HP 3000 Computer Systems

NATIVE LANGUAGE SUPPORT
REFERENCE MANUAL

(2] Fackars

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. {32414-9%0001) Printed in U.S.A. 11/87
Ei1&7

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden-
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. Al
rights are reserved. No part of this document may be photocopied, reproduced or {rans-
lated to another language without the prior wriiten consent of Hewlett~Packard
Company.

Copyright {c) 1987 by HEWLETT-PACKARD Company

List of Effective Pages

The List of Effective Pages gives the date of the current edition, and lists the dates of all changed pages.
Unchanged pages are listed as "ORIGINAL". Within the manual, any page changed since the last
edition is indicated by printing the date the changes were made on the bottom of the page. Changes are
marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars and dates remain. No information is incorporated into a reprinting unless it appears as a

prior update.

First Edition September 1984
Update #1 August 1986

Update #2 November 1986
Second Edition November 1987

List of Effective Pages 1

Printing History

New editions are complete revisions of the manual. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The
date on the title page and back cover of the manual changes only when a new edition is published.
When an edition is reprinted, all the prior updates to the edition are incorporated. No information is
incorporated into a reprinting unless it appears as a prior update.

First Edition September 1984

Update #1 August 1986

Update #1 Incorporated November 1986

Update #2 November 1986

Update #2 Incorporated November 1986

Second Edition November 1987

Printing History 1

MPE V Manual Plan

There are many manuals applicable to the HP 3000 that are not listed here. A complete list may be
found in each issue of the MPE V Communicator. Please contact your System Manager.

INTRODUCTORY LEVEL:

GENERAL GUIDE FOR THE GUIDE FOR THE
INFORMATION
Manuat NEW USER NEW GRERATOR
59537853 3203390009 5203380021
STANDARD USER LEVEL:

MFE V COMMANDS MPE ¥V INTRINSICS MPE Vv UTILNES
Referance Reference Reference
Manyal Manual Manyqgt
32033-90006 32053-90007 32033~ 0008
SEGMENTER DEBUG/STACK DUMP FILE SYSTEM
Referance Referencs Reterence
Manugl Manuat Marnual
SO0~ £ 3000000012 IG000-90238

ADMINISTRATIVE LEVEL:

WFE ¥ SYSTEM OPERATION
& RESOURCE MANAGEMENT
Refarenca Maral
F2033-90008

SUMMARY LEVEL:

MPE v QUHCK
REFERENCE GUIDE
S2033-90023

MPE V Manual Plan 1

Conventions

NOTATION

UPPERCASE

italics

punctuation

{}

DESCRIPTION

Within syntax statements, characters in uppercase must be entered
in exactly the order shown, though you can enter them in either
uppercase or lowercase. For example:

SHOWIOR
Valid entries: showjob ShowJob SHOWJOB
Invalid entries: shojwob Shojob SHOW_JOB

Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual value.
In the following example, you must replace filename with the name
of the file you want to release:

RELEASE filename

Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be
entered exactly as shown.

Within syntax statements, braces enclose required elements. When
several elements within braces are stacked, you must select one. In
the following example, you must select on or OFF:

{on}
SETMSG {OFF}

Within syntax statements, brackets enclose optional elements. In
the following example, brackets around ,TeMp indicate that the
parameter and its delimiter are optional:

PURGE filename],temp]
When several elements within brackets are stacked, you can select

any one of the elements or none. In the following example, you
can select devicename or deviceclass or neither:

[devicename]
suowpey | deviceclass]

Conventions (Continued)

NOTATION

[.]

DESCRIPTION

Within syntax statements, a horizontal ellipsis enclosed in brackets
indicates that you can repeatedly select elements that appear within
the immediately preceding pair of brackets or braces. In the
following example, you can select itemname and is delimiter zero
or more times. Each instance of itemname must be preceded by a
comma:

{.itemname}...]

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if
you select only one element, the delimiter is not required. In the
folowing example, the comma cannot precede the first instance of
itemname:

[itemname]],...]

Within syntax statements, a horizontal ellipsis enclosed in parallel
vertical lines indicates that you can select more than one element
that appears within the immediately preceding pair of brackets or
braces. However, each element can be selected only one time. In
the following example, you must select ,a or ,8 or ,4,8 or ,B,A

If a punctuation character precedes the ellipsis, you must use that
character as a delimiter to separate repeated elements. However, if
you select only one element, the delimiter is not required. In the
following example, you must select A or B or 4,8 or 5,4 . The
first element cannot be preceded by a comma:

{a}
{B },...|

Within examples, horizontal or vertical ellipses indicate where
portions of the example are omitted.

Within syntax statements, the space symbol A shows a required
blank. In the following example, you must separate modifier and
variable with a blank:

seT|(modifier)] A (variable);

Conventions (Continued)

NOTATION

——

(_EtRL_Jchar

base prefixes

Bit (bit:length)

DESCRIPTION

The symbol (3 indicates a key on the terminal’s
keyboard, For example, indicates the Control key.

(CctRL_Jchar indicates a control character. For example,
(C_ctaL__}v means you have to simultaneously press the Control
key and the v key on the keyboard,

The prefixes %, #, and § specify the numerical base of the value
that follows:

Yonum specifies an octal number
#num specifies a decimal number
$num specifies a hexadecimal number

When no base is specified, decimal is assumed.

When a parameter contains more than one piece of data within its
bit field, the different data fields are described in the format

Bit (bit:length), where bit is the first bit in the field and length is
the number of consecutive bits in the field. For example,

Bits (13:3) indicates bits 13, 14, and 15:

most significant least significant

0 | 113114]15

Bit(0:1) Bits(13:3)

Table of Contents

Chapter 1: introduction

Background L0000 1-1
Scope . .. Lo e e e e e e 1-2
Supported Native Languages 1-2
CharacterSets00 1-3
Language-Dependent Characteristiecs 1-4
Native Language SupportinMPE 1-4
NLS System Utilities 1-4
Configuring Native Languages 1-5
NLSIntrinsics 1-5
Peripheral Support 1-5
Conversion Utilities 1-6
Application Message Facility 1-6
File Naming Conventions 1-7
NLSintheSubsystems 1-7
Accessing NLS Features 1-8
Intrinsics oo 1-8

. Additional Parameter Values In Existing Intrinsies 1-8
Native Language Attribute 1-8
Commands 1-8
Implicit Language Choice in Subsystems, 1-9
The NLGETLANG Intrinsic 1-9
User-Defined Commands (UDCs) 1-9
Application Programs L. .. 1-10
General Application Program 1-10
Application Program Without NLS 1-11
Single Language Application 1-12
Multilingual Application L. 1-13
HP Subsystem Utility Program 1-15

Chapter 2: Application Message Facility

Accessing Application Catalogs 2-1
Source Catalogso oL 2-2
Directives Lo e 2-2
$SET Recordso 2-2
$LANG Recordso 2-4
Message Records 2-4
Message Record Special Characters 2-5
Comment Records 2-5
Sample Source Catalogo 2-6

Table of Contents 1

2

Chapter 3:

Table of Contents

Parameter Substitution 2-6

Positional Parameter Substitution 2-6
Numerical Parameter Substitution 2-7
Catalog Naming Convention 2-8
Maintaining a Message Catalog 2-8
Merging Maintenance Files by Line Numbers 2-9
Merging Maintenance Files by $SET and Message Number 2-10
UserDialog 2-11
Formattinga Source Catalog 2-12
Expanding a Formatted Catalog 2-13
GENCATICWs o oo 2-14
GENCATinBatchMode 2-14
GENCATHelp Facility 2-15
Error Messages 0oL oo 2-16

NLS in MPE Subsystems

FCOPY/3000 oo 3-2
Options L. e e 3.2
Error Messages 3-4
Performancelssues oL, 3-4

IMAGE/3000 L e 3-5
Utility Programs00 3-5
Intrinsics L. Lo 3-6
Changing The Language Attribute of an IMAGE /3000

Database oL oLl 3.7
Error Messages Lo 3-8

KSAM/3000o 3-10
Creating KSAM/3000 Files with KSAMUTIL 3-11
Error Messages o 00000 3-12
Creating KSAM/3000 Files Programmatically 3-13
Modifying KSAM/3000 Files 3-13
GenericKeys Lo 000 3-14
Copying From KSAM/3000 File to KSAM/3000File 3-17
Changing the Language Attribute of a KSAM/3000File 3-17
Moving NLS KSAM/3000 Files To Pre-NLSMPE 3-17

QUERY s 3-18
Command Summary 3-19
Hrror Messageso .. 3-21

SORT-MERGE/3000 3-23
Stand-Alone SORT-MERGE/3000 3-23
Programmatic SORT-MERGE/3000 3-24
ErrorMessageso 0.0 L. 3-26
Performance Considerations 3.26
COBOLH SortandMerge 3-27

Chapter 4:

VPLUS/3000
Language Attribute
Setting The Language ID Number . .
FieldEdits
Entry and Language 1D Number . . .
Error Messages
VPLUS/3000 Intrinsics

RAPID/3000
Inform Language Attribute
REPORT LANG Option
Transact SET (LANGUAGE) Verb . .
Command Summary

Native Language Intrinsics
NLS Date and Time Formatting Overview

ALMANAC (Intrinsic Number 406) . . .
Syntax L. ... L.
Parameters
Special Considerations
Additional Discussion

CATCLOSE (Intrinsic Number 417)

Syntax
Parameters
Special Considerations
Additional Discussion
CATOPEN (Intrinsic Number 415) . . .
Syntax oL
Functional Returns
Parameters
Special Considerations
Additional Discussion
CATREAD (Intrinsic Number 4168) . . .
Syntax Lol
Functional Returns
Parameters
Special Considerations
Additional Discussion
NLAPPEND (Intrinsic Number 412) . . .
Syntax o0 L.
Parameters
Special Considerations
NLCOLLATE (Intrinsic Number 402) . .
Syntax L.
Parameters
Special Considerations

Table of Conienis 3

Table of Contenis

NLCONVCLOCK (Intrinsic Number 409y 4-13

Syatax . .. L L. L e e e 4-13
FunctionalReturns 4-13
Parameterso 000 L0000 4-13
Special Considerations 4-14
Additional Discussion oo .. 4-14
NLCONVCUSTDATE (Intrinsic Number 408) 4-15
Syntax L Lo L o e e 4-15
FunctionalReturns 4-15
Parameters L Lo L0 o e 4-15
Special Considerations oL 4-16
Additional Discussion L. 0oL 4-16
NLCONVNUM (Intrinsic Number 419) 4-17
Syntax L. Lo e 4-17
Parameters L .o e e e 4-17
Special Considerations 4-19
Additional Discussiono oL 4-19
NLFINDSTR (Intrinsic Number429) 4-20
Syntax . . . L L L L o e e e 4-20
Functional Returns 4-20
Parameters L L L0000 Lo o 4-20
Special Considerations 4-21
NLFMTCALENDAR (Intrinsic Number413) 4-22
Syntax L oL Lo 4-22
Parameters oo 4-22
Special Considerations 4-22
Additional Discussiono 4-22
NLFMTCLOCK (Intrinsic Number 410} 4-23
Syntax L. L Lo e e e e e e 4-23
Parameters L Lo oo 000 4-23
Special Considerations L. 4-24
Additional Discussion L. oL 4-24
NLFMTCUSTDATE (Intrinsic Number 407) 4-25
Syntax L L Lo e e e e e 4-25
Parameters o .o 000 4-25
Special Considerations 4-25
Additional Discussiono 0oL 4-25
NLFMTDATE (Intrinsic Number414) 4-26
SyntaX o o e e e e e e e 4-26
Parameters0 e e e 4-26
Special Considerations 4-27
Additional Discussiono 4-27
NLFMTLONGCAL (Intrinsic Number 420y 4-28
Syntax L L oo e e 4-28
Parameters oL e e 4-28
Special Considerations 4-28
NLFMTNUM (Intrinsic Number 421) 4.29
O 112 . 4.29
Parameters oL 0oL 000 4-29
Special Considerations oL, 4-31
Additional Discussion 0oL 4-31

NLGETI.ANG (Intrinsic Number 411} 4-32

SYNtax . . . L . Lo e e e e e e e 4-32
Functional Returns 4-32
Parameters L0000 4-32
Special Considerations 4-33
Additional Discussion 0.0, 4-33
NLINFO (Intrinsic Number 400) 4-34
Syntax L L e e e e e 4-34
Parameters L0 o oo o 4-34
Special Considerations 4-41
Additional Discussion 4-41
NLIJUDGE (Intrinsic Number 427y 4-42
Syntax oL L oL oo e e 4-42
Functional Returns 4-42
Parameterso 0 000 e 4-42
NLKEYCOMPARE (Intrinsic Number 405y 4-44
Syntax . . L L L Lo o e e e e 4-44
Parameters oL oo e e 4-44
Special Considerations 4-46
Additional Discusston oL 4-46
NILNUMSPEC (Intrinsic Number425) 4-47
Syntax . . . L L oL Lo o e e 4-47
Parameterso oo o 4-47
Special Considerations 4-48
Additional Discussion 4-48
NLREPCHAR (Intrinsic Number 403) 4-49
Syntax L. oo 4-49
Parameters oo e e e 4-49
Special Considerations 4-50
Additional Discussion Lo 4-50
NLSCANMOVE (Intrinsic Number 401} 4-51
Symtax . . L L L e e e e e e e e e 4-51
Functional Returns 4-51
Parameterso oo e e 4-51
Special Considerations 4-53
NLSUBSTR (Intrinsic Number428) 4-54
Syntax . . . L L L L e e e e e 4-54
Parameterso 4-54
Additional Discussion oo oL 4-56
NLSWITCHBUF (Intrinsic Number426) 4-57
Syntax . . . L L L L e e e 4-57
Parameterso w e e e e e 4-57
Additional Discussion L. oL 4-58
NLTRANSLATE (Intrinsic Number 404) 4-59
Syntax L ..o oo e 4-59
Parameters 0o e e e e 4-60
Special Considerations, 4-60

Tabie of Contents

5

Appendix A;

Appendix B;

Appendix C:

Appendix D:

§ Table of Contents

System Utilities

NLUTIL Program

NLS File Structure

Language Installation Utility (LANGINST)
Addinga Langnage L.
Deletinga Language
Modifying Local Formats

LANGINST UserDialog
Choosinga Function
Addinga Languageo L.
Deletinga Language
Modifying Local Language Formats
Modification of ASCII/EBCDIC Translation Tables

Error Messages o0 e

SUPPORTED LANGUAGES AND CHARACTER SETS

Character Set Definitions

Language Definitions and CharacterSets
NATIVE-3000
ROMANSo oo
KANAB o o e
ARABIC8o
GREEKSo
TURKISHE oo o oo
PRCIS oo
ROCI5S o oo oo
JAPANIS L o
KOREAIS o

COLLATING IN EUROPEAN LANGUAGES

EBCDIC MAPPINGS
BackgroundDatao o 0oL
ROMANBto EBCDICMapping

Appendix E:

PERIPHERAL CONFIGURATION

NLS Peripheral Support Summary, E-1
Specifics of 7-Bit Support L oL L L 0L 0oL E-4
NLS Peripheral Support Details E-4
HP 150 P.C.asaTerminal E-5
Requirements E-5
Character Set Supported E-5
Configuring For 8-Bit Operation E-5
Typing ROMANS Characters Not On The Keyboard E-5
Noteso e e e e E-5
HP2382A Terminal E-6
Requirements E-6
Character Set Supportedo E-6
Configuring For 8-Bit Operation E-6
Typing USASCII/Roman Extension Characters Not On
Keyboard L., E-6
Noteso e e e e e E-6
HP 2392A Terminal, E-7
Requirements, E-7
Character Set Supported L. Lo L E-7
Configuring For 8-Bit Operation E-7
Typing ROMANS Characters Not On Keyboard E-7
Notes L E-7
HP 2563A Printer L. E-8
Requirements E-8
Character Set Supported L oL E-8
Configuring For 8-Bit Operation E-8
Notes oo E-8
HP 2608A/HP 2608S Printers E-9
Requirements E-9
Character Set Supported E-9
Configuring For 8-Bit Operation E-9
Notes L oo e e e E-9
HP2621BTerminal E-10
Requirements E-10
Character Set Supported 0L 0L E-10
Configuring For 8-Bit Operation E-10
Typing USASCII/Roman Extension Characters Not On
Keyboard E-10
Notes L oo e e E-10
HP 2622A/HP 2623A Terminals E-11
Requirements E-11
Character Set Supported L oL E-11
Configuring For 8-Bit Operation E-11
Typing USASCII/Roman Extension Characters Not On
Keyboardo E-11
Notes o . oo e e e E-11

Table of Contents

7

8 Table of Contents

HP2622J/HP 2623 Terminals
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing KANAS Characters Not On The Keyboard
Notes

HP 2625A/HP 2628A Terminals
Requirements
Character Set Supported
Configuring For 8-Bit Operation
Typing ROMANS Characters Not On The Keyboard
Notes e

HP 2626A/HP 2626W Terminals
Requirements,
Character SetSupported Lo
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes e

HP2627TA Terminal
Requirements,
Character Set Supported L.
Configuring For 8-Bit Operation
Typing USASCII/Roman Extension Characters Not On

Keyboard
Notes

HP2631BPrinter
Requirements
Character Set Supported L.
Configuring For 8-Bit Operation
Notes

HP 2635B Printer/Terminal
Requirements,
Character Set Supported,
Configuring For 8-Bit Operation
Notes

HP 2645) Terminal L.,
Requirements L.,
Character Set Supported
Configuring For 8-Bit Operation
Typing KANAS Characters Not On Keyboard
Notes

HP2680A Printer
Requirements,
Character Set Supported
Configuring For 8-Bit Operation
Notes

Appendix F:

Appendix G:

HP268BA Printer E.20

Requirementso E-20
Character SetSupportedo L0 E-20
Configuring For 8-Bit Operation E-20
Notes L e e, E-20
HP2700 Terminal E-21
Requirements L. E-21
Character Set Supported L. E-21
Configuring For 8-BitOperation E-21
Typing USASCII/Roman Extension Characters Not On
Keyboard00 E-21
Notes o . e e E-21
HP 2932A/HP 2933A/HP 2934A Printers E-22
Requirements oL E-22
Character Set Supported L E-22
Configuring For 8-Bit Operation E-22
Notes e e e E-22
Notes e E-23

CONVERTING 7-BIT TO 8-BIT DATA

National Substitution Sets 0. ... F-1
Conversion Utilities F-2
Conversion Algorithm oL F-3
Conversion Procedure F-3
NTMFSCNV Utility o F-7
ITDBSCNV Utilityo F-8
VIFFSCNV Utility F-10
VIEFS8CNV and Alternate CharacterSets F-11
GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700,
and 150 e e e, F-11
GROUP TWO - HP 2622A, 2623A, 2626A, and 2382A F-11
VTFFSCNV Operation F-12

APPLICATION GUIDELINES

All Programming Languages G-1
COBOLH (HP32233A)« o v oo G-2
FORTRAN (HP32102B)« v v oo v oo e G-3
SPL (HP 32100A) . . . v v v et G-3
RPG (HP32104A)« G-3
BASIC(HP32101B)« . o v v G-3
Pascal (HP32106A)« o v v oo G3

Table of Contents

)

Appendix H: EXAMPLE PROGRAMS

A.SORT ina COBOLII Program H-1
B.SORT in a Pascal Program H-3
C.SORT in a FORTRAN Program H-5
D. DATE/TIME Formatting Intrinsics in a FORTRAN Program . . H-6
E. DATE/TIME Formatting Intrinsics in an SPL Program H-9
F. NLSCANMOVE Intrinsic in a COBOLII Program H-13
G. NLSCANMOVE Intrinsic in an SPL Program H-20
H. NLTRANSLATE/NLREPCHAR Intrinsics in a COBOLII

Program00 H-26
I. NLKEYCOMPARE Intrinsic in a COBOLII Program H-29
J. NLKEYCOMPARE Intrinsic in an SPL Program H-33
K. Obtaining Language Information in a COBOLH Program H-37
L. CATOPEN, CATREAD, CATCLOSE Intrinsics in a Pascal

Programo H-41

10 Table of Contents

Preface

Native Language Support (NLS) provides the HP 3000 with the features necessary to produce localized
application programs for end users without reprogramming for each country or language.

Native Language Support consists of Multi-Programming Executive (MPE) intrinsics, additional
features in COBOLIL and the FCOPY /3000, IMAGE/3000, KSAM /3000, QUERY/3000,
SORT-MERGE/3000, RAPID /3000, and VPLUS/3000 subsystems, the Application Message Facility,
plus utilities to install and implement native langnage capabilities.

This release of Native Language Support incorporates new languages and their character sets. It also
presents additions to the set of Intrinsics that are available to the user:

NLJUDGE Judges whether a character is a one-byte or two-byte Asian character.
NLSUBSTR Extracts one string from another string.
NLFINDSTR _ Searches a string for another string.

Preface 1

Introduction 1

Hewlett-Packard Native Language Support (NLS) features enable the applications
designer/programmer to create local language applications for the end user.

Background

A well-written application program manipulates data and presents it appropriately for its use and user.
Users who are less technically sophisticated benefit from application programs which interact with them
in their native language, and which conform to their local customs. Native language refers to the user’s
first language (learned as a child), such as Finnish, Portuguese, or Japanese. Local customs refer to
conventjons such as local date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assumptions about
the local customs and language of the user. Program interface and processing requirements vary from
country to country, and sometimes within a country. Most existing software does not take this into account
and is appropriate for use only in the country or locality in which it is written.

The solution to this problem is to design application programs that can be easily localized. Localization
is the adaptation of a software application or system for use in different countries or local environments.
In such an environment, the user’s native language and/or data processing requirements may differ from
those in the environment of the software developer. Traditionally, localization has been achieved by
modifying a program for each specific country. Applications designed with localization in mind provide a
better solution. Localization can then be accomplished with (ideally) no modification of code at all.

An applications designer must write the application program with built-in provisions for localization.
Functions which are local language or custom dependent cannot be hard-coded. For example, all mes-
sages and prompts must be stored in an external file or catalog. Character comparisons and upshifting
must be accomplished by external system-level routines or instructions. The external files and catalogs
can be translated, and the program localized without rewriting or recompiling the application program.

Native Language Support (NLS) provides the tools for an applications designer/programmer to produce
localizable applications. These tools may include architecture and peripheral support, as well as software
facilities within the operating systems and subsystems. NLS addresses the internal functions of a program
(for example, sorting) as well as its user interface (for example, messages and formats).

introduction t-1

Scope

HP 3000 Native Language Support (NLS) consists of features within MPE, as well as in the FCOPY /3000,
IMAGE/3000, KSAM/3000, QUERY /3000, SORT-MERGE/3000, VPLUS /3000, RAPID /3000, and
COBOLII subsystems. These facilities allow application programs to be designed and written with a local
language interface for the end user and locally correct internal processing. The end user can see localized
programs produced by an applications designer/programmer who has used the NLS tools.

The MPE interface, subsystems, programmer productivity tools, and compilers have not been localized.
The applications designer must still interact with MPE and the subsystems using American English. For
the designer /programmer, the interface has not changed. For example, it is possible to write a complete
local language application program using COBOLIT and VPLUS/3000, but the COBOLII compiler and
the VPLUS /3000 FORMSPEC program retain their English-like characteristics.

Not all functions which vary from one language to ancther, or one country to another, are provided by
NLS. For example, tax calculation rules are usually country-specific or local-specific, and rules for word
hyphenation are related to individual languages. Functions such as these are considered to be application-
specific, and are beyond the scope of NLS.

Supported Native Languages

NLS is based on languages and character sets which have been predefined and built into the operating
system. These are referred to as supported languages. A unique language name and language ID number
has been assigned to each language supported in NLS. In some cases, more than one supported language
has been introduced corresponding to a single natural language. For example, NLS supports FRENCH
(language number 7) and CANADIAN-FRENCH (language number 2). Upshifting is handled differently
in FRENCH and CANADIAN-FRENCH. When language-dependent characteristics differ within the
same natural language, NLS can create separate native languages to represent these differences.

Each of the supported languages may also be considered a "language family” which is applicable in several
countries. GERMAN (language number 8), for example, may be used in Germany, Austria, Switzerland,
and any other place it is requested.

In addition to the native languages supported, an artificial language, NATIVE-3000 (language number (),
represents the way the computer used to deal with language before the introduction of NLS. For example,
the collating sequence (the sequence in which characters acceptable to the computer are ordered) for
NATIVE-3000 is the order of characters in the USASCII code and the date format is returned by the
existing MPE intrinsic, sutoate. Whenever Janguage number 0 is used in a native language function, the
result will be identical to the function performed before the introduction of NLS. NLS intrinsic calls with
the language parameter equal to 0 will always work correctly, even if no native languages have been
configured on the system.

Refer to Appendix B, "Supported Languages and Character Sets" for listings of the languages supported,
their character sets, and their identification numbers (langruun values).

1-2 introduction

Character Seis

Within NLS, each supported language is associated with an 8-bit or 16-bit character set (one character set
may support many languages). Like languages, character sets have defined names and ID numbers as-
signed, although these names and numbers are not widely used, except, in documentation. Before the
introduction of NLS, the only widely-supported character set was USASCII, a 128-character set designed
to support American English text. USASCII uses only seven bits of an 8-bit byte to encode a character.
The eighth or high order bit is always zero. For this reason, USASCII is referred to as a "7-bit" code.

An 8-bit byte has the capacity to contain 256 unique values, which means it is possible to build supersets
of USASCII which permit encoding and manipulation of characters required by languages other than
American English. These supersets are referred to as "8-bit" or "extended" character sets. New characters
are added with code values in the range 161-254,

Another method of providing foreign characters (not supported by NLS) involves replacing as many as 12
existing characters in USASCII with substitution characters. The 7-bit substitution set eliminates some
characters in favor of others needed by a particular local language. A different substitution set is neces-
sary for each language. NLS 8-bit character sets support all USASCII characters (with the exception of
"\" in KANAS8) in addition to the characters needed to support several western European-based languages
and KATAKANA.

The use of 8-bit or 16-bit character sets for NLS implies that in character data, all bits of every byte have
significance. Application software must take care to preserve the eighth (high order) bit, nowhere allow-
ing it to be modified or reused for any special purpose. Also, no differentiation should be made between
characters having the eighth bit turned off and those with it turned on, because all are characters of equal
status in the extended character set.

Refer to Appendix B, "Supported Languages and Character Sets” for a list of native languages supported
by each character set.

Introduction 1.3

Language-Dependent Characteristics

For each native language which is supported by NLS, a number of characteristics are known. These are
lexical conventions (for example, collating sequence and upshifting rules), country or local custom-depen-
dent formats {currency symbols, date, time, and number formats), and data processing conversion tables:

» Lexical conventions vary from country to country. The collating sequence is affected by the local
alphabet and usage of each language. Upshifting tables maintained by NLS for each supported
language contain the appropriate result of upshifting any character in the corresponding character
set. This category of information is really language-related in the literal sense.

» Currency symbols, date, time, and number formats are country and local custom dependent. Cur-
rency symbols and their position in relation to numbers depend on local custom. Date, time, and
number formats also vary from country to country.

s Data processing tables for ASCII-to-EBCDIC and EBCDIC-to-ASCII conversion are affected by
language because the EBCDIC codes are different from country to country.

Within NLS, characteristics that are language related, custom-dependent, and data processing oriented
are all considered to be language-dependent. All information used by, or available from, NLS is based on
the application’s choice of language(s). For example, NL.S maintains an ENGLISH coliating sequence
and an ENGLISH time-of-day format. In this context, ENGLISH refers specifically to that used in Eng-
land rather than the English language. (AMERICAN refers to the language, formats, and tables used in
the United States.)

Refer to Appendix B, "Supported Languages and Character Sets” for a complete list of supported lan-
guages and language characteristics. Detailed information on any particular installed language is available
programmatically via the nuwro intrinsic (refer to Chapter 4, "Native L.anguage Intrinsics") or in report
form from the NLUTIL. program.

Native Language Support in MPE

The MPE components of NLS consist of utility programs (LANGINST and NLUTIL), system intrinsics,
and an application message facility.
NLS System Utiiities

LANGINST is used by system managers to select the native languages to be supported on their system(s).
NLUTIL is used to obtain the details of languages installed on a system. Refer to Appendix A, "System
Utilities" for a description of LANGINST and NLUTIL.

-4 introduction

Configuring Native Languages

Before any native languages (except NATIVE-3000) can be used on a system, they must be configured by
the System Manager using the LANGINST utility program. Refer to Appendix A, "System Utilities" for
the LANGINST user dialog. The System Manager can select which supported languages to configure and
can modify several formats associated with the language(s) being configured. For example, this feature is
useful to a System Manager in Austria who wants to install GERMAN with a different currency symbol
than the default for this language. Changes to a system’s language configuration are effective after the
next system startup, at which time the configured languages are installed. After a language has been
installed, language-specific information available in NLS may be used by any application program re-
questing it.

NLS Intrinsics

The NLS intrinsics may be called by application programs and Hewlett-Packard subsystems to provide
language-dependent functions and information for any language installed on a system. For example, the
NLEMTDATE intrinsic returns a locally formatted date, and the sicollaTe intrinsic compares two character
strings using a language-dependent collating sequence. Refer to Chapter 4, "Native Langauge Intrinsics"
for a complete list of NLS intrinsics. Some HP 3000 subsystems call NLS intrinsics to perform certain
functions. For example, configured native languages can affect the collating sequence used by SORT-
MERGE/3000, the numeric formatting done by VPLUS/3000, and the EBCDIC conversions performed
by FCOPY /3000. Refer to Chapter 3, "NLS in the Subsystems" for specific information.

NOTE

None of the above changes are automatic. All existing applications and
jobs will function the same way they did previous to the instaliation of NLS,
unless they are modified to request NLS functions.

Peripheral Support
Peripherals configured for any of the 7-bit substitution sets are not supported by NLS.

Most Hewlett-Packard peripherals are designed for 8-bit operation. Most peripherals that have been
configured for 7-bit operation can be reconfigured for 8-bit operation.

NLS has no direct control over what peripherals are configured on a system. The user must configure the
peripherals which will support the character set(s) necessary for the desired languages. Refer to Appendix
E, "Peripheral Configuration" for instructions.

introduction 1-5

1

Conversion Utilities

Data encoded according to any 7-bit substitution set is not supported by NLS. Users with data encoded
in one or more of the European 7-bit substitution sets supported on the older Hewlett-Packard terminals
and printers have the option to convert this data. A set of utilities is available to convert 7-bit data to 8-bit
(ROMANS) data in KSAM files, IMAGE/3000 databases, VPLUS/3000 forms files, and MPE files.
Refer to Appendix F, "Converting 7-Bit to 8-Bit Data,” for conversion instructions.

Application Message Facility

A localizable program contains no text (prompts, commands, messages) stored in the code itself. This
allows the text to be translated (part of the localization process) without modifying the source code of a
program or recompiling it. Therefore, a good text handling facility is essential to Native Language Sup-
port.

The principal tool supplied within NLS for text handling is the Application Message Facility. The applica-
tion message catalog facility consists of the GENCAT utility program and the cat intrinsics (CATREAD, CATOPEN,
and carcrose). The application message catalog facility provides efficient storage and retrieval of program
messages, commands, and prompts. The GENCAT program is used to convert an ASCII source file
containing messages into a binary application catalog that can be accessed by the intrinsics. Application
programs use the cat intrinsics to retrieve messages from it. An application message catalog consists of a
file containing character strings (messages), each uniquely identifiable by a set number and a message
number within a set. Key features of the Application Message Facility include:

w Each message in a catalog can allow up to five parameters which may be specified by position or
number.

s An editor is used to create the source catalog (an MPE ASCII file). The GENCAT program is used
to read the source catalog and to create a formatted catalog. The formatted catalog has an internal
directory for efficient access and is compacted (for example, by deleting trailing blanks) to optimize
storage space.

m GENCAT has a facility to merge two message source files; a master file and a maintenance file. The
maintenance file contains changes to be made in the master file. Updates of a localized version of an
application may be made by translating the maintenance file, then merging it with the localized
source catalog.

a Multiple localized versions of an application can be supported with translations of the original source
catalog. If a naming convention is established, the application program can determine which local-
ized catalog to open at run time (using the caropey intrinsic). Refer to Chapter 2, "Application Mes-
sage Facility" for suggested naming conventions.

The application message facility is documented in Chapter 2, "Application Message Facility."

-8 Introduction

File Naming Conventions

An application which has been localized into several languages will have separate message catalogs,
VPLUS/3000 forms files, and/or various other language-dependent data files for each of these languages.
It is suggested that a naming convention be established for these files which follows the language number-
ing used by NLS. To do this, a file name should be used which is up to five identifying characters followed
by a three-digit langonage number, corresponding to the language of the file contents. For example, the
original, unlocalized data might be stored in a file whose name is rFiLecoo; FrLecos would contain the same
data modified for German, and r11e012 would contain the data modified for Spanish. It is the responsibility
of the application program to determine, at run time, which file to open. Once the language pumber is
determined, the suarpend intrinsic may be used to form the file name if this convention is followed.

NLS in the Subsystems

In addition to the new utilities and MPE intrinsics, NLS provides features in COBOLIIL, FCOPY /3000,
IMAGE/3000, KSAM, QUERY/3000, SORT-MERGE /3000, VPLUS/3000, and RAPID/3000. NLS
features in these subsystems are intended to provide the applications designer /programmer with the tools
to design local language applications. The subsystems themselves are not localized. The application end
user, not the programmer or subsystem user, will see the localized interface.

MPE Native Language Support intrinsics provide the means to implement NLS features contained in the
subsystems. This means that native language definitions are consistent in all the subsystems. For example,
the collating sequence is consistant within MPE and in the subsystems and can be defined for a specific
native language by calling the sicotiare and sikeveoweare intrinsics. The same collating sequence is used by
SORT-MERGE/3000 in ordering records, by KSAM/3000 in ordering keys, and by IMAGE/3000 in
ordering sorted chains when these subsystems are dealing with sorted character strings that have been
associated with the same native language.

The MPE operating system and its subsystems function independently of native language features config-
ured on the system. NLS features are optional and must be requested to be invoked; existing application
software and stream files will operate as they did before the introduction of NLS.

introduction 1-7

Accessing NLS Features

On HP 3000 systems using MPE and subsystems with NLS features, all NLS features are optional. These
features must be requested by the applications programmer through intrinsic calls or interactively by the
user of a subsystem program through a Laveuace command or keyword.

intrinsics

NLS features may be obtained from application programs through calls to specific NLS intrinsics, primar-
ily in MPE. For example, to get a local language date format, an application should call the NLS intrinsic
NLFMTDATE instead of the old emroare intrinsic.

Additional Parameter Values In Existing Intrinsics

Another way is by specifying values for extended or new parameters in existing intrinsies. For example,
sor7iniT in SORT-MERGE/3000 has been extended to allow the specification of a craracter key and a
native language 1D number (langnum) which determines the collating sequence to be used. These addi-
tional parameters must be used in an application to sort according to native language vaiues.

Native Language Attribute

Some subsystem structures, including IMAGE /3000 databases, KSAM /3000 files, and VPLUS/3000
forms files may be assigned a language attribute by their creators. The language attribute will ensure that
certain functions will perform according to localized specifications at run time. VPLUS /3000, for exam-
ple, will perform its upshift function according to the language of the forms file.

Commands

Commands or keywords have been added to certain subsystems which make NLS features available on
request. For example, entering tansuace=rrenck within QUERY /3000 would cause sorted character data of
IMAGE/3000 types X and U to be sorted according to the FRENCH collating sequence in its output
reports. If the language command is not entered, QUERY /3000 (or any other subsystem) will perform
as it did before the introduction of NLS. If these commands are not used, the default language(s) used by
subsystem utility programs can be influenced by the values of the two NLS Job Control Words, NLUSER-
LANG and NLDATALANG.

Some general suggestions for designing applications incorporating NLS features and specific strategies
for using major programming languages are included in Appendix G, "Application Guidelines."

Refer to Chapter 3, "NLS in MPE Subsystems” for information on how and when the individual subsys-
tems are influenced.

1+8 Introduction

Implicit Language Choice in Subsystems

Two NLS Job Control Words (JCWs), NLUSERLANG and NLDATALANG, permit the subsystem user
to designate a default language other than NATIVE-3000 for the subsystems. Each of the five subsystem
programs {(SORT, MERGE, FCOPY /3000, QUERY /3000, ENTRY) looks at one of these JCWs, and its
value is used as a default language by the program. The default can be superseded by a specific command.
Utility programs in the subsystems are often run within user-defined commands (UDCs). UDCs are often
created for the convenience of a less sophisticated computer user than the person who designed them. To
add to this convenience, NLS has established a convention for designating the native language choice for
operation of the subsystem programs that does not require the user to enter a language explicitly. Thisis
accomplished through the use of two reserved Job Control Words (JCWs), NLUSERLANG and NL-
DATALANG:

NLUSERLANG designates the user interface and report output language for programs. If the sub-
systerns were localized, this would be the language of choice for prompts and messages. If user input
data is modified (for example, upshifted by QUERY or VPLUS), this language determines which
language’s attributes are used. The default language for all language-dependent cperations in
QUERY/3000 and ENTRY can be designated.

s NLDATAILANG designates the internal data manipulation language. One reason this is distinct
from NLUSERLANG is that multiple users with different interface languages may wish to share
some common internal data (for example, sorted according to one language). The data manipulation
language is used in the SORT, MERGE, and FCOPY /3000 programs to control their language-de-
pendent functions, such as collating, upshifting, and conversions to and from EBCDIC.

NOTE

If the user interface of one of these programs were localized, it would use
NLUSERLANG as its default for messages, prompts, etc.

NLUSERLANG and NLDATALANG are independent JCWs, and are treated independently by NLS. In
many cases, they will specify the same language, but examples already exist in which they could have been
used with distinct values.

The NLGETLANG Intrinsic

NLUSERI.ANG and NLDATALANG values are retrieved by the subsystems through calls to the nuget-
Lang intrinsic. Application programs may also use this intrinsic. staetLaNG retrieves the value of the lan-
guage attribute requested, and verifies its installation. If the value is that of an unconfigured or undefined
language, nieeTians will return a language 1D number of 0 (NATIVE-3000) and an error. To use either
JCW, set the integer value corresponding to the language ID number desired, using :sevucw. Refer to the
MPE V/E Commands Reference Manual (32033-90006), for the :se1sew command syntax.

User-Defined Commands (UDCs)

ENTRY, FCOPY /3000, QUERY/3000, SORT, and MERGE are often run from within user-defined
commands {UDCs). The two NLS Job Control Words (JCWs) give the user the option of establishing a
native language within a UDC. introduction 1.9

Application Programs

The focus of NLS is the application program. Most NLS tools are accessed programmatically from appli-
cations according to the requirements of the designer or programmer. Several common application mod-
els are possible. These are illustrated in Figures 1-1to 1-5. NLS capabilities can be used in single language
applications, multilingual applications, in subsystem utility programs, or not at all.

General Application Program
The functions language can influence an application in terms of data manipulation (internals) and user

interaction (externals) is illustrated in Figure 1-1. The core application program is flanked by functions
that can differ according to language and local customs (local date, time, and currency formats).

DATA MANIPULATION USER INTERACTION
DATA BASE SCREENS
INDEXED SEQUENTIAL PROMPTS, MESSAGES

APPLICATION
PROGRAM
SORTING USER COMMANDS
CHAR, MANIPULATION FORMATS

Figure 1-1. Application Program Format

1-10 Introduction

Application Program Without NLS

Figure 1-2 shows an application program which does not make use of NLS capabilities. This NATIVE-
3000 application makes use of conventional programming techniques and standard MPE and subsystem
features to achieve the key language-dependent functions. It cannot be localized without reprogramming
and is unaffected by the introduction of NLS.

DATA MANIPULATION

USER INTERACTION

DATA BaASE SCREENS
MAGE VRLUS
data buge(s) forms ond
and intrinsics intrinsics

INDEXED SEGUENTIAL PROMPTS, MESSAGES
KSAM Hard—coded
‘ﬁ’”; ond APFLICATION ond/or messoge
intrinsics PROGRAM eatalog
Cugtamer—written
or third porty
applicotion
SORTING USER COMMANDS
SORT—MERGE Hard-coded
Intringicsy qnd/or command
file
CHAR, MANIFULATION FORMATS
Hord—coded functlons Intrinsics
{e.q., compares .G FMTDAT!
upshifta) (e.9 TOATE)
Figure 1-2. Application Program Without NLS
Introduction 1-11

Single Language Application

French is used as the single language application example in Figure 1-3. The applications designer has
determined that only French is required, and has hard-coded its language ID number (langrum) 7 into
the program. The langnum is used as a parameter in calling various native language-dependent intrinsics.
In addition, the designer has created IMAGE/3000 databases, KSAM/3000 files, and VPLUS/3000
forms files with the French language attribute, and has expressed all prompts and messages in French.
This use of NLS is for programs which will only be used in one country or location, or with only one
language.

DATA MANIPULATION USER INTERACTION

DATA BASE SCREENS

IMAGE. data FRENCH VPLUS

bose(s) with forms
"FRENCH" ottribute tile(s}

INDEXED SEQUENTIAL PROMPTS, MESSAGES

KSAM Fite{s) Hard—coded
with "FRENCH" APPLICATION ond/or opplication
atiribute PROGRAM mesgsage catolog

A praogrom written

\&\)\" - for use In FRANCE,
N Set LANGNUM
SORTING &« / to 7 (FRENCH). \ USER COMMANDS
Hord ~coded
RT~MERG
Soin:n'nsgi ; é"} <, and/or command
9 '%3‘ flle
) %
GHAR, MANIPULATION FORMATS
L intrinslcs intringics
(e.g.. NLCOLLATE {e.9.. NLFMTDATE)
NLSCANMOVE)

Introduction

Figure 1-3. Single Language Application

MulRilingual Application

The program in Figure 1-4 shows a localizable or multilingual application. This application can be used
in several countries or in multiple languages by different users on the same system. The key attribute of
this program is that it selects its language(s) at run time.

When installing an application on a system, the manager of the application may establish configuration
files for that application. These files store information about various users or transactions and their native
language requirements. At run time the application program can determine which language(s) to use.

The program may call the sieeTians intrinsic to obtain the system default language (set by the System
Manager when native languages are configured) or it may prompt the user to enter a language name or
ID number (langnum).

The application may call sLeerLanc to obtain the user interface language and/or the data manipulation
language. The Job Control Words NLUSERLANG and NLDATALANG must be in place before invok-
ing this type of application. This method could be restrictive if many users or transactions are handled
from one job or session.

Once the languages have been determined, the program opens the appropriate VPLUS /3000 forms files,
message catalogs, and/or command files, based on the user interface language choice. It also opens any
needed IMAGE /3000 databases, KSAM /3000 files, or general data files; these may or may not depend
upon language choice. The appropriate language ID numbers are used in calling the various native lan-
guage intrinsics. Different users may concurrently run the same program with different languages. The
application can be designed to use more than one language within a single execution. For example, one
language may be used for data manipulation and a different one for user interactions.

introduction 1-13

1-14

DATA MANIPULATION

DATA BASE

IMAGE dato bose(s)
with appropriote
tanguage attribute(s)

INDEXED SEQUENTIAL

KSAM flle(s)
with appropriate
janguoge attribute(s)

SORTING

SORT~MERGE
intrinsics

CHAR, MANIPULATION

NL intringics
(e.g., NLOOLLATE
NLSCANMOVE)

Introduction

APPLICATION
PROGRAM

A program written
for use in
multiple countries,
Dotermine LANGNUM(s)
gt run time.x

-

From application
configuration file,
systern defoult, user
prompt, JCWs, etc,

\

O
&

\

Figure 1-4, Multilingual Application

USER INTERACTION

A
/

SCREENS

VPLUS forms file(s)
w/appropricte longuoge
or “internotional"

PROMPTS, MESSAGES

in application meassage
catalog(s) chosen
by LANGNUM

USER COMMANDS

Command File(s} or
message cotalog(s)

chosen by LANGNUM

FORMATS

NL intrinsics
{e.g.. NLFMTDATE)

HP Subsystem Utility Program

Figure 1-5 shows a special category of a multilingual application, the Hewlett-Packard subsystem utility
program. Many of these programs are not typically used by end users, but are used to manipulate user
data in conjunction with application programs. They determine which language to use at run time via a
user-entered keyword or command, or defaults,

The user interaction in these programs has not been made localizable since many of these programs are
not end user tools.

DATA MANIPULATION USER INTERACTION

DATA BASE SCREENS

IMAGE AN VPLUS forms file(s)
data base(s) / w/appropricte languoge
or “international”

-

;
$
$/

INDEXED SEQUENTIAL / PROMPTS, MESSAGES
s Hord—coded or in
‘5"3?:; HP 3000 / "‘(‘535“@" ca:;:;c;g
net localiz
SUBSYSTEMS
FCOPY, SORT, MERGE,
) QUERY, ENTRY
N Determine LANGNUM
\)
N fromm ussr command
SORTING or keyword, & \ . USER COMMANDS
SORT-MERGE / Hard—coded
intrinsics & %f)
> + Coll NLGETLANG to %
J{p estoblish defoult(s), 4-\
CHAR, MANIPULATION FORMATS
NL intrinsica NL intrinsics
{e.g., NLOOLLATE {0.g., NLFMTDATE)
NLECANMOVE)

Figure 1.5. HP Subsystem Utility Program

Introduction 1-15

Application Message Facility)

The Application Message Facility is a Native Language Support (NLS) tool that provides a programmer
with the flexibility needed to create application catalogs for localization. Text such as prompts,
commands, and messages intended for the user’s interaction with an application can be stored in
separate ASCII editor files. This allows the programmer to maintain files and localize applications
without changing the program code.

The NLS Application Message Facility contains the GENCAT utility program and the car intrinsics,
CATOPEN, CATREAD, and catcLose, as shown in Figure 2-1.

P
< i
APPLICATION FORMATTED | o CATOPEN
SQURCE GENCAT ~ APPLICATION CATREAD APPLICATION
CATALOG || erocran [CATALOG |~——————3>| procRrAM
CATCLOSE
W \h____’/

Figure 2-1. GENCAT Utility Program

The GENCAT utility creates and maintains message catalogs which meet the NLS requirements for
efficient storage and retrieval of messages. For a comparison of GENCAT and MAKECAT, an MPE
utility which is also used to create and maintain message catalogs, refer to Table 2-2 at the end of this
chapter.

Accessing Application Catalogs

Catalogs formatted with GENCAT can be accessed by applications via the cat intrinsics:

catoren Opens a catalog for access by an application.
catreap Retrieves text from a catalog.
carciose Closes a catalog,

These intrinsics are documented in Chapter 4, "Native Language Intrinsics.” Refer to Program L in Ap-
pendix H for an example of their use,

The nuarpen intrinsic can be called to concatenate the language ID number and the catalog filename
before the catalog is opened. Refer to "Catalog Naming Convention" in this section for more information.

Application Message Facllity 2-1

Source Catalogs

First, the user creates an MPE ASCII file in an editor with an EDIT/3000 compatible format. The catalog
may contain 8-bit characters. The GENCAT program reads the source catalog and creates a binary
formatted catalog which can be accessed by application programs. Calls to the CAT intrinsics access the
formatted catalogs. An internal directory, which expedites accessing the formatted catalog, is created in
the catalog. The text in the formatted catalog is compressed for efficient storage. The source catalog’s
record size may vary from 20 words to 128 words. Often a message is split over several records.

Figure 2-2 illustrates the three functions GENCAT performs on an application message catalog: modify-
ing, formatting, and expanding.

Directives

A source catalog contains directives which partition information in the message catalog. The three types
of directives include s to denote a comment line, sset to mark the beginning of a new set of messages, and
message numbers to indicate messages.

$SET Records

A sseT record initiates a logical grouping of messages. Sets break the catalog into manageable segments
containing logical groupings of messages (for example, one set of messages for prompts, one set for
instructions, one set for error messages).

The format of a sser record, where xxr is a required number for that set of messages (ranging from 1 to
255} is:

$SET xxx [comment] or $set xxx [comment].

A sszT record can contain comment as an optional character string, If there is not at least one blank
between xxx and the comment, GENCAT will issue an error message and terminate the formatting,

Set records must begin in column 1. For example, to indicate that set number 1 is being defined:
$SET 1 Set one contains all prompts.

See Figure 2-3 for an example of a sse1 record.

2-2 Application Message Facillty

GENCAT MENUS

ENTER INDEX OF DESIRED FUNCTION

C.

EXIT.

1, HELP,

LS

MODIFY SQURCE CATALOG.
FORMAT SOURCE INTO FORMATTED CATALOG.
. EXPAND FORMATTED CATALCG INTO SOURCE.

}

l

ENTER NAME OF CATALGG
TG BE MODIFIED

!

ENTER NAME OF MAINTENANCE FILE

l

ENTER INDEX OF MERGE TYPE
0. DO NOT MERGE.
1. HELP.
2. BY LINE NUMBER,
3. BY SET/MESSAGE NUMBER

!

SAVE COLLISIONS?
E}irgR ﬂ'YEsn OR “NO“

YES
— ENTER NAME OF
NO

COLLISION FILE

ENTER NAME OF NEW
SOURCE CATALOG FILE

l

MODIFYING SOURCE..,

J |

ENTER NAME OF SQURCE FILE ENTER NAME OF FORMATTED
TO BE FORMATTED CATALOG TO EXPAND

FORMATTING. .. ENTER NAME OF NEW
) SOQURCE FILE
ENTER NAME FOR NEW FORMATTED FILE !
TOTAL NUMBER OF EXPANDING...
SETS FORMATTED = _
TOTAL NUMBER OF MESSAGES
FORMATTED = Iv

TOTAL NUMBER OF
SETS EXPANDED = __

TOTAL NUMBER OF
MESSAGES EXPANDED = _ _

[:_—_:‘:} — INDICATES

USER INFORMATION DISPLAYED

Figure 2.2, GENCAT Functions

Application Message Facility 2-3

SLANG Records

A siang record specifies the language of the message that follows. It is used primarily with 16-bit languages
to tell cencat that the messages will be in two-byte character formats. sian is not required for 8-bit lan-
guages.

The format of a staxe record, where xxx is a valid langnum, is:
SLANG xxx[comment] or $lang xxxlcomment?

A siane record can contain comiments as an optional character string. If there is not at least one blank
between xxx and a comment, GENCAT will issue an error message and terminate the formatting.

siavg records must begin in column 1. For example, to indicate the message catalog contains characters in
Simplified Chinese, the user will indicate:

SLANG 201 Simplified Chinese Language

$SET 1

1 This message is in Simplified Chinese.

2 This message s in USASCII.

3 This message is a mix of Chinese and USASCiI.

Message Records

Message records consist of a message number followed by the message text. This may be an error mes-
sage, prompt, or any text which may change with the language or country where the program will be used.
Message records:

® Identify message locations within a set.
s Must be in ascending sequence and unique within the set that contains them.
a Do not need to be consecutive.

For exampie, within a set, one can have messages 1-25, 101, 300-332, and 32766. All of these message
numbers can be used again in another set. The format for a message record where xoox, an integer, is the
required message number is:

XXX {the text of the messagel.

Text is an optional character string which, if present, follows the message number. If the text is not
preceded by a blank, GENCAT will replace the character immediately following the message number with
a blank. The user will be informed that a blank has replaced the character. An exception is made if one
of two special characters, "2 or ",” follow the message number. These characters will not be replaced by
a blank. Their meaning is explained in the following section.

2-4 Application Message Facility

Message Record Special Characters
When catreap is writing a message to a file, the percent (%) instructs catreap to post a carriage return-line
feed before writing the next record. For example, a message in set 4:

3 AN ERROR OCCURRED DURING THE LOADING %
GF THE DATA BASE.

The execution of CATREAD (catindex,4,3); results in a display oft

AN ERROR OCCURRED DURING THE LOADING
OF THE DATA BASE.

The ampersand (&) indicates that the statement is continued on the next line. Message 98 in set 67 is:

98 THE NUMBER OF FILES &
DOES NOT MATCH THE &
SYSTEM'S CALCULATIONS,

The execution of cATREAD (catindex,67,98, ...); results in a display of:
THE NUMBER OF FILES DOES NOT MATCH THE SYSTEM'S CALCULATIONS.

Note the use of blanks as separators preceding the ampersand. Message records must begin in column 1
and may have leading zeros. For example, the format of message number 3 in some set is:

G0C3 PLEASE ENTER YOUR NAME.

The tilde (~) is used as a literal character. It instructs catreap to treat the character which follows it as a
literal part of the message (even if it is a special character). For example, two tildes in a row will put one
tilde into the message.

The exclamation mark (1) is discussed in "Parameter Substitution” in this section.

Comment Records

Comments are used throughout the catalog to document sets and messages, and to make them easier to
read. The format of a comment record, where comment is an optional string of characters is:

Scontmenty.

A blank between $ and [comment] is necessary only when the comment is a $seT or $0eLSET record.

Application Message Facliity 2-5

Sample Source Catalog

Notice the directives s, (sse1 numbers), message numbers, message comments, and the use of blanks in
the sample source catalog:

% This catalog is for development only. Messages will be
$ added as needed.

$**

$SET 1 Prompts

1 ENTER FIRST NAME

2 ENTER LAST NAME

$

$Ve*

$LANG O ASCIE (NATIVE-3000)

BSET 2 Error messages

1 NAME NOT ON DATA BASE

2 ILLEGAL INPUT

95 CPERATION 1S %

INCONSISTENT WiTH ACCESS TYPER

%

SCHANGE THE LANGUAGE TO JAPANESE

$LANG 221

100 JAPANESE MESSAGE

SLANG O SET LANGUAGE TO ASCIT (NATEVE-30QC)

Parameter Substitution

Parameter substitution can often be used with messages. An exclamation mark (1) is used within a mes-
sage to indicate where a parameter is to be inserted using catrean. The user must choose positional or
numerical parameter substitution. Mixing these two types within a message is not allowed.

Positional Parameter Substitution

Positional parameter substitution simply means that each of the parameters in the caTrReap parameter list
is to be inserted into the message at each successive "1". A maximum of 5 parameter substitutions is
allowed in one message. The following example is used to illustrate the use of positional parameter
substitution:

SPL STATEMENT
CATREAD {catindex, 13, 400, error,,,user, term);
PARAMETERS

BYTE ARRAY user (0:8):
BYTE ARRAY term (0:5):

MARY .KSE®, 0;
NTHREE", 0;

Message 400 in set 13 is:
400 TLLEGAL INPUT FROM USER 1 ON TERMINAL NUMBER |

The execution of the SPL statement in Figure 2-4, with the parameters given, results in the following
message:

ILLEGAL INPUT FROM USER MARY.KSE ON TERMINAL THREE,

2-6 Application Message Facility

Numerical Parameter Substitution

Numerical parameters allow the user to decide where the parameters are to be placed within the message.
The exclamation mark (1) is immediately followed by a number in the range 1-5. The following example
is used to illustrate the use of numerical parameter substitution:

SPL STATEMENT
CATREAD (catindex, 7, 4, error,,,fourstr, fivestr)
PARAMETERS

BYTE ARRAY fourstr (0:4):=VFOUR"™, §;
BYTE ARRAY fivestr (0:4):=YFIVE", 07

A message in set 7 is:

4 EOF DETECTED AFTER RECORD 11 iIN FILE §2

The execution of the SPL statement in Figure 2-5, with the parameters given, results in the following
message:

EOF DETECTED AFTER RECORD FOUR IN FILE FiVE.

Message 5 in set 7 is:

5 EOF DETECTED AFTER RECORD 12 IN FILE !1

A change in the call results in a different message:
CATREAD (catindex, 7, 5, error,,,fourstr, fivestr)
Message:

EOF DETECTED AFTER RECORD FIVE IN FILE FOUR.

Mixing numerical and positional parameter substitution characters is not allowed and will be flagged as
an error:

ECF DEYECTED AFTER RECCRD ! IN FILE #1.

Numeric parameter substitution can be used only with GENCAT and the catreas intrinsic. catreao inter-
prets the character tilde (~) as a literal character. If a character is preceded by a tilde (~), that character
is taken literally. For example, if set 7 also contains the following message:

6 ERROR 1 IN INPUT !

When the SPL statement, CATREAD (catindex,7,6,error,,,seventeen), is executed, the resulting output is:
ERROR 17 IN INPUTI

The second exclamation mark would not be used for parameter substitution because it is preceded by 2
tilde (~).

Application Message Facility 2-7

Catalog Naming Convention

Catalogs are MPE files accessed by application programs via the car intrinsics. An application that has
been localized into more than one language will typically have a separate message catalog for each lan-
guage. A naming convention facilitates using different localized versions of files required by an applica-
tion program.

A catalog filename can be identified with a maximum of five characters. Each native language supported
by NLS has a language 1D number (langnum). A three-digit language ID number can be appended to the
catalog filename to identify each localized catalog.

For example, an original unlocalized message catalog is APCAT000. The message catalog in German
would be APCATO008. A Spanish version would be APCAT012. Refer to Appendix B, "Supported Lan-
guages and Character Sets," for a complete list of native languages and their corresponding language ID
numbers. When the language 1D number has been selected, the xarpenp intrinsic may be used to form the
catalog filename. At run time the application program is responsible for determining which catalog to
open with the caropen intrinsic.

Maintaining a Message Catalog

Maintenance functions can include addition, deletion, and modification of records in the source file. The
input for merging consists of two files, the source file and the maintenance file. The maintenance file is
merged against the source file, either by line numbers or by sser and message numbers. If the user does
not know the line numbers, the ssev and message numbers can be used successfully. The context of the
sseT and message records in the maintenance file determines the type of maintenance performed on the
source. Changes made to a source during a maintenance merge may be kept in a collision filenamed by
the user. Collision files are created at the option of the user. Figure 2-3 illustrates how the collision file
may be merged against the modified source catalog to recreate the original source.

2-8 Application Message Facility

RELATIONSHIP OF COLLISION FiLE
TO SQURCE CATALOG FILE

@ MODIFY
ORIGINAL souacg\ / NEW SOURCE

GENCAT \

MAINTENANCE SQURCE COLLISION FILE
eent—— MODIFY S ——
NEW SOURCE GENCGAT QRIGINAL SQURCE
e SN B

COLUISION FILE MAINTENANCE FILE

Figure 2-3. Collision Files

Merging Maintenance Files by Line Numbers

Merging a maintenance file against a source catalog file by line numbers may include modifying, adding,
or deleting records.

Modifying a Record

If the maintenance file’s line number is common to the source file’s, the source’s record is overwritten by
the maintenance record.

Adding a Record

If the line number in the maintenance file does not exist in the source, the record represented by that line
number from the maintenance file is added to the source at that line number.

Deileting a Record

The directives seo11 and sep17 vorp=vooooon are used to delete records from the source file. If seo1y vorp=is
used, the records beginning with and including the record number of the sepir vorps record to record
xoocooe: will be deleted (line number xooccooe represents the line number xoooexxx of the source file).

Application Message Facility 2-9

Merging Maintenance Files by $SET and Message Number

When GENCAT reads a sset record from the maintenance file, all records following the sset record are
considered to be message records or comment records within that set until GENCAT reads another sser
record or exhausts the maintenance file. Set numbers must be in ascending order, and message numbers
must be in ascending order within each set.

The first record GENCAT expects to read, from the maintenance file, is a $seT, $0ELSET, Or a comment
record. GENCAT will continue to read and evaluate the maintenance file records until an error is en-
countered or the maintenance file is exhausted. After GENCAT reads a maintenance file record, it is
evaluated according to a set of rules, and a copy of the source is modified as necessary. The following rules
for evaluation apply to set numbers, message numbers, comment records, and the speLser directive.

Set Numbers

New set numbers are added to the source catalog file. All message numbers and messages following the
set record are assumed to pe new and will be added to the source file.

Set numbers, if already present, signify changes to the set of messages currently in the source catalog. All
message numbers and messages following this set are to be evaluated according to the rules for message
numbers.

Set numbers in a speLseT record indicates that the entire set of messages in the source is to be deleted.
Message Numbers

New message numbers within a sser are added to the new source. Message numbers that are already
present are deleted if no text follows the message number. If new text is supplied, the existing message
will be updated.

Comment Records

Comment records are written to the new source file or maintenance file as they are encountered.
The $DELSET Directive

The speLseT directive is allowed only in the maintenance file. It instructs GENCAT to delete the entire set
of messages denoted by xxr. Optional text may follow xxx, providing it is preceded by at least one blank.
The soeLseT directive is not written to the new file.

speLseT records must begin in column 1. The format of a soeLser record, where xxr is an existing set number
in the source catalog is:

$DELSET Xxx [fext:

The directives sser and soetseT may be either in uppercase or lowercase ($set and sdetset). Mixed cases are
not allowed (e.g., $set OT $delseT).

When one of the directives is encountered at the beginning of the maintenance file, it supercedes the
corresponding directive (if any) in the master file.

2-10 Application Message Facility

User Dialog

The user may modify a source file, format a source catalog, or expand a formatted catalog as shown in the
following dialog. Figure 2-4 illustrates the process of maintaining a GENCAT source file.

HRUN GENCAT.PUB.SYJ
KP32414A.00.00 GENCAT/300C (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

EXiT.

HELP.

MODIFY SOURCE CAYALOG.

. FORMAT SOURECE INTO FORMATTED CATALOCG.
EXPAND FORMATTED CATALOG INTQ SOURCE.

Il
ENTER NAME OF CATALOCS SOURCE FILE TO BE MODIFIED

EESAPCATOD0

ENTER NAME OF MAINTENANCE FILE
EESCATMANNT:

If the name of a nonexistent file is entered, an error message is displayed.

NP - O
. M

NONEXISTENT PERMANENT FILE (FSERR 523
EXPECTED AN EXISTENT FILE AS INPUT (GCERR 15)
ENTER NAME OF MAINTEMANCE FILE

A THA LN

ENTER INDEX OF MERGE YYPE

G. DO KOT MERGE.

1. HELP.

2. BY LINE NUMBER.

3. BY SET/MESSAGE NUMBER,

il
Entering o or aborts the maintenance function and returns to the main menu.

The user has the option of saving all the modifications, from the merge, in a collision file:

SAVE COLLISIONS? ENTER WYES™ OR ®NOM
>
ENTER NAME OF COLLISION FILE

1f the name of an existing file is entered, the prompt is repeated. A continues the merging without
saving the collisions.

GENCAT merges the source and maintenance files into a temporary file, and will prompt for the name
of a permanent file:

ENTER NAME OF NEW SOURCE CATALOG FILE

Sycucar

This prompt is repeated until a unique filename or a is entered. The temporary file is copied to the
new permanent file. If a is entered the merging is aborted.

Application Message Facility 2-11

MAINTAINING

SOLRCE CATALOG FILE. NEW SOURCE CATALGG FILE
FIXED ASCH. (MODIFIED SOURCE CATALOG
RECORD SIZE = 408 ~> 2568 VIA MAINTENANCE FILE).

FIXED ASCH,
SAME RECORD SIZE AS
GENCAT SOURCE CATALOG FILE,

3/ N\

MAINTENANCE FILE. COLLISION FILE
FIXED ASCH. (OPTIONAL FILE — ON
SAME RECORD SIZE AS DEMAND FROM USER),
SOURCE CATALOG FILE FIXED ASCH,

SAME RECORD SIZE AS
SOURCE CATALOG PILE.

Figure 2-4. Maintaining a GENCAT Source File

Formatting a Source Catalog

1t is necessary to format the source catalogs so the car intrinsics can access them. GENCAT formatted
files are binary and cannot be edited. Formatting compacts files and creates a directory, which saves disc
space and reduces access time.

During the formatting process, GENCAT verifies that:
» All directives are legal and used correctly.
» Set numbers are in ascending order.
m Set numbers are greater than 0 and less than or equal to 255.

Message numbers are in ascending order within each set.

Message numbers are greater than 0 and less than or equal to 32766.
» Continuation and concatenation characters are correct.

» Parameter substitution characters are used correctly.

2-12 Application Message Facility

The following dialog is used for formatting a source catalog:

BRUN GENCAT.PUB.SYS
HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTO FORMATTED CATALODG.
4. EXPAND FORMATTED CATALOG INTO SOURCE.

>

ENTER NAME OF SQURCE FILE TO BE FORMATTED
g EWCAT

FORMATTING...

ENTER NAME FOR NEW FORMATTED FILE

bR FORMEAT

TOTAL HUMBER OF SETS FORMATTED = &
TOTAL NUMBER OF MESSAGES FORMATTED = 167

FORMATTING SUCCESSFUL

Expanding a Formatted Catalog

GENCAT contains a function to recreate the original source catalog file by expanding the formatted
catalog. The result is a new source catalog that can be edited and then converted to a formatted catalog.
Figure 2-5 is an example of the user dialog for expanding a formatted catalog. The following dialog is used
for expanding a formatted catalog;

HRUN GENCAT .PUB.SYS

HP32414A.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

0. EXIY.

1. HELP.

2. MODIFY SOURCE CATALOG.

3, FORMAT SOURCE INTQ FORMATTED CATALOG.
4, EXPAND FORMATTED CATALOG INTC SOURCE.

= .
ENTER KAME OF FORMATTED LATALOG TO EXPAKD

PREFORMCAT

ENTER NAME OF NEW SOURCE FILE
RSNCATSOUR
EXPANDING. ..

TOTAL NUMBER OF SETS EXPANDED = &
TOTAL RUMBER OF MESSAGES EXPANDED = 167

EXPANSION SUCCESSFULLY COMPLETED

Application Message Facllity 2-13

RELATIONSHIP OF COLLISION FILE
TO SOURCE CATALOG FILE

BN

CRIGINAL SOURCE

@/

MAINTENANCE SOURCE

BN

NEW SOURCE

j/

COLLISION FILE

MODIFY

GENCAT

MODIFY

GENCAT

i

NEW SOURCE

N

COLUISION FILE

/
ORIGINAL SOURCE
\

T
MAINTENANCE FILE

Figure 2-5. Formatting/Expanding GENCAT Source Files

GENCAT JCWs

GENCAT uses three Job Control Words (GCMAINT, GCFORMAT, and GCEXPAND) to indicate the
status of the function performed. GENCAT initializes all three JCWs to zero upon entry and sets GC-
MAINT, GCFORMAT, or GCEXPAND at the end of a maintenance, formatting, or expanding function,
respectively. If the function succeeds, the appropriate GENCAT JCW remains set to zero. If the function
fails, the appropriate JCW is set to the GENCAT error number describing the failure. For example, if a
formatting function fails with error number 10 (GCERR 10), GCFORMAT is set to 10. If the process
completes unsuccessfully, the system JCW is set to rataL; the status of the GENCAT JCW is not important.

GENCAT in Batch Mode

GENCAT can be invoked interactively or in batch mode. GENCAT will abort a job in batch mode if an
error is encountered while formatting, expanding, or modifying.

2-14 Application Message Facility

GENCAT Help Facility
With the GENCAT online HELP facility, the user can enter the index number for HELP from the meau

#Ho il

or a "7" in response to any prompt that does not have a menu selection for HELP. The following is an
example of the GENCAT HELP Facility dialog:

HRUN GENCAT.PUB.SYS

HP324144.00.00 GENCAT/3000 (C) HEWLETT-PACKARD., 1983
ENTER INDEX OF DESIRED FUNCTION

0. EXIT.

1. HELP.

2. MODIFY SOURCE CATALOG.

3. FORMAT SOURCE INTC FORMATTED CATALOG.
4. EXPAND FORMATTED CATALOG INTO SQURCE.

>>
This is the driver menu for GENCAT.

Input consists of a numeric index, 0 through 4. Each index denotes a function for GENCAT to perform.

- Witl exit GENCAT and return you to MPE.

- Wiil display this message.

- Witl direct GENCAT to begin the maintenance function.
« Witt direct GENCAT to begin the formatting function.
- Will direct GEKCAT to begin the expansion function.

£ R e O

For each prompt, an input of an index for HELP or a "?" (depending upon the type of prompt) will display
instruction for that prompt.

Formatting is the creating of an internal representation of a source message catalog into a form used by
the camooxx intrinsics. Maintenance is modifying the source message catalog by merging a maintenance file
against it. The merge may be by line numbers set and message numbers. Expansion is converting the
formatted file back into a source message catalog.

Pressing exits GENCAT and returns to MPE.

Application Message Facllity 2-15

Error Messages

GENCAT error messages are listed in Table 2-1.

Table 2-1. GENCAT Error Messages

ERROR #

MESSAGE

MEANING

ACTION

FREAD ERROR ON SOURCE
FILE.

A failure by rrem
when reading a
source message cata-
log.

Recreate the source
message catalog.

INPUT FILE MUSY HAVE AT
LEAST ONE RECORD.

The file has an EOF
of zero (0).

Place at lsast one
record in the file.

INPUT FILE MUST CONTAIN
FIXED LENGTH RECORDS
ONLY .

File does not have a
fixed record length.

Create the file with a
fixed record length.

INPUT FILE MUST BE US-
ASCII FILE ONLY.

Source and mainte-
nance files must have
records that are in
USASCII format,

Create the source
and maintenance files
with USASCII for-
mat.

INPUT FILE RECORD SIZE
MUST BE BETWEEN 40 AND
256 BYTES.

The record size of a
source or mainte-
nance file is greater
than 256 bytes (128
words} or less than 40
bytes (20 words).

Create a source and
maintenance file with
a record size greater
or equal to 40 bytes
or less than or equal
to 256 bytes. The
record length in-
cludes any line num-
bers in the file.

SET NUMBERS MUST BE BE-
TWEEN T AND 255.

A set number in a
maintenance or
source file is not
greater than or equal
to 1, or not less than
or equal to 255. The
set number may not
be positive or nu-
meric.

Change set number
to a value between 1
and 255 inclusive.

2-18 Application Message Facility

Table 2-1. GENCAT Error Messages (cont.)

ERROR #

MESSAGE

MEANING

ACTION

SET NUMBERS MUST BE IN
ASCENDING SEQUENCE.

A set number is less
than or equal to the
previous set number
in the source file. Er-
ror can be detected at
format time or during
a maintenance func-
tion.

Change numbers to
strict ascending se-
quence.

MESSAGE NUMBERS MUST Bt
BETWEEN T AND 32766.

A message number
value is not between 1
and 32766 inclusive.

Change the message
number value to a
value between 1 and
32766 inclusive.

10

MESSAGES MUST EITHER
CONTAIN ALL NUMBERED OR
ALL POSITIONAL PARAMETER
SUBSTITUTION CHARAC-
TERS. MIXES KOT AL-
LOWED .

GENCAT detected a
mix of parameter
substitution charac-
ters during the mes-
sage scan. For exam-
ple, a message con-
tained numeric sub-
stitution characters
as well as positional
substitution charac-
ters.

Change the parame-
ter substitution char-
acters either to all nu-
meric or all positional
substitution charac-
ters (for each mes-
sage only).

11

MESSAGE NUMBERS MUST BE
iN ASCENDING SEQUENCE.

A message number
was processed that is
less than or equal to
the previous message
number. The mes-
sage numbers within
a set are not in as-
cending sequence.

Rearrange the mes-
sages, within the set,
to strict ascending or-
der.

12

MESSAGE CONTAINS NON-
BLANK CHARACTER IMMEDI-
ATELY FOLLOWING MESSAGE
NUMBER. NON-BLANK CHAR-
ACTER ASSUMED TO BE A
BLANK.

GENCAT detected a
non-blank character
immediately follow-
ing the message num-
ber in a message.
GENCAT replaces
this character with a
blank.

Insert a blank be-
tween the message
number and the mes-
sage text.,

Application Message Facility 2-17

Table 2-1. GENCAT Error Messages (cont.)

ERROR #

MESSAGE

MEANING

ACTION

13

EXPECTED ONE OF THE FOL-
LOWING INPUTS:
0,1, 2, 3, 4, OR RETURN.

GENCAT detected
an incorrect input in
response to the menu
{(prompts for a func-
tion).

Respond with 0, 1, 2,
3,4,0r only.

14

EXPECTED ONE OF THE FOL-
LOMING INPUTS:
0, 1, 2, 3, OR A RETURN.

GENCAT detected
an incorrect input in
response to the menu
{prompts for the type
of merging it is to
perform).

Respond with 0, 1, 2,
3, or [Returr] only.

15

EXPECTED AN
FILE AS INPUT.

EXISTENT

The file does not exist
on the system.

Fither create the file
or input the name of
a file that exists on
the system,

16

EXPECTED A UNIQUE, NON-
EXISTENY FiILE NAME AS
INPUT.

The file already exists
on the system. The
name of the file
should be one that
does not exist on the
system.

Purge the file or input
the name of a file that
does not exist on the
system.

17

EXPECTED A RESPONSE CF
HYES® QR ™NOY AS INPUT.

GENCAT requires a
response of either
YES, yes, KO, OF no {O
the prompt of "save
coListons?” Enter ves
OF Ne.

Respond with ves,
yves, NG, OT no.

18

INPUT FILES MUST HAVE
EQUAL RECORD SIZES FOR
THIS FUNCTION.

Source and mainte-
nance files must have
equal record sizes if
the maintenance file
is to modify the
source file,

Create a mainte-
nance file that has a
record size equal to
the record size of the
source file.

2-18

Application Message Facility

Table 2-1. GENCAT Error Messages {cont.)

ERROR #

MESSAGE

MEANING

ACTION

20

THE CONSTRUCT OF $DELSEY
I8 HOT ALLCWED IN THE
SOURCE .

The construct speLseT,
which may be used in
a maintenance file,
was detected in a
source file during a
maintenance func-
tion.

Remove $DELSET Con-
struct from the
source file.

21

ONLY FIVE (5) POSITIONAL
PARAMETER SUBSTITUTIONS
ALLOWED PER MESSAGE.

More than five (5)
parameter substitu-
tion characters were
detected in one mes-
sage. Up to five pa-
rameter substitution
characters are al-
lowed per message.

Fewer than or equal
to 5 parameter substi-
tution characters per
message only are al-
lowed.

22

MAINTENANCE FILE MUST BE
NUMBERED FGR LINE-NUMBER
MERGES.

The maintenance file
is an unnumbered
file. The mainte-
nance file must be a
numbered file if it is
to be used in a line-
number merge.

Number the mainte-
nance file if the file is
to be used in a line-
number merge.

23

SOURCE FILE MUST BE KUM-
BERED FOR LINE-NUMBER
MERGES,

The source file is an
unnumbered file.
The source file must
be a numbered file if
it is to be used in a
line-number merge.

Number the source
file if the file is to be
used in a line-number
merge.

24

SCURCE FILE CANNOT CON-
TAIN FORMS OF SEDIT.

The source file was
examined for seniy
and sepIt voip= con-
structs. These are not
allowed (for example,
if collision files are
used, an ambiguity
would exist if the sep1y
and $epiT voID= Were
left in the source file).

Remove all occur-
rences of sepit and
$epiT volp= from the
source file.

Application Message Facility

2-15

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION
25 sequence numser IN $epiT | The value following | Reevaluate the value
VOID RECORD CONTAINS Too | the sepit voip= may | and correct it, it must
many picits. EIGeT 1s | have a maximum of | represent aline num-
THE MAXIMUM. eight place holders. ber.
26 FILE 1S NoT A ForMATTED | Formatted catalogs | Format the file using
FILE. only can be expanded | GENCAT.
(for example, files
formatted by GEN-
CAT).
27 SET RECORD 1s REeuIReD | A message was found | Place the message in
BEFORE A MEssAGe recorp | before set number | a set or place a set
IS FORMATTED. was defined. number before the
message.
28 vALUE N RIGHT 8YTE of | Themessage contains | Consult your
KAMJI CHARACTER 1s IN- | special escape se- | Hewlett-Packard rep-
VALID, quences provided by | resentative, or re-
Hewlett-Packard that | move all occurrences
are used for research | of the form escs<termi-
and development ac- | nator> OF ESC(<termina-
tivities. These special | tor> from the message
escape sequences are | catalog. Where(EsC)is
not supported and | the escape character
Hewlett-Packard as- | and <terminator> isaor
sumes no responsibil- | A - z.
ity for their use.
29 SCAN CoMPLETED WITH# N0 | Themessage contains | Consult your
CLOSING KANJI ESCAPE SE- | special escape se- | Hewlett-Packard rep-
QUENCE. EXPECTS A Clos- | quences provided by | resentative, or re-
NG Kkandi Escape se- | Hewlett-Packard that | move all occurrences
auence To TeERMINATE | are used for research | of the form escs<termi-
kANJI cuARacTER sE- | and development ac- | nator> O ESC(<termina-
QUENCE . tivities. These special | tor> from the message
escape sequences are | catalog. Where is
not supported and | the escape character
Hewlett-Packard as- | and <terminater> isa or
sumes no responsibil- | A - 2.
ity for their use.

2-20 Application Message Facility

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION
30 INCOMPLETE KANJI cLosING | The message contains | Consult your
ESCAPE SsEQuEncE DE- | special escape se- | Hewlett-Packard rep-
TECTED. quences provided by | resentative, or re-
Hewlett-Packard that | move all occurrences
are used for research | of the form escs<termi-
and development ac- nator> Of ESC{<termina-
tivities. These special | tor> from the message
escape sequences are | catalog. Where[gsc}is
not supported and | the escape character
Hewlett-Packard as- | and <terminator> is@ or
sumes no responsibil- | a - z
ity for their use.
31 VALUE IN LEFT-BYTE of | Themessagecontains | Consult your
KANJI CHARACTER Is IN- | special escape se- | Hewlett-Packard rep-
VALID. quences provided by | resentative, or re-
Hewlett-Packard that | move all occurrences
are used for research | of the form escs<termi-
and development ac- | nator> Of ESC(<termina-
tivities. These special | tor> from the message
escape sequences are | catalog. Where (gsc}is
not supported and | the escape character
Hewlett-Packard as- | and <terminator> isa or
sumes no responsibil- | a - 2.
ity for their use.
32 VALUE IN PARAMETER sec- | The message contains | Consult your
TION OF KANJI ESCAPE SE- | special escape se- | Hewlett-Packard rep-
QUENCE 1S INVALID. Ex- | quences provided by | resentative, or re-
PECTED A STRING OF 016- | Hewlett-Packard that | move all occurrences
I7s. are used for research | of the form escs<termi-
and development ac- | nator> O ESC(<termina-
tivities. These special | tor> from the message
escape sequences are | catalog, Where is
not supported and | the escape character
Hewlett-Packard as- | and <terminator> iSa or
sumes no responsibil- | A - z.
ity for their use.
33 BLANK RECORDS THAT ARE | A blank record was | Remove the record

NOT CONTINUATICH RECCRDS
ARE NOT ALLOWED.

detected in the
source catalog and it
is a continuation
record for the previ-
ous record.

from the source file,
or modify the record
before it; end the
record with a % or &
character.

Application Message Facility 2-21

Table 2-1. GENCAT Error Messages (cont.)

ERROR # MESSAGE MEANING ACTION
34 INTERNAL GENCAT FILE HAs | The file patam, used by | Return to the main
BEEN EXHAUSTED. GENCAT internally, | menu and redo the
is full. formatting function
THE FILE “DATAM® HAS . e
BEEN EXHAUSTED. FOR AN without exiting the
program.
IMMEDIATE SOLUTION JUST
REDO YCUR FUNCTION
AGAIN, THE PROGRAM IN-
CREASED THE LIMITS FOR
YOU. FOR STREAM JOBS USE
THE FILE EQUATION BELOW:
(see note below)*
RUN THE GENCAT PROGRAM.
(INCREASE THE FILE SIZE
UNTIL YOU GET RID OF THE
PROBLEM.)
PLEASE INFORM HEWLETT-
PACKARD OF THIS PROBLEM,
35 sLaNe command specirien | The language re- | If you are not using
A LANGUAGE NOT CURRENTLY | quested is not config- | Asian text, remove
CONF 1GURED. ured in the system. the sians record. If
you are using an
Asian language, re-
quest your System
Manager to install
the language in the
system.

* The file equation for error #34 above is:
sFILE DATAM=DATAM;REC=-256,32,F,ASCI[;D1SC=20000,32,32;BUF=4; TEMP

2-22 Application Message Facility

Table 2-2. MAKECAT/GENCAT Comparison

FEATURES

MAKECAT

GENCAT

Access Methods

FOPEN, GENMESSAGE, and FCLosE In-
trinsics open, access, and close
formatted MAKECAT cata-
logs.

catopEN, caTREAD, and catciose infrinsics
open, access, and close formatted GEN-
CAT catalogs.

Formatting

Places an internal directory in
the file’s user labels. The file is
formatted in place without cre-
ating a new file.

A source message file is formatted into
another file, leaving the original source
intact. The application uses the format-
ted file. The original source {ile can be
purged. The formatted file can be ex-

panded to restore the original source
file.

Function

Converts or formats HELP
and message files into cata-
logs. Installs system message
catalog, using the sunp entry
point.

Formats application message catalogs.
Provides a maintenance facility to mod-
ify existing source catalogs and the ca-
pability of expanding a formatted file
into the original source file.

Input

The name of a file must be en-
tered in a file equation. :FILE
INPUT=YOUT file>.

GENCAT prompts the user for the
name of a file.

Literal Character

Not supported.

The tilde (~) serves as a literal charac-
ter, causing the character which imme-
diately follows it to be treated as text.

Messages

The message number range
per set i3 1-255,

The message number range per set is
1-32766.

Numerical Parame-
ters

Not supported.

Up to 5 numerical parameters can be
contained in a message.

Output Saves the formatied file as a | Prompts the user for the name of the
temporary file with the name | formatted file. The file is saved as a per-
CATALOG. manent file.

Processing Formats more quickly than | Verifies each message for correct pa-

GENCAT.

rameter substitution characters. Ma-
nipulates two temporary files while for-
matting the source file.

Application Message Facility 2-23

Table 2-2. MAKECAT/GENCAT Comparison {cont.)

FEATURES

MAKECAT

GENCAT

Record Format

Accepts source files of any
size, but the file it saves has a
record size of 80 bytes. The
system message catalog is
fixed binary. An application
catalog is fixed ASCIL

Accepts source catalog files with record
sizes from 40 to 256 bytes. The format-
ted file has a record size of 128 words,
and is fixed binary. When a formatted
catalog is expanded into a source cata-
log, the new source catalog is fixed
ASCII with a record size identical to the
original source catalog.

When maintenance is being performed,
both the source file and the mainte-
nance file must be of equal lengths in
fixed ASCIIL. The resulting source and
collision files (if specified) will be fixed
ASCII, and their record sizes will equal
the record size of the original source
file.

Sets

The set directive is sser. The
set number range for a catalog
is 1-63.

The set directive can be $seT o1 $set, The

set number range for a source catalog is
1-255.

User Interface

The user must know which en-
try points to use and when to
use them. Files are input via
file equations. Error messages
require user interpretation.

Menu-driven, originating from a cata-
log. Each prompt has HELP text associ-
ated with it. Error messages are self-ex-
planatory.

2-.24 Application Message Facllity

NLS in MPE Subsystems 3

Native Language Support (NLS) supplies the applications designer with the tools to support native
language data and local custom formats. NLS provides support features in FCOPY /3000,

IMAGE /3000, KSAM/3000, QUERY /3000, SORT-MERGE,/3000, VPLUS /3000, and RAPID/3000.
COBOLII access to native language collating sequences is included in the SORT-MERGE /3000
subsection discussion.

The emphasis of NLS in the subsystems is on providing the end-user, rather than the application
designer, with local language data and formats. User interfaces (prompts, commands, and messages) of
the subsystem utility programs, for example, FORMSPEC or DBUTIL, are not localized.

This reference material is intended to be used as addenda to the subsystems manuals. Refer to the
SORT-MERGE/3000, KSAM /3000, FCOPY /3000, QUERY /3000, IMAGE /3000, VPLUS/3000, and
RAPID /3000 manuals for complete documentation.

NLS in MPE Subsystems 3-1

FCOPY/3000

Native Language Support {(NLS) features in FCOPY /3000 can be accessed by adding a Laxg= parameter
to the existing options:

sFCOPY FROM=A; TO=B; LANG=GERMAN; UPSHIFY

If the Lane= parameter is omitted, FCOPY /3000 obtains the current data language with nseTLANs (mode 2)
and functions as it did before the introduction of NLS.

Options

The FCOPY /3000 options affected by language dependency are character printing, translating, upshift-
ing, and updating KSAM/3000 files.

CHAR Option
Character codes not represented by symbols are displayed as periods. The to= file can be a line printer, a
keyboard display terminal, or an intermediate disc file to be listed at a later time.

CHAR No LANG= The NATIVE-3000 processing scheme will be retained.

CHAR LANG= The character definition table associated with the lan-
guage will be used. Characters of type 3 (undefined
graphic character) and 5 {control code) as in nLnFo item
12, are replaced by periods. Refer to Chapter 4, "Native
Language Intrinsics," for more information.

Character Translate Options
These options translate data for ASCH-to-EBCDIC and EBCDIC-to-ASCII conversions.
EBCDICIN/ EBCDICOUT Input of the wane= parameter will result in the translation table

associated with the language being used.

For example, using an EBCDIC-to-ASCII conversion table,
FCOPY /3000 converts data from GERMAN EBCDIC to RO-
MANS:

>FROM=MYGERCFL; TO= MYROM&FL; LANG=GERMAN; EBCDICIN
EQOF FOUND IN FROMFILE AFTER RECORD 29

30 RECORDS PROCESSED *** O ERRORS

NOTE

This option is not available for 16-bit languages.

3-2 NLSin MPE Subsystems

UPSHIFT Option

The upsnIFT option converts Jowercase alphabetic characters to their corresponding uppercase characters
as part of the copying operation.

UPSHIFT No LANG= Any character belonging to USASCII or to one of the
extensions will be upshifted as it would have been be-
fore the introduction of NLS.

UPSHIFT LANG= All characters will be upshifted according to the speci-
fied language upshift definition.

FCOPY/3000 and KSAM/3000 Files

To change the language of an existing file, a new KSAM/3000 file must be built with the new language
attribute, and the old file copied into the new. If FCOPY /3000 copies an existing KSAM /3000 file to a
new KSAM/3000 file the same language attribute is assigned to the new file. The taxe= option of
FCOPY/3000 cannot be used to change the language of a KSAM/3000 {ile.

Combined Use of Options
Using Lane= without another relevant option such as upskirt or escoicin usually results in a warning message:
<<966>> LANG OPTION NOT RELEVANT

The user can continue without affecting the outcome of the operation. The vanc= option is ignored. The
following combinations are flagged as an error:

BCOICTN; LANG=IXX
BED 1 COUT s LANGRELY
EBCDIKIN; LANG=XY
EBCD IKOUT ; LANG=ICXK
KANA; LANG=XXX

For exampls:

>FROM=DEUTSCH; TO=DANSK; LANG=GERMAN; EBCDICIN
METHSYNTAX ERROR: ILLEGAL COMBINATION OF OPTIONS
9 RECORDS PROCESSED *** 1 ERROR

NLS in MPE Subsystems 3-3

Error Messages
Table 3-1 lists the error messages for FCOPY /3000.

Table 3-1. FCOPY /3000 Error Messages

VANT .,

relevant to the com-
mand last entered.

ERROR # MESSAGE CAUSE ACTION
960 LANGUAGE NoT conFicurep. | The language re- | Verify spelling of lan-
quested is not config- | guage name. Ask the
ured on the system. System Manager to
configure the lan-
guage on the system.
961 NLS NOT CONFIGURED. No native languages | Ask the System Man-
are configured on the | ager to configure the
system. native langnage on
the system.
966 LANG OPTION NoT RELE- | The LanG option is not | Check command for

correct options. You
are given the choice
whether or not to
continue the opera-
tion.

Performance Issues

The implementation of cHar, upsuIFT, and escoicin/escoicout using NLS intrinsics and langnage definition

tables requires additional time for the conversion process.

3-4 NLS In MPE Subsystems

IMAGE /3000

Native Language Support (NLS) in IMAGE enables the user to assign a language attribute to a database.
This language attribute determines the collating sequence used to insert an entry with a sort item of type
X or U in a sorted chain. It also determines the operation of comparisons for entry level psrock calls. In
order to use NLS with IMAGE /3000, this language attribute will have to be specified by the user either
at schema processing time or through the ser command in DBUTIL.

Utility Programs

NLS features in IMAGE /3000 can be requested in four utilities: DBSCHEMA, DBUTIL, DBUNLOAD,
and DBLOAD.

DBSCHEMA
The optional language attribute will be specified:
BEGIN DATA BASE databasename i, ancurce:languages ;

The language name or ID number can be used for language. If no Lancuace is specified, the database will
use NATIVE-3000 as a defauit.

The names of data items and data sets are restricted to certain USASCII characters. This allows schemas
to be valid internationally, for all Hewlett-Packard 8-bit character sets. It also allows the sources of
application programs which call IMAGE /3000 intrinsics to be entered from and displayed on all 8-bit and
7-bit (USASCI) terminals.

DBUTIL

DBUTIL includes the set, weLe, and siow commands:

SET: SET LANGUAGE= language. This command can be issued only on a virgin root file or an
empty database (where <language> is the language name or language ID number).

HELP: seLp swow and xere set will display the syntax for swow and ser commands with the tascuace
option.

SHOW: siow databasename ymaintwordiuacuace. The language attribute of the database is
displayed.

NLS in MPE Subsystems 3-5

DBUNLOAD/DBLOAD

DBUNILOAD copies the data to specially formatted tapes or disc volumes. The language ID number of
the database is stored along with the data.

DBLOAD warns the user, who tries to load data, when the language attribute of the database on disc and
the database on tape are incompatible:

THE {ANGUAGE OF THE DATA BASE IS DIFFERENY
FRCM THE LANGUAGE FOURD ON THE DBLOAD MEDIA.

If the user is running DBLOAD in a session, the user may choose to continue:
CONTINUE DBLOAD OPERATION ? (Y/N)

In case of a job execution of DBLOAD, or a negative answer () to the previous question, the DBLOAD
operation is prematurely terminated.

Intrinsics

The language attribute of the IMAGE/3000 database enables the IMAGE /3000 intrinsics to utilize native
language features.

DBOPEN

osoren checks the language attribute of the database. When the language attribute of the database is not
supported by the current configuration of the system, an error code of -200 is returned:

DATA BASE LANGUAGE NOT SYSTEM SUPPCRTED.
DBPUT

The position of a new entry with a type X or U item in a sorted chain is determined according to the
collating sequence of the language attribute of the database.

If the database language attribute is NATIVE-3000, the insertion of a new entry in the sorted chain is
determined by the result of a BYTE COMPARE between the key of the new record and the keys of the
entries already in the chain.

1f the database has a language attribute other than NATIVE-3000, the collating sequence definition of the
native language is used via a system version of the sLcoLLaTe intrinsic to determine where to insert the new
entry.

3-8 NLSin MPE Subsystems

DBINFO

oe1nFo provides additional information about the language attribute of the database:

Mode: 901

Purpose: Obtain language attribute of the database,
Qualifier: Ignored

Buffer Array Contents: Word 1 contains the language ID number.
DBLOCK

If a lock item is of type U or X, and a lock specifies an inequality (range), the collating sequence for the
language of the database will be used.

Changing The Language Atiribute of an IMAGE /3000 Database

This change cannot be done with a single command. Once data has been stored in an IMAGE /30600
database with a native language attribute, changing the language attribute requires reorganizing data
along any sorted chains according to the collating sequence of the new language.

The procedure is:

1.
2.
3.

DBUNLOAD the database.
Purge the database using purce in DBUTIL.

Modify the schema with the language attribute set by the Lansuase: parameter and create a new root
file with the schema processor.

Create the database using create in DBUTIL.

Run DBLOAD in session mode. A warning message is issued because the language has been changed
and a prompt is displayed:

CONTINUE DBLOAD OPERATION? (Y/N)

Enter §f to complete the change of the langunage attribute.

NOTE

All IMAGE /3000 databases created before NLS are considered to have
NATIVE-3000 as a language attribute.

NLS in MPE Subsystems 3.7

Error Messages

The three types of error messages used in IMAGE /3000 are listed in the following tables. Table 3-2 lists
Utility Program Conditional Messages, Table 3-3 lists Library Procedure Calling Errors, and Table 3-4

lists Schema Syntax Errors.

Table 3-2. IMAGE /3000 Utility Program Conditional Messages

MESSAGE

MEANING

ACTION

DATA BASE LANGUAGE NOT SYSTEM
SUPPORTED.

The database language is not
currently configured on your
system.

Ask the System Manager to
configure the native language
on your system, or provide a
valid language.

ERROR READING ROOT FILE RECORD.

DBUTIL 15 unable to read a
root file record.

Contact your Hewlett-
Packard support representa-
tive.

ERROR WRITING ROOT FILE RECORD.

DBUTIL has detected an er-
ror while writing a root file
record.

Contact your Hewlett-
Packard support representa-
tive.

INVALID LANGUAGE.

The language name or number
contains invalid characters.

Retype the correct language
name.

LANGUAGE MUST NOT BE LONGER THAN
16 CHARACTERS.

The language name is too long
and must be incorrect.

Retype the correct language
name.

LANGUAGE NOT SUPPORTED.

The language specified is ei-
ther not supported on your
system or is not a valid lan-
guage name or ID number.

Contact the System Manager
for configuration of that lan-
guage or provide a valid lan-

guage.

NLINFO FAILURE.

An error was returned by MPE
NLS.

Contact your Hewlett-
Packard support representa-
tive.

NLS RELATED ERROR.

An error was returned by MPE
NLS on a opsoren on the
database.

Contact your Hewlett-
Packard support representa-
tive,

3-8 NLSin MPE Subsystems

Table 3-2. IMAGE/3000 Utility Program Conditional Messages (cont.)

MESSAGE

MEANING

ACTION

THE LANGUAGE OF THE DATA BASE IS
DIEFERENT FROM THE LANGUAGE
FOUND ON THE DBLOCAD MEDIA,

The user has changed the lan-
gunage attribute of the database
between DBUNLOAD and
DBLOAD. DBLOAD wants
the user to be aware of poten-
tial differences in sorted
chains in the collating se-
guence of the two languages
(the language of the database
on disc and tape are different).
In session mode the question
CONTINUE DBLOAD OPERATION?® iS
asked. Injob mode, DBLOAD
will terminate execution.

After noting the information
returned by DBLOAD, and
the result on eventual sorted
chains in the database, pro-
ceed with the operation by an-
swering ves.

Table 3-3. IMAGE /3000 Library Procedure Calling Errors

CCL

CONDITION

MEANING

ACTION

-200

DATA BASE LAKNGUAGE NOT
SYSTEM SUPPORTED.

pBOPEN attermnpted to
open the database
and found that the
language of the
database is not cur-
rently configured.
The collating se-
quence of the lan-
guage is unavailable;
DBOPEN cannot open
the database.

Ask the System Man-
ager to configure the
language on your sys-
tem.

-201

NATIVE LANGUAGE SUPPORT
HOT TNSTALLED,

NLS internal struc-
tures have not been
built at system
startup. The collating
sequence table in the
langnage of the
database is unavail-
able; psores cannot
open the database.

Ask the System Man-
ager to install NLS.

-202

MPE NATIVE LANGUAGE SUP-
PCRT ERROR #1 RETURNED
BY NLINFO.

The error number
given was returned by
MPE NLS on a nuinso
call in peopeN.

Ask the System Man-
ager to install NLS.

NLS in MPE Subsystems

3-9

Table 3-4. IMAGE /3000 Schema Syntax Errors

MESSAGE

MEANING

ACTION

BAD LANGUAGE.

The language name contains
an invalid character or lan-
guage number is not a valid in-
teger.

Examine schema to find incor-
rect statement, edit, and run
Schema Processor again.

DATA BASE NAME TOO LONG.

The database name contains
more than six characters.

Examine schema to find incor-
rect statement, edit, and run
Schema Processor again.

LANGUAGE EXPECTED.

The schema processor ex-
pected, at this point, to find a
LANGUAGE statement after the
comma following sesin pata
BASE name statement.

Examine schema to find incor-
rect statement, edit, and run
Schema Processor again,

LANGUAGE NOT SUPPORTED.

Language specified is not cur-
rently supported on your sys-
tem or is not a valid Janguage.

Examine schema to find incor-
rect statement, edit, and run
Schema Processor again.

NATIVE LANGUAGE SUPPORT ERRGR.

An error was returned by MPE
NLS.

Contact your Hewlett-
Packard support representa-
tive,

KSAM/3000

The Keyed Sequential Access Method (KSAM/3000) organizes records in a file according to the content
of key fields within each record.

Native Language Support (NLS) in KSAM /3000 provides the resources to create files whose keys of type
BYTE are sorted according to a native language collating sequence. All BYTE keys in the file will be
sorted using the collating sequence table of the specified language. Keys, as well as data in the record,
may contain 8-bit character data.

A file language attribute may be supplied when a KSAM/3000 file is created to provide a key file orga-
nized according to the collating sequence of a native language. The language attribute is provided when
the file is created. ALl KSAM/3000 files created before NLS was introduced are considered to have

NATIVE-3000 as a language attribute.
A KSAM/3000 file can be built with KSAMUTIL, or programmatically using roren.

3-10 NLSin MPE Subsystems

Creating KSAM/3000 Files with KSAMUTIL

When using KSAMUTIL, the parameter tans=langname or Lane=langnum may be supplied on the surip
command, as shown in the dialog below. NATIVE-3000 is used as the default language attribute if no

language is specified.

The language specified in the taxs= parameter must be installed on the system when the command is issued
for KSAMUTIL to build the file. If the language is not installed, an error message is returned and the file

is not built.

The following dialog indicates Danish as the specified language and the language attribute of the

KSAM/3000 file is to be checked by the veriFy command (mode 3):
8RUN KSAMUTIL.PUB. SYS)

HP32208A.03.13 THU, FEB 16, 1984, 8:54 AM KSAMUTIL VERSION:A.03.13
MAUTLD TEST REC=-80,3,F,ASCII;KEY=B,1,4;KEYFILE=YESTK; LANG=DANISH

WHICH (1=FILE INFO, 2=KSAM PARAMETERS, 3=KSAM CONTROL, 4=aLL)?Ji

TEST.LORO.NLS CREATOR=SLORO
EGPTIONS(D04005)=KSAM, :FILE, NOGCTL, F, FILENAME, ASCII, PERM
AOPTIONS(000400)=DEFAULT, NOSUF, DEFAULT, NO FLOCK, NO MR, IN
RECSIZE:SUB:TYP:LDNUMiDRT:UN.: CODE:LOGICAL PTR: END OF FILE:FILE LIMIT

-80; 9: 0O: 3; 89 23 G 0; 0;: 1023
LOG. COUNKT:PHYS, COUNT:IRBLE SZ:EXT SZ:NR EXT: LABELS;LDN: DISCABDR:
0: 01 -240: 43: 8: 0: 3:000002342517:
KEY FILERTESTK KEY FILE DEVICE=4 SiZE= 114 KEYS= 1

FLAGUCRD{O0C020)=RANDCOM PRIMARY, FIRST RECORD=0, PERMANENT
KEY TY LENGTH 10C. D KEY BF LEVEL

1B 4 T8 168 1
DATA FILE = TEST VERSICN= A.3.13
KEY CREATED= &47/'84& 9: 0; 7.6 KEY ACCESS= 47/'8B4 9: 0:19.2
KEY CHANGED= 47/'84 9: 0: 8.5 COUNT START= 47/:84 $: 0: B.6
DATA RECS = 0 DATA BLOCKS= 0 END BLK WDS= 9
DATA BLX 8Z= 120 DATA REC S§Z= 80 ACCESSORS= ﬂ
FOPER 1 FREAD 0 FCLOSE 1
FREADDIR 9 FREADC 0 FREADBYKEY 9
FREMOVE 0 FSPACE 0 FFINDBYKEY 9
FGETINFQ 1 FGETKEYINFOQ 0 FREADLABEL 9
FURITELABEL 8 FCHECK O FFIKDN)
FWRITE 9 FUPDATE 0 FPOINT 9
FLOCK 9 FUNLOCK 6 FCONTROL 0
FSETMODE 0 FREE XEYBLK 0 FREE RECS Q
KEYBLK READ 2 XEYBLK WRITTEM 0 KEYBLK SPLIT 0
KEY FILE EOQF 10 FREE XEY HD 0 SYSTEM FAILURE 0
MIK PRIME 0 MAX PRIME 0 RESET DATE
DATA FIXED TRUE DATA 8/F 3 TOTAL KEYS i
FIRST RECNUM 0 MIN RECSIZE 4 LANG DARTSH
WHICH {1=FILE INFO, 2oKSAM PARAMETERS, 3~KSAM CONTROL, 4=ALL)?[Return]

I

END OF PRCGRAM

*

NLS in MPE Subsystems

3-11

Error Messages

KSAMUTIL error messages are listed in Table 3-5.

Table 3-5. KSAMUTIL Error Messages

ERROR #

MESSAGE

CAUSE

ACTION

1070

tLANG! NOT FOLLOWED BY
P=+ OR HAS TOO MANY PA-
RAMETERS.

Improper syntax was
used in specifying the
language name.

Enter the language
name using the cor-
rect syntax.

1671

YLANG' LANGUAGE VALUE
YOO LONG OR ABSENT.

The language name is
too long or missing a
parameter.

Enter the correct lan-
guage name.

1072

LANG' LANGUAGE NUMBER
VALUE INVALID.

The language number
contains invalid char-
acters.

Enter the correct lan-
guage number.

1073

'LANG' LANGUAGE NOT SUP-
PORTED.

The language speci-
fied is not configured
on your system, or
not a valid language
name or number.

Ask thé System Man-
ager to configure the
language on your sys-
tem.

1674

NATIVE LANGUAGE SUPPCRT
IS NCT INSTALLED.

NLS is not installed
on your system.

Ask the System Man-
ager to configure the
language on your sys-
tem.

1075

NATIVE LANGUAGE SUPPORT
LANGUAGE NOT SUPPORTED.

An NLS MPE error
occurred. No lan-
guage table exists for
the language speci-
fied.

Ask the System Man-
ager to configure the
language on your sys-
tem.

1076

HATIVE LANGUAGE SUPPORT
RELATED ERROR.

An NLS MPE error
occurred.

Ask the System Man-
ager to configure the
language on your sys-
tem; if it is already
configured, contact
your Hewlett-
Packard support rep-
resentative.

Refer to Appendix A of the KSAM /3000 Manual (30000-90079) for more information on error messages.

3-12 NLS in MPE Subsystems

Creating KSAM/3000 Files Programmatically

The user must provide the langnign when calling ropexn to build a KSAM /3000 file. The langnum is stored
in word 10 of the xsamparam array. The ropex intrinsic checks each time a KSAM/3000 file is opened to
determine whether the language used is configured on the system. For backward compatibility, bit 11 in
the flagword (word 15) must be set to 1 if a language other than 0 (NATIVE-3000) is used, to denote that
word 10 contains valid information.

If bit 11 of the flagword is 0, the default language (NATIVE-3000) is used and the data in word 10 is
ignored. If the language is not configured, condition code CCL is returned by ropen.

The file system error messages listed in Table 3-6 have been included with NLS:
Table 3-6. KSAM/3000 File System Error Messages

ERROR # MESSAGE CAUSE ACTION

196 LANGUAGE NOT SUPPORTED. The language name | Ask the System Man-
or number specified | ager to configure the
for ropen is not config- | language on your sys-
ured on your system, | tem.
or is not a valid lan-
guage name Or pum-
ber.

197 NATIVE LANGUAGE supporT | An NLS MPE error | Contact your

RELATED ERRCR, occurred on an rforen | Hewlett-Packard sup-

call. port representative.

Refer to Appendix A in the KSAM /3000 Manual (30000-90079) for a complete list of KSAM /3000 file
System errors.

Modifying KSAM/3000 Files

Every record added or updated in a KSAM /3000 file has its new keys of type BYTE inserted in the key
file according to the collating sequence of the language defined for that KSAM/3000 file. That function
is handled internally by a system version of the xicotiate intrinsic when the language attribute of the file is
different from NATIVE-3000. A new key in a file with a NATIVE-3000 language attribute will be ordered
according to the result of a BYTE COMPARE between the key of the new record and the keys of the
records already in the key file.

NLS in MPE Subsystems 3-13

Generic Keys

NLS collating sequences differ from the USASCII collating sequences, and the differences must be con-
sidered when performing generic key searches. Refer to Appendix C, "Collating in European Languages,"
for more information.

The description of a generic key search in a KSAM/3000 file with a native language attribute is presented
from an application point of view.

Keys matching a certain generic key may not be in consecutive order in the key file because the keys are
sorted according to a native language collating sequence. The key sequence in Figure 3-1 illustrates this
with a French KSAM/3000 file; kevlength is 4, the generic keylength is 2. The partial key "aa" appears in
non-consecutive keys (with a result of 0 in the last column of the figure). Records containing partial keys
(such as "AA" or "Aa") are intermixed according to the French collating sequence. These keys have a
result of 1 listed.

If a generic key search is performed in a KSAM/3000 file with a language attribute other than NATIVE-
3000, the application program must determine whether the retrieved record matches the generic key and,
even if it does not, whether subsequent records might still match it.

The codes returned by nikevcoupare are shown in Table 3-7. Refer to Chapter 4, "Native Language Intrin-
sics," for a complete discussion of the vkevcowpare intrinsic.

Table 3-7. Resuits returned by the NLKEYCOMPARE Intrinsic

RESULT MEANING
0 The retrieved key matches the generic key exactly.
1 The retrieved key does not match the generic key.

Uppercase/lowercase priority or accent priority is different.

2 The retrieved key value is less than the generic key.
It precedes the designated key in the collating sequence.

3 The retrieved key is greater than the generic key.

3-14 NLS In MPE Subsystems

The generic key search sequence is:

1. After rrinoevkey has been called with »>= as relational operator (relop), the logical record pointer points
to the data record indicated by the arrow labeled "Case 2"

2. The subsequent rreap call will retrieve the data record. When the partial key "AA" is compared to the
generic key "aa" they are found to be different.
This comparison is done by calling the intrinsic nukevcompare using the generic key and the key found
in the record. The result returned by skevcoweare tells the application whether the rreap delivered a
record:

a. Before the desired range (result 2).

b. In the desired range with an uppercase/lowercase or accent priority difference (result 1),
¢, With an exact match (result 0).

d. After the desired range (result 3).

3. To get all records whose key match the generic key exactly, the rreap calls and subsequent nLkeycompare
calls should continue until a result of 3 is returned.

When performing a generic key search in a KSAM/3000 file with a native language attribute other than
NATIVE-3000 use the vukeveonpare intrinsic to compare partial keys and generic keys.

Refer to programs [and J in Appendix H, "Example Programs,” for generic key searches in KSAM/3000
files with native language attributes.

NLS in MPE Subsystems 3-15

key length:]Il
Language: AR IMY (only USASCII characters are used in the example).

besired records are all records whose record key starts with "aa<><N>"
(generic key = "<Brag<>r<N>¥, length = 23,

Pointer Key NLKEYCOMPARE Resuit
Position Value {"<Iraa<i><N>" Compared to Key)

Cagse 1 ---> A 2
a 2

Case 2 ---> AA 1
Aa
aA
aa
AAA
aan
AARA
AAAa
AAsa
AshAa
AasA
Aaaza
SAAA
ahAa
ahaA
aahA
aaah
aaaa

O C) et —a wd ol e ek ol b ek () o €D b ok

Case 3 ---» Baaa 3
baaa 3

Case: 1. FREAD starting at the beginning of the file.

2. FFINDBYKEY with relational operater = or »= and subsequent
FREAD calis.

3. FFINDBYKEY with relational operator > and subsequent
FREAD calls.

kKey Value: Key values in ascending sequence.

Figure 3-1, Generic Key Searches

3-16 NLS in MPE Subsystems

Copying From KSAM/3000 File to KSAM/3000 File

1f the KSAM /3000 tile already exists (built via KSAMUTIL or programmatically) the keys of type BYTE
are put into the new file according to the collating sequence belonging to the language of the 1o file. If the
file does not exist, a new file is built with the same language attribute as the rrou file.

Changing the Language Attribute of a KSAM/3000 File

FCOPY /3000 cannot be used to change the language attribute of an existing file. KSAMUTIL must be
used to build a new KSAM/3000 file with the new language attribute. Then the data can be copied to this
file using FCOPY /3000. Keys of type BYTE in the destination key file will be ordered according to the
collating sequence of the new language.

Moving NLS KSAM/3000 Files To Pre-NLS MPE

Restoring a KSAM/3000 file with a native language attribute other than NATIVE-3000 to a system
without NLS installed can result in an incorrect key sequence in the key file for type BYTE keys. Systems
without NIL.S installed do not recognize any collating sequence except NATIVE-3000.

If a file with a native language attribute other than NATIVE-3000 is restored, the first Forex on the file will
return the same error condition code as if a system failure occurred while the file was opened. KSAMU-
TIL should be used to build a new KSAM /3000 file. The file with the native language attribute is recov-
ered, and FCOPY /3000 is used to copy the recovered file into the new KSAM/3000 file. Refer to the
dialog below for an example of this recovery procedure.

HRUN KSAMUTIL.PUB.SYS

HP32208A.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10

SU1LD NEWDATA;REC=-80,3,F,ASCII;KEY=B,1,4:KEVFILE=NEWKEY
SCEYINFO -OLDDATA; RECOVER

FCOPY FROM=OLDDATA;TO=NEUWDATA;KEY=0
RUN KSAMUTIL.PUB.SYS

HP322084.03.10 SAT, SAT, MAY 26,1984, 12:33 PM KSAMUTIL VERSION:A.03.10
BHPURGE OLDDATA

PRENAME NEWDATA,CLDDATA

PRENAME NEWKEY OLDKEY

HEXIT

*
*

NLS in MPE Subsystems 3-17

QUERY

QUERY provides access to IMAGE databases to allow the following {functions to be executed:
» Data entry.
» Data value modification or deletion online.
m Data retrival, meeting selection criteria.
» Data retrival, sort and reporting functions.
QUERY operations are performed by entering commands (English language key words and parameters).

Native Language Support (NLS) features can be accessed in QUERY to retrieve data which meet user-
defined selection criteria, and to sort data according to native language collating sequences. The user
must know what the native language in QUERY is, how the language is specified, how the language affects
the output, and how to determine which language is being used.

IMAGE databases have a language attribute that describes the collating sequence used in sorted chains
and locking. This language attribute does not affect the QUERY operation.

Although QUERY commands are in English, the user can expect the output data to be sorted and format-
ted according to the QUERY user’s language. The language of the database may determine the data
sequence while using QUERY passively for data retrieval (Five). When data is being sorted or formatted
by QUERY, the user’s language will determine the ordering and formatting of the data.

For example, in a French database with a QUERY user’s language of Danish, data items in a sorted chain
might be retrieved according to the French collating sequence; but the sorting or formatting is done
according to Danish criteria.

The user can specify the QUERY user’s language by:
»x Using a QUERY command:

>LANGUAGE=langnuum or >LANGUAGE=langname.

The default is NLUSERLANG. For example, if the user’s language is French, the QUERY com-
mand is:

>LANGUAGE=7 OF >LANGUAGE=FRENCH
» Using an MPE command:

$SETJCW NLUSERLANG=langnum.

The default is NATIVE-3000. For example, if the user’s language is French, the MPE Job Control
Word NLUSERLANG may be used:

:SETJCW NLUSERLANG=7

3-18 NLS in MPE Subsystems ‘

The >tancuace= command always overrides NLUSERLANG. I neither option is used to specify the user’s
language, QUERY assumes vancuace=0 (NATIVE-3000). NATIVE-3000 is the default, which ensures
backward compatibility. When the user’s language is NATIVE-3000, QUERY performs as it did before
NLS features were available.

QUERY allows access to more than one database at the same time; more than one database language
attribute may be active at the same time. In any case, upshifting, collating, range selection, formatting, or
sorting is dependent on the QUERY user’s language specified by the user via the JCW NLUSERLANG
or the LancUAce= command.

Command Summary

NLS can affect QUERY in upshifting data, range selection, date format, real number conversions, and
sorted lists and numeric data editing in REPORT.

Upshifting Data (Type U ltems)

QUERY upshifts commands and the data of type U items. QUERY commands are upshifted according
to NATIVE-3000. Data is upshifted according to the user’s ianguage to AbDb, UPDATE, REPLACE, UPDATE ADD, UPDATE
REPLACE, FIND, LIST, MULTIFIND, and sUBSET.

Range Selection

QUERY collates data according to the user’s language in rinp, LIST, MULTIFIND, OF suBseT. The watcy feature
(in fivo and muLTiFIND commands) is no Jonger valid when tancusse < 0 (NATIVE-3000). QUERY will
display an error message if match is used in an interactive mode, and will abort the session in a batch mode.

Date Format

paTe is a reserved word in the report command which provides the system date. It is formatted according
to the user’s language.

Real Number Conversions

In the commands report and L1st the output is formatted according to the user’s language. For example,
123.45 in NATIVE-3000 becomes 123,45 in FRENCH.

Sorted Lists in Report
QUERY sorts type U or X items in a REPORT according to the collating sequence of the user’s language.

NLS in MPE Subsystems 3-19

Numeric Data Editing in Report

QUERY converts the data edited using the NATIVE-3000 edit mask (using the period as a decimal point

and a comma as thousands separator) to the corresponding characters in the user’s language.

The commands listed in Table 3-8 are used to obtain language-dependent information. Refer to the

QUERY Reference Manual (30000-90042) for a complete description of these commands.

Table 3-8. Commands For Language-Dependent Information

COMMAND

LANGUAGE-DEPENDENT INFORMATION

>HELP LANGUAGE

Explains Lansuase command function, format and parameters.

>SHOW LANGUAGE

Displays the QUERY user’s language.

>FORM

Displays the database language attribute.

3-20 NLSin MPE Subsystems

Error Messages

QUERY error messages which support the NLS enhancement are listed in Table 3-9.
Table 3-9. QUERY Error Messages

MESSAGE

MEANING

ACTION

DBINFO MODE 901 FAILED. CHECK
DATA BASE LANGUAGE ATTRIBUTE AND
IMAGE VERSION.

The version of TMAGE on
your system does not have
NLS features.

This is a warning. The user
may wish to update IM-
AGE/3000 to the same level
as QUERY.

EXPECTED A LANGUAGE WNUMBER OR
NAME .

The Lavcuase command only ac-
cepts the name of a langnage
or the number associated with
that name.

Enter wetp LaNouace for a com-
plete explanation of the com-
mand and then re-enter it.

INTERNAL QUERY NLS PROBLEM.

The NLS subsystem encoun-
tered an error from which it
could not recover while at-
tempting to initialize lan-
guage-dependent information.

Contact your Hewlett-
Packard support representa-
tive.

LANGUAGE
USED.

INVALID, NATIVE-3000

Language specified not config-
ured. The default, NATIVE-
3000 was used.

Run wnutit.eus.svs to list the
languages and associated num-
bers available on your system.

LANGUAGE NOT CONFIGURED ON THIS
SYSTEM. NATIVE-3000 USED,

Languages are configured on
each system. Language speci-
fied is not available on your
system. The default language
is NATIVE-3000.

Run xwrtiL.pus.sys to list the
languages and associated num-
bers available on your system.

MATCH ROT VALID WREN LANGUAGE <>
NATIVE-3000.

QUERY can only allow the
matching option for NATIVE-
3000.

If possible, change the lan-
guage to NATIVE-3000 for
the match.

NLCCLLATE INTRINSIC INTERNAL ER-
ROR.

An unexpected error condition
occurred while doing a com-
parison of the data.

Contact your Hewlett-
Packard support representa-
tive.

RLUTIL INTRINSIC INTERNAL ERROR.

The NLS subsystem encoun-
tered an error from which it
could not recover while at-
tempting to initialize lan-
guage-dependent information.

Contact your Hewlett-
Packard support representa-
tive.

NLS in MPE Subsystems

3-21

Table 3-9. QUERY Error Messages (cont.)

MESSAGE

MEANING

ACTION

USER LANGUAGE INVALID.

User language not available.
Only NATIVE-3000 is avail-
able on your system.

Ask the System Manager to
configure the desired language
On your system.

USER LANGUAGE NOT CONFIGURED ON
THIS SYSTEM. NATIVE-3000 USED.

Languages are configured on
each computer system. Lan-
guage specified is not available
on your system. The default
language is NATIVE-3000.

Run wiurie.pus.sys to list the
languages and associated num-
bers available on your system.

3-22 NLS in MPE Subsystems

SORT-MERGE/3000

SORT-MERGE/3000 organizes records in a file according to the collating sequence of the keys. The
default collating sequence for character data is based on the binary values of the characters. EBCDIC and
user-defined sequences can also be used. Native Language Support (NLS) in SORT-MERGE /3000 pro-
vides the user with the option of collating according to a native language sequence.

SORT-MERGE/3000 can be used as a stand-alone program or programmatically.

Stand-Alone SORT-MERGE/3000

The key type CHARACTER allows the user to access native language collating sequences. The specific
native language collating sequence is assigned by the Languase command.

C [HARACTER] The collating sequence defined in the tansuase command is used to sort keys
of type CHARACTER. Refer to the dialog below for an example of the
use of the CHARACTER key type.

COMMAND SYNTAX DESCRIPTION
LANGUAGE >L[ANGUAGEY [IS] {langnuniy Defines the native language collat-
tlangnamey ing sequence to be used to sort
keys of type CHARACTER.

The ancuace command may specify a language ID number (langnum) or language name (langname). The
language specified must be configured on the system. If the Lansuage command is not used, the language
to be used for collating keys of type CHARACTER defaults to NLDATALANG, the language returned
by the niseTiane intrinsic (mode 2). In the dialog below, the Lancuace command designates Swedish. The
ver1fy command will confirm which language collating sequence will be used for the SORT or MERGE
stand-alone program:

JRUN_SORT . Pua. ST

{P32214C. 04,00 SORT/3000 MON, JAN 30, 1984, 1:52 PM
(C) HEWLETT-PACKARD CO. 1983

IKPUT FILE = MYFILE

RECORD LENGTH = SAME AS THAT OF THE INPUT FILE
QUTPUT FILE = $STDLIST
KEY PCSITION LENGTH TYPE ASL/DESE
1 4 CHAR ASC {MAJOR KEY)
LANGUAGE 1S SWEDISH
EE

NLS in MPE Subsystems 3-23

Programmatic SORT-MERGE /3000

To use SORT-MERGE/3000 programmatically with NLS features, the user must designate the collating
sequence with the charseq parameter in the sorRTINIT and MERGEINIT Intrinsics.

Syntax
SORTINIT 1A 1A IV v oV v
(inputfiles,outputfiles,outputoption,reclen, numrecs,numkeys,
1A 1A Lp P 1A L 1
keys,altseq,keycompare,errorproc, statistics,failure, errorparm,
I 14 o-v
spaceallocation,charseq,parm2)
MERGEINIT 1A P 1A P L
(inputfiles, preprocessor,outputfiles,postprocessor,keysonly,
v IA 1A Lp p IA L
numkeys,keys,aitseqg, keycompare,errorproc,statistics, failure,
I 1 1A o-v
errorparm,spaceallocation,charseq,parmz)
PARAMETERS

The following parameters apply:

numkeys and The numkeys parameter is an integer.

keys The keys parameter is an integer array.
These parameters describe the way records are sorted or merged. One of these
parameters cannot be specified without the other. The use of numkeys and keys
disallows the use of keycompare. The number of keys used during the compari-
son of records is contained in numkeys, and the way records are compared is
specified by keys. For each key specified, keys contains three words:

The first word gives the position of the first character of the key within the
record. The second word gives the number of characters in the key. The third
word (bits 0-7) gives the ordering sequence of the records (a value of 0 for
ascending, 1 for descending). Bits 8-15 of the third word indicate the type of
data according to the following convention:

0=logical or byte (same as type BYTE in interactive mode)
1=two’s complement, including integer and double integer
2=floating point

3 =packed decimal

4= Display-Trailing-Sign

5=packed decimal with even number of digits

6= Display-Leading-Sign

7=Display-Leading-Sign-Separate

8= Display-Trailing-Sign-Separate

9= character (collating sequence of charseq is used)

3-24 NLS in MPE Subsystems

charseq A two-word integer array.
To utilize charseq:

Setword 0 to 1.

Set word 1 to the langnum of the collating sequence to be used for sorting keys
of type 9 (cuaracter). The language designated must be configured on the system.

Whenever keys of type CHARACTER are compared, and charseq has been used to request a native
language collating sequence (for example, Dutch, Spanish, Danish), SORT or MERGE will call the nLcot-
taTe intrinsic to do a native language comparison.

1f NATIVE-3000 has been designated by the user or as a default, SORT-MERGE /3000 will do a direct
byte comparison on keys of type CHARACTER. NATIVE-3000 is an artificial language whose collating
sequence is based on the binary values of the characters,

Refer to the SORT-MERGE /3000 Manual (32214-90002) for other parameter descriptions.

NLS in MPE Subsystems 3-25

Error Messages

NLS-specific error messages include those for Programmatic SORT (Table 3-10), Interactive SORT
(Table 3-11), Programmatic MERGE (Table 3-12), and Interactive MERGE (Table 3-13).

Table 3-10. Programmatic SORT Error Messages

29 LIiB SORT LANGUAGE NOT SUPPORTED,
30 LIB NLINFO ERROR OBTAINING LENGTH OF COLLATING SE-
QUENCE TABLE.
31 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
32 LIB INVALID CHARSEQ PARAMETER.
Table 3-11. Interactive SORT Program Error Messages
40 INVALID LANGUAGE ID.
41 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.
Table 3-12. Programmatic MERGE Error Messages
21 118 SORT LANGUAGE NOT SUPPORTED, .
22 LiB HLINFO ERROR OBTAINING LENGTH OF COLLATING SEQUENCE TABLE.
23 LIB NLINFO ERROR LOADING COLLATING SEQUENCE TABLE.
24 LIB INVALID CHARSEQ PARAMETER.
Table 3-13. Interactive MERGE Program Error Messages
37 INVALID LANGUAGE ID.
38 THE LANGUAGE SPECIFIED IS NOT SUPPORTED.

Performance Considerations

SORT-MERGE/3000 executes more slowly when keys of type CHARACTER and a native language
collating sequence are requested. The complex collating algorithms required by some of the languages
may use additional CPU time. The speed of SORT-MERGE/3000 is unchanged when a native language
collating sequence is not requested or when NATIVE-3000 is requested.

3-26 NLSin MPE Subsystems

COBOLI Sort and Merge

The syntax for the SORT and MERGE verbs has changed slightly for NLS. It is now possible to specify
the native language whose collating sequence is to be used. The old syntax allowed only an alphabetic
pame:

[COLLATING SEQUENCE is alphabet-name)
The syntax has been changed to:

talphabetnames
{COLLATING SEQUENCE IS danguagenames;
dangnumy

With the addition of NLS features, alphabetname retains the same meaning, languagename is an alphanu-
meric data item containing the name of the language whose collating sequence is to be used, and langnon
is an integer data item containing the language identification number of the language to be used.

The following demonstrates the use of the SORT verb syntax:

B026060 WORKING-STORAGE SECTION.
G027CGC 01 AN-LANG-NAME PIC X(16) VALUE "FRENCH"
002800 01 NUM-LANG-ID PIC $9(4) COMP VALUE 7.

GO3300 SORT SORT-FILE

303400 ASCENDING KEY SORT-KEY

603500 COLLATING SEQUENCE IS AN-LANG-NAME
(03600 USING IN-FILE

GG3700 GIVING OQUT-FILE.

004000 SCRT SORT-FILE

004300 ASCENDING KEY SORT-KEY

004200 COLLATING SEGUENCE IS NUM-LANG-1D
004300 USING IN-FILE

004400 GIVING OUT-FILE.

005000 SCRT SORT-FILE

005100 ASCENDING KEY SCRT-KEY

005300 USING IN-FILE

005400 GIVING OUT-FILE

NLS In MPE Subsystems 3-27

VPLUS/3000

The VPLUS /3000 product consists of five major parts: Intrinsics, FORMSPEC, ENTRY, REFSPEC, and
REFORMAT.

VPLUS/3000 Native Language Support (NLS) enables an applications designer to create interactive
end-user applications which reflect both the user’s native language and the local custom for numeric and
date information in the supported languages. NLS provides these specific features in VPLUS/3000:

m Native decimal and thousands indicators.

m Native language month names for dates.

e Alphabetic upshifting of native characters.

= Native characters in single value comparisons and table checks.
m Native collating sequence in range checks.

VPLUS/3000 does not support the application design process in native languages. Form names, field
identifiers, and field tags support only USASCII characters.

REFSPEC and REFORMAT do not use NLS features. These programs interact with users in NATIVE-
3000 only.

Language Attribute

VPLUS/3000 contains an NLS language attribute option which allows the applications programmer to
design an international or language-dependent forms file. If a native language attribute is not specified,
the forms file is unlocalized.

The forms file reflects the language characteristics of the application. Each forms file has a global lan-
guage 1D number. The application may be unlocalized, language-dependent, or international. For exam-
ples of these applications, see Figures 1-3, 1-4, and 1-5 in Chapter 1, "Introduction to NLS."

Unlocalized
If no language ID number is assigned to a forms file, it will default to 0 (NATIVE-3000).
Language Dependent

This application only operates in a single language context. The language I number is assigned when the
forms file is designed. If the text needs to be in the native language, unique versions of a forms file are
required for each language supported.

International

Multinational corporations may need to maintain a business language for commands, titles, and menus in
addition to accommodating the language of the end user for the actual data retrieved or displayed. For
this application, select "-1" as the language ID number for the forms file. The VPLUS/3000 intrinsic
vseTLANG must be called at run time to assign the appropriate language.

3-28 NLS in MPE Subsystems

Setting The Language ID Number

The components of a form which can be language-dependent are the text, the initial values of fields, and
the field edit rules. The language ID number determines the context for data editing, conversion, and
formatting. The FORMSPEC language controls the context when the forms file is designed. The forms
file language controls the context when the forms file is executed.

The forms designer sets language ID nomber values for the forms file via the FORMSPEC Termi-
nal/Language Selection Menu. The forms file language defaults to 0 (NATIVE-3000) if no language 1D
number is specified for it. NATIVE-3000 is currently the only selection available for the FORMSPEC
language. This means that initial values and processing specifications must be defined with the month
names and numeric conventions of NATIVE-3000.

The designer can change the forms file language ID number at any time. The value must be a positive
number or a zero for a single language application. If the value is acceptable, but the language is not
configured, FORMSPEC will issue a warning message. The language ID number will not be rejected. The
designer is prompted to confirm the value or change it.

For multiple language applications, the forms designer selects a forms file language ID number value of
-1. The international language ID number indicates that the intrinsic vsetiang will be called at run time to
select the language 1D number for the forms file. If an application uses an international forms file without
calling vserLang, it will be executed in the default, NATIVE-3000. If vsetiane is called for an unlocalized or
language-dependent forms file, an error code will be returned.

The designer has three options in designing an application to work effectively with multiple languages:
s Develop several language-dependent forms files.
= Create one international forms file.
® Produce a combination of language-dependent files and an international forms file.

vGeTLANG may be used to determine whether a language-dependent forms {ile or an international forms file
is being executed. If veetians indicates an international forms {ile, vsetiang must be called to select the
actual language. Refer to the veeTLane and vsetLans intrinsics at the end of this section.

Field Edits

NATIVE-3000 must be used to specify date and numeric fields within FORMSPEC. VPLUS/3000 will
convert the value when the forms file is executed to be consistent with the native language selected. Single
value comparisons (LT, LE, GT, GE, EQ, NE), table checks, and range checks (IN, NIN) specified within
FORMSPEC may contain any character in the 8-bit extended character set consistent with the selected
language ID number. When the form is executed at run time, the collating table for the native language
specified is used to check whether the field is within a range.

Date Handling

VPLUS/3000 supports several date formats and three date orders: woy, oMy, Yo, Any format is acceptable
as input when the form is executed, provided that the field length can accommodate the format. The forms
designer specifies the order for each date-type field. With NLS, the native month names are edited and
converted to numeric destinations. The format and the date order are not related to the language of the
forms file.

NLS in MPE Subsystems 3.29

Numeric Data

Decimal and thousands indicators are language-dependent in the s 3 and twen fields. When data is
moved between fields and automatic formatting occurs for data entered in any field, recognition, removal,
or insertion of these decimal and thousands indicators is language-dependent. The optional decimal
symbol in constants is also language-dependent.

NOTE

VPLUS/3000 edit processing specifications and terminal edit processing
statements are separate and are not checked for compatibility. There will
be no check that the designer has specified a terminal local edit which is
consistent with the language-dependent symbol for the decimal point
(pEC TYPE EUR, DEC TYPE Us) in the configuration phase.

Native Language Characters

If a native language ID number has been specified in the forms file, the veshir formatting statement will
use native language upshift tables.

Range checks and the single value comparisons LT, LE, GT and GE involve collating sequences. When
the form is executed, the native language collating sequence table designated by the language ID number
is used to check whether the field passes the edit.

NLS features in VPLUS/3000 do not include support for pattern matching with native characters. matcy
uses USASCII specifications.
Entry and Language iD Number

The forms file language determines the user language in ENTRY unless the file is international (-1). The
ENTRY program uses the intrinsic veetiang to identify the language of the forms file selected by the
designer.

If the forms file is international, ENTRY calls the NLS intrinsic neeteans (mode 1), If it returns a value
of unknown, the user is prompted for a language 1D number. Once a valid language ID number is deter-
mined, ENTRY calls the vseriang intrinsic to specify the corresponding language.

The batch file does not have a language indicator. Users with different native languages may collect data
in the same batch file if the associated forms file is international.

3-30 NLSin MPE Subsystems

Error Messages

VPLUS /3000 Error Messages are listed in Table 3-14.
Table 3-14. VPLUS/3000 Error Messages

NUMBER MESSAGE ACTION
9001 NATIVE LANGUAGE SUPPORT SOFTWARE NOT IN- | ask the System Manager to install
STALLED. NLS software.
9002 LANGUAGE SPECIFIED 1S NOT CONFIGURED oN | Select another language or ask the
THIS SYSTEM. System Manager to configure the
desired language.
9011 LANGUAGE NOT CONFIGURED. CHANGE OR HIT | Language specified is not config-
MENTER® TO PROCEED. ured on the system. Forms file
produced can only be executed on
a system configured with that lan-
guage.
9014 ATTEMPTED SETTING A LANGUAGE DEPENDENT | vseTLANG can oaly be used with in-
FORMS FILE TO ANOTHER LANGUAGE. ternational forms files.
9015 NATIVE-3000 15 CURRENTLY THE onty seLec- | FORMSPEC language can only be
TION AVAILABLE. 0 in this version.
9500 LANGUAGE OF FORMS FILE Is NOT conF1GURED | Ask the System Manager to con-
ON THIS SYSTEM. figure the language or use forms
file on a system with that language
configured.
9998 LANGUAGE 1D MUST BE 6 To 999 ok -1 For | Forms file language ID number

INTERNATIONAL FORMS FILE.

must be between -1 and 999,

NLS In MPE Subsystems 3 -31

VPLUS/3000 Intrinsics

The veetrans and vseteans intrinsics are used only with the VPLUS/3000 subsystem. Intrinsic calls in
VPLUS/3000 are usually in COBOL. Refer to the veerians and vserLans sections for examples of calls in
other programming languages.

VGETLANG

This intrinsic returns the language ID number of the forms file being executed. The forms file must be
opened before calling VGETLANG. Otherwise, CSTATUS returns a nonzero value.

Synfax .
CALL “WGETLANG® USING COMAREA, LANGNUM

Parameters .,

COMAREA The following COMAREA fields must be set before calling veeriane if not al-
ready set:

LANGUAGE - Set to code identifying the programming language of the calling pro-
gram.

COMAREALEN - Set to total number of words in COMAREA.
esTaTUs - Set to nonzero value if call is unsuccessful. veeTiane may set this field.
LANGNUM Integer variable to which the language ID number of the forms file is returned.

Examples .
The following examples illustrate a call to VGETLANG:

COBOL CALL "WGETLANGY USING COMAREA,LANGNUM.
BASIC 120 CALL VGETLANGCO(™),L).
FORTRAN CALL VGETLANG {COMAREA, LANGNUM).

SP1. VGETLANG (COMAREA,LANGNUM);.

Special Considerations .
This intrinsic is used in the VPLUS/3000 subsystem only.

3-32 NLSIn MPE Subsystems

VSETLANG

This intrinsic sets the language to be used by VPLUS/3000 at run time for an international forms file, The
forms file must be opened before calling VSETLANG. Otherwise, CSTATUS returns a nonzero value.

If VSETLANG is called to set the language ID number for a language-dependent or unlocalized forms
file, an error code of -1 will be returned to ERROR. For international forms files, both CSTATUS and

ERROR return a value of zero and the forms file is processed with the native language ID number
specified in LANGNUM.

Syntax .

CALL “VSETLANG" USING COMAREA,LANGNUM,ERRCR

Parameters .

COMAREA The following COMAREA fields must be set before calling vsetiang (if not al-
ready set):

LANGUAGE - Set to code identifying the programming language of the calling lan-
guage.
COMAREALEN - Set to total number of words in COMAREA.

estatus - Set to nonzero value if call is unsuccessful. vserLang may set this field.

LANGNUM An integer containing the IID number of the language to be used by
VPLUS/3000.
ERROR Integer to which the error code is returned. Zero means the call was successfully

completed. A value of -1 is returned if the call is unsuccessful.

Example .

The following examples illustrate a call to vseriane:

COBOL CALL “WSETLANG" USING COMAREA,LANGNUM,ERRCR.
BASIC 120 CALL VSETLANG(C(*),L,E).

FORTRAN CALL VSETLANG (COMAREA,LANGNUM,ERROR).

SPL VSETLANG (COMAREA, LANGNUM,ERRCR);.

Special Considerations .
This intrinsic is used in the VPLUS /3000 subsystem only.

NLS in MPE Subsystems 3-33

RAPID,/3000

The Rapid/3000 products differ from other products in that they provide both compile (specification)
time and run time support. In order to provide user access to the NLS intrinsics, the products maintain a
global native language attribute while they are executing. This global attribute is used for all collating,
upshifting, and sorting. The native language is specifiable at either run or compile time.

Inform Language Attribute

Inform will use the language provided by the sLgetLans intrinsic as the user language. A prompt in the
option menu (appearing after all the other prompts) will provide the ability to change this attribute:

NATIVE LANGUAGE (NATIVE-3000) >

REPORT LANG Option

By default, REPORT uses NATIVE-3000 as the language. A parameter for the OPTION statement in
REPORT allows the specification of the native language at compile time:

OPTION LANG = languagename;
The REPORT program may also allow the user to select the language at run time:
QPTION LANG;

The user will be prompted with the question:
NATIVE LANGUAGE >

Transact SET (LANGUAGE) Verb

A modifier is available on the set statement in TRANSACT. There are three forms of this verb:

SETCLANGUAGE) @ *1
SET(LANGUAGE) languagename(,STATUS 1 ; *2,3
SET(LANGUAGE) ifemnamer ,STATUS 1 ; *2,3

These allow the programmer to specify a change of the native language at run time. The user can either
specify a literal language name or 1D number (which is checked at compile time) or give the name of and
X(16) item which contains the name or number.

*1 - 8TATUS is set to the OLD language ID.
*2 - STATUS is set to the NEW language ID.
*3 - I1f the STATUS option is not specified end the language is not defined or configured, sn error message is

displayed and the language is set to 0 (NATIVE-3000}. The specifying STATUS suppresses the error message and results
in a negative value for STATUS if an erpor cccurs. In this case, the language is left unchanged.

3-34 NLSIn MPE Subsystems

Command Summary
Upshift and Character Tables

The upshift and character type tables previously in the message have been replaced by the tables returned
by sinro. These tables will be initialized at system startup and reinitialized whenever the language is
changed. These tables were previously initialized from RAPIDCAT.

Input and Output

In processing numeric items for input the thousands’s separator will be ignored, provided it is not a
delimiter character. For example, the NATIVE-3000 thousands’s separator of "," is also a default delim-
iter. The radix character will be converted to ".". The default delimiters of ", =" will not be changed.

The processing of number items for output has been changed. All occurences of a"," in the resulting string
are replaced by the thousands’s separator, and all occurances of "." are replaced by the radix character.

Date and Time
The procedures which print out data and time have been modified to call the native language procedures.
IF and MATCH Changes

The code that processes IF statements and MATCH register comparisons has been modified to call
nicoLLaTe and to do comparisons for native languages. The language in effect at the time of the compar-
isons is used (regardless of what language was used when the MATCH register was set).

Native Language Accepting Intringics

The calls to intrinsics which accept a native language have been modified to pass in the language 1D. This
only applies to SORT. The language being used at the time the sort is initiated will be used.

NLS in MPE Subsystems 3-35

Native Language Intrinsics 4

The following categories of intrinsics are used by Native Language Support (NLS) and are described, in

detail, in this chapter.

Table 4-1. Intrinsic Catagories

Catagory Intrinsic Description
Information Retrieving ALMANAC Returns numeric date
information.

NLGETLANG Returns the current language.

NLINFO Returns language-dependent
mformation.

Character Handling NLCOLLATE Compares two character
strings.

NLFINDSTR Searches for a string.

NLJUDGE Determines whether a
character is a one-byte or
two-byte Asian character.

NLKEYCOMPARE Compares strings of different
length.

NLREPCHAR Replaces nondisplayable
characters.

NLSCANMOVE Moves and scans character
strings.

NLTRANSLATE Translates strings from and to
EBCDIC.

NLSUBSTR Returns a substring.

NLSWITCHBUF Converts a string of
characters from phonetic
order to screen order and vice
versa.

Time/Date Formatting NLCONVCLOCK Converts the time format.

NLCONVCUSTDATE Converts the custom date
format.

NLFMTCALENDAR Formats the date.

NLFHTCLOCK Formats the time.

NLFMTCUSTDATE Formats the date into custom
date format.

NLFMTDATE Formats date and time.

NLFMTLONGCAL Formats a long version of the
date.

Native Language Intrinsics

4.1

Table 4-1. Intrinsic Catagories {cont.)

Catagory Intrinsic Description
Number Formatting NLNUMSPEC Returns information needed
for formatting and converting
numbers.
NLCONVNUM Converts numbers from
native to internal form.
NLFMTHUM Formats an internal number
in native form.
Application Message CATCLOSE Closes a mesage catalog,
Catalog
CATOPEN Opens a message catalog.
CATREAD Reads information from a
message catalog.
NLAPPEND Concatenates a filename and
a language number.

4-2 Native Language Intrinsics

NLS Date and Time Formatting Overview

The use of NLS intrinsics provides a variety of date and time formats as shown in Figure 4-1.

NATIVE LANGUAGE DATE AND TIME FORMATTING OVERVIEW

HP 3000

INTERNAL FORMATS

MPE INTRINSICS

SELe

CALENDAR

LANGUAGE~DEPENDENT
EXTERNAL FORMATS

CLOCK

Formatted Custom
(Short) Dote

(e.q., 9/24/84)

Formatted Date
{e.g., Mon,
Sep 24, 1984)

Formatted Dote
(e.g., Monday,
Beptember 24, 1985])

NL INTRINSICS
NLCONVCUSTDATE
=4 NLFMTCUSDATE »
Internal
Calendar Dote LYEFMICALENDAR
(Singte Word) NLFMTLONGCAL
—
Intermat
Tirme OF Day
{Double Word)
(j_....
NL?’MTDA?g

Formotted Dote and
Time {e.g., Mon,
Sep 24, 1984,

12:17 PM)

N%_FMTCLOC‘VI

NLCONVCLOCK

Formatted Time
{e.q., 12217 PM)

Figure 4-1. Date and Time Formatting Overview

Native Language Intrinsics

4-3

ALMANAC

ALMANAC (Intrinsic Number 406)

This intrinsic returns the numeric date information for a date returned by the caenpar intrinsic. The
returned information is year of the century, month of the year, day of the month, and day of the week.

Syntax

v LA 1 1 I 1 0-v
ALMANAC (date error,yearnum,monthinum,dayniim, weekdaynum) ;

Parameters
date logical by value (required)
Contains the date in the format:
Bits 0 67 15
R R R P +
| Year of Century | Day of Year |
L R TR R R R +
error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error # Meaning
1 No parameters availabie for returning values.
2 Day of the year out of range.
3 Year of the century out of range.
yearnum integer by reference (optional)
The year of the century is returned to this integer. For example, 00=1900 and
§4=1984.
monthnum integer by reference (optional)
The month of the year is returned to this integer. For example, 1=January and
12=December.
daynum integer by reference (optional)
The day of the month is returned to this integer.
weekdaynum integer by reference (optional)
The day of the week is returned to this integer. For example, 1=Sunday and
7=Saturday.

4-4 Native Language Intrinsics

ALMANAC

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

HNative Language Intrinsics 4-5

CATCLOSE

CATCLOSE (Intrinsic Number 417)

The carcLose intrinsic closes the specified application message catalog and must be used with the applica-
tion message facility.
Syntax

D LA
cATCLOSE (catindex,errory

Parameters
catindex double by value (required)

The catalog index returned by the caropen intrinsic.
error logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning
1 Close of catalog file failed.
160 Internal Message facility error.

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

4-6 Native Language Intrinsics

CATOPEN

CATOPEN (Intrinsic Number 415)

The catoren intrinsic opens the specified application message file and must be used with the application
message facility.

Syntax

D BA LA
catindex:=caropen (formaldesignator,errory;

Functional Returns

A catalog index double (an internal value recognized by the careap and catcLose intrinsics) is returned; this
is not a file number.

Parameters

formaldesignator byte array (required)
Contains a string of USASCII characters that identify the catalog file for the
system. This string must be terminated by any USASCII special character
except a slash or period.

error logical array (required)

The first word of this two-word array contains the error number, The second
word is reserved and always contains zero. If the call is successful, both words
contain zero,

Error # HMeaning

1 Open failed on catalog file.

2 Could not access catalog file.

3 File specified is not a GENCAT formatted catalog.
100 Internal message facility error.

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

Natlve Language Intrinsies 4-7

CATREAD

CATREAD (Intrinsic Number 416)

The carreap intrinsic reads the specified catalog and returns the text as indicated; it accesses catalogs
opened by the caropen intrinsic only. The carreap intrinsic provides access to the application message
facility. The NLS application message catalog facility is discussed in Chapter 2, "Application Message
Facility."

Syntax
! C v iv LA BA Iv
msglen:=catread (catindex,setnum,msgnum,error,buff,buffsize,

BA BA BA BA BA v 0-v
parml,parm?2,parm3,parm4,parmS5,msgdest);

Funictional Returns

The length of the message is returned to msglen.

Parameters

catindex double by value (required)
An index, returned by catoren, specifying which catalog is to be used.

Setnum integer by value (required)
A positive integer, no greater than 255, specifying the set number within the
catalog.

msgnum integer by value (required)

A positive integer, no greater than 32766, specifying the message number within
the message set.

4-8 Native Language Intrinsics

CATREAD

error Iogical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1 Invalid cafindexspecified.

2 Read failed on catalog file.

3 Set not fourd.

4 Message not found.

& User buffer overflow.

7 urite failed to misgdestsile.

14 Set < = 0 specified,

15 Set » 255 specified.

16 Message number < (0 specified.

17 Message number > 32766 specified.

18 Specifies bbﬂ?&ize <z 0.

19 specifies msgdest < 0.

100 Internal message facilify error.
buff byte array (optional)

Where the assembled message is returned.

buffsize integer by value (optional)
When specified, this is the buffer length in bytes. If buff is not specified, this is
the length (in bytes) of the records to be written to the destination file (Default
= 72 bytes).

parml - parm5 byte arrays (optional)
Parameters to be inserted into message. These must always pointto a
character string. The strings must be terminated by a binary zero.

msgdest integer by value {(optional)
Integer value specifying the destination of the assembled message
(0 = sstpL1sT, >2 = file number of destination file. Default = sstovist if buff and
no file is specified).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program L in Appendix H, "Example Programs" for an example of how this intrinsic is used.

Native Language Intrinsics 4.9

NLAPPEND

NLAPPEND (Intrinsic Number 412)

The sLarpenp intrinsic allows an application to designate which of several language-dependent files (for
example, application message catalogs or VPLUS/3000 forms files) should be used by appending the
language 1D number to the filename. (This assumes that the application uses this naming convention for
its language-dependent files.)

Syntax

BA v LA
NLAPPEND (formaldesignatorlangnurm,errory;

Parameters

formaldesignator byte array (required)
Contains a string of USASCII characters interpreted as part of a formal file
designator. The filename must end with three blanks.

langnum integer by value (required)
The language ID number, specifying which catalog is to be opened.

error logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1> NLS is not installed.

2 * Specified language is not configured.

3 Invalid filename.

4 File name not terminated by three blanks.
5 * NLS internal error.

6 ¥ NLS internal error.

*

These errors do not apply to calls with langnum equal to 0 (NATIVE-3600).

Special Considerations

Split-stack calls are not permitted.

4-10 Native Language Intrinsics

NLCOLLATE

NLCOLLATE (Intrinsic Number 402)

The mcovtare intrinsic collates two character strings according to the collating sequence of the specified
language ID number. Its purpose is to determine a lexical ordering. It is not intended to be used for
searching or matching. To determine if two strings are equal, use the COMPARE BYTES machine
instruction.

Syntax

BA BA w1 v LA LA o-v
NLCOLLATE «stringl string2, length result,langnum,error,collseq);

Parameters
stringl byte array (required)
The first of two character strings to be collated.
string2 byte array (required)
The second of two character strings to be collated.
length integer by value (required)
The length (in bytes) of the string segments to be collated.
result integer by reference (required)
The result of the collated character string:
] 1f stringl cotlates equal to String2.
-4 1f stringl collates before SHing2.
1 1f stringl collates after Siring2.
Result will be 0 if a nonzero error is returned.
langnum integer by value (required)

The language ID number, specifying which collating sequence is to be used,

Native Language Intrinsics 4-11

NLCOLLATE

error

collseq

logical array (required)

The first word of this two-word array contains the error number. The secend
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1 * NLS is not installed.

2 ¥ Specified language is not configured.
3 Invalid collating table entry.

4 Invalid length parameter.

5 * NLS internal error.

6 * N.S internal error.

7* Invalid coiiation range table.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

logical array (optional)

An array containing the native language collating sequence table as returned by
nLinFo, item 11. This parameter is required for split-stack calls. If this parameter
is present, langnum will be ignored and this routine will be more efficient.

If the collseq parameter is omitted, and langnum is specified or defaults to a
language which collates by binary encoding, the COMPARE BYTES machine
instruction will be used to compare the two indicated strings. If the collseg pa-
rameter is used, it will determine the string compare operation (this may be a
COMPARE BYTES). Refer to the auinfo intrinsic items 11 and 27.

Special Considerations

Split-stack calls are permitted.

4-12 Native Language Intrinsics

NLCONVCLOCK

NLCONVCLOCK (Intrinsic Number 409)

The wnLconverock intrinsic checks validity of the string by using the formatting template returned by winro
item 3, then converts the time to the general time format returned by the ciock intrinsic. This intrinsic is
the inverse of NLFMTCLOCK.
Syntax

D BA v w LA
time:=NLCONVELOCK (String,stringlen,langnum,error;
Functional Returns

The intrinsic returns the time in the format:

Bits 0 78 15
e Fammmamma ey +
| Hour of Day | Minute of Hour |
dmeremaeaaey R TR +
[Secomds | Tenths of Seconds |
Favnasssnvnran e e N +

NOTE

Seconds and tenths of seconds will always be zero.

Parameters

string byte array (required)
A character string containing the time to be converted.

stringlen integer by value (required)
A positive integer specifying the length of the string (in bytes).

langnum integer by value (required)
The language ID number, specifying which custom time format is to be matched
by the string.

Native Language Intrinsics 4-13

NLCONVCLOCK

error logical array (required)
The first word of this two-word array contains the error number. The second

word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

To* NLS is not installed.

2% Specified language is not configured.
3 Invalid time string.

& Invalid length.

5 * NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted,

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

4-14 Native Language Intrinsics

NLCONVCUSTDATE

NLCONVCUSTDATE (intrinsic Number 408)

Checks the validity of a string by using the formatting template returned by nuikfo item 2, then converts
the date to the general date format as returned by the catenoar intrinsic. This intrinsic is the inverse of
NLFMTCUSTDATE.

Syntax

L BA v i LA
date :=NLCONVEUSTDATE (String,stringlen, langnum,errory;

Functional Returns

The intrinsic returns the date in the format:

Bits © 67 15
P L L e R T +
| Year of Century | Day of Year |
fremiamr e naay Fronceencnneenn +
Parameters
string byte array (required)

A character string containing the date to be converted. Leading and trailing
blanks will be disregarded.

stringlen integer by value (reguired)
A positive integer specifying the length of the string (in bytes).

langnum integer by value (required)

The language ID number, specifying which custom date format is to be matched
by the string.

Native Language Intrinsics 4-15

NLCONVCUSTDATE

error logical array (required)
The first word of this two-word array contains the error number. The second

word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error #
1*
2*
2

4

5*
6*
7

9*‘

Meaning

KLS is not installed.

Specified language is not configured.
Invalid date string.

Invalid string length.

KLS internal error.

NLS internal error.

Separator character in Sﬁi}qg does not
match separator in the custom date template.
The length of the date string is more than
13 characters (exciuding leading and
trailing blanks).

Invalid national special teble defined.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Spiit-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs" for examples of how this intrinsic is used.

4-16 Native Language Intrinsics

NLCONVNUM

NLCONVNUM (Intrinsic Number 419)

Converts native language numbers with native decimal and thousands separators (for example, 1.234,56)
to an ASCII number with NATIVE-3000 decimal separator (.) and thousands separators (,). As an option,
the decimal and thousands separators can be stripped.

Syntax
v BA v BA
NLCONVNUM (Jangnum, instring,inlength,outstring,
I LA LA LV | 0-v

outlength error,numspec,fmtmask,decimalsy;

Parameters

langnum integer by value (required)
The language ID number, specifying which numeric formatting rules are to be
used in the conversion.

instring byte array (required)
Contains the native language formatted number to be converted, Leading and
trailing spaces are ignored.

inlength integer by value (required)
Length, in characters, of instring.

outstring byte array (required)
Contains the converted output, The output will be left justified in the buffer and
outlength will contain the actual length of the converted number. Outstring may
reference the same address as instring.

outlength integer (required)

Length, in characters, of outstring. After a successful call to nLconvium,
outlength will contain the actual length of the converted number.

Native Language Intrinsics 4-17

NLCONVNUM

error

numspec

fmtmask

logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1 NLS is not installed.

2* Specified language is not configured.

3 Invalid length specified (inlengthor outlength).

4 Invalid mumber specified (IHSITIAE).

5% NLS internal error.

6 * NLS internal error.

7 Truncation has occurred {oufstringis left
partially formatted).

8 Invalid HUMSPEC parameter,

9 Invalid fmimask parameter.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

logical array (optional)

A byte array, returned from sunumspec, which contains formatting information. If
this parameter is present, langnum will be ignored, and performance will be
improved (refer to the description of nuwumspec in this chapter).

logical by value (optionat)
Specifies how to format the number. The default value is 0 and indicates substi-
tution only.

Bit # Description
(15:1) 0 - Convert thousands separators.
1 - Strip thousands separators.
(D 0 - Convert decimal separators.
1 - $trip decimal separators,
(13:1) 0 - InString can contain any character.
(No validation will be performed)
1 - instring contains a number.
{validation will be performed)
(0:13) Reserved. Should always be set to zero.

4£-18 Native Language Intrinsics

NLCONVNUM

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

This intrinsic converts a native language formatted number to an ASCI number with the NATIVE-3000
decimal separator (.} and thousands separator (,) for use in further conversion to INTEGER, REAL, etc.
This intrinsic will convert the decimal and thousands separators, or strip them (see fintinask), to the
NATIVE-3000 equivalent. For languages using an alternate set of digits (Arabic, HINDI digits only), the
intrinsic will convert the digits to ASCII for recognition and use as numeric characters.

Native Language Intrinsics 4-19

NLFINDSTR

NLFINDSTR (Intrinsic Number 429)

This intrinsic searches string? for stringl, and returns an integer value indicating the offset in string2 where
stringl was found.

Syntax
1 v BA v BA
offset:=NLsussTR clangnum,stringl, lengthl string2,
v LA LA 0-v
length2 error,charset);

Functional Returns

A -1isreturned if stringl is not found in string2.

Parameters
langnum integer by value (required)
The language ID number.
stringl byte array (required)
The string of characters to be searched. It can contain one-byte and two-byte
Asian characters.
lengthl integer by value {required)
Length, in characters, of stringl.
string2 byte array (required)
The character string to be searched for.
length2 integer by value (required)

Length, in characters, of string2.

4-20 Native Language Intrinsics

_ NLFINDSTR

error logical array (required)
In the first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

HIR NLS not installed.

2* Specified language is not configured.
3 Irvalid length] parameter.

& Irwalid length2 parameter.

5 * NLS internal error.

& * NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)
Contains the character set definition for the language to be used, as returned by
NLINFQO’s item 12.

Special Considerations

Split-stack calls are not permitted.

Natlve Language Intrinsics 4-21

NLFMTCALENDAR

NLFMTCALENDAR (Intrinsic Number 413)
Formats the date as specified by the language-dependent calendar which is returned by xinro item 1.

Syntax

LV BA v LA o-v
NLFMTCALENDAR (date,string,langnum, errory;

Parameters
date logical by value (required)
Indicates the date, in the format, as returned by the catenpar intrinsic:
Bits 0 67 15
L L T T R drmmmen e +
| Year of Century | Day of Year |
dresuummssamnssaan fusconmnnnna, +
string byte array (required)
A character string in which the formatted date is returned. This string will be 18
characters long, padded with blanks if necessary.
langnum integer by value (required)
The language ID number, specifying which calendar template is to be used. A
langnum of 0 will return the date formatted as though rurcaLencar were used.
error logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

17 * NLS is not installed,

2 * Specified language is not configured.
3 Invalid date value.

5% NLS internal error.

6> NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs D and E in Appendix H, "Example Programs” for examples of how this intrinsic is used.

4-22 Native Language intrinsics

NLFMTCLOCK

NLFMTCLOCK (Intrinsic Number 410)

The wLrMcLock intrinsic formats the time of day, as returned by the clock intrinsic, to the custom time of
day format specified for the native language. The template returned by sLinso item 3 will be used.

Syntax

bV BA v LA
NLFMTCLOCK (timne,string langnum,errory;

Parameters
time double by value (required)
A double word value, containing the time, in the format returned by the cLock
intrinsic:
Bits 0 78 1%
foararram e frremnavearmsnnannen-a -
| Hour of Day | Minute of Hour
T LT e +
| Seconds | Tenths of Seconds |
o Mk ke w e aa E - - e R A K M +
string byte array (required)
An eight-character byte array, containing the formatted time of day which is
returned.
langnum integer by value (required)
The langnage ID number, specifying which format is to be used. A langnum of
0 will return the time formatted as though rurcLock were used.
error logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

R MLS is not instatied.

2% Specified language is not configured.
3 Invalid time format.

L * NLS internal error.

5 * NLS internat error.

6 * NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Native Language Intrinsics 4-23

NLFMTCLOCK

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Programs DD and E of Appendix H, "Example Programs” for examples of how this intrinsic is used.

4-24 Native Language Intrinsics

NLFMTCUSTDATE

NLFMTCUSTDATE (Intrinsic Number 407)

The sirMrcusToaTE Intrinsic formats the date, as returned by the caLevoar intrinsic, to the custom date format
for the specified native language. The template nLineo item 2 will be used.

Syntax

v BA v LA
NLEMTCUSTDATE (date,string,langnum,errory;

Parameters

date logical by value (required)
A logical value, containing the date, in the format returned by the caLenpar intrin-
sic:

| Year of Century | Day of Year |
L R L L B N R 5

string byte array (required)
A thirteen-character byte array, containing the formatted date which is re-
turned.

langnum integer by value (required)
The language ID number, specifying which custom date template is to be used
for formatting. A langnum of 0 will return the time formatted as though rurcrock
were used.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1 * HLS is not installed.

2% Specified language is not configured.
3 Invalid date value.

5 % NLS internal error.

6 * kLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to examples D and E in Appendix H, "Example Programs” for examples of how this intrinsic is used.

Native Language Intrinsics 4-25

NLFMTDATE

NLFMTDATE (Intrinsic Number 414)

The nrmtoate intrinsic formats the specified date and time according to the concatenation of the templates
returned by ninFo items 1 and 3.

Syntax

LY DV BA v LA
NLFMTDAYE (date time,string,langnum,errory;

Parameters

date logical by value (required)
A logical value indicating the date in the format as returned by the cacenoar
intrinsic:

time double by value (required)
A double word value indicating the time to be formatted. The double word is in
the format returned by the ciock intrinsic:

| Hour of Day | Minute of Hour |
Freusranne e F R S T +

| Seconds | Tenths of Seconds |
Frmnmermnnnnan L T T T "

string byte array (required)
A 28-character string in which the formatted date and time are returned.

langnum integer by value (required)

The language 1D number, specifying which formatting templates are to be used.
A langnum of 0 will return the date/time string as though ruTDATE were used.

4-26 Native Language Intrinsics

NLFMTDATE

error logical array (required)
The first word of this two-word array contains the error number. The second

word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1% NLS i3 not installed,

2% Specified language is not configured.
3 Invalid date value.

4 Invalid time value.

5 * HNL.S internal error,

6 * NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

Refer to Program K in Appendix H, "Example Programs” for examples of how this intrinsic is used.

Native Language Intrinsics 4-27

NLFMTLONGCAL

NLFMTLONGCAL (Intrinsic Number 420)

The nurwtionscal intrinsic formats the supplied date according to the long calendar format. The formatting
is done according to the template returned by sLinro item 30.

Syntax

v LA

NLFMTLONGCAL ¢date,string,langnium,errory

Parameters

date

string

langnum

error

logical by value (required)
A logical value containing a date in the format as returned by the caLenoar intrin-
sic:

Bits O 67 13
B L T T +
| Year of Century | Day of Year |
B T R AL LT +

byte array (required)

A 36 character array to which the formatted long calendar date is returned,
padded with blanks if necessary.

integer by value (required)
The language ID number, specifying which format is to be used.

logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1% NLS is not installed.

2 * Specified language is not configured.
3 Invalid date format.

4 % NLS internal error.

5 % NLS internal error.

6 * HNLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE/3000).

Special Considerations

Split-stack calls are not permitted.

4-28 Native Language Intrinsics

NLFMTNUM

NLFMTNUM (Intrinsic Number 421)

The nirurnus Intrinsic converts a string, containing an ASCII number (may include NATIVE /3000 decimal
separator (.}, thousands separator {,)}, and currency symbol/name ($}), to a language specific format using
the currency symbol/name, decimal separator, and thousands separators defined for the native language.

Syntax
Y BA v BA
NLFMTHUM (langnum,instring, inlength, outstring,
I LA LA LV v 0-v
outlength,error,numspec, fintmask,decimals)y;
Parameters
langnim integer by value (required)
The language ID number, specifying which formatting specifications are to
used.
instring byte array (required)
A byte array containing the NATIVE-3000 formatted ASCI number to be con-
verted (for example, $-123,456.78). Leading and trailing spaces are allowed.
inlength integer by value (required)
Length, in characters, of instring.
outstring byte array (required)
A byte array where the language specific formatted number will be returned.
The decimal separator, thousands separator, and currency symbol/name are
replaced, if present; or are inserted, if specified by fintmask, according to the
language definition. The outstring may reference the same address as instring.
outlength integer (required)

Length, in characters, of outstring. After a successfu] call, if outstring is returned
left-justified (specified by fintmask), outlength will return the actual length, in
characters, of the formatted number.

Native Language Intrinsics 4-29

NLFMTNUM

error

numspec

fmtmask

decimals

logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1 * NLS is not installed.

2 * Specified language is not configured.

3 Invalid length specified. (inlength or outlength)

4 Invalid number specified. (INSITING)

5 % NLS internal error.

& * NLS internat error.

7 Truncation has occurred. (OUISIFING
is teft partiatiy formatted)

8 invalid NUFNSPEC parameter.

9 invatid fmtmasic parameter.

10 invalid decimals parameter.

* These errors do not apply to calls with langnum equal to 0 (NATIVE /3000).

logical array (optional)

A byte array, as returned from nunusspec, containing formatting specifications
for the specified language (currency/name, decimal separator, etc.} If this pa-
rameter is present, langnuwm will be ignored, and performance will be improved.
See description of n.kumsPEC.

logical by value (optional)
A logical specifying any formatting to be done on the input. The default value
is 0, which means a simple substitution.

it # Deseription
{15:1) 0 - Do not insert thousands separator.
1 - Insert thousands separators.
(14:1) 0 - Do not insert decimal separators.
1 - Insert decimal separators.
¢13: 1) 0 - Do not insert currency symbol/name.
1 - Insert currency symbol/name.
{11:2) 0 - No justification of the output,
1 - The output will be left-justified,
2 - The output will be right-justified.
3 - The output will be left-justified and
ourlengrh will return the actual
length of the formatted number.
(0:11) Reserved. Should always be set to zero.

integer by value (optional)
An integer specifying where to insert the decimal separator. The value is

ignored if bit 14 of fintmask is zero, or a decimal separator is present in the
number.

4-30 Native Language Intrinsics

NLFMTNUM

Special Considerations

Split-stack calls are not permitted.

Additional Discussion
This intrinsic operates in substitution mode and formatting mode:
Substitution Mode

Y frtmask is omitted or has all bits set to zero, the substitution mode will substitute the native equivalent
for (+.+) and (v,); for Arabic, it will substitute the alternative set of digits for ASCII digits. The input is
not validated as a number, and can contain several numbers. No justification takes place, and the output
will be left truncated if outstring is shorter than instring (for example, 1,234.56 -> 234,56).

Formatting Mode

If any bit 10-15 in fintimask is set to one, the formatting mode will perform the substitution, and format
the input according to fmfmask. In this mode, input is validated as a number, and only ASCII digits and
t.r, vy, s, e and r$e are allowed.

Only one sign and one ’s’ are allowed. They must be the first character(s) in instring. Even if insertion (of
thousands separators etc.) is specified in frtmask, the thousands and decimal separators are still valid
characters in the input. In this case, they will be substituted. If no justification is specified, the output will
be right-justified with the same number of trailing spaces as the input. If the output is truncated, it will be
left-truncated

NOTE

For languages written right to left, trailing spaces in the input will be pre-
served as leading spaces in the output.

Native Language Intrinsics 4- 31

NLGETLANG

NLGETLANG (Intrinsic Number 411)

This intrinsic returns a language ID number which characterizes the current user, data, or system. It is
intended for use by Hewlett-Packard subsystems (programs, not intrinsics) or by applications programs
so they can automatically configure themselves. Refer to "Special Considerations" for a description of
where NLeeTLANG derives its information.

Syntax
I v LA
langnum:=nieeTLANG (function,errory;
Functional Returns
The language ID number (langnum) of the current user, data, or system. In the event of an error, an
integer value of 0 (NATIVE-3000) is always returned to langnum.
Parameters

function integer by value (required}
The function number indicating which language 1D number should be
returned. The possible values are:

1. The user-interface language. This is used to specify the language to be used
for communication between the program and the user.

2. The data language. This is an attribute which determines how various lan-
guage-dependent data manipulation functions (for example, sorting or
upshifting) should be performed by the subsystem.

3. The system default language.

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning
1 NiLS is not installed.
2 RLGETLANG found the language requested,
but it was not configured on the system.
3 Invalid jiu@tﬂQFI vaiue.
4 No language specified for NLGETLANG to access.

4-32 Nstive Language Intrinsics

NLGETLANG

Special Considerations
Split-stack calls are not permitted.

The nieeTLang intrinsic will locate the language ID numbers requested by function 1 and 2 by referring to
the Hewlett-Packard defined Job Control Words (JCWs) NLUSERLANG and NLDATALANG respec-
tively. If the required JCW does not exist, or has a value greater than or equal to ratar (32768), Error #4
is returned.

Additional Discussion

For example calls of this intrinsic refer to Program K in Appendix H, "Example Programs.”

Native Language Inttlnsics 4-33

NLINFO

NLINFO (intrinsic Number 400)

This intrinsic returns language-dependent information.

Syntax

iv

LA i LA

NLINFC (temnumber,itemvalue langnum,error);

Parameters

itermnuntber

iternvalue

Item # Type

integer by value (required)
Positive integer which specifies the itemvalue to return.

type of variable depends on itemnumber (required)
Return variable for information requested; or (if itemnumber is 22 or 24) the
language name or number about which information is requested.

The following is a list of the currently defined iternnumbers, and the data types
and information returned to itemvalue.

Description of iternvalue

An 18-character array to which the calendar format is returned. The 18
characters of the string for this definition are interpreted as the format de-
scription for that language. The following descriptors are valid:

[} Ghe-character day abbreviation.

Db Two-character dey abbreviation.

DDD Three-character day abbreviation.

M One-character month abbreviation.

MM Two-character month abbreviation.

MMM Three-character month abbreviation.

MMMM Four-character month abbreviation.

mm Numeric month of the year.

dd Numeric day of the month.

vy Numeric year of the century.

yyyy Numeric year.

Nyy HNational year.

NPyy National year which may include a before-period symbel.

E 1-8 of these are to be replaced by that many characters
from the Emperor/Country name.

Valid separators are any special character.

For example, a format may be: ooo, m# dd, yyyy. Using this format in NA-
TIVE-3000 would result in: FrR1, MAY 25, 1984.

4-34 MNatlve Language Intrinsics

NLINFO

ftem #

Type

LA

Description of itemvalue

A 13-character array to which the custom date format is returned. The 13
characters of the string for this definition are interpreted as the custom date
format description.

The following descriptors are valid:

e Numeric month of the year.

dd Numeric day of the month.

Yy Numeric year of the century.

yyyy HNumeric year.

Nyy National year,

NPyy National year which may include the before-period symboi.

Valid separators are any special character. For instance, a date format
might be: yy/mn/dd. An example of this format in NATIVE-3000: 81/03/25.

An eight-character array to which the clock specification is returned. This
eight-character string provides the clock format description (template):

HHSXXYYZ, Where:

HH Clock hour specification, either 12 or 24.

S Separator. Valid separators may be any special
or alpha character, or 0 {f no sparators betmween
hours and minutes should appear.

XX Symbol for AM,

Yy Symbol for PM.

Z if blank, supresses leading zeros (hours); if
zero (G}, prints lLeading zero.

In suppression of leading zero, " " (leading zero suppressed) or o (leading
zero will be printed) are valid. For example, the format mz:awm » would

yield formatted clock information in the form: 9:06 am. The leading zero is
suppressed.

If the clock specification were changed tov240 ov, the formatted clock infor-
mation for the same time would be:ogos. Note the four blanks used as place
holders to ensure the correct placement of the leading-zero suppression
character.

A 48-character array to which the month abbreviation table is returned.
Each abbreviation is four characters long, using blank padding where neces-
sary to maintain vniform length in all pative language abbreviations. For
example, the NATIVE-3000 abbreviations contain three characters plus a
blank. The first four characters of the array contain the abbreviation of
January.

The month abbreviation table for NATIVE-3000 would be:
WIAN FEB MAR APR MAY JUN JUL AUG SEP OCT KOV DECn

Native Language Intrinsies 4-35

NLINFO

Item #

Type

Description of itermvalue

A 144-character array in which the month table is returned. Each month’s
name can be up to 12 characters long. Unused space in each month name is
padded with blanks where necessary to equal 12 characters. The table begins
with the language-dependent equivalent in the native language specified for
January.

For example, the month name table for NATIVE-3000 would be:
HJANUARY FEBRUARY MARCH ..,DECEMBER®

A 21-character array in which the day abbreviation table is returned. Each
abbreviation is three characters Jong. The table begins with Sunday.

For example, the day abbreviation table for NATIVE-3000 would be:
HSUNMONTUEWEDTHUFRTSAT®

An 84-character array in which the table containing the day of the week is
returned. Each day is 12 characters long (with blank padding as needed).
The table starts with Sunday.

For example, the day name table for NATIVE-3000 would be:
HSUNDAY MONDAY TUESDAY ...SATURDAY®

A 12-character array to which the YES/NO responses are returned. The
first six characters contain the (upshifted) »ves» response; the second six the
(upshifted) »nox response.

A two-character array to which the symbols for decimal separator and thou-
sands indicator are returned. The first character contains the decimal sepa-
rator, the second contains the thousands indicator.

The character for the thousands separator may take a special value: 0
(zero). This value is not to be taken literally as a thousands separator, but
signifies the absence of a thousands separator for the language chosen.

4-36 Native Language Intrinsics

NLINFO

Item #

10

11

12

13

14

15

16

Type

LA

>

>

Description of itermvalue

A six-character array to which the currency signs are returned. The first
character represents the short currency symbol (if any) used for business
formats; the second character is a flag that indicates whether the currency
symbol precedes or succeeds the number and whether the currency symbol
is preceded or succeeded by blanks. The last four characters contain the full
currency symbol. The layout of the second character is as follows:

bits G:4 0 The currency symbol has no blanks
preceding or succeeding it.
The currency symbol has a blank preceding it.
2 The currency symbol has a blank succeeding it.
3 The currency symbol has blanks
preceding and succeeding it.
bits 4:4 0 The currency symbol precedes the number.
1 The currency symbol succeeds the number.
2 The currency symbol replaces the decimel separator.
3 The currancy symbol precedes the sign (if present).

An array to which the collating sequence table is returned. A call to nuinro
item 27 determines the length of this array based on the length of the table
of the native language specified.

A 256-character array to which the character set attribute table is returned.
Each character will contain the numeric identification of the character type:

Kumeric character,

Alphabetic lowercase character,
Alphabetic uppercase character.
Undefined graphic character.
Special character.

Control code.

First byte of 2 two-byte character.

VNN D

A 256-character array to which the ASCII-to-EBCDIC translation table is
returned.

A 256-character array to which the EBCDIC-to-ASCII translation table is
returned.

A 256-character array to which the upshift table is returned.

A 256-character array to which the downshift table is returned.

Native Language Intrinsies 4-37

NLINFO

Item # Type
17 LA
18 L
19 1
20 LA
21 LA
22 LA
23 L
24 LA
25 1A
26 1
27 I
28 I
4-38

Description of iremvalue

A logical array to which the language numbers of all configured languages
are returned. The first word of this array contains the number of configured
languages. The second word contains the language number of the first con-
figured language. The third word contains the language number of the sec-
ond configured language, etc. (The langnum parameter is disregarded.)

A logical to which true (-1) is returned if the specified language is supported
(configured) on the system. Otherwise, false (0) is returned.

An integer to which the character set ID number supporting the specified
language is returned.

A 16-character array to which the uppercase name of the character set sup-
porting the specified language is returned. If the name contains fewer than
16 characters, it will be padded with blanks.

A 16-character array to which the uppercase name of the specified language
is returned. If the name contains fewer than 16 characters, it will be padded
with blanks.

The itemvalue is a logical array containing a language name or number (in
ASCII digits) terminated by a blank. The array must be at least eight words
in length. The associated language ID number will be returned to langrum.

A logical to which true (-1) is returned if the character set specified is sup-
ported {configured) on the system. Otherwise, false (0) is returned.

The itermvalue is a logical array containing a character set name or number
(in ASCII digits) terminated by a blank. The required length of this array is
eight words or more. The associated character set 1D number will be re-
turned to langnum.

A 16-character array to which the uppercase name of the specified character
set is returned. The langnum parameter must contain the ID number of the
character set. H the name contains fewer than 16 characters, it will be
padded with blanks.

An integer to which the class number of the specified language is returned.

An integer to which the length (in words) of the collating sequence table of
the specified language is returned.

An integer to which the length (in words) of the national-dependent infor-
mation table is returned. If no national table exists for the specified lan-
guage, Error #4 is returned.

Native Language Intrinsics

NLINFO

Ttem #

29

30

31

32

Type

LA

>

>

Description of itermvalue

A logical array to which the national-dependent information table is re-
turned. To determine the size of this array, the length must first be obtained
with a call to nLinFo item 28.

A 36 character array to which the long calendar format is returned. It may
contain arbitrary text, as well as the following descriptors:

1-3 of these are to be replaced by that many
characters from the day abbreviation.

1-12 of these are to be replaced by that many
characters from the day of the week.

Numeric day of month,

1-4 of these are to be replaced by that many
characters from the month abbreviation.

1-12 of these are to be replaced by that many
characters from the month of the year,
Numeric month of the year.

Numeric year of the century.

Numeric year of the century.

National year.

National year which may include a before-period symbol.
1-8 of these are to be replaced by that many
characters from the Emperor/Country name.

giég Lw] 38: = <

m =
b=
R

In addition, a special literal character »-» may be used to indicate that the
following character should be taken literally in the format, even if it is one
of the special characters above.

For example, a format may be: waaahaiid, 000000000 dd, A.-D.yyyy. Using this
format in NATIVE-3000 would result in: WeDNESDAY, NOVEMBER 21, A.D. 1984,

A 16 character array to which the currency name is returned.

An 8 character array, containing information about an alternative set of
digits. (Currently only used by Arabic)

Byte Description
01 Alternative digit separator (Integer).
0 - No Alternative digits defined.
1 - Alternative digits defined.
The Alternative digit *0'.
The Alternative digit 9%,
The '+' used with Alternative digits.
The '-' used with Alternative digits.
The decimal separator used with Alternative digits.
The thousands separator used with Alternative digits.

~ O WV N

Natlve Language intrinsics 4-39

NLINFO

item # Type Description of itermvalue
33 LA A 4 character array, containing information about the direction of the lan-
guage.
Byte Description
0-1 Language direction (Integer)
0 - Direction is *fleft to right'.
t - Direciton is fright to left!.
The 'right to left' space.
Undefined.
34 L A logical value which returns the data ordering of the language.
Byte Description
0 Keyboard order.
1 teft-to-right screen order.
2 Right-to-i{eft screen order,
35 L A logical value which returns the size of the character used by the language.
Byte Pescription
0 One-byte characters (8-bits).
1 Two-byte characters (16-bits).
36 L A logical value that returns a true (1) if the language requires suppressing
the leading zero or blank in the date format.
langnum integer by reference (required)
The language or character set identification number for the information re-
quested.
error logical array (required)
This two-word array contains the error number in the first word. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.
Error # Meaning
1 o* NLS is not instalied.
2 * Specified {anguage is not configured.
3 * Specified character set is not configured.
& Ko national table is present,
5 NLS internal errer.
& * HLS internal error.
7-9 Reserved,
10 the itemnumber is out of range.
* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).
4-40 Native Language Intrinsics

NLINFO

Special Considerations

Split-stack calls are permitted.

Additional Discussion

"Alternative digits" exist for the convenience of Arab speaking cultures that use Hindi digits in place of
the Arabic digits (0..9), which are more familiar to European and American users. For example calls of
this intrinsic refer to Program H in Appendix H, "Example Programs."

Native Language Intrinsics 4- 41

NLJUDGE

NLJUDGE (Intrinsic Number 427)

This intrinsic judges whether a character is a one-byte or two-byte Asian character. If it is a two-byte
character, set judgeflag to 1 or 2. 1f it is a one-byte character, set judgeflag to 0.

Syntax
1v v BA v BA
N2bytes:=uLaunek dangnum,instringstringlength,judgeflag,

R LA o-v
error, charset);

Functional Returns
The number of a two-byte Asian character is an integer value that can be used to check if a string of
characters contain Asian characters.

Parameters

langnum integer by value (required)
The language ID number.

instring byte array (required)
The string of characters to be judged.

stringlength integer by value (required)
An integer value specifying the number of bytes in the instring.

judgeflag byte array (required)
This string will contain the flag values as follows:
0 One-byte character.
First byte of a two-byte character.

1
2 Second byte of a two-byte character.
3 Invatid Asian character.

4-42 HNative Language Intrinsies

NLJUDGE

error logical array (required)
In the first word, of this two-word array, the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.

Error # Meaning

I HLS not installed.

2 % Specified language is not configured.
3 Invalid string length.

& Not returned.

5 * Bad NLT extra data segment.

6 * Bad LDST extra data segment.

7 Invalid characters found in INstring.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)
An array containing the character set definition for the language to be used, as
returned by NLINFO’s item 12. If present, the langnum parameter will be ig-
nored, and this routine will be more efficient.

Native Language intrinsics 4-43

NLKEYCOMPARE

NLKEYCOMPARE (intrinsic Number 405)

Compares two strings of different length. This intrinsic gives the KSAM /3000 user the ability to deter-
mine whether the key of a record matches the generic key specified. It should be used when reading a
KSAM/3000 file in key sequential order in combination with rreso, after a rrinogyxey call.

The nkevcompare intrinsic allows a program to determine whether a generic key search found an exact
match. That is, the generic key must exactly equal the beginning of the key, and not almost equal because
of priority (for example, uppercase versus lowercase or accent). It also allows the program to determine
whether an exactly matching key could be farther along the key sequence.

Syntax

BA v BA IV
NLKEYCOMPARE (genkey,lengthl key,length?,
1 v LA LA oV
result langnum,error,collseqy;

Parameters
genkey byte array (required)
Contains the generic key to be compared to the keys contained in the record
read by srean.
lengthl integer by value (required)
The length in bytes of genkey, which must be less than length2.
key byte array (required)
This contains an entire key to which the user wants to compare genkey.
length2 integer by value (required)

The length in bytes of key, which must be greater than lengthl.

4-44 Native Language Intrinsics

NLKEYCOMPARE

result

langnum

error

collseq

integer by reference (required)
The result of the compare:

0 The retrieved key matches the generic key exactly for a length of
lengthl.
1 The retrieved key does not match the generic key: it is different

only because of priority (for example, uppercase versus lowercase
characters or accent). The FREAD key is still in range. This means
that records may follow whose key matches the generic key exactly.

2 The retrieved key is less than the generic one (its collating order
precedes the key specified). It does not match gemkey. This
means the FREAD call found a record which precedes the range requested.
Records which match genkey mey follow.

3 The retrieved key is greater than the generic Key (it coliates after
the specified key). This means that the FREAD call found a record
whose key follows the specified range. No records matching é&ﬂzkgy
follow.

integer by value (required)
The language ID number, specifying the collating sequence to be used for the
compare.

logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1% NLS is not installed.

2% Specified language is not configured.

3 invalid collating table entry,

A tnvalid lengfh parameter.

5 * NLS internal error.

& * NLS internal error,

7 value of lengthl is not less than lengtiZ.
8 * Invalid cotlation range table.

* These errors do not apply to calls with langnum equal to ¢ (NATIVE-3000).

logical array {(optional)

An array containing the collating sequence table as returned by sinro ifem 11,
This parameter is required for split-stack calls. If this parameter is present,
langnum will be ignored and this routine will be much more efficient.

Native Language Infrinsics 4-45

NLKEYCOMPARE

Special Considerations
Split-stack calls are permitted.
NLkevcompare is intended for use with the KSAM /3000 subsystem.

Additional Discussion

For example calls of this intrinsic refer to Programs I and J in Appendix H, "Example Programs.”

4-46 Native Language Intrinsics

NLNUMSPEC

NLNUMSPEC (Intrinsic Number 425)

The intrinsic returns the information needed for formatting and converting numbers. It combines several
calls to nLinfo in order to simplify the use of native language formatting. By calling winumspec once, and
passing the obtained information to nurmtium and nuconvnuy, implicit calls to sLumseec from wurMTium and sLcon-
vium are avoided and performance improved.

Syntax

Y LA LA
NLNUMSPEC (langnum, string, error);

Parameters
langnum integer by value (required)
The language ID number.
string logical array (required)
A byte array of minimum 60 bytes in which will be returned the following infor-
mation :
Byte Description

00-01 Language identification number. (Integer)
02-03 Alternate Digit Indicator. {Integer}

G - No Alternate digits exist.

t - Alternate digits exist.
04-05 Language Direction Indicator. (Integer)

0 - The Language is tleft-to-right'.

1 - The Language is ‘right-to-lefti.
06-07 The Alternate digit range. ('0','9")

08 Decimal separator. ASCII-digits

oy Decimal separator. Alternate-digits
10 Thousands separator. ASCII-digits

11 Thousands separator. Alternate-digits
ié t+t pAlternate-digits.

53 t-t plternate-digits.

th 'Right-to-teft’ space.

15 Reserved.

16-17 Currency place. (Integer)
0 - Currency symbol
1 - Currency symbol succeeds the number.
2 - turrency symbol replaces the decimal separator.
3 - Currency sywbol precedes the sign.
18419 tength of Currency Symbol. (integer) (including any spaces)
20-37 Currency symbol. (Including any spaces)
38-59 Reserved.

Native Language Intrinsics 4 - 47

NLNUMSPEC

error logical array (required)
The first word of this two-word array contains the error number. The second

word is reserved and always contains zero. I the call is successful, both words
contain zero.

Error # Meaning

1% NLS is nmot installed.

2 Specified language is mot configured.
3 tnvalid string.

4 Not returned.

5o NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with langnum equal to 0 (NATIVE/3000).

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

The intrinsic combines nt1kre calls with item numbers 9, 10, 31, 32, and 33. The information is formatted
where needed (for example, any spaces in the currency symbol/name is included). The currency sym-
bol/name is the shortest non-blank descriptor, as returned from nLinFo, items 10 and 31. Apart from the
mentioned formatting, the intrinsic does not provide any information not obtainable with suinro. It is
included for the convenience of the NLS user. For efficiency, the user of this intrinsic would presumably
call it only once, save the result, and then call werurium and/or kucowvwum multiple times.

4-48 Native Language Intrinsics

NLREPCHAR

NLREPCHAR (intrinsic Number 403)

"This intrinsic replaces all nondisplayable control characters in the string with the replacement character.
Nondisplayable characters are those with attribute 3 (undefined graphic character) or 5 (control code), as
returned by kuinro item 12.

Syntax
BA BA v BY
NLREPCHAR (InsStr,outstr,stringlength,repchar,
v LA LA 0-v
langnum,error,charset;
Parameters
instr byte array (required)
A byte array in which the nondisplayable characters have to be replaced.
outstr byte array (required)
A byte array to which the replaced character string is returned.
stringlength integer by value (required)
A positive integer specifying the length (in bytes) of instring.
repchar byte value (required)
A byte specifying the replacement character to be used.
langnum integer by value (reguired)
The language ID number, specifying which character set is to be used.
error logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words

contain zero.

Error # Meaning

1% NES §s not installed.

2 * Specified language is not configured.
3 invalid replacement character.

4 Invalid lengrh parameter.

5 * NLS internal error.

6 * NLS internal error.

7 Invalid charset teble entry.

8 Overlapping strings, OUISINNG would overwrite iNSEring.
9 * invalid two-byte character.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

Native Language Intrinsics 4-49

NLREPCHAR

charset logical array (optional)
Contains the character set definition for the language to be used, as returned in
sLINFo item 12. If this parameter is present, langnum will be ignored and this
intrinsic will be much more efficient.

Special Considerations

Split-stack calls are not permitted.

Additional Discussion

For example calls of this intrinsic refer to Program H in Appendix H, "Example Programs.”

4-50 Native Language Intrinsics

NLSCANMOVE

NLSCANMOVE (intrinsic Number 401)

Moves and scans character strings according to character attributes. The machine instructions (and the
SPL constructs) for SCAN and MOVE used for upshifting or in conjunction with the alphabetic, numeric,
or special characters will only work for NATIVE-3000. This intrinsic will handle this function in a lan-
guage-dependent manner.

Syntax
I BA BA oI
numchar:=NLSCANMOVE <instring,outstring, flags,length,

v LA LA LA o-v
langnum,error,charset,shift);

Functional Returns
The number of characters acted upon in the SCAN or MOVE operation.

Parameters
instring byte array (required)

A character string which will act as the source string of the SCAN/MOVE.
outstring byte array (required)

A character string which will act as the target.

NOTE

If outstring and instring are the same string, this intrinsic will act as SCAN.
Otherwise, a MOVE will be performed. (Refer to Error #3.)

Native Language Intrinsics 4 -51

NLSCANMOVE

logical by value (required)
A flag defining the options for calling the intrinsic. This parameter always de-
fines the condition for terminating the SCAN/MOVE operation.

Description
Alphabetic. NLINFO item 12, types 1 (alphabetic lowercase
character) and 2 (alphabetic uppercase character).
1 - lLowercase.
2 - Uppercase.
3 - Uppercase or lowercase.
Numeric. NLINFO item 12, type 0.
Special. NLINFO item 12, types 3 (undefined graphic charscter),
4 (special character), or 5 (control code).
WHILE/UNTIL option. If this bit is zero, then SCAN/MOVE is
performed white the condition specified by{fﬁzgs (12:4)
is true. If this bit is one, SCAN/MOVE is performed until the
condition specified by,fhzgs (12:4) is true.
shift.
1 - Upshift.
2 - Downshift.
0 or 3 SCAN. For/UNTIL one-byte and two-byte characters.
1 - Two-byte mode only.
2 - One-byte mode only.
Reserved. These bits of the flags parameter are
reserved and must be zero.

integer by value (required)

An integer indicating the maximum number of characters to be acted upon
during the indicated operation.

integer by value (required)

The language 1D number, specifying both the character set definitions of char-
acter attributes and the language-specific shift.

flags
Bits
1h:2
13:1
12:1
11:1
912
7:2
0:7

length

langnum

4 .52 Native Language Intrinsics

NLSCANMOVE

error logical array (required)
The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words

contain zero.

Error # Heaning

1% NES is not instalied.

2 * Specified language is not configured.

3 Overlapping strings; IASIrNg would have been

overwritten by OQUISIING
Invalid length parameter.

5 = HLS internzal error.

& * HLS internal error,

7 Reserved portion of j?ags is not zero.
8 Soth upshift and downshift requested.
9 Invalid table element.

19 * Invalid two-byte character.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)
An array containing the character set definition for the language to be used, as
returned in NuinFo item 12. If present, the langnum parameter will be ignored,
and this routine will be much more efficient. This parameter is required for
split-stack calls in which flags (12:4) is not equal to 0 and flags (12:4) is not equal
to 15,

shift logical array (optional)
An array containing shift information for a desired upshift or downshift (for
example, as returned in nLinFo items 15 or 16). This parameter will be utilized
when bits (9:2) of flags is not equal to 0. If present, the langnum parameter will
be ignored, and this routine will be much more efficient. In split-stack calls this
parameter is required if bits (9:2) of flags is not equal to 0.

Special Considerations

Split-stack calls are permitted.

See wLineo’s item 35, the judgeflag will return zero’s.

Native Language Inirinsics 4-53

NLSUBSTR

NLSUBSTR (Intrinsic Number 428)

This intrinsic is used to extract Length-to-Move bytes from the Instring to the Outstring.

Syntax
BA Iv BA i
NLSUBSTR (Instringinlength,outstring,outiength,
v v v
start position, length-to-move, langnum,
iV LA LA -V
flags,error,charsety;

Parameters

instring byte array (required)
The string from which the substring will be extracted. The string can contain
both one-byte and two-byte Asian characters.

inlength integer by value {required)
The length, in characters, of instring.

outstring byte array (required)
Indicates where substring will be placed.

outlength integer (required)
Length, in characters, of outstring. After a successful call, outlength will return
the actual length of the substring moved to outstring.

start position integer by value (required)
The offset into instring where the substring starts. A value of zero is the begin-
ning point.

length-to-move integer by value (required)
Length, in characters, of the substring.

langnum integer by value (required)

The language 1D number.

4-54 Native Language Intrinsics

NLSUBSTR

flags

integer by value (required)

This flag word is used primarily with Asian languages. It is meaningless with
one-byte oriented languages. Flags is used to indicate the treatment of the case
when the first character of the substring is the second byte of a two-byte Asian
character and in the case where the last character in a substring is the first byte
of a two-byte Asian character.

Flags.(12:4)} are for the treatment if the first character is the second byte of an
Asian character:

Goeo
0ol

oon

0100

: Return an error condition.

: start from start position +1,
0010 :
: Start from SHAFt PoSsition, but replace the character

start form Start position -1.

with a btank in outstring.

: Start from Sfart’position regardless.

Flags.(8:4) are for the treatment if the last character is the first byte of an Asian
character:

0000
0001
0010
2011

01¢c0

: Return an error condition.

: Move until length-to-move +1.

: Move until length-to-move -1.

: Move until length-fo-move, but replace the character

with a blank in outstring.
Move until length-to-move regardless.

Flags.(0:8) are reserved. These bits must be set to zero.

Native Language Intrinsics 4-35

NLSUBSTR

error logical array (required)
In the first word of this two-word array, the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.

Error #
1 *
2*
3

4
L%
6*
7

a

2

10
11
12
13 *

14 *

Meaning

NLS not installed.

Specified language is not configured.

Not returned.

Not returned.

NLS internal error.

NLS internal error.

inval id source length.

invalid start position.

Invalid legth-to-move.

Reserved portion of Flags, not zero.

Invalid value for Flags.(8:4).

Invalid vatue for Flags (12:4}.

The start position is the first byte of an Asian character,
or an underflow condition occured due to Flags.

The end position is the second byte of an Asian character,
or an overflow condition occured due to Flags.

* These errors do not apply to calls with langnum equal to 0 (NATIVE-3000).

charset logical array (optional)

An array containing the character set definition for the language to be used, as
returned by NLINFO’s item 12.

Additional Discussion

Split-stack calls are not permitted.

4-56 Native Language Infrinsics

NLSWITCHBUF

NLSWITCHBUF (Intrinsic Number 426)

Converts a string of characters from phonetic order to screen order, or from screen order to phonetic
order.

Syntax
v BA BA v
NLSWITCHBUF (langnurm,instring, outstring,stringlength,
Lv LA
lefttoright,errorsy;

Parameters

langrnum integer by value (required)
The language ID number.

instring byte array (required)
The string, in phonetic order, to be converted to screen order.

outstring byte array (required)
Here the string will be returned after being converted. Outstring and instring
may reference the same address.

stringlength integer by value (required)
Length, in characters, of the string to be converted.

lefttoright logical by value (required)
A logical value that specifies whether the implied primary mode of the data (if
it were to be displayed on a terminal) is left to right (TRUE) or right to left
(FALSE). This determines what the opposite language is and hence strings of
which characters get switched.

error logical array (required)

In the first word of this two-word array the error number will be returned. The
second word is reserved and always contains zero. If the call is successful, both
words contain zero.

Error # Meaning

1% NLS not instalied.

2> Specified language is not instalied.
3 Invalid string length.

4 Not returned.

5 NLS internal error.

6 * NLS internal error.

* These errors do not apply to calls with langrnum equal to 0 (NATIVE-3000).

Native Language intrinsics 457

NLSWITCHBUF

Additional Discussion

This intrinsic is designed to handle data from languages written from right to left (for example, Arabic),
Screen order is defined to be right to left if the primary mode of the terminal or printer is from right to
left, as it is when used principally for entering or displaying data from a right to left language. Otherwise,
screen order is defined to be left to right.

kLswiTcHBUF can be used by a program to convert a buffer that is in phonetic order (the order in which the
characters would be typed at the terminal or spoken by a person) to screen order (the order in which the
characters are displayed on a terminal screen or piece of paper). It can also convert data from screen
order to phonetic order.

In general, phonetic order and screen order will not be the same if USASCII text is mixed with text from
a right to left language. The relationship between phonetic order and screen order is further complicated
by the use of Hindi digits in Arabic: Hindi digits play a third role intermediate between ASCII characters
and characters of the right to left language.

Note that this intrinsic is designed for a special purpose. Its primary value lies in its application to
languages that are written from right to left and which may, occasionally, intermix left to right text.-for
example, the occasional use of English in Arabic text.

Nonetheless, nuswitcisur can serve the needs of a general purpose program, one not specifically designed
for handling right to left data. Such a program can call aLswitcHsur to convert data from phonetic order to
screen order and back to phonetic order. An example is an editor that needs to track cursor movement
on a terminal against a buffer of text in memory. If the data is not that of a right to left language, then this
intrinsic will simply return the same text,unchanged, because for all other languages phonetic order and
screen order are the same,

4-58 Native Language Intrinsics

NLTRANSLATE

NLTRANSLATE (Intrinsic Number 404)

The suTrRANSLATE intrinsic translates a string of characters from EBCDIC-t0-ASCH or ASCIH-to-EBCDIC
using the appropriate native language table. This intrinsic performs the same function as cTRaNsLATE using
native language tables.

NOTE

This intrinsic does not support 16-bit characters.

Syntax
IV BA BA v
NLIRANSLATE ¢code, instring,outstring, stringlength,
v LA LA o-v
langnum,error,tabley;

The instring parameter is translated into outstring for length of stringlength using a translation table deter-
mined according to the first rule that applies from the following list:

1. If table is present, a translation will be made using fable.

2. If langnum equals NATIVE-3000, a standard ASCII-to-EBCDIC or EBCDIC-t0-ASCII translation
is made.

3. The ASCII-to-EBCDIC or EBCDIC-t0-ASCII translation table for the language specified will be
used.

MNative Language Intrinsics 4 -59

NLTRANSLATE

Parameters

code

instring

outstring

stringlength

langnum

error

table

integer by value (required)
The direction of translation:

1 EBCDIC-to-ASCII
2 ASCII-to-EBCDIC
byte array (required)

The string of characters to be translated.

byte array (reguired)
A byte array to which the translated string is returned. The parameters
instring and outstring may specify the same array.

integer by value (required)
A positive integer specifying the number of bytes of instring to be translated.

integer by value (required)
The language 1D number, specifying which translation tables are to be used.

logical array (required)

The first word of this two-word array contains the error number. The second
word is reserved and always contains zero. If the call is successful, both words
contain zero.

Error # Meaning

1% NLS is not installed.

2% Specified language is not configured.

3 invalid code specified.

4 Invatid length parameter.

5 ¥ NLS internal error.

6 * NLS internal error.

7* Translation table is not supported for this language.

* These errors do not apply to calls with langrum equal to 0 (NATIVE-3000).

logical array (optional)

A 256-byte array which holds a translation table. Each byte contains the transla-
tion of the byte whose value is its index. This parameter corresponds to NLINFO
items 13 and 14. If present, langnum parameter will be ignored and this routine
will be much more efficient.

Special Considerations

Split-stack calls are not permitted.

4-60 Native Language Intrinsics

System Utilities A

NLUTIL Program

The NLUTIL program allows the user to verify the language/character set configuration on the system.
It displays the configured languages and their character sets, and prompts the user to see if a full listing is
required as shown in the dialog below:

HRUN NLUTIL.PUB.SYS

Lang Lang Char Char
] Name ip Name
3 DANISH 1 ROMANE
5 ENGLISH 1 ROMANS
12 SPANISH 1 ROMAKS

Do you require a full listing of the current configuration? (Y/N) ﬂ

An "" response will terminate the program. A "v" response will produce a complete formatted listing of
the currently configured languages written to the file nList on device class LP.

NLS File Structure

The file nsper.pus. svs lists all character sets supported by Hewlett-Packard and its related character set
names to character set ID numbers. It does the same for languages, and it indicates, for every language,
what character set is required to support that language.

The file csroerxx (wWhere xx is the character set ID nurnber) contains the data pertaining to the character
set with ID number xx, and all languages supported by that character set. There are numercus csroesxx
files.

The wusoer and the curoerxx files are used by the program iancinst.pus.sys to build or modify the file
LANGREF .PuB.SYs. This file is used at system startup to build a number of system data segments holding the
information required by NLS. The number of data segments built at startup is one, plus one for every
language configured.

System Lititites A-1

Language Installation Utility (LANGINST)

The file Lancoer.pus.svs contains all language-dependent information for every language to be configured
on a system at the next COOLSTART/WARMSTART. It is an MPE file that is built or modified by
running the program LANGINST. It gathers data from wispee.pu.sys and chroerxx.pus.sys files into
LARGDEF .PUB, 8YS,

Only a user logged on as manacer.svs,pus can run LANGINST to:
» Add a language to the configuration file.

m Remove a language from the configuration file.

Display and modify local formats of a configured language.

Display the languages supported by Hewlett-Packard.

Display the languages currently configured.

Modify the system default language.

NOTE

The next system COOLSTART/WARMSTART will implement the
changes made to LaNGbEF,

Adding a Language

LANGINST prompts the user manacer.sys for the language to add to Lancoer. The user may supply either
the language ID number or name. If is entered, the operation is aborted. If the language is already
installed the user is advised, and the addition is cancelled with an error message:

SWEDISH is already configured.
Similarly, if the appropriate ciroerxx file is not available, the add is cancelled with an error message:

The CHRDEFXX file is missing.
The Addition has been cancelled.

Refer to Table A-1 for a complete list of LANGINST error messages. It is not possible to add NATIVE-
3000, This language is hard-coded and is always configured. Any attempt to configure it will result in the
error message:

NATIVE-300C is always configured.

NOTE

The next system COOLSTART/WARMSTART will install the lan-
guage(s) added.

A-2 System Utilities

Deleting a Language

LANGINST allows the user to delete any configured language with the exception of NATIVE-3000, which
cannot be deleted. In addition, a check is made to ensure that the language designated as the system
default is not deleted.

NOTE

The next system COOLSTART/WARMSTART will delete the lan-
guage(s) designated.

Modifying Local Formats

The System Manager is allowed to modify the following local formats for any language configured in
LANGDEF:

» Date format (Dateline format)

» Custom date format (Short)

» Time format

a Currency sign/name

» Decimal and thousands indicator
a Month names

m Abbreviated month names

n Weekday names

= Abbreviated weekday names

= Yes/no indicators

» Direction of text

m ASCII/EBCDIC translation tables
m National date table

If the language supports a special National Table containing date information (KATAKANA), the last
option is displayed to allow the user to modity this date information.

Whenever any changes have been made, the new copy of the file is saved under the name Lancper. In
addition, the old, unchanged version of the file is saved under the name Laveaxxx. The number xxx increases
by one every time a new copy of LANGDEF'n saved. This allows the user to return to the configuration that existed
before LANGDEF was changed. To return to the previous configuration, :PURGE or :RENAME the current LANGDEF'n Then
(RENAME the LANGDxxx with the highest number LANGDEF. The next system COOLSTART/WARMSTARYT wiill deiete the changes.

System Utilities A-3

LANGINST User Dialog

The following are user dialogues for choosing a function, adding a language, deleting a language, and
modifying local language formats.

Choosing a Function

The System Manager selects an item from the main menu:

Q. EXIT

1. ADD LANGUAGE TO LANGDEF

2. DELETE LANGUAGE FROM LANGDEF

3. MODIFY NATIVE FORMATS

ho LIST HP SUPPORTED LANGUAGES

5. MODIFY THE SYSTEM DEFAULT LANGUAGE
6. LIST LANGUAGES CURRENTLY CORFIGURED
7. DISPLAY TRANSLATION TABLES

To list languages which can be configured on the system, select Option 4. The followin g will be displayed:
HP SUPPORTED LANGUAGES:

0 RATIVE-3000 using USASCIT
1 AMERICAN using ROMANS
2 CARADIAN-FRENCH using ROMANS
3 DANISH using ROMANS
& DUTCH using ROMANS
5 ENGLISH using ROMANS
6 FINNISH using . ROMANS
7 FRENCH using ROMANS
8 GERMAN using ROMANG
9 ITALIAN using ROMANS
1G NORWEGIAN using RCMANS
1" . . .
12 . . .
13 . . .

press any key to continue ..,

A-4 System Utilities

Adding a Language
To add a language, select Option 1:
1. Use the language name or language ID number (langnum).

2. The addition is aborted by entering a language that is already configured, a language not supported
by NLS, or NATIVE-3000 or by pressing {Return).

Enter languasge to be added: BRGLEEN
SPANISH is already configured.

If a language is requested that is supported but has not been previously configured, LANGINST config-
ures it and displays the message:

SPANISH has been successfully added.
SPANISH wiill not be configured until you perform a system WARM/COOLSTART

3. When the addition is successfully completed, or else aborted, the main menu is displayed.

Deleting a Language
To delete a language, select Option 2:
1. Use the language name or language ID number (langnum).

2. The deletion is aborted by entering a (Refurn}, a language that is not configured, or the system default
language.

3. When the deletion is successfully completed, or else aborted, the main menu is displayed.

System Utllitles A-5

Modifying Local Language Formats
To modify local language formats, select Option 3:
1. Use the language name or language ID number (langnum).

2. The process is aborted by entering a [anguage that is not configured or NATIVE-3000, or by pressing
)

3. If the process is aborted, the main menu is displayed.

4. If a configured language is entered, a menu is displayed:

1. Long calendar format

2. Date format {Calendar format)
3. {Lustom date format {Short}

4. Time formst {Clock format)

5. Currency sign

6. Currency name

7. Decimal and thousands separator

8. Alternate numeric format

. YES and RO egquivalents

10. Month names,

11. HMonth name abbreviations

12. Weekday names

13. Weekday name abbreviations

14. Direction of text

15. ASCII/EBCDIC translation tables
16. Handle truncation in date format

Enter selection number
Business Currency sign

xn xe e

Enter the new vaiue 1 [Return
Fully qualified Currency sign :
Enter the new value : [Return]

The currency sign currently follows the number, e.g., 100DM.
The following currency codes are available:

<CR> to retain the existing value.

0 - The currency symbol precedes the number, e.9., $100.00.

1 - The currency symbol succeeds the number, e.g., 100.00DM.

2 - The currency symbol replaces the decimal point, e.g., 1CC3GC.

Enter the required currency codes (0, 1, or 2) :[Return]
There are to be no blanks before or after the currency symbol.

The following blank-control codes are available:

<CR> to retain the existing value.

0 - ¥No blanks before or after the currency symbol.

1 - A blank is to precede the currency symbol.

2 - A blank is to succeed the currency symbol.

3 - A blank is to precede and succeed the currency symboi.

Enter the required code (G, 1, 2, or 3):[Return]

After the selection is made, the current value is displayed. The user is prompted for a new value. If
a new value is entered, it is validated and, if valid, it replaces the old value. If no new value is entered
(only (Return}) or if an invalid value is entered, the old value is retained.

A-6 System Utilitles

Modification of ASClI/EBCDIC Transiation Tables

A new option has been added to the utility program LANGINST to modify the ASCII/EBCDIC transla-
tion tables for any language other than NATIVE-3000 The modifications will appear in the file
LANGDEF and will become effect the next time a COOLSTART/WARMSTART is performed on the
system.

For example, assume you need to change the ASCII/EBCDIC translation for two characters in AMERI-
CAN:

CURRENT DESIRED
ASCi EBCDIC ASCII EBCRIC
G4 37 04 44
c8 44 c8 37

In order to make the changes, the System Manager should run the utility program taneinst.pug.sys and
select Option 3 (MODIFY NATIVE FORMAT). After entering the language ID, select Option 15
(ASCII/EBCDIC Translation Tables). Respond to the dialog as follows:

Input ROMANS character to be changed (HEX piease) :[[R
The current EBCDIC value is

Enter the new EBCDIC value :

The ROMANS to EBCDIC table was updated

The EBCCIC to ROMANS table will be updated too
ASCII/EBCDIC table inconsistent for 44 <== 04,08 (™)
The tables are inconsistent for ROMANB character CB (**)
The current EBCDIC value is :

Enter the new EBCDIC value :

The ROMANE to EBCDIC table was updated

The EBCDIC to ROMANS teble will be updated too

Input ROMANS character to be changed (HEX please):[Return]
Do you want to save the changes (Y/N) :

= There are two ASCII characters mapping to the same EBCDIC character.
+* Change the mapping of C8 to its new EBCDIC value.

Both the ROMANS/EBCDIC and EBCDIC/ROMANS translation tables are updated and written out
to the wancoer file. If you would like to display the translation tables, return to the main menu and enter
Option 7. Then enter the langnum and the desired table you wish to display.

In the case you have more than two characters to modify, just follow the same steps for every two charac-
ters as mentioned above until you finish all pair exchanges.

System Utilities A-7

Error Messages

Table A-1 contains LANGINST error messages.

Table A-1. LANGINST Error Messages

MESSAGE

MEANING

ACTION

A NORNUMERIC GRAPHIC CHARACTER
IS EXPECTED...

An alphabetic or special char-
acter (not numeric) is ex-
pected.

Enter a valid character.

ATTEMPTING TO ADD TOG MANY CHAR-
ACTER SETS.

Adding this language would
exceed the maximum
configurable character sets.

Don’t configure languages
from so many character sets.

BUILDING AN EMPTY LANGDEF .

There was 1o existing LANGDEF
file, so a new, empty one is be-
ing built.

None. If you have already con-
figured languages, find
LANGDEF.PUB.SYS on & backup and
restore it; or else, reconfigure
the languages with this pro-
gram.

DELETION TERMINATED ... ATTEMPT-
ING TO DELETE NATIVE-3000,

The language NATIVE-3000
may not be deleted from the
list of configured languages.

None.

ERRONECUS STARTING YEAR NUMBER.
EXPECTED A NUMBER BETWEEN O AND
99.

The year number entered in
not valid.

Enter the year number again.
It must be a number between 0
and 99,

INPUT TOO LONG ..
TER:

. PLEASE REEN-

The program does not expect
so much input in this context.

Reenter the data correctly.

INTERNAL ERROR
PORT.

PLEASE RE-

Internal error.

Contact your Hewlett-Packard
representative.

INVALID DATE FORMAT.
MM/DD/YY.

EXPECTED

The entered date is not valid.

Enter the date again in the
form mesop/yy.

langnamei $ ALREADY CONFIGURED.

The language selected has
already been configured.

None.

Iangnamezs AN TLLEGAL LANGUAGE
NAME (OR NUMBER}.

The language name or
number entered is not valid,

Enter the language again, cor-
rectly.

Iangnamezs AN INVALID SYSTEM
DEFAULT LANGUAGE.

The language selected is not
configured on the system.

Add the language to the list of
currently configured
languages with this program.

A-8 System Utilitles

Table A-1. LANGINST Error Messages (cont.)

MESSAGE

MEANING

ACTION

langnamels NOT A CONFIGURED
LANGUAGE .

The language selected is not
configured on your system.

Add the language to the list of
currently configured
languages with this program.

langname1s NOT CONFIGURED.

The language entered is not
configured on your system.

Add the language to the list of
currently configured languages
with this program.

langnamers NOT IN THE CHRDEF

One of the chaperxx files is not

Restore all corperxy files and

FILE. consistent with the xsoer file. nuspeF from your master
backup.
NATIVE-3000 1s ALuwAvs coneie- | NATIVE-3000 may not be | None.
URED. added to the bist of configured
languages, because it is always
configured.
NATIVE-3000 MAY NOT BE Mop1FIED. | The language definition of | None.

NATIVE-3000 may not be
modified.

THE CHRDEFXXFILE 1S MISSING. THE
AGDITION HAS BEEN CANCELLED.

The character definition file
for the selected language is
missing.

Restore the missing file from
your master backup.

THE DECIMAL SEPARATOR AND THOU-
SANDS SEPARATOR SHOULD BE DIF-
FERENT,

The decimals and thousands
separators have been defined
to be the same.

Change the decimal and/or
thousands indicator.

THE EXPECTED NAME SHOULD CONTAIN
ALPHABETIC CHARALTERS ONLY.

Only alphabetic characters are
allowed in this context.

Please re-enter the value, re-
stricting the mmput to
alphabetic characters.

THE F1LECODE FOR
CHRDEFXX.PUB.SYS IS INCORRECT.

The character definition file

for the selected language has a
bad file code.

Restore the missing CHRBERXX
file from the master backup.

THE FILECODE FOR LANGDEF.PUB.SYS
IS INCORRECT,

The current language
definition file has a bad file
code.

Restore Lanepef.puB.SYs from a
backup copy. Or purge it, and
recreate it by reconfiguring the
desired

languages with this program.

THE FILECOBE FOR MLSDEF.PUB.SYS
IS INCCRRECY.

The master NLS definition file
has a bad file code.

Restore sisper.pus.sys from the
master backup.

System Utilities

A-9

Table A-1. LANGINST Error Messages (cont.)

MESSAGE

MEANING

ACTION

THE LANGUAGE YOU ARE ATTEMPTING
TO DELETE IS THE SYSTEM DEFAULT
LANGUAGE .

The system default language
may not be deleted from the
list of configured languages.

1f you wish to delete this
language, you must first
change the system default lan-
guage to another language.

THE ISER SHOULD BE MANAGER.SYS,
RUNNING IN THE PUB GROUP.

The user is nOt MANAGER.SYS OF 1S
not logged on in the pus group.

Log on as maxaser.sys in the pus
group and run the program
again.

THERE IS NO MORE ROOM FOR ARDI-
TIONAL DATE PERIODS. PLEASE RE-
PORT.

There is no room for
additional entries in the na-
tional date table.

Contaet your Hewlett-Packard
representative.

TOO MANY LANGUAGES HAVE BEEN CON-
FIGURED.

Adding another language
would exceed the maximum
configurable languages.

Don’t configure so many
languages on one system.

UNABLE TO RENAME LANGDEF 10
LANGDI71rt. THE EXISTING LANGDEF
WILL BE PURGED.

The old wancper file could not
be renamed because all files
tancoooo through Lanepeey al-
ready existed.

Purge some or all of the files
LANGDOOO tO LANGD999 sO the muost
recent changes to Laneper can
be saved in the future.

UNKNOWK OPTION
PLEASE REENTER.

The option selected is not a
valid one.

Enter the number
corresponding to one of the
currently valid options.

A-10 System Utilities

SUPPORTED LANGUAGES AND CHARACTER SETS B

Character Set Definitions
Every language supported in NLS is uniquely identified by number and name. Every language has:

w A character set number,
= A language identification number.
» A language name.

The pages that follow in this appendix are devoted to unique character sets. Every set consists of NA-
TIVE-3000, language identification number (langnum) 00, and may include one or more languages affili-
ated with the character set,

All character sets are supersets of USASCII and are occasionally referred to generically as "ASCIT"
character sets, as in the term "ASCII-to-EBCDIC translation™.

For every character set, a character attribute table is defined. This table of 256 entries holds an attribute
type for every character. The type identification is:

: Numeric character

: Alphabetic lowercase character

: Alphabetic uppercase character

: Undefined graphic character

. Special character

: Control code (for example, linefeed, escape)
: First byte of a two-byte Asian character

[R R ST I

SUPPORTED LANGUAGES AND CHARACTER SETS B-1

The following items are defined for every supported language:
n The upshift and downshift table
» The collating sequence table
» The ASCII-to-EBCDIC and EBCDIC-to-ASCII translate tables
s The long date format (the DATELINE format)
» The short date format (the custom date format)
» The time format
= The currency symbol (one character)
» The currency name (up to sixteen characters)
» The currency descriptor {(up to four characters)
» The position and spacing of the currency sign
m The decimal and thousands separators for numbers
m The equivalents of YES and NO (both up to six characters)
» The full weekday names (up to twelve characters)
s The abbreviated weekday names (up to three characters)
» The full month names (up to twelve characters)
n The abbreviated month names (up to four characters)
» Text direction (left to right or right to left)
» Alternate set of digits (where applicable)
s The National Date table (where applicable)

Refer to the discussion on the suinFo intrinsic, in Chapter 4, for a complete description of these items.

B-2 SUPPORTED LANGUAGES AND CHARACTER SETS

Language Definitions and Character Sets

The following pages contain the character sets and definitions supported by NLS.

NATIVE-3000

USASCIL (Set #0)
Language Number Language Name
00 NATIVE-3000

The USASCII character set is a subset of the ROMANS character set shown in Figure B-1. It is contained
in columns O through 7.

ROMANS

{Set #1)
Language Number Language Name
00 NATIVE-3600
01 AMERICAN
02 CANADIAN-FRENCH
03 DANISH
04 DUTCH
05 ENGLISH
06 FINNISH
07 FRENCH
08 GERMAN
09 ITALIAN
10 NORWEGIAN
11 PORTUGUESE
12 SPANISH
13 SWEDISH
14 ICELANDIC
15-40 Reserved

SUPPORTED LANGUAGES AND CHARACTER SETS B-3

R e - FY. V]t [{rlelmlal s o | X7 | R +
leimlel TP QO b PO O RO [0 PW B! DY B> >
~lrlo|=| D |~ @ Y@ =~ | & § < =[O DU | @ O
rielolo] Yo iw (<0 <3 @00 Do .o .3 @ e [0 D
clolel-l = H o |Or o hZ e L= [0 (T Y || e
ialelal @ Ll WU | e < t LD <D Y
—imio|—] Ch
~—lo o o] O
azii?D.Q.IStUVWWXV;Z{i%i:~%
oiriw|lol @ Jw [©] 0O Q0 T | WL ||| |0
ol-iol-lw]lo |0 T v D> (x| >|N|—| |~ <]| |
ol-lolel v l®@ @« miOllw|lw | GlTH|-|xx|la|S(z|0O
clolrlrl oo~ W] OiIN][o0iO ~INv LA e
OQ?OEW!.H e R |edin |[~[~]|x | +]| -] —
wi N1 | X
°lolol-|~12/8/8|8 8215 858382823
~
seEEE HHEEBREHEEAEEBEEEEEE
Sialé, &
olrnjor v oinfole RN DT W
Glei ~| ol ~lol o]0 |~ @] ~1O0]
dlolol] ~mlolol mwle|ola|l~|~]lolal«]~
Sgleoeito|lol o« ~l rl~joiol ol o]] | w] -
glotocleloclolaoatol ol =l ~f =]] =] =] =i e

1. ROMANS Character Sct

gure B-

Fi

B-4 SUPPORTED LANGUAGES AND CHARACTER SETS

KANASB

(Set #2)

Language Name

Language Number

NATIVE-3000

00

KATAKANA (Phonetic Japanese)

41

15

14

13

A

™

L,

s

n

12

w

11

7 *

ANy

4 e

AL ™~

+ | &

rlA4

cnnd
0.}«1«!7..Duqultuvwxyz{llnl}l~%
olrji-icl wl. |®jD]jJOojD]|O|- Do~ —ix|l—-]|Elc]O
ol-icjol = I@IC MO0 jW L [OIT|H|{-|X|J|ZIZ]|O
D[~ DO (™ (N[OOI~ {OID “IV I iAo
oo 029., % len o
— Sii-" Wf&’ I.I\\..I.tn_f!. —
WwiwiNioig I X zlm|Z miO
ciojo|~] -1 SOOI 01 0Q1 <« — MUSSSSS
aloloidlalZla|m|S|luigll|e|jo|E]S
T I I i IO |
oviclo|lej oD =1 DOl li-liwlE| o=
1216 IE]|8]18% alojT|a|>{ujo|al|®
alsi181 8
olrlu|o|vlvwjo|rjojel2]DINIQ|T|®R
Al ol ~1 o} ~lol rjol~lol]lrjOole-io] o]l «
m00?1001109110011
Bl o] ol of o1 w§f ~]] ~j olo]lolo] i |]
glolojololjojoloelofrlrielr]l] el w

Figure B-2. KANAS Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS B-5

ARABICS

[+¥]
E
3
Z,
8]
ol il
3
S =
23
o
W
-]
&
-
<
[+#]
=1}
o]
£
=
=]
[]

NATIVE-3000
ARABICL

00
49

ARABICR
ARABIC

50

51

52
33

ARABICW

ARABICWL

ARABICWR

54

15

-
-

~3

14

J

13

-

e O

12

5

11

2

—
=3 K ?pnu.fStUVWXnytl}N%
of- o |ojlalo|Djlolw|O|S |~ =-Xi~IFflc|O
o|- ol |gle|ln |- |D > X|[> N[~ | <] |
ol - < @< in|OQlwin|O|T|—|n|¥|-dZ2|2|0
oo OO | NIMIF | OO~ O0D “Sfv i A]e
el e 2%!.u #$%&rf\)§+:_ ~

alalalalalZla|t|d|uigd|B|vlo|c]>
ST i I i1 0 x W

2316 012|820z | > |w|C|a|D

Sla

Qlrlau|mle|wjo Moo/ 7| N3]0
alol~tof =t ol o]l wlol~jao]] ~1of «—~
S olo|l] ~folol w| ~lofal~le~loal ol «i e
Blololol ol i w] | ~jloclolol]lol w1] wIl «
Siocijioeolel|loljlololoioelw!|rmvwirl ol ~1] ~

Figure B-3. ARABICS Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS

B-8

GREEKS

(Set #4)
Language Name

Language Number

NATIVE-3000
GREEK

00

61

15

P

14

13

T

N

12

B|P B

T2y

Z| o L

®| X8| x

11

10

i
011?D.Q.rstuvwxv.2{||}~%
ol-l-lojo]l @ Q][O TV ViDL wfwm e i E1c]0O
el ESPQRSTUVWVAYZE\}Am
ol~lele| « @< OO WL O~ - Z/Z0
oo L Ol NIM|F |0 IO~ 0D S iVIiHIA~
olo ol | &l —1z #$%&::\\l;+;m ~

wirli | i |{XiIZ2ImiZ m O
oleo ~l-] 31QlQIQOlOI] > = R RRE:RE
BlolaialalZiann|d|®|a|8|«w 0]
e XXX O]
I 5 I 5IQI8 1218l |S|{>|clo|a|d
8is A
olr|alo|lviojoir|ojole|njalo)z]e
atolr~rlo] 1l ol «mjJ ol wjiaoalewtol w|lol ~laol «~

Slojol | ~lojol~rjr~rlofjol ~milw]lolo] e«i «

moooo.‘idﬁ‘!‘ﬁuaoo.ﬁ!i!‘i

Slolojolojojolojolefem| el | —~[=1] ~

Figure B-4. GREEKS Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS B-7

TURKISHS

{Set #6)

Language Name

Language Number

NATIVE-3000

TURKISH

00
81

15

/2

=

14

Bl

D

0)

§

U

13

%,

i

i

ne

12

0

4

1

V|6

T

¥

§¢|S

ol~|ri=i~]Qjol-jole= |3 |>|2iIX|{>N{——i—|—~]]
olelricjlo |- |®|Q]O|D|@|w|D|L|—|—iX|—[F|C
oi-lo|~lwila|glcin|(- D> [SIX >INl |m<]| |
ofriclel « I@IC|D{OIQ WL IOIT|—D|¥|=|ZS|Z|0
slolri~l o |Ol=iN|MD IS |]|O|NOID ~Ivif Al
olo 02no._w.l.n #$%&r e el BN I 8 BN B | ~
olo ~l-jaloio|l0lol<s|>]|F 2135 e 08
alala|ala|Z|lalb|d|@|a|a|v|joja]D
LD i =10 X 2 o
2@ BIEIRISIQ8lojz| 4|5 |0C|la|®
815 ¥
olrlalolvjolo|rololen e TR
glel~jol ol el ~Jloj~lo|lvrjoij~lo] -
Alojol~f ~jo]lo] «~j ~jojol~lewlo|locl~1]~
Slojlololof | ~]~—~jloilo]lolof] «fj=1
Bleocloleoclojola] @] @] w | el] wit o]w] ~

Figure B-5. TURKISHS Character Set

8-8 SUPPORTED LANGUAGES AND CHARACTER SETS

PRC15

{Set #51)
Language Name

NATIVE-3000
SIMPLIFIED CHINESE (CHINESE-S)

Second byte

7F 80 FF

Language Number
00
201
00

00

~

~

O

N

~

Iwo ASCH valves

First byte
8

FF

AtA1

e

Figure B-6. PRC15 Character Set

SUPPORTED LANGUAGES AND CHARACTER SETS B-9

ROC15

Language Number

30
211

(Set #56)
Language Name

NATIVE-3060
TRADITIONAL CHINESE (CHINESE-T)

Second byte
7F 80 FF

Iwo ASCH valses

First byte
7

Azt

FB2Y

FEZY

FF

AE | A

®

L emems

! ey AIFE

- cacpmr

Invalid

FORE

T ot puckard wriot

FETE | FEA! FEEE

00

3F 7F 80 D3 FF

Figure B-7. ROC15 Character Set

B-10 SUPPORTED LANGUAGES AND CHARACTER SETS

JAPAN15

Language Number

00
221

00
0

-

{Set #61)
Language Name

NATIVE-3000
JAPANESE

Second byte
7F 80 FF

ASCH

Two ASCH values

First byte
0~
O mn
g |
8

| 18180 BIOF .
Shift-dis A o Shift~JIS A

KATAKANA

Shift-JS B Shift-JIS B

- User defined fonts

1 User defined fonts -

FETE FEFC

Figure B-8. JAPANI1S Character Set

SUPPORTED LANGUAGES AND CHARACTER 8ETS B- it

KOREA15

(Set #66)
Language Number Language Namte

00 NATIVE-3000
231 KOREAN

Second byte
00 7F 80

FF

O
O

‘wo ASCYH valzes

ASCY/

First byte
w0~
O M

A1AT

AIFC

FF

Figure B-9. KOREA1S Character Set

B-12 SUPPORTED LANGUAGES AND CHARACTER SETS

COLLATING IN EUROPEAN LANGUAGES C

Collating is defined as arranging character strings into some {usually alphabetic) order. To do thisa
mechanism must be available that, given two character strings, decides which one comes first. In Native
Language Support (NLS) this mechanism is the sicotLATE intrinsic.

Look at the full ROMANS character set and consider that all these characters can appear in every
European language. Even if a character does not exist in a language, it can still show up in names
and/or addresses. It is quite useful to address a letter 1o Spain correctly, even if it originates in
Germany. Therefore, the full ROMANS character set is considered to be used in all languages, and a
collating sequence has been defined for all characters in the ROMANS character set for the languages
it supports. Figure C-1 lists the collating sequence for:

AMERICAN CANADIAN-FRENCH DANISH
DUTCH ENGLISH FINNISH
FRENCH GERMAN ITALIAN
NORWEGIAN PORTUGUESE SPANISH
SWEDISH

— All characters in a group, indicated by brackets (or, in a few footnotes, by underlining) collate the same.
These characters usually differ only in uppercase versus lowercase priority, or accent priority. In
sorting, they are initially considered the same. If the remaining characters in the two strings do not
determine which string comes first, then the priorities of characters will be used to determine the order.
Refer to Table C-1 for examples of collating sequence priority.

COLLATING IN EUROPEAN LANGUAGES C-1

Table C-1. Examples of Collating Sequence Priority

Sorted Strings

Explanation

abc, Abd

aBc, abce

The third character in each string 1s different. The
"b" precedes the "¢,

The characters in the two strings are identical, so accent

10 7 #1

priority determines the order. The “e" precedes the "&”.

The last characters in the strings are different. The "¢”
precedes the "d".

The characters in the two sirings are the same, so the
uppercase priority determines the order. "B" precedes
[E] b n .

NOTE

This Appendix deals with collating or lexical ordering and does not
include matching. For matching purposes, there is generally a difference
between "A" and "a".

Figures C-1 and C-2 display the collating sequence in three ways: the graphic representation of the
character, the decimal equivalent of the character’s binary value, and a description of the character.

Language-dependent variations to the collating sequence appear in Figure C-2.

C-2 COLLATING IN EUROPEAN LANGUAGES

Collating Sequence

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
32 Space
160 Do Not Use
0 48 Zero
H 48 Che
2 50 Tweo
3 51 Three
4 52 Four
5 53 Five
8 54 Six
7 55 Seven
8 58 Eight
g 57 Nine
A i 65 Uppercase A]
a av Lowercase a
A 224 Uppercase A Acute
4 196 Lowercase a Acute
A 161 Uppercase A Grave
3 200 Lowercase a Grave
A 162 Uppercase A Circumflex
S 192 Lowercase a Circumflex
i 218 Uppercase A Umlaut/Diaeresis
a 204 Lowercase a Umlaut/Diaeresis
A 208 Uppercase A Degree
E 212 Lowercase a Degree
A 22% Uppercase A Tilde
g . 228 Lowercase a Tilde -
B i 6% Uppercase B]
b L 98 Lowercase b .

Note that & ligature {211)}and = (215) are expanded for collating purposes to AE or ae and col-
late as: ad AE Ae A al ae = AF.

Figure C-1. Collating Sequence (1 of 7)

COLLATING IN EUROPEAN LANGUAGES C-3

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
c 67 Uppercase C
< 89 Lowercase ¢
G 180 Uppercase € Cedilla
< L 181 Lowercase ¢ Cedilla
b €8 Uppercase D
d 100 Lowarcase d
b 227 Uppercase D Stroke
d . 228 Lowercase d Stroke
E 69 Uppercase E
e 101 Lowercase e
E 220 Uppercase E Acute
é 187 Lowercase a Acute
E 163 Uppercase E Grave
& 201 Lowercase e Grave
g 164 Uppercase E Circumflex
é 183 Lowercase e Circumflex
E 165 Uppercase £ Umlaut/Diaeresis
8 L. 205 Lowercase e Umlaut/Diaeresis
F 70 Uppercase F
f . 102 Lowercase f
G 71 Uppercase G
g L 103 Lowercase g
H T2 Uppercase H
h L. 104 Lowercase h
I 73 Uppercase [
i 108 Lowercase i
f 229 Uppercase [Acute
{ 213 Lowercase | Acute
1 230 Uppercase 1 Grave
i 217 Lowercase i Grave
b 166 Uppercase 1 Circumflex
1 208 Lowercase | Circumflex
b{ 167 Uppercase | Umlaut/Dlaeresis
Y L 221 Lowercase i Umlaut/Diaeresis
J 74 Uppercase J
J . 106 Lowercase j
K 75 Uppercase K
k L 107 Lowercase k

Figure C-1. Collating Sequence (2 of 7)

C-4 COLLATING IN EUROPEAN LANGUAGES

CHARACTER DECIMAL DESCRIPTION

EQUIVALENT
L [76 Uppercase L]
1 108 Lowercase | .
M [7 Uppercase M]
m 109 Lowercase m .
N 8 Uppercase N i
n 110 Lowercase n
N 182 Uppercase N Tilde
fi i 183 Lowercase n Tilde _
o 79 Uppercase O]
o 111 Lowercase o©
é 231 Uppercase O Acute
é 198 Lowercase o Acute
o 232 Uppercase O Grave
& 202 Lowercase ¢ Grave
o] 223 Uppercase 0 Circumflex
& 194 Lowercase o Circumflex
e] 218 Uppercase O Umlaut/Diaeresis
& 206 Lowercase o Umlaut/Diazeresis
o] 233 Uppercase O Tilde
o] 234 Lowercase o Tilde
@ 210 Uppercase O Crossbar
& L 214 Lowercase o Crossbar .
P i 80 Uppercase P]
p L 112 Lowercase p .
Q 3 81 Uppercase Q]
a - 113 Lowarcase g »
R B2 Uppercase R]
r L 114 Lowercase r .
5) 83 Uppercase S]
s 115 Lowarcase s
5 238 Uppercase S Caron
g . 236 Lowercase s Caron .
T [84 Uppercase T]
t L. 116 Lowercase t .

Note that the B {222, sharp s) is expanded to ss and collates according to the German stan-
dard as: sr 8 ss st.

Figure C-1. Collating Sequence 3 of 7)

COLLATING IN EUROPEAN LANGUAGES C-5

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
U] a5 Uppercase U
u 1117 Lowercase u
U 237 Uppercase U Acute
4 189 Lowercase u Acute
U 173 Uppercase U Grave
U 203 lLowercase u Grave
0 174 Uppercase U Circumflex
{ 185 Lowercase u Circumflex
{ 219 Uppercase U Umlaut/Diaeresis
i L 207 Lowercase u Umlaut/Diaeresis
v i 886 Uppercase V
v L 118 Lowarcase v
W] 87 Uppercase W
W L 118 Lowercase w
X i 88 Uppercase X
P L 120 Lowercase x
Y 89 Uppercase Y
y 121 Lowercase y
¥ 238 Uppercase Y Umlaut/Diaeresis
¢ . 238 Lowercase y Umlaut/Diaeresis
Z i 80 Uppercase 2
2 L 122 Lowercase 2z
P 240 Uppercase Thorn
o] L 241 Lowercase Thorn
177 Currently Undefined
178 Currently Undefined
242 Current ly Undefined
243 Currently Undefined
244 Currently Undefined
245 Currently Undefined

C-8

Figure C-1. Collating Sequence (4 of 7)

COLLATING IN EUROPEAN LANGUAGES

DECIMAL

CHARACTER EQUIVALENT DESCRIPTION
{ 40 Left Parenthesis
) 41 Right Parenthesis
[a1 Left Bracket
1 93 Right Bracket
{ 123 Left Brace
¥ 128 Right Brace
€ 251 Left Guillemets
» 253 Right Guillemets
¢ 60 Less Than Sign
> 82 Greater Than Sign
= 61 Equal Sign
+ 43 Plus
- 45 Minus
x 254 Plus/Minus
¥ 247 One Quarter
¥ 248 One Half
@ 179 Degree (Ring)
% 37 Percent Sign
42 Asterisk
46 Pericd (Point)
, 44 Comma
3 59 Semicolaon
58 Colon

Figure C.1. Collating Sequence (5 of 7)

COLLATING IN EUROPEAN LANGUAGES C-.7

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
é 185 Inverse Question Mark
? 63 Quest ion Mark
i 184 Inverse Exclamation Point
! 33 Exclamation Point
/ 47 Slant
\ 92 Reverse Slant
| 124 Vertical Bar
e 64 Commercial At
& 38 Ampersand
35 Number Sign {Hash)
§ 189 Section -
$ 36 U. S. Dollar Sign
¢ 181 U, S. Cent Sign
£ 187 British Pound Sign
£ 175 Italian Lira Sign
¥ 188 Japanese Yen Sign
f 180 Dutch Guilder Sign
ﬁ. 186 General Currency Sign
" 34 Double Quote
¢ 98 Opening Single Quote
’ 39 Closing Single Quote
~ 84 Caret
~ 126 Tilde

Figure C-1. Collating Sequence (6 of 7)

C-8 COLLATING IN EUROPEAN LANGUAGES

DECIMAL

CHARACTER EQUIVALENT DESCRIPTION
’ 168 Accent Acute
A 169 Accent Grave
- 170 Accent Circumflex
171 Umlaut /Diaeresis
~ 172 Tilde Accent
_ 85 Underscore
- 246 long Dash
- 176 Overline
a 248 Feminine Ordinal Indicator
2 250 Mascullne Ordinal Indicator
o™ 252 Solid
0 \
. \
Control Codes
. /
39 /
128 \
) \

Currently Undefined
/ Control Codes

159 /
127 DEL
255 Do Not Use

Figure C-1. Collating Sequence (7 of 7)

COLLATING IN EUROPEAN LANGUAGES C-9

Language-Dependent Variations

Listed below are language-dependent variations for Spanish, Danish/Norwegian, Swedish and
Finnish.

SPANISH. CH is considered a separate character, which collates between € and D. The same
applies to LL, which collates after L and before M:

ce 18 The & symbol <c¢an equal anything.
CH LL Therefore, CH comes after C followed by
Ch Ll anything, and before D followed by
cH iL anything.

ch il

D@ M@

In Spanish N and WNare not considered the same in collating (this also applies to n and #).
They are different characters which follow one another in the collating sequence:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
N [78 Uppercase N
n 110 Lowercase n
N [182 Uppercase N Tilde -
1} 183 Lowercase n Tilde

DANISH/NORWEGIAN. The 4, @, and A collate at the end of the alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
Z i 80 Uppercase 2
2 . 122 Lowarcase z
A I 211 Uppercase AE Ligature
® [215 Lowercase ae Ligature
g 210 Uppercase O Crossbar
¢ L 214 Lowercase o Crossbhar
A 208 Uppercase A Degree
E] | 212 Lowercase a Degree
P) 240 Uppercase Thorn
p L 241 Lowercase Thorn

Figure C-2. Language-Dependent Variations (1 of 3)

C-10 COLLATING IN EURQPEAN LANGUAGES

SWEDISH. The A, Aand U are collated at the end of alphabet:

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
Z a0 Uppercase Z]
z . 122 lowarcase 2z J
A i 208 Uppercase A Degree]
& . 212 Lowercase a Degree .
K i 216 Uppercase A Umlaut/Diaeresis]
] L 204 Lowercase a Umlaut/Dizeresis
o} 218 Uppercase O Umlaut/Diaeresis]
8 L 206 Lowercase o Umlaut/Diaeresis
E 240 Uppercase Thorn]
b L 241 Lowercase Thorn -

FINNISH. The B, A, and U are treated the same as in Swedish. The @ is considered to be the
same as 8. Vand W, and Y and U are regarded as the same in Finnish.

DECIMAL
CHARACTER EQUIVALENT DESCRIPTION
y 85 Uppercase U
u "7 Lowercase u
G 237 Uppercase U Acute
G 199 Lowercase u Acute
0 173 Uppercase U Grave
u 203 Lowercase u Grave
0 174 Uppercase U Circumflex
o | 185 Lowercase u Circumflex _
v g6 Uppercase V
v 118 Lowercase v
W 87 Uppercase W
W . 119 Lowercase w .
X 88 Uppercase X
X . 120 Lowercase x y
Y 89 Uppercase Y
y 121 Lowercase y
¥ 238 Uppercase Y Umlaut/Diaeresis
Y 239 Lowercase y Umlaut/Diaeresis
1) 219 Uppercase U Umlaut/Diaeresis
i . 207 Lowercase u Umiaut/Diseresis .

Figure C-2, Language-Dependent Variations (2 of 3)

COLLATING IN EUROPEAN LANGUAGES C- 11

DECIMAL
CHARACTER EQUIVALENT

z 90
z L 122
A [208
5 | 212
3 [218
5 | 204
B 218
5 206
@ 210
¢ L 214
B - 240
b 241

DESCRIPTION
Uppercase Z
Lowercase z

Uppercase A Degree
Lowercase a Degree

>

Uppercase A Umlaut/Dizeresis
Lowercase a Umlaut/Diseresis

Uppercase O Umlaut/Diaeresis
Lowercase o Umlaut/Diaeresis
Uppercase O Crossbar
Lowercase o Crossbhar

Uppercase Thorn
Lowercase Thorn

Figure C-2. Language-Dependent Variations (3 of 3)

C-12 COLLATING IN EUROPEAN LANGUAGES

EBCDIC MAPPINGS D

NLS provides mappings, through nitranstate and suinro, from HP 3000 supported character sets
(ROMANS, KANAB) to the various national versions of the EBCDIC code. This applies to all native
languages supported on the HP 3000 and is done differently for each language.

Background Data

EBCDIC is an 8-bit code which originally used only 128 of the 256 possible code values. These 128
characters have almost the same graphic representations as the traditional 7-bit, 128-character,
USASCI! code. Three characters are different. USASCII has the left and right square brackets ([and
1) and the caret (™), while EBCDIC includes the American cent (¢}, the logical OR (), and the logical
NOT (=).

The EBCDIC code was modified to accommodate the extra characters required by European
languages. For example, when the German EBCDIC was defined some less important characters were
traded for German national characters, and the vertical bar (]) became lowercase 6. Similar things
happened to create EBCDIC codes for Norwegian/Danish, Swedish/Finnish, Spanish, Belgian, Italian,
Portuguese, French, and English in the UK.

The 128 unused positions in the various national language EBCDIC codes were later used to
accommodate all national characters which appeared in any of the EBCDIC codes. Each resulting
Country Extended Code Page became a superset of each existing national EBCDIC. In the German
table, for instance, the empty space was used to accommodate characters from other languages, but the
traditional German characters 4, 6, i, and B retained their original position in the German national
EBCDIC, There are many Country Extended Code Pages now, all showing exactly the same characters,
but showing them in different locations. Consider, for example, the character which has decimal code
161 (octal 241, hexadecimal A1). In original EBCDIC, this is the tilde (~) in Spanish, the sharp s (8) in
German, the diaeresis accent " in French, the lowercase i in Swedish/Finnish and Norwegian/Danish,
the lowercase 1 in Italian, and the lowercase ¢ in Portuguese.

This situation makes it necessary to map the Hewlett-Packard ROMANS character set to the many
different EBCDIC Country Extended Code Pages.

EBCDIC MAPPINGS D-1

ROMANS to EBCDIC Mapping

In mapping from ROMANS to and from any EBCDIC, characters look the same, or as close as possible,
before and after conversion. The majority of the symbols appearing in ROMANS also exist in the
EBCDIC Country Extended Code Pages. In ROMANS there are nine characters which have no similar
EBCDIC character, and six undefined characters, Since there are no undefined characters in the
EBCDIC Country Extended Code Pages, 15 characters in EBCDIC have no look-alike in ROMANS. For
these characters a one-to-one mapping has been defined as shown in Table D-1.

Table D-1. ROMANS to EBCDIC Mapping

dec. oct. hex. ROMANS EBCDIC

169 251 A8 ° Grave Accent | Logical OR

170 252 AA 7 Circumflex Accent m Logical NOT

172 254 AC ~ Tilde Accent 2 Superscript 2

175 257 AF £ Italian Lira Sign 3 Superscript 3

177 281 81 Presently Undefined i MU Character

178 2862 82 Presently Undefined — Double Underline
235 353 EB § Uppercase S Caron Y Uppercase Y Acute
236 354 EC & Lowercases Caron v Lowercase v Acute
238 3% FE Y Uppercase Y Umlaut X Lowercase : Without Dot
242 382 F2 Presently Undefined R Cedilla

243 363 F3 Presently Undefined 9 Paragraph Sign
244 364 F4 Presently Undefined ® "Registered" Sign
245 385 FB Presently Undefined 1 Three Quarters
246 386 F8 __ Long Dash SHY Syliable Hyphen
252 374 FC m Solid * Maddle Dot

For the Hewlett-Packard KANAS character set, which supports KATAKANA, the mapping to and from
EBCDIC is defined by Japanese Industrial Standards (J1S) and IBM.

In all languages, the character mappings defined and implemented on the HP 3000 are such that any
character mapped from any Hewlett-Packard 8-bit character set to EBCDIC and then back again, or vice
versa, will result in the original character value. A complete listing of the Hewlett-Packard 8-bit character
set to EBCDIC mappings and vice versa can be obtained by running NuriL.pus.sYs.

The mappings can be made available to a program by the auinfo intrinsic item 13 or 14. The mappings are
used by the wLvransLATE intrinsic, which performs the Hewlett-Packard 8-bit to EBCDIC translation or the
reverse. The crranstATe intrinsic maps USASCII to EBCDIC (and vice versa) and maps JISCII to EBCDIC
{and vice versa). For the languages NATIVE-3000 and KATAKANA, there is no difference between the
mappings produced by NLTRANSLATE and CTRANSLATE.

D-2 EBCDIC MAPPINGS

PERIPHERAL CONFIGURATION E

Native Language Support (NLS) relies on the use of 8-bit character sets to encode alphabetic, numeric,
and special characters required for the proper representation of native languages. Two character sets
are available, ROMANS and KANAS. This Appendix explains how to configure various printers and
terminals supported on the HP 3000 for 8-bit operation, so that ROMANS or KANAS characters may
be entered and displayed.

Most Hewlett-Packard terminals and printers are designed for 8-bit operation. Some have limitations
which are listed as "Notes" at the end of this Appendix. A listing of relevant notes is included with the
instructions for each peripheral, and the peripherals to which such notes apply are listed in Table E-2.

NLS Peripheral Support Summary

Tables E-1, E-2, and E-3 contain information on which peripherals are fully supported, those that have
limited support, and those that are not supported.

PERIPHERAL CONFIGURATION E-1

Table E-1. Peripherals Fully Supported in 8-Bit Operation - All Language Options

Model/Type Cgr!ggégissm'go Fu?iu gnr}\sNB Oigufggﬁg\srds
Standard

HP 150 PC/As Ter- | YES YES YES
minal

HP 2392A Terminal YES NO YES
HP 2563A Printer YES YES YES
HP 2621B Terminal YES NC YES
HP 2622J Terminal YES YES* N/A*
HP 26237 Terminal YES YES* N/A*
HP 2625A Terminal YES YES YES
HP 2627A Terminal YES NO YES
HP 2628A Terminal YES YES YES
HP 2700 Terminal YES NO YES
HP 2932A Printer YES YES YES
HP 2933A Printer YES YES YES
HP 2934A Printer YES YES YES

* Supports KANAS rather than ROMANS.

E-2 PERIPHERAL CONFIGURATION

Table E-2. Peripherals With Limited Support in 8-Bit Operation

Mode!/Type Frocessing. Full BOMANS o1d HOMANS
Standard

HP 2382A Terminal NO NO YES
HP 2608A Printer NO NO YES
HP 2608S Printer NO NO YES
HP 2622A Terminal NO NO YES
HP 2623A Terminal NO NO YES
HP 2626A Terminal NO NO YES
HP 2626W Terminal | NO NO YES
HP 2631B Printer NO NO YES
HP 2635B | NO NO YES
Protr/Term

HP 2645 Terminal NO YES* N/A*
HP 2680A Printer NO NO YES
HP 2688A Printer NO YES YES

* Supports KANAS rather than ROMANS.

Table E-3. Peripherals Not Supported in 8-Bit Operation

Conforms To Sulggorts Susgorts
Model/Type Processing Fuil MANS Otd MANS
Standard
HP 26248 Terminal NO NO NO
HP 2687A Printer YES NO NO=**

** This printer functions correctly in 8-bit operation (it has no 7-bit operation). However, much of the
ROMANS character set is not implemented, and KANAS is unavailable. Some of Roman Extension is
not implemented; but 8-bit characters with some of the Roman Extension values print in a degraded
fashion (for example, accented vowels print as the corresponding vowel without accent, and the interna-
tional currency symbol prints as "0").

PERIPHERAL CONFIGURATION E-3

Specifics of 7-Bit Support

No peripherals are supported in 7-bit Native Language operation.

All peripherals are supported in 7-bit USASCII operation, though the non-USASCII characters are
then unavailable. This includes the devices not listed at all in the preceding tables, because they are
devices which have only 7-bit operation.

If 8-bit data is sent to a device configured for 7-bit USASCII operation, those characters with the eighth
bit on will be displayed as unrelated (but predictable) USASCII characters or else as blanks, depending
on the device. For example, an "a" displays as "H" on a 2645A terminal.

This Appendix contains specific information on each device supported in 8-bit mode to help configure
these peripherals to utilize NLS capabilities.

NLS Peripheral Support Details

There are two ways to access ROMANS characters not on the keyboard.

From many of the terminal keyboard layouts (for example, French and Spanish), you can access a few
ROMANS characters (certain accented vowels) from the standard keyboard by using mutes. Enter a
non-spacing diacritical character (such as an accent mark or circumflex), then the unaccented vowel.
The result on the screen is a single, merged character; usually, a single, merged character is transmitted
to the system. (See Notes 7 and 10 for some of the peripherals.)

Accessing ROMANS or KANAS characters that do not appear on your keyboard can be accomplished
by using "(Crw IN"/"(TiRC JO", "(Gm0)"/"(CRL),", or (Extendchar), depending on the terminal. If your
terminal uses (_ctr N (or "shifting out"), please consult Notes 1-4 at the end of this Appendix.

E-4 PERIPHERAL CONFIGURATION

HP 150 P.C. as a Terminal

Requirements
None. ROMANS character set is standard.

Character Set Supported
ROMANS

Contiguring For 8-Bit Operation

Giobal Configuration Language = Language of the keyboard
Portl or Port2 Parity = None
DataBits = 8

Check Parity = No
Terminal Configuration ASCII 8-Bits = Yes

MPE 1/O Configuration Terminal Type = 10 (12 if connection is ATC)

Typing ROMANS Characters Not On The Keyboard

Access the ROMANS characters not on the national keyboard by pressing ((Extend char_J, holding it down
while pressing one of the other keys. Most of the accented vowels, as well as the Spanish "N" or "A", are
accessed from most of the national keyboards by means of mutes. The mute is a diacritical mark such as
an accent, circumflex, or diaeresis. Enter a non-spacing diacritical character (if it is not on the keyboard
layout, press (Extend char J), then the unaccented vowel (or "N" or "A"). The screen displays a single,
merged character, and a single, merged character is transmitted to the system. The non-spacing
diacritical character is not displayed on the screen until the second character is typed.

Notes

None.

PERIPHERAL CONFIGURATION E-5

HP 2382A Terminal

Requirements
Option 001, 002, 003, 004, 005, 006 or 007 (National keyboard and ROM).

Character Set Supported
USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

MPE 1/0O Configuration Terminal Type = 10 (12 if connection is ATC).

To configure the terminal for 8-bit operation as the default, set switches A5=up, A6=down, A7=up,
Bl=down.

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and 1ANGUAGE=FRANCAIS azM, FRANCAIS quM, O ESPANOL ¥, some
Roman Extension characters {certain accented vowels) are accessible from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character. With a national keyboard, the USASCII characters, which are replaced on the
keyboard, cannot be entered, but they can be displayed when received from the system.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter (sl N
to do so. Enter (€78)O to return to the usual keyboard layout.

Notes
1,2,4,5,6,7,9.

E-& PERIPHERAL CONFIGURATION

MP 2392A Terminal

Requirements
None. A subset of the ROMANS character set is standard.

Character Set Supported
A subset of ROMANS (the last two columns of the ROMANS table are missing).

Configuring For 8-Bit Operation

Datacomm Configuration Parity/DataBits = None/8

Terminal Configuration Keyboard = National layout of keyboard.
Language = Language in which terminal messages and labels are to
appear

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing ROMANS Characters Not On Keyboard

Some ROMANS characters (certain accented vowels) are accessible from the standard keyboard by using
mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a single,
merged character, and a single, merged character is transmitted to the system (in both character and block
mode).

ROMANS characters not on the keyboard are accessible by pressing ((Extend char |, holding it down while
pressing another key. Most accented vowels are accessed via mute character combinations. The mute
character itself is accessed via [(Extend char J, and the vowel from the standard keyboard. The placement of
extended characters is in Appendix B of the HP 23924 Display Station Reference Manual (02392-50001).

Notes

None.

PERIPHERAL CONFIGURATION E-7

HP 2563A Printer

Requirements
\image 2 None. ROMANS character set is standard. (KANARS is available with Option #002.)

Character Set Supported
ROMANS, KANAS

Configuring For 8-Bit Operation

Printer Set primary character set = 20 (ROMANS) or = 21 (KANAS) via the
switches on the front panel. If the printer has a
serial interface, set DataBits = 8, Parity = None. These configura-
tions can also be done programmatically with escape sequences.

MPE 1/0 Configuration For serial interface, configure the printer on the HP 3000 as
Termtype = 20 (8-bits of data). On a Multipoint line, use Termtype
= 18 or 22. For HPIB interface, use Type = 32, Subtype = 9. This
permits programmatic reconfiguration via escape sequences.

Notes

None., —

E£-8 PERIPHERAL CONFIGURATION

HP 2608A/HP 2608S Printers

Requirements

Option 001 and 002 for KANAS.
Option 002 for Roman Extension.

Character Set Supported

KANAS
USASCII plus Roman Extension

Configuring For 8-Bit Operation
Set switches on front panek: USASCII + RomExt
Primary Language = 0000
Secondary Language = 1111
KANAS
Primary Language = 1110
Secondary Language = 0011
On the HP 2608S only, a program can also set these values via escape sequences.

MPE I/O Configuration Termtype = 20 or 22.

Notes
9,11.

PERIPHERAL CONFIGURATION E-9

HP 2621B Terminal

Requirements

Option 001,002,003,004,005,006 and/or 010 (National keyboard and/or extended character set ROMs).
Option 101,102,103,104,105,106 and/or 110 (Extended national keyboard and/or ROMzs).

Character Set Supported
USASCII plus Roman Extension

Configuring For 8-Bit Operation
Set switches PO,P1,P2: Set to 0,1,0 (down,up,down)

Set switches L.O,L1,L.2: Set to language of keyboard layout (see HP 2621B Manual (02620-
90062), for settings for keyboard layout), and switch 5 of the left-hand
group = 0 to activate the keyboard of that language.

MPE 1/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCIll/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish, a few Roman Extension characters {certain accented vowels)
are accessible from the standard keyboard by using mutes. Enter a non-spacing diacritical character, then
the unaccented vowel. The screen displays a single, merged character, and a single, merged character is
transmitted to the system.

Roman Extension characters not available on the keyboard (except those available via mutes) cannot be
entered, but they can be displayed when received from the system.

The USASCII characters which are replaced on the native keyboard are available after pressing in
the "modes” level (an asterisk will appear next to the "USASCII" label for this function key). This causes
the keyboard to become the standard USASCII layout. Press again (the asterisk will disappear) to
return to the native keyboard.

Notes

10.

E-10 PERIPHERAL CONFIGURATION

HP 2622A/HP 2623A Terminals

Requirements
Option 001, 002, 003, 004, 005, 006 or 202 (National keyboard and/or extended character set ROMs).

Character Set Supported
USASCII plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes
Language = Language of the keyboard layout.

MPE I/0 Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyhoard

If the keyboard layout is French or Spanish and (ANGUAGE=FRANCAIS azM, FRANCIAS quM, OT EspaNoL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character. Access the USASCII characters replaced on a national keyboard by pressing
and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter (e N
to do so. Enter {cirC_JO to return fo the usual keyboard layout.

Notes
1,2,4,5,6,7,9.

PERIPHERAL CONFIGURATION E-1t

HP 2622J/HP 2623J Terminals

Requirements
None. KATAKANA is standard.

Character Set Supported
KANAS.

Contfiguring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration ASCII 8-Bits = Yes

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANAS8 Characters Not On The Keyboard

Access the KANAS characters not in JISCII by pressing the "KATAKANA" key to enter KATAKANA
mode. Press the key to return to the JISCII keyboard.

Notes

None.

£-12 PERIPHERAL CONFIGURATION

HP 2625A/HP 2628A Terminals

Requirements
None. ROMANR character set is standard.

Character Set Supported
ROMANS

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (in Multipoint: Code = ASCIIS).

Terminal Configuration ASCH 8-Bits = Yes

MPE 1/O Configuration Terminal Type = 10 (12 if connection is ATC)

Typing ROMANS Characters Not On The Keyboard

If the keyboard layout is French or Spanish, a few ROMANS characters (certain accented vowels) can be
accessed from the standard keyboard by using mutes. Enter a non-spacing diacritical character, then the
unaccented vowel. The screen displays a single, merged character, and a single, merged character is
transmitted to the system (in both character and block mode).

Access the ROMANS characters not on the keyboard by pressing {¢ir JC to enter "Extended Characters
Mode." When not using the USASCII keyboard, this may not actually be the key labeled period {.), but
the period key for the USASCII keyboard. A keyboard layout showing the placement of extended charac-
ters is located in the User’s Manual for the HP 2625A Dual-System Display Terminal and HP 26284 Word-
Processing Terminal (02625-90001). Enter "(c17l]," to return to the usual keyboard layout.

Notes

None.

PERIPHERAL CONFIGURATION E-13

HP 2626A/HP 2626W Terminals

Requirements
Option 001, 002, 003, 004, 005, 006 or 201 (National keyboard and/or extended character set ROMs).

Character Set Supported
USASCII plus Roman Extension

Configuring For 8-Bit Operation
Global Configuration Language = Language of keyboard layout.

Datacomm Configuration Parity = None
Chk Parity = No
DataBits = 8 (In Multipoint: Code = ASCIIS).

Terminal Configuration ASCII 8-Bits = Yes
ESC) A = RomanExt*
Alternate Set = A,

MPE 1/0O Configuration Terminal Type = 10 (12 if connection is ATC).

*On some versions of the 2626W the RomanExt and BOLD alternate sets are exchanged. Press IDEN-
TIFY ROMS; if CHARACTER ROMS show 1818-1916 and 1818-1917, Rev.A, set ESC) A = BOLD to
access ROMANS,

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS =zM, FRANCAIS quM, OF EspawoL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character. Access the USASCII characters replaced on a national keyboard by pressing
and one of the numeric pad keys.

Access the Roman Extension characters not on the keyboard by shifting out the keyboard. Enter (TR N
to do so. Enter (GO to return to the usual keyboard layout.

Notes
1,2,3,5,6,7,8,9.

E-14 PERIPHERAL CONFIGURATION

HP 2627A Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported
USASCITI plus Roman Extension

Configuring For 8-Bit Operation

Datacomm Configuration Parity = None
Chk Parity = No

Terminal Configuration Language = Language of keyboard layout.
ASCII 8-Bits = Yes

MPE 1/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyboard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS quM, OT ESPANOL M, a few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel, The screen displays a
single, merged character, and a single, merged character is transmitted to the system (in both character
and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter " ciRC)" to do so. Find the keyboard location of any desired character
in the HP 2627A Display Station Reference Manual (02627-90002). Enter "<)," to return to the usual
keyboard layout.

Notes
4.

PERIPHERAL CONFIGURATION E-15

HP 2631B Printer

Requirements

Roman Extension and KATAKANA are now standard. Formerly option #008 (KATAKANA) or #009
{Roman Extension) was required.

Character Set Supported

KANAS
USASCIH plus Roman Extension

Configuring For 8-Bit Operation
Set the rocker switches on the Serial I/O Interface PCA (82, inside the printer) as follows:

Switches 6,7 Set to 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the printer) as follows:

In 1st Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).
In 2nd Group of 10 Set Switches 1-5 = 11111(USASCII); 10110 (JISCII).
Set Switches 6-10 = 10001(Roman Extension); 10101(KATAKANA).
Front Panel Switches Parity = 00 (None).
MPE 1/0 Configuration Subtype = 14 (not supported if connection is ATC).

Terminal Type = 20 or 22.

Notes
9,11,14.

E-16 PERIPHERAL CONFIGURATION

HP 2635B Printer/Terminal

Requirements

Roman extension is now standard. Formerly one of options #001, 002, 003, 004, 005 or 006 (national
keyboards) was required.

Character Set Supported
USASCII plus Roman Extension

Contiguring For 8-Bit Operation

Set the rocker switches on the Serial I/O Interface PCA (S2, inside the printer) as follows:

Switches 6,7 Set 00 (both open).
(Received eighth bit passed).

Set the rocker switches on the Printer Logic PCA (inside the terminal) as follows:
In 1st Group of 7 Set Switch 7 = 0 (Open) (8-bit Datacomm).

In 2nd Group of 10 Set Switches 1-5 = 11111 (USASCII).
Set Switches 6-10 = 10001 (Roman Extension).

Set the rocker switches on the keyboard PCA (inside the terminal) as follows:
Set Switches 4-8 Set to language of terminal keyboard. Refer to the HP 2630B Family

Reference Manual (02631-90918) for a list of keyboard layouts and the
corresponding switch settings.

Front Panel Switch Parity = None.
MPE 1/0 Configuration Terminal Type = 15.
Notes

1,2,5,7,9,11.

PERIPHERAL CONFIGURATION E-17

HP 2645J Terminal

Requirements
None. KATAKANA is standard.

Character Set Supported
KANAS

Configuring For 8-Bit Operation
Datacomm Configuration Parity = None

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing KANAS Characters Not On Keyboard

Access the KANAS characters not in JISCII by pressing the "KATAKANA" key to enter KATAKANA
mode. Press the KATAKANA key again to return the keyboard to its JISCII layout. Alternatively, press
the right key (once by itself) to enter KATAKANA mode, and the left key to exit from it.

Notes
9,12.

E-18 PERIPHERAL CONFIGURATION

HP 2680A Printer

Requirements

Environment files ending in "x" for USASCII plus Roman Extension.

Environment files ending in "k* for xana8.

Character Set Supported

USASCII plus Roman Extension
KANAS

Configuring For 8-Bit Operation

Use the environment files ending in "x" (for USASCII plus Roman Extension) or those ending in "«" (for

KANAS).

Notes
9,11.

PERIPHERAL CONFIGURATION E-19

HP 2688A Printer

Requirements

Environment files courxa, coTsxa, Lp8s, PICAXA, PRESXA, ROMPXA, SCRERA,

Character Set Supported
ROMANS

Configuring For 8-Bit Operation
Use one of the environment files listed above for support of ROMANS.

Notes
9,11.

E-20 PERIPHERAL CONFIGURATION

HP 2700 Terminal

Requirements

None. Roman Extension is standard.

Character Set Supported
USASCII plus Roman Extension.

Configuring For 8-Bit Operation

Potl or Port2 Parity/DataBits = None/8.
Configuration Chk Parity = No
Terminal Configuration Language = Language of keyboard layout.

ASCII 8-Bits = ON.

MPE I/O Configuration Terminal Type = 10 (12 if connection is ATC).

Typing USASCII/Roman Extension Characters Not On Keyhoard

If the keyboard layout is French or Spanish and LANGUAGE=FRANCAIS azM, FRANCAIS gwM, OT ESPANOL ¥, 4 few
Roman Extension characters (certain accented vowels) can be accessed from the standard keyboard by
using mutes. Enter a non-spacing diacritical character, then the unaccented vowel. The screen displays a
single, merged character, and a single, merged character is transmitted to the system (in both character
and block mode).

Access the USASCII or Roman Extension characters not on the keyboard by putting the keyboard in
Foreign Characters mode. Enter "7 " to do so. Find the keyboard location of any desired character
using the algorithm in the HP 2700 Family Alphanumeric Reference Manual (02703-90003). Enter "(Tt,)"
to return to the usual keyboard layout.

Notes

3,13

PERIPHERAL CONFIGURATION E-21

HP 2932A/HP 2933A/HP 2934A Printers

Requirements

None. ROMANR and KANAS character sets are standard.,

Character Set Supported
ROMANS, KANAS

Configuring For 8-Bit Operation

Printer

MPE 1/0O Configuration

Notes

None.

E.22 PERIPHERAL CONFIGURATION

From the front panel, in the Printer Print Settings, set Primary Char-
acter Set = 1 (ROMANS) or = 2 (KANAS).

For serial interface, in the Interface Data Settings, set DataBits = 8,
Parity = None.

For Multipoint, set Parity = None, Code = ASCII8.

These can also be done programmatically with escape sequences.
For serial interface, configure the printer on your HP 3000 as
Termtype = 20 (8 bits of data) (not supported via ATC connection or

ADCC with HIOTERMU0.) On a Multipoint line, use Terminal Type
= 18 or 22.

Notes

The following Notes apply to the peripherals covered in this Appendix. Refer to the description of each
peripheral for a list of which Notes apply to it.

|

When "cral IN" (shift out) and "(cRe JO" (shift in), are used to shift the keyboard out for Roman
Extension, they are transmitted to the system when the terminal is in character mode. This results
in superfluous data in the byte stream sent to the system.

(HP 2382, 2622, 2623, 2626, 2635)

‘When shift out and shift in are sent to the terminal, they have no effect on the active character set
{as expected by some software), but they do affect subsequent keyboard operation, as if they had
been typed in.

(HP 2382, 2622, 2623, 2626, 2635)

When the keyboard is shifted out, (in Foreign Characters mode for the HP 2700 family), the space
bar sends %240 instead of %40, and the (o} key sends %377 instead of %177.
(HP 2626, 2700)

When the keyboard is shifted out (in Foreign Characters mode for the HP 2627), the space bar
sends %240 instead of %40, and the key sends nothing. This has been fixed in the most recent
versions of the 2622 and 2623 terminals. These will show as ROMs 1818-3199/3203 with Date
Code 2313 or later (2622), and 1818-3223/3228 with Date Code 2335 or later (2623).

(HP 2382, 2622, 2623, 2627)

If "Eschs" or "{EsChe” is entered or transmitted to the terminal, the alternate character set will be
redefined (for example, to line draw or math). This will cause all would be Roman Extension
characters, whether displayed on the terminal or entered via one of the methods listed above, to
appear as the corresponding line draw or math symbols (or blanks, if that alternate set is not
present in the terminal). To remedy this, enter "(CRC_joEscpa” {on the HP 2620A, reset Alternate
Set to A in the TERMINAL CONFIGURATION menu). Note that data entered or displayed
while the terminal has another alternate character set defined is correct internally even though it
may not display correctly on the terminal.

(HP 2382, 2622, 2623, 2626, 2635)

When the terminal is in block mode and one or more Roman Extension characters are entered (for
example, i), then is pressed, what is transmitted to the system, and written to the buffer of
the program reading from the terminal, is "ESC))i". This is the terminal’s way of compensating for
Note 5. It means that when the data is sent back again from the computer, "i" will always display
this way, and not as the corresponding line draw or math symbol. It also means that there may be
more information in the program buffer than the user or the programmer is expecting, or there is
less room in that buffer for other information. Note that if the terminal is controlled by
VPLUS/3000, it strips out the escape sequence before passing the data on to the calling program’s
buffer (and from there to the data file or data base).

(HP 2382, 2622, 2623, 2626)

PERIPHERAL CONFIGURATION E-23

7. For the languages rrancais azM, FRANCAIS gw, and espanoL ¥ when mutes are used and the terminal is in

character mode, two characters are sent to to the system although a single, merged character appears
on the screen. This means that an incorrect two-byte representation of the accented character will be
received by the program or file. The next time they are displayed the terminal will put them back
together, provided the terminal is still configured for rravcars azM, FRancaIs gwM, or gspanol M. In block
mode a single character (the correct ROMANS code for the merged character) is sent to the system.
(HP 2382, 2622, 2623, 2626, 2635)

When softkey labels which contain extended characters (in the range %200-%377) are received from
the system, the extended characters are lost and the inverse video is turned off on the label.
(HP 2626}

. This device does not actually support 8-bit character sets, but simulates them by handling two 7-bit

10.

11.

12.

13.

14,

E.

24

character sets, a primary and an alternate. Legitimate data from real alternate character sets (line
draw or math) cannot be used in a supported (standard) way together with general ROMANS
(KANAS) data because these devices treat Roman Extension (KATAKANA) as an alternate charac-
ter set, in 8-bit mode. All alternate character sets are addressed by codes with the eighth bit set to
one; Roman Extension (KATAKANA) must share this position with the other alternate sets through
the use of escape sequences ("(€t)x"), and, on the terminals, shift-in/shift-out are unsuitable for
invoking alternate sets. The practical result of this is that NLS will not support the use of alternate
character sets together with ROMANS (KANAR) data on these devices. Configure the device for
8-bit mode as documented, then limit the data to (old) ROMANS (KANAS).

(HP 2382, 2608, 2622A, 2623A, 2626, 2631, 2635, 2645, 2680, 2688)

For the French and Spanish keyboards, when mutes are used and a mute diacritical 1s entered fol-
lowed by a space, the ROMANS codes for the diacritical and the space are both transmitted to the
system, not just the ROMANS character for the diacritical.

(HP 2621B)

When 1 shift-out character is sent to the printer, it causes subsequent data (until a shift-in is sent) to

be selected from the alternate character set, whether or not the eighth bit is on.
(HP 2608, 2631, 2635, 2680, 2688}

When the system sends an 8-bit character the terminal shifts into KATAKANA mode until a 7-bit
character is received. For example, switching terminal speed with the MPE :speep command some-
times results in the receipt of an 8-bit character from the system., The user will need to exit
KATAKANA mode before entering "wee" to signal that the speed has been changed.

(HP 2645J)

When the terminal is in Block Format mode (for example, under control of VPLUS/3000), an at-
tempt to read the character %254 (tilde accent in ROMANS) from an input field causes the read to
hang.

(HLP 2700)

Versions of the 2631B with Printer Logic PCA #02631-60225 are not supported, because switch 7 (8
bit datacomm) is ignored. It is possible to configure 8 bit datacomm on this PCA programmatically

via an escape sequernce; but the program must do so before every data transfer.
(HP 2631B)

PERIPHERAL CONFIGURATION

CONVERTING 7-BIT TO 8-BIT DATA F

Many Hewlett-Packard peripherals can be configured for 7-bit operation with one of the European
language national substitution character sets. These peripherals must be converted to 8-bit operation to
access Native Language Support (NLS) capability. NLS requires the use of 8-bit character sets which
include USASCH and native language characters.

NLS for western European languages is based on the ROMANS character set in which the additional
characters required are assigned to unique values between 128 and 255. It requires eight bits to hold
the value of a ROMANS character. All the special European characters are accessible in ROMANS
without losing any of the USASCII characters.

The 7-bit national substitution sets do not offer a full complement of characters. New characters
replace existing ones. For example, in FRANCAIS the graphic symbol "#" is not available. In Spanish
and French, even the substitutions made are not sufficient to obtain all the necessary new characters.
The use of mute characters is required. Mute characters provide a single graphic on the terminal
screen or paper for two bytes of storage and two keystrokes. For example, an "é" in Spanish or French
wotld be produced with an accent mark plus an "e", whereas ROMANS contains the "¢" as a single
character. In any one language, the graphic symbols for other European countries are not available at
all. For example, a French user does not have access to the necessary characters to properly address a
letter to someone in Germany. The ROMANS 8-bit character set eliminates these problems,

National Substitution Sets

Many Hewlett-Packard peripherals support the 7-bit national substitution sets for the following
languages. (They are listed here as they appear on the terminal configuration menus of the terminals
which support them):

SVENSK/SUOMI DANSK/NORSK FRANCAIS M

FRANCAIS DEUTSCH UK

ESPANOL M ESPANOL ITALIANO (On a few devices
only.)

These are 7-bit national substitution character sets or languages in which one or more of 12 USASCII
graphic symbols are replaced by other graphic symbols required for the national language being used.
The same 7-bit internal code is displayed as a different symbol than that assigned to it by USASCIL
For example, in USASCII the decimal value 35 is assigned to the graphic symbol "#"; but in the
FRANCAIS national substitution set, the same decimal value 35 is assigned to the graphic symbol "£".

Users who have been using these (HP 262X) terminals in 7-bit operation for many years may have a
substantial investment in data which is encoded in one of these 7-bit national substitution character sets.
Hewlett-Packard is making several conversion utilities available to convert this data to ROMANS.

CONVERTING 7-BIT TO 8-BIT DATA F-1

Conversion Utilities

Because NLS involves using full 8-bit character sets for all data, customers wanting to use the facility will
need to configure their peripherals for 8-bit operation. (This is not possible for the HP 264X terminals.)
The national substitution characters, if input on a terminal configured for 7-bit operation, will not display
correctly on a terminal or printer configured for 8-bit operation.

Several utilities are available to convert existing data that has been input with an HP 262X terminal
configured for 7-bit operation. Refer to Table F-1 for a listing of these utilities. The premise of these
utilities is that users will run them once for each file which needs converting, and will configure all their
peripherals for 8-bit operation. Thereafter, peripherals will only be used in 8-bit operation.

Table F-1. Conversion Utilities by File Type

File Type Utility to be Used for Conversion

EDITOR files N7MFSCNY (text option)

Other MPE files which are all text N7TMF8CNV (text option)

MPE files in which text data is NTMFSCNV (text option; data option if language is
organized in fields which need to | FRANCAIS M or ESPANOL M)
start in fixed columns

MPE files which include some non- | N7MF8CNV (data option)
text data (for example, integer or

real)

IMAGE/3000 data bases I7DBBCNV

VPLUS/3000 forms files V7FFSCNV

HPWORD files HPWORD internal files have always been based on a
subset of ROMANS. No conversion is necessary.

TDP files Run N7TMF8CNV and then change back whatever

command backslash is converted to in the chosen language
in case you need the command backslash for embedded
TP commands.

F-2 CONVERTING 7-BIT TQ 8-BiT DATA

Conversion Algorithm

The conversion utilities convert records or fields from files which are assumed to have been created at an
HP 262X terminal configured for 7-bit operation, and for a language other than USASCII. The conver-
sion is from the HP 262X implementation of a European 7-bit substitution character set to the 8-bit
ROMANR character set. This involves converting the values with which certain characters are stored in
the file. Before conversion, the file should look correct on an HP 262X terminal configured for 7-bit
operation with the appropriate substitution set. After conversion the file will look correct on any terminal
configured for 8-bit operation.

Records and/or fields from files of all types are converted using the same algorithm which is expressed in
Figure F-1. The conversion affects only the 12 characters shown in the table. All other characters remain
unchanged.

To use this table, find the desired national substitution set on the left. The uppermost row shows the 7-bit
decimal values for which substitutions may have been made. There are two rows of information opposite
each national substitution set. The upper row shows the graphic assigned in 7-bit operation and the lower
row the decimal value assigned the graphic in ROMANS after using the conversion algorithm.

When certain FRANCAIS M and ESPANOL M characters are followed immediately by certain other
characters, the two-character combination is converted to a single ROMANS character, and the field or
record being converted is padded at the end with a blank:

Table F-2. Special Two-Character Combination Conversion

FRANCAIS M ~{94) followed by a, e, 1, 0, or u is converted to
@(192), é(193), 1(208), 8{194),0or U(195).

+{126) followed by a, e, i, o, or u is converted to
L{204), 8(205), 1{221), 3(208), U{207).

+{126} followed by A, 0, or Uis converted to
X{z18), 8(218),0or U(219).

ESPANOL M ({39) followed by &, e, i, o, or uis converted to
D(195), é(197), 1(213), &6{188), or 4{199).

1f these characters are followed by any other character, they are converted to their ROMANS equivalent
as shown in Figure F-1.

CONVERTING 7-BIT TO 8-BITDATA F-3

National
Subst.Set 35 38 64 91 g2 93 g4 86 123 124 125 126

USASCII # ’ @ [\] ~ ¢ { | } ~

o
[t

SVE/SUOMI # ’ g .3 o] & 0 é g 8
35 39 220 216 218 208 219 197 204 206 212 207

DANSK/NORSK # ! e A @ A ~ ‘ ®] & ~
35 39 64 211 210 208 84 86 215 214 212 126

FRANCAIS £ i
187 38 200 178 181 188 170 96 187 203 201 171

fat 2
[+]
«0)
©wn
>
-
[1:28
[t
b

[1Y)

FRANCAIS M & ’

187 39 200 178 181 188 170 98 197 203 201 171

DEUTSCH 5 ’ § A 6 0 ~ ‘] 8 U B
187 39 189 216 218 219 84 98 204 206 207 222

UK £ i] [\] ~ ¢ { f } ~
187 39 64 91 92 93 94 96 123 124 125 126

ESPANOL # > @ i N é e { i } -
3 39 64 184 182 185 179 96 123 183 125 126

ESPANOL M # ’ e H N b ° ¢ {] } ~
35 168 64 184 182 185 179 96 123 183 125 128

[2]
D
Py

ITALIANO & * @ ° ¢ & ~ 0 3
187 39 64 179 181 197 94 203 200 202 201 217

Figure F-1. Character Conversion Data

F-4 CONVERTING 7-BIT TD 8-BIT DATA

Conversion Procedure

To convert 7-bit substitution data to 8-bit ROMANSR data:

1.

Determine which files need to be converted. A file must be converted if the data was input from an
HP 262X terminal configured for 7-bit operation or for a national substitution set other than US-
ASCIL

Determine the national substitution set {("language" on the terminal configuration menu} from which
the conversion should be done for each file. This is the language the HP 262X terminal was config-
ured for at the time the file data was input.

3. Determine which utility should be used to convert each file, refer to Table F-1.

Back up all files to be converted (store to tape or perform a SYSDUMP).

Run each utility, supplying it with the language and filenames as determined above. Instructions for
running each utility are found at the end of this Appendix.

Configure all terminals and printers for 8-bit operation. (At least one terminal must already be
configured for 8-bit operation when the VIFFSCNV utility is run.) Refer to Appendix E, "Peripheral
Configuration."

The sample dialog, on the following page, is from a session executing N7MF8CNYV for both text and data
files.

CONVERTING 7-BIT TO 8-BIT DATA F-§

HRUN N7MFBCNV.PUB.SYS

KP European 7-Bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS M
4. FRANCAIS

5. DEUTSCH

6. UK

7. ESPANCL M

8. ESPANOL

9. ITALIANC

From which character sef should conversion be done:
Fite types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be corverted:|JEi}

Name of text file to be converted:[XINE
112 records converted in ABC

Name of text file to be converted: [Return]

File types which can be converted are:

1. MPE text files (each record converted as one fieid).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted:JEj
Name of data file to be converted:|ESER

Please supply one at a time the field to be converted (first
Start, iength: R
Start, Length:JEbER)
Start, Length: 1R
Start, Length:[Return]

Data file XYZ: fields to be converted are:

1, 12

15, ip
&1, &
Correct? [Returni

287 records converted in XYZ
Name of data file to be converted: [Return]
File types which can be converted are:

1. MPE text files (each record converted as one field).
2. MPE data files (define fields; only defined fields are converted).
3. Test Conversion.

Type of file to be converted: [Return)
HP European 7-Bit character sets are:

T. SVEMSK/SUOMI
2. DANSK/HMORSK
3, FRANCAIS M
4, FRANCAIS

5. DEUTSCH

6. K

7. ESPANOL M
8. ESPANCL

%. ETALIANO

From which character set should conversion be done: [Return]
END OF PROGRAM

F-6 CONVERTING 7-BIT TO 8-BIT DATA

N7MF8CNYV Utility

NTMF8CNY converts data in EDIT /3000 and other MPE text and data files from a Hewlett-Packard 7-bit
national substitution character set to ROMANS. The user is prompted for language and file type (text or
data). For a data file, the user will be prompted on each file for the starting position and length of each
field (portion of a record) to be converted. For a text file, each record is converted as one field.

The user is prompted for the name of each {ile to be converted. Files are read one record at a time; each
record is converted (or certain fields of it are converted for data files), and the result is written to a new
temporary file. When all records have been read, converted, and written to the new file, the old (uncon-
verted) copy is deleted, and the new one is saved in its place. An exception to this is KSAM /3000 files,
which are converted in place, rather than written to a new temporary file. A count of the number of
records read and converted is displayed on sstoLisT.

This utility will not convert files containing bytes with the eighth bit set. This situation probably indicates
a misunderstanding or error. The likely causes are:

e File is not a text or data file.

® File is a data file for which the fields have been inaccurately located.
» File was created on a terminal configured for 8-bit operation.

= File has already been converted.

The maximum record length supported is 8192 bytes. The maximum number of fields supported in the
records of a data file is 256.

If the tile being converted contains user labels, these are copied to the new file without conversion. If a
fatal error is encountered during the conversion (for example, 8-bit data or file system error found) the
conversion stops, the old copy of the file is saved, and the new copy is purged. The data is unchanged. An
exception to this is KSAM/3000 files. Since these are converted in place, some records may already have
been modified. KSAM /3000 files {including key file) should be restored from the backup tape to ensure
a consistent copy.

A [Ctr]]Y entered during conversion displays the number of records successfully converted and conver-
sion continues. On variable length data files, if a field or portion of a field is beyond the length of the
record just read, a warning is displayed and that field is not converted on that record. Other fields on the
same record are converted, and processing continues with subsequent records. After each file has been
converted, the user is prompted for another filename.

In addition to the text and data options, there is a test conversion option which shows how the conversion
algorithm operates. The test conversion option must be run from a terminal configured for 7-bit operation
with the chosen national substitution set. The user is instructed to enter a string, and the result of the
conversion is displayed. The user does not have to switch back and forth between 7-bit and 8-bit operation
to see the result. Each character converted is displayed as a decimal value in parentheses rather than
graphically. Other characters are displayed unchanged.

At any point in the program, pressing exits the current program level at which the user is located.
A in response to a request for the starting position and length of a field in a data file indicates that
the definition of fields is complete, and the program proceeds with the conversion of the data file. A [Return)
entered in response to a request for a text file name indicates the conversion of text files is complete; the
program goes back to the question: "Type of file to be converted?".

CONVERTING 7-BIT TO 8-BIT DATA F-7

17DB8CNYV Utility

I7DBBCNV converts the character data in an IMAGE/3000 data base from an Hewlett-Packard 7-bit
national substitution set to ROMANS. The program is a special version of the peLoap.puB. sYs program, and
the conversion is done as part of a database load. The procedure for running I7DB8CNV is:

1. Enter :JTIETTTHIENSE to unload your database to tape.
2. Enter JIIIEEGTINCCESTNTINS to erase the data in your database.
3. Enter JIIIITENTMETEIE to convert the data and load it back into your database.
I7DB8CNYV will request the following:
1. The 7-bit national substitution set from which the conversion is to be made.
2. The database name.
3. The utility prompts the user, cenvert alt data fields of type X or U2, I or means "yes". If | is
entered, the user will be prompted in each data set for each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its values
are converted depends on the response to the item(s) through which it is linked to detail data set(s).
At the end of each data set, the user is asked to confirm that the correct fields to be converted from
that data set have been selected. Again, a is treated as a "yes" answer. Enter [J or § to change
the data fields in the data set to be converted.

I7DB8CNY then loads the database from tape. As each record is read, those fields which were selected
have their data converted according to the algorithm for the 7-bit national substitution set which was
selected at the beginning of the program.

I7DBSCNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying to
convert. The utility will not abort, but the field in question will not be converted, and a warning will be
issued:

** B.hit data encountered in item [TEMIAAINE in DS data set]

If the program should abort for any reason during the conversion, the user must log on again to clear the
temporary files used during the conversion process before running the program again.

The dialog on the following page is a sample run of the I7DB8CNV program.

F-8 CONVERTING 7-BIT TO 8-BIT DATA

HRUN I7DBBCNV.PUB.SYS

HP European 7-bit character sets are:

1. SVENSK/SUCMI
2. DANSK/NORSK
3. FRANCALS

4. FRANCAIS M
5. DEUTSCH

6. UK

7. ESPAKNOL

8. ESPANOL M
9. 1TALIANO

From which character set should conversion be done:

wHICH DATA sase SRR

Convert all fields of type U,X in aill data sets (Y/N)7[El

Data Set SET1 fields to be converted:

1TEMT (Y/W)7 (Return]
1TEMZ {Y/N)7 [Return]
1TEM3 QT) M |

ITEMS {Y/N)7 [Return]

is Data Set SET| correctly defined (Y/N)?{Returnl
Data Set SET2 - Automatic Master
Data Set SET3 fields to be converted:

ITEMT (Y/N)? [Return]
FTEMS (Y/N)?
TYEMS (Y/NY?

is Data Set SET3 correctly defined (Y/N)?[Return}

DATA SET 1: 19 ENTRIES

DATA SET 2: 0 ENTRIES

DATA SET 3: 25 ENTRIES

END OF VOLUME 1, O READ ERRORS RECOVERED
DATA BASE LOADED

END OF PROGRAM

CONVERTING 7-BITTO 8-BITDATA F-9

VZFFS8CNV Utility

V7FF8CNYV converts text and literals in VPLUS/3000 forms files from a Hewlett-Packard 7-bit national
substitution character set to ROMANS. V7FF8CNYV is a special version of roruspec.pus.sys and is run the
same way. Before running this utility back up the forms file (store to tape or perform a SYSDUMP), then:

1. Configure your terminal for 8-bit operation. (Refer to Appendix E, "Peripheral Configuration," for
information on specific terminal configuration.)

2. Run vzrescnv.pus.sys, stepping through each form, field definition, save field, function key label. As
each screen is presented on the terminal, 7-bit substitution characters have already been converted
to their ROMANSE equivalent.

3. If the data is correct, press and proceed to the next screen. If not, correct the data, then press
to continue.

4, After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source records in VPLUS /3000 forms files with
the following exception: substitution characters for "r" and 1" are not converted in screen source records,
since these indicate start and stop of data fields. The following would be converted:

m Text in screens

n Function key labels

m Initial values in save field definitions
s Initial values in field definitions

s Literals in processing specifications

F-10 CONVERTING 7-BIT TO 8-BIT DATA

V7FF8CNV and Alternate Character Sets

Hewlett-Packard block-mode terminals which have the capability to handle all or part of ROMANS can
be divided into two groups, based on how they handle alternate character sets when configured for 8-bit
operation.

GROUP ONE - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150

Use shift-out and shift-in characters to switch back and forth between an 8-bit base character set and an
8-bit alternate character set. This is the standard for new Hewlett-Packard terminals and printers.

GROUP TWO - HP 2622A, 2623A, 2626A, and 2382A

{Do not use an HP 2624A or HP 2624B as they are unable to handle 8-bit characters properly.) Group
Two terminals use the eighth bit to switch back and forth between a 7-bit base character set and a 7-bit
alternate character set. Therefore, it is not possible to get true 8-bit operation (ROMANS) and use an
alternate character set (for example, line draw) at the same time because the base character set is not
really 8-bit, but 7-bit with the additional characters defined in the alternate character set. Using both 8-bit
ROMANS characters and line draw in the same file is not recommended, since the user must continually
redefine the alternate character set, switching back and forth between Roman Extension and the line
drawing character set. Shift-out and shift-in are ignored by the terminal, which goes to the alternate
character set when the high order bit is on.

Files using alternate character sets on one group of terminals will not display correctly on the terminals
of the other group, even when terminals from both groups are configured for 8-bit operation.

Therefore, the use of characters from an alternate set affects the conversion procedure. If the forms file
does contain characters from an alternate character set, choose one of the following alternatives:

1. Eliminate the use of alternate character sets (either with FORMSPEC or while running
V7FF8CNYV).

2. Define alternate character sets to appear correctly on Group One terminals. This happens automati-
cally when V7FF8CNV is run from a Group One terminal Characters from these alternate sets will
appear as USASCII characters on a Group Two terminal.

CONVERTING 7-BIT TO 8-BIT DATA F- 11

V7FF8CNV Operation

V7FF8CNV must be run on a terminal supported by VPLUS /3000 which supports display of all charac-
ters, enhancements and alternate characters sets used in the forms file. If alternate character sets are
used, the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The VIFF8CNYV procedure is:

1. Configure your terminal type properly for 8-bit operation by using the settings recommended in
Appendix E, "Peripheral Configuration."

2. Run vreracnv.rug.sys. Respond to prompts for the terminal group and the national substitution set.
3. Press once to begin going through the forms file.
4. Press after each screen until the end of the forms file is reached. Two exceptions to Step 4 are:

s Enter [J in "Function Key Labels" on each FORM MENU and the GLOBALS MENU to see and
convert function key labels.

n On the field definition screen, if the processing specs have converted data which you want to save,
press the FIELD TOGGLE key, then to save that conversion.

NOTE

If you try to redisplay a screen which has already been converted and this
conversion has been saved by pressing (Enter), a message Form contains 8 bit
data will be displayed. Do not press again, but continue on through
the forms file.

5. Compile your forms file as usual.

NOTE

These conversion utilities are designed to be used once to update existing
data to 8-bit compatibility.

F-12 CONVERTING 7-BIT TO 8-BIT DATA

APPLICATION GUIDELINES G

Currently, the HP 3000 supports six conventional programming languages (SPL, FORTRAN,
COBOLII, Pascal, RPG, and BASIC). Some general guidelines, and some specific to each of the
supported programming languages, are included in this Appendix to help the programmer select a
language to use for writing a local language or localizable application.

All Programming Languages

s Create and use message catalogs. Do not hard-code any text messages, including prompts. For
example, never require a hard-coded »y» orsv» in response to a question. The equivalents of "yes" and
"no" for every language supported by NLS are available through a call to sLinro item 8.

m Use the NLS date and time formatting intrinsics. Do not use the MPE intrinsics cateLiNg, mTcLoCK,
ruipaTE, and rurcatenpar. They all resoit in American-style output.

a Check a character’s attribute, available through sLivso item 12, to determine printability. Alterna-
tively, use the nLrepcuar intrinsic to check whether the character gets replaced or not. Do not use range
checking on the binary value of a character to decide whether it is printable or not.

s Use the nicoLLate intrinsic to compare character strings. Do not compare character strings (1F abe >
par ..., where abe and pgr are both character strings). Since these comparisons are based on binary
values of characters as they appear in the USASCII sequence, they usually produce incorrect results.
Obviously, this is not applicable in case an exact match is tested (1F sbe = pgr ...).

w Use wuscanvove for upshifting and downshifting. Do not upshift or downshift based on the character’s
binary value. For a..z in USASCII, upsh:ftmg can be done by subtractmg 32 from the binary value.
This does not work for all characters in all character sets.

= To determine whether a character is uppercase or lowercase, use the character attributes table avail-
able through siinro item 12. Do not use a character’s binary value in range checks to decide whether
it is an uppercase or lowercase alphabetic character.

= Much Hewlett-Packard and user-written software assumes that numeric characters (0 through 9) are
represented by code values 48 through 57 (decimal). In general, this is valid because standard
Hewlett-Packard 8-bit character sets are supersets of USASCII. However, some character sets may
have different or additional characters which should be treated as numeric. Therefore, if at all possi-
ble, avoid doing range checks on code values to recognize or process numeric characters. For recog-
nition of numeric characters, interrogate the character attributes table, available through a call to
NLINFO item 12,

» Use the sLTRansLATE intrinsic, not cTrRANSLATE, to translate to or from EBCDIC.

APPLICATION GUIDELINES G-1

Do your own formatting using the decimal separator, the thousands separator, and the currency
symbol available through sLinro items 9 and 10. Use the standard statements to output into a charac-
ter string type variable. Replace the decimal and thousands separators by those required in the
language being used. Do not use standard output statements (PRINT, WRITE) for real numbers,
since this formats them according to the definition of the programming language. This usually results
in American formats with a period used as the decimal separator.

Input data into a character string, and preprocess the string to replace any decimal or thousands
separators used in the American formats. Then supply the string to the standard READ statement.
Standard input statements for real numbers (reap, accert) should not be used, as they accept the
period as the decimal separator. Many non-American users will input something else (a comma, for
example).

Always store standard formats for date and time (like those returned by sutcaLenpar and eMTcrock), if
dates or times have to be stored in files or databases. Never store a date or a time in a local format.
Intrinsics are available to convert from the standard format to a local format, but the reverse is not
always possible.

Use VPLUS/3000 local edits. VPLUS /3000 edit processing specifications and terminal edit process-
ing statements are separate and are not checked for compatibility. There will be no check that the
designer has specified a terminal local edit which is consistent with the language-dependent symbol
for the decimal point (bec vvpe Eur, DEC TYPE Us) in the configuration phase.

COBOLII (HP 32233A)

G-2

Use the character attributes table of the character set being used to determine whether a character
is ALPHABETIC or NUMERIC. This table is available through a call to suivro item 12. Do not use
the COBOLII ALPHABETIC and NUMERIC class tests to determine this (for example, 1f data- iten
IS ALPHABETIC).

Do not use nput-output translation by COBGLII from an EBCDIC character set by means of the
ALPHABET-NAME clause and the CODE SET clause. Use the sLrANsLATE intrinsic.

Use the NLS date and time formatting intrinsics for display purposes. Do not use TIME-OF-DAY
and CURRENT-DATE. These items are formatted in the conventional American way, and are
unsuitable for use in many other countries.

Use the coLLarinG Sequence 1s language-name or the coLLATING seuence Is language-1D phrase in the
enhanced SORT and MERGE statements to specify the language name or number whose collating
sequence is to be used. Do not use the coLLaTING SEQUENCE 1s alphabet-name phrase for sorting and/or
merging in COBOLIL

In condition-name data descriptions (88-level items), avoid the thru option in the VALUE dlause (for
example, 88 SELECTED-1TEMS VALUE "A" THRU “Fv).

APPLICATION GUIDELINES

FORTRAN (HP 32102B)

» Format specifiers N and M will output in an American numerical format (with commas between
thousands and a decimal point) or an American monetary format (like N, with a "s" added). Addi-
tional post-processing will be required.

= Outputting logicals will result in a "" (for true) or an "¢" (for false). Similarly, "1" and "¢" are expected
for logical input. A non-English speaking user may want to use another character.

» The intrinsic functions ruum, pnus and str all assume an American format in the input and produce an
American formatted output.

» Theexriv' and mexT entry points of the compiler library assume American formats. Do not use them.

SPL (HP 32100A)

» To determine whether or not the byte is alphabetic, numeric, or special, consult the character at-
tribute table of the character set used. This table is available through auineo item 12. Do not use the
iF xyz = {OT <>) ALPHA (O NUMERIC OF SPECIAL) construct to determine this.

= Do not use the move ... wiiLe construct or the MVBW machine instruction. It stops moving bytes
based on the USASCII binary value of bytes, by which it determines whether the byte is alphabetic
or numeric. Use the nscasmove intrinsic.

RPG (HP 32104A)

The features of NLS are accessed primarily through intrinsic calls. Using MPE and subsystem intrinsics
from RPG requires expertise. For this reason, the use of RPG as a vehicle to write localizable applications
or to access native language structures is not recommended. Some RPG functions, such as date and
numeric formatting, provide some control for national custom differences, but the choices are very limited
and can only be made by recompiling.

BASIC (HP 32101B)

The features of NLS are accessed primarily through intrinsic calls. Since most intrinsics are not callable
from BASIC, the use of BASIC as a language to write localizable programs is not supported.

Pascal (HP 32106A)

A type of cuar indicates an 8-bit entity, and thus allows processing of 8-bit characters without problems.

APPLICATION GUIDELINES G-3

EXAMPLE PROGRAMS H

The example programs in this Appendix demonstrate calls to NLS-related intrinsics from several
programming languages. They are not intended to be used as application programs.

A. SORT in a COBOLII Program

This program shows how to sort an input file (formal designator 1ee1riLe) to an output file (formal designa-
tor ourpriLe) using a COBOLI SORT verb.

Lines 3.5 and 4.1 show how to specify the language to determine the collating sequence.

SCONTROL USLINET
IDENTIFICATION DIVISION.
PROGRAM-1D. EXAMPLE.

1
2
3
4 ENVIRCNMENT DIVISION.

.5 INPUT-QUTPUT SECTION.

6 FILE-CONTROL.

7 SELECT INPTFILE ASSIGN TO MINPTFILEY.
8 SELECT CUTPFILE ASSIGN TO “OUTPFILE™.
? SELECT SORTFILE ASSIGN TO “SORTFILE®,

A DATA DIVISION.

.2 FILE SECTION.

-3 8D SORTFILE.

o 01 SORTFILE-RECORD.

-5 05 SORTFILE-XEY PIC X{4).
.6 05 FILLER PIC X(68).
7

.8 FO INPTFILE.

.9 0% INPTFILE-RECORD PIC X(72).

F OUTPFILE.
01 OUTPFILE-RECORD PIC X(T2).

1
F4
3
& WORKING-STORAGE SECTION.

-3 0% LANGUAGE PIC S9(4) COMP VALUE 12,
6

7

8

9

PROCEDURE DIVISION.
MAIN SECTION.

SORT SQRTFILE

ASCENDING SORYFILE-KEY

i SEQUENCE 18 LANGUAGE
2 USING INPTFILE
-3 GIVING OUTPFILE.
4 STCP RUM,

EXAMPLE PROGRAMS H-1

Line 3.5 could be written also as:

3.5 01 LANGUAGE PIC X(168) VALUE “SPANISH #,

In the example execution the input and output files are associated with the terminal ($s1oin and sstoLisT);
qFILE INPTFILE=SSTDIN

credit
character
DEBIT

END OF PROGRAM

H

H-2 EXAMPLE PROGRAMS

B. SORT in a Pascal Program

This program shows how to sort an input file (formal designator 1kef) to an output file (formal designator
outf) using the sorTinIt intrinsic call.

T SUSLINITS
2 SSTANDARD _LEVEL *HP3000'S
3
4 PROGRAM example (inpf,outf);
3
& TYPE
7 smalblint = -32768 .. 327467;
8
9 sort_rec = RECORD
18 position: smallint;
11 length: smalbing
i2 seq type: smallint;
13 END;
14
15 char_seq = RECCRD
16 array_code:smallint;
17 language: smallint;
18 END;
19
20 file arr = RECORD
21 rum_file: smallint;
22 num_zero: smallint;
23 END;
24
25 file_rec = PACKED ARRAY {1..721 of CHAR;
26
27 file_num = FILE of file_rec;
28
29 VAR
30 rnumkeys: smallint;
31 reclen: smallint;
32 keys: sort_rec;
33 cseq: char_seq;
34 inp: file_arr;
35 out: file_arr;
36 inpf: fite _num;
37 outf: file_num;
38
39 PROCEDURE sortinit; INTRINSIC;
40 PROCEDURE sortend; INTRINSIC;
41
42 PROCEDURE main;
43 BEGIN
&4 nunkeys 1= 1;
45 reclen :=72;
4b

EXAMPLE PROGRAMS H-3

47 WITH keys DO

48 BEGIN

49 position := 1;
50 tength % 4;
51 seq_type 1= 9;
52 END:

53

54 WITH cseqg DO

55 BEGIN

56& array_code:=1;
57 language:= 12;
58 EMD;

59

60 WITH inp DO

61 BEGIN

&2 RESET (inpf);
63 num_file 1= FNUM (inpf);
&4 num_zero 1= 0;
&5 END;

&6

&7 WiTh out DO

68 BEGIN

&9 REWRITE (outf);
70 num_file := FNUM {outf);
71 hum_zero 1= 0;
72 END;

73

74 sortinit (inp,out,,reclen, ,numkeys, kKeys,, ., ., . .C5eQ);
75 sortend;

76

77 END;

78

79 BEGIN

80 main;

81 END.

In the example execution, the input and output files are associated with the terminal (sstoin and sstoLisT):
EILE LNPF=$STDIN

credit
character
DEBIT

END OF PROGRAM

»

H-4 EXAMPLE PROGRAMS

C. SORT in a FORTRAN Program

This program shows how to sort an input file (formal designator rvz1) to an output file (formal designator
Fraez) using the sorTINIT intrinsic call.

1 $CONTROL USLINIT,FILE=21-22

2 PROGRAM EXMP

3 INTEGER FNUM

& INTEGER N(4)

5 INTEGER KEYS (3}

é INTEGER CSEQ (2)

7 SYSTEM INTRINSIC SORTINIT, SORTEND
8

C
9 C KEY (3) = 9 character type key
10 ¢ CSEQ({2) = 12 Spanish collating sequence
1 £
12 KEYS (1) =1
13 KEYS (2) = &
14 KEYS (3) = ¢
15 CsEQ (1) =1
16 CSEQ (2) = 12
17 c
18 c Sort file FTN2T into FTNZ2
19 c
20 N (1) = FNUM (21)
21 N (3) = FNUM (22)
22 H(2) =10
23 N(4) =0
24 CALL SORTINIT (NC1),N(3),,,,V,KEYS,,, ., . CSEQ)
25 CALL SORTEND
26 STOP
27 END

In the example execution, the input and output files are associated with the terminal (ssto1y and sstouist):

credit
character
DEBIT

END OF PROGRAM

EXAMPLE PROGRAME H-5

D. DATE/TIME Formatting Intrinsics in a FORTRAN Program

The user is asked to enter a language. All date and time formatting and conversion is done by using the
language entered by the user. The time and date used in the examples is the current system time obtained
by calling the HP 3000 system intrinsics cALENoAr and cLock.

1 SCONTROL USLINIT

2 PROGRAM EXAMPLE

3 LOGICAL LANGUAGE(S)

4 CHARACTER *16 BLANGUAGE

5 £

& LOGICAL LERROR(2)

7 INTEGER IERROR{2}

8 c

g CHARACTER *13 BCUSTOMDATE

10 CHARACTER *28 BDATE

" CHARACTER *18 BCALENDAR

12 CHARACTER *8 BCLOCK

13 c

14 LOGICAL LWEEKDAYS(42)

15 CHARACTER *12 BWEEKDAYS(Y)

16 c

17 LOGICAL LMONTHS(72)

18 CHARACTER *12 BMONTHS(12)

19 c

20 EQUIVALENCE (LANGUAGE, BLANGUAGE)

21 EQUIVALENCE (LWEEKDAYS, BWEEKDAYS)

22 EQUIVALENCE (LMONTHS, BMONTHS)

23 EQUIVALENCE (LERROR, IERRCR)

24 LOGICAL DATE

25 INTEGER *4 TIME

26 INTEGER LANGNUM, LGTH, WEEKDAY, MONTH

27 SYSTEM INTRINSIC CiOCK, CALENDAR, ALMANAC, NLINFO,
28 # HLFMTCLOCK, QUIT, NLCONVCLOCK, NLFMTDATE,
9 # HLFMTCALENDAR, NLFMTCUSTDATE, NLCONVOUSTDATE
B c

3 1001 FORMAT (1X, A1)
32 1002 FORMAT (1X,A13)
33 1003 FORMAT (1X,A18)
4 1004 FORMAT (1X,A8)
35 1003 FORMAT (1X,A28)
36 2001 FORMAT (A16)

37 2002 FORMAT (A1)

38 C

39 1 WRITE (&,*)

40 #UENTER A LANGUAGE NAME OR KUMBER (MAX. 16 CHARACTERS):u
41 READ (5, 20013 BLANGUAGE

42 o

43 c NELINFO item 22 returns the corresponding

44 = tang number in integer format for this language.
45 c

4& CALL NLINFO (22, LANGUAGE, LANGNUM, LERROR)
47 1Ff {IERROR(1) .EQ. 0Q) GO TO 400

4B [

Ay c

50 160 If (IERRCR(1) .NE. 1) GO TO 200

51 c

52 WRITE (&, *) WNLS 15 NOT INSTALLEDM

53 CALL QUIT (1001)

54 c

55 200 IF (IERROR{1) .KE. 2) 60 TO 300

56 C

57 WRITE (&, *) “THIS LANGUAGE 1S NOT CONFIGUREDW
58 CALL GUET (1002)

59 C

H-8 EXAMPLE PROGRAMS

112
113
114
115
116
117
118
11¢

s NsNeNe Ny

v Ny NNyl

3 Do OMd O OO0 o o000 8n L]

s ErReRe Nyl

CALL QUIT (1000 + LERROR(1))

This obtains the machine internal clock and calendar
formats, which are provided by the HP 3000 intrinsics.

TiMg
DATE

cLocK
CALENDAR

H oH

Call ALMANAC and convert the machine internal
date format into numeric values, which will be used
as indices into the name tables.

CALL ALMANAC(DATE, LERROR, , MONTH, ,WEEKDAY)
IF (FERROR{1) .NE. 0) CALL QUIT (2000 + IERROR(1))

Call the tables for month andd weekday names and
display todays day name and the current month's name.

CALL KRLINFO(S5, LMONTHS, LANGNUM, LERROR)
1E (IERROR(1) .NE. Q) CALL QUIT (3000 + IERROR(1)}

WRITE (6, 1001) BMONTHS (MONTH)

CALL MEINFOC7, LWEEKDAYS, LANGNUM, LERROR)
1¥ (IERRCR(1) .NE. 0) CALL QUIT (4000 + IERROR(1))

WRITE (6, 1001) BWEEKDAYS (WEEKDAY)

Format the machine internal date format
inte the custom date format (short version),
The result will be displayed.

CALL NLFMICUSYDATE (DATE, BCUSTOMDATE, LANGNUM, LERROR)
IF (IERROR(1) .NE, 0) CALL QUIT (5000 + IERRCR(1})

WRITE (6,%) “CUSTOM DATE;"
WRITE (6,1002) BCUSTOMDATE

Use the output of NLFMTCUSTDATE as imput for
NLCONVCUSTDATE and convert back to the internal format.

DATE = NLCONVCUSTDATE(BCUSTOMDATE, 13, LANGNUM, LERROR)
IF (JERROR{1) .NE. Q) CALL QUIT (5000 + IERROR(1))

Format the machine internal date format into the
date format (long format) according to the language.
The result will be displayed.

CALL NLFMTCALENDAR(DATE, BCALENDAR, LANGNUM, LERROR}
IF (IERROR(1) .ME. 0) CALL GUIT (7000 + IERROR(TY)

WRITE (6,%) "DATE FORMAT:®
WRITE (6,1003) BCALENDAR

Format the machine internal time format into the
tanguage-dependent clock format.
The result will be displayed.

CALL KLFMTCLOCK(TIME, BCLOCK, LANGRNUM, LERRCR)
IF (IERROR(1) .NE. 0) CALL QUIT (800D + IERRCR(1)}

EXAMPLE PAOGRAMS H-7

121 WRITE (6,%) UTIME FORMAT:"

iee WRITE (46,1004} BCLOCK

123 C

124 c Use the output of NLFMTCLOCK as input for

125 c NECONVELOEK and convert back to the internal format.
126 C

127 TIME = NLCONVCLOCK(BCLOCK, 8, LANGNUM, LERROR)

128 IF (IERROR(1) .NE. 0) CALL QUIT ¢9000 + IERROR(1))
129 c

130 c Format the machine internal time and date format
131 c into the language dependent format.

132 C The result will be displayed.

133 C

134 CALL NLFMYDATE(DATE, TIME, BDATE, LANGNUM, LERROCR)
135 IF (IERROR(1) .NE.) CALL QUIT (10000 + IERROR(1))
136 ™

137 WRITE (56,%) YDATE AND TIME FORMAT:®

138 WRITE (6, 1003) BDATE

13¢ c

140 c

141 STOP

142 END

Executing the program gives the following result:

HRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
JANUARY

TUESDAY

CUSTOM DATE:

01/31/84

DATE FORMAT:

TUE, JAN 31, 1984

TIME FORMAY:

5:15 PM

DATE AND TIME FORMAT:

TUE, JAN 31, 1984, 5:15 PM

END OF PROGRAM

MRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

Januar

Gienstag

CUSTOM DATE:;

31.01.84

DATE FORMAT:

Di., 31, Jan. 1984

TIME FORMAT:

17115

DATE AND TIME FORMAT:
Di., 31. Jan. 1984, 17:15

END OF PROGRAM

H-8 EXAMPLE PROGRAMS

E. DATE/TIME Formatting Intrinsics in an SPL Program

The user is asked to enter a language. All date and time formatting and conversion is done by using the
language entered by the user. The time and date used in the examples is the current system time obtained
by calling the HP 3000 system intrinsics caLenpAr and cLOcK.

1 $CONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L'ERROR (0:1),
5 L*LANGUAGE (0:7),
& L'PRINT (0:39),
7 LYCUSTOM'DATE (016},
8 L'DATE (0:133,
9 L'CALENDAR (0:8),
10 L *MONTHS (0:71},
1 L'WEEKDAYS (041},
12 L'CLOCK (0:3);
13
1% BYTE ARRAY
15 BFPRINT{*) = L*PRINT,
16 B'CUSTOM!DATE(*) = LCUSTOM'DATE,
17 B'CALENDAR{*) = L'CALENDAR,
18 BI'DATE(*) = LIDATE,
19 BIMONTHS(*) = LIMONTHS,
20 B'WEEKDAYS(*) = L'WEEKDAYS,
21 BYCLOCK(®) = L'CLOCK;
22
23 BYTE POINTER
26 BPPRINT:
25
26 DOUBLE
27 TIME;
28
29 LOGICAL
20 DATE,
31 HOUR'MINUTE = TiME,
32 SECONDS = TIME + 1;
33
3% INTEGER
35 YEAR,
36 MONTH,
37 DAY,
38 WEEKDAY,
39 LGTH,
40 LANGNUM;
41
42 DEFINE
43 WEEKDAY ‘NAME = B'WEEKDAYS((WEEKDAY - 1) * 12)#,
&h
45 MONTHINAME = B'MONTHS((MONTH - 1) * 12)#,
46
47 ERR'CHECK = IF L'ERROR(0) <> O THEN
48 QuUIT ¥,
49
50 CONE = [F <> THEN
51 QUIT #,
52
53 BISPLAY = MOVE B'PRINT := #,
54
g5 ON'STDLIST = ,2;
56 2BP'PRINT := TOS;
57 LGTH 1= LOGICAL(BBP'PRINT) -
58 LOGICALCRB PRINT);
59 PRINT{L'PRINT, -LGTH, 0) #;

EXAMPLE PROGRAMS H-9

107

114
115
116
17
18
g
120

H-10

INTRINSIC
READ,
QuIT,
PRINT,
cLOCK,
CALENDAR,
ALMANAC,
NLINED,
NLFMTCLOCK,
NLCONVELOCK,
NLEMTDATE,
NLFMTCALENDAR,
NLFMTCUSTDATE,
NLCONVCUSTDATE;

<< Start of main code.

The user is asked to enter a language name or number.»>

DISPLAY

UENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):"

ONISTDLIST;
READ(LTLANGUAGE, - 16);

<< NLINEO item 22 returns the corresponding
lang number in integer format for this language.

NLINFO(22,L'LANGUAGE , LANGNUM, L 'ERROR) ;
IF L'ERROR(O0} <> O THEN
BEGIN
IF L'ERROR(O) = 1 THEN
BEGIN
DISPLAY
UNL/3000 1S NOT INSTALLEDY
ON*STDLIST;
QUIT(1001);
END
ELSE
IF L'ERROR(D) = 2 THEN
BEGIN
PDISPLAY
“THIS LANGUAGE IS NOT CONFIGURED®
CH'STDLIST;
QuIT{1002);
END
ELSE
QUIT (1000 + LY*ERROR(D));
END;

<< This obtains the machine internal clock and
calendar formats which is maintained by MPE.

TIME = CLOCK;
DATE := CALENDAR;

<< Call ALMANAC and convert the machine intermal date

>

>

format into numeric values, which will be used as indices

into the name tables.

EXAMPLE PROGRAMS

>

121
122
123
124
125
126
44
128
129
130
13
132
133
134
135
136
137
138
139
140
T4t
142
143
144
145
)

148
149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
145

167
168
169
170

<<

<<

<<

<<
<<
<<

<<

ALMANAC(DATE, L'ERROR, , MONTH, , WEEKDAY};
ERR*CHECK (2000 + LERROR(0));

Call the tables for month and weekday names and
display todays day name and the current month's name.

NLINFO(5, L'MONTHS, LANGNUM, LTERROR);
ERR'CHECK (3000 + L'ERROR(O));

DISPLAY MONTH'NAME,(12) ON'STOLIST;

NLINFO(7, L'WEEKDAYS, LANGNUM, L®ERROR);
ERRFCHECK (4000 + L'ERROR(O));

DISPLAY WEEKDAY 'NAME, (12) ON'STDLIST:

format the machine internal date format
into the custom date format (short version),
The result will be displayed.

RLFMTCUSTDATE(DATE, L 'CUSTOM'DATE, LANGNUM, L *ERROR Y ;
ERR'CHECK (5000 + L'ERROR(0));

DISPLAY YCUSTOM DATE:# ONPSTDLIST;
DISPLAY B'CUSTOM'DATE, (13) ON'STDLIST;

Use the output of NLFMTCUSTDATE as input for

»>

>

NLCONVCUSTDATE and convert back to the internal format.»>

DATE := NLCONVCUSTDATE(B'CUSTOMIDATE, 13, LANGNUM, L 'ERROR);

ERR'CHECK (6000 + L'ERROR(0));

Format the machine internal date format into the
date format (long format) according to the language.
The result witl be displaved.

KLFMTCALENDAR(DATE, L' CALENDAR , LANGNUM, L 'ERROR)
ERRfCHECK (7000 + L'ERROR(0));

DISPLAY “DATE FORMAT:“ ON'STDLIST;
DISPLAY B'CALENDAR,(18) ON'STDLIST;

Format the machine internal clock format
into the language-dependent clock format.
The result will be displayed.

NLFMTCLOCK(TIME, L *CLOCK, LANGNUM, L'ERROR);
ERRCHECK (8000 + L!'ERROR(0));

>
>
>

EXAMPLE PROGRAMS H- 11

171 DISPLAY HTIME FORMAT:" ONFSTOLIST;

172 DISPLAY B'CLOCK,(8) CN'STDLIST;

173

174 << Use the output of NLFMTCLGCK as input for

175 NLCONVCLOCK and convert back to the internal format.
176

177 TIME = NLCONVCLOCK(B'CLOCK,8,LANGNUM, LfERROR);
178 ERRICHECK (9000 + LYERROR(0));

179

180 << Format the machine internal time and date

181 format intec the language-dependent format.

182 The result will be displayed.

183

184 Ni. FMTDATE(DATE, TIME, L 'DATE , LANGNUM, L 'ERROR);
185 ERRICHECK (10000 + L *ERROR(D));

186

187 DISPLAY “YDATE AND TIME FORMAY:® ON'STDLIST;

188 DISPLAY B'DATE,(28) ON'STDLIST;

189

190 ERD.

Executing the program results in the following:

BRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):
Januar

Dienstag

CUSTCOM DATE:

21.01.84

DATE FORMAT:

pi., 31. Jan. 1984

TEME FORMAT:

17:12

DATE AND TIME FORMAT:
pi., 31. Jan. 1984, 17:12

END OF PROGRAM

BRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

JANUARY

TUESDAY

CUSTOM DATE:

01/31/84

DATE FORMAT:

TUE, ¢AN 31, 1984

TIME FORMAT:

5:13 P

DATE AND TIME FORMAT:

TUE, JAN 31, 1984, 5:13 PH

END OF PROGRAM

S

H-12 EXAMPLE PROGRAMS

F. NLSCANMOVE Intrinsic in a COBOLI Program

In this program there are six different calls to nescammove. In every call all parameters are passed to
nLscanmove, Since the upshift/downshift table and the character attributes table are optional parameters,
they may be omitted. For performance reasons (if niscansove is called frequently), they should be passed
to the intrinsic after being read in by the appropriate calls to nLixFo.

$CONTROL USLINIT
T IDENTIFICATION DIVISION.
2 PROGRAM- [D. EXAMPLE.
3 AUTHDR. LORO.

4 ENVIRONMENT DIVISION,

.5 DATA DIVISION.

6 WORKING-STORAGE SECTION.
7

8

9

* The user is asked to enter a lahguage name or

DISPLAY
BENTER A LANGUAGE WNAME OR NUMBER (MAX. 16 CHARACTERS):*.
ACCEPT LANGUAGE.

CONVERT - NAME - NUM.
* NLINED item 22 returns the corresponding
* lang number in integer format for this language.

»

1

1

1

1

1

1

1

1. 7 QUITPARM PIC S%(4) COMP VALUE O.
1. 77 LANGNUM PIC S9(4) COMP VALUE Q.
1. 77 FLAGS PIC S9(4) COMP VALUE 0.
2 77 LEN PIC S%(4) COMP VALUE 70,
2.3 77 NUMCHAR PIC S9(4) COMP VALUE 0.
2.2

2.3 1| TABLES.

2.4 05 CHARSET-TABLE PIC X(256) VALUE SPACES.
Z2.5 5B UPSHIFT-TABLE PIC X(256) VALUE SPACES.
2.6 05 DOWNSHIFT - TABLE P1C X(256) VALUE SPACES,
2.7

2.8 | STRINGS.

2.9 05 INSTRING.

3 10 INSTRI PIC X(40) VALUE SPACES.
3.4 10 INSTRZ PIC X{30) VALUE SPACES.
3.2 G5 OUTSTRING PIC X{70) VALUE SPACES.
3.3 05 LANGUAGE PIC X{16) VALUE SPACES.
2.4

3.5 ot ERRORS.

3.6 o5 ERR1 PIC S%(4) COMP.

3.7 a8 KO-NLS VALUE 1.

3.8 88 NOT-CONFIG VALUE 2.

3.9 05 ERRZ PIC S9{4) COMP VALUE O.
4

4.1 PROCEDURE DIVISIOCN.

4.2 START-PGM.

4,3 * Initializing the arrays.

bl

4.5 MOVE "abCDfgbi jkaSXbVeG jGF1F3E1 SPO6dLe\ 182337
4.6 TO INSTRA.

4.7 MOVE ®a 123&112fSXgVhkiKLabCDASPOSi*

4.8 TO INSTRZ.

4.9

5

5

5

5

5.

5.

5.

5

5

5

EXAMPLE PROGRAMS H.13

" Py

 x o N
oo~ A

Kl

000w O R L R s

G~ DA P N R

*

—
QNN -

-
L]
by
o

10.3
10.4
19.5
10.6
14.7
10.8
10.9
11

1.1
1.2
1.3
11.4
1.5
1.6
11.7
11.8
1.9

H-14

CALL INTRINSIC ®NLINFO" USING 22,

IF ERR1 NOT EQUAL 0
IF NO-NLS

LANGUAGE,
LANGNLM,
ERRORS.

DISPLAY '"NL/3000 1§ NOT INSTALLEDM
CALL INTRINSIC "QUIT" USING 1001

ELSE
IFf NOT-CONFIG

DISPLAY "THIS LANGUAGE IS NOT CONFIGUREDY
CALL INTRINSIC "QUITH USING 1002

ELSE

COMPUTE QUITPARM = 1000 + E£RR1
CALL JNTRINSIC #QUITY USING QUITPARM.

GET-TABLES,

* Obtain the character attributes tabte

* using NLINFO jtem 12.

CALL INTRINSIC "NLINEG™ USING 12,

IF ERR1 NOT EQUAL 0

CHARSET - TABLE,
LANGNUM,
ERRORS.

COMPUTE QUITPARM = 2000 + ERR1Y
CALL INTRINSIC "QUITY USING QUITPARM.

* Obtain the upshift table using NLINFO item 15,

CALL INTRINSIC “NLINFOM USING 15,

IF ERR1 NOY EQUAL O

UPSHIFT- TABLE,
LANGNLM,
ERRORS.

COMPUTE QUITRARM = 3000 + ERR1
CALL INTRINSIC *QUITH™ USING QUITPARM,

* Ohtain the downshift table using NLINFO iftem 16.

CALL INTRINSIC “NLINFO™ USING 16

IF ERR1 NOT EQUAL O

DOWNSHIFT-TABLE,
LANGNUM,
ERRORS.

COMPUTE QUITPARM = 4000 + ERR1
CALL INTRINSIC "QUIT™ USING QUITPARM.

DISPLAY "THE FOLLOWING STRING IS USED IN ALL EXAMPLES:™

DISPLAY INSTRING.

EXAMPLE-1-1.

* The string passed in the array instring should be moved
* and upshifted simultaneously to the array outstring.
* Set the until flag (bit 11 = 1) and the

012345
000000 0

L]
*
*
a*
*

EXAMPLE PROGRAMS

upshift flag (bit 10 = 1).

6789
06000

All other flags remain

12

2.1
12.2
12.3
2.4
12.5
12.6
12.7
12.8
12.9

13.1

13.3

16.6
16.7
16.8
16.9

i7.1
17.2
17.3
17.4
L)
17.6
17.7
17.8
17.9

* & ¥ * ¥

Hote: The 'until flag® is set. Therefore, the operation continues

until one of the ending criteria will be true.
if no ending condition is set, the operation
continues for the number of characters contzined in
length.

MOVE 48 TO FLAGS.

CALL INTRINSIC "NLSCANMOVE" USING INSTRING,
CUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR.
IF ERR1 NOT EQUAL 0
COMPUTE QUITPARM = 5000 + ERR1
CALL INTRINSIC "QUIT™ USING QUITPARM.

DISPLAY "UPSHIFTED: (EXAMPLE 1-1)%,
DISPLAY OUTSTRING.

EXAMPLE-1-2.

* % % ¥ d & ¥ ¥ ¥ ¥ ¥ F F X #

The string passed in the array instring should be moved
and upshifted to the array outstring (same as EXAMPLE 1-1).
Set the while flag (bit 11 = 0) and the

(bit 10 = 1). In addition all ending conditions will

set (bits 12 - 15 all 1}.

0
Y

Note: The 'while flag' is set. Therefore, the cperation
continues while one of the end criteria is true.
$ince all criteria are set, one of them will be
always true, ard the operation continues for the
number of characters contained in lLength.

MOVE SPACES TO OUTSTRING.

MOVE 0 TO FLAGS.

MOVE 47 TO FLAGS.

CALL INTRINSIC "NLSCANMOVEM USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,

CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR,

IF ERRT NOT EQUAL O
CALL INTRINSIC "QUIT™ USING 6.

DISPLAY MUPSHIFTED: (EXAMPLE 1-2)".
DISPLAY OUTSTRING.

EXAMPLE PROGRAMS H-15

18
8.1
18.2
18.3
18.4
i8.5
18.6
18.7
18.8
18.9
19
19.1
19.2
9.3
19.4
19.5
19.6
19.7
19.8
19.9
20
20.1
20.2
20.3
20.4
20.3
20.6
20.7
20.8
20.9

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

22.1%
2.2
22.3
22.4

22.6
22.7
22.8
22.9

23.1
23.2
23.3
23.4
23.5
23.6
23.7
25.8
23.9

* 2 %X & % F F ¥ X ¥ & F ¥ %

EXAMPLE-2-1.

The string passed in the array instring should be
scanned for the first occurrence of a special character.
All characters before the first special character are
moved to outstring.
Set the untit flag (bit 11 = 1} and the
character flag (bit 12 = 1). All other flags remain
0123456789
g00C0Cc00000290
Note: The ‘until flag' is set and the ending condition
set to 'special character'. Therefecre, the operation
continues until the first special character is found
or until the number of characters contained in
tength is processed.

MOVE SPACES 1O OUTSTRIKG.
MQVE 24 TO FLAGS.

CALL INTRINSIC “NLSCANMOVEY USING INSTRING,
OUTSTRING,
FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET-TABLE,
UPSHIFT-TABLE
GIVING NUMCHAR.
IF ERRT NOT EQUAL 0
COMPUTE QUITPARM = 7000 + ERR1
CALL INTRINSIC “QUITH USING GUITPARM.

DISPLAY WSCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)%.
DISPLAY CUTSTRING.

EXAMPLE-2-2.

+ 3 % #* # H % ¥ % * * ¥ N X ¥ X N

The string passed in the array instring should
be scanned for the first occurrence of a special
character. ALL characters before the first special
character are moved to outstring (same as EXAMPLE 2-1).
Set the while flag (bit 11 = D) and all
flags except for special characters (bits 13 - 15 =
¢
co
Note: The ‘while flag®' is set and all ending criteria
except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a numeric character is found. When a special
character is found, or the number of characters

contained in length is processed, the operation will
terminate.

MOVE SPACES TG CUTSTRING.

MOVE 7 TO FLAGS.

H-18 EXAMPLE PROGRAMS

24

24,
262
24.3
24.4
24.5
24,6
24.7
24.8
24.9
25

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
26

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
27

27.1
27.2
27.3
27.4
27.5
27.6
2r.7
27.8
7.9
28

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9

ok % K % % £ ¥ % N A * ¥ ¥ * ¥

CALL INTRINSIC ®NLSCANMOVE™ USING INSTRING,

OUTSTRING,

FLAGS,
LEN,
LANGNUM,
ERRORS,
CHARSET -
UPSHIFT -

GIVING NUMCHAR,

IF ERR1 NOT EQUAL O
COMPUTE QUITPARM = B0GO + ERRY
CALL INTRINSIC "QUIT" USING QUITPARM.

TASLE,
TABLE

DISPLAY "SCAN/MOVE WHILE ALPHA OR KUM: (EXAMPLE 2-2)n,

DISPLAY QUTSTRING.

EXAMPLE-3-1.

The string passed in the array instring should be

scanned for the first occurrence of a special

or numeric

character. All characters before one of these characters
are moved to outstring and downshifted simultapeously.

Set the until flag (bit 11 = 1) and the

flags for special and numeric characters (bits 12-13 = 1).

To perform downshifting set bit ¢ to 1.

0
4

& s

Nete: The 'until flag' is set and the ending condition
set to *special character’ and to ‘numeric charactert.

Therefore, the operation continues unti

| the first

special or numeric character is found, or
untit the number of characters contained in length

is processed.

MOVE SPACES 71O OUTSTRIKG.
MOVE 92 TG FLAGS.

CALL INTRINSIC “NLSCANMOVEY™ USING INSTRING,

QUTSTRING,

FLAGS,
LEN,
LANGNUM,
ERRORS,

CHARSEY-TABLE,
DOWNSHIFT-TABLE

GIVING KUMCHAR.

IF ERR1 NOY EQUAL TO O
COMPUTE QUITPARM = 9000 + ERR?
CALL INTRINSIC "QUIT™ USING QUITPARM.

DISPLAY
HSCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.:
BISPLAY QUTSTRING.

EXAMPLE-3-2.

(EXAMPLE 3-1)H,

EXAMPLE PROGRAMS H-17

30 * The string passed in the array instring should be

30.1 * scanned for the first occurrence of a special or numeric
30.2 * character. All characters before one of these characters
30.3 * are moved to outstring and downshifted simultaneously
30.4 * (same as EXAMPLE-3-2}.

30.5 * set the while flag ¢(bit 11 = 0) and the

30.6 * flags for upper and lower case characters (bits 14-15 =
30.7 * To perform downshifting set bit 9 to 1.

3.8 *

0.9 * 0123456789

n *® 0000000001

3.1 %

31.2 * HNote: The 'while flag! is set and the ending criteria
31.3 * upppercase and towercase characters are set.

3.6 > Therefore, the operation continues while an uppercase or
NS % a lowercase character is found. When a special
3.6 * or a numeric character is found, or the number of
31,7 * characters contained in length is processed, the
31.8 * operation will terminate.

31.9

32 MOVE SPACES TO OUTSTRING.

32.1

32.2 MOVE 67 TO FLAGS.

32.3

32.4 CALL INTRINSIC “NLSCANMOVE" USING INSYRING,

32.5 OUTSTRING,

32.6 FLAGS,

32.7 LEN,

32.8 LANGNUM,

32.9 ERRORS,

23 CHARSET-TABLE,
33.1 POWNSHIFT-TABLE
33.2 GIVING NUMCHAR.

33.3

334 IF ERRT NOT EQUAL O

33.5 COMPUTE QUITPARM = 10000 + ERR1,

33.6 CALL INTRINSIC “QUITH USING QUITPARM,

33.7

33.8 DISPLAY

33,9 HSCAN/MOVE/COWNSHIFT WHILE ALPHA: (EXAMPLE 3-2).

34 DISPLAY QUTSTRING.

34,1

34.2 STOP RUN.

H-18 EXAMPLE PROGRAMS

Executing the program results in the following:

HRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abCDfgbi kaSXbVeGiGTif$E15P0dLe\1823%&Ta 12381 1215 gVhkiKLabCDASPOGE
UPSHIFTED; (EXAMPLE 1-9)

ABCOFGAT JKASXBRCGJGFIFSE ISP ISDXEVTIAZIYETA 12381 12FSXGREKLKLABCDASP 161
{PSHIFTED: (EXAMPLE 1-2)

ABCDFSAIJKASXBREGUGFIFSE I SPIADXENTAZIYETA 123R112FSXGREKLEKLARCDASP 141
SCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)

abCDfghi jkaSXbVeGiGf1f

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abLDfgbi jkaSXbVeGiGf1f

SCAN/MOVE/DOWNSHIFT UNTIL NUK. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abedfg

END OF PROGRAM

HRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

0

THE FOLLOWING STRING IS USED IN ALL EXAMPLES:

abtDfghi [kaSXbveGiGf 1 fSEISPOSdLe\1a23%&7a 12381 12f5XgVhk1KLabiDASPOGE
UPSHIFTED: {EXAMPLE 1-12

ABCDFGE! JKASXBYCGJIGF1FSEESPOSOLENTAZ3NETA 123&112FSXGVRKLKLABCDASPOS!T
UPSHIFTED: (EXAMPLE 1-2)

ABCDFGE! JKASXBYCGJIGF1FSE ISPOSOLEVIAZ3HEZA 123&1912FSXGVEKLKLABCDASPOS]
SCAN/MOVE UNT1L SPECIAL: (EXAMPLE 2-1)

ab{Dfgéijka

SCAN/MOVE WHILE ALPHA OR KUM: (EXAMPLE 2-2)

abCDfgbijka

SCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abedfg

SCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)

abcdfy

END OF PROGRAM

»

EXAMPLE PROGRAMS H-19

G. NLSCANMOVE Intrinsic in an SPL Program

In this program there are six different calls to nLscanvove. In every call, parameters are passed tO NLSCANMOVE,
Since the upshift/downshift table and the character attributes table are optional parameters, they may be
omitted. For performance reasons (if nuscanvove is called frequently), they should be passed to the intrinsic
after being read in by the appropriate calls to aL1ro.

1 SCONTROL USLINIT

2 BEGIN

3 LOGICAL ARRAY

& LEUPSHIFT (0:127),

5 LIDOWNSHIFT (D:127),

é L+CHARSET 0127,

7 L 1ERROR 0:1),

8 LYINSTRING (D:34),

L LIOUTSTRING (0:34),

16 LIPRINT (G:34),

11 LILANGUAGE (0:7);

12

13 BYTE ARRAY

14 BYIKSTRING(*) = LTVINSTRING,

15 B'OUTSTRINGC*Y = LIOUTSTRING,
16 BIPRINT(™) = LEPRINT;

17

18 BYTE POINTER

19 BP'PRINT;
20
21 INTEGER
22 LANGNUM,

23 NUM!CHAR,

24 LGTH,

25 LENGTH;

26

27 LOGICAL

28 FLAGS;
29
30 DEFINE
3 LOWER 'CASE = FLAGS.(15:1)¥,
32 UPPER'CASE = FLAGS.(14:1)¥,
33 KUMERIC'CHAR = FLAGS.(13:1)%,
34 SPECIAL'CHAR = FLAGS.(12:1)¥,
35

36 WHILETUNTIL = FLAGS.(11:1)#,
37

38 UPSHIFT!FLAG = FLAGS.{10:1)#,
39 DOWNSHIFT'FLAG = FLAGS.(9:1)¥,
40
41 ERRORSCHECK = IF L'ERROR(0} <> O THEN
42 GUIT #,

43

44 CONE = [F <> THEN

45 QUIT #,

46

47 DISPLAY = MQVE B'PRINT := #,
48

49 ON'STDLIST = ,2;

50 DBPIPRINT := 10S;
51 LBTH := LOGICALC2BPIPRINTY -
52 LOGICAL{RB'PRINT);
53 PRINT(LFPRINT, -LGTH, D) #;
54
55

H-20 EXAMPLE PROGRAMS

114

INTRINSIC
READ,
QuIT,
BRINT,
NLINFO,
NLSCANMOVE;

<< Start of main code.
initializing the arrays.

MOVE BPINSTRING

1= "abCDfg6i jkaSXbVCGJGF1f$E | SPO6ALEN1a23H8 7™, 2;

MOVE * ;= “a 1232i12fSXgVhiklKLabCDASPDSi#;

MOVE L'OUTSTRING : ;
LYOUTSTRING, (39);

MOVE LOUTSTRING(1)

W

[53

MOVE LYLANGUAGE : ;
MOVE L1LANGUAGE(1) v= LILANGUAGE , (7);

<< The user is asked to enter a language name or

DISPLAY

>

MENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):®

ON'STDLIST;
READCL 'LANGUAGE, - 16);

<< NLINFG item 22 returns the corresponding language
rnumber in integer format for this language.

NLINFO(22,L'LANGUAGE , LANGHUM, L 'ERROR);
IF L'ERROR(D) <> O THEN
BEGIN
IF LYERROR(C) = 1 THEN
BEGIN
DISPLAY
MNL/3000 IS NOT INSTALLEDY
ON?STDLIST;
QuUIT ¢1001);
END
ELSE
IF LYERRORCO) = 2 THEN
BEGIN
DISPLAY
WTHIS LANGUAGE IS NOT CONFIGUREDM
ON'STDLIST;
QuUIT (1002);
END
ELSE
QUIT (1000 + LFERRCR(O));
END;

<< Obtain the character attributes table using
NLINFO item 12.

ML INFO{12,L'CHARSET,LANGNUM, L'ERROR);

bds

>

EXAMPLE PROGRAMS H-21

H-22

ERRORYCHECK €2000 + L'ERROR(G));
<< Obtain the upshift table using NLINFO item 15.

NLINFO(15, LYUPSHIFT , LANGNUM, L7ERROR) ;
ERROR'CHECK (3000 + LYERROR(O));

<< Obtain the downshift table using KLINFO item 16.

NLINFOC16, L 'DOWNSHIFT, LANGNUM, L 'ERRORY;
ERRORICHECK (4000 + L'ERRORCO));

<< Print the character string used in all examples{instring).

DISPLAY

WTHE FOLLOWING STRING IS USED IN ALL EXAMPLES:H
ONSTOLIST;
DISPLAY B'INSTRING,(70) ON'STDLIST;

EXAMPLE 141:
<< The string passed in the array instring is moved and

UPSHIFIED to the array outstring.

Note: The tuntil flag' is set. Therefore, the operation
continues until one of the ending criteria is true.
1f no ending condition was set the
operation continues for the number of characters
contained in length.

LENGTH = 70;

FLAGS :

H

0;

WHILEFUNTIL
UPSEIFTtFLAG

~r

1
1

13 1]

: H
HUMICHAR := NELSCANMOVE(B'INSTRING, B!QUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L*CHARSEY, L'UPSHIFT);
ERROR'CHECK (35000 + L*ERROR({(});

BISPLAY “UPSHIFTED: (EXAMPLE 1-1)" ON'STDLIST;
DISPLAY B'OUTSTRING, (NUM'CHAR)Y ON'STDLIST;

EXAMPLE? 1123

kg

>

o

>

<< Note: The 'while flag' is set. Therefore, the operation will
continue white one of the end criteria is true. Since

atl conditions are set, one of them will be always
true and the operation continues for the number of

characters contained in length. This example performs

the same operation as EXAMPLE 1-1.

MOVE L*OUTSTRING :
LIQUTSTRING, (39);

MOVE LICUTSTRINGCT) ¢

FLAGS R H
LOWER 'CASE 1= 1;
UPPER ' CASE = 1;
SPECIAL 'CHAR HE
NUMERIC'CHAR = 1)

EXAMPLE PROGRAMS

>>

175
176

178
179
180
181
182
183
184
185
186
187

189
190
191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
21
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

WHILEFUNTIL = 0
UPSHIFT'FLAG := §;

KUMICHAR := NLSCANMOVE(B'INSTRING, BFCUTSTRING, FLAGS,
LENGTH, LANGNUM, L*ERROR, L'CHARSET, L'UPSHIFT);
ERROR'CHECK (6000 + LTERROR(D));

DISPLAY "UPSHIFTED: (EXAMPLE 1-2)¥ ON'STDLIST;
DISPLAY B'OUTSTRING, (NUM'CHAR) ON'STDLISY;

EXAMPLE'211%:
<< The string contained in instring should be scanned for the

first occurrence of a special character. ALl characters
before the first special are moved to ocutstring,
Note: The 'until flag' is set and the ending condition is
set to 'special character'. Therefore, the operation
continues until the first special character is found or
until the number of characters contained in length
is processed. >»

LI
!

MOVE L*OUTSTRING 1=
s= LPOUTSTRING, (39);

MOVE L'OUTSTRING(T)
FLAGS 1= 0;
SPECIAL'CHAR == 1;

WHILEPUNTIL = 1;
UPSHIFT'FLAG = 0;
RUM*CHAR := NLSCANMOVE(B'INSTRING, BCUTSTRING, FLAGS,

LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'UPSHIFT);
ERRORFCHECK (7000 + L'ERROR (0));

DISPLAY MSCAN/MOVE UNTIL SPECIAL: (EXAMPLE 2-1)"
ONtSTDLIST;
DISPLAY B'OUTSTRING, (NUM'CHAR) ON'STDLIST;

EXAMPLE'2t2:
<< Note: The ‘while flag' is set and all ending criteria

except for special characters are set. Therefore, the
operation continues while an uppercase, a lowercase, or
a maeric character is found. When a special

character is found or the number of characters
contained in length is processed, the operation witl

terminate.
This is the same operation as in EXAMPLE 2-1. »>
MOVE LIOUTSTRING = B M.
MOVE L'OUTSTRINGC1) == LYQUTSTRING, (39);
FLAGS 1= 0;
LOWER *CASE = 1;
UPPERFCASE = 1;
SPECIAL'CHAR = O;
NUMERI{L'CHAR == 1:
WHILEYUNTIL 1= 03

EXAMPLE PROGRAMS H-23

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

H-24

UPSHIFTIFLAG = 0;

NUMYCHAR 1= NLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERRCR, L'CHARSET, L'UPSHIFT);
ERRGR'CHECK (8000 + L'ERROR(O));

DISPLAY “SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)%
ONSTDLIST;
DISPLAY B'OUTSTRING, (NUM'CHAR) ON'STDLIST;

EXAMPLE'311:
<< The data contained in instring should be scanned for the

first occurrence of a numeric or a special character.
Atl characters preceding the first special or mumeric character
gre moved to outstring.
Note: The funtil flag' is set and the ending conditions are
set to 'special character! and to ‘numeric charactert.
Therefore, the operation runs untii the first
special or numeric character is fourd, or
until the number of characters contained in length
is processed. >

1 He

MOVE L'OUTSTRING : ;
L'OUTSTRING, (39);

MOVE L'OUTSTRING(1) =

FLAGS = 0;

SPECTAL'CHAR := %;
HUMERIC'CHAR := 1;

-

WHILE'ENTIL =

1
DOWNSHIFT!FLAG = 1

-

HUMICHAR ;= NLSCANMOVE(B?! INSTRING, B'OUTSTRING, FLAGS,
LENGTH, LANGNUM, L'ERROR, L'CHARSET, L'DOWNSHIFT);
ERRORCHECK (9000 + L'ERROR{0));

DESPLAY

HSCAN/MOVE/DOWNSHIFT UNTIL NUM. OR SPEC.: (ENAMPLE 3-1)%
ON'STDLIST;

DISPLAY B'OUTSTRING, (NUMICHAR) ON'STDLIST;

EXAMPLE'312:
<< Note: The 'while flag' is set and the ending criteria

upppercase and lowercase characters are set.

Therefore, the operation continues while an uppercase or
& lowercase character is found. When a special

or mumeric character is found or the number of
characters contained in length is processed, the
operation will terminate.

This is the same operation as in EXAMPLE 3-1. >>
MOVE L'OUTSTRING = A0 M.
MOVE L'OUTSTRING(T) 1= LIQUTSTRING, (39);
FLAGS = 0;
LOWER *CASE = 1;
UPPER ' CASE 1= 1;

EXAMPLE PROGRAMS

296 WHILE'UNTIL r= Q0

297 DOWNSHIFT!FLAG = 1}

298

299 NUM:CHAR ;= HLSCANMOVE(B'INSTRING, B'OUTSTRING, FLAGS,
306 LENGTH, LANGRUM, L'*ERRCR, L'CHARSET, L'DOUNSHIFT);
301 ERROR*CHECK (1000 + L'ERROR(D));

302

303 DISPLAY

304 HSCAN/MOVE /DOWNSHIFT WHILE ALPHA: (EXAMPLE 3-2)m

305 ON'STDLIST;

306 DISPLAY BIOUTSTRING, (RUM?CHAR) ON'*STDLIST;

307

308 END.

Executing the program results in the following:

MRUN- PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

THE FOLLCWING STRING 1S5 USED IN ALL EXAMPLES:

abCh ol jkaSKbVeB JGF1fSE I SPOAdLe\1a23%&7a 12341 12£3XgVhkiKLabLDASPOS]
UPSHIFTED: (EXAMPLE 1-7)

ABCOFGOTJKASXBRCGIGFIFSE! SPLODXENTA3ZETA 12381 12FSHGRHKLKLABCDASP (6]
UPSHIFTED: (EXAMPLE 1-2)

ABCDFGOIJKASKXBRCGIGFIFSEISP [6DXEVIAZA%ATA 1238 112FSXGRHKLKLABCDASP [61
SCAN/MOVE UKTIL SPECTAL: (EXAMPLE 2-1}

abCDighi jkasSXbVesiGfif

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfgbi [KasXbVes JGf1f

SCAN/MOVE JOOWNSHIFT UNTIL NUM. OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE/DOWHSHEIFT WHILE ALPHA: {(EXAMPLE 3-2)

abedfg

END OF PROGRAM
HRUN PROGRAM

ENTER A LANGUAGE NAME OR NUMBER (MAX. 16 CHARACTERS):

THE FOLLOWING SYTRING IS USED IN ALL EXAMPLES:

abCD 961 jkaSoVeGGF1SEISPOGdLe\1a23%8Ta 12341 12£5XgVhk LKL abCDASPOST
UPSHIFTED: (EXAMPLE 1-1)

ABCDFGAIJKASKBVCGJGFIFSEI SPOSDLENTAZIYETA 123&112FSXGVHKLKLABCDASPOSE
UPSHIFTED: (EXAMPLE 1-2)

ABCOFGOT JKASKBVCGJGF1FSEI SPOSDLENTAZINETA 12381 12FSXGVHKLXLABCDASPOST
SCAN/MOVE UNTEIL SPECIAL: (EXAMPLE 2-1)

abfDfgbijka

SCAN/MOVE WHILE ALPHA OR NUM: (EXAMPLE 2-2)

abCDfgéi jka

SCAN/MOVE /DOMNSHIFT UNTIL NUM., OR SPEC.: (EXAMPLE 3-1)

abcdfg

SCAN/MOVE/DOMNSHIFT WHILE ALPHA; (EXAMPLE 3-2)

abedfg

END OF PROGRAM

EXAMPLE PROGRAMS H-25

H. NLTRANSLATE/NLREPCHAR Intrinsics in a COBOLII Program

The string used in the example is 256 bytes in length and contains all possible byte values from 0 to 255.
This string is converted from USASCII to EBCDIC. Then the converted string is taken and translated
back to USASCIL This is done according to the ASCII-to-EBCDIC and EBCDIC-to-ASCII translation
tables corresponding to the entered language.

Afterwards this twice-translated string is displayed. All characters which are non-printable {control and
undefined characters) in the character set supporting the given language are replaced by a period before
the string is displayed by calling nirepchar intrinsic.

1 SCONTROL USLINEY

1.1 [IDENTIFICATICN DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION.

1.5 DATA DIVISION.

1.6 WORKING-STCORAGE SECTION,

1.7 77 QUITNUM PIGC S9(4) COMP VALUE 0.
1.8 77 LANGNUM PIC S%{4) COMP VALUE 0.
1.9 Tt IND PIC $9(4) COMP VALUE 0.
2

2.1 o1 TABLES.

2.2 05 USASCII-EBC-TABLE PIC X(2%6) VALUE SPACES.
2.3 o5 EBC-LSASCII-TABLE PIE X¢256) VALUE SPADES.
2.4 05 CHARSET-TABLE PIC X(256) VALUE SPACES.
2.5

2.6 01 BUFFER-FIELDS.

2.7 05 INT-FIELD PIC S9(4) COMP VALUE -1,
2.8 05 BYTE-FIELD REDEFIKES INT-FIELD.

2.9 10 FILLER PIC X.

3 10 CHAR PIC X.

3.1

z2 3] STRIRGS.

3.3 5 LANGUAGE PIC X(16) VALUE SPACES.
3.4 05 IN-STRING.

3.5 10 IN-BYTE P1C X OCCURS 256.

3.6 05 CUT-STRING.

3.7 0 QUT-STR1 PIC X(80),

3.8 10 OuT-31R2 PIC X(80).

3.9 10 OUT-STR3 PIC X(80).

4 10 OUT-STR4 PIC X{16).

4.1

4.2 01 REPLACE -WORD PIC $9(4) COMP VALUE 0.
4.3 M REPLACE-BYTES REDEFINES REPLACE-WORD,

4.4 05 REPLACEMENT - CHAR PiC X.

4.5 (13 FILLER PIC X,

4.6

&7 01 ERRORS.

4.8 05 ERR1 PIC S9{4) COMP,

4.9 0% ERRZ PIC SP(4) LOMP.

5 PROCEDURE DIVISION.

5.1 START-PGM.

5.2 * Initialize the instring array with all possible

5.3 * pyte values starting from binary zero untii 255.

5.4 MOVE -1 TO INT-FIELD.

5.5 PERFORM FILL-INSTRING VARYING IND FROM T BY 1

5.6 UKTIL IND > 256.

5.7 GO 0 GET-LANGUAGE.

5.8

5.9 FILL-INSTRING.

H-26 EXAMPLE PROGRAMS

-

v

00~ DU N R .

N O3 O WD S e

»

VN WV WN

P

»

DI

E;-«o-c\o-o~o~o~o-aoomoomcaoomoooocamﬁﬂﬂﬂﬂuﬂﬂqwmmmomwmoam
- b v s s e s s .
N3O0 O T B P e

10.1
10.2
10.3
10.4
10.5
10.6
10.7
16.8
16.9
1"

1.1
1.2
1.3
1.4
11.5
11.6
11.7

11.8 * using NLTRANSLATE code 1. The retransiated string will

11.9

ADD 1 TO INT-FIELD.
MOVE CHAR 1O IN-BYTECIND).

GET-LANGUAGE .
*The language is hard-coded, set to 8 (SERMAN).

MOVE 8 TO LANGNUM.

GET-THE-TABLES.
* Call the USASCII-EBCDIC and EBCDIC-USASCHE
* conwersion tables and the character attribute table
* by using the appropriate NLINFO items.

* Note: NLTRANSLATE and NLREPCHAR may be called without
* passing the tables (last parameter). For performance

reasons the tables should be passed, if these
intrinsics are called very often,

* ¥

CALL INTRINSIC “KLINFG® USING 13,
USASCII-EBC-TABLE,
LANGNUM,
ERRORS.
1f ERRT NOT EQUAL O
COMPUTE QUITNUM = 1000 + ERR1,
CALL INTRINSIC BQUITH USING QUITNUM.

CALL INTRINSIC NLINFO ITEM 14,
EBC-USASCIT-TABLE,
LANGNUM,
ERRORS.
If ERRT HOT EQUAL O
COMPUTE QUITNUM = 2000 + ERRY,
CALL INTRINSIC "QUIT™ USING QUITKUM,
CALL INTRINSIC WNLINEO™ USING 12,
CHARSET- TABLE,
LANGNUN,
ERRORS .
IF ERR1 NOT EQUAL O
COMPUTE QUITNUM = 3000 + ERR1,
CALL INTRINSIC “QUIT" USING QUITNUM.

CONVERT-ASC-EBC.
* Convert IN-STRING from USASCII into EBCDIC by

* using NLTRANSLATE code 2, The converted stiring will
* ke in OUT-STRING.

CALL INTRINSIC "NLTRANSLATE™ USING 2,
IN-STRING,
OUT-STRING,
256,
LANGHUM,
ERRORS,

USASCII-EBC-TABLE.

If ERRT NOT EQUAL O
COMPUTE QUITNUM = 4000 + ERRT,
CALL INTRINSIC BQUITY USING QUITNUM.

CONVERT -EBE-ASC.
* Convert OUT-STRING back from EBCOIC to USASCII by

* be in IN-STRING again.

EXAMPLE PROGRAMS H-27

12

12.1
12.2
12.3
12.4
12.3
12.6
12.7
12.8
12.9

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14

141
14.2
14.3
th.4
14.5
4.6
14.7
14.8
14.9

H-28

CALL INTRINSIC “NLTRANSLATE® USING 1,
OUT-STRING,
IN-STRING,
256,
LANGNUM,
ERRORS,
EBC-USASCI1-TABLE,
1F ERR1 NOT EQUAL O
COMPUTE QUITNUM = 5000 + ERR1,
CALL INTRINSIC "QUITH USING QUITNUM,

REPLACE-NON-PRINTABLES.
* Replace all non-printable characters
* in IN-STRING and display the string.

MOVE #." TO REPLACEMENT-CHAR.
CALL INTRINSIC "NLREPCHARM USING IN-STRING,
IN-STRING,
256,
REPLACE-WORD,
LANGNUH,
ERRORS.
IF ERRT NOT EQUAL O
COMPUTE QUITNUM = 6000 + ERRI,
CALL INTRINSIC "QUITH USING QUITNUM.

DISPLAY “IN-STRING:®

DISPLAY IN-STRING.
STOP RUN.

EXAMPLE PROGRAMS

I. NLKEYCOMPARE Intrinsic in a COBOLII Program

The example shows a new KSAM /3000 file built programmatically with a language attribute. This means
the keys will be sorted according to the collating sequence of this language. After building the file, the
program writes 15 hard-coded data records into it.

Perform a generic Frinoeykey with a partial key of lengthl containing "e". This positions the KSAM /3000
file pointer to the first record whose key starts with "e".

After locating this record, read all subsequent records in the file sequentially and call nukevcomweare to check
whether the key found is what was requested. If the result returned by nuxevconpare is3, the program is done.
There are no more records whose key starts with any kind of "g".

3 FCONTROL USLINIT

1.1 IDENTIFICATION DIVISION.

1.2 PROGRAM-ID. EXAMPLE.

1.3 AUTHOR. LORO.

1.4 ENVIRONMENT DIVISION,

1.5 CONFIGURATION SECTION.

1.6 SOURCE -COMPUTER. HP3000.

1.7 CBJECT-COMPUTER. HP3000.

1.8 SPECIAL -NAMES,

1.9 CONDITION-CODE IS LC.

2 DATA DIVISION.

2.1 WORKING-SYORAGE SECTION.

2.2 77 QUITNUM PIC S9(4) COMP VALUE 0.
2.3 77 LANGNUM PIC $9(4) COMP VALUE G.
2.4 77 LEGTH PIC S9(4) COMP VALUE Q.
2.5 77 FNUM PIC §9¢4) COMP VALUE 0.
2.6 77 RESULT PIC $9(4) COMP VALUE 0.
2.7 77 FOPTIONS PIC S9(4) COMP.

2.8 77 AOPTIONS PIC S9(4) COMP.

2.9 7 IND PIC S9(4) COMP.

3

3.1 o1 TABLES.

3.2 05 COLL-TABLE PIC X(BDO).

3.3 05 KSAM-PARAM.

3.4 1¢ KEY-FILE PIE X{B) VALUE SPACES.
3.3 16 KEY-FILE-SIZ PIC $9(8) COMP.

3.6 10 FILLER PIC X(8) VALUE SPACES.
3.7 10 LANGUAGE -NUM PIC S9{4) COMP.

3.8 10 FILLER PIC X(8) VALUE SPACES.
3.9 10 FLAGWORD PIC S9¢4) COMP.

4 16 HUM-OF-KEYS PIC S9(4) COMP.

4.1 10 KEY-DESCR PIC S9(4) COMP.

4.2 10 KEY-1.OCATION PIC S9(4) COMP.

4.3 10 DUPL-BLOCK PIC S9{4) COMP.

4.4 10 FILLER PIC X(20).

4.5

4.6 01 STRINGS.

4.7 05 GEN-KEY PIC X{43.

4.8 05 FILENAKE PIC X(8) VALUE SPACES.
4.9

5 o1 ERRORS.

5.1 G5 ERRY PIC S9(4) COMP.

5.2 05 ERRZ PIC S9(4) COMP VALUE Q.
5.3

5.4 01 DATA-RECS.

5.5 0% DATA-REC PIC X(30).

5.6 05 DATA-RECZ PIC X(50).

5.7 s DATA-RECS PIC X(30).

5.8

5.9 01 DATA-RECS-R REDEFINES DATA-RECS.

EXAMPLE PROGRAMS H-29

. e

OO N O N -

.

. .
NG O WA P N RS s

R

L3

T

BN

R S P N TR T

[

T
N

10.3
10.4
10.5
10.6
10.7
10.8
10.9
11

11.1
11.2
11.3
11.4
1.5
11.6
".7
1.8
1.9

05 DATA-RECORD CCCURS 15.
10 FILLER PIC X(10).
01 KSAM-RECORD,
05 FILLER PIC X(3).
05 RECORD-KEY PIC X{4).
05 FILLER PIC X(3).

PROCEDURE DIVISION.

INIT-KSAM-RECORDS.
* Initialize the Data Record with the data which should be
* written to the KSAM file.

MOVE "(14ABBeZZZ011EZqrzyxB01ABCDXXXOOTEACDxyX0121 z2A222
TO DATA-RECY.

MOVE "003EaBCXXX00B\\aaYZ2013ABDYZY (05 el DFyxyCU2BBCdX X!
TO DATA-REC2.

MOVE

*004cABCYYYOOSE abeYYYODDAAAAYZ2010eax Fry2013FGH] 2gst

TO DATA-RECE,

* Hard-code the language used in the example program
* to 0 (NATIVE - 3000).

MOVE

g TO LANGNUM.

* Build a new KSAM file with the data file name

* KDOOO.

The key file has the name KX000.

* Set the values for KSAM parameter array.

MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

CALL

wKD000 " TO FILENAME,

“EKOOG % TO KEY-FILE.

1 1O NUM-OF -KEYS.

LANGNUM 1O LANGUAGE-NUM.

%20 70 FLAGWORD.

0 10 KEY-FILE-SIZ.

%10004 10 KEY-DESCR.

4 70 KEY-LOCATION.

%100024 TO DUPL-BLOCK,

%4000 TO FOPTIONS.

5 10 AOPTIONS.

INTRINSIC “FOPEN" USING FILENAME,
FOPTICNS,
AOPTIONS,
-10,
AAW
KSAM- PARAM

GIVING FNUM.

If CC NOT EQUAL O
CALL INTRINSIC YPRINTFILEINFO" USING FNUM,
CALL INTRINSIC “QUIT™ USING 1000.

* Fill the hard-coded data into the KSAM file.

PERFORM FILL-IN-DATA VARYING IND FROM 1 BY 1

UNTIL IND > 15.

H-30 EXAMPLE PROGRAMS

12

12.1
12.2
12.3
12.4
12.5
2.6
te.7
i2.8
12.9
13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
th

14.1
4.2
14.3
4.4
14.5
14.6
14.7
14.8
14.9
15

15.1
5.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16

16.1
16.2
16.3
6.4
16.5
16.6
16.7
16.8
16.9
17

7.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

* & ¥ & *

* ¥ *F N ¥

GC TO FIND-DATA.

FILL-IN-DATA.

CALL INTRINSIC WEWRITE® USING FNUM,
DATA-RECORD(IND),
-10,
0.
IF CC NOT EQUAL O
CALL INTRINSIC "PRINTFILEINFO® USING FNUM,
CALL INTRINSIC HQUIT™ USING 2000.

FIND-DATA.

perform a generic FFINDBYKEY with a

partial key of length 1 and value "E¥, The relational
operator will be 2 (greater or equal).

This FFINDBYKEY will position the KSAM pointer at the
first key starting with any kind of “g»,

MOVE “E"™ TO GEN-KEY,

CALL INTRINSIC ®FFINDBYKEY"™ USING FNUM,
GEN-KEY,
0
1,
2.

T

if CC NOT EQUAL O
CALL ENTRINSIC "PRINTFILEINFO" USING FNUM,
CALL INTRINSIC “QUIT* USING 3000.

Read the subsequent entries and check whether an
exact match occurred by using NLKEYCOMPARE.

When NLKEYCOMPARE returns 3 as a result, there are no
more keys starting with any kind of #EW,

1f an exact match was found the record is printed.

DISPLAY

"THE FOLLOWING RECORDS MATCH GEM-KEY (E) EXACTLY:®
MOVE 0 TO RESULT.

PERFORM READ-DATA UNTIL RESULT EQUAL 3.

GO TC TERMINATE-PCM.

READ-DATA.

CALL INTRINSIC MEREADM USING FNUM,
KSAM-RECORD,
-19.
1F CC KOT EQUAL O
CALL INTRINSIC “PRINTFILEINFOM USING FNUM,
CALL INTRINSIC "QUITH USING 4000,

CALL INTRINSIC "NLKEYCOMPARE" USING GEN-KEY,
1,
RECORD-KEY,
&,
RESULT,
LANGNUN,
ERRORS,
COLL-TABLE.
IF ERRY NOT EQUAL O
COMPUTE QUITNUM = 5000 + ERR1,
CALL INTRINSIC HQUITH USING GUITNUM.

EXAMPLE PROGRAMS H-31

18 If RESULT = 0

18.1 DISPLAY XSAM-RECORD.

18.2

18.3 TERMINATE-PGH.

18.4 * Close the KSAM file and purge it,
18.5

18.6 CALL INTRINSIC ®FCLOSE" USING FNUM,
18.7 4,
18.8 8.
18.9

19 STOP RUN.

Executing the program results in the following;

HRUN PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
C11EZgrzyx
BO3EaBCXXX
007EdChxyx

END OF PROGRAM

H-32 EXAMPLE PROGRAMS

J. NLKEYCOMPARE Intrinsic in an SPL Program

The example shows a new KSAM /3000 file built programmatically. This new KSAM /3000 file is built with
a langnage attribute. This means the keys will be sorted according to the collating sequence of this
language. After building the file, it is filled with 15 hard-coded data records.

Perform a generic rrivpevkey with a partial key of lengthl containing "E". This should position the
KSAM/3000 file pointer to the very first record whose key starts with any kind of "E".

After locating this record read all subsequent records in the file sequentially and call nikevcompare to check
whether the key found is what was requested. If the result returned by nukeycowpare is3, there are no more
records starting with any kind of "g".

1 SCONTROL USLINIT
2 BEGIN
3 LOGICAL ARRAY
4 L 'ERROR (G:13,
5 L'KSAMIPARAM (0:79),
] LIPRINT (6:393,
7 L'RECCRD {G:4),
8 COLL'TABLE (0:399);
@
10 BYTE ARRAY
11 FILENAME 0:7),
12 GEN'KEY (G:4),
13 KEY (0:4),
14 BIKSAMIPARAM(®) = LIKSAMIPARAM,
15 BYPRIKT{*) = L'PRINT,
16 BYRECORD(*} = LIRECORD;
17
8 DOUBLE ARRAY
19 DIKSAM'PARAM{™) = L'KSAM'PARAM;
20
21 BYTE POINTER
22 BP'PRINT;
23
24 INTEGER
25 I,
26 LGTH,
27 FHUM,
28 RESULT,
29 LANGNUM;
30
31 LOGICAL
32 FOPT1ONS,
33 AOPTIONS;
34
35 LOGICAL ARRAY
35 LIDATA(D:74) =
37
38 << |key | >>
39 nQ14BReZZ2Y,
50 “011EZarzyx",
41 HOH1ARCDXXXY, << This is the data, which >
42 “OOTEQCDXyx?, << will be written to the KSAM »»
43 u312iz2Az22%, << file. >
4b HO15ABDYZYY, << The key starts in column 4 >»
45 "05eLDFyxy", << and is 4 characters long. »>
4é HG0ZBBCdXxX",
47 MGOZEaBLXXXY,
48 “GOB\\aaYZzZ",
4G w004eABEYYYS,
50 HODAEabEYYY™,

EXAMPLE PROGRAMS H-233

51 "GoRAyzzY,

52 n010eaxfxyz!,

53 YOT3FGHIzgs™;

54

55 << The following DEFINE statement defines the layout of the
56 KSAM parameter array, which is necessary to build a KSAM
57 file programmatically.

58

59 DEFINE

60 KEY!FILE LYKSAM'PARAME,

&1 KEY'FILE'SIZ = DYKSAM'PARAM(2)#,

&2 KEY'DEV = L'KSAM'PARAM{EI#,

&3 LANGUAGE = L'KSAM'PARAM(10)#,

&4 FLAGWORD = LVKSAM!PARAM(C15)#E,

&5 NUMIOF'KEYS = L'KSAM'PARAM(I16}#,

&6 KEY!TYPE = LIKSAM'PARAM(17).(0:4)#,
67 KEY'LENGTH = L'KSAM'PARAM(17).(4:12)4,
68 KEY'LOCATION = L'KSAM'PARAM(18)#,

&9 DUPFLAG = LYKSAM'PARAM(19Y.(0:1)%,
70 KEY'BLOCK = LUKSAMIPARAM(19).(1:215)4,
sl RANDOM!FLAG = L'KSAM'PARAM(Z0).{8:1)#;
7e

73 DEFIKE

T4

75 RECORD = LIDATA (I * 5)¥,

76

It ERRORFCHECK = IF LYERROR(0) <> O THEN
78 QUIT #,

79

80 CCNE = IF <> THEMN

81 QUIT #,

a2

a3 DiSPLAY = MOVE BIPRINT := #,

84

85 ONISTDLIST = ,2;

86 ABPIPRINT := YOS;

87 LGTH := LOGICAL{RBPYPRINT) -
88 LOGICAL(ABIPRINT);
89 PRINT(L'PRINT, -LGTH, O) #;
90

o1 [NTRINSIC

92 FOPEN,

93 FREAD,

94 FURITE,

95 FCLOSE,

96 FFINDBYXEY,

97 FGETKEYINFO,

98 PRINTFILEINFO,

@9 RLINFO,
j00 RLKEYCOMPARE,
101 FCLOSE,
162 PRINT,
103 QuiT,
104 READ;
108
106 << Initializing the arrays.
107
108 MOVE L *KSAM!PARAM FEILH
109 MGVE L'KSAM'PARAM(1) == LiKSAM'PARAM(D},(79);

H-34 EXAMPLE PROGRAMS

>

>

110
111
112
113

<<

<<

<<

<<

<<

<<
<<

MOVE GEN'KEY =4 o,
MOVE KEY ;=0 on.
Hard-code the language used to 8 (GERMAN).
LANGNUM := 8;

Call in the collating sequence table.
This is done by calling NLINFO ITEM 1.

NLIKFO (11, COLL'TABLE, LANGNUM, L'ERRCR);
1F LYERROR(O) THEN
QUIT(1000 + L'ERROR(G});

Build a new KSAM file with the data file name
KOO8, The key file has the name KKDOS.

Set the values for KSAM parameter arpay.

MOVE FILENAME := "KDOO8 *; << KSAM data file
MOVE KEY®*FILE := ©“KKOOS v; << KSAM key file
NUMOF tKEYS = 4 << Num of keys = 0O
LANGUAGE = LANGNUM; << Set the language
FLAGWORD.(11:1) &= 1%; << Indicates that

<< language is set
KEY'FILE'SIZ = 200D; << Max, 200 entries
KEY'TYPE = 1; << Byte key
KEY 'LENGTH 1= 4 << &4 byte length
KEY*| GCATION 3= 43 << Xey start at col.4
DUPFFLAG N << Allow cupl. Keys
KEY 'B1.0CK 1= 10; << Keys per block 10
FOPTIONS 1= %4000; << K5AM file
ACPTIONS 5 H << Update

ENUM 1= FOPEN(FILEMAME,FOPTIONS, AQPTIONS,-10,,
BI'KSAMIPARAM);
IF <> THEN
BEGIN
PRINTFILEINFOCFNUMY;
QUIT(20003%;
END;

Copy the hard-coded data into the KSAM file.
HEEL I
WHILE {1 = 1 + 1) < 15 b0
BEGIN
FWRITE{FRUM, RECORD, -10, %0);
IF <» THEM
BEGIN
PRINTFILEENFO{FNUMY;
QUIT(3000);
END;
END;

Perform & generic FFINDBYKEY with &

partial key of length 1 and value “E¥., The relational

>

>

»>

>

>>
>

>>
>
>
>>
»>
»>
»>
>
>
>>

b
>r

>

>>

EXAMPLE PROGRAMS H-35

170 << operator will be 2 (greater or equal}. >>

171 << FFINDBYKEY will position the KSAM pointer at the >>
172 << first record starting with any kind of "gn, >>
173

174 MOVE GENFKEY := WEH;

175

176 FFINDBYKEY(FNUM, GEN'KEY, 0, 1, 2);

177 IF <> THEN

178 BEGIN

179 PRINTFILEINFO(FNUM);

180 GUIT(4000);

181 END;

182

183 << Read the subsequent entries and check by >
184 << using NLKEYCOMPARE whether an exact match was found. »>>
185 << When NLKEYCOMPARE returns a 3 as a result, the program

186 << is beyond the range of valid keys. »>

187 << If an exact match was found, the record is printed.

189 RESULT := 0;

1990 DISPLAY

19 YTHE FOLLOWING RECORDS MATECH GEN-KEY (E)Y EXACTLY:®
192 ON'STDLIST;

193 WHILE RESULT <> 3 DO

194 BEGIN

195 FREAD(FNUM, L 'RECORD, -10);

196 IF <> THEN

197 BEGIN

198 PRINTFILEINFOCFRUM);

199 QUIT{S000);

200 END;

20

202 MOVE KEY := B'RECORD(3},¢4);

203 NLKEYCOMPARE(GEN'KEY, 1, KEY, 4, RESULT, LANGNUM,
204 LYERRCR, COLL'TABLE);
205 ERRCR'CHECK(9000 + L'ERROR{0});

206 IF RESULT = 0 THEN << exact hit »»

207 BEGIN

208 DISPLAY B'RECORD,(10) ONISTDLIST;

209 END2

210 END;

211

212 << Close the KSAM file and purge it, >>
213

214 FCLOSE(FNUM, &, O);

215

216 END.

Executing the program results in the following:

NRUN - PROGRAM

THE FOLLOWING RECORDS MATCH GEN-KEY (E) EXACTLY:
003EaBCXXX

OO7EdCOXYX

011EZgrzyx,

END OF PROGRAM

H-38 EXAMPLE PROGRAMS

K. Obtaining Language Information in A COBOLII Program

This program prints the User Interface, Data Manipulation, System Default, KSAM/3000 key sequence,

VPLUS /3000 forms file, and IMAGE /3000 data base language numbers.

$CONTROL USLINIT
IDENTIFICATION DEVISION.
PROGRAM- 1D, EXAMPLE.

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE - COMPUTER. HP3000.
OBJECT -COMPUTER. #HP3000.
SPECIAL -NAMES.
CONGITICN-CODE 1% CCOBE.

«

1
1
1
1
i
1
1
1
1
1
2
2.1 DATA DIVISION,
2.2 WORKING-SYORAGE SECTION.
2.3
2.4 01 LANGUAGE PIC S$9(4) TOMP,
2.5
2.6 01 NLERROR.
2.7 05 NLERR OCCURS 2 PIC S9¢4) COMP.
2.8
2.9 01 FILENUM PIC S9(4) COMP.
3
3.1 01 KSAMAREA.
3.2 05 KSAMPARAM,
3.3 10 FILLER PIC X(203.
3.4 10 KLANG PIC S9(4) COMP.

_ 3.5 10 FILLER PIC X(&).

’ 3.6 10 FLAGS PIC S9(4) COMP VALUE 0.

3.7 10 FILLER PIC X(148).
3.8 05 KSAMCONTROL PIC X(256).
3.9
4 01 COMAREA.
4.1 05 COM-STAT PIC S9(4) COMP VALUE O,
4.2 05 COM-LANG PIC S9¢4) COMP VALUE 0.
4.3 05 COM-LENG PIC S9(4&) COMP VALUE 60.
b.b G5 COM-FIit PIC ¥(114) VALUE LOW-VALLE.
4.5
4.6 01 RESULT.
6.7 05 OPER PIC X(10).
4.8 05 LANG PIC Z279.
4.9 05 FILLER PIC X(6)} VALUE * Errorn,
5 05 NERR PIC Z7Z9.
5.1
5,2 0% DBNAME.
5.3 05 FILLER PIC X{2) VALUE » »,
5.4 05 FILENAME PIC X(36).
5.5
5.6 01 PASSWORD PIC X(B).
5.7
5.8 01 DBMODE PIC 59(4) COMP VALUE 5.
5.9

EXAMPLE PROGRAMS

H-37

G1 STAT.
05 DBSTAT PIC $9(¢4) COMP VALUE 0.
. 05 FILLER PIC X183,
01 DUMMY PIC $%(4) COMP,

PROCEDURE DIVISION.

Iy

MAIN.
PERFORM USER-LANG.
PERFORM DATA-LANG.
PERFORM SYST-LANG.
PERFORM KSAM-LANG.
PERFORM FORM-LANG.
PERFORM BASE-LANG,
STOP RUN.
USER-LANG.
CALL INTRINSIC “NLGEYLANGH USING 1 NLERROR
GIVING LANGUAGE.

A VT NP NPT

.

-

.

R SR P NP

MOVE ®“USER lang:® TO OPER.
MOVE LANGUAGE TO LANG.
MOVE NLERR (1) TO NERR.
DISPLAY RESULT.

WA Rk R ke b P R T R R R R R R I R R I

+

B+ -BEN I RV R R P ¥ R
o
e
i
>
3
-
b
=
©
.

*

CALL INTRINSIC “NLGETLANG™ USING 2 NLERRCR
GIVING LANGUAGE.
MOVE "DATA lang:™ 1O OPER.
MOVE LANGUAGE 10 LANG.
MOVE KLERR (1) 10 NERR.
DISPLAY RESULT.
SYST-LANG.
CALL INTRINSIC "NLGETLANG" USING 3 WLERROR
GIVING LANGUAGE.
MOVE “SYST lang:®™ TO OPER.
MOVE LANGUAGE TO LANG.
MOVE KLERR (1) TO NERR.
DISPLAY RESULT.

PRI P VR

.

* L) "
KSAM-LANG.

A

W3

.2 DISPLAY “Enter KSAM file name:V,
10.3 ACCEPY FILEKAME FREE.
10. IF FILENAME NOT = SPACES PERFORM KSAM-OPEN.
10.5
10.6 KSAM-OPEN.
0.7 CALL INTRINSIC "FOPEN" USING FILENAME 1
10.8 GIVING FILEKUM.
10.9 [F CCODE = 0
11 THEN PERFORM KSAM- INFO
11,1 ELSE DISPLAY YError in KSAM file OPEN",
11.2
11.3 KSAM- INFO.
11.4 CALL INTRINSIC YFGETKEYINFOM USING FILENUM
11.5 KSAMPARAM KSAMCONTROL.
11.6 CALL INTRINSIC “FCLOSE® USING FILENUM O 0.
11.7 IF FLAGS < 0 THEN ADD 32768 TC FLAGS.
11.8 IF FLAGS - (FLAGS / 32) * 32 » 15
11.9 THEN MOVE KLANG TO LANGUAGE

H-38 EXAMPLE PROGRAMS

12

i2.1
12.2
12.3
2.4
12.5
12.6
12.7
12.8
12.9

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

14.1
14.2
14.3
14,4
14.5
14.6
14.7
14.8
1%4.9

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

16.1
16.2
16.3
16.4

*

ELSE MOVE ZERC TO LANGUAGE.
MOVE SPACES T0 RESULT.
MOVE "KSAM lang:® TO OPER,
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.
FORM-LANG.
PISPLAY “Enter FORM file name:¥.
ACCEPT FILENAME FREE,
¥ FILENAME NCT = SPACES PERFORM FORM-OPENM.

FCRM-OPEN.
CALL "WOPENFORMFY USING COMAREA FILENAME.
If COM-STAT = O
THEN PERFORM FORM-INFO
ELSE DISPLAY "FORMS file OPEN failed:" COM-STAT.

FOR¥ - INFO.
CALL "WGETLANGY USING COMAREA LANGUAGE,
CALL "WCLOSEFORMF® USING COMAREA.
MOVE “FORM lang:® TO OPER.
MOVE LANGUAGE 70 LANG.
DISPLAY RESULT.
BASE-LANG.
DISPLAY “Enter DATA BASE name:",
ACCEPT FILENAME FREE.
{¥ FILENAME NOT = SPACES PERFORM BASE-OPEN.

BASE -OPEN,
DISPLAY "Enter PASSWORD:™.
ACCEPT PASSWORD FREE.
CALL "DROPEN® USING DBNAME PASSWORD DBMCDE STAT.
IF DBSTAT = 0
THEN PERFORM BASE-INFO
ELSE DISPLAY "Error in Data Base Open:" DBSTAT.

BASE - INFQ.
MOVE 901 TO DBMODE.
CALL YDBINFOY USING DBNAME DUMMY DBMODE STAT LANGUAGE.
MOVE 1 TO DBMODE.
CALL "DBCLOSEY USING DBNAME DUMMY DBMODE STAT.
MOVE MBASE lang:® TO OPER.
MOVE LANGUAGE TO LANG.
DISPLAY RESULT.

EXAMPLE PROGRAMS H-39

Executing the program results in the following:
qRUN_PROGRAM; HAXDATA=12000

USER tang: O Error 2
DATA lang: 3 Error 0
SYST lang: 0 Error O
Enter KSAM file name:
GERMANK

KSAM lang: 8

Enter FORM file name:
FRENCHEFE

FORM lang: 7

Enter DATA BASE name:
SPRBASE _TESY

Enter PASSWORD:

MANAGER

BASE lang: 12

END OF PROGRAM

-
»

H-40 EXAMPLE PROGRAMS

L. CATOPEN, CATREAD, CATCLOSE intrinsics in a Pascal Program

This program opens a catalog, reads two messages, and prints them on the standard list device. It reads
a third message into a buffer, prints the buffer, then closes the catalog.

1 SUSLINITS

2 $STANDARD_LEVEL 'HP3000'S

3
4 PROGRAM example (input,output);

5

6 TYPE int = -32768..32767;

7

8 VAR cat_index : IKTEGER;

9 error + PACKED ARRAY [1..2] OF int;
10 cat_name : PACKED ARRAY [1..8] OF CHAR;
11 dummy,

12 msg_len,

13 set_num,

14 mSg_NLEn,

15 intr_id ; int;

16 parm_n,

17 parm_m : STRING[403;
18 buffer : STRINGIB0];
19

20 FUNCTION catopen: INTEGER; INTRINSIC;
2% FUNCTION catread: int; INTRINSIC;
22 PROCEDURE catclose; INTRINSIC;

23

24 PROCEDURE show_error; {a very simple "error printert)
25 BEGIN

26 PROMPT{? error t,error [1 3:1);

27 { intr-id identifies the intrinsic called 3
28 CASE intr_id OF

29 1 r WRITELN(*® in CATOPEN');

30 2 1 WRITELN{® in CATREAD');

3 3 @ WRITELN(' in CATCLOSE!);

32 END;

33 END;

34

35 BEGIN

36 { Make sure that name ends with a space.}

37 cat_name 1= 'EXAMPLE ',

38 intr_id 1= 1;

39 cat_index := catopen(cat_name,error);
40 IF error [1 37 <> 0 THEN show_error;

41

42 parm_n := '59+; { set parameter 1 }
43 { append a null character)
(14 STRWRITE(parm_n,STRLEN(parm_n)+1,dummy, CHR(O));

45

b6 parm_m := 'thirty-threet; { set parameter 2 }
47 { append a null character 3
48 STRWRITE(parm_m, STRLEN(parm _m}+1,cummy , CHR(0));

49

50 intr_id = 2;

EXAMPLE PROGRAMS H-a1

51 set_num = 3; { set the message set numnber }

52 msg_num = 17; { set the message number }
53 msg_len i= catread(cat_index,set_num,msg_num,error,,,
54 parm_h,parm_m);

55 { pass parameters 1 and 2, and print on $STDLIST »
56 IF error [11 <> 0 THEN show_etror;

57

58 msg num 3= 23; { change the message number }
5% msg_len := catread(cat_index,set_num,msg_num, error,,,
&0 parm_n,parm_m);

81 { pass parameters 1 and 2, and print on $STDLISY
62 IF error [11 <> 0 THER show_error;

63

b4 set_num 1= 7; { change the sei number }
&5 msg_hum = 9; { set the message number }
&6 { get the message into the buffer)
&7 msg_len := catread(cat_index,set_num,msg_num,error,
68 buffer);

&9 IF error { 1 1 <> O THEN show_error;

70 € update the length of the buffer)
71 SETSTRLEN(buffer,msg_len);

72 WRITELN(buffer); { now write the buffer }
73

74 intr_id = 3;

75 catclose(cat_index,error);

76 IF error [11 <> 0 THEN show_error;

7

78 END.

This program uses a message catalog file. To build this file, enter the following text into a text file:

$set 3 Comment describing this set's contents.
?? There is an error in line !1 on page {2,

23 On page !2 there is an error in line t1.
:set 7 bescription of this set of messages.
:9 Process completed successfully.

Use the GENCAT program to format this file into a catalog file called exaurre. Executing the sample
program results in the following:

QRUN PROGRAM

There is an error in line 59 on page thirty-three.
On page thirty-three there is an error in line 59.
Process completed successfully.

END OF PROGRAM

H-42 EXAMPLE PROGRAMS

Glossary

The following are definitions of NLS terms:

JISCIL The Japanese version of USASCIL. It is a 7-bit character set identical to
USASCII with the exception that the Japanese yen symbol replaces the /"
character.

KANAS The Hewlett-Packard supported 8-bit character set for the support of phonetic

Japanese (KATAKANA). It includes all of JISCII plus the KATAKANA
characters. Refer to Appendix B for the table of KANAS characters.

Limited Support Refer to "Notes", in Appendix E, for each specific peripheral.

Old ROMANS USASCII plus Roman Extension. The manuals for terminals supporting old
ROMANS contain this table.

Processing The internal Hewlett-Packard 8-bit processing standard for all

Standard Hewlett-Packard products. This standard was developed in anticipation of

NLS and specifies standard character sets, escape sequences, character
- designations and invocations, and keyboard operation for peripherals and
systems,

ROMANS The Hewlett-Packard supported 8-bit character set for Europe includes all of
USASCII plus those characters necessary to support the major western
European languages. Refer to Appendix B for the table of ROMANS
characters.

Roman Extension Part of the "old ROMANS" as implemented on a number of older
Hewlett-Packard terminals and printers. It is not a character set in itself but
refers to an extension to USASCII. This extension is usually implemented as
an alternate character set. The characters in Roman Extension form a subset
of the non-USASCII characters in ROMANS, and the same internal codes are
used in both cases.

Glossary 1

Index

7-bit Qperation, Gonfiguration, -5

7-Bit Support E-4

7-bit to 8-bit, Conversion, F-1
Data Conversion, F-1

7-bit, Character Sets, D-1,1-3
Peripherals, E-4

8-bit Operation, Configuration, 1-5

8-bit, Character Sets, 0-1, 1-3, E-1
Peripherals, £-2, E-4
Terminails, E-1

A

Access, Application Catalog 2-1
Accessing, Application Catalogs, 2-1
Features, 1-8
Add a Language, LANGINST, A-2
Add Language, LANGINST, A5
Adding, Records, 29
Algerithm, Conversion F-3
All Programming Languages, Application Guidelines,
G-1
Local Language Application, G-1
ALMANAC 4-4
ALMANAC, Information Retrieving, 4-1
Intrinsic, 4-4
Alternate Character Sets, VZFFBCNV Utility F-11
Append Language 1D Number, NLAPPEND 4-10
Application Catalog, Access, 2-1
Application Catalogs, Accessing 2-1
Application Guidelines, Al Programming Languages G-1
BASIC (HP 32101B) G-3
COBOLI (HP 32233A) G-2
FORTRAN (HP 32102B) G-3
Pascal (HP 321068) G-3
APG (HP 32104A) G-3
SPL {(HP 321008} G-3
Application Message Catalog, CATCLOSE 4-2, 4-6
CATOPEN 4-2, 4.7

CATREAD 4-2, 4-8

NLAPFEND 4-2, 4-10
Application Message Facility 1-8
Application Programs, General 1-10
Application, General, Frograms, 1410

Message Facility, 2-1

Multiingual 1413

Programs, 1-10

Single 1-12

Without NLS, Programs, 1-11
Applications, Localized 1-1
ARABICS, Character Sets, B-6

Supported Languages, B-6
Atificial Language 1.2

B

BASIC (HP 32101B), Application Guidelines, G-3
Local Language Application, G-3
Batch Mode, GENCAT, 2-14

Cc

CAT, Intrinsics, 241
Catalog Naming Convention 2-8
Catalog, Naming Convention, 2-8
Catalogs, Source 2-2
Source, Sample 2-8
CATCLOSE 4-6
CATCLOSE, Application Message Catalog, 4-2, 46
Ciose Application, 4-8
Intrinsic, 2-1, 46, H-41
Pascal H-41
Pascal, H-41
CATOPEN 4-7
CATOPEN, Application Message Catalog, 4-2, 4-7
intrinsic, 2-1, 4-7, H-41
COpen Application, 4-7
Pascal H-41

index-1

Pascal, H-41 NLSCANMOVE H-13

CATREAD 4.8 NLSCANMOVE, H-13
CATREAD, Application Message Catalog, 4-2, 4-8 NLTRANSLATE H-26
Intrinsic, 2-1, 4-8, H-41 NLTRANSLATE, H-26
Pascal H-41 Obtaining Language Information H-37
Pascal, H-41 Obtaining Language information, H-37
Read Catalog, 4-8 SORT H-1
Change Language Aftribute, IMAGE/3000, 3-7 SORT, H-1
KSAM/3000 File, 3-17 SORT-MERGE/3000, 3-27
CHAR Option, FCOPY /3000, 3-2 Collate Character String, NLCOLLATE 411
Character Handling, NLCOLLATE 4-1, 4-11 Collating Sequence C-1,C-3
NLFINDETR 4-1, 4-20 Collating Sequence, Llanguage-Dependent Variation
NLJUDGE 4-1, 4-42 C-10
NLKEYCOMPARE 4-1, 4-44 Lexical Conventions, 1-4
NLREPCHAR 41, 4-49 Command Summary, QUERY, 319
NLSCANMOVE 4-1, 4-51 RAPID/3000, 3-35
NLSUBSTR 4-1,4-54 Commands 1-8
NLSWITCHBUF 4-1, 4-57 Commands, :SETJCW 1-9
NLTRANSLATE 441, 4-.59 Comment Records 2-10
Character Replacement F-1 Cormment, Records, 2-5, 210
Character Set, Definitions, B-1 Compare Strings, NLKEYCOMPARE 4-44
Character Sets B-1, D-1 Comparison, GENCAT, 2-23
Character Sets, 7-bit D-1, 1-3 MAKECAT, 2-23
8-bit D-1, 1-3, E-1 Compilers, Localized, 1-2
ARABICS B-6 Configuration, 7-bit Operation 1-5
Definitions, B-3 8-bit Operation 1-5
(GREEKS B-7 Language 1-5
JAPAN1S B-11 Peripheral 1-5, E-1
KANAZ B-5 Conversion Algorithm F-3
KOREA1S B-12 Conversion Procedure F-8
NATIVE-30C0 B-3 Conversion Utilities F-2
PRC1E B9 Conversion Utilities, File Type, F-2
ROC1S B-10 Conversion, 7-bit to 8-bit F-1
ROMANS B-3,B-4 Algorithm, F-3
Substitution F-1 Character F-4
TURKISHS B-8 Special Two-Character F-3
KANAS E-1 Litilities, 1-8, F-2
ROMANS E-1 Convert Numbers, NLOONVNUM 4.17
Character Table, RAPID/3000, 3-35 Convert String, NLFMTNUM 4.29
Character, Conversion, F-4 NLSWITCHBUF 4-57
Check String, NLCONVCLOCK 4-13 Copying From KSAM/3000 File, KSAM/3000, 3-17
NLCONVCUSTDATE 4-15 Country Extended Code D-1
Close Application, CATCLOSE 4-6 Create Files Programmatically, KSAM/3000, 3-13
COBOLI (HP 32233A), Application Guidelines, (-2 Create Files, KSAM/3000, 311
Local Language Application, G-2 CTRANSLATE, Intrinsie, D-2
COBOLI 3-27 Currency Symbols, Custom-Dependent Formats, 1-4
COBOLH, Features in, 1-7 Custom-Dependent Formats, Currency Symbols 1-4
NLKEYCOMPARE H-29 Date 1-4
NLKEYCOMPARE, H-29 Custom-Dependent Symbols, Number 1-4
NLREPCHAR H-28 Time 1-4

NLREPCHAR, H-26

Index -2

D

Data Conversion, 7-bit fo 8-bit F-1
Date Format, QUERY, 3-18
Date Formatting, NLFMTCALENDAR 4-22
NLFMTCUSTDATE 4.2%
NLFMTDATE 4-26
NLFMTLONGCAL 4-28
Overview 43
Date Hangling, VPLUS/3000, 3-28
Date information, Information Retrieving 44
Date, CGustom-Dependent Formats, 1-4
RAPID/3000, 3-35
DATE/TIME Formatting, FORTRAN H-6
FORTRAN, H-6
SPL H-9
SPL, HE
DBINFO, IMAGE/3000, 3-7
DBLOAD, IMAGE/3000, 36
DBLOCK, IMAGE /3000, 3-7
DBOPEN, IMAGE/3000, 3.6
DBPUT, IMAGE/3000, 36
DBSCHEMA, IMAGE /3000, 3-5
DBUNLOAD, IMAGE/3000, 36
DBUTIL, IMAGE/3000, 3-5
UTILITIES, 31
Definitions, Character Set B-1
Character Sets B3
Language B-3
Delete a Language, LANGINST, A3
Delete Language, LANGINST, A5
Deleting, Records, 2.8
S$DELSET Directive 2-10
$DELSET, Directive, 2-10
Determine Byte Size of Character, NLJUDGE 4-42
Directive, $DELSET 2-10
Directives, Source Catalogs, 2-2

E

Entry, VPLUS/3000, 3-30

Error Messages, FCOPY/3000 3-4
FCOPY /3000, 3-4
GENCAT, 2-18
IMAGE/3000 3-8
IMAGE /3000, 38
KSAMUTIL. 312
KSAMUTIE, 3-12
LANGINST A-8
LANGINST, AB

MERGE/3000 3-26
Programmatic MERGE, 3-26
Programmatic SORT, 3.26
QUERY 2-21
QUERY, 321
SORT-MERGE/3000 3-26
VPLUS/3000 3-31
VPLUS/3000, 3-31
Expanding, Source Cataleg, 2-13
Extract Bytes, NLSUBSTR 4-54

F

FCOPY/3000 3-2
FCOPY/3000 Files 3-3
FCOPY /3000, CHAR Qption 3-2
Error Messages 3.4
£rror Messages, 3-4
Featuresin, 17
Files, 3-3
QOptions 3-2
Performance Issues 3-4
UPSHIFT Option 3-3
Featrues, Request 1-8
Features in, COBOLH 1.7
FCOPY /3000 1-7
IMAGE/300C 1-7
KSAM 1.7
QUERY /3000 1-7
HARID/3000 1-7
SORT-MERGE/3000 1-7
VPLUS/3000 1-7
Features, Accessing 1-8
Field Edits, VPLUS/3000, 3-28
Fite Conversion F-5
Fite Systern Error Messages, KSAM/3000, 3-13
File Type, Conversion Utilities F-2
File, Naming Conventions, 1.7
Files, FCOPY /3000 3-3
KSAM/3000 3-3
Formatting, Source Catalog, 2-12
FORMSPEC, UTILITIES, 31
FORTRAN (HP 321028), Application Guidelines, G-3
Local Language Application, G-3
FORTRAN, DATE/TIME Formatting H-6
DATE/TIME Formatting, H-6
SORT H-5
SORY, H-5
Fully Supported, Peripherals, £-2

index -3

G

GENCAT 2-14
GENCAT, Batch Mode 2-14
Comparison 2-23
Error Messages 2-16
Help Facility 2-15
JOws, 2-14
Utilities, 2-1
General, Application Programs, 1410
Generic Keys 3-14
Generic Keys, KSAM/3000, 3-14
GREEKS, Character Sets, B.7
Supported Languages, B-7

H

Meip Facility, GENCAT, 2-15
HP 180, Terminal, E5
MP 2382A, Terminal, E-6
MP 2322A, Terminal, E-7
HP 2563A, Printer, E-8
HP 2608A, Printer, E-9
HP 26218, Terminal, E-10
HP 2622A, Terminal, E-11
HP 2622, Terminal, E-12
HP 2623A, Terminal, E-11
HP 2823J, Terminal, B-12
HP 26825A, Terminal, E-13
HP 282684, Terminal, E-14
HP 2626W, Terminal, E-14
HP 2627A, Terminal, E-15
HP 2628A, Terminal, £-13
HP 26318, Printer, E-16
HP 26358, Printer, E-t17
Terminal, E-17
HP 2645, Terminal, E-18
HF 26804, Printer, E-19
HP 2688A, Printer, E-20
HP 2700, Terminal, E-21
HP 29324, Printer, E-22
HP 29334, Printer, E-22
HP 26344, Printer, E-22

Index - 4

[7DBBCNV Utility 7-8
IBM, Mapping D-2
IF, RAPID/3000, 3-35
IMAGE/3000 3-5
IMAGE /3000, Change Language Attribute 3-7
DBINFO 3.7
DBLOAD 3.6
DBLOCK 3-7
DBOPEN 3-8
DBPUT 38
DBSCHEMA 3-8
DBUNLOAD 36
DBUTIL 35
Error Messages 3-8
Error Messages, 3-8
Featuresin, 1-7
Intrinsics 3-8
Library Procedure Calling Errors 3.9
Schema Syntax Errors 3-10
Utility Program Conditional Messages 3-8
Utllity Programs 3-5
inform Language Attribute, RAPID/3000, 3-34
information Fetrieval, NLGETLANG 4-32
formation Retrfeving, ALMANAC 4-1
Date Information, 4-4
NLGETLANG 44
NLINFO 4-1,4-34
Input, RAPID/3000, 3-35

Interactive MERGE, Program Error Messages 3-268

Interactive SORT, Program Error Messages 3-26
interface, Localized, 1.2
International, VPLUS/3000, 3-28
Intrinsic, ALMANAC 4.4
CATCLOSE 2-1, 4.8, H-41
CATOPEN 2-1, 4.7, H-41
CATREAD 2-1, 4-8, H-41
CTRANSLATE D-2
NLAPPEND 2-1, 410
NLCOLLATE C-1, 4411
NLCONVCLOCK 413
NLCONVCUSTDATE 4-15
NLCONVNUM 417
NLFINDSTR 4-20
NLFMTCALENDAR 4-22
NLFMTCLOCK 4-23
NLFMTCUSTDATE 4-25
NLFMTCATE 4-28
NLFMTLONGCAL 4.28
NLFMTNUM 4-29

NLGETLANG 1.9, 4-32 KSAM/3000, 3-11
NUINFO D-2, 4-34
NLJUDGE 4.42
NLKEYCOMPARE 3-14, 4-44, H-29, H.33 L
NLNUMSPEC 4-47 SLANG, Records, 2.4
NLREPCHAR 4-49, H-26

LANGINST, Add a Language A2
NLSCANMOVE 4-51, H-13, H-20
NLSUBSTR 4-54 Add Language A5
NLSWITCHBUF 4-57 Deiete a Language A-3

Delete Language A5
' !%{L'%'RANSLATE D-2, 4-59, H-26 Erfor Messages A8
Intrinsics 1-5, 1-8

. Error Messages, A8
intr:nxAséEA;mi-1 2t Modify ASCII/EBCDIC Translation Tables A-7
Param a/ tor Va'Eue_s 18 Modity Local Language Format A-6
VGETLANG 3.32 Modifying Local Formats A-3

VPLUS/3000, 3-32 System Utilities, A2

User Dialog A4
VSETLANG 3-33 Litilities, 1-4,1-5

Language Attribute 1-8

J Language Attribute, VPLUS/3000, 3-28
Language Choice, Subsystem, 1-8
JAPAN1S, Character Sets, B-11 Language Dependent, VPLUS/3000, 3-28
Supported Languages, B-11 Language 1D Number, VPLUS/3000, 3-30
Japanese Industria! Standards (JI18}, Mapping D-2 Language, Configuration, 1-8
JCOWs, GENCAT 2-14 Definitions, B-3
Job Control Words (JCWs), NLDATALANG 1-9 Language-Dependent Data Flles 1-7
NLUSERLANG 1-9 Language-Dependent Varation, Collating Sequence,
C-10
K Languages, Supported 1-2

texical Convertions, Collating Sequence 1-4
Lipshifting Rules 1-4

KANAS Character Set, Mapping [-2 Lexical Ordering C-1

KANAB, Character Sets, B-5) \
Supported Languages, B Library Procedure Calling Errors, IMAGE /3000, 39

Keywords 1-8 Limited Support, Peripherals, E-3
KOREA1S, Character Sets, B-12 Lcécjl Language Application, All Programming Languages

Supported Languages, B-12 BASIC (HP 321018) G-3
KSAM, Features in, 1-7

COBOUY (HP 32233A) G-2
KSAM/300C 3-10 FORTRAN (HP 321028) G-3
KSAM/3000 Fite, Change Language Attribute 3-17
. Pascal (HP 32106A) G-3

KSAM/3000 Files 3.3 RPG (HP 32104A) G-3
KSAM/3000 Files, Moving To Pre-NLS MPE 317 SPL (HP 321004) G-3
KSAM/3000, Copying From KSAM/3000 File 3-17 Localization, Processes 16

Create Files 311 Localized Applications 11

Create Files Programmatically 3-13 P

. i Localized, Applications, 1-1
File System Error Messages 313 Compiters 1-2

Files, 3-3
' interface 1-2
Generic Keys 3-14 -,
KSAMUTIL 3-14 Programmer Productivity Tools 1-2

Modifying Files 3-13 Subsystems 12

KSAMUTIL, Error Messages 3-12
Error Messages, 3-12

fndex-5

M

Maintenance Files, Merging 2.8, 210
Maintenance, Message Cataleg, 2-8
MAKECAT, Comparison 2-23
Mapping, IBM, D-2
Japanese industrial Standards (JIS), D-2
KANAS Character Set, D-2
AOMANS to EBCDIC D-2
MATCH, RAPID/3000, 3-35
MERGE/3000 3-23
MERGE/3000, Error Messages, 2-26
Stand-plone 3-23
Merging, Maintenance Files, 2-9, 2-10
Message CDatalog, Maintenance 2-8
Mesgsage Catalogs 1-7
Message Facility, Application 2-1
Message Mumbers 2-10
Message, Nurmnbers, 2-19
Fecords, 2-4
Special Characters, Records, 2-5
Modify ASCH/EBCDIC Translation Tables A7
Modify ASCI/EBCDIC Translation Tables, LANGINGT,
AT
Modify Local Language Format, LANGINST, A6
Modifying Files, KBAM/3000, 3-13
Modifying Local Formats, LANGINST, A3
Moditying, Records, 29
Move Characters, NLCANMOVE 4.51
Moving To Pre-NLS MPE, KSAM/3000 Files, 3-17
Multiingual Application 1-13
Multiiingual, Application, 1-13

N

N7MFBONV iitility F-7

N7MFBONY, Utllitles, F-7

Naming Convention, Catalog 2.8

Naming Conventions, Flie 17

NATIVE-3000, Charaeter Sets, B3
Supported Languages, B-3

NLAPPEND 4-10

NLAPPEND, Append Language ID Number, 4-10
Application Message Catalog, 4-2, 4-10
inkinsic, 2-1,4-10

NLOANMOVE, Move Characters, 4-51%

NLOCHALATE 4-11t

NLOOULATE, Character Handling, 41, 4-11
Coliate Character String, 411
imdringic, -1, 413

ndex -5

NLCONYCLOCK 4-13
NLCONVCLOCK, Check String, 4-13
intrinsic, 4-13
Time/Date Formatting, 4-1, 4-13
NLCONVCUSTDATE 4-15
NLCONVCUSTDATE, Check String, 4-15
Intrinsic, 4-18
Time/Date Formatting, 4-1, 4-15
NLCONVNUM 4-17
NLCONVNUM, Convert Numbers, 4-17
Intrinsic, 4-17
Number Formatting, 4-2, 4-17

NLDATALANG, Job Control Words (JCWSs), 1-9

NLFINDSTR 4-20
NLFINDSTR, Character Handling, 4-1, 4-20
Intrinsic, 4-20
Search String, 4-20
NLFMTCALENDAR 4.22
NLFMYCALENDAR, Date Formatting, 4-22
Intrinsic, 4-22
Time/Date Formatting, 4-1, 4-22
NLFMTCLOCK 4-23
NLFMTCLOCK, intrinsic, 4-23
Time Formatting, 4-23
Time/Date Formatting, 4-1, 4-23
NLFMTCUSTDATE 4-25
NLFMTCUSTDATE, Date Farmatting, 4-25
intrinsic, 4-25
Time/Date Formatting, 4-1, 4-85
NLFMTDATE 4.26
NLFMTEATE, Date Formatting, 4-26
Intrinsic, 4-26
Time Formatting, 4-26
Time/Date Formatting, 4-1, 4.25
NLFMTLONGCAL 4.28
NLFMTLONGCAL, Date Formatting, 4-28
Intrinsic, 4-28
Tima/Date Formatting, 4-1, 4-28
NLFMTNUM 4.29
NLFMTNUM, Convert Stiing, 4-29
Infrinsic, 4-29
Number Formatting, 4-2, 4-2¢
NLGETLANG 4.32
NLGETLANG, Information Retrieval, 4.32
Information Retrieving, 4-1
intrinsic, 1.9, 4.32
Return Language id Number, 4-32
NLUINFO 4-34
NLINFO, Information Retrisving, 4-1, 4-34
Intrinsic, D-2, 4.34
Return Language Information, 4-34

NLUUDGE 4-42
NLJUDGE, Character Handling, 4-1, 4-42
Determine Byte Size of Character, 4-42
Intrinsic, 4-42
NLKEYCOMPARE 4-44
NLKEYCOMPARE, Character Handling, 4-1, 4-44
CORBROLE H-29
COBOLY, H-29
Compare Strings, 4-44
Intrinsic, 3-14, 4-44, H-29, H-33
SPEL H-33
SPL, H-33
NLNUMSPEC 4-47
NENUMSPEC, Intrinsic, 4-47
Number Formatting, 4-2, 447
NEREPCHAR 448
NILREPCHAR, Character Handling, 4-1, 4-49
COBOLIl H-26
cOoBOLE, H-26 _
intrinsic, 4-49, H-26
Repiace Characters, 4-49
NLS Requirements F-1{
NLSCANMOVE 4-51
NLSCANMOVE, Character Handling, 4-1, 4-51
cOoBOLit H-13
COBOLE, H13
Intrinsic, 4-51, H-13, H-20
Scan Characters, 4-51
SPL H-20
SPL, H-20
NLSUBSTR 4-54
NLSUBSTR, Character Handling, 4-1, 4-54
Extract Bytes, 4-54
Intdnsic, 4-54
NLSWITCHBUF 4-57
NLSWITCHBUF, Character Handling, 4-1, 4-57
Convert String, 4-57
intrinsic, 4-87
NETRANSLATE 4-59
NLTRANSEATE, Character Handling, 4-1, 4-59
COBOLE H-28
COBOLY, H-26
intrinsic, D-2, 4-59, H-26
Translate String, 4-59
NLUSERLANG, Job Control Words (JOWs), 1.9
NLUTIL., System Utilities, A1
Utitities, A1, D2, 1-4
No Support, Peripherals, E-3
Number Formatting, NLCONVNUM 4-2, 4-17
NLEMTNUM 4-2, 4-29
NLNUMSPED 4-2, 447

Number, Custom-Dependeni Symbols, 1-4
Numbers, Message 2-10

Set 2-10
Numeric Data Editing in Report, QUERY, 3-20
Numeric Data, VPLUS/3000, 3-30
Numerical Parameter, Substitution, 27

0

Obtaining Language Information, COBOLY H-37
COBOLL, H-37

Open Application, CATOPEN 4-7

Cptions, FCOPY /3000, 3-2

Cutput, RAPID/3000, 3-35

Qverview, Date Formatting, 4-3
Time Formatting, 4-3

P

Paramater Substitution 2-8
Parameter Values, Intrinsies, 1-8
Parameter, Substitution, 2-6
Pascal (HP 32106A), Application Guidelings, -2

Local Language Application, G-3
Pascal, CATCLOSE H-41

CATCLOSE, H.41

CATCPEN H-41

CATOPEN, H-41

CATREAD H-41

CATREAD, H-41

SORT H-3

SORT, H-3

Performance Considerations, SORT-MERGE/3000, 3-26

Performance issues, FCOPY/3000, 3-4
Peripheral Configuration k-1
Peripheral, Configuration, 1-5, E-1

Support E-4
Peripherals, 7-bit E-4

gbhit E-2 B4

Fully Supported E-2

Limited Support E-3

No Support E-3
Positional Parameter, Substitution, 2-8
PRC18, Character Sets, B-9

Supported Languages, B-g
Printer, HP 2563A E-B

HP 2608A E-&

HP 26083 E-9

HP 28318 E-16

HP 26388 E-17

index -7

HP 2680A E£-19

HP 2688A E-20

HP 2032A E-22

HP 2833A E-22

HP 2034A E-22
Printers,8-bit E-1
Processes, Localization, 1-6
Program Error Messages, Interactive MERGE, 3-26

Interactive SORT, 325
Programmatic MERGE, Error Messages 3-26
Programmatic SORT, Error Messages 3-26
Programmatic, SORT-MERGE/3000, 3-24
Programmer Productivity Tools, Localized, 1-2
Programs, Application 1-10

Application, General 1-10

Without NLS 111

Q

QUERY 318

QUERY, Command Summary 3-19
Date Format 3-19
Error Messages 3-21
Error Messages, 3-21
Numeric Data Editing in Report 3-20
Hange Sslection 3-19
Real Number Conversions 3-1%
Sorted Lists in Report 3-19
Upshifting Data 3-19

QUERY /3000, Features in, 1-7

R

Range Selection, QUERY, 3-19
RAPID/3000 3-34
RAPID /3000, Character Table 3-35
Command Summary 3-35
Cate 3-35
Features in, 1-7
IF 338
Inform Language Attribute 3-34
Input 3-35
MATCH 3-35
Output 3-35
REPORT LANG Option 3-34
Time 3-35
Transact SET Verb 3-34
Upshift Table 3-35
Read Catalog, CATREAD 48
Real Number Conversions, QUERY, 3-19

Index-8

Records, $LANG 24
88ET 2.2
Adding 2-9
Comment 2-5, 210
Deleting 2-9
Message 2-4
Message, Special Characters 2.5
Modifying 29
Replace Characters, NLREPCHAR 4-49
REPORT LANG Option, RAPID/3000, 3-34
Request, Featrues, 1-8
Return Language kd Number, NLGETLANG 4-32
Return Language Information, NLINFO 4-34
ROC1S, Character Sets, B-10
Supported Languages, B-10
ROMANS to EBCDIC D-2
ROMANS to EBCDIC, Mapping, D-2
ROMANS, Character Sets, B-3, B-4
Supported Languages, B-3,B-4
RPG (HP 32104A), Application Guidelines, G-3
Local Language Application, G-3

]

Sean Characters, NLSCANMOVE 4-51
Schema Syntax Errors, IMAGE /3000, 3-10
Search String, NLFINDSTR 4-20
Set Language 1D Number, VPLUS/3000, 3-29
Set Numbers 2-10
Set, Numbers, 2-10
Records, 2.2
(SETJCW, Commands, 1-9
Single Application 1-12
Single, Application, 1-12
SORT, COBOLE H-1
COBOLY, H-t
FORTRAN H-5
FORTRAN, H-5
Pascal H-3
Pascal, H-3
SORT-MERGE/3000 3-23
SORT-MERGE/3000, COBOLH 3-27
Error Messages, 3-26
Features in, 1-7
Performance Congiderations 3-28
Programmatic 3-24
Stand-Alone 3-23
Sorted Lists in Report, QUERY, 3-19
Source Catalog, Expanding 2-13
Formatting 2412

Source Catalogs 2-2
Source Catalogs, Directives 2.2
Source, Catalogs, 2-2
Sample, Catalogs, 2-6
Special Two-Character, Conversion, F3
SPL {HP 32100A}, Application Guidelines, G-3
tocal Language Application, G-3
SPL, DATE/TIME Formatting H-9
DATE/TIME Formatting, H-9
NLKEYCOMPARE H-33
NLKEYCOMPARE, H-33
NLSCANMOVE H-20
NLSCANMOVE, H-20
Stand-Alone, MERGE/3000, 3.23
SORT-MERGE/3000, 3-23
Supstitution Sets F-1
Substitution, Character Seis, F-1
Nurnerical Parameter 2.7
Parameter 26
Positional Parameter 2-6
Subsystem Utlity Program 118
Subsystem, Language Choice 1-8
LHility Program, 115
Subsystemns, Localized, 1-2
Support, Peripheral, E-4
Supported Languages 1-2, B-1
Supported Languages, ARABICS B-6
GREEKS B.7
JAPANTS B-11
KANAS B-5
KOREA1S B2
NATIVE-3000 B-3
PRC1S BS
ROC15 B-10
ROMANS B-3, B4
TURKISHS B-8
Supported, Languages, 1-2
Systern Utitities, LANGINST A2
NLUTH. A4

T

Terminal, HP 150 E-§

P 2382A E-6

HP 2382A E-7

HMP 26218 E-10
HP 2622A E-11
HP 26224 E-12
HP 2623A E-11
HP 2623 E-12

HP 26255 E-13
HP 2626A E-14
HP 2626W E-14
HP 26827A E-18
HP 2628A E-13
HP 26358 E-17
HP 2645) E-18
HP 2700 E-21
Terminals, 8bit E-1
Text Handling Facility 1-6
Time Formatting, NLFMTCLOCK 4-23
NLFMTDATE 4-26
Overview 4-3
Time, Custom-Dependent Symbols, 1.4
RAPID/3000, 3-35

Time/Date Formatting, NLCONVCLOCK 4-1, 4-13

NLCONVCUSTDATE 4.1, 4-15
NLFMTCALENDAR 4.1, 4-22
NLFMTCLOCK 441, 4-23
NLFMTCUSTDATE 4.1, 4.25
NLFMTDATE 4-1, 4-26
NLFMTLONGCAL 4-1, 428
Transact SET Verb, RAPID/3000, 3-34
Transiate String, NLTRANSLATE 4-59
TURKISHE, Character Sets, B-8
Supported Languages, B-8

U

Unlocalized, VPLUS/3000, 3-28
UPSHIFT Qption, FCOPY /3000, 3-3
Upshift Table, RAPID/3000, 3-35
Upshifting Data, QUERY, 3-18
Upshifting Fedes, Lexical Conventions, 1-4
User Dialog, LANGINST, A4
User-Defined Commands (UBCs) 19
Litilitles, Conversion 1-8, F-2

DBUTI. 3-1

FORMSPEC 31

GENCAT 2-%

LANGINST 14, 1-5

N7MFSCNY F-7

NLUTIL A-1,D-2, 1-4

V7FFSCNV F-10, Fe11, F-12

I7DBBCNV F-8

Litility Program Conditional Messages, IMAGE/3000, 3-8

Utility Program, Subsystem 1-15
Ltllity Programs, IMAGE/3C00, 3-5

index-9

v

VTFFSCNV LHility F-10, F-11, F-12
V7FFBCNV Utility, Alternate Character Sets, F-11
VTEFBCNV, Utilities, F-10, F-11, F12
Verify Language Configuration A-
VGETLANG, Intrinsics, 3-32
VPLUS/3000 3-28
VPLUS/3000 Forms Fites 1.7
VPLUS/3000, Date Handling 3-28

Entry 3-30

Error Messages 3-31

Error Mesgages, 3-31

Featuresin, 1-7

Field Edits 3-29

International 3-28

intrinsics 3-32

tanguage Attribute 3-28

Language Dependent 3-28

Language 1D Number 3-30

Numneric Data 3-30

Set Language 1D Number 3-28

Unlooalized 3-28
VSETLANG, Intrinsics, 3-33

index - 10

