
Part No. 32214-90002
Product No. 32214C

HP 3000 Computer Systems

SORT-MERGE/30DD
Reference Manual

FliOW HEWLETT
~~ PACKARD

19420 HOMESTEAD AVE., CUPERTINO, CALIFORNIA 95014

Printed in U.S.A. 9/81

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright e 1981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered.
If a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within
the manual, changes are marked with a vertical bar in the margin.

First Edition Sept 1981

Hi

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the
title page and back cover changes only when a new edition is published. If minor corrections and updates are incorpo-
rated, the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition Sept 1981

iv

PREFACE

This publication is the reference manual for SORT-MERGE/3000. SORT-MERGE/3000 is a subsystem
of the MPE/3000 Operating System and consists of two programs: a Sort program and a Merge program.
The SORT -MERGE/3000 subsystem sorts a file of records or merges multiple files of sorted records into a
single file.

The Sort and Merge programs can be run as stand -alone programs controlled by direct user commands, or
they can be called from user programs. Examples are provided throughout this manual which demon-
strate how to run Sort and Merge as stand -alone programs and how to call them from SPL/3000 (Systems
Programming Language for the HP 3000 Computer System) and FORTRAN/3000 (a version of
FORTRAN IV for the HP 3000Computer System). (The COBOL programmer uses the COBOL SORT or
MERGE verb to run SORT-MERGE/3000).

The content of this publication is:

Section I
introduces the SORT-MERGE/3000 subsystem. The concepts of sorting and merging files are discussed,
and the basic structure of SORT-MERGE/3000 is explained.

Section II
provides instructions for executing the SORT and MERGE programs as stand-alone programs. Examples
are provided which demonstrate running the Sort program in interactive and batch modes.

Section III
explains how to call SORT intrinsics from FORTRAN/3000 programs. Also provided are definitions of
the SORT intrinsics, and complete, operating programs in FORTRAN/3000.

Section IV
explains how to call MERGE intrinsics from FORTRAN/3000 programs. It also provides definitions of
the MERGE intrinsics and FORTRAN example programs.

Section V
explains how to call SORT intrinsics from SPL/3000 programs. Operating programs are used as examples.

Section VI
explains how to call MERGE intrinsics from SPL/3000 programs. Operating programs are used as
examples.

Appendix A
provides a list of error messages.

Appendix B
contains a table of ASCII and EBCDIC characters.

Index
contains an alphabetical listing of the main toplics of the manual.

The following manuals are available for reference:

MP E /ntrinsics Reference Manual (30000-90010)
MP E Commands Reference Manual (30000-90009)
FORTRAN Reference Manual (30000-90040)
System Programming Language Reference Manual (30000-90024)
COBOL/3000 Reference Manual (32213-90001)
COBOL ///3000 Reference Manual (32233-90001)
System Reference Manual (30000-90020)

v

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

[1 An element inside brackets is optional. Several elements stacked inside a pair of
brackets means the user may select anyone or none of these elements.

Example: [~Juser may select X or Y, or neither.

{ } When several elements are stacked within braces the user must select one of these
elements.

{

string }
Example: num byte.

range siring

Italics Italics in lowercase denote a parameter which should be replaced by a
user-supplied variable.

Example: OUTPUT filename" KEY

Underlining Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: PURGE OLD OUTPUT FILE REST.PUB.SYS? YES

return Indicates a carriage return

Command identifier character

Capital letters Command name or literal information (parameter) to be entered.

:RUN SORT.PUB.SYS
Example: or

>KEY 1, 10, PACKED

Commas Separate positional parameters

Example: >INPUT R" 85
The omission of the second parameter is indicated by two successive commas.

VI

NOTATION DESCRIPTION

Semicolons Separate keyword parameters and key specifications in the KEY command.

:PREPRUN SOLDPASS; MAXDATA=4000; LIB=G
Examples: or

>KEY 31, 14; 1, 15

Superscripts:

C Control character

BA Byte array

DV Double integer by value

I Integer by reference

IV Integer by value

IA Integer array

L Logical by reference

LV Logical by value

LA Logical array

LP Logical procedure

P Procedure

O-V Optional variable

vii

TABLE OF CONTENTS

SECTION I INTRODUCING SORT-MERGE/3000
KEY
ORDERING SEQUENCE
USING SORT INTERACTIVELY
USING MERGE INTERACTIVELY

1-1
1-2
1-2
1-5

SECTION II RUNNING SORT AND MERGE AS STAND-ALONE PROGRAMS
FILE DEFINITIONS
ALTSEQ
DATA
END
EXIT
INPUT(sort)
INPUT(merge)
KEY
OUTPUT(sort)
OUTPUT(merge)
RESET
SHOW
VERIFY
CONTROL Y
EOD
EXAMPLES

TYPES OF MODIFICATION SPECIFICATIONS
SHOW COMMAND
SORT OPERATION
MERGE OPERATION

2-3
2-4.
2-7
2-9

2-10
2-11
2-13
2-14
2-17
2-19
2-21
2-22
2-24
2-26
2-27

2-28
2-34
2-42
2-48

SECTION III CALLING SORT FROM A FORTRAN/3000 PROGRAM
SORT PROGRAM INTRINSICS

SORTINIT
SORTINPUT
SORTOUTPUT
SORTEND
SORTSTAT
SORTTITLE
SORTERRORMESS
SORTINITIALF

EXAMPLES
SORTINIT when both inputfiles and outputfiles specified
SORTINIT with ALTSEQ parameter
SORTINIT with EBCDIC as the collating sequence
Using the KEYCOMPARE parameter
Using the ERRORPROC parameter without the occurance of an error
Using the ERRORPROC parameter during the occurance of an error
Displaying the SORT statistics with the statistics parameter
Calling SORTINPUT

3-1
3-4
3-8
3-9

3-10
3-11
3-12
3-13
3-14

3-15
3-20
3-22
3-24
3-25
3-27
3-29
3-30

viii

Calling SORTOUTPUT 3-32
Calling SORTST AT 3-33
Calling SORTITLE 3-34
Calling SORTINITIALF with the failure parameter 3-36
Multirecord, NOBUF, and Buffered Files 3-37

SECTION IV CALLING MERGE FROM A FORTRAN/3000 PROGRAM
MERGE PROGRAM INTRINSICS 4-1

MERGEINIT 4-3
MERGE OUTPUT 4-7
MERGE END 4-8
MERGESTAT 4-9
MERGETITLE 4-10
MERGEERRORMESS 4-11
MERGE 4-12

EXAMPLES 4-13
Calling MERGEINIT with the preprocessor parameter 4-13
Using the KEYSONLY parameter 4-15
Calling MERGEINIT with the STATISTICS parameter 4-17
Calling MERGEOUTPUT 4-18
Calling MERGESTAT 4-20
Calling MERGETITLE 4-21
Calling MERGEERRORMESS from the ERRORPROC subroutine ER 4-23
Calling MERGE with the FAILURE parameter 4-25

SECTION V CALLING SORT FROM A SPL/3000 PROGRAM
SORT PROGRAM INTRINSICS 5-1

SORTINIT 5-4
SORTINPUT 5-8
SORTOUTPUT 5-9
SORTEND 5-10
SORTSTAT 5-11
SORTTITLE 5-12
SORTERRORMESS 5-13
SORTINITIAL 5-14

EXAMPLES 5-15
Calling SORTINIT with the ALTSEQ parameter 5-15
Calling SORTINITIAL and SORTINPUT 5-16
Calling SORTOUTPUT 5-18
Calling SORTINITIAL without the INPUTFILE and OUTPUT FILE parameters 5-19

SECTION VI CALLING MERGE FROM A SPL/3000 PROGRAM
MERGE PROGRAM INTRINSICS 6-1

MERGEINIT 6-3
MERGE OUTPUT 6-7
MERGEEND 6-8
MERGESTAT 6-9
MERGETITLE 6-10
MERGEERRORMESS 6-11
MERGE 6-12

ix

EXAMPLES
Merging files opened MR and NOBUF

6-15
6-15

APPENDIX A ERROR MESSAGES AND RECOVERY PROCEDURES
SORT ERROR MESSAGES
ALTSEQ ERROR MESSAGES
MERGE ERROR MESSAGES
RECOVERY PROCEDURES

A-I
A-4
A-5
A-7

APPENDIX B ASCII/EBCDIC/HOLLERITH TABLE B-1

x

SORT-MERGE/3000 is a subsystem of the HP 3000 Multiprogramming Executive (MPE) operating sys-
tem that allows you to sort one or more files, or merge several sorted files, to form one file in a specifed
sequence. Consider the output file to be a transformation of the input file in which only the order of the
records is changed. SORT-MERGE/3000 is useful at two different levels. It can be used as a stand alone
utility in which you interactively specify the input and output files, the sorting (or merging) keys, and the
collating sequence. You can also call it from a FORTRAN/3000 (Sections III-IV), an SPL/3000 (Sections
V-V!), or a COBOL II/3000 program. The programmatic use of SORT-MERGE/3000 from a COBOL
II/3000 program is described in the COBOL II/3000 reference manual.

This section is useful for the first time user who is not an experienced programmer. It describes some of
the basic terms and concepts used by SORT-MERGE/3000 and shows how you can use the subsystem
interactively in simple cases.

KEY
A key is' a section of the record used by SORT -MERGE/3000 to determine the order in which records are
rearranged in a file. It is a group of characters you specify by stating the position of the first character and
the number of characters in the group. Use the KEY command (see Section II) to establish the keys. For
example, the KEY command,

>KEY 44, 12
means the key is a character string starting at the 44th column position of the record and is 12 characters
long. Fig. 1-1 shows three records, each containing the last name, the first name, the occupation, and the
year of birth. Positions 1 through 10 define the key in that the records are alphabetized by the last names.
This is specified by the command >KEY 1, 10.If the occupation is a key (specified by >KEY 31, 10),
the records are reordered with the third record preceding the second.

POSITIONS

2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789
CLIFT MONTGOMERY ACTOR BORN 1920 record 1
JOPLIN JANIS SINGER BORN 1943 record2
VANDERBILT CORNELIUS CAPITALIST BORN 1794 record3--.-- --.--
characters characters
starting at the starting at the
1st position 31st position

Figure 1-1. Key Positions

1-1

Keys must appear in the same relative position in each record of a file. If you specify the first five positions
of a record ina file as a key, the first five positions in every other record are considered as a key. The data
format for all such keys must be the same. For the same reason, keys in the files merged must be in the
same relative position and have the same data format. You can even specify more than one key (Fig. 1-3).
In the case of multiple keys, the key you type in first is called the major key. SORT-MERGE/3000 uses
the major key to rearrange the records. In the event of ties, the second key you type in determines the
precedence of the records in the final form. If both the first and second keys have the same value, the third
key is used, and so forth. If all the keyfields in two or more records are identical, the order of the input
records is preserved in the output file.

ORDERING SEQUENCE

SORT -MERGE/3000 arranges records in a file according to the value of the data in the keys. The individ-
ual characters defining the keys determine these values based on their positions in a collating sequence.
The collating sequence you choose may be ASCII, EBCDIC, or user defined. Appendix B shows the order
of the ASCII collating sequence.

ASCII/EBCDIC. These are the basic collating sequences, assigned by the Data command (Section II).
You can modify these sequences to define an alternative sequence with the ALTSEQ command (Section
II). In most applications, the ASCII sequence is used for sorting and merging, although EBCDIC is used
occasionally.

Ascending/Descending. Records are considered in the ascending order if the key value of each record is
greater than or equal to the preceding record according to the ASCII (or EBCDIC or a user defined)
collating sequence. For example, the series, C, E, T, W, Z, is in ascending order. This is the order in
which the records are compared unless you specify a descending order. If the key value of each record is
less than or equal to the preceding record, the records are in the descending order. For
example, 7, 3, 1, 0, is a descending order.

USING SORT INTERACTIVELY

Figs. 1-2 through 1-5 illustrate the use of the basic SORT-MERGE/3000 commands. However, these ex-
amples present only a small subset of the commands available to you as an interactive user. Note even for
these few commands, some of the more involved options are omitted. You should consult Section II for a
detailed description of all the commands. Fig. 1-2 takes an existing unsorted file, A (input file), and sorts it
into a new file, AMERICAN (output file). A is displayed by using the EDIT/3000 subsystem. Your first
step in the sorting procedure is telling MPE to run the SORT program by giving the following command:

:RUN SORT.PUB.SYS

> is a prompt sign for SORT-MERGE/3000. SORT-MERGE/3000 creates the output file, AMERICAN,
of the correct size and type after the >OUTPUT AMER ICAN command is given. The command,
>KEY 31, 14, specifies a key, which starts in the position 31 and is fourteen characters long (records
are sorted by occupations). The command, >END, signals the end of the subsystem commands and initi-
ates the SORT operation. Note the user input is underlined to distinguish it from the computer output.

1-2

ITEXT A! UNNUMBEREDi LIST ALL! UNNUMBERED
Wiener, Norbert cybernetician born 1894
Rothstein, Arnold gangster born 1882
Clift, Montgomery actor born 1920 listing of the
Truman, Harry poli tician born 1884
Chamberlain, Wilt sportsman born 1936 file A by
Horse, Crazy warrior born 1848
Joplin, Janis singer born 1943 using EDIT 13000
Vanderbilt, Cornelius capi talist born 1794
Chavez, Cesar labor leader born 1927
Crane, Hart poet born 1899
IEXIT

END OF SUBSYSTEM
:RUN SoRT.PUB.SYS tells MPE to run SORT.

HP32214C.02.02 SoRT/3000 FRI, SEP 19, 1980, 3:42 PM
(C) HEWLETT-PACKARD CO. 1980
>INPUT A
>oUTPUT AMERICAN
>KEY 31, 14
>END

specifies the input file, A.
names the file that receives the sorted records.
describes a key.
tells SORT-MERGEI3000 to proceed with SORT.

STATISTICS
NUMBER OF RECORDS =
NUMBER OF INTERMEDIATE PASSES
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
NUMBER OF SCRATCHFILE 10'5
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES)

10
o

11,090
34
8

.00

.01
END OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 FRI, SEP 21, 1979, 3:42 PM
(C) HEWLETT-PACKARD CO. 1978
ITEXT AMERICANz UNNUMBEREDj LIST ALLz UNNUMBERED
Clift, Montgomery actor born 1920
Vanderbilt, Cornelius capi talist born 1794
Wiener, Norbert cybernetician born 1894 listing of
Rothstein, Arnold gangster born 1882
Chavez, Cesar labor leader born 1927 the file
Crane, Hart poet born 1899
Truman, Harry poli t ic ian born 1884 AMERICAN
Joplin, Janis Singer born 1943
Chamberlain, Wilt sportsman born 1936
Horse, Crazy warrior born 1848

Figure 1-2. Running the Stand-Alone SORT Program

1-3

In Fig. 1-3, the file, PEOPLE, is sorted by using three keys; the last names, the first names, and the
telephone numbers. The first key (positions 21 through 40) consists of the last names, the second key
(positions 1 through 20) consists ofthe first names, and the third key (positions 41 through 53) consists of
the telephone numbers. The sorted records are stored in a file, PHONBOOK. The VERIFY command
lists the various options in effect during the SORT operation.

:RUN SoRT.PUB.SYS tells MP E to run SORT.

HP32214C.02.02 SoRT/3000 FRI, SEP 19, 1980, 4:57 PM
(C) HEWLETT-PACKARD CO. 1980
>INPUT PEOPLE
>oUTPUT PHoNBooK
>KEY 21, 20; 1, 20; 41, 13
>VERIFY

names the file to be sorted.
specifies the output file, PHONBOOK.
describes three keys.
instructs SORT-MERGEI3000 to display the result

of the commands typed in so far.
INPUT FILE = PEOPLE
RECORD LENGTH = SAME AS THAT OF THE INPUT FILE
OUTPUT FILE = PHoNBooK
KEY POSITION LENGTH TYPE ASC/DESC

21 20 BYTE ASC (MAJOR KEY)
20 BYTE ASC

41 13 BYTE ASC
>END the end of the commands

Figure 1-3. Sorting the File PEOPLE

1-4

USING MERGE INTERACTIVELY

You can merge different sorted files by giving the following command:

:RUN MERGE.PUB.SYS

Two sorted files, AMERICAN and REST, are merged into a single file, WORLD (Fig. 1-4). In this case,
both AMERICAN and REST are the input files. The subsystem creates the file, WORLD. Note the keys
specified in the sorting operation (Fig. 1-2) have the same relative position and data format as those in the
merging operation (Fig. 1-4). The >END command starts the merging operation.

:RUN MERGE.PUB.SYS tells MP E to run MERGE.

HP32214C.02.02 MERGE/3000 FRI, SEP 19, 1980, 5:10 PM
(C) HEWLETT-PACKARD CO. 1980
>INPUT AMERICAN, REST
>OUTPUT WORLD
>KEY 31, 14
>END

STATISTICS

specifies the sorted files, AMERICAN and REST.
names the output file, WORLD.
describes a key.
the end of the commands.

NUMBER OF INPUT FILES =
HUMBER OF RECORDS =
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES)
END OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 FRI, SEP 21, 1979,
(C) HEWLETT-PACKARD CO. 1978
IT WORLD, UNNj L ALL, UNN
Cli ft,
Vanderbilt,
Wiener,
Nijinsky,
Khan,
Rothstein,
Chavez,
Noether,
Sen,
Lautreamont,
Hammarskjold,
Ortega y Gasset,
Pirandello,
Crane,
Truman,
K'ung,
Joplin,
Djilas,
Chamberlain,
Horse,

Montgomery
Cornelius
Norbert
Vaslav
Jenghiz
Arnold
Cesar
Emmy
Mrinal
Comte de
Dag
Jose
Luigi
Hart
Harry
Ch'iu
Janis
Milovan
Wilt
Crazy

actor
capitalist
cybernetician
dancer
emperor
gangster
labor leader
mathematician
movie director
novelist
pacifist
philosopher
playright
poet
poli tician
preacher
singer
sociologist
sportsman
warrior

2
20

11,164
18

.00

.01

5: 10 PM

born 1920
born 1794
born 1894
born 1890
born 1167 (?)

born 1882
born 1927
born 1882
born 1923
born 1846
born 1905
born 1883
born 1867
born 1899
born 1884
born 551"B.C.
born 1943
born 1911
born 1936
born 1848

listing of the

file WORLD

Figure 1-4. Merging the Files AMERICAN and REST

1-5

Fig. 1-5 shows the merging of the two sorted files, PHONBK1 and PHONBK2 into the file, NEWBOOK.

:RUN MERGE.PUB.SVS tells MP E to run MERGE.

HP32214C.02.02 MERGE/3000 FRI, SEP 19, 1980, 5:24 PM
(C) HEWLETT-PACKARD CO. 1980
>INPUT PHoNBK1, PHoNBK2
>oUTPUT NEWBooK
>KEY 21, 20
>KEY 1, 20
>KEY 41, 13
>VERIFY

specifies the input files, PHONBK 1and PlIONBK2.
names the file that receives the merged records.

describes three keys

lists the result of the commands typed in so far.

INPUT FILES
OUTPUT FILE
KEY POS ITI ON

21
1

41

PHoNBK1,PHoNBK2
= NEWBooK

LENGTH TYPE ASC/DESC
20 BYTE ASC (MAJOR KEY)
20 BYTE ASC
13 BYTE ASC

>END tells SORT-MERGE/3000 to proceed with MERGE.

Figure 1-5. Running the Stand-Alone MERGEProgram

The examples described in this section familiarize you with an input file, what happens when it is sorted
into an output file, and how this sorted file merges with another similarly sorted file to form a single
sequential file.

1-6

RUNNING SORT AND MERGE AS iBiii.!ii
L.........--S_TA_N_D_-A_L_ON_E_P_R_OG_R_A_M_S __ ----' I II I

The various commands that perform the sorting and merging operations on files are described in this
section. In the previous section, you have been briefly exposed to the simpler aspects of some of these
commands-namely, the INPUT, OUTPUT, KEY, and END commands. The use of all the available
options of these and other SORT -MERGE/3000 commands is explained in alphabetic order. The format
of these commands, except the INPUT and OUTPUT commands, is identical for both SORT and
MERGE.

The SORT and MERGE programs can be run during an interactive session or in a batch job. In an
interactive session, they display the prompt character > during their execution and the commands are
then typed in from the terminal. When large amounts of input and output are involved, it may be more
convenient to run the program as a separate job; for example, streamed from a terminal.

When the length of a command exceeds one record, you may enter an ampersand (&) as the last non-blank
character of the record and continue the command onto the next record. In an interactive session, SORT
and MERGE prompt for the rest of the command with the> > continuation prompt.

The following is a list of the SORT-MERGE/3000 commands:

COMMAND SYNTAX DESCRIPTION

ALTSEQ > A[LTSEQ] modspec 1 [, modspee2] ...
[, modspeeN]

DATA

END

where modspee has the form:

[EACH] lefts pee (W;;'H) rightspee

or

MERGE leftspee (WI~H) rightspee

and lefts pee and rightspee have the form:

{
string)
num byte
range string

f A[SCII])
>DATA [IS] 1 E[BCDIC] [,] SEQ[UENCE]

f A[SCII] }
[IS] 1 E[BCDIC]

>E[ND]

2-1

Allows you to define a collating
sequence by modifying the basic
ASCII (or EBCDIC) collating
sequence.

Specifies the type (ASCII or
EBCDIC) of the input data and
the basic collating sequence used
in the sorting (or merging)
operation.

Concludes the specification of
SORT (or MERGE) parameters
and starts the operation.

COMMAND SYNTAX DESCRIPTION

EXIT >EX[IT] Allows you to exit from
SORT-MERGE/3000 and pre-
vents any SORT (or MERGE)
from being performed.

INPUT

{* }
Specifies the input file(s) to be

(sort) > I[NPUT] $STDIN[X] sorted.
fname
([name 1, fname2, ... fnameN)

[, #records] [, rec size]

INPUT I[NPUT] { $STDIN[X] } Specifies the sorted files to be
(merge) > filename 1, filename2 merged.

[, filename3]...I. filenameN]

KEY > K[EY] heyspec 1 [; keyspec2] ...[; keyspecN] Defines the location of keys in the
where hevspec has the form: position, length records
[, typeH, DESC]

OUTPUT { filename } Creates the output file which re-
(sort) >O[UTPUT] * [, NUMH, KEY] ceives the sorted records.

$STDLIST

OUTPUT >O[UTPUT] {filenme [, num reCOrdS][,KEY]} Creates the output file which re-
(merge) $STDLIST ceives the merged records.

RESET >RESET Allowsyou to correct errors in the
KEY command(s).

SHOW { S[EQUENCE][, O[FFLINEll} Displays the collating sequence or
>SH[OW] T[ABLE][,O[FFLINE]] the translation table.

NOS[EQUENCE]
NOT[ABLE]

VERIFY >V[ERIFY] Lists the various options in effect
during the particular SORT (or
MERGE) operation.

>: [MPE command] Used to enter system commands
from within SORT-MERGE/
3000.

2-2

FILE DEFINITIONS

Display file

The SORT and MERGE programs reference some or all of the following files:

Input file

List file

Output file

Scratch file

Text file

Receives the output (translation table or collating sequence) from the SHOW
command. The formal designator of the display file is DISPLOUT which defaults
to $STDLIST.

Contains the records to be sorted or merged. It can be any file capable of
sequential storage such as a file on magnetic tape, disc, or punched cards.
The formal designator of the input file in INPUT, which is equated to the
actual file designator you specify with the INPUT command. The input file
is opened with the multirecord access option (aoption) which may be over-
ridden with a file equation. (Multirecord access option is not supported on
the HP 3000 Series I computer.) $NULL is not a valid input file.

Used by SORT-MERGE/3000 to send information (such as error messages)to
you and to prompt for input in an interactive session. You should not confuse the
list file with the output file which contains sorted (or merged) records. LIST is
the formal file designator of the list file whch defaults to $STDLIST.

Received the sorted or merged records. An output file can consist of all the
records of the input file(s) or only the key fields of the records. Its formal
designator is OUTPUT, which is equated to the actual file designator you
specify with the OUTPUT command. The output file is opened with the
multirecord access option which may be overridden with a file equation.
(Multirecord access option is not supported on the HP 3000 Series I
Computer.)

The SORT program needs this disc file (named SORTSCR) to do the sorting. It is
important to know this in case of errors. See the discussion under INPUT (sort)
to calculate the scratch file size.

Used to read SORT-MERGE/3000 commands directly from the file. TEXT is the
formal file designator of the text file which defaults to $STDINX.

2-3

ALTSEQ
Allows you to define a collating sequence by modifying the basic ASCII (or EBCDIC) collating sequence.
It is effective only if the keys are of type BYTE, if the input data is ASCII, and if the DATA command has
been previously issued.

SYNTAX

>A[LTSEQ] modspec 1 [,modspec2] ...[,modspecN]

PARAMETERS

modspec

EACH

MERGE

=

WITH

string

A group of parameters used to define your own special collating sequence. You
can successively use more than one such group of parameters in one or more
ALTSEQ commands until the desired sequence is achieved.

where modspec has the following form:

[EACH] leftspec (W~TH) rightspec

or

MERGE leftspec {W~TH } rightspec

and leftspec and rightspec have the form:

{
string }
num byte
range string

Indicates the collating sequence is to be modified by assigning each character of
leftspec the ordinal value obtained by taking the ASCII code decimal value of the
corresponding character in rightspec. If leftspec is longer than rightspec,
rightspec is concatenated to itself enough times to make it equal in length to
leftspec.

Indicates that the collating sequence is to be modified by merging leftspec and
rightspec. Characters are selected alternatively from leftspec and rightspec.

If neither EACH nor MERGE is specified, the modification of the collating se-
quence is the same as if EACH has been specified except that rightspec is padded
with blanks if it is shorter than leftspec.

Functions as a separator between leftspec and rightspec.

Can be used interchangeably with = and is generally used when MERGE is
specified.

A string of ASCII (or EBCDIC) characters enclosed in quotes. For example,
"DAW".

2-4

num byte A specification of the following form:

[% [(bb)]] nnn

bb is the base, which can be any decimal number between 2 and 16, inclusive.
% (bb) must be specified in order to indicate a base other than 8 or 10. % indi-
cates base 8 when no (bb) is specified. If both % and (bb) are omitted, the nnn
parameter is assumed to be a decimal number (that is, base 10).

nnn represents an integer whose value is between 0 and decimal 255, inclusive.
Each n is a digit between 0 and 9, inclusive, or one of the letters A, B, C, D, E, and
F. The letters A through F are used to represent the digits 10 through 15,when a
base greater than 10 is used. Each digit n of nnn must be less than the base bb.

For example, 12 represents the decimal value 12. % 12 represents the octal value
12, which is equivalent to the decimal value 10. % (16)12 represents the
hexadecimal value 12, which is equivalent to the decimal value 18.

range string A specification of two characters separated by a minus sign and enclosed in
quotes, or two numeric byte specifications separated by a minus sign. For exam-
ple, "A-Z" or % 101-% 132 (which specifies the same range as "A-Z").

Note whenever a minus sign is the second character in a group of three characters,
the group is treated as a range. In all other cases, the minus sign is treated the
same as any other character. For example, "A-D" represents the four characters
ABC D while "AD-" represents the three characters A D -.

DISCUSSION

In each modification of the collating sequence, the ordinal values in the translation table assigned to the
characters specified by leftspec are modified. (See the SHOW command for a discussion of the translation
table.) If righispec is longer than leftspec, the extra charcters are ignored. If leftspec is longer than
rightspec and neither EACH nor MERGE has been specified, rightspec is padded with blanks to make it
equal in length to leftspec. For example, the command, AL TSEQ "SAW"="TG", gives S, A, and W, the
ordinal values T, G, and space. (See the discussions below for explanations of modspec with EACH and
MERGE.) These assignments of new ordinal values are only for collating purposes. That is, the identity of
the character is not lost; data is unchanged and appears in its original form in the output.

The DATA command specifying ASCII data and an ASCII or EBCDIC collating sequence must be issued
before issuing the first ALTSEQ command in any SORT or MERGE operation. The error message, THE
DATA COMMAND MUST BE ISSUED BEFORE THE ALTSEQ COMMAND CAN BE ISSUED, is
displayed if the first ALTSEQ command is not preceded by a DATA command.

Note the operation of SORT (or MERGE) is somewhat slower when you have defined your own collating
sequence by using the ALTSEQ command compared to the case when a standard ASCII or EBCDIC
collating sequence is used.

2-5

modspec with EACH:

If EACH is specified, the modifications of the collating sequence are the same as explained above -ex-
cept that, if leftspec is longer than rightspec, rightspec is concatenated to itself a sufficient number of
times to make it equal in length to leftspec. For example, the command, >ALTSEQ EACH IIADWII=IIFGII,
gives A, D, and W the ordinal values obtained by taking the ASCII code decimal values of F, G, and F.
Assuming the basic collating sequence has been specified as ASCII, this means in the sixth row of the fifth
column of the translation table will now appear A=70, in the sixth row of the eighth column will appear
D=71, and in the eighth row of the seventh column will appear W=70. Note 70 and 71 are the ASCII code
decimal values of the characters F and G, respectively. See Figs. 2-1 through 2-5 for more examples.

modspec with MERGE:

When MERGE is specified in the modspec parameter, the values in the translation table assigned to the
characters specified by leftspec and rightspec, and the characters in between are modified. Characters are
selected alternatively from leftspec and rightspec and the translation table is modified so the characters
collate in this order. The first character is always selected from leftspec. If leftspec precedes rightspec in
the collating sequence, the sequence is modified so the characters between the two ranges collate after the
merger of the ranges. If rightspec precedes leftspec, the characters between the two specifications collate
before the first character of the first range. When either range is exhausted, the characters from the other
range are simply appended until that range is exhausted too. Note the strings specified by leftspec and
rightspec must be strictly increasing and contiguous whenever MERGE is specified.

If you wish to do an alphabetic sorting in which each upper case letter collates ahead of the corresponding
lower case letter, use the command, >ALTSEQ MERGE IIA-ZII WITH "a-z ". The following six special
characters follow the lower case z since the first range precedes the second range:

\ A ,

If the modspec is, MERGE "a-z" WITH "A-Z", the same six characters precede the lowercase a. Refer to
Figs. 2-6 through 2-9 for more examples.

You may consider this form of modspec as a shorthand for the modspec specifying EACH. For example,
the command, >AL TSEQ MERGE "A-ZII WITH lIa-zll, is equivalent to the lengthier
command, >ALTSEQ IIAaBb ••• Zzll="AB ••• Zab ••• Zll)
where ... represent all the necessary characters.

2-6

DATA
Specifies the type (ASCII or EBCDIC) of the input data and the basic collating sequence used in the
particular SORT (or MERGE) operation. The collating sequence mayor may not be altered further by the
ALTSEQ command.

SYNTAX

(
A[SCII]) (A[SCII])>DATA [IS] E[BCDIC] [,] SEQ[UENCE] [IS] E[BCDIC]

DISCUSSION

This command must precede the first ALTSEQ command in any SORT or MERGE operation because
the DATA command always initializes the translation table. The message, THE DATA COMMAND
MUST BE ISSUED BEFORE THE ALTSEQ OR SHOW COMMANDS is displayed, if the first
ALTSEQ command is not preceded by the DATA command. If the DATA command is reissued, following
an ALTSEQ command, the translation table (and the collating sequence) are reset to their original status.

The specification of a particular sequence is only for collating purposes. A user defined sequence can be
designated only if the input data is ASCII. The input data is unchanged and appears in the output in its
original form. The following example shows how the DATA command nullifies the effect of the ALTSEQ
command issued previously during a SORT operation

EXAMPLE

:RUN SORT.PUB.SVS
HP32214C.02.02 SORT/3000 SAT, SEP 20, 1980, 9:54 PM
eC) HEWLETT-PACKARD CO. 1980
>ALTSm MERGE "A_TII WITH IIV_V"
THE DATA COMMAND MUST BE ISSUED BEFORE THE ALTSEQ OR SHOW COMMANDS CAN BE ISSUED.
>DATA IS ASCII, SEQUENCE IS ASCII
>ALTSEQ MERGE IIA-T" WITH "V-V"
>SHOW SEQUENCE
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp II # $ X & I e) * + I
0 1 2 3 4 5 6 7 8 9 <) ?
@ A V B W C X D V E F G H J K
L M N 0 P Q R S T U Z [\ ", a b c d e f 9 h i j k I m n 0

p q r 5 t u v w x y z { I } '"del

2-7

)DATA IS ASCII, SEQUENCE IS ASCII
)SHOW SEQUENCE
nul soh stx etx eot enq ack bel b5 ht If vt ff cr 50 5i
dledc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 95 rs us
sp II # $ X "

, () * + I
0 1 2 3 4 5 6 7 8 9 <) ?, A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\ A

,
is b c d e f 9 h i j k I m n 0

p q r 5 t u v w x y z { I } ..•.del

2-8

END
Concludes the specification of SORT (or MERGE) parameters and starts the operation.

SYNTAX

>E[ND]

DISCUSSION

The END command indicates there are no more commands and the SORT (or MERGE) program should
begin. If * (or $STDIN) is specified in the INPUT command of the SORT program, the character, ?, is
displayed following the END command, and the input records are typed in from the terminal.

2-9

EXIT
Allows you to exit from SORT-MERGE/3000 and prevents any SORT (or MERGE) from being per-
formed.

SYNTAX

>EX[IT]

EXAMPLE

>IHPUT A
>OUTPUT HEW
>KEY 1, 15
>EXIT
EHD OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 SAT, SEP 22, 1979, 10:10 PM
(C) HEWLETT-PACKARD CO. 1978
IT HEW, UHH
+-F-I-L-E---I-H-F-O-R-M-A-T-I-O-H---D-I-S-P-L-A-Y+

ERROR HUMBER: 52 RESIDUE: 0
! BLOCK HUMBER: 0 HUMREC: 0
+--+
*23*FAILURE TO OPEH TEXT FILE (52)

Note the output file, NEW, is not created, as the EXIT comand disallows the sorting of the input file, A.

2-10

INPUT
(sort)

Specifies the input filets) to be sorted.

SYNTAX

{
* }>I[NPUT] j:a~IN[X]

(fname 1, fname2,...fnameN)

PARAMETERS

* (or $STDIN)

{name

#records

rec size

[, #records] [, rec size]

Specifies that the input records are read from the terminal in a session (or a job
standard input device-that is, a card reader, tape, magnetic disc for a streamed
job, or terminal in a batch mode) instead of the input file.

Actual file designator. $Null is not a valid input file.

A positive integer specifying the upper limit of the number of records sorted. It is
the sum of the number of records of each input file, if multiple input files are
specified. #records should be specified only if one or more input files are not disc
files. When the input file is a disc file, its current end-of-file (EOF) value is used.
#records is ignored in this case. If the input file is not a disc file and the #records
is not specified, a default value of 10,000 is assumed by SORT. This parameter
cannot be used to extract a subset of the input file. You may use the FCOPY
utility to accomplish this.

A positive integer specifying the number of maximum allowable characters in a
record. This is important only if the records are of variable lengths. Additionally,
if the scratch file record size is limited, rec size should be set equal to the size of
the largest record.

If you want to determine the scratch file record size (SFRS) and the scratch file
size (SFS), use the following equations:

SFRS=«rec size + 7)/2) + 4'

where rec size is the input record size in bytes. (You must add the length of the
keys to the rec size if the keys are of the type, BYTE, and ALTSEQ is used.)
SFRS is in words.

SFS=«SFRS*#records)/128) + 1

SFS is in sectors.

You can issue a file equation for the scratch file only to specify a particular logical
device which must be a disc. For example, FILE SORTSCR; DEV=2

2-11

DISCUSSION

During SORT, the INPUT command specifies one or more files containing the records to be sorted. In the
case of multiple input files, all the files are sorted and merged into a single output file. If * (or $STDIN) is
specified, input records are assumed to follow the END command and continue until EOF is reached
(indicated by typing :EOD). If input records are entered from the terminal, the prompt character? is
displayed for each record, Note when you specify more than one input file during SORT, the names of all
the input files must be enclosed in parentheses. This differs from the use of the INPUT command during
MERGE, where parentheses cannot be used. If more than one INPUT command is entered, only the last
command is effective. Thus, all the files to be sorted must be specified in a single INPUT command. This
command can be entered any time before the END command. In the absence of the INPUT command,
any permanent disc file with the formal designator INPUT is considered the input file. Also,
SORT .MERGE/3000 does not disallow file equations issued prior to your entering the subsystem. So, if
the INPUT command refers to the same file as specified in the file equation, the file's characteristics are
determined by the file equation. You should give the :RESET command before entering
SORT-MERGE/3000 if you want the default values for the parameters of the file. The same holds for the
OUTPUT command during SORT and the INPUT and OUTPUT commands during MERGE.

EXAMPLE

)INPUT R" 30

The file, R, is to be sorted with a maximum of 30 characters from each record.

2-12

INPUT
(merge)

Specifies the sorted files to be merged.

SYNTAX

{
$STDIN

>I[NPUT] filenamel,

PARAMETERS

filename2 } [, filename3] ...[, filenameNJ

$STDIN Specifies that the records of the sorted input files are entered from the terminal
in a session (or a job standard input device in a batch mode).

filename Actual file designator. $Null is not a valid input file.

DISCUSSION

Unlike the INPUT command during SORT, the input files cannot be enclosed in parentheses in this case.
The order in which the files are specified is relevant only in that the records with equal keys are ordered
according to the order of the files in which they appear. If more than one INPUT command is entered,
only the last command is effective. It may be entered any time before the END command. If $STDIN is
specified, the input files are assumed to follow the END command until EOF is reached. "T" is not dis-
played (cursor keeps blinking if you are using a CRT terminal). You should then type the records as in the
case of the SORT operation. MERGE does not allow the use of *.

EXAMPLE

)INPUT A, E, C

A, B, and C are the three files to be merged.

2-13

-~------~------

KEY
Defines the location of keys in the records.

SYNTAX

>K[EY] keys pee 1 [; keyspee2][; keyspee3] ...[; keyspeeN]

PARAMETERS

keyspec A group of parameters used to specify the keys

SYNTAX position, length [, type][, DESC]

position A positive integer specifying the position of the first character of the key field.
(The first position of the record is numbered one.)

length A positive integer indicating the length of the key field in bytes.

type Defines the type of data contained in the key fields and can be one of the follow-
ing mnemonics:

B[YTE]
Direct byte comparison is used. It is the default value for the type parameter
and should be used for ASCII, EBCDIC, or logical quantities.

I[NT]
Key field contains a 2's complement number of the specified length in bytes.
length defaults to two bytes. Any value may be specified for length.

DO[UBLE]
Same as the INT mnemonic but length defaults to four bytes,

R[EAL]
Key field contains a floating point number. Any value may be specified for
length. length defaults to four bytes.

L[ONG]
Same as REAL. Any value may be specified for length. length defaults to
eight (or six, if your system is supervised by MPE-C) bytes.

2-14

P[ACKED]
Key field contains a packed decimal number. In this format, each character
except the last, contains two digits. Each digit occupies four bits. The last
character contains the least significant digit of the number in its four
leftmost bits, and the sign of the number in its four rightmost bits. The sign is
considered minus if it has the value 1101, and plus otherwise.

PACKED*
Same as PACKED except there are only an even number of digits and a sign.
The four higher ordered digits are not treated as a part of the field.

DI[SPLA Y-TRAILING-SIGN]
Key field contains a numeric display quantity. Numeric display items are
represented by ASCII coded decimal digits (0 through 9) except for the
units digit which carries the sign of the data item. The sign is determined
according to the Table 2-1. For example, 123 is represented by 12C. (This
is the same as DISPLAY in the previous versions of SORT-MERGE/3000.)

DISPLAY-L[EADING SIGN]
In this case, the first digit carries the sign of the data item. For
example, -123 is represented by J23.

PISPLA Y-TRAILING-SIG N-S[EPARATE]
The sign is contained in the character position to the right of the units digit.
For example, 123 is represented by 123+.

DISPLAY-LEADING-SIGN-S[EPARATE]
The sign is contained in the character position to the left of the first digit.
For example, -123 is represented by -123.

DESC
Indicates the records are arranged in a descending order. If this parameter is
not specified, the records are arranged in the ascending order.

Display Positive Negative No Sign
Digit

0 { (% 173) } (%175) 0 (%60)
1 A (% 101) J (% 112) 1 (%61)
2 B (% 102) K (% 113) 2 (%62)
3 C (% 103) L (% 114) 3 (%63)
4 D (%104) M (%115) 4 (%64)
5 E (%105) N (% 116) 5 (%65)
6 F (% 106) o (%117) 6 (%66)
7 G (% 107) P (% 120) 7 (%67)
8 H (% 110) Q (% 121) 8 (%70)
9 I (%111) R (% 122) 9 (%71)

Table 2·1. Internal Representation in ASCII

2-15

DISCUSSION

SORT-MERGE/3000 sorts keys containing Binary, ASCII, or EBCDIC data according to an eight-bit
binary sequence (00000000 to 11111111). Other types of data (integer, real, etc.) are sorted acording to the
standard arithmetic relational operators. For example, 2 is greater than -5. The keys can contain alpha-
betic, numeric, or alphanumeric (alphabetic and numeric intermixed)data. They can be contiguous or
separated in a record or they can overlap each other; provided the collating sequence is not altered, o:ra
user defined sequence is not used. An entire record can be considered as a single key.

As explained in Section I, each KEY command can specify one or more key fields and the specifications
are separated by semicolons. Multiple key fields can also be specified with more than one KEY command.
All the key fields do not have to be specified in the same command. The most significant key is called the
major key and is declared first in the command. Other keys have decreasing significance according to their
relative positions following the major key. They are compared if a comparision of more significant keys
results in an equal condition.

Consider a file containing the records of all the students in a high school. Each record can contain such
information as name, address, grade level, grades in individual courses etc. You can specify the order in
which the records are sorted. If the first record is of the student with highest grades (A) in English and
Math, you specify an ascending order. If the major key is English and the other key is Math, the data in
the Math fields are compared only if the data in the English fields are the same. The sorting order is
specified in the same commands that specify the keys. An order is declared for each key. This order does
not have to be the same for all the keys in a record. For example, in the high school file, you can declare
English (major key) with an ascending order and Math with a descending order. Note even if the sorting
order is different for each key, only one collating sequence is used for a particular operation.

EXAMPLES

>KEY 10, 5 BYTE key of length 5 starting in position 10, sorted in the ascending
order

>KEY 20, REAL REAL key of length 4, starting in position 20 and sorted in an ascending
order since four is the default for the length parameter when the key
data type is REAL

>KEY 30, 20, INT, DESC 20-byte INTEGER key starting in position 30, and sorted in a descend-
ing order

(See the RESET command to make corrections to the keys.)

2-16

OUTPUT
(sort)

Creates the output file which receives the sorted records.

SYNTAX

{

filename }
>O[UTPUT] * [,NUM][, KEY]

$STDLIST
PARAMETERS

filename Actual file designator

*(or $STDLIST) Specifies that the sorted records are sent to the terminal during a session and
terminal or line printer during a batch mode. Output file is not saved in this case.

NUM Specifies that the output records consist of the original logical record numbers.
These are double word binary numbers which cannot be meaningfully printed or
displayed on the terminal. This parameter must not be specified if you specify *
(or $STDLIST) in the command. The first record in the file is considered number
one.

KEY Specifies that the output records consist of only the key fields.

If neither NUM nor KEY is specified, the output records are identical to the
input records. If NUM is specified but KEY is not specified, the output records
consist of a double integer whose value is the original logical (relative) record
number. If KEY is specified and NUM is not specified, the output records consist
of the key fields concatenated together from left to right. If both NUM and KEY
are specified, the output records consist of the original logical record number and
the key fields; concatenated together with the logical record number on the right.

EXAMPLE

OUTPUT REST, NUM

2-17

DISCUSSION

In the absence of this command, SORT -MERGE/3000 creates the output file by the file name, OUTPUT.
In the event of several OUTPUT commands, only the last OUTPUT command is effective.

Sends the logical record numbers to the file, REST.

Note if a file already exists with the same name specified in the OUTPUT command, the following mes-
sage is displayed if you are in an interactive session:

PURGE OLD OUTPUT FILE filename?

If your response is YES, the old file is purged. If this is not possible (for example, you cannot purge a file
which is used by some other user at the same time), if your response is NO, or if you press return, the
following message is displayed:

ENTER NEW NAME FOR OUTPUT FILE

In this case, you should enter a new name for the output file.

In a batch mode, the old file is not disturbed. Instead, a new permanent file OUTPUTnn (n is a
non-negative integer) is created with the following message:

OUTPUT FILE CLOSED WITH FILE NAME OUTPUTnn

The system Job Control Word (JCW) is set to FATAL when an alternate output file is used.

2-18

OUTPUT
(merge)

Creates the output file which receives the merged records.

SYNTAX
{
filename } [,num records] [,KEY]

>O[UTPUT] $STDLIST

[ilenme Actual file designator

$STDLIST Records of the merged files are sent to the terminal during a session and line
printer or terminal during a batch job. The output file is not saved in this case.

num records A positive integer specifying the upper limit of the number of records merged.
This should be large enough to include all the input files. If num records is speci-
fied, and if anyone of the input files is not a disc file, this value is used as the
filesize parameter during the opening of the output file. If one or more input files
are not disc files and if num records is not specified, a default value of 10000
records is used by MERGE. This parameter is ignored if all the input files are disc
files.

KEY Output consists of the key fields only.

2-19

EXAMPLES

OUTPUT FILE1,
KEY

Sends only the keyfields of the merged records to the file, FILEl.

OUTPUT FILE2,
50000

Unless all the input files are disc files, the [ilesize parameter of the output file,
FILE2, is taken as 50000, when the file is opened.

During the MERGE operation, the OUTPUT command specifies the file to which the merged records are
written. If more than one OUTPUT command is entered, only the last command is effective.

If a file already exists with the same name as specified in the OUTPUT command, the following message
is displayed if you are in an interactive session:

PURGE OLD OUTPUT FILE [ilenme'l

If your response is YES, the old file is purged. If this is not possible (for example, you cannot purge a file
which is used by some other user at the same time), if your response is NO, or if you press return, you get
the following message:

ENTER NEW NAME FOR OUTPUT FILE

Like the OUTPUT command during a SORT, you should enter a new name for the output file.

In a batch mode, the old file is not disturbed. Instead, a new permanent file OUTPUTnn (n is a
non-negative integer) is created with the following message:

OUTPUT FILE CLOSED WITH FILE NAME OUTPUTnn

2-20

RESET
Nullifies the existing KEY command(s). This command is used to correct errors in the key specifica-
tion(s).

SYNTAX
>RESET

2-21

SHOW
Displays the collating sequence or the translation table.

SYNTAX

{

S[EQUENCE][' O[FFLINE]]}
>SH[OW] T[ABLE][,O[FFLINE))

NOS[EQUENCE]
NOT[ABLE]

PARAMETERS

S[EQUENCE] Displays the collating sequence.

This sequence is determined by the first 128 characters of the ASCII code, unless
preceded by an ALTSEQ command or a DATA command with the EBCDIC se-
quence parameter. Without the OFFLINE parameter, the sequence is displayed
on the terminal. (It is printed on the line printer, if the OFFLINE parameter is
used.) The display consists of the representation of each character in the relative
order in which the collating sequence sorts (or merges) the records. Characters
with the same ordinal values are adjoined by equal sign(s}. Once specified in the
SHOW command, it is displayed after each subsequent ALTSEQ command dur-
ing a particular SORT (or MERGE) operation until you specify NOSEQUENCE.
OFFLINE activates the formal file designator DISPLOUT, with the line printer
as the default device type (DEV=LP). Alternatively, you can store the contents
of the sequence on a disc (or tape) file by appending DEV=DISC (or TAPE) to
the file equation.

T[ABLE] Displays the translation table.

After defining your special collating sequence, you may want to look at the table
and the changes that occur in it. The table is helpful if you call SORT (or
MERGE) from a program (Sections III-VI). The translation table is organized
according to the ASCII code decimal values of the characters. You should look at
the position defined by the ASCII code decimal value to determine the ordinal
value of a particular character. The table displays graphic characters, each equat-
ed to its ordinal value, and the ordinal values of the characters that do not have
graphic representation. Like the SEQUENCE option, the translation table is dis-
played after each ALTSEQ command. The >SHOW TABLE command displays
the table (in decimal) on the terminal.

NOS[EQUENCE] Suppresses the display of the collating sequence in a particular SORT (or
MERGE) operation. However, you can again get the display by specifying
SEQUENCE.

NOT [ABLE] Suppresses the display of the translation table until you give the SHOW TABLE
command.

2-22

Example of the SHOW command with the TABLE parameter

>DATA A SEQ A
>A IIBII= IIAII
>SHOW TABLE
TABLE OF ORDINAL VALUE ASSIGNED TO EACH CHARACTER.

0 ! 1 ! 2 ! 3 ! 4 ! - 5 ! 6 ! 7 ! 8 ! 9
----+------+------+------+------+------+------+------+------+------+------

0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 sp=32 != 33 11= 34 #= 35 $= 36 !%= 37 !&= 38 '= 39
4 (= 40 !)= 41 *= 42 += 43 44 45 46 !/= 47 !O= 48 1= 49
5 2= 50 !3= 51 4= 52 5= 53 6= 54 7= 55 8= 56 !9= 57 !:= 58 ;= 59
6 (= 60 !== 61 .>= 62 ?= 63 @= 64 A= 65 .B= 65 !C= 67 !D= 68 E= 69
7 F= 70 !G= 71 H= 72 1= 73 !J= 74 K= 75 !L= 76 !M= 77 !N= 78 0= 79
8 P= 80 !Q= 81 R= 82 S= 83 !T= 84 U= 85 !V= 86 !W= 87 !X= 88 Y= 89
9 Z= 90 ![= 91 \= 92]= 93 !A= 94 _= 95 !'= 96 !a= 97 !b= 98 c= 99
10 !d=100 !e=101 f=102 9=103 !h=104 i=105 !j=106 !k=107 !1=108 .m=109
11 !n=110 !0=111 p=112 '1=113 !r=1'14 s= 115 !t=116 !u=117 !v= 118 !w=119
12 !x=120 !y=121 z=122 {=123 !1=124 }=125 !"'=126 =127 128 129
13 130 ! 131 132 133 134 135 136 137 138 139
14 140 141 142 143 144 145 146 147 148 149
15 150 151 152 153 154 155 156 157 158 159
16 160 161 162 163 164 165 166 167 168 169
17 170 171 172 173 174 175 176 177 178 179
18 180 181 182 183 184 185 186 187 188 189
19 190 191 192 193 194 195 196 197 198 199
20 200 201 202 203 204 205 206 207 208 209
21 210 211 212 213 214 215 216 217 218 219
22 220 221 222 223 224 225 226 227 228 229
23 230 231 232 233 234 235 236 237 238 239
24 240 241 242 243 244 245 246 247 248 249
25 250 251 252 253 254 255

WHEN PASSED TO SORTINIT, THE TABLE ABOVE IS PRECEDED BY TWO BYTES.
THESE FIRST TWO BYTES CONTAIN A FLAG BYTE OF %000 AND A LENGTH BYTE OF %377
RESPECTIVELY.

Columns are labeled 0, 1, 2, ... , 9, and rows are labeled 0, 10, ... , 250. The table is used by first reading
down the leftmost column and then across from left to right. If you want to know the current ordinal value
of B (whose ASCII code decimal value is 66), read down the table to locate the row labeled 60. Then read
across until you reach the column with the heading 6. The value (65) contained in this position (60,6)
identifies the location of the character B in the altered collating sequence.

You can use the OFFLINE parameter to send the contents of the table to the line printer, disc, or tape. In
this case, the table is created in three forms. During the programmatic usage of SORT -MERGE/3000, this
information is edited and inserted into a program and then copied into the altseq array passed to
SORTINIT (or MERGEINIT).

See Figs. 2-11 through 2-17 for more examples.

2-23

VERIFY
Lists the various options in effect during the particular SORT (or MERGE) operation.

SYNTAX

>V[ERIFY]

EXAMPLES

SORT operation:

>VERIFY
INPUT FILE = MYTHO
RECORD LENGTH = SAME AS THAT OF THE
OUTPUT FILE • FICTION
KEY POSITION LENGTH

22 10
1 3

INPUT FILE

TYPE
BYTE
BYTE

ASC/DESC
ASC
ASC

(MAJOR KEY>

INPUT DATA IS IN ASCII.
SEQUENCE IS IN EBCDIC.

The file, MYTHO, is to be sorted into the file, FICTION, with EBCDIC as the collating sequence.

MERGE operation:

>VERIFY
INPUT FILES = AMERICAN,REST
OUTPUT FILE = WORLD
KEY POSITION LENGTH

1 15
31 14

TYPE
BYTE
BYTE

ASC/DESC
ASC (MAJOR KEY>
ASC

The files, AMERICAN and REST, are to be merged into the file, WORLD. Note the collating sequence is
ASCII by default.

2-24

••
The: command is used to enter MPE commands from within SORT or MERGE.

SYNTAX

>: [MPE command]

The: command allows you to enter certain MPE commands without using the BREAK key. The colon
indicates to SORT-MERGE/3000 that it should pass the rest of the record to the MPE operating system.
To continue an MPE command on the next record, the last non-blank character on the current record
should be an ampersand (&). The command may be continued after the >: prompt.

Valid MPE commands are those which can be executed programmatically (see the MPE INTRINSICS
MANUAL, page 4-9 for a list of such commands). Command interpreter and file system error messages
will be printed if an error occurs. User Defined Commands are not available from the: command, although
they are valid during a BREAK.

EXAMPLE

******************** MPE COMMAND EXAMPLE *********************
:RUN SORT.PUB.SYS
HP32214C.02.03 SORT/3000 TUE, JAN 29, 1980, 11:06 AM
eC) HEWLETT-PACKARD CO. 1980
>:BUILD LPFILE;REC--132,10,F,ASCII; &

DISC-10000,32,32;CCTL
>:LISTF LPFILE,2
TUE, JAN 29, 1980, 11:06 AM
ACCOUNT- SUBSYS GROUP" SORT
FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT RIB SECTORS IX MX
LPFILE 133B FAC o 10000 10 6006 32 32

>EXIT
END OF PROGRAM

2-25

CONTROL V
During the running of a SORT or MERGE program in an interactive session, you can obtain its status by
typing v: For example, the displayed status may be similar to one of the following messages:

INPUT PHASE: 1234 RECORDS HAVE BEEN INPUT
OUTPUT PHASE: 9 RECORDS HAVE BEEN OUTPUT.
OUTPUT PHASE: 0 RECORDS HAVE BEEN OUTPUT.
INTERMEDIATE SORT PHASE: PASS 1 OF 3. (675 RECORDS MERGED)

2-26

:EOD
Terminates your input records when terminal is the input device. Note lowercase e, 0, and d, preceded by
:, do not indicate the end of the input data.

2-27

EXAMPLES

TYPES OF MODIFICATION SPECIFICATIONS

The ALTSEQ command with EACH followed by a string spec

:RUN SORT.PUB.SVS
HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 11:56 AM
(C) HEWLETT-PACKARD CO. 1980
)DATA IS ASCII, SEQUENCE IS ASCI I
)ALTSEQ EACH "LMN"=IISTII
)SHOW SEQUENCE
nul 50h 5tx etx eot enq ack bel b5 ht If vt ff cr 50 5i
dIe dc1 dc2 dc3 dc4 nak 5yn etb can em 5ub e5C f5 95 r5 U5
5p II # $ X & () * + /
0 1 2 3 4 5 6 7 8 9 < =) ?
@ A B C D E F G H I J K 0 P Q R
L= N= S M= T U V W X V Z [\] A

, a b c d e f 9 h i j k I m n 0
p q r 5 t u v w x y z { I } ""del

Figure 2-1

The result of modspec EACH IILMNII=IISTII

Original list The list during SORT Sorted result

TOKEN TOKES COST
MOP TOP COME
COST COST SING
COME COTE NOSE
TABLE TABSE LONESOME
MISS TISS SOLE
SING SISG TABLE
NOSE SaSE MISS
LONESOME SOSESOTE TOKEN
SOLE SOSE MOP

Figure 2-2

During the SORT operation, Land N are equated to S, and M is equated to T.

2-28

The ALTSEQ command without using EACH

>DATA A SEQ A
>A "ABC" = "X"
>SH 5
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp= B= C •• # $ % 8. , () * +

/ 0 2 3 4 5 6 7 8 9 <
> ? @ D E F G H I J K L M N 0 P
Q R 5 T U V W A= X Y Z \ A

, a b c d e f 9 h i j k I m n 0

p q r s t u v w x y z { I } .•.del
Figure 2·3

The ALTSEQ command pads X with two blanks to make it equal to ABC in length. Note the character sp
is equated to Band C and the character A to X, in the collating sequence. The table position identified by
each character of the left string is replaced by the corresponding character of the right string until the
string ABC is exhausted.

Numeric byte specification

>DATA A SEQ A
>A 65=%141
>SH 5
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp •• # $ % 8. , () * + /
0 1 2 3 4 5 6 7 8 9 < > ?
@ B C D E F G H I J K L M N 0 P
Q R 5 T U V W X Y Z [\] A ,
A= a b c d e f 9 h i j k I m n 0

p q r s t u v w x y z { I } .•.del
Figure 2·4

A is assigned the same ordinal value as a in the final collating sequence.

2-29

Range string specification

>A X101-X132=Ua-z"
>SH S
nul soh stx etx eot enq ack bel bs ht If vt ff cr 50 si
dIe dc1 de2 dc3 dc4 nak syn etb can em sub esc fs 95 rs us
sp II # $ % 8. I () * + /
0 1 2 3 4 5 6 7 8 9 < > ?

[\] " , A= a B= b c= c D= d E=@

e F= f G= 9 H= h 1= i J= j K= k L= 1 M=
m N= n 0= 0 p= P Q= q R= r S= s T= t U=
u v.• v W= IN X= X y= Y Z= z { I } '"del

Figure 2-5

The left range is specified by two numeric byte specifications separated by a minus sign. Note the same
range can be represented by"A-Z", % 101-"Z", or 65-90.

Collating upper-lower case alphabetic characters

>A MERGE "A-Z" WITH lIa-z"
>SH S
nul soh stx etx eot enq ack bel bs ht If vt ff cr 50 si
dIe de1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp II # $ X 8. I () * + /
0 2 3 4 5 6 7 8 9 < > ?
@ A a B b C c D d E e F f G 9 H
h I i J j K k L I M m N n 0 0 P
P Q q R r S 5 T t U u V v W IN X

Y Z [\ " , { } ..•.delx y z
Figure 2-6

The six characters t , v. i , " , follow the lower case z, as the first range precedes the second range.,-.
Collating lower-upper case alphabetic characters

>A MERGE "a-zll = "A-Z"
>SH S
nul soh stx etx eot enq ack bel bs ht If vt ff cr 50 si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 95 rs us
sp II # $ X 8. , () * + /
0 2 3 4 5 6 7 8 9 < > ?

\] " , A b B C d D@ a c e
E f F 9 G h H i I j J k K 1 L m
M n N 0 0 p p q Q r R 5 S t T u
U v V IN W X X Y Y z Z { I } ..•.del

Figure 2-7

The six characters r , v, i, " , precede the lowercase a., -,

2-30

The result of MERGE "a-zll WITH IIA-Z"

CAI'!
shovel
MAl'!
BROOM
TABLE
AXE
drawer
boy
DOG

Sorted list using MERGE

AXE
boy
BROOM
CAI'!
drawer
DOG
MAl'!
shovel
TABLE

Original list

Figure 2-8

Merging unequal strings

>A MERGE IIABCD" WITH lIabll
>SH 5
nul soh stx etx eat enq ack bel bs ht If vt ff cr 50 si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 95 rs us
sp II # $ X &

, () * + /
0 1 2 3 4 5 6 7 8 9 < > ?
@ A a B b C D E F G H I J K L M
I'! 0 P Q R 5 T U V W X Y Z ,
A d f h i j k I m nc e 9 a
p q r 5 t u v w x y z { } '" del

Figure 2-9

The collating sequence appears as AaBbCDEF ... Z. The merging of the strings continue until the right
string "ab" is exhausted.

2-31

Using the ALTSeQ command in a batch mode

:JOB USER.ACCT
JOB NUMBER = #J5
SUN, SEP 21, 1980, 12:21 PM
HP3000 I MPE III C.00.02
:EDITOR
HP32201A.7.04 EDIT/3000 SUN,
(C) HEWLETT-PACKARD CO. 1978
T UNDRGRAD, UNN; L ALL, UNN
IT UNDRGRAD, UNN; L ALL, UNN
Virgin Cat 3.1
Tech Nitpicker 3.2
Sensible Kommunist 3.6
Boris Frankestein 3.1
Milind Ranade 3.9
Uncle Sammuelson 3.7
Thomas Collins 2.1
Vegetarian Dracula 3.8
Homo Genius 3.4
Hit Woman 3.1
Sor ting Jac k 3.3
Harry Krishna 2.9
Lacy LOlollercase 3.4
Nicolas Bourbaki 4.0
Red Butler 3.1
E
IE
:RUN SORT.PUB.SYS

SEP 23, 1979 , 12:21 PM

A
A
B
A
B
B
U
B
A
A
A
U
A
B
A

HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 12:28 PM
(C) HEWLETT-PACKARD CD. 1980
DATA A SEQ A
A "BA" = "AB"
INPUT UNDRGRAD
OUTPUT VICTORS
KEY 38, 1; 1, 3
END

STATISTICS
NUMBER OF RECORDS =
NUMBER OF INTERMEDIATE PASSES
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
NUMBER OF SCRATCHFILE IO'S
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES) =
RECORD SIZE (11'1 BYTES) =
SCRATCH FILE SIZE (# SECTORS)

15
o

10,958
60
10

.00

.01
72
83

2-32

:EDITOR
END OF PROGRAM
HP32201A.7.04 EDIT/3000 SUN. SEP 23. 1979. 12:30 PM
(C) HEWLETT-PACKARD CO. 1978
T VICTORS. UNN; L ALL. UNN
IT VICTORS. UNN; L ALL. UNN
Nicola5 Bourbaki 4.0 B
Mi~ind Ranade 3.9 B
Sen5ible Kommuni5t 3.6 B
Uncle Sammue150n 3.7 B
Vegetarian Dracula 3.8 B
Bori5 Franke5tein 3.1 A
Hit Woman 3.1 A
Homo Geru us 3.4 A
Lacy Lowerca5e 3.4 A
Red Butler 3.1 A
Sorting Jack 3.3 A
Tech Nitpicker 3.2 A
Virgin Cat 3.1 A
Harry Kri5hna 2.9 U
Thomas OolLins 2.1 U
:EOJ

Figure 2-10

In the above example, a list of students applying for admission to a particular graduate class is being
prepared according to their grade point averages (GPA's). All the students with GPA greater than or equal
to 3.6 are considered bright (denoted by B). Those with GPA less than 3.6, but greater than or equal to 3.0
are considered accepatble (denoted by A). Others are unacceptable (U).

2-33

EXAMPLES OF THE SHOW COMMAND

Display of the ASCII collating sequence

)DATA IS ASCII, SEQUENCE IS ASCII
)SHDW SEQUENCE
nul soh stx etx eot enq ack bel bs ht lf vt ff cr so s1
dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp II # $ X & I () * + I
0 2 3 4 5 6 7 8 9 <) ?
® A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z \] A

, a b c d e f 9 h 1 j k 1 m n 0

p q r s t u v w x y z { I } '"del
Figure 2·11

This command displays the collating sequence determined by the first 128 characters of the ASCII code.
The sequence is displayed on the line printer if the OFFLINE parameter is also used.

Display of the EBCDIC collating sequence

)DATA A SEQ EBCDIC
)SH S
nul soh stx etx ht del vt ff cr so s1 dle dc1 dc2 dc3 bs
can em fs 9s rs us lf etb esc enq ack bel syn eot dc4 nak
sub [< (+ &] $ *) Asp ;
I ® X) ? , # I II a b
c d e f 9 h i j k 1 m n 0 p q r
'" 5 t u v w x y z { A B C D E F
G H I } J K L M N 0 P Q R \ S T
U V W X Y Z 0 1 2 3 4 5 G 7 a 9

Figure 2·12

The EBCDIC collating sequence is displayed if the SHOW command is preceded by the DATA command
with the EBCDIC parameter.

2-34

The recurring display of the collating sequence

>DATA A SEQ A
>SH S
nul soh stx etx eot enq aek bel bs ht If vt ff er so si
dIe de1 de2 de3 de4 nak syn etb can em sub ese fs 95 rs us
sp II # $ X 8. , () * + /
0 1 2 3 4 5 6 7 8 9 < > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U V W X Y Z [\ A

, a b e d e f 9 h i j k I m n 0

p q r 5 t u v IN X Y z { } ""del
>A MERGE "A-CII WITH "D-LII
nul soh stx etx eot enq aek bel bs ht If vt ff er so si
dIe de1 de2 de3 de4 nak syn etb can em sub ese fs 95 rs us
sp II # $ X 8. , () * + /
0 2 3 4 5 6 7 8 9 < > ?
@ A D B E C F G H I J K L M N 0
P Q R S T U V W X Y Z \ A

, a b e d e f 9 h i j k 1 m n 0

p q r 5 t u v IN X Y z { I } ""del
>A IIA" = IIBII
nul soh stx etx eot enq aek bel bs ht If vt ff er so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp II # $ X 8. , () * + /
0 1 2 3 4 5 6 7 8 9 < > ?
@ A= D B E C F G H J K L M N 0
P Q R S T U V W X Y Z \ A

, a b c d e f 9 h i j k 1 m n 0

p q r 5 t u v IN X Y z { I } '"del
>SH NOSEQUENCE
>A MERGE lIa-eliWITH IIA-C"

Figure 2-13

Once specified in the SHOW command, the collating sequence is displayed after each subsequent
ALTSEQ command until you specify the NOSEQUENCE parameter.

2-35

Sending the collating sequence to a disc file

:FILE DISPLOUT=DSPL, NEW; TEMP; DEV=DISC; REC=-80"F, ASCI I
:RUN SORT.PUB.SYS
HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 12:46 PM
(C) HEWLETT-PACKARD CO. 1980
>DATA A SEQ A
>A IIDFTIIWITH IIZSII
>SH S, OFFLINE
>EXIT
END OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 SUN, SEP 23, 1979, 12:46 PM
(C) HEWLETT-PACKARD CO. 1978
IT DSPL, UNN; L ALL, UNN
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp= T II # $ X & I () * +

I 0 1 2 3 4 5 6 7 8 9 < >
? @ A B C E G H I J K L M N 0 P
Q R S= F U V W X Y D= Z \ A

, a b c d e f 9 h i j k I m n 0

p q r s t u v w x y z { I } '"del
Figure 2-14

You can store the contents of the collating sequence in a disc file by using a file equation for the formal
designator DISPLOUT with the DEV=DISC parameter and appending DEV=DISC to the file equation.

2-36

Displaying the translation table in three forms

:FILE DISPLOUT=DSTL, NEW; TEMP; REC=-90"F, ASCI I; DEV=DISC
:RUN SORT.PUB.SYS
HP32214C.02.02 SORT/3000 SUN, SEP21, 1980, 1:05 PM
(C) HEWLETT-PACKARD CO. 1980

>DATA A SEQ A
>A "ZSD" = ilL"
>SH T, 0
>EX
END OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 SUN, SEP 23, 1979, 1:06 PM
(C) HEWLETT-PACKARD CO. 1978
IT DSTL, UNN; L ALL, UNN
TABLE OF ORDINAL VALUE ASSIGNED TO EACH CHARACTER.

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9
----+------+------+------+------+------+------+------+------+------+------

0 0 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 sp=32 != 33 II: 34 #= 35 $= 36 %= 37 &= 38 '= 39
4 (= 40)= 41 *= 42 += 43 44 45 .= 46 1= 47 0= 48 1= 49
5 2= 50 3= 51 4= 52 5= 53 6= 54 7= 55 8= 56 9= 57 : = 58 .= 59,
6 (= 60 == 61 >= 62 ?= 63 @= 64 A= 65 .B= 66 C= 67 .D= 32 E= 69
7 F= 70 G= 71 H= 72 1= 73 !J= 74 K= 75 !L= 76 .M= 77 !N= 78 0= 79
8 P= 80 .Q= 81 R= 82 S= 32 !T= 84 U= 85 !V= 86 !W= 87 !X= 88 Y= 89
9 .Z= 76 !t- 91 \= 92]= 93 !A= 94 _= 95 !'= 96 !a= 97 !b= 98 c= 99

10 !d=100 !e=101 f=102 9=103 !h=104 i=105 !j=106 !k=107 !1=108 m=109
11 !n=110 !0= 111 p=112 q=113 !r=114 s=115 !t= 116 !u=117 !v=118,=119
12 x=120 !y=121 z=122 {=123 !1=124 }=125 !"'=126 =127 128 129
13 130 131 132 133 134 135 136 137 138 139
14 140 141 142 143 144 145 146 147 148 149
15 150 151 152 153 154 155 156 157 158 159
16 160 161 162 163 164 165 166 167 168 169
17 170 171 172 173 174 175 176 177 178 179
18 180 181 182 183 184 185 186 187 188 189
19 190 191 192 193 194 195 196 197 198 199
20 200 201 202 203 204 205 206 207 208 209
21 210 211 212 213 214 215 216 217 218 219
22 220 221 222 223 224 225 226 227 228 229
23 230 231 232 233 234 235 236 237 238 239
24 240 241 242 243 244 245 246 247 248 249
25 250 251 252 253 254 255

WHEN PASSED TO SORTINIT, THE TABLE ABOVE IS PRECEDED BY TWO BYTES.
THESE FIRST TWO BYTES CONTAIN A FLAG BYTE OF %000 AND A LENGTH BYTE OF %377
RESPECTIVELY

2-37

CONTENTS OF THE ALTSEQ ARRAY FOR PROGRAMMATIC USE (DECIMAL BYTE REPRESENTATION):
0,255,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 32, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 32, 84, 85, 86, 87, 88, 89,
76, 91, 92, 93, 94, 95, 96, 97, 98, 99,

100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,127,128,129,
130,131,132,133,134,135,136,137,138,139,
140,141,142,143,144,145,146,147,148,149,
150,151,152,153,154,155,156,157,158,159,
160,161,162,163,164,165,166,167,168,169,
170,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,
190,191,192,193,194,195,196,197,198,199,
200,201,202,203,204,205,206,207,208,209,
210,211,212,213,214,215,216,217,218,219,
220,221,222,223,224,225,226,227,228,229,
230,231,232,233,234,235,236,237,238,239,
240,241,242,243,244,245,246,247,248,249,
250,251,252,253,254,255

CONTENTS OF THE ALTSEQ ARRAY FOR PROGRAMMATIC USE (OCTAL WORD REPRESENTATION):
%000377,
%000001,%001003,%002005,%003007,%004011,%005013,%006015,%007017,
%010021,%011023,%012025,%013027,%014031,%015033,%016035,%017037,
%020041,%021043,%022045,%023047,%024051,%025053,%026055,%027057,
%030061,%031063,%032065,%033067,%034071,%035073,%036075,%037077,
%040101,%041103,%020105,%043107,%044111,%045113,%046115,%047117,
%050121,%051040,%052125,%053127,%054131,%046133,%056135,%057137,
%060141,%061143,%062145,%063147,%064151,%065153,%066155,%067157,
%070161,%071163,%072165,%073167,%074171,%075173,%076175,%077177,
%100201,%101203,%102205,%103207,%104211,%105213,%106215,%107217,
%110221,%111223,%112225,%113227,%114231,%115233,%116235,%117237,
%120241,%121243,%122245,%123247,%124251,%125253,%126255,%127257,
%130261,%131263,%132265,%133267,%134271,%135273,%136275,%137277,
%140301,%141303,%142305,%143307,%144311,%145313,%146315,%147317,
%150321,%151323,%152325,%153327,%154331,%155333,%156335,%157337,
%160341,%161343,%162345,%163347,%164351,%165353,%166355,%167357,
%170361,%171363,%172365,%173367,%174371,%175373,%176375,%177377,

Figure 2-15

You should use the OFFLINE parameter of the SHOW TABLE command to send the contents of the
table to the disc, tape, or line printer. In this case, the table is printed in three forms. The first form is
identical to the table displayed on the terminal. The second form contains the same decimal representa-
tion of each character as in the first form; without headings and labels and preceded by two characters.
The first character specifies the type of input data and collating sequence (ASCII or EBCDIC). The
second character gives the total number of characters in the collating sequence minus one. The third form
contains the same information as the second form, except it contains the word representation (in octal).

2-39

The NOSEQUENCE parameter

>A MERGE "E-T" WITH "e-t"
>SH 5
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 9s rs us
sp •• # $ % & I () * + /
0 2 3 4 5 6 7 8 9 < > ?
8 A B C D E e F f G 9 H h i J
j K k L I M m M n 0 0 p P Q q R

5 T t U V W X Y Z [\ Ar s, a b c d u v w x y z { I } '"del
>SH MOSEQUEMCE
>A "c" • "5"
>SH 5
nul soh stx etx eot enq ack bel bs ht If vt ff cr so si
dIe dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs 95 rs us
sp •• # $ % & I () * + /
0 2 3 4 5 6 7 8 9 < > ?
8 A B D E e F f G 9 H h I i J j
K k L- C 1 M m M n 0 0 p P Q q R

5 T t U V W X Y Z [\] Ar 5, a b c d u v w x y z { I } '"del
Figure 2-16

The NOSEQUENCE parameter suppresses the display ofthe collating sequence. However, you can again
get the display by specifying the SEQUENCE parameter.

2-40

The NOTABLE parameter

>DATA A SEQ A
>SH NOT
>A "5" = "DII
>SH T
TABLE OF ORDINAL VALUE ASSIGNED TO EACH CHARACTER.

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9
----+------+------+------+------+------+------+------+------+------+------

0 0 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

2 20 21 22 23 24 25 26 27 28 29
3 30 31 sp=32 != 33 111=34 #= 35 $= 36 !%= 37 &= 38 '= 39
4 !(= 40)= 41 *= 42 += 43 1 = 44 45 46 !/= 47 0= 48 1= 49.,
5 !2= 50 3= 51 4= 52 5= 53 !6= 54 7= 55 8= 56 !9= 57 : = 58 .= 59,
6 l<= 60 == 61 >= 62 ?= 63 !@= 64 A= 65 B= 66 lC= 67 D= 68 E= 69
7 !F= 70 .G= 71 H= 72 1= 73 !J= 74 K= 75 L= 76 !M= 77 1'1=78 0= 79
8 lP= 80 !Q= 81 R= 82 5= 68 !T= 84 U= 85 V= 86 lW= 87 X= 88 Y= 89
9 lZ= 90 ![= 91 \= 92]= 93 1"= 94 _= 95 '= 96 la= 97 b= 98 c= 99

10 !d=100 !e=101 f=102 9=103 !h=104 i=105 j=106 !k=107 1=108 m=109
11 !n=110 lo=111 .p= 112 q= 113 !r=114 s= 115 t= 116 !u=117 .v= 118 .w=119
12 !x=120 y=121 z=122 {=123 ! I =124 .}=125 ."'=126 =127 128 129
13 130 131 132 133 134 135 136 137 138 139
14 140 141 142 143 144 145 146 147 148 149
15 150 151 152 153 154 155 156 157 158 159
16 1S0 161 162 163 164 165 166 167 168 169
17 170 171 172 173 174 175 176 177 178 179
18 180 181 182 183 184 185 186 187 188 189
19 190 191 192 193 194 195 196 197 198 199
20 200 201 202 203 204 205 206 207 208 209
21 210 211 212 213 214 215 216 217 218 219
22 220 221 222 223 224 225 226 227 228 229
23 230 231 232 233 234 235 236 237 238 239
24 240 241 242 243 244 245 246 247 248 249
25 250 251 252 253 254 255

WHEN PASSED TO SORTINIT, THE TABLE ABOVE IS PRECEDED BY TWO BYTES.
THESE FIRST TWO BYTES CONTAIN A FLAG BYTE OF %000 AND A LENGTH BYTE OF %377
RESPECTIVELY.

Figure 2-17

The NOTABLE parameter suppresses the display of the translation table until you give
the >SHOW TABLE command.

2-41

EXAMPLES OF THE SORT OPERATION

SORT with the terminal as the output file

>INPUT R
>OUTPUT *
>KEY 1, 15
>END
Djilas,
Hanvnarskjold,
K'ung,
Khan,
Lautreamont,
Nijinsky,
Noether,
Ortega y Gasset,
Pirandello,
Sen,

Milovan
Dag
Ch'iu
Jenghiz
Comte de
Vaslav
Envny
Jose
Luigi
Mrinal

sociologist
pacifist
preacher
emperor
novelist
dancer
mathematician
philosopher
playright
movie director

Figure 2-18

born 1911
born 1905
born 551 B.C.
born 1167 (?)
born 1846
born 1890
born 1882
born 1883
born 1867
born 1923

In this case, R is the input file and terminal is the output file.

Using the terminal as the input and output file

>INPUT *
>OUTPUT *
>KEY 1,2
>END
?GLOBE
?APE
?BANANA
?1234
?2345
?3456
?:eod
?deaf
?CAPITAL
?:EOD
1234
2345
3456
:eod
APE
BANANA
CAPITAL
GLOBE
deaf

Note that :EOD terminates the input records. The lowercase e, 0, and d, preceded by:, do not indicate the
end of the input data. Instead, they are treated as a part of the data.

Figure 2-19

2-42

SORT with file equations

:FILE INPUT-MAIL1
:FILE OUTPUT-TEST
:RUN SORT.PUB.SYS
HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 1:50 PM
(C) HEWLETT-PACKARD CO. 1980
>KEY 11, 9
>KEY 1, 10
>E

STATISTICS
NUMBER OF RECORDS z

NUMBER OF INTERMEDIATE PASSES •
SPACE AVAILABLE (IN WORDS) =
NUMBER OF COMPARES =
NUMBER OF SCRATCHFILE 10'S •
CPU TIME (MINUTES) •
ELAPSED TIME (MINUTES) •

13
o

11,087
52
8

.00

.04
Figure 2-20

This is an alternative procedure to specifiy MAILl as the input file and TEST as the output file. The
FILE commands are used before SORT-MERGE/3000 is accessed. Only the subsystem commands, KEY
and END, need be specified in this case.

SORT with cards as the input file

:FILE IN; DEV-CARD
:RUN SORT.PUB.SYS
HP32214C.02.02 SORT/3000 THU, JAN 24, 1980, 1:16 PM
(e) HEWLETT-PACKARD co. 1980
>INPUT IN
>OUTPUT MAIL1
>KEY 11, 9
>KEY 1, 10
>E

STATISTICS
NUMBER OF RECORDS •
RECORD SIZE (IN BYTES) =
NUMBER OF INTERMEDIATE PASSES
SPACE AVAILABLE (IN WORDS) =
NUMBER OF COMPARES •
NUMBER OF SCRATCHFILE IO'S •
CPU TIME (MINUTES) •
ELAPSED TIME (MINUTES) •

25
80
o

13,346
125
18

.01

.18
Figure 2-21

The input file, IN, is read from a card reader, sorted, and stored as a disc file.

2-43

SORT with multiple input files

>IHPUT (A, R)
>OUTPUT WORLD
>KEY 31, 15
>E

STATISTICS
HUMBER OF RECORDS =
HUMBER OF IHTERMEDIATE PASSES =
SPACE AVAILABLE (IH WORDS)
HUMBER OF COMPARES =
HUMBER OF SCRATCHFILE 10'5
CPU TIME (MIHUTES) ~
ELAPSED TIME (MIHUTES) =
RECORD SIZE (IH BYTES) =
SCRATCH FILE SIZE (# SECTORS)

20
o

11,089
95
14

.01

.01
72
85

EHD OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 SUH, SEP 23, 1979, 2:01 PM
(C) HEWLETT-PACKARD CO. 1978
IT WORLD, UHH;L ALL, UHH
Clift, Montgomery actor born 1920
Vanderbilt, Cornelius capitalist born 1794
Wiener, Horbert cybernetician born 1894
Hijinsky, Vaslav dancer born 1890
Khan, Jenghiz emperor born 1167 (?)

Rothstein, Arnold gangster born 1882
Chavez, Cesar labor leader born 1927
Hoether, Emmy mathematician born 1882
Sen, Mrinal movie director born 1923
Lautreamont, Comte de novelist born 1846
Hammarskjold, Dag pacifist born 1905
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Crane, Hart poet born 1899
Truman, Harry poli tician born 1884
K'ung, Ch'iu preacher born 551 B.C.
Joplin, Janis Singer born 1943
Djilas, Milovan sociologist born 1911
Chamberlain, Wilt sportsman born 1936
Horse, Crazy warrior born 1848

Figure 2-22

Two files, A and R, are sorted and merged in the same SORT operation. WORLD is the output file.

2-44

SORT with only the key fields as the output files

>INPUT R
>OUTPUT REST, KEY
>KEY 1, 15
>E

STATISTICS
NUMBER OF RECORDS =
NUMBER OF INTERMEDIATE PASSES
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
NUMBER OF SCRATCHFILE 10'S
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES) =
RECORD SIZE (IN BYTES) =
SCRATCH FILE SIZE (# SECTORS)

10
o

11,054
34
2

.00

.00
72
80

END OF PROGRAM
:EDITOR
HP32201A.7.04 EDIT/3000 SUN, SEP 23, 1979, 2:06 PM
(C) HEWLETT-PACKARD CO. 1978
IT REST, UNN;L ALL, UNN
Djilas,
Hanvnarskjold,
K'ung,
Khan,
Lautreamont,
Nijinsky,
Noether,
Ortega y Gasset
Pirandello,
Sen,

Figure 2-23

The OUTPUT command contains the KEY parameter so the output file consists of only the key fields.

2-45

SORT with logical record numbers and key fields as the output file

>INPUT A
>OUTPUT AMERICAN, NUM, KEY
>KEY 1, 15
>END

STATISTICS
NUMBER OF RECORDS =
NUMBER OF INTERMEDIATE PASSES
SPACE AVAILABLE (IN WORDS) =
NUMBER OF COMPARES =
NUMBER OF SCRATCHFILE IO'S
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES) =
RECORD SIZE (IN BYTES) =
SCRATCH FILE SIZE (# SECTORS) =
END OF PROGRAM
:RUN FCOPY.PUB.SYS

10
o

11,054
31
2

.00

.00
72
80

HP32212A.3.08 FILE COPIER (C) HEWLETT-PACKARD CO. 1978
>FROM=AMERICANj TO; CHARj OCTAL

AMERICAN RECORD 0 (%0, 10)

00000: 000000 000004 041550 060555 061145 071154 060551 067054Chamberlain,
00010: 020040 020000
AMERICAN RECORD 1 (%1, 11)

00000: 000000 000010 041550 060566 062572 026040 020040 020040Chavez,
00010: 020040 020000
AMERICAN RECORD 2 (%2, 12)

00000: 000000 000002 041554 064546 072054 020040 020040 020040Clift,
00010: 020040 020000

2-46

AMERICAN RECORD 3 (%3, #3)

00000: 000000 000011 041562 060556 062454 020040 020040 020040Crane,
00010: 020040 020000
AMERICAN RECORD 4 (%4, #4)

00000: 000000 000005 044157 071163 062454 020040 020040 020040Horse,
00010: 020040 020000
AMERICAN RECORD 5 (%5, #5)

00000: 000000 000006 045157 070154 064556 026040 020040 020040Joplin,
00010: 020040 020000
AMERICAN RECORD 6 (%6, #6)
00000: 000000 000001051157 072150 071564 062551 067054 020040Rothstein,
00010: 020040 020000
AMERICAN RECORD 7 (%7, #7)
00000: 000000 000003 052162 072555 060556 026040 020040 020040Truman,
00010: 020040 020000
AMERICAN RECORD 8 (%10, #8)

00000: 000000 000007 053141067144 062562 061151 066164 026040Vanderbilt,
00010: 020040 020000
AMERICAN RECORD 9 (%11, #9)

00000: 000000 000000 053551 062556 062562 026040 020040 020040Wiener,
00010: 020040 020000
EOF FOUND IN FROMFILE AFTER RECORD 9
10 RECORDS PROCESSED *** 0 ERRORS

Figure 2-24

Note both NUM and KEY are specified in the OUTPUT command.

2-47

EXAMPLES OF THE MERGE OPERATION

MERGE in interactive mode

:RUN MERGE.PUB.SYS
HP32214C.02.02 MERGE/3000 SUN, SEP 21, 1980, 2:29 PM
(C) HEWLETT-PACKARD CO. 198:0
>INPUT AMERICAN, REST
>OUTPUT WORLD
>KEY 31, 14
>END
PURGE OLD OUTPUT FILE WORLD.PUB.ACCT ? YES

STATISTICS
NUMBER OF INPUT FILES =
NUMBER OF RECORDS =
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES)

2
20

11,164
18

.00

.01
Figure 2-25

AMERICAN and REST are the two sorted files and they are merged into the file, WORLD.

MERGE in batch mode

:JOB MGR.ACCT
JOB NUMBER = #J10
SUN, SEP 23, 1979, 2:39 PM
HP3000 I MPE III B.00.02
:RUN MERGE.PUB.SYS
HP32214C.02.02 MERGE/3000 SUN, SEP 21, 1980, 2:39 PM
(C) HEWLETT-PACKARD CO. 1980
INPUT MAIL1, MAIL2
OUTPUT AMERICAN
KEY 11, 9; 1, 10
E
OUTPUT FILE CLOSED WITH FILENAME OUTPUTO

STATISTICS
NUMBER OF INPUT FILES =
NUMBER OF RECORDS =
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES)

2
25

11,161
21

.00

.01

2-48

:RUN MERGE.PUB.SYS
PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

:EDITOR
END OF PROGRAM
HP32201A.7.04 EDIT/3000 SUN, SEP 23, 1979, 2:44 PM
(C) HEWLETT-PACKARD CO. 1978
T OUTPUTO, UNN; L ALL, UNN
IT OUTPUTO, UNN; L ALL, UNN
PLAINS ANTELOPE 201 oPENSPACE AVE BIGCoUNTRY WY 49301 369-732-4821
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-0100
ALl BABA 40 THIEVES WAY SESAME CO 69142 NONE
BLACK BEAR 47 ALLOVER DR ANYWHERE US 00111 NONE
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619-407-2314
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 04321 976-299-2990
SWASH BUCKLER 497 PLAYACTING CT MOVIEToWN CA 61497 NONE
ANIMAL CRACKERS 1000 ANYWHERE PL ALLOVER US 00001 001-100-1000
MULE DEER 963 FOREST PL NICECoUNTRY CA 97643 493-900-9000
WHITETAIL DEER 34 WOODSY PL BACKCOUNTRY ME 01341 619-433-4333
JAMES DOE 4193 ANY ST ANYToWN MD 00133 237-408-7100
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
PRAIRE DOG 493 ROLLINGHILLS DR oPENSPACE ND 24321 992-419-4192
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
MALLARD DUCK 79 MARSH PL PUDDLEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717

SWAMP

HARE 742 FRIGID WAY
LION 796 KING DR
MANN 9999 GALAXY WAY
RABBIT 4444 DAMPPLACE RD
RATTLER 243 DANGER AVE
SHEEP 999 MOUNTAIN DR
SQUIRREL 432 PLEASANT DR

CoLDSPOT MN 37434 732-732-7320
THICKET NM 37643 712-712-7122
UNIVERSE CA 61239 231-999-9999
BAYOU LA 79999 NONE
DESERTVILLE CA 87654 828-432-4321
HIGHPLACE CO 34567 776-409-9040
FALLCOLORS MA 14321 619-619-6199

SNOWSHOE
MOUNTAIN
SPACE

NASTY
BIGHORN
GREY
:EOJ

Figure 2-26

Note SORT-MERGE/3000 creates the file, OUTPUTO, as the file, AMERICAN, already exists.

2-49

CALLING SORT FROM A iN!!.!:.
L----FO_R_T_RA_N_'_30_0_0_P_RO_G_RA_M__ -----' [ill]
This and the next three sections introduce you to the programmatic use of SORT-MERGE/3000. You can
sort one or more files from a FORTRAN/3000 program by using intrinsic calls. These intrinsics
(SPL/3000 procedures) are part of SORT.MERGE/3000 and are called by using the SYSTEM INTRIN-
SIC declarations in your program. The various parameters of these intrinsics are used by
SORT-MERGE/3000 to perform specific operations.

The SORT program intrinsics

The following is a list of the SORT program intrinsics which reside in the SORTLIB segment of the
system segmented library (SL.PUB.SYS):

INTRINSIC DESCRIPTION

SORTINIT Initiates the SORT operation.

SORTINPUT Passes the input records, one at a time, to the SORT program only if the
inputfiles parameter is not specified in SORTINIT.

SORTOUTPUT Signals the beginning of SORT and receives each output record from SORT
into an array specified by the record parameter. SORTOUTPUT signals the
end of the input process if SORTINPUT is also called. SORTOUTPUT is used
only if the ouputfiles parameter of SORTINIT is not specified.

SORTEND Closes the scratch file and restores the data stack to its original state. It signals
the beginning of SORT if SORTOUTPUT is not called.

SORTSTAT Prints the SORT statistics on $STDLIST.

SORTTITLE Prints the version number and title of the SORTLIB segment along with the
date and time produced by the DATELINE intrinsic on $STDLIST.

SORTERRORMESS Called to retrieve and print a message if a fatal error occurs during SORT.
SORTERRORMESS is called from a user supplied error procedure (the
errorproc parameter of SORTINIT).

3-1

The call to SORTINIT starts the SORT operation. You should follow it by calling SORTINPUT if the
inputfiles parameter of SORTINIT is not specified. After this, call SORTOUTPUT if the outputfiles
parameter of SORTINIT is not specified. Then call SORTEND to terminate SORT. If you want the
display of the SORT statistics, call SORTSTAT. Additionally, call SORTERRORMESS from the user
supplied procedure, errorproc, if you want a display of the message when an error occurs. Note
SORTINIT and SORTEND are always required. But the calls to SORTINPUT, SORTOUTPUT,
SORTSTAT, and SORTERRORMESS are optional. However, their order is important whenever they
are called. Optional intrinsic SORTTITLE is an exception in that it can be called from the program at any
stage after the declaration of the system intrinsics. The following flowchart describes the SORT operation
when SORTINPUT, SORTOUTPUT, and SORTSTAT are used:

NO

NO

YES

YES

YES

Figure 3-1. Flowchart of SORT Intrinsics

3-2

Preparation and Execution of the SORT Programs

The amount of available memory can affect both the time required to perform the SORT operation and
the amount of secondary storage needed by a temporary file. SORT programs should normally be pre-
pared with the maximum available segsize, which is specified by the MAXDATA= segsize parameter of
the :PREP or :RUN commands.

If a smaller segsize must be used, the following allowances should be made to provide enough space for
sorting. The segsize should be approximately 12000 words greater than the space required to run your
program without calls to the SORT intrinsics. If the files to be sorted are opened NOBUF, the segsize
should be increased by an additional amount equal to your blocksize (in words). When sorting files that
have been opened multirecord, the maximum possible segsize should be used.

If the error message INSUFFICIENT STACK SPACE is displayed, increase the MAXDATA parameter.
If the message TOO MANY FILES OPEN (FSERR 71) appears, it means MPE has no room for its tables
in the user data segment. Use the NOCB parameter of the :RUN command during the execution of the
program in this case.

NOTE: The SORTINITIALF intrinsic is included in this manual for the maintenance of existing
FORTRAN/3000 programs.

3-3

SORTINIT
Initiates the SORT operation.

SYNTAX
IA IA IV IV

CALL SORTINIT \ inputfiles, outputfiles, outputoption, reclen,
DV IV IA IA LP

numrecs, numkeys, keys, altseq, heyeompare,
P IA L

errorproc, statistics, failure,
I I o-v

errorparm, spaceallocation, parmI, parm2)

PARAMETERS

inputfiles

outputfiles

outputoption

reclen

An integer array containing the MPE/3000 file identification numbers (fnum's)
of the files to be sorted. The array must be terminated with a word of zero to
indicate the end of the list. If the files are opened with either the NOBUF or MR
(multirecord) access option (aoption), SORT or MERGE will perform the
buffering and blocking/deblocking. $Null is not a valid input file.

An integer array containing the file identification of the output file. The second
word must contain a zero to indicate the end of the list. If the file is opened with
either the NOBUF or MR (multirecord) access option (aoption), SORT or
MERGE will perform the buffering and blocking/deblocking.

An integer which determines the format of the output records. There are four
possibilities:

O-Output record is the same as input record (default value)

I-Output record is a double integer (4 characters) whose value is the logical
(relative) record number of the record.

2-0utput record contains only the key fields, concatenated together with the
major keys on the left followed by the remaining keys (Fig. 3-1).

3-0utput record is the logical record number followed by the key fields.

An integer which denotes the maximum length of a record in characters. If it is
not specified, the record length is taken from the first file specified in the
inputfiles array. In this case, you must specify the inputfiles parameter.

3-4

numrecs

numkeys and keys

A double integer which is the upper bound to the number of records to be sorted.
If this is not specified (or if all the input files are not on the disc), the value of
10,000 (double integer) is used. Otherwise, the parameter value is derived from
the file label (the end of file number of the input files).

numkeys is an integer and keys is an integer array. They specify the way the
records are sorted. If either is specified, the other must also be specified and the
keycompare parameter must not be specified. numkeys is the number of keys
used in the comparison of records and must be either equal to or greater than one.
For each key being specified, keys contains three words:

First word gives the position of the first character of the key within the input
record. (The first character of the record is considered postion 1.) Second word
gives the total number of characters in the key. Third word (bits 0 through 7)
gives the ordering sequence of the records; 0 for ascending, 1 for descending. bits
8 through 15 of the third word indicate the type of data according to the following
convention:

O=logical or character (same as the type, BYTE, in interactive mode)

l=two's complement (including integer and double integer)

2=floating point (including real and long)

3=packed decimal

5=packed decimal with even number of digits

4=Display-Trailing-Sign (see the KEY command in Section II)

6=Display-Leading-Sign

8=Display- Trailing-Sign-Separate

7=Display- Leading -Sign-Separate

3-5

altseq

keycompare

errorproc

An integer array defining an alternate collating sequence. The first character
(bits 0-7) of the array is defined according to the following table:

Sequence ASCII ALTSEQEBCDIC

Data

ASCII

EBCDIC

255 2 o
255 undefined1

Table 3-1. The First Character of the altseq Array

The second character (bits 8-15) specifies one less than the total number of char-
acters in the collating sequence (in this case, 255 or % 377). These two characters
are followed by the actual collating sequence responsible for the particular SORT
operation. See Figs. 3-2 through 3-5 for details.

A user-supplied logical function subprogram that allows you access to your
records when they are compared (Fig. 3-6). It must be specified in your call to
SORTINIT if you do not specify numkeys and keys. This subprogram should
include a statement of the following form:

LOGICAL FUNCTION keycompare (reel, leril , rec2, Zen2)

reel and rec2 are pointers to the two records and len.l and Zen2 are the lengths of
the records in characters. The subprogram returns a true value if reel precedes
rec2, and a false value otherwise. A true value is also returned in the case of ties, to
ensure the records with equal keys retain their original order.

A user-supplied subroutine subprogram called whenever a fatal error occurs dur-
ing a SORT operation. It is used along with the SORTERRORMESS intrinsic
and should include a statement of the following form:

SUBROUTINE errorproc(errorcode)

errorcode is an integer which is the SORT program error number. It is passed to
errorproc when an error occurs. If errorproc or errorparm are not specified, a
default procedure is used which displays the error message corresponding to the
particular errorcode. For a list of these error messages, see Appendix A.

3-6

statistics

failure

errorparm

spaceallocation

parmi

parm2

An integer array which, if specified, is filled with the following data (Fig. 3-9):

First and second words=
number of records sorted (double integer)

Third word=
number of intermediate passes

Fourth word=
space available for sorting

Fifth and sixth words=
number of comparisons (double integer)

Seventh and eighth words=
number of scratch file inputs/outputs (double integer)

Ninth and tenth words=
CPU time used (in milliseconds, double integer)

Eleventh and twelfth words=
elapsed time (in milliseconds, double integer)

A logical variable, which if specified, is set to -1 (true) if a fatal error occurs, and 0
(false) otherwise. It is set after each call to SORTINPUT and SORTOUTPUT; in
addition, the condition code is set (Fig. 3-14).

Error conditions:

CCE=
no error occurred (failure set to false)

CCL=
error occurred (failure set to true)

An integer variable which, if specified, is set to the SORTLIB error number if an
error occurs. The SORTERRORMESS intrinsic can be used to obtain the error
message text. If the errorparm is supplied, the errorproc procedure is ignored and
no error messages are display. For a list of error messages see Appendix A.

An integer variable which, if specified, is used to determine stack allocation. A
positive spaceallocation specifies the number of words that may be used for
sorting and buffering. A negative values specifies the number of words that
should be left for the user after determining the amount available. Zero will cause
a default value to be used.

unused

unused

3-7

SORTINPUT
Passes the input records, one at a time, to the SORT program, only if the inputfiles parameter is not
specified in SORTINIT.

SYNTAX

LA IV
CALL SORTINPUT (record, length)

PARAMETERS

record A logical array containing a data record.

length An integer denoting the number of charaters in the record. It should be long
enough to contain all the keys specified, but not longer than the record size
(reclen).

ERROR CONDITIONS:

CCE=
no error occurred (failure set to false)

CCL=
error occurred (failure set to true)

This intrinsic follows SORTINIT and precedes SORTOUTPUT and SORTEND (see Fig. 3-1).

3-8

SORTOUTPUT
Signals the beginning of SORT and receives each output record from SORT into an array specified by the
record parameter. SORTOUTPUT signals the end of the input process if SORTINPUT is also called.
SORTOUTPUT is used only if the out putfile» parameter of SORTINIT is not specified.

SYNTAX

LA IV
CALL SORTOUTPUT (record, length)

PARAMETERS

record A logical array receiving the next output record in the format specified by
outputoption.

length An integer denoting the number of characters returned in the record. When no
more records remain, length is set to -1.

ERROR CONDITIONS:

CCE=
no error occurred (failure set to false)

CCL=
error occurred (failure set to true)

Note if SORTINPUT is also called, SORTOUTPUT is called only after SORTINPUT has passed all the
records. SORTOUTPUT always precedes SORTEND (Fig. 3-11).

3-9

SORTEND
Closes the scratch file and restores the data stack to its original state. It signals the beginning of SORT if
SORTOUTPUT is not called.

SYNTAX

CALL SORTEND

ERROR CONDITIONS:

CCE=
no error occurred during SORT (failure set to false)

CCL=
an error occurred during SORT (failure set to true)

This intrinsic is required if SORTINIT is called. It can be called either after all the calls to the output file
are completed by SORTINIT, or after all the calls to SORTOUTPUT are completed.

3-10

Prints the SORT statistics on $STDLIST.

SYNTAX
fA

CALL SORTS TAT (statistics)

statistics is an integer array. SORTS TAT is called after SORTEND (Fig. 3-12).

3-11

SORTSTAT

SORTTITLE
Prints the version number and title of the SORTLIB segment along with the date and time produced by
the DATELINE intrinsic on $STDLIST.

SYNTAX

CALL SORTTITLE

It can be called from the program at any stage after the declaration of the system intrinsics (Fig. 3-13).

3-12

SORTERRORMESS
Called to retrieve and print a message if a fatal error occurs during SORT. SORTERRORMESS is called
from a user supplied procedure (the errorproc parameter of SORTINIT).

SYNTAX

IV BA I
CALL SORTERRORMESS t errorcode. message, length)

PARAMETERS

errorcode An integer (the SORT program error number) passed to errorproc when an error
occurs.

message A character array into which the text of the message is placed. The message pa-
rameter must be at least 72 characters long.

length An integer denoting the length of the message in characters.

SORTERRORMESS works in conjunction with the errorproc parameter of SORTINIT (Fig. 3-8).

3-13

SORTINITIALF
Initiates the SORT operation (to be used only for existing FORTRAN/3000 programs).

SYNTAX
IV IV IV IV

CALL SORTINITIALF (inputfile, outputfile, outputoption, reclen,
DV IV IA P LP

_numrecs, numkevs, keys, errorproc, keycompare,
LA L o-v

statistics, failure)

PARAMETERS

inputfile MPE/3000 file number of the file to be sorted. Input records are read directly
from the file by the SORT program, and no calls are made to SORTINPUT. If
inputfile is not specified, the records are passed via SORTINPUT which must be
called.

outputfile MPE/3000 file number of the file to which sorted records are sent. If specified, no
calls to SORTOUTPUT may be made. Otherwise, the sorted records are sent
through the SORT OUTPUT intrinsic which must be called.

Unlike SORTINIT, where the inputfiles and outputfiles parameters are arrays, the parameters, inputfile
and outputfile, are integers; each of them representing only a single file. SORTINITIALF intrinsic does
not have the capability of defining an alternate collating sequence. Also, the positions of the errorproc and
keycompare parameters are interchanged. The remaining parameters .follow the same rules as in
SORTINIT (Fig. 3-14).

3-14

EXAMPLES

Calling the SORTINIT intrinsic when both inputfiles and outputfiles are specified

$CONTROL USLINIT, FILE=33,FILE=34,FILE=35
PROGRAM F1
CHARACTER *72 BUF
INTEGER KEYS(6),FNUM,INFILE(3),OUTFILE(2)
SYSTEM INTRINSIC SORTINIT, SORTEND

C
C SORT THE FILES, A (FTN33) AND R (FTN34), INTO A FILE, WORLD (FTN35).
C SORT ON LAST NAMES WITHIN OCCUPATIONS.
C ESTABLISH THE KEYS. MAJOR AT 31 (OCCUPATION) FOR 17 BYTES AND
C THE OTHER KEY AT 1 (LAST NAME) FOR 15 BYTES.
C

KEYS(1)=31
KEYS(2)=17
KEYS(3H 0:8] =1
KEYS(3)[8:8]=0
KEYS(4)=1
KEYS(5)-17
KEYS(SH 0:8]=1
KEYS(SH8:8]=0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

INFILE(1)= FNUM(33)
INFILE(2)=FNUM(34)
INFILE(3)=0
OUTFILE(1)=FNUM(35)
OUTFILE(2)=0

C
C INITIALIZE SORT - OUTPUTOPTION=2
C

CALL SORTINIT(INFILE,OUTFILE,2",2,KEYS)
CALL SORTEND

C
C READ AND DISPLAY THE KEY FIELDS.
C

REWIND 35
10 READ(35,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

3-15

:FILE FTN33=A, OLD
:FILE FTN34=R, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN $OLDPASS;MAXDATA=4000
END OF PREPARE

warrior
sportsman
sociologist
singer
preacher
poli tician
poet
playright
philosopher
paci fist
novelist
movie director
mathematician
labor leader
gangster
emperor
dancer
cyber-ne t t c ien
capi talist
actor

Horse,
Chamberlain,
Djilas,
Joplin,
K'ung,
Truman,
Crane,
Pirandello,
Ortega y Gasset,
Hammarskjold,
Lautreamont,
Sen,
Noether,
Chavez,
Rothstein,
Khan,
Nijinsky,
Wiener,
Vanderbilt,
Clift,

Figure 3-2

The files, A and R, are sorted and merged into the file, WORLD. INFILE and OUTFILE are the
inputfiles and outputfiles parameters. The default value is used for the reclen parameter. The
outputoption is two which sends only the key fields to the output file. The third word of the array KEYS
has one in the first eight bits, which accounts for a descending sequence; and zero in the last eight bits,
which specifies the BYTE data type.

3-16

Construction of the translation table

:FILE DISPLOUT=DSFL, NEW; TEMP; REC=-110"F, ASCII; DEV=DISC
:RUN SORT.PUB.SYS
HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 3:10 PM
(C) HEWLETT-PACKARD CO. 1980
)DATA A SEQ A
)A "BAII = "ABII
)SH T, 0
)EX

Figure 3-3

Note the ALTSEQ command allocates a higher value to B than A in the altered collating sequence. The
>SHOW TABLE, OFFLINE command stores the translation table on a disc as the file equation is
appended by DEV=DISC. The contents of the table are copied into the file, DSFL.

Editing the contents of the translation table

IT DSFL, UNN; L ALL, UNN
TABLE OF ORDINAL VALUE ASSIGNED TO EACH CHARACTER.

0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 !5p=32 != 33 11= 34 !#= 35 $= 36 !%= 37 !&= 38 ,= 39
4 (= 40)= 41 !*= 42 += 43 44 !-= 45 46 !/= 47 !O= 48 1= 49
5 2= 50 3= 51 !4= 52 5= 53 6= 54 !7= 55 8= 56 !9= 57 !:= 58 ; = 59
6 (= 60 == 61 !)= 62 ?= 63 @= 64 !A= 66 .B= 65 !C= 67 !D= 68 E= 69
7 F= 70 .G= 71 !H= 72 1= 73 !J= 74 !K= 75 !L= 76 !M= 77 !N= 78 0= 79
8 P= 80 !Q= 81 !R= 82 S= 83 !T= 84 !U= 85 !V= 86 !W= 87 !X= 88 .Y= 89
9 .Z= 90 !(= 91 "= 92)= 93 !"= 94 I = 95 !'= 96 !a= 97 !b= 98 !c= 99

10 !d=100 !e=101 !f=102 9=103 !h=104 !i=105 !j=106 !k=107 !1=108 !m=109
11 !n=110 !0=111 !p=112 q=113 !r=114 !5=115 !t= 116 !u=117 !v= 118 !w= 119
12 !x=120 !y=121 !z=122 !{=123 !1=124 !}=125 !-=126 =127 128 129
13 130 131 132 133 134 135 136 137 138 139
14 140 141 142 143 144 145 146 147 148 149
15 150 151 152 153 154 155 156 157 158 159
16 160 161 162 163 164 165 166 167 168 169
17 170 171 172 173 174 175 176 177 178 179
18 180 181 182 183 184 185 186 187 188 189
19 190 191 192 193 194 195 196 197 198 199
20 200 201 202 203 204 205 206 207 208 209
21 210 211 212 213 214 215 216 217 218 219
22 220 221 222 223 224 225 226 227 228 229
23 230 231 232 233 234 235 236 237 238 239
24 240 241 242 243 244 245 246 247 248 249
25 250 251 252 253 254 255

WHEN PASSED TO SORTINIT, THE TABLE ABOV IS PRECEDED BY TWO BYTES.
THESE FIRST TWO BYTES CONTAIN A FLAG BYTE OF %000 AND A LENGTH BYTE OF %377

RESPECTIVELY.

3-17

32
33 CONTENTS OF THE ALTSEQ ARRAY FOR PROGRAMMATIC USE (DECIMAL BYTE

REPRESENTATION):
34 0,255,
35 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
36 10,11,12,13,14,15,16,17,18,19,
37 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
38 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
39 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
40 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
41 60, 61, 62, 63, 64, 66, 65, 67, 68, 69,
42 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
43 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
44 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
45 100,101,102,103,104,105,106,107,108,109,
46 110,111,112,113,114,115,116,117,118,119,
47 120,121,122,123,124,125,126,127,128,129,
48 130,131,132,133,134,135,136,137,138,139,
49 140,141,142,143,144,145,146,147,148,149,
50 150,151,152,153,154,155,156,157,158,159,
51 160,161,162,163,164,165,166,167,168,169,
52 170,171,172,173,174,175,176,177,178,179,
53 180,181,182,183,184,185,186,187,188,189,
54 190,191,192,193,194,195,196,197,198,199,
55 200,201,202,203,204,205,206,207,208,209,
56 210,211,212,213,214,215,216,217,218,219,
57 220,221,222,223,224,225,226,227,228,229,
58 230,231,232,233,234,235,236,237,238,239,
59 240,241,242,243,244,245,246,247,248,249,
60 250,251,252,253,254,255

3-18

61
62 CO~TE~TS OF THE ALTSEQ ARRAY FOR PROGRAMMATIC USE (OCTAL WORD

REPRESE~TATIO~):
63 %000377,
64 %000001,%001003,%002005,%003007,%004011,%005013,%006015,%007017,
65 %010021,%011023,%012025,%013027,%014031,%015033,%016035,%017037,
66 %020041,%021043,%022045,%023047,%024051,%025053,%026055,%027057,
67 %030061,%031063,%032065,%033067,%034071,%035073,%036075,%037077,
68 %040102,%040503,%042105,%043107,%044111,%045113,%046115,%047117,
69 %050121,%051123,%052125,%053127,%054131,%055133,%056135,%057137,
70 %060141,%061143,%062145,%063147,%064151,%065153,%066155,%067157,
71 %070161,%071163,%072165,%073167,%074171,%075173,%076175,%077177,
72 %100201,%101203,%102205,%103207,%104211,%105213,%106215,%107217,
73 %110221,%111223,%112225,%113227,%114231,%115233,%116235,%117237,
74 %120241,%121243,%122245,%123247,%124251,%125253,%126255,%127257,
75 %130261,%131263,%132265,%133267,%134271,%135273,%136275,%137277,
76 %140301,%141303,%142305,%143307,%144311,%145313,%146315,%147317,
77 %150321,%151323,%152325,%153327,%154331,%155333,%156335,%157337,
78 %160341,%161343,%162345,%163347,%164351,%165353,%166355,%167357,
79 %170361,%171363,%172365,%173367,%174371,%175373,%176375,%177377,
80

IDQ 1/62, 80
~UMBER OF LI~ES DELETED = 63
ICQ 1 TO II II I~ ALL
ICQ 1/6 TO II *" I~ ALL
K DSFL, U~~
DSFL ALREADY EXISTS - RESPO~D YES TO PURGE OLD A~D KEEP ~EW
PURGE OLD? YES
IE

Figure 3-4

The file DSFL is edited with the help of EDIT/3000. Note the lines 1 through 62 and 80 are deleted. Lines
63 through 79 are moved to the seventh column positions before inserting DSFL into the array, ALT, in
the FORTRAN program.

3-19

Calling SORTINIT with the altseq parameter

$CONTROL USLINIT,FILE=31,FILE=32
PROGRAM F2
INTEGER KEYS(6),FNUM,IFILE(2),OFILE(2),ALT(129)
SYSTEM INTRINSIC SORTINIT,SORTEND
CHARACTER *72 SHOW
DATA ALTI

*%000377,
*%000001,%001003,%002005,%003007,%004011,%005013,%006015,%007017
*%010021,%011023,%012025,%013027,%014031,%015033,%016035,%017037
*%020041,%021043,%022045,%023047,%024051,%025053,%026055,%027057
*%030061,%031063,%032065,%033067,%034071,%035073,%036075,%037077
*%040102,%040503,%042105,%043107,%044111,%045113,%046115,%047117
*%050121,%051123,%052125,%053127,%054131,%055133,%056135,%057137
*%060141,%061143,%062145,%063147,%064151,%065153,%066155,%067157
*%070161,%071163,%072165,%073167,%074171,%075173,%076175,%077177
*%100201,%101203,%102205,%103207,%104211,%105213,%106215,%107217
*%110221,%111223,%112225,%113227,%114231,%115233,%116235,%117237
*%120241,%121243,%122245,%123247,%124251,%125253,%126255,%127257
*%130261,%131263,%132265,%133267,%134271,%135273,%136275,%137277
*%140301,%141303,%142305,%143307,%144311,%145313,%146315,%147317
*%150321,%151323,%152325,%153327,%154331,%155333,%156335,%157337
*%160341,%161343,%162345,%167747,%164351,%165353,%166355,%167357
*%170361,%171363,%172365,%173367,%174371,%175373,%152325,%177377

C
C SORT THE FILE, UNDRGRAD (FTN31), INTO A FILE, VICTORS(FTN32).
C SORT ON LAST NAMES WITHIN GRADES.
C ESTABLISH THE KEYS. MAJOR AT 38 FOR 1 BYTE AND
C MINOR AT 1 FOR 3 BYTES.
C

KEYS(1)=38
KEYS(2)=1
KEYS(3)=0
KEYS(4)=1
KEYS(5)=3
KEYS(6)=0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

IFILE(1)=FNUM(31)
IFILE(2)=0
OFILE(1)=FNUM(32)
OFILE(2)=0

c

3-20

C INITIALIZE SORT USING THE altseq PARAMETER, ALT.
C

CALL SORTINIT(IFILE,OFILE",,2,KEYS,ALT)
CALL SORTEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 32
11 READ(32,END-100)SHOW

DISPLAY SHOW
GO TO 11

100 STOP
END

:FILE FTN31-UNDRGRAD, OLD
:FILE FTN32-VICTORS, NEW
:PREPRUN $OLDPASS; MAXDATA=15000
END OF PREPARE

Nicolas Bourbaki 4.0 B
Milind Ranade 3.9 B
Sensible Kommunist 3.6 B
Uncle Sammuelson 3.7 B
Vegetarian Dracula 3.8 B
Boris Frankestein 3.1 A
Hit Woman 3.1 A
Homo GeniUS 3.4 A
Lacy Lowercase 3.4 A
Red Butler 3.1 A
Sorting Jack 3.3 A
Tech Nitpicker 3.2 A
Virgin Cat 3.1 A
Harry Krishna 2.9 U
Thomas Collins 2.1 U

Figure 3·5

3-21

Calling SORTINIT with EBCDIC as the collating sequence

$CONTROL USLINIT,FILE=29,FILE=30
PROGRAM F3
INTEGER KEYS(6),FNUM,AL(129),IFILE(2),OFILE(2)
SYSTEM INTRINSIC SORTINIT,SORTEND
CHARACTER *72 BUF

C
C SORT THE FILE, NAMES (FTN29), INTO A FILE, ARRANGED (FTN30).
C SORT ON LAST NAMES
C ESTABLISH THE KEY AT 1 FOR 3 BYTES
C

KEYS(1>=1
KEYS(2)=3
KEYS(3)=0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

IFILE(1)=FNUM(29)
IFILE(2)=0
OFILE(1)=FNUM(30)
OFILE(2)=0

C
C DESCRIBES THE AL ARRAY.
C

DATA All
*%001377,
*%000001,%001003,%033455,%027057,%013005,%022413,%006015,%007017
*%010021,%011023,%036075,%031046,%014031,%037447,%021035,%032437
*%040132,%077573,%055554,%050175,%046535,%056116,%065540,%045541
*% 170361, %171363, X172365, x 173367, X174371,'%075136, %046176, %067157
*%076301,%141303,%142305,%143307,%144311,%150722,%151724,%152726
*%153730,%154742,%161744,%162746,%163750,%164655,%160275,%057555
*%074601,%101203,%102205,%103207,%104211,%110622,%111624,%112626
*%113630,%114642,%121644,%122646,%123650,%124700,%065320,%045007
*%100201,%101203,%102205,%103207,%104211,%105213,%106215,%107217
*%110221,%111223,%112225,%113227,%114231,%115233,%116235,%117237
*%120241,%121243,%122245,%123247,%124251,%125253,%126255,%127257
*%130261,x 131263,%132265.%133267,%134271,%1352'73,%136275,x 137277
*%140301,%141303,%142305,%143307,%144311,%145313,%146315,%147317
*%150321,%151323,%152325,%153327,%154331,%155333,%156335,%157337
*%160341,%161343,%162345,%167747,%164351,%165353,%166355,%167357
*%170361,%171363,%172365,%173367,%174371,%175373,%152325,%177377

C'

3-22

C INITIALIZE SORT USING THE altseq PARAMETER, AL.
C

CALL SORTINITCIFILE,OFILE",,1,KEYS,AL)
CALL SORTEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 30
10 READC30,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN29=NAMES, OLD
:FILE FTN30~ARRANGED, NEW
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE

vi llon
winthrop
wylie
yamakoshi
ziegfeld
zydner
BRADLEY
COMTE
CONN INGHAM
CONNOR
CORDAN
DELIUS

END OF PROGRAM
Figure 3-6

The >SHOW TABLE, OFFLINE command preceded by the appropriate file equation and the DATA
command with the EBCDIC sequence parameter, copies the translation table to the disc file. The file is
edited and the altseq array is constructed in the same manner as in the previous example. The file,
NAMES, is sorted into the file, ARRANGED. Note the lowercase alphabetic letters precede the upper-
case letters in ARRANGED.

3-23

Using the heyeompare parameter

SCONTROL USLINIT,FILE=31,FILE=32
PROGRAM F4
INTEGER FNUM,IN(2),OUC2)
CHARACTER BUF*72
INTEGER L 1,L2
EXTERNAL KEYCOM
LOGICAL FUNCTION KEYCOM
SYSTEM INTRINSIC SORTINIT,SORTEND

C
C SORT THE FILE UNGRADCFTN31) INTO A FILE VICTORSCFTN32).
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

INC1).•FNUMC31)
IN(2)=0
OU(1)=FNUMC32)
OU(2)=0

C
C INITIALIZE SORT WITH THE KEYCOMPARE PARAMETER, KEY.
C

CALL SORTINITCIN,OU""",KEYCOM)
CALL SORTEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 32
500 READC32,END=100)BUF

DISPLAY BUF
GO TO 500

100 STOP
END

PROGRAM UNIT F4 COMPILED
LOGICAL FUNCTION KEYCOMCA,B,C,D)
CHARACTER A*CB)
INTEGER B,D
CHARACTER C*CD)
KEYCOM=.FALSE.
IF CA.LE.C)KEYCOM=.TRUE.
RETURN
END

PROGRAM UNIT KEYCOM COMPILED
:FILE FTN31-UNDRGRAD, OLD
:FILE FTN32-VICTORS, NEW
:PREPRUN SOLDPASSj MAXDATA=15000
END OF PREPARE

3-24

Boris Frankestein 3.1 A
Harry Krishna 2.9 U
Hit Woman 3.1 A
Homo Genius 3.4 A
Lacy Lowercase 3.4 A
Milind Ranade 3.9 B
Nicolas Bourbaki 4.0 B
Red Butler 3.1 A
Sensible Kommunist 3.6 B
Sorting Jack 3.3 A
Tech Nitpicker 3.2 A
Thomas Coll ins 2.1 U
Uncle Sammuelson 3.7 B
Vegetarian Dracula 3.8 B
Virgin Cat 3.1 A

Figure 3-7

The keycompare parameter, KEYCOM, is specified and the file, UNDRGRAD, is sorted into the file,
VICTORS. The major key is established at column one.

Using the errorproc parameter without the occurrence of an error

$CONTROL U5LINIT,FILE=33,FILE=27
PROGRAM F5
INTEGER KEYS(6),FNUM,IFILE(2),OFILE(2)
CHARACTER *72 BUF
EXTERNAL ERROR
SYSTEM INTRINSIC SORTINIT,SORTEND

C
C SORT THE FILE, A (FTN33), INTO THE FILE, AMERICAN
C (FTN27). SORT ON LAST NAMES WITHIN OCCUPATIONS.
C ESTABLISH THE KEYS. MAJOR AT 31 (OCCUPATION) FOR 17 BYTES
C AND MINOR AT 1 (LAST NAME) FOR 15 BYTES.
C

KEYS(1)=31
KEYS(2)=17
KEYS(3)=0
KEYS(4)=1
KEYS(5)=15
KEYS(6)=0

C

3-25

C ESTABLISH ~UMBERS FOR THE I~PUT A~D OUTPUT FILES.
C

IFILE(1)=FNUMC33)
IFILE(2)=0
OFILE(1)=FNUMC27)
OFILE(2)"'0

c
C INITIALIZE SORT WITH ERRORPROC PARAMETER, ERROR.
C

CALL SORTINITCIFILE,OFILE""2,KEYS,,,ERROR)
CALL SORTEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 27
10 READC27,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

PROGRAM UNIT FS COMPILED
SUBROUTINE ERRORCERRORCODE)
INTEGER ERRORCODE
CHARACTER *72 MESSAGE
SYSTEM INTRINSIC SORTERRORMESS
MESSAGE="

C
C CALL THE SYSTEM INTRINSIC, SORTERRORMESS.
C

CALL SORTERRORMESSCERRORCODE,MESSAGE;U
C
C DISPLAY ERROR MESSAGE AND NUMBER IF THERE IS ANY
C FATAL ERROR.
C

DISPLAY MESSAGE
RETURN
END

PROGRAM UNIT ERROR COMPILED
:FILE FTN33-A, OLD
:FILE FTN27-AMERICAN, NEW
:PREPRUN $OLDPASS; MAXDATA=1S000
END OF PREPARE

3-26

Cl ift, Montgomery actor born 1920
Vanderbilt, Cornelius capitalist born 1794
Wiener, Norbert cybernetician born 1894
Rothstein, Arnold gangster born 1882
Chavez, Cesar labor leader born 1927
Crane, Hart poet born 1899
Truman, Harry poli tician born 1884
Joplin, Janis singer born 1943
Chamberlain, Wilt sportsman born 1936
Horse, Crazy warrior born 1848

Figure 3-8

Using the errorproc parameter during the occurrence of an error

$COI'ITROLUSLII'IIT,FILE=33,FILE=27
PROGRAM F6
INTEGER KEYS(6),FI'IUM,IFILE(2),OFILE(2)
CHARACTER *72 BUF
EXTERNAL ERROR
SYSTEM INTRINSIC SORTII'IIT,SORTEI'ID

C
C SORT THE FILE, A (FTI'I33),INTO THE FILE, AMERICAN
C (FTI'I27). SORT 01'1 LAST NAMES WITHIN OCCUPATIONS.
C ESTABLISH THE KEYS. MAJOR AT 0 (OCCUPATION) FOR 17 BYTES
C AND MINOR AT 0 (LAST NAME) FOR 15 BYTES.
C

KEYS(1)=0
KEYS(2)=17
KEYS(3)-0
KEYS(4)=0
KEYS(5)=15
KEYS(6)=0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

IFILE(1)=FI'IUM(33)
IFILE(2)=0
OFILE(1)=FNUM(27)
OFILE(2)=0

C

3-27

C INITIALIZE SORT WITH THE ERRORPROC PARAMETER. ERROR.
C

CALL SORTINIT(IFILE.OFILE ••••2.KEYS •••ERROR)
CALL SORTEND

C
C READ AND DISPLAY OUTPUT FILE.
C

REWIND 27
10 READ(27.END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

PROGRAM UNIT F6 COMPILED
SUBROUTINE ERROR(ERRORCODE)
INTEGER ERRORCODE
CHARACTER *72 MESSAGE
SYSTEM INTRINSIC SORTERRORMESS
MESSAGE=" ••

C
C CALL SYSTEM INTRINSIC SORTERRORMESS
C

CALL SORTERRORMESS(ERRORCODE.MESSAGE.L)
C
C DISPLAY ERROR MESSAGE AND NUMBER IF THERE IS ANY
C FATAL ERROR.
C

DISPLAY MESSAGE
RETURN
END

PROGRAM UNIT ERROR COMPILED
:FILE FTN33=A. OLD
:FILE FTN27=AMERICAN. NEW
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE

SORTLIB: KEYFIELD IS NOT WITHIN SPECIFIED RECORD LENGTH
Figure 3-9

Note even though the errorproc parameter, ERROR, is specified in the first case, the file, UNDRGRAD, is
sorted into the file, VICTORS, as there is no occurrence of an error. The error occurs in the second case
when the keys are purposely specified at the column positions zero. This prevents the SORT operation
from being performed. The SORTLIB message, KEYFIELD IS NOT WITHIN SPECIFIED RECORD
LENGTH, appears on the terminal.

3-28

Displaying the SORT statistics with the statistics parameter

SCONTROL USLINIT,FILE=33,fILE=27
PROGRAM F7
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,IN(2),OUT(2),STAT(12),NOPAS,SPACE
INTEGER *4 NOREC, NOCOMP, NOSCFLE,CPTME,ELTME
SYSTEM INTRINSIC SORTINIT,SORTEND
EQUIVALENCE (NOPAS,STAT(3»,(SPACE,STAT(4»
EQUIVALENCE (NOREC,STAT(1»,(NOCOMP,STAT(S»,(NOSCFLE,STAT(7»
EQUIVALENCE (CPTME,STAT(9»,(ELTME,STAT(11»

C
C SORT THE FILE, A (FTN33), INTO THE FILE, AMERICAN (FTN27).
C ESTABLISH THE KEYS. MAJOR AT 1 FOR 15 BYTES
C

KEYS(1)"1
KEYS(2)=15
KEYS(3)-0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

IN(1)=FNUM(33)
IN(2)=0
OUT(1)-FNUM(27>
OUT(2)-O

C
C INITIALIZE SORT WITH THE STAT PARAMETER.
C

CALL SORTINIT(IN,OUT""1,KEYS",,STAT)
CALL SORTEND
D ISPLAY"THE STATISTICS OF THE SORT OPERATION ARE: II

DISPLAY" ••
DISPLAY NOREC,NOPAS,SPACE,NOCOMP,NOSCFLE,CPTME,ELTME
DISPLAY" II

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 27
10 READ(27,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN33-A, OLD
:FILE FTN34-AMERICAN, NEW
:PREPRUN SOLDPASSj MAXDATA-1S000
END OF PREPARE

3-29

THE STATISTICS OF THE SORT OPERATION ARE:
10 0 11596 31 8 170 365

Chamberlain, Wilt sportsman born 1936
Chavez, Cesar labor leader born 1927
Cli ft, Montgomery actor born 1920
Crane, Hart poet born 1899
Horse, Crazy warrior born 1848
Joplin, Janis Singer born 1943
Rothstein, Arnold gangster born 1882
Truman, Harry poli tician born 1884
Vanderbilt, Cornelius capi talist born 1794
Wiener, Norbert cybernetician born 1894

Figure 3-10

The array, STAT, is displayed and is followed by the output file, AMERICAN,

Calling SORTINPUT

$CONTROL USLINIT,FILE=33,FILE=34,FILE=35
PROGRAM F8
CHARACTER *72 BUF
INTEGER KEYS(S),FNUM,OUTFILE(2)
SYSTEM INTRINSIC SORTINIT,SORTEND,SORTINPUT
EQUIVALENCE(BUF,LBUF)
LOGICAL LBUF(3S)

C
C
C SORT THE FILES, A (FTN33) AND R (FTN34), INTO THE FILE,
C WORLD (FTN35).
C ESTABLISH THE KEYS.
C

KEYS(1)=1
KEYS(2)=15
KEYS(3)-0
KEYS(4)=31
KEYS(5)=17
KEYS(S)-O

C
C ESTABLISH NUMBERS FOR THE OUTPUT FILE.
C

OUTFILE(1)=FNUM(35)
OUTFILE(2)=0

C
C INITIALIZE SORT WITH THE RECLEN PARAMETER BUT NO
C INPUTFILES PARAMETER.
C

CALL SORTINIT(,OUTFILE,,72,,2,KEYS)
C

3-30

C CALL THE SORTINPUT INTRINSIC TO READ THE FILE, A.
C

50 READ(33,END=100)BUF
CALL SORTINPUT(LBUF,72)
GO TO 50

C
C CALL THE SORTINPUT INTRINSIC TO READ THE FILE, W.
C

100 READ(34,END=200)BUF
CALL SORTINPUT(LBUF,72)
GO TO 100

200 CALL SORTEND
C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 35
10 READ(35,END=300)BUF

DISPLAY BUF
GO TO 10

300 STOP
END

:FILE FTN33=A, OLD
:FILE FTN34=R, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN SOLDPASSj MAXDATA=15000
END OF PREPARE

Chamberlain, Wilt sportsman born 1936
Chavez, Cesar labor leader born 1927
Clift, Montgomery actor born 1920
Crane, Hart poet born 1899
Djilas, Milovan sociologist born 1911
Hammarskjold, Dag pacifist born 1905
Horse, Crazy warrior born 1848
Joplin, Janis singer born 1943
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (?)

Lautreamont, Comte de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Emmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Rothstein, Arnold gangster born 1882
Sen, Mrinal movie director born 1923
Truman, Harry politician born 1884
Vanderbilt, Cornelius capitalist born 1794
Wiener, Norbert cyber ne t rc ren born 1894

Figure 3-11

SORTINPUT is called since the inputfiles parameter is not specified in the call to SORTINIT.

3-31

Calling SORTOUTPUT

$CONTROL USLINIT,FILE=34,FILE=28
PROGRAM F9
CHARACTER *72 BUF
INTEGER KEYS(3},FNUM,INFILES(2}
LOGICAL LBUF(36}
EQUIVALENCE(LBUF,BUF}
SYSTEM INTRINSIC SORTINIT,SORTOUTPUT,SORTEND

C
C SORT THE FILE, R, INTO THE FILE, REST. ESTABLISH THE
C KEYS. ESTABLISH NUMBERS FOR THE INPUT FILE.
C

INFILES(1}=FNUM(34}
INFILES(2}=0
KEYS(1>=1
KEYS(2)=10
KEYS(3}=0

C
C INITIALIZE SORT WITHOUT THE OUTPUTFILES PARAMETER.
C

CALL SORTINIT(INFILES"",1,KEYS)
C
C CALL THE SORTOUTPUT INTRINSIC.
C

50 CALL SORTOUTPUT(LBUF,LEN)
IF(LEN.LE.-1}GO TO 60
DISPLAY BUF
GO TO 50

60 CONTINUE
CALL SORTEND
STOP
END

:FILE FTN34=R, OLD
:PREPRUN $OLDPASS;' MAXDATA= 15000
END OF PREPARE

Dj ilas, Milovan sociologist born 1911
Hanmarskjold, Dag pacifist born 1905
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (?)
Lautreamont, Comte de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Enmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Sen, Mrinal movie director born 1923

Figure 3-12

The outputfiles parameter is not specified and the file, A, is sorted into the file, AMERICAN.

3-32

Calling SORTSTAT

$CONTROL USLINIT,FILE=34,FILE=28
PROGRAM F10
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,IN(2),OUT(2),STATISTICS(12)

C
C SORT THE FILE, R, INTO THE FILE, REST.
C ESTABLISH THE KEYS AND NUMBERS FOR THE FILES.
C

SYSTEM INTRINSIC SORTINIT,SORTEND,SORTSTAT
KEYS(1)=1
KEYS(2)=10
KEYS(3)=0
IN(1)=FNUM<34)
IN(2)=0
OUT< 1)=FNUM(28)
OUT(2)=0

C
C INITIALIZE SORT.
C

CALL SORTINIT(IN,OUT""1,KEYS",,STATISTICS)
CALL SORTEND

C
C CALL THE SORTSTAT INTRINSIC.
C

CALL SORTSTAT(STATISTICS)
C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 28
10 READ(28,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN34=R, OLD
:FILE FTN28=REST,NEW
:PREPRUN $OLDPASSi MAXDATA=15000
END OF PREPARE

3-33

STATISTICS
NUMBER OF RECORDS = 10
NUMBER OF INTERMEDIATE PASSES 0
SPACE AVAILABLE (IN WORDS) 11,603
NUMBER OF COMPARES = 34
NUMBER OF SCRATCHFILE IO'S 8
CPU TIME (MINUTES) = .00
ELAPSED TIME (MINUTES) = .01
Djilas, Milovan sociologist born 1911
Hanmarskjold, Dag pacifist born 1905
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (?)

Lautreamont, Comte de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Enmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Sen, Mrinal movie director born 1923

Figure 3-13

Notice the SORT statistics are printed in a more useful format compared to the case when the statistics
parameter is specified in SORTINIT.

Calling SORTTITLE

$CONTROL USLINIT,FILE=33,FILE=34,FILE=35
PROGRAM F11
CHARACTER *72 BUF
INTEGER KEYS(6),FNUM,INFILE(3),DUTFILE(2)
SYSTEM INTRINSIC SORTINIT,SORTEND,SORTTITLE

C
C SORT THE FILES, A AND R, INTO THE FILE, WORLD.
C ESTABLISH THE KEYS AND NUMBERS FOR THE FILES.
C

KEYS(1)=1
KEYS(2)=15
KEYS(3)=0
KEYS(4)=31
KEYS(5)=17
KEYS(6)=0
INFILE(1)= FNUM(33)
INFILE(2)=FNUM(34)
INFILE(3)=O
OUTFILE(1)=FNUM(35)
OUTFILE(2)=0

C

3-34

C INITIALIZE SORT.
C

CALL SORTINIT(INFILE,OUTFILE",,2,KEYS)
CALL SORTEND

C
C CALL THE SORTTITLE INTRINSIC.
C

CALL SORTIITLE
C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 35
10 READ(35,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN33=A. OLD
:FILE FTN34=R, OLD
:FILE FTN35-WORLD, NEW
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE
HP32214C.02.02 SORT/3000 SUN, SEP 21, 1980, 6:34 PM
(C) HEWLETI-PACKARD CO. 1980

Chamberlain,
Chavez,
Clift,
Crane,
Djilas,
Hammarskjold,
Horse,
Joplin,
K'ung,
Khan,
Lautreamont,
Nijinsky,
Noether,
Ortega y Gasset,
Pirandello,
Rothstein,
Sen,
Truman,
Vanderbilt,
Wiener,

Wilt
Cesar
Montgomery
Hart
Milovan
Dag
Crazy
Janis
Ch'iu
Jenghiz
Comte de
Vaslav
Emmy
Jose
Luigi
Arnold
Mrinal
Harry
Cornelius
Norbert

sportsman
labor leader
actor
poet
sociologist
pacifist
warrior
singer
preacher
emperor
novelist
dancer
mathematician
philosopher
playright
gangster
movie director
politician
capitalist
cyber-ne t i c ren

Figure 3-14

born 1936
born 1927
born 1920
born 1899
born 1911
born 1905
born 1848
born 1943
born 551 B.C.
born 1167 (?)

born 1846
born 1890
born 1882
born 1883
born 1867
born 1882
born 1923
born 1884
born 1794
born 1894

Note the display of the version number and title of the SORTLIB segment along with the date and time
produced by the DATELINE intrinsic.

3-35

Calling SORTINITIALF with the failure parameter

SCONTROL USLINIT,INIT.FILE=21,FILE=22
PROGRAM F12
CHARACTER*9 BUF.NAME
INTEGER KEYS(3).FNUM
LOGICAL FAILURE.LBUF(5)
EQUIVALENCE (LBUF.BUF)
SYSTEM INTRINSIC SORTINITIALF.SORTOUTPUT.SORTEND

10 FORMATUIT20." NAME".SX."NUMBER"n
20 FORMATCT20,S.T30.I3)
30 FORMAHIIT25."TOTAL = ".131///)

C
C PRINT A SORTED REPORT OF ALL THE LAST NAMES IN MAIL1.
C THE NUMBER OF TIMES A NAME APPEARS.
C AND THE TOTAL NUMBER OF NAMES IN THE FILE.
C
C PRINT HEADING
C

WRITE(S.10)
C
C ESTABLISH KEY
C

KEYS(1>=11
KEYS(2)=9
KEYS(3)=0

C
C INITIALIZE SORT - OUTPUT OPTION 2
C OUTPUT = KEY FIELD ONLY
C

CALL SORTINITIALF(FNUM(21) ••2.,.
#1.KEYS ••••FAILURE)
IF(FAILURE)STOP 100

50 CALL SORTOUTPUT(LBUF.LEN)
IF(LEN.EQ.-1)GO TO 500
IF(FAILURE)STOP 200

C
C REPORT GENERATION SECTION
C

ITOTAL=ITOTAL+ 1
IF(BUF.EQ.NAME)GO TO so
IF(ICTR.EQ.O)GO TO 70
WRITE(S,20)NAME.ICTR

70 NAME=BUF
ICTR=O

SO ICTR=ICTR+1
GO TO 50

500 WRITE(S,30)ITOTAL
C
C END OF REPORT GENERATION
C

CALL SORTEND
IFCFAILURE)STOP 300
STOP
END

3-36

:FILE FTN21~MAIL2, OLD
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE

NAME NUMBER
ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER 2
DOE 2
DOUGHE
GRANDTR 2

TOTAL 12
Figure 3-15

The key fields are read from the input file, MAIL2, in the sorted order for printing a report.

Multirecord, NOBUF, and Buffered Files

:FORTRAN NOBUF1
PAGE 0001 HP32102B.01.02 FORTRAN/3000 (C) HEWLETT-PACKARD CO. 1979 TUE, JAN

SCONTROL FILE=10-13,USLINIT
PROGRAM PNOBUF1

C
C This program demonstrates the use of multirecord, NOBUF,
C and buffered files with the SORT intrinsics. The failure
C parameter is checked and the errorparm is used to obtain
C the error message text if needed.
C
C

SYSTEM INTRINSIC SORTINIT,SORTEND,SORTSTAT,SORTERRORMESS
INTEGER INPUT(4),DUTPUT(2),KEYS(3),STATS(12)
INTEGER ERROR,FNUM,MSGLEN
LOGICAL FAILED
CHARACTER*72 MSG

C
C Establish the file numbers for the input and output files
C

INPUT(1) •.FNUM(11)
INPUT(2) •.FNUM(12)
INPUT(3) = FNUM(13)
INPUT(4) ••0

C
OUTPUT(1) •.FNUM(10)
OUTPUT(2) ••0

3-37

C Keys to sort the sequence numbers in columns 73-80
C

KEYS(1) ••73
KEYS(2) • 8
KEYS(3) ••0

C
FAILED z .FALSE.
ERROR • 0

C
C Sort the files.
C

CALL SORTINIT(INPUT,OUTPUT,0,80"1,KEYS",,STATS,FAILED,ERROR)
CALL SORTEND

C
C Print error message if one occurred, otherwise statistics.
C

IF (FAILED) GO TO 100
C

CALL SORTSTAT(STATS)
GOTO 200

100 CALL SORTERRORMESS(ERROR,MSG,MSGLEN)
DISPLAY MSG[1:MSGLENJ," (II,ERROR,")"

200 STOP
END

PROGRAM UNIT PNOBUF1 COMPILED
PAGE 0002 HEWLETT-PACKARD 32102B.01.02 FORTRAN/3000 TUE, JAN 29, 1980, 11
**** GLOBAL STATISTICS
**** NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME 0:00:02

TOTAL ELAPSED TIME 0:00:04
END OF COMPILE
:PREP SOLDPASS,PNOBUF1;MAXDATA=31232
END OF PREPARE
:COI'lfl1ENT
:FILE FTN11"UNSORT01,OLD;MR
:FILE FTN12=UNSORT02,OLD;NOBUF
:FILE FTN13=UNSORT03,OLD
:COI'lfl1ENT
:FILE FTN10-S0RTED,NEW;MR;SAVE
:RUN PNOBUF1;LIB-G

INPUT FILES

OUTPUT FILE

STATISTICS
NUMBER OF RECORDS =
NUMBER OF INTERMEDIATE PASSES =
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES •
NUMBER OF SCRATCHFILE 10'5 =
CPU TIME (MINUTES) =
ELAPSED TIME (MINUTES) •
END OF PROGRAM

150
o

27,588
1,170

102
.02
.40

3-38

CALLING MERGE FROM A iBMHi'
<----FO_R_T_RA_N_'_3_00_0_P_R_OG_R_A_M __ -----' I IV I

You can merge two or more sorted files from a FORTRAN/3000 program by calling the MERGE program
intrinsics. These intrinsics (SPL/3000 procedures) are part of SORT-MERGE/3000 and are called by
using the SYSTEM INTRINSIC declarations in your program. The various parameters of these intrinsics
are used by SORT-MERGE/3000 to perform specific operations.

The MERGE program intrinsics

The following is a list of the MERGE program intrinsics which reside in the MERGELIB segment of the
system segmented library:

INTRINSIC DESCRIPTION

MERGEINIT Merges two or more sorted files.

MERGEOUTPUT Requests records from MERGEINIT, one at a time, if the outputfiles pa-
rameter is not specified in MERGEINIT.

MERGEEND Restores the data stack to its original state. MERGEEND must be called
only if MERG EINIT is called.

MERGESTAT Prints the MERGE statistics on $STDLIST.

MERGETITLE Prints the version number and title of the MERGELIB segment along
with the date and time produced by the DATELINE intrinsic on
$STDLIST.

MERGEERRORMESS Called to retrieve and print a message if a fatal error occurs during
MERGE. Called from a user supplied error procedure (the errorproc pa-
rameter of MERGEINIT).

4-1

The MERGEINIT intrinsic initiates the MERGE operation. After calling MERGEINIT, you should call
MERGEOUTPUT if the outputfiles parameter of MERGEINIT is not specified. This is followed by a
call to the MERGEEND intrinsic. Call MERGESTAT if you want the display of the MERGE statistics.
Additionally, call SORTERRORMESS from the user supplied procedure, errorproc, if you want a display
of the message when an error occurs. The calls to the intrinsics, MERGEOUTPUT, MERGESTAT, and
MERGEERRORMESS, are optional but the order is important if they are called. The optional intrinsic,
MERGE TITLE, can be called at any stage. The following flowchart illustrates the MERGE operation
when MERGEOUTPUT and MERGESTAT are called:

(MERGE)

_____________________ 1

NO

Figure 4-1. Flowchart of Merge Intrinsics

Preparation and Execution of the MERGE programs

The amount of available memory can affect the time required to perform a MERGE. MERGE programs
with files opened multirecord should be prepared with the maximum available segsize which is specified
by the MAXDATA=segsize parameter of the :PREP or :RUN commands. MERGE programs with files
opened NOBUF should increase the segsize, allowing one block per file.

If the error message INSUFFICIENT STACK SPACE is displayed, increase the MAXDATA parameter.
If the message TOO MANY FILES OPEN (FSERR 71) appears, it means MPE has no room for its tables
in the user data segment. Use the NOCB parameter of the :RUN command during the execution of the
program in this case.

NOTE: The MERGE intrinsic is included in this manual for the maintenance of existing
FORTRAN/3000 programs.

4-2

MERGEINIT
Merges two or more sorted files.

SYNTAX
IA P IA

CALL MERGEINIT i inputfiles, preprocessor, outputfiles,
P LV IV IA IA

postprocessor, hevsonlv, numkeys, keys, altseq,
LP P IA L

keycompare, errorproc, statistics, failure,
I I o-v

errorparm, spaceallocation, parm I, parm2)

PARAMETERS
inputfiles

preprocessor

outputfiles

postprocessor

keysonly

An integer array containing the file identifications (fnum's) of the input files to
be merged. The array is terminated with a word of zero. If the files are opened
with either the NOBUF or MR (multirecord) access option (aoption), SORT or
MERGE will perform the buffering and blocking/deblocking. $Null is not a valid
input file.

A subroutine which is called whenever a record is read from the input files (Fig.
4-1). The call should include a statement of the following form:

SUBROUTINE preprocessor (file, record, length)

file is an integer denoting the index to the inputfiles array of the file from which
the record is read. Its value lies between 0 and the number of input files minus
one. record is a character array denoting the data record. length is an integer
denoting the number of characters in the record.

An integer array containing the file identification of the output file. The second
word must contain a zero to indicate the end of the list. If the file is opened with
either the NOBUF or MR (multirecord) access option (aoption), SORT or
MERGE will perform the buffering and blocking/deblocking.

A subroutine which is called before each record is sent to the output file. Either
this parameter or outputfiles (or both) must be specified in any programmatic
MERGE operation.The call should include a statement of the following form:

SUBROUTINE postprocessor (record, length)

record is a character array specifying the data record. length is an integer denot-
ing the number of characters in the record.

A logical variable, which if true, causes only the key fields; concatenated together
with the major key on the left followedby the remaining keys; to be sent as output
(Fig. 4-3). The keycompare parameter must not be specified in this case. If
keysonly is false, the entire record is sent as output (Fig. 4-4). The default for
keysonly is false.

4-3

numkeys and keys

altseq

keycompare

numkeys is an integer and keys is an integer array. They describe the way records
are merged. If either is specified, the other must also be specified and
keycompare must not be specified. numkeys is the number of keys used during
the comparison of records. It may be either equal to or greater than one. keys
specifies the way records are compared. For each key being specified, keys con-
tains three words:

First word gives the position of the first character of the key within the record.
Second word gives the number of characters in the key. Third word (bits 0
through 7) gives the ordering sequence of the records. (0 for ascending, 1 for de-
scending) bits 8 through of the third word 15 indicate the type of data according
to the following convention:

O=logical or character (same as the type, BYTE, in interactive mode)

l=two's complement (including integer and double integer)

2=floating point

3=packed decimal

5=packed decimal with even number of digits

4=Display-Trailing-Sign (see the KEY command in Section II)

6=Display-Leading-Sign

8=Display-Trailing-Sign-Separate

7=Display-Leading-Sign -Separate

An integer array defining an alternate collating sequence. The first character
(bits 0-7) of the array is defined according to Table 3-1.

The second character (bits 8-15) specifies one less than the total number of char-
acters in the collating sequence (in this case, 255 or S;) 377). These two characters
are followed by the actual collating sequence responsible for the particular
MERGE operation.

A user-supplied function subprogram which must be specified if you do not speci-
fy numkeys and keys. It is called whenever two records are compared. The call
should include a statement of the following form:

LOGICAL FUNCTION keycompare (reel, lenl, rec2, len2)

reel and rec2 are pointers to the two records and len.I and Zen2are the lengths of
the records in characters. keycompare returns a true value if reel precedes rec2,
and a false value otherwise. It returns a true value even in the case of ties. This
ensures that the original sequence is preserved in the case of ties.

4-4

errorproc

statistics

failure

errorparm

A user-supplied subroutine, which is used in conjunction with the
MERGEERRORMESS intrinsic. It is called as follows whenever a fatal error oc-
curs during the MERGE operation:

SUBROUTINE errorproc(errorcode)

errorcode is an integer which is the MERGE program error number. It is passed
to errorproc when an error occurs. If errorproc or errorparm are not specified, a
default procedure is used which prints an error message corresponding to the
particular errorcode. For a list of these errors, see Appendix A.

An integer array which, if specified, is filled with the following data (Fig. 4-5):

First word=
number of input files.

Second and third words=
number of merged records (double integer)

Fourth word=
space available for merging.

Fifth and sixth words=
number of comparisons (double integer).

Seventh and eighth words=
CPU time (in milliseconds, double integer).

Ninth and tenth words=
elapsed time (in milliseconds, double integer).

A logical variable which, if specified, is set to -1 (true) if a fatal error occurrs, and
o (false) otherwise (Fig. 4-10),

Error conditions:

CCE=
no error occurred (failure set to false)

CCG=
an error occurred (failure set to true)

An integer variable which, if specified, is set to the MERGELIB error number if
an error occurs. The MERGEERRORMESS intrinsic can be used to obtain the
error message text. If the errorparm is supplied, the errorproc procedure is ig-
nored and no error messages are displayed. For a list of error messages see Appen-
dix A.

4-5

spaceallocation

parm.l

parm2

An integer variable which, if specified, is used to determine stack allocation. A
positive space allocation specifies the number of words that may be used for
sorting and buffering. A negative values specifies the number of words that
should be left for the user after determining the amount available. Zero will cause
a default value to be used.

unused

unused

4-6

MERGEOUTPUT
Requests records from MERGEINIT, one at a time, if the outputfiles parameter is not specified in
MERGEINIT.

SYNTAX
LA I

CALL MERGEOUTPUT (record, length)

PARAMETERS
record A logical array receiving the next output record.

length An integer denoting the number of characters in the record.

It can be called from the program after MERGEINIT (Fig. 4-6).

4-7

MERGEEND
Restores the data stack to its original state.

SYNTAX

CALL MERGEEND

It is called only if MERGEINIT is called.

4-8

MERGESTAT
Prints the MERGE statistics on $STDLIST.

SYNTAX
IA

CALL MERGESTAT (statistics)

statistics is an integer array. See Fig. 4-7 for details.

4-9

MERGETITLE
Prints the version number and title of the MERGELIB segment along with the date and time produced by
the DATELINE intrinsic on $STDLIST.

SYNTAX

CALL MERGETITLE

MERGETITLE can be called from the program at any stage after the declaration ofthe system intrinsics
(Fig. 4-8).

4-10

MERGEERRORMESS
Called to retrieve and print a message if a fatal error occurs during MERGE. MERGEERRORMESS is
called from a user supplied error procedure (the errorproc parameter of MERGEINIT).

SYNTAX

IV BA I
CALL MERGEERRORMESS (errorcode, message, length)

PARAMETERS

errorcode An integer (MERGE program error number) passed to errorproc when an error
occurs.

message A character array into which the text of the message is placed. The message pa-
rameter must be at least 72 characters long.

length An integer denoting the length of the message in characters.

MERGEERRORMESS converts MERGEINIT error code values into ASCII strings. It works in conjunc-
tion with the errorproc parameter of MERGEINIT (Fig. 4-9).

4-11

MERGE
Initiates the MERGE program (to be used only for existing FORTRAN/3000 programs).

SYNTAX
IV IA IV IV

CALL MERGE i numinputfiles, inputfiles, outputfile, keysonly,
IV IA P P

numkeys, keys, preprocessor, postprocessor,
P LP IA L o-v

errorproc, heycompare, statistics, failure)

PARAMETERS

numinputfiles An integer denoting the number of input files to be merged. This parameter is not
optional and is either equal to or greater than one.

inputfiles An integer array containing the MPE/3000 file numbers of the files to be merged.
These file numbers appear in the locations inputfiles(O) through
inputfiles(numinputfiles-l). inputfiles is not an optional parameter.

outputfile Unlike MERGEINIT; where the outputfiles parameter is an array; outputfile is
an integer, specifying the MPE/3000 file number of the file on which the merged
records are written. If outputfile is not specified, the records are not written any-
where. In this case, postprocessor must be specified.

All the other parameters are similar to the MERGEINIT parameters, except the positions of the
errorproc and keycompare parameters are interchanged. MERGE is less powerful than MERGEINIT in
that it does not have the altseq parameter. Also, MERGEEND and MERGEOUTPUT must not be called
in this case. See Fig. 4-10 for an example of MERGE.

4-12

EXAMPLES

Calling MERGEINIT with the preprocessor parameter

$CONTROL USLINIT,FILE=21,FILE=22,FILE=23
PROGRAM F13
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,OUTFILE(2)
COMMON/FORTN/INFILE(3)
INTEGER INFILE
EXTERNAL PRE
SYSTEM INTRINSIC MERGEINIT,MERGEEND

C
C MERGE THE SORTED FILES, MAIL1(FTN21) AND MAIL2(FTN22), INTO
C THE FILE, MAIL3(FTN23).
C ESTABLISH THE MAJOR KEY AT 11 (LAST NAME) FOR 8 BYTES.
C AND THE MINOR KEY AT 1 (FIRST NAME) FOR 9 BYTES.

KEYS(1)=11
KEYS(2)=8
KEYS(3)=0
KEYS(4)=1
KEYS(S)=9
KEYS(6)=0

C
C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

INFILE(1)= FNUM(21)
INFILE(2)=FNUM(22)
INFILE(3)=0
OUTFILE(1)=FNUM(23)
OUTFILE(2)=0

C
C INITIALIZE MERGE.
C

CALL MERGEINIT(INFILE,PRE,OUTFILE",2,KEYS)
CALL MERGEEND

c
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 23
10 READ(23,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

PROGRAM UNIT F13 COMPILED

4-13

SUBROUTINE PRE(F1,CAR,N)
CHARACTER CAR(N)
INTEGER FNUM
COMMoN/FoRTN/INFILE(3)
INTEGER INFILE,F1
IF(INFILE(F1+1).EQ.FNUM(21»Go TO 1000
DO 90 J=61, 72
CAR(J)="*"

90 CONTINUE
1000 RETURN

END
PROGRAM UNIT PRE COMPILED

:FILE FTN21=MAIL1, OLD
:FILE FTN22=MAIL2, OLD
:FILE FTN23=MAIL3, NEW
:PREPRUN $oLDPASS; MAXDATA=15000
END OF PREPARE

PLAINS ANTELOPE 201 oPENSPACE AVE BIGCoUNTRY WY 49301 369-732-4821
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 ************
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 ************
All BABA 40 THIEVES WAY SESAME CO 69142 ************
BLACK BEAR 47 ALLOVER DR ANYWHERE US 00111 NONE
JOHN BIGToWN 965 APPIAN WAY METROPOLIS NY 20013 ************
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 04321 ************
SWASH BUCKLER 497 PLAYACTING CT MoVIEToWN CA 61497 ************
ANIMAL CRACKERS 1000 ANYWHERE PL ALLOVER US 00001 001-100-1000
MULE DEER 963 FOREST PL NICECOUNTRY CA 97643 493-900-9000
WHITETAIL DEER 34 WOODSY PL BACKCoUNTRY ME 01341 619-433-4333
JAMES DOE 4193 ANY ST ANYToWN MD 00133 ************
JANE DOE 3959 TREEWooD LN BIGToWN MA 21843 ************
PRAIRE DOG 493 RoLLINGHILLS DR oPENSPACE ND 24321 992-419-4192
JOHN DoUGHE 239 MAIN ST HOMETOWN MA 26999 ************
MALLARD DUCK 79 MARSH PL PUDDLEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 ************
KARISSA GRANDTR 7917 BRoADMooR WAY BIGToWN MA 21799 ************
SNOWSHOE HARE 742 FRIGID WAY CoLDSPoT MN 37434 732-732-7320
MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712-7122
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 ************
SWAMP RABBIT 4444 DAMPPLACE RD BAYOU LA 79999 NONE
NASTY RATTLER 243 DANGER AVE DESERTVILLE CA 87654 828-432-4321
BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO 34567 776-409-9040
GREY SQUIRREL 432 PLEASANT DR FALL COLORS MA 14321 619-619-6199

Figure 4-2

IN FILE and OUTFILE are the inputfiles and outputfiles parameters. The records in the files, MAIL1
and MAIL2, are compared on two keys. Note the preprocessor, PRE, replaces the telephone numbers
from the file, MAIL2, by asterisks before MAIL1 and MAIL2 are merged into MAIL3.

4-14

Using the hevsonlv parameter

$CONTROL USLINIT,FILE=27,FILE=28,FILE=35
PROGRAM F14
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,INFILE(3),OUTFILE(2)
CHARACTER X
LOGICAL K
SYSTEM INTRINSIC MERGEINIT,MERGEEND

C
C ESTABLISH THE KEYS.
C MERGE THE FILES, AMERICAN AND REST, INTO FRIENDS.
C

KEYS(1)=1
KEYS(2)=17
KEYS(3)=0

C
C ESTABLISH THE NUMBERS FOR THE FILES.
C

INFILE(1)= FNUM(27)
INFILE(2)=FNUM(28)
INFILE(3)=0
OUTFILE(1)=FNUM(35)
DUTFILE(2):;:Q
DISPLAY "SORT ON KEYS?"
ACCEPT X
IF<X.EQ.IYI.OR.X.EQ.ly")GO TO 18

C
C THE PARAMETER K IS TESTED FOR ITS TRUTH VALUE.
C

K=. FALSE.
GO TO 19

18 K=.TRUE.
C
C INITIALIZE MERGE WITH THE KEYSONLY PARAMETER, K.
C

19 CALL MERGEINIT(INFILE"OUTFILE"K,1,KEYS)
CALL MERGEEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 35
10 READ(35,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN27=AMERICAN, OLD
:FILE FTN28=REST, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN $OLDPASS; MAXDATA=15000
END OF PREPARE

4-15

SORT ON KEYS? ?Y

Chamberlain,
Chavez,
Cli ft,
Crane,
Djilas,
Hammarskjold,
Horse,
Joplin,
K'ung,
Khan,
Lautreamont,
t-li j insky ,
Noether,
Ortega y Gasset,
Pirandello,
Rothstein,
Sen,
Truman,
Vanderbilt,
Wiener,

Figure 4-3

Only the key fields (last names) are sent as output since the keysonly parameter, K, is specified true.

:PREPRUN SOLDPASSj MAXDATA=15000

END OF PREPARE

SORT ON KEYS? ?N
Chamberlain, Wilt sportsman born 1936
Chavez, Cesar labor leader born 1927
Clift , Montgomery actor born 1920
Crane, Hart poet born 1899
D j ilas, Milovan sociologist born 1911
Hammarskjold, Dag paci fist born 1905
Horse, Crazy warrior born 1848
Joplin, Janis singer born 1943
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (?)

Lautreamont, Comte de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Emmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Rothstein, Arnold gangster born 1882
Sen, Mrinal movie director born 1923
Truman, Harry politician born 1884
Vanderbilt, Cornelius capi talist born 1794
Wiener, Norbert cybernetician born 1894

Figure 4-4

The entire records are sent as output since the keysonly parameter, K, is specified false.
4-16

Calling MERGEINIT with the statistics parameter

$CONTROL USLINIT,FILE=27,FILE=28,FILE=3S
PROGRAM F1S
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,INFILE(3),OUTFILE(2),ST(10)
INTEGER NOINPUT, SPACE
INTEGER*4 NOREC, NOCOMP, CPUTME, ELTME
EQUIVALENCE (NOINPUT, ST(1»,(SPACE,ST(4»
EQUIVALENCE (NOREC, ST(2», (NOCOMP, ST(S», (CPUTME, ST(7»
EQUIVALENCE (ELTME,ST(9»
CHARACTER x
LOGICAL K
SYSTEM INTRINSIC MERGEINIT,MERGEEND

C
C MERGE THE FILES, AMERICAN AND REST, INTO THE FILE, WORLD.
C ESTABLISH THE KEYS.
C

KEYS(1)=1
KEYS(2)=17
KEYS(3)=0

C
C ESTABLISH THE NUMBERS FOR THE FILES.
C

INFILE(1)= FNUM(27)
INFILE(2)=FNUM(28)
INFILE(3)=0
OUTFILE(1)=FNUM(3S)
OUTFILE(2)=0
DISPLAY "SORT ON KEYS?"
ACCEPT X
IFCX.EQ."Y".OR.X.EQ."y")GO TO 18

C
C THE PARAMETER, K, IS TESTED FOR ITS TRUTH VALUE.
C

K=.FALSE.
GO TO 19

18 K=.TRUE.
C
C INITIALIZE MERGE WITH THE KEYSONLY PARAMETER, K.
C

19 CALL MERGEINIT(INFILE"OUTFILE"K,1,KEYS""ST)
CALL MERGEEND
DISPLAY NOINPUT, NOREC, SPACE, NOCOMP, CPUTME, ELTME

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 3S
10 READ(3S,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

4-17

:FILE FTN27=AMERICAN, OLD
:FILE FTN28=REST, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN $OLDPASS; MAXDATA=15000

END OF PREPARE

SORT ON KEYS? ?Y
2

Chamberlain,
Chavez,
Cli ft,
Crane,
DjHas,
Harrrnarskjold,
Horse,
Joplin,
K'ung,
Khan,
Lautreamont,
Nijinsky,
Noether,
Ortega y Gasset,
Pirandello,
Rothstein,

20 589 17 250 3608

Sen,
Truman,
Vanderbilt,
Wiener,

Figure 4-5

The statistics parameter, ST, causes the MERGE statistics to be displayed.

Calling MERGEOUTPUT

$CONTROL USLINIT,FILE=27,FILE=28,FILE=35
PROGRAM F16
CHARACTER*72 BUF
LOGICAL LBUF(36)
EQUIVALENCE (LBUF,BUF)
INTEGER KEYS(3),FNUM,INFILE(3),LENGTH
SYSTEM INTRINSIC MERGEINIT,MERGEEND,MERGEOUTPUT

C

4-18

C MERGE THE FILES, AMERICAN AND REST, INTO THE FILE, FRIENDS.
C ESTABLISH THE KEYS.
C

KEYS(1)=1
KEYS(2)=15
KEYS(3)=0

C
C ESTABLISH THE NUMBERS FOR THE FILES.
C

INFILE(1)= FNUM(27)
INFILE(2)=FNUM(28)
INFILE(3)=0

C
C INITIALIZE MERGE WITHOUT THE OUTPUTFILES PARAMETER.
C

CALL MERGEINIT(INFILE"",1,KEYS)
5 CALL MERGEOUTPUT(LBUF,LENGTH)

IF (LENGTH .LE. -1) GOTO 9
DISPLAY BUF
GOTO 5

9 CALL MERGEEND
100 STOP

END

:FILE FTN27=AMERICAN, OLD
:FILE FTN28=REST, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN $OLDPASS; MAXDATA=4000
END OF PREPARE

Chamberlain, Wilt sportsman born 1936
Chavez, Cesar labor leader born 1927
Clift, Montgomery actor born 1920
Crane, Hart poet born 1899
Djilas, Milovan sociologist born 1911
Hammarskjold, Dag pacifist born 1905
Horse, Crazy warrior born 1848
Joplin, Janis singer born 1943
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (7)
Lautreamont, Comte.de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Emmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Rothstein, Arnold gangster born 1882
Sen, Mrinal movie director born 1923
Truman, Harry poli tician born 1884
Vanderbilt, Cornelius capitalist born 1794
Wiener, Norbert cybernetician born 1894

Figure 4-6

Note the outputfiles parameter is not specified in this case.

4-19

Calling MERGESTAT

.CONTROL USLINIT,FILE=27,FILE=28,FILE=35
PROGRAM F17
CHARACTER *72 BUF
INTEGER KEYSC3},FNUM,INFILEC3},OUTFILEC2},STC10}
CHARACTER X
LOGICAL K
SYSTEM INTRINSIC MERGEINIT,MERGEEND,MERGESTAT

C
C MERGE THE FILES, AMERICAN AND REST, INTO THE FILE, WORLD.
C ESTABLISH THE KEYS.
C

KEYSC 1}"1
KEYSC2}"'17
KEYSC3}=0

C
C ESTABLISH THE NUMBERS FOR THE FILES.
C

INFILEC1}= FNUM(27)
INFILE(2)=FNUMC28)
INFILE(3)-0
OUTFILE(1)=FNUM(35)
OUTFILE(2)=0
DISPLAY IISORTON KEYS?II
ACCEPT X
IFCX.EQ.IIYII.OR.X.EG.llyll)GOTO 18

C
C THE PARAMETER, K, IS TESTED FOR ITS TRUTH VALUE.
C

K- .FALSE.
GO TO 19

18 K-.TRUE.
C
C INITIALIZE MERGE WITH THE KEYSONLY PARAMETER, K.
C

19 CALL MERGEINITCINFILE"OUTFILE"K,1,KEYS""ST)
CALL MERGEEND

C
C CALL THE MERGESTAT INTRINSIC
C

CALL MERGESTATCST)
C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIHD 35
10 READC35,EHD=100}BUF

DISPLAY BUF
GO TO 10

100 STOP
END

4-20

:FILE FTN27=AMERICAN, OLD
:FILE FTN28-REST, OLD
:FILE FTN35-WORLD, NEW
:PREPRUN $OLDPASS; MAXDATA=15000
END OF PREPARE

SORT ON KEYS? ?Y
STATISTICS

NUMBER OF INPUT FILES =
NUMBER OF RECORDS •
SPACE AVAILABLE (IN WORDS)
NUMBER OF COMPARES =
CPU TIME (MINUTES) •
ELAPSED TIME (MINUTES) =

2
20

595
17

.00

.08
Chamberlain,
Chavez,
Clift ,
Crane,
Djilas,
Hammarskjold,
Horse,
Joplin,
K'ung,
Khan,
Lautreamont,
Nijinsky,
Noether,
Ortega y Gasset,
Pirandello,
Rothstein,
Sen,
Truman,
Vanderbilt,
Wiener,

Figure 4-7

Calling MERGETITLE

$CONTROL USLINIT,FILE=27,FILE=28,FILE=35
PROGRAM F18
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,INFILE(3),OUTFILE(2)
SYSTEM INTRINSIC MERGEINIT,MERGEEND,MERGETITLE

C

4-21

C MERGE THE FILES, AMERICAN AND REST, INTO THE FILE, WORLD.
C ESTABLISH THE KEYS.
C

KEYSC 1)=1
KEYS(2)=15
KEYS(3)=0
INFILE(1)= FNUM(27)
INFILE(2)=FNUM(28)
INFILE(3)=0
OUTFILE(1)=FNUM(35)
OUTFILE(2)=0

C
C INITIALIZE MERGE.
C

CALL MERGEINITCINFILE"OUTFILE",1,KEYS)
C
C CALL THE MERGETITLE INTRINSIC.
C

CALL MERGETITLE
CALL MERGEEND

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 35
10 READ(35,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

:FILE FTN27=AMERICAN, OLD
:FILE FTN28=REST, OLD
:FILE FTN35=WORLD, NEW
:PREPRUN $OLDPASS; MAXDATA=4000
END OF PREPARE

4-22

HP32214C.02.02 MERGE/3000 SUN, SEP 21, 1980, 7:40 PM
(C) HEWLETT-PACKARD CO. 1980

Chamberlain, Wilt sportsman born 1936
Chavez, Cesar labor leader born 1927
Clift, Montgomery actor born 1920
Crane, Hart poet born 1899
Djilas, Milovan sociologist born 1911
Hammarskjold, Dag pacifist born 1905
Horse. Crazy warrior born 1848
Joplin, Janis singer born 1943
K'ung, Ch'iu preacher born 551 B.C.
Khan, Jenghiz emperor born 1167 (?)

Lautreamont, Comte de novelist born 1846
Nijinsky, Vaslav dancer born 1890
Noether, Emmy mathematician born 1882
Ortega y Gasset, Jose philosopher born 1883
Pirandello, Luigi playright born 1867
Rothstein, Arnold gangster born 1882
Sen, Mrinal movie director born 1923
Truman, Harry politician born 1884
Vanderbilt, Cornelius capitalist born 1794
Wiener, Norbert cybernetician born 1894

Figure 4-8

Calling MERGEERRORMESS from the errorproc subroutine ER

SCONTROL USLINIT,FILE=21,FILE=22,FILE=23
PROGRAM F19
CHARACTER *72 BUF
INTEGER KEYS(3),FNUM,OUTFILE(2)
COMMON/FORTN/INFILE(3)
INTEGER INFILE
EXTERNAL PRE,ER
SYSTEM INTRINSIC MERGEINIT,MERGEEND

C
C MERGE SORTED FILES, MAIL1 (FTN21) AND MAIL2 (FTN22), INTO
C THE FILE, MAIL3 (FTN23).
C ESTABLISH THE MAJOR KEY AT 0 FOR 8 BYTES.
C AND THE MINOR KEY AT 0 FOR 9 BYTES.

KEYS(1)=0
KEYS(2)=8
KEYS(3)=0
KEYS(4)=0
KEYS(5)=9
KEYS(6)=0

C

4-23

C ESTABLISH NUMBERS FOR THE INPUT AND OUTPUT FILES.
C

INFILE(1)= FNUM(21)
INFILE(2)=FNUM(22)
INFILE(3)=0
OUTFILE(1)=FNUM(23)
DUTFILE(2)"0

C
C INITIALIZE MERGE.
C

CALL MERGEINIT(INFILE,PRE,OUTFILE",2,KEYS",ER)
CALL MERGE END

C
C READ AND DISPLAY THE OUTPUT FILE.
C

REWIND 23
10 READ(23,END=100)BUF

DISPLAY BUF
GO TO 10

100 STOP
END

PROGRAM UNIT F19 COMPILED
SUBROUTINE PRE(F1,CAR,N)
CHARACTER CAR(N)
INTEGER FNUM
COMMON/FORTN/INFILE(3)
INTEGER INFILE,F1
IF(INFILE(F1+1).EQ.FNUM(21»GO TO 1000
DO 90 J·61) 72
CAR(J)-II*II

90 CONTINUE
1000 RETURN

END
PROGRAM UNIT PRE COMPILED

SUBROUTINE ER(ERR)
INTEGER ERR
CHARACTER *72 MESSAGE
SYSTEM INTRINSIC MERGEERRORMESS
MESSAGE:II
CALL MERGEERRORMESS(ERR,MESSAGE,L)
DISPLAY MESSAGE
RETURN
END

II

PROGRAM UNIT ER COMPILED
:FILE FTN21-MAIL1, OLD
:FILE FTN22=MAIL2, OLD
:FILE FTN23=MAIL3, NEW
:PREPRUN SOLDPASSj MAXDATA=15000
END OF PREPARE

4-24

MERGELIB: KEYFIELD IS NOT WITHIN RECORD LENGTH OF EACH FILE
ABORT :SOLDPASS.PUB.JOSHI.??:GRSL.%1.%3
PROGRAM ERROR #24 :BOUNDS VIOLATION
PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

Figure 4-9

Note the keys are established at the column position zero.

Calling MERGE with the failure parameter

SCONTROL USLINIT,FILE=21,FILE=22,FILE=23
PROGRAM F20
CHARACTER BUF*72
INTEGER KEYS(6),FNUM,INFILES(2)
LOGICAL FAILURE

C
C MERGE TWO SORTED FILES, MAIL1 (FTN21) AND MAIL2 (FTN22),
C INTO A THIRD FILE, MAIL3 (FTN23)
C
CESTABLISH KEYS - MAJOR AT 11 FOR 9 BYTES (LAST NAME)
C MINOR AT 1 FOR 10 BYTES (FIRST NAME)
C

KEYS(1)= 11
KEYS(2)=9
KEYS(3)=0
KEYS(4)=1
KEYS(S)=10
KEYS(6)=0

C
C ESTABLISH NUMBERS FOR THE INPUT FILES, MAIL1 AND MAIL2.
C

INFILES(1)=FNUM(21)
INFILES(2)=FNUM(22)

C
C INITIALIZE MERGE - 2 KEYS ARE SPECIFIED
C

CALL MERGE(\2\,INFILES,\FNUM(23)\,\0\,\2\,KEYS,
#\0\,\0\,\0\,\0\,\0\,FAILURE,\%7301\)
IF(FAILURE)STOP 10

C
C READ AND DISPLAY OUTPUT FILE
C

REWIND 23
20 READ(23,END=30)BUF

DISPLAY BUF[1:721
GO TO 20

30 STOP
END

4-25

:FILE FTN21-MAIL1, OLD
:FILE FTN22-MAIL2, OLD
:FILE FTN23-TEST, NEW
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE
PLAINS ANTELOPE 201 OPENSPACE AVE BIGCOUNTRY WY 49301 369-732-4821
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-0100
All BABA 40 THIEVES WAY SESAME CO 69142 NONE
BLACK BEAR 47 ALLOVER DR ANYWHERE US 00111 NONE
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619-407-2314
KNEE BUCKLER 974 F ISTI CUFF DR PUGILIST NO 04321 976-299-2990
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE
ANIMAL CRACKERS 1000 ANYWHERE PL ALLOVER US 00001 001-100-1000
MULE DEER 963 FOREST PL NICECOUNTRY CA 97643 493-900-9000
WH ITETA IL DEER 34 WOODSY PL BACKCOUNTRY ME 01341 619-433-4333
JAMES DOE 4193 ANY ST ANYTOWN MO 00133 237-408-7100
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
PRAIRE DOG 493 ROLLINGHILLS DR OPENSPACE NO 24321 992-419-4192
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
MALLARD DUCK 79 MARSH PL PUDDLEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
SNOWSHOE HARE 742 FRIGID WAY COLDSPOT MN 37434 732-732-7320
MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712-7122
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
SWAMP RABBIT 4444 DAMPPLACE RD BAYOU LA 79999 NONE
NASTY RATILER 243 DANGER AVE DESERTVILLE CA 87654 828-432-4321
BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO 34567 776-409-9040
GREY SQUIRREL 432 PLEASANT DR FALLCOLORS MA 14321 619-619-6199

Figure 4-10

The files, MAIL! and MAIL2, are merged into the file, MAIL3.

4-26

Calling MERGE for Multi-record, NOBUF, and Buffered Files

:FORTRAN NOBUF2
PAGE 0001 HP32102B.01.02 FORTRAN/3000 (C) HEWLETT-PACKARD CO. 1979 TUE, JAN

$CONTROL FILE=10-13,USLINIT
PROGRAM PNOBUF2

C
C This program demonstrates the use of multirecord, NOBUF,
C and buffered files with the MERGE intrinsics. The failure
C parameter is checked and the errorparm is used to obtain
C the error message text if needed.
C
C

SYSTEM INTRINSIC MERGEINIT,MERGEEND,MERGESTAT,MERGEERRORMESS
INTEGER INPUT(4),OUTPUT(2),KEYS(3),STATS(12)
INTEGER ERROR,FNUM,MSGLEN
LOGICAL FAILED
CHARACTER*72 MSG

C
C Establish the file numbers for the input and output files
C

INPUT(1) FNUM(11)
INPUT(2) = FNUM(12)
INPUT(3) = FNUM(13)
INPUT(4) 0

C
OUTPUT(1) = FNUM(10)
OUTPUT(2) 0

C
C Keys to sort the sequence numbers in columns 73-80
C

KEYS(1) 73
KEYS(2) • 8
KEYS(3) = 0

C
FAILED = .FALSE.
ERROR • 0

c
C Sort the files.
C

CALL MERGEINIT(INPUT"OUTPUT",1,KEYS""STATS,FAILED,ERROR)
CALL MERGEEND

C
C Print error message if one occurred, otherwise statistics.
C

IF (FAILED) GO TO 100
C

CALL MERGESTAT(STATS)
GOTO 200

100 CALL MERGEERRORMESS(ERROR,MSG,MSGLEN)
DISPLAY MSG[1:MSGLEN1," (",ERROR,")"

200 STOP
END

PROGRAM UNIT PNOBUF2 COMPILED
4-27

PAGE 0002 HEWLETT-PACKARD 32102B.01.02 FORTRAN/3000
**** GLOBAL STATISTICS
**** NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:04

END OF COMPILE
:PREP $OLDPASS,PNOBUF2;MAXDATA=31232
EHD OF PREPARE
:COMMENT
:FILE FTH11=SORTED01,OLD;MR
:FILE FTH12=SORTED02,OLD;NOBUF
:FILE FTH13=SORTED03,OLD
:COMMEHT
:FILE FTH10=MERGED,HEW;MR;SAVE
:RUH PHOBUF2;LIB=G

STATISTICS
HUMBER OF IHPUT FILES =
HUMBER OF RECORDS =
SPACE AVAILABLE (IH WORDS)
HUMBER OF COMPARES =
CPU TIME (MIHUTES) =
ELAPSED TIME (MINUTES)
EHD OF PROGRAM

IHPUT FILES

OUTPUT FILE

3
150

28,160
243
.01
.04

4-28

TUE, JAN 29, 1980, 11

CALLING SORT FROM A SPL/3000
PROGRAM

'BiWli!

v

This section introduces you to the programmatic use of SORT-MERGE/3000. You can sort one or more
files from an SPL/3000 program by using intrinsic calls. These intrinsics (SPL/3000 procedures) are part
of SORT -MERGE/3000 and are called by using the SYSTEM INTRINSIC declarations in your program.
The various parameters of these intrinsics are used by SORT-MERGE/3000 to perform specific oper-
ations.

The SORT program intrinsics

The following is a list of the SORT program intrinsics which reside in the SORTLIB segment of the
system segmented library (SL.PUB.SYS):

INTRINSIC DESCRIPTION

SORTINIT Initiates the SORT operation.

SORTINPUT Passes the input records, one at a time, to the SORT program only if the
inputfiles parameter is not specified in SORTINIT.

SORTOUTPUT Signals the beginning of SORT and receives each output record from
SORT into an array specified by the record parameter. SORTOUTPUT
signals the end of the input process if SORTINPUT is also called.
SORTOUTPUT is used only if the outputfiles parameter of SORTINIT is
not specified.

SORTEND Closes the scratch file and restores the data stack to its original state. It
signals the beginning of SORT if SORTOUTPUT is not called.

SORTSTAT Prints the SORT statistics on $STDLIST.

SORTTITLE Prints the version number and title of the SORTLIB segment along with
the date and time produced by the DATELINE intrinsic on $STDLIST.

SORTERRORMESS Called to retrieve and print a message if a fatal error occurs during SORT.
SORTERRORMESS is called from a user supplied error procedure (the
errorproc parameter of SORTINIT).

5-1

The call to SORTINIT starts the SORT operation. You should follow it by calling SORTINPUT if the
inputfiles parameter of SORTINIT is not specified. After this, call SORTOUTPUT if the ouipuijilee
parameter of SORTINIT is not specified. Then call SORTEND to terminate SORT. If you want the
display of the SORT statistics, call SORTSTAT. Additionally, call SORTERRORMESS from the user
supplied procedure, errorproc, if you want a display of the message when an error occurs. Note
SORTINIT and SORTEND are always required. But the calls to SORTINPUT, SORTOUTPUT,
SORTSTAT, and SORTERRORMESS are optional. However, their order is important whenever they
are called. Optional intrinsic SORTTITLE is an exception in that it can be called from the program at any
stage after the declaration of the system intrinsics. The following flowchart describes the SORT operation
when SORTINPUT, SORTOUTPUT, and SORTSTAT are used:

NO

NO

Figure 5-1. Flowchart of SORT Intrinsics

5-2

YES

YES

YES

Preparation and Exectution of the SORT Programs

The amount of available memory can affect both the time required to perform the SORT operation and
the amount of secondary storage needed by a temporary file. SORT programs should normally be pre-
pared with the maximum available segsize, which is specified by the MAXDATA= segsize parameter of
the :PREP or :RUN commands.

If a smaller segsize must be used, the following allowances should be made to provide enough space for
sorting. The segsize should be approximately 12000 words greater than the space required to run your
program without calls to the SORT intrinsics. If the files to be sorted are opened NOBUF, the segsize
should be increased by an additional amount equal to your blocksize (in words). When sorting files that
have been opened multirecord, the maximum possible segsize should be used.

If the error message INSUFFICIENT STACK SPACE is displayed, increase the MAXDATA parameter.
If the message TOO MANY FILES OPEN (FSERR 71) appears, it means MPE has no room for its tables
in the user data segment. Use the NOCB parameter of the :RUN command during the execution of the
program in this case.

NOTE: The SORTINITIAL intrinsic is included in this manual for the
maintenance of existing SPL/3000 programs.

5-3

SORTINIT
Initiates the SORT operation.

SYNTAX
IA IA IV

PROCEDURE SORTINIT t inputfiles, outputfiles, outputoption,
IV DV IV IA IA
reclen, numrecs, numkeys, keys, altseq,

LP P fA L
keycompare, errorproc, statistics, failure,

I T o-v
errorparm, epaceallocotion, parmI, parm2);

PARAMETERS

inputfiles

outputfiles

outputoption

reclen

numrecs

An integer array containing the MPE/3000 file identification numbers of the files
to be sorted. The array must be terminated with a word of zero to indicate the end
of the list. If the files are opened with either the NOBUF or MR (multirecord)
access option (aoption), SORT or MERGE will perform the buffering and
blocking/ deblocking. $Null is not a valid input file.

An integer array containing the file identification number of the output file. The
second word must contain a zero to indicate the end of the list. If the file is opened
with either the NOBUF or MR (multirecord) access option (aoption), SORT or
MERGE will perform the buffering and blocking/deblocking.

An integer passed by value determining the format of the output records. There
are four possibilities:

o - Output record is the same as the input record (default value)

1 - Output record is a double integer (4 characters) whose value is the
logical (relative) record number of the record.

2 - Output record contains only the key fields, concatenated
together with the major keys on the left followed by the remaining keys.

3 - Output record is the logical record number followed by
the key fields.

An integer passed by value denoting the maximum length of a record in charac-
ters. If it is not specified, the record length is taken from the first file specified in
the inputfiles array. In this case, you must specify the inputfiles parameter.

A double integer passed by value denoting the upper bound to the number of
records sorted. If this is not specified (or if all the input files are not on the disc),
the value of 10,000 (double integer) is used. Otherwise, the parameter value is
derived from the file label (the end of the file number of the input files).

5-4

numkeys and keys

altseq

keycompare

numkeys is an integer passed by value and keys is an integer array. They specify
the way the records are sorted. If either is specified, the other must also be speci-
fied and the keycompare parameter must not be specified. numkeys is the num-
ber of keys used in the comparison of records and must be either equal to or
greater than one. For each key being specified, keys contains three words.

First word gives the position of the first character of the key within the input
record. (The first character of the record is considered to be in position 1.) Second
word denotes the total number of characters in the key. Third word (bits 0
through 7) gives the ordering sequence of the records; 0 for ascending, 1 for de-
scending. bits 8 through 15 of the third word indicate the type of data according
to the following convention:

O=logical or character (same as the type, BYTE, in interactive mode)

l=two's complement (including integer and double integer)

2=floating point (including real and long)

3=packed decimal

5=packed decimal with even number of digits

4=Display-Trailing-Sign (see the KEY command in Section II)

6=Display -Leading -Sign

8=Display- Trailing-Sign-Separate

7=Display-Leading-Sign-Separate

An integer array defining an alternate collating sequence. The first character
(bits 0-7) of the array is defined according to Table 3-1. The second character
(bits 8-15) specifies one less than the total number of characters in the collating
sequence (in this case, 255 or % 377). These two characters are followed by the
actual collating sequence responsible for the particular SORT operation. See Fig.
5-1 for details.

A logical procedure allowing you access to your records when they are compared.
It must be specified in your call to SORTINIT if you do not specify numkeys and
keys. This logical procedure should include a statement of the following form:

LOGICAL PROCEDURE keycompare (reel, lenl, rec2, len2);

reel and rec2 are byte arrays and are pointers to the two records. lenl and len2
are integers passed by reference and are the lengths of the records in characters.
keycompare returns a true value if reel precedes rec2, and a false value otherwise.
A true value is also returned in the case of ties, to ensure that the records with
equal keys retain their original order.

5-5

errorproc

statistics

failure

A procedure called whenever a fatal error occurs during SORT. It is called by a
statement of the following form:

PROCEDURE errorproc (errorcode);

errorcode is an integer passed by reference and is the SORT program error num-
ber. It is passed to errorproc when an error occurs. If errorproc or errorparm are
not specified, a default procedure is used which prints an error message corre-
sponding to the particular errorcode. For a list of these error messages, see Ap-
pendix A.

An integer, which if specified, gives the following data:

Zeroth and first words=
number of records sorted (double integer)

Second word =
number of intermediate passes

Third word=
space available for sorting

Fourth and fifth words=
number of comparisons (double integer)

Sixth and seventh words=
number of scratch file inputs/outputs (double integer)

Eighth and ninth words=
CPU time used (in milliseconds, double integer)

Tenth and eleventh words=
elapsed time (in milliseconds, double integer)

A logical word passed by reference which is set to -1 (true) if a fatal error occurs,
and 0 (false) otherwise. It is set after each call to SORTINPUT and
SORTOUTPUT; in addition, the condition code is set.

Error conditions:

CCE=
no error occurred (failure set to false)

CCL=
error occurred (failure set to true)

5-6

errorparm

spaceallocation

parmi

parm2

An integer variable which, if specified, is set to the SORTLIB error number if an
error occurs. The SORTERRORMESS intrinsic can be used to obtain the error
message text. If the errorparm is supplied, the errorproc procedure is ignored and
no error messages are display. For a list of error messages see Appendix A.

An integer variable which, if specified, is used to determine stack allocation. A
positive spaceallocation specifies the number of words that may be used for
sorting and buffering. A negative values specifies the number of words that
should be left for the user after determining the amount available. Zero will cause
a default value to be used.

unused

unused

5-7

SORTINPUT
Passes the input records, one at a time, to the SORT program, only if the inputfiles parameter is not
specified in SORTINIT.

SYNTAX

LA IV
PROCEDURE SORTINPUT (record, length);

PARAMETERS

record A logical array containing a data record.

length An integer passed by value denoting the number of charaters in the record. It
must be long enough to contain all the keys, but not longer than the record size
(reclen).

ERROR CONDITIONS:

CCE=
no error occurred (failure set to false)

CCL=
error occurred (failure set to true)

This intrinsic follows SORTINIT and precedes SORTOUTPUT and SORTEND (see Fig. 5-2).

5-8

SORTOUTPUT
Signals the beginning of SORT and receives each output record from SORT into an array specified by the
record parameter. SORTOUTPUT signals the end of the input process if SORTINPUT is also called.
SORTOUTPUT is called only if the outputfiles parameter of SORTINIT is not specified (Fig. 5-3).

SYNTAX

LA IV
PROCEDURE SORTOUTPUT (record, length);

PARAMETERS

record A logical array receiving the next output record in the format specified by
outputoption.

length An integer passed by value denoting the number of characters returned in the
record. When no more records remain, length is set to -1.

ERROR CONDITIONS:

CCE=
no error occurred {failure set to false}

CCL=
error occurred (failure set to true)

Note if SORTINPUT is also called, SORTOUTPUT is called only after SORTINPUT has passed all the
records (Fig. 5-4). SORTOUTPUT always precedes SORTEND.

5-9

SORTEND
Closes the scratch file and restores the data stack to its original state. It signals the beginning of SORT if
SORT OUTPUT is not called.

SYNTAX
PROCEDURE SORTEND;

ERROR CONDITIONS:

CCE=
no error occurred during SORT (failure set to false)

CCL=
an error occurred during SORT (failure set to true)

SORTEND is required if SORTINIT is called. It can be called either after all the calls to the output file
are completed by SORTINIT, or after all the calls to SORTOUTPUT are completed.

5-10

SORTSTAT
Prints the SORT statistics on $STDLIST.

SYNTAX
IA

PROCEDURE SORTSTAT (statistics);

statistics is an integer array. SORTSTAT is called after SORTEND.

5-11

SORTTITLE
Prints the version number and title of the SORTLIB segment along with the date and time produced by
the DATELINE intrinsic on $STDLIST.

SYNTAX
PROCEDURE SORTTITLE;

This intrinsic can be called from the program at any stage after the declaration of the system intrinsics.

5-12

SORTERRORMESS
Called to retrieve and print a message if a fatal error occurs during SORT. SORTERRORMESS is called
from a user supplied procedure (the errorproc parameter of SORTINIT).

SYNTAX

IV BA I
PROCEDURE SORTERRORMESS (errorcode, message, length);

PARAMETERS

errorcode An integer passed by value denoting the SORT program error number and is
passed to errorproc when an error occurs.

message A byte array containing the text of the message. The message parameter must be
at least 72 characters long.

length An integer passed by reference denoting the length of the message in characters.

SORTERRORMESS works in conjunction with the errorproc parameter of SORTINIT.

5-13

SORTINITIAL
Initiates the SORT operation (to be used only for existing SPL/3000 programs).

SYNTAX
IV IV IV

PROCEDURE SORTINITIAL (inputfile, outputfile, outputoption,
IV DV IV LA P

reclen, numrecs, numheys, keys, errorproc,
LP LA L o-v

keycompare, statistics, failure);

PARAMETERS

inputfile An integer passed by value which is the MPE/3000 file number of the file to be
sorted. Input records are read directly from the file by the SORT program, and no
calls are made to SORTINPUT. If inpuifile is not specified, the records are
passed via SORTINPUT which must be called.

outputfile An integer passed by value which is the MPE/3000 file number of the file receiv-
ing the sorted records. If specified, no calls to SORTOUTPUT may be made.
Otherwise, the sorted records are sent through the SORTOUTPUT procedure,
which must be called.

Unlike SORTINIT, where the inputfiles and outputfiles parameters are integer arrays, the parameters,
inputfile and outputfile , are integers passed by value; each ofthem representing only a single file. Param-
eters, keys and statistics are logical arrays. SORTINITIAL does not have the capability of defining an
alternate collating sequence. Also, the positions of the errorproc and keycompare parameters are inter-
changed. The remaining parameters follow the same rules as those in SORTINIT.

5-14

EXAMPLES

Calling SORTINIT with the altseq Parameter

00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000 0
00000
00010
00006
00006
00006
00006
00006
00003
00000
00001
00011
00021
00031
00041
00051
00061
00071
00101
00111 1
00121
00131
00141
00151
00161
00171
00201
00201 1
00010
00013
00016
00027
00032
00035 1
00035 1
00046 1
00047
00052
00060
00063
00067 1
00073 1

SCONTROL USLINIT
« SPL EXAMPLE 51 »
«SPL ALTSEQ PARAMETER EXAMPLE»
«INPUTFILE AND OUTPUTFILE SPECIFIED»
«SORT THE FILE, UNDRGRAD, INTO THE FILE,
«SORT ON GRADES»
BEGIN
BYTE ARRAY INPUHO:12):="UNDRGRAD
BYTE ARRAY OUTPUHO:S):="VICTORS
ARRAY BUFCO:21);
INTEGER ARRAY INCO:1),OUTCO:1);
INTEGER LEN;
INTEGER NUMKEYS:=1;
INTEGER ARRAY KEYSCO:10):=38,1,0;
INTEGER ARRAY ALTSEQCO:130):=

VICTORS»

II.,
II.,

%000377,
%000001,%001003,%002005,%003007,%004011,%005013,%006015,%007017,
%010021,%011023,%012025,%013027,%014031,%015033,%016035,%017037,
%020041,%021043,%022045,%023047,%024051,%025053,%026055,%027057,
%030061,%031063,%032065,%033067,%034071,%035073,%036075,%037077,
%040102,%040503,%042105,%043107,%044111,%045113,%046115,%047117,
%050121,%051123,%052125,%053127,%054131,%055133,%056135,%057137,
%060141,%061143,%062145,%063147,%064151,%065153,%066155,%067157,
%070161,%071163,%072165,%073167,%074171,%075173,%076175,%077177,
%100201,%101203,%102205,%103207,%104211,%105213,%106215,%107217,
%110221,%111223,%112225,%113227,%114231,%115233,%116235,%117237,
%120241,%121243,%122245,%123247,%124251,%125253,%126255,%127257,
%130261,%131263,%132265,%133267,%134271,%135273,%136275,%137277,
%140301,%141303,%142305,%143307,%144311,%145313,%146315,%147317,
%150321,%151323,%152325,%153327,%154331,%155333,%156335,%157337,
%160341,%161343,%162345,%167747,%164351,%165353,%166355,%167357,
%170361,%171363,%172365,%173367,%174371,%175373,%152325,%177377;

INTRINSIC FPOINT,QUIT,FOPEN,FREAD,PRINT,SORTINIT,SORTEND;
INCO):=FOPENCINPUT,5);
IN(1):=O;
IF <> THEN QUITCSO);
OUTCO):=FOPENCOUTPUT,4,4);
OUH 1):=0;
IF <> THEN QUITCS1);
«CALL SORTINIT -OUTPUT OPTION=O»
SORTINITCIN,OUT""NUMKEYS,KEYS,ALTSEQ);
SORTEND;
FPDINHOUT, OD);
LOOP: LEN:=FREADCOUT,BUF,21);
IF <> THEN QUITCS3);
PRINTCBUF,LEN,O);
GOTO LOOP;
END.

5-15

:BUILD VICTORS
:PREPRUN SOLDPASS; MAXDATA=15000
END OF PREPARE
Nicolas Bourbaki 4.0 B
Sensible Kommunist 3.6 B
Milind Ranade 3.9 B
Uncle Sammuelson 3.7 B
Vegetarian Dracula 3.8 B
Virgin Cat 3.1 A
Tech Nitpicker 3.2 A
Boris Frankestein 3.1 A
Homo Genius 3.4 A
Hit Woman 3.1 A
Sorting Jack 3.3 A
Lacy Lowercase 3.4 A
Red Butler 3.1 A
Thomas Coll ins 2.1 U
Harry Krishna 2.9 U

Figure 5-1

The file, UNDRGRAD, is sorted into the file, VICTORS. The collating sequence is changed so the charac-
ter, B, has a lower value than the character, A.

Calling SORTINITIAL and SORTINPUT

00001000 00000 0 SCONTROL USLINIT
00002000 00000 0 « SPL EXAMPLE S2 »
00003000 00000 0 « OUTPUTFILE SPECIFIED BUT NOT INPUTFILE »
00004000 00000 0 « SORT THE FILE, MAIL2, INTO THE FILE, TEST »
00005000 00000 0 « SORT ON ZIP CODES WITHIN STATES-»
00006000 00000 0 BEGIN
00007000 00000 1 BYTE ARRAY MAIL2(0:8):="MAIL2 ";
00008000 00004 BYTE ARRAY TESHO:4):="TEST ";
00009000 00004 ARRAY ERROR(0:6):="ERROR IN SORT";
00010000 00007 ARRAY BUF(0:39);
00011000 00007 ARRAY KEYS(0:5);
00012000 00007 1 INTEGER OPIN,OPOUT,LEN;
00013000 00007 1 INTRINSIC FOPEN,FREAD,FPOINT,PRINT;
00014000 00007 1 INTRINSIC SORTINITIAL,SORTEND,SORTINPUT;
00015000 00007 1 « OPEN FILES »
00016000 00007 1 OPIN:=FOPEN(MAIL2,%605,%305);
00017000 00010 OPOUT:=FOPEN(TEST,%60S,%30S);
00018000 00020 « ESTABLISH KEYS »
00019000 00020 1 « MAJOR AT 52 FOR 2 BYTES (STATE) »
00020000 00020 1 « MINOR AT 55 FOR 5 BYTES (ZIP CODE) »
00021000 00020 KEYS(0):=52;
00022000 00023 KEYS(1>:=2;
00023000 00026 KEYS(2):=0;
00024000 00031 KEYS(3):=55;
00025000 00034 KEYS(4):=5;
00026000 00037 KEYS(S):=O;

5-16

00027000 00042 cc CALL SORTINITIAL - OUTPUT OPTION = o »
00028000 00042 e e INPUTFILE NOT SPECIFIED »
00029000 00042 SORTINITIAL(,OPOUT,0,80,,2,KEYS);
00030000 00054 IF () THEN GOTO ENDSORT;
00031000 00055 « READ RECORD FROM INPUT FILE »
00032000 00055 INPUT:
00033000 00055 LEN:=FREAD(OPIN,BUF,-80);
00034000 00063 IF) THEN GOTO ENDSORT;
00035000 00064 BEGIN
00036000 00064 2 ce CALL SORTINPUT »
00037000 00064 2 SORTINPUT(BUF,LEN);
00038000 00067 2 IF () THEN GOTO ENDSORT;
00039000 00070 2 GOTO INPUT
00040000 00076 2 END;
00041000 00076 ENDSORT:
00042000 00076 SORTEND;
00043000 00077 IF () THEN GOTO SORTERR;
00044000 00100 ce RESET OUTPUT FILE TO RECORD 1»
00045000 00100 FPOINT(OPOUT,OD)j
00046000 00103 DISPLAY:
00047000 00103 LEN:=FREAD(OPOUT,BUF,40) j
00048000 00111 IF) THEN GOTO STOP;
00049000 00112 PRINT(BUF,LEN,O)j
00050000 00116 GOTO DISPLAYj
00051000 00117 SORTERR:
00052000 00117 PRINT(ERROR,7,0)j
00053000 00123 STOP:
00054000 00123 END.
:BUILD TEST
:PREPRUN $OLDPASSj MAXDATA=4000
END OF PREPARE
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-0100
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE
ALI BABA 40 THIEVES WAY SESAME CO 69142 NONE
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
JAMES DOE 4193 ANY ST ANYTOWN MD 00133 237-408-7100
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 04321 976-299-2990
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619-407-2314
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997

Figure 5-2

The file, MAIL2, is sorted according to the major key, states, and the key, zip code, into the file, TEST.

5-17

Calling SORTOUTPUT

00001000 00000 0
00002000 00000 0
00003000 00000 0
00004000 00000 0
00005000 00000 0
00006000 00000 0
00007000 00000
00008000 00004
00009000 00004
00010000 00007
00011000 00007
00012000 00007
00013000 00007
00014000 00007
00015000 00007
00016000 00007
00017000 00010
00018000 00020 1
00019000 00020
00020000 00020
00021000 00020
00022000 00023
00023000 00026
00024000 00031
00025000 00034
00026000 00037
00027000 00042
00028000 00042
00029000 00042
00030000 00053
00031000 00054
00032000 00054
00033000 00054
00034000 00057
00035000 00060
00036000 00063 1
00037000 00063 2
00038000 00070 2
00039000 00076 2
00040000 00076 1
00041000 00076
00042000 00101
00043000 00101
00044000 00102
00045000 00103
00046000 00103
00047000 00111
00048000 00112
00049000 00116
00050000 00117
00051000 00117
00052000 00123
00053000 00123

$CONTROL USLINIT
« SPL EXAMPLE S3 »
« INPUTFILE SPECIFIED BUT NOT OUTPUTFILE »
« SORT THE FILE, MAIL2 INTO THE FILE, TEST »
« SORT ON PHONE NUMBERS WITHIN STATES »

BEGIN
BYTE ARRAY MAIL2CO:8):="MAIL2 ";
BYTE ARRAY TESTe 0:4):="TEST ";
ARRAY ERRORCO:6):="ERROR IN SORT";
ARRAY BUFCO:35);
ARRAY KEYSCO:5);
INTEGER OPIN,OPOUT,LEN:=36;
INTRINSIC FOPEN,FREAD,FPOINT,PRINT,FWRITE;
INTRINSIC SORTINITIAL,SORTEND,SORTOUTPUT;

« OPEN FILES »
OPIN:=FOPENCMAIL2,%605,%305);
OPOUT:=FOPENCTEST,X605,%305);

« ESTABLISH KEYS »
« MAJOR AT 52 FOR 2 BYTES CSTATE) »
« MINOR AT 61 FOR 12 BYTES CPHONE NO) »

KEYSCO):=52;
KEYSC 1):=2;
KEYS(2):=0;
KEYS(3): =61;
KEYS(4):=12;
KEYS(5):=0;

« CALL SORTINITIAL - OUTPUT OPTION 0»
« OUTPUTFILE NOT SPECIFIED »

SORTINITIALCOPIN"0,,,2,KEYS);
IF <> THEN GOTO ENDSORT;

« CALL SORTOUTPUT »
OUTPUT:

SORTOUTPUTCBUF,LEN);
IF <> THEN GOTO ENDSORT;
IF LEN >=0 THEN

BEGIN
FWRITECOPOUT,BUF,36,0);
GOTO OUTPUT;

END-;
« RESET OUTPUTFILE TO RECORD 1 »

FPOINTCOPOUT,OD);
ENDSORT:

SORTEND;
IF <> THEN GOTO SORTERR;

DISPLAY:
LEN:=FREADCOPOUT,BUF,36);
IF > THEN GOTO STOP;
PRINTCBUF,LEN,O);
GOTO DISPLAY;

SORTERR:
PRINTCERROR,7,0);

STOP:
.END.

5-18

:BUILD TEST
:PREPRUN $OLDPASS; MAXDATA=15000
END OF PREPARE
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-0100
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE
ALI BABA 40 THIEVES WAY SESAME CO 69142 NONE
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
JAMES DOE 4193 ANY ST ANYTOWN MD 00133 237-408-7100
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 04321 976-299-2990
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619-407-2314
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997

Figure 5-3

The file, MAIL2, is sorted according to the major key, states, and the key, phone numbers, into the file,
TEST.

Calling SORTINITIAL without the inputfile and outputfile parameters

00001000 00000 0 $CONTROL USLINIT
00002000 00000 0 « SPL EXAMPLE S4 »
00003000 00000 0 « NEITHER INPUTFILE NOR OUTPUTFILE SPECIFIED»
00004000 00000 0 « SORT MAIL2 INTO TEST »
00005000 00000 0 « SORT ON FIRST NAMES WITHIN LAST NAMES »
00006000 00000 0 BEGIN
00007000 00000 BYTE ARRAY MAIL2 (0:8):=IIMAIL2 ";
00008000 00004 BYTE ARRAY TESHO:4):="TEST ";
00009000 00004 ARRAY ERROR(0:6):="ERROR IN SORT";
00010000 00007 ARRAY BUF(0:39);
00011000 00007 ARRAY KEYS(0:5);
00012000 00007 INTEGER OPIN,OPOUT,LEN;
00013000 00007 INTRINSIC FOPEN,FREAD,FWRITE,FPOINT,PRINT;
00014000 00007 INTRINSIC SORTINITIAL,SORTEND;
00015000 00007 INTRINSIC SORTINPUT,SORTOUTPUT;
00016000 00007 « OPEN FILES »
00017000 00007 OPIN:=FOPEN(MAIL2,%605,%305);
00018000 00010 OPOUT:=FOPEN(TEST,%605,%305);
00019000 00020 « ESTABLISH KEYS »
00020000 00020 « MAJOR AT 11 FOR 9 BYTES (LAST NAME> »
00021000 00020 « MINOR AT 1 FOR 10 BYTES (FIRST NAME> »
00022000 00020 KEYS(O):=11;
00023000 00023 KEYS(1):=9;
00024000 00026 KEYS(2):=0;
00025000 00031 KEYS(3):=1;
00026000 00034 KEYS(4):=10;
00027000 00037 KEYS(5):=0;

5-19

00028000 00042 e e CALL SORTINITIAL - OUTPUT OPTION = 0 »
00029000 00042 e e INPUTFILE AND OUTPUTFILE NOT SPECIFIED »
00030000 00042 SORTINITIAL(••0.80 ••2.KEYS);
00031000 00053 IF <> THEN GOTO ENDSORT;
00032000 00054 ce READ RECORD FROM INPUT FILE »
00033000 00054 INPUT:
00034000 00054 LEN:=FREAD(OPIN.BUF.-80);
00035000 00062 IF > THEN GOTO OUTPUT;
00036000 00063 « CALL SORTINPUT »
00037000 00063 1 BEGIN
00038000 00063 2 SORTINPUT(BUF.LEN);
00039000 00066 2 IF <> THEN GOTO ENDSORT;
00040000 00067 2 END;
00041000 00067 1 GOTO INPUT;
00042000 00075 « CALL SORTOUTPUT »
00043000 00075 OUTPUT:
00044000 00075 1 BEGIN
00045000 00075 2 SORTOUTPUT(BUF.LEN);
00046000 00100 2 IF <> THEN GOTO ENDSORT;
00047000 00101 2 IF LEN >=0 THEN
00048000 00104 2 BEGIN
00049000 00104 3 FWRITE(OPOUT.BUF.40.0);
00050000 00111 3 GOTO OUTPUT;
00051000 00112 3 END;
00052000 00112 2 END;
00053000 00112 1 ENDSORT:
00054000 00112 SORTEND;
00055000 00113 IF <> THEN GOTO SORTERR;
00056000 00114 « RESET OUTPUTFILE TO FIRST RECORD »
00057000 00114 1 FPOINT(OPOUT.OD);
00058000 00117 1 DISPLAY:
00059000 00117 LEN:=FREAD(OPOUT.BUF.40);
00060000 00125 IF > THEN GOTO STOP;
00061000 00126 PRINT(BUF.LEN.O);
00062000 00132 GOTO DISPLAY;
00063000 00133 SORTERR:
00064000 00133 PRINT(ERROR.7.0);
00065000 00137 STOP:
00066000 00137 END.

5-20

:BUILD TEST
:PREPRUN $OLDPASS; MAXDATA=15000
END OF PREPARE
LOIS
KING
All
JOHN
KNEE
SWASH
JAMES
JANE
JOHN
JENNA
KARISSA
SPACE

ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER
BUCKLER
DOE
DOE
DOUGHE
GRANDTR
GRANDTR
MANN

6190 COURT ST
329 EXCALIBUR ST
40 THIEVES WAY
965 APPIAN WAY
974 FISTICUFF DR
497 PLAYACTING CT
4193 ANY ST
3959 TREEWOOD LN
239 MAIN ST
493 TWENTIETH ST
7917 BROADMOOR WAY
9999 GALAXY WAY

METROPOLIS NY 20115 619-732-4997
CAMELOT CA 61322 812-200-0100
SESAME CO 69142 NONE
METROPOLIS NY 20013 619-407-2314
PUGILIST ND 04321 976-299-2990
MOVIETOWN CA 61497 NONE
ANYTOWN MD 00133 237-408-7100
BIGTOWN MA 21843 714-399-4563
HOMETOWN MA 26999 714-411-1123
PROGRESSIVE CA 61335 799-191-9191
BIGTOWN MA 21799 713-244-3717
UNIVERSE CA 61239 231-999-9999

Figure 5·4

The file, MAIL2, is sorted according to the major key, last name, and the key, first name, into the file,
TEST.

Multirecord, NOBUF, and Buffered Files

:SPL NOBUF3

PAGE 0001
00000 0
00000 0
00000 0
00000 0
00000 0
00000
00000
00000
00000 1
00000 1
00000 1
00000 1
00000 1
00000
00000
00000 1
00000 1
00006 1
00006 1
00006 1
00006

HEWLETT-PACKARD 32100A.08.0C SPL[4W] TUE, JAN 29, 1980, 11:09 AM (
$CONTROL USLINIT
This program demonstrates the use of multirecord, NOBUF, and
buffered files and the errorparm with SORT.

BEGIN
INTRINSIC FOPEN,FCLOSE,

SORTINIT,SORTEND,SORTSTAT,SORTERRORMESS,
ASCII,PRINT;

INTEGER ARRAY INPUT(O:3),
OUTPUT< 0:1),
KEYS(0:2),
STATISTICS(O:11);

INTEGER ERROR,
LENGTH,
RECSIZE := 80;

LOGICAL FAILURE;
BYTE ARRAY INFILE1(O:8) := "UNSORT01 II;

BYTE ARRAY INFILE2(0:8) := "UNSORT02 ";
BYTE ARRAY INFILE3(0:8) := "UNSORT03 I';
BYTE ARRAY OUTFILE(0:8) := "SORTED ";
ARRAY WORD'BUF(O:40);

5·21

00006 1
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00012
00024
00036
00041
00041
00055
00060
00060
00060
00063
00066
00071
00071
00071
00073
00075
00075
00075
00075
00113

BYTE ARRAY BUFFER(*) = WORD'BUFj

EQUATE NEWFILE • %0,
OLDFILE .•%3,
READ .•%0,
WRITE %1,
MULTIRECORD .•%20,
NOBUF .•%400,
BUFFERED %0,
NO'CHANGE %0,
SAVE'PERM %1,
RETURN'SPACE- %10,
UNRESTRICTED= %0;

«ESTABLISH THE FILE ARRAYS FOR INPUT AND OUTPUT»
INPUT(O) := FOPEN(INFILE1,OLDFILE,MULTIRECORD+READ);
INPUT(1) := FOPEN(INFILE2,OLDFILE,NOBUF+READ);
INPUT(2) := FOPEN(INFILE3,OLDFILE,BUFFERED+READ);
INPUT(3) := 0;

OUTPUT(O) := FOPEM(OUTFILE,NEWFILE,MULTIRECORD+WRITE,-RECSIZ
OUTPUT< 1) := 0;

«ESTABLISH THE KEYS ARRAY»
KEYS(O) := 73; «POSITION»
KEYS(1) := 8; «LENGTH »
KEYS(2) := 0; «ASCENDING, TYPE BYTE OR LOGICAL »

«OTHER INITIALIZATIONS»
FAILURE := FALSE;
ERROR := TRUE;

«PERFORM THE SORT AND CHECK FOR ERRORS»

SORTINIT(INPUT,OUTPUT,0,RECSIZE,,1,KEYS, ,"STATISTICS, FAILUR
SORTEND;

5-22

PAGE 0002 HEWLETT-PACKARD
00114 1
00114 1
00114 1
00116 2
00122 2
00127 2
00144 2
00154 2
00164 2
00167 2
00174 2
00174 1
00175
00177
00177
00203 1
00207 1
00213
00213
00221
00221 1 EI'ID.

PRIMARY DB STORAGE=%016;
1'10.ERRDRS=OOOOj
PROCESSOR TIME=0:OO:02;

IF FAILURE
THEI'IBEGII'I « PRII'ITTHE ERROR MESSAGE AI'IDHUMBER »

SORTERRORMESS(ERROR,BUFFER,LEI'IGTH);
PRII'IT(WORD'BUF,-LEI'IGTH,%320);
MOVE BUFFER := " (";
LEI'IGTH := ASCII(ERROR,10,BUFFER(3» + 3;
MOVE BUFFER(LEI'IGTH) := ")";
LEI'IGTH := LEI'IGTH + 2;
PRII'IT(WORD'BUF,-LEI'IGTH, %40);
EI'ID

ELSE « PRII'ITTHE STATISTICS »
SORTSTAT(STATISTICS);

FCLOSE(II'IPUT(0),1'I0'CHAI'IGE,UI'IRESTRICTED);
FCLOSE(II'IPUT(1),1'I0'CHAI'IGE,UI'IRESTRICTED);
FCLOSE(II'IPUT(2),1'I0'CHAI'IGE,UI'IRESTRICTED);

FCLOSE(OUTPUT(O),SAVE'PERM+RETURI'I'SPACE,UI'IRESTRICTED);

SECOI'IDARY DB STORAGE=%00122
1'10.WARI'III'IGS=OOOO
ELAPSED TIME=0:00:08

EI'IDOF COMPILE
:PREP $OLDPASS,PI'IOBUF3;MAXDATA=31232
EI'IDOF PREPARE
:RUI'IPI'IOBUF3;LIB=G

STATISTICS
HUMBER OF RECORDS =
HUMBER OF II'ITERMEDIATE PASSES =
SPACE AVAILABLE (11'1WORDS)
HUMBER OF COMPARES =
HUMBER OF SCRATCHFILE 10'5 =
CPU TIME (MII'IUTES) =
ELAPSED TIME (MII'IUTES)
EI'IDOF PROGRAM

150
o

14,085
1,170

102
.03
.10

5-23

CALLING MERGE FROM A
SPL/3000 PROGRAM VI

You can merge two or more sorted files from an SPL/3000 program by using intrinsic calls. These
intrinsics (SPL/3000 procedures) are part of SORT -MERGE/3000 and are called by using the SYSTEM
INTRINSIC declarations in your program. The various parameters of these intrinsics are used by
SORT-MERGE/3000 to perform specific operations.

The MERGE program intrinsics

The following is a list of the MERGE program intrinsics which reside in the MERGELIB segment of the
system segmented library:

INTRINSIC DESCRIPTION

MERGEINIT Merges two or more sorted files.

MERGEOUTPUT Requests records from MERGE IN IT, one at a time, if the outputfiles pa-
rameter is not specified in MERGEINIT.

MERGEEND Restores the data stack to its original state. MERGEEND must be called
only if MERGEINIT is called.

MERGESTAT Prints the MERGE statistics on $STDLIST.

MERGETITLE Prints the version number and title of the MERGELIB segment along
with the date and time produced by the DATELINE intrinsic on
$STDLIST.

MERGEERRORMESS Called to retrieve and print a message if a fatal error occurs during
MERGE. MERGEERRORMESS is called from a user supplied error pro-
cedure (the errorproc parameter of MERGEINIT).

6-1

The MERGEINIT intrinsic initiates the MERGE operation. After calling MERGEINIT, you should call
MERGEOUTPUT if the outputfiles parameter of MERGEINIT is not specified. This is followed by a
call to the MERG EEND intrinsic. Call MERG EST AT if you want the display of the MERGE statistics.
Additionally, call SORTERRORMESS from the user supplied procedure, errorproc, if you want a display
of the message when an error occurs. MERGEOUTPUT, MERGESTAT, and MERGEERRORMESS are
optional but their order is important if they are called. The optional intrinsic, MERGETITLE, can be
called at any stage. The following flowchart illustrates the MERGE operation when MERGE OUTPUT
and MERGES TAT are called:

(MERGE)

NO

Figure 6-1. Flowchart of Merge Intrinsics

Preparation and Execution of the MERGE programs

The amount of available memory can affect the time required to perform a MERGE. MERGE programs
with files opened multirecord should be prepared with the maximum available segsize which is specified
by the MAXDATA=segsize parameter of the :PREP or :RUN commands. MERGE programs with files
opened NOBUF should increase the segsize, allowing one block per file.

If the error message INSUFFICIENT STACK SPACE is displayed, increase the MAXDATA parameter.
If the message TOO MANY FILES OPEN (FSERR 71) appears, it means MPE has no room for its tables
in the user data segment. Use the NOCB parameter of the :RUN command during the execution of the
program in this case.

NOTE: The MERGE intrinsic is included in this manual for the maintenance of existing SPL/3000
programs.

6-2

MERGEINIT
Merges two or more sorted files.

SYNTAX
IA P IA

PROCEDURE MERGEINIT (inputfiles, preprocessor, outputfiles,
P LV IV IA

postprocessor, keysonly, numkeys, keys,
IA LP P IA

altseq, key compare, errorproc, statistics,
L I I

failure, errorparm, spoeeallocation, parm I,
O-V

parm2);

PARAMETERS

inputfiles An integer array containing the file identifications of the input files to be merged.
The array is terminated with a word of zero. If the files are opened with either the
NOBUF or MR (multirecord) access option (aoption), SORT or MERGE will
perform the buffering and blocking/deb locking. $Null is not a valid input file.

preprocessor A procedure called whenever a record is read from the input file. The call should
include a statement of the following form:

PROCEDURE preprocessor (file, record, length);

file is an integer passed by reference which is the index to the inputfiles array of
the file from which the record is read. The value of the file parameter lies between
o and the number of input files minus one. record is a byte array denoting the
data record. length is an integer passed by reference denoting the number of
characters in the record.

outputfiles An integer array containing the file identification of the output file. The second
word must contain a zero to indicate the end of the list. If the file is opened with
either the NOBUF or MR (multirecord) access option (aoption), SORT or
MERGE will perform the buffering and blocking/deb locking.

6-3

postprocessor

keysonly

numkeys and keys

altseq

A procedure called before each record is sent to the output file. Either this param-
eter or outputiiles (or both) must be specified. postprocessor is called by a state-
ment of the following form:

PROCEDURE postprocessor (record, length);

record is a byte array which is the data record. length is an integer passed by
reference denoting the number of characters in the record.

A logical procedure, which if true, passed by value causes only the key fields;
concatenated together with the major key on the left followed by other keys; sent
as output. The keycompare parameter must not be specified in this case. If
keysonly is false, the entire records are sent as output. The default for keysonly is
false.

numkeys is an integer passed by value and keys is an integer array. They describe
the way records are merged. If either is specified, the other must also be specified
and keycompare must not be specified. numkeys denotes the number of keys
used during the comparison of records. It may be either equal to or greater than
one. keys specifies the way the records are compared. For each key being speci-
fied, keys contains three words:

First word gives the position of the first character of the key within the record.
Second word denotes the number of characters in the key. Third word (bits 0
through 7) gives the ordering sequence of the records. (0 for ascending, 1 for de-
scending)

bits 8 through 15 of the third word indicate the type of data according to the
following convention:

O=logical or character (same as the type, BYTE, in interactive mode)

l=two's complement (including integer and double integer)

2=floating point

3=packed decimal

5=packed decimal with even number of digits

4=Display-Trailing-Sign (see the KEY command in Section II)

6=Display-Leading-Sign

8=Display-Trailing-Sign-Separate

7=Display-Leading-Sign-Separate

An integer array defining an alternate collating sequence. The first character
(bits 0-7) of the array is defined according to Table 3-1. The second character
(bits 8-15) specifies one less than the total number of characters in the collating
sequence (in this case 255 or % 377). These two characters are followed by the
actual collating r.cquence responsible for the particular MERGE operation.

6-4

keycompare A logical procedure specified if you do not specify numkeys and keys. It is called
whenever two records are compared. This call should include a statement of the
following form:

LOGICAL PROCEDURE keycompare (reel, lenl , rec2, Zen2);

reel and rec2 are byte arrays and are pointers to the two records. lenl and len2
are integers passed by value and are the lengths of the records in characters.
keycompare returns a true value if reel precedes rec2, and a false value otherwise.
It returns a true value even in the case of ties. This ensures that the original
sequence is preserved in the case of ties. those specified later.

errorproc A procedure used in conjunction with the MERGEERRORMESS procedure. It is
called as follows whenever a fatal error occurs during MERGE:

PROCEDURE errorproc (errorcode);

errorcode is an integer passed by reference and is the MERGE program error
number. It is passed to errorproc when an error occurs. If errorproc or errorparm
are not specified, a default procedure is used which prints the error message cor-
responding to the particular errorcode. For a list of these error messages, see Ap-
pendix A.

statistics An integer array which if specified, gives the following data:

Zeroth word =
number of input files.

First and second words=
number of merged records (double integer)

Third word=
space available for merging.

Fourth and fifth words=
number of comparisons (double integer).

Sixth and seventh words=
CPU time (in milliseconds, double integer).

Eighth and ninth words=
elapsed time (in milliseconds, double integer).

6-5

failure

errorparm

spaceallocation

parmi

parm2

A logical word passed by reference which is set to -1 (true) if a fatal error occurs,
and 0 {false} therwise.

Error conditions:

CCE=
no error occurred (failure set to false)

CCG=
an error occurred (failure set to true)

An integer variable which, if specified, is set to the MERGELIB error number if
an error occurs. The MERGEERRORMESS intrinsic can be used to obtain the
error message text. If the errorparm is supplied, theerrorproc procedure is ig-
nored and no error messages are display. For a list of error messages see Appendix
A.

An integer variable which, if specified, is used to determine stack allocation. A
positive space allocation specifies the number of words that may be used for
sorting and buffering. A negative values specifies the number of words that
should be left for the user after determining the amount available. Zero will cause
a default value to be used.

unused

unused

6-6

MERGEOUTPUT
Requests records from MERGEINIT, one at a time, if the outputfiles parameter is not specified in
MERGEINIT.

SYNTAX
LA I

PROCEDURE MERGEOUTPUT (record, length);

PARAMETERS
record A logical array receiving the next output record.

length An integer passed by reference denoting the number of characters in the record.

MERGEOUTPUT is called after MERGEINIT but before MERGEEND.

6-7

MERGEEND
Restores the data stack to its original state.

SYNTAX
PROCEDURE MERGEEND;

It must be called only if MERGEINIT is called.

6-8

Prints the MERGE statistics on $STDLIST.

SYNTAX
fA

MERGESTAT (statistics);

statistics is an integer array. MERGESTAT is called after MERGEEND.

6-9

MERGESTAT

Prints the version number and title of the MERGELIB segment along with the date and time produced by
the DATELINE intrinsic on $STDLIST.

SYNTAX
PROCEDURE MERGETITLE;

This intrinsic can be called from the program at any stage after the system intrinsics are declared.

6-10

MERGEERRORMESS
Called to retrieve and print a message if a fatal error occurs during MERGE. MEREGEERRORMESS is
called from a user supplied error procedure (the errorproc parameter of MERGEINIT).

SYNTAX

IV BA I
PROCEDURE MERGEERRORMESS (errorcode, message, length);

PARAMETERS

errorcode An integer passed by value denoting the MERGE program error number and is
passed to errorproc when an error occurs.

message A byte array containing the text of the message. The message parameter must be
at least 72 characters long.

length An integer passed by reference denoting the length of the message in characters.

MERGEERRORMESS converts errorcode values into ASCII strings. It works in conjunction with the
errorproc parameter of MERGEINIT.

6-11

MERGE
Initiates the MERGE operation (to be used only for existing SPL!3000 programs).

SYNTAX
IV IA IV

PROCEDURE MERGE t numinputfiles, inputfiles, outputfile,
IV IV IA P

key only, numkeys, keys, preprocessor,
P P LP fA

postprocessor, errorproc, heyeompare, statistics,
L o-v

failure);

PARAMETERS

numinputfiles An integer passed by value denoting the number of input files to be merged. This
parameter is not optional and is either equal to or greater than one.

inputfiles An integer array containing the MPE/3000 file numbers of the files to be merged.
These file numbers appear in the locations inputfiles(O) through inputfiles
(numinputfiles-1). This parameter is not optional.

outputfile Unlike MERGEINIT, where the ouiputfiles parameter is an integer array,
outputfile is an integer passed by value specifying the MPE/3000 file number of
the file on which the merged records are written. If outputfile is not specified, the
records are not written anywhere. In this case, postprocessor must be specified.

All the other parameters are similar to the MERGE INIT parameters except the positions of the param-
eters, errorproc and keycompare, are interchanged. MERGE is less powerful than MERGEINIT in that it
does not have the altseq parameter. Also, MERGEOUTPUT and MERGEEND must not be called when
MERGE is called.

Calling MERGE (Example)

00001000 00000 0 $CONTROL USLINIT
00002000 00000 0 « SPL EXAMPLE S5 »
00003000 00000 0 « MERGE THE SORTED FILES, MAIL1 AND MAIL2, »
00004000 00000 0 « INTO THE»
00005000 00000 0 « FILE, TEST1. »
00006000 00000 0 BEGIN
00007000 00000 BYTE ARRAY MAILHO:5):="MAIL1 II.,
00008000 00004 BYTE ARRAY MAIL2CO:4):="MAIL2 II.,
00009000 00004 BYTE ARRAY TESTHO: 4):="TEST1 II.,
00010000 00004 ARRAY ERRORCO:6):="ERROR IN MERGE";
00011000 00007 ARRAY BUFCO:35);
00012000 00007 ARRAY KEYSCO:5);
00013000 00007 INTEGER ARRAY INFILESCO:1);
00014000 00007 INTEGER OPOUT,LEN;
00015000 00007 LOGICAL FAILURE;
00016000 00007 INTRINSIC FOPEN,FREAD,FPOINT,PRINT,MERGE;

6-12

00017000 00007
00018000 00007
00019000 00011
00020000 00022
00021000 00032
00022000 00032
00023000 00032
00024000 00032
00025000 00035
00026000 00040
00027000 00043
00028000 00046
00029000 00051
00030000 00054
00031000 00054
00032000 00065
00033000 00066
00034000 00066
00035000 00066
00036000 00071
00037000 00071 1
00038000 00071 2
00039000 00077 2
00040000 00100 2
00041000 00104 2
00042000 00114 2
00043000 00114
00044000 00114
00045000 00120
00046000 00120

« OPEN FILES »
INFILES(0):=FOPEN(MAIL1,%605,%305);
INFILES(1):=FOPEN(MAIL2,%605,%305);
OPOUT:=FOPEN(TEST1,%605,%305);

« ESTABLISH THE KEYS »
« MAJOR AT 11 FOR 9 BYTES (LAST NAME) »
« MINOR AT 1 FOR 10 BYTES (FIRST NAME) »

KEYS(0):=11;
KEYS(1):=9;
KEYS(2):=0;
KEYS(3):=1;
KEYS(4):=10;
KEYS(5):=0;

« CALL MERGE »
MERGE(2,INFILES,OPOUT,,2,KEYS);
IF () THEN GOTO MERGERR;

« OUTPUT MERGED FILE »
« RESET OUTPUTFILE TO RECORD 1 »

FPOINT(OPOUT,OD);
DISPLAY:

BEGIN
LEN:=FREAD(OPOUT,BUF,36);
IF) THEN GOTO STOP;
PRINT(BUF,LEN,O);
GOTO DISPLAY;

END;
MERGERR:

PRINT(ERROR,7,0);
STOP:
END.

:BUILD TESn
:PREPRUN SOLDPASS; MAXDATA=15000

6-13

END OF PREPARE
PLAINS
LOIS
KING
All
BLACK
JOHN
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 04321 976-299-2990
SWASH BUCKLER 497 PLAYACTING CT MoVIEToWN CA 61497 NONE
ANIMAL CRACKERS 1000 ANYWHERE PL ALLOVER US 00001 001-100-1000
MULE DEER 963 FOREST PL NICECoUNTRY CA 97643 493-900-9000
WHITETAIL DEER 34 WOODSY PL BACKCoUNTRY ME 01341 619-433-4333
JAMES DOE 4193 ANY ST ANYToWN MD 00133 237-408-7100
JANE DOE 3959 TREEWooD LN BIGToWN MA 21843 714-399-4563
PRAIRE DOG 493 RoLLINGHILLS DR oPENSPACE ND 24321 992-419-4192
JOHN DoUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
MALLARD DUCK 79 MARSH PL PUDDLEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KARISSA GRANDTR 7917 BRoADMooR WAY BIGToWN MA 21799 713-244-3717
SNOWSHOE HARE 742 FRIGID WAY CoLDSPoT MN 37434 732-732-7320
MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712-7122
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
SWAMP RABBIT 4444 DAMPPLACE RD BAYOU LA 79999 NONE

ANTELOPE 201 oPENSPACE AVE BIGCoUNTRY WY 49301 369-732-4821
ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997
ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-0100
BABA 40 THIEVES WAY SESAME CO 69142 NONE
BEAR 47 ALLOVER DR ANYWHERE US 00111 NONE
BIGToWN 965 APPIAN WAY METROPOLIS NY 20013 619-407-2314

NASTY RATTLER 243 DANGER AVE
BIGHORN SHEEP 999 MOUNTAIN DR
GREY SQUIRREL 432 PLEASANT DR

DESERTVILLE CA 87654 828-432-4321
HIGHPLACE CO 34567 776-409-9040
FALLCOLORS MA 14321 619-619-6199

Figure 6-2

The files, MAIL1 and MAIL2, are merged into the file, TEST.

6-14

EXAMPLES
Merging files opened MR and NOBUF.

:SPL NOBUF4

PAGE 0001 HEWLETT-PACKARD 32100A.08.0C SPL[4W] TUE, JAN 29, 1980, 11:10 AM (
00000 0
00000 a
00000 0
00000 0
00000 0
00000
00000
00000
00000
00000
00000 1
00000 1
00000
00000
00000
00000
00000
00006
00006
00006
00006
00006
00006
00006 1
00006 1
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00006
00012
00024
00036
00041
00041
00055
00060 1
00060 1
00060 1
00063
00066

$CONTROL USLINIT
This program demonstrates the use of multirecord, NOBUF, and
buffered files and the errorparm with MERGE.

BEGIN
INTRINSIC FOPEN,FCLOSE,

MERGE INIT,MERGEEND,MERGESTAT,MERGEERRORMESS ,
ASCII,PRINT;

INTEGER ARRAY INPUT(0:3),
OUTPUT< 0:1),
KEYS(0:2),
STATISTICS(0:11);

INTEGER ERROR, ~
LENGTH,
RECSIZE := 80;

LOGICAL FAILURE;
BYTE ARRAY INFILE1(0:8)
BYTE ARRAY INFILE2(0:8)
BYTE ARRAY INFILE3(0:8)
BYTE ARRAY OUTFILE(0:8)
ARRAY WORD'BUF(0:40);
BYTE ARRAY BUFFER(*) = WORD'BUF;

.= "SORTED01 ',.,
: = "SORTED02 ',.,
:= "SORTED03 " .,
: = "MERGED ',.,

EQUATE NEWFILE %0,
OLDFILE %3,
READ %0,
WRITE % 1,
MULTIRECORD = %20,
NOBUF %400,
BUFFERED %0,
NO'CHANGE %0,
SAVE'PERM %1,
RETURN'SPACE= %10,
UNRESTRICTED= %0;

«ESTABLISH THE FILE ARRAYS FOR INPUT AND OUTPUT»
INPUT(O) := FOPEN(INFILE1,OLDFILE,MULTIRECORD+READ);
INPUT(1) := FOPEN(INFILE2,OLDFILE,NOBUF+READ);
INPUT(2) := FOPEN(INFILE3,OLDFILE,BUFFERED+READ);
INPUT(3) := 0;

OUTPUT(O) .= FOPEN(OUTFILE,NEWFILE,MULTIRECORD+WRITE,-RECSIZ
OUTPUT< 1) := 0;

«ESTABLISH THE KEYS ARRAY»
KEYS(O) := 73; «POSITION»
KEYS(1) .= 8;
KEYS(2) := OJ

«LENGTH »
« ASCENDING, TYPE BYTE OR LOGICAL »

6-15

00071
00071 1
00071 1
00073 1
00075
00075
00075
00075
00112

«OTHER INITIALIZATIONS»
FAILURE := FALSE;
ERROR := TRUE;

«PERFORM THE MERGE AND CHECK FOR ERRORS»

MERGEINITCINPUT"OUTPUT",1,KEYS""STATISTICS,FAILURE,ERROR
MERGEEND;

PAGE 0002 HEWLETT-PACKARD
00113
00113 1 IF FAILURE
00113 1 THEN BEGIN « PRINT THE ERROR MESSAGE AND NUMBER »
00115 2 MERGEERRORMESSCERROR,BUFFER,LENGTH);
00121 2 PRINTCWORD'BUF,-LENGTH,X320);
00126 2
00143 2
00153 2
00163 2
00166 2
00173 2
00173 1
00174
00176
00176
00202
00206
00212

MOVE BUFFER := \\ C ";
LENGTH := ASCIICERROR,10,BUFFER(3» + 3;
MOVE BUFFERCLENGTH) := \\)";
LENGTH := LENGTH + 2;
PRINTCWORD'BUF,-LENGTH, %40);
END

ELSE « PRINT THE STATISTICS »
MERGESTATCSTATISTICS);

FCLOSECINPUTCO),NO'CHANGE,UNRESTRICTED);
FCLOSE CINP~TC 1),NO'CHANGE, UNRESTR ICTED) ;
FCLOSECINPUT(2),NO'CHANGE,UNRESTRICTED);

00212 FCLOSECOUTPUTCO),SAVE'PERM+RETURN'SPACE,UNRESTRICTED);
00220
00220 1 END.

PRIMARY DB STORAGE=%016; SECONDARY DB STORAGE=%00122
NO. ERRORS=OOOO; NO. WARNINGS=OOOO
PROCESSOR TIME=0:00:02; ELAPSED TIME=0:00:06

END OF COMPILE
:PREP $OLDPASS,PNOBUF4;MAXDATA=31232
END OF PREPARE
:RUN PNOBUF4;LIB=G

STATISTICS
NUMBER OF INPUT FILES =
NUMBER OF RECORDS =
SPACE AVAILABLE CIN WORDS)
NUMBER OF COMPARES =
CPU TIME CMINUTES) =
ELAPSED TIME CMINUTES)
END OF PROGRAM

3
150

28,097
243
.02
.10

6-16

/APPENDIX/

A

ERROR MESSAGES AND RECOVERY
PROCEDURES

SORT ERROR MESSAGES

The Table A-I contains messages issued by the SORTLIB segment of the system segmented library. The
messages marked by I/O in the second column of the table result in a file information display. The remain-
ing messages are not issued by the stand-alone SORT program but are displayed when SORT is per-
formed programmatically and an error occurs. Each message consists of SORTLIB: followed by the text of
the message.

ERROR TYPE OF MESSAGE
NUMBER ERROR

1 LIB IF KEYCOMPARE IS SPECIFIED,
KEYS AND NUMKEYS MUST NOT BE

2 LIB IF KEYCOMPARE IS NOT SPECIFIED,
KEYS AND NUMKEYS MUST BE

3 LIB NO RECLEN PARAMETER SPECIFIED OR <=0

4 LIB KEYCOMPARE MAY NOT BE SPECIFIED IF OUTPUTOPTION) 1

5 I/O FREAD ERROR ON SCRATCH FILE
6 LIB ILLEGAL OUTPUTOPTION
7 I/O SCRATCH FILE CANNOT BE OPENED
8 LIB, I/O FAILURE ON FGETINFOCINPUTFILE)
9 LIB ILLEGAL NUMKEYS
10 KEYFIELD IS NOT WITHIN SPECIFIED RECORD LENGTH
11 LIB ILLEGAL ASCENDING/DESCENDING CODE
12 LIB ILLEGAL KEY CODE
13 INSUFFICIENT STACK SPACE
14 INPUT RECORD DOES NOT INCLUDE ALL KEY FIELDS
15 LIB INPUT RECORD IS TOO LONG
16 TOO MANY INPUT RECORDS
17 I/O FWRITE ERRO~! ON SCRATCH FILE
18 I/O FREAD ERROR ON INPUT FILE
19 I/O FWRITE ERROR ON OUTPUT FILE

A-I

ERROR TYPE OF MESSAGE
NUMBER ERROR

20 I/O FCLOSE ERROR ON SCRATCH FILE
21 I/O SNULL IS NOT A VALID INPUT FILE
23 I/O ERROR ATTEMPTING TO WRITE EOF ON SCRATCH FILE
24 I/O ERROR ATTEMPTING TO REWIND SCRATCH FILE
25 I/O ILLEGAL CHARACTERISTIC FOR FOPEN OF SCRATCH FILE
26 LIB INSUFFICIENT STACK SPACE FOR SPECIFIED ALLOCATION

Table A-1. SORTLIB Error Messages

Table A-2 contains messages issued along with the SORTLIB messages. The messages containing I/O in
the second column result in a file information display. Those marked with HARD in the second column
terminate the program. All others also cause program termination, unless the program is run interactively,
in which case you are asked to enter the command again. The stand-alone SORT program commands
listed in the fourth column of the table are the commands that cause errors during SORT.

ERROR TYPE OF MESSAGE COMMAND
NUMBER ERROR

1 I/O, HARD FAILURE ON FOPEN OF LIST FILE
2 HARD LIST FILE IS READ-ONLY
3 I/O, HARD FAILURE ON FOPEN OF TEXT FILE
4 HARD TEXT FILE IS WRITE-ONLY
5 ILLEGAL CO/IIYIAND
6 NO KEYS WERE SPECIFIED END

7 FILENAME CANNOT EXCEED INPUT, OUTPUT
35 CHARACTERS

8 MISSING CO/IIYIA INPUT, OUTPUT, KEY

9 ILLEGAL NUMBER OF RECORDS INPUT

10 NUMBER OF RECORDS TOO LARGE INPUT
OR TOO SMALL

11 ILLEGAL RECORD SIZE INPUT

12 RECORD SIZE TOO LARGE INPUT
OR TOO SMALL

13 TOO MANY PARAMETERS INPUT, OUTPUT, KEY,
RESET, VERIFY, END

14 I/O, HARD FAILURE ON FOPEN OF INPUT FILE END

15 MISSING NUM OR KEY OUTPUT

16 ILLEGAL POSITION KEY

17 POSITION OUT OF RANGE KEY

A-2

ERROR TYPE OF MESSAGE COMMAND
NUMBER ERROR

18 MISSING PARAMETER INPUT, OUTPUT, KEY

19 LENGTH OUT OF RANGE KEY

20 LENGTH PARAMETER NOT AN INTEGER KEY

21 LENGTH NOT SPECIFIED FOR TYPE
BYTE, PACKED, OR DISPLAY

22 MISSING DESC
23 INPUT FILE IS WRITE-ONLY
24 FAILURE ON FoPEN OF OUTPUT FILE
25 HARD OUTPUT FILE IS READ-ONLY END

26 I/O FAILURE ON FCLoSE OF OUTPUT FILE
27 SUM OF KEYFIELDS SIZES TOO LARGE
28 I/O FAILURE ON PURGE OF OLD

OUTPUT FILE
29 I/O FAILURE ON FOPEN OF OLD

OUTPUT FILE
30 I/O FAILURE ON FRENAME OF OUTPUT FILE
31 I/O, HARD FAILURE ON FWRITE OF PROMPT FILE
32 I/O, HARD FAILURE ON FREAD OF TEXT FILE
33 INSUFFICIENT STACK SPACE
34 MISSING PARAMETER
35 ERROR, SYNTAX IS: DATA

[IS] ASCII/EBCDIC, SEQUENCE
[IS] ASCII/EBCIDIC

36 ERROR, SYNTAX IS: SHOW [NOl
SEQUENCE I [NO] TABLE [, OFFLINE]

37 A USER DEFINED SEQUENCE CAN ONLY
BE SPECIFIED WHEN DATA IS ASCII

38 THE DATA COMMAND MUST BE ISSUED
BEFORE THE ALTSEQ OR SHOW COMMANDS

39 I/O SNULL IS NOT A VALID INPUT FILE
Table A-2. SORT Program Error Messages

A-3

ALTSEQ ERROR MESSAGES

Table A-31ists the messages issued if the ALTSEQ command is incorrectly specified. Recovery from these
errors is accomplished by reentering the command during interactive sessions.

ERROR MESSAGE
NUMBER

2 INVALID DIGIT FOR BASE SPECIFIED
3 INVALID PARAMETER
4 INVALID COMMAND, SYNTAX IS: ALTSEQ [EACH/MERGE]

modspec1 =/WITH modspec2
5 THE STRING MUST BE CONTINUOUS AND STRICTLY INCREASING
6 AN INVALID CHARACTER FOUND IN BYTE SPECIFICATION
11 THE BASE IS OUT OF THE RANGE 2 THRU 16
12 THE LENGTH OF THE SPEC STRING CANNOT BE ZERO
13 "EACH" DOESWT MAKE SENSE IN THIS CONTEXT
14 "MERGE" DOESWT MAKE SENSE IN THIS CONTEXT
15 INVALID RANGE SPECIFICATION
16 MERGE STRINGS MAY NOT OVERLAP
17 A BYTE SPECIFICATION IS GREATER THAN 255. PLEASE RESPECIFY

Table A-3 AlTSEQ Error Messages

A-4

MERGE ERROR MESSAGES

Table A-4 lists the messages issued by the MERGELIB segment of the system segmented library. The
messages containing I/O in the second column result in a file information display. The remaining mes-
sages are not displayed by the stand-alone MERGE program; but are printed (if an error occurs), if
MERGE is performed programmatically. Each message consists of MERGELIB: followed by the text of
the message.

ERROR TYPE OF MESSAGE
NUMBER ERROR

1 LIB NO NUMINPUTFILES PARAMETER SPECIFIED
2 LIB ILLEGAL NUMINPUTFILES
3 LIB NO INPUTFILES PARAMETER SPECIFIED
4 LIB NEITHER OUTPUTFILE NOR POSTPROCESSOR

PARAMETER SPECIFIED
5 LIB IF KEYCOMPARE IS SPECIFIED, KEYS AND

NUMKEYS MUST NOT BE
6 LIB IF KEYCOMPARE IS NOT SPECIFIED,

KEYS AND NUMKEYS MUST BE
7 LIB ILLEGAL NUMKEYS
8 LIB KEYFIELD IS NOT WITHIN RECORD LENGTH OF EACH FILE
9 LIB ILLEGAL ASCENDING/DESCENDING CODE
10 LIB ILLEGAL KEY CODE
11 LIB, I/O FAILURE ON FGETINFO(INPUTFILE)
12 I/O FREAD ERROR ON INPUT FILE
13 I/O FWRITE ERROR ON OUTPUT FILE
14 I/O INPUT RECORD DOES NOT INCLUDE ALL KEY FIELDS
15 LIB IF KEYCOMPARE IS SPECIFIED, KEYSONLY MAY NOT BE
16 INSUFFICIENT STACK SPACE
17 LIB INSUFFICIENT STACK SPACE FOR

SPECIFIED ALLOCATION
18 I/O FAILURE ON FGETINFO (OUTPUTFILE)
19 I/O $NULL IS NOT A VALID INPUT FILE

Table A-4. MERGELIB Error Messages

A-5

Table A-5lists the messages issued along with the MERGELIB messages. The messages containing I/O in
the second column result in a file information display. Those marked with HARD in the second column
terminate the program. All others also cause program termination unless the program is run interactively,
in which case you are asked to enter the command again. The stand-alone MERGE program commands
listed in the fourth column cause errors during MERGE.

ERROR TYPE OF MESSAGE COMMAND
NUMBER ERROR

1 I/O,HARD FAILURE ON FOPEN OF LIST FILE
2 HARD LIST FILE IS READ-ONLY
3 I/O, HARD FAILURE ON FOPEN OF TEXT FILE
4 HARD TEXT FILE IS WRITE-ONLY
5 -ILLEGAL COfl1r1AND
6 NO KEYS WERE SPECIFIED END

7 FILENAME CANNOT EXCEED 35 CHARACTERS INPUT, OUTPUT

8 MISSING COfl1r1A INPUT, OUTPUT, KEY

9 MISSING PARAMETER INPUT, OUTPUT, KEY

10 ILLEGAL NUMBER OF RECORDS OUTPUT

11 NUMBER OF RECORDS TOO LARGE OUTPUT
OR TOO SMALL

12 TOO MANY PARAMETERS OUTPUT, KEY, RESET,
VERIFY, END

13 HARD INSUFFICIENT SPACE
14 I/O, HARD FAILURE ON FOPEN OF INPUT FILE END

15 ILLEGAL POSITION KEY

16 POSITION OUT OF RANGE KEY

17 LENGTH OUT OF RANGE KEY

18 LENGTH PARAMETER NOT AN INTEGER KEY

19 LENGTH NOT SPECIFIED FOR TYPE BYTE, KEY
PACKED, OR DISPLAY

20 MISSING DESC KEY

21 I/O, HARD INPUT FILE IS WRITE-ONLY KEY

22 I/O, HARD FAILURE ON FOPEN OF OUTPUT FILE END

23 I/O, HARD OUTPUT FILE IS READ-ONLY END

24 NO INPUT FILES WERE SPECIFIED END

25 FAILURE ON FCLOSE OF OUTPUT FILE

A-6

ERROR TYPE OF MESSAGE COMMAND
NUMBER ERROR

26 SUM OF KEYFIELD SIZES TOO LARGE
27 I/O FAILURE ON PURGE OF OLD OUTPUT FILE
28 I/O FAILURE ON FOPEN OF OLD OUTPUT FILE
29 I/O FAILURE ON FRENAME OF OUTPUT FILE
30 I/O, HARD FAILURE ON FWRITE OF PROMPT FILE
31 I/O, HARD FAILURE ON FREAD OF TEXT FILE
32 ERROR, SYNTAX IS: DATA [IS]

ASCII/EBCDIC
33 ERROR, SYNTAX IS: SHOW [NO]

SEQUENCE/[NOJ TABLE [, OFFLINE]
34 A USER DEFINED SEQUENCE CAN ONLY

BE SPECIFIED WHEN DATA IS ASCII
35 THE DATA COMMAND MUST BE ISSUED

BEFORE THE ALTSEQ OR SHOW COMMANDS
36 I/O SNULL IS NOT A VALID INPUT FILE

Table A-S. MERGE Program Error Messages

RECOVERY PROCEDURES
If you wish your program to continue when SORTLIB errors occur, you must call the SORTEND intrinsic
in order to restore the stack to its original condition. The remainder of your program continues to run.
When an error occurs in the MERGELIB procedure, no recovery is necessary since the procedure returns
directly to your program. Errors during stand-alone SORT (or MERGE) in the batch mode are not recov-
erable and the programs terminate abnormally. In interactive sessions, syntax errors are recoverable and
you are asked to enter the command again.

A-7

The table is sorted by the character code value, each value represented by its decimal, octal, and
hexadecimal equivalent. Each row of the table gives the ASCII and EBCDIC code values of the particular
character, the ASCII-EBCDIC conversion, and the Hollerith representation (punched card code value)
for the ASCII character.

EXAMPLES

If you want to determine the ASCII code value of the character $, scan down the ASCII graphic column
until you locate $. Then read to its left to find the values 36 (decimal), 044 (octal), or 24 (hexadecimal).
This is the code value used by devices such as terminal, printer, cpu, etc, to represent the character $. Its
Hollerith code value is 11-3-8.

To find the character whose EBCDIC code value is 5B (hexadecimal), locate 5B in the Hexadecimal char-
acter value column and move right to the EBCDIC graphic column which gives $. The next column to the
right of $ gives the conversion to the ASCII code value -that is, 044 (octal). As a check, locate 044 in the
octal value column. Then look to the right of the ASCII graphic column. Note $ is converted to EBCDIC
133 (octal) which equals 5B (hexadecimal).

CHAR CODE ASCII EBCDIC

Cntll to Cntl/ to
Dec Oct Hex EBCDIC Hollerith ASCII

Gph (Oct! Gph (Octl

0 000 00 NUL 000 12-0-1-8-9 NUL 000
1 001 01 SOH 001 12-1-9 SOH 001
2 002 02 STX 002 12-2-9 STX 002
3 003 03 ETX 003 12-3-9 ETX 003

4 004 04 EOT 067 7-9 PF 234
5 005 05 ENQ 055 0-5-8-9 HT 011
6 006 06 ACK 056 0-6-8-9 LC 206
7 007 07 BEL 057 0-7-8-9 DEL 177

8 010 08 BS 026 11-6-9 227
9 011 09 HT 005 12-5-9 215

10 012 OA LF 045 0-5-9 SMM 216
11 013 OB VT 013 12-3-8-9 VT 013

12 014 OC FF 014 12-4-8-9 FF 014
13 015 00 CR 015 12-5-8-9 CR 015
14 016 OE SO 016 12-6-8-9 SO 016
15 017 OF SI 017 12-7-8-9 SI 017

16 020 10 OLE 020 12-11-1-8-9 OLE 020
17 021 11 DCl 021 11-1-9 DCl 021
18 022 12 DC2 022 11-2-9 DC2 022
19 023 13 DC3 023 11-3-9 TM 023

20 024 14 DC4 074 4-8-9 RES 235
21 025 15 NAK 075 5-8-9 NL 205
22 026 16 SYN 062 2-9 BS 010
23 027 17 ETB 046 0-6-9 IL 207

24 030 18 CAN 030 11-8-9 CAN 030
25 031 19 EM 031 11-1-8-9 EM 031
26 032 lA SUB 077 7-8-9 CC 222
27 033 lB ESC 047 0-7-9 CUl 217

28 034 lC FS 034 11-4-8-9 IFS 034
29 035 10 GS 035 11-5-8-9 IGS 035
30 036 lE RS 036 11-6-8-9 IRS 036
31 037 1F US 037 11-7-8-9 IUS 037

32 040 20 SP 100 Blank OS 200
33 041 21 I 117 12-7-8 SOS 201
34 042 22 " 177 7-8 FS 202
35 043 23 # 173 3-8 203

36 044 24 $ 133 11-3-8 BYP 204
37 045 25 % 154 0-4-8 LF 012
38 046 26 & 120 12 ETB 027
39 047 27 175 5-8 ESC 033

40 050 28 (115 12-5-8 210
41 051 29 1 135 11-5-8 211
42 052 2A . 134 11-4-8 SM 212
43 053 2B + 116 12-6-8 CU2 213

44 054 2C 153 0-3-8 214
45 055 20 - 140 11 ENQ 005
46 056 2E 113 12-3-8 ACK 006
47 057 2F / 141 0-1 BEL 007

CHAR CODE ASCII EBCDIC

Cntl/ to Cntll to
Dec Oct Hex EBCDIC Hollerith ASCII

Gph (Octl Gph (Octl

48 060 30 0 360 a 220
49 061 31 1 361 1 221
50 062 32 2 362 2 SYN 026
51 063 33 3 363 3 223

52 064 34 4 364 4 PN 224
53 065 35 5 365 5 RS 225
54 066 36 6 366 6 UC 226
55 067 37 7 367 7 EOT 004

56 070 38 8 370 8 230
57 071 39 9 371 9 231
58 072 3A 172 2-8 232
59 073 3B 136 "-€-8 CU3 233

60 074 3C < 114 12-4-8 DC4 024
61 075 3D = 176 6-8 NAK 025
62 076 3E > 156 0-6-8 236
63 077 3F ? 157 0-7-8 SUB 032

64 100 40 @ 174 4-8 SP 040
65 101 41 A 301 12-' 240
66 102 42 8 302 122 241
67 103 43 C 303 P-3 242

68 104 44 0 304 12-4 243
69 105 45 E 305 12-5 24~

I70 106 46 F 306 12-6 24: I
71 107 47 G 307 12-7 246

72 110 48 H 310 12-8 247
73 111 49 i 311 12-9 250
74 112 4A J 321 11-1 • 133
75 113 4B

,
322 11-2 056

76 114 4C L 323 11-3 < 074
77 115 40 M 324 11-4 { 050
78 116 4E N 325 11-5 + 053
79 117 4F 0 326 11-6 I 041

80 120 50 P 327 11-7 & 046
81 121 51 Q 330 11-8 251
82 122 52 R 331 11-9 252
83 123 53 S 342 0-2 253

84 124 54 T 343 0-3 254
85 125 55 U 344 0-4 255
86 126 56 v 345 0-5 256
87 127 57 W 346 0-6 257

88 130 58 X 347 0-7 260
89 131 59 Y 350 0-8 261
90 132 5A Z 351 0-9 I 135
91 133 5B [112 12-2-8 $ 044

92 134 5C \ 340 0-2-8 . 052
93 135 50 I 132 11-2-8 1 051
94 136 5E /\ 137 11-7-8 073
95 137 5F - 155 0-5-8 ----, 136

B-1

CHAR CODE ASCII EBCDIC

entl/
to entl/

to
Dec Oct Hex EBCDIC Hollerith ASCII

Gph (Oct)
Gph (Oct!

96 140 60 171 1-8 055
97 141 61 a 201 12-0-1 / 057
98 142 62 b 202 12-0-2 262
99 143 63 c 203 120-3 263

100 144 64 d 204 12-0-4 264
101 145 65 e 205 12-0-5 265
102 146 66 f 206 12-0-6 266
103 147 67 9 207 12-0-7 267

104 150 68 h 210 12-0-8 270
105 151 69 , 211 12-0-9 271
106 152 6A I 221 12-11-1 : 174
107 153 6B k 222 12-11-2 054

108 154 6C I 223 12-11-3 % 045
109 155 60 m 224 12-11-4 - 137
110 156 6E n 225 12-11-5 > 076
111 157 6F 0 226 12-11-6 , 077

112 160 70 p 227 12-11-7 272
113 161 71 q 230 12-11-8 273
114 162 72 r 231 12-11-9 274
115 163 73 s 242 11-0-2 275

116 164 74 t 243 11-0-3 276
117 165 75 u 244 11-0-4 277
118 166 76 v 245 11-0-5 300
119 167 77 w 246 11-0-6 301

120 170 78 x 247 11-0-7 302
121 171 79 Y 250 11-0-8 140
122 172 7A , 251 11-0-9 072
123 173 7B (300 12-0 .u: 043

124 174 7C 152 12-11 @ 100
125 175 70 j 320 11-0 047
126 176 7E 241 11-0-1 = 075
127 177 7F DEL 007 12-7-9 " 042

128 200 80 040 11-0-1-8-9 303
129 201 81 041 0-1-9 a 141
130 202 82 042 0-2-9 b 142
131 203 83 043 0-3-9 c 143

132 204 84 044 0-4-9 d 144
133 205 85 025 11-5-9 e 145
134 206 86 006 12-6-9 f 146
135 207 87 027 11-7-9 9 147

136 210 88 050 0-8-9 h 150
137 211 89 051 0-1-8-9 j 151
138 212 8A 052 0-2-8-9 304
139 213 8B 053 0-3-8-9 305

140 214 sc 054 0-4-8-9 306
141 215 80 all 121 89 307
142 216 8E 012 12-2-8-9 310
143 217 8F 033 11-3-8-9 311

144 220 90 060 12-11-0-1-8-9 312
145 221 91 061 1-9 j 152
146 222 92 032 11-2-8-9 k 153
147 223 93 063 3-9 I 154

148 224 94 064 4-9 m 155
149 225 95 065 5-9 n 156
150 226 96 066 6-9 0 157
151 227 97 010 12-8-9 p 160

152 230 98 070 8-9 q 161
153 231 99 071 1-8-9 r 162
154 232 9A 072 2-8-9 313
155 233 98 073 3-8-9 314
156 234 9C 004 12-4-9 315
157 235 90 024 11-4-9 316
158 236 9E 076 6-8-9 317
159 237 9F 341 11-0-1-9 320

160 240 AD 101 12-0-1-9 321
161 241 Al 102 12-0-2-9 ~ 176
162 242 A2 103 12-0-3-9 s 163
163 243 A3 104 12-0-4-9 t 164

164 244 A4 105 12-0-5-9 u 165
165 245 A5 106 12-0-6-9 v 166
166 246 A6 107 12-0-7-9 w 167
167 247 A7 110 12-0-8-9 x 170

168 250 A8 111 12-1-8 y 171
169 251 A9 121 12-11-1-9 , 172
170 252 AA 122 12-11-2-9 322
171 253 AB 123 12-11-3-9 323

172 254 AC 124 12-11-4-9 324
173 255 AD 125 12-11-5-9 325
174 256 AE 126 12-11-6-9 326
175 257 AF 127 12-11-7-9 327

CHAR CODE ASCII EBCDIC

Cnt1l to end! to
Dec Oct Hex EBCDIC Hollerith ASCII

Gph 10ct)
Gph 10et)

176 260 BO 130 12-11-8-9 330
177 261 Bl 131 11·1-8 331
178 262 B2 142 11-0-2-9 332
179 263 B3 143 11-0-3-9 333

180 264 B4 144 11-0-4-9 334
181 265 B5 145 11·0-5-9 335
182 266 B6 146 11·0-6·9 336
183 267 B7 147 11-0-7-9 337

184 270 B8 150 11-0-8-9 340
185 271 B9 151 0-1-8 341
186 272 BA 160 12-11-0 342
187 273 BB 161 12·11-0-1-9 343

188 274 BC 162 12-11-0-2-9 344
189 275 BO 163 12·11-0-39 345
190 276 BE 164 12-11-0-4-9 346
191 277 BF 165 12-11-0-5-9 347

192 300 CO 166 12-11-0-6-9 (173
193 301 Cl 167 12·11-0-7-9 A 101
194 302 C2 170 12-11-0-8-9 B 102
195 303 C3 200 12-0-1-8 C 103

196 304 C4 212 12-0-2-8 D 104
197 305 C5 213 12-0-3-8 E 105
198 306 C6 214 12-0-4-8 F 106
199 307 C7 215 12-0-5-8 G 107

200 310 C8 216 12-0-6-8 H 110
201 311 C9 217 12-0-7-8 I 111
202 312 CA 220 12-11-1-8 350
203 313 CB 232 12-11-2-8 351

204 314 CC 233 12·11-3-8 J' 352
205 315 CO 234 12-11-4-8 353
206 316 CE 235 12-11-5-8 T 354
207 317 CF 236 12-11-6-8 355

208 320 DO 237 12-11-7-8) 175
209 321 01 240 11-0-1-8 J 112
210 322 D2 252 11-0-2-8 K 113
211 323 03 253 11-0-3-8 L 114

212 324 04 254 "·0-4~8 M 115
213 325 D5 255 11-0-5-8 N 116
214 326 D6 256 11-0-6-8 0 117
215 327 07 257 11-0-7-8 P 120

216 330 08 260 12-11-0-1-8 Q 121
217 331 D9 261 12-11-0-1 R 122
218 332 DA 262 12-11-0-2 356
219 333 08 263 12-11-0-3 357

220 334 DC 264 12-11-0-4 360
221 3:>5 DO 265 12·11-0-5 361
222 336 DE 266 1211-0-6 362
223 337 DF 267 12-11-0-7 363

224 340 EO 270 12-11-0-8 \ 134
225 341 El 271 12·"-0~9 237
226 342 E2

I
272 12-11-0-2-8 S 123

227 343 E3 273. 12-11-0-3-8 T 124

228 344 E4 274 12·11-0-4-8 U 125
229 345 E5 275 12-11-0-5-8 V 126
230 346 E6 276 12-11-0-6-8 W 127
231 347 E7 277 12-11-0-7-8 X 130

232 350 E8 312 12-0-2-8-9 Y 131
233 351 E9 313 12-0-3·8-9 Z 132
234 352 EA 314 12-0-4-8-9 364
235 353 EB 315 12-0-5-8-9 365
236 354 EC 316 12-0-6-8-9 rI 366
237 355 ED 317 12-0-7-8-9 367
238 356 EE 332 12-11-2-8-9 370
239 357 EF 333 12·11-3-8-9 371

240 360 FO 334 12-11-4-8-9 0 060
241 361 Fl 335 12-11-5-8-9 1 061
242 362 F2 336 12-11-6-8-9 2 062
243 363 F3 337 12-11-7-8~9 3 063

244 364 F4 352 11-0-2-8-9 4 064
245 365 F5 353 11-0-3-8-9 5 065
246 366 F6 354 11-0-4-8-9 6 066
247 367 F7 355 11-0-5-8-9 7 067

248 370 F8 356 11-0-6-8-9 8 070
249 371 F9 357 11-0-7-8-9 9 071
250 372 FA 372 12-11-0-2-8-9 I 372
251 373 FB 373 12-11-0-3-8-9 373

252 374 Fe 374 12-11-0-4-8-9 374
253 375 FD 375 12-11-0-5-8-9 375
254 376 FE 376 12-11-0-6-8-9 376
255 377 FF 377 12-11-0-7-8-9 EO 377

B-2

INDEX

Access option,input and output files 2-3
ALTSEQ command 2-1
ALTSEQ command, examples of 2-28
ALTSEQ command, in batch mode 2-32
ALTSEQ command, parameters of 2-4
ASCII collating sequence, example of 2-34
ASCII collating sequence, specified by DATA

command 2-7
ASCII collating sequence, table B-1
ASCIIIEBCDIC translation table B-1
Available memory considerations, MERGE 6-2
Calling MERGE, SPL example 6-12
Cancelling a SORT or MERGE 2-9
Cards, as input file 2-42
Collating lower-upper case alphabetic characters 2-29
Collating sequence, displaying 2-21
Collating sequence, examining 2-21
Colon, use in entering MPE commands 2-24
Commands, definitions of 2-1
Continuation character, long lines 2-1
CONTROL Y 2-26
Correcting keys, RESET command 2-20
DATA command 2··1, 2-7
Data segment size, running MERGE 4-2, 6-3
Data segment size, running SORT 3-3
Data type, input data 2-7
Default values for parameters, RESET 2-8
Defining special collating sequence 2-4
Display file 2-3
Displaying collating sequence 2-21
Displaying translation table 2-21
EACH, (ALTSEQ) 2-4
EBCDIC collating sequence, example of 2-34
EBCDIC collating sequence, specified by DATA

command 2-7
EBCDIC/ASCII translation table B-1
END command 2-1, 2-9
End of Data command, EOD 2-26
Equivalencing characters, 2-4
Error messages, display of from SPL program 3-13
Error messages, list of A-I
Error messages, retrieval of, MERGE 4-11
Errorproc, SPL example 3-25, 3-27
EXIT command 2-2, 2-10
Failure parameter, example of 4-25
Failure parameter, SORTINITIALF, SPL

example 3-36
File equations, use of 2-3
File equations, using with SORT 2-42
File, definitions of 2-3
Files, default access options 2-3
Files, display 2-3
Files, input 2-3
Files, list 2-3
Files, output 2-3
Files, scratch 2-3
Files, text 2-3
Flowchart, SORT intrinsics 3-2
Input data type, DATA command 2-7
Input file 2-3
INPUT for MERGE 2-2
INPUT for MERGE, parameters of 2-13

INPUT for SORT 2-2
INPUT for SORT, parameters of 2-11
Input records, terminate using :EOD 2-27
KEY command 1-1
Key fields only as output files 2-44
KEY, definition of 1-1
Keycompare parameter, use with SORTINIT 3-24
Keysonly parameter, example of 4-15
List file 2-3
Listing current SORT/MERGE options, VERIFY 2-23
Long commands, continuation character 2-1
Memory utilization, MERGE 4-2
Memory, considerations with MERGE 6-2
MERGE 6-12
MERGE operation, in batch mode 2-48
MERGE operation, in interactive mode 2-48
MERGE PROGRAM INTRINSICS 6-1
MERGE program, intrinsics 4-1
MERGE, preparation and execution when using

FORTRAN/3000
MERGE, using interactively 1-5
MERGE, when using FORTRAN/3000 4-12
MERGEEND 6-8
MERGEEND, when using FORTRAN/3000 4-8
MERGEERRORMESS 6-11
MERGEERRORMESS, example of 4-23
MERGEERRORMESS, when using

FORTRAN/3000 4-11
MERGEINIT 6-3
MERGEINIT, when using FORTRAN/3000 4-3
MERGEOUTPUT 6-7
MERGEOUTPUT, example of 4-18
MERGEOUTPUT, when using FORTRAN/3000 4-7
MERGESTAT 6-9
MERGESTAT, example of 4-20
MERGESTAT, when using FORTRAN/3000 4-9
MERGETITLE 6-10
MERGETITLE, example of 4-21
MERGETITLE, when using FORTRAN/3000
Modification specifications, examples 2-27
Modification specificiation, types of 2-28
Modifying collating sequence 2-4
MPE commands, entering while in

SORT/MERGE 2-24
Multiple input files, with SORT 2-43
Multirecord files, SPL example with MERGE 6-15
NOBUF files, SPL example with MERGE 6-15
Options, listing of during SORT/MERGE 2-23
Ordering sequence 1-2, 2-16
Ordering sequence, to display using SHOW 2-22
Output file 2-3
OUTPUT for MERGE 2-19
OUTPUT for SORT 2-17
Overriding default file access options 2-3
Preprocessor parameter, example of 4-13
Prompt character, interactive use 2-1
RESET command 2-21
Scratch file 2-3
Segsize, in preparation for running MERGE 4-2, 6-3
Segsize, in preparation for running SORT 3-3
Sequence, of MERGE intrinsics 4-2
Sequence, of SORT intrinsics 3-2

1

SHOW command, examples of 2-22,2-34
SORT operation, using multiple input files 2-44
SORT operation, using terminal as output file 2-42
SORT operation, with cards as input file 2-43
SORT program, intrinsics 3-1, 5-1
SORT program, preparation and execution when using

SPL/3000 5-3
SORT, preparation and execution when using

FORTRAN/3000 3-3
SORT, using interactively 1-2
SORTEND, when using FORTRAN/3000 3-10
SORTEND, when using SPL/3000 5-10
SORTERRORMESS, when using

FORTRAN/3000 3-13
SORTERRORMESS, when using SPL/3000 5-13
SORTINIT with altseq Parameter, example of 5-15
SORTINIT, SPL examples 3-22 to 3-28
SORTINIT, when using FORTRAN/3000 3-4
SORTINIT, when using SPL/3000 5-4
SORTINITIAL without inputfile and outputfile,

example of 5-19
SORTINITIAL, when using SPL/3000 5-14
SORTINITIALF, SPL example 3-36
SORTINITIALF, when using FORTRAN/3000 3-14
SORTINPUT, SPL example 3-30
SORTINPUT, when using FORTRAN/3000 3-8
SORTINPUT, when using SPL/3000 5-8
SORTOUTPUT, example of 5-18
SORTOUTPUT, SPL example 3-32

SORTOUTPUT, when using FORTRAN/3000 3-9
SORTOUTPUT, when using SPLl3000 5-9
SORTSTAT, SPL example 3-33
SORTSTAT, when using FORTRAN/3000 3-11
SORTSTAT, when using SPL/3000 5-11
SORTTITLE, SPL example 3-34
SORTTITLE, when using FORTRAN/3000 3-12
SORTTITLE, when using SPL/3000 5-12
Special collating sequences, examples 2-27
Statistics parameter, example of 4-17
Statistics parameter, SPL SORT example 3-29
Statistics, display from SPL program 3-29
Status, obtain using CONTROL Y 2-26
Summarizing current options, VERIFY 2-23
TABLE parameter, used with SHOW 2-23
Terminal, use as input file, example 2-41
Terminal, use as output file, example 2-41
Terminating the SORT/MERGE program 2-8
Termination of input records 2-26
Text file 2-3
Translation table, displaying 2-21
Translation table, editing of 3-17
Translation table, initializing 2-7
Translation, ASCII/EBCDIC B-1
User data segment size, running MERGE 4-2, 6-3
User data segment size, running SORT 3-3
User defined collating sequences 2-4
User defined collating sequences, examples 2-27
VERIFY command 2-24

2

