
HP 3000 Computer Systems

NATIVE LANGUAGE SUPPORT
REFERENCE MANUAL

fRJ~:~~:~~
19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. (32414-90001)
E1187

Printed in U.S.A. 11/87

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR TICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden-
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans-
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (c) 1987 by HEWLETT-PACKARD Company

List of Effective Pages

The List of Effective Pages gives the date of the current edition, and lists the dates of all changed pages.
Unchanged pages are listed as "ORIGINAL". Within the manual, any page changed since the last
edition is indicated by printing the date the changes were made on the bottom of the page. Changes are
marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars and dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

First Edition September 1984

Update #1 August 1986

Update #2 November 1986

Second Edition November 1987

List of Effective Pages 1

Printing History

New editions are complete revisions of the manual. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The
date on the title page and back cover of the manual changes only when a new edition is published.
When an edition is reprinted, all the prior updates to the edition are incorporated. No information is
incorporated into a reprinting unless it appears as a prior update.

First Edition September 1984

Update #1 August 1986

Update # 1 Incorporated November 1986

Update #2 November 1986

Update #2 Incorporated November 1986

Second Edition November 1987

Printing History 1

MPE V Manual Plan

There are many manuals applicable to the HP 3000 that are not listed here. A complete list may be
found in each issue of the MPE V Communicator. Please contact your System Manager.

GENERAL
INFORMATKlN

Monuol
~9~3-7~3

!APE V COMMANDS
Ref«enc~
l.Ianuol

32033-90006

SEGMENTER
Ref«"el1ce
l.IonU(lI

J0000-900 I 1

INTRODUCTORY LEVEL:

GUIDE FOR THE
NEW USER

32033-90009

STANDARD USER LEVEL:

I.lPE V 1N"ffiINSICS
Referenc~
Manual

32033-90007

ADMINISTRATIVE LEVEL:

DEBUG/STACK DUI.IP
Referenoe
l.Ionuol

.30000-90012

I.lPE V SYSTEt.I OPERATION
& RESQlJRCE MANAGEMENT

Rereren~ Manool
32033-90005

SUMMARY LEVEL:

MPE V QUICK
REFERENCE GUIDE
32033-90023

GUIDE FOR THE
NEW OPERATOR
32033-90021

MPE V Manual Plan

I.lPE V unUTIES
Reference
Manual

32033-90008

FILE SYSTEM
Refenen~
Monuol

30000-902.36

Conventions

NOTATION DESCRIPTION

UPPERCASE Within syntax statements, characters in uppercase must be entered
in exactly the order shown, though you can enter them in either
uppercase or lowercase. For example:

SHOW JOB

Valid entries: showjob ShowJob SHOWJOB

Invalid entries: shojwob Shojob SHOW JOB

italics Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual value.
In the following example, you must replace filename with the name
of the file you want to release:

{}

RELEASE filename

Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be
entered exactly as shown.

Within syntax statements, braces enclose required elements. When
several elements within braces are stacked, you must select one. In
the following example, you must select ON or OFF:

punctuation

{ ON }
SETMSG {OFF}

[] Within syntax statements, brackets enclose optional elements. In
the following example, brackets around ,TEMP indicate that the
parameter and its delimiter are optional:

PURGE filename [,TEMP]

When several elements within brackets are stacked, you can select
anyone of the elements or none. In the following example, you
can select devicename or deviceclass or neither:

[devicename]
SHOWDEV [deviceclass]

Conventions (Continued)

NOTATION DESCRIPfION

[...] Within syntax statements, a horizontal ellipsis enclosed in brackets
indicates that you can repeatedly select elements that appear within
the immediately preceding pair of brackets or braces. In the
following example, you can select itemname and its delimiter zero
or more times. Each instance of itemname must be preceded by a
comma:

[,itemname] [...]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if
you select only one element, the delimiter is not required. In the
following example, the comma cannot precede the first instance of
itemname:

[itemname] [, ...]

1···1 Within syntax statements, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element
that appears within the immediately preceding pair of brackets or
braces. However, each element can be selected only one time. In
the following example, you must select .A or .B or .A. B or .B •A

tA}
{. B } 1 ... 1

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if
you select only one element, the delimiter is not required. In the
following example, you must select A or B or A. B or B. A . The
first element cannot be preceded by a comma:

{A }
{B }I, ... I

Within examples, horizontal or vertical ellipses indicate where
portions of the example are omitted.

Within syntax statements, the space symbol /:::.shows a required
blank. In the following example, you must separate modifier and
variable with a blank:

SET [(modifier)]/:::.(variable);

Conventions (Continued)

NOTATION

)

CTRL }char

base prefixes

Bit (bit:length)

DESCRIPTION

The symbol () indicates a key on the terminal's
keyboard. For example, (CTRL) indicates the Control key.

[CTRL lchar indicates a control character. For example,
(CTRL)y means you have to simultaneously press the Control
key and the y key on the keyboard.

The prefixes %, #, and $ specify the numerical base of the value
that follows:

%num specifies an octal number
#num specifies a decimal number
$num specifies a hexadecimal number

When no base is specified, decimal is assumed.

When a parameter contains more than one piece of data within its
bit field, the different data fields are described in the format
Bit (bit:length), where bit is the first bit in the field and length is
the number of consecutive bits in the field. For example,
Bits (13:3) indicates bits 13, 14, and 15:

most significant least significant

10 I I I
Bit(O:I) Bits(13:3)

Table of Contents

Chapter 1: Introduction
Background .
Scope .
Supported Native Languages

Character Sets
Language- Dependent Characteristics
Native Language Support in MPE

NLS System Utilities
Configuring Native Languages
NLS Intrinsics
Peripheral Support
Conversion Utilities
Application Message Facility

File Naming Conventions
NLS in the Subsystems .
Accessing NLS Features

Intrinsics
Additional Parameter Values In Existing Intrinsics
Native Language Attribute
Commands .

Implicit Language Choice in Subsystems
The NLGETLANG Intrinsic . . .
User-Defined Commands (UDCs)

Application Programs
General Application Program
Application Program Without NLS
Single Language Application .
Multilingual Application . . .
HP Subsystem Utility Program

1-1
1-2
1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9

1-10
1-10
1-11
1-12
1-13
1-15

Chapter 2: Application Message Facility
Accessing Application Catalogs
Source Catalogs
Directives

$SET Records .
$LANG Records
Message Records
Message Record Special Characters
Comment Records
Sample Source Catalog

2-1
2-2
2-2
2-2
2-4
2-4
2-5
2-5
2-6

Table of Contents 1

Chapter 3:

2 Tableof Contents

Parameter Substitution 2-6
2-6
2-7
2-8
2-8
2-9

2-10
2-11
2-12
2-13
2-14
2-14
2-15
2-16

Positional Parameter Substitution
Numerical Parameter Substitution

Catalog Naming Convention
Maintaining a Message Catalog . .

Merging Maintenance Files by Line Numbers
Merging Maintenance Files by $SET and Message Number
User Dialog

Formatting a Source Catalog
Expanding a Formatted Catalog
GENCAT JCWs
GENCAT in Batch Mode
GENCAT Help Facility
Error Messages

NLS in MPE Subsystems
FCOPY/3000

Options
Error Messages
Performance Issues

IMAGE/3000
Utility Programs
Intrinsics
Changing The Language Attribute of an IMAGE/3000

Database .
Error Messages .

KSAM/3000 .
Creating KSAM/3000 Files with KSAMUTIL
Error Messages .
Creating KSAM/3000 Files Programmatically
Modifying KSAM/3000 Files
Generic Keys .
Copying From KSAM/3000 File to KSAM/3000 File
Changing the Language Attribute of a KSAM/3000 File
Moving NLS KSAM/3000 Files To Pre-NLS MPE

QUERY .
Command Summary
Error Messages

SORT-MERGE/3000
Stand-Alone SORT-MERGE/3000
Programmatic SORT-MERGE/3000
Error Messages
Performance Considerations
COBOLII Sort and Merge .

3-2
3-2
3-4
3-4
3-5
3-5
3-6

3-7
3-8

3-10
3-11
3-12
3-13
3-13
3-14
3-17
3-17
3-17
3-18
3-19
3-21
3-23
3-23
3-24
3-26
3-26
3-27

VPLUS/3000 .
Language Attribute
Setting The Language ID Number
Field Edits .
Entry and Language ID Number
Error Messages
VPLUS/3000 Intrinsics

RAPID /3000
Inform Language Attribute
REPORT LANG Option
Transact SET (LANGUAGE) Verb
Command Summary .

3-28
3-28
3-29
3-29
3-30
3-31
3-32
3-34
3-34
3-34
3-34
3-35

Chapter 4: Native Language Intrinsics
NLS Date and Time Formatting Overview 4-3
ALMANAC (Intrinsic Number 406) 4-4

Syntax 4-4
Parameters 4-4
Special Considerations 4-5
Additional Discussion 4-5

CATCLOSE (Intrinsic Number 417) 4-6
Syntax 4-6
Parameters 4-6
Special Considerations 4-6
Additional Discussion 4-6

CATOPEN (Intrinsic Number 415) 4-7
Syntax 4-7
Functional Returns 4-7
Parameters 4-7
Special Considerations 4-7
Additional Discussion 4-7

CAT READ (Intrinsic Number 416) 4-8
Syntax 4-8
Functional Returns 4-8
Parameters 4-8
Special Considerations 4-9
Additional Discussion 4-9

NLAPPEND (Intrinsic Number 412) 4-10
Syntax 4-10
Parameters 4-10
Special Considerations 4-10

NLCOLLATE (Intrinsic Number 402) 4-11
Syntax 4-11
Parameters 4-11
Special Considerations 4-12

Table of Contents 3

4 Table of Contents

NLCONVCLOCK (Intrinsic Number 409)
Syntax
Functional Returns . .
Parameters
Special Considerations
Additional Discussion .

NLCONVCUSTDATE (Intrinsic Number 408)
Syntax
Functional Returns . .
Parameters
Special Considerations
Additional Discussion .

NLCONVNUM (Intrinsic Number 419)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLFINDSTR (Intrinsic Number 429)
Syntax
Functional Returns . .
Parameters
Special Considerations

NLFMTCALENDAR (Intrinsic Number 413)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLFMTCLOCK (Intrinsic Number 410)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLFMTCUSTDA TE (Intrinsic Number 407)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLFMTDATE (Intrinsic Number 414)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLFMTLONGCAL (Intrinsic Number 420)
Syntax .
Parameters .
Special Considerations .

NLFMTNUM (Intrinsic Number 421)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

4-13
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-17
4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-22
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-25
4-25
4-25
4-25
4-25
4-26
4-26
4-26
4-27
4-27
4-28
4-28
4-28
4-28
4-29
4-29
4-29
4-31
4-31

NLGETLANG (Intrinsic Number 411)
Syntax
Functional Returns .
Parameters
Special Considerations
Additional Discussion .

NLINFO (Intrinsic Number 400)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NUUDGE (Intrinsic Number 427)
Syntax
Functional Returns
Parameters .

NLKEYCOMPARE (Intrinsic Number 405)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLNUMSPEC (Intrinsic Number 425)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLREPCHAR (Intrinsic Number 403)
Syntax .
Parameters .
Special Considerations
Additional Discussion .

NLSCANMOVE (Intrinsic Number 401)
Syntax
Functional Returns . .
Parameters
Special Considerations

NLSUBSTR (Intrinsic Number 428)
Syntax .
Parameters .
Additional Discussion

NLSWITCHBUF (Intrinsic Number 426)
Syntax .
Parameters .
Additional Discussion

NLTRANSLATE (Intrinsic Number 404)
Syntax .
Parameters .
Special Considerations

4-32
4-32
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-41
4-41
4-42
4-42
4-42
4-42
4-44
4-44
4-44
4-46
4-46
4-47
4-47
4-47
4-48
4-48
4-49
4-49
4-49
4-50
4-50
4-51
4-51
4-51
4-51
4-53
4-54
4-54
4-54
4-56
4-57
4"57
4-57
4-58
4-59
4-59
4-60
4-60

Table of Contents 5

Appendix A:

Appendix B:

AppendixC:

Appendix D:

6 Table of Contents

System Utilities
NLUTIL Program .
NLS File Structure
Language Installation Utility (LANGINST)

Adding a Language
Deleting a Language . .
Modifying Local Formats

LANGINST User Dialog
Choosing a Function . .
Adding a Language
Deleting a Language . .
Modifying Local Language Formats
Modification of ASCII/EBCDIC Translation Tables

Error Messages .

A-l
A-I
A-2
A-2
A-3
A-3
A-4
A-4
A-5
A-5
A-6
A-7
A-8

SUPPORTED LANGUAGES AND CHARACTER SETS
Character Set Definitions B-1

B-3
B-3
B-3
B-5
B-6
B-7
B-8
B-9

B-lO
B-ll
B-l2

Language Definitions and Character Sets
NATIVE-3000
ROMAN8
KANA8
ARABIC8
GREEK8
TURKISH8
PRCl5 .
ROCl5 ..
JAPAN15 .
KOREAl5

COLLATING IN EUROPEAN LANGUAGES

EBCDIC MAPPINGS
Background Data
ROMAN8 to EBCDIC Mapping

D-l
D-2

Appendix E: PERIPHERAL CONFIGURATION
NLS Peripheral Support Summary
Specifics of 7-Bit Support
NLS Peripheral Support Details
HP 150 Poc. as a Terminal 0

Requirements 0 0 0 0 • 0

Character Set Supported
Configuring For 8-Bit Operation
Typing ROMAN8 Characters Not On The Keyboard
Notes 0 0 0 •

HP 2382A Terminal 0 0 • 0

Requirements 0 • 0 0 0

Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes . 0 0 •

HP 2392A Terminal
Requirements 0

Character Set Supported
Configuring For 8-Bit Operation
Typing ROMAN8 Characters Not On Keyboard
Notes

HP 2563A Printer 0 0 0 0

Requirements 0 0 0 0

Character Set Supported
Configuring For 8-Bit Operation
Notes 0 0 0 0 •• 0 0 0

HP 2608A/HP 2608S Printers
Requirements . 0 • 0 • 0

Character Set Supported
Configuring For 8-Bit Operation
Notes 0 0 • 0

HP 2621B Terminal . 0 0 0

Requirements 0 0 0 0 0

Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard o' 0 0 • 0 0

Notes 0 0 0 ••• 0 0 0 •

HP 2622A/HP 2623A Terminals
Requirements 0 0 0 • 0 0 0

Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0

E-1
E-4
E-4
E-5
E-5
E-5
E-5
E-5
E-5
E-6
E-6
E-6
E-6

E-6
E-6
E-7
E-7
E-7
E-7
E-7
E-7
E-8
E-8
E-8
E-8
E-8
E-9
E-9
E-9
E-9
E-9

E-10
E-10
E-10
E-10

E-10
E-10
E-ll
E-ll
E-ll
E-ll

E-ll
E-ll

Table of Contents 7

8 Table of Contents

HP 2622J/HP 2623J Terminals
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing KANA8 Characters Not On The Keyboard
Notes .

HP 2625A/HP 2628A Terminals
Requirements'. . .
Character Set Supported
Configuring For 8-Bit Operation
Typing ROMAN8 Characters Not On The Keyboard
Notes .

HP 2626A/HP 2626W Terminals
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes

HP 2627A Terminal
Requirements .
Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes

HP 2631B Printer
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Notes .

HP 2635B Printer/Terminal
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Notes

HP 2645J Terminal
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing KANA8 Characters Not On Keyboard
Notes

HP 2680A Printer .
Requirements .
Character Set Supported
Configuring For 8-Bit Operation
Notes .

E-12
E-12
E-12
E-12
E-12
E-12
E-13
E-13
E-13
E-13
E-13
E-13
E-14
E-14
E-14
E-14

E-14
E-14
E-15
E-15
E-15
E-15

E-15
E-15
E-16
E-16
E-16
E-16
E-16
E-17
E-17
E-17
E-17
E-17
E-18
E-18
E-18
E-18
E-18
E-18
E-19
E-19
E-19
E-19
E-19

Appendix F:

AppendixG:

HP 2688A Printer
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Notes

HP 2700 Terminal
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard .
Notes .

HP 2932A/HP 2933A/HP 2934A Printers
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Notes

Notes .

CONVERTING 7-BITTO 8-BIT DATA
National Substitution Sets
Conversion Utilities .
Conversion Algorithm
Conversion Procedure
N7MF8CNV Utility .
I7DB8CNV Utility
V7FF8CNV Utility .
V7FF8CNV and Alternate Character Sets

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700,
and 150 .

GROUP TWO - HP 2622A, 2623A, 2626A, and 2382A
V7FF8CNV Operation .

APPLICATION GUIDELINES
All Programming Languages
COBOLII (HP 32233A) .
FORTRAN (HP 32102B)
SPL (HP 32100A)
RPG (HP 32104A) .
BASIC (HP 32101B)
Pascal (HP 32106A)

E-20
E-20
E-20
E-20
E-20
E-21
E-21
E-21
E-21

E-21
E-21
E-22
E-22
E-22
E-22
E-22
E-23

F-1
F-2
F-3
F-5
F-7
F-8
F-lO
F-ll

F-ll
rn
F-12

G-1
G-2
G-3
G-3
G-3
G-3
G-3

Table of Contents 9

Appendix H:

10 Table of Contents

EXAMPLE PROGRAMS
A. SORT in a COBOLII Program
B. SORT in a Pascal Program
C. SORT in a FORTRAN Program
D. DATE/TIME Formatting Intrinsics in a FORTRAN Program
E. DATE/TIME Formatting Intrinsics in an SPL Program
F. NLSCANMOVE Intrinsic in a COBOLII Program
G. NLSCANMOVE Intrinsic in an SPL Program
H. NLTRANSLATE/NLREPCHAR Intrinsics in a COBOLII

Program H -26
I. NLKEYCOMPARE Intrinsic in a COBOLII Program H-29
J. NLKEYCOMPARE Intrinsic in an SPL Program H-33
K. Obtaining Language Information in a COBOLII Program H-37
L. CATOPEN, CATREAD, CATCLOSE Intrinsics in a Pascal

Program ... H -41

H-1
H-3
H-5
H-6
H-9
H-13
H-20

Preface

Native Language Support (NLS) provides the HP 3000 with the features necessary to produce localized
application programs for end users without reprogramming for each country or language.

Native Language Support consists of Multi-Programming Executive (MPE) intrinsics, additional
features in COBOLII, and the FCOPY /3000, lMAGE/3000, KSAM/3000, QUERY /3000,
SORT-MERGE/3000, RAPID/3000, and VPLUS/3000 subsystems, the Application Message Facility,
plus utilities to install and implement native language capabilities.

This release of Native Language Support incorporates new languages and their character sets. It also
presents additions to the set of Intrinsics that are available to the user:

NLJUDGE Judges whether a character is a one-byte or two-byte Asian character.

NLSUBSTR Extracts one string from another string.

NLFINDSTR Searches a string for another string.

Preface 1

Introduction 1
Hewlett-Packard Native Language Support (NLS) features enable the applications
designer/programmer to create local language applications for the end user.

Background
A well-written application program manipulates data and presents it appropriately for its use and user.
Users who are less technically sophisticated benefit from application programs which interact with them
in their native language, and which conform to their local customs. Native language refers to the user's
first language (learned as a child), such as Finnish, Portuguese, or Japanese. Local customs refer to
conventions such as local date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assumptions about
the local customs and language of the user. Program interface and processing requirements vary from
country to country, and sometimes within a country. Most existing software does not take this into account
and is appropriate for use only in the country or locality in which it is written.

The solution to this problem is to design application programs that can be easily localized. Localization
is the adaptation of a software application or system for use in different countries or local environments.
In such an environment, the user's native language and/or data processing requirements may differ from
those in the environment of the software developer. Traditionally, localization has been achieved by
modifying a program for each specific country. Applications designed with localization in mind provide a
better solution. Localization can then be accomplished with (ideally) no modification of code at all.

An applications designer must write the application program with built-in provisions for localization.
Functions which are Iocal language or custom dependent cannot be hard-coded. For example, all mes-
sages and prompts must be stored in an external file or catalog. Character comparisons and upshifting
must be accomplished by external system-level routines or instructions. The external files and catalogs
can be translated, and the program localized without rewriting or recompiling the application program.

Native Language Support (NLS) provides the tools for an applications designer/programmer to produce
localizable applications. These tools may include architecture and peripheral support, as well as software
facilities within the operating systems and subsystems. NLS addresses the internal functions of a program
(for example, sorting) as well as its user interface (for example, messages and formats).

Introduction 1 - 1

Scope
HP 3000 Native Language Support (NLS) consists of features within MPE, as well as in the FCOPY /3000,
IMAGE/300a, KSAM/3000, QUERY/3000, SORT-MERGE/3000, VPLUS/3000, RAPID/3000, and
COBOLII subsystems. These facilities allow application programs to be designed and written with a local
language interface for the end user and locally correct internal processing. The end user can see localized
programs produced by an applications designer/programmer who has used the NLS tools.

The MPE interface, subsystems, programmer productivity tools, and compilers have not been localized.
The applications designer must still interact with MPE and the subsystems using American English. For
the designer/programmer, the interface has not changed. For example, it is possible to write a complete
local language application program using COBOLII and VPLUS/3000, but the COBOLII compiler and
the VPLUS/3000 FORMSPEC program retain their English-like characteristics.

Not all functions which vary from one language to another, or one country to another, are provided by
NLS. For example, tax calculation rules are usually country-specific or local-specific, and rules for word
hyphenation are related to individual languages. Functions such as these are considered to be application-
specific, and are beyond the scope of NLS.

Supported Native Languages

NLS is based on languages and character sets which have been predefined and built into the operating
system. These are referred to as supported languages. A unique language name and language ID number
has been assigned to each language supported in NLS. In some cases, more than one supported language
has been introduced corresponding to a single natural language. For example, NLS supports FRENCH
(language number 7) and CANADIAN-FRENCH (language number 2). Upshifting is handled differently
in FRENCH and CANADIAN-FRENCH. When language-dependent characteristics differ within the
same natural language, NLS can create separate native languages to represent these differences.

Each of the supported languages may also be considered a "language family"which is applicable in several
countries. GERMAN (language number 8), for example, may be used in Germany, Austria, Switzerland,
and any other place it is requested.

In addition to the native languages supported, an artificial language, NATIVE-3000 (language number 0),
represents the way the computer used to deal with language before the introduction ofNLS. For example,
the collating sequence (the sequence in which characters acceptable to the computer are ordered) for
NATIVE-30aO is the order of characters in the USASCII code and the date format is returned by the
existing MPE intrinsic, FMTDATE. Whenever language number a is used in a native language function, the
result will be identical to the function performed before the introduction of NLS. NLS intrinsic calls with
the language parameter equal to a will always work correctly, even if no native languages have been
configured on the system.

Refer to Appendix B, "Supported Languages and Character Sets" for listings of the languages supported,
their character sets, and their identification numbers (langnum values).

1- 2 Introduction

Character Sets

Within NLS, each supported language is associated with an 8-bit or 16-bit character set (one character set
may support many languages). Like languages, character sets have defined names and ID numbers as-
signed, although these names and numbers are not widely used, except, in documentation. Before the
introduction of NLS, the only widely-supported character set was USASCII, a 128-character set designed
to support American English text. USASCII uses only seven bits of an 8-bit byte to encode a character.
The eighth or high order bit is always zero. For this reason, USASCII is referred to as a "7-bit" code.

An 8-bit byte has the capacity to contain 256 unique values, which means it is possible to build supersets
of USASCII which permit encoding and manipulation of characters required by languages other than
American English. These supersets are referred to as "8-bit" or "extended" character sets. New characters
are added with code values in the range 161-254.

Another method of providing foreign characters (not supported by NLS) involves replacing as many as 12
existing characters in USASCII with substitution characters. The 7-bit substitution set eliminates some
characters in favor of others needed by a particular local language. A different substitution set is neces-
sary for each language. NLS 8-bit character sets support all USASCII characters (with the exception of
"\" in KANA8) in addition to the characters needed to support several western European-based languages
and KATAKANA.

The use of 8-bit or 16-bit character sets for NLS implies that in character data, all bits of every byte have
significance. Application software must take care to preserve the eighth (high order) bit, nowhere allow-
ing it to be modified or reused for any special purpose. Also, no differentiation should be made between
characters having the eighth bit turned off and those with it turned on, because all are characters of equal
status in the extended character set.

Refer to Appendix B, "Supported Languages and Character Sets" for a list of native languages supported
by each character set.

Introduction 1 - 3

Language-Dependent Characteristics

For each native language which is supported by NLS, a number of characteristics are known. These are
lexical conventions (for example, collating sequence and upshifting rules), country or local custom-depen-
dent formats (currency symbols, date, time, and number formats), and data processing conversion tables:

• Lexical conventions vary from country to country. The collating sequence is affected by the local
alphabet and usage of each language. Upshifting tables maintained by NLS for each supported
language contain the appropriate result of upshifting any character in the corresponding character
set. This category of information is really language-related in the literal sense.

• Currency symbols, date, time, and number formats are country and local custom dependent. Cur-
rency symbols and their position in relation to numbers depend on local custom. Date, time, and
number formats also vary from country to country.

• Data processing tables for ASCII-to-EBCDIC and EBCDIC-to-ASCII conversion are affected by
language because the EBCDIC codes are different from country to country.

Within NLS, characteristics that are language related, custom-dependent, and data processing oriented
are all considered to be language-dependent. All information used by, or available from, NLS is based on
the application's choice of language(s). For example, NLS maintains an ENGLISH collating sequence
and an ENGLISH time-of-day format. In this context, ENGLISH refers specifically to that used in Eng-
land rather than the English language. (AMERICAN refers to the language, formats, and tables used in
the United States.)

Refer to Appendix B, "Supported Languages and Character Sets" for a complete list of supported lan-
guages and language characteristics. Detailed information on any particular installed language is available
programmatically via the NLINFO intrinsic (refer to Chapter 4, "Native Language Intrinsics") or in report
form from the NLUTIL program.

Native Language Support in MPE

The MPE components of NLS consist of utility programs (LANGINST and NLUTIL), system intrinsics,
and an application message facility.

NLS System Utilities

LANGINST is used by system managers to select the native languages to be supported on their system(s).
NLUTIL is used to obtain the details of languages installed on a system. Refer to Appendix A, "System
Utilities" for a description of LANGINST and NLUTIL.

1- 4 Introduction

Configuring Native Languages

Before any native languages (except NATIVE-3000) can be used on a system, they must be configured by
the System Manager using the LANGINST utility program. Refer to Appendix A, "System Utilities" for
the LANGINST user dialog. The System Manager can select which supported languages to configure and
can modify several formats associated with the language(s) being configured. For example, this feature is
useful to a System Manager in Austria who wants to install GERMAN with a different currency symbol
than the default for this language. Changes to a system's language configuration are effective after the
next system startup, at which time the configured languages are installed. After a language has been
installed, language-specific information available in NLS may be used by any application program re-
questing it.

NLS Intrinsics

The NLS intrinsics may be called by application programs and Hewlett-Packard subsystems to provide
language-dependent functions and information for any language installed on a system. For example, the
NlFMTDATE intrinsic returns a locally formatted date, and the NlCOlLATE intrinsic compares two character
strings using a language-dependent collating sequence. Refer to Chapter 4, "Native Langauge Intrinsics"
for a complete list of NLS intrinsics. Some HP 3000 subsystems call NLS intrinsics to perform certain
functions. For example, configured native languages can affect the collating sequence used by SORT-
MERGE/3000, the numeric formatting done by VPLUS/3000, and the EBCDIC conversions performed
by FCOPY /3000. Refer to Chapter 3, "NLS in the Subsystems" for specific information.

NOTE

None of the above changes are automatic. All existing applications and
jobs will function the same way they did previous to the installation of NLS,
unless they are modified to request NLS functions.

Peripheral Support

Peripherals configured for any of the 7-bit substitution sets are not supported by NLS.

Most Hewlett-Packard peripherals are designed for 8-bit operation. Most peripherals that have been
configured for 7-bit operation can be reconfigured for 8-bit operation.

NLS has no direct control over what peripherals are configured on a system. The user must configure the
peripherals which will support the character set(s) necessary for the desired languages. Refer to Appendix
E, "Peripheral Configuration" for instructions.

Introduction 1- 5

Conversion Utilities

Data encoded according to any 7-bit substitution set is not supported by NLS. Users with data encoded
in one or more of the European 7-bit substitution sets supported on the older Hewlett-Packard terminals
and printers have the option to convert this data. A set of utilities is available to convert 7-bit data to 8-bit
(ROMAN8) data in KSAM files, lMAGE/3000 databases, VPLUS/3000 forms files, and MPE files.
Refer to Appendix F, "Converting 7-Bit to 8-Bit Data," for conversion instructions.

Application Message Facility

A localizable program contains no text (prompts, commands, messages) stored in the code itself. This
allows the text to be translated (part of the localization process) without modifying the source code of a
program or recompiling it. Therefore, a good text handling facility is essential to Native Language Sup-
port.

The principal tool supplied within NLS for text handling is the Application Message Facility. The applica-
tion message catalog facility consists of the GENCAT utility program and the CAT intrinsics (CATREAD, CATOPEN,

and CATCLOSE). The application message catalog facility provides efficient storage and retrieval of program
messages, commands, and prompts. The GENCAT program is used to convert an ASCII source file
containing messages into a binary application catalog that can be accessed by the intrinsics. Application
programs use the CAT intrinsics to retrieve messages from it. An application message catalog consists of a
file containing character strings (messages), each uniquely identifiable by a set number and a message
number within a set. Key features of the Application Message Facility include:

• Each message in a catalog can allow up to five parameters which may be specified by position or
number.

• An editor is used to create the source catalog (an MPE ASCII file). The GENCAT program is used
to read the source catalog and to create a formatted catalog. The formatted catalog has an internal
directory for efficient access and is compacted (for example, by deleting trailing blanks) to optimize
storage space.

• GENCAT has a facility to merge two message source files; a master file and a maintenance file. The
maintenance file contains changes to be made in the master file. Updates of a localized version of an
application may be made by translating the maintenance file, then merging it with the localized
source catalog.

• Multiple localized versions of an application can be supported with translations of the original source
catalog. If a naming convention is established, the application program can determine which local-
ized catalog to open at run time (using the CATOPEN intrinsic). Refer to Chapter 2, "Application Mes-
sage Facility" for suggested naming conventions.

The application message facility is documented in Chapter 2, "Application Message Facility."

1 - 6 Introduction

File Naming Conventions

An application which has been localized into several languages will have separate message catalogs,
VPLUS /3000 forms files, and/or various other language-dependent data files for each of these languages.
It is suggested that a naming convention be established for these files which follows the language number-
ing used by NLS. To do this, a file name should be used which is up to five identifying characters followed
by a three-digit language number, corresponding to the language of the file contents. For example, the
original, unlocalized data might be stored in a file whose name is FILEOOO; FILE008 would contain the same
data modified for German, and F I LE012 would contain the data modified for Spanish. It is the responsibility
of the application program to determine, at run time, which file to open. Once the language number is
determined, the NLAPPEND intrinsic may be used to form the file name if this convention is followed.

NLS in the Subsystems

In addition to the new utilities and MPE intrinsics, NLS provides features in COBOLII, FCOPY /3000,
IMAGE/3000, KSAM, QUERY /3000, SORT-MERGE/3000, VPLUS/3000, and RAPID/3000. NLS
features in these subsystems are intended to provide the applications designer /programmer with the tools
to design local language applications. The subsystems themselves are not localized. The application end
user, not the programmer or subsystem user, will see the localized interface.

MPE Native Language Support intrinsics provide the means to implement NLS features contained in the
subsystems. This means that native language definitions are consistent in all the subsystems. For example,
the collating sequence is consistant within MPE and in the subsystems and can be defined for a specific
native language by calling the NLCOLLATE and NLKEYCOMPARE intrinsics. The same collating sequence is used by
SORT-MERGE/3000 in ordering records, by KSAM/3000 in ordering keys, and by IMAGE/3000 in
ordering sorted chains when these subsystems are dealing with sorted character strings that have been
associated with the same native language.

The MPE operating system and its subsystems function independently of native language features config-
ured on the system. NLS features are optional and must be requested to be invoked; existing application
software and stream files will operate as they did before the introduction of NLS.

Introduction 1 - 7

Accessing NLS Features

On HP 3000 systems using MPE and subsystems with NLS features, all NLS features are optional. These
features must be requested by the applications programmer through intrinsic calls or interactively by the
user of a subsystem program through a LANGUAGE command or keyword.

Intrinsics

NLS features may be obtained from application programs through calls to specific NLS intrinsics, primar-
ily in MPE. For example, to get a local language date format, an application should call the NLS intrinsic
NLFMTDATE instead of the old FMTDATE intrinsic.

Additional Parameter Values In Existing Intrinsics

Another way is by specifying values for extended or new parameters in existing intrinsics. For example,
SORTINIT in SORT-MERGE/3000 has been extended to allow the specification of a CHARACTER key and a
native language ID number (langnum) which determines the collating sequence to be used. These addi-
tional parameters must be used in an application to sort according to native language values.

Native Language Attribute

Some subsystem structures, including IMAGE/3000 databases, KSAM/3000 files, and VPLUS/3000
forms files may be assigned a language attribute by their creators. The language attribute will ensure that
certain functions will perform according to localized specifications at run time. VPLUS/3000, for exam-
ple, will perform its upshift function according to the language of the forms file.

Commands

Commands or keywords have been added to certain subsystems which make NLS features available on
request. For example, entering LANGUAGE=FRENCH within QUERY /3000 would cause sorted character data of
IMAGE/3000 types X and U to be sorted according to the FRENCH collating sequence in its output
reports. If the language command is not entered, QUERY /3000 (or any other subsystem) will perform
as it did before the introduction of NLS. If these commands are not used, the default language(s) used by
subsystem utility programs can be influenced by the values of the two NLS Job Control Words, NLUSER-
LANG and NLDATALANG.

Some general suggestions for designing applications incorporating NLS features and specific strategies
for using major programming languages are included in Appendix G, "Application Guidelines."

Refer to Chapter 3, "NLS in MPE Subsystems" for information on how and when the individual subsys-
tems are influenced.

1-8 Introduction

Implicit Language Choice in Subsystems

Two NLS Job Control Words (JCWs), NLUSERLANG and NLDATALANG, permit the subsystem user
to designate a default language other than NATIVE-3000 for the subsystems. Each of the five subsystem
programs (SORT, MERGE, FCOPY /3000, QUERY /3000, ENTRY) looks at one of these JCWs, and its
value is used as a default language by the program. The default can be superseded by a specific command.
Utility programs in the subsystems are often run within user-defined commands (UDCs). UDCs are often
created for the convenience of a less sophisticated computer user than the person who designed them. To
add to this convenience, NLS has established a convention for designating the native language choice for
operation of the subsystem programs that does not require the user to enter a language explicitly. This is
accomplished through the use of two reserved Job Control Words (JCWs), NLUSERLANG and NL-
DATALANG:

• NLUSERLANG designates the user interface and report output language for programs. If the sub-
systems were localized, this would be the language of choice for prompts and messages. If user input
data is modified (for example, upshifted by QUERY or VPLUS), this language determines which
language's attributes are used. The default language for all language-dependent operations in
QUERY/3000 and ENTRY can be designated .

• NLDATALANG designates the internal data manipulation language. One reason this is distinct
from NLUSERLANG is that multiple users with different interface languages may wish to share
some common internal data (for example, sorted according to one language). The data manipulation
language is used in the SORT, MERGE, and FCOPY /3000 programs to control their language-de-
pendent functions, such as collating, upshifting, and conversions to and from EBCDIC.

NOTE

If the user interface of one of these programs were localized, it would use
NLUSERLANG as its default for messages, prompts, etc.

NLUSERLANG and NLDATALANG are independent JCWs, and are treated independently by NLS. In
many cases, they will specify the same language, but examples already exist in which they could have been
used with distinct values.

The NLGETLANG Intrinsic

NLUSERLANG and NLDATALANG values are retrieved by the subsystems through calls to the NLGET-

LANG intrinsic. Application programs may also use this intrinsic. NLGETLANG retrieves the value of the lan-
guage attribute requested, and verifies its installation. If the value is that of an unconfigured or undefined
language, NLGETLANG will return a language ID number of 0 (NATIVE-3000) and an error. To use either
JCW, set the integer value corresponding to the language ID number desired, using: SET JCW. Refer to the
MPE VIE Commands Reference Manual (32033-90006), for the :SETJCW command syntax.

User-Defined Commands (UDCs)

ENTRY, FCOPY /3000, QUERY /3000, SORT, and MERGE are often run from within user-defined
commands (UDCs). The two NLS Job Control Words (JCWs) give the user the option of establishing a
native language within a UDC. Introduction 1 - 9

Application Programs

The focus of NLS is the application program. Most NLS tools are accessed programmatically from appli-
cations according to the requirements of the designer or programmer. Several common application mod-
els are possible. These are illustrated in Figures 1-1 to 1-5. NLS capabilities can be used in single language
applications, multilingual applications, in subsystem utility programs, or not at all.

General Application Program

The functions language can influence an application in terms of data manipulation (internals) and user
interaction (externals) is illustrated in Figure 1-1. The core application program is flanked by functions
that can differ according to language and local customs (local date, time, and currency formats).

DATA MANIPULATION

DATA BASE

INDEXED SEQUENTIAL

SORTING

CHAR. MANIPULATION

1 ·10 Introduction

APPLICATION
PROGRAM

USER INTERACTION

SCREENS

FORIAATS

PROMPTS, MESSAGES

USER COMMANDS

Figure 1·1. Application Program Format

Application Program Without NLS

Figure 1-2 shows an application program which does not make use of NLS capabilities. This NATIVE-
3000 application makes use of conventional programming techniques and standard MPE and subsystem
features to achieve the key language-dependent functions. It cannot be localized without reprogramming
and is unaffected by the introduction of NLS.

DATA MANIPULATION

DATA BASE

IMAGE
data OO8e(8)
and intrinsics

INDEXED SEQUENTIAL

I<SAM
files and
intrinsics

SORnNG

SORT-MERGE
Intrlnslcs

CHAR. MANIPULAnON

Hard-coded functions
(e.q., compares

upshifts)

APPLICATION
PROGRAM

Customer-written
or third porty
application

Figure 1-2. Application Program Without NLS

USER INTERACTION

SCREENS

VPLUS
forms and
Inb1nslcs

PROMPTS. MESSAGES

Hard-coded
and/or message

catalag

USER COMMANDS

Herd=ceded
and/or command
. file

FORMATS

Intrlnsics
(e.9 .• FMTOATE)

Introduction 1- 11

Single Language Application

French is used as the single language application example in Figure 1-3. The applications designer has
determined that only French is required, and has hard-coded its language ID number (langnum) 7 into
the program. The langnum is used as a parameter in calling various native language-dependent intrinsics.
In addition, the designer has created IMAGE/3000 databases, KSAM/3000 files, and VPLUS/3000
forms files with the French language attribute, and has expressed all prompts and messages in French.
This use of NLS is for programs which will only be used in one country or location, or with only one
language.

s
ff.!

"'--C-HAR-'-MAN-IP-U-LA-n-O-N---"f

NL Intrinslcs
(e.q., NLCOLlATE
NLSCANt.4OVE)

DATA MANIPULATION

DATA BASE

I~GE doto
bose(s) with

"FRENCH" ottribute

INDEXED SEQUENTIAL

KSAM file(lI)
with "FRENCH"

attribute

SORnNG

SORT-MERGE
intrinsics

1- 12 Introduction

APPLICATION
PROGRAM

A program written
for use In FRANCE.

Set LANGNUM
to 7 (FRENCH).

Figure 1-3, Single Language Application

USER INTERACTION

SCREENS

FRENCHVPLUS
forms
flle(s)

PROMPTS, MESSAGES

Herd+ceded
and/or application
messoge catalog

USER COMMANDS

Herd=ceded
and/or command

file

FORMATS

Intrinsic.
(e.g .. NI.Fl.4TDATE)

Multilingual Application

The program in Figure 1-4 shows a localizable or multilingual application. This application can be used
in several countries or in multiple languages by different users on the same system. The key attribute of
this program is that it selects its language(s) at run time.

When installing an application on a system, the manager of the application may establish configuration
files for that application. These files store information about various users or transactions and their native
language requirements. At run time the application program can determine which language(s) to use.

The program may call the NI.GETI.ANG intrinsic to obtain the system default language (set by the System
Manager when native languages are configured) or it may prompt the user to enter a language name or
1D number (langnum).

The application may call NLGETLANG to obtain the user interface language and/or the data manipulation
language. The Job Control Words NLUSERLANG and NLDATALANG must be in place before invok-
ing this type of application. This method could be restrictive if many users or transactions are handled
from one job or session.

Once the languages have been determined, the program opens the appropriate VPLUS/3000 forms files,
message catalogs, and/or command files, based on the user interface language choice. It also opens any
needed 1MAGE/3000 databases, KSAM/3000 files, or general data files; these mayor may not depend
upon language choice. The appropriate language 1D numbers are used in calling the various native lan-
guage intrinsics. Different users may concurrently run the same program with different languages. The
application can be designed to use more than one language within a single execution. For example, one
language may be used for data manipulation and a different one for user interactions.

Introduction 1• 13

DATA MANIPULATION

DATA BASE

IMAGE data bose(s)
with appropriate

language ottrlbute(s)

INDEXED SEQUENTIAL

KSAM flle(s)
with appropriate

language ottrlbute(s)

SORTING

SORT-MERGE
intrin sics

NL IntrinsiCII
(e.g., NLCOUATE
NLSCANMOVE)

1- 14 IntroductIon

J
!
/
/~---------------,APPLICATION

PROGRAM
A program written

for use in
multiple ceuntrle ••

Determine LANGNUN(s)
at run time .•

• From opplicotian
configuration file,
system default, user
prompt, JeWs, etc.

Figure 1-4. Multilingual Application

USER INTERACTION

SCREENS

~~
j;~

r--------./~
CHAA. NANIPULATION

VPLUS forms file(s)
w/appropriate language

or "intemational"

PROt.4PTS, t.4ESSAGES

In application message
cotalog(s) chosen

by LANGNUt.4

USER COMt.4ANDS

Command file(s) or
meslSage cotolog(s)
ehosen by LANGNUN

FORMATS

NL intrinsic.
(e.g., NLF'MTOATE)

HP Subsystem Utility Program

Figure 1-5 shows a special category of a multilingual application, the Hewlett-Packard subsystem utility
program. Many of these programs are not typically used by end users, but are used to manipulate user
data in conjunction with application programs. They determine which language to use at run time via a
user-entered keyword or command, or defaults.

The user interaction in these programs has not been made localizable since many of these programs are
not end user tools.

;St

#.:r
.....--------.1 ~

CHAR. MANIPULATION V

DATA MANIPULATION

DATA BASE

IMAGE
dolo bose(s)

INDEXED SEQUENTIAl

KSAM
flle(8)

SORTING

SORT-~ERCE
in lrin sics

NL IntrinslclI
(e.g., NLCOUATE
NLSCANNOVE)

USER INTERACTION

SCREENS

VPLUS forms file(s)
w / oppropriete language

or "tnternotloncl"

PROMPTS, MESSAGES

Hard-coded or in
messoge cctoloq
{not localized}

HP 3000
SUBSYSTEMS

FCOPY. SORT, MERGE.
QUERY, ENTRY

Determine LANGNUM
from uller command

or ke ord." USER COMMANDS

Hcrd-ecoded

• Coli NLGETUNG to
establish defaull(a) .

FORMATS

NL intrinsic&
(e.g., NLf'MTOATE)

Figure 1-5. HP Subsystem Utility Program

Introduction 1- 15

Application Message Facility 2
The Application Message Facility is a Native Language Support (NLS) tool that provides a programmer
with the flexibility needed to create application catalogs for localization. Text such as prompts,
commands, and messages intended for the user's interaction with an application can be stored in
separate ASCII editor files. This allows the programmer to maintain files and localize applications
without changing the program code.

The NLS Application Message Facility contains the GENCAT utility program and the CAT intrinsics,
CAToPEN, CATREAD, and CATCLoSE, as shown in Figure 2-1.

FORMATTED
APPLICATION

CATALOG

< CATOPEN

CATREAO

APPUCATION
SOURCE
CATALOG

CATCLOSE

APPUCATION
PROGRAM

GENCAT
---? PROGRAM

Figure 2-1. GENCAT Utility Program

The GENCAT utility creates and maintains message catalogs which meet the NLS requirements for
efficient storage and retrieval of messages. For a comparison of GENCAT and MAKECAT, an MPE
utility which is also used to create and maintain message catalogs, refer to Table 2-2 at the end of this
chapter.

Accessing Application Catalogs
Catalogs formatted with GENCAT can be accessed by applications via the CAT intrinsics:

CATOPEN Opens a catalog for access by an application.
CAT READ Retrieves text from a catalog.
CAT CLOSE Closes a catalog.

These intrinsics are documented in Chapter 4, "Native Language Intrinsics." Refer to Program L in Ap-
pendix H for an example of their use.

The NLAPPEND intrinsic can be called to concatenate the language ID number and the catalog filename
before the catalog is opened. Refer to "Catalog Naming Convention" in this section for more information.

ApplicationMessageFacility 2 - 1

Source Catalogs
First, the user creates an MPE ASCII file in an editor with an EDIT /3000 compatible format. The catalog
may contain 8-bit characters. The GENCAT program reads the source catalog and creates a binary
formatted catalog which can be accessed by application programs. Calls to the CAT intrinsics access the
formatted catalogs. An internal directory, which expedites accessing the formatted catalog, is created in
the catalog. The text in the formatted catalog is compressed for efficient storage. The source catalog's
record size may vary from 20 words to 128words. Often a message is split over several records.

Figure 2-2 illustrates the three functions GENCAT performs on an application message catalog: modify-
ing, formatting, and expanding.

Directives
A source catalog contains directives which partition information in the message catalog. The three types
of directives include $ to denote a comment line, $SET to mark the beginning of a new set of messages, and
message numbers to indicate messages.

$SET Records

A $SET record initiates a logical grouping of messages. Sets break the catalog into manageable segments
containing logical groupings of messages (for example, one set of messages for prompts, one set for
instructions, one set for error messages).

The format of a $SET record, where zzr is a required number for that set of messages (ranging from 1 to
255) is:

$SET xxx [comment] or $set xxx [comment].

A $SET record can contain comment as an optional character string. If there is not at least one blank
between.ox and the comment, GENCATwill issue an error message and terminate the formatting.

Set records must begin in column 1. For example, to indicate that set number 1 is being defined:
$SET 1 Set one contains all prompts.
See Figure 2-3 for an example of a $SET record.

2 - 2 Application Message Facility

I
ENTER NAME OF CATAlOG

TO BE MODIFIED

!
ENTER NAME OF MAINTENANCE FILE

!
ENTER INDEX OF MERGE TYPE

O. DO NOT MERGE.

1. HELP.

2. BY UNE NUMBER.

3. BY SET/MESSAGE NUMBER.

1
SAVE COLLISIONS?

ENTER ''YES'' OR "NO"

YES

1--+ ENTER NAME OF

NO COLLISION FILE<.--__ ---'1
ENTER NAME OF NEW

SOURCE CATAlOG FILE

1
I MODIFYING SOURCE... I

GENCAT MENUS

ENTER INDEX OF DESIRED FUNCTION

O. EXIT.
1. HELP.
2. MODIFY SOURCE CATAlOO .

.3. FORMAT SOURCE INTO FORMATTED CATAlOG.

4. EXPAND FORMATTED CATAlOG INTO SOURCE.

j
ENTER NAME OF SOURCE FILE

TO BE FORMATTED

1
I FORMATTING..• I

L
ENTER NAME FOR NEW FORMATTED FILE

1
TOTAl NUMBER OF
SETS FORMATTED = __

TOTAl NUMBER OF MESSAGES
FORMAnEO =

1
ENTER NAME OF FORMATTED

CATALOG TO EXPAND

!
ENTER NAME OF NEW

SOURCE FILE

1
IEXPANDING... I

Figure 2-2. GENCAT Functions

1
TOTAl NUMBER OF
SETS EXPANDED = __

TOTAl NUMBER OF
MESSAGES EXPANDED = __

I I - INDICATES

USER INFORMAnON DISPLAYED

Application Message Facility 2 - 3

$lANG Records
A $LANG record specifies the language of the message that follows. It is used primarily with 16-bit languages
to tell GENCAT that the messages will be in two-byte character formats. $LANG is not required for 8-bit lan-
guages.

The format of a $LANG record, where xxx is a valid langnum, is:

$LANG xxx [comment] or $lang xxx [comment]

A $LANG record can contain comments as an optional character string. If there is not at least one blank
between xxx and a comment, GENCAT will issue an error message and terminate the formatting.

$LANG records must begin in column 1. For example, to indicate the message catalog contains characters in
Simplified Chinese, the user will indicate:
$LANG 201 Simplified Chinese Language
$SET 1
1 This message is in Simplified Chinese.
2 This message is in USASCII.
3 This message is a mix of Chinese and USASCII.

Message Records
Message records consist of a message number followed by the message text. This may be an error mes-
sage, prompt, or any text which may change with the language or country where the program will be used.
Message records:

!iii Identify message locations within a set.

a Must be in ascending sequence and unique within the set that contains them.

a Do not need to be consecutive.

For example, within a set, one can have messages 1-25, 101,300-332, and 32766. All of these message
numbers can be used again in another set. The format for a message record wherexnxx, an integer, is the
required message number is:

xnxx [the text of the message].

Text is an optional character string which, if present, follows the message number. If the text is not
preceded by a blank, GENCAT will replace the character immediately following the message number with
a blank. The user will be informed that a blank has replaced the character. An exception is made if one
of two special characters, "x" or "s,"follow the message number. These characters will not be replaced by
a blank. Their meaning is explained in the following section.

2 - 4 Application MessageFacility

Message Record Special Characters

When CATREAD is writing a message to a file, the percent (%) instructs CATREAD to post a carriage return-line
feed before writing the next record. For example, a message in set 4:
3 AN ERROR OCCURRED DURING THE LOADING %
OF THE DATA BASE.
The execution of CATREAD (catinclex,4,3); results in a display of:
AN ERROR OCCURRED DURING THE LOADING
OF THE DATA BASE.
The ampersand (a) indicates that the statement is continued on the next line. Message 98 in set 67 is:
98 THE NUMBER OF FILES &
DOES NOT MATCH THE &
SYSTEM'S CALCULATIONS.
The execution of CATREAD (catindex,67,98, .•.); results in a display of:
THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM'S CALCULATIONS.
Note the use of blanks as separators preceding the ampersand. Message records must begin in column 1
and may have leading zeros. For example, the format of message number 3 in some set is:
0003 PLEASE ENTER YOUR NAME.
The tilde (-) is used as a literal character. It instructs CATREAD to treat the character which follows it as a
literal part of the message (even if it is a special character). For example, two tildes in a row will put one
tilde into the message.

The exclamation mark (!) is discussed in "Parameter Substitution" in this section.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make them easier to
read. The format of a comment record, where comment is an optional string of characters is:

$ [comment] .

A blank between $ and [comment] is necessary only when the comment is a $SET or $OELSET record.

Application Message Facility 2· 5

Sample Source Catalog

Notice the directives s, ($SET numbers), message numbers, message comments, and the use of blanks in
the sample source catalog:
$ This catalog is for development only. Messages will be
$ added as needed.
$**
$SET 1 Prompts
1 ENTER FIRST NAME
2 ENTER LAST NAME
$
$**
$LANG 0 ASCII (NATIVE-3000)
$SET 2 Error messages
1 NAME NOT ON DATA BASE
2 ILLEGAL INPUT
95 OPERATION IS %
INCONSISTENT WITH ACCESS TYPE
$
$CHANGE THE LANGUAGE TO JAPANESE
$LANG 221
100 JAPANESE MESSAGE
$LANG 0 SET LANGUAGE TO ASCII (NATIVE-3000)

Parameter Substitution
Parameter substitution can often be used with messages. An exclamation mark (r) is used within a mes-
sage to indicate where a parameter is to be inserted using CATREAD. The user must choose positional or
numerical parameter substitution. Mixing these two types within a message is not allowed.

Positional Parameter Substitution

Positional parameter substitution simply means that each of the parameters in the CATREAD parameter list
is to be inserted into the message at each successive "t". A maximum of 5 parameter substitutions is
allowed in one message. The following example is used to illustrate the use of positional parameter
substitution:
SPL STATEMENT

CATREAD (catindex, 13, 400, error",user, term);
PARAMETERS

BYTE ARRAY user (O:8):="MARY.KSE", 0;
BYTE ARRAY term (0:5):="THREE", 0;

Message 400 in set 13 is:

400 ILLEGAL INPUT FROM USER ! ON TERMINAL NUMBER !

The execution of the SPL statement in Figure 2-4, with the parameters given, results in the following
message:

ILLEGAL INPUT FROM USER MARY.KSE ON TERMINAL THREE.

2 • 6 Application Message Facility

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within the message.
The exclamation mark (r) is immediately followed by a number in the range 1-5. The following example
is used to illustrate the use of numerical parameter substitution:
SPL STATEMENT

CATREAD (catindex, 7, 4, error",fourstr, fivestr)
PARAMETERS

BYTE ARRAY fourstr (0:4):="FOUR", 0;
BYTE ARRAY fivestr (0:4):="FIVE", 0;

A message in set 7 is:
4 EOF DETECTED AFTER RECORD !1 IN FILE !2
The execution of the SPL statement in Figure 2-5, with the parameters given, results in the following
message:
EOF DETECTED AFTER RECORD FOUR IN FILE FIVE.
Message 5 in set 7 is:
5 EOF DETECTED AFTER RECORD !2 IN FILE !1
A change in the call results in a different message:
CATREAD (catindex, 7, 5, error",fourstr, fivestr)
Message:
EOF DETECTED AFTER RECORD FIVE IN FILE FOUR.
Mixing numerical and positional parameter substitution characters is not allowed and will be flagged as
an error:
EOF DETECTED AFTER RECORD! IN FILE !1.
Numeric parameter substitution can be used only with GENCAT and the CATREAD intrinsic. CATREAD inter-
prets the character tilde (-) as a literal character. If a character is preceded by a tilde (-), that character
is taken literally. For example, if set 7 also contains the following message:
6 ERROR ! IN INPUT !
When the SPL statement, CATREAD (catindex, 7,6,error" ,seventeen), is executed, the resulting output is:
ERROR 17 IN INPUT!
The second exclamation mark would not be used for parameter substitution because it is preceded by a
tilde (-).

Application MessageFacility 2 - 7

Catalog Naming Convention
Catalogs are MPE files accessed by application programs via the CAT intrinsics. An application that has
been localized into more than one language will typically have a separate message catalog for each lan-
guage. A naming convention facilitates using different localized versions of files required by an applica-
tion program.

A catalog filename can be identified with a maximum of five characters. Each native language supported
by NLS has a language ID number (langnum). A three-digit language ID number can be appended to the
catalog filename to identify each localized catalog.

For example, an original unlocalized message catalog is APCATOOO.The message catalog in German
would be APCAT008. A Spanish version would be APCAT012. Refer to Appendix B, "Supported Lan-
guages and Character Sets," for a complete list of native languages and their corresponding language ID
numbers. When the language ID number has been selected, the NLAPPEND intrinsic may be used to form the
catalog filename. At run time the application program is responsible for determining which catalog to
open with the CATOPEN intrinsic.

Maintaining a Message Catalog
Maintenance functions can include addition, deletion, and modification of records in the source file. The
input for merging consists of two files, the source file and the maintenance file. The maintenance file is
merged against the source file, either by line numbers or by $SET and message numbers. If the user does
not know the line numbers, the $SET and message numbers can be used successfully. The context of the
$SET and message records in the maintenance file determines the type of maintenance performed on the
source. Changes made to a source during a maintenance merge may be kept in a collision filenamed by
the user. Collision files are created at the option of the user. Figure 2-3 illustrates how the collision file
may be merged against the modified source catalog to recreate the original source.

2· 8 Application Message Facility

RELATIONSHIP OF COLLISION FILE
TO SOURCE CATALOG FILE

MAINTENANCE SOURCE

COWS ION FILE

M9l!fi/O
I GENCAT I NEW SOURCE~o

COWSION FlLE

I GENCAT I~o
MAINTENANCE FILE

Figure 2-3. Collision Files

Merging Maintenance Files by Line Numbers

Merging a maintenance file against a source catalog file by line numbers may include modifying, adding,
or deleting records.

Modifying a Record

If the maintenance file's line number is common to the source file'S, the source's record is overwritten by
the maintenance record.

Adding a Record

If the line number in the maintenance file does not exist in the source, the record represented by that line
number from the maintenance file is added to the source at that line number.

Deleting a Record

The directives $EOITand $EOITVOIO=.n:xnxx:xare used to delete records from the source file. If $EDnVOID=is
used, the records beginning with and including the record number of the $EDITVOID=record to record
.n:xnxx:x will be deleted (line number.n:xnxx:x represents the line number xxxn:.xn: of the source file).

Application Message Facility 2 - 9

Merging Maintenance Files by $SET and Message Number

When GENCAT reads a $SET record from the maintenance file, all records following the $SET record are
considered to be message records or comment records within that set until GENCAT reads another $SET

record or exhausts the maintenance file. Set numbers must be in ascending order, and message numbers
must be in ascending order within each set.

The first record GENCAT expects to read, from the maintenance file, is a $SET, $OELSET, or a comment
record. GENCAT will continue to read and evaluate the maintenance file records until an error is en-
countered or the maintenance file is exhausted. After GENCAT reads a maintenance file record, it is
evaluated according to a set of rules, and a copy of the source is modified as necessary. The following rules
for evaluation apply to set numbers, message numbers, comment records, and the $OELSET directive.

Set Numbers

New set numbers are add to the source catalog file. All message numbers and messages following the
set record are assumed to e new and will be added to the source file.

Set numbers, if already pr sent, signify changes to the set of messages currently in the source catalog. All
message numbers and mes ages following this set are to be evaluated according to the rules for message
numbers.

Set numbers in a $OELSET re ord indicates that the entire set of messages in the source is to be deleted.

Message Numbers

New message numbers wi hin a $SET are added to the new source. Message numbers that are already
present are deleted if no t xt follows the message number. If new text is supplied, the existing message
will be updated.

Comment Records

Comment records are written to the new source file or maintenance file as they are encountered.

The $DELSET Directive

The $OELSET directive is allowed only in the maintenance file. It instructs GENCAT to delete the entire set
of messages denoted by xxx. Optional text may follow xxx, providing it is preceded by at least one blank.
The $OELSET directive is not written to the new file.

$OELSET records must begin in column 1. The format of a $OELSET record, wherexxx is an existing set number
in the source catalog is:

$OELSET xxx [text]

The directives $SET and $OELSET may be either in uppercase or lowercase ($set and $delset). Mixed cases are
not allowed (e.g., $Set or $deLseT).

When one of the directives is encountered at the beginning of the maintenance file, it supercedes the
corresponding directive (if any) in the master file.

2 -10 Application Message Facility

User Dialog

The user may modify a source file, format a source catalog, or expand a formatted catalog as shown in the
following dialog. Figure 2-4 illustrates the process of maintaining a GENCAT source file.
RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION
O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.
»B
ENTER NAME OF CATALOG SOURCE FILE TO BE MODIFIED
»t44$'IUIII]
ENTER NAME OF MAINTENANCE FILE

If the name of a nonexistent file is entered, an error message is displayed.
NONEXISTENT PERMANENT FILE (FSERR 52)
EXPECTED AN EXISTENT FILE AS INPUT (GCERR 15)
ENTER NAME OF MAINTENANCE FILE

ENTER INDEX OF MERGE TYPE
O. DO NOT MERGE.
1. HELP.
2. BY LINE NUMBER.
3. BY SET/MESSAGE NUMBER.
»11
Entering 0 or (Return] aborts the maintenance function and returns to the main menu.

The user has the option of saving all the modifications, from the merge, in a collision file:
SAVE COLLISIONS? ENTER "YES" OR "NO"
»IE
ENTER NAME OF COLLISION FILE
mmI
If the name of an existing file is entered, the prompt is repeated. A (Return) continues the merging without
saving the collisions.

GENCAT merges the source and maintenance files into a temporary file, and will prompt for the name
of a permanent file:
ENTER NAME OF NEW SOURCE CATALOG FILE
»a&J
This prompt is repeated until a unique filename or a (Return Iis entered. The temporary file is copied to the
new permanent file. If a (Return) is entered the merging is aborted.

Application Message Facility 2 - 11

IMAINTAINING I

o
SOURCE CATAlOG FlLE~

FIXED ASCII.
RECORD SIZE - 40B -> 25eB

o!NEWSOURCE CATALOG FILE
(MODIFIED SOURCE CATALOG

VIA t.4AJNTENANCE FILE).
FIXED ASCII.

SAME RECORD SIZE AS
SOURCE CATAlOG FILE.I GENCAT I

t.IAINTENANCE FILE.
FIXED ASCII.

SAME RECORD SIZE AS
SOURCE CATALOG FILE

COWSION FILE
(OPTIONAL FILE - ON
DEMAND FRON USER).

FIXED ASCII.
SAME RECORD SIZE AS
SOURCE CATAlOG FILE.

Figure 2-4. Maintaining a GENCAT Source File

Formatting a Source Catalog
It is necessary to format the source catalogs so the CAT intrinsics can access them. GENCAT formatted
files are binary and cannot be edited. Formatting compacts files and creates a directory, which saves disc
space and reduces access time.

During the formatting process, GENCAT verifies that:

• All directives are legal and used correctly.

• Set numbers are in ascending order.

• Set numbers are greater than 0 and less than or equal to 255.

• Message numbers are in ascending order within each set.

• Message numbers are greater than 0 and less than or equal to 32766.

• Continuation and concatenation characters are correct.

• Parameter substitution characters are used correctly.

2 -12 Application Message Facility

The following dialog is used for formatting a source catalog:
RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT·PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION
O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.
»11
ENTER NAME OF SOURCE FILE TO BE FORMATTED
»1Iti'II
FORMATTING ...
ENTER NAME FOR NEW FORMATTED FILE
»'I'];U"6'
TOTAL NUMBER OF SETS FORMATTED = 6
TOTAL NUMBER OF MESSAGES FORMATTED = 167
FORMATTING SUCCESSFUL

Expanding a Formatted Catalog
GENCAT contains a function to recreate the original source catalog file by expanding the formatted
catalog. The result is a new source catalog that can be edited and then converted to a formatted catalog.
Figure 2-5 is an example of the user dialog for expanding a formatted catalog. The following dialog is used
for expanding a formatted catalog:
RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCAT/3000 (C) HEWLETT·PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION
O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.
»11
ENTER NAME OF FORMATTED CATALOG TO EXPAND

ENTER NAME OF NEW SOURCE FILE

EXPANDING ...
TOTAL NUMBER OF SETS EXPANDED = 6
TOTAL NUMBER OF MESSAGES EXPANDED = 167
EXPANSION SUCCESSFULLY COMPLETED

Application MessageFacility 2 . 13

RELATIONSHIP OF COLLISION FILE
TO SOURCE CATALOG FILE

~/o
I GENCAT I NEW SOURCE~o

MAINTENANCE SOURCE COWSION FILE

o "OOI~ 0
NEWSOURCE~ I GENCATI /ORIGINAl SOURCE

0/ ~o
COWS ION FlLE MAINTENANCE FlLE

Figure 2-5. Formatting/Expanding GENCAT Source Files

GENCATJCWs
GENCAT uses three Job Control Words (GCMAINT, GCFORMAT, and GCEXPAND) to indicate the
status of the function performed. GENCAT initializes all three JCWs to zero upon entry and sets GC-
MAINT, GCFO RMAT, or GCEXP AND at the end of a maintenance, formatting, or expanding function,
respectively. If the function succeeds, the appropriate GENCAT JCW remains set to zero. If the function
fails, the appropriate JCW is set to the GENCAT error number describing the failure. For example, if a
formatting function fails with error number 10 (GCERR 10), GCFORMAT is set to 10. If the process
completes unsuccessfully, the system JCW is set to FATAL; the status ofthe GENCAT JCW is not important.

GENCAT in Batch Mode
GENCAT can be invoked interactively or in batch mode. GENCATwill abort a job in batch mode if an
error is encountered while formatting, expanding, or modifying.

2 -14 Application Message Facility

GENCAT Help Facility
With the GENCAT online HELP facility, the user can enter the index number for HELP from the menu
or a "?" in response to any prompt that does not have a menu selection for HELP. The following is an
example of the GENCAT HELP Facility dialog:
RUN GENCAT.PUB.SYS

HP32414A.OO.OO GENCATj3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION
O. EXIT.
1. HELP.
2. MODIFY SOURCE CATALOG.
3. FORMAT SOURCE INTO FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.
»11
This is the driver menu for GENCAT.

Input consists of a numeric index, 0 through 4. Each index denotes a function for GENCAT to perform.
o - Will exit GENCAT and return you to MPE.
1 - Will display this message.
2 - Will direct GENCAT to begin the maintenance function.
3 - Will direct GENCAT to begin the formatting function.
4 - Will direct GENCAT to begin the expansion function.
For each prompt, an input of an index for HELP or a"?" (depending upon the type of prompt) will display
instruction for that prompt.

Formatting is the creating of an internal representation of a source message catalog into a form used by
the CAT.x.x.uintrinsics. Maintenance is modifying the source message catalog by merging a maintenance file
against it. The merge may be by line numbers set and message numbers. Expansion is converting the
formatted file back into a source message catalog.

Pressing (Return Iexits GENCAT and returns to MPE.

Application Message Facility 2 - 15

Error Messages
GENCAT error messages are listed in Table 2-1.

Table 2-1. GENCAT Error Messages

ERROR # MESSAGE MEANING ACTION

1 FREAD ERROR ON SOURCE A failure by FREAD

FILE. when reading a
source message cata-
log.

Recreate the source
message catalog.

2 INPUT FILE MUST HAVE AT The file has an EOF
LEAST ONE RECORD. of zero (0).

Place at least one
record in the file.

3 INPUT FILE MUST CONTAIN File does not have a
FIXED LENGTH RECORDS fixed record length.
ONLY.

Create the file with a
fixed record length.

4 INPUT FILE MUST BE US,

ASCII FILE ONLY.

Source and mainte-
nance files must have
records that are In
USASCII format.

Create the source
and maintenance files
with USASCII for-
mat.

5 INPUT FILE RECORD SIZE

MUST BE BETIJEEN 40 AND

256 BYTES.

The record size of a
source or mainte-
nance file is greater
than 256 bytes (128
words) or less than 40
bytes (20 words).

Create a source and
maintenance file with
a record size greater
or equal to 40 bytes
or less than or equal
to 256 bytes. The
record length In-
cludes any line num-
bers in the file.

6 SET NUMBERS MUST BE BE-

TIJEEN 1 AND 255.

A set number in a
maintenance or
source file is not
greater than or equal
to 1, or not less than
or equal to 255. The
set number may not
be positive or nu-
menc.

Change set number
to a value between 1
and 255 inclusive.

2 • 16 Application Message Facility

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

8 SET NUMBERS MUST BE IN
ASCENDING SEQUENCE.

A set number is less
than or equal to the
previous set number
in the source file. Er-
ror can be detected at
format time or during
a maintenance func-
tion.

Change numbers to
strict ascending se-
quence.

9 MESSAGE NUMBERS MUST BE
BETYEEN 1 AND 32766.

A message number
value is not between 1
and 32766 inclusive.

Change the message
number value to a
value between 1 and
32766 inclusive.

10 MESSAGES MUST EITHER
CONTAIN ALL NUMBERED OR
ALL POSITIONAL PARAMETER
SUBSTITUTION CHARAC·
TERS. MIXES NOT AL·
LOYED.

GENCAT detected a
mix of parameter
substitution charac-
ters during the mes-
sage scan. For exam-
ple, a message con-
tained numeric sub-
stitution characters
as well as positional
substitution charac-
ters.

Change the parame-
ter substitution char-
acters either to all nu-
meric or all positional
substitution charac-
ters (for each mes-
sage only).

11 MESSAGE NUMBERS MUST BE
IN ASCENDING SEQUENCE.

A message number
was processed that is
less than or equal to
the previous message
number. The mes-
sage numbers within
a set are not in as-
cending sequence.

Rearrange the mes-
sages, within the set,
to strict ascending or-
der.

12 MESSAGE CONTAINS NON·
BLANK CHARACTER IMMEDI-
ATELY FOLLOYING MESSAGE
NUMBER. NON-BLANK CHAR-
ACTER ASSUMED TO BE A
BLANK.

GENCAT detected a
non-blank character
immediately follow-
ing the message num-
ber in a message.
GENCAT replaces
this character with a
blank.

Insert a blank be-
tween the message
number and the mes-
sage text.

Application MessageFacility 2· 17

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

13 EXPECTED ONE OF THE FOL-
LOWING INPUTS:
0, 1, 2, 3, 4, OR RETURN_

GENCAT detected
an incorrect input in
response to the menu
(prompts for a func-
tion),

Respond with 0, 1, 2,
3, 4, or [Return Ionly.

14 EXPECTED ONE OF THE FOL-
LOWING INPUTS:
0, 1, 2, 3, OR A RETURN.

GENCAT detected
an incorrect input in
response to the menu
(prompts for the type
of merging it is to
perform).

Respond with 0, 1, 2,
3, or ~turn Ionly.

15 EXPECTED AN EXISTENT
FILE AS INPUT.

The file does not exist
on the system.

Either create the file
or input the name of
a file that exists on
the system.

16 EXPECTED A UNIQUE, NON-
EXISTENT FILE NAME AS
INPUT.

The file already exists
on the system. The
name of the file
should be one that
does not exist on the
system.

Purge the file or input
the name of a file that
does not exist on the
system.

17 EXPECTED A RESPONSE OF
"YES" OR "NO" AS INPUT.

GENCAT requires a
response of either
YES, yes, NO, or no to
the prompt of "SAVE
COLLISIONS?" Enter YES
or NO.

Respond with YES,
yes, NO, or no.

18 INPUT FILES MUST HAVE
EQUAL RECORD SIZES FOR
THIS FUNCTION.

Source and mainte-
nance files must have
equal record sizes if
the maintenance file
IS to modify the
source file.

Create a mainte-
nance file that has a
record size equal to
the record size of the
source file.

2 - 18 Application Message Facility

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

20 THE CONSTRUCT OF $DELSET
IS NOT ALLOWED IN THE
SOURCE.

The construct $DELSET,
which may be used in
a maintenance file,
was detected in a
source file during a
maintenance func-
tion.

Remove $DELSET con-
struct from the
source file.

21 ONLY FIVE (5) POSITIONAL
PARAMETER SUBSTITUTIONS
ALLOWED PER MESSAGE.

More than five (5)
parameter substitu-
tion characters were
detected in one mes-
sage. Up to five pa-
rameter substitution
characters are al-
lowed per message.

Fewer than or equal
to 5 parameter substi-
tution characters per
message only are al-
lowed.

22 MAINTENANCE FILE MUST BE
NUMBERED FOR LINE-NUMBER
MERGES.

The maintenance file
is an unnumbered
file. The mainte-
nance file must be a
numbered file if it is
to be used in a line-
number merge.

Number the mainte-
nance file if the file is
to be used in a line-
number merge.

23 SOURCE FILE MUST BE NUM-
BERED FOR LINE-NUMBER
MERGES. The source file must used in a line-number

be a numbered file if merge.
it is to be used in a
line-number merge.

The source file is an
unnumbered file.

Number the source
file if the file is to be

24 SOURCE FILE CANNOT CON-
TAIN FORMS OF $EDIT.

The source file was
examined for $ED IT
and $EDlT VOID= con-
structs. These are not
allowed (for example,
if collision files are
used, an ambiguity
would exist if the $ED IT
and $EDlT VOID= were
left in the source file).

Remove all occur-
rences of $EDlT and
$EDIT VOID= from the
source file.

Application Message Facility 2 - 19

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

25 SEQUENCE NUMBER IN $EDIT
VOID RECORD CONTAINS TOO
MANY DIGITS. EIGHT IS
THE MAXIMUM.

The value following
the $EDIT VOID= may
have a maximum of
eight place holders.

Reevaluate the value
and correct it, it must
represent a line num-
ber.

26 FILE IS NOT A FORMATTED
FILE.

Formatted catalogs
only can be expanded
(for example, files
formatted by GEN-
CAT).

Format the file using
GENCAT.

27 SET RECORD IS REQU IRED
BEFORE A MESSAGE RECORD
IS FORMATTED.

A message was found
before set number
was defined.

Place the message in
a set or place a set
number before the
message.

28 VALUE IN RIGHT BYTE OF
KANJI CHARACTER IS IN·
VALiD.

The message contains
special escape se-
quences provided by
Hewlett- Packard that
are used for research
and development ac-
tivities. These special
escape sequences are
not supported and
Hewlett-Packard as-
sumes no responsibil-
ity for their use.

Consult your
Hewlett-Packard rep-
resentative, or re-
move all occurrences
of the form esc$<termi .
nator> or ESC«termina'
tor> from the message
catalog. Where [ESC j is
the escape character
and <termi nator> is @ or
A • Z.

29 SCAN COMPLETED WITH NO
CLOSING KANJI ESCAPE SE-
QUENCE. EXPECTS A CLOS-
ING KANJI ESCAPE SE-
QUENCE TO TERMINATE
KANJI CHARACTER SE-
QUENCE.

sumes no responsibil- A' Z.

ity for their use.

The message contains
special escape se-
quences provided by
Hewlett-Packard that
are used for research
and development ac-
tivities. These special
escape sequences are
not supported and
Hewlett-Packard as-

Consult your
Hewlett-Packard rep-
resentative, or re-
move all occurrences
of the form esc$<termi -
nator> or ESC«termina-
tor> from the message
catalog. Where lESCj is
the escape character
and <terminator> is @ or

2 - 20 Application MessageFacility

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

30 INCOMPLETE KANJI CLOSING

ESCAPE SEQUENCE DE-

TECTED _

The message contains
special escape se-
quences provided by
Hewlett-Packard that
are used for research
and development ac-
tivities. These special
escape sequences are
not supported and
Hewlett-Packard as-
sumes no responsibil-
ity for their use.

Consult your
Hewlett-Packard rep-
resentative, or re-
move all occurrences
of the form esc$<termi -

nator> or ESC(<termi na-

tor> from the message
catalog. Where lEse) is
the escape character
and <termi nator> is @ or
A - z.

31 VALUE IN LEFT-BYTE OF

KANJI CHARACTER IS IN-

VALID_

The message contains
special escape se-
quences provided by
Hewlett-Packard that
are used for research
and development ac-
tivities. These special
escape sequences are
not supported and
Hewlett-Packard as-
sumes no responsibil-
ity for their use.

Consult your
Hewlett-Packard rep-
resentative, or re-
move all occurrences
of the form esc$<termi -

nator> or ESC(<termi na-

tor> from the message
catalog. Where (Ese 1 is
the escape character
and <terminator> is @ or
A - z.

32 VALUE IN PARAMETER SEC-

TION OF KANJI ESCAPE SE-

QUENCE IS INVALID_ EX-

PECTED A STRING OF DIG-

ITS_

The message contains
special escape se-
quences provided by
Hewlett-Packard that
are used for research
and development ac-
tivities. These special
escape sequences are
not supported and
Hewlett-Packard as-
sumes no responsibil-
ity for their use.

Consult your
Hewlett-Packard rep-
resentative, or re-
move all occurrences
of the form esc$<termi -

nator> or ESC«termina-

tor> from the message
catalog. Where [Ese 1 is
the escape character
and <terminator> is @ or
A - z.

33 BLANK RECORDS THAT ARE

NOT CONTINUATION RECORDS

ARE NOT ALLOWED_

A blank record was
detected m the
source catalog and it
is a continuation
record for the previ-
ous record.

Remove the record
from the source file,
or modify the record
before it; end the
record with a % or &

character.

Application M~lssage Facility 2 - 21

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION

34 INTERNAL GENCAT FILE HAS
BEEN EXHAUSTED.

THE FILE "DATAM" HAS
BEEN EXHAUSTED. FOR AN
IMMEDIATE SOLUTION JUST
REDO YOUR FUNCTION

The file DATAM, used by
GENCAT internally,
is full.

Return to the mam
menu and redo the
formatting function
without exiting the
program.

35

AGAIN, THE PROGRAM IN-
CREASED THE LIMITS FOR
YOU. FOR STREAM JOBS USE
THE FILE EQUATION BELOY:

(see note below) *
RUN THE GENCAT PROGRAM.
(INCREASE THE FILE SIZE
UNTIL YOU GET RID OF THE
PROBLEM.)

PLEASE INFORM HEWLETT-
PACKARD OF THIS PROBLEM.

$LANG COMMAND SPEC IFIED
A LANGUAGE NOT CURRENTLY
CONFIGURED.

The language re-
quested is not config-
ured in the system.

* The file equation for error #34 above is:
:FILE DATAM=DATAM;REC=-256,32,F,ASCII;DISC=20000,32,32;BUF=4;TEMP

2·22 ApplicationMessageFacility

If you are not using
Asian text, remove
the $LANG record. If
you are using an
Asian language, re-
quest your System
Manager to install
the language in the
system.

Table 2-2. MAKECAT/GENCAT Comparison

FEATURES MAKECAT GENCAT

Access Methods FOPEN, GENMESSAGE, and FCLOSE in- CATOPEN, CAT READ, and CATCLOSE intrinsics
trinsics open, access, and close open, access, and close formatted GEN-
formatted MAKECAT cata- CAT catalogs.
logs.

Formatting Places an internal directory in A source message file is formatted into
the file's user labels. The file is another file, leaving the original source
formatted in place without ere- intact. The application uses the format-
ating a new file. ted file. The original source file can be

purged. The formatted file can be ex-
panded to restore the original source
file.

Function Converts or formats HELP Formats application message catalogs.
and message files into cata- Provides a maintenance facility to mod-
logs. Installs system message ify existing source catalogs and the ca-
catalog, using the BUILD entry pability of expanding a formatted file
point. into the original source file.

Input The name of a file must be en- GENCAT prompts the user for the
tered in a file equation. :FILE name of a file.
I NPUT=<'your file>.

Literal Character Not supported. The tilde (~) serves as a literal charac-
ter, causing the character which imme-
diately follows it to be treated as text.

Messages The message number range The message number range per set is
per set is 1-255. 1-32766.

Numerical Parame- Not supported. Up to 5 numerical parameters can be
ters contained in a message.

Output Saves the formatted file as a Prompts the user for the name of the
temporary file with the name formatted file. The file is saved as a per-
CATALOG. manent file.

Processing Formats more quickly than Verifies each message for correct pa-
GENCAT. rameter substitution characters. Ma-

nipulates two temporary files while for-
matting the source file.

Application Message Facility 2 - 23

Table 2-2. MAKECAT/GENCAT Comparison (cont.)

FEATURES MAKECAT GENCAT
Record Format Accepts source files of any

size, but the file it saves has a
record size of 80 bytes. The
system message catalog IS

fixed binary. An application
catalog is fixed ASCII.

Accepts source catalog files with record
sizes from 40 to 256 bytes. The format-
ted file has a record size of 128 words,
and is fixed binary. When a formatted
catalog is expanded into a source cata-
log, the new source catalog is fixed
ASCII with a record size identical to the
original source catalog.

When maintenance is being performed,
both the source file and the mainte-
nance file must be of equal lengths in
fixed ASCII. The resulting source and
collision files (if specified) will be fixed
ASCII, and their record sizes will equal
the record size of the original source
file.

Sets The set directive is $SET. The
set number range for a catalog
is 1-63.

The set directive can be $SET or sset, The
set number range for a source catalog is
1-255.

User Interface The user must know which en-
try points to use and when to
use them. Files are input via
file equations. Error messages
require user interpretation.

Menu-driven, originating from a cata-
log. Each prompt has HELP text associ-
ated with it. Error messages are self-ex-
planatory.

2 - 24 Application Message Facility

NLS in MPE Subsystems 3
Native Language Support (NLS) supplies the applications designer with the tools to support native
language data and local custom formats. NLS provides support features in FCOPY /3000,
IMAGE/3000, KSAM/3000, QUERY/3000, SORT-MERGE/3000, VPLUS/3000, and RAPID/3000.
COBOLII access to native language collating sequences is included in the SORT-MERGE/3000
subsection discussion.

The emphasis of NLS in the subsystems is on providing the end-user, rather than the application
designer, with local language data and formats. User interfaces (prompts, commands, and messages) of
the subsystem utility programs, for example, FORMSPEC or DBUTIL, are not localized.

This reference material is intended to be used as addenda to the subsystems manuals. Refer to the
SORT-MERGE/3000, KSAM/3000, FCOPY/3000, QUERY/3000, IMAGE/3000, VPLUS/3000, and
RAPID /3000 manuals for complete documentation.

NLSin MPESUbsystems 3 - 1

FCOPY/3000
Native Language Support (NLS) features in FCOPY /3000 can be accessed by adding a LANG= parameter
to the existing options: .

:FCOPY FROM=A; TO=B; LANG=GERMAN; UPSHIFT
If the LANG= parameter is omitted, FCOPY /3000 obtains the current data language with NLGETLANG (mode 2)
and functions as it did before the introduction of NLS.

Options

The FCOPY /3000 options affected by language dependency are character printing, translating, upshift-
ing, and updating KSAM/3000 files.

CHAR Option

Character codes not represented by symbols are displayed as periods. The TO= file can be a line printer, a
keyboard display terminal, or an intermediate disc file to be listed at a later time.

CHAR No LANG= The NATIVE-3000 processing scheme will be retained.

CHAR LANG= The character definition table associated with the lan-
guage will be used. Characters of type 3 (undefined
graphic character) and 5 (control code) as in NLiNFO item
12, are replaced by periods. Refer to Chapter 4, "Native
Language Intrinsics," for more information.

Character Translate Options

These options translate data for ASCII-to-EBCDIC and EBCDIC-to-ASCII conversions.

EBCDICIN/ EBCDICOUT Input of the LANG= parameter will result in the translation table
associated with the language being used.

For example, using an EBCDIC-to-ASCII conversion table,
FCOPY /3000 converts data from GERMAN EBCDIC to RO-
MAN8:

>FROM=MYGEBCFL; TO= MYROM8FL; LANG=GERMAN; EBCDICIN
EOF FOUND IN FROMFILE AFTER RECORD 29

30 RECORDS PROCESSED *** 0 ERRORS

NOTE

This option is not available for 16-bit languages.

3 - 2 NLS in MPE Subsystems

UPSHIFT Option

The UPSHIFT option converts lowercase alphabetic characters to their corresponding uppercase characters
as part of the copying operation.

UPSHIFT No LANG= Any character belonging to USASCII or to one of the
extensions will be upshifted as it would have been be-
fore the introduction of NLS.

UPSHI FT LANG= All characters will be upshifted according to the speci-
fied language upshift definition.

FCOPY /3000 and KSAM/3000 Files

To change the language of an existing file, a new KSAM/3000 file must be built with the new language
attribute, and the old file copied into the new. If FCOPY /3000 copies an existing KSAM/3000 file to a
new KSAM/3000 file the same language attribute is assigned to the new file. The LANG= option of
FCOPY /3000 cannot be used to change the language of a KSAM/3000 file.

Combined Use of Options

Using LANG= without another relevant option such as UPSHI FT or EBCDICIN usually results in a warning message:

«966» LANG OPTION NOT RELEVANT

The user can continue without affecting the outcome of the operation. The LANG= option is ignored. The
following combinations are flagged as an error:

BCDICIN;LANG=XXX
BCDICOUT;LANG=XXX
EBCDIKIN;LANG=XXX
EBCDIKOUT;LANG=XXX
KANA; LANG=XXX

For example:

>FROM=DEUTSCH; TO=DANSK; LANG=GERMAN; EBCDICIN
*57*SYNTAX ERROR: ILLEGAL COMBINATION OF OPTIONS
o RECORDS PROCESSED *** 1 ERROR

NLS in MPE Subsystems 3 - 3

Error Messages

Table 3-1 lists the error messages for FCOPY /3000.

Table 3-1. FCOPY /3000 Error Messages

ERROR # MESSAGE CAUSE ACTION
960 LANGUAGE NOT CONFIGURED. The language re- Verify spelling oflan-

quested is not config- guage name. Ask the
ured on the system. System Manager to

configure the lan-
guage on the system.

961 NLS NOT CONFIGURED. No native languages Ask the System Man-
are configured on the ager to configure the
system. native language on

the system.

966 LANG OPTION NOT RELE- The LANG option is not Check command for
VANT. relevant to the com- correct options. You

mand last entered. are given the choice
whether or not to
continue the opera-
tion.

Performance Issues

The implementation of CHAR, UPSHIFT, and EBCDICIN/EBCDICOUT using NLS intrinsics and language definition
tables requires additional time for the conversion process.

3 -4 NLS In MPE Subsystems

IMAGE/3000
Native Language Support (NLS) in IMAGE enables the user to assign a language attribute to a database.
This language attribute determines the collating sequence used to insert an entry with a sort item of type
X or U in a sorted chain. It also determines the operation of comparisons for entry level DBLOCK calls. In
order to use NLS with IMAGE/3000, this language attribute will have to be specified by the user either
at schema processing time or through the SET command in DBUTIL.

Utility Programs
NLS features in IMAGE/3000 can be requested in four utilities: DBSCHEMA, DBUTIL, DBUNLOAD,
andDBLOAD.

OBSCHEMA

The optional language attribute will be specified:

BEGIN DATA BASE databasename [,LANGUAGE:language];

The language name or ID number can be used for language. If no LANGUAGE is specified, the database will
use NATIVE-3000 as a default.

The names of data items and data sets are restricted to certain USASCII characters. This allows schemas
to be valid internationally, for all Hewlett-Packard 8-bit character sets. It also allows the sources of
application programs which call IMAGE/3000 intrinsics to be entered from and displayed on all8-bit and
7-bit (USASCII) terminals.

OBUTIL

DBUTIL includes the SET, HELP, and SHOY commands:

SET: SET LANGUAGE= language. This command can be issued only on a virgin root file or an
empty database (where <language> is the language name or language ID number).

HELP: HElP SHOY and HELP SET will display the syntax for SHOY and SET commands with the LANGUAGE

option.

SHOY: SHOY databasename umaintwordi LANGUAGE. The language attribute of the database is
displayed.

NLS in MPE Subsystems 3·5

DBUNLOAD /DBLOAD

DBUNLOAD copies the data to specially formatted tapes or disc volumes. The language ID number of
the database is stored along with the data.

DBLOAD warns the user, who tries to load data, when the language attribute of the database on disc and
the database on tape are incompatible:
THE LANGUAGE OF THE DATA BASE IS DIFFERENT
FROM THE LANGUAGE FOUND ON THE DBLOAD MEDIA.
If the user is running DBLOAD in a session, the user may choose to continue:
CONTINUE DBLOAD OPERATION? (Y/N)
In case of a job execution of DBLOAD, or a negative answer (N) to the previous question, the DBLOAD
operation is prematurely terminated.

Intrinsics

The language attribute of the IMAGE/3000 database enables the IMAGE/3000 intrinsics to utilize native
language features.

DBOPEN

DBOPEN checks the language attribute of the database. When the language attribute of the database is not
supported by the current configuration of the system, an error code of -200 is returned:
DATA BASE LANGUAGE NOT SYSTEM SUPPORTED.
DBPUT

The position of a new entry with a type X or U item in a sorted chain is determined according to the
collating sequence of the language attribute of the database.

If the database language attribute is NATIVE-3000, the insertion of a new entry in the sorted chain is
determined by the result of a BYTE COMPARE between the key of the new record and the keys of the
entries already in the chain.

If the database has a language attribute other than NATIVE-3000, the collating sequence definition of the
native language is used via a system version of the NLCOLLATE intrinsic to determine where to insert the new
entry.

3 - 6 NLS in MPE Subsystems

DBINFO

DBINFO provides additional information about the language attribute of the database:

Mode:
Purpose:
Qualifier:
Buffer Array Contents:

901
Obtain language attribute of the database.
Ignored
Word 1 contains the language ID number.

DBLOCK

If a lock item is of type U or X, and a lock specifies an inequality (range), the collating sequence for the
language of the database will be used.

Changing The Language Attribute of an IMAGE/3000 Database

This change cannot be done with a single command. Once data has been stored in an IMAGEj3000
database with a native language attribute, changing the language attribute requires reorganizing data
along any sorted chains according to the collating sequence of the new language.

The procedure is:

1. DBUNLOAD the database.

2. Purge the database using PURGE in DBUTIL.

3. Modify the schema with the language attribute set by the LANGUAGE: parameter and create a new root
file with the schema processor.

4. Create the database using CREATE in DBUTIL.

5. Run DBLOAD in session mode. A warning message is issued because the language has been changed
and a prompt is displayed:

CONTINUE DBLOAD OPERATION? (Y/N)

Enter D to complete the change of the language attribute.

NOTE

All IMAGE/3000 databases created before NLS are considered to have
NATIVE-3000 as a language attribute.

NLSin MPESubsystems 3 - 7

Error Messages

The three types of error messages used in lMAGE/3000 are listed in the following tables. Table 3-2 lists
Utility Program Conditional Messages, Table 3-3 lists Library Procedure Calling Errors, and Table 3-4
lists Schema Syntax Errors.

Table 3-2. lMAGE/3000 Utility Program Conditional Messages

MESSAGE MEANING ACTION

DATA BASE LANGUAGE NOT SYSTEM The database language is not Ask the System Manager to
SUPPORTED. currently configured on your configure the native language

system. on your system, or provide a
valid language.

ERROR READING ROOT FILE RECORD. DBUTIL is unable to read a Contact your Hewlett-
root file record. Packard support representa-

tive.

ERROR WRITING ROOT FILE RECORD. DBUTIL has detected an er- Contact your Hewlett-
ror while writing a root file Packard support represent a-
record. tive.

INVALID LANGUAGE. The language name or number Retype the correct language
contains invalid characters. name.

LANGUAGE MUST NOT BE LONGER THAN The language name is too long Retype the correct language
16 CHARACTERS. and must be incorrect. name.

LANGUAGE NOT SUPPORTED. The language specified is ei- Contact the System Manager
ther not supported on your for configuration of that Ian-
system or is not a valid Ian- guage or provide a valid Ian-
guage name or ID number. guage.

NLINFO FAILURE. An error was returned byMPE Contact your Hewlett-
NLS. Packard support representa-

tive.

NLS RELATED ERROR. An error was returned by MPE Contact your Hewlett-
NLS on a DBOPEN on the Packard support representa-
database. tive.

3 . 8 NLS in MPE SUbsystems

Table 3-2. IMAGE/3000 Utility Program Conditional Messages (cont.)

MESSAGE MEANING ACTION

THE LANGUAGE OF THE DATA BASE IS

DIFFERENT FROM THE LANGUAGE

FOUND ON THE DBLOAD MEDIA.

The user has changed the lan-
guage attribute of the database
between DBUNLOAD and
DBLOAD. DBLOAD wants
the user to be aware of poten-
tial differences in sorted
chains in the collating se-
quence of the two languages
(the language of the database
on disc and tape are different).
In session mode the question
"CONTINUE DBLOAD OPERATION?" is
asked. Injob mode, DBLOAD
will terminate execution.

After noting the information
returned by DBLOAD, and
the result on eventual sorted
chains in the database, pro-
ceed with the operation by an-
swering YES.

Table 3-3. IMAGE/3000 Library Procedure Calling Errors

CCl CONDITION MEANING ACTION

-200 DATA BASE LANGUAGE NOT

SYSTEM SUPPORTED.

DBOPEN attempted to
open the database
and found that the
language of the
database is not cur-
rently configured.
The collating se-
quence of the lan-
guage is unavailable;
DBOPEN cannot open
the database.

Ask the System Man-
ager to configure the
language on your sys-
tem.

-201 NATIVE LANGUAGE SUPPORT

NOT INSTALLED.

NLS internal struc-
tures have not been
built at system
startup. The collating
sequence table in the
language of the
database is unavail-
able; DBOPEN cannot
open the database.

Ask the System Man-
ager to install NLS.

-202 MPE NATIVE LANGUAGE SUP·

PORT ERROR #1 RETURNED

BY NLINFO.

The error number
given was returned by
MPE NLS on a NLINFO

call in DBOPEN.

Ask the System Man-
ager to install NLS.

NLS in MPE Subsystems 3 - 9

Table 3-4. lMAGE/3000 Schema Syntax Errors

MESSAGE MEANING ACTION

BAD LANGUAGE. The language name contains Examine schema to find incor-
an invalid character or lan- rect statement, edit, and run
guage number is not a valid in- Schema Processor again.
teger.

DATA BASE NAME TOO LONG. The database name contains Examine schema to find incor-
more than six characters. rect statement, edit, and run

Schema Processor again.

LANGUAGE EXPECTED. The schema processor ex- Examine schema to find incor-
pected, at this point, to find a rect statement, edit, and run
LANGUAGE statement after the Schema Processor again.
comma following BEGIN DATA
BASE name statement.

LANGUAGE NOT SUPPORTED. Language specified is not cur- Examine schema to find incor-
rently supported on your sys- rect statement, edit, and run
tern or is not a valid language. Schema Processor again.

NATIVE LANGUAGE SUPPORT ERROR. An error was returned byMPE Contact your Hewlett-
NLS. Packard support representa-

tive.

KSAM/3000
The Keyed Sequential Access Method (KSAM/3000) organizes records in a file according to the content
of key fields within each record.

Native Language Support (NLS) in KSAM/3000 provides the resources to create files whose keys of type
BYTE are sorted according to a native language collating sequence. All BYTE keys in the file will be
sorted using the collating sequence table of the specified language. Keys, as well as data in the record,
may contain 8-bit character data.

A file language attribute may be supplied when a KSAM/3000 file is created to provide a key file orga-
nized according to the collating sequence of a native language. The language attribute is provided when
the file is created. All KSAM/3000 files created before NLS was introduced are considered to have
NATIVE-3000 as a language attribute.

A KSAM/3000 file can be built with KSAMUTIL, or programmatically using FOPEN.

3 -10 NlS In MPESubsystems

Creating KSAM/3000 Files with KSAMUTIL

When using KSAMUTIL, the parameter LANG=langname or LANG=langnum may be supplied on the BUILD
command, as shown in the dialog below. NATIVE-3000 is used as the default language attribute if no
language is specified.

The language specified in the LANG=parameter must be installed on the system when the command is issued
for KSAMUTIL to build the file. If the language is not installed, an error message is returned and the file
is not built.

The following dialog indicates Danish as the specified language and the language attribute of the
KSAM/3000 file is to be checked by the VERIFY command (mode 3):
RUN KSAMUTIL.~UB.SYS

HP32208A.03.13 THU, ~L 1984, 8:54 AM KSAMUTIL VERSION:A.03.13
>1ft!'JiRMDH'lfJUl;J.1,.R3fG:1IW?R3i1.,.AIj>ii:P'JIlM'(;1III:JII
> •

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?~
TEST.LORO.NLS CREATOR=SLORO
FOPTIONS(004005)=KSAM, :FILE, NOCCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOBUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUM:DRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

'80: 9: 0: 3: 89: 2: 0: 0: 0: 1023
LOG. COUNT:PHYS. COUNT:BLK SZ:EXT SZ:NR EXT: LABELS:LDN: DISCADDR:
0: 0: -240: 43: 8: 0: 3:00000234251:

KEY FILE=TESTK KEY FILE DEVICE=4 SIZE= 114 KEYS=
FLAGWORD(000020)=RANDOM PRIMARY, FIRST RECORD=O, PERMANENT
KEY TY LENGTH LOC. D KEY BF LEVEL

1 B 4 1 N 168 1
DATA FILE = TEST VERSION= A.3.13
KEY CREATED= 47/'84 9: 0: 7.6 KEY ACCESS= 47/'84 9:
KEY CHANGED= 47/'84 9: 0: 8.5 COUNT START= 47/'84 9:
DATA RECS = 0 DATA BLOCKS= 0 END BLK WDS=
DATA BLK SZ= 120 DATA REC SZ= 80 ACCESSORS=
FOPEN 1 FREAD 0 FCLOSE
FREADDIR 0 FREADC 0 FREADBYKEY
FREMOVE 0 FSPACE 0 FFINDBYKEY
FGETINFO 1 FGETKEYINFO 0 FREADLABEL
FWRITELABEL 0 FCHECK 0 FFINDN
FWRITE 0 FUPDATE 0 FPOINT
FLOCK 0 FUNLOCK 0 FCONTROL
FSETMODE 0 FREE KEYBLK 0 FREE RECS
KEYBLK READ 2 KEYBLK WRITTEN 0 KEYBLK SPLIT
KEY FILE EOF 10 FREE KEY HD 0 SYSTEM FAILURE
MIN PRIME 0 MAX PRIME 0 RESET DATE
DATA FIXED TRUE DATA B/F 3 TOTAL KEYS
FIRST RECNUM 0 MIN RECSIZE 4 LANG

0:19.2
0: 8.6

o
o
1
o
o
o
o
o
o
o
o
o

DANISH
WHICH ,(1=FILEINFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=ALL)?[Returnl
>111
END OF PROGRAM

NLS in MPE SUbsystems 3·11

Error Messages

KSAMUTIL error messages are listed in Table 3-5.

Table 3-5. KSAMUTIL Error Messages

ERROR # MESSAGE CAUSE ACTION
1070 'LANG' NOT FOLLOI.JED BY Improper syntax was Enter the language

'=' OR HAS TOO MANY PA' used in specifying the name usmg the cor-
RAMETERS. language name. rect syntax.

1071 'LANG' LANGUAGE VALUE The language name is Enter the correct Ian-
TOO LONG OR ABSENT. too long or missing a guagename.

parameter.

1072 'LANG' LANGUAGE NUMBER The language number Enter the correct lan-
VALUE INVALI D. contains invalid char- guage number.

acters.

1073 'LANG' LANGUAGE NOT Sup· The language speci- Ask the System Man-
PORTED. fied is not configured ager to configure the

on your system, or language on your sys-
not a valid language tern.
name or number.

1074 NATIVE LANGUAGE SUPPORT NLS is not installed Ask the System Man-
IS NOT INSTALLED. on your system. ager to configure the

language on your sys-
tem.

1075 NAT IVE LANGUAGE SUPPORT An NLS MPE error Ask the System Man-
LANGUAGE NOT SUPPORTED. occurred. No Ian- ager to configure the

guage table exists for language on your sys-
the language speer- tern.
fied.

1076 NATIVE LANGUAGE SUPPORT An NLS MPE error Ask the System Man-
RELATED ERROR. occurred. ager to configure the

language on your sys-
tem; if it is already
configured, contact
your Hewlett-
Packard support rep-
resentative.

Refer to Appendix A of the KSAM/3000 Manual (30000-90079) for more information on error messages.

3 ·12 NLS in MPE SUbsystems

Creating KSAM/3000 Files Programmatically

The user must provide the langnum when calling FOPEN to build a KSAM/3000 file. The langnum is stored
in word 10 of the KSAMPARAM array. The FOPEN intrinsic checks each time a KSAM/3000 file is opened to
determine whether the language used is configured on the system. For backward compatibility, bit 11 in
the flagword (word 15) must be set to 1 if a language other than 0 (NATIVE-3000) is used, to denote that
word 10 contains valid information.

If bit 11 of the flagword is 0, the default language (NATIVE-3000) is used and the data in word 10 is
ignored. If the language is not configured, condition code CCL is returned by FOPEN.

The file system error messages listed in Table 3-6 have been included with NLS:

Table 3-6. KSAM/3000 File System Error Messages

ERROR # MESSAGE CAUSE ACTION
196 LANGUAGE NOT SUPPORTED. The language name Ask the System Man-

or number specified ager to configure the
for FOPEN is not config- language on your sys-
ured on your system, tem.
or is not a valid lan-
guage name or num-
ber.

197 NATIVE LANGUAGE SUPPORT An NLS MPE error Contact your
RELATED ERROR. occurred on an FOPEN Hewlett-Packard sup-

call. port representative.

Refer to Appendix A in the KSAM/3000 Manual (30000-90079) for a complete list of KSAM/3000 file
system errors.

Modifying KSAM/3000 Files

Every record added or updated in a KSAM/3000 file has its new keys of type BYTE inserted in the key
file according to the collating sequence of the language defined for that KSAM/3000 file. That function
is handled internally by a system version of the NLCOLLATE intrinsic when the language attribute of the file is
different from NATIVE-3000. A new key in a file with aNA TIVE-3000 language attribute will be ordered
according to the result of a BYTE COMPARE between the key of the new record and the keys of the
records already in the key file.

NLS in MPE Subsystems 3 -13

-~--

Generic Keys

NLS collating sequences differ from the USASCII collating sequences, and the differences must be con-
sidered when performing generic key searches. Refer to Appendix C, "Collating in European Languages,"
for more information.

The description of a generic key search in a KSAM/3000 file with a native language attribute is presented
from an application point of view.

Keys matching a certain generic key may not be in consecutive order in the key file because the keys are
sorted according to a native language collating sequence. The key sequence in Figure 3-1 illustrates this
with a French KSAM/3000 file; keylength is 4, the generic key/ength is 2. The partial key "aa" appears in
non-consecutive keys (with a result of 0 in the last column of the figure). Records containing partial keys
(such as "AA" or "Aa") are intermixed according to the French collating sequence. These keys have a
result of 1 listed.

If a generic key search is performed in a KSAM/3000 file with a language attribute other than NATIVE-
3000, the application program must determine whether the retrieved record matches the generic key and,
even if it does not, whether subsequent records might still match it.

The codes returned by NLKEYCOMPARE are shown in Table 3-7. Refer to Chapter 4, "Native Language Intrin-
sics," for a complete discussion of the NLKEYCOMPARE intrinsic.

Table 3-7. Results returned by the NLKEYCOMPARE Intrinsic

RESULT MEANING

0 The retrieved key matches the generic key exactly.

1 The retrieved key does not match the generic key.
Uppercase/lowercase priority or accent priority is different.

2 The retrieved key value is less than the generic key.
It precedes the designated key in the collating sequence.

3 The retrieved key is greater than the generic key.

3 - 14 NlS in MPE Subsystems

The generic key search sequence is:

1. After F F I NDBYKEY has been called with >= as relational operator (relop), the logical record pointer points
to the data record indicated by the arrow labeled "Case 2".

2. The subsequent FREAD call will retrieve the data record. When the partial key "AA" is compared to the
generic key "aa" they are found to be different.
This comparison is done by calling the intrinsic NLKEYCOMPARE using the generic key and the key found
in the record. The result returned by NLKEYCOMPARE tells the application whether the FREAD delivered a
record:

a. Before the desired range (result 2).

b. In the desired range with an uppercase/lowercase or accent priority difference (result 1).

c. With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the FREAD calls and subsequent NLKEYCOMPARE

calls should continue until a result of 3 is returned.

When performing a generic key search in a KSAM/3000 file with a native language attribute other than
NATIVE-3000 use the NLKEYCOMPARE intrinsic to compare partial keys and generic keys.

Refer to programs I and J in Appendix H, "Example Programs," for generic key searches in KSAM/3000
files with native language attributes.

NLS in MPE Subsystems 3 -15

Key length:1I
Language: ~ (only USASCII characters are used in the example).
Desired records are all records whose record key starts with Iaa<><N>"
(generic key = "aa<><N>", length = 2).
Pointer Key NLKEYCOMPARE Result
Position Value ("<I>aa<I><N>" Compared to Key)
Case 1 --->
a

A 2
2

Case 2 --->
Aa
aA
aa
AAA
aaa
AAAA
AAAa
AAaa
AaAa
AaaA
Aaaa
aAAA
aAAa
aAaA
aaAA
aaaA
aaaa

Case 3 --->
baaa

AA
1
1
o
1
o
1
1
1
1
1
1
1
1
1
o
o
o

Baaa 3
3

Case: 1. FREAD starting at the beginning of the file.
2. FFINDBYKEY with relational operator = or >= and subsequent

FREAD calls.
3. FFINDBYKEY with relational operator> and subsequent

FREAD calls.
Key Value: Key values in ascending sequence.

Figure 3-1. Generic Key Searches

3 - 16 NLS in MPESubsystems

Copying From KSAM/3000 File to KSAM/3000 File

If the KSAM/3000 file already exists (built via KSAMUTIL or programmatically) the keys of type BYTE
are put into the new file according to the collating sequence belonging to the language of the TO file. If the
file does not exist, a new file is built with the same language attribute as the FROM file.

Changing the Language Attribute of a KSAM/3000 File

FCOPY /3000 cannot be used to change the language attribute of an existing file. KSAMUTIL must be
used to build a new KSAM/3000 file with the new language attribute. Then the data can be copied to this
file using FCOPY /3000. Keys of type BYTE in the destination key file will be ordered according to the
collating sequence of the new language.

Moving NLS KSAM/3000 Files To Pre-NLS MPE

Restoring a KSAM/3000 file with a native language attribute other than NATIVE-3000 to a system
without NLS installed can result in an incorrect key sequence in the key file for type BYTE keys. Systems
without NLS installed do not recognize any collating sequence except NATIVE-3000.

If a file with a native language attribute other than NATlVE-3000 is restored, the first FOPEN on the file will
return the same error condition code as if a system failure occurred while the file was opened. KSAMU-
TIL should be used to build a new KSAM/3000 file. The file with the native language attribute is recov-
ered, and FCOPY /3000 is used to copy the recovered file into the new KSAM/3000 file. Refer to the
dialog below for an example of this recovery procedure.
RUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
I ~~

FCOPY FROM=OLDDATA;TO=NEWDATA;KEY=O
RUN KSAMUTIL.PUB.SYS

SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10

NLS in MPE Subsystems 3· 17

QUERY
QUERY provides access to IMAGE databases to allow the following functions to be executed:

• Data entry.

• Data value modification or deletion online.

• Data retrival, meeting selection criteria.

• Data retrival, sort and reporting functions.

QUERY operations are performed by entering commands (English language key words and parameters).

Native Language Support (NLS) features can be accessed in QUERY to retrieve data which meet user-
defined selection criteria, and to sort data according to native language collating sequences. The user
must know what the native language in QUERY is, how the language is specified, how the language affects
the output, and how to determine which language is being used.

IMAGE databases have a language attribute that describes the collating sequence used in sorted chains
and locking. This language attribute does not affect the QUERY operation.

Although QUERY commands are in English, the user can expect the output data to be sorted and format-
ted according to the QUERY user's language. The language of the database may determine the data
sequence while using QUERY passively for data retrieval (FIND). When data is being sorted or formatted
by QUERY, the user's language will determine the ordering and formatting of the data.

For example,:in a French database with a QUERY user's language of Danish, data items in a sorted chain
might be retrieved according to the French collating sequence; but the sorting or formatting is done
according to Danish criteria.

The user can specify the QUERY user's language by:

• Using a QUERY command:

>LANGUAGE=langnum or >LANGuAGE=langname.

The default is NLUSERLANG. For example, if the user's language is French, the QUERY com-
mand is:

>LANGUAGE='7 or >LANGUAGE=FRENCH

• Using an MPE command:

:SET JCW NLuSERLANG=langnum.

The default is NATIVE-3000. For example, if the user's language is French, the MPE Job Control
Word NLUSERLANG may be used:

:SETJCW NLlJSERLANG=7

3 -18 NLS In MPE Subsystems

The >LANGUAGE= command always overrides NLUSERLANG. If neither option is used to specify the user's
language, QUERY assumes LANGUAGE=O (NATIVE-3000). NATIVE-3000 is the default, which ensures
backward compatibility. When the user's language is NATIVE-3000, QUERY performs as it did before
NLS features were available.

QUERY allows access to more than one database at the same time; more than one database language
attribute may be active at the same time. In any case, upshifting, collating, range selection, formatting, or
sorting is dependent on the QUERY user's language specified by the user via the JCW NLUSERLANG
or the LANGUAGE= command.

Command Summary

NLS can affect QUERY in upshifting data, range selection, date format, real number conversions, and
sorted lists and numeric data editing in REPORT.

Upshifting Data (Type U Items)

QUERY upshifts commands and the data of type U items. QUERY commands are upshifted according
to NATIVE-3000. Data is upshifted according to the user's language to ADD, UPDATE, REPLACE, UPDATE ADD, UPDATE
REPLACE, FIND, LIST, MULTIFIND, and SUBSET.

Range Selection

QUERY collates data according to the user's language in FIND, LIST, MULTI FIND, or SUBSET. The MATCH feature
(in FIND and MULTIFIND commands) is no longer valid when LANGUAGE <> 0 (NATIVE-3000). QUERY will
display an error message if MATCH is used in an interactive mode, and will abort the session in a batch mode.

Date Format

DATE is a reserved word in the REPORT command which provides the system date. It is formatted according
to the user's language.

Real Number Conversions

In the commands REPORT and LIST the output is formatted according to the user's language. For example,
123.45 in NATIVE-3000 becomes 123,45 in FRENCH.

Sorted Lists in Report

QUERY sorts type U or X items in a REPORT according to the collating sequence of the user's language.

NLSin MPESubsystems 3 - 19

Numeric Data Editing in Report

QUERY converts the data edited using the NATIVE-3000 edit mask (using the period as a decimal point
and a comma as thousands separator) to the corresponding characters in the user's language.

The commands listed in Table 3-8 are used to obtain language-dependent information. Refer to the
QUERY Reference Manual (30000-90042) for a complete description of these commands.

Table 3-8. Commands For Language-Dependent Information

COMMAND LANGUAGE-DEPENDENT INFORMATION

>HELP LANGUAGE Explains LANGUAGE command function, format and parameters.

>SHOW LANGUAGE Displays the QUERY user's language.

>FORM Displays the database language attribute.

3 -20 NLS in MPE Subsystems

Error Messages

QUERY error messages which support the NLS enhancement are listed in Table 3-9.

Table 3-9. QUERY Error Messages

MESSAGE MEANING ACTION

DBINFO MODE 901 FAILED. CHECK The version of IMAGE on This is a warning. The user
DATA BASE LANGUAGE ATTRIBUTE AND your system does not have may wish to update IM-
IMAGE VERSION. NLS features. AGE/3000 to the same level

as QUERY.

EXPECTED A LANGUAGE NUMBER OR The LANGUAGE command only ac- Enter HELP LANGUAGE for a com-
NAME. cepts the name of a language plete explanation of the com-

or the number associated with mand and then re-enter it.
that name.

INTERNAL QUERY NLS PROBLEM. The NLS subsystem encoun- Contact your Hewlett-
tered an error from which it Packard support representa-
could not recover while at- tive.
tempting to initialize lan-
guage-dependent information.

LANGUAGE INVALID. NATlVE·3000 Language specified not config- Run NLUTIL.PUB.SYS to list the
USED. ured. The default, NATIVE- languages and associated num-

3000 was used. bers available on your system.

LANGUAGE NOT CONFIGURED ON THIS Languages are configured on Run NLUTIL.PUB.SYS to list the
SYSTEM. NATIVE-3000 USED. each system. Language speci- languages and associated num-

fied is not available on your bers available on your system.
system. The default language
is NATIVE-3000.

MATCH NOT VALID WHEN LANGUAGE <> QUERY can only allow the If possible, change the lan-
NATIVE-3000. matching option for NATIVE- guage to NATIVE-3000 for

3000. the match.

NLCOLLATE INTRINSIC INTERNAL ER- An unexpected error condition Contact your Hewlett-
ROR. occurred while doing a com- Packard support representa-

parison of the data. tive.

NLUTIL INTRINSIC INTERNAL ERROR. The NLS subsystem encoun- Contact your Hewlett-
tered an error from which it Packard support representa-
could not recover while at- tive.
tempting to initialize lan-
guage-dependent information.

NLS In MPE Subsystems 3 -21

Table 3-9. QUERY Error Messages (cont.)

MESSAGE MEANING ACTION

USER LANGUAGE INVALID. User language not available. Ask the System Manager to
Only NATIVE-3000 is avail- configure the desired language
able on your system. on your system.

USER LANGUAGE NOT CONFIGURED ON Languages are configured on Run NLUTlL.PUB.SYS to list the
THIS SYSTEM. NATIVE·3000 USED. each computer system. Lan- languages and associated num-

guage specified is not available bers available on your system.
on your system. The default
language is NATIVE-3000.

3 - 22 NLS in MPE Subsystems

SORT-MERGE/3000
SORT-MERGE/3000 organizes records in a file according to the collating sequence of the keys. The
default collating sequence for character data is based on the binary values of the characters. EBCDIC and
user-defined sequences can also be used. Native Language Support (NLS) in SORT-MERGE/3000 pro-
vides the user with the option of collating according to a native language sequence.

SORT-MERGE/3000 can be used as a stand-alone program or programmatically.

Stand-Alone SORT-MERGE/3000

The key type CHARACTER allows the user to access native language collating sequences. The specific
native language collating sequence is assigned by the LANGUAGE command.

C [HARACTER] The collating sequence defined in the LANGUAGE command is used to sort keys
of type CHARACTER. Refer to the dialog below for an example of the
use of the CHARACTER key type.

COMMAND SYNTAX DESCRIPTION

LANGUAGE >L [ANGUAGE] [IS] tlangnumv Defines the native language collat-
tlangnamev ing sequence to be used to sort

keys of type CHARACTER.

The LANGUAGE command may specify a language ID number (langnum) or language name (langname). The
language specified must be configured on the system. If the LANGUAGE command is not used, the language
to be used for collating keys of type CHARACTER defaults to NLDATALANG, the language returned
by the NLGETLANG intrinsic (mode 2). In the dialog below, the LANGUAGE command designates Swedish. The
VERI FY command will confirm which language collating sequence will be used for the SORT or MERGE
stand-alone program:
RUN SORT.PUB.SYS

HP32214C.04.00 SORT/3000 MON, JAN 30, 1984, 1:52 PM
(C) HEWLETT· PACKARD CO. 1983

INPUT FILE = MYFILE
RECORD LENGTH = SAME AS THAT OF THE INPUT FILE
OUTPUT FILE = $STDLIST
KEY POSITION LENGTH TYPE ASC/DESC

1 4 CHAR ASC (MAJOR KEY)
LANGUAGE IS SWEDISH
>E

NLS in MPE Subsystems 3 • 23

Programmatic SORT-MERGE/3000

To use SORT-MERGE/3000 programmatically with NLS features, the user must designate the collating
sequence with the charseq parameter in the SORTINIT and MERGEINIT intrinsics.

Syntax

SORTINIT IA IA IV IV DV IV
(inputftles, outputfiles, outputoption,reclen,numrecs,numkeys,
IA IA LP P IA L I

keys,altseq,keycompare, errorproc.statisticsfailure, errorpann,
I IA O,V

spaceallocation,charseq,pann2)

MERGEINIT IA P IA P LV
(inputftles,preprocessor,outputftles,postprocessor,keysonly,

IV IA IA LP P IA L
numkeys, keys,altseq,keycompare, errorproc.statisticsfailure,

I I IA O-V
errorpann,spaceallocation,charseq,pann2)

PARAMETERS

The following parameters apply:

numkeys and
keys

The numkeys parameter is an integer.
The keys parameter is an integer array.
These parameters describe the way records are sorted or merged. One of these
parameters cannot be specified without the other. The use of numkeys and keys
disallows the use of keycompare. The number of keys used during the compari-
son of records is contained in numkeys, and the way records are compared is
specified by keys. For each key specified, keys contains three words:

The first word gives the position of the first character of the key within the
record. The second word gives the number of characters in the key. The third
word (bits 0-7) gives the ordering sequence of the records (a value of 0 for
ascending, 1 for descending). Bits 8-15 of the third word indicate the type of
data according to the following convention:

o = logical or byte (same as type BYTE in interactive mode)
1== two's complement, including integer and double integer
2= floating point
3 =packed decimal
4 ==Display-Trailing-Sign
5=packed decimal with even number of digits
6=Display- Leading-Sign
7=Display- Leading-Sign-Separate
8=Display- Trailing-Sign-Separate
9=character (collating sequence of charseq is used)

3 - 24 NLS in MPE Subsystems

charseq A two-word integer array.
To utilize charseq:
Set word 0 to l.

Set word 1 to the langnum of the collating sequence to be used for sorting keys
of type 9 (CHARACTER). The language designated must be configured on the system.

Whenever keys of type CHARACTER are compared, and charseq has been used to request a native
language collating sequence (for example, Dutch, Spanish, Danish), SORT or MERGE will call the NLCOL·
LATE intrinsic to do a native language comparison.

If NATIVE-3000 has been designated by the user or as a default, SORT-MERGE/3000 will do a direct
byte comparison on keys of type CHARACTER. NATIVE-3000 is an artificial language whose collating
sequence is based on the binary values of the characters.

Refer to the SORT-MERGE/3000 Manual (32214-90002) for other parameter descriptions.

NLS in MPE Subsystems 3 - 25

Error Messages
NLS-specific error messages include those for Programmatic SORT (Table 3-10), Interactive SORT
(Table 3-11), Programmatic MERGE (Table 3-12), and Interactive MERGE (Table 3-13).

Table 3-10. Programmatic SORT Error Messages

29 LIB SORT LANGUAGE NOT SUPPORTED.
30 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SE-

QUENCE TABLE.
31 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
32 LIB INVALID CHARSEQ PARAMETER.

Table 3-11. Interactive SORT Program Error Messages

40
41

INVALID LANGUAGE ID.
THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Table 3-12. Programmatic MERGE Error Messages

21 LIB SORT LANGUAGE NOT SUPPORTED.
22 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
23 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
24 LIB INVALID CHARSEQ PARAMETER.

Table 3-13. Interactive MERGE Program Error Messages

37
38

INVALID LANGUAGE ID.
THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Performance Considerations

SORT-MERGE/3000 executes more slowly when keys of type CHARACTER and a native language
collating sequence are requested. The complex collating algorithms required by some of the languages
may use additional CPU time. The speed of SORT-MERGE/3000 is unchanged when a native language
collating sequence is not requested or when NATIVE-3000 is requested.

3 - 26 NLS in MPE Subsystems

COSOlll Sort and Merge

The syntax for the SORT and MERGE verbs has changed slightly for NLS. It is now possible to specify
the native language whose collating sequence is to be used. The old syntax allowed only an alphabetic
name:

[COLLATING SEQUENCE ISalphabet-name]

The syntax has been changed to:

«alphabetnamev
[COLLATING SEQUENCE IS tlanguagenamen

tlangnumv

With the addition of NLS features, alphabetname retains the same meaning, languagename is an alphanu-
meric data item containing the name of the language whose collating sequence is to be used, and langnum
is an integer data item containing the language identification number of the language to be used.

The following demonstrates the use of the SORT verb syntax:
002600 ~ORKING-STORAGE SECTION.
002700 01 AN·LANG·NAME PIC X(16) VALUE "FRENCH"
002800 01 NUM·LANG·ID PIC S9(4) COMP VALUE 7.
003300 SORT SORT·FILE
003400 ASCENDING KEY SORT·KEY
003500 COLLATING SEQUENCE IS AN·LANG-NAME
003600 USING IN-FILE
003700 GIVING OUT-FILE_
004000 SORT SORT-FILE
004100 ASCENDING KEY SORT-KEY
004200 COLLATING SEQUENCE IS NUM-LANG-ID
004300 USING IN-FILE
004400 GIVING OUT-FILE.
005000 SORT SORT-FILE
005100 ASCENDING KEY SORT-KEY
005300 USING IN-FILE
005400 GIVING OUT-FILE

NLS in MPE Subsystems 3 - 27

VPLUS/3000
The VPLUSj3000 product consists of five major parts: Intrinsics, FORMSPEC, ENTRY, REFSPEC, and
REFORMAT.

VPLUSj3000 Native Language Support (NLS) enables an applications designer to create interactive
end-user applications which reflect both the user's native language and the local custom for numeric and
date information in the supported languages. NLS provides these specific features in VPLUSj3000:

• Native decimal and thousands indicators.

• Native language month names for dates.

• Alphabetic upshifting of native characters.

• Native characters in single value comparisons and table checks.

• Native collating sequence in range checks.

VPLUSj3000 does not support the application design process in native languages. Form names, field
identifiers, and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users in NATIVE-
3000 only.

language Attribute

VPLUSj3000 contains an NLS language attribute option which allows the applications programmer to
design an international or language-dependent forms file. If a native language attribute is not specified,
the forms file is unlocalized.

The forms file reflects the language characteristics of the application. Each forms file has a global lan-
guage ID number. The application may be unlocalized, language-dependent, or international. For exam-
ples of these applications, see Figures 1-3,1-4, and 1-5 in Chapter 1, "Introduction to NLS."

Unlocallzed

If no language ID number is assigned to a forms file, it will default to 0 (NATIVE-3000).

Language Dependent

This application only operates in a single language context. The language ID number is assigned when the
forms file is designed. If the text needs to be in the native language, unique versions of a forms file are
required for each language supported.

International

Multinational corporations may need to maintain a business language for commands, titles, and menus in
addition to accommodating the language of the end user for the actual data retrieved or displayed. For
this application, select "-1" as the language ID number for the forms file. The VPLUSj3000 intrinsic
VSETLANG must be called at run time to assign the appropriate language.

3 - 28 NLS in MPE Subsystems

Setting The tanquage 10 Number

The components of a form which can be language-dependent are the text, the initial values of fields, and
the field edit rules. The language ID number determines the context for data editing, conversion, and
formatting. The FORMSPEC language controls the context when the forms file is designed. The forms
file language controls the context when the forms file is executed.

The forms designer sets language ID number values for the forms file via the FORMSPEC Termi-
nal/Language Selection Menu. The forms file language defaults to 0 (NATIVE-3000) if no language ID
number is specified for it. NATIVE-3000 is currently the only selection available for the FORMSPEC
language. This means that initial values and processing specifications must be defined with the month
names and numeric conventions of NATIVE-3000.

The designer can change the forms file language ID number at any time. The value must be a positive
number or a zero for a single language application. If the value is acceptable, but the language is not
configured, FORMSPEC will issue a warning message. The language ID number will not be rejected. The
designer is prompted to confirm the value or change it.

For multiple language applications, the forms designer selects a forms file language ID number value of
-1. The international language ID number indicates that the intrinsic VSETLANG will be called at run time to
select the language ID number for the forms file. If an application uses an international forms file without
calling VSETLANG, it will be executed in the default, NATIVE-3000. If VSETLANG is called for an unlocalized or
language-dependent forms file, an error code will be returned.

The designer has three options in designing an application to work effectively with multiple languages:

• Develop several language-dependent forms files.

• Create one international forms file.

• Produce a combination of language-dependent files and an international forms file.

VGETLANG may be used to determine whether a language-dependent forms file or an international forms file
is being executed. If VGETLANG indicates an international forms file, VSETLANG must be called to select the
actual language. Refer to the VGETlANG and VSETLANG intrinsics at the end of this section.

Field Edits

NATIVE-3000 must be used to specify date and numeric fields within FORMSPEC. VPLUS/3000 will
convert the value when the forms file is executed to be consistent with the native language selected. Single
value comparisons (LT, LE, GT, GE, EQ, NE), table checks, and range checks (IN, NIN) specified within
FORMSPEC may contain any character in the 8-bit extended character set consistent with the selected
language ID number. When the form is executed at run time, the collating table for the native language
specified is used to check whether the field is within a range.

Date Handling

VPLUS/3000 supports several date formats and three date orders: MDY, DMY, YMD. Any format is acceptable
as input when the form is executed, provided that the field length can accommodate the format. The forms
designer specifies the order for each date-type field. With NLS, the native month names are edited and
converted to numeric destinations. The format and the date order are not related to the language of the
forms file.

NLS in MPE Subsystems 3 - 29

Numeric Data

Decimal and thousands indicators are language-dependent in the NUM [nJ and IMPn fields. When data is
moved between fields and automatic formatting occurs for data entered in any field, recognition, removal,
or insertion of these decimal and thousands indicators is language-dependent. The optional decimal
symbol in constants is also language-dependent.

NOTE

VPLUS/3000 edit processing specifications and terminal edit processing
statements are separate and are not checked for compatibility. There will
be no check that the designer has specified a terminal local edit which is
consistent with the language-dependent symbol for the decimal point
(DEC TYPE EUR, DEC TYPE US) in the configuration phase.

Native Language Characters

If a native language ID number has been specified in the forms file, the UPSHIFT formatting statement will
use native language upshift tables.

Range checks and the single value comparisons LT, LE, GT and GE involve collating sequences. When
the form is executed, the native language collating sequence table designated by the language ID number
is used to check whether the field passes the edit.

NLS features in VPLUS/3000 do not include support for pattern matching with native characters. MATCH

uses USASCII specifications.

Entry and language 10 Number

The forms file language determines the user language in ENTRY unless the file is international (-1). The
ENTRY program uses the intrinsic VGETLANG to identify the language of the forms file selected by the
designer.

If the forms file is international, ENTRY calls the NLS intrinsic NLGETLANG (mode 1). If it returns a value
of UNKNOWN, the user is prompted for a language ID number. Once a valid language ID number is deter-
mined, ENTRY calls the VSETLANG intrinsic to specify the corresponding language.

The batch file does not have a language indicator. Users with different native languages may collect data
in the same batch file if the associated forms file is international.

3 - 30 NLS in MPE Subsystems

Error Messages

VPLUS/3000 Error Messages are listed in Table 3-14.

Table 3-14. VPLUS/3000 Error Messages

NUMBER MESSAGE ACTION

9001 NATIVE LANGUAGE SUPPORT SOFTWARE NOT IN· ask the System Manager to install
STALLED. NLS software.

9002 LANGUAGE SPECIFIED IS NOT CONFIGURED ON Select another language or ask the
THIS SYSTEM. System Manager to configure the

desired language.

9011 LANGUAGE NOT CONFIGURED. CHANGE OR HIT Language specified is not config-
"ENTER" TO PROCEED. ured on the system. Forms file

produced can only be executed on
a system configured with that Ian-
guage.

9014 ATTEMPTED SETTING A LANGUAGE DEPENDENT VSETLANG can only be used with in-
FORMS FILE TO ANOTHER LANGUAGE. ternational forms files.

9015 NATIVE-3000 IS CURRENTLY THE ONLY SELEC· FO RMSPEC language can only be
TION AVAILABLE. o in this version.

9500 LANGUAGE OF FORMS FILE IS NOT CONFIGURED Ask the System Manager to con-
ON THIS SYSTEM. figure the language or use forms

file on a system with that language
configured.

9998 LANGUAGE ID MUST BE 0 TO 999 OR ., FOR Forms file language ID number
INTERNATIONAL FORMS FILE. must be between -1 and 999.

NLSIn MPESubsystems 3 - 31

VPlUSj3000 Intrinsics
The VGETLANG and VSETLANG intrinsics are used only with the VPLUS/3000 subsystem. Intrinsic calls in
VPLUS/3000 are usually in COBOL. Refer to the VGETLANG and VSETLANG sections for examples of calls in
other programming languages.

VGETLANG

This intrinsic returns the language ID number of the forms file being executed. The forms file must be
opened before calling VGETLANG. Otherwise, CSTATUS returns a nonzero value.

Syntax.

CALL "VGETLANG" USING COMAREA,LANGNUM

Parameters .

COMAREA The following COMAREA fields must be set before calling VGETLANG if not al-
ready set:

LANGUAGE - Set to code identifying the programming language of the calling pro-
gram.

COMAREALEN - Set to total number of words in COMAREA.

CSTATUS - Set to nonzero value if call is unsuccessful. VGETLANG may set this field.

LANGNUM Integer variable to which the language ID number of the forms file is returned.

Examples.

The following examples illustrate a call to VGETLANG:

COBOL
BASIC
FORTRAN
SPL

CALL "VGETLANG" USING COMAREA,LANGNUM.
120 CALL VGETLANG(C(*),L).
CALL VGETLANG (COMAREA,LANGNUM).
VGETLANG (COMAREA,LANGNUM);.

Special Considerations .

This intrinsic is used in the VPLUS/3000 subsystem only.

3 - 32 NLSIn MPESubsystems

VSETLANG

This intrinsic sets the language to be used by VPLUS/3000 at run time for an international forms file. The
forms file must be opened before calling VSETLANG. Otherwise, CSTATUS returns a nonzero value.

If VSETLANG is called to set the language ID number for a language-dependent or unlocalized forms
file, an error code of -1 will be returned to ERROR. For international forms files, both CSTATUS and
ERROR return a value of zero and the forms file is processed with the native language ID number
specified in LANGNUM.

Syntax.

CALL "VSETLANG" USING COMAREA,LANGNUM,ERROR

Parameters .

COMAREA The following COMAREA fields must be set before calling VSETLANG (if not al-
ready set):

LANGUAGE - Set to code identifying the programming language of the calling lan-
guage.

COMAREALEN - Set to total number of words in COMAREA.

CSTATUS - Set to nonzero value if call is unsuccessful. VSETLANG may set this field.

LANGNUM An integer containing the ID number of the language to be used by
VPLUS/3000.

ERROR Integer to which the error code is returned. Zero means the call was successfully
completed. A value of -1 is returned if the call is unsuccessful.

Example.

The following examples illustrate a call to VSETLANG:

COBOL
BASIC
FORTRAN
SPL

CALL "VSETLANG" USING COMAREA,LANGNUM,ERROR.
120 CALL VSETLANG(C(*),L,E).
CALL VSETLANG (COMAREA, LANGNUM, ERROR).
VSETLANG (COMAREA,LANGNUM,ERROR);.

Special Considerations.

This intrinsic is used in the VPLUS/3000 subsystem only.

NLS In MPE SUbsystems 3 - 33

RAPID/3000
The Rapid/3000 products differ from other products in that they provide both compile (specification)
time and run time support. In order to provide user access to the NLS intrinsics, the products maintain a
global native language attribute while they are executing. This global attribute is used for all collating,
upshifting, and sorting. The native language is specifiable at either run or compile time.

Inform Language Attribute

Inform will use the language provided by the NLGETLANG intrinsic as the user language. A prompt in the
option menu (appearing after all the other prompts) will provide the ability to change this attribute:

NATIVE LANGUAGE (NATIVE-3000) >

REPORT LANG Option

By default, REPORT uses NATIVE-3000 as the language. A parameter for the OPTION statement in
REPORT allows the specification of the native language at compile time:

OPTION LANG = languagename;

The REPORT program may also allow the user to select the language at run time:

OPTION LANG;

The user will be prompted with the question:
NATIVE LANGUAGE >

Transact SET (LANGUAGE) Verb

A modifier is available on the SET statement in TRANSACT. There are three forms of this verb:

SET(LANGUAGE) : *1
SET(LANGUAGE) languagenamei ,STATUS] ; *2,3
SET(LANGUAGE) itemname [,STATUS] ; *2,3

These allow the programmer to specify a change of the native language at run time. The user can either
specify a literal language name or ID number (which is checked at compile time) or give the name of and
X(16) item which contains the name or number.

*1 - STATUS is set to the OLD language ID.

*2 - STATUS is set to the NEW language ID.

*3 - If the STATUS option is not specified and the language is not defined or configured, an error message is
displayed and the language is set to 0 (NATIVE-3000). The specifying STATUS suppresses the error message and results
in a negative value for STATUS if an error occurs. In this case, the language is left unchanged.

3 - 34 NLS In MPE Subsystems

Command Summary
Upshift and Character Tables

The upshift and character type tables previously in the message have been replaced by the tables returned
by NLINFO. These tables will be initialized at system startup and reinitialized whenever the language is
changed. These tables were previously initialized from RAPID CAT.

Input and Output

In processing numeric items for input the thousands's separator will be ignored, provided it is not a
delimiter character. For example, the NATIVE-3000 thousands's separator of"," is also a default delim-
iter. The radix character will be converted to ".". The default delimiters of ",=" will not be changed.

The processing of number items for output has been changed. All occurences of a", " in the resulting string
are replaced by the thousands's separator, and all occurances of"." are replaced by the radix character.

Date and Time

The procedures which print out data and time have been modified to call the native language procedures.

IF and MATCH Changes

The code that processes IF statements and MATCH register comparisons has been modified to call
NLCOLLATE and to do comparisons for native languages. The language in effect at the time of the compar-
isons is used (regardless of what language was used when the MATCH register was set).

Native Language Accepting Intrinsics

The calls to intrinsics which accept a native language have been modified to pass in the language ID. This
only applies to SORT. The language being used at the time the sort is initiated will be used.

NLS in MPE Subsystems 3:- 35

Native Language Intrinsics 4
The following categories of intrinsics are used by Native Language Support (NLS) and are described, in
detail, in this chapter.

Table 4-1. Intrinsic Catagories

Catagory Intrinsic Description

Information Retrieving ALMANAC Returns numeric date
information.

NLGETLANG Returns the current language.
NLlNFO Returns language-dependent

information.

Character Handling NLCOLLATE Compares two character
strings.

NLFINDSTR Searches for a string.
NLJUDGE Determines whether a

character is a one-byte or
two-byte Asian character.

NLKEYCOMPARE Compares strings of different
length.

NLREPCHAR Replaces nondisplayable
characters.

NLSCANMOVE Moves and scans character
strings.

NLTRANSLATE Translates strings from and to
EBCDIC.

NLSUBSTR Returns a substring.
NLS'WITCHBUF Converts a string of

characters from phonetic
order to screen order and vice
versa.

Time/Date Formatting NLCONVCLOCK Converts the time format.
NLCONVCUSTDATE Converts the custom date

format.
NLFMTCALENDAR Formats the date.
NLFMTCLOCK Formats the time.
NLFMTCUSTDATE Formats the date into custom

date format.
NLFMTDATE Formats date and time.
NLFMTLONGCAL Formats a long version of the

date.

NativeLanguageIntrinsics 4 - 1

Table 4-1. Intrinsic Catagories (cont.)

Catagory Intrinsic Description

Number Formatting NLNUMSPEC Returns information needed
for formatting and converting
numbers.

NLCONVNUM Converts numbers from
native to internal form.

NLFMTNUM Formats an internal number
in native form.

Application Message CATCLOSE Closes a mesage catalog.
Catalog

CATOPEN Opens a message catalog.
CATREAD Reads information from a

message catalog.
NLAPPEND Concatenates a filename and

a language number.

4 - 2 Native language Intrinsics

NLS Date and Time Formatting Overview
The use ofNLS intrinsics provides a variety of date and time formats as shown in Figure 4-1.

NATIVE LANGUAGE DATE AND TIME FORMATIING OVERVIEW

HP 3000
INTERNAL FORMATS

LANGUAGE-DEPENDENT
EXTERNAL FORMATS

MPE INTRINSICS

'b
NL INTRINSICS

'b

CALENDAR----"I>

NLCONVCUSTDATE
'¢>' Formatted Custom

NLFMTCUSDATE
~

(Short) Dote

Intemal (e.g., 9/24/84)
Calendar Date

NLFMTCALENOAR

(Single Word) NLFMTLONGCAL

Forma tted Dale

~ (e.g .• Mon.
Sep 24, 1984)

>-
Formatted Date

-{> (e.q. Monday.
~eptember 24. 1985

Intemal
Time Of Day
(Double Word)

[<1-
NLFMTDAT~

Formatted Date and
TIme (e.g .• Mon.

v
Sep 24, 1984,

12:17 PM)

NLFMTCLOC~
v

Formatted TIme

NLCONVCLOCK
(e.q, 12: 17 PM)

CLOCK-----1>

Figure 4-1. Date and Time Formatting Overview

Native Language Intrinsics 4 - 3

ALMANAC

ALMANAC (Intrinsic Number 406)
This intrinsic returns the numeric date information for a date returned by the CALENDAR intrinsic. The
returned information is year of the century, month of the year, day of the month, and day of the week.

Syntax

LV LA I I I I o-v
ALMANAC (date, error,yearnum,monthnum,daynum, weekdaynums ;

Parameters

date logical by value (required)
Contains the date in the format:
Bits 0 6 7 15

+- - - - - - - - - - - - - - - - -+- - - - - - - - - - - - --+
I Year of Century I Day of Year I
+- - - - - - - - - _•• - - - - -+-- _. - - -. - - - -._+

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1
2
3

Meaning
No parameters available for returning values_
Day of the year out of range_
Year of the century out of range.

yearnum integer by reference (optional)
The year of the century is returned to this integer. For example, 00= 1900 and
84= 1984.

monthnum integer by reference (optional)
The month of the year is returned to this integer. For example, 1=January and
12= December.

daynum integer by reference (optional)
The day of the month is returned to this integer.

weekdaynum integer by reference (optional)
The day of the week is returned to this integer. For example, 1= Sunday and
7 = Saturday.

4 - 4 NativeLanguageIntrinsics

ALMANAC

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

NativeLanguageIntrinslcs 4 • 5

CATCLOSE

CATCLOSE (Intrinsic Number 417)
The CATCLOSE intrinsic closes the specified application message catalog and must be used with the applica-
tion message facility.

Syntax

D LA
CATCLOSE tcatindex.errori

Parameters

catindex double by value (required)
The catalog index returned by the CATOPEN intrinsic.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1
100

Meaning
Close of catalog file failed.
Internal Message facility error.

Special Considerations
Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

4 - 6 Native Language Intrinsics

CATOPEN

CATOPEN (Intrinsic Number 415)
The CATOPEN intrinsic opens the specified application message file and must be used with the application
message facility.

Syntax

D M ~
catindex, =CATOPEN (fonnaldesignator, errors,

Functional Returns

A catalog index double (an internal value recognized by the CATREAD and CATCLOSE intrinsics) is returned; this
is not a file number.

Parameters

fonnaldesignator byte array (required)
Contains a string of USASCII characters that identify the catalog file for the
system. This string must be terminated by any USASCII special character
except a slash or period.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1
2
3
100

Meaning
Open failed on catalog file.
Could not access catalog file.
File specified is not a GENCAT formatted catalog.
Internal message facility error.

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

Native Language Intrinsics 4 - 7

CATREAD

CATREAD (Intrinsic Number 416)
The CATREAD intrinsic reads the specified catalog and returns the text as indicated; it accesses catalogs
opened by the CATOPEN intrinsic only. The CATREAD intrinsic provides access to the application message
facility. The NLS application message catalog facility is discussed in Chapter 2, "Application Message
Facility."

Syntax

I D IV IV LA BA IV

msglen, =CATREAD ccatindex.setnum.msgnum, error,bujf,bujjsize,
BA BA BA BA BA IV O'V

pannl,pann2,pann3,pann4,pann5,msgdest) ;

Functional Returns

The length of the message is returned to msglen.

Parameters

catindex double by value (required)
An index, returned by CATOPEN, specifying which catalog is to be used.

setnum integer by value (required)
A positive integer, no greater than 255, specifying the set number within the
catalog.

msgnum integer by value (required)
A positive integer, no greater than 32766, specifying the message number within
the message set.

4 • 8 Native Language Intrinsics

CATREAD

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

error

Error #
1

2
3
4

6
7
14
15
16
17
18

19
100

buff

Meaning
Inval id catindexspecified.
Read failed on catalog file.
Set not found.
Message not found.
User buffer overflow.
Write failed to msgdest+, le.
Set < = 0 specified.
Set> 255 specified.
Message number < 0 specified.
Message number> 32766 specified.
Specifies buffsize < = o.
Specifies n1sgdest < o.
Internal message facility error.

byte array (optional)
Where the assembled message is returned.

buffsize integer by value (optional)
When specified, this is the buffer length in bytes. If buff is not specified, this is
the length (in bytes) of the records to be written to the destination file (Default
= 72 bytes).

byte arrays (optional)
Parameters to be inserted into message. These must always point to a
character string. The strings must be terminated by a binary zero.

parmi-parmS

integer by value (optional)
Integer value specifying the destination of the assembled message
(0 = $STDLlST,>2 = file number of destination file. Default = $sTDLlsTifbuffand
no file is specified).

msgdest

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

Native Language Intrinsics 4 - 9

NLAPPEND

NLAPPEND (Intrinsic Number 412)
The NLAPPEND intrinsic allows an application to designate which of several language-dependent files (for
example, application message catalogs or VPLUS/3000 forms files) should be used by appending the
language ID number to the filename. (This assumes that the application uses this naming convention for
its language-dependent files.)

Syntax

SA IV ~
NLAPPEND iformaldesignator, langnum.errors,

Parameters

[ormaldesignator byte array (required)
Contains a string of USASCII characters interpreted as part of a formal file
designator. The filename must end with three blanks.

langnum integer by value (required)
The language ID number, specifying which catalog is to be opened.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4
5 *
6 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid filename.
File name not terminated by three blanks.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

4 - 10 Native Language Intrinslcs

NLCOLLATE

NLCOLLATE (Intrinsic Number 402)
The NLCOLLATE intrinsic collates two character strings according to the collating sequence of the specified
language ID number. Its purpose is to determine a lexical ordering. It is not intended to be used for
searching or matching. To determine if two strings are equal, use the COMPARE BYTES machine
instruction.

Syntax

SA SA IV I IV LA LA O'V

NLCOL LATE sstringl ,string2, length,result, langnum, error,collseq) i

Parameters

string1 byte array (required)
The first of two character strings to be collated.

string2 byte array (required)
The second of two character strings to be collated.

length integer by value (required)
The length (in bytes) of the string segments to be collated.

result integer by reference (required)
The result of the collated character string:

o If string1 collates equal to string2.
·1 If string1 collates before string2.

If string1 collates after string2.

Result will be 0 if a nonzero error is returned.

langnum integer by value (required)
The language ID number, specifying which collating sequence is to be used.

Native Language Intrinsics 4 - 11

NLCOLLATE

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #
1 *
2 *
3
4

5 *
6 *
7 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Inval id length parameter.
NLS internal error.
NLS internal error.
Invalid collation range table.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

collseq logical array (optional)
An array containing the native language collating sequence table as returned by
NLiNFO, item 1l. This parameter is required for split-stack calls. If this parameter
is present, langnum will be ignored and this routine will be more efficient.

If the collseq parameter is omitted, and langnum is specified or defaults to a
language which collates by binary encoding, the COMPARE BYTES machine
instruction will be used to compare the two indicated strings. If the collseq pa-
rameter is used, it will determine the string compare operation (this may be a
COMPARE BYTES). Refer to the NLiNFO intrinsic items 11 and 27.

Special Considerations

Split-stack calls are permitted.

4 -12 Native language Intrlnslcs

NLCONVCLOCK

NLCONVCLOCK (Intrinsic Number 409)
The NLCONVCLOCK intrinsic checks validity of the string by using the formatting template returned by NLINFO

item 3, then converts the time to the general time format returned by the CLOCK intrinsic. This intrinsic is
the inverse of NLFMTCLOCK.

Syntax

D BA IV IV LA

time: =NLCONVCLOCK cstring.stringlen.langnum.errorn

Functional Returns

The intrinsic returns the time in the format:
Bits 0 7 8 15

+- - - - - - - - - - - - -+- - - - - - - - - - - - - - - - - --+
I Hour of Day I Minute of Hour I
+- - - - - - - - - - - - -+- - - - - - - - - - - - - - - - - --+

Seconds I Tenths of Seconds I
+- - - - - - - - - - - - -+- - - _. - - - - - - - - - - - - --+

NOTE

Seconds and tenths of seconds will always be zero.

Param~eters

string byte array (required)
A character string containing the time to be converted.

stringlen integer by value (required)
A positive integer specifying the length of the string (in bytes).

langnum integer by value (required)
The language ID number, specifying which custom time format is to be matched
by the string.

NativeLanguageIntrinsics 4 - 13

NLCONVCLOCK

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4
5 *
6 *

Meaning
NlS is not installed.
Specified language is not configured.
Invalid time string.
Inval id length.
NlS internal error.
NlS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

4 - 14 Native Language Intrlnslcs

NLCONVCUSTDATE

NLCONVCUSTDATE (Intrinsic Number 408)
Checks the validity of a string by using the formatting template returned by NLINFO item 2, then converts
the date to the general date format as returned by the CALENDAR intrinsic. This intrinsic is the inverse of
NLFMTCUSTDATE.

Syntax
L BA IV IV LA

date: =NLCONVCUSTDATE cstring.stringlen.langnum.errorv,

Functional Returns
The intrinsic returns the date in the format:
Bits 0 6 7 15

+ ••••••••••••••••• + •••••••••••••• +

I Year of Century I Day of Year I
+ ••••••••••••••••• + ••••••••••••• _+

Parameters

string byte array (required)
A character string containing the date to be converted. Leading and trailing
blanks will be disregarded.

stringlen integer by value (required)
A positive integer specifying the length of the string (in bytes).

langnum integer by value (required)
The language ID number, specifying which custom date format is to be matched
by the string.

Native Langua!~e Intrinsics 4 - 15

NLCONVCUSTDATE

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Meaning
NLS is not installed.
Specified language is not configured.
Invalid date string.
Invalid string length.
NLS internal error.
NLS internal error.
Separator character in string does not
match separator in the custom date template.
The length of the date string is more than
13 characters (excluding leading and
trailing blanks).

9 * Invalid national special table defined.

error

Error #

1 *
2 *
3
4

5 *
6 *
7

8

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

4 - 16 NativeLanguageintrinsics

NLCONVNUM

NLCONVNUM (Intrinsic Number 419)
Converts native language numbers with native decimal and thousands separators (for example, 1.234,56)
to an ASCII number with NATIVE-3000 decimal separator (.) and thousands separators (,). As an option,
the decimal and thousands separators can be stripped.

Syntax
IV SA IV SA

NLCONVNUM slangnum.instring.inlength.outstring,
I LA LA LV I o-v

outlength,error,numspec,fmtmask,decimals) ;

Parameters

langnum integer by value (required)
The language ID number, specifying which numeric formatting rules are to be
used in the conversion.

instring byte array (required)
Contains the native language formatted number to be converted. Leading and
trailing spaces are ignored.

in length integer by value (required)
Length, in characters, of instring.

outstring byte array (required)
Contains the converted output. The output will be left justified in the buffer and
outlength will contain the actual length of the converted number. Outstring may
reference the same address as instring.

outlengtb integer (required)
Length, in characters, of outstring. After a successful call to NLCONVNUM,

outlength will contain the actual length of the converted number.

NativeLanguageIntrlnslcs 4 -17

NLCONVNurlil

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

error

Error #
1 *
2 *
3
4
5 *
6 *
7

8
9

Meaning
NLS is not installed.
Specified language is not configured.
Inval id length specified iinlengths- outlengths.
Invalid number specified dnstrings,
NLS internal error.
NLS internal error.
Truncation has occurred coutstrings« left
partially formatted).
Inval id numspec parameter.
Inval id fmtmask parameter.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

logical array (optional)
A byte array, returned from NLNUMSPEC, which contains formatting information. If
this parameter is present, langnum will be ignored, and performance will be
improved (refer to the description of NLNUMSPEC in this chapter).

numspec

fmtmask logical by value (optional)
Specifies how to format the number. The default value is 0 and indicates substi-
tution only.

Bit #
(15:1)

(14:1)

(13:1)

(0:13)

4 - 18 Native Language Intrinslcs

Description
o . Convert thousands separators.
1 . Strip thousands separators.
o . Convert decimal separators.
1 . Strip decimal separators.
o . instring can contain any character.

(No validation will be performed)
1 . instring conta ins a number.

(Validation will be performed)
Reserved. Should always be set to zero.

NLCONVNUM

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

This intrinsic converts a native language formatted number to an ASCII number with the NATIVE-3000
decimal separator (.) and thousands separator (,) for use in further conversion to INTEGER, REAL, etc.
This intrinsic will convert the decimal and thousands separators, or strip them (see fmtmask), to the
NATIVE-3000 equivalent. For languages using an alternate set of digits (Arabic, HINDI digits only), the
intrinsic will convert the digits to ASCII for recognition and use as numeric characters.

NativeLanguageIntrinsics 4 - 19

NLFINDSTR

NLFINDSTR (Intrinsic Number 429)
This intrinsic searches string2 for stringl, and returns an integer value indicating the offset in string2 where
stringl was found.

Syntax

I IV BA IV BA
offset: =NLSUBSTR (!angnum,stringl,lengthl,string2,

IV LA LA o,v
length2, error,charseti,

Functional Returns

A ·1 is returned if stringl is not found in string2.

Parameters

langnum integer by value (required)
The language ID number.

stringl byte array (required)
The string of characters to be searched. It can contain one-byte and two-byte
Asian characters.

lengthl integer by value (required)
Length, in characters, of stringl.

string2 byte array (required)
The character string to be searched for.

length2 integer by value (required)
Length, in characters, of string2.

4· 20 Native Language Intrlnslcs

NLFINDSTR

error logical array (required)
In the first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #
1 *
2 *
3
4

5 *
6 *

Meaning
NLS not installed.
Speci'fied language is not configured.
Invalid lengthl parameter.
Inval id length2 parameter.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)
Contains the character set definition for the language to be used, as returned by
NLINFO's item 12.

Special ConSiderations

Split-stack calls are not permitted.

Native Language Intrinsics 4 - 21

NLFMTCALENDAR

NLFMTCALENDAR (Intrinsic Number 413)
Formats the date as specified by the language-dependent calendar which is returned by NLINFO item 1.

Syntax
LV SA IV LA O-V

NLFMTCALENDAR (date, string, langnum, error);

Parameters

date logical by value (required)
Indicates the date, in the format, as returned by the CALENDAR intrinsic:
Bits 0 6 7 15

+- - - - - - - - - - - - - - - - -+- - - - - - - - - - - - --+
I Year of Century I Day of Year I
+-- - - - - - - - - - - - - - - -+- - - - - - - - - - - - --+

string byte array (required)
A character string in which the formatted date is returned. This string will be 18
characters long, padded with blanks if necessary.

langnum integer by value (required)
The language ID number, specifying which calendar template is to be used. A
langnum of 0 will return the date formatted as though FMTCALENDAR were used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
5 *
6 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations
Split-stack calls are not permitted.

Additional Discussion
Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

4 - 22 Native Language Intrinsics

NLFMTCLOCK

NLFMTCLOCK (Intrinsic Number 410)

The NLFMTCLOCK intrinsic formats the time of day, as returned by the CLOCK intrinsic, to the custom time of
day format specified for the native language. The template returned by NLINFO item 3 will be used.

Syntax

DV BA IV LA
NLFMTCLOCK itime.string.langnum.errorv,

Parameters

time double by value (required)
A double word value, containing the time, in the format returned by the CLOCK
intrinsic:
Bits 0 7 8 15

+ ••••••• -_.-._+---._- --. __ ._. - -- •• -+

I Hour of Day I Minute of Hour
+- -. - - _..•. - - -+ ...• - - - - - - _. - _. _•..• +

Seconds I Tenths of Seconds I
+_ ••• - - _. -'" -+_. - _. -" -" - _. - - - - --+

string byte array (required)
An eight-character byte array, containing the formatted time of day which is
returned.

langnum integer by value (required)
The language ID number, specifying which format is to be used. A langnum of
o will return the time formatted as though FMTCLOCK were used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4 *
5 *
6 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid time format.
NLS internal error.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Native Language Intrinsics 4 - 23

NLFMTCLOC~C

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E ofAppendix H, "Example Programs" for examples of how this intrinsic is used.

4 - 24 Native language Intrinsics

NLFMTCUSTDATE

NLFMTCUSTDATE (Intrinsic Number 407)
The NLFMTCUSTDATE intrinsic formats the date, as returned by the CALENDAR intrinsic, to the custom date format
for the specified native language. The template NLINFO item 2 will be used.

Syntax

LV BA IV LA
NLFMTCUSTDATE «Iate.string.langnum.errorv-

Parameters

date logical by value (required)
A logical value, containing the date, in the format returned by the CALENDAR intrin-
SIC:
Bits 0 6 7 15

+. - - - - - - - - - - - - - - - -+- - - - - - - - - - - - --+
I Year of Century I Day of Year I
+------ - ------- ---+- -- -------- ---+

string byte array (required)
A thirteen-character byte array, containing the formatted date which is re-
turned.

langnum integer by value (required)
The language ID number, specifying which custom date template is to be used
for formatting. A langnum of 0will return the time formatted as though FMTCLOCK
were used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
5 *
6 *

Meaning
NLS is not installed_
Specified language is not configured.
Invalid date value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion
Refer to examples D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

Native Language Intrinsics 4 - 25

NLFMTDATE

NLFMTDATE (Intrinsic Number 414)
The NLFMTDATE intrinsic formats the specified date and time according to the concatenation of the templates
returned by NLINFO items 1 and 3.

Syntax

LV DV BA IV LA
NLFMTDATE tdate.time.string.langnum.errori,

Parameters

date logical by value (required)
A logical value indicating the date in the format as returned by the CALENDAR
intrinsic:
Bits 0 6 7 15

+- - ••...•••..... - -+ •••••••••••••• +
I Year of Century I Day of Year I
+ ••••••••••••••••• + •••••••••••••• +

time double by value (required)
A double word value indicating the time to be formatted. The double word is in
the format returned by the CLOCK intrinsic:
Bits 0 78 15

+ ••••••••••••• + ••••••••••••••••••.• +

I Hour of Day I Minute of Hour
+ •••••••••.••• + •••.•••.••••..•••••• +

Seconds I Tenths of Seconds I
+••.•.•••••••• + ••••••••••..•••••••• +

string byte array (required)
A 28-character string in which the formatted date and time are returned.

langnum integer by value (required)
The language ID number, specifying which formatting templates are to be used.
A langnum of 0 will return the date/time string as though FMTDATE were used.

4· 26 Native Language Intrinsics

NLFMTDATE

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4
5 *
6 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid date value.
Invalid time value.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program K in Appendix H, "Example Programs" for examples of how this intrinsic is used.

Native Language Intrinsics 4 . 27

---"----------------

NLFMTLONGCAL

NLFMTLONGCAL (Intrinsic Number 420)
The NLFMTLONGCAL intrinsic formats the supplied date according to the long calendar format. The formatting
is done according to the template returned by NLINFO item 30.

Syntax

LV BA IV LA
NL FMTLONGCAL cdate.string.langnum.errori

Parameters

date logical by value (required)
A logical value containing a date in the format as returned by the CALENDAR intrin-
sic:
Bits 0 6 7 15

+ .•••••••••••••.• + ••••• - - •• _••••• +
I Year of Century I Day of Year I
+ ••••• - •••••••••• + •••.••••..•••.• +

string byte array (required)
A 36 character array to which the formatted long calendar date is returned,
padded with blanks if necessary.

langnum integer by value (required)
The language ID number, specifying which format is to be used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4 *
5 *
6 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid date format.
NLS internal error.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE/3000).

Special Considerations

Split-stack calls are not permitted.

4· 28 Native Language Intrinsics

NLFMTNUM

NLFMTNUM (Intrinsic Number 421)
The NLFMTNUM intrinsic converts a string, containing an ASCII number (may include NATIVE/3000 decimal
separator (.), thousands separator (,), and currency symbol/name ($)), to a language specific format using
the currency symbol/name, decimal separator, and thousands separators defined for the native language.

Syntax

IV BA IV BA
NLFMTNUM ilangnum.instring.inlength.outstring,

I LA LA LV IV o-v
outlength, error,numspec,fmtmask, decimals);

Parameters

langnum integer by value (required)
The language ID number, specifying which formatting specifications are to
used.

instring byte array (required)
A byte array containing the NATIVE-3000 formatted ASCII number to be con-
verted (for example, $-123,456.78). Leading and trailing spaces are allowed.

in length integer by value (required)
Length, in characters, of instring.

outstring byte array (required)
A byte array where the language specific formatted number will be returned.
The decimal separator, thousands separator, and currency symbol/name are
replaced, if present; or are inserted, if specified by fmtmask, according to the
language definition. The outstring may reference the same address as instring.

outlength integer (required)
Length, in characters, of outstring. After a successful call, if outstring is returned
left-justified (specified by fmtmask), outlength will return the actual length, in
characters, of the formatted number.

Native Language Intrlnslcs 4 - 29

NLFMTNUM

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Meaning
NLS is not installed.
Specified language is not configured.
Inval id length specified. tinlengtn or outlengths
Invalid number specified. sinstrings
NLS internal error.
NLS internal error.
Truncation has occurred. coutstring
is left partially formatted)

8 Invalid numspec parameter.
9 Inval id fmtmask parameter.
10 Inval id decimals parameter.

error

Error #
1 *
2 *
3
4
5 *
6 *
7

* These errors do not apply to calls with langnum equal to 0 (NATIVE/3000).

logical array (optional)
A byte array, as returned from NLNUMSPEC, containing formatting specifications
for the specified language (currency/name, decimal separator, etc.) If this pa-
rameter is present, langnum will be ignored, and performance will be improved.
See description of NLNUMSPEC.

numspec

fmtmask logical by value (optional)
A logical specifying any formatting to be done on the input. The default value
is 0, which means a simple substitution.

Bit #
(15:1)

(14:1)

(13:1)

(11:2)

(0:11)

decimals

Description
o . Do not insert thousands separator.
1 . Insert thousands separators.
o . Do not insert decimal separators.
1 . Insert decimal separators.
o Do not insert currency symbol/name.

Insert currency symbol/name.
o No justification of the output.
1 The output will be left·justified.
2 The output will be right·justified.
3 The output will be left·justified and

outlength wi II return the actua l
length of the formatted number.

Reserved. Should always be set to zero.

integer by value (optional)
An integer specifying where to insert the decimal separator. The value is
ignored if bit 14 of fmtmask is zero, or a decimal separator is present in the
number.

4 - 30 Native Language Intrinsics

NLFMTNUM

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

This intrinsic operates in substitution mode and formatting mode:

Substitution Mode

Iffmtmask is omitted or has all bits set to zero, the substitution mode will substitute the native equivalent
for (I. I) and (I, I); for Arabic, it will substitute the alternative set of digits for ASCII digits. The input is
not validated as a number, and can contain several numbers. No justification takes place, and the output
will be left truncated if outstring is shorter than instring (for example, 1,234.56 -> .234,56).

Formatting Mode

If any bit 10-15 infmtmask is set to one, the formatting mode will perform the substitution, and format
the input according to fmtmask. In this mode, input is validated as a number, and only ASCII digits and
I. I, I, I, I- I, I+ I, and I$1are allowed.

Only one sign and one 's' are allowed. They must be the first character(s) in instring. Even if insertion (of
thousands separators etc.) is specified in [mtmask, the thousands and decimal separators are still valid
characters in the input. In this case, they will be substituted. If no justification is specified, the output will
be right-justified with the same number of trailing spaces as the input. If the output is truncated, it will be
left-truncated

NOTE

For languages written right to left, trailing spaces in the input will be pre-
served as leading spaces in the output.

NativeLanguageIntrinsics 4 - 31

NLGETLANG

NLGETLANG (Intrinsic Number 411)
This intrinsic returns a language ID number which characterizes the current user, data, or system. It is
intended for use by Hewlett-Packard subsystems (programs, not intrinsics) or by applications programs
so they can automatically configure themselves. Refer to "Special Considerations" for a description of
where NLGETLANG derives its information.

Syntax

I IV LA
langnumi =NLGETLANG ifunction.errori,

Functional Returns

The language ID number (langnum) of the current user, data, or system. In the event of an error, an
integer value of 0 (NATIVE-3000) is always returned to langnum.

Parameters

function integer by value (required)
The function number indicating which language ID number should be
returned. The possible values are:

1. The user-interface language. This is used to specify the language to be used
for communication between the program and the user.

2. The data language. This is an attribute which determines how various lan-
guage-dependent data manipulation functions (for example, sorting or
upshifting) should be performed by the subsystem.

3. The system default language.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #
1

2

Meaning
NLS is not installed.
NLGETLANG found the language requested,
but it was not configured on the system.
Inval id funtion value.
No language specified for NLGETLANG to access.

3
4

4 - 32 Native Language Intrlnslcs

NLGETLANG

Special Considerations

Split-stack calls are not permitted.

The NLGETLANG intrinsic will locate the language ID numbers requested by function 1 and 2 by referring to
the Hewlett-Packard defined Job Control Words (JCWs) NLUSERLANG and NLDATALANG respec-
tively. If the required JCW does not exist, or has a value greater than or equal to FATAL (32768), Error #4
is returned.

Additional Discussion

For example calls of this intrinsic refer to Program K in Appendix H, "Example Programs."

NativeLanguageIntrlnsles 4 - 33

NLINFO

NLiNFO (Intrinsic Number 400)
This intrinsic returns language-dependent information.

Syntax

IV LA LA
NLINFO titemnumber, itemvalue, langnum.errors,

Parameters

itemnumber integer by value (required)
Positive integer which specifies the itemvalue to return.

itemvalue type of variable depends on itemnumber (required)
Return variable for information requested; or (if itemnumber is 22 or 24) the
language name or number about which information is requested.

The following is a list of the currently defined itemnumbers, and the data types
and information returned to itemvalue.

Item # Type Description of itemvalue

1 LA An 18-character array to which the calendar format is returned. The 18
characters of the string for this definition are interpreted as the format de-
scription for that language. The following descriptors are valid:
D One'character day abbreviation.
DD Two'character day abbreviation.
DDD Three'character day abbreviation.
M One'character month abbreviation.
MM Two'character month abbreviation.
MMM Three'character month abbreviation.
MMMM Four·character month abbreviation.
mm Numeric month of the year.
dd Numeric day of the month.
yy Numeric year of the century.
yyyy Numeric year.
Nyy National year.
NPyy National year which may include a before-period symbol.
E 1·8 of these are to be replaced by that many characters

from the Emperor/Country name.
Valid separators are any special character.

For example, a format may be: DDD, MMM dd, yyyy. Using this format in NA-
TIVE-3000 would result in: FRI, MAY 25, 1984.

4 - 34 Native Language Intrinsics

NLINFO

Item # Type Description of itemvalue

2 LA A 13-character array to which the custom date format is returned. The 13
characters of the string for this definition are interpreted as the custom date
format description.

The following descriptors are valid:

nm Numeric:monthof the year.
dd Numericday of the month.
yy Numericyear of the century.
yyyy Numeric:year.
Nyy National year.
NPyy National year whichmayinclude the before-period symbol.

Valid separators are any special character. For instance, a date format
might be: yy/nm/dd.An example of this format in NATIVE-3000: 81/03/25.

3 LA An eight-character array to which the clock specification is returned. This
eight-character string provides the clock format description (template):

HHSXXYYZ,where:

HH Clock hour specification, either 1,! or 24.
S Separator. Val.id separators maybe any special

or alpha character, or 0 if no sparators between
hours and minutes should appear.

XX Symbolfor AM.
YY Symbolfor PM.
Z If blank, supresses leading zeros (hours); if

zero (0), prints leading zero.

In suppression of leading zero, " 11 (leading zero suppressed) or "0" (leading
zero will be printed) are valid. For example, the format "12:AMPM"would
yield formatted clock information in the form: 9:06 AM.The leading zero is
suppressed.

If the clock specification were changed to"240 0", the formatted clock infor-
mation for the same time would be:0906. Note the four blanks used as place
holders to ensure the correct placement of the leading-zero suppression
character.

4 LA A 48-character array to which the month abbreviation table is returned.
Each abbreviation is four characters long, using blank padding where neces-
sary to maintain uniform length in all native language abbreviations. For
example, the NATIVE-3000 abbreviations contain three characters plus a
blank. The first four characters of the array contain the abbreviation of
January.

The month abbreviation table for NA TIVE-3000 would be:
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"

Native Langulige Intrinsics 4 • 35

NLINFO

Item # Type Description of itemvalue

5 LA A 144-character array in which the month table is returned. Each month's
name can be up to 12characters long. Unused space in each month name is
padded with blanks where necessary to equal 12characters. The table begins
with the language-dependent equivalent in the native language specified for
January.

For example, the month name table for NATIVE-3000 would be:
"JANUARY FEBRUARY MARCH ..•DECEMBER"

6 LA A 21-character array in which the day abbreviation table is returned. Each
abbreviation is three characters long. The table begins with Sunday.

For example, the day abbreviation table for NATIVE-3000 would be:
"SUNMONTUEWEDTHUFRISAT"

7 LA An 84-character array in which the table containing the day of the week is
returned. Each day is 12 characters long (with blank padding as needed).
The table starts with Sunday.

For example, the day name table for NATIVE-3000 would be:
"SUNDAY MONDAY TUESDAY ..•SATURDAY"

8 LA A 12-character array to which the YES/NO responses are returned. The
first six characters contain the (upshifted) "YES" response; the second six the
(upshifted) "NO" response.

9 LA A two-character array to which the symbols for decimal separator and thou-
sands indicator are returned. The first character contains the decimal sepa-
rator, the second contains the thousands indicator.

The character for the thousands separator may take a special value: '0'
(zero). This value is not to be taken literally as a thousands separator, but
signifies the absence of a thousands separator for the language chosen.

4 - 36 Native Language Intrlnsles

NLINFO

Item # Type Description of itemvalue

10 LA A six-character array to which the currency signs are returned. The first
character represents the short currency symbol (if any) used for business
formats; the second character is a flag that indicates whether the currency
symbol precedes or succeeds the number and whether the currency symbol
is preceded or succeeded by blanks. The last four characters contain the full
currency symbol. The layout of the second character is as follows:

bits 0:4 0 The currency symbol has no blanks
preceding or succeeding it.
The currency symbol has a blank preceding it.

2 The currency symbol has a blank succeeding it.
3 The currency symbol has blanks

preceding and succeeding it.

bits 4:4 0 The currency symbol precedes the number.
The currency symbol succeeds the number.

2 The currency symbol replaces the decimal separator.
3 The currancy symbol precedes the sign (if present).

11 LA An array to which the collating sequence table is returned. A call to NLINFO
item 27 determines the length of this array based on the length of the table
of the native language specified.

12 LA A 256-character array to which the character set attribute table is returned.
Each character will contain the numeric identification of the character type:
0 Numeric character.
1 Alphabetic lowercase character.
2 Alphabetic uppercase character.
3 Undefined graphic character.
4 Special character.
5 Control code.
6 First byte of a two-byte character.

13 LA A 256-character array to which the ASCII-to-EBCDIC translation table is
returned.

14 LA A 256-character array to which the EBCDIC-to-ASCII translation table is
returned.

15 LA A 256-character array to which the upshift table is returned.

16 LA A 256-character array to which the downshift table is returned.

Native Language Intrinsics 4 - 37

NLINFO

Item # Type Description of itemvalue

17 LA A logical array to which the language numbers of all configured languages
are returned. The first word of this array contains the number of configured
languages. The second word contains the language number of the first con-
figured language. The third word contains the language number of the sec-
ond configured language, etc. (The langnum parameter is disregarded.)

18 L A logical to which true (-1) is returned if the specified language is supported
(configured) on the system. Otherwise, false (0) is returned.

19 I An integer to which the character set ID number supporting the specified
language is returned.

20 LA A 16-character array to which the uppercase name of the character set sup-
porting the specified language is returned. If the name contains fewer than
16 characters, it will be padded with blanks.

21 LA A 16-character array to which the uppercase name of the specified language
is returned. If the name contains fewer than 16 characters, it will be padded
with blanks.

22 LA The itemvalue is a logical array containing a language name or number (in
ASCII digits) terminated by a blank. The array must be at least eight words
in length. The associated language ID number will be returned to langnum.

23 L A logical to which true (-1) is returned if the character set specified is sup-
ported (configured) on the system. Otherwise, false (0) is returned.

24 LA The itemvalue is a logical array containing a character set name or number
(in ASCII digits) terminated by a blank. The required length of this array is
eight words or more. The associated character set ID number will be re-
turned to langnum.

25 LA A 16-character array to which the uppercase name of the specified character
set is returned. The langnum parameter must contain the ID number of the
character set. If the name contains fewer than 16 characters, it will be
padded with blanks.

26 I An integer to which the class number of the specified language is returned.

27 I An integer to which the length (in words) of the collating sequence table of
the specified language is returned.

28 I An integer to which the length (in words) of the national-dependent infor-
mation table is returned. Ifno national table exists for the specified lan-
guage, Error #4 is returned.

4· 38 NativeLanguageIntrinsics

NLINFO

Item # Type Description of itemvalue

29 LA A logical array to which the national-dependent information table is re-
turned. To determine the size of this array, the length must first be obtained
with a call to NLINFOitem 28.

30 LA A 36 character array to which the long calendar format is returned. It may
contain arbitrary text, as well as the following descriptors:

D 1·3 of these are to be replaced by that many
characters from the day abbreviation.

W 1·12 of these are to be replaced by that many
characters from the day of the week.

dd Numeric day of month.
M 1·4 of these are to be replaced by that many

characters from the month abbreviation.
o 1·12 of these are to be replaced by that many

characters from the month of the year.
mm Numeric month of the year.
yy Numeric year of the century.
yyyy Numeric year of the century.
Nyy National year.
NPyy Nationat year which may include a before·period symbol.
E 1·8 of these are to be replaced by that many

characters from the Emperor/Country name.
In addition, a special literal character "_" may be used to indicate that the
following character should be taken literally in the format, even if it is one
of the special characters above.

For example, a format may be: wwwwwwwww.oooOOOOOOdd.A.-D.yyyy.Usingthis
format in NATIVE-3000 would result in: WEDNESDAY,NOVEMBER21, A.D. 1984.

31 LA A 16 character array to which the currency name is returned.

32 LA An 8 character array, containing information about an alternative set of
digits. (Currently only used by Arabic)

Byte Description
0·1 Alternative digit separator (Integer).

o . No Alternative digits defined.
1 . Alternative digits defined.

2 The Alternative digit '0'.
3 The Alternative digit '9'.
4 The '+' used with Alternative digits.
5 The ,., used with Alternative digits.
6 The decimal separator used with Alternative digits.
7 The thousands separator used with Alternative digits.

NativeLanguageIntrinsics 4 - 39

NLINFO

Item #

33

34

35

36

langnum

error

Type

LA

L

L

L

Description of itemvalue

A 4 character array, containing information about the direction of the lan-
guage.

Byte Description
0·1 Language direction (Integer)

o - Direction is 'left to right'_
1 - Direciton is 'right to left'_

2 The 'right to left' space_
3 Undefined.

A logical value which returns the data ordering of the language.

Byte Description
o Keyboard order.
1 Left-to-right screen order.
2 Right-to-left screen order.

A logical value which returns the size of the character used by the language.

Byte Description
o One-byte characters (8-bits).
1 Two-byte characters (16-bits).

A logical value that returns a true (1) if the language requires suppressing
the leading zero or blank in the date format.

integer by reference (required)
The language or character set identification number for the information re-
quested.

logical array (required)
This two-word array contains the error number in the first word. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #

1 *
2 *
3 *
4

Meaning
NLS is not installed.
Specified language is not configured.
Specified character set is not configured.
No national table is present.
NLS internal error.
NLS internal error.
Reserved.
The itemnumber is out of range.

5 *
6 *
7-9

10

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

4 - 40 NativeLanguageIntrinsics

NLINFO

Special Considerations

Split-stack calls are permitted.

Additional Discussion

"Alternative digits" exist for the convenience of Arab speaking cultures that use Hindi digits in place of
the Arabic digits (0..9), which are more familiar to European and American users. For example calls of
this intrinsic refer to Program H in Appendix H, "Example Programs."

Native Language Intrinsics 4 - 41

NLJUDGE

NLJUDGE (Intrinsic Number 427)
This intrinsic judges whether a character is a one-byte or two-byte Asian character. If it is a two-byte
character, set judgefiag to 1 or 2. If it is a one-byte character, set judgefiag to o.

Syntax

IV IV BA IV BA
N2bytes: =N LJUDGE (langnum,instring,stringlength,judgefiag,

LV LA O·V
error, charsets,

Functional Returns

The number of a two-byte Asian character is an integer value that can be 'used to check if a string of
characters contain Asian characters.

Parameters

langnum integer by value (required)
The language ID number.

instring byte array (required)
The string of characters to be judged.

stringlength integer by value (required)
An integer value specifying the number of bytes in the instring.

judgeflag byte array (required)
This string will contain the flag values as follows:
o One-byte character.
1 First byte of a two-byte character.
2 Second byte of a two-byte character.
3 Invalid Asian character.

4 - 42 Native Language Intrinsics

NLJUDGE

error logical array (required)
In the first word, of this two-word array, the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.

Error #
1 *
2 *
3
4

5 *
6 *
7 *

Meaning
NLS not installed.
Specified language is not configured.
Invalid string length.
Not returned.
Bad NLT extra data segment.
Bad LOST extra data segment.
Inva lid characters found in instring.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)
An array containing the character set definition for the language to be used, as
returned by NLINFO's item 12. If present, the langnum parameter will be ig-
nored, and this routine will be more efficient.

Native Language Intrinsics 4 - 43

NLKEYCOMPARE

NLKEYCOMPARE (Intrinsic Number 405)
Compares two strings of different length. This intrinsic gives the KSAM/3000 user the ability to deter-
mine whether the key of a record matches the generic key specified. It should be used when reading a
KSAM/3000 file in key sequential order in combination with FREAD, after a FFINDBYKEY call.

The NLKEYCOMPARE intrinsic allows a program to determine whether a generic key search found an exact
match. That is, the generic key must exactly equal the beginning of the key, and not almost equal because
of priority (for example, uppercase versus lowercase or accent). It also allows the program to determine
whether an exactly matching key could be farther along the key sequence.

Syntax

BA IV BA IV

NLKEYCOMPARE <genkey,lengthl,key,length2,
IV LA LA O-V

result, langnum, error,collseqs ;

Parameters

genkey byte array (required)
Contains the generic key to be compared to the keys contained in the record
read by FREAD.

lengthl integer by value (required)
The length in bytes of genkey, which must be less than length2.

key byte array (required)
This contains an entire key to which the user wants to compare genkey.

length2 integer by value (required)
The length in bytes of key, which must be greater than lengthl.

4 • 44 Native Language Intrinsics

NLKEYCOMPARE

result integer by reference (required)
The result of the compare:

o The retrieved key matches the generic key exactly for a length of
lengthl.
The retrieved key does not match the generic key: it is different
only because of priority (for example, uppercase versus lowercase
characters or accent). The FREAD key is still in range. This means
that records may follow whose key matches the generic key exactly.

2 The retrieved key is less than the generic one (its collating order
precedes the key spec ified) . It does not match genkey. This
means the FREAD call found a record which precedes the range requested.
Records which match genkey may follow.

3 The retrieved key is greater than the generic key (it collates after
the specified key). This means that the FREAD call found a record
whose key follows the specified range. No records matching genkey
follow.

integer by value (required)
The language ID number, specifying the collating sequence to be used for the
compare.

langnum

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

error

Error #
1 *
2 *
3
4

5 *
6 *
7

8 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid collating table entry.
Invalid length parameter.
NLS internal error.
NLS internal error.
Value of length I is not less than length2.
Invalid collation range table.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

logical array (optional)
An array containing the collating sequence table as returned by NLlNFO item Ll.
This parameter is required for split-stack calls. If this parameter is present,
langnum will be ignored and this routine will be much more efficient.

collseq

Native Language Intrinsics 4· 45

NLKEYCOMPARE

Special Considerations

Split-stack calls are permitted.

NLKEYCOMPARE is intended for use with the KSAM/3000 subsystem.

Additional Discussion

For example calls of this intrinsic refer to Programs I and J in Appendix H, "Example Programs."

4 - 46 Native Language Intrinslcs

NLNUMSPEC

NLNUMSPEC (Intrinsic Number 425)
The intrinsic returns the information needed for formatting and converting numbers. It combines several
calls to NLINFO in order to simplify the use of native language formatting. By calling NLNUMSPEC once, and
passing the obtained information to NLFMTNUM and NLCONVNUM, implicit calls to NLUMSPEC from NLFMTNUM and NLCON-
VNUM are avoided and performance improved.

Syntax

IV LA LA
NLNUMSPEC tlangnum, string, error);

Parameters

langnum integer by value (required)
The language ID number.

string logical array (required)
A byte array of minimum 60 bytes in which will be returned the following infor-
mation:

Byte Description
00-01 Language identification number. (Integer)
02-03 Alternate Digit Indicator. (Integer)

o - No Alternate digits exist.
1 - Alternate digits exist.

04-05 Language Direction Indicator. (Integer)
o - The Language is 'left-to-right'.
1 - The Language is 'right-to-left'.

06-07 The Alternate digit range. ('0','9')
08 Decimal separator. ASCII'digits
09 Decimal separator. Alternate-digits
10 Thousands separator. ASCII-digits
11 Thousands separator. Alternate-digits
12 '+' Alternate-digits.
13 ,-, Alternate-digits.
14 'Right-to-left' space.
15 Reserved.
16-17 Currency place. (Integer)

o Currency symbol
Currency symbol succeeds the number.

2 Currency symbol replaces the decimal separator.
3 Currency symbol precedes the sign.

18-19 Length of Currency Symbol. (Integer) (Including any spaces)
20-37 Currency symbol. (Including any spaces)
38-59 Reserved.

Native Language Intrlnsics 4·47

NLNUMSPEC

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error #
1 *
2 *
3
4
5 *
6 *

Meaning
NlS is not installed.
Specified language is not configured.
Inval id string.
Not returned.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE/3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

The intrinsic combines NLINFO calls with item numbers 9, 10,31,32, and 33. The information is formatted
where needed (for example, any spaces in the currency symbol/name is included). The currency sym-
bol/name is the shortest non-blank descriptor, as returned from NLINFO, items 10 and 31. Apart from the
mentioned formatting, the intrinsic does not provide any information not obtainable with NLINFO. It is
included for the convenience of the NLS user. For efficiency, the user of this intrinsic would presumably
call it only once, save the result, and then call NLFMTNUM and/or NLCONVNUM multiple times.

4 - 48 Native Language Intrinsics

NLREPCHAR

NLREPCHAR (Intrinsic Number 403)
This intrinsic replaces all nondisplayable control characters in the string with the replacement character.
Nondisplayable characters are those with attribute 3 (undefined graphic character) or 5 (control code), as
returned by NLINFO item 12.

Syntax
BA BA IV BV

NLREPCHAR iinstr.ouistr.stringlength.repchar,
IV LA LA o·v

langnum.error.charsets ;

Parameters

instr byte array (required)
A byte array in which the nondisplayable characters have to be replaced.

outstr byte array (required)
A byte array to which the replaced character string is returned.

stringlength integer by value (required)
A positive integer specifying the length (in bytes) of instring.

repchar byte value (required)
A byte specifying the replacement character to be used.

langnum integer by value (required)
The language ID number, specifying which character set is to be used.

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

error

Error #
1 *
2 *
3
4

5 *
6 *
7
8

9 *

Meaning
NLS is not installed.
Specified language is not configured.
Invalid replacement character.
Invalid length parameter.
NLS internal error.
NLS internal error.
Invalid charset table entry.
Overlapping strings, outstring would overwrite instring.
Invalid two·byte character.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Native Language Intrinsics 4 - 49

NLREPCHAR

charset logical array (optional)
Contains the character set definition for the language to be used, as returned in
NLINFO item 12. If this parameter is present, langnum will be ignored and this
intrinsic will be much more efficient.

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

For example calls of this intrinsic refer to Program H in Appendix H, "Example Programs."

4 - 50 Native Language Intrinsics

NLSCANMOVE

NLSCANMOVE (Intrinsic Number 401)
Moves and scans character strings according to character attributes. The machine instructions (and the
SPL constructs) for SCAN and MOVE used for upshifting or in conjunction with the alphabetic, numeric,
or special characters will only work for NATIVE-3000. This intrinsic will handle this function in a lan-
guage-dependent manner.

Syntax
I SA SA LV IV

numchar:=NLSCANMOVEtinstring.outstringflags.length;
IV LA LA LA o-v

langnum.error.charset.shifts,

Functional Returns
The number of characters acted upon in the SCAN or MOVE operation.

Parameters

instring byte array (required)
A character string which will act as the source string of the SCAN/MOVE.

outstring byte array (required)
A character string which will act as the target.

NOTE

If outstring and instring are the same string, this intrinsic will act as SCAN.
Otherwise, a MOVE will be performed. (Refer to Error #3.)

NativeLanguageIntrinsics 4 - 51

NLSCAN MOVE

flags logical by value (required)
A flag defining the options for calling the intrinsic. This parameter always de-
fines the condition for terminating the SCAN/MOVE operation.

Bits Description
14:2 Alphabetic. NLINFO item 12, types 1 (alphabetic lowercase

character) and 2 (alphabetic uppercase character).
Lowercase.

2 . Uppercase.
3 . Uppercase or lowercase.

13:1 Numeric. NLlNFO item 12, type O.
12:1 Special. NLlNFO item 12, types 3 (undefined graphic character),

4 (special character), or 5 (control code).
11:1 WHILE/UNTIL option. If this bit is zero, then SCAN/MOVE is

performed while the condition specified by flags (12:4)

is true. If this bit is one, SCAN/MOVE is performed until the
condition specified by flags (12:4) is true.

9:2 Shift.
1 . Upshift.
2 - Downshift.

7:2 0 or 3 SCAN. For/UNTIL one·byte and two·byte characters.
1 . Two·byte mode only.
2 . One-byte mode only.

0:7 Reserved. These bits of the flags parameter are
reserved and must be zero.

length integer by value (required)
An integer indicating the maximum number of characters to be acted upon
during the indicated operation.

langnum integer by value (required)
The language ID number, specifying both the character set definitions of char-
acter attributes and the language-specific shift.

4 - 52 Nativelanguage Intrinsics

NLSCANMOVE

logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

error

Error #
1 *
2 *
3

4

5 *
6 *
7
8
9

10 *

Meaning
NLS is not installed.
Specified language is not configured.
Overlapping strings; instring would have been
overwritten by outstring.
Inval id length parameter.
NLS internal error.
NLS internal error.
Reserved portion of flags is not zero.
Both upshift and downshift requested.
Invalid table element.
Invalid two·byte character.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

logical array (optional)
An array containing the character set definition for the language to be used, as
returned in NLINFO item 12. If present, the langnum parameter will be ignored,
and this routine will be much more efficient. This parameter is required for
split-stack calls in whichjlags (12:4) is not equal to 0 andjlags (12:4) is not equal
to 15.

char set

shift logical array (optional)
An array containing shift information for a desired upshift or downshift (for
example, as returned in NLINFO items 15 or 16). This parameter will be utilized
when bits (9:2) ofjlags is not equal to O.If present, the langnum parameter will
be ignored, and this routine will be much more efficient. In split-stack calls this
parameter is required if bits (9:2) ofjlags is not equal to O.

Special Considerations

Split-stack calls are permitted.

See NLINFO'S item 35, the judge flag will return zero's.

NativeLanguageIntrinsics 4 - 53

NLSUBSTR

NLSUBSTR (Intrinsic Number 428)
This intrinsic is used to extract Length-to-Move bytes from the Instring to the Outstring.

Syntax
BA IV BA I

NL SUBSTR iinstring, in length, outstring, outlength,
IV IV IV

start 'position, length-to-move, langnum,
IV LA LA

flags.error.charsets ;
o-V

Parameters

instring byte array (required)
The string from which the substring will be extracted. The string can contain
both one-byte and two-byte Asian characters.

inlength integer by value (required)
The length, in characters, of instring.

outstring byte array (required)
Indicates where substring will be placed.

outlength integer (required)
Length, in characters, of outstring. After a successful call, outlength will return
the actual length of the substring moved to outstring.

start 'position integer by value (required)
The offset into instring where the substring starts. A value of zero is the begin-
ning point.

length-to-move integer by value (required)
Length, in characters, of the substring.

langnum integer by value (required)
The language ID number.

4 - 54 Native Language Intrinsics

NLSUBSTR

flags integer by value (required)
This flag word is used primarily with Asian languages. It is meaningless with
one-byte oriented languages. Flags is used to indicate the treatment of the case
when the first character of the substring is the second byte of a two-byte Asian
character and in the case where the last character in a substring is the first byte
of a two-byte Asian character.

Flags. (12:4) are for the treatment if the first character is the second byte of an
Asian character:

0000 Return an error condition.
0001 Start from start 'position +1.

0010 Start form start 'position -t ,
0011 Start from start 'position, but replace the character

with a blank in outstring.
0100 Start from start 'position regardless.

Flags. (8:4) are for the treatment if the last character is the first byte of an Asian
character:

0000 : Return an error condition.
0001 : Move until length-to-move +1.
0010 : Move unt il length-to-move -1.

0011 Move unti l length-to-move, but replace the character
with a blank in outstring.

0100 Move until length-to-move regardless.

Flags. (0:8) are reserved. These bits must be set to zero.

Native Language Intrinsics 4 - 55

NLSUBSTR

logical array (required)
In the first word of this two-word array, the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.

error

Error #
1 *
2 *
3
4

5 *
6 *
7
8
9
10
11
12
13*

14 *

Meaning
NLS not installed.
Specified language is not configured.
Not returned.
Not returned.
NLS internal error.
NLS internal error.
Inval id source'length.
Inval id start 'position.
Inval id legth-to-move.
Reserved port ion of Flags, not zero.
Inval id value for Flags. (8:4).
Inval id value for Flags. (12:4).
The start position is the first byte of an Asian character,
or an underflow condition occured due to Flags.
The end position is the second byte of an Asian character,
or an overflow condition occured due to Flags.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

char set logical array (optional)
An array containing the character set definition for the language to be used, as
returned by NLINFO's item 12.

Additional Discussion

Split-stack calls are not permitted.

4 - 56 NativeLanguageIntrlnslcs

NLSWITCHBUF

NLSWITCHBUF (Intrinsic Number 426)
Converts a string of characters from phonetic order to screen order, or from screen order to phonetic
order.

Syntax

IV SA SA IV

NLSI-IITCHSUF tlangnum, instring, outstring,stringlength,
LV LA

lefttorighi.errorn

Parameters

langnum integer by value (required)
The language ID number.

instring byte array (required)
The string, in phonetic order, to be converted to screen order.

outstring byte array (required)
Here the string will be returned after being converted. Out string and instring
may reference the same address.

stringlength integer by value (required)
Length, in characters, of the string to be converted.

lefttoright logical by value (required)
A logical value that specifies whether the implied primary mode of the data (if
it were to be displayed on a terminal) is left to right (TRUE) or right to left
(FALSE). This determines what the opposite language is and hence strings of
which characters get switched.

error logical array (required)
In the first word of this two-word array the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.
Error #
1 *
2 *
3
4
5 *
6 *

Meaning
NLS not installed.
Specified language is not installed.
Invalid string length.
Not returned.
NLS internal error.
NLS internal error.

* These errors do not apply to calls with langnum equal to 10 (NATIVE-3000).

Native Language Intrinsics 4 - 57

NLSWITCHBUF

Additional Discussion

This intrinsic is designed to handle data from languages written from right to left (for example, Arabic).
Screen order is defined to be right to left if the primary mode of the terminal or printer is from right to
left, as it is when used principally for entering or displaying data from a right to left language. Otherwise,
screen order is defined to be left to right.

NLSI.JITCHBUF can be used by a program to convert a buffer that is in phonetic order (the order in which the
characters would be typed at the terminal or spoken by a person) to screen order (the order in which the
characters are displayed on a terminal screen or piece of paper). It can also convert data from screen
order to phonetic order.

In general, phonetic order and screen order will not be the same if USASCII text is mixed with text from
a right to left language. The relationship between phonetic order and screen order is further complicated
by the use of Hindi digits in Arabic: Hindi digits playa third role intermediate between ASCII characters
and characters of the right to left language.

Note that this intrinsic is designed for a special purpose. Its primary value lies in its application to
languages that are written from right to left and which may, occasionally, intermix left to right text-for
example, the occasional use of English in Arabic text.

Nonetheless, NLSI.JITCHBUF can serve the needs of a general purpose program, one not specifically designed
for handling right to left data. Such a program can call NLSI.JITCHBUF to convert data from phonetic order to
screen order and back to phonetic order. An example is an editor that needs to track cursor movement
on a terminal against a buffer of text in memory. If the data is not that of a right to left language, then this
intrinsic will simply return the same text,unchanged, because for all other languages phonetic order and
screen order are the same.

4 - 58 NativeLanguageIntrinsics

NLTRANSLATE

NLTRANSLATE (Intrinsic Number 404)
The NLTRANSLATE intrinsic translates a string of characters from EBCDIC-to-ASCII or ASCII-to-EBCDIC
using the appropriate native language table. This intrinsic performs the same function as CTRANSLATE using
native language tables.

NOTE

This intrinsic does not support 16-bit characters.

Syntax
IV SA SA IV

NL TRANSLATE (code, instring, outstring,stringlength,
IV LA LA o-v

langnum, error, table);

The instring parameter is translated into outstring for length ofstn'nglength using a translation table deter-
mined according to the first rule that applies from the following list:

1. If table is present, a translation will be made using table.

2. If langnum equals NATIVE-3000, a standard ASCII-to-EBCDIC or EBCDIC-to-ASCII translation
is made.

3. The ASCII-to-EBCDIC or EBCDIC-to-ASCII translation table for the language specified will be
used.

Native Language Intrinsics 4 - 59

NLTRANSLATE

Parameters

code integer by value (required)
The direction of translation:
1 EBCDIC-to-ASCII
2 ASCII-to-EBCDIC

instring byte array (required)
The string of characters to be translated.

out string byte array (required)
A byte array to which the translated string is returned. The parameters
instring and outstring may specify the same array.

stringlength integer by value (required)
A positive integer specifying the number of bytes of instring to be translated.

langnum integer by value (required)
The language ID number, specifying which translation tables are to be used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #
1 *
2 *
3
4

5 *
6 *
7 *

Meaning
NLS is not installed_
Specified language is not configured_
Inval id code speci fied.
Inval id length par-ameter-,
NLS internal error_
NLS internal error_
Translation table is not supported for this language_

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

table logical array (optional)
A 256-byte array which holds a translation table. Each byte contains the transla-
tion of the byte whose value is its index. This parameter corresponds to NLINFO
items 13 and 14. If present, langnum parameter will be ignored and this routine
will be much more efficient.

Special Considerations

Split-stack calls are not permitted.

4 - 60 Native LanguageIntrinsics

System Utilities A

NLUTIL Program
The NLUTIL program allows the user to verify the language/character set configuration on the system.
It displays the configured languages and their character sets, and prompts the user to see if a full listing is
required as shown in the dialog below:
RUN NLUTIL.PUB.SYS

Lang
Name

Char
ID

Char
Name

Lang
ID
3
5
12

DANISH
ENGLISH
SPANISH

ROMAN8
ROMAN8
ROMAN8

Do you require a full listing of the current configuration? (Y/N) 13

An ''N'' response will terminate the program. A "Y" response will produce a complete formatted listing of
the currently configured languages written to the file NLLIST on device class LP.

NLS File Structure
The file NLSDEF.PUB.SYS lists all character sets supported by Hewlett-Packard and its related character set
names to character set ID numbers. It does the same for languages, and it indicates, for every language,
what character set is required to support that language.

The file CHRDEFXX (where xx is the character set ID number) contains the data pertaining to the character
set with ID number xx, and all languages supported by that character set. There are numerous CHRDEFXX

files.

The NLSDEF and the CHRDEFXX files are used by the program LANGINST.PUB.SYS to build or modify the file
LANGDEF • PUB. SYS. This file is used at system startup to build a number of system data segments holding the
information required by NLS. The number of data segments built at startup is one, plus one for every
language configured.

System Utilities A· 1

Language Installation Utility (LANGINST)
The file LANGDEF .PUB.SYS contains all language-dependent information for every language to be configured
on a system at the next COOLSTART/WARMSTART. It is an MPE file that is built or modified by
running the program LANGINST. It gathers data from NLSDEF.PUB.SYS and CHRDEFXX.PUB.SYS files into
LANGDEF. PUB. SYS.

Only a user logged on as MANAGER.SYS,PUB can run LANGINST to:

• Add a language to the configuration file.

• Remove a language from the configuration file.

• Display and modify local formats of a configured language.

• Display the languages supported by Hewlett-Packard.

• Display the languages currently configured.

• Modify the system default language.

NOTE

The next system COOLSTART/WARMSTART will implement the
changes made to LANGDEF.

Adding a Language
LANGINST prompts the user MANAGER.SYS for the language to add to LANGDEF. The user may supply either
the language ID number or name. If (Return) is entered, the operation is aborted. If the language is already
installed the user is advised, and the addition is cancelled with an error message:
S~EDISH is already configured.

Similarly, if the appropriate CHRDEFXX file is not available, the add is cancelled with an error message:

The CHRDEFXX fi le is missing.

The Addition has been cancelled.

Refer to Table A-l for a complete list of LANGINST error messages. It is not possible to add NATIVE-
3000. This language is hard-coded and is always configured. Any attempt to configure it will result in the
error message:

NATIVE-3000 is always configured.

NOTE

The next system COOLSTART/WARMSTART will install the lan-
guage(s) added.

A - 2 System Utilities

Deleting a Language

LANGINST allows the user to delete any configured language with the exception ofNATIVE-3000, which
cannot be deleted. In addition, a check is made to ensure that the language designated as the system
default is not deleted.

NOTE

The next system COOLSTART /WARMSTART will delete the Ian-
guage(s) designated.

Modifying Local Formats

The System Manager is allowed to modify the following local formats for any language configured in
LANGDEF:

• Date format (Dateline format)

• Custom date format (Short)

• Time format

• Currency sign/name

• Decimal and thousands indicator

• Month names

• Abbreviated month names

• Weekday names

• Abbreviated weekday names

• Yes/no indicators

• Direction of text

• ASCII/EBCDIC translation tables

• National date table

If the language supports a special National Table containing date information (KATAKANA), the last
option is displayed to allow the user to modify this date information.

Whenever any changes have been made, the new copy of the file is saved under the name LANGDEF.In
addition, the old, unchanged version of the file is saved under the name LANGD.n:x.The number xrx increases
byoneeverytimeanewcopyofLANGDEF'n saved. This allows the user to return to the configuration that existed
before LANGDEFwas changed. To return to the previous configuration, :PURGEor :RENAMEthe current LANGDEF'nThen
:RENAMEthe LANGDxxxwith the highest numberLANGDEF.The next system COOLSTART/WARMSTARTwill delete the changes.

SystemUtilities A- 3

LANGINST User Dialog
The following are user dialogues for choosing a function, adding a language, deleting a language, and
modifying local language formats.

Choosing a Function

The System Manager selects an item from the main menu:
o. EXIT
1. ADD LANGUAGE TO LANGDEF
2. DELETE LANGUAGE FROM LANGDEF
3. MODIFY NATIVE FORMATS
4. LIST HP SUPPORTED LANGUAGES
5. MODIFY THE SYSTEM DEFAULT LANGUAGE
6. LIST LANGUAGES CURRENTLY CONFIGURED
7. DISPLAY TRANSLATION TABLES

To list languages which can be configured on the system, select Option 4. The following will be displayed:
HP SUPPORTED LANGUAGES:
o NATIVE·3000 using USASCII
1 AMERICAN using ROMAN8
2 CANADIAN' FRENCH using ROMAN8
3 DANISH using ROMAN8
4 DUTCH using ROMAN8
5 ENGLISH using ROMAN8
6 FINNISH using ROMAN8
7 FRENCH using ROMAN8
8 GERMAN using ROMAN8
9 ITALIAN using ROMAN8

10 NORWEGIAN using ROMAN8
11
12
13
press any key to continue

A - 4 System Utilities

Adding a Language

To add a language, select Option 1:

1. Use the language name or language ID number (langnum).

2. The addition is aborted by entering a language that is already configured, a language not supported
by NLS, or NATIVE-3000 or by pressing lReturn].

Enter language to be added: @il!'1.,.111
SPANISH is already configured.

If a language is requested that is supported but has not been previously configured, LANGINST config-
ures it and displays the message:
SPANISH has been successfully added.
SPANISH will not be configured until you perform a system WARM/COOLSTART
3. When the addition is successfully completed, or else aborted, the main menu is displayed.

Deleting a Language

To delete a language, select Option 2:

1. Use the language name or language ID number (langnum).

2. The deletion is aborted by entering a (Return), a language that is not configured, or the system default
language.

3. When the deletion is successfully completed, or else aborted, the main menu is displayed.

System Utilities A - 5

Modifying Local Language Formats

To modify local language formats, select Option 3:

1. Use the language name or language ID number (langnum).

2. The process is aborted by entering a language that is not configured or NATIVE-3000, or by pressing
[Return).

3. If the process is aborted, the main menu is displayed.

4. If a configured language is entered, a menu is displayed:

1. Long calendar format
2. Date format (Calendar format)
3. Custom date format (Short)
4. Time format (Clock format)
5. Currency sign
6. Currency name
7. Decimal and thousands separator
8. Alternate numeric format
9. YES and NO equivalents
10. Month names.
11. Month name abbreviations
12. Weekday names
13. Weekday name abbreviations
14. Direction of text
15. ASCII/EBCDIC translation tables
16. Handle truncation in date format
Enter selection number
Business Currency sign
Enter the new value :[Return]
Fully qualified Currency sign :II1II
Enter the new value :[Return]
The currency sign currently follows the number, e.g., 100DM.
The following currency codes are available:
<CR> to retain the existing value.
o The currency symbol precedes the number, e.g., $100.00.
1 . The currency symbol succeeds the number, e.g., 100.00DM.
2 - The currency symbol replaces the decimal point, e.g., 100$00.
Enter the required currency codes (0, 1, or 2) :[Return]
There are to be no blanks before or after the currency symbol.
The following blank-control codes are available:
<CR> to retain the existing value.o No blanks before or after the currency symbol.
1 A blank is to precede the currency symbol.
2 - A blank is to succeed the currency symbol.
3 - A blank is to precede and succeed the currency symbol.
Enter the required code (0, 1, 2, or 3): [Return]

After the selection is made, the current value is displayed. The user is prompted for a new value. If
a new value is entered, it is validated and, if valid, it replaces the old value. If no new value is entered
(only [Return)) or if an invalid value is entered, the old value is retained.

A•6 SystemUtilities

Modification of ASCII/EBCDIC Translation Tables

A new option has been added to the utility program LANGINST to modify the ASCII/EBCDIC transla-
tion tables for any language other than NATIVE-3000 The modifications will appear in the file
LANGDEF and will become effect the next time a COOLSTART/WARMSTART is performed on the
system.

For example, assume you need to change the ASCII/EBCDIC translation for two characters in AMERI-
CAN:

CURRENT DESIRED
ASCII

04
EBCDIC

37
ASCI I

04
EBCDIC

44
C8 44 C8 37

In order to make the changes, the System Manager should run the utility program LANGINST .PUB.SYS and
select Option 3 (MODIFY NATIVE FORMAT). After entering the language ID, select Option 15
(ASCII/EBCDIC Translation Tables). Respond to the dialog as follows:
Input ROMAN8 character to be changed (HEX please) :IDZII
The current EBCDIC value is:1iIiI
Enter the new EBCDIC value :~
The ROMAN8 to EBCDIC table was updated
The EBCDIC to ROMAN8 table will be updated too
ASCII/EBCDIC table inconsistent for 44 <== 04,C8 (*)
The tables are inconsistent for ROMAN8 character C8 (**)
The current EBCDIC value is :~
Enter the new EBCDIC value :~
The ROMAN8 to EBCDIC table was updated
The EBCDIC to ROMAN8 table will be updated too
Input ROMAN8 character to be changed (H~lease):[Return]
Do you want to save the changes (Y/N) :~
* There are two ASCII characters mapping to the same EBCDIC character.

** Change the mapping of C8 to its new EBCDIC value.

Both the ROMAN8/EBCDIC and EBCDIC/ROMAN8 translation tables are updated and written out
to the LANGDEF file. If you would like to display the translation tables, return to the main menu and enter
Option 7. Then enter the langnum and the desired table you wish to display.

In the case you have more than two characters to modify, just follow the same steps for every two charac-
ters as mentioned above until you finish all pair exchanges.

System Utilities A - 7

Error Messages
Table A-I contains LANGINST error messages.

Table A-1. LANGINST Error Messages

MESSAGE MEANING ACTION

A NONNUMERIC GRAPHIC CHARACTER An alphabetic or special char- Enter a valid character.
IS EXPECTED ..• acter (not numeric) is ex-

pected.

ATTEMPTING TO ADD TOO MANY CHAR- Adding this language would Don't configure languages
ACTER SETS. exceed the maximum from so many character sets.

configurable character sets.

BUILDING AN EMPTY LANGDEF .,. There was no existing LANGDEF None. If you have already con-
file, so a new, empty one is be- figured languages, find
ing built. LANGDEF.PUB.SYS on a backup and

restore it; or else, reconfigure
the languages with this pro-
gram.

DELETION TERMINATED .•. ATTEMPT- The language NATIVE-3000 None.
ING TO DELETE NATIVE-3000. may not be deleted from the

list of configured languages.

ERRONEOUS STARTING YEAR NUMBER. The year number entered In Enter the year number again.
EXPECTED A NUMBER BETWEEN 0 AND not valid. It must be a number between 0
99. and 99.

INPUT TOO LONG ..• PLEASE REEN- The program does not expect Reenter the data correctly.
TER: so much input in this context.

INTERNAL ERROR ... PLEASE RE- Internal error. Contact your Hewlett-Packard
PORT. representative.

INVALID DATE FORMAT. EXPECTED The entered date is not valid. Enter the date again In the
MM/DD/VY. form MM/DD/YY.

langnameis ALREADY CONFIGURED. The language selected has None.
already been configured.

langnameis AN ILLEGAL LANGUAGE The language name or Enter the language again, cor-
NAME (OR NUMBER). number entered is not valid. rectly.

langnamets AN INVALID SYSTEM The language selected is not Add the language to the list of
DEFAULT LANGUAGE. configured on the system. currently configured

languages with this program.

A - 8 SystemUtilities

Table A-I. LANGINST Error Messages (cont.)

MESSAGE MEANING ACTION

langnameis NOT A CONFIGURED The language selected is not Add the language to the list of
LANGUAGE. configured on your system. currently configured

languages with this program.

langnameis NOT CONFIGURED. The language entered is not Add the language to the list of
configured on your system. currently configured languages

with this program.

langnameis NOT IN THE CHRDEF One of the CHRDEFXX files is not Restore all CHRDEFXX files and
FILE. consistent with the NLSDEF file. NLSDEF from your master

backup.

NATIVE-3000 IS ALI.IAYS CONFIG- NATIVE-3000 may not be None.
URED. added to the list of configured

languages, because it is always
configured.

NATIVE-3000 MAY NOT BE MODIFIED. The language definition of None.
NATIVE-3000 may not be
modified.

THE CHRDEFXXFILE IS MISSING. THE The character definition file Restore the missing file from
ADDITION HAS BEEN CANCELLED. for the selected language is your master backup.

missmg.

THE DECIMAL SEPARATOR AND THOU- The decimals and thousands Change the decimal and/or
SANDS SEPARATOR SHOULD BE DIF- separators have been defined thousands indicator.
FERENT. to be the same.

THE EXPECTED NAME SHOULD CONTAIN Only alphabetic characters are Please re-enter the value, re-
ALPHABETIC CHARACTERS ONLY. allowed in this context. stricting the input to

alphabetic characters.

THE FILECODE FOR The character definition file Restore the missing CHRDEFXX
CHRDEFXX.PUB.SYS IS INCORRECT. for the selected language has a file from the master backup.

bad file code.

THE FILECODE FOR LANGDEF.PUB.SYS The current language Restore LANGDEF.PUB.SYS from a
IS INCORRECT. definition file has a bad file backup copy. Or purge it, and

code. recreate it by reconfiguring the
desired
languages with this program.

THE FILECODE FOR NLSDE F•PUB. SYS The master NLS definition file Restore NLSDEF .PUB. SYS from the
IS INCORRECT. has a bad file code. master backup.

System Utilities A - 9

Table A-l. LANGINST Error Messages (cont.)

MESSAGE MEANING ACTION

THE LANGUAGE YOU ARE ATTEMPTING The system default language If you wish to delete this
TO DELETE IS THE SYSTEM DEFAULT may not be deleted from the language, you must first
LANGUAGE. list of configured languages. change the system default lan-

guage to another language.

THE USER SHOULD BE MANAGER.SYS, The user is not MANAGER. SYS or is Log on as MANAGER. SYS in the PUB
RUNNING IN THE PUB GROUP. not logged on in the PUB group. group and run the program

agam.

THERE IS NO MORE ROOM FOR ADDI· There is no room for Contact your Hewlett-Packard
TIONAL DATE PERIODS. PLEASE RE· additional entries m the na- representative.
PORT. tional date table.

TOO MANY LANGUAGES HAVE BEEN CON· Adding another language Don't configure so many
FIGURED. would exceed the maximum languages on one system.

configurable languages.

UNABLE TO RENAME LANGDEF TO The old LANGDEF file could not Purge some or all of the files
LANGDnnn. THE EXISTING LANGDEF be renamed because all files LANGDOOO to LANGD999 so the most
\JILL BE PURGED. LANGDOOO through LANGD999 al- recent changes to LANGDEF can

ready existed. be saved in the future.

UNKNO\JN OPTION The option selected IS not a Enter the number
PLEASE REENTER. valid one. corresponding to one of the

currently valid options.

A - 10 System Utilities

SUPPORTED LANGUAGES AND CHARACTER SETS B

Character Set Definitions
Every language supported in NLS is uniquely identified by number and name. Every language has:

• A character set number.

• A language identification number.

• A language name.

The pages that follow in this appendix are devoted to unique character sets. Every set consists of NA-
TIVE-3000, language identification number (langnum) 00, and may include one or more languages affili-
ated with the character set.

All character sets are supersets of USASCII and are occasionally referred to generically as "ASCII"
character sets, as in the term "ASCII-to-EBCDIC translation".

For every character set, a character attribute table is defined. This table of 256 entries holds an attribute
type for every character. The type identification is:

0: Numeric character
1: Alphabetic lowercase character
2: Alphabetic uppercase character
3: Undefined graphic character
4: Special character
5: Control code (for example, linefeed, escape)
6: First byte of a two-byte Asian character

SUPPORTED LANGUAGES AND CHARACTER SETS B-1

The following items are defined for every supported language:

• The upshift and downshift table

• The collating sequence table

• The ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables

• The long date format (the DATELINE format)

• The short date format (the custom date format)

• The time format

• The currency symbol (one character)

• The currency name (up to sixteen characters)

• The currency descriptor (up to four characters)

• The position and spacing of the currency sign

• The decimal and thousands separators for numbers

• The equivalents of YES and NO (both up to six characters)

• The full weekday names (up to twelve characters)

• The abbreviated weekday names (up to three characters)

• The full month names (up to twelve characters)

• The abbreviated month names (up to four characters)

• Text direction (left to right or right to left)

• Alternate set of digits (where applicable)

• The National Date table (where applicable)

Refer to the discussion on the NLiNFO intrinsic, in Chapter 4, for a complete description of these items.

B • 2 SUPPORTED LANGUAGES AND CHARACTER SETS

Language Definitions and Character Sets
The following pages contain the character sets and definitions supported by NLS.

NATIVE-3000

USASCII
Language Number

(Set #0)
Language Name

00 NATIVE-3000

The USASCII character set is a subset of the ROMAN8 character set shown in Figure B-l. It is contained
in columns 0 through 7.

ROMANS

Language Number
(Set #1)
Language Name

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15 - 40

NATIVE-3000
AMERICAN
CANADIAN-FRENCH
DANISH
DUTCH
ENGLISH
FINNISH
FRENCH
GERMAN
ITALIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH
ICELANDIC
Reserved

SUPPORTED LANGUAGES AND CHARACTER SETS B-3

0 0 0 0 0

b, 0 0 0 0 0 0 0

0 2 3 4 5 6 11 12 13 14 15
0 @ P

1\ A A PSP a
1 A Q

1\ 1 A Pa e

" 2 8 R b
1\ e -0 a

3 C S 0 1\ A: Dc u

$ 4 0 T d 9 , 0
da a

% 5 E U
,

Ie e 1

& 6 F V f 0 0

7 G W - 1
9 n u ce

4

8 H X h
,

A 0 1AN a 2

9 I y 1
, ,

0 aL e 1

* J Z tl
, o - QUS 0 0

+ K [k £. u «
12 FF FS < L \ I ¥ a E s •
13 CA GS = M m U § e 1 u »

> N
1\

f b {3 Y14 SO AS A n U ±
15 SI US I ? 0 ¢ U

Figure B-1. ROMANS Character Set

B - 4 SUPPORTED LANGUAGES AND CHARACTER SETS

KANA8

Language Number

00
41

(Set #2)
Language Name

NATlVE-3000
KATAKANA (Phonetic Japanese)

000

b, 0 0

12 13 14 15

SP 0 @ p ~ .:
"

1 A Q a .,..
A

" 2 B R b -1 ';I j

3 C S c e '7 .:f:

$ 4 D T d t .:x:. l- ~

% 5 E U e :;t -r .;:1..

& 6 F V f v 7J - '3

7 G W 9 ~ ~ ,
8 H X h ? * 1)

) 9 I y 1 ?
.,. / .IV

* J Z ~":::I V

+ K k { -!T l:::. tl

12 FF FS < L ¥ I I "/ 7 ?
13 CR GS = M] m } ~ A "" ;/

14 SO RS > N " -i! *
\\

'!:1

15 SI US I ? 0 :I -:t 0
':I

Figure B-2. KANA8 Character Set

SUPPORTED LANGUAGESAND CHARACTER SETS B - 5

ARABIC8

Language Number

00
49
50
51
52
53
54

(Set #3)
Language Name

NATIVE-3000
ARABICL
ARABICR
ARABIC
ARABICW
ARABICWL
ARABICWR

0 0 0

0

0

0

13 14 15

0 NUL OLE SP 0 @ p @ ~

1 SOH OC1 1 A Q a , I- J ...:a
2 STX OC2 " 2 B R b r y f j ~

3 ETX DC3 # 3 C S c s Y U" I.!.l

4 EOT OC4 $ 4 0 T d t t j .. JU'"

5 ENQ NAK 0/0 5 E U e 0 1 ~

6 ACK SYN & 6 F V f v "\ ':.t ~ U ••

7 BEL ETB 7 G W 9 V ..b 0 ,..
8 BS CAN 8 H X h x) A ~ ~ J !I'

9 HT EM 9 Y Y (~ 0 t I.S

10 LF SUB * J Z J z ~ t ~

11 VT ESC + K [k { ~

12 FF FS < L \ I I t
13 CR GS - M] m } t
14 SO RS > N 1\ n t
15 SI US / ? 0 / ~ ~

Figure B-3. ARABIC8 Character Set

B - 6 SUPPORTED LANGUAGES AND CHARACTER SETS

GREEKS

Language Number

00
61

(Set #4)
Language Name

NATIVE-3000
GREEK

15
0 @ p 0

I0 NUL DLE SP U 0

1 SOH DC1 1 A Q a q A IT C1 7T

2 STX DC2 " 2 B R b r B p f3 p

3 ETX DC3 # 3 C S c s r L r (J'

4 EOT DC4 $ 4 0 T d t ~ T 8 T

5 ENQ NAK 0/0 5 E U e u E T € V

6 ACK SYN & 6 F V f v Z <l> ~ cp
7 BEL ETB 7 G W 9 H 'T'J ~

8 BS CAN (8 H X h x ® X e X
9 HT EM) 9 I Y Y I 'I' "

'"10 LF SUB * J Z z n ciJ

11 VT ESC + K [k { K
I

Q Ie

L I I " I A12 FF FS < \ L A "13 CR GS M] m } M
I

~- 0 fL

14 SO RS N " N> 1\ n U '1/

15 SI US I ? 0 s::t !-
Figure B-4. GREEKS Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS B - 7

TURKISH8

Language Number

00
81

(Set #6)
Language Name

NA TIVE-3000
TURKISH

15
0 NUL OLE SP 0 @ p A g .,
1 SOH OC1 1 A Q a q e t A 1>
2 STX OC2 " 2 8 R b r y 0 0 a
3 ETX OC3 # 3 C S c s E i'E D 11
4 EOT OC4 $ 4 0 T d t E a a 0 q

5 ENQ NAK 0/0 5 E U e u E e i i %
6 ACK SYN & 6 F V f v t N 6 0 t
7 BEL ETB 7 G W 9 I ii u re 0 Iii

8 BS CAN (8 H X h x , a A 0 1/2
9 HT EM) 9 Y , . e 1 0 3~

10 LF SUB * J Z j z " TL 0 0 0

K [k { £ U
. S11 VT ESC + I 1

12 FF FS < L \ I I ¥ a 0 s 0
13 CR GS - M] m } § ~ S U ~
14 SO RS > N 1\ n f U Y ii
15 SI US / ? 0 c ~ y

Figure B-S. TURKISH8 Character Set

B - 8 SUPPORTED LANGUAGES AND CHARACTER SETS

PRC15

Language Number
(Set #51)
Language Name

00
201

J 7F
";•• 80-IL

NATIVE-3000
SIMPLIFIED CHINESE (CHINESE-S)

00
Second byte

7F 80 • FF
00

~
~ Two ASC/I values
~

FF

A1A1
.......·

'. '.' ", ,', .:

·' .' .' . . .' .'.
· .. . '" .

',' ',' .
.

. . '. ' ... ,',',',',',',',',' " .. ,',',',',','

.' .' .' .' . . .' . . .' .' - . . .
.: .: .',.... " " " .. ', ','" ..", .: ... " ~. '..... ",~.'.

~.... " ~.~. ', .. " " ',', ',', . .: ~. ',' ',
.... '. ', ', ', ~. ' '

FEFE
Figure B-6. PRC15 Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS B - 9

ROC15

Language Number

00
211

00

(Set #56)
Language Name

NATIVE-3000
TRADITIONAL CHINESE (CHINESE- T)

Sttcond byte
7F 80 FF

00

A/7E

...
..,' '.' .. '. '.'

.....~fiewl9.ff."-~~k8id~Sf!~~~·.
~/ ~~~~~~~~

~
~ Two ASCII values
':c

J 7F
10•• 80-IL.

FF
00

AIPI

. . . '

A~I r-~~.-.-.~.----~...
',' -";: .: ,',

. . ",",' " ,'. ,','

. ccoc iPt4~ti/·:: :
..... :::~ ~ :.(: .

A/FE
..

. . ' '. '. . . .

.....: :=ccoo ~;/Rj-· •• : .

. ,.,'.-,'

. ' ..
.. .

,',' "

FE2t

3F

FE'7E

7F 80 03

F6FE

FEFE

FF

Figure B-7. ROC15 Character Set

B-10 SUPPORTED LANGUAGES AND CHARACTER SETS

JAPAN15

Language Number
(Set #61)
Language Name

00
221

NATIVE-3000
JAPANESE

00
00

Second byte
7F 80

t.a 7F
'Ii•• 80-•••• Shift-JIS A

~ Two ASCII values
~
""

8140 8180 ..e1~F .
Shift-JIS A

11111.1.111111111 E080•..•••...••••..••••.. 9FFC ••.
\5 ::1
<, Shift-JIS BShift-JIS B

FF

EF40 , '1
·.··.::.::.U·ser.:..def"ined: fonts: ::.....

FE7E

EF80 I" .',.' ' '1
'.:::LUser:. :de:fined: fqnt$:: :.....

FEFC

Figure B-S. JAPAN15 Character Set

SUPPOBTED LANGUAGES AND CHARACTER SETS B - 11

FF

KOREA15

Language Number
(Set #66)
Language Name

00
231

!.a 7F

! 80
ii:

NATIVE-3000
KOREAN

00
Second byte

7F 80 FF
00

>::::
~ Two ASCII values

"

FF

A1A1 A1FC
...... :',', :.>:.<-: .

. . . .' '. . .' '. ' . '. . .. '.. . .'' .' >:>.>:- .
" .. . '.>:.<.>:- >:- .

. . " ' .
. .

.' ..
. .
:... U!*'r.~~~ined.~~~ts.... FCFB

FCA1 FCFC

Figure B-9. KOREA15 Character Set

B -12 SUPPORTED LANGUAGES AND CHARACTER SETS

COLLATING IN EUROPEAN LANGUAGES c
Collating is defined as arranging character strings into some (usually alphabetic) order. To do this a
mechanism must be available that, given two character strings, decides which one comes first. In Native
Language Support (NLS) this mechanism is the NLCOLLATE intrinsic.

Look at the full ROMAN8 character set and consider that all these characters can appear in every
European language. Even if a character does not exist in a language, it can still show up in names
and/ or addresses. It is quite useful to address a letter to Spain correctly, even if it originates in
Germany. Therefore, the full ROMAN8 character set is considered to be used in all languages, and a
collating sequence has been defined for all characters in the ROMAN8 character set for the languages
it supports. Figure C-llists the collating sequence for:

AMERICAN
DUTCH
FRENCH
NORWEGIAN
SWEDISH

CANADIAN-FRENCH
ENGLISH
GERMAN
PORTUGUESE

DANISH
FINNISH
ITALIAN
SPANISH

All characters in a group, indicated by brackets (or, in a few footnotes, by underlining) collate the same.
These characters usually differ only in uppercase versus lowercase priority, or accent priority. In
sorting, they are initially considered the same. If the remaining characters in the two strings do not
determine which string comes first, then the priorities of characters will be used to determine the order.
Refer to Table C-l for examples of collating sequence priority.

COLLATING IN EUROPEAN LANGUAGES C-1

Table Col. Examples of Collating Sequence Priority

Sorted Strings Explanation

aeb, aeb

abc, Abd

aBc, abc

The third character in each string is different. The
" b" precedes the "c".

The characters in the two strings are identical, so accent
priority determines the order. The "e" precedes the "e".
The last characters in the strings are different. The "c"
precedes the "d".

The characters in the two strings are the same, so the
uppercase priority determines the order. "B" precedes
"b".

NOTE

This Appendix deals with collating or lexical ordering and does not
include matching. For matching purposes, there is generally a difference
between "A" and "a".

Figures C-l and C-2 display the collating sequence in three ways: the graphic representation of the
character, the decimal equivalent of the character's binary value, and a description of the character.
Language-dependent variations to the collating sequence appear in Figure C-2.

c -2 COLLATING IN EUROPEAN LANGUAGES

Collating Sequence

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

32 Space

160 Do Not Use

0 48 Zero

49 One

2 50 Two

3 51 Three

4 52 Four

5 53 Five

6 54 Six

7 55 Seven

8 56 Eight

9 57 Nine

A 65 Uppercase A
a 97 Lowercase a

A 224 Uppercase A Acute, 196 Lowercase Acutea a
A 161 Uppercase A Grave, 200 Lowercase Gravea a
A 162 Uppercase A Circumflex

A 192 Lowercase a Circumflexa
~ 216 Uppercase A Umlaut/Diaeresis

a 204 Lowercase a Umlaut/Diaeresis
A 208 Uppercase A Degree. 212 Lowercase Degreea a
A 225 Uppercase A TI Ide

3' 226 Lowercase a Ti Ide

B [66 Uppercase B]b 98 Lowe rcase b

Note that t£ ligature (211) and ce (21 5) are expanded for collating purposes to AE or ae and col-
late as: ad AE Ae t£ aE ae ce AF.

Figure C-l. Collating Sequence (1 of 7)

COLLATING IN EUROPEAN LANGUAGES C· 3

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

C [67 Uppe rcase C]c 99 Lowercase c
~ 180 Uppercase C Ced Ll la

c 181 Lowercase c Ced llIa

D [68 Uppercase D]d 100 Lowercase d
f) 227 Uppercase D St roke

d 228 Lowercase d St roke

E 69 Uppercase E
e 101 Lowercase e

E 220 Uppercase E Acute, 197 Lowercase Acutee e
~ 163 Uppercase E Grave, 201 Lowercase Gravee e
~ 164 Uppercase E C ircumf lex

A 193 Lowercase C ircumf lexe e
~ 165 Uppercase E Umlaut/Diaeresis

e 205 Lowercase e Umlaut/Diaeresis

F [70 Uppercase F]f 102 Lowercase f

G [71 Uppercase G]
9 103 Lowercase 9

H [72 Uppercase H]h 104 Lowercase h

73 Uppercase I
105 Lowercase i

f 229 Uppercase I Acute, 213 Lowercase I Acute1

i 230 Uppercase I Grave, 217 Lowercase I Grave1

1 166 Uppercase I C ircumf lex
A 209 Lowercase i C ircumf lex1

r 167 Uppercase I Umlaut/Diaeresis
r 221 Lowercase Umlaut/Diaeresis
J [74 Uppercase J]j 106 Lowercase j

K [75 Uppercase K]k 107 Lowercase k

Figure Col. Collating Sequence (2 of 7)

C-4 COLLATING IN EUROPEAN LANGUAGES

CHARACTER DECIMAL DESCRIPTION
EQUIVALENT

L [76 Uppercase L]108 Lowercase I

M [77 Uppercase M]m 109 Lowercase m

N [78 Uppercase N]n 110 Lowercase n
R 182 Uppercase N Tilde

n 183 Lowercase n Tilde

0 79 Uppercase 0
0 111 Lowercase 0

6 231 Uppercase 0 Acute, 198 Lowercase 0 Acute0

0 232 Uppercase 0 Grave, 202 Lowercase 0 Grave0

0 223 Uppercase 0 Circumflex
" 194 Lowercase 0 Circumflex0

1j 218 Uppercase 0 Umlaut/Diaeresis
0 206 Lowercase o Umlaut/Diaeresis

(5 233 Uppercase o Ti Ide
5 234 Lowercase 0 Ti Ide

!ZI 210 Uppercase 0 Crossbar
szI 214 Lowercase 0 Crossbar

p [80 Uppercase P]p 112 Lowercase p

Q [81 Uppercase Q]q 113 Lowercase q

R [82 Uppercase R]r 114 Lowercase r

S [83 Uppercase S]s 115 Lowercase s
S 235 Uppercase S Caron

§ 236 Lowercase s Caron

T [84 Uppercase T]t 116 Lowercase t

Note that the ~ (222) sharp s) is expanded to ss and collates according to the German stan-
dard as: sr~ st.

Figure C-l. Collating Sequence (3 of 7)

COLLATING IN EUROPEAN LANGUAGES C-5

DECIMAL
EQUIVALENTCHARACTER DESCRIPTION

U 85 Uppercase U
u 117 Lowercase u

U 237 Uppercase U Acute, 199 Lowercase Acuteu u
CJ 173 Uppe rcase U Grave

U 203 Lowercase u Grave
0 174 Uppercase U Circumflex

Q 195 Lowercase u C Ircumf lex
0 219 Uppercase U Umlaut/Diaeresis

U 207 Lowercase u Umlaut/Diaeresis

V [86 Uppercase V]v 118 Lowercase v
'vi [87 Uppercase 'vi]w 119 Lowercase w

X [88 Uppercase X]x 120 Lowercase x
y

[89 Uppercase Y]y 121 Lowercase y
? 238 Uppe rcase Y Umlaut/Diaeresis

y 239 Lowercase y Umlaut/Diaeresis

Z [90 Uppercase Z]z 122 Lowercase z
p [240 Uppercase Thorn]p 241 Lowercase Thorn

177 Current ly Undefined

178 Cu rrent Iy Undefined
242 Current ly Undefined

243 Current ly Undefined

244 Currently Undefined

245 Currently Undefined

Figure Col. Collating Sequence (4 of 7)

C - 6 COLLATING IN EUROPEAN LANGUAGES

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

40 Left Parenthes is

41 Right Parenthesis

91 Left Bracket

93 Right Bracket

{ 123 Left Brace

} 125 Right Brace
{ 251 Left Gu illemet s

'-> 253 Right Guillemets

< 60 Less Than Sign

> 62 Greater Than Sign

= 61 Equal Sign

+ 43 Plus

45 Minus
:t 254 Plus/Minus

t 247 One Quart e r

t 248 One Half
0 179 Degree (Ring)

% 37 Percent Sign

* 42 Asterisk

46 Per iod (Point)

44 Comma

59 Semicolon

58 Colon

Figure C-l. Collating Sequence (5 of 7)

COLLATING IN EUROPEAN LANGUAGES C - 7

DECIMAL
EQUIVALENT DESCRIPTIONCHARACTER

185 Inverse Question Mark

? 63 Question Mark

184 Inverse Exclamation Point

33 Exclamation Point

/ 47 Slant

\ 92 Reverse Slant

124 Vertical Bar
@ 64 Comme rcia 1 At

& 38 Ampersand

35 Number Sign (Hash)

189 Section

$ 36 U. S. Dollar Sign
¢ 191 U. S. Cent Sign

187 British Pound Sign

175 Italian Lira Sign

188 Japanese Yen Sign

f 190 Dutch Guilder Sign

186 General Currency Sign
" 34 Double Quote

96 Opening Single Quote

39 Closing Single Quote

94 Caret
126 Tilde

Figure Col. Collating Sequence (6 of 7)

C - 8 COLLATING IN EUROPEAN LANGUAGES

DECIMAL
EQUIVALENT DESCRIPTIONCHARACTER

168 Accent Acute

169 Accent Grave

170 Accent Circumflex

171 Umlaut/Diaeresis

172 Tilde Accent

95 Underscore

246 Long Dash

176 Overline

249 Feminine Ordinal Indicator

250 Masculine Ordinal Indicator

252 So lid•
o \

\

/
/

\
\

/
/

Currently Undefined
Con tro 1 Codes

Control Codes

31

128

159

127 DEL

255 Do Not Use

Figure C-l. Collating Sequence (7 of 7)

COLLATING IN EUROPEAN LANGUAGES C • 9

Language-Dependent Variations

Listed below are language-dependent variations for Spanish, Danish/Norwegian, Swedish and
Finnish.

SPANISH. CH is considered a separate character, which collates between C and D. The same
applies to LL, which collates after L and before M:

[
C@ 1@

]
The @ symbol can equal anything.

CH LL Therefore, CH comes after C followed by
Ch Ll anything, and before D followed by
cH lL anything.
ch 11
D@ M@

In Spanish N and ~ are not considered the same in collating (this also applies to nand 1'0.
They are different characters which follow one another in the collating sequence:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

N [78 Uppercase N]n 110 Lowercase n

~ [182 Uppercase N T i Ide]n 183 Lowercase n Ti Ide

DANISH/NORWEGIAN. The ,of, Ill, and A collate at the end of the alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

,of [211 Uppercase AE Ligat u re]~ 215 Lowercase ae Ligat u re

¢ [210 Uppercase 0 Crossbar]¢ 214 Lowercase o Crossbar

A [208 Uppercase A Degree]a 212 Lowercase a Degree

p [240 Uppercase Thorn]p 241 Lowercase Thorn

Figure C-2. Language-Dependent Variations (1 of 3)

C -10 COLLATING IN EUROPEAN LANGUAGES

SWEDISH. The A, A and lj are collated at the end of alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

A [208 Uppercase A Degree]a 212 Lowercase a Degree

A [216 Uppercase A Umlaut/Diaeresis]a 204 Lowercase a Umlaut/Diaeresis
lj [218 Uppercase 0 Umlaut/Diaeresis]15 206 Lowercase 0 Umlaut/Diaeresis

~ [240 Uppercase Thorn]p 241 Lowercase Thorn

FINNISH. The A, A, and lj are treated the same as in Swedish. The ¢ is considered to be the
same as lj. V and W, and Y and 0 are regarded as the same in Finnish.

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

U 85 Uppercase U
u 117 Lowercase u

U 237 Uppercase U Acute, 199 Lowercase Acuteu u
CJ 173 Uppercase U Grave, 203 Lowercase Graveu u
0 174 Uppercase U Circumflex

A 195 Lowercase u C lrcumf lexu

V [86 Uppercase V]v 118 Lowercase v
W 87 Uppercase W

w 119 Lowercase w

X [88 Uppercase X]x 120 Lowercase x
y 89 Uppercase Y

y 121 Lowercase y
V 238 Uppercase Y Umlaut/Diaeresis

y 239 Lowercase y Umlaut/Diaeresis
U 219 Uppercase U Umlaut/Diaeresis

U 207 Lowercase u Urnlaut/D iaeres is

Figure C-2. Language-Dependent Variations (2 of 3)

COLLATING IN EUROPEAN LANGUAGES C - 11

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION

Z [90 Uppercase Z]z 122 Lowercase z

A [208 Uppercase A Degree]a 212 Lowercase a Degree
J:i [216 Uppercase A Umlaut/Diaeresis]a 204 Lowercase a Umlaut/Diaeresis

0 [218 Uppercase 0 Umlaut/Diaeresis]0 206 Lowercase 0 Umlaut/Diaeresis
¢ 210 Uppercase 0 Crossbar

¢ 214 Lowercase o Crossbar
I> [240 Uppercase Thorn]I:> 241 Lowercase Thorn

Figure C-2. Language-Dependent Variations (3 of 3)

C -12 COLLATING IN EUROPEAN LANGUAGES

EBCDIC MAPPINGS D
NLS provides mappings, through NLTRANSLATE and NLINFO, from HP 3000 supported character sets
(ROMAN8, KANA8) to the various national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000 and is done differently for each language.

Background Data

EBCDIC is an 8-bit code which originally used only 128 of the 256 possible code values. These 128
characters have almost the same graphic representations as the traditional 7-bit, 128-character,
USASCII code. Three characters are different. USASCII has the left and right square brackets ([and
]) and the caret ("'), while EBCDIC includes the American cent (¢)i, the logical OR (I), and the logical
NOT (,).

The EBCDIC code was modified to accommodate the extra characters required by European
languages. For example, when the German EBCDIC was defined some less important characters were
traded for German national characters, and the vertical bar (I) became lowercase o. Similar things
happened to create EBCDIC codes for Norwegian/Danish, Swedish/Finnish, Spanish, Belgian, Italian,
Portuguese, French, and English in the UK.

The 128 unused positions in the various national language EBCDIC codes were later used to
accommodate all national characters which appeared in any of the EBCDIC codes. Each resulting
Country Extended Code Page became a superset of each existing national EBCDIC. In the German
table, for instance, the empty space was used to accommodate characters from other languages, but the
traditional German characters a, 0, u, and B retained their original position in the German national
EBCDIC. There are many Country Extended Code Pages now, all showing exactly the same characters,
but showing them in different locations. Consider, for example, the character which has decimal code
161 (octal 241, hexadecimal AI). In original EBCDIC, this is the tilde (~) in Spanish, the sharp s (B) in
German, the diaeresis accent" in French, the lowercase ii in Swedish/Finnish and Norwegian/Danish,
the lowercase i in Italian, and the lowercase ~ in Portuguese.

This situation makes it necessary to map the Hewlett-Packard ROMAN8 character set to the many
different EBCDIC Country Extended Code Pages.

EBCDICMAPPINGS D· 1

ROMANS to EBCDIC Mapping
In mapping from ROMAN8 to and from any EBCDIC, characters look the same, or as close as possible,
before and after conversion. The majority of the symbols appearing in ROMAN8 also exist in the
EBCDIC Country Extended Code Pages. In ROMANS there are nine characters which have no similar
EBCDIC character, and six undefined characters. Since there are no undefined characters in the
EBCDIC Country Extended Code Pages, 15characters in EBCDIC have no look-alike in ROMAN8. For
these characters a one-to-one mapping has been defined as shown in Table D-l.

Table D-I. ROMANS to EBCDIC Mapping

dec. oct. hex. ROMAN8 EBCDIC

169 251 A9 ,
Grave Accent I Logical OR

170 252 AA "- Circumflex Accent Logical NOT...,

172 254 AC ~ Tilde Accent 2 Superscript 2
175 257 AF £ Italian Lira Sign 3 Superscript 3
177 261 B1 Presently Undefined II MU Character
178 262 B2 Presently Undefined - Double Underline
235 353 EB S Uppercase S Caron 'i Uppercase Y Acute
236 354 EC S Lowercase s Caron

, Lowercase y Acutey
238 356 EE V Uppercase Y Umlaut 1 Lowercase i Without Dot
242 362 F2 Presently Undefined ~ Cedilla
243 363 F3 Presently Undefined en Paragraph Sign
244 364 F4 Presently Undefined ® "Registered" Sign
245 365 F5 Presently Undefined t Three Quarters
246 366 F6 - Long Dash SHY Syllable Hyphen
252 374 FC • Solid • Middle Dot

For the Hewlett-Packard KANA8 character set, which supports KATAKANA, the mapping to and from
EBCDIC is defined by Japanese Industrial Standards (JIS) and IBM.

In all languages, the character mappings defined and implemented on the HP 3000 are such that any
character mapped from any Hewlett-Packard 8-bit character set to EBCDIC and then back again, or vice
versa, will result in the original character value. A complete listing of the Hewlett-Packard 8-bit character
set to EBCDIC mappings and vice versa can be obtained by running NLUTIL.PUB.SYS.

The mappings can be made available to a program by the NLiNFO intrinsic item 13 or 14. The mappings are
used by the NLTRANSLATE intrinsic, which performs the Hewlett-Packard 8-bit to EBCDIC translation or the
reverse. The CTRANSLATE intrinsic maps USASCII to EBCDIC (and vice versa) and maps JISCII to EBCDIC
(and vice versa). For the languages NATIVE-3000 and KATAKANA, there is no difference between the
mappings produced by NLTRANSLATE and CTRANSLATE.

o . 2 EBCDIC MAPPINGS

PERIPHERAL CONFIGURATION E
Native Language Support (NLS) relies on the use of 8-bit character sets to encode alphabetic, numeric,
and special characters required for the proper representation of native languages. Two character sets
are available, ROMAN8 and KANA8. This Appendix explains how to configure various printers and
terminals supported on the HP 3000 for 8-bit operation, so that ROMAN8 or KANA8 characters may
be entered and displayed.

Most Hewlett-Packard terminals and printers are designed for 8-bit operation. Some have limitations
which are listed as "Notes" at the end of this Appendix. A listing of relevant notes is included with the
instructions for each peripheral, and the peripherals to which such notes apply are listed in Table E-2.

NLS Peripheral Support Summary
Tables E-l, E-2, and E-3 contain information on which peripherals are fully supported, those that have
limited support, and those that are not supported.

PERIPHERALCONFIGURATION E-1

Table E-1. Peripherals Fully Supported in 8-Bit Operation - All Language Options

Conforms To sUFf80rts sUFf80rts
Model/Type Processing Full MANS Old MANS

Standard

HP 150 PC/As Ter- YES YES YES
minal

HP 2392A Terminal YES NO YES

HP 2563A Printer YES YES YES

HP 2621B Terminal YES NO YES

HP 2622J Terminal YES YES * N/A*

HP 2623J Terminal YES YES * N/A*

HP 2625A Terminal YES YES YES

HP 2627A Terminal YES NO YES

HP 2628A Terminal YES YES YES

HP 2700 Terminal YES NO YES

HP 2932A Printer YES YES YES

HP 2933A Printer YES YES YES

HP 2934A Printer YES YES YES

* Supports KANA8 rather than ROMAN8.

E - 2 PERIPHERAL CONFIGURATION

Table E-2. Peripherals With Limited Support in 8-Bit Operation

Conforms To sUJf80rts sUJf80rtsModel/Type processing Full MANS Old MANS
Standard

HP 2382A Terminal NO NO YES

HP 2608A Printer NO NO YES

HP 2608S Printer NO NO YES

HP 2622A Terminal NO NO YES

HP 2623A Terminal NO NO YES

HP 2626A Terminal NO NO YES

HP 2626W Terminal NO NO YES

HP 2631B Printer NO NO YES

HP 2635B NO NO YES
Prntr/Term

HP 2645J Terminal NO YES* N/A*

HP 2680A Printer NO NO YES

HP 2688A Printer NO YES YES

* Supports KANA8 rather than ROMAN8.

Table E-3. Peripherals Not Supported in 8-Bit Operation

Conforms To sUJf80rts sUJf80rtsModel/Type Processing Full MANS Old MANS
Standard

HP 2624B Terminal NO NO NO

HP 2687A Printer YES NO NO**

** This printer functions correctly in 8-bit operation (it has no 7-bit operation). However, much of the
ROMAN8 character set is not implemented, and KANA8 is unavailable. Some of Roman Extension is
not implemented; but S-bit characters with some of the Roman Extension values print in a degraded
fashion (for example, accented vowels print as the corresponding vowel without accent, and the interna-
tional currency symbol prints as "0").

PERIPHERALCONFIGURATION E - 3

Specifics of 7-Bit Support

No peripherals are supported in 7-bit Native Language operation.

All peripherals are supported in 7-bit USASCII operation, though the non-USASCII characters are
then unavailable. This includes the devices not listed at all in the preceding tables, because they are
devices which have only 7-bit operation.

If 8-bit data is sent to a device configured for 7-bit USASCII operation, those characters with the eighth
bit on will be displayed as unrelated (but predictable) USASCII characters or else as blanks, depending
on the device. For example, an "a" displays as "H" on a 2645A terminal.

This Appendix contains specific information on each device supported in 8-bit mode to help configure
these peripherals to utilize NLS capabilities.

NLS Peripheral Support Details

There are two ways to access ROMAN8 characters not on the keyboard.

From many of the terminal keyboard layouts (for example, French and Spanish), you can access a few
ROMAN8 characters (certain accented vowels) from the standard keyboard by using mutes. Enter a
non-spacing diacritical character (such as an accent mark or circumflex), then the unaccented vowel.
The result on the screen is a single, merged character; usually, a single, merged character is transmitted
to the system. (See Notes 7 and 10 for some of the peripherals.)

Accessing ROMAN8 or KANA8 characters that do not appear on your keyboard can be accomplished
by using "l CTRL IN''/''l CTRL 10", '1 CTRL l."/"l CTRL 1,", or l Extend char 1, depending on the terminal. If your
terminal uses (CTRL)N (or "shifting out"), please consult Notes 1-4 at the end of this Appendix.

E - 4 PERIPHERAL CONFIGURATION

HP 150 P.C. as a Terminal

Requirements

None. ROMAN8 character set is standard.

Character Set Supported

ROMAN8

Configuring For a-au Operation

Global Configuration Language = Language of the keyboard

Portl or Port2 Parity = None
DataBits = 8
Check Parity = No

Terminal Configuration ASCII 8-Bits = Yes

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATe)

Typing ROMANS Characters Not On The Keyboard

Access the ROMAN8 characters not on the national keyboard by pressing (Extend char), holding it down
while pressing one of the other keys. Most of the accented vowels, as well as the Spanish "N" or "fi", are
accessed from most of the national keyboards by means of mutes. The mute is a diacritical mark such as
an accent, circumflex, or diaeresis. Enter a non-spacing diacritical character (if it is not on the keyboard
layout, press (Extend char I), then the unaccented vowel (or "N" or "fi"). The screen displays a single,
merged character, and a single, merged character is transmitted to the system. The non-spacing
diacritical character is not displayed on the screen until the second character is typed.

Notes

None.

PERIPHERAL CONFIGURATION E - 5

HP 2382A Terminal

Requirements

Option 001,002,003,004,005,006 or 007 (National keyboard and ROM).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-au Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

To configure the terminal for 8-bit operation as the default, set switches AS =up, A6 =down, A7=up,
Bl =down.

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or ESPANOL M, some
Roman Extension characters (certain accented vowels) are accessible from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowe1. The screen displays a
single, merged character. With a national keyboard, the USASCII characters, which are replaced on the
keyboard, cannot be entered, but they can be displayed when received from the system.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter l CTRL IN
to do so. Enter l CTRL)0 to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

E·6 PERIPHERAL CONFIGURATION

HP 2392A Terminal

Requirements

None. A subset of the ROMAN8 character set is standard.

Character Set Supported

A subset of ROMAN8 (the last two columns of the ROMAN8 table are missing).

Configuring For a-au Operation

Datacomm Configuration Parity /DataBits = None/S

Terminal Configuration Keyboard = National layout of keyboard.
Language = Language in which terminal messages and labels are to
appear

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing ROMANS Characters Not On Keyboard

Some ROMAN8 characters (certain accented vowels) are accessible from the standard keyboard by using
mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a single,
merged character, and a single, merged character is transmitted to the system (in both character and block
mode).

ROMAN8 characters not on the keyboard are accessible by pressing (Extend char j, holding it down while
pressing another key. Most accented vowels are accessed via mute character combinations. The mute
character itself is accessed via (Extend char), and the vowel from the standard keyboard. The placement of
extended characters is in Appendix B of the HP 2392A Display Station Reference Manual (02392-90001).

Notes

None.

PERIPHERAL CONFIGURATION E - 7

HP 2563A Printer

Requirements

\image 2 None. ROMAN8 character set is standard. (KANA8 is available with Option #002.)

Character Set Supported

ROMAN8, KANA8

Configuring For a-au Operation

Printer Set primary character set s= 20 (ROMAN8) or = 21 (KANA8) via the
switches on the front panel. If the printer has a
serial interface, set DataBits ::::8, Parity = None. These configura-
tions can also be done programmatically with escape sequences.

MPE I/O Configuration For serial interface, configure the printer on the HP 3000 as
Termtype ::::20 (8-bits of data). On a Multipoint line, use Termtype
::::18 or 22. For HPIB interface, use Type ::::32, Subtype = 9. This
permits programmatic reconfiguration via escape sequences.

Notes

None.

E·8 PERIPHERALCONFIGURATION

HP 2608AjHP 2608S Printers

Requirements
Option 001 and 002 for KANA8.
Option 002 for Roman Extension.

Character Set Supported
KANA8
USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set switches on front panel: USASCII + RomExt
Primary Language = 0000
Secondary Language = 1111

KANA8
Primary Language = 1110
Secondary Language = 0011

On the HP 2608S only, a program can also set these values via escape sequences.

MPE 110 Configuration

Notes
9,11.

Termtype = 20 or 22.

PERIPHERALCONFIGURATION E· 9

HP 26218 Terminal

Requirements

Option 001,002,003,004,005,006 and/or 010 (National keyboard and/or extended character set ROMs).

Option 101,102,103,104,105,106 and/or 110 (Extended national keyboard and/or ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Set switches PO,P1,P2: Set to 0,1,0 (down,up,down)

Set switches LO,L1,L2: Set to language of keyboard layout (see HP 2621B Manual (02620-
90062), for settings for keyboard layout), and switch 5 of the left-hand
group = 0 to activate the keyboard of that language.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish, a few Roman Extension characters (certain accented vowels)
are accessible from the standard keyboard by using mutes. Enter a non-spacing diacritical character, then
the unaccented vowel. The screen displays a single, merged character, and a single, merged character is
transmitted to the system.

Roman Extension characters not available on the keyboard (except those available via mutes) cannot be
entered, but they can be displayed when received from the system.

The USASCII characters which are replaced on the native keyboard are available after pressing 0 in
the "modes" level (an asterisk will appear next to the "USASCII" label for this function key). This causes
the keyboard to become the standard USASCII layout. Press 0 again (the asterisk will disappear) to
return to the native keyboard.

Notes

10.

E·10 PERIPHERAL CONFIGURATION

HP 2622AjHP 2623A Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 202 (National keyboard and/or extended character set ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For a-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCIAS qwM, or ESPANOL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character. Access the USASCII characters replaced on a national keyboard by pressing
~ and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter [CTRL IN
to do so. Enter [CTRL)0 to return to the usual keyboard layout.

Notes

1,2,4,5,6,7,9.

PERIPHERAL CONFIGURATION E -11

HP 2622J/HP 2623J Terminals

Requirements

None. KATAKANA is standard.

Character Set Supported

KANA8.

Configuring For a-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration Ascn 8-Bits = Yes

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANA8 Characters Not On The Keyboard

Access the KANA8 characters not in JIScn by pressing the "KATAKANA" key to enter KATAKANA
mode. Press the (Caps Ikey to return to the JIScn keyboard.

Notes

None.

e -12 PERIPHERAL CONFIGURATION

HP 2625A/HP 2628A Terminals

Requirements

None. ROMAN8 character set is standard.

Character Set Supported

ROMAN8

Configuring For a-au Operation

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (in Multipoint: Code = ASCII8).

Terminal Configuration ASCII 8-Bits = Yes

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC)

Typing ROMAN8 Characters Not On The Keyboard

If the keyboard layout is French or Spanish, a few ROMAN8 characters (certain accented vowels) can be
accessed from the standard keyboard by using mutes. Enter a non-spacing diacritical character, then the
unaccented vowel. The screen displays a single, merged character, and a single, merged character is
transmitted to the system (in both character and block mode).

Access the ROMAN8 characters not on the keyboard by pressing ~C to enter "Extended Characters
Mode." When not using the USASCII keyboard, this may not actually be the key labeled period (.), but
the period key for the USASCII keyboard. A keyboard layout showing the placement of extended charac-
ters is located in the User's Manual for the HP 2625A Dual-System Display Terminal and HP 2628A Word-
Processing Terminal (02625-90001). Enter "l CTRL]," to return to the usual keyboard layout.

Notes

None.

PERIPHERAL CONFIGURATION E -13

HP 2626A/HP 2626W Terminals

Requirements

Option 001, 002, 003, 004, 005, 006 or 201 (National keyboard and/or extended character set ROMs).

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Global Configuration Language = Language of keyboard layout.

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (In Multipoint: Code = ASCII8).

Terminal Configuration ASCII 8-Bits = Yes
ESC) A = RomanExt*
Alternate Set = A.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

*On some versions of the 2626W the RomanExt and BOLD alternate sets are exchanged. Press IDEN-
TIFY ROMS; if CHARACTER ROMS show 1818-1916 and 1818-1917, Rev.A, set ESC) A = BOLD to
access ROMAN8.

Typing USASCII/Roman Extension Characters Not On Keyboard
If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or ESPANOL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character. Access the USASCII characters replaced on a national keyboard by pressing
[Shift Iand one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter l CTRL IN
to do so. Enter l CTRL]0 to return to the usual keyboard layout.

Notes
1,2,3,5,6,7,8,9.

E - 14 PERIPHERAL CONFIGURATION

HP 2627A Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension

Configuring For a-au Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration Language = Language of keyboard layout.
ASCII 8-Bits = Yes

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS qwM, or ESPANOL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character, and a single, merged character is transmitted to the system (in both character
and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter "l CTRL J." to do so. Find the keyboard location of any desired character
in the HP 2627A Display Station Reference Manual (02627-90002). Enter "l CTRL]," to return to the usual
keyboard layout.

Notes

4.

PERIPHERALCONFIGURATION E -15

HP 2631 B Printer

Requirements

Roman Extension and KATAKANA are now standard. Formerly option #008 (KATAKANA) or #009
(Roman Extension) was required.

Character Set Supported

KANA8
USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set the rocker switches on the Serial I/0 Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set to 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the printer) as follows:

In 1st Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).

In 2nd Group of 10 Set Switches 1-5 = 11111(USASCII); 10110 (TISCII).
Set Switches 6-10 = 10001(Roman Extension); 10101(KATAKANA).

Front Panel Switches Parity = 00 (None).

MPE I/O Configuration Subtype = 14 (not supported if connection is ATC).
Terminal Type = 20 or 22.

Notes

9,11,14.

E -16 PERIPHERALCONFIGURATION

HP 26358 Printer/Terminal

Requirements

Roman extension is now standard. Formerly one of options #001, 002, 003, 004, 005 or 006 (national
keyboards) was required.

Character Set Supported

USASCII plus Roman Extension

Configuring For 8-Bit Operation

Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the terminal) as follows:

In 1st Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).

In 2nd Group of 10 Set Switches 1-5 = 11111 (USASCII).
Set Switches 6-10 = 10001 (Roman Extension).

Set the rocker switches on the keyboard PCA (inside the terminal) as follows:

Set Switches 4-8 Set to language of terminal keyboard. Refer to the HP 2630B Family
Reference Manual (02631-90918) for a list of keyboard layouts and the
corresponding switch settings.

Front Panel Switch Parity = None.

MPE I/O Configuration Terminal Type = 15.

Notes

1,2,5,7,9,11.

PERIPHERAL CONFIGURATION E - 17

HP 2645J Terminal

Requirements

None. KATAKANA is standard.

Character Set Supported

KANA8

Configuring For a-au Operation

Datacomm Configuration Parity = None

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANA8 Characters Not On Keyboard

Access the KANA8 characters not in JISCII by pressing the "KATAKANA" key to enter KATAKANA
mode. Press the KATAKANA key again to return the keyboard to its JISCII layout. Alternatively, press
the right (Shift Ikey (once by itself) to enter KATAKANA mode, and the left [Shift Ikey to exit from it.

Notes

9,12.

E - 18 PERIPHERALCONFIGURATION

HP 2680A Printer

Requirements
Environment files ending in "x" for USASCII plus Roman Extension.
Environment files ending in "Kit for KANAS.

Character Set Supported
USASCII plus Roman Extension
KANA8

Configuring For a-Bit Operation
Use the environment files ending in "x" (for USASCII plus Roman Extension) or those ending in "K" (for
KANA8).

Notes
9,11.

PIERIPHERALCONFIGURATION E- 19

HP 2688A Printer

Requirements

Environment files COURxA, GOTHxA, LP88, PICAxA, PREsxA, ROMPxA, SCRPRA.

Character Set Supported
ROMAN8

Configuring For a-sa Operation

Use one of the environment files listed above for support of ROMAN8.

Notes
9,11.

E - 20 PERIPHERALCONFIGURATION

HP 2700 Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported

USASCII plus Roman Extension.

Configuring For a-an Operation

Pot 1 or Port2
Configuration

Parity /DataBits = None/B.
Chk Parity = No

Terminal Configuration Language = Language of keyboard layout.
ASCII 8-Bits = ON.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS 9wM, or ESPANOL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character, and a single, merged character is transmitted to the system (in both character
and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter '1 CTRL)." to do so. Find the keyboard location of any desired character
using the algorithm in theHP 2700 Family Alphanumeric Reference Manual (02703-90003). Enter "l CTRL),"

to return to the usual keyboard layout.

Notes

3,13.

PERIPHERALCONFIGURATION E- 21

HP 2932A/HP 2933A/HP 2934A Printers

Requirements

None. ROMAN8 and KANA8 character sets are standard.

Character Set Supported

ROMAN8, KANA8

Configuring For a-an Operation

Printer From the front panel, in the Printer Print Settings, set Primary Char-
acter Set = 1 (ROMAN8) or = 2 (KANA8).

For serial interface, in the Interface Data Settings, set DataBits = 8,
Parity = None.

For Multipoint, set Parity = None, Code = ASCII8.

These can also be done programmatically with escape sequences.

MPE I/O Configuration For serial interface, configure the printer on your HP 3000 as
Termtype = 20 (8 bits of data) (not supported viaATC connection or
ADCC with HIOTERMO.) On a Multipoint line, use Terminal Type
= 18 or 22.

Notes

None.

E - 22 PERIPHERALCONFIGURATION

Notes

The following Notes apply to the peripherals covered in this Appendix. Refer to the description of each
peripheral for a list of which Notes apply to it.

1. When "[CTRL IN'' (shift out) and 't CTRL jOlt (shift in), are used to shift the keyboard out for Roman
Extension, they are transmitted to the system when the terminal is in character mode. This results
in superfluous data in the byte stream sent to the system.
(lIP 2382, 2622, 2623, 2626, 2635)

2. When shift out and shift in are sent to the terminal, they have no effect on the active character set
(as expected by some software), but they do affect subsequent keyboard operation, as if they had
been typed in.
(lIP 2382, 2622, 2623, 2626, 2635)

3. When the keyboard is shifted out, (in Foreign Characters mode for the lIP 2700 family), the space
bar sends %240 instead of %40, and the [DEL) key sends %377 instead of %177.
(lIP 2626, 2700)

4. When the keyboard is shifted out (in Foreign Characters mode for the lIP 2627), the space bar
sends %240 instead of %40, and the [DEL] key sends nothing. This has been fixed in the most recent
versions of the 2622 and 2623 terminals. These will show as ROMs 1818-3199/3203 with Date
Code 2313 or later (2622), and 1818-3223/3228 with Date Code 2335 or later (2623).
(lIP 2382, 2622,2623,2627)

5. If "[O@£J)B" or 'lESC)C" is entered or transmitted to the terminal, the alternate character set will be
redefined (for example, to line draw or math). This will cause all would be Roman Extension
characters, whether displayed on the terminal or entered via one of the methods listed above, to
appear as the corresponding line draw or math symbols (or blanks, if that alternate set is not
present in the terminal). To remedy this, enter "l CTRL]qESC!>A" (on the lIP 2626A, reset Alternate
Set to A in the TERMINAL CONFIGURATION menu). Note that data entered or displayed
while the terminal has another alternate character set defined is correct internally even though it
may not display correctly on the terminal.
(HP 2382, 2622, 2623, 2626, 2635)

6. When the terminal is in block mode and one or more Roman Extension characters are entered (for
example, u), then (Enter] is pressed, what is transmitted to the system, and written to the buffer of
the program reading from the terminal, is 'tEscJ)ii". This is the terminal's way of compensating for
Note 5. It means that when the data is sent back again from the computer, "u"will always display
this way, and not as the corresponding line draw or math symbol. It also means that there may be
more information in the program buffer than the user or the programmer is expecting, or there is
less room in that buffer for other information. Note that if the terminal is controlled by
VPLUS/3000, it strips out the escape sequence before passing the data on to the calling program's
buffer (and from there to the data file or data base).
(HP 2382, 2622, 2623, 2626)

PERIPHERAL CONFIGURATION E - 23

7. For the languages FRANCAIS azM, FRANCAIS qwM, and ESPANOL Mwhen mutes are used and the terminal is in
character mode, two characters are sent to to the system although a single, merged character appears
on the screen. This means that an incorrect two-byte representation of the accented character will be
received by the program or file. The next time they are displayed the terminal will put them back
together, provided the terminal is still configured for FRANCAIS azM, FRANCAIS qwM, or ESPANOL M. In block
mode a single character (the correct ROMAN8 code for the merged character) is sent to the system.
(HP 2382, 2622, 2623, 2626, 2635)

8. When softkey labels which contain extended characters (in the range %200-%377) are received from
the system, the extended characters are lost and the inverse video is turned off on the label.
(HP 2626)

9. This device does not actually support 8-bit character sets, but simulates them by handling two 7-bit
character sets, a primary and an alternate. Legitimate data from real alternate character sets (line
draw or math) cannot be used in a supported (standard) way together with general ROMAN8
(KANA8) data because these devices treat Roman Extension (KATAKANA) as an alternate charac-
ter set, in 8-bit mode. All alternate character sets are addressed by codes with the eighth bit set to
one; Roman Extension (KATAKANA) must share this position with theother alternate sets through
the use of escape sequences ("[ESC)X"), and, on the terminals, shift-injshift-out are unsuitable for
invoking alternate sets. The practical result of this is that NLS will not support the use of alternate
character sets together with ROMAN8 (KANA8) data on these devices. Configure the device for
8-bit mode as documented, then limit the data to (old) ROMAN8 (KANA8).
(HP2382, 2608, 2622A, 2623A, 2626, 2631, 2635, 2645J, 2680,268 8)

10. For the French and Spanish keyboards, when mutes are used and a mute diacritical is entered fol-
lowed by a space, the ROMAN8 codes for the diacritical and the space are both transmitted to the
system, not just the ROMAN8 character for the diacritical.
(HP 2621B)

11. When a shift-out character is sent to the printer, it causes subsequent data (until a shift-in is sent) to
be selected from the alternate character set, whether or not the eighth bit is on.
(HP2608, 2631, 2635, 2680, 2688)

12. When the system sends an 8-bit character the terminal shifts into KATAKANA mode until a 7-bit
character is received. For example, switching terminal speed with the MPE :SPEED command some-
times results in the receipt of an 8-bit character from the system. The user will need to exit
KATAKANA mode before entering "MPE" to signal that the speed has been changed.
(HP 2645J)

13. When the terminal is in Block Format mode (for example, under control of VPLUSj3000), an at-
tempt to read the character %254 (tilde accent in ROMAN8) from an input field causes the read to
hang.
(HP 2700)

14. Versions of the 2631B with Printer Logic PCA #02631-60225 are not supported, because switch 7 (8
bit datacomm) is ignored. It is possible to configure 8 bit datacomm on this PCA programmatically
via an escape sequence; but the program must do so before every data transfer.
(HP 2631B)

E - 24 PERIPHERAL CONFIGURATION

CONVERTING 7-BIT TO 8-BIT DATA F
Many Hewlett-Packard peripherals can be configured for 7-bit operation with one of the European
language national substitution character sets. These peripherals must be converted to 8-bit operation to
access Native Language Support (NLS) capability. NLS requires the use of 8-bit character sets which
include USASCII and native language characters.

NLS for western European languages is based on the ROMAN8 character set in which the additional
characters required are assigned to unique values between 128 and 255. It requires eight bits to hold
the value of a ROMAN8 character. All the special European characters are accessible in ROMAN8
without losing any of the USASCII characters.

The 7-bit national substitution sets do not offer a full complement of characters. New characters
replace existing ones. For example, in FRANCAIS the graphic symbol "#" is not available. In Spanish
and French, even the substitutions made are not sufficient to obtain all the necessary new characters.
The use of mute characters is required. Mute characters provide a single graphic on the terminal
screen or paper for two bytes of storage and two keystrokes. For example, an "e" in Spanish or French
would be produced with an accent mark plus an "e",whereas ROMAN8 contains the "e" as a single
character. In anyone language, the graphic symbols for other European countries are not available at
all. For example, a French user does not have access to the necessary characters to properly address a
letter to someone in Germany. The ROMAN8 8-bit character set eliminates these problems.

National Substitution Sets

Many Hewlett-Packard peripherals support the 7-bit national substitution sets for the following
languages. (They are listed here as they appear on the terminal configuration menus of the terminals
which support them):

SVENSK/SUOMI
FRANCAIS
ESPANOLM

DANSK/NORSK
DEUTSCH
ESPANOL

FRANCAISM
UK
ITALIANO (On a few devices
only.)

These are 7-bit national substitution character sets or languages in which one or more of 12 USASCII
graphic symbols are replaced by other graphic symbols required for the national language being used.
The same 7-bit internal code is displayed as a different symbol than that assigned to it by USASCII.
For example, in USASCII the decimal value 35 is assigned to the graphic symbol "#"; but in the
FRANCAIS national substitution set, the same decimal value 35 is assigned to the graphic symbol "£".

Users who have been using these (HP 262X) terminals in 7-bit operation for many years may have a
substantial investment in data which is encoded in one of these 7-bit national substitution character sets.
Hewlett-Packard is making several conversion utilities available to convert this data to ROMAN8.

CONVERTING 7-BIT TO S-BIT DATA F - 1

Conversion Utilities
Because NLS involves using full 8-bit character sets for all data, customers wanting to use the facility will
need to configure their peripherals for 8-bit operation. (This is not possible for the HP 264X terminals.)
The national substitution characters, if input on a terminal configured for 7-bit operation, will not display
correctly on a terminal or printer configured for 8-bit operation.

Several utilities are available to convert existing data that has been input with an HP 262X terminal
configured for 7-bit operation. Refer to Table F-l for a listing of these utilities. The premise of these
utilities is that users will run them once for each file which needs converting, and will configure all their
peripherals for 8-bit operation. Thereafter, peripherals will only be used in 8-bit operation.

Table F-1. Conversion Utilities by File Type

File Type Utility to be Used for Conversion

EDITOR files N7MF8CNV (text option)

Other MPE files which are all text N7MF8CNV (text option)

MPE files in which text data is N7MF8CNV (text option; data option if language IS

organized in fields which need to FRANCAIS M or ESPANOL M)
start in fixed columns

MPE files which include some non- N7MF8CNV (data option)
text data (for example, integer or
real)

IMAGE/3000 data bases I7DB8CNV

VPLUS/3000 forms files V7FF8CNV

HPWORD files HPWORD internal files have always been based on a
subset of ROMAN8. No conversion is necessary.

TDP files Run N7MF8CNV and then change back whatever
command backslash is converted to in the chosen language
in case you need the command backslash for embedded
TDP commands.

F • 2 CONVERTING 7·BIT TO 8-BIT DATA

Conversion Algorithm
The conversion utilities convert records or fields from files which are assumed to have been created at an
HP 262X terminal configured for 7-bit operation, and for a language other than USASCII. The conver-
sion is from the HP 262X implementation of a European 7-bit substitution character set to the 8-bit
ROMAN8 character set. This involves converting the values with which certain characters are stored in
the file. Before conversion, the file should look correct on an HP 262X terminal configured for 7-bit
operation with the appropriate substitution set. After conversion the file will look correct on any terminal
configured for 8-bit operation.

Records and/or fields from files of all types are converted using the same algorithm which is expressed in
Figure F-l. The conversion affects only the 12 characters shown in the table. All other characters remain
unchanged.

To use this table, find the desired national substitution set on the left. The uppermost row shows the 7-bit
decimal values for which substitutions may have been made. There are two rows of information opposite
each national substitution set. The upper row shows the graphic assigned in 7-bit operation and the lower
row the decimal value assigned the graphic in ROMAN8 after using the conversion algorithm.

When certain FRANCAIS M and ESPANOL M characters are followed immediately by certain other
characters, the two-character combination is converted to a single ROMAN8 character, and the field or
record being converted is padded at the end with a blank:

Table F-2. Special Two-Character Combination Conversion

ESPANOL M «39) followed by a, e, l , 0, or u is converted to
D(196), e(197), 1(213), 6(198), or u(199).

FRANCAIS M A (94) followed by a, e, i ,0, or u is converted to
@(192), e(193), 1(209), 6(194), or Q(195).

+ (126) followed by a, e, l , 0, or u is converted to
L(204), e(205), 1(221), 0(206), 0(207).

+ (126) followed by A, 0, or U is converted to
X (216), lj (21 8), or 0 (21 9) .

If these characters are followed by any other character, they are converted to their ROMAN8 equivalent
as shown in Figure F-l.

CONVERTING 7-BIT TO 8-BIT DATA F - 3

National
Subst.Set 35 39 64 91 92 93 94 96 123 124 125 126

USASCII # @ \ { }

SVE/SUOMI # E ~ C5 A 0 , a 5 a ne
35 39 220 216 218 208 219 197 204 206 212 207

DANSK/NORSK # @ ,<{ ¢ A A ce ¢ a
35 39 64 211 210 208 94 96 215 214 212 126

FRANCAIS £
, 0 § A , , ,
a ~ e u e

187 39 200 179 181 189 170 96 197 203 201 171

FRANCAIS M £
, 0 §

, , ,
a ~ e u e

187 39 200 179 181 189 170 96 197 203 201 171

DEUTSCH £ § ~ C5 0 A a 5 u B
187 39 189 216 218 219 94 96 204 206 207 222

U K £ @ [\] A { I }
187 39 64 91 92 93 94 96 123 124 125 126

ESPANOL , @ i R (. 0 { n }
35 39 64 184 182 185 179 96 123 183 125 126

ESPANOL M , @ i R G 0 { n }
35 168 64 184 182 185 179 96 123 183 125 126

ITALIANO t @ 0
,

A
, , , , ,

~ e u a 0 e 1

187 39 64 179 181 197 94 203 200 202 201 217

Figure F-I. Character Conversion Data

F - 4 CONVERTING 7-BIT TO 8-BIT DATA

Conversion Procedure

To convert 7-bit substitution data to 8-bit ROMAN8 data:

1. Determine which files need to be converted. A file must be converted if the data was input from an
HP 262X terminal configured for 7-bit operation or for a national substitution set other than US-
ASCII.

2. Determine the national substitution set ("language" on the terminal configuration menu) from which
the conversion should be done for each file. This is the language the HP 262X terminal was config-
ured for at the time the file data was input.

3. Determine which utility should be used to convert each file, refer to Table F-l.

4. Back up all files to be converted (store to tape or perform a SYSDUMP).

5. Run each utility, supplying it with the language and filenames as determined above. Instructions for
running each utility are found at the end of this Appendix.

6. Configure all terminals and printers for 8-bit operation. (At least one terminal must already be
configured for 8-bit operation when the V7FF8CNV utility is run.) Refer to Appendix E, "Peripheral
Configuration. "

The sample dialog, on the following page, is from a session executing N7MF8CNV for both text and data
files.

CONVERTING 7-BIT TO 8-BIT DATA F - 5

RUN N7MF8CNV.PUB.SVS
HP European 7·Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALIANO

From which character set should conversion be done:imI
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted:1DI
Name of text file to be converted:~

112 records converted in ABC
Name 07 text file to be converted: [Return]
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted:~
Name of data file to be converted:1£iIaI
Please supply one at a time the field to be converted (first

Start, Length:.
Start, Length: I

Start, Length:. •
Start, Length: [Return]

Data file XYZ: fields to be converted are:
1, 12
15, 30
61, 6
Correct? [Return]

287 records converted in XYZ
Name of data file to be converted: [Return]
File types which can be converted are:
1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: [Return]
HP European 7'Bit character sets are:
1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS M
4. FRANCAIS
5. DEUTSCH
6. UK
7. ESPANOL M
8. ESPANOL
9. ITALIANO

From which character set should conversion be done: [Return]
END OF PROGRAM

F - 6 CONVERTING 7-BIT TO a·BIT DATA

N7M F8CNV Utility
N7MF8CNV converts data in EDIT /3000 and other MPE text and data files from a Hewlett-Packard 7-bit
national substitution character set to ROMAN8. The user is prompted for language and file type (text or
data). For a data file, the user will be prompted on each file for the starting position and length of each
field (portion of a record) to be converted. For a text file, each record is converted as one field.

The user is prompted for the name of each file to be converted. Files are read one record at a time; each
record is converted (or certain fields of it are converted for data files), and the result is written to a new
temporary file. When all records have been read, converted, and written to the new file, the old (uncon-
verted) copy is deleted, and the new one is saved in its place. An exception to this is KSAM/3000 files,
which are converted in place, rather than written to a new temporary file. A count of the number of
records read and converted is displayed on $STDLIST.

This utility will not convert files containing bytes with the eighth bit set. This situation probably indicates
a misunderstanding or error. The likely causes are:

• File is not a text or data file.

• File is a data file for which the fields have been inaccurately located.

• File was created on a terminal configured for 8-bit operation.

• File has already been converted.

The maximum record length supported is 8192 bytes. The maximum number of fields supported in the
records of a data file is 256.

If the file being converted contains user labels, these are copied to the new file without conversion. If a
fatal error is encountered during the conversion (for example, 8-bit data or file system error found) the
conversion stops, the old copy of the file is saved, and the new copy is purged. The data is unchanged. An
exception to this is KSAM/3000 files. Since these are converted in place, some records may already have
been modified. KSAM/3000 files (including key file) should be restored from the backup tape to ensure
a consistent copy.

A [Ctrl]Y entered during conversion displays the number of records successfully converted and conver-
sion continues. On variable length data files, if a field or portion of a field is beyond the length of the
record just read, a warning is displayed and that field is not converted on that record. Other fields on the
same record are converted, and processing continues with subsequent records. After each file has been
converted, the user is prompted for another filename.

In addition to the text and data options, there is a test conversion option which shows how the conversion
algorithm operates. The test conversion option must be run from a terminal configured for 7-bit operation
with the chosen national substitution set. The user is instructed to enter a string, and the result of the
conversion is displayed. The user does not have to switch back and forth between 7-bit and 8-bit operation
to see the result. Each character converted is displayed as a decimal value in parentheses rather than
graphically. Other characters are displayed unchanged.

At any point in the program, pressing (Return] exits the current program level at which the user is located.
A (Return] in response to a request for the starting position and length of a field in a data file indicates that
the definition of fields is complete, and the program proceeds with the conversion of the data file. A [Return]
entered in response to a request for a text file name indicates the conversion of text files is complete; the
program goes back to the question: "Type of file to be converted?".

CONVERTING 7·BIT TO 8-BIT DATA F· 7

17DB8CNV Utility
I7DB8CNV converts the character data in an IMAGE/3000 data base from an Hewlett-Packard 7-bit
national substitution set to ROMAN8. The program is a special version of the DBLOAD.PUB.SYS program, and
the conversion is done as part of a database load. The procedure for running I7DB8CNV is:

1. Enter: to unload your database to tape.

2. Enter: to erase the data in your database.

3. Enter: to convert the data and load it back into your database.

I7DB8CNV will request the following:

1. The 7-bit national substitution set from which the conversion is to be made.

2. The database name.

RUN DBUNLOAD.PUB.SYS

RUN DBUTIL.PUB.SYS,ERASE

RUN 17DB8CNV.PUB.SYS

3. The utility prompts the user, Convert all data fields of type X or U? IlE or [Return] means "yes". Ifm is
entered, the user will be prompted in each data set for each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its values
are converted depends on the response to the item(s) through which it is linked to detail data set(s).
At the end of each data set, the user is asked to confirm that the correct fields to be converted from
that data set have been selected. Again, a [Return] is treated as a "yes" answer. Enter ~ or 1m to change
the data fields in the data set to be converted.

I7DB8CNV then loads the database from tape. As each record is read, those fields which were selected
have their data converted according to the algorithm for the 7-bit national substitution set which was
selected at the beginning of the program.

I7DB8CNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying to
convert. The utility will not abort, but the field in question will not be converted, and a warning will be
issued:

** 8·bit data encountered in item titemname in DS data set]

If the program should abort for any reason during the conversion, the user must log on again to clear the
temporary files used during the conversion process before running the program again.

The dialog on the following page is a sample run of the I7DB8CNV program.

F - 8 CONVERTING 7-BIT TO 8-BIT DATA

RUN I7DB8CNV.PUB.SYS
HP European 7·bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS
4. FRANCAIS M
5. DEUTSCH
6. U K
7. ESPANOL
8. ESPANOL M
9. ITALIANO

From which character set should conversion be done:~
WHICH DATA BASE:~
Convert all fields of type U,X in all data sets (Y/N)?1ai
Data Set SET1 fields to be converted:
ITEM1 (Y/N)?[Return]
ITEM2 (Y/N)?[Return]
ITEM3 (Y/N)?1ai
ITEM4 (Y/N)?[Return]
Is Data Set SET1 correctly defined (Y/N)?[Return]
Data Set SET2 . Automatic Master
Data Set SET3 fields to be converted:
ITEM1 (Y/N)?[Return]
ITEMS (Y/N)?I
ITEM6 (Y/N)?
Is Data Set SET3 correctly defined (Y/N)?[Return]
DATA SET 1: 19 ENTRIES
DATA SET 2: 0 ENTRIES
DATA SET 3: 25 ENTRIES
END OF VOLUME 1, 0 READ ERRORS RECOVERED
DATA BASE LOADED
END OF PROGRAM

CONVERTING 7.BIT TO 8-BIT DATA F - 9

V7FF8CNV Utility
V7FF8CNV converts text and literals in VPLUS/3000 forms files from a Hewlett-Packard 7-bit national
substitution character set to ROMAN8. V7FF8CNV is a special version of FORMSPEC.PUB.SYS and is run the
same way. Before running this utility back up the forms file (store to tape or perform a SYSDUMP), then:

1. Configure your terminal for 8-bit operation. (Refer to Appendix E, "Peripheral Configuration," for
information on specific terminal configuration.)

2. Run V7FF8CNV.PUB.SYS, stepping through each form, field definition, save field, function key label. As
each screen is presented on the terminal, 7-bit substitution characters have already been converted
to their ROMAN8 equivalent.

3. If the data is correct, press [Enter Iand proceed to the next screen. If not, correct the data, then press
(Enter Ito continue.

4. After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source records in VPLUS/3000 forms files with
the following exception: substitution characters for" [It and It]" are not converted in screen source records,
since these indicate start and stop of data fields. The following would be converted:

• Text in screens

• Function key labels

• Initial values in save field definitions

• Initial values in field definitions

• Literals in processing specifications

F -10 CONVERTING 7-BIT TO 8-BIT DATA

V7FF8CNV and Alternate Character Sets
Hewlett-Packard block-mode terminals which have the capability to handle all or part of ROMAN8 can
be divided into two groups, based on how they handle alternate character sets when configured for 8-bit
operation.

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150

Use shift-out and shift-in characters to switch back and forth between an 8-bit base character set and an
8-bit alternate character set. This is the standard for new Hewlett-Packard terminals and printers.

GROUP TWO - HP 2622A, 2623A, 2626A, and 2382A

(Do not use an HP 2624A or HP 2624B as they are unable to handle 8-bit characters properly.) Group
Two terminals use the eighth bit to switch back and forth between a 7-bit base character set and a 7-bit
alternate character set. Therefore, it is not possible to get true 8-bit operation (ROMAN8) and use an
alternate character set (for example, line draw) at the same time because the base character set is not
really 8-bit, but 7-bit with the additional characters defined in the alternate character set. Using both 8-bit
ROMAN8 characters and line draw in the same file is not recommended, since the user must continually
redefine the alternate character set, switching back and forth between Roman Extension and the line
drawing character set. Shift-out and shift-in are ignored by the terminal, which goes to the alternate
character set when the high order bit is on.

Files using alternate character sets on one group of terminals will not display correctly on the terminals
of the other group, even when terminals from both groups are configured for 8-bit operation.

Therefore, the use of characters from an alternate set affects the conversion procedure. If the forms file
does contain characters from an alternate character set, choose one of the following alternatives:

1. Eliminate the use of alternate character sets (either with FORMSPEC or while running
V7FF8CNV).

2. Define alternate character sets to appear correctly on Group One terminals. This happens automati-
cally when V7FF8CNV is run from a Group One terminal. Characters from these alternate sets will
appear as USASCII characters on a Group Two terminal.

CONVERTING 7-BIT TO 8-BIT DATA F - 11

V7FF8CNV Operation
V7FF8CNV must be run on a terminal supported by VPLUS/3000 which supports display of all charac-
ters, enhancements and alternate characters sets used in the forms file. If alternate character sets are
used, the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The V7FF8CNV procedure is:

1. Configure your terminal type properly for 8-bit operation by using the settings recommended in
Appendix E, "Peripheral Configuration."

2. Run V7FF8CNV.PUB.SYS. Respond to prompts for the terminal group and the national substitution set.

3. Press C§D once to begin going through the forms file.

4. Press (Enter Iafter each screen until the end of the forms file is reached. Two exceptions to Step 4 are:

• Enter a in "Function Key Labels" on each FORM MENU and the GLOBALS MENU to see and
convert function key labels.

• On the field definition screen, if the processing specs have converted data which you want to save,
press the FIELD TOGGLE key, then (Enter Ito save that conversion.

NOTE

If you try to redisplay a screen which has already been converted and this
conversion has been saved by pressing [Enter I. a message Form contains 8 bit

data will be displayed. Do not press [Enter Iagain, but continue on through
the forms file.

s. Compile your forms file as usual.

NOTE

These conversion utilities are designed to be used once to update existing
data to 8-bit compatibility.

F -12 CONVERTING7-BIT TO 8-BIT DATA

APPLICATION GUIDELINES G
Currently, the HP 3000 supports six conventional programming languages (SPL, FORTRAN,
COBOLII, Pascal, RPG, and BASIC). Some general guidelines, and some specific to each of the
supported programming languages, are included in this Appendix to help the programmer select a
language to use for writing a local language or localizable application.

All Programming Languages
• Create and use message catalogs. Do not hard-code any text messages, including prompts. For

example, never require a hard-coded lIyll orlN"in response to a question. The equivalents of 'yes" and
"no" for every language supported by NLS are available through a call to NLINFOitem 8.

• Use the NLS date and time formatting intrinsics. Do not use the MPE intrinsics DATELINE,FMTCLOCK,
FMTDATE,and FMTCALENDAR.They all result in American-style output.

• Check a character's attribute, available through NLINFOitem 12, to determine printability. Alterna-
tively, use the NLREPCHARintrinsic to check whether the character gets replaced or not. Do not use range
checking on the binary value of a character to decide whether it is printable or not.

• Use the NLCOLLATEintrinsic to compare character strings. Do not compare character strings (I F abc >

pqr , where abc and pqr are both character strings). Since these comparisons are based on binary
values of characters as they appear in the USASCII sequence, they usually produce incorrect results.
Obviously, this is not applicable in case an exact match is tested (I F abc = pqr).

• Use NLSCANMOVEfor upshifting and downshifting. Do not upshift or downshift based on the character's
binary value. For a...z in USASCII, upshifting can be done by subtracting 32 from the binary value.
This does not work for all characters in all character sets.

• To determine whether a character is uppercase or lowercase, use the character attributes table avail-
able through NLINFOitem 12. Do not use a character's binary value in range checks to decide whether
it is an uppercase or lowercase alphabetic character.

• Much Hewlett-Packard and user-written software assumes that numeric characters (0 through 9) are
represented by code values 48 through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USASCII. However, some character sets may
have different or additional characters which should be treated as numeric. Therefore, if at all possi-
ble, avoid doing range checks on code values to recognize or process numeric characters. For recog-
nition of numeric characters, interrogate the character attributes table, available through a call to
NLINFOitem 12.

• Use the NLTRANSLATEintrinsic, not CTRANSLATE,to translate to or from EBCDIC.

APPLICATION GUIDELINES G- 1

II Do your own formatting using the decimal separator, the thousands separator, and the currency
symbol available through NLINFO items 9 and 10. Use the standard statements to output into a charac-
ter string type variable. Replace the decimal and thousands separators by those required in the
language being used. Do not use standard output statements (PRINT, WRITE) for real numbers,
since this formats them according to the definition of the programming language. This usually results
in American formats with a period used as the decimal separator.

• Input data into a character string, and preprocess the string to replace any decimal or thousands
separators used in the American formats. Then supply the string to the standard READ statement.
Standard input statements for real numbers (READ, ACCEPT) should not be used, as they accept the
period as the decimal separator. Many non-American users will input something else (a comma, for
example).

• Always store standard formats for date and time (like those returned by FMTCALENDAR and FMTCLOCK), if
dates or times have to be stored in files or databases. Never store a date or a time in a local format.
Intrinsics are available to convert from the standard format to a local format, but the reverse is not
always possible.

• Use VPLUS/3000 local edits. VPLUS/3000 edit processing specifications and terminal edit process-
ing statements are separate and are not checked for compatibility. There will be no check that the
designer has specified a terminal local edit which is consistent with the language-dependent symbol
for the decimal point (DEC TYPE EUR, DEC TYPE US) in the configuration phase.

COBOLII (HP 32233A)
• Use the character attributes table of the character set being used to determine whether a character

is ALPHABETIC or NUMERIC. This table is available through a call to NLINFO item 12. Do not use
the COBOLII ALPHABETIC and NUMERIC class tests to determine this (for example, I f data' itern
IS ALPHABETIC).

• Do not use input-output translation by COBOLII from an EBCDIC character set by means of the
ALPHABET-NAME clause and the CODE SET clause. Use the NLTRANSLATE intrinsic.

• Use the NLS date and time formatting intrinsics for display purposes. Do not use TIME-OF-DAY
and CURRENT-DATE. These items are formatted in the conventional American way, and are
unsuitable for use in many other countries.

• Use the COLLATING SEQUENCE IS language-name or the COLLATING SEQUENCE IS language-ID phrase in the
enhanced SORT and MERGE statements to specify the language name or number whose collating
sequence is to be used. Do not use the COLLATING SEQUENCE IS alphabet-name phrase for sorting and/or
merging in COBOLII.

• In condition-name data descriptions (88-level items), avoid the THRU option in the VALUE clause (for
example. sa SELECTED· ITEMS VALUE "A" THRU IIFII).

G - 2 APPLICATION GUIDELINES

FORTRAN (HP 32102B)

• Format specifiers Nand M will output in an American numerical format (with commas between
thousands and a decimal point) or an American monetary format (like N, with a "s"added). Addi-
tional post-processing will be required.

• Outputting logicals will result in a "T" (for true) or an "F" (for false). Similarly, "T" and "F" are expected
for logical input. A non-English speaking user may want to use another character.

• The intrinsic functions RNUM, DNUM and STR all assume an American format in the input and produce an
American formatted output.

• The EXT J N I and I NEXT I entry points of the compiler library assume American formats. Do not use them.

SPL (HP 321OOA)
• To determine whether or not the byte is alphabetic, numeric, or special, consult the character at-

tribute table of the character set used. This table is available through NLlNFO item 12. Do not use the
IF xyz = (or <>) ALPHA (or NUMER I C or SPEC I AL) construct to determine this.

• Do not use the MOVE ••• WHILE construct or the MVBW machine instruction. It stops moving bytes
based on the USASCII binary value of bytes, by which it determines whether the byte is alphabetic
or numeric. Use the NLSCANMOVE intrinsic.

RPG (HP 321 04A)
The features of NLS are accessed primarily through intrinsic calls. Using MPE and subsystem intrinsics
from RPG requires expertise. For this reason, the use of RPG as a vehicle to write localizable applications
or to access native language structures is not recommended. Some RPG functions, such as date and
numeric formatting, provide some control for national custom differences, but the choices are very limited
and can only be made by recompiling.

BASIC (HP 32101 B)
The features of NLS are accessed primarily through intrinsic calls. Since most intrinsics are not callable
from BASIC, the use of BASIC as a language to write localizable programs is not supported.

Pascal (HP 321OSA)
A type of CHAR indicates an 8-bit entity, and thus allows processing of 8-bit characters without problems.

APPLICATION GUIDELINES G - 3

EXAMPLE PROGRAMS H
The example programs in this Appendix demonstrate calls to NLS-related intrinsics from several
programming languages. They are not intended to be used as application programs.

A. SORT in a COBOLII Program
This program shows how to sort an input file (formal designator INPTF ILE) to an output file (formal designa-
tor OUTPFILE) using a COBOLII SORT verb.

Lines 3.S and 4.1 show how to specify the language to determine the collating sequence.
1
1.1
1.2
1.3
1.4
l.S
1.61.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.S
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.S
3.6
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4

SCONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM' 10. EXAMPLE.* .
ENVIRONMENT DIVISION.
INPUT'OUTPUT SECTION.
FILE·CONTROL.
SELECT INPTFILE ASSIGN TO "INPTFILE".
SELECT OUTPFILE ASSIGN TO "OUTPFILE".
SELECT SORTFILE ASSIGN TO "SORTFILE".
* .
DATA DIVISION.
FILE SECTION.
SO SORTF ILE.
01 SORTFILE·RECORD.

OS SORTFILE·KEY PIC X(4).
OS FILLER PIC X(68).

FD INPTFILE.
01 INPTFILE·RECORD PIC X(72).
FD OUTPFILE.
01 OUTPFILE'RECORD PIC X(72).
WORKING' STORAGE SECTION.
01 LANGUAGE PIC S9(4) COMP VALUE 12.* .
PROCEDURE DIVISION.
MAIN SECTION.

SORT SORTFILE
ASCENDING SORTFILE'KEY
SEQUENCE IS LANGUAGE
USING INPTFILE
GIVING OUTPFILE.

STOP RUN.

EXAMPLE PROGRAMS H· 1

Line 3.5 could be written also as:
3.5 01 LANGUAGE PIC X(16) VALUE "SPANISH ".

In the example execution the input and output files are associated with the terminal ($STD!N and $STDLIST):

r..I
credit
character
DEBIT
END OF PROGRAM

H • 2 EXAMPLE PROGRAMS

B. SORT in a Pascal Program
This program shows.how to sort an input file (formal designator INPF) to an output file (formal designator
OUTF) using the SORTlNIT intrinsic call.
1 $USLlNIT$
2 $STANDARD_LEVEL 'HP3000'$
3
4 PROGRAM example (inpf,outf);
5
6 TYPE
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 PROCEDURE sortinit; INTRINSIC;
40 PROCEDURE sortend; INTRINSIC;
41
42 PROCEDURE main;
43 BEGIN
44
45
46

smallint = -32768 •. 32767;
= RECORD

position:
length:
seCLtype:

END;

small inti
smallint;
smallint;

char_seq = RECORD
array_code:smallint;
language: smallint;

END;
= RECORD

num_fi le: small inti
smallint:

= PACKED ARRAY [1••72] of CHAR;

VAR
numkeys:
reclen:
keys:

small inti
smallint;
sort_rec;
char_seq;
fi le_arr;
file_arr;
fi le_num;
file_num;

cseq:
inp:
out:
inpf:
outf:

numkeys := 1;
reclen :=72;

EXAMPLE PROGRAMS H - 3

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

WITH keys DO
BEGIN

position := 1;
length := 4;
seCLtype := 9;

ENO;

WITH cseq DO
BEGIN

array_code:=1;
language:= 12;

END;

WITH inp DO
BEGIN

RESET (inpf);
num_file := FNUM (inpf);
num_zero := 0;

END;

WITH out DO
BEGIN

REWRITE (outf);
num_file := FNUM (outf);
num_zero := 0;

END;

sortinit (inp,out"reclen"numkeys,keys""""cseq);
sortend;

END;

BEGIN
main;

END.

In the example execution, the input and output files are associated with the terminal ($STDI Nand $STDLIST):

r..•
credit
character
DEBIT

ENDOF PROGRAM

H-4 EXAMPLE PROGRAMS

C. SORT in a FORTRAN Program
This program shows how to sort an input file (formal designator FTN21) to an output file (formal designator
FTN22) using the SORTINIT intrinsic call.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

$CONTROL USLINIT,FILE=21-22
PROGRAM EXMP
INTEGER FNUM
INTEGER N(4)
INTEGER KEYS (3)
INTEGER CSEQ (2)
SYSTEM INTRINSIC SORTINIT, SORTEND

C
C KEY (3)= 9 character type key
C CSEQ(2) = 12 Spanish collating sequence
C

KEYS (1) = 1
KEYS (2) = 4
KEYS (3)= 9
CSEQ (1) = 1
CSEQ (2) = 12

C
C Sort file FTN21 into FTN22
C

N (1) = FNUM (21)
N (3) = FNUM (22)
N (2) = 0
N (4) = 0
CALL SORTINIT (N(1),N(3)""1,KEYS""",,CSEQ)
CALL SORTEWD
STOP
END

In the example execution, the input and output files are associated with the terminal ($STDIN and $STDLlST):

r..I
credit
character
DEBIT
END OF PROGRAM

EXAMPLE PROGRAMS H - 5

H-6

D. DATE/TIME Formatting Intrinsics in a FORTRAN Program
The user is asked to enter a language. All date and time formatting and conversion is done by using the
language entered by the user. The time and date used in the examples is the current system time obtained
by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

$CONTROL USLINIT
PROGRAM EXAMPLE
LOGICAL LANGUAGE(8)
CHARACTER *16 BLANGUAGE

C
LOGICAL LERROR(2)
INTEGER IERROR(2)

C
CHARACTER *13 BCUSTOMDATE
CHARACTER *28 BDATE
CHARACTER *18 BCALENDAR
CHARACTER *8 BCLOCK

C
LOGICAL LWEEKDAYS(42)
CHARACTER *12 BWEEKDAYS(7)

C
LOGICAL LMONTHS(72)
CHARACTER *12 BMONTHS(12)

C
EQUIVALENCE (LANGUAGE, BLANGUAGE)
EQUIVALENCE (LWEEKDAYS,BWEEKDAYS)
EQUIVALENCE (LMONTHS, BMONTHS)
EQUIVALENCE (LERROR, IERROR)
LOGICAL DATE
INTEGER *4 TIME
INTEGER LANGNUM, LGTH, WEEKDAY, MONTH
SYSTEM INTRINSIC CLOCK, CALENDAR, ALMANAC, NLINFO,

NLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,
NLFMTCALENDAR, NLFMTCUSTDATE, NLCONVCUSTDATE

C
1001 FORMAT (1X,A12)
1002 FORMAT (1X,A13)
1003 FORMAT (1X,A18)
1004 FORMAT (1X,A8)
1005 FORMAT (1X,A28)
2001 FORMAT (A16)
2002 FORMAT (A1)
C
1 WRITE (6,*)

#"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
READ (5, 2001) BLANGUAGE

C
C NLINFO item 22 returns the corresponding
C Lang number in integer format for this Language.
C

CALL NLINFO (22, LANGUAGE, LANGNUM. LERROR)
IF (IERROR(1) .EQ. 0) GO TO 400

C
C
100 IF (IERROR(1) .NE. 1) GO TO 200
C

WRITE (6, *) "NLS IS NOT INSTALLED"
CALL QUIT (1001)

C
200 IF (IERROR(1) .NE. 2) GO TO 300
C

WRITE (6, *) "THIS LANGUAGE IS NOT CONFIGURED"
CAll QUIT (1002)

C

EXAMPLE PROGRAMS

60 300 CALL QUIT (1000 + IERROR(1»
61 C
62 C This obtains the machine internal clock and calendar
63 C formats, which are provided by the HP 3000 intrinsics.
64 C
65 400 TIME = CLOCK
66 DATE = CALENDAR
67 C
68 C Call ALMANAC and convert the machine internal
69 C date format into numeric values, which will be used
70 C as indices into the name tables.
71 C
72 CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)
73 IF (IERROR(1) .NE. 0) CALL QUIT (2000 + IERROR(1»
74 C
75 C Call the tables for month and weekday names and
76 C display todays day name and the current month's name.
77 C
78 CALL NLINFO(5, LMONTHS, LANGNUM, LERROR)
79 IF (IERROR(1) .NE. 0) CALL QUIT (3000 + IERROR(1»
80 C
81 WRITE (6, 1001) BMONTHS (MONTH)
82 C
83 CALL NLINFO(7, LWEEKDAYS, LANGNUM, LERROR)
84 IF (IERROR(1) .NE. 0) CALL QUIT (4000 + IERROR(1»
85 C
86 WRITE (6, 1001) BWEEKDAYS (WEEKDAY)
87 C
88 C Format the machine internal date format
89 C into the custom date format (short version).
90 C The result will be displayed.
91 C
92 CALL NLFMTCUSTDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)
93 IF (IERROR(1) .NE. 0) CALL QUIT (5000 + IERROR(1»
94 C
95 WRITE (6,*) "CUSTOM DATE:"
96 WRITE (6,1002) BCUSTOMDATE
97 C
98 C Use the output of NLFMTCUSTDATE as input for
99 C NLCONVCUSTDATE and convert back to the internal format.
100 C
101 DATE = NLCONVCUSTDATE(BCUSTOMDATE,13, LANGNUM, LERROR)
102 IF (IERROR(1) .NE. 0) CALL QUIT (6000 + IERROR(1»
103 C
104 C Format the machine internal date format into the
105 C date format (long format) according to the language.
106 C The result will be displayed.
107 C
108 CALL NLFMTCALENDAR(DATE, BCALENDAR, LANGNUM, LERROR)
109 IF (IERROR(1) .NE. 0) CALL QUIT (7000 + IERROR(1»
110 C
111 WRITE (6,*) "DATE FORMAT:"
112 WRITE (6,1003) BCALENDAR
113 C
114 C Format the machine internal time format into the
115 C language-dependentclock format.
116 C The result will be displayed.
117 C
118 CALL NLFMTCLOCK(TIME, BCLOCK, LANGNUM, LERROR)
119 IF (IERROR(1) .NE. 0) CALL QUIT (8000 + IERROR(1»

EXAMPLE PROGRAMS H - 7

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

C
WRITE (6,*) IITIME FORMAT:"
WRITE (6,1004) BCLOCK

C
C
C
C

Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert bacK to the internal format.

TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (9000 + IERROR(1»

C
C
C
C
C

Format the machine internal time and date format
into the language dependent format.
The result will be displayed.
CALL NLFMTDATE(DATE, TIME, BDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE. 0) CALL QUIT (10000 + IERROR(1»

C
WRITE (6,*) "DATE AND TIME FORMAT:"
WRITE (6, 1005) BDATE

C
C

STOP
END

Executing the program gives the following result:

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
,~(;jl"4'lnnl
JANUARY
TUESDAY
CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5:15 PM
DATE AND TIME FORMAT:
rUE, JAN 31,1984, 5:15 PM
END OF PROGRAM
:rilIBlij,!"d;';UI
ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
DJanuar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
17:15
DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:15
END OF PROGRAM

H - 8 EXAMPLEPROGRAMS

E. DATE/TIME Formatting Intrinsics in an SPL Program
The user is asked to enter a language. All date and time formatting and conversion is done by using the
language entered by the user. The time and date used in the examples is the current system time obtained
by calling the HP 3000 system intrinsics CALENDAR and CLOCK.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

$CONTROL USLI N IT
BEGIN

LOGICAL ARRAY
L'ERROR
L'LANGUAGE
L'PRINT
L'CUSTOM'DATE
L'DATE
L'CALENDAR
L'MONTHS
L'WEEKDAYS
L'CLOCK

(0:1),
(0:7),
(0:39),
(0:6),
(0:13),
(0:8),
(0:71),
(0:41),
(0:3);

BYTE ARRAY
B'PRINT(*) = L'PRINT,
B'CUSTOM'DATE(*) = L'CUSTOM'DATE,
B'CALENDAR(*) = L'CALENDAR,
B'DATE(*) = L'DATE,
B'MONTHS(*) = L'MONTHS,
B'WEEKDAYS(*) = L'WEEKDAYS,
B'CLOCK(*) = L'CLOCK;

BYTE POINTER
BP'PRINT;

DOUBLE
TIME;

LOGICAL
DATE,
HOUR'MINUTE = TIME,
SECONDS = TIME + 1;

INTEGER
YEAR,
MONTH,
DAY,
WEEKDAY,
LGTH,
LANGNUM;

DEFINE
WEEKDAY'NAME = B'WEEKDAYS«WEEKDAY - 1) * 12)#,
MONTH 'NAME = B'MONTHS«MONTH - 1) * 12)#,
ERR'CHECK = IF L'ERROR(O) <> 0 THEN

QUIT #,

CCNE = IF <> THEN
QUIT #,

DISPLAY = MOVE B'PRINT := #,

ON'STDLIST = ,2;
@BP'PRINT := TOS;
LGTH := LOGICAL(@BP'PRINT) -

LOGICAL(@B'PRINT);
PRINT(L'PRINT, -LGTH, 0) #;

EXAMPLE PROGRAMS H - 9

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

H·10

INTRINSIC
READ,
QUIT ,
PRINT,
CLOCK,
CALENDAR,
ALMANAC,
NLlNFO,
NLFMTCLOCK,
NLCONVCLOCK,
NLFMTOATE,
NLFMTCALENDAR,
NLFMTCUSTDATE,
NLCONVCUSTDATEi

« Start of main code.
The user is asked to enter a language name or number.»
DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"
ON ISTOll ST i
READ(L'LANGUAGE,·16)i

« NLINFO item 22 returns the corresponding
lang number in integer format for this language. »
NLINFO(22,L'LANGUAGE,LANGNUM,L'ERROR)i
IF L'ERROR(O) <> 0 THEN

BEGIN
IF L'ERROR(O) = THEN

BEGIN
DISPLAY
"NL/3000 IS NOT INSTALLED"
ON'STDLlSTi
QUIT(1001)i

END
ELSE

IF L'ERROR(O) = 2 THEN
BEGIN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON'STDLlST;
QUIT(1002)i

END
ELSE

QUIT (1000 + L'ERROR(O»;
END;

« This obtains the machine internal clock and
calendar formats which is maintained by MPE. »

TIME := CLOCK;
DATE := CALENDAR;

« Call ALMANAC and convert the machine internal date
format into numeric values, which will be used as indices
into the name tables. »

EXAMPLE PROGRAMS

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

ALMANAC(DATE, L'ERROR, , MONTH, , WEEKDAY);
ERR'CHECK (2000 + L'ERROR(O»;

« Call the tables for month and weekday names and
display todays day name and the current month's name. »
NLINFO(5, L'MONTHS, LANGNUM, L'ERROR);
ERR'CHECK (3000 + L'ERROR(O»;
DISPLAY MONTH'NAME,(12) ON'STDLIST;
NLINFO(7, L'WEEKDAYS, LANGNUM, L'ERROR);
ERR'CHECK (4000 + L'ERROR(O»;
DISPLAY WEEKDAY'NAME,(12) ON'STDLIST;

« Format the machine internal date format
into the custom date format (short version).
The result will be displayed. »

NLFMTCUSTDATE(DATE,L'CUSTOM'DATE,LANGNUM,L'ERROR);
ERR'CHECK (5000 + L'ERROR(O»;
DISPLAY "CUSTOM DATE:" ON'STDLIST;
DISPLAY B'CUSTOM'DATE,(13) ON'STDLIST;

« Use the output of NLFMTCUSTDATE as input for
NLCONVCUSTDATE and convert back to the internal format.»
DATE := NLCONVCUSTDATE(B'CUSTOM'DATE,13,LANGNUM,L'ERROR);
ERR'CHECK (6000 + L'ERROR(O»;

« Format the machine internal date format into the »
« date format (long format) according to the language. »
« The result will be displayed. »

NLFMTCALENDAR(DATE,L 'CALENDAR, LANGNUM, L'ERROR);
ERR'CHECK (7000 + L'ERROR(O»;
DISPLAY "DATE FORMAT:" ON'STDLIST;
DISPLAY B'CALENDAR,(18) ON'STDLIST;

« Format the machine internal clock format
into the language·dependent clock format.
The result will be displayed. »

NLFMTCLOCK(TIME,L 'CLOCK,LANGNUM, L'ERROR);
ERR'CHECK (8000 + L'ERROR(O»;

EXAMPLE PROGRAMS H - 11

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

DISPLAY "TIME FORMAT:" ON'STDLIST;
DISPLAY B'CLOCK,(8) ON'STDLISTi

« Use the output of NLFMTCLOCK as input for
NLCONVCLOCK and convert back to the internal format. »

TIME := NLCONVCLOCK(B'CLOCK,8,LANGNUM,L'ERROR);
ERR'CHECK (9000 + L'ERROR(O»;

« Format the machine internal time and date
format into the language'dependent format.
The result will be displayed.
NLFMTDATE(DATE,TIME,L'DATE,LANGNUM,L'ERROR);
ERR'CHECK (10000 + L'ERROR(O»;
DISPLAY "DATE AND TIME FORMAT:" ON'STDLIST;
DISPLAY B'DATE,(28) ON'STDLIST;

END.
Executing the program results in the following:

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
~Januar
Dienstag
CUSTOM DATE:
31.01.84
DATE FORMAT:
Di., 31. Jan. 1984
TIME FORMAT:
17:12
DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:12
END OF PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
iiiJANUARY
TUESDAY
CUSTOM DATE:
01/31/84
DATE FORMAT:
TUE, JAN 31, 1984
TIME FORMAT:
5:13 PM
DATE AND TIME FORMAT:
TUE, JAN 31, 1984, 5:13 PM
END OF PROGRAM

H·12 EXAMPLE PROGRAMS

»

F. NLSCANMOVE Intrinsic in a COBOLII Program
In this program there are six different calls to NLSCANMOVE. In every call all parameters are passed to
NLSCANMOVE. Since the upshift/downshift table and the character attributes table are optional parameters,
they may be omitted. For performance reasons (if NLSCANMOVE is called frequently), they should be passed
to the intrinsic after being read in by the appropriate calls to NLINFO.
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1 PROCEDURE DIVISION.
4.2 START·PGM.
4.3 * Initializing the arrays.
4.4
4.5
4.6
4.7
4.8
4.9
5
5.1
5.2
5.3
5.4
5.5
5.6 CONVERT·NAME-NUM.
5.7 * NLINFO item 22 returns the corresponding
5.8 * lang number in integer format for this language.
5.9

$CONTROL USLI NIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITPARM
77 LANGNUM
77 FLAGS
77 LEN
77 NUMCHAR
01 TABLES.

05 CHARSET-TABLE
05 UPSHIFT-TABLE
05 DOWNSHIFT-TABLE

01 STRINGS.
05 INSTRING.

10 INSTR1
10 INSTR2

05 OUTSTRING
05 LANGUAGE

01 ERRORS.
05 ERR1
88 NO-NLS
88 NOT-CONFIG
05 ERR2

PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE 70.
PIC S9(4) COMP VALUE O.

PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.
PIC X(256) VALUE SPACES.

PIC X(40) VALUE SPACES.
PIC X(30) VALUE SPACES_
PIC X(70) VALUE SPACES.
PIC X(16) VALUE SPACES.

PIC S9(4) COMPo
VALUE 1.
VALUE 2.

PIC S9(4) COMP VALUE O.

MOVE "abCDfg6i jkaSXbVcGjGf1f$El SP06dLe\ 1a23".&7"
TO INSTR1.
MOVE "a 123&i12fSXgVhklKLabCDASP06i"
TO INSTR2.

* The user is asked to enter a language name or
DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):".
ACCEPT LANGUAGE.

EXAMPLE PROGRAMS H -13

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7
7.1
7.2
7.3
7.4
7.5
7.6
7.7 *
7.8 *
7.9
8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8 * Obtain the upshift table using NLINFO item 15.
8.9
9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 * Obtain the downshift table using NLINFO item 16.
9.9

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
11
11.1 EXAMPLE·1·1.
11.2 * The string passed in the array instring should be moved
11.3 * and upshifted simultaneously to the array outstring.
11.4 * Set the until flag (bit 11 = 1) and the
11.5 * upshift flag (bit 10 = 1). All other flags remain
11.6 *
11.7 *
11.8 *
11.9 *

CALL INTRINSIC "NLINFO" USING 22,
LANGUAGE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
IF NO'NLS

DISPLAY "NL/3000 IS NOT INSTALLED"
CALL INTRINSIC "QUIT" USING 1001

ELSE
IF NOT-CONFIG

DISPLAY "THIS LANGUAGE IS NOT CONFIGURED"
CALL INTRINSIC "QUIT" USING 1002

ELSE
COMPUTE QUITPARM = 1000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

GET-TABLES.
Obtain the character attributes table
using NLINFO item 12.

CALL INTRINSIC "NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 2000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM_

CALL INTRINSIC "NLINFO" USING 15,
UPSHIFT' TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 3000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

CALL INTRINSIC "NLINFO" USING 16
DOWNSHIFT-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 4000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"
DISPLAY INSTRING.

o 1 234 5 678 9
o 0 0 0 0 0 0 0 0 0

H ·14 EXAMPLEPROGRAMS

12 * Note:
12.1 *
12.2 *
12.3 *
12.4 *
12.5
12.6
12.7
12.8
12.9
13
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14
14.1
14.2
14.3 EXAMPLE·1-2.
14.4 *
14.5 * The string passed in the array instring should be moved
14.6 * and upshifted to the array outstring (same as EXAMPLE 1-1).
14.7 * Set the while flag (bit 11 = 0) and the
14.8 * (bit 10 = 1). In addition all ending conditions will
14.9 * set (bits 12 - 15 all 1).
15 *
15.1 *
15.2 *
15.3 *
15.4 * Note:
15.5 *
15.6 *
15.7 *
15.8 *
15.9
16
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
17
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

The 'until flag' is set. Therefore, the operation continues
until one of the ending criteria will be true.
If no ending condition is set, the operation
continues for the number of characters contained in
length.

MOVE 48 TO FLAGS.
CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0

COMPUTE QUITPARM = 5000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "UPSHIFTED:
DISPLAY OUTSTRING.

(EXAMPLE 1-1)".

o 1 234 5 6 789o 0 0 0 0 0 0 0 0 0
The 'while flag' is set. Therefore, the operation
continues while one of the end criteria is true.
Since all criteria are set, one of them will be
always true, and the operation continues for the
number of characters contained in length.

MOVE SPACES TO OUTSTRING.
MOVE 0 TO FLAGS.
MOVE 47 TO FLAGS.
CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0

CALL INTRINSIC "QUIT" USING 6.
DISPLAY "UPSHIFTED:
DISPLAY OUTSTRING.

(EXAMPLE 1-2)".

EXAMPLE PROGRAMS H - 15

18 EXAMPLE-2-1.
18.1 * The string passed in the array instring should be
18.2 * scanned for the first occurrence of a special character.
18.3 * All characters before the first special character are
18.4 * moved to outstring.
18.5 * Set the until flag (bit 11 = 1) and the
18.6 * character flag (bit 12 = 1). All other flags remain
18.7 *
18.8 *
18.9 *
19 *
19.1 * Note:
19.2 *
19.3 *
19.4 *
19.5 *
19.6
19.7
19.8
19.9
20
20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
21
21.1
21.2
21.3
21.4
21.5
21.6
21.7 EXAMPLE-2-2.
21.8 * The string passed in the array instring should
21.9 * be scanned for the first occurrence of a special
22 * character. All characters before the first special
22.1 * character are moved to outstring (same as EXAMPLE 2-1).
22.2 * Set the while flag (bit 11 = 0) and all
22.3 * flags except for special characters (bits 13 - 15
22.4 *
22.5 *
22.6 *
22.7 *
22.8 * Note:
22.9 *
23 *
23.1 *
23.2 *
23.3 *
23.4 *
23.5
23.6
23.7
23.8
23.9

o 1 234 5 678 9
o 0 0 0 0 0 0 000

The 'until flag' is set and the ending condition
set to 'special character'. Therefore, the operation
continues until the first special character is found
or until the number of characters contained in
length is processed.

MOVE SPACES TO OUTSTRING.
MOVE 24 TO FLAGS.
CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0

COMPUTE QUITPARM 7000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "SCAN/MOVE UNTIL SPECIAL:
DISPLAY OUTSTRING.

(EXAMPLE 2-1)".

o 1 234 5 6 789
000 0 000 000

The 'while flag' is set and all ending criteria
except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found, or the number of characters
contained in length is processed, the operation will
terminate.

MOVE SPACES TO OUTSTRING.
MOVE 7 TO FLAGS.

H ·16 EXAMPLE PROGRAMS

24
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
25
25.1
25.2
25.3
25.4
25.5
25.6
25.7 EXAMPLE-3-1.
25.8 '/It The string passed in the array instring should be
25.9 '/It scanned for the first occurrence of a special or numeric
26 '/It character. All characters before one of these characters
26.1 '/It are moved to outstring and downshifted simultaneously.
26.2 '/It Set the until flag (bit 11 = 1) and the
26.3 '/It flags for special and numeric characters (bits 12-13 = 1).
26.4 '/It To perform downshifting set bit 9 to 1.
26.5 '/It

26.6 '/It

26.7 '/It

26.8 '/It

26.9 '/It Note:
27 '/It

27.1 '/It

27.2 '/It

27.3 '/It

27.4 '/It

27.5 '/It

27.6
27.7
27.8
27.9
28
28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29
29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9 EXAMPLE-3-2.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET'TABLE,
UPSHIFT-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0

COMPUTE QUITPARM = 8000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY "SCAN/MOVE YHILE ALPHA OR NUM:
DISPLAY OUTSTRING.

(EXAMPLE 2-2)".

o 1 2 3 4 5 6 789o 0 0 0 0 0 0 0 0 1
The 'until flag' is set and the ending condition
set to 'special character' and to 'numeric character'.
Therefore, the operation continues until the first
special or numeric character is found, or
until the number of characters contained in length
is processed.

MOVE SPACES TO OUTSTRING.
MOVE 92 TO FLAGS.
CALL INTRINSIC "NLSCANMOVE" USING INSTRING,

OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOYNSHIFT-TABLE

GIVING NUMCHAR.
IF ERR1 NOT EQUAL TO 0

COMPUTE QUITPARM = 9000 + ERR1
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY
"SCAN/MOVE/DOYNSH 1FT UNTI L NUM. OR SPEC.:
DISPLAY OUTSTRING.

(EXAMPLE 3-1)".

EXAMPLE PROGRAMS H -17

30 * The string passed in the array instring should be
30.1 * scanned for the first occurrence of a special or numeric
30.2 * character. All characters before one of these characters
30.3 * are moved to outstring and downshifted simultaneously
30.4 * (same as EXAMPLE-3-2).
30_5 * Set the while flag (bit 11 = 0) and the
30_6 * flags for upper and lower case characters (bits 14-15 =
30_7 * To perform downshifting set bit 9 to 1.
30_8 *
30_9 *
31 *
31.1 *
31.2 * Note:
31_3 *
31.4 *
31_5 *
31_6 *
31.7 *
31.8 *31.9
32
32_1
32.2
32.3
32_4
32_5
32_6
32.7
32.8
32.9
33
33.1
33.2
33_3
33.4
33.5
33_6
33.7
33.8
33.9
34
34.1
34_2

o 1 2 3 4 5 678 9
o 0 0 0 0 0 0 0 0 1

The 'while flag' is set and the ending criteria
upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found_ When a special
or a numeric character is found, or the number of
characters contained in length is processed, the
operation will terminate.

MOVE SPACES TO OUTSTRING.
MOVE 67 TO FLAGS_

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
DOWNSHIFT-TABLE

GIVING NUMCHAR_
IF ERR1 NOT EQUAL 0

COMPUTE QUITPARM = 10000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITPARM.

DISPLAY
"SCAN/MOVE/DOWNSHIFT WHILE ALPHA:
DISPLAY OUTSTRING.

(EXAMPLE 3-2)".

STOP RUN_

H-18 EXAMPLE PROGRAMS

Executing the program results in the following:
:13iHIQ;IeIHtUI
ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):rB.ml
THE FOLLOYING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijkaSXbVcGjGf1f$E!SP06dLe\1a23r~7a 123&i12fSXgVhklKLabCDASP06i
UPSHIFTED: (EXAMPLE 1·1)
ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23r~7A 123&112FSXGRHKLKLABCDASP [61
UPSHIFTED: (EXAMPLE 1·2)
ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23r~7A 123&112FSXGRHKLKLABCDASP [61
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2·1)
abCDfg6ijkaSXbVcGjGf1f
SCAN/MOVE YHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijkaSXbVcGjGf1f
SCAN/MOVE/DOYNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOYNSHIFT YHILE ALPHA: (EXAMPLE 3-2)
abcdfg
END OF PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
o
THE FOLLOYING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijkaSXbVcGjGf1f$E!SP06dLe\1a23r~7a 123&i12fSXgVhklKLabCDASP06i
UPSHIFTED: (EXAMPLE 1-1)
ABCDFG6IJKASXBVCGJGF1F$E!SP06DLE\1A23r~7A 123&112FSXGVHKLKLABCDASP06I
UPSHIFTED: (EXAMPLE 1-2)
ABCDFG6IJKASXBVCGJGF1F$E!SP06DLE\1A23r~7A 123&112FSXGVHKLKLABCDASP06I
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2·1)
abCDfg6ijka
SCAN/MOVE YHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka
SCAN/MOVE/DOYNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)
abcdfg
SCAN/MOVE/DOYNSHIFT YHILE ALPHA: (EXAMPLE 3-2)
abcdfg
END OF PROGRAM

EXAMPLE PROGRAMS H -19

G. NLSCANMOVE Intrinsic in an SPL Program
In this program there are six different calls to NLSCANMOVE. In every call, parameters are passed to NLSCANMOVE.
Since the upshift/downshift table and the character attributes table are optional parameters, they may be
omitted. For performance reasons (if NLSCANMOVE is called frequently), they should be passed to the intrinsic
after being read in by the appropriate calls to NLiNFO.

1 $CONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L'UPSHIFT (0:127),
5 L'DOWNSHIFT (0:127),
6 L'CHARSET (0:127),
7 L'ERROR (0:1),
8 L'INSTRING (0:34),
9 L'OUTSTRING (0:34),

10 L'PRINT (0:34) ,
11 L'LANGUAGE (0:7);
12
13 BYTE ARRAY
14 B'INSTRING(*) = L'INSTRING,
15 B'OUTSTRING(*) = L'OUTSTRING,
16 B'PRINT(*) = L'PRINT;
17
18 BYTE POINTER
19 BP'PRINT;
20
21 INTEGER
22 LANGNUM,
23 NUM'CHAR,
24 LGTH,
25 LENGTH;
26
27 LOGICAL
28 FLAGS;
29
30 DEFINE
31 LO\JER'CASE = FLAGS.(15:1)#,
32 UPPER 'CASE = FLAGS.(14:1)#,
33 NUMERIC'CHAR = FLAGS. (13:1)#,
34 SPECIAL'CHAR = FLAGS.(12:1)#,
35
36 WHILE'UNTIL = FLAGS.(11:1)#,
37
38 UPSH 1FT'FLAG = FLAGS.(10:1)#,
39 DOWNSHIFT'FLAG = FLAGS.(9:1)#,
40
41 ERROR 'CHECK = IF L'ERROR(O) <> 0 THEN
42 QUIT #,
43
44 CCNE = IF <> THEN
45 QUIT #,
46
47 DISPLAY = MOVE B'PRINT := #,
48
49 ON'STDLlST = ,2;
50 @BP'PRINT := TOS;
51 LGTH := LOGICAL(@BP'PRINT)
52 LOGICAL(@B'PRINT);
53 PRINT(L'PRINT, 'LGTH, 0) #;
54
55

H • 20 EXAMPLEPROGRAMS

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

INTRINSIC
READ,
QUIT,
PRINT,
NLINFO,
NLSCANMOVE;

« Start of main code.
Initializing the arrays. »

MOVE B'INSTRING
:= "abCDfg6i jkaSXbVcGjGf1f$E! SP06dLe\ 1a23'Y'&7", 2;

MOVE * := "a 123&i12fSXgVhklKLabCDASP06i";
MOVE L'OUTSTRING :=" ";
MOVE L'OUTSTRING(1) := L'OUTSTRING,(39);
MOVE L I LANGUAGE :=" ";
MOVE L'LANGUAGE(1) := L'LANGUAGE,(7);

« The user is asked to enter a language name or

DISPLAY
"ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

ON ISTDLlST;
READ(L'LANGUAGE,·16);

« NLINFO item 22 returns the corresponding language
number in integer format for this language. »

NLINFO(22,L'LANGUAGE,LANGNUM,L'ERROR);
IF L'ERROR(O) <> 0 THEN

BEGIN
IF L'ERROR(O) = 1 THEN

BEGIN
DISPLAY
"NL/3000 IS NOT INSTALLED"
ON'STDLIST;
QUIT (1001);

END
ELSE

IF L'ERROR(O) 2 THEN
BEGIN

DISPLAY
"THIS LANGUAGE IS NOT CONFIGURED"
ON'STDLlST;
QUIT (1002);

END
ELSE

QUIT (1000 + L'ERROR(O»;
END;

« Obtain the character attributes table using
NLINFO item 12. »

NLINFO(12,L'CHARSET,lANGNUM,L'ERROR);

EXAMPLE PROGRAMS H • 21

H·22

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ERROR'CHECK (2000 + L'ERROR(O»i

« Obtain the upshift table using NllNFO item 15. »

NlINFO(15,l'UPSHIFT,LANGNUM,L'ERROR)i
ERROR'CHECK (3000 + L'ERROR(O»i

« Obtain the downshift table using NLINFO item 16. »

NLINFO(16,L'DOWNSHIFT,LANGNUM,L'ERROR)i
ERROR'CHECK (4000 + L'ERROR(O»i

« Print the character string used in all examples(instring). »

DISPLAY
"THE FOLLOWING STRING IS USED IN ALL EXAMPLES:"

ON'STOll ST i
DISPLAY B'INSTRING,(70) ON'STDLIST;

EXAMPlE'1'1:
« The string passed in the array instring is moved and

UPSHIFTED to the array outstring.
Note: The 'until flag' is set. Therefore, the operation

continues until one of the ending criteria is true.
If no ending condition was set the
operation continues for the number of characters
contained in length. »

LENGTH := 70;
FLAGS := O·,
WHILE'UNTIL := 1·,
UPSHIFT'FLAG := 1.,
NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
ERROR'CHECK (5000 + L'ERROR(O»;

o ISPLAY "UPSH IFTED: (EXAMPLE '.')" ON' STOll 5T;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLISTj

EXAMPLE'1'2:
« Note: The 'while flag' is set. Therefore, the operation will

continue while one of the end criteria is true. Since
all conditions are set, one of them will be always
true and the operation continues for the number of
characters contained in length. This example performs
the same operation as EXAMPLE 1·1. »

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

:= II II;

:= L'OUTSTRING,(39)i
FLAGS := 0;
LOWER 'CASE := 1·,
UPPER 'CASE := 1·,
SPECIAL'CHAR := 1·,
NUMERIC'CHAR := ,.,

EXAMPLE PROGRAMS

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

YHILE'UNTIL := 0;
UPSHIFT'FLAG := 1;

NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);

ERROR'CHECK (6000 + L'ERROR(O»;
DISPLAY "UPSHIFTED: (EXAMPLE 1-2)" ON'STDLlST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'2'1:
« The string contained in instring should be scanned for the

first occurrence of a special character. All characters
before the first special are moved to outstring.
Note: The 'until flag' is set and the ending condition is

set to 'special character'. Therefore, the operation
continues until the first special character is found or
until the number of characters contained in length
is processed. »

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

:=.. II;

:= L'OUTSTRING,(39);
FLAGS := 0;
SPECIAL 'CHAR .- 1;
YHI LE 'UNTIL := 1·,
UPSH 1FT'FLAG := O·,
NUM'CHAR ;= NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
ERROR'CHECK (7000 + L'ERROR (0»;
DISPLAY "SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)"
ON' STDLl ST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'2'2:
« Note: The 'while flag' is set and all ending criteria

except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found or the number of characters
contained in length is processed, the operation will
terminate.
This is the same operation as in EXAMPLE 2-1. »

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

:= II ";

:= L'OUTSTRING,(39);
FLAGS := O·,
LOYER 'CASE := 1·,
UPPER'CASE := 1·,
SPECIAL.'CHAR := 0;
NUMERIC 'CHAR := 1;
YHILE'lJNTIL := O·,

EXAMPLE PROGRAMS H - 23

H·24

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

UPSHIFT'FLAG := 0;
NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
ERROR'CHECK (8000 + L'ERROR(O»;
DISPLAY "SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)"
ON'STOll ST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE'3'1:
« The data contained in instring should be scanned for the

first occurrence of a numeric or a special character_
All characters preceding the first special or numeric character
are moved to outstring_
Note: The 'until flag' is set and the ending conditions are

set to 'special character' and to 'numeric character'_
Therefore, the operation runs until the first
special or numeric character is found, or
until the number of characters contained in length
is processed_ »

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

:= II II;

:= L'OUTSTRING,(39);
FLAGS := O',

:= 1•,
:= 1•,

SPECIAL'CHAR
NUMERIC'CHAR
WHILE'UNTIL := 1;
DOWNSHIFT'FLAG := 1;
NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT)i
ERROR'CHECK (9000 + L'ERROR(O»;

DISPLAY
"SCAN/MOVE/DOWNSH 1FT UNTI L NUM. OR SPEC.: (EXAMPLE 3 -1)"
ON'STDLlST;
DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;

EXAMPLE '3'2:
« Note: The 'while flag' is set and the ending criteria

upppercase and lowercase characters are set.
Therefore, the operation continues while an uppercase or
a lowercase character is found. When a special
or numeric character is found or the number of
characters contained in length is processed, the
operation will terminate.
This is the same operation as in EXAMPLE 3-'. »

MOVE L'OUTSTRING
MOVE L'OUTSTRING(1)

:= II II;

:= L'OUTSTRING,(39);
FLAGS := 0;
LOWER 'CASE := 1;
UPPER 'CASE := 1;

EXAMPLE PROGRAMS

295
296 WHILE'UNTIL := 0;
297 DOWNSHIFT'FLAG := 1;
298
299 NUM'CHAR := NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
300 LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);
301 ERROR'CHECK (1000 + L'ERROR(O»;
302
303 DISPLAY
304 "SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3·2)"
305 ON'STDLIST;
306 DISPLAY B'OUTSTRING,(NUM'CHAR) ON'STDLIST;
307
308 END.
Executing the program results in the following:
:i;JiU'ij;Je'dOOUJ
ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
~THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijkaSXbVcGjGf1f$E!SP06dLe\1a23r~7a 123&i12fSXgVhklKLabCDASP06i
UPSHIFTED: (EXAMPLE 1·1)
ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23r~7A 123&112FSXGRHKLKLABCDASP[6I
UPSHIFTED: (EXAMPLE 1·2)
ABCDFG6IJKASXBRCGJGF1F$E!SP[6DXE\1A23r~7A 123&112FSXGRHKLKLABCDASP [61
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2,1)
abCDfg6ijkaSXbVcGjGf1f
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2·2)
abCOfg6ijkaSXbVcGjGf1f
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3·1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3·2)
abcdfg
END OF PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
'MJ'tl.Jlun]
THE FOLLOWING STRING IS USED IN ALL EXAMPLES:
abCDfg6ijkaSXbVcGjGf1f$E!SP06dLe\1a23%&7a 123&i12fSXgVhklKLabCDASP06i
UPSHIFTED: (EXAMPLE 1·1)
ABCDFG6IJKASXBVCGJGF1F$E!SP06DLE\1A23r~7A 123&112FSXGVHKLKLABCDASP06I
UPSHIFTED: (EXAMPLE 1·2)
ABCDFG6IJKASXBVCGJGF1F$E!SP06DLE\1A23r~7A 123&112FSXGVHKLKLABCDASP06I
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2·1)
abCDfg6ijka
SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)
abCDfg6ijka
SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3·1)
abcdfg
SCAN/MOVE/DOWNSHIFT WHILE ALPHA: (EXAMPLE 3·2)
abcdfg
END OF PROGRAM

EXAMPLE PROGRAMS H . 25

H. NLTRANSLATE/NLREPCHAR Intrinsics in a COBOLII Program
The string used in the example is 256 bytes in length and contains all possible byte values from 0 to 255.
This string is converted from USASCII to EBCDIC. Then the converted string is taken and translated
back to USASCII. This is done according to the ASCII-to-EBCDIC and EBCDIC-to-ASCII translation
tables corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters which are non-printable (control and
undefined characters) in the character set supporting the given language are replaced by a period before
the string is displayed by calling NLREPCHAR intrinsic.

$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.
AUTHOR. LORO.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 QUITNUM
77 LANGNUM
77 IND

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
l.B
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.B
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.B
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.B
4.9
5
5.1

01
05
05
05

01
05
05

10
10

01
05
05

10
05

10
10
10
10

PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.

TABLES.
USASCII-EBC-TABLE
EBC-USASCII-TABLE
CHARSET-TABLE

PIC X(256) VALUE SPACES.
PIC X(2~;6)VALUE SPACES.

PIC X(256;lVALUE SPACES.
BUFFER-FIELDS.
INT-FIELD PIC S9(4) COMP VALUE -1.
BYTE-FIELD REDEFINES INT-FIELD.
FILLER PIC X.
CHAR PIC X.
STRINGS.
LANGUAGE
IN-STRING.
IN-BYTE
OUT-STRING.
OUT-STR1
OUT-STR2
OUT-STR3
OUT-STR4

PIC X(16) VALUE SPACES.
PIC X OCCURS 256.
PIC X(BO) •.
PIC X(BO) •.
PIC X(80).
PIC X(16).

01 REPLACE-WORD PIC S9(4) COMP VALUE O.
01 REPLACE-BYTES REDEFINES REPLACE-WClRD.

05 REPLACEMENT-CHAR PIC X.
05 FILLER PIC X.

01 ERRORS.
05 ERR1
05 ERR2

PROCEDURE DIVISION.
START-PGM.

PIC S9(4) COMPo
PIC S9(4) COMPo

5.2 * Initialize the instring array with all possible
5.3 * byte values starting from binary zero until 255.
5.4 MOVE -1 TO INT-FIELD.
5.5 PERFORM FILL-INSTRING VARYING IND FROM 1 BY 1
5.6 UNTIL IND > 256.
5.7 GO TO GET-LANGUAGE.
5.S
5.9 FllL-INSTRING.

H - 26 EXAMPLEPROGRAMS

6
6.1
6.2
6.3 GET' LANGUAGE.
6.4 *The language is hard· coded, set to 8 (GERMAN).
6.5
6.6
6.7
6.8 GET·THE·TABLES.
6.9 * Call the USASCII'EBCDIC and EBCDIC·USASCII
7 * conversion tables and the character attribute table
7.1 * by using the appropriate NLINFO items.
7.2 * Note: NLTRANSLATE and NLREPCHAR may be called without

ADD 1
MOVE CHAR

TO INT·FIELD.
TO IN·BYTE(IND).

MOVE 8 TO LANGNUM.

7.3 *
7.4 *
7.5 *
7.6
7.7
7.8
7.9
8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10

passing the tables (last parameter). For performance
reasons the tables should be passed, if these
intrinsics are called very often.

CALL INTRINSIC "NLINFO" USING 13,
USASCII-EBC-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 1000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC NLINFO ITEM 14,
EBC-USASCII-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 2000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CALL INTRINSIC "NLINFO" USING 12,
CHARSET-TABLE,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 3000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

CONVERT-ASC-EBC.
10.1 * Convert IN-STRING from USASCII into EBCDIC by
10.2 * using NLTRANSLATE code 2. The converted string will
10.3 * be in OUT·STRING.
10.4
10.5
10.6
10.7
10.8
10.9
11
11.1
11.2
11.3
11.4
11.5
11.6 CONVERT-EBC·ASC.
11.7 * Convert OUT-STRING back from EBCDIC to USASCII by
11.8 * using NLTRANSLATE code 1. The retranslated string will
11.9 * be in IN-STRING again.

CALL INTRINSIC "NLTRANSLATE" USING 2,
IN-STRING,
OUT-STRING,
256,
LANGNUM,
ERRORS,
USASCII-EBC-TABLE.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 4000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

EXAMPLE PROGRAMS H- 27

12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13
13.1
13.2 REPLACE-NON·PRINTABLES.
13.3 * Replace all non-printable characters
13.4 * in IN-STRING and display the string.
13.5
13.6
13.7
13.8
13.9
14
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

CALL INTRINSIC "NLTRANSLATE" USING 1,
OUT-STRING,
IN-STRING,
256,
LANGNUM,
ERRORS,
EBC-USASCII-TABLE.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 5000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

MOVE
CALL

"." TO REPLACEMENT-CHAR.
INTRINSIC "NLREPCHAR" USING IN-STRING,

IN-STRING,
256,
REPLACE-WORD,
LANGNUM,
ERRORS.

IF ERR1 NOT EQUAL 0
COMPUTE QUITNUM = 6000 + ERR1,
CALL INTRINSIC "QUIT" USING QUITNUM.

DISPLAY "IN-STRING:"
DISPLAY IN-STRING.
STOP RUN.

H- 28 EXAMPLE PROGRAMS

I. NLKEYCOMPARE Intrinsic in a COSOLII Program

The example shows a new KSAM/3000 filebuilt programmatically with a language attribute. This means
the keys will be sorted according to the collating sequence of this language. After building the file,the
program writes 15 hard-coded data records into it.

Perform a generic FFINDBYKEY with a partial key of length1 containing "E". This positions the KSAMj3000
filepointer to the firstrecord whose key starts with "E".

After locating this record, read allsubsequent records in the filesequentially and call NlKEYCOMPARE to check
whether the key found iswhat was requested. If the result returned by NlKEYCOMPARE iS3,the program isdone.
There are no more records whose key starts with any kind of "E".

1 $CONTROl USLINIT
1.1 IDENTIFICATION DIVISION.
1.2 PROGRAM-ID. EXAMPLE.
1.3 AUTHOR. lORO.
1.4 ENVIRONMENT DIVISION.
1.5 CONFIGURATION SECTION.
1.6 SOURCE-COMPUTER. HP3000.
1.7 OBJECT-COMPUTER. HP3000.
1.B SPECIAL-NAMES.
1.9 CONDITION-CODE IS CC.
2 DATA DIVISION.
2.1 WORKING-STORAGE SECTION.
2.2 77 QUITNUM
2.3 77 lANGNUM
2.4 77 lEGTH
2.5 77 FNUM
2.6 77 RESULT
2.7 77 FOPTIONS
2.B 77 AOPTIONS
2.9 77 IND
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.S
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.B
4.9
5
5.1
5.2
5.3
5.4
5.5
5.6
S.7
5.S
5.9

01
05
05

10
10
10
10
10
10
10
10
10
10
10

01
OS
OS

01
05
OS

01
OS
OS
OS

01

PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo

TABLES.
COll-TABlE PIC X(BOO).
KSAM-PARAM.
KEY-FILE
KEY-FIlE-SIZ
FIllER
lANGUAGE-NUM
FIllER
FlAGWORD
NUM-OF-KEYS
KEY-DESCR
KEY-lOCATION
DUPl-BlOCK
FIllER

PIC X(B) VALUE SPACES.
PIC S9(S) COMPo
PIC Xes) VALUE SPACES.
PIC S9(4) COMPo
PIC Xes) VALUE SPACES.
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC X(20).

STRINGS.
GEN-KEY
FILENAME

PIC X(4).
PIC X(B) VALUE SPACES.

ERRORS.
ERR1
ERR2

PIC S9(4) COMPo
PIC S9(4) COMP VALUE O.

DATA-RECS.
DATA-REC1
DATA-REC2
DATA-REC3

PIC X(50).
PIC X(SO).
PIC X(SO).

DATA-REeS-R REDEFINES DATA-RECS.

EXAMPLEPROGRAMS H - 29

6
6.1
6.2
6.3
6.4
6.S
6.6
6.7
6.8
6.9
7
7.1
7.2
7.3
7.4
7.S
7.6
7.7
7.8
7.9
8
8.1
8.2
8.3
8.4
8.S
8.6
8.7
8.8
8.9
9
9.1
9.2
9.3
9.4
9.S
9.6
9.7
9.8
9.9

10
10.1
10.2
10.3
10.4
10.S
10.6
10.7
10.8
10.9
11
11.1
11.2
11.3
11.4
11.S
11.6
11.7
11.8
11.9

H ·30

OS DATA-RECORD OCCURS 15.
10 FILLER PIC X(10).

01 KSAM-RECORD.
OS FILLER PIC X(3).
OS RECORD-KEY PIC X(4).
OS FILLER PIC X(3).

PROCEDURE DIVISION.
INIT-KSAM-RECORDS.

* Initialize the Data Record with the data which should be
* written to the KSAM file.

MOVE "014ABBeZZZ011EZqrzyx001ABCDXXX007EdCDxyx012IzzAzzz"
TO DATA-REC1.
MOVE "003EaBCXXX008\\aaYZZ01SABDYZY005eLDFyxy002BBCdxxx"
TO DATA-REC2.
MOVE "004eABCYYY006EabcYYY009AAAAyzz010eaxfxyz013FGHIzqs"
TO DATA-REC3.

* Hard-code the language used in the example program
* to 0 (NATIVE - 3000).

MOVE 0 TO LANGNUM.
* Build a new KSAM file with the data file name
* KDOOO. The key file has the name KKOOO.
* Set the values for KSAM parameter array.

MOVE "KDOOO
MOVE "KKOOO

" TO FILENAME.
" TO KEY-FILE.

MOVE
MOVE LANGNUM
MOVE ,..20
MOVE 0
MOVE %10004
MOVE 4
MOVE %100024
MOVE %4000
MOVE S

TO NUM-OF-KEYS.
TO LANGUAGE-NUM.
TO FLAGWORD.
TO KEY-FILE-SIZ.
TO KEY·DESCR.
TO KEY-LOCATION.
TO DUPL-BLOCK.
TO FOPTIONS.
TO AOPTI ONS •

CALL INTRINSIC "FOPEN" USING FILENAME,
FOPTIONS,
AOPTIONS,
-10,
\\,
KSAM-PARAM

GIVING FNUM.
IF CC NOT EQUAL 0

CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
CALL INTRINSIC "QUIT" USING 1000.

* Fill the hard-coded data into the KSAM file.
PERFORM FILL-IN-DATA VARYING IND FROM 1 BY 1

UNTIL IND > 1S_

EXAMPLE PROGRAMS

12 GO TO FIND-DATA.
12.1
12.2 FILL-IN-DATA.
12.3 CALL INTRINSIC "FWRITE" USING FNUM,
12.4 DATA-RECORD(IND),
12.5 -10,
12.6 o.
12.7 IF CC NOT EQUAL 0
12.8 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
12.9 CALL INTRINSIC "QUIT" USING 2000.
13
13.1 FIND-DATA.
13_2 * Perform a generic FFINDBYKEY with a
13.3 * partial key of length 1 and value "E". The relational
13.4 * operator will be 2 (greater or equal).
13.5 * This FFINDBYKEY will position the KSAM pointer at the
13.6 * first key starting with any kind of "E".
13.7
13.8 MOVE "E" TO GEN-KEY.
13.9
14 CALL INTRINSIC "FFINDBYKEY" USING FNUM,
14.1 GEN-KEY,
14.2 0,
14.3 1,
14.4 2.
14.5 IF CC NOT EQUAL 0
14.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
14.7 CALL INTRINSIC "QUIT" USING 3000.
14.8
14.9 * Read the subsequent entries and check whether an
15 * exact match occurred by using NlKEYCOMPARE.
15.1 * When NlKEYCOMPARE returns 3 as a result, there are no
15.2 * more keys starting with any kind of "Eli.
15.3 * If an exact match was found the record is printed.
15.4
15.5 DISPLAY
15.6 "THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"
15.7 MOVE 0 TO RESULT.
15.8 PERFORM READ-DATA UNTIL RESULT EQUAL 3.
15.9 GO TO TERMINATE-PGM.
16
16.1 READ-DATA.
16.2 CALL INTRINSIC "FREAD" USING FNUM,
16.3 KSAM-RECORD,
16.4 -10.
16.5 IF CC NOT EQUAL 0
16.6 CALL INTRINSIC "PRINTFILEINFO" USING FNUM,
16.7 CALL INTRINSIC "QUIT" USING 4000.
16.8
16.9 CALL INTRINSIC "NLKEYCOMPARE" USING GEN-KEY,
17 1,
17.1 RECORD-KEY,
17.2 4,
17.3 RESULT,
17.4 LANGNUM,
17.5 ERRORS,
17.6 COLl-TABLE.
17.7 IF ERR1 NOT EQUAL 0
17.8 COMPUTE QUITNUM = 5000 + ERR1,
17.9 CALL INTRINSIC "QUIT" USING QUITNUM.

EXAMPLE PROGRAMS H - 31

18 IF RESULT = 0
18.1 DISPLAY KSAM-RECORD.
18.2
18.3 TERMINATE-PGM.
18.4 * Close the KSAM file and purge it.
18.5
18.6 CALL INTRINSIC "FCLOSE" USING FNUM,
18.7 4,
18.8 D.
18.9
19 STOP RUN.
Executing the program results in the following:

THE FOLLOYING RECORDS MATCH GEN-KEY (E) EXACTLY:
D11EZqrzyx
D03EaBCXXX
DD7EdCDxyx
END OF PROGRAM

H - 32 EXAMPLEPROGRAMS

J. NLKEYCOMPARE Intrinsic in an SPL Program

The example shows a new KSAM/3000 file built programmatically. This new KSAM/3000 file is built with
a language attribute. This means the keys will be sorted according to the collating sequence of this
language. After building the file, it is filled with 15 hard-coded data records.

Perform a generic FFINDBYKEY with a partial key of length1 containing "E". This should position the
KSAM/3000 file pointer to the very first record whose key starts with any kind of "E".

After locating this record read all subsequent records in the file sequentially and call NLKEYCOMPARE to check
whether the key found is what was requested. If the result returned by NLKEYCOMPAREiS3,there are no more
records starting with any kind of "E".

1 $CONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L'ERROR (0:1),
5 L'KSAM'PARAM (0:79),
6 L'PRINT (0:39),
7 L'RECORD (0:4),
8 COLL'TABLE (0:399);
9

10 BYTE ARRAY
11 FILENAME (0:7),
12 GEN'KEY (0:4),
13 KEY (0:4),
14 B'KSAM'PARAM(*) = L'KSAM'PARAM,
15 B'PRINT(*) = L'PRINT,
16 B'RECORD(*) = L'RECORD;
17
18 DOUBLE ARRAY
19 D'KSAM'PARAM(*) = L'KSAM'PARAM;
20
21 BYTE POINTER
22 BP'PRINT;
23
24 INTEGER
25 I,
26 LGTH,
27 FNUM,
28 RESULT,
29 LANGNUM;
30
31 LOGICAL
32 FOPTIONS,
33 AOPTIONS;
34
35 LOGICAL ARRAY
36 L'DATA(0:74) :=
37
38 « Ikey I »
39 "014BBeZZZ",
40 "011EZqrzyx",
41 "001ABCDXXX",« This is the data, which »
42 "007EdCDxyx",« wiII be written to the KSAM »
43 "012IzzAzzz", « file. »
44 "015ABDYZY",« The key starts in column 4 »
45 "005eLDFyxy",« and is 4 characters long. »
46 "002BBCdxxx",
47 "003EaBCXXX",
48 "008\\aaYZZ",
49 "004eABCYYY",
50 "006EabcYVY",

EXAMPLE PROGRAMS H • 33

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

H·34

"009Ayzz",
II010eaxfxyzll,
"013FGH Izqs":

« The following DEFINE statement defines the layout of the
KSAM parameter array, which is necessary to build a KSAM
file programmatically. »

DEFINE
KEY'FILE
KEY'FILE'SIZ
KEY'DEV
LANGUAGE
FLAGWORD
NUM'OF'KEYS
KEY 'TYPE
KEY'lENGTH
KEY' LOCAT ION
DUP'FLAG
KEY'BLOCK
RANDOM'FLAG

L'KSAM'PARAM#,
D'KSAM'PARAM(2)#,
L'KSAM'PARAM(6)#,
L'KSAM'PARAM(10)#,
L'KSAM'PARAM(15)#,
L'KSAM'PARAM(16)#,
L'KSAM'PARAM(17).(0:4)#,

= L'KSAM'PARAM(17).(4:12)#,
L'KSAM'PARAM(18)#,

= L'KSAM'PARAM(19).(0:1)#,
= L'KSAM'PARAM(19).(1:15)#,

L'KSAM'PARAM(20).(8:1)#:
DEFINE

RECORD L'DATA (l * 5)#,
ERROR 'CHECK IF L'ERROR(O) <> 0 THEN

QUIT #,
CCNE IF <> THEN

QUIT #,
DISPLAY = MOVE B'PRINT := #,

ON'STDLIST = ,2;
@BP'PRINT := TOS:
LGTH := LOGICAL(@BP'PRINT)

LOGICAL(@B'PRINT);
PRINT(L'PRINT, 'LGTH, 0) #;

INTRINSIC
FOPEN,
FREAD,
FWRITE,
FCLOSE,
FFINDBYKEY,
FGETKEYINFO,
PRINTFILEINFO,
NLINFO,
NLKEYCOMPARE,
FCLOSE,
PRINT,
QUIT ,
READ;

« Initializing the arrays. »

MOVE L'KSAM'PARAM := " ";
MOVE L'KSAM'PARAM(1) := L'KSAM'PARAM(0),(79);

EXAMPLE PROGRAMS

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

MOVE GEN'KEY := II II.,

MOVE KEY := II II.,

« Hard-code the language used to 8 (GERMAN). »

LANGNUM := 8;
« Call in the collating sequence table.

This is done by calling NLINFO ITEM 11. »

NLINFO (11, COLL'TABLE, LANGNUM, L'ERROR);
IF L'ERROR(O) THEN

QUIT(1000 + L'ERROR(O»;
« Build a new KSAM file with the data file name

KD008. The key file has the name KK008. »

« Set the values for KSAM parameter array. »

MOVE FILENAME := "KD008
MOVE KEY'FILE := "KK008

« KSAM data file
« KSAM key file

II.,
It.,

»
»

NUM'OF'KEYS
LANGUAGE
FLAG\JORD.(11:1)

:= 1;
:= LANGNUM;
:= 1;

« Num of keys = 0 »
« Set the language »
« Indicates that »
« language is set »
« Max. 200 entries »
« Byte key »
« 4 byte length »
« Key start at col.4 »
« Allow dupl. keys »
« Keys per block 10 »

KEY'FILE'SIZ
KEY 'TYPE
KEY'LENGTH
KEY'LOCATION
DUP'FLAG
KEY 'BLOCK

:= 2000;
:= 1;
:= 4;
:= 4;
:= 1;
:= 10;
:= ".4000;
:= %5;

« KSAM fi le
« Update

FOPTIONS
AOPTIONS

»
»

FNUM := FOPEN(FILENAME,FOPTIONS,AOPTIONS,-10"
B'KSAM'PARAM);

IF <> THEN
BEGIN

PRINTFILEINFO(FNUM);
QUIT(2000);

END;
« Copy the hard-coded data into the KSAM file.

1 := ·1;
\JHILE (1 := I + 1) < 15 DO
BEGIN

F\JRITE(FNUM, RECORD, -10, ,,~);
IF <> THEN

BEGIN
PRINTFILEINFO(FNUM);
QUIT(3000);

END;

»

END;
« Perform a generic FFINDBYKEY with a »
« partial key of length 1 and value liE". The relational

EXAMPLE PROGFIAMS H - 35

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

« operator will be 2 (greater or equal).
« FFINDBYKEY will position the KSAM pointer at the
« first record starting with any kind of "E".

MOVE GEN'KEY := "E";

FFINDBYKEY(FNUM, GEN'KEY, 0, 1, 2);
IF <> THEN

BEGIN
PRINTFILEINFO(FNUM);
QUIT(4000);

END;
« Read the subsequent entries and check by
« using NLKEYCOMPARE whether an exact match was found.
« When NLKEYCOMPARE returns a 3 as a result, the program
« is beyond the range of valid keys.
« If an exact match was found, the record is printed.

RESULT := 0;
DISPLAY
"THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:"
ON' STDLl ST;
WHILE RESULT <> 3 DO
BEGIN

FREAD(FNUM,L'RECORD,-10);
IF <> THEN

BEGIN
PRINTFILEINFO(FNUM);
QUI T(5000);

END;
MOVE KEY := B'RECORD(3),(4);
NLKEYCOMPARE(GEN'KEY, 1, KEY, ~, RESULT, LANGNUM,

L'ERROR, COLL'TABLE);
ERROR'CHECK(9000 + L'ERROR(O»;
IF RESULT = 0 THEN « exact hit »

BEGIN
DISPLAY B'RECORD,(10) ON'STDLIST;

END;
END;

« Close the KSAM file and purge it.
FCLOSE(FNUM, 4, 0);

Executing the program results in the following:

END.

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
003EaBCXXX
007EdCDxyx
011EZqrzyx
END OF PROGRAM

H • 36 EXAMPLEPROGRAMS

»
»
»

»
»

»

»

K. Obtaining Language Information In A COBOLII Program
This program prints the User Interface, Data Manipulation, System Default, KSAM/3000 key sequence,
VPLUS/3000 forms file, and IMAGE/3000 data base language numbers.

$CONTROL USLINIT
1.1 IDENTIFICATION DIVISION.
1.2 PROGRAM·ID. EXAMPLE.1.3 * .
1.4 ENVIRONMENT DIVISION.
1.5 CONFIGURATION SECTION.
1.6 SOURCE· COMPUTER. HP3000.
1.7 OBJECT·COMPUTER. HP3000.
1.B SPECIAL·NAMES.
1.9 CONDITION·CODE IS CCODE.
2 * .
2.1 DATA DIVISION.
2.2 WORKING·STORAGE SECTION.
2.3
2.4 01 LANGUAGE
2.5
2.6 01 NLERROR.
2.7 05 NLERR OCCURS 2
2.B
2.9 01 FILENUM
3
3.1 01
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
4.3
4.4
4.5
4.6 01
4.7
4.B
4.9
5
5.1
5.2 01
5.3
5.4
5.5
5.6 01 PASSWORD
5.7
5.B 01 DBMODE
5.9

KSAMAREA.
05 KSAMPARAM.

10 FILLER
10 KLANG
10 FILLER
10 FLAGS
10 FILLER

05 KSAMCONTROL
01 COMAREA.

05 COM·STAT
05 COM·LANG
05 COM·LENG
05 COM·FILL
RESULT.
05 OPER
05 LANG
05 FILLER
05 NERR
DBNAME.
05 FILLER
05 FILENAME

PIC S9(4) COMPo

PIC S9(4) COMPo
PIC S9(4) COMPo

PIC X(20).
PIC S9(4) COMPo
PIC X(B).
PIC S9(4) COMP VALUE O.
PIC X(14B).
PIC X(256).

PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE 60.
PIC X(114) VALUE LOW·VALUE.

PIC X(10).
PIC ZZZ9.
PIC X(6)
PIC ZZZ9.

VALUE" Error".

PIC X(2) VALUE
PIC X(36).

II II

PIC X(B).

PIC S9(4) COMP VALUE 5.

EXAMPLE PROGRAMS H • 37

6
6.1
6.2
6.3
6.4 01 DUMMY PIC S9(4) COMPo6.5 * .
6.6 PROCEDURE DIVISION.
6.7
6.8
6.9
7
7.1
7.2
7.3
7.4
7.5

01 STAT.
05 DBSTAT
05 FILLER

PIC S9(4) COMP VALUE O.
PIC X(18).

MAIN.
PERFORM USER·LANG.
PERFORM DATA·LANG.
PERFORM SYST·LANG.
PERFORM KSAM·LANG.
PERFORM FORM·LANG.
PERFORM BASE·LANG.
STOP RUN.

7.6 * .
7.7 USER·LANG.
7.8 CALL INTRINSIC "NLGETLANG" USING 1 NLERROR
7.9 GIVING LANGUAGE.
S MOVE "USER Lang:" TO OPER.
8.1 MOVE LANGUAGE TO LANG.
8.2 MOVE NLERR (1) TO NERR.
8.3 DISPLAY RESULT.
8.4 * ._ .
8.5 DATA·LANG.
8.6 CALL INTRINSIC "NLGETLANG" USING 2 NLERROR
8.7 GIVING LANGUAGE.
8.8 MOVE "DATA Lang:" TO OPER.
8.9 MOVE LANGUAGE TO LANG.
9 MOVE NLERR (1) TO NERR.
9.1 DISPLAY RESULT.
9.2 * .
9.3 SYST·LANG.
9.4 CALL INTRINSIC "NLGETLANG" USING 3 NLERROR
9.5 GIVING LANGUAGE.
9.6 MOVE "SYST lang:1I TO OPER.
9.7 MOVE LANGUAGE TO LANG.
9.8 MOVE NLERR (1) TO NERR.
9.9 DISPLAY RESULT.

10 * .
10.1 KSAM·LANG.
10.2 DISPLAY "Enter KSAM file name:".
10.3 ACCEPT FILENAME FREE.
10.4 IF FILENAME NOT = SPACES PERFORM KSAM·OPEN.
10.5
10.6
10.7
10.8
10.9
11
11.1
11.2
11.3 KSAM·INFO.
11.4 CALL INTRINSIC
11.5
11.6
11.7
11.8
11.9

KSAM·OPEN.
CALL INTRINSIC "FOPEN" USING FILENAME 1

GIVING FILENUM.
IF CCODE = 0

THEN PERFORM KSAM-INFO
ELSE DISPLAY "Error in KSAM fiLe OPEN".

"FGETKEYINFO" USING FILENUM
KSAMPARAM KSAMCONTROL.

CALL INTRINSIC "FCLOSE" USING FILENUM 0 O.
IF FLAGS < 0 THEN ADD 32768 TO FLAGS.
IF FLAGS, (FLAGS / 32) * 32 > 15

THEN MOVE KLANG TO LANGUAGE

H- 38 EXAMPLE PROGRAMS

12 ELSE MOVE ZERO TO LANGUAGE.
12.1 MOVE SPACES TO RESULT.
12.2 MOVE "KSAM lang:" TO OPER.
12.3 MOVE LANGUAGE TO LANG.
12.4 DISPLAY RESULT.
12.5 * .
12.6 FORM·LANG.
12.7 DISPLAY "Enter FORM file name:".
12.8 ACCEPT FILENAME FREE.
12.9 IF FILENAME NOT = SPACES PERFORM FORM·OPEN.
13
13.1 FORM·OPEN.
13.2
13.3
13.4
13.5
13.6
13.7 FORM-INFO.
13.8 CALL "VGETLANG" USING COMAREA LANGUAGE.
13.9 CALL "VCLOSEFORMF" USING COMAREA.
14 MOVE "FORM lang:" TO OPER.
14.1 MOVE LAN.GUAGE TO LANG.
14.2 DISPLAY RESULT.
14.3 * .
14.4 BASE-LANG.
14.5 DISPLAY "Enter DATA BASE name:".
14.6 ACCEPT FILENAME FREE.
14.7 IF FILENAME NOT = SPACES PERFORM BASE-OPEN.
14.8
14.9 BASE·OPEN.
15
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16
16.1
16.2
16.3
16.4

CALL "VOPENFORMF" USING COMAREA FILENAME.
IF COM-STAT = 0

THEN PERFORM FORM· INFO
ELSE DISPLAY "FORMS file OPEN failed:" COM-STAT.

DISPLAY "Enter PASSWORD:".
ACCEPT PASSWORD FREE.
CALL "DBOPEN" USING DBNAME PASSWORD DBMODE STAT.
IF DBSTAT = 0

THEN PERFORM BASE' INFO
ELSE DISPLAY "Error in Data Base Open:" DBSTAT.

BASE· INFO.
MOVE 901 TO DBMODE.
CALL "DBINFO" USING DBNAME DUMMY DBMODE STAT LANGUAGE.
MOVE 1 TO DBMODE.
CALL "DBCLOSE" USING DBNAME DUMMY DBMODE STAT.
MOVE "BASE lang:" TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.

EXAMPLEPROGRAMS H· 39

Executing the program results in the following:
RUN PROGRAM;MAXDATA=12000

USER Lang: 0 Error 2
DATA Lang: 3 Error 0
SYST Lang: o Error 0
Enter KSAM file name:
'BI9~!itn3KSAM Lang: 8
Enter FORM file name:
1131nailliFORM Lang: 7
Enter DATA BASE name:
~11:1I-1111Iil
Enter PASS~ORD:
1~r;!~rJBI9
BASE Lang: 12
END OF PROGRAM

H - 40 EXAMPLEPROGRAMS

L. CATOPEN, CATREAD, CATCLOSE Intrinsics in a Pascal Program
This program opens a catalog, reads two messages, and prints them on the standard list device. It reads
a third message into a buffer, prints the buffer, then closes the catalog.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

$USLINIT$
$STANDARD_LEVEL 'HP3000'$
PROGRAM example (input,output);
TYPE int = -32768 ••32767;

INTEGER;
PACKED ARRAY [1..2] OF inti
PACKED ARRAY [1••8] OF CHAR;

error
cat_name
dul1l11Y,
mS9_len,
set_num,
mS9_num,
intr_id
parm_n,
parm_m
buffer

inti
STRING [40];
STRING[80];

FUNCTION catopen: INTEGER; I1ITRINSIC;
FUNCTI ON cat read: int; INTR illSIC;
PROCEDURE catclose; INTRINSIC;
PROCEDURE show_error; {a very simple "error printer"}

BEGIN
PROMPT(' error ',error [1]:1);

{ intr-id identifies the intrinsic called}
CASE intr_id OF

1 WRITELN(I in CATOPEN')i
2 : WRITELN(' in CATREAD')i
3 : WRITELN(' in CATCLOSE');

END;
END;

BEGIN
{ Make sure that name ends with a space.}

cat name := 'EXAMPLE 'i
intr_id := 1;
cat_index := catopen(cat_name,error);
IF error [1] <> 0 THEN show_error;
parm_n := '59'; { set parameter 1 }

{ append a null character}
STRWRITE(parm_n,STRLEN(parm_n)+1,durrrny,CHR(0»i
parm_m := 'thirty-three'; { set parameter 2 }

{ append a null character}
STRWRITE(parm_m,STRLEN(parm_m)+1,durrrny,CHR(0»;

EXAMPLE PROGRAMS H - 41

51 set_num := 3; { set the message set number}
52 msg nurn := 17; { set the message number}
53 msg=Len := catread(cat_index,set_num,msg_num,error",
54 parm_n,parm_m);
55 { pass parameters 1 and 2, and print on $STDLIST }
56 IF error [1] <> 0 THEN show_error;
57
58 ms9_num := 23; { change the message number}
59 msg_Len := catread(cat_index,set_num,msg_num,error",
60 parm_n,parm_m);
61 { pass parameters 1 and 2, and print on $STDLIST }
62 IF error [1] <> 0 THEN show_error;
63
64 set_num := 7; { change the set number}
65 msg_num := 9; { set the message number}
66 { get the message into the buffer}
67 mS9_Len := catread(cat_index,set_num,msg_num,error,
68 buffer);
69 IF error [1] <> 0 THEN show_error;
70 { update the Length of the buffer }
71 SETSTRLEN(buffer,msg_Len);
72 WRITELN(buffer); { now write the buffer}
73
74 intr_id := 3;
75 catcLose(cat_index,error);
76 IF error [1] <> 0 THEN show_error;
77
78 END.
This program uses a message catalog file. To build this file, enter the following text into a text file:
$set 3
$
17
23
$

Comment describing this set's contents.
There is an error in Line !1 on page !2.
On page !2 there ;s an error in Line !1.

$set 7
$

Description of this set of messages.

09 Process compLeted successfuLly.
Use the GENCAT program to format this file into a catalog file called EXAMPLE. Executing the sample
program results in the following:
:'ijiUIQ;,.JdZU'

There is an error in Line 59 on page thirty·three.
On page thirty·three there is an error in Line 59.

Process compLeted successfuLLy.
END OF PROGRAM

H • 42 EXAMPLE PROGRAMS

Glossary

The following are definitions of I\TLSterms:

TISCII The Japanese version of USASCII. It is a 7-bit character set identical to
USASCII with the exception that the Japanese yen symbol replaces the It/It

character.

KANA8 The Hewlett-Packard supported 8-bit character set for the support of phonetic
Japanese (KATAKANA). It includes all of TISCII plus the KATAKANA
characters. Refer to Appendix B for the table of KANA8 characters.

Limited Support Refer to "Notes", in Appendix E, for each specific peripheral.

Old ROMAN8 USASCII plus Roman Extension. The manuals for terminals supporting old
ROMAN8 contain this table.

Processing
Standard

The internal Hewlett-Packard 8-bit processing standard for all
Hewlett-Packard products. This standard was developed in anticipation of
NLS and specifies standard character sets, escape sequences, character
designations and invocations, and keyboard operation for peripherals and
systems.

ROMAN8 The Hewlett-Packard supported 8-bit character set for Europe includes all of
USASCII plus those characters necessary to support the major western
European languages. Refer to Appendix B for the table of ROMAN8
characters.

Roman Extension Part of the "old ROMAN8" as implemented on a number of older
Hewlett-Packard terminals and printers. It is not a character set in itself but
refers to an extension to USASCII. This extension is usually implemented as
an alternate character set. The characters in Roman Extension form a subset
of the non-USASCII characters in ROMAN8, and the same internal codes are
used in both cases.

Glossary 1

---------- --

Index

7-bit Operation, Confi~luration, 1-5
7-Bit Support E-4
7-bit to 8-bit, Conversion, F-1

Data Conversion, F-1
7-bit, Character Sets, D-1,1-3

Peripherals, E-4
8-bit Operation, Conflquratlon, 1-5
8-bit, Character Sets, 0-1, 1-3, E-1

Peripherals, E-2, E-4
Terminals, E-1

A
Access, Application Catalog 2-1
Accessing, Application Catalogs, 2-1

Features, 1-8
Add a Language, LANGINST, A-2
Add Language, LANGINST, A-5
Adding, Records, 2-9
Algorithm, Conversion F-3
All Programming Languages, Application Guidelines,
G-1

Local Language Application, G-1
ALMANAC 4-4
ALMANAC, Information Retrieving, 4-1

Intrinsic, 4-4
Alternate Character Sets, V7FF8CNVUtility F-11
Append Language ID Number, NLAPPEND 4-10
Application Catalog, Access, 2-1
Application Catalogs, Accessing 2-1
Application Guidelines, All Programming Languages G-1

BASIC (HP32101B) G-3
COBOLII (HP32233A) G-2
FORTRAN(HP32102B) G-3
Pascal (HP32106A) G-3
RPG (HP32104A) G-3
SPL (HP32100A) G-3

Application Message Catalog, CATCLOSE 4-2,4-6
CATOPEN 4-2,4-7

CATREAD 4-2,4-8
NLAPPEND 4-2,4-10

Application Message Facility 1-6
Application Programs, General 1-10
Application, General, Programs, 1-10

Message Facility, 2-1
Multilingual 1-13
Programs, 1-10
Single 1-12
Without NLS, Pro!~rams, 1-11

Applications, Localized 1-1
ARABIC8,Character SI~tS, B-6

Supported Languages, B-6
Artificial Language 1-2

B
BASIC (HP32101B), Application Guidelines, G-3

Local Language Application, G-3
Batch Mode, GENCAT, 2-14

c
CAT, Intrinsics, 2-1
Catalog Naming Convention 2-8
Catalog, Naming Convention, 2-8
Catalogs, Source 2-2

Source, Sample 2-6
CATCLOSE 4-6
CATCLOSE,Application Message Catalog, 4-2, 4-6

Close Application, 4-6
Intrinsic, 2-1, 4-6, H-41
Pascal H-41
Pascal, H-41

CATOPEN 4-7
CATOPEN,Application Message Catalog, 4-2, 4-7

Intrinsic, 2-1,4-7, H-41
Open Application, 4-7
Pascal H-41

Index-1

Pascal, H-41
CATREAD 4-8
CATREAD,Application Message Catalog, 4-2,4-8

Intrinsic, 2-1, 4-8, H-41
Pascal H-41
Pascal, H-41
Read Catalog, 4-8

Change Language Attribute, IMAGE/3000, 3-7
KSAM/3000 File, 3-17

CHAROption, FCOPY/3000, 3-2
Character Handling, NLCOLLATE 4-1, 4-11

NLFINDSTR 4-1,4-20
NWUDGE 4-1,4-42
NLKEYCOMPARE 4-1,4-44
NLREPCHAR 4-1,4-49
NLSCANMOVE 4-1,4-51
NLSUBSTR 4-1, 4-54
NLSWITCHBUF 4-1,4-57
NLTRANSLATE 4-1,4-59

Character Replacement F-1
Character Set, Definitions, 8-1
Character Sets 8-1, 0-1
Character Sets, 7-bit 0-1,1-3

8-bit 0-1, 1-3, E-1
ARABICS B-6
Definitions, 8-3
GREEK8 8-7
JAPAN15 8-11
KANA8 B-5
KOREA15 8-12
NATIVE-3000 8-3
PRC15 8-9
ROC15 8-10
ROMAN8 8-3, B-4
Substitution F-1
TURKISH8 8-8
KANA8 E-1
ROMAN8 E-1

Character Table, RAPID/3000, 3-35
Character, Conversion, F-4
Check String, NLCONVCLOCK 4-13

NLCONVCUSTDATE 4-15
Close Application, CATCLOSE 4-6
COBOLII (HP32233A),Application Guidelines, G-2

Local Language Application, G-2
COBOLII 3-27
COBOLlI, Features in, 1-7

NLKEYCOMPARE H-29
NLKEYCOMPARE, H-29
NLREPCHAR H-26
NLREPCHAR, H-26

Index-2

NLSCANMOVE H-13
NLSCANMOVE, H-13
NLTRANSLATE H-26
NLTRANSLATE, H-26
Obtaining Language Information H-37
Obtaining Language Information, H-37
SORT H-1
SORT, H-1
SORT-MERGE/3000, 3-27

Collate Character String, NLCOLLATE 4-11
Collating Sequence C-1, C-3
Collating Sequence, Language-Dependent Variation
C-10

Lexical Conventions, 1-4
Command Summary, QUERY, 3-19

RAPID/3000, 3-35
Commands 1-8
Commands, :SETJCW 1-9
Comment Records 2-10
Comment, Records, 2-5,2-10
Compare Strings, NLKEYCOMPARE 4-44
Comparison, GENCAT, 2-23

MAKECAT, 2-23
Compilers, Localized, 1-2
Configuration, 7-bit Operation 1-5

8-bit Operation 1-5
Language 1-5
Peripheral 1-5, E-1

Conversion Algorithm F-3
Conversion Procedure F-5
Conversion Utilities F-2
Conversion Utilities, File Type, F-2
Conversion, 7-bit to 8-bit F-1

Algorithm, F-3
Character F-4
Special Two-Character F-3
Utilities, 1-6, F-2

Convert Numbers, NLCONVNUM 4-17
Convert String, NLFMTNUM 4-29

NLSWITCHBUF 4-57
Copying From KSAM/3000 File, KSAM/3000, 3-17
Country Extended Code 0-1
Create Files Programmatically, KSAM/3000, 3-13
Create Files, KSAM/3000, 3-11
CTRANSLATE,Intrinsic, 0-2
Currency Symbols, Custom-Dependent Formats, 1-4
Custom-Dependent Formats, Currency Symbols 1-4

Date 1-4
Custom-Dependent Symbols, Number 1-4

Time 1-4

D

Data Conversion, 7-bit to 8-bit F-1
Date Format, QUERY, 3-19
Date Formatting, NLFMTCALENDAR 4-22

NLFMTCUSTDATE 4-25
NLFMTDATE 4-26
NLFMTLONGCAL 4-28
Overview 4-3

Date Handling, VPLUS/30oo, 3-29
Date Information, Information Retrieving 4-4
Date, Custom-Dependent Formats, 1-4

RAPID/3ooo, 3-35
DATE/TIME Formatting, FORTRAN H-6

FORTRAN, H-6
SPL H-9
SPL, H-9

DBINFO, IMAGE/3000, 3-7
DBLOAD, IMAGE/3OOO,3-6
DBLOCK, IMAGE/3000, 3-7
DBOPEN, IMAGE/3000, 3-6
DBPUT, IMAGE/3000, 3-6
DBSCHEMA, IMAGE/3000, 3-5
DBUNLOAD, IMAGE/3OOO,3-6
DBUTIL, IMAGE/3000, 3-5

UTILITIES, 3-1
Definitions, Character Set B-1

Character Sets B-3
Language B-3

Delete a Language, LANGINST, A-3
Delete Language, LANGINST, A·5
Deleting, Records, 2·9
$DELSETDirective 2-10
$DELSET,Directive, 2-10
Determine Byte Size of Character, NLJUDGE 4-42
Directive, $DELSET 2-10
Directives, Source Catalogs, 2-2

E

Entry, VPLUS/3OOO, 3-30
Error Messages, FCOPY/3000 3-4

FCOPY/3000, 3-4
GENCAT, 2-16
IMAGE/3000 3-8
IMAGs/soco, 3-8
KSAMUTIL 3-12
KSAMUTIL, 3-12
LANGINST A-8
LANGINST, A-8

MERGE/3000 3-26
Programmatic MERGE, 3-26
Programmatic SORT, 3-26
QUERY 3-21
QUERY, 3-21
SORT-MERGE/3000 3-26
VPLUS/3000 3-31
VPLUS/3000, 3-31

Expanding, Source Catalog, 2-13
Extract Bytes, NLSUBSTR 4-54

F
FCOPY/3000 3-2
FCOPY/3000 Files 3-3
FCOPY/3000, CHAROption 3-2

Error Messages 3-4
Error Messages, 3-4
Features in, 1-7
Files, 3-3
Options 3-2
Performance Issues 3-4
UPSHIFTOption 3-3

Featrues, Request 1-8
Features in, COBOLII 1-7

FCOPY/3000 1-7
IMAGE/30oo 1·7
KSAM 1-7
QUERY/3000 1-7
RAPID/30oo 1-7
SORT-MERGE/3000 1-7
VPLUS/3000 1-7

Features,Accessing 1-8
Field Edits, VPLUS/3000, 3-29
File Conversion F-5
File System Error Messages, KSAM/30oo, 3-13
File Type, Conversion Utilities F-2
File, Naming Conventions, 1-7
Files, FCOPY/3000 3-3

KSAM/3ooo 3-3
Formatting, Source Catalog, 2-12
FORMSPEC,UTILITIES, 3-1
FORTRAN(HP32102B),Application Guidelines, G-3

Local Language Application, G-3
FORTRAN,DATE/TIME Formatting H-6

DATE/TIMEFormatting, H-6
SORT H-5
SORT, H-5

Fully Supported, Peripherals, E-2

Index- 3

G

GENCAT 2-14
GENCAT,Batch Mode 2-14

Comparison 2-23
Error Messages 2-16
Help Facility 2-15
JCWs, 2-14
Utilities, 2-1

General, Application Programs, 1-10
Generic Keys 3-14
Generic Keys, KSAM/3000, 3-14
GREEKS,Character Sets, B-7

Supported Languages, B·7

17DBSCNVUtility F-S
IBM, Mapping D-2
IF, RAPID/3000, 3-35
IMAGE/3000 3-5
IMAGE/3000, Change Language Attribute 3-7

DBINFO 3-7
DBLOAD 3-6
DBLOCK 3-7
DBOPEN 3-6
DBPUT 3-6
DBSCHEMA 3-5
DBUNLOAD 3-6
DBUTIL 3-5
Error Messages 3-S
Error Messages, 3-S
Features in, 1-7
Intrinsics 3-6
Library Procedure Calling Errors 3-9
Schema Syntax Errors 3-10
Utility Program Conditional Messages 3-S
Utility Programs 3-5

Inform Language Attribute, RAPID/3000, 3-34
Information Retrieval, NLGETLANG 4-32
Information Retrieving, ALMANAC 4-1

Date Information, 4-4
NLGETLANG 4-1
NLiNFO 4-1, 4-34

Input, RAPID/30oo, 3-35
Interactive MERGE,Program Error Messages 3-26
Interactive SORT,Program Error Messages 3-26
Interface, Localized, 1-2
International, VPLUS/3000, 3-2S
Intrinsic, ALMANAC 4-4

CATCLOSE 2-1,4-6, H-41
CATOPEN 2-1,4-7, H-41
CATREAD 2-1, 4-S,H-41
CTRANSLATE D-2
NLAPPEND 2-1,4·10
NLCOLLATE C-1,4-11
NLCONVCLOCK 4-13
NLCONVCUSTDATE 4-15
NLCONVNUM 4-17
NLFINDSTR 4-20
NLFMTCALENDAR 4-22
NLFMTCLOCK 4-23
NLFMTCUSTDATE 4-25
NLFMTDATE 4-26
NLFMTLONGCAL 4-2S
NLFMTNUM 4-29

H
Help Facility, GENCAT, 2-15
HP 150,Terminal, E-5
HP 2382A,Terminal, E-6
HP 2392A,Terminal, E-7
HP 2563A, Printer, E-8
HP 260SA,Printer, E-9
HP 2621B, Terminal, E-10
HP 2622A, Terminal, E-11
HP 2622J, Terminal, E-12
HP 2623A,Terminal, E-11
HP 2623J, Terminal, E-12
HP 2625A, Terminal, E·13
HP 2626A,Terminal, E-14
HP 2626W, Terminal, E-14
HP 2627A,Terminal, E-15
HP 2628A,Terminal, E-13
HP 2631B, Printer, E-16
HP 2635B, Printer, E-17

Terminal, E-17
HP2645J, Terminal, E-1S
HP 2680A, Printer, E-19
HP 2688A, Printer, E-20
HP 2700, Terminal, E-21
HP 2932A, Printer, E-22
HP2933A, Printer, E-22
HP 2934A, Printer, E-22

Index- 4

NLGETLANG 1-9,4·32
NLINFO D-2, 4-34
NWUDGE 4-42
NLKEYCOMPARE 3-14,4-44, H-29, H-33
NLNUMSPEC 4-47
NLREPCHAR 4-49, H-26
NLSCANMOVE 4·51, H-13, H-20
NLSUBSTR 4-54
NLSWITCHBUF 4-57
NLTRANSLATE D-2, 4-59, H-26

Intrinsics 1-5, 1-8
Intrinsics, CAT 2-1

IMAGE/3000, 3-6
Parameter Values 1-8
VGETLANG 3-32
VPLUS/3000, 3-32
VSETLANG 3-33

J
JAPAN15,Character Sets, B-11

Supported Languages, 8-11
Japanese Industrial Standards (JIS),Mapping D-2
JCWs, GENCAT 2-14
Job Control Words (JCWs), NLDATALANG 1-9

NLUSERLANG 1-9

K
KANA8Character Set, Mapping D-2
KANA8,Character Sets, B-5

Supported Languages, B-5
Keywords 1-8
KOREA15,Character Sets, B-12

Supported Languages, B-12
KSAM,Features in, 1-7
KSAM/3000 3-10
KSAM/3000 File, Change Language Attribute 3-17
KSAM/3000 Files 3-3
KSAM/3000 Files, Moving To Pre-NLSMPE 3-17
KSAM/3000, Copying From KSAM/3000 File 3-17

Create Files 3-11
Create Files Programmatically 3-13
File System Error Messages 3-13
Files, 3-3
Generic Keys 3-14
KSAMUTIL 3-11
Modifying Files 3·13

KSAMUTIL,Error Messages 3-12
Error Messages, 3-12

KSAM/3000, 3-11

L
$LANG,Records, 2-4
LANGINST,Add a Language A-2

Add Language A-5
Delete a Language A-3
Delete Language A-5
Error Messages A-8
Error Messages, A-8
Modify ASCII/EBCDIC Translation Tables A-7
Modify Local Language Format A-6
Modifying Local Formats A-3
System Utilities, A-2
User Dialog A-4
Utilities, 1-4, 1-5

Language Attribute 1-8
Language Attribute, VPLUS/3000, 3-28
Language Choice, Subsystem, 1-9
Language Dependent, VPLUS/3000, 3-28
Language ID Number, VPLUS/3000, 3-30
Language, Configuration, 1-5

Definitions, B-3
Language-Dependent Data Files 1-7
Language-Dependent Variation, Collating Sequence,
C-10

Languages, Supported 1-2
Lexical Conventions, Collating Sequence 1-4

Upshifting Rules 1-4
Lexical Ordering C-1
Library Procedure Calling Errors, IMAGE/3000, 3-9
Limited Support, Peripherals, E-3
Local Language Application, All Programming Languages
G-1

BASIC (HP32101B) G-3
COBOLII (HP32233A) G-2
FORTRAN(HP32102B) G-3
Pascal (HP32106A) G-3
RPG (HP32104A) G-3
SPL (HP32100A) G-3

Localization, Processes 1-6
Localized Applications 1-1
Localized, Applications, 1-1

Compilers 1-2
Interface 1·2
Programmer Productivity Tools 1-2
Subsystems 1-2

Index- 5

M

Maintenance Files, Merging 2-9,2-10
Maintenance, Message Catalog, 2-8
MAKECAT, Comparison 2-23
Mapping, IBM, D-2

Japanese Industrial Standards (JIS), D-2
KANAB Character Set, D-2
ROMAN8 to EBCDIC D-2

MATCH, RAPID/3000, 3-35
MERGE/3000 3-23
MERGE/3000, Error Messages, 3-26

Stand-Alone 3-23
Merging, Maintenance Files, 2-9,2-10
Message Catalog, Maintenance 2-8
Message Catalogs 1-7
Message Facility, Application 2-1
Message Numbers 2-10
Message, Numbers, 2-10

Records, 2-4
Special Characters, Records, 2-5

Modify ASCII/EBCDIC Translation Tables A-7
Modify ASCII/EBCDIC Translation Tables, LANGINST,
A-7

Modify Local Language Format, LANGINST, A-6
Modifying Files, KSAM/3000, 3-13
Modifying Local Formats, LANGINST, A-3
Modifying, Records, 2-9
Move Characters, NLCANMOVE 4-51
Moving To Pre-NLS MPE, KSAM/3000 Files, 3-17
Multilingual Application 1-13
Multilingual, Application, 1-13

N
N7MF8CNV Utility F-7
N7MF8CNV, Utilities, F-7
Naming Convention, Catalog 2-8
Naming Conventions, File 1-7
NATIVE-3000, Character Sets, 8-3

Supported Languages, B-3
NLAPPEND 4-10
NLAPPEND, Append language 10 Number, 4-10

Application Message Catalog, 4-2,4-10
lntrlnslc, 2-1,4-10

NLCANMOVE, Move Characters, 4-51
NLCOLLATE 4-11
NLCOLLATE, Character Handling, 4-1,4-11

Collate Character String, 4-11
intrinsic, C-1, 4-11

!ndex-I;i

NLCONVCLOCK 4-13
NLCONVCLOCK, Check String, 4-13

Intrinsic, 4-13
Time/Date Formatting, 4-1,4-13

NlCONVCUSTDATE 4-15
NlCONVCUSTDATE, Check String, 4-15

lntrlnslc, 4-15
Time/Date Formatting, 4-1,4-15

NLCONVNUM 4-17
NLCONVNUM, Convert Numbers, 4-17

Intrinsic, 4-17
Number Formatting, 4-2,4-17

NLDATALANG, Job Control Words (JCWs), 1-9
NLFINDSTR 4-20
NLFINDSTR, Character Handling, 4-1,4-20

Intrinsic, 4-20
Search String, 4-20

NLFMTCALENDAR 4-22
NLFMTCALENDAR, Date Formatting, 4-22

Intrinsic, 4-22
Time/Date Formatting, 4-1,4-22

NLFMTCLOCK 4-23
NLFMTCLOCK, Intrinsic, 4-23

Time Formatting, 4-23
Time/Date Formatting, 4-1, 4-23

NLFMTCUSTDATE 4-25
NLFMTCUSTDATE, Date Formatting, 4-25

Intrinsic, 4-25
Time/Date Formatting, 4-1,4-25

NLFMTDATE 4-26
NLFMTDATE, Date Formatting, 4-26

Intrinsic, 4-26
Time Formatting, 4-26
Time/Date Formatting, 4-1, 4-26

NLFMTLONGCAL 4-28
NLFMTLONGCAL, Date Formatting, 4-28

Intrinsic, 4-28
Time/Date Formatting, 4-1,4-28

NLFMTNUM 4-29
NLFMTNUM, Convert String, 4-29

Intrinsic, 4-29
Number Formatting, 4-2, 4-29

NLGETLANG 4-32
NLGETLANG, Information Retrieval, 4-32

Information Retrieving, 4-1
Intrinsic, 1-9, 4-32
Return Language Id Number, 4-32

NLiNFO 4-34
NLiNFO, Information Retrieving, 4-1, 4-34

Intrinsic, 0-2, 4-34
Return Language Information, 4-34

NWUDGE 4·42
NWUDGE, Character Handling, 4-1,4-42

Determine Syte Size of Character, 4·42
Intrinsic, 4·42

NLKEYCOMPARE 4·44
NLKEYCOMPARE,Character Handling, 4·1, 4·44

COSOLII H·29
COSOLlI, H·29
Compare Strings, 4·44
Intrinsic, 3·14,4·44, H·29, H·33
SPL H·33
SPL, H·33

NLNUMSPEC 4·47
NLNUMSPEC, Intrinsic, 4-47

Number Formatting, 4·2, 4-47
NLREPCHAR 4·49
NLREPCHAR,Character Handling, 4·1,4·49

COSOLII H·26
COSOLlI, H·26
Intrinsic, 4·49, H·26
Replace Characters, 4·49

NLS Requirements F·1
NLSCANMOVE 4-51
NLSCANMOVE,Character Handling, 4·1,4·51

COSOLII H·13
COSOLlI, H·13
Intrinsic, 4·51, H·13, H·20
Scan Characters, 4·51
SPL H·20
SPL, H·20

NLSUSSTR 4·54
NLSUSSTR,Character Handling, 4-1,4·54

Extract Sytes, 4·54
Intrinsic, 4·54

NLSWITCHSUF 4-57
NLSWITCHSUF,Character Handling, 4·1, 4·57

Convert String, 4-57
Intrinsic, 4-57

NLTRANSLATE 4·59
NLTRANSLATE,Character Handling, 4·1,4·59

COSOLII H·26
COSOLlI, H·26
Intrinsic, 0-2, 4·59, H·26
Translate String, 4·59

NLUSERLANG,Job Control Words (JCWs), 1·9
NLUTIL,System Utilities, A·1

Utilities, A·1, D·2, 1-4
No Support, Peripherals, E·3
Number Formatting, NLCONVNUM 4·2,4·17

NLFMTNUM 4·2, 4·29
NLNUMSPEC 4·2, 4·47

Number, Custom-Dependent Symbols, 1-4
Numbers, Message 2·10

Set 2·10
Numeric Data Editing in Report, QUERY, 3·20
Numeric Data, VPLUS/3000, 3-30
Numerical Parameter, Substitution, 2·7

o
Obtaining Language Information, COBOLII H·37

COBOLII, H·37
Open Application, CATOPEN 4-7
Options, FCOPY/3000, 3·2
Output, RAPID/3000, 3·35
Overview, Date Formatting, 4·3

Time Formatting, 4·3

p

Parameter Substitution 2-6
ParameterValues, Intrinsics, 1·8
Parameter, Substitution, 2·6
Pascal (HP32106A), Application Guidelines, G-3

Local Language Application, G·3
Pascal, CATCLOSE H·41

CATCLOSE, H·41
CATOPEN H·41
CATOPEN, H·41
CATREAD H-41
CATREAD, H·41
SORT H·3
SORT, H-3

Performance Considerations, SORT-MERGE/3000, 3-26
Performance Issues, FCOPY/3000, 3-4
Peripheral Configuration E·1
Peripheral, Configuration, 1-5,E-1

Support E·4
Peripherals,7·bit E·4

a·bit E·2, E·4
Fully Supported E-2
Limited Support E·3
No Support E·3

Positional Parameter, Substitution, 2-6
PRCi5, Character Sets, 8-9

Supported Languages, 8·9
Printer. HP 2563A E-8

HP 2608A E·9
HP 2608S E·9
HP26318 E-16
HP 26358 E-17

Index -1

HP 26S0A E-19
HP26S8A E-20
HP 2932A E-22
HP 2933A E-22
HP 2934A E-22

Printers,S-bit E-1
Processes, Localization, 1-6
Program Error Messages, Interactive MERGE, 3-26

Interactive SORT, 3-26
Programmatic MERGE,Error Messages 3-26
Programmatic SORT,Error Messages 3-26
Programmatic, SORT-MERGE/3000, 3-24
Programmer Productivity Tools, Localized, 1-2
Programs, Application 1·10

Application, General 1-10
Without NLS 1-11

Q

QUERY 3-1S
QUERY,Command Summary 3-19

Date Format 3-19
Error Messages 3-21
Error Messages, 3-21
Numeric Data Editing in Report 3-20
Range Selection 3-19
Real Number Conversions 3-19
Sorted Lists in Report 3-19
Upshifting Data 3-19

QUERY/3000, Features in, 1-7

R

Range Selection, QUERY, 3-19
RAPID/3000 3-34
RAPID/3000,Character Table 3-35

Command Summary 3-35
Date 3-35
Features in, 1-7
IF 3-35
Inform Language Attribute 3-34
Input 3-35
MATCH 3-35
Output 3-35
REPORTLANGOption 3-34
Time 3-35
Transact SETVerb 3-34
Upshift Table 3-35

ReadCatalog, CATREAD 4-S
Real Number Conversions, QUERY, 3-19

Index- 8

Records, $LANG 2-4
$SET 2-2
Adding 2-9
Comment 2-5,2-10
Deleting 2-9
Message 2-4
Message,Special Characters 2-5
Modifying 2-9

Replace Characters, NLREPCHAR 4-49
REPORTLANGOption, RAPID/3000, 3-34
Request, Featrues, 1-S
Return Language Id Number, NLGETLANG 4-32
Return Language Information, NLiNFO 4-34
ROC15,Character Sets, 8-10

Supported Languages, 8·10
ROMANSto EBCDIC D-2
ROMANSto EBCDIC,Mapping, D-2
ROMANS,Character Sets, B-3, B-4

Supported Languages, B-3, B-4
RPG(HP32104A), Application Guidelines, G-3

Local Language Application, G-3

s
Scan Characters, NLSCANMOVE 4-51
Schema Syntax Errors, IMAGE/3000, 3-10
Search String, NLFINDSTR 4-20
Set Language IDNumber, VPLUS/3000, 3-29
Set Numbers 2-10
Set, Numbers, 2-10

Records, 2-2
:SETJCW,Commands, 1-9
Single Application 1-12
Single, Application, 1-12
SORT,COBOlli H-1

COBOLlI, H-1
FORTRAN H-5
FORTRAN, H-5
Pascal H-3
Pascal, H-3

SORT-MERGE/3000 3-23
SORT-MERGE/3000,COBOLII 3-27

Error Messages, 3-26
Features in, 1-7
Performance Considerations 3-26
Programmatic 3-24
Stand-Alone 3-23

Sorted Lists in Report, QUERY, 3-19
Source Catalog, Expanding 2-13

Formatting 2-12

Source Catalogs 2-2
Source Catalogs, Directives 2-2
Source, Catalogs, 2-2

Sample, Catalogs, 2-6
Special Two-Character, Conversion, F-3
SPL (HP321ooA),Application Guidelines, G-3

Local Language Application, G-3
SPL, DATE/TIME Formatting H-9

DATE/TIME Formatting, H-9
NLKEYCOMPARE H-33
NLKEYCOMPARE, H-33
NLSCANMOVE H-20
NLSCANMOVE, H-20

Stand-Alone, MERGE/3000, 3-23
SORT-MERGE/3000, 3-23

Substitution Sets F-i
Substitution, Character Sets, F-l

Numerical Parameter 2-7
Parameter 2-6
Positional Parameter 2-6

Subsystem Utility Program 1-15
Subsystem, Language Choice 1-9

Utility Program, 1-15
Subsystems, Localized, 1-2
Support, Peripheral, E-4
Supported Languages 1-2, B-1
Supported Languages, ARABIC8 8-6

GREEK8 8-7
JAPAN15 8-11
KANAB 8-5
KOREA15 8-12
NATIVE-3000 B-3
PRC15 B-9
ROC15 B-l0
ROMAN8 B-3, B-4
TURKISH8 B-8

Supported, Languages, 1-2
System Utilities, LANGINST A-2

NLUTIL A-1

HP2625A E-13
HP 2626A E-14
HP 2626W E-14
HP2627A E-15
HP2628A E-13
HP 2635B E-17
HP 2645J E-18
HP 2700 E-21

Terminals,8-bit E-l
Text Handling Facility 1-6
Time Formatting, NLFMTCLOCK 4-23

NLFMTDATE 4-26
Overview 4-3

Time, Custom-Dependent Symbols, 1-4
RAPID/3000, 3-35

Time/Date Formatting, NLCONVCLOCK 4-1,4-13
NLCONVCUSTDATE 4-1,4-15
NLFMTCALENDAR 4-1,4-22
NLFMTCLOCK 4-1,4-23
NLFMTCUSTDATE 4-1,4-25
NLFMTDATE 4-1,4-26
NLFMTLONGCAL 4-1,4-28

Transact SETVerb, RAPID/3000, 3-34
Translate String, NLTRANSLATE 4-59
TURKISH8,Character Sets, B-8

Supported Languages, B-8

u

T

Unlocalized, VPLUS/3000, 3-28
UPSHIFTOption, FCOPY/3000, 3-3
Upshift Table, RAPID/3000, 3-35
Upshifting Data, QUERY, 3-19
Upshifting Rules, Lexical Conventions, 1-4
User Dialog, LANGINST, A-4
User-Defined Commands (UDCs) 1-9
Utilities, Conversion 1-6, F-2

D8UTIL 3-1
FORMSPEC 3-1
GENCAT 2-1
LANGINST 1-4, 1-5
N7MF8CNV F-7
NLUTIL A-i, D-2, 1-4
V7FF8CNV F-l0, F-l1, F-12
17DB8CNV F-8

Utility Program Conditional Messages, IMAGE/3000, 3-8
Utility Program, Subsystem 1-15
Utility Programs, IMAGE/3000, 3-5

Terminal, HP 150 E-5
HP 2382A E-6
HP 2392A E-7
HP 2621B E-l0
HP2622A E-l1
HP2622J E-12
HP 2623A E-11
HP 2623J E-12

Index- 9

v
V7FF8CNVUtility F·10, F·11, F·12
V7FF8CNVUtility, Alternate Character Sets, F·11
V7FF8CNV,Utilities, F·10, F·11, F·12
Verify Language Configuration A·1
VGETLANG,Intrinsics, 3-32
VPLUS/3000 3·28
VPLUS/3000 Forms Files 1·7
VPLUS/3000, Date Handling 3·29

Entry 3·30
Error Messages 3·31
Error Messages, 3·31
Features in, 1·7
Field Edits 3·29
International 3-28
Intrinsics 3·32
Language Attribute 3·28
Language Dependent 3·28
Language ID Number 3·30
Numeric Data 3-30
Set Language ID Number 3·29
Unlocalized 3-28

VSETLANG,Intrinsics, 3·33

Index-10

