HP 3000 SERIES II/III COMPUTER SYSTEMS MANUAL OF STAND-ALONE DIAGNOSTICS

STAND-ALONE HP 30036A/B MULTIPLEXER CHANNEL DIAGNOSTIC

NOTICE

The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing. perfor* mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett.Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another program language without the prior written consent of Hewlett-Packard Company.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. MINI OPERATING INSTRUCTIONS 1
III. REQUIREFENTS 2
A. Hardvare 2
B. Software 2
IV. DETAILED OPERATING INSTRUCTICNS 2
A. Operating Instructions 2
B. Options 3
C. Halts and Message Tables 4
D. Pre-Configuration Option 14
E. Control and Status Words 15
v. DETAILED TEST DESCRIPTION 18

v
v
\cdots

I. INTRODUCTION

The Stand-Alone HP 300036A/B Multiplexer Channel Test verifies the functional level operation of the Multiplexer Channel Board. The tested area includes Order RAM, Order Register, Address RAM, Address Register, State RAM, State Register, and the Slo related to the multiplexer. A detailed description of the test is available in the subsequent sections.

II. MINI-OPERATING IHSTRUCTIONS

A. Operations

1. Cold Load Diagnostic File \# (associated with DA22A) from non-cpu Cold Load Tape.
2. Respond to Speed-Sense by asserting "CR" at the Console.
3. Respond to the dialogue at the Console.
B. Switch-Register Options

$$
\begin{aligned}
& \text {-SWITCH } \\
& * * * * * * * * *
\end{aligned} \quad \text { FUNCTION IF SET- }
$$

0 SELECT EXTERNAL SWITCH REGISTER
1 SET TO CHANGE SECTION SELECTION REGISTER
2 SET TO EYPASS SECTION (AREG)
3 SET TO BYPASS SECTION (OREG)
4 SET TO BYPASS SIOTEST SECTION (STEPS 63 AND 68)
5 LOOP CURRENT SECTION
6 SET TO BYPASS SIOTEST (STEPS 75 THRU 78)
7 OUTPUT TO LINE PRINTER (IF CONFIGURED IN SDUP)
8 SPARE
9 SUPPRESS NON ERROR MESSAGES
10 SUPPRESS ERROR MESSAGES
11 LOOP ON LAST STEP
12 HALT ON ERROR
13 HALT AT END OF STEP
14 HALT AT END OF SECTION
15 HALT AFTER A COMPLETE PROGRAM CYCLE
C. Section Switch - Register Options

BIT \# SECTION

0	RE-CONFIGURE
1	IORES
2	ARADDR
3	ARDATA
4	ARCPP
5	ORADDR
6	ORDATA
7	ORCP
8	AREG
9	OREG
10	NSGP1
11	NSGP2
12	NSGP3
13	NSGP4
14	STPAR
15	SIOTEST

D. HALT ASSIGNMENTS

NO. (OCTAL) FUNCTION
************** ***********

0	HALT FOR EXTERNAL SWITCH REG.
1	HALT FOR SECTION SWITCH REG.
2	HALT TO RESTORE EXTERNAL SW. REG.
3	HALT ON ERROR COUNT REACHED
$4-10$	SPARE
11	ABNORMAL INTERRUPT
12	HALT ON ERROR
13	HALT AFTER STEP
14	HALT AFTER SECTION
15	HALT AFTER COMPLETE PROGRAM CYCLE
16	SPARE
17	SPARE

1II. REQUIREMENTS
A. Hardware

The hardware required to run the ilultiplexer Channel Ridagostio is a minimum HP 3000 Series II/III Computer System with the addition of up to two Seleotormethnnel Mainten nce Boards.
B. Software

The Stand-Alone Diagnostic Utility Program (SDUP) is required to create the Stand-Alone Diagnostic Tape. This cold-loadable tape is comprised of cold load progran, the Relocating Loader, and one or more diagnostic programs including the Stand-Alone HP 30036A/B Multiplexer Channel Test. All the programs are coded in System Programming Language (SPL/3000). For more detailed description of usage of SDUP, see System Diagnostic Utility Program Manual (03000-90125 for Series II/III).
IV. DETAILED OPERATING INSTRUCTIONS
A. Operating Instructions

The following are the instructions for loading, executing, and configuring the Stand-Alone HP 30036A/B Multiplexer Channel Test:

1. Cold Load by entering \%3006 into the 30003-60013 Control Panel and simultaneously depress "LOAD" and "ENABLE" switches on the 30003-60013 control panel.
2. Select an'appropriate Diagnostic File \# (associated with the Multiplexer Channel Diagnostic) and enter the number via the SwitchRegister. The Cold-Loadable diagnostic tape supplied is identified by file names and their respective position (File \#) on the tape.
3. Depress "RUN" switch on the 30003-60013 Control Panel. The selected program is, now, loaded into the menory. The tape rewinds at the end of the program load.
4. The Multiplexer Channel Diagnostic program is now executable.
5. Depress "RETURN" key on the console to respond to the Speed-Sense. Upon completion of the previous operation the program prints the diagnostic header information and then requests necessary parameters to begin the diagnostic program execution cycle.

B. Options

Under Stand-Alone HP 30036A/B Multiplexer Channel Test, the operator can control the test sections to be executed; control halts after sections or steps or upon program completion; control suppression of error and non-error messages; and control loop on a specific test step or a section. These control options may be selected when the program requests for a specific option entry via the console during program execution.

1. The following describes the options associated with each bit of the Switch-Register for a program request of an option entry of the following form:
"QOI SELECT OPTIONS"
(Same options as those described in Section II. B) Description of the usage of bits (\emptyset and 1) under this Option is as follows:

Bit \# 0	Bit \#1	Function
0	\emptyset	Uses previously configured values.
\emptyset	1	Uses previously configured values.
1	0	The program uses whatever options currently selected on the Switch-Register of the Control Panel or it will use whatever options entered for a request under a message: "P05 RESTORE SELECT OPTIONS".
1	1	If this option is selected, it suggests possible re-configuration (see bit \emptyset of Section IV.B.2)

2. The following describes the options associated with each bit of the Section Select Switch Register for the program request for a following message format:
"Q02 SELECT SECTION OPTIONS"
(Same options as those described in Section II.C)
If bit \emptyset is not selected (\emptyset), the progran requests to restore the External Switch-Register Option and continue execution using previously configured values.

2. Continued

If bit \emptyset is selected (1), the program requests restoration of External
Switch-Register Options, requests Multiplexer Channel Device \#
(must be decimal and $3 \leq \operatorname{Dev} \# \leq 127$), and requests maximum error count (must be decimal and $0 \leq M a x$. Error Count ≤ 9999). Furthermore, if bit 15 is selected (1) at the same time, an additional information is requested to execute SIOTEST Section. The information requested is; device \# for the lst Selector Channel Maintenance Board, device \# for the 2nd Selector Channel Maintanance Board (if any), device if for the Clock/Console, upper Bank \#, and the upper address for the specified Bank \# (30036A only). A detailed description regarding SIOTEST Section is available in Subsequent Section.
c. Halts and Message Tables

1. Halt Assignments

When a program halts, an instruction is displayed in the current Instruction Register (CIR) of the 30703-60013 Control Panel. The register is displayed as (001100001111X XXX: where X 's is the Halt \#).
See Halt Assignnent Table as described in Section II.D.
2. Message Formats

There are basically four types of message classfications: D,E,P and
Q classes.
D-class
Messages which describe program boundaries. Some operator intervention is necessary.
E-class
Messages related to error or step number. Some operator intervention
is necessary.
P-class
Messages which describe the test completion of a Section or step
orerventindication fog a a certain tested properties. Some operator in-
Q-class
Inquiry messages by the program for the parameter entry. Cperator intervention is required.

2.1 Message Descriptor

2.1.1 DØ 30036A/B MPX CHANNEL TEST (HP D422X.YY.ZZ)

:This is the header information for this diagnostic program; where
$X=$ Version number
$\mathrm{YY}=$ Update number
ZZ=Fix number
2.1.2 DO2 END MPX CHAN TEST
:This Message indicates that the program has completed one test cycle for those test sections selected.
2.1.3 UQ3 END: PROGRAM CYCLE: PASS $=X X X X$
:This message indicates the number of test passes which the program has completed for those test sections selected.

2.1.4 QDI SELECT OPTIONS

:The program is requesting any of the option entry avallable and described in Section II.B.
The options available in Section II. B is very much self-explanatory with the exception of option for bits 2, 3, 4 and 6 . The exception is defined as follows:

Bit
2

3
3 :Allows option to bypass Oder Register test which is somethat lengthy in test time.
4
Set to bypass SIOTEST Section (Steps 63 and 68).
:Allows Option to bypass the data transfer time measurement under Fast Mode for Step 63 (Read Mode - $2 k$ transfer) and Step 68 (Write Mode - 2K transfer).
Set to bypass SIOTEST Section (Steps 75 thru 78) :Allows option to bypass multiple device controller access test (two Selector Channel Maintenance Boards).
2.1.5 QO2 SELECT SECTION OPTIONS
:This message indicates that the program is requesting any of the option entries available and described in Section II.C
2.1.6 QO3 RESTORE SELECT OPTIONS
:This message indicates that the program is requesting any of the option entries available and described in Section II.B.
2.1.7 QD4 ENTER MPX DEVICE \# =
:This message indicates that the program is requesting the Multiplexer device number as configured currently in the system.
The device number is specified in decimal and its range is: ($3 \leq$ DEVICE ≤ 127). Programmed pre-defined value is 4 .
2.1.8 Q@5 ENTER MAXIMUM ERROR COUNT \#=
:This message indicates that the program is requesting the maximum error count number. The number is specified in decinal and its range is: $(\emptyset \leq$ COUNT $\leq 9999)$.
The programmed pre-defined value is 999
2.1.9 QD6 ENTER SEL. CHAN, MAINTENANCE BOARD DRT \#=
:This message is requesting the device number (decinal) for the currently installed Selector Channel faintenance Board. The device number's range is: ($3 \leq$ DEVICE $\# \leq 127$).

NOTE: Sections IV. C. 2.1.9 thru IV. C. 2.1.13 are dialogue for the SIOTEST Section.

NOTE: If two Selector Channel Maintenance Boards are currenty installed on the foltiplexer Channel SIO Bus then insure that the device numbers are configured correctly and they are not the same.
The programmed pre-defined value is 0 .
2.1.10 QRO EMER 2UD SCHB RRTH=
: This message requests the device number of the second Selechor Chanel Maintenance Board (if two (2) SCHB's are currently installed). The device $\#$ must differ from the one specified in Section IV.C. 2.1.9. The device $\#$ is specified in decinal and its range is:
($3 \leq$ DEVICE ≤ 127).
2.1.11 QOB ENTER CLOCK/CONSOLE ORT $i_{i=}=$
: This message requests the device (in decimal) of the Clock/Console which is currently installed in the system. The device $\#$ range is:
(3 < DEVICE $\#$ - 127) .
The programmed pre-defined value is 3 .
2.1.12 Q09 ENTER UPPER BANK \# (DECIMAL) =
:This message requests the highest bank \# (decimal) for the memory configured currently. The range is: (\varnothing < BANK \# s 3) for the HP 30036 A and $(\emptyset \leq B A N K \leq 15)$ for the HP 30036 B .
2.1.13 QTO ENTER UPFER ADDRESS (OCTAL) =
:This message is requesting the highest address (octal) that is addressable for the memory bank specified in Section IV.C.2.1.12. This question is only asked when running the diagnostic on the HP 30036A. Specify the bank and upper address for the various memory sizes as shown below:
(Equivalent)

Memory Size (wds)	Bank\#	Address
	64 K	0
96 K	1	$\% 177777$
128 K	1	$\% 077777$
160 K	2	$\% 177777$
192 K	2	$\% 977777$
224 K	3	$\% 17777$
256 K	3	$\% 97777$
		$\% 177777$

2.1.14 PØ2 END SECTION $X X X X X X$
:This message indicates the section number which has just been completed.
2.1.15 PD3 EMO STEP $X X X$: This message indicates the step number which has just been completed.
2.1.16 P06: MAX. ERROR COUNT REACHED
:This message indicates that the error count which has been either entered or predefined has been reached.

2.1.17 P11 IF SEL. CHAN. MAINTENANCE BOARD ALREADY IN HIT *CR*
 P11 OTHERWISE INSERT BOARD, CONNECT POLLS, AND RE-COLD LOAD. :This message indicates that if no solb is currently lnstalled then installation is required. Otherwise depress Carriage Return Key on the console to continue the test.

2.1.18 P15 END SIO TEST CONFIGURATION
:This message indicates that the all the parameters hecessary to execute SIOTEST Section have been entered. The test execution resumes and no other messages are expected until either the occurrence of test completion or error or any other events which might be controlled by the current External Switch fegister.
2.1.19 PIó FAST SR READ MODE (2 K XFER) ; TIME: X MSEC; BAUKYY; STEP 63 :This message is resulted from step 63 (if External Switch Register Option bit H_{4} is not on (0)). The 2 K read data tranfer time (X) in millisecond (unit) is measured under Fast Service Request Mode for each existing memory Bank YY in the systen.
2.1.20 P17 FAST SR WRITE MODE (2K XFER); TJHE=X MSEC; BANEYY; STEP 68 :This message is resulted from sten 68 (if External Switch Register Option bit \#4 is not on (0)). The 2 K write data transfer time (X) in millisecond (unit) is measured under Fast Service Request Mode for each existing memory Bank Yy in the system.
2.1.21 P18 1 ST SCMB DRT\# NOT ENTERED; STEPS 4?-74 ABORTED -This message inuicates that the Multiplexer Channel Diagnostic program was not preconfigured under SDUP or an attempt was made to execute SIOTEST Section without first configuring the device \#. The SIO test using a single SCMB in SIOTEST Section is aborted.
2.1.22 P19 2ND SCMB DRT\# NOT ENTERFD; STEPS 75-78 ABORTED
:This message indicates that the Multiplexer Chamel Diagnostic program was not preconfigured or an attempt was made to execute SIO test using two SCMB without first configuring the device *.

To cite an example, begin configuring with External Switch Register bit $\%$ on (1) and without further reconfiguration attempt was later made to execute multiple SCMB SIO test in SIOTEST Section by resetting bit \#6 (0) of the Extemal Switch Register.

2.1.23 Exxx

:This message indicates the appropriate error number associated with the type of error. See Section IV.C. 3 for detailed error messages.

2.1.24 Exxx:

:This message is an error indicator where $X X X$ is the step number. This error indicator always precedes the following type of Messages:

2.1.24.1	STATUS $=X X X X X X X ~ X X X ~ X X X ~ X X X ~$
:This message displays the actual device status appropriate	
to the test.	

Section Message Comments

Any ESO NO RESPONSE TO WIO; Condition Code $=$ CCL DRT\# XXX; IN STEP $\quad X X X=$ Device $\# ; Y Y=$ Step $\#$

Any E.31 NOT RDY FOR WIO; DRT \# XXX; IN STEP YY

Condition Code $=$ CCG.
$X X X=$ Device. \#; $Y Y=$ Step \#
Any E32 NO RESPONSE TO RIO; Condition Codo = CCL DRT \# XXX STEP YY $X X=$ Device $\# ; Y Y=$ Step $\#$

Any E33 NOT RDY FOR RIO DRT \# XXX IN STEP YY
Any E34 NO RESPONSE TO CIO DRT \# XXX IN STEP YY

Any E50 NO RESPONSE TO TIO DRT \# XXX IN STEP YY
e5 1 Illigal state detected $x x=$ Select Code
NSGP1, NSGP2 NSGP3, NSGP4

NSGP1, NSGP2
NSPG3, NSGPA
NSGP1, NSGP2 IS Y

E53 TC SHOULD BE XX; IS YY

NSGPT, NSGP2 E54 EOT SHOULD BE XX;
NSPG3, NSGP4 IS YY
NSGPT, NSGP2 NSGP3, NSGP4
NSGP1, NSGP2 NSGP3, NSGP4

E55 ADDR PAR SHOULD BE $X X$; IS YY

E56 STATE PAR SHOLRD BE XX; IS YY
$X=$ Expected Dank \#
$Y=$ Actual Bank \#
$X X=$ Expected Terminul count
$Y Y=$ Actual Terminal count (0 or 1)
$X X=$ Expected EOT bit
$Y Y=$ Actual Parity bit (D or 1)
$X X=$ Expected Parity bit
$Y Y=$ Actual parity bit (0 or 1)
$X X=$ Expected State Parity bit
(\emptyset or 1)
$Y Y=$ Actual State Parity bit (0 or 1)

The following are the error messages from SIOTEST Section. They are listed by step numbers from where the error nessage is resulted.

Step \#	Message	Comments
46	E36 NO INTERRUPT TO SIN; DRT\# XXX IN STEP YY	$X X X=\text { Device } \#$ $Y Y=\text { Step } \#$
46	E37 NO RESPONSE TO SIN; DRT \# XXX IN STEP YY	$\begin{aligned} & X X X=\text { Device } \# \\ & Y Y=\text { Step } \# \end{aligned}$
Any	E38 NOT RDY FOR SIO; DRT \# XXX IN STEP YY	```Condition Code = CCG XXX = Device f; YY = Step 蓄```
$\begin{aligned} & 47,51,52, \\ & 54,55 \end{aligned}$	E4D NO END WITH INTERRUPT IN STEP XX	$X X=$ Step \#
Any	E41 CURRENT PTR $=\% X X X X X X X$ IN STEP YY	XXXXXX =: DRT pointer $Y Y=$ Step $\#$
Any	E42 SHOULD PTR $=\% \times X X X X X$ IN STEP YY	XXXXXX = DRT pointer $Y Y=$ Step $\#$

59

60,69,70

60,69,70
65,71
65:71

60
$60,65,69,70$, 71

Message
E43 UNEXPECTED INTERRUPT $X X=$ Step $\#$ IN STEP XX
EAA NO INTERRUPT FOR $\quad X X=$ Step $\#$ INTERRUPT ORDER IN STEP XX
E45 JUMP CONDITIONAL $\quad X X=$ Step ILIEGAL IN STEP XX
E46 END W/INTERRUPT STATUS $X X=$ Bank $\#$ ERROR FOR BAKK XX IN STEP YY
E47 DATA READ ERR: $\quad X X X X X X=$ Address
ADDR $=\%$ XXXXXX;
BAHK YY; STEP ZZ
$Y Y=$ Bank $\#$
E48 READ NEXT WORD $\begin{array}{ll}\text { COUMTER ERROR FOR BANK } & Y Y=\text { Bank } \# \\ X X & Y \text { Step }\end{array}$ XX IN STEP YY
EA9 PRD STB COUNTER ERR. $X X=$ Bank \#

$$
\text { FOR BANK XX IN STEP YY } \quad Y Y=\text { Step }
$$

E58 PWR STB COUNT FALLED; $X X=$ Bank \#
$Y Y=$ Step $\#$E59 TOX COUNT FAILED;
BANK XX; STEP YY$X X=B a n k y$
E6O TOGGLE IN XFER COUNT $X X=$ Bank $\#$
ERR FOR DANK XX IN STEP $X X Y Y=$ Step $\#$
E61 EOT COUHT ERROR FOR $X X=$ Bank 荋
BANK XX IN STEP YY $Y Y=$ Step \#
E62 FAST MODE DATA READ $X X=$ Bank $\#$
ERR FOR BANK XX IN STEP $Y Y=$ Step \# YY
E63 FAST HODE RNH ERR: $X X=$ Bank \#
BANK XX IN STEP YY $Y Y=\operatorname{Step}$
E64 FAST MODE PRD STB $\quad X X=$ Bank \#
COUNT ERR: BANK XX IN $Y Y=$ Step $\#$E65 FAST MODE XFER TOGGLE$X X=$ Bank \#
IN COUNT ERR: BANK XX $Y Y=$ Step \#E66 FAST MODE EOT COUNT$X X=$ Bank

3.0 Cont	d	
Step \#	Messsge	Comments
Any	E68 STATUS ERR FROM TIO; BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank \# } \\ & Y Y=\text { Step \# } \end{aligned}$
64	E69 SIO WRITE ORDER (1 WD) FAILED; BANK XX; STEP YY	$\begin{aligned} & X Y=\text { Eank \# } \\ & Y Y=\text { Step } \end{aligned}$
59,64,69,71	E70 RETURN RESIDUE FAILED: BAMK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
$\begin{aligned} & 75,76,77 \\ & 78 \end{aligned}$	E71 RETURN RESIDUE FAIIED: DRT : XXX: BANK YY; STEP ZZ	$\begin{aligned} & X X X=\text { Device } \# \\ & Y Y=\text { Bank } \# \\ & Z Z=\text { Step } \# \end{aligned}$
66	E39 DATA WR ERR: FAST MODE: BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
67,72	E81 FAST MODE: PUR STB CNT FAILED; BANK $X X$; STEP YY	$\begin{aligned} & X Y=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
67,72	E82 FAST MODE: TOX COUNT FAILED; BAAK XX; STEP YY	$\begin{aligned} & X X=\text { Eank } \\ & Y Y=\text { Step } \# \end{aligned}$
67,72	E83 FAST MODE: EOT COUNT FIALED; BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
69	E84 UUU; DATA CAP ERR AT \% XXX; BAHK YY; STEP ZZ.	$\begin{aligned} \text { UUU }= & \text { RNH, EOT } \\ & \text { TIX } \\ & \text { PRD } \\ X X X= & \text { Location } \\ Y Y= & \text { Bank \# } \\ Z Z= & \text { Step \# } \end{aligned}$
67,79	E85 ERR: STATUS RTN'D FOR 2ND END H/INT; BANKXX;	$\begin{aligned} & X X=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
70	E86 FAST MODE: UUU DATA GAP ERR AT $\% X X X$; BANK YY; STEP ZZ	$\begin{aligned} \text { UUU }= & \text { RlWH, } \mathrm{EOT} \\ & \text { PRD } \\ & \text { TIX } \\ X X X= & \text { Count } \\ Y Y= & \text { Bank } \\ Z Z= & \text { Step } \end{aligned}$
60,62,69,70	E87 TIX COUNT ERR: $A D D R={ }^{\prime}: X X X X X X ;$ BANK YY; STEP ZZ	$\begin{aligned} & X X X X X X=\text { Address } \\ & Y Y=\text { Bank } \\ & Z Z=\text { Step } \# \end{aligned}$
71	E88 RETURN RESIDUE ERR: BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \# \# \\ & Y Y=\text { Step \#\# } \end{aligned}$
73	E89 XFER ERROR DETECTED: BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \\ & Y Y=\text { Step } \end{aligned}$
74	E90 XFER ERR UNDETECTED: BANK XX; STEP YY	$\begin{aligned} & X X=\text { Bank } \# \\ & Y Y=\text { Step \# } \end{aligned}$
75,76,77	E91 NO EMD WITH INTERRUPT FOR DRT \# XXX: BANK YY; STEP ZZ	$\begin{aligned} & X X X=\text { Device \# } \\ & Y Y=\text { Bank \# } \\ & Z Z=\text { Step } \# \end{aligned}$

3.0 Continued

Step \#
75,76,77

75,77

75,76,77

78

78

78

Message
E92 END W/INT STATUS ERR: $X X X=$ Device \# DRT\# XXX: BANK YY; STEP ZZ YY = Bank \# $Z Z$ Step \#
E93 DATA READ ERR AT \% XXXXXX: DRT \#UUU; BANK YY; STEP ZZ

E94 DRT POINTER ERR FOR DRT \# XXX: STEP YY E95 NO EHD H/IUT; FAST MODE; DRT \# XXX; BAMK YY; STEP ZZ
E96 EWW H/TNT STATUS ERR: FAST MODE; DRT BANK YY; STEP ZZ E97 DRT POINTER ERR: FAST $X X X==$ Device \# NODE; DRT \& $X X X$; BANK $Y Y ; Y Y=B a n K \#$ STEP XX $\quad Z Z=$ Step
$X X X X X X=$ Address
UuU= Device
$Y Y=$ Bank \#
$Z Z=$ Step $\#$
$X X X=$ Device \#
$Y Y=$ Step $\#$
$X X Y=$ Device $:$
$Y Y=$ Bank $\%$
$Z Z=$ Step $\#$
$X X X$ - Device \#
$Y Y=$ Bank f
$Z Z=$ Step $\#$

D. Pre-Configuration Option

1. The HP 30036A/B Multiplexer Channel Diagnostic Program has been pre-configured to erecute in best load and go conficuration

Comments

 using the options avallable from section II.B and II.C. The pre-configured values can be modified at the time when the ColdTape is being created under SDUP (System Diagnostic Utility Progron).2. The following are the $D B$ Locations containing data that can be changed during pre-configuration using SDUP:

* must be entered
** must be entered if installed
E. Control and Status Words

1. Multiplexer Channel
1.1

0	1	2	3	4	5	6	7	8	9	10	11	12	13
A		B		C	D	E	F	6					

A Programbed $1 / 0$ Reset (Bit $\theta=1$; Reset).
B Bits 2-5: Select Code from V/0(0-17).
C : Bit 6: Select Address Ram and Register
D Bit 7: Selects Order Ram and Register.
E Bit 8; Select State Ram and Reoister.
F. Bit 9: Load Register from Ram Lnable.

G Bit 10: Incromont Rogister Enoble.
1.2 Status Hord Format (T10)

Bity
SIO Not ok (always 0)
Read/Write OK (always 1) Amays of
Error - illegal State detected
Select Code number which is associated with an error (Bit 3)
Alvays 0
1.3. State llori Format (RIO)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	11	15
0	0	0	6	0	\varnothing	A	B	C		D	E	F			

Field	Bit ${ }^{\text {\# }}$	Function
A	4-7	Bank Ram (if Load $=\varnothing$, the current register) (Bits 4 and 5 are always \emptyset for an HP 30036A)
B	8	$T C=1$ after a word count is exhausted.
C	(9-12)	State Ram
	9	State A
	10	State B
	11	State C
	12	State D
D	13	EOT FF
E	14	Address Parity (0dd, total number of one's)
F	15	State Pority (1 equals an error)
1.4 State Word Format (W10)		

0	1	2	3	4	5	6	7	8	9	10	17	12	13	14
θ	0		A	15										

1.4 Continued

Field	$\frac{\text { Bit\# }}{A}$	
$(2-5)$	$\frac{\text { Function }}{\text { State Ram }}$	
2	State A	
3	State B	
4	State C	
	5	State D
B $\quad 14-15$	Bank Ran Content	

2. HP 30033 A Selector Channel Maintenance Boand
2.1 Control Hord Format

MR	RI	JM	IDE	TA	TS	CONTROT CODE	F	SDN	TIC	THC	IL	COUNT CODE	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Bit:

0 MASTER RESET - issues a programed I/0 reset which clears the mainteriance card, including the control register and data bufier. and sends clear interface to the channel if the channel is active..

1 RESET IRTERRUPT - clears the interrupt request flip flop.
2 JUMP MET - sets condition met for conditional jumps.
3 IMMEDIATE DEVICE END - forces device end at the beginning of any data transfer on the selector chanel. No effect on the multiplexer channel.
4 TIMEOUT ACRNOLLEDGE - causes channel acknowledge to be inhibited following the current control order. Any subsequent channel service out will timeout. The selector channel will restore the DRT pointer, but no clear interface will occur. The maintenance card will remain busy until a direct master reset is issued. The multiplexer channel. ignores this control bit.
5 TIMEOUT SERVICE REQUEST - inhibits device service request after the current control order. The selector channel will issue a clear interface, forcing an interrupt, and restore the DRT pointer. The multiplexer channel program will simply stop, and no interiupt will be issued.
6:7 CONTROL CODE - defines how SIO program control orders will be treated.
00 - Ignore $10 C W$, use IOAW as a control word (default).
01 - Load IOCN into data buffer only (the control register is unchanged).
10 - Load IOAW into data buffer only.
11 - Load 10CW, then IOAN into data buffer.

2.1 Continued

Bit\#

8. FAST BIT - overrides normal data service request delay ($5 \mu \mathrm{~s}+200 \mathrm{KHz}$) to force continuous service requests in data transfers.
9 SPECIAL DEVICE NUMBER - specifies that the maintenance card, when asked to supply its device number, will gate out bits 3:15 of its data buffer, allowing the card to simulate any device number in running SIO programs. Interrupts and direct commands will continue to correspond to the hardwired device number.
10 TERIINATE ON TERMINAL COUNT - specifies that counter rollover will terminate the current data transfer by device end (selector channel only) or clear interface (both) depending on bit 12.
11 TERMINATE ON NO COMPARE - enables a comparator and disables counter/buffer loading by programmed write strobes. Data sent to the card is comparad with the current buffer contents, and a compare failure will teminate the transfer by device end (selecior channel only) or clear interface (both) depending on bit 12.
12 CLEAR INTERFACE - specifies that a clear interface, rather than the default device end, should be issued if either or both of the above termination tests is met.
13:15 COUNT CODE - controls the counter/buffer. The normal node is NOP: i.e.: no count, buffer operation only. Codes are as follows:

000	NOP	100	P WR STB
001	READ NEXT WORD	101	TOGGLE OUT XFER
010	P RD STB	110	EOT
011	TOGGLE IN XFER	111	CHANNEL SO

Octal codes 1 to 7 specify that the counter will be incremented r. the occurrence of the selected signal. Codes 4 to 7 imhibit loading of the counter/buffer to preserve the count. Code 7 (count chame? service out) should not be issued by an \$10 control order since there is a timing ambiguity as to whether the current cycle itself should be counted.

2.2 Status Word Format

SIO OK	R/W OK	INT REQ	INTKFER ACTFRR	ENB	DEV END	EOT	NC	TC	INX	OUTX	CLR IL	0		
0	1	2	3	4	5	6	7	8	9	10	11	12	1314	15

The status word is returned by a direct T1O or by a P SENSE STB. Reading status does not in itself change any of the test board states. As indicated below, certain transfer related status bits are cleared by direct: $\$ 10$ or channel directives to begin a new transfer.

2.2 Continued

Bit\#

0 SIO OK-True if the channel is inactive and the test board is not currently execiting an 510 program.

1. READ/WRNE OK - Always true.

2 INTERRUPT REQUEST - True if the test board is currently interrupt requesting for ony reason.
3 INTERRUPT ACTIVE - True if the test board interrupt circuit is currenty in the active state.
4 TRANSFER ERROR - True if the channel has sent transfer error to the test board. Cleared by the next $S I 0$ or reset.
5 EAABLE - True if the chamel is inactive. This is a positive true version of the "ENABLE" signal from the chamel.
6 . DEVICE ELD - True if the test board has issued device end. This bit is cleared at the beginning of a new transfer, by SIO and by reset.

7 EOT -. True if the chamel has asserted rot (end of transfer). Cleared by the beginning of a new transfer, by $\$ 10$ and by reset.
8:9 NO CORPARE and TEMMNAL COUNT flip flops - Set if the respective: condition has occurred. Cleared by SIO, reset, or the begimnina of a new transfer.
10:11 IN TRANSFER ond OUT TRANSFER flit flops - Indicate the state of the bus logic flip flops, one of which will be set by the chamel during data, trensfers ($R E A D=$ INBOUND, WRITE $=$ OUTBOUND $)$.
12. CLEAR INTERFACE - Set if the test board has issued clear interface to the chanmel. Cleared by SIO or reset.
: 13:15 Currently unassigned (zero).

v. DETAILED TEST DESCRIPTION

The Stand-Alone HP 30036A Multiplexer Chamel Diagnostic Program is composed of fifteen (15) test sections. The test description per section is given as follows:

1. Description by Sections
1.1 IORES

Tests the $1 / 0$ Reset functions.
1.2 ARADDR

Stores address value of Address RAM (Random Access Memory) location into each RAM location. The reads back contents to verify that the unique address value is in that location. The 30036A/B Mu7tiplexer Channel has two RAM's: The "Address RAM" and the "Order RAM", each having 16 locations addressed 0 to 15 octal.

1.15 Continued

Direct Command Responses (Continued)
WIO - loads the 16 bit counter/buffer
R10 - returns the 16 bit counter/buffer
T10 - returns the test board status
In conjunction with the Direct $1 / 0$ Command execution/response tests, the Selector Channel Maintenance Board is used to exercise the eight (8) 510 program orders under all normal mode of Operation. For this section test, the Maintenance Board is installed on the lititiplexer's SIO Bus like a device controller with the appropriate device number and its interrupt - poll connected the multiplexer diagnostic then tests channel operation by specifying the appropriate control options by direct I/O command, setting up a 510 test program and issuing 510 command. In the default mode, the Maintenance Board behaves as a simple 16-bit. turn-around buffer which is reset to zero (1) upon $1 / 0$ Reset and it is loaded and read by both Direct and SIO Readilrite commands.
By specifying the certain control word options, the diagnostic program can cause incrementing of the buffer upon specific signal occurrences, and terminate the data transfer or the program won word count rollover. The outbound data can be compared with the buffer comments and the temmation can be specified on a compare failure. Those SIO program order/response tested are:

Silo Program Responses

Jump normal jump operation, with the jump met bit controlling conditional jumps
RETURN RESIDUE strictly a chanel function

INTERRUPT
END
CONTROL
SENSE
WRITE
normal end order execution
see discussion of control code
returns test board status
loads the counter/buffer or compares the word from memory with the current contents of the buffer, depending on the TNC control bit.
2.0 Description by Steps Within Section

The following are the description of the test step which is within section.

Section Name Step Number Test Function

FORES	5	Reset EOT (End of Transfer) Flip-flop. ARDOR
ARDATA	7	Store into, then read back from the contents of an Address RAM location. Step is repeated once for each RAM location.
	8	Store one of the data patterns into all 16 locations of the Address RAM. Step is repeated once for each data pattern.

2.0 Continued

NSGP3 18

NSGP4 20
STPAR 19

SIO TEST
Perform Address RAM/register circular path test.
Test odd-parity generation circuitry.
Same as Step 7 except that test is performed on Order RAM.

Same as Step 8 except that test is performed on Order RAM.
Same as Step 9 except that test is performed on Order RAM.
Increment and check count in the Address RRis register.
Increment and check count in the Order ham register.
Set up and execute test for an I/O Order. Step is repeated ror each separote 1/0 Order. (Control, Return word count residte. Jump Conditional, Junp Unconditional, Sense and Interrupt.).
Set up and execute test for an $1 / 0$ Order. Step is repeated for each separate $1 / 0$ Order. (End, End/Interrupt.)
Perform test step for two I/0 Orders; Read and Write.

Performs test step for Set Bank Order
Perform parity check for a given state combination. Step is ropeated for each possible state of the "Next State Logic".
CIO command execution/response test
TIO command execution/response test
WIO command execution/response test
RIO command execution/response test
CIO comnand test by TIO, CIO, TIO and test status word.
SIN command execution/response test (100 millisecond timeout)
End with Interrupt Order, Test DRT pointer, End W/Int Status, and Tlo status word are tested. (100 millisecond timeout)
End W/O Interrupt Test.
The interrupt is not expected. The DRT pointer is tested. End W/O Interrupt Status and TIO status words are tested.

2.0 Continued

 Interrupt Order Status and T10 Status worcis
are tested.

Sense Order Test (100 millisecond timeout). ORT pointer, Sense Order Status word and Sense order Test Beyond 32 K Test Jump Order (Unconditional) Test Jump Order (Conditional) Test Jump Order (Condition) with met bit on. Test Control Hond (IOCW) with even buts. Test Control lord (IOCH) with ode bits
Test IOAN Load with even bit patton
Test IOAS Load with odd bit pattern
Test Read Order; no chaining
Test RNW, RD STB, TOGGIE XFER, EOT counter
Test Fast Mode data read pattern
Test Fast Ho de RFW, PRD STB, TIX, and EOT
count
Test Fast SR Read Mode and clock time
Write Order test; no chaining
Test on no compare (TNC) and count WR STB
Test Write (l wd) in Fast Mode
Test Fast Mode; TNC, CLRIL, PW STB
Test Fast ! !rite Mode; $2 k$ transfer and clock
transfer
Test chained read
Test RNL, PRD STB, TIX, and EOT Count
under Fast SR Mode.
Chained Write Order Test
Fast Mode: TNC and count PWR STB with
Error Response Test
Transfer Error Test of non-existent memory
Nuli-Device access test with SIO read of $4 K$ data
Multi-Device access test with slow write of ak data:

2.0 Continued

Section Name Step Number ' Test Function

77
Multi-Device Read/Write of 4K data under SIO
Multi-Device access with the write of an (unchained); fast Node.

