HP 3000 SERIES II COMPUTER SYSTEM MANUAL OF STAND-ALONE DIAGNOSTICS

STAND-ALONE HP 30012A EXTENDED INSTRUCTION SET DIAGNOSTIC

Diaghostic D. 31

NOTICE

 nol firmenad by Hewhent-liaxiard

TABLE OF CONTENTS

section 1. INTRODUCTION 1
Section II. MINI-OPERATING INSTRUCTIONS 1
Operating Instructions 1
Switch-Register Options 2
Section Switch-Register 2
Halt Assignments 2
Section lll. REquIREMENTS 3
Hardware 3
Software 3
Section IV. DETAILED OPERATING INSTRUCTIONS 3
Operating Instructions 3
options 4
Halt and Message Tables 5
Section V. DETAILED TEST DESCRIPTION 12

1. INTRODUCTION

The Stand-Alone HP30012A Extended-Instruction Firmware Dlagnostic for the HP 3000 Series 11 constitutes both the Floating Point and the Decimal diagnostic programs. Section 1 Is the Floating Point Diagnostic and Section 2 is the Decimal Diegnostic. The programs are designed to verify that each instruction, both Floating Point and Decimal, is executed correcty and that any residues derived are verified for correctness. A detailed description of the test for both the Floating Point and decimal is included in the subsequent sections of this manual.

The Extended-Precision Floating Point instructions tested are:

$* 020410$	EADD	(EFP Add)
$\% 020411$	ESUB	(EFP Subtract)
$\% 020412$	EMPY	(EFP Multiply)
$\% 020413$	EDIV	(EFP Divide)
$\% 020414$	ENEG	(EFP Negate)
$\% 020415$	ECMP	(EFP Compare)

The Dectmal instructions tested are:

$\% 020601$	DMPY	(Double Multiply)
$\% 020502$	CVAD	(ConvertASCII to Decimal)
$\% 020603$	CVDA	(Convert Decimal to ASCII)
$\% 020604$	CVBD	(convert Binary to Decimal)
$\% 020605$	CVDB	(Convert Decimal to Binary)
$\% 020606$	SLD	(Shift Left Decimal)
$\% 020607$	NSLD	(Normalizing Shift Left Decimal)
$\% 020610$	SRD	(Shift Right Decimal)
$\% 020611$	ADDD	(AddDecimal)
$\% 020612$	CMPD	(Compare Decimal)
$\% 020613$	SUBD	(Subtract Decimal)
$\% 020614$	MPYD	(Multiply Decimal)

LR. MINI-OPERATING INSTRUCTIONS
A. Operating Instructions

1. Cold Load Diagnostic File \#(associated with 0431A) from Non-CPU Cold Load tape.
2. Depress "Carriage Return" at the Console.
3. Respond to the dialogue at the Console.
4. Switch-Register Options
817 FUNCTION

0
1
2-6
7
8
9
10
11
12
13
14
15

FUNCTION

SELECT EXTERNAL SWITCH REGISTER
SELECT SECTION
SPARE
OUTPUT TO LINE PRINTER (IF CONFIGURED IN SDUP)
halt on error count reached
SUPPRESS NON-ERROR MESSAGES
SUPPRESS ERROR MESSAGES
LOOP ON LAST STEP
HALT ON ERROR
HALT ON END OF STEP
HALT ON END SECTION
halt after complete program cycle
C. Section Switch-Register

BIT

$0 \quad$ Re-Configure
1 Select Extended Floating Point Diagnostic
2
3-15
Select Decimal Diagnostic
Spares
D. Halt Asstgnments

HALT(\%)

0
1
2

3
4
5
6
7
10

FUNCTION
spare
Irrecoverable Unexpected Trap.
Irrecoverable Unexpected Trap in Trap STT 1, 16, 24
and 25 (not in Extended-Instruction Set).
Halt on Error Count Reached
Spare
Section Select Switch-Register Entry Halt
External Switch-Register Entry Halt
Restore External Switch-Register Entry Halt
Irrecoverable Error after an execution of Instruction Set.

With this halt, TOS contains the error code as
follows:
ERROR CODE (TOS) DEFINITION
DB Changed Code Segment in Status $(8 ; 8)$ Changed S Bank Changed Q Changed

HALT (\%)	FUNCTION
*******	***
11	Irrecoverable Halts for "DB Changed" in the following Trap STTH:
	*) Trap\#25 (User Trap) *) Trap\#24 (Stack Overflow) *) Trap\#16 (Unimplemented Instr.) *) Trap\# I (Bounds Violation)
12	For above halt, the Trap STTH is displayed as an error code in TOS. Recoverable Error Halt If Switch-Register Bit (12) was selected. $\operatorname{TOS}(D: 8):=E R R O R \operatorname{CODE} ; \operatorname{TOS}(8: 8) ;=S T E P \#$
13	Halt after step
14	Half after section
$\frac{15}{16-17}$	Halt after complete Program Cycle Spares

11. REQUIREMENTS

A. Hardware

Minimum hardware required to run this diagnostic will be a HP3000/30 Series II Model 5, or Model 7.
B. Software

The Stand-Alone Diagnostic Utility Program (SDUP) is required to create the Stand-Alone Diagnostic Tape. This Cold Loadable tape is comprised of Cold Load Program, the Relocatable Loader, and one or more diagnostic Programs including the Stand-Alone ExtendedInstruction Set Diagnostic program. All programs are coded in System Programming Language (SPL/3000). For detailed description of SOUP: see System Diagnostic Utility Manual (Part\#03000-90125).

1V. DETAILED OPERATING INSTRUCTIONS

A. Operating Instructions

The following are the instructions for loading, executing, and configuring the Stand-Alone HP30012A Extended-Instruction Set Diagnostic.

1. Cold Load by entering \%3006 into the 30013 . 60013 Control Panel and simultaneously depress "LOAD" and "ENABLE" switches on the 3000360013 control panel. It will pause.
2. Select an appropriate Diagnostic File\# (associated with the Extended Instruction Set Diagnostic) and enter this number via the Switch Register. Depress "RUN". The tape will read the remaining records and will rewind at the end of last record read. (It should be noted that the Cold Load tapes supplied are identified by file names and their respective file position on the tape).
3. The HP30012A Extended-Instruction Set Diagnostic is now executable.
4. Depress "RETURN" Key at the Console to respond to Speed-Sense. Upon completing the previous operation, the program prints the diagnostic header and then requests necessary parameters to begin its execution cycle.
B. Options

Under Stand-Alone HP30012A Extended-Instruction Set Diagnostic Program, an operator can control the test sections or steps to be executed. The operator, via the Switch-Register option, can control halts after sections. steps, or upon program completion; control suppression os error and/or non-error messages; and control looping on a specific test step, or section. These control options may be selected when there is a request for a specific parameter entry. All configuration requests are made via the Console.

1. The options associated with each bit of the Switch Register entry request for the following message are the same as those described in Section 1I.B:
"QQ1 ENTER SWREG. SELECT OPTIONS"
The usage description of bits (0 and 1) for this option is as follows:

BIT\#O	BITH1	FUnction
*****	*****	***
0	0	Uses previously configured values.
0	1	Uses previously configured values.
1	0	The program uses whatever options currently selected on the Switch-Register of the control Panel or it will use whatever options entered by the request message " 003 RESTORE SWREG.SELEC
		OPTIONS".
1	1	If this option is selected, it suggests possible reconfiguration (see bit\#d of Section IV.B.2).

2. The options associated with each bit for the followIng message are the same options described in Secthon II.e:
"QO2 ENTER SECTION SELECT OPTIONS"
If Bitwo is not selected (0), the program requests no further parameters and continues execution using previously configured values.

If Bithe is selected (1), the program requests the restoration of External Switch-Register Options, requests maximum error and pass numbers from the following respective messages:
a. "QO4 ENTER MAXIMUM ERROR COUNT\#="
B. "Q05 ENTER PASS NUMBER="

The maximum error count and pass number is 999 (decimal) for each respectively.
(Note that in all previous messages, the quotation marks are for clarity only)
C. Halt and Message Tables

1. Halt Assignments

When a program halts, an instruction is displayed in the Current Instruction Register (CIR) of the 30003-60013 Control Panel. The Halt instruction is displayed in the CIR register as:

CIR=(0011011 $11 \times X X X)$
where: X 's is the Halt\# (octal).
See Halt Assignment Table as described in Section II.D.
2. Message Formats

There are basically four types of message classifications: D, E, P, and Q classes.
a. D-class

Messages which describe program properties. Some operator intervention is necessary.
b. E-class

Messages related to errors within test steps. Some operator intervention is necessary.
c. P-class

Messages which describe the test completion of a Section or a step or an indicator for a certain tested properties.
d. Q-class
Inquiry messages by the program for the parameter entry. operator intervention is required.

2.1 Message Descriptor

2.1.1 0-Types Messages

2.1.1.1 DO1 HP30012A EXTENDED INSTRUCTION SET DIAGNOSTIC (D431X.YY.ZZ)
 :This is the header information for this diagnostic program; where

n=Version Number $Y Y$-Update Number 22:Fix Number

2.1.1.2 002 XXX PASSES COMPLETED

:This message indicates that an entry value from Section IV.B. 2 .
for a pass number has been completed.

2.1.2 Q-Types Ressages

2.1.2.1 QD1 SELECT SWREG OPTIONS
:This message implies a request for any of those options avallahle in Coction is.B.
2.1.2.2 QO2 SELECT SECTION SWREG OPTIONS
:This message implies a request for any of those options available in Section II.C.
2.1.2.3 OO3 RESTORE SWREG OPTIONS:This message implies a request for any of those optionsavalliable in Section 11.8.
2.1.2.4 QpA ENTER MAXIMUM ERROR NUMBER=:This message implies a request for maximum error number indecimal (naximum=999).
2.1.2.5 QP5 ENTER PASS NUMBER=:This message implies a request for maximum pass number(Module) in decimal (Maximum=999).
2.1.3 P-Type Messages
2.1.3.1 PBl STEP XX COMPLETED
:Thrs message limplies that the test step (XXX) under execution wasJust completed. This message is printed only when Bit\#l3 ofthe options table in Section II.B. is on (1) and Bit \#9 isnot on (1).
2.1.3.2 P02 END OF SECTION XThis message implies that the test section (X) under exe-cution was just completed. This message is printed onlywhen Bit $\# 14=1$ and Bit $\# 9=0$ on the Switch-Register.
2.1.4 E-Type Messages (Extended Floating Point Instruction Set) E-Type messages may constitute anywhere from 3 to 4 lines on the console. An error definition associated with each respective error number is as follows: (all step and error numbers are in Decimal).
2.1.4.1 EI AAAA ERR IN STEP BBB OPERATION ERROR TARG $=\%$ XXXXXXX, $\% X X X X X X X, \% X X X X X X, \% X X X X X X X ~$ RESU= $\% Y Y Y Y Y Y, \% Y Y Y Y Y Y, \% Y Y Y Y Y Y, Z Y Y Y Y Y Y$
This message implies that an erroneous operation had takenplace. As a result, comparison with the expected resultis in conflict.
where: $A A A A=F l o a t i n g$ Point Instruction in reference, $B B B B=$ Test step number in which the error had occurred. $X^{\prime} s=$ The result of actual floating Point instruction Operation. $Y^{\prime} s=$ The expected result of the operation.
2.1.4.2 E2 AAAA ERR IN STEP BBB
Z WD(S) STACK DELETE ERROR STACK $=\% \times X X X X X$ SHOULD= $\%$ YYYYYY
This message implies that an erroneous number of words from the stack had been deleted during the Floating Point Instructions operation.
where: $A A A A=F l o a t i n g$ Point Instruction in reference BBBB=Test step number in which the error had occurred.$Z=1,2$,or3. Relative to the type of instruction inoperation.
$1=$ ENEG$2=$ ECMP$3=$ EADD, ESUB, EMPY, andEDIV
X's=Actual stack pointer relative to $D B$.Y 'stExpected stack pointer relative to $D B$.
2.1.4.3 E3 AAAA ERR IN STEP BBB ERROR OPNDI CHANGED OPND $1=\%$ XXXXXX, $\% X X X X X X, \% X X X X X X, \% X X X X X X$ SHOULD=\%YYYYYY, \%YYYYYY, \%YYYYYY, \%YYYYYYThis message implies that an OPNDI(u) which contains the4 word operand had changed during the operation.
where: $A A A A=F$ loating Point Instruction in reference$B B B=T e s t$ step number in which the error had occurred$X ' s=4$ word operand (u)$Y^{\prime} s=$ Expected 4 word operand
2.1.1.: E4 AAAA ERR IN STEP BBB ERROR OPNDZ CHANGED

SHOULD = ZYYYYYY, ZYYYYYY, ZYYYYYY, ZYYYYYY
This message implies that an OPND2(v) which contains the4 word operand had changed during the operation.
where: AAAA $=$ Floating Point Instruction in reference.
BBB=Test step number in which the error had occurred. x 's=4 word operand (v) Y 's=Expected 4 word operand
2.1.4.5 E5 AAAA ERR IN STEP BBB 222 ERROR $222=5 S S$
SHOULDESSS
This message implies that the Condition Code [Status (6:2)]is different after the operation than expected.
where: $A A A A=F l o a t i n g$ Point Instruction in reference
$B B A=$ Test step number in which the error had occurred
221=CCA for: EADD
ESUBEMPYEDIV
ENEG
ZZZ=CCC for: ECMP
SSS=Either: UNC=unchanged (3)
CCE=equal (2)CCL=less(1)
CCG=greater(0)
2.1.1.6 E6 AAAA ERR IN STEP BBB GNEXPECTED TRAP ERROR TRAP=XXThis message implies that the trap had occurred where oneWes not expected.
whre: AAAAFloating Point Instruction in referenceBB8=Test step number in which the error had occurred.$X X=A n$ erroneous trap STT number (decimal)
2.1 .4 .7 E7 AAAA ERR IN STEP BBB
EXPECTED OVERFLOW TRAP FAILED
TRAP $=X X$
shoml $0=25$
EXPECTED OVERFLOW TRAP CODE ERROR
TRPCODE $=\% \mathrm{YY}$
SHOULD $=\% 10$
This message implies that the expected trap STT\#25 (User Trap) for overflow did not occur. The message, also, implies that the expected Trap Code of $\$ 10$ did not occur.
where: $A A A A=$ Floating Point Instruction in reference $B B B=$ Test step number in which the error had occurred $X X=0$, No trap occurred
$\neq 0$, Wrong SST\# XX to which it trapped $Y Y=$ An erroneous trap code
2.1.4.8 E8 AAAA ERR IN STEP BBB

EXPECTED UNDERFLOW TRAP FAILED
TRAP $=X X$
SHOULD $=25$
EXPECTED UNDERFLOW TRAP CODE ERROR
TRPCODE=\%YY
SHOULD $=\% 11$
This message implies that the expected trap STT\# 25 (user Trap) for UNDERFLOW did not occur. The message, also, implies that the expected trap code of $\% 11$ did not occur.
where: $A A A A=$ Floating Point Instruction in reference $B B B=$ Test step number in which the error had occurred. $X X=0$, No trap occurred
$\neq 0$. Wrong SSTH XX to which it trapped $Y Y=A n$ erroneous trap code
2.1.4.9 E9 AAAA ERR IN STEP BBB

STATUS(OVFL) ERR FOR TRAP (ENABLED) EXPECTED
STATUS $=\% X X X X X X$
SHOULD= $\%$ YYYYYY
This message implies that for an expected Trap STT\# 25
(User Trap) for either OVFL, UNFL, or DZERO with trap enabled (STA(2:1)=1), the STA(4:1) was not zero (\varnothing) after the operation.
where: $A A A A=F l o a t i n g$ Point Instruction in reference $B B B=$ Test step number in which the error had occurred X's=Actual Status
$\gamma^{\prime} s=$ Expected Status
2.1.4.10 E10 AAAA ERR IN STEP BBB

STATUS (OVFL) ERR FOR TRAP (DISABLED) EXPECTED
STATUS $=\% X X X X X X$
SHOULD $=$ qiMYYYYY 2
This message implies that for an expected Trap STT\# 25 (User Trap) for either OVFL, UNFL, or DZERO with trap disabled (STA $2: 1)=0$), the STA $(4: 1)$ was not one (1) after the operation.
where: $A A A A=$ Floating Point Instruction in reference $B B B=$ Test step number in which the error has occurred. $X^{\prime} s=A c t u a l$ Status γ 's=Expected Status
2.1.4.11 Ell AAAA ERR IN STEP BBBEXPECTED DIVIDE BY ZERO TRAP FAILEDTRAP $=X X$SHOULD $=25$
EXPECTED (DIVIDE BY D) TRAP CODE ERROR
TRPCODE=XYY
SHOULD=\$12
This message implies that the expected Trap STT\# 25(User Trap) for DIVIDE BY ZERO did not occur. Themessage, also, implies that the expected trap codeof $\$ 12$ did not occur.
where: $A A A A=F l o a t i n g$ Point Instruction in reference $B B B=$ Test step number in which the error had occurred. $X X=D$. No trap occurred

 F\#. Wrong STTH XX to which it trapped

 \(Y Y=A n\) erroneous trap code
 2.1.4.12 E12 AAAA ERR IN STEP BBB

 (TOS) ERROR

 STACK \(=\% X X X X X X X\)

 SHOULD= \(\%\) YYYYYY
 This message implies that the TOS content after the
 Floating Point Instruction operations is different
 than expected.
 where: \(A A A A=F l o a t i n g\) Point Instruction in reference
 B88=Test step number in which the error had occurred.
 \(X\) 's=TOS content after the instruction operation
 \(Y^{\prime} \mathrm{s}=\) Expected YOS content
 2.1.4.13 E13 AAAA ERR STEP BBBEXPECTED STACK OVFL TRAP ERROR
TRAP $=X X$
SHOULD=24
This message implies that the trap for STACK OVFL did not occur in Trap STT 24, but rather in Trap STT: XX.
where: $A A A A=$ Floating Point Instruction in reference $B B B=$ Fest step number in which the error had occurred. $X x=0$, No trap occurred $=0$. Wrong STT\# $X X$ to which it trapped
2.i.4.14 E14 AAAA ERR IN STEP ZZZ
EXPECTED BOUNDS VIOL. TRAP ERROR TRA $P=X X$
SHOULD=0
This message implies that the trap for BOUNDS VIOLATION did not occur in Trap STTH O1, but rather in Trap STT\# XX.
where: $A A A A=F l o a t i n g$ Point Instruction in reference $B B B=$ Test step number in which the error had occurred. $X X=0$, No trap occurred.
FO. Wrong STT\# XX to which it trapped.
2.1.4.15 E15 AAAA ERR IN STEP BBB
X-VALUE CHANGEDACTUAL $=\% X X X X X X$SHOULD $=\% Y Y Y Y Y Y$
This message implies that the X-Value after theFloating Point Instruction Operation is differentthan expected.
where: $A A A A=F l o a t i n g$ Point Instruction in reference $B B B=$ Test step number in which the error had occurred $X^{\prime} s=X$-Value after the instruction operation $Y^{\prime} s=X-V a l u e$ before the instruction operation
2.1.5 DECIMAL INSTRUCTION SET ERROR MESSAGES
All steps and error numbers are in octal.
2.1.5.1 E3O DL GOT CHANGED IN STEP XXX
2.1.5.2 E31 2 GOT CHANGED IN STEP XXX
2.1.5.3 E32 WRONG S IN STEP XXX
$S-Q=\% A A A A A A$
SHOULD $=\%$ BBBBBB
2.1.5.4 E33 WRONG RESULT IN STEP XXX
RESULT=AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA SHOULD=BBBB BBBB BBBB BBBB BBBB BBBB BBBB BBBB
2.1.5.5 E34 WRONG INDEX IN STEP XXX INDEX=\%AAAAAA SHOULD $=$ \%BBBBBB
2.1.5.6 E35 WRONG STATUS IN STEP XXX
STATUS=A AAA AAA AAA AAA AAA SHOULD=B BBB BBB BBB BBB BBB
2.1.5.7 E36 WRONG TOS IN STEP XXX
2.1.5.8 E37 UNEXPECTED TRAP IN STEP XXX TRAP SST=AA
2.1.5.9 E4O WRONG TRAP SST IN STEP XXX TRAP SST=AA SHOULD $=B B$
2.1.5.10 E41 WRONG TRAP CODE IN STEP XXX
TRAP CODE=AA SHOULD $=B B$
2.1.5.11 E42 FAILED TO TRAP IN STEP XXX TRAP SST=BB

v. Detailed Test Description

A. Section 1 (Extended Floating Point Instructions)

1. The following test steps comprise the following information:
```
STEP X : AAAA
    U
    v
    -V
    W
    CC
OVERFLOW
```

Where:
$\mathrm{X}=$ step number
AAAA $=$ Floating Point Instruction Type
$U=$ Operand -1
$\mathrm{V}=$ operand -2
$-V=$ Negate (operand $-V$)
$W=$ Operation result (Expected result)
CC = Conditon Code (STA(6:2)) expected Where:
$C C=C C L$ (less than)
$=$ CCG (greater than)
$=\operatorname{CCE}$ (equal to)
OVERFLOW $=$ Overflow Bit (STA(4:1))
$=O N$ or OFF (Expected)
STEP 1 : EADD
$u=8040001,8000002,8000003,8000004$
$V=8140000,8002000,8003000,8004000$
$\omega=8037176,8000375,8000574,8001000$
$C C=C C G: O V E R F L O W=O F F$
STEP 2 : EADD
$U=8140000,8002000,8003000,8004000$
$V=8040001,8000002,8000003,8000004$
$\omega=8037176,8000375,8000574,8001000$
$\mathrm{CE}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 3 : EADD
$U=8040000,8000002,8100000,8004000$
$V=2140000,8000002,8000003,8000004$
$W=8035077,8176407,8176000,8000000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW =OFF
STER 4 : ERDD
$u=8140000,8000002,8000003,8000004$
$V=8040000,8000002,8100000,8,004000$
$\omega=035077,8176407,8176000,8000000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$

V. Continued

STEP 5 : EADD
$U=8040000,8000002,8000003,8100000$
$V=8140000,8000002,8000003,8000004$
$W=8033077,8176000,8000000,8000000$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 6 : EADD
$U=\% 140000,8000002,8000003,8000004$
$V=8040000,8000002,8000003 ; 8100000$
$W=\% 033077,8176000,8000000,8000000$
CC = CCG: OVERFLOW =OFF
STEP 7 : EADD
$\mathrm{U}=8040001,8000002,8000003,8000004$
$\mathrm{V}=8000000,8000000,8000000,8000000$
$W=8040001,8000002,8000003,8000004$
CC = CCG: OVERFLOW =OFF
STEP 8 : EADD
$U=\% 040301,8000002,8000003,8000004$
$V=8040200,8100001,8100001,8100001$
$W=8040341,8040002,8140003,8140005$
$C C=$ CCG: OVERFLOW =OFF
STEP 9 : EADD
$\mathrm{U}=8040301,8000002,8000003,8000004$
$V=8040100,8100001,8100001,8100001$
$W=8040321,8020002,8060003,8060004$
CC = CCG: OVERFLOW =OFF
STEP 10: EADD
$U=8040301,8000002,8000003,8000004$
$V=8040000,8100001,8100001,8100001$
$W=8040311,8010002,8030003,8030004$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 11: EADD
$\mathrm{U}=8046701,8000002,8000003,8000004$
$V=8040077,8002000,8003000,8004000$
$W=8046701,8000002,8000003,8000005$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 12: EADD
$\mathrm{U}=8047001,8000002,8000003,8000004$
$\mathrm{V}=8040077, \% 002000, \% 003000,8004000$
$\mathrm{W}=8047001,8000002, \% 000003,8000004$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$

STEP 13: EADD

$U=8047101,8000002,8000003,8000004$
$V=8040077,8002000,8003000,8004000$
$W=8047101,8000002,8000003,8000004$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$

STEP 14: EADD

$U=8040001,8000002,8000003,8000004$
$V=8140001,8000002,8000003,8000004$
$W=8000000,8000000,8000000,8000000$
$\mathrm{CC}=\mathrm{CCE}:$ OVERFLOW $=\mathrm{OFF}$
STEP 15: EADD
$U=8040077,8177777,8177777,8177777$
$V=8040077,8177777,8177777,8177777$
$W=8040177,8177777,8177777,8177777$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 16: EADD
$U=8040257,8177777,8177777,8177777$
$V=8040000,8000000,8000000,8000003$
$W=8040300,8000000,8000000,8000000$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 17: EADD
$U=8040077,8177777,8177777,8177777$
$V=8140000,8000000,8000000,8000000$
$\mathrm{W}=8037777,8177777,8177777,8177776$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 18: EADD
$U=8040100,8000000,8000000,8000000$
$V=8140077,8177777,8177777,8177777$
$W=0.031200,8000000,8000000,8000000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 19: EADD
$\mathrm{U}=8040200,8000000,8000000,8000000$
$V=8140077,8177777,8177777,8177777$
$W=8040100,8000000,8000000,8000001$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 20: EADD
$U=8077757,8177777,8177777,8177777$
$V=8077500,8000000,8000000,8000001$
$W=8077777,8177777,8177777,8177777$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=O F F$

```
STEP 21: EADD
    \(\mathrm{U}=8077757,8177777,8177777,8177777\)
    \(V=\% 077500, \% 000000,8000000, \% 000002\)
    \(\mathrm{W}=8000000,8000000,8000000,8000000\)
    CC =CCG: OVERFLOW \(=0 \mathrm{O}\)
```


STEP 22: EADD

 \(\mathrm{U}=8077777\), \(8177777,8177777,8177777\)
 \(\mathrm{V}=8077777,8177777,8177777,8177777\)
 \(W=8000077,8177777,8177777,8177777\)
 \(\mathrm{CC}=\mathrm{CCG}: ~ O V E R F L O W=O N\)

STEP 23: EADD

$U=8100100,8000000,8000000,8000001$
$V=8100077,8177777,8177777,8177777$
$W=8100000,8000000,8000000,8000000$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=\mathrm{ON}$

STEP 24: EADD

$\mathrm{U}=8000100,8000000,8000000,8000000$
$V=8100077,8177777,8177777,8177777$
$\mathrm{W}=8071200,8000000,8000000,8000000$
CC = CCG: OVERFLOW =OFF

STEP 25: EADD

$\mathrm{U}=8000100,8000000,8000000,8000001$
$V=8100000,8000000,8000000,8000001$
$W=8000000,8000000,8000000,8-00001$
$C C=C C G: ~ O V E R F L O W=O F F$

STEP 26: ESUB

$U=8040000,8100000,8003000,8004000$
$V=8040000,8000002,8000003,8000004$
$\mathrm{W}=8037077$, 8177005,8176407,8176000
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 27: ESUB
$U=8140000,8000002,8003000,8000004$
$V=8140000,8000000,8003000,8004000$
$W=8037077,8177005,8176407,8176000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=0 \mathrm{FF}$
STEP 28: ESUB
$\mathrm{U}=8000001,8000002,8000003,8000004$
$V=\% 100000, \% 100000,2000000, \% 000000$
$W=8000100,8140001,8000001,8100002$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\cap \mathrm{FF}$

STEP 29: ESUB

$\mathrm{U}=8100001,8000002,8000003,8000004$
$V=8000000,8000000,8100000,8000000$
$\mathrm{W}=\mathrm{q} 100100, \mathrm{~g} 100001,8040001,8100002$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=\mathrm{OFF}$

```
STEP 30: ESUB
    U =8040001,80000002,80000003,8000004
    V =$040000,8177777,8177777,8100000
    W =%035300,8000160,8000200,8000000
    CC = CCG: OVERFLOW =OFF
STEP 31: ESUB
    U=8040001,8000002,80000003,8000004
    V =8040000,8002000,8177777,8100000
    W =8037176,8000200,8000700,8001000
    CC = CCG: OVERFLOW =OFF
```


STEP 32: ESUB

```
\(U=8040001,8000002,8000003,8000004\)
\(V=8040000,8177777,8003000,8100000\)
\(W=8035337,8040120,8000200,8000000\)
    CC = CCG: OVERFLOW =OFF
STEP 33: EMPY
\(U=8040001,8000002,8000003,8000004\)
\(V=8000000,8000000,8000000,8000000\)
W \(=8000000,8000000,8000000,8000000\)
\(C C=\) CCE: OVERFLOW \(=\) OFF
```


STEP 34: EMPY

```
\(\mathrm{U}=8000000,8000000,8000000,8000000\)
\(V=8040001,8000002,8000003,8000004\)
\(W=8000000,8000000,8000000,8000000\)
\(\mathrm{CC}=\mathrm{CCE}:\) OVERFLOW \(=\mathrm{OFF}\)
```


STEP 35: EMPX

```
\(U=8040077,8177777,8177777,8177777\)
\(\mathrm{V}=8040077,8177777,8177777,8177777\)
\(W=8040177,8177777,8177777,8177776\)
\(C C=C C G:\) OVERFLOW \(=O F F\)
STEP 36: EMPY
\(\mathrm{U}=8140001,8000002,8000003,8000004\)
\(V=8140010,8002000,8003000,8004000\)
\(W=8040011,8022022,8043073,8064205\)
\(C C=C C G: ~ O V E R F L O W=O F F\)
STEP 37: EMPY
\(\mathrm{U}=8077777,8177777,8177777,8177777\)
\(\mathrm{V}=8177777,8177777,8177777,8177777\)
\(W=8137777,8177777,8177777,8177776\)
\(C C=C C L:\) OVERFLOW \(=O N\)
```

STEP 38: EMPY
$\mathrm{U}=8100000,8000000,8000000,8000001$
$V=8000000,8000000,8000000,8000001$
$W=8140000,8000000,8000000,8000002$
CC = CCL: OVERFLOW $=O N$
STEP 39: ENEG
$V=8000001,8000002,8000003,8000004$
$-\mathrm{V}=8100001,8000002,8000003,8000004$
$C C=C C L: ~ O V E R F L O W=O F F$
STEP 40: ENEG
$V=8100000,8000002,8000003,8000004$
$-V=8000000,8000002,8000003,8000004$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 41: ENEG
$V=8000000,8000002,8000003,8000004$
$-\mathrm{V}=8100000,8000002,8000003,8000004$
$C C=C C L: ~ O V E R F L O W=O F F$
STEP 42: ENEG
$V=8000000,8000000,8000003,8000004$
$-\mathrm{V}=8100000,8000000,8000003,8000004$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=\mathrm{OFF}$
STEP 43: ENEG
$V=8000000,8000000,8000000,8000004$
$-V=8100000,8000000,8000000,8000004$
$C C=C C L: ~ O V E R F L O W=O F F$
STEP 44: ENEG
$V=8000000,8000000,8000000,8000000$
$-\mathrm{V}=8000000,8000000,8000000,8000000$
CC = CCE: OVERFLOW =OFF
STEP 45: ECMP
$\mathrm{U}=8000000,8000002,8000003,8000004$
$V=8140000,8002000,8003000,8004000$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 46: ECMP
$U=8040001,8000002,8000003,8000004$
$V=8040000,8002000,8003000,8004000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{OFF}$
STEP 47: ECMP
$\mathrm{U}=8140001,8000002,8000003,8000004$
$\mathrm{V}=8140000,8002000,8003000,8004000$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=O \mathrm{FF}$

STEP 48: ECMP

$\mathrm{U}=8000000,8000002,8000003,8000004$
$V=8000000,8100000,8003000,8004000$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=\mathrm{OFF}$
STEP 49: ECMP
$U=8177777,8000002,8000003,8000004$
$\mathrm{V}=\$ 177777,8100000,8003000,8004000$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 50: ECMP
$U=8000001,2000000,0000000,8000004$
$V=8000001,8000000,8100000,8004000$
$C C=C C L ; ~ O V E R F L O W=O F F$
STEP 51: ECMP
$U=8100000,8100000,8000000,8000004$
$V=8100000,8100000,8100000,8004000$
$C C=C C G:$ OVERFLOW $=\cap F F$
STEP 52: ECMP
$\mathrm{U}=8000001,8000002,8000003,8000004$
$V=8000001,8000002,8000003,8004000$
$\mathrm{CC}=\mathrm{CCL}:$ OVERFLOW $=\mathrm{OFF}$
STEP 53: ECMP
$U=8177777,8000002,8000003,8000004$
$V=8177777,8000002,8000003,8004000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=O \mathrm{FF}$
STEP 54: ECMP
$\mathrm{U}=8000001,8000002,8000003,8100000$
$V=8000001,8000002,8000003,8100000$
$\mathrm{CC}=\mathrm{CCE}:$ OVERFLOW $=\mathrm{OFF}$
STEP 55: EDIV
$U=8040000,8000002,8000003,8000004$
$V=8000000,8000000,1000000,8000000$
$W=8040000,8000002, \% 000003,8000004$
$\mathrm{CC}=\mathrm{CCG}:$ OVERFLOW $=\mathrm{ON}$
STEP 56: EDIV
$\mathrm{U}=8000000,8000000,8000000,8000000$
$V=8140000,8000002, \% 000003,8000004$
$\mathrm{W}=8000000,8000000,2000000,8000000$
$\mathrm{CC}=\mathrm{CCE}:$ OVERFLOW $=$ OFF

```
STEP 57: EDIV
    U =%040052,%17376,8062413,8127645
    V =%040000,8000000,8000000,8000000
    W=8040052,8173476,%062413,8127645
    CC = CCG: OVERFLOW =OFF
STEP 58: EDIV
    U =%141000,8000000,80000000,8000000
    V =&140077,8177600,8000000,8000000
    W=8040700,%000100,8000100,8000100
    CC = CCG: OVERFLOW =OFF
```

STEP 59 : EDIV
$U=8040077,8177777,8177777,8177777$
$\mathrm{V}=8137000,8000000,8000000,8000000$
$W=8141077,8177777,8177777,8177777$
$C C=C C L ; O V E R F L O W=O F F$
STEP 60: EDIV
$U=8140077,8177777,8177777,8177777$
$V=8040077,8177600,8000000,8000000$
$\boldsymbol{W}=8140000,8000100,8000100,8000100$
$C C=C C L: ~ O V E R F L O W=O F F$
STEP 61: EDIV
$U=8040077,8177600,8000000,8000000$
$V=8040000,8000177,8177777,8177777$
$W=8040077,8177200,8001377,8175002$
$C C=C C G: ~ O V E R E L O W=O F F$
STEP 62: EDIV
$U=8040000,8000000,8000000,8000000$
$\mathbf{V}=8040077,8177777,8177777,8177777$
$\boldsymbol{W}=8037700,8000000,8000000,8000001$
$C C=C C G: O V E R F L O W=O F F$
STEP 63: EDIV
$U=8040000,8000377,8137400,8000000$
$V=8040077,8177777,8177777,8177777$
$W=8037700,8000377,8137400,8000001$
$C C=C C G: ~ O V E R F L O W=O F F$
STEP 64: EDIV
$U=8040000,8000000,000000,8077777$
$\mathrm{V}=8040000,800000,8000000,8100000$
$W=8037777$, $8177777,817777,8177776$
$C C=C C G: ~ O V E R F L O W=O F F$

STEP 65: EDIV

 \(U=8040042,8016212,8127664,8122623\)
 \(V=8040020,8005564\), 是 137141,8104405
 \(W=8040016,8070777,8177710,8107404\)
 \(C C=C C G: O V E R F L O W=O F F\)
 STEP 66：EDIV
$\mathrm{U}=8040000,8000200,8000000,8000001$
$V=8040000,8000000,8000000,8000001$
$W=2040000,8000200,2000000,8000000$
$C C=C C G: O V E R F L O W=O F F$
STEP 67：EDIV
$U=8040000,8000300,8000200,8000001$
$V=8040000,8000100, \% 000000,8000001$
$W=040000,8000200,5000000,8000000$
$C C=C C G: O V E R F L O W=O F F$

STEP 68：EDIV
$U=8040000,8000177,8177200,2000000$
$V=8040000,8000177, \% 177777,8177600$
$W=8037777,8177777,8176400,2003400$
$C C=C C G: ~ O V E R F I O W=O F F$
STEP 69：EDIV
$U=8040000,2000000,4000400,8000000$
$V=8040000,8000000, \% 000200,8000000$
$W=8040000, \frac{5000000,8000200,8000000}{} \mathbf{W}$
$C C=C C G: ~ O V E R F L O W=O F F$

STEP 70：EDIV

$U=8040000,8000100, \therefore 000400,8000200$
$V=8040000, \% 000100, \% 000200,8000000$
$W=2040000,8000000, \therefore 000200, \% 000000$
$\mathrm{CC}=\mathrm{CGG}:$ OVERPLOW $\cdots \mathrm{OPF}$

STEP 71：EDIV
$U=8040000,8000000,2000200,5000200$
$V=8040000,8000000,2000000,000200$
$W=8040000,8000000, \because 000200,9000000$
$\mathrm{CC}=\mathrm{CCG:} \mathrm{OVERELOW}=$ OPF

STEP 72：EDIV
$U=8040000,2000100,2004,100,8000400$
$V=8040000,2000100,8000000,2000200$
$W=8040000,2000000,9600200,0000000$
$\mathrm{CC}=\mathrm{CCG}:$ OVERPION $\therefore \mathrm{BF}$

STEP 73：EDIV
$U=8040000,0000177,: 17 \% 777,8177600$
$V=8040000,2000177,177600, \frac{9}{5} 000000$
$W=8040000,8000000,9001177,8177200$
$\mathrm{CC}=\mathrm{CCG}: \mathrm{OVFRF}$ IOW $=$ OPF

STE 74 : EDIV
$\mathrm{u}=8040000,8000000,8000200,8000200$
$V=8040000,8000000,8000200, \% 000000$
$W=\$ 040000,8000000,8000000,8000200$
$C C=C C G: ~ O V E R F L O W=O F F$
STme 75: EDIV
$U=8000000,8000000,8000000,8000001$
$\mathrm{V}=8077777,8177777,8177777,8177777$
$W=040000,8000000,8000000,8000002$
$C C=C C G: O V E R F L O W=O N$
sTep 76: EDIV
$\mathrm{U}=8077777,8177777,8177777,8177777$
$\mathrm{V}=8000000,8000000,8000000,8000001$
$W=8037777,8177777,8177777,8177775$
$C C=C C G: \quad$ OVERFLOW $=O N$

2. Special Test Cases

Sres 79: Tests 'ECMP' instruction with 4 word U-operand and its source address on Tos. Uses same case data as Step 54.
gTex 78: Teste 'EDIV' instruction with $\mathrm{SR}=3$ uses same case data as step 74.

STy uses same case data as step 33

STER 80: Tests 'EADD' instruction with $S R=3$ uses same case data as step 19.

SLE 81: Tests 'ESUB' instruction with $\mathrm{SR}=3$ uses same case data as Step 29.

STEP 82: Tests 'ENEG' instruction with 4 word V-operand and its source address on Tos.
Uses same case data as step 44.
shes 83: Tests Stack Overflow with "EADD' instruction with $Z<S$. It should trap to STP 24 and leave the stak unchanged during the operation. Tos is loaded with premdefined pattern for verification.
scep 84: Tests $W>(S-4)$ with 'EADD' instruction for a upper bounds test. It ghould trap to shm V1 and leave the stack unchanged during the operation. Uses same case data as Step 19.
STEP 85: Tests U>(S-4) with 'EADD' instructionfor a upper bounds test. It should trap tnSTY 1 without any error and leave thestack unchanged during the operation.Uses same case data as Step 1.
Sme 86: Testis V> (S-4) with 'EADD' instruction for a upper bound test. It should trap to STT \#l without any error and leave the stack unchanged during the operation. Uses same case data as Step 2.
SqE 87: Tests W<DL with 'EADD' instruction for
a lower bound test. It should trap to SIT \#l without any error and leave the stack unchanged during the operation. Uses same case data as Stop 4.
STu 8 8: Tests U<DL with 'EADD' instruction fora lower bound test. It should trap toSTT 11 without any error and leave thestack unchanged during the operation.Uses same case data as Step 5.
Grep 89: Tests V<DL with 'EADD' instruction fora lower bound test. It should trap toSTT 1 without any error and leave thestack unchanged during the operation.Uses same case data as Step 6.
STex 90: Tests V>(S-4) with 'EDIV' instruction for a upper bound test. It should trap to sTr $\frac{3}{3}$ without any error and leave the atack unchanged during the operation. Uses same case data as Step 56 .
GME 81: Testa U> (S-4) with 'ECMP' instructionfor a upper bound test. It should trap toSTT 1 without any error and pop 2 wordsoff the stack during the operation.Uses same case data as Step 54.
STep 92: Tests $V>(5-4)$ with 'ECMP' instruction fora upper bound test. It should trap toSTT IL Without any error and leave thestack unchanged during the operation.Uses same case data as step 53.

