
THE COMPILER FOR TRANSACT.

PERFORMANCE SOFTWARE GROUP
12 Hillview Drive

Baltimore, Md. 21228
(301) 242·6777

Telex: 887764 C

QUI'l AB~
lL~ ~

L I'tj"",f'e ,
l(1- r .1) ~r:<. ~M~ IJ

\ -' v f<. 6 (,. ¥2,

',. ~r P>{~1'~h
'.,', "> ,/

n

ii

NOTICE

The information contained in this documentis subject to change without notice.

PERFORMANCE SOFTWARE GROUP MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MA'mlUAL, INCLUDING, 'BUT NOT
LtMITEDTO, THE IMPLIED WARRANTfES OFMERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Performance Software Group shall not be responsible for errors contained herein
or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

This document contains proprietary information which is protected by copy-
right. All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of Performance Software Group,
except that licensees ofFASTRAN are granted permission to reprint this docu-
ment in limited quantities for internal use (and not for profit), provided that
copyright notice is given.

© 1991, Performance Software Group

n

PRINTING HISTORY

First Edition .Ian. 1984
Second Edition ~.Jul.1984
Third Edition iFeb. 1985

Fourth Edition Mar. 1986

Fifth Edition Oct, 1987

Sixth Edition Nov. 1988

Seventh Edition May 1991

,'.,

iii

n

()

PREFACE

This manual is a reference for using the FASTRAN compiler to compile and execute programs
written in Hewlett-Packard's Transact programming language on the HP-3000 computer
system. It assumes a working knowledge of Transact, the HP-3000 and the MPE operating
system.

This manual is not intended as a reference for the Transact language. As such, it confines its
.discussions to the differences between FASTRAN and Transact, and to the special features of
FASTRAN. Hewlett-Packard's Transact/3000 Reference Manual (HP Part No. 32247-90001)
should be consulted for any general questions regarding the Transact language.

This manual contains the following sections:

Section 1: INTRODUCTION TO FASTRAN, describes the major advantages
of FASTRAN as well as its limitations.

Section 2: COMPILING PROGRAMS WITH FASTRAN, describes in detail
how to use the FASTRAN compiler. "-

Section 3: FASTRANGOMP.JLERCONTROLOPTIONS, describes the effect
of each of the FASTRAN compiler options.

Section 4: PREPARING AND EXECUTING FASTRAN PROGRAMS, tells
how to prepare a FASTRAN program for execution and how to
control its execution at run-time.

\, Section 5: USING CALL WITH FASTRAN, describes the implementation of
the CALL statement in FASTRAN and discusses the various tech-
niques that can be used with CALL.

Section 6: USING THE FASTRANJSEGMENTER, describes the special seg-
menter supplied with FASTRAN.

Appendix A explains the error messages issued by the FASTRAN compiler.

Appendix B explains the error messages issued by a FASTRAN program at run
time.

Appendix C describes the optional run-time statistics generated by the compiler.

v

n

n

CONTENTS

SectionL INTRODUCfION TO FASTRAN•.. 1
FASTRAN Limitations 2
Is FASTRAN a Substitute for Transact? 2
System Requirements for FASTRAN 3

Section 2: COMPILING PROGRAMS WITH FASTRAN .•.•.....•........•..•.....•.....•.........•.•...........5
Using UDC's for Compiling with FASTRAN , , 7

Section 3: FASTRAN Compiler Control Options•.. 9
FASTRAN Compiler Directives 13

Section 4: PREPARING AND EXECUTING FASTRAN PROGRAMS 15
Preparing a FASTRAN Program for Execution 15
Special Capabilities 16
Executing FASTRAN Programs < 17
The FASTRAN Run-Time Message Catalog 17
FASTRAN Run-Time File Equations 18
Built-in Processor Commands 19

Section 5: USING CALL WITH FASTRAN•.•.•...........•.......................•..............................21
How FASTRAN' Handles Calls•.. 21
St~tic and Dynamic Calls 22
Controlling the Type of Calls Generated by FASTRAN : 23
Limitations on the Call Statement with FASTRAN 24
Compiling, Preparing and Executing with Call 24
Process-Handling Calls •....................· 28

Section 6:Using the FASTRAN/SEGMENTER ." ~ : 31
FASTRAN"/SEGMENTER Commands 32
The FASTRAN /SEGMENTER Compiler Interface 37

Appendix A: COMFILE ..TIME ERROR MESSAGES ••.•••••.•••........•..••........••......•••.•..............A-l

Appendix B: RUN-TIME ERROR MESSAGES•.•.....•.......••...................•.....•.......................B-1
Appendix C: RUN-TIME STATISTICS•...•............... C-l

vii

n

SECTION
1

INTRODUCTION
TOFASTRAN

FASTRAN' is a compiler for Hewlett-Packard's Transact programming language used on the
HP-3000 series of computers. The main difference between FASTRAN and Transact is that
FASTRAN produces HP-3000 object code which can be directly executed by the hardware
under control of the MPE operating system. The Transact compiler produces "intermediate
processor code" which must be executed interpretively by the Transact processor program.

The major advantage of FASTRAN over Transact is a dramatic reduction in both CPU and
elapsed time. A number of features contribute to this high level of performance:

• FASTRAN is compiled, not interpreted. The overhead of interpreting the interme-
-d·iate-f'Feee&ser~eeae-i-s-eli·mi-fl:-a-teEl-.-lR-addi-t-ief\/-FA-5--'FR.:AN-is-able-teemploy special
machine instructions (in particular, the COBOL n microcode) that greatly speed
certain FASTRAN functions.n · FASTRAN data structures are designed for fast access. Thus FAS'tRAN is able to
eliminates.u.chtime-consumingoperations as listre.gis.ter searches when data items
are referenced, table look-ups when child items are referenced and "garbage
collection" in th~ work r~gjster. FASTRAN accomplishes this while still maintain-
ing all of Transact's capabilities for dynamic list and data register allocation and
efficient re-use of work register space.

• Where interpretive techniques cannot be avoided, the FASTRAN interpretive
-prccedureshavebeen coded for the maximum level of performance. For example,
FASTRAN match register evaluation, while essentially interpretive, is about four
times faster than it is with Transact.

Programs compiled with FASTRAN typically require less data space than with Transact, often
dramatically less. This is because FASTRAN can use code segments for much of what Transact
must store in its data stack. Some of the data that FASTRAN stores in code segments include:

• The program code itself.
• Data item tables (names, aliases, attributes, headings, edit pictures and entry text).

• VPLUS form and field tables.
• Command and sub-command tables.

• Text and control strings.
()

1

INTRODUCI10N TO FASTRAN

FASTRAN LIMITATIONS

There are a few features of Transact which are not supported by FASTRAN:
• Run-time access to the data dictionary is not supported. Definitions for all data items
in your program must be available at compile time, either from the data dictionary
or via DEFINE(ITEM) statements in your program. Compile-time access to
DICTIONARY / 3000 is fully supported. System Dictionary access is not supported.

• Test mode is not supported, nor is the TEST built-in command.
• The INITIALIZE built-in command (which allows Transact to initiate a new
Transact program without exiting the processor) is not supported.

• A number of limitations apply to the CALL statement:

- CALLs to Transact programs are supported only if both the called and the
calling programs have been compiled with FASTRAN. In addition, the
programs must be linked to one another in one of the ways described in
Section 5.

- CALLs cannot be made to programs residing in different groups or accounts
(except for process-handling calls, which have certain other limitations - see
Section 5).

- The SWAP option of the CALL statement is not supported and is ignored by
FASTRAN. Since FASTRAN uses much less data stack space than Transact,
this option is not likely to be needed.

Programs which do not use any of these unsupported features can normally be compiled and
" executed successfully by FASTRAN with no changes to the Transact source code. Occasionally
a program with one or more very large segments may need to be resegmented to be compiled
with FASTRAN.

\.

IS FASTRAN A SUBSTITUTEFQR TRANSACT?

FASTRAN is a production-oriented compiler designed for optimum run-time performance. It
is not a substitute for Transact - Transact is still the better choice for the development phase of
a program's life cycle for several reasons:

• Program compilation is significantly faster with Transact than with FASTRAN,
since much of what Transact defers to run time is done by FASTRAN at compile
time.

• The program development features of Transact (test mode and run-time data
dictionary access) are not supported by FASTRAN.

2

INTRODUCTION TO FASTRAN

n SYSTEM REQUIREMENTS FOR FASTRAN

The object code generated by FASTRAN includes instructions from the Language Extension
instruction set (the COBOL-ll microcode). Any machine which is to execute a FASTRAN .
program must include the COBOL-ll firmware (standard on all HP-3000's produced since
December 1982). The COBOL-ll compiler is not required.

Although the data stacks required by FASTRAN are normally smaller than with Transact, large
data stacks may still be required. In addition, FASTRAN may generate large :MPE code
segments. Therefore, any machine which is to execute compiled FASTRAN programs should
be configured for the largest permissible values for both maximum data stack size and
maximum code segment size. (See the HP System Manager's manual for more information on
these configuration parameters).

3

SECTION
2

COMPILING PROGRAMS
WITH FASTRAN

Compiling a Transact source program with FASTRAN is very similar to using the Transact
compiler. You can run the compiler interactively by entering the following command:

:RUN FASTRAN'. PUB. FASTRAN'

The FASTRAN compiler will prompt you as follows:

SOURCE FILE>
LIST FILE>
CONTROL>

In response to the SOURCE FILE> prompt YDU should enter the name of yo.ur Transact source
program.
In response to the LIST FILE> prompt YDU can respond in any of the following ways:

r

• Enter a carriage return (or $STDUST) to direct the listing to YDur terminal.

• Enter NULL, $NULL DrN to' suppress the listing.
• Enter LP to direct the listing to the line printer .
• Enter a file name to' direct the listing to. a new disc file. If the named file already

exists, the FASTRAN compiler will ask if YDU want to purge it.

~ Enter a back reference to. a file equation (beginning with ").

In response to. the CONTROL> prompt YDU may enter any control options YDU wish to apply
to the compilation. If you respond with a carriage return, the default control options are used.
YDU can reverse the effect of any default control option by preceding it with NO. Some of the
FASTRAN control options are different from the Transact options. The FASTRAN control
options are discussed in Section 3.

Like Transact, FASTRAN allows YDU to' bypass the compiler prompts by using the PARM=
and/or the INFO= options of the :RUN command for FASTRAN.

()

5

COMPILING PROGRAMS WITH FASTRAN

The PARM= option allows you to identify your source file and/or your list file with filen equations, as follows:
PARM=l FASTRAN uses "formal-file-designator FSTTEXT for your source file and the

SOURCE FILE> prompt is suppressed.

PARM=2 FASTRAN uses formal-file-designator FSTLIST for your list file and the LIST
FILE> prompt is suppressed.

PARM=3 Combines the effect of PARM=l and PARM==2.

FASTRAN also.allows you to control the destination file for your compiled object code with the
PARM:= option. Normally the Object code is written to a USL (user subroutine library) file
named $OLDPASS. If you want to direct the object code to a different USL file, you can use
PARM=4.

FASTRAN will then write the object code to formal-file-designator SPLUSL. You can use a file
equation to equate SPLUSL to your USL file, for example:

: FILE SPLUSL=MYUSL
:RUN FASTRAN .PUB.FASTR.AN;PARM=4

Although FASTRAN no longer uses the SPL compiler, the USL formal-file-designator is still
SPLUSL to maintain compatibility with customers' existing job streams. You can combine the
effect of PARM=4 with PARM::::l,2 or 3 by using PARM=5, 6 or 7, respectively.

The INFO= option allows you to supply control options directly to the FASTRAN compiler,
bypassing the CONTROL> prompt. The control options are separated by commas, just as they
would be in response to the CON1ROL> prompt. If you want FASTRAN to use the default
options and to bypass theCON'fROL> prompt, set the WFO= parameter to INFO=" ".

FASTRAN can access a data dictionary during compilation. Like Transact, FASTRAN uses
DICT.PUB as the formal designator for the data dictionary. If you want FASTRAN to use a
different dictionary, a file equation is needed.

6

The FASTRAN compiler uses three additional files which are normally of no concern since the
default assignments are usually appropriate.

• FSTOUT is the formal-file-designator for prompts and error messages from the
compiler ..The default assignment for FS1DUT is $STDLIST.

• FSTIN is the formal-file-designator for responses to the prompts issued by the
compiler. The default assignment for FSTIN is $STDINX.

• FSTRNOOO.PUB.FASTRAN is the formal-file-designator for the FASTRAN com-
pile-time message catalog. In a normal FASTRAN installation no file equation will
be needed. (Note that the FASTRAN compile-time and run-time message catalogs
are in different files.)

COMPILING PROGRAJ\1S WITH FASTRAN

---_._-
USING UDC'S FOR COMPILING WITH FASTRAN

The FASTRAN account contains a UOC file named UDC.PUB.FASTRAN which contains user-
defined commands for compiling with FASTRAN. Each of these commands is described
below:

:FASTRAN

:FASTCOMP

:FASTPREP

\,.

: FAST GO

The :FASTRAN command simply executes the following MPE com-
mand:

:RUN FASTRAN .PUB.FASTRAN

source-file L[usi-filel [,[list-file] Lconirol-optionl ...]]
The :FASTCOMP command runs the FASTRAN compiler and allows
you to designate your source-file, usl-file,list-file and control-options in the
same line.

Only the source-file parameter is required. The default usI-file is $OLD-
PASS and the default list-file is $STDLIST. If you want to suppress the
listing, you must use $NULL and not simply NULL.

Up to five options may be entered. The options must begin with the
fourth parameter. Youmay need to use extra commas to indicate missing
parameters, for example:

:FASTCOMP MYPROG" ,DEFN,OPTS

This command will compile MYPROG with options DEFN and OPTS.
The extra commas indicate that defaults are to be used for the usl ..file and
the list-file.
source-file ['[program-file1 LHist-filel [.control-optioni ... l1
The :FASTPREP command runs the FASTRAN compiler and then pre-
pares the compiler output, producing an executable program file. The
program file is PREPed with MAXDATA=32000 using the RL (relocat-
able library) file RL.PUB.FASTRAN.

Only the source-file parameter is required. The default program-file is
$OLDPASS and the default list-file is $STDLIST.
Note that both :FASTPREP and :FASTGO (below) use the FASTRAN /
SEGMENTER, rather than the MPE segmenter, to prepare the program
file.
sou'rce-file [,[list-file] Lcomrd-optionl ... 11
The :FASTGO command runs the FASTRAN compiler, uses the FAS-
TRAN /SEGMENTER to prepare the program file, and then executes it.

Only the source-iiie parameter is required. The defaul t list-file is $STDLIST.
The program file is always $OLDPASS.

7

SECTION
3

FASTRAN COMPILER
CONTROL OPTIONS

n

Like Transact, FASTRAN allows you to control certain features of compilation by supplying
control options, either in response to the interactive CONTROL> prompt or via the INFO=
parameter of the compiler :RUN command.

Many of the FASTRAN control options are the same as the Transact options. There are a few
Transact options which are not relevant to FASTRAN and are therefore not supported. There
are also a number of additional options which are unique to FASTRAN.

There are six Transact options which are not supported by FASTRAN. They are:

OBJT This option tells Transact to prod uce a listing of the intermedia te processor code.
FASTRAN does not produce intennediate processor code.

Ol?TE This option tells Transact not to store the edittextfor a data item in the data stack
tables. FASTRAN never stores this information in the data stack.

This option tells Transact not to store the heading textfor a data item in the data
stack tables. FASTRAN never stores this information in the data stack.

This.optien tells TransactnoHo storethe-prompt textfor a dataitem in the data
stack tables. FASTRAN never stores this information in the data stack.

This option tells Transact not to store the edit text, heading text, textual name
and prompt text for a data item in the data stack tables. FASTRAN never stores
this information in the data stack.

XERR This option tells Transact to create a code file even if there are errors in the
compilation. FASTRAN does not allow you to create object code if there are
compilation errors.

The remaining nine Transact options are supported by FASTRAN. These options all have
essentially the same effect in FASTRAN as in Transact. The default options are marked by an
asterisk (*). The FASTRAN defaults are the same as the Transact defaults, except where noted:

Ol?TH

OPTl?

Ol?T@

*CODE Creates a USL file containing the compiled object code, unless any errors
occurred during the compilation.

DEFN Produces an alphabetized listing of all data items referenced in the program,
including the definition of each.

*DICT Tells the compiler to use the data dictionary (DICT.PUB) to resolve data item
definitions.

9

FASTRAN COMPILER CONTROL OPTIONS

n

*ERRS Lists compilation errors on $STDLIST even if the listing is suppressed or
directed elsewhere.

*LIST Generates a listing of the compiled source code. With FASTRAN this listing is
produced during the compiler's second pass. Therefore, if any errors are
detected during the first pass, no listing will be produced.

OPTI Optimizes the storage of data item names in FASTRAN's internal tables. When
this option is used, any data items which were defined in the program with the
OPT option will not have their names stored in the compiler ..generated data
item tables. As withTransact, OPT should not be used with any data item whose
name is needed for a prompt string, a display heading, a UST= option for
Th1AGEor a WINOOW= option for VPLUS.

Note that FASTRAN does not store the data item tables in the data stack, but
rather in code segments. Therefore, this option will have no effect on the size of
the FASTRAN data stack.
Normally the OPTI option will not be required with FASTRAt"J, even if the
program you are compiling requires it with Transact. This is because there is
much more space available for these tables with FASTRAN. We recommend that
you use OPTI only in the event of compile-time errors 16 or 22, which indicate
an overflow of these tables.

1rOPTS opnrrnzes segment transfers in a segmented program. When you use this
option the list, match and update registers are not checked for local segment
items when a segment transfer occurs. Use of this option speeds segment
tr-aflsiel'SeORSiaefftsly.
With Transact, the OPTS option is normally off. This is because these checks are
itnportantwhen you are developing and debugging a Transact program.
However, since FASTRAN is intended as a high-performance production
compiler, OPTS is a default option for FASTRAN.

ST~T Generates statistics on run-time storage allocation for the compiled program.
However, due to the great differences in the run-time environments of Transact
and FASTRAN, the statistics are presented in a completely different format.
Appendix C describes the format of a FASTRAN STAT listing.

XREF Generates a cross-reference listing of label definitions and their references.

In addition, FASTRAN provides nine new control options. These are described below. As
before, an asterisk ("')denotes a default option:

*CHEK Tells the FASTRAN compiler to generate code for certain run-time checks,
namely verifying that a referenced data item is in the list register and verifying
that there is a pending PERFORM when a RETURN statement is executed.

Since the performance penalty for performing these checks is relatively small
(no more than a few percent), CHEK is a default option for FASTRAN. However,

n
10

FASTRAN COMPILER CO:N'TROL OPTIONS

n

you can significantly reduce the amount of code generated (usually about 15%)
by specifyingNOCHEK. This can be a handy alternative to segmentation if you
have a FASTRAN segment which is just a little too large.
Be aware that your program will produce unpredictable results if you compile
it with NOCHEK and it happens to reference a data item which is not in the list
register, or if it attempts to RETURN when there is no pending PERFORM.

CLST Lists the generated code (in assembly language) immediately following each
pregram statement.

DCAL Generates dynamic calls for all CALL statements in your program. This will
allow your program to be executed even if some of the programs which it calls
are not available at load-time. Dynamic (and static) calls and the use of the
DeAL option are discussed in detail in Section 5.

DDBO Defers data base opens until the data base is first referenced. Normally, all data
bases are opened at the beginning of your program. When DDBO is specified,
your program begins executing immediately and each data base is opened
when it is first referenced in a data management statement.

FLST Forces the compiler to generate a listing for all compiled source code, even if it
contains !NOLIST statements. This can be useful if there are sections of code that
you-normally want to suppress on the listing, but occasionally you want to list
them.

*OPTX Optimizes expression evaluation based on the declared size of the data items in
an expression. When you specify tNs option, FASIRAN assumes that no data
item will ever contain a value larger than its declared size. When FASTRAN
generates code for an intermediate calculation, it uses theseassumed maximum
values to determine the maximum range of the intermediate result. It then
chooses the data type and size to accommodate the maximum range.

If you specify NOOPTX, FASTRAN assumes that a data item can contain any
\, value within the range of the underlying data type regardless of the declared

size. This can produce much less efficient calculations.

For example, consider the following Transact statements:

DEFINE (ITEM) ITEMl I(4): ITEM2 I(4): ITEM3 I(4):
RESOLT I(4);

LET (RESOLT) = [(ITEM1)+(ITEM2)]+(ITEM3);

With OPrX in effect, FASTRAN will assume that all three operands on the right
are in the range -9999 to 9999. When it generates code for the intermediate
calculation (ITEM1)+(ITEM2) FASTRAN can use single integer arithmetic since
the result must be in the range -19998 to 19998. The final addition can also be
performed in single integer arithmetic since the range of the result is -29997 to
29997.

()

11

FASTRAN COMPILER CONTROL OPTIONS

n
With NOOPTX the situation ismuch different. FASTRAN must be prepared for
operand values in the range -32768 to 32767. Since the range of the intermediate
result is now -65536 to 65534, FASTRAN must generate code to convert both
operands to double integers, add them with double integer arithmetic, convert
the third operand to a double integer, add the third operand to the intermediate
result and finally convert the result to a single integer. This is obviously a much
more time-consuming calculation. The performance difference is even more
dramatic when the magnitudes of the operands force the calculations from
double integers into packed decimal.

Because of the performance objectives of FASTRAN, OPTX is a default option.
_Experience has shown that the vast majority of Transact programs can be
successfully executed using the assumptions that OPTX makes. However, if a
FASTRAN program should terminate with an integer overflow (program error
51) or a decimal overflow (program error 47) J you should recompile the program
with NOOPTX to see if the problem disappears.

*OSLI Causes the USL file to be initialized (cleared) before compilation begins. You
would normally use NOUSU only when compiling a called program to the
same USL file as a previously-compiled calling program. The use of NOUSU is
discussed in more detail in Section 5.

n

If a program experiences an overflow with OPTXbut executes successfully with
NOOPTX, you can simply continue to use NOOPTX whenever you recompile
the program. However, a preferable solution would be to locate the data item
which is causing the overflow and change its declaration to reflect its true range
of values. The program location of the statement in which the overflow occurred
will be indicated in the overflow error message.

SSEG Split segment option. Causes the compiler to generate all code for data
management statements (FIND, REPLACE, etc.) and for VPLUS statements in
aseparateprccedurefrcm tneB;:I,ai-n Iine-eode,Thisep-ttDl't-perm:i:tsFA:STRANto
compile larger program segments. It can be used in combination with the
NOCHEK option if you encounter compile-time error 202: Toomuch code in this
segment.
This option is used when you are compiling a sub-program which will be called
by another FASTRAN program. No outer block is generated when the SUBP
option is specified. The processing which is normally done by the outer block
is done by the calling program. The SUBP option is discussed in more detail in
Section 5.

SOBP

n
12

FASTRAN COIvfPILER CO!'.YfROL OPTIONS

FASTRAN COMPILER DIRECTIVES

FASTRAN supports all of the Transact compiler directives (!COPYRIGHf, !INCLUDE, !LIST,
!NOUST, !PAGEand !SEGMENT), treating them the same as Transact. In addition, FASTRAN
supports four additional compiler directives:

!CALLTABLE= Establishes an internal table to keep track of dynamic calls, so that
dynamic calls by one program to the same called program will only incur
the overhead of the LOADPROC intrinsic for the first calL

To request that FASTRAN establish a table to save the LOADPROC
information for called programs and to re-use that information the next
time it is called, use a directive like:

«!CALLTABLE=20»
This sets up a table of 20 entries. If more than 20 different dynamic calls
are issued, only the first 20 are retained. The maximum size of this table
is 100 entries.

Dynamic calls can be resolved out of the SL's in the group and account
where the program file resides, or out of the logon group and account.

!DCAL=

!PH

To use the SL's in the account and group where the program file resides,
include the following directive in your source code prior to the dynamic
call:

«!DCAL=PROGRAM»
To use the SL's in the logon group and account, use the following
directive:

«!DCAL=LOGON»
The !DCAL compiler directive takes effect at the point it appears in the
source code and remains in effect until another !DCAL appears. Thus,
you can use both sets of libraries in the same program.
The default is !DCAL=LOGON. The !DCAL directive has no effect on
static or PH calls.

Used in conjunction with the CALL verb to define a process-handling
call. Process-handling calls are described in Section 5.

n

()

13

FASTRAN COMPILER CONTROL OPTIONS

n
!SORTS TACK:;::: Used to override FASTRAi"J's default allocation of stack space for sort-

ing. Whenever a SORT= option appears in a FIND or OUfPUT state-
ment, FASTRAN must allocate space on the data stack for SORT/3000 to
use. FASTRAN's default allocation is 6000 words. This normally pro-
vides a good balance between sort speed and conserving stack space.
There are two situations where you may wish to override the default
allocation with the !SORTSTACK= compiler directive:

• If your program uses nested sorts (a statement with a SORT=
option whiCh PERFORM's a paragraph containing another·
SORT:;:::option) you may need to reduce the stack space for each
sort so as not to run out of stack. This is normally necessary only
if your sorts are nested three or more deep.

• If your program has extra stack space available and you are
sorting a large number of records, you can improve the perform-
ance of your program by increasing the !SORTSTACK= beyond
the default of 6000 words.

The !SORTSTACK=> compiler directive takes effect at the point it ap-
pears in the source code and remains in effect unless another !SORT-
STACK= appears. Thus you can specify different !SORTSTACK= values
for different sorts. In the case of nested sorts, this allows you to set aside
more stack for sorts with a large number of records, and less stack for
sorts with only a few records. For example:

SORT-2:
«!SORTSTACK=2500»
FIND (CRAIN) LITTLE-FILE, ...,SORT=.."

PERFORM= ...;

«!SORTSTACK=8000»
FIND (SERIAL) lUG-FILE, ...,SORT= ...,

PER.FORM=SORT-2;

14

Note that if you set !SORTSTACK= too low (below about 2500 words) or
too high, you will get a run-time failure of the sort.

The four special FASTRAN compiler directives (!CALLTABLE=, !OCAL=, !PH and !SORT-
STACK=) are always enclosed as comments (between« and », with no space between«
and 0. This is to provide backward compatibility with the Transact compiler.

n

n

()

SECTION
4

PREPARING AND EXECUTING
FASTRAN PROGRAMS

This section discusses how to prepare and execute Transact programs which have been
compiled with FASTRAN. Programs which use the CALL verb require special treatment and
are discussed separately In Section 5. The material in this section pertains to programs which
do not use CALL.

PREPARING A FASTRAN PROGRAM FOR EXECUTION

Because the Transact compiler produces a special intermediate processor code, a Transact code
file needs no further preparation in order to be interpreted by the Transact processor.

FASTRAN, like most other compilers on the HP-3000, produces executable object code in the
form of a USL (user subprogram library) file. A USL file must be prepared before it can be
executed. The result of preparing a USLfile is a program file which can then be executed by the
:MPE :RUN command.
The standard. method ()f preparinga program file on the HP-3QQQis to use the MPE:PREP
command. However, a limitation of the :PREP command is that all RL (relocatable library) code
must fit into a single MPE code segment. Whichever of FASTRAN's run-time library proce-
dures your program requires are included from an RL file (RL.PUB.FASTRAN), and these
frequently will require more than one MPE code segment to contain them. In such a case the
:PREP command will fail with the message: ERROR #40, RL SEGMENT, CODE SEGMENT
OVERFLOW. Therefore, you should avoid using :PREP with FASTRAN programs.

The FASTRAN /SEGMENTER overcomes this limitation and should always be used for
preparing FASTRAN programs (note: other functions of the FASTRAN /SEGMENTER are
described in Section 6).The easiest way to compile and prepare a stand-alone program is to use
the :FASTPREP or :FASTGO commands (described in Section 2), which use the FASTRAN /
SEGMENTER. A sample job stream for compiling the source file MYSOURCE and producing
a program file MYPROG follows:

: JOB «log.,..on information»
: PURGE MYPROG
:FASTPREP MYSOORCE, MYPROG
: SAVE MYPROG

The :PURGE command gets rid of any-existing copy of MYPROG. The :SAVE command is
necessary because the program file is initially created as a temporary file.

15

PREPARING AND EXECUTING FASTRAN PROGRAMS

SPECIAL CAPABILITIES

With Transact, special capabilities are not norrnallyof concern. This is because when you
execute a Transact program, you are actually running the program file TRANSACT.PUB.SYS.
This program file comes with all special capabilities and, since it resides in PUB.SYS,
automatically confers these capabilities on any Transact user. (Note that Transact actually
defeats :MPE security as far as special capabilities are concerned.)
Normally, no special cap apili ties ar~~ql.1ired to execute aFASTRAN program. However, your
program may contain PROC statements that call intrinsics or user-written procedures which
require special capabilities. Or your program may require multiple-RW (MR) capability
because it locks two or more data bases or files.simultaneously. In such cases, the program file
must be prepared with special capabilities in order to execute. In addition, the group and
account in which your prepared FASTRAN program is to reside must also have any required
special capabilities.

The :FASTPREP command does not allow you to specify special capabilities directly in the
command itself. However, after the :FASTPREP command you can use the ALTCAP program
which is supplied on the FASTRAN distribution tape (ALTCAP.PUB.FASTRAN). This program
allows you to alter the capabilities of an existing program file.

ALTCAP uses the INFO= parameter to designate the program file to be altered and the new list
of capabilities. A semicolon should separate the program filename from the capability list, and
commas should be used to separate the individual capabilities. For example, if your program
uses a PROC statement to call the CREATEPROCESS intrinsic (which requires process-
handling capability), your job stream should include the following statement:

:RUN ALTCAP.PU13.FASTRAN;INFO="MYPROG;IA,BA,PH"
This gives J?H {process-handling} capability Caswell as interactive and batch access) to
MYPROG. The complete job stream follows:

:JOB «log-on information»
:PUP.GE MYPROG
\ ..:FASTPREP MY SOURCE ,MYPROG
:SAVE MYPROG
:RUN ALTCAP.PUB.FASTRAN;INFO="MYPROG;IA,BA,PH"
:EOJ

You can also run ALTCAP interactively by omitting the INFO= parameter. ALTCAP will
prompt for the program file name and capabilities.
No special capabilities are required to run ALTCAP. However, in order to execute the altered
program file, the account and group in which the program file resides must have all required
capabili ties.

16

PREPARING AND EXECUTING FA STRAN PROGRA MS

EXECUTING FASTRAN PROGRAMSn
FASTRAN programs are executed with the MPE :RUN command. For example, if the name of
your program file is MYPROG, you would simply enter:

:RUN MYPROG

Two additional parameters may be required with the :RUN command:

• If you want to supply a default mode to be used in opening your program's data
bases, use the FARM;:: parameter. For example:

:RUN MYPROG;PARM=5

This command causes any data bases to be opened in mode 5, unless a different
mode was specified in the SYSTEM statement of your program.

Using the PARM= parameter with a FASTRAN program is equivalent to entering
a mode as the second parameter in response to the SYSTEMNAME>prornpt from
the Transact processor.

• If you are using PROC statements to call procedures which reside in group or
account SL's (segmented libraries), you must use the LIB=parameter on your :RUN
command. For example, if your program uses PROC to call procedures in a group
SL, you would enter

:RUN MYPROG;LIB=G

There is a difference between Transact and FASTRAN concerning where the
IibrarlesmusfbeIocated. Transact uses the SL in your log-on group asits group 5L
anditusestheSLinthePUBgtoupofyourlog-onaccountasitsaccountSL.FASTRAN
uses meSL in fne group where your program file resides as its group SL and uses the
SL in the PUB group of the account where your program file resides as its account 5L.
This makes a difference only if you are running a program with PROC calls which
resides in a different account or group than you are signed on to.

"- The reason for this difference is that Transact uses the LOADPROC intrinsic at run-
time to locate procedures called via PROC, whereas FASTRAN uses procedure call
(peAL) .instructions which are resolved by the system loader at load-time.
LOADPROC uses the log-on libraries to locate external references and the loader
uses the libraries which accompany the program file.

17

PREPA.RING AND EXECUTING FASTRAN PROGRAMS

THE FASTRAN RUN-TIME MESSAGE CATALOG

Whenever you execute a program compiled with FASTRAN, the FASTRAN run-time message
catalog (CATALOG.PUB.FASTRAN) should be present. If you transport a compiled FAS-
TRAN program to a machine without a FASTRAN compiler, you should make sure this file is
available. (Your FASTRAN license permits you to copy and transport the message catalog to
other machines.) If you want to rename the catalog, you must either set a file equation for
CATALOG.PUB.FASTRAN at run-time, or have your program issue the file equation when it
initiates.

FASTRAN RUN-TIME FILE EQUATIONS

Most of the formal file designators that FASTRAN uses at run time are the same as those used
by Transact. This permits programs which issue file equations programmatically to execute
under FASTRAN wi th no modifications. Each of the formal file designators is described below:

'l'RANIN is the formal file designator for responses to prompts issued by your
program. The default assignment is $STDINX.
There is one difference between Transact and FASTRAN regarding the
input file TRANIN. The Transact processor issues a SYSTEM NAME>
prompt and reads the system name from TRANIN. Since FASTRAN
programs are executed directly, there is no SYSTEM NAME> prompt.
Therefore, if apr()gram is set upto read TRANIN.froma discfile.tor from
$STDIN in a job stream), the record containing the system name must be
removed from the disc file or job stream before running wi tn FASTRAN.

is the formal file designator for output from your program that is
normally sent to your terminal. The default assignment is $STDLIST.

n

'l'RANOOT

'l'RANLIST

'l'RANVl?LS

'l'RANSORT

TRANDOMP

n
18

is the formal file designator for output from your program that is
normally sent to the line printer. The default assignment is DEV=LP.

is the formal file designator used by VPLUS to open the terminal. The
default is $STDIN.

is used by Transact as a temporary file during sort operations. FASTRAN
uses input and output procedures and does not require a work file.
However, FASTRAN will allow you to use a TRANSORT file equation
with a DISC=parameter in order to specify the maximum number of sort
records at run-time.

is not used by FASTRAN. Transact uses TRANDUMP for test mode
output. Test mode is not supported by FASTRAN.

n

n

()

PREPARING AND EXECUTING FASTRAN PROGRA!vfS

BUILT-IN PROCESSOR COMMANDS

FASTRAN supports all Transact built-in commands and command qualifiers with the follow-
ing two exceptions:

• The INITIALIZE built-in command is not supported. This command tells the
Transact processor to begin processing a new Transact program. Since FASTRAN
programs are executed directly by MPE, the equivalent function would be provided
by an EXITcommand followed by an MPE :RUN command for the new FASTRAN
program .

• The TEST built-in command is not supported sinceFASTRAN does not support test
mode.

19

SECTION
5

USING CALL
WITH FASTRAN

The Transact CALL statement is used to initiate execution of another Transact program from
within an executing Transact program. When the Transact processor interprets a CALL
statement, it opens and reads the code file for the called program and begins interpreting the
IP (intermediate processor) code in the new code file.

HOW FASTRAN HANDLES CALLS

Since FA5TRAN programs execute directly under :M.PE,a different method of initiating called
programs must be used. One approach that the FA5TRAN compiler could take would be to use
the CREATEPROCESS intrinsic (or CREATE and ACTIVATE). However, this approach has
several drawbacks:n I

• Since the called program would be executing as a separate MPE process, it would
not be possible to share data files, form files and data bases in the same way that
Transact permits.

• There is considerable overhead associated with the CREATEPROCESS intrinsic.

An alternative approach would be for FA5TRAN to implement the CALL verb simply as a
procedure call. This permits the required data and file sharing and meets the performance
requirements of FA5TRAN. However, this approach also has several drawbacks:

• Because of the linkage requirements for procedure calls, special attention must be
given when you compile, prepare and execute programs which use CALL. Called
programs must either be prepared into the same program file as the calling
program, or they must be placed in a segmented library (5L) which is available to
the calling program at run time. If the called programs are in an 5L and the calling
program is run from different accounts and/or grOUPSlmultiple copies of the 5L
may be required.

• Since the CALL verb references a procedure rather than a file, there is no way to
qualify the CALL with an account and/or group name.

• Because the maximum number of MPE code segments is limited to 255 for a
program file and to 254 for a segmented library, there is a limit to the total number
of programs that can be linked together using proced ure calls.n

21

Table 5-1. Types of CALLs generated.

USING CALL WITH FASTRAN

Since the lack of file sharing using process handling would introduce a major incompatibility
between Transact and FASTRAN, the procedure call approach is the one normally used by
FASTRAN to implement the CALL verb.

However, occasionally there are situations where the process-handling approach is appropri-
ate. At the end of this section there is a description of these situations ana the special cautions
pertaining to the use of process-handling calls.
The remainder of this section discusses normal (non-process-handling) calls, the different
methods of linking calling and called programs together, and how to choose among these
methods.

STATIC AND DYNAMIC CALLS·

n

FASTRAN can generate either of two different types of code for non-process-handling calls,
referred to as static calls and dynamic calls. Static calls are direct procedure calls to the called
program. The major characteristics of static calls are:

• The name of the called program must be available to FASTRAN at compile time.
• The object code for all called programs must either be included in the USL file at

prep time or must be in an SL at load time (even if the CALLs will not actually be
executed at run-time).

FASTRAN generates a static call whenever a literal program name is used in the CALL
statement and the DCAL (dynamic call) option is off. Dynamic calls use the MPE LOADPROC
intrinsic to load the called program at run time. The major characteristics of dynamic calls are:

• The name of the called program is not required until run time.

• The obJect codefor any programs which are called must be in an SL.However, only
those programs which are actually called at run time need to be present in the SL.

FASTRAN generates dynamic calls whenever a variable program name is used in the CALL
statement, or if the DCAL option is on.

Table 5-1 shows the type of call which FASTRAN will generate under each set of circumstances.

DCAL Program Name
option Literal: Literal:

CALLPROG; CALL (PROG);
OFF Static Dynamic
ON Dynamic Dynamic

()

22

USING CALL WITH FASTRAN

n

There are advantages and disadvantages to each type of call. The primary advantage of static
calls over dynamic calls is su perior run-time performance. Dynamic callsmust use LOADPROC
whenever a CALL statement is executed. Although LOADPROC uses very little CPU time, it
does require several seconds of elapsed time while it searches the various libraries and loads
the requested program. With static calls the called programs are loaded when the main program
is loaded and the run-time overhead is negligible for most applications.

However, there are several advantages of dynamic calls which can make them preferable in
certain situations:

• Dynamic calls do not require the called program name to be known at compile time.
Therefore, CALL statements which use a variable for the called program name are
always compiled as dynamic calls.

• Dynamic calls do not require the object code for the called programs to be available
until the CALL statement is actually executed. Therefore, dynamic calls allow a
main program to be executed even if someof the called programs it references have
not yet been compiled (or even written). Of course, an error will occur if your
program actually tries to call a missing program.

• In general, each program called using a static call requires an entry in the calling
program's segment transfer table and in the operating system's code segment table
(CST).Both of these tables have a maximum size, so there is a theoretical limit to the
number of different called programs that a main program can reference via static
calls. This number will vary depending on the number of other external references
in your program, the configured size of the code segment table and the CST
requirements of the other programs executing at the time.

CONTROLLIN-G THE TYPE OF CALLS GENEltATEDBYFASTRAN

A program can contain both static and dynamic calls. If you do not select the DCAL option at
compile time, FASTRAN will generate static calls for all CALL statements which use a literal
program name and will generate dynamic calls for all CALL statements which use a variable
program name. If you do specify the DCAL option, dynamic calls are generated in all cases.
H you want to control the type of call which FASTRAN will generate, you can use a variable
program name for calls you want to be dynamic, and a literal program name for calls you want
to be static, and then compile the program with DeAL off. If you have a system which uses a
large number of different called programs, you may wish to use static calls (which are faster)
for the most frequently called programs and dynamic calls for the remainder.

23

n

n

USING CALL WITH FASTRAN

LIMITATIONS ON THE CALL STATEMENT WITH FASTRAN

A few limitations apply to the CALL statement when you are using FASTRAN:

• Calls can only be made to Transact programs that have been compiled with
FASTRAN, and the called program must be linked to the calling program in one of
the ways described below ..

• Calls cannot be made to programs residing in a different group or account. If a called
program name is qualified with an account and/or a group name, the qualification
is ignored by FASTRAN (except for process-handling calls, described at the end of
this section).

• The SWAPoption is not supported and is ignored if it appears on a CALLstatemen t.
Since FASTRAN uses far less stack space than Transact, this option is unlikely to be
needed.

COMPILING, PREPARING AND EXECUTING WITH CALL

The following cases will demonstrate compilation, preparation and execution of FASTRAN
programs that use CALL:

CASE 1: STATIC CALLS WITH PREP-TIME LINKAGE

In this case we have a main program MAW which calls three other programs PROGl,
PROC2 and PROG3 using static calls. All four programs will be compiled into a single
USL file and then prepared into a program file which will contain the object code for
all four programs.
This is the method you should use whenever possible because of two important
advantages:
\. • Since all program linkage is performed at prep time, systems compiled in this

manner will have the best load-time and run-time performance.

• Since all called programs are included in the program file, the program can be run
stand-alone, that is, without any group or account SL's to worry about.

The following job stream will compile and prepare the example system of four
programs:

:JOB <~o.g-on information>
:FASTCOMP MAIN
:FASTCOMP PROG1",NOOSLI,SUBP
:FASTCOMP PROG2",NOOSLI,SUBP
:FASTPREP PROG3",NOOSLI,SOBP
:SAVE $OLDPASS,MYPROG
:EOJ

24

USING CALL 'VITH FASTRAN

The result will be a program file named MYPROG.

When you are compiling a system of programs using this method, keep the following
points in mind:

• The main program should be compiled first using the :FASTCOMP command,
with the USLI and NOSUBP options (both defaults) in effect.

• The called programs should then be compiled. The order of the called programs
is not important, nor is it important whether they are called directly by the main
program or if they call each other. Each called program should be compiled with
.NOUSU (so that the previously-compiled object code is not cleared from the USL)
and with SUBP (to suppress generation of an outer block). Use the :FASTCOMP
command for all but the last called program (note: FASTRAN versions A.03.FOO
and later allow you to omit the SUBP option).

• The last called program should be compiled with the :FASTPREP command so
that the USL file is prepared into a program file.

To run the program file you need only enter:

:RON MYPROG

You can also invoke the FASTRAN /SEGMENTER directly to handle this type of call
structure. See the example in Section 6.

25

n CASE 2; SETIING UP A SEGMENTED LIBRARY (St) FQR FASTRAN
Any programs which are called with dynamic calls must be located in an SL(segmented
library). Programs which are called with static calls can also be placed in an SL if you
choose to use load-time.linkage.An SLis not required if you are using only static calls
with prep-time linkage, as in case 1 (or if you are not using CALL at all). This case will
demonstrate how to create and initialize an SL for use with FASTRAN.

Two steps are required to set up an SL for FASTRAN:

• You must create an SL file (unless you intend to use an existing SL).

• You must add the FASTRAN run-time library procedures to the new SL. Both
steps can be performed using the FASTRAN /SEGMENTER by entering the
following commands:
:RtJ'N FASTSEG.PUB.FASTRAN pr :FASTSEX;}
=BUILDSL SL, 10000,20
=tJ'PDA'1'ESLSL

,
'"

n

=EXIT

The :RUN command invokes the FASTRAN /SEGMENTER.

The =BUILDSL command creates a newSL file (named SL) with a total size of 10,000
sectors allocated in 20 extents. Only 1extent (500 sectors) will be ini tiall y allocated. You
may want to use a different space allocation. If you are using an existing SL, you should
omit this command.

USING CALL WITH FASTRAN

The=UPDATESLcommandaddstheFASTRANrun-timelibrarysegmentstothenew
SL.The library segments only need to be added to an SL the first time you use it with
FASTRAN.

n

Whenever you install a new release of FASTRAN, you must replace these segments
in your FASTRAN SL's. The same =UPDATESLcommand can be used to replace the
old run-time library segments with the new version.
The group and account location of your SL files is important, particularly if you will
be executing FASTRAN programs from groups or accounts other than where the
program file resides.

• For any called programs that are accessed by dynamic calls, the SLmay be in either
the log-on account (in the PUB group or the log-on group), or it may be in the same
account as the program file (in the PUB group or the same group as the program
file). See the IDCAL= compiler directive in Section 3 for a discussion of how to
control which set of 51's is used.

• If any called programs will be accessed via static calls using load-time linkage, the
SLmust be in the same group as the program file (or in the PUB group of the same
account as the program file).

Note that a single FA5TRAN program could access up to five different 51's:

• The SL in your log-on group (used for dynamic calls when the lDCAL=LOGON
compiler directive is in effect)

• The 5L in the PUB group of your log-on account (used for dynamic calls when the
lDCAL=LOGON compiler directi ve is in effect, if they were not resolved from the
5L in your log-on group)

• The SLin the group where your program file resides (used for dynamic calls when
the IDCAL=PROGRAM compiler directive is in effect, for static calls, and for
PROC statements)

• The 5L in the PUB group of the account where your program file resides (used for
dynamic calls when the IDCAL=PROCRAM compiler directive is in effect, for
static calls, and for PROC statements, if they were not resolved above)

• 5L.PUB.sY5 (used forany calls or PROC statements not resolved elsewhere)

n
26

USING CALL WITH FASTRAN

CASJ; 3: ApDING A FASTRAN PRQGRAMIQ AN SL

In this case we will compile a FASTRAN program and add it to an SL using the
FASTRAN /SEGMENTER. The source file for the program is MYSOURCE and the
name of the program (in the SYSTEM statement of the source program) is PROC. The
following commands will accomplish this:

: FASTCOMP MYSO'ORCE
:FASTSEG
-U~LAeE PROG, SL, $OWPASS
=EXIT

The :FASTCOMP command compiles the program. Since no usl-file is specified, the
compiled code will be in $OLDPA55. The SOOP option could have been used, but is
not required when using the FA5TRAN /SEGMENTER.

The :FA5TSEG command invokes the FASTRAN /5EGMENTER.

The =REPLACE command adds the program to the 5L If a previous version of the
program already exists in the 5L, it is replaced. The three parameters are the system
name of the program to be added or replaced (PROC), the name of the segmented library
(5L) and the name of the usl-file containing the compiled code ($OLDPA55).

()

CASE 4: STATIC CALLS WITH LOAD-TIME LINKAGE

Case 1 described how to use static calls with prep-time linkage and the advantages of
that method. This case will show how to use load-time linkage with the same set of
four programs, a main program and three called programs.

The primary advantage of using this method is that the individual programs in a
system can be recompiled separately and (except for the main calling program) no
PREP step is required, while still maintaining the high performance provided by static
calls. The disadvantage is that the called programs must be placed in an 5L, and the

\, SL must be available at run time.

To set up this system of programs, you would first compile the three called programs
and add them to your 5L as described in Cases 2 and 3. You would then compile and
prepare the main program as if it were a stand-alone FASTRAN program:

: FASTPREP MAIN
: SAVE $OLDPASS, PROG

To run the MAIN program, the 5L file containing the three called programs must be
available in the same group as the program file (or inthe PUB group of the same
account). You would then execute the program as follows:

:RON PROG; LIB=G

The UB=G parameter tells theMPE loader to use the group SL (and, if required, the
account 5L) to resolve external references at load time. This method will require
slightly more load time than Case 1 but 'will provide the same run-time performance.n

27

()

USING CALL WITH FASTRAN

CASE !5:DYNAMIC CALLS
No special techniques or parameters are required to compile, prepare or execute the
main program in a system which uses only dynamic calls. However, any programs
which are called must be available in an SL at run time. See Case 2 for a discussion of
where the SLs must be located.

Table 5-2 summarizes the features of each of the three different methods for handling CALL
statements with FASTRAN.

Type of Static with Static with Dynamic
CALLand prep-time load-time <run-time
linkage linkage linkage linkage)

Run-time Several seconds

performance Excellent Excellent for LOADPROC
on each call

Load-time Excellent Slightly longer Excellentperformance load time

Location of Same group Log-on group/acct

SL Not required and account or same group / acct
as program file as program file

us-e (or P)
No Yes No I

required on :RUN

All called programs
required to run No Yes No
main program?

Table 5-2. Features of Different Types of FASTRAN CALLs.

PROCESS-HANDLING CALLS

The discussion so far in this section has focused on the the way FASTRAN normally handles
the CALL verb - via a procedure call. In most situations this method provides the greatest
compatibility with the Transact implementation of the CALL verb.

The rest of this section discusses the process-handling call (PH-call) which uses :MPE's process-
handling capability to implement the CALL verb. The main disadvantage of using this form
of CALL is that data bases, data files and form files cannot be shared between programs in the
same way that Transact permits. YOU SHOULD CAREFULLY CONSIDER THIS INCOM-
PATUHLITY IF YOU USE PH-CALLS, AND YOUR PROGRAM WILL PROBABLY RE-
QUIRE SOME MODIFICATIONS. (Note however that sharing of the data register between
called and calling programs is supported and data can be passed between programs in this

(') way.)

28

USING CALL WITH FASTRAN

There are several advantages to PH-calls, however, and these may outweigh the disadvantages
for some applications:

• No special prep-time or run-time linkage need to be used and there are no SL's to
be concerned with.

• There is no limit to the number of programs in a system of called programs.

• The same copy of a program can be used for stand-alone execution and for called
execution.

• Programs in different groups or accounts can be called.
You tell FASTRAN to generate a process-handling call by inserting apseudo-comment containing
the !PH compiler directive into the CALL statement. For example:

CALL PROG1, DATA=ITEMl «!PH»;
The pseudo-comment «!PH» may appear anywhere in the CALL statement after the
program name and before the semicolon. Any CALL statement containing this pseudo-
comment will be compiled as a PH-call, regardless of the DeAL option, or whether the
program name is a literal or a variable. Any CALL without the pseudo-comment will be
compiled as a normal (non-PH) call, either static or dynamic as discussed in above. Therefore,
all three types of CALL (PH, static and dynamic) can be freely intermixed within any program.

Any program which is to be called using the PH-call should be separately compiled and
prepared as i£ it were a stand-alone program. Both the called programs as well as the calling
program must be prepared with process handling (PH) capability. The group and account
where such programs are to reside must also have PH capability.

n
29

n

SECTION
6

USING THE
FASTRAN/SEGMENTER

The FASTRAN /SEGMENTER is an interface to the MPE Segmenter designed to simplify and
enhance the use of the segmenter with FASTRAN, particularly in situations involving called
programs. Since the FASTRAN /SEGMENTERoperates by generating and passing commands
to the MPE Segmenter, any error messages are actually MPE Segmenter messages. You should
consult the MPE Segmenter Manual for error message descriptions.

The major capabilities of the FASTlZANISEGMENTER are:

• Allowing FASTRAN programs to be compiled which contain more relocatable
library (RL) code than will fit into one code segment.

• Initializing and maintaining a segmented library for use with FASTRAN.

• Adding or replacing a:called program in a segmented library.

• Preparing a single program file from separately-compiled programs in separate
USL files.

To execute the FASTRAN/SEGMENTER, enter the following command:

:RUN FASTSEG. PUB. FASTRAN'

or use the following UDC:

:FAS'l'SEG

Th~'FASTRAN /SEGMENTER will display an identifying banner and then will prompt for a
command with an equal sign (=).

If you want to use the FASTRAN /SEGMENTER from your own UDC or from a job stream, you
can use the IN'FO= parameter of the :RUN command to enter commands. For example:

:RUN FASTSEG. PUB. FASTRAN; INFO="UPDATESL SL •MYGROUP:EXIT"

would cause the FASTRAN /SEGMENTER to execute the two commands UPDATESL
SL.MYGROUP and EXIT. Successive commands in the INFO:: parameter are separated by a
colon. If the last command is not EXIT, the FASTRAN {SEGMENTER will prompt for addi-
tional commands after executing those in the INFO= parameter,

Each FASTRAN /SEGMENTER command is described on the following pages. Following the
command descriptions is an example showing how to use the FASTRAN/SEGMENTER to
prepare a system of calling and called programs. Examples 2 and 3 in Section 5 also illustrate
the use of the FASTRAN /SEGMENTER.

31

USING THE FASTRAN/SEGMENTER

FASTRANJSEGMENTER COMMANDSn
=BUILDSL sl-fi1e,records~xtents

The =BUILDSL command will create a new segmented library (SL) file. This com-
mand has three parameters, all required, as follows:

51-file:the name to be given to the new SL file, usually 'SL'. The name may be
qualified with an account and/or group name, if desired.

records: the maximum number of 128-word records to be allowed in the new SL
file.

extents: the maximum number of extents into which the records are to be divided.

For example:

=BUILDSL SL.MYGROUP,2000,20
will build a new SLfile cal led SL.MYGROUP wi th 2000 record 5 divided in to 20 exten ts
of 100 records each. This command is iden tical to the =BUILDSL command in the MPE
Segmenter.

=EXIT

The EXIT command terminates the FASTRAN /SEGMENTER.

=INCLUDE segment,usl-file
The =ThJCLUDE command is used prior to a =PREP command to include non-
FASTRAN code in the program file, such as procedures called via the PROC verb. This
command has two parameters, both required, as follow:

segment: the name of a segment to be included, which may contain one or more
\, procedures.

usl-file: the name of a USL file containing the segment to be included.

=LUSL library-usl-file
The =LUSL command tells the FASTRAN /SEGMENTER where to find the library
USL (user subprogram library) file. This file is used by the =UPDATESL command
(and sometimes by the =PREP command).

Normally this command will not be required. If no =LUSL command has been
entered, the FASTRAN /SEGMENTER will use LUSL.PUB.FASTRAN as its library
USL file.

32

n

USING THE FASTRAN/SEGMENTER

=MAIN prcgram-name usi-iiie
The =M.A1N command is used prior to a =PREP command to designate the main
program to be prepared. In a system of called programs, the main program is the one
where execution is to begin.

This command has two parameters, both required, as follows:
program-name: the name of the main program as it appears in the SYSTEM

statement.

usl-file: the name of the USL file which contains the compiled code for the
program.

For example:

=MAIN MENU, $OLDP ASS

will include the main program MENU from the USL file $OLDPASS for a subsequent
=PREP command.

=PREP program-file [;CAP=capability-list] [;PMAP]

The =PREP command prepares a program file from one or more FASTRAN programs.
This command has three parameters, one required and two optional, as follows:

program-file: the name to be given to the newly-prepared program file.

CAP=capability-list: a list of capabilities to be assigned to'the program. Valid
capabilities are: BA, DS, lA, MR, PH and PM. If neither lA nor BA are
included, or if the CAP= parameter is omi tted, both are assigned. Your MPE
user name must have any capabilities that you are assigning to the program
file.

PMAP: a procedure map of the prepared program is written to formal file
designator SEGLIST. If no file equation has been set, $STDLIST is used.

\.
The =PREP command must always be preceded by a =MAIN command to designate
the main program being prepared. One or more =SUBP commands may also be used
to designate called programs.

For example:

=PREP MYE>ROG

will prepare the code which was included by any previous =MAIN or =SUBP
commands. The program file will be called MYPROG.

33

n

n

USING THE FASTRAN/SEGMENTER

The =PREP conunand in the }'ASTRAN / SEGMENTER differs from the MPE :PREP
command in the following ways:

• Code from more than one USL file may be included in a single program file.

• The program is automatically assigned a MAXDATA of 32000.

• The relocatable library RL.PUB.FASTRAN is automatically used to resolve refer-
ences to the FASTRAN run-time library (unless the RL command was used to
designate a different relocatable library).

• If the program requires more run-time library code than can fit into one MPE code
segment, the FASTRAN /SEGMENTER will use two segments. This situation can
occur if the program uses a large number of different features of the Transact
language. If you try to use the MPE Segmenter to prepare a FASTRAN program
and it encounters this situation, itwillfail with the message: RL SEGMENT, CODE
SEGMENT OVERFLOW.

=REPLACE program-name sl-tile.usi-iile
The =REPLACE command will add or replace a called program in a segmented
library. This command has three parameters, all required, as follows:

program-name: the name of the program to be added or replaced in the 5L, as
contained in the program's SYSTEM statement.

sl-file: he name of the segmented library where the program.is to be added or
r placed.

usl-fil the name of the USL (user subprogram library) containing the compiled
c de for the program. The program must be one that will be called by

(a other program via either a dynamic call or a static call with load-time
linkage (see section 5).Note that the =REPLACE command will work even
if the program was not compiled with the SUBP option.

\For example:

=REPLACE MYPROG/SL.MYGROUP~MYUSL
will replace the program MYPROG in SL.MYGROUP (or add it if it's not already
there). MYUSL is the USL file into which MYPROG was compiled.

34

USING THE FASTRANlSEGMENITR

n =RL library-rl-file
The =RL command tells the FASTRAN /SEGMENTER where to find the RL (relocat-
able-library) file that contains the FASTRAN run-time library procedures. This file is
used by the =PREP command.
Normally this command will not be required. H no =RL command has been entered,
the FASTRAN /SEGMENTER will use RL.PUB.FASTRAN as its relocatable library
file.

n

=SUBP program-nameusl-jile
The =SUBP command is used prior to a =PREP command to designate a called
program to be included in a system of programs. Any such program must be
referenced via a static call (see section 5).

This command has two parameters, both required, as follows:

program-name: the name of the called program as it appears in the SYSTEM
statement.

usi-file: the name of the USL file which contains the compiled code for the called
program. The =SUBP command will work even if the program was not
compiled with the SUBP option.

For example:

=SUBP MYPROG,$OLDPASS

will include the called program MYFROG from the USL file $OLDPASS for a
subsequent =PREP command.

=UPDATESL sl-file
\, The =UPDATESL command is used to add or replace the FASTRAN run-time library

procedures in a segmented library. The run-time library procedures are required in
any SLwhich is to containFASTRAN called programs. The current=LUSLfile (default
LUSL.PUB.FASTRAN) is used as the source of the procedures.

This command is used both to initialize an SLfor use with FASTRAN and to replace
the run-time library procedures when a new version of FASTRAN is released. It
requires one parameter, the name of the SL file to be updated.

35

n

USING THE FASTRAN/SEGMENTER

EXAMPLE: PREPARING A SYSTEM OF PRpGRAMS

This example uses the FASTRAN /SEGME~"T.ERdirectly to accomplish the same result as Case
1 in Section 5.A main program calls three other programs using static calls. All four programs
will be prepared into a single program file. The primary differences when using the FA&-
TRAN /SEGMENTER are:

• The individual programs do not need to be compiled into a single USLfile. You can
keepseparateUSL.filesfor e.a.chprogram. Theft, Ua-ehangei-s required to one of the
programs,onlythatoneprogram must be recompiled. The FASTRAN /SEGMENTER
can then re-prepthe entire system using the existing USL files. Also, a program
which is called as part of more than one system needs to be compiled only once.

• The FASTRAN/SEGMENTER does not require called programs to be compiled
with the SUBP option. Thus a program which is run both stand-alone and as part
of a system of called programs can be compiled just once to create a USL file. This
file can then be used for both purposes by the FASTRAN /SEGhlENTER.

The first step is to compile all four programs and save the USL files. We will use the
:FASTCOMP command to compile the programs:

:FAS'l'COMP MAINS, MAIN'OSL {MAINS, PROG1S, PROG2S and }
:FAS'l'COMP PROG1S, PROG1USL {PROG3S are source file names}
:FASTCOMP PROG2S,PROG2USL
:FAS'l'COMP PROG3S, PROG3USL _

nNext, we use the FASTRAN/SEGMENTER to prepare a program file from ~heUSL files:

:FASTSEG
MAIN,MAINUSL
PROG1,PROG1USL
PROG2,PROG2USL
PROG3,PROG3USL
PROG

{MAIN, PROG1, PROG2 and}
{PROG3 are system names}

=MAIN
=SUBP
=SUBP
=SUBP
=ItlmP
=:E!X:IT
:SAVE PROG

The :FASTSEG command invokes the FASTRAN /SEGMENTER.

The =MAIN command incl udes program MAIN from USL file MAINUSL.

The three =SUBP commands include called programs PROG1, PROG2 and PROG3 from USL
files PROG1USL, PROG2USL and PROG3USL, respectively.

The =PREP command prepares the included programs into program file PROG. The FA&-
TRAN /SEGMENTER automatically sets MAXDATA to 32000 and uses RL.PUB.FASTRAN to
resolve external references to the FASTRAN run-time library.
The =EXIT command terminates the FASTRAN /SEGMENTER. .

The :SAVE> command makes the new program file permanent.n Beginning with versionA.03.FOO of FASTRAN, the FASTR..;\Ncompiler automatically gener-

36

n

n

USING THE FASTRA N!SEG~1ENTF.R

-~------
THE FASTRAN/SEGMENTER COMPILER INTERFACE

ates a FASTRAN /SEGMENTER command for each program it compiles. If the com piler is run
with the SUBP option on, a =SUBP command (containing the p gram's SYSTEM name and
the USL file name) is generated. If the SUBP option is off (the def ult), a =MAIN command is
generated.
These commands are written to a temporary file called XXFSEG .FASTRAN will create this
file if none exists. If thec~mpilerisru:nwiththe USU option onfhe default), the temporary
file is overwritten. If the USLI option is off, the new command is a pended to the existing file.
The FASTRAN /SEGMENTER will read and execute the commads contained in this file if it
is run with PAR.1\f=l.These commands are executed prior to any ommands contained in the
INFO= parameter.

This enhancement is incl uded prirnaril y to enable the :FASTPREP nd :FASTGO commands to
use the FASTRAN/SEGMENTER. However, you can examine t e definitions of these two
UDCs if you want to use this feature in your own DOCs or job streams.

37

n

n

APPENDIX
A

COMPILE-TIME
ERROR MESSAGES

Most language errors in your source program will be detected by FASTRAN during its first
pass. Since the program listing is generated during the second pass, most compile errors will
suppress your program listing.

Compile errors are listed immediately below the source line in which the error was detected.
Even if no source listing is being produced (during pass 1or if the !NODST compiler option
is selected), lines containing errors are listed.

Each error message is accompanied by a caret (A) which points to the position where the error
was detected. An error number also accompanies each error.

The following table lists all compiler error messages. An explanation follows any message
which is not self-explanatory

A-I

COMPILE-TIME ERROR MESSAGES

n NO. MESSAGE EXPLANATION

A quoted character string is
expected.

()~--------------------------------------~

n

4 INVAUD VERB
5 INVAUD ITEM TYPE The type code for a data item is

invalid.

6 MULTIPLE LABEL DEFINmON

7 INVAUD MODIFIER The verb modifier is not appro-
priate for the indicated verb, or
a required verb modifier is
missing.

14 INVAUD OPTION

15 EXPECTING ITEM NAME

16 ITEM NAME LONGER THAN 16
CHARACTERS

17 SET NAME LONGER THAN 16
CHARACTERS

18 INVAUDSYSTEMNAME

19 MULTIPLE SYSTEM DEFINmON

An IMAGE data set name is too
long.

The SYSTEM statement can
only be used once ip. aprogram.

A data base name (other than the
'HOME' base) appears more than
once in the SYSTEM statement.

A sub-command label appears
before the first command label.

The first statement in the source
program must be a SYSTEM
statement.

The number is out of the allow-
able range for the option in
which it appears.

The compiler could not identify
the syntax.

A data base name does not fit
the IMAGE rules for such
names.

20 MULTIPLE BASE DEFINITION

21 EXPECfED A COMMAND LABEL

22 EXPECTING A SYSTEM DEFINITION
\,-

24 INVAUD NUMBER

30 SYNTAX ERROR

31 INVAUD BASE NAME

33 EXPECTING A CHARACTER STRING

A-2

-n

n

CO:rvfPILE-TI~IE ERROR ~1ESSAGES

NO. MESSAGE EXPLANATION

34 LABEL LONGER THAN 32 CHARACfERS

37 STORAGE BYTECOUNT roo SMALL

39 DATA TYPE LENGTH NOT SUPPORTED
42 PASSWORD LONGER THAN 8

CHARACTERS

46 MULTIPLE OPTION DEFINITION

47 MULTIPLE ITEM DEFINmON

48 MULTIPLE FILE DEFINmON

49 EXPECTING A FILE NAME

50 INVAUD FILE NAME

51 INPUT STRING LONGER THAN 80
CHARACTERS

52 EXPECTING A LABEL REFERENCE

54 MULTIPLE VALUES ONLY VAUD FOR
COMPARE EQUAL

55 NON-PR1NTING CHARACTER IN TEXT
FILE

58 CONFLICTING OPTION IGNORED

60 TOO MANY SORT KEYS

62 ITEM REFERENCED 10ITSELF

65 UNEXPECTED BLOCK TERMINATOR

The requested storage length will
not hold the requested number of
digits.

An option was repeated.

A data item name appears in
more than one DEFINE(ITEM)
statement.
The same file name appears in
more than one FILE and/or
KSAM definition.

A name specified in the FILE= or
KSAM= option of the SYSTEM
statement does 'not follow the
proper syntax for an MPE file
name.

A condition clause with more
than one value on the right of the
relational operator can only
specify an equal (=) relational
operator.

Non-printing characters are not
permitted in the source file ex-
cept within a quoted string.

No more than 32 keys may be
specified in a SORT option.

A-3

COMPILE-TIME ERROR MESSAGES

EXPLANATION

125 UNEXPECTED UNTIL STATEMENT

166 NESTED !IF'S ARE NOT ALLOWED

167 !ELSE MUST BE PRECEEDED BY AN !IFn 168 !ENDIF MUST BE PRECEEDED BY AN !IF

. 66 UNEXPECTED ELSE STATEMENT

73 INCOMPLETE BLOCK STRUCTURE IN
PRIOR SEQUENCE

74 VPLUS FORM NAME LONGER 1HAN 15
CHARACTERS

75 INVAUD VPLUS FORM NAME

79 SOURCE FILE READ ERROR

83 EXPECTING SET NAME

93 SEGMENT TABLE FULL

100 DATA DICTIONARY REQUIRED AND
NOT AVAILABLE

102 TOO MANY ITEMS IN FILE LIST

113 DATA DICTIONARY, CANNOT FIND FILE

117 CANNOT OPEN INCLUDE FILE

118 TOO MANY INCLUDE FILES

120 VPLUS FILE/FORM NOT FOUND IN
DICTIONARY

122 :MISSING 'RECNO' OPTION

The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

An IMAGE data set name is
expected.

No more than 127 segments are
allowed.

The VPLS= option of the
SYSTEM statement or the
LIST(AUTO) statement could not
gain access to the data dictionary.,
No more than 128 data items may
appear in the LIST= option.

The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

More than 5 INCLUDE files have
been nested.

A data management statement
with the DIRECT modifier has no
RECNO= option.

A-4

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION

The file used to pass the assembly
language code to the FASTRAN
assembler cannot be opened.

The file information display
which accompanies this message
should indicate-the cause of the
cause of the problem.
The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

1007 CANNOT OPEN COMPILER WORK FILE· The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

1008 WRITE ERROR ON COMPILER WORK FILE The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

1004 CANNOT OPEN ASSEMBLER SOURCE
FILE

1005 WRITE ERROR ON ASSEMBLER SOURCE
FILE

1006 CANNOT CLOSE ASSEMBLER SOURCE
FILE

1010 READ ERROR ON COMPILER WORK FILE The file information display
which accompanies this message
should indicate the cause of the
cause of the problem.

FASTRAN could not create a
process for the FASTRAN
assembler.

Internal FASTRAN problem.
Contact Performance Software
Group.

Too much code has been gener-
ated for the ClOT (Child Item
Offset Table) internal procedure.
There are too many child items
used in your program.

Too much code has been gener-
ated for the AITR (Data Item
Attribute) internal procedure.
There are too many data items
used in your program.

1012 UNABLE TO CREATE ASSEMBLER
PROCESS

\.

1013 ABNOlTh1AL TERMINATION OF
ASSEMBLER

1014 INTERNAL PROCEDURE OVERFLOW -
ClOT

1015 INTERNAL PROCEDURE OVERFLOW -
AITR

A-5

COMPILE-TIME ERROR MESSAGES

EXPLANATIONNO. MESSAGE

1016 INTERNAL PROCEDURE OVERFLOW -
1NAME

1017 INTERNAL PROCEDURE OVERFLOW -
ANAME

1018 INTERJ'>JALPROCEDlJRE OVERFLOW-
HEAD

1019 INTERNAL PROCEDURE OVERFLOW -
EDIT

1020 INTERNAL PROCEDURE OVERFLOW -
INIT

1021 INTERNAL PROCEDURE OVERFLOW -
OB

1022 INTERNAL PROCEDURE OVERFLOW -
ITMNO

A-6

Too much code has been gener-
ated for the 1NAME (Item Name)
internal procedure; You must
limit your program to fewer or
shorter data item names or use
the QPT! option,

Too much code has been gener-
ated for the ANAME (Alias
Name) internal procedure. You
must limit your program to fewer
or shorter alias and / or synonym
names.
Too much code has been gener-
ated for the HEAD (Heading
Text) internal procedure. You
must limit your program to fewer
or shorter data item headings.

Too much code has been gener-
ated for the EDIT-(Edit Picture)
internal procedure. You must
limit your program to fewer or
shorter edit pictures.

Too much code has been gener-
ated for the INIT (Program
Initialization) internal procedure.
Contact Performance Software
Group.

Too much code has been gener-
ated for the OB (Outer Block
Initialization) internal procedure.
Contact Performance Software
Group.

Too much code has been gener-
ated for the ITIv1NO (Item Num-
ber) internal procedure. You must
limit your program to fewer or
shorter data item names or use
the OPT! option.

COMPILE-TUvIE ERROR MESSAGES

NO. MESSAGE EXPLANATION

1023 INTERNAL PROCEDURE OVERFLOW -
VFLD

1024 INTERNAL PROCEDURE OVERFLOW -
VFORM

1025 INTERNAL PROCEDURE OVERFLOW -
VMOVE

1026 INTERNAL PROCEDURE OVERFLOW -
CMD

1098 lNTERNAL EXPRESSION EVALUATION
ERROR

"

1099 INTERNAL ERROR: TCODE OVERFLOW

1105 EXPECTING A CLOSING PARENTHESIS [)]

1106 EXPECTING A RELATIONAL OPERATOR
[=,<>,>,<,>=,<=]

1108 INVAUD SYNTAX IN COMPILER
DIRECTIVE

1109 EXPECTING A COLON [:1

Too much code has been gener-
ated for the VFLD (VPLUS Field)
internal procedure. You must
limit your program to fewer total
form fields.

Too much code has been gener-
ated for the VFORM (VPLUS
Form) internal procedure. You
must limit your program to fewer
VPLUS forms.

Too much code has been gener-
ated for the VMOVE (VPLUS
buffer movement) internal proce-
dure. You must limit your
program to fewer total form
fields.

Too much code has been gener-
ated for the CMD (Command I
Sub-Command), internal proce-
dure. You must limit your
program to fewer or shorter
command and sub-command
names and/or passwords.

An internal error has occurred in
FASTRAN during expression
evaluation. Contact Performance
Software Group.

An internal error has occurred in
FASTRAN during expression
evaluation. Contact Performance
Software Group.

An unidentified compiler direc-
tive (beginning with I) was en-
countered.

A-7

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION

The condition clause in an IF
statement must be followed by
THEN.

The same form name appears
more than once in the VP15=
option of the SYSTEM statement.
An unknown system variable
(beginning with $) was encoun-
tered.
This message is generated at the
end of a segment with undefined
data items if either the NODICT
option was used or if the diction-
ary (DICT.PUB) could not be
opened. The message is followed
by a list of the undefined data
items.
This message is generated at the
end of a segment with undefined
data items if the items were not
found in the data dictionary. The
message is followed by a list of
the undefined data items.

The dictionary entry for the
indicated Hem contains an inva-
lid data item definition.

A label appears in more than one
DEFINE(ENTRY) statement.

This message appears at the end
of any segment with undefined
labels. It is followed by a list of
the undefined labels.

()

1113 EXPECTING 'THEN'

1129 EXPECTIN'GANEQUALSIGN [=]

1140 DUPUCATE FORM NAME

1142 INVAUDSYSTEMVARIABLE

1144 ITEM(S) NOT DEFINED AND
DICTIONARY NOT AVAILABLE

1145 ITEM(S) NOT FOUND IN DICTIONARY:

1146 INVAUD DICTIONARY ENTRY:

\,

1147 DUPUCATE ENTRY DEFINmON

1153 EXPECTING AN OPENING
PARENTHESIS [(]

1160 MARKER MAYNOT BE INmALIZED

1164 MARKERNOTVAUDINTIUSCONTEXT

1170 UNDEFINED LABEL(S):

A-8

CO]'v!PILE-TP,'LE ERROR ~fESSACES

NO. MESSAGE EXPLANATION

1171 UNDEFINED ENTRY(S):

1176 EXPECTING 'UNTIL'

1179 EXPECTING A CLOSING BRACKET (])
1180 NOT A CHILD ITEM

1183 FUNCTION RETURN PARAMETER
MUST BE 2, 4 OR 8 BYTES

1184 VALUE PARAMETER MUST BE 2, 4 OR
8BYrES

1185 INVAUD PROCEDURE NAME

1186 CHILD ITEM NOT PERMITTED HERE

1190 MPE FILE INVAUD FOR THIS VERB

1193 SORT KEY NOT IN ITEM UST

1104 1<EY' MODIFIER ONLY VAUD FOR
IMAGE DATA SET

12GO TOO MANY PARAMETERS

1201 INVAUD SORT SPECIFICATION

1202 TOO MUCH CODE IN THIS SEGMENT

This message appears at the end
of your program if any labels
declared in a DEFINE (ENTRY)
statement were not defined.

A child item was expected but a
parent item was found.

An MPE file may not be the
object of this verb.

A SORT= option was used on a
data management statement with
a fragmented item list and the
item list does not contain an of
the keys in the sort option.

No more than 32 parameters are
permitted in a PROC statement.

If the amount of code in the
segment cannot be reduced, the
segment must be divided into
two or more segments. (See the
discussion of the CHEK and
SSEG options in Section 3 for
work arounds.)

A-9

COMPILE-TIME ERROR MESSAGES

NO. MESSAGE EXPLANATIONnr---~

n

1203 TOO MUCH DISPLAY CODE IN TIllS
SEGMENT

1207 ONLY A RANGE UST IS VAUD IN TIllS
CONTEXT

1215 UNDEFINED ITEM(S) IN VPLUS FORM

1216 EXPECTING A COMMA
1217 COMl\1AND LABEL EXCEEDS 16

CHARACTERS

1220 TOO MUCH SSEG CODE IN THIS
SEGMENT

1292 CANNOT SUBSCRIPT AN ITEM NOT
DEFINED AS AN AR.t1{AY

1294 TOO MANY SUBSCRIPTS

The code generated by DISPLAY
and FORMAT statements in this
segment is too large. Either
reduce the number of such state-
ments in the segment or divide
the segment into two or more
segments.

The code generated for data
management and VPLUS state-
ments in a program compiled
with theSSEG option was too
large. The segment must be
divided into two or/more seg-
ments.

A-IO

n

n

APPENDIX
B

RUN-TIME
ERROR MESSAGES

The run-time error messages generated by a FASTRAN program parallel those generated by
Transact as closely as possible. As with Transact, the format of a run-time error message is:

*ERROR: error-message (error-info)
The error-info contains the following fields:

(type,number,program.segment.location[,fi1eJ)
Each of these fields is described below:

type:
USER:

PROG:

The error is probably the resul t of an invalid data entry response by the user
and can be corrected by re-entering the response.

The error is probably the result of an error in the program and should be
corrected by the programmer.

SYSTEM: The- error is probably the fault of the system environment, for example
insufficient disc space or an improper file equation for a data base.

As with Transact, the following FASTRAN error types are derived from one of the HP-
3000 subsystems. The appropriate subsystem reference manual should be consulted for
information about any of these errors.

" IMAGE: An IMAGE data base error occurred.

KSAM: A file system error occurred on a KSAM file.
MPEF: A file system error occurred on an MPE file.

VPLUSA: VPLUS subsystem error occurred.

number:
For USER, PROG or SYSTEMerrors, this number refers to an error message listed in this
appendix. For IMAGE, KSAM, MPEF or VPLUS errors, this is a subsystem error
number.

program:
The SYSTEM-statement name of the program in which the error occurred. The program
name is useful in tracing errors .which occur in systems which use CALL.

B-1

RUN~TIME ERROR MESSAGES

,
segment:n The segment number within the program in which the error occurred.

location:
The code location within the segment in which the error occurred. The code location will
appear as the second column of numbers on the program compilation listing and is in
octal.

file:
For Th1AGE, KSAM and MPEF errors, this is the name of the data set or file on which the
error occurred.

\.-

B-2

USER RUN-TIME ERROR ~lESSAGES

USER ERRORS

NO. MESSAGE EXPLANATION

1 ENTRY NOT NUMERIC

2 INPlIT FIELD LONGER THAN n

4 NUMERIC INTEGER PART LONGER
THANn

5 NUMERIC DECIMAL PART LONGER
THANn

7 lNVAUD COMMAND/OPTION:
command/option

8 INVAUD/MISSING SUB-COMMAND:
sub-command

12 INVAUD COMMAND PASSWORD

13 INVAUD SEQUENCE PASSWORD

Non-numeric characters were
entered in response to a prompt
for a numeric value.

The length of a data entry re-
sponse exceeds the defined size
of the data item.

The length of the integer part of a
numeric response exceeds the
maximum implied by the defini-
tion of the data item.

The length of the decimal part of
a numeric response exceeds the
maximum implied by the defini-
tion of the data item.

The command or qualifier en-
tered is not defined in the pro-
gram and is not one of the built-
in commands or command quali-
fiers.

The sub-command entered is not
defined in the program, or no
sub-command was entered for a
command which requires one.

,

16 ATTEMPT TO ASSIGN NEGATIVE VALUE A LET statement attempted to
TO ITEM: item-name assign a negative value to a data

item declared as positive-only.
17 INVAUD .ARITHM:ETICFIELD An arithmetic field in a LET

1\
statement contained non-numeric
data.

B-3

USER RUN·TIME ERROR MESSAGES

NO. MESSAGE EXPLANATION

18 ENTRY CANNOT BENEGATIVE

19 INVAUD LOGICAL CONNECTOR

20 INVAUD PRECEEDING RELATIONAL

21 UNDEUMITED TEXT STRING

22 INVAUD PASSWORD FOR DATA BASE:
base-name

100 ITEM NOT FOUND IN LIST REGISTER:
item-name

A negative value was entered for
a data item declared as positive-
only.

In response to a DATA(MATCH)
prompt, the match expression
contains an invalid connector.
Valid connectors are 'and', (or'
and 'to'.

In response to a DATA(MATCH)
prompt, the match expression
contains an invalid relational
operator. Valid operators are =,
<>, >, <, >= and <=.

In response to a DATA(MATCH)
prompt, the match expression
contains a quoted string with no
closing quote.

An invalid password was entered
in response to a data base pass-
word prompt.
In response to a DATA(ITEM)
prompt, an item name was en-
tered which was not in the list
register.

B-4

PROGRl,,~vlI\1ER RUN·TH vfE ERROR ,MTSSAGES

PROGRAMMER ERRORS

NO. MESSAGE EXPLANATION

1 ITEM NOT IN UST REGISTER:
item-name

4 INVAUD LIST START POSmON

7 DATA BASE BUFFER NOT ON WORD
BOUNDARY

16 1NVAUD RETURN OPERATION

18 ARITHM:ETIc::CONVERSION

20 INVAUD /MISSING KSAM KEY

21 LIST REGISTER IS EMPTY

23 ITEM NOT FOUND IN VPLUS FORM:
item-name

24 VPLUS BUFFER CONVERSION FOR
ITEM: item-name

25 KEY REGISTER IS EMPTY

An data item was referenced and
was not in the list register.

A range-type data item list was
specified, but the start position
did not preceed the end position.

A RETURN statement was exe-
cuted but there was no pending
PERFORM.

A data item of type X, U, 9, Z or P
contains non-numeric data. Does
your progra,m initialize all such
data items?

An operation was requested
which requires at least one data
item in the list register andthe
list register was empty.

A VPLUS operation referenced a
data item which was not con-
tained in the current form.
An error occurred translating the
Ascn value of a VPLUS field to
internal format.

An operation was attempted
which required a key value and
the key register was empty.

B-S

PROGRAMMER RUN~TnvfE ERROR MESSAGES

() NO. MESSAGE EXPLANATION

52 FLOATING POINT OVERFLOW

53 FLOATING POINT UNDERFLOW

() 54 INTEGER DIVIDE BYZERO

31 ITEM STACK FULL

32 IMAGE LIST REGISTER FULL

33 DATA REGISTER FULL

34 WORKSPACEFULL

36 LEVEL STACK FULL

44 PRINT REGISTER TOO LONG

46 DECIMAL DMDE BYZERO

47 DECTh1ALOVERFLOW

48 EXTENDED PRECISION DIVIDE BYZERO

49 EXTENDED PRECISION UNDERFLOW

50 EXTENDED PRECISION OVERFLOW

51 INTEGER OVERFLOW

B-6

There i~ no more room in the list
register. You can increase the size
of the list register by altering the
second parameter of the DATA=
option of the SYSTEM statement.
The maximum size of an IMAGE
data item list parameter was
exceeded (2048 characters).
You can increase the size of the
data register by altering the first
parameter of the DATA= option
of the SYSTEM statement.

You can increase the size of the
workspace by altering the first
parameter of the WORK= option
of the SYSTEM statement.

More than 10 LEVEL statements
have been nested.

The work area used in construct-
ing the output of a DISPLAY
statement has been exceeded.

Could be caused by improper use
of the OPTX compiler option. See
the discussion of OPTX in Sec-
tion 3.

Could be caused by improper use
of the OPTX compiler option. See
the discussion of OPTX in Sec-
tion 3.

NO. MESSAGE EXPLANATION

55 FLOATING POINT DIVIDE BYZERO

58 NO VPLUS FORM AVAILABLE FOR
UPDATE

An UPDATE(FORM) statement
was executed, but no fonn had
yet been displayed.

The VPLUS fonn designated as
the next form in the form file was
not defined in the program or in
the dictionary.

The item name designated for a
VPLUS window operation was
not defined in the program.
The CURRENT option was used
in a VPLUS statement but the
form is not the current form.

In a sort, the designated sort key
is not in the sort record.
No FORM verbs may be executed
while SET(OPTION) VPLS is in
effect.

62 VPLUS FORM NOT FOUND: form-name

66 ITEM NAME NOT DEFINED: item-name

67 VPLUS FORM ISNOT CURRENT:
form-name

68 SORT KEY NOT IN SORT FILE

70 A1TEMPTED VPLUS OPERATION WHILE
VPLS OPTION SET()

73 UNABLE TO CLOSE VPLUS PRINTFILE

76 A1TEMPTED LN OR LOG FUNCTION ON
A NUMBER THATlS <= 0

77 READ TERMINATED BYSOFTWARE
TIMEOUT

81 INVAUD DECIMAL DIGIT

84 A1TEMPTED SQRT FUNCTION ON A
NUMBER THAT IS < O.

86 DBLOCK FAILED AS LOGlRAN LOCKS
ARE STILL ACTIVE

A data management statement
attempted to issue a lock while a
LOGTRAN statement had the
data base locked.

93 SUBSCRIPT IS OUT OF RANGE

95 CANNOT DELETE ITEM IN MATCH REGISTER

96 CANNOT DELETE ITEM IN UPDATE REGISTERn
B-7

n

PROGRA~1MERRUN·TIME ERROR r-.1ESSAGES

NO. MESSAGE EXPLANATION

99 PARAMETER MISMATCH IN PROC
STATEMENT

The number of parameters coded
in a PROC statement does not
agree with the number expected
by the called procedure. Check
your parameters carefully par-
ticularly if you are calling an
'OPTION VARIABLE' intrinsic.

B-8

n

SYSTEM RUN-TIME ERROR MESSAGES

SYSTEM ERRORS

NO. MESSAGE EXPLANATION

1 SORT INITIAUZATION

2 SORT FILE WRITE

3 SORT OUTPUT

An error occurred during execu-
tion of a SORTINIT intrinsic.

An error occurred during execu-
tion of a SORTINPUT intrinsic.

An error occurred during execu-
tion of a SORTOUTPUT intrinsic.

5 CANNOT OPEN TRANUST: file-system-error
9 FILE SYSTEM ERROR ON TRANLIST:

file-system-error
12 CANNOT OPEN DATABASE: base-namen 13 CANNOT LOAD CALLED PROGRAM: FASTRAN was unable to load a

called program at run-time from
an SL. See Section 5 for a com-
plete discussion of CALL.

79 LOG RECORD NOT ON WORD
BOUNDARY

501 CANNOT OPEN TRANIN: file-system-error
1-

502 FILE SYSTEM ERROR ON TRANIN:
file-system-error

503 CANNOT CLOSE TRANLIST:
file-system-error

505 CANNOT CREATE CALLED PROGRAM:
program-name

506 CANNOT INITIAUZE CALLED
PROCRAM: program-name

FASTRAN could not create a
process for the object of a proc-
ess-handling (PH) call. Does the
called program exist as a pro-
gram file?

A SENDMAIL or RECEIVEMAIL
intrinsic call failed during initiali-
zation of a process-handling call.

B-9

n

n

APPENDIX
C

RUN-TIME
STATISTICS

The table below illustrates the listing produced by FASTRAN when the STAToption.is in effect:

"** RUN-TIME STATISTICS •••

CODE SEGMENT REQUIREMENTS:

OUTER BLOCK
PROGRAM INITIALIZATION
SEGMENT 0 CODE
SEGMI~J.JT0 FORMATS
SEGMENT 1CODE
SEGMENT 1 FORMATS
SEGMENT 2 CODE
SEGMENT 2 FORMATS
SEGMENT 3 CODE
SEGMENT 3 FORMATS
S'c(3'M'IENT 4COrJE
SEGME:NT4 FORMATS
SEGMENT 5 CODe
SEGM'ENT5 FO'RMATS
SEGMENT 0 CODe
SE:GME:NT6 FORMATS
$EGMENT 7 CODE
$~ijM'~NT 7 FORMATS
'&'e~MeNT8 OOOE
SEGMENT a FORMATS
S:e~~~NT 9 CODE
SEGMENT 9 FORMATS
SeGMENT 10 CODE
s·~caMENT10 FORMATS
SRQ (ClOT)
SR1 (ATTR)
SR2 (INAME:)
SRS (ANAMEj
SR4 (HEAD)
sss (EO'll)
SR6(ITMNO)
SR7(VFLD)
SRa (VFORM)
SR9 (VMOVE:)

TOTAL CODE:(E:XCLUDING
RUN-TIME LIBRARY)

42
384

5109
40

4425
40

1264
40

3396
40

1657
4670
2829
4197
1685

40
2247

40
3752
1219
4640

73
2170
390
152

2149
3109
1303
1148
1050
3559
170
72

315

57416

DATA STACK REQUIREMENTS:

PRIMARY DB 134
OUTE:RBLOCK
DATA REGISTE:R 3075
VPLUS COMAREA 60
MISCELLANE:OUS 6 3141

GLOli3AL PROGRAM STORAGE
DATABASE & FILE TBLS 89
WORK ARE:A 600
LIST REGISTER 1137
MiSCE:LLANE:OUS 386 2212

TOTAL DATA STACK
(EXCLUDING DYNAMIC
RUN-TIME:REQUIREMENTS) 5487

-C-1

RUN-TIME STATISTICS

The program which generated this example contained 11 segments and approximately 7300
lines of source code. The program used the VPLUS interface but did not use a command / sub-
command structure. The fields in this listing are described below and on the following pages.

CODE SEGMENT REQUIREMENTS:

OUTER BLOCK 42

PROGRAM INITIAUZATION 384

SEGMENT 0 CODE 5109

SEGMENT 0 FORMATS 40
n

SEGMENT n CODE xxxx

SEGMENT n FORMATS xxxx

SRO,CIOT) 152

SR1 (ATTR) 2149

C-2

Each entry under CODE SEGMENT RE-
QUIREMENTS represents a single :MPE pro-
cedure generated by FASTRAN. The maxi-
mum size for a FASTRAN-generated proce-
dure is 16128 words.
The number of .words of code generated to
perform system ini tialization. Note tha t if the
SUBP (sub-program) option is in effect, the
outer block code is not actually generated.
The number of words of code generated to
perform program initialization. This code is
generated and executed for both main and
called programs.

The number of words of code generated for
the root segment.

The number of words of code generated for
FORMAT and DISPLAY statements in the

troot segment.

The number of words of code generated for
each local segment.

The number of words of code generated for
FORMAT and DISPLAY statements in each
local segment.

The number of words of code generated for
Service Routine 0 (SRO),which initializes the
Child Item Offset Table (ClOT) at program
initialization and during segment transfers.
The size of this procedure increases by about
1 word for each additional child item refer-
enced in the program.

The number of words of code generated for
Service Routine 1, which contains the attrib-
utes of each data item in the program. The size
of this procedure increases by about 5-6words
for each additional data item in the program.

SR2 (lNAME) 3109

SR3 (ANAME) 1303

SR4 (HEAD) 1148

n
SH5 (EDIT) 1050

SR6 (lTMNO) 3559

RUN-TI!\1E STATISTICS

The number of words of code generated for
Service Routine 2, which contains the item
names of all data items referenced in the
program. The size of this procedure is related
both to the number and length of the data
items. Each additional 8 character data item
name adds about 6 words to this procedure.
The number of words of code generated for
Service Routine 3, which contains the aliases
and synonyms. The size of this procedure is
related both to the number of aliases and the
length of each alias name. Each additional 8
character alias (or synonym) adds about 6
words to this procedure.
The number of words of code generated for
Service Routine 4, which contains the head-
ing text for all data items which were defined
with aHEAD= option or which had aheading
defined in the data dictionary. The size of this
procedure is related both to the number of
headings and to their length. Each additional
15 character heading adds about 8 words to
this procedure. '

The number of words of code generated for
Service Routine 5, which contains the edit
pictures for all data items which were defined
with an EDIT= option or which had an edit
picture defined in the data dictionary. The
size of this procedure is related both to the
number of edit pictures defined and to their
length. Each additional 8 character edit pic-
ture adds approximately 5 words to this pro-
cedure.

The number of words of code generated for
Service Routine 6, which contains the FA5-
TRAN-assigned item number for each item
name. The size of this procedure is related
both to the number and length of the data
item names. Each additional 8 character data
item adds about 6 words to this procedure.

C.·3

n

n

RUN~TJME STATISTICS

SR7 (VFLD)

SR8 (VFORM)

SR9 (VMOVE)

SR10 (CMD)

TOTAL CODE (EXCLUDING
RUNt)IME UBRARY)

C-4

170

72

315

xxxx

57416

The number of words of code generated for
Service Routine 7, which relates the fields on
each VPLUS form to the corresponding pro-
gram item name. Each additional form field
adds about 3 words to this procedure.

The number of words of code generated for
Service Routine 8, which contains informa-
tion about eachVPLUS form in the program.
Each additional form adds about 8 words to
this procedure.
The number of words of code generated for
Service Routine 9, which contains coded in-
formation used to move data between the
data register and the VPLUS form buffers.
Each additional form field adds about 3words
to this procedure.

The number of words of code generated for
Service Routine 10, which contains the infor-
mation necessary to decode commands and
sub-commands defined in your program. The
size of this procedure is related to the number
of commands and sub-commands in the pro-
gram, their lengths and the lengths of any
command or sub-command passwords. Since
the program in this example did not use a
command/ sub-command structure, no code
was generated for SRI0.

The total number of words generated by
FASTRAN for the program. To this total must
be added the run-time library procedures,
which are linked to the program either at prep
time from the RL or at load time from an SL.
The number of words of run-time library
code is usually between 8000and 15000words.

n DATA STACK REQUIREMENTS:

PRIMARY DB

OUTER BLOCK

DATA REGISTER

VPlUS COMA REA

MISCELLANEOUS

n

GLOBAL PROGRAM STORAGE

\.:

DATABASE & FILE TBLS

134

3075

60

3141

RON-TIj\,fE STATISTICS

6

The number of words in the global table and
pointer area used by FASTRAN. The size of
this area may change with new releases of
FASTRAN but cannot be controlled by the
programmer. For a main program, the Pri-
mary DB area begins at location DB+O. Called
programs USethe same area as the main pro-
gram but require a save area of the same size
on the data stack,

The data areas in the outer block are only
allocated for main programs.Called programs
share this area with the main program.

The number of words in the data register,
controlled by the DATA= option on the SYS-
TEM statement.

The number of words in the VPLUS Comarea,
not under programmer control.

The number of words of additional storage
required in the outer block, not under pro-
grammer control.

The second value following the MISCELLA-
NEOUSentry gives the total number ofwords
in the outer block area.

The number of words of global storage re-
quired for the program. For a called program,
this area is distinct from the global program
storage area of the main program. It is allo-
cated whenever the program is called and is
released when the called program is exited.
The number ofwords used for IMAGE,KSAM,
MPE and VPLUS file tables. The size of this
area can be computed as follows:

Each IMAGE database requires 15 words
plus 1word for each 2 characters in the data
base name.

Each MPE file requires 16 words plus 1
word for each 2 characters in the file name.

Each KSAM file requires 7 words plus 1
word for each 2 characters in the file name.

89

C-5

n

RUN-TIME STATISTICS

WORK AREA 600

LIST REGISTER 1137

\

MISCELLANEOUS 386

2122

C-6

Each VPLUS form file requires 2 words
plus 1 word for each 2 characters in the
form file name.
Each different IMAGE data set referenced
in the program requires 1word.

The number of words required by the work
register. This will be twice the value specified
on-the WOBK=option of the SYSTEM sta~e-
ment. Note that FASTRAN uses twice the
area as Transact. The extra storage allows
FASTRANto use a different work area alloca-
tion algorithm which eliminates the need lor
run-time garbage collection in the work area.
The number of words required by the list
register. This requirement can be determined
as follows:

Multiply 3 times the number of list register
entries requested in the second parameter
of the DATA=option of the SYSTEMstate-
ment, and add 1.
Add one word for each different data item
referenced in the root segment.
For a segmented program, an additional
word is required for each local parent item
in the segment with the largest number of
parent items, plus one word for each child
item in the segment with the largest num-
ber of child items.

The number of addi tional words required in
the global program area. 366 words of this
area are fixed and are not under progr arnrner
control, though the requirement may change
with new releases ofFASTRAN. Two addi-
tional words are required for each local seg-
ment in the program, and one word is re-
quired for each two characters in the BAN-·
NER= option of the SYSTEMstatement.
The second value following the MISCE~LA-
NEOUSentry gives the total number ofwords
in the global program storage area.

n

TOTAL DATA STACK 5487
(EXCLUDING DYNAMIC
RUN-TIME REQUIREMENTS)

RUN-TI]\,fE STATiSTICS

Total fixed data stack requirement of the
program when run stand-alone. The dynamic
run-time requirements are difficult to predict
for a given program and include data base
and file buffers, VPLUS buffers, the RETURN
stack, sort work area, local storage for called
procedures and various miscellaneous work
areas. These areas are allocated only when
needed and are released as soon as they are no
longer needed.

C-7

