset to the first input field of the form. In contrast, the
input field pointer is not circularly reset to the first input field but
left undefined. Any further assignments from fields to variables result
in errors.

The cursor can be explicitly positioned within the currently active form
by using a previously executed CURSOR CFLD, CURSOR SETCFLD, CURSOR IFLD,
or CURSOR Setifld statement.

When an INPUT statement is executed and a JOINFORM is not active, INPUT
behaves normally.

Prompts in the INPUT and LINPUT statements are not printed when a
JOINFORM is active.

f- 5

The syntax for the INPUT statement is in chapter 4.

LINPUT

When LINPUT is executed and a JOINFORM is active, the current cursor
position in screen memory is determined. If the cursor is within the
form, LINPUT moves it to the first unprotected line following the form.
Otherwise, the cursor stays where it is (usually positioned by a
previously executed CURSOR statement). Then LINPUT outputs a line-output
prompt. When RETURN is pressed, only what has been typed in is assigned
to the string variable in the LINPUT statement. Input and output field
pointers are not affected.

When the LINPUT statement is executed and a JOINFORM is not active,
LINPUT behaves normally. The syntax for the LINPUT statement is in
chapter 4.

ENTER

When ENTER is executed and a JOINFORM is active, the content of the
current input field is assigned to the first element in the variable
list. If there are more input fields on the form, the input field
pointer is incremented to point to the next JOINFORM field. If an
additional element is present in the ENTER statement's variable list, the
value of the field is assigned to that variable. The input is read
directly from the JOINFORM field. Input from the user is not accepted.
Assignment to the variables in the variable list continues until values
have been assigned to each. If no more JOINFORM input fields are present
on the form, but one or more variables exist on the ENTER statement's
variable list, an error occurs.

The cursor can be positioned within the currently active form by using a
previously executed CURSOR IFLD statement.

When the ENTER statement is executed and a JOINFORM is not active, ENTER
behaves as described in chapter 4.

The syntax for the ENTER statement is in chapter 4.

LENTER

When LENTER is executed and a JOINFORM is active, the current cursor
position in screen memory is determined. If the cursor is within the
form, an error occurs immediately. Otherwise, the current line is input
at once without waiting for a keystroke. The cursor can be positioned
out of the currently active form by a previously executed CURSOR
statement. Input and output field pointers are not affected.

When the LENTER statement is executed and a JOINFORM is not active,
LENTER behaves as described in chapter 4.

The syntax for LENTER is in chapter 4.

ACCEPT

Input without an echo on the terminal is possible at any time, even if a
JOINFORM is active. The ACCEPT statement has no specific interaction
with JOINFORM. The ACCEPT statement is explained in chapter 4.

BB_BLOCK_READ

The routine BB_BLOCK_READ is an HP Business BASIC/XL run-time library
routine that has been provided to improve application performance.
JOINFORM requires a significant amount of terminal I/O, slowing down
performance. The BB_BLOCK_READ routine does a full-screen block-mode
read of the currently active JOINFORM, improving performance.

BB_BLOCK_READ resides in the HP Business BASIC/XL library segment in

f: 6

XL.PUB.SYS.

Before using BB_BLOCK_READ, be aware of the following considerations:

 * BB_BLOCK_READ can lead to hard-coding dependencies on form layout
 (such as field length and order).
 * BB_BLOCK_READ reads all unprotected fields on the screen each time it
 is called; input and input/output JOINFORM fields are read.
 * The characters from the fields are read into a single string. The
 string must be large enough to hold all data from all fields plus one
 byte per field as a record separator.
 * The application must explicitly extract the fields and convert them
 into usable data from the string.

Syntax

To call BB_BLOCK_READ from HP Business BASIC/XL, declare it as an
external routine and use the CALL statement to call it. The external
declaration has the following syntax:

EXTERNAL PASCAL BB_block_read (buffer $, SHORT INTEGER status)

Parameters

buffer $ String buffer that will contain all the input field
 data. This string contains all the characters from all
 the fields. This string must be long enough for that
 data, plus one character per field as a record
 separator.

status A short integer that contains the status of the external
 call. After the call, status can has a code that
 indicates the result of the call. The codes and their
 meanings are:

 0 Successful call.
 284 String too short.
 287 No input fields.
 294 No JOINFORM active.

BB_BLOCK_READ reads the fields in hardware order , that is from left to
right and top to bottom. Changing input order or tab order cannot alter
how the fields are returned to BB_BLOCK_READ. Therefore, small changes to
a form, such as shortening or moving a field, can impact applications
using BB_BLOCK_READ.

Example

10 EXTERNAL PASCAL BB_block_read(Buf$, SHORT INTEGER Stat) !Declare BB_BLOCK_READ
 20 SHORT INTEGER Stat
 .

 .

 .
 150 CALL BB_block_read(Buf$,Stat) !Call BB_BLOCK_READ
 160 !Buf$ contains the data, stat the status
 170 IF stat <> 0 Then GOSUB 800 !Goto an error subroutine if the
 180 !call was not successful
 .
 .

 .

The JOINFORM Editor

The JOINFORM Editor is a utility program used to work with HP 260 forms
on an MPE XL computer. The JOINFORM Editor includes the following

f- 7

capabilities:

 * Creating HP 260-type forms.

 * Modifying HP 260-type forms.

 * Copying and moving forms between files.

 * Deleting HP 260-type forms.

 * Displaying forms on a workstation screen.

 * Printing forms.

To run the JOINFORM Editor, type

 RUN JOINEDIT.PUB.SYS

at the MPE XL prompt. The Main Menu screen will be displayed.

Each of the capabilities of the JOINFORM Editor is described in the
following sections. The first section, "Creating New Forms" describes
the procedure for several JOINFORM Editor capabilities. Most of these
actions are the same for other capabilities, such as modifying existing
forms. The procedure is described in detail for new forms. Later
sections that use these procedures refer to the "Creating New Forms"
section.

Creating New Forms

New forms can be created from a blank screen or from an existing form.

Creating New Forms From a Blank Screen. There are four operations
involved in creating a form:

 1. Creating the input, output, and input/output fields and defining
 their sizes, locations, and types.

 2. Creating the form frame using the line drawing character set of
 the specific terminal you are using. (The terminal or workstation
 operating manual contains information about which line drawing
 characters correspond to the keys on the terminal or workstation
 keyboard.)

 3. Defining the text you want to be displayed on the form.

 4. Setting field order and individual field enhancements.

To start form creation, enter the JOINFORM Editor and press the CREATE
FORM softkey. A menu containing a selection for each of the four
operations is displayed. The operations can be done in any order. Each
is described here.

Creating Fields. Use the cursor keys to move the cursor to the position
on the screen where you want to create a field. Press the softkey that
indicates a field type (Input, Output, Input/Output) to create the field.
Each time you press the softkey, the field is extended by one character.
The field is highlighted in inverse video with the currently defined
default filler character for that field type.

Creating the Form Image. Use the line drawing character set to draw the
frame of the form. The frame is optional, and can be anything that your
line drawing set allows.

Defining Text. Use the cursor keys and the alphanumeric keys to input
the text that will appear on the form each time it is displayed. The
text can be anywhere on the screen, except inside fields.

f: 8

Setting Field Order and Individual Field Enhancements. After creating
the fields, the frame, and the text, press the ENTER FORM softkey to
display the softkeys that control field order and enhancements. Your
screen will be displayed. The softkeys at the bottom control
enhancements and order. You can make changes to the form layout (frame,
fields and text) by pressing the CHANGE LAYOUT softkey.

The cursor will be positioned at the bottom of the screen in the only
active line on the screen. The input order, output order and current
enhancement of the first field will be displayed on the bottom line of
the screen. That first field blinks and displays the currently defined
fill character for its type.

The following procedures change the order in which the fields are
accessed:

Field Type Procedure

Input Type the input order number the field will have next to
 the "INPUT NO:" prompt on the bottom line.

Output Type the output order number the field will have next to
 the "OUTPUT NO:" prompt on the bottom line.

Input/Output Use both of the above procedures for input and output
 fields.

Table F-1 lists the available enhancements, and the character string that
represents them.

Table F-1. Enhancements

--
Character String	Enhancement
--
H	Field appears half as bright as normal text.
--
I	Field appears in inverse video. (Dark characters on a light
	background).
--
U	Field appears underlined.
--
B	Field blinks.
--
None	Field appears like ordinary text.

To use any of these enhancements, enter the character string for that
enhancement in the inverse video field next to the "ENHANCEMENT:" prompt
on the bottom line.

Any combination of the character strings can be entered in any order in
the "ENHANCEMENT:" field to give the current field that combination of
enhancements. Press the SAVE VALUES softkey to store the new values.
Use the NEXT FIELD and PREVIOUS FIELD softkeys to select different fields
for enhancements and ordering.

The DEFAULT ENHANCEM and DEFAULT IO ORDER softkeys reset the display
enhancements and access order respectively. Pressing either of these

f- 9

keys destroys any changes you have made to the enhancements or access
order.

Storing the Form to Disk. When you are satisfied with the appearance of
the form, press the EXIT softkey. The screen that is displayed prompts
you for the name for the new form. After naming it, press the SAVE FORM
softkey to store the form to disk. If you are not satisfied with the
form, you can press the BACK TO EDITING softkey to return to the previous
screen to further edit the form.

Creating a New Form From an Existing Form

To create a form from an existing form, enter the JOINFORM Editor, and
fill in the name of the existing form in the inverse video field next to
f1 CREATE A NEW FOR, COPY FORM FROM. In the field below that (the FILE IS
field), type the name of the file that contains the existing form. Press
the CREATE FORM softkey. The existing form will be displayed. You can
then make changes to the enhancements and access order, using the same
procedure explained for new forms in the previous section. If you want
to change the frame, fields, or text, press the CHANGE LAYOUT softkey.

Changing Fields. You can add or delete fields, or alter the field length
on after pressing the CHANGE LAYOUT softkey. Add a field using the same
procedure used to create a field in a new form. (Refer to "Creating
Fields" in this appendix for details). To delete a field, press the
DELETE key on your keyboard until all the characters in that field have
been deleted. To alter the length of a field, position the cursor one
character beyond that field. Use the cursor keys to move the cursor.
Press the softkeys that control field type to add characters to the
field, or press the DELETE key to reduce the length of the field.

Changing the Form Image and Text. Modify the form frame by adding and
deleting line drawing characters.

Modify text by moving the cursor to the text you want to modify. Input,
delete or alter the text. Use the cursor keys to move the cursor.

Storing the New Form to Disk. After you have finished changing the form,
press the ENTER FORM softkey to return to the previous screen. Once you
are satisfied with the new form, press the EXIT softkey to store your
form to disk. Follow the procedure described for new forms in the
previous section to save your form.

If, while saving the form, you decide you don't want to store it, press
the EXIT softkey. The JOINFORM Editor asks if you really want to return
to the main menu without storing the form. Press the EXIT softkey again
to delete the form and return to the main menu. Press the SAVE FORM
softkey if the EXIT softkey was pressed by mistake. If you return to the
main menu without storing the form, you cannot retrieve it.

Modifying Forms

You can modify existing forms with the JOINFORM Editor. You can make the
following modifications:

 * Create fields.
 * Delete fields.
 * Alter field lengths.
 * Change the frame.
 * Change text.
 * Set field input and output order.
 * Alter individual display enhancement.

To modify a form, enter the JOINFORM Editor. Type the name of the form
in the field directly after f2 MODIFY FORM on the screen. Type the name
of the file that contains the form in the field directly after FILE IS.
Press the MODIFY FORM softkey to display your form. On that screen, you
can change the field access order and field enhancements. Refer to

f: 10

"Creating New Forms" for details.

To modify the form frame, length or number of fields, or text in the
form, press the CHANGE LAYOUT softkey, and refer to "Creating New Forms
from Existing Forms" in the previous section.

When you are adding, deleting, or moving fields while modifying forms,
the JOINFORM Editor does not reorder them. The effect of these changes
is as follows:

 * The previous field order remains valid for each field that has not
 been moved from its original location.

 * Order number of deleted fields become vacant (Other fields are not
 given that number).

 * New fields are given the lowest unoccupied numbers. Numbers are
 occupied even if you've deleted the field assigned to that number.

 * Fields that are moved to new locations are treated like new fields.

After modifying the form, press the ENTER FORM softkey. This allows you
to store the form. You can then press the EXIT softkey, and follow the
procedure explained in "Creating New Forms" to save the form.

Merging Forms

The JOINFORM Editor includes a form merging facility that allows you to
copy forms from one file to another without changing the form in the
original file and to move forms from one file to another.

Enter the JOINFORM Editor and press the MERGE FORMS softkey. This
displays the Merge Facility screen. You can move the cursor while in the
Merge Facility by using the TAB key and the SHIFT TAB key combination.
You can exit the Merge Facility by pressing the EXIT softkey.

Use the following procedure to merge forms:

 1. Type the name of the source file (the file that contains the forms
 that will be copied or moved) in the field labeled FILE IS: on the
 FROM side of the screen. You can specify multiple FROM files by
 using MPE wildcard characters (@,?, and #).

 2. Type the name of the destination file (the file that the form will
 be moved or copied into) in the field labeled FILE IS: on the TO
 side of the screen.

 3. Type the name of the first form to copied or moved in the field
 labeled 1: on the FROM side of the screen.

 4. Specify whether the form is to be copied or moved by entering M
 (for move) in the field labeled C/M. You do not need to enter
 anything to copy the form, C (for copy) is the default.

 5. Specify the name you want the copied or moved form to have by
 typing the new name in the field labeled 1: on the TO side of the
 screen. This field can be left blank if you are using the same
 name in the TO file. If the new form name is the same as an
 existing form, the Merge Facility will ask if you want to
 overwrite the existing form. Press the f1 key to overwrite the
 form, or f8 to cancel the current merge. If you cancel the merge,
 forms that have not yet been processed will be displayed, and you
 can change the names of any that will overwrite existing forms.

 6. Up to six forms can be moved or copied using the above method.

 7. Press the START MERGE softkey when you have finished specifying
 the forms to merge.

f- 11

Once the merge has begin, the name of each form is removed from the
display after it has been successfully merged.

Deleting Forms

Forms can be deleted one at a time or in groups, from a list. To start
deleting forms, enter the JOINFORM Editor.

Use the following steps to delete forms:

 1. To delete a single form, use the TAB key to position the cursor at
 the field just past f5 DELETE FORMS, FORM IS.

 2. Type the name of the form to be deleted.

 3. Move the cursor to the field labeled FILE IS directly below the
 FORM IS field. Type the name of the file that contains the form
 to be deleted.

 4. Press the DELETE FORMS softkey.

 5. To delete forms from a list, specify the file name, but not the
 form name. Press the DELETE FORMS softkey. The DELETE FORMS
 screen is then displayed. The screen has spaces for up to 24
 forms to be deleted.

 6. Type the name of each form you want to delete in the
 multicharacter fields, and type an x in the single character field
 next to the field for the name. If you need a list of the forms
 in the file, press the DISPLAY FORMS softkey. Type an x next to
 each form you want to delete.

 7. After you have indicated all the forms that you want to delete,
 press the DELETE FORMS softkey. This deletes the forms. If you
 have more than 24 forms, you can use the NEXT FORMS and PREVIOUS
 FORMS softkeys to see all the forms. Select which forms to delete
 from these additional screens.

 8. When you are finished deleting forms, press the EXIT softkey to
 leave the DELETE FORMS screen.

Printing and Showing Forms

The JOINFORM Editor has a printing and showing facility that prints
either forms or a list of forms on your screen or on your printer.

To use the printing and showing facility, press the SHOW FORMS softkey
from the main menu. Type the name of the form in the field labeled FORM
NAME: and the name of the file containing that form in the field labeled
FILE NAME:. Press the SHOW FORM softkey to display the form on the
screen. Use the NEXT FORM NAME and PREVIOUS FORM NAME softkeys to
display other forms in the file. You can also type the name of other
forms over the current name in the FORM NAME: field.

You can print a form by pressing the PRINT FORM softkey instead of the
DISPLAY FORM softkey.

The default option of the PRINT FORM facility includes a table that
contains the following information about each field.

 * Field number.

 * Enhancement.

 * Length.

 * Input order.

f: 12

 * Output order.

 * Row of screen in which field appears.

 * Position of field in that row.

You can display a list of the forms in a particular file. Type the name
of the file in the FILE NAME: field, but leave the FORM NAME: field
blank. Press the SHOW DIRECTORY softkey. 90 forms are displayed at one
time. Use the PREV PAGE and NEXT page softkeys to see more forms.

To print a list of forms to your printer, press the PRINT DIRECTORY
softkey instead of the SHOW DIRECTORY softkey. The JOINFORM Editor uses
the LP printer as the default printer on the HP 3000. Use a file
equation to specify another device as the printer. Equate that device to
the formal file designator JFOUT.

Selecting Default Enhancements and Fillers

You can change the default enhancement and fill characters for the fields
of your form. From the JOINFORM Editor press the CHANGE DEFAULTS
softkey.

Field enhancement is used to show clear differences between each of the
three field types. The original default enhancements for each type is
shown in the table below.

Table F-2. Field Enhancement Defaults

--
Field Type	Default Value
--
Input	Half-bright, inverse video.
--
Output	Underlined.
--
Input/Output	Half-bright, inverse video, underlined.
--

Fill characters for each field indicates the field while you are creating
it. The default fill characters are shown in the table below.

Table F-3. Fill Character Defaults (by field type)

Field Type	Default Value

Input	I

Output	O

Input/Output	C

To change these values, use the TAB key to move the cursor to the
parameter you are changing. To change fill characters, type the

f- 13

alphanumeric character that will become the fill character in the to
field for that parameter. To change the enhancements, type in any of the
enhancement symbols at the bottom of the screen in the to field for that
parameter. Press the SAVE NEW VALUES softkey when you have completed
changing the default parameters. If you press the EXIT softkey before
saving the new values, those changed values will be lost.

f: 14

G- 1

Appendix G ANYPARM External Call Feature
Introduction

The HP Business BASIC/XL ANYPARM external feature is used with programs
that were originally written in BASIC/V. Although calls to externals are
easy to code in an HP Business BASIC/XL program, understanding and
writing the externals that use the ANYPARM interface are more difficult
than for normal externals. Therefore, use the ANYPARM external only when
the HP Business BASIC/XL normal external call interface is too
restrictive. In fact, you should rarely have to use this feature. This
appendix is a technical discussion of the ANYPARM feature. It explains
how it works and how it can be used.

This appendix contains the following information:

Table G-1. Information in ANYPARM External Call Feature

--
Section	Information
--
Overview of Calling	This section contains a brief general introduction to the
Externals	process of calling externals.
--
An Overview of	This section contains an overview of the ANYPARM external. It
ANYPARM	explains general considerations when using the ANYPARM external.
--
ANYPARM Calls From HP	This section explains the call syntax for two methods of calling
Business BASIC/XL	ANYPARM externals.
--
Writing ANYPARM	This section contains the requirements for writing the external
External Procedures	procedure, as well as the requirements for HP Business
	BASIC/XL's data structures.
--
Example of a Simple	This section is a simple example external that has an ANYPARM
Pascal ANYPARM	formal parameter interface written in Pascal. The HP Business
Procedure	BASIC/XL program that calls the external is also included.
--
Example of a Simple C	This section is a simple example external that has an ANYPARM
ANYPARM Procedure	formal parameter interface written in C. The HP Business
	BASIC/XL program that calls that procedure is also included.
--
Pascal Data	This section is a program that contains Pascal data structures
Structures for	required for writing ANYPARM externals. This provides all the
ANYPARM Calls	constant declarations and type definitions that allow you to
	manipulate any of the actual parameters passed from an HP
	Business BASIC/XL program.
--

G-: 2

A Pascal ANYPARM	This section is an example program and a memory display of a
Procedure Designed to	call from HP Business BASIC/XL to an external procedure. The
Process Any Parameter	example demonstrates how to call an ANYPARM external that is
	capable of processing any of HP Business BASIC/XL's data types.
--
Differences Relative	This section explains the differences between HP Business
to BASIC/V	BASIC/XL and BASIC/V that are relevant to the ANYPARM External.
--

Overview of Calling Externals

In general, programming languages provide an automatic interface for
calling externals. That interface provides a correspondence between each
parameter in the call to the external routine and each parameter in the
called routine. The parameters are passed in a ordered list, and the
programming language does most of the work required for type checking
(ensuring that corresponding parameters are of compatible data types).

Another approach to parameter passing is to allow the calling program to
make the external call with any list of actual parameters that the
programmer writing the calling program chooses. The ordered list of
actual parameters is passed to the called routine as a single table.
This table of actual parameters contains information about each
parameter. Although the table is ordered, the length of the table is not
fixed. The called routine accepts the table as its formal parameter.
That routine has the responsibility for performing any type checking
required for correct execution of the routine.

This appendix explains the requirements for writing HP Business BASIC/XL
programs to call externals that expect an actual parameter table as the
external routine's formal parameter. Limit the use of this feature to
those situations in which you perceive that the HP Business BASIC/XL
standard external call feature is too restrictive. For example, you may
want an external routine that prints values of HP Business BASIC/XL
variables to a file. Rather than writing an external routine for each of
the HP Business BASIC/XL data types, you can write a single routine to
process variables that have any HP Business BASIC/XL data type passed as
an actual parameter. In this case, the external must perform any
necessary type checking, since HP Business BASIC/XL will pass variables
of any type.

An Overview of ANYPARM

HP Business BASIC/XL's ANYPARM external call feature is designed to allow
external calls with any number of actual parameters to a procedure in an
Executable Library or in an object file that is linked into a compiled
program file. Multiple calls to the same external procedure within an HP
Business BASIC/XL program need not have the same number of actual
parameters if the external is designed to process those parameters.
Scalar and array variables of any HP Business BASIC/XL data type can be
passed as actual parameters. String and numeric literals are legal as
actual parameters. Also, both string and numeric functions that are
evaluated prior to the external call are legal actual parameters.

Two methods are provided for calling ANYPARM external procedures. The
first method utilizes an explicit ANYPARM EXTERNAL declaration and the
CALL statement. The second method implements calls to the external by
prefixing the name of the external to be called with an underscore. In
the second method, a local implicit external declaration is made by HP
Business BASIC/XL at the beginning of the execution of the subunit in
which the call is made.

External procedures in the executable library that are to be called using
the ANYPARM feature are written so that there are two formal parameters.
The first is the number of actual parameters passed from HP Business
BASIC/XL. The second formal parameter of the external procedure is a
pointer to a formatted table of actual parameter information. The table
contains the following information:

G- 3

 * The address of the value of each actual parameter stored in the
 format specified by that parameter's HP Business BASIC/XL data type.

 * The type of the parameter at that address.

 * A value indicating whether the parameter is a scalar or, if it is an
 array, the number of dimensions.

Data Structures in HP Business BASIC/XL

In order to correctly manipulate the actual parameters, it is important
to have a thorough understanding of the data structures that HP Business
BASIC/XL uses.

The method used to pass the actual parameters from the HP Business
BASIC/XL program to the external procedure precludes the type checking of
actual parameters. Therefore, HP Business BASIC/XL has no method of
determining the number or the type of the parameters expected to be
present in the table of actual parameters located at the address
specified by the second formal parameter of the external procedure.
Since only the addresses of the actual parameters are passed in the
table, all HP Business BASIC/XL variables that are actual parameters are
passed by reference. If a numeric or string constant or expression is an
actual parameter, a temporary variable is created to store the value and
the address of the temporary variable is passed.

On the return from the external procedure, HP Business BASIC/XL has no
method for determining whether its internal data structures or data areas
have been destructively altered. The programmer writing the external
procedure needs to thoroughly understand the ramifications of the
external procedure's interactions with all areas of memory. Direct heap
management, which includes heap allocation in one external call and
deallocation in a subsequent call, interferes with HP Business BASIC/XL's
internal heap management and should be avoided.

Error Handling and Program Development

Error handling within the external procedure is the responsibility of the
external procedure. HP Business BASIC/XL uses the XARITRAP intrinsic to
replace MPE XL's arithmetic trap handler. HP Business BASIC/XL uses
XLIBTRAP to enable an HP Business BASIC/XL library trap procedure. Use
of either the XARITRAP or XLIBTRAP intrinsics will interfere with HP
Business BASIC/XL's trap handling mechanism and should be avoided.

Programming errors encountered during development of the external
procedure can be difficult to debug. Knowledge of the machine
instruction set and the system debug facility prove to be invaluable
tools in facilitating rapid program development. Relevant information is
contained in the Precision Architecture and Instruction Manual , and the
MPE XL Debug Reference Manual .

ANYPARM Calls From HP Business BASIC/XL

There are two methods of calling external procedures written to be called
by the ANYPARM method. The first utilizes HP Business BASIC/XL's
EXTERNAL and CALL statements. The second implements the underscore (_)
to call the external. In both calling methods, the programmer has the
responsibility for ensuring that the external being called is compatible
with the formal parameter interface used by HP Business BASIC/XL's
ANYPARM calling feature.

The external procedure can be included in any executable library. The
order for resolving external procedure references for HP Business
BASIC/XL programs executing in the interpreter is the same as that
specified in the LIB = or XL = parameter when the interpreter is invoked.
If the program is a compiled program, then the search order is the same
as when the compiled program is starts executing.

Using ANYPARM EXTERNAL and CALL

The ANYPARM EXTERNAL statement is used to explicitly declare procedures
that are to be called using the ANYPARM call feature. The CALL statement

G-: 4

described in this section is used to transfer execution control to
externals declared in an ANYPARM EXTERNAL statement.

Explicit declaration of procedures to be called by the ANYPARM method
allows you to specify additional options concerning the scope and name of
the external. External procedures can be declared in the main subunit of
the program to be GLOBAL to the entire program. Otherwise, the external
declaration is local to the subunit in which it is declared. A valid HP
Business BASIC/XL identifier can be aliased to the names of externals
which are not valid HP Business BASIC/XL identifiers, that is, procedure
names which begin with an underscore.

The formal parameter list is not included in the ANYPARM EXTERNAL
declaration since both the number and type of the formal parameters are
not restricted.

Syntax

[GLOBAL] ANYPARM [EXTERNAL] ap_name_clause_list

Parameters

ap_name_clause_ A list composed of ap_name_clause elements with the
list syntax:

 [{,}]
ap_name_clause [{;} ap_name_clause]

ap_name_clause The identifier used to call the external from HP
 Business BASIC/XL together with an option that allows
 the name to be aliased to the actual name of the
 external. The syntax of ap_name_clause is:

ap_external_name [ALIAS " alias_name "]

ap_external_ name The meaning is dependent on the presence or absence
 of the ALIAS option.

 1. The ALIAS option is not present.
ap_external_name is a valid HP Business

 BASIC/XL identifier in lower case that is the
 name of the external procedure in the
 executable library to be called from HP
 Business BASIC/XL. The maximum length of the
 name of the external is 60 characters.

 2. The ALIAS option is present. ap_external_name
 is a valid HP Business BASIC/XL identifier
 used in the CALL statement in the HP Business
 BASIC/XL program to reference the alias_name
 external procedure in the executable library.
 The alias_name will be treated as the
 case-sensitive name of the procedure in the
 executable library.

 In both cases, the ap_external_name is the identifier
 to be used with the CALL statement.

alias_name The name of the external procedure. The alias_name
 is case-sensitive. The maximum length of the name of
 the external is 60 characters.

GLOBAL Use of the GLOBAL option is restricted to the main
 program subunit. Use of the option specifies that
 the ANYPARM EXTERNAL declaration is accessible to all
 of the HP Business BASIC/XL procedures and functions
 in the program. This allows external calls to be
 made from the subunits without an additional ANYPARM
 EXTERNAL declaration.

The CALL Statement to Externals Declared Using ANYPARM EXTERNAL

The CALL statement for an ANYPARM EXTERNAL procedure is similar to that

G- 5

of other EXTERNALS.

Syntax

CALL ap_external_name [(actual_param_list)]

Parameters

ap_external_ An HP Business BASIC/XL identifier declared in an
name ANYPARM EXTERNAL or GLOBAL ANYPARM EXTERNAL declaration.

act_param_list The list of actual parameters to be passed to the
 external procedure. When more than two actual
 parameters are present in the list, each is separated
 from the next by a comma. Two consecutive commas are
 not valid. Each of the actual parameters can be a
 numeric or string identifier representing an HP Business
 BASIC/XL variable, or a literal, function, or expression
 that is evaluated prior to calling the external. Actual
 parameters that are HP Business BASIC/XL variables are
 passed by reference. To pass HP Business BASIC/XL
 variables by value, enclose the relevant identifier in a
 set of parentheses. All other actual parameters are
 evaluated, if required, and passed by value. Entire
 arrays passed as parameters must include the parentheses
 for the dimension information. An asterisk replaces
 each of the numbers that are required to reference an
 individual element of the array.

Examples

The following example shows the use of ANYPARM to call the externals
ANYPARM_SUM and fileprint. Notice that the calls here are similar to
calling any other external.

 100 GLOBAL ANYPARM EXTERNAL Fileprint
 110 ANYPARM EXTERNAL Sum ALIAS "ANYPARM_SUM"
 120 INTEGER Int1,Int2,Int3,Int4,Total
 130 Int1=1;Int2=2;Int3=3;Int4=4;Total=0
 140 CALL Fileprint("Beginning of Program.","Total is:",Total)
 150 CALL Sum(Total,Int1,Int2)
 160 CALL Sum(Total,Total,Int3,Int4)
 170 CALL Sum ! No parameters are required for the call
 180 CALL Fileprint("New total is:",Total)
 190 CALL Suba(Total,10.50)
 200 CALL Fileprint("End of Program")
 210 END
 220 !
 230 SUB Suba(=INTEGER Substotal,REAL Price)
 235 REM Fileprint was declared as GLOBAL
 240 CALL Fileprint("Total Price is:",Substotal*Price)
 250 SUBEXIT

Using the Underscore to Call an ANYPARM External

The underscore is used to call external procedures in an executable
library following an implicit local external declaration. By implicit,
it is meant that no previous ANYPARM EXTERNAL statement in the HP
Business BASIC/XL program is required to declare the external procedure
name. The external to be called must be present in the executable
library or program. Implicit declaration does not allow aliasing. Use
of the underscore in a program subunit results in an implicit local
external declaration. If the underscore is used in the main subunit, the
implicit declaration is local to the main subunit. Refer to the
following section, "Resolving Name Conflicts in Calls to ANYPARM
Externals," for a description of HP Business BASIC/XL's method of
determining which procedure is called when externals with the same names
are declared both explicitly and implicitly within a program.

Syntax

_ap_external_name [act_param_list]

G-: 6

Parameters

ap_external_ A valid HP Business BASIC/XL identifier that is the name
name of the external procedure in the executable library to
 be called. The maximum length of the name of the
 external is 60 characters. The entry point name is

ap_external_name in lower case unless the external is
 explicitly declared with an ALIAS clause.

act_param_list Same as the actual parameter list, act_param_list , in
 the CALL ap_external_name statement. Note that
 parentheses do not enclose the actual parameters when
 using the underscore to make a call to an external.

Examples

The following example shows the use of the underscore in a call to an
ANYPARM External.

 100 INTEGER Int1,Int2,Int3,Total
 110 Int1=1;Int2=2;Int3=3;Total=0
 120 _FILEPRINT "Beginning of Program","Total is:",Total
 130 _ANYPARM_SUM Total,Int1,Int2
 140 _ANYPARM_SUM Total,Int3,Int4
 150 _ANYPARM_SUM ! No actual parameters need be associated with a call
 160 _FILEPRINT "New total is:",Total
 170 CALL Suba(Total,10.50)
 180 _FILEPRINT "End of Program."
 190 END
 200 !
 210 SUB Suba(INTEGER Substotal,REAL Price)
 220 _FILEPRINT "Total Price is:",Substotal * Price
 230 SUBEND

Resolving Name Conflicts in Calls to ANYPARM Externals

When any of the GLOBAL explicitly, local explicitly, or local implicitly
declared ANYPARM external procedures have the same name, HP Business
BASIC/XL uses a hierarchy for determining which declaration is relevant
to a specific call from within the program. The declarations are
searched in the following order:

 1. Local explicit ANYPARM declarations.
 2. Local implicit ANYPARM declarations.
 3. GLOBAL explicit ANYPARM declarations.

Since the names of all externals in the executable library must be
unique, it is wise to give unique names to each of the externals
referenced within your HP Business BASIC/XL program. Unique names for
each external will avoid the mistake of calling non-ANYPARM externals
when using the underscore. It will also ensure that you are calling the
external that you intend to call.

The following examples are designed to clarify the actual external
procedures called when conflicts arise between the various forms of
ANYPARM external declarations. The ALIAS option has been used to allow
distinction between calls to three ANYPARM EXTERNAL procedures, Test1,
Test2, and Test3. In each example, "Call" (in the comments) refers to
the procedure actually called.

Examples

The first example demonstrates the effect of aliasing the external
procedure named Test1 to the HP Business BASIC/XL identifier, Test2.

 10 ANYPARM EXTERNAL Test2 ALIAS "Test1" ! Explicit local declaration
 20 CALL Test2 ! Call is made to Test1

In the following example, the explicit local declaration takes precedence
over the implicit local declaration.

 10 ANYPARM EXTERNAL Test2 ALIAS "Test1" ! Explicit local declaration

G- 7

 20 CALL Test2 ! Call is made to Test1
 30 _Test2 ! Implicit local declaration Call is made to Test1

In the following example, the explicit local declaration takes precedence
over the explicit global declaration.

 10 GLOBAL ANYPARM EXTERNAL Test2 ALIAS "Test3" ! Explicit global declaration
 20 ANYPARM EXTERNAL Test2 ALIAS "Test1" ! Explicit local declaration
 30 CALL Test2 ! Call is made to Test1

In the following example, the implicit local declaration takes precedence
over the explicit global declaration in the main subunit. However, in
the Suba subunit, the explicit global declaration is used to determine
which external to call.

 10 GLOBAL ANYPARM EXTERNAL Test2 ALIAS "Test1" ! Explicit global declaration
 30 _Test2 ! Implicit local declaration Call is made to Test2
 40 CALL Suba
 50 END
 60 SUB Suba
 70 CALL Test2 ! Call is made to Test1 as specified in GLOBAL declaration
 80 SUBEND

An explicit local external declaration also takes precedence over
implicit local ANYPARM declarations. In the following example, a call is
made to the Pascal external, Test4, using the ANYPARM underscore. Avoid
calls to non-ANYPARM externals using the ANYPARM underscore.

 10 EXTERNAL PASCAL Test4 ! Explicit local external Pascal declaration
 20 _Test4 ! Call is made to the external Pascal procedure Test4

Writing ANYPARM External Procedures

Writing an ANYPARM external procedure requires a thorough understanding
of the method that HP Business BASIC/XL uses to implement ANYPARM calls.
This section is divided into two subsections. The first subsection
describes the requirements for formal parameters to be included in the
procedure header and the actual parameter table passed to the ANYPARM
external procedure. The second subsection describes the internal data
structures that HP Business BASIC/XL uses to store the values of
variables in memory.

Requirements for the External Procedure

The external procedure must have two formal parameters. The first is a
value parameter to which is passed the number of parameters in the call's
actual parameter list. The second is a value parameter to which is
passed the address of the actual parameter table. In the MPE XL
operating system environment, the first parameter type must be a 4 byte
integer, and the second parameter type must be a 4 byte pointer.

The first formal parameter (the number of actual parameters) must be
checked prior to using the address of the formal parameter table. If the
number of actual parameters is zero, the address is set the value of
Pascal's NIL pointer constant. On the MPE XL based HP 3000, this value
is the four byte integer, 0.

The Actual Parameter Table

HP Business BASIC/XL prepares for the call to the external by building
the actual parameter table. First, it must be determined whether the
actual parameter is an HP Business BASIC/XL variable, an expression, or a
literal. Expressions are evaluated and the result is assigned to a
temporary variable. Literals are assigned to temporary variables of the
appropriate type. If the value is a temporary variable, the address of
the temporary variable is entered into the actual parameter table.
Otherwise, the actual parameter is an HP Business BASIC/XL variable, the
address of which is entered into the actual parameter table. The second
entry to the actual parameter table is the type of value present. The
third entry is the dimensionality of the value at the specified address.
If the value is a scalar, then the dimensionality is zero. Otherwise,
the dimensionality is the number of dimensions of the HP Business

G-: 8

BASIC/XL array. The data type and dimensionality information are
contained in the flag word that immediately follows the address of the
actual parameter. The structure of the resulting actual parameter table
in memory is:

 +---------------------------------------+
 | address of parameter 1 |
 |---------------------------------------|
 | flag word 1 |
 |---------------------------------------|
 | address of parameter 2 |
 |---------------------------------------|
 | flag word 2 |
 |---------------------------------------|
 | . |
 | . |
 | . |
 |---------------------------------------|
 | address of parameter n |
 |---------------------------------------|
 | flag word n |
 +---------------------------------------+

Flag Words - Data Type and Dimensionality Information

In the MPE XL operating system environment, each of the 4 byte flag words
is divided into a left, high-order 2 bytes and a right, low-order 2
bytes. The left 2 bytes contains the data type of the associated actual
parameter. The values that HP Business BASIC/XL uses to designate the
corresponding HP Business BASIC/XL data types are the same as those
returned by HP Business BASIC/XL's TYP and BUFTYP functions:

1 DECIMAL
2 STRING
5 SHORT INTEGER
6 SHORT DECIMAL
11 INTEGER
12 SHORT REAL
13 REAL

The right (low-order) 2 bytes will contain zero if the actual parameter
is a scalar. A string is considered to be a scalar. If the actual
parameter is either a string or numeric array, the right 2 bytes will
contain the number of dimensions of the array.

HP Business BASIC/XL's Internal Data Structures

The address of the HP Business BASIC/XL variable entered into the actual
parameter table is that of either the data value itself or the HP
Business BASIC/XL data structure information that is stored together with
values of that type.

Scalar Numeric Values

For numeric expressions that are evaluated and stored in a temporary
variable, scalar numeric variables and individual elements of a numeric
array, the address is that of the actual value stored in memory. The
amount of memory used by each of these values is dependent on the data
type as illustrated in the following table:

DECIMAL 8 bytes
SHORT INTEGER 2 bytes
SHORT DECIMAL 4 bytes
INTEGER 4 bytes
SHORT REAL 4 bytes
REAL 8 bytes

The Pascal data types used to declare HP Business BASIC/XL's DECIMAL and
SHORT DECIMAL data types are explained in the section, "Pascal Data
Structures for ANYPARM Calls," later in this appendix.

Scalar Strings

G- 9

The data structure that HP Business BASIC/XL uses to store strings
consists of two parts:

 1. A dope vector that (in the MPE XL environment) consists of one 4
 byte word to indicate the maximum number of characters allowed in
 the string (the declared length) and one 4 byte word to indicate
 the actual number of characters currently in the string.

 2. The characters in the string.

The address that is passed to an ANYPARM EXTERNAL is the address of the
dope vector, not the address of the first character. The structure of
the string in memory is:

 Address in the
 actual parameter table
 references
 | +---------------------------------------+
 -----> | maximum length |
 |---------------------------------------|
 | actual length |
 |---------------------------------------|
 char- | first| second | third | fourth |
 acters: |---------------------------------------|
 | fifth | sixth | seventh| eighth |
 |---------------------------------------|
 | . |
 | . |
 | . |
 +---------------------------------------+

NOTE HP Business BASIC/XL always reserves an extra byte at the end of
 all strings, including each element of string arrays. When
 computing the size of an element, this extra byte must be taken
 into account. For example, in a string array dimensioned with
 eight characters per string, each element will take up 20 bytes.

The actual number of bytes used to store a string can easily be
calculated by the following formula:

 bytes_required = 8 + maximum_length +(4 - ((maximum_length + 4) MOD 4))

Arrays

All arrays are preceded by a dope vector that describes pertinent
information concerning the number of elements in the array and the number
of dimensions. The address of the array in the actual parameter table
passed to the external procedure is that of the first word in the array's
dope vector.

Array dope vectors contain the following information:

 1. The address of the first word of the data portion of the array.

 2. The total number of elements (not words or bytes) in the array.

 3. For each dimension:

 a. The total number of elements in the dimension.

 b. The lower bound for the dimension.

There can be up to six dimensions in an array.

The array dope vector has the following structure:

G-: 10

 Address in the
 actual parameter table
 references
 |
 | +---------------------------------------+
 -----> | address of beginning of data area |-----
 |---------------------------------------| |
 | total number of elements | |
 |---------------------------------------| |
 | number of elements in dim 1 | |
 |---------------------------------------| |
 | lower bound of dim 1 | |
 |---------------------------------------| |
 | . | |
 | . | |
 | . | |
 |---------------------------------------| |
 | number of elements in dim n | |
 |---------------------------------------| |
 | lower bound of dim n | |
 |---------------------------------------| |
 | start of data |<---
 | . |
 | . |
 | . |
 +---------------------------------------+

String Arrays

A string array is just an array of scalar strings. The address for the
string array in the actual parameter table is actually that of the first
word of information in the string array's array dope vector. The
structure of a string array is on the next page.

G- 11

Figure G-1. String Array Structure

G-: 12

Example of a Simple Pascal ANYPARM Procedure

This section contains a Pascal procedure that can be called from HP
Business BASIC/XL using the ANYPARM call interface. This procedure shows
how to define the actual parameter table that the ANYPARM call requires.
It also contains an example procedure that accepts the actual parameter
table as a formal parameter.

 $title 'SIMPLE_ANYPARM_PROGRAM / SIMPLE_EXAMPLE with
 INTEGER and SHORT INTEGER'$
 $subprogram$
 $tables on$
 $code_offsets on$
 $range off$

 {***}
 {* *}
 {* SIMPLE_ANYPARM_PROGRAM *}
 {* *}
 {*Definition of the actual parameter table and the *}
 {*constants and types required to process *}
 {*Business BASIC/XL's SHORT INTEGER *}
 {*and INTEGER data types. The addresses of the SHORT INTEGER *}
 {*and INTEGER values are passed in the actual parameter table *}
 {*to the procedure, SIMPLE_EXAMPLE. SIMPLE_EXAMPLE prints the *}
 {*values of SHORT INTEGER and INTEGER values. *}
 {* *}
 {***}
 program simple_anyparm_program;

 {---}
 {Machine constants and types specific for the MPE XL based HP3000. }
 {---}
 const
 c_min_mchn_wrd_int = minint;
 c_max_mchn_wrd_int = maxint;

 type
 t_mchn_wrd_int = integer;
 t_half_mchn_wrd_int = shortint;

 {---}
 {Constants representing Actual Parameter Types }
 {The values in the actual parameter table that define the }
 {type of the parameter. }
 {---}
 const
 c_sinteger_type = 5;
 c_integer_type = 11;

 {--}
 {Scalar_value }
 {The pointer and associated variant record defining the HP }
 {Business BASIC/XL value's storage format in memory. }
 {--}
 type
 tp_scalar_value = ^t_scalar_value;
 t_scalar_value = record
 case integer of
 1: (sinteger_value : shortint);
 2: (integer_value : integer);
 end;

 {---}
 {The Actual Parameter Table }
 {An array of records describing the address, type and dimensionality}
 {of each of the actual parameters. }
 {---}

G- 13

 const
 c_max_num_parameters = 50;

 type
 t_parameter_record = packed record
 param_address : tp_scalar_value;
 param_type : shortint;
 number_of_dimensions: shortint;
 end;

 t_actual_parameter_array = array [1..c_max_num_parameters] of
 t_parameter_record;

 tp_actual_parameter_array = ^t_actual_parameter_array;

 {***}
 {* }
 {* SIMPLE_EXAMPLE }
 {* }
 {*SIMPLE_EXAMPLE is a procedure written to accept an actual }
 {*parameter table as the formal parameter to the procedure. The }
 {*purpose of the procedure is to write to a file the values of }
 {*all scalar actual parameters that have either an INTEGER or }
 {*SHORT INTEGER BASIC data type format. }
 {*Actual parameters are processed in a for loop in which }
 {*the value of each valid parameter is written to $STDLIST. }
 {***}
 procedure simple_example(
 num_params : integer;
 p_actual_param_table : tp_actual_parameter_array
);

 var
 param_index : integer;
 {references entry in actual parameter table }
 tstfil : text;
 {text file to which output is to be written }

 begin {procedure_example }

 {---}
 {TESTFILE is opened in append mode so that information written to }
 { the file by previous calls is not overwritten. }
 {---}
 append(tstfil, '$STDLIST');

 writeln(tstfil
 , 'Number of parameters passed to SIMPLE EXAMPLE is: '
 , num_params:2
);

 {---}
 {Check to ensure that the number of actual parameters passed can be }
 {processed by the external. }
 {---}
 if num_params > c_max_num_parameters then
 begin {too many parameters to process }

writeln(tstfil, ' Too many actual parameters passed to SIMPLE EXAMPLE.');
 writeln(tstfil, ' Maximum number is: ',
 c_max_num_parameters:1)
 end {too many parameters to process }
 else

 begin {simple_example's parameter array is large enough }

 {---}
 {Process each of the entries in the actual parameter table }
 {referenced by the formal parameter, p_actual_parameter_array.}

G-: 14

 {---}
 for param_index := 1 to num_params do
 begin {for loop processing of the actual parameters }

 write(tstfil, param_index:3, ' ');
 if p_actual_param_table^[param_index].number_of_dimensions
 = 0 then
 begin {process scalar actual parameters }
 with p_actual_param_table^[param_index].param_address^ do
 {sinteger_value}
 {integer_value }
 case p_actual_param_table^[param_index].param_type of
 c_sinteger_type:
 writeln(tstfil, 'SHORT INTEGER ', sinteger_value:1);
 c_integer_type:
 writeln(tstfil, 'INTEGER ', integer_value:1);
 otherwise
 write(tstfil, 'Actual parameter to SIMPLE EXAMPLE has an');
 writeln(tstfil, 'invalid data type.');
 end {case }

 end {process scalar actual parameters }

 else
 begin {process actual parameters that are arrays }
 write(tstfil, 'Actual parameter to SIMPLE EXAMPLE must ');
 writeln(tstfil, 'be a scalar.')
 end {process actual parameters that are arrays }

 end {for loop processing of the actual parameters }

 end {simple_example's parameter array is large enough }

 end; {procedure simple_example }

 begin {simple_anyparm_program }
 end. {simple_anyparm_program }

Example of a Simple ANYPARM Call

Assume that the Pascal program presented above is in the file, PASPROG.
To add the SIMPLE_EXAMPLE procedure to the local executable library named
XL, do the following:

 :pasxl pasprog
 :linkeditor
 linked>buildxl xl
 linked>addxl from=$oldpass; to=xl
 linked>exit
 :

Consult the HPLink Editor/XL Reference Manual for more information.

Enter the HP Business BASIC/XL interpreter, specifying your group
executable library. (Refer to "The Interpreter" in chapter 2). Within
the interpreter, enter and execute the following program:

 >list
 ! testany
 10 ANYPARM EXTERNAL Example ALIAS "simple_example"
 20 INTEGER Int1,Int2 ! variable declarations
 30 SHORT INTEGER Sint1,Sint2
 40 REAL Real1
 50 DIM INTEGER Int_arr(2,2)
 60 CALL Example ! a call with no parameters
 70 Int1=-2147483648
 80 Int2=2147483647
 90 CALL Example(Int1,Int2) ! a call with two integer parameters

G- 15

 100 Sint1=-32768
 110 Sint2=32767
 120 CALL Example(Sint1,Sint2)
 121 ! a call with two short integer parameters
 130 CALL Example(Real1,Int_arr(*,*))
 131 ! invalid real and array parameters
 140 Int_arr(2,2)=100000
 150 CALL Example(Int_arr(2,2))
 151 ! a call with an array element parameter
 160 CALL Example(Sint1,Int_arr(1,1),Int2,Sint2,Int1,&
 (Sint1),(Sint1+Sint2),&
 Int_arr(2,2),(Int1+Sint2),"Beginning of invalid parameters",&
 Str$,Real1,Int_arr(*,*))

 >run
 Number of parameters passed to SIMPLE EXAMPLE is: 0
 Number of parameters passed to SIMPLE EXAMPLE is: 2
 1 INTEGER -2147483648
 2 INTEGER 2147483647
 Number of parameters passed to SIMPLE EXAMPLE is: 2
 1 SHORT INTEGER -32768
 2 SHORT INTEGER 32767
 Number of parameters passed to SIMPLE EXAMPLE is: 2
 1 Actual parameter to SIMPLE EXAMPLE has an invalid data type.
 2 Actual parameter to SIMPLE EXAMPLE must be a scalar.
 Number of parameters passed to SIMPLE EXAMPLE is: 1
 1 INTEGER 1000000
 Number of parameters passed to SIMPLE EXAMPLE is: 13
 1 SHORT INTEGER -32768
 2 INTEGER 0
 3 INTEGER 2147483647
 4 SHORT INTEGER 32767
 5 INTEGER -2147483648
 6 SHORT INTEGER -32768
 7 INTEGER -1
 8 INTEGER 1000000
 9 INTEGER -2147450881
 10 Actual parameter to SIMPLE EXAMPLE has an invalid data type.
 11 Actual parameter to SIMPLE EXAMPLE has an invalid data type.
 12 Actual parameter to SIMPLE EXAMPLE has an invalid data type.
 13 Actual parameter to SIMPLE EXAMPLE must be a scalar.
 >

Example of a Simple C ANYPARM Procedure

This section contains a C procedure that can be called from HP Business
BASIC/XL using the ANYPARM call interface. This procedure shows how to
define the actual parameter table that the ANYPARM call requires. It
also contains an example procedure that accepts the actual parameter
table as a formal parameter.

 #define C_MAX_NUM_PARAMETERS 50
 #define C_SINTEGER_TYPE 5 /* identifies BASIC SHORT INTEGER type */
 #define C_INTEGER_TYPE 11 /* identifies BASIC INTEGER type */
 union u_scalar_value{ /* union to access parameter appropriately */
 short sinteger_value;
 int integer_value;
 } scalar_value;

 struct parameter_record{ /* entry in the actual parameter array */
 union u_scalar_value *param_address;
 short param_type;
 short number_of_dimensions;
 };

 /* simple_example
 simple_example is a procedure written to be called by the BASIC ANYPARM
 call mechanism. A loop prints the values of scalar 16 and 32 bit integers

G-: 16

 and prints error messages for all other entries in the actual parameter
 table.
 */
 simple_example(num_params, p_actual_param_table)
 int num_params;
 struct parameter_record p_actual_param_table[];
 {
 int param_index;
 printf("Number of parameters passed to SIMPLE EXAMPLE is:%3d\n",
 num_params);
 if (num_params > C_MAX_NUM_PARAMETERS) {
 printf("Too many actual parameters passed to SIMPLE EXAMPLE.\n");
 printf("Maximum number is: %d\n", C_MAX_NUM_PARAMETERS);
 exit(0);
 }
 for (param_index = 0; param_index < num_params; param_index++){
 printf("%3d ", (param_index+1));
 if (p_actual_param_table[param_index].number_of_dimensions == 0){
 switch (p_actual_param_table[param_index].param_type){
 case C_SINTEGER_TYPE:

printf("SHORT INTEGER %d\n", (*p_actual_param_table[param_index].
 param_address).sinteger_value);
 break;
 case C_INTEGER_TYPE:

printf("INTEGER %d\n", (*p_actual_param_table[param_index].
 param_address).integer_value
);
 break;
 default:
 printf("Actual parameter to SIMPLE EXAMPLE has an invalid");
 printf(" data type.\n");
 }
 } else {
 printf("Actual parameter to SIMPLE EXAMPLE must be a scalar.\n");
 }
 }
 }

Calling the C External SIMPLE_EXAMPLE

Assume that the C program presented in the previous section is in the
file, CPROG. To add the SIMPLE_EXAMPLE procedure to the local executable
library named XL, do the following:

 :ccxl cprog
 :linkeditor
 linked>buildxl xl
 linked>addxl from=$oldpass; to=xl
 linked>exit
 :

The output from the C procedure is the same as that from the Pascal
procedure in the previous section.

Pascal Data Structures for ANYPARM Calls

This section contains a Pascal program that illustrates type and constant
definitions required for ANYPARM externals.

 $title 'ANYPARM.DECLS.BASIC/ANYPARM Data Declarations',page$
 {--}
 { ANYPARM EXTERNAL DATA DECLARATIONS }
 {--}

 {--}
 { Constants related to the machine and operating system. }
 {--}
 const

G- 17

 c_bytes_per_pointer = 4;
 c_bytes_per_integer = 4;
 c_bytes_per_32_bit_word = 4;
 c_bytes_per_16_bits = 2;

 {--}
 { t_basic_data_types }
 { An enumerated type that associates a data type with a value. Used as a }
 { field selector for variant records to associate the relevant variant with }
 { the data type. }
 {--}

 type
 t_basic_data_types = { 0 } (basic_sinteger_type,
 { 1 } basic_integer_type,
 { 2 } basic_short_decimal_type,
 { 3 } basic_decimal_type,
 { 4 } basic_short_type,
 { 5 } basic_real_type,
 { 6 } basic_string_type
);

 {--}
 { Data types that have corresponding Pascal data types. }
 {--}
 type
 t_short_integer_type = shortint;
 t_integer_type = integer;
 t_short_real_type = real;
 t_real_type = longreal;

 $page$
 {--}
 { DECIMAL data type }
 {--}
 const
 c_dec_positive_mantissa = 12;
 c_dec_negative_mantissa = 13;
 type
 t_shortint_rep_decimal = array [1..4] of shortint;
 t_dec_digit_pack = packed array [-2..12] of 0..9;
 t_decimal_exponent_mantissa_sign_rep =
 packed record
 exponent : -511..511; { 10 bits }
 alignment_1_filler : 0..63; { 6 bits }
 alignment_2_filler : shortint; { 16 bits }
 alignment_3_filler : shortint; { 16 bits }
 alignment_4_filler : -2048..2047; { 12 bits }
 mantissa_sign : c_dec_positive_mantissa..
 c_dec_negative_mantissa { 4 bits }
 end;

 {--}
 { DECIMAL TYPE }
 { The first variant of the record is designed to serve as a record overlay }
 { to quickly access the exponent and mantissa sign fields of the DECIMAL }
 { representation of a number. }
 { 1 1 1 1 1 1 }
 { bits: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 }
 { shortint |===| }
 { [1] |<-------------- exponent ------------->|<- alignment_1_filler->| }
 { |===| }
 { [2] |<-------------------- alignment_2_filler --------------------->| }
 { |===| }
 { [3] |<-------------------- alignment_3_filler --------------------->| }
 { |===| }
 { [4] |<-------------- alignment_4_filler ----------->|<mantissa sign>| }
 { |===| }

G-: 18

 { }
 { The second variant of the record is designed to serve as a record }
 { overlay to access each of the decimal digits of the DECIMAL value. The }
 { digits are stored in elements 1 to 12 of the array. }
 { 1 1 1 1 1 1 }
 { bits: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 }
 { shortint |===| }
 { [1] |<-digits[-2] ->|<-digits[-1] ->|<- digits[0] ->|<- digits[1] ->| }
 { |===| }
 { [2] |<- digits[2] ->|<- digits[3] ->|<- digits[4] ->|<- digits[5] ->| }
 { |===| }
 { [3] |<- digits[6] ->|<- digits[7] ->|<- digits[8] ->|<- digits[9] ->| }
 { |===| }
 { [4] |<- digits[10]->|<- digits[11]->|<- digits[12]->| | }
 { |===| }
 { }

 { NOTE: By definition, if shortint_rep[1] = 0 then the value of the DECIMAL }
 { number stored at that location is zero. }
 {--}
 type
 t_decimal_type = packed record
 case integer of
 0: (decimal_rep : t_decimal_exponent_mantissa_sign_rep);
 1: (digits : t_dec_digit_pack);
 2: (shortint_rep : t_shortint_rep_decimal);
 3: (longint_rep : longint);
 end;

 $page$
 {--}
 { SHORT DECIMAL data type }
 {--}
 const
 c_sdec_positive_mantissa = 0;
 c_sdec_negative_mantissa = 1;

 type
 t_shortint_rep_short_decimal = array [1..2] of shortint;
 t_sdec_digit_pack = packed array [-1..6] of 0..9;
 t_sdecimal_exponent_mantissa_sign_rep =
 packed record
 exponent : -64..63;
 mantissa_sign : c_sdec_positive_mantissa..c_sdec_negative_mantissa;
 fill_16_bits : shortint
 end;

 {--}
 { SHORT DECIMAL }
 { The first variant of the record is designed to serve as a record overlay }
 { to quickly access the exponent and mantissa sign fields of the SHORT }
 { DECIMAL representation of a number. }
 { 1 1 1 1 1 1 }
 { bits: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 }
 { shortint |===| }
 { [1] |<------- exponent -------->| * | | }
 { |===| }
 { [2] |<------------------------ fill_16_bits ----------------------->| }
 { |===| }
 { }
 { where the * is the bit used to represent the mantissa sign. }
 { }
 { The second variant of the record is designed to serve as a record }
 { overlay to access each of the decimal digits of the SHORT DECIMAL. The }
 { digits are stored in elements 1 to 6 of the array. }
 { 1 1 1 1 1 1 }
 { bits: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 }
 { shortint |===| }

G- 19

 { [1] |<-digits[-1] ->|<- digits[0] ->|<- digits[1] ->|<- digits[2] ->| }
 { |===| }
 { [2] |<- digits[3] ->|<- digits[4] ->|<- digits[5] ->|<- digits[6] ->| }
 { |===| }
 { }
 { NOTE: By definition, if shortint_rep[1] = 0 then the value of the SHORT }
 { DECIMAL number stored at that location is zero. }
 {--}
 type
 t_short_decimal_type = record
 case integer of
 0: (sdecimal_rep : t_sdecimal_exponent_mantissa_sign_rep);
 1: (digits : t_sdec_digit_pack);
 2: (shortint_rep : t_shortint_rep_short_decimal);
 3: (integer_rep : integer);
 end;

 $page$
 {--}
 { STRING data types }
 { An even length string declared as DIM A$[4] is stored in consecutive }
 { 32 bit words as: }
 { +---+ }
 { 1 | maximum_length | }
 { +---+ }
 { 2 | logical_length | }
 { +---+ }
 { 3 | char1 | char2 | char3 | char4 | }
 { +---+ }
 { 4 | extra | not used | | }
 { +---+ }
 { An odd length string declared as DIM Str$[3] is stored as: }
 { +---+ }
 { 1 | maximum_length | }
 { +---+ }
 { 2 | logical_length | }
 { +---+ }
 { 3 | char1 | char2 | char3 | extra | }
 { +---+ }
 {--}
 const
 c_max_str_len = 32767;
 type
 t_string_length = integer;

 t_basic_string_type =
 record
 max_len : t_string_length;
 case integer of
 0: (actual_len : t_string_length;
 bytes : packed array [1..c_max_str_len] of char
);
 1: (pascal_string_view : string[c_max_str_len]);
 end; { record t_basic_string_type }

 $page$
 {--}
 { The constants that represent the amount of memory allocated for each }
 { of the BASIC data types. }
 {--}
 const
 c_sizeof_short_integer = 2; { number of bytes in a SHORT INTEGER }
 c_sizeof_integer = 4; { number of bytes in a INTEGER }
 c_sizeof_short_real = 4; { number of bytes in a SHORT REAL }
 c_sizeof_real = 8; { number of bytes in a REAL }
 c_sizeof_short_decimal = 4; { number of bytes in a SHORT DECIMAL }
 c_sizeof_decimal = 8; { number of bytes in a DECIMAL }

G-: 20

 $page$
 {--}
 { t_basic_scalar_type }
 { Definition of a variant record for which the representation of the data }
 { can be selected when the data type of the value is known. }
 {--}
 type
 t_basic_scalar_type =
 record
 case t_basic_data_types of
 basic_sinteger_type :
 (sinteger_value : t_short_integer_type);
 basic_integer_type :
 (integer_value : t_integer_type);
 basic_short_type :
 (short_value : t_short_real_type);
 basic_real_type :
 (real_value : t_real_type);
 basic_short_decimal_type :
 (short_decimal_value : t_short_decimal_type);
 basic_decimal_type :
 (decimal_value : t_decimal_type);
 basic_string_type :
 (string_value : t_basic_string_type);
 end; { record t_basic_scalar_type }

 $page$
 {--}
 { Array constant and type definitions. }
 {--}

 {--}
 { Constants describing array bounds and limits. }
 {--}
 const
 c_max_array_bound = 32767;
 c_min_array_bound = -32768;
 c_max_array_elements = 32767;
 c_max_array_size = 32767; { bytes }
 c_max_array_dim = 6;

 {--}
 { Definition of the array descriptor that precedes the area used to store }
 { the array data. }
 {--}
 type
 t_dimension_subrange = integer;

 t_array_single_dimension_descriptor =
 record

dim_size : t_dimension_subrange; { number of elements in dimension }
 lower_bound : t_dimension_subrange; { lower bound for dimension }
 end; { record t_array_single_dimension_descriptor }

 t_array_dimension_descriptor =
 array [1..c_max_array_dim] of t_array_single_dimension_descriptor;

 t_array_descriptor =
 record
 total_elements : integer;
 bounds_info : t_array_dimension_descriptor;
 end;

 {--}
 { Definition of the DATA area of the array. }
 {--}

G- 21

 {--}
 { Definition of the maximum size and dimensions of each array type. }
 {--}
 const
 c_sizeof_single_dimension_descriptor = 2 * c_bytes_per_integer; { bytes }
 c_max_array_bytes_unavail =
 c_bytes_per_pointer + { pointer to the data area }
 c_bytes_per_integer + { stores total number of elements in array }
 c_max_array_dim * c_sizeof_single_dimension_descriptor; { bytes }

 {---}
 { c_max_array_bytes defines the maximum space that an array of any type }
 { may use. }
 {---}
 c_max_array_bytes = c_max_array_size - c_max_array_bytes_unavail;

 {---}
 { Calculate the maximum index for each of the arrays. Subtract one }
 { element when calculating because the array indexing is zero based. }
 {---}
 c_max_sinteger_array_index =

(c_max_array_bytes - c_sizeof_short_integer) div c_sizeof_short_integer;
 c_max_integer_array_index =
 (c_max_array_bytes - c_sizeof_integer) div c_sizeof_integer;
 c_max_short_array_index =
 (c_max_array_bytes - c_sizeof_short_real) div c_sizeof_short_real;
 c_max_real_array_index =
 (c_max_array_bytes - c_sizeof_real) div c_sizeof_real;
 c_max_short_decimal_array_index =

(c_max_array_bytes - c_sizeof_short_decimal) div c_sizeof_short_decimal;
 c_max_decimal_array_index =
 (c_max_array_bytes - c_sizeof_decimal) div c_sizeof_decimal;

 {---}
 { String arrays are contained in a "word_view", so max index is word, not }
 { element, related. Individual array elements are always 4 byte aligned }
 { because the t_basic_string_type record requires 4 byte alignment. }
 {---}
 c_max_string_array_index = c_max_array_bytes;
 c_max_string_array_word_index = c_max_array_bytes div
 c_bytes_per_32_bit_word;

 {--}
 { Definition of the types that describe each array that is used to store }
 { data of that type. }
 {--}
 type
 t_bas_sinteger_array =
 array [0..c_max_sinteger_array_index] of t_short_integer_type;
 t_bas_integer_array =
 array [0..c_max_integer_array_index] of t_integer_type;
 t_bas_short_array =
 array [0..c_max_short_array_index] of t_short_real_type;
 t_bas_real_array =
 array [0..c_max_real_array_index] of t_real_type;
 t_bas_short_decimal_array =
 array [0..c_max_short_decimal_array_index] of t_short_decimal_type;
 t_bas_decimal_array =
 array [0..c_max_decimal_array_index] of t_decimal_type;
 t_string_word_view =
 array [0..c_max_string_array_index div 4] of integer;

 {--}
 { t_basic_array_type }
 { Definition of an array data type that has a variant for each of the data }
 { types. }
 {--}
 type

G-: 22

 t_basic_array_type =
 record
 case t_basic_data_types of
 basic_sinteger_type : (sinteger_array : t_bas_sinteger_array);
 basic_integer_type : (integer_array : t_bas_integer_array);
 basic_short_decimal_type : (short_decimal_array
 : t_bas_short_decimal_array);
 basic_decimal_type : (decimal_array : t_bas_decimal_array);
 basic_short_type : (short_array : t_bas_short_array);
 basic_real_type : (real_array : t_bas_real_array);
 basic_string_type : (word_view : t_string_word_view);
 end; { record t_basic_array_type }

 $page$
 {--}
 { t_basic_data_type }
 { The value referenced by the parameter address passed in the ANYPARM }
 { actual parameter table has this type. The correct representation of the }
 { parameter is determined by the dimensionality and data type of the }
 { parameter. }
 {--}
 type
 t_dimension_range = 0..6; { a scalar has 0 dimensions, max array is 6 }

 t_basic_data_type =
 record
 case t_dimension_range of
 0 : (scalar_value : t_basic_scalar_type);
 1..6 :
 (
 {--}
 { Pointer to the beginning of the actual data area of the }
 { array. The pointer is always used to reference the }
 { actual data. }
 {--}
 p_array_data : ^t_basic_array_type;

 {--}
 { The area storing the total number of elements and the }
 { descriptor of each dimension - there are two words of }
 { information for each dimension. The data area of the }
 { array will overwrite unused dimension information. }
 {--}
 array_descriptor : t_array_descriptor;

 {--}
 { A field that defines the beginning of the actual data }
 { area - not to be used to reference the data. }
 {--}
 array_value : t_basic_array_type;
);
 end; { record t_basic_data_type }

 tp_basic_data_type = ^t_basic_data_type;

 $page$
 {--}
 { ANYPARM Parameter Type Field Values }
 { The parameter type flag passed to the external for a parameter has the }
 { same value as that which is returned by the TYP function. }
 {--}
 const
 c_decimal_type = 1;
 c_whole_string_type = 2;
 c_short_integer_type = 5;
 c_short_decimal_type = 6;
 c_integer_type = 11;
 c_short_real_type = 12;

G- 23

 c_real_type = 13;

 $page$
 {--}
 { The Actual Parameter Table }
 { An array of records describing the address, type and dimensionality of }
 { each of the actual parameters. t_parameter_record, a record which }
 { contains fields for the address, type and dimensionality of a single }
 { actual parameter in the actual parameter table, is defined. }
 { t_short_basic_string_type is defined to allow processing of strings. }
 { External declarations are made for the functions which process decimal }
 { values. }
 {--}
 const
 c_max_num_parameters = 50;
 c_short_basic_string_max_length = 400; { bytes }

 type
 t_parameter_record = packed record
 param_address : tp_basic_data_type;
 param_type : shortint;
 number_of_dimensions: shortint;
 end;

 t_actual_parameter_array = array [1..c_max_num_parameters] of
 t_parameter_record;

 tp_actual_parameter_array = ^t_actual_parameter_array;

 t_short_basic_string_type =
 record
 max_len : integer;
 case integer of
 0: (actual_len : integer;
 case integer of
 0: (bytes: packed

array [1..c_short_basic_string_max_length] of char);
 1: (words:
 array [1..c_short_basic_string_max_length div
 c_bytes_per_32_bit_word] of integer)
);

1: (pascal_string_view: string[c_short_basic_string_max_length]);
 end;

A Pascal ANYPARM Procedure Designed to Process Any Parameter

This section contains an example procedure that can process any of the
Business BASIC/XL data types. The procedure uses the file of definitions
shown in the previous section as an include file. The procedure is
followed by the HP Business BASIC/XL program that calls this procedure.
The section also contains a display that shows a logical representation
of memory during the ANYPARM call to the Pascal procedure.

 $standard_level 'os_features', os 'MPE/XL'$
 $partial_eval on, literal_alias on$
 $tables on, code_offsets on$
 $diagnostic 'mapinfo_on'$
 $optimize 'level2'$
 $subprogram$

 program pascal_example(input, output);
 $include 'anyparm.decls.basic'$

 $title 'ANYPARM_EXAMPLE/ANYPARM external testing all valid BASIC types',page$
 {--}
 { ANYPARM_EXAMPLE }
 { }
 { This procedure is written to accept a pointer to an actual parameter table }

G-: 24

 { as the formal parameter to the procedure. The actual parameter table }
 { contains addresses referencing any of the data types. The referenced }
 { values can be either scalars or arrays. The procedure will print the data }
 { type of the value and the value itself to a file named TESTFILE. TESTFILE }
 { must be created before calling this procedure. Testfile should be created }
 { as an ASCII file with a fixed record length of 80 bytes. }
 { }
 { ANYPARM_EXAMPLE contains the following second level procedures: }
 { }
 { write_header - writes a header for the call to the file. }
 { process_string_array - writes the value of individual elements of a }
 { string array to the file. }
 { process_array - writes the value of individual elements of }
 { numeric arrays to the file. }
 { process_scalar - writes the value of all scalar types to the }
 { file. }
 { }
 {--}
 procedure anyparm_example(num_params : integer
 ; p_actual_param_table : tp_actual_parameter_array
);
 var
 param_index : integer; { references entry in actual parameter table }
 tstfil : text; { text file to which output is written }

 $title 'EXTERNAL DECLARATIONS FOR THE FUNCTIONS TO CONVERT DECIMAL TYPES',page$
 {--}
 { External declarations used to convert decimals to reals and short decimals }
 { to reals. It is the caller's responsibility to check the values of }
 { parameters passed to these procedures to ensure that no overflow occurs }
 { during the conversion. }
 {--}
 const
 c_convert_short_decimal_to_real = 3;
 c_convert_decimal_to_real = 1;

 procedure bb_sdtor $alias 'bb_fp_decimal_convert'$(
 conversion_type : integer; { c_convert_short_decimal_to_real }
 var short_dec_param : t_short_decimal_type;
 var longreal_param : longreal
); external;
 procedure bb_dtor $alias 'bb_fp_decimal_convert'$(
 conversion_type : integer; { c_convert_decimal_to_real }
 var decimal_param : t_decimal_type;
 var longreal_param : longreal
); external;

 $title 'ANYPARM_EXAMPLE/Example of ANYPARM external testing all BASIC types'$
 $page$
 {--}
 { procedure write_header of anyparm_example }
 {--}
 procedure write_header(
 num_parms : integer;
 var tstfil : text
);

 begin { procedure write_header}
 writeln(tstfil, ' ');
 writeln(tstfil, 'enter the external anyparm_example');
 writeln(tstfil
 , 'the total number of parameters passed to anyparm_example is: '
 , num_params:2
);
 writeln(tstfil, 'param type');
 writeln(tstfil, '----- -------------')
 end; { procedure write_header}

G- 25

 $title 'PROCESS_STRING_ARRAY of ANYPARM_EXAMPLE',page$
 {--}
 { procedure process_string_array of anyparm_example }
 {--}
 procedure process_string_array(
 p_actual_param_table : tp_actual_parameter_array;
 param_index : integer;
 var tstfil : text
);
 const
 c_2_spaces = ' ';

 type
 t_pascal_string = string[c_max_str_len];
 tp_pascal_string = ^t_pascal_string;

 var
 array_element_num : integer; { element number in the array of strings }
 word_view_index : integer; { index for the word view of p_array_data }
 p_pascal_string : tp_pascal_string; { pointer to string in the array }
 array_element_word_length : integer; { maximum length of the string }

 begin { procedure process_string_array}
 writeln(tstfil, 'STRING Array');
 with p_actual_param_table^[param_index].param_address^.p_array_data^,
 { word_view }
 p_actual_param_table^[param_index].param_address^.array_descriptor do
 { total_elements }
 begin { with}
 {---}
 { The maximum length of each string in the array is identical and can be }
 { set to a constant for processing of the array. Since the information }
 { in word_view[0] is in units of bytes and an extra byte is always }
 { reserved at the end of the string, a simple calculation is performed }
 { to convert the 8 bit byte units to the 32 bit word units. }
 {---}
 array_element_word_length :=
 ((word_view[0] + c_bytes_per_32_bit_word) div c_bytes_per_32_bit_word)
 + 1 { for maximum length field } + 1 { for actual length field };

 {---}
 { The array of strings is stored as an array of 32 bit words. }
 { word_view_index is used to reference each of these words. }
 {---}
 word_view_index := 1;

 for array_element_num := 0 to (total_elements - 1) do
 begin { processing individual strings }
 {--}
 { Move that part of the word_view array that contains the actual }
 { characters of the string into the temp_string. }
 {--}
 $push, type_coercion 'conversion'$
 p_pascal_string := addr(word_view[word_view_index]);
 pop

 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , p_pascal_string^
);

 {--}
 { Increment to the index to the next element in the string array. }
 {--}
 word_view_index := word_view_index + array_element_word_length;

G-: 26

 end { processing individual strings }

 end { with }

 end; { procedure process_string_array }

 $title 'PROCESS_ARRAY of ANYPARM_EXAMPLE',page$
 {--}
 { procedure process_array of anyparm_example }
 {--}
 procedure process_array(
 p_actual_param_table : tp_actual_parameter_array;
 param_index : integer;
 var tstfil : text
);
 const
 c_2_spaces = ' ';

 var
 array_element_num : integer; { element number in the array of }
 { appropriate type }
 temp_real : longreal; { used for conversion from }
 { decimal and short dec }

 begin
 {--}
 { First de-reference the two pointers for the fields specified: }
 {--}
 with p_actual_param_table^[param_index].param_address^.p_array_data^,
 { short_decimal_array }
 { decimal_array }
 { sinteger_array }
 { integer_array }
 { short_array }
 { real_array }
 p_actual_param_table^[param_index].param_address^.array_descriptor do
 { total_elements }
 begin { with }
 {---}
 { Process the actual parameter by selecting the processing appropriate }
 { for that type. }

 {---}
 case p_actual_param_table^[param_index].param_type of
 c_short_decimal_type:
 begin
 writeln(tstfil, 'SHORT DECIMAL Array');
 for array_element_num := 0 to (total_elements - 1) do
 begin { short decimal element }
 bb_sdtor(c_convert_short_decimal_to_real
 , short_decimal_array[array_element_num]
 , temp_real
);
 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , temp_real
);
 end; { short decimal element }
 end;
 c_decimal_type:
 begin
 writeln(tstfil, 'DECIMAL Array');
 for array_element_num := 0 to (total_elements - 1) do
 begin
 write(tstfil
 , c_2_spaces

G- 27

 , array_element_num:3
 , c_2_spaces
);
 {--}
 { Check to ensure that there will not be a numeric overflow when }
 { the decimal value is converted to a real. }
 {--}
 if

(decimal_array[array_element_num].decimal_rep.exponent > -308) and
(decimal_array[array_element_num].decimal_rep.exponent < 308) then

 begin { decimal element }
 bb_dtor(c_convert_decimal_to_real
 , decimal_array[array_element_num]
 , temp_real
);
 writeln(tstfil, temp_real);
 end { decimal element }
 else
 writeln(tstfil, 'Decimal value is too large to convert')
 end
 end;
 c_short_integer_type:
 begin
 writeln(tstfil, 'SHORT INTEGER Array');
 for array_element_num := 0 to (total_elements - 1) do
 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , sinteger_array[array_element_num]:1
)
 end;
 c_integer_type:
 begin
 writeln(tstfil, 'INTEGER Array');
 for array_element_num := 0 to (total_elements - 1) do
 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , integer_array[array_element_num]:1
)
 end;
 c_short_real_type:
 begin
 writeln(tstfil, 'SHORT REAL Array');
 for array_element_num := 0 to (total_elements - 1) do
 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , short_array[array_element_num]
)
 end;
 c_real_type:
 begin
 writeln(tstfil, 'REAL Array');
 for array_element_num := 0 to (total_elements - 1) do
 writeln(tstfil
 , c_2_spaces
 , array_element_num:3
 , c_2_spaces
 , real_array[array_element_num]
)
 end;
 c_whole_string_type:
 process_string_array(p_actual_param_table, param_index, tstfil);

G-: 28

 otherwise
 writeln(tstfil,'error in passed type')

 end { case }

 end { with }

 end; { procedure process_array }

 $title 'PROCESS_SCALAR of ANYPARM_EXAMPLE',page$
 {--}
 { procedure process_scalar of anyparm_example }
 {--}
 procedure process_scalar(
 p_actual_param_table : tp_actual_parameter_array;
 param_index : integer;
 var tstfil : text
);
 var
 temp_real : longreal; { used for conversion from dec and short dec }
 temp_integer : integer;

 begin { procedure process_scalar }
 {--}
 { First de-reference the pointer for the associated fields specified. }
 {--}
 with p_actual_param_table^[param_index].param_address^.scalar_value do
 { short_decimal_value }
 { decimal_value }
 { sinteger_value }
 { integer_value }
 { short_value }
 { real_value }
 { string_value.pascal_string_view }
 begin { with }
 {---}
 { Process the actual parameter by selecting the processing appropriate }
 { for that type. }
 {---}
 case p_actual_param_table^[param_index].param_type of
 c_short_decimal_type:
 begin { short decimal value }
 bb_sdtor(c_convert_short_decimal_to_real
 , short_decimal_value
 , temp_real
);
 writeln(tstfil, 'SHORT DECIMAL ', temp_real);
 end; { short decimal value }
 c_decimal_type:
 begin
 {---}
 { Check to ensure that there will not be a numeric overflow when }
 { the decimal value is converted to a real. }
 {---}
 if (decimal_value.decimal_rep.exponent > -308) and
 (decimal_value.decimal_rep.exponent < 308) then
 begin { decimal value }
 bb_dtor(c_convert_decimal_to_real, decimal_value, temp_real);
 writeln(tstfil, 'DECIMAL ', temp_real);
 end { decimal value }
 else
 writeln(tstfil
 , 'DECIMAL '
 , 'Decimal value is too large to convert'
)
 end;
 c_short_integer_type:
 begin { short integer }

G- 29

 temp_integer := sinteger_value;
 writeln(tstfil, 'SHORT INTEGER ', temp_integer:1);
 end; { short integer }
 c_integer_type:
 writeln(tstfil, 'INTEGER ', integer_value:1);
 c_short_real_type:
 writeln(tstfil, 'SHORT REAL ', short_value);
 c_real_type:
 writeln(tstfil, 'REAL ', real_value);
 c_whole_string_type:
 writeln(tstfil, 'STRING ', string_value.pascal_string_view);

 otherwise
 writeln(tstfil,'error in passed type');

 end { case }

 end { with }

 end; { procedure process_scalar }

 $title 'ANYPARM_EXAMPLE/Example of ANYPARM external testing all BASIC types'$
 $page$
 {--}
 { main of ANYPARM_EXAMPLE }
 {--}
 begin { anyparm_example }

 {--}
 { TESTFILE is opened in append mode so that information written to the file }
 { by previous calls is not overwritten. }
 {--}
 append(tstfil, 'testfile');

 write_header(num_params, tstfil);

 {--}
 { Check to ensure that the number of actual parameters passed can be }
 { processed by the external. }
 {--}
 if num_params > c_max_num_parameters then
 begin { too many parameters to process }

writeln(tstfil, ' Too many actual parameters passed to ANYPARM_EXAMPLE');
 writeln(tstfil, ' Maximum number is: ', c_max_num_parameters:1)
 end { too many parameters to process }

 else

 begin { anyparm_example's actual parameter array is large enough }

 {---}
 { Process each of the entries in the actual parameter table referenced by }
 { the formal parameter, p_actual_parameter_array. }
 {---}
 for param_index := 1 to num_params do
 begin { for loop processing of the parameters }

 {--}
 { Write the number of the parameter, the value(s) of which are about }
 { to be written. }
 {--}
 write(tstfil, param_index:3, ' ');

 {--}
 { Do the appropriate processing dependent upon the dimensionality of }
 { the parameter in the actual parameter array currently being }
 { processed. }
 {--}

G-: 30

 if p_actual_param_table^[param_index].number_of_dimensions > 0 then
 process_array(p_actual_param_table, param_index, tstfil)
 else
 process_scalar(p_actual_param_table, param_index, tstfil)

 end { for loop processing of the parameters }

 end; { anyparm_example's actual parameter array is large enough }

 writeln(tstfil, 'exiting anyparm_example');
 end; { anyparm_example }

 begin
 end.

The ANYPARM Call

Assume that the Pascal program presented in the previous section is in
the file, ANYPROG. To add the EXAMPLE procedure to the local executable
library named XL, do the following:

 :pasxl anyprog
 :linkeditor
 linked>buildxl xl
 linked>addxl from= $oldpass; to=xl
 linked>exit
 :

Consult the HPLink Editor/XL Reference Manual for more information.

Enter HP Business BASIC/XL and type the following program:

 100 ! --- purge the file to which the &
 external writes the information --
 110 PURGE "TESTFILE";STATUS=Status
 120 !
 130 ! --------- create the file to which &
 the external will write -------
 140 CREATE ASCII "TESTFILE",RECSIZE=-80
 150 !
 160 ! ----------- declare and initialize variables -------------
 170 REAL Real1
 180 DIM Str8$[8]
 190 DIM SHORT INTEGER Sint_array(1,1) &
 ! Assumes the OPTION BASE is zero
 200 Real1=1.23E+45
 210 Str8$="ANYPARM"
 220 Sint_array(0,0)=1
 230 Sint_array(0,1)=2
 240 Sint_array(1,0)=3
 250 Sint_array(1,1)=4
 260 !
 270 ! ---------------- call the external --------------------
 280 _EXAMPLE Real1,Str8$,Sint_array(*,*)
 290 !
 300 ! ---------- print the contents of testfile -------------
 310 COPYFILE "testfile"
 320 END

Display of Memory during an ANYPARM Procedure Call

When the program is executed, the following is the layout of memory just
as execution of the external, EXAMPLE, is beginning:

G- 31

Figure G-2. Memory Layout

The Results of Program Execution

The first call to the external from within the interpreter will require
substantially more time than subsequent calls. The reason is that the
external procedure must be dynamically loaded before it can be called.
Subsequent calls do not need to reload the external. The amount of time
required to do the initial load is dependent on the size of the external
being loaded. Externals called from compiled HP Business BASIC/XL
programs are loaded when program execution starts.

The following is the result of program execution in the interpreter.

G-: 32

 >run

 hello from the external example
 the total number of parameters passed to example is: 3
 param type
 ----- ------------
 1 REAL 1.2300000000000L+45
 2 STRING ANYPARM
 3 SHORT INTEGER Array
 0 1
 1 2
 2 3
 3 4
 exiting example
 >

Differences Relative to BASIC/V

For those users familiar with BASIC/V's external procedure call feature,
this section describes the differences between that feature and HP
Business BASIC/XL's ANYPARM feature, and explains some of the reasons for
the differences. Although the ANYPARM feature is designed to provide the
same functionality as the BASIC/V feature, it is also designed to be
consistent with other aspects of HP Business BASIC/XL. It is not meant to
be identical with BASIC/V. An MPE/V machine word in this section refers
to the 2 byte machine word of the HP 3000 running with the MPE V
operating system.

An MPE XL machine word is a 4 byte machine word of the HP 3000 running
under the MPE XL operating system.

The View from the External Procedure

In the BASIC/V feature, the field containing the number of parameters is
located at Q+1 of the calling procedure, and the addresses and flag words
immediately follow it on the stack. The HP Business BASIC/XL ANYPARM
external procedure must declare two formal parameters: one for the
number of parameters, and one for the address of the actual parameter
table. This was done both to enable the external procedures to be
written in Pascal, and to make it easier to migrate the external
procedures to future HP computers.

Each flag word on MPE XL takes up an entire word and immediately follows
the address of the parameter, instead of being packed three to a word and
residing together in a block. The change makes it easier to obtain the
required information and to port the feature to future computers.

The Flag Words

Data Types. The values in the flag words that indicate the data types
are not the same as those used by BASIC/V. The change was necessary to
allow the use of the Business BASIC XL data types that don't exist in
BASIC/V. The values are now consistent with the values returned by the HP
Business BASIC XL TYP and BUFTYP built-in functions.

Sizes. The size field (dimensionality) for a scalar string contains a
zero, rather than a one as it did in the BASIC/V feature; the size field
for a one-dimensional string array contains a one, rather than a two.
The change is required to ensure that strings are handled consistently
with the method used in HP Business BASIC/XL. Remember that HP Business
BASIC/XL allows string arrays of up to six dimensions, whereas in BASIC/V
strings arrays are limited to one dimension.

The Addresses

For arrays and strings, the address passed to the ANYPARM external
references the first byte of the dope vector, rather than the beginning
of the data area. All addresses are now byte addresses.

p- 1

HP Business BASIC/XL Reference Manual

HP Business BASIC/XL
Reference Manual

Printed in U.S.A.

900 Series HP 3000 Computer Systems
HP Part No. 32715-90001
Edition First Edition
Printed Oct 1989
E1089

__
|The information contained in this document is subject to change |
|without notice. |
| |
|HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS |
|MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
|MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard |
|shall not be liable for errors contained herein or for incidental or |
|consequential damages in connection with the furnishing, performance |
|or use of this material. |
| |
|Hewlett-Packard assumes no responsibility for the use or reliability |
|of its software on equipment that is not furnished by Hewlett-Packard.|
| |
|This document contains proprietary information which is protected by |
|copyright. All rights are reserved. No part of this document may be |
|photocopied, reproduced or translated to another language without the |
|prior written consent of Hewlett-Packard Company. |
__

Copyright Æ 1989 by Hewlett-Packard Company

Print History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed alongside the data indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

First Edition October 1989 32715.00.00

p- 2

Additional Documentation

Refer to the following manuals for further information on the MPE XL
operating system, HP Business BASIC/XL and the IMAGE Database Management
System:

 * MPE XL Commands Reference Manual (32650-9003).
 * MPE XL Intrinsics Reference Manual (32650-90028).
 * HPLink Editor/XL Reference Manual (32650-90029).
 * Accessing Files Programmer's Guide (32650-90017).
 * TurboIMAGE/XL Database Management System (30391-90001).
 * SORT-MERGE/XL General User's Guide (32650-90082).
 * System Debug Reference Manual (32650-90013).
 * HP Pascal Reference Manual (31502-90001).
 * Native Language Programmer's Guide (32650-90022).
 * Data Entry and Forms Management System VPLUS/3000 (32209-90001).
 * HP Business BASIC/XL Migration Guide (32715-90003).

Preface

This reference manual for the Hewlett-Packard HP Business BASIC/XL
programming language provides programmers with information about the
specific use of HP Business BASIC/XL as they prepare their applications.
The manual is intended for reference only, to review the syntax and
functions of HP Business BASIC/XL. It is not intended to teach the
inexperienced programmer HP Business BASIC/XL. Information about
migrating to HP Business BASIC/XL is contained in the HP Business
BASIC/XL Migration Guide (PN 32715-90003).

The HP Business BASIC/XL language is for programming on 900 Series HP
3000 Computers, under the MPE XL operating system.

This manual contains the following chapters and appendixes:

Chapter 1 Provides an introduction to the HP Business BASIC/XL
 programming language.

Chapter 2 Explains the program development environment in which
 programs are created, modified, debugged, stored, and
 retrieved.

Chapter 3 Describes the elements of the HP Business BASIC/XL
 language.

Chapter 4 Describes all the statements available for creating a HP
 Business BASIC/XL program. They are arranged
 alphabetically for quick reference.

Chapter 5 Describes all the functions available within HP Business
 BASIC/XL. They are arranged alphabetically for quick
 reference.

Chapter 6 Explains input and output with HP Business BASIC/XL,
 including using the Native Language Support features.

Chapter 7 Describes the Report Writer.

Chapter 8 Explains the user-definable keys.

Chapter 9 Explains the HP Business BASIC/XL compiler. Lists
 statements that the compiler ignores and statements that
 cause compiler errors.

Appendix A Explains the errors that occur in HP Business BASIC/XL.
 They are listed by number.

Appendix B Lists the statements available to the user grouped by
 functionality.

p- 3

Appendix C Explains the HP Business BASIC/XL Configuration Utility,
 which establishes default values for HP Business
 BASIC/XL.

Appendix D Gives the decimal and hexadecimal codes for the ASCII
 characters.

Appendix E Describes the HP terminals and language features.

Appendix F Explains JOINFORM, the FORMS/260 compatible forms
 package.

Appendix G Contains a technical discussion of the ANYPARM External
 Call Feature.

Conventions Used In This Manual

Notation Description

COMMAND Commands are shown in CAPITAL LETTERS. The names must
 contain no blanks and be delimited by a non-alphabetic
 character (usually a blank).

KEYWORDS Literal keywords, which are entered exactly as
 specified, appear in CAPITAL LETTERS.

parameter Parameters, for which you may substitute a value, appear
 in italics .

[] An element inside brackets is optional. Several
 elements stacked inside a pair of brackets means the
 user may select any one or none of these elements.
 Example:

 [A]
 [B] user may select A or B or neither.

 When brackets are nested, parameters in inner brackets
 can only be specified if parameters in outer brackets or
 comma place-holders are specified.

 Example: [parm1 [, parm2 [, parm3]]]

 may be entered as

parm1,parm2,parm3 or
parm1,,parm3 or
,,parm3 ,etc.

{ } When several elements are stacked within braces the user
must select one of these elements. Example:

 {A}
 {B}
 {C}

 You must select A or B or C.

... An ellipsis in a syntax statement indicates that a
 previous bracketed element may be repeated. Within an
 example, vertical and horizontal ellipses show where
 portions of the example have been omitted.

User Input In examples of interactive dialog, user input is underlined.
 Example: NEW NAME? ALPHA1

CONTROL Control characters are indicated by CONTROL. Example:
CONTROL Y. (Press the CNTL key and Y simultaneously.)

RETURN RETURN indicates the carriage return key.

p- 4

	Top of Document
	Preface
	Chapter 1 Introductions
	Chapter 2 Program Development Environment
	Chapter 3 Language Elements
	Chapter 4 Statements
	Chapter 5 Functions
	Chapter 6 Input and Output
	Chapter 7 The Report Writer
	Chapter 8 User-Defined Keys
	Chapter 9 Compiler
	Appendix A Error Messages
	Appendix B Statement Groups
	Appendix C HP Business BASIC/XL Configuration Utility
	Appendix D ASCII Character Codes
	Appendix E HP Terminals and Language Features
	Appendix F JOINFORM
	Appendix G ANYPARM External Call Feature

