THE COMPILER FOR TRANSACT

PERFORMANCE SOFTWARE GROUP
12 Hillview Drive
Baitimore, Md. 21228
(301) 242-6777
Telex: 887764

LQUT QB\“'L

i

NOTICE
Theinformation contained in this document is subject to change without notice.
PERFORMANCE SOFTWARE GROUP MAKES NO WARRANTY OF ANY

KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTEES OFMERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Performance Software Group shall notbe responsible for errors contained herein
or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

This document contains proprietary information which is protected by copy-
right. All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of Performance Software Group,
except that licensees of FASTRAN are granted permission to réprint this docu-
ment in limited quanhnes for internal use (and not for proﬁt) provided that
copyright notice is given.

© 1991, Perforinance Software Group

PRINTING HISTORY

First EAIHON covvvvr vt sssscassnrnis s orervesmsrssrssnsssmssssnsars s JANL 1984

SECONA BAHON wvoreverrrrreesessmresasasessarsesessessssemasseesesssssseseaseassssese +Jul. 1984
Third EQHHON ..o cvrsisssstsssssesesns s srsssesnorsar e e €0, 1985

SIXER BAHIOM vt rserormerers s sassnses s Nov. 1988
Seventh Edition

1t

PREFACE

This manual is a reference for using the FASTRAN compiler to compile and execute programs
written in Hewlett-Packard’s Transact programming language on the HY-3000 computer

system. It assumes a working knowledge of Transact, the HP-3000 and the MPE operating
system. '

This manual is not intended as a reference for the Transact language. As such, it confines its

_discussions to the differences between FASTRAN and Transact, and to the special features of
FASTRAN. Hewlett-Packard's Transact/3000 Reference Manual (HP Part No. 32247-90001)
should be consulted for any general questions regarding the Transact language.

This manual contains the following sections:

Section: INTRODUCTION TOFASTRAN, describes the major advantages
of FASTRAN as well as its limitations.

Section2: COMPILING PROGRAMS WITH FASTRAN, descnbes in detail
how to use the FASTRAN compiler. N

Section 3: FASTRAN COMPILER CONTROLOPTIONS, describes theeffect
of each of the FASTRAN compiler options.
Section 4: PREPARING AND EXECUTING FASTRAN PROGRAMS, tells

how to prepare a FASTRAN program for execution and how to
control its execution at run-time.

., Section 5: USING CALL WITH FASTRAN, describes the implementation of
the CALL statement in FASTRAN and discusses the various tech-
niques that can be used with CALL.

Section 6: USING THE FASTRAN/SEGMENTER, describes the special seg-
menter supplied with FASTRAN.

Appendix A explains the error messages issued by the FASTRAN compiler.

Appendix B explains the error messages issued by a FASTRAN program atrun
time.

Appendix Cdescribes the optional run-time statistics generated by the compiler.

CONTENTS

Section 1: INTRODUCTION TO FASTRAN

1

FASTRAN LIMULABONS corvcrrivssre s s inisimsesarmsesinnaseresssisssensesssssearresssisasesscssansss rose s esosas ssssaseins 2

Is FASTRAN a Substitute fOr TEansact? ..o rcrscninrseeensressonsesgresebsperasesmans vervar o 2

_ System Requirements for FASTRAN ... massssemssesssssecsras sosscons crrons 3
Section 2: COMPILING PROGRAMS WITH FASTRAN romsreaaersd
Using UDC’s for Compiling with FASTRAN ... s s cecni e e
Section 3;: FASTRAN Compiler Control Options..................... g
FASTRAN Compiler Directives ... SOOI I
Section 4: PREPARING AND EXECUTING FASTRAN PROGRAMS 15
Preparing a FASTRAN I’rogram FOr EX@CULION 1voov e cvirrscaevsessesicessssasssrassssencerensserner LD
Special Capabilities ... s e R R R b s e ssme st erarncs 1O
Executing FASTRAN Programs .. Seavrriesnans semene s sanns 17
The FASTRAN Run-Time Message Cataiog .17
FASTRAN Run-Time File Equations18
Built-in Processor COMUTANIS v v een s e e onsarsgassssareassssnsersns rmassessierasesmssaesss raerons 19
Section 5 USING C_ALL WITH FASTRAN ..ovrrrericsssmmenrsrasassssrissssesnserssnissssasssssmsarsompas sssasss 21
How FASTRAN Handles Calls .. s s sssmsessersrieresssersssassssaressarsionsens 21
Static and Dynamic Calls ...t e s s 22
Controlling the Type of Calls Generated by FASTRAN ... 23
Limitations on the Call Statement with FASTRAN ..o 24
Compiling, Preparing and Executing with Call.. e 24
Process-Handling Calls...oviecnn..n rerrreEe LA AR S A benr RS e R et SR paas s et s Agoa Rt e nr s E e 28
Section 6: Using the FASTRAN/SEGMENTER v scimmmsememmsvasnssmmsssssssassessesnsnss 31
FASTRAN /SEGMENTER COMINANS ...c.vviiriciinrinniriomrscsrnssersasrasmissesresssesesess s rorssmsssssassassr s 32
The FASTRAN/SEGMENTER Compiler INterface ... evvcccriniiic e csvssecsssieo 37
Appendix A: COMPILE-TIME ERROR MESSAGES - A1
Appendix B: RUN-TIME ERROR MESSAGES wucreuvrcmscrrmeessesissmssssrssressessmsssssssssesssomosssses B-1
Appendix Ct RUN-TIME STATISTICSoovvrvvusemenessessesssssssssssssmsssssisssnsnsessesssmmsnsomsemimsessosssorso C-1

vii

SECTION INTRODUCTION
1 ~ TOFASTRAN

FASTRAN is a compiler for Hewlett-Packard’s Transact programming language used on the
HP-3000 series of computers. The main difference between FASTRAN and Transact is that
FASTRAN produces HP-3000 object code which can be directly executed by the hardware
under control of the MPE operating system. The Transact compiler produces “intermediate
processor code” which must be executed interpretively by the Transact processor program.

The major advantage of FASTRAN over Transact 1s a dramatic reduction in both CPU and
elapsed time. A number of features contribute to this high level of performance:

¢ FASTRAN is compiled, not interpreted. The overhead of interpreting the interme-

----- diate processorcode iseliminated-Inaddition, FASTRAN-is-able to employ special

machine instructions (in particular, the COBOL I microcode) that greatly speed
certain FASTRAN functions.

» FASTRAN data structures are designed for fast access. Thus FASTRAN is able to
eliminate such time-consuming operations as listregister searches when dataitems
are referenced, table look-ups when child items are referenced and “garbage
collection” in the work register. FASTRAN accomplishes this while still maintain-
ing all of Transact’s capabilities for dynamic list and data register allocation and
efficient re-use of work register space.

. * Where interpretive techniques cannot be avoided, the FASTRAN interpretive
“procedures have been coded for the maximum level of performance. For example,

FASTRAN match register evaluation, while essentially interpretive, is about four
times faster than it is with Transact.

Programs compiled with FASTRAN typically require less data space than with Transact, often
dramatically less. This is because FASTRAN can use code segments for much of what Transact
must store in its data stack. Some of the data that FASTRAN stores in code segments include:

- » The program code itself.

.

Data item tables (names, aliases, attributes, headings, edit pictures and entry text).
VPLUS form and field fables.

Command and sub-éommand tables.

L 4

Text and control strings.

INTRODUCTION TO FASTRAN

FASTRAN LIMITATIONS

There are a few features of Transact which are not supported by FASTRAN:

» Run-timeaccess to thedatadictionary is not supported. Definitions for all dataitems
in your program mustbe available at compile time, either from the data dictionary
or via DEFINE(ITEM) statements in your program. Compile-time access to
DICTIONARY /3000is fully supported. System Dictionary access is not supported.

* Test mode is ot supported, nor is the TEST built-in command.

¢ The INITIALIZE built-in command (which allows Transact to initiate a new
Transact program without exiting the processor) is not supported.

- » A number of limitations apply to the CALL statement:

- CALLs to Transact programs are supported only if both the called and the
calling programs have been compiled with FASTRAN. In addition, the
programs must be linked to one another in one of the ways described in
Section 3.

- CALLs cannot bemade to programs residing in different groups or accounts
(except for process-handling calls, which have certain other limitations— see
Section 5),

- The SWAF option of the CALL statement is not supported and is ignored by
FASTRAN. Since FASTRAN uses much less data stack space than Transact,
this option is not likely to be needed.

Programs which do not use any of these unsupported features can normally be compiled and
- executed successfully by FASTRAN with no changes to the Transact source code. Occasionally

a program with one or more very large segments may need to be resegmented to be compiled
with FASTRAN.

IS FASTRAN A SUBSTITUTE FOR TRANSACT?

FASTRAN is a production-oriented compiler designed for optimum run-time performance. It
is not a substitute for Transact ~ Transact is still the better choice for the development phase of
a program’s life cycle for several reasons:

» Program compilation is 51gmfxcant1y faster with Transact than with FASTRAN,
since much of what Transact defers to run time is done by FASTRAN at compile
time.

*» The program development features of Transact (test mode and run-time data
dictionary access) are not supported by FASTRAN.

INTRODUCTION TO FASTRAN

SYSTEM REQUIREMENTS FOR FASTRAN

The object code generated by FASTRAN includes instructions from the Language Extension
instruction set (the COBOL-H microcode). Any machine which is to execute a FASTRAN
program must incude the COBOL-II firmware (standard on all HP-3000's produced since
December 1982). The COBOL-II compiler is not required.

Although the data stacks required by FASTRAN are normally smaller than with Transact, large
data stacks may stll be required. In addition, FASTRAN may generate large MPE code
segments. Therefore, any machine which is to execute compiled FASTRAN programs should
be configured for the largest permissible values for both maximum data stack size and

- maximum code segment size. (See the HP System Manager’s manual for more information on
these configuration parameters).

o

SECTION COMPILING PROGRAMS
2 WITH FASTRAN

Compiling a Transact source program with FASTRAN is very similar to using the Transact
compiler. You can run the compiler interactively by entering the following command:

sRUN FASTRAN.PUB.FASTRAN
The FASTRAN compiler will prompt you as follows:

SOURCE FILE>
LiST FILE>
CONTROL>

in reSpcnse {0 the SOURCE FILE> prompt you should enter the name of your Transact source
program,
In response to the LIST FILE> prompt you can respond in any of the following ways:

« Enter a carriage return (or $STDLIST) to direct the listing to your terminal.

* Enter NULL, $NULL or N to suppress the listing.

* Enter LP to direct the listing to the line printer.

* Enter a file name to direct the listing to a new disc file. If the named file already
exists, the FASTRAN compiler will ask if you want o purge it.

s Enter a back reference to a file equation (beginning with *).

In response to the CONTROL> prompt you may enter any contro] options you wish to apply
to the compilation. If you respond with a carriage return, the default control options are used.
You car reverse the effect of any default control option by preceding it with NO. Some of the
FASTRAN control options are different from the Transact opticms The FASTRAN contrel
options are discussed in Section 3.

Like Transact, FASTRAN allows you to bypass the compiler prompts by using the PARM=
and/or the INFO= options of the :RUN command for FASTRAN.

COMPILING PROGRAMS WITH FASTRAN

The PARM= option allows you to identify your source file and/or your list file with file
equations, as follows:

PARM~1 FASTRAN uses formal-file-designator FSTIEXT for your source file and the
SOURCE FILE> prompt is suppressed.

PARM=2 FASTRAN uses formal-file-designator FSTLIST for your list file and the LIST
FILE> prompt is suppressed.

PaRM=3 Combines the effect of PARM=1 and FARM=2.

FASTRAN alscallows you to control the destination file for your compiled object code with the
PARM= option. Normally the object code is written fo a USL (user subroutine library) file

named $SOLDPASS. If you want to direct the object code to a different USL file, you can use
PARM=4.

FASTRAN will then write the object code to formal- ﬁie—deszgnator SPLUSL. You can use a file
equation to equate SPLUSL to your USL file, for example:

:FILE SPLUSL=MYUSL
:RUN FASTRAN.PUB.FASTRAN; PARM=4

| Although FAS'I'RAN no longer uses the SPL compiler, the USL formal-file-designator is still
SPLUSL to maintain compatibility with customers” existing job streams.You can combine the
effect of PARM=4 with PARM=1, 2 or 3 by using PARM=5, 6 or 7, respectively.

The INFO= option allows you to supply control options directly to the FASTRAN compiler,
bypassing the CONTROL> prompt. The control options are separated by commmas, just as they
would be in response to the CONTROL> prompt. If you want FASTRAN to use the default
options and to bypass the CONTROL> prompt, set the INFO= parameter to INFO="".

FASTRAN can access a data dictionary during compilation. Like Transact, FASTRAN uses
DICT.PUB as the formal designator for the data dictionary. If you want FASTRAN to use a
different dictionary, a file equation is needed.

The FASTRAN compiler uses three additional files which are normally of no concern since the
default assignments are usually appropriate.

¢ FSTOUT is the formal-file-designator for prompts and error messages from the
compiler. The default assignment for FSTOUT is $5TDLIST.

* FSTIN is the formal-file-designator for responses to the prompts issued by the
compiler. The default assignment for FSTIN is $STDINX.

« FSTRNOOO.PUB.FASTRAN is the formal-file-designator for the FASTRAN com-
pile-time message catalog. In a normal FASTRAN installation no file equation will
be needed. (Nofe that the FASTRAN c:t)mpﬂe-time and run-time message cataiogs
are in different files.)

COMPILING PROGRAMS WITH FASTRAN

USING UDC’S FOR COMPILING WITH FASTRAN

The FASTRAN account contains a UDC file named UDC . PUB.FASTRAN which coniains user-
defined commands for compiling with FASTRAN. Each of these commands is described

below:
:FASTRAN

:FASTCOMP

(FASTRRER

*FASTGO

The :FASTRAN command simply executes the follomng MPE com-
mand:

:RUN FASTRAN.PUB.FASTRAN
source-file [[usl-file] [{list-file] [control-option]... 1]

The :FASTCOMP command runs the FASTRAN cdmpller and allows
you to designate your source-file, usl-file, list-file and control-options in the

same Ixne

Only the source-file parameter is required. ’I’he default usl-file is $OLD-
PASS and the default list~file is $STDLIST. If you want to suppress the
listing, you must use $NULL and not simply NULL.

Up to five options may be entered. The options must begin with the

fourth parameter. You may need to use extra commas to indicate missing
parameters, for example:

:FASTCOMP MYIPROG,, ,DEFN,OPTS

This command will compile MYPROG with optioris DEFN and OPTS.
The extra commas indicate that defaults are to be used for the usl-file and

the list-file.
source-file [fprogram-file] [list-file] [control-option]...]]

The :FASTPREP command runs the FASTRAN compiler and then pre-
pares the compiler output, producing an executable program file. The
program file is PREPed with MAXDATA=32000 using the RL (relocat-
able library) file RL.PUB.FASTRAN.

Only the source-file parameter is required. The default program-file is -
$OLDPASS and the default list-file is $5TDLIST.

Note that both :FASTPREP and :FASTGO (below) use the FASTRAN/

SEGMENTER, rather than the MPE segmenter to prepare the program

file.
seurce-file [,ﬂ-z‘st—fifel Fcontrol-option]...]}

The FASTGO command runs the FASTRAN compiler, uses the FAS-
TRAN/SEGMENTER to prepare the program file, and then executes it.

Onlythesource-file parameter is required. Thedefault list-file is $STDLIST.
The program file is always $0LDPASS

SECTION FASTRAN COMPILER

3

CONTROL OPTIONS

Like Transact, FASTRAN allows you to control certain features of compilation by supplying

control options, either in response to the interactive CONTROL> pmmpt or via the INFO=
parameter of the compiler :RUN command.

Many of the FASTRAN control options are the same as the Transact options. There are a few
Transact options which are not relevant to FASTRAN and are therefore not supported. There
are also a number of additional options which are unique to FASTRAN.

There are six Transact options which are not supperted by FASTRAN. They are;

CBJT

OPTE

OPTE

OPTP

CPTR

ES)

XERR

This option tells Transact to produce alisting of theintermediate processor code.
FASTRAN does not produce intermediate processor code.

This option tells Transact not to store the edit text for a data item in the data stack
tables. FASTRAN never stores this information in the data stack.

This option tells Transact not to store the heading textfor a dataitem inthe data
stack tables. FASTRAN never stares this information in the data stack.

This option tells Transact notto store the prompt text for a data item in the data
stack tables. FASTRAN never stores this information in the data stack.

This option tells Transact not to store the edit text, heading text, textual name

and prompt text for a data item in the data stack tables. BASTRAN never stores
this information in the data stack.

This option tells Transact to create a code file even if there are errors in the
compilation. FASTRAN does not allow you to create object code if there are
compilatiorn errors.

The remaining nine Transact options are supported by FASTRAN. These options all have
essentially the same effect in FASTRAN as In Transact. The default options are marked by an
asterisk (*). The FASTRAN defaults are the same as the Transact defaults, except where noted:

*CODE
DEFN

*DICT

Creates a USL file containing the compiled object code, unless any errors
occurred during the compilation.

Produces an alphabetized listing of all data 1tems referenced in the program,
including the definition of each.

Tells the compiler to use the data dictionary (DICT.PUB]) to resolve data item
definitions.

I

18

FASTRAN COMPILER CONTROL OPTIONS

YERRS

*LIST

OPTI

ACPTS

STAT

XREF

Lists compilation errors on $STDLIST even if the listing is suppressed or
directed elsewhere.

Generates a listing of the compiled source code. With FASTRAN this listing is
produced during the compiler’s second pass. Therefore, if any errors are
detected during the first pass, no listing will be produced.

Optimizes the storage of data item names in FASTRAN's internal tables. When
this option is used, any data items which were defined in the program with the
OFPT option will net have their names stored in the compiler-generated data
item tables. As with Transact, OPT should notbe used with any data item whose
name is needed for a prompt string, a display heading, a LIST= option for
IMAGE or a WINDOW= option for VPLUS.

Note that FASTRAN does not store the data item tables in the data stack, but

rather in code segments. Therefore, this option will have no effect on the size of
the FASTRAN data stack.

Normally the OFTI option will not be required with FASTRAN, even if the
program you are compiling requires it with Transact. This is because there is
much morespaceavailable for these tables with FASTRANN. We recommend that

you use OPTI only in the event of compile-tirne errors 16 or 22, which indicate
an overfiow of these tables.

Optimizes segment transfers in a segmented program. When you use this
option the list, match and update registers are not checked for local segment

items when a segment transfer occurs. Use of this option speeds segment
transfers considerably.

With Transact, the OPTS option is normally off. This is because these checks are
important wheén you are developing and debugging a Transact program.
However, since FASTRAN is intended as a high-performance production

‘compiler, OPTS is a default option for FASTRAN.

(Generates statistics on run-time storage allocation for the compiled program.
However, due to the great differences in the run-fime environments of Transact
and FASTRAN, the statistics are presented in a cornpletely different format.
Appendix C describes the format of a FASTRAN STAT listing.

Generates a cross-reference listing of label definitions and their references.

In addition, FASTRAN provides nine new control options. These are described below. As
before, an asterisk (*) denotes a default option:

10

*CHEXK Tells the FASTRAN compiler to generate code for certain run-time checks,
namely verifying that a referenced data item is in the list register and verifying

that there is a pending PERFORM when a RETURN statement is. executed.

Since the performance penalty for performing these checks is relatively small
(nomore than afew percent}, CHEK is a default option for FASTRAN. However,

CLST

DCAL

DDRO

FLST

*QPTX

FASTRAN COMPILER CONTROL OPTIONS

you can significantly reduce the amount of code generated (usually about 15%)
by specifying NOCHEK. This can be a handy alternative to segmentation if you
have a FASTRAN segment which is just a little too large.

Be aware that your program will produce unpredictable results if you compile
it with NOCHEK and it happens to reference a data item which is notin thelist
register, or if it attemptis to RETURN when there is no pending PERFORM.

Lists the generated code (in assembly language) Hnmedlately following each
program statement,

Generates dynamic calls for all CALL statements in your program. This will
allow your program to be executed even if some of the programs which it calls
are not available at load-time. Dynamic {and static) calls and the use of the
DCAL option are discussed in detail in Section 5.

Defers data base opens until the data base is first referenced. Normally, all data
bases are opened at the beginning of your program. When DDBO is specified,
your program begins executing immediately and each data base is opened
when it is first referenced in a data management statement.

Forces the compiler to generate a listing for all compiled source code, even if it
contains INOLIST statements. This cah be useful if there are sections of code that

yowrnormally want to suppress on the listing, but oceasionally you want to list
them.

Optimizes expression evaluation based on the declared size of the data items in
an expression. When you specify this option, FASTRAN assumes that no data
item will ever contain a value larger than its declared size. When FASTRAN
generates code for an intermediate calculation, it uses these assumed maximum
values to determine the maximum range of the intermediate result. It then
chooses the data type and size to accommodate the maximum range.

1f you specify NOOPTX, FASTRAN assumes that a data ifern can contain any
value within the range of the underlying data type regardless of the declared
size. This can produce much less efficient calculations.

For example, consider the following Transact statements:

DEFINE (ITEM) ITEML1 I(d): ITEM2 I(4): ITEM3 I(4):
RESULT I(4):
LET (RESULT) = [(ITEM1)+(ITEM2)]+ (ITEM3);

With OPTX in effect, FASTRAN will assume that all three operands on theright
are in the range -9999 to 9999, When it generates code for the intermediate
calculation (ITEM1)+ITEMZ2) FASTRAN can use single integer arithmetic since
the result must be in the range -19998 to 19998. The final addition can also be

performed in single integer arithmetic since the range of the result is -29997 to
29997.

11

M

FASTRAN COMPILER CONTROL OPTIONS |

SSEG

SUBP

*USLI

With NOOPTX the situation is much different. FASTRAN must be prepared for
operand values in the range -32768 to 32767. Since the range of the intermediate
result is now -65536 to 65534, FASTRAN must generate code to convert both
operands to double integers, add them with double integer arithnetic, convert
the third operand to a double integer, add the third operand to the intermediate
result and finally convert the result to a single integer. This is obviously a much
more time-consuming calculation. The performance difference is even more

dramatic when the magnitudes of the operands force the calculations from
double integers into packed decimal.

Because of the performance objectives of FASTRAN, OPTX is a default option.

- Experience has shown that the vast majority of Transact programs can be

successfully executed using the assumptions that OPTX makes. However, if a
FASTRAN program should terminate with an integer overflow (program error

51)ora decimal overflow (programerror 47), youshould recompile the program
with NOOPTX to see if the problem disappears.

If aprogramexperiences an overflow with OPTX but executes successfully with
NOOPTX, you can simply continue to use NOOPTX whenever you recompile
the program. However, a preferable solution would be to locate the data item
which s causing the overflow and change its declaration toreflect its fruerange
of values. The program location of the statement in which the overflow occurred
will be indicated in the overflow error message.

Split segment option. Causes the compiler to generate all code for data
management statements (FIND, REPLACE, ete.) and for VPLUS statements in
a separate procedure from the main linecode. This option permits FASTRAN to
compile larger program segments. It can be used in combination with the
NOCHEK aption if you encounter compile-time error 202: Too much code in this
segment,

This option is used when you are compiling a sub-program which will be called
by another FASTRAN program. No outer block is generated when the SUBP
option is specified. The processing which is normally done by the outer block

is done by the calling program. The SUBP option is discussed in more detail in
Section 5.

Causes the USL file to be initiaiizect (cleared) before compilation begins. You
would normally use NOUSLI only when compiling a called program to the

same USLfileasa prekusly—compxied calling program. The use of NO‘USLI is
discussed in more detail in Section 5.

FASTRAN COMPILER CONTROIL OPTIONS

FASTRAN COMPILER DIRECTIVES

FASTRAN supports all of the Transact compiler directives (COPYRIGHT, IINCLUDE, ILIST,
INOLIST, IPAGE and ISEGMENT), treating them the same as Transact. In addition, FASTRAN
supports four additional compiler directives: -

'CALLTABLE= Establishes an internal table to keep track of dynamic calls, so that

IDCAL=

1pH

dynamic calls by one program to the same called program will only incur
the overhead of the LOADFROC intrinsic for the first call.

To request that FASTRAN establish a table to save the LOADPROC

information for called programs and to re-use that information the next
Hme it is called, use a directive like:

<<!CALLTABLE=20>>

This sets up a table of 20 entries. If more than 20 different dynamic calls

are issued, only the first 20 are retained. The maximum size of this table
is 100 entries.

Dynamic calls can be resolved out of the SL's in the group and account
where the program file resides, or out of the logon group and account.

To use the SL's in the account and group where the program file resides,

include the following directive in your source code prior to the dynamic
calk:

<<!DCAL=PROGRAM>>

To use the SL's in the Jogon group and account, use the following
directive:

<<I1DCAL=LOGON>>

The IDCAL compiler directive takes effect at the point it appears in the
source code and remains in effect until another !DCAL appears. Thus,
vou can use both sets of libraries in the same program.

The default is IDCAL=LOGON. The IDCAL directive has no effect on
static or PH calis. :

Used in conjunction with the CALL verb to define a process-handling
call. Process-handling calls are described in Section 5.

13

N

N

FASTRAN COMPILER CONTROL OPTIONS

I SORTSTACK= Used to override FASTRAN's default allocation of stack space for sort-

ing. Whenever a SORT= option appears in a FIND or QUTPUT state-
ment, FASTRAN must allocate space on the data stack for SORT /3000 to
use. FASTRAN'S default allocation is 6000 words. This normally pro-
vides a good balance between sort speed and conserving stack space.
There are two situations where you may wish to override the default
allocation with the ISORTSTACK= compiler directive:

+ If your program uses nested soris (a statement with a SORT=
option which PERFORM's a paragraph containing another -
SORT= option) you may need to reduce the stack space for each
sort soas not to run out of stack. This is normally necessary only
if your sorts are nested three or more deep.

¢ If your program has extra stack space available and you are
sorting alarge number of records, you can improve the perform-

ance of your program by increasing the ISORTSTACK= beyond
the default of 6000 words.

The !SORTSTACK=> compiler directive takes effect at the point it ap-
pears in the source code and remains in effect uniess another ISORT-
STACK= appears. Thus you can specify different ISORTSTACK= values
for different sorts. In the case of nested sorts, this allows you to set aside
more stack for sorts with a large number of records, and less stack for
sorts with only a few records. For example:

<<TSORTSTACK=8000>>
FIND(SERIAL] BIG-FILE,...,SORT=...,
PERFCRM=SORT-2;

SORT-2:
<<!SORTSTACK=2500>>
FIND (CHAIN) LITTLE-FILE, ..., SORT=..

-

PERFORM=, . .;

Note that if you set {SORTSTACK= too low {(below about 2500 words) or
too high, you will get a run-time failure of the sort.

The four special FASTRAN compiler directives (CALLTABLE=, IDCAL=, IPH and 1SORT-
STACK=) are always enclosed as comments (between << and >>, with no space between <<
and). This is to provide backward compatibility with the Transact compiler.

14

SECTION PREPARING AND EXECUTING
4 FASTRAN PROGRAMS

This section discusses how to prepare and execute Transact programs which have been
compiled with FASTRAN. Programs which use the CALL verb require special treatment and

are discussed separately in Section 5. The material in this section pertains to programs which
do not use CALL.

PREPARING A FASTRAN PROGRAM FOR EXECUTION

Because the Transact compiler produces a special intermediate processor code, a Transact code
file needs no further preparation in order to be interpreted by the Transact processor.

FASTRAN, like most other compilers on the HP-3000, produces executable object code in the
form of a USL (user subprogram library) file. A USL file must be prepared before it can be

executed. The result of preparing a USL fileis a program file which can then be executed by the
MPE :RUN command.

The standard method of preparing a program file on the HP-3000 is to use the MPE :PREP
command. However, alimitation of the :PREP command is that all RL (relocatable library) code
must fit into a single MPE code segment. Whichever of FASTRAN'S run-time library proce-
dures your program requires are included from an RL file (RL.PUB.FASTRAN), and these
frequently will require more than one MPE code segment to contain them. In such a case the
‘PREP command will fail with the message: ERROR #40, RL SEGMENT, CODE SEGMENT
OVERFLOW. Therefore, you should avoid using :PREP with FASTRAN programs.

" The FASTRAN/SEGMENTER overcomes this limitation and should always be used for

preparing FASTRAN programs {(note: other functions of the FASTRAN /SEGMENTER are
described in Section 6). The easiest way to compileand prepare a stand-alone programis to use
the :FASTPREP or :FASTGO commands (described in Section 2), which use the FASTRAN/

SEGMENTER. A sample job strearn for compiling the source file MYSOURCE and producing
a program file MYPROG follows: :

:JOB <<log-on information>>
:PURGE MYPROG

:FASTPREP MYSOURCE, MYPROG
:SAVE MXYPROG

The :PURGE command gets rid of any-existing copy of MYPROG. The :5AVE command is
necessary because the program file is initlally created as a temporary file.

15

PREPARING AND EXECUTING FASTRAN PROGRAMS

SPECIAL CAPABILITIES

With Transact, special capabilities are not normally of concern. This is because when you
execute a Transact program, you are actually running the program file TRANSACT.PUB.SYS.
This program file comes with all special capabilities and, since it resides in PUB.SYS,
automatically confers these capabilities on any Transact user, (Note that Transact actually
defeats MPE security as far as special capabilities are concerned.)

Normally, no special capabilities are required to execute a FASTRAN program. However, your
program may contain PROC staternents that call intrinsics or user-written procedures which
require special capabilities. Or your program may require multiple-RIN (MR} capability
because it locks two or more data bases or files simultaneously. In such cases, the program file
- must be prepared with special capabilities in order to execute. In addition, the group and
account in which your prepared FASTRAN progra is to reside must also have any required
special capabilities.
The :FASTPREP command does not allow you o specify special capabilities directly in the
command itself. However, after the FASTPREP command you can use the ALTCAP program

whichis supplied on the FASTRAN distribution tape (ALTCAPPUB FASTRAN). Thisprogram
allows you to alter the capabilities of an existing program file.

ALTCAF uses the INFO= parameter to designate the program file to be altered and the newlist
of capabilities. A semicolon should separate the program file name from the capability list, and
commas should be used to separate the individual capabilities. For example, if your program
uses a PROC statement to call the CREATEPROCESS intrinsic {which requires. process-
handling capability), your job stream should include the foliowing statement:

:RUN ALTCAP .PUB.FASTRAN; INFO="MYPROG; IA, BA, PE"

This gives PH (process-handling) capability (as well as interactive and batch access) to
MYPROG. The complete job stream follows:

;JOB <<leg-on dinformation>>

:PURGE MYPROG

:FASTPREP MYSOURCE, MYPROG

:SAVE MYPROG _

:RUN ALTCAP.PUB.FASTRAN;INFO="MYPROG;IA, BA, PH"
:EOJ

You can also run ALTCAP interactively by omitting the INFO= parameter ALTCAP will
prompt for the program file name and capabilities.

No special capabilities are required to run ALTCAP. However, in order to execute the altered

program flle, the account and group in which the program file resides must have all required
capabilities.

16

PREPARING AND EXECUTING FASTRAN PROGRAMS

EXECUTING FASTRAN PROGRAMS

FASTRAN programs are executed with the MPE :RUN command. For example, if the name of
your program file is MYPROG, you would simply enter:

{RUN MYPROG
Two additional parameters may be required with the :RUN command:

+ If you want to supply a default mode to be used in opening your program’s data
bases, use the PARM= parameter. For example:

sRUN MYPROG,;PARM=5

This command causes any data bases to be opened in mode 5, unless a different
mode was specified in the SYSTEM statement of your program.

Using the PARM= parameter with a FASTRAN program is equivalent to entering
amode as the second parameter in response to the SYSTEM NAME>prompt from
the Transact processor.

 If you are using PROC statements to call procedures which reside in group or
account SL's (segmented libraries), you must use the LIB= parameter on your :RUN

command. For example, if your program uses PROC to call procedures in a group
51, you would enter

tRUN MYPROG;LIB=G

There is a difference between Transact and FASTRAN concerning where the
Iibraries must bé located. Transact uses the SLin your log-on group as its group SL
anditusesthe SLin thePUB groupof your log-on account asits account SL. FASTRAN
uses the SL in the group where your program file resides as its group SL and uses the
SL in the PUB group of the account where your program file resides as its account SL..

This makes a difference only if you are running a program with PROC calls which
resides in a different account or group than you are signed on to.

Thereason for this difference is that Transact uses the LOADPROC intrinsicat run-
time to locate procedures called via PROC, whereas FASTRAN uses procedure call
(PCAL) instructions which are resolved by the system loader at load-time.
LOADPROC uses the log-on Libraries to locate external references and the loader
uses the libraries which accompany the program file.

17

PREPARING AND EXECUTING FASTRAN PROGRAMS

THE FASTRAN RUN-TIME MESSAGE CATALOG

Whenever you execute a program compiled with FASTRAN, the FASTRAN run-time message
catalog (CATALOG.PUB.FASTRAN) should be present. If you transport a compiled FAS-
TRAN program to a machine without a FASTRAN compiler, you should make sure this file is
available. (Your FASTRAN license permits you to copy and transport the message catalog to
other machines.) If you want to rename the catalog, you must either set a file equation for

CATALOG PUB.FASTRAN at run-time, or have your program issue the file equation when it
initiates. _ '

FASTRAN RUN-TIME FILE EQUATIONS

Most of the formal file designators that FASTRAN uses at run time are the same as those used
by Transact. This permits programs which issue file equations programmatically to execute
under FASTRAN with no modifications. Each of theformal file designatorsis described below:

TRANIN is the formal file designator for responses to prompts issued by your
program. The default assignment is $STDINX,

There is one difference between Transact and FASTRAN regarding the
input file TRANIN. The Transact processor issues a SYSTEM NAME>
prompt and reads the system name from TRANIN. Since FASTRAN
programs are executed directly, there is no SYSTEM NAME> prompt.
Therefore, if a program is set up toread TRANIN from a disc file (or from
$STDIN in ajob stream), the record containing the system name must be
removed from the disc file or job stream before running with FASTRAN.

TRANQOUT is the formal file designator for output from your program that is
- normally sent to your terminal. The default assignmentis $STDLIST.
TRANLIST is the formal file designator for output from your program that is
%

normally sent to the line printer. The default assignment is DEV=LF.

TRANVPLS is the formal file designator used by VPLUS to open the terminal. The
default is $STDIN. '

TRANSORT isused by Transact as a temporary file during sort operations. FASTRAN
: uses input and output procedures and does not require a work file.
However, FASTRAN will aliow you to use a TRANSORT file equation

witha DISC= parameter in order tospecify the maximum number of sort
records at run-time.

TRANDUMP is not used by FASTRAN. Transact uses TRANDUMP for test mode
output. Test mode is not supported by FASTRAN.

18

'

PREPARING AND EXECUTING FASTRAN PROCGRAMS

BUILT-IN PROCESSOR COMMANDS

FASTRAN supports all Transact built-in comunands and comrhand qualifiers with the follow-

ing two exceptions:

¢ The INITIALIZE built-in command is not supported. This command tells the
Transact processor to begin processing a new Transact program. Since FASTRAN
programs areexecuted directly by MPE, the equivalent function would be provided
by an EXIT command followed by an MPE :RUN command for the new FASTRAN
program. '

* TheTEST built-in command is not supported since FASTRAN does not support test
mode.

19

SECTION USING CALL
5 WITH FASTRAN

The Transact CALL statement is used to initiate execution of another Transact program from
within an executing Transact program. When the Transact processor interprets a CALL

staternent, it opens and reads the code file for the called program and begins interpreting the
1P (intermediate processor) code in the new code file.

HOW FASTRAN HANDLES CALLS

Since FASTRAN programs execute directly under MPE, a different method of initiating called
programs must be used. One approach that the FASTRAN compiler could take would be to use

the CREATEPROCESS intrinsic {or CREATE and ACTIVATE). However, this approach has
several drawbacks:

* Since the called program would be executing as a separate MPE process it would

not be possible to share data files, form files and data bases in the same way that
Transact permits.

* Thete is considerable overhead associated with the CREATEPROCESS intrinsic.

An alternative approach would be for FASTRAN {o implement the CALL verb simply as a
procedure call. This permits the required data and file sharing and meets the performance
requizements of FASTRAN. However, this approach also has several drawbacks:

* Because of thelinkage requirements for procedure calls, special attention must be -
given when you compile, prepare and execute programs which use CALL. Called
programs must either be prepared into the same program file as the calling
program, or they must be placed in a segmented library (SL) which is available to
the caﬂing program at run time. If the called programs are in an SL and the calling

program is run from different accounts and /or groups, multiple cop:es of the SL
may be required.

» Since the CALL verb references a procedure rather than a file, there is no way to
qualify the CALL with an account and/or group name.

» Because the maxirnum number of MPE code segments is limited to 255 for a

program file and to 254 for a segmented library, there is a limit to the total number
of programs that can be linked together using procedure calls.

21

T

USING CALL WITH FASTRAN

Since thelack of file sharing using process handling would introduce & major incompatibility
between Transact and FASTRAN, the procedure call approach is the one normally used by
FASTRAN to implement the CALL verb.

However, occasionally there are situations where the process-handling approach is appropri-
ate. Atthe end of this section there is a description of these situations and the special cautions
pertaining to the use of process-handling calls.

The remainder of this section discusses normal (non-process—handlmg) calls, the different

methods of linking ca.'lhng and called programs together, and how to choose among these
methods. ,

STATIC AND DYNAMIC CALLS

FASTRAN can generate either of fwo different types of code for non-process-handling calls,
referred to as static calls and dynamic calls. Static calls are direct procedure calls to the called
program. The major characteristics of static calls are:

¢ The name of the called program must be available to FASTRAN at compile time.

» The object code for all called programs must either be included in the USL file at
prep time or must be in an SL at load time {even if the CALLs will not actually be
executed at run-time).

FASTRAN generates a static call whenever a literal program name is used in the CALL
statement and the DCAL {dynamic call) option is off. Dynamic calls use the MPE LOADPROC
intrinsic to load the called program at run time. The major characteristics of dynamic calls are:

» The name of the called program is not required until run time.

= The object code for any programs which are called mustbe in an SL. However, only
those programs which are actually called at run time need to be present in the SL.

FASTRAN generates dynamic calls whenever a variable program name is used in the CALL
statemnent, or if the DCAL option is on.

Table 5-1 shows the type of call which FASTRAN will generate undereach set of circumstances.

DCAL Program Name
: Literal: Literal:
option
PUOT ! "CALLPROG; | CALL (PROG);
OFF | Static Dynamic
ON | Dynamic Dynamic

Table 5—1."1'ypes of CALLs generated.

USING CALL WITH FASTRAN

There are advantages and disadvantages {o each type of call. The primnary advantage of static
calls over dynamiccallsis superior run-time performance. Dynomic calls mustuse LOADPROC
whenever a CALL statement is executed. Although LOADPROC uses very little CPU fime, it
does require several seconds of elapsed time while it searches the various libraries and loads
therequested program. With stafic calls the called programs areloaded when the main program
is loaded and the run-time overhead is negligible for most applications.

However, there are several advantages of dynamic calls which can make them preferable in
certain situations:

¢+ Dynamic calls donot require the called program name to be known at compile time.
Therefore, CALL statements which use a variable for the called program name are
always compiled as dynamic calls. '

- Dynamic calls do not require the object code for the called programs to be available
until the CALL statement is actually executed. Therefore, dynamic calls allow a
main program to be executed even if some of the called programs it references have
not vet been compiled {or even written). Of course, an error will occur if your
program actually tries to call a missing program. '

In general, each program called using a static call requires an entry in the calling
program’s segment transfer table and in the operating system’s code segment table
(CST). Both of these tables have a maximum size, so there is a theoretical limit to the
number of different called programs that a main program can reference via static
calls. This number will vary depending on the number of other external references
in your program, the configured size of the code segment table and the CST
requirements of the other programs executing at the time.

CONTROLLING THE TYPE OF CALLS GENERATED BY FASTRAN

A program can confain both static and dynamic calls. If you do not select the DCAL option at
compile time, FASTRAN will generate static calls for all CALL statements which use a literal
program name and will generate dynamic calls for all CALL statements which use a variable
program name. If you do specify the DCAL option, dynamic calls are generated in all cases.

If you want to control the type of call which FASTRAN will generate, you can use a variable
program name for calls you want to be dynamic, and a literal program name for calls you want
to be static, and then compile the program with DCAL off. If you have a system which uses a
Jarge number of different called programs, you may wish to use static calls {which are faster)
for the most frequently called programs and dynamic calls for the rernainder.

23

USING CALL WITH FASTRAN

[T NP P S

LIMITATION S ON THE CALL STAT}:MENT WITH FASTRAN

A few limitations apply to the CALL statement when you are using FASTRAN:

« Calls can only be made to Transact programs that have been compﬂed with

FASTRAN, and the called program must be linked to the calling program in one of
the ways described below.

» Callscannotbemadeto programsresidingina dlfferent grouporaccount. If a called

programname is qualified with an accournit and /or a group name, the qualification
isignored by FASTRAN (except for process-handlmg calls, described at the end of
this section).

* The SWAFP optionisnotsupported andisignored if itappears on a CALLstatement.

Since FASTRAN uses far less stack space than Transact, this option is unlikely to be
needed.

COMPILING, PREPARING AND EXECUTING WITH CALL

The following cases will demonstrate compilation, preparation and execution of FASTRAN
programs that use CALL:

24

£

In this case we have a main program MAIN whzch calls three other programs PROGI,
PRO(G2 and PROG3 using static calls. All four programs will be compiledinto a single

USL file and then prepared into a program file which will contain the object code for
all four programs.

This is the method you should use whenever possible because of two important
advantages:

“ & Since all program linkage is performed at prep time, systems compiled in this
manner will have the best load-time and run-time performance.

s Sinceall called programs areincluded in the program file, the program can berun
stand-alone, that is, without any group or account SL's to worry about.

The following job stream will compile and prepare the example systemn of four
programs:

:JOB <log-on information>

:FASTCOMP MAIN ,

FASTCOMP PROGL, , , NOUSLI, SUBP

:FASTCOMP PROG2,,,NOUSLI, SUBP

:PASTPREP PROG3,,,NOUSLI, SUBP

:SAVE $OLDPASS, MYPROG

SEQT

B

USING CALL WITH FASTRAN

The result will be a program file named MYPROG.

When you are compiling a system of programs using this method, keep thefollowing
points inmind:
+ The main program should be compiled first, using the :FASTCOMP command,
with the USLI and NOSUBP options (both defaults) in effect.

The called programs should then be compiled. The order of the called programs
is not important, nor is it important whether they are called directly by the main
prograr of if they call each other. Each called program should be compiled with

" NOUSLI(so that the previously-compiled object code is not cleared from the USL)
and with SUBP (fo suppress generation of an outer block). Use the :FASTCOMP
command for all but the last called program (note: FASTRAN versions A.03.F00
and later allow you to omit the SUBP option).

¢ The last called program should be compiled with the :FASTPREP command so
that the USL file is prepared into a program file.

To run the program file you need only enter:
*RUN MYPROG

You can also invoke the FASTRAN /SEGMENTER directly to handle this type of call
structure. See the example in Section 6.

FLIN P A SEGM e LIBRARY (SL)FOR FA AN

Any programs which are called withdynamic calls must belocated inan SL(segmented
library). Programs which are called with static calls can also be placed in an SLif you
choose to use load-timelinkage. An SLis not required if you are using only static calls
with prep-time linkage, as in case 1 (or if you are not using CALL atall). This case will
demonstrate how to create and initialize an SL for use with FASTRAN.

Two steps are required to set up an SL for FASTRAN:
* You must create an SL file (unless you intend to use an existing SL).

* You must add the FASTRAN run-time library procedures to the new SL. Both

steps can be performed using the FASTRAN/SEGMENTER by entering the
following commands:

:RUN FASTSEG.PUB.FASTRAN br :FASTSEG}
=BUILDSL SL,10000,20

=UPDATESL SL

=EXIT

The ;:RUN command invokes the FASTRAN /SEGMENTER.

The =BUILDSL command creates a new SL file (named SL) with a total size of 10,000
sectorsallocated in 20 extents. Only 1 extent (500 sectors) will beinitially allocated. You

may want to use a different spaceallocation. If you are using an existing SL, you should
omit this command. '

25

USING CALL WITH FASTRAN

The=UPDATESL command adds the FASTRAN run-time library segments to the new

(D SL. The library segments only need to be added to an SL the first time you use it with
FASTRAN.

Whenever you install a new release of FASTRAN, you must replace these segments
in your FASTRAN 51's. The same =UPDATESL command can be used to replace the
old run-time library segments with the new version.

The group and account location of your SL files is important, particularly if you will
be executing FASTRAN programs from groups of accounts other than where the
program file resides.
* For any called programs that are accessed by dynamic calls, the SLmay be in either
the log-on account{in the PUB group or the log-on group), or it may be in thesame
account as the program file (in the PUB group or the same group as the program

file). See the 'DCAL= compiler directive in Section 3 for a discussion of how to
control which set of SL's is used.

+ If any cailed programs will be accessed via siatic calls using load-time linkage, the

SLmustbe in the same group as the program file {or in the PUB group of the same
account as the program file).

Note that a single FASTRAN program could access up to five different SLs:

* The SL in your log-on group {used for dynamic calls when the IDCAL=LOGUN
compiler directive is in effect)

m ' ¢ The SLin the PUB group of your log-on account (used for dynamic calls when the
" 'DCAL=LOGON compiler directive is in effect, if they were not resolved from the
SL in your log-on group)

* The SLinthe group where your program fileresides (used for dynamiccalls when
the IDCAL=PROGRAM compiler directive is in effect, for static calls, and for
PROC statements)

» TheSL in the PUB group of the account where your program file resides (used for
dynamic calls when the IDCAL=FROGRAM compiler directive is in effect, for
static calls, and for PROC statements, if they were not resolved above)

» SLPUB.SYS (used for any calls or PROC statements not resolved elsewhere)

26

USING CALLWITH FASTRAN

DADDING A EA RAN PROGRANMTO AN

In this case we will compile a FASTRAN program and add it to an SL using the
FASTRAN /SEGMENTER. The source file for the program is MYSOURCE and the

name of the program (in the SYSTEM statement of the source program) is PROG. The
following commands will accomplish this:

tFASTCOMP MYSQURCE
‘FASTSEG
=REPLACE PROG, 8L, $OLDPASS
=EXIT

The ;FASTCOMP command compiles the program. Since no ushfile is specified, the
compiled code will be in $OLDFPASS. The SUBP option could have been used, but is
not required when using the FASTRAN/SEGMENTER.

The :FASTSEG commangd invokes the FASTRAN /SECMENTER.

The =REPLACE command adds the program to the SL. If a previous version of the
program already exists in the 5L, it is replaced. The three parameters are the system
name of the program to be added or replaced (PROG), the name of the segmented library
(SL) and the name of the usl-file containing the compiled code (JOLDPASS).

Case 1 described how to use static calls with prep-time linkage and the advantages of
that method. This case will show how to use load-time linkage with the same set of
four programs, a main program and three called programs.

The primary advantage of using this method is that the individual programs in a
system can be recompiled separately and (except for the main calling program) no
PREP step is required, while still maintaining the high performance provided by static
calls. The disadvantage is that the called programs must be placed in an SL, and the
SL must be available at run ime. .

To set up this system of programs, you would first compile the three called programs
and add them to your SL as described in Cases 2 and 3. You would then compile and
prepare the main program as if it were a stand-alone FASTRAN program:
:FASTPREP MAIN
:SAVE $OLDPASS, PROG

* To run the MAIN program, the SL file containing the three called programs must be

available in the same group as the program file (or in the PUB group of the same
account). You would then execute the program as follows:

tRUN PROG;LIB=G

The LIB=C parameter tells the MPE loader to use the group SL (and, if required, the
account SL) o resolve external references at load time. This method will require
slightly more lcad time than Case 1 but will provide the same run-time performance.

27

Typeof Static with Static with Dynamic
CALL and prep-time load-time {run-time
 linkage linkage linkage linkage)
. Several seconds
Run-tim
performance Excellent Excellent for LOADPROC
: on each call
Load-time Excellent Slightly longer Fxcellent
performance load time .
Location of | . Same group Log-on group /acct
Sl Not required and account or same group/acct
as program file as program file
Lib=G (or P)
m required on :RUN No Yes No
All called programs |
required to run No Yes No
main program?

USING CALL WITH FASTRAN

M LLS

m No special techniques or parameters are required o compile, prepare or execute the

main pregram in a system which uses only dynamic calls. However, any programs
which are called must be available in an SL at run time. See Case 2 for a discussion of
where the SLs must be located.

Table 5-2 summarizes the features of each of the three different methods for hancili-ng CALL
statements with FASTRAN. _

Table 5-2. Features of Different Types of FASTRAN CALLs.

LY
PROCESS-HANDLING CALLS

The discussion so far in this section has focused on the the way FASTRAN normally handles
the CALL verb — via a procedure call. In most situations this method provides the greatest
compatibility with the Transact implementation of the CALL verb.

The rest of this section discusses the process-handling call (PH-call) which uses MPE’s process-
handling capability to implement the CALL verb. The main disadvantage of using this form
of CALL is that data bases, data files and form files cannot be shared between programs in the
same way that Transact permits. YOU SHOULD CAREFULLY CONSIDER THIS INCOM-
PATIBILITY IF YOU USE PH-CALLS, AND YOUR PROGRAM WILL PROBABLY RE-
QUIRE SOME MODIFICATIONS. (Note however that sharing of the data register between
called and calling programs is supported and data can be passed between programs in this

n way.)

28

USING CALLU WITH FASTRAN

Thereare several advantages toPH-calls, however, and these may outweigh the disadvantages
for some applications:

» No special prep-time or run-time hnkage need to be used and thereare noS's to
be concerned with.

* There is no limit to the number of programs in a system of called programs.

* The same copy of a program can be used for stand-alone execution and for called
execution.

¢ Programs in different groups or acoounts can be called.

You tell FASTRAN to generate a process-handling call by inserting a pseudo-conmment containing
the IPH compiler directive into the CALL staternent. For example:

CALL PROGY, DATA=ITEM1 <<!PH>>;

The pseudo-comment <<!PH>> may appear anywhere in the CALL statement after the
program name and before the semicolon. Any CALL staternent containing this pseudo-
comment will be compiled as a PH-call, regardless of the DCAL option, or whether the
program name is a literal or a variable. Any CALL without the pseudo-cornment will be
compiled as a normal {(non-PH) call, either static or dynamic as discussed in above. Therefore,
all three types of CALL (PH, staticand dynamic) can be freely intermixed within any program.

Any program which is to be called using the PH-call should be separately compiled and
prepared as if it were a stand-alone program. Both the called programs as well as the calling
program must be prepared with process handling (PH) capability. The group and account
where such programs are to reside must also have PH capability. :

29

SECTION USING THE
6 FASTRAN/SEGMENTER

The FASTRAN/SEGMENTER is an interface to the MPE Se gmenter designed to simplify and
enhance the use of the segmenter with FASTRAN, particularly in situations involving called
programs. Since the FASTRAN /SEGMENTER operates by generating and passing commands

to the MPE Segmenter, any error messages are actually MPE Segmenter messages. You should
consult the MPE Segmenter Manual for error message descriptions.

The major capabilities of the FASTRAN /SEGMENTER are:

+ Allowing FASTRAN programs to be compiled which contain more relocatable
library (RL) code than will fit into one code segment.

¢ Initializing and maintaining a segmented library for use with FASTRAN.
* Adding or replacing acalled program in a segmented library.

* Preparing a single program file from separately-compiled programs in separate
USL files.

To execute the FASTRAN /SEGMENTER, enter the following command:
IRUN FmSTSEG.FUﬁ.FESTRAH

or use the following UDC:
sFASTSEG

The FASTRAN /SEGMENTER will display an identifying banner and then will prompt for a
command with an equal sign (=).

If you want to use the FASTRAN /SEGMENTER from your own UDC or from a job stream, you
can use the INFO= parameter of the :RUN command to enter commands. For example:

"~ tRUN FASTSEG.PUB.FASTRAN; INFO="UPDATESL SL MYGROUP :EXIT"

would cause the FASTRAN/SEGMENTER to execute the two commands UPDATESL
SLMYGROUP and EXIT. Successive commands in the INFO= parameter are separated by a
colon. If the last command is not EXIT, the FASTRAN /SEGMENTER will prompt for addi-
tional commands after executing those in the INFO= parameter.

Each FASTRAN /SEGMENTER command is described on the following pages. Following the
command descriptions is an example showing how to use the FASTRAN /SEGMENTER to

prepare a system of calling and called programs. Examples 2 and 3 in Section 5 also illustrate
the use of the FASTRAN /SEGMENTER. .

31

A

USING THE FASTRAN/SEGMENTER

?ASTRAN/SEGMENTER COMMANDS

32

=BUILDSL sl-file,records extents

The =BUILDSL command will create a new segmented library (SL) file. This com-
mand has three parameters, all required, as follows:

sl-file: the name to be given to the new SL file, usually ‘SL’. The name may be
qualified with an account and/or group name, if desired.

records: the maximum number of 128-word records to be allowed in the new SL -
file. '

extents: the maximum number of extents into which the records are tobe divided.
For example:
=RUILDEL SL.MYGROUP,2000,20

will build a new SL{ile called SLMYGROUTP with 2000 records divided into 20 extents

of 100 recordseach. This command is identical to the =BUILDSL command in the MPE
Segmenter.

=EXIT
The EXIT command terminates the FASTRAN /SEGMENTER.

=INCLUDE segment usl-file

The =INCLUDE command is used prior to a =PREP command to include non-
FASTRAN codein theprogram file, siich as procedures called via the PROC verb. This
command has two parameters, both required, as follow:

segment: the name of a segment to be incdluded, which may contain one or more
L procedures.

usl-file: the name of a USL file containing the segment to be included.

=LUSL library-usl-file

The =LUSL command tells the FASTRAN /SEGMENTER where to find the library

USL (user subprogram library) file. This file is used by the =UPDATESL command
(and sometimes by the =PREP command).

Normally this command will not be required. If no =LUSL command has been

entered, the FASTRAN/SEGMENTER will use LUSL.PUB.FASTRAN as its library
USL file.

USING THE FASTRAN/SEGMENTER

=MAIN program-name,usl-file

The =MAIN command is used prior to a =PREP command to designate the main

program to be prepared. In a system of called programs the main program is the one
where execution is to begin.

This command has two parameters, both required, as follows:

program-name: the name of the main program as it appears in the SYSTEM
staternent.

usl-file: the name of the USL file which contains the compiled code for the
program.

For exampie:

=MAIN MENU, $CLDPASS

will include the main program MENU from the USL file $OLDPASS for a subsequent
=PREP command.

=PREP program-file | ;CAP=capability-tist } [;PMAP)

The =PREP command prepares a program file from one or more FASTRAN programs.
This command has three parameters, one required and two optional, as follows:

program-file: the name to be given to.the newly-prepared program file.

CAP=capability-list: a list of capabilities to be assigned o' the program. Valid
capabilities are: BA, DS, IA, MR, PH and PM. If neither IA nor BA are
included, orif the CAP=parameteris omitted, both are assigned. Your MPE
user name must have any capabilities that you are assigning to the program
file.

PMAP: a procedure map of the prepared program is written to formal file .
designator SEGLIST. If no file equation has been set, $STDLIST is used.

The =PREP command must always be preceded by a sMAIN command to designate

the main program being prepared. One or more =SUBF commands may also be used
to designate called programs.

For example:
=PREP MYPROG

will prepare the code which was included by any previous =MAIN or =SUBP
commands. The program file will be called MYPROG.

33

USING THE FASTRAN/SEGMENTER

The =PREP comumnand in the FASTRAN /SEGMENTER differs from the MPE :PREP
| command in the following ways: '
Y

¢ Code from more than one USL file may be included in a single program file.
¢ The program is automatically assigned a MAXDATA of 32000.

* The relocatable library RL. PUB.FASTRAN is automatically used to resolve refer-

ences to the FASTRAN run-time library (unless the RL comumand was used to
designate a different relocatable library).

e If the program requires more run-time library code than can fit into one MPE code
segment, the FASTRAN/SEGMENTER will use two segments, This situation can
occur if the program uses a large number of different features of the Transact
language. If you try to use the MPE Segmenter to prepare a FASTRAN program

and itencounters this sifuation, it will fail with the message: RLSEGMENT, CODE
SEGMENT OVERFLOW.

=REPLACE program-name sh-file,usl-file
The =REPLACE command will add or replace a called program in a segmented
library. This command has three parameters, all required, as follows:

program-name: the name of the program to be added or replaced in the 5L, as
contained in the program’s SYSTEM statement.

m sl-file: the name of the segmented library where the programiis to be added or
replaced.
usl-filg; the name of the USL (user subprogram library) containing the compiled
cpde for the program. The program must be one that will be called by
other program via either a dynamic call or a static call with load-time
linkage (see section 5), Note that the =REPLACE command will work even
if the program was not compiled with the SUBP aption.

“For exampie:
=REPLACE MYPROG, SL.MYGROUP, MYUSL

will replace the program MYPROG in SLMYGROUP (or add it if it’s not already
there). MYUSL is the USL file into which MYPROG was compiled.

34

USING THE FASTRAN/SFCMENTIER

=RL library-rl-file

The =RL command tells the FASTRAN /SEGMENTER where to find the RL (relocat-
able-library) file that contains the FASTRAN run-time library procedures. This file is
used by the =PREP command.

Normally this command will not be required. If no =RL command has been entered,

the FASTRAN /SEGMENTER will use RL.PUB.FASTRAN as its relocatable library
file.

=SUBP program-name,usi-file

The =5UBP command is used prior to a =PREP command to designate a called

program 1o be included in a system of programs. Any such program must be
referenced via a static call (see section 5).

This command has two parameters, both required, as follows:

program-name: the name of the called program as it appears in the SYSTEM
- statement.

usl-file: the name of the USL file which contains the compiled code for the called
program. The =SUBF command will work even if the program was not
compiled with the SUBP option.

For example:
=SUBP MYPROG, $OLDPASS

- will include the called program MYPROG from the USL file $OLDPASS for a
subsequent =PREP command.

=UPDATESL sl-file

The =UPDATESL command is used to add or replace the FASTRAN run-time library
procedures in a segmented library. The run-time library procedures are required in
any SLwhich is to contain FASTRAN called programs. The current =LUSL file (default
LUSL.PUB.FASTRAN) is used as the source of the procedures, |

This command is used both to initialize an SL for use with FASTRAN and to replace
the run-time library procedures when a new version of FASTRAN is released. It
requires one parameter, the name of the SL file to be updated.

35

USING THE FASTRAN/SEGMENTER

EXAMPLE: PREPARING A SYSTEM QOF PROGRAMS

This example uses the FASTRAN /SEGMENTER directly to accomplish the sameresuit as Case
1in Section 5. A main program calls three other programs using static calls, All four programs
will be prepared into a single program file. The primary differences when using the FAS-
TRAN/SEGMENTER are:

* Theindividual programs do not need to be compiled into asingle USL file. You can
keepseparate USL files for each program. Then, if a changeis required to one of the
programs, only thatone program must berecompiled. The FASTRAN /SEGMENTER
can then re-prep the entire system using the existing USL files. Also, a program
which is calied as part of more than one system needs to be compiled only once.

* The FASTRAN/SEGMENTER does not require calied programs to be compiled
with the SUBP option. Thus a program which is run both stand-alone and as part
of a system of called programs can be compiled just once to create a USL file. This
file can then be used for both purposes by the FASTRAN /SEGMENTER.

The first step is to compile all four programs and save the USL files. We will use the
FASTCOMP command to compile the programs:

:FASTCOMP MAINS, MAINUSL {MAINE, PROG1S, PROG2S and 1
:FASTCOMP PROG1S,PROGIUSL {PROG3S are scource file names}
sFASTCOMP PROGZS, PROGRUSL

:FASTCOME PROG3S, PROGIUSL

m Next, we use the FASTRAN /SEGMENTER to prepare a program file from the USL files:

:FASTSEG
=MAIN MAIN, MAINUSL {MAIN, PROGL, PROG2 and}
=$UEP FROGL,PROGIUSL {PROG3 are system names}

=3UBPF PROGZ2,PROG2USL
=SURP PROG3, PROG3USL
=PREP PROG

=EXIT

:BAVE PROG

The ;FASTSEG command invokes the FASTRAN /SEGMENTER.
The =MAIN command incudes program MAIN from USL file MAINUSL.

~ The three =SUBP commands include called programs PROG1, PROG2 and PROG3 from USL
files PROG1USL, PROG2USL and PROG3USL, respectively.

The =PREP command prepares the included programs into program file PROG. The FAS-
TRAN/SEGMENTER automatically sets MAXDATA to 32000 and uses RL.PUB.FASTRAN to
resolve external references to the FASTRAN run-time library.

The =EXIT command terminates the FASTRAN /SEGMENTER.
The :SAVE> command makes the new program file permanent. |
4 Beginning with version A.03.F00 of FASTRAN, the FASTRAN cumpller automatically gener-

36

USING THE FASTRAN/SEGMENTER

THE FASTRAN/SEGMENTER COMPILER INTERFACE

ates a FASTRAN /SEGMENTER command for each program it compiles. If the compiler is run
with the SUBP option on, a =SUBP command {(containing the program’s SYSTEM name and

the USL file name) is generated, If the SUBP option is off {the default), a =MAIN command is
generated.

These commands are written to a temporary file called XXFSEGXX. FASTRAN will create this
file if none exists. If the compiler 5 run with the US11 option on {the default), the temporary
fileis overwritten. If the USLI option is off, the new command is appended to the existing file.
The FASTRAN /SEGMENTER will read and execute the commands contained in this file if it

is run with PARM=1. These commands are executed prior to any commands contained in the
INFO= parameter.

- This enhancement is included primarily toenable the :FASTPREP and :FASTGO commands to
use the FASTRAN /SEGMENTER. However, you can examine the definitions of these two

UDCs if you want to use this feature in your own UDCs or job streams.

37

APPENDIX COMPILE-TIME
_A ERROR MESSAGES

Most language errors in your source program will be detected by FASTRAN during its first
pass. Since the program listing is generated during the second pass, most compile errors will
suppress your program listing.

Compile errors are listed immediately below the source line in which the error was detected.

Even if no source listing is being produced (during pass 1 or if the INOLIST compiler option
is seiected), lines containing errors are listed.

Each error message is accompanied by a caret (*) which points to the position where the error
was detected. An error number also accompanies each error.

The following table lists all compiler error messages. An explanation follows any message
which is not self-explanatory.

)

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION
4 INVALID VERB
- 5 INVALIDITEM TYPE The type code for a data item is
invalid. '
6 MULTIPLE LABEL DEFINITION
7 INVALID MODIFIER The verb modifier is not appro- -
' - priate for the indicated verb, or
a required verb modifier is
missing.

14 INVALID OPTION

15 EXPECTING ITEM NAME

16 ITEM NAME LONGER THAN 16

CHARACTERS
17 SET NAME LONCER THAN 16 An IMAGE data set name is too
CHARACTERS long.

18 INVALID SYSTEM NAME

19 MULTIPLE SYSTEM DEFINITION The SYSTEM statement can
only be used once in aprogram.

20 MULTIPLE BASE DEFINITION A data base name (other than the

' ‘HOME' base) appears more than
once in the SYSTEM statement.

21 EXPECTED A COMMAND LABEL A sub-command label appears
before the first command label.

22 EXPECTING A SYSTEM DEFINITION The first statement in the source

> program must be a SYSTEM
statement.

24 INVALID NUMBER The number is out of the allow-
able range for the option in
which it appears.

30 SYNTAX ERROR The compiler could not identify
the syntax.

31 DINVALID BASE NAME A data base name does not fit

: the PMAGE rules for such
names.

33 EXPECTING A CHARACTER STRING A quoted character string is
expected.

A2

COMPILE-TIME ERROR MESSACES

NO.

MESSAGE EXPLANATION
34 LABEL LONGER THAN 32 CHARACTERS |
37 STORAGE BYTE COUNT TOO SMALL The requested storage length will
not hold the requested number of
digits.
39 DATATYPE LENGTH NOT SUPPORTED
42 PASSWORD LONGER THAN 8
CHARACTERS
46 MULTIPLE OPTION DEFINITION An option was repeated.
47 MULTIPLE ITEM DEFINITION A data item name appears in
' more than one DEFINE(ITEM)
| statement.
48 MULTIPLE FILE DEFINITION The same file name appears in
more than one FILE and/or
KSAM definition.
49 EXPECTING A FILE NAME
5¢ INVALID FILENAME A name specified in the FILE= or
KSAM:= option of the SYSTEM
statement does not follow the
proper syntax for an MPE file
name.
51 INPUT STRING LONGER THAN 80
CHARACTERS
52 EXPECTING A LABEL REFERENCE
54 MULTIPLE VALUES ONLY VALID FOR A condition clause with more
- COMPARE EQUAL than one value on the right of the
relational operator can only
specify an equal (=) relational
operator.
55 NON-PRINTING CHARACTERIN TEXT Non-printing characters are not
FILE permitted in the source file ex-
cept within a quoted string.
58 CONFLICTING OPTION IGNORED
60 TOOMANY SORT KEYS No more than 32 keys may be
: specified in a SORT option.
62 ITEM REFERENCED 7TO ITSELF
65 UNEXPECTED BLOCK TERMINATOR

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION
- 66 UNEXPECTED ELSE STATEMENT
73 INCOMPLETE BLOCK STRUCTURE IN
PRIOR SEQUENCE
74 VPLUS FORM NAME LONGER THAN 15
CHARACTERS
75 INVALID VPLUS FORM NAME
79 SOURCE FILE READ ERROR The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.
83 EXPECTING SETNAME An IMAGE data set name is
expected.
93 SEGMENT TABLE FULL No more than 127 segments are
allowed.
160 DATA DICTIONARY REQUIRED AND The VPLS= option of the
NOT AVAILABLE SYSTEM statement or the
LIST(AUTO) statement could not
gain access to the data dictionary.
162 TOO MANY ITEMS IN FILE LIST No more than 128 data items may
appear in the LIST= option.
113 DATA DICTIONARY, CANNOT FIND FILE
117 CANNOT OPEN INCLUDE FILE The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.
118 TOO MANY INCLUDE FILES More than 5 INCLUDKE files have
been nested.
120 VPLUS FILE/FORM NOT FOUND IN
DICTIONARY)
122 MISSING RECNO OPTION A data management statement
with the DIRECT modifier has no
RECNO= option.
125 UNEXPECTED UNTIL STATEMENT
166 NESTED IIF'S ARENOT ALLOWED
167 'ELSE MUST BE PRECEEDED BY AN 1IF
168 ENDIFMUST BE PRECEEDED BY AN {IF

A-4

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION

1004 CANNOT OPEN ASSEMBLER SOURCE The file used to pass the assembly
FILE ' language code to the FASTRAN
assembler cannot be opened.
1005 WRITE ERROR ON ASSEMBLER SOURCE The file iInformation display
FILE which accompanies this message
should indicate the cause of the
cause of the problem.
1006 CANNOT CLOSE ASSEMBLER SOURCE The file information display
FILE which accompanies this message
should indicate the cause of the
cause of the problem.
1007 CANNOT OPEN COMPILER WORK FILE ~ The file information display

which accompanies this message
should indicate the cause of the
cause of the problem.

1008 WRITE ERROR ON COMPILER WORK FILE The file information display

which accomparnies this message
should indicate the cause of the
‘cause of the prpblem.

1010 READERROR ON COMPILER WORK FILE The file information display

~ which accompanies this message
should indicate the cause of the
cause of the problem.

1012 UNABLE TO CREATE ASSEMBLER FASTRAN could not create a

PROCESS process for the FASTRAN
\ assembler.

1013 ABNORMAL TERMINATION OF Internal FASTRAN problem.

ASSEMEBLER Contact Performance Soffware
Group. '

1014 INTERNAL PROCEDURE OVERFLOW - Too much code has been gener-

CIOT ated for the CIOT (Child Item

Offset Table) internal procedure.
There are too many child items
used in your program.
1015 INTERNAL PROCEDURE OVERFLOW - Too much code has been gener-
ATTR ated for the ATTR (Data Item
Attribute) internal procedure.

There are too many data items
used in your program.

A-S

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE

EXPLANATION

1016 INTERNAL PROCEDURE OVERFLOW -
INAME

| 1017 INTERNAL PROCEDURE OVERFLOW -
ANAME

HEAD

1019 INTERNAL PROCEDURE OVERFLOW -
EDIT

1020 INTERNAL PROCEDURE OVERFLOW -
INIT

i

1021 INTERNAL PROCEDURE OVERFLOW -
OB

1022 INTERNAL PROCEDURE OVERFLOW -
ITMNO

1018 INTERNAL PROCEDURE OVERFLOW -

Too much code has been gener-
ated for the INAME (ftem Name)
internal procedure. You must
limit your program to fewer or
shorter data item names or use
the OPTI option.

Too much code has been gener-
ated for the ANAME (Alias
Name) internal procedure. You
must limit your program to fewer
or shorter alias and /or synonym
names.

Too much code has been gener-
ated for the HEAD (Heading
Text) internal procedure. You
must limit your program to fewer
or shorter data item headings.

Toe much code has been gener-
ated for the EDIT (Edit Picture)
internal procedure. You must
limit your program to fewer or
shorter edit pictures.

Teo much code has been gener-
ated for the INIT (Program
Initialization} internal procedure.
Contact Performance Software
Group.

Too much code has been gener-
ated for the OB (Quter Block
Initialization) internal procedure.
Contact Performance Software
Group.

Too much code has been gener-
ated for the ITMNO (Item: Num-
ber) internal procedure. You must
limit your program to fewer or
shorter data item names or use
the OPTI option.

A-f

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION

1023 INTERNAL PROCEDURE OVERFLOW - Too much code has been gener-

VFLD ated for the VFLD (VPLUS Field)
' internal procedure. You must
limit your program to fewer total

form fields.
1024 INTERNAL PROCEDURE OVERFLOW ~ Too much code has been gener-
VFOEM ated for the VEORM (VPLUS

Form) internal procedure. You
must limit your program to fewer

VPLUS forms.
1025 INTERNAL PROCEDURE OVERFLOW - Too much code has been gener-
VMOVE ated for the VMOVE (VPLUS

buifer movement) internal proce-
dure, You must limit your
program to fewer total form

fields.
1026 INTERNAL PROCEDURE OVERFLOW - Too much code has been gener-
CMD ated for the CMD (Command/

Sub-Command}.internal proce-
dure. You must limit your
program to fewer or shorter
cornmand and sub-command
names and /or passwords.

1098 INTERNAL EXPRESSION EVALUATION Aninternal error has occuwrred in

ERROR FASTRAN during expression

evaluation. Contact Performance
Software Group.

1099 INTERNAL ERROR: TCODE OVERFLOW Aninternal error has occurred in
FASTRAN during expression
evaluation. Contact Performance
Software Group.

1105 EXPECTING A CLOSING FARENTHESIS {}]

1106 EXPECTING A RELATIONAL OPERATOR
[=<>>,<>=,cx]

1108 INVALID SYNTAX IN COMPILER An unidentified compiler direc-

DIRECTIVE tive (beginning with {) was en-
countered.

1109 EXPECTING A COLON [

A7

&

COMPILE-TIME ERROR MESSAGES

'NO. MESSAGE | EXPLANATION

1113 EXPECTING THEN’ The condition clause in an IF
statement must be followed b
THEN. _

1129 EXPECTING AN EQUAL SIGN {=]

1140 DUPLICATE FORM NAME The same form name appears

: more than once in the VPLS=
option of the SYSTEM statement.

1142 INVALID SYSTEM VARIABLE An unknown system variable
(beginning with $) was encoun-

. tered.
1144 ITEM(S) NOT DEFINED AND This message is generated at the
DICTIONARY NOT AVAITABLE end of a segment with undefined
data items if either the NODICT
option was used or if the diction-
ary (DICT.PUB) could not be
opened. The message is followed
by a list of the undefined data
items.

1145 ITEM(S) NOT FOUND IN DICTIONARY: This message is generated at the
end of a segment with undefined
data items if the items were not
found in the data dictionary. The
message is followed by a list of
the undefined data items.

1146 INVALID DICTIONARY ENTRY: The dictionary entry for the
indicated item contains an inva-

. - lid data item definition.
1147 DUPLICATE ENTRY DEFINITION A label appears in more than one
' DEFINE(ENTRY) statement.
1153 EXPECTING AN OPENING
PARENTHESIS [(]

1160 MARKER MAY NOT BE INITIALIZED

1164 MARKER NOT VALID IN THIS CONTEXT

1170 UNDEFINED LABEL(S): This message appears at the end

' of any segment with undefined
~labels. It is followed by a list of
the undefined labels.

A-8

COMPILE-TIME ERROR MESSAGES

NO.

MESSAGE EXPLANATION
1171 UNDEFINED ENTRY(S): This message appears at the end
of your program if any labels
declared in a DEFINE(ENTRY)
statement were not defined.
1176 EXPECTING ‘UNTIL
1179 EXPECTING A CLOSING BRACKET (1)
1180 NOT A CHILD ITEM ~ A child item was expected but a
: parent item was found.
1183 FUNCTION RETURN PARAMETER
MUST BE 2, 4 OR 8 BYTES
1184 VALUE PARAMETER MUST BE 2,4 OR
8 BYTES
1185 INVALID PROCEDURE NAME
1186 CHILD ITEM NOT PERMITTED HERE
1190 MPE FILE INVALID FOR THIS VERB An MPE file may not be the
' object of this verb.
1193 SORT KEY NOT IN ITEM LIST A SORT= option was used on a
' data management statement with
a fragmented item list and the
item list does not contain all of
the keys in the sort option.
1104 KEY MODIFIER ONLY VALID FOR
IMAGE DATA SET |
1200 TOO MANY PARAMETERS No more than 32 parameters are
B permitted in a PROC statement.
1201 INVALID SORT SPECIFICATION
1202 TOO MUCH CODE IN THISSEGMENT If the amount of code in the

segment cannot be reduced, the
segment must be divided into
two or more segments. {See the
discussion of the CHEK and
SSEG options in Section 3 for
work arounds.)

A

COMPILE-TIME ERROR MESSAGES

NOO‘

MESSAGE

EXPLANATION

1203

1207

1215
1216
1217

1220

1292

1254

TOO MUCH DISPLAY CODE IN THIS
SEGMENT

ONLY ARANGE LIST IS VALID IN THIS
CONTEXT

UNDEFINED FTEM(S) IN VPLUS FORM
EXPECTING A COMMA

COMMAND LABEL EXCEEDS 16
CHARACTERS

TOO MUCH SSEG CODE IN THIS
SEGMENT

CANNOT SUBSCRIPT AN ITEM NOT
DEFINED AS AN ARRAY

TOO MANY SUBSCRIPTS

The code generated by DISPLAY
and FORMAT statements in this
segment is too large. Either
reduce the number of such state-
ments in the segment or divide
the segment into two or more
segments. :

‘The code generated for data
management and VPLUS state-
ments in a program compiled
with the SSEG option was too
large. The segment must be
divided into two or'more seg-
ments.

A-10

APPENDIX RUN-TIME
B ERROR MESSAGES

The run-time error messages generated by a FASTRAN program parallel those generated by
Transact as closely as possible. As with Transact, the format of a run-time error message is:

*ERROR: error-message (error-info}
_ The error-info contains the following fields:
{type number,program.segment.location] file]}
Each of these fields is described below:
type: .
USER: Theerror is probably the result of aninvalid data entry response by the user
and can be corrected by re-entering the response.

PROG: The error is probably the result of an error in the program and should be
corrected by the programmer.

SYSTEM: The error is probably the fault of the system environment, for example
insufficient disc space or an improper file equation for a-data base.
As with Transact, the following FASTRAN error types are derived from one of the HP-

3000 subsystems. The appropriate subsystem reference manuat should be consulted for
~ information about any of these errors.

" IMAGE: AnIMAGE data base error occurred.
KSAM: A file system error occuired on a KSAM file.
MPEF: A file system error occurred on an MPE file.
VPLUSA: VFPLUS subsystem error occurred.

number:

For USER, PROG or SYSTEM errors, this number refers to an error message listed in this

appendix. For IMAGE, KSAM, MPEF or VPLUS errors, this is a subsystem error
number. ' '

program:

The SYSTEM-statement name of the program in which the error occurred. The program
name is useful in tracing errors which occur in systems which use CALL.

RUN-TIME ERROR MESSAGES

éegmenf: :
m The segment number within the program in which the error occurred.
location: ‘

The code location within the segmentin which theerror occurred. The code location will
appear as the second column of numbers on the program compilation listing and is in
octal.

file: |
For MAGE, KSAM and MPEF errors, this is the name of the data set or file on which the
error occurred.

B-2

DUSER RUN-TIME ERROFR MEFGAGES

USER ERRORS
NQ. MESSAGE EXPLANATION
1 ENTRY NOT NUMERIC Non-numeric characters were
_ entered in response to a prompt
for a numeric value,

2 INPUT HFELD LONGER THAN The length of a data entry re-
sponse exceeds the defined size
of the data item.

4 NUMERIC INTEGER PART LONGER The length of the integer partofa

THAN n numeric response exceeds the
maximum implied by the defini-
tion of the data item.

5 NUMERIC DECIMAL PART LONGER The length of the decimal part of

THAN n a numeric response exceeds the
maximum implied by the defini-
| - tion of the data item.

7 INVALID COMMAND/OPTION: The command or qualifier en-

command/option tered is not defined in the pro-
gram and is not one of the built-

. in commands or command quali-
fiers.

8 INVALID/MISSING SUB-LLCOMMAND: The sub-command entered is not

sub-command defined in the program, or no
sub-command was entered fora
command which requires one.
12 INVALID COMMAND PASSWORD
© 13 INVALID SEQUENCE PASSWORD
16 ATTEMPT TO ASSIGN NEGATIVE VALUE A LET statement attempied fo
TO ITEM: item-name assign a negative value to a data
itern declared as positive-only.
17 INVALID ARITHMETIC FIELD An arithmetic field in a LET
‘,11 y; " i tn statement contained non-numeric
' ~ data.

& A
\.. 47 £ VM) PENT £ B3

USER RUN-TIME ERROR MESSAGES

NO.

MESSAGE

EXPLANATION

18

19

20

21

100

ENTRY CANNOT BE NEGATIVE

INVALID LOGICAL CONNECTOR

INVALID PRECEEDING RELATIONAL

UNDELIMITED TEXT STRING

INVALID PASSWORD FOR DATA BASE:

base-name

TTEM NOT FOUND IN LIST REGISTER:
item-name

A negative value was entered for
a dafa item declared as positive-
only.

In response to 2a DATA(MATCEH)
prompt, the match expression
contains an invalid connector.
Valid connectors are ‘and’, ‘or’
and “to’.

In response to a DATAMMATCH)
prompt, the match expression
contains an invalid relational
operator. Valid operators are =,
<=, >, <, »=and <=

In response to a DATAMMATCH)
prompt, the match expression
contains a quoted string with no
closing quote.

An invalid password was entered
in respornse to a data base pass-
word prompt.

In response to a DATA(ITEM)

prompt, an item name was en-
tered which was not in the list
register.

B-4

PROGRAMMER RUN-TIME ERROR MTSEAGES

PROGRAMMER ERRORS
NO. MESSAGE EXPLANATION
1 ITEM NOT IN LIST REGISTER: An data item was referenced and
item-name was not in the list register.
4 INVALID LIST START POSITION A range-type data item list was
specified, but the start position
did not preceed the end position.
7 DATABASE BUFFER NOT ON WORD

: - BOUNDARY

16 INVALID RETURN OPERATION A RETURN statement was exe-

' cuted but there was no pending
PERFORM.

18 ARITHMETIC CONVERSION Adataitemof type X, U, 9, Zor P
contains non-numeric data. Does
your program initialize all such

_ data items?
20 INVALID/MISSING KSAM KEY
21 LISTREGISTER IS EMPTY An operation was requested
. ' which requires at least one data
item in the list register and the
_ list register was empty.
23 ITEM NOT FOUND IN VPLUS FORM: A VPLUS operation referenced a
item-name data item which was not con-

tained in the current form.

24 VPLUS BUFFER CONVERSION FOR An error occurred translating the

ITEM: item-name ASBCH value of a VPLUS field to
internal format.

25 KEY REGISTER IS EMPTY An operation was attempted

' which required a key value and
the key register was empty.

PROGRAMMER RUN-TIME ERROR MESS5AGES

M| No. MESSAGE EXPLANATION

31 ITEM STACK FULL There is no more room in the list
register. You can increase the size
of the list register by aitering the
second parameter of the DATA=
option of the SYSTEM statement.

32 ™MAGE LIST REGISTER FULL ~ The maximum size of an IMAGE

' data item list parameter was
exceeded (2048 characters).

33 DATA REGISTER FULL You can increase the size of the
data register by altering the first
parameter of the DATA= option
of the SYSTEM statement.

34 WORKSPACE FULL You can increase the size of the
workspace by altering the first
parameter of the WORK= option
of the SYSTEM statement.

36 LEVELSTACK FULL More than 10 LEVEL statements -
have been nested.

ﬁ I 44 PRINT REGISTER TOO LONG The work area used in construct-
ing the output of a DISPLAY
statement has been exceeded.

46 DECIMAL DIVIDE BY ZERO

47 DECIMAL OVERFLOW Could be caused by improper use

' of the OPTX compiler option. See
the discussion of OPTX in Sec-
v tion 3.

48 EXTENDED PRECISION DIVIDE BY ZERO

49 EXTENDED PRECISION UNDERFLOW

50 EXTENDED PRECISION OVERFLOW

51 INTEGER OVERFLOW Could be caused by improper use
of the OPTX compiler option. See
the discussion of OPTX in Sec-
tion 3.

52 FLOATING POINT OVERFLOW

53 FLOATING POINT UNDERFLOW

M 54 INTEGER DIVIDE BY ZERO

PROCRAMMER RUN-TIME ERRQI MESSACES

NO. MESSAGE EXPLANATION
55 FLOATING POINT DIVIDE BY ZERO
58 NOVPLUS FORM AVAILABLE FOR An UPDATE(FORM) statement
UPDATE was executed, but no form had
yet been displayed.

62 VPLUS FORM NOT FOUND: form-name The VPLUS form designated as

' the next form in the form file was
not defined in the program or in
the dictionary.

66 TTEM NAME NOT DEFINED: ffern-name - The item name designated fora
VFPLUS window operation was
not defined in the program.

87 VPLUS FORM IS NOT CURRENT: The CURRENT option was used

form-name in a VPLUS statement but the
form is not the current form.

68 SORT KEY NOT IN SORT FILE In a sort, the designated sort key
isnot in the sort record.

70 ATTEMPTED VPLUS OPERATION WHILE No FORM verbs may be executed

VPLS OPTION SET while SET(OPTION) VPLS is in
effect. :

73 UNABLE TO CLOSE VPLUS PRINTFILE

76 ATTEMPTED LN OR LOG FUNCTION ON

ANUMBERTHAT IS <= 0

77 READ TERMINATED BY SOFTWARE

. TIMEOQUT

81 INVALID DECIMAL DIGIT

84 ATTEMPTED SQRT FUNCTION ON A

NUMBER THATIS < 0.
86 DBLOCKFAILED AS LOGTRAN LOCKS A data management statement
ARE STILL ACTIVE attempted to issue a lock while a
LOGTRAN statement had the
_ data base locked.

93 SUBSCRIPTIS OUT OF RANGE

95 CANNOT DELETE ITEM IN MATCH REGISTER

96 CANNOT DELETE ITEM IN UPDATE REGISTER

B-7

PROGRAMMER RUN-TIME ERROR MESSAGES

NO. MESSAGE | EXPLANATION
99 PARAMETER MISMATCH IN PROC The number of parameters coded
STATEMENT in a PROC statement does not
agree with the number expected

by the called procedure. Check
your parameters carefully par-
ticularly if you are calling an
‘OFTION VARIABLE’ intrinsic.

o

SYSTEM RUN-TIME ERROR MESSAGES

SYSTEM ERRORS
NO, MESSAGE EXPLANATION
1 SORT INITIALIZATION An error occurred during execu-
tion of a SORTINIT intrinsic.
2 SORT FILE WRITE An error occurred during execu-
tion of a SORTINPUT intrinsic.
3 SORT OUTPUT An error occurred during execu-
tion of a SORTOUTPUT intrinsic.
5 CANNOT OFEN TRANLIST: file-system-error '
9 TFILE SYSTEM ERROR ON TRANLIST:
file-system-error
12 CANNOT OPEN DATA BASE: base-name
13 CANNOT LOAD CALLED PROGRAM: FASTRAN was unable to load a
called program at run-time from
an SL. See Section 5 for a com-
_ plete discussion of CALL.
79 LOG RECORD NOT ON WORD
BOUNDARY
501 CANNOT OPEN TRANIN: file-system-error
502 FILE SYSTEM ERROR ON TRANIN:
file-system-error
503 CANNOT CLOSE TRANLIST:
file-system-error '
505 CANNOT CREATE CALLED PROGRAM: FASTRAN could not create a
program-natne process for the object of a proc-
ess-handling (PH) call. Does the
called program exist as a pro-
gram file?
506 CANNOTINITIALIZE CALLED A SENDMAIL or RECEIVEMAIL

PROGRAM: program-name

intrinsic call failed during initiali-
zation of a process-handling call.

B-9

APPENDIX RUN-TIME
C STATISTICS

The table below illustrates the listing produced by FASTRAN when the STAT optionisineffect:

QUTER BLOCK

SEGMENT 0 CODE
SEGMENT 0 FORMATS
SEGMENT 1 CODE
SEGMENT 1 FORMATS
SEGMENT 2 CODE
SEGMENT 2 FORMATS
SEGMENT 3 CODE
SEGMENT 3 FORMATS
SEGHENT 3 CODE
SEGMENT 4 FORMATS
SEGMENT & CODE
SEGMENT 5 FORMATS
. 3FGMENT 6§ CODE
SEGMENT 8 FORMATS
SEGMENT 7 CODE
SEGMENT 7 FORMATS
SEGMENT 8 COBE
SEGMENT 8 FORMATS
SEGMENT 9 CODE
SEGMENT 9 FORMATS
SEGMENT 10 CODE
SEGMENT 10 FORMATS
SRO (CIOTH

SR1.{ATTR)

SR2 (INAME)

SR3 (ANAME]

8R4 (HEAD)

SRS (EDIT)

SR (ITMNO)

SR7 (VFLD)

SR8 (VFORM)

SRa (yMOvE)

RUN-TIME LIBRARY)

** RUN-TIME STATISTICS ***

PROGRAM INITIALIZATION

4425

TOTAL CODE (EXCLUDING

CODE SEGMENT REQUIREMENTS:

42
384
5109

40
1264

40

3396
40
1657
4870
2829
4197
16585
40
2247
40
3752
1219
4640
73
2170
350
162
2143
3108
1303
1148
1050
3559
170

315

57416

DATA STACK REQUIREMENTS:

PRIMARY DB

QUTER BLOCK
DATA REGISTER
VPLUS COMAREA
MISCELLANEOUS

GLOBAL PROGRAM STORAGE
DATABASE & FILETBLS
WORK AREA
LIST REGISTER
MISCELLANEQUS

TOTAL DATA STACK
(EXCLUDING DYNAMIC
RUN-TIME REQUIREMENTS)

3075
60
8

B9
600
1137
386

5487

134

3141

2212

RUN-TIME STATISTICS

The program which generated this example contained 11 segments and approximately 7300
m lines of source code. The program used the VPLUS interface but did not use a command /sub-

CODE SEGMENT REQUIREMENTS:

OUTER BLOCK 42
PROGRAM INITIALIZATION 384
SEGMENT 0 CODE 5109
SEGMENT 0 FORMATS 40
SEGMENT n CODE XXX
SEGMENT n FORMATS XXXX
SRO{CIOT) 152
SR1 (ATTR) 2149

-2

- command structure. The fields in this listing are described below and on the following pages.

Each entry under CODE SEGMENT RE-
QUIREMENTS represents a single MPE pro-
cedure generated by FASTRAN. The maxi-
mum size for a FASTRAN-generated proce-
dure is 16128 words.

The number of words of code generated to
perform system initialization. Note thatif the
SUBP (sub-program) option is in effect, the
outer block code is not actually generated.

The number of words of code generated to
perform pregram initialization. This code is
generated and executed for both main and
called programs.

The number of words of code generated for
the root segment. -

The number of words of code generated for
FORMAT and DISPLAY statements in the
root segment. ' '

‘The number of words of code generated for
each local segment.

The number of words of code generated for
FORMAT and DISPLAY statements in each
local segment. '

The number of words of code generated for
Service Routine 0 (SRD), which initializes the
Child Item Offset Table (CIOT) at program
initialization and during segment transfers.
The size of this procedure increases by about
1 word for each additional child item refer-
enced in the program.

The number of words of code generated for
Service Routine 1, which contains the atirib-
utes of each data itemin theprogram. Thesize
of this procedureincreases by about 5-6 words
for each additional data item in the program.

SR2 (INAME)

SR3 (ANAME)

SR4 (HEAD)

SRS (EDIT)

SR6 (ITMNO)

3108

1303

1148

1080

3558

RUN-TIME STATISTICS

The number of words of code generated for
Service Routine 2, which contains the item
names of all data items referenced in the
program. The size of this procedure is related
both to the number and length of the data
items. Each additional 8 character data item
name adds about 6 words to this procedure.

The number of words of code generated for
Service Routine 3, which contains the aliases
and synonyms. The size of this procedure is
related both to the number of aliases and the
length of each alias name. Each additional 8
character alias (or synonym) adds about 6
words to this procedure.

The number of words of code generated for
Service Routine 4, which contains the head-
ing text for all data items which were defined
withaHEAD=optionorwhichhad aheading
defined in the data dictionary. The size of this
procedure is related both to the number of
headings and to their length. Each additional
15 character heading adds about 8 words to
this procedure. '

The number of words of code generated for
Service Routine 5, which contains the edit
pictures for all dataitems which were defined
with an EDIT= option or which had an edit
picture defined in the data dictionary. The
size of this procedure is related both to the
number of edit pictures defined and t0 their
length. Each additional 8 character edit pic-

ture adds approximately 5 words to this pro-
cedure.

The number of words of code generated for
Service Routine 6, which contains the FAS-
TRAN-assigned item number for each item
name. The size of this procedure is related
both to the number and length of the data
item names. Each additional 8 character data
itern adds about 6 words to this procedure. -

C_3

RUN-TIME STATISTICS

SR7 (VFLD
e WFLD)

SR8 (VFORM)

SRa (VMOVE)

SR10 (CMD)

TOTAL CODE (EXCLUDING
RUN;TIME LIBRARY)

170

72

316

KXHA

57416

The number of words of code generated for
Service Routine 7, which relates the fields on
each YPLUS form to the corresponding pro-
gram item name. Each additional form field
adds about 3 words to this procedure.

The number of words of code generated for
Service Routine 8, which confains informa-
tion about each VPLUS form in the program.
Each additional form adds about 8 words to
this procedure,

The number of words of code generated for
Service Routine 9, which contains coded in-
formation used to move data between the
data register and the VPLUS form buffers.
Each addifional form field adds about3words
to this procedure. '

The number of words of code generated for
Service Routine 10, which contains the infor-
mation necessary to decode commands and
sub-commands defined in your program. The
size of this procedureis related to thenumber
of commands and sub-commands in the pro-
gram, their lengths and the lengths of any
commmand or sub-command passwords. Since
the program in this example did not use a
command/sub-command structure, no code
was generated for SR10. '

The total number of words generated by
FASTRAN for the program. To this total must
be added the run-time library procedures,
which arelinked to the program either at prep
time from the RL or at load time from an SL.
The number of words of run-time library
codeis usually between 8000 and 15000 words.

DATA STACK REQUIREMENTS:
PRIMARY DB _ 134

OUTER BLOCK

DATA REGISTER

3075
VPLUS COMAREA - 80
MiSCELLANE_OUS 6
3141

GLOBAL PROGRAM STORAGE

DATABASE & FILE TELS 89

RUN-TIME STATISTICS

The number of words in the giobal table and
pointer area used by FASTRAN. The size of
this area may change with new releases of
FASTRAN but cannot be controlled by the
programmer. For a main program, the Pri-
mary DB areabegins atlocation DB+0. Calied
progratris tse the sarie area as the maih pro-
gram but require a save area of the same size
on the data stack.

The data areas in the outer block are only
allocated for main programs.Called programs
share this area with the main program,

The number of words in the data register,
confrolled by the DATA= option on the SY5-
TEM statement.

Thenumber of wordsin the VIPLUS Comarea,
not under programmer control.

The number of words of additional storage
required in the outer block, not under pro-
grammer control. '

The second value following the MISCELLA-
NEOUSentry givesthe totalnumber of words
in the outer block area.

The number of words of global storage re-
quired for the program. For a called program,
this area is distinct from the global program
storage area of the main program. It is allo-
cated whenever the program is called and is
released when the called program is exited.

Thenumberof wordsused forIMAGE, KGAM,
MPE and VPLUS file tables. The size of this
area can be computed as follows: -

Each IMAGE database requires 15 words
plusiword foreach2charactersinthe data
~ base name.

Each MPE file requires 16 words plus 1
word for each 2 charactersin the filename.

Each KSAM file requires 7 words plus 1
ward.’ for each 2 characters in the filename.

C-5

RUN-TIME STATISTICS

~

WORK AREA

LIST REGISTER

MISCELLANEOUS

C-6

600

1137

386

2122

Each VPLUS form file requires 2 words

plus 1 word for each 2 characters in the
form file name,

Each different MGE data set referenced -
in the program requires 1 word.

The number of words required by the work
register. This will be twice the value specified
on the WORK= option of the SYSTEM state-
ment. Note that FASTRAN uses twice the
area as Transact. The extra storage allows
FASTRAN to use a different work area alloca-
tion algorithm which eliminates the need for
run-time garbage collection in the work area.

The number of words required by the list
register. This requirement can be deterrruned
as follows: -

Multiply 3 times the number of list regisier
entries requested in the second paramefer
of the DATA=option of the SYSTEM staite-
ment, and add 1,

Add one word for each different data item
referenced in the root segment.

For a segmented program, an additional
word is required for each local parentitem
in the segment with thelargest number of
parent items, plus one word for each child

itern in the segment with the largest num-
ber of child items.

The number of additional words required in
the global program area. 366 words of this
area are fixed and are not under programmer
control, though the requirement may change
with new releases of FASTRAN. Two addi-
tional words are required for each local geg-
ment in the program, and one word is re-
quired for each two characters in the BAN-.
NER= option of the SYSTEM statement.

The second value following the MISCELLA-
NEOUSentry gives the total number of words
in the global program storage area.

a

TOTAL DATA STACK
{(EXCLUDING DYNAMIC
RUN-TIME REQUIREMENTS)

5487

RUN-TIME STATISTICS

Total fixed data stack requirement of the
program when run stand-alone. The dynamic
run-time requirements are difficult to predict
for a given program and include data base
and file buffers, VPLUS buffers, the RETURN
stack, sort work area, local storage for called
procedures and various miscellaneous work
areas. These areas are allocated only when
needed and arereleased as soon astheyareno
longer needed.

7

